xref: /illumos-gate/usr/src/uts/common/fs/zfs/zfs_vfsops.c (revision 94c894bb)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  */
24 
25 #include <sys/types.h>
26 #include <sys/param.h>
27 #include <sys/systm.h>
28 #include <sys/sysmacros.h>
29 #include <sys/kmem.h>
30 #include <sys/pathname.h>
31 #include <sys/vnode.h>
32 #include <sys/vfs.h>
33 #include <sys/vfs_opreg.h>
34 #include <sys/mntent.h>
35 #include <sys/mount.h>
36 #include <sys/cmn_err.h>
37 #include "fs/fs_subr.h"
38 #include <sys/zfs_znode.h>
39 #include <sys/zfs_dir.h>
40 #include <sys/zil.h>
41 #include <sys/fs/zfs.h>
42 #include <sys/dmu.h>
43 #include <sys/dsl_prop.h>
44 #include <sys/dsl_dataset.h>
45 #include <sys/dsl_deleg.h>
46 #include <sys/spa.h>
47 #include <sys/zap.h>
48 #include <sys/sa.h>
49 #include <sys/varargs.h>
50 #include <sys/policy.h>
51 #include <sys/atomic.h>
52 #include <sys/mkdev.h>
53 #include <sys/modctl.h>
54 #include <sys/refstr.h>
55 #include <sys/zfs_ioctl.h>
56 #include <sys/zfs_ctldir.h>
57 #include <sys/zfs_fuid.h>
58 #include <sys/bootconf.h>
59 #include <sys/sunddi.h>
60 #include <sys/dnlc.h>
61 #include <sys/dmu_objset.h>
62 #include <sys/spa_boot.h>
63 #include <sys/sa.h>
64 #include "zfs_comutil.h"
65 
66 int zfsfstype;
67 vfsops_t *zfs_vfsops = NULL;
68 static major_t zfs_major;
69 static minor_t zfs_minor;
70 static kmutex_t	zfs_dev_mtx;
71 
72 extern int sys_shutdown;
73 
74 static int zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr);
75 static int zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr);
76 static int zfs_mountroot(vfs_t *vfsp, enum whymountroot);
77 static int zfs_root(vfs_t *vfsp, vnode_t **vpp);
78 static int zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp);
79 static int zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp);
80 static void zfs_freevfs(vfs_t *vfsp);
81 
82 static const fs_operation_def_t zfs_vfsops_template[] = {
83 	VFSNAME_MOUNT,		{ .vfs_mount = zfs_mount },
84 	VFSNAME_MOUNTROOT,	{ .vfs_mountroot = zfs_mountroot },
85 	VFSNAME_UNMOUNT,	{ .vfs_unmount = zfs_umount },
86 	VFSNAME_ROOT,		{ .vfs_root = zfs_root },
87 	VFSNAME_STATVFS,	{ .vfs_statvfs = zfs_statvfs },
88 	VFSNAME_SYNC,		{ .vfs_sync = zfs_sync },
89 	VFSNAME_VGET,		{ .vfs_vget = zfs_vget },
90 	VFSNAME_FREEVFS,	{ .vfs_freevfs = zfs_freevfs },
91 	NULL,			NULL
92 };
93 
94 static const fs_operation_def_t zfs_vfsops_eio_template[] = {
95 	VFSNAME_FREEVFS,	{ .vfs_freevfs =  zfs_freevfs },
96 	NULL,			NULL
97 };
98 
99 /*
100  * We need to keep a count of active fs's.
101  * This is necessary to prevent our module
102  * from being unloaded after a umount -f
103  */
104 static uint32_t	zfs_active_fs_count = 0;
105 
106 static char *noatime_cancel[] = { MNTOPT_ATIME, NULL };
107 static char *atime_cancel[] = { MNTOPT_NOATIME, NULL };
108 static char *noxattr_cancel[] = { MNTOPT_XATTR, NULL };
109 static char *xattr_cancel[] = { MNTOPT_NOXATTR, NULL };
110 
111 /*
112  * MO_DEFAULT is not used since the default value is determined
113  * by the equivalent property.
114  */
115 static mntopt_t mntopts[] = {
116 	{ MNTOPT_NOXATTR, noxattr_cancel, NULL, 0, NULL },
117 	{ MNTOPT_XATTR, xattr_cancel, NULL, 0, NULL },
118 	{ MNTOPT_NOATIME, noatime_cancel, NULL, 0, NULL },
119 	{ MNTOPT_ATIME, atime_cancel, NULL, 0, NULL }
120 };
121 
122 static mntopts_t zfs_mntopts = {
123 	sizeof (mntopts) / sizeof (mntopt_t),
124 	mntopts
125 };
126 
127 /*ARGSUSED*/
128 int
129 zfs_sync(vfs_t *vfsp, short flag, cred_t *cr)
130 {
131 	/*
132 	 * Data integrity is job one.  We don't want a compromised kernel
133 	 * writing to the storage pool, so we never sync during panic.
134 	 */
135 	if (panicstr)
136 		return (0);
137 
138 	/*
139 	 * SYNC_ATTR is used by fsflush() to force old filesystems like UFS
140 	 * to sync metadata, which they would otherwise cache indefinitely.
141 	 * Semantically, the only requirement is that the sync be initiated.
142 	 * The DMU syncs out txgs frequently, so there's nothing to do.
143 	 */
144 	if (flag & SYNC_ATTR)
145 		return (0);
146 
147 	if (vfsp != NULL) {
148 		/*
149 		 * Sync a specific filesystem.
150 		 */
151 		zfsvfs_t *zfsvfs = vfsp->vfs_data;
152 		dsl_pool_t *dp;
153 
154 		ZFS_ENTER(zfsvfs);
155 		dp = dmu_objset_pool(zfsvfs->z_os);
156 
157 		/*
158 		 * If the system is shutting down, then skip any
159 		 * filesystems which may exist on a suspended pool.
160 		 */
161 		if (sys_shutdown && spa_suspended(dp->dp_spa)) {
162 			ZFS_EXIT(zfsvfs);
163 			return (0);
164 		}
165 
166 		if (zfsvfs->z_log != NULL)
167 			zil_commit(zfsvfs->z_log, UINT64_MAX, 0);
168 		else
169 			txg_wait_synced(dp, 0);
170 		ZFS_EXIT(zfsvfs);
171 	} else {
172 		/*
173 		 * Sync all ZFS filesystems.  This is what happens when you
174 		 * run sync(1M).  Unlike other filesystems, ZFS honors the
175 		 * request by waiting for all pools to commit all dirty data.
176 		 */
177 		spa_sync_allpools();
178 	}
179 
180 	return (0);
181 }
182 
183 static int
184 zfs_create_unique_device(dev_t *dev)
185 {
186 	major_t new_major;
187 
188 	do {
189 		ASSERT3U(zfs_minor, <=, MAXMIN32);
190 		minor_t start = zfs_minor;
191 		do {
192 			mutex_enter(&zfs_dev_mtx);
193 			if (zfs_minor >= MAXMIN32) {
194 				/*
195 				 * If we're still using the real major
196 				 * keep out of /dev/zfs and /dev/zvol minor
197 				 * number space.  If we're using a getudev()'ed
198 				 * major number, we can use all of its minors.
199 				 */
200 				if (zfs_major == ddi_name_to_major(ZFS_DRIVER))
201 					zfs_minor = ZFS_MIN_MINOR;
202 				else
203 					zfs_minor = 0;
204 			} else {
205 				zfs_minor++;
206 			}
207 			*dev = makedevice(zfs_major, zfs_minor);
208 			mutex_exit(&zfs_dev_mtx);
209 		} while (vfs_devismounted(*dev) && zfs_minor != start);
210 		if (zfs_minor == start) {
211 			/*
212 			 * We are using all ~262,000 minor numbers for the
213 			 * current major number.  Create a new major number.
214 			 */
215 			if ((new_major = getudev()) == (major_t)-1) {
216 				cmn_err(CE_WARN,
217 				    "zfs_mount: Can't get unique major "
218 				    "device number.");
219 				return (-1);
220 			}
221 			mutex_enter(&zfs_dev_mtx);
222 			zfs_major = new_major;
223 			zfs_minor = 0;
224 
225 			mutex_exit(&zfs_dev_mtx);
226 		} else {
227 			break;
228 		}
229 		/* CONSTANTCONDITION */
230 	} while (1);
231 
232 	return (0);
233 }
234 
235 static void
236 atime_changed_cb(void *arg, uint64_t newval)
237 {
238 	zfsvfs_t *zfsvfs = arg;
239 
240 	if (newval == TRUE) {
241 		zfsvfs->z_atime = TRUE;
242 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME);
243 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_ATIME, NULL, 0);
244 	} else {
245 		zfsvfs->z_atime = FALSE;
246 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_ATIME);
247 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME, NULL, 0);
248 	}
249 }
250 
251 static void
252 xattr_changed_cb(void *arg, uint64_t newval)
253 {
254 	zfsvfs_t *zfsvfs = arg;
255 
256 	if (newval == TRUE) {
257 		/* XXX locking on vfs_flag? */
258 		zfsvfs->z_vfs->vfs_flag |= VFS_XATTR;
259 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR);
260 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_XATTR, NULL, 0);
261 	} else {
262 		/* XXX locking on vfs_flag? */
263 		zfsvfs->z_vfs->vfs_flag &= ~VFS_XATTR;
264 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_XATTR);
265 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR, NULL, 0);
266 	}
267 }
268 
269 static void
270 blksz_changed_cb(void *arg, uint64_t newval)
271 {
272 	zfsvfs_t *zfsvfs = arg;
273 
274 	if (newval < SPA_MINBLOCKSIZE ||
275 	    newval > SPA_MAXBLOCKSIZE || !ISP2(newval))
276 		newval = SPA_MAXBLOCKSIZE;
277 
278 	zfsvfs->z_max_blksz = newval;
279 	zfsvfs->z_vfs->vfs_bsize = newval;
280 }
281 
282 static void
283 readonly_changed_cb(void *arg, uint64_t newval)
284 {
285 	zfsvfs_t *zfsvfs = arg;
286 
287 	if (newval) {
288 		/* XXX locking on vfs_flag? */
289 		zfsvfs->z_vfs->vfs_flag |= VFS_RDONLY;
290 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RW);
291 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RO, NULL, 0);
292 	} else {
293 		/* XXX locking on vfs_flag? */
294 		zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY;
295 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RO);
296 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RW, NULL, 0);
297 	}
298 }
299 
300 static void
301 devices_changed_cb(void *arg, uint64_t newval)
302 {
303 	zfsvfs_t *zfsvfs = arg;
304 
305 	if (newval == FALSE) {
306 		zfsvfs->z_vfs->vfs_flag |= VFS_NODEVICES;
307 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES);
308 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES, NULL, 0);
309 	} else {
310 		zfsvfs->z_vfs->vfs_flag &= ~VFS_NODEVICES;
311 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES);
312 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES, NULL, 0);
313 	}
314 }
315 
316 static void
317 setuid_changed_cb(void *arg, uint64_t newval)
318 {
319 	zfsvfs_t *zfsvfs = arg;
320 
321 	if (newval == FALSE) {
322 		zfsvfs->z_vfs->vfs_flag |= VFS_NOSETUID;
323 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_SETUID);
324 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID, NULL, 0);
325 	} else {
326 		zfsvfs->z_vfs->vfs_flag &= ~VFS_NOSETUID;
327 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID);
328 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_SETUID, NULL, 0);
329 	}
330 }
331 
332 static void
333 exec_changed_cb(void *arg, uint64_t newval)
334 {
335 	zfsvfs_t *zfsvfs = arg;
336 
337 	if (newval == FALSE) {
338 		zfsvfs->z_vfs->vfs_flag |= VFS_NOEXEC;
339 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_EXEC);
340 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC, NULL, 0);
341 	} else {
342 		zfsvfs->z_vfs->vfs_flag &= ~VFS_NOEXEC;
343 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC);
344 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_EXEC, NULL, 0);
345 	}
346 }
347 
348 /*
349  * The nbmand mount option can be changed at mount time.
350  * We can't allow it to be toggled on live file systems or incorrect
351  * behavior may be seen from cifs clients
352  *
353  * This property isn't registered via dsl_prop_register(), but this callback
354  * will be called when a file system is first mounted
355  */
356 static void
357 nbmand_changed_cb(void *arg, uint64_t newval)
358 {
359 	zfsvfs_t *zfsvfs = arg;
360 	if (newval == FALSE) {
361 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND);
362 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND, NULL, 0);
363 	} else {
364 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND);
365 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND, NULL, 0);
366 	}
367 }
368 
369 static void
370 snapdir_changed_cb(void *arg, uint64_t newval)
371 {
372 	zfsvfs_t *zfsvfs = arg;
373 
374 	zfsvfs->z_show_ctldir = newval;
375 }
376 
377 static void
378 vscan_changed_cb(void *arg, uint64_t newval)
379 {
380 	zfsvfs_t *zfsvfs = arg;
381 
382 	zfsvfs->z_vscan = newval;
383 }
384 
385 static void
386 acl_mode_changed_cb(void *arg, uint64_t newval)
387 {
388 	zfsvfs_t *zfsvfs = arg;
389 
390 	zfsvfs->z_acl_mode = newval;
391 }
392 
393 static void
394 acl_inherit_changed_cb(void *arg, uint64_t newval)
395 {
396 	zfsvfs_t *zfsvfs = arg;
397 
398 	zfsvfs->z_acl_inherit = newval;
399 }
400 
401 static int
402 zfs_register_callbacks(vfs_t *vfsp)
403 {
404 	struct dsl_dataset *ds = NULL;
405 	objset_t *os = NULL;
406 	zfsvfs_t *zfsvfs = NULL;
407 	uint64_t nbmand;
408 	int readonly, do_readonly = B_FALSE;
409 	int setuid, do_setuid = B_FALSE;
410 	int exec, do_exec = B_FALSE;
411 	int devices, do_devices = B_FALSE;
412 	int xattr, do_xattr = B_FALSE;
413 	int atime, do_atime = B_FALSE;
414 	int error = 0;
415 
416 	ASSERT(vfsp);
417 	zfsvfs = vfsp->vfs_data;
418 	ASSERT(zfsvfs);
419 	os = zfsvfs->z_os;
420 
421 	/*
422 	 * The act of registering our callbacks will destroy any mount
423 	 * options we may have.  In order to enable temporary overrides
424 	 * of mount options, we stash away the current values and
425 	 * restore them after we register the callbacks.
426 	 */
427 	if (vfs_optionisset(vfsp, MNTOPT_RO, NULL)) {
428 		readonly = B_TRUE;
429 		do_readonly = B_TRUE;
430 	} else if (vfs_optionisset(vfsp, MNTOPT_RW, NULL)) {
431 		readonly = B_FALSE;
432 		do_readonly = B_TRUE;
433 	}
434 	if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) {
435 		devices = B_FALSE;
436 		setuid = B_FALSE;
437 		do_devices = B_TRUE;
438 		do_setuid = B_TRUE;
439 	} else {
440 		if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL)) {
441 			devices = B_FALSE;
442 			do_devices = B_TRUE;
443 		} else if (vfs_optionisset(vfsp, MNTOPT_DEVICES, NULL)) {
444 			devices = B_TRUE;
445 			do_devices = B_TRUE;
446 		}
447 
448 		if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL)) {
449 			setuid = B_FALSE;
450 			do_setuid = B_TRUE;
451 		} else if (vfs_optionisset(vfsp, MNTOPT_SETUID, NULL)) {
452 			setuid = B_TRUE;
453 			do_setuid = B_TRUE;
454 		}
455 	}
456 	if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL)) {
457 		exec = B_FALSE;
458 		do_exec = B_TRUE;
459 	} else if (vfs_optionisset(vfsp, MNTOPT_EXEC, NULL)) {
460 		exec = B_TRUE;
461 		do_exec = B_TRUE;
462 	}
463 	if (vfs_optionisset(vfsp, MNTOPT_NOXATTR, NULL)) {
464 		xattr = B_FALSE;
465 		do_xattr = B_TRUE;
466 	} else if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL)) {
467 		xattr = B_TRUE;
468 		do_xattr = B_TRUE;
469 	}
470 	if (vfs_optionisset(vfsp, MNTOPT_NOATIME, NULL)) {
471 		atime = B_FALSE;
472 		do_atime = B_TRUE;
473 	} else if (vfs_optionisset(vfsp, MNTOPT_ATIME, NULL)) {
474 		atime = B_TRUE;
475 		do_atime = B_TRUE;
476 	}
477 
478 	/*
479 	 * nbmand is a special property.  It can only be changed at
480 	 * mount time.
481 	 *
482 	 * This is weird, but it is documented to only be changeable
483 	 * at mount time.
484 	 */
485 	if (vfs_optionisset(vfsp, MNTOPT_NONBMAND, NULL)) {
486 		nbmand = B_FALSE;
487 	} else if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL)) {
488 		nbmand = B_TRUE;
489 	} else {
490 		char osname[MAXNAMELEN];
491 
492 		dmu_objset_name(os, osname);
493 		if (error = dsl_prop_get_integer(osname, "nbmand", &nbmand,
494 		    NULL)) {
495 			return (error);
496 		}
497 	}
498 
499 	/*
500 	 * Register property callbacks.
501 	 *
502 	 * It would probably be fine to just check for i/o error from
503 	 * the first prop_register(), but I guess I like to go
504 	 * overboard...
505 	 */
506 	ds = dmu_objset_ds(os);
507 	error = dsl_prop_register(ds, "atime", atime_changed_cb, zfsvfs);
508 	error = error ? error : dsl_prop_register(ds,
509 	    "xattr", xattr_changed_cb, zfsvfs);
510 	error = error ? error : dsl_prop_register(ds,
511 	    "recordsize", blksz_changed_cb, zfsvfs);
512 	error = error ? error : dsl_prop_register(ds,
513 	    "readonly", readonly_changed_cb, zfsvfs);
514 	error = error ? error : dsl_prop_register(ds,
515 	    "devices", devices_changed_cb, zfsvfs);
516 	error = error ? error : dsl_prop_register(ds,
517 	    "setuid", setuid_changed_cb, zfsvfs);
518 	error = error ? error : dsl_prop_register(ds,
519 	    "exec", exec_changed_cb, zfsvfs);
520 	error = error ? error : dsl_prop_register(ds,
521 	    "snapdir", snapdir_changed_cb, zfsvfs);
522 	error = error ? error : dsl_prop_register(ds,
523 	    "aclmode", acl_mode_changed_cb, zfsvfs);
524 	error = error ? error : dsl_prop_register(ds,
525 	    "aclinherit", acl_inherit_changed_cb, zfsvfs);
526 	error = error ? error : dsl_prop_register(ds,
527 	    "vscan", vscan_changed_cb, zfsvfs);
528 	if (error)
529 		goto unregister;
530 
531 	/*
532 	 * Invoke our callbacks to restore temporary mount options.
533 	 */
534 	if (do_readonly)
535 		readonly_changed_cb(zfsvfs, readonly);
536 	if (do_setuid)
537 		setuid_changed_cb(zfsvfs, setuid);
538 	if (do_exec)
539 		exec_changed_cb(zfsvfs, exec);
540 	if (do_devices)
541 		devices_changed_cb(zfsvfs, devices);
542 	if (do_xattr)
543 		xattr_changed_cb(zfsvfs, xattr);
544 	if (do_atime)
545 		atime_changed_cb(zfsvfs, atime);
546 
547 	nbmand_changed_cb(zfsvfs, nbmand);
548 
549 	return (0);
550 
551 unregister:
552 	/*
553 	 * We may attempt to unregister some callbacks that are not
554 	 * registered, but this is OK; it will simply return ENOMSG,
555 	 * which we will ignore.
556 	 */
557 	(void) dsl_prop_unregister(ds, "atime", atime_changed_cb, zfsvfs);
558 	(void) dsl_prop_unregister(ds, "xattr", xattr_changed_cb, zfsvfs);
559 	(void) dsl_prop_unregister(ds, "recordsize", blksz_changed_cb, zfsvfs);
560 	(void) dsl_prop_unregister(ds, "readonly", readonly_changed_cb, zfsvfs);
561 	(void) dsl_prop_unregister(ds, "devices", devices_changed_cb, zfsvfs);
562 	(void) dsl_prop_unregister(ds, "setuid", setuid_changed_cb, zfsvfs);
563 	(void) dsl_prop_unregister(ds, "exec", exec_changed_cb, zfsvfs);
564 	(void) dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb, zfsvfs);
565 	(void) dsl_prop_unregister(ds, "aclmode", acl_mode_changed_cb, zfsvfs);
566 	(void) dsl_prop_unregister(ds, "aclinherit", acl_inherit_changed_cb,
567 	    zfsvfs);
568 	(void) dsl_prop_unregister(ds, "vscan", vscan_changed_cb, zfsvfs);
569 	return (error);
570 
571 }
572 
573 static void
574 uidacct(objset_t *os, boolean_t isgroup, uint64_t fuid,
575     int64_t delta, dmu_tx_t *tx)
576 {
577 	uint64_t used = 0;
578 	char buf[32];
579 	int err;
580 	uint64_t obj = isgroup ? DMU_GROUPUSED_OBJECT : DMU_USERUSED_OBJECT;
581 
582 	if (delta == 0)
583 		return;
584 
585 	(void) snprintf(buf, sizeof (buf), "%llx", (longlong_t)fuid);
586 	err = zap_lookup(os, obj, buf, 8, 1, &used);
587 
588 	ASSERT(err == 0 || err == ENOENT);
589 	/* no underflow/overflow */
590 	ASSERT(delta > 0 || used >= -delta);
591 	ASSERT(delta < 0 || used + delta > used);
592 	used += delta;
593 	if (used == 0)
594 		err = zap_remove(os, obj, buf, tx);
595 	else
596 		err = zap_update(os, obj, buf, 8, 1, &used, tx);
597 	ASSERT(err == 0);
598 
599 }
600 
601 static int
602 zfs_space_delta_cb(dmu_object_type_t bonustype, void *data,
603     uint64_t *userp, uint64_t *groupp)
604 {
605 	znode_phys_t *znp = data;
606 	int error = 0;
607 
608 	if (bonustype != DMU_OT_ZNODE && bonustype != DMU_OT_SA)
609 		return (ENOENT);
610 
611 	if (bonustype == DMU_OT_ZNODE) {
612 		*userp = znp->zp_uid;
613 		*groupp = znp->zp_gid;
614 	} else {
615 		int hdrsize;
616 
617 		ASSERT(bonustype == DMU_OT_SA);
618 		hdrsize = sa_hdrsize(data);
619 
620 		if (hdrsize != 0) {
621 			*userp = *((uint64_t *)((uintptr_t)data + hdrsize +
622 			    SA_UID_OFFSET));
623 			*groupp = *((uint64_t *)((uintptr_t)data + hdrsize +
624 			    SA_GID_OFFSET));
625 		} else {
626 			error = ENOENT;
627 		}
628 	}
629 	return (error);
630 }
631 
632 static void
633 fuidstr_to_sid(zfsvfs_t *zfsvfs, const char *fuidstr,
634     char *domainbuf, int buflen, uid_t *ridp)
635 {
636 	uint64_t fuid;
637 	const char *domain;
638 
639 	fuid = strtonum(fuidstr, NULL);
640 
641 	domain = zfs_fuid_find_by_idx(zfsvfs, FUID_INDEX(fuid));
642 	if (domain)
643 		(void) strlcpy(domainbuf, domain, buflen);
644 	else
645 		domainbuf[0] = '\0';
646 	*ridp = FUID_RID(fuid);
647 }
648 
649 static uint64_t
650 zfs_userquota_prop_to_obj(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type)
651 {
652 	switch (type) {
653 	case ZFS_PROP_USERUSED:
654 		return (DMU_USERUSED_OBJECT);
655 	case ZFS_PROP_GROUPUSED:
656 		return (DMU_GROUPUSED_OBJECT);
657 	case ZFS_PROP_USERQUOTA:
658 		return (zfsvfs->z_userquota_obj);
659 	case ZFS_PROP_GROUPQUOTA:
660 		return (zfsvfs->z_groupquota_obj);
661 	}
662 	return (0);
663 }
664 
665 int
666 zfs_userspace_many(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
667     uint64_t *cookiep, void *vbuf, uint64_t *bufsizep)
668 {
669 	int error;
670 	zap_cursor_t zc;
671 	zap_attribute_t za;
672 	zfs_useracct_t *buf = vbuf;
673 	uint64_t obj;
674 
675 	if (!dmu_objset_userspace_present(zfsvfs->z_os))
676 		return (ENOTSUP);
677 
678 	obj = zfs_userquota_prop_to_obj(zfsvfs, type);
679 	if (obj == 0) {
680 		*bufsizep = 0;
681 		return (0);
682 	}
683 
684 	for (zap_cursor_init_serialized(&zc, zfsvfs->z_os, obj, *cookiep);
685 	    (error = zap_cursor_retrieve(&zc, &za)) == 0;
686 	    zap_cursor_advance(&zc)) {
687 		if ((uintptr_t)buf - (uintptr_t)vbuf + sizeof (zfs_useracct_t) >
688 		    *bufsizep)
689 			break;
690 
691 		fuidstr_to_sid(zfsvfs, za.za_name,
692 		    buf->zu_domain, sizeof (buf->zu_domain), &buf->zu_rid);
693 
694 		buf->zu_space = za.za_first_integer;
695 		buf++;
696 	}
697 	if (error == ENOENT)
698 		error = 0;
699 
700 	ASSERT3U((uintptr_t)buf - (uintptr_t)vbuf, <=, *bufsizep);
701 	*bufsizep = (uintptr_t)buf - (uintptr_t)vbuf;
702 	*cookiep = zap_cursor_serialize(&zc);
703 	zap_cursor_fini(&zc);
704 	return (error);
705 }
706 
707 /*
708  * buf must be big enough (eg, 32 bytes)
709  */
710 static int
711 id_to_fuidstr(zfsvfs_t *zfsvfs, const char *domain, uid_t rid,
712     char *buf, boolean_t addok)
713 {
714 	uint64_t fuid;
715 	int domainid = 0;
716 
717 	if (domain && domain[0]) {
718 		domainid = zfs_fuid_find_by_domain(zfsvfs, domain, NULL, addok);
719 		if (domainid == -1)
720 			return (ENOENT);
721 	}
722 	fuid = FUID_ENCODE(domainid, rid);
723 	(void) sprintf(buf, "%llx", (longlong_t)fuid);
724 	return (0);
725 }
726 
727 int
728 zfs_userspace_one(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
729     const char *domain, uint64_t rid, uint64_t *valp)
730 {
731 	char buf[32];
732 	int err;
733 	uint64_t obj;
734 
735 	*valp = 0;
736 
737 	if (!dmu_objset_userspace_present(zfsvfs->z_os))
738 		return (ENOTSUP);
739 
740 	obj = zfs_userquota_prop_to_obj(zfsvfs, type);
741 	if (obj == 0)
742 		return (0);
743 
744 	err = id_to_fuidstr(zfsvfs, domain, rid, buf, B_FALSE);
745 	if (err)
746 		return (err);
747 
748 	err = zap_lookup(zfsvfs->z_os, obj, buf, 8, 1, valp);
749 	if (err == ENOENT)
750 		err = 0;
751 	return (err);
752 }
753 
754 int
755 zfs_set_userquota(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
756     const char *domain, uint64_t rid, uint64_t quota)
757 {
758 	char buf[32];
759 	int err;
760 	dmu_tx_t *tx;
761 	uint64_t *objp;
762 	boolean_t fuid_dirtied;
763 
764 	if (type != ZFS_PROP_USERQUOTA && type != ZFS_PROP_GROUPQUOTA)
765 		return (EINVAL);
766 
767 	if (zfsvfs->z_version < ZPL_VERSION_USERSPACE)
768 		return (ENOTSUP);
769 
770 	objp = (type == ZFS_PROP_USERQUOTA) ? &zfsvfs->z_userquota_obj :
771 	    &zfsvfs->z_groupquota_obj;
772 
773 	err = id_to_fuidstr(zfsvfs, domain, rid, buf, B_TRUE);
774 	if (err)
775 		return (err);
776 	fuid_dirtied = zfsvfs->z_fuid_dirty;
777 
778 	tx = dmu_tx_create(zfsvfs->z_os);
779 	dmu_tx_hold_zap(tx, *objp ? *objp : DMU_NEW_OBJECT, B_TRUE, NULL);
780 	if (*objp == 0) {
781 		dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE,
782 		    zfs_userquota_prop_prefixes[type]);
783 	}
784 	if (fuid_dirtied)
785 		zfs_fuid_txhold(zfsvfs, tx);
786 	err = dmu_tx_assign(tx, TXG_WAIT);
787 	if (err) {
788 		dmu_tx_abort(tx);
789 		return (err);
790 	}
791 
792 	mutex_enter(&zfsvfs->z_lock);
793 	if (*objp == 0) {
794 		*objp = zap_create(zfsvfs->z_os, DMU_OT_USERGROUP_QUOTA,
795 		    DMU_OT_NONE, 0, tx);
796 		VERIFY(0 == zap_add(zfsvfs->z_os, MASTER_NODE_OBJ,
797 		    zfs_userquota_prop_prefixes[type], 8, 1, objp, tx));
798 	}
799 	mutex_exit(&zfsvfs->z_lock);
800 
801 	if (quota == 0) {
802 		err = zap_remove(zfsvfs->z_os, *objp, buf, tx);
803 		if (err == ENOENT)
804 			err = 0;
805 	} else {
806 		err = zap_update(zfsvfs->z_os, *objp, buf, 8, 1, &quota, tx);
807 	}
808 	ASSERT(err == 0);
809 	if (fuid_dirtied)
810 		zfs_fuid_sync(zfsvfs, tx);
811 	dmu_tx_commit(tx);
812 	return (err);
813 }
814 
815 boolean_t
816 zfs_fuid_overquota(zfsvfs_t *zfsvfs, boolean_t isgroup, uint64_t fuid)
817 {
818 	char buf[32];
819 	uint64_t used, quota, usedobj, quotaobj;
820 	int err;
821 
822 	usedobj = isgroup ? DMU_GROUPUSED_OBJECT : DMU_USERUSED_OBJECT;
823 	quotaobj = isgroup ? zfsvfs->z_groupquota_obj : zfsvfs->z_userquota_obj;
824 
825 	if (quotaobj == 0 || zfsvfs->z_replay)
826 		return (B_FALSE);
827 
828 	(void) sprintf(buf, "%llx", (longlong_t)fuid);
829 	err = zap_lookup(zfsvfs->z_os, quotaobj, buf, 8, 1, &quota);
830 	if (err != 0)
831 		return (B_FALSE);
832 
833 	err = zap_lookup(zfsvfs->z_os, usedobj, buf, 8, 1, &used);
834 	if (err != 0)
835 		return (B_FALSE);
836 	return (used >= quota);
837 }
838 
839 boolean_t
840 zfs_owner_overquota(zfsvfs_t *zfsvfs, znode_t *zp, boolean_t isgroup)
841 {
842 	uint64_t fuid;
843 	uint64_t quotaobj;
844 	uid_t id;
845 
846 	quotaobj = isgroup ? zfsvfs->z_groupquota_obj : zfsvfs->z_userquota_obj;
847 
848 	id = isgroup ? zp->z_gid : zp->z_uid;
849 
850 	if (quotaobj == 0 || zfsvfs->z_replay)
851 		return (B_FALSE);
852 
853 	if (IS_EPHEMERAL(id)) {
854 		VERIFY(0 == sa_lookup(zp->z_sa_hdl,
855 		    isgroup ? SA_ZPL_GID(zfsvfs) : SA_ZPL_UID(zfsvfs),
856 		    &fuid, sizeof (fuid)));
857 	} else {
858 		fuid = (uint64_t)id;
859 	}
860 
861 	return (zfs_fuid_overquota(zfsvfs, isgroup, fuid));
862 }
863 
864 int
865 zfsvfs_create(const char *osname, zfsvfs_t **zfvp)
866 {
867 	objset_t *os;
868 	zfsvfs_t *zfsvfs;
869 	uint64_t zval;
870 	int i, error;
871 	uint64_t sa_obj;
872 
873 	zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP);
874 
875 	/*
876 	 * We claim to always be readonly so we can open snapshots;
877 	 * other ZPL code will prevent us from writing to snapshots.
878 	 */
879 	error = dmu_objset_own(osname, DMU_OST_ZFS, B_TRUE, zfsvfs, &os);
880 	if (error) {
881 		kmem_free(zfsvfs, sizeof (zfsvfs_t));
882 		return (error);
883 	}
884 
885 	/*
886 	 * Initialize the zfs-specific filesystem structure.
887 	 * Should probably make this a kmem cache, shuffle fields,
888 	 * and just bzero up to z_hold_mtx[].
889 	 */
890 	zfsvfs->z_vfs = NULL;
891 	zfsvfs->z_parent = zfsvfs;
892 	zfsvfs->z_max_blksz = SPA_MAXBLOCKSIZE;
893 	zfsvfs->z_show_ctldir = ZFS_SNAPDIR_VISIBLE;
894 	zfsvfs->z_os = os;
895 
896 	error = zfs_get_zplprop(os, ZFS_PROP_VERSION, &zfsvfs->z_version);
897 	if (error) {
898 		goto out;
899 	} else if (zfsvfs->z_version >
900 	    zfs_zpl_version_map(spa_version(dmu_objset_spa(os)))) {
901 		(void) printf("Can't mount a version %lld file system "
902 		    "on a version %lld pool\n. Pool must be upgraded to mount "
903 		    "this file system.", (u_longlong_t)zfsvfs->z_version,
904 		    (u_longlong_t)spa_version(dmu_objset_spa(os)));
905 		error = ENOTSUP;
906 		goto out;
907 	}
908 	if ((error = zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &zval)) != 0)
909 		goto out;
910 	zfsvfs->z_norm = (int)zval;
911 
912 	if ((error = zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &zval)) != 0)
913 		goto out;
914 	zfsvfs->z_utf8 = (zval != 0);
915 
916 	if ((error = zfs_get_zplprop(os, ZFS_PROP_CASE, &zval)) != 0)
917 		goto out;
918 	zfsvfs->z_case = (uint_t)zval;
919 
920 	/*
921 	 * Fold case on file systems that are always or sometimes case
922 	 * insensitive.
923 	 */
924 	if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
925 	    zfsvfs->z_case == ZFS_CASE_MIXED)
926 		zfsvfs->z_norm |= U8_TEXTPREP_TOUPPER;
927 
928 	zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
929 	zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os);
930 
931 	if (zfsvfs->z_use_sa) {
932 		/* should either have both of these objects or none */
933 		error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1,
934 		    &sa_obj);
935 		if (error)
936 			return (error);
937 	} else {
938 		/*
939 		 * Pre SA versions file systems should never touch
940 		 * either the attribute registration or layout objects.
941 		 */
942 		sa_obj = 0;
943 	}
944 
945 	zfsvfs->z_attr_table = sa_setup(os, sa_obj, zfs_attr_table, ZPL_END);
946 
947 	if (zfsvfs->z_version >= ZPL_VERSION_SA)
948 		sa_register_update_callback(os, zfs_sa_upgrade);
949 
950 	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1,
951 	    &zfsvfs->z_root);
952 	if (error)
953 		goto out;
954 	ASSERT(zfsvfs->z_root != 0);
955 
956 	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1,
957 	    &zfsvfs->z_unlinkedobj);
958 	if (error)
959 		goto out;
960 
961 	error = zap_lookup(os, MASTER_NODE_OBJ,
962 	    zfs_userquota_prop_prefixes[ZFS_PROP_USERQUOTA],
963 	    8, 1, &zfsvfs->z_userquota_obj);
964 	if (error && error != ENOENT)
965 		goto out;
966 
967 	error = zap_lookup(os, MASTER_NODE_OBJ,
968 	    zfs_userquota_prop_prefixes[ZFS_PROP_GROUPQUOTA],
969 	    8, 1, &zfsvfs->z_groupquota_obj);
970 	if (error && error != ENOENT)
971 		goto out;
972 
973 	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 8, 1,
974 	    &zfsvfs->z_fuid_obj);
975 	if (error && error != ENOENT)
976 		goto out;
977 
978 	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SHARES_DIR, 8, 1,
979 	    &zfsvfs->z_shares_dir);
980 	if (error && error != ENOENT)
981 		goto out;
982 
983 	mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL);
984 	mutex_init(&zfsvfs->z_lock, NULL, MUTEX_DEFAULT, NULL);
985 	list_create(&zfsvfs->z_all_znodes, sizeof (znode_t),
986 	    offsetof(znode_t, z_link_node));
987 	rrw_init(&zfsvfs->z_teardown_lock);
988 	rw_init(&zfsvfs->z_teardown_inactive_lock, NULL, RW_DEFAULT, NULL);
989 	rw_init(&zfsvfs->z_fuid_lock, NULL, RW_DEFAULT, NULL);
990 	for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
991 		mutex_init(&zfsvfs->z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL);
992 
993 	*zfvp = zfsvfs;
994 	return (0);
995 
996 out:
997 	dmu_objset_disown(os, zfsvfs);
998 	*zfvp = NULL;
999 	kmem_free(zfsvfs, sizeof (zfsvfs_t));
1000 	return (error);
1001 }
1002 
1003 static int
1004 zfsvfs_setup(zfsvfs_t *zfsvfs, boolean_t mounting)
1005 {
1006 	int error;
1007 
1008 	error = zfs_register_callbacks(zfsvfs->z_vfs);
1009 	if (error)
1010 		return (error);
1011 
1012 	/*
1013 	 * Set the objset user_ptr to track its zfsvfs.
1014 	 */
1015 	mutex_enter(&zfsvfs->z_os->os_user_ptr_lock);
1016 	dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
1017 	mutex_exit(&zfsvfs->z_os->os_user_ptr_lock);
1018 
1019 	zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data);
1020 	if (zil_disable) {
1021 		zil_destroy(zfsvfs->z_log, B_FALSE);
1022 		zfsvfs->z_log = NULL;
1023 	}
1024 
1025 	/*
1026 	 * If we are not mounting (ie: online recv), then we don't
1027 	 * have to worry about replaying the log as we blocked all
1028 	 * operations out since we closed the ZIL.
1029 	 */
1030 	if (mounting) {
1031 		boolean_t readonly;
1032 
1033 		/*
1034 		 * During replay we remove the read only flag to
1035 		 * allow replays to succeed.
1036 		 */
1037 		readonly = zfsvfs->z_vfs->vfs_flag & VFS_RDONLY;
1038 		if (readonly != 0)
1039 			zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY;
1040 		else
1041 			zfs_unlinked_drain(zfsvfs);
1042 
1043 		if (zfsvfs->z_log) {
1044 			/*
1045 			 * Parse and replay the intent log.
1046 			 *
1047 			 * Because of ziltest, this must be done after
1048 			 * zfs_unlinked_drain().  (Further note: ziltest
1049 			 * doesn't use readonly mounts, where
1050 			 * zfs_unlinked_drain() isn't called.)  This is because
1051 			 * ziltest causes spa_sync() to think it's committed,
1052 			 * but actually it is not, so the intent log contains
1053 			 * many txg's worth of changes.
1054 			 *
1055 			 * In particular, if object N is in the unlinked set in
1056 			 * the last txg to actually sync, then it could be
1057 			 * actually freed in a later txg and then reallocated
1058 			 * in a yet later txg.  This would write a "create
1059 			 * object N" record to the intent log.  Normally, this
1060 			 * would be fine because the spa_sync() would have
1061 			 * written out the fact that object N is free, before
1062 			 * we could write the "create object N" intent log
1063 			 * record.
1064 			 *
1065 			 * But when we are in ziltest mode, we advance the "open
1066 			 * txg" without actually spa_sync()-ing the changes to
1067 			 * disk.  So we would see that object N is still
1068 			 * allocated and in the unlinked set, and there is an
1069 			 * intent log record saying to allocate it.
1070 			 */
1071 			zfsvfs->z_replay = B_TRUE;
1072 			zil_replay(zfsvfs->z_os, zfsvfs, zfs_replay_vector);
1073 			zfsvfs->z_replay = B_FALSE;
1074 		}
1075 		zfsvfs->z_vfs->vfs_flag |= readonly; /* restore readonly bit */
1076 	}
1077 
1078 	return (0);
1079 }
1080 
1081 void
1082 zfsvfs_free(zfsvfs_t *zfsvfs)
1083 {
1084 	int i;
1085 	extern krwlock_t zfsvfs_lock; /* in zfs_znode.c */
1086 
1087 	/*
1088 	 * This is a barrier to prevent the filesystem from going away in
1089 	 * zfs_znode_move() until we can safely ensure that the filesystem is
1090 	 * not unmounted. We consider the filesystem valid before the barrier
1091 	 * and invalid after the barrier.
1092 	 */
1093 	rw_enter(&zfsvfs_lock, RW_READER);
1094 	rw_exit(&zfsvfs_lock);
1095 
1096 	zfs_fuid_destroy(zfsvfs);
1097 
1098 	mutex_destroy(&zfsvfs->z_znodes_lock);
1099 	mutex_destroy(&zfsvfs->z_lock);
1100 	list_destroy(&zfsvfs->z_all_znodes);
1101 	rrw_destroy(&zfsvfs->z_teardown_lock);
1102 	rw_destroy(&zfsvfs->z_teardown_inactive_lock);
1103 	rw_destroy(&zfsvfs->z_fuid_lock);
1104 	for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
1105 		mutex_destroy(&zfsvfs->z_hold_mtx[i]);
1106 	kmem_free(zfsvfs, sizeof (zfsvfs_t));
1107 }
1108 
1109 static void
1110 zfs_set_fuid_feature(zfsvfs_t *zfsvfs)
1111 {
1112 	zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
1113 	if (zfsvfs->z_use_fuids && zfsvfs->z_vfs) {
1114 		vfs_set_feature(zfsvfs->z_vfs, VFSFT_XVATTR);
1115 		vfs_set_feature(zfsvfs->z_vfs, VFSFT_SYSATTR_VIEWS);
1116 		vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACEMASKONACCESS);
1117 		vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACLONCREATE);
1118 		vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACCESS_FILTER);
1119 		vfs_set_feature(zfsvfs->z_vfs, VFSFT_REPARSE);
1120 	}
1121 	zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os);
1122 }
1123 
1124 static int
1125 zfs_domount(vfs_t *vfsp, char *osname)
1126 {
1127 	dev_t mount_dev;
1128 	uint64_t recordsize, fsid_guid;
1129 	int error = 0;
1130 	zfsvfs_t *zfsvfs;
1131 
1132 	ASSERT(vfsp);
1133 	ASSERT(osname);
1134 
1135 	error = zfsvfs_create(osname, &zfsvfs);
1136 	if (error)
1137 		return (error);
1138 	zfsvfs->z_vfs = vfsp;
1139 
1140 	/* Initialize the generic filesystem structure. */
1141 	vfsp->vfs_bcount = 0;
1142 	vfsp->vfs_data = NULL;
1143 
1144 	if (zfs_create_unique_device(&mount_dev) == -1) {
1145 		error = ENODEV;
1146 		goto out;
1147 	}
1148 	ASSERT(vfs_devismounted(mount_dev) == 0);
1149 
1150 	if (error = dsl_prop_get_integer(osname, "recordsize", &recordsize,
1151 	    NULL))
1152 		goto out;
1153 
1154 	vfsp->vfs_dev = mount_dev;
1155 	vfsp->vfs_fstype = zfsfstype;
1156 	vfsp->vfs_bsize = recordsize;
1157 	vfsp->vfs_flag |= VFS_NOTRUNC;
1158 	vfsp->vfs_data = zfsvfs;
1159 
1160 	/*
1161 	 * The fsid is 64 bits, composed of an 8-bit fs type, which
1162 	 * separates our fsid from any other filesystem types, and a
1163 	 * 56-bit objset unique ID.  The objset unique ID is unique to
1164 	 * all objsets open on this system, provided by unique_create().
1165 	 * The 8-bit fs type must be put in the low bits of fsid[1]
1166 	 * because that's where other Solaris filesystems put it.
1167 	 */
1168 	fsid_guid = dmu_objset_fsid_guid(zfsvfs->z_os);
1169 	ASSERT((fsid_guid & ~((1ULL<<56)-1)) == 0);
1170 	vfsp->vfs_fsid.val[0] = fsid_guid;
1171 	vfsp->vfs_fsid.val[1] = ((fsid_guid>>32) << 8) |
1172 	    zfsfstype & 0xFF;
1173 
1174 	/*
1175 	 * Set features for file system.
1176 	 */
1177 	zfs_set_fuid_feature(zfsvfs);
1178 	if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE) {
1179 		vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS);
1180 		vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE);
1181 		vfs_set_feature(vfsp, VFSFT_NOCASESENSITIVE);
1182 	} else if (zfsvfs->z_case == ZFS_CASE_MIXED) {
1183 		vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS);
1184 		vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE);
1185 	}
1186 	vfs_set_feature(vfsp, VFSFT_ZEROCOPY_SUPPORTED);
1187 
1188 	if (dmu_objset_is_snapshot(zfsvfs->z_os)) {
1189 		uint64_t pval;
1190 
1191 		atime_changed_cb(zfsvfs, B_FALSE);
1192 		readonly_changed_cb(zfsvfs, B_TRUE);
1193 		if (error = dsl_prop_get_integer(osname, "xattr", &pval, NULL))
1194 			goto out;
1195 		xattr_changed_cb(zfsvfs, pval);
1196 		zfsvfs->z_issnap = B_TRUE;
1197 
1198 		mutex_enter(&zfsvfs->z_os->os_user_ptr_lock);
1199 		dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
1200 		mutex_exit(&zfsvfs->z_os->os_user_ptr_lock);
1201 	} else {
1202 		error = zfsvfs_setup(zfsvfs, B_TRUE);
1203 	}
1204 
1205 	if (!zfsvfs->z_issnap)
1206 		zfsctl_create(zfsvfs);
1207 out:
1208 	if (error) {
1209 		dmu_objset_disown(zfsvfs->z_os, zfsvfs);
1210 		zfsvfs_free(zfsvfs);
1211 	} else {
1212 		atomic_add_32(&zfs_active_fs_count, 1);
1213 	}
1214 
1215 	return (error);
1216 }
1217 
1218 void
1219 zfs_unregister_callbacks(zfsvfs_t *zfsvfs)
1220 {
1221 	objset_t *os = zfsvfs->z_os;
1222 	struct dsl_dataset *ds;
1223 
1224 	/*
1225 	 * Unregister properties.
1226 	 */
1227 	if (!dmu_objset_is_snapshot(os)) {
1228 		ds = dmu_objset_ds(os);
1229 		VERIFY(dsl_prop_unregister(ds, "atime", atime_changed_cb,
1230 		    zfsvfs) == 0);
1231 
1232 		VERIFY(dsl_prop_unregister(ds, "xattr", xattr_changed_cb,
1233 		    zfsvfs) == 0);
1234 
1235 		VERIFY(dsl_prop_unregister(ds, "recordsize", blksz_changed_cb,
1236 		    zfsvfs) == 0);
1237 
1238 		VERIFY(dsl_prop_unregister(ds, "readonly", readonly_changed_cb,
1239 		    zfsvfs) == 0);
1240 
1241 		VERIFY(dsl_prop_unregister(ds, "devices", devices_changed_cb,
1242 		    zfsvfs) == 0);
1243 
1244 		VERIFY(dsl_prop_unregister(ds, "setuid", setuid_changed_cb,
1245 		    zfsvfs) == 0);
1246 
1247 		VERIFY(dsl_prop_unregister(ds, "exec", exec_changed_cb,
1248 		    zfsvfs) == 0);
1249 
1250 		VERIFY(dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb,
1251 		    zfsvfs) == 0);
1252 
1253 		VERIFY(dsl_prop_unregister(ds, "aclmode", acl_mode_changed_cb,
1254 		    zfsvfs) == 0);
1255 
1256 		VERIFY(dsl_prop_unregister(ds, "aclinherit",
1257 		    acl_inherit_changed_cb, zfsvfs) == 0);
1258 
1259 		VERIFY(dsl_prop_unregister(ds, "vscan",
1260 		    vscan_changed_cb, zfsvfs) == 0);
1261 	}
1262 }
1263 
1264 /*
1265  * Convert a decimal digit string to a uint64_t integer.
1266  */
1267 static int
1268 str_to_uint64(char *str, uint64_t *objnum)
1269 {
1270 	uint64_t num = 0;
1271 
1272 	while (*str) {
1273 		if (*str < '0' || *str > '9')
1274 			return (EINVAL);
1275 
1276 		num = num*10 + *str++ - '0';
1277 	}
1278 
1279 	*objnum = num;
1280 	return (0);
1281 }
1282 
1283 /*
1284  * The boot path passed from the boot loader is in the form of
1285  * "rootpool-name/root-filesystem-object-number'. Convert this
1286  * string to a dataset name: "rootpool-name/root-filesystem-name".
1287  */
1288 static int
1289 zfs_parse_bootfs(char *bpath, char *outpath)
1290 {
1291 	char *slashp;
1292 	uint64_t objnum;
1293 	int error;
1294 
1295 	if (*bpath == 0 || *bpath == '/')
1296 		return (EINVAL);
1297 
1298 	(void) strcpy(outpath, bpath);
1299 
1300 	slashp = strchr(bpath, '/');
1301 
1302 	/* if no '/', just return the pool name */
1303 	if (slashp == NULL) {
1304 		return (0);
1305 	}
1306 
1307 	/* if not a number, just return the root dataset name */
1308 	if (str_to_uint64(slashp+1, &objnum)) {
1309 		return (0);
1310 	}
1311 
1312 	*slashp = '\0';
1313 	error = dsl_dsobj_to_dsname(bpath, objnum, outpath);
1314 	*slashp = '/';
1315 
1316 	return (error);
1317 }
1318 
1319 /*
1320  * zfs_check_global_label:
1321  *	Check that the hex label string is appropriate for the dataset
1322  *	being mounted into the global_zone proper.
1323  *
1324  *	Return an error if the hex label string is not default or
1325  *	admin_low/admin_high.  For admin_low labels, the corresponding
1326  *	dataset must be readonly.
1327  */
1328 int
1329 zfs_check_global_label(const char *dsname, const char *hexsl)
1330 {
1331 	if (strcasecmp(hexsl, ZFS_MLSLABEL_DEFAULT) == 0)
1332 		return (0);
1333 	if (strcasecmp(hexsl, ADMIN_HIGH) == 0)
1334 		return (0);
1335 	if (strcasecmp(hexsl, ADMIN_LOW) == 0) {
1336 		/* must be readonly */
1337 		uint64_t rdonly;
1338 
1339 		if (dsl_prop_get_integer(dsname,
1340 		    zfs_prop_to_name(ZFS_PROP_READONLY), &rdonly, NULL))
1341 			return (EACCES);
1342 		return (rdonly ? 0 : EACCES);
1343 	}
1344 	return (EACCES);
1345 }
1346 
1347 /*
1348  * zfs_mount_label_policy:
1349  *	Determine whether the mount is allowed according to MAC check.
1350  *	by comparing (where appropriate) label of the dataset against
1351  *	the label of the zone being mounted into.  If the dataset has
1352  *	no label, create one.
1353  *
1354  *	Returns:
1355  *		 0 :	access allowed
1356  *		>0 :	error code, such as EACCES
1357  */
1358 static int
1359 zfs_mount_label_policy(vfs_t *vfsp, char *osname)
1360 {
1361 	int		error, retv;
1362 	zone_t		*mntzone = NULL;
1363 	ts_label_t	*mnt_tsl;
1364 	bslabel_t	*mnt_sl;
1365 	bslabel_t	ds_sl;
1366 	char		ds_hexsl[MAXNAMELEN];
1367 
1368 	retv = EACCES;				/* assume the worst */
1369 
1370 	/*
1371 	 * Start by getting the dataset label if it exists.
1372 	 */
1373 	error = dsl_prop_get(osname, zfs_prop_to_name(ZFS_PROP_MLSLABEL),
1374 	    1, sizeof (ds_hexsl), &ds_hexsl, NULL);
1375 	if (error)
1376 		return (EACCES);
1377 
1378 	/*
1379 	 * If labeling is NOT enabled, then disallow the mount of datasets
1380 	 * which have a non-default label already.  No other label checks
1381 	 * are needed.
1382 	 */
1383 	if (!is_system_labeled()) {
1384 		if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) == 0)
1385 			return (0);
1386 		return (EACCES);
1387 	}
1388 
1389 	/*
1390 	 * Get the label of the mountpoint.  If mounting into the global
1391 	 * zone (i.e. mountpoint is not within an active zone and the
1392 	 * zoned property is off), the label must be default or
1393 	 * admin_low/admin_high only; no other checks are needed.
1394 	 */
1395 	mntzone = zone_find_by_any_path(refstr_value(vfsp->vfs_mntpt), B_FALSE);
1396 	if (mntzone->zone_id == GLOBAL_ZONEID) {
1397 		uint64_t zoned;
1398 
1399 		zone_rele(mntzone);
1400 
1401 		if (dsl_prop_get_integer(osname,
1402 		    zfs_prop_to_name(ZFS_PROP_ZONED), &zoned, NULL))
1403 			return (EACCES);
1404 		if (!zoned)
1405 			return (zfs_check_global_label(osname, ds_hexsl));
1406 		else
1407 			/*
1408 			 * This is the case of a zone dataset being mounted
1409 			 * initially, before the zone has been fully created;
1410 			 * allow this mount into global zone.
1411 			 */
1412 			return (0);
1413 	}
1414 
1415 	mnt_tsl = mntzone->zone_slabel;
1416 	ASSERT(mnt_tsl != NULL);
1417 	label_hold(mnt_tsl);
1418 	mnt_sl = label2bslabel(mnt_tsl);
1419 
1420 	if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) == 0) {
1421 		/*
1422 		 * The dataset doesn't have a real label, so fabricate one.
1423 		 */
1424 		char *str = NULL;
1425 
1426 		if (l_to_str_internal(mnt_sl, &str) == 0 &&
1427 		    dsl_prop_set(osname, zfs_prop_to_name(ZFS_PROP_MLSLABEL),
1428 		    ZPROP_SRC_LOCAL, 1, strlen(str) + 1, str) == 0)
1429 			retv = 0;
1430 		if (str != NULL)
1431 			kmem_free(str, strlen(str) + 1);
1432 	} else if (hexstr_to_label(ds_hexsl, &ds_sl) == 0) {
1433 		/*
1434 		 * Now compare labels to complete the MAC check.  If the
1435 		 * labels are equal then allow access.  If the mountpoint
1436 		 * label dominates the dataset label, allow readonly access.
1437 		 * Otherwise, access is denied.
1438 		 */
1439 		if (blequal(mnt_sl, &ds_sl))
1440 			retv = 0;
1441 		else if (bldominates(mnt_sl, &ds_sl)) {
1442 			vfs_setmntopt(vfsp, MNTOPT_RO, NULL, 0);
1443 			retv = 0;
1444 		}
1445 	}
1446 
1447 	label_rele(mnt_tsl);
1448 	zone_rele(mntzone);
1449 	return (retv);
1450 }
1451 
1452 static int
1453 zfs_mountroot(vfs_t *vfsp, enum whymountroot why)
1454 {
1455 	int error = 0;
1456 	static int zfsrootdone = 0;
1457 	zfsvfs_t *zfsvfs = NULL;
1458 	znode_t *zp = NULL;
1459 	vnode_t *vp = NULL;
1460 	char *zfs_bootfs;
1461 	char *zfs_devid;
1462 
1463 	ASSERT(vfsp);
1464 
1465 	/*
1466 	 * The filesystem that we mount as root is defined in the
1467 	 * boot property "zfs-bootfs" with a format of
1468 	 * "poolname/root-dataset-objnum".
1469 	 */
1470 	if (why == ROOT_INIT) {
1471 		if (zfsrootdone++)
1472 			return (EBUSY);
1473 		/*
1474 		 * the process of doing a spa_load will require the
1475 		 * clock to be set before we could (for example) do
1476 		 * something better by looking at the timestamp on
1477 		 * an uberblock, so just set it to -1.
1478 		 */
1479 		clkset(-1);
1480 
1481 		if ((zfs_bootfs = spa_get_bootprop("zfs-bootfs")) == NULL) {
1482 			cmn_err(CE_NOTE, "spa_get_bootfs: can not get "
1483 			    "bootfs name");
1484 			return (EINVAL);
1485 		}
1486 		zfs_devid = spa_get_bootprop("diskdevid");
1487 		error = spa_import_rootpool(rootfs.bo_name, zfs_devid);
1488 		if (zfs_devid)
1489 			spa_free_bootprop(zfs_devid);
1490 		if (error) {
1491 			spa_free_bootprop(zfs_bootfs);
1492 			cmn_err(CE_NOTE, "spa_import_rootpool: error %d",
1493 			    error);
1494 			return (error);
1495 		}
1496 		if (error = zfs_parse_bootfs(zfs_bootfs, rootfs.bo_name)) {
1497 			spa_free_bootprop(zfs_bootfs);
1498 			cmn_err(CE_NOTE, "zfs_parse_bootfs: error %d",
1499 			    error);
1500 			return (error);
1501 		}
1502 
1503 		spa_free_bootprop(zfs_bootfs);
1504 
1505 		if (error = vfs_lock(vfsp))
1506 			return (error);
1507 
1508 		if (error = zfs_domount(vfsp, rootfs.bo_name)) {
1509 			cmn_err(CE_NOTE, "zfs_domount: error %d", error);
1510 			goto out;
1511 		}
1512 
1513 		zfsvfs = (zfsvfs_t *)vfsp->vfs_data;
1514 		ASSERT(zfsvfs);
1515 		if (error = zfs_zget(zfsvfs, zfsvfs->z_root, &zp)) {
1516 			cmn_err(CE_NOTE, "zfs_zget: error %d", error);
1517 			goto out;
1518 		}
1519 
1520 		vp = ZTOV(zp);
1521 		mutex_enter(&vp->v_lock);
1522 		vp->v_flag |= VROOT;
1523 		mutex_exit(&vp->v_lock);
1524 		rootvp = vp;
1525 
1526 		/*
1527 		 * Leave rootvp held.  The root file system is never unmounted.
1528 		 */
1529 
1530 		vfs_add((struct vnode *)0, vfsp,
1531 		    (vfsp->vfs_flag & VFS_RDONLY) ? MS_RDONLY : 0);
1532 out:
1533 		vfs_unlock(vfsp);
1534 		return (error);
1535 	} else if (why == ROOT_REMOUNT) {
1536 		readonly_changed_cb(vfsp->vfs_data, B_FALSE);
1537 		vfsp->vfs_flag |= VFS_REMOUNT;
1538 
1539 		/* refresh mount options */
1540 		zfs_unregister_callbacks(vfsp->vfs_data);
1541 		return (zfs_register_callbacks(vfsp));
1542 
1543 	} else if (why == ROOT_UNMOUNT) {
1544 		zfs_unregister_callbacks((zfsvfs_t *)vfsp->vfs_data);
1545 		(void) zfs_sync(vfsp, 0, 0);
1546 		return (0);
1547 	}
1548 
1549 	/*
1550 	 * if "why" is equal to anything else other than ROOT_INIT,
1551 	 * ROOT_REMOUNT, or ROOT_UNMOUNT, we do not support it.
1552 	 */
1553 	return (ENOTSUP);
1554 }
1555 
1556 /*ARGSUSED*/
1557 static int
1558 zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr)
1559 {
1560 	char		*osname;
1561 	pathname_t	spn;
1562 	int		error = 0;
1563 	uio_seg_t	fromspace = (uap->flags & MS_SYSSPACE) ?
1564 	    UIO_SYSSPACE : UIO_USERSPACE;
1565 	int		canwrite;
1566 
1567 	if (mvp->v_type != VDIR)
1568 		return (ENOTDIR);
1569 
1570 	mutex_enter(&mvp->v_lock);
1571 	if ((uap->flags & MS_REMOUNT) == 0 &&
1572 	    (uap->flags & MS_OVERLAY) == 0 &&
1573 	    (mvp->v_count != 1 || (mvp->v_flag & VROOT))) {
1574 		mutex_exit(&mvp->v_lock);
1575 		return (EBUSY);
1576 	}
1577 	mutex_exit(&mvp->v_lock);
1578 
1579 	/*
1580 	 * ZFS does not support passing unparsed data in via MS_DATA.
1581 	 * Users should use the MS_OPTIONSTR interface; this means
1582 	 * that all option parsing is already done and the options struct
1583 	 * can be interrogated.
1584 	 */
1585 	if ((uap->flags & MS_DATA) && uap->datalen > 0)
1586 		return (EINVAL);
1587 
1588 	/*
1589 	 * Get the objset name (the "special" mount argument).
1590 	 */
1591 	if (error = pn_get(uap->spec, fromspace, &spn))
1592 		return (error);
1593 
1594 	osname = spn.pn_path;
1595 
1596 	/*
1597 	 * Check for mount privilege?
1598 	 *
1599 	 * If we don't have privilege then see if
1600 	 * we have local permission to allow it
1601 	 */
1602 	error = secpolicy_fs_mount(cr, mvp, vfsp);
1603 	if (error) {
1604 		if (dsl_deleg_access(osname, ZFS_DELEG_PERM_MOUNT, cr) == 0) {
1605 			vattr_t		vattr;
1606 
1607 			/*
1608 			 * Make sure user is the owner of the mount point
1609 			 * or has sufficient privileges.
1610 			 */
1611 
1612 			vattr.va_mask = AT_UID;
1613 
1614 			if (VOP_GETATTR(mvp, &vattr, 0, cr, NULL)) {
1615 				goto out;
1616 			}
1617 
1618 			if (secpolicy_vnode_owner(cr, vattr.va_uid) != 0 &&
1619 			    VOP_ACCESS(mvp, VWRITE, 0, cr, NULL) != 0) {
1620 				goto out;
1621 			}
1622 			secpolicy_fs_mount_clearopts(cr, vfsp);
1623 		} else {
1624 			goto out;
1625 		}
1626 	}
1627 
1628 	/*
1629 	 * Refuse to mount a filesystem if we are in a local zone and the
1630 	 * dataset is not visible.
1631 	 */
1632 	if (!INGLOBALZONE(curproc) &&
1633 	    (!zone_dataset_visible(osname, &canwrite) || !canwrite)) {
1634 		error = EPERM;
1635 		goto out;
1636 	}
1637 
1638 	error = zfs_mount_label_policy(vfsp, osname);
1639 	if (error)
1640 		goto out;
1641 
1642 	/*
1643 	 * When doing a remount, we simply refresh our temporary properties
1644 	 * according to those options set in the current VFS options.
1645 	 */
1646 	if (uap->flags & MS_REMOUNT) {
1647 		/* refresh mount options */
1648 		zfs_unregister_callbacks(vfsp->vfs_data);
1649 		error = zfs_register_callbacks(vfsp);
1650 		goto out;
1651 	}
1652 
1653 	error = zfs_domount(vfsp, osname);
1654 
1655 	/*
1656 	 * Add an extra VFS_HOLD on our parent vfs so that it can't
1657 	 * disappear due to a forced unmount.
1658 	 */
1659 	if (error == 0 && ((zfsvfs_t *)vfsp->vfs_data)->z_issnap)
1660 		VFS_HOLD(mvp->v_vfsp);
1661 
1662 out:
1663 	pn_free(&spn);
1664 	return (error);
1665 }
1666 
1667 static int
1668 zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp)
1669 {
1670 	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1671 	dev32_t d32;
1672 	uint64_t refdbytes, availbytes, usedobjs, availobjs;
1673 
1674 	ZFS_ENTER(zfsvfs);
1675 
1676 	dmu_objset_space(zfsvfs->z_os,
1677 	    &refdbytes, &availbytes, &usedobjs, &availobjs);
1678 
1679 	/*
1680 	 * The underlying storage pool actually uses multiple block sizes.
1681 	 * We report the fragsize as the smallest block size we support,
1682 	 * and we report our blocksize as the filesystem's maximum blocksize.
1683 	 */
1684 	statp->f_frsize = 1UL << SPA_MINBLOCKSHIFT;
1685 	statp->f_bsize = zfsvfs->z_max_blksz;
1686 
1687 	/*
1688 	 * The following report "total" blocks of various kinds in the
1689 	 * file system, but reported in terms of f_frsize - the
1690 	 * "fragment" size.
1691 	 */
1692 
1693 	statp->f_blocks = (refdbytes + availbytes) >> SPA_MINBLOCKSHIFT;
1694 	statp->f_bfree = availbytes >> SPA_MINBLOCKSHIFT;
1695 	statp->f_bavail = statp->f_bfree; /* no root reservation */
1696 
1697 	/*
1698 	 * statvfs() should really be called statufs(), because it assumes
1699 	 * static metadata.  ZFS doesn't preallocate files, so the best
1700 	 * we can do is report the max that could possibly fit in f_files,
1701 	 * and that minus the number actually used in f_ffree.
1702 	 * For f_ffree, report the smaller of the number of object available
1703 	 * and the number of blocks (each object will take at least a block).
1704 	 */
1705 	statp->f_ffree = MIN(availobjs, statp->f_bfree);
1706 	statp->f_favail = statp->f_ffree;	/* no "root reservation" */
1707 	statp->f_files = statp->f_ffree + usedobjs;
1708 
1709 	(void) cmpldev(&d32, vfsp->vfs_dev);
1710 	statp->f_fsid = d32;
1711 
1712 	/*
1713 	 * We're a zfs filesystem.
1714 	 */
1715 	(void) strcpy(statp->f_basetype, vfssw[vfsp->vfs_fstype].vsw_name);
1716 
1717 	statp->f_flag = vf_to_stf(vfsp->vfs_flag);
1718 
1719 	statp->f_namemax = ZFS_MAXNAMELEN;
1720 
1721 	/*
1722 	 * We have all of 32 characters to stuff a string here.
1723 	 * Is there anything useful we could/should provide?
1724 	 */
1725 	bzero(statp->f_fstr, sizeof (statp->f_fstr));
1726 
1727 	ZFS_EXIT(zfsvfs);
1728 	return (0);
1729 }
1730 
1731 static int
1732 zfs_root(vfs_t *vfsp, vnode_t **vpp)
1733 {
1734 	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1735 	znode_t *rootzp;
1736 	int error;
1737 
1738 	ZFS_ENTER(zfsvfs);
1739 
1740 	error = zfs_zget(zfsvfs, zfsvfs->z_root, &rootzp);
1741 	if (error == 0)
1742 		*vpp = ZTOV(rootzp);
1743 
1744 	ZFS_EXIT(zfsvfs);
1745 	return (error);
1746 }
1747 
1748 /*
1749  * Teardown the zfsvfs::z_os.
1750  *
1751  * Note, if 'unmounting' if FALSE, we return with the 'z_teardown_lock'
1752  * and 'z_teardown_inactive_lock' held.
1753  */
1754 static int
1755 zfsvfs_teardown(zfsvfs_t *zfsvfs, boolean_t unmounting)
1756 {
1757 	znode_t	*zp;
1758 
1759 	rrw_enter(&zfsvfs->z_teardown_lock, RW_WRITER, FTAG);
1760 
1761 	if (!unmounting) {
1762 		/*
1763 		 * We purge the parent filesystem's vfsp as the parent
1764 		 * filesystem and all of its snapshots have their vnode's
1765 		 * v_vfsp set to the parent's filesystem's vfsp.  Note,
1766 		 * 'z_parent' is self referential for non-snapshots.
1767 		 */
1768 		(void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0);
1769 	}
1770 
1771 	/*
1772 	 * Close the zil. NB: Can't close the zil while zfs_inactive
1773 	 * threads are blocked as zil_close can call zfs_inactive.
1774 	 */
1775 	if (zfsvfs->z_log) {
1776 		zil_close(zfsvfs->z_log);
1777 		zfsvfs->z_log = NULL;
1778 	}
1779 
1780 	rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_WRITER);
1781 
1782 	/*
1783 	 * If we are not unmounting (ie: online recv) and someone already
1784 	 * unmounted this file system while we were doing the switcheroo,
1785 	 * or a reopen of z_os failed then just bail out now.
1786 	 */
1787 	if (!unmounting && (zfsvfs->z_unmounted || zfsvfs->z_os == NULL)) {
1788 		rw_exit(&zfsvfs->z_teardown_inactive_lock);
1789 		rrw_exit(&zfsvfs->z_teardown_lock, FTAG);
1790 		return (EIO);
1791 	}
1792 
1793 	/*
1794 	 * At this point there are no vops active, and any new vops will
1795 	 * fail with EIO since we have z_teardown_lock for writer (only
1796 	 * relavent for forced unmount).
1797 	 *
1798 	 * Release all holds on dbufs.
1799 	 */
1800 	mutex_enter(&zfsvfs->z_znodes_lock);
1801 	for (zp = list_head(&zfsvfs->z_all_znodes); zp != NULL;
1802 	    zp = list_next(&zfsvfs->z_all_znodes, zp))
1803 		if (zp->z_sa_hdl) {
1804 			ASSERT(ZTOV(zp)->v_count > 0);
1805 			zfs_znode_dmu_fini(zp);
1806 		}
1807 	mutex_exit(&zfsvfs->z_znodes_lock);
1808 
1809 	/*
1810 	 * If we are unmounting, set the unmounted flag and let new vops
1811 	 * unblock.  zfs_inactive will have the unmounted behavior, and all
1812 	 * other vops will fail with EIO.
1813 	 */
1814 	if (unmounting) {
1815 		zfsvfs->z_unmounted = B_TRUE;
1816 		rrw_exit(&zfsvfs->z_teardown_lock, FTAG);
1817 		rw_exit(&zfsvfs->z_teardown_inactive_lock);
1818 	}
1819 
1820 	/*
1821 	 * z_os will be NULL if there was an error in attempting to reopen
1822 	 * zfsvfs, so just return as the properties had already been
1823 	 * unregistered and cached data had been evicted before.
1824 	 */
1825 	if (zfsvfs->z_os == NULL)
1826 		return (0);
1827 
1828 	/*
1829 	 * Unregister properties.
1830 	 */
1831 	zfs_unregister_callbacks(zfsvfs);
1832 
1833 	/*
1834 	 * Evict cached data
1835 	 */
1836 	if (dmu_objset_evict_dbufs(zfsvfs->z_os)) {
1837 		txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0);
1838 		(void) dmu_objset_evict_dbufs(zfsvfs->z_os);
1839 	}
1840 
1841 	return (0);
1842 }
1843 
1844 /*ARGSUSED*/
1845 static int
1846 zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr)
1847 {
1848 	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1849 	objset_t *os;
1850 	int ret;
1851 
1852 	ret = secpolicy_fs_unmount(cr, vfsp);
1853 	if (ret) {
1854 		if (dsl_deleg_access((char *)refstr_value(vfsp->vfs_resource),
1855 		    ZFS_DELEG_PERM_MOUNT, cr))
1856 			return (ret);
1857 	}
1858 
1859 	/*
1860 	 * We purge the parent filesystem's vfsp as the parent filesystem
1861 	 * and all of its snapshots have their vnode's v_vfsp set to the
1862 	 * parent's filesystem's vfsp.  Note, 'z_parent' is self
1863 	 * referential for non-snapshots.
1864 	 */
1865 	(void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0);
1866 
1867 	/*
1868 	 * Unmount any snapshots mounted under .zfs before unmounting the
1869 	 * dataset itself.
1870 	 */
1871 	if (zfsvfs->z_ctldir != NULL &&
1872 	    (ret = zfsctl_umount_snapshots(vfsp, fflag, cr)) != 0) {
1873 		return (ret);
1874 	}
1875 
1876 	if (!(fflag & MS_FORCE)) {
1877 		/*
1878 		 * Check the number of active vnodes in the file system.
1879 		 * Our count is maintained in the vfs structure, but the
1880 		 * number is off by 1 to indicate a hold on the vfs
1881 		 * structure itself.
1882 		 *
1883 		 * The '.zfs' directory maintains a reference of its
1884 		 * own, and any active references underneath are
1885 		 * reflected in the vnode count.
1886 		 */
1887 		if (zfsvfs->z_ctldir == NULL) {
1888 			if (vfsp->vfs_count > 1)
1889 				return (EBUSY);
1890 		} else {
1891 			if (vfsp->vfs_count > 2 ||
1892 			    zfsvfs->z_ctldir->v_count > 1)
1893 				return (EBUSY);
1894 		}
1895 	}
1896 
1897 	vfsp->vfs_flag |= VFS_UNMOUNTED;
1898 
1899 	VERIFY(zfsvfs_teardown(zfsvfs, B_TRUE) == 0);
1900 	os = zfsvfs->z_os;
1901 
1902 	/*
1903 	 * z_os will be NULL if there was an error in
1904 	 * attempting to reopen zfsvfs.
1905 	 */
1906 	if (os != NULL) {
1907 		/*
1908 		 * Unset the objset user_ptr.
1909 		 */
1910 		mutex_enter(&os->os_user_ptr_lock);
1911 		dmu_objset_set_user(os, NULL);
1912 		mutex_exit(&os->os_user_ptr_lock);
1913 
1914 		/*
1915 		 * Finally release the objset
1916 		 */
1917 		dmu_objset_disown(os, zfsvfs);
1918 	}
1919 
1920 	/*
1921 	 * We can now safely destroy the '.zfs' directory node.
1922 	 */
1923 	if (zfsvfs->z_ctldir != NULL)
1924 		zfsctl_destroy(zfsvfs);
1925 
1926 	return (0);
1927 }
1928 
1929 static int
1930 zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp)
1931 {
1932 	zfsvfs_t	*zfsvfs = vfsp->vfs_data;
1933 	znode_t		*zp;
1934 	uint64_t	object = 0;
1935 	uint64_t	fid_gen = 0;
1936 	uint64_t	gen_mask;
1937 	uint64_t	zp_gen;
1938 	int 		i, err;
1939 
1940 	*vpp = NULL;
1941 
1942 	ZFS_ENTER(zfsvfs);
1943 
1944 	if (fidp->fid_len == LONG_FID_LEN) {
1945 		zfid_long_t	*zlfid = (zfid_long_t *)fidp;
1946 		uint64_t	objsetid = 0;
1947 		uint64_t	setgen = 0;
1948 
1949 		for (i = 0; i < sizeof (zlfid->zf_setid); i++)
1950 			objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i);
1951 
1952 		for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
1953 			setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i);
1954 
1955 		ZFS_EXIT(zfsvfs);
1956 
1957 		err = zfsctl_lookup_objset(vfsp, objsetid, &zfsvfs);
1958 		if (err)
1959 			return (EINVAL);
1960 		ZFS_ENTER(zfsvfs);
1961 	}
1962 
1963 	if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) {
1964 		zfid_short_t	*zfid = (zfid_short_t *)fidp;
1965 
1966 		for (i = 0; i < sizeof (zfid->zf_object); i++)
1967 			object |= ((uint64_t)zfid->zf_object[i]) << (8 * i);
1968 
1969 		for (i = 0; i < sizeof (zfid->zf_gen); i++)
1970 			fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i);
1971 	} else {
1972 		ZFS_EXIT(zfsvfs);
1973 		return (EINVAL);
1974 	}
1975 
1976 	/* A zero fid_gen means we are in the .zfs control directories */
1977 	if (fid_gen == 0 &&
1978 	    (object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) {
1979 		*vpp = zfsvfs->z_ctldir;
1980 		ASSERT(*vpp != NULL);
1981 		if (object == ZFSCTL_INO_SNAPDIR) {
1982 			VERIFY(zfsctl_root_lookup(*vpp, "snapshot", vpp, NULL,
1983 			    0, NULL, NULL, NULL, NULL, NULL) == 0);
1984 		} else {
1985 			VN_HOLD(*vpp);
1986 		}
1987 		ZFS_EXIT(zfsvfs);
1988 		return (0);
1989 	}
1990 
1991 	gen_mask = -1ULL >> (64 - 8 * i);
1992 
1993 	dprintf("getting %llu [%u mask %llx]\n", object, fid_gen, gen_mask);
1994 	if (err = zfs_zget(zfsvfs, object, &zp)) {
1995 		ZFS_EXIT(zfsvfs);
1996 		return (err);
1997 	}
1998 	(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), &zp_gen,
1999 	    sizeof (uint64_t));
2000 	zp_gen = zp_gen & gen_mask;
2001 	if (zp_gen == 0)
2002 		zp_gen = 1;
2003 	if (zp->z_unlinked || zp_gen != fid_gen) {
2004 		dprintf("znode gen (%u) != fid gen (%u)\n", zp_gen, fid_gen);
2005 		VN_RELE(ZTOV(zp));
2006 		ZFS_EXIT(zfsvfs);
2007 		return (EINVAL);
2008 	}
2009 
2010 	*vpp = ZTOV(zp);
2011 	ZFS_EXIT(zfsvfs);
2012 	return (0);
2013 }
2014 
2015 /*
2016  * Block out VOPs and close zfsvfs_t::z_os
2017  *
2018  * Note, if successful, then we return with the 'z_teardown_lock' and
2019  * 'z_teardown_inactive_lock' write held.
2020  */
2021 int
2022 zfs_suspend_fs(zfsvfs_t *zfsvfs)
2023 {
2024 	int error;
2025 
2026 	if ((error = zfsvfs_teardown(zfsvfs, B_FALSE)) != 0)
2027 		return (error);
2028 	dmu_objset_disown(zfsvfs->z_os, zfsvfs);
2029 
2030 	return (0);
2031 }
2032 
2033 /*
2034  * Reopen zfsvfs_t::z_os and release VOPs.
2035  */
2036 int
2037 zfs_resume_fs(zfsvfs_t *zfsvfs, const char *osname)
2038 {
2039 	int err, err2;
2040 
2041 	ASSERT(RRW_WRITE_HELD(&zfsvfs->z_teardown_lock));
2042 	ASSERT(RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock));
2043 
2044 	err = dmu_objset_own(osname, DMU_OST_ZFS, B_FALSE, zfsvfs,
2045 	    &zfsvfs->z_os);
2046 	if (err) {
2047 		zfsvfs->z_os = NULL;
2048 	} else {
2049 		znode_t *zp;
2050 		uint64_t sa_obj = 0;
2051 
2052 		err2 = zap_lookup(zfsvfs->z_os, MASTER_NODE_OBJ,
2053 		    ZFS_SA_ATTRS, 8, 1, &sa_obj);
2054 
2055 		if ((err || err2) && zfsvfs->z_version >= ZPL_VERSION_SA)
2056 			goto bail;
2057 
2058 
2059 		zfsvfs->z_attr_table = sa_setup(zfsvfs->z_os, sa_obj,
2060 		    zfs_attr_table,  ZPL_END);
2061 
2062 		VERIFY(zfsvfs_setup(zfsvfs, B_FALSE) == 0);
2063 
2064 		/*
2065 		 * Attempt to re-establish all the active znodes with
2066 		 * their dbufs.  If a zfs_rezget() fails, then we'll let
2067 		 * any potential callers discover that via ZFS_ENTER_VERIFY_VP
2068 		 * when they try to use their znode.
2069 		 */
2070 		mutex_enter(&zfsvfs->z_znodes_lock);
2071 		for (zp = list_head(&zfsvfs->z_all_znodes); zp;
2072 		    zp = list_next(&zfsvfs->z_all_znodes, zp)) {
2073 			(void) zfs_rezget(zp);
2074 		}
2075 		mutex_exit(&zfsvfs->z_znodes_lock);
2076 
2077 	}
2078 
2079 bail:
2080 	/* release the VOPs */
2081 	rw_exit(&zfsvfs->z_teardown_inactive_lock);
2082 	rrw_exit(&zfsvfs->z_teardown_lock, FTAG);
2083 
2084 	if (err) {
2085 		/*
2086 		 * Since we couldn't reopen zfsvfs::z_os, force
2087 		 * unmount this file system.
2088 		 */
2089 		if (vn_vfswlock(zfsvfs->z_vfs->vfs_vnodecovered) == 0)
2090 			(void) dounmount(zfsvfs->z_vfs, MS_FORCE, CRED());
2091 	}
2092 	return (err);
2093 }
2094 
2095 static void
2096 zfs_freevfs(vfs_t *vfsp)
2097 {
2098 	zfsvfs_t *zfsvfs = vfsp->vfs_data;
2099 
2100 	/*
2101 	 * If this is a snapshot, we have an extra VFS_HOLD on our parent
2102 	 * from zfs_mount().  Release it here.  If we came through
2103 	 * zfs_mountroot() instead, we didn't grab an extra hold, so
2104 	 * skip the VFS_RELE for rootvfs.
2105 	 */
2106 	if (zfsvfs->z_issnap && (vfsp != rootvfs))
2107 		VFS_RELE(zfsvfs->z_parent->z_vfs);
2108 
2109 	zfsvfs_free(zfsvfs);
2110 
2111 	atomic_add_32(&zfs_active_fs_count, -1);
2112 }
2113 
2114 /*
2115  * VFS_INIT() initialization.  Note that there is no VFS_FINI(),
2116  * so we can't safely do any non-idempotent initialization here.
2117  * Leave that to zfs_init() and zfs_fini(), which are called
2118  * from the module's _init() and _fini() entry points.
2119  */
2120 /*ARGSUSED*/
2121 static int
2122 zfs_vfsinit(int fstype, char *name)
2123 {
2124 	int error;
2125 
2126 	zfsfstype = fstype;
2127 
2128 	/*
2129 	 * Setup vfsops and vnodeops tables.
2130 	 */
2131 	error = vfs_setfsops(fstype, zfs_vfsops_template, &zfs_vfsops);
2132 	if (error != 0) {
2133 		cmn_err(CE_WARN, "zfs: bad vfs ops template");
2134 	}
2135 
2136 	error = zfs_create_op_tables();
2137 	if (error) {
2138 		zfs_remove_op_tables();
2139 		cmn_err(CE_WARN, "zfs: bad vnode ops template");
2140 		(void) vfs_freevfsops_by_type(zfsfstype);
2141 		return (error);
2142 	}
2143 
2144 	mutex_init(&zfs_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
2145 
2146 	/*
2147 	 * Unique major number for all zfs mounts.
2148 	 * If we run out of 32-bit minors, we'll getudev() another major.
2149 	 */
2150 	zfs_major = ddi_name_to_major(ZFS_DRIVER);
2151 	zfs_minor = ZFS_MIN_MINOR;
2152 
2153 	return (0);
2154 }
2155 
2156 void
2157 zfs_init(void)
2158 {
2159 	/*
2160 	 * Initialize .zfs directory structures
2161 	 */
2162 	zfsctl_init();
2163 
2164 	/*
2165 	 * Initialize znode cache, vnode ops, etc...
2166 	 */
2167 	zfs_znode_init();
2168 
2169 	dmu_objset_register_type(DMU_OST_ZFS, zfs_space_delta_cb);
2170 }
2171 
2172 void
2173 zfs_fini(void)
2174 {
2175 	zfsctl_fini();
2176 	zfs_znode_fini();
2177 }
2178 
2179 int
2180 zfs_busy(void)
2181 {
2182 	return (zfs_active_fs_count != 0);
2183 }
2184 
2185 int
2186 zfs_set_version(zfsvfs_t *zfsvfs, uint64_t newvers)
2187 {
2188 	int error;
2189 	objset_t *os = zfsvfs->z_os;
2190 	dmu_tx_t *tx;
2191 
2192 	if (newvers < ZPL_VERSION_INITIAL || newvers > ZPL_VERSION)
2193 		return (EINVAL);
2194 
2195 	if (newvers < zfsvfs->z_version)
2196 		return (EINVAL);
2197 
2198 	if (zfs_spa_version_map(newvers) >
2199 	    spa_version(dmu_objset_spa(zfsvfs->z_os)))
2200 		return (ENOTSUP);
2201 
2202 	tx = dmu_tx_create(os);
2203 	dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_FALSE, ZPL_VERSION_STR);
2204 	if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) {
2205 		dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE,
2206 		    ZFS_SA_ATTRS);
2207 		dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
2208 	}
2209 	error = dmu_tx_assign(tx, TXG_WAIT);
2210 	if (error) {
2211 		dmu_tx_abort(tx);
2212 		return (error);
2213 	}
2214 
2215 	error = zap_update(os, MASTER_NODE_OBJ, ZPL_VERSION_STR,
2216 	    8, 1, &newvers, tx);
2217 
2218 	if (error) {
2219 		dmu_tx_commit(tx);
2220 		return (error);
2221 	}
2222 
2223 	if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) {
2224 		uint64_t sa_obj;
2225 
2226 		ASSERT3U(spa_version(dmu_objset_spa(zfsvfs->z_os)), >=,
2227 		    SPA_VERSION_SA);
2228 		sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE,
2229 		    DMU_OT_NONE, 0, tx);
2230 
2231 		error = zap_add(os, MASTER_NODE_OBJ,
2232 		    ZFS_SA_ATTRS, 8, 1, &sa_obj, tx);
2233 		ASSERT3U(error, ==, 0);
2234 
2235 		VERIFY(0 == sa_set_sa_object(os, sa_obj));
2236 		sa_register_update_callback(os, zfs_sa_upgrade);
2237 	}
2238 
2239 	spa_history_internal_log(LOG_DS_UPGRADE,
2240 	    dmu_objset_spa(os), tx, CRED(),
2241 	    "oldver=%llu newver=%llu dataset = %llu",
2242 	    zfsvfs->z_version, newvers, dmu_objset_id(os));
2243 
2244 	dmu_tx_commit(tx);
2245 
2246 	zfsvfs->z_version = newvers;
2247 
2248 	if (zfsvfs->z_version >= ZPL_VERSION_FUID)
2249 		zfs_set_fuid_feature(zfsvfs);
2250 
2251 	return (0);
2252 }
2253 
2254 /*
2255  * Read a property stored within the master node.
2256  */
2257 int
2258 zfs_get_zplprop(objset_t *os, zfs_prop_t prop, uint64_t *value)
2259 {
2260 	const char *pname;
2261 	int error = ENOENT;
2262 
2263 	/*
2264 	 * Look up the file system's value for the property.  For the
2265 	 * version property, we look up a slightly different string.
2266 	 */
2267 	if (prop == ZFS_PROP_VERSION)
2268 		pname = ZPL_VERSION_STR;
2269 	else
2270 		pname = zfs_prop_to_name(prop);
2271 
2272 	if (os != NULL)
2273 		error = zap_lookup(os, MASTER_NODE_OBJ, pname, 8, 1, value);
2274 
2275 	if (error == ENOENT) {
2276 		/* No value set, use the default value */
2277 		switch (prop) {
2278 		case ZFS_PROP_VERSION:
2279 			*value = ZPL_VERSION;
2280 			break;
2281 		case ZFS_PROP_NORMALIZE:
2282 		case ZFS_PROP_UTF8ONLY:
2283 			*value = 0;
2284 			break;
2285 		case ZFS_PROP_CASE:
2286 			*value = ZFS_CASE_SENSITIVE;
2287 			break;
2288 		default:
2289 			return (error);
2290 		}
2291 		error = 0;
2292 	}
2293 	return (error);
2294 }
2295 
2296 static vfsdef_t vfw = {
2297 	VFSDEF_VERSION,
2298 	MNTTYPE_ZFS,
2299 	zfs_vfsinit,
2300 	VSW_HASPROTO|VSW_CANRWRO|VSW_CANREMOUNT|VSW_VOLATILEDEV|VSW_STATS|
2301 	    VSW_XID,
2302 	&zfs_mntopts
2303 };
2304 
2305 struct modlfs zfs_modlfs = {
2306 	&mod_fsops, "ZFS filesystem version " SPA_VERSION_STRING, &vfw
2307 };
2308