xref: /illumos-gate/usr/src/uts/common/fs/zfs/zil.c (revision 25c28e83)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
24  */
25 
26 /* Portions Copyright 2010 Robert Milkowski */
27 
28 #include <sys/zfs_context.h>
29 #include <sys/spa.h>
30 #include <sys/dmu.h>
31 #include <sys/zap.h>
32 #include <sys/arc.h>
33 #include <sys/stat.h>
34 #include <sys/resource.h>
35 #include <sys/zil.h>
36 #include <sys/zil_impl.h>
37 #include <sys/dsl_dataset.h>
38 #include <sys/vdev_impl.h>
39 #include <sys/dmu_tx.h>
40 #include <sys/dsl_pool.h>
41 
42 /*
43  * The zfs intent log (ZIL) saves transaction records of system calls
44  * that change the file system in memory with enough information
45  * to be able to replay them. These are stored in memory until
46  * either the DMU transaction group (txg) commits them to the stable pool
47  * and they can be discarded, or they are flushed to the stable log
48  * (also in the pool) due to a fsync, O_DSYNC or other synchronous
49  * requirement. In the event of a panic or power fail then those log
50  * records (transactions) are replayed.
51  *
52  * There is one ZIL per file system. Its on-disk (pool) format consists
53  * of 3 parts:
54  *
55  * 	- ZIL header
56  * 	- ZIL blocks
57  * 	- ZIL records
58  *
59  * A log record holds a system call transaction. Log blocks can
60  * hold many log records and the blocks are chained together.
61  * Each ZIL block contains a block pointer (blkptr_t) to the next
62  * ZIL block in the chain. The ZIL header points to the first
63  * block in the chain. Note there is not a fixed place in the pool
64  * to hold blocks. They are dynamically allocated and freed as
65  * needed from the blocks available. Figure X shows the ZIL structure:
66  */
67 
68 /*
69  * Disable intent logging replay.  This global ZIL switch affects all pools.
70  */
71 int zil_replay_disable = 0;
72 
73 /*
74  * Tunable parameter for debugging or performance analysis.  Setting
75  * zfs_nocacheflush will cause corruption on power loss if a volatile
76  * out-of-order write cache is enabled.
77  */
78 boolean_t zfs_nocacheflush = B_FALSE;
79 
80 static kmem_cache_t *zil_lwb_cache;
81 
82 static void zil_async_to_sync(zilog_t *zilog, uint64_t foid);
83 
84 #define	LWB_EMPTY(lwb) ((BP_GET_LSIZE(&lwb->lwb_blk) - \
85     sizeof (zil_chain_t)) == (lwb->lwb_sz - lwb->lwb_nused))
86 
87 
88 /*
89  * ziltest is by and large an ugly hack, but very useful in
90  * checking replay without tedious work.
91  * When running ziltest we want to keep all itx's and so maintain
92  * a single list in the zl_itxg[] that uses a high txg: ZILTEST_TXG
93  * We subtract TXG_CONCURRENT_STATES to allow for common code.
94  */
95 #define	ZILTEST_TXG (UINT64_MAX - TXG_CONCURRENT_STATES)
96 
97 static int
98 zil_bp_compare(const void *x1, const void *x2)
99 {
100 	const dva_t *dva1 = &((zil_bp_node_t *)x1)->zn_dva;
101 	const dva_t *dva2 = &((zil_bp_node_t *)x2)->zn_dva;
102 
103 	if (DVA_GET_VDEV(dva1) < DVA_GET_VDEV(dva2))
104 		return (-1);
105 	if (DVA_GET_VDEV(dva1) > DVA_GET_VDEV(dva2))
106 		return (1);
107 
108 	if (DVA_GET_OFFSET(dva1) < DVA_GET_OFFSET(dva2))
109 		return (-1);
110 	if (DVA_GET_OFFSET(dva1) > DVA_GET_OFFSET(dva2))
111 		return (1);
112 
113 	return (0);
114 }
115 
116 static void
117 zil_bp_tree_init(zilog_t *zilog)
118 {
119 	avl_create(&zilog->zl_bp_tree, zil_bp_compare,
120 	    sizeof (zil_bp_node_t), offsetof(zil_bp_node_t, zn_node));
121 }
122 
123 static void
124 zil_bp_tree_fini(zilog_t *zilog)
125 {
126 	avl_tree_t *t = &zilog->zl_bp_tree;
127 	zil_bp_node_t *zn;
128 	void *cookie = NULL;
129 
130 	while ((zn = avl_destroy_nodes(t, &cookie)) != NULL)
131 		kmem_free(zn, sizeof (zil_bp_node_t));
132 
133 	avl_destroy(t);
134 }
135 
136 int
137 zil_bp_tree_add(zilog_t *zilog, const blkptr_t *bp)
138 {
139 	avl_tree_t *t = &zilog->zl_bp_tree;
140 	const dva_t *dva;
141 	zil_bp_node_t *zn;
142 	avl_index_t where;
143 
144 	if (BP_IS_EMBEDDED(bp))
145 		return (0);
146 
147 	dva = BP_IDENTITY(bp);
148 
149 	if (avl_find(t, dva, &where) != NULL)
150 		return (SET_ERROR(EEXIST));
151 
152 	zn = kmem_alloc(sizeof (zil_bp_node_t), KM_SLEEP);
153 	zn->zn_dva = *dva;
154 	avl_insert(t, zn, where);
155 
156 	return (0);
157 }
158 
159 static zil_header_t *
160 zil_header_in_syncing_context(zilog_t *zilog)
161 {
162 	return ((zil_header_t *)zilog->zl_header);
163 }
164 
165 static void
166 zil_init_log_chain(zilog_t *zilog, blkptr_t *bp)
167 {
168 	zio_cksum_t *zc = &bp->blk_cksum;
169 
170 	zc->zc_word[ZIL_ZC_GUID_0] = spa_get_random(-1ULL);
171 	zc->zc_word[ZIL_ZC_GUID_1] = spa_get_random(-1ULL);
172 	zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os);
173 	zc->zc_word[ZIL_ZC_SEQ] = 1ULL;
174 }
175 
176 /*
177  * Read a log block and make sure it's valid.
178  */
179 static int
180 zil_read_log_block(zilog_t *zilog, const blkptr_t *bp, blkptr_t *nbp, void *dst,
181     char **end)
182 {
183 	enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
184 	uint32_t aflags = ARC_WAIT;
185 	arc_buf_t *abuf = NULL;
186 	zbookmark_phys_t zb;
187 	int error;
188 
189 	if (zilog->zl_header->zh_claim_txg == 0)
190 		zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
191 
192 	if (!(zilog->zl_header->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
193 		zio_flags |= ZIO_FLAG_SPECULATIVE;
194 
195 	SET_BOOKMARK(&zb, bp->blk_cksum.zc_word[ZIL_ZC_OBJSET],
196 	    ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]);
197 
198 	error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
199 	    ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
200 
201 	if (error == 0) {
202 		zio_cksum_t cksum = bp->blk_cksum;
203 
204 		/*
205 		 * Validate the checksummed log block.
206 		 *
207 		 * Sequence numbers should be... sequential.  The checksum
208 		 * verifier for the next block should be bp's checksum plus 1.
209 		 *
210 		 * Also check the log chain linkage and size used.
211 		 */
212 		cksum.zc_word[ZIL_ZC_SEQ]++;
213 
214 		if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
215 			zil_chain_t *zilc = abuf->b_data;
216 			char *lr = (char *)(zilc + 1);
217 			uint64_t len = zilc->zc_nused - sizeof (zil_chain_t);
218 
219 			if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
220 			    sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk)) {
221 				error = SET_ERROR(ECKSUM);
222 			} else {
223 				bcopy(lr, dst, len);
224 				*end = (char *)dst + len;
225 				*nbp = zilc->zc_next_blk;
226 			}
227 		} else {
228 			char *lr = abuf->b_data;
229 			uint64_t size = BP_GET_LSIZE(bp);
230 			zil_chain_t *zilc = (zil_chain_t *)(lr + size) - 1;
231 
232 			if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
233 			    sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk) ||
234 			    (zilc->zc_nused > (size - sizeof (*zilc)))) {
235 				error = SET_ERROR(ECKSUM);
236 			} else {
237 				bcopy(lr, dst, zilc->zc_nused);
238 				*end = (char *)dst + zilc->zc_nused;
239 				*nbp = zilc->zc_next_blk;
240 			}
241 		}
242 
243 		VERIFY(arc_buf_remove_ref(abuf, &abuf));
244 	}
245 
246 	return (error);
247 }
248 
249 /*
250  * Read a TX_WRITE log data block.
251  */
252 static int
253 zil_read_log_data(zilog_t *zilog, const lr_write_t *lr, void *wbuf)
254 {
255 	enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
256 	const blkptr_t *bp = &lr->lr_blkptr;
257 	uint32_t aflags = ARC_WAIT;
258 	arc_buf_t *abuf = NULL;
259 	zbookmark_phys_t zb;
260 	int error;
261 
262 	if (BP_IS_HOLE(bp)) {
263 		if (wbuf != NULL)
264 			bzero(wbuf, MAX(BP_GET_LSIZE(bp), lr->lr_length));
265 		return (0);
266 	}
267 
268 	if (zilog->zl_header->zh_claim_txg == 0)
269 		zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
270 
271 	SET_BOOKMARK(&zb, dmu_objset_id(zilog->zl_os), lr->lr_foid,
272 	    ZB_ZIL_LEVEL, lr->lr_offset / BP_GET_LSIZE(bp));
273 
274 	error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
275 	    ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
276 
277 	if (error == 0) {
278 		if (wbuf != NULL)
279 			bcopy(abuf->b_data, wbuf, arc_buf_size(abuf));
280 		(void) arc_buf_remove_ref(abuf, &abuf);
281 	}
282 
283 	return (error);
284 }
285 
286 /*
287  * Parse the intent log, and call parse_func for each valid record within.
288  */
289 int
290 zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func,
291     zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg)
292 {
293 	const zil_header_t *zh = zilog->zl_header;
294 	boolean_t claimed = !!zh->zh_claim_txg;
295 	uint64_t claim_blk_seq = claimed ? zh->zh_claim_blk_seq : UINT64_MAX;
296 	uint64_t claim_lr_seq = claimed ? zh->zh_claim_lr_seq : UINT64_MAX;
297 	uint64_t max_blk_seq = 0;
298 	uint64_t max_lr_seq = 0;
299 	uint64_t blk_count = 0;
300 	uint64_t lr_count = 0;
301 	blkptr_t blk, next_blk;
302 	char *lrbuf, *lrp;
303 	int error = 0;
304 
305 	/*
306 	 * Old logs didn't record the maximum zh_claim_lr_seq.
307 	 */
308 	if (!(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
309 		claim_lr_seq = UINT64_MAX;
310 
311 	/*
312 	 * Starting at the block pointed to by zh_log we read the log chain.
313 	 * For each block in the chain we strongly check that block to
314 	 * ensure its validity.  We stop when an invalid block is found.
315 	 * For each block pointer in the chain we call parse_blk_func().
316 	 * For each record in each valid block we call parse_lr_func().
317 	 * If the log has been claimed, stop if we encounter a sequence
318 	 * number greater than the highest claimed sequence number.
319 	 */
320 	lrbuf = zio_buf_alloc(SPA_MAXBLOCKSIZE);
321 	zil_bp_tree_init(zilog);
322 
323 	for (blk = zh->zh_log; !BP_IS_HOLE(&blk); blk = next_blk) {
324 		uint64_t blk_seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ];
325 		int reclen;
326 		char *end;
327 
328 		if (blk_seq > claim_blk_seq)
329 			break;
330 		if ((error = parse_blk_func(zilog, &blk, arg, txg)) != 0)
331 			break;
332 		ASSERT3U(max_blk_seq, <, blk_seq);
333 		max_blk_seq = blk_seq;
334 		blk_count++;
335 
336 		if (max_lr_seq == claim_lr_seq && max_blk_seq == claim_blk_seq)
337 			break;
338 
339 		error = zil_read_log_block(zilog, &blk, &next_blk, lrbuf, &end);
340 		if (error != 0)
341 			break;
342 
343 		for (lrp = lrbuf; lrp < end; lrp += reclen) {
344 			lr_t *lr = (lr_t *)lrp;
345 			reclen = lr->lrc_reclen;
346 			ASSERT3U(reclen, >=, sizeof (lr_t));
347 			if (lr->lrc_seq > claim_lr_seq)
348 				goto done;
349 			if ((error = parse_lr_func(zilog, lr, arg, txg)) != 0)
350 				goto done;
351 			ASSERT3U(max_lr_seq, <, lr->lrc_seq);
352 			max_lr_seq = lr->lrc_seq;
353 			lr_count++;
354 		}
355 	}
356 done:
357 	zilog->zl_parse_error = error;
358 	zilog->zl_parse_blk_seq = max_blk_seq;
359 	zilog->zl_parse_lr_seq = max_lr_seq;
360 	zilog->zl_parse_blk_count = blk_count;
361 	zilog->zl_parse_lr_count = lr_count;
362 
363 	ASSERT(!claimed || !(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID) ||
364 	    (max_blk_seq == claim_blk_seq && max_lr_seq == claim_lr_seq));
365 
366 	zil_bp_tree_fini(zilog);
367 	zio_buf_free(lrbuf, SPA_MAXBLOCKSIZE);
368 
369 	return (error);
370 }
371 
372 static int
373 zil_claim_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t first_txg)
374 {
375 	/*
376 	 * Claim log block if not already committed and not already claimed.
377 	 * If tx == NULL, just verify that the block is claimable.
378 	 */
379 	if (BP_IS_HOLE(bp) || bp->blk_birth < first_txg ||
380 	    zil_bp_tree_add(zilog, bp) != 0)
381 		return (0);
382 
383 	return (zio_wait(zio_claim(NULL, zilog->zl_spa,
384 	    tx == NULL ? 0 : first_txg, bp, spa_claim_notify, NULL,
385 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB)));
386 }
387 
388 static int
389 zil_claim_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t first_txg)
390 {
391 	lr_write_t *lr = (lr_write_t *)lrc;
392 	int error;
393 
394 	if (lrc->lrc_txtype != TX_WRITE)
395 		return (0);
396 
397 	/*
398 	 * If the block is not readable, don't claim it.  This can happen
399 	 * in normal operation when a log block is written to disk before
400 	 * some of the dmu_sync() blocks it points to.  In this case, the
401 	 * transaction cannot have been committed to anyone (we would have
402 	 * waited for all writes to be stable first), so it is semantically
403 	 * correct to declare this the end of the log.
404 	 */
405 	if (lr->lr_blkptr.blk_birth >= first_txg &&
406 	    (error = zil_read_log_data(zilog, lr, NULL)) != 0)
407 		return (error);
408 	return (zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg));
409 }
410 
411 /* ARGSUSED */
412 static int
413 zil_free_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t claim_txg)
414 {
415 	zio_free_zil(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
416 
417 	return (0);
418 }
419 
420 static int
421 zil_free_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t claim_txg)
422 {
423 	lr_write_t *lr = (lr_write_t *)lrc;
424 	blkptr_t *bp = &lr->lr_blkptr;
425 
426 	/*
427 	 * If we previously claimed it, we need to free it.
428 	 */
429 	if (claim_txg != 0 && lrc->lrc_txtype == TX_WRITE &&
430 	    bp->blk_birth >= claim_txg && zil_bp_tree_add(zilog, bp) == 0 &&
431 	    !BP_IS_HOLE(bp))
432 		zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
433 
434 	return (0);
435 }
436 
437 static lwb_t *
438 zil_alloc_lwb(zilog_t *zilog, blkptr_t *bp, uint64_t txg)
439 {
440 	lwb_t *lwb;
441 
442 	lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP);
443 	lwb->lwb_zilog = zilog;
444 	lwb->lwb_blk = *bp;
445 	lwb->lwb_buf = zio_buf_alloc(BP_GET_LSIZE(bp));
446 	lwb->lwb_max_txg = txg;
447 	lwb->lwb_zio = NULL;
448 	lwb->lwb_tx = NULL;
449 	if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
450 		lwb->lwb_nused = sizeof (zil_chain_t);
451 		lwb->lwb_sz = BP_GET_LSIZE(bp);
452 	} else {
453 		lwb->lwb_nused = 0;
454 		lwb->lwb_sz = BP_GET_LSIZE(bp) - sizeof (zil_chain_t);
455 	}
456 
457 	mutex_enter(&zilog->zl_lock);
458 	list_insert_tail(&zilog->zl_lwb_list, lwb);
459 	mutex_exit(&zilog->zl_lock);
460 
461 	return (lwb);
462 }
463 
464 /*
465  * Called when we create in-memory log transactions so that we know
466  * to cleanup the itxs at the end of spa_sync().
467  */
468 void
469 zilog_dirty(zilog_t *zilog, uint64_t txg)
470 {
471 	dsl_pool_t *dp = zilog->zl_dmu_pool;
472 	dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
473 
474 	if (dsl_dataset_is_snapshot(ds))
475 		panic("dirtying snapshot!");
476 
477 	if (txg_list_add(&dp->dp_dirty_zilogs, zilog, txg)) {
478 		/* up the hold count until we can be written out */
479 		dmu_buf_add_ref(ds->ds_dbuf, zilog);
480 	}
481 }
482 
483 boolean_t
484 zilog_is_dirty(zilog_t *zilog)
485 {
486 	dsl_pool_t *dp = zilog->zl_dmu_pool;
487 
488 	for (int t = 0; t < TXG_SIZE; t++) {
489 		if (txg_list_member(&dp->dp_dirty_zilogs, zilog, t))
490 			return (B_TRUE);
491 	}
492 	return (B_FALSE);
493 }
494 
495 /*
496  * Create an on-disk intent log.
497  */
498 static lwb_t *
499 zil_create(zilog_t *zilog)
500 {
501 	const zil_header_t *zh = zilog->zl_header;
502 	lwb_t *lwb = NULL;
503 	uint64_t txg = 0;
504 	dmu_tx_t *tx = NULL;
505 	blkptr_t blk;
506 	int error = 0;
507 
508 	/*
509 	 * Wait for any previous destroy to complete.
510 	 */
511 	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
512 
513 	ASSERT(zh->zh_claim_txg == 0);
514 	ASSERT(zh->zh_replay_seq == 0);
515 
516 	blk = zh->zh_log;
517 
518 	/*
519 	 * Allocate an initial log block if:
520 	 *    - there isn't one already
521 	 *    - the existing block is the wrong endianess
522 	 */
523 	if (BP_IS_HOLE(&blk) || BP_SHOULD_BYTESWAP(&blk)) {
524 		tx = dmu_tx_create(zilog->zl_os);
525 		VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0);
526 		dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
527 		txg = dmu_tx_get_txg(tx);
528 
529 		if (!BP_IS_HOLE(&blk)) {
530 			zio_free_zil(zilog->zl_spa, txg, &blk);
531 			BP_ZERO(&blk);
532 		}
533 
534 		error = zio_alloc_zil(zilog->zl_spa, txg, &blk, NULL,
535 		    ZIL_MIN_BLKSZ, zilog->zl_logbias == ZFS_LOGBIAS_LATENCY);
536 
537 		if (error == 0)
538 			zil_init_log_chain(zilog, &blk);
539 	}
540 
541 	/*
542 	 * Allocate a log write buffer (lwb) for the first log block.
543 	 */
544 	if (error == 0)
545 		lwb = zil_alloc_lwb(zilog, &blk, txg);
546 
547 	/*
548 	 * If we just allocated the first log block, commit our transaction
549 	 * and wait for zil_sync() to stuff the block poiner into zh_log.
550 	 * (zh is part of the MOS, so we cannot modify it in open context.)
551 	 */
552 	if (tx != NULL) {
553 		dmu_tx_commit(tx);
554 		txg_wait_synced(zilog->zl_dmu_pool, txg);
555 	}
556 
557 	ASSERT(bcmp(&blk, &zh->zh_log, sizeof (blk)) == 0);
558 
559 	return (lwb);
560 }
561 
562 /*
563  * In one tx, free all log blocks and clear the log header.
564  * If keep_first is set, then we're replaying a log with no content.
565  * We want to keep the first block, however, so that the first
566  * synchronous transaction doesn't require a txg_wait_synced()
567  * in zil_create().  We don't need to txg_wait_synced() here either
568  * when keep_first is set, because both zil_create() and zil_destroy()
569  * will wait for any in-progress destroys to complete.
570  */
571 void
572 zil_destroy(zilog_t *zilog, boolean_t keep_first)
573 {
574 	const zil_header_t *zh = zilog->zl_header;
575 	lwb_t *lwb;
576 	dmu_tx_t *tx;
577 	uint64_t txg;
578 
579 	/*
580 	 * Wait for any previous destroy to complete.
581 	 */
582 	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
583 
584 	zilog->zl_old_header = *zh;		/* debugging aid */
585 
586 	if (BP_IS_HOLE(&zh->zh_log))
587 		return;
588 
589 	tx = dmu_tx_create(zilog->zl_os);
590 	VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0);
591 	dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
592 	txg = dmu_tx_get_txg(tx);
593 
594 	mutex_enter(&zilog->zl_lock);
595 
596 	ASSERT3U(zilog->zl_destroy_txg, <, txg);
597 	zilog->zl_destroy_txg = txg;
598 	zilog->zl_keep_first = keep_first;
599 
600 	if (!list_is_empty(&zilog->zl_lwb_list)) {
601 		ASSERT(zh->zh_claim_txg == 0);
602 		VERIFY(!keep_first);
603 		while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
604 			list_remove(&zilog->zl_lwb_list, lwb);
605 			if (lwb->lwb_buf != NULL)
606 				zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
607 			zio_free_zil(zilog->zl_spa, txg, &lwb->lwb_blk);
608 			kmem_cache_free(zil_lwb_cache, lwb);
609 		}
610 	} else if (!keep_first) {
611 		zil_destroy_sync(zilog, tx);
612 	}
613 	mutex_exit(&zilog->zl_lock);
614 
615 	dmu_tx_commit(tx);
616 }
617 
618 void
619 zil_destroy_sync(zilog_t *zilog, dmu_tx_t *tx)
620 {
621 	ASSERT(list_is_empty(&zilog->zl_lwb_list));
622 	(void) zil_parse(zilog, zil_free_log_block,
623 	    zil_free_log_record, tx, zilog->zl_header->zh_claim_txg);
624 }
625 
626 int
627 zil_claim(const char *osname, void *txarg)
628 {
629 	dmu_tx_t *tx = txarg;
630 	uint64_t first_txg = dmu_tx_get_txg(tx);
631 	zilog_t *zilog;
632 	zil_header_t *zh;
633 	objset_t *os;
634 	int error;
635 
636 	error = dmu_objset_own(osname, DMU_OST_ANY, B_FALSE, FTAG, &os);
637 	if (error != 0) {
638 		/*
639 		 * EBUSY indicates that the objset is inconsistent, in which
640 		 * case it can not have a ZIL.
641 		 */
642 		if (error != EBUSY) {
643 			cmn_err(CE_WARN, "can't open objset for %s, error %u",
644 			    osname, error);
645 		}
646 		return (0);
647 	}
648 
649 	zilog = dmu_objset_zil(os);
650 	zh = zil_header_in_syncing_context(zilog);
651 
652 	if (spa_get_log_state(zilog->zl_spa) == SPA_LOG_CLEAR) {
653 		if (!BP_IS_HOLE(&zh->zh_log))
654 			zio_free_zil(zilog->zl_spa, first_txg, &zh->zh_log);
655 		BP_ZERO(&zh->zh_log);
656 		dsl_dataset_dirty(dmu_objset_ds(os), tx);
657 		dmu_objset_disown(os, FTAG);
658 		return (0);
659 	}
660 
661 	/*
662 	 * Claim all log blocks if we haven't already done so, and remember
663 	 * the highest claimed sequence number.  This ensures that if we can
664 	 * read only part of the log now (e.g. due to a missing device),
665 	 * but we can read the entire log later, we will not try to replay
666 	 * or destroy beyond the last block we successfully claimed.
667 	 */
668 	ASSERT3U(zh->zh_claim_txg, <=, first_txg);
669 	if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) {
670 		(void) zil_parse(zilog, zil_claim_log_block,
671 		    zil_claim_log_record, tx, first_txg);
672 		zh->zh_claim_txg = first_txg;
673 		zh->zh_claim_blk_seq = zilog->zl_parse_blk_seq;
674 		zh->zh_claim_lr_seq = zilog->zl_parse_lr_seq;
675 		if (zilog->zl_parse_lr_count || zilog->zl_parse_blk_count > 1)
676 			zh->zh_flags |= ZIL_REPLAY_NEEDED;
677 		zh->zh_flags |= ZIL_CLAIM_LR_SEQ_VALID;
678 		dsl_dataset_dirty(dmu_objset_ds(os), tx);
679 	}
680 
681 	ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1));
682 	dmu_objset_disown(os, FTAG);
683 	return (0);
684 }
685 
686 /*
687  * Check the log by walking the log chain.
688  * Checksum errors are ok as they indicate the end of the chain.
689  * Any other error (no device or read failure) returns an error.
690  */
691 int
692 zil_check_log_chain(const char *osname, void *tx)
693 {
694 	zilog_t *zilog;
695 	objset_t *os;
696 	blkptr_t *bp;
697 	int error;
698 
699 	ASSERT(tx == NULL);
700 
701 	error = dmu_objset_hold(osname, FTAG, &os);
702 	if (error != 0) {
703 		cmn_err(CE_WARN, "can't open objset for %s", osname);
704 		return (0);
705 	}
706 
707 	zilog = dmu_objset_zil(os);
708 	bp = (blkptr_t *)&zilog->zl_header->zh_log;
709 
710 	/*
711 	 * Check the first block and determine if it's on a log device
712 	 * which may have been removed or faulted prior to loading this
713 	 * pool.  If so, there's no point in checking the rest of the log
714 	 * as its content should have already been synced to the pool.
715 	 */
716 	if (!BP_IS_HOLE(bp)) {
717 		vdev_t *vd;
718 		boolean_t valid = B_TRUE;
719 
720 		spa_config_enter(os->os_spa, SCL_STATE, FTAG, RW_READER);
721 		vd = vdev_lookup_top(os->os_spa, DVA_GET_VDEV(&bp->blk_dva[0]));
722 		if (vd->vdev_islog && vdev_is_dead(vd))
723 			valid = vdev_log_state_valid(vd);
724 		spa_config_exit(os->os_spa, SCL_STATE, FTAG);
725 
726 		if (!valid) {
727 			dmu_objset_rele(os, FTAG);
728 			return (0);
729 		}
730 	}
731 
732 	/*
733 	 * Because tx == NULL, zil_claim_log_block() will not actually claim
734 	 * any blocks, but just determine whether it is possible to do so.
735 	 * In addition to checking the log chain, zil_claim_log_block()
736 	 * will invoke zio_claim() with a done func of spa_claim_notify(),
737 	 * which will update spa_max_claim_txg.  See spa_load() for details.
738 	 */
739 	error = zil_parse(zilog, zil_claim_log_block, zil_claim_log_record, tx,
740 	    zilog->zl_header->zh_claim_txg ? -1ULL : spa_first_txg(os->os_spa));
741 
742 	dmu_objset_rele(os, FTAG);
743 
744 	return ((error == ECKSUM || error == ENOENT) ? 0 : error);
745 }
746 
747 static int
748 zil_vdev_compare(const void *x1, const void *x2)
749 {
750 	const uint64_t v1 = ((zil_vdev_node_t *)x1)->zv_vdev;
751 	const uint64_t v2 = ((zil_vdev_node_t *)x2)->zv_vdev;
752 
753 	if (v1 < v2)
754 		return (-1);
755 	if (v1 > v2)
756 		return (1);
757 
758 	return (0);
759 }
760 
761 void
762 zil_add_block(zilog_t *zilog, const blkptr_t *bp)
763 {
764 	avl_tree_t *t = &zilog->zl_vdev_tree;
765 	avl_index_t where;
766 	zil_vdev_node_t *zv, zvsearch;
767 	int ndvas = BP_GET_NDVAS(bp);
768 	int i;
769 
770 	if (zfs_nocacheflush)
771 		return;
772 
773 	ASSERT(zilog->zl_writer);
774 
775 	/*
776 	 * Even though we're zl_writer, we still need a lock because the
777 	 * zl_get_data() callbacks may have dmu_sync() done callbacks
778 	 * that will run concurrently.
779 	 */
780 	mutex_enter(&zilog->zl_vdev_lock);
781 	for (i = 0; i < ndvas; i++) {
782 		zvsearch.zv_vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
783 		if (avl_find(t, &zvsearch, &where) == NULL) {
784 			zv = kmem_alloc(sizeof (*zv), KM_SLEEP);
785 			zv->zv_vdev = zvsearch.zv_vdev;
786 			avl_insert(t, zv, where);
787 		}
788 	}
789 	mutex_exit(&zilog->zl_vdev_lock);
790 }
791 
792 static void
793 zil_flush_vdevs(zilog_t *zilog)
794 {
795 	spa_t *spa = zilog->zl_spa;
796 	avl_tree_t *t = &zilog->zl_vdev_tree;
797 	void *cookie = NULL;
798 	zil_vdev_node_t *zv;
799 	zio_t *zio;
800 
801 	ASSERT(zilog->zl_writer);
802 
803 	/*
804 	 * We don't need zl_vdev_lock here because we're the zl_writer,
805 	 * and all zl_get_data() callbacks are done.
806 	 */
807 	if (avl_numnodes(t) == 0)
808 		return;
809 
810 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
811 
812 	zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
813 
814 	while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) {
815 		vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev);
816 		if (vd != NULL)
817 			zio_flush(zio, vd);
818 		kmem_free(zv, sizeof (*zv));
819 	}
820 
821 	/*
822 	 * Wait for all the flushes to complete.  Not all devices actually
823 	 * support the DKIOCFLUSHWRITECACHE ioctl, so it's OK if it fails.
824 	 */
825 	(void) zio_wait(zio);
826 
827 	spa_config_exit(spa, SCL_STATE, FTAG);
828 }
829 
830 /*
831  * Function called when a log block write completes
832  */
833 static void
834 zil_lwb_write_done(zio_t *zio)
835 {
836 	lwb_t *lwb = zio->io_private;
837 	zilog_t *zilog = lwb->lwb_zilog;
838 	dmu_tx_t *tx = lwb->lwb_tx;
839 
840 	ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
841 	ASSERT(BP_GET_TYPE(zio->io_bp) == DMU_OT_INTENT_LOG);
842 	ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
843 	ASSERT(BP_GET_BYTEORDER(zio->io_bp) == ZFS_HOST_BYTEORDER);
844 	ASSERT(!BP_IS_GANG(zio->io_bp));
845 	ASSERT(!BP_IS_HOLE(zio->io_bp));
846 	ASSERT(BP_GET_FILL(zio->io_bp) == 0);
847 
848 	/*
849 	 * Ensure the lwb buffer pointer is cleared before releasing
850 	 * the txg. If we have had an allocation failure and
851 	 * the txg is waiting to sync then we want want zil_sync()
852 	 * to remove the lwb so that it's not picked up as the next new
853 	 * one in zil_commit_writer(). zil_sync() will only remove
854 	 * the lwb if lwb_buf is null.
855 	 */
856 	zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
857 	mutex_enter(&zilog->zl_lock);
858 	lwb->lwb_buf = NULL;
859 	lwb->lwb_tx = NULL;
860 	mutex_exit(&zilog->zl_lock);
861 
862 	/*
863 	 * Now that we've written this log block, we have a stable pointer
864 	 * to the next block in the chain, so it's OK to let the txg in
865 	 * which we allocated the next block sync.
866 	 */
867 	dmu_tx_commit(tx);
868 }
869 
870 /*
871  * Initialize the io for a log block.
872  */
873 static void
874 zil_lwb_write_init(zilog_t *zilog, lwb_t *lwb)
875 {
876 	zbookmark_phys_t zb;
877 
878 	SET_BOOKMARK(&zb, lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET],
879 	    ZB_ZIL_OBJECT, ZB_ZIL_LEVEL,
880 	    lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ]);
881 
882 	if (zilog->zl_root_zio == NULL) {
883 		zilog->zl_root_zio = zio_root(zilog->zl_spa, NULL, NULL,
884 		    ZIO_FLAG_CANFAIL);
885 	}
886 	if (lwb->lwb_zio == NULL) {
887 		lwb->lwb_zio = zio_rewrite(zilog->zl_root_zio, zilog->zl_spa,
888 		    0, &lwb->lwb_blk, lwb->lwb_buf, BP_GET_LSIZE(&lwb->lwb_blk),
889 		    zil_lwb_write_done, lwb, ZIO_PRIORITY_SYNC_WRITE,
890 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE, &zb);
891 	}
892 }
893 
894 /*
895  * Define a limited set of intent log block sizes.
896  *
897  * These must be a multiple of 4KB. Note only the amount used (again
898  * aligned to 4KB) actually gets written. However, we can't always just
899  * allocate SPA_MAXBLOCKSIZE as the slog space could be exhausted.
900  */
901 uint64_t zil_block_buckets[] = {
902     4096,		/* non TX_WRITE */
903     8192+4096,		/* data base */
904     32*1024 + 4096, 	/* NFS writes */
905     UINT64_MAX
906 };
907 
908 /*
909  * Use the slog as long as the logbias is 'latency' and the current commit size
910  * is less than the limit or the total list size is less than 2X the limit.
911  * Limit checking is disabled by setting zil_slog_limit to UINT64_MAX.
912  */
913 uint64_t zil_slog_limit = 1024 * 1024;
914 #define	USE_SLOG(zilog) (((zilog)->zl_logbias == ZFS_LOGBIAS_LATENCY) && \
915 	(((zilog)->zl_cur_used < zil_slog_limit) || \
916 	((zilog)->zl_itx_list_sz < (zil_slog_limit << 1))))
917 
918 /*
919  * Start a log block write and advance to the next log block.
920  * Calls are serialized.
921  */
922 static lwb_t *
923 zil_lwb_write_start(zilog_t *zilog, lwb_t *lwb)
924 {
925 	lwb_t *nlwb = NULL;
926 	zil_chain_t *zilc;
927 	spa_t *spa = zilog->zl_spa;
928 	blkptr_t *bp;
929 	dmu_tx_t *tx;
930 	uint64_t txg;
931 	uint64_t zil_blksz, wsz;
932 	int i, error;
933 
934 	if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
935 		zilc = (zil_chain_t *)lwb->lwb_buf;
936 		bp = &zilc->zc_next_blk;
937 	} else {
938 		zilc = (zil_chain_t *)(lwb->lwb_buf + lwb->lwb_sz);
939 		bp = &zilc->zc_next_blk;
940 	}
941 
942 	ASSERT(lwb->lwb_nused <= lwb->lwb_sz);
943 
944 	/*
945 	 * Allocate the next block and save its address in this block
946 	 * before writing it in order to establish the log chain.
947 	 * Note that if the allocation of nlwb synced before we wrote
948 	 * the block that points at it (lwb), we'd leak it if we crashed.
949 	 * Therefore, we don't do dmu_tx_commit() until zil_lwb_write_done().
950 	 * We dirty the dataset to ensure that zil_sync() will be called
951 	 * to clean up in the event of allocation failure or I/O failure.
952 	 */
953 	tx = dmu_tx_create(zilog->zl_os);
954 	VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0);
955 	dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
956 	txg = dmu_tx_get_txg(tx);
957 
958 	lwb->lwb_tx = tx;
959 
960 	/*
961 	 * Log blocks are pre-allocated. Here we select the size of the next
962 	 * block, based on size used in the last block.
963 	 * - first find the smallest bucket that will fit the block from a
964 	 *   limited set of block sizes. This is because it's faster to write
965 	 *   blocks allocated from the same metaslab as they are adjacent or
966 	 *   close.
967 	 * - next find the maximum from the new suggested size and an array of
968 	 *   previous sizes. This lessens a picket fence effect of wrongly
969 	 *   guesssing the size if we have a stream of say 2k, 64k, 2k, 64k
970 	 *   requests.
971 	 *
972 	 * Note we only write what is used, but we can't just allocate
973 	 * the maximum block size because we can exhaust the available
974 	 * pool log space.
975 	 */
976 	zil_blksz = zilog->zl_cur_used + sizeof (zil_chain_t);
977 	for (i = 0; zil_blksz > zil_block_buckets[i]; i++)
978 		continue;
979 	zil_blksz = zil_block_buckets[i];
980 	if (zil_blksz == UINT64_MAX)
981 		zil_blksz = SPA_MAXBLOCKSIZE;
982 	zilog->zl_prev_blks[zilog->zl_prev_rotor] = zil_blksz;
983 	for (i = 0; i < ZIL_PREV_BLKS; i++)
984 		zil_blksz = MAX(zil_blksz, zilog->zl_prev_blks[i]);
985 	zilog->zl_prev_rotor = (zilog->zl_prev_rotor + 1) & (ZIL_PREV_BLKS - 1);
986 
987 	BP_ZERO(bp);
988 	/* pass the old blkptr in order to spread log blocks across devs */
989 	error = zio_alloc_zil(spa, txg, bp, &lwb->lwb_blk, zil_blksz,
990 	    USE_SLOG(zilog));
991 	if (error == 0) {
992 		ASSERT3U(bp->blk_birth, ==, txg);
993 		bp->blk_cksum = lwb->lwb_blk.blk_cksum;
994 		bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++;
995 
996 		/*
997 		 * Allocate a new log write buffer (lwb).
998 		 */
999 		nlwb = zil_alloc_lwb(zilog, bp, txg);
1000 
1001 		/* Record the block for later vdev flushing */
1002 		zil_add_block(zilog, &lwb->lwb_blk);
1003 	}
1004 
1005 	if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
1006 		/* For Slim ZIL only write what is used. */
1007 		wsz = P2ROUNDUP_TYPED(lwb->lwb_nused, ZIL_MIN_BLKSZ, uint64_t);
1008 		ASSERT3U(wsz, <=, lwb->lwb_sz);
1009 		zio_shrink(lwb->lwb_zio, wsz);
1010 
1011 	} else {
1012 		wsz = lwb->lwb_sz;
1013 	}
1014 
1015 	zilc->zc_pad = 0;
1016 	zilc->zc_nused = lwb->lwb_nused;
1017 	zilc->zc_eck.zec_cksum = lwb->lwb_blk.blk_cksum;
1018 
1019 	/*
1020 	 * clear unused data for security
1021 	 */
1022 	bzero(lwb->lwb_buf + lwb->lwb_nused, wsz - lwb->lwb_nused);
1023 
1024 	zio_nowait(lwb->lwb_zio); /* Kick off the write for the old log block */
1025 
1026 	/*
1027 	 * If there was an allocation failure then nlwb will be null which
1028 	 * forces a txg_wait_synced().
1029 	 */
1030 	return (nlwb);
1031 }
1032 
1033 static lwb_t *
1034 zil_lwb_commit(zilog_t *zilog, itx_t *itx, lwb_t *lwb)
1035 {
1036 	lr_t *lrc = &itx->itx_lr; /* common log record */
1037 	lr_write_t *lrw = (lr_write_t *)lrc;
1038 	char *lr_buf;
1039 	uint64_t txg = lrc->lrc_txg;
1040 	uint64_t reclen = lrc->lrc_reclen;
1041 	uint64_t dlen = 0;
1042 
1043 	if (lwb == NULL)
1044 		return (NULL);
1045 
1046 	ASSERT(lwb->lwb_buf != NULL);
1047 	ASSERT(zilog_is_dirty(zilog) ||
1048 	    spa_freeze_txg(zilog->zl_spa) != UINT64_MAX);
1049 
1050 	if (lrc->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY)
1051 		dlen = P2ROUNDUP_TYPED(
1052 		    lrw->lr_length, sizeof (uint64_t), uint64_t);
1053 
1054 	zilog->zl_cur_used += (reclen + dlen);
1055 
1056 	zil_lwb_write_init(zilog, lwb);
1057 
1058 	/*
1059 	 * If this record won't fit in the current log block, start a new one.
1060 	 */
1061 	if (lwb->lwb_nused + reclen + dlen > lwb->lwb_sz) {
1062 		lwb = zil_lwb_write_start(zilog, lwb);
1063 		if (lwb == NULL)
1064 			return (NULL);
1065 		zil_lwb_write_init(zilog, lwb);
1066 		ASSERT(LWB_EMPTY(lwb));
1067 		if (lwb->lwb_nused + reclen + dlen > lwb->lwb_sz) {
1068 			txg_wait_synced(zilog->zl_dmu_pool, txg);
1069 			return (lwb);
1070 		}
1071 	}
1072 
1073 	lr_buf = lwb->lwb_buf + lwb->lwb_nused;
1074 	bcopy(lrc, lr_buf, reclen);
1075 	lrc = (lr_t *)lr_buf;
1076 	lrw = (lr_write_t *)lrc;
1077 
1078 	/*
1079 	 * If it's a write, fetch the data or get its blkptr as appropriate.
1080 	 */
1081 	if (lrc->lrc_txtype == TX_WRITE) {
1082 		if (txg > spa_freeze_txg(zilog->zl_spa))
1083 			txg_wait_synced(zilog->zl_dmu_pool, txg);
1084 		if (itx->itx_wr_state != WR_COPIED) {
1085 			char *dbuf;
1086 			int error;
1087 
1088 			if (dlen) {
1089 				ASSERT(itx->itx_wr_state == WR_NEED_COPY);
1090 				dbuf = lr_buf + reclen;
1091 				lrw->lr_common.lrc_reclen += dlen;
1092 			} else {
1093 				ASSERT(itx->itx_wr_state == WR_INDIRECT);
1094 				dbuf = NULL;
1095 			}
1096 			error = zilog->zl_get_data(
1097 			    itx->itx_private, lrw, dbuf, lwb->lwb_zio);
1098 			if (error == EIO) {
1099 				txg_wait_synced(zilog->zl_dmu_pool, txg);
1100 				return (lwb);
1101 			}
1102 			if (error != 0) {
1103 				ASSERT(error == ENOENT || error == EEXIST ||
1104 				    error == EALREADY);
1105 				return (lwb);
1106 			}
1107 		}
1108 	}
1109 
1110 	/*
1111 	 * We're actually making an entry, so update lrc_seq to be the
1112 	 * log record sequence number.  Note that this is generally not
1113 	 * equal to the itx sequence number because not all transactions
1114 	 * are synchronous, and sometimes spa_sync() gets there first.
1115 	 */
1116 	lrc->lrc_seq = ++zilog->zl_lr_seq; /* we are single threaded */
1117 	lwb->lwb_nused += reclen + dlen;
1118 	lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg);
1119 	ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_sz);
1120 	ASSERT0(P2PHASE(lwb->lwb_nused, sizeof (uint64_t)));
1121 
1122 	return (lwb);
1123 }
1124 
1125 itx_t *
1126 zil_itx_create(uint64_t txtype, size_t lrsize)
1127 {
1128 	itx_t *itx;
1129 
1130 	lrsize = P2ROUNDUP_TYPED(lrsize, sizeof (uint64_t), size_t);
1131 
1132 	itx = kmem_alloc(offsetof(itx_t, itx_lr) + lrsize, KM_SLEEP);
1133 	itx->itx_lr.lrc_txtype = txtype;
1134 	itx->itx_lr.lrc_reclen = lrsize;
1135 	itx->itx_sod = lrsize; /* if write & WR_NEED_COPY will be increased */
1136 	itx->itx_lr.lrc_seq = 0;	/* defensive */
1137 	itx->itx_sync = B_TRUE;		/* default is synchronous */
1138 
1139 	return (itx);
1140 }
1141 
1142 void
1143 zil_itx_destroy(itx_t *itx)
1144 {
1145 	kmem_free(itx, offsetof(itx_t, itx_lr) + itx->itx_lr.lrc_reclen);
1146 }
1147 
1148 /*
1149  * Free up the sync and async itxs. The itxs_t has already been detached
1150  * so no locks are needed.
1151  */
1152 static void
1153 zil_itxg_clean(itxs_t *itxs)
1154 {
1155 	itx_t *itx;
1156 	list_t *list;
1157 	avl_tree_t *t;
1158 	void *cookie;
1159 	itx_async_node_t *ian;
1160 
1161 	list = &itxs->i_sync_list;
1162 	while ((itx = list_head(list)) != NULL) {
1163 		list_remove(list, itx);
1164 		kmem_free(itx, offsetof(itx_t, itx_lr) +
1165 		    itx->itx_lr.lrc_reclen);
1166 	}
1167 
1168 	cookie = NULL;
1169 	t = &itxs->i_async_tree;
1170 	while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
1171 		list = &ian->ia_list;
1172 		while ((itx = list_head(list)) != NULL) {
1173 			list_remove(list, itx);
1174 			kmem_free(itx, offsetof(itx_t, itx_lr) +
1175 			    itx->itx_lr.lrc_reclen);
1176 		}
1177 		list_destroy(list);
1178 		kmem_free(ian, sizeof (itx_async_node_t));
1179 	}
1180 	avl_destroy(t);
1181 
1182 	kmem_free(itxs, sizeof (itxs_t));
1183 }
1184 
1185 static int
1186 zil_aitx_compare(const void *x1, const void *x2)
1187 {
1188 	const uint64_t o1 = ((itx_async_node_t *)x1)->ia_foid;
1189 	const uint64_t o2 = ((itx_async_node_t *)x2)->ia_foid;
1190 
1191 	if (o1 < o2)
1192 		return (-1);
1193 	if (o1 > o2)
1194 		return (1);
1195 
1196 	return (0);
1197 }
1198 
1199 /*
1200  * Remove all async itx with the given oid.
1201  */
1202 static void
1203 zil_remove_async(zilog_t *zilog, uint64_t oid)
1204 {
1205 	uint64_t otxg, txg;
1206 	itx_async_node_t *ian;
1207 	avl_tree_t *t;
1208 	avl_index_t where;
1209 	list_t clean_list;
1210 	itx_t *itx;
1211 
1212 	ASSERT(oid != 0);
1213 	list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node));
1214 
1215 	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1216 		otxg = ZILTEST_TXG;
1217 	else
1218 		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1219 
1220 	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1221 		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1222 
1223 		mutex_enter(&itxg->itxg_lock);
1224 		if (itxg->itxg_txg != txg) {
1225 			mutex_exit(&itxg->itxg_lock);
1226 			continue;
1227 		}
1228 
1229 		/*
1230 		 * Locate the object node and append its list.
1231 		 */
1232 		t = &itxg->itxg_itxs->i_async_tree;
1233 		ian = avl_find(t, &oid, &where);
1234 		if (ian != NULL)
1235 			list_move_tail(&clean_list, &ian->ia_list);
1236 		mutex_exit(&itxg->itxg_lock);
1237 	}
1238 	while ((itx = list_head(&clean_list)) != NULL) {
1239 		list_remove(&clean_list, itx);
1240 		kmem_free(itx, offsetof(itx_t, itx_lr) +
1241 		    itx->itx_lr.lrc_reclen);
1242 	}
1243 	list_destroy(&clean_list);
1244 }
1245 
1246 void
1247 zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx)
1248 {
1249 	uint64_t txg;
1250 	itxg_t *itxg;
1251 	itxs_t *itxs, *clean = NULL;
1252 
1253 	/*
1254 	 * Object ids can be re-instantiated in the next txg so
1255 	 * remove any async transactions to avoid future leaks.
1256 	 * This can happen if a fsync occurs on the re-instantiated
1257 	 * object for a WR_INDIRECT or WR_NEED_COPY write, which gets
1258 	 * the new file data and flushes a write record for the old object.
1259 	 */
1260 	if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_REMOVE)
1261 		zil_remove_async(zilog, itx->itx_oid);
1262 
1263 	/*
1264 	 * Ensure the data of a renamed file is committed before the rename.
1265 	 */
1266 	if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_RENAME)
1267 		zil_async_to_sync(zilog, itx->itx_oid);
1268 
1269 	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX)
1270 		txg = ZILTEST_TXG;
1271 	else
1272 		txg = dmu_tx_get_txg(tx);
1273 
1274 	itxg = &zilog->zl_itxg[txg & TXG_MASK];
1275 	mutex_enter(&itxg->itxg_lock);
1276 	itxs = itxg->itxg_itxs;
1277 	if (itxg->itxg_txg != txg) {
1278 		if (itxs != NULL) {
1279 			/*
1280 			 * The zil_clean callback hasn't got around to cleaning
1281 			 * this itxg. Save the itxs for release below.
1282 			 * This should be rare.
1283 			 */
1284 			atomic_add_64(&zilog->zl_itx_list_sz, -itxg->itxg_sod);
1285 			itxg->itxg_sod = 0;
1286 			clean = itxg->itxg_itxs;
1287 		}
1288 		ASSERT(itxg->itxg_sod == 0);
1289 		itxg->itxg_txg = txg;
1290 		itxs = itxg->itxg_itxs = kmem_zalloc(sizeof (itxs_t), KM_SLEEP);
1291 
1292 		list_create(&itxs->i_sync_list, sizeof (itx_t),
1293 		    offsetof(itx_t, itx_node));
1294 		avl_create(&itxs->i_async_tree, zil_aitx_compare,
1295 		    sizeof (itx_async_node_t),
1296 		    offsetof(itx_async_node_t, ia_node));
1297 	}
1298 	if (itx->itx_sync) {
1299 		list_insert_tail(&itxs->i_sync_list, itx);
1300 		atomic_add_64(&zilog->zl_itx_list_sz, itx->itx_sod);
1301 		itxg->itxg_sod += itx->itx_sod;
1302 	} else {
1303 		avl_tree_t *t = &itxs->i_async_tree;
1304 		uint64_t foid = ((lr_ooo_t *)&itx->itx_lr)->lr_foid;
1305 		itx_async_node_t *ian;
1306 		avl_index_t where;
1307 
1308 		ian = avl_find(t, &foid, &where);
1309 		if (ian == NULL) {
1310 			ian = kmem_alloc(sizeof (itx_async_node_t), KM_SLEEP);
1311 			list_create(&ian->ia_list, sizeof (itx_t),
1312 			    offsetof(itx_t, itx_node));
1313 			ian->ia_foid = foid;
1314 			avl_insert(t, ian, where);
1315 		}
1316 		list_insert_tail(&ian->ia_list, itx);
1317 	}
1318 
1319 	itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx);
1320 	zilog_dirty(zilog, txg);
1321 	mutex_exit(&itxg->itxg_lock);
1322 
1323 	/* Release the old itxs now we've dropped the lock */
1324 	if (clean != NULL)
1325 		zil_itxg_clean(clean);
1326 }
1327 
1328 /*
1329  * If there are any in-memory intent log transactions which have now been
1330  * synced then start up a taskq to free them. We should only do this after we
1331  * have written out the uberblocks (i.e. txg has been comitted) so that
1332  * don't inadvertently clean out in-memory log records that would be required
1333  * by zil_commit().
1334  */
1335 void
1336 zil_clean(zilog_t *zilog, uint64_t synced_txg)
1337 {
1338 	itxg_t *itxg = &zilog->zl_itxg[synced_txg & TXG_MASK];
1339 	itxs_t *clean_me;
1340 
1341 	mutex_enter(&itxg->itxg_lock);
1342 	if (itxg->itxg_itxs == NULL || itxg->itxg_txg == ZILTEST_TXG) {
1343 		mutex_exit(&itxg->itxg_lock);
1344 		return;
1345 	}
1346 	ASSERT3U(itxg->itxg_txg, <=, synced_txg);
1347 	ASSERT(itxg->itxg_txg != 0);
1348 	ASSERT(zilog->zl_clean_taskq != NULL);
1349 	atomic_add_64(&zilog->zl_itx_list_sz, -itxg->itxg_sod);
1350 	itxg->itxg_sod = 0;
1351 	clean_me = itxg->itxg_itxs;
1352 	itxg->itxg_itxs = NULL;
1353 	itxg->itxg_txg = 0;
1354 	mutex_exit(&itxg->itxg_lock);
1355 	/*
1356 	 * Preferably start a task queue to free up the old itxs but
1357 	 * if taskq_dispatch can't allocate resources to do that then
1358 	 * free it in-line. This should be rare. Note, using TQ_SLEEP
1359 	 * created a bad performance problem.
1360 	 */
1361 	if (taskq_dispatch(zilog->zl_clean_taskq,
1362 	    (void (*)(void *))zil_itxg_clean, clean_me, TQ_NOSLEEP) == NULL)
1363 		zil_itxg_clean(clean_me);
1364 }
1365 
1366 /*
1367  * Get the list of itxs to commit into zl_itx_commit_list.
1368  */
1369 static void
1370 zil_get_commit_list(zilog_t *zilog)
1371 {
1372 	uint64_t otxg, txg;
1373 	list_t *commit_list = &zilog->zl_itx_commit_list;
1374 	uint64_t push_sod = 0;
1375 
1376 	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1377 		otxg = ZILTEST_TXG;
1378 	else
1379 		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1380 
1381 	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1382 		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1383 
1384 		mutex_enter(&itxg->itxg_lock);
1385 		if (itxg->itxg_txg != txg) {
1386 			mutex_exit(&itxg->itxg_lock);
1387 			continue;
1388 		}
1389 
1390 		list_move_tail(commit_list, &itxg->itxg_itxs->i_sync_list);
1391 		push_sod += itxg->itxg_sod;
1392 		itxg->itxg_sod = 0;
1393 
1394 		mutex_exit(&itxg->itxg_lock);
1395 	}
1396 	atomic_add_64(&zilog->zl_itx_list_sz, -push_sod);
1397 }
1398 
1399 /*
1400  * Move the async itxs for a specified object to commit into sync lists.
1401  */
1402 static void
1403 zil_async_to_sync(zilog_t *zilog, uint64_t foid)
1404 {
1405 	uint64_t otxg, txg;
1406 	itx_async_node_t *ian;
1407 	avl_tree_t *t;
1408 	avl_index_t where;
1409 
1410 	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1411 		otxg = ZILTEST_TXG;
1412 	else
1413 		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1414 
1415 	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1416 		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1417 
1418 		mutex_enter(&itxg->itxg_lock);
1419 		if (itxg->itxg_txg != txg) {
1420 			mutex_exit(&itxg->itxg_lock);
1421 			continue;
1422 		}
1423 
1424 		/*
1425 		 * If a foid is specified then find that node and append its
1426 		 * list. Otherwise walk the tree appending all the lists
1427 		 * to the sync list. We add to the end rather than the
1428 		 * beginning to ensure the create has happened.
1429 		 */
1430 		t = &itxg->itxg_itxs->i_async_tree;
1431 		if (foid != 0) {
1432 			ian = avl_find(t, &foid, &where);
1433 			if (ian != NULL) {
1434 				list_move_tail(&itxg->itxg_itxs->i_sync_list,
1435 				    &ian->ia_list);
1436 			}
1437 		} else {
1438 			void *cookie = NULL;
1439 
1440 			while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
1441 				list_move_tail(&itxg->itxg_itxs->i_sync_list,
1442 				    &ian->ia_list);
1443 				list_destroy(&ian->ia_list);
1444 				kmem_free(ian, sizeof (itx_async_node_t));
1445 			}
1446 		}
1447 		mutex_exit(&itxg->itxg_lock);
1448 	}
1449 }
1450 
1451 static void
1452 zil_commit_writer(zilog_t *zilog)
1453 {
1454 	uint64_t txg;
1455 	itx_t *itx;
1456 	lwb_t *lwb;
1457 	spa_t *spa = zilog->zl_spa;
1458 	int error = 0;
1459 
1460 	ASSERT(zilog->zl_root_zio == NULL);
1461 
1462 	mutex_exit(&zilog->zl_lock);
1463 
1464 	zil_get_commit_list(zilog);
1465 
1466 	/*
1467 	 * Return if there's nothing to commit before we dirty the fs by
1468 	 * calling zil_create().
1469 	 */
1470 	if (list_head(&zilog->zl_itx_commit_list) == NULL) {
1471 		mutex_enter(&zilog->zl_lock);
1472 		return;
1473 	}
1474 
1475 	if (zilog->zl_suspend) {
1476 		lwb = NULL;
1477 	} else {
1478 		lwb = list_tail(&zilog->zl_lwb_list);
1479 		if (lwb == NULL)
1480 			lwb = zil_create(zilog);
1481 	}
1482 
1483 	DTRACE_PROBE1(zil__cw1, zilog_t *, zilog);
1484 	while (itx = list_head(&zilog->zl_itx_commit_list)) {
1485 		txg = itx->itx_lr.lrc_txg;
1486 		ASSERT(txg);
1487 
1488 		if (txg > spa_last_synced_txg(spa) || txg > spa_freeze_txg(spa))
1489 			lwb = zil_lwb_commit(zilog, itx, lwb);
1490 		list_remove(&zilog->zl_itx_commit_list, itx);
1491 		kmem_free(itx, offsetof(itx_t, itx_lr)
1492 		    + itx->itx_lr.lrc_reclen);
1493 	}
1494 	DTRACE_PROBE1(zil__cw2, zilog_t *, zilog);
1495 
1496 	/* write the last block out */
1497 	if (lwb != NULL && lwb->lwb_zio != NULL)
1498 		lwb = zil_lwb_write_start(zilog, lwb);
1499 
1500 	zilog->zl_cur_used = 0;
1501 
1502 	/*
1503 	 * Wait if necessary for the log blocks to be on stable storage.
1504 	 */
1505 	if (zilog->zl_root_zio) {
1506 		error = zio_wait(zilog->zl_root_zio);
1507 		zilog->zl_root_zio = NULL;
1508 		zil_flush_vdevs(zilog);
1509 	}
1510 
1511 	if (error || lwb == NULL)
1512 		txg_wait_synced(zilog->zl_dmu_pool, 0);
1513 
1514 	mutex_enter(&zilog->zl_lock);
1515 
1516 	/*
1517 	 * Remember the highest committed log sequence number for ztest.
1518 	 * We only update this value when all the log writes succeeded,
1519 	 * because ztest wants to ASSERT that it got the whole log chain.
1520 	 */
1521 	if (error == 0 && lwb != NULL)
1522 		zilog->zl_commit_lr_seq = zilog->zl_lr_seq;
1523 }
1524 
1525 /*
1526  * Commit zfs transactions to stable storage.
1527  * If foid is 0 push out all transactions, otherwise push only those
1528  * for that object or might reference that object.
1529  *
1530  * itxs are committed in batches. In a heavily stressed zil there will be
1531  * a commit writer thread who is writing out a bunch of itxs to the log
1532  * for a set of committing threads (cthreads) in the same batch as the writer.
1533  * Those cthreads are all waiting on the same cv for that batch.
1534  *
1535  * There will also be a different and growing batch of threads that are
1536  * waiting to commit (qthreads). When the committing batch completes
1537  * a transition occurs such that the cthreads exit and the qthreads become
1538  * cthreads. One of the new cthreads becomes the writer thread for the
1539  * batch. Any new threads arriving become new qthreads.
1540  *
1541  * Only 2 condition variables are needed and there's no transition
1542  * between the two cvs needed. They just flip-flop between qthreads
1543  * and cthreads.
1544  *
1545  * Using this scheme we can efficiently wakeup up only those threads
1546  * that have been committed.
1547  */
1548 void
1549 zil_commit(zilog_t *zilog, uint64_t foid)
1550 {
1551 	uint64_t mybatch;
1552 
1553 	if (zilog->zl_sync == ZFS_SYNC_DISABLED)
1554 		return;
1555 
1556 	/* move the async itxs for the foid to the sync queues */
1557 	zil_async_to_sync(zilog, foid);
1558 
1559 	mutex_enter(&zilog->zl_lock);
1560 	mybatch = zilog->zl_next_batch;
1561 	while (zilog->zl_writer) {
1562 		cv_wait(&zilog->zl_cv_batch[mybatch & 1], &zilog->zl_lock);
1563 		if (mybatch <= zilog->zl_com_batch) {
1564 			mutex_exit(&zilog->zl_lock);
1565 			return;
1566 		}
1567 	}
1568 
1569 	zilog->zl_next_batch++;
1570 	zilog->zl_writer = B_TRUE;
1571 	zil_commit_writer(zilog);
1572 	zilog->zl_com_batch = mybatch;
1573 	zilog->zl_writer = B_FALSE;
1574 	mutex_exit(&zilog->zl_lock);
1575 
1576 	/* wake up one thread to become the next writer */
1577 	cv_signal(&zilog->zl_cv_batch[(mybatch+1) & 1]);
1578 
1579 	/* wake up all threads waiting for this batch to be committed */
1580 	cv_broadcast(&zilog->zl_cv_batch[mybatch & 1]);
1581 }
1582 
1583 /*
1584  * Called in syncing context to free committed log blocks and update log header.
1585  */
1586 void
1587 zil_sync(zilog_t *zilog, dmu_tx_t *tx)
1588 {
1589 	zil_header_t *zh = zil_header_in_syncing_context(zilog);
1590 	uint64_t txg = dmu_tx_get_txg(tx);
1591 	spa_t *spa = zilog->zl_spa;
1592 	uint64_t *replayed_seq = &zilog->zl_replayed_seq[txg & TXG_MASK];
1593 	lwb_t *lwb;
1594 
1595 	/*
1596 	 * We don't zero out zl_destroy_txg, so make sure we don't try
1597 	 * to destroy it twice.
1598 	 */
1599 	if (spa_sync_pass(spa) != 1)
1600 		return;
1601 
1602 	mutex_enter(&zilog->zl_lock);
1603 
1604 	ASSERT(zilog->zl_stop_sync == 0);
1605 
1606 	if (*replayed_seq != 0) {
1607 		ASSERT(zh->zh_replay_seq < *replayed_seq);
1608 		zh->zh_replay_seq = *replayed_seq;
1609 		*replayed_seq = 0;
1610 	}
1611 
1612 	if (zilog->zl_destroy_txg == txg) {
1613 		blkptr_t blk = zh->zh_log;
1614 
1615 		ASSERT(list_head(&zilog->zl_lwb_list) == NULL);
1616 
1617 		bzero(zh, sizeof (zil_header_t));
1618 		bzero(zilog->zl_replayed_seq, sizeof (zilog->zl_replayed_seq));
1619 
1620 		if (zilog->zl_keep_first) {
1621 			/*
1622 			 * If this block was part of log chain that couldn't
1623 			 * be claimed because a device was missing during
1624 			 * zil_claim(), but that device later returns,
1625 			 * then this block could erroneously appear valid.
1626 			 * To guard against this, assign a new GUID to the new
1627 			 * log chain so it doesn't matter what blk points to.
1628 			 */
1629 			zil_init_log_chain(zilog, &blk);
1630 			zh->zh_log = blk;
1631 		}
1632 	}
1633 
1634 	while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
1635 		zh->zh_log = lwb->lwb_blk;
1636 		if (lwb->lwb_buf != NULL || lwb->lwb_max_txg > txg)
1637 			break;
1638 		list_remove(&zilog->zl_lwb_list, lwb);
1639 		zio_free_zil(spa, txg, &lwb->lwb_blk);
1640 		kmem_cache_free(zil_lwb_cache, lwb);
1641 
1642 		/*
1643 		 * If we don't have anything left in the lwb list then
1644 		 * we've had an allocation failure and we need to zero
1645 		 * out the zil_header blkptr so that we don't end
1646 		 * up freeing the same block twice.
1647 		 */
1648 		if (list_head(&zilog->zl_lwb_list) == NULL)
1649 			BP_ZERO(&zh->zh_log);
1650 	}
1651 	mutex_exit(&zilog->zl_lock);
1652 }
1653 
1654 void
1655 zil_init(void)
1656 {
1657 	zil_lwb_cache = kmem_cache_create("zil_lwb_cache",
1658 	    sizeof (struct lwb), 0, NULL, NULL, NULL, NULL, NULL, 0);
1659 }
1660 
1661 void
1662 zil_fini(void)
1663 {
1664 	kmem_cache_destroy(zil_lwb_cache);
1665 }
1666 
1667 void
1668 zil_set_sync(zilog_t *zilog, uint64_t sync)
1669 {
1670 	zilog->zl_sync = sync;
1671 }
1672 
1673 void
1674 zil_set_logbias(zilog_t *zilog, uint64_t logbias)
1675 {
1676 	zilog->zl_logbias = logbias;
1677 }
1678 
1679 zilog_t *
1680 zil_alloc(objset_t *os, zil_header_t *zh_phys)
1681 {
1682 	zilog_t *zilog;
1683 
1684 	zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP);
1685 
1686 	zilog->zl_header = zh_phys;
1687 	zilog->zl_os = os;
1688 	zilog->zl_spa = dmu_objset_spa(os);
1689 	zilog->zl_dmu_pool = dmu_objset_pool(os);
1690 	zilog->zl_destroy_txg = TXG_INITIAL - 1;
1691 	zilog->zl_logbias = dmu_objset_logbias(os);
1692 	zilog->zl_sync = dmu_objset_syncprop(os);
1693 	zilog->zl_next_batch = 1;
1694 
1695 	mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL);
1696 
1697 	for (int i = 0; i < TXG_SIZE; i++) {
1698 		mutex_init(&zilog->zl_itxg[i].itxg_lock, NULL,
1699 		    MUTEX_DEFAULT, NULL);
1700 	}
1701 
1702 	list_create(&zilog->zl_lwb_list, sizeof (lwb_t),
1703 	    offsetof(lwb_t, lwb_node));
1704 
1705 	list_create(&zilog->zl_itx_commit_list, sizeof (itx_t),
1706 	    offsetof(itx_t, itx_node));
1707 
1708 	mutex_init(&zilog->zl_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
1709 
1710 	avl_create(&zilog->zl_vdev_tree, zil_vdev_compare,
1711 	    sizeof (zil_vdev_node_t), offsetof(zil_vdev_node_t, zv_node));
1712 
1713 	cv_init(&zilog->zl_cv_writer, NULL, CV_DEFAULT, NULL);
1714 	cv_init(&zilog->zl_cv_suspend, NULL, CV_DEFAULT, NULL);
1715 	cv_init(&zilog->zl_cv_batch[0], NULL, CV_DEFAULT, NULL);
1716 	cv_init(&zilog->zl_cv_batch[1], NULL, CV_DEFAULT, NULL);
1717 
1718 	return (zilog);
1719 }
1720 
1721 void
1722 zil_free(zilog_t *zilog)
1723 {
1724 	zilog->zl_stop_sync = 1;
1725 
1726 	ASSERT0(zilog->zl_suspend);
1727 	ASSERT0(zilog->zl_suspending);
1728 
1729 	ASSERT(list_is_empty(&zilog->zl_lwb_list));
1730 	list_destroy(&zilog->zl_lwb_list);
1731 
1732 	avl_destroy(&zilog->zl_vdev_tree);
1733 	mutex_destroy(&zilog->zl_vdev_lock);
1734 
1735 	ASSERT(list_is_empty(&zilog->zl_itx_commit_list));
1736 	list_destroy(&zilog->zl_itx_commit_list);
1737 
1738 	for (int i = 0; i < TXG_SIZE; i++) {
1739 		/*
1740 		 * It's possible for an itx to be generated that doesn't dirty
1741 		 * a txg (e.g. ztest TX_TRUNCATE). So there's no zil_clean()
1742 		 * callback to remove the entry. We remove those here.
1743 		 *
1744 		 * Also free up the ziltest itxs.
1745 		 */
1746 		if (zilog->zl_itxg[i].itxg_itxs)
1747 			zil_itxg_clean(zilog->zl_itxg[i].itxg_itxs);
1748 		mutex_destroy(&zilog->zl_itxg[i].itxg_lock);
1749 	}
1750 
1751 	mutex_destroy(&zilog->zl_lock);
1752 
1753 	cv_destroy(&zilog->zl_cv_writer);
1754 	cv_destroy(&zilog->zl_cv_suspend);
1755 	cv_destroy(&zilog->zl_cv_batch[0]);
1756 	cv_destroy(&zilog->zl_cv_batch[1]);
1757 
1758 	kmem_free(zilog, sizeof (zilog_t));
1759 }
1760 
1761 /*
1762  * Open an intent log.
1763  */
1764 zilog_t *
1765 zil_open(objset_t *os, zil_get_data_t *get_data)
1766 {
1767 	zilog_t *zilog = dmu_objset_zil(os);
1768 
1769 	ASSERT(zilog->zl_clean_taskq == NULL);
1770 	ASSERT(zilog->zl_get_data == NULL);
1771 	ASSERT(list_is_empty(&zilog->zl_lwb_list));
1772 
1773 	zilog->zl_get_data = get_data;
1774 	zilog->zl_clean_taskq = taskq_create("zil_clean", 1, minclsyspri,
1775 	    2, 2, TASKQ_PREPOPULATE);
1776 
1777 	return (zilog);
1778 }
1779 
1780 /*
1781  * Close an intent log.
1782  */
1783 void
1784 zil_close(zilog_t *zilog)
1785 {
1786 	lwb_t *lwb;
1787 	uint64_t txg = 0;
1788 
1789 	zil_commit(zilog, 0); /* commit all itx */
1790 
1791 	/*
1792 	 * The lwb_max_txg for the stubby lwb will reflect the last activity
1793 	 * for the zil.  After a txg_wait_synced() on the txg we know all the
1794 	 * callbacks have occurred that may clean the zil.  Only then can we
1795 	 * destroy the zl_clean_taskq.
1796 	 */
1797 	mutex_enter(&zilog->zl_lock);
1798 	lwb = list_tail(&zilog->zl_lwb_list);
1799 	if (lwb != NULL)
1800 		txg = lwb->lwb_max_txg;
1801 	mutex_exit(&zilog->zl_lock);
1802 	if (txg)
1803 		txg_wait_synced(zilog->zl_dmu_pool, txg);
1804 	ASSERT(!zilog_is_dirty(zilog));
1805 
1806 	taskq_destroy(zilog->zl_clean_taskq);
1807 	zilog->zl_clean_taskq = NULL;
1808 	zilog->zl_get_data = NULL;
1809 
1810 	/*
1811 	 * We should have only one LWB left on the list; remove it now.
1812 	 */
1813 	mutex_enter(&zilog->zl_lock);
1814 	lwb = list_head(&zilog->zl_lwb_list);
1815 	if (lwb != NULL) {
1816 		ASSERT(lwb == list_tail(&zilog->zl_lwb_list));
1817 		list_remove(&zilog->zl_lwb_list, lwb);
1818 		zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
1819 		kmem_cache_free(zil_lwb_cache, lwb);
1820 	}
1821 	mutex_exit(&zilog->zl_lock);
1822 }
1823 
1824 static char *suspend_tag = "zil suspending";
1825 
1826 /*
1827  * Suspend an intent log.  While in suspended mode, we still honor
1828  * synchronous semantics, but we rely on txg_wait_synced() to do it.
1829  * On old version pools, we suspend the log briefly when taking a
1830  * snapshot so that it will have an empty intent log.
1831  *
1832  * Long holds are not really intended to be used the way we do here --
1833  * held for such a short time.  A concurrent caller of dsl_dataset_long_held()
1834  * could fail.  Therefore we take pains to only put a long hold if it is
1835  * actually necessary.  Fortunately, it will only be necessary if the
1836  * objset is currently mounted (or the ZVOL equivalent).  In that case it
1837  * will already have a long hold, so we are not really making things any worse.
1838  *
1839  * Ideally, we would locate the existing long-holder (i.e. the zfsvfs_t or
1840  * zvol_state_t), and use their mechanism to prevent their hold from being
1841  * dropped (e.g. VFS_HOLD()).  However, that would be even more pain for
1842  * very little gain.
1843  *
1844  * if cookiep == NULL, this does both the suspend & resume.
1845  * Otherwise, it returns with the dataset "long held", and the cookie
1846  * should be passed into zil_resume().
1847  */
1848 int
1849 zil_suspend(const char *osname, void **cookiep)
1850 {
1851 	objset_t *os;
1852 	zilog_t *zilog;
1853 	const zil_header_t *zh;
1854 	int error;
1855 
1856 	error = dmu_objset_hold(osname, suspend_tag, &os);
1857 	if (error != 0)
1858 		return (error);
1859 	zilog = dmu_objset_zil(os);
1860 
1861 	mutex_enter(&zilog->zl_lock);
1862 	zh = zilog->zl_header;
1863 
1864 	if (zh->zh_flags & ZIL_REPLAY_NEEDED) {		/* unplayed log */
1865 		mutex_exit(&zilog->zl_lock);
1866 		dmu_objset_rele(os, suspend_tag);
1867 		return (SET_ERROR(EBUSY));
1868 	}
1869 
1870 	/*
1871 	 * Don't put a long hold in the cases where we can avoid it.  This
1872 	 * is when there is no cookie so we are doing a suspend & resume
1873 	 * (i.e. called from zil_vdev_offline()), and there's nothing to do
1874 	 * for the suspend because it's already suspended, or there's no ZIL.
1875 	 */
1876 	if (cookiep == NULL && !zilog->zl_suspending &&
1877 	    (zilog->zl_suspend > 0 || BP_IS_HOLE(&zh->zh_log))) {
1878 		mutex_exit(&zilog->zl_lock);
1879 		dmu_objset_rele(os, suspend_tag);
1880 		return (0);
1881 	}
1882 
1883 	dsl_dataset_long_hold(dmu_objset_ds(os), suspend_tag);
1884 	dsl_pool_rele(dmu_objset_pool(os), suspend_tag);
1885 
1886 	zilog->zl_suspend++;
1887 
1888 	if (zilog->zl_suspend > 1) {
1889 		/*
1890 		 * Someone else is already suspending it.
1891 		 * Just wait for them to finish.
1892 		 */
1893 
1894 		while (zilog->zl_suspending)
1895 			cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock);
1896 		mutex_exit(&zilog->zl_lock);
1897 
1898 		if (cookiep == NULL)
1899 			zil_resume(os);
1900 		else
1901 			*cookiep = os;
1902 		return (0);
1903 	}
1904 
1905 	/*
1906 	 * If there is no pointer to an on-disk block, this ZIL must not
1907 	 * be active (e.g. filesystem not mounted), so there's nothing
1908 	 * to clean up.
1909 	 */
1910 	if (BP_IS_HOLE(&zh->zh_log)) {
1911 		ASSERT(cookiep != NULL); /* fast path already handled */
1912 
1913 		*cookiep = os;
1914 		mutex_exit(&zilog->zl_lock);
1915 		return (0);
1916 	}
1917 
1918 	zilog->zl_suspending = B_TRUE;
1919 	mutex_exit(&zilog->zl_lock);
1920 
1921 	zil_commit(zilog, 0);
1922 
1923 	zil_destroy(zilog, B_FALSE);
1924 
1925 	mutex_enter(&zilog->zl_lock);
1926 	zilog->zl_suspending = B_FALSE;
1927 	cv_broadcast(&zilog->zl_cv_suspend);
1928 	mutex_exit(&zilog->zl_lock);
1929 
1930 	if (cookiep == NULL)
1931 		zil_resume(os);
1932 	else
1933 		*cookiep = os;
1934 	return (0);
1935 }
1936 
1937 void
1938 zil_resume(void *cookie)
1939 {
1940 	objset_t *os = cookie;
1941 	zilog_t *zilog = dmu_objset_zil(os);
1942 
1943 	mutex_enter(&zilog->zl_lock);
1944 	ASSERT(zilog->zl_suspend != 0);
1945 	zilog->zl_suspend--;
1946 	mutex_exit(&zilog->zl_lock);
1947 	dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag);
1948 	dsl_dataset_rele(dmu_objset_ds(os), suspend_tag);
1949 }
1950 
1951 typedef struct zil_replay_arg {
1952 	zil_replay_func_t **zr_replay;
1953 	void		*zr_arg;
1954 	boolean_t	zr_byteswap;
1955 	char		*zr_lr;
1956 } zil_replay_arg_t;
1957 
1958 static int
1959 zil_replay_error(zilog_t *zilog, lr_t *lr, int error)
1960 {
1961 	char name[MAXNAMELEN];
1962 
1963 	zilog->zl_replaying_seq--;	/* didn't actually replay this one */
1964 
1965 	dmu_objset_name(zilog->zl_os, name);
1966 
1967 	cmn_err(CE_WARN, "ZFS replay transaction error %d, "
1968 	    "dataset %s, seq 0x%llx, txtype %llu %s\n", error, name,
1969 	    (u_longlong_t)lr->lrc_seq,
1970 	    (u_longlong_t)(lr->lrc_txtype & ~TX_CI),
1971 	    (lr->lrc_txtype & TX_CI) ? "CI" : "");
1972 
1973 	return (error);
1974 }
1975 
1976 static int
1977 zil_replay_log_record(zilog_t *zilog, lr_t *lr, void *zra, uint64_t claim_txg)
1978 {
1979 	zil_replay_arg_t *zr = zra;
1980 	const zil_header_t *zh = zilog->zl_header;
1981 	uint64_t reclen = lr->lrc_reclen;
1982 	uint64_t txtype = lr->lrc_txtype;
1983 	int error = 0;
1984 
1985 	zilog->zl_replaying_seq = lr->lrc_seq;
1986 
1987 	if (lr->lrc_seq <= zh->zh_replay_seq)	/* already replayed */
1988 		return (0);
1989 
1990 	if (lr->lrc_txg < claim_txg)		/* already committed */
1991 		return (0);
1992 
1993 	/* Strip case-insensitive bit, still present in log record */
1994 	txtype &= ~TX_CI;
1995 
1996 	if (txtype == 0 || txtype >= TX_MAX_TYPE)
1997 		return (zil_replay_error(zilog, lr, EINVAL));
1998 
1999 	/*
2000 	 * If this record type can be logged out of order, the object
2001 	 * (lr_foid) may no longer exist.  That's legitimate, not an error.
2002 	 */
2003 	if (TX_OOO(txtype)) {
2004 		error = dmu_object_info(zilog->zl_os,
2005 		    ((lr_ooo_t *)lr)->lr_foid, NULL);
2006 		if (error == ENOENT || error == EEXIST)
2007 			return (0);
2008 	}
2009 
2010 	/*
2011 	 * Make a copy of the data so we can revise and extend it.
2012 	 */
2013 	bcopy(lr, zr->zr_lr, reclen);
2014 
2015 	/*
2016 	 * If this is a TX_WRITE with a blkptr, suck in the data.
2017 	 */
2018 	if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) {
2019 		error = zil_read_log_data(zilog, (lr_write_t *)lr,
2020 		    zr->zr_lr + reclen);
2021 		if (error != 0)
2022 			return (zil_replay_error(zilog, lr, error));
2023 	}
2024 
2025 	/*
2026 	 * The log block containing this lr may have been byteswapped
2027 	 * so that we can easily examine common fields like lrc_txtype.
2028 	 * However, the log is a mix of different record types, and only the
2029 	 * replay vectors know how to byteswap their records.  Therefore, if
2030 	 * the lr was byteswapped, undo it before invoking the replay vector.
2031 	 */
2032 	if (zr->zr_byteswap)
2033 		byteswap_uint64_array(zr->zr_lr, reclen);
2034 
2035 	/*
2036 	 * We must now do two things atomically: replay this log record,
2037 	 * and update the log header sequence number to reflect the fact that
2038 	 * we did so. At the end of each replay function the sequence number
2039 	 * is updated if we are in replay mode.
2040 	 */
2041 	error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, zr->zr_byteswap);
2042 	if (error != 0) {
2043 		/*
2044 		 * The DMU's dnode layer doesn't see removes until the txg
2045 		 * commits, so a subsequent claim can spuriously fail with
2046 		 * EEXIST. So if we receive any error we try syncing out
2047 		 * any removes then retry the transaction.  Note that we
2048 		 * specify B_FALSE for byteswap now, so we don't do it twice.
2049 		 */
2050 		txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0);
2051 		error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, B_FALSE);
2052 		if (error != 0)
2053 			return (zil_replay_error(zilog, lr, error));
2054 	}
2055 	return (0);
2056 }
2057 
2058 /* ARGSUSED */
2059 static int
2060 zil_incr_blks(zilog_t *zilog, blkptr_t *bp, void *arg, uint64_t claim_txg)
2061 {
2062 	zilog->zl_replay_blks++;
2063 
2064 	return (0);
2065 }
2066 
2067 /*
2068  * If this dataset has a non-empty intent log, replay it and destroy it.
2069  */
2070 void
2071 zil_replay(objset_t *os, void *arg, zil_replay_func_t *replay_func[TX_MAX_TYPE])
2072 {
2073 	zilog_t *zilog = dmu_objset_zil(os);
2074 	const zil_header_t *zh = zilog->zl_header;
2075 	zil_replay_arg_t zr;
2076 
2077 	if ((zh->zh_flags & ZIL_REPLAY_NEEDED) == 0) {
2078 		zil_destroy(zilog, B_TRUE);
2079 		return;
2080 	}
2081 
2082 	zr.zr_replay = replay_func;
2083 	zr.zr_arg = arg;
2084 	zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log);
2085 	zr.zr_lr = kmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP);
2086 
2087 	/*
2088 	 * Wait for in-progress removes to sync before starting replay.
2089 	 */
2090 	txg_wait_synced(zilog->zl_dmu_pool, 0);
2091 
2092 	zilog->zl_replay = B_TRUE;
2093 	zilog->zl_replay_time = ddi_get_lbolt();
2094 	ASSERT(zilog->zl_replay_blks == 0);
2095 	(void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr,
2096 	    zh->zh_claim_txg);
2097 	kmem_free(zr.zr_lr, 2 * SPA_MAXBLOCKSIZE);
2098 
2099 	zil_destroy(zilog, B_FALSE);
2100 	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
2101 	zilog->zl_replay = B_FALSE;
2102 }
2103 
2104 boolean_t
2105 zil_replaying(zilog_t *zilog, dmu_tx_t *tx)
2106 {
2107 	if (zilog->zl_sync == ZFS_SYNC_DISABLED)
2108 		return (B_TRUE);
2109 
2110 	if (zilog->zl_replay) {
2111 		dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
2112 		zilog->zl_replayed_seq[dmu_tx_get_txg(tx) & TXG_MASK] =
2113 		    zilog->zl_replaying_seq;
2114 		return (B_TRUE);
2115 	}
2116 
2117 	return (B_FALSE);
2118 }
2119 
2120 /* ARGSUSED */
2121 int
2122 zil_vdev_offline(const char *osname, void *arg)
2123 {
2124 	int error;
2125 
2126 	error = zil_suspend(osname, NULL);
2127 	if (error != 0)
2128 		return (SET_ERROR(EEXIST));
2129 	return (0);
2130 }
2131