1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 */ 24 25 /* Portions Copyright 2010 Robert Milkowski */ 26 27 #include <sys/types.h> 28 #include <sys/param.h> 29 #include <sys/systm.h> 30 #include <sys/sysmacros.h> 31 #include <sys/kmem.h> 32 #include <sys/pathname.h> 33 #include <sys/vnode.h> 34 #include <sys/vfs.h> 35 #include <sys/vfs_opreg.h> 36 #include <sys/mntent.h> 37 #include <sys/mount.h> 38 #include <sys/cmn_err.h> 39 #include "fs/fs_subr.h" 40 #include <sys/zfs_znode.h> 41 #include <sys/zfs_dir.h> 42 #include <sys/zil.h> 43 #include <sys/fs/zfs.h> 44 #include <sys/dmu.h> 45 #include <sys/dsl_prop.h> 46 #include <sys/dsl_dataset.h> 47 #include <sys/dsl_deleg.h> 48 #include <sys/spa.h> 49 #include <sys/zap.h> 50 #include <sys/sa.h> 51 #include <sys/varargs.h> 52 #include <sys/policy.h> 53 #include <sys/atomic.h> 54 #include <sys/mkdev.h> 55 #include <sys/modctl.h> 56 #include <sys/refstr.h> 57 #include <sys/zfs_ioctl.h> 58 #include <sys/zfs_ctldir.h> 59 #include <sys/zfs_fuid.h> 60 #include <sys/bootconf.h> 61 #include <sys/sunddi.h> 62 #include <sys/dnlc.h> 63 #include <sys/dmu_objset.h> 64 #include <sys/spa_boot.h> 65 #include <sys/sa.h> 66 #include "zfs_comutil.h" 67 68 int zfsfstype; 69 vfsops_t *zfs_vfsops = NULL; 70 static major_t zfs_major; 71 static minor_t zfs_minor; 72 static kmutex_t zfs_dev_mtx; 73 74 extern int sys_shutdown; 75 76 static int zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr); 77 static int zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr); 78 static int zfs_mountroot(vfs_t *vfsp, enum whymountroot); 79 static int zfs_root(vfs_t *vfsp, vnode_t **vpp); 80 static int zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp); 81 static int zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp); 82 static void zfs_freevfs(vfs_t *vfsp); 83 84 static const fs_operation_def_t zfs_vfsops_template[] = { 85 VFSNAME_MOUNT, { .vfs_mount = zfs_mount }, 86 VFSNAME_MOUNTROOT, { .vfs_mountroot = zfs_mountroot }, 87 VFSNAME_UNMOUNT, { .vfs_unmount = zfs_umount }, 88 VFSNAME_ROOT, { .vfs_root = zfs_root }, 89 VFSNAME_STATVFS, { .vfs_statvfs = zfs_statvfs }, 90 VFSNAME_SYNC, { .vfs_sync = zfs_sync }, 91 VFSNAME_VGET, { .vfs_vget = zfs_vget }, 92 VFSNAME_FREEVFS, { .vfs_freevfs = zfs_freevfs }, 93 NULL, NULL 94 }; 95 96 static const fs_operation_def_t zfs_vfsops_eio_template[] = { 97 VFSNAME_FREEVFS, { .vfs_freevfs = zfs_freevfs }, 98 NULL, NULL 99 }; 100 101 /* 102 * We need to keep a count of active fs's. 103 * This is necessary to prevent our module 104 * from being unloaded after a umount -f 105 */ 106 static uint32_t zfs_active_fs_count = 0; 107 108 static char *noatime_cancel[] = { MNTOPT_ATIME, NULL }; 109 static char *atime_cancel[] = { MNTOPT_NOATIME, NULL }; 110 static char *noxattr_cancel[] = { MNTOPT_XATTR, NULL }; 111 static char *xattr_cancel[] = { MNTOPT_NOXATTR, NULL }; 112 113 /* 114 * MO_DEFAULT is not used since the default value is determined 115 * by the equivalent property. 116 */ 117 static mntopt_t mntopts[] = { 118 { MNTOPT_NOXATTR, noxattr_cancel, NULL, 0, NULL }, 119 { MNTOPT_XATTR, xattr_cancel, NULL, 0, NULL }, 120 { MNTOPT_NOATIME, noatime_cancel, NULL, 0, NULL }, 121 { MNTOPT_ATIME, atime_cancel, NULL, 0, NULL } 122 }; 123 124 static mntopts_t zfs_mntopts = { 125 sizeof (mntopts) / sizeof (mntopt_t), 126 mntopts 127 }; 128 129 /*ARGSUSED*/ 130 int 131 zfs_sync(vfs_t *vfsp, short flag, cred_t *cr) 132 { 133 /* 134 * Data integrity is job one. We don't want a compromised kernel 135 * writing to the storage pool, so we never sync during panic. 136 */ 137 if (panicstr) 138 return (0); 139 140 /* 141 * SYNC_ATTR is used by fsflush() to force old filesystems like UFS 142 * to sync metadata, which they would otherwise cache indefinitely. 143 * Semantically, the only requirement is that the sync be initiated. 144 * The DMU syncs out txgs frequently, so there's nothing to do. 145 */ 146 if (flag & SYNC_ATTR) 147 return (0); 148 149 if (vfsp != NULL) { 150 /* 151 * Sync a specific filesystem. 152 */ 153 zfsvfs_t *zfsvfs = vfsp->vfs_data; 154 dsl_pool_t *dp; 155 156 ZFS_ENTER(zfsvfs); 157 dp = dmu_objset_pool(zfsvfs->z_os); 158 159 /* 160 * If the system is shutting down, then skip any 161 * filesystems which may exist on a suspended pool. 162 */ 163 if (sys_shutdown && spa_suspended(dp->dp_spa)) { 164 ZFS_EXIT(zfsvfs); 165 return (0); 166 } 167 168 if (zfsvfs->z_log != NULL) 169 zil_commit(zfsvfs->z_log, UINT64_MAX, 0); 170 171 ZFS_EXIT(zfsvfs); 172 } else { 173 /* 174 * Sync all ZFS filesystems. This is what happens when you 175 * run sync(1M). Unlike other filesystems, ZFS honors the 176 * request by waiting for all pools to commit all dirty data. 177 */ 178 spa_sync_allpools(); 179 } 180 181 return (0); 182 } 183 184 static int 185 zfs_create_unique_device(dev_t *dev) 186 { 187 major_t new_major; 188 189 do { 190 ASSERT3U(zfs_minor, <=, MAXMIN32); 191 minor_t start = zfs_minor; 192 do { 193 mutex_enter(&zfs_dev_mtx); 194 if (zfs_minor >= MAXMIN32) { 195 /* 196 * If we're still using the real major 197 * keep out of /dev/zfs and /dev/zvol minor 198 * number space. If we're using a getudev()'ed 199 * major number, we can use all of its minors. 200 */ 201 if (zfs_major == ddi_name_to_major(ZFS_DRIVER)) 202 zfs_minor = ZFS_MIN_MINOR; 203 else 204 zfs_minor = 0; 205 } else { 206 zfs_minor++; 207 } 208 *dev = makedevice(zfs_major, zfs_minor); 209 mutex_exit(&zfs_dev_mtx); 210 } while (vfs_devismounted(*dev) && zfs_minor != start); 211 if (zfs_minor == start) { 212 /* 213 * We are using all ~262,000 minor numbers for the 214 * current major number. Create a new major number. 215 */ 216 if ((new_major = getudev()) == (major_t)-1) { 217 cmn_err(CE_WARN, 218 "zfs_mount: Can't get unique major " 219 "device number."); 220 return (-1); 221 } 222 mutex_enter(&zfs_dev_mtx); 223 zfs_major = new_major; 224 zfs_minor = 0; 225 226 mutex_exit(&zfs_dev_mtx); 227 } else { 228 break; 229 } 230 /* CONSTANTCONDITION */ 231 } while (1); 232 233 return (0); 234 } 235 236 static void 237 atime_changed_cb(void *arg, uint64_t newval) 238 { 239 zfsvfs_t *zfsvfs = arg; 240 241 if (newval == TRUE) { 242 zfsvfs->z_atime = TRUE; 243 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME); 244 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_ATIME, NULL, 0); 245 } else { 246 zfsvfs->z_atime = FALSE; 247 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_ATIME); 248 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME, NULL, 0); 249 } 250 } 251 252 static void 253 xattr_changed_cb(void *arg, uint64_t newval) 254 { 255 zfsvfs_t *zfsvfs = arg; 256 257 if (newval == TRUE) { 258 /* XXX locking on vfs_flag? */ 259 zfsvfs->z_vfs->vfs_flag |= VFS_XATTR; 260 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR); 261 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_XATTR, NULL, 0); 262 } else { 263 /* XXX locking on vfs_flag? */ 264 zfsvfs->z_vfs->vfs_flag &= ~VFS_XATTR; 265 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_XATTR); 266 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR, NULL, 0); 267 } 268 } 269 270 static void 271 blksz_changed_cb(void *arg, uint64_t newval) 272 { 273 zfsvfs_t *zfsvfs = arg; 274 275 if (newval < SPA_MINBLOCKSIZE || 276 newval > SPA_MAXBLOCKSIZE || !ISP2(newval)) 277 newval = SPA_MAXBLOCKSIZE; 278 279 zfsvfs->z_max_blksz = newval; 280 zfsvfs->z_vfs->vfs_bsize = newval; 281 } 282 283 static void 284 readonly_changed_cb(void *arg, uint64_t newval) 285 { 286 zfsvfs_t *zfsvfs = arg; 287 288 if (newval) { 289 /* XXX locking on vfs_flag? */ 290 zfsvfs->z_vfs->vfs_flag |= VFS_RDONLY; 291 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RW); 292 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RO, NULL, 0); 293 } else { 294 /* XXX locking on vfs_flag? */ 295 zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY; 296 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RO); 297 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RW, NULL, 0); 298 } 299 } 300 301 static void 302 devices_changed_cb(void *arg, uint64_t newval) 303 { 304 zfsvfs_t *zfsvfs = arg; 305 306 if (newval == FALSE) { 307 zfsvfs->z_vfs->vfs_flag |= VFS_NODEVICES; 308 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES); 309 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES, NULL, 0); 310 } else { 311 zfsvfs->z_vfs->vfs_flag &= ~VFS_NODEVICES; 312 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES); 313 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES, NULL, 0); 314 } 315 } 316 317 static void 318 setuid_changed_cb(void *arg, uint64_t newval) 319 { 320 zfsvfs_t *zfsvfs = arg; 321 322 if (newval == FALSE) { 323 zfsvfs->z_vfs->vfs_flag |= VFS_NOSETUID; 324 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_SETUID); 325 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID, NULL, 0); 326 } else { 327 zfsvfs->z_vfs->vfs_flag &= ~VFS_NOSETUID; 328 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID); 329 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_SETUID, NULL, 0); 330 } 331 } 332 333 static void 334 exec_changed_cb(void *arg, uint64_t newval) 335 { 336 zfsvfs_t *zfsvfs = arg; 337 338 if (newval == FALSE) { 339 zfsvfs->z_vfs->vfs_flag |= VFS_NOEXEC; 340 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_EXEC); 341 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC, NULL, 0); 342 } else { 343 zfsvfs->z_vfs->vfs_flag &= ~VFS_NOEXEC; 344 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC); 345 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_EXEC, NULL, 0); 346 } 347 } 348 349 /* 350 * The nbmand mount option can be changed at mount time. 351 * We can't allow it to be toggled on live file systems or incorrect 352 * behavior may be seen from cifs clients 353 * 354 * This property isn't registered via dsl_prop_register(), but this callback 355 * will be called when a file system is first mounted 356 */ 357 static void 358 nbmand_changed_cb(void *arg, uint64_t newval) 359 { 360 zfsvfs_t *zfsvfs = arg; 361 if (newval == FALSE) { 362 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND); 363 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND, NULL, 0); 364 } else { 365 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND); 366 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND, NULL, 0); 367 } 368 } 369 370 static void 371 snapdir_changed_cb(void *arg, uint64_t newval) 372 { 373 zfsvfs_t *zfsvfs = arg; 374 375 zfsvfs->z_show_ctldir = newval; 376 } 377 378 static void 379 vscan_changed_cb(void *arg, uint64_t newval) 380 { 381 zfsvfs_t *zfsvfs = arg; 382 383 zfsvfs->z_vscan = newval; 384 } 385 386 static void 387 acl_inherit_changed_cb(void *arg, uint64_t newval) 388 { 389 zfsvfs_t *zfsvfs = arg; 390 391 zfsvfs->z_acl_inherit = newval; 392 } 393 394 static int 395 zfs_register_callbacks(vfs_t *vfsp) 396 { 397 struct dsl_dataset *ds = NULL; 398 objset_t *os = NULL; 399 zfsvfs_t *zfsvfs = NULL; 400 uint64_t nbmand; 401 int readonly, do_readonly = B_FALSE; 402 int setuid, do_setuid = B_FALSE; 403 int exec, do_exec = B_FALSE; 404 int devices, do_devices = B_FALSE; 405 int xattr, do_xattr = B_FALSE; 406 int atime, do_atime = B_FALSE; 407 int error = 0; 408 409 ASSERT(vfsp); 410 zfsvfs = vfsp->vfs_data; 411 ASSERT(zfsvfs); 412 os = zfsvfs->z_os; 413 414 /* 415 * The act of registering our callbacks will destroy any mount 416 * options we may have. In order to enable temporary overrides 417 * of mount options, we stash away the current values and 418 * restore them after we register the callbacks. 419 */ 420 if (vfs_optionisset(vfsp, MNTOPT_RO, NULL)) { 421 readonly = B_TRUE; 422 do_readonly = B_TRUE; 423 } else if (vfs_optionisset(vfsp, MNTOPT_RW, NULL)) { 424 readonly = B_FALSE; 425 do_readonly = B_TRUE; 426 } 427 if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) { 428 devices = B_FALSE; 429 setuid = B_FALSE; 430 do_devices = B_TRUE; 431 do_setuid = B_TRUE; 432 } else { 433 if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL)) { 434 devices = B_FALSE; 435 do_devices = B_TRUE; 436 } else if (vfs_optionisset(vfsp, MNTOPT_DEVICES, NULL)) { 437 devices = B_TRUE; 438 do_devices = B_TRUE; 439 } 440 441 if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL)) { 442 setuid = B_FALSE; 443 do_setuid = B_TRUE; 444 } else if (vfs_optionisset(vfsp, MNTOPT_SETUID, NULL)) { 445 setuid = B_TRUE; 446 do_setuid = B_TRUE; 447 } 448 } 449 if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL)) { 450 exec = B_FALSE; 451 do_exec = B_TRUE; 452 } else if (vfs_optionisset(vfsp, MNTOPT_EXEC, NULL)) { 453 exec = B_TRUE; 454 do_exec = B_TRUE; 455 } 456 if (vfs_optionisset(vfsp, MNTOPT_NOXATTR, NULL)) { 457 xattr = B_FALSE; 458 do_xattr = B_TRUE; 459 } else if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL)) { 460 xattr = B_TRUE; 461 do_xattr = B_TRUE; 462 } 463 if (vfs_optionisset(vfsp, MNTOPT_NOATIME, NULL)) { 464 atime = B_FALSE; 465 do_atime = B_TRUE; 466 } else if (vfs_optionisset(vfsp, MNTOPT_ATIME, NULL)) { 467 atime = B_TRUE; 468 do_atime = B_TRUE; 469 } 470 471 /* 472 * nbmand is a special property. It can only be changed at 473 * mount time. 474 * 475 * This is weird, but it is documented to only be changeable 476 * at mount time. 477 */ 478 if (vfs_optionisset(vfsp, MNTOPT_NONBMAND, NULL)) { 479 nbmand = B_FALSE; 480 } else if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL)) { 481 nbmand = B_TRUE; 482 } else { 483 char osname[MAXNAMELEN]; 484 485 dmu_objset_name(os, osname); 486 if (error = dsl_prop_get_integer(osname, "nbmand", &nbmand, 487 NULL)) { 488 return (error); 489 } 490 } 491 492 /* 493 * Register property callbacks. 494 * 495 * It would probably be fine to just check for i/o error from 496 * the first prop_register(), but I guess I like to go 497 * overboard... 498 */ 499 ds = dmu_objset_ds(os); 500 error = dsl_prop_register(ds, "atime", atime_changed_cb, zfsvfs); 501 error = error ? error : dsl_prop_register(ds, 502 "xattr", xattr_changed_cb, zfsvfs); 503 error = error ? error : dsl_prop_register(ds, 504 "recordsize", blksz_changed_cb, zfsvfs); 505 error = error ? error : dsl_prop_register(ds, 506 "readonly", readonly_changed_cb, zfsvfs); 507 error = error ? error : dsl_prop_register(ds, 508 "devices", devices_changed_cb, zfsvfs); 509 error = error ? error : dsl_prop_register(ds, 510 "setuid", setuid_changed_cb, zfsvfs); 511 error = error ? error : dsl_prop_register(ds, 512 "exec", exec_changed_cb, zfsvfs); 513 error = error ? error : dsl_prop_register(ds, 514 "snapdir", snapdir_changed_cb, zfsvfs); 515 error = error ? error : dsl_prop_register(ds, 516 "aclinherit", acl_inherit_changed_cb, zfsvfs); 517 error = error ? error : dsl_prop_register(ds, 518 "vscan", vscan_changed_cb, zfsvfs); 519 if (error) 520 goto unregister; 521 522 /* 523 * Invoke our callbacks to restore temporary mount options. 524 */ 525 if (do_readonly) 526 readonly_changed_cb(zfsvfs, readonly); 527 if (do_setuid) 528 setuid_changed_cb(zfsvfs, setuid); 529 if (do_exec) 530 exec_changed_cb(zfsvfs, exec); 531 if (do_devices) 532 devices_changed_cb(zfsvfs, devices); 533 if (do_xattr) 534 xattr_changed_cb(zfsvfs, xattr); 535 if (do_atime) 536 atime_changed_cb(zfsvfs, atime); 537 538 nbmand_changed_cb(zfsvfs, nbmand); 539 540 return (0); 541 542 unregister: 543 /* 544 * We may attempt to unregister some callbacks that are not 545 * registered, but this is OK; it will simply return ENOMSG, 546 * which we will ignore. 547 */ 548 (void) dsl_prop_unregister(ds, "atime", atime_changed_cb, zfsvfs); 549 (void) dsl_prop_unregister(ds, "xattr", xattr_changed_cb, zfsvfs); 550 (void) dsl_prop_unregister(ds, "recordsize", blksz_changed_cb, zfsvfs); 551 (void) dsl_prop_unregister(ds, "readonly", readonly_changed_cb, zfsvfs); 552 (void) dsl_prop_unregister(ds, "devices", devices_changed_cb, zfsvfs); 553 (void) dsl_prop_unregister(ds, "setuid", setuid_changed_cb, zfsvfs); 554 (void) dsl_prop_unregister(ds, "exec", exec_changed_cb, zfsvfs); 555 (void) dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb, zfsvfs); 556 (void) dsl_prop_unregister(ds, "aclinherit", acl_inherit_changed_cb, 557 zfsvfs); 558 (void) dsl_prop_unregister(ds, "vscan", vscan_changed_cb, zfsvfs); 559 return (error); 560 561 } 562 563 static int 564 zfs_space_delta_cb(dmu_object_type_t bonustype, void *data, 565 uint64_t *userp, uint64_t *groupp) 566 { 567 znode_phys_t *znp = data; 568 int error = 0; 569 570 /* 571 * Is it a valid type of object to track? 572 */ 573 if (bonustype != DMU_OT_ZNODE && bonustype != DMU_OT_SA) 574 return (ENOENT); 575 576 /* 577 * If we have a NULL data pointer 578 * then assume the id's aren't changing and 579 * return EEXIST to the dmu to let it know to 580 * use the same ids 581 */ 582 if (data == NULL) 583 return (EEXIST); 584 585 if (bonustype == DMU_OT_ZNODE) { 586 *userp = znp->zp_uid; 587 *groupp = znp->zp_gid; 588 } else { 589 int hdrsize; 590 591 ASSERT(bonustype == DMU_OT_SA); 592 hdrsize = sa_hdrsize(data); 593 594 if (hdrsize != 0) { 595 *userp = *((uint64_t *)((uintptr_t)data + hdrsize + 596 SA_UID_OFFSET)); 597 *groupp = *((uint64_t *)((uintptr_t)data + hdrsize + 598 SA_GID_OFFSET)); 599 } else { 600 /* 601 * This should only happen for newly created 602 * files that haven't had the znode data filled 603 * in yet. 604 */ 605 *userp = 0; 606 *groupp = 0; 607 } 608 } 609 return (error); 610 } 611 612 static void 613 fuidstr_to_sid(zfsvfs_t *zfsvfs, const char *fuidstr, 614 char *domainbuf, int buflen, uid_t *ridp) 615 { 616 uint64_t fuid; 617 const char *domain; 618 619 fuid = strtonum(fuidstr, NULL); 620 621 domain = zfs_fuid_find_by_idx(zfsvfs, FUID_INDEX(fuid)); 622 if (domain) 623 (void) strlcpy(domainbuf, domain, buflen); 624 else 625 domainbuf[0] = '\0'; 626 *ridp = FUID_RID(fuid); 627 } 628 629 static uint64_t 630 zfs_userquota_prop_to_obj(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type) 631 { 632 switch (type) { 633 case ZFS_PROP_USERUSED: 634 return (DMU_USERUSED_OBJECT); 635 case ZFS_PROP_GROUPUSED: 636 return (DMU_GROUPUSED_OBJECT); 637 case ZFS_PROP_USERQUOTA: 638 return (zfsvfs->z_userquota_obj); 639 case ZFS_PROP_GROUPQUOTA: 640 return (zfsvfs->z_groupquota_obj); 641 } 642 return (0); 643 } 644 645 int 646 zfs_userspace_many(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type, 647 uint64_t *cookiep, void *vbuf, uint64_t *bufsizep) 648 { 649 int error; 650 zap_cursor_t zc; 651 zap_attribute_t za; 652 zfs_useracct_t *buf = vbuf; 653 uint64_t obj; 654 655 if (!dmu_objset_userspace_present(zfsvfs->z_os)) 656 return (ENOTSUP); 657 658 obj = zfs_userquota_prop_to_obj(zfsvfs, type); 659 if (obj == 0) { 660 *bufsizep = 0; 661 return (0); 662 } 663 664 for (zap_cursor_init_serialized(&zc, zfsvfs->z_os, obj, *cookiep); 665 (error = zap_cursor_retrieve(&zc, &za)) == 0; 666 zap_cursor_advance(&zc)) { 667 if ((uintptr_t)buf - (uintptr_t)vbuf + sizeof (zfs_useracct_t) > 668 *bufsizep) 669 break; 670 671 fuidstr_to_sid(zfsvfs, za.za_name, 672 buf->zu_domain, sizeof (buf->zu_domain), &buf->zu_rid); 673 674 buf->zu_space = za.za_first_integer; 675 buf++; 676 } 677 if (error == ENOENT) 678 error = 0; 679 680 ASSERT3U((uintptr_t)buf - (uintptr_t)vbuf, <=, *bufsizep); 681 *bufsizep = (uintptr_t)buf - (uintptr_t)vbuf; 682 *cookiep = zap_cursor_serialize(&zc); 683 zap_cursor_fini(&zc); 684 return (error); 685 } 686 687 /* 688 * buf must be big enough (eg, 32 bytes) 689 */ 690 static int 691 id_to_fuidstr(zfsvfs_t *zfsvfs, const char *domain, uid_t rid, 692 char *buf, boolean_t addok) 693 { 694 uint64_t fuid; 695 int domainid = 0; 696 697 if (domain && domain[0]) { 698 domainid = zfs_fuid_find_by_domain(zfsvfs, domain, NULL, addok); 699 if (domainid == -1) 700 return (ENOENT); 701 } 702 fuid = FUID_ENCODE(domainid, rid); 703 (void) sprintf(buf, "%llx", (longlong_t)fuid); 704 return (0); 705 } 706 707 int 708 zfs_userspace_one(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type, 709 const char *domain, uint64_t rid, uint64_t *valp) 710 { 711 char buf[32]; 712 int err; 713 uint64_t obj; 714 715 *valp = 0; 716 717 if (!dmu_objset_userspace_present(zfsvfs->z_os)) 718 return (ENOTSUP); 719 720 obj = zfs_userquota_prop_to_obj(zfsvfs, type); 721 if (obj == 0) 722 return (0); 723 724 err = id_to_fuidstr(zfsvfs, domain, rid, buf, B_FALSE); 725 if (err) 726 return (err); 727 728 err = zap_lookup(zfsvfs->z_os, obj, buf, 8, 1, valp); 729 if (err == ENOENT) 730 err = 0; 731 return (err); 732 } 733 734 int 735 zfs_set_userquota(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type, 736 const char *domain, uint64_t rid, uint64_t quota) 737 { 738 char buf[32]; 739 int err; 740 dmu_tx_t *tx; 741 uint64_t *objp; 742 boolean_t fuid_dirtied; 743 744 if (type != ZFS_PROP_USERQUOTA && type != ZFS_PROP_GROUPQUOTA) 745 return (EINVAL); 746 747 if (zfsvfs->z_version < ZPL_VERSION_USERSPACE) 748 return (ENOTSUP); 749 750 objp = (type == ZFS_PROP_USERQUOTA) ? &zfsvfs->z_userquota_obj : 751 &zfsvfs->z_groupquota_obj; 752 753 err = id_to_fuidstr(zfsvfs, domain, rid, buf, B_TRUE); 754 if (err) 755 return (err); 756 fuid_dirtied = zfsvfs->z_fuid_dirty; 757 758 tx = dmu_tx_create(zfsvfs->z_os); 759 dmu_tx_hold_zap(tx, *objp ? *objp : DMU_NEW_OBJECT, B_TRUE, NULL); 760 if (*objp == 0) { 761 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE, 762 zfs_userquota_prop_prefixes[type]); 763 } 764 if (fuid_dirtied) 765 zfs_fuid_txhold(zfsvfs, tx); 766 err = dmu_tx_assign(tx, TXG_WAIT); 767 if (err) { 768 dmu_tx_abort(tx); 769 return (err); 770 } 771 772 mutex_enter(&zfsvfs->z_lock); 773 if (*objp == 0) { 774 *objp = zap_create(zfsvfs->z_os, DMU_OT_USERGROUP_QUOTA, 775 DMU_OT_NONE, 0, tx); 776 VERIFY(0 == zap_add(zfsvfs->z_os, MASTER_NODE_OBJ, 777 zfs_userquota_prop_prefixes[type], 8, 1, objp, tx)); 778 } 779 mutex_exit(&zfsvfs->z_lock); 780 781 if (quota == 0) { 782 err = zap_remove(zfsvfs->z_os, *objp, buf, tx); 783 if (err == ENOENT) 784 err = 0; 785 } else { 786 err = zap_update(zfsvfs->z_os, *objp, buf, 8, 1, "a, tx); 787 } 788 ASSERT(err == 0); 789 if (fuid_dirtied) 790 zfs_fuid_sync(zfsvfs, tx); 791 dmu_tx_commit(tx); 792 return (err); 793 } 794 795 boolean_t 796 zfs_fuid_overquota(zfsvfs_t *zfsvfs, boolean_t isgroup, uint64_t fuid) 797 { 798 char buf[32]; 799 uint64_t used, quota, usedobj, quotaobj; 800 int err; 801 802 usedobj = isgroup ? DMU_GROUPUSED_OBJECT : DMU_USERUSED_OBJECT; 803 quotaobj = isgroup ? zfsvfs->z_groupquota_obj : zfsvfs->z_userquota_obj; 804 805 if (quotaobj == 0 || zfsvfs->z_replay) 806 return (B_FALSE); 807 808 (void) sprintf(buf, "%llx", (longlong_t)fuid); 809 err = zap_lookup(zfsvfs->z_os, quotaobj, buf, 8, 1, "a); 810 if (err != 0) 811 return (B_FALSE); 812 813 err = zap_lookup(zfsvfs->z_os, usedobj, buf, 8, 1, &used); 814 if (err != 0) 815 return (B_FALSE); 816 return (used >= quota); 817 } 818 819 boolean_t 820 zfs_owner_overquota(zfsvfs_t *zfsvfs, znode_t *zp, boolean_t isgroup) 821 { 822 uint64_t fuid; 823 uint64_t quotaobj; 824 uid_t id; 825 826 quotaobj = isgroup ? zfsvfs->z_groupquota_obj : zfsvfs->z_userquota_obj; 827 828 id = isgroup ? zp->z_gid : zp->z_uid; 829 830 if (quotaobj == 0 || zfsvfs->z_replay) 831 return (B_FALSE); 832 833 if (IS_EPHEMERAL(id)) { 834 VERIFY(0 == sa_lookup(zp->z_sa_hdl, 835 isgroup ? SA_ZPL_GID(zfsvfs) : SA_ZPL_UID(zfsvfs), 836 &fuid, sizeof (fuid))); 837 } else { 838 fuid = (uint64_t)id; 839 } 840 841 return (zfs_fuid_overquota(zfsvfs, isgroup, fuid)); 842 } 843 844 int 845 zfsvfs_create(const char *osname, zfsvfs_t **zfvp) 846 { 847 objset_t *os; 848 zfsvfs_t *zfsvfs; 849 uint64_t zval; 850 int i, error; 851 uint64_t sa_obj; 852 853 zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP); 854 855 /* 856 * We claim to always be readonly so we can open snapshots; 857 * other ZPL code will prevent us from writing to snapshots. 858 */ 859 error = dmu_objset_own(osname, DMU_OST_ZFS, B_TRUE, zfsvfs, &os); 860 if (error) { 861 kmem_free(zfsvfs, sizeof (zfsvfs_t)); 862 return (error); 863 } 864 865 /* 866 * Initialize the zfs-specific filesystem structure. 867 * Should probably make this a kmem cache, shuffle fields, 868 * and just bzero up to z_hold_mtx[]. 869 */ 870 zfsvfs->z_vfs = NULL; 871 zfsvfs->z_parent = zfsvfs; 872 zfsvfs->z_max_blksz = SPA_MAXBLOCKSIZE; 873 zfsvfs->z_show_ctldir = ZFS_SNAPDIR_VISIBLE; 874 zfsvfs->z_os = os; 875 876 error = zfs_get_zplprop(os, ZFS_PROP_VERSION, &zfsvfs->z_version); 877 if (error) { 878 goto out; 879 } else if (zfsvfs->z_version > 880 zfs_zpl_version_map(spa_version(dmu_objset_spa(os)))) { 881 (void) printf("Can't mount a version %lld file system " 882 "on a version %lld pool\n. Pool must be upgraded to mount " 883 "this file system.", (u_longlong_t)zfsvfs->z_version, 884 (u_longlong_t)spa_version(dmu_objset_spa(os))); 885 error = ENOTSUP; 886 goto out; 887 } 888 if ((error = zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &zval)) != 0) 889 goto out; 890 zfsvfs->z_norm = (int)zval; 891 892 if ((error = zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &zval)) != 0) 893 goto out; 894 zfsvfs->z_utf8 = (zval != 0); 895 896 if ((error = zfs_get_zplprop(os, ZFS_PROP_CASE, &zval)) != 0) 897 goto out; 898 zfsvfs->z_case = (uint_t)zval; 899 900 /* 901 * Fold case on file systems that are always or sometimes case 902 * insensitive. 903 */ 904 if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE || 905 zfsvfs->z_case == ZFS_CASE_MIXED) 906 zfsvfs->z_norm |= U8_TEXTPREP_TOUPPER; 907 908 zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os); 909 zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os); 910 911 if (zfsvfs->z_use_sa) { 912 /* should either have both of these objects or none */ 913 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1, 914 &sa_obj); 915 if (error) 916 return (error); 917 } else { 918 /* 919 * Pre SA versions file systems should never touch 920 * either the attribute registration or layout objects. 921 */ 922 sa_obj = 0; 923 } 924 925 error = sa_setup(os, sa_obj, zfs_attr_table, ZPL_END, 926 &zfsvfs->z_attr_table); 927 if (error) 928 goto out; 929 930 if (zfsvfs->z_version >= ZPL_VERSION_SA) 931 sa_register_update_callback(os, zfs_sa_upgrade); 932 933 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1, 934 &zfsvfs->z_root); 935 if (error) 936 goto out; 937 ASSERT(zfsvfs->z_root != 0); 938 939 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1, 940 &zfsvfs->z_unlinkedobj); 941 if (error) 942 goto out; 943 944 error = zap_lookup(os, MASTER_NODE_OBJ, 945 zfs_userquota_prop_prefixes[ZFS_PROP_USERQUOTA], 946 8, 1, &zfsvfs->z_userquota_obj); 947 if (error && error != ENOENT) 948 goto out; 949 950 error = zap_lookup(os, MASTER_NODE_OBJ, 951 zfs_userquota_prop_prefixes[ZFS_PROP_GROUPQUOTA], 952 8, 1, &zfsvfs->z_groupquota_obj); 953 if (error && error != ENOENT) 954 goto out; 955 956 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 8, 1, 957 &zfsvfs->z_fuid_obj); 958 if (error && error != ENOENT) 959 goto out; 960 961 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SHARES_DIR, 8, 1, 962 &zfsvfs->z_shares_dir); 963 if (error && error != ENOENT) 964 goto out; 965 966 mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL); 967 mutex_init(&zfsvfs->z_lock, NULL, MUTEX_DEFAULT, NULL); 968 list_create(&zfsvfs->z_all_znodes, sizeof (znode_t), 969 offsetof(znode_t, z_link_node)); 970 rrw_init(&zfsvfs->z_teardown_lock); 971 rw_init(&zfsvfs->z_teardown_inactive_lock, NULL, RW_DEFAULT, NULL); 972 rw_init(&zfsvfs->z_fuid_lock, NULL, RW_DEFAULT, NULL); 973 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++) 974 mutex_init(&zfsvfs->z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL); 975 976 *zfvp = zfsvfs; 977 return (0); 978 979 out: 980 dmu_objset_disown(os, zfsvfs); 981 *zfvp = NULL; 982 kmem_free(zfsvfs, sizeof (zfsvfs_t)); 983 return (error); 984 } 985 986 static int 987 zfsvfs_setup(zfsvfs_t *zfsvfs, boolean_t mounting) 988 { 989 int error; 990 991 error = zfs_register_callbacks(zfsvfs->z_vfs); 992 if (error) 993 return (error); 994 995 /* 996 * Set the objset user_ptr to track its zfsvfs. 997 */ 998 mutex_enter(&zfsvfs->z_os->os_user_ptr_lock); 999 dmu_objset_set_user(zfsvfs->z_os, zfsvfs); 1000 mutex_exit(&zfsvfs->z_os->os_user_ptr_lock); 1001 1002 zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data); 1003 1004 /* 1005 * If we are not mounting (ie: online recv), then we don't 1006 * have to worry about replaying the log as we blocked all 1007 * operations out since we closed the ZIL. 1008 */ 1009 if (mounting) { 1010 boolean_t readonly; 1011 1012 /* 1013 * During replay we remove the read only flag to 1014 * allow replays to succeed. 1015 */ 1016 readonly = zfsvfs->z_vfs->vfs_flag & VFS_RDONLY; 1017 if (readonly != 0) 1018 zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY; 1019 else 1020 zfs_unlinked_drain(zfsvfs); 1021 1022 /* 1023 * Parse and replay the intent log. 1024 * 1025 * Because of ziltest, this must be done after 1026 * zfs_unlinked_drain(). (Further note: ziltest 1027 * doesn't use readonly mounts, where 1028 * zfs_unlinked_drain() isn't called.) This is because 1029 * ziltest causes spa_sync() to think it's committed, 1030 * but actually it is not, so the intent log contains 1031 * many txg's worth of changes. 1032 * 1033 * In particular, if object N is in the unlinked set in 1034 * the last txg to actually sync, then it could be 1035 * actually freed in a later txg and then reallocated 1036 * in a yet later txg. This would write a "create 1037 * object N" record to the intent log. Normally, this 1038 * would be fine because the spa_sync() would have 1039 * written out the fact that object N is free, before 1040 * we could write the "create object N" intent log 1041 * record. 1042 * 1043 * But when we are in ziltest mode, we advance the "open 1044 * txg" without actually spa_sync()-ing the changes to 1045 * disk. So we would see that object N is still 1046 * allocated and in the unlinked set, and there is an 1047 * intent log record saying to allocate it. 1048 */ 1049 if (zil_replay_disable) { 1050 zil_destroy(zfsvfs->z_log, B_FALSE); 1051 } else { 1052 zfsvfs->z_replay = B_TRUE; 1053 zil_replay(zfsvfs->z_os, zfsvfs, zfs_replay_vector); 1054 zfsvfs->z_replay = B_FALSE; 1055 } 1056 zfsvfs->z_vfs->vfs_flag |= readonly; /* restore readonly bit */ 1057 } 1058 1059 return (0); 1060 } 1061 1062 void 1063 zfsvfs_free(zfsvfs_t *zfsvfs) 1064 { 1065 int i; 1066 extern krwlock_t zfsvfs_lock; /* in zfs_znode.c */ 1067 1068 /* 1069 * This is a barrier to prevent the filesystem from going away in 1070 * zfs_znode_move() until we can safely ensure that the filesystem is 1071 * not unmounted. We consider the filesystem valid before the barrier 1072 * and invalid after the barrier. 1073 */ 1074 rw_enter(&zfsvfs_lock, RW_READER); 1075 rw_exit(&zfsvfs_lock); 1076 1077 zfs_fuid_destroy(zfsvfs); 1078 1079 mutex_destroy(&zfsvfs->z_znodes_lock); 1080 mutex_destroy(&zfsvfs->z_lock); 1081 list_destroy(&zfsvfs->z_all_znodes); 1082 rrw_destroy(&zfsvfs->z_teardown_lock); 1083 rw_destroy(&zfsvfs->z_teardown_inactive_lock); 1084 rw_destroy(&zfsvfs->z_fuid_lock); 1085 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++) 1086 mutex_destroy(&zfsvfs->z_hold_mtx[i]); 1087 kmem_free(zfsvfs, sizeof (zfsvfs_t)); 1088 } 1089 1090 static void 1091 zfs_set_fuid_feature(zfsvfs_t *zfsvfs) 1092 { 1093 zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os); 1094 if (zfsvfs->z_use_fuids && zfsvfs->z_vfs) { 1095 vfs_set_feature(zfsvfs->z_vfs, VFSFT_XVATTR); 1096 vfs_set_feature(zfsvfs->z_vfs, VFSFT_SYSATTR_VIEWS); 1097 vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACEMASKONACCESS); 1098 vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACLONCREATE); 1099 vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACCESS_FILTER); 1100 vfs_set_feature(zfsvfs->z_vfs, VFSFT_REPARSE); 1101 } 1102 zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os); 1103 } 1104 1105 static int 1106 zfs_domount(vfs_t *vfsp, char *osname) 1107 { 1108 dev_t mount_dev; 1109 uint64_t recordsize, fsid_guid; 1110 int error = 0; 1111 zfsvfs_t *zfsvfs; 1112 1113 ASSERT(vfsp); 1114 ASSERT(osname); 1115 1116 error = zfsvfs_create(osname, &zfsvfs); 1117 if (error) 1118 return (error); 1119 zfsvfs->z_vfs = vfsp; 1120 1121 /* Initialize the generic filesystem structure. */ 1122 vfsp->vfs_bcount = 0; 1123 vfsp->vfs_data = NULL; 1124 1125 if (zfs_create_unique_device(&mount_dev) == -1) { 1126 error = ENODEV; 1127 goto out; 1128 } 1129 ASSERT(vfs_devismounted(mount_dev) == 0); 1130 1131 if (error = dsl_prop_get_integer(osname, "recordsize", &recordsize, 1132 NULL)) 1133 goto out; 1134 1135 vfsp->vfs_dev = mount_dev; 1136 vfsp->vfs_fstype = zfsfstype; 1137 vfsp->vfs_bsize = recordsize; 1138 vfsp->vfs_flag |= VFS_NOTRUNC; 1139 vfsp->vfs_data = zfsvfs; 1140 1141 /* 1142 * The fsid is 64 bits, composed of an 8-bit fs type, which 1143 * separates our fsid from any other filesystem types, and a 1144 * 56-bit objset unique ID. The objset unique ID is unique to 1145 * all objsets open on this system, provided by unique_create(). 1146 * The 8-bit fs type must be put in the low bits of fsid[1] 1147 * because that's where other Solaris filesystems put it. 1148 */ 1149 fsid_guid = dmu_objset_fsid_guid(zfsvfs->z_os); 1150 ASSERT((fsid_guid & ~((1ULL<<56)-1)) == 0); 1151 vfsp->vfs_fsid.val[0] = fsid_guid; 1152 vfsp->vfs_fsid.val[1] = ((fsid_guid>>32) << 8) | 1153 zfsfstype & 0xFF; 1154 1155 /* 1156 * Set features for file system. 1157 */ 1158 zfs_set_fuid_feature(zfsvfs); 1159 if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE) { 1160 vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS); 1161 vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE); 1162 vfs_set_feature(vfsp, VFSFT_NOCASESENSITIVE); 1163 } else if (zfsvfs->z_case == ZFS_CASE_MIXED) { 1164 vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS); 1165 vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE); 1166 } 1167 vfs_set_feature(vfsp, VFSFT_ZEROCOPY_SUPPORTED); 1168 1169 if (dmu_objset_is_snapshot(zfsvfs->z_os)) { 1170 uint64_t pval; 1171 1172 atime_changed_cb(zfsvfs, B_FALSE); 1173 readonly_changed_cb(zfsvfs, B_TRUE); 1174 if (error = dsl_prop_get_integer(osname, "xattr", &pval, NULL)) 1175 goto out; 1176 xattr_changed_cb(zfsvfs, pval); 1177 zfsvfs->z_issnap = B_TRUE; 1178 1179 mutex_enter(&zfsvfs->z_os->os_user_ptr_lock); 1180 dmu_objset_set_user(zfsvfs->z_os, zfsvfs); 1181 mutex_exit(&zfsvfs->z_os->os_user_ptr_lock); 1182 } else { 1183 error = zfsvfs_setup(zfsvfs, B_TRUE); 1184 } 1185 1186 if (!zfsvfs->z_issnap) 1187 zfsctl_create(zfsvfs); 1188 out: 1189 if (error) { 1190 dmu_objset_disown(zfsvfs->z_os, zfsvfs); 1191 zfsvfs_free(zfsvfs); 1192 } else { 1193 atomic_add_32(&zfs_active_fs_count, 1); 1194 } 1195 1196 return (error); 1197 } 1198 1199 void 1200 zfs_unregister_callbacks(zfsvfs_t *zfsvfs) 1201 { 1202 objset_t *os = zfsvfs->z_os; 1203 struct dsl_dataset *ds; 1204 1205 /* 1206 * Unregister properties. 1207 */ 1208 if (!dmu_objset_is_snapshot(os)) { 1209 ds = dmu_objset_ds(os); 1210 VERIFY(dsl_prop_unregister(ds, "atime", atime_changed_cb, 1211 zfsvfs) == 0); 1212 1213 VERIFY(dsl_prop_unregister(ds, "xattr", xattr_changed_cb, 1214 zfsvfs) == 0); 1215 1216 VERIFY(dsl_prop_unregister(ds, "recordsize", blksz_changed_cb, 1217 zfsvfs) == 0); 1218 1219 VERIFY(dsl_prop_unregister(ds, "readonly", readonly_changed_cb, 1220 zfsvfs) == 0); 1221 1222 VERIFY(dsl_prop_unregister(ds, "devices", devices_changed_cb, 1223 zfsvfs) == 0); 1224 1225 VERIFY(dsl_prop_unregister(ds, "setuid", setuid_changed_cb, 1226 zfsvfs) == 0); 1227 1228 VERIFY(dsl_prop_unregister(ds, "exec", exec_changed_cb, 1229 zfsvfs) == 0); 1230 1231 VERIFY(dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb, 1232 zfsvfs) == 0); 1233 1234 VERIFY(dsl_prop_unregister(ds, "aclinherit", 1235 acl_inherit_changed_cb, zfsvfs) == 0); 1236 1237 VERIFY(dsl_prop_unregister(ds, "vscan", 1238 vscan_changed_cb, zfsvfs) == 0); 1239 } 1240 } 1241 1242 /* 1243 * Convert a decimal digit string to a uint64_t integer. 1244 */ 1245 static int 1246 str_to_uint64(char *str, uint64_t *objnum) 1247 { 1248 uint64_t num = 0; 1249 1250 while (*str) { 1251 if (*str < '0' || *str > '9') 1252 return (EINVAL); 1253 1254 num = num*10 + *str++ - '0'; 1255 } 1256 1257 *objnum = num; 1258 return (0); 1259 } 1260 1261 /* 1262 * The boot path passed from the boot loader is in the form of 1263 * "rootpool-name/root-filesystem-object-number'. Convert this 1264 * string to a dataset name: "rootpool-name/root-filesystem-name". 1265 */ 1266 static int 1267 zfs_parse_bootfs(char *bpath, char *outpath) 1268 { 1269 char *slashp; 1270 uint64_t objnum; 1271 int error; 1272 1273 if (*bpath == 0 || *bpath == '/') 1274 return (EINVAL); 1275 1276 (void) strcpy(outpath, bpath); 1277 1278 slashp = strchr(bpath, '/'); 1279 1280 /* if no '/', just return the pool name */ 1281 if (slashp == NULL) { 1282 return (0); 1283 } 1284 1285 /* if not a number, just return the root dataset name */ 1286 if (str_to_uint64(slashp+1, &objnum)) { 1287 return (0); 1288 } 1289 1290 *slashp = '\0'; 1291 error = dsl_dsobj_to_dsname(bpath, objnum, outpath); 1292 *slashp = '/'; 1293 1294 return (error); 1295 } 1296 1297 /* 1298 * zfs_check_global_label: 1299 * Check that the hex label string is appropriate for the dataset 1300 * being mounted into the global_zone proper. 1301 * 1302 * Return an error if the hex label string is not default or 1303 * admin_low/admin_high. For admin_low labels, the corresponding 1304 * dataset must be readonly. 1305 */ 1306 int 1307 zfs_check_global_label(const char *dsname, const char *hexsl) 1308 { 1309 if (strcasecmp(hexsl, ZFS_MLSLABEL_DEFAULT) == 0) 1310 return (0); 1311 if (strcasecmp(hexsl, ADMIN_HIGH) == 0) 1312 return (0); 1313 if (strcasecmp(hexsl, ADMIN_LOW) == 0) { 1314 /* must be readonly */ 1315 uint64_t rdonly; 1316 1317 if (dsl_prop_get_integer(dsname, 1318 zfs_prop_to_name(ZFS_PROP_READONLY), &rdonly, NULL)) 1319 return (EACCES); 1320 return (rdonly ? 0 : EACCES); 1321 } 1322 return (EACCES); 1323 } 1324 1325 /* 1326 * zfs_mount_label_policy: 1327 * Determine whether the mount is allowed according to MAC check. 1328 * by comparing (where appropriate) label of the dataset against 1329 * the label of the zone being mounted into. If the dataset has 1330 * no label, create one. 1331 * 1332 * Returns: 1333 * 0 : access allowed 1334 * >0 : error code, such as EACCES 1335 */ 1336 static int 1337 zfs_mount_label_policy(vfs_t *vfsp, char *osname) 1338 { 1339 int error, retv; 1340 zone_t *mntzone = NULL; 1341 ts_label_t *mnt_tsl; 1342 bslabel_t *mnt_sl; 1343 bslabel_t ds_sl; 1344 char ds_hexsl[MAXNAMELEN]; 1345 1346 retv = EACCES; /* assume the worst */ 1347 1348 /* 1349 * Start by getting the dataset label if it exists. 1350 */ 1351 error = dsl_prop_get(osname, zfs_prop_to_name(ZFS_PROP_MLSLABEL), 1352 1, sizeof (ds_hexsl), &ds_hexsl, NULL); 1353 if (error) 1354 return (EACCES); 1355 1356 /* 1357 * If labeling is NOT enabled, then disallow the mount of datasets 1358 * which have a non-default label already. No other label checks 1359 * are needed. 1360 */ 1361 if (!is_system_labeled()) { 1362 if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) == 0) 1363 return (0); 1364 return (EACCES); 1365 } 1366 1367 /* 1368 * Get the label of the mountpoint. If mounting into the global 1369 * zone (i.e. mountpoint is not within an active zone and the 1370 * zoned property is off), the label must be default or 1371 * admin_low/admin_high only; no other checks are needed. 1372 */ 1373 mntzone = zone_find_by_any_path(refstr_value(vfsp->vfs_mntpt), B_FALSE); 1374 if (mntzone->zone_id == GLOBAL_ZONEID) { 1375 uint64_t zoned; 1376 1377 zone_rele(mntzone); 1378 1379 if (dsl_prop_get_integer(osname, 1380 zfs_prop_to_name(ZFS_PROP_ZONED), &zoned, NULL)) 1381 return (EACCES); 1382 if (!zoned) 1383 return (zfs_check_global_label(osname, ds_hexsl)); 1384 else 1385 /* 1386 * This is the case of a zone dataset being mounted 1387 * initially, before the zone has been fully created; 1388 * allow this mount into global zone. 1389 */ 1390 return (0); 1391 } 1392 1393 mnt_tsl = mntzone->zone_slabel; 1394 ASSERT(mnt_tsl != NULL); 1395 label_hold(mnt_tsl); 1396 mnt_sl = label2bslabel(mnt_tsl); 1397 1398 if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) == 0) { 1399 /* 1400 * The dataset doesn't have a real label, so fabricate one. 1401 */ 1402 char *str = NULL; 1403 1404 if (l_to_str_internal(mnt_sl, &str) == 0 && 1405 dsl_prop_set(osname, zfs_prop_to_name(ZFS_PROP_MLSLABEL), 1406 ZPROP_SRC_LOCAL, 1, strlen(str) + 1, str) == 0) 1407 retv = 0; 1408 if (str != NULL) 1409 kmem_free(str, strlen(str) + 1); 1410 } else if (hexstr_to_label(ds_hexsl, &ds_sl) == 0) { 1411 /* 1412 * Now compare labels to complete the MAC check. If the 1413 * labels are equal then allow access. If the mountpoint 1414 * label dominates the dataset label, allow readonly access. 1415 * Otherwise, access is denied. 1416 */ 1417 if (blequal(mnt_sl, &ds_sl)) 1418 retv = 0; 1419 else if (bldominates(mnt_sl, &ds_sl)) { 1420 vfs_setmntopt(vfsp, MNTOPT_RO, NULL, 0); 1421 retv = 0; 1422 } 1423 } 1424 1425 label_rele(mnt_tsl); 1426 zone_rele(mntzone); 1427 return (retv); 1428 } 1429 1430 static int 1431 zfs_mountroot(vfs_t *vfsp, enum whymountroot why) 1432 { 1433 int error = 0; 1434 static int zfsrootdone = 0; 1435 zfsvfs_t *zfsvfs = NULL; 1436 znode_t *zp = NULL; 1437 vnode_t *vp = NULL; 1438 char *zfs_bootfs; 1439 char *zfs_devid; 1440 1441 ASSERT(vfsp); 1442 1443 /* 1444 * The filesystem that we mount as root is defined in the 1445 * boot property "zfs-bootfs" with a format of 1446 * "poolname/root-dataset-objnum". 1447 */ 1448 if (why == ROOT_INIT) { 1449 if (zfsrootdone++) 1450 return (EBUSY); 1451 /* 1452 * the process of doing a spa_load will require the 1453 * clock to be set before we could (for example) do 1454 * something better by looking at the timestamp on 1455 * an uberblock, so just set it to -1. 1456 */ 1457 clkset(-1); 1458 1459 if ((zfs_bootfs = spa_get_bootprop("zfs-bootfs")) == NULL) { 1460 cmn_err(CE_NOTE, "spa_get_bootfs: can not get " 1461 "bootfs name"); 1462 return (EINVAL); 1463 } 1464 zfs_devid = spa_get_bootprop("diskdevid"); 1465 error = spa_import_rootpool(rootfs.bo_name, zfs_devid); 1466 if (zfs_devid) 1467 spa_free_bootprop(zfs_devid); 1468 if (error) { 1469 spa_free_bootprop(zfs_bootfs); 1470 cmn_err(CE_NOTE, "spa_import_rootpool: error %d", 1471 error); 1472 return (error); 1473 } 1474 if (error = zfs_parse_bootfs(zfs_bootfs, rootfs.bo_name)) { 1475 spa_free_bootprop(zfs_bootfs); 1476 cmn_err(CE_NOTE, "zfs_parse_bootfs: error %d", 1477 error); 1478 return (error); 1479 } 1480 1481 spa_free_bootprop(zfs_bootfs); 1482 1483 if (error = vfs_lock(vfsp)) 1484 return (error); 1485 1486 if (error = zfs_domount(vfsp, rootfs.bo_name)) { 1487 cmn_err(CE_NOTE, "zfs_domount: error %d", error); 1488 goto out; 1489 } 1490 1491 zfsvfs = (zfsvfs_t *)vfsp->vfs_data; 1492 ASSERT(zfsvfs); 1493 if (error = zfs_zget(zfsvfs, zfsvfs->z_root, &zp)) { 1494 cmn_err(CE_NOTE, "zfs_zget: error %d", error); 1495 goto out; 1496 } 1497 1498 vp = ZTOV(zp); 1499 mutex_enter(&vp->v_lock); 1500 vp->v_flag |= VROOT; 1501 mutex_exit(&vp->v_lock); 1502 rootvp = vp; 1503 1504 /* 1505 * Leave rootvp held. The root file system is never unmounted. 1506 */ 1507 1508 vfs_add((struct vnode *)0, vfsp, 1509 (vfsp->vfs_flag & VFS_RDONLY) ? MS_RDONLY : 0); 1510 out: 1511 vfs_unlock(vfsp); 1512 return (error); 1513 } else if (why == ROOT_REMOUNT) { 1514 readonly_changed_cb(vfsp->vfs_data, B_FALSE); 1515 vfsp->vfs_flag |= VFS_REMOUNT; 1516 1517 /* refresh mount options */ 1518 zfs_unregister_callbacks(vfsp->vfs_data); 1519 return (zfs_register_callbacks(vfsp)); 1520 1521 } else if (why == ROOT_UNMOUNT) { 1522 zfs_unregister_callbacks((zfsvfs_t *)vfsp->vfs_data); 1523 (void) zfs_sync(vfsp, 0, 0); 1524 return (0); 1525 } 1526 1527 /* 1528 * if "why" is equal to anything else other than ROOT_INIT, 1529 * ROOT_REMOUNT, or ROOT_UNMOUNT, we do not support it. 1530 */ 1531 return (ENOTSUP); 1532 } 1533 1534 /*ARGSUSED*/ 1535 static int 1536 zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr) 1537 { 1538 char *osname; 1539 pathname_t spn; 1540 int error = 0; 1541 uio_seg_t fromspace = (uap->flags & MS_SYSSPACE) ? 1542 UIO_SYSSPACE : UIO_USERSPACE; 1543 int canwrite; 1544 1545 if (mvp->v_type != VDIR) 1546 return (ENOTDIR); 1547 1548 mutex_enter(&mvp->v_lock); 1549 if ((uap->flags & MS_REMOUNT) == 0 && 1550 (uap->flags & MS_OVERLAY) == 0 && 1551 (mvp->v_count != 1 || (mvp->v_flag & VROOT))) { 1552 mutex_exit(&mvp->v_lock); 1553 return (EBUSY); 1554 } 1555 mutex_exit(&mvp->v_lock); 1556 1557 /* 1558 * ZFS does not support passing unparsed data in via MS_DATA. 1559 * Users should use the MS_OPTIONSTR interface; this means 1560 * that all option parsing is already done and the options struct 1561 * can be interrogated. 1562 */ 1563 if ((uap->flags & MS_DATA) && uap->datalen > 0) 1564 return (EINVAL); 1565 1566 /* 1567 * Get the objset name (the "special" mount argument). 1568 */ 1569 if (error = pn_get(uap->spec, fromspace, &spn)) 1570 return (error); 1571 1572 osname = spn.pn_path; 1573 1574 /* 1575 * Check for mount privilege? 1576 * 1577 * If we don't have privilege then see if 1578 * we have local permission to allow it 1579 */ 1580 error = secpolicy_fs_mount(cr, mvp, vfsp); 1581 if (error) { 1582 if (dsl_deleg_access(osname, ZFS_DELEG_PERM_MOUNT, cr) == 0) { 1583 vattr_t vattr; 1584 1585 /* 1586 * Make sure user is the owner of the mount point 1587 * or has sufficient privileges. 1588 */ 1589 1590 vattr.va_mask = AT_UID; 1591 1592 if (VOP_GETATTR(mvp, &vattr, 0, cr, NULL)) { 1593 goto out; 1594 } 1595 1596 if (secpolicy_vnode_owner(cr, vattr.va_uid) != 0 && 1597 VOP_ACCESS(mvp, VWRITE, 0, cr, NULL) != 0) { 1598 goto out; 1599 } 1600 secpolicy_fs_mount_clearopts(cr, vfsp); 1601 } else { 1602 goto out; 1603 } 1604 } 1605 1606 /* 1607 * Refuse to mount a filesystem if we are in a local zone and the 1608 * dataset is not visible. 1609 */ 1610 if (!INGLOBALZONE(curproc) && 1611 (!zone_dataset_visible(osname, &canwrite) || !canwrite)) { 1612 error = EPERM; 1613 goto out; 1614 } 1615 1616 error = zfs_mount_label_policy(vfsp, osname); 1617 if (error) 1618 goto out; 1619 1620 /* 1621 * When doing a remount, we simply refresh our temporary properties 1622 * according to those options set in the current VFS options. 1623 */ 1624 if (uap->flags & MS_REMOUNT) { 1625 /* refresh mount options */ 1626 zfs_unregister_callbacks(vfsp->vfs_data); 1627 error = zfs_register_callbacks(vfsp); 1628 goto out; 1629 } 1630 1631 error = zfs_domount(vfsp, osname); 1632 1633 /* 1634 * Add an extra VFS_HOLD on our parent vfs so that it can't 1635 * disappear due to a forced unmount. 1636 */ 1637 if (error == 0 && ((zfsvfs_t *)vfsp->vfs_data)->z_issnap) 1638 VFS_HOLD(mvp->v_vfsp); 1639 1640 out: 1641 pn_free(&spn); 1642 return (error); 1643 } 1644 1645 static int 1646 zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp) 1647 { 1648 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1649 dev32_t d32; 1650 uint64_t refdbytes, availbytes, usedobjs, availobjs; 1651 1652 ZFS_ENTER(zfsvfs); 1653 1654 dmu_objset_space(zfsvfs->z_os, 1655 &refdbytes, &availbytes, &usedobjs, &availobjs); 1656 1657 /* 1658 * The underlying storage pool actually uses multiple block sizes. 1659 * We report the fragsize as the smallest block size we support, 1660 * and we report our blocksize as the filesystem's maximum blocksize. 1661 */ 1662 statp->f_frsize = 1UL << SPA_MINBLOCKSHIFT; 1663 statp->f_bsize = zfsvfs->z_max_blksz; 1664 1665 /* 1666 * The following report "total" blocks of various kinds in the 1667 * file system, but reported in terms of f_frsize - the 1668 * "fragment" size. 1669 */ 1670 1671 statp->f_blocks = (refdbytes + availbytes) >> SPA_MINBLOCKSHIFT; 1672 statp->f_bfree = availbytes >> SPA_MINBLOCKSHIFT; 1673 statp->f_bavail = statp->f_bfree; /* no root reservation */ 1674 1675 /* 1676 * statvfs() should really be called statufs(), because it assumes 1677 * static metadata. ZFS doesn't preallocate files, so the best 1678 * we can do is report the max that could possibly fit in f_files, 1679 * and that minus the number actually used in f_ffree. 1680 * For f_ffree, report the smaller of the number of object available 1681 * and the number of blocks (each object will take at least a block). 1682 */ 1683 statp->f_ffree = MIN(availobjs, statp->f_bfree); 1684 statp->f_favail = statp->f_ffree; /* no "root reservation" */ 1685 statp->f_files = statp->f_ffree + usedobjs; 1686 1687 (void) cmpldev(&d32, vfsp->vfs_dev); 1688 statp->f_fsid = d32; 1689 1690 /* 1691 * We're a zfs filesystem. 1692 */ 1693 (void) strcpy(statp->f_basetype, vfssw[vfsp->vfs_fstype].vsw_name); 1694 1695 statp->f_flag = vf_to_stf(vfsp->vfs_flag); 1696 1697 statp->f_namemax = ZFS_MAXNAMELEN; 1698 1699 /* 1700 * We have all of 32 characters to stuff a string here. 1701 * Is there anything useful we could/should provide? 1702 */ 1703 bzero(statp->f_fstr, sizeof (statp->f_fstr)); 1704 1705 ZFS_EXIT(zfsvfs); 1706 return (0); 1707 } 1708 1709 static int 1710 zfs_root(vfs_t *vfsp, vnode_t **vpp) 1711 { 1712 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1713 znode_t *rootzp; 1714 int error; 1715 1716 ZFS_ENTER(zfsvfs); 1717 1718 error = zfs_zget(zfsvfs, zfsvfs->z_root, &rootzp); 1719 if (error == 0) 1720 *vpp = ZTOV(rootzp); 1721 1722 ZFS_EXIT(zfsvfs); 1723 return (error); 1724 } 1725 1726 /* 1727 * Teardown the zfsvfs::z_os. 1728 * 1729 * Note, if 'unmounting' if FALSE, we return with the 'z_teardown_lock' 1730 * and 'z_teardown_inactive_lock' held. 1731 */ 1732 static int 1733 zfsvfs_teardown(zfsvfs_t *zfsvfs, boolean_t unmounting) 1734 { 1735 znode_t *zp; 1736 1737 rrw_enter(&zfsvfs->z_teardown_lock, RW_WRITER, FTAG); 1738 1739 if (!unmounting) { 1740 /* 1741 * We purge the parent filesystem's vfsp as the parent 1742 * filesystem and all of its snapshots have their vnode's 1743 * v_vfsp set to the parent's filesystem's vfsp. Note, 1744 * 'z_parent' is self referential for non-snapshots. 1745 */ 1746 (void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0); 1747 } 1748 1749 /* 1750 * Close the zil. NB: Can't close the zil while zfs_inactive 1751 * threads are blocked as zil_close can call zfs_inactive. 1752 */ 1753 if (zfsvfs->z_log) { 1754 zil_close(zfsvfs->z_log); 1755 zfsvfs->z_log = NULL; 1756 } 1757 1758 rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_WRITER); 1759 1760 /* 1761 * If we are not unmounting (ie: online recv) and someone already 1762 * unmounted this file system while we were doing the switcheroo, 1763 * or a reopen of z_os failed then just bail out now. 1764 */ 1765 if (!unmounting && (zfsvfs->z_unmounted || zfsvfs->z_os == NULL)) { 1766 rw_exit(&zfsvfs->z_teardown_inactive_lock); 1767 rrw_exit(&zfsvfs->z_teardown_lock, FTAG); 1768 return (EIO); 1769 } 1770 1771 /* 1772 * At this point there are no vops active, and any new vops will 1773 * fail with EIO since we have z_teardown_lock for writer (only 1774 * relavent for forced unmount). 1775 * 1776 * Release all holds on dbufs. 1777 */ 1778 mutex_enter(&zfsvfs->z_znodes_lock); 1779 for (zp = list_head(&zfsvfs->z_all_znodes); zp != NULL; 1780 zp = list_next(&zfsvfs->z_all_znodes, zp)) 1781 if (zp->z_sa_hdl) { 1782 ASSERT(ZTOV(zp)->v_count > 0); 1783 zfs_znode_dmu_fini(zp); 1784 } 1785 mutex_exit(&zfsvfs->z_znodes_lock); 1786 1787 /* 1788 * If we are unmounting, set the unmounted flag and let new vops 1789 * unblock. zfs_inactive will have the unmounted behavior, and all 1790 * other vops will fail with EIO. 1791 */ 1792 if (unmounting) { 1793 zfsvfs->z_unmounted = B_TRUE; 1794 rrw_exit(&zfsvfs->z_teardown_lock, FTAG); 1795 rw_exit(&zfsvfs->z_teardown_inactive_lock); 1796 } 1797 1798 /* 1799 * z_os will be NULL if there was an error in attempting to reopen 1800 * zfsvfs, so just return as the properties had already been 1801 * unregistered and cached data had been evicted before. 1802 */ 1803 if (zfsvfs->z_os == NULL) 1804 return (0); 1805 1806 /* 1807 * Unregister properties. 1808 */ 1809 zfs_unregister_callbacks(zfsvfs); 1810 1811 /* 1812 * Evict cached data 1813 */ 1814 if (dmu_objset_evict_dbufs(zfsvfs->z_os)) { 1815 txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0); 1816 (void) dmu_objset_evict_dbufs(zfsvfs->z_os); 1817 } 1818 1819 return (0); 1820 } 1821 1822 /*ARGSUSED*/ 1823 static int 1824 zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr) 1825 { 1826 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1827 objset_t *os; 1828 int ret; 1829 1830 ret = secpolicy_fs_unmount(cr, vfsp); 1831 if (ret) { 1832 if (dsl_deleg_access((char *)refstr_value(vfsp->vfs_resource), 1833 ZFS_DELEG_PERM_MOUNT, cr)) 1834 return (ret); 1835 } 1836 1837 /* 1838 * We purge the parent filesystem's vfsp as the parent filesystem 1839 * and all of its snapshots have their vnode's v_vfsp set to the 1840 * parent's filesystem's vfsp. Note, 'z_parent' is self 1841 * referential for non-snapshots. 1842 */ 1843 (void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0); 1844 1845 /* 1846 * Unmount any snapshots mounted under .zfs before unmounting the 1847 * dataset itself. 1848 */ 1849 if (zfsvfs->z_ctldir != NULL && 1850 (ret = zfsctl_umount_snapshots(vfsp, fflag, cr)) != 0) { 1851 return (ret); 1852 } 1853 1854 if (!(fflag & MS_FORCE)) { 1855 /* 1856 * Check the number of active vnodes in the file system. 1857 * Our count is maintained in the vfs structure, but the 1858 * number is off by 1 to indicate a hold on the vfs 1859 * structure itself. 1860 * 1861 * The '.zfs' directory maintains a reference of its 1862 * own, and any active references underneath are 1863 * reflected in the vnode count. 1864 */ 1865 if (zfsvfs->z_ctldir == NULL) { 1866 if (vfsp->vfs_count > 1) 1867 return (EBUSY); 1868 } else { 1869 if (vfsp->vfs_count > 2 || 1870 zfsvfs->z_ctldir->v_count > 1) 1871 return (EBUSY); 1872 } 1873 } 1874 1875 vfsp->vfs_flag |= VFS_UNMOUNTED; 1876 1877 VERIFY(zfsvfs_teardown(zfsvfs, B_TRUE) == 0); 1878 os = zfsvfs->z_os; 1879 1880 /* 1881 * z_os will be NULL if there was an error in 1882 * attempting to reopen zfsvfs. 1883 */ 1884 if (os != NULL) { 1885 /* 1886 * Unset the objset user_ptr. 1887 */ 1888 mutex_enter(&os->os_user_ptr_lock); 1889 dmu_objset_set_user(os, NULL); 1890 mutex_exit(&os->os_user_ptr_lock); 1891 1892 /* 1893 * Finally release the objset 1894 */ 1895 dmu_objset_disown(os, zfsvfs); 1896 } 1897 1898 /* 1899 * We can now safely destroy the '.zfs' directory node. 1900 */ 1901 if (zfsvfs->z_ctldir != NULL) 1902 zfsctl_destroy(zfsvfs); 1903 1904 return (0); 1905 } 1906 1907 static int 1908 zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp) 1909 { 1910 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1911 znode_t *zp; 1912 uint64_t object = 0; 1913 uint64_t fid_gen = 0; 1914 uint64_t gen_mask; 1915 uint64_t zp_gen; 1916 int i, err; 1917 1918 *vpp = NULL; 1919 1920 ZFS_ENTER(zfsvfs); 1921 1922 if (fidp->fid_len == LONG_FID_LEN) { 1923 zfid_long_t *zlfid = (zfid_long_t *)fidp; 1924 uint64_t objsetid = 0; 1925 uint64_t setgen = 0; 1926 1927 for (i = 0; i < sizeof (zlfid->zf_setid); i++) 1928 objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i); 1929 1930 for (i = 0; i < sizeof (zlfid->zf_setgen); i++) 1931 setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i); 1932 1933 ZFS_EXIT(zfsvfs); 1934 1935 err = zfsctl_lookup_objset(vfsp, objsetid, &zfsvfs); 1936 if (err) 1937 return (EINVAL); 1938 ZFS_ENTER(zfsvfs); 1939 } 1940 1941 if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) { 1942 zfid_short_t *zfid = (zfid_short_t *)fidp; 1943 1944 for (i = 0; i < sizeof (zfid->zf_object); i++) 1945 object |= ((uint64_t)zfid->zf_object[i]) << (8 * i); 1946 1947 for (i = 0; i < sizeof (zfid->zf_gen); i++) 1948 fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i); 1949 } else { 1950 ZFS_EXIT(zfsvfs); 1951 return (EINVAL); 1952 } 1953 1954 /* A zero fid_gen means we are in the .zfs control directories */ 1955 if (fid_gen == 0 && 1956 (object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) { 1957 *vpp = zfsvfs->z_ctldir; 1958 ASSERT(*vpp != NULL); 1959 if (object == ZFSCTL_INO_SNAPDIR) { 1960 VERIFY(zfsctl_root_lookup(*vpp, "snapshot", vpp, NULL, 1961 0, NULL, NULL, NULL, NULL, NULL) == 0); 1962 } else { 1963 VN_HOLD(*vpp); 1964 } 1965 ZFS_EXIT(zfsvfs); 1966 return (0); 1967 } 1968 1969 gen_mask = -1ULL >> (64 - 8 * i); 1970 1971 dprintf("getting %llu [%u mask %llx]\n", object, fid_gen, gen_mask); 1972 if (err = zfs_zget(zfsvfs, object, &zp)) { 1973 ZFS_EXIT(zfsvfs); 1974 return (err); 1975 } 1976 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), &zp_gen, 1977 sizeof (uint64_t)); 1978 zp_gen = zp_gen & gen_mask; 1979 if (zp_gen == 0) 1980 zp_gen = 1; 1981 if (zp->z_unlinked || zp_gen != fid_gen) { 1982 dprintf("znode gen (%u) != fid gen (%u)\n", zp_gen, fid_gen); 1983 VN_RELE(ZTOV(zp)); 1984 ZFS_EXIT(zfsvfs); 1985 return (EINVAL); 1986 } 1987 1988 *vpp = ZTOV(zp); 1989 ZFS_EXIT(zfsvfs); 1990 return (0); 1991 } 1992 1993 /* 1994 * Block out VOPs and close zfsvfs_t::z_os 1995 * 1996 * Note, if successful, then we return with the 'z_teardown_lock' and 1997 * 'z_teardown_inactive_lock' write held. 1998 */ 1999 int 2000 zfs_suspend_fs(zfsvfs_t *zfsvfs) 2001 { 2002 int error; 2003 2004 if ((error = zfsvfs_teardown(zfsvfs, B_FALSE)) != 0) 2005 return (error); 2006 dmu_objset_disown(zfsvfs->z_os, zfsvfs); 2007 2008 return (0); 2009 } 2010 2011 /* 2012 * Reopen zfsvfs_t::z_os and release VOPs. 2013 */ 2014 int 2015 zfs_resume_fs(zfsvfs_t *zfsvfs, const char *osname) 2016 { 2017 int err, err2; 2018 2019 ASSERT(RRW_WRITE_HELD(&zfsvfs->z_teardown_lock)); 2020 ASSERT(RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock)); 2021 2022 err = dmu_objset_own(osname, DMU_OST_ZFS, B_FALSE, zfsvfs, 2023 &zfsvfs->z_os); 2024 if (err) { 2025 zfsvfs->z_os = NULL; 2026 } else { 2027 znode_t *zp; 2028 uint64_t sa_obj = 0; 2029 2030 err2 = zap_lookup(zfsvfs->z_os, MASTER_NODE_OBJ, 2031 ZFS_SA_ATTRS, 8, 1, &sa_obj); 2032 2033 if ((err || err2) && zfsvfs->z_version >= ZPL_VERSION_SA) 2034 goto bail; 2035 2036 2037 if ((err = sa_setup(zfsvfs->z_os, sa_obj, 2038 zfs_attr_table, ZPL_END, &zfsvfs->z_attr_table)) != 0) 2039 goto bail; 2040 2041 VERIFY(zfsvfs_setup(zfsvfs, B_FALSE) == 0); 2042 2043 /* 2044 * Attempt to re-establish all the active znodes with 2045 * their dbufs. If a zfs_rezget() fails, then we'll let 2046 * any potential callers discover that via ZFS_ENTER_VERIFY_VP 2047 * when they try to use their znode. 2048 */ 2049 mutex_enter(&zfsvfs->z_znodes_lock); 2050 for (zp = list_head(&zfsvfs->z_all_znodes); zp; 2051 zp = list_next(&zfsvfs->z_all_znodes, zp)) { 2052 (void) zfs_rezget(zp); 2053 } 2054 mutex_exit(&zfsvfs->z_znodes_lock); 2055 2056 } 2057 2058 bail: 2059 /* release the VOPs */ 2060 rw_exit(&zfsvfs->z_teardown_inactive_lock); 2061 rrw_exit(&zfsvfs->z_teardown_lock, FTAG); 2062 2063 if (err) { 2064 /* 2065 * Since we couldn't reopen zfsvfs::z_os, force 2066 * unmount this file system. 2067 */ 2068 if (vn_vfswlock(zfsvfs->z_vfs->vfs_vnodecovered) == 0) 2069 (void) dounmount(zfsvfs->z_vfs, MS_FORCE, CRED()); 2070 } 2071 return (err); 2072 } 2073 2074 static void 2075 zfs_freevfs(vfs_t *vfsp) 2076 { 2077 zfsvfs_t *zfsvfs = vfsp->vfs_data; 2078 2079 /* 2080 * If this is a snapshot, we have an extra VFS_HOLD on our parent 2081 * from zfs_mount(). Release it here. If we came through 2082 * zfs_mountroot() instead, we didn't grab an extra hold, so 2083 * skip the VFS_RELE for rootvfs. 2084 */ 2085 if (zfsvfs->z_issnap && (vfsp != rootvfs)) 2086 VFS_RELE(zfsvfs->z_parent->z_vfs); 2087 2088 zfsvfs_free(zfsvfs); 2089 2090 atomic_add_32(&zfs_active_fs_count, -1); 2091 } 2092 2093 /* 2094 * VFS_INIT() initialization. Note that there is no VFS_FINI(), 2095 * so we can't safely do any non-idempotent initialization here. 2096 * Leave that to zfs_init() and zfs_fini(), which are called 2097 * from the module's _init() and _fini() entry points. 2098 */ 2099 /*ARGSUSED*/ 2100 static int 2101 zfs_vfsinit(int fstype, char *name) 2102 { 2103 int error; 2104 2105 zfsfstype = fstype; 2106 2107 /* 2108 * Setup vfsops and vnodeops tables. 2109 */ 2110 error = vfs_setfsops(fstype, zfs_vfsops_template, &zfs_vfsops); 2111 if (error != 0) { 2112 cmn_err(CE_WARN, "zfs: bad vfs ops template"); 2113 } 2114 2115 error = zfs_create_op_tables(); 2116 if (error) { 2117 zfs_remove_op_tables(); 2118 cmn_err(CE_WARN, "zfs: bad vnode ops template"); 2119 (void) vfs_freevfsops_by_type(zfsfstype); 2120 return (error); 2121 } 2122 2123 mutex_init(&zfs_dev_mtx, NULL, MUTEX_DEFAULT, NULL); 2124 2125 /* 2126 * Unique major number for all zfs mounts. 2127 * If we run out of 32-bit minors, we'll getudev() another major. 2128 */ 2129 zfs_major = ddi_name_to_major(ZFS_DRIVER); 2130 zfs_minor = ZFS_MIN_MINOR; 2131 2132 return (0); 2133 } 2134 2135 void 2136 zfs_init(void) 2137 { 2138 /* 2139 * Initialize .zfs directory structures 2140 */ 2141 zfsctl_init(); 2142 2143 /* 2144 * Initialize znode cache, vnode ops, etc... 2145 */ 2146 zfs_znode_init(); 2147 2148 dmu_objset_register_type(DMU_OST_ZFS, zfs_space_delta_cb); 2149 } 2150 2151 void 2152 zfs_fini(void) 2153 { 2154 zfsctl_fini(); 2155 zfs_znode_fini(); 2156 } 2157 2158 int 2159 zfs_busy(void) 2160 { 2161 return (zfs_active_fs_count != 0); 2162 } 2163 2164 int 2165 zfs_set_version(zfsvfs_t *zfsvfs, uint64_t newvers) 2166 { 2167 int error; 2168 objset_t *os = zfsvfs->z_os; 2169 dmu_tx_t *tx; 2170 2171 if (newvers < ZPL_VERSION_INITIAL || newvers > ZPL_VERSION) 2172 return (EINVAL); 2173 2174 if (newvers < zfsvfs->z_version) 2175 return (EINVAL); 2176 2177 if (zfs_spa_version_map(newvers) > 2178 spa_version(dmu_objset_spa(zfsvfs->z_os))) 2179 return (ENOTSUP); 2180 2181 tx = dmu_tx_create(os); 2182 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_FALSE, ZPL_VERSION_STR); 2183 if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) { 2184 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE, 2185 ZFS_SA_ATTRS); 2186 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL); 2187 } 2188 error = dmu_tx_assign(tx, TXG_WAIT); 2189 if (error) { 2190 dmu_tx_abort(tx); 2191 return (error); 2192 } 2193 2194 error = zap_update(os, MASTER_NODE_OBJ, ZPL_VERSION_STR, 2195 8, 1, &newvers, tx); 2196 2197 if (error) { 2198 dmu_tx_commit(tx); 2199 return (error); 2200 } 2201 2202 if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) { 2203 uint64_t sa_obj; 2204 2205 ASSERT3U(spa_version(dmu_objset_spa(zfsvfs->z_os)), >=, 2206 SPA_VERSION_SA); 2207 sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE, 2208 DMU_OT_NONE, 0, tx); 2209 2210 error = zap_add(os, MASTER_NODE_OBJ, 2211 ZFS_SA_ATTRS, 8, 1, &sa_obj, tx); 2212 ASSERT3U(error, ==, 0); 2213 2214 VERIFY(0 == sa_set_sa_object(os, sa_obj)); 2215 sa_register_update_callback(os, zfs_sa_upgrade); 2216 } 2217 2218 spa_history_log_internal(LOG_DS_UPGRADE, 2219 dmu_objset_spa(os), tx, "oldver=%llu newver=%llu dataset = %llu", 2220 zfsvfs->z_version, newvers, dmu_objset_id(os)); 2221 2222 dmu_tx_commit(tx); 2223 2224 zfsvfs->z_version = newvers; 2225 2226 if (zfsvfs->z_version >= ZPL_VERSION_FUID) 2227 zfs_set_fuid_feature(zfsvfs); 2228 2229 return (0); 2230 } 2231 2232 /* 2233 * Read a property stored within the master node. 2234 */ 2235 int 2236 zfs_get_zplprop(objset_t *os, zfs_prop_t prop, uint64_t *value) 2237 { 2238 const char *pname; 2239 int error = ENOENT; 2240 2241 /* 2242 * Look up the file system's value for the property. For the 2243 * version property, we look up a slightly different string. 2244 */ 2245 if (prop == ZFS_PROP_VERSION) 2246 pname = ZPL_VERSION_STR; 2247 else 2248 pname = zfs_prop_to_name(prop); 2249 2250 if (os != NULL) 2251 error = zap_lookup(os, MASTER_NODE_OBJ, pname, 8, 1, value); 2252 2253 if (error == ENOENT) { 2254 /* No value set, use the default value */ 2255 switch (prop) { 2256 case ZFS_PROP_VERSION: 2257 *value = ZPL_VERSION; 2258 break; 2259 case ZFS_PROP_NORMALIZE: 2260 case ZFS_PROP_UTF8ONLY: 2261 *value = 0; 2262 break; 2263 case ZFS_PROP_CASE: 2264 *value = ZFS_CASE_SENSITIVE; 2265 break; 2266 default: 2267 return (error); 2268 } 2269 error = 0; 2270 } 2271 return (error); 2272 } 2273 2274 static vfsdef_t vfw = { 2275 VFSDEF_VERSION, 2276 MNTTYPE_ZFS, 2277 zfs_vfsinit, 2278 VSW_HASPROTO|VSW_CANRWRO|VSW_CANREMOUNT|VSW_VOLATILEDEV|VSW_STATS| 2279 VSW_XID, 2280 &zfs_mntopts 2281 }; 2282 2283 struct modlfs zfs_modlfs = { 2284 &mod_fsops, "ZFS filesystem version " SPA_VERSION_STRING, &vfw 2285 }; 2286