xref: /illumos-gate/usr/src/uts/common/fs/zfs/zfs_rlock.c (revision 9fa718d2)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * Copyright (c) 2012 by Delphix. All rights reserved.
28  */
29 
30 
31 
32 /*
33  * This file contains the code to implement file range locking in
34  * ZFS, although there isn't much specific to ZFS (all that comes to mind
35  * support for growing the blocksize).
36  *
37  * Interface
38  * ---------
39  * Defined in zfs_rlock.h but essentially:
40  *	rl = zfs_range_lock(zp, off, len, lock_type);
41  *	zfs_range_unlock(rl);
42  *	zfs_range_reduce(rl, off, len);
43  *
44  * AVL tree
45  * --------
46  * An AVL tree is used to maintain the state of the existing ranges
47  * that are locked for exclusive (writer) or shared (reader) use.
48  * The starting range offset is used for searching and sorting the tree.
49  *
50  * Common case
51  * -----------
52  * The (hopefully) usual case is of no overlaps or contention for
53  * locks. On entry to zfs_lock_range() a rl_t is allocated; the tree
54  * searched that finds no overlap, and *this* rl_t is placed in the tree.
55  *
56  * Overlaps/Reference counting/Proxy locks
57  * ---------------------------------------
58  * The avl code only allows one node at a particular offset. Also it's very
59  * inefficient to search through all previous entries looking for overlaps
60  * (because the very 1st in the ordered list might be at offset 0 but
61  * cover the whole file).
62  * So this implementation uses reference counts and proxy range locks.
63  * Firstly, only reader locks use reference counts and proxy locks,
64  * because writer locks are exclusive.
65  * When a reader lock overlaps with another then a proxy lock is created
66  * for that range and replaces the original lock. If the overlap
67  * is exact then the reference count of the proxy is simply incremented.
68  * Otherwise, the proxy lock is split into smaller lock ranges and
69  * new proxy locks created for non overlapping ranges.
70  * The reference counts are adjusted accordingly.
71  * Meanwhile, the orginal lock is kept around (this is the callers handle)
72  * and its offset and length are used when releasing the lock.
73  *
74  * Thread coordination
75  * -------------------
76  * In order to make wakeups efficient and to ensure multiple continuous
77  * readers on a range don't starve a writer for the same range lock,
78  * two condition variables are allocated in each rl_t.
79  * If a writer (or reader) can't get a range it initialises the writer
80  * (or reader) cv; sets a flag saying there's a writer (or reader) waiting;
81  * and waits on that cv. When a thread unlocks that range it wakes up all
82  * writers then all readers before destroying the lock.
83  *
84  * Append mode writes
85  * ------------------
86  * Append mode writes need to lock a range at the end of a file.
87  * The offset of the end of the file is determined under the
88  * range locking mutex, and the lock type converted from RL_APPEND to
89  * RL_WRITER and the range locked.
90  *
91  * Grow block handling
92  * -------------------
93  * ZFS supports multiple block sizes currently upto 128K. The smallest
94  * block size is used for the file which is grown as needed. During this
95  * growth all other writers and readers must be excluded.
96  * So if the block size needs to be grown then the whole file is
97  * exclusively locked, then later the caller will reduce the lock
98  * range to just the range to be written using zfs_reduce_range.
99  */
100 
101 #include <sys/zfs_rlock.h>
102 
103 /*
104  * Check if a write lock can be grabbed, or wait and recheck until available.
105  */
106 static void
107 zfs_range_lock_writer(znode_t *zp, rl_t *new)
108 {
109 	avl_tree_t *tree = &zp->z_range_avl;
110 	rl_t *rl;
111 	avl_index_t where;
112 	uint64_t end_size;
113 	uint64_t off = new->r_off;
114 	uint64_t len = new->r_len;
115 
116 	for (;;) {
117 		/*
118 		 * Range locking is also used by zvol and uses a
119 		 * dummied up znode. However, for zvol, we don't need to
120 		 * append or grow blocksize, and besides we don't have
121 		 * a "sa" data or z_zfsvfs - so skip that processing.
122 		 *
123 		 * Yes, this is ugly, and would be solved by not handling
124 		 * grow or append in range lock code. If that was done then
125 		 * we could make the range locking code generically available
126 		 * to other non-zfs consumers.
127 		 */
128 		if (zp->z_vnode) { /* caller is ZPL */
129 			/*
130 			 * If in append mode pick up the current end of file.
131 			 * This is done under z_range_lock to avoid races.
132 			 */
133 			if (new->r_type == RL_APPEND)
134 				new->r_off = zp->z_size;
135 
136 			/*
137 			 * If we need to grow the block size then grab the whole
138 			 * file range. This is also done under z_range_lock to
139 			 * avoid races.
140 			 */
141 			end_size = MAX(zp->z_size, new->r_off + len);
142 			if (end_size > zp->z_blksz && (!ISP2(zp->z_blksz) ||
143 			    zp->z_blksz < zp->z_zfsvfs->z_max_blksz)) {
144 				new->r_off = 0;
145 				new->r_len = UINT64_MAX;
146 			}
147 		}
148 
149 		/*
150 		 * First check for the usual case of no locks
151 		 */
152 		if (avl_numnodes(tree) == 0) {
153 			new->r_type = RL_WRITER; /* convert to writer */
154 			avl_add(tree, new);
155 			return;
156 		}
157 
158 		/*
159 		 * Look for any locks in the range.
160 		 */
161 		rl = avl_find(tree, new, &where);
162 		if (rl)
163 			goto wait; /* already locked at same offset */
164 
165 		rl = (rl_t *)avl_nearest(tree, where, AVL_AFTER);
166 		if (rl && (rl->r_off < new->r_off + new->r_len))
167 			goto wait;
168 
169 		rl = (rl_t *)avl_nearest(tree, where, AVL_BEFORE);
170 		if (rl && rl->r_off + rl->r_len > new->r_off)
171 			goto wait;
172 
173 		new->r_type = RL_WRITER; /* convert possible RL_APPEND */
174 		avl_insert(tree, new, where);
175 		return;
176 wait:
177 		if (!rl->r_write_wanted) {
178 			cv_init(&rl->r_wr_cv, NULL, CV_DEFAULT, NULL);
179 			rl->r_write_wanted = B_TRUE;
180 		}
181 		cv_wait(&rl->r_wr_cv, &zp->z_range_lock);
182 
183 		/* reset to original */
184 		new->r_off = off;
185 		new->r_len = len;
186 	}
187 }
188 
189 /*
190  * If this is an original (non-proxy) lock then replace it by
191  * a proxy and return the proxy.
192  */
193 static rl_t *
194 zfs_range_proxify(avl_tree_t *tree, rl_t *rl)
195 {
196 	rl_t *proxy;
197 
198 	if (rl->r_proxy)
199 		return (rl); /* already a proxy */
200 
201 	ASSERT3U(rl->r_cnt, ==, 1);
202 	ASSERT(rl->r_write_wanted == B_FALSE);
203 	ASSERT(rl->r_read_wanted == B_FALSE);
204 	avl_remove(tree, rl);
205 	rl->r_cnt = 0;
206 
207 	/* create a proxy range lock */
208 	proxy = kmem_alloc(sizeof (rl_t), KM_SLEEP);
209 	proxy->r_off = rl->r_off;
210 	proxy->r_len = rl->r_len;
211 	proxy->r_cnt = 1;
212 	proxy->r_type = RL_READER;
213 	proxy->r_proxy = B_TRUE;
214 	proxy->r_write_wanted = B_FALSE;
215 	proxy->r_read_wanted = B_FALSE;
216 	avl_add(tree, proxy);
217 
218 	return (proxy);
219 }
220 
221 /*
222  * Split the range lock at the supplied offset
223  * returning the *front* proxy.
224  */
225 static rl_t *
226 zfs_range_split(avl_tree_t *tree, rl_t *rl, uint64_t off)
227 {
228 	rl_t *front, *rear;
229 
230 	ASSERT3U(rl->r_len, >, 1);
231 	ASSERT3U(off, >, rl->r_off);
232 	ASSERT3U(off, <, rl->r_off + rl->r_len);
233 	ASSERT(rl->r_write_wanted == B_FALSE);
234 	ASSERT(rl->r_read_wanted == B_FALSE);
235 
236 	/* create the rear proxy range lock */
237 	rear = kmem_alloc(sizeof (rl_t), KM_SLEEP);
238 	rear->r_off = off;
239 	rear->r_len = rl->r_off + rl->r_len - off;
240 	rear->r_cnt = rl->r_cnt;
241 	rear->r_type = RL_READER;
242 	rear->r_proxy = B_TRUE;
243 	rear->r_write_wanted = B_FALSE;
244 	rear->r_read_wanted = B_FALSE;
245 
246 	front = zfs_range_proxify(tree, rl);
247 	front->r_len = off - rl->r_off;
248 
249 	avl_insert_here(tree, rear, front, AVL_AFTER);
250 	return (front);
251 }
252 
253 /*
254  * Create and add a new proxy range lock for the supplied range.
255  */
256 static void
257 zfs_range_new_proxy(avl_tree_t *tree, uint64_t off, uint64_t len)
258 {
259 	rl_t *rl;
260 
261 	ASSERT(len);
262 	rl = kmem_alloc(sizeof (rl_t), KM_SLEEP);
263 	rl->r_off = off;
264 	rl->r_len = len;
265 	rl->r_cnt = 1;
266 	rl->r_type = RL_READER;
267 	rl->r_proxy = B_TRUE;
268 	rl->r_write_wanted = B_FALSE;
269 	rl->r_read_wanted = B_FALSE;
270 	avl_add(tree, rl);
271 }
272 
273 static void
274 zfs_range_add_reader(avl_tree_t *tree, rl_t *new, rl_t *prev, avl_index_t where)
275 {
276 	rl_t *next;
277 	uint64_t off = new->r_off;
278 	uint64_t len = new->r_len;
279 
280 	/*
281 	 * prev arrives either:
282 	 * - pointing to an entry at the same offset
283 	 * - pointing to the entry with the closest previous offset whose
284 	 *   range may overlap with the new range
285 	 * - null, if there were no ranges starting before the new one
286 	 */
287 	if (prev) {
288 		if (prev->r_off + prev->r_len <= off) {
289 			prev = NULL;
290 		} else if (prev->r_off != off) {
291 			/*
292 			 * convert to proxy if needed then
293 			 * split this entry and bump ref count
294 			 */
295 			prev = zfs_range_split(tree, prev, off);
296 			prev = AVL_NEXT(tree, prev); /* move to rear range */
297 		}
298 	}
299 	ASSERT((prev == NULL) || (prev->r_off == off));
300 
301 	if (prev)
302 		next = prev;
303 	else
304 		next = (rl_t *)avl_nearest(tree, where, AVL_AFTER);
305 
306 	if (next == NULL || off + len <= next->r_off) {
307 		/* no overlaps, use the original new rl_t in the tree */
308 		avl_insert(tree, new, where);
309 		return;
310 	}
311 
312 	if (off < next->r_off) {
313 		/* Add a proxy for initial range before the overlap */
314 		zfs_range_new_proxy(tree, off, next->r_off - off);
315 	}
316 
317 	new->r_cnt = 0; /* will use proxies in tree */
318 	/*
319 	 * We now search forward through the ranges, until we go past the end
320 	 * of the new range. For each entry we make it a proxy if it
321 	 * isn't already, then bump its reference count. If there's any
322 	 * gaps between the ranges then we create a new proxy range.
323 	 */
324 	for (prev = NULL; next; prev = next, next = AVL_NEXT(tree, next)) {
325 		if (off + len <= next->r_off)
326 			break;
327 		if (prev && prev->r_off + prev->r_len < next->r_off) {
328 			/* there's a gap */
329 			ASSERT3U(next->r_off, >, prev->r_off + prev->r_len);
330 			zfs_range_new_proxy(tree, prev->r_off + prev->r_len,
331 			    next->r_off - (prev->r_off + prev->r_len));
332 		}
333 		if (off + len == next->r_off + next->r_len) {
334 			/* exact overlap with end */
335 			next = zfs_range_proxify(tree, next);
336 			next->r_cnt++;
337 			return;
338 		}
339 		if (off + len < next->r_off + next->r_len) {
340 			/* new range ends in the middle of this block */
341 			next = zfs_range_split(tree, next, off + len);
342 			next->r_cnt++;
343 			return;
344 		}
345 		ASSERT3U(off + len, >, next->r_off + next->r_len);
346 		next = zfs_range_proxify(tree, next);
347 		next->r_cnt++;
348 	}
349 
350 	/* Add the remaining end range. */
351 	zfs_range_new_proxy(tree, prev->r_off + prev->r_len,
352 	    (off + len) - (prev->r_off + prev->r_len));
353 }
354 
355 /*
356  * Check if a reader lock can be grabbed, or wait and recheck until available.
357  */
358 static void
359 zfs_range_lock_reader(znode_t *zp, rl_t *new)
360 {
361 	avl_tree_t *tree = &zp->z_range_avl;
362 	rl_t *prev, *next;
363 	avl_index_t where;
364 	uint64_t off = new->r_off;
365 	uint64_t len = new->r_len;
366 
367 	/*
368 	 * Look for any writer locks in the range.
369 	 */
370 retry:
371 	prev = avl_find(tree, new, &where);
372 	if (prev == NULL)
373 		prev = (rl_t *)avl_nearest(tree, where, AVL_BEFORE);
374 
375 	/*
376 	 * Check the previous range for a writer lock overlap.
377 	 */
378 	if (prev && (off < prev->r_off + prev->r_len)) {
379 		if ((prev->r_type == RL_WRITER) || (prev->r_write_wanted)) {
380 			if (!prev->r_read_wanted) {
381 				cv_init(&prev->r_rd_cv, NULL, CV_DEFAULT, NULL);
382 				prev->r_read_wanted = B_TRUE;
383 			}
384 			cv_wait(&prev->r_rd_cv, &zp->z_range_lock);
385 			goto retry;
386 		}
387 		if (off + len < prev->r_off + prev->r_len)
388 			goto got_lock;
389 	}
390 
391 	/*
392 	 * Search through the following ranges to see if there's
393 	 * write lock any overlap.
394 	 */
395 	if (prev)
396 		next = AVL_NEXT(tree, prev);
397 	else
398 		next = (rl_t *)avl_nearest(tree, where, AVL_AFTER);
399 	for (; next; next = AVL_NEXT(tree, next)) {
400 		if (off + len <= next->r_off)
401 			goto got_lock;
402 		if ((next->r_type == RL_WRITER) || (next->r_write_wanted)) {
403 			if (!next->r_read_wanted) {
404 				cv_init(&next->r_rd_cv, NULL, CV_DEFAULT, NULL);
405 				next->r_read_wanted = B_TRUE;
406 			}
407 			cv_wait(&next->r_rd_cv, &zp->z_range_lock);
408 			goto retry;
409 		}
410 		if (off + len <= next->r_off + next->r_len)
411 			goto got_lock;
412 	}
413 
414 got_lock:
415 	/*
416 	 * Add the read lock, which may involve splitting existing
417 	 * locks and bumping ref counts (r_cnt).
418 	 */
419 	zfs_range_add_reader(tree, new, prev, where);
420 }
421 
422 /*
423  * Lock a range (offset, length) as either shared (RL_READER)
424  * or exclusive (RL_WRITER). Returns the range lock structure
425  * for later unlocking or reduce range (if entire file
426  * previously locked as RL_WRITER).
427  */
428 rl_t *
429 zfs_range_lock(znode_t *zp, uint64_t off, uint64_t len, rl_type_t type)
430 {
431 	rl_t *new;
432 
433 	ASSERT(type == RL_READER || type == RL_WRITER || type == RL_APPEND);
434 
435 	new = kmem_alloc(sizeof (rl_t), KM_SLEEP);
436 	new->r_zp = zp;
437 	new->r_off = off;
438 	if (len + off < off)	/* overflow */
439 		len = UINT64_MAX - off;
440 	new->r_len = len;
441 	new->r_cnt = 1; /* assume it's going to be in the tree */
442 	new->r_type = type;
443 	new->r_proxy = B_FALSE;
444 	new->r_write_wanted = B_FALSE;
445 	new->r_read_wanted = B_FALSE;
446 
447 	mutex_enter(&zp->z_range_lock);
448 	if (type == RL_READER) {
449 		/*
450 		 * First check for the usual case of no locks
451 		 */
452 		if (avl_numnodes(&zp->z_range_avl) == 0)
453 			avl_add(&zp->z_range_avl, new);
454 		else
455 			zfs_range_lock_reader(zp, new);
456 	} else
457 		zfs_range_lock_writer(zp, new); /* RL_WRITER or RL_APPEND */
458 	mutex_exit(&zp->z_range_lock);
459 	return (new);
460 }
461 
462 /*
463  * Unlock a reader lock
464  */
465 static void
466 zfs_range_unlock_reader(znode_t *zp, rl_t *remove)
467 {
468 	avl_tree_t *tree = &zp->z_range_avl;
469 	rl_t *rl, *next;
470 	uint64_t len;
471 
472 	/*
473 	 * The common case is when the remove entry is in the tree
474 	 * (cnt == 1) meaning there's been no other reader locks overlapping
475 	 * with this one. Otherwise the remove entry will have been
476 	 * removed from the tree and replaced by proxies (one or
477 	 * more ranges mapping to the entire range).
478 	 */
479 	if (remove->r_cnt == 1) {
480 		avl_remove(tree, remove);
481 		if (remove->r_write_wanted) {
482 			cv_broadcast(&remove->r_wr_cv);
483 			cv_destroy(&remove->r_wr_cv);
484 		}
485 		if (remove->r_read_wanted) {
486 			cv_broadcast(&remove->r_rd_cv);
487 			cv_destroy(&remove->r_rd_cv);
488 		}
489 	} else {
490 		ASSERT0(remove->r_cnt);
491 		ASSERT0(remove->r_write_wanted);
492 		ASSERT0(remove->r_read_wanted);
493 		/*
494 		 * Find start proxy representing this reader lock,
495 		 * then decrement ref count on all proxies
496 		 * that make up this range, freeing them as needed.
497 		 */
498 		rl = avl_find(tree, remove, NULL);
499 		ASSERT(rl);
500 		ASSERT(rl->r_cnt);
501 		ASSERT(rl->r_type == RL_READER);
502 		for (len = remove->r_len; len != 0; rl = next) {
503 			len -= rl->r_len;
504 			if (len) {
505 				next = AVL_NEXT(tree, rl);
506 				ASSERT(next);
507 				ASSERT(rl->r_off + rl->r_len == next->r_off);
508 				ASSERT(next->r_cnt);
509 				ASSERT(next->r_type == RL_READER);
510 			}
511 			rl->r_cnt--;
512 			if (rl->r_cnt == 0) {
513 				avl_remove(tree, rl);
514 				if (rl->r_write_wanted) {
515 					cv_broadcast(&rl->r_wr_cv);
516 					cv_destroy(&rl->r_wr_cv);
517 				}
518 				if (rl->r_read_wanted) {
519 					cv_broadcast(&rl->r_rd_cv);
520 					cv_destroy(&rl->r_rd_cv);
521 				}
522 				kmem_free(rl, sizeof (rl_t));
523 			}
524 		}
525 	}
526 	kmem_free(remove, sizeof (rl_t));
527 }
528 
529 /*
530  * Unlock range and destroy range lock structure.
531  */
532 void
533 zfs_range_unlock(rl_t *rl)
534 {
535 	znode_t *zp = rl->r_zp;
536 
537 	ASSERT(rl->r_type == RL_WRITER || rl->r_type == RL_READER);
538 	ASSERT(rl->r_cnt == 1 || rl->r_cnt == 0);
539 	ASSERT(!rl->r_proxy);
540 
541 	mutex_enter(&zp->z_range_lock);
542 	if (rl->r_type == RL_WRITER) {
543 		/* writer locks can't be shared or split */
544 		avl_remove(&zp->z_range_avl, rl);
545 		mutex_exit(&zp->z_range_lock);
546 		if (rl->r_write_wanted) {
547 			cv_broadcast(&rl->r_wr_cv);
548 			cv_destroy(&rl->r_wr_cv);
549 		}
550 		if (rl->r_read_wanted) {
551 			cv_broadcast(&rl->r_rd_cv);
552 			cv_destroy(&rl->r_rd_cv);
553 		}
554 		kmem_free(rl, sizeof (rl_t));
555 	} else {
556 		/*
557 		 * lock may be shared, let zfs_range_unlock_reader()
558 		 * release the lock and free the rl_t
559 		 */
560 		zfs_range_unlock_reader(zp, rl);
561 		mutex_exit(&zp->z_range_lock);
562 	}
563 }
564 
565 /*
566  * Reduce range locked as RL_WRITER from whole file to specified range.
567  * Asserts the whole file is exclusivly locked and so there's only one
568  * entry in the tree.
569  */
570 void
571 zfs_range_reduce(rl_t *rl, uint64_t off, uint64_t len)
572 {
573 	znode_t *zp = rl->r_zp;
574 
575 	/* Ensure there are no other locks */
576 	ASSERT(avl_numnodes(&zp->z_range_avl) == 1);
577 	ASSERT(rl->r_off == 0);
578 	ASSERT(rl->r_type == RL_WRITER);
579 	ASSERT(!rl->r_proxy);
580 	ASSERT3U(rl->r_len, ==, UINT64_MAX);
581 	ASSERT3U(rl->r_cnt, ==, 1);
582 
583 	mutex_enter(&zp->z_range_lock);
584 	rl->r_off = off;
585 	rl->r_len = len;
586 	mutex_exit(&zp->z_range_lock);
587 	if (rl->r_write_wanted)
588 		cv_broadcast(&rl->r_wr_cv);
589 	if (rl->r_read_wanted)
590 		cv_broadcast(&rl->r_rd_cv);
591 }
592 
593 /*
594  * AVL comparison function used to order range locks
595  * Locks are ordered on the start offset of the range.
596  */
597 int
598 zfs_range_compare(const void *arg1, const void *arg2)
599 {
600 	const rl_t *rl1 = arg1;
601 	const rl_t *rl2 = arg2;
602 
603 	if (rl1->r_off > rl2->r_off)
604 		return (1);
605 	if (rl1->r_off < rl2->r_off)
606 		return (-1);
607 	return (0);
608 }
609