1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
25  */
26 
27 #include <sys/zfs_context.h>
28 #include <sys/spa_impl.h>
29 #include <sys/dmu.h>
30 #include <sys/dmu_tx.h>
31 #include <sys/zap.h>
32 #include <sys/vdev_impl.h>
33 #include <sys/metaslab.h>
34 #include <sys/metaslab_impl.h>
35 #include <sys/uberblock_impl.h>
36 #include <sys/txg.h>
37 #include <sys/avl.h>
38 #include <sys/bpobj.h>
39 #include <sys/dsl_pool.h>
40 #include <sys/dsl_synctask.h>
41 #include <sys/dsl_dir.h>
42 #include <sys/arc.h>
43 #include <sys/zfeature.h>
44 #include <sys/vdev_indirect_births.h>
45 #include <sys/vdev_indirect_mapping.h>
46 #include <sys/abd.h>
47 #include <sys/vdev_initialize.h>
48 
49 /*
50  * This file contains the necessary logic to remove vdevs from a
51  * storage pool.  Currently, the only devices that can be removed
52  * are log, cache, and spare devices; and top level vdevs from a pool
53  * w/o raidz.  (Note that members of a mirror can also be removed
54  * by the detach operation.)
55  *
56  * Log vdevs are removed by evacuating them and then turning the vdev
57  * into a hole vdev while holding spa config locks.
58  *
59  * Top level vdevs are removed and converted into an indirect vdev via
60  * a multi-step process:
61  *
62  *  - Disable allocations from this device (spa_vdev_remove_top).
63  *
64  *  - From a new thread (spa_vdev_remove_thread), copy data from
65  *    the removing vdev to a different vdev.  The copy happens in open
66  *    context (spa_vdev_copy_impl) and issues a sync task
67  *    (vdev_mapping_sync) so the sync thread can update the partial
68  *    indirect mappings in core and on disk.
69  *
70  *  - If a free happens during a removal, it is freed from the
71  *    removing vdev, and if it has already been copied, from the new
72  *    location as well (free_from_removing_vdev).
73  *
74  *  - After the removal is completed, the copy thread converts the vdev
75  *    into an indirect vdev (vdev_remove_complete) before instructing
76  *    the sync thread to destroy the space maps and finish the removal
77  *    (spa_finish_removal).
78  */
79 
80 typedef struct vdev_copy_arg {
81 	metaslab_t	*vca_msp;
82 	uint64_t	vca_outstanding_bytes;
83 	kcondvar_t	vca_cv;
84 	kmutex_t	vca_lock;
85 } vdev_copy_arg_t;
86 
87 /*
88  * The maximum amount of memory we can use for outstanding i/o while
89  * doing a device removal.  This determines how much i/o we can have
90  * in flight concurrently.
91  */
92 int zfs_remove_max_copy_bytes = 64 * 1024 * 1024;
93 
94 /*
95  * The largest contiguous segment that we will attempt to allocate when
96  * removing a device.  This can be no larger than SPA_MAXBLOCKSIZE.  If
97  * there is a performance problem with attempting to allocate large blocks,
98  * consider decreasing this.
99  *
100  * Note: we will issue I/Os of up to this size.  The mpt driver does not
101  * respond well to I/Os larger than 1MB, so we set this to 1MB.  (When
102  * mpt processes an I/O larger than 1MB, it needs to do an allocation of
103  * 2 physically contiguous pages; if this allocation fails, mpt will drop
104  * the I/O and hang the device.)
105  */
106 int zfs_remove_max_segment = 1024 * 1024;
107 
108 /*
109  * Allow a remap segment to span free chunks of at most this size. The main
110  * impact of a larger span is that we will read and write larger, more
111  * contiguous chunks, with more "unnecessary" data -- trading off bandwidth
112  * for iops.  The value here was chosen to align with
113  * zfs_vdev_read_gap_limit, which is a similar concept when doing regular
114  * reads (but there's no reason it has to be the same).
115  *
116  * Additionally, a higher span will have the following relatively minor
117  * effects:
118  *  - the mapping will be smaller, since one entry can cover more allocated
119  *    segments
120  *  - more of the fragmentation in the removing device will be preserved
121  *  - we'll do larger allocations, which may fail and fall back on smaller
122  *    allocations
123  */
124 int vdev_removal_max_span = 32 * 1024;
125 
126 /*
127  * This is used by the test suite so that it can ensure that certain
128  * actions happen while in the middle of a removal.
129  */
130 uint64_t zfs_remove_max_bytes_pause = UINT64_MAX;
131 
132 #define	VDEV_REMOVAL_ZAP_OBJS	"lzap"
133 
134 static void spa_vdev_remove_thread(void *arg);
135 
136 static void
137 spa_sync_removing_state(spa_t *spa, dmu_tx_t *tx)
138 {
139 	VERIFY0(zap_update(spa->spa_dsl_pool->dp_meta_objset,
140 	    DMU_POOL_DIRECTORY_OBJECT,
141 	    DMU_POOL_REMOVING, sizeof (uint64_t),
142 	    sizeof (spa->spa_removing_phys) / sizeof (uint64_t),
143 	    &spa->spa_removing_phys, tx));
144 }
145 
146 static nvlist_t *
147 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
148 {
149 	for (int i = 0; i < count; i++) {
150 		uint64_t guid =
151 		    fnvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID);
152 
153 		if (guid == target_guid)
154 			return (nvpp[i]);
155 	}
156 
157 	return (NULL);
158 }
159 
160 static void
161 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
162     nvlist_t *dev_to_remove)
163 {
164 	nvlist_t **newdev = NULL;
165 
166 	if (count > 1)
167 		newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
168 
169 	for (int i = 0, j = 0; i < count; i++) {
170 		if (dev[i] == dev_to_remove)
171 			continue;
172 		VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
173 	}
174 
175 	VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
176 	VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
177 
178 	for (int i = 0; i < count - 1; i++)
179 		nvlist_free(newdev[i]);
180 
181 	if (count > 1)
182 		kmem_free(newdev, (count - 1) * sizeof (void *));
183 }
184 
185 static spa_vdev_removal_t *
186 spa_vdev_removal_create(vdev_t *vd)
187 {
188 	spa_vdev_removal_t *svr = kmem_zalloc(sizeof (*svr), KM_SLEEP);
189 	mutex_init(&svr->svr_lock, NULL, MUTEX_DEFAULT, NULL);
190 	cv_init(&svr->svr_cv, NULL, CV_DEFAULT, NULL);
191 	svr->svr_allocd_segs = range_tree_create(NULL, NULL);
192 	svr->svr_vdev_id = vd->vdev_id;
193 
194 	for (int i = 0; i < TXG_SIZE; i++) {
195 		svr->svr_frees[i] = range_tree_create(NULL, NULL);
196 		list_create(&svr->svr_new_segments[i],
197 		    sizeof (vdev_indirect_mapping_entry_t),
198 		    offsetof(vdev_indirect_mapping_entry_t, vime_node));
199 	}
200 
201 	return (svr);
202 }
203 
204 void
205 spa_vdev_removal_destroy(spa_vdev_removal_t *svr)
206 {
207 	for (int i = 0; i < TXG_SIZE; i++) {
208 		ASSERT0(svr->svr_bytes_done[i]);
209 		ASSERT0(svr->svr_max_offset_to_sync[i]);
210 		range_tree_destroy(svr->svr_frees[i]);
211 		list_destroy(&svr->svr_new_segments[i]);
212 	}
213 
214 	range_tree_destroy(svr->svr_allocd_segs);
215 	mutex_destroy(&svr->svr_lock);
216 	cv_destroy(&svr->svr_cv);
217 	kmem_free(svr, sizeof (*svr));
218 }
219 
220 /*
221  * This is called as a synctask in the txg in which we will mark this vdev
222  * as removing (in the config stored in the MOS).
223  *
224  * It begins the evacuation of a toplevel vdev by:
225  * - initializing the spa_removing_phys which tracks this removal
226  * - computing the amount of space to remove for accounting purposes
227  * - dirtying all dbufs in the spa_config_object
228  * - creating the spa_vdev_removal
229  * - starting the spa_vdev_remove_thread
230  */
231 static void
232 vdev_remove_initiate_sync(void *arg, dmu_tx_t *tx)
233 {
234 	int vdev_id = (uintptr_t)arg;
235 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
236 	vdev_t *vd = vdev_lookup_top(spa, vdev_id);
237 	vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
238 	objset_t *mos = spa->spa_dsl_pool->dp_meta_objset;
239 	spa_vdev_removal_t *svr = NULL;
240 	uint64_t txg = dmu_tx_get_txg(tx);
241 
242 	ASSERT3P(vd->vdev_ops, !=, &vdev_raidz_ops);
243 	svr = spa_vdev_removal_create(vd);
244 
245 	ASSERT(vd->vdev_removing);
246 	ASSERT3P(vd->vdev_indirect_mapping, ==, NULL);
247 
248 	spa_feature_incr(spa, SPA_FEATURE_DEVICE_REMOVAL, tx);
249 	if (spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS)) {
250 		/*
251 		 * By activating the OBSOLETE_COUNTS feature, we prevent
252 		 * the pool from being downgraded and ensure that the
253 		 * refcounts are precise.
254 		 */
255 		spa_feature_incr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
256 		uint64_t one = 1;
257 		VERIFY0(zap_add(spa->spa_meta_objset, vd->vdev_top_zap,
258 		    VDEV_TOP_ZAP_OBSOLETE_COUNTS_ARE_PRECISE, sizeof (one), 1,
259 		    &one, tx));
260 		ASSERT3U(vdev_obsolete_counts_are_precise(vd), !=, 0);
261 	}
262 
263 	vic->vic_mapping_object = vdev_indirect_mapping_alloc(mos, tx);
264 	vd->vdev_indirect_mapping =
265 	    vdev_indirect_mapping_open(mos, vic->vic_mapping_object);
266 	vic->vic_births_object = vdev_indirect_births_alloc(mos, tx);
267 	vd->vdev_indirect_births =
268 	    vdev_indirect_births_open(mos, vic->vic_births_object);
269 	spa->spa_removing_phys.sr_removing_vdev = vd->vdev_id;
270 	spa->spa_removing_phys.sr_start_time = gethrestime_sec();
271 	spa->spa_removing_phys.sr_end_time = 0;
272 	spa->spa_removing_phys.sr_state = DSS_SCANNING;
273 	spa->spa_removing_phys.sr_to_copy = 0;
274 	spa->spa_removing_phys.sr_copied = 0;
275 
276 	/*
277 	 * Note: We can't use vdev_stat's vs_alloc for sr_to_copy, because
278 	 * there may be space in the defer tree, which is free, but still
279 	 * counted in vs_alloc.
280 	 */
281 	for (uint64_t i = 0; i < vd->vdev_ms_count; i++) {
282 		metaslab_t *ms = vd->vdev_ms[i];
283 		if (ms->ms_sm == NULL)
284 			continue;
285 
286 		/*
287 		 * Sync tasks happen before metaslab_sync(), therefore
288 		 * smp_alloc and sm_alloc must be the same.
289 		 */
290 		ASSERT3U(space_map_allocated(ms->ms_sm), ==,
291 		    ms->ms_sm->sm_phys->smp_alloc);
292 
293 		spa->spa_removing_phys.sr_to_copy +=
294 		    space_map_allocated(ms->ms_sm);
295 
296 		/*
297 		 * Space which we are freeing this txg does not need to
298 		 * be copied.
299 		 */
300 		spa->spa_removing_phys.sr_to_copy -=
301 		    range_tree_space(ms->ms_freeing);
302 
303 		ASSERT0(range_tree_space(ms->ms_freed));
304 		for (int t = 0; t < TXG_SIZE; t++)
305 			ASSERT0(range_tree_space(ms->ms_allocating[t]));
306 	}
307 
308 	/*
309 	 * Sync tasks are called before metaslab_sync(), so there should
310 	 * be no already-synced metaslabs in the TXG_CLEAN list.
311 	 */
312 	ASSERT3P(txg_list_head(&vd->vdev_ms_list, TXG_CLEAN(txg)), ==, NULL);
313 
314 	spa_sync_removing_state(spa, tx);
315 
316 	/*
317 	 * All blocks that we need to read the most recent mapping must be
318 	 * stored on concrete vdevs.  Therefore, we must dirty anything that
319 	 * is read before spa_remove_init().  Specifically, the
320 	 * spa_config_object.  (Note that although we already modified the
321 	 * spa_config_object in spa_sync_removing_state, that may not have
322 	 * modified all blocks of the object.)
323 	 */
324 	dmu_object_info_t doi;
325 	VERIFY0(dmu_object_info(mos, DMU_POOL_DIRECTORY_OBJECT, &doi));
326 	for (uint64_t offset = 0; offset < doi.doi_max_offset; ) {
327 		dmu_buf_t *dbuf;
328 		VERIFY0(dmu_buf_hold(mos, DMU_POOL_DIRECTORY_OBJECT,
329 		    offset, FTAG, &dbuf, 0));
330 		dmu_buf_will_dirty(dbuf, tx);
331 		offset += dbuf->db_size;
332 		dmu_buf_rele(dbuf, FTAG);
333 	}
334 
335 	/*
336 	 * Now that we've allocated the im_object, dirty the vdev to ensure
337 	 * that the object gets written to the config on disk.
338 	 */
339 	vdev_config_dirty(vd);
340 
341 	zfs_dbgmsg("starting removal thread for vdev %llu (%p) in txg %llu "
342 	    "im_obj=%llu", vd->vdev_id, vd, dmu_tx_get_txg(tx),
343 	    vic->vic_mapping_object);
344 
345 	spa_history_log_internal(spa, "vdev remove started", tx,
346 	    "%s vdev %llu %s", spa_name(spa), vd->vdev_id,
347 	    (vd->vdev_path != NULL) ? vd->vdev_path : "-");
348 	/*
349 	 * Setting spa_vdev_removal causes subsequent frees to call
350 	 * free_from_removing_vdev().  Note that we don't need any locking
351 	 * because we are the sync thread, and metaslab_free_impl() is only
352 	 * called from syncing context (potentially from a zio taskq thread,
353 	 * but in any case only when there are outstanding free i/os, which
354 	 * there are not).
355 	 */
356 	ASSERT3P(spa->spa_vdev_removal, ==, NULL);
357 	spa->spa_vdev_removal = svr;
358 	svr->svr_thread = thread_create(NULL, 0,
359 	    spa_vdev_remove_thread, spa, 0, &p0, TS_RUN, minclsyspri);
360 }
361 
362 /*
363  * When we are opening a pool, we must read the mapping for each
364  * indirect vdev in order from most recently removed to least
365  * recently removed.  We do this because the blocks for the mapping
366  * of older indirect vdevs may be stored on more recently removed vdevs.
367  * In order to read each indirect mapping object, we must have
368  * initialized all more recently removed vdevs.
369  */
370 int
371 spa_remove_init(spa_t *spa)
372 {
373 	int error;
374 
375 	error = zap_lookup(spa->spa_dsl_pool->dp_meta_objset,
376 	    DMU_POOL_DIRECTORY_OBJECT,
377 	    DMU_POOL_REMOVING, sizeof (uint64_t),
378 	    sizeof (spa->spa_removing_phys) / sizeof (uint64_t),
379 	    &spa->spa_removing_phys);
380 
381 	if (error == ENOENT) {
382 		spa->spa_removing_phys.sr_state = DSS_NONE;
383 		spa->spa_removing_phys.sr_removing_vdev = -1;
384 		spa->spa_removing_phys.sr_prev_indirect_vdev = -1;
385 		spa->spa_indirect_vdevs_loaded = B_TRUE;
386 		return (0);
387 	} else if (error != 0) {
388 		return (error);
389 	}
390 
391 	if (spa->spa_removing_phys.sr_state == DSS_SCANNING) {
392 		/*
393 		 * We are currently removing a vdev.  Create and
394 		 * initialize a spa_vdev_removal_t from the bonus
395 		 * buffer of the removing vdevs vdev_im_object, and
396 		 * initialize its partial mapping.
397 		 */
398 		spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
399 		vdev_t *vd = vdev_lookup_top(spa,
400 		    spa->spa_removing_phys.sr_removing_vdev);
401 
402 		if (vd == NULL) {
403 			spa_config_exit(spa, SCL_STATE, FTAG);
404 			return (EINVAL);
405 		}
406 
407 		vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
408 
409 		ASSERT(vdev_is_concrete(vd));
410 		spa_vdev_removal_t *svr = spa_vdev_removal_create(vd);
411 		ASSERT3U(svr->svr_vdev_id, ==, vd->vdev_id);
412 		ASSERT(vd->vdev_removing);
413 
414 		vd->vdev_indirect_mapping = vdev_indirect_mapping_open(
415 		    spa->spa_meta_objset, vic->vic_mapping_object);
416 		vd->vdev_indirect_births = vdev_indirect_births_open(
417 		    spa->spa_meta_objset, vic->vic_births_object);
418 		spa_config_exit(spa, SCL_STATE, FTAG);
419 
420 		spa->spa_vdev_removal = svr;
421 	}
422 
423 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
424 	uint64_t indirect_vdev_id =
425 	    spa->spa_removing_phys.sr_prev_indirect_vdev;
426 	while (indirect_vdev_id != UINT64_MAX) {
427 		vdev_t *vd = vdev_lookup_top(spa, indirect_vdev_id);
428 		vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
429 
430 		ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
431 		vd->vdev_indirect_mapping = vdev_indirect_mapping_open(
432 		    spa->spa_meta_objset, vic->vic_mapping_object);
433 		vd->vdev_indirect_births = vdev_indirect_births_open(
434 		    spa->spa_meta_objset, vic->vic_births_object);
435 
436 		indirect_vdev_id = vic->vic_prev_indirect_vdev;
437 	}
438 	spa_config_exit(spa, SCL_STATE, FTAG);
439 
440 	/*
441 	 * Now that we've loaded all the indirect mappings, we can allow
442 	 * reads from other blocks (e.g. via predictive prefetch).
443 	 */
444 	spa->spa_indirect_vdevs_loaded = B_TRUE;
445 	return (0);
446 }
447 
448 void
449 spa_restart_removal(spa_t *spa)
450 {
451 	spa_vdev_removal_t *svr = spa->spa_vdev_removal;
452 
453 	if (svr == NULL)
454 		return;
455 
456 	/*
457 	 * In general when this function is called there is no
458 	 * removal thread running. The only scenario where this
459 	 * is not true is during spa_import() where this function
460 	 * is called twice [once from spa_import_impl() and
461 	 * spa_async_resume()]. Thus, in the scenario where we
462 	 * import a pool that has an ongoing removal we don't
463 	 * want to spawn a second thread.
464 	 */
465 	if (svr->svr_thread != NULL)
466 		return;
467 
468 	if (!spa_writeable(spa))
469 		return;
470 
471 	zfs_dbgmsg("restarting removal of %llu", svr->svr_vdev_id);
472 	svr->svr_thread = thread_create(NULL, 0, spa_vdev_remove_thread, spa,
473 	    0, &p0, TS_RUN, minclsyspri);
474 }
475 
476 /*
477  * Process freeing from a device which is in the middle of being removed.
478  * We must handle this carefully so that we attempt to copy freed data,
479  * and we correctly free already-copied data.
480  */
481 void
482 free_from_removing_vdev(vdev_t *vd, uint64_t offset, uint64_t size)
483 {
484 	spa_t *spa = vd->vdev_spa;
485 	spa_vdev_removal_t *svr = spa->spa_vdev_removal;
486 	vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
487 	uint64_t txg = spa_syncing_txg(spa);
488 	uint64_t max_offset_yet = 0;
489 
490 	ASSERT(vd->vdev_indirect_config.vic_mapping_object != 0);
491 	ASSERT3U(vd->vdev_indirect_config.vic_mapping_object, ==,
492 	    vdev_indirect_mapping_object(vim));
493 	ASSERT3U(vd->vdev_id, ==, svr->svr_vdev_id);
494 
495 	mutex_enter(&svr->svr_lock);
496 
497 	/*
498 	 * Remove the segment from the removing vdev's spacemap.  This
499 	 * ensures that we will not attempt to copy this space (if the
500 	 * removal thread has not yet visited it), and also ensures
501 	 * that we know what is actually allocated on the new vdevs
502 	 * (needed if we cancel the removal).
503 	 *
504 	 * Note: we must do the metaslab_free_concrete() with the svr_lock
505 	 * held, so that the remove_thread can not load this metaslab and then
506 	 * visit this offset between the time that we metaslab_free_concrete()
507 	 * and when we check to see if it has been visited.
508 	 *
509 	 * Note: The checkpoint flag is set to false as having/taking
510 	 * a checkpoint and removing a device can't happen at the same
511 	 * time.
512 	 */
513 	ASSERT(!spa_has_checkpoint(spa));
514 	metaslab_free_concrete(vd, offset, size, B_FALSE);
515 
516 	uint64_t synced_size = 0;
517 	uint64_t synced_offset = 0;
518 	uint64_t max_offset_synced = vdev_indirect_mapping_max_offset(vim);
519 	if (offset < max_offset_synced) {
520 		/*
521 		 * The mapping for this offset is already on disk.
522 		 * Free from the new location.
523 		 *
524 		 * Note that we use svr_max_synced_offset because it is
525 		 * updated atomically with respect to the in-core mapping.
526 		 * By contrast, vim_max_offset is not.
527 		 *
528 		 * This block may be split between a synced entry and an
529 		 * in-flight or unvisited entry.  Only process the synced
530 		 * portion of it here.
531 		 */
532 		synced_size = MIN(size, max_offset_synced - offset);
533 		synced_offset = offset;
534 
535 		ASSERT3U(max_offset_yet, <=, max_offset_synced);
536 		max_offset_yet = max_offset_synced;
537 
538 		DTRACE_PROBE3(remove__free__synced,
539 		    spa_t *, spa,
540 		    uint64_t, offset,
541 		    uint64_t, synced_size);
542 
543 		size -= synced_size;
544 		offset += synced_size;
545 	}
546 
547 	/*
548 	 * Look at all in-flight txgs starting from the currently syncing one
549 	 * and see if a section of this free is being copied. By starting from
550 	 * this txg and iterating forward, we might find that this region
551 	 * was copied in two different txgs and handle it appropriately.
552 	 */
553 	for (int i = 0; i < TXG_CONCURRENT_STATES; i++) {
554 		int txgoff = (txg + i) & TXG_MASK;
555 		if (size > 0 && offset < svr->svr_max_offset_to_sync[txgoff]) {
556 			/*
557 			 * The mapping for this offset is in flight, and
558 			 * will be synced in txg+i.
559 			 */
560 			uint64_t inflight_size = MIN(size,
561 			    svr->svr_max_offset_to_sync[txgoff] - offset);
562 
563 			DTRACE_PROBE4(remove__free__inflight,
564 			    spa_t *, spa,
565 			    uint64_t, offset,
566 			    uint64_t, inflight_size,
567 			    uint64_t, txg + i);
568 
569 			/*
570 			 * We copy data in order of increasing offset.
571 			 * Therefore the max_offset_to_sync[] must increase
572 			 * (or be zero, indicating that nothing is being
573 			 * copied in that txg).
574 			 */
575 			if (svr->svr_max_offset_to_sync[txgoff] != 0) {
576 				ASSERT3U(svr->svr_max_offset_to_sync[txgoff],
577 				    >=, max_offset_yet);
578 				max_offset_yet =
579 				    svr->svr_max_offset_to_sync[txgoff];
580 			}
581 
582 			/*
583 			 * We've already committed to copying this segment:
584 			 * we have allocated space elsewhere in the pool for
585 			 * it and have an IO outstanding to copy the data. We
586 			 * cannot free the space before the copy has
587 			 * completed, or else the copy IO might overwrite any
588 			 * new data. To free that space, we record the
589 			 * segment in the appropriate svr_frees tree and free
590 			 * the mapped space later, in the txg where we have
591 			 * completed the copy and synced the mapping (see
592 			 * vdev_mapping_sync).
593 			 */
594 			range_tree_add(svr->svr_frees[txgoff],
595 			    offset, inflight_size);
596 			size -= inflight_size;
597 			offset += inflight_size;
598 
599 			/*
600 			 * This space is already accounted for as being
601 			 * done, because it is being copied in txg+i.
602 			 * However, if i!=0, then it is being copied in
603 			 * a future txg.  If we crash after this txg
604 			 * syncs but before txg+i syncs, then the space
605 			 * will be free.  Therefore we must account
606 			 * for the space being done in *this* txg
607 			 * (when it is freed) rather than the future txg
608 			 * (when it will be copied).
609 			 */
610 			ASSERT3U(svr->svr_bytes_done[txgoff], >=,
611 			    inflight_size);
612 			svr->svr_bytes_done[txgoff] -= inflight_size;
613 			svr->svr_bytes_done[txg & TXG_MASK] += inflight_size;
614 		}
615 	}
616 	ASSERT0(svr->svr_max_offset_to_sync[TXG_CLEAN(txg) & TXG_MASK]);
617 
618 	if (size > 0) {
619 		/*
620 		 * The copy thread has not yet visited this offset.  Ensure
621 		 * that it doesn't.
622 		 */
623 
624 		DTRACE_PROBE3(remove__free__unvisited,
625 		    spa_t *, spa,
626 		    uint64_t, offset,
627 		    uint64_t, size);
628 
629 		if (svr->svr_allocd_segs != NULL)
630 			range_tree_clear(svr->svr_allocd_segs, offset, size);
631 
632 		/*
633 		 * Since we now do not need to copy this data, for
634 		 * accounting purposes we have done our job and can count
635 		 * it as completed.
636 		 */
637 		svr->svr_bytes_done[txg & TXG_MASK] += size;
638 	}
639 	mutex_exit(&svr->svr_lock);
640 
641 	/*
642 	 * Now that we have dropped svr_lock, process the synced portion
643 	 * of this free.
644 	 */
645 	if (synced_size > 0) {
646 		vdev_indirect_mark_obsolete(vd, synced_offset, synced_size);
647 
648 		/*
649 		 * Note: this can only be called from syncing context,
650 		 * and the vdev_indirect_mapping is only changed from the
651 		 * sync thread, so we don't need svr_lock while doing
652 		 * metaslab_free_impl_cb.
653 		 */
654 		boolean_t checkpoint = B_FALSE;
655 		vdev_indirect_ops.vdev_op_remap(vd, synced_offset, synced_size,
656 		    metaslab_free_impl_cb, &checkpoint);
657 	}
658 }
659 
660 /*
661  * Stop an active removal and update the spa_removing phys.
662  */
663 static void
664 spa_finish_removal(spa_t *spa, dsl_scan_state_t state, dmu_tx_t *tx)
665 {
666 	spa_vdev_removal_t *svr = spa->spa_vdev_removal;
667 	ASSERT3U(dmu_tx_get_txg(tx), ==, spa_syncing_txg(spa));
668 
669 	/* Ensure the removal thread has completed before we free the svr. */
670 	spa_vdev_remove_suspend(spa);
671 
672 	ASSERT(state == DSS_FINISHED || state == DSS_CANCELED);
673 
674 	if (state == DSS_FINISHED) {
675 		spa_removing_phys_t *srp = &spa->spa_removing_phys;
676 		vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
677 		vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
678 
679 		if (srp->sr_prev_indirect_vdev != UINT64_MAX) {
680 			vdev_t *pvd = vdev_lookup_top(spa,
681 			    srp->sr_prev_indirect_vdev);
682 			ASSERT3P(pvd->vdev_ops, ==, &vdev_indirect_ops);
683 		}
684 
685 		vic->vic_prev_indirect_vdev = srp->sr_prev_indirect_vdev;
686 		srp->sr_prev_indirect_vdev = vd->vdev_id;
687 	}
688 	spa->spa_removing_phys.sr_state = state;
689 	spa->spa_removing_phys.sr_end_time = gethrestime_sec();
690 
691 	spa->spa_vdev_removal = NULL;
692 	spa_vdev_removal_destroy(svr);
693 
694 	spa_sync_removing_state(spa, tx);
695 
696 	vdev_config_dirty(spa->spa_root_vdev);
697 }
698 
699 static void
700 free_mapped_segment_cb(void *arg, uint64_t offset, uint64_t size)
701 {
702 	vdev_t *vd = arg;
703 	vdev_indirect_mark_obsolete(vd, offset, size);
704 	boolean_t checkpoint = B_FALSE;
705 	vdev_indirect_ops.vdev_op_remap(vd, offset, size,
706 	    metaslab_free_impl_cb, &checkpoint);
707 }
708 
709 /*
710  * On behalf of the removal thread, syncs an incremental bit more of
711  * the indirect mapping to disk and updates the in-memory mapping.
712  * Called as a sync task in every txg that the removal thread makes progress.
713  */
714 static void
715 vdev_mapping_sync(void *arg, dmu_tx_t *tx)
716 {
717 	spa_vdev_removal_t *svr = arg;
718 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
719 	vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
720 	vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
721 	uint64_t txg = dmu_tx_get_txg(tx);
722 	vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
723 
724 	ASSERT(vic->vic_mapping_object != 0);
725 	ASSERT3U(txg, ==, spa_syncing_txg(spa));
726 
727 	vdev_indirect_mapping_add_entries(vim,
728 	    &svr->svr_new_segments[txg & TXG_MASK], tx);
729 	vdev_indirect_births_add_entry(vd->vdev_indirect_births,
730 	    vdev_indirect_mapping_max_offset(vim), dmu_tx_get_txg(tx), tx);
731 
732 	/*
733 	 * Free the copied data for anything that was freed while the
734 	 * mapping entries were in flight.
735 	 */
736 	mutex_enter(&svr->svr_lock);
737 	range_tree_vacate(svr->svr_frees[txg & TXG_MASK],
738 	    free_mapped_segment_cb, vd);
739 	ASSERT3U(svr->svr_max_offset_to_sync[txg & TXG_MASK], >=,
740 	    vdev_indirect_mapping_max_offset(vim));
741 	svr->svr_max_offset_to_sync[txg & TXG_MASK] = 0;
742 	mutex_exit(&svr->svr_lock);
743 
744 	spa_sync_removing_state(spa, tx);
745 }
746 
747 typedef struct vdev_copy_segment_arg {
748 	spa_t *vcsa_spa;
749 	dva_t *vcsa_dest_dva;
750 	uint64_t vcsa_txg;
751 	range_tree_t *vcsa_obsolete_segs;
752 } vdev_copy_segment_arg_t;
753 
754 static void
755 unalloc_seg(void *arg, uint64_t start, uint64_t size)
756 {
757 	vdev_copy_segment_arg_t *vcsa = arg;
758 	spa_t *spa = vcsa->vcsa_spa;
759 	blkptr_t bp = { 0 };
760 
761 	BP_SET_BIRTH(&bp, TXG_INITIAL, TXG_INITIAL);
762 	BP_SET_LSIZE(&bp, size);
763 	BP_SET_PSIZE(&bp, size);
764 	BP_SET_COMPRESS(&bp, ZIO_COMPRESS_OFF);
765 	BP_SET_CHECKSUM(&bp, ZIO_CHECKSUM_OFF);
766 	BP_SET_TYPE(&bp, DMU_OT_NONE);
767 	BP_SET_LEVEL(&bp, 0);
768 	BP_SET_DEDUP(&bp, 0);
769 	BP_SET_BYTEORDER(&bp, ZFS_HOST_BYTEORDER);
770 
771 	DVA_SET_VDEV(&bp.blk_dva[0], DVA_GET_VDEV(vcsa->vcsa_dest_dva));
772 	DVA_SET_OFFSET(&bp.blk_dva[0],
773 	    DVA_GET_OFFSET(vcsa->vcsa_dest_dva) + start);
774 	DVA_SET_ASIZE(&bp.blk_dva[0], size);
775 
776 	zio_free(spa, vcsa->vcsa_txg, &bp);
777 }
778 
779 /*
780  * All reads and writes associated with a call to spa_vdev_copy_segment()
781  * are done.
782  */
783 static void
784 spa_vdev_copy_segment_done(zio_t *zio)
785 {
786 	vdev_copy_segment_arg_t *vcsa = zio->io_private;
787 
788 	range_tree_vacate(vcsa->vcsa_obsolete_segs,
789 	    unalloc_seg, vcsa);
790 	range_tree_destroy(vcsa->vcsa_obsolete_segs);
791 	kmem_free(vcsa, sizeof (*vcsa));
792 
793 	spa_config_exit(zio->io_spa, SCL_STATE, zio->io_spa);
794 }
795 
796 /*
797  * The write of the new location is done.
798  */
799 static void
800 spa_vdev_copy_segment_write_done(zio_t *zio)
801 {
802 	vdev_copy_arg_t *vca = zio->io_private;
803 
804 	abd_free(zio->io_abd);
805 
806 	mutex_enter(&vca->vca_lock);
807 	vca->vca_outstanding_bytes -= zio->io_size;
808 	cv_signal(&vca->vca_cv);
809 	mutex_exit(&vca->vca_lock);
810 }
811 
812 /*
813  * The read of the old location is done.  The parent zio is the write to
814  * the new location.  Allow it to start.
815  */
816 static void
817 spa_vdev_copy_segment_read_done(zio_t *zio)
818 {
819 	zio_nowait(zio_unique_parent(zio));
820 }
821 
822 /*
823  * If the old and new vdevs are mirrors, we will read both sides of the old
824  * mirror, and write each copy to the corresponding side of the new mirror.
825  * If the old and new vdevs have a different number of children, we will do
826  * this as best as possible.  Since we aren't verifying checksums, this
827  * ensures that as long as there's a good copy of the data, we'll have a
828  * good copy after the removal, even if there's silent damage to one side
829  * of the mirror. If we're removing a mirror that has some silent damage,
830  * we'll have exactly the same damage in the new location (assuming that
831  * the new location is also a mirror).
832  *
833  * We accomplish this by creating a tree of zio_t's, with as many writes as
834  * there are "children" of the new vdev (a non-redundant vdev counts as one
835  * child, a 2-way mirror has 2 children, etc). Each write has an associated
836  * read from a child of the old vdev. Typically there will be the same
837  * number of children of the old and new vdevs.  However, if there are more
838  * children of the new vdev, some child(ren) of the old vdev will be issued
839  * multiple reads.  If there are more children of the old vdev, some copies
840  * will be dropped.
841  *
842  * For example, the tree of zio_t's for a 2-way mirror is:
843  *
844  *                            null
845  *                           /    \
846  *    write(new vdev, child 0)      write(new vdev, child 1)
847  *      |                             |
848  *    read(old vdev, child 0)       read(old vdev, child 1)
849  *
850  * Child zio's complete before their parents complete.  However, zio's
851  * created with zio_vdev_child_io() may be issued before their children
852  * complete.  In this case we need to make sure that the children (reads)
853  * complete before the parents (writes) are *issued*.  We do this by not
854  * calling zio_nowait() on each write until its corresponding read has
855  * completed.
856  *
857  * The spa_config_lock must be held while zio's created by
858  * zio_vdev_child_io() are in progress, to ensure that the vdev tree does
859  * not change (e.g. due to a concurrent "zpool attach/detach"). The "null"
860  * zio is needed to release the spa_config_lock after all the reads and
861  * writes complete. (Note that we can't grab the config lock for each read,
862  * because it is not reentrant - we could deadlock with a thread waiting
863  * for a write lock.)
864  */
865 static void
866 spa_vdev_copy_one_child(vdev_copy_arg_t *vca, zio_t *nzio,
867     vdev_t *source_vd, uint64_t source_offset,
868     vdev_t *dest_child_vd, uint64_t dest_offset, int dest_id, uint64_t size)
869 {
870 	ASSERT3U(spa_config_held(nzio->io_spa, SCL_ALL, RW_READER), !=, 0);
871 
872 	mutex_enter(&vca->vca_lock);
873 	vca->vca_outstanding_bytes += size;
874 	mutex_exit(&vca->vca_lock);
875 
876 	abd_t *abd = abd_alloc_for_io(size, B_FALSE);
877 
878 	vdev_t *source_child_vd;
879 	if (source_vd->vdev_ops == &vdev_mirror_ops && dest_id != -1) {
880 		/*
881 		 * Source and dest are both mirrors.  Copy from the same
882 		 * child id as we are copying to (wrapping around if there
883 		 * are more dest children than source children).
884 		 */
885 		source_child_vd =
886 		    source_vd->vdev_child[dest_id % source_vd->vdev_children];
887 	} else {
888 		source_child_vd = source_vd;
889 	}
890 
891 	zio_t *write_zio = zio_vdev_child_io(nzio, NULL,
892 	    dest_child_vd, dest_offset, abd, size,
893 	    ZIO_TYPE_WRITE, ZIO_PRIORITY_REMOVAL,
894 	    ZIO_FLAG_CANFAIL,
895 	    spa_vdev_copy_segment_write_done, vca);
896 
897 	zio_nowait(zio_vdev_child_io(write_zio, NULL,
898 	    source_child_vd, source_offset, abd, size,
899 	    ZIO_TYPE_READ, ZIO_PRIORITY_REMOVAL,
900 	    ZIO_FLAG_CANFAIL,
901 	    spa_vdev_copy_segment_read_done, vca));
902 }
903 
904 /*
905  * Allocate a new location for this segment, and create the zio_t's to
906  * read from the old location and write to the new location.
907  */
908 static int
909 spa_vdev_copy_segment(vdev_t *vd, range_tree_t *segs,
910     uint64_t maxalloc, uint64_t txg,
911     vdev_copy_arg_t *vca, zio_alloc_list_t *zal)
912 {
913 	metaslab_group_t *mg = vd->vdev_mg;
914 	spa_t *spa = vd->vdev_spa;
915 	spa_vdev_removal_t *svr = spa->spa_vdev_removal;
916 	vdev_indirect_mapping_entry_t *entry;
917 	dva_t dst = { 0 };
918 	uint64_t start = range_tree_min(segs);
919 
920 	ASSERT3U(maxalloc, <=, SPA_MAXBLOCKSIZE);
921 
922 	uint64_t size = range_tree_span(segs);
923 	if (range_tree_span(segs) > maxalloc) {
924 		/*
925 		 * We can't allocate all the segments.  Prefer to end
926 		 * the allocation at the end of a segment, thus avoiding
927 		 * additional split blocks.
928 		 */
929 		range_seg_t search;
930 		avl_index_t where;
931 		search.rs_start = start + maxalloc;
932 		search.rs_end = search.rs_start;
933 		range_seg_t *rs = avl_find(&segs->rt_root, &search, &where);
934 		if (rs == NULL) {
935 			rs = avl_nearest(&segs->rt_root, where, AVL_BEFORE);
936 		} else {
937 			rs = AVL_PREV(&segs->rt_root, rs);
938 		}
939 		if (rs != NULL) {
940 			size = rs->rs_end - start;
941 		} else {
942 			/*
943 			 * There are no segments that end before maxalloc.
944 			 * I.e. the first segment is larger than maxalloc,
945 			 * so we must split it.
946 			 */
947 			size = maxalloc;
948 		}
949 	}
950 	ASSERT3U(size, <=, maxalloc);
951 
952 	/*
953 	 * We use allocator 0 for this I/O because we don't expect device remap
954 	 * to be the steady state of the system, so parallelizing is not as
955 	 * critical as it is for other allocation types. We also want to ensure
956 	 * that the IOs are allocated together as much as possible, to reduce
957 	 * mapping sizes.
958 	 */
959 	int error = metaslab_alloc_dva(spa, mg->mg_class, size,
960 	    &dst, 0, NULL, txg, 0, zal, 0);
961 	if (error != 0)
962 		return (error);
963 
964 	/*
965 	 * Determine the ranges that are not actually needed.  Offsets are
966 	 * relative to the start of the range to be copied (i.e. relative to the
967 	 * local variable "start").
968 	 */
969 	range_tree_t *obsolete_segs = range_tree_create(NULL, NULL);
970 
971 	range_seg_t *rs = avl_first(&segs->rt_root);
972 	ASSERT3U(rs->rs_start, ==, start);
973 	uint64_t prev_seg_end = rs->rs_end;
974 	while ((rs = AVL_NEXT(&segs->rt_root, rs)) != NULL) {
975 		if (rs->rs_start >= start + size) {
976 			break;
977 		} else {
978 			range_tree_add(obsolete_segs,
979 			    prev_seg_end - start,
980 			    rs->rs_start - prev_seg_end);
981 		}
982 		prev_seg_end = rs->rs_end;
983 	}
984 	/* We don't end in the middle of an obsolete range */
985 	ASSERT3U(start + size, <=, prev_seg_end);
986 
987 	range_tree_clear(segs, start, size);
988 
989 	/*
990 	 * We can't have any padding of the allocated size, otherwise we will
991 	 * misunderstand what's allocated, and the size of the mapping.
992 	 * The caller ensures this will be true by passing in a size that is
993 	 * aligned to the worst (highest) ashift in the pool.
994 	 */
995 	ASSERT3U(DVA_GET_ASIZE(&dst), ==, size);
996 
997 	entry = kmem_zalloc(sizeof (vdev_indirect_mapping_entry_t), KM_SLEEP);
998 	DVA_MAPPING_SET_SRC_OFFSET(&entry->vime_mapping, start);
999 	entry->vime_mapping.vimep_dst = dst;
1000 	if (spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS)) {
1001 		entry->vime_obsolete_count = range_tree_space(obsolete_segs);
1002 	}
1003 
1004 	vdev_copy_segment_arg_t *vcsa = kmem_zalloc(sizeof (*vcsa), KM_SLEEP);
1005 	vcsa->vcsa_dest_dva = &entry->vime_mapping.vimep_dst;
1006 	vcsa->vcsa_obsolete_segs = obsolete_segs;
1007 	vcsa->vcsa_spa = spa;
1008 	vcsa->vcsa_txg = txg;
1009 
1010 	/*
1011 	 * See comment before spa_vdev_copy_one_child().
1012 	 */
1013 	spa_config_enter(spa, SCL_STATE, spa, RW_READER);
1014 	zio_t *nzio = zio_null(spa->spa_txg_zio[txg & TXG_MASK], spa, NULL,
1015 	    spa_vdev_copy_segment_done, vcsa, 0);
1016 	vdev_t *dest_vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dst));
1017 	if (dest_vd->vdev_ops == &vdev_mirror_ops) {
1018 		for (int i = 0; i < dest_vd->vdev_children; i++) {
1019 			vdev_t *child = dest_vd->vdev_child[i];
1020 			spa_vdev_copy_one_child(vca, nzio, vd, start,
1021 			    child, DVA_GET_OFFSET(&dst), i, size);
1022 		}
1023 	} else {
1024 		spa_vdev_copy_one_child(vca, nzio, vd, start,
1025 		    dest_vd, DVA_GET_OFFSET(&dst), -1, size);
1026 	}
1027 	zio_nowait(nzio);
1028 
1029 	list_insert_tail(&svr->svr_new_segments[txg & TXG_MASK], entry);
1030 	ASSERT3U(start + size, <=, vd->vdev_ms_count << vd->vdev_ms_shift);
1031 	vdev_dirty(vd, 0, NULL, txg);
1032 
1033 	return (0);
1034 }
1035 
1036 /*
1037  * Complete the removal of a toplevel vdev. This is called as a
1038  * synctask in the same txg that we will sync out the new config (to the
1039  * MOS object) which indicates that this vdev is indirect.
1040  */
1041 static void
1042 vdev_remove_complete_sync(void *arg, dmu_tx_t *tx)
1043 {
1044 	spa_vdev_removal_t *svr = arg;
1045 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
1046 	vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
1047 
1048 	ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
1049 
1050 	for (int i = 0; i < TXG_SIZE; i++) {
1051 		ASSERT0(svr->svr_bytes_done[i]);
1052 	}
1053 
1054 	ASSERT3U(spa->spa_removing_phys.sr_copied, ==,
1055 	    spa->spa_removing_phys.sr_to_copy);
1056 
1057 	vdev_destroy_spacemaps(vd, tx);
1058 
1059 	/* destroy leaf zaps, if any */
1060 	ASSERT3P(svr->svr_zaplist, !=, NULL);
1061 	for (nvpair_t *pair = nvlist_next_nvpair(svr->svr_zaplist, NULL);
1062 	    pair != NULL;
1063 	    pair = nvlist_next_nvpair(svr->svr_zaplist, pair)) {
1064 		vdev_destroy_unlink_zap(vd, fnvpair_value_uint64(pair), tx);
1065 	}
1066 	fnvlist_free(svr->svr_zaplist);
1067 
1068 	spa_finish_removal(dmu_tx_pool(tx)->dp_spa, DSS_FINISHED, tx);
1069 	/* vd->vdev_path is not available here */
1070 	spa_history_log_internal(spa, "vdev remove completed",  tx,
1071 	    "%s vdev %llu", spa_name(spa), vd->vdev_id);
1072 }
1073 
1074 static void
1075 vdev_remove_enlist_zaps(vdev_t *vd, nvlist_t *zlist)
1076 {
1077 	ASSERT3P(zlist, !=, NULL);
1078 	ASSERT3P(vd->vdev_ops, !=, &vdev_raidz_ops);
1079 
1080 	if (vd->vdev_leaf_zap != 0) {
1081 		char zkey[32];
1082 		(void) snprintf(zkey, sizeof (zkey), "%s-%"PRIu64,
1083 		    VDEV_REMOVAL_ZAP_OBJS, vd->vdev_leaf_zap);
1084 		fnvlist_add_uint64(zlist, zkey, vd->vdev_leaf_zap);
1085 	}
1086 
1087 	for (uint64_t id = 0; id < vd->vdev_children; id++) {
1088 		vdev_remove_enlist_zaps(vd->vdev_child[id], zlist);
1089 	}
1090 }
1091 
1092 static void
1093 vdev_remove_replace_with_indirect(vdev_t *vd, uint64_t txg)
1094 {
1095 	vdev_t *ivd;
1096 	dmu_tx_t *tx;
1097 	spa_t *spa = vd->vdev_spa;
1098 	spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1099 
1100 	/*
1101 	 * First, build a list of leaf zaps to be destroyed.
1102 	 * This is passed to the sync context thread,
1103 	 * which does the actual unlinking.
1104 	 */
1105 	svr->svr_zaplist = fnvlist_alloc();
1106 	vdev_remove_enlist_zaps(vd, svr->svr_zaplist);
1107 
1108 	ivd = vdev_add_parent(vd, &vdev_indirect_ops);
1109 	ivd->vdev_removing = 0;
1110 
1111 	vd->vdev_leaf_zap = 0;
1112 
1113 	vdev_remove_child(ivd, vd);
1114 	vdev_compact_children(ivd);
1115 
1116 	ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
1117 
1118 	tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1119 	dsl_sync_task_nowait(spa->spa_dsl_pool, vdev_remove_complete_sync, svr,
1120 	    0, ZFS_SPACE_CHECK_NONE, tx);
1121 	dmu_tx_commit(tx);
1122 
1123 	/*
1124 	 * Indicate that this thread has exited.
1125 	 * After this, we can not use svr.
1126 	 */
1127 	mutex_enter(&svr->svr_lock);
1128 	svr->svr_thread = NULL;
1129 	cv_broadcast(&svr->svr_cv);
1130 	mutex_exit(&svr->svr_lock);
1131 }
1132 
1133 /*
1134  * Complete the removal of a toplevel vdev. This is called in open
1135  * context by the removal thread after we have copied all vdev's data.
1136  */
1137 static void
1138 vdev_remove_complete(spa_t *spa)
1139 {
1140 	uint64_t txg;
1141 
1142 	/*
1143 	 * Wait for any deferred frees to be synced before we call
1144 	 * vdev_metaslab_fini()
1145 	 */
1146 	txg_wait_synced(spa->spa_dsl_pool, 0);
1147 	txg = spa_vdev_enter(spa);
1148 	vdev_t *vd = vdev_lookup_top(spa, spa->spa_vdev_removal->svr_vdev_id);
1149 	ASSERT3P(vd->vdev_initialize_thread, ==, NULL);
1150 
1151 	sysevent_t *ev = spa_event_create(spa, vd, NULL,
1152 	    ESC_ZFS_VDEV_REMOVE_DEV);
1153 
1154 	zfs_dbgmsg("finishing device removal for vdev %llu in txg %llu",
1155 	    vd->vdev_id, txg);
1156 
1157 	/*
1158 	 * Discard allocation state.
1159 	 */
1160 	if (vd->vdev_mg != NULL) {
1161 		vdev_metaslab_fini(vd);
1162 		metaslab_group_destroy(vd->vdev_mg);
1163 		vd->vdev_mg = NULL;
1164 	}
1165 	ASSERT0(vd->vdev_stat.vs_space);
1166 	ASSERT0(vd->vdev_stat.vs_dspace);
1167 
1168 	vdev_remove_replace_with_indirect(vd, txg);
1169 
1170 	/*
1171 	 * We now release the locks, allowing spa_sync to run and finish the
1172 	 * removal via vdev_remove_complete_sync in syncing context.
1173 	 *
1174 	 * Note that we hold on to the vdev_t that has been replaced.  Since
1175 	 * it isn't part of the vdev tree any longer, it can't be concurrently
1176 	 * manipulated, even while we don't have the config lock.
1177 	 */
1178 	(void) spa_vdev_exit(spa, NULL, txg, 0);
1179 
1180 	/*
1181 	 * Top ZAP should have been transferred to the indirect vdev in
1182 	 * vdev_remove_replace_with_indirect.
1183 	 */
1184 	ASSERT0(vd->vdev_top_zap);
1185 
1186 	/*
1187 	 * Leaf ZAP should have been moved in vdev_remove_replace_with_indirect.
1188 	 */
1189 	ASSERT0(vd->vdev_leaf_zap);
1190 
1191 	txg = spa_vdev_enter(spa);
1192 	(void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
1193 	/*
1194 	 * Request to update the config and the config cachefile.
1195 	 */
1196 	vdev_config_dirty(spa->spa_root_vdev);
1197 	(void) spa_vdev_exit(spa, vd, txg, 0);
1198 
1199 	spa_event_post(ev);
1200 }
1201 
1202 /*
1203  * Evacuates a segment of size at most max_alloc from the vdev
1204  * via repeated calls to spa_vdev_copy_segment. If an allocation
1205  * fails, the pool is probably too fragmented to handle such a
1206  * large size, so decrease max_alloc so that the caller will not try
1207  * this size again this txg.
1208  */
1209 static void
1210 spa_vdev_copy_impl(vdev_t *vd, spa_vdev_removal_t *svr, vdev_copy_arg_t *vca,
1211     uint64_t *max_alloc, dmu_tx_t *tx)
1212 {
1213 	uint64_t txg = dmu_tx_get_txg(tx);
1214 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
1215 
1216 	mutex_enter(&svr->svr_lock);
1217 
1218 	/*
1219 	 * Determine how big of a chunk to copy.  We can allocate up
1220 	 * to max_alloc bytes, and we can span up to vdev_removal_max_span
1221 	 * bytes of unallocated space at a time.  "segs" will track the
1222 	 * allocated segments that we are copying.  We may also be copying
1223 	 * free segments (of up to vdev_removal_max_span bytes).
1224 	 */
1225 	range_tree_t *segs = range_tree_create(NULL, NULL);
1226 	for (;;) {
1227 		range_seg_t *rs = avl_first(&svr->svr_allocd_segs->rt_root);
1228 		if (rs == NULL)
1229 			break;
1230 
1231 		uint64_t seg_length;
1232 
1233 		if (range_tree_is_empty(segs)) {
1234 			/* need to truncate the first seg based on max_alloc */
1235 			seg_length =
1236 			    MIN(rs->rs_end - rs->rs_start, *max_alloc);
1237 		} else {
1238 			if (rs->rs_start - range_tree_max(segs) >
1239 			    vdev_removal_max_span) {
1240 				/*
1241 				 * Including this segment would cause us to
1242 				 * copy a larger unneeded chunk than is allowed.
1243 				 */
1244 				break;
1245 			} else if (rs->rs_end - range_tree_min(segs) >
1246 			    *max_alloc) {
1247 				/*
1248 				 * This additional segment would extend past
1249 				 * max_alloc. Rather than splitting this
1250 				 * segment, leave it for the next mapping.
1251 				 */
1252 				break;
1253 			} else {
1254 				seg_length = rs->rs_end - rs->rs_start;
1255 			}
1256 		}
1257 
1258 		range_tree_add(segs, rs->rs_start, seg_length);
1259 		range_tree_remove(svr->svr_allocd_segs,
1260 		    rs->rs_start, seg_length);
1261 	}
1262 
1263 	if (range_tree_is_empty(segs)) {
1264 		mutex_exit(&svr->svr_lock);
1265 		range_tree_destroy(segs);
1266 		return;
1267 	}
1268 
1269 	if (svr->svr_max_offset_to_sync[txg & TXG_MASK] == 0) {
1270 		dsl_sync_task_nowait(dmu_tx_pool(tx), vdev_mapping_sync,
1271 		    svr, 0, ZFS_SPACE_CHECK_NONE, tx);
1272 	}
1273 
1274 	svr->svr_max_offset_to_sync[txg & TXG_MASK] = range_tree_max(segs);
1275 
1276 	/*
1277 	 * Note: this is the amount of *allocated* space
1278 	 * that we are taking care of each txg.
1279 	 */
1280 	svr->svr_bytes_done[txg & TXG_MASK] += range_tree_space(segs);
1281 
1282 	mutex_exit(&svr->svr_lock);
1283 
1284 	zio_alloc_list_t zal;
1285 	metaslab_trace_init(&zal);
1286 	uint64_t thismax = SPA_MAXBLOCKSIZE;
1287 	while (!range_tree_is_empty(segs)) {
1288 		int error = spa_vdev_copy_segment(vd,
1289 		    segs, thismax, txg, vca, &zal);
1290 
1291 		if (error == ENOSPC) {
1292 			/*
1293 			 * Cut our segment in half, and don't try this
1294 			 * segment size again this txg.  Note that the
1295 			 * allocation size must be aligned to the highest
1296 			 * ashift in the pool, so that the allocation will
1297 			 * not be padded out to a multiple of the ashift,
1298 			 * which could cause us to think that this mapping
1299 			 * is larger than we intended.
1300 			 */
1301 			ASSERT3U(spa->spa_max_ashift, >=, SPA_MINBLOCKSHIFT);
1302 			ASSERT3U(spa->spa_max_ashift, ==, spa->spa_min_ashift);
1303 			uint64_t attempted =
1304 			    MIN(range_tree_span(segs), thismax);
1305 			thismax = P2ROUNDUP(attempted / 2,
1306 			    1 << spa->spa_max_ashift);
1307 			/*
1308 			 * The minimum-size allocation can not fail.
1309 			 */
1310 			ASSERT3U(attempted, >, 1 << spa->spa_max_ashift);
1311 			*max_alloc = attempted - (1 << spa->spa_max_ashift);
1312 		} else {
1313 			ASSERT0(error);
1314 
1315 			/*
1316 			 * We've performed an allocation, so reset the
1317 			 * alloc trace list.
1318 			 */
1319 			metaslab_trace_fini(&zal);
1320 			metaslab_trace_init(&zal);
1321 		}
1322 	}
1323 	metaslab_trace_fini(&zal);
1324 	range_tree_destroy(segs);
1325 }
1326 
1327 /*
1328  * The removal thread operates in open context.  It iterates over all
1329  * allocated space in the vdev, by loading each metaslab's spacemap.
1330  * For each contiguous segment of allocated space (capping the segment
1331  * size at SPA_MAXBLOCKSIZE), we:
1332  *    - Allocate space for it on another vdev.
1333  *    - Create a new mapping from the old location to the new location
1334  *      (as a record in svr_new_segments).
1335  *    - Initiate a logical read zio to get the data off the removing disk.
1336  *    - In the read zio's done callback, initiate a logical write zio to
1337  *      write it to the new vdev.
1338  * Note that all of this will take effect when a particular TXG syncs.
1339  * The sync thread ensures that all the phys reads and writes for the syncing
1340  * TXG have completed (see spa_txg_zio) and writes the new mappings to disk
1341  * (see vdev_mapping_sync()).
1342  */
1343 static void
1344 spa_vdev_remove_thread(void *arg)
1345 {
1346 	spa_t *spa = arg;
1347 	spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1348 	vdev_copy_arg_t vca;
1349 	uint64_t max_alloc = zfs_remove_max_segment;
1350 	uint64_t last_txg = 0;
1351 
1352 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1353 	vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
1354 	vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
1355 	uint64_t start_offset = vdev_indirect_mapping_max_offset(vim);
1356 
1357 	ASSERT3P(vd->vdev_ops, !=, &vdev_indirect_ops);
1358 	ASSERT(vdev_is_concrete(vd));
1359 	ASSERT(vd->vdev_removing);
1360 	ASSERT(vd->vdev_indirect_config.vic_mapping_object != 0);
1361 	ASSERT(vim != NULL);
1362 
1363 	mutex_init(&vca.vca_lock, NULL, MUTEX_DEFAULT, NULL);
1364 	cv_init(&vca.vca_cv, NULL, CV_DEFAULT, NULL);
1365 	vca.vca_outstanding_bytes = 0;
1366 
1367 	mutex_enter(&svr->svr_lock);
1368 
1369 	/*
1370 	 * Start from vim_max_offset so we pick up where we left off
1371 	 * if we are restarting the removal after opening the pool.
1372 	 */
1373 	uint64_t msi;
1374 	for (msi = start_offset >> vd->vdev_ms_shift;
1375 	    msi < vd->vdev_ms_count && !svr->svr_thread_exit; msi++) {
1376 		metaslab_t *msp = vd->vdev_ms[msi];
1377 		ASSERT3U(msi, <=, vd->vdev_ms_count);
1378 
1379 		ASSERT0(range_tree_space(svr->svr_allocd_segs));
1380 
1381 		mutex_enter(&msp->ms_sync_lock);
1382 		mutex_enter(&msp->ms_lock);
1383 
1384 		/*
1385 		 * Assert nothing in flight -- ms_*tree is empty.
1386 		 */
1387 		for (int i = 0; i < TXG_SIZE; i++) {
1388 			ASSERT0(range_tree_space(msp->ms_allocating[i]));
1389 		}
1390 
1391 		/*
1392 		 * If the metaslab has ever been allocated from (ms_sm!=NULL),
1393 		 * read the allocated segments from the space map object
1394 		 * into svr_allocd_segs. Since we do this while holding
1395 		 * svr_lock and ms_sync_lock, concurrent frees (which
1396 		 * would have modified the space map) will wait for us
1397 		 * to finish loading the spacemap, and then take the
1398 		 * appropriate action (see free_from_removing_vdev()).
1399 		 */
1400 		if (msp->ms_sm != NULL) {
1401 			space_map_t *sm = NULL;
1402 
1403 			/*
1404 			 * We have to open a new space map here, because
1405 			 * ms_sm's sm_length and sm_alloc may not reflect
1406 			 * what's in the object contents, if we are in between
1407 			 * metaslab_sync() and metaslab_sync_done().
1408 			 */
1409 			VERIFY0(space_map_open(&sm,
1410 			    spa->spa_dsl_pool->dp_meta_objset,
1411 			    msp->ms_sm->sm_object, msp->ms_sm->sm_start,
1412 			    msp->ms_sm->sm_size, msp->ms_sm->sm_shift));
1413 			space_map_update(sm);
1414 			VERIFY0(space_map_load(sm, svr->svr_allocd_segs,
1415 			    SM_ALLOC));
1416 			space_map_close(sm);
1417 
1418 			range_tree_walk(msp->ms_freeing,
1419 			    range_tree_remove, svr->svr_allocd_segs);
1420 
1421 			/*
1422 			 * When we are resuming from a paused removal (i.e.
1423 			 * when importing a pool with a removal in progress),
1424 			 * discard any state that we have already processed.
1425 			 */
1426 			range_tree_clear(svr->svr_allocd_segs, 0, start_offset);
1427 		}
1428 		mutex_exit(&msp->ms_lock);
1429 		mutex_exit(&msp->ms_sync_lock);
1430 
1431 		vca.vca_msp = msp;
1432 		zfs_dbgmsg("copying %llu segments for metaslab %llu",
1433 		    avl_numnodes(&svr->svr_allocd_segs->rt_root),
1434 		    msp->ms_id);
1435 
1436 		while (!svr->svr_thread_exit &&
1437 		    !range_tree_is_empty(svr->svr_allocd_segs)) {
1438 
1439 			mutex_exit(&svr->svr_lock);
1440 
1441 			/*
1442 			 * We need to periodically drop the config lock so that
1443 			 * writers can get in.  Additionally, we can't wait
1444 			 * for a txg to sync while holding a config lock
1445 			 * (since a waiting writer could cause a 3-way deadlock
1446 			 * with the sync thread, which also gets a config
1447 			 * lock for reader).  So we can't hold the config lock
1448 			 * while calling dmu_tx_assign().
1449 			 */
1450 			spa_config_exit(spa, SCL_CONFIG, FTAG);
1451 
1452 			/*
1453 			 * This delay will pause the removal around the point
1454 			 * specified by zfs_remove_max_bytes_pause. We do this
1455 			 * solely from the test suite or during debugging.
1456 			 */
1457 			uint64_t bytes_copied =
1458 			    spa->spa_removing_phys.sr_copied;
1459 			for (int i = 0; i < TXG_SIZE; i++)
1460 				bytes_copied += svr->svr_bytes_done[i];
1461 			while (zfs_remove_max_bytes_pause <= bytes_copied &&
1462 			    !svr->svr_thread_exit)
1463 				delay(hz);
1464 
1465 			mutex_enter(&vca.vca_lock);
1466 			while (vca.vca_outstanding_bytes >
1467 			    zfs_remove_max_copy_bytes) {
1468 				cv_wait(&vca.vca_cv, &vca.vca_lock);
1469 			}
1470 			mutex_exit(&vca.vca_lock);
1471 
1472 			dmu_tx_t *tx =
1473 			    dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
1474 
1475 			VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
1476 			uint64_t txg = dmu_tx_get_txg(tx);
1477 
1478 			/*
1479 			 * Reacquire the vdev_config lock.  The vdev_t
1480 			 * that we're removing may have changed, e.g. due
1481 			 * to a vdev_attach or vdev_detach.
1482 			 */
1483 			spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1484 			vd = vdev_lookup_top(spa, svr->svr_vdev_id);
1485 
1486 			if (txg != last_txg)
1487 				max_alloc = zfs_remove_max_segment;
1488 			last_txg = txg;
1489 
1490 			spa_vdev_copy_impl(vd, svr, &vca, &max_alloc, tx);
1491 
1492 			dmu_tx_commit(tx);
1493 			mutex_enter(&svr->svr_lock);
1494 		}
1495 	}
1496 
1497 	mutex_exit(&svr->svr_lock);
1498 
1499 	spa_config_exit(spa, SCL_CONFIG, FTAG);
1500 
1501 	/*
1502 	 * Wait for all copies to finish before cleaning up the vca.
1503 	 */
1504 	txg_wait_synced(spa->spa_dsl_pool, 0);
1505 	ASSERT0(vca.vca_outstanding_bytes);
1506 
1507 	mutex_destroy(&vca.vca_lock);
1508 	cv_destroy(&vca.vca_cv);
1509 
1510 	if (svr->svr_thread_exit) {
1511 		mutex_enter(&svr->svr_lock);
1512 		range_tree_vacate(svr->svr_allocd_segs, NULL, NULL);
1513 		svr->svr_thread = NULL;
1514 		cv_broadcast(&svr->svr_cv);
1515 		mutex_exit(&svr->svr_lock);
1516 	} else {
1517 		ASSERT0(range_tree_space(svr->svr_allocd_segs));
1518 		vdev_remove_complete(spa);
1519 	}
1520 }
1521 
1522 void
1523 spa_vdev_remove_suspend(spa_t *spa)
1524 {
1525 	spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1526 
1527 	if (svr == NULL)
1528 		return;
1529 
1530 	mutex_enter(&svr->svr_lock);
1531 	svr->svr_thread_exit = B_TRUE;
1532 	while (svr->svr_thread != NULL)
1533 		cv_wait(&svr->svr_cv, &svr->svr_lock);
1534 	svr->svr_thread_exit = B_FALSE;
1535 	mutex_exit(&svr->svr_lock);
1536 }
1537 
1538 /* ARGSUSED */
1539 static int
1540 spa_vdev_remove_cancel_check(void *arg, dmu_tx_t *tx)
1541 {
1542 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
1543 
1544 	if (spa->spa_vdev_removal == NULL)
1545 		return (ENOTACTIVE);
1546 	return (0);
1547 }
1548 
1549 /*
1550  * Cancel a removal by freeing all entries from the partial mapping
1551  * and marking the vdev as no longer being removing.
1552  */
1553 /* ARGSUSED */
1554 static void
1555 spa_vdev_remove_cancel_sync(void *arg, dmu_tx_t *tx)
1556 {
1557 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
1558 	spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1559 	vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
1560 	vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
1561 	vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
1562 	objset_t *mos = spa->spa_meta_objset;
1563 
1564 	ASSERT3P(svr->svr_thread, ==, NULL);
1565 
1566 	spa_feature_decr(spa, SPA_FEATURE_DEVICE_REMOVAL, tx);
1567 	if (vdev_obsolete_counts_are_precise(vd)) {
1568 		spa_feature_decr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
1569 		VERIFY0(zap_remove(spa->spa_meta_objset, vd->vdev_top_zap,
1570 		    VDEV_TOP_ZAP_OBSOLETE_COUNTS_ARE_PRECISE, tx));
1571 	}
1572 
1573 	if (vdev_obsolete_sm_object(vd) != 0) {
1574 		ASSERT(vd->vdev_obsolete_sm != NULL);
1575 		ASSERT3U(vdev_obsolete_sm_object(vd), ==,
1576 		    space_map_object(vd->vdev_obsolete_sm));
1577 
1578 		space_map_free(vd->vdev_obsolete_sm, tx);
1579 		VERIFY0(zap_remove(spa->spa_meta_objset, vd->vdev_top_zap,
1580 		    VDEV_TOP_ZAP_INDIRECT_OBSOLETE_SM, tx));
1581 		space_map_close(vd->vdev_obsolete_sm);
1582 		vd->vdev_obsolete_sm = NULL;
1583 		spa_feature_decr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
1584 	}
1585 	for (int i = 0; i < TXG_SIZE; i++) {
1586 		ASSERT(list_is_empty(&svr->svr_new_segments[i]));
1587 		ASSERT3U(svr->svr_max_offset_to_sync[i], <=,
1588 		    vdev_indirect_mapping_max_offset(vim));
1589 	}
1590 
1591 	for (uint64_t msi = 0; msi < vd->vdev_ms_count; msi++) {
1592 		metaslab_t *msp = vd->vdev_ms[msi];
1593 
1594 		if (msp->ms_start >= vdev_indirect_mapping_max_offset(vim))
1595 			break;
1596 
1597 		ASSERT0(range_tree_space(svr->svr_allocd_segs));
1598 
1599 		mutex_enter(&msp->ms_lock);
1600 
1601 		/*
1602 		 * Assert nothing in flight -- ms_*tree is empty.
1603 		 */
1604 		for (int i = 0; i < TXG_SIZE; i++)
1605 			ASSERT0(range_tree_space(msp->ms_allocating[i]));
1606 		for (int i = 0; i < TXG_DEFER_SIZE; i++)
1607 			ASSERT0(range_tree_space(msp->ms_defer[i]));
1608 		ASSERT0(range_tree_space(msp->ms_freed));
1609 
1610 		if (msp->ms_sm != NULL) {
1611 			/*
1612 			 * Assert that the in-core spacemap has the same
1613 			 * length as the on-disk one, so we can use the
1614 			 * existing in-core spacemap to load it from disk.
1615 			 */
1616 			ASSERT3U(msp->ms_sm->sm_alloc, ==,
1617 			    msp->ms_sm->sm_phys->smp_alloc);
1618 			ASSERT3U(msp->ms_sm->sm_length, ==,
1619 			    msp->ms_sm->sm_phys->smp_objsize);
1620 
1621 			mutex_enter(&svr->svr_lock);
1622 			VERIFY0(space_map_load(msp->ms_sm,
1623 			    svr->svr_allocd_segs, SM_ALLOC));
1624 			range_tree_walk(msp->ms_freeing,
1625 			    range_tree_remove, svr->svr_allocd_segs);
1626 
1627 			/*
1628 			 * Clear everything past what has been synced,
1629 			 * because we have not allocated mappings for it yet.
1630 			 */
1631 			uint64_t syncd = vdev_indirect_mapping_max_offset(vim);
1632 			uint64_t sm_end = msp->ms_sm->sm_start +
1633 			    msp->ms_sm->sm_size;
1634 			if (sm_end > syncd)
1635 				range_tree_clear(svr->svr_allocd_segs,
1636 				    syncd, sm_end - syncd);
1637 
1638 			mutex_exit(&svr->svr_lock);
1639 		}
1640 		mutex_exit(&msp->ms_lock);
1641 
1642 		mutex_enter(&svr->svr_lock);
1643 		range_tree_vacate(svr->svr_allocd_segs,
1644 		    free_mapped_segment_cb, vd);
1645 		mutex_exit(&svr->svr_lock);
1646 	}
1647 
1648 	/*
1649 	 * Note: this must happen after we invoke free_mapped_segment_cb,
1650 	 * because it adds to the obsolete_segments.
1651 	 */
1652 	range_tree_vacate(vd->vdev_obsolete_segments, NULL, NULL);
1653 
1654 	ASSERT3U(vic->vic_mapping_object, ==,
1655 	    vdev_indirect_mapping_object(vd->vdev_indirect_mapping));
1656 	vdev_indirect_mapping_close(vd->vdev_indirect_mapping);
1657 	vd->vdev_indirect_mapping = NULL;
1658 	vdev_indirect_mapping_free(mos, vic->vic_mapping_object, tx);
1659 	vic->vic_mapping_object = 0;
1660 
1661 	ASSERT3U(vic->vic_births_object, ==,
1662 	    vdev_indirect_births_object(vd->vdev_indirect_births));
1663 	vdev_indirect_births_close(vd->vdev_indirect_births);
1664 	vd->vdev_indirect_births = NULL;
1665 	vdev_indirect_births_free(mos, vic->vic_births_object, tx);
1666 	vic->vic_births_object = 0;
1667 
1668 	/*
1669 	 * We may have processed some frees from the removing vdev in this
1670 	 * txg, thus increasing svr_bytes_done; discard that here to
1671 	 * satisfy the assertions in spa_vdev_removal_destroy().
1672 	 * Note that future txg's can not have any bytes_done, because
1673 	 * future TXG's are only modified from open context, and we have
1674 	 * already shut down the copying thread.
1675 	 */
1676 	svr->svr_bytes_done[dmu_tx_get_txg(tx) & TXG_MASK] = 0;
1677 	spa_finish_removal(spa, DSS_CANCELED, tx);
1678 
1679 	vd->vdev_removing = B_FALSE;
1680 	vdev_config_dirty(vd);
1681 
1682 	zfs_dbgmsg("canceled device removal for vdev %llu in %llu",
1683 	    vd->vdev_id, dmu_tx_get_txg(tx));
1684 	spa_history_log_internal(spa, "vdev remove canceled", tx,
1685 	    "%s vdev %llu %s", spa_name(spa),
1686 	    vd->vdev_id, (vd->vdev_path != NULL) ? vd->vdev_path : "-");
1687 }
1688 
1689 int
1690 spa_vdev_remove_cancel(spa_t *spa)
1691 {
1692 	spa_vdev_remove_suspend(spa);
1693 
1694 	if (spa->spa_vdev_removal == NULL)
1695 		return (ENOTACTIVE);
1696 
1697 	uint64_t vdid = spa->spa_vdev_removal->svr_vdev_id;
1698 
1699 	int error = dsl_sync_task(spa->spa_name, spa_vdev_remove_cancel_check,
1700 	    spa_vdev_remove_cancel_sync, NULL, 0,
1701 	    ZFS_SPACE_CHECK_EXTRA_RESERVED);
1702 
1703 	if (error == 0) {
1704 		spa_config_enter(spa, SCL_ALLOC | SCL_VDEV, FTAG, RW_WRITER);
1705 		vdev_t *vd = vdev_lookup_top(spa, vdid);
1706 		metaslab_group_activate(vd->vdev_mg);
1707 		spa_config_exit(spa, SCL_ALLOC | SCL_VDEV, FTAG);
1708 	}
1709 
1710 	return (error);
1711 }
1712 
1713 /*
1714  * Called every sync pass of every txg if there's a svr.
1715  */
1716 void
1717 svr_sync(spa_t *spa, dmu_tx_t *tx)
1718 {
1719 	spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1720 	int txgoff = dmu_tx_get_txg(tx) & TXG_MASK;
1721 
1722 	/*
1723 	 * This check is necessary so that we do not dirty the
1724 	 * DIRECTORY_OBJECT via spa_sync_removing_state() when there
1725 	 * is nothing to do.  Dirtying it every time would prevent us
1726 	 * from syncing-to-convergence.
1727 	 */
1728 	if (svr->svr_bytes_done[txgoff] == 0)
1729 		return;
1730 
1731 	/*
1732 	 * Update progress accounting.
1733 	 */
1734 	spa->spa_removing_phys.sr_copied += svr->svr_bytes_done[txgoff];
1735 	svr->svr_bytes_done[txgoff] = 0;
1736 
1737 	spa_sync_removing_state(spa, tx);
1738 }
1739 
1740 static void
1741 vdev_remove_make_hole_and_free(vdev_t *vd)
1742 {
1743 	uint64_t id = vd->vdev_id;
1744 	spa_t *spa = vd->vdev_spa;
1745 	vdev_t *rvd = spa->spa_root_vdev;
1746 	boolean_t last_vdev = (id == (rvd->vdev_children - 1));
1747 
1748 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1749 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1750 
1751 	vdev_free(vd);
1752 
1753 	if (last_vdev) {
1754 		vdev_compact_children(rvd);
1755 	} else {
1756 		vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
1757 		vdev_add_child(rvd, vd);
1758 	}
1759 	vdev_config_dirty(rvd);
1760 
1761 	/*
1762 	 * Reassess the health of our root vdev.
1763 	 */
1764 	vdev_reopen(rvd);
1765 }
1766 
1767 /*
1768  * Remove a log device.  The config lock is held for the specified TXG.
1769  */
1770 static int
1771 spa_vdev_remove_log(vdev_t *vd, uint64_t *txg)
1772 {
1773 	metaslab_group_t *mg = vd->vdev_mg;
1774 	spa_t *spa = vd->vdev_spa;
1775 	int error = 0;
1776 
1777 	ASSERT(vd->vdev_islog);
1778 	ASSERT(vd == vd->vdev_top);
1779 
1780 	/*
1781 	 * Stop allocating from this vdev.
1782 	 */
1783 	metaslab_group_passivate(mg);
1784 
1785 	/*
1786 	 * Wait for the youngest allocations and frees to sync,
1787 	 * and then wait for the deferral of those frees to finish.
1788 	 */
1789 	spa_vdev_config_exit(spa, NULL,
1790 	    *txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
1791 
1792 	/*
1793 	 * Evacuate the device.  We don't hold the config lock as writer
1794 	 * since we need to do I/O but we do keep the
1795 	 * spa_namespace_lock held.  Once this completes the device
1796 	 * should no longer have any blocks allocated on it.
1797 	 */
1798 	if (vd->vdev_islog) {
1799 		if (vd->vdev_stat.vs_alloc != 0)
1800 			error = spa_reset_logs(spa);
1801 	}
1802 
1803 	*txg = spa_vdev_config_enter(spa);
1804 
1805 	if (error != 0) {
1806 		metaslab_group_activate(mg);
1807 		return (error);
1808 	}
1809 	ASSERT0(vd->vdev_stat.vs_alloc);
1810 
1811 	/*
1812 	 * The evacuation succeeded.  Remove any remaining MOS metadata
1813 	 * associated with this vdev, and wait for these changes to sync.
1814 	 */
1815 	vd->vdev_removing = B_TRUE;
1816 
1817 	vdev_dirty_leaves(vd, VDD_DTL, *txg);
1818 	vdev_config_dirty(vd);
1819 
1820 	spa_history_log_internal(spa, "vdev remove", NULL,
1821 	    "%s vdev %llu (log) %s", spa_name(spa), vd->vdev_id,
1822 	    (vd->vdev_path != NULL) ? vd->vdev_path : "-");
1823 
1824 	/* Make sure these changes are sync'ed */
1825 	spa_vdev_config_exit(spa, NULL, *txg, 0, FTAG);
1826 
1827 	/* Stop initializing */
1828 	(void) vdev_initialize_stop_all(vd, VDEV_INITIALIZE_CANCELED);
1829 
1830 	*txg = spa_vdev_config_enter(spa);
1831 
1832 	sysevent_t *ev = spa_event_create(spa, vd, NULL,
1833 	    ESC_ZFS_VDEV_REMOVE_DEV);
1834 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1835 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1836 
1837 	/* The top ZAP should have been destroyed by vdev_remove_empty. */
1838 	ASSERT0(vd->vdev_top_zap);
1839 	/* The leaf ZAP should have been destroyed by vdev_dtl_sync. */
1840 	ASSERT0(vd->vdev_leaf_zap);
1841 
1842 	(void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
1843 
1844 	if (list_link_active(&vd->vdev_state_dirty_node))
1845 		vdev_state_clean(vd);
1846 	if (list_link_active(&vd->vdev_config_dirty_node))
1847 		vdev_config_clean(vd);
1848 
1849 	/*
1850 	 * Clean up the vdev namespace.
1851 	 */
1852 	vdev_remove_make_hole_and_free(vd);
1853 
1854 	if (ev != NULL)
1855 		spa_event_post(ev);
1856 
1857 	return (0);
1858 }
1859 
1860 static int
1861 spa_vdev_remove_top_check(vdev_t *vd)
1862 {
1863 	spa_t *spa = vd->vdev_spa;
1864 
1865 	if (vd != vd->vdev_top)
1866 		return (SET_ERROR(ENOTSUP));
1867 
1868 	if (!spa_feature_is_enabled(spa, SPA_FEATURE_DEVICE_REMOVAL))
1869 		return (SET_ERROR(ENOTSUP));
1870 
1871 	/*
1872 	 * There has to be enough free space to remove the
1873 	 * device and leave double the "slop" space (i.e. we
1874 	 * must leave at least 3% of the pool free, in addition to
1875 	 * the normal slop space).
1876 	 */
1877 	if (dsl_dir_space_available(spa->spa_dsl_pool->dp_root_dir,
1878 	    NULL, 0, B_TRUE) <
1879 	    vd->vdev_stat.vs_dspace + spa_get_slop_space(spa)) {
1880 		return (SET_ERROR(ENOSPC));
1881 	}
1882 
1883 	/*
1884 	 * There can not be a removal in progress.
1885 	 */
1886 	if (spa->spa_removing_phys.sr_state == DSS_SCANNING)
1887 		return (SET_ERROR(EBUSY));
1888 
1889 	/*
1890 	 * The device must have all its data.
1891 	 */
1892 	if (!vdev_dtl_empty(vd, DTL_MISSING) ||
1893 	    !vdev_dtl_empty(vd, DTL_OUTAGE))
1894 		return (SET_ERROR(EBUSY));
1895 
1896 	/*
1897 	 * The device must be healthy.
1898 	 */
1899 	if (!vdev_readable(vd))
1900 		return (SET_ERROR(EIO));
1901 
1902 	/*
1903 	 * All vdevs in normal class must have the same ashift.
1904 	 */
1905 	if (spa->spa_max_ashift != spa->spa_min_ashift) {
1906 		return (SET_ERROR(EINVAL));
1907 	}
1908 
1909 	/*
1910 	 * All vdevs in normal class must have the same ashift
1911 	 * and not be raidz.
1912 	 */
1913 	vdev_t *rvd = spa->spa_root_vdev;
1914 	int num_indirect = 0;
1915 	for (uint64_t id = 0; id < rvd->vdev_children; id++) {
1916 		vdev_t *cvd = rvd->vdev_child[id];
1917 		if (cvd->vdev_ashift != 0 && !cvd->vdev_islog)
1918 			ASSERT3U(cvd->vdev_ashift, ==, spa->spa_max_ashift);
1919 		if (cvd->vdev_ops == &vdev_indirect_ops)
1920 			num_indirect++;
1921 		if (!vdev_is_concrete(cvd))
1922 			continue;
1923 		if (cvd->vdev_ops == &vdev_raidz_ops)
1924 			return (SET_ERROR(EINVAL));
1925 		/*
1926 		 * Need the mirror to be mirror of leaf vdevs only
1927 		 */
1928 		if (cvd->vdev_ops == &vdev_mirror_ops) {
1929 			for (uint64_t cid = 0;
1930 			    cid < cvd->vdev_children; cid++) {
1931 				vdev_t *tmp = cvd->vdev_child[cid];
1932 				if (!tmp->vdev_ops->vdev_op_leaf)
1933 					return (SET_ERROR(EINVAL));
1934 			}
1935 		}
1936 	}
1937 
1938 	return (0);
1939 }
1940 
1941 /*
1942  * Initiate removal of a top-level vdev, reducing the total space in the pool.
1943  * The config lock is held for the specified TXG.  Once initiated,
1944  * evacuation of all allocated space (copying it to other vdevs) happens
1945  * in the background (see spa_vdev_remove_thread()), and can be canceled
1946  * (see spa_vdev_remove_cancel()).  If successful, the vdev will
1947  * be transformed to an indirect vdev (see spa_vdev_remove_complete()).
1948  */
1949 static int
1950 spa_vdev_remove_top(vdev_t *vd, uint64_t *txg)
1951 {
1952 	spa_t *spa = vd->vdev_spa;
1953 	int error;
1954 
1955 	/*
1956 	 * Check for errors up-front, so that we don't waste time
1957 	 * passivating the metaslab group and clearing the ZIL if there
1958 	 * are errors.
1959 	 */
1960 	error = spa_vdev_remove_top_check(vd);
1961 	if (error != 0)
1962 		return (error);
1963 
1964 	/*
1965 	 * Stop allocating from this vdev.  Note that we must check
1966 	 * that this is not the only device in the pool before
1967 	 * passivating, otherwise we will not be able to make
1968 	 * progress because we can't allocate from any vdevs.
1969 	 * The above check for sufficient free space serves this
1970 	 * purpose.
1971 	 */
1972 	metaslab_group_t *mg = vd->vdev_mg;
1973 	metaslab_group_passivate(mg);
1974 
1975 	/*
1976 	 * Wait for the youngest allocations and frees to sync,
1977 	 * and then wait for the deferral of those frees to finish.
1978 	 */
1979 	spa_vdev_config_exit(spa, NULL,
1980 	    *txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
1981 
1982 	/*
1983 	 * We must ensure that no "stubby" log blocks are allocated
1984 	 * on the device to be removed.  These blocks could be
1985 	 * written at any time, including while we are in the middle
1986 	 * of copying them.
1987 	 */
1988 	error = spa_reset_logs(spa);
1989 
1990 	/*
1991 	 * We stop any initializing that is currently in progress but leave
1992 	 * the state as "active". This will allow the initializing to resume
1993 	 * if the removal is canceled sometime later.
1994 	 */
1995 	vdev_initialize_stop_all(vd, VDEV_INITIALIZE_ACTIVE);
1996 
1997 	*txg = spa_vdev_config_enter(spa);
1998 
1999 	/*
2000 	 * Things might have changed while the config lock was dropped
2001 	 * (e.g. space usage).  Check for errors again.
2002 	 */
2003 	if (error == 0)
2004 		error = spa_vdev_remove_top_check(vd);
2005 
2006 	if (error != 0) {
2007 		metaslab_group_activate(mg);
2008 		spa_async_request(spa, SPA_ASYNC_INITIALIZE_RESTART);
2009 		return (error);
2010 	}
2011 
2012 	vd->vdev_removing = B_TRUE;
2013 
2014 	vdev_dirty_leaves(vd, VDD_DTL, *txg);
2015 	vdev_config_dirty(vd);
2016 	dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool, *txg);
2017 	dsl_sync_task_nowait(spa->spa_dsl_pool,
2018 	    vdev_remove_initiate_sync,
2019 	    (void *)(uintptr_t)vd->vdev_id, 0, ZFS_SPACE_CHECK_NONE, tx);
2020 	dmu_tx_commit(tx);
2021 
2022 	return (0);
2023 }
2024 
2025 /*
2026  * Remove a device from the pool.
2027  *
2028  * Removing a device from the vdev namespace requires several steps
2029  * and can take a significant amount of time.  As a result we use
2030  * the spa_vdev_config_[enter/exit] functions which allow us to
2031  * grab and release the spa_config_lock while still holding the namespace
2032  * lock.  During each step the configuration is synced out.
2033  */
2034 int
2035 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
2036 {
2037 	vdev_t *vd;
2038 	nvlist_t **spares, **l2cache, *nv;
2039 	uint64_t txg = 0;
2040 	uint_t nspares, nl2cache;
2041 	int error = 0;
2042 	boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
2043 	sysevent_t *ev = NULL;
2044 
2045 	ASSERT(spa_writeable(spa));
2046 
2047 	if (!locked)
2048 		txg = spa_vdev_enter(spa);
2049 
2050 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
2051 	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
2052 		error = (spa_has_checkpoint(spa)) ?
2053 		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
2054 
2055 		if (!locked)
2056 			return (spa_vdev_exit(spa, NULL, txg, error));
2057 
2058 		return (error);
2059 	}
2060 
2061 	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
2062 
2063 	if (spa->spa_spares.sav_vdevs != NULL &&
2064 	    nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
2065 	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
2066 	    (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
2067 		/*
2068 		 * Only remove the hot spare if it's not currently in use
2069 		 * in this pool.
2070 		 */
2071 		if (vd == NULL || unspare) {
2072 			char *nvstr = fnvlist_lookup_string(nv,
2073 			    ZPOOL_CONFIG_PATH);
2074 			spa_history_log_internal(spa, "vdev remove", NULL,
2075 			    "%s vdev (%s) %s", spa_name(spa),
2076 			    VDEV_TYPE_SPARE, nvstr);
2077 			if (vd == NULL)
2078 				vd = spa_lookup_by_guid(spa, guid, B_TRUE);
2079 			ev = spa_event_create(spa, vd, NULL,
2080 			    ESC_ZFS_VDEV_REMOVE_AUX);
2081 			spa_vdev_remove_aux(spa->spa_spares.sav_config,
2082 			    ZPOOL_CONFIG_SPARES, spares, nspares, nv);
2083 			spa_load_spares(spa);
2084 			spa->spa_spares.sav_sync = B_TRUE;
2085 		} else {
2086 			error = SET_ERROR(EBUSY);
2087 		}
2088 	} else if (spa->spa_l2cache.sav_vdevs != NULL &&
2089 	    nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
2090 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
2091 	    (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
2092 		char *nvstr = fnvlist_lookup_string(nv, ZPOOL_CONFIG_PATH);
2093 		spa_history_log_internal(spa, "vdev remove", NULL,
2094 		    "%s vdev (%s) %s", spa_name(spa), VDEV_TYPE_L2CACHE, nvstr);
2095 		/*
2096 		 * Cache devices can always be removed.
2097 		 */
2098 		vd = spa_lookup_by_guid(spa, guid, B_TRUE);
2099 		ev = spa_event_create(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE_AUX);
2100 		spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
2101 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
2102 		spa_load_l2cache(spa);
2103 		spa->spa_l2cache.sav_sync = B_TRUE;
2104 	} else if (vd != NULL && vd->vdev_islog) {
2105 		ASSERT(!locked);
2106 		error = spa_vdev_remove_log(vd, &txg);
2107 	} else if (vd != NULL) {
2108 		ASSERT(!locked);
2109 		error = spa_vdev_remove_top(vd, &txg);
2110 	} else {
2111 		/*
2112 		 * There is no vdev of any kind with the specified guid.
2113 		 */
2114 		error = SET_ERROR(ENOENT);
2115 	}
2116 
2117 	if (!locked)
2118 		error = spa_vdev_exit(spa, NULL, txg, error);
2119 
2120 	if (ev != NULL) {
2121 		if (error != 0) {
2122 			spa_event_discard(ev);
2123 		} else {
2124 			spa_event_post(ev);
2125 		}
2126 	}
2127 
2128 	return (error);
2129 }
2130 
2131 int
2132 spa_removal_get_stats(spa_t *spa, pool_removal_stat_t *prs)
2133 {
2134 	prs->prs_state = spa->spa_removing_phys.sr_state;
2135 
2136 	if (prs->prs_state == DSS_NONE)
2137 		return (SET_ERROR(ENOENT));
2138 
2139 	prs->prs_removing_vdev = spa->spa_removing_phys.sr_removing_vdev;
2140 	prs->prs_start_time = spa->spa_removing_phys.sr_start_time;
2141 	prs->prs_end_time = spa->spa_removing_phys.sr_end_time;
2142 	prs->prs_to_copy = spa->spa_removing_phys.sr_to_copy;
2143 	prs->prs_copied = spa->spa_removing_phys.sr_copied;
2144 
2145 	if (spa->spa_vdev_removal != NULL) {
2146 		for (int i = 0; i < TXG_SIZE; i++) {
2147 			prs->prs_copied +=
2148 			    spa->spa_vdev_removal->svr_bytes_done[i];
2149 		}
2150 	}
2151 
2152 	prs->prs_mapping_memory = 0;
2153 	uint64_t indirect_vdev_id =
2154 	    spa->spa_removing_phys.sr_prev_indirect_vdev;
2155 	while (indirect_vdev_id != -1) {
2156 		vdev_t *vd = spa->spa_root_vdev->vdev_child[indirect_vdev_id];
2157 		vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
2158 		vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
2159 
2160 		ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
2161 		prs->prs_mapping_memory += vdev_indirect_mapping_size(vim);
2162 		indirect_vdev_id = vic->vic_prev_indirect_vdev;
2163 	}
2164 
2165 	return (0);
2166 }
2167