xref: /illumos-gate/usr/src/uts/common/fs/zfs/zfs_vnops.c (revision 94c894bb)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  */
24 
25 /* Portions Copyright 2007 Jeremy Teo */
26 
27 #include <sys/types.h>
28 #include <sys/param.h>
29 #include <sys/time.h>
30 #include <sys/systm.h>
31 #include <sys/sysmacros.h>
32 #include <sys/resource.h>
33 #include <sys/vfs.h>
34 #include <sys/vfs_opreg.h>
35 #include <sys/vnode.h>
36 #include <sys/file.h>
37 #include <sys/stat.h>
38 #include <sys/kmem.h>
39 #include <sys/taskq.h>
40 #include <sys/uio.h>
41 #include <sys/vmsystm.h>
42 #include <sys/atomic.h>
43 #include <sys/vm.h>
44 #include <vm/seg_vn.h>
45 #include <vm/pvn.h>
46 #include <vm/as.h>
47 #include <vm/kpm.h>
48 #include <vm/seg_kpm.h>
49 #include <sys/mman.h>
50 #include <sys/pathname.h>
51 #include <sys/cmn_err.h>
52 #include <sys/errno.h>
53 #include <sys/unistd.h>
54 #include <sys/zfs_dir.h>
55 #include <sys/zfs_acl.h>
56 #include <sys/zfs_ioctl.h>
57 #include <sys/fs/zfs.h>
58 #include <sys/dmu.h>
59 #include <sys/spa.h>
60 #include <sys/txg.h>
61 #include <sys/dbuf.h>
62 #include <sys/zap.h>
63 #include <sys/sa.h>
64 #include <sys/dirent.h>
65 #include <sys/policy.h>
66 #include <sys/sunddi.h>
67 #include <sys/filio.h>
68 #include <sys/sid.h>
69 #include "fs/fs_subr.h"
70 #include <sys/zfs_ctldir.h>
71 #include <sys/zfs_fuid.h>
72 #include <sys/zfs_sa.h>
73 #include <sys/dnlc.h>
74 #include <sys/zfs_rlock.h>
75 #include <sys/extdirent.h>
76 #include <sys/kidmap.h>
77 #include <sys/cred.h>
78 #include <sys/attr.h>
79 
80 /*
81  * Programming rules.
82  *
83  * Each vnode op performs some logical unit of work.  To do this, the ZPL must
84  * properly lock its in-core state, create a DMU transaction, do the work,
85  * record this work in the intent log (ZIL), commit the DMU transaction,
86  * and wait for the intent log to commit if it is a synchronous operation.
87  * Moreover, the vnode ops must work in both normal and log replay context.
88  * The ordering of events is important to avoid deadlocks and references
89  * to freed memory.  The example below illustrates the following Big Rules:
90  *
91  *  (1) A check must be made in each zfs thread for a mounted file system.
92  *	This is done avoiding races using ZFS_ENTER(zfsvfs).
93  *      A ZFS_EXIT(zfsvfs) is needed before all returns.  Any znodes
94  *      must be checked with ZFS_VERIFY_ZP(zp).  Both of these macros
95  *      can return EIO from the calling function.
96  *
97  *  (2)	VN_RELE() should always be the last thing except for zil_commit()
98  *	(if necessary) and ZFS_EXIT(). This is for 3 reasons:
99  *	First, if it's the last reference, the vnode/znode
100  *	can be freed, so the zp may point to freed memory.  Second, the last
101  *	reference will call zfs_zinactive(), which may induce a lot of work --
102  *	pushing cached pages (which acquires range locks) and syncing out
103  *	cached atime changes.  Third, zfs_zinactive() may require a new tx,
104  *	which could deadlock the system if you were already holding one.
105  *	If you must call VN_RELE() within a tx then use VN_RELE_ASYNC().
106  *
107  *  (3)	All range locks must be grabbed before calling dmu_tx_assign(),
108  *	as they can span dmu_tx_assign() calls.
109  *
110  *  (4)	Always pass TXG_NOWAIT as the second argument to dmu_tx_assign().
111  *	This is critical because we don't want to block while holding locks.
112  *	Note, in particular, that if a lock is sometimes acquired before
113  *	the tx assigns, and sometimes after (e.g. z_lock), then failing to
114  *	use a non-blocking assign can deadlock the system.  The scenario:
115  *
116  *	Thread A has grabbed a lock before calling dmu_tx_assign().
117  *	Thread B is in an already-assigned tx, and blocks for this lock.
118  *	Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open()
119  *	forever, because the previous txg can't quiesce until B's tx commits.
120  *
121  *	If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT,
122  *	then drop all locks, call dmu_tx_wait(), and try again.
123  *
124  *  (5)	If the operation succeeded, generate the intent log entry for it
125  *	before dropping locks.  This ensures that the ordering of events
126  *	in the intent log matches the order in which they actually occurred.
127  *      During ZIL replay the zfs_log_* functions will update the sequence
128  *	number to indicate the zil transaction has replayed.
129  *
130  *  (6)	At the end of each vnode op, the DMU tx must always commit,
131  *	regardless of whether there were any errors.
132  *
133  *  (7)	After dropping all locks, invoke zil_commit(zilog, seq, foid)
134  *	to ensure that synchronous semantics are provided when necessary.
135  *
136  * In general, this is how things should be ordered in each vnode op:
137  *
138  *	ZFS_ENTER(zfsvfs);		// exit if unmounted
139  * top:
140  *	zfs_dirent_lock(&dl, ...)	// lock directory entry (may VN_HOLD())
141  *	rw_enter(...);			// grab any other locks you need
142  *	tx = dmu_tx_create(...);	// get DMU tx
143  *	dmu_tx_hold_*();		// hold each object you might modify
144  *	error = dmu_tx_assign(tx, TXG_NOWAIT);	// try to assign
145  *	if (error) {
146  *		rw_exit(...);		// drop locks
147  *		zfs_dirent_unlock(dl);	// unlock directory entry
148  *		VN_RELE(...);		// release held vnodes
149  *		if (error == ERESTART) {
150  *			dmu_tx_wait(tx);
151  *			dmu_tx_abort(tx);
152  *			goto top;
153  *		}
154  *		dmu_tx_abort(tx);	// abort DMU tx
155  *		ZFS_EXIT(zfsvfs);	// finished in zfs
156  *		return (error);		// really out of space
157  *	}
158  *	error = do_real_work();		// do whatever this VOP does
159  *	if (error == 0)
160  *		zfs_log_*(...);		// on success, make ZIL entry
161  *	dmu_tx_commit(tx);		// commit DMU tx -- error or not
162  *	rw_exit(...);			// drop locks
163  *	zfs_dirent_unlock(dl);		// unlock directory entry
164  *	VN_RELE(...);			// release held vnodes
165  *	zil_commit(zilog, seq, foid);	// synchronous when necessary
166  *	ZFS_EXIT(zfsvfs);		// finished in zfs
167  *	return (error);			// done, report error
168  */
169 
170 /* ARGSUSED */
171 static int
172 zfs_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct)
173 {
174 	znode_t	*zp = VTOZ(*vpp);
175 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
176 
177 	ZFS_ENTER(zfsvfs);
178 	ZFS_VERIFY_ZP(zp);
179 
180 	if ((flag & FWRITE) && (zp->z_pflags & ZFS_APPENDONLY) &&
181 	    ((flag & FAPPEND) == 0)) {
182 		ZFS_EXIT(zfsvfs);
183 		return (EPERM);
184 	}
185 
186 	if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan &&
187 	    ZTOV(zp)->v_type == VREG &&
188 	    !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0) {
189 		if (fs_vscan(*vpp, cr, 0) != 0) {
190 			ZFS_EXIT(zfsvfs);
191 			return (EACCES);
192 		}
193 	}
194 
195 	/* Keep a count of the synchronous opens in the znode */
196 	if (flag & (FSYNC | FDSYNC))
197 		atomic_inc_32(&zp->z_sync_cnt);
198 
199 	ZFS_EXIT(zfsvfs);
200 	return (0);
201 }
202 
203 /* ARGSUSED */
204 static int
205 zfs_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr,
206     caller_context_t *ct)
207 {
208 	znode_t	*zp = VTOZ(vp);
209 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
210 
211 	/*
212 	 * Clean up any locks held by this process on the vp.
213 	 */
214 	cleanlocks(vp, ddi_get_pid(), 0);
215 	cleanshares(vp, ddi_get_pid());
216 
217 	ZFS_ENTER(zfsvfs);
218 	ZFS_VERIFY_ZP(zp);
219 
220 	/* Decrement the synchronous opens in the znode */
221 	if ((flag & (FSYNC | FDSYNC)) && (count == 1))
222 		atomic_dec_32(&zp->z_sync_cnt);
223 
224 	if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan &&
225 	    ZTOV(zp)->v_type == VREG &&
226 	    !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0)
227 		VERIFY(fs_vscan(vp, cr, 1) == 0);
228 
229 	ZFS_EXIT(zfsvfs);
230 	return (0);
231 }
232 
233 /*
234  * Lseek support for finding holes (cmd == _FIO_SEEK_HOLE) and
235  * data (cmd == _FIO_SEEK_DATA). "off" is an in/out parameter.
236  */
237 static int
238 zfs_holey(vnode_t *vp, int cmd, offset_t *off)
239 {
240 	znode_t	*zp = VTOZ(vp);
241 	uint64_t noff = (uint64_t)*off; /* new offset */
242 	uint64_t file_sz;
243 	int error;
244 	boolean_t hole;
245 
246 	file_sz = zp->z_size;
247 	if (noff >= file_sz)  {
248 		return (ENXIO);
249 	}
250 
251 	if (cmd == _FIO_SEEK_HOLE)
252 		hole = B_TRUE;
253 	else
254 		hole = B_FALSE;
255 
256 	error = dmu_offset_next(zp->z_zfsvfs->z_os, zp->z_id, hole, &noff);
257 
258 	/* end of file? */
259 	if ((error == ESRCH) || (noff > file_sz)) {
260 		/*
261 		 * Handle the virtual hole at the end of file.
262 		 */
263 		if (hole) {
264 			*off = file_sz;
265 			return (0);
266 		}
267 		return (ENXIO);
268 	}
269 
270 	if (noff < *off)
271 		return (error);
272 	*off = noff;
273 	return (error);
274 }
275 
276 /* ARGSUSED */
277 static int
278 zfs_ioctl(vnode_t *vp, int com, intptr_t data, int flag, cred_t *cred,
279     int *rvalp, caller_context_t *ct)
280 {
281 	offset_t off;
282 	int error;
283 	zfsvfs_t *zfsvfs;
284 	znode_t *zp;
285 
286 	switch (com) {
287 	case _FIOFFS:
288 		return (zfs_sync(vp->v_vfsp, 0, cred));
289 
290 		/*
291 		 * The following two ioctls are used by bfu.  Faking out,
292 		 * necessary to avoid bfu errors.
293 		 */
294 	case _FIOGDIO:
295 	case _FIOSDIO:
296 		return (0);
297 
298 	case _FIO_SEEK_DATA:
299 	case _FIO_SEEK_HOLE:
300 		if (ddi_copyin((void *)data, &off, sizeof (off), flag))
301 			return (EFAULT);
302 
303 		zp = VTOZ(vp);
304 		zfsvfs = zp->z_zfsvfs;
305 		ZFS_ENTER(zfsvfs);
306 		ZFS_VERIFY_ZP(zp);
307 
308 		/* offset parameter is in/out */
309 		error = zfs_holey(vp, com, &off);
310 		ZFS_EXIT(zfsvfs);
311 		if (error)
312 			return (error);
313 		if (ddi_copyout(&off, (void *)data, sizeof (off), flag))
314 			return (EFAULT);
315 		return (0);
316 	}
317 	return (ENOTTY);
318 }
319 
320 /*
321  * Utility functions to map and unmap a single physical page.  These
322  * are used to manage the mappable copies of ZFS file data, and therefore
323  * do not update ref/mod bits.
324  */
325 caddr_t
326 zfs_map_page(page_t *pp, enum seg_rw rw)
327 {
328 	if (kpm_enable)
329 		return (hat_kpm_mapin(pp, 0));
330 	ASSERT(rw == S_READ || rw == S_WRITE);
331 	return (ppmapin(pp, PROT_READ | ((rw == S_WRITE) ? PROT_WRITE : 0),
332 	    (caddr_t)-1));
333 }
334 
335 void
336 zfs_unmap_page(page_t *pp, caddr_t addr)
337 {
338 	if (kpm_enable) {
339 		hat_kpm_mapout(pp, 0, addr);
340 	} else {
341 		ppmapout(addr);
342 	}
343 }
344 
345 /*
346  * When a file is memory mapped, we must keep the IO data synchronized
347  * between the DMU cache and the memory mapped pages.  What this means:
348  *
349  * On Write:	If we find a memory mapped page, we write to *both*
350  *		the page and the dmu buffer.
351  */
352 static void
353 update_pages(vnode_t *vp, int64_t start, int len, objset_t *os, uint64_t oid)
354 {
355 	int64_t	off;
356 
357 	off = start & PAGEOFFSET;
358 	for (start &= PAGEMASK; len > 0; start += PAGESIZE) {
359 		page_t *pp;
360 		uint64_t nbytes = MIN(PAGESIZE - off, len);
361 
362 		if (pp = page_lookup(vp, start, SE_SHARED)) {
363 			caddr_t va;
364 
365 			va = zfs_map_page(pp, S_WRITE);
366 			(void) dmu_read(os, oid, start+off, nbytes, va+off,
367 			    DMU_READ_PREFETCH);
368 			zfs_unmap_page(pp, va);
369 			page_unlock(pp);
370 		}
371 		len -= nbytes;
372 		off = 0;
373 	}
374 }
375 
376 /*
377  * When a file is memory mapped, we must keep the IO data synchronized
378  * between the DMU cache and the memory mapped pages.  What this means:
379  *
380  * On Read:	We "read" preferentially from memory mapped pages,
381  *		else we default from the dmu buffer.
382  *
383  * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when
384  *	the file is memory mapped.
385  */
386 static int
387 mappedread(vnode_t *vp, int nbytes, uio_t *uio)
388 {
389 	znode_t *zp = VTOZ(vp);
390 	objset_t *os = zp->z_zfsvfs->z_os;
391 	int64_t	start, off;
392 	int len = nbytes;
393 	int error = 0;
394 
395 	start = uio->uio_loffset;
396 	off = start & PAGEOFFSET;
397 	for (start &= PAGEMASK; len > 0; start += PAGESIZE) {
398 		page_t *pp;
399 		uint64_t bytes = MIN(PAGESIZE - off, len);
400 
401 		if (pp = page_lookup(vp, start, SE_SHARED)) {
402 			caddr_t va;
403 
404 			va = zfs_map_page(pp, S_READ);
405 			error = uiomove(va + off, bytes, UIO_READ, uio);
406 			zfs_unmap_page(pp, va);
407 			page_unlock(pp);
408 		} else {
409 			error = dmu_read_uio(os, zp->z_id, uio, bytes);
410 		}
411 		len -= bytes;
412 		off = 0;
413 		if (error)
414 			break;
415 	}
416 	return (error);
417 }
418 
419 offset_t zfs_read_chunk_size = 1024 * 1024; /* Tunable */
420 
421 /*
422  * Read bytes from specified file into supplied buffer.
423  *
424  *	IN:	vp	- vnode of file to be read from.
425  *		uio	- structure supplying read location, range info,
426  *			  and return buffer.
427  *		ioflag	- SYNC flags; used to provide FRSYNC semantics.
428  *		cr	- credentials of caller.
429  *		ct	- caller context
430  *
431  *	OUT:	uio	- updated offset and range, buffer filled.
432  *
433  *	RETURN:	0 if success
434  *		error code if failure
435  *
436  * Side Effects:
437  *	vp - atime updated if byte count > 0
438  */
439 /* ARGSUSED */
440 static int
441 zfs_read(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct)
442 {
443 	znode_t		*zp = VTOZ(vp);
444 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
445 	objset_t	*os;
446 	ssize_t		n, nbytes;
447 	int		error;
448 	rl_t		*rl;
449 	xuio_t		*xuio = NULL;
450 
451 	ZFS_ENTER(zfsvfs);
452 	ZFS_VERIFY_ZP(zp);
453 	os = zfsvfs->z_os;
454 
455 	if (zp->z_pflags & ZFS_AV_QUARANTINED) {
456 		ZFS_EXIT(zfsvfs);
457 		return (EACCES);
458 	}
459 
460 	/*
461 	 * Validate file offset
462 	 */
463 	if (uio->uio_loffset < (offset_t)0) {
464 		ZFS_EXIT(zfsvfs);
465 		return (EINVAL);
466 	}
467 
468 	/*
469 	 * Fasttrack empty reads
470 	 */
471 	if (uio->uio_resid == 0) {
472 		ZFS_EXIT(zfsvfs);
473 		return (0);
474 	}
475 
476 	/*
477 	 * Check for mandatory locks
478 	 */
479 	if (MANDMODE(zp->z_mode)) {
480 		if (error = chklock(vp, FREAD,
481 		    uio->uio_loffset, uio->uio_resid, uio->uio_fmode, ct)) {
482 			ZFS_EXIT(zfsvfs);
483 			return (error);
484 		}
485 	}
486 
487 	/*
488 	 * If we're in FRSYNC mode, sync out this znode before reading it.
489 	 */
490 	if (ioflag & FRSYNC)
491 		zil_commit(zfsvfs->z_log, zp->z_last_itx, zp->z_id);
492 
493 	/*
494 	 * Lock the range against changes.
495 	 */
496 	rl = zfs_range_lock(zp, uio->uio_loffset, uio->uio_resid, RL_READER);
497 
498 	/*
499 	 * If we are reading past end-of-file we can skip
500 	 * to the end; but we might still need to set atime.
501 	 */
502 	if (uio->uio_loffset >= zp->z_size) {
503 		error = 0;
504 		goto out;
505 	}
506 
507 	ASSERT(uio->uio_loffset < zp->z_size);
508 	n = MIN(uio->uio_resid, zp->z_size - uio->uio_loffset);
509 
510 	if ((uio->uio_extflg == UIO_XUIO) &&
511 	    (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY)) {
512 		int nblk;
513 		int blksz = zp->z_blksz;
514 		uint64_t offset = uio->uio_loffset;
515 
516 		xuio = (xuio_t *)uio;
517 		if ((ISP2(blksz))) {
518 			nblk = (P2ROUNDUP(offset + n, blksz) - P2ALIGN(offset,
519 			    blksz)) / blksz;
520 		} else {
521 			ASSERT(offset + n <= blksz);
522 			nblk = 1;
523 		}
524 		(void) dmu_xuio_init(xuio, nblk);
525 
526 		if (vn_has_cached_data(vp)) {
527 			/*
528 			 * For simplicity, we always allocate a full buffer
529 			 * even if we only expect to read a portion of a block.
530 			 */
531 			while (--nblk >= 0) {
532 				(void) dmu_xuio_add(xuio,
533 				    dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
534 				    blksz), 0, blksz);
535 			}
536 		}
537 	}
538 
539 	while (n > 0) {
540 		nbytes = MIN(n, zfs_read_chunk_size -
541 		    P2PHASE(uio->uio_loffset, zfs_read_chunk_size));
542 
543 		if (vn_has_cached_data(vp))
544 			error = mappedread(vp, nbytes, uio);
545 		else
546 			error = dmu_read_uio(os, zp->z_id, uio, nbytes);
547 		if (error) {
548 			/* convert checksum errors into IO errors */
549 			if (error == ECKSUM)
550 				error = EIO;
551 			break;
552 		}
553 
554 		n -= nbytes;
555 	}
556 out:
557 	zfs_range_unlock(rl);
558 
559 	ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
560 	ZFS_EXIT(zfsvfs);
561 	return (error);
562 }
563 
564 /*
565  * Write the bytes to a file.
566  *
567  *	IN:	vp	- vnode of file to be written to.
568  *		uio	- structure supplying write location, range info,
569  *			  and data buffer.
570  *		ioflag	- FAPPEND flag set if in append mode.
571  *		cr	- credentials of caller.
572  *		ct	- caller context (NFS/CIFS fem monitor only)
573  *
574  *	OUT:	uio	- updated offset and range.
575  *
576  *	RETURN:	0 if success
577  *		error code if failure
578  *
579  * Timestamps:
580  *	vp - ctime|mtime updated if byte count > 0
581  */
582 
583 /* ARGSUSED */
584 static int
585 zfs_write(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct)
586 {
587 	znode_t		*zp = VTOZ(vp);
588 	rlim64_t	limit = uio->uio_llimit;
589 	ssize_t		start_resid = uio->uio_resid;
590 	ssize_t		tx_bytes;
591 	uint64_t	end_size;
592 	dmu_tx_t	*tx;
593 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
594 	zilog_t		*zilog;
595 	offset_t	woff;
596 	ssize_t		n, nbytes;
597 	rl_t		*rl;
598 	int		max_blksz = zfsvfs->z_max_blksz;
599 	int		error;
600 	arc_buf_t	*abuf;
601 	iovec_t		*aiov;
602 	xuio_t		*xuio = NULL;
603 	int		i_iov = 0;
604 	int		iovcnt = uio->uio_iovcnt;
605 	iovec_t		*iovp = uio->uio_iov;
606 	int		write_eof;
607 	int		count = 0;
608 	sa_bulk_attr_t	bulk[4];
609 	uint64_t	mtime[2], ctime[2];
610 
611 	/*
612 	 * Fasttrack empty write
613 	 */
614 	n = start_resid;
615 	if (n == 0)
616 		return (0);
617 
618 	if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T)
619 		limit = MAXOFFSET_T;
620 
621 	ZFS_ENTER(zfsvfs);
622 	ZFS_VERIFY_ZP(zp);
623 
624 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
625 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
626 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
627 	    &zp->z_size, 8);
628 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
629 	    &zp->z_pflags, 8);
630 
631 	/*
632 	 * If immutable or not appending then return EPERM
633 	 */
634 	if ((zp->z_pflags & (ZFS_IMMUTABLE | ZFS_READONLY)) ||
635 	    ((zp->z_pflags & ZFS_APPENDONLY) && !(ioflag & FAPPEND) &&
636 	    (uio->uio_loffset < zp->z_size))) {
637 		ZFS_EXIT(zfsvfs);
638 		return (EPERM);
639 	}
640 
641 	zilog = zfsvfs->z_log;
642 
643 	/*
644 	 * Validate file offset
645 	 */
646 	woff = ioflag & FAPPEND ? zp->z_size : uio->uio_loffset;
647 	if (woff < 0) {
648 		ZFS_EXIT(zfsvfs);
649 		return (EINVAL);
650 	}
651 
652 	/*
653 	 * Check for mandatory locks before calling zfs_range_lock()
654 	 * in order to prevent a deadlock with locks set via fcntl().
655 	 */
656 	if (MANDMODE((mode_t)zp->z_mode) &&
657 	    (error = chklock(vp, FWRITE, woff, n, uio->uio_fmode, ct)) != 0) {
658 		ZFS_EXIT(zfsvfs);
659 		return (error);
660 	}
661 
662 	/*
663 	 * Pre-fault the pages to ensure slow (eg NFS) pages
664 	 * don't hold up txg.
665 	 * Skip this if uio contains loaned arc_buf.
666 	 */
667 	if ((uio->uio_extflg == UIO_XUIO) &&
668 	    (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY))
669 		xuio = (xuio_t *)uio;
670 	else
671 		uio_prefaultpages(n, uio);
672 
673 	/*
674 	 * If in append mode, set the io offset pointer to eof.
675 	 */
676 	if (ioflag & FAPPEND) {
677 		/*
678 		 * Obtain an appending range lock to guarantee file append
679 		 * semantics.  We reset the write offset once we have the lock.
680 		 */
681 		rl = zfs_range_lock(zp, 0, n, RL_APPEND);
682 		woff = rl->r_off;
683 		if (rl->r_len == UINT64_MAX) {
684 			/*
685 			 * We overlocked the file because this write will cause
686 			 * the file block size to increase.
687 			 * Note that zp_size cannot change with this lock held.
688 			 */
689 			woff = zp->z_size;
690 		}
691 		uio->uio_loffset = woff;
692 	} else {
693 		/*
694 		 * Note that if the file block size will change as a result of
695 		 * this write, then this range lock will lock the entire file
696 		 * so that we can re-write the block safely.
697 		 */
698 		rl = zfs_range_lock(zp, woff, n, RL_WRITER);
699 	}
700 
701 	if (woff >= limit) {
702 		zfs_range_unlock(rl);
703 		ZFS_EXIT(zfsvfs);
704 		return (EFBIG);
705 	}
706 
707 	if ((woff + n) > limit || woff > (limit - n))
708 		n = limit - woff;
709 
710 	/* Will this write extend the file length? */
711 	write_eof = (woff + n > zp->z_size);
712 
713 	end_size = MAX(zp->z_size, woff + n);
714 
715 	/*
716 	 * Write the file in reasonable size chunks.  Each chunk is written
717 	 * in a separate transaction; this keeps the intent log records small
718 	 * and allows us to do more fine-grained space accounting.
719 	 */
720 	while (n > 0) {
721 		abuf = NULL;
722 		woff = uio->uio_loffset;
723 again:
724 		if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) ||
725 		    zfs_owner_overquota(zfsvfs, zp, B_TRUE)) {
726 			if (abuf != NULL)
727 				dmu_return_arcbuf(abuf);
728 			error = EDQUOT;
729 			break;
730 		}
731 
732 		if (xuio && abuf == NULL) {
733 			ASSERT(i_iov < iovcnt);
734 			aiov = &iovp[i_iov];
735 			abuf = dmu_xuio_arcbuf(xuio, i_iov);
736 			dmu_xuio_clear(xuio, i_iov);
737 			DTRACE_PROBE3(zfs_cp_write, int, i_iov,
738 			    iovec_t *, aiov, arc_buf_t *, abuf);
739 			ASSERT((aiov->iov_base == abuf->b_data) ||
740 			    ((char *)aiov->iov_base - (char *)abuf->b_data +
741 			    aiov->iov_len == arc_buf_size(abuf)));
742 			i_iov++;
743 		} else if (abuf == NULL && n >= max_blksz &&
744 		    woff >= zp->z_size &&
745 		    P2PHASE(woff, max_blksz) == 0 &&
746 		    zp->z_blksz == max_blksz) {
747 			/*
748 			 * This write covers a full block.  "Borrow" a buffer
749 			 * from the dmu so that we can fill it before we enter
750 			 * a transaction.  This avoids the possibility of
751 			 * holding up the transaction if the data copy hangs
752 			 * up on a pagefault (e.g., from an NFS server mapping).
753 			 */
754 			size_t cbytes;
755 
756 			abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
757 			    max_blksz);
758 			ASSERT(abuf != NULL);
759 			ASSERT(arc_buf_size(abuf) == max_blksz);
760 			if (error = uiocopy(abuf->b_data, max_blksz,
761 			    UIO_WRITE, uio, &cbytes)) {
762 				dmu_return_arcbuf(abuf);
763 				break;
764 			}
765 			ASSERT(cbytes == max_blksz);
766 		}
767 
768 		/*
769 		 * Start a transaction.
770 		 */
771 		tx = dmu_tx_create(zfsvfs->z_os);
772 		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
773 		dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz));
774 		zfs_sa_upgrade_txholds(tx, zp);
775 		error = dmu_tx_assign(tx, TXG_NOWAIT);
776 		if (error) {
777 			if (error == ERESTART) {
778 				dmu_tx_wait(tx);
779 				dmu_tx_abort(tx);
780 				goto again;
781 			}
782 			dmu_tx_abort(tx);
783 			if (abuf != NULL)
784 				dmu_return_arcbuf(abuf);
785 			break;
786 		}
787 
788 		/*
789 		 * If zfs_range_lock() over-locked we grow the blocksize
790 		 * and then reduce the lock range.  This will only happen
791 		 * on the first iteration since zfs_range_reduce() will
792 		 * shrink down r_len to the appropriate size.
793 		 */
794 		if (rl->r_len == UINT64_MAX) {
795 			uint64_t new_blksz;
796 
797 			if (zp->z_blksz > max_blksz) {
798 				ASSERT(!ISP2(zp->z_blksz));
799 				new_blksz = MIN(end_size, SPA_MAXBLOCKSIZE);
800 			} else {
801 				new_blksz = MIN(end_size, max_blksz);
802 			}
803 			zfs_grow_blocksize(zp, new_blksz, tx);
804 			zfs_range_reduce(rl, woff, n);
805 		}
806 
807 		/*
808 		 * XXX - should we really limit each write to z_max_blksz?
809 		 * Perhaps we should use SPA_MAXBLOCKSIZE chunks?
810 		 */
811 		nbytes = MIN(n, max_blksz - P2PHASE(woff, max_blksz));
812 
813 		if (abuf == NULL) {
814 			tx_bytes = uio->uio_resid;
815 			error = dmu_write_uio(zfsvfs->z_os, zp->z_id, uio,
816 			    nbytes, tx);
817 			tx_bytes -= uio->uio_resid;
818 		} else {
819 			tx_bytes = nbytes;
820 			ASSERT(xuio == NULL || tx_bytes == aiov->iov_len);
821 			/*
822 			 * If this is not a full block write, but we are
823 			 * extending the file past EOF and this data starts
824 			 * block-aligned, use assign_arcbuf().  Otherwise,
825 			 * write via dmu_write().
826 			 */
827 			if (tx_bytes < max_blksz && (!write_eof ||
828 			    aiov->iov_base != abuf->b_data)) {
829 				ASSERT(xuio);
830 				dmu_write(zfsvfs->z_os, zp->z_id, woff,
831 				    aiov->iov_len, aiov->iov_base, tx);
832 				dmu_return_arcbuf(abuf);
833 				xuio_stat_wbuf_copied();
834 			} else {
835 				ASSERT(xuio || tx_bytes == max_blksz);
836 				dmu_assign_arcbuf(sa_get_db(zp->z_sa_hdl),
837 				    woff, abuf, tx);
838 			}
839 			ASSERT(tx_bytes <= uio->uio_resid);
840 			uioskip(uio, tx_bytes);
841 		}
842 		if (tx_bytes && vn_has_cached_data(vp)) {
843 			update_pages(vp, woff,
844 			    tx_bytes, zfsvfs->z_os, zp->z_id);
845 		}
846 
847 		/*
848 		 * If we made no progress, we're done.  If we made even
849 		 * partial progress, update the znode and ZIL accordingly.
850 		 */
851 		if (tx_bytes == 0) {
852 			(void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
853 			    (void *)&zp->z_size, sizeof (uint64_t), tx);
854 			dmu_tx_commit(tx);
855 			ASSERT(error != 0);
856 			break;
857 		}
858 
859 		/*
860 		 * Clear Set-UID/Set-GID bits on successful write if not
861 		 * privileged and at least one of the excute bits is set.
862 		 *
863 		 * It would be nice to to this after all writes have
864 		 * been done, but that would still expose the ISUID/ISGID
865 		 * to another app after the partial write is committed.
866 		 *
867 		 */
868 		mutex_enter(&zp->z_acl_lock);
869 		if ((zp->z_mode & (S_IXUSR | (S_IXUSR >> 3) |
870 		    (S_IXUSR >> 6))) != 0 &&
871 		    (zp->z_mode & (S_ISUID | S_ISGID)) != 0 &&
872 		    secpolicy_vnode_setid_retain(cr,
873 		    (zp->z_mode & S_ISUID) != 0 && zp->z_uid == 0) != 0) {
874 			uint64_t newmode;
875 			zp->z_mode &= ~(S_ISUID | S_ISGID);
876 			newmode = zp->z_mode;
877 			(void) sa_update(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs),
878 			    (void *)&newmode, sizeof (uint64_t), tx);
879 		}
880 		mutex_exit(&zp->z_acl_lock);
881 
882 		zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
883 		    B_TRUE);
884 
885 		/*
886 		 * Update the file size (zp_size) if it has changed;
887 		 * account for possible concurrent updates.
888 		 */
889 		while ((end_size = zp->z_size) < uio->uio_loffset) {
890 			(void) atomic_cas_64(&zp->z_size, end_size,
891 			    uio->uio_loffset);
892 			ASSERT(error == 0);
893 		}
894 		error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
895 
896 		zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag);
897 		dmu_tx_commit(tx);
898 
899 		if (error != 0)
900 			break;
901 		ASSERT(tx_bytes == nbytes);
902 		n -= nbytes;
903 	}
904 
905 	zfs_range_unlock(rl);
906 
907 	/*
908 	 * If we're in replay mode, or we made no progress, return error.
909 	 * Otherwise, it's at least a partial write, so it's successful.
910 	 */
911 	if (zfsvfs->z_replay || uio->uio_resid == start_resid) {
912 		ZFS_EXIT(zfsvfs);
913 		return (error);
914 	}
915 
916 	if (ioflag & (FSYNC | FDSYNC))
917 		zil_commit(zilog, zp->z_last_itx, zp->z_id);
918 
919 	ZFS_EXIT(zfsvfs);
920 	return (0);
921 }
922 
923 void
924 zfs_get_done(zgd_t *zgd, int error)
925 {
926 	znode_t *zp = zgd->zgd_private;
927 	objset_t *os = zp->z_zfsvfs->z_os;
928 
929 	if (zgd->zgd_db)
930 		dmu_buf_rele(zgd->zgd_db, zgd);
931 
932 	zfs_range_unlock(zgd->zgd_rl);
933 
934 	/*
935 	 * Release the vnode asynchronously as we currently have the
936 	 * txg stopped from syncing.
937 	 */
938 	VN_RELE_ASYNC(ZTOV(zp), dsl_pool_vnrele_taskq(dmu_objset_pool(os)));
939 
940 	if (error == 0 && zgd->zgd_bp)
941 		zil_add_block(zgd->zgd_zilog, zgd->zgd_bp);
942 
943 	kmem_free(zgd, sizeof (zgd_t));
944 }
945 
946 #ifdef DEBUG
947 static int zil_fault_io = 0;
948 #endif
949 
950 /*
951  * Get data to generate a TX_WRITE intent log record.
952  */
953 int
954 zfs_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio)
955 {
956 	zfsvfs_t *zfsvfs = arg;
957 	objset_t *os = zfsvfs->z_os;
958 	znode_t *zp;
959 	uint64_t object = lr->lr_foid;
960 	uint64_t offset = lr->lr_offset;
961 	uint64_t size = lr->lr_length;
962 	blkptr_t *bp = &lr->lr_blkptr;
963 	dmu_buf_t *db;
964 	zgd_t *zgd;
965 	int error = 0;
966 
967 	ASSERT(zio != NULL);
968 	ASSERT(size != 0);
969 
970 	/*
971 	 * Nothing to do if the file has been removed
972 	 */
973 	if (zfs_zget(zfsvfs, object, &zp) != 0)
974 		return (ENOENT);
975 	if (zp->z_unlinked) {
976 		/*
977 		 * Release the vnode asynchronously as we currently have the
978 		 * txg stopped from syncing.
979 		 */
980 		VN_RELE_ASYNC(ZTOV(zp),
981 		    dsl_pool_vnrele_taskq(dmu_objset_pool(os)));
982 		return (ENOENT);
983 	}
984 
985 	zgd = (zgd_t *)kmem_zalloc(sizeof (zgd_t), KM_SLEEP);
986 	zgd->zgd_zilog = zfsvfs->z_log;
987 	zgd->zgd_private = zp;
988 
989 	/*
990 	 * Write records come in two flavors: immediate and indirect.
991 	 * For small writes it's cheaper to store the data with the
992 	 * log record (immediate); for large writes it's cheaper to
993 	 * sync the data and get a pointer to it (indirect) so that
994 	 * we don't have to write the data twice.
995 	 */
996 	if (buf != NULL) { /* immediate write */
997 		zgd->zgd_rl = zfs_range_lock(zp, offset, size, RL_READER);
998 		/* test for truncation needs to be done while range locked */
999 		if (offset >= zp->z_size) {
1000 			error = ENOENT;
1001 		} else {
1002 			error = dmu_read(os, object, offset, size, buf,
1003 			    DMU_READ_NO_PREFETCH);
1004 		}
1005 		ASSERT(error == 0 || error == ENOENT);
1006 	} else { /* indirect write */
1007 		/*
1008 		 * Have to lock the whole block to ensure when it's
1009 		 * written out and it's checksum is being calculated
1010 		 * that no one can change the data. We need to re-check
1011 		 * blocksize after we get the lock in case it's changed!
1012 		 */
1013 		for (;;) {
1014 			uint64_t blkoff;
1015 			size = zp->z_blksz;
1016 			blkoff = ISP2(size) ? P2PHASE(offset, size) : offset;
1017 			offset -= blkoff;
1018 			zgd->zgd_rl = zfs_range_lock(zp, offset, size,
1019 			    RL_READER);
1020 			if (zp->z_blksz == size)
1021 				break;
1022 			offset += blkoff;
1023 			zfs_range_unlock(zgd->zgd_rl);
1024 		}
1025 		/* test for truncation needs to be done while range locked */
1026 		if (lr->lr_offset >= zp->z_size)
1027 			error = ENOENT;
1028 #ifdef DEBUG
1029 		if (zil_fault_io) {
1030 			error = EIO;
1031 			zil_fault_io = 0;
1032 		}
1033 #endif
1034 		if (error == 0)
1035 			error = dmu_buf_hold(os, object, offset, zgd, &db);
1036 
1037 		if (error == 0) {
1038 			zgd->zgd_db = db;
1039 			zgd->zgd_bp = bp;
1040 
1041 			ASSERT(db->db_offset == offset);
1042 			ASSERT(db->db_size == size);
1043 
1044 			error = dmu_sync(zio, lr->lr_common.lrc_txg,
1045 			    zfs_get_done, zgd);
1046 			ASSERT(error || lr->lr_length <= zp->z_blksz);
1047 
1048 			/*
1049 			 * On success, we need to wait for the write I/O
1050 			 * initiated by dmu_sync() to complete before we can
1051 			 * release this dbuf.  We will finish everything up
1052 			 * in the zfs_get_done() callback.
1053 			 */
1054 			if (error == 0)
1055 				return (0);
1056 
1057 			if (error == EALREADY) {
1058 				lr->lr_common.lrc_txtype = TX_WRITE2;
1059 				error = 0;
1060 			}
1061 		}
1062 	}
1063 
1064 	zfs_get_done(zgd, error);
1065 
1066 	return (error);
1067 }
1068 
1069 /*ARGSUSED*/
1070 static int
1071 zfs_access(vnode_t *vp, int mode, int flag, cred_t *cr,
1072     caller_context_t *ct)
1073 {
1074 	znode_t *zp = VTOZ(vp);
1075 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1076 	int error;
1077 
1078 	ZFS_ENTER(zfsvfs);
1079 	ZFS_VERIFY_ZP(zp);
1080 
1081 	if (flag & V_ACE_MASK)
1082 		error = zfs_zaccess(zp, mode, flag, B_FALSE, cr);
1083 	else
1084 		error = zfs_zaccess_rwx(zp, mode, flag, cr);
1085 
1086 	ZFS_EXIT(zfsvfs);
1087 	return (error);
1088 }
1089 
1090 /*
1091  * If vnode is for a device return a specfs vnode instead.
1092  */
1093 static int
1094 specvp_check(vnode_t **vpp, cred_t *cr)
1095 {
1096 	int error = 0;
1097 
1098 	if (IS_DEVVP(*vpp)) {
1099 		struct vnode *svp;
1100 
1101 		svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr);
1102 		VN_RELE(*vpp);
1103 		if (svp == NULL)
1104 			error = ENOSYS;
1105 		*vpp = svp;
1106 	}
1107 	return (error);
1108 }
1109 
1110 
1111 /*
1112  * Lookup an entry in a directory, or an extended attribute directory.
1113  * If it exists, return a held vnode reference for it.
1114  *
1115  *	IN:	dvp	- vnode of directory to search.
1116  *		nm	- name of entry to lookup.
1117  *		pnp	- full pathname to lookup [UNUSED].
1118  *		flags	- LOOKUP_XATTR set if looking for an attribute.
1119  *		rdir	- root directory vnode [UNUSED].
1120  *		cr	- credentials of caller.
1121  *		ct	- caller context
1122  *		direntflags - directory lookup flags
1123  *		realpnp - returned pathname.
1124  *
1125  *	OUT:	vpp	- vnode of located entry, NULL if not found.
1126  *
1127  *	RETURN:	0 if success
1128  *		error code if failure
1129  *
1130  * Timestamps:
1131  *	NA
1132  */
1133 /* ARGSUSED */
1134 static int
1135 zfs_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp,
1136     int flags, vnode_t *rdir, cred_t *cr,  caller_context_t *ct,
1137     int *direntflags, pathname_t *realpnp)
1138 {
1139 	znode_t *zdp = VTOZ(dvp);
1140 	zfsvfs_t *zfsvfs = zdp->z_zfsvfs;
1141 	int	error = 0;
1142 
1143 	/* fast path */
1144 	if (!(flags & (LOOKUP_XATTR | FIGNORECASE))) {
1145 
1146 		if (dvp->v_type != VDIR) {
1147 			return (ENOTDIR);
1148 		} else if (zdp->z_sa_hdl == NULL) {
1149 			return (EIO);
1150 		}
1151 
1152 		if (nm[0] == 0 || (nm[0] == '.' && nm[1] == '\0')) {
1153 			error = zfs_fastaccesschk_execute(zdp, cr);
1154 			if (!error) {
1155 				*vpp = dvp;
1156 				VN_HOLD(*vpp);
1157 				return (0);
1158 			}
1159 			return (error);
1160 		} else {
1161 			vnode_t *tvp = dnlc_lookup(dvp, nm);
1162 
1163 			if (tvp) {
1164 				error = zfs_fastaccesschk_execute(zdp, cr);
1165 				if (error) {
1166 					VN_RELE(tvp);
1167 					return (error);
1168 				}
1169 				if (tvp == DNLC_NO_VNODE) {
1170 					VN_RELE(tvp);
1171 					return (ENOENT);
1172 				} else {
1173 					*vpp = tvp;
1174 					return (specvp_check(vpp, cr));
1175 				}
1176 			}
1177 		}
1178 	}
1179 
1180 	DTRACE_PROBE2(zfs__fastpath__lookup__miss, vnode_t *, dvp, char *, nm);
1181 
1182 	ZFS_ENTER(zfsvfs);
1183 	ZFS_VERIFY_ZP(zdp);
1184 
1185 	*vpp = NULL;
1186 
1187 	if (flags & LOOKUP_XATTR) {
1188 		/*
1189 		 * If the xattr property is off, refuse the lookup request.
1190 		 */
1191 		if (!(zfsvfs->z_vfs->vfs_flag & VFS_XATTR)) {
1192 			ZFS_EXIT(zfsvfs);
1193 			return (EINVAL);
1194 		}
1195 
1196 		/*
1197 		 * We don't allow recursive attributes..
1198 		 * Maybe someday we will.
1199 		 */
1200 		if (zdp->z_pflags & ZFS_XATTR) {
1201 			ZFS_EXIT(zfsvfs);
1202 			return (EINVAL);
1203 		}
1204 
1205 		if (error = zfs_get_xattrdir(VTOZ(dvp), vpp, cr, flags)) {
1206 			ZFS_EXIT(zfsvfs);
1207 			return (error);
1208 		}
1209 
1210 		/*
1211 		 * Do we have permission to get into attribute directory?
1212 		 */
1213 
1214 		if (error = zfs_zaccess(VTOZ(*vpp), ACE_EXECUTE, 0,
1215 		    B_FALSE, cr)) {
1216 			VN_RELE(*vpp);
1217 			*vpp = NULL;
1218 		}
1219 
1220 		ZFS_EXIT(zfsvfs);
1221 		return (error);
1222 	}
1223 
1224 	if (dvp->v_type != VDIR) {
1225 		ZFS_EXIT(zfsvfs);
1226 		return (ENOTDIR);
1227 	}
1228 
1229 	/*
1230 	 * Check accessibility of directory.
1231 	 */
1232 
1233 	if (error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr)) {
1234 		ZFS_EXIT(zfsvfs);
1235 		return (error);
1236 	}
1237 
1238 	if (zfsvfs->z_utf8 && u8_validate(nm, strlen(nm),
1239 	    NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1240 		ZFS_EXIT(zfsvfs);
1241 		return (EILSEQ);
1242 	}
1243 
1244 	error = zfs_dirlook(zdp, nm, vpp, flags, direntflags, realpnp);
1245 	if (error == 0)
1246 		error = specvp_check(vpp, cr);
1247 
1248 	ZFS_EXIT(zfsvfs);
1249 	return (error);
1250 }
1251 
1252 /*
1253  * Attempt to create a new entry in a directory.  If the entry
1254  * already exists, truncate the file if permissible, else return
1255  * an error.  Return the vp of the created or trunc'd file.
1256  *
1257  *	IN:	dvp	- vnode of directory to put new file entry in.
1258  *		name	- name of new file entry.
1259  *		vap	- attributes of new file.
1260  *		excl	- flag indicating exclusive or non-exclusive mode.
1261  *		mode	- mode to open file with.
1262  *		cr	- credentials of caller.
1263  *		flag	- large file flag [UNUSED].
1264  *		ct	- caller context
1265  *		vsecp 	- ACL to be set
1266  *
1267  *	OUT:	vpp	- vnode of created or trunc'd entry.
1268  *
1269  *	RETURN:	0 if success
1270  *		error code if failure
1271  *
1272  * Timestamps:
1273  *	dvp - ctime|mtime updated if new entry created
1274  *	 vp - ctime|mtime always, atime if new
1275  */
1276 
1277 /* ARGSUSED */
1278 static int
1279 zfs_create(vnode_t *dvp, char *name, vattr_t *vap, vcexcl_t excl,
1280     int mode, vnode_t **vpp, cred_t *cr, int flag, caller_context_t *ct,
1281     vsecattr_t *vsecp)
1282 {
1283 	znode_t		*zp, *dzp = VTOZ(dvp);
1284 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
1285 	zilog_t		*zilog;
1286 	objset_t	*os;
1287 	zfs_dirlock_t	*dl;
1288 	dmu_tx_t	*tx;
1289 	int		error;
1290 	ksid_t		*ksid;
1291 	uid_t		uid;
1292 	gid_t		gid = crgetgid(cr);
1293 	zfs_acl_ids_t   acl_ids;
1294 	boolean_t	fuid_dirtied;
1295 
1296 	/*
1297 	 * If we have an ephemeral id, ACL, or XVATTR then
1298 	 * make sure file system is at proper version
1299 	 */
1300 
1301 	ksid = crgetsid(cr, KSID_OWNER);
1302 	if (ksid)
1303 		uid = ksid_getid(ksid);
1304 	else
1305 		uid = crgetuid(cr);
1306 
1307 	if (zfsvfs->z_use_fuids == B_FALSE &&
1308 	    (vsecp || (vap->va_mask & AT_XVATTR) ||
1309 	    IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1310 		return (EINVAL);
1311 
1312 	ZFS_ENTER(zfsvfs);
1313 	ZFS_VERIFY_ZP(dzp);
1314 	os = zfsvfs->z_os;
1315 	zilog = zfsvfs->z_log;
1316 
1317 	if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
1318 	    NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1319 		ZFS_EXIT(zfsvfs);
1320 		return (EILSEQ);
1321 	}
1322 
1323 	if (vap->va_mask & AT_XVATTR) {
1324 		if ((error = secpolicy_xvattr((xvattr_t *)vap,
1325 		    crgetuid(cr), cr, vap->va_type)) != 0) {
1326 			ZFS_EXIT(zfsvfs);
1327 			return (error);
1328 		}
1329 	}
1330 top:
1331 	*vpp = NULL;
1332 
1333 	if ((vap->va_mode & VSVTX) && secpolicy_vnode_stky_modify(cr))
1334 		vap->va_mode &= ~VSVTX;
1335 
1336 	if (*name == '\0') {
1337 		/*
1338 		 * Null component name refers to the directory itself.
1339 		 */
1340 		VN_HOLD(dvp);
1341 		zp = dzp;
1342 		dl = NULL;
1343 		error = 0;
1344 	} else {
1345 		/* possible VN_HOLD(zp) */
1346 		int zflg = 0;
1347 
1348 		if (flag & FIGNORECASE)
1349 			zflg |= ZCILOOK;
1350 
1351 		error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1352 		    NULL, NULL);
1353 		if (error) {
1354 			if (strcmp(name, "..") == 0)
1355 				error = EISDIR;
1356 			ZFS_EXIT(zfsvfs);
1357 			return (error);
1358 		}
1359 	}
1360 
1361 	if (zp == NULL) {
1362 		uint64_t txtype;
1363 
1364 		/*
1365 		 * Create a new file object and update the directory
1366 		 * to reference it.
1367 		 */
1368 		if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
1369 			goto out;
1370 		}
1371 
1372 		/*
1373 		 * We only support the creation of regular files in
1374 		 * extended attribute directories.
1375 		 */
1376 
1377 		if ((dzp->z_pflags & ZFS_XATTR) &&
1378 		    (vap->va_type != VREG)) {
1379 			error = EINVAL;
1380 			goto out;
1381 		}
1382 
1383 		if ((error = zfs_acl_ids_create(dzp, 0, vap, cr, vsecp,
1384 		    &acl_ids)) != 0)
1385 			goto out;
1386 		if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
1387 			zfs_acl_ids_free(&acl_ids);
1388 			error = EDQUOT;
1389 			goto out;
1390 		}
1391 
1392 		tx = dmu_tx_create(os);
1393 
1394 		dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
1395 		    ZFS_SA_BASE_ATTR_SIZE);
1396 
1397 		fuid_dirtied = zfsvfs->z_fuid_dirty;
1398 		if (fuid_dirtied)
1399 			zfs_fuid_txhold(zfsvfs, tx);
1400 		dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
1401 		dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
1402 		if (!zfsvfs->z_use_sa &&
1403 		    acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
1404 			dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
1405 			    0, acl_ids.z_aclp->z_acl_bytes);
1406 		}
1407 		error = dmu_tx_assign(tx, TXG_NOWAIT);
1408 		if (error) {
1409 			zfs_acl_ids_free(&acl_ids);
1410 			zfs_dirent_unlock(dl);
1411 			if (error == ERESTART) {
1412 				dmu_tx_wait(tx);
1413 				dmu_tx_abort(tx);
1414 				goto top;
1415 			}
1416 			dmu_tx_abort(tx);
1417 			ZFS_EXIT(zfsvfs);
1418 			return (error);
1419 		}
1420 		zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
1421 
1422 		if (fuid_dirtied)
1423 			zfs_fuid_sync(zfsvfs, tx);
1424 
1425 		(void) zfs_link_create(dl, zp, tx, ZNEW);
1426 		txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap);
1427 		if (flag & FIGNORECASE)
1428 			txtype |= TX_CI;
1429 		zfs_log_create(zilog, tx, txtype, dzp, zp, name,
1430 		    vsecp, acl_ids.z_fuidp, vap);
1431 		zfs_acl_ids_free(&acl_ids);
1432 		dmu_tx_commit(tx);
1433 	} else {
1434 		int aflags = (flag & FAPPEND) ? V_APPEND : 0;
1435 
1436 		/*
1437 		 * A directory entry already exists for this name.
1438 		 */
1439 		/*
1440 		 * Can't truncate an existing file if in exclusive mode.
1441 		 */
1442 		if (excl == EXCL) {
1443 			error = EEXIST;
1444 			goto out;
1445 		}
1446 		/*
1447 		 * Can't open a directory for writing.
1448 		 */
1449 		if ((ZTOV(zp)->v_type == VDIR) && (mode & S_IWRITE)) {
1450 			error = EISDIR;
1451 			goto out;
1452 		}
1453 		/*
1454 		 * Verify requested access to file.
1455 		 */
1456 		if (mode && (error = zfs_zaccess_rwx(zp, mode, aflags, cr))) {
1457 			goto out;
1458 		}
1459 
1460 		mutex_enter(&dzp->z_lock);
1461 		dzp->z_seq++;
1462 		mutex_exit(&dzp->z_lock);
1463 
1464 		/*
1465 		 * Truncate regular files if requested.
1466 		 */
1467 		if ((ZTOV(zp)->v_type == VREG) &&
1468 		    (vap->va_mask & AT_SIZE) && (vap->va_size == 0)) {
1469 			/* we can't hold any locks when calling zfs_freesp() */
1470 			zfs_dirent_unlock(dl);
1471 			dl = NULL;
1472 			error = zfs_freesp(zp, 0, 0, mode, TRUE);
1473 			if (error == 0) {
1474 				vnevent_create(ZTOV(zp), ct);
1475 			}
1476 		}
1477 	}
1478 out:
1479 
1480 	if (dl)
1481 		zfs_dirent_unlock(dl);
1482 
1483 	if (error) {
1484 		if (zp)
1485 			VN_RELE(ZTOV(zp));
1486 	} else {
1487 		*vpp = ZTOV(zp);
1488 		error = specvp_check(vpp, cr);
1489 	}
1490 
1491 	ZFS_EXIT(zfsvfs);
1492 	return (error);
1493 }
1494 
1495 /*
1496  * Remove an entry from a directory.
1497  *
1498  *	IN:	dvp	- vnode of directory to remove entry from.
1499  *		name	- name of entry to remove.
1500  *		cr	- credentials of caller.
1501  *		ct	- caller context
1502  *		flags	- case flags
1503  *
1504  *	RETURN:	0 if success
1505  *		error code if failure
1506  *
1507  * Timestamps:
1508  *	dvp - ctime|mtime
1509  *	 vp - ctime (if nlink > 0)
1510  */
1511 
1512 uint64_t null_xattr = 0;
1513 
1514 /*ARGSUSED*/
1515 static int
1516 zfs_remove(vnode_t *dvp, char *name, cred_t *cr, caller_context_t *ct,
1517     int flags)
1518 {
1519 	znode_t		*zp, *dzp = VTOZ(dvp);
1520 	znode_t		*xzp = NULL;
1521 	vnode_t		*vp;
1522 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
1523 	zilog_t		*zilog;
1524 	uint64_t	acl_obj, xattr_obj = 0;
1525 	uint64_t 	xattr_obj_unlinked = 0;
1526 	zfs_dirlock_t	*dl;
1527 	dmu_tx_t	*tx;
1528 	boolean_t	may_delete_now, delete_now = FALSE;
1529 	boolean_t	unlinked, toobig = FALSE;
1530 	uint64_t	txtype;
1531 	pathname_t	*realnmp = NULL;
1532 	pathname_t	realnm;
1533 	int		error;
1534 	int		zflg = ZEXISTS;
1535 
1536 	ZFS_ENTER(zfsvfs);
1537 	ZFS_VERIFY_ZP(dzp);
1538 	zilog = zfsvfs->z_log;
1539 
1540 	if (flags & FIGNORECASE) {
1541 		zflg |= ZCILOOK;
1542 		pn_alloc(&realnm);
1543 		realnmp = &realnm;
1544 	}
1545 
1546 top:
1547 	/*
1548 	 * Attempt to lock directory; fail if entry doesn't exist.
1549 	 */
1550 	if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1551 	    NULL, realnmp)) {
1552 		if (realnmp)
1553 			pn_free(realnmp);
1554 		ZFS_EXIT(zfsvfs);
1555 		return (error);
1556 	}
1557 
1558 	vp = ZTOV(zp);
1559 
1560 	if (error = zfs_zaccess_delete(dzp, zp, cr)) {
1561 		goto out;
1562 	}
1563 
1564 	/*
1565 	 * Need to use rmdir for removing directories.
1566 	 */
1567 	if (vp->v_type == VDIR) {
1568 		error = EPERM;
1569 		goto out;
1570 	}
1571 
1572 	vnevent_remove(vp, dvp, name, ct);
1573 
1574 	if (realnmp)
1575 		dnlc_remove(dvp, realnmp->pn_buf);
1576 	else
1577 		dnlc_remove(dvp, name);
1578 
1579 	mutex_enter(&vp->v_lock);
1580 	may_delete_now = vp->v_count == 1 && !vn_has_cached_data(vp);
1581 	mutex_exit(&vp->v_lock);
1582 
1583 	/*
1584 	 * We may delete the znode now, or we may put it in the unlinked set;
1585 	 * it depends on whether we're the last link, and on whether there are
1586 	 * other holds on the vnode.  So we dmu_tx_hold() the right things to
1587 	 * allow for either case.
1588 	 */
1589 	tx = dmu_tx_create(zfsvfs->z_os);
1590 	dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
1591 	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1592 	zfs_sa_upgrade_txholds(tx, zp);
1593 	zfs_sa_upgrade_txholds(tx, dzp);
1594 	if (may_delete_now) {
1595 		toobig =
1596 		    zp->z_size > zp->z_blksz * DMU_MAX_DELETEBLKCNT;
1597 		/* if the file is too big, only hold_free a token amount */
1598 		dmu_tx_hold_free(tx, zp->z_id, 0,
1599 		    (toobig ? DMU_MAX_ACCESS : DMU_OBJECT_END));
1600 	}
1601 
1602 	/* are there any extended attributes? */
1603 	error = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1604 	    &xattr_obj, sizeof (xattr_obj));
1605 	if (xattr_obj) {
1606 		error = zfs_zget(zfsvfs, xattr_obj, &xzp);
1607 		ASSERT3U(error, ==, 0);
1608 		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
1609 		dmu_tx_hold_sa(tx, xzp->z_sa_hdl, B_FALSE);
1610 	}
1611 
1612 	/* are there any additional acls */
1613 	if ((acl_obj = ZFS_EXTERNAL_ACL(zp)) != 0 && may_delete_now)
1614 		dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END);
1615 
1616 	/* charge as an update -- would be nice not to charge at all */
1617 	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
1618 
1619 	error = dmu_tx_assign(tx, TXG_NOWAIT);
1620 	if (error) {
1621 		zfs_dirent_unlock(dl);
1622 		VN_RELE(vp);
1623 		if (error == ERESTART) {
1624 			dmu_tx_wait(tx);
1625 			dmu_tx_abort(tx);
1626 			goto top;
1627 		}
1628 		if (realnmp)
1629 			pn_free(realnmp);
1630 		dmu_tx_abort(tx);
1631 		ZFS_EXIT(zfsvfs);
1632 		return (error);
1633 	}
1634 
1635 	/*
1636 	 * Remove the directory entry.
1637 	 */
1638 	error = zfs_link_destroy(dl, zp, tx, zflg, &unlinked);
1639 
1640 	if (error) {
1641 		dmu_tx_commit(tx);
1642 		goto out;
1643 	}
1644 
1645 	if (unlinked) {
1646 
1647 		mutex_enter(&vp->v_lock);
1648 
1649 		(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1650 		    &xattr_obj_unlinked, sizeof (xattr_obj_unlinked));
1651 		delete_now = may_delete_now && !toobig &&
1652 		    vp->v_count == 1 && !vn_has_cached_data(vp) &&
1653 		    xattr_obj == xattr_obj_unlinked && ZFS_EXTERNAL_ACL(zp) ==
1654 		    acl_obj;
1655 		mutex_exit(&vp->v_lock);
1656 	}
1657 
1658 	if (delete_now) {
1659 		if (xattr_obj_unlinked) {
1660 			ASSERT3U(xzp->z_links, ==, 2);
1661 			mutex_enter(&xzp->z_lock);
1662 			xzp->z_unlinked = 1;
1663 			xzp->z_links = 0;
1664 			error = sa_update(xzp->z_sa_hdl, SA_ZPL_LINKS(zfsvfs),
1665 			    &xzp->z_links, sizeof (xzp->z_links), tx);
1666 			ASSERT3U(error,  ==,  0);
1667 			mutex_exit(&xzp->z_lock);
1668 			zfs_unlinked_add(xzp, tx);
1669 			if (zp->z_is_sa)
1670 				error = sa_remove(zp->z_sa_hdl,
1671 				    SA_ZPL_XATTR(zfsvfs), tx);
1672 			else
1673 				error = sa_update(zp->z_sa_hdl,
1674 				    SA_ZPL_XATTR(zfsvfs), &null_xattr,
1675 				    sizeof (uint64_t), tx);
1676 			ASSERT3U(error, ==, 0);
1677 		}
1678 		mutex_enter(&zp->z_lock);
1679 		mutex_enter(&vp->v_lock);
1680 		vp->v_count--;
1681 		ASSERT3U(vp->v_count, ==, 0);
1682 		mutex_exit(&vp->v_lock);
1683 		mutex_exit(&zp->z_lock);
1684 		zfs_znode_delete(zp, tx);
1685 	} else if (unlinked) {
1686 		zfs_unlinked_add(zp, tx);
1687 	}
1688 
1689 	txtype = TX_REMOVE;
1690 	if (flags & FIGNORECASE)
1691 		txtype |= TX_CI;
1692 	zfs_log_remove(zilog, tx, txtype, dzp, name);
1693 
1694 	dmu_tx_commit(tx);
1695 out:
1696 	if (realnmp)
1697 		pn_free(realnmp);
1698 
1699 	zfs_dirent_unlock(dl);
1700 
1701 	if (!delete_now) {
1702 		VN_RELE(vp);
1703 	} else if (xzp) {
1704 		/* this rele is delayed to prevent nesting transactions */
1705 		VN_RELE(ZTOV(xzp));
1706 	}
1707 
1708 	ZFS_EXIT(zfsvfs);
1709 	return (error);
1710 }
1711 
1712 /*
1713  * Create a new directory and insert it into dvp using the name
1714  * provided.  Return a pointer to the inserted directory.
1715  *
1716  *	IN:	dvp	- vnode of directory to add subdir to.
1717  *		dirname	- name of new directory.
1718  *		vap	- attributes of new directory.
1719  *		cr	- credentials of caller.
1720  *		ct	- caller context
1721  *		vsecp	- ACL to be set
1722  *
1723  *	OUT:	vpp	- vnode of created directory.
1724  *
1725  *	RETURN:	0 if success
1726  *		error code if failure
1727  *
1728  * Timestamps:
1729  *	dvp - ctime|mtime updated
1730  *	 vp - ctime|mtime|atime updated
1731  */
1732 /*ARGSUSED*/
1733 static int
1734 zfs_mkdir(vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t **vpp, cred_t *cr,
1735     caller_context_t *ct, int flags, vsecattr_t *vsecp)
1736 {
1737 	znode_t		*zp, *dzp = VTOZ(dvp);
1738 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
1739 	zilog_t		*zilog;
1740 	zfs_dirlock_t	*dl;
1741 	uint64_t	txtype;
1742 	dmu_tx_t	*tx;
1743 	int		error;
1744 	int		zf = ZNEW;
1745 	ksid_t		*ksid;
1746 	uid_t		uid;
1747 	gid_t		gid = crgetgid(cr);
1748 	zfs_acl_ids_t   acl_ids;
1749 	boolean_t	fuid_dirtied;
1750 
1751 	ASSERT(vap->va_type == VDIR);
1752 
1753 	/*
1754 	 * If we have an ephemeral id, ACL, or XVATTR then
1755 	 * make sure file system is at proper version
1756 	 */
1757 
1758 	ksid = crgetsid(cr, KSID_OWNER);
1759 	if (ksid)
1760 		uid = ksid_getid(ksid);
1761 	else
1762 		uid = crgetuid(cr);
1763 	if (zfsvfs->z_use_fuids == B_FALSE &&
1764 	    (vsecp || (vap->va_mask & AT_XVATTR) ||
1765 	    IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1766 		return (EINVAL);
1767 
1768 	ZFS_ENTER(zfsvfs);
1769 	ZFS_VERIFY_ZP(dzp);
1770 	zilog = zfsvfs->z_log;
1771 
1772 	if (dzp->z_pflags & ZFS_XATTR) {
1773 		ZFS_EXIT(zfsvfs);
1774 		return (EINVAL);
1775 	}
1776 
1777 	if (zfsvfs->z_utf8 && u8_validate(dirname,
1778 	    strlen(dirname), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1779 		ZFS_EXIT(zfsvfs);
1780 		return (EILSEQ);
1781 	}
1782 	if (flags & FIGNORECASE)
1783 		zf |= ZCILOOK;
1784 
1785 	if (vap->va_mask & AT_XVATTR)
1786 		if ((error = secpolicy_xvattr((xvattr_t *)vap,
1787 		    crgetuid(cr), cr, vap->va_type)) != 0) {
1788 			ZFS_EXIT(zfsvfs);
1789 			return (error);
1790 		}
1791 
1792 	/*
1793 	 * First make sure the new directory doesn't exist.
1794 	 */
1795 top:
1796 	*vpp = NULL;
1797 
1798 	if (error = zfs_dirent_lock(&dl, dzp, dirname, &zp, zf,
1799 	    NULL, NULL)) {
1800 		ZFS_EXIT(zfsvfs);
1801 		return (error);
1802 	}
1803 
1804 	if (error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, 0, B_FALSE, cr)) {
1805 		zfs_dirent_unlock(dl);
1806 		ZFS_EXIT(zfsvfs);
1807 		return (error);
1808 	}
1809 
1810 	if ((error = zfs_acl_ids_create(dzp, 0, vap, cr, vsecp,
1811 	    &acl_ids)) != 0) {
1812 		zfs_dirent_unlock(dl);
1813 		ZFS_EXIT(zfsvfs);
1814 		return (error);
1815 	}
1816 	if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
1817 		zfs_acl_ids_free(&acl_ids);
1818 		zfs_dirent_unlock(dl);
1819 		ZFS_EXIT(zfsvfs);
1820 		return (EDQUOT);
1821 	}
1822 
1823 	/*
1824 	 * Add a new entry to the directory.
1825 	 */
1826 	tx = dmu_tx_create(zfsvfs->z_os);
1827 	dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname);
1828 	dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
1829 	fuid_dirtied = zfsvfs->z_fuid_dirty;
1830 	if (fuid_dirtied)
1831 		zfs_fuid_txhold(zfsvfs, tx);
1832 	if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
1833 		dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
1834 		    acl_ids.z_aclp->z_acl_bytes);
1835 	}
1836 
1837 	dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
1838 	    ZFS_SA_BASE_ATTR_SIZE);
1839 
1840 	error = dmu_tx_assign(tx, TXG_NOWAIT);
1841 	if (error) {
1842 		zfs_acl_ids_free(&acl_ids);
1843 		zfs_dirent_unlock(dl);
1844 		if (error == ERESTART) {
1845 			dmu_tx_wait(tx);
1846 			dmu_tx_abort(tx);
1847 			goto top;
1848 		}
1849 		dmu_tx_abort(tx);
1850 		ZFS_EXIT(zfsvfs);
1851 		return (error);
1852 	}
1853 
1854 	/*
1855 	 * Create new node.
1856 	 */
1857 	zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
1858 
1859 	if (fuid_dirtied)
1860 		zfs_fuid_sync(zfsvfs, tx);
1861 
1862 	/*
1863 	 * Now put new name in parent dir.
1864 	 */
1865 	(void) zfs_link_create(dl, zp, tx, ZNEW);
1866 
1867 	*vpp = ZTOV(zp);
1868 
1869 	txtype = zfs_log_create_txtype(Z_DIR, vsecp, vap);
1870 	if (flags & FIGNORECASE)
1871 		txtype |= TX_CI;
1872 	zfs_log_create(zilog, tx, txtype, dzp, zp, dirname, vsecp,
1873 	    acl_ids.z_fuidp, vap);
1874 
1875 	zfs_acl_ids_free(&acl_ids);
1876 
1877 	dmu_tx_commit(tx);
1878 
1879 	zfs_dirent_unlock(dl);
1880 
1881 	ZFS_EXIT(zfsvfs);
1882 	return (0);
1883 }
1884 
1885 /*
1886  * Remove a directory subdir entry.  If the current working
1887  * directory is the same as the subdir to be removed, the
1888  * remove will fail.
1889  *
1890  *	IN:	dvp	- vnode of directory to remove from.
1891  *		name	- name of directory to be removed.
1892  *		cwd	- vnode of current working directory.
1893  *		cr	- credentials of caller.
1894  *		ct	- caller context
1895  *		flags	- case flags
1896  *
1897  *	RETURN:	0 if success
1898  *		error code if failure
1899  *
1900  * Timestamps:
1901  *	dvp - ctime|mtime updated
1902  */
1903 /*ARGSUSED*/
1904 static int
1905 zfs_rmdir(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr,
1906     caller_context_t *ct, int flags)
1907 {
1908 	znode_t		*dzp = VTOZ(dvp);
1909 	znode_t		*zp;
1910 	vnode_t		*vp;
1911 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
1912 	zilog_t		*zilog;
1913 	zfs_dirlock_t	*dl;
1914 	dmu_tx_t	*tx;
1915 	int		error;
1916 	int		zflg = ZEXISTS;
1917 
1918 	ZFS_ENTER(zfsvfs);
1919 	ZFS_VERIFY_ZP(dzp);
1920 	zilog = zfsvfs->z_log;
1921 
1922 	if (flags & FIGNORECASE)
1923 		zflg |= ZCILOOK;
1924 top:
1925 	zp = NULL;
1926 
1927 	/*
1928 	 * Attempt to lock directory; fail if entry doesn't exist.
1929 	 */
1930 	if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1931 	    NULL, NULL)) {
1932 		ZFS_EXIT(zfsvfs);
1933 		return (error);
1934 	}
1935 
1936 	vp = ZTOV(zp);
1937 
1938 	if (error = zfs_zaccess_delete(dzp, zp, cr)) {
1939 		goto out;
1940 	}
1941 
1942 	if (vp->v_type != VDIR) {
1943 		error = ENOTDIR;
1944 		goto out;
1945 	}
1946 
1947 	if (vp == cwd) {
1948 		error = EINVAL;
1949 		goto out;
1950 	}
1951 
1952 	vnevent_rmdir(vp, dvp, name, ct);
1953 
1954 	/*
1955 	 * Grab a lock on the directory to make sure that noone is
1956 	 * trying to add (or lookup) entries while we are removing it.
1957 	 */
1958 	rw_enter(&zp->z_name_lock, RW_WRITER);
1959 
1960 	/*
1961 	 * Grab a lock on the parent pointer to make sure we play well
1962 	 * with the treewalk and directory rename code.
1963 	 */
1964 	rw_enter(&zp->z_parent_lock, RW_WRITER);
1965 
1966 	tx = dmu_tx_create(zfsvfs->z_os);
1967 	dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
1968 	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1969 	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
1970 	zfs_sa_upgrade_txholds(tx, zp);
1971 	zfs_sa_upgrade_txholds(tx, dzp);
1972 	error = dmu_tx_assign(tx, TXG_NOWAIT);
1973 	if (error) {
1974 		rw_exit(&zp->z_parent_lock);
1975 		rw_exit(&zp->z_name_lock);
1976 		zfs_dirent_unlock(dl);
1977 		VN_RELE(vp);
1978 		if (error == ERESTART) {
1979 			dmu_tx_wait(tx);
1980 			dmu_tx_abort(tx);
1981 			goto top;
1982 		}
1983 		dmu_tx_abort(tx);
1984 		ZFS_EXIT(zfsvfs);
1985 		return (error);
1986 	}
1987 
1988 	error = zfs_link_destroy(dl, zp, tx, zflg, NULL);
1989 
1990 	if (error == 0) {
1991 		uint64_t txtype = TX_RMDIR;
1992 		if (flags & FIGNORECASE)
1993 			txtype |= TX_CI;
1994 		zfs_log_remove(zilog, tx, txtype, dzp, name);
1995 	}
1996 
1997 	dmu_tx_commit(tx);
1998 
1999 	rw_exit(&zp->z_parent_lock);
2000 	rw_exit(&zp->z_name_lock);
2001 out:
2002 	zfs_dirent_unlock(dl);
2003 
2004 	VN_RELE(vp);
2005 
2006 	ZFS_EXIT(zfsvfs);
2007 	return (error);
2008 }
2009 
2010 /*
2011  * Read as many directory entries as will fit into the provided
2012  * buffer from the given directory cursor position (specified in
2013  * the uio structure.
2014  *
2015  *	IN:	vp	- vnode of directory to read.
2016  *		uio	- structure supplying read location, range info,
2017  *			  and return buffer.
2018  *		cr	- credentials of caller.
2019  *		ct	- caller context
2020  *		flags	- case flags
2021  *
2022  *	OUT:	uio	- updated offset and range, buffer filled.
2023  *		eofp	- set to true if end-of-file detected.
2024  *
2025  *	RETURN:	0 if success
2026  *		error code if failure
2027  *
2028  * Timestamps:
2029  *	vp - atime updated
2030  *
2031  * Note that the low 4 bits of the cookie returned by zap is always zero.
2032  * This allows us to use the low range for "special" directory entries:
2033  * We use 0 for '.', and 1 for '..'.  If this is the root of the filesystem,
2034  * we use the offset 2 for the '.zfs' directory.
2035  */
2036 /* ARGSUSED */
2037 static int
2038 zfs_readdir(vnode_t *vp, uio_t *uio, cred_t *cr, int *eofp,
2039     caller_context_t *ct, int flags)
2040 {
2041 	znode_t		*zp = VTOZ(vp);
2042 	iovec_t		*iovp;
2043 	edirent_t	*eodp;
2044 	dirent64_t	*odp;
2045 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
2046 	objset_t	*os;
2047 	caddr_t		outbuf;
2048 	size_t		bufsize;
2049 	zap_cursor_t	zc;
2050 	zap_attribute_t	zap;
2051 	uint_t		bytes_wanted;
2052 	uint64_t	offset; /* must be unsigned; checks for < 1 */
2053 	uint64_t	parent;
2054 	int		local_eof;
2055 	int		outcount;
2056 	int		error;
2057 	uint8_t		prefetch;
2058 	boolean_t	check_sysattrs;
2059 
2060 	ZFS_ENTER(zfsvfs);
2061 	ZFS_VERIFY_ZP(zp);
2062 
2063 	if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
2064 	    &parent, sizeof (parent))) != 0) {
2065 		ZFS_EXIT(zfsvfs);
2066 		return (error);
2067 	}
2068 
2069 	/*
2070 	 * If we are not given an eof variable,
2071 	 * use a local one.
2072 	 */
2073 	if (eofp == NULL)
2074 		eofp = &local_eof;
2075 
2076 	/*
2077 	 * Check for valid iov_len.
2078 	 */
2079 	if (uio->uio_iov->iov_len <= 0) {
2080 		ZFS_EXIT(zfsvfs);
2081 		return (EINVAL);
2082 	}
2083 
2084 	/*
2085 	 * Quit if directory has been removed (posix)
2086 	 */
2087 	if ((*eofp = zp->z_unlinked) != 0) {
2088 		ZFS_EXIT(zfsvfs);
2089 		return (0);
2090 	}
2091 
2092 	error = 0;
2093 	os = zfsvfs->z_os;
2094 	offset = uio->uio_loffset;
2095 	prefetch = zp->z_zn_prefetch;
2096 
2097 	/*
2098 	 * Initialize the iterator cursor.
2099 	 */
2100 	if (offset <= 3) {
2101 		/*
2102 		 * Start iteration from the beginning of the directory.
2103 		 */
2104 		zap_cursor_init(&zc, os, zp->z_id);
2105 	} else {
2106 		/*
2107 		 * The offset is a serialized cursor.
2108 		 */
2109 		zap_cursor_init_serialized(&zc, os, zp->z_id, offset);
2110 	}
2111 
2112 	/*
2113 	 * Get space to change directory entries into fs independent format.
2114 	 */
2115 	iovp = uio->uio_iov;
2116 	bytes_wanted = iovp->iov_len;
2117 	if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) {
2118 		bufsize = bytes_wanted;
2119 		outbuf = kmem_alloc(bufsize, KM_SLEEP);
2120 		odp = (struct dirent64 *)outbuf;
2121 	} else {
2122 		bufsize = bytes_wanted;
2123 		odp = (struct dirent64 *)iovp->iov_base;
2124 	}
2125 	eodp = (struct edirent *)odp;
2126 
2127 	/*
2128 	 * If this VFS supports the system attribute view interface; and
2129 	 * we're looking at an extended attribute directory; and we care
2130 	 * about normalization conflicts on this vfs; then we must check
2131 	 * for normalization conflicts with the sysattr name space.
2132 	 */
2133 	check_sysattrs = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) &&
2134 	    (vp->v_flag & V_XATTRDIR) && zfsvfs->z_norm &&
2135 	    (flags & V_RDDIR_ENTFLAGS);
2136 
2137 	/*
2138 	 * Transform to file-system independent format
2139 	 */
2140 	outcount = 0;
2141 	while (outcount < bytes_wanted) {
2142 		ino64_t objnum;
2143 		ushort_t reclen;
2144 		off64_t *next;
2145 
2146 		/*
2147 		 * Special case `.', `..', and `.zfs'.
2148 		 */
2149 		if (offset == 0) {
2150 			(void) strcpy(zap.za_name, ".");
2151 			zap.za_normalization_conflict = 0;
2152 			objnum = zp->z_id;
2153 		} else if (offset == 1) {
2154 			(void) strcpy(zap.za_name, "..");
2155 			zap.za_normalization_conflict = 0;
2156 			objnum = parent;
2157 		} else if (offset == 2 && zfs_show_ctldir(zp)) {
2158 			(void) strcpy(zap.za_name, ZFS_CTLDIR_NAME);
2159 			zap.za_normalization_conflict = 0;
2160 			objnum = ZFSCTL_INO_ROOT;
2161 		} else {
2162 			/*
2163 			 * Grab next entry.
2164 			 */
2165 			if (error = zap_cursor_retrieve(&zc, &zap)) {
2166 				if ((*eofp = (error == ENOENT)) != 0)
2167 					break;
2168 				else
2169 					goto update;
2170 			}
2171 
2172 			if (zap.za_integer_length != 8 ||
2173 			    zap.za_num_integers != 1) {
2174 				cmn_err(CE_WARN, "zap_readdir: bad directory "
2175 				    "entry, obj = %lld, offset = %lld\n",
2176 				    (u_longlong_t)zp->z_id,
2177 				    (u_longlong_t)offset);
2178 				error = ENXIO;
2179 				goto update;
2180 			}
2181 
2182 			objnum = ZFS_DIRENT_OBJ(zap.za_first_integer);
2183 			/*
2184 			 * MacOS X can extract the object type here such as:
2185 			 * uint8_t type = ZFS_DIRENT_TYPE(zap.za_first_integer);
2186 			 */
2187 
2188 			if (check_sysattrs && !zap.za_normalization_conflict) {
2189 				zap.za_normalization_conflict =
2190 				    xattr_sysattr_casechk(zap.za_name);
2191 			}
2192 		}
2193 
2194 		if (flags & V_RDDIR_ACCFILTER) {
2195 			/*
2196 			 * If we have no access at all, don't include
2197 			 * this entry in the returned information
2198 			 */
2199 			znode_t	*ezp;
2200 			if (zfs_zget(zp->z_zfsvfs, objnum, &ezp) != 0)
2201 				goto skip_entry;
2202 			if (!zfs_has_access(ezp, cr)) {
2203 				VN_RELE(ZTOV(ezp));
2204 				goto skip_entry;
2205 			}
2206 			VN_RELE(ZTOV(ezp));
2207 		}
2208 
2209 		if (flags & V_RDDIR_ENTFLAGS)
2210 			reclen = EDIRENT_RECLEN(strlen(zap.za_name));
2211 		else
2212 			reclen = DIRENT64_RECLEN(strlen(zap.za_name));
2213 
2214 		/*
2215 		 * Will this entry fit in the buffer?
2216 		 */
2217 		if (outcount + reclen > bufsize) {
2218 			/*
2219 			 * Did we manage to fit anything in the buffer?
2220 			 */
2221 			if (!outcount) {
2222 				error = EINVAL;
2223 				goto update;
2224 			}
2225 			break;
2226 		}
2227 		if (flags & V_RDDIR_ENTFLAGS) {
2228 			/*
2229 			 * Add extended flag entry:
2230 			 */
2231 			eodp->ed_ino = objnum;
2232 			eodp->ed_reclen = reclen;
2233 			/* NOTE: ed_off is the offset for the *next* entry */
2234 			next = &(eodp->ed_off);
2235 			eodp->ed_eflags = zap.za_normalization_conflict ?
2236 			    ED_CASE_CONFLICT : 0;
2237 			(void) strncpy(eodp->ed_name, zap.za_name,
2238 			    EDIRENT_NAMELEN(reclen));
2239 			eodp = (edirent_t *)((intptr_t)eodp + reclen);
2240 		} else {
2241 			/*
2242 			 * Add normal entry:
2243 			 */
2244 			odp->d_ino = objnum;
2245 			odp->d_reclen = reclen;
2246 			/* NOTE: d_off is the offset for the *next* entry */
2247 			next = &(odp->d_off);
2248 			(void) strncpy(odp->d_name, zap.za_name,
2249 			    DIRENT64_NAMELEN(reclen));
2250 			odp = (dirent64_t *)((intptr_t)odp + reclen);
2251 		}
2252 		outcount += reclen;
2253 
2254 		ASSERT(outcount <= bufsize);
2255 
2256 		/* Prefetch znode */
2257 		if (prefetch)
2258 			dmu_prefetch(os, objnum, 0, 0);
2259 
2260 	skip_entry:
2261 		/*
2262 		 * Move to the next entry, fill in the previous offset.
2263 		 */
2264 		if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) {
2265 			zap_cursor_advance(&zc);
2266 			offset = zap_cursor_serialize(&zc);
2267 		} else {
2268 			offset += 1;
2269 		}
2270 		*next = offset;
2271 	}
2272 	zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */
2273 
2274 	if (uio->uio_segflg == UIO_SYSSPACE && uio->uio_iovcnt == 1) {
2275 		iovp->iov_base += outcount;
2276 		iovp->iov_len -= outcount;
2277 		uio->uio_resid -= outcount;
2278 	} else if (error = uiomove(outbuf, (long)outcount, UIO_READ, uio)) {
2279 		/*
2280 		 * Reset the pointer.
2281 		 */
2282 		offset = uio->uio_loffset;
2283 	}
2284 
2285 update:
2286 	zap_cursor_fini(&zc);
2287 	if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1)
2288 		kmem_free(outbuf, bufsize);
2289 
2290 	if (error == ENOENT)
2291 		error = 0;
2292 
2293 	ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
2294 
2295 	uio->uio_loffset = offset;
2296 	ZFS_EXIT(zfsvfs);
2297 	return (error);
2298 }
2299 
2300 ulong_t zfs_fsync_sync_cnt = 4;
2301 
2302 static int
2303 zfs_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct)
2304 {
2305 	znode_t	*zp = VTOZ(vp);
2306 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2307 
2308 	/*
2309 	 * Regardless of whether this is required for standards conformance,
2310 	 * this is the logical behavior when fsync() is called on a file with
2311 	 * dirty pages.  We use B_ASYNC since the ZIL transactions are already
2312 	 * going to be pushed out as part of the zil_commit().
2313 	 */
2314 	if (vn_has_cached_data(vp) && !(syncflag & FNODSYNC) &&
2315 	    (vp->v_type == VREG) && !(IS_SWAPVP(vp)))
2316 		(void) VOP_PUTPAGE(vp, (offset_t)0, (size_t)0, B_ASYNC, cr, ct);
2317 
2318 	(void) tsd_set(zfs_fsyncer_key, (void *)zfs_fsync_sync_cnt);
2319 
2320 	ZFS_ENTER(zfsvfs);
2321 	ZFS_VERIFY_ZP(zp);
2322 	zil_commit(zfsvfs->z_log, zp->z_last_itx, zp->z_id);
2323 	ZFS_EXIT(zfsvfs);
2324 	return (0);
2325 }
2326 
2327 
2328 /*
2329  * Get the requested file attributes and place them in the provided
2330  * vattr structure.
2331  *
2332  *	IN:	vp	- vnode of file.
2333  *		vap	- va_mask identifies requested attributes.
2334  *			  If AT_XVATTR set, then optional attrs are requested
2335  *		flags	- ATTR_NOACLCHECK (CIFS server context)
2336  *		cr	- credentials of caller.
2337  *		ct	- caller context
2338  *
2339  *	OUT:	vap	- attribute values.
2340  *
2341  *	RETURN:	0 (always succeeds)
2342  */
2343 /* ARGSUSED */
2344 static int
2345 zfs_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
2346     caller_context_t *ct)
2347 {
2348 	znode_t *zp = VTOZ(vp);
2349 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2350 	int	error = 0;
2351 	uint64_t links;
2352 	uint64_t mtime[2], ctime[2];
2353 	xvattr_t *xvap = (xvattr_t *)vap;	/* vap may be an xvattr_t * */
2354 	xoptattr_t *xoap = NULL;
2355 	boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
2356 	sa_bulk_attr_t bulk[2];
2357 	int count = 0;
2358 
2359 	ZFS_ENTER(zfsvfs);
2360 	ZFS_VERIFY_ZP(zp);
2361 
2362 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
2363 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
2364 
2365 	if ((error = sa_bulk_lookup(zp->z_sa_hdl, bulk, count)) != 0) {
2366 		ZFS_EXIT(zfsvfs);
2367 		return (error);
2368 	}
2369 
2370 	/*
2371 	 * If ACL is trivial don't bother looking for ACE_READ_ATTRIBUTES.
2372 	 * Also, if we are the owner don't bother, since owner should
2373 	 * always be allowed to read basic attributes of file.
2374 	 */
2375 	if (!(zp->z_pflags & ZFS_ACL_TRIVIAL) && (zp->z_uid != crgetuid(cr))) {
2376 		if (error = zfs_zaccess(zp, ACE_READ_ATTRIBUTES, 0,
2377 		    skipaclchk, cr)) {
2378 			ZFS_EXIT(zfsvfs);
2379 			return (error);
2380 		}
2381 	}
2382 
2383 	/*
2384 	 * Return all attributes.  It's cheaper to provide the answer
2385 	 * than to determine whether we were asked the question.
2386 	 */
2387 
2388 	mutex_enter(&zp->z_lock);
2389 	vap->va_type = vp->v_type;
2390 	vap->va_mode = zp->z_mode & MODEMASK;
2391 	vap->va_uid = zp->z_uid;
2392 	vap->va_gid = zp->z_gid;
2393 	vap->va_fsid = zp->z_zfsvfs->z_vfs->vfs_dev;
2394 	vap->va_nodeid = zp->z_id;
2395 	if ((vp->v_flag & VROOT) && zfs_show_ctldir(zp))
2396 		links = zp->z_links + 1;
2397 	else
2398 		links = zp->z_links;
2399 	vap->va_nlink = MIN(links, UINT32_MAX);	/* nlink_t limit! */
2400 	vap->va_size = zp->z_size;
2401 	vap->va_rdev = vp->v_rdev;
2402 	vap->va_seq = zp->z_seq;
2403 
2404 	/*
2405 	 * Add in any requested optional attributes and the create time.
2406 	 * Also set the corresponding bits in the returned attribute bitmap.
2407 	 */
2408 	if ((xoap = xva_getxoptattr(xvap)) != NULL && zfsvfs->z_use_fuids) {
2409 		if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) {
2410 			xoap->xoa_archive =
2411 			    ((zp->z_pflags & ZFS_ARCHIVE) != 0);
2412 			XVA_SET_RTN(xvap, XAT_ARCHIVE);
2413 		}
2414 
2415 		if (XVA_ISSET_REQ(xvap, XAT_READONLY)) {
2416 			xoap->xoa_readonly =
2417 			    ((zp->z_pflags & ZFS_READONLY) != 0);
2418 			XVA_SET_RTN(xvap, XAT_READONLY);
2419 		}
2420 
2421 		if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) {
2422 			xoap->xoa_system =
2423 			    ((zp->z_pflags & ZFS_SYSTEM) != 0);
2424 			XVA_SET_RTN(xvap, XAT_SYSTEM);
2425 		}
2426 
2427 		if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) {
2428 			xoap->xoa_hidden =
2429 			    ((zp->z_pflags & ZFS_HIDDEN) != 0);
2430 			XVA_SET_RTN(xvap, XAT_HIDDEN);
2431 		}
2432 
2433 		if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
2434 			xoap->xoa_nounlink =
2435 			    ((zp->z_pflags & ZFS_NOUNLINK) != 0);
2436 			XVA_SET_RTN(xvap, XAT_NOUNLINK);
2437 		}
2438 
2439 		if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
2440 			xoap->xoa_immutable =
2441 			    ((zp->z_pflags & ZFS_IMMUTABLE) != 0);
2442 			XVA_SET_RTN(xvap, XAT_IMMUTABLE);
2443 		}
2444 
2445 		if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
2446 			xoap->xoa_appendonly =
2447 			    ((zp->z_pflags & ZFS_APPENDONLY) != 0);
2448 			XVA_SET_RTN(xvap, XAT_APPENDONLY);
2449 		}
2450 
2451 		if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
2452 			xoap->xoa_nodump =
2453 			    ((zp->z_pflags & ZFS_NODUMP) != 0);
2454 			XVA_SET_RTN(xvap, XAT_NODUMP);
2455 		}
2456 
2457 		if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) {
2458 			xoap->xoa_opaque =
2459 			    ((zp->z_pflags & ZFS_OPAQUE) != 0);
2460 			XVA_SET_RTN(xvap, XAT_OPAQUE);
2461 		}
2462 
2463 		if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
2464 			xoap->xoa_av_quarantined =
2465 			    ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0);
2466 			XVA_SET_RTN(xvap, XAT_AV_QUARANTINED);
2467 		}
2468 
2469 		if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
2470 			xoap->xoa_av_modified =
2471 			    ((zp->z_pflags & ZFS_AV_MODIFIED) != 0);
2472 			XVA_SET_RTN(xvap, XAT_AV_MODIFIED);
2473 		}
2474 
2475 		if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) &&
2476 		    vp->v_type == VREG) {
2477 			zfs_sa_get_scanstamp(zp, xvap);
2478 		}
2479 
2480 		if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) {
2481 			uint64_t times[2];
2482 
2483 			(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_CRTIME(zfsvfs),
2484 			    times, sizeof (times));
2485 			ZFS_TIME_DECODE(&xoap->xoa_createtime, times);
2486 			XVA_SET_RTN(xvap, XAT_CREATETIME);
2487 		}
2488 
2489 		if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
2490 			xoap->xoa_reparse = ((zp->z_pflags & ZFS_REPARSE) != 0);
2491 			XVA_SET_RTN(xvap, XAT_REPARSE);
2492 		}
2493 	}
2494 
2495 	ZFS_TIME_DECODE(&vap->va_atime, zp->z_atime);
2496 	ZFS_TIME_DECODE(&vap->va_mtime, mtime);
2497 	ZFS_TIME_DECODE(&vap->va_ctime, ctime);
2498 
2499 	mutex_exit(&zp->z_lock);
2500 
2501 	sa_object_size(zp->z_sa_hdl, &vap->va_blksize, &vap->va_nblocks);
2502 
2503 	if (zp->z_blksz == 0) {
2504 		/*
2505 		 * Block size hasn't been set; suggest maximal I/O transfers.
2506 		 */
2507 		vap->va_blksize = zfsvfs->z_max_blksz;
2508 	}
2509 
2510 	ZFS_EXIT(zfsvfs);
2511 	return (0);
2512 }
2513 
2514 /*
2515  * Set the file attributes to the values contained in the
2516  * vattr structure.
2517  *
2518  *	IN:	vp	- vnode of file to be modified.
2519  *		vap	- new attribute values.
2520  *			  If AT_XVATTR set, then optional attrs are being set
2521  *		flags	- ATTR_UTIME set if non-default time values provided.
2522  *			- ATTR_NOACLCHECK (CIFS context only).
2523  *		cr	- credentials of caller.
2524  *		ct	- caller context
2525  *
2526  *	RETURN:	0 if success
2527  *		error code if failure
2528  *
2529  * Timestamps:
2530  *	vp - ctime updated, mtime updated if size changed.
2531  */
2532 /* ARGSUSED */
2533 static int
2534 zfs_setattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
2535 	caller_context_t *ct)
2536 {
2537 	znode_t		*zp = VTOZ(vp);
2538 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
2539 	zilog_t		*zilog;
2540 	dmu_tx_t	*tx;
2541 	vattr_t		oldva;
2542 	xvattr_t	tmpxvattr;
2543 	uint_t		mask = vap->va_mask;
2544 	uint_t		saved_mask;
2545 	int		trim_mask = 0;
2546 	uint64_t	new_mode;
2547 	uint64_t	new_uid, new_gid;
2548 	uint64_t	xattr_obj = 0;
2549 	uint64_t	mtime[2], ctime[2];
2550 	znode_t		*attrzp;
2551 	int		need_policy = FALSE;
2552 	int		err, err2;
2553 	zfs_fuid_info_t *fuidp = NULL;
2554 	xvattr_t *xvap = (xvattr_t *)vap;	/* vap may be an xvattr_t * */
2555 	xoptattr_t	*xoap;
2556 	zfs_acl_t	*aclp = NULL;
2557 	boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
2558 	boolean_t	fuid_dirtied = B_FALSE;
2559 	sa_bulk_attr_t	bulk[7], xattr_bulk[7];
2560 	int		count = 0, xattr_count = 0;
2561 
2562 	if (mask == 0)
2563 		return (0);
2564 
2565 	if (mask & AT_NOSET)
2566 		return (EINVAL);
2567 
2568 	ZFS_ENTER(zfsvfs);
2569 	ZFS_VERIFY_ZP(zp);
2570 
2571 	zilog = zfsvfs->z_log;
2572 
2573 	/*
2574 	 * Make sure that if we have ephemeral uid/gid or xvattr specified
2575 	 * that file system is at proper version level
2576 	 */
2577 
2578 	if (zfsvfs->z_use_fuids == B_FALSE &&
2579 	    (((mask & AT_UID) && IS_EPHEMERAL(vap->va_uid)) ||
2580 	    ((mask & AT_GID) && IS_EPHEMERAL(vap->va_gid)) ||
2581 	    (mask & AT_XVATTR))) {
2582 		ZFS_EXIT(zfsvfs);
2583 		return (EINVAL);
2584 	}
2585 
2586 	if (mask & AT_SIZE && vp->v_type == VDIR) {
2587 		ZFS_EXIT(zfsvfs);
2588 		return (EISDIR);
2589 	}
2590 
2591 	if (mask & AT_SIZE && vp->v_type != VREG && vp->v_type != VFIFO) {
2592 		ZFS_EXIT(zfsvfs);
2593 		return (EINVAL);
2594 	}
2595 
2596 	/*
2597 	 * If this is an xvattr_t, then get a pointer to the structure of
2598 	 * optional attributes.  If this is NULL, then we have a vattr_t.
2599 	 */
2600 	xoap = xva_getxoptattr(xvap);
2601 
2602 	xva_init(&tmpxvattr);
2603 
2604 	/*
2605 	 * Immutable files can only alter immutable bit and atime
2606 	 */
2607 	if ((zp->z_pflags & ZFS_IMMUTABLE) &&
2608 	    ((mask & (AT_SIZE|AT_UID|AT_GID|AT_MTIME|AT_MODE)) ||
2609 	    ((mask & AT_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME)))) {
2610 		ZFS_EXIT(zfsvfs);
2611 		return (EPERM);
2612 	}
2613 
2614 	if ((mask & AT_SIZE) && (zp->z_pflags & ZFS_READONLY)) {
2615 		ZFS_EXIT(zfsvfs);
2616 		return (EPERM);
2617 	}
2618 
2619 	/*
2620 	 * Verify timestamps doesn't overflow 32 bits.
2621 	 * ZFS can handle large timestamps, but 32bit syscalls can't
2622 	 * handle times greater than 2039.  This check should be removed
2623 	 * once large timestamps are fully supported.
2624 	 */
2625 	if (mask & (AT_ATIME | AT_MTIME)) {
2626 		if (((mask & AT_ATIME) && TIMESPEC_OVERFLOW(&vap->va_atime)) ||
2627 		    ((mask & AT_MTIME) && TIMESPEC_OVERFLOW(&vap->va_mtime))) {
2628 			ZFS_EXIT(zfsvfs);
2629 			return (EOVERFLOW);
2630 		}
2631 	}
2632 
2633 top:
2634 	attrzp = NULL;
2635 
2636 	/* Can this be moved to before the top label? */
2637 	if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) {
2638 		ZFS_EXIT(zfsvfs);
2639 		return (EROFS);
2640 	}
2641 
2642 	/*
2643 	 * First validate permissions
2644 	 */
2645 
2646 	if (mask & AT_SIZE) {
2647 		err = zfs_zaccess(zp, ACE_WRITE_DATA, 0, skipaclchk, cr);
2648 		if (err) {
2649 			ZFS_EXIT(zfsvfs);
2650 			return (err);
2651 		}
2652 		/*
2653 		 * XXX - Note, we are not providing any open
2654 		 * mode flags here (like FNDELAY), so we may
2655 		 * block if there are locks present... this
2656 		 * should be addressed in openat().
2657 		 */
2658 		/* XXX - would it be OK to generate a log record here? */
2659 		err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE);
2660 		if (err) {
2661 			ZFS_EXIT(zfsvfs);
2662 			return (err);
2663 		}
2664 	}
2665 
2666 	if (mask & (AT_ATIME|AT_MTIME) ||
2667 	    ((mask & AT_XVATTR) && (XVA_ISSET_REQ(xvap, XAT_HIDDEN) ||
2668 	    XVA_ISSET_REQ(xvap, XAT_READONLY) ||
2669 	    XVA_ISSET_REQ(xvap, XAT_ARCHIVE) ||
2670 	    XVA_ISSET_REQ(xvap, XAT_CREATETIME) ||
2671 	    XVA_ISSET_REQ(xvap, XAT_SYSTEM)))) {
2672 		need_policy = zfs_zaccess(zp, ACE_WRITE_ATTRIBUTES, 0,
2673 		    skipaclchk, cr);
2674 	}
2675 
2676 	if (mask & (AT_UID|AT_GID)) {
2677 		int	idmask = (mask & (AT_UID|AT_GID));
2678 		int	take_owner;
2679 		int	take_group;
2680 
2681 		/*
2682 		 * NOTE: even if a new mode is being set,
2683 		 * we may clear S_ISUID/S_ISGID bits.
2684 		 */
2685 
2686 		if (!(mask & AT_MODE))
2687 			vap->va_mode = zp->z_mode;
2688 
2689 		/*
2690 		 * Take ownership or chgrp to group we are a member of
2691 		 */
2692 
2693 		take_owner = (mask & AT_UID) && (vap->va_uid == crgetuid(cr));
2694 		take_group = (mask & AT_GID) &&
2695 		    zfs_groupmember(zfsvfs, vap->va_gid, cr);
2696 
2697 		/*
2698 		 * If both AT_UID and AT_GID are set then take_owner and
2699 		 * take_group must both be set in order to allow taking
2700 		 * ownership.
2701 		 *
2702 		 * Otherwise, send the check through secpolicy_vnode_setattr()
2703 		 *
2704 		 */
2705 
2706 		if (((idmask == (AT_UID|AT_GID)) && take_owner && take_group) ||
2707 		    ((idmask == AT_UID) && take_owner) ||
2708 		    ((idmask == AT_GID) && take_group)) {
2709 			if (zfs_zaccess(zp, ACE_WRITE_OWNER, 0,
2710 			    skipaclchk, cr) == 0) {
2711 				/*
2712 				 * Remove setuid/setgid for non-privileged users
2713 				 */
2714 				secpolicy_setid_clear(vap, cr);
2715 				trim_mask = (mask & (AT_UID|AT_GID));
2716 			} else {
2717 				need_policy =  TRUE;
2718 			}
2719 		} else {
2720 			need_policy =  TRUE;
2721 		}
2722 	}
2723 
2724 	mutex_enter(&zp->z_lock);
2725 	oldva.va_mode = zp->z_mode;
2726 	oldva.va_uid = zp->z_uid;
2727 	oldva.va_gid = zp->z_gid;
2728 	if (mask & AT_XVATTR) {
2729 		/*
2730 		 * Update xvattr mask to include only those attributes
2731 		 * that are actually changing.
2732 		 *
2733 		 * the bits will be restored prior to actually setting
2734 		 * the attributes so the caller thinks they were set.
2735 		 */
2736 		if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
2737 			if (xoap->xoa_appendonly !=
2738 			    ((zp->z_pflags & ZFS_APPENDONLY) != 0)) {
2739 				need_policy = TRUE;
2740 			} else {
2741 				XVA_CLR_REQ(xvap, XAT_APPENDONLY);
2742 				XVA_SET_REQ(&tmpxvattr, XAT_APPENDONLY);
2743 			}
2744 		}
2745 
2746 		if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
2747 			if (xoap->xoa_nounlink !=
2748 			    ((zp->z_pflags & ZFS_NOUNLINK) != 0)) {
2749 				need_policy = TRUE;
2750 			} else {
2751 				XVA_CLR_REQ(xvap, XAT_NOUNLINK);
2752 				XVA_SET_REQ(&tmpxvattr, XAT_NOUNLINK);
2753 			}
2754 		}
2755 
2756 		if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
2757 			if (xoap->xoa_immutable !=
2758 			    ((zp->z_pflags & ZFS_IMMUTABLE) != 0)) {
2759 				need_policy = TRUE;
2760 			} else {
2761 				XVA_CLR_REQ(xvap, XAT_IMMUTABLE);
2762 				XVA_SET_REQ(&tmpxvattr, XAT_IMMUTABLE);
2763 			}
2764 		}
2765 
2766 		if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
2767 			if (xoap->xoa_nodump !=
2768 			    ((zp->z_pflags & ZFS_NODUMP) != 0)) {
2769 				need_policy = TRUE;
2770 			} else {
2771 				XVA_CLR_REQ(xvap, XAT_NODUMP);
2772 				XVA_SET_REQ(&tmpxvattr, XAT_NODUMP);
2773 			}
2774 		}
2775 
2776 		if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
2777 			if (xoap->xoa_av_modified !=
2778 			    ((zp->z_pflags & ZFS_AV_MODIFIED) != 0)) {
2779 				need_policy = TRUE;
2780 			} else {
2781 				XVA_CLR_REQ(xvap, XAT_AV_MODIFIED);
2782 				XVA_SET_REQ(&tmpxvattr, XAT_AV_MODIFIED);
2783 			}
2784 		}
2785 
2786 		if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
2787 			if ((vp->v_type != VREG &&
2788 			    xoap->xoa_av_quarantined) ||
2789 			    xoap->xoa_av_quarantined !=
2790 			    ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0)) {
2791 				need_policy = TRUE;
2792 			} else {
2793 				XVA_CLR_REQ(xvap, XAT_AV_QUARANTINED);
2794 				XVA_SET_REQ(&tmpxvattr, XAT_AV_QUARANTINED);
2795 			}
2796 		}
2797 
2798 		if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
2799 			mutex_exit(&zp->z_lock);
2800 			ZFS_EXIT(zfsvfs);
2801 			return (EPERM);
2802 		}
2803 
2804 		if (need_policy == FALSE &&
2805 		    (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) ||
2806 		    XVA_ISSET_REQ(xvap, XAT_OPAQUE))) {
2807 			need_policy = TRUE;
2808 		}
2809 	}
2810 
2811 	mutex_exit(&zp->z_lock);
2812 
2813 	if (mask & AT_MODE) {
2814 		if (zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr) == 0) {
2815 			err = secpolicy_setid_setsticky_clear(vp, vap,
2816 			    &oldva, cr);
2817 			if (err) {
2818 				ZFS_EXIT(zfsvfs);
2819 				return (err);
2820 			}
2821 			trim_mask |= AT_MODE;
2822 		} else {
2823 			need_policy = TRUE;
2824 		}
2825 	}
2826 
2827 	if (need_policy) {
2828 		/*
2829 		 * If trim_mask is set then take ownership
2830 		 * has been granted or write_acl is present and user
2831 		 * has the ability to modify mode.  In that case remove
2832 		 * UID|GID and or MODE from mask so that
2833 		 * secpolicy_vnode_setattr() doesn't revoke it.
2834 		 */
2835 
2836 		if (trim_mask) {
2837 			saved_mask = vap->va_mask;
2838 			vap->va_mask &= ~trim_mask;
2839 		}
2840 		err = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags,
2841 		    (int (*)(void *, int, cred_t *))zfs_zaccess_unix, zp);
2842 		if (err) {
2843 			ZFS_EXIT(zfsvfs);
2844 			return (err);
2845 		}
2846 
2847 		if (trim_mask)
2848 			vap->va_mask |= saved_mask;
2849 	}
2850 
2851 	/*
2852 	 * secpolicy_vnode_setattr, or take ownership may have
2853 	 * changed va_mask
2854 	 */
2855 	mask = vap->va_mask;
2856 
2857 	if ((mask & (AT_UID | AT_GID))) {
2858 		(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs), &xattr_obj,
2859 		    sizeof (xattr_obj));
2860 
2861 		if (xattr_obj) {
2862 			err = zfs_zget(zp->z_zfsvfs, xattr_obj, &attrzp);
2863 			if (err)
2864 				goto out2;
2865 		}
2866 		if (mask & AT_UID) {
2867 			new_uid = zfs_fuid_create(zfsvfs,
2868 			    (uint64_t)vap->va_uid, cr, ZFS_OWNER, &fuidp);
2869 			if (vap->va_uid != zp->z_uid &&
2870 			    zfs_fuid_overquota(zfsvfs, B_FALSE, new_uid)) {
2871 				err = EDQUOT;
2872 				goto out2;
2873 			}
2874 		}
2875 
2876 		if (mask & AT_GID) {
2877 			new_gid = zfs_fuid_create(zfsvfs, (uint64_t)vap->va_gid,
2878 			    cr, ZFS_GROUP, &fuidp);
2879 			if (new_gid != zp->z_gid &&
2880 			    zfs_fuid_overquota(zfsvfs, B_TRUE, new_gid)) {
2881 				err = EDQUOT;
2882 				goto out2;
2883 			}
2884 		}
2885 	}
2886 	tx = dmu_tx_create(zfsvfs->z_os);
2887 
2888 	if (mask & AT_MODE) {
2889 		uint64_t pmode = zp->z_mode;
2890 		new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT);
2891 
2892 		if (err = zfs_acl_chmod_setattr(zp, &aclp, new_mode))
2893 			goto out;
2894 
2895 		if (!zp->z_is_sa && ZFS_EXTERNAL_ACL(zp)) {
2896 			/*
2897 			 * Are we upgrading ACL from old V0 format
2898 			 * to V1 format?
2899 			 */
2900 			if (zfsvfs->z_version <= ZPL_VERSION_FUID &&
2901 			    ZNODE_ACL_VERSION(zp) ==
2902 			    ZFS_ACL_VERSION_INITIAL) {
2903 				dmu_tx_hold_free(tx,
2904 				    ZFS_EXTERNAL_ACL(zp), 0,
2905 				    DMU_OBJECT_END);
2906 				dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
2907 				    0, aclp->z_acl_bytes);
2908 			} else {
2909 				dmu_tx_hold_write(tx, ZFS_EXTERNAL_ACL(zp), 0,
2910 				    aclp->z_acl_bytes);
2911 			}
2912 		} else if (!zp->z_is_sa && aclp->z_acl_bytes > ZFS_ACE_SPACE) {
2913 			dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
2914 			    0, aclp->z_acl_bytes);
2915 		}
2916 		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
2917 	} else {
2918 		if ((mask & AT_XVATTR) &&
2919 		    XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))
2920 			dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
2921 		else
2922 			dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
2923 	}
2924 
2925 	if (attrzp) {
2926 		dmu_tx_hold_sa(tx, attrzp->z_sa_hdl, B_FALSE);
2927 	}
2928 
2929 	fuid_dirtied = zfsvfs->z_fuid_dirty;
2930 	if (fuid_dirtied)
2931 		zfs_fuid_txhold(zfsvfs, tx);
2932 
2933 	zfs_sa_upgrade_txholds(tx, zp);
2934 
2935 	err = dmu_tx_assign(tx, TXG_NOWAIT);
2936 	if (err) {
2937 		if (err == ERESTART)
2938 			dmu_tx_wait(tx);
2939 		goto out;
2940 	}
2941 
2942 	count = 0;
2943 	/*
2944 	 * Set each attribute requested.
2945 	 * We group settings according to the locks they need to acquire.
2946 	 *
2947 	 * Note: you cannot set ctime directly, although it will be
2948 	 * updated as a side-effect of calling this function.
2949 	 */
2950 
2951 	mutex_enter(&zp->z_lock);
2952 
2953 	if (attrzp)
2954 		mutex_enter(&attrzp->z_lock);
2955 
2956 	if (mask & AT_UID) {
2957 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL,
2958 		    &new_uid, sizeof (new_uid));
2959 		zp->z_uid = zfs_fuid_map_id(zfsvfs, new_uid, cr, ZFS_OWNER);
2960 		if (attrzp) {
2961 			SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
2962 			    SA_ZPL_UID(zfsvfs), NULL, &new_uid,
2963 			    sizeof (new_uid));
2964 			attrzp->z_gid = zp->z_uid;
2965 		}
2966 	}
2967 
2968 	if (mask & AT_GID) {
2969 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), NULL,
2970 		    &new_gid, sizeof (new_gid));
2971 		zp->z_gid = zfs_fuid_map_id(zfsvfs, new_gid, cr, ZFS_GROUP);
2972 		if (attrzp) {
2973 			SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
2974 			    SA_ZPL_GID(zfsvfs), NULL, &new_gid,
2975 			    sizeof (new_gid));
2976 			attrzp->z_gid = zp->z_gid;
2977 		}
2978 	}
2979 
2980 	if (mask & AT_MODE) {
2981 		mutex_enter(&zp->z_acl_lock);
2982 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL,
2983 		    &new_mode, sizeof (new_mode));
2984 		zp->z_mode = new_mode;
2985 		err = zfs_aclset_common(zp, aclp, cr, tx);
2986 		ASSERT3U(err, ==, 0);
2987 		zp->z_acl_cached = aclp;
2988 		aclp = NULL;
2989 		mutex_exit(&zp->z_acl_lock);
2990 	}
2991 
2992 	if (attrzp)
2993 		mutex_exit(&attrzp->z_lock);
2994 
2995 	if (mask & AT_ATIME) {
2996 		ZFS_TIME_ENCODE(&vap->va_atime, zp->z_atime);
2997 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL,
2998 		    &zp->z_atime, sizeof (zp->z_atime));
2999 	}
3000 
3001 	if (mask & AT_MTIME) {
3002 		ZFS_TIME_ENCODE(&vap->va_mtime, mtime);
3003 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
3004 		    mtime, sizeof (mtime));
3005 	}
3006 
3007 	/* XXX - shouldn't this be done *before* the ATIME/MTIME checks? */
3008 	if (mask & AT_SIZE && !(mask & AT_MTIME)) {
3009 		if (!(mask & AT_MTIME))
3010 			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs),
3011 			    NULL, mtime, sizeof (mtime));
3012 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
3013 		    &ctime, sizeof (ctime));
3014 		zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
3015 		    B_TRUE);
3016 	} else if (mask != 0) {
3017 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
3018 		    &ctime, sizeof (ctime));
3019 		zfs_tstamp_update_setup(zp, STATE_CHANGED, mtime, ctime,
3020 		    B_TRUE);
3021 		if (attrzp) {
3022 			SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3023 			    SA_ZPL_CTIME(zfsvfs), NULL,
3024 			    &ctime, sizeof (ctime));
3025 			zfs_tstamp_update_setup(attrzp, STATE_CHANGED,
3026 			    mtime, ctime, B_TRUE);
3027 		}
3028 	}
3029 	/*
3030 	 * Do this after setting timestamps to prevent timestamp
3031 	 * update from toggling bit
3032 	 */
3033 
3034 	if (xoap && (mask & AT_XVATTR)) {
3035 
3036 		/*
3037 		 * restore trimmed off masks
3038 		 * so that return masks can be set for caller.
3039 		 */
3040 
3041 		if (XVA_ISSET_REQ(&tmpxvattr, XAT_APPENDONLY)) {
3042 			XVA_SET_REQ(xvap, XAT_APPENDONLY);
3043 		}
3044 		if (XVA_ISSET_REQ(&tmpxvattr, XAT_NOUNLINK)) {
3045 			XVA_SET_REQ(xvap, XAT_NOUNLINK);
3046 		}
3047 		if (XVA_ISSET_REQ(&tmpxvattr, XAT_IMMUTABLE)) {
3048 			XVA_SET_REQ(xvap, XAT_IMMUTABLE);
3049 		}
3050 		if (XVA_ISSET_REQ(&tmpxvattr, XAT_NODUMP)) {
3051 			XVA_SET_REQ(xvap, XAT_NODUMP);
3052 		}
3053 		if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_MODIFIED)) {
3054 			XVA_SET_REQ(xvap, XAT_AV_MODIFIED);
3055 		}
3056 		if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_QUARANTINED)) {
3057 			XVA_SET_REQ(xvap, XAT_AV_QUARANTINED);
3058 		}
3059 
3060 		if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))
3061 			ASSERT(vp->v_type == VREG);
3062 
3063 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
3064 		    &zp->z_pflags, sizeof (zp->z_pflags));
3065 		zfs_xvattr_set(zp, xvap, tx);
3066 	}
3067 
3068 	if (fuid_dirtied)
3069 		zfs_fuid_sync(zfsvfs, tx);
3070 
3071 	if (mask != 0)
3072 		zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask, fuidp);
3073 
3074 	mutex_exit(&zp->z_lock);
3075 
3076 out:
3077 	if (err == 0 && attrzp) {
3078 		err2 = sa_bulk_update(attrzp->z_sa_hdl, xattr_bulk,
3079 		    xattr_count, tx);
3080 		ASSERT(err2 == 0);
3081 	}
3082 
3083 	if (attrzp)
3084 		VN_RELE(ZTOV(attrzp));
3085 	if (aclp)
3086 		zfs_acl_free(aclp);
3087 
3088 	if (fuidp) {
3089 		zfs_fuid_info_free(fuidp);
3090 		fuidp = NULL;
3091 	}
3092 
3093 	if (err) {
3094 		dmu_tx_abort(tx);
3095 		if (err == ERESTART)
3096 			goto top;
3097 	} else {
3098 		err2 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
3099 		dmu_tx_commit(tx);
3100 	}
3101 
3102 
3103 out2:
3104 	ZFS_EXIT(zfsvfs);
3105 	return (err);
3106 }
3107 
3108 typedef struct zfs_zlock {
3109 	krwlock_t	*zl_rwlock;	/* lock we acquired */
3110 	znode_t		*zl_znode;	/* znode we held */
3111 	struct zfs_zlock *zl_next;	/* next in list */
3112 } zfs_zlock_t;
3113 
3114 /*
3115  * Drop locks and release vnodes that were held by zfs_rename_lock().
3116  */
3117 static void
3118 zfs_rename_unlock(zfs_zlock_t **zlpp)
3119 {
3120 	zfs_zlock_t *zl;
3121 
3122 	while ((zl = *zlpp) != NULL) {
3123 		if (zl->zl_znode != NULL)
3124 			VN_RELE(ZTOV(zl->zl_znode));
3125 		rw_exit(zl->zl_rwlock);
3126 		*zlpp = zl->zl_next;
3127 		kmem_free(zl, sizeof (*zl));
3128 	}
3129 }
3130 
3131 /*
3132  * Search back through the directory tree, using the ".." entries.
3133  * Lock each directory in the chain to prevent concurrent renames.
3134  * Fail any attempt to move a directory into one of its own descendants.
3135  * XXX - z_parent_lock can overlap with map or grow locks
3136  */
3137 static int
3138 zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp)
3139 {
3140 	zfs_zlock_t	*zl;
3141 	znode_t		*zp = tdzp;
3142 	uint64_t	rootid = zp->z_zfsvfs->z_root;
3143 	uint64_t	oidp = zp->z_id;
3144 	krwlock_t	*rwlp = &szp->z_parent_lock;
3145 	krw_t		rw = RW_WRITER;
3146 
3147 	/*
3148 	 * First pass write-locks szp and compares to zp->z_id.
3149 	 * Later passes read-lock zp and compare to zp->z_parent.
3150 	 */
3151 	do {
3152 		if (!rw_tryenter(rwlp, rw)) {
3153 			/*
3154 			 * Another thread is renaming in this path.
3155 			 * Note that if we are a WRITER, we don't have any
3156 			 * parent_locks held yet.
3157 			 */
3158 			if (rw == RW_READER && zp->z_id > szp->z_id) {
3159 				/*
3160 				 * Drop our locks and restart
3161 				 */
3162 				zfs_rename_unlock(&zl);
3163 				*zlpp = NULL;
3164 				zp = tdzp;
3165 				oidp = zp->z_id;
3166 				rwlp = &szp->z_parent_lock;
3167 				rw = RW_WRITER;
3168 				continue;
3169 			} else {
3170 				/*
3171 				 * Wait for other thread to drop its locks
3172 				 */
3173 				rw_enter(rwlp, rw);
3174 			}
3175 		}
3176 
3177 		zl = kmem_alloc(sizeof (*zl), KM_SLEEP);
3178 		zl->zl_rwlock = rwlp;
3179 		zl->zl_znode = NULL;
3180 		zl->zl_next = *zlpp;
3181 		*zlpp = zl;
3182 
3183 		if (oidp == szp->z_id)		/* We're a descendant of szp */
3184 			return (EINVAL);
3185 
3186 		if (oidp == rootid)		/* We've hit the top */
3187 			return (0);
3188 
3189 		if (rw == RW_READER) {		/* i.e. not the first pass */
3190 			int error = zfs_zget(zp->z_zfsvfs, oidp, &zp);
3191 			if (error)
3192 				return (error);
3193 			zl->zl_znode = zp;
3194 		}
3195 		(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zp->z_zfsvfs),
3196 		    &oidp, sizeof (oidp));
3197 		rwlp = &zp->z_parent_lock;
3198 		rw = RW_READER;
3199 
3200 	} while (zp->z_id != sdzp->z_id);
3201 
3202 	return (0);
3203 }
3204 
3205 /*
3206  * Move an entry from the provided source directory to the target
3207  * directory.  Change the entry name as indicated.
3208  *
3209  *	IN:	sdvp	- Source directory containing the "old entry".
3210  *		snm	- Old entry name.
3211  *		tdvp	- Target directory to contain the "new entry".
3212  *		tnm	- New entry name.
3213  *		cr	- credentials of caller.
3214  *		ct	- caller context
3215  *		flags	- case flags
3216  *
3217  *	RETURN:	0 if success
3218  *		error code if failure
3219  *
3220  * Timestamps:
3221  *	sdvp,tdvp - ctime|mtime updated
3222  */
3223 /*ARGSUSED*/
3224 static int
3225 zfs_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm, cred_t *cr,
3226     caller_context_t *ct, int flags)
3227 {
3228 	znode_t		*tdzp, *szp, *tzp;
3229 	znode_t		*sdzp = VTOZ(sdvp);
3230 	zfsvfs_t	*zfsvfs = sdzp->z_zfsvfs;
3231 	zilog_t		*zilog;
3232 	vnode_t		*realvp;
3233 	zfs_dirlock_t	*sdl, *tdl;
3234 	dmu_tx_t	*tx;
3235 	zfs_zlock_t	*zl;
3236 	int		cmp, serr, terr;
3237 	int		error = 0;
3238 	int		zflg = 0;
3239 
3240 	ZFS_ENTER(zfsvfs);
3241 	ZFS_VERIFY_ZP(sdzp);
3242 	zilog = zfsvfs->z_log;
3243 
3244 	/*
3245 	 * Make sure we have the real vp for the target directory.
3246 	 */
3247 	if (VOP_REALVP(tdvp, &realvp, ct) == 0)
3248 		tdvp = realvp;
3249 
3250 	if (tdvp->v_vfsp != sdvp->v_vfsp || zfsctl_is_node(tdvp)) {
3251 		ZFS_EXIT(zfsvfs);
3252 		return (EXDEV);
3253 	}
3254 
3255 	tdzp = VTOZ(tdvp);
3256 	ZFS_VERIFY_ZP(tdzp);
3257 	if (zfsvfs->z_utf8 && u8_validate(tnm,
3258 	    strlen(tnm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3259 		ZFS_EXIT(zfsvfs);
3260 		return (EILSEQ);
3261 	}
3262 
3263 	if (flags & FIGNORECASE)
3264 		zflg |= ZCILOOK;
3265 
3266 top:
3267 	szp = NULL;
3268 	tzp = NULL;
3269 	zl = NULL;
3270 
3271 	/*
3272 	 * This is to prevent the creation of links into attribute space
3273 	 * by renaming a linked file into/outof an attribute directory.
3274 	 * See the comment in zfs_link() for why this is considered bad.
3275 	 */
3276 	if ((tdzp->z_pflags & ZFS_XATTR) != (sdzp->z_pflags & ZFS_XATTR)) {
3277 		ZFS_EXIT(zfsvfs);
3278 		return (EINVAL);
3279 	}
3280 
3281 	/*
3282 	 * Lock source and target directory entries.  To prevent deadlock,
3283 	 * a lock ordering must be defined.  We lock the directory with
3284 	 * the smallest object id first, or if it's a tie, the one with
3285 	 * the lexically first name.
3286 	 */
3287 	if (sdzp->z_id < tdzp->z_id) {
3288 		cmp = -1;
3289 	} else if (sdzp->z_id > tdzp->z_id) {
3290 		cmp = 1;
3291 	} else {
3292 		/*
3293 		 * First compare the two name arguments without
3294 		 * considering any case folding.
3295 		 */
3296 		int nofold = (zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER);
3297 
3298 		cmp = u8_strcmp(snm, tnm, 0, nofold, U8_UNICODE_LATEST, &error);
3299 		ASSERT(error == 0 || !zfsvfs->z_utf8);
3300 		if (cmp == 0) {
3301 			/*
3302 			 * POSIX: "If the old argument and the new argument
3303 			 * both refer to links to the same existing file,
3304 			 * the rename() function shall return successfully
3305 			 * and perform no other action."
3306 			 */
3307 			ZFS_EXIT(zfsvfs);
3308 			return (0);
3309 		}
3310 		/*
3311 		 * If the file system is case-folding, then we may
3312 		 * have some more checking to do.  A case-folding file
3313 		 * system is either supporting mixed case sensitivity
3314 		 * access or is completely case-insensitive.  Note
3315 		 * that the file system is always case preserving.
3316 		 *
3317 		 * In mixed sensitivity mode case sensitive behavior
3318 		 * is the default.  FIGNORECASE must be used to
3319 		 * explicitly request case insensitive behavior.
3320 		 *
3321 		 * If the source and target names provided differ only
3322 		 * by case (e.g., a request to rename 'tim' to 'Tim'),
3323 		 * we will treat this as a special case in the
3324 		 * case-insensitive mode: as long as the source name
3325 		 * is an exact match, we will allow this to proceed as
3326 		 * a name-change request.
3327 		 */
3328 		if ((zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
3329 		    (zfsvfs->z_case == ZFS_CASE_MIXED &&
3330 		    flags & FIGNORECASE)) &&
3331 		    u8_strcmp(snm, tnm, 0, zfsvfs->z_norm, U8_UNICODE_LATEST,
3332 		    &error) == 0) {
3333 			/*
3334 			 * case preserving rename request, require exact
3335 			 * name matches
3336 			 */
3337 			zflg |= ZCIEXACT;
3338 			zflg &= ~ZCILOOK;
3339 		}
3340 	}
3341 
3342 	/*
3343 	 * If the source and destination directories are the same, we should
3344 	 * grab the z_name_lock of that directory only once.
3345 	 */
3346 	if (sdzp == tdzp) {
3347 		zflg |= ZHAVELOCK;
3348 		rw_enter(&sdzp->z_name_lock, RW_READER);
3349 	}
3350 
3351 	if (cmp < 0) {
3352 		serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp,
3353 		    ZEXISTS | zflg, NULL, NULL);
3354 		terr = zfs_dirent_lock(&tdl,
3355 		    tdzp, tnm, &tzp, ZRENAMING | zflg, NULL, NULL);
3356 	} else {
3357 		terr = zfs_dirent_lock(&tdl,
3358 		    tdzp, tnm, &tzp, zflg, NULL, NULL);
3359 		serr = zfs_dirent_lock(&sdl,
3360 		    sdzp, snm, &szp, ZEXISTS | ZRENAMING | zflg,
3361 		    NULL, NULL);
3362 	}
3363 
3364 	if (serr) {
3365 		/*
3366 		 * Source entry invalid or not there.
3367 		 */
3368 		if (!terr) {
3369 			zfs_dirent_unlock(tdl);
3370 			if (tzp)
3371 				VN_RELE(ZTOV(tzp));
3372 		}
3373 
3374 		if (sdzp == tdzp)
3375 			rw_exit(&sdzp->z_name_lock);
3376 
3377 		if (strcmp(snm, "..") == 0)
3378 			serr = EINVAL;
3379 		ZFS_EXIT(zfsvfs);
3380 		return (serr);
3381 	}
3382 	if (terr) {
3383 		zfs_dirent_unlock(sdl);
3384 		VN_RELE(ZTOV(szp));
3385 
3386 		if (sdzp == tdzp)
3387 			rw_exit(&sdzp->z_name_lock);
3388 
3389 		if (strcmp(tnm, "..") == 0)
3390 			terr = EINVAL;
3391 		ZFS_EXIT(zfsvfs);
3392 		return (terr);
3393 	}
3394 
3395 	/*
3396 	 * Must have write access at the source to remove the old entry
3397 	 * and write access at the target to create the new entry.
3398 	 * Note that if target and source are the same, this can be
3399 	 * done in a single check.
3400 	 */
3401 
3402 	if (error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr))
3403 		goto out;
3404 
3405 	if (ZTOV(szp)->v_type == VDIR) {
3406 		/*
3407 		 * Check to make sure rename is valid.
3408 		 * Can't do a move like this: /usr/a/b to /usr/a/b/c/d
3409 		 */
3410 		if (error = zfs_rename_lock(szp, tdzp, sdzp, &zl))
3411 			goto out;
3412 	}
3413 
3414 	/*
3415 	 * Does target exist?
3416 	 */
3417 	if (tzp) {
3418 		/*
3419 		 * Source and target must be the same type.
3420 		 */
3421 		if (ZTOV(szp)->v_type == VDIR) {
3422 			if (ZTOV(tzp)->v_type != VDIR) {
3423 				error = ENOTDIR;
3424 				goto out;
3425 			}
3426 		} else {
3427 			if (ZTOV(tzp)->v_type == VDIR) {
3428 				error = EISDIR;
3429 				goto out;
3430 			}
3431 		}
3432 		/*
3433 		 * POSIX dictates that when the source and target
3434 		 * entries refer to the same file object, rename
3435 		 * must do nothing and exit without error.
3436 		 */
3437 		if (szp->z_id == tzp->z_id) {
3438 			error = 0;
3439 			goto out;
3440 		}
3441 	}
3442 
3443 	vnevent_rename_src(ZTOV(szp), sdvp, snm, ct);
3444 	if (tzp)
3445 		vnevent_rename_dest(ZTOV(tzp), tdvp, tnm, ct);
3446 
3447 	/*
3448 	 * notify the target directory if it is not the same
3449 	 * as source directory.
3450 	 */
3451 	if (tdvp != sdvp) {
3452 		vnevent_rename_dest_dir(tdvp, ct);
3453 	}
3454 
3455 	tx = dmu_tx_create(zfsvfs->z_os);
3456 	dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
3457 	dmu_tx_hold_sa(tx, sdzp->z_sa_hdl, B_FALSE);
3458 	dmu_tx_hold_zap(tx, sdzp->z_id, FALSE, snm);
3459 	dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm);
3460 	if (sdzp != tdzp) {
3461 		dmu_tx_hold_sa(tx, tdzp->z_sa_hdl, B_FALSE);
3462 		zfs_sa_upgrade_txholds(tx, tdzp);
3463 	}
3464 	if (tzp) {
3465 		dmu_tx_hold_sa(tx, tzp->z_sa_hdl, B_FALSE);
3466 		zfs_sa_upgrade_txholds(tx, tzp);
3467 	}
3468 
3469 	zfs_sa_upgrade_txholds(tx, szp);
3470 	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
3471 	error = dmu_tx_assign(tx, TXG_NOWAIT);
3472 	if (error) {
3473 		if (zl != NULL)
3474 			zfs_rename_unlock(&zl);
3475 		zfs_dirent_unlock(sdl);
3476 		zfs_dirent_unlock(tdl);
3477 
3478 		if (sdzp == tdzp)
3479 			rw_exit(&sdzp->z_name_lock);
3480 
3481 		VN_RELE(ZTOV(szp));
3482 		if (tzp)
3483 			VN_RELE(ZTOV(tzp));
3484 		if (error == ERESTART) {
3485 			dmu_tx_wait(tx);
3486 			dmu_tx_abort(tx);
3487 			goto top;
3488 		}
3489 		dmu_tx_abort(tx);
3490 		ZFS_EXIT(zfsvfs);
3491 		return (error);
3492 	}
3493 
3494 	if (tzp)	/* Attempt to remove the existing target */
3495 		error = zfs_link_destroy(tdl, tzp, tx, zflg, NULL);
3496 
3497 	if (error == 0) {
3498 		error = zfs_link_create(tdl, szp, tx, ZRENAMING);
3499 		if (error == 0) {
3500 			szp->z_pflags |= ZFS_AV_MODIFIED;
3501 
3502 			error = sa_update(szp->z_sa_hdl, SA_ZPL_FLAGS(zfsvfs),
3503 			    (void *)&szp->z_pflags, sizeof (uint64_t), tx);
3504 			ASSERT3U(error, ==, 0);
3505 
3506 			error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL);
3507 			ASSERT3U(error, ==, 0);
3508 
3509 			zfs_log_rename(zilog, tx,
3510 			    TX_RENAME | (flags & FIGNORECASE ? TX_CI : 0),
3511 			    sdzp, sdl->dl_name, tdzp, tdl->dl_name, szp);
3512 
3513 			/* Update path information for the target vnode */
3514 			vn_renamepath(tdvp, ZTOV(szp), tnm, strlen(tnm));
3515 		}
3516 	}
3517 
3518 	dmu_tx_commit(tx);
3519 out:
3520 	if (zl != NULL)
3521 		zfs_rename_unlock(&zl);
3522 
3523 	zfs_dirent_unlock(sdl);
3524 	zfs_dirent_unlock(tdl);
3525 
3526 	if (sdzp == tdzp)
3527 		rw_exit(&sdzp->z_name_lock);
3528 
3529 
3530 	VN_RELE(ZTOV(szp));
3531 	if (tzp)
3532 		VN_RELE(ZTOV(tzp));
3533 
3534 	ZFS_EXIT(zfsvfs);
3535 	return (error);
3536 }
3537 
3538 /*
3539  * Insert the indicated symbolic reference entry into the directory.
3540  *
3541  *	IN:	dvp	- Directory to contain new symbolic link.
3542  *		link	- Name for new symlink entry.
3543  *		vap	- Attributes of new entry.
3544  *		target	- Target path of new symlink.
3545  *		cr	- credentials of caller.
3546  *		ct	- caller context
3547  *		flags	- case flags
3548  *
3549  *	RETURN:	0 if success
3550  *		error code if failure
3551  *
3552  * Timestamps:
3553  *	dvp - ctime|mtime updated
3554  */
3555 /*ARGSUSED*/
3556 static int
3557 zfs_symlink(vnode_t *dvp, char *name, vattr_t *vap, char *link, cred_t *cr,
3558     caller_context_t *ct, int flags)
3559 {
3560 	znode_t		*zp, *dzp = VTOZ(dvp);
3561 	zfs_dirlock_t	*dl;
3562 	dmu_tx_t	*tx;
3563 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
3564 	zilog_t		*zilog;
3565 	uint64_t	len = strlen(link);
3566 	int		error;
3567 	int		zflg = ZNEW;
3568 	zfs_acl_ids_t	acl_ids;
3569 	boolean_t	fuid_dirtied;
3570 	uint64_t	txtype = TX_SYMLINK;
3571 
3572 	ASSERT(vap->va_type == VLNK);
3573 
3574 	ZFS_ENTER(zfsvfs);
3575 	ZFS_VERIFY_ZP(dzp);
3576 	zilog = zfsvfs->z_log;
3577 
3578 	if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
3579 	    NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3580 		ZFS_EXIT(zfsvfs);
3581 		return (EILSEQ);
3582 	}
3583 	if (flags & FIGNORECASE)
3584 		zflg |= ZCILOOK;
3585 top:
3586 	if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
3587 		ZFS_EXIT(zfsvfs);
3588 		return (error);
3589 	}
3590 
3591 	if (len > MAXPATHLEN) {
3592 		ZFS_EXIT(zfsvfs);
3593 		return (ENAMETOOLONG);
3594 	}
3595 
3596 	/*
3597 	 * Attempt to lock directory; fail if entry already exists.
3598 	 */
3599 	error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, NULL);
3600 	if (error) {
3601 		ZFS_EXIT(zfsvfs);
3602 		return (error);
3603 	}
3604 
3605 	VERIFY(0 == zfs_acl_ids_create(dzp, 0, vap, cr, NULL, &acl_ids));
3606 	if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
3607 		zfs_acl_ids_free(&acl_ids);
3608 		zfs_dirent_unlock(dl);
3609 		ZFS_EXIT(zfsvfs);
3610 		return (EDQUOT);
3611 	}
3612 	tx = dmu_tx_create(zfsvfs->z_os);
3613 	fuid_dirtied = zfsvfs->z_fuid_dirty;
3614 	dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len));
3615 	dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
3616 	dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
3617 	    ZFS_SA_BASE_ATTR_SIZE + len);
3618 	dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
3619 	if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
3620 		dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
3621 		    acl_ids.z_aclp->z_acl_bytes);
3622 	}
3623 	if (fuid_dirtied)
3624 		zfs_fuid_txhold(zfsvfs, tx);
3625 	error = dmu_tx_assign(tx, TXG_NOWAIT);
3626 	if (error) {
3627 		zfs_acl_ids_free(&acl_ids);
3628 		zfs_dirent_unlock(dl);
3629 		if (error == ERESTART) {
3630 			dmu_tx_wait(tx);
3631 			dmu_tx_abort(tx);
3632 			goto top;
3633 		}
3634 		dmu_tx_abort(tx);
3635 		ZFS_EXIT(zfsvfs);
3636 		return (error);
3637 	}
3638 
3639 	/*
3640 	 * Create a new object for the symlink.
3641 	 * for version 4 ZPL datsets the symlink will be an SA attribute
3642 	 */
3643 
3644 	zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
3645 
3646 	if (fuid_dirtied)
3647 		zfs_fuid_sync(zfsvfs, tx);
3648 
3649 	if (zp->z_is_sa)
3650 		error = sa_update(zp->z_sa_hdl, SA_ZPL_SYMLINK(zfsvfs),
3651 		    link, len, tx);
3652 	else
3653 		zfs_sa_symlink(zp, link, len, tx);
3654 
3655 	zp->z_size = len;
3656 	(void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
3657 	    &zp->z_size, sizeof (zp->z_size), tx);
3658 	/*
3659 	 * Insert the new object into the directory.
3660 	 */
3661 	(void) zfs_link_create(dl, zp, tx, ZNEW);
3662 
3663 	if (flags & FIGNORECASE)
3664 		txtype |= TX_CI;
3665 	zfs_log_symlink(zilog, tx, txtype, dzp, zp, name, link);
3666 
3667 	zfs_acl_ids_free(&acl_ids);
3668 
3669 	dmu_tx_commit(tx);
3670 
3671 	zfs_dirent_unlock(dl);
3672 
3673 	VN_RELE(ZTOV(zp));
3674 
3675 	ZFS_EXIT(zfsvfs);
3676 	return (error);
3677 }
3678 
3679 /*
3680  * Return, in the buffer contained in the provided uio structure,
3681  * the symbolic path referred to by vp.
3682  *
3683  *	IN:	vp	- vnode of symbolic link.
3684  *		uoip	- structure to contain the link path.
3685  *		cr	- credentials of caller.
3686  *		ct	- caller context
3687  *
3688  *	OUT:	uio	- structure to contain the link path.
3689  *
3690  *	RETURN:	0 if success
3691  *		error code if failure
3692  *
3693  * Timestamps:
3694  *	vp - atime updated
3695  */
3696 /* ARGSUSED */
3697 static int
3698 zfs_readlink(vnode_t *vp, uio_t *uio, cred_t *cr, caller_context_t *ct)
3699 {
3700 	znode_t		*zp = VTOZ(vp);
3701 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
3702 	int		error;
3703 
3704 	ZFS_ENTER(zfsvfs);
3705 	ZFS_VERIFY_ZP(zp);
3706 
3707 	if (zp->z_is_sa)
3708 		error = sa_lookup_uio(zp->z_sa_hdl,
3709 		    SA_ZPL_SYMLINK(zfsvfs), uio);
3710 	else
3711 		error = zfs_sa_readlink(zp, uio);
3712 
3713 	ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
3714 
3715 	ZFS_EXIT(zfsvfs);
3716 	return (error);
3717 }
3718 
3719 /*
3720  * Insert a new entry into directory tdvp referencing svp.
3721  *
3722  *	IN:	tdvp	- Directory to contain new entry.
3723  *		svp	- vnode of new entry.
3724  *		name	- name of new entry.
3725  *		cr	- credentials of caller.
3726  *		ct	- caller context
3727  *
3728  *	RETURN:	0 if success
3729  *		error code if failure
3730  *
3731  * Timestamps:
3732  *	tdvp - ctime|mtime updated
3733  *	 svp - ctime updated
3734  */
3735 /* ARGSUSED */
3736 static int
3737 zfs_link(vnode_t *tdvp, vnode_t *svp, char *name, cred_t *cr,
3738     caller_context_t *ct, int flags)
3739 {
3740 	znode_t		*dzp = VTOZ(tdvp);
3741 	znode_t		*tzp, *szp;
3742 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
3743 	zilog_t		*zilog;
3744 	zfs_dirlock_t	*dl;
3745 	dmu_tx_t	*tx;
3746 	vnode_t		*realvp;
3747 	int		error;
3748 	int		zf = ZNEW;
3749 	uint64_t	parent;
3750 
3751 	ASSERT(tdvp->v_type == VDIR);
3752 
3753 	ZFS_ENTER(zfsvfs);
3754 	ZFS_VERIFY_ZP(dzp);
3755 	zilog = zfsvfs->z_log;
3756 
3757 	if (VOP_REALVP(svp, &realvp, ct) == 0)
3758 		svp = realvp;
3759 
3760 	/*
3761 	 * POSIX dictates that we return EPERM here.
3762 	 * Better choices include ENOTSUP or EISDIR.
3763 	 */
3764 	if (svp->v_type == VDIR) {
3765 		ZFS_EXIT(zfsvfs);
3766 		return (EPERM);
3767 	}
3768 
3769 	if (svp->v_vfsp != tdvp->v_vfsp || zfsctl_is_node(svp)) {
3770 		ZFS_EXIT(zfsvfs);
3771 		return (EXDEV);
3772 	}
3773 
3774 	szp = VTOZ(svp);
3775 	ZFS_VERIFY_ZP(szp);
3776 
3777 	/* Prevent links to .zfs/shares files */
3778 
3779 	if ((error = sa_lookup(szp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
3780 	    &parent, sizeof (uint64_t))) != 0) {
3781 		ZFS_EXIT(zfsvfs);
3782 		return (error);
3783 	}
3784 	if (parent == zfsvfs->z_shares_dir) {
3785 		ZFS_EXIT(zfsvfs);
3786 		return (EPERM);
3787 	}
3788 
3789 	if (zfsvfs->z_utf8 && u8_validate(name,
3790 	    strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3791 		ZFS_EXIT(zfsvfs);
3792 		return (EILSEQ);
3793 	}
3794 	if (flags & FIGNORECASE)
3795 		zf |= ZCILOOK;
3796 
3797 	/*
3798 	 * We do not support links between attributes and non-attributes
3799 	 * because of the potential security risk of creating links
3800 	 * into "normal" file space in order to circumvent restrictions
3801 	 * imposed in attribute space.
3802 	 */
3803 	if ((szp->z_pflags & ZFS_XATTR) != (dzp->z_pflags & ZFS_XATTR)) {
3804 		ZFS_EXIT(zfsvfs);
3805 		return (EINVAL);
3806 	}
3807 
3808 
3809 	if (szp->z_uid != crgetuid(cr) &&
3810 	    secpolicy_basic_link(cr) != 0) {
3811 		ZFS_EXIT(zfsvfs);
3812 		return (EPERM);
3813 	}
3814 
3815 	if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
3816 		ZFS_EXIT(zfsvfs);
3817 		return (error);
3818 	}
3819 
3820 top:
3821 	/*
3822 	 * Attempt to lock directory; fail if entry already exists.
3823 	 */
3824 	error = zfs_dirent_lock(&dl, dzp, name, &tzp, zf, NULL, NULL);
3825 	if (error) {
3826 		ZFS_EXIT(zfsvfs);
3827 		return (error);
3828 	}
3829 
3830 	tx = dmu_tx_create(zfsvfs->z_os);
3831 	dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
3832 	dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
3833 	zfs_sa_upgrade_txholds(tx, szp);
3834 	zfs_sa_upgrade_txholds(tx, dzp);
3835 	error = dmu_tx_assign(tx, TXG_NOWAIT);
3836 	if (error) {
3837 		zfs_dirent_unlock(dl);
3838 		if (error == ERESTART) {
3839 			dmu_tx_wait(tx);
3840 			dmu_tx_abort(tx);
3841 			goto top;
3842 		}
3843 		dmu_tx_abort(tx);
3844 		ZFS_EXIT(zfsvfs);
3845 		return (error);
3846 	}
3847 
3848 	error = zfs_link_create(dl, szp, tx, 0);
3849 
3850 	if (error == 0) {
3851 		uint64_t txtype = TX_LINK;
3852 		if (flags & FIGNORECASE)
3853 			txtype |= TX_CI;
3854 		zfs_log_link(zilog, tx, txtype, dzp, szp, name);
3855 	}
3856 
3857 	dmu_tx_commit(tx);
3858 
3859 	zfs_dirent_unlock(dl);
3860 
3861 	if (error == 0) {
3862 		vnevent_link(svp, ct);
3863 	}
3864 
3865 	ZFS_EXIT(zfsvfs);
3866 	return (error);
3867 }
3868 
3869 /*
3870  * zfs_null_putapage() is used when the file system has been force
3871  * unmounted. It just drops the pages.
3872  */
3873 /* ARGSUSED */
3874 static int
3875 zfs_null_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp,
3876 		size_t *lenp, int flags, cred_t *cr)
3877 {
3878 	pvn_write_done(pp, B_INVAL|B_FORCE|B_ERROR);
3879 	return (0);
3880 }
3881 
3882 /*
3883  * Push a page out to disk, klustering if possible.
3884  *
3885  *	IN:	vp	- file to push page to.
3886  *		pp	- page to push.
3887  *		flags	- additional flags.
3888  *		cr	- credentials of caller.
3889  *
3890  *	OUT:	offp	- start of range pushed.
3891  *		lenp	- len of range pushed.
3892  *
3893  *	RETURN:	0 if success
3894  *		error code if failure
3895  *
3896  * NOTE: callers must have locked the page to be pushed.  On
3897  * exit, the page (and all other pages in the kluster) must be
3898  * unlocked.
3899  */
3900 /* ARGSUSED */
3901 static int
3902 zfs_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp,
3903 		size_t *lenp, int flags, cred_t *cr)
3904 {
3905 	znode_t		*zp = VTOZ(vp);
3906 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
3907 	dmu_tx_t	*tx;
3908 	u_offset_t	off, koff;
3909 	size_t		len, klen;
3910 	int		err;
3911 
3912 	off = pp->p_offset;
3913 	len = PAGESIZE;
3914 	/*
3915 	 * If our blocksize is bigger than the page size, try to kluster
3916 	 * multiple pages so that we write a full block (thus avoiding
3917 	 * a read-modify-write).
3918 	 */
3919 	if (off < zp->z_size && zp->z_blksz > PAGESIZE) {
3920 		klen = P2ROUNDUP((ulong_t)zp->z_blksz, PAGESIZE);
3921 		koff = ISP2(klen) ? P2ALIGN(off, (u_offset_t)klen) : 0;
3922 		ASSERT(koff <= zp->z_size);
3923 		if (koff + klen > zp->z_size)
3924 			klen = P2ROUNDUP(zp->z_size - koff, (uint64_t)PAGESIZE);
3925 		pp = pvn_write_kluster(vp, pp, &off, &len, koff, klen, flags);
3926 	}
3927 	ASSERT3U(btop(len), ==, btopr(len));
3928 
3929 	/*
3930 	 * Can't push pages past end-of-file.
3931 	 */
3932 	if (off >= zp->z_size) {
3933 		/* ignore all pages */
3934 		err = 0;
3935 		goto out;
3936 	} else if (off + len > zp->z_size) {
3937 		int npages = btopr(zp->z_size - off);
3938 		page_t *trunc;
3939 
3940 		page_list_break(&pp, &trunc, npages);
3941 		/* ignore pages past end of file */
3942 		if (trunc)
3943 			pvn_write_done(trunc, flags);
3944 		len = zp->z_size - off;
3945 	}
3946 
3947 	if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) ||
3948 	    zfs_owner_overquota(zfsvfs, zp, B_TRUE)) {
3949 		err = EDQUOT;
3950 		goto out;
3951 	}
3952 top:
3953 	tx = dmu_tx_create(zfsvfs->z_os);
3954 	dmu_tx_hold_write(tx, zp->z_id, off, len);
3955 
3956 	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
3957 	zfs_sa_upgrade_txholds(tx, zp);
3958 	err = dmu_tx_assign(tx, TXG_NOWAIT);
3959 	if (err != 0) {
3960 		if (err == ERESTART) {
3961 			dmu_tx_wait(tx);
3962 			dmu_tx_abort(tx);
3963 			goto top;
3964 		}
3965 		dmu_tx_abort(tx);
3966 		goto out;
3967 	}
3968 
3969 	if (zp->z_blksz <= PAGESIZE) {
3970 		caddr_t va = zfs_map_page(pp, S_READ);
3971 		ASSERT3U(len, <=, PAGESIZE);
3972 		dmu_write(zfsvfs->z_os, zp->z_id, off, len, va, tx);
3973 		zfs_unmap_page(pp, va);
3974 	} else {
3975 		err = dmu_write_pages(zfsvfs->z_os, zp->z_id, off, len, pp, tx);
3976 	}
3977 
3978 	if (err == 0) {
3979 		uint64_t mtime[2], ctime[2];
3980 		sa_bulk_attr_t bulk[2];
3981 		int count = 0;
3982 
3983 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
3984 		    &mtime, 16);
3985 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
3986 		    &ctime, 16);
3987 		zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
3988 		    B_TRUE);
3989 		zfs_log_write(zfsvfs->z_log, tx, TX_WRITE, zp, off, len, 0);
3990 	}
3991 	dmu_tx_commit(tx);
3992 
3993 out:
3994 	pvn_write_done(pp, (err ? B_ERROR : 0) | flags);
3995 	if (offp)
3996 		*offp = off;
3997 	if (lenp)
3998 		*lenp = len;
3999 
4000 	return (err);
4001 }
4002 
4003 /*
4004  * Copy the portion of the file indicated from pages into the file.
4005  * The pages are stored in a page list attached to the files vnode.
4006  *
4007  *	IN:	vp	- vnode of file to push page data to.
4008  *		off	- position in file to put data.
4009  *		len	- amount of data to write.
4010  *		flags	- flags to control the operation.
4011  *		cr	- credentials of caller.
4012  *		ct	- caller context.
4013  *
4014  *	RETURN:	0 if success
4015  *		error code if failure
4016  *
4017  * Timestamps:
4018  *	vp - ctime|mtime updated
4019  */
4020 /*ARGSUSED*/
4021 static int
4022 zfs_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr,
4023     caller_context_t *ct)
4024 {
4025 	znode_t		*zp = VTOZ(vp);
4026 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
4027 	page_t		*pp;
4028 	size_t		io_len;
4029 	u_offset_t	io_off;
4030 	uint_t		blksz;
4031 	rl_t		*rl;
4032 	int		error = 0;
4033 
4034 	ZFS_ENTER(zfsvfs);
4035 	ZFS_VERIFY_ZP(zp);
4036 
4037 	/*
4038 	 * Align this request to the file block size in case we kluster.
4039 	 * XXX - this can result in pretty aggresive locking, which can
4040 	 * impact simultanious read/write access.  One option might be
4041 	 * to break up long requests (len == 0) into block-by-block
4042 	 * operations to get narrower locking.
4043 	 */
4044 	blksz = zp->z_blksz;
4045 	if (ISP2(blksz))
4046 		io_off = P2ALIGN_TYPED(off, blksz, u_offset_t);
4047 	else
4048 		io_off = 0;
4049 	if (len > 0 && ISP2(blksz))
4050 		io_len = P2ROUNDUP_TYPED(len + (off - io_off), blksz, size_t);
4051 	else
4052 		io_len = 0;
4053 
4054 	if (io_len == 0) {
4055 		/*
4056 		 * Search the entire vp list for pages >= io_off.
4057 		 */
4058 		rl = zfs_range_lock(zp, io_off, UINT64_MAX, RL_WRITER);
4059 		error = pvn_vplist_dirty(vp, io_off, zfs_putapage, flags, cr);
4060 		goto out;
4061 	}
4062 	rl = zfs_range_lock(zp, io_off, io_len, RL_WRITER);
4063 
4064 	if (off > zp->z_size) {
4065 		/* past end of file */
4066 		zfs_range_unlock(rl);
4067 		ZFS_EXIT(zfsvfs);
4068 		return (0);
4069 	}
4070 
4071 	len = MIN(io_len, P2ROUNDUP(zp->z_size, PAGESIZE) - io_off);
4072 
4073 	for (off = io_off; io_off < off + len; io_off += io_len) {
4074 		if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) {
4075 			pp = page_lookup(vp, io_off,
4076 			    (flags & (B_INVAL | B_FREE)) ? SE_EXCL : SE_SHARED);
4077 		} else {
4078 			pp = page_lookup_nowait(vp, io_off,
4079 			    (flags & B_FREE) ? SE_EXCL : SE_SHARED);
4080 		}
4081 
4082 		if (pp != NULL && pvn_getdirty(pp, flags)) {
4083 			int err;
4084 
4085 			/*
4086 			 * Found a dirty page to push
4087 			 */
4088 			err = zfs_putapage(vp, pp, &io_off, &io_len, flags, cr);
4089 			if (err)
4090 				error = err;
4091 		} else {
4092 			io_len = PAGESIZE;
4093 		}
4094 	}
4095 out:
4096 	zfs_range_unlock(rl);
4097 	if ((flags & B_ASYNC) == 0)
4098 		zil_commit(zfsvfs->z_log, UINT64_MAX, zp->z_id);
4099 	ZFS_EXIT(zfsvfs);
4100 	return (error);
4101 }
4102 
4103 /*ARGSUSED*/
4104 void
4105 zfs_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct)
4106 {
4107 	znode_t	*zp = VTOZ(vp);
4108 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4109 	int error;
4110 
4111 	rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_READER);
4112 	if (zp->z_sa_hdl == NULL) {
4113 		/*
4114 		 * The fs has been unmounted, or we did a
4115 		 * suspend/resume and this file no longer exists.
4116 		 */
4117 		if (vn_has_cached_data(vp)) {
4118 			(void) pvn_vplist_dirty(vp, 0, zfs_null_putapage,
4119 			    B_INVAL, cr);
4120 		}
4121 
4122 		mutex_enter(&zp->z_lock);
4123 		mutex_enter(&vp->v_lock);
4124 		ASSERT(vp->v_count == 1);
4125 		vp->v_count = 0;
4126 		mutex_exit(&vp->v_lock);
4127 		mutex_exit(&zp->z_lock);
4128 		rw_exit(&zfsvfs->z_teardown_inactive_lock);
4129 		zfs_znode_free(zp);
4130 		return;
4131 	}
4132 
4133 	/*
4134 	 * Attempt to push any data in the page cache.  If this fails
4135 	 * we will get kicked out later in zfs_zinactive().
4136 	 */
4137 	if (vn_has_cached_data(vp)) {
4138 		(void) pvn_vplist_dirty(vp, 0, zfs_putapage, B_INVAL|B_ASYNC,
4139 		    cr);
4140 	}
4141 
4142 	if (zp->z_atime_dirty && zp->z_unlinked == 0) {
4143 		dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os);
4144 
4145 		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
4146 		zfs_sa_upgrade_txholds(tx, zp);
4147 		error = dmu_tx_assign(tx, TXG_WAIT);
4148 		if (error) {
4149 			dmu_tx_abort(tx);
4150 		} else {
4151 			mutex_enter(&zp->z_lock);
4152 			(void) sa_update(zp->z_sa_hdl, SA_ZPL_ATIME(zfsvfs),
4153 			    (void *)&zp->z_atime, sizeof (zp->z_atime), tx);
4154 			zp->z_atime_dirty = 0;
4155 			mutex_exit(&zp->z_lock);
4156 			dmu_tx_commit(tx);
4157 		}
4158 	}
4159 
4160 	zfs_zinactive(zp);
4161 	rw_exit(&zfsvfs->z_teardown_inactive_lock);
4162 }
4163 
4164 /*
4165  * Bounds-check the seek operation.
4166  *
4167  *	IN:	vp	- vnode seeking within
4168  *		ooff	- old file offset
4169  *		noffp	- pointer to new file offset
4170  *		ct	- caller context
4171  *
4172  *	RETURN:	0 if success
4173  *		EINVAL if new offset invalid
4174  */
4175 /* ARGSUSED */
4176 static int
4177 zfs_seek(vnode_t *vp, offset_t ooff, offset_t *noffp,
4178     caller_context_t *ct)
4179 {
4180 	if (vp->v_type == VDIR)
4181 		return (0);
4182 	return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0);
4183 }
4184 
4185 /*
4186  * Pre-filter the generic locking function to trap attempts to place
4187  * a mandatory lock on a memory mapped file.
4188  */
4189 static int
4190 zfs_frlock(vnode_t *vp, int cmd, flock64_t *bfp, int flag, offset_t offset,
4191     flk_callback_t *flk_cbp, cred_t *cr, caller_context_t *ct)
4192 {
4193 	znode_t *zp = VTOZ(vp);
4194 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4195 
4196 	ZFS_ENTER(zfsvfs);
4197 	ZFS_VERIFY_ZP(zp);
4198 
4199 	/*
4200 	 * We are following the UFS semantics with respect to mapcnt
4201 	 * here: If we see that the file is mapped already, then we will
4202 	 * return an error, but we don't worry about races between this
4203 	 * function and zfs_map().
4204 	 */
4205 	if (zp->z_mapcnt > 0 && MANDMODE(zp->z_mode)) {
4206 		ZFS_EXIT(zfsvfs);
4207 		return (EAGAIN);
4208 	}
4209 	ZFS_EXIT(zfsvfs);
4210 	return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct));
4211 }
4212 
4213 /*
4214  * If we can't find a page in the cache, we will create a new page
4215  * and fill it with file data.  For efficiency, we may try to fill
4216  * multiple pages at once (klustering) to fill up the supplied page
4217  * list.  Note that the pages to be filled are held with an exclusive
4218  * lock to prevent access by other threads while they are being filled.
4219  */
4220 static int
4221 zfs_fillpage(vnode_t *vp, u_offset_t off, struct seg *seg,
4222     caddr_t addr, page_t *pl[], size_t plsz, enum seg_rw rw)
4223 {
4224 	znode_t *zp = VTOZ(vp);
4225 	page_t *pp, *cur_pp;
4226 	objset_t *os = zp->z_zfsvfs->z_os;
4227 	u_offset_t io_off, total;
4228 	size_t io_len;
4229 	int err;
4230 
4231 	if (plsz == PAGESIZE || zp->z_blksz <= PAGESIZE) {
4232 		/*
4233 		 * We only have a single page, don't bother klustering
4234 		 */
4235 		io_off = off;
4236 		io_len = PAGESIZE;
4237 		pp = page_create_va(vp, io_off, io_len,
4238 		    PG_EXCL | PG_WAIT, seg, addr);
4239 	} else {
4240 		/*
4241 		 * Try to find enough pages to fill the page list
4242 		 */
4243 		pp = pvn_read_kluster(vp, off, seg, addr, &io_off,
4244 		    &io_len, off, plsz, 0);
4245 	}
4246 	if (pp == NULL) {
4247 		/*
4248 		 * The page already exists, nothing to do here.
4249 		 */
4250 		*pl = NULL;
4251 		return (0);
4252 	}
4253 
4254 	/*
4255 	 * Fill the pages in the kluster.
4256 	 */
4257 	cur_pp = pp;
4258 	for (total = io_off + io_len; io_off < total; io_off += PAGESIZE) {
4259 		caddr_t va;
4260 
4261 		ASSERT3U(io_off, ==, cur_pp->p_offset);
4262 		va = zfs_map_page(cur_pp, S_WRITE);
4263 		err = dmu_read(os, zp->z_id, io_off, PAGESIZE, va,
4264 		    DMU_READ_PREFETCH);
4265 		zfs_unmap_page(cur_pp, va);
4266 		if (err) {
4267 			/* On error, toss the entire kluster */
4268 			pvn_read_done(pp, B_ERROR);
4269 			/* convert checksum errors into IO errors */
4270 			if (err == ECKSUM)
4271 				err = EIO;
4272 			return (err);
4273 		}
4274 		cur_pp = cur_pp->p_next;
4275 	}
4276 
4277 	/*
4278 	 * Fill in the page list array from the kluster starting
4279 	 * from the desired offset `off'.
4280 	 * NOTE: the page list will always be null terminated.
4281 	 */
4282 	pvn_plist_init(pp, pl, plsz, off, io_len, rw);
4283 	ASSERT(pl == NULL || (*pl)->p_offset == off);
4284 
4285 	return (0);
4286 }
4287 
4288 /*
4289  * Return pointers to the pages for the file region [off, off + len]
4290  * in the pl array.  If plsz is greater than len, this function may
4291  * also return page pointers from after the specified region
4292  * (i.e. the region [off, off + plsz]).  These additional pages are
4293  * only returned if they are already in the cache, or were created as
4294  * part of a klustered read.
4295  *
4296  *	IN:	vp	- vnode of file to get data from.
4297  *		off	- position in file to get data from.
4298  *		len	- amount of data to retrieve.
4299  *		plsz	- length of provided page list.
4300  *		seg	- segment to obtain pages for.
4301  *		addr	- virtual address of fault.
4302  *		rw	- mode of created pages.
4303  *		cr	- credentials of caller.
4304  *		ct	- caller context.
4305  *
4306  *	OUT:	protp	- protection mode of created pages.
4307  *		pl	- list of pages created.
4308  *
4309  *	RETURN:	0 if success
4310  *		error code if failure
4311  *
4312  * Timestamps:
4313  *	vp - atime updated
4314  */
4315 /* ARGSUSED */
4316 static int
4317 zfs_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp,
4318 	page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr,
4319 	enum seg_rw rw, cred_t *cr, caller_context_t *ct)
4320 {
4321 	znode_t		*zp = VTOZ(vp);
4322 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
4323 	page_t		**pl0 = pl;
4324 	int		err = 0;
4325 
4326 	/* we do our own caching, faultahead is unnecessary */
4327 	if (pl == NULL)
4328 		return (0);
4329 	else if (len > plsz)
4330 		len = plsz;
4331 	else
4332 		len = P2ROUNDUP(len, PAGESIZE);
4333 	ASSERT(plsz >= len);
4334 
4335 	ZFS_ENTER(zfsvfs);
4336 	ZFS_VERIFY_ZP(zp);
4337 
4338 	if (protp)
4339 		*protp = PROT_ALL;
4340 
4341 	/*
4342 	 * Loop through the requested range [off, off + len) looking
4343 	 * for pages.  If we don't find a page, we will need to create
4344 	 * a new page and fill it with data from the file.
4345 	 */
4346 	while (len > 0) {
4347 		if (*pl = page_lookup(vp, off, SE_SHARED))
4348 			*(pl+1) = NULL;
4349 		else if (err = zfs_fillpage(vp, off, seg, addr, pl, plsz, rw))
4350 			goto out;
4351 		while (*pl) {
4352 			ASSERT3U((*pl)->p_offset, ==, off);
4353 			off += PAGESIZE;
4354 			addr += PAGESIZE;
4355 			if (len > 0) {
4356 				ASSERT3U(len, >=, PAGESIZE);
4357 				len -= PAGESIZE;
4358 			}
4359 			ASSERT3U(plsz, >=, PAGESIZE);
4360 			plsz -= PAGESIZE;
4361 			pl++;
4362 		}
4363 	}
4364 
4365 	/*
4366 	 * Fill out the page array with any pages already in the cache.
4367 	 */
4368 	while (plsz > 0 &&
4369 	    (*pl++ = page_lookup_nowait(vp, off, SE_SHARED))) {
4370 			off += PAGESIZE;
4371 			plsz -= PAGESIZE;
4372 	}
4373 out:
4374 	if (err) {
4375 		/*
4376 		 * Release any pages we have previously locked.
4377 		 */
4378 		while (pl > pl0)
4379 			page_unlock(*--pl);
4380 	} else {
4381 		ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
4382 	}
4383 
4384 	*pl = NULL;
4385 
4386 	ZFS_EXIT(zfsvfs);
4387 	return (err);
4388 }
4389 
4390 /*
4391  * Request a memory map for a section of a file.  This code interacts
4392  * with common code and the VM system as follows:
4393  *
4394  *	common code calls mmap(), which ends up in smmap_common()
4395  *
4396  *	this calls VOP_MAP(), which takes you into (say) zfs
4397  *
4398  *	zfs_map() calls as_map(), passing segvn_create() as the callback
4399  *
4400  *	segvn_create() creates the new segment and calls VOP_ADDMAP()
4401  *
4402  *	zfs_addmap() updates z_mapcnt
4403  */
4404 /*ARGSUSED*/
4405 static int
4406 zfs_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp,
4407     size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
4408     caller_context_t *ct)
4409 {
4410 	znode_t *zp = VTOZ(vp);
4411 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4412 	segvn_crargs_t	vn_a;
4413 	int		error;
4414 
4415 	ZFS_ENTER(zfsvfs);
4416 	ZFS_VERIFY_ZP(zp);
4417 
4418 	if ((prot & PROT_WRITE) && (zp->z_pflags &
4419 	    (ZFS_IMMUTABLE | ZFS_READONLY | ZFS_APPENDONLY))) {
4420 		ZFS_EXIT(zfsvfs);
4421 		return (EPERM);
4422 	}
4423 
4424 	if ((prot & (PROT_READ | PROT_EXEC)) &&
4425 	    (zp->z_pflags & ZFS_AV_QUARANTINED)) {
4426 		ZFS_EXIT(zfsvfs);
4427 		return (EACCES);
4428 	}
4429 
4430 	if (vp->v_flag & VNOMAP) {
4431 		ZFS_EXIT(zfsvfs);
4432 		return (ENOSYS);
4433 	}
4434 
4435 	if (off < 0 || len > MAXOFFSET_T - off) {
4436 		ZFS_EXIT(zfsvfs);
4437 		return (ENXIO);
4438 	}
4439 
4440 	if (vp->v_type != VREG) {
4441 		ZFS_EXIT(zfsvfs);
4442 		return (ENODEV);
4443 	}
4444 
4445 	/*
4446 	 * If file is locked, disallow mapping.
4447 	 */
4448 	if (MANDMODE(zp->z_mode) && vn_has_flocks(vp)) {
4449 		ZFS_EXIT(zfsvfs);
4450 		return (EAGAIN);
4451 	}
4452 
4453 	as_rangelock(as);
4454 	error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags);
4455 	if (error != 0) {
4456 		as_rangeunlock(as);
4457 		ZFS_EXIT(zfsvfs);
4458 		return (error);
4459 	}
4460 
4461 	vn_a.vp = vp;
4462 	vn_a.offset = (u_offset_t)off;
4463 	vn_a.type = flags & MAP_TYPE;
4464 	vn_a.prot = prot;
4465 	vn_a.maxprot = maxprot;
4466 	vn_a.cred = cr;
4467 	vn_a.amp = NULL;
4468 	vn_a.flags = flags & ~MAP_TYPE;
4469 	vn_a.szc = 0;
4470 	vn_a.lgrp_mem_policy_flags = 0;
4471 
4472 	error = as_map(as, *addrp, len, segvn_create, &vn_a);
4473 
4474 	as_rangeunlock(as);
4475 	ZFS_EXIT(zfsvfs);
4476 	return (error);
4477 }
4478 
4479 /* ARGSUSED */
4480 static int
4481 zfs_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
4482     size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
4483     caller_context_t *ct)
4484 {
4485 	uint64_t pages = btopr(len);
4486 
4487 	atomic_add_64(&VTOZ(vp)->z_mapcnt, pages);
4488 	return (0);
4489 }
4490 
4491 /*
4492  * The reason we push dirty pages as part of zfs_delmap() is so that we get a
4493  * more accurate mtime for the associated file.  Since we don't have a way of
4494  * detecting when the data was actually modified, we have to resort to
4495  * heuristics.  If an explicit msync() is done, then we mark the mtime when the
4496  * last page is pushed.  The problem occurs when the msync() call is omitted,
4497  * which by far the most common case:
4498  *
4499  * 	open()
4500  * 	mmap()
4501  * 	<modify memory>
4502  * 	munmap()
4503  * 	close()
4504  * 	<time lapse>
4505  * 	putpage() via fsflush
4506  *
4507  * If we wait until fsflush to come along, we can have a modification time that
4508  * is some arbitrary point in the future.  In order to prevent this in the
4509  * common case, we flush pages whenever a (MAP_SHARED, PROT_WRITE) mapping is
4510  * torn down.
4511  */
4512 /* ARGSUSED */
4513 static int
4514 zfs_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
4515     size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr,
4516     caller_context_t *ct)
4517 {
4518 	uint64_t pages = btopr(len);
4519 
4520 	ASSERT3U(VTOZ(vp)->z_mapcnt, >=, pages);
4521 	atomic_add_64(&VTOZ(vp)->z_mapcnt, -pages);
4522 
4523 	if ((flags & MAP_SHARED) && (prot & PROT_WRITE) &&
4524 	    vn_has_cached_data(vp))
4525 		(void) VOP_PUTPAGE(vp, off, len, B_ASYNC, cr, ct);
4526 
4527 	return (0);
4528 }
4529 
4530 /*
4531  * Free or allocate space in a file.  Currently, this function only
4532  * supports the `F_FREESP' command.  However, this command is somewhat
4533  * misnamed, as its functionality includes the ability to allocate as
4534  * well as free space.
4535  *
4536  *	IN:	vp	- vnode of file to free data in.
4537  *		cmd	- action to take (only F_FREESP supported).
4538  *		bfp	- section of file to free/alloc.
4539  *		flag	- current file open mode flags.
4540  *		offset	- current file offset.
4541  *		cr	- credentials of caller [UNUSED].
4542  *		ct	- caller context.
4543  *
4544  *	RETURN:	0 if success
4545  *		error code if failure
4546  *
4547  * Timestamps:
4548  *	vp - ctime|mtime updated
4549  */
4550 /* ARGSUSED */
4551 static int
4552 zfs_space(vnode_t *vp, int cmd, flock64_t *bfp, int flag,
4553     offset_t offset, cred_t *cr, caller_context_t *ct)
4554 {
4555 	znode_t		*zp = VTOZ(vp);
4556 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
4557 	uint64_t	off, len;
4558 	int		error;
4559 
4560 	ZFS_ENTER(zfsvfs);
4561 	ZFS_VERIFY_ZP(zp);
4562 
4563 	if (cmd != F_FREESP) {
4564 		ZFS_EXIT(zfsvfs);
4565 		return (EINVAL);
4566 	}
4567 
4568 	if (error = convoff(vp, bfp, 0, offset)) {
4569 		ZFS_EXIT(zfsvfs);
4570 		return (error);
4571 	}
4572 
4573 	if (bfp->l_len < 0) {
4574 		ZFS_EXIT(zfsvfs);
4575 		return (EINVAL);
4576 	}
4577 
4578 	off = bfp->l_start;
4579 	len = bfp->l_len; /* 0 means from off to end of file */
4580 
4581 	error = zfs_freesp(zp, off, len, flag, TRUE);
4582 
4583 	ZFS_EXIT(zfsvfs);
4584 	return (error);
4585 }
4586 
4587 /*ARGSUSED*/
4588 static int
4589 zfs_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct)
4590 {
4591 	znode_t		*zp = VTOZ(vp);
4592 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
4593 	uint32_t	gen;
4594 	uint64_t	gen64;
4595 	uint64_t	object = zp->z_id;
4596 	zfid_short_t	*zfid;
4597 	int		size, i, error;
4598 
4599 	ZFS_ENTER(zfsvfs);
4600 	ZFS_VERIFY_ZP(zp);
4601 
4602 	if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs),
4603 	    &gen64, sizeof (uint64_t))) != 0)
4604 		return (error);
4605 
4606 	gen = (uint32_t)gen64;
4607 
4608 	size = (zfsvfs->z_parent != zfsvfs) ? LONG_FID_LEN : SHORT_FID_LEN;
4609 	if (fidp->fid_len < size) {
4610 		fidp->fid_len = size;
4611 		ZFS_EXIT(zfsvfs);
4612 		return (ENOSPC);
4613 	}
4614 
4615 	zfid = (zfid_short_t *)fidp;
4616 
4617 	zfid->zf_len = size;
4618 
4619 	for (i = 0; i < sizeof (zfid->zf_object); i++)
4620 		zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
4621 
4622 	/* Must have a non-zero generation number to distinguish from .zfs */
4623 	if (gen == 0)
4624 		gen = 1;
4625 	for (i = 0; i < sizeof (zfid->zf_gen); i++)
4626 		zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i));
4627 
4628 	if (size == LONG_FID_LEN) {
4629 		uint64_t	objsetid = dmu_objset_id(zfsvfs->z_os);
4630 		zfid_long_t	*zlfid;
4631 
4632 		zlfid = (zfid_long_t *)fidp;
4633 
4634 		for (i = 0; i < sizeof (zlfid->zf_setid); i++)
4635 			zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i));
4636 
4637 		/* XXX - this should be the generation number for the objset */
4638 		for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
4639 			zlfid->zf_setgen[i] = 0;
4640 	}
4641 
4642 	ZFS_EXIT(zfsvfs);
4643 	return (0);
4644 }
4645 
4646 static int
4647 zfs_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr,
4648     caller_context_t *ct)
4649 {
4650 	znode_t		*zp, *xzp;
4651 	zfsvfs_t	*zfsvfs;
4652 	zfs_dirlock_t	*dl;
4653 	int		error;
4654 
4655 	switch (cmd) {
4656 	case _PC_LINK_MAX:
4657 		*valp = ULONG_MAX;
4658 		return (0);
4659 
4660 	case _PC_FILESIZEBITS:
4661 		*valp = 64;
4662 		return (0);
4663 
4664 	case _PC_XATTR_EXISTS:
4665 		zp = VTOZ(vp);
4666 		zfsvfs = zp->z_zfsvfs;
4667 		ZFS_ENTER(zfsvfs);
4668 		ZFS_VERIFY_ZP(zp);
4669 		*valp = 0;
4670 		error = zfs_dirent_lock(&dl, zp, "", &xzp,
4671 		    ZXATTR | ZEXISTS | ZSHARED, NULL, NULL);
4672 		if (error == 0) {
4673 			zfs_dirent_unlock(dl);
4674 			if (!zfs_dirempty(xzp))
4675 				*valp = 1;
4676 			VN_RELE(ZTOV(xzp));
4677 		} else if (error == ENOENT) {
4678 			/*
4679 			 * If there aren't extended attributes, it's the
4680 			 * same as having zero of them.
4681 			 */
4682 			error = 0;
4683 		}
4684 		ZFS_EXIT(zfsvfs);
4685 		return (error);
4686 
4687 	case _PC_SATTR_ENABLED:
4688 	case _PC_SATTR_EXISTS:
4689 		*valp = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) &&
4690 		    (vp->v_type == VREG || vp->v_type == VDIR);
4691 		return (0);
4692 
4693 	case _PC_ACCESS_FILTERING:
4694 		*valp = vfs_has_feature(vp->v_vfsp, VFSFT_ACCESS_FILTER) &&
4695 		    vp->v_type == VDIR;
4696 		return (0);
4697 
4698 	case _PC_ACL_ENABLED:
4699 		*valp = _ACL_ACE_ENABLED;
4700 		return (0);
4701 
4702 	case _PC_MIN_HOLE_SIZE:
4703 		*valp = (ulong_t)SPA_MINBLOCKSIZE;
4704 		return (0);
4705 
4706 	case _PC_TIMESTAMP_RESOLUTION:
4707 		/* nanosecond timestamp resolution */
4708 		*valp = 1L;
4709 		return (0);
4710 
4711 	default:
4712 		return (fs_pathconf(vp, cmd, valp, cr, ct));
4713 	}
4714 }
4715 
4716 /*ARGSUSED*/
4717 static int
4718 zfs_getsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr,
4719     caller_context_t *ct)
4720 {
4721 	znode_t *zp = VTOZ(vp);
4722 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4723 	int error;
4724 	boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
4725 
4726 	ZFS_ENTER(zfsvfs);
4727 	ZFS_VERIFY_ZP(zp);
4728 	error = zfs_getacl(zp, vsecp, skipaclchk, cr);
4729 	ZFS_EXIT(zfsvfs);
4730 
4731 	return (error);
4732 }
4733 
4734 /*ARGSUSED*/
4735 static int
4736 zfs_setsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr,
4737     caller_context_t *ct)
4738 {
4739 	znode_t *zp = VTOZ(vp);
4740 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4741 	int error;
4742 	boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
4743 
4744 	ZFS_ENTER(zfsvfs);
4745 	ZFS_VERIFY_ZP(zp);
4746 	error = zfs_setacl(zp, vsecp, skipaclchk, cr);
4747 	ZFS_EXIT(zfsvfs);
4748 	return (error);
4749 }
4750 
4751 /*
4752  * Tunable, both must be a power of 2.
4753  *
4754  * zcr_blksz_min: the smallest read we may consider to loan out an arcbuf
4755  * zcr_blksz_max: if set to less than the file block size, allow loaning out of
4756  *                an arcbuf for a partial block read
4757  */
4758 int zcr_blksz_min = (1 << 10);	/* 1K */
4759 int zcr_blksz_max = (1 << 17);	/* 128K */
4760 
4761 /*ARGSUSED*/
4762 static int
4763 zfs_reqzcbuf(vnode_t *vp, enum uio_rw ioflag, xuio_t *xuio, cred_t *cr,
4764     caller_context_t *ct)
4765 {
4766 	znode_t	*zp = VTOZ(vp);
4767 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4768 	int max_blksz = zfsvfs->z_max_blksz;
4769 	uio_t *uio = &xuio->xu_uio;
4770 	ssize_t size = uio->uio_resid;
4771 	offset_t offset = uio->uio_loffset;
4772 	int blksz;
4773 	int fullblk, i;
4774 	arc_buf_t *abuf;
4775 	ssize_t maxsize;
4776 	int preamble, postamble;
4777 
4778 	if (xuio->xu_type != UIOTYPE_ZEROCOPY)
4779 		return (EINVAL);
4780 
4781 	ZFS_ENTER(zfsvfs);
4782 	ZFS_VERIFY_ZP(zp);
4783 	switch (ioflag) {
4784 	case UIO_WRITE:
4785 		/*
4786 		 * Loan out an arc_buf for write if write size is bigger than
4787 		 * max_blksz, and the file's block size is also max_blksz.
4788 		 */
4789 		blksz = max_blksz;
4790 		if (size < blksz || zp->z_blksz != blksz) {
4791 			ZFS_EXIT(zfsvfs);
4792 			return (EINVAL);
4793 		}
4794 		/*
4795 		 * Caller requests buffers for write before knowing where the
4796 		 * write offset might be (e.g. NFS TCP write).
4797 		 */
4798 		if (offset == -1) {
4799 			preamble = 0;
4800 		} else {
4801 			preamble = P2PHASE(offset, blksz);
4802 			if (preamble) {
4803 				preamble = blksz - preamble;
4804 				size -= preamble;
4805 			}
4806 		}
4807 
4808 		postamble = P2PHASE(size, blksz);
4809 		size -= postamble;
4810 
4811 		fullblk = size / blksz;
4812 		(void) dmu_xuio_init(xuio,
4813 		    (preamble != 0) + fullblk + (postamble != 0));
4814 		DTRACE_PROBE3(zfs_reqzcbuf_align, int, preamble,
4815 		    int, postamble, int,
4816 		    (preamble != 0) + fullblk + (postamble != 0));
4817 
4818 		/*
4819 		 * Have to fix iov base/len for partial buffers.  They
4820 		 * currently represent full arc_buf's.
4821 		 */
4822 		if (preamble) {
4823 			/* data begins in the middle of the arc_buf */
4824 			abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
4825 			    blksz);
4826 			ASSERT(abuf);
4827 			(void) dmu_xuio_add(xuio, abuf,
4828 			    blksz - preamble, preamble);
4829 		}
4830 
4831 		for (i = 0; i < fullblk; i++) {
4832 			abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
4833 			    blksz);
4834 			ASSERT(abuf);
4835 			(void) dmu_xuio_add(xuio, abuf, 0, blksz);
4836 		}
4837 
4838 		if (postamble) {
4839 			/* data ends in the middle of the arc_buf */
4840 			abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
4841 			    blksz);
4842 			ASSERT(abuf);
4843 			(void) dmu_xuio_add(xuio, abuf, 0, postamble);
4844 		}
4845 		break;
4846 	case UIO_READ:
4847 		/*
4848 		 * Loan out an arc_buf for read if the read size is larger than
4849 		 * the current file block size.  Block alignment is not
4850 		 * considered.  Partial arc_buf will be loaned out for read.
4851 		 */
4852 		blksz = zp->z_blksz;
4853 		if (blksz < zcr_blksz_min)
4854 			blksz = zcr_blksz_min;
4855 		if (blksz > zcr_blksz_max)
4856 			blksz = zcr_blksz_max;
4857 		/* avoid potential complexity of dealing with it */
4858 		if (blksz > max_blksz) {
4859 			ZFS_EXIT(zfsvfs);
4860 			return (EINVAL);
4861 		}
4862 
4863 		maxsize = zp->z_size - uio->uio_loffset;
4864 		if (size > maxsize)
4865 			size = maxsize;
4866 
4867 		if (size < blksz || vn_has_cached_data(vp)) {
4868 			ZFS_EXIT(zfsvfs);
4869 			return (EINVAL);
4870 		}
4871 		break;
4872 	default:
4873 		ZFS_EXIT(zfsvfs);
4874 		return (EINVAL);
4875 	}
4876 
4877 	uio->uio_extflg = UIO_XUIO;
4878 	XUIO_XUZC_RW(xuio) = ioflag;
4879 	ZFS_EXIT(zfsvfs);
4880 	return (0);
4881 }
4882 
4883 /*ARGSUSED*/
4884 static int
4885 zfs_retzcbuf(vnode_t *vp, xuio_t *xuio, cred_t *cr, caller_context_t *ct)
4886 {
4887 	int i;
4888 	arc_buf_t *abuf;
4889 	int ioflag = XUIO_XUZC_RW(xuio);
4890 
4891 	ASSERT(xuio->xu_type == UIOTYPE_ZEROCOPY);
4892 
4893 	i = dmu_xuio_cnt(xuio);
4894 	while (i-- > 0) {
4895 		abuf = dmu_xuio_arcbuf(xuio, i);
4896 		/*
4897 		 * if abuf == NULL, it must be a write buffer
4898 		 * that has been returned in zfs_write().
4899 		 */
4900 		if (abuf)
4901 			dmu_return_arcbuf(abuf);
4902 		ASSERT(abuf || ioflag == UIO_WRITE);
4903 	}
4904 
4905 	dmu_xuio_fini(xuio);
4906 	return (0);
4907 }
4908 
4909 /*
4910  * Predeclare these here so that the compiler assumes that
4911  * this is an "old style" function declaration that does
4912  * not include arguments => we won't get type mismatch errors
4913  * in the initializations that follow.
4914  */
4915 static int zfs_inval();
4916 static int zfs_isdir();
4917 
4918 static int
4919 zfs_inval()
4920 {
4921 	return (EINVAL);
4922 }
4923 
4924 static int
4925 zfs_isdir()
4926 {
4927 	return (EISDIR);
4928 }
4929 /*
4930  * Directory vnode operations template
4931  */
4932 vnodeops_t *zfs_dvnodeops;
4933 const fs_operation_def_t zfs_dvnodeops_template[] = {
4934 	VOPNAME_OPEN,		{ .vop_open = zfs_open },
4935 	VOPNAME_CLOSE,		{ .vop_close = zfs_close },
4936 	VOPNAME_READ,		{ .error = zfs_isdir },
4937 	VOPNAME_WRITE,		{ .error = zfs_isdir },
4938 	VOPNAME_IOCTL,		{ .vop_ioctl = zfs_ioctl },
4939 	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
4940 	VOPNAME_SETATTR,	{ .vop_setattr = zfs_setattr },
4941 	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
4942 	VOPNAME_LOOKUP,		{ .vop_lookup = zfs_lookup },
4943 	VOPNAME_CREATE,		{ .vop_create = zfs_create },
4944 	VOPNAME_REMOVE,		{ .vop_remove = zfs_remove },
4945 	VOPNAME_LINK,		{ .vop_link = zfs_link },
4946 	VOPNAME_RENAME,		{ .vop_rename = zfs_rename },
4947 	VOPNAME_MKDIR,		{ .vop_mkdir = zfs_mkdir },
4948 	VOPNAME_RMDIR,		{ .vop_rmdir = zfs_rmdir },
4949 	VOPNAME_READDIR,	{ .vop_readdir = zfs_readdir },
4950 	VOPNAME_SYMLINK,	{ .vop_symlink = zfs_symlink },
4951 	VOPNAME_FSYNC,		{ .vop_fsync = zfs_fsync },
4952 	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
4953 	VOPNAME_FID,		{ .vop_fid = zfs_fid },
4954 	VOPNAME_SEEK,		{ .vop_seek = zfs_seek },
4955 	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
4956 	VOPNAME_GETSECATTR,	{ .vop_getsecattr = zfs_getsecattr },
4957 	VOPNAME_SETSECATTR,	{ .vop_setsecattr = zfs_setsecattr },
4958 	VOPNAME_VNEVENT, 	{ .vop_vnevent = fs_vnevent_support },
4959 	NULL,			NULL
4960 };
4961 
4962 /*
4963  * Regular file vnode operations template
4964  */
4965 vnodeops_t *zfs_fvnodeops;
4966 const fs_operation_def_t zfs_fvnodeops_template[] = {
4967 	VOPNAME_OPEN,		{ .vop_open = zfs_open },
4968 	VOPNAME_CLOSE,		{ .vop_close = zfs_close },
4969 	VOPNAME_READ,		{ .vop_read = zfs_read },
4970 	VOPNAME_WRITE,		{ .vop_write = zfs_write },
4971 	VOPNAME_IOCTL,		{ .vop_ioctl = zfs_ioctl },
4972 	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
4973 	VOPNAME_SETATTR,	{ .vop_setattr = zfs_setattr },
4974 	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
4975 	VOPNAME_LOOKUP,		{ .vop_lookup = zfs_lookup },
4976 	VOPNAME_RENAME,		{ .vop_rename = zfs_rename },
4977 	VOPNAME_FSYNC,		{ .vop_fsync = zfs_fsync },
4978 	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
4979 	VOPNAME_FID,		{ .vop_fid = zfs_fid },
4980 	VOPNAME_SEEK,		{ .vop_seek = zfs_seek },
4981 	VOPNAME_FRLOCK,		{ .vop_frlock = zfs_frlock },
4982 	VOPNAME_SPACE,		{ .vop_space = zfs_space },
4983 	VOPNAME_GETPAGE,	{ .vop_getpage = zfs_getpage },
4984 	VOPNAME_PUTPAGE,	{ .vop_putpage = zfs_putpage },
4985 	VOPNAME_MAP,		{ .vop_map = zfs_map },
4986 	VOPNAME_ADDMAP,		{ .vop_addmap = zfs_addmap },
4987 	VOPNAME_DELMAP,		{ .vop_delmap = zfs_delmap },
4988 	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
4989 	VOPNAME_GETSECATTR,	{ .vop_getsecattr = zfs_getsecattr },
4990 	VOPNAME_SETSECATTR,	{ .vop_setsecattr = zfs_setsecattr },
4991 	VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
4992 	VOPNAME_REQZCBUF, 	{ .vop_reqzcbuf = zfs_reqzcbuf },
4993 	VOPNAME_RETZCBUF, 	{ .vop_retzcbuf = zfs_retzcbuf },
4994 	NULL,			NULL
4995 };
4996 
4997 /*
4998  * Symbolic link vnode operations template
4999  */
5000 vnodeops_t *zfs_symvnodeops;
5001 const fs_operation_def_t zfs_symvnodeops_template[] = {
5002 	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
5003 	VOPNAME_SETATTR,	{ .vop_setattr = zfs_setattr },
5004 	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
5005 	VOPNAME_RENAME,		{ .vop_rename = zfs_rename },
5006 	VOPNAME_READLINK,	{ .vop_readlink = zfs_readlink },
5007 	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5008 	VOPNAME_FID,		{ .vop_fid = zfs_fid },
5009 	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5010 	VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
5011 	NULL,			NULL
5012 };
5013 
5014 /*
5015  * special share hidden files vnode operations template
5016  */
5017 vnodeops_t *zfs_sharevnodeops;
5018 const fs_operation_def_t zfs_sharevnodeops_template[] = {
5019 	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
5020 	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
5021 	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5022 	VOPNAME_FID,		{ .vop_fid = zfs_fid },
5023 	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5024 	VOPNAME_GETSECATTR,	{ .vop_getsecattr = zfs_getsecattr },
5025 	VOPNAME_SETSECATTR,	{ .vop_setsecattr = zfs_setsecattr },
5026 	VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
5027 	NULL,			NULL
5028 };
5029 
5030 /*
5031  * Extended attribute directory vnode operations template
5032  *	This template is identical to the directory vnodes
5033  *	operation template except for restricted operations:
5034  *		VOP_MKDIR()
5035  *		VOP_SYMLINK()
5036  * Note that there are other restrictions embedded in:
5037  *	zfs_create()	- restrict type to VREG
5038  *	zfs_link()	- no links into/out of attribute space
5039  *	zfs_rename()	- no moves into/out of attribute space
5040  */
5041 vnodeops_t *zfs_xdvnodeops;
5042 const fs_operation_def_t zfs_xdvnodeops_template[] = {
5043 	VOPNAME_OPEN,		{ .vop_open = zfs_open },
5044 	VOPNAME_CLOSE,		{ .vop_close = zfs_close },
5045 	VOPNAME_IOCTL,		{ .vop_ioctl = zfs_ioctl },
5046 	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
5047 	VOPNAME_SETATTR,	{ .vop_setattr = zfs_setattr },
5048 	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
5049 	VOPNAME_LOOKUP,		{ .vop_lookup = zfs_lookup },
5050 	VOPNAME_CREATE,		{ .vop_create = zfs_create },
5051 	VOPNAME_REMOVE,		{ .vop_remove = zfs_remove },
5052 	VOPNAME_LINK,		{ .vop_link = zfs_link },
5053 	VOPNAME_RENAME,		{ .vop_rename = zfs_rename },
5054 	VOPNAME_MKDIR,		{ .error = zfs_inval },
5055 	VOPNAME_RMDIR,		{ .vop_rmdir = zfs_rmdir },
5056 	VOPNAME_READDIR,	{ .vop_readdir = zfs_readdir },
5057 	VOPNAME_SYMLINK,	{ .error = zfs_inval },
5058 	VOPNAME_FSYNC,		{ .vop_fsync = zfs_fsync },
5059 	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5060 	VOPNAME_FID,		{ .vop_fid = zfs_fid },
5061 	VOPNAME_SEEK,		{ .vop_seek = zfs_seek },
5062 	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5063 	VOPNAME_GETSECATTR,	{ .vop_getsecattr = zfs_getsecattr },
5064 	VOPNAME_SETSECATTR,	{ .vop_setsecattr = zfs_setsecattr },
5065 	VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
5066 	NULL,			NULL
5067 };
5068 
5069 /*
5070  * Error vnode operations template
5071  */
5072 vnodeops_t *zfs_evnodeops;
5073 const fs_operation_def_t zfs_evnodeops_template[] = {
5074 	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5075 	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5076 	NULL,			NULL
5077 };
5078