xref: /illumos-gate/usr/src/uts/common/fs/zfs/zfs_znode.c (revision 05d57413)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2013 by Delphix. All rights reserved.
24  */
25 
26 /* Portions Copyright 2007 Jeremy Teo */
27 
28 #ifdef _KERNEL
29 #include <sys/types.h>
30 #include <sys/param.h>
31 #include <sys/time.h>
32 #include <sys/systm.h>
33 #include <sys/sysmacros.h>
34 #include <sys/resource.h>
35 #include <sys/mntent.h>
36 #include <sys/mkdev.h>
37 #include <sys/u8_textprep.h>
38 #include <sys/dsl_dataset.h>
39 #include <sys/vfs.h>
40 #include <sys/vfs_opreg.h>
41 #include <sys/vnode.h>
42 #include <sys/file.h>
43 #include <sys/kmem.h>
44 #include <sys/errno.h>
45 #include <sys/unistd.h>
46 #include <sys/mode.h>
47 #include <sys/atomic.h>
48 #include <vm/pvn.h>
49 #include "fs/fs_subr.h"
50 #include <sys/zfs_dir.h>
51 #include <sys/zfs_acl.h>
52 #include <sys/zfs_ioctl.h>
53 #include <sys/zfs_rlock.h>
54 #include <sys/zfs_fuid.h>
55 #include <sys/dnode.h>
56 #include <sys/fs/zfs.h>
57 #include <sys/kidmap.h>
58 #endif /* _KERNEL */
59 
60 #include <sys/dmu.h>
61 #include <sys/refcount.h>
62 #include <sys/stat.h>
63 #include <sys/zap.h>
64 #include <sys/zfs_znode.h>
65 #include <sys/sa.h>
66 #include <sys/zfs_sa.h>
67 #include <sys/zfs_stat.h>
68 
69 #include "zfs_prop.h"
70 #include "zfs_comutil.h"
71 
72 /*
73  * Define ZNODE_STATS to turn on statistic gathering. By default, it is only
74  * turned on when DEBUG is also defined.
75  */
76 #ifdef	DEBUG
77 #define	ZNODE_STATS
78 #endif	/* DEBUG */
79 
80 #ifdef	ZNODE_STATS
81 #define	ZNODE_STAT_ADD(stat)			((stat)++)
82 #else
83 #define	ZNODE_STAT_ADD(stat)			/* nothing */
84 #endif	/* ZNODE_STATS */
85 
86 /*
87  * Functions needed for userland (ie: libzpool) are not put under
88  * #ifdef_KERNEL; the rest of the functions have dependencies
89  * (such as VFS logic) that will not compile easily in userland.
90  */
91 #ifdef _KERNEL
92 /*
93  * Needed to close a small window in zfs_znode_move() that allows the zfsvfs to
94  * be freed before it can be safely accessed.
95  */
96 krwlock_t zfsvfs_lock;
97 
98 static kmem_cache_t *znode_cache = NULL;
99 
100 /*ARGSUSED*/
101 static void
102 znode_evict_error(dmu_buf_t *dbuf, void *user_ptr)
103 {
104 	/*
105 	 * We should never drop all dbuf refs without first clearing
106 	 * the eviction callback.
107 	 */
108 	panic("evicting znode %p\n", user_ptr);
109 }
110 
111 /*ARGSUSED*/
112 static int
113 zfs_znode_cache_constructor(void *buf, void *arg, int kmflags)
114 {
115 	znode_t *zp = buf;
116 
117 	ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs));
118 
119 	zp->z_vnode = vn_alloc(kmflags);
120 	if (zp->z_vnode == NULL) {
121 		return (-1);
122 	}
123 	ZTOV(zp)->v_data = zp;
124 
125 	list_link_init(&zp->z_link_node);
126 
127 	mutex_init(&zp->z_lock, NULL, MUTEX_DEFAULT, NULL);
128 	rw_init(&zp->z_parent_lock, NULL, RW_DEFAULT, NULL);
129 	rw_init(&zp->z_name_lock, NULL, RW_DEFAULT, NULL);
130 	mutex_init(&zp->z_acl_lock, NULL, MUTEX_DEFAULT, NULL);
131 
132 	mutex_init(&zp->z_range_lock, NULL, MUTEX_DEFAULT, NULL);
133 	avl_create(&zp->z_range_avl, zfs_range_compare,
134 	    sizeof (rl_t), offsetof(rl_t, r_node));
135 
136 	zp->z_dirlocks = NULL;
137 	zp->z_acl_cached = NULL;
138 	zp->z_moved = 0;
139 	return (0);
140 }
141 
142 /*ARGSUSED*/
143 static void
144 zfs_znode_cache_destructor(void *buf, void *arg)
145 {
146 	znode_t *zp = buf;
147 
148 	ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs));
149 	ASSERT(ZTOV(zp)->v_data == zp);
150 	vn_free(ZTOV(zp));
151 	ASSERT(!list_link_active(&zp->z_link_node));
152 	mutex_destroy(&zp->z_lock);
153 	rw_destroy(&zp->z_parent_lock);
154 	rw_destroy(&zp->z_name_lock);
155 	mutex_destroy(&zp->z_acl_lock);
156 	avl_destroy(&zp->z_range_avl);
157 	mutex_destroy(&zp->z_range_lock);
158 
159 	ASSERT(zp->z_dirlocks == NULL);
160 	ASSERT(zp->z_acl_cached == NULL);
161 }
162 
163 #ifdef	ZNODE_STATS
164 static struct {
165 	uint64_t zms_zfsvfs_invalid;
166 	uint64_t zms_zfsvfs_recheck1;
167 	uint64_t zms_zfsvfs_unmounted;
168 	uint64_t zms_zfsvfs_recheck2;
169 	uint64_t zms_obj_held;
170 	uint64_t zms_vnode_locked;
171 	uint64_t zms_not_only_dnlc;
172 } znode_move_stats;
173 #endif	/* ZNODE_STATS */
174 
175 static void
176 zfs_znode_move_impl(znode_t *ozp, znode_t *nzp)
177 {
178 	vnode_t *vp;
179 
180 	/* Copy fields. */
181 	nzp->z_zfsvfs = ozp->z_zfsvfs;
182 
183 	/* Swap vnodes. */
184 	vp = nzp->z_vnode;
185 	nzp->z_vnode = ozp->z_vnode;
186 	ozp->z_vnode = vp; /* let destructor free the overwritten vnode */
187 	ZTOV(ozp)->v_data = ozp;
188 	ZTOV(nzp)->v_data = nzp;
189 
190 	nzp->z_id = ozp->z_id;
191 	ASSERT(ozp->z_dirlocks == NULL); /* znode not in use */
192 	ASSERT(avl_numnodes(&ozp->z_range_avl) == 0);
193 	nzp->z_unlinked = ozp->z_unlinked;
194 	nzp->z_atime_dirty = ozp->z_atime_dirty;
195 	nzp->z_zn_prefetch = ozp->z_zn_prefetch;
196 	nzp->z_blksz = ozp->z_blksz;
197 	nzp->z_seq = ozp->z_seq;
198 	nzp->z_mapcnt = ozp->z_mapcnt;
199 	nzp->z_gen = ozp->z_gen;
200 	nzp->z_sync_cnt = ozp->z_sync_cnt;
201 	nzp->z_is_sa = ozp->z_is_sa;
202 	nzp->z_sa_hdl = ozp->z_sa_hdl;
203 	bcopy(ozp->z_atime, nzp->z_atime, sizeof (uint64_t) * 2);
204 	nzp->z_links = ozp->z_links;
205 	nzp->z_size = ozp->z_size;
206 	nzp->z_pflags = ozp->z_pflags;
207 	nzp->z_uid = ozp->z_uid;
208 	nzp->z_gid = ozp->z_gid;
209 	nzp->z_mode = ozp->z_mode;
210 
211 	/*
212 	 * Since this is just an idle znode and kmem is already dealing with
213 	 * memory pressure, release any cached ACL.
214 	 */
215 	if (ozp->z_acl_cached) {
216 		zfs_acl_free(ozp->z_acl_cached);
217 		ozp->z_acl_cached = NULL;
218 	}
219 
220 	sa_set_userp(nzp->z_sa_hdl, nzp);
221 
222 	/*
223 	 * Invalidate the original znode by clearing fields that provide a
224 	 * pointer back to the znode. Set the low bit of the vfs pointer to
225 	 * ensure that zfs_znode_move() recognizes the znode as invalid in any
226 	 * subsequent callback.
227 	 */
228 	ozp->z_sa_hdl = NULL;
229 	POINTER_INVALIDATE(&ozp->z_zfsvfs);
230 
231 	/*
232 	 * Mark the znode.
233 	 */
234 	nzp->z_moved = 1;
235 	ozp->z_moved = (uint8_t)-1;
236 }
237 
238 /*ARGSUSED*/
239 static kmem_cbrc_t
240 zfs_znode_move(void *buf, void *newbuf, size_t size, void *arg)
241 {
242 	znode_t *ozp = buf, *nzp = newbuf;
243 	zfsvfs_t *zfsvfs;
244 	vnode_t *vp;
245 
246 	/*
247 	 * The znode is on the file system's list of known znodes if the vfs
248 	 * pointer is valid. We set the low bit of the vfs pointer when freeing
249 	 * the znode to invalidate it, and the memory patterns written by kmem
250 	 * (baddcafe and deadbeef) set at least one of the two low bits. A newly
251 	 * created znode sets the vfs pointer last of all to indicate that the
252 	 * znode is known and in a valid state to be moved by this function.
253 	 */
254 	zfsvfs = ozp->z_zfsvfs;
255 	if (!POINTER_IS_VALID(zfsvfs)) {
256 		ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_invalid);
257 		return (KMEM_CBRC_DONT_KNOW);
258 	}
259 
260 	/*
261 	 * Close a small window in which it's possible that the filesystem could
262 	 * be unmounted and freed, and zfsvfs, though valid in the previous
263 	 * statement, could point to unrelated memory by the time we try to
264 	 * prevent the filesystem from being unmounted.
265 	 */
266 	rw_enter(&zfsvfs_lock, RW_WRITER);
267 	if (zfsvfs != ozp->z_zfsvfs) {
268 		rw_exit(&zfsvfs_lock);
269 		ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_recheck1);
270 		return (KMEM_CBRC_DONT_KNOW);
271 	}
272 
273 	/*
274 	 * If the znode is still valid, then so is the file system. We know that
275 	 * no valid file system can be freed while we hold zfsvfs_lock, so we
276 	 * can safely ensure that the filesystem is not and will not be
277 	 * unmounted. The next statement is equivalent to ZFS_ENTER().
278 	 */
279 	rrw_enter(&zfsvfs->z_teardown_lock, RW_READER, FTAG);
280 	if (zfsvfs->z_unmounted) {
281 		ZFS_EXIT(zfsvfs);
282 		rw_exit(&zfsvfs_lock);
283 		ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_unmounted);
284 		return (KMEM_CBRC_DONT_KNOW);
285 	}
286 	rw_exit(&zfsvfs_lock);
287 
288 	mutex_enter(&zfsvfs->z_znodes_lock);
289 	/*
290 	 * Recheck the vfs pointer in case the znode was removed just before
291 	 * acquiring the lock.
292 	 */
293 	if (zfsvfs != ozp->z_zfsvfs) {
294 		mutex_exit(&zfsvfs->z_znodes_lock);
295 		ZFS_EXIT(zfsvfs);
296 		ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_recheck2);
297 		return (KMEM_CBRC_DONT_KNOW);
298 	}
299 
300 	/*
301 	 * At this point we know that as long as we hold z_znodes_lock, the
302 	 * znode cannot be freed and fields within the znode can be safely
303 	 * accessed. Now, prevent a race with zfs_zget().
304 	 */
305 	if (ZFS_OBJ_HOLD_TRYENTER(zfsvfs, ozp->z_id) == 0) {
306 		mutex_exit(&zfsvfs->z_znodes_lock);
307 		ZFS_EXIT(zfsvfs);
308 		ZNODE_STAT_ADD(znode_move_stats.zms_obj_held);
309 		return (KMEM_CBRC_LATER);
310 	}
311 
312 	vp = ZTOV(ozp);
313 	if (mutex_tryenter(&vp->v_lock) == 0) {
314 		ZFS_OBJ_HOLD_EXIT(zfsvfs, ozp->z_id);
315 		mutex_exit(&zfsvfs->z_znodes_lock);
316 		ZFS_EXIT(zfsvfs);
317 		ZNODE_STAT_ADD(znode_move_stats.zms_vnode_locked);
318 		return (KMEM_CBRC_LATER);
319 	}
320 
321 	/* Only move znodes that are referenced _only_ by the DNLC. */
322 	if (vp->v_count != 1 || !vn_in_dnlc(vp)) {
323 		mutex_exit(&vp->v_lock);
324 		ZFS_OBJ_HOLD_EXIT(zfsvfs, ozp->z_id);
325 		mutex_exit(&zfsvfs->z_znodes_lock);
326 		ZFS_EXIT(zfsvfs);
327 		ZNODE_STAT_ADD(znode_move_stats.zms_not_only_dnlc);
328 		return (KMEM_CBRC_LATER);
329 	}
330 
331 	/*
332 	 * The znode is known and in a valid state to move. We're holding the
333 	 * locks needed to execute the critical section.
334 	 */
335 	zfs_znode_move_impl(ozp, nzp);
336 	mutex_exit(&vp->v_lock);
337 	ZFS_OBJ_HOLD_EXIT(zfsvfs, ozp->z_id);
338 
339 	list_link_replace(&ozp->z_link_node, &nzp->z_link_node);
340 	mutex_exit(&zfsvfs->z_znodes_lock);
341 	ZFS_EXIT(zfsvfs);
342 
343 	return (KMEM_CBRC_YES);
344 }
345 
346 void
347 zfs_znode_init(void)
348 {
349 	/*
350 	 * Initialize zcache
351 	 */
352 	rw_init(&zfsvfs_lock, NULL, RW_DEFAULT, NULL);
353 	ASSERT(znode_cache == NULL);
354 	znode_cache = kmem_cache_create("zfs_znode_cache",
355 	    sizeof (znode_t), 0, zfs_znode_cache_constructor,
356 	    zfs_znode_cache_destructor, NULL, NULL, NULL, 0);
357 	kmem_cache_set_move(znode_cache, zfs_znode_move);
358 }
359 
360 void
361 zfs_znode_fini(void)
362 {
363 	/*
364 	 * Cleanup vfs & vnode ops
365 	 */
366 	zfs_remove_op_tables();
367 
368 	/*
369 	 * Cleanup zcache
370 	 */
371 	if (znode_cache)
372 		kmem_cache_destroy(znode_cache);
373 	znode_cache = NULL;
374 	rw_destroy(&zfsvfs_lock);
375 }
376 
377 struct vnodeops *zfs_dvnodeops;
378 struct vnodeops *zfs_fvnodeops;
379 struct vnodeops *zfs_symvnodeops;
380 struct vnodeops *zfs_xdvnodeops;
381 struct vnodeops *zfs_evnodeops;
382 struct vnodeops *zfs_sharevnodeops;
383 
384 void
385 zfs_remove_op_tables()
386 {
387 	/*
388 	 * Remove vfs ops
389 	 */
390 	ASSERT(zfsfstype);
391 	(void) vfs_freevfsops_by_type(zfsfstype);
392 	zfsfstype = 0;
393 
394 	/*
395 	 * Remove vnode ops
396 	 */
397 	if (zfs_dvnodeops)
398 		vn_freevnodeops(zfs_dvnodeops);
399 	if (zfs_fvnodeops)
400 		vn_freevnodeops(zfs_fvnodeops);
401 	if (zfs_symvnodeops)
402 		vn_freevnodeops(zfs_symvnodeops);
403 	if (zfs_xdvnodeops)
404 		vn_freevnodeops(zfs_xdvnodeops);
405 	if (zfs_evnodeops)
406 		vn_freevnodeops(zfs_evnodeops);
407 	if (zfs_sharevnodeops)
408 		vn_freevnodeops(zfs_sharevnodeops);
409 
410 	zfs_dvnodeops = NULL;
411 	zfs_fvnodeops = NULL;
412 	zfs_symvnodeops = NULL;
413 	zfs_xdvnodeops = NULL;
414 	zfs_evnodeops = NULL;
415 	zfs_sharevnodeops = NULL;
416 }
417 
418 extern const fs_operation_def_t zfs_dvnodeops_template[];
419 extern const fs_operation_def_t zfs_fvnodeops_template[];
420 extern const fs_operation_def_t zfs_xdvnodeops_template[];
421 extern const fs_operation_def_t zfs_symvnodeops_template[];
422 extern const fs_operation_def_t zfs_evnodeops_template[];
423 extern const fs_operation_def_t zfs_sharevnodeops_template[];
424 
425 int
426 zfs_create_op_tables()
427 {
428 	int error;
429 
430 	/*
431 	 * zfs_dvnodeops can be set if mod_remove() calls mod_installfs()
432 	 * due to a failure to remove the the 2nd modlinkage (zfs_modldrv).
433 	 * In this case we just return as the ops vectors are already set up.
434 	 */
435 	if (zfs_dvnodeops)
436 		return (0);
437 
438 	error = vn_make_ops(MNTTYPE_ZFS, zfs_dvnodeops_template,
439 	    &zfs_dvnodeops);
440 	if (error)
441 		return (error);
442 
443 	error = vn_make_ops(MNTTYPE_ZFS, zfs_fvnodeops_template,
444 	    &zfs_fvnodeops);
445 	if (error)
446 		return (error);
447 
448 	error = vn_make_ops(MNTTYPE_ZFS, zfs_symvnodeops_template,
449 	    &zfs_symvnodeops);
450 	if (error)
451 		return (error);
452 
453 	error = vn_make_ops(MNTTYPE_ZFS, zfs_xdvnodeops_template,
454 	    &zfs_xdvnodeops);
455 	if (error)
456 		return (error);
457 
458 	error = vn_make_ops(MNTTYPE_ZFS, zfs_evnodeops_template,
459 	    &zfs_evnodeops);
460 	if (error)
461 		return (error);
462 
463 	error = vn_make_ops(MNTTYPE_ZFS, zfs_sharevnodeops_template,
464 	    &zfs_sharevnodeops);
465 
466 	return (error);
467 }
468 
469 int
470 zfs_create_share_dir(zfsvfs_t *zfsvfs, dmu_tx_t *tx)
471 {
472 	zfs_acl_ids_t acl_ids;
473 	vattr_t vattr;
474 	znode_t *sharezp;
475 	vnode_t *vp;
476 	znode_t *zp;
477 	int error;
478 
479 	vattr.va_mask = AT_MODE|AT_UID|AT_GID|AT_TYPE;
480 	vattr.va_type = VDIR;
481 	vattr.va_mode = S_IFDIR|0555;
482 	vattr.va_uid = crgetuid(kcred);
483 	vattr.va_gid = crgetgid(kcred);
484 
485 	sharezp = kmem_cache_alloc(znode_cache, KM_SLEEP);
486 	ASSERT(!POINTER_IS_VALID(sharezp->z_zfsvfs));
487 	sharezp->z_moved = 0;
488 	sharezp->z_unlinked = 0;
489 	sharezp->z_atime_dirty = 0;
490 	sharezp->z_zfsvfs = zfsvfs;
491 	sharezp->z_is_sa = zfsvfs->z_use_sa;
492 
493 	vp = ZTOV(sharezp);
494 	vn_reinit(vp);
495 	vp->v_type = VDIR;
496 
497 	VERIFY(0 == zfs_acl_ids_create(sharezp, IS_ROOT_NODE, &vattr,
498 	    kcred, NULL, &acl_ids));
499 	zfs_mknode(sharezp, &vattr, tx, kcred, IS_ROOT_NODE, &zp, &acl_ids);
500 	ASSERT3P(zp, ==, sharezp);
501 	ASSERT(!vn_in_dnlc(ZTOV(sharezp))); /* not valid to move */
502 	POINTER_INVALIDATE(&sharezp->z_zfsvfs);
503 	error = zap_add(zfsvfs->z_os, MASTER_NODE_OBJ,
504 	    ZFS_SHARES_DIR, 8, 1, &sharezp->z_id, tx);
505 	zfsvfs->z_shares_dir = sharezp->z_id;
506 
507 	zfs_acl_ids_free(&acl_ids);
508 	ZTOV(sharezp)->v_count = 0;
509 	sa_handle_destroy(sharezp->z_sa_hdl);
510 	kmem_cache_free(znode_cache, sharezp);
511 
512 	return (error);
513 }
514 
515 /*
516  * define a couple of values we need available
517  * for both 64 and 32 bit environments.
518  */
519 #ifndef NBITSMINOR64
520 #define	NBITSMINOR64	32
521 #endif
522 #ifndef MAXMAJ64
523 #define	MAXMAJ64	0xffffffffUL
524 #endif
525 #ifndef	MAXMIN64
526 #define	MAXMIN64	0xffffffffUL
527 #endif
528 
529 /*
530  * Create special expldev for ZFS private use.
531  * Can't use standard expldev since it doesn't do
532  * what we want.  The standard expldev() takes a
533  * dev32_t in LP64 and expands it to a long dev_t.
534  * We need an interface that takes a dev32_t in ILP32
535  * and expands it to a long dev_t.
536  */
537 static uint64_t
538 zfs_expldev(dev_t dev)
539 {
540 #ifndef _LP64
541 	major_t major = (major_t)dev >> NBITSMINOR32 & MAXMAJ32;
542 	return (((uint64_t)major << NBITSMINOR64) |
543 	    ((minor_t)dev & MAXMIN32));
544 #else
545 	return (dev);
546 #endif
547 }
548 
549 /*
550  * Special cmpldev for ZFS private use.
551  * Can't use standard cmpldev since it takes
552  * a long dev_t and compresses it to dev32_t in
553  * LP64.  We need to do a compaction of a long dev_t
554  * to a dev32_t in ILP32.
555  */
556 dev_t
557 zfs_cmpldev(uint64_t dev)
558 {
559 #ifndef _LP64
560 	minor_t minor = (minor_t)dev & MAXMIN64;
561 	major_t major = (major_t)(dev >> NBITSMINOR64) & MAXMAJ64;
562 
563 	if (major > MAXMAJ32 || minor > MAXMIN32)
564 		return (NODEV32);
565 
566 	return (((dev32_t)major << NBITSMINOR32) | minor);
567 #else
568 	return (dev);
569 #endif
570 }
571 
572 static void
573 zfs_znode_sa_init(zfsvfs_t *zfsvfs, znode_t *zp,
574     dmu_buf_t *db, dmu_object_type_t obj_type, sa_handle_t *sa_hdl)
575 {
576 	ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs) || (zfsvfs == zp->z_zfsvfs));
577 	ASSERT(MUTEX_HELD(ZFS_OBJ_MUTEX(zfsvfs, zp->z_id)));
578 
579 	mutex_enter(&zp->z_lock);
580 
581 	ASSERT(zp->z_sa_hdl == NULL);
582 	ASSERT(zp->z_acl_cached == NULL);
583 	if (sa_hdl == NULL) {
584 		VERIFY(0 == sa_handle_get_from_db(zfsvfs->z_os, db, zp,
585 		    SA_HDL_SHARED, &zp->z_sa_hdl));
586 	} else {
587 		zp->z_sa_hdl = sa_hdl;
588 		sa_set_userp(sa_hdl, zp);
589 	}
590 
591 	zp->z_is_sa = (obj_type == DMU_OT_SA) ? B_TRUE : B_FALSE;
592 
593 	/*
594 	 * Slap on VROOT if we are the root znode
595 	 */
596 	if (zp->z_id == zfsvfs->z_root)
597 		ZTOV(zp)->v_flag |= VROOT;
598 
599 	mutex_exit(&zp->z_lock);
600 	vn_exists(ZTOV(zp));
601 }
602 
603 void
604 zfs_znode_dmu_fini(znode_t *zp)
605 {
606 	ASSERT(MUTEX_HELD(ZFS_OBJ_MUTEX(zp->z_zfsvfs, zp->z_id)) ||
607 	    zp->z_unlinked ||
608 	    RW_WRITE_HELD(&zp->z_zfsvfs->z_teardown_inactive_lock));
609 
610 	sa_handle_destroy(zp->z_sa_hdl);
611 	zp->z_sa_hdl = NULL;
612 }
613 
614 /*
615  * Construct a new znode/vnode and intialize.
616  *
617  * This does not do a call to dmu_set_user() that is
618  * up to the caller to do, in case you don't want to
619  * return the znode
620  */
621 static znode_t *
622 zfs_znode_alloc(zfsvfs_t *zfsvfs, dmu_buf_t *db, int blksz,
623     dmu_object_type_t obj_type, sa_handle_t *hdl)
624 {
625 	znode_t	*zp;
626 	vnode_t *vp;
627 	uint64_t mode;
628 	uint64_t parent;
629 	sa_bulk_attr_t bulk[9];
630 	int count = 0;
631 
632 	zp = kmem_cache_alloc(znode_cache, KM_SLEEP);
633 
634 	ASSERT(zp->z_dirlocks == NULL);
635 	ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs));
636 	zp->z_moved = 0;
637 
638 	/*
639 	 * Defer setting z_zfsvfs until the znode is ready to be a candidate for
640 	 * the zfs_znode_move() callback.
641 	 */
642 	zp->z_sa_hdl = NULL;
643 	zp->z_unlinked = 0;
644 	zp->z_atime_dirty = 0;
645 	zp->z_mapcnt = 0;
646 	zp->z_id = db->db_object;
647 	zp->z_blksz = blksz;
648 	zp->z_seq = 0x7A4653;
649 	zp->z_sync_cnt = 0;
650 
651 	vp = ZTOV(zp);
652 	vn_reinit(vp);
653 
654 	zfs_znode_sa_init(zfsvfs, zp, db, obj_type, hdl);
655 
656 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL, &mode, 8);
657 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GEN(zfsvfs), NULL, &zp->z_gen, 8);
658 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
659 	    &zp->z_size, 8);
660 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_LINKS(zfsvfs), NULL,
661 	    &zp->z_links, 8);
662 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
663 	    &zp->z_pflags, 8);
664 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_PARENT(zfsvfs), NULL, &parent, 8);
665 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL,
666 	    &zp->z_atime, 16);
667 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL,
668 	    &zp->z_uid, 8);
669 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), NULL,
670 	    &zp->z_gid, 8);
671 
672 	if (sa_bulk_lookup(zp->z_sa_hdl, bulk, count) != 0 || zp->z_gen == 0) {
673 		if (hdl == NULL)
674 			sa_handle_destroy(zp->z_sa_hdl);
675 		kmem_cache_free(znode_cache, zp);
676 		return (NULL);
677 	}
678 
679 	zp->z_mode = mode;
680 	vp->v_vfsp = zfsvfs->z_parent->z_vfs;
681 
682 	vp->v_type = IFTOVT((mode_t)mode);
683 
684 	switch (vp->v_type) {
685 	case VDIR:
686 		if (zp->z_pflags & ZFS_XATTR) {
687 			vn_setops(vp, zfs_xdvnodeops);
688 			vp->v_flag |= V_XATTRDIR;
689 		} else {
690 			vn_setops(vp, zfs_dvnodeops);
691 		}
692 		zp->z_zn_prefetch = B_TRUE; /* z_prefetch default is enabled */
693 		break;
694 	case VBLK:
695 	case VCHR:
696 		{
697 			uint64_t rdev;
698 			VERIFY(sa_lookup(zp->z_sa_hdl, SA_ZPL_RDEV(zfsvfs),
699 			    &rdev, sizeof (rdev)) == 0);
700 
701 			vp->v_rdev = zfs_cmpldev(rdev);
702 		}
703 		/*FALLTHROUGH*/
704 	case VFIFO:
705 	case VSOCK:
706 	case VDOOR:
707 		vn_setops(vp, zfs_fvnodeops);
708 		break;
709 	case VREG:
710 		vp->v_flag |= VMODSORT;
711 		if (parent == zfsvfs->z_shares_dir) {
712 			ASSERT(zp->z_uid == 0 && zp->z_gid == 0);
713 			vn_setops(vp, zfs_sharevnodeops);
714 		} else {
715 			vn_setops(vp, zfs_fvnodeops);
716 		}
717 		break;
718 	case VLNK:
719 		vn_setops(vp, zfs_symvnodeops);
720 		break;
721 	default:
722 		vn_setops(vp, zfs_evnodeops);
723 		break;
724 	}
725 
726 	mutex_enter(&zfsvfs->z_znodes_lock);
727 	list_insert_tail(&zfsvfs->z_all_znodes, zp);
728 	membar_producer();
729 	/*
730 	 * Everything else must be valid before assigning z_zfsvfs makes the
731 	 * znode eligible for zfs_znode_move().
732 	 */
733 	zp->z_zfsvfs = zfsvfs;
734 	mutex_exit(&zfsvfs->z_znodes_lock);
735 
736 	VFS_HOLD(zfsvfs->z_vfs);
737 	return (zp);
738 }
739 
740 static uint64_t empty_xattr;
741 static uint64_t pad[4];
742 static zfs_acl_phys_t acl_phys;
743 /*
744  * Create a new DMU object to hold a zfs znode.
745  *
746  *	IN:	dzp	- parent directory for new znode
747  *		vap	- file attributes for new znode
748  *		tx	- dmu transaction id for zap operations
749  *		cr	- credentials of caller
750  *		flag	- flags:
751  *			  IS_ROOT_NODE	- new object will be root
752  *			  IS_XATTR	- new object is an attribute
753  *		bonuslen - length of bonus buffer
754  *		setaclp  - File/Dir initial ACL
755  *		fuidp	 - Tracks fuid allocation.
756  *
757  *	OUT:	zpp	- allocated znode
758  *
759  */
760 void
761 zfs_mknode(znode_t *dzp, vattr_t *vap, dmu_tx_t *tx, cred_t *cr,
762     uint_t flag, znode_t **zpp, zfs_acl_ids_t *acl_ids)
763 {
764 	uint64_t	crtime[2], atime[2], mtime[2], ctime[2];
765 	uint64_t	mode, size, links, parent, pflags;
766 	uint64_t	dzp_pflags = 0;
767 	uint64_t	rdev = 0;
768 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
769 	dmu_buf_t	*db;
770 	timestruc_t	now;
771 	uint64_t	gen, obj;
772 	int		bonuslen;
773 	sa_handle_t	*sa_hdl;
774 	dmu_object_type_t obj_type;
775 	sa_bulk_attr_t	sa_attrs[ZPL_END];
776 	int		cnt = 0;
777 	zfs_acl_locator_cb_t locate = { 0 };
778 
779 	ASSERT(vap && (vap->va_mask & (AT_TYPE|AT_MODE)) == (AT_TYPE|AT_MODE));
780 
781 	if (zfsvfs->z_replay) {
782 		obj = vap->va_nodeid;
783 		now = vap->va_ctime;		/* see zfs_replay_create() */
784 		gen = vap->va_nblocks;		/* ditto */
785 	} else {
786 		obj = 0;
787 		gethrestime(&now);
788 		gen = dmu_tx_get_txg(tx);
789 	}
790 
791 	obj_type = zfsvfs->z_use_sa ? DMU_OT_SA : DMU_OT_ZNODE;
792 	bonuslen = (obj_type == DMU_OT_SA) ?
793 	    DN_MAX_BONUSLEN : ZFS_OLD_ZNODE_PHYS_SIZE;
794 
795 	/*
796 	 * Create a new DMU object.
797 	 */
798 	/*
799 	 * There's currently no mechanism for pre-reading the blocks that will
800 	 * be needed to allocate a new object, so we accept the small chance
801 	 * that there will be an i/o error and we will fail one of the
802 	 * assertions below.
803 	 */
804 	if (vap->va_type == VDIR) {
805 		if (zfsvfs->z_replay) {
806 			VERIFY0(zap_create_claim_norm(zfsvfs->z_os, obj,
807 			    zfsvfs->z_norm, DMU_OT_DIRECTORY_CONTENTS,
808 			    obj_type, bonuslen, tx));
809 		} else {
810 			obj = zap_create_norm(zfsvfs->z_os,
811 			    zfsvfs->z_norm, DMU_OT_DIRECTORY_CONTENTS,
812 			    obj_type, bonuslen, tx);
813 		}
814 	} else {
815 		if (zfsvfs->z_replay) {
816 			VERIFY0(dmu_object_claim(zfsvfs->z_os, obj,
817 			    DMU_OT_PLAIN_FILE_CONTENTS, 0,
818 			    obj_type, bonuslen, tx));
819 		} else {
820 			obj = dmu_object_alloc(zfsvfs->z_os,
821 			    DMU_OT_PLAIN_FILE_CONTENTS, 0,
822 			    obj_type, bonuslen, tx);
823 		}
824 	}
825 
826 	ZFS_OBJ_HOLD_ENTER(zfsvfs, obj);
827 	VERIFY(0 == sa_buf_hold(zfsvfs->z_os, obj, NULL, &db));
828 
829 	/*
830 	 * If this is the root, fix up the half-initialized parent pointer
831 	 * to reference the just-allocated physical data area.
832 	 */
833 	if (flag & IS_ROOT_NODE) {
834 		dzp->z_id = obj;
835 	} else {
836 		dzp_pflags = dzp->z_pflags;
837 	}
838 
839 	/*
840 	 * If parent is an xattr, so am I.
841 	 */
842 	if (dzp_pflags & ZFS_XATTR) {
843 		flag |= IS_XATTR;
844 	}
845 
846 	if (zfsvfs->z_use_fuids)
847 		pflags = ZFS_ARCHIVE | ZFS_AV_MODIFIED;
848 	else
849 		pflags = 0;
850 
851 	if (vap->va_type == VDIR) {
852 		size = 2;		/* contents ("." and "..") */
853 		links = (flag & (IS_ROOT_NODE | IS_XATTR)) ? 2 : 1;
854 	} else {
855 		size = links = 0;
856 	}
857 
858 	if (vap->va_type == VBLK || vap->va_type == VCHR) {
859 		rdev = zfs_expldev(vap->va_rdev);
860 	}
861 
862 	parent = dzp->z_id;
863 	mode = acl_ids->z_mode;
864 	if (flag & IS_XATTR)
865 		pflags |= ZFS_XATTR;
866 
867 	/*
868 	 * No execs denied will be deterimed when zfs_mode_compute() is called.
869 	 */
870 	pflags |= acl_ids->z_aclp->z_hints &
871 	    (ZFS_ACL_TRIVIAL|ZFS_INHERIT_ACE|ZFS_ACL_AUTO_INHERIT|
872 	    ZFS_ACL_DEFAULTED|ZFS_ACL_PROTECTED);
873 
874 	ZFS_TIME_ENCODE(&now, crtime);
875 	ZFS_TIME_ENCODE(&now, ctime);
876 
877 	if (vap->va_mask & AT_ATIME) {
878 		ZFS_TIME_ENCODE(&vap->va_atime, atime);
879 	} else {
880 		ZFS_TIME_ENCODE(&now, atime);
881 	}
882 
883 	if (vap->va_mask & AT_MTIME) {
884 		ZFS_TIME_ENCODE(&vap->va_mtime, mtime);
885 	} else {
886 		ZFS_TIME_ENCODE(&now, mtime);
887 	}
888 
889 	/* Now add in all of the "SA" attributes */
890 	VERIFY(0 == sa_handle_get_from_db(zfsvfs->z_os, db, NULL, SA_HDL_SHARED,
891 	    &sa_hdl));
892 
893 	/*
894 	 * Setup the array of attributes to be replaced/set on the new file
895 	 *
896 	 * order for  DMU_OT_ZNODE is critical since it needs to be constructed
897 	 * in the old znode_phys_t format.  Don't change this ordering
898 	 */
899 
900 	if (obj_type == DMU_OT_ZNODE) {
901 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_ATIME(zfsvfs),
902 		    NULL, &atime, 16);
903 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MTIME(zfsvfs),
904 		    NULL, &mtime, 16);
905 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CTIME(zfsvfs),
906 		    NULL, &ctime, 16);
907 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CRTIME(zfsvfs),
908 		    NULL, &crtime, 16);
909 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GEN(zfsvfs),
910 		    NULL, &gen, 8);
911 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MODE(zfsvfs),
912 		    NULL, &mode, 8);
913 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_SIZE(zfsvfs),
914 		    NULL, &size, 8);
915 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_PARENT(zfsvfs),
916 		    NULL, &parent, 8);
917 	} else {
918 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MODE(zfsvfs),
919 		    NULL, &mode, 8);
920 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_SIZE(zfsvfs),
921 		    NULL, &size, 8);
922 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GEN(zfsvfs),
923 		    NULL, &gen, 8);
924 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_UID(zfsvfs), NULL,
925 		    &acl_ids->z_fuid, 8);
926 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GID(zfsvfs), NULL,
927 		    &acl_ids->z_fgid, 8);
928 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_PARENT(zfsvfs),
929 		    NULL, &parent, 8);
930 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_FLAGS(zfsvfs),
931 		    NULL, &pflags, 8);
932 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_ATIME(zfsvfs),
933 		    NULL, &atime, 16);
934 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MTIME(zfsvfs),
935 		    NULL, &mtime, 16);
936 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CTIME(zfsvfs),
937 		    NULL, &ctime, 16);
938 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CRTIME(zfsvfs),
939 		    NULL, &crtime, 16);
940 	}
941 
942 	SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_LINKS(zfsvfs), NULL, &links, 8);
943 
944 	if (obj_type == DMU_OT_ZNODE) {
945 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_XATTR(zfsvfs), NULL,
946 		    &empty_xattr, 8);
947 	}
948 	if (obj_type == DMU_OT_ZNODE ||
949 	    (vap->va_type == VBLK || vap->va_type == VCHR)) {
950 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_RDEV(zfsvfs),
951 		    NULL, &rdev, 8);
952 
953 	}
954 	if (obj_type == DMU_OT_ZNODE) {
955 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_FLAGS(zfsvfs),
956 		    NULL, &pflags, 8);
957 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_UID(zfsvfs), NULL,
958 		    &acl_ids->z_fuid, 8);
959 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GID(zfsvfs), NULL,
960 		    &acl_ids->z_fgid, 8);
961 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_PAD(zfsvfs), NULL, pad,
962 		    sizeof (uint64_t) * 4);
963 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_ZNODE_ACL(zfsvfs), NULL,
964 		    &acl_phys, sizeof (zfs_acl_phys_t));
965 	} else if (acl_ids->z_aclp->z_version >= ZFS_ACL_VERSION_FUID) {
966 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_DACL_COUNT(zfsvfs), NULL,
967 		    &acl_ids->z_aclp->z_acl_count, 8);
968 		locate.cb_aclp = acl_ids->z_aclp;
969 		SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_DACL_ACES(zfsvfs),
970 		    zfs_acl_data_locator, &locate,
971 		    acl_ids->z_aclp->z_acl_bytes);
972 		mode = zfs_mode_compute(mode, acl_ids->z_aclp, &pflags,
973 		    acl_ids->z_fuid, acl_ids->z_fgid);
974 	}
975 
976 	VERIFY(sa_replace_all_by_template(sa_hdl, sa_attrs, cnt, tx) == 0);
977 
978 	if (!(flag & IS_ROOT_NODE)) {
979 		*zpp = zfs_znode_alloc(zfsvfs, db, 0, obj_type, sa_hdl);
980 		ASSERT(*zpp != NULL);
981 	} else {
982 		/*
983 		 * If we are creating the root node, the "parent" we
984 		 * passed in is the znode for the root.
985 		 */
986 		*zpp = dzp;
987 
988 		(*zpp)->z_sa_hdl = sa_hdl;
989 	}
990 
991 	(*zpp)->z_pflags = pflags;
992 	(*zpp)->z_mode = mode;
993 
994 	if (vap->va_mask & AT_XVATTR)
995 		zfs_xvattr_set(*zpp, (xvattr_t *)vap, tx);
996 
997 	if (obj_type == DMU_OT_ZNODE ||
998 	    acl_ids->z_aclp->z_version < ZFS_ACL_VERSION_FUID) {
999 		VERIFY0(zfs_aclset_common(*zpp, acl_ids->z_aclp, cr, tx));
1000 	}
1001 	ZFS_OBJ_HOLD_EXIT(zfsvfs, obj);
1002 }
1003 
1004 /*
1005  * Update in-core attributes.  It is assumed the caller will be doing an
1006  * sa_bulk_update to push the changes out.
1007  */
1008 void
1009 zfs_xvattr_set(znode_t *zp, xvattr_t *xvap, dmu_tx_t *tx)
1010 {
1011 	xoptattr_t *xoap;
1012 
1013 	xoap = xva_getxoptattr(xvap);
1014 	ASSERT(xoap);
1015 
1016 	if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) {
1017 		uint64_t times[2];
1018 		ZFS_TIME_ENCODE(&xoap->xoa_createtime, times);
1019 		(void) sa_update(zp->z_sa_hdl, SA_ZPL_CRTIME(zp->z_zfsvfs),
1020 		    &times, sizeof (times), tx);
1021 		XVA_SET_RTN(xvap, XAT_CREATETIME);
1022 	}
1023 	if (XVA_ISSET_REQ(xvap, XAT_READONLY)) {
1024 		ZFS_ATTR_SET(zp, ZFS_READONLY, xoap->xoa_readonly,
1025 		    zp->z_pflags, tx);
1026 		XVA_SET_RTN(xvap, XAT_READONLY);
1027 	}
1028 	if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) {
1029 		ZFS_ATTR_SET(zp, ZFS_HIDDEN, xoap->xoa_hidden,
1030 		    zp->z_pflags, tx);
1031 		XVA_SET_RTN(xvap, XAT_HIDDEN);
1032 	}
1033 	if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) {
1034 		ZFS_ATTR_SET(zp, ZFS_SYSTEM, xoap->xoa_system,
1035 		    zp->z_pflags, tx);
1036 		XVA_SET_RTN(xvap, XAT_SYSTEM);
1037 	}
1038 	if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) {
1039 		ZFS_ATTR_SET(zp, ZFS_ARCHIVE, xoap->xoa_archive,
1040 		    zp->z_pflags, tx);
1041 		XVA_SET_RTN(xvap, XAT_ARCHIVE);
1042 	}
1043 	if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
1044 		ZFS_ATTR_SET(zp, ZFS_IMMUTABLE, xoap->xoa_immutable,
1045 		    zp->z_pflags, tx);
1046 		XVA_SET_RTN(xvap, XAT_IMMUTABLE);
1047 	}
1048 	if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
1049 		ZFS_ATTR_SET(zp, ZFS_NOUNLINK, xoap->xoa_nounlink,
1050 		    zp->z_pflags, tx);
1051 		XVA_SET_RTN(xvap, XAT_NOUNLINK);
1052 	}
1053 	if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
1054 		ZFS_ATTR_SET(zp, ZFS_APPENDONLY, xoap->xoa_appendonly,
1055 		    zp->z_pflags, tx);
1056 		XVA_SET_RTN(xvap, XAT_APPENDONLY);
1057 	}
1058 	if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
1059 		ZFS_ATTR_SET(zp, ZFS_NODUMP, xoap->xoa_nodump,
1060 		    zp->z_pflags, tx);
1061 		XVA_SET_RTN(xvap, XAT_NODUMP);
1062 	}
1063 	if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) {
1064 		ZFS_ATTR_SET(zp, ZFS_OPAQUE, xoap->xoa_opaque,
1065 		    zp->z_pflags, tx);
1066 		XVA_SET_RTN(xvap, XAT_OPAQUE);
1067 	}
1068 	if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
1069 		ZFS_ATTR_SET(zp, ZFS_AV_QUARANTINED,
1070 		    xoap->xoa_av_quarantined, zp->z_pflags, tx);
1071 		XVA_SET_RTN(xvap, XAT_AV_QUARANTINED);
1072 	}
1073 	if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
1074 		ZFS_ATTR_SET(zp, ZFS_AV_MODIFIED, xoap->xoa_av_modified,
1075 		    zp->z_pflags, tx);
1076 		XVA_SET_RTN(xvap, XAT_AV_MODIFIED);
1077 	}
1078 	if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) {
1079 		zfs_sa_set_scanstamp(zp, xvap, tx);
1080 		XVA_SET_RTN(xvap, XAT_AV_SCANSTAMP);
1081 	}
1082 	if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
1083 		ZFS_ATTR_SET(zp, ZFS_REPARSE, xoap->xoa_reparse,
1084 		    zp->z_pflags, tx);
1085 		XVA_SET_RTN(xvap, XAT_REPARSE);
1086 	}
1087 	if (XVA_ISSET_REQ(xvap, XAT_OFFLINE)) {
1088 		ZFS_ATTR_SET(zp, ZFS_OFFLINE, xoap->xoa_offline,
1089 		    zp->z_pflags, tx);
1090 		XVA_SET_RTN(xvap, XAT_OFFLINE);
1091 	}
1092 	if (XVA_ISSET_REQ(xvap, XAT_SPARSE)) {
1093 		ZFS_ATTR_SET(zp, ZFS_SPARSE, xoap->xoa_sparse,
1094 		    zp->z_pflags, tx);
1095 		XVA_SET_RTN(xvap, XAT_SPARSE);
1096 	}
1097 }
1098 
1099 int
1100 zfs_zget(zfsvfs_t *zfsvfs, uint64_t obj_num, znode_t **zpp)
1101 {
1102 	dmu_object_info_t doi;
1103 	dmu_buf_t	*db;
1104 	znode_t		*zp;
1105 	int err;
1106 	sa_handle_t	*hdl;
1107 
1108 	*zpp = NULL;
1109 
1110 	ZFS_OBJ_HOLD_ENTER(zfsvfs, obj_num);
1111 
1112 	err = sa_buf_hold(zfsvfs->z_os, obj_num, NULL, &db);
1113 	if (err) {
1114 		ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
1115 		return (err);
1116 	}
1117 
1118 	dmu_object_info_from_db(db, &doi);
1119 	if (doi.doi_bonus_type != DMU_OT_SA &&
1120 	    (doi.doi_bonus_type != DMU_OT_ZNODE ||
1121 	    (doi.doi_bonus_type == DMU_OT_ZNODE &&
1122 	    doi.doi_bonus_size < sizeof (znode_phys_t)))) {
1123 		sa_buf_rele(db, NULL);
1124 		ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
1125 		return (SET_ERROR(EINVAL));
1126 	}
1127 
1128 	hdl = dmu_buf_get_user(db);
1129 	if (hdl != NULL) {
1130 		zp  = sa_get_userdata(hdl);
1131 
1132 
1133 		/*
1134 		 * Since "SA" does immediate eviction we
1135 		 * should never find a sa handle that doesn't
1136 		 * know about the znode.
1137 		 */
1138 
1139 		ASSERT3P(zp, !=, NULL);
1140 
1141 		mutex_enter(&zp->z_lock);
1142 		ASSERT3U(zp->z_id, ==, obj_num);
1143 		if (zp->z_unlinked) {
1144 			err = SET_ERROR(ENOENT);
1145 		} else {
1146 			VN_HOLD(ZTOV(zp));
1147 			*zpp = zp;
1148 			err = 0;
1149 		}
1150 		sa_buf_rele(db, NULL);
1151 		mutex_exit(&zp->z_lock);
1152 		ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
1153 		return (err);
1154 	}
1155 
1156 	/*
1157 	 * Not found create new znode/vnode
1158 	 * but only if file exists.
1159 	 *
1160 	 * There is a small window where zfs_vget() could
1161 	 * find this object while a file create is still in
1162 	 * progress.  This is checked for in zfs_znode_alloc()
1163 	 *
1164 	 * if zfs_znode_alloc() fails it will drop the hold on the
1165 	 * bonus buffer.
1166 	 */
1167 	zp = zfs_znode_alloc(zfsvfs, db, doi.doi_data_block_size,
1168 	    doi.doi_bonus_type, NULL);
1169 	if (zp == NULL) {
1170 		err = SET_ERROR(ENOENT);
1171 	} else {
1172 		*zpp = zp;
1173 	}
1174 	ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
1175 	return (err);
1176 }
1177 
1178 int
1179 zfs_rezget(znode_t *zp)
1180 {
1181 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1182 	dmu_object_info_t doi;
1183 	dmu_buf_t *db;
1184 	uint64_t obj_num = zp->z_id;
1185 	uint64_t mode;
1186 	sa_bulk_attr_t bulk[8];
1187 	int err;
1188 	int count = 0;
1189 	uint64_t gen;
1190 
1191 	ZFS_OBJ_HOLD_ENTER(zfsvfs, obj_num);
1192 
1193 	mutex_enter(&zp->z_acl_lock);
1194 	if (zp->z_acl_cached) {
1195 		zfs_acl_free(zp->z_acl_cached);
1196 		zp->z_acl_cached = NULL;
1197 	}
1198 
1199 	mutex_exit(&zp->z_acl_lock);
1200 	ASSERT(zp->z_sa_hdl == NULL);
1201 	err = sa_buf_hold(zfsvfs->z_os, obj_num, NULL, &db);
1202 	if (err) {
1203 		ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
1204 		return (err);
1205 	}
1206 
1207 	dmu_object_info_from_db(db, &doi);
1208 	if (doi.doi_bonus_type != DMU_OT_SA &&
1209 	    (doi.doi_bonus_type != DMU_OT_ZNODE ||
1210 	    (doi.doi_bonus_type == DMU_OT_ZNODE &&
1211 	    doi.doi_bonus_size < sizeof (znode_phys_t)))) {
1212 		sa_buf_rele(db, NULL);
1213 		ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
1214 		return (SET_ERROR(EINVAL));
1215 	}
1216 
1217 	zfs_znode_sa_init(zfsvfs, zp, db, doi.doi_bonus_type, NULL);
1218 
1219 	/* reload cached values */
1220 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GEN(zfsvfs), NULL,
1221 	    &gen, sizeof (gen));
1222 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
1223 	    &zp->z_size, sizeof (zp->z_size));
1224 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_LINKS(zfsvfs), NULL,
1225 	    &zp->z_links, sizeof (zp->z_links));
1226 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
1227 	    &zp->z_pflags, sizeof (zp->z_pflags));
1228 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL,
1229 	    &zp->z_atime, sizeof (zp->z_atime));
1230 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL,
1231 	    &zp->z_uid, sizeof (zp->z_uid));
1232 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), NULL,
1233 	    &zp->z_gid, sizeof (zp->z_gid));
1234 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL,
1235 	    &mode, sizeof (mode));
1236 
1237 	if (sa_bulk_lookup(zp->z_sa_hdl, bulk, count)) {
1238 		zfs_znode_dmu_fini(zp);
1239 		ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
1240 		return (SET_ERROR(EIO));
1241 	}
1242 
1243 	zp->z_mode = mode;
1244 
1245 	if (gen != zp->z_gen) {
1246 		zfs_znode_dmu_fini(zp);
1247 		ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
1248 		return (SET_ERROR(EIO));
1249 	}
1250 
1251 	zp->z_unlinked = (zp->z_links == 0);
1252 	zp->z_blksz = doi.doi_data_block_size;
1253 
1254 	ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
1255 
1256 	return (0);
1257 }
1258 
1259 void
1260 zfs_znode_delete(znode_t *zp, dmu_tx_t *tx)
1261 {
1262 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1263 	objset_t *os = zfsvfs->z_os;
1264 	uint64_t obj = zp->z_id;
1265 	uint64_t acl_obj = zfs_external_acl(zp);
1266 
1267 	ZFS_OBJ_HOLD_ENTER(zfsvfs, obj);
1268 	if (acl_obj) {
1269 		VERIFY(!zp->z_is_sa);
1270 		VERIFY(0 == dmu_object_free(os, acl_obj, tx));
1271 	}
1272 	VERIFY(0 == dmu_object_free(os, obj, tx));
1273 	zfs_znode_dmu_fini(zp);
1274 	ZFS_OBJ_HOLD_EXIT(zfsvfs, obj);
1275 	zfs_znode_free(zp);
1276 }
1277 
1278 void
1279 zfs_zinactive(znode_t *zp)
1280 {
1281 	vnode_t	*vp = ZTOV(zp);
1282 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1283 	uint64_t z_id = zp->z_id;
1284 
1285 	ASSERT(zp->z_sa_hdl);
1286 
1287 	/*
1288 	 * Don't allow a zfs_zget() while were trying to release this znode
1289 	 */
1290 	ZFS_OBJ_HOLD_ENTER(zfsvfs, z_id);
1291 
1292 	mutex_enter(&zp->z_lock);
1293 	mutex_enter(&vp->v_lock);
1294 	vp->v_count--;
1295 	if (vp->v_count > 0 || vn_has_cached_data(vp)) {
1296 		/*
1297 		 * If the hold count is greater than zero, somebody has
1298 		 * obtained a new reference on this znode while we were
1299 		 * processing it here, so we are done.  If we still have
1300 		 * mapped pages then we are also done, since we don't
1301 		 * want to inactivate the znode until the pages get pushed.
1302 		 *
1303 		 * XXX - if vn_has_cached_data(vp) is true, but count == 0,
1304 		 * this seems like it would leave the znode hanging with
1305 		 * no chance to go inactive...
1306 		 */
1307 		mutex_exit(&vp->v_lock);
1308 		mutex_exit(&zp->z_lock);
1309 		ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id);
1310 		return;
1311 	}
1312 	mutex_exit(&vp->v_lock);
1313 
1314 	/*
1315 	 * If this was the last reference to a file with no links,
1316 	 * remove the file from the file system.
1317 	 */
1318 	if (zp->z_unlinked) {
1319 		mutex_exit(&zp->z_lock);
1320 		ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id);
1321 		zfs_rmnode(zp);
1322 		return;
1323 	}
1324 
1325 	mutex_exit(&zp->z_lock);
1326 	zfs_znode_dmu_fini(zp);
1327 	ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id);
1328 	zfs_znode_free(zp);
1329 }
1330 
1331 void
1332 zfs_znode_free(znode_t *zp)
1333 {
1334 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1335 
1336 	vn_invalid(ZTOV(zp));
1337 
1338 	ASSERT(ZTOV(zp)->v_count == 0);
1339 
1340 	mutex_enter(&zfsvfs->z_znodes_lock);
1341 	POINTER_INVALIDATE(&zp->z_zfsvfs);
1342 	list_remove(&zfsvfs->z_all_znodes, zp);
1343 	mutex_exit(&zfsvfs->z_znodes_lock);
1344 
1345 	if (zp->z_acl_cached) {
1346 		zfs_acl_free(zp->z_acl_cached);
1347 		zp->z_acl_cached = NULL;
1348 	}
1349 
1350 	kmem_cache_free(znode_cache, zp);
1351 
1352 	VFS_RELE(zfsvfs->z_vfs);
1353 }
1354 
1355 void
1356 zfs_tstamp_update_setup(znode_t *zp, uint_t flag, uint64_t mtime[2],
1357     uint64_t ctime[2], boolean_t have_tx)
1358 {
1359 	timestruc_t	now;
1360 
1361 	gethrestime(&now);
1362 
1363 	if (have_tx) {	/* will sa_bulk_update happen really soon? */
1364 		zp->z_atime_dirty = 0;
1365 		zp->z_seq++;
1366 	} else {
1367 		zp->z_atime_dirty = 1;
1368 	}
1369 
1370 	if (flag & AT_ATIME) {
1371 		ZFS_TIME_ENCODE(&now, zp->z_atime);
1372 	}
1373 
1374 	if (flag & AT_MTIME) {
1375 		ZFS_TIME_ENCODE(&now, mtime);
1376 		if (zp->z_zfsvfs->z_use_fuids) {
1377 			zp->z_pflags |= (ZFS_ARCHIVE |
1378 			    ZFS_AV_MODIFIED);
1379 		}
1380 	}
1381 
1382 	if (flag & AT_CTIME) {
1383 		ZFS_TIME_ENCODE(&now, ctime);
1384 		if (zp->z_zfsvfs->z_use_fuids)
1385 			zp->z_pflags |= ZFS_ARCHIVE;
1386 	}
1387 }
1388 
1389 /*
1390  * Grow the block size for a file.
1391  *
1392  *	IN:	zp	- znode of file to free data in.
1393  *		size	- requested block size
1394  *		tx	- open transaction.
1395  *
1396  * NOTE: this function assumes that the znode is write locked.
1397  */
1398 void
1399 zfs_grow_blocksize(znode_t *zp, uint64_t size, dmu_tx_t *tx)
1400 {
1401 	int		error;
1402 	u_longlong_t	dummy;
1403 
1404 	if (size <= zp->z_blksz)
1405 		return;
1406 	/*
1407 	 * If the file size is already greater than the current blocksize,
1408 	 * we will not grow.  If there is more than one block in a file,
1409 	 * the blocksize cannot change.
1410 	 */
1411 	if (zp->z_blksz && zp->z_size > zp->z_blksz)
1412 		return;
1413 
1414 	error = dmu_object_set_blocksize(zp->z_zfsvfs->z_os, zp->z_id,
1415 	    size, 0, tx);
1416 
1417 	if (error == ENOTSUP)
1418 		return;
1419 	ASSERT0(error);
1420 
1421 	/* What blocksize did we actually get? */
1422 	dmu_object_size_from_db(sa_get_db(zp->z_sa_hdl), &zp->z_blksz, &dummy);
1423 }
1424 
1425 /*
1426  * This is a dummy interface used when pvn_vplist_dirty() should *not*
1427  * be calling back into the fs for a putpage().  E.g.: when truncating
1428  * a file, the pages being "thrown away* don't need to be written out.
1429  */
1430 /* ARGSUSED */
1431 static int
1432 zfs_no_putpage(vnode_t *vp, page_t *pp, u_offset_t *offp, size_t *lenp,
1433     int flags, cred_t *cr)
1434 {
1435 	ASSERT(0);
1436 	return (0);
1437 }
1438 
1439 /*
1440  * Increase the file length
1441  *
1442  *	IN:	zp	- znode of file to free data in.
1443  *		end	- new end-of-file
1444  *
1445  * 	RETURN:	0 on success, error code on failure
1446  */
1447 static int
1448 zfs_extend(znode_t *zp, uint64_t end)
1449 {
1450 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1451 	dmu_tx_t *tx;
1452 	rl_t *rl;
1453 	uint64_t newblksz;
1454 	int error;
1455 
1456 	/*
1457 	 * We will change zp_size, lock the whole file.
1458 	 */
1459 	rl = zfs_range_lock(zp, 0, UINT64_MAX, RL_WRITER);
1460 
1461 	/*
1462 	 * Nothing to do if file already at desired length.
1463 	 */
1464 	if (end <= zp->z_size) {
1465 		zfs_range_unlock(rl);
1466 		return (0);
1467 	}
1468 	tx = dmu_tx_create(zfsvfs->z_os);
1469 	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1470 	zfs_sa_upgrade_txholds(tx, zp);
1471 	if (end > zp->z_blksz &&
1472 	    (!ISP2(zp->z_blksz) || zp->z_blksz < zfsvfs->z_max_blksz)) {
1473 		/*
1474 		 * We are growing the file past the current block size.
1475 		 */
1476 		if (zp->z_blksz > zp->z_zfsvfs->z_max_blksz) {
1477 			ASSERT(!ISP2(zp->z_blksz));
1478 			newblksz = MIN(end, SPA_MAXBLOCKSIZE);
1479 		} else {
1480 			newblksz = MIN(end, zp->z_zfsvfs->z_max_blksz);
1481 		}
1482 		dmu_tx_hold_write(tx, zp->z_id, 0, newblksz);
1483 	} else {
1484 		newblksz = 0;
1485 	}
1486 
1487 	error = dmu_tx_assign(tx, TXG_WAIT);
1488 	if (error) {
1489 		dmu_tx_abort(tx);
1490 		zfs_range_unlock(rl);
1491 		return (error);
1492 	}
1493 
1494 	if (newblksz)
1495 		zfs_grow_blocksize(zp, newblksz, tx);
1496 
1497 	zp->z_size = end;
1498 
1499 	VERIFY(0 == sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zp->z_zfsvfs),
1500 	    &zp->z_size, sizeof (zp->z_size), tx));
1501 
1502 	zfs_range_unlock(rl);
1503 
1504 	dmu_tx_commit(tx);
1505 
1506 	return (0);
1507 }
1508 
1509 /*
1510  * Free space in a file.
1511  *
1512  *	IN:	zp	- znode of file to free data in.
1513  *		off	- start of section to free.
1514  *		len	- length of section to free.
1515  *
1516  * 	RETURN:	0 on success, error code on failure
1517  */
1518 static int
1519 zfs_free_range(znode_t *zp, uint64_t off, uint64_t len)
1520 {
1521 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1522 	rl_t *rl;
1523 	int error;
1524 
1525 	/*
1526 	 * Lock the range being freed.
1527 	 */
1528 	rl = zfs_range_lock(zp, off, len, RL_WRITER);
1529 
1530 	/*
1531 	 * Nothing to do if file already at desired length.
1532 	 */
1533 	if (off >= zp->z_size) {
1534 		zfs_range_unlock(rl);
1535 		return (0);
1536 	}
1537 
1538 	if (off + len > zp->z_size)
1539 		len = zp->z_size - off;
1540 
1541 	error = dmu_free_long_range(zfsvfs->z_os, zp->z_id, off, len);
1542 
1543 	zfs_range_unlock(rl);
1544 
1545 	return (error);
1546 }
1547 
1548 /*
1549  * Truncate a file
1550  *
1551  *	IN:	zp	- znode of file to free data in.
1552  *		end	- new end-of-file.
1553  *
1554  * 	RETURN:	0 on success, error code on failure
1555  */
1556 static int
1557 zfs_trunc(znode_t *zp, uint64_t end)
1558 {
1559 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1560 	vnode_t *vp = ZTOV(zp);
1561 	dmu_tx_t *tx;
1562 	rl_t *rl;
1563 	int error;
1564 	sa_bulk_attr_t bulk[2];
1565 	int count = 0;
1566 
1567 	/*
1568 	 * We will change zp_size, lock the whole file.
1569 	 */
1570 	rl = zfs_range_lock(zp, 0, UINT64_MAX, RL_WRITER);
1571 
1572 	/*
1573 	 * Nothing to do if file already at desired length.
1574 	 */
1575 	if (end >= zp->z_size) {
1576 		zfs_range_unlock(rl);
1577 		return (0);
1578 	}
1579 
1580 	error = dmu_free_long_range(zfsvfs->z_os, zp->z_id, end,  -1);
1581 	if (error) {
1582 		zfs_range_unlock(rl);
1583 		return (error);
1584 	}
1585 	tx = dmu_tx_create(zfsvfs->z_os);
1586 	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1587 	zfs_sa_upgrade_txholds(tx, zp);
1588 	error = dmu_tx_assign(tx, TXG_WAIT);
1589 	if (error) {
1590 		dmu_tx_abort(tx);
1591 		zfs_range_unlock(rl);
1592 		return (error);
1593 	}
1594 
1595 	zp->z_size = end;
1596 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs),
1597 	    NULL, &zp->z_size, sizeof (zp->z_size));
1598 
1599 	if (end == 0) {
1600 		zp->z_pflags &= ~ZFS_SPARSE;
1601 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs),
1602 		    NULL, &zp->z_pflags, 8);
1603 	}
1604 	VERIFY(sa_bulk_update(zp->z_sa_hdl, bulk, count, tx) == 0);
1605 
1606 	dmu_tx_commit(tx);
1607 
1608 	/*
1609 	 * Clear any mapped pages in the truncated region.  This has to
1610 	 * happen outside of the transaction to avoid the possibility of
1611 	 * a deadlock with someone trying to push a page that we are
1612 	 * about to invalidate.
1613 	 */
1614 	if (vn_has_cached_data(vp)) {
1615 		page_t *pp;
1616 		uint64_t start = end & PAGEMASK;
1617 		int poff = end & PAGEOFFSET;
1618 
1619 		if (poff != 0 && (pp = page_lookup(vp, start, SE_SHARED))) {
1620 			/*
1621 			 * We need to zero a partial page.
1622 			 */
1623 			pagezero(pp, poff, PAGESIZE - poff);
1624 			start += PAGESIZE;
1625 			page_unlock(pp);
1626 		}
1627 		error = pvn_vplist_dirty(vp, start, zfs_no_putpage,
1628 		    B_INVAL | B_TRUNC, NULL);
1629 		ASSERT(error == 0);
1630 	}
1631 
1632 	zfs_range_unlock(rl);
1633 
1634 	return (0);
1635 }
1636 
1637 /*
1638  * Free space in a file
1639  *
1640  *	IN:	zp	- znode of file to free data in.
1641  *		off	- start of range
1642  *		len	- end of range (0 => EOF)
1643  *		flag	- current file open mode flags.
1644  *		log	- TRUE if this action should be logged
1645  *
1646  * 	RETURN:	0 on success, error code on failure
1647  */
1648 int
1649 zfs_freesp(znode_t *zp, uint64_t off, uint64_t len, int flag, boolean_t log)
1650 {
1651 	vnode_t *vp = ZTOV(zp);
1652 	dmu_tx_t *tx;
1653 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1654 	zilog_t *zilog = zfsvfs->z_log;
1655 	uint64_t mode;
1656 	uint64_t mtime[2], ctime[2];
1657 	sa_bulk_attr_t bulk[3];
1658 	int count = 0;
1659 	int error;
1660 
1661 	if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs), &mode,
1662 	    sizeof (mode))) != 0)
1663 		return (error);
1664 
1665 	if (off > zp->z_size) {
1666 		error =  zfs_extend(zp, off+len);
1667 		if (error == 0 && log)
1668 			goto log;
1669 		else
1670 			return (error);
1671 	}
1672 
1673 	/*
1674 	 * Check for any locks in the region to be freed.
1675 	 */
1676 
1677 	if (MANDLOCK(vp, (mode_t)mode)) {
1678 		uint64_t length = (len ? len : zp->z_size - off);
1679 		if (error = chklock(vp, FWRITE, off, length, flag, NULL))
1680 			return (error);
1681 	}
1682 
1683 	if (len == 0) {
1684 		error = zfs_trunc(zp, off);
1685 	} else {
1686 		if ((error = zfs_free_range(zp, off, len)) == 0 &&
1687 		    off + len > zp->z_size)
1688 			error = zfs_extend(zp, off+len);
1689 	}
1690 	if (error || !log)
1691 		return (error);
1692 log:
1693 	tx = dmu_tx_create(zfsvfs->z_os);
1694 	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1695 	zfs_sa_upgrade_txholds(tx, zp);
1696 	error = dmu_tx_assign(tx, TXG_WAIT);
1697 	if (error) {
1698 		dmu_tx_abort(tx);
1699 		return (error);
1700 	}
1701 
1702 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, mtime, 16);
1703 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, ctime, 16);
1704 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs),
1705 	    NULL, &zp->z_pflags, 8);
1706 	zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime, B_TRUE);
1707 	error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
1708 	ASSERT(error == 0);
1709 
1710 	zfs_log_truncate(zilog, tx, TX_TRUNCATE, zp, off, len);
1711 
1712 	dmu_tx_commit(tx);
1713 	return (0);
1714 }
1715 
1716 void
1717 zfs_create_fs(objset_t *os, cred_t *cr, nvlist_t *zplprops, dmu_tx_t *tx)
1718 {
1719 	zfsvfs_t	zfsvfs;
1720 	uint64_t	moid, obj, sa_obj, version;
1721 	uint64_t	sense = ZFS_CASE_SENSITIVE;
1722 	uint64_t	norm = 0;
1723 	nvpair_t	*elem;
1724 	int		error;
1725 	int		i;
1726 	znode_t		*rootzp = NULL;
1727 	vnode_t		*vp;
1728 	vattr_t		vattr;
1729 	znode_t		*zp;
1730 	zfs_acl_ids_t	acl_ids;
1731 
1732 	/*
1733 	 * First attempt to create master node.
1734 	 */
1735 	/*
1736 	 * In an empty objset, there are no blocks to read and thus
1737 	 * there can be no i/o errors (which we assert below).
1738 	 */
1739 	moid = MASTER_NODE_OBJ;
1740 	error = zap_create_claim(os, moid, DMU_OT_MASTER_NODE,
1741 	    DMU_OT_NONE, 0, tx);
1742 	ASSERT(error == 0);
1743 
1744 	/*
1745 	 * Set starting attributes.
1746 	 */
1747 	version = zfs_zpl_version_map(spa_version(dmu_objset_spa(os)));
1748 	elem = NULL;
1749 	while ((elem = nvlist_next_nvpair(zplprops, elem)) != NULL) {
1750 		/* For the moment we expect all zpl props to be uint64_ts */
1751 		uint64_t val;
1752 		char *name;
1753 
1754 		ASSERT(nvpair_type(elem) == DATA_TYPE_UINT64);
1755 		VERIFY(nvpair_value_uint64(elem, &val) == 0);
1756 		name = nvpair_name(elem);
1757 		if (strcmp(name, zfs_prop_to_name(ZFS_PROP_VERSION)) == 0) {
1758 			if (val < version)
1759 				version = val;
1760 		} else {
1761 			error = zap_update(os, moid, name, 8, 1, &val, tx);
1762 		}
1763 		ASSERT(error == 0);
1764 		if (strcmp(name, zfs_prop_to_name(ZFS_PROP_NORMALIZE)) == 0)
1765 			norm = val;
1766 		else if (strcmp(name, zfs_prop_to_name(ZFS_PROP_CASE)) == 0)
1767 			sense = val;
1768 	}
1769 	ASSERT(version != 0);
1770 	error = zap_update(os, moid, ZPL_VERSION_STR, 8, 1, &version, tx);
1771 
1772 	/*
1773 	 * Create zap object used for SA attribute registration
1774 	 */
1775 
1776 	if (version >= ZPL_VERSION_SA) {
1777 		sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE,
1778 		    DMU_OT_NONE, 0, tx);
1779 		error = zap_add(os, moid, ZFS_SA_ATTRS, 8, 1, &sa_obj, tx);
1780 		ASSERT(error == 0);
1781 	} else {
1782 		sa_obj = 0;
1783 	}
1784 	/*
1785 	 * Create a delete queue.
1786 	 */
1787 	obj = zap_create(os, DMU_OT_UNLINKED_SET, DMU_OT_NONE, 0, tx);
1788 
1789 	error = zap_add(os, moid, ZFS_UNLINKED_SET, 8, 1, &obj, tx);
1790 	ASSERT(error == 0);
1791 
1792 	/*
1793 	 * Create root znode.  Create minimal znode/vnode/zfsvfs
1794 	 * to allow zfs_mknode to work.
1795 	 */
1796 	vattr.va_mask = AT_MODE|AT_UID|AT_GID|AT_TYPE;
1797 	vattr.va_type = VDIR;
1798 	vattr.va_mode = S_IFDIR|0755;
1799 	vattr.va_uid = crgetuid(cr);
1800 	vattr.va_gid = crgetgid(cr);
1801 
1802 	rootzp = kmem_cache_alloc(znode_cache, KM_SLEEP);
1803 	ASSERT(!POINTER_IS_VALID(rootzp->z_zfsvfs));
1804 	rootzp->z_moved = 0;
1805 	rootzp->z_unlinked = 0;
1806 	rootzp->z_atime_dirty = 0;
1807 	rootzp->z_is_sa = USE_SA(version, os);
1808 
1809 	vp = ZTOV(rootzp);
1810 	vn_reinit(vp);
1811 	vp->v_type = VDIR;
1812 
1813 	bzero(&zfsvfs, sizeof (zfsvfs_t));
1814 
1815 	zfsvfs.z_os = os;
1816 	zfsvfs.z_parent = &zfsvfs;
1817 	zfsvfs.z_version = version;
1818 	zfsvfs.z_use_fuids = USE_FUIDS(version, os);
1819 	zfsvfs.z_use_sa = USE_SA(version, os);
1820 	zfsvfs.z_norm = norm;
1821 
1822 	error = sa_setup(os, sa_obj, zfs_attr_table, ZPL_END,
1823 	    &zfsvfs.z_attr_table);
1824 
1825 	ASSERT(error == 0);
1826 
1827 	/*
1828 	 * Fold case on file systems that are always or sometimes case
1829 	 * insensitive.
1830 	 */
1831 	if (sense == ZFS_CASE_INSENSITIVE || sense == ZFS_CASE_MIXED)
1832 		zfsvfs.z_norm |= U8_TEXTPREP_TOUPPER;
1833 
1834 	mutex_init(&zfsvfs.z_znodes_lock, NULL, MUTEX_DEFAULT, NULL);
1835 	list_create(&zfsvfs.z_all_znodes, sizeof (znode_t),
1836 	    offsetof(znode_t, z_link_node));
1837 
1838 	for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
1839 		mutex_init(&zfsvfs.z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL);
1840 
1841 	rootzp->z_zfsvfs = &zfsvfs;
1842 	VERIFY(0 == zfs_acl_ids_create(rootzp, IS_ROOT_NODE, &vattr,
1843 	    cr, NULL, &acl_ids));
1844 	zfs_mknode(rootzp, &vattr, tx, cr, IS_ROOT_NODE, &zp, &acl_ids);
1845 	ASSERT3P(zp, ==, rootzp);
1846 	ASSERT(!vn_in_dnlc(ZTOV(rootzp))); /* not valid to move */
1847 	error = zap_add(os, moid, ZFS_ROOT_OBJ, 8, 1, &rootzp->z_id, tx);
1848 	ASSERT(error == 0);
1849 	zfs_acl_ids_free(&acl_ids);
1850 	POINTER_INVALIDATE(&rootzp->z_zfsvfs);
1851 
1852 	ZTOV(rootzp)->v_count = 0;
1853 	sa_handle_destroy(rootzp->z_sa_hdl);
1854 	kmem_cache_free(znode_cache, rootzp);
1855 
1856 	/*
1857 	 * Create shares directory
1858 	 */
1859 
1860 	error = zfs_create_share_dir(&zfsvfs, tx);
1861 
1862 	ASSERT(error == 0);
1863 
1864 	for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
1865 		mutex_destroy(&zfsvfs.z_hold_mtx[i]);
1866 }
1867 
1868 #endif /* _KERNEL */
1869 
1870 static int
1871 zfs_sa_setup(objset_t *osp, sa_attr_type_t **sa_table)
1872 {
1873 	uint64_t sa_obj = 0;
1874 	int error;
1875 
1876 	error = zap_lookup(osp, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1, &sa_obj);
1877 	if (error != 0 && error != ENOENT)
1878 		return (error);
1879 
1880 	error = sa_setup(osp, sa_obj, zfs_attr_table, ZPL_END, sa_table);
1881 	return (error);
1882 }
1883 
1884 static int
1885 zfs_grab_sa_handle(objset_t *osp, uint64_t obj, sa_handle_t **hdlp,
1886     dmu_buf_t **db, void *tag)
1887 {
1888 	dmu_object_info_t doi;
1889 	int error;
1890 
1891 	if ((error = sa_buf_hold(osp, obj, tag, db)) != 0)
1892 		return (error);
1893 
1894 	dmu_object_info_from_db(*db, &doi);
1895 	if ((doi.doi_bonus_type != DMU_OT_SA &&
1896 	    doi.doi_bonus_type != DMU_OT_ZNODE) ||
1897 	    doi.doi_bonus_type == DMU_OT_ZNODE &&
1898 	    doi.doi_bonus_size < sizeof (znode_phys_t)) {
1899 		sa_buf_rele(*db, tag);
1900 		return (SET_ERROR(ENOTSUP));
1901 	}
1902 
1903 	error = sa_handle_get(osp, obj, NULL, SA_HDL_PRIVATE, hdlp);
1904 	if (error != 0) {
1905 		sa_buf_rele(*db, tag);
1906 		return (error);
1907 	}
1908 
1909 	return (0);
1910 }
1911 
1912 void
1913 zfs_release_sa_handle(sa_handle_t *hdl, dmu_buf_t *db, void *tag)
1914 {
1915 	sa_handle_destroy(hdl);
1916 	sa_buf_rele(db, tag);
1917 }
1918 
1919 /*
1920  * Given an object number, return its parent object number and whether
1921  * or not the object is an extended attribute directory.
1922  */
1923 static int
1924 zfs_obj_to_pobj(objset_t *osp, sa_handle_t *hdl, sa_attr_type_t *sa_table,
1925     uint64_t *pobjp, int *is_xattrdir)
1926 {
1927 	uint64_t parent;
1928 	uint64_t pflags;
1929 	uint64_t mode;
1930 	uint64_t parent_mode;
1931 	sa_bulk_attr_t bulk[3];
1932 	sa_handle_t *sa_hdl;
1933 	dmu_buf_t *sa_db;
1934 	int count = 0;
1935 	int error;
1936 
1937 	SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_PARENT], NULL,
1938 	    &parent, sizeof (parent));
1939 	SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_FLAGS], NULL,
1940 	    &pflags, sizeof (pflags));
1941 	SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_MODE], NULL,
1942 	    &mode, sizeof (mode));
1943 
1944 	if ((error = sa_bulk_lookup(hdl, bulk, count)) != 0)
1945 		return (error);
1946 
1947 	/*
1948 	 * When a link is removed its parent pointer is not changed and will
1949 	 * be invalid.  There are two cases where a link is removed but the
1950 	 * file stays around, when it goes to the delete queue and when there
1951 	 * are additional links.
1952 	 */
1953 	error = zfs_grab_sa_handle(osp, parent, &sa_hdl, &sa_db, FTAG);
1954 	if (error != 0)
1955 		return (error);
1956 
1957 	error = sa_lookup(sa_hdl, ZPL_MODE, &parent_mode, sizeof (parent_mode));
1958 	zfs_release_sa_handle(sa_hdl, sa_db, FTAG);
1959 	if (error != 0)
1960 		return (error);
1961 
1962 	*is_xattrdir = ((pflags & ZFS_XATTR) != 0) && S_ISDIR(mode);
1963 
1964 	/*
1965 	 * Extended attributes can be applied to files, directories, etc.
1966 	 * Otherwise the parent must be a directory.
1967 	 */
1968 	if (!*is_xattrdir && !S_ISDIR(parent_mode))
1969 		return (SET_ERROR(EINVAL));
1970 
1971 	*pobjp = parent;
1972 
1973 	return (0);
1974 }
1975 
1976 /*
1977  * Given an object number, return some zpl level statistics
1978  */
1979 static int
1980 zfs_obj_to_stats_impl(sa_handle_t *hdl, sa_attr_type_t *sa_table,
1981     zfs_stat_t *sb)
1982 {
1983 	sa_bulk_attr_t bulk[4];
1984 	int count = 0;
1985 
1986 	SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_MODE], NULL,
1987 	    &sb->zs_mode, sizeof (sb->zs_mode));
1988 	SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_GEN], NULL,
1989 	    &sb->zs_gen, sizeof (sb->zs_gen));
1990 	SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_LINKS], NULL,
1991 	    &sb->zs_links, sizeof (sb->zs_links));
1992 	SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_CTIME], NULL,
1993 	    &sb->zs_ctime, sizeof (sb->zs_ctime));
1994 
1995 	return (sa_bulk_lookup(hdl, bulk, count));
1996 }
1997 
1998 static int
1999 zfs_obj_to_path_impl(objset_t *osp, uint64_t obj, sa_handle_t *hdl,
2000     sa_attr_type_t *sa_table, char *buf, int len)
2001 {
2002 	sa_handle_t *sa_hdl;
2003 	sa_handle_t *prevhdl = NULL;
2004 	dmu_buf_t *prevdb = NULL;
2005 	dmu_buf_t *sa_db = NULL;
2006 	char *path = buf + len - 1;
2007 	int error;
2008 
2009 	*path = '\0';
2010 	sa_hdl = hdl;
2011 
2012 	for (;;) {
2013 		uint64_t pobj;
2014 		char component[MAXNAMELEN + 2];
2015 		size_t complen;
2016 		int is_xattrdir;
2017 
2018 		if (prevdb)
2019 			zfs_release_sa_handle(prevhdl, prevdb, FTAG);
2020 
2021 		if ((error = zfs_obj_to_pobj(osp, sa_hdl, sa_table, &pobj,
2022 		    &is_xattrdir)) != 0)
2023 			break;
2024 
2025 		if (pobj == obj) {
2026 			if (path[0] != '/')
2027 				*--path = '/';
2028 			break;
2029 		}
2030 
2031 		component[0] = '/';
2032 		if (is_xattrdir) {
2033 			(void) sprintf(component + 1, "<xattrdir>");
2034 		} else {
2035 			error = zap_value_search(osp, pobj, obj,
2036 			    ZFS_DIRENT_OBJ(-1ULL), component + 1);
2037 			if (error != 0)
2038 				break;
2039 		}
2040 
2041 		complen = strlen(component);
2042 		path -= complen;
2043 		ASSERT(path >= buf);
2044 		bcopy(component, path, complen);
2045 		obj = pobj;
2046 
2047 		if (sa_hdl != hdl) {
2048 			prevhdl = sa_hdl;
2049 			prevdb = sa_db;
2050 		}
2051 		error = zfs_grab_sa_handle(osp, obj, &sa_hdl, &sa_db, FTAG);
2052 		if (error != 0) {
2053 			sa_hdl = prevhdl;
2054 			sa_db = prevdb;
2055 			break;
2056 		}
2057 	}
2058 
2059 	if (sa_hdl != NULL && sa_hdl != hdl) {
2060 		ASSERT(sa_db != NULL);
2061 		zfs_release_sa_handle(sa_hdl, sa_db, FTAG);
2062 	}
2063 
2064 	if (error == 0)
2065 		(void) memmove(buf, path, buf + len - path);
2066 
2067 	return (error);
2068 }
2069 
2070 int
2071 zfs_obj_to_path(objset_t *osp, uint64_t obj, char *buf, int len)
2072 {
2073 	sa_attr_type_t *sa_table;
2074 	sa_handle_t *hdl;
2075 	dmu_buf_t *db;
2076 	int error;
2077 
2078 	error = zfs_sa_setup(osp, &sa_table);
2079 	if (error != 0)
2080 		return (error);
2081 
2082 	error = zfs_grab_sa_handle(osp, obj, &hdl, &db, FTAG);
2083 	if (error != 0)
2084 		return (error);
2085 
2086 	error = zfs_obj_to_path_impl(osp, obj, hdl, sa_table, buf, len);
2087 
2088 	zfs_release_sa_handle(hdl, db, FTAG);
2089 	return (error);
2090 }
2091 
2092 int
2093 zfs_obj_to_stats(objset_t *osp, uint64_t obj, zfs_stat_t *sb,
2094     char *buf, int len)
2095 {
2096 	char *path = buf + len - 1;
2097 	sa_attr_type_t *sa_table;
2098 	sa_handle_t *hdl;
2099 	dmu_buf_t *db;
2100 	int error;
2101 
2102 	*path = '\0';
2103 
2104 	error = zfs_sa_setup(osp, &sa_table);
2105 	if (error != 0)
2106 		return (error);
2107 
2108 	error = zfs_grab_sa_handle(osp, obj, &hdl, &db, FTAG);
2109 	if (error != 0)
2110 		return (error);
2111 
2112 	error = zfs_obj_to_stats_impl(hdl, sa_table, sb);
2113 	if (error != 0) {
2114 		zfs_release_sa_handle(hdl, db, FTAG);
2115 		return (error);
2116 	}
2117 
2118 	error = zfs_obj_to_path_impl(osp, obj, hdl, sa_table, buf, len);
2119 
2120 	zfs_release_sa_handle(hdl, db, FTAG);
2121 	return (error);
2122 }
2123