xref: /illumos-gate/usr/src/uts/common/fs/zfs/vdev.c (revision f06dce2c)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
25  * Copyright 2017 Nexenta Systems, Inc.
26  * Copyright (c) 2014 Integros [integros.com]
27  * Copyright 2016 Toomas Soome <tsoome@me.com>
28  * Copyright 2017 Joyent, Inc.
29  */
30 
31 #include <sys/zfs_context.h>
32 #include <sys/fm/fs/zfs.h>
33 #include <sys/spa.h>
34 #include <sys/spa_impl.h>
35 #include <sys/bpobj.h>
36 #include <sys/dmu.h>
37 #include <sys/dmu_tx.h>
38 #include <sys/dsl_dir.h>
39 #include <sys/vdev_impl.h>
40 #include <sys/uberblock_impl.h>
41 #include <sys/metaslab.h>
42 #include <sys/metaslab_impl.h>
43 #include <sys/space_map.h>
44 #include <sys/space_reftree.h>
45 #include <sys/zio.h>
46 #include <sys/zap.h>
47 #include <sys/fs/zfs.h>
48 #include <sys/arc.h>
49 #include <sys/zil.h>
50 #include <sys/dsl_scan.h>
51 #include <sys/abd.h>
52 
53 /*
54  * Virtual device management.
55  */
56 
57 static vdev_ops_t *vdev_ops_table[] = {
58 	&vdev_root_ops,
59 	&vdev_raidz_ops,
60 	&vdev_mirror_ops,
61 	&vdev_replacing_ops,
62 	&vdev_spare_ops,
63 	&vdev_disk_ops,
64 	&vdev_file_ops,
65 	&vdev_missing_ops,
66 	&vdev_hole_ops,
67 	&vdev_indirect_ops,
68 	NULL
69 };
70 
71 /* maximum scrub/resilver I/O queue per leaf vdev */
72 int zfs_scrub_limit = 10;
73 
74 /*
75  * When a vdev is added, it will be divided into approximately (but no
76  * more than) this number of metaslabs.
77  */
78 int metaslabs_per_vdev = 200;
79 
80 /*
81  * Given a vdev type, return the appropriate ops vector.
82  */
83 static vdev_ops_t *
84 vdev_getops(const char *type)
85 {
86 	vdev_ops_t *ops, **opspp;
87 
88 	for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
89 		if (strcmp(ops->vdev_op_type, type) == 0)
90 			break;
91 
92 	return (ops);
93 }
94 
95 /*
96  * Default asize function: return the MAX of psize with the asize of
97  * all children.  This is what's used by anything other than RAID-Z.
98  */
99 uint64_t
100 vdev_default_asize(vdev_t *vd, uint64_t psize)
101 {
102 	uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
103 	uint64_t csize;
104 
105 	for (int c = 0; c < vd->vdev_children; c++) {
106 		csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
107 		asize = MAX(asize, csize);
108 	}
109 
110 	return (asize);
111 }
112 
113 /*
114  * Get the minimum allocatable size. We define the allocatable size as
115  * the vdev's asize rounded to the nearest metaslab. This allows us to
116  * replace or attach devices which don't have the same physical size but
117  * can still satisfy the same number of allocations.
118  */
119 uint64_t
120 vdev_get_min_asize(vdev_t *vd)
121 {
122 	vdev_t *pvd = vd->vdev_parent;
123 
124 	/*
125 	 * If our parent is NULL (inactive spare or cache) or is the root,
126 	 * just return our own asize.
127 	 */
128 	if (pvd == NULL)
129 		return (vd->vdev_asize);
130 
131 	/*
132 	 * The top-level vdev just returns the allocatable size rounded
133 	 * to the nearest metaslab.
134 	 */
135 	if (vd == vd->vdev_top)
136 		return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
137 
138 	/*
139 	 * The allocatable space for a raidz vdev is N * sizeof(smallest child),
140 	 * so each child must provide at least 1/Nth of its asize.
141 	 */
142 	if (pvd->vdev_ops == &vdev_raidz_ops)
143 		return ((pvd->vdev_min_asize + pvd->vdev_children - 1) /
144 		    pvd->vdev_children);
145 
146 	return (pvd->vdev_min_asize);
147 }
148 
149 void
150 vdev_set_min_asize(vdev_t *vd)
151 {
152 	vd->vdev_min_asize = vdev_get_min_asize(vd);
153 
154 	for (int c = 0; c < vd->vdev_children; c++)
155 		vdev_set_min_asize(vd->vdev_child[c]);
156 }
157 
158 vdev_t *
159 vdev_lookup_top(spa_t *spa, uint64_t vdev)
160 {
161 	vdev_t *rvd = spa->spa_root_vdev;
162 
163 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
164 
165 	if (vdev < rvd->vdev_children) {
166 		ASSERT(rvd->vdev_child[vdev] != NULL);
167 		return (rvd->vdev_child[vdev]);
168 	}
169 
170 	return (NULL);
171 }
172 
173 vdev_t *
174 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
175 {
176 	vdev_t *mvd;
177 
178 	if (vd->vdev_guid == guid)
179 		return (vd);
180 
181 	for (int c = 0; c < vd->vdev_children; c++)
182 		if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
183 		    NULL)
184 			return (mvd);
185 
186 	return (NULL);
187 }
188 
189 static int
190 vdev_count_leaves_impl(vdev_t *vd)
191 {
192 	int n = 0;
193 
194 	if (vd->vdev_ops->vdev_op_leaf)
195 		return (1);
196 
197 	for (int c = 0; c < vd->vdev_children; c++)
198 		n += vdev_count_leaves_impl(vd->vdev_child[c]);
199 
200 	return (n);
201 }
202 
203 int
204 vdev_count_leaves(spa_t *spa)
205 {
206 	return (vdev_count_leaves_impl(spa->spa_root_vdev));
207 }
208 
209 void
210 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
211 {
212 	size_t oldsize, newsize;
213 	uint64_t id = cvd->vdev_id;
214 	vdev_t **newchild;
215 	spa_t *spa = cvd->vdev_spa;
216 
217 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
218 	ASSERT(cvd->vdev_parent == NULL);
219 
220 	cvd->vdev_parent = pvd;
221 
222 	if (pvd == NULL)
223 		return;
224 
225 	ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
226 
227 	oldsize = pvd->vdev_children * sizeof (vdev_t *);
228 	pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
229 	newsize = pvd->vdev_children * sizeof (vdev_t *);
230 
231 	newchild = kmem_zalloc(newsize, KM_SLEEP);
232 	if (pvd->vdev_child != NULL) {
233 		bcopy(pvd->vdev_child, newchild, oldsize);
234 		kmem_free(pvd->vdev_child, oldsize);
235 	}
236 
237 	pvd->vdev_child = newchild;
238 	pvd->vdev_child[id] = cvd;
239 
240 	cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
241 	ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
242 
243 	/*
244 	 * Walk up all ancestors to update guid sum.
245 	 */
246 	for (; pvd != NULL; pvd = pvd->vdev_parent)
247 		pvd->vdev_guid_sum += cvd->vdev_guid_sum;
248 }
249 
250 void
251 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
252 {
253 	int c;
254 	uint_t id = cvd->vdev_id;
255 
256 	ASSERT(cvd->vdev_parent == pvd);
257 
258 	if (pvd == NULL)
259 		return;
260 
261 	ASSERT(id < pvd->vdev_children);
262 	ASSERT(pvd->vdev_child[id] == cvd);
263 
264 	pvd->vdev_child[id] = NULL;
265 	cvd->vdev_parent = NULL;
266 
267 	for (c = 0; c < pvd->vdev_children; c++)
268 		if (pvd->vdev_child[c])
269 			break;
270 
271 	if (c == pvd->vdev_children) {
272 		kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
273 		pvd->vdev_child = NULL;
274 		pvd->vdev_children = 0;
275 	}
276 
277 	/*
278 	 * Walk up all ancestors to update guid sum.
279 	 */
280 	for (; pvd != NULL; pvd = pvd->vdev_parent)
281 		pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
282 }
283 
284 /*
285  * Remove any holes in the child array.
286  */
287 void
288 vdev_compact_children(vdev_t *pvd)
289 {
290 	vdev_t **newchild, *cvd;
291 	int oldc = pvd->vdev_children;
292 	int newc;
293 
294 	ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
295 
296 	for (int c = newc = 0; c < oldc; c++)
297 		if (pvd->vdev_child[c])
298 			newc++;
299 
300 	newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP);
301 
302 	for (int c = newc = 0; c < oldc; c++) {
303 		if ((cvd = pvd->vdev_child[c]) != NULL) {
304 			newchild[newc] = cvd;
305 			cvd->vdev_id = newc++;
306 		}
307 	}
308 
309 	kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
310 	pvd->vdev_child = newchild;
311 	pvd->vdev_children = newc;
312 }
313 
314 /*
315  * Allocate and minimally initialize a vdev_t.
316  */
317 vdev_t *
318 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
319 {
320 	vdev_t *vd;
321 	vdev_indirect_config_t *vic;
322 
323 	vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
324 	vic = &vd->vdev_indirect_config;
325 
326 	if (spa->spa_root_vdev == NULL) {
327 		ASSERT(ops == &vdev_root_ops);
328 		spa->spa_root_vdev = vd;
329 		spa->spa_load_guid = spa_generate_guid(NULL);
330 	}
331 
332 	if (guid == 0 && ops != &vdev_hole_ops) {
333 		if (spa->spa_root_vdev == vd) {
334 			/*
335 			 * The root vdev's guid will also be the pool guid,
336 			 * which must be unique among all pools.
337 			 */
338 			guid = spa_generate_guid(NULL);
339 		} else {
340 			/*
341 			 * Any other vdev's guid must be unique within the pool.
342 			 */
343 			guid = spa_generate_guid(spa);
344 		}
345 		ASSERT(!spa_guid_exists(spa_guid(spa), guid));
346 	}
347 
348 	vd->vdev_spa = spa;
349 	vd->vdev_id = id;
350 	vd->vdev_guid = guid;
351 	vd->vdev_guid_sum = guid;
352 	vd->vdev_ops = ops;
353 	vd->vdev_state = VDEV_STATE_CLOSED;
354 	vd->vdev_ishole = (ops == &vdev_hole_ops);
355 	vic->vic_prev_indirect_vdev = UINT64_MAX;
356 
357 	rw_init(&vd->vdev_indirect_rwlock, NULL, RW_DEFAULT, NULL);
358 	mutex_init(&vd->vdev_obsolete_lock, NULL, MUTEX_DEFAULT, NULL);
359 	vd->vdev_obsolete_segments = range_tree_create(NULL, NULL);
360 
361 	mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
362 	mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
363 	mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
364 	mutex_init(&vd->vdev_queue_lock, NULL, MUTEX_DEFAULT, NULL);
365 	for (int t = 0; t < DTL_TYPES; t++) {
366 		vd->vdev_dtl[t] = range_tree_create(NULL, NULL);
367 	}
368 	txg_list_create(&vd->vdev_ms_list, spa,
369 	    offsetof(struct metaslab, ms_txg_node));
370 	txg_list_create(&vd->vdev_dtl_list, spa,
371 	    offsetof(struct vdev, vdev_dtl_node));
372 	vd->vdev_stat.vs_timestamp = gethrtime();
373 	vdev_queue_init(vd);
374 	vdev_cache_init(vd);
375 
376 	return (vd);
377 }
378 
379 /*
380  * Allocate a new vdev.  The 'alloctype' is used to control whether we are
381  * creating a new vdev or loading an existing one - the behavior is slightly
382  * different for each case.
383  */
384 int
385 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
386     int alloctype)
387 {
388 	vdev_ops_t *ops;
389 	char *type;
390 	uint64_t guid = 0, islog, nparity;
391 	vdev_t *vd;
392 	vdev_indirect_config_t *vic;
393 
394 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
395 
396 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
397 		return (SET_ERROR(EINVAL));
398 
399 	if ((ops = vdev_getops(type)) == NULL)
400 		return (SET_ERROR(EINVAL));
401 
402 	/*
403 	 * If this is a load, get the vdev guid from the nvlist.
404 	 * Otherwise, vdev_alloc_common() will generate one for us.
405 	 */
406 	if (alloctype == VDEV_ALLOC_LOAD) {
407 		uint64_t label_id;
408 
409 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
410 		    label_id != id)
411 			return (SET_ERROR(EINVAL));
412 
413 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
414 			return (SET_ERROR(EINVAL));
415 	} else if (alloctype == VDEV_ALLOC_SPARE) {
416 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
417 			return (SET_ERROR(EINVAL));
418 	} else if (alloctype == VDEV_ALLOC_L2CACHE) {
419 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
420 			return (SET_ERROR(EINVAL));
421 	} else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
422 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
423 			return (SET_ERROR(EINVAL));
424 	}
425 
426 	/*
427 	 * The first allocated vdev must be of type 'root'.
428 	 */
429 	if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
430 		return (SET_ERROR(EINVAL));
431 
432 	/*
433 	 * Determine whether we're a log vdev.
434 	 */
435 	islog = 0;
436 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
437 	if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
438 		return (SET_ERROR(ENOTSUP));
439 
440 	if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
441 		return (SET_ERROR(ENOTSUP));
442 
443 	/*
444 	 * Set the nparity property for RAID-Z vdevs.
445 	 */
446 	nparity = -1ULL;
447 	if (ops == &vdev_raidz_ops) {
448 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
449 		    &nparity) == 0) {
450 			if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
451 				return (SET_ERROR(EINVAL));
452 			/*
453 			 * Previous versions could only support 1 or 2 parity
454 			 * device.
455 			 */
456 			if (nparity > 1 &&
457 			    spa_version(spa) < SPA_VERSION_RAIDZ2)
458 				return (SET_ERROR(ENOTSUP));
459 			if (nparity > 2 &&
460 			    spa_version(spa) < SPA_VERSION_RAIDZ3)
461 				return (SET_ERROR(ENOTSUP));
462 		} else {
463 			/*
464 			 * We require the parity to be specified for SPAs that
465 			 * support multiple parity levels.
466 			 */
467 			if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
468 				return (SET_ERROR(EINVAL));
469 			/*
470 			 * Otherwise, we default to 1 parity device for RAID-Z.
471 			 */
472 			nparity = 1;
473 		}
474 	} else {
475 		nparity = 0;
476 	}
477 	ASSERT(nparity != -1ULL);
478 
479 	vd = vdev_alloc_common(spa, id, guid, ops);
480 	vic = &vd->vdev_indirect_config;
481 
482 	vd->vdev_islog = islog;
483 	vd->vdev_nparity = nparity;
484 
485 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
486 		vd->vdev_path = spa_strdup(vd->vdev_path);
487 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
488 		vd->vdev_devid = spa_strdup(vd->vdev_devid);
489 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
490 	    &vd->vdev_physpath) == 0)
491 		vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
492 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
493 		vd->vdev_fru = spa_strdup(vd->vdev_fru);
494 
495 	/*
496 	 * Set the whole_disk property.  If it's not specified, leave the value
497 	 * as -1.
498 	 */
499 	if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
500 	    &vd->vdev_wholedisk) != 0)
501 		vd->vdev_wholedisk = -1ULL;
502 
503 	ASSERT0(vic->vic_mapping_object);
504 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_OBJECT,
505 	    &vic->vic_mapping_object);
506 	ASSERT0(vic->vic_births_object);
507 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_BIRTHS,
508 	    &vic->vic_births_object);
509 	ASSERT3U(vic->vic_prev_indirect_vdev, ==, UINT64_MAX);
510 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_PREV_INDIRECT_VDEV,
511 	    &vic->vic_prev_indirect_vdev);
512 
513 	/*
514 	 * Look for the 'not present' flag.  This will only be set if the device
515 	 * was not present at the time of import.
516 	 */
517 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
518 	    &vd->vdev_not_present);
519 
520 	/*
521 	 * Get the alignment requirement.
522 	 */
523 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
524 
525 	/*
526 	 * Retrieve the vdev creation time.
527 	 */
528 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
529 	    &vd->vdev_crtxg);
530 
531 	/*
532 	 * If we're a top-level vdev, try to load the allocation parameters.
533 	 */
534 	if (parent && !parent->vdev_parent &&
535 	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
536 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
537 		    &vd->vdev_ms_array);
538 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
539 		    &vd->vdev_ms_shift);
540 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
541 		    &vd->vdev_asize);
542 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
543 		    &vd->vdev_removing);
544 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP,
545 		    &vd->vdev_top_zap);
546 	} else {
547 		ASSERT0(vd->vdev_top_zap);
548 	}
549 
550 	if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) {
551 		ASSERT(alloctype == VDEV_ALLOC_LOAD ||
552 		    alloctype == VDEV_ALLOC_ADD ||
553 		    alloctype == VDEV_ALLOC_SPLIT ||
554 		    alloctype == VDEV_ALLOC_ROOTPOOL);
555 		vd->vdev_mg = metaslab_group_create(islog ?
556 		    spa_log_class(spa) : spa_normal_class(spa), vd);
557 	}
558 
559 	if (vd->vdev_ops->vdev_op_leaf &&
560 	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
561 		(void) nvlist_lookup_uint64(nv,
562 		    ZPOOL_CONFIG_VDEV_LEAF_ZAP, &vd->vdev_leaf_zap);
563 	} else {
564 		ASSERT0(vd->vdev_leaf_zap);
565 	}
566 
567 	/*
568 	 * If we're a leaf vdev, try to load the DTL object and other state.
569 	 */
570 
571 	if (vd->vdev_ops->vdev_op_leaf &&
572 	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
573 	    alloctype == VDEV_ALLOC_ROOTPOOL)) {
574 		if (alloctype == VDEV_ALLOC_LOAD) {
575 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
576 			    &vd->vdev_dtl_object);
577 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
578 			    &vd->vdev_unspare);
579 		}
580 
581 		if (alloctype == VDEV_ALLOC_ROOTPOOL) {
582 			uint64_t spare = 0;
583 
584 			if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
585 			    &spare) == 0 && spare)
586 				spa_spare_add(vd);
587 		}
588 
589 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
590 		    &vd->vdev_offline);
591 
592 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
593 		    &vd->vdev_resilver_txg);
594 
595 		/*
596 		 * When importing a pool, we want to ignore the persistent fault
597 		 * state, as the diagnosis made on another system may not be
598 		 * valid in the current context.  Local vdevs will
599 		 * remain in the faulted state.
600 		 */
601 		if (spa_load_state(spa) == SPA_LOAD_OPEN) {
602 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
603 			    &vd->vdev_faulted);
604 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
605 			    &vd->vdev_degraded);
606 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
607 			    &vd->vdev_removed);
608 
609 			if (vd->vdev_faulted || vd->vdev_degraded) {
610 				char *aux;
611 
612 				vd->vdev_label_aux =
613 				    VDEV_AUX_ERR_EXCEEDED;
614 				if (nvlist_lookup_string(nv,
615 				    ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
616 				    strcmp(aux, "external") == 0)
617 					vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
618 			}
619 		}
620 	}
621 
622 	/*
623 	 * Add ourselves to the parent's list of children.
624 	 */
625 	vdev_add_child(parent, vd);
626 
627 	*vdp = vd;
628 
629 	return (0);
630 }
631 
632 void
633 vdev_free(vdev_t *vd)
634 {
635 	spa_t *spa = vd->vdev_spa;
636 
637 	/*
638 	 * vdev_free() implies closing the vdev first.  This is simpler than
639 	 * trying to ensure complicated semantics for all callers.
640 	 */
641 	vdev_close(vd);
642 
643 	ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
644 	ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
645 
646 	/*
647 	 * Free all children.
648 	 */
649 	for (int c = 0; c < vd->vdev_children; c++)
650 		vdev_free(vd->vdev_child[c]);
651 
652 	ASSERT(vd->vdev_child == NULL);
653 	ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
654 
655 	/*
656 	 * Discard allocation state.
657 	 */
658 	if (vd->vdev_mg != NULL) {
659 		vdev_metaslab_fini(vd);
660 		metaslab_group_destroy(vd->vdev_mg);
661 	}
662 
663 	ASSERT0(vd->vdev_stat.vs_space);
664 	ASSERT0(vd->vdev_stat.vs_dspace);
665 	ASSERT0(vd->vdev_stat.vs_alloc);
666 
667 	/*
668 	 * Remove this vdev from its parent's child list.
669 	 */
670 	vdev_remove_child(vd->vdev_parent, vd);
671 
672 	ASSERT(vd->vdev_parent == NULL);
673 
674 	/*
675 	 * Clean up vdev structure.
676 	 */
677 	vdev_queue_fini(vd);
678 	vdev_cache_fini(vd);
679 
680 	if (vd->vdev_path)
681 		spa_strfree(vd->vdev_path);
682 	if (vd->vdev_devid)
683 		spa_strfree(vd->vdev_devid);
684 	if (vd->vdev_physpath)
685 		spa_strfree(vd->vdev_physpath);
686 	if (vd->vdev_fru)
687 		spa_strfree(vd->vdev_fru);
688 
689 	if (vd->vdev_isspare)
690 		spa_spare_remove(vd);
691 	if (vd->vdev_isl2cache)
692 		spa_l2cache_remove(vd);
693 
694 	txg_list_destroy(&vd->vdev_ms_list);
695 	txg_list_destroy(&vd->vdev_dtl_list);
696 
697 	mutex_enter(&vd->vdev_dtl_lock);
698 	space_map_close(vd->vdev_dtl_sm);
699 	for (int t = 0; t < DTL_TYPES; t++) {
700 		range_tree_vacate(vd->vdev_dtl[t], NULL, NULL);
701 		range_tree_destroy(vd->vdev_dtl[t]);
702 	}
703 	mutex_exit(&vd->vdev_dtl_lock);
704 
705 	EQUIV(vd->vdev_indirect_births != NULL,
706 	    vd->vdev_indirect_mapping != NULL);
707 	if (vd->vdev_indirect_births != NULL) {
708 		vdev_indirect_mapping_close(vd->vdev_indirect_mapping);
709 		vdev_indirect_births_close(vd->vdev_indirect_births);
710 	}
711 
712 	if (vd->vdev_obsolete_sm != NULL) {
713 		ASSERT(vd->vdev_removing ||
714 		    vd->vdev_ops == &vdev_indirect_ops);
715 		space_map_close(vd->vdev_obsolete_sm);
716 		vd->vdev_obsolete_sm = NULL;
717 	}
718 	range_tree_destroy(vd->vdev_obsolete_segments);
719 	rw_destroy(&vd->vdev_indirect_rwlock);
720 	mutex_destroy(&vd->vdev_obsolete_lock);
721 
722 	mutex_destroy(&vd->vdev_queue_lock);
723 	mutex_destroy(&vd->vdev_dtl_lock);
724 	mutex_destroy(&vd->vdev_stat_lock);
725 	mutex_destroy(&vd->vdev_probe_lock);
726 
727 	if (vd == spa->spa_root_vdev)
728 		spa->spa_root_vdev = NULL;
729 
730 	kmem_free(vd, sizeof (vdev_t));
731 }
732 
733 /*
734  * Transfer top-level vdev state from svd to tvd.
735  */
736 static void
737 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
738 {
739 	spa_t *spa = svd->vdev_spa;
740 	metaslab_t *msp;
741 	vdev_t *vd;
742 	int t;
743 
744 	ASSERT(tvd == tvd->vdev_top);
745 
746 	tvd->vdev_ms_array = svd->vdev_ms_array;
747 	tvd->vdev_ms_shift = svd->vdev_ms_shift;
748 	tvd->vdev_ms_count = svd->vdev_ms_count;
749 	tvd->vdev_top_zap = svd->vdev_top_zap;
750 
751 	svd->vdev_ms_array = 0;
752 	svd->vdev_ms_shift = 0;
753 	svd->vdev_ms_count = 0;
754 	svd->vdev_top_zap = 0;
755 
756 	if (tvd->vdev_mg)
757 		ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
758 	tvd->vdev_mg = svd->vdev_mg;
759 	tvd->vdev_ms = svd->vdev_ms;
760 
761 	svd->vdev_mg = NULL;
762 	svd->vdev_ms = NULL;
763 
764 	if (tvd->vdev_mg != NULL)
765 		tvd->vdev_mg->mg_vd = tvd;
766 
767 	tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
768 	tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
769 	tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
770 
771 	svd->vdev_stat.vs_alloc = 0;
772 	svd->vdev_stat.vs_space = 0;
773 	svd->vdev_stat.vs_dspace = 0;
774 
775 	for (t = 0; t < TXG_SIZE; t++) {
776 		while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
777 			(void) txg_list_add(&tvd->vdev_ms_list, msp, t);
778 		while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
779 			(void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
780 		if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
781 			(void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
782 	}
783 
784 	if (list_link_active(&svd->vdev_config_dirty_node)) {
785 		vdev_config_clean(svd);
786 		vdev_config_dirty(tvd);
787 	}
788 
789 	if (list_link_active(&svd->vdev_state_dirty_node)) {
790 		vdev_state_clean(svd);
791 		vdev_state_dirty(tvd);
792 	}
793 
794 	tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
795 	svd->vdev_deflate_ratio = 0;
796 
797 	tvd->vdev_islog = svd->vdev_islog;
798 	svd->vdev_islog = 0;
799 }
800 
801 static void
802 vdev_top_update(vdev_t *tvd, vdev_t *vd)
803 {
804 	if (vd == NULL)
805 		return;
806 
807 	vd->vdev_top = tvd;
808 
809 	for (int c = 0; c < vd->vdev_children; c++)
810 		vdev_top_update(tvd, vd->vdev_child[c]);
811 }
812 
813 /*
814  * Add a mirror/replacing vdev above an existing vdev.
815  */
816 vdev_t *
817 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
818 {
819 	spa_t *spa = cvd->vdev_spa;
820 	vdev_t *pvd = cvd->vdev_parent;
821 	vdev_t *mvd;
822 
823 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
824 
825 	mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
826 
827 	mvd->vdev_asize = cvd->vdev_asize;
828 	mvd->vdev_min_asize = cvd->vdev_min_asize;
829 	mvd->vdev_max_asize = cvd->vdev_max_asize;
830 	mvd->vdev_psize = cvd->vdev_psize;
831 	mvd->vdev_ashift = cvd->vdev_ashift;
832 	mvd->vdev_state = cvd->vdev_state;
833 	mvd->vdev_crtxg = cvd->vdev_crtxg;
834 
835 	vdev_remove_child(pvd, cvd);
836 	vdev_add_child(pvd, mvd);
837 	cvd->vdev_id = mvd->vdev_children;
838 	vdev_add_child(mvd, cvd);
839 	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
840 
841 	if (mvd == mvd->vdev_top)
842 		vdev_top_transfer(cvd, mvd);
843 
844 	return (mvd);
845 }
846 
847 /*
848  * Remove a 1-way mirror/replacing vdev from the tree.
849  */
850 void
851 vdev_remove_parent(vdev_t *cvd)
852 {
853 	vdev_t *mvd = cvd->vdev_parent;
854 	vdev_t *pvd = mvd->vdev_parent;
855 
856 	ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
857 
858 	ASSERT(mvd->vdev_children == 1);
859 	ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
860 	    mvd->vdev_ops == &vdev_replacing_ops ||
861 	    mvd->vdev_ops == &vdev_spare_ops);
862 	cvd->vdev_ashift = mvd->vdev_ashift;
863 
864 	vdev_remove_child(mvd, cvd);
865 	vdev_remove_child(pvd, mvd);
866 
867 	/*
868 	 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
869 	 * Otherwise, we could have detached an offline device, and when we
870 	 * go to import the pool we'll think we have two top-level vdevs,
871 	 * instead of a different version of the same top-level vdev.
872 	 */
873 	if (mvd->vdev_top == mvd) {
874 		uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
875 		cvd->vdev_orig_guid = cvd->vdev_guid;
876 		cvd->vdev_guid += guid_delta;
877 		cvd->vdev_guid_sum += guid_delta;
878 	}
879 	cvd->vdev_id = mvd->vdev_id;
880 	vdev_add_child(pvd, cvd);
881 	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
882 
883 	if (cvd == cvd->vdev_top)
884 		vdev_top_transfer(mvd, cvd);
885 
886 	ASSERT(mvd->vdev_children == 0);
887 	vdev_free(mvd);
888 }
889 
890 int
891 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
892 {
893 	spa_t *spa = vd->vdev_spa;
894 	objset_t *mos = spa->spa_meta_objset;
895 	uint64_t m;
896 	uint64_t oldc = vd->vdev_ms_count;
897 	uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
898 	metaslab_t **mspp;
899 	int error;
900 
901 	ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
902 
903 	/*
904 	 * This vdev is not being allocated from yet or is a hole.
905 	 */
906 	if (vd->vdev_ms_shift == 0)
907 		return (0);
908 
909 	ASSERT(!vd->vdev_ishole);
910 
911 	ASSERT(oldc <= newc);
912 
913 	mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
914 
915 	if (oldc != 0) {
916 		bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
917 		kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
918 	}
919 
920 	vd->vdev_ms = mspp;
921 	vd->vdev_ms_count = newc;
922 
923 	for (m = oldc; m < newc; m++) {
924 		uint64_t object = 0;
925 
926 		/*
927 		 * vdev_ms_array may be 0 if we are creating the "fake"
928 		 * metaslabs for an indirect vdev for zdb's leak detection.
929 		 * See zdb_leak_init().
930 		 */
931 		if (txg == 0 && vd->vdev_ms_array != 0) {
932 			error = dmu_read(mos, vd->vdev_ms_array,
933 			    m * sizeof (uint64_t), sizeof (uint64_t), &object,
934 			    DMU_READ_PREFETCH);
935 			if (error)
936 				return (error);
937 		}
938 
939 		error = metaslab_init(vd->vdev_mg, m, object, txg,
940 		    &(vd->vdev_ms[m]));
941 		if (error)
942 			return (error);
943 	}
944 
945 	if (txg == 0)
946 		spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
947 
948 	/*
949 	 * If the vdev is being removed we don't activate
950 	 * the metaslabs since we want to ensure that no new
951 	 * allocations are performed on this device.
952 	 */
953 	if (oldc == 0 && !vd->vdev_removing)
954 		metaslab_group_activate(vd->vdev_mg);
955 
956 	if (txg == 0)
957 		spa_config_exit(spa, SCL_ALLOC, FTAG);
958 
959 	return (0);
960 }
961 
962 void
963 vdev_metaslab_fini(vdev_t *vd)
964 {
965 	if (vd->vdev_ms != NULL) {
966 		uint64_t count = vd->vdev_ms_count;
967 
968 		metaslab_group_passivate(vd->vdev_mg);
969 		for (uint64_t m = 0; m < count; m++) {
970 			metaslab_t *msp = vd->vdev_ms[m];
971 
972 			if (msp != NULL)
973 				metaslab_fini(msp);
974 		}
975 		kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
976 		vd->vdev_ms = NULL;
977 
978 		vd->vdev_ms_count = 0;
979 	}
980 	ASSERT0(vd->vdev_ms_count);
981 }
982 
983 typedef struct vdev_probe_stats {
984 	boolean_t	vps_readable;
985 	boolean_t	vps_writeable;
986 	int		vps_flags;
987 } vdev_probe_stats_t;
988 
989 static void
990 vdev_probe_done(zio_t *zio)
991 {
992 	spa_t *spa = zio->io_spa;
993 	vdev_t *vd = zio->io_vd;
994 	vdev_probe_stats_t *vps = zio->io_private;
995 
996 	ASSERT(vd->vdev_probe_zio != NULL);
997 
998 	if (zio->io_type == ZIO_TYPE_READ) {
999 		if (zio->io_error == 0)
1000 			vps->vps_readable = 1;
1001 		if (zio->io_error == 0 && spa_writeable(spa)) {
1002 			zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
1003 			    zio->io_offset, zio->io_size, zio->io_abd,
1004 			    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1005 			    ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
1006 		} else {
1007 			abd_free(zio->io_abd);
1008 		}
1009 	} else if (zio->io_type == ZIO_TYPE_WRITE) {
1010 		if (zio->io_error == 0)
1011 			vps->vps_writeable = 1;
1012 		abd_free(zio->io_abd);
1013 	} else if (zio->io_type == ZIO_TYPE_NULL) {
1014 		zio_t *pio;
1015 
1016 		vd->vdev_cant_read |= !vps->vps_readable;
1017 		vd->vdev_cant_write |= !vps->vps_writeable;
1018 
1019 		if (vdev_readable(vd) &&
1020 		    (vdev_writeable(vd) || !spa_writeable(spa))) {
1021 			zio->io_error = 0;
1022 		} else {
1023 			ASSERT(zio->io_error != 0);
1024 			zfs_dbgmsg("failed probe on vdev %llu",
1025 			    (longlong_t)vd->vdev_id);
1026 			zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
1027 			    spa, vd, NULL, 0, 0);
1028 			zio->io_error = SET_ERROR(ENXIO);
1029 		}
1030 
1031 		mutex_enter(&vd->vdev_probe_lock);
1032 		ASSERT(vd->vdev_probe_zio == zio);
1033 		vd->vdev_probe_zio = NULL;
1034 		mutex_exit(&vd->vdev_probe_lock);
1035 
1036 		zio_link_t *zl = NULL;
1037 		while ((pio = zio_walk_parents(zio, &zl)) != NULL)
1038 			if (!vdev_accessible(vd, pio))
1039 				pio->io_error = SET_ERROR(ENXIO);
1040 
1041 		kmem_free(vps, sizeof (*vps));
1042 	}
1043 }
1044 
1045 /*
1046  * Determine whether this device is accessible.
1047  *
1048  * Read and write to several known locations: the pad regions of each
1049  * vdev label but the first, which we leave alone in case it contains
1050  * a VTOC.
1051  */
1052 zio_t *
1053 vdev_probe(vdev_t *vd, zio_t *zio)
1054 {
1055 	spa_t *spa = vd->vdev_spa;
1056 	vdev_probe_stats_t *vps = NULL;
1057 	zio_t *pio;
1058 
1059 	ASSERT(vd->vdev_ops->vdev_op_leaf);
1060 
1061 	/*
1062 	 * Don't probe the probe.
1063 	 */
1064 	if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
1065 		return (NULL);
1066 
1067 	/*
1068 	 * To prevent 'probe storms' when a device fails, we create
1069 	 * just one probe i/o at a time.  All zios that want to probe
1070 	 * this vdev will become parents of the probe io.
1071 	 */
1072 	mutex_enter(&vd->vdev_probe_lock);
1073 
1074 	if ((pio = vd->vdev_probe_zio) == NULL) {
1075 		vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
1076 
1077 		vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
1078 		    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
1079 		    ZIO_FLAG_TRYHARD;
1080 
1081 		if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
1082 			/*
1083 			 * vdev_cant_read and vdev_cant_write can only
1084 			 * transition from TRUE to FALSE when we have the
1085 			 * SCL_ZIO lock as writer; otherwise they can only
1086 			 * transition from FALSE to TRUE.  This ensures that
1087 			 * any zio looking at these values can assume that
1088 			 * failures persist for the life of the I/O.  That's
1089 			 * important because when a device has intermittent
1090 			 * connectivity problems, we want to ensure that
1091 			 * they're ascribed to the device (ENXIO) and not
1092 			 * the zio (EIO).
1093 			 *
1094 			 * Since we hold SCL_ZIO as writer here, clear both
1095 			 * values so the probe can reevaluate from first
1096 			 * principles.
1097 			 */
1098 			vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1099 			vd->vdev_cant_read = B_FALSE;
1100 			vd->vdev_cant_write = B_FALSE;
1101 		}
1102 
1103 		vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1104 		    vdev_probe_done, vps,
1105 		    vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1106 
1107 		/*
1108 		 * We can't change the vdev state in this context, so we
1109 		 * kick off an async task to do it on our behalf.
1110 		 */
1111 		if (zio != NULL) {
1112 			vd->vdev_probe_wanted = B_TRUE;
1113 			spa_async_request(spa, SPA_ASYNC_PROBE);
1114 		}
1115 	}
1116 
1117 	if (zio != NULL)
1118 		zio_add_child(zio, pio);
1119 
1120 	mutex_exit(&vd->vdev_probe_lock);
1121 
1122 	if (vps == NULL) {
1123 		ASSERT(zio != NULL);
1124 		return (NULL);
1125 	}
1126 
1127 	for (int l = 1; l < VDEV_LABELS; l++) {
1128 		zio_nowait(zio_read_phys(pio, vd,
1129 		    vdev_label_offset(vd->vdev_psize, l,
1130 		    offsetof(vdev_label_t, vl_pad2)), VDEV_PAD_SIZE,
1131 		    abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE),
1132 		    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1133 		    ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1134 	}
1135 
1136 	if (zio == NULL)
1137 		return (pio);
1138 
1139 	zio_nowait(pio);
1140 	return (NULL);
1141 }
1142 
1143 static void
1144 vdev_open_child(void *arg)
1145 {
1146 	vdev_t *vd = arg;
1147 
1148 	vd->vdev_open_thread = curthread;
1149 	vd->vdev_open_error = vdev_open(vd);
1150 	vd->vdev_open_thread = NULL;
1151 }
1152 
1153 boolean_t
1154 vdev_uses_zvols(vdev_t *vd)
1155 {
1156 	if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR,
1157 	    strlen(ZVOL_DIR)) == 0)
1158 		return (B_TRUE);
1159 	for (int c = 0; c < vd->vdev_children; c++)
1160 		if (vdev_uses_zvols(vd->vdev_child[c]))
1161 			return (B_TRUE);
1162 	return (B_FALSE);
1163 }
1164 
1165 void
1166 vdev_open_children(vdev_t *vd)
1167 {
1168 	taskq_t *tq;
1169 	int children = vd->vdev_children;
1170 
1171 	/*
1172 	 * in order to handle pools on top of zvols, do the opens
1173 	 * in a single thread so that the same thread holds the
1174 	 * spa_namespace_lock
1175 	 */
1176 	if (vdev_uses_zvols(vd)) {
1177 		for (int c = 0; c < children; c++)
1178 			vd->vdev_child[c]->vdev_open_error =
1179 			    vdev_open(vd->vdev_child[c]);
1180 		return;
1181 	}
1182 	tq = taskq_create("vdev_open", children, minclsyspri,
1183 	    children, children, TASKQ_PREPOPULATE);
1184 
1185 	for (int c = 0; c < children; c++)
1186 		VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c],
1187 		    TQ_SLEEP) != NULL);
1188 
1189 	taskq_destroy(tq);
1190 }
1191 
1192 /*
1193  * Compute the raidz-deflation ratio.  Note, we hard-code
1194  * in 128k (1 << 17) because it is the "typical" blocksize.
1195  * Even though SPA_MAXBLOCKSIZE changed, this algorithm can not change,
1196  * otherwise it would inconsistently account for existing bp's.
1197  */
1198 static void
1199 vdev_set_deflate_ratio(vdev_t *vd)
1200 {
1201 	if (vd == vd->vdev_top && !vd->vdev_ishole && vd->vdev_ashift != 0) {
1202 		vd->vdev_deflate_ratio = (1 << 17) /
1203 		    (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
1204 	}
1205 }
1206 
1207 /*
1208  * Prepare a virtual device for access.
1209  */
1210 int
1211 vdev_open(vdev_t *vd)
1212 {
1213 	spa_t *spa = vd->vdev_spa;
1214 	int error;
1215 	uint64_t osize = 0;
1216 	uint64_t max_osize = 0;
1217 	uint64_t asize, max_asize, psize;
1218 	uint64_t ashift = 0;
1219 
1220 	ASSERT(vd->vdev_open_thread == curthread ||
1221 	    spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1222 	ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1223 	    vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1224 	    vd->vdev_state == VDEV_STATE_OFFLINE);
1225 
1226 	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1227 	vd->vdev_cant_read = B_FALSE;
1228 	vd->vdev_cant_write = B_FALSE;
1229 	vd->vdev_min_asize = vdev_get_min_asize(vd);
1230 
1231 	/*
1232 	 * If this vdev is not removed, check its fault status.  If it's
1233 	 * faulted, bail out of the open.
1234 	 */
1235 	if (!vd->vdev_removed && vd->vdev_faulted) {
1236 		ASSERT(vd->vdev_children == 0);
1237 		ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1238 		    vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1239 		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1240 		    vd->vdev_label_aux);
1241 		return (SET_ERROR(ENXIO));
1242 	} else if (vd->vdev_offline) {
1243 		ASSERT(vd->vdev_children == 0);
1244 		vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1245 		return (SET_ERROR(ENXIO));
1246 	}
1247 
1248 	error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, &ashift);
1249 
1250 	/*
1251 	 * Reset the vdev_reopening flag so that we actually close
1252 	 * the vdev on error.
1253 	 */
1254 	vd->vdev_reopening = B_FALSE;
1255 	if (zio_injection_enabled && error == 0)
1256 		error = zio_handle_device_injection(vd, NULL, ENXIO);
1257 
1258 	if (error) {
1259 		if (vd->vdev_removed &&
1260 		    vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1261 			vd->vdev_removed = B_FALSE;
1262 
1263 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1264 		    vd->vdev_stat.vs_aux);
1265 		return (error);
1266 	}
1267 
1268 	vd->vdev_removed = B_FALSE;
1269 
1270 	/*
1271 	 * Recheck the faulted flag now that we have confirmed that
1272 	 * the vdev is accessible.  If we're faulted, bail.
1273 	 */
1274 	if (vd->vdev_faulted) {
1275 		ASSERT(vd->vdev_children == 0);
1276 		ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1277 		    vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1278 		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1279 		    vd->vdev_label_aux);
1280 		return (SET_ERROR(ENXIO));
1281 	}
1282 
1283 	if (vd->vdev_degraded) {
1284 		ASSERT(vd->vdev_children == 0);
1285 		vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1286 		    VDEV_AUX_ERR_EXCEEDED);
1287 	} else {
1288 		vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1289 	}
1290 
1291 	/*
1292 	 * For hole or missing vdevs we just return success.
1293 	 */
1294 	if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1295 		return (0);
1296 
1297 	for (int c = 0; c < vd->vdev_children; c++) {
1298 		if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1299 			vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1300 			    VDEV_AUX_NONE);
1301 			break;
1302 		}
1303 	}
1304 
1305 	osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1306 	max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
1307 
1308 	if (vd->vdev_children == 0) {
1309 		if (osize < SPA_MINDEVSIZE) {
1310 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1311 			    VDEV_AUX_TOO_SMALL);
1312 			return (SET_ERROR(EOVERFLOW));
1313 		}
1314 		psize = osize;
1315 		asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1316 		max_asize = max_osize - (VDEV_LABEL_START_SIZE +
1317 		    VDEV_LABEL_END_SIZE);
1318 	} else {
1319 		if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1320 		    (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1321 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1322 			    VDEV_AUX_TOO_SMALL);
1323 			return (SET_ERROR(EOVERFLOW));
1324 		}
1325 		psize = 0;
1326 		asize = osize;
1327 		max_asize = max_osize;
1328 	}
1329 
1330 	vd->vdev_psize = psize;
1331 
1332 	/*
1333 	 * Make sure the allocatable size hasn't shrunk too much.
1334 	 */
1335 	if (asize < vd->vdev_min_asize) {
1336 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1337 		    VDEV_AUX_BAD_LABEL);
1338 		return (SET_ERROR(EINVAL));
1339 	}
1340 
1341 	if (vd->vdev_asize == 0) {
1342 		/*
1343 		 * This is the first-ever open, so use the computed values.
1344 		 * For testing purposes, a higher ashift can be requested.
1345 		 */
1346 		vd->vdev_asize = asize;
1347 		vd->vdev_max_asize = max_asize;
1348 		vd->vdev_ashift = MAX(ashift, vd->vdev_ashift);
1349 	} else {
1350 		/*
1351 		 * Detect if the alignment requirement has increased.
1352 		 * We don't want to make the pool unavailable, just
1353 		 * issue a warning instead.
1354 		 */
1355 		if (ashift > vd->vdev_top->vdev_ashift &&
1356 		    vd->vdev_ops->vdev_op_leaf) {
1357 			cmn_err(CE_WARN,
1358 			    "Disk, '%s', has a block alignment that is "
1359 			    "larger than the pool's alignment\n",
1360 			    vd->vdev_path);
1361 		}
1362 		vd->vdev_max_asize = max_asize;
1363 	}
1364 
1365 	/*
1366 	 * If all children are healthy we update asize if either:
1367 	 * The asize has increased, due to a device expansion caused by dynamic
1368 	 * LUN growth or vdev replacement, and automatic expansion is enabled;
1369 	 * making the additional space available.
1370 	 *
1371 	 * The asize has decreased, due to a device shrink usually caused by a
1372 	 * vdev replace with a smaller device. This ensures that calculations
1373 	 * based of max_asize and asize e.g. esize are always valid. It's safe
1374 	 * to do this as we've already validated that asize is greater than
1375 	 * vdev_min_asize.
1376 	 */
1377 	if (vd->vdev_state == VDEV_STATE_HEALTHY &&
1378 	    ((asize > vd->vdev_asize &&
1379 	    (vd->vdev_expanding || spa->spa_autoexpand)) ||
1380 	    (asize < vd->vdev_asize)))
1381 		vd->vdev_asize = asize;
1382 
1383 	vdev_set_min_asize(vd);
1384 
1385 	/*
1386 	 * Ensure we can issue some IO before declaring the
1387 	 * vdev open for business.
1388 	 */
1389 	if (vd->vdev_ops->vdev_op_leaf &&
1390 	    (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1391 		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1392 		    VDEV_AUX_ERR_EXCEEDED);
1393 		return (error);
1394 	}
1395 
1396 	if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
1397 	    !vd->vdev_isl2cache && !vd->vdev_islog) {
1398 		if (vd->vdev_ashift > spa->spa_max_ashift)
1399 			spa->spa_max_ashift = vd->vdev_ashift;
1400 		if (vd->vdev_ashift < spa->spa_min_ashift)
1401 			spa->spa_min_ashift = vd->vdev_ashift;
1402 	}
1403 
1404 	/*
1405 	 * Track the min and max ashift values for normal data devices.
1406 	 */
1407 	if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
1408 	    !vd->vdev_islog && vd->vdev_aux == NULL) {
1409 		if (vd->vdev_ashift > spa->spa_max_ashift)
1410 			spa->spa_max_ashift = vd->vdev_ashift;
1411 		if (vd->vdev_ashift < spa->spa_min_ashift)
1412 			spa->spa_min_ashift = vd->vdev_ashift;
1413 	}
1414 
1415 	/*
1416 	 * If a leaf vdev has a DTL, and seems healthy, then kick off a
1417 	 * resilver.  But don't do this if we are doing a reopen for a scrub,
1418 	 * since this would just restart the scrub we are already doing.
1419 	 */
1420 	if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1421 	    vdev_resilver_needed(vd, NULL, NULL))
1422 		spa_async_request(spa, SPA_ASYNC_RESILVER);
1423 
1424 	return (0);
1425 }
1426 
1427 /*
1428  * Called once the vdevs are all opened, this routine validates the label
1429  * contents.  This needs to be done before vdev_load() so that we don't
1430  * inadvertently do repair I/Os to the wrong device.
1431  *
1432  * If 'strict' is false ignore the spa guid check. This is necessary because
1433  * if the machine crashed during a re-guid the new guid might have been written
1434  * to all of the vdev labels, but not the cached config. The strict check
1435  * will be performed when the pool is opened again using the mos config.
1436  *
1437  * This function will only return failure if one of the vdevs indicates that it
1438  * has since been destroyed or exported.  This is only possible if
1439  * /etc/zfs/zpool.cache was readonly at the time.  Otherwise, the vdev state
1440  * will be updated but the function will return 0.
1441  */
1442 int
1443 vdev_validate(vdev_t *vd, boolean_t strict)
1444 {
1445 	spa_t *spa = vd->vdev_spa;
1446 	nvlist_t *label;
1447 	uint64_t guid = 0, top_guid;
1448 	uint64_t state;
1449 
1450 	for (int c = 0; c < vd->vdev_children; c++)
1451 		if (vdev_validate(vd->vdev_child[c], strict) != 0)
1452 			return (SET_ERROR(EBADF));
1453 
1454 	/*
1455 	 * If the device has already failed, or was marked offline, don't do
1456 	 * any further validation.  Otherwise, label I/O will fail and we will
1457 	 * overwrite the previous state.
1458 	 */
1459 	if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1460 		uint64_t aux_guid = 0;
1461 		nvlist_t *nvl;
1462 		uint64_t txg = spa_last_synced_txg(spa) != 0 ?
1463 		    spa_last_synced_txg(spa) : -1ULL;
1464 
1465 		if ((label = vdev_label_read_config(vd, txg)) == NULL) {
1466 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1467 			    VDEV_AUX_BAD_LABEL);
1468 			return (0);
1469 		}
1470 
1471 		/*
1472 		 * Determine if this vdev has been split off into another
1473 		 * pool.  If so, then refuse to open it.
1474 		 */
1475 		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1476 		    &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1477 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1478 			    VDEV_AUX_SPLIT_POOL);
1479 			nvlist_free(label);
1480 			return (0);
1481 		}
1482 
1483 		if (strict && (nvlist_lookup_uint64(label,
1484 		    ZPOOL_CONFIG_POOL_GUID, &guid) != 0 ||
1485 		    guid != spa_guid(spa))) {
1486 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1487 			    VDEV_AUX_CORRUPT_DATA);
1488 			nvlist_free(label);
1489 			return (0);
1490 		}
1491 
1492 		if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1493 		    != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1494 		    &aux_guid) != 0)
1495 			aux_guid = 0;
1496 
1497 		/*
1498 		 * If this vdev just became a top-level vdev because its
1499 		 * sibling was detached, it will have adopted the parent's
1500 		 * vdev guid -- but the label may or may not be on disk yet.
1501 		 * Fortunately, either version of the label will have the
1502 		 * same top guid, so if we're a top-level vdev, we can
1503 		 * safely compare to that instead.
1504 		 *
1505 		 * If we split this vdev off instead, then we also check the
1506 		 * original pool's guid.  We don't want to consider the vdev
1507 		 * corrupt if it is partway through a split operation.
1508 		 */
1509 		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
1510 		    &guid) != 0 ||
1511 		    nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
1512 		    &top_guid) != 0 ||
1513 		    ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) &&
1514 		    (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
1515 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1516 			    VDEV_AUX_CORRUPT_DATA);
1517 			nvlist_free(label);
1518 			return (0);
1519 		}
1520 
1521 		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1522 		    &state) != 0) {
1523 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1524 			    VDEV_AUX_CORRUPT_DATA);
1525 			nvlist_free(label);
1526 			return (0);
1527 		}
1528 
1529 		nvlist_free(label);
1530 
1531 		/*
1532 		 * If this is a verbatim import, no need to check the
1533 		 * state of the pool.
1534 		 */
1535 		if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
1536 		    spa_load_state(spa) == SPA_LOAD_OPEN &&
1537 		    state != POOL_STATE_ACTIVE)
1538 			return (SET_ERROR(EBADF));
1539 
1540 		/*
1541 		 * If we were able to open and validate a vdev that was
1542 		 * previously marked permanently unavailable, clear that state
1543 		 * now.
1544 		 */
1545 		if (vd->vdev_not_present)
1546 			vd->vdev_not_present = 0;
1547 	}
1548 
1549 	return (0);
1550 }
1551 
1552 /*
1553  * Close a virtual device.
1554  */
1555 void
1556 vdev_close(vdev_t *vd)
1557 {
1558 	spa_t *spa = vd->vdev_spa;
1559 	vdev_t *pvd = vd->vdev_parent;
1560 
1561 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1562 
1563 	/*
1564 	 * If our parent is reopening, then we are as well, unless we are
1565 	 * going offline.
1566 	 */
1567 	if (pvd != NULL && pvd->vdev_reopening)
1568 		vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
1569 
1570 	vd->vdev_ops->vdev_op_close(vd);
1571 
1572 	vdev_cache_purge(vd);
1573 
1574 	/*
1575 	 * We record the previous state before we close it, so that if we are
1576 	 * doing a reopen(), we don't generate FMA ereports if we notice that
1577 	 * it's still faulted.
1578 	 */
1579 	vd->vdev_prevstate = vd->vdev_state;
1580 
1581 	if (vd->vdev_offline)
1582 		vd->vdev_state = VDEV_STATE_OFFLINE;
1583 	else
1584 		vd->vdev_state = VDEV_STATE_CLOSED;
1585 	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1586 }
1587 
1588 void
1589 vdev_hold(vdev_t *vd)
1590 {
1591 	spa_t *spa = vd->vdev_spa;
1592 
1593 	ASSERT(spa_is_root(spa));
1594 	if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1595 		return;
1596 
1597 	for (int c = 0; c < vd->vdev_children; c++)
1598 		vdev_hold(vd->vdev_child[c]);
1599 
1600 	if (vd->vdev_ops->vdev_op_leaf)
1601 		vd->vdev_ops->vdev_op_hold(vd);
1602 }
1603 
1604 void
1605 vdev_rele(vdev_t *vd)
1606 {
1607 	spa_t *spa = vd->vdev_spa;
1608 
1609 	ASSERT(spa_is_root(spa));
1610 	for (int c = 0; c < vd->vdev_children; c++)
1611 		vdev_rele(vd->vdev_child[c]);
1612 
1613 	if (vd->vdev_ops->vdev_op_leaf)
1614 		vd->vdev_ops->vdev_op_rele(vd);
1615 }
1616 
1617 /*
1618  * Reopen all interior vdevs and any unopened leaves.  We don't actually
1619  * reopen leaf vdevs which had previously been opened as they might deadlock
1620  * on the spa_config_lock.  Instead we only obtain the leaf's physical size.
1621  * If the leaf has never been opened then open it, as usual.
1622  */
1623 void
1624 vdev_reopen(vdev_t *vd)
1625 {
1626 	spa_t *spa = vd->vdev_spa;
1627 
1628 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1629 
1630 	/* set the reopening flag unless we're taking the vdev offline */
1631 	vd->vdev_reopening = !vd->vdev_offline;
1632 	vdev_close(vd);
1633 	(void) vdev_open(vd);
1634 
1635 	/*
1636 	 * Call vdev_validate() here to make sure we have the same device.
1637 	 * Otherwise, a device with an invalid label could be successfully
1638 	 * opened in response to vdev_reopen().
1639 	 */
1640 	if (vd->vdev_aux) {
1641 		(void) vdev_validate_aux(vd);
1642 		if (vdev_readable(vd) && vdev_writeable(vd) &&
1643 		    vd->vdev_aux == &spa->spa_l2cache &&
1644 		    !l2arc_vdev_present(vd))
1645 			l2arc_add_vdev(spa, vd);
1646 	} else {
1647 		(void) vdev_validate(vd, B_TRUE);
1648 	}
1649 
1650 	/*
1651 	 * Reassess parent vdev's health.
1652 	 */
1653 	vdev_propagate_state(vd);
1654 }
1655 
1656 int
1657 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1658 {
1659 	int error;
1660 
1661 	/*
1662 	 * Normally, partial opens (e.g. of a mirror) are allowed.
1663 	 * For a create, however, we want to fail the request if
1664 	 * there are any components we can't open.
1665 	 */
1666 	error = vdev_open(vd);
1667 
1668 	if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1669 		vdev_close(vd);
1670 		return (error ? error : ENXIO);
1671 	}
1672 
1673 	/*
1674 	 * Recursively load DTLs and initialize all labels.
1675 	 */
1676 	if ((error = vdev_dtl_load(vd)) != 0 ||
1677 	    (error = vdev_label_init(vd, txg, isreplacing ?
1678 	    VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1679 		vdev_close(vd);
1680 		return (error);
1681 	}
1682 
1683 	return (0);
1684 }
1685 
1686 void
1687 vdev_metaslab_set_size(vdev_t *vd)
1688 {
1689 	/*
1690 	 * Aim for roughly metaslabs_per_vdev (default 200) metaslabs per vdev.
1691 	 */
1692 	vd->vdev_ms_shift = highbit64(vd->vdev_asize / metaslabs_per_vdev);
1693 	vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1694 }
1695 
1696 void
1697 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1698 {
1699 	ASSERT(vd == vd->vdev_top);
1700 	/* indirect vdevs don't have metaslabs or dtls */
1701 	ASSERT(vdev_is_concrete(vd) || flags == 0);
1702 	ASSERT(ISP2(flags));
1703 	ASSERT(spa_writeable(vd->vdev_spa));
1704 
1705 	if (flags & VDD_METASLAB)
1706 		(void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1707 
1708 	if (flags & VDD_DTL)
1709 		(void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1710 
1711 	(void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1712 }
1713 
1714 void
1715 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg)
1716 {
1717 	for (int c = 0; c < vd->vdev_children; c++)
1718 		vdev_dirty_leaves(vd->vdev_child[c], flags, txg);
1719 
1720 	if (vd->vdev_ops->vdev_op_leaf)
1721 		vdev_dirty(vd->vdev_top, flags, vd, txg);
1722 }
1723 
1724 /*
1725  * DTLs.
1726  *
1727  * A vdev's DTL (dirty time log) is the set of transaction groups for which
1728  * the vdev has less than perfect replication.  There are four kinds of DTL:
1729  *
1730  * DTL_MISSING: txgs for which the vdev has no valid copies of the data
1731  *
1732  * DTL_PARTIAL: txgs for which data is available, but not fully replicated
1733  *
1734  * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
1735  *	scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
1736  *	txgs that was scrubbed.
1737  *
1738  * DTL_OUTAGE: txgs which cannot currently be read, whether due to
1739  *	persistent errors or just some device being offline.
1740  *	Unlike the other three, the DTL_OUTAGE map is not generally
1741  *	maintained; it's only computed when needed, typically to
1742  *	determine whether a device can be detached.
1743  *
1744  * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
1745  * either has the data or it doesn't.
1746  *
1747  * For interior vdevs such as mirror and RAID-Z the picture is more complex.
1748  * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
1749  * if any child is less than fully replicated, then so is its parent.
1750  * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
1751  * comprising only those txgs which appear in 'maxfaults' or more children;
1752  * those are the txgs we don't have enough replication to read.  For example,
1753  * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
1754  * thus, its DTL_MISSING consists of the set of txgs that appear in more than
1755  * two child DTL_MISSING maps.
1756  *
1757  * It should be clear from the above that to compute the DTLs and outage maps
1758  * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
1759  * Therefore, that is all we keep on disk.  When loading the pool, or after
1760  * a configuration change, we generate all other DTLs from first principles.
1761  */
1762 void
1763 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1764 {
1765 	range_tree_t *rt = vd->vdev_dtl[t];
1766 
1767 	ASSERT(t < DTL_TYPES);
1768 	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1769 	ASSERT(spa_writeable(vd->vdev_spa));
1770 
1771 	mutex_enter(&vd->vdev_dtl_lock);
1772 	if (!range_tree_contains(rt, txg, size))
1773 		range_tree_add(rt, txg, size);
1774 	mutex_exit(&vd->vdev_dtl_lock);
1775 }
1776 
1777 boolean_t
1778 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1779 {
1780 	range_tree_t *rt = vd->vdev_dtl[t];
1781 	boolean_t dirty = B_FALSE;
1782 
1783 	ASSERT(t < DTL_TYPES);
1784 	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1785 
1786 	/*
1787 	 * While we are loading the pool, the DTLs have not been loaded yet.
1788 	 * Ignore the DTLs and try all devices.  This avoids a recursive
1789 	 * mutex enter on the vdev_dtl_lock, and also makes us try hard
1790 	 * when loading the pool (relying on the checksum to ensure that
1791 	 * we get the right data -- note that we while loading, we are
1792 	 * only reading the MOS, which is always checksummed).
1793 	 */
1794 	if (vd->vdev_spa->spa_load_state != SPA_LOAD_NONE)
1795 		return (B_FALSE);
1796 
1797 	mutex_enter(&vd->vdev_dtl_lock);
1798 	if (range_tree_space(rt) != 0)
1799 		dirty = range_tree_contains(rt, txg, size);
1800 	mutex_exit(&vd->vdev_dtl_lock);
1801 
1802 	return (dirty);
1803 }
1804 
1805 boolean_t
1806 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
1807 {
1808 	range_tree_t *rt = vd->vdev_dtl[t];
1809 	boolean_t empty;
1810 
1811 	mutex_enter(&vd->vdev_dtl_lock);
1812 	empty = (range_tree_space(rt) == 0);
1813 	mutex_exit(&vd->vdev_dtl_lock);
1814 
1815 	return (empty);
1816 }
1817 
1818 /*
1819  * Returns the lowest txg in the DTL range.
1820  */
1821 static uint64_t
1822 vdev_dtl_min(vdev_t *vd)
1823 {
1824 	range_seg_t *rs;
1825 
1826 	ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
1827 	ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
1828 	ASSERT0(vd->vdev_children);
1829 
1830 	rs = avl_first(&vd->vdev_dtl[DTL_MISSING]->rt_root);
1831 	return (rs->rs_start - 1);
1832 }
1833 
1834 /*
1835  * Returns the highest txg in the DTL.
1836  */
1837 static uint64_t
1838 vdev_dtl_max(vdev_t *vd)
1839 {
1840 	range_seg_t *rs;
1841 
1842 	ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
1843 	ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
1844 	ASSERT0(vd->vdev_children);
1845 
1846 	rs = avl_last(&vd->vdev_dtl[DTL_MISSING]->rt_root);
1847 	return (rs->rs_end);
1848 }
1849 
1850 /*
1851  * Determine if a resilvering vdev should remove any DTL entries from
1852  * its range. If the vdev was resilvering for the entire duration of the
1853  * scan then it should excise that range from its DTLs. Otherwise, this
1854  * vdev is considered partially resilvered and should leave its DTL
1855  * entries intact. The comment in vdev_dtl_reassess() describes how we
1856  * excise the DTLs.
1857  */
1858 static boolean_t
1859 vdev_dtl_should_excise(vdev_t *vd)
1860 {
1861 	spa_t *spa = vd->vdev_spa;
1862 	dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1863 
1864 	ASSERT0(scn->scn_phys.scn_errors);
1865 	ASSERT0(vd->vdev_children);
1866 
1867 	if (vd->vdev_state < VDEV_STATE_DEGRADED)
1868 		return (B_FALSE);
1869 
1870 	if (vd->vdev_resilver_txg == 0 ||
1871 	    range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0)
1872 		return (B_TRUE);
1873 
1874 	/*
1875 	 * When a resilver is initiated the scan will assign the scn_max_txg
1876 	 * value to the highest txg value that exists in all DTLs. If this
1877 	 * device's max DTL is not part of this scan (i.e. it is not in
1878 	 * the range (scn_min_txg, scn_max_txg] then it is not eligible
1879 	 * for excision.
1880 	 */
1881 	if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) {
1882 		ASSERT3U(scn->scn_phys.scn_min_txg, <=, vdev_dtl_min(vd));
1883 		ASSERT3U(scn->scn_phys.scn_min_txg, <, vd->vdev_resilver_txg);
1884 		ASSERT3U(vd->vdev_resilver_txg, <=, scn->scn_phys.scn_max_txg);
1885 		return (B_TRUE);
1886 	}
1887 	return (B_FALSE);
1888 }
1889 
1890 /*
1891  * Reassess DTLs after a config change or scrub completion.
1892  */
1893 void
1894 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1895 {
1896 	spa_t *spa = vd->vdev_spa;
1897 	avl_tree_t reftree;
1898 	int minref;
1899 
1900 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1901 
1902 	for (int c = 0; c < vd->vdev_children; c++)
1903 		vdev_dtl_reassess(vd->vdev_child[c], txg,
1904 		    scrub_txg, scrub_done);
1905 
1906 	if (vd == spa->spa_root_vdev || !vdev_is_concrete(vd) || vd->vdev_aux)
1907 		return;
1908 
1909 	if (vd->vdev_ops->vdev_op_leaf) {
1910 		dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1911 
1912 		mutex_enter(&vd->vdev_dtl_lock);
1913 
1914 		/*
1915 		 * If we've completed a scan cleanly then determine
1916 		 * if this vdev should remove any DTLs. We only want to
1917 		 * excise regions on vdevs that were available during
1918 		 * the entire duration of this scan.
1919 		 */
1920 		if (scrub_txg != 0 &&
1921 		    (spa->spa_scrub_started ||
1922 		    (scn != NULL && scn->scn_phys.scn_errors == 0)) &&
1923 		    vdev_dtl_should_excise(vd)) {
1924 			/*
1925 			 * We completed a scrub up to scrub_txg.  If we
1926 			 * did it without rebooting, then the scrub dtl
1927 			 * will be valid, so excise the old region and
1928 			 * fold in the scrub dtl.  Otherwise, leave the
1929 			 * dtl as-is if there was an error.
1930 			 *
1931 			 * There's little trick here: to excise the beginning
1932 			 * of the DTL_MISSING map, we put it into a reference
1933 			 * tree and then add a segment with refcnt -1 that
1934 			 * covers the range [0, scrub_txg).  This means
1935 			 * that each txg in that range has refcnt -1 or 0.
1936 			 * We then add DTL_SCRUB with a refcnt of 2, so that
1937 			 * entries in the range [0, scrub_txg) will have a
1938 			 * positive refcnt -- either 1 or 2.  We then convert
1939 			 * the reference tree into the new DTL_MISSING map.
1940 			 */
1941 			space_reftree_create(&reftree);
1942 			space_reftree_add_map(&reftree,
1943 			    vd->vdev_dtl[DTL_MISSING], 1);
1944 			space_reftree_add_seg(&reftree, 0, scrub_txg, -1);
1945 			space_reftree_add_map(&reftree,
1946 			    vd->vdev_dtl[DTL_SCRUB], 2);
1947 			space_reftree_generate_map(&reftree,
1948 			    vd->vdev_dtl[DTL_MISSING], 1);
1949 			space_reftree_destroy(&reftree);
1950 		}
1951 		range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
1952 		range_tree_walk(vd->vdev_dtl[DTL_MISSING],
1953 		    range_tree_add, vd->vdev_dtl[DTL_PARTIAL]);
1954 		if (scrub_done)
1955 			range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
1956 		range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
1957 		if (!vdev_readable(vd))
1958 			range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
1959 		else
1960 			range_tree_walk(vd->vdev_dtl[DTL_MISSING],
1961 			    range_tree_add, vd->vdev_dtl[DTL_OUTAGE]);
1962 
1963 		/*
1964 		 * If the vdev was resilvering and no longer has any
1965 		 * DTLs then reset its resilvering flag.
1966 		 */
1967 		if (vd->vdev_resilver_txg != 0 &&
1968 		    range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0 &&
1969 		    range_tree_space(vd->vdev_dtl[DTL_OUTAGE]) == 0)
1970 			vd->vdev_resilver_txg = 0;
1971 
1972 		mutex_exit(&vd->vdev_dtl_lock);
1973 
1974 		if (txg != 0)
1975 			vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
1976 		return;
1977 	}
1978 
1979 	mutex_enter(&vd->vdev_dtl_lock);
1980 	for (int t = 0; t < DTL_TYPES; t++) {
1981 		/* account for child's outage in parent's missing map */
1982 		int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
1983 		if (t == DTL_SCRUB)
1984 			continue;			/* leaf vdevs only */
1985 		if (t == DTL_PARTIAL)
1986 			minref = 1;			/* i.e. non-zero */
1987 		else if (vd->vdev_nparity != 0)
1988 			minref = vd->vdev_nparity + 1;	/* RAID-Z */
1989 		else
1990 			minref = vd->vdev_children;	/* any kind of mirror */
1991 		space_reftree_create(&reftree);
1992 		for (int c = 0; c < vd->vdev_children; c++) {
1993 			vdev_t *cvd = vd->vdev_child[c];
1994 			mutex_enter(&cvd->vdev_dtl_lock);
1995 			space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1);
1996 			mutex_exit(&cvd->vdev_dtl_lock);
1997 		}
1998 		space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref);
1999 		space_reftree_destroy(&reftree);
2000 	}
2001 	mutex_exit(&vd->vdev_dtl_lock);
2002 }
2003 
2004 int
2005 vdev_dtl_load(vdev_t *vd)
2006 {
2007 	spa_t *spa = vd->vdev_spa;
2008 	objset_t *mos = spa->spa_meta_objset;
2009 	int error = 0;
2010 
2011 	if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) {
2012 		ASSERT(vdev_is_concrete(vd));
2013 
2014 		error = space_map_open(&vd->vdev_dtl_sm, mos,
2015 		    vd->vdev_dtl_object, 0, -1ULL, 0);
2016 		if (error)
2017 			return (error);
2018 		ASSERT(vd->vdev_dtl_sm != NULL);
2019 
2020 		mutex_enter(&vd->vdev_dtl_lock);
2021 
2022 		/*
2023 		 * Now that we've opened the space_map we need to update
2024 		 * the in-core DTL.
2025 		 */
2026 		space_map_update(vd->vdev_dtl_sm);
2027 
2028 		error = space_map_load(vd->vdev_dtl_sm,
2029 		    vd->vdev_dtl[DTL_MISSING], SM_ALLOC);
2030 		mutex_exit(&vd->vdev_dtl_lock);
2031 
2032 		return (error);
2033 	}
2034 
2035 	for (int c = 0; c < vd->vdev_children; c++) {
2036 		error = vdev_dtl_load(vd->vdev_child[c]);
2037 		if (error != 0)
2038 			break;
2039 	}
2040 
2041 	return (error);
2042 }
2043 
2044 void
2045 vdev_destroy_unlink_zap(vdev_t *vd, uint64_t zapobj, dmu_tx_t *tx)
2046 {
2047 	spa_t *spa = vd->vdev_spa;
2048 
2049 	VERIFY0(zap_destroy(spa->spa_meta_objset, zapobj, tx));
2050 	VERIFY0(zap_remove_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
2051 	    zapobj, tx));
2052 }
2053 
2054 uint64_t
2055 vdev_create_link_zap(vdev_t *vd, dmu_tx_t *tx)
2056 {
2057 	spa_t *spa = vd->vdev_spa;
2058 	uint64_t zap = zap_create(spa->spa_meta_objset, DMU_OTN_ZAP_METADATA,
2059 	    DMU_OT_NONE, 0, tx);
2060 
2061 	ASSERT(zap != 0);
2062 	VERIFY0(zap_add_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
2063 	    zap, tx));
2064 
2065 	return (zap);
2066 }
2067 
2068 void
2069 vdev_construct_zaps(vdev_t *vd, dmu_tx_t *tx)
2070 {
2071 	if (vd->vdev_ops != &vdev_hole_ops &&
2072 	    vd->vdev_ops != &vdev_missing_ops &&
2073 	    vd->vdev_ops != &vdev_root_ops &&
2074 	    !vd->vdev_top->vdev_removing) {
2075 		if (vd->vdev_ops->vdev_op_leaf && vd->vdev_leaf_zap == 0) {
2076 			vd->vdev_leaf_zap = vdev_create_link_zap(vd, tx);
2077 		}
2078 		if (vd == vd->vdev_top && vd->vdev_top_zap == 0) {
2079 			vd->vdev_top_zap = vdev_create_link_zap(vd, tx);
2080 		}
2081 	}
2082 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
2083 		vdev_construct_zaps(vd->vdev_child[i], tx);
2084 	}
2085 }
2086 
2087 void
2088 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
2089 {
2090 	spa_t *spa = vd->vdev_spa;
2091 	range_tree_t *rt = vd->vdev_dtl[DTL_MISSING];
2092 	objset_t *mos = spa->spa_meta_objset;
2093 	range_tree_t *rtsync;
2094 	dmu_tx_t *tx;
2095 	uint64_t object = space_map_object(vd->vdev_dtl_sm);
2096 
2097 	ASSERT(vdev_is_concrete(vd));
2098 	ASSERT(vd->vdev_ops->vdev_op_leaf);
2099 
2100 	tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2101 
2102 	if (vd->vdev_detached || vd->vdev_top->vdev_removing) {
2103 		mutex_enter(&vd->vdev_dtl_lock);
2104 		space_map_free(vd->vdev_dtl_sm, tx);
2105 		space_map_close(vd->vdev_dtl_sm);
2106 		vd->vdev_dtl_sm = NULL;
2107 		mutex_exit(&vd->vdev_dtl_lock);
2108 
2109 		/*
2110 		 * We only destroy the leaf ZAP for detached leaves or for
2111 		 * removed log devices. Removed data devices handle leaf ZAP
2112 		 * cleanup later, once cancellation is no longer possible.
2113 		 */
2114 		if (vd->vdev_leaf_zap != 0 && (vd->vdev_detached ||
2115 		    vd->vdev_top->vdev_islog)) {
2116 			vdev_destroy_unlink_zap(vd, vd->vdev_leaf_zap, tx);
2117 			vd->vdev_leaf_zap = 0;
2118 		}
2119 
2120 		dmu_tx_commit(tx);
2121 		return;
2122 	}
2123 
2124 	if (vd->vdev_dtl_sm == NULL) {
2125 		uint64_t new_object;
2126 
2127 		new_object = space_map_alloc(mos, tx);
2128 		VERIFY3U(new_object, !=, 0);
2129 
2130 		VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object,
2131 		    0, -1ULL, 0));
2132 		ASSERT(vd->vdev_dtl_sm != NULL);
2133 	}
2134 
2135 	rtsync = range_tree_create(NULL, NULL);
2136 
2137 	mutex_enter(&vd->vdev_dtl_lock);
2138 	range_tree_walk(rt, range_tree_add, rtsync);
2139 	mutex_exit(&vd->vdev_dtl_lock);
2140 
2141 	space_map_truncate(vd->vdev_dtl_sm, tx);
2142 	space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, tx);
2143 	range_tree_vacate(rtsync, NULL, NULL);
2144 
2145 	range_tree_destroy(rtsync);
2146 
2147 	/*
2148 	 * If the object for the space map has changed then dirty
2149 	 * the top level so that we update the config.
2150 	 */
2151 	if (object != space_map_object(vd->vdev_dtl_sm)) {
2152 		zfs_dbgmsg("txg %llu, spa %s, DTL old object %llu, "
2153 		    "new object %llu", txg, spa_name(spa), object,
2154 		    space_map_object(vd->vdev_dtl_sm));
2155 		vdev_config_dirty(vd->vdev_top);
2156 	}
2157 
2158 	dmu_tx_commit(tx);
2159 
2160 	mutex_enter(&vd->vdev_dtl_lock);
2161 	space_map_update(vd->vdev_dtl_sm);
2162 	mutex_exit(&vd->vdev_dtl_lock);
2163 }
2164 
2165 /*
2166  * Determine whether the specified vdev can be offlined/detached/removed
2167  * without losing data.
2168  */
2169 boolean_t
2170 vdev_dtl_required(vdev_t *vd)
2171 {
2172 	spa_t *spa = vd->vdev_spa;
2173 	vdev_t *tvd = vd->vdev_top;
2174 	uint8_t cant_read = vd->vdev_cant_read;
2175 	boolean_t required;
2176 
2177 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2178 
2179 	if (vd == spa->spa_root_vdev || vd == tvd)
2180 		return (B_TRUE);
2181 
2182 	/*
2183 	 * Temporarily mark the device as unreadable, and then determine
2184 	 * whether this results in any DTL outages in the top-level vdev.
2185 	 * If not, we can safely offline/detach/remove the device.
2186 	 */
2187 	vd->vdev_cant_read = B_TRUE;
2188 	vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2189 	required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
2190 	vd->vdev_cant_read = cant_read;
2191 	vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2192 
2193 	if (!required && zio_injection_enabled)
2194 		required = !!zio_handle_device_injection(vd, NULL, ECHILD);
2195 
2196 	return (required);
2197 }
2198 
2199 /*
2200  * Determine if resilver is needed, and if so the txg range.
2201  */
2202 boolean_t
2203 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
2204 {
2205 	boolean_t needed = B_FALSE;
2206 	uint64_t thismin = UINT64_MAX;
2207 	uint64_t thismax = 0;
2208 
2209 	if (vd->vdev_children == 0) {
2210 		mutex_enter(&vd->vdev_dtl_lock);
2211 		if (range_tree_space(vd->vdev_dtl[DTL_MISSING]) != 0 &&
2212 		    vdev_writeable(vd)) {
2213 
2214 			thismin = vdev_dtl_min(vd);
2215 			thismax = vdev_dtl_max(vd);
2216 			needed = B_TRUE;
2217 		}
2218 		mutex_exit(&vd->vdev_dtl_lock);
2219 	} else {
2220 		for (int c = 0; c < vd->vdev_children; c++) {
2221 			vdev_t *cvd = vd->vdev_child[c];
2222 			uint64_t cmin, cmax;
2223 
2224 			if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
2225 				thismin = MIN(thismin, cmin);
2226 				thismax = MAX(thismax, cmax);
2227 				needed = B_TRUE;
2228 			}
2229 		}
2230 	}
2231 
2232 	if (needed && minp) {
2233 		*minp = thismin;
2234 		*maxp = thismax;
2235 	}
2236 	return (needed);
2237 }
2238 
2239 int
2240 vdev_load(vdev_t *vd)
2241 {
2242 	int error = 0;
2243 	/*
2244 	 * Recursively load all children.
2245 	 */
2246 	for (int c = 0; c < vd->vdev_children; c++) {
2247 		error = vdev_load(vd->vdev_child[c]);
2248 		if (error != 0) {
2249 			return (error);
2250 		}
2251 	}
2252 
2253 	vdev_set_deflate_ratio(vd);
2254 
2255 	/*
2256 	 * If this is a top-level vdev, initialize its metaslabs.
2257 	 */
2258 	if (vd == vd->vdev_top && vdev_is_concrete(vd)) {
2259 		if (vd->vdev_ashift == 0 || vd->vdev_asize == 0) {
2260 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2261 			    VDEV_AUX_CORRUPT_DATA);
2262 			return (SET_ERROR(ENXIO));
2263 		} else if ((error = vdev_metaslab_init(vd, 0)) != 0) {
2264 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2265 			    VDEV_AUX_CORRUPT_DATA);
2266 			return (error);
2267 		}
2268 	}
2269 
2270 	/*
2271 	 * If this is a leaf vdev, load its DTL.
2272 	 */
2273 	if (vd->vdev_ops->vdev_op_leaf && (error = vdev_dtl_load(vd)) != 0) {
2274 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2275 		    VDEV_AUX_CORRUPT_DATA);
2276 		return (error);
2277 	}
2278 
2279 	uint64_t obsolete_sm_object = vdev_obsolete_sm_object(vd);
2280 	if (obsolete_sm_object != 0) {
2281 		objset_t *mos = vd->vdev_spa->spa_meta_objset;
2282 		ASSERT(vd->vdev_asize != 0);
2283 		ASSERT(vd->vdev_obsolete_sm == NULL);
2284 
2285 		if ((error = space_map_open(&vd->vdev_obsolete_sm, mos,
2286 		    obsolete_sm_object, 0, vd->vdev_asize, 0))) {
2287 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2288 			    VDEV_AUX_CORRUPT_DATA);
2289 			return (error);
2290 		}
2291 		space_map_update(vd->vdev_obsolete_sm);
2292 	}
2293 
2294 	return (0);
2295 }
2296 
2297 /*
2298  * The special vdev case is used for hot spares and l2cache devices.  Its
2299  * sole purpose it to set the vdev state for the associated vdev.  To do this,
2300  * we make sure that we can open the underlying device, then try to read the
2301  * label, and make sure that the label is sane and that it hasn't been
2302  * repurposed to another pool.
2303  */
2304 int
2305 vdev_validate_aux(vdev_t *vd)
2306 {
2307 	nvlist_t *label;
2308 	uint64_t guid, version;
2309 	uint64_t state;
2310 
2311 	if (!vdev_readable(vd))
2312 		return (0);
2313 
2314 	if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
2315 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2316 		    VDEV_AUX_CORRUPT_DATA);
2317 		return (-1);
2318 	}
2319 
2320 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
2321 	    !SPA_VERSION_IS_SUPPORTED(version) ||
2322 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
2323 	    guid != vd->vdev_guid ||
2324 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
2325 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2326 		    VDEV_AUX_CORRUPT_DATA);
2327 		nvlist_free(label);
2328 		return (-1);
2329 	}
2330 
2331 	/*
2332 	 * We don't actually check the pool state here.  If it's in fact in
2333 	 * use by another pool, we update this fact on the fly when requested.
2334 	 */
2335 	nvlist_free(label);
2336 	return (0);
2337 }
2338 
2339 /*
2340  * Free the objects used to store this vdev's spacemaps, and the array
2341  * that points to them.
2342  */
2343 void
2344 vdev_destroy_spacemaps(vdev_t *vd, dmu_tx_t *tx)
2345 {
2346 	if (vd->vdev_ms_array == 0)
2347 		return;
2348 
2349 	objset_t *mos = vd->vdev_spa->spa_meta_objset;
2350 	uint64_t array_count = vd->vdev_asize >> vd->vdev_ms_shift;
2351 	size_t array_bytes = array_count * sizeof (uint64_t);
2352 	uint64_t *smobj_array = kmem_alloc(array_bytes, KM_SLEEP);
2353 	VERIFY0(dmu_read(mos, vd->vdev_ms_array, 0,
2354 	    array_bytes, smobj_array, 0));
2355 
2356 	for (uint64_t i = 0; i < array_count; i++) {
2357 		uint64_t smobj = smobj_array[i];
2358 		if (smobj == 0)
2359 			continue;
2360 
2361 		space_map_free_obj(mos, smobj, tx);
2362 	}
2363 
2364 	kmem_free(smobj_array, array_bytes);
2365 	VERIFY0(dmu_object_free(mos, vd->vdev_ms_array, tx));
2366 	vd->vdev_ms_array = 0;
2367 }
2368 
2369 static void
2370 vdev_remove_empty(vdev_t *vd, uint64_t txg)
2371 {
2372 	spa_t *spa = vd->vdev_spa;
2373 	dmu_tx_t *tx;
2374 
2375 	ASSERT(vd == vd->vdev_top);
2376 	ASSERT3U(txg, ==, spa_syncing_txg(spa));
2377 
2378 	if (vd->vdev_ms != NULL) {
2379 		metaslab_group_t *mg = vd->vdev_mg;
2380 
2381 		metaslab_group_histogram_verify(mg);
2382 		metaslab_class_histogram_verify(mg->mg_class);
2383 
2384 		for (int m = 0; m < vd->vdev_ms_count; m++) {
2385 			metaslab_t *msp = vd->vdev_ms[m];
2386 
2387 			if (msp == NULL || msp->ms_sm == NULL)
2388 				continue;
2389 
2390 			mutex_enter(&msp->ms_lock);
2391 			/*
2392 			 * If the metaslab was not loaded when the vdev
2393 			 * was removed then the histogram accounting may
2394 			 * not be accurate. Update the histogram information
2395 			 * here so that we ensure that the metaslab group
2396 			 * and metaslab class are up-to-date.
2397 			 */
2398 			metaslab_group_histogram_remove(mg, msp);
2399 
2400 			VERIFY0(space_map_allocated(msp->ms_sm));
2401 			space_map_close(msp->ms_sm);
2402 			msp->ms_sm = NULL;
2403 			mutex_exit(&msp->ms_lock);
2404 		}
2405 
2406 		metaslab_group_histogram_verify(mg);
2407 		metaslab_class_histogram_verify(mg->mg_class);
2408 		for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
2409 			ASSERT0(mg->mg_histogram[i]);
2410 	}
2411 
2412 	tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
2413 	vdev_destroy_spacemaps(vd, tx);
2414 
2415 	if (vd->vdev_islog && vd->vdev_top_zap != 0) {
2416 		vdev_destroy_unlink_zap(vd, vd->vdev_top_zap, tx);
2417 		vd->vdev_top_zap = 0;
2418 	}
2419 	dmu_tx_commit(tx);
2420 }
2421 
2422 void
2423 vdev_sync_done(vdev_t *vd, uint64_t txg)
2424 {
2425 	metaslab_t *msp;
2426 	boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
2427 
2428 	ASSERT(vdev_is_concrete(vd));
2429 
2430 	while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
2431 		metaslab_sync_done(msp, txg);
2432 
2433 	if (reassess)
2434 		metaslab_sync_reassess(vd->vdev_mg);
2435 }
2436 
2437 void
2438 vdev_sync(vdev_t *vd, uint64_t txg)
2439 {
2440 	spa_t *spa = vd->vdev_spa;
2441 	vdev_t *lvd;
2442 	metaslab_t *msp;
2443 	dmu_tx_t *tx;
2444 
2445 	if (range_tree_space(vd->vdev_obsolete_segments) > 0) {
2446 		dmu_tx_t *tx;
2447 
2448 		ASSERT(vd->vdev_removing ||
2449 		    vd->vdev_ops == &vdev_indirect_ops);
2450 
2451 		tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2452 		vdev_indirect_sync_obsolete(vd, tx);
2453 		dmu_tx_commit(tx);
2454 
2455 		/*
2456 		 * If the vdev is indirect, it can't have dirty
2457 		 * metaslabs or DTLs.
2458 		 */
2459 		if (vd->vdev_ops == &vdev_indirect_ops) {
2460 			ASSERT(txg_list_empty(&vd->vdev_ms_list, txg));
2461 			ASSERT(txg_list_empty(&vd->vdev_dtl_list, txg));
2462 			return;
2463 		}
2464 	}
2465 
2466 	ASSERT(vdev_is_concrete(vd));
2467 
2468 	if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0 &&
2469 	    !vd->vdev_removing) {
2470 		ASSERT(vd == vd->vdev_top);
2471 		ASSERT0(vd->vdev_indirect_config.vic_mapping_object);
2472 		tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2473 		vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
2474 		    DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
2475 		ASSERT(vd->vdev_ms_array != 0);
2476 		vdev_config_dirty(vd);
2477 		dmu_tx_commit(tx);
2478 	}
2479 
2480 	while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
2481 		metaslab_sync(msp, txg);
2482 		(void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
2483 	}
2484 
2485 	while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
2486 		vdev_dtl_sync(lvd, txg);
2487 
2488 	/*
2489 	 * Remove the metadata associated with this vdev once it's empty.
2490 	 * Note that this is typically used for log/cache device removal;
2491 	 * we don't empty toplevel vdevs when removing them.  But if
2492 	 * a toplevel happens to be emptied, this is not harmful.
2493 	 */
2494 	if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing) {
2495 		vdev_remove_empty(vd, txg);
2496 	}
2497 
2498 	(void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
2499 }
2500 
2501 uint64_t
2502 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
2503 {
2504 	return (vd->vdev_ops->vdev_op_asize(vd, psize));
2505 }
2506 
2507 /*
2508  * Mark the given vdev faulted.  A faulted vdev behaves as if the device could
2509  * not be opened, and no I/O is attempted.
2510  */
2511 int
2512 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2513 {
2514 	vdev_t *vd, *tvd;
2515 
2516 	spa_vdev_state_enter(spa, SCL_NONE);
2517 
2518 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2519 		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2520 
2521 	if (!vd->vdev_ops->vdev_op_leaf)
2522 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2523 
2524 	tvd = vd->vdev_top;
2525 
2526 	/*
2527 	 * We don't directly use the aux state here, but if we do a
2528 	 * vdev_reopen(), we need this value to be present to remember why we
2529 	 * were faulted.
2530 	 */
2531 	vd->vdev_label_aux = aux;
2532 
2533 	/*
2534 	 * Faulted state takes precedence over degraded.
2535 	 */
2536 	vd->vdev_delayed_close = B_FALSE;
2537 	vd->vdev_faulted = 1ULL;
2538 	vd->vdev_degraded = 0ULL;
2539 	vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
2540 
2541 	/*
2542 	 * If this device has the only valid copy of the data, then
2543 	 * back off and simply mark the vdev as degraded instead.
2544 	 */
2545 	if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
2546 		vd->vdev_degraded = 1ULL;
2547 		vd->vdev_faulted = 0ULL;
2548 
2549 		/*
2550 		 * If we reopen the device and it's not dead, only then do we
2551 		 * mark it degraded.
2552 		 */
2553 		vdev_reopen(tvd);
2554 
2555 		if (vdev_readable(vd))
2556 			vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
2557 	}
2558 
2559 	return (spa_vdev_state_exit(spa, vd, 0));
2560 }
2561 
2562 /*
2563  * Mark the given vdev degraded.  A degraded vdev is purely an indication to the
2564  * user that something is wrong.  The vdev continues to operate as normal as far
2565  * as I/O is concerned.
2566  */
2567 int
2568 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2569 {
2570 	vdev_t *vd;
2571 
2572 	spa_vdev_state_enter(spa, SCL_NONE);
2573 
2574 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2575 		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2576 
2577 	if (!vd->vdev_ops->vdev_op_leaf)
2578 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2579 
2580 	/*
2581 	 * If the vdev is already faulted, then don't do anything.
2582 	 */
2583 	if (vd->vdev_faulted || vd->vdev_degraded)
2584 		return (spa_vdev_state_exit(spa, NULL, 0));
2585 
2586 	vd->vdev_degraded = 1ULL;
2587 	if (!vdev_is_dead(vd))
2588 		vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
2589 		    aux);
2590 
2591 	return (spa_vdev_state_exit(spa, vd, 0));
2592 }
2593 
2594 /*
2595  * Online the given vdev.
2596  *
2597  * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things.  First, any attached
2598  * spare device should be detached when the device finishes resilvering.
2599  * Second, the online should be treated like a 'test' online case, so no FMA
2600  * events are generated if the device fails to open.
2601  */
2602 int
2603 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
2604 {
2605 	vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
2606 	boolean_t wasoffline;
2607 	vdev_state_t oldstate;
2608 
2609 	spa_vdev_state_enter(spa, SCL_NONE);
2610 
2611 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2612 		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2613 
2614 	if (!vd->vdev_ops->vdev_op_leaf)
2615 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2616 
2617 	wasoffline = (vd->vdev_offline || vd->vdev_tmpoffline);
2618 	oldstate = vd->vdev_state;
2619 
2620 	tvd = vd->vdev_top;
2621 	vd->vdev_offline = B_FALSE;
2622 	vd->vdev_tmpoffline = B_FALSE;
2623 	vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
2624 	vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
2625 
2626 	/* XXX - L2ARC 1.0 does not support expansion */
2627 	if (!vd->vdev_aux) {
2628 		for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2629 			pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
2630 	}
2631 
2632 	vdev_reopen(tvd);
2633 	vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
2634 
2635 	if (!vd->vdev_aux) {
2636 		for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2637 			pvd->vdev_expanding = B_FALSE;
2638 	}
2639 
2640 	if (newstate)
2641 		*newstate = vd->vdev_state;
2642 	if ((flags & ZFS_ONLINE_UNSPARE) &&
2643 	    !vdev_is_dead(vd) && vd->vdev_parent &&
2644 	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2645 	    vd->vdev_parent->vdev_child[0] == vd)
2646 		vd->vdev_unspare = B_TRUE;
2647 
2648 	if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
2649 
2650 		/* XXX - L2ARC 1.0 does not support expansion */
2651 		if (vd->vdev_aux)
2652 			return (spa_vdev_state_exit(spa, vd, ENOTSUP));
2653 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2654 	}
2655 
2656 	if (wasoffline ||
2657 	    (oldstate < VDEV_STATE_DEGRADED &&
2658 	    vd->vdev_state >= VDEV_STATE_DEGRADED))
2659 		spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_ONLINE);
2660 
2661 	return (spa_vdev_state_exit(spa, vd, 0));
2662 }
2663 
2664 static int
2665 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
2666 {
2667 	vdev_t *vd, *tvd;
2668 	int error = 0;
2669 	uint64_t generation;
2670 	metaslab_group_t *mg;
2671 
2672 top:
2673 	spa_vdev_state_enter(spa, SCL_ALLOC);
2674 
2675 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2676 		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2677 
2678 	if (!vd->vdev_ops->vdev_op_leaf)
2679 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2680 
2681 	tvd = vd->vdev_top;
2682 	mg = tvd->vdev_mg;
2683 	generation = spa->spa_config_generation + 1;
2684 
2685 	/*
2686 	 * If the device isn't already offline, try to offline it.
2687 	 */
2688 	if (!vd->vdev_offline) {
2689 		/*
2690 		 * If this device has the only valid copy of some data,
2691 		 * don't allow it to be offlined. Log devices are always
2692 		 * expendable.
2693 		 */
2694 		if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2695 		    vdev_dtl_required(vd))
2696 			return (spa_vdev_state_exit(spa, NULL, EBUSY));
2697 
2698 		/*
2699 		 * If the top-level is a slog and it has had allocations
2700 		 * then proceed.  We check that the vdev's metaslab group
2701 		 * is not NULL since it's possible that we may have just
2702 		 * added this vdev but not yet initialized its metaslabs.
2703 		 */
2704 		if (tvd->vdev_islog && mg != NULL) {
2705 			/*
2706 			 * Prevent any future allocations.
2707 			 */
2708 			metaslab_group_passivate(mg);
2709 			(void) spa_vdev_state_exit(spa, vd, 0);
2710 
2711 			error = spa_reset_logs(spa);
2712 
2713 			spa_vdev_state_enter(spa, SCL_ALLOC);
2714 
2715 			/*
2716 			 * Check to see if the config has changed.
2717 			 */
2718 			if (error || generation != spa->spa_config_generation) {
2719 				metaslab_group_activate(mg);
2720 				if (error)
2721 					return (spa_vdev_state_exit(spa,
2722 					    vd, error));
2723 				(void) spa_vdev_state_exit(spa, vd, 0);
2724 				goto top;
2725 			}
2726 			ASSERT0(tvd->vdev_stat.vs_alloc);
2727 		}
2728 
2729 		/*
2730 		 * Offline this device and reopen its top-level vdev.
2731 		 * If the top-level vdev is a log device then just offline
2732 		 * it. Otherwise, if this action results in the top-level
2733 		 * vdev becoming unusable, undo it and fail the request.
2734 		 */
2735 		vd->vdev_offline = B_TRUE;
2736 		vdev_reopen(tvd);
2737 
2738 		if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2739 		    vdev_is_dead(tvd)) {
2740 			vd->vdev_offline = B_FALSE;
2741 			vdev_reopen(tvd);
2742 			return (spa_vdev_state_exit(spa, NULL, EBUSY));
2743 		}
2744 
2745 		/*
2746 		 * Add the device back into the metaslab rotor so that
2747 		 * once we online the device it's open for business.
2748 		 */
2749 		if (tvd->vdev_islog && mg != NULL)
2750 			metaslab_group_activate(mg);
2751 	}
2752 
2753 	vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
2754 
2755 	return (spa_vdev_state_exit(spa, vd, 0));
2756 }
2757 
2758 int
2759 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
2760 {
2761 	int error;
2762 
2763 	mutex_enter(&spa->spa_vdev_top_lock);
2764 	error = vdev_offline_locked(spa, guid, flags);
2765 	mutex_exit(&spa->spa_vdev_top_lock);
2766 
2767 	return (error);
2768 }
2769 
2770 /*
2771  * Clear the error counts associated with this vdev.  Unlike vdev_online() and
2772  * vdev_offline(), we assume the spa config is locked.  We also clear all
2773  * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
2774  */
2775 void
2776 vdev_clear(spa_t *spa, vdev_t *vd)
2777 {
2778 	vdev_t *rvd = spa->spa_root_vdev;
2779 
2780 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2781 
2782 	if (vd == NULL)
2783 		vd = rvd;
2784 
2785 	vd->vdev_stat.vs_read_errors = 0;
2786 	vd->vdev_stat.vs_write_errors = 0;
2787 	vd->vdev_stat.vs_checksum_errors = 0;
2788 
2789 	for (int c = 0; c < vd->vdev_children; c++)
2790 		vdev_clear(spa, vd->vdev_child[c]);
2791 
2792 	/*
2793 	 * It makes no sense to "clear" an indirect vdev.
2794 	 */
2795 	if (!vdev_is_concrete(vd))
2796 		return;
2797 
2798 	/*
2799 	 * If we're in the FAULTED state or have experienced failed I/O, then
2800 	 * clear the persistent state and attempt to reopen the device.  We
2801 	 * also mark the vdev config dirty, so that the new faulted state is
2802 	 * written out to disk.
2803 	 */
2804 	if (vd->vdev_faulted || vd->vdev_degraded ||
2805 	    !vdev_readable(vd) || !vdev_writeable(vd)) {
2806 
2807 		/*
2808 		 * When reopening in reponse to a clear event, it may be due to
2809 		 * a fmadm repair request.  In this case, if the device is
2810 		 * still broken, we want to still post the ereport again.
2811 		 */
2812 		vd->vdev_forcefault = B_TRUE;
2813 
2814 		vd->vdev_faulted = vd->vdev_degraded = 0ULL;
2815 		vd->vdev_cant_read = B_FALSE;
2816 		vd->vdev_cant_write = B_FALSE;
2817 
2818 		vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
2819 
2820 		vd->vdev_forcefault = B_FALSE;
2821 
2822 		if (vd != rvd && vdev_writeable(vd->vdev_top))
2823 			vdev_state_dirty(vd->vdev_top);
2824 
2825 		if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
2826 			spa_async_request(spa, SPA_ASYNC_RESILVER);
2827 
2828 		spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_CLEAR);
2829 	}
2830 
2831 	/*
2832 	 * When clearing a FMA-diagnosed fault, we always want to
2833 	 * unspare the device, as we assume that the original spare was
2834 	 * done in response to the FMA fault.
2835 	 */
2836 	if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
2837 	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2838 	    vd->vdev_parent->vdev_child[0] == vd)
2839 		vd->vdev_unspare = B_TRUE;
2840 }
2841 
2842 boolean_t
2843 vdev_is_dead(vdev_t *vd)
2844 {
2845 	/*
2846 	 * Holes and missing devices are always considered "dead".
2847 	 * This simplifies the code since we don't have to check for
2848 	 * these types of devices in the various code paths.
2849 	 * Instead we rely on the fact that we skip over dead devices
2850 	 * before issuing I/O to them.
2851 	 */
2852 	return (vd->vdev_state < VDEV_STATE_DEGRADED ||
2853 	    vd->vdev_ops == &vdev_hole_ops ||
2854 	    vd->vdev_ops == &vdev_missing_ops);
2855 }
2856 
2857 boolean_t
2858 vdev_readable(vdev_t *vd)
2859 {
2860 	return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
2861 }
2862 
2863 boolean_t
2864 vdev_writeable(vdev_t *vd)
2865 {
2866 	return (!vdev_is_dead(vd) && !vd->vdev_cant_write &&
2867 	    vdev_is_concrete(vd));
2868 }
2869 
2870 boolean_t
2871 vdev_allocatable(vdev_t *vd)
2872 {
2873 	uint64_t state = vd->vdev_state;
2874 
2875 	/*
2876 	 * We currently allow allocations from vdevs which may be in the
2877 	 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
2878 	 * fails to reopen then we'll catch it later when we're holding
2879 	 * the proper locks.  Note that we have to get the vdev state
2880 	 * in a local variable because although it changes atomically,
2881 	 * we're asking two separate questions about it.
2882 	 */
2883 	return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
2884 	    !vd->vdev_cant_write && vdev_is_concrete(vd) &&
2885 	    vd->vdev_mg->mg_initialized);
2886 }
2887 
2888 boolean_t
2889 vdev_accessible(vdev_t *vd, zio_t *zio)
2890 {
2891 	ASSERT(zio->io_vd == vd);
2892 
2893 	if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
2894 		return (B_FALSE);
2895 
2896 	if (zio->io_type == ZIO_TYPE_READ)
2897 		return (!vd->vdev_cant_read);
2898 
2899 	if (zio->io_type == ZIO_TYPE_WRITE)
2900 		return (!vd->vdev_cant_write);
2901 
2902 	return (B_TRUE);
2903 }
2904 
2905 /*
2906  * Get statistics for the given vdev.
2907  */
2908 void
2909 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
2910 {
2911 	spa_t *spa = vd->vdev_spa;
2912 	vdev_t *rvd = spa->spa_root_vdev;
2913 	vdev_t *tvd = vd->vdev_top;
2914 
2915 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
2916 
2917 	mutex_enter(&vd->vdev_stat_lock);
2918 	bcopy(&vd->vdev_stat, vs, sizeof (*vs));
2919 	vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
2920 	vs->vs_state = vd->vdev_state;
2921 	vs->vs_rsize = vdev_get_min_asize(vd);
2922 	if (vd->vdev_ops->vdev_op_leaf)
2923 		vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
2924 	/*
2925 	 * Report expandable space on top-level, non-auxillary devices only.
2926 	 * The expandable space is reported in terms of metaslab sized units
2927 	 * since that determines how much space the pool can expand.
2928 	 */
2929 	if (vd->vdev_aux == NULL && tvd != NULL) {
2930 		vs->vs_esize = P2ALIGN(vd->vdev_max_asize - vd->vdev_asize -
2931 		    spa->spa_bootsize, 1ULL << tvd->vdev_ms_shift);
2932 	}
2933 	if (vd->vdev_aux == NULL && vd == vd->vdev_top &&
2934 	    vdev_is_concrete(vd)) {
2935 		vs->vs_fragmentation = vd->vdev_mg->mg_fragmentation;
2936 	}
2937 
2938 	/*
2939 	 * If we're getting stats on the root vdev, aggregate the I/O counts
2940 	 * over all top-level vdevs (i.e. the direct children of the root).
2941 	 */
2942 	if (vd == rvd) {
2943 		for (int c = 0; c < rvd->vdev_children; c++) {
2944 			vdev_t *cvd = rvd->vdev_child[c];
2945 			vdev_stat_t *cvs = &cvd->vdev_stat;
2946 
2947 			for (int t = 0; t < ZIO_TYPES; t++) {
2948 				vs->vs_ops[t] += cvs->vs_ops[t];
2949 				vs->vs_bytes[t] += cvs->vs_bytes[t];
2950 			}
2951 			cvs->vs_scan_removing = cvd->vdev_removing;
2952 		}
2953 	}
2954 	mutex_exit(&vd->vdev_stat_lock);
2955 }
2956 
2957 void
2958 vdev_clear_stats(vdev_t *vd)
2959 {
2960 	mutex_enter(&vd->vdev_stat_lock);
2961 	vd->vdev_stat.vs_space = 0;
2962 	vd->vdev_stat.vs_dspace = 0;
2963 	vd->vdev_stat.vs_alloc = 0;
2964 	mutex_exit(&vd->vdev_stat_lock);
2965 }
2966 
2967 void
2968 vdev_scan_stat_init(vdev_t *vd)
2969 {
2970 	vdev_stat_t *vs = &vd->vdev_stat;
2971 
2972 	for (int c = 0; c < vd->vdev_children; c++)
2973 		vdev_scan_stat_init(vd->vdev_child[c]);
2974 
2975 	mutex_enter(&vd->vdev_stat_lock);
2976 	vs->vs_scan_processed = 0;
2977 	mutex_exit(&vd->vdev_stat_lock);
2978 }
2979 
2980 void
2981 vdev_stat_update(zio_t *zio, uint64_t psize)
2982 {
2983 	spa_t *spa = zio->io_spa;
2984 	vdev_t *rvd = spa->spa_root_vdev;
2985 	vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
2986 	vdev_t *pvd;
2987 	uint64_t txg = zio->io_txg;
2988 	vdev_stat_t *vs = &vd->vdev_stat;
2989 	zio_type_t type = zio->io_type;
2990 	int flags = zio->io_flags;
2991 
2992 	/*
2993 	 * If this i/o is a gang leader, it didn't do any actual work.
2994 	 */
2995 	if (zio->io_gang_tree)
2996 		return;
2997 
2998 	if (zio->io_error == 0) {
2999 		/*
3000 		 * If this is a root i/o, don't count it -- we've already
3001 		 * counted the top-level vdevs, and vdev_get_stats() will
3002 		 * aggregate them when asked.  This reduces contention on
3003 		 * the root vdev_stat_lock and implicitly handles blocks
3004 		 * that compress away to holes, for which there is no i/o.
3005 		 * (Holes never create vdev children, so all the counters
3006 		 * remain zero, which is what we want.)
3007 		 *
3008 		 * Note: this only applies to successful i/o (io_error == 0)
3009 		 * because unlike i/o counts, errors are not additive.
3010 		 * When reading a ditto block, for example, failure of
3011 		 * one top-level vdev does not imply a root-level error.
3012 		 */
3013 		if (vd == rvd)
3014 			return;
3015 
3016 		ASSERT(vd == zio->io_vd);
3017 
3018 		if (flags & ZIO_FLAG_IO_BYPASS)
3019 			return;
3020 
3021 		mutex_enter(&vd->vdev_stat_lock);
3022 
3023 		if (flags & ZIO_FLAG_IO_REPAIR) {
3024 			if (flags & ZIO_FLAG_SCAN_THREAD) {
3025 				dsl_scan_phys_t *scn_phys =
3026 				    &spa->spa_dsl_pool->dp_scan->scn_phys;
3027 				uint64_t *processed = &scn_phys->scn_processed;
3028 
3029 				/* XXX cleanup? */
3030 				if (vd->vdev_ops->vdev_op_leaf)
3031 					atomic_add_64(processed, psize);
3032 				vs->vs_scan_processed += psize;
3033 			}
3034 
3035 			if (flags & ZIO_FLAG_SELF_HEAL)
3036 				vs->vs_self_healed += psize;
3037 		}
3038 
3039 		vs->vs_ops[type]++;
3040 		vs->vs_bytes[type] += psize;
3041 
3042 		mutex_exit(&vd->vdev_stat_lock);
3043 		return;
3044 	}
3045 
3046 	if (flags & ZIO_FLAG_SPECULATIVE)
3047 		return;
3048 
3049 	/*
3050 	 * If this is an I/O error that is going to be retried, then ignore the
3051 	 * error.  Otherwise, the user may interpret B_FAILFAST I/O errors as
3052 	 * hard errors, when in reality they can happen for any number of
3053 	 * innocuous reasons (bus resets, MPxIO link failure, etc).
3054 	 */
3055 	if (zio->io_error == EIO &&
3056 	    !(zio->io_flags & ZIO_FLAG_IO_RETRY))
3057 		return;
3058 
3059 	/*
3060 	 * Intent logs writes won't propagate their error to the root
3061 	 * I/O so don't mark these types of failures as pool-level
3062 	 * errors.
3063 	 */
3064 	if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
3065 		return;
3066 
3067 	mutex_enter(&vd->vdev_stat_lock);
3068 	if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
3069 		if (zio->io_error == ECKSUM)
3070 			vs->vs_checksum_errors++;
3071 		else
3072 			vs->vs_read_errors++;
3073 	}
3074 	if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
3075 		vs->vs_write_errors++;
3076 	mutex_exit(&vd->vdev_stat_lock);
3077 
3078 	if (spa->spa_load_state == SPA_LOAD_NONE &&
3079 	    type == ZIO_TYPE_WRITE && txg != 0 &&
3080 	    (!(flags & ZIO_FLAG_IO_REPAIR) ||
3081 	    (flags & ZIO_FLAG_SCAN_THREAD) ||
3082 	    spa->spa_claiming)) {
3083 		/*
3084 		 * This is either a normal write (not a repair), or it's
3085 		 * a repair induced by the scrub thread, or it's a repair
3086 		 * made by zil_claim() during spa_load() in the first txg.
3087 		 * In the normal case, we commit the DTL change in the same
3088 		 * txg as the block was born.  In the scrub-induced repair
3089 		 * case, we know that scrubs run in first-pass syncing context,
3090 		 * so we commit the DTL change in spa_syncing_txg(spa).
3091 		 * In the zil_claim() case, we commit in spa_first_txg(spa).
3092 		 *
3093 		 * We currently do not make DTL entries for failed spontaneous
3094 		 * self-healing writes triggered by normal (non-scrubbing)
3095 		 * reads, because we have no transactional context in which to
3096 		 * do so -- and it's not clear that it'd be desirable anyway.
3097 		 */
3098 		if (vd->vdev_ops->vdev_op_leaf) {
3099 			uint64_t commit_txg = txg;
3100 			if (flags & ZIO_FLAG_SCAN_THREAD) {
3101 				ASSERT(flags & ZIO_FLAG_IO_REPAIR);
3102 				ASSERT(spa_sync_pass(spa) == 1);
3103 				vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
3104 				commit_txg = spa_syncing_txg(spa);
3105 			} else if (spa->spa_claiming) {
3106 				ASSERT(flags & ZIO_FLAG_IO_REPAIR);
3107 				commit_txg = spa_first_txg(spa);
3108 			}
3109 			ASSERT(commit_txg >= spa_syncing_txg(spa));
3110 			if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
3111 				return;
3112 			for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
3113 				vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
3114 			vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
3115 		}
3116 		if (vd != rvd)
3117 			vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
3118 	}
3119 }
3120 
3121 /*
3122  * Update the in-core space usage stats for this vdev, its metaslab class,
3123  * and the root vdev.
3124  */
3125 void
3126 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
3127     int64_t space_delta)
3128 {
3129 	int64_t dspace_delta = space_delta;
3130 	spa_t *spa = vd->vdev_spa;
3131 	vdev_t *rvd = spa->spa_root_vdev;
3132 	metaslab_group_t *mg = vd->vdev_mg;
3133 	metaslab_class_t *mc = mg ? mg->mg_class : NULL;
3134 
3135 	ASSERT(vd == vd->vdev_top);
3136 
3137 	/*
3138 	 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
3139 	 * factor.  We must calculate this here and not at the root vdev
3140 	 * because the root vdev's psize-to-asize is simply the max of its
3141 	 * childrens', thus not accurate enough for us.
3142 	 */
3143 	ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
3144 	ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
3145 	dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
3146 	    vd->vdev_deflate_ratio;
3147 
3148 	mutex_enter(&vd->vdev_stat_lock);
3149 	vd->vdev_stat.vs_alloc += alloc_delta;
3150 	vd->vdev_stat.vs_space += space_delta;
3151 	vd->vdev_stat.vs_dspace += dspace_delta;
3152 	mutex_exit(&vd->vdev_stat_lock);
3153 
3154 	if (mc == spa_normal_class(spa)) {
3155 		mutex_enter(&rvd->vdev_stat_lock);
3156 		rvd->vdev_stat.vs_alloc += alloc_delta;
3157 		rvd->vdev_stat.vs_space += space_delta;
3158 		rvd->vdev_stat.vs_dspace += dspace_delta;
3159 		mutex_exit(&rvd->vdev_stat_lock);
3160 	}
3161 
3162 	if (mc != NULL) {
3163 		ASSERT(rvd == vd->vdev_parent);
3164 		ASSERT(vd->vdev_ms_count != 0);
3165 
3166 		metaslab_class_space_update(mc,
3167 		    alloc_delta, defer_delta, space_delta, dspace_delta);
3168 	}
3169 }
3170 
3171 /*
3172  * Mark a top-level vdev's config as dirty, placing it on the dirty list
3173  * so that it will be written out next time the vdev configuration is synced.
3174  * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
3175  */
3176 void
3177 vdev_config_dirty(vdev_t *vd)
3178 {
3179 	spa_t *spa = vd->vdev_spa;
3180 	vdev_t *rvd = spa->spa_root_vdev;
3181 	int c;
3182 
3183 	ASSERT(spa_writeable(spa));
3184 
3185 	/*
3186 	 * If this is an aux vdev (as with l2cache and spare devices), then we
3187 	 * update the vdev config manually and set the sync flag.
3188 	 */
3189 	if (vd->vdev_aux != NULL) {
3190 		spa_aux_vdev_t *sav = vd->vdev_aux;
3191 		nvlist_t **aux;
3192 		uint_t naux;
3193 
3194 		for (c = 0; c < sav->sav_count; c++) {
3195 			if (sav->sav_vdevs[c] == vd)
3196 				break;
3197 		}
3198 
3199 		if (c == sav->sav_count) {
3200 			/*
3201 			 * We're being removed.  There's nothing more to do.
3202 			 */
3203 			ASSERT(sav->sav_sync == B_TRUE);
3204 			return;
3205 		}
3206 
3207 		sav->sav_sync = B_TRUE;
3208 
3209 		if (nvlist_lookup_nvlist_array(sav->sav_config,
3210 		    ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
3211 			VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
3212 			    ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
3213 		}
3214 
3215 		ASSERT(c < naux);
3216 
3217 		/*
3218 		 * Setting the nvlist in the middle if the array is a little
3219 		 * sketchy, but it will work.
3220 		 */
3221 		nvlist_free(aux[c]);
3222 		aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
3223 
3224 		return;
3225 	}
3226 
3227 	/*
3228 	 * The dirty list is protected by the SCL_CONFIG lock.  The caller
3229 	 * must either hold SCL_CONFIG as writer, or must be the sync thread
3230 	 * (which holds SCL_CONFIG as reader).  There's only one sync thread,
3231 	 * so this is sufficient to ensure mutual exclusion.
3232 	 */
3233 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
3234 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3235 	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
3236 
3237 	if (vd == rvd) {
3238 		for (c = 0; c < rvd->vdev_children; c++)
3239 			vdev_config_dirty(rvd->vdev_child[c]);
3240 	} else {
3241 		ASSERT(vd == vd->vdev_top);
3242 
3243 		if (!list_link_active(&vd->vdev_config_dirty_node) &&
3244 		    vdev_is_concrete(vd)) {
3245 			list_insert_head(&spa->spa_config_dirty_list, vd);
3246 		}
3247 	}
3248 }
3249 
3250 void
3251 vdev_config_clean(vdev_t *vd)
3252 {
3253 	spa_t *spa = vd->vdev_spa;
3254 
3255 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
3256 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3257 	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
3258 
3259 	ASSERT(list_link_active(&vd->vdev_config_dirty_node));
3260 	list_remove(&spa->spa_config_dirty_list, vd);
3261 }
3262 
3263 /*
3264  * Mark a top-level vdev's state as dirty, so that the next pass of
3265  * spa_sync() can convert this into vdev_config_dirty().  We distinguish
3266  * the state changes from larger config changes because they require
3267  * much less locking, and are often needed for administrative actions.
3268  */
3269 void
3270 vdev_state_dirty(vdev_t *vd)
3271 {
3272 	spa_t *spa = vd->vdev_spa;
3273 
3274 	ASSERT(spa_writeable(spa));
3275 	ASSERT(vd == vd->vdev_top);
3276 
3277 	/*
3278 	 * The state list is protected by the SCL_STATE lock.  The caller
3279 	 * must either hold SCL_STATE as writer, or must be the sync thread
3280 	 * (which holds SCL_STATE as reader).  There's only one sync thread,
3281 	 * so this is sufficient to ensure mutual exclusion.
3282 	 */
3283 	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3284 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3285 	    spa_config_held(spa, SCL_STATE, RW_READER)));
3286 
3287 	if (!list_link_active(&vd->vdev_state_dirty_node) &&
3288 	    vdev_is_concrete(vd))
3289 		list_insert_head(&spa->spa_state_dirty_list, vd);
3290 }
3291 
3292 void
3293 vdev_state_clean(vdev_t *vd)
3294 {
3295 	spa_t *spa = vd->vdev_spa;
3296 
3297 	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3298 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3299 	    spa_config_held(spa, SCL_STATE, RW_READER)));
3300 
3301 	ASSERT(list_link_active(&vd->vdev_state_dirty_node));
3302 	list_remove(&spa->spa_state_dirty_list, vd);
3303 }
3304 
3305 /*
3306  * Propagate vdev state up from children to parent.
3307  */
3308 void
3309 vdev_propagate_state(vdev_t *vd)
3310 {
3311 	spa_t *spa = vd->vdev_spa;
3312 	vdev_t *rvd = spa->spa_root_vdev;
3313 	int degraded = 0, faulted = 0;
3314 	int corrupted = 0;
3315 	vdev_t *child;
3316 
3317 	if (vd->vdev_children > 0) {
3318 		for (int c = 0; c < vd->vdev_children; c++) {
3319 			child = vd->vdev_child[c];
3320 
3321 			/*
3322 			 * Don't factor holes or indirect vdevs into the
3323 			 * decision.
3324 			 */
3325 			if (!vdev_is_concrete(child))
3326 				continue;
3327 
3328 			if (!vdev_readable(child) ||
3329 			    (!vdev_writeable(child) && spa_writeable(spa))) {
3330 				/*
3331 				 * Root special: if there is a top-level log
3332 				 * device, treat the root vdev as if it were
3333 				 * degraded.
3334 				 */
3335 				if (child->vdev_islog && vd == rvd)
3336 					degraded++;
3337 				else
3338 					faulted++;
3339 			} else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
3340 				degraded++;
3341 			}
3342 
3343 			if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
3344 				corrupted++;
3345 		}
3346 
3347 		vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
3348 
3349 		/*
3350 		 * Root special: if there is a top-level vdev that cannot be
3351 		 * opened due to corrupted metadata, then propagate the root
3352 		 * vdev's aux state as 'corrupt' rather than 'insufficient
3353 		 * replicas'.
3354 		 */
3355 		if (corrupted && vd == rvd &&
3356 		    rvd->vdev_state == VDEV_STATE_CANT_OPEN)
3357 			vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
3358 			    VDEV_AUX_CORRUPT_DATA);
3359 	}
3360 
3361 	if (vd->vdev_parent)
3362 		vdev_propagate_state(vd->vdev_parent);
3363 }
3364 
3365 /*
3366  * Set a vdev's state.  If this is during an open, we don't update the parent
3367  * state, because we're in the process of opening children depth-first.
3368  * Otherwise, we propagate the change to the parent.
3369  *
3370  * If this routine places a device in a faulted state, an appropriate ereport is
3371  * generated.
3372  */
3373 void
3374 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
3375 {
3376 	uint64_t save_state;
3377 	spa_t *spa = vd->vdev_spa;
3378 
3379 	if (state == vd->vdev_state) {
3380 		vd->vdev_stat.vs_aux = aux;
3381 		return;
3382 	}
3383 
3384 	save_state = vd->vdev_state;
3385 
3386 	vd->vdev_state = state;
3387 	vd->vdev_stat.vs_aux = aux;
3388 
3389 	/*
3390 	 * If we are setting the vdev state to anything but an open state, then
3391 	 * always close the underlying device unless the device has requested
3392 	 * a delayed close (i.e. we're about to remove or fault the device).
3393 	 * Otherwise, we keep accessible but invalid devices open forever.
3394 	 * We don't call vdev_close() itself, because that implies some extra
3395 	 * checks (offline, etc) that we don't want here.  This is limited to
3396 	 * leaf devices, because otherwise closing the device will affect other
3397 	 * children.
3398 	 */
3399 	if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
3400 	    vd->vdev_ops->vdev_op_leaf)
3401 		vd->vdev_ops->vdev_op_close(vd);
3402 
3403 	/*
3404 	 * If we have brought this vdev back into service, we need
3405 	 * to notify fmd so that it can gracefully repair any outstanding
3406 	 * cases due to a missing device.  We do this in all cases, even those
3407 	 * that probably don't correlate to a repaired fault.  This is sure to
3408 	 * catch all cases, and we let the zfs-retire agent sort it out.  If
3409 	 * this is a transient state it's OK, as the retire agent will
3410 	 * double-check the state of the vdev before repairing it.
3411 	 */
3412 	if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf &&
3413 	    vd->vdev_prevstate != state)
3414 		zfs_post_state_change(spa, vd);
3415 
3416 	if (vd->vdev_removed &&
3417 	    state == VDEV_STATE_CANT_OPEN &&
3418 	    (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
3419 		/*
3420 		 * If the previous state is set to VDEV_STATE_REMOVED, then this
3421 		 * device was previously marked removed and someone attempted to
3422 		 * reopen it.  If this failed due to a nonexistent device, then
3423 		 * keep the device in the REMOVED state.  We also let this be if
3424 		 * it is one of our special test online cases, which is only
3425 		 * attempting to online the device and shouldn't generate an FMA
3426 		 * fault.
3427 		 */
3428 		vd->vdev_state = VDEV_STATE_REMOVED;
3429 		vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
3430 	} else if (state == VDEV_STATE_REMOVED) {
3431 		vd->vdev_removed = B_TRUE;
3432 	} else if (state == VDEV_STATE_CANT_OPEN) {
3433 		/*
3434 		 * If we fail to open a vdev during an import or recovery, we
3435 		 * mark it as "not available", which signifies that it was
3436 		 * never there to begin with.  Failure to open such a device
3437 		 * is not considered an error.
3438 		 */
3439 		if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
3440 		    spa_load_state(spa) == SPA_LOAD_RECOVER) &&
3441 		    vd->vdev_ops->vdev_op_leaf)
3442 			vd->vdev_not_present = 1;
3443 
3444 		/*
3445 		 * Post the appropriate ereport.  If the 'prevstate' field is
3446 		 * set to something other than VDEV_STATE_UNKNOWN, it indicates
3447 		 * that this is part of a vdev_reopen().  In this case, we don't
3448 		 * want to post the ereport if the device was already in the
3449 		 * CANT_OPEN state beforehand.
3450 		 *
3451 		 * If the 'checkremove' flag is set, then this is an attempt to
3452 		 * online the device in response to an insertion event.  If we
3453 		 * hit this case, then we have detected an insertion event for a
3454 		 * faulted or offline device that wasn't in the removed state.
3455 		 * In this scenario, we don't post an ereport because we are
3456 		 * about to replace the device, or attempt an online with
3457 		 * vdev_forcefault, which will generate the fault for us.
3458 		 */
3459 		if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
3460 		    !vd->vdev_not_present && !vd->vdev_checkremove &&
3461 		    vd != spa->spa_root_vdev) {
3462 			const char *class;
3463 
3464 			switch (aux) {
3465 			case VDEV_AUX_OPEN_FAILED:
3466 				class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
3467 				break;
3468 			case VDEV_AUX_CORRUPT_DATA:
3469 				class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
3470 				break;
3471 			case VDEV_AUX_NO_REPLICAS:
3472 				class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
3473 				break;
3474 			case VDEV_AUX_BAD_GUID_SUM:
3475 				class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
3476 				break;
3477 			case VDEV_AUX_TOO_SMALL:
3478 				class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
3479 				break;
3480 			case VDEV_AUX_BAD_LABEL:
3481 				class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
3482 				break;
3483 			default:
3484 				class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
3485 			}
3486 
3487 			zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
3488 		}
3489 
3490 		/* Erase any notion of persistent removed state */
3491 		vd->vdev_removed = B_FALSE;
3492 	} else {
3493 		vd->vdev_removed = B_FALSE;
3494 	}
3495 
3496 	if (!isopen && vd->vdev_parent)
3497 		vdev_propagate_state(vd->vdev_parent);
3498 }
3499 
3500 /*
3501  * Check the vdev configuration to ensure that it's capable of supporting
3502  * a root pool. We do not support partial configuration.
3503  * In addition, only a single top-level vdev is allowed.
3504  */
3505 boolean_t
3506 vdev_is_bootable(vdev_t *vd)
3507 {
3508 	if (!vd->vdev_ops->vdev_op_leaf) {
3509 		char *vdev_type = vd->vdev_ops->vdev_op_type;
3510 
3511 		if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
3512 		    vd->vdev_children > 1) {
3513 			return (B_FALSE);
3514 		} else if (strcmp(vdev_type, VDEV_TYPE_MISSING) == 0 ||
3515 		    strcmp(vdev_type, VDEV_TYPE_INDIRECT) == 0) {
3516 			return (B_FALSE);
3517 		}
3518 	}
3519 
3520 	for (int c = 0; c < vd->vdev_children; c++) {
3521 		if (!vdev_is_bootable(vd->vdev_child[c]))
3522 			return (B_FALSE);
3523 	}
3524 	return (B_TRUE);
3525 }
3526 
3527 boolean_t
3528 vdev_is_concrete(vdev_t *vd)
3529 {
3530 	vdev_ops_t *ops = vd->vdev_ops;
3531 	if (ops == &vdev_indirect_ops || ops == &vdev_hole_ops ||
3532 	    ops == &vdev_missing_ops || ops == &vdev_root_ops) {
3533 		return (B_FALSE);
3534 	} else {
3535 		return (B_TRUE);
3536 	}
3537 }
3538 
3539 /*
3540  * Load the state from the original vdev tree (ovd) which
3541  * we've retrieved from the MOS config object. If the original
3542  * vdev was offline or faulted then we transfer that state to the
3543  * device in the current vdev tree (nvd).
3544  */
3545 void
3546 vdev_load_log_state(vdev_t *nvd, vdev_t *ovd)
3547 {
3548 	spa_t *spa = nvd->vdev_spa;
3549 
3550 	ASSERT(nvd->vdev_top->vdev_islog);
3551 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3552 	ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid);
3553 
3554 	for (int c = 0; c < nvd->vdev_children; c++)
3555 		vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]);
3556 
3557 	if (nvd->vdev_ops->vdev_op_leaf) {
3558 		/*
3559 		 * Restore the persistent vdev state
3560 		 */
3561 		nvd->vdev_offline = ovd->vdev_offline;
3562 		nvd->vdev_faulted = ovd->vdev_faulted;
3563 		nvd->vdev_degraded = ovd->vdev_degraded;
3564 		nvd->vdev_removed = ovd->vdev_removed;
3565 	}
3566 }
3567 
3568 /*
3569  * Determine if a log device has valid content.  If the vdev was
3570  * removed or faulted in the MOS config then we know that
3571  * the content on the log device has already been written to the pool.
3572  */
3573 boolean_t
3574 vdev_log_state_valid(vdev_t *vd)
3575 {
3576 	if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
3577 	    !vd->vdev_removed)
3578 		return (B_TRUE);
3579 
3580 	for (int c = 0; c < vd->vdev_children; c++)
3581 		if (vdev_log_state_valid(vd->vdev_child[c]))
3582 			return (B_TRUE);
3583 
3584 	return (B_FALSE);
3585 }
3586 
3587 /*
3588  * Expand a vdev if possible.
3589  */
3590 void
3591 vdev_expand(vdev_t *vd, uint64_t txg)
3592 {
3593 	ASSERT(vd->vdev_top == vd);
3594 	ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3595 
3596 	vdev_set_deflate_ratio(vd);
3597 
3598 	if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count &&
3599 	    vdev_is_concrete(vd)) {
3600 		VERIFY(vdev_metaslab_init(vd, txg) == 0);
3601 		vdev_config_dirty(vd);
3602 	}
3603 }
3604 
3605 /*
3606  * Split a vdev.
3607  */
3608 void
3609 vdev_split(vdev_t *vd)
3610 {
3611 	vdev_t *cvd, *pvd = vd->vdev_parent;
3612 
3613 	vdev_remove_child(pvd, vd);
3614 	vdev_compact_children(pvd);
3615 
3616 	cvd = pvd->vdev_child[0];
3617 	if (pvd->vdev_children == 1) {
3618 		vdev_remove_parent(cvd);
3619 		cvd->vdev_splitting = B_TRUE;
3620 	}
3621 	vdev_propagate_state(cvd);
3622 }
3623 
3624 void
3625 vdev_deadman(vdev_t *vd)
3626 {
3627 	for (int c = 0; c < vd->vdev_children; c++) {
3628 		vdev_t *cvd = vd->vdev_child[c];
3629 
3630 		vdev_deadman(cvd);
3631 	}
3632 
3633 	if (vd->vdev_ops->vdev_op_leaf) {
3634 		vdev_queue_t *vq = &vd->vdev_queue;
3635 
3636 		mutex_enter(&vq->vq_lock);
3637 		if (avl_numnodes(&vq->vq_active_tree) > 0) {
3638 			spa_t *spa = vd->vdev_spa;
3639 			zio_t *fio;
3640 			uint64_t delta;
3641 
3642 			/*
3643 			 * Look at the head of all the pending queues,
3644 			 * if any I/O has been outstanding for longer than
3645 			 * the spa_deadman_synctime we panic the system.
3646 			 */
3647 			fio = avl_first(&vq->vq_active_tree);
3648 			delta = gethrtime() - fio->io_timestamp;
3649 			if (delta > spa_deadman_synctime(spa)) {
3650 				zfs_dbgmsg("SLOW IO: zio timestamp %lluns, "
3651 				    "delta %lluns, last io %lluns",
3652 				    fio->io_timestamp, delta,
3653 				    vq->vq_io_complete_ts);
3654 				fm_panic("I/O to pool '%s' appears to be "
3655 				    "hung.", spa_name(spa));
3656 			}
3657 		}
3658 		mutex_exit(&vq->vq_lock);
3659 	}
3660 }
3661