xref: /illumos-gate/usr/src/uts/common/fs/zfs/zio.c (revision 3b2aab18)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2012 by Delphix. All rights reserved.
24  * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved.
25  */
26 
27 #include <sys/zfs_context.h>
28 #include <sys/fm/fs/zfs.h>
29 #include <sys/spa.h>
30 #include <sys/txg.h>
31 #include <sys/spa_impl.h>
32 #include <sys/vdev_impl.h>
33 #include <sys/zio_impl.h>
34 #include <sys/zio_compress.h>
35 #include <sys/zio_checksum.h>
36 #include <sys/dmu_objset.h>
37 #include <sys/arc.h>
38 #include <sys/ddt.h>
39 
40 /*
41  * ==========================================================================
42  * I/O priority table
43  * ==========================================================================
44  */
45 uint8_t zio_priority_table[ZIO_PRIORITY_TABLE_SIZE] = {
46 	0,	/* ZIO_PRIORITY_NOW		*/
47 	0,	/* ZIO_PRIORITY_SYNC_READ	*/
48 	0,	/* ZIO_PRIORITY_SYNC_WRITE	*/
49 	0,	/* ZIO_PRIORITY_LOG_WRITE	*/
50 	1,	/* ZIO_PRIORITY_CACHE_FILL	*/
51 	1,	/* ZIO_PRIORITY_AGG		*/
52 	4,	/* ZIO_PRIORITY_FREE		*/
53 	4,	/* ZIO_PRIORITY_ASYNC_WRITE	*/
54 	6,	/* ZIO_PRIORITY_ASYNC_READ	*/
55 	10,	/* ZIO_PRIORITY_RESILVER	*/
56 	20,	/* ZIO_PRIORITY_SCRUB		*/
57 	2,	/* ZIO_PRIORITY_DDT_PREFETCH	*/
58 };
59 
60 /*
61  * ==========================================================================
62  * I/O type descriptions
63  * ==========================================================================
64  */
65 char *zio_type_name[ZIO_TYPES] = {
66 	"zio_null", "zio_read", "zio_write", "zio_free", "zio_claim",
67 	"zio_ioctl"
68 };
69 
70 /*
71  * ==========================================================================
72  * I/O kmem caches
73  * ==========================================================================
74  */
75 kmem_cache_t *zio_cache;
76 kmem_cache_t *zio_link_cache;
77 kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
78 kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
79 
80 #ifdef _KERNEL
81 extern vmem_t *zio_alloc_arena;
82 #endif
83 extern int zfs_mg_alloc_failures;
84 
85 /*
86  * The following actions directly effect the spa's sync-to-convergence logic.
87  * The values below define the sync pass when we start performing the action.
88  * Care should be taken when changing these values as they directly impact
89  * spa_sync() performance. Tuning these values may introduce subtle performance
90  * pathologies and should only be done in the context of performance analysis.
91  * These tunables will eventually be removed and replaced with #defines once
92  * enough analysis has been done to determine optimal values.
93  *
94  * The 'zfs_sync_pass_deferred_free' pass must be greater than 1 to ensure that
95  * regular blocks are not deferred.
96  */
97 int zfs_sync_pass_deferred_free = 2; /* defer frees starting in this pass */
98 int zfs_sync_pass_dont_compress = 5; /* don't compress starting in this pass */
99 int zfs_sync_pass_rewrite = 2; /* rewrite new bps starting in this pass */
100 
101 /*
102  * An allocating zio is one that either currently has the DVA allocate
103  * stage set or will have it later in its lifetime.
104  */
105 #define	IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE)
106 
107 boolean_t	zio_requeue_io_start_cut_in_line = B_TRUE;
108 
109 #ifdef ZFS_DEBUG
110 int zio_buf_debug_limit = 16384;
111 #else
112 int zio_buf_debug_limit = 0;
113 #endif
114 
115 void
116 zio_init(void)
117 {
118 	size_t c;
119 	vmem_t *data_alloc_arena = NULL;
120 
121 #ifdef _KERNEL
122 	data_alloc_arena = zio_alloc_arena;
123 #endif
124 	zio_cache = kmem_cache_create("zio_cache",
125 	    sizeof (zio_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
126 	zio_link_cache = kmem_cache_create("zio_link_cache",
127 	    sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
128 
129 	/*
130 	 * For small buffers, we want a cache for each multiple of
131 	 * SPA_MINBLOCKSIZE.  For medium-size buffers, we want a cache
132 	 * for each quarter-power of 2.  For large buffers, we want
133 	 * a cache for each multiple of PAGESIZE.
134 	 */
135 	for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
136 		size_t size = (c + 1) << SPA_MINBLOCKSHIFT;
137 		size_t p2 = size;
138 		size_t align = 0;
139 		size_t cflags = (size > zio_buf_debug_limit) ? KMC_NODEBUG : 0;
140 
141 		while (p2 & (p2 - 1))
142 			p2 &= p2 - 1;
143 
144 #ifndef _KERNEL
145 		/*
146 		 * If we are using watchpoints, put each buffer on its own page,
147 		 * to eliminate the performance overhead of trapping to the
148 		 * kernel when modifying a non-watched buffer that shares the
149 		 * page with a watched buffer.
150 		 */
151 		if (arc_watch && !IS_P2ALIGNED(size, PAGESIZE))
152 			continue;
153 #endif
154 		if (size <= 4 * SPA_MINBLOCKSIZE) {
155 			align = SPA_MINBLOCKSIZE;
156 		} else if (IS_P2ALIGNED(size, PAGESIZE)) {
157 			align = PAGESIZE;
158 		} else if (IS_P2ALIGNED(size, p2 >> 2)) {
159 			align = p2 >> 2;
160 		}
161 
162 		if (align != 0) {
163 			char name[36];
164 			(void) sprintf(name, "zio_buf_%lu", (ulong_t)size);
165 			zio_buf_cache[c] = kmem_cache_create(name, size,
166 			    align, NULL, NULL, NULL, NULL, NULL, cflags);
167 
168 			/*
169 			 * Since zio_data bufs do not appear in crash dumps, we
170 			 * pass KMC_NOTOUCH so that no allocator metadata is
171 			 * stored with the buffers.
172 			 */
173 			(void) sprintf(name, "zio_data_buf_%lu", (ulong_t)size);
174 			zio_data_buf_cache[c] = kmem_cache_create(name, size,
175 			    align, NULL, NULL, NULL, NULL, data_alloc_arena,
176 			    cflags | KMC_NOTOUCH);
177 		}
178 	}
179 
180 	while (--c != 0) {
181 		ASSERT(zio_buf_cache[c] != NULL);
182 		if (zio_buf_cache[c - 1] == NULL)
183 			zio_buf_cache[c - 1] = zio_buf_cache[c];
184 
185 		ASSERT(zio_data_buf_cache[c] != NULL);
186 		if (zio_data_buf_cache[c - 1] == NULL)
187 			zio_data_buf_cache[c - 1] = zio_data_buf_cache[c];
188 	}
189 
190 	/*
191 	 * The zio write taskqs have 1 thread per cpu, allow 1/2 of the taskqs
192 	 * to fail 3 times per txg or 8 failures, whichever is greater.
193 	 */
194 	zfs_mg_alloc_failures = MAX((3 * max_ncpus / 2), 8);
195 
196 	zio_inject_init();
197 }
198 
199 void
200 zio_fini(void)
201 {
202 	size_t c;
203 	kmem_cache_t *last_cache = NULL;
204 	kmem_cache_t *last_data_cache = NULL;
205 
206 	for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
207 		if (zio_buf_cache[c] != last_cache) {
208 			last_cache = zio_buf_cache[c];
209 			kmem_cache_destroy(zio_buf_cache[c]);
210 		}
211 		zio_buf_cache[c] = NULL;
212 
213 		if (zio_data_buf_cache[c] != last_data_cache) {
214 			last_data_cache = zio_data_buf_cache[c];
215 			kmem_cache_destroy(zio_data_buf_cache[c]);
216 		}
217 		zio_data_buf_cache[c] = NULL;
218 	}
219 
220 	kmem_cache_destroy(zio_link_cache);
221 	kmem_cache_destroy(zio_cache);
222 
223 	zio_inject_fini();
224 }
225 
226 /*
227  * ==========================================================================
228  * Allocate and free I/O buffers
229  * ==========================================================================
230  */
231 
232 /*
233  * Use zio_buf_alloc to allocate ZFS metadata.  This data will appear in a
234  * crashdump if the kernel panics, so use it judiciously.  Obviously, it's
235  * useful to inspect ZFS metadata, but if possible, we should avoid keeping
236  * excess / transient data in-core during a crashdump.
237  */
238 void *
239 zio_buf_alloc(size_t size)
240 {
241 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
242 
243 	ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
244 
245 	return (kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE));
246 }
247 
248 /*
249  * Use zio_data_buf_alloc to allocate data.  The data will not appear in a
250  * crashdump if the kernel panics.  This exists so that we will limit the amount
251  * of ZFS data that shows up in a kernel crashdump.  (Thus reducing the amount
252  * of kernel heap dumped to disk when the kernel panics)
253  */
254 void *
255 zio_data_buf_alloc(size_t size)
256 {
257 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
258 
259 	ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
260 
261 	return (kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE));
262 }
263 
264 void
265 zio_buf_free(void *buf, size_t size)
266 {
267 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
268 
269 	ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
270 
271 	kmem_cache_free(zio_buf_cache[c], buf);
272 }
273 
274 void
275 zio_data_buf_free(void *buf, size_t size)
276 {
277 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
278 
279 	ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
280 
281 	kmem_cache_free(zio_data_buf_cache[c], buf);
282 }
283 
284 /*
285  * ==========================================================================
286  * Push and pop I/O transform buffers
287  * ==========================================================================
288  */
289 static void
290 zio_push_transform(zio_t *zio, void *data, uint64_t size, uint64_t bufsize,
291 	zio_transform_func_t *transform)
292 {
293 	zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP);
294 
295 	zt->zt_orig_data = zio->io_data;
296 	zt->zt_orig_size = zio->io_size;
297 	zt->zt_bufsize = bufsize;
298 	zt->zt_transform = transform;
299 
300 	zt->zt_next = zio->io_transform_stack;
301 	zio->io_transform_stack = zt;
302 
303 	zio->io_data = data;
304 	zio->io_size = size;
305 }
306 
307 static void
308 zio_pop_transforms(zio_t *zio)
309 {
310 	zio_transform_t *zt;
311 
312 	while ((zt = zio->io_transform_stack) != NULL) {
313 		if (zt->zt_transform != NULL)
314 			zt->zt_transform(zio,
315 			    zt->zt_orig_data, zt->zt_orig_size);
316 
317 		if (zt->zt_bufsize != 0)
318 			zio_buf_free(zio->io_data, zt->zt_bufsize);
319 
320 		zio->io_data = zt->zt_orig_data;
321 		zio->io_size = zt->zt_orig_size;
322 		zio->io_transform_stack = zt->zt_next;
323 
324 		kmem_free(zt, sizeof (zio_transform_t));
325 	}
326 }
327 
328 /*
329  * ==========================================================================
330  * I/O transform callbacks for subblocks and decompression
331  * ==========================================================================
332  */
333 static void
334 zio_subblock(zio_t *zio, void *data, uint64_t size)
335 {
336 	ASSERT(zio->io_size > size);
337 
338 	if (zio->io_type == ZIO_TYPE_READ)
339 		bcopy(zio->io_data, data, size);
340 }
341 
342 static void
343 zio_decompress(zio_t *zio, void *data, uint64_t size)
344 {
345 	if (zio->io_error == 0 &&
346 	    zio_decompress_data(BP_GET_COMPRESS(zio->io_bp),
347 	    zio->io_data, data, zio->io_size, size) != 0)
348 		zio->io_error = EIO;
349 }
350 
351 /*
352  * ==========================================================================
353  * I/O parent/child relationships and pipeline interlocks
354  * ==========================================================================
355  */
356 /*
357  * NOTE - Callers to zio_walk_parents() and zio_walk_children must
358  *        continue calling these functions until they return NULL.
359  *        Otherwise, the next caller will pick up the list walk in
360  *        some indeterminate state.  (Otherwise every caller would
361  *        have to pass in a cookie to keep the state represented by
362  *        io_walk_link, which gets annoying.)
363  */
364 zio_t *
365 zio_walk_parents(zio_t *cio)
366 {
367 	zio_link_t *zl = cio->io_walk_link;
368 	list_t *pl = &cio->io_parent_list;
369 
370 	zl = (zl == NULL) ? list_head(pl) : list_next(pl, zl);
371 	cio->io_walk_link = zl;
372 
373 	if (zl == NULL)
374 		return (NULL);
375 
376 	ASSERT(zl->zl_child == cio);
377 	return (zl->zl_parent);
378 }
379 
380 zio_t *
381 zio_walk_children(zio_t *pio)
382 {
383 	zio_link_t *zl = pio->io_walk_link;
384 	list_t *cl = &pio->io_child_list;
385 
386 	zl = (zl == NULL) ? list_head(cl) : list_next(cl, zl);
387 	pio->io_walk_link = zl;
388 
389 	if (zl == NULL)
390 		return (NULL);
391 
392 	ASSERT(zl->zl_parent == pio);
393 	return (zl->zl_child);
394 }
395 
396 zio_t *
397 zio_unique_parent(zio_t *cio)
398 {
399 	zio_t *pio = zio_walk_parents(cio);
400 
401 	VERIFY(zio_walk_parents(cio) == NULL);
402 	return (pio);
403 }
404 
405 void
406 zio_add_child(zio_t *pio, zio_t *cio)
407 {
408 	zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP);
409 
410 	/*
411 	 * Logical I/Os can have logical, gang, or vdev children.
412 	 * Gang I/Os can have gang or vdev children.
413 	 * Vdev I/Os can only have vdev children.
414 	 * The following ASSERT captures all of these constraints.
415 	 */
416 	ASSERT(cio->io_child_type <= pio->io_child_type);
417 
418 	zl->zl_parent = pio;
419 	zl->zl_child = cio;
420 
421 	mutex_enter(&cio->io_lock);
422 	mutex_enter(&pio->io_lock);
423 
424 	ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0);
425 
426 	for (int w = 0; w < ZIO_WAIT_TYPES; w++)
427 		pio->io_children[cio->io_child_type][w] += !cio->io_state[w];
428 
429 	list_insert_head(&pio->io_child_list, zl);
430 	list_insert_head(&cio->io_parent_list, zl);
431 
432 	pio->io_child_count++;
433 	cio->io_parent_count++;
434 
435 	mutex_exit(&pio->io_lock);
436 	mutex_exit(&cio->io_lock);
437 }
438 
439 static void
440 zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl)
441 {
442 	ASSERT(zl->zl_parent == pio);
443 	ASSERT(zl->zl_child == cio);
444 
445 	mutex_enter(&cio->io_lock);
446 	mutex_enter(&pio->io_lock);
447 
448 	list_remove(&pio->io_child_list, zl);
449 	list_remove(&cio->io_parent_list, zl);
450 
451 	pio->io_child_count--;
452 	cio->io_parent_count--;
453 
454 	mutex_exit(&pio->io_lock);
455 	mutex_exit(&cio->io_lock);
456 
457 	kmem_cache_free(zio_link_cache, zl);
458 }
459 
460 static boolean_t
461 zio_wait_for_children(zio_t *zio, enum zio_child child, enum zio_wait_type wait)
462 {
463 	uint64_t *countp = &zio->io_children[child][wait];
464 	boolean_t waiting = B_FALSE;
465 
466 	mutex_enter(&zio->io_lock);
467 	ASSERT(zio->io_stall == NULL);
468 	if (*countp != 0) {
469 		zio->io_stage >>= 1;
470 		zio->io_stall = countp;
471 		waiting = B_TRUE;
472 	}
473 	mutex_exit(&zio->io_lock);
474 
475 	return (waiting);
476 }
477 
478 static void
479 zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait)
480 {
481 	uint64_t *countp = &pio->io_children[zio->io_child_type][wait];
482 	int *errorp = &pio->io_child_error[zio->io_child_type];
483 
484 	mutex_enter(&pio->io_lock);
485 	if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
486 		*errorp = zio_worst_error(*errorp, zio->io_error);
487 	pio->io_reexecute |= zio->io_reexecute;
488 	ASSERT3U(*countp, >, 0);
489 	if (--*countp == 0 && pio->io_stall == countp) {
490 		pio->io_stall = NULL;
491 		mutex_exit(&pio->io_lock);
492 		zio_execute(pio);
493 	} else {
494 		mutex_exit(&pio->io_lock);
495 	}
496 }
497 
498 static void
499 zio_inherit_child_errors(zio_t *zio, enum zio_child c)
500 {
501 	if (zio->io_child_error[c] != 0 && zio->io_error == 0)
502 		zio->io_error = zio->io_child_error[c];
503 }
504 
505 /*
506  * ==========================================================================
507  * Create the various types of I/O (read, write, free, etc)
508  * ==========================================================================
509  */
510 static zio_t *
511 zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
512     void *data, uint64_t size, zio_done_func_t *done, void *private,
513     zio_type_t type, int priority, enum zio_flag flags,
514     vdev_t *vd, uint64_t offset, const zbookmark_t *zb,
515     enum zio_stage stage, enum zio_stage pipeline)
516 {
517 	zio_t *zio;
518 
519 	ASSERT3U(size, <=, SPA_MAXBLOCKSIZE);
520 	ASSERT(P2PHASE(size, SPA_MINBLOCKSIZE) == 0);
521 	ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0);
522 
523 	ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER));
524 	ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER));
525 	ASSERT(vd || stage == ZIO_STAGE_OPEN);
526 
527 	zio = kmem_cache_alloc(zio_cache, KM_SLEEP);
528 	bzero(zio, sizeof (zio_t));
529 
530 	mutex_init(&zio->io_lock, NULL, MUTEX_DEFAULT, NULL);
531 	cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL);
532 
533 	list_create(&zio->io_parent_list, sizeof (zio_link_t),
534 	    offsetof(zio_link_t, zl_parent_node));
535 	list_create(&zio->io_child_list, sizeof (zio_link_t),
536 	    offsetof(zio_link_t, zl_child_node));
537 
538 	if (vd != NULL)
539 		zio->io_child_type = ZIO_CHILD_VDEV;
540 	else if (flags & ZIO_FLAG_GANG_CHILD)
541 		zio->io_child_type = ZIO_CHILD_GANG;
542 	else if (flags & ZIO_FLAG_DDT_CHILD)
543 		zio->io_child_type = ZIO_CHILD_DDT;
544 	else
545 		zio->io_child_type = ZIO_CHILD_LOGICAL;
546 
547 	if (bp != NULL) {
548 		zio->io_bp = (blkptr_t *)bp;
549 		zio->io_bp_copy = *bp;
550 		zio->io_bp_orig = *bp;
551 		if (type != ZIO_TYPE_WRITE ||
552 		    zio->io_child_type == ZIO_CHILD_DDT)
553 			zio->io_bp = &zio->io_bp_copy;	/* so caller can free */
554 		if (zio->io_child_type == ZIO_CHILD_LOGICAL)
555 			zio->io_logical = zio;
556 		if (zio->io_child_type > ZIO_CHILD_GANG && BP_IS_GANG(bp))
557 			pipeline |= ZIO_GANG_STAGES;
558 	}
559 
560 	zio->io_spa = spa;
561 	zio->io_txg = txg;
562 	zio->io_done = done;
563 	zio->io_private = private;
564 	zio->io_type = type;
565 	zio->io_priority = priority;
566 	zio->io_vd = vd;
567 	zio->io_offset = offset;
568 	zio->io_orig_data = zio->io_data = data;
569 	zio->io_orig_size = zio->io_size = size;
570 	zio->io_orig_flags = zio->io_flags = flags;
571 	zio->io_orig_stage = zio->io_stage = stage;
572 	zio->io_orig_pipeline = zio->io_pipeline = pipeline;
573 
574 	zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY);
575 	zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE);
576 
577 	if (zb != NULL)
578 		zio->io_bookmark = *zb;
579 
580 	if (pio != NULL) {
581 		if (zio->io_logical == NULL)
582 			zio->io_logical = pio->io_logical;
583 		if (zio->io_child_type == ZIO_CHILD_GANG)
584 			zio->io_gang_leader = pio->io_gang_leader;
585 		zio_add_child(pio, zio);
586 	}
587 
588 	return (zio);
589 }
590 
591 static void
592 zio_destroy(zio_t *zio)
593 {
594 	list_destroy(&zio->io_parent_list);
595 	list_destroy(&zio->io_child_list);
596 	mutex_destroy(&zio->io_lock);
597 	cv_destroy(&zio->io_cv);
598 	kmem_cache_free(zio_cache, zio);
599 }
600 
601 zio_t *
602 zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done,
603     void *private, enum zio_flag flags)
604 {
605 	zio_t *zio;
606 
607 	zio = zio_create(pio, spa, 0, NULL, NULL, 0, done, private,
608 	    ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
609 	    ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE);
610 
611 	return (zio);
612 }
613 
614 zio_t *
615 zio_root(spa_t *spa, zio_done_func_t *done, void *private, enum zio_flag flags)
616 {
617 	return (zio_null(NULL, spa, NULL, done, private, flags));
618 }
619 
620 zio_t *
621 zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp,
622     void *data, uint64_t size, zio_done_func_t *done, void *private,
623     int priority, enum zio_flag flags, const zbookmark_t *zb)
624 {
625 	zio_t *zio;
626 
627 	zio = zio_create(pio, spa, BP_PHYSICAL_BIRTH(bp), bp,
628 	    data, size, done, private,
629 	    ZIO_TYPE_READ, priority, flags, NULL, 0, zb,
630 	    ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
631 	    ZIO_DDT_CHILD_READ_PIPELINE : ZIO_READ_PIPELINE);
632 
633 	return (zio);
634 }
635 
636 zio_t *
637 zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
638     void *data, uint64_t size, const zio_prop_t *zp,
639     zio_done_func_t *ready, zio_done_func_t *done, void *private,
640     int priority, enum zio_flag flags, const zbookmark_t *zb)
641 {
642 	zio_t *zio;
643 
644 	ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF &&
645 	    zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS &&
646 	    zp->zp_compress >= ZIO_COMPRESS_OFF &&
647 	    zp->zp_compress < ZIO_COMPRESS_FUNCTIONS &&
648 	    DMU_OT_IS_VALID(zp->zp_type) &&
649 	    zp->zp_level < 32 &&
650 	    zp->zp_copies > 0 &&
651 	    zp->zp_copies <= spa_max_replication(spa));
652 
653 	zio = zio_create(pio, spa, txg, bp, data, size, done, private,
654 	    ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
655 	    ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
656 	    ZIO_DDT_CHILD_WRITE_PIPELINE : ZIO_WRITE_PIPELINE);
657 
658 	zio->io_ready = ready;
659 	zio->io_prop = *zp;
660 
661 	return (zio);
662 }
663 
664 zio_t *
665 zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, void *data,
666     uint64_t size, zio_done_func_t *done, void *private, int priority,
667     enum zio_flag flags, zbookmark_t *zb)
668 {
669 	zio_t *zio;
670 
671 	zio = zio_create(pio, spa, txg, bp, data, size, done, private,
672 	    ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
673 	    ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE);
674 
675 	return (zio);
676 }
677 
678 void
679 zio_write_override(zio_t *zio, blkptr_t *bp, int copies, boolean_t nopwrite)
680 {
681 	ASSERT(zio->io_type == ZIO_TYPE_WRITE);
682 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
683 	ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
684 	ASSERT(zio->io_txg == spa_syncing_txg(zio->io_spa));
685 
686 	/*
687 	 * We must reset the io_prop to match the values that existed
688 	 * when the bp was first written by dmu_sync() keeping in mind
689 	 * that nopwrite and dedup are mutually exclusive.
690 	 */
691 	zio->io_prop.zp_dedup = nopwrite ? B_FALSE : zio->io_prop.zp_dedup;
692 	zio->io_prop.zp_nopwrite = nopwrite;
693 	zio->io_prop.zp_copies = copies;
694 	zio->io_bp_override = bp;
695 }
696 
697 void
698 zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp)
699 {
700 	metaslab_check_free(spa, bp);
701 	bplist_append(&spa->spa_free_bplist[txg & TXG_MASK], bp);
702 }
703 
704 zio_t *
705 zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
706     enum zio_flag flags)
707 {
708 	zio_t *zio;
709 
710 	dprintf_bp(bp, "freeing in txg %llu, pass %u",
711 	    (longlong_t)txg, spa->spa_sync_pass);
712 
713 	ASSERT(!BP_IS_HOLE(bp));
714 	ASSERT(spa_syncing_txg(spa) == txg);
715 	ASSERT(spa_sync_pass(spa) < zfs_sync_pass_deferred_free);
716 
717 	metaslab_check_free(spa, bp);
718 
719 	zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
720 	    NULL, NULL, ZIO_TYPE_FREE, ZIO_PRIORITY_FREE, flags,
721 	    NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_FREE_PIPELINE);
722 
723 	return (zio);
724 }
725 
726 zio_t *
727 zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
728     zio_done_func_t *done, void *private, enum zio_flag flags)
729 {
730 	zio_t *zio;
731 
732 	/*
733 	 * A claim is an allocation of a specific block.  Claims are needed
734 	 * to support immediate writes in the intent log.  The issue is that
735 	 * immediate writes contain committed data, but in a txg that was
736 	 * *not* committed.  Upon opening the pool after an unclean shutdown,
737 	 * the intent log claims all blocks that contain immediate write data
738 	 * so that the SPA knows they're in use.
739 	 *
740 	 * All claims *must* be resolved in the first txg -- before the SPA
741 	 * starts allocating blocks -- so that nothing is allocated twice.
742 	 * If txg == 0 we just verify that the block is claimable.
743 	 */
744 	ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <, spa_first_txg(spa));
745 	ASSERT(txg == spa_first_txg(spa) || txg == 0);
746 	ASSERT(!BP_GET_DEDUP(bp) || !spa_writeable(spa));	/* zdb(1M) */
747 
748 	zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
749 	    done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW, flags,
750 	    NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE);
751 
752 	return (zio);
753 }
754 
755 zio_t *
756 zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd,
757     zio_done_func_t *done, void *private, int priority, enum zio_flag flags)
758 {
759 	zio_t *zio;
760 	int c;
761 
762 	if (vd->vdev_children == 0) {
763 		zio = zio_create(pio, spa, 0, NULL, NULL, 0, done, private,
764 		    ZIO_TYPE_IOCTL, priority, flags, vd, 0, NULL,
765 		    ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE);
766 
767 		zio->io_cmd = cmd;
768 	} else {
769 		zio = zio_null(pio, spa, NULL, NULL, NULL, flags);
770 
771 		for (c = 0; c < vd->vdev_children; c++)
772 			zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd,
773 			    done, private, priority, flags));
774 	}
775 
776 	return (zio);
777 }
778 
779 zio_t *
780 zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
781     void *data, int checksum, zio_done_func_t *done, void *private,
782     int priority, enum zio_flag flags, boolean_t labels)
783 {
784 	zio_t *zio;
785 
786 	ASSERT(vd->vdev_children == 0);
787 	ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
788 	    offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
789 	ASSERT3U(offset + size, <=, vd->vdev_psize);
790 
791 	zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, done, private,
792 	    ZIO_TYPE_READ, priority, flags, vd, offset, NULL,
793 	    ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE);
794 
795 	zio->io_prop.zp_checksum = checksum;
796 
797 	return (zio);
798 }
799 
800 zio_t *
801 zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
802     void *data, int checksum, zio_done_func_t *done, void *private,
803     int priority, enum zio_flag flags, boolean_t labels)
804 {
805 	zio_t *zio;
806 
807 	ASSERT(vd->vdev_children == 0);
808 	ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
809 	    offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
810 	ASSERT3U(offset + size, <=, vd->vdev_psize);
811 
812 	zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, done, private,
813 	    ZIO_TYPE_WRITE, priority, flags, vd, offset, NULL,
814 	    ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE);
815 
816 	zio->io_prop.zp_checksum = checksum;
817 
818 	if (zio_checksum_table[checksum].ci_eck) {
819 		/*
820 		 * zec checksums are necessarily destructive -- they modify
821 		 * the end of the write buffer to hold the verifier/checksum.
822 		 * Therefore, we must make a local copy in case the data is
823 		 * being written to multiple places in parallel.
824 		 */
825 		void *wbuf = zio_buf_alloc(size);
826 		bcopy(data, wbuf, size);
827 		zio_push_transform(zio, wbuf, size, size, NULL);
828 	}
829 
830 	return (zio);
831 }
832 
833 /*
834  * Create a child I/O to do some work for us.
835  */
836 zio_t *
837 zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset,
838 	void *data, uint64_t size, int type, int priority, enum zio_flag flags,
839 	zio_done_func_t *done, void *private)
840 {
841 	enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE;
842 	zio_t *zio;
843 
844 	ASSERT(vd->vdev_parent ==
845 	    (pio->io_vd ? pio->io_vd : pio->io_spa->spa_root_vdev));
846 
847 	if (type == ZIO_TYPE_READ && bp != NULL) {
848 		/*
849 		 * If we have the bp, then the child should perform the
850 		 * checksum and the parent need not.  This pushes error
851 		 * detection as close to the leaves as possible and
852 		 * eliminates redundant checksums in the interior nodes.
853 		 */
854 		pipeline |= ZIO_STAGE_CHECKSUM_VERIFY;
855 		pio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
856 	}
857 
858 	if (vd->vdev_children == 0)
859 		offset += VDEV_LABEL_START_SIZE;
860 
861 	flags |= ZIO_VDEV_CHILD_FLAGS(pio) | ZIO_FLAG_DONT_PROPAGATE;
862 
863 	/*
864 	 * If we've decided to do a repair, the write is not speculative --
865 	 * even if the original read was.
866 	 */
867 	if (flags & ZIO_FLAG_IO_REPAIR)
868 		flags &= ~ZIO_FLAG_SPECULATIVE;
869 
870 	zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size,
871 	    done, private, type, priority, flags, vd, offset, &pio->io_bookmark,
872 	    ZIO_STAGE_VDEV_IO_START >> 1, pipeline);
873 
874 	return (zio);
875 }
876 
877 zio_t *
878 zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, void *data, uint64_t size,
879 	int type, int priority, enum zio_flag flags,
880 	zio_done_func_t *done, void *private)
881 {
882 	zio_t *zio;
883 
884 	ASSERT(vd->vdev_ops->vdev_op_leaf);
885 
886 	zio = zio_create(NULL, vd->vdev_spa, 0, NULL,
887 	    data, size, done, private, type, priority,
888 	    flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY,
889 	    vd, offset, NULL,
890 	    ZIO_STAGE_VDEV_IO_START >> 1, ZIO_VDEV_CHILD_PIPELINE);
891 
892 	return (zio);
893 }
894 
895 void
896 zio_flush(zio_t *zio, vdev_t *vd)
897 {
898 	zio_nowait(zio_ioctl(zio, zio->io_spa, vd, DKIOCFLUSHWRITECACHE,
899 	    NULL, NULL, ZIO_PRIORITY_NOW,
900 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY));
901 }
902 
903 void
904 zio_shrink(zio_t *zio, uint64_t size)
905 {
906 	ASSERT(zio->io_executor == NULL);
907 	ASSERT(zio->io_orig_size == zio->io_size);
908 	ASSERT(size <= zio->io_size);
909 
910 	/*
911 	 * We don't shrink for raidz because of problems with the
912 	 * reconstruction when reading back less than the block size.
913 	 * Note, BP_IS_RAIDZ() assumes no compression.
914 	 */
915 	ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
916 	if (!BP_IS_RAIDZ(zio->io_bp))
917 		zio->io_orig_size = zio->io_size = size;
918 }
919 
920 /*
921  * ==========================================================================
922  * Prepare to read and write logical blocks
923  * ==========================================================================
924  */
925 
926 static int
927 zio_read_bp_init(zio_t *zio)
928 {
929 	blkptr_t *bp = zio->io_bp;
930 
931 	if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF &&
932 	    zio->io_child_type == ZIO_CHILD_LOGICAL &&
933 	    !(zio->io_flags & ZIO_FLAG_RAW)) {
934 		uint64_t psize = BP_GET_PSIZE(bp);
935 		void *cbuf = zio_buf_alloc(psize);
936 
937 		zio_push_transform(zio, cbuf, psize, psize, zio_decompress);
938 	}
939 
940 	if (!DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) && BP_GET_LEVEL(bp) == 0)
941 		zio->io_flags |= ZIO_FLAG_DONT_CACHE;
942 
943 	if (BP_GET_TYPE(bp) == DMU_OT_DDT_ZAP)
944 		zio->io_flags |= ZIO_FLAG_DONT_CACHE;
945 
946 	if (BP_GET_DEDUP(bp) && zio->io_child_type == ZIO_CHILD_LOGICAL)
947 		zio->io_pipeline = ZIO_DDT_READ_PIPELINE;
948 
949 	return (ZIO_PIPELINE_CONTINUE);
950 }
951 
952 static int
953 zio_write_bp_init(zio_t *zio)
954 {
955 	spa_t *spa = zio->io_spa;
956 	zio_prop_t *zp = &zio->io_prop;
957 	enum zio_compress compress = zp->zp_compress;
958 	blkptr_t *bp = zio->io_bp;
959 	uint64_t lsize = zio->io_size;
960 	uint64_t psize = lsize;
961 	int pass = 1;
962 
963 	/*
964 	 * If our children haven't all reached the ready stage,
965 	 * wait for them and then repeat this pipeline stage.
966 	 */
967 	if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY) ||
968 	    zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_READY))
969 		return (ZIO_PIPELINE_STOP);
970 
971 	if (!IO_IS_ALLOCATING(zio))
972 		return (ZIO_PIPELINE_CONTINUE);
973 
974 	ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
975 
976 	if (zio->io_bp_override) {
977 		ASSERT(bp->blk_birth != zio->io_txg);
978 		ASSERT(BP_GET_DEDUP(zio->io_bp_override) == 0);
979 
980 		*bp = *zio->io_bp_override;
981 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
982 
983 		/*
984 		 * If we've been overridden and nopwrite is set then
985 		 * set the flag accordingly to indicate that a nopwrite
986 		 * has already occurred.
987 		 */
988 		if (!BP_IS_HOLE(bp) && zp->zp_nopwrite) {
989 			ASSERT(!zp->zp_dedup);
990 			zio->io_flags |= ZIO_FLAG_NOPWRITE;
991 			return (ZIO_PIPELINE_CONTINUE);
992 		}
993 
994 		ASSERT(!zp->zp_nopwrite);
995 
996 		if (BP_IS_HOLE(bp) || !zp->zp_dedup)
997 			return (ZIO_PIPELINE_CONTINUE);
998 
999 		ASSERT(zio_checksum_table[zp->zp_checksum].ci_dedup ||
1000 		    zp->zp_dedup_verify);
1001 
1002 		if (BP_GET_CHECKSUM(bp) == zp->zp_checksum) {
1003 			BP_SET_DEDUP(bp, 1);
1004 			zio->io_pipeline |= ZIO_STAGE_DDT_WRITE;
1005 			return (ZIO_PIPELINE_CONTINUE);
1006 		}
1007 		zio->io_bp_override = NULL;
1008 		BP_ZERO(bp);
1009 	}
1010 
1011 	if (bp->blk_birth == zio->io_txg) {
1012 		/*
1013 		 * We're rewriting an existing block, which means we're
1014 		 * working on behalf of spa_sync().  For spa_sync() to
1015 		 * converge, it must eventually be the case that we don't
1016 		 * have to allocate new blocks.  But compression changes
1017 		 * the blocksize, which forces a reallocate, and makes
1018 		 * convergence take longer.  Therefore, after the first
1019 		 * few passes, stop compressing to ensure convergence.
1020 		 */
1021 		pass = spa_sync_pass(spa);
1022 
1023 		ASSERT(zio->io_txg == spa_syncing_txg(spa));
1024 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1025 		ASSERT(!BP_GET_DEDUP(bp));
1026 
1027 		if (pass >= zfs_sync_pass_dont_compress)
1028 			compress = ZIO_COMPRESS_OFF;
1029 
1030 		/* Make sure someone doesn't change their mind on overwrites */
1031 		ASSERT(MIN(zp->zp_copies + BP_IS_GANG(bp),
1032 		    spa_max_replication(spa)) == BP_GET_NDVAS(bp));
1033 	}
1034 
1035 	if (compress != ZIO_COMPRESS_OFF) {
1036 		void *cbuf = zio_buf_alloc(lsize);
1037 		psize = zio_compress_data(compress, zio->io_data, cbuf, lsize);
1038 		if (psize == 0 || psize == lsize) {
1039 			compress = ZIO_COMPRESS_OFF;
1040 			zio_buf_free(cbuf, lsize);
1041 		} else {
1042 			ASSERT(psize < lsize);
1043 			zio_push_transform(zio, cbuf, psize, lsize, NULL);
1044 		}
1045 	}
1046 
1047 	/*
1048 	 * The final pass of spa_sync() must be all rewrites, but the first
1049 	 * few passes offer a trade-off: allocating blocks defers convergence,
1050 	 * but newly allocated blocks are sequential, so they can be written
1051 	 * to disk faster.  Therefore, we allow the first few passes of
1052 	 * spa_sync() to allocate new blocks, but force rewrites after that.
1053 	 * There should only be a handful of blocks after pass 1 in any case.
1054 	 */
1055 	if (bp->blk_birth == zio->io_txg && BP_GET_PSIZE(bp) == psize &&
1056 	    pass >= zfs_sync_pass_rewrite) {
1057 		ASSERT(psize != 0);
1058 		enum zio_stage gang_stages = zio->io_pipeline & ZIO_GANG_STAGES;
1059 		zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages;
1060 		zio->io_flags |= ZIO_FLAG_IO_REWRITE;
1061 	} else {
1062 		BP_ZERO(bp);
1063 		zio->io_pipeline = ZIO_WRITE_PIPELINE;
1064 	}
1065 
1066 	if (psize == 0) {
1067 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1068 	} else {
1069 		ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER);
1070 		BP_SET_LSIZE(bp, lsize);
1071 		BP_SET_PSIZE(bp, psize);
1072 		BP_SET_COMPRESS(bp, compress);
1073 		BP_SET_CHECKSUM(bp, zp->zp_checksum);
1074 		BP_SET_TYPE(bp, zp->zp_type);
1075 		BP_SET_LEVEL(bp, zp->zp_level);
1076 		BP_SET_DEDUP(bp, zp->zp_dedup);
1077 		BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
1078 		if (zp->zp_dedup) {
1079 			ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1080 			ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1081 			zio->io_pipeline = ZIO_DDT_WRITE_PIPELINE;
1082 		}
1083 		if (zp->zp_nopwrite) {
1084 			ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1085 			ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1086 			zio->io_pipeline |= ZIO_STAGE_NOP_WRITE;
1087 		}
1088 	}
1089 
1090 	return (ZIO_PIPELINE_CONTINUE);
1091 }
1092 
1093 static int
1094 zio_free_bp_init(zio_t *zio)
1095 {
1096 	blkptr_t *bp = zio->io_bp;
1097 
1098 	if (zio->io_child_type == ZIO_CHILD_LOGICAL) {
1099 		if (BP_GET_DEDUP(bp))
1100 			zio->io_pipeline = ZIO_DDT_FREE_PIPELINE;
1101 	}
1102 
1103 	return (ZIO_PIPELINE_CONTINUE);
1104 }
1105 
1106 /*
1107  * ==========================================================================
1108  * Execute the I/O pipeline
1109  * ==========================================================================
1110  */
1111 
1112 static void
1113 zio_taskq_dispatch(zio_t *zio, zio_taskq_type_t q, boolean_t cutinline)
1114 {
1115 	spa_t *spa = zio->io_spa;
1116 	zio_type_t t = zio->io_type;
1117 	int flags = (cutinline ? TQ_FRONT : 0);
1118 
1119 	/*
1120 	 * If we're a config writer or a probe, the normal issue and
1121 	 * interrupt threads may all be blocked waiting for the config lock.
1122 	 * In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL.
1123 	 */
1124 	if (zio->io_flags & (ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_PROBE))
1125 		t = ZIO_TYPE_NULL;
1126 
1127 	/*
1128 	 * A similar issue exists for the L2ARC write thread until L2ARC 2.0.
1129 	 */
1130 	if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux)
1131 		t = ZIO_TYPE_NULL;
1132 
1133 	/*
1134 	 * If this is a high priority I/O, then use the high priority taskq if
1135 	 * available.
1136 	 */
1137 	if (zio->io_priority == ZIO_PRIORITY_NOW &&
1138 	    spa->spa_zio_taskq[t][q + 1].stqs_count != 0)
1139 		q++;
1140 
1141 	ASSERT3U(q, <, ZIO_TASKQ_TYPES);
1142 
1143 	/*
1144 	 * NB: We are assuming that the zio can only be dispatched
1145 	 * to a single taskq at a time.  It would be a grievous error
1146 	 * to dispatch the zio to another taskq at the same time.
1147 	 */
1148 	ASSERT(zio->io_tqent.tqent_next == NULL);
1149 	spa_taskq_dispatch_ent(spa, t, q, (task_func_t *)zio_execute, zio,
1150 	    flags, &zio->io_tqent);
1151 }
1152 
1153 static boolean_t
1154 zio_taskq_member(zio_t *zio, zio_taskq_type_t q)
1155 {
1156 	kthread_t *executor = zio->io_executor;
1157 	spa_t *spa = zio->io_spa;
1158 
1159 	for (zio_type_t t = 0; t < ZIO_TYPES; t++) {
1160 		spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1161 		uint_t i;
1162 		for (i = 0; i < tqs->stqs_count; i++) {
1163 			if (taskq_member(tqs->stqs_taskq[i], executor))
1164 				return (B_TRUE);
1165 		}
1166 	}
1167 
1168 	return (B_FALSE);
1169 }
1170 
1171 static int
1172 zio_issue_async(zio_t *zio)
1173 {
1174 	zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
1175 
1176 	return (ZIO_PIPELINE_STOP);
1177 }
1178 
1179 void
1180 zio_interrupt(zio_t *zio)
1181 {
1182 	zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT, B_FALSE);
1183 }
1184 
1185 /*
1186  * Execute the I/O pipeline until one of the following occurs:
1187  * (1) the I/O completes; (2) the pipeline stalls waiting for
1188  * dependent child I/Os; (3) the I/O issues, so we're waiting
1189  * for an I/O completion interrupt; (4) the I/O is delegated by
1190  * vdev-level caching or aggregation; (5) the I/O is deferred
1191  * due to vdev-level queueing; (6) the I/O is handed off to
1192  * another thread.  In all cases, the pipeline stops whenever
1193  * there's no CPU work; it never burns a thread in cv_wait().
1194  *
1195  * There's no locking on io_stage because there's no legitimate way
1196  * for multiple threads to be attempting to process the same I/O.
1197  */
1198 static zio_pipe_stage_t *zio_pipeline[];
1199 
1200 void
1201 zio_execute(zio_t *zio)
1202 {
1203 	zio->io_executor = curthread;
1204 
1205 	while (zio->io_stage < ZIO_STAGE_DONE) {
1206 		enum zio_stage pipeline = zio->io_pipeline;
1207 		enum zio_stage stage = zio->io_stage;
1208 		int rv;
1209 
1210 		ASSERT(!MUTEX_HELD(&zio->io_lock));
1211 		ASSERT(ISP2(stage));
1212 		ASSERT(zio->io_stall == NULL);
1213 
1214 		do {
1215 			stage <<= 1;
1216 		} while ((stage & pipeline) == 0);
1217 
1218 		ASSERT(stage <= ZIO_STAGE_DONE);
1219 
1220 		/*
1221 		 * If we are in interrupt context and this pipeline stage
1222 		 * will grab a config lock that is held across I/O,
1223 		 * or may wait for an I/O that needs an interrupt thread
1224 		 * to complete, issue async to avoid deadlock.
1225 		 *
1226 		 * For VDEV_IO_START, we cut in line so that the io will
1227 		 * be sent to disk promptly.
1228 		 */
1229 		if ((stage & ZIO_BLOCKING_STAGES) && zio->io_vd == NULL &&
1230 		    zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) {
1231 			boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ?
1232 			    zio_requeue_io_start_cut_in_line : B_FALSE;
1233 			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
1234 			return;
1235 		}
1236 
1237 		zio->io_stage = stage;
1238 		rv = zio_pipeline[highbit(stage) - 1](zio);
1239 
1240 		if (rv == ZIO_PIPELINE_STOP)
1241 			return;
1242 
1243 		ASSERT(rv == ZIO_PIPELINE_CONTINUE);
1244 	}
1245 }
1246 
1247 /*
1248  * ==========================================================================
1249  * Initiate I/O, either sync or async
1250  * ==========================================================================
1251  */
1252 int
1253 zio_wait(zio_t *zio)
1254 {
1255 	int error;
1256 
1257 	ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
1258 	ASSERT(zio->io_executor == NULL);
1259 
1260 	zio->io_waiter = curthread;
1261 
1262 	zio_execute(zio);
1263 
1264 	mutex_enter(&zio->io_lock);
1265 	while (zio->io_executor != NULL)
1266 		cv_wait(&zio->io_cv, &zio->io_lock);
1267 	mutex_exit(&zio->io_lock);
1268 
1269 	error = zio->io_error;
1270 	zio_destroy(zio);
1271 
1272 	return (error);
1273 }
1274 
1275 void
1276 zio_nowait(zio_t *zio)
1277 {
1278 	ASSERT(zio->io_executor == NULL);
1279 
1280 	if (zio->io_child_type == ZIO_CHILD_LOGICAL &&
1281 	    zio_unique_parent(zio) == NULL) {
1282 		/*
1283 		 * This is a logical async I/O with no parent to wait for it.
1284 		 * We add it to the spa_async_root_zio "Godfather" I/O which
1285 		 * will ensure they complete prior to unloading the pool.
1286 		 */
1287 		spa_t *spa = zio->io_spa;
1288 
1289 		zio_add_child(spa->spa_async_zio_root, zio);
1290 	}
1291 
1292 	zio_execute(zio);
1293 }
1294 
1295 /*
1296  * ==========================================================================
1297  * Reexecute or suspend/resume failed I/O
1298  * ==========================================================================
1299  */
1300 
1301 static void
1302 zio_reexecute(zio_t *pio)
1303 {
1304 	zio_t *cio, *cio_next;
1305 
1306 	ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL);
1307 	ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN);
1308 	ASSERT(pio->io_gang_leader == NULL);
1309 	ASSERT(pio->io_gang_tree == NULL);
1310 
1311 	pio->io_flags = pio->io_orig_flags;
1312 	pio->io_stage = pio->io_orig_stage;
1313 	pio->io_pipeline = pio->io_orig_pipeline;
1314 	pio->io_reexecute = 0;
1315 	pio->io_flags |= ZIO_FLAG_REEXECUTED;
1316 	pio->io_error = 0;
1317 	for (int w = 0; w < ZIO_WAIT_TYPES; w++)
1318 		pio->io_state[w] = 0;
1319 	for (int c = 0; c < ZIO_CHILD_TYPES; c++)
1320 		pio->io_child_error[c] = 0;
1321 
1322 	if (IO_IS_ALLOCATING(pio))
1323 		BP_ZERO(pio->io_bp);
1324 
1325 	/*
1326 	 * As we reexecute pio's children, new children could be created.
1327 	 * New children go to the head of pio's io_child_list, however,
1328 	 * so we will (correctly) not reexecute them.  The key is that
1329 	 * the remainder of pio's io_child_list, from 'cio_next' onward,
1330 	 * cannot be affected by any side effects of reexecuting 'cio'.
1331 	 */
1332 	for (cio = zio_walk_children(pio); cio != NULL; cio = cio_next) {
1333 		cio_next = zio_walk_children(pio);
1334 		mutex_enter(&pio->io_lock);
1335 		for (int w = 0; w < ZIO_WAIT_TYPES; w++)
1336 			pio->io_children[cio->io_child_type][w]++;
1337 		mutex_exit(&pio->io_lock);
1338 		zio_reexecute(cio);
1339 	}
1340 
1341 	/*
1342 	 * Now that all children have been reexecuted, execute the parent.
1343 	 * We don't reexecute "The Godfather" I/O here as it's the
1344 	 * responsibility of the caller to wait on him.
1345 	 */
1346 	if (!(pio->io_flags & ZIO_FLAG_GODFATHER))
1347 		zio_execute(pio);
1348 }
1349 
1350 void
1351 zio_suspend(spa_t *spa, zio_t *zio)
1352 {
1353 	if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC)
1354 		fm_panic("Pool '%s' has encountered an uncorrectable I/O "
1355 		    "failure and the failure mode property for this pool "
1356 		    "is set to panic.", spa_name(spa));
1357 
1358 	zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL, NULL, 0, 0);
1359 
1360 	mutex_enter(&spa->spa_suspend_lock);
1361 
1362 	if (spa->spa_suspend_zio_root == NULL)
1363 		spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL,
1364 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
1365 		    ZIO_FLAG_GODFATHER);
1366 
1367 	spa->spa_suspended = B_TRUE;
1368 
1369 	if (zio != NULL) {
1370 		ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
1371 		ASSERT(zio != spa->spa_suspend_zio_root);
1372 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1373 		ASSERT(zio_unique_parent(zio) == NULL);
1374 		ASSERT(zio->io_stage == ZIO_STAGE_DONE);
1375 		zio_add_child(spa->spa_suspend_zio_root, zio);
1376 	}
1377 
1378 	mutex_exit(&spa->spa_suspend_lock);
1379 }
1380 
1381 int
1382 zio_resume(spa_t *spa)
1383 {
1384 	zio_t *pio;
1385 
1386 	/*
1387 	 * Reexecute all previously suspended i/o.
1388 	 */
1389 	mutex_enter(&spa->spa_suspend_lock);
1390 	spa->spa_suspended = B_FALSE;
1391 	cv_broadcast(&spa->spa_suspend_cv);
1392 	pio = spa->spa_suspend_zio_root;
1393 	spa->spa_suspend_zio_root = NULL;
1394 	mutex_exit(&spa->spa_suspend_lock);
1395 
1396 	if (pio == NULL)
1397 		return (0);
1398 
1399 	zio_reexecute(pio);
1400 	return (zio_wait(pio));
1401 }
1402 
1403 void
1404 zio_resume_wait(spa_t *spa)
1405 {
1406 	mutex_enter(&spa->spa_suspend_lock);
1407 	while (spa_suspended(spa))
1408 		cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock);
1409 	mutex_exit(&spa->spa_suspend_lock);
1410 }
1411 
1412 /*
1413  * ==========================================================================
1414  * Gang blocks.
1415  *
1416  * A gang block is a collection of small blocks that looks to the DMU
1417  * like one large block.  When zio_dva_allocate() cannot find a block
1418  * of the requested size, due to either severe fragmentation or the pool
1419  * being nearly full, it calls zio_write_gang_block() to construct the
1420  * block from smaller fragments.
1421  *
1422  * A gang block consists of a gang header (zio_gbh_phys_t) and up to
1423  * three (SPA_GBH_NBLKPTRS) gang members.  The gang header is just like
1424  * an indirect block: it's an array of block pointers.  It consumes
1425  * only one sector and hence is allocatable regardless of fragmentation.
1426  * The gang header's bps point to its gang members, which hold the data.
1427  *
1428  * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg>
1429  * as the verifier to ensure uniqueness of the SHA256 checksum.
1430  * Critically, the gang block bp's blk_cksum is the checksum of the data,
1431  * not the gang header.  This ensures that data block signatures (needed for
1432  * deduplication) are independent of how the block is physically stored.
1433  *
1434  * Gang blocks can be nested: a gang member may itself be a gang block.
1435  * Thus every gang block is a tree in which root and all interior nodes are
1436  * gang headers, and the leaves are normal blocks that contain user data.
1437  * The root of the gang tree is called the gang leader.
1438  *
1439  * To perform any operation (read, rewrite, free, claim) on a gang block,
1440  * zio_gang_assemble() first assembles the gang tree (minus data leaves)
1441  * in the io_gang_tree field of the original logical i/o by recursively
1442  * reading the gang leader and all gang headers below it.  This yields
1443  * an in-core tree containing the contents of every gang header and the
1444  * bps for every constituent of the gang block.
1445  *
1446  * With the gang tree now assembled, zio_gang_issue() just walks the gang tree
1447  * and invokes a callback on each bp.  To free a gang block, zio_gang_issue()
1448  * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp.
1449  * zio_claim_gang() provides a similarly trivial wrapper for zio_claim().
1450  * zio_read_gang() is a wrapper around zio_read() that omits reading gang
1451  * headers, since we already have those in io_gang_tree.  zio_rewrite_gang()
1452  * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite()
1453  * of the gang header plus zio_checksum_compute() of the data to update the
1454  * gang header's blk_cksum as described above.
1455  *
1456  * The two-phase assemble/issue model solves the problem of partial failure --
1457  * what if you'd freed part of a gang block but then couldn't read the
1458  * gang header for another part?  Assembling the entire gang tree first
1459  * ensures that all the necessary gang header I/O has succeeded before
1460  * starting the actual work of free, claim, or write.  Once the gang tree
1461  * is assembled, free and claim are in-memory operations that cannot fail.
1462  *
1463  * In the event that a gang write fails, zio_dva_unallocate() walks the
1464  * gang tree to immediately free (i.e. insert back into the space map)
1465  * everything we've allocated.  This ensures that we don't get ENOSPC
1466  * errors during repeated suspend/resume cycles due to a flaky device.
1467  *
1468  * Gang rewrites only happen during sync-to-convergence.  If we can't assemble
1469  * the gang tree, we won't modify the block, so we can safely defer the free
1470  * (knowing that the block is still intact).  If we *can* assemble the gang
1471  * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free
1472  * each constituent bp and we can allocate a new block on the next sync pass.
1473  *
1474  * In all cases, the gang tree allows complete recovery from partial failure.
1475  * ==========================================================================
1476  */
1477 
1478 static zio_t *
1479 zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1480 {
1481 	if (gn != NULL)
1482 		return (pio);
1483 
1484 	return (zio_read(pio, pio->io_spa, bp, data, BP_GET_PSIZE(bp),
1485 	    NULL, NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
1486 	    &pio->io_bookmark));
1487 }
1488 
1489 zio_t *
1490 zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1491 {
1492 	zio_t *zio;
1493 
1494 	if (gn != NULL) {
1495 		zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
1496 		    gn->gn_gbh, SPA_GANGBLOCKSIZE, NULL, NULL, pio->io_priority,
1497 		    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
1498 		/*
1499 		 * As we rewrite each gang header, the pipeline will compute
1500 		 * a new gang block header checksum for it; but no one will
1501 		 * compute a new data checksum, so we do that here.  The one
1502 		 * exception is the gang leader: the pipeline already computed
1503 		 * its data checksum because that stage precedes gang assembly.
1504 		 * (Presently, nothing actually uses interior data checksums;
1505 		 * this is just good hygiene.)
1506 		 */
1507 		if (gn != pio->io_gang_leader->io_gang_tree) {
1508 			zio_checksum_compute(zio, BP_GET_CHECKSUM(bp),
1509 			    data, BP_GET_PSIZE(bp));
1510 		}
1511 		/*
1512 		 * If we are here to damage data for testing purposes,
1513 		 * leave the GBH alone so that we can detect the damage.
1514 		 */
1515 		if (pio->io_gang_leader->io_flags & ZIO_FLAG_INDUCE_DAMAGE)
1516 			zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
1517 	} else {
1518 		zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
1519 		    data, BP_GET_PSIZE(bp), NULL, NULL, pio->io_priority,
1520 		    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
1521 	}
1522 
1523 	return (zio);
1524 }
1525 
1526 /* ARGSUSED */
1527 zio_t *
1528 zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1529 {
1530 	return (zio_free_sync(pio, pio->io_spa, pio->io_txg, bp,
1531 	    ZIO_GANG_CHILD_FLAGS(pio)));
1532 }
1533 
1534 /* ARGSUSED */
1535 zio_t *
1536 zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1537 {
1538 	return (zio_claim(pio, pio->io_spa, pio->io_txg, bp,
1539 	    NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio)));
1540 }
1541 
1542 static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = {
1543 	NULL,
1544 	zio_read_gang,
1545 	zio_rewrite_gang,
1546 	zio_free_gang,
1547 	zio_claim_gang,
1548 	NULL
1549 };
1550 
1551 static void zio_gang_tree_assemble_done(zio_t *zio);
1552 
1553 static zio_gang_node_t *
1554 zio_gang_node_alloc(zio_gang_node_t **gnpp)
1555 {
1556 	zio_gang_node_t *gn;
1557 
1558 	ASSERT(*gnpp == NULL);
1559 
1560 	gn = kmem_zalloc(sizeof (*gn), KM_SLEEP);
1561 	gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE);
1562 	*gnpp = gn;
1563 
1564 	return (gn);
1565 }
1566 
1567 static void
1568 zio_gang_node_free(zio_gang_node_t **gnpp)
1569 {
1570 	zio_gang_node_t *gn = *gnpp;
1571 
1572 	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
1573 		ASSERT(gn->gn_child[g] == NULL);
1574 
1575 	zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE);
1576 	kmem_free(gn, sizeof (*gn));
1577 	*gnpp = NULL;
1578 }
1579 
1580 static void
1581 zio_gang_tree_free(zio_gang_node_t **gnpp)
1582 {
1583 	zio_gang_node_t *gn = *gnpp;
1584 
1585 	if (gn == NULL)
1586 		return;
1587 
1588 	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
1589 		zio_gang_tree_free(&gn->gn_child[g]);
1590 
1591 	zio_gang_node_free(gnpp);
1592 }
1593 
1594 static void
1595 zio_gang_tree_assemble(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp)
1596 {
1597 	zio_gang_node_t *gn = zio_gang_node_alloc(gnpp);
1598 
1599 	ASSERT(gio->io_gang_leader == gio);
1600 	ASSERT(BP_IS_GANG(bp));
1601 
1602 	zio_nowait(zio_read(gio, gio->io_spa, bp, gn->gn_gbh,
1603 	    SPA_GANGBLOCKSIZE, zio_gang_tree_assemble_done, gn,
1604 	    gio->io_priority, ZIO_GANG_CHILD_FLAGS(gio), &gio->io_bookmark));
1605 }
1606 
1607 static void
1608 zio_gang_tree_assemble_done(zio_t *zio)
1609 {
1610 	zio_t *gio = zio->io_gang_leader;
1611 	zio_gang_node_t *gn = zio->io_private;
1612 	blkptr_t *bp = zio->io_bp;
1613 
1614 	ASSERT(gio == zio_unique_parent(zio));
1615 	ASSERT(zio->io_child_count == 0);
1616 
1617 	if (zio->io_error)
1618 		return;
1619 
1620 	if (BP_SHOULD_BYTESWAP(bp))
1621 		byteswap_uint64_array(zio->io_data, zio->io_size);
1622 
1623 	ASSERT(zio->io_data == gn->gn_gbh);
1624 	ASSERT(zio->io_size == SPA_GANGBLOCKSIZE);
1625 	ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
1626 
1627 	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
1628 		blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
1629 		if (!BP_IS_GANG(gbp))
1630 			continue;
1631 		zio_gang_tree_assemble(gio, gbp, &gn->gn_child[g]);
1632 	}
1633 }
1634 
1635 static void
1636 zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, void *data)
1637 {
1638 	zio_t *gio = pio->io_gang_leader;
1639 	zio_t *zio;
1640 
1641 	ASSERT(BP_IS_GANG(bp) == !!gn);
1642 	ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(gio->io_bp));
1643 	ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == gio->io_gang_tree);
1644 
1645 	/*
1646 	 * If you're a gang header, your data is in gn->gn_gbh.
1647 	 * If you're a gang member, your data is in 'data' and gn == NULL.
1648 	 */
1649 	zio = zio_gang_issue_func[gio->io_type](pio, bp, gn, data);
1650 
1651 	if (gn != NULL) {
1652 		ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
1653 
1654 		for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
1655 			blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
1656 			if (BP_IS_HOLE(gbp))
1657 				continue;
1658 			zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data);
1659 			data = (char *)data + BP_GET_PSIZE(gbp);
1660 		}
1661 	}
1662 
1663 	if (gn == gio->io_gang_tree)
1664 		ASSERT3P((char *)gio->io_data + gio->io_size, ==, data);
1665 
1666 	if (zio != pio)
1667 		zio_nowait(zio);
1668 }
1669 
1670 static int
1671 zio_gang_assemble(zio_t *zio)
1672 {
1673 	blkptr_t *bp = zio->io_bp;
1674 
1675 	ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == NULL);
1676 	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
1677 
1678 	zio->io_gang_leader = zio;
1679 
1680 	zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree);
1681 
1682 	return (ZIO_PIPELINE_CONTINUE);
1683 }
1684 
1685 static int
1686 zio_gang_issue(zio_t *zio)
1687 {
1688 	blkptr_t *bp = zio->io_bp;
1689 
1690 	if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE))
1691 		return (ZIO_PIPELINE_STOP);
1692 
1693 	ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == zio);
1694 	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
1695 
1696 	if (zio->io_child_error[ZIO_CHILD_GANG] == 0)
1697 		zio_gang_tree_issue(zio, zio->io_gang_tree, bp, zio->io_data);
1698 	else
1699 		zio_gang_tree_free(&zio->io_gang_tree);
1700 
1701 	zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1702 
1703 	return (ZIO_PIPELINE_CONTINUE);
1704 }
1705 
1706 static void
1707 zio_write_gang_member_ready(zio_t *zio)
1708 {
1709 	zio_t *pio = zio_unique_parent(zio);
1710 	zio_t *gio = zio->io_gang_leader;
1711 	dva_t *cdva = zio->io_bp->blk_dva;
1712 	dva_t *pdva = pio->io_bp->blk_dva;
1713 	uint64_t asize;
1714 
1715 	if (BP_IS_HOLE(zio->io_bp))
1716 		return;
1717 
1718 	ASSERT(BP_IS_HOLE(&zio->io_bp_orig));
1719 
1720 	ASSERT(zio->io_child_type == ZIO_CHILD_GANG);
1721 	ASSERT3U(zio->io_prop.zp_copies, ==, gio->io_prop.zp_copies);
1722 	ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp));
1723 	ASSERT3U(pio->io_prop.zp_copies, <=, BP_GET_NDVAS(pio->io_bp));
1724 	ASSERT3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp));
1725 
1726 	mutex_enter(&pio->io_lock);
1727 	for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) {
1728 		ASSERT(DVA_GET_GANG(&pdva[d]));
1729 		asize = DVA_GET_ASIZE(&pdva[d]);
1730 		asize += DVA_GET_ASIZE(&cdva[d]);
1731 		DVA_SET_ASIZE(&pdva[d], asize);
1732 	}
1733 	mutex_exit(&pio->io_lock);
1734 }
1735 
1736 static int
1737 zio_write_gang_block(zio_t *pio)
1738 {
1739 	spa_t *spa = pio->io_spa;
1740 	blkptr_t *bp = pio->io_bp;
1741 	zio_t *gio = pio->io_gang_leader;
1742 	zio_t *zio;
1743 	zio_gang_node_t *gn, **gnpp;
1744 	zio_gbh_phys_t *gbh;
1745 	uint64_t txg = pio->io_txg;
1746 	uint64_t resid = pio->io_size;
1747 	uint64_t lsize;
1748 	int copies = gio->io_prop.zp_copies;
1749 	int gbh_copies = MIN(copies + 1, spa_max_replication(spa));
1750 	zio_prop_t zp;
1751 	int error;
1752 
1753 	error = metaslab_alloc(spa, spa_normal_class(spa), SPA_GANGBLOCKSIZE,
1754 	    bp, gbh_copies, txg, pio == gio ? NULL : gio->io_bp,
1755 	    METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER);
1756 	if (error) {
1757 		pio->io_error = error;
1758 		return (ZIO_PIPELINE_CONTINUE);
1759 	}
1760 
1761 	if (pio == gio) {
1762 		gnpp = &gio->io_gang_tree;
1763 	} else {
1764 		gnpp = pio->io_private;
1765 		ASSERT(pio->io_ready == zio_write_gang_member_ready);
1766 	}
1767 
1768 	gn = zio_gang_node_alloc(gnpp);
1769 	gbh = gn->gn_gbh;
1770 	bzero(gbh, SPA_GANGBLOCKSIZE);
1771 
1772 	/*
1773 	 * Create the gang header.
1774 	 */
1775 	zio = zio_rewrite(pio, spa, txg, bp, gbh, SPA_GANGBLOCKSIZE, NULL, NULL,
1776 	    pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
1777 
1778 	/*
1779 	 * Create and nowait the gang children.
1780 	 */
1781 	for (int g = 0; resid != 0; resid -= lsize, g++) {
1782 		lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g),
1783 		    SPA_MINBLOCKSIZE);
1784 		ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid);
1785 
1786 		zp.zp_checksum = gio->io_prop.zp_checksum;
1787 		zp.zp_compress = ZIO_COMPRESS_OFF;
1788 		zp.zp_type = DMU_OT_NONE;
1789 		zp.zp_level = 0;
1790 		zp.zp_copies = gio->io_prop.zp_copies;
1791 		zp.zp_dedup = B_FALSE;
1792 		zp.zp_dedup_verify = B_FALSE;
1793 		zp.zp_nopwrite = B_FALSE;
1794 
1795 		zio_nowait(zio_write(zio, spa, txg, &gbh->zg_blkptr[g],
1796 		    (char *)pio->io_data + (pio->io_size - resid), lsize, &zp,
1797 		    zio_write_gang_member_ready, NULL, &gn->gn_child[g],
1798 		    pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
1799 		    &pio->io_bookmark));
1800 	}
1801 
1802 	/*
1803 	 * Set pio's pipeline to just wait for zio to finish.
1804 	 */
1805 	pio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1806 
1807 	zio_nowait(zio);
1808 
1809 	return (ZIO_PIPELINE_CONTINUE);
1810 }
1811 
1812 /*
1813  * The zio_nop_write stage in the pipeline determines if allocating
1814  * a new bp is necessary.  By leveraging a cryptographically secure checksum,
1815  * such as SHA256, we can compare the checksums of the new data and the old
1816  * to determine if allocating a new block is required.  The nopwrite
1817  * feature can handle writes in either syncing or open context (i.e. zil
1818  * writes) and as a result is mutually exclusive with dedup.
1819  */
1820 static int
1821 zio_nop_write(zio_t *zio)
1822 {
1823 	blkptr_t *bp = zio->io_bp;
1824 	blkptr_t *bp_orig = &zio->io_bp_orig;
1825 	zio_prop_t *zp = &zio->io_prop;
1826 
1827 	ASSERT(BP_GET_LEVEL(bp) == 0);
1828 	ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1829 	ASSERT(zp->zp_nopwrite);
1830 	ASSERT(!zp->zp_dedup);
1831 	ASSERT(zio->io_bp_override == NULL);
1832 	ASSERT(IO_IS_ALLOCATING(zio));
1833 
1834 	/*
1835 	 * Check to see if the original bp and the new bp have matching
1836 	 * characteristics (i.e. same checksum, compression algorithms, etc).
1837 	 * If they don't then just continue with the pipeline which will
1838 	 * allocate a new bp.
1839 	 */
1840 	if (BP_IS_HOLE(bp_orig) ||
1841 	    !zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_dedup ||
1842 	    BP_GET_CHECKSUM(bp) != BP_GET_CHECKSUM(bp_orig) ||
1843 	    BP_GET_COMPRESS(bp) != BP_GET_COMPRESS(bp_orig) ||
1844 	    BP_GET_DEDUP(bp) != BP_GET_DEDUP(bp_orig) ||
1845 	    zp->zp_copies != BP_GET_NDVAS(bp_orig))
1846 		return (ZIO_PIPELINE_CONTINUE);
1847 
1848 	/*
1849 	 * If the checksums match then reset the pipeline so that we
1850 	 * avoid allocating a new bp and issuing any I/O.
1851 	 */
1852 	if (ZIO_CHECKSUM_EQUAL(bp->blk_cksum, bp_orig->blk_cksum)) {
1853 		ASSERT(zio_checksum_table[zp->zp_checksum].ci_dedup);
1854 		ASSERT3U(BP_GET_PSIZE(bp), ==, BP_GET_PSIZE(bp_orig));
1855 		ASSERT3U(BP_GET_LSIZE(bp), ==, BP_GET_LSIZE(bp_orig));
1856 		ASSERT(zp->zp_compress != ZIO_COMPRESS_OFF);
1857 		ASSERT(bcmp(&bp->blk_prop, &bp_orig->blk_prop,
1858 		    sizeof (uint64_t)) == 0);
1859 
1860 		*bp = *bp_orig;
1861 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1862 		zio->io_flags |= ZIO_FLAG_NOPWRITE;
1863 	}
1864 
1865 	return (ZIO_PIPELINE_CONTINUE);
1866 }
1867 
1868 /*
1869  * ==========================================================================
1870  * Dedup
1871  * ==========================================================================
1872  */
1873 static void
1874 zio_ddt_child_read_done(zio_t *zio)
1875 {
1876 	blkptr_t *bp = zio->io_bp;
1877 	ddt_entry_t *dde = zio->io_private;
1878 	ddt_phys_t *ddp;
1879 	zio_t *pio = zio_unique_parent(zio);
1880 
1881 	mutex_enter(&pio->io_lock);
1882 	ddp = ddt_phys_select(dde, bp);
1883 	if (zio->io_error == 0)
1884 		ddt_phys_clear(ddp);	/* this ddp doesn't need repair */
1885 	if (zio->io_error == 0 && dde->dde_repair_data == NULL)
1886 		dde->dde_repair_data = zio->io_data;
1887 	else
1888 		zio_buf_free(zio->io_data, zio->io_size);
1889 	mutex_exit(&pio->io_lock);
1890 }
1891 
1892 static int
1893 zio_ddt_read_start(zio_t *zio)
1894 {
1895 	blkptr_t *bp = zio->io_bp;
1896 
1897 	ASSERT(BP_GET_DEDUP(bp));
1898 	ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
1899 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1900 
1901 	if (zio->io_child_error[ZIO_CHILD_DDT]) {
1902 		ddt_t *ddt = ddt_select(zio->io_spa, bp);
1903 		ddt_entry_t *dde = ddt_repair_start(ddt, bp);
1904 		ddt_phys_t *ddp = dde->dde_phys;
1905 		ddt_phys_t *ddp_self = ddt_phys_select(dde, bp);
1906 		blkptr_t blk;
1907 
1908 		ASSERT(zio->io_vsd == NULL);
1909 		zio->io_vsd = dde;
1910 
1911 		if (ddp_self == NULL)
1912 			return (ZIO_PIPELINE_CONTINUE);
1913 
1914 		for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
1915 			if (ddp->ddp_phys_birth == 0 || ddp == ddp_self)
1916 				continue;
1917 			ddt_bp_create(ddt->ddt_checksum, &dde->dde_key, ddp,
1918 			    &blk);
1919 			zio_nowait(zio_read(zio, zio->io_spa, &blk,
1920 			    zio_buf_alloc(zio->io_size), zio->io_size,
1921 			    zio_ddt_child_read_done, dde, zio->io_priority,
1922 			    ZIO_DDT_CHILD_FLAGS(zio) | ZIO_FLAG_DONT_PROPAGATE,
1923 			    &zio->io_bookmark));
1924 		}
1925 		return (ZIO_PIPELINE_CONTINUE);
1926 	}
1927 
1928 	zio_nowait(zio_read(zio, zio->io_spa, bp,
1929 	    zio->io_data, zio->io_size, NULL, NULL, zio->io_priority,
1930 	    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark));
1931 
1932 	return (ZIO_PIPELINE_CONTINUE);
1933 }
1934 
1935 static int
1936 zio_ddt_read_done(zio_t *zio)
1937 {
1938 	blkptr_t *bp = zio->io_bp;
1939 
1940 	if (zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_DONE))
1941 		return (ZIO_PIPELINE_STOP);
1942 
1943 	ASSERT(BP_GET_DEDUP(bp));
1944 	ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
1945 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1946 
1947 	if (zio->io_child_error[ZIO_CHILD_DDT]) {
1948 		ddt_t *ddt = ddt_select(zio->io_spa, bp);
1949 		ddt_entry_t *dde = zio->io_vsd;
1950 		if (ddt == NULL) {
1951 			ASSERT(spa_load_state(zio->io_spa) != SPA_LOAD_NONE);
1952 			return (ZIO_PIPELINE_CONTINUE);
1953 		}
1954 		if (dde == NULL) {
1955 			zio->io_stage = ZIO_STAGE_DDT_READ_START >> 1;
1956 			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
1957 			return (ZIO_PIPELINE_STOP);
1958 		}
1959 		if (dde->dde_repair_data != NULL) {
1960 			bcopy(dde->dde_repair_data, zio->io_data, zio->io_size);
1961 			zio->io_child_error[ZIO_CHILD_DDT] = 0;
1962 		}
1963 		ddt_repair_done(ddt, dde);
1964 		zio->io_vsd = NULL;
1965 	}
1966 
1967 	ASSERT(zio->io_vsd == NULL);
1968 
1969 	return (ZIO_PIPELINE_CONTINUE);
1970 }
1971 
1972 static boolean_t
1973 zio_ddt_collision(zio_t *zio, ddt_t *ddt, ddt_entry_t *dde)
1974 {
1975 	spa_t *spa = zio->io_spa;
1976 
1977 	/*
1978 	 * Note: we compare the original data, not the transformed data,
1979 	 * because when zio->io_bp is an override bp, we will not have
1980 	 * pushed the I/O transforms.  That's an important optimization
1981 	 * because otherwise we'd compress/encrypt all dmu_sync() data twice.
1982 	 */
1983 	for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
1984 		zio_t *lio = dde->dde_lead_zio[p];
1985 
1986 		if (lio != NULL) {
1987 			return (lio->io_orig_size != zio->io_orig_size ||
1988 			    bcmp(zio->io_orig_data, lio->io_orig_data,
1989 			    zio->io_orig_size) != 0);
1990 		}
1991 	}
1992 
1993 	for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
1994 		ddt_phys_t *ddp = &dde->dde_phys[p];
1995 
1996 		if (ddp->ddp_phys_birth != 0) {
1997 			arc_buf_t *abuf = NULL;
1998 			uint32_t aflags = ARC_WAIT;
1999 			blkptr_t blk = *zio->io_bp;
2000 			int error;
2001 
2002 			ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth);
2003 
2004 			ddt_exit(ddt);
2005 
2006 			error = arc_read(NULL, spa, &blk,
2007 			    arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ,
2008 			    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2009 			    &aflags, &zio->io_bookmark);
2010 
2011 			if (error == 0) {
2012 				if (arc_buf_size(abuf) != zio->io_orig_size ||
2013 				    bcmp(abuf->b_data, zio->io_orig_data,
2014 				    zio->io_orig_size) != 0)
2015 					error = EEXIST;
2016 				VERIFY(arc_buf_remove_ref(abuf, &abuf));
2017 			}
2018 
2019 			ddt_enter(ddt);
2020 			return (error != 0);
2021 		}
2022 	}
2023 
2024 	return (B_FALSE);
2025 }
2026 
2027 static void
2028 zio_ddt_child_write_ready(zio_t *zio)
2029 {
2030 	int p = zio->io_prop.zp_copies;
2031 	ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
2032 	ddt_entry_t *dde = zio->io_private;
2033 	ddt_phys_t *ddp = &dde->dde_phys[p];
2034 	zio_t *pio;
2035 
2036 	if (zio->io_error)
2037 		return;
2038 
2039 	ddt_enter(ddt);
2040 
2041 	ASSERT(dde->dde_lead_zio[p] == zio);
2042 
2043 	ddt_phys_fill(ddp, zio->io_bp);
2044 
2045 	while ((pio = zio_walk_parents(zio)) != NULL)
2046 		ddt_bp_fill(ddp, pio->io_bp, zio->io_txg);
2047 
2048 	ddt_exit(ddt);
2049 }
2050 
2051 static void
2052 zio_ddt_child_write_done(zio_t *zio)
2053 {
2054 	int p = zio->io_prop.zp_copies;
2055 	ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
2056 	ddt_entry_t *dde = zio->io_private;
2057 	ddt_phys_t *ddp = &dde->dde_phys[p];
2058 
2059 	ddt_enter(ddt);
2060 
2061 	ASSERT(ddp->ddp_refcnt == 0);
2062 	ASSERT(dde->dde_lead_zio[p] == zio);
2063 	dde->dde_lead_zio[p] = NULL;
2064 
2065 	if (zio->io_error == 0) {
2066 		while (zio_walk_parents(zio) != NULL)
2067 			ddt_phys_addref(ddp);
2068 	} else {
2069 		ddt_phys_clear(ddp);
2070 	}
2071 
2072 	ddt_exit(ddt);
2073 }
2074 
2075 static void
2076 zio_ddt_ditto_write_done(zio_t *zio)
2077 {
2078 	int p = DDT_PHYS_DITTO;
2079 	zio_prop_t *zp = &zio->io_prop;
2080 	blkptr_t *bp = zio->io_bp;
2081 	ddt_t *ddt = ddt_select(zio->io_spa, bp);
2082 	ddt_entry_t *dde = zio->io_private;
2083 	ddt_phys_t *ddp = &dde->dde_phys[p];
2084 	ddt_key_t *ddk = &dde->dde_key;
2085 
2086 	ddt_enter(ddt);
2087 
2088 	ASSERT(ddp->ddp_refcnt == 0);
2089 	ASSERT(dde->dde_lead_zio[p] == zio);
2090 	dde->dde_lead_zio[p] = NULL;
2091 
2092 	if (zio->io_error == 0) {
2093 		ASSERT(ZIO_CHECKSUM_EQUAL(bp->blk_cksum, ddk->ddk_cksum));
2094 		ASSERT(zp->zp_copies < SPA_DVAS_PER_BP);
2095 		ASSERT(zp->zp_copies == BP_GET_NDVAS(bp) - BP_IS_GANG(bp));
2096 		if (ddp->ddp_phys_birth != 0)
2097 			ddt_phys_free(ddt, ddk, ddp, zio->io_txg);
2098 		ddt_phys_fill(ddp, bp);
2099 	}
2100 
2101 	ddt_exit(ddt);
2102 }
2103 
2104 static int
2105 zio_ddt_write(zio_t *zio)
2106 {
2107 	spa_t *spa = zio->io_spa;
2108 	blkptr_t *bp = zio->io_bp;
2109 	uint64_t txg = zio->io_txg;
2110 	zio_prop_t *zp = &zio->io_prop;
2111 	int p = zp->zp_copies;
2112 	int ditto_copies;
2113 	zio_t *cio = NULL;
2114 	zio_t *dio = NULL;
2115 	ddt_t *ddt = ddt_select(spa, bp);
2116 	ddt_entry_t *dde;
2117 	ddt_phys_t *ddp;
2118 
2119 	ASSERT(BP_GET_DEDUP(bp));
2120 	ASSERT(BP_GET_CHECKSUM(bp) == zp->zp_checksum);
2121 	ASSERT(BP_IS_HOLE(bp) || zio->io_bp_override);
2122 
2123 	ddt_enter(ddt);
2124 	dde = ddt_lookup(ddt, bp, B_TRUE);
2125 	ddp = &dde->dde_phys[p];
2126 
2127 	if (zp->zp_dedup_verify && zio_ddt_collision(zio, ddt, dde)) {
2128 		/*
2129 		 * If we're using a weak checksum, upgrade to a strong checksum
2130 		 * and try again.  If we're already using a strong checksum,
2131 		 * we can't resolve it, so just convert to an ordinary write.
2132 		 * (And automatically e-mail a paper to Nature?)
2133 		 */
2134 		if (!zio_checksum_table[zp->zp_checksum].ci_dedup) {
2135 			zp->zp_checksum = spa_dedup_checksum(spa);
2136 			zio_pop_transforms(zio);
2137 			zio->io_stage = ZIO_STAGE_OPEN;
2138 			BP_ZERO(bp);
2139 		} else {
2140 			zp->zp_dedup = B_FALSE;
2141 		}
2142 		zio->io_pipeline = ZIO_WRITE_PIPELINE;
2143 		ddt_exit(ddt);
2144 		return (ZIO_PIPELINE_CONTINUE);
2145 	}
2146 
2147 	ditto_copies = ddt_ditto_copies_needed(ddt, dde, ddp);
2148 	ASSERT(ditto_copies < SPA_DVAS_PER_BP);
2149 
2150 	if (ditto_copies > ddt_ditto_copies_present(dde) &&
2151 	    dde->dde_lead_zio[DDT_PHYS_DITTO] == NULL) {
2152 		zio_prop_t czp = *zp;
2153 
2154 		czp.zp_copies = ditto_copies;
2155 
2156 		/*
2157 		 * If we arrived here with an override bp, we won't have run
2158 		 * the transform stack, so we won't have the data we need to
2159 		 * generate a child i/o.  So, toss the override bp and restart.
2160 		 * This is safe, because using the override bp is just an
2161 		 * optimization; and it's rare, so the cost doesn't matter.
2162 		 */
2163 		if (zio->io_bp_override) {
2164 			zio_pop_transforms(zio);
2165 			zio->io_stage = ZIO_STAGE_OPEN;
2166 			zio->io_pipeline = ZIO_WRITE_PIPELINE;
2167 			zio->io_bp_override = NULL;
2168 			BP_ZERO(bp);
2169 			ddt_exit(ddt);
2170 			return (ZIO_PIPELINE_CONTINUE);
2171 		}
2172 
2173 		dio = zio_write(zio, spa, txg, bp, zio->io_orig_data,
2174 		    zio->io_orig_size, &czp, NULL,
2175 		    zio_ddt_ditto_write_done, dde, zio->io_priority,
2176 		    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
2177 
2178 		zio_push_transform(dio, zio->io_data, zio->io_size, 0, NULL);
2179 		dde->dde_lead_zio[DDT_PHYS_DITTO] = dio;
2180 	}
2181 
2182 	if (ddp->ddp_phys_birth != 0 || dde->dde_lead_zio[p] != NULL) {
2183 		if (ddp->ddp_phys_birth != 0)
2184 			ddt_bp_fill(ddp, bp, txg);
2185 		if (dde->dde_lead_zio[p] != NULL)
2186 			zio_add_child(zio, dde->dde_lead_zio[p]);
2187 		else
2188 			ddt_phys_addref(ddp);
2189 	} else if (zio->io_bp_override) {
2190 		ASSERT(bp->blk_birth == txg);
2191 		ASSERT(BP_EQUAL(bp, zio->io_bp_override));
2192 		ddt_phys_fill(ddp, bp);
2193 		ddt_phys_addref(ddp);
2194 	} else {
2195 		cio = zio_write(zio, spa, txg, bp, zio->io_orig_data,
2196 		    zio->io_orig_size, zp, zio_ddt_child_write_ready,
2197 		    zio_ddt_child_write_done, dde, zio->io_priority,
2198 		    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
2199 
2200 		zio_push_transform(cio, zio->io_data, zio->io_size, 0, NULL);
2201 		dde->dde_lead_zio[p] = cio;
2202 	}
2203 
2204 	ddt_exit(ddt);
2205 
2206 	if (cio)
2207 		zio_nowait(cio);
2208 	if (dio)
2209 		zio_nowait(dio);
2210 
2211 	return (ZIO_PIPELINE_CONTINUE);
2212 }
2213 
2214 ddt_entry_t *freedde; /* for debugging */
2215 
2216 static int
2217 zio_ddt_free(zio_t *zio)
2218 {
2219 	spa_t *spa = zio->io_spa;
2220 	blkptr_t *bp = zio->io_bp;
2221 	ddt_t *ddt = ddt_select(spa, bp);
2222 	ddt_entry_t *dde;
2223 	ddt_phys_t *ddp;
2224 
2225 	ASSERT(BP_GET_DEDUP(bp));
2226 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2227 
2228 	ddt_enter(ddt);
2229 	freedde = dde = ddt_lookup(ddt, bp, B_TRUE);
2230 	ddp = ddt_phys_select(dde, bp);
2231 	ddt_phys_decref(ddp);
2232 	ddt_exit(ddt);
2233 
2234 	return (ZIO_PIPELINE_CONTINUE);
2235 }
2236 
2237 /*
2238  * ==========================================================================
2239  * Allocate and free blocks
2240  * ==========================================================================
2241  */
2242 static int
2243 zio_dva_allocate(zio_t *zio)
2244 {
2245 	spa_t *spa = zio->io_spa;
2246 	metaslab_class_t *mc = spa_normal_class(spa);
2247 	blkptr_t *bp = zio->io_bp;
2248 	int error;
2249 	int flags = 0;
2250 
2251 	if (zio->io_gang_leader == NULL) {
2252 		ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2253 		zio->io_gang_leader = zio;
2254 	}
2255 
2256 	ASSERT(BP_IS_HOLE(bp));
2257 	ASSERT0(BP_GET_NDVAS(bp));
2258 	ASSERT3U(zio->io_prop.zp_copies, >, 0);
2259 	ASSERT3U(zio->io_prop.zp_copies, <=, spa_max_replication(spa));
2260 	ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp));
2261 
2262 	/*
2263 	 * The dump device does not support gang blocks so allocation on
2264 	 * behalf of the dump device (i.e. ZIO_FLAG_NODATA) must avoid
2265 	 * the "fast" gang feature.
2266 	 */
2267 	flags |= (zio->io_flags & ZIO_FLAG_NODATA) ? METASLAB_GANG_AVOID : 0;
2268 	flags |= (zio->io_flags & ZIO_FLAG_GANG_CHILD) ?
2269 	    METASLAB_GANG_CHILD : 0;
2270 	error = metaslab_alloc(spa, mc, zio->io_size, bp,
2271 	    zio->io_prop.zp_copies, zio->io_txg, NULL, flags);
2272 
2273 	if (error) {
2274 		spa_dbgmsg(spa, "%s: metaslab allocation failure: zio %p, "
2275 		    "size %llu, error %d", spa_name(spa), zio, zio->io_size,
2276 		    error);
2277 		if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE)
2278 			return (zio_write_gang_block(zio));
2279 		zio->io_error = error;
2280 	}
2281 
2282 	return (ZIO_PIPELINE_CONTINUE);
2283 }
2284 
2285 static int
2286 zio_dva_free(zio_t *zio)
2287 {
2288 	metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE);
2289 
2290 	return (ZIO_PIPELINE_CONTINUE);
2291 }
2292 
2293 static int
2294 zio_dva_claim(zio_t *zio)
2295 {
2296 	int error;
2297 
2298 	error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg);
2299 	if (error)
2300 		zio->io_error = error;
2301 
2302 	return (ZIO_PIPELINE_CONTINUE);
2303 }
2304 
2305 /*
2306  * Undo an allocation.  This is used by zio_done() when an I/O fails
2307  * and we want to give back the block we just allocated.
2308  * This handles both normal blocks and gang blocks.
2309  */
2310 static void
2311 zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp)
2312 {
2313 	ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp));
2314 	ASSERT(zio->io_bp_override == NULL);
2315 
2316 	if (!BP_IS_HOLE(bp))
2317 		metaslab_free(zio->io_spa, bp, bp->blk_birth, B_TRUE);
2318 
2319 	if (gn != NULL) {
2320 		for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2321 			zio_dva_unallocate(zio, gn->gn_child[g],
2322 			    &gn->gn_gbh->zg_blkptr[g]);
2323 		}
2324 	}
2325 }
2326 
2327 /*
2328  * Try to allocate an intent log block.  Return 0 on success, errno on failure.
2329  */
2330 int
2331 zio_alloc_zil(spa_t *spa, uint64_t txg, blkptr_t *new_bp, blkptr_t *old_bp,
2332     uint64_t size, boolean_t use_slog)
2333 {
2334 	int error = 1;
2335 
2336 	ASSERT(txg > spa_syncing_txg(spa));
2337 
2338 	/*
2339 	 * ZIL blocks are always contiguous (i.e. not gang blocks) so we
2340 	 * set the METASLAB_GANG_AVOID flag so that they don't "fast gang"
2341 	 * when allocating them.
2342 	 */
2343 	if (use_slog) {
2344 		error = metaslab_alloc(spa, spa_log_class(spa), size,
2345 		    new_bp, 1, txg, old_bp,
2346 		    METASLAB_HINTBP_AVOID | METASLAB_GANG_AVOID);
2347 	}
2348 
2349 	if (error) {
2350 		error = metaslab_alloc(spa, spa_normal_class(spa), size,
2351 		    new_bp, 1, txg, old_bp,
2352 		    METASLAB_HINTBP_AVOID | METASLAB_GANG_AVOID);
2353 	}
2354 
2355 	if (error == 0) {
2356 		BP_SET_LSIZE(new_bp, size);
2357 		BP_SET_PSIZE(new_bp, size);
2358 		BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF);
2359 		BP_SET_CHECKSUM(new_bp,
2360 		    spa_version(spa) >= SPA_VERSION_SLIM_ZIL
2361 		    ? ZIO_CHECKSUM_ZILOG2 : ZIO_CHECKSUM_ZILOG);
2362 		BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
2363 		BP_SET_LEVEL(new_bp, 0);
2364 		BP_SET_DEDUP(new_bp, 0);
2365 		BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER);
2366 	}
2367 
2368 	return (error);
2369 }
2370 
2371 /*
2372  * Free an intent log block.
2373  */
2374 void
2375 zio_free_zil(spa_t *spa, uint64_t txg, blkptr_t *bp)
2376 {
2377 	ASSERT(BP_GET_TYPE(bp) == DMU_OT_INTENT_LOG);
2378 	ASSERT(!BP_IS_GANG(bp));
2379 
2380 	zio_free(spa, txg, bp);
2381 }
2382 
2383 /*
2384  * ==========================================================================
2385  * Read and write to physical devices
2386  * ==========================================================================
2387  */
2388 static int
2389 zio_vdev_io_start(zio_t *zio)
2390 {
2391 	vdev_t *vd = zio->io_vd;
2392 	uint64_t align;
2393 	spa_t *spa = zio->io_spa;
2394 
2395 	ASSERT(zio->io_error == 0);
2396 	ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0);
2397 
2398 	if (vd == NULL) {
2399 		if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
2400 			spa_config_enter(spa, SCL_ZIO, zio, RW_READER);
2401 
2402 		/*
2403 		 * The mirror_ops handle multiple DVAs in a single BP.
2404 		 */
2405 		return (vdev_mirror_ops.vdev_op_io_start(zio));
2406 	}
2407 
2408 	/*
2409 	 * We keep track of time-sensitive I/Os so that the scan thread
2410 	 * can quickly react to certain workloads.  In particular, we care
2411 	 * about non-scrubbing, top-level reads and writes with the following
2412 	 * characteristics:
2413 	 * 	- synchronous writes of user data to non-slog devices
2414 	 *	- any reads of user data
2415 	 * When these conditions are met, adjust the timestamp of spa_last_io
2416 	 * which allows the scan thread to adjust its workload accordingly.
2417 	 */
2418 	if (!(zio->io_flags & ZIO_FLAG_SCAN_THREAD) && zio->io_bp != NULL &&
2419 	    vd == vd->vdev_top && !vd->vdev_islog &&
2420 	    zio->io_bookmark.zb_objset != DMU_META_OBJSET &&
2421 	    zio->io_txg != spa_syncing_txg(spa)) {
2422 		uint64_t old = spa->spa_last_io;
2423 		uint64_t new = ddi_get_lbolt64();
2424 		if (old != new)
2425 			(void) atomic_cas_64(&spa->spa_last_io, old, new);
2426 	}
2427 
2428 	align = 1ULL << vd->vdev_top->vdev_ashift;
2429 
2430 	if (P2PHASE(zio->io_size, align) != 0) {
2431 		uint64_t asize = P2ROUNDUP(zio->io_size, align);
2432 		char *abuf = zio_buf_alloc(asize);
2433 		ASSERT(vd == vd->vdev_top);
2434 		if (zio->io_type == ZIO_TYPE_WRITE) {
2435 			bcopy(zio->io_data, abuf, zio->io_size);
2436 			bzero(abuf + zio->io_size, asize - zio->io_size);
2437 		}
2438 		zio_push_transform(zio, abuf, asize, asize, zio_subblock);
2439 	}
2440 
2441 	ASSERT(P2PHASE(zio->io_offset, align) == 0);
2442 	ASSERT(P2PHASE(zio->io_size, align) == 0);
2443 	VERIFY(zio->io_type != ZIO_TYPE_WRITE || spa_writeable(spa));
2444 
2445 	/*
2446 	 * If this is a repair I/O, and there's no self-healing involved --
2447 	 * that is, we're just resilvering what we expect to resilver --
2448 	 * then don't do the I/O unless zio's txg is actually in vd's DTL.
2449 	 * This prevents spurious resilvering with nested replication.
2450 	 * For example, given a mirror of mirrors, (A+B)+(C+D), if only
2451 	 * A is out of date, we'll read from C+D, then use the data to
2452 	 * resilver A+B -- but we don't actually want to resilver B, just A.
2453 	 * The top-level mirror has no way to know this, so instead we just
2454 	 * discard unnecessary repairs as we work our way down the vdev tree.
2455 	 * The same logic applies to any form of nested replication:
2456 	 * ditto + mirror, RAID-Z + replacing, etc.  This covers them all.
2457 	 */
2458 	if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) &&
2459 	    !(zio->io_flags & ZIO_FLAG_SELF_HEAL) &&
2460 	    zio->io_txg != 0 &&	/* not a delegated i/o */
2461 	    !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) {
2462 		ASSERT(zio->io_type == ZIO_TYPE_WRITE);
2463 		zio_vdev_io_bypass(zio);
2464 		return (ZIO_PIPELINE_CONTINUE);
2465 	}
2466 
2467 	if (vd->vdev_ops->vdev_op_leaf &&
2468 	    (zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE)) {
2469 
2470 		if (zio->io_type == ZIO_TYPE_READ && vdev_cache_read(zio) == 0)
2471 			return (ZIO_PIPELINE_CONTINUE);
2472 
2473 		if ((zio = vdev_queue_io(zio)) == NULL)
2474 			return (ZIO_PIPELINE_STOP);
2475 
2476 		if (!vdev_accessible(vd, zio)) {
2477 			zio->io_error = ENXIO;
2478 			zio_interrupt(zio);
2479 			return (ZIO_PIPELINE_STOP);
2480 		}
2481 	}
2482 
2483 	return (vd->vdev_ops->vdev_op_io_start(zio));
2484 }
2485 
2486 static int
2487 zio_vdev_io_done(zio_t *zio)
2488 {
2489 	vdev_t *vd = zio->io_vd;
2490 	vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops;
2491 	boolean_t unexpected_error = B_FALSE;
2492 
2493 	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE))
2494 		return (ZIO_PIPELINE_STOP);
2495 
2496 	ASSERT(zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE);
2497 
2498 	if (vd != NULL && vd->vdev_ops->vdev_op_leaf) {
2499 
2500 		vdev_queue_io_done(zio);
2501 
2502 		if (zio->io_type == ZIO_TYPE_WRITE)
2503 			vdev_cache_write(zio);
2504 
2505 		if (zio_injection_enabled && zio->io_error == 0)
2506 			zio->io_error = zio_handle_device_injection(vd,
2507 			    zio, EIO);
2508 
2509 		if (zio_injection_enabled && zio->io_error == 0)
2510 			zio->io_error = zio_handle_label_injection(zio, EIO);
2511 
2512 		if (zio->io_error) {
2513 			if (!vdev_accessible(vd, zio)) {
2514 				zio->io_error = ENXIO;
2515 			} else {
2516 				unexpected_error = B_TRUE;
2517 			}
2518 		}
2519 	}
2520 
2521 	ops->vdev_op_io_done(zio);
2522 
2523 	if (unexpected_error)
2524 		VERIFY(vdev_probe(vd, zio) == NULL);
2525 
2526 	return (ZIO_PIPELINE_CONTINUE);
2527 }
2528 
2529 /*
2530  * For non-raidz ZIOs, we can just copy aside the bad data read from the
2531  * disk, and use that to finish the checksum ereport later.
2532  */
2533 static void
2534 zio_vsd_default_cksum_finish(zio_cksum_report_t *zcr,
2535     const void *good_buf)
2536 {
2537 	/* no processing needed */
2538 	zfs_ereport_finish_checksum(zcr, good_buf, zcr->zcr_cbdata, B_FALSE);
2539 }
2540 
2541 /*ARGSUSED*/
2542 void
2543 zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr, void *ignored)
2544 {
2545 	void *buf = zio_buf_alloc(zio->io_size);
2546 
2547 	bcopy(zio->io_data, buf, zio->io_size);
2548 
2549 	zcr->zcr_cbinfo = zio->io_size;
2550 	zcr->zcr_cbdata = buf;
2551 	zcr->zcr_finish = zio_vsd_default_cksum_finish;
2552 	zcr->zcr_free = zio_buf_free;
2553 }
2554 
2555 static int
2556 zio_vdev_io_assess(zio_t *zio)
2557 {
2558 	vdev_t *vd = zio->io_vd;
2559 
2560 	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE))
2561 		return (ZIO_PIPELINE_STOP);
2562 
2563 	if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
2564 		spa_config_exit(zio->io_spa, SCL_ZIO, zio);
2565 
2566 	if (zio->io_vsd != NULL) {
2567 		zio->io_vsd_ops->vsd_free(zio);
2568 		zio->io_vsd = NULL;
2569 	}
2570 
2571 	if (zio_injection_enabled && zio->io_error == 0)
2572 		zio->io_error = zio_handle_fault_injection(zio, EIO);
2573 
2574 	/*
2575 	 * If the I/O failed, determine whether we should attempt to retry it.
2576 	 *
2577 	 * On retry, we cut in line in the issue queue, since we don't want
2578 	 * compression/checksumming/etc. work to prevent our (cheap) IO reissue.
2579 	 */
2580 	if (zio->io_error && vd == NULL &&
2581 	    !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) {
2582 		ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE));	/* not a leaf */
2583 		ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS));	/* not a leaf */
2584 		zio->io_error = 0;
2585 		zio->io_flags |= ZIO_FLAG_IO_RETRY |
2586 		    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE;
2587 		zio->io_stage = ZIO_STAGE_VDEV_IO_START >> 1;
2588 		zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE,
2589 		    zio_requeue_io_start_cut_in_line);
2590 		return (ZIO_PIPELINE_STOP);
2591 	}
2592 
2593 	/*
2594 	 * If we got an error on a leaf device, convert it to ENXIO
2595 	 * if the device is not accessible at all.
2596 	 */
2597 	if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf &&
2598 	    !vdev_accessible(vd, zio))
2599 		zio->io_error = ENXIO;
2600 
2601 	/*
2602 	 * If we can't write to an interior vdev (mirror or RAID-Z),
2603 	 * set vdev_cant_write so that we stop trying to allocate from it.
2604 	 */
2605 	if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE &&
2606 	    vd != NULL && !vd->vdev_ops->vdev_op_leaf) {
2607 		vd->vdev_cant_write = B_TRUE;
2608 	}
2609 
2610 	if (zio->io_error)
2611 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2612 
2613 	return (ZIO_PIPELINE_CONTINUE);
2614 }
2615 
2616 void
2617 zio_vdev_io_reissue(zio_t *zio)
2618 {
2619 	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
2620 	ASSERT(zio->io_error == 0);
2621 
2622 	zio->io_stage >>= 1;
2623 }
2624 
2625 void
2626 zio_vdev_io_redone(zio_t *zio)
2627 {
2628 	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE);
2629 
2630 	zio->io_stage >>= 1;
2631 }
2632 
2633 void
2634 zio_vdev_io_bypass(zio_t *zio)
2635 {
2636 	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
2637 	ASSERT(zio->io_error == 0);
2638 
2639 	zio->io_flags |= ZIO_FLAG_IO_BYPASS;
2640 	zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS >> 1;
2641 }
2642 
2643 /*
2644  * ==========================================================================
2645  * Generate and verify checksums
2646  * ==========================================================================
2647  */
2648 static int
2649 zio_checksum_generate(zio_t *zio)
2650 {
2651 	blkptr_t *bp = zio->io_bp;
2652 	enum zio_checksum checksum;
2653 
2654 	if (bp == NULL) {
2655 		/*
2656 		 * This is zio_write_phys().
2657 		 * We're either generating a label checksum, or none at all.
2658 		 */
2659 		checksum = zio->io_prop.zp_checksum;
2660 
2661 		if (checksum == ZIO_CHECKSUM_OFF)
2662 			return (ZIO_PIPELINE_CONTINUE);
2663 
2664 		ASSERT(checksum == ZIO_CHECKSUM_LABEL);
2665 	} else {
2666 		if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) {
2667 			ASSERT(!IO_IS_ALLOCATING(zio));
2668 			checksum = ZIO_CHECKSUM_GANG_HEADER;
2669 		} else {
2670 			checksum = BP_GET_CHECKSUM(bp);
2671 		}
2672 	}
2673 
2674 	zio_checksum_compute(zio, checksum, zio->io_data, zio->io_size);
2675 
2676 	return (ZIO_PIPELINE_CONTINUE);
2677 }
2678 
2679 static int
2680 zio_checksum_verify(zio_t *zio)
2681 {
2682 	zio_bad_cksum_t info;
2683 	blkptr_t *bp = zio->io_bp;
2684 	int error;
2685 
2686 	ASSERT(zio->io_vd != NULL);
2687 
2688 	if (bp == NULL) {
2689 		/*
2690 		 * This is zio_read_phys().
2691 		 * We're either verifying a label checksum, or nothing at all.
2692 		 */
2693 		if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF)
2694 			return (ZIO_PIPELINE_CONTINUE);
2695 
2696 		ASSERT(zio->io_prop.zp_checksum == ZIO_CHECKSUM_LABEL);
2697 	}
2698 
2699 	if ((error = zio_checksum_error(zio, &info)) != 0) {
2700 		zio->io_error = error;
2701 		if (!(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
2702 			zfs_ereport_start_checksum(zio->io_spa,
2703 			    zio->io_vd, zio, zio->io_offset,
2704 			    zio->io_size, NULL, &info);
2705 		}
2706 	}
2707 
2708 	return (ZIO_PIPELINE_CONTINUE);
2709 }
2710 
2711 /*
2712  * Called by RAID-Z to ensure we don't compute the checksum twice.
2713  */
2714 void
2715 zio_checksum_verified(zio_t *zio)
2716 {
2717 	zio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
2718 }
2719 
2720 /*
2721  * ==========================================================================
2722  * Error rank.  Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other.
2723  * An error of 0 indictes success.  ENXIO indicates whole-device failure,
2724  * which may be transient (e.g. unplugged) or permament.  ECKSUM and EIO
2725  * indicate errors that are specific to one I/O, and most likely permanent.
2726  * Any other error is presumed to be worse because we weren't expecting it.
2727  * ==========================================================================
2728  */
2729 int
2730 zio_worst_error(int e1, int e2)
2731 {
2732 	static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO };
2733 	int r1, r2;
2734 
2735 	for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++)
2736 		if (e1 == zio_error_rank[r1])
2737 			break;
2738 
2739 	for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++)
2740 		if (e2 == zio_error_rank[r2])
2741 			break;
2742 
2743 	return (r1 > r2 ? e1 : e2);
2744 }
2745 
2746 /*
2747  * ==========================================================================
2748  * I/O completion
2749  * ==========================================================================
2750  */
2751 static int
2752 zio_ready(zio_t *zio)
2753 {
2754 	blkptr_t *bp = zio->io_bp;
2755 	zio_t *pio, *pio_next;
2756 
2757 	if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY) ||
2758 	    zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_READY))
2759 		return (ZIO_PIPELINE_STOP);
2760 
2761 	if (zio->io_ready) {
2762 		ASSERT(IO_IS_ALLOCATING(zio));
2763 		ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp) ||
2764 		    (zio->io_flags & ZIO_FLAG_NOPWRITE));
2765 		ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0);
2766 
2767 		zio->io_ready(zio);
2768 	}
2769 
2770 	if (bp != NULL && bp != &zio->io_bp_copy)
2771 		zio->io_bp_copy = *bp;
2772 
2773 	if (zio->io_error)
2774 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2775 
2776 	mutex_enter(&zio->io_lock);
2777 	zio->io_state[ZIO_WAIT_READY] = 1;
2778 	pio = zio_walk_parents(zio);
2779 	mutex_exit(&zio->io_lock);
2780 
2781 	/*
2782 	 * As we notify zio's parents, new parents could be added.
2783 	 * New parents go to the head of zio's io_parent_list, however,
2784 	 * so we will (correctly) not notify them.  The remainder of zio's
2785 	 * io_parent_list, from 'pio_next' onward, cannot change because
2786 	 * all parents must wait for us to be done before they can be done.
2787 	 */
2788 	for (; pio != NULL; pio = pio_next) {
2789 		pio_next = zio_walk_parents(zio);
2790 		zio_notify_parent(pio, zio, ZIO_WAIT_READY);
2791 	}
2792 
2793 	if (zio->io_flags & ZIO_FLAG_NODATA) {
2794 		if (BP_IS_GANG(bp)) {
2795 			zio->io_flags &= ~ZIO_FLAG_NODATA;
2796 		} else {
2797 			ASSERT((uintptr_t)zio->io_data < SPA_MAXBLOCKSIZE);
2798 			zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
2799 		}
2800 	}
2801 
2802 	if (zio_injection_enabled &&
2803 	    zio->io_spa->spa_syncing_txg == zio->io_txg)
2804 		zio_handle_ignored_writes(zio);
2805 
2806 	return (ZIO_PIPELINE_CONTINUE);
2807 }
2808 
2809 static int
2810 zio_done(zio_t *zio)
2811 {
2812 	spa_t *spa = zio->io_spa;
2813 	zio_t *lio = zio->io_logical;
2814 	blkptr_t *bp = zio->io_bp;
2815 	vdev_t *vd = zio->io_vd;
2816 	uint64_t psize = zio->io_size;
2817 	zio_t *pio, *pio_next;
2818 
2819 	/*
2820 	 * If our children haven't all completed,
2821 	 * wait for them and then repeat this pipeline stage.
2822 	 */
2823 	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE) ||
2824 	    zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE) ||
2825 	    zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_DONE) ||
2826 	    zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_DONE))
2827 		return (ZIO_PIPELINE_STOP);
2828 
2829 	for (int c = 0; c < ZIO_CHILD_TYPES; c++)
2830 		for (int w = 0; w < ZIO_WAIT_TYPES; w++)
2831 			ASSERT(zio->io_children[c][w] == 0);
2832 
2833 	if (bp != NULL) {
2834 		ASSERT(bp->blk_pad[0] == 0);
2835 		ASSERT(bp->blk_pad[1] == 0);
2836 		ASSERT(bcmp(bp, &zio->io_bp_copy, sizeof (blkptr_t)) == 0 ||
2837 		    (bp == zio_unique_parent(zio)->io_bp));
2838 		if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(bp) &&
2839 		    zio->io_bp_override == NULL &&
2840 		    !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) {
2841 			ASSERT(!BP_SHOULD_BYTESWAP(bp));
2842 			ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(bp));
2843 			ASSERT(BP_COUNT_GANG(bp) == 0 ||
2844 			    (BP_COUNT_GANG(bp) == BP_GET_NDVAS(bp)));
2845 		}
2846 		if (zio->io_flags & ZIO_FLAG_NOPWRITE)
2847 			VERIFY(BP_EQUAL(bp, &zio->io_bp_orig));
2848 	}
2849 
2850 	/*
2851 	 * If there were child vdev/gang/ddt errors, they apply to us now.
2852 	 */
2853 	zio_inherit_child_errors(zio, ZIO_CHILD_VDEV);
2854 	zio_inherit_child_errors(zio, ZIO_CHILD_GANG);
2855 	zio_inherit_child_errors(zio, ZIO_CHILD_DDT);
2856 
2857 	/*
2858 	 * If the I/O on the transformed data was successful, generate any
2859 	 * checksum reports now while we still have the transformed data.
2860 	 */
2861 	if (zio->io_error == 0) {
2862 		while (zio->io_cksum_report != NULL) {
2863 			zio_cksum_report_t *zcr = zio->io_cksum_report;
2864 			uint64_t align = zcr->zcr_align;
2865 			uint64_t asize = P2ROUNDUP(psize, align);
2866 			char *abuf = zio->io_data;
2867 
2868 			if (asize != psize) {
2869 				abuf = zio_buf_alloc(asize);
2870 				bcopy(zio->io_data, abuf, psize);
2871 				bzero(abuf + psize, asize - psize);
2872 			}
2873 
2874 			zio->io_cksum_report = zcr->zcr_next;
2875 			zcr->zcr_next = NULL;
2876 			zcr->zcr_finish(zcr, abuf);
2877 			zfs_ereport_free_checksum(zcr);
2878 
2879 			if (asize != psize)
2880 				zio_buf_free(abuf, asize);
2881 		}
2882 	}
2883 
2884 	zio_pop_transforms(zio);	/* note: may set zio->io_error */
2885 
2886 	vdev_stat_update(zio, psize);
2887 
2888 	if (zio->io_error) {
2889 		/*
2890 		 * If this I/O is attached to a particular vdev,
2891 		 * generate an error message describing the I/O failure
2892 		 * at the block level.  We ignore these errors if the
2893 		 * device is currently unavailable.
2894 		 */
2895 		if (zio->io_error != ECKSUM && vd != NULL && !vdev_is_dead(vd))
2896 			zfs_ereport_post(FM_EREPORT_ZFS_IO, spa, vd, zio, 0, 0);
2897 
2898 		if ((zio->io_error == EIO || !(zio->io_flags &
2899 		    (ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_PROPAGATE))) &&
2900 		    zio == lio) {
2901 			/*
2902 			 * For logical I/O requests, tell the SPA to log the
2903 			 * error and generate a logical data ereport.
2904 			 */
2905 			spa_log_error(spa, zio);
2906 			zfs_ereport_post(FM_EREPORT_ZFS_DATA, spa, NULL, zio,
2907 			    0, 0);
2908 		}
2909 	}
2910 
2911 	if (zio->io_error && zio == lio) {
2912 		/*
2913 		 * Determine whether zio should be reexecuted.  This will
2914 		 * propagate all the way to the root via zio_notify_parent().
2915 		 */
2916 		ASSERT(vd == NULL && bp != NULL);
2917 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2918 
2919 		if (IO_IS_ALLOCATING(zio) &&
2920 		    !(zio->io_flags & ZIO_FLAG_CANFAIL)) {
2921 			if (zio->io_error != ENOSPC)
2922 				zio->io_reexecute |= ZIO_REEXECUTE_NOW;
2923 			else
2924 				zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
2925 		}
2926 
2927 		if ((zio->io_type == ZIO_TYPE_READ ||
2928 		    zio->io_type == ZIO_TYPE_FREE) &&
2929 		    !(zio->io_flags & ZIO_FLAG_SCAN_THREAD) &&
2930 		    zio->io_error == ENXIO &&
2931 		    spa_load_state(spa) == SPA_LOAD_NONE &&
2932 		    spa_get_failmode(spa) != ZIO_FAILURE_MODE_CONTINUE)
2933 			zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
2934 
2935 		if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute)
2936 			zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
2937 
2938 		/*
2939 		 * Here is a possibly good place to attempt to do
2940 		 * either combinatorial reconstruction or error correction
2941 		 * based on checksums.  It also might be a good place
2942 		 * to send out preliminary ereports before we suspend
2943 		 * processing.
2944 		 */
2945 	}
2946 
2947 	/*
2948 	 * If there were logical child errors, they apply to us now.
2949 	 * We defer this until now to avoid conflating logical child
2950 	 * errors with errors that happened to the zio itself when
2951 	 * updating vdev stats and reporting FMA events above.
2952 	 */
2953 	zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL);
2954 
2955 	if ((zio->io_error || zio->io_reexecute) &&
2956 	    IO_IS_ALLOCATING(zio) && zio->io_gang_leader == zio &&
2957 	    !(zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)))
2958 		zio_dva_unallocate(zio, zio->io_gang_tree, bp);
2959 
2960 	zio_gang_tree_free(&zio->io_gang_tree);
2961 
2962 	/*
2963 	 * Godfather I/Os should never suspend.
2964 	 */
2965 	if ((zio->io_flags & ZIO_FLAG_GODFATHER) &&
2966 	    (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND))
2967 		zio->io_reexecute = 0;
2968 
2969 	if (zio->io_reexecute) {
2970 		/*
2971 		 * This is a logical I/O that wants to reexecute.
2972 		 *
2973 		 * Reexecute is top-down.  When an i/o fails, if it's not
2974 		 * the root, it simply notifies its parent and sticks around.
2975 		 * The parent, seeing that it still has children in zio_done(),
2976 		 * does the same.  This percolates all the way up to the root.
2977 		 * The root i/o will reexecute or suspend the entire tree.
2978 		 *
2979 		 * This approach ensures that zio_reexecute() honors
2980 		 * all the original i/o dependency relationships, e.g.
2981 		 * parents not executing until children are ready.
2982 		 */
2983 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2984 
2985 		zio->io_gang_leader = NULL;
2986 
2987 		mutex_enter(&zio->io_lock);
2988 		zio->io_state[ZIO_WAIT_DONE] = 1;
2989 		mutex_exit(&zio->io_lock);
2990 
2991 		/*
2992 		 * "The Godfather" I/O monitors its children but is
2993 		 * not a true parent to them. It will track them through
2994 		 * the pipeline but severs its ties whenever they get into
2995 		 * trouble (e.g. suspended). This allows "The Godfather"
2996 		 * I/O to return status without blocking.
2997 		 */
2998 		for (pio = zio_walk_parents(zio); pio != NULL; pio = pio_next) {
2999 			zio_link_t *zl = zio->io_walk_link;
3000 			pio_next = zio_walk_parents(zio);
3001 
3002 			if ((pio->io_flags & ZIO_FLAG_GODFATHER) &&
3003 			    (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) {
3004 				zio_remove_child(pio, zio, zl);
3005 				zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3006 			}
3007 		}
3008 
3009 		if ((pio = zio_unique_parent(zio)) != NULL) {
3010 			/*
3011 			 * We're not a root i/o, so there's nothing to do
3012 			 * but notify our parent.  Don't propagate errors
3013 			 * upward since we haven't permanently failed yet.
3014 			 */
3015 			ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
3016 			zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE;
3017 			zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3018 		} else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) {
3019 			/*
3020 			 * We'd fail again if we reexecuted now, so suspend
3021 			 * until conditions improve (e.g. device comes online).
3022 			 */
3023 			zio_suspend(spa, zio);
3024 		} else {
3025 			/*
3026 			 * Reexecution is potentially a huge amount of work.
3027 			 * Hand it off to the otherwise-unused claim taskq.
3028 			 */
3029 			ASSERT(zio->io_tqent.tqent_next == NULL);
3030 			spa_taskq_dispatch_ent(spa, ZIO_TYPE_CLAIM,
3031 			    ZIO_TASKQ_ISSUE, (task_func_t *)zio_reexecute, zio,
3032 			    0, &zio->io_tqent);
3033 		}
3034 		return (ZIO_PIPELINE_STOP);
3035 	}
3036 
3037 	ASSERT(zio->io_child_count == 0);
3038 	ASSERT(zio->io_reexecute == 0);
3039 	ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL));
3040 
3041 	/*
3042 	 * Report any checksum errors, since the I/O is complete.
3043 	 */
3044 	while (zio->io_cksum_report != NULL) {
3045 		zio_cksum_report_t *zcr = zio->io_cksum_report;
3046 		zio->io_cksum_report = zcr->zcr_next;
3047 		zcr->zcr_next = NULL;
3048 		zcr->zcr_finish(zcr, NULL);
3049 		zfs_ereport_free_checksum(zcr);
3050 	}
3051 
3052 	/*
3053 	 * It is the responsibility of the done callback to ensure that this
3054 	 * particular zio is no longer discoverable for adoption, and as
3055 	 * such, cannot acquire any new parents.
3056 	 */
3057 	if (zio->io_done)
3058 		zio->io_done(zio);
3059 
3060 	mutex_enter(&zio->io_lock);
3061 	zio->io_state[ZIO_WAIT_DONE] = 1;
3062 	mutex_exit(&zio->io_lock);
3063 
3064 	for (pio = zio_walk_parents(zio); pio != NULL; pio = pio_next) {
3065 		zio_link_t *zl = zio->io_walk_link;
3066 		pio_next = zio_walk_parents(zio);
3067 		zio_remove_child(pio, zio, zl);
3068 		zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3069 	}
3070 
3071 	if (zio->io_waiter != NULL) {
3072 		mutex_enter(&zio->io_lock);
3073 		zio->io_executor = NULL;
3074 		cv_broadcast(&zio->io_cv);
3075 		mutex_exit(&zio->io_lock);
3076 	} else {
3077 		zio_destroy(zio);
3078 	}
3079 
3080 	return (ZIO_PIPELINE_STOP);
3081 }
3082 
3083 /*
3084  * ==========================================================================
3085  * I/O pipeline definition
3086  * ==========================================================================
3087  */
3088 static zio_pipe_stage_t *zio_pipeline[] = {
3089 	NULL,
3090 	zio_read_bp_init,
3091 	zio_free_bp_init,
3092 	zio_issue_async,
3093 	zio_write_bp_init,
3094 	zio_checksum_generate,
3095 	zio_nop_write,
3096 	zio_ddt_read_start,
3097 	zio_ddt_read_done,
3098 	zio_ddt_write,
3099 	zio_ddt_free,
3100 	zio_gang_assemble,
3101 	zio_gang_issue,
3102 	zio_dva_allocate,
3103 	zio_dva_free,
3104 	zio_dva_claim,
3105 	zio_ready,
3106 	zio_vdev_io_start,
3107 	zio_vdev_io_done,
3108 	zio_vdev_io_assess,
3109 	zio_checksum_verify,
3110 	zio_done
3111 };
3112 
3113 /* dnp is the dnode for zb1->zb_object */
3114 boolean_t
3115 zbookmark_is_before(const dnode_phys_t *dnp, const zbookmark_t *zb1,
3116     const zbookmark_t *zb2)
3117 {
3118 	uint64_t zb1nextL0, zb2thisobj;
3119 
3120 	ASSERT(zb1->zb_objset == zb2->zb_objset);
3121 	ASSERT(zb2->zb_level == 0);
3122 
3123 	/*
3124 	 * A bookmark in the deadlist is considered to be after
3125 	 * everything else.
3126 	 */
3127 	if (zb2->zb_object == DMU_DEADLIST_OBJECT)
3128 		return (B_TRUE);
3129 
3130 	/* The objset_phys_t isn't before anything. */
3131 	if (dnp == NULL)
3132 		return (B_FALSE);
3133 
3134 	zb1nextL0 = (zb1->zb_blkid + 1) <<
3135 	    ((zb1->zb_level) * (dnp->dn_indblkshift - SPA_BLKPTRSHIFT));
3136 
3137 	zb2thisobj = zb2->zb_object ? zb2->zb_object :
3138 	    zb2->zb_blkid << (DNODE_BLOCK_SHIFT - DNODE_SHIFT);
3139 
3140 	if (zb1->zb_object == DMU_META_DNODE_OBJECT) {
3141 		uint64_t nextobj = zb1nextL0 *
3142 		    (dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT) >> DNODE_SHIFT;
3143 		return (nextobj <= zb2thisobj);
3144 	}
3145 
3146 	if (zb1->zb_object < zb2thisobj)
3147 		return (B_TRUE);
3148 	if (zb1->zb_object > zb2thisobj)
3149 		return (B_FALSE);
3150 	if (zb2->zb_object == DMU_META_DNODE_OBJECT)
3151 		return (B_FALSE);
3152 	return (zb1nextL0 <= zb2->zb_blkid);
3153 }
3154