xref: /illumos-gate/usr/src/uts/common/fs/zfs/zio.c (revision 95cb2e31)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2017 by Delphix. All rights reserved.
24  * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved.
25  * Copyright (c) 2014 Integros [integros.com]
26  */
27 
28 #include <sys/sysmacros.h>
29 #include <sys/zfs_context.h>
30 #include <sys/fm/fs/zfs.h>
31 #include <sys/spa.h>
32 #include <sys/txg.h>
33 #include <sys/spa_impl.h>
34 #include <sys/vdev_impl.h>
35 #include <sys/zio_impl.h>
36 #include <sys/zio_compress.h>
37 #include <sys/zio_checksum.h>
38 #include <sys/dmu_objset.h>
39 #include <sys/arc.h>
40 #include <sys/ddt.h>
41 #include <sys/blkptr.h>
42 #include <sys/zfeature.h>
43 #include <sys/metaslab_impl.h>
44 #include <sys/abd.h>
45 
46 /*
47  * ==========================================================================
48  * I/O type descriptions
49  * ==========================================================================
50  */
51 const char *zio_type_name[ZIO_TYPES] = {
52 	"zio_null", "zio_read", "zio_write", "zio_free", "zio_claim",
53 	"zio_ioctl"
54 };
55 
56 boolean_t zio_dva_throttle_enabled = B_TRUE;
57 
58 /*
59  * ==========================================================================
60  * I/O kmem caches
61  * ==========================================================================
62  */
63 kmem_cache_t *zio_cache;
64 kmem_cache_t *zio_link_cache;
65 kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
66 kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
67 
68 #ifdef _KERNEL
69 extern vmem_t *zio_alloc_arena;
70 #endif
71 
72 #define	ZIO_PIPELINE_CONTINUE		0x100
73 #define	ZIO_PIPELINE_STOP		0x101
74 
75 #define	BP_SPANB(indblkshift, level) \
76 	(((uint64_t)1) << ((level) * ((indblkshift) - SPA_BLKPTRSHIFT)))
77 #define	COMPARE_META_LEVEL	0x80000000ul
78 /*
79  * The following actions directly effect the spa's sync-to-convergence logic.
80  * The values below define the sync pass when we start performing the action.
81  * Care should be taken when changing these values as they directly impact
82  * spa_sync() performance. Tuning these values may introduce subtle performance
83  * pathologies and should only be done in the context of performance analysis.
84  * These tunables will eventually be removed and replaced with #defines once
85  * enough analysis has been done to determine optimal values.
86  *
87  * The 'zfs_sync_pass_deferred_free' pass must be greater than 1 to ensure that
88  * regular blocks are not deferred.
89  */
90 int zfs_sync_pass_deferred_free = 2; /* defer frees starting in this pass */
91 int zfs_sync_pass_dont_compress = 5; /* don't compress starting in this pass */
92 int zfs_sync_pass_rewrite = 2; /* rewrite new bps starting in this pass */
93 
94 /*
95  * An allocating zio is one that either currently has the DVA allocate
96  * stage set or will have it later in its lifetime.
97  */
98 #define	IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE)
99 
100 boolean_t	zio_requeue_io_start_cut_in_line = B_TRUE;
101 
102 #ifdef ZFS_DEBUG
103 int zio_buf_debug_limit = 16384;
104 #else
105 int zio_buf_debug_limit = 0;
106 #endif
107 
108 static void zio_taskq_dispatch(zio_t *, zio_taskq_type_t, boolean_t);
109 
110 void
111 zio_init(void)
112 {
113 	size_t c;
114 	vmem_t *data_alloc_arena = NULL;
115 
116 #ifdef _KERNEL
117 	data_alloc_arena = zio_alloc_arena;
118 #endif
119 	zio_cache = kmem_cache_create("zio_cache",
120 	    sizeof (zio_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
121 	zio_link_cache = kmem_cache_create("zio_link_cache",
122 	    sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
123 
124 	/*
125 	 * For small buffers, we want a cache for each multiple of
126 	 * SPA_MINBLOCKSIZE.  For larger buffers, we want a cache
127 	 * for each quarter-power of 2.
128 	 */
129 	for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
130 		size_t size = (c + 1) << SPA_MINBLOCKSHIFT;
131 		size_t p2 = size;
132 		size_t align = 0;
133 		size_t cflags = (size > zio_buf_debug_limit) ? KMC_NODEBUG : 0;
134 
135 		while (!ISP2(p2))
136 			p2 &= p2 - 1;
137 
138 #ifndef _KERNEL
139 		/*
140 		 * If we are using watchpoints, put each buffer on its own page,
141 		 * to eliminate the performance overhead of trapping to the
142 		 * kernel when modifying a non-watched buffer that shares the
143 		 * page with a watched buffer.
144 		 */
145 		if (arc_watch && !IS_P2ALIGNED(size, PAGESIZE))
146 			continue;
147 #endif
148 		if (size <= 4 * SPA_MINBLOCKSIZE) {
149 			align = SPA_MINBLOCKSIZE;
150 		} else if (IS_P2ALIGNED(size, p2 >> 2)) {
151 			align = MIN(p2 >> 2, PAGESIZE);
152 		}
153 
154 		if (align != 0) {
155 			char name[36];
156 			(void) sprintf(name, "zio_buf_%lu", (ulong_t)size);
157 			zio_buf_cache[c] = kmem_cache_create(name, size,
158 			    align, NULL, NULL, NULL, NULL, NULL, cflags);
159 
160 			/*
161 			 * Since zio_data bufs do not appear in crash dumps, we
162 			 * pass KMC_NOTOUCH so that no allocator metadata is
163 			 * stored with the buffers.
164 			 */
165 			(void) sprintf(name, "zio_data_buf_%lu", (ulong_t)size);
166 			zio_data_buf_cache[c] = kmem_cache_create(name, size,
167 			    align, NULL, NULL, NULL, NULL, data_alloc_arena,
168 			    cflags | KMC_NOTOUCH);
169 		}
170 	}
171 
172 	while (--c != 0) {
173 		ASSERT(zio_buf_cache[c] != NULL);
174 		if (zio_buf_cache[c - 1] == NULL)
175 			zio_buf_cache[c - 1] = zio_buf_cache[c];
176 
177 		ASSERT(zio_data_buf_cache[c] != NULL);
178 		if (zio_data_buf_cache[c - 1] == NULL)
179 			zio_data_buf_cache[c - 1] = zio_data_buf_cache[c];
180 	}
181 
182 	zio_inject_init();
183 }
184 
185 void
186 zio_fini(void)
187 {
188 	size_t c;
189 	kmem_cache_t *last_cache = NULL;
190 	kmem_cache_t *last_data_cache = NULL;
191 
192 	for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
193 		if (zio_buf_cache[c] != last_cache) {
194 			last_cache = zio_buf_cache[c];
195 			kmem_cache_destroy(zio_buf_cache[c]);
196 		}
197 		zio_buf_cache[c] = NULL;
198 
199 		if (zio_data_buf_cache[c] != last_data_cache) {
200 			last_data_cache = zio_data_buf_cache[c];
201 			kmem_cache_destroy(zio_data_buf_cache[c]);
202 		}
203 		zio_data_buf_cache[c] = NULL;
204 	}
205 
206 	kmem_cache_destroy(zio_link_cache);
207 	kmem_cache_destroy(zio_cache);
208 
209 	zio_inject_fini();
210 }
211 
212 /*
213  * ==========================================================================
214  * Allocate and free I/O buffers
215  * ==========================================================================
216  */
217 
218 /*
219  * Use zio_buf_alloc to allocate ZFS metadata.  This data will appear in a
220  * crashdump if the kernel panics, so use it judiciously.  Obviously, it's
221  * useful to inspect ZFS metadata, but if possible, we should avoid keeping
222  * excess / transient data in-core during a crashdump.
223  */
224 void *
225 zio_buf_alloc(size_t size)
226 {
227 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
228 
229 	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
230 
231 	return (kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE));
232 }
233 
234 /*
235  * Use zio_data_buf_alloc to allocate data.  The data will not appear in a
236  * crashdump if the kernel panics.  This exists so that we will limit the amount
237  * of ZFS data that shows up in a kernel crashdump.  (Thus reducing the amount
238  * of kernel heap dumped to disk when the kernel panics)
239  */
240 void *
241 zio_data_buf_alloc(size_t size)
242 {
243 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
244 
245 	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
246 
247 	return (kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE));
248 }
249 
250 void
251 zio_buf_free(void *buf, size_t size)
252 {
253 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
254 
255 	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
256 
257 	kmem_cache_free(zio_buf_cache[c], buf);
258 }
259 
260 void
261 zio_data_buf_free(void *buf, size_t size)
262 {
263 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
264 
265 	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
266 
267 	kmem_cache_free(zio_data_buf_cache[c], buf);
268 }
269 
270 /*
271  * ==========================================================================
272  * Push and pop I/O transform buffers
273  * ==========================================================================
274  */
275 void
276 zio_push_transform(zio_t *zio, abd_t *data, uint64_t size, uint64_t bufsize,
277     zio_transform_func_t *transform)
278 {
279 	zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP);
280 
281 	/*
282 	 * Ensure that anyone expecting this zio to contain a linear ABD isn't
283 	 * going to get a nasty surprise when they try to access the data.
284 	 */
285 	IMPLY(abd_is_linear(zio->io_abd), abd_is_linear(data));
286 
287 	zt->zt_orig_abd = zio->io_abd;
288 	zt->zt_orig_size = zio->io_size;
289 	zt->zt_bufsize = bufsize;
290 	zt->zt_transform = transform;
291 
292 	zt->zt_next = zio->io_transform_stack;
293 	zio->io_transform_stack = zt;
294 
295 	zio->io_abd = data;
296 	zio->io_size = size;
297 }
298 
299 void
300 zio_pop_transforms(zio_t *zio)
301 {
302 	zio_transform_t *zt;
303 
304 	while ((zt = zio->io_transform_stack) != NULL) {
305 		if (zt->zt_transform != NULL)
306 			zt->zt_transform(zio,
307 			    zt->zt_orig_abd, zt->zt_orig_size);
308 
309 		if (zt->zt_bufsize != 0)
310 			abd_free(zio->io_abd);
311 
312 		zio->io_abd = zt->zt_orig_abd;
313 		zio->io_size = zt->zt_orig_size;
314 		zio->io_transform_stack = zt->zt_next;
315 
316 		kmem_free(zt, sizeof (zio_transform_t));
317 	}
318 }
319 
320 /*
321  * ==========================================================================
322  * I/O transform callbacks for subblocks and decompression
323  * ==========================================================================
324  */
325 static void
326 zio_subblock(zio_t *zio, abd_t *data, uint64_t size)
327 {
328 	ASSERT(zio->io_size > size);
329 
330 	if (zio->io_type == ZIO_TYPE_READ)
331 		abd_copy(data, zio->io_abd, size);
332 }
333 
334 static void
335 zio_decompress(zio_t *zio, abd_t *data, uint64_t size)
336 {
337 	if (zio->io_error == 0) {
338 		void *tmp = abd_borrow_buf(data, size);
339 		int ret = zio_decompress_data(BP_GET_COMPRESS(zio->io_bp),
340 		    zio->io_abd, tmp, zio->io_size, size);
341 		abd_return_buf_copy(data, tmp, size);
342 
343 		if (ret != 0)
344 			zio->io_error = SET_ERROR(EIO);
345 	}
346 }
347 
348 /*
349  * ==========================================================================
350  * I/O parent/child relationships and pipeline interlocks
351  * ==========================================================================
352  */
353 zio_t *
354 zio_walk_parents(zio_t *cio, zio_link_t **zl)
355 {
356 	list_t *pl = &cio->io_parent_list;
357 
358 	*zl = (*zl == NULL) ? list_head(pl) : list_next(pl, *zl);
359 	if (*zl == NULL)
360 		return (NULL);
361 
362 	ASSERT((*zl)->zl_child == cio);
363 	return ((*zl)->zl_parent);
364 }
365 
366 zio_t *
367 zio_walk_children(zio_t *pio, zio_link_t **zl)
368 {
369 	list_t *cl = &pio->io_child_list;
370 
371 	*zl = (*zl == NULL) ? list_head(cl) : list_next(cl, *zl);
372 	if (*zl == NULL)
373 		return (NULL);
374 
375 	ASSERT((*zl)->zl_parent == pio);
376 	return ((*zl)->zl_child);
377 }
378 
379 zio_t *
380 zio_unique_parent(zio_t *cio)
381 {
382 	zio_link_t *zl = NULL;
383 	zio_t *pio = zio_walk_parents(cio, &zl);
384 
385 	VERIFY3P(zio_walk_parents(cio, &zl), ==, NULL);
386 	return (pio);
387 }
388 
389 void
390 zio_add_child(zio_t *pio, zio_t *cio)
391 {
392 	zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP);
393 
394 	/*
395 	 * Logical I/Os can have logical, gang, or vdev children.
396 	 * Gang I/Os can have gang or vdev children.
397 	 * Vdev I/Os can only have vdev children.
398 	 * The following ASSERT captures all of these constraints.
399 	 */
400 	ASSERT3S(cio->io_child_type, <=, pio->io_child_type);
401 
402 	zl->zl_parent = pio;
403 	zl->zl_child = cio;
404 
405 	mutex_enter(&cio->io_lock);
406 	mutex_enter(&pio->io_lock);
407 
408 	ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0);
409 
410 	for (int w = 0; w < ZIO_WAIT_TYPES; w++)
411 		pio->io_children[cio->io_child_type][w] += !cio->io_state[w];
412 
413 	list_insert_head(&pio->io_child_list, zl);
414 	list_insert_head(&cio->io_parent_list, zl);
415 
416 	pio->io_child_count++;
417 	cio->io_parent_count++;
418 
419 	mutex_exit(&pio->io_lock);
420 	mutex_exit(&cio->io_lock);
421 }
422 
423 static void
424 zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl)
425 {
426 	ASSERT(zl->zl_parent == pio);
427 	ASSERT(zl->zl_child == cio);
428 
429 	mutex_enter(&cio->io_lock);
430 	mutex_enter(&pio->io_lock);
431 
432 	list_remove(&pio->io_child_list, zl);
433 	list_remove(&cio->io_parent_list, zl);
434 
435 	pio->io_child_count--;
436 	cio->io_parent_count--;
437 
438 	mutex_exit(&pio->io_lock);
439 	mutex_exit(&cio->io_lock);
440 
441 	kmem_cache_free(zio_link_cache, zl);
442 }
443 
444 static boolean_t
445 zio_wait_for_children(zio_t *zio, enum zio_child child, enum zio_wait_type wait)
446 {
447 	uint64_t *countp = &zio->io_children[child][wait];
448 	boolean_t waiting = B_FALSE;
449 
450 	mutex_enter(&zio->io_lock);
451 	ASSERT(zio->io_stall == NULL);
452 	if (*countp != 0) {
453 		zio->io_stage >>= 1;
454 		ASSERT3U(zio->io_stage, !=, ZIO_STAGE_OPEN);
455 		zio->io_stall = countp;
456 		waiting = B_TRUE;
457 	}
458 	mutex_exit(&zio->io_lock);
459 
460 	return (waiting);
461 }
462 
463 static void
464 zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait)
465 {
466 	uint64_t *countp = &pio->io_children[zio->io_child_type][wait];
467 	int *errorp = &pio->io_child_error[zio->io_child_type];
468 
469 	mutex_enter(&pio->io_lock);
470 	if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
471 		*errorp = zio_worst_error(*errorp, zio->io_error);
472 	pio->io_reexecute |= zio->io_reexecute;
473 	ASSERT3U(*countp, >, 0);
474 
475 	(*countp)--;
476 
477 	if (*countp == 0 && pio->io_stall == countp) {
478 		zio_taskq_type_t type =
479 		    pio->io_stage < ZIO_STAGE_VDEV_IO_START ? ZIO_TASKQ_ISSUE :
480 		    ZIO_TASKQ_INTERRUPT;
481 		pio->io_stall = NULL;
482 		mutex_exit(&pio->io_lock);
483 		/*
484 		 * Dispatch the parent zio in its own taskq so that
485 		 * the child can continue to make progress. This also
486 		 * prevents overflowing the stack when we have deeply nested
487 		 * parent-child relationships.
488 		 */
489 		zio_taskq_dispatch(pio, type, B_FALSE);
490 	} else {
491 		mutex_exit(&pio->io_lock);
492 	}
493 }
494 
495 static void
496 zio_inherit_child_errors(zio_t *zio, enum zio_child c)
497 {
498 	if (zio->io_child_error[c] != 0 && zio->io_error == 0)
499 		zio->io_error = zio->io_child_error[c];
500 }
501 
502 int
503 zio_bookmark_compare(const void *x1, const void *x2)
504 {
505 	const zio_t *z1 = x1;
506 	const zio_t *z2 = x2;
507 
508 	if (z1->io_bookmark.zb_objset < z2->io_bookmark.zb_objset)
509 		return (-1);
510 	if (z1->io_bookmark.zb_objset > z2->io_bookmark.zb_objset)
511 		return (1);
512 
513 	if (z1->io_bookmark.zb_object < z2->io_bookmark.zb_object)
514 		return (-1);
515 	if (z1->io_bookmark.zb_object > z2->io_bookmark.zb_object)
516 		return (1);
517 
518 	if (z1->io_bookmark.zb_level < z2->io_bookmark.zb_level)
519 		return (-1);
520 	if (z1->io_bookmark.zb_level > z2->io_bookmark.zb_level)
521 		return (1);
522 
523 	if (z1->io_bookmark.zb_blkid < z2->io_bookmark.zb_blkid)
524 		return (-1);
525 	if (z1->io_bookmark.zb_blkid > z2->io_bookmark.zb_blkid)
526 		return (1);
527 
528 	if (z1 < z2)
529 		return (-1);
530 	if (z1 > z2)
531 		return (1);
532 
533 	return (0);
534 }
535 
536 /*
537  * ==========================================================================
538  * Create the various types of I/O (read, write, free, etc)
539  * ==========================================================================
540  */
541 static zio_t *
542 zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
543     abd_t *data, uint64_t lsize, uint64_t psize, zio_done_func_t *done,
544     void *private, zio_type_t type, zio_priority_t priority,
545     enum zio_flag flags, vdev_t *vd, uint64_t offset,
546     const zbookmark_phys_t *zb, enum zio_stage stage, enum zio_stage pipeline)
547 {
548 	zio_t *zio;
549 
550 	ASSERT3U(psize, <=, SPA_MAXBLOCKSIZE);
551 	ASSERT(P2PHASE(psize, SPA_MINBLOCKSIZE) == 0);
552 	ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0);
553 
554 	ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER));
555 	ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER));
556 	ASSERT(vd || stage == ZIO_STAGE_OPEN);
557 
558 	IMPLY(lsize != psize, (flags & ZIO_FLAG_RAW) != 0);
559 
560 	zio = kmem_cache_alloc(zio_cache, KM_SLEEP);
561 	bzero(zio, sizeof (zio_t));
562 
563 	mutex_init(&zio->io_lock, NULL, MUTEX_DEFAULT, NULL);
564 	cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL);
565 
566 	list_create(&zio->io_parent_list, sizeof (zio_link_t),
567 	    offsetof(zio_link_t, zl_parent_node));
568 	list_create(&zio->io_child_list, sizeof (zio_link_t),
569 	    offsetof(zio_link_t, zl_child_node));
570 	metaslab_trace_init(&zio->io_alloc_list);
571 
572 	if (vd != NULL)
573 		zio->io_child_type = ZIO_CHILD_VDEV;
574 	else if (flags & ZIO_FLAG_GANG_CHILD)
575 		zio->io_child_type = ZIO_CHILD_GANG;
576 	else if (flags & ZIO_FLAG_DDT_CHILD)
577 		zio->io_child_type = ZIO_CHILD_DDT;
578 	else
579 		zio->io_child_type = ZIO_CHILD_LOGICAL;
580 
581 	if (bp != NULL) {
582 		zio->io_bp = (blkptr_t *)bp;
583 		zio->io_bp_copy = *bp;
584 		zio->io_bp_orig = *bp;
585 		if (type != ZIO_TYPE_WRITE ||
586 		    zio->io_child_type == ZIO_CHILD_DDT)
587 			zio->io_bp = &zio->io_bp_copy;	/* so caller can free */
588 		if (zio->io_child_type == ZIO_CHILD_LOGICAL)
589 			zio->io_logical = zio;
590 		if (zio->io_child_type > ZIO_CHILD_GANG && BP_IS_GANG(bp))
591 			pipeline |= ZIO_GANG_STAGES;
592 	}
593 
594 	zio->io_spa = spa;
595 	zio->io_txg = txg;
596 	zio->io_done = done;
597 	zio->io_private = private;
598 	zio->io_type = type;
599 	zio->io_priority = priority;
600 	zio->io_vd = vd;
601 	zio->io_offset = offset;
602 	zio->io_orig_abd = zio->io_abd = data;
603 	zio->io_orig_size = zio->io_size = psize;
604 	zio->io_lsize = lsize;
605 	zio->io_orig_flags = zio->io_flags = flags;
606 	zio->io_orig_stage = zio->io_stage = stage;
607 	zio->io_orig_pipeline = zio->io_pipeline = pipeline;
608 	zio->io_pipeline_trace = ZIO_STAGE_OPEN;
609 
610 	zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY);
611 	zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE);
612 
613 	if (zb != NULL)
614 		zio->io_bookmark = *zb;
615 
616 	if (pio != NULL) {
617 		if (zio->io_logical == NULL)
618 			zio->io_logical = pio->io_logical;
619 		if (zio->io_child_type == ZIO_CHILD_GANG)
620 			zio->io_gang_leader = pio->io_gang_leader;
621 		zio_add_child(pio, zio);
622 	}
623 
624 	return (zio);
625 }
626 
627 static void
628 zio_destroy(zio_t *zio)
629 {
630 	metaslab_trace_fini(&zio->io_alloc_list);
631 	list_destroy(&zio->io_parent_list);
632 	list_destroy(&zio->io_child_list);
633 	mutex_destroy(&zio->io_lock);
634 	cv_destroy(&zio->io_cv);
635 	kmem_cache_free(zio_cache, zio);
636 }
637 
638 zio_t *
639 zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done,
640     void *private, enum zio_flag flags)
641 {
642 	zio_t *zio;
643 
644 	zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private,
645 	    ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
646 	    ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE);
647 
648 	return (zio);
649 }
650 
651 zio_t *
652 zio_root(spa_t *spa, zio_done_func_t *done, void *private, enum zio_flag flags)
653 {
654 	return (zio_null(NULL, spa, NULL, done, private, flags));
655 }
656 
657 void
658 zfs_blkptr_verify(spa_t *spa, const blkptr_t *bp)
659 {
660 	if (!DMU_OT_IS_VALID(BP_GET_TYPE(bp))) {
661 		zfs_panic_recover("blkptr at %p has invalid TYPE %llu",
662 		    bp, (longlong_t)BP_GET_TYPE(bp));
663 	}
664 	if (BP_GET_CHECKSUM(bp) >= ZIO_CHECKSUM_FUNCTIONS ||
665 	    BP_GET_CHECKSUM(bp) <= ZIO_CHECKSUM_ON) {
666 		zfs_panic_recover("blkptr at %p has invalid CHECKSUM %llu",
667 		    bp, (longlong_t)BP_GET_CHECKSUM(bp));
668 	}
669 	if (BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_FUNCTIONS ||
670 	    BP_GET_COMPRESS(bp) <= ZIO_COMPRESS_ON) {
671 		zfs_panic_recover("blkptr at %p has invalid COMPRESS %llu",
672 		    bp, (longlong_t)BP_GET_COMPRESS(bp));
673 	}
674 	if (BP_GET_LSIZE(bp) > SPA_MAXBLOCKSIZE) {
675 		zfs_panic_recover("blkptr at %p has invalid LSIZE %llu",
676 		    bp, (longlong_t)BP_GET_LSIZE(bp));
677 	}
678 	if (BP_GET_PSIZE(bp) > SPA_MAXBLOCKSIZE) {
679 		zfs_panic_recover("blkptr at %p has invalid PSIZE %llu",
680 		    bp, (longlong_t)BP_GET_PSIZE(bp));
681 	}
682 
683 	if (BP_IS_EMBEDDED(bp)) {
684 		if (BPE_GET_ETYPE(bp) > NUM_BP_EMBEDDED_TYPES) {
685 			zfs_panic_recover("blkptr at %p has invalid ETYPE %llu",
686 			    bp, (longlong_t)BPE_GET_ETYPE(bp));
687 		}
688 	}
689 
690 	/*
691 	 * Pool-specific checks.
692 	 *
693 	 * Note: it would be nice to verify that the blk_birth and
694 	 * BP_PHYSICAL_BIRTH() are not too large.  However, spa_freeze()
695 	 * allows the birth time of log blocks (and dmu_sync()-ed blocks
696 	 * that are in the log) to be arbitrarily large.
697 	 */
698 	for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
699 		uint64_t vdevid = DVA_GET_VDEV(&bp->blk_dva[i]);
700 		if (vdevid >= spa->spa_root_vdev->vdev_children) {
701 			zfs_panic_recover("blkptr at %p DVA %u has invalid "
702 			    "VDEV %llu",
703 			    bp, i, (longlong_t)vdevid);
704 			continue;
705 		}
706 		vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid];
707 		if (vd == NULL) {
708 			zfs_panic_recover("blkptr at %p DVA %u has invalid "
709 			    "VDEV %llu",
710 			    bp, i, (longlong_t)vdevid);
711 			continue;
712 		}
713 		if (vd->vdev_ops == &vdev_hole_ops) {
714 			zfs_panic_recover("blkptr at %p DVA %u has hole "
715 			    "VDEV %llu",
716 			    bp, i, (longlong_t)vdevid);
717 			continue;
718 		}
719 		if (vd->vdev_ops == &vdev_missing_ops) {
720 			/*
721 			 * "missing" vdevs are valid during import, but we
722 			 * don't have their detailed info (e.g. asize), so
723 			 * we can't perform any more checks on them.
724 			 */
725 			continue;
726 		}
727 		uint64_t offset = DVA_GET_OFFSET(&bp->blk_dva[i]);
728 		uint64_t asize = DVA_GET_ASIZE(&bp->blk_dva[i]);
729 		if (BP_IS_GANG(bp))
730 			asize = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
731 		if (offset + asize > vd->vdev_asize) {
732 			zfs_panic_recover("blkptr at %p DVA %u has invalid "
733 			    "OFFSET %llu",
734 			    bp, i, (longlong_t)offset);
735 		}
736 	}
737 }
738 
739 zio_t *
740 zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp,
741     abd_t *data, uint64_t size, zio_done_func_t *done, void *private,
742     zio_priority_t priority, enum zio_flag flags, const zbookmark_phys_t *zb)
743 {
744 	zio_t *zio;
745 
746 	zfs_blkptr_verify(spa, bp);
747 
748 	zio = zio_create(pio, spa, BP_PHYSICAL_BIRTH(bp), bp,
749 	    data, size, size, done, private,
750 	    ZIO_TYPE_READ, priority, flags, NULL, 0, zb,
751 	    ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
752 	    ZIO_DDT_CHILD_READ_PIPELINE : ZIO_READ_PIPELINE);
753 
754 	return (zio);
755 }
756 
757 zio_t *
758 zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
759     abd_t *data, uint64_t lsize, uint64_t psize, const zio_prop_t *zp,
760     zio_done_func_t *ready, zio_done_func_t *children_ready,
761     zio_done_func_t *physdone, zio_done_func_t *done,
762     void *private, zio_priority_t priority, enum zio_flag flags,
763     const zbookmark_phys_t *zb)
764 {
765 	zio_t *zio;
766 
767 	ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF &&
768 	    zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS &&
769 	    zp->zp_compress >= ZIO_COMPRESS_OFF &&
770 	    zp->zp_compress < ZIO_COMPRESS_FUNCTIONS &&
771 	    DMU_OT_IS_VALID(zp->zp_type) &&
772 	    zp->zp_level < 32 &&
773 	    zp->zp_copies > 0 &&
774 	    zp->zp_copies <= spa_max_replication(spa));
775 
776 	zio = zio_create(pio, spa, txg, bp, data, lsize, psize, done, private,
777 	    ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
778 	    ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
779 	    ZIO_DDT_CHILD_WRITE_PIPELINE : ZIO_WRITE_PIPELINE);
780 
781 	zio->io_ready = ready;
782 	zio->io_children_ready = children_ready;
783 	zio->io_physdone = physdone;
784 	zio->io_prop = *zp;
785 
786 	/*
787 	 * Data can be NULL if we are going to call zio_write_override() to
788 	 * provide the already-allocated BP.  But we may need the data to
789 	 * verify a dedup hit (if requested).  In this case, don't try to
790 	 * dedup (just take the already-allocated BP verbatim).
791 	 */
792 	if (data == NULL && zio->io_prop.zp_dedup_verify) {
793 		zio->io_prop.zp_dedup = zio->io_prop.zp_dedup_verify = B_FALSE;
794 	}
795 
796 	return (zio);
797 }
798 
799 zio_t *
800 zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, abd_t *data,
801     uint64_t size, zio_done_func_t *done, void *private,
802     zio_priority_t priority, enum zio_flag flags, zbookmark_phys_t *zb)
803 {
804 	zio_t *zio;
805 
806 	zio = zio_create(pio, spa, txg, bp, data, size, size, done, private,
807 	    ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_IO_REWRITE, NULL, 0, zb,
808 	    ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE);
809 
810 	return (zio);
811 }
812 
813 void
814 zio_write_override(zio_t *zio, blkptr_t *bp, int copies, boolean_t nopwrite)
815 {
816 	ASSERT(zio->io_type == ZIO_TYPE_WRITE);
817 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
818 	ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
819 	ASSERT(zio->io_txg == spa_syncing_txg(zio->io_spa));
820 
821 	/*
822 	 * We must reset the io_prop to match the values that existed
823 	 * when the bp was first written by dmu_sync() keeping in mind
824 	 * that nopwrite and dedup are mutually exclusive.
825 	 */
826 	zio->io_prop.zp_dedup = nopwrite ? B_FALSE : zio->io_prop.zp_dedup;
827 	zio->io_prop.zp_nopwrite = nopwrite;
828 	zio->io_prop.zp_copies = copies;
829 	zio->io_bp_override = bp;
830 }
831 
832 void
833 zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp)
834 {
835 
836 	zfs_blkptr_verify(spa, bp);
837 
838 	/*
839 	 * The check for EMBEDDED is a performance optimization.  We
840 	 * process the free here (by ignoring it) rather than
841 	 * putting it on the list and then processing it in zio_free_sync().
842 	 */
843 	if (BP_IS_EMBEDDED(bp))
844 		return;
845 	metaslab_check_free(spa, bp);
846 
847 	/*
848 	 * Frees that are for the currently-syncing txg, are not going to be
849 	 * deferred, and which will not need to do a read (i.e. not GANG or
850 	 * DEDUP), can be processed immediately.  Otherwise, put them on the
851 	 * in-memory list for later processing.
852 	 */
853 	if (BP_IS_GANG(bp) || BP_GET_DEDUP(bp) ||
854 	    txg != spa->spa_syncing_txg ||
855 	    spa_sync_pass(spa) >= zfs_sync_pass_deferred_free) {
856 		bplist_append(&spa->spa_free_bplist[txg & TXG_MASK], bp);
857 	} else {
858 		VERIFY0(zio_wait(zio_free_sync(NULL, spa, txg, bp, 0)));
859 	}
860 }
861 
862 zio_t *
863 zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
864     enum zio_flag flags)
865 {
866 	zio_t *zio;
867 	enum zio_stage stage = ZIO_FREE_PIPELINE;
868 
869 	ASSERT(!BP_IS_HOLE(bp));
870 	ASSERT(spa_syncing_txg(spa) == txg);
871 	ASSERT(spa_sync_pass(spa) < zfs_sync_pass_deferred_free);
872 
873 	if (BP_IS_EMBEDDED(bp))
874 		return (zio_null(pio, spa, NULL, NULL, NULL, 0));
875 
876 	metaslab_check_free(spa, bp);
877 	arc_freed(spa, bp);
878 
879 	/*
880 	 * GANG and DEDUP blocks can induce a read (for the gang block header,
881 	 * or the DDT), so issue them asynchronously so that this thread is
882 	 * not tied up.
883 	 */
884 	if (BP_IS_GANG(bp) || BP_GET_DEDUP(bp))
885 		stage |= ZIO_STAGE_ISSUE_ASYNC;
886 
887 	zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
888 	    BP_GET_PSIZE(bp), NULL, NULL, ZIO_TYPE_FREE, ZIO_PRIORITY_NOW,
889 	    flags, NULL, 0, NULL, ZIO_STAGE_OPEN, stage);
890 
891 	return (zio);
892 }
893 
894 zio_t *
895 zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
896     zio_done_func_t *done, void *private, enum zio_flag flags)
897 {
898 	zio_t *zio;
899 
900 	zfs_blkptr_verify(spa, bp);
901 
902 	if (BP_IS_EMBEDDED(bp))
903 		return (zio_null(pio, spa, NULL, NULL, NULL, 0));
904 
905 	/*
906 	 * A claim is an allocation of a specific block.  Claims are needed
907 	 * to support immediate writes in the intent log.  The issue is that
908 	 * immediate writes contain committed data, but in a txg that was
909 	 * *not* committed.  Upon opening the pool after an unclean shutdown,
910 	 * the intent log claims all blocks that contain immediate write data
911 	 * so that the SPA knows they're in use.
912 	 *
913 	 * All claims *must* be resolved in the first txg -- before the SPA
914 	 * starts allocating blocks -- so that nothing is allocated twice.
915 	 * If txg == 0 we just verify that the block is claimable.
916 	 */
917 	ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <, spa_first_txg(spa));
918 	ASSERT(txg == spa_first_txg(spa) || txg == 0);
919 	ASSERT(!BP_GET_DEDUP(bp) || !spa_writeable(spa));	/* zdb(1M) */
920 
921 	zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
922 	    BP_GET_PSIZE(bp), done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW,
923 	    flags, NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE);
924 	ASSERT0(zio->io_queued_timestamp);
925 
926 	return (zio);
927 }
928 
929 zio_t *
930 zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd,
931     zio_done_func_t *done, void *private, enum zio_flag flags)
932 {
933 	zio_t *zio;
934 	int c;
935 
936 	if (vd->vdev_children == 0) {
937 		zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private,
938 		    ZIO_TYPE_IOCTL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
939 		    ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE);
940 
941 		zio->io_cmd = cmd;
942 	} else {
943 		zio = zio_null(pio, spa, NULL, NULL, NULL, flags);
944 
945 		for (c = 0; c < vd->vdev_children; c++)
946 			zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd,
947 			    done, private, flags));
948 	}
949 
950 	return (zio);
951 }
952 
953 zio_t *
954 zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
955     abd_t *data, int checksum, zio_done_func_t *done, void *private,
956     zio_priority_t priority, enum zio_flag flags, boolean_t labels)
957 {
958 	zio_t *zio;
959 
960 	ASSERT(vd->vdev_children == 0);
961 	ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
962 	    offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
963 	ASSERT3U(offset + size, <=, vd->vdev_psize);
964 
965 	zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done,
966 	    private, ZIO_TYPE_READ, priority, flags | ZIO_FLAG_PHYSICAL, vd,
967 	    offset, NULL, ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE);
968 
969 	zio->io_prop.zp_checksum = checksum;
970 
971 	return (zio);
972 }
973 
974 zio_t *
975 zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
976     abd_t *data, int checksum, zio_done_func_t *done, void *private,
977     zio_priority_t priority, enum zio_flag flags, boolean_t labels)
978 {
979 	zio_t *zio;
980 
981 	ASSERT(vd->vdev_children == 0);
982 	ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
983 	    offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
984 	ASSERT3U(offset + size, <=, vd->vdev_psize);
985 
986 	zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done,
987 	    private, ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_PHYSICAL, vd,
988 	    offset, NULL, ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE);
989 
990 	zio->io_prop.zp_checksum = checksum;
991 
992 	if (zio_checksum_table[checksum].ci_flags & ZCHECKSUM_FLAG_EMBEDDED) {
993 		/*
994 		 * zec checksums are necessarily destructive -- they modify
995 		 * the end of the write buffer to hold the verifier/checksum.
996 		 * Therefore, we must make a local copy in case the data is
997 		 * being written to multiple places in parallel.
998 		 */
999 		abd_t *wbuf = abd_alloc_sametype(data, size);
1000 		abd_copy(wbuf, data, size);
1001 
1002 		zio_push_transform(zio, wbuf, size, size, NULL);
1003 	}
1004 
1005 	return (zio);
1006 }
1007 
1008 /*
1009  * Create a child I/O to do some work for us.
1010  */
1011 zio_t *
1012 zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset,
1013     abd_t *data, uint64_t size, int type, zio_priority_t priority,
1014     enum zio_flag flags, zio_done_func_t *done, void *private)
1015 {
1016 	enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE;
1017 	zio_t *zio;
1018 
1019 	/*
1020 	 * vdev child I/Os do not propagate their error to the parent.
1021 	 * Therefore, for correct operation the caller *must* check for
1022 	 * and handle the error in the child i/o's done callback.
1023 	 * The only exceptions are i/os that we don't care about
1024 	 * (OPTIONAL or REPAIR).
1025 	 */
1026 	ASSERT((flags & ZIO_FLAG_OPTIONAL) || (flags & ZIO_FLAG_IO_REPAIR) ||
1027 	    done != NULL);
1028 
1029 	/*
1030 	 * In the common case, where the parent zio was to a normal vdev,
1031 	 * the child zio must be to a child vdev of that vdev.  Otherwise,
1032 	 * the child zio must be to a top-level vdev.
1033 	 */
1034 	if (pio->io_vd != NULL && pio->io_vd->vdev_ops != &vdev_indirect_ops) {
1035 		ASSERT3P(vd->vdev_parent, ==, pio->io_vd);
1036 	} else {
1037 		ASSERT3P(vd, ==, vd->vdev_top);
1038 	}
1039 
1040 	if (type == ZIO_TYPE_READ && bp != NULL) {
1041 		/*
1042 		 * If we have the bp, then the child should perform the
1043 		 * checksum and the parent need not.  This pushes error
1044 		 * detection as close to the leaves as possible and
1045 		 * eliminates redundant checksums in the interior nodes.
1046 		 */
1047 		pipeline |= ZIO_STAGE_CHECKSUM_VERIFY;
1048 		pio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
1049 	}
1050 
1051 	if (vd->vdev_ops->vdev_op_leaf) {
1052 		ASSERT0(vd->vdev_children);
1053 		offset += VDEV_LABEL_START_SIZE;
1054 	}
1055 
1056 	flags |= ZIO_VDEV_CHILD_FLAGS(pio);
1057 
1058 	/*
1059 	 * If we've decided to do a repair, the write is not speculative --
1060 	 * even if the original read was.
1061 	 */
1062 	if (flags & ZIO_FLAG_IO_REPAIR)
1063 		flags &= ~ZIO_FLAG_SPECULATIVE;
1064 
1065 	/*
1066 	 * If we're creating a child I/O that is not associated with a
1067 	 * top-level vdev, then the child zio is not an allocating I/O.
1068 	 * If this is a retried I/O then we ignore it since we will
1069 	 * have already processed the original allocating I/O.
1070 	 */
1071 	if (flags & ZIO_FLAG_IO_ALLOCATING &&
1072 	    (vd != vd->vdev_top || (flags & ZIO_FLAG_IO_RETRY))) {
1073 		metaslab_class_t *mc = spa_normal_class(pio->io_spa);
1074 
1075 		ASSERT(mc->mc_alloc_throttle_enabled);
1076 		ASSERT(type == ZIO_TYPE_WRITE);
1077 		ASSERT(priority == ZIO_PRIORITY_ASYNC_WRITE);
1078 		ASSERT(!(flags & ZIO_FLAG_IO_REPAIR));
1079 		ASSERT(!(pio->io_flags & ZIO_FLAG_IO_REWRITE) ||
1080 		    pio->io_child_type == ZIO_CHILD_GANG);
1081 
1082 		flags &= ~ZIO_FLAG_IO_ALLOCATING;
1083 	}
1084 
1085 	zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size, size,
1086 	    done, private, type, priority, flags, vd, offset, &pio->io_bookmark,
1087 	    ZIO_STAGE_VDEV_IO_START >> 1, pipeline);
1088 	ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV);
1089 
1090 	zio->io_physdone = pio->io_physdone;
1091 	if (vd->vdev_ops->vdev_op_leaf && zio->io_logical != NULL)
1092 		zio->io_logical->io_phys_children++;
1093 
1094 	return (zio);
1095 }
1096 
1097 zio_t *
1098 zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, abd_t *data, uint64_t size,
1099     int type, zio_priority_t priority, enum zio_flag flags,
1100     zio_done_func_t *done, void *private)
1101 {
1102 	zio_t *zio;
1103 
1104 	ASSERT(vd->vdev_ops->vdev_op_leaf);
1105 
1106 	zio = zio_create(NULL, vd->vdev_spa, 0, NULL,
1107 	    data, size, size, done, private, type, priority,
1108 	    flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY | ZIO_FLAG_DELEGATED,
1109 	    vd, offset, NULL,
1110 	    ZIO_STAGE_VDEV_IO_START >> 1, ZIO_VDEV_CHILD_PIPELINE);
1111 
1112 	return (zio);
1113 }
1114 
1115 void
1116 zio_flush(zio_t *zio, vdev_t *vd)
1117 {
1118 	zio_nowait(zio_ioctl(zio, zio->io_spa, vd, DKIOCFLUSHWRITECACHE,
1119 	    NULL, NULL,
1120 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY));
1121 }
1122 
1123 void
1124 zio_shrink(zio_t *zio, uint64_t size)
1125 {
1126 	ASSERT3P(zio->io_executor, ==, NULL);
1127 	ASSERT3P(zio->io_orig_size, ==, zio->io_size);
1128 	ASSERT3U(size, <=, zio->io_size);
1129 
1130 	/*
1131 	 * We don't shrink for raidz because of problems with the
1132 	 * reconstruction when reading back less than the block size.
1133 	 * Note, BP_IS_RAIDZ() assumes no compression.
1134 	 */
1135 	ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
1136 	if (!BP_IS_RAIDZ(zio->io_bp)) {
1137 		/* we are not doing a raw write */
1138 		ASSERT3U(zio->io_size, ==, zio->io_lsize);
1139 		zio->io_orig_size = zio->io_size = zio->io_lsize = size;
1140 	}
1141 }
1142 
1143 /*
1144  * ==========================================================================
1145  * Prepare to read and write logical blocks
1146  * ==========================================================================
1147  */
1148 
1149 static int
1150 zio_read_bp_init(zio_t *zio)
1151 {
1152 	blkptr_t *bp = zio->io_bp;
1153 
1154 	ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy);
1155 
1156 	if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF &&
1157 	    zio->io_child_type == ZIO_CHILD_LOGICAL &&
1158 	    !(zio->io_flags & ZIO_FLAG_RAW)) {
1159 		uint64_t psize =
1160 		    BP_IS_EMBEDDED(bp) ? BPE_GET_PSIZE(bp) : BP_GET_PSIZE(bp);
1161 		zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize),
1162 		    psize, psize, zio_decompress);
1163 	}
1164 
1165 	if (BP_IS_EMBEDDED(bp) && BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA) {
1166 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1167 
1168 		int psize = BPE_GET_PSIZE(bp);
1169 		void *data = abd_borrow_buf(zio->io_abd, psize);
1170 		decode_embedded_bp_compressed(bp, data);
1171 		abd_return_buf_copy(zio->io_abd, data, psize);
1172 	} else {
1173 		ASSERT(!BP_IS_EMBEDDED(bp));
1174 		ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy);
1175 	}
1176 
1177 	if (!DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) && BP_GET_LEVEL(bp) == 0)
1178 		zio->io_flags |= ZIO_FLAG_DONT_CACHE;
1179 
1180 	if (BP_GET_TYPE(bp) == DMU_OT_DDT_ZAP)
1181 		zio->io_flags |= ZIO_FLAG_DONT_CACHE;
1182 
1183 	if (BP_GET_DEDUP(bp) && zio->io_child_type == ZIO_CHILD_LOGICAL)
1184 		zio->io_pipeline = ZIO_DDT_READ_PIPELINE;
1185 
1186 	return (ZIO_PIPELINE_CONTINUE);
1187 }
1188 
1189 static int
1190 zio_write_bp_init(zio_t *zio)
1191 {
1192 	if (!IO_IS_ALLOCATING(zio))
1193 		return (ZIO_PIPELINE_CONTINUE);
1194 
1195 	ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
1196 
1197 	if (zio->io_bp_override) {
1198 		blkptr_t *bp = zio->io_bp;
1199 		zio_prop_t *zp = &zio->io_prop;
1200 
1201 		ASSERT(bp->blk_birth != zio->io_txg);
1202 		ASSERT(BP_GET_DEDUP(zio->io_bp_override) == 0);
1203 
1204 		*bp = *zio->io_bp_override;
1205 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1206 
1207 		if (BP_IS_EMBEDDED(bp))
1208 			return (ZIO_PIPELINE_CONTINUE);
1209 
1210 		/*
1211 		 * If we've been overridden and nopwrite is set then
1212 		 * set the flag accordingly to indicate that a nopwrite
1213 		 * has already occurred.
1214 		 */
1215 		if (!BP_IS_HOLE(bp) && zp->zp_nopwrite) {
1216 			ASSERT(!zp->zp_dedup);
1217 			ASSERT3U(BP_GET_CHECKSUM(bp), ==, zp->zp_checksum);
1218 			zio->io_flags |= ZIO_FLAG_NOPWRITE;
1219 			return (ZIO_PIPELINE_CONTINUE);
1220 		}
1221 
1222 		ASSERT(!zp->zp_nopwrite);
1223 
1224 		if (BP_IS_HOLE(bp) || !zp->zp_dedup)
1225 			return (ZIO_PIPELINE_CONTINUE);
1226 
1227 		ASSERT((zio_checksum_table[zp->zp_checksum].ci_flags &
1228 		    ZCHECKSUM_FLAG_DEDUP) || zp->zp_dedup_verify);
1229 
1230 		if (BP_GET_CHECKSUM(bp) == zp->zp_checksum) {
1231 			BP_SET_DEDUP(bp, 1);
1232 			zio->io_pipeline |= ZIO_STAGE_DDT_WRITE;
1233 			return (ZIO_PIPELINE_CONTINUE);
1234 		}
1235 
1236 		/*
1237 		 * We were unable to handle this as an override bp, treat
1238 		 * it as a regular write I/O.
1239 		 */
1240 		zio->io_bp_override = NULL;
1241 		*bp = zio->io_bp_orig;
1242 		zio->io_pipeline = zio->io_orig_pipeline;
1243 	}
1244 
1245 	return (ZIO_PIPELINE_CONTINUE);
1246 }
1247 
1248 static int
1249 zio_write_compress(zio_t *zio)
1250 {
1251 	spa_t *spa = zio->io_spa;
1252 	zio_prop_t *zp = &zio->io_prop;
1253 	enum zio_compress compress = zp->zp_compress;
1254 	blkptr_t *bp = zio->io_bp;
1255 	uint64_t lsize = zio->io_lsize;
1256 	uint64_t psize = zio->io_size;
1257 	int pass = 1;
1258 
1259 	EQUIV(lsize != psize, (zio->io_flags & ZIO_FLAG_RAW) != 0);
1260 
1261 	/*
1262 	 * If our children haven't all reached the ready stage,
1263 	 * wait for them and then repeat this pipeline stage.
1264 	 */
1265 	if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY) ||
1266 	    zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_READY))
1267 		return (ZIO_PIPELINE_STOP);
1268 
1269 	if (!IO_IS_ALLOCATING(zio))
1270 		return (ZIO_PIPELINE_CONTINUE);
1271 
1272 	if (zio->io_children_ready != NULL) {
1273 		/*
1274 		 * Now that all our children are ready, run the callback
1275 		 * associated with this zio in case it wants to modify the
1276 		 * data to be written.
1277 		 */
1278 		ASSERT3U(zp->zp_level, >, 0);
1279 		zio->io_children_ready(zio);
1280 	}
1281 
1282 	ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
1283 	ASSERT(zio->io_bp_override == NULL);
1284 
1285 	if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg) {
1286 		/*
1287 		 * We're rewriting an existing block, which means we're
1288 		 * working on behalf of spa_sync().  For spa_sync() to
1289 		 * converge, it must eventually be the case that we don't
1290 		 * have to allocate new blocks.  But compression changes
1291 		 * the blocksize, which forces a reallocate, and makes
1292 		 * convergence take longer.  Therefore, after the first
1293 		 * few passes, stop compressing to ensure convergence.
1294 		 */
1295 		pass = spa_sync_pass(spa);
1296 
1297 		ASSERT(zio->io_txg == spa_syncing_txg(spa));
1298 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1299 		ASSERT(!BP_GET_DEDUP(bp));
1300 
1301 		if (pass >= zfs_sync_pass_dont_compress)
1302 			compress = ZIO_COMPRESS_OFF;
1303 
1304 		/* Make sure someone doesn't change their mind on overwrites */
1305 		ASSERT(BP_IS_EMBEDDED(bp) || MIN(zp->zp_copies + BP_IS_GANG(bp),
1306 		    spa_max_replication(spa)) == BP_GET_NDVAS(bp));
1307 	}
1308 
1309 	/* If it's a compressed write that is not raw, compress the buffer. */
1310 	if (compress != ZIO_COMPRESS_OFF && psize == lsize) {
1311 		void *cbuf = zio_buf_alloc(lsize);
1312 		psize = zio_compress_data(compress, zio->io_abd, cbuf, lsize);
1313 		if (psize == 0 || psize == lsize) {
1314 			compress = ZIO_COMPRESS_OFF;
1315 			zio_buf_free(cbuf, lsize);
1316 		} else if (!zp->zp_dedup && psize <= BPE_PAYLOAD_SIZE &&
1317 		    zp->zp_level == 0 && !DMU_OT_HAS_FILL(zp->zp_type) &&
1318 		    spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA)) {
1319 			encode_embedded_bp_compressed(bp,
1320 			    cbuf, compress, lsize, psize);
1321 			BPE_SET_ETYPE(bp, BP_EMBEDDED_TYPE_DATA);
1322 			BP_SET_TYPE(bp, zio->io_prop.zp_type);
1323 			BP_SET_LEVEL(bp, zio->io_prop.zp_level);
1324 			zio_buf_free(cbuf, lsize);
1325 			bp->blk_birth = zio->io_txg;
1326 			zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1327 			ASSERT(spa_feature_is_active(spa,
1328 			    SPA_FEATURE_EMBEDDED_DATA));
1329 			return (ZIO_PIPELINE_CONTINUE);
1330 		} else {
1331 			/*
1332 			 * Round up compressed size up to the ashift
1333 			 * of the smallest-ashift device, and zero the tail.
1334 			 * This ensures that the compressed size of the BP
1335 			 * (and thus compressratio property) are correct,
1336 			 * in that we charge for the padding used to fill out
1337 			 * the last sector.
1338 			 */
1339 			ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
1340 			size_t rounded = (size_t)P2ROUNDUP(psize,
1341 			    1ULL << spa->spa_min_ashift);
1342 			if (rounded >= lsize) {
1343 				compress = ZIO_COMPRESS_OFF;
1344 				zio_buf_free(cbuf, lsize);
1345 				psize = lsize;
1346 			} else {
1347 				abd_t *cdata = abd_get_from_buf(cbuf, lsize);
1348 				abd_take_ownership_of_buf(cdata, B_TRUE);
1349 				abd_zero_off(cdata, psize, rounded - psize);
1350 				psize = rounded;
1351 				zio_push_transform(zio, cdata,
1352 				    psize, lsize, NULL);
1353 			}
1354 		}
1355 
1356 		/*
1357 		 * We were unable to handle this as an override bp, treat
1358 		 * it as a regular write I/O.
1359 		 */
1360 		zio->io_bp_override = NULL;
1361 		*bp = zio->io_bp_orig;
1362 		zio->io_pipeline = zio->io_orig_pipeline;
1363 	} else {
1364 		ASSERT3U(psize, !=, 0);
1365 	}
1366 
1367 	/*
1368 	 * The final pass of spa_sync() must be all rewrites, but the first
1369 	 * few passes offer a trade-off: allocating blocks defers convergence,
1370 	 * but newly allocated blocks are sequential, so they can be written
1371 	 * to disk faster.  Therefore, we allow the first few passes of
1372 	 * spa_sync() to allocate new blocks, but force rewrites after that.
1373 	 * There should only be a handful of blocks after pass 1 in any case.
1374 	 */
1375 	if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg &&
1376 	    BP_GET_PSIZE(bp) == psize &&
1377 	    pass >= zfs_sync_pass_rewrite) {
1378 		ASSERT(psize != 0);
1379 		enum zio_stage gang_stages = zio->io_pipeline & ZIO_GANG_STAGES;
1380 		zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages;
1381 		zio->io_flags |= ZIO_FLAG_IO_REWRITE;
1382 	} else {
1383 		BP_ZERO(bp);
1384 		zio->io_pipeline = ZIO_WRITE_PIPELINE;
1385 	}
1386 
1387 	if (psize == 0) {
1388 		if (zio->io_bp_orig.blk_birth != 0 &&
1389 		    spa_feature_is_active(spa, SPA_FEATURE_HOLE_BIRTH)) {
1390 			BP_SET_LSIZE(bp, lsize);
1391 			BP_SET_TYPE(bp, zp->zp_type);
1392 			BP_SET_LEVEL(bp, zp->zp_level);
1393 			BP_SET_BIRTH(bp, zio->io_txg, 0);
1394 		}
1395 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1396 	} else {
1397 		ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER);
1398 		BP_SET_LSIZE(bp, lsize);
1399 		BP_SET_TYPE(bp, zp->zp_type);
1400 		BP_SET_LEVEL(bp, zp->zp_level);
1401 		BP_SET_PSIZE(bp, psize);
1402 		BP_SET_COMPRESS(bp, compress);
1403 		BP_SET_CHECKSUM(bp, zp->zp_checksum);
1404 		BP_SET_DEDUP(bp, zp->zp_dedup);
1405 		BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
1406 		if (zp->zp_dedup) {
1407 			ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1408 			ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1409 			zio->io_pipeline = ZIO_DDT_WRITE_PIPELINE;
1410 		}
1411 		if (zp->zp_nopwrite) {
1412 			ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1413 			ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1414 			zio->io_pipeline |= ZIO_STAGE_NOP_WRITE;
1415 		}
1416 	}
1417 	return (ZIO_PIPELINE_CONTINUE);
1418 }
1419 
1420 static int
1421 zio_free_bp_init(zio_t *zio)
1422 {
1423 	blkptr_t *bp = zio->io_bp;
1424 
1425 	if (zio->io_child_type == ZIO_CHILD_LOGICAL) {
1426 		if (BP_GET_DEDUP(bp))
1427 			zio->io_pipeline = ZIO_DDT_FREE_PIPELINE;
1428 	}
1429 
1430 	ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy);
1431 
1432 	return (ZIO_PIPELINE_CONTINUE);
1433 }
1434 
1435 /*
1436  * ==========================================================================
1437  * Execute the I/O pipeline
1438  * ==========================================================================
1439  */
1440 
1441 static void
1442 zio_taskq_dispatch(zio_t *zio, zio_taskq_type_t q, boolean_t cutinline)
1443 {
1444 	spa_t *spa = zio->io_spa;
1445 	zio_type_t t = zio->io_type;
1446 	int flags = (cutinline ? TQ_FRONT : 0);
1447 
1448 	/*
1449 	 * If we're a config writer or a probe, the normal issue and
1450 	 * interrupt threads may all be blocked waiting for the config lock.
1451 	 * In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL.
1452 	 */
1453 	if (zio->io_flags & (ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_PROBE))
1454 		t = ZIO_TYPE_NULL;
1455 
1456 	/*
1457 	 * A similar issue exists for the L2ARC write thread until L2ARC 2.0.
1458 	 */
1459 	if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux)
1460 		t = ZIO_TYPE_NULL;
1461 
1462 	/*
1463 	 * If this is a high priority I/O, then use the high priority taskq if
1464 	 * available.
1465 	 */
1466 	if (zio->io_priority == ZIO_PRIORITY_NOW &&
1467 	    spa->spa_zio_taskq[t][q + 1].stqs_count != 0)
1468 		q++;
1469 
1470 	ASSERT3U(q, <, ZIO_TASKQ_TYPES);
1471 
1472 	/*
1473 	 * NB: We are assuming that the zio can only be dispatched
1474 	 * to a single taskq at a time.  It would be a grievous error
1475 	 * to dispatch the zio to another taskq at the same time.
1476 	 */
1477 	ASSERT(zio->io_tqent.tqent_next == NULL);
1478 	spa_taskq_dispatch_ent(spa, t, q, (task_func_t *)zio_execute, zio,
1479 	    flags, &zio->io_tqent);
1480 }
1481 
1482 static boolean_t
1483 zio_taskq_member(zio_t *zio, zio_taskq_type_t q)
1484 {
1485 	kthread_t *executor = zio->io_executor;
1486 	spa_t *spa = zio->io_spa;
1487 
1488 	for (zio_type_t t = 0; t < ZIO_TYPES; t++) {
1489 		spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1490 		uint_t i;
1491 		for (i = 0; i < tqs->stqs_count; i++) {
1492 			if (taskq_member(tqs->stqs_taskq[i], executor))
1493 				return (B_TRUE);
1494 		}
1495 	}
1496 
1497 	return (B_FALSE);
1498 }
1499 
1500 static int
1501 zio_issue_async(zio_t *zio)
1502 {
1503 	zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
1504 
1505 	return (ZIO_PIPELINE_STOP);
1506 }
1507 
1508 void
1509 zio_interrupt(zio_t *zio)
1510 {
1511 	zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT, B_FALSE);
1512 }
1513 
1514 void
1515 zio_delay_interrupt(zio_t *zio)
1516 {
1517 	/*
1518 	 * The timeout_generic() function isn't defined in userspace, so
1519 	 * rather than trying to implement the function, the zio delay
1520 	 * functionality has been disabled for userspace builds.
1521 	 */
1522 
1523 #ifdef _KERNEL
1524 	/*
1525 	 * If io_target_timestamp is zero, then no delay has been registered
1526 	 * for this IO, thus jump to the end of this function and "skip" the
1527 	 * delay; issuing it directly to the zio layer.
1528 	 */
1529 	if (zio->io_target_timestamp != 0) {
1530 		hrtime_t now = gethrtime();
1531 
1532 		if (now >= zio->io_target_timestamp) {
1533 			/*
1534 			 * This IO has already taken longer than the target
1535 			 * delay to complete, so we don't want to delay it
1536 			 * any longer; we "miss" the delay and issue it
1537 			 * directly to the zio layer. This is likely due to
1538 			 * the target latency being set to a value less than
1539 			 * the underlying hardware can satisfy (e.g. delay
1540 			 * set to 1ms, but the disks take 10ms to complete an
1541 			 * IO request).
1542 			 */
1543 
1544 			DTRACE_PROBE2(zio__delay__miss, zio_t *, zio,
1545 			    hrtime_t, now);
1546 
1547 			zio_interrupt(zio);
1548 		} else {
1549 			hrtime_t diff = zio->io_target_timestamp - now;
1550 
1551 			DTRACE_PROBE3(zio__delay__hit, zio_t *, zio,
1552 			    hrtime_t, now, hrtime_t, diff);
1553 
1554 			(void) timeout_generic(CALLOUT_NORMAL,
1555 			    (void (*)(void *))zio_interrupt, zio, diff, 1, 0);
1556 		}
1557 
1558 		return;
1559 	}
1560 #endif
1561 
1562 	DTRACE_PROBE1(zio__delay__skip, zio_t *, zio);
1563 	zio_interrupt(zio);
1564 }
1565 
1566 /*
1567  * Execute the I/O pipeline until one of the following occurs:
1568  *
1569  *	(1) the I/O completes
1570  *	(2) the pipeline stalls waiting for dependent child I/Os
1571  *	(3) the I/O issues, so we're waiting for an I/O completion interrupt
1572  *	(4) the I/O is delegated by vdev-level caching or aggregation
1573  *	(5) the I/O is deferred due to vdev-level queueing
1574  *	(6) the I/O is handed off to another thread.
1575  *
1576  * In all cases, the pipeline stops whenever there's no CPU work; it never
1577  * burns a thread in cv_wait().
1578  *
1579  * There's no locking on io_stage because there's no legitimate way
1580  * for multiple threads to be attempting to process the same I/O.
1581  */
1582 static zio_pipe_stage_t *zio_pipeline[];
1583 
1584 void
1585 zio_execute(zio_t *zio)
1586 {
1587 	zio->io_executor = curthread;
1588 
1589 	ASSERT3U(zio->io_queued_timestamp, >, 0);
1590 
1591 	while (zio->io_stage < ZIO_STAGE_DONE) {
1592 		enum zio_stage pipeline = zio->io_pipeline;
1593 		enum zio_stage stage = zio->io_stage;
1594 		int rv;
1595 
1596 		ASSERT(!MUTEX_HELD(&zio->io_lock));
1597 		ASSERT(ISP2(stage));
1598 		ASSERT(zio->io_stall == NULL);
1599 
1600 		do {
1601 			stage <<= 1;
1602 		} while ((stage & pipeline) == 0);
1603 
1604 		ASSERT(stage <= ZIO_STAGE_DONE);
1605 
1606 		/*
1607 		 * If we are in interrupt context and this pipeline stage
1608 		 * will grab a config lock that is held across I/O,
1609 		 * or may wait for an I/O that needs an interrupt thread
1610 		 * to complete, issue async to avoid deadlock.
1611 		 *
1612 		 * For VDEV_IO_START, we cut in line so that the io will
1613 		 * be sent to disk promptly.
1614 		 */
1615 		if ((stage & ZIO_BLOCKING_STAGES) && zio->io_vd == NULL &&
1616 		    zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) {
1617 			boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ?
1618 			    zio_requeue_io_start_cut_in_line : B_FALSE;
1619 			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
1620 			return;
1621 		}
1622 
1623 		zio->io_stage = stage;
1624 		zio->io_pipeline_trace |= zio->io_stage;
1625 		rv = zio_pipeline[highbit64(stage) - 1](zio);
1626 
1627 		if (rv == ZIO_PIPELINE_STOP)
1628 			return;
1629 
1630 		ASSERT(rv == ZIO_PIPELINE_CONTINUE);
1631 	}
1632 }
1633 
1634 /*
1635  * ==========================================================================
1636  * Initiate I/O, either sync or async
1637  * ==========================================================================
1638  */
1639 int
1640 zio_wait(zio_t *zio)
1641 {
1642 	int error;
1643 
1644 	ASSERT3P(zio->io_stage, ==, ZIO_STAGE_OPEN);
1645 	ASSERT3P(zio->io_executor, ==, NULL);
1646 
1647 	zio->io_waiter = curthread;
1648 	ASSERT0(zio->io_queued_timestamp);
1649 	zio->io_queued_timestamp = gethrtime();
1650 
1651 	zio_execute(zio);
1652 
1653 	mutex_enter(&zio->io_lock);
1654 	while (zio->io_executor != NULL)
1655 		cv_wait(&zio->io_cv, &zio->io_lock);
1656 	mutex_exit(&zio->io_lock);
1657 
1658 	error = zio->io_error;
1659 	zio_destroy(zio);
1660 
1661 	return (error);
1662 }
1663 
1664 void
1665 zio_nowait(zio_t *zio)
1666 {
1667 	ASSERT3P(zio->io_executor, ==, NULL);
1668 
1669 	if (zio->io_child_type == ZIO_CHILD_LOGICAL &&
1670 	    zio_unique_parent(zio) == NULL) {
1671 		/*
1672 		 * This is a logical async I/O with no parent to wait for it.
1673 		 * We add it to the spa_async_root_zio "Godfather" I/O which
1674 		 * will ensure they complete prior to unloading the pool.
1675 		 */
1676 		spa_t *spa = zio->io_spa;
1677 
1678 		zio_add_child(spa->spa_async_zio_root[CPU_SEQID], zio);
1679 	}
1680 
1681 	ASSERT0(zio->io_queued_timestamp);
1682 	zio->io_queued_timestamp = gethrtime();
1683 	zio_execute(zio);
1684 }
1685 
1686 /*
1687  * ==========================================================================
1688  * Reexecute, cancel, or suspend/resume failed I/O
1689  * ==========================================================================
1690  */
1691 
1692 static void
1693 zio_reexecute(zio_t *pio)
1694 {
1695 	zio_t *cio, *cio_next;
1696 
1697 	ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL);
1698 	ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN);
1699 	ASSERT(pio->io_gang_leader == NULL);
1700 	ASSERT(pio->io_gang_tree == NULL);
1701 
1702 	pio->io_flags = pio->io_orig_flags;
1703 	pio->io_stage = pio->io_orig_stage;
1704 	pio->io_pipeline = pio->io_orig_pipeline;
1705 	pio->io_reexecute = 0;
1706 	pio->io_flags |= ZIO_FLAG_REEXECUTED;
1707 	pio->io_pipeline_trace = 0;
1708 	pio->io_error = 0;
1709 	for (int w = 0; w < ZIO_WAIT_TYPES; w++)
1710 		pio->io_state[w] = 0;
1711 	for (int c = 0; c < ZIO_CHILD_TYPES; c++)
1712 		pio->io_child_error[c] = 0;
1713 
1714 	if (IO_IS_ALLOCATING(pio))
1715 		BP_ZERO(pio->io_bp);
1716 
1717 	/*
1718 	 * As we reexecute pio's children, new children could be created.
1719 	 * New children go to the head of pio's io_child_list, however,
1720 	 * so we will (correctly) not reexecute them.  The key is that
1721 	 * the remainder of pio's io_child_list, from 'cio_next' onward,
1722 	 * cannot be affected by any side effects of reexecuting 'cio'.
1723 	 */
1724 	zio_link_t *zl = NULL;
1725 	for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) {
1726 		cio_next = zio_walk_children(pio, &zl);
1727 		mutex_enter(&pio->io_lock);
1728 		for (int w = 0; w < ZIO_WAIT_TYPES; w++)
1729 			pio->io_children[cio->io_child_type][w]++;
1730 		mutex_exit(&pio->io_lock);
1731 		zio_reexecute(cio);
1732 	}
1733 
1734 	/*
1735 	 * Now that all children have been reexecuted, execute the parent.
1736 	 * We don't reexecute "The Godfather" I/O here as it's the
1737 	 * responsibility of the caller to wait on it.
1738 	 */
1739 	if (!(pio->io_flags & ZIO_FLAG_GODFATHER)) {
1740 		pio->io_queued_timestamp = gethrtime();
1741 		zio_execute(pio);
1742 	}
1743 }
1744 
1745 void
1746 zio_suspend(spa_t *spa, zio_t *zio)
1747 {
1748 	if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC)
1749 		fm_panic("Pool '%s' has encountered an uncorrectable I/O "
1750 		    "failure and the failure mode property for this pool "
1751 		    "is set to panic.", spa_name(spa));
1752 
1753 	zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL, NULL, 0, 0);
1754 
1755 	mutex_enter(&spa->spa_suspend_lock);
1756 
1757 	if (spa->spa_suspend_zio_root == NULL)
1758 		spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL,
1759 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
1760 		    ZIO_FLAG_GODFATHER);
1761 
1762 	spa->spa_suspended = B_TRUE;
1763 
1764 	if (zio != NULL) {
1765 		ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
1766 		ASSERT(zio != spa->spa_suspend_zio_root);
1767 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1768 		ASSERT(zio_unique_parent(zio) == NULL);
1769 		ASSERT(zio->io_stage == ZIO_STAGE_DONE);
1770 		zio_add_child(spa->spa_suspend_zio_root, zio);
1771 	}
1772 
1773 	mutex_exit(&spa->spa_suspend_lock);
1774 }
1775 
1776 int
1777 zio_resume(spa_t *spa)
1778 {
1779 	zio_t *pio;
1780 
1781 	/*
1782 	 * Reexecute all previously suspended i/o.
1783 	 */
1784 	mutex_enter(&spa->spa_suspend_lock);
1785 	spa->spa_suspended = B_FALSE;
1786 	cv_broadcast(&spa->spa_suspend_cv);
1787 	pio = spa->spa_suspend_zio_root;
1788 	spa->spa_suspend_zio_root = NULL;
1789 	mutex_exit(&spa->spa_suspend_lock);
1790 
1791 	if (pio == NULL)
1792 		return (0);
1793 
1794 	zio_reexecute(pio);
1795 	return (zio_wait(pio));
1796 }
1797 
1798 void
1799 zio_resume_wait(spa_t *spa)
1800 {
1801 	mutex_enter(&spa->spa_suspend_lock);
1802 	while (spa_suspended(spa))
1803 		cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock);
1804 	mutex_exit(&spa->spa_suspend_lock);
1805 }
1806 
1807 /*
1808  * ==========================================================================
1809  * Gang blocks.
1810  *
1811  * A gang block is a collection of small blocks that looks to the DMU
1812  * like one large block.  When zio_dva_allocate() cannot find a block
1813  * of the requested size, due to either severe fragmentation or the pool
1814  * being nearly full, it calls zio_write_gang_block() to construct the
1815  * block from smaller fragments.
1816  *
1817  * A gang block consists of a gang header (zio_gbh_phys_t) and up to
1818  * three (SPA_GBH_NBLKPTRS) gang members.  The gang header is just like
1819  * an indirect block: it's an array of block pointers.  It consumes
1820  * only one sector and hence is allocatable regardless of fragmentation.
1821  * The gang header's bps point to its gang members, which hold the data.
1822  *
1823  * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg>
1824  * as the verifier to ensure uniqueness of the SHA256 checksum.
1825  * Critically, the gang block bp's blk_cksum is the checksum of the data,
1826  * not the gang header.  This ensures that data block signatures (needed for
1827  * deduplication) are independent of how the block is physically stored.
1828  *
1829  * Gang blocks can be nested: a gang member may itself be a gang block.
1830  * Thus every gang block is a tree in which root and all interior nodes are
1831  * gang headers, and the leaves are normal blocks that contain user data.
1832  * The root of the gang tree is called the gang leader.
1833  *
1834  * To perform any operation (read, rewrite, free, claim) on a gang block,
1835  * zio_gang_assemble() first assembles the gang tree (minus data leaves)
1836  * in the io_gang_tree field of the original logical i/o by recursively
1837  * reading the gang leader and all gang headers below it.  This yields
1838  * an in-core tree containing the contents of every gang header and the
1839  * bps for every constituent of the gang block.
1840  *
1841  * With the gang tree now assembled, zio_gang_issue() just walks the gang tree
1842  * and invokes a callback on each bp.  To free a gang block, zio_gang_issue()
1843  * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp.
1844  * zio_claim_gang() provides a similarly trivial wrapper for zio_claim().
1845  * zio_read_gang() is a wrapper around zio_read() that omits reading gang
1846  * headers, since we already have those in io_gang_tree.  zio_rewrite_gang()
1847  * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite()
1848  * of the gang header plus zio_checksum_compute() of the data to update the
1849  * gang header's blk_cksum as described above.
1850  *
1851  * The two-phase assemble/issue model solves the problem of partial failure --
1852  * what if you'd freed part of a gang block but then couldn't read the
1853  * gang header for another part?  Assembling the entire gang tree first
1854  * ensures that all the necessary gang header I/O has succeeded before
1855  * starting the actual work of free, claim, or write.  Once the gang tree
1856  * is assembled, free and claim are in-memory operations that cannot fail.
1857  *
1858  * In the event that a gang write fails, zio_dva_unallocate() walks the
1859  * gang tree to immediately free (i.e. insert back into the space map)
1860  * everything we've allocated.  This ensures that we don't get ENOSPC
1861  * errors during repeated suspend/resume cycles due to a flaky device.
1862  *
1863  * Gang rewrites only happen during sync-to-convergence.  If we can't assemble
1864  * the gang tree, we won't modify the block, so we can safely defer the free
1865  * (knowing that the block is still intact).  If we *can* assemble the gang
1866  * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free
1867  * each constituent bp and we can allocate a new block on the next sync pass.
1868  *
1869  * In all cases, the gang tree allows complete recovery from partial failure.
1870  * ==========================================================================
1871  */
1872 
1873 static void
1874 zio_gang_issue_func_done(zio_t *zio)
1875 {
1876 	abd_put(zio->io_abd);
1877 }
1878 
1879 static zio_t *
1880 zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
1881     uint64_t offset)
1882 {
1883 	if (gn != NULL)
1884 		return (pio);
1885 
1886 	return (zio_read(pio, pio->io_spa, bp, abd_get_offset(data, offset),
1887 	    BP_GET_PSIZE(bp), zio_gang_issue_func_done,
1888 	    NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
1889 	    &pio->io_bookmark));
1890 }
1891 
1892 static zio_t *
1893 zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
1894     uint64_t offset)
1895 {
1896 	zio_t *zio;
1897 
1898 	if (gn != NULL) {
1899 		abd_t *gbh_abd =
1900 		    abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE);
1901 		zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
1902 		    gbh_abd, SPA_GANGBLOCKSIZE, zio_gang_issue_func_done, NULL,
1903 		    pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
1904 		    &pio->io_bookmark);
1905 		/*
1906 		 * As we rewrite each gang header, the pipeline will compute
1907 		 * a new gang block header checksum for it; but no one will
1908 		 * compute a new data checksum, so we do that here.  The one
1909 		 * exception is the gang leader: the pipeline already computed
1910 		 * its data checksum because that stage precedes gang assembly.
1911 		 * (Presently, nothing actually uses interior data checksums;
1912 		 * this is just good hygiene.)
1913 		 */
1914 		if (gn != pio->io_gang_leader->io_gang_tree) {
1915 			abd_t *buf = abd_get_offset(data, offset);
1916 
1917 			zio_checksum_compute(zio, BP_GET_CHECKSUM(bp),
1918 			    buf, BP_GET_PSIZE(bp));
1919 
1920 			abd_put(buf);
1921 		}
1922 		/*
1923 		 * If we are here to damage data for testing purposes,
1924 		 * leave the GBH alone so that we can detect the damage.
1925 		 */
1926 		if (pio->io_gang_leader->io_flags & ZIO_FLAG_INDUCE_DAMAGE)
1927 			zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
1928 	} else {
1929 		zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
1930 		    abd_get_offset(data, offset), BP_GET_PSIZE(bp),
1931 		    zio_gang_issue_func_done, NULL, pio->io_priority,
1932 		    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
1933 	}
1934 
1935 	return (zio);
1936 }
1937 
1938 /* ARGSUSED */
1939 static zio_t *
1940 zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
1941     uint64_t offset)
1942 {
1943 	return (zio_free_sync(pio, pio->io_spa, pio->io_txg, bp,
1944 	    ZIO_GANG_CHILD_FLAGS(pio)));
1945 }
1946 
1947 /* ARGSUSED */
1948 static zio_t *
1949 zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
1950     uint64_t offset)
1951 {
1952 	return (zio_claim(pio, pio->io_spa, pio->io_txg, bp,
1953 	    NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio)));
1954 }
1955 
1956 static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = {
1957 	NULL,
1958 	zio_read_gang,
1959 	zio_rewrite_gang,
1960 	zio_free_gang,
1961 	zio_claim_gang,
1962 	NULL
1963 };
1964 
1965 static void zio_gang_tree_assemble_done(zio_t *zio);
1966 
1967 static zio_gang_node_t *
1968 zio_gang_node_alloc(zio_gang_node_t **gnpp)
1969 {
1970 	zio_gang_node_t *gn;
1971 
1972 	ASSERT(*gnpp == NULL);
1973 
1974 	gn = kmem_zalloc(sizeof (*gn), KM_SLEEP);
1975 	gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE);
1976 	*gnpp = gn;
1977 
1978 	return (gn);
1979 }
1980 
1981 static void
1982 zio_gang_node_free(zio_gang_node_t **gnpp)
1983 {
1984 	zio_gang_node_t *gn = *gnpp;
1985 
1986 	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
1987 		ASSERT(gn->gn_child[g] == NULL);
1988 
1989 	zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE);
1990 	kmem_free(gn, sizeof (*gn));
1991 	*gnpp = NULL;
1992 }
1993 
1994 static void
1995 zio_gang_tree_free(zio_gang_node_t **gnpp)
1996 {
1997 	zio_gang_node_t *gn = *gnpp;
1998 
1999 	if (gn == NULL)
2000 		return;
2001 
2002 	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
2003 		zio_gang_tree_free(&gn->gn_child[g]);
2004 
2005 	zio_gang_node_free(gnpp);
2006 }
2007 
2008 static void
2009 zio_gang_tree_assemble(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp)
2010 {
2011 	zio_gang_node_t *gn = zio_gang_node_alloc(gnpp);
2012 	abd_t *gbh_abd = abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2013 
2014 	ASSERT(gio->io_gang_leader == gio);
2015 	ASSERT(BP_IS_GANG(bp));
2016 
2017 	zio_nowait(zio_read(gio, gio->io_spa, bp, gbh_abd, SPA_GANGBLOCKSIZE,
2018 	    zio_gang_tree_assemble_done, gn, gio->io_priority,
2019 	    ZIO_GANG_CHILD_FLAGS(gio), &gio->io_bookmark));
2020 }
2021 
2022 static void
2023 zio_gang_tree_assemble_done(zio_t *zio)
2024 {
2025 	zio_t *gio = zio->io_gang_leader;
2026 	zio_gang_node_t *gn = zio->io_private;
2027 	blkptr_t *bp = zio->io_bp;
2028 
2029 	ASSERT(gio == zio_unique_parent(zio));
2030 	ASSERT(zio->io_child_count == 0);
2031 
2032 	if (zio->io_error)
2033 		return;
2034 
2035 	/* this ABD was created from a linear buf in zio_gang_tree_assemble */
2036 	if (BP_SHOULD_BYTESWAP(bp))
2037 		byteswap_uint64_array(abd_to_buf(zio->io_abd), zio->io_size);
2038 
2039 	ASSERT3P(abd_to_buf(zio->io_abd), ==, gn->gn_gbh);
2040 	ASSERT(zio->io_size == SPA_GANGBLOCKSIZE);
2041 	ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
2042 
2043 	abd_put(zio->io_abd);
2044 
2045 	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2046 		blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
2047 		if (!BP_IS_GANG(gbp))
2048 			continue;
2049 		zio_gang_tree_assemble(gio, gbp, &gn->gn_child[g]);
2050 	}
2051 }
2052 
2053 static void
2054 zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, abd_t *data,
2055     uint64_t offset)
2056 {
2057 	zio_t *gio = pio->io_gang_leader;
2058 	zio_t *zio;
2059 
2060 	ASSERT(BP_IS_GANG(bp) == !!gn);
2061 	ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(gio->io_bp));
2062 	ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == gio->io_gang_tree);
2063 
2064 	/*
2065 	 * If you're a gang header, your data is in gn->gn_gbh.
2066 	 * If you're a gang member, your data is in 'data' and gn == NULL.
2067 	 */
2068 	zio = zio_gang_issue_func[gio->io_type](pio, bp, gn, data, offset);
2069 
2070 	if (gn != NULL) {
2071 		ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
2072 
2073 		for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2074 			blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
2075 			if (BP_IS_HOLE(gbp))
2076 				continue;
2077 			zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data,
2078 			    offset);
2079 			offset += BP_GET_PSIZE(gbp);
2080 		}
2081 	}
2082 
2083 	if (gn == gio->io_gang_tree)
2084 		ASSERT3U(gio->io_size, ==, offset);
2085 
2086 	if (zio != pio)
2087 		zio_nowait(zio);
2088 }
2089 
2090 static int
2091 zio_gang_assemble(zio_t *zio)
2092 {
2093 	blkptr_t *bp = zio->io_bp;
2094 
2095 	ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == NULL);
2096 	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2097 
2098 	zio->io_gang_leader = zio;
2099 
2100 	zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree);
2101 
2102 	return (ZIO_PIPELINE_CONTINUE);
2103 }
2104 
2105 static int
2106 zio_gang_issue(zio_t *zio)
2107 {
2108 	blkptr_t *bp = zio->io_bp;
2109 
2110 	if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE))
2111 		return (ZIO_PIPELINE_STOP);
2112 
2113 	ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == zio);
2114 	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2115 
2116 	if (zio->io_child_error[ZIO_CHILD_GANG] == 0)
2117 		zio_gang_tree_issue(zio, zio->io_gang_tree, bp, zio->io_abd,
2118 		    0);
2119 	else
2120 		zio_gang_tree_free(&zio->io_gang_tree);
2121 
2122 	zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2123 
2124 	return (ZIO_PIPELINE_CONTINUE);
2125 }
2126 
2127 static void
2128 zio_write_gang_member_ready(zio_t *zio)
2129 {
2130 	zio_t *pio = zio_unique_parent(zio);
2131 	zio_t *gio = zio->io_gang_leader;
2132 	dva_t *cdva = zio->io_bp->blk_dva;
2133 	dva_t *pdva = pio->io_bp->blk_dva;
2134 	uint64_t asize;
2135 
2136 	if (BP_IS_HOLE(zio->io_bp))
2137 		return;
2138 
2139 	ASSERT(BP_IS_HOLE(&zio->io_bp_orig));
2140 
2141 	ASSERT(zio->io_child_type == ZIO_CHILD_GANG);
2142 	ASSERT3U(zio->io_prop.zp_copies, ==, gio->io_prop.zp_copies);
2143 	ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp));
2144 	ASSERT3U(pio->io_prop.zp_copies, <=, BP_GET_NDVAS(pio->io_bp));
2145 	ASSERT3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp));
2146 
2147 	mutex_enter(&pio->io_lock);
2148 	for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) {
2149 		ASSERT(DVA_GET_GANG(&pdva[d]));
2150 		asize = DVA_GET_ASIZE(&pdva[d]);
2151 		asize += DVA_GET_ASIZE(&cdva[d]);
2152 		DVA_SET_ASIZE(&pdva[d], asize);
2153 	}
2154 	mutex_exit(&pio->io_lock);
2155 }
2156 
2157 static void
2158 zio_write_gang_done(zio_t *zio)
2159 {
2160 	abd_put(zio->io_abd);
2161 }
2162 
2163 static int
2164 zio_write_gang_block(zio_t *pio)
2165 {
2166 	spa_t *spa = pio->io_spa;
2167 	metaslab_class_t *mc = spa_normal_class(spa);
2168 	blkptr_t *bp = pio->io_bp;
2169 	zio_t *gio = pio->io_gang_leader;
2170 	zio_t *zio;
2171 	zio_gang_node_t *gn, **gnpp;
2172 	zio_gbh_phys_t *gbh;
2173 	abd_t *gbh_abd;
2174 	uint64_t txg = pio->io_txg;
2175 	uint64_t resid = pio->io_size;
2176 	uint64_t lsize;
2177 	int copies = gio->io_prop.zp_copies;
2178 	int gbh_copies = MIN(copies + 1, spa_max_replication(spa));
2179 	zio_prop_t zp;
2180 	int error;
2181 
2182 	int flags = METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER;
2183 	if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2184 		ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2185 		ASSERT(!(pio->io_flags & ZIO_FLAG_NODATA));
2186 
2187 		flags |= METASLAB_ASYNC_ALLOC;
2188 		VERIFY(refcount_held(&mc->mc_alloc_slots, pio));
2189 
2190 		/*
2191 		 * The logical zio has already placed a reservation for
2192 		 * 'copies' allocation slots but gang blocks may require
2193 		 * additional copies. These additional copies
2194 		 * (i.e. gbh_copies - copies) are guaranteed to succeed
2195 		 * since metaslab_class_throttle_reserve() always allows
2196 		 * additional reservations for gang blocks.
2197 		 */
2198 		VERIFY(metaslab_class_throttle_reserve(mc, gbh_copies - copies,
2199 		    pio, flags));
2200 	}
2201 
2202 	error = metaslab_alloc(spa, mc, SPA_GANGBLOCKSIZE,
2203 	    bp, gbh_copies, txg, pio == gio ? NULL : gio->io_bp, flags,
2204 	    &pio->io_alloc_list, pio);
2205 	if (error) {
2206 		if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2207 			ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2208 			ASSERT(!(pio->io_flags & ZIO_FLAG_NODATA));
2209 
2210 			/*
2211 			 * If we failed to allocate the gang block header then
2212 			 * we remove any additional allocation reservations that
2213 			 * we placed here. The original reservation will
2214 			 * be removed when the logical I/O goes to the ready
2215 			 * stage.
2216 			 */
2217 			metaslab_class_throttle_unreserve(mc,
2218 			    gbh_copies - copies, pio);
2219 		}
2220 		pio->io_error = error;
2221 		return (ZIO_PIPELINE_CONTINUE);
2222 	}
2223 
2224 	if (pio == gio) {
2225 		gnpp = &gio->io_gang_tree;
2226 	} else {
2227 		gnpp = pio->io_private;
2228 		ASSERT(pio->io_ready == zio_write_gang_member_ready);
2229 	}
2230 
2231 	gn = zio_gang_node_alloc(gnpp);
2232 	gbh = gn->gn_gbh;
2233 	bzero(gbh, SPA_GANGBLOCKSIZE);
2234 	gbh_abd = abd_get_from_buf(gbh, SPA_GANGBLOCKSIZE);
2235 
2236 	/*
2237 	 * Create the gang header.
2238 	 */
2239 	zio = zio_rewrite(pio, spa, txg, bp, gbh_abd, SPA_GANGBLOCKSIZE,
2240 	    zio_write_gang_done, NULL, pio->io_priority,
2241 	    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2242 
2243 	/*
2244 	 * Create and nowait the gang children.
2245 	 */
2246 	for (int g = 0; resid != 0; resid -= lsize, g++) {
2247 		lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g),
2248 		    SPA_MINBLOCKSIZE);
2249 		ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid);
2250 
2251 		zp.zp_checksum = gio->io_prop.zp_checksum;
2252 		zp.zp_compress = ZIO_COMPRESS_OFF;
2253 		zp.zp_type = DMU_OT_NONE;
2254 		zp.zp_level = 0;
2255 		zp.zp_copies = gio->io_prop.zp_copies;
2256 		zp.zp_dedup = B_FALSE;
2257 		zp.zp_dedup_verify = B_FALSE;
2258 		zp.zp_nopwrite = B_FALSE;
2259 
2260 		zio_t *cio = zio_write(zio, spa, txg, &gbh->zg_blkptr[g],
2261 		    abd_get_offset(pio->io_abd, pio->io_size - resid), lsize,
2262 		    lsize, &zp, zio_write_gang_member_ready, NULL, NULL,
2263 		    zio_write_gang_done, &gn->gn_child[g], pio->io_priority,
2264 		    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2265 
2266 		if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2267 			ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2268 			ASSERT(!(pio->io_flags & ZIO_FLAG_NODATA));
2269 
2270 			/*
2271 			 * Gang children won't throttle but we should
2272 			 * account for their work, so reserve an allocation
2273 			 * slot for them here.
2274 			 */
2275 			VERIFY(metaslab_class_throttle_reserve(mc,
2276 			    zp.zp_copies, cio, flags));
2277 		}
2278 		zio_nowait(cio);
2279 	}
2280 
2281 	/*
2282 	 * Set pio's pipeline to just wait for zio to finish.
2283 	 */
2284 	pio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2285 
2286 	zio_nowait(zio);
2287 
2288 	return (ZIO_PIPELINE_CONTINUE);
2289 }
2290 
2291 /*
2292  * The zio_nop_write stage in the pipeline determines if allocating a
2293  * new bp is necessary.  The nopwrite feature can handle writes in
2294  * either syncing or open context (i.e. zil writes) and as a result is
2295  * mutually exclusive with dedup.
2296  *
2297  * By leveraging a cryptographically secure checksum, such as SHA256, we
2298  * can compare the checksums of the new data and the old to determine if
2299  * allocating a new block is required.  Note that our requirements for
2300  * cryptographic strength are fairly weak: there can't be any accidental
2301  * hash collisions, but we don't need to be secure against intentional
2302  * (malicious) collisions.  To trigger a nopwrite, you have to be able
2303  * to write the file to begin with, and triggering an incorrect (hash
2304  * collision) nopwrite is no worse than simply writing to the file.
2305  * That said, there are no known attacks against the checksum algorithms
2306  * used for nopwrite, assuming that the salt and the checksums
2307  * themselves remain secret.
2308  */
2309 static int
2310 zio_nop_write(zio_t *zio)
2311 {
2312 	blkptr_t *bp = zio->io_bp;
2313 	blkptr_t *bp_orig = &zio->io_bp_orig;
2314 	zio_prop_t *zp = &zio->io_prop;
2315 
2316 	ASSERT(BP_GET_LEVEL(bp) == 0);
2317 	ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
2318 	ASSERT(zp->zp_nopwrite);
2319 	ASSERT(!zp->zp_dedup);
2320 	ASSERT(zio->io_bp_override == NULL);
2321 	ASSERT(IO_IS_ALLOCATING(zio));
2322 
2323 	/*
2324 	 * Check to see if the original bp and the new bp have matching
2325 	 * characteristics (i.e. same checksum, compression algorithms, etc).
2326 	 * If they don't then just continue with the pipeline which will
2327 	 * allocate a new bp.
2328 	 */
2329 	if (BP_IS_HOLE(bp_orig) ||
2330 	    !(zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_flags &
2331 	    ZCHECKSUM_FLAG_NOPWRITE) ||
2332 	    BP_GET_CHECKSUM(bp) != BP_GET_CHECKSUM(bp_orig) ||
2333 	    BP_GET_COMPRESS(bp) != BP_GET_COMPRESS(bp_orig) ||
2334 	    BP_GET_DEDUP(bp) != BP_GET_DEDUP(bp_orig) ||
2335 	    zp->zp_copies != BP_GET_NDVAS(bp_orig))
2336 		return (ZIO_PIPELINE_CONTINUE);
2337 
2338 	/*
2339 	 * If the checksums match then reset the pipeline so that we
2340 	 * avoid allocating a new bp and issuing any I/O.
2341 	 */
2342 	if (ZIO_CHECKSUM_EQUAL(bp->blk_cksum, bp_orig->blk_cksum)) {
2343 		ASSERT(zio_checksum_table[zp->zp_checksum].ci_flags &
2344 		    ZCHECKSUM_FLAG_NOPWRITE);
2345 		ASSERT3U(BP_GET_PSIZE(bp), ==, BP_GET_PSIZE(bp_orig));
2346 		ASSERT3U(BP_GET_LSIZE(bp), ==, BP_GET_LSIZE(bp_orig));
2347 		ASSERT(zp->zp_compress != ZIO_COMPRESS_OFF);
2348 		ASSERT(bcmp(&bp->blk_prop, &bp_orig->blk_prop,
2349 		    sizeof (uint64_t)) == 0);
2350 
2351 		*bp = *bp_orig;
2352 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2353 		zio->io_flags |= ZIO_FLAG_NOPWRITE;
2354 	}
2355 
2356 	return (ZIO_PIPELINE_CONTINUE);
2357 }
2358 
2359 /*
2360  * ==========================================================================
2361  * Dedup
2362  * ==========================================================================
2363  */
2364 static void
2365 zio_ddt_child_read_done(zio_t *zio)
2366 {
2367 	blkptr_t *bp = zio->io_bp;
2368 	ddt_entry_t *dde = zio->io_private;
2369 	ddt_phys_t *ddp;
2370 	zio_t *pio = zio_unique_parent(zio);
2371 
2372 	mutex_enter(&pio->io_lock);
2373 	ddp = ddt_phys_select(dde, bp);
2374 	if (zio->io_error == 0)
2375 		ddt_phys_clear(ddp);	/* this ddp doesn't need repair */
2376 
2377 	if (zio->io_error == 0 && dde->dde_repair_abd == NULL)
2378 		dde->dde_repair_abd = zio->io_abd;
2379 	else
2380 		abd_free(zio->io_abd);
2381 	mutex_exit(&pio->io_lock);
2382 }
2383 
2384 static int
2385 zio_ddt_read_start(zio_t *zio)
2386 {
2387 	blkptr_t *bp = zio->io_bp;
2388 
2389 	ASSERT(BP_GET_DEDUP(bp));
2390 	ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
2391 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2392 
2393 	if (zio->io_child_error[ZIO_CHILD_DDT]) {
2394 		ddt_t *ddt = ddt_select(zio->io_spa, bp);
2395 		ddt_entry_t *dde = ddt_repair_start(ddt, bp);
2396 		ddt_phys_t *ddp = dde->dde_phys;
2397 		ddt_phys_t *ddp_self = ddt_phys_select(dde, bp);
2398 		blkptr_t blk;
2399 
2400 		ASSERT(zio->io_vsd == NULL);
2401 		zio->io_vsd = dde;
2402 
2403 		if (ddp_self == NULL)
2404 			return (ZIO_PIPELINE_CONTINUE);
2405 
2406 		for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
2407 			if (ddp->ddp_phys_birth == 0 || ddp == ddp_self)
2408 				continue;
2409 			ddt_bp_create(ddt->ddt_checksum, &dde->dde_key, ddp,
2410 			    &blk);
2411 			zio_nowait(zio_read(zio, zio->io_spa, &blk,
2412 			    abd_alloc_for_io(zio->io_size, B_TRUE),
2413 			    zio->io_size, zio_ddt_child_read_done, dde,
2414 			    zio->io_priority, ZIO_DDT_CHILD_FLAGS(zio) |
2415 			    ZIO_FLAG_DONT_PROPAGATE, &zio->io_bookmark));
2416 		}
2417 		return (ZIO_PIPELINE_CONTINUE);
2418 	}
2419 
2420 	zio_nowait(zio_read(zio, zio->io_spa, bp,
2421 	    zio->io_abd, zio->io_size, NULL, NULL, zio->io_priority,
2422 	    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark));
2423 
2424 	return (ZIO_PIPELINE_CONTINUE);
2425 }
2426 
2427 static int
2428 zio_ddt_read_done(zio_t *zio)
2429 {
2430 	blkptr_t *bp = zio->io_bp;
2431 
2432 	if (zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_DONE))
2433 		return (ZIO_PIPELINE_STOP);
2434 
2435 	ASSERT(BP_GET_DEDUP(bp));
2436 	ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
2437 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2438 
2439 	if (zio->io_child_error[ZIO_CHILD_DDT]) {
2440 		ddt_t *ddt = ddt_select(zio->io_spa, bp);
2441 		ddt_entry_t *dde = zio->io_vsd;
2442 		if (ddt == NULL) {
2443 			ASSERT(spa_load_state(zio->io_spa) != SPA_LOAD_NONE);
2444 			return (ZIO_PIPELINE_CONTINUE);
2445 		}
2446 		if (dde == NULL) {
2447 			zio->io_stage = ZIO_STAGE_DDT_READ_START >> 1;
2448 			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
2449 			return (ZIO_PIPELINE_STOP);
2450 		}
2451 		if (dde->dde_repair_abd != NULL) {
2452 			abd_copy(zio->io_abd, dde->dde_repair_abd,
2453 			    zio->io_size);
2454 			zio->io_child_error[ZIO_CHILD_DDT] = 0;
2455 		}
2456 		ddt_repair_done(ddt, dde);
2457 		zio->io_vsd = NULL;
2458 	}
2459 
2460 	ASSERT(zio->io_vsd == NULL);
2461 
2462 	return (ZIO_PIPELINE_CONTINUE);
2463 }
2464 
2465 static boolean_t
2466 zio_ddt_collision(zio_t *zio, ddt_t *ddt, ddt_entry_t *dde)
2467 {
2468 	spa_t *spa = zio->io_spa;
2469 	boolean_t do_raw = (zio->io_flags & ZIO_FLAG_RAW);
2470 
2471 	/* We should never get a raw, override zio */
2472 	ASSERT(!(zio->io_bp_override && do_raw));
2473 
2474 	/*
2475 	 * Note: we compare the original data, not the transformed data,
2476 	 * because when zio->io_bp is an override bp, we will not have
2477 	 * pushed the I/O transforms.  That's an important optimization
2478 	 * because otherwise we'd compress/encrypt all dmu_sync() data twice.
2479 	 */
2480 	for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
2481 		zio_t *lio = dde->dde_lead_zio[p];
2482 
2483 		if (lio != NULL) {
2484 			return (lio->io_orig_size != zio->io_orig_size ||
2485 			    abd_cmp(zio->io_orig_abd, lio->io_orig_abd,
2486 			    zio->io_orig_size) != 0);
2487 		}
2488 	}
2489 
2490 	for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
2491 		ddt_phys_t *ddp = &dde->dde_phys[p];
2492 
2493 		if (ddp->ddp_phys_birth != 0) {
2494 			arc_buf_t *abuf = NULL;
2495 			arc_flags_t aflags = ARC_FLAG_WAIT;
2496 			int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE;
2497 			blkptr_t blk = *zio->io_bp;
2498 			int error;
2499 
2500 			ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth);
2501 
2502 			ddt_exit(ddt);
2503 
2504 			/*
2505 			 * Intuitively, it would make more sense to compare
2506 			 * io_abd than io_orig_abd in the raw case since you
2507 			 * don't want to look at any transformations that have
2508 			 * happened to the data. However, for raw I/Os the
2509 			 * data will actually be the same in io_abd and
2510 			 * io_orig_abd, so all we have to do is issue this as
2511 			 * a raw ARC read.
2512 			 */
2513 			if (do_raw) {
2514 				zio_flags |= ZIO_FLAG_RAW;
2515 				ASSERT3U(zio->io_size, ==, zio->io_orig_size);
2516 				ASSERT0(abd_cmp(zio->io_abd, zio->io_orig_abd,
2517 				    zio->io_size));
2518 				ASSERT3P(zio->io_transform_stack, ==, NULL);
2519 			}
2520 
2521 			error = arc_read(NULL, spa, &blk,
2522 			    arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ,
2523 			    zio_flags, &aflags, &zio->io_bookmark);
2524 
2525 			if (error == 0) {
2526 				if (arc_buf_size(abuf) != zio->io_orig_size ||
2527 				    abd_cmp_buf(zio->io_orig_abd, abuf->b_data,
2528 				    zio->io_orig_size) != 0)
2529 					error = SET_ERROR(EEXIST);
2530 				arc_buf_destroy(abuf, &abuf);
2531 			}
2532 
2533 			ddt_enter(ddt);
2534 			return (error != 0);
2535 		}
2536 	}
2537 
2538 	return (B_FALSE);
2539 }
2540 
2541 static void
2542 zio_ddt_child_write_ready(zio_t *zio)
2543 {
2544 	int p = zio->io_prop.zp_copies;
2545 	ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
2546 	ddt_entry_t *dde = zio->io_private;
2547 	ddt_phys_t *ddp = &dde->dde_phys[p];
2548 	zio_t *pio;
2549 
2550 	if (zio->io_error)
2551 		return;
2552 
2553 	ddt_enter(ddt);
2554 
2555 	ASSERT(dde->dde_lead_zio[p] == zio);
2556 
2557 	ddt_phys_fill(ddp, zio->io_bp);
2558 
2559 	zio_link_t *zl = NULL;
2560 	while ((pio = zio_walk_parents(zio, &zl)) != NULL)
2561 		ddt_bp_fill(ddp, pio->io_bp, zio->io_txg);
2562 
2563 	ddt_exit(ddt);
2564 }
2565 
2566 static void
2567 zio_ddt_child_write_done(zio_t *zio)
2568 {
2569 	int p = zio->io_prop.zp_copies;
2570 	ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
2571 	ddt_entry_t *dde = zio->io_private;
2572 	ddt_phys_t *ddp = &dde->dde_phys[p];
2573 
2574 	ddt_enter(ddt);
2575 
2576 	ASSERT(ddp->ddp_refcnt == 0);
2577 	ASSERT(dde->dde_lead_zio[p] == zio);
2578 	dde->dde_lead_zio[p] = NULL;
2579 
2580 	if (zio->io_error == 0) {
2581 		zio_link_t *zl = NULL;
2582 		while (zio_walk_parents(zio, &zl) != NULL)
2583 			ddt_phys_addref(ddp);
2584 	} else {
2585 		ddt_phys_clear(ddp);
2586 	}
2587 
2588 	ddt_exit(ddt);
2589 }
2590 
2591 static void
2592 zio_ddt_ditto_write_done(zio_t *zio)
2593 {
2594 	int p = DDT_PHYS_DITTO;
2595 	zio_prop_t *zp = &zio->io_prop;
2596 	blkptr_t *bp = zio->io_bp;
2597 	ddt_t *ddt = ddt_select(zio->io_spa, bp);
2598 	ddt_entry_t *dde = zio->io_private;
2599 	ddt_phys_t *ddp = &dde->dde_phys[p];
2600 	ddt_key_t *ddk = &dde->dde_key;
2601 
2602 	ddt_enter(ddt);
2603 
2604 	ASSERT(ddp->ddp_refcnt == 0);
2605 	ASSERT(dde->dde_lead_zio[p] == zio);
2606 	dde->dde_lead_zio[p] = NULL;
2607 
2608 	if (zio->io_error == 0) {
2609 		ASSERT(ZIO_CHECKSUM_EQUAL(bp->blk_cksum, ddk->ddk_cksum));
2610 		ASSERT(zp->zp_copies < SPA_DVAS_PER_BP);
2611 		ASSERT(zp->zp_copies == BP_GET_NDVAS(bp) - BP_IS_GANG(bp));
2612 		if (ddp->ddp_phys_birth != 0)
2613 			ddt_phys_free(ddt, ddk, ddp, zio->io_txg);
2614 		ddt_phys_fill(ddp, bp);
2615 	}
2616 
2617 	ddt_exit(ddt);
2618 }
2619 
2620 static int
2621 zio_ddt_write(zio_t *zio)
2622 {
2623 	spa_t *spa = zio->io_spa;
2624 	blkptr_t *bp = zio->io_bp;
2625 	uint64_t txg = zio->io_txg;
2626 	zio_prop_t *zp = &zio->io_prop;
2627 	int p = zp->zp_copies;
2628 	int ditto_copies;
2629 	zio_t *cio = NULL;
2630 	zio_t *dio = NULL;
2631 	ddt_t *ddt = ddt_select(spa, bp);
2632 	ddt_entry_t *dde;
2633 	ddt_phys_t *ddp;
2634 
2635 	ASSERT(BP_GET_DEDUP(bp));
2636 	ASSERT(BP_GET_CHECKSUM(bp) == zp->zp_checksum);
2637 	ASSERT(BP_IS_HOLE(bp) || zio->io_bp_override);
2638 	ASSERT(!(zio->io_bp_override && (zio->io_flags & ZIO_FLAG_RAW)));
2639 
2640 	ddt_enter(ddt);
2641 	dde = ddt_lookup(ddt, bp, B_TRUE);
2642 	ddp = &dde->dde_phys[p];
2643 
2644 	if (zp->zp_dedup_verify && zio_ddt_collision(zio, ddt, dde)) {
2645 		/*
2646 		 * If we're using a weak checksum, upgrade to a strong checksum
2647 		 * and try again.  If we're already using a strong checksum,
2648 		 * we can't resolve it, so just convert to an ordinary write.
2649 		 * (And automatically e-mail a paper to Nature?)
2650 		 */
2651 		if (!(zio_checksum_table[zp->zp_checksum].ci_flags &
2652 		    ZCHECKSUM_FLAG_DEDUP)) {
2653 			zp->zp_checksum = spa_dedup_checksum(spa);
2654 			zio_pop_transforms(zio);
2655 			zio->io_stage = ZIO_STAGE_OPEN;
2656 			BP_ZERO(bp);
2657 		} else {
2658 			zp->zp_dedup = B_FALSE;
2659 			BP_SET_DEDUP(bp, B_FALSE);
2660 		}
2661 		ASSERT(!BP_GET_DEDUP(bp));
2662 		zio->io_pipeline = ZIO_WRITE_PIPELINE;
2663 		ddt_exit(ddt);
2664 		return (ZIO_PIPELINE_CONTINUE);
2665 	}
2666 
2667 	ditto_copies = ddt_ditto_copies_needed(ddt, dde, ddp);
2668 	ASSERT(ditto_copies < SPA_DVAS_PER_BP);
2669 
2670 	if (ditto_copies > ddt_ditto_copies_present(dde) &&
2671 	    dde->dde_lead_zio[DDT_PHYS_DITTO] == NULL) {
2672 		zio_prop_t czp = *zp;
2673 
2674 		czp.zp_copies = ditto_copies;
2675 
2676 		/*
2677 		 * If we arrived here with an override bp, we won't have run
2678 		 * the transform stack, so we won't have the data we need to
2679 		 * generate a child i/o.  So, toss the override bp and restart.
2680 		 * This is safe, because using the override bp is just an
2681 		 * optimization; and it's rare, so the cost doesn't matter.
2682 		 */
2683 		if (zio->io_bp_override) {
2684 			zio_pop_transforms(zio);
2685 			zio->io_stage = ZIO_STAGE_OPEN;
2686 			zio->io_pipeline = ZIO_WRITE_PIPELINE;
2687 			zio->io_bp_override = NULL;
2688 			BP_ZERO(bp);
2689 			ddt_exit(ddt);
2690 			return (ZIO_PIPELINE_CONTINUE);
2691 		}
2692 
2693 		dio = zio_write(zio, spa, txg, bp, zio->io_orig_abd,
2694 		    zio->io_orig_size, zio->io_orig_size, &czp, NULL, NULL,
2695 		    NULL, zio_ddt_ditto_write_done, dde, zio->io_priority,
2696 		    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
2697 
2698 		zio_push_transform(dio, zio->io_abd, zio->io_size, 0, NULL);
2699 		dde->dde_lead_zio[DDT_PHYS_DITTO] = dio;
2700 	}
2701 
2702 	if (ddp->ddp_phys_birth != 0 || dde->dde_lead_zio[p] != NULL) {
2703 		if (ddp->ddp_phys_birth != 0)
2704 			ddt_bp_fill(ddp, bp, txg);
2705 		if (dde->dde_lead_zio[p] != NULL)
2706 			zio_add_child(zio, dde->dde_lead_zio[p]);
2707 		else
2708 			ddt_phys_addref(ddp);
2709 	} else if (zio->io_bp_override) {
2710 		ASSERT(bp->blk_birth == txg);
2711 		ASSERT(BP_EQUAL(bp, zio->io_bp_override));
2712 		ddt_phys_fill(ddp, bp);
2713 		ddt_phys_addref(ddp);
2714 	} else {
2715 		cio = zio_write(zio, spa, txg, bp, zio->io_orig_abd,
2716 		    zio->io_orig_size, zio->io_orig_size, zp,
2717 		    zio_ddt_child_write_ready, NULL, NULL,
2718 		    zio_ddt_child_write_done, dde, zio->io_priority,
2719 		    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
2720 
2721 		zio_push_transform(cio, zio->io_abd, zio->io_size, 0, NULL);
2722 		dde->dde_lead_zio[p] = cio;
2723 	}
2724 
2725 	ddt_exit(ddt);
2726 
2727 	if (cio)
2728 		zio_nowait(cio);
2729 	if (dio)
2730 		zio_nowait(dio);
2731 
2732 	return (ZIO_PIPELINE_CONTINUE);
2733 }
2734 
2735 ddt_entry_t *freedde; /* for debugging */
2736 
2737 static int
2738 zio_ddt_free(zio_t *zio)
2739 {
2740 	spa_t *spa = zio->io_spa;
2741 	blkptr_t *bp = zio->io_bp;
2742 	ddt_t *ddt = ddt_select(spa, bp);
2743 	ddt_entry_t *dde;
2744 	ddt_phys_t *ddp;
2745 
2746 	ASSERT(BP_GET_DEDUP(bp));
2747 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2748 
2749 	ddt_enter(ddt);
2750 	freedde = dde = ddt_lookup(ddt, bp, B_TRUE);
2751 	ddp = ddt_phys_select(dde, bp);
2752 	ddt_phys_decref(ddp);
2753 	ddt_exit(ddt);
2754 
2755 	return (ZIO_PIPELINE_CONTINUE);
2756 }
2757 
2758 /*
2759  * ==========================================================================
2760  * Allocate and free blocks
2761  * ==========================================================================
2762  */
2763 
2764 static zio_t *
2765 zio_io_to_allocate(spa_t *spa)
2766 {
2767 	zio_t *zio;
2768 
2769 	ASSERT(MUTEX_HELD(&spa->spa_alloc_lock));
2770 
2771 	zio = avl_first(&spa->spa_alloc_tree);
2772 	if (zio == NULL)
2773 		return (NULL);
2774 
2775 	ASSERT(IO_IS_ALLOCATING(zio));
2776 
2777 	/*
2778 	 * Try to place a reservation for this zio. If we're unable to
2779 	 * reserve then we throttle.
2780 	 */
2781 	if (!metaslab_class_throttle_reserve(spa_normal_class(spa),
2782 	    zio->io_prop.zp_copies, zio, 0)) {
2783 		return (NULL);
2784 	}
2785 
2786 	avl_remove(&spa->spa_alloc_tree, zio);
2787 	ASSERT3U(zio->io_stage, <, ZIO_STAGE_DVA_ALLOCATE);
2788 
2789 	return (zio);
2790 }
2791 
2792 static int
2793 zio_dva_throttle(zio_t *zio)
2794 {
2795 	spa_t *spa = zio->io_spa;
2796 	zio_t *nio;
2797 
2798 	if (zio->io_priority == ZIO_PRIORITY_SYNC_WRITE ||
2799 	    !spa_normal_class(zio->io_spa)->mc_alloc_throttle_enabled ||
2800 	    zio->io_child_type == ZIO_CHILD_GANG ||
2801 	    zio->io_flags & ZIO_FLAG_NODATA) {
2802 		return (ZIO_PIPELINE_CONTINUE);
2803 	}
2804 
2805 	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2806 
2807 	ASSERT3U(zio->io_queued_timestamp, >, 0);
2808 	ASSERT(zio->io_stage == ZIO_STAGE_DVA_THROTTLE);
2809 
2810 	mutex_enter(&spa->spa_alloc_lock);
2811 
2812 	ASSERT(zio->io_type == ZIO_TYPE_WRITE);
2813 	avl_add(&spa->spa_alloc_tree, zio);
2814 
2815 	nio = zio_io_to_allocate(zio->io_spa);
2816 	mutex_exit(&spa->spa_alloc_lock);
2817 
2818 	if (nio == zio)
2819 		return (ZIO_PIPELINE_CONTINUE);
2820 
2821 	if (nio != NULL) {
2822 		ASSERT(nio->io_stage == ZIO_STAGE_DVA_THROTTLE);
2823 		/*
2824 		 * We are passing control to a new zio so make sure that
2825 		 * it is processed by a different thread. We do this to
2826 		 * avoid stack overflows that can occur when parents are
2827 		 * throttled and children are making progress. We allow
2828 		 * it to go to the head of the taskq since it's already
2829 		 * been waiting.
2830 		 */
2831 		zio_taskq_dispatch(nio, ZIO_TASKQ_ISSUE, B_TRUE);
2832 	}
2833 	return (ZIO_PIPELINE_STOP);
2834 }
2835 
2836 void
2837 zio_allocate_dispatch(spa_t *spa)
2838 {
2839 	zio_t *zio;
2840 
2841 	mutex_enter(&spa->spa_alloc_lock);
2842 	zio = zio_io_to_allocate(spa);
2843 	mutex_exit(&spa->spa_alloc_lock);
2844 	if (zio == NULL)
2845 		return;
2846 
2847 	ASSERT3U(zio->io_stage, ==, ZIO_STAGE_DVA_THROTTLE);
2848 	ASSERT0(zio->io_error);
2849 	zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_TRUE);
2850 }
2851 
2852 static int
2853 zio_dva_allocate(zio_t *zio)
2854 {
2855 	spa_t *spa = zio->io_spa;
2856 	metaslab_class_t *mc = spa_normal_class(spa);
2857 	blkptr_t *bp = zio->io_bp;
2858 	int error;
2859 	int flags = 0;
2860 
2861 	if (zio->io_gang_leader == NULL) {
2862 		ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2863 		zio->io_gang_leader = zio;
2864 	}
2865 
2866 	ASSERT(BP_IS_HOLE(bp));
2867 	ASSERT0(BP_GET_NDVAS(bp));
2868 	ASSERT3U(zio->io_prop.zp_copies, >, 0);
2869 	ASSERT3U(zio->io_prop.zp_copies, <=, spa_max_replication(spa));
2870 	ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp));
2871 
2872 	if (zio->io_flags & ZIO_FLAG_NODATA) {
2873 		flags |= METASLAB_DONT_THROTTLE;
2874 	}
2875 	if (zio->io_flags & ZIO_FLAG_GANG_CHILD) {
2876 		flags |= METASLAB_GANG_CHILD;
2877 	}
2878 	if (zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE) {
2879 		flags |= METASLAB_ASYNC_ALLOC;
2880 	}
2881 
2882 	error = metaslab_alloc(spa, mc, zio->io_size, bp,
2883 	    zio->io_prop.zp_copies, zio->io_txg, NULL, flags,
2884 	    &zio->io_alloc_list, zio);
2885 
2886 	if (error != 0) {
2887 		spa_dbgmsg(spa, "%s: metaslab allocation failure: zio %p, "
2888 		    "size %llu, error %d", spa_name(spa), zio, zio->io_size,
2889 		    error);
2890 		if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE)
2891 			return (zio_write_gang_block(zio));
2892 		zio->io_error = error;
2893 	}
2894 
2895 	return (ZIO_PIPELINE_CONTINUE);
2896 }
2897 
2898 static int
2899 zio_dva_free(zio_t *zio)
2900 {
2901 	metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE);
2902 
2903 	return (ZIO_PIPELINE_CONTINUE);
2904 }
2905 
2906 static int
2907 zio_dva_claim(zio_t *zio)
2908 {
2909 	int error;
2910 
2911 	error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg);
2912 	if (error)
2913 		zio->io_error = error;
2914 
2915 	return (ZIO_PIPELINE_CONTINUE);
2916 }
2917 
2918 /*
2919  * Undo an allocation.  This is used by zio_done() when an I/O fails
2920  * and we want to give back the block we just allocated.
2921  * This handles both normal blocks and gang blocks.
2922  */
2923 static void
2924 zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp)
2925 {
2926 	ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp));
2927 	ASSERT(zio->io_bp_override == NULL);
2928 
2929 	if (!BP_IS_HOLE(bp))
2930 		metaslab_free(zio->io_spa, bp, bp->blk_birth, B_TRUE);
2931 
2932 	if (gn != NULL) {
2933 		for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2934 			zio_dva_unallocate(zio, gn->gn_child[g],
2935 			    &gn->gn_gbh->zg_blkptr[g]);
2936 		}
2937 	}
2938 }
2939 
2940 /*
2941  * Try to allocate an intent log block.  Return 0 on success, errno on failure.
2942  */
2943 int
2944 zio_alloc_zil(spa_t *spa, uint64_t txg, blkptr_t *new_bp, blkptr_t *old_bp,
2945     uint64_t size, boolean_t *slog)
2946 {
2947 	int error = 1;
2948 	zio_alloc_list_t io_alloc_list;
2949 
2950 	ASSERT(txg > spa_syncing_txg(spa));
2951 
2952 	metaslab_trace_init(&io_alloc_list);
2953 	error = metaslab_alloc(spa, spa_log_class(spa), size, new_bp, 1,
2954 	    txg, old_bp, METASLAB_HINTBP_AVOID, &io_alloc_list, NULL);
2955 	if (error == 0) {
2956 		*slog = TRUE;
2957 	} else {
2958 		error = metaslab_alloc(spa, spa_normal_class(spa), size,
2959 		    new_bp, 1, txg, old_bp, METASLAB_HINTBP_AVOID,
2960 		    &io_alloc_list, NULL);
2961 		if (error == 0)
2962 			*slog = FALSE;
2963 	}
2964 	metaslab_trace_fini(&io_alloc_list);
2965 
2966 	if (error == 0) {
2967 		BP_SET_LSIZE(new_bp, size);
2968 		BP_SET_PSIZE(new_bp, size);
2969 		BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF);
2970 		BP_SET_CHECKSUM(new_bp,
2971 		    spa_version(spa) >= SPA_VERSION_SLIM_ZIL
2972 		    ? ZIO_CHECKSUM_ZILOG2 : ZIO_CHECKSUM_ZILOG);
2973 		BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
2974 		BP_SET_LEVEL(new_bp, 0);
2975 		BP_SET_DEDUP(new_bp, 0);
2976 		BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER);
2977 	} else {
2978 		zfs_dbgmsg("%s: zil block allocation failure: "
2979 		    "size %llu, error %d", spa_name(spa), size, error);
2980 	}
2981 
2982 	return (error);
2983 }
2984 
2985 /*
2986  * Free an intent log block.
2987  */
2988 void
2989 zio_free_zil(spa_t *spa, uint64_t txg, blkptr_t *bp)
2990 {
2991 	ASSERT(BP_GET_TYPE(bp) == DMU_OT_INTENT_LOG);
2992 	ASSERT(!BP_IS_GANG(bp));
2993 
2994 	zio_free(spa, txg, bp);
2995 }
2996 
2997 /*
2998  * ==========================================================================
2999  * Read and write to physical devices
3000  * ==========================================================================
3001  */
3002 
3003 
3004 /*
3005  * Issue an I/O to the underlying vdev. Typically the issue pipeline
3006  * stops after this stage and will resume upon I/O completion.
3007  * However, there are instances where the vdev layer may need to
3008  * continue the pipeline when an I/O was not issued. Since the I/O
3009  * that was sent to the vdev layer might be different than the one
3010  * currently active in the pipeline (see vdev_queue_io()), we explicitly
3011  * force the underlying vdev layers to call either zio_execute() or
3012  * zio_interrupt() to ensure that the pipeline continues with the correct I/O.
3013  */
3014 static int
3015 zio_vdev_io_start(zio_t *zio)
3016 {
3017 	vdev_t *vd = zio->io_vd;
3018 	uint64_t align;
3019 	spa_t *spa = zio->io_spa;
3020 
3021 	ASSERT(zio->io_error == 0);
3022 	ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0);
3023 
3024 	if (vd == NULL) {
3025 		if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
3026 			spa_config_enter(spa, SCL_ZIO, zio, RW_READER);
3027 
3028 		/*
3029 		 * The mirror_ops handle multiple DVAs in a single BP.
3030 		 */
3031 		vdev_mirror_ops.vdev_op_io_start(zio);
3032 		return (ZIO_PIPELINE_STOP);
3033 	}
3034 
3035 	ASSERT3P(zio->io_logical, !=, zio);
3036 	if (zio->io_type == ZIO_TYPE_WRITE && zio->io_vd->vdev_removing) {
3037 		ASSERT(zio->io_flags &
3038 		    (ZIO_FLAG_PHYSICAL | ZIO_FLAG_SELF_HEAL |
3039 		    ZIO_FLAG_INDUCE_DAMAGE));
3040 	}
3041 
3042 	/*
3043 	 * We keep track of time-sensitive I/Os so that the scan thread
3044 	 * can quickly react to certain workloads.  In particular, we care
3045 	 * about non-scrubbing, top-level reads and writes with the following
3046 	 * characteristics:
3047 	 *	- synchronous writes of user data to non-slog devices
3048 	 *	- any reads of user data
3049 	 * When these conditions are met, adjust the timestamp of spa_last_io
3050 	 * which allows the scan thread to adjust its workload accordingly.
3051 	 */
3052 	if (!(zio->io_flags & ZIO_FLAG_SCAN_THREAD) && zio->io_bp != NULL &&
3053 	    vd == vd->vdev_top && !vd->vdev_islog &&
3054 	    zio->io_bookmark.zb_objset != DMU_META_OBJSET &&
3055 	    zio->io_txg != spa_syncing_txg(spa)) {
3056 		uint64_t old = spa->spa_last_io;
3057 		uint64_t new = ddi_get_lbolt64();
3058 		if (old != new)
3059 			(void) atomic_cas_64(&spa->spa_last_io, old, new);
3060 	}
3061 
3062 	align = 1ULL << vd->vdev_top->vdev_ashift;
3063 
3064 	if (!(zio->io_flags & ZIO_FLAG_PHYSICAL) &&
3065 	    P2PHASE(zio->io_size, align) != 0) {
3066 		/* Transform logical writes to be a full physical block size. */
3067 		uint64_t asize = P2ROUNDUP(zio->io_size, align);
3068 		abd_t *abuf = abd_alloc_sametype(zio->io_abd, asize);
3069 		ASSERT(vd == vd->vdev_top);
3070 		if (zio->io_type == ZIO_TYPE_WRITE) {
3071 			abd_copy(abuf, zio->io_abd, zio->io_size);
3072 			abd_zero_off(abuf, zio->io_size, asize - zio->io_size);
3073 		}
3074 		zio_push_transform(zio, abuf, asize, asize, zio_subblock);
3075 	}
3076 
3077 	/*
3078 	 * If this is not a physical io, make sure that it is properly aligned
3079 	 * before proceeding.
3080 	 */
3081 	if (!(zio->io_flags & ZIO_FLAG_PHYSICAL)) {
3082 		ASSERT0(P2PHASE(zio->io_offset, align));
3083 		ASSERT0(P2PHASE(zio->io_size, align));
3084 	} else {
3085 		/*
3086 		 * For physical writes, we allow 512b aligned writes and assume
3087 		 * the device will perform a read-modify-write as necessary.
3088 		 */
3089 		ASSERT0(P2PHASE(zio->io_offset, SPA_MINBLOCKSIZE));
3090 		ASSERT0(P2PHASE(zio->io_size, SPA_MINBLOCKSIZE));
3091 	}
3092 
3093 	VERIFY(zio->io_type != ZIO_TYPE_WRITE || spa_writeable(spa));
3094 
3095 	/*
3096 	 * If this is a repair I/O, and there's no self-healing involved --
3097 	 * that is, we're just resilvering what we expect to resilver --
3098 	 * then don't do the I/O unless zio's txg is actually in vd's DTL.
3099 	 * This prevents spurious resilvering with nested replication.
3100 	 * For example, given a mirror of mirrors, (A+B)+(C+D), if only
3101 	 * A is out of date, we'll read from C+D, then use the data to
3102 	 * resilver A+B -- but we don't actually want to resilver B, just A.
3103 	 * The top-level mirror has no way to know this, so instead we just
3104 	 * discard unnecessary repairs as we work our way down the vdev tree.
3105 	 * The same logic applies to any form of nested replication:
3106 	 * ditto + mirror, RAID-Z + replacing, etc.  This covers them all.
3107 	 */
3108 	if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) &&
3109 	    !(zio->io_flags & ZIO_FLAG_SELF_HEAL) &&
3110 	    zio->io_txg != 0 &&	/* not a delegated i/o */
3111 	    !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) {
3112 		ASSERT(zio->io_type == ZIO_TYPE_WRITE);
3113 		zio_vdev_io_bypass(zio);
3114 		return (ZIO_PIPELINE_CONTINUE);
3115 	}
3116 
3117 	if (vd->vdev_ops->vdev_op_leaf &&
3118 	    (zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE)) {
3119 
3120 		if (zio->io_type == ZIO_TYPE_READ && vdev_cache_read(zio))
3121 			return (ZIO_PIPELINE_CONTINUE);
3122 
3123 		if ((zio = vdev_queue_io(zio)) == NULL)
3124 			return (ZIO_PIPELINE_STOP);
3125 
3126 		if (!vdev_accessible(vd, zio)) {
3127 			zio->io_error = SET_ERROR(ENXIO);
3128 			zio_interrupt(zio);
3129 			return (ZIO_PIPELINE_STOP);
3130 		}
3131 	}
3132 
3133 	vd->vdev_ops->vdev_op_io_start(zio);
3134 	return (ZIO_PIPELINE_STOP);
3135 }
3136 
3137 static int
3138 zio_vdev_io_done(zio_t *zio)
3139 {
3140 	vdev_t *vd = zio->io_vd;
3141 	vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops;
3142 	boolean_t unexpected_error = B_FALSE;
3143 
3144 	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE))
3145 		return (ZIO_PIPELINE_STOP);
3146 
3147 	ASSERT(zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE);
3148 
3149 	if (vd != NULL && vd->vdev_ops->vdev_op_leaf) {
3150 
3151 		vdev_queue_io_done(zio);
3152 
3153 		if (zio->io_type == ZIO_TYPE_WRITE)
3154 			vdev_cache_write(zio);
3155 
3156 		if (zio_injection_enabled && zio->io_error == 0)
3157 			zio->io_error = zio_handle_device_injection(vd,
3158 			    zio, EIO);
3159 
3160 		if (zio_injection_enabled && zio->io_error == 0)
3161 			zio->io_error = zio_handle_label_injection(zio, EIO);
3162 
3163 		if (zio->io_error) {
3164 			if (!vdev_accessible(vd, zio)) {
3165 				zio->io_error = SET_ERROR(ENXIO);
3166 			} else {
3167 				unexpected_error = B_TRUE;
3168 			}
3169 		}
3170 	}
3171 
3172 	ops->vdev_op_io_done(zio);
3173 
3174 	if (unexpected_error)
3175 		VERIFY(vdev_probe(vd, zio) == NULL);
3176 
3177 	return (ZIO_PIPELINE_CONTINUE);
3178 }
3179 
3180 /*
3181  * For non-raidz ZIOs, we can just copy aside the bad data read from the
3182  * disk, and use that to finish the checksum ereport later.
3183  */
3184 static void
3185 zio_vsd_default_cksum_finish(zio_cksum_report_t *zcr,
3186     const void *good_buf)
3187 {
3188 	/* no processing needed */
3189 	zfs_ereport_finish_checksum(zcr, good_buf, zcr->zcr_cbdata, B_FALSE);
3190 }
3191 
3192 /*ARGSUSED*/
3193 void
3194 zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr, void *ignored)
3195 {
3196 	void *buf = zio_buf_alloc(zio->io_size);
3197 
3198 	abd_copy_to_buf(buf, zio->io_abd, zio->io_size);
3199 
3200 	zcr->zcr_cbinfo = zio->io_size;
3201 	zcr->zcr_cbdata = buf;
3202 	zcr->zcr_finish = zio_vsd_default_cksum_finish;
3203 	zcr->zcr_free = zio_buf_free;
3204 }
3205 
3206 static int
3207 zio_vdev_io_assess(zio_t *zio)
3208 {
3209 	vdev_t *vd = zio->io_vd;
3210 
3211 	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE))
3212 		return (ZIO_PIPELINE_STOP);
3213 
3214 	if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
3215 		spa_config_exit(zio->io_spa, SCL_ZIO, zio);
3216 
3217 	if (zio->io_vsd != NULL) {
3218 		zio->io_vsd_ops->vsd_free(zio);
3219 		zio->io_vsd = NULL;
3220 	}
3221 
3222 	if (zio_injection_enabled && zio->io_error == 0)
3223 		zio->io_error = zio_handle_fault_injection(zio, EIO);
3224 
3225 	/*
3226 	 * If the I/O failed, determine whether we should attempt to retry it.
3227 	 *
3228 	 * On retry, we cut in line in the issue queue, since we don't want
3229 	 * compression/checksumming/etc. work to prevent our (cheap) IO reissue.
3230 	 */
3231 	if (zio->io_error && vd == NULL &&
3232 	    !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) {
3233 		ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE));	/* not a leaf */
3234 		ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS));	/* not a leaf */
3235 		zio->io_error = 0;
3236 		zio->io_flags |= ZIO_FLAG_IO_RETRY |
3237 		    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE;
3238 		zio->io_stage = ZIO_STAGE_VDEV_IO_START >> 1;
3239 		zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE,
3240 		    zio_requeue_io_start_cut_in_line);
3241 		return (ZIO_PIPELINE_STOP);
3242 	}
3243 
3244 	/*
3245 	 * If we got an error on a leaf device, convert it to ENXIO
3246 	 * if the device is not accessible at all.
3247 	 */
3248 	if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf &&
3249 	    !vdev_accessible(vd, zio))
3250 		zio->io_error = SET_ERROR(ENXIO);
3251 
3252 	/*
3253 	 * If we can't write to an interior vdev (mirror or RAID-Z),
3254 	 * set vdev_cant_write so that we stop trying to allocate from it.
3255 	 */
3256 	if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE &&
3257 	    vd != NULL && !vd->vdev_ops->vdev_op_leaf) {
3258 		vd->vdev_cant_write = B_TRUE;
3259 	}
3260 
3261 	/*
3262 	 * If a cache flush returns ENOTSUP or ENOTTY, we know that no future
3263 	 * attempts will ever succeed. In this case we set a persistent bit so
3264 	 * that we don't bother with it in the future.
3265 	 */
3266 	if ((zio->io_error == ENOTSUP || zio->io_error == ENOTTY) &&
3267 	    zio->io_type == ZIO_TYPE_IOCTL &&
3268 	    zio->io_cmd == DKIOCFLUSHWRITECACHE && vd != NULL)
3269 		vd->vdev_nowritecache = B_TRUE;
3270 
3271 	if (zio->io_error)
3272 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
3273 
3274 	if (vd != NULL && vd->vdev_ops->vdev_op_leaf &&
3275 	    zio->io_physdone != NULL) {
3276 		ASSERT(!(zio->io_flags & ZIO_FLAG_DELEGATED));
3277 		ASSERT(zio->io_child_type == ZIO_CHILD_VDEV);
3278 		zio->io_physdone(zio->io_logical);
3279 	}
3280 
3281 	return (ZIO_PIPELINE_CONTINUE);
3282 }
3283 
3284 void
3285 zio_vdev_io_reissue(zio_t *zio)
3286 {
3287 	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
3288 	ASSERT(zio->io_error == 0);
3289 
3290 	zio->io_stage >>= 1;
3291 }
3292 
3293 void
3294 zio_vdev_io_redone(zio_t *zio)
3295 {
3296 	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE);
3297 
3298 	zio->io_stage >>= 1;
3299 }
3300 
3301 void
3302 zio_vdev_io_bypass(zio_t *zio)
3303 {
3304 	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
3305 	ASSERT(zio->io_error == 0);
3306 
3307 	zio->io_flags |= ZIO_FLAG_IO_BYPASS;
3308 	zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS >> 1;
3309 }
3310 
3311 /*
3312  * ==========================================================================
3313  * Generate and verify checksums
3314  * ==========================================================================
3315  */
3316 static int
3317 zio_checksum_generate(zio_t *zio)
3318 {
3319 	blkptr_t *bp = zio->io_bp;
3320 	enum zio_checksum checksum;
3321 
3322 	if (bp == NULL) {
3323 		/*
3324 		 * This is zio_write_phys().
3325 		 * We're either generating a label checksum, or none at all.
3326 		 */
3327 		checksum = zio->io_prop.zp_checksum;
3328 
3329 		if (checksum == ZIO_CHECKSUM_OFF)
3330 			return (ZIO_PIPELINE_CONTINUE);
3331 
3332 		ASSERT(checksum == ZIO_CHECKSUM_LABEL);
3333 	} else {
3334 		if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) {
3335 			ASSERT(!IO_IS_ALLOCATING(zio));
3336 			checksum = ZIO_CHECKSUM_GANG_HEADER;
3337 		} else {
3338 			checksum = BP_GET_CHECKSUM(bp);
3339 		}
3340 	}
3341 
3342 	zio_checksum_compute(zio, checksum, zio->io_abd, zio->io_size);
3343 
3344 	return (ZIO_PIPELINE_CONTINUE);
3345 }
3346 
3347 static int
3348 zio_checksum_verify(zio_t *zio)
3349 {
3350 	zio_bad_cksum_t info;
3351 	blkptr_t *bp = zio->io_bp;
3352 	int error;
3353 
3354 	ASSERT(zio->io_vd != NULL);
3355 
3356 	if (bp == NULL) {
3357 		/*
3358 		 * This is zio_read_phys().
3359 		 * We're either verifying a label checksum, or nothing at all.
3360 		 */
3361 		if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF)
3362 			return (ZIO_PIPELINE_CONTINUE);
3363 
3364 		ASSERT(zio->io_prop.zp_checksum == ZIO_CHECKSUM_LABEL);
3365 	}
3366 
3367 	if ((error = zio_checksum_error(zio, &info)) != 0) {
3368 		zio->io_error = error;
3369 		if (error == ECKSUM &&
3370 		    !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
3371 			zfs_ereport_start_checksum(zio->io_spa,
3372 			    zio->io_vd, zio, zio->io_offset,
3373 			    zio->io_size, NULL, &info);
3374 		}
3375 	}
3376 
3377 	return (ZIO_PIPELINE_CONTINUE);
3378 }
3379 
3380 /*
3381  * Called by RAID-Z to ensure we don't compute the checksum twice.
3382  */
3383 void
3384 zio_checksum_verified(zio_t *zio)
3385 {
3386 	zio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
3387 }
3388 
3389 /*
3390  * ==========================================================================
3391  * Error rank.  Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other.
3392  * An error of 0 indicates success.  ENXIO indicates whole-device failure,
3393  * which may be transient (e.g. unplugged) or permament.  ECKSUM and EIO
3394  * indicate errors that are specific to one I/O, and most likely permanent.
3395  * Any other error is presumed to be worse because we weren't expecting it.
3396  * ==========================================================================
3397  */
3398 int
3399 zio_worst_error(int e1, int e2)
3400 {
3401 	static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO };
3402 	int r1, r2;
3403 
3404 	for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++)
3405 		if (e1 == zio_error_rank[r1])
3406 			break;
3407 
3408 	for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++)
3409 		if (e2 == zio_error_rank[r2])
3410 			break;
3411 
3412 	return (r1 > r2 ? e1 : e2);
3413 }
3414 
3415 /*
3416  * ==========================================================================
3417  * I/O completion
3418  * ==========================================================================
3419  */
3420 static int
3421 zio_ready(zio_t *zio)
3422 {
3423 	blkptr_t *bp = zio->io_bp;
3424 	zio_t *pio, *pio_next;
3425 	zio_link_t *zl = NULL;
3426 
3427 	if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY) ||
3428 	    zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_READY))
3429 		return (ZIO_PIPELINE_STOP);
3430 
3431 	if (zio->io_ready) {
3432 		ASSERT(IO_IS_ALLOCATING(zio));
3433 		ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp) ||
3434 		    (zio->io_flags & ZIO_FLAG_NOPWRITE));
3435 		ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0);
3436 
3437 		zio->io_ready(zio);
3438 	}
3439 
3440 	if (bp != NULL && bp != &zio->io_bp_copy)
3441 		zio->io_bp_copy = *bp;
3442 
3443 	if (zio->io_error != 0) {
3444 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
3445 
3446 		if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
3447 			ASSERT(IO_IS_ALLOCATING(zio));
3448 			ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
3449 			/*
3450 			 * We were unable to allocate anything, unreserve and
3451 			 * issue the next I/O to allocate.
3452 			 */
3453 			metaslab_class_throttle_unreserve(
3454 			    spa_normal_class(zio->io_spa),
3455 			    zio->io_prop.zp_copies, zio);
3456 			zio_allocate_dispatch(zio->io_spa);
3457 		}
3458 	}
3459 
3460 	mutex_enter(&zio->io_lock);
3461 	zio->io_state[ZIO_WAIT_READY] = 1;
3462 	pio = zio_walk_parents(zio, &zl);
3463 	mutex_exit(&zio->io_lock);
3464 
3465 	/*
3466 	 * As we notify zio's parents, new parents could be added.
3467 	 * New parents go to the head of zio's io_parent_list, however,
3468 	 * so we will (correctly) not notify them.  The remainder of zio's
3469 	 * io_parent_list, from 'pio_next' onward, cannot change because
3470 	 * all parents must wait for us to be done before they can be done.
3471 	 */
3472 	for (; pio != NULL; pio = pio_next) {
3473 		pio_next = zio_walk_parents(zio, &zl);
3474 		zio_notify_parent(pio, zio, ZIO_WAIT_READY);
3475 	}
3476 
3477 	if (zio->io_flags & ZIO_FLAG_NODATA) {
3478 		if (BP_IS_GANG(bp)) {
3479 			zio->io_flags &= ~ZIO_FLAG_NODATA;
3480 		} else {
3481 			ASSERT((uintptr_t)zio->io_abd < SPA_MAXBLOCKSIZE);
3482 			zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
3483 		}
3484 	}
3485 
3486 	if (zio_injection_enabled &&
3487 	    zio->io_spa->spa_syncing_txg == zio->io_txg)
3488 		zio_handle_ignored_writes(zio);
3489 
3490 	return (ZIO_PIPELINE_CONTINUE);
3491 }
3492 
3493 /*
3494  * Update the allocation throttle accounting.
3495  */
3496 static void
3497 zio_dva_throttle_done(zio_t *zio)
3498 {
3499 	zio_t *lio = zio->io_logical;
3500 	zio_t *pio = zio_unique_parent(zio);
3501 	vdev_t *vd = zio->io_vd;
3502 	int flags = METASLAB_ASYNC_ALLOC;
3503 
3504 	ASSERT3P(zio->io_bp, !=, NULL);
3505 	ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE);
3506 	ASSERT3U(zio->io_priority, ==, ZIO_PRIORITY_ASYNC_WRITE);
3507 	ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV);
3508 	ASSERT(vd != NULL);
3509 	ASSERT3P(vd, ==, vd->vdev_top);
3510 	ASSERT(!(zio->io_flags & (ZIO_FLAG_IO_REPAIR | ZIO_FLAG_IO_RETRY)));
3511 	ASSERT(zio->io_flags & ZIO_FLAG_IO_ALLOCATING);
3512 	ASSERT(!(lio->io_flags & ZIO_FLAG_IO_REWRITE));
3513 	ASSERT(!(lio->io_orig_flags & ZIO_FLAG_NODATA));
3514 
3515 	/*
3516 	 * Parents of gang children can have two flavors -- ones that
3517 	 * allocated the gang header (will have ZIO_FLAG_IO_REWRITE set)
3518 	 * and ones that allocated the constituent blocks. The allocation
3519 	 * throttle needs to know the allocating parent zio so we must find
3520 	 * it here.
3521 	 */
3522 	if (pio->io_child_type == ZIO_CHILD_GANG) {
3523 		/*
3524 		 * If our parent is a rewrite gang child then our grandparent
3525 		 * would have been the one that performed the allocation.
3526 		 */
3527 		if (pio->io_flags & ZIO_FLAG_IO_REWRITE)
3528 			pio = zio_unique_parent(pio);
3529 		flags |= METASLAB_GANG_CHILD;
3530 	}
3531 
3532 	ASSERT(IO_IS_ALLOCATING(pio));
3533 	ASSERT3P(zio, !=, zio->io_logical);
3534 	ASSERT(zio->io_logical != NULL);
3535 	ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR));
3536 	ASSERT0(zio->io_flags & ZIO_FLAG_NOPWRITE);
3537 
3538 	mutex_enter(&pio->io_lock);
3539 	metaslab_group_alloc_decrement(zio->io_spa, vd->vdev_id, pio, flags);
3540 	mutex_exit(&pio->io_lock);
3541 
3542 	metaslab_class_throttle_unreserve(spa_normal_class(zio->io_spa),
3543 	    1, pio);
3544 
3545 	/*
3546 	 * Call into the pipeline to see if there is more work that
3547 	 * needs to be done. If there is work to be done it will be
3548 	 * dispatched to another taskq thread.
3549 	 */
3550 	zio_allocate_dispatch(zio->io_spa);
3551 }
3552 
3553 static int
3554 zio_done(zio_t *zio)
3555 {
3556 	spa_t *spa = zio->io_spa;
3557 	zio_t *lio = zio->io_logical;
3558 	blkptr_t *bp = zio->io_bp;
3559 	vdev_t *vd = zio->io_vd;
3560 	uint64_t psize = zio->io_size;
3561 	zio_t *pio, *pio_next;
3562 	metaslab_class_t *mc = spa_normal_class(spa);
3563 	zio_link_t *zl = NULL;
3564 
3565 	/*
3566 	 * If our children haven't all completed,
3567 	 * wait for them and then repeat this pipeline stage.
3568 	 */
3569 	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE) ||
3570 	    zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE) ||
3571 	    zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_DONE) ||
3572 	    zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_DONE))
3573 		return (ZIO_PIPELINE_STOP);
3574 
3575 	/*
3576 	 * If the allocation throttle is enabled, then update the accounting.
3577 	 * We only track child I/Os that are part of an allocating async
3578 	 * write. We must do this since the allocation is performed
3579 	 * by the logical I/O but the actual write is done by child I/Os.
3580 	 */
3581 	if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING &&
3582 	    zio->io_child_type == ZIO_CHILD_VDEV) {
3583 		ASSERT(mc->mc_alloc_throttle_enabled);
3584 		zio_dva_throttle_done(zio);
3585 	}
3586 
3587 	/*
3588 	 * If the allocation throttle is enabled, verify that
3589 	 * we have decremented the refcounts for every I/O that was throttled.
3590 	 */
3591 	if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
3592 		ASSERT(zio->io_type == ZIO_TYPE_WRITE);
3593 		ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
3594 		ASSERT(bp != NULL);
3595 		metaslab_group_alloc_verify(spa, zio->io_bp, zio);
3596 		VERIFY(refcount_not_held(&mc->mc_alloc_slots, zio));
3597 	}
3598 
3599 	for (int c = 0; c < ZIO_CHILD_TYPES; c++)
3600 		for (int w = 0; w < ZIO_WAIT_TYPES; w++)
3601 			ASSERT(zio->io_children[c][w] == 0);
3602 
3603 	if (bp != NULL && !BP_IS_EMBEDDED(bp)) {
3604 		ASSERT(bp->blk_pad[0] == 0);
3605 		ASSERT(bp->blk_pad[1] == 0);
3606 		ASSERT(bcmp(bp, &zio->io_bp_copy, sizeof (blkptr_t)) == 0 ||
3607 		    (bp == zio_unique_parent(zio)->io_bp));
3608 		if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(bp) &&
3609 		    zio->io_bp_override == NULL &&
3610 		    !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) {
3611 			ASSERT(!BP_SHOULD_BYTESWAP(bp));
3612 			ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(bp));
3613 			ASSERT(BP_COUNT_GANG(bp) == 0 ||
3614 			    (BP_COUNT_GANG(bp) == BP_GET_NDVAS(bp)));
3615 		}
3616 		if (zio->io_flags & ZIO_FLAG_NOPWRITE)
3617 			VERIFY(BP_EQUAL(bp, &zio->io_bp_orig));
3618 	}
3619 
3620 	/*
3621 	 * If there were child vdev/gang/ddt errors, they apply to us now.
3622 	 */
3623 	zio_inherit_child_errors(zio, ZIO_CHILD_VDEV);
3624 	zio_inherit_child_errors(zio, ZIO_CHILD_GANG);
3625 	zio_inherit_child_errors(zio, ZIO_CHILD_DDT);
3626 
3627 	/*
3628 	 * If the I/O on the transformed data was successful, generate any
3629 	 * checksum reports now while we still have the transformed data.
3630 	 */
3631 	if (zio->io_error == 0) {
3632 		while (zio->io_cksum_report != NULL) {
3633 			zio_cksum_report_t *zcr = zio->io_cksum_report;
3634 			uint64_t align = zcr->zcr_align;
3635 			uint64_t asize = P2ROUNDUP(psize, align);
3636 			char *abuf = NULL;
3637 			abd_t *adata = zio->io_abd;
3638 
3639 			if (asize != psize) {
3640 				adata = abd_alloc_linear(asize, B_TRUE);
3641 				abd_copy(adata, zio->io_abd, psize);
3642 				abd_zero_off(adata, psize, asize - psize);
3643 			}
3644 
3645 			if (adata != NULL)
3646 				abuf = abd_borrow_buf_copy(adata, asize);
3647 
3648 			zio->io_cksum_report = zcr->zcr_next;
3649 			zcr->zcr_next = NULL;
3650 			zcr->zcr_finish(zcr, abuf);
3651 			zfs_ereport_free_checksum(zcr);
3652 
3653 			if (adata != NULL)
3654 				abd_return_buf(adata, abuf, asize);
3655 
3656 			if (asize != psize)
3657 				abd_free(adata);
3658 		}
3659 	}
3660 
3661 	zio_pop_transforms(zio);	/* note: may set zio->io_error */
3662 
3663 	vdev_stat_update(zio, psize);
3664 
3665 	if (zio->io_error) {
3666 		/*
3667 		 * If this I/O is attached to a particular vdev,
3668 		 * generate an error message describing the I/O failure
3669 		 * at the block level.  We ignore these errors if the
3670 		 * device is currently unavailable.
3671 		 */
3672 		if (zio->io_error != ECKSUM && vd != NULL && !vdev_is_dead(vd))
3673 			zfs_ereport_post(FM_EREPORT_ZFS_IO, spa, vd, zio, 0, 0);
3674 
3675 		if ((zio->io_error == EIO || !(zio->io_flags &
3676 		    (ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_PROPAGATE))) &&
3677 		    zio == lio) {
3678 			/*
3679 			 * For logical I/O requests, tell the SPA to log the
3680 			 * error and generate a logical data ereport.
3681 			 */
3682 			spa_log_error(spa, zio);
3683 			zfs_ereport_post(FM_EREPORT_ZFS_DATA, spa, NULL, zio,
3684 			    0, 0);
3685 		}
3686 	}
3687 
3688 	if (zio->io_error && zio == lio) {
3689 		/*
3690 		 * Determine whether zio should be reexecuted.  This will
3691 		 * propagate all the way to the root via zio_notify_parent().
3692 		 */
3693 		ASSERT(vd == NULL && bp != NULL);
3694 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3695 
3696 		if (IO_IS_ALLOCATING(zio) &&
3697 		    !(zio->io_flags & ZIO_FLAG_CANFAIL)) {
3698 			if (zio->io_error != ENOSPC)
3699 				zio->io_reexecute |= ZIO_REEXECUTE_NOW;
3700 			else
3701 				zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
3702 		}
3703 
3704 		if ((zio->io_type == ZIO_TYPE_READ ||
3705 		    zio->io_type == ZIO_TYPE_FREE) &&
3706 		    !(zio->io_flags & ZIO_FLAG_SCAN_THREAD) &&
3707 		    zio->io_error == ENXIO &&
3708 		    spa_load_state(spa) == SPA_LOAD_NONE &&
3709 		    spa_get_failmode(spa) != ZIO_FAILURE_MODE_CONTINUE)
3710 			zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
3711 
3712 		if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute)
3713 			zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
3714 
3715 		/*
3716 		 * Here is a possibly good place to attempt to do
3717 		 * either combinatorial reconstruction or error correction
3718 		 * based on checksums.  It also might be a good place
3719 		 * to send out preliminary ereports before we suspend
3720 		 * processing.
3721 		 */
3722 	}
3723 
3724 	/*
3725 	 * If there were logical child errors, they apply to us now.
3726 	 * We defer this until now to avoid conflating logical child
3727 	 * errors with errors that happened to the zio itself when
3728 	 * updating vdev stats and reporting FMA events above.
3729 	 */
3730 	zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL);
3731 
3732 	if ((zio->io_error || zio->io_reexecute) &&
3733 	    IO_IS_ALLOCATING(zio) && zio->io_gang_leader == zio &&
3734 	    !(zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)))
3735 		zio_dva_unallocate(zio, zio->io_gang_tree, bp);
3736 
3737 	zio_gang_tree_free(&zio->io_gang_tree);
3738 
3739 	/*
3740 	 * Godfather I/Os should never suspend.
3741 	 */
3742 	if ((zio->io_flags & ZIO_FLAG_GODFATHER) &&
3743 	    (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND))
3744 		zio->io_reexecute = 0;
3745 
3746 	if (zio->io_reexecute) {
3747 		/*
3748 		 * This is a logical I/O that wants to reexecute.
3749 		 *
3750 		 * Reexecute is top-down.  When an i/o fails, if it's not
3751 		 * the root, it simply notifies its parent and sticks around.
3752 		 * The parent, seeing that it still has children in zio_done(),
3753 		 * does the same.  This percolates all the way up to the root.
3754 		 * The root i/o will reexecute or suspend the entire tree.
3755 		 *
3756 		 * This approach ensures that zio_reexecute() honors
3757 		 * all the original i/o dependency relationships, e.g.
3758 		 * parents not executing until children are ready.
3759 		 */
3760 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3761 
3762 		zio->io_gang_leader = NULL;
3763 
3764 		mutex_enter(&zio->io_lock);
3765 		zio->io_state[ZIO_WAIT_DONE] = 1;
3766 		mutex_exit(&zio->io_lock);
3767 
3768 		/*
3769 		 * "The Godfather" I/O monitors its children but is
3770 		 * not a true parent to them. It will track them through
3771 		 * the pipeline but severs its ties whenever they get into
3772 		 * trouble (e.g. suspended). This allows "The Godfather"
3773 		 * I/O to return status without blocking.
3774 		 */
3775 		zl = NULL;
3776 		for (pio = zio_walk_parents(zio, &zl); pio != NULL;
3777 		    pio = pio_next) {
3778 			zio_link_t *remove_zl = zl;
3779 			pio_next = zio_walk_parents(zio, &zl);
3780 
3781 			if ((pio->io_flags & ZIO_FLAG_GODFATHER) &&
3782 			    (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) {
3783 				zio_remove_child(pio, zio, remove_zl);
3784 				zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3785 			}
3786 		}
3787 
3788 		if ((pio = zio_unique_parent(zio)) != NULL) {
3789 			/*
3790 			 * We're not a root i/o, so there's nothing to do
3791 			 * but notify our parent.  Don't propagate errors
3792 			 * upward since we haven't permanently failed yet.
3793 			 */
3794 			ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
3795 			zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE;
3796 			zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3797 		} else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) {
3798 			/*
3799 			 * We'd fail again if we reexecuted now, so suspend
3800 			 * until conditions improve (e.g. device comes online).
3801 			 */
3802 			zio_suspend(spa, zio);
3803 		} else {
3804 			/*
3805 			 * Reexecution is potentially a huge amount of work.
3806 			 * Hand it off to the otherwise-unused claim taskq.
3807 			 */
3808 			ASSERT(zio->io_tqent.tqent_next == NULL);
3809 			spa_taskq_dispatch_ent(spa, ZIO_TYPE_CLAIM,
3810 			    ZIO_TASKQ_ISSUE, (task_func_t *)zio_reexecute, zio,
3811 			    0, &zio->io_tqent);
3812 		}
3813 		return (ZIO_PIPELINE_STOP);
3814 	}
3815 
3816 	ASSERT(zio->io_child_count == 0);
3817 	ASSERT(zio->io_reexecute == 0);
3818 	ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL));
3819 
3820 	/*
3821 	 * Report any checksum errors, since the I/O is complete.
3822 	 */
3823 	while (zio->io_cksum_report != NULL) {
3824 		zio_cksum_report_t *zcr = zio->io_cksum_report;
3825 		zio->io_cksum_report = zcr->zcr_next;
3826 		zcr->zcr_next = NULL;
3827 		zcr->zcr_finish(zcr, NULL);
3828 		zfs_ereport_free_checksum(zcr);
3829 	}
3830 
3831 	/*
3832 	 * It is the responsibility of the done callback to ensure that this
3833 	 * particular zio is no longer discoverable for adoption, and as
3834 	 * such, cannot acquire any new parents.
3835 	 */
3836 	if (zio->io_done)
3837 		zio->io_done(zio);
3838 
3839 	mutex_enter(&zio->io_lock);
3840 	zio->io_state[ZIO_WAIT_DONE] = 1;
3841 	mutex_exit(&zio->io_lock);
3842 
3843 	zl = NULL;
3844 	for (pio = zio_walk_parents(zio, &zl); pio != NULL; pio = pio_next) {
3845 		zio_link_t *remove_zl = zl;
3846 		pio_next = zio_walk_parents(zio, &zl);
3847 		zio_remove_child(pio, zio, remove_zl);
3848 		zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3849 	}
3850 
3851 	if (zio->io_waiter != NULL) {
3852 		mutex_enter(&zio->io_lock);
3853 		zio->io_executor = NULL;
3854 		cv_broadcast(&zio->io_cv);
3855 		mutex_exit(&zio->io_lock);
3856 	} else {
3857 		zio_destroy(zio);
3858 	}
3859 
3860 	return (ZIO_PIPELINE_STOP);
3861 }
3862 
3863 /*
3864  * ==========================================================================
3865  * I/O pipeline definition
3866  * ==========================================================================
3867  */
3868 static zio_pipe_stage_t *zio_pipeline[] = {
3869 	NULL,
3870 	zio_read_bp_init,
3871 	zio_write_bp_init,
3872 	zio_free_bp_init,
3873 	zio_issue_async,
3874 	zio_write_compress,
3875 	zio_checksum_generate,
3876 	zio_nop_write,
3877 	zio_ddt_read_start,
3878 	zio_ddt_read_done,
3879 	zio_ddt_write,
3880 	zio_ddt_free,
3881 	zio_gang_assemble,
3882 	zio_gang_issue,
3883 	zio_dva_throttle,
3884 	zio_dva_allocate,
3885 	zio_dva_free,
3886 	zio_dva_claim,
3887 	zio_ready,
3888 	zio_vdev_io_start,
3889 	zio_vdev_io_done,
3890 	zio_vdev_io_assess,
3891 	zio_checksum_verify,
3892 	zio_done
3893 };
3894 
3895 
3896 
3897 
3898 /*
3899  * Compare two zbookmark_phys_t's to see which we would reach first in a
3900  * pre-order traversal of the object tree.
3901  *
3902  * This is simple in every case aside from the meta-dnode object. For all other
3903  * objects, we traverse them in order (object 1 before object 2, and so on).
3904  * However, all of these objects are traversed while traversing object 0, since
3905  * the data it points to is the list of objects.  Thus, we need to convert to a
3906  * canonical representation so we can compare meta-dnode bookmarks to
3907  * non-meta-dnode bookmarks.
3908  *
3909  * We do this by calculating "equivalents" for each field of the zbookmark.
3910  * zbookmarks outside of the meta-dnode use their own object and level, and
3911  * calculate the level 0 equivalent (the first L0 blkid that is contained in the
3912  * blocks this bookmark refers to) by multiplying their blkid by their span
3913  * (the number of L0 blocks contained within one block at their level).
3914  * zbookmarks inside the meta-dnode calculate their object equivalent
3915  * (which is L0equiv * dnodes per data block), use 0 for their L0equiv, and use
3916  * level + 1<<31 (any value larger than a level could ever be) for their level.
3917  * This causes them to always compare before a bookmark in their object
3918  * equivalent, compare appropriately to bookmarks in other objects, and to
3919  * compare appropriately to other bookmarks in the meta-dnode.
3920  */
3921 int
3922 zbookmark_compare(uint16_t dbss1, uint8_t ibs1, uint16_t dbss2, uint8_t ibs2,
3923     const zbookmark_phys_t *zb1, const zbookmark_phys_t *zb2)
3924 {
3925 	/*
3926 	 * These variables represent the "equivalent" values for the zbookmark,
3927 	 * after converting zbookmarks inside the meta dnode to their
3928 	 * normal-object equivalents.
3929 	 */
3930 	uint64_t zb1obj, zb2obj;
3931 	uint64_t zb1L0, zb2L0;
3932 	uint64_t zb1level, zb2level;
3933 
3934 	if (zb1->zb_object == zb2->zb_object &&
3935 	    zb1->zb_level == zb2->zb_level &&
3936 	    zb1->zb_blkid == zb2->zb_blkid)
3937 		return (0);
3938 
3939 	/*
3940 	 * BP_SPANB calculates the span in blocks.
3941 	 */
3942 	zb1L0 = (zb1->zb_blkid) * BP_SPANB(ibs1, zb1->zb_level);
3943 	zb2L0 = (zb2->zb_blkid) * BP_SPANB(ibs2, zb2->zb_level);
3944 
3945 	if (zb1->zb_object == DMU_META_DNODE_OBJECT) {
3946 		zb1obj = zb1L0 * (dbss1 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT));
3947 		zb1L0 = 0;
3948 		zb1level = zb1->zb_level + COMPARE_META_LEVEL;
3949 	} else {
3950 		zb1obj = zb1->zb_object;
3951 		zb1level = zb1->zb_level;
3952 	}
3953 
3954 	if (zb2->zb_object == DMU_META_DNODE_OBJECT) {
3955 		zb2obj = zb2L0 * (dbss2 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT));
3956 		zb2L0 = 0;
3957 		zb2level = zb2->zb_level + COMPARE_META_LEVEL;
3958 	} else {
3959 		zb2obj = zb2->zb_object;
3960 		zb2level = zb2->zb_level;
3961 	}
3962 
3963 	/* Now that we have a canonical representation, do the comparison. */
3964 	if (zb1obj != zb2obj)
3965 		return (zb1obj < zb2obj ? -1 : 1);
3966 	else if (zb1L0 != zb2L0)
3967 		return (zb1L0 < zb2L0 ? -1 : 1);
3968 	else if (zb1level != zb2level)
3969 		return (zb1level > zb2level ? -1 : 1);
3970 	/*
3971 	 * This can (theoretically) happen if the bookmarks have the same object
3972 	 * and level, but different blkids, if the block sizes are not the same.
3973 	 * There is presently no way to change the indirect block sizes
3974 	 */
3975 	return (0);
3976 }
3977 
3978 /*
3979  *  This function checks the following: given that last_block is the place that
3980  *  our traversal stopped last time, does that guarantee that we've visited
3981  *  every node under subtree_root?  Therefore, we can't just use the raw output
3982  *  of zbookmark_compare.  We have to pass in a modified version of
3983  *  subtree_root; by incrementing the block id, and then checking whether
3984  *  last_block is before or equal to that, we can tell whether or not having
3985  *  visited last_block implies that all of subtree_root's children have been
3986  *  visited.
3987  */
3988 boolean_t
3989 zbookmark_subtree_completed(const dnode_phys_t *dnp,
3990     const zbookmark_phys_t *subtree_root, const zbookmark_phys_t *last_block)
3991 {
3992 	zbookmark_phys_t mod_zb = *subtree_root;
3993 	mod_zb.zb_blkid++;
3994 	ASSERT(last_block->zb_level == 0);
3995 
3996 	/* The objset_phys_t isn't before anything. */
3997 	if (dnp == NULL)
3998 		return (B_FALSE);
3999 
4000 	/*
4001 	 * We pass in 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT) for the
4002 	 * data block size in sectors, because that variable is only used if
4003 	 * the bookmark refers to a block in the meta-dnode.  Since we don't
4004 	 * know without examining it what object it refers to, and there's no
4005 	 * harm in passing in this value in other cases, we always pass it in.
4006 	 *
4007 	 * We pass in 0 for the indirect block size shift because zb2 must be
4008 	 * level 0.  The indirect block size is only used to calculate the span
4009 	 * of the bookmark, but since the bookmark must be level 0, the span is
4010 	 * always 1, so the math works out.
4011 	 *
4012 	 * If you make changes to how the zbookmark_compare code works, be sure
4013 	 * to make sure that this code still works afterwards.
4014 	 */
4015 	return (zbookmark_compare(dnp->dn_datablkszsec, dnp->dn_indblkshift,
4016 	    1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT), 0, &mod_zb,
4017 	    last_block) <= 0);
4018 }
4019