1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2013 by Delphix. All rights reserved. 24 */ 25 26 /* 27 * This file contains the top half of the zfs directory structure 28 * implementation. The bottom half is in zap_leaf.c. 29 * 30 * The zdir is an extendable hash data structure. There is a table of 31 * pointers to buckets (zap_t->zd_data->zd_leafs). The buckets are 32 * each a constant size and hold a variable number of directory entries. 33 * The buckets (aka "leaf nodes") are implemented in zap_leaf.c. 34 * 35 * The pointer table holds a power of 2 number of pointers. 36 * (1<<zap_t->zd_data->zd_phys->zd_prefix_len). The bucket pointed to 37 * by the pointer at index i in the table holds entries whose hash value 38 * has a zd_prefix_len - bit prefix 39 */ 40 41 #include <sys/spa.h> 42 #include <sys/dmu.h> 43 #include <sys/zfs_context.h> 44 #include <sys/zfs_znode.h> 45 #include <sys/fs/zfs.h> 46 #include <sys/zap.h> 47 #include <sys/refcount.h> 48 #include <sys/zap_impl.h> 49 #include <sys/zap_leaf.h> 50 51 int fzap_default_block_shift = 14; /* 16k blocksize */ 52 53 static void zap_leaf_pageout(dmu_buf_t *db, void *vl); 54 static uint64_t zap_allocate_blocks(zap_t *zap, int nblocks); 55 56 57 void 58 fzap_byteswap(void *vbuf, size_t size) 59 { 60 uint64_t block_type; 61 62 block_type = *(uint64_t *)vbuf; 63 64 if (block_type == ZBT_LEAF || block_type == BSWAP_64(ZBT_LEAF)) 65 zap_leaf_byteswap(vbuf, size); 66 else { 67 /* it's a ptrtbl block */ 68 byteswap_uint64_array(vbuf, size); 69 } 70 } 71 72 void 73 fzap_upgrade(zap_t *zap, dmu_tx_t *tx, zap_flags_t flags) 74 { 75 dmu_buf_t *db; 76 zap_leaf_t *l; 77 int i; 78 zap_phys_t *zp; 79 80 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock)); 81 zap->zap_ismicro = FALSE; 82 83 (void) dmu_buf_update_user(zap->zap_dbuf, zap, zap, 84 &zap->zap_f.zap_phys, zap_evict); 85 86 mutex_init(&zap->zap_f.zap_num_entries_mtx, 0, 0, 0); 87 zap->zap_f.zap_block_shift = highbit(zap->zap_dbuf->db_size) - 1; 88 89 zp = zap->zap_f.zap_phys; 90 /* 91 * explicitly zero it since it might be coming from an 92 * initialized microzap 93 */ 94 bzero(zap->zap_dbuf->db_data, zap->zap_dbuf->db_size); 95 zp->zap_block_type = ZBT_HEADER; 96 zp->zap_magic = ZAP_MAGIC; 97 98 zp->zap_ptrtbl.zt_shift = ZAP_EMBEDDED_PTRTBL_SHIFT(zap); 99 100 zp->zap_freeblk = 2; /* block 1 will be the first leaf */ 101 zp->zap_num_leafs = 1; 102 zp->zap_num_entries = 0; 103 zp->zap_salt = zap->zap_salt; 104 zp->zap_normflags = zap->zap_normflags; 105 zp->zap_flags = flags; 106 107 /* block 1 will be the first leaf */ 108 for (i = 0; i < (1<<zp->zap_ptrtbl.zt_shift); i++) 109 ZAP_EMBEDDED_PTRTBL_ENT(zap, i) = 1; 110 111 /* 112 * set up block 1 - the first leaf 113 */ 114 VERIFY(0 == dmu_buf_hold(zap->zap_objset, zap->zap_object, 115 1<<FZAP_BLOCK_SHIFT(zap), FTAG, &db, DMU_READ_NO_PREFETCH)); 116 dmu_buf_will_dirty(db, tx); 117 118 l = kmem_zalloc(sizeof (zap_leaf_t), KM_SLEEP); 119 l->l_dbuf = db; 120 l->l_phys = db->db_data; 121 122 zap_leaf_init(l, zp->zap_normflags != 0); 123 124 kmem_free(l, sizeof (zap_leaf_t)); 125 dmu_buf_rele(db, FTAG); 126 } 127 128 static int 129 zap_tryupgradedir(zap_t *zap, dmu_tx_t *tx) 130 { 131 if (RW_WRITE_HELD(&zap->zap_rwlock)) 132 return (1); 133 if (rw_tryupgrade(&zap->zap_rwlock)) { 134 dmu_buf_will_dirty(zap->zap_dbuf, tx); 135 return (1); 136 } 137 return (0); 138 } 139 140 /* 141 * Generic routines for dealing with the pointer & cookie tables. 142 */ 143 144 static int 145 zap_table_grow(zap_t *zap, zap_table_phys_t *tbl, 146 void (*transfer_func)(const uint64_t *src, uint64_t *dst, int n), 147 dmu_tx_t *tx) 148 { 149 uint64_t b, newblk; 150 dmu_buf_t *db_old, *db_new; 151 int err; 152 int bs = FZAP_BLOCK_SHIFT(zap); 153 int hepb = 1<<(bs-4); 154 /* hepb = half the number of entries in a block */ 155 156 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock)); 157 ASSERT(tbl->zt_blk != 0); 158 ASSERT(tbl->zt_numblks > 0); 159 160 if (tbl->zt_nextblk != 0) { 161 newblk = tbl->zt_nextblk; 162 } else { 163 newblk = zap_allocate_blocks(zap, tbl->zt_numblks * 2); 164 tbl->zt_nextblk = newblk; 165 ASSERT0(tbl->zt_blks_copied); 166 dmu_prefetch(zap->zap_objset, zap->zap_object, 167 tbl->zt_blk << bs, tbl->zt_numblks << bs); 168 } 169 170 /* 171 * Copy the ptrtbl from the old to new location. 172 */ 173 174 b = tbl->zt_blks_copied; 175 err = dmu_buf_hold(zap->zap_objset, zap->zap_object, 176 (tbl->zt_blk + b) << bs, FTAG, &db_old, DMU_READ_NO_PREFETCH); 177 if (err) 178 return (err); 179 180 /* first half of entries in old[b] go to new[2*b+0] */ 181 VERIFY(0 == dmu_buf_hold(zap->zap_objset, zap->zap_object, 182 (newblk + 2*b+0) << bs, FTAG, &db_new, DMU_READ_NO_PREFETCH)); 183 dmu_buf_will_dirty(db_new, tx); 184 transfer_func(db_old->db_data, db_new->db_data, hepb); 185 dmu_buf_rele(db_new, FTAG); 186 187 /* second half of entries in old[b] go to new[2*b+1] */ 188 VERIFY(0 == dmu_buf_hold(zap->zap_objset, zap->zap_object, 189 (newblk + 2*b+1) << bs, FTAG, &db_new, DMU_READ_NO_PREFETCH)); 190 dmu_buf_will_dirty(db_new, tx); 191 transfer_func((uint64_t *)db_old->db_data + hepb, 192 db_new->db_data, hepb); 193 dmu_buf_rele(db_new, FTAG); 194 195 dmu_buf_rele(db_old, FTAG); 196 197 tbl->zt_blks_copied++; 198 199 dprintf("copied block %llu of %llu\n", 200 tbl->zt_blks_copied, tbl->zt_numblks); 201 202 if (tbl->zt_blks_copied == tbl->zt_numblks) { 203 (void) dmu_free_range(zap->zap_objset, zap->zap_object, 204 tbl->zt_blk << bs, tbl->zt_numblks << bs, tx); 205 206 tbl->zt_blk = newblk; 207 tbl->zt_numblks *= 2; 208 tbl->zt_shift++; 209 tbl->zt_nextblk = 0; 210 tbl->zt_blks_copied = 0; 211 212 dprintf("finished; numblocks now %llu (%lluk entries)\n", 213 tbl->zt_numblks, 1<<(tbl->zt_shift-10)); 214 } 215 216 return (0); 217 } 218 219 static int 220 zap_table_store(zap_t *zap, zap_table_phys_t *tbl, uint64_t idx, uint64_t val, 221 dmu_tx_t *tx) 222 { 223 int err; 224 uint64_t blk, off; 225 int bs = FZAP_BLOCK_SHIFT(zap); 226 dmu_buf_t *db; 227 228 ASSERT(RW_LOCK_HELD(&zap->zap_rwlock)); 229 ASSERT(tbl->zt_blk != 0); 230 231 dprintf("storing %llx at index %llx\n", val, idx); 232 233 blk = idx >> (bs-3); 234 off = idx & ((1<<(bs-3))-1); 235 236 err = dmu_buf_hold(zap->zap_objset, zap->zap_object, 237 (tbl->zt_blk + blk) << bs, FTAG, &db, DMU_READ_NO_PREFETCH); 238 if (err) 239 return (err); 240 dmu_buf_will_dirty(db, tx); 241 242 if (tbl->zt_nextblk != 0) { 243 uint64_t idx2 = idx * 2; 244 uint64_t blk2 = idx2 >> (bs-3); 245 uint64_t off2 = idx2 & ((1<<(bs-3))-1); 246 dmu_buf_t *db2; 247 248 err = dmu_buf_hold(zap->zap_objset, zap->zap_object, 249 (tbl->zt_nextblk + blk2) << bs, FTAG, &db2, 250 DMU_READ_NO_PREFETCH); 251 if (err) { 252 dmu_buf_rele(db, FTAG); 253 return (err); 254 } 255 dmu_buf_will_dirty(db2, tx); 256 ((uint64_t *)db2->db_data)[off2] = val; 257 ((uint64_t *)db2->db_data)[off2+1] = val; 258 dmu_buf_rele(db2, FTAG); 259 } 260 261 ((uint64_t *)db->db_data)[off] = val; 262 dmu_buf_rele(db, FTAG); 263 264 return (0); 265 } 266 267 static int 268 zap_table_load(zap_t *zap, zap_table_phys_t *tbl, uint64_t idx, uint64_t *valp) 269 { 270 uint64_t blk, off; 271 int err; 272 dmu_buf_t *db; 273 int bs = FZAP_BLOCK_SHIFT(zap); 274 275 ASSERT(RW_LOCK_HELD(&zap->zap_rwlock)); 276 277 blk = idx >> (bs-3); 278 off = idx & ((1<<(bs-3))-1); 279 280 err = dmu_buf_hold(zap->zap_objset, zap->zap_object, 281 (tbl->zt_blk + blk) << bs, FTAG, &db, DMU_READ_NO_PREFETCH); 282 if (err) 283 return (err); 284 *valp = ((uint64_t *)db->db_data)[off]; 285 dmu_buf_rele(db, FTAG); 286 287 if (tbl->zt_nextblk != 0) { 288 /* 289 * read the nextblk for the sake of i/o error checking, 290 * so that zap_table_load() will catch errors for 291 * zap_table_store. 292 */ 293 blk = (idx*2) >> (bs-3); 294 295 err = dmu_buf_hold(zap->zap_objset, zap->zap_object, 296 (tbl->zt_nextblk + blk) << bs, FTAG, &db, 297 DMU_READ_NO_PREFETCH); 298 if (err == 0) 299 dmu_buf_rele(db, FTAG); 300 } 301 return (err); 302 } 303 304 /* 305 * Routines for growing the ptrtbl. 306 */ 307 308 static void 309 zap_ptrtbl_transfer(const uint64_t *src, uint64_t *dst, int n) 310 { 311 int i; 312 for (i = 0; i < n; i++) { 313 uint64_t lb = src[i]; 314 dst[2*i+0] = lb; 315 dst[2*i+1] = lb; 316 } 317 } 318 319 static int 320 zap_grow_ptrtbl(zap_t *zap, dmu_tx_t *tx) 321 { 322 /* 323 * The pointer table should never use more hash bits than we 324 * have (otherwise we'd be using useless zero bits to index it). 325 * If we are within 2 bits of running out, stop growing, since 326 * this is already an aberrant condition. 327 */ 328 if (zap->zap_f.zap_phys->zap_ptrtbl.zt_shift >= zap_hashbits(zap) - 2) 329 return (SET_ERROR(ENOSPC)); 330 331 if (zap->zap_f.zap_phys->zap_ptrtbl.zt_numblks == 0) { 332 /* 333 * We are outgrowing the "embedded" ptrtbl (the one 334 * stored in the header block). Give it its own entire 335 * block, which will double the size of the ptrtbl. 336 */ 337 uint64_t newblk; 338 dmu_buf_t *db_new; 339 int err; 340 341 ASSERT3U(zap->zap_f.zap_phys->zap_ptrtbl.zt_shift, ==, 342 ZAP_EMBEDDED_PTRTBL_SHIFT(zap)); 343 ASSERT0(zap->zap_f.zap_phys->zap_ptrtbl.zt_blk); 344 345 newblk = zap_allocate_blocks(zap, 1); 346 err = dmu_buf_hold(zap->zap_objset, zap->zap_object, 347 newblk << FZAP_BLOCK_SHIFT(zap), FTAG, &db_new, 348 DMU_READ_NO_PREFETCH); 349 if (err) 350 return (err); 351 dmu_buf_will_dirty(db_new, tx); 352 zap_ptrtbl_transfer(&ZAP_EMBEDDED_PTRTBL_ENT(zap, 0), 353 db_new->db_data, 1 << ZAP_EMBEDDED_PTRTBL_SHIFT(zap)); 354 dmu_buf_rele(db_new, FTAG); 355 356 zap->zap_f.zap_phys->zap_ptrtbl.zt_blk = newblk; 357 zap->zap_f.zap_phys->zap_ptrtbl.zt_numblks = 1; 358 zap->zap_f.zap_phys->zap_ptrtbl.zt_shift++; 359 360 ASSERT3U(1ULL << zap->zap_f.zap_phys->zap_ptrtbl.zt_shift, ==, 361 zap->zap_f.zap_phys->zap_ptrtbl.zt_numblks << 362 (FZAP_BLOCK_SHIFT(zap)-3)); 363 364 return (0); 365 } else { 366 return (zap_table_grow(zap, &zap->zap_f.zap_phys->zap_ptrtbl, 367 zap_ptrtbl_transfer, tx)); 368 } 369 } 370 371 static void 372 zap_increment_num_entries(zap_t *zap, int delta, dmu_tx_t *tx) 373 { 374 dmu_buf_will_dirty(zap->zap_dbuf, tx); 375 mutex_enter(&zap->zap_f.zap_num_entries_mtx); 376 ASSERT(delta > 0 || zap->zap_f.zap_phys->zap_num_entries >= -delta); 377 zap->zap_f.zap_phys->zap_num_entries += delta; 378 mutex_exit(&zap->zap_f.zap_num_entries_mtx); 379 } 380 381 static uint64_t 382 zap_allocate_blocks(zap_t *zap, int nblocks) 383 { 384 uint64_t newblk; 385 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock)); 386 newblk = zap->zap_f.zap_phys->zap_freeblk; 387 zap->zap_f.zap_phys->zap_freeblk += nblocks; 388 return (newblk); 389 } 390 391 static zap_leaf_t * 392 zap_create_leaf(zap_t *zap, dmu_tx_t *tx) 393 { 394 void *winner; 395 zap_leaf_t *l = kmem_alloc(sizeof (zap_leaf_t), KM_SLEEP); 396 397 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock)); 398 399 rw_init(&l->l_rwlock, 0, 0, 0); 400 rw_enter(&l->l_rwlock, RW_WRITER); 401 l->l_blkid = zap_allocate_blocks(zap, 1); 402 l->l_dbuf = NULL; 403 l->l_phys = NULL; 404 405 VERIFY(0 == dmu_buf_hold(zap->zap_objset, zap->zap_object, 406 l->l_blkid << FZAP_BLOCK_SHIFT(zap), NULL, &l->l_dbuf, 407 DMU_READ_NO_PREFETCH)); 408 winner = dmu_buf_set_user(l->l_dbuf, l, &l->l_phys, zap_leaf_pageout); 409 ASSERT(winner == NULL); 410 dmu_buf_will_dirty(l->l_dbuf, tx); 411 412 zap_leaf_init(l, zap->zap_normflags != 0); 413 414 zap->zap_f.zap_phys->zap_num_leafs++; 415 416 return (l); 417 } 418 419 int 420 fzap_count(zap_t *zap, uint64_t *count) 421 { 422 ASSERT(!zap->zap_ismicro); 423 mutex_enter(&zap->zap_f.zap_num_entries_mtx); /* unnecessary */ 424 *count = zap->zap_f.zap_phys->zap_num_entries; 425 mutex_exit(&zap->zap_f.zap_num_entries_mtx); 426 return (0); 427 } 428 429 /* 430 * Routines for obtaining zap_leaf_t's 431 */ 432 433 void 434 zap_put_leaf(zap_leaf_t *l) 435 { 436 rw_exit(&l->l_rwlock); 437 dmu_buf_rele(l->l_dbuf, NULL); 438 } 439 440 _NOTE(ARGSUSED(0)) 441 static void 442 zap_leaf_pageout(dmu_buf_t *db, void *vl) 443 { 444 zap_leaf_t *l = vl; 445 446 rw_destroy(&l->l_rwlock); 447 kmem_free(l, sizeof (zap_leaf_t)); 448 } 449 450 static zap_leaf_t * 451 zap_open_leaf(uint64_t blkid, dmu_buf_t *db) 452 { 453 zap_leaf_t *l, *winner; 454 455 ASSERT(blkid != 0); 456 457 l = kmem_alloc(sizeof (zap_leaf_t), KM_SLEEP); 458 rw_init(&l->l_rwlock, 0, 0, 0); 459 rw_enter(&l->l_rwlock, RW_WRITER); 460 l->l_blkid = blkid; 461 l->l_bs = highbit(db->db_size)-1; 462 l->l_dbuf = db; 463 l->l_phys = NULL; 464 465 winner = dmu_buf_set_user(db, l, &l->l_phys, zap_leaf_pageout); 466 467 rw_exit(&l->l_rwlock); 468 if (winner != NULL) { 469 /* someone else set it first */ 470 zap_leaf_pageout(NULL, l); 471 l = winner; 472 } 473 474 /* 475 * lhr_pad was previously used for the next leaf in the leaf 476 * chain. There should be no chained leafs (as we have removed 477 * support for them). 478 */ 479 ASSERT0(l->l_phys->l_hdr.lh_pad1); 480 481 /* 482 * There should be more hash entries than there can be 483 * chunks to put in the hash table 484 */ 485 ASSERT3U(ZAP_LEAF_HASH_NUMENTRIES(l), >, ZAP_LEAF_NUMCHUNKS(l) / 3); 486 487 /* The chunks should begin at the end of the hash table */ 488 ASSERT3P(&ZAP_LEAF_CHUNK(l, 0), ==, 489 &l->l_phys->l_hash[ZAP_LEAF_HASH_NUMENTRIES(l)]); 490 491 /* The chunks should end at the end of the block */ 492 ASSERT3U((uintptr_t)&ZAP_LEAF_CHUNK(l, ZAP_LEAF_NUMCHUNKS(l)) - 493 (uintptr_t)l->l_phys, ==, l->l_dbuf->db_size); 494 495 return (l); 496 } 497 498 static int 499 zap_get_leaf_byblk(zap_t *zap, uint64_t blkid, dmu_tx_t *tx, krw_t lt, 500 zap_leaf_t **lp) 501 { 502 dmu_buf_t *db; 503 zap_leaf_t *l; 504 int bs = FZAP_BLOCK_SHIFT(zap); 505 int err; 506 507 ASSERT(RW_LOCK_HELD(&zap->zap_rwlock)); 508 509 err = dmu_buf_hold(zap->zap_objset, zap->zap_object, 510 blkid << bs, NULL, &db, DMU_READ_NO_PREFETCH); 511 if (err) 512 return (err); 513 514 ASSERT3U(db->db_object, ==, zap->zap_object); 515 ASSERT3U(db->db_offset, ==, blkid << bs); 516 ASSERT3U(db->db_size, ==, 1 << bs); 517 ASSERT(blkid != 0); 518 519 l = dmu_buf_get_user(db); 520 521 if (l == NULL) 522 l = zap_open_leaf(blkid, db); 523 524 rw_enter(&l->l_rwlock, lt); 525 /* 526 * Must lock before dirtying, otherwise l->l_phys could change, 527 * causing ASSERT below to fail. 528 */ 529 if (lt == RW_WRITER) 530 dmu_buf_will_dirty(db, tx); 531 ASSERT3U(l->l_blkid, ==, blkid); 532 ASSERT3P(l->l_dbuf, ==, db); 533 ASSERT3P(l->l_phys, ==, l->l_dbuf->db_data); 534 ASSERT3U(l->l_phys->l_hdr.lh_block_type, ==, ZBT_LEAF); 535 ASSERT3U(l->l_phys->l_hdr.lh_magic, ==, ZAP_LEAF_MAGIC); 536 537 *lp = l; 538 return (0); 539 } 540 541 static int 542 zap_idx_to_blk(zap_t *zap, uint64_t idx, uint64_t *valp) 543 { 544 ASSERT(RW_LOCK_HELD(&zap->zap_rwlock)); 545 546 if (zap->zap_f.zap_phys->zap_ptrtbl.zt_numblks == 0) { 547 ASSERT3U(idx, <, 548 (1ULL << zap->zap_f.zap_phys->zap_ptrtbl.zt_shift)); 549 *valp = ZAP_EMBEDDED_PTRTBL_ENT(zap, idx); 550 return (0); 551 } else { 552 return (zap_table_load(zap, &zap->zap_f.zap_phys->zap_ptrtbl, 553 idx, valp)); 554 } 555 } 556 557 static int 558 zap_set_idx_to_blk(zap_t *zap, uint64_t idx, uint64_t blk, dmu_tx_t *tx) 559 { 560 ASSERT(tx != NULL); 561 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock)); 562 563 if (zap->zap_f.zap_phys->zap_ptrtbl.zt_blk == 0) { 564 ZAP_EMBEDDED_PTRTBL_ENT(zap, idx) = blk; 565 return (0); 566 } else { 567 return (zap_table_store(zap, &zap->zap_f.zap_phys->zap_ptrtbl, 568 idx, blk, tx)); 569 } 570 } 571 572 static int 573 zap_deref_leaf(zap_t *zap, uint64_t h, dmu_tx_t *tx, krw_t lt, zap_leaf_t **lp) 574 { 575 uint64_t idx, blk; 576 int err; 577 578 ASSERT(zap->zap_dbuf == NULL || 579 zap->zap_f.zap_phys == zap->zap_dbuf->db_data); 580 ASSERT3U(zap->zap_f.zap_phys->zap_magic, ==, ZAP_MAGIC); 581 idx = ZAP_HASH_IDX(h, zap->zap_f.zap_phys->zap_ptrtbl.zt_shift); 582 err = zap_idx_to_blk(zap, idx, &blk); 583 if (err != 0) 584 return (err); 585 err = zap_get_leaf_byblk(zap, blk, tx, lt, lp); 586 587 ASSERT(err || ZAP_HASH_IDX(h, (*lp)->l_phys->l_hdr.lh_prefix_len) == 588 (*lp)->l_phys->l_hdr.lh_prefix); 589 return (err); 590 } 591 592 static int 593 zap_expand_leaf(zap_name_t *zn, zap_leaf_t *l, dmu_tx_t *tx, zap_leaf_t **lp) 594 { 595 zap_t *zap = zn->zn_zap; 596 uint64_t hash = zn->zn_hash; 597 zap_leaf_t *nl; 598 int prefix_diff, i, err; 599 uint64_t sibling; 600 int old_prefix_len = l->l_phys->l_hdr.lh_prefix_len; 601 602 ASSERT3U(old_prefix_len, <=, zap->zap_f.zap_phys->zap_ptrtbl.zt_shift); 603 ASSERT(RW_LOCK_HELD(&zap->zap_rwlock)); 604 605 ASSERT3U(ZAP_HASH_IDX(hash, old_prefix_len), ==, 606 l->l_phys->l_hdr.lh_prefix); 607 608 if (zap_tryupgradedir(zap, tx) == 0 || 609 old_prefix_len == zap->zap_f.zap_phys->zap_ptrtbl.zt_shift) { 610 /* We failed to upgrade, or need to grow the pointer table */ 611 objset_t *os = zap->zap_objset; 612 uint64_t object = zap->zap_object; 613 614 zap_put_leaf(l); 615 zap_unlockdir(zap); 616 err = zap_lockdir(os, object, tx, RW_WRITER, 617 FALSE, FALSE, &zn->zn_zap); 618 zap = zn->zn_zap; 619 if (err) 620 return (err); 621 ASSERT(!zap->zap_ismicro); 622 623 while (old_prefix_len == 624 zap->zap_f.zap_phys->zap_ptrtbl.zt_shift) { 625 err = zap_grow_ptrtbl(zap, tx); 626 if (err) 627 return (err); 628 } 629 630 err = zap_deref_leaf(zap, hash, tx, RW_WRITER, &l); 631 if (err) 632 return (err); 633 634 if (l->l_phys->l_hdr.lh_prefix_len != old_prefix_len) { 635 /* it split while our locks were down */ 636 *lp = l; 637 return (0); 638 } 639 } 640 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock)); 641 ASSERT3U(old_prefix_len, <, zap->zap_f.zap_phys->zap_ptrtbl.zt_shift); 642 ASSERT3U(ZAP_HASH_IDX(hash, old_prefix_len), ==, 643 l->l_phys->l_hdr.lh_prefix); 644 645 prefix_diff = zap->zap_f.zap_phys->zap_ptrtbl.zt_shift - 646 (old_prefix_len + 1); 647 sibling = (ZAP_HASH_IDX(hash, old_prefix_len + 1) | 1) << prefix_diff; 648 649 /* check for i/o errors before doing zap_leaf_split */ 650 for (i = 0; i < (1ULL<<prefix_diff); i++) { 651 uint64_t blk; 652 err = zap_idx_to_blk(zap, sibling+i, &blk); 653 if (err) 654 return (err); 655 ASSERT3U(blk, ==, l->l_blkid); 656 } 657 658 nl = zap_create_leaf(zap, tx); 659 zap_leaf_split(l, nl, zap->zap_normflags != 0); 660 661 /* set sibling pointers */ 662 for (i = 0; i < (1ULL << prefix_diff); i++) { 663 err = zap_set_idx_to_blk(zap, sibling+i, nl->l_blkid, tx); 664 ASSERT0(err); /* we checked for i/o errors above */ 665 } 666 667 if (hash & (1ULL << (64 - l->l_phys->l_hdr.lh_prefix_len))) { 668 /* we want the sibling */ 669 zap_put_leaf(l); 670 *lp = nl; 671 } else { 672 zap_put_leaf(nl); 673 *lp = l; 674 } 675 676 return (0); 677 } 678 679 static void 680 zap_put_leaf_maybe_grow_ptrtbl(zap_name_t *zn, zap_leaf_t *l, dmu_tx_t *tx) 681 { 682 zap_t *zap = zn->zn_zap; 683 int shift = zap->zap_f.zap_phys->zap_ptrtbl.zt_shift; 684 int leaffull = (l->l_phys->l_hdr.lh_prefix_len == shift && 685 l->l_phys->l_hdr.lh_nfree < ZAP_LEAF_LOW_WATER); 686 687 zap_put_leaf(l); 688 689 if (leaffull || zap->zap_f.zap_phys->zap_ptrtbl.zt_nextblk) { 690 int err; 691 692 /* 693 * We are in the middle of growing the pointer table, or 694 * this leaf will soon make us grow it. 695 */ 696 if (zap_tryupgradedir(zap, tx) == 0) { 697 objset_t *os = zap->zap_objset; 698 uint64_t zapobj = zap->zap_object; 699 700 zap_unlockdir(zap); 701 err = zap_lockdir(os, zapobj, tx, 702 RW_WRITER, FALSE, FALSE, &zn->zn_zap); 703 zap = zn->zn_zap; 704 if (err) 705 return; 706 } 707 708 /* could have finished growing while our locks were down */ 709 if (zap->zap_f.zap_phys->zap_ptrtbl.zt_shift == shift) 710 (void) zap_grow_ptrtbl(zap, tx); 711 } 712 } 713 714 static int 715 fzap_checkname(zap_name_t *zn) 716 { 717 if (zn->zn_key_orig_numints * zn->zn_key_intlen > ZAP_MAXNAMELEN) 718 return (SET_ERROR(ENAMETOOLONG)); 719 return (0); 720 } 721 722 static int 723 fzap_checksize(uint64_t integer_size, uint64_t num_integers) 724 { 725 /* Only integer sizes supported by C */ 726 switch (integer_size) { 727 case 1: 728 case 2: 729 case 4: 730 case 8: 731 break; 732 default: 733 return (SET_ERROR(EINVAL)); 734 } 735 736 if (integer_size * num_integers > ZAP_MAXVALUELEN) 737 return (E2BIG); 738 739 return (0); 740 } 741 742 static int 743 fzap_check(zap_name_t *zn, uint64_t integer_size, uint64_t num_integers) 744 { 745 int err; 746 747 if ((err = fzap_checkname(zn)) != 0) 748 return (err); 749 return (fzap_checksize(integer_size, num_integers)); 750 } 751 752 /* 753 * Routines for manipulating attributes. 754 */ 755 int 756 fzap_lookup(zap_name_t *zn, 757 uint64_t integer_size, uint64_t num_integers, void *buf, 758 char *realname, int rn_len, boolean_t *ncp) 759 { 760 zap_leaf_t *l; 761 int err; 762 zap_entry_handle_t zeh; 763 764 if ((err = fzap_checkname(zn)) != 0) 765 return (err); 766 767 err = zap_deref_leaf(zn->zn_zap, zn->zn_hash, NULL, RW_READER, &l); 768 if (err != 0) 769 return (err); 770 err = zap_leaf_lookup(l, zn, &zeh); 771 if (err == 0) { 772 if ((err = fzap_checksize(integer_size, num_integers)) != 0) { 773 zap_put_leaf(l); 774 return (err); 775 } 776 777 err = zap_entry_read(&zeh, integer_size, num_integers, buf); 778 (void) zap_entry_read_name(zn->zn_zap, &zeh, rn_len, realname); 779 if (ncp) { 780 *ncp = zap_entry_normalization_conflict(&zeh, 781 zn, NULL, zn->zn_zap); 782 } 783 } 784 785 zap_put_leaf(l); 786 return (err); 787 } 788 789 int 790 fzap_add_cd(zap_name_t *zn, 791 uint64_t integer_size, uint64_t num_integers, 792 const void *val, uint32_t cd, dmu_tx_t *tx) 793 { 794 zap_leaf_t *l; 795 int err; 796 zap_entry_handle_t zeh; 797 zap_t *zap = zn->zn_zap; 798 799 ASSERT(RW_LOCK_HELD(&zap->zap_rwlock)); 800 ASSERT(!zap->zap_ismicro); 801 ASSERT(fzap_check(zn, integer_size, num_integers) == 0); 802 803 err = zap_deref_leaf(zap, zn->zn_hash, tx, RW_WRITER, &l); 804 if (err != 0) 805 return (err); 806 retry: 807 err = zap_leaf_lookup(l, zn, &zeh); 808 if (err == 0) { 809 err = SET_ERROR(EEXIST); 810 goto out; 811 } 812 if (err != ENOENT) 813 goto out; 814 815 err = zap_entry_create(l, zn, cd, 816 integer_size, num_integers, val, &zeh); 817 818 if (err == 0) { 819 zap_increment_num_entries(zap, 1, tx); 820 } else if (err == EAGAIN) { 821 err = zap_expand_leaf(zn, l, tx, &l); 822 zap = zn->zn_zap; /* zap_expand_leaf() may change zap */ 823 if (err == 0) 824 goto retry; 825 } 826 827 out: 828 if (zap != NULL) 829 zap_put_leaf_maybe_grow_ptrtbl(zn, l, tx); 830 return (err); 831 } 832 833 int 834 fzap_add(zap_name_t *zn, 835 uint64_t integer_size, uint64_t num_integers, 836 const void *val, dmu_tx_t *tx) 837 { 838 int err = fzap_check(zn, integer_size, num_integers); 839 if (err != 0) 840 return (err); 841 842 return (fzap_add_cd(zn, integer_size, num_integers, 843 val, ZAP_NEED_CD, tx)); 844 } 845 846 int 847 fzap_update(zap_name_t *zn, 848 int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx) 849 { 850 zap_leaf_t *l; 851 int err, create; 852 zap_entry_handle_t zeh; 853 zap_t *zap = zn->zn_zap; 854 855 ASSERT(RW_LOCK_HELD(&zap->zap_rwlock)); 856 err = fzap_check(zn, integer_size, num_integers); 857 if (err != 0) 858 return (err); 859 860 err = zap_deref_leaf(zap, zn->zn_hash, tx, RW_WRITER, &l); 861 if (err != 0) 862 return (err); 863 retry: 864 err = zap_leaf_lookup(l, zn, &zeh); 865 create = (err == ENOENT); 866 ASSERT(err == 0 || err == ENOENT); 867 868 if (create) { 869 err = zap_entry_create(l, zn, ZAP_NEED_CD, 870 integer_size, num_integers, val, &zeh); 871 if (err == 0) 872 zap_increment_num_entries(zap, 1, tx); 873 } else { 874 err = zap_entry_update(&zeh, integer_size, num_integers, val); 875 } 876 877 if (err == EAGAIN) { 878 err = zap_expand_leaf(zn, l, tx, &l); 879 zap = zn->zn_zap; /* zap_expand_leaf() may change zap */ 880 if (err == 0) 881 goto retry; 882 } 883 884 if (zap != NULL) 885 zap_put_leaf_maybe_grow_ptrtbl(zn, l, tx); 886 return (err); 887 } 888 889 int 890 fzap_length(zap_name_t *zn, 891 uint64_t *integer_size, uint64_t *num_integers) 892 { 893 zap_leaf_t *l; 894 int err; 895 zap_entry_handle_t zeh; 896 897 err = zap_deref_leaf(zn->zn_zap, zn->zn_hash, NULL, RW_READER, &l); 898 if (err != 0) 899 return (err); 900 err = zap_leaf_lookup(l, zn, &zeh); 901 if (err != 0) 902 goto out; 903 904 if (integer_size) 905 *integer_size = zeh.zeh_integer_size; 906 if (num_integers) 907 *num_integers = zeh.zeh_num_integers; 908 out: 909 zap_put_leaf(l); 910 return (err); 911 } 912 913 int 914 fzap_remove(zap_name_t *zn, dmu_tx_t *tx) 915 { 916 zap_leaf_t *l; 917 int err; 918 zap_entry_handle_t zeh; 919 920 err = zap_deref_leaf(zn->zn_zap, zn->zn_hash, tx, RW_WRITER, &l); 921 if (err != 0) 922 return (err); 923 err = zap_leaf_lookup(l, zn, &zeh); 924 if (err == 0) { 925 zap_entry_remove(&zeh); 926 zap_increment_num_entries(zn->zn_zap, -1, tx); 927 } 928 zap_put_leaf(l); 929 return (err); 930 } 931 932 void 933 fzap_prefetch(zap_name_t *zn) 934 { 935 uint64_t idx, blk; 936 zap_t *zap = zn->zn_zap; 937 int bs; 938 939 idx = ZAP_HASH_IDX(zn->zn_hash, 940 zap->zap_f.zap_phys->zap_ptrtbl.zt_shift); 941 if (zap_idx_to_blk(zap, idx, &blk) != 0) 942 return; 943 bs = FZAP_BLOCK_SHIFT(zap); 944 dmu_prefetch(zap->zap_objset, zap->zap_object, blk << bs, 1 << bs); 945 } 946 947 /* 948 * Helper functions for consumers. 949 */ 950 951 uint64_t 952 zap_create_link(objset_t *os, dmu_object_type_t ot, uint64_t parent_obj, 953 const char *name, dmu_tx_t *tx) 954 { 955 uint64_t new_obj; 956 957 VERIFY((new_obj = zap_create(os, ot, DMU_OT_NONE, 0, tx)) > 0); 958 VERIFY(zap_add(os, parent_obj, name, sizeof (uint64_t), 1, &new_obj, 959 tx) == 0); 960 961 return (new_obj); 962 } 963 964 int 965 zap_value_search(objset_t *os, uint64_t zapobj, uint64_t value, uint64_t mask, 966 char *name) 967 { 968 zap_cursor_t zc; 969 zap_attribute_t *za; 970 int err; 971 972 if (mask == 0) 973 mask = -1ULL; 974 975 za = kmem_alloc(sizeof (zap_attribute_t), KM_SLEEP); 976 for (zap_cursor_init(&zc, os, zapobj); 977 (err = zap_cursor_retrieve(&zc, za)) == 0; 978 zap_cursor_advance(&zc)) { 979 if ((za->za_first_integer & mask) == (value & mask)) { 980 (void) strcpy(name, za->za_name); 981 break; 982 } 983 } 984 zap_cursor_fini(&zc); 985 kmem_free(za, sizeof (zap_attribute_t)); 986 return (err); 987 } 988 989 int 990 zap_join(objset_t *os, uint64_t fromobj, uint64_t intoobj, dmu_tx_t *tx) 991 { 992 zap_cursor_t zc; 993 zap_attribute_t za; 994 int err; 995 996 err = 0; 997 for (zap_cursor_init(&zc, os, fromobj); 998 zap_cursor_retrieve(&zc, &za) == 0; 999 (void) zap_cursor_advance(&zc)) { 1000 if (za.za_integer_length != 8 || za.za_num_integers != 1) { 1001 err = SET_ERROR(EINVAL); 1002 break; 1003 } 1004 err = zap_add(os, intoobj, za.za_name, 1005 8, 1, &za.za_first_integer, tx); 1006 if (err) 1007 break; 1008 } 1009 zap_cursor_fini(&zc); 1010 return (err); 1011 } 1012 1013 int 1014 zap_join_key(objset_t *os, uint64_t fromobj, uint64_t intoobj, 1015 uint64_t value, dmu_tx_t *tx) 1016 { 1017 zap_cursor_t zc; 1018 zap_attribute_t za; 1019 int err; 1020 1021 err = 0; 1022 for (zap_cursor_init(&zc, os, fromobj); 1023 zap_cursor_retrieve(&zc, &za) == 0; 1024 (void) zap_cursor_advance(&zc)) { 1025 if (za.za_integer_length != 8 || za.za_num_integers != 1) { 1026 err = SET_ERROR(EINVAL); 1027 break; 1028 } 1029 err = zap_add(os, intoobj, za.za_name, 1030 8, 1, &value, tx); 1031 if (err) 1032 break; 1033 } 1034 zap_cursor_fini(&zc); 1035 return (err); 1036 } 1037 1038 int 1039 zap_join_increment(objset_t *os, uint64_t fromobj, uint64_t intoobj, 1040 dmu_tx_t *tx) 1041 { 1042 zap_cursor_t zc; 1043 zap_attribute_t za; 1044 int err; 1045 1046 err = 0; 1047 for (zap_cursor_init(&zc, os, fromobj); 1048 zap_cursor_retrieve(&zc, &za) == 0; 1049 (void) zap_cursor_advance(&zc)) { 1050 uint64_t delta = 0; 1051 1052 if (za.za_integer_length != 8 || za.za_num_integers != 1) { 1053 err = SET_ERROR(EINVAL); 1054 break; 1055 } 1056 1057 err = zap_lookup(os, intoobj, za.za_name, 8, 1, &delta); 1058 if (err != 0 && err != ENOENT) 1059 break; 1060 delta += za.za_first_integer; 1061 err = zap_update(os, intoobj, za.za_name, 8, 1, &delta, tx); 1062 if (err) 1063 break; 1064 } 1065 zap_cursor_fini(&zc); 1066 return (err); 1067 } 1068 1069 int 1070 zap_add_int(objset_t *os, uint64_t obj, uint64_t value, dmu_tx_t *tx) 1071 { 1072 char name[20]; 1073 1074 (void) snprintf(name, sizeof (name), "%llx", (longlong_t)value); 1075 return (zap_add(os, obj, name, 8, 1, &value, tx)); 1076 } 1077 1078 int 1079 zap_remove_int(objset_t *os, uint64_t obj, uint64_t value, dmu_tx_t *tx) 1080 { 1081 char name[20]; 1082 1083 (void) snprintf(name, sizeof (name), "%llx", (longlong_t)value); 1084 return (zap_remove(os, obj, name, tx)); 1085 } 1086 1087 int 1088 zap_lookup_int(objset_t *os, uint64_t obj, uint64_t value) 1089 { 1090 char name[20]; 1091 1092 (void) snprintf(name, sizeof (name), "%llx", (longlong_t)value); 1093 return (zap_lookup(os, obj, name, 8, 1, &value)); 1094 } 1095 1096 int 1097 zap_add_int_key(objset_t *os, uint64_t obj, 1098 uint64_t key, uint64_t value, dmu_tx_t *tx) 1099 { 1100 char name[20]; 1101 1102 (void) snprintf(name, sizeof (name), "%llx", (longlong_t)key); 1103 return (zap_add(os, obj, name, 8, 1, &value, tx)); 1104 } 1105 1106 int 1107 zap_update_int_key(objset_t *os, uint64_t obj, 1108 uint64_t key, uint64_t value, dmu_tx_t *tx) 1109 { 1110 char name[20]; 1111 1112 (void) snprintf(name, sizeof (name), "%llx", (longlong_t)key); 1113 return (zap_update(os, obj, name, 8, 1, &value, tx)); 1114 } 1115 1116 int 1117 zap_lookup_int_key(objset_t *os, uint64_t obj, uint64_t key, uint64_t *valuep) 1118 { 1119 char name[20]; 1120 1121 (void) snprintf(name, sizeof (name), "%llx", (longlong_t)key); 1122 return (zap_lookup(os, obj, name, 8, 1, valuep)); 1123 } 1124 1125 int 1126 zap_increment(objset_t *os, uint64_t obj, const char *name, int64_t delta, 1127 dmu_tx_t *tx) 1128 { 1129 uint64_t value = 0; 1130 int err; 1131 1132 if (delta == 0) 1133 return (0); 1134 1135 err = zap_lookup(os, obj, name, 8, 1, &value); 1136 if (err != 0 && err != ENOENT) 1137 return (err); 1138 value += delta; 1139 if (value == 0) 1140 err = zap_remove(os, obj, name, tx); 1141 else 1142 err = zap_update(os, obj, name, 8, 1, &value, tx); 1143 return (err); 1144 } 1145 1146 int 1147 zap_increment_int(objset_t *os, uint64_t obj, uint64_t key, int64_t delta, 1148 dmu_tx_t *tx) 1149 { 1150 char name[20]; 1151 1152 (void) snprintf(name, sizeof (name), "%llx", (longlong_t)key); 1153 return (zap_increment(os, obj, name, delta, tx)); 1154 } 1155 1156 /* 1157 * Routines for iterating over the attributes. 1158 */ 1159 1160 int 1161 fzap_cursor_retrieve(zap_t *zap, zap_cursor_t *zc, zap_attribute_t *za) 1162 { 1163 int err = ENOENT; 1164 zap_entry_handle_t zeh; 1165 zap_leaf_t *l; 1166 1167 /* retrieve the next entry at or after zc_hash/zc_cd */ 1168 /* if no entry, return ENOENT */ 1169 1170 if (zc->zc_leaf && 1171 (ZAP_HASH_IDX(zc->zc_hash, 1172 zc->zc_leaf->l_phys->l_hdr.lh_prefix_len) != 1173 zc->zc_leaf->l_phys->l_hdr.lh_prefix)) { 1174 rw_enter(&zc->zc_leaf->l_rwlock, RW_READER); 1175 zap_put_leaf(zc->zc_leaf); 1176 zc->zc_leaf = NULL; 1177 } 1178 1179 again: 1180 if (zc->zc_leaf == NULL) { 1181 err = zap_deref_leaf(zap, zc->zc_hash, NULL, RW_READER, 1182 &zc->zc_leaf); 1183 if (err != 0) 1184 return (err); 1185 } else { 1186 rw_enter(&zc->zc_leaf->l_rwlock, RW_READER); 1187 } 1188 l = zc->zc_leaf; 1189 1190 err = zap_leaf_lookup_closest(l, zc->zc_hash, zc->zc_cd, &zeh); 1191 1192 if (err == ENOENT) { 1193 uint64_t nocare = 1194 (1ULL << (64 - l->l_phys->l_hdr.lh_prefix_len)) - 1; 1195 zc->zc_hash = (zc->zc_hash & ~nocare) + nocare + 1; 1196 zc->zc_cd = 0; 1197 if (l->l_phys->l_hdr.lh_prefix_len == 0 || zc->zc_hash == 0) { 1198 zc->zc_hash = -1ULL; 1199 } else { 1200 zap_put_leaf(zc->zc_leaf); 1201 zc->zc_leaf = NULL; 1202 goto again; 1203 } 1204 } 1205 1206 if (err == 0) { 1207 zc->zc_hash = zeh.zeh_hash; 1208 zc->zc_cd = zeh.zeh_cd; 1209 za->za_integer_length = zeh.zeh_integer_size; 1210 za->za_num_integers = zeh.zeh_num_integers; 1211 if (zeh.zeh_num_integers == 0) { 1212 za->za_first_integer = 0; 1213 } else { 1214 err = zap_entry_read(&zeh, 8, 1, &za->za_first_integer); 1215 ASSERT(err == 0 || err == EOVERFLOW); 1216 } 1217 err = zap_entry_read_name(zap, &zeh, 1218 sizeof (za->za_name), za->za_name); 1219 ASSERT(err == 0); 1220 1221 za->za_normalization_conflict = 1222 zap_entry_normalization_conflict(&zeh, 1223 NULL, za->za_name, zap); 1224 } 1225 rw_exit(&zc->zc_leaf->l_rwlock); 1226 return (err); 1227 } 1228 1229 static void 1230 zap_stats_ptrtbl(zap_t *zap, uint64_t *tbl, int len, zap_stats_t *zs) 1231 { 1232 int i, err; 1233 uint64_t lastblk = 0; 1234 1235 /* 1236 * NB: if a leaf has more pointers than an entire ptrtbl block 1237 * can hold, then it'll be accounted for more than once, since 1238 * we won't have lastblk. 1239 */ 1240 for (i = 0; i < len; i++) { 1241 zap_leaf_t *l; 1242 1243 if (tbl[i] == lastblk) 1244 continue; 1245 lastblk = tbl[i]; 1246 1247 err = zap_get_leaf_byblk(zap, tbl[i], NULL, RW_READER, &l); 1248 if (err == 0) { 1249 zap_leaf_stats(zap, l, zs); 1250 zap_put_leaf(l); 1251 } 1252 } 1253 } 1254 1255 void 1256 fzap_get_stats(zap_t *zap, zap_stats_t *zs) 1257 { 1258 int bs = FZAP_BLOCK_SHIFT(zap); 1259 zs->zs_blocksize = 1ULL << bs; 1260 1261 /* 1262 * Set zap_phys_t fields 1263 */ 1264 zs->zs_num_leafs = zap->zap_f.zap_phys->zap_num_leafs; 1265 zs->zs_num_entries = zap->zap_f.zap_phys->zap_num_entries; 1266 zs->zs_num_blocks = zap->zap_f.zap_phys->zap_freeblk; 1267 zs->zs_block_type = zap->zap_f.zap_phys->zap_block_type; 1268 zs->zs_magic = zap->zap_f.zap_phys->zap_magic; 1269 zs->zs_salt = zap->zap_f.zap_phys->zap_salt; 1270 1271 /* 1272 * Set zap_ptrtbl fields 1273 */ 1274 zs->zs_ptrtbl_len = 1ULL << zap->zap_f.zap_phys->zap_ptrtbl.zt_shift; 1275 zs->zs_ptrtbl_nextblk = zap->zap_f.zap_phys->zap_ptrtbl.zt_nextblk; 1276 zs->zs_ptrtbl_blks_copied = 1277 zap->zap_f.zap_phys->zap_ptrtbl.zt_blks_copied; 1278 zs->zs_ptrtbl_zt_blk = zap->zap_f.zap_phys->zap_ptrtbl.zt_blk; 1279 zs->zs_ptrtbl_zt_numblks = zap->zap_f.zap_phys->zap_ptrtbl.zt_numblks; 1280 zs->zs_ptrtbl_zt_shift = zap->zap_f.zap_phys->zap_ptrtbl.zt_shift; 1281 1282 if (zap->zap_f.zap_phys->zap_ptrtbl.zt_numblks == 0) { 1283 /* the ptrtbl is entirely in the header block. */ 1284 zap_stats_ptrtbl(zap, &ZAP_EMBEDDED_PTRTBL_ENT(zap, 0), 1285 1 << ZAP_EMBEDDED_PTRTBL_SHIFT(zap), zs); 1286 } else { 1287 int b; 1288 1289 dmu_prefetch(zap->zap_objset, zap->zap_object, 1290 zap->zap_f.zap_phys->zap_ptrtbl.zt_blk << bs, 1291 zap->zap_f.zap_phys->zap_ptrtbl.zt_numblks << bs); 1292 1293 for (b = 0; b < zap->zap_f.zap_phys->zap_ptrtbl.zt_numblks; 1294 b++) { 1295 dmu_buf_t *db; 1296 int err; 1297 1298 err = dmu_buf_hold(zap->zap_objset, zap->zap_object, 1299 (zap->zap_f.zap_phys->zap_ptrtbl.zt_blk + b) << bs, 1300 FTAG, &db, DMU_READ_NO_PREFETCH); 1301 if (err == 0) { 1302 zap_stats_ptrtbl(zap, db->db_data, 1303 1<<(bs-3), zs); 1304 dmu_buf_rele(db, FTAG); 1305 } 1306 } 1307 } 1308 } 1309 1310 int 1311 fzap_count_write(zap_name_t *zn, int add, uint64_t *towrite, 1312 uint64_t *tooverwrite) 1313 { 1314 zap_t *zap = zn->zn_zap; 1315 zap_leaf_t *l; 1316 int err; 1317 1318 /* 1319 * Account for the header block of the fatzap. 1320 */ 1321 if (!add && dmu_buf_freeable(zap->zap_dbuf)) { 1322 *tooverwrite += zap->zap_dbuf->db_size; 1323 } else { 1324 *towrite += zap->zap_dbuf->db_size; 1325 } 1326 1327 /* 1328 * Account for the pointer table blocks. 1329 * If we are adding we need to account for the following cases : 1330 * - If the pointer table is embedded, this operation could force an 1331 * external pointer table. 1332 * - If this already has an external pointer table this operation 1333 * could extend the table. 1334 */ 1335 if (add) { 1336 if (zap->zap_f.zap_phys->zap_ptrtbl.zt_blk == 0) 1337 *towrite += zap->zap_dbuf->db_size; 1338 else 1339 *towrite += (zap->zap_dbuf->db_size * 3); 1340 } 1341 1342 /* 1343 * Now, check if the block containing leaf is freeable 1344 * and account accordingly. 1345 */ 1346 err = zap_deref_leaf(zap, zn->zn_hash, NULL, RW_READER, &l); 1347 if (err != 0) { 1348 return (err); 1349 } 1350 1351 if (!add && dmu_buf_freeable(l->l_dbuf)) { 1352 *tooverwrite += l->l_dbuf->db_size; 1353 } else { 1354 /* 1355 * If this an add operation, the leaf block could split. 1356 * Hence, we need to account for an additional leaf block. 1357 */ 1358 *towrite += (add ? 2 : 1) * l->l_dbuf->db_size; 1359 } 1360 1361 zap_put_leaf(l); 1362 return (0); 1363 } 1364