xref: /illumos-gate/usr/src/uts/common/inet/ip/ip_ftable.c (revision a7e661a2)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * This file contains consumer routines of the IPv4 forwarding engine
28  */
29 
30 #include <sys/types.h>
31 #include <sys/stream.h>
32 #include <sys/stropts.h>
33 #include <sys/strlog.h>
34 #include <sys/dlpi.h>
35 #include <sys/ddi.h>
36 #include <sys/cmn_err.h>
37 #include <sys/policy.h>
38 
39 #include <sys/systm.h>
40 #include <sys/strsun.h>
41 #include <sys/kmem.h>
42 #include <sys/param.h>
43 #include <sys/socket.h>
44 #include <sys/strsubr.h>
45 #include <sys/pattr.h>
46 #include <net/if.h>
47 #include <net/route.h>
48 #include <netinet/in.h>
49 #include <net/if_dl.h>
50 #include <netinet/ip6.h>
51 #include <netinet/icmp6.h>
52 
53 #include <inet/common.h>
54 #include <inet/mi.h>
55 #include <inet/mib2.h>
56 #include <inet/ip.h>
57 #include <inet/ip_impl.h>
58 #include <inet/ip6.h>
59 #include <inet/ip_ndp.h>
60 #include <inet/arp.h>
61 #include <inet/ip_if.h>
62 #include <inet/ip_ire.h>
63 #include <inet/ip_ftable.h>
64 #include <inet/ip_rts.h>
65 #include <inet/nd.h>
66 
67 #include <net/pfkeyv2.h>
68 #include <inet/ipsec_info.h>
69 #include <inet/sadb.h>
70 #include <sys/kmem.h>
71 #include <inet/tcp.h>
72 #include <inet/ipclassifier.h>
73 #include <sys/zone.h>
74 #include <net/radix.h>
75 #include <sys/tsol/label.h>
76 #include <sys/tsol/tnet.h>
77 
78 #define	IS_DEFAULT_ROUTE(ire)	\
79 	(((ire)->ire_type & IRE_DEFAULT) || \
80 	    (((ire)->ire_type & IRE_INTERFACE) && ((ire)->ire_addr == 0)))
81 
82 /*
83  * structure for passing args between ire_ftable_lookup and ire_find_best_route
84  */
85 typedef struct ire_ftable_args_s {
86 	ipaddr_t	ift_addr;
87 	ipaddr_t	ift_mask;
88 	ipaddr_t	ift_gateway;
89 	int		ift_type;
90 	const ipif_t		*ift_ipif;
91 	zoneid_t	ift_zoneid;
92 	uint32_t	ift_ihandle;
93 	const ts_label_t	*ift_tsl;
94 	int		ift_flags;
95 	ire_t		*ift_best_ire;
96 } ire_ftable_args_t;
97 
98 static ire_t	*route_to_dst(const struct sockaddr *, zoneid_t, ip_stack_t *);
99 static ire_t   	*ire_round_robin(irb_t *, zoneid_t, ire_ftable_args_t *,
100     ip_stack_t *);
101 static void		ire_del_host_redir(ire_t *, char *);
102 static boolean_t	ire_find_best_route(struct radix_node *, void *);
103 static int	ip_send_align_hcksum_flags(mblk_t *, ill_t *);
104 static ire_t	*ire_ftable_lookup_simple(ipaddr_t,
105 	ire_t **, zoneid_t,  int, ip_stack_t *);
106 
107 /*
108  * Lookup a route in forwarding table. A specific lookup is indicated by
109  * passing the required parameters and indicating the match required in the
110  * flag field.
111  *
112  * Looking for default route can be done in three ways
113  * 1) pass mask as 0 and set MATCH_IRE_MASK in flags field
114  *    along with other matches.
115  * 2) pass type as IRE_DEFAULT and set MATCH_IRE_TYPE in flags
116  *    field along with other matches.
117  * 3) if the destination and mask are passed as zeros.
118  *
119  * A request to return a default route if no route
120  * is found, can be specified by setting MATCH_IRE_DEFAULT
121  * in flags.
122  *
123  * It does not support recursion more than one level. It
124  * will do recursive lookup only when the lookup maps to
125  * a prefix or default route and MATCH_IRE_RECURSIVE flag is passed.
126  *
127  * If the routing table is setup to allow more than one level
128  * of recursion, the cleaning up cache table will not work resulting
129  * in invalid routing.
130  *
131  * Supports IP_BOUND_IF by following the ipif/ill when recursing.
132  *
133  * NOTE : When this function returns NULL, pire has already been released.
134  *	  pire is valid only when this function successfully returns an
135  *	  ire.
136  */
137 ire_t *
138 ire_ftable_lookup(ipaddr_t addr, ipaddr_t mask, ipaddr_t gateway,
139     int type, const ipif_t *ipif, ire_t **pire, zoneid_t zoneid,
140     uint32_t ihandle, const ts_label_t *tsl, int flags, ip_stack_t *ipst)
141 {
142 	ire_t *ire = NULL;
143 	ipaddr_t gw_addr;
144 	struct rt_sockaddr rdst, rmask;
145 	struct rt_entry *rt;
146 	ire_ftable_args_t margs;
147 	boolean_t found_incomplete = B_FALSE;
148 
149 	ASSERT(ipif == NULL || !ipif->ipif_isv6);
150 
151 	/*
152 	 * When we return NULL from this function, we should make
153 	 * sure that *pire is NULL so that the callers will not
154 	 * wrongly REFRELE the pire.
155 	 */
156 	if (pire != NULL)
157 		*pire = NULL;
158 	/*
159 	 * ire_match_args() will dereference ipif MATCH_IRE_SRC or
160 	 * MATCH_IRE_ILL is set.
161 	 */
162 	if ((flags & (MATCH_IRE_SRC | MATCH_IRE_ILL | MATCH_IRE_ILL_GROUP)) &&
163 	    (ipif == NULL))
164 		return (NULL);
165 
166 	(void) memset(&rdst, 0, sizeof (rdst));
167 	rdst.rt_sin_len = sizeof (rdst);
168 	rdst.rt_sin_family = AF_INET;
169 	rdst.rt_sin_addr.s_addr = addr;
170 
171 	(void) memset(&rmask, 0, sizeof (rmask));
172 	rmask.rt_sin_len = sizeof (rmask);
173 	rmask.rt_sin_family = AF_INET;
174 	rmask.rt_sin_addr.s_addr = mask;
175 
176 	(void) memset(&margs, 0, sizeof (margs));
177 	margs.ift_addr = addr;
178 	margs.ift_mask = mask;
179 	margs.ift_gateway = gateway;
180 	margs.ift_type = type;
181 	margs.ift_ipif = ipif;
182 	margs.ift_zoneid = zoneid;
183 	margs.ift_ihandle = ihandle;
184 	margs.ift_tsl = tsl;
185 	margs.ift_flags = flags;
186 
187 	/*
188 	 * The flags argument passed to ire_ftable_lookup may cause the
189 	 * search to return, not the longest matching prefix, but the
190 	 * "best matching prefix", i.e., the longest prefix that also
191 	 * satisfies constraints imposed via the permutation of flags
192 	 * passed in. To achieve this, we invoke ire_match_args() on
193 	 * each matching leaf in the  radix tree. ire_match_args is
194 	 * invoked by the callback function ire_find_best_route()
195 	 * We hold the global tree lock in read mode when calling
196 	 * rn_match_args.Before dropping the global tree lock, ensure
197 	 * that the radix node can't be deleted by incrementing ire_refcnt.
198 	 */
199 	RADIX_NODE_HEAD_RLOCK(ipst->ips_ip_ftable);
200 	rt = (struct rt_entry *)ipst->ips_ip_ftable->rnh_matchaddr_args(&rdst,
201 	    ipst->ips_ip_ftable, ire_find_best_route, &margs);
202 	ire = margs.ift_best_ire;
203 	RADIX_NODE_HEAD_UNLOCK(ipst->ips_ip_ftable);
204 
205 	if (rt == NULL) {
206 		return (NULL);
207 	} else {
208 		ASSERT(ire != NULL);
209 	}
210 
211 	DTRACE_PROBE2(ire__found, ire_ftable_args_t *, &margs, ire_t *, ire);
212 
213 	if (!IS_DEFAULT_ROUTE(ire))
214 		goto found_ire_held;
215 	/*
216 	 * If default route is found, see if default matching criteria
217 	 * are satisfied.
218 	 */
219 	if (flags & MATCH_IRE_MASK) {
220 		/*
221 		 * we were asked to match a 0 mask, and came back with
222 		 * a default route. Ok to return it.
223 		 */
224 		goto found_default_ire;
225 	}
226 	if ((flags & MATCH_IRE_TYPE) &&
227 	    (type & (IRE_DEFAULT | IRE_INTERFACE))) {
228 		/*
229 		 * we were asked to match a default ire type. Ok to return it.
230 		 */
231 		goto found_default_ire;
232 	}
233 	if (flags & MATCH_IRE_DEFAULT) {
234 		goto found_default_ire;
235 	}
236 	/*
237 	 * we found a default route, but default matching criteria
238 	 * are not specified and we are not explicitly looking for
239 	 * default.
240 	 */
241 	IRE_REFRELE(ire);
242 	return (NULL);
243 found_default_ire:
244 	/*
245 	 * round-robin only if we have more than one route in the bucket.
246 	 */
247 	if ((ire->ire_bucket->irb_ire_cnt > 1) &&
248 	    IS_DEFAULT_ROUTE(ire) &&
249 	    ((flags & (MATCH_IRE_DEFAULT | MATCH_IRE_MASK)) ==
250 	    MATCH_IRE_DEFAULT)) {
251 		ire_t *next_ire;
252 
253 		next_ire = ire_round_robin(ire->ire_bucket, zoneid, &margs,
254 		    ipst);
255 		IRE_REFRELE(ire);
256 		if (next_ire != NULL) {
257 			ire = next_ire;
258 		} else {
259 			/* no route */
260 			return (NULL);
261 		}
262 	}
263 found_ire_held:
264 	if ((flags & MATCH_IRE_RJ_BHOLE) &&
265 	    (ire->ire_flags & (RTF_BLACKHOLE | RTF_REJECT))) {
266 		return (ire);
267 	}
268 	/*
269 	 * At this point, IRE that was found must be an IRE_FORWARDTABLE
270 	 * type.  If this is a recursive lookup and an IRE_INTERFACE type was
271 	 * found, return that.  If it was some other IRE_FORWARDTABLE type of
272 	 * IRE (one of the prefix types), then it is necessary to fill in the
273 	 * parent IRE pointed to by pire, and then lookup the gateway address of
274 	 * the parent.  For backwards compatiblity, if this lookup returns an
275 	 * IRE other than a IRE_CACHETABLE or IRE_INTERFACE, then one more level
276 	 * of lookup is done.
277 	 */
278 	if (flags & MATCH_IRE_RECURSIVE) {
279 		ipif_t	*gw_ipif;
280 		int match_flags = MATCH_IRE_DSTONLY;
281 		ire_t *save_ire;
282 
283 		if (ire->ire_type & IRE_INTERFACE)
284 			return (ire);
285 		if (pire != NULL)
286 			*pire = ire;
287 		/*
288 		 * If we can't find an IRE_INTERFACE or the caller has not
289 		 * asked for pire, we need to REFRELE the save_ire.
290 		 */
291 		save_ire = ire;
292 
293 		/*
294 		 * Currently MATCH_IRE_ILL is never used with
295 		 * (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT) while
296 		 * sending out packets as MATCH_IRE_ILL is used only
297 		 * for communicating with on-link hosts. We can't assert
298 		 * that here as RTM_GET calls this function with
299 		 * MATCH_IRE_ILL | MATCH_IRE_DEFAULT | MATCH_IRE_RECURSIVE.
300 		 * We have already used the MATCH_IRE_ILL in determining
301 		 * the right prefix route at this point. To match the
302 		 * behavior of how we locate routes while sending out
303 		 * packets, we don't want to use MATCH_IRE_ILL below
304 		 * while locating the interface route.
305 		 *
306 		 * ire_ftable_lookup may end up with an incomplete IRE_CACHE
307 		 * entry for the gateway (i.e., one for which the
308 		 * ire_nce->nce_state is not yet ND_REACHABLE). If the caller
309 		 * has specified MATCH_IRE_COMPLETE, such entries will not
310 		 * be returned; instead, we return the IF_RESOLVER ire.
311 		 */
312 		if (ire->ire_ipif != NULL)
313 			match_flags |= MATCH_IRE_ILL_GROUP;
314 
315 		ire = ire_route_lookup(ire->ire_gateway_addr, 0, 0, 0,
316 		    ire->ire_ipif, NULL, zoneid, tsl, match_flags, ipst);
317 		DTRACE_PROBE2(ftable__route__lookup1, (ire_t *), ire,
318 		    (ire_t *), save_ire);
319 		if (ire == NULL ||
320 		    ((ire->ire_type & IRE_CACHE) && ire->ire_nce &&
321 		    ire->ire_nce->nce_state != ND_REACHABLE &&
322 		    (flags & MATCH_IRE_COMPLETE))) {
323 			/*
324 			 * Do not release the parent ire if MATCH_IRE_PARENT
325 			 * is set. Also return it via ire.
326 			 */
327 			if (ire != NULL) {
328 				ire_refrele(ire);
329 				ire = NULL;
330 				found_incomplete = B_TRUE;
331 			}
332 			if (flags & MATCH_IRE_PARENT) {
333 				if (pire != NULL) {
334 					/*
335 					 * Need an extra REFHOLD, if the parent
336 					 * ire is returned via both ire and
337 					 * pire.
338 					 */
339 					IRE_REFHOLD(save_ire);
340 				}
341 				ire = save_ire;
342 			} else {
343 				ire_refrele(save_ire);
344 				if (pire != NULL)
345 					*pire = NULL;
346 			}
347 			if (!found_incomplete)
348 				return (ire);
349 		}
350 		if (ire->ire_type & (IRE_CACHETABLE | IRE_INTERFACE)) {
351 			/*
352 			 * If the caller did not ask for pire, release
353 			 * it now.
354 			 */
355 			if (pire == NULL) {
356 				ire_refrele(save_ire);
357 			}
358 			return (ire);
359 		}
360 		match_flags |= MATCH_IRE_TYPE;
361 		gw_addr = ire->ire_gateway_addr;
362 		gw_ipif = ire->ire_ipif;
363 		ire_refrele(ire);
364 		ire = ire_route_lookup(gw_addr, 0, 0,
365 		    (found_incomplete? IRE_INTERFACE :
366 		    (IRE_CACHETABLE | IRE_INTERFACE)),
367 		    gw_ipif, NULL, zoneid, tsl, match_flags, ipst);
368 		DTRACE_PROBE2(ftable__route__lookup2, (ire_t *), ire,
369 		    (ire_t *), save_ire);
370 		if (ire == NULL ||
371 		    ((ire->ire_type & IRE_CACHE) && ire->ire_nce &&
372 		    ire->ire_nce->nce_state != ND_REACHABLE &&
373 		    (flags & MATCH_IRE_COMPLETE))) {
374 			/*
375 			 * Do not release the parent ire if MATCH_IRE_PARENT
376 			 * is set. Also return it via ire.
377 			 */
378 			if (ire != NULL) {
379 				ire_refrele(ire);
380 				ire = NULL;
381 			}
382 			if (flags & MATCH_IRE_PARENT) {
383 				if (pire != NULL) {
384 					/*
385 					 * Need an extra REFHOLD, if the
386 					 * parent ire is returned via both
387 					 * ire and pire.
388 					 */
389 					IRE_REFHOLD(save_ire);
390 				}
391 				ire = save_ire;
392 			} else {
393 				ire_refrele(save_ire);
394 				if (pire != NULL)
395 					*pire = NULL;
396 			}
397 			return (ire);
398 		} else if (pire == NULL) {
399 			/*
400 			 * If the caller did not ask for pire, release
401 			 * it now.
402 			 */
403 			ire_refrele(save_ire);
404 		}
405 		return (ire);
406 	}
407 	ASSERT(pire == NULL || *pire == NULL);
408 	return (ire);
409 }
410 
411 /*
412  * This function is called by
413  * ip_fast_forward->ire_forward_simple
414  * The optimizations of this function over ire_ftable_lookup are:
415  *	o removing unnecessary flag matching
416  *	o doing longest prefix match instead of overloading it further
417  *	  with the unnecessary "best_prefix_match"
418  *	o Does not do round robin of default route for every packet
419  *	o inlines code of ire_ctable_lookup to look for nexthop cache
420  *	  entry before calling ire_route_lookup
421  */
422 static ire_t *
423 ire_ftable_lookup_simple(ipaddr_t addr,
424     ire_t **pire, zoneid_t zoneid, int flags,
425     ip_stack_t *ipst)
426 {
427 	ire_t *ire = NULL;
428 	ire_t *tmp_ire = NULL;
429 	struct rt_sockaddr rdst;
430 	struct rt_entry *rt;
431 	irb_t *irb_ptr;
432 	ire_t *save_ire;
433 	int match_flags;
434 
435 	rdst.rt_sin_len = sizeof (rdst);
436 	rdst.rt_sin_family = AF_INET;
437 	rdst.rt_sin_addr.s_addr = addr;
438 
439 	/*
440 	 * This is basically inlining  a simpler version of ire_match_args
441 	 */
442 	RADIX_NODE_HEAD_RLOCK(ipst->ips_ip_ftable);
443 
444 	rt = (struct rt_entry *)ipst->ips_ip_ftable->rnh_matchaddr_args(&rdst,
445 	    ipst->ips_ip_ftable, NULL, NULL);
446 
447 	if (rt == NULL) {
448 		RADIX_NODE_HEAD_UNLOCK(ipst->ips_ip_ftable);
449 		return (NULL);
450 	}
451 	irb_ptr = &rt->rt_irb;
452 	if (irb_ptr == NULL || irb_ptr->irb_ire_cnt == 0) {
453 		RADIX_NODE_HEAD_UNLOCK(ipst->ips_ip_ftable);
454 		return (NULL);
455 	}
456 
457 	rw_enter(&irb_ptr->irb_lock, RW_READER);
458 	for (ire = irb_ptr->irb_ire; ire != NULL; ire = ire->ire_next) {
459 		if (ire->ire_zoneid == zoneid)
460 			break;
461 	}
462 
463 	if (ire == NULL || (ire->ire_marks & IRE_MARK_CONDEMNED)) {
464 		rw_exit(&irb_ptr->irb_lock);
465 		RADIX_NODE_HEAD_UNLOCK(ipst->ips_ip_ftable);
466 		return (NULL);
467 	}
468 	/* we have a ire that matches */
469 	if (ire != NULL)
470 		IRE_REFHOLD(ire);
471 	rw_exit(&irb_ptr->irb_lock);
472 	RADIX_NODE_HEAD_UNLOCK(ipst->ips_ip_ftable);
473 
474 	if ((flags & MATCH_IRE_RJ_BHOLE) &&
475 	    (ire->ire_flags & (RTF_BLACKHOLE | RTF_REJECT))) {
476 		return (ire);
477 	}
478 	/*
479 	 * At this point, IRE that was found must be an IRE_FORWARDTABLE
480 	 * type.  If this is a recursive lookup and an IRE_INTERFACE type was
481 	 * found, return that.  If it was some other IRE_FORWARDTABLE type of
482 	 * IRE (one of the prefix types), then it is necessary to fill in the
483 	 * parent IRE pointed to by pire, and then lookup the gateway address of
484 	 * the parent.  For backwards compatiblity, if this lookup returns an
485 	 * IRE other than a IRE_CACHETABLE or IRE_INTERFACE, then one more level
486 	 * of lookup is done.
487 	 */
488 	match_flags = MATCH_IRE_DSTONLY;
489 
490 	if (ire->ire_type & IRE_INTERFACE)
491 		return (ire);
492 	*pire = ire;
493 	/*
494 	 * If we can't find an IRE_INTERFACE or the caller has not
495 	 * asked for pire, we need to REFRELE the save_ire.
496 	 */
497 	save_ire = ire;
498 
499 	/*
500 	 * Currently MATCH_IRE_ILL is never used with
501 	 * (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT) while
502 	 * sending out packets as MATCH_IRE_ILL is used only
503 	 * for communicating with on-link hosts. We can't assert
504 	 * that here as RTM_GET calls this function with
505 	 * MATCH_IRE_ILL | MATCH_IRE_DEFAULT | MATCH_IRE_RECURSIVE.
506 	 * We have already used the MATCH_IRE_ILL in determining
507 	 * the right prefix route at this point. To match the
508 	 * behavior of how we locate routes while sending out
509 	 * packets, we don't want to use MATCH_IRE_ILL below
510 	 * while locating the interface route.
511 	 *
512 	 * ire_ftable_lookup may end up with an incomplete IRE_CACHE
513 	 * entry for the gateway (i.e., one for which the
514 	 * ire_nce->nce_state is not yet ND_REACHABLE). If the caller
515 	 * has specified MATCH_IRE_COMPLETE, such entries will not
516 	 * be returned; instead, we return the IF_RESOLVER ire.
517 	 */
518 
519 	if (ire->ire_ipif == NULL) {
520 		tmp_ire = ire;
521 		/*
522 		 * Look to see if the nexthop entry is in the
523 		 * cachetable (I am inlining a simpler ire_cache_lookup
524 		 * here).
525 		 */
526 		ire = ire_cache_lookup_simple(ire->ire_gateway_addr, ipst);
527 		if (ire == NULL) {
528 			/* Try ire_route_lookup */
529 			ire = tmp_ire;
530 		} else {
531 			goto solved;
532 		}
533 	}
534 	if (ire->ire_ipif != NULL)
535 		match_flags |= MATCH_IRE_ILL_GROUP;
536 
537 	ire = ire_route_lookup(ire->ire_gateway_addr, 0,
538 	    0, 0, ire->ire_ipif, NULL, zoneid, NULL, match_flags, ipst);
539 solved:
540 	DTRACE_PROBE2(ftable__route__lookup1, (ire_t *), ire,
541 	    (ire_t *), save_ire);
542 	if (ire == NULL) {
543 		/*
544 		 * Do not release the parent ire if MATCH_IRE_PARENT
545 		 * is set. Also return it via ire.
546 		 */
547 		ire_refrele(save_ire);
548 		*pire = NULL;
549 		return (ire);
550 	}
551 	if (ire->ire_type & (IRE_CACHETABLE | IRE_INTERFACE)) {
552 		/*
553 		 * If the caller did not ask for pire, release
554 		 * it now.
555 		 */
556 		if (pire == NULL) {
557 			ire_refrele(save_ire);
558 		}
559 	}
560 	return (ire);
561 }
562 
563 /*
564  * Find an IRE_OFFSUBNET IRE entry for the multicast address 'group'
565  * that goes through 'ipif'. As a fallback, a route that goes through
566  * ipif->ipif_ill can be returned.
567  */
568 ire_t *
569 ipif_lookup_multi_ire(ipif_t *ipif, ipaddr_t group)
570 {
571 	ire_t	*ire;
572 	ire_t	*save_ire = NULL;
573 	ire_t   *gw_ire;
574 	irb_t   *irb;
575 	ipaddr_t gw_addr;
576 	int	match_flags = MATCH_IRE_TYPE | MATCH_IRE_ILL;
577 	ip_stack_t *ipst = ipif->ipif_ill->ill_ipst;
578 
579 	ASSERT(CLASSD(group));
580 
581 	ire = ire_ftable_lookup(group, 0, 0, 0, NULL, NULL, ALL_ZONES, 0,
582 	    NULL, MATCH_IRE_DEFAULT, ipst);
583 
584 	if (ire == NULL)
585 		return (NULL);
586 
587 	irb = ire->ire_bucket;
588 	ASSERT(irb);
589 
590 	IRB_REFHOLD(irb);
591 	ire_refrele(ire);
592 	for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) {
593 		if (ire->ire_addr != group ||
594 		    ipif->ipif_zoneid != ire->ire_zoneid &&
595 		    ire->ire_zoneid != ALL_ZONES) {
596 			continue;
597 		}
598 
599 		switch (ire->ire_type) {
600 		case IRE_DEFAULT:
601 		case IRE_PREFIX:
602 		case IRE_HOST:
603 			gw_addr = ire->ire_gateway_addr;
604 			gw_ire = ire_ftable_lookup(gw_addr, 0, 0, IRE_INTERFACE,
605 			    ipif, NULL, ALL_ZONES, 0, NULL, match_flags, ipst);
606 
607 			if (gw_ire != NULL) {
608 				if (save_ire != NULL) {
609 					ire_refrele(save_ire);
610 				}
611 				IRE_REFHOLD(ire);
612 				if (gw_ire->ire_ipif == ipif) {
613 					ire_refrele(gw_ire);
614 
615 					IRB_REFRELE(irb);
616 					return (ire);
617 				}
618 				ire_refrele(gw_ire);
619 				save_ire = ire;
620 			}
621 			break;
622 		case IRE_IF_NORESOLVER:
623 		case IRE_IF_RESOLVER:
624 			if (ire->ire_ipif == ipif) {
625 				if (save_ire != NULL) {
626 					ire_refrele(save_ire);
627 				}
628 				IRE_REFHOLD(ire);
629 
630 				IRB_REFRELE(irb);
631 				return (ire);
632 			}
633 			break;
634 		}
635 	}
636 	IRB_REFRELE(irb);
637 
638 	return (save_ire);
639 }
640 
641 /*
642  * Find an IRE_INTERFACE for the multicast group.
643  * Allows different routes for multicast addresses
644  * in the unicast routing table (akin to 224.0.0.0 but could be more specific)
645  * which point at different interfaces. This is used when IP_MULTICAST_IF
646  * isn't specified (when sending) and when IP_ADD_MEMBERSHIP doesn't
647  * specify the interface to join on.
648  *
649  * Supports IP_BOUND_IF by following the ipif/ill when recursing.
650  */
651 ire_t *
652 ire_lookup_multi(ipaddr_t group, zoneid_t zoneid, ip_stack_t *ipst)
653 {
654 	ire_t	*ire;
655 	ipif_t	*ipif = NULL;
656 	int	match_flags = MATCH_IRE_TYPE;
657 	ipaddr_t gw_addr;
658 
659 	ire = ire_ftable_lookup(group, 0, 0, 0, NULL, NULL, zoneid,
660 	    0, NULL, MATCH_IRE_DEFAULT, ipst);
661 
662 	/* We search a resolvable ire in case of multirouting. */
663 	if ((ire != NULL) && (ire->ire_flags & RTF_MULTIRT)) {
664 		ire_t *cire = NULL;
665 		/*
666 		 * If the route is not resolvable, the looked up ire
667 		 * may be changed here. In that case, ire_multirt_lookup()
668 		 * IRE_REFRELE the original ire and change it.
669 		 */
670 		(void) ire_multirt_lookup(&cire, &ire, MULTIRT_CACHEGW,
671 		    NULL, ipst);
672 		if (cire != NULL)
673 			ire_refrele(cire);
674 	}
675 	if (ire == NULL)
676 		return (NULL);
677 	/*
678 	 * Make sure we follow ire_ipif.
679 	 *
680 	 * We need to determine the interface route through
681 	 * which the gateway will be reached. We don't really
682 	 * care which interface is picked if the interface is
683 	 * part of a group.
684 	 */
685 	if (ire->ire_ipif != NULL) {
686 		ipif = ire->ire_ipif;
687 		match_flags |= MATCH_IRE_ILL_GROUP;
688 	}
689 
690 	switch (ire->ire_type) {
691 	case IRE_DEFAULT:
692 	case IRE_PREFIX:
693 	case IRE_HOST:
694 		gw_addr = ire->ire_gateway_addr;
695 		ire_refrele(ire);
696 		ire = ire_ftable_lookup(gw_addr, 0, 0,
697 		    IRE_INTERFACE, ipif, NULL, zoneid, 0,
698 		    NULL, match_flags, ipst);
699 		return (ire);
700 	case IRE_IF_NORESOLVER:
701 	case IRE_IF_RESOLVER:
702 		return (ire);
703 	default:
704 		ire_refrele(ire);
705 		return (NULL);
706 	}
707 }
708 
709 /*
710  * Delete the passed in ire if the gateway addr matches
711  */
712 void
713 ire_del_host_redir(ire_t *ire, char *gateway)
714 {
715 	if ((ire->ire_flags & RTF_DYNAMIC) &&
716 	    (ire->ire_gateway_addr == *(ipaddr_t *)gateway))
717 		ire_delete(ire);
718 }
719 
720 /*
721  * Search for all HOST REDIRECT routes that are
722  * pointing at the specified gateway and
723  * delete them. This routine is called only
724  * when a default gateway is going away.
725  */
726 void
727 ire_delete_host_redirects(ipaddr_t gateway, ip_stack_t *ipst)
728 {
729 	struct rtfuncarg rtfarg;
730 
731 	(void) memset(&rtfarg, 0, sizeof (rtfarg));
732 	rtfarg.rt_func = ire_del_host_redir;
733 	rtfarg.rt_arg = (void *)&gateway;
734 	(void) ipst->ips_ip_ftable->rnh_walktree_mt(ipst->ips_ip_ftable,
735 	    rtfunc, &rtfarg, irb_refhold_rn, irb_refrele_rn);
736 }
737 
738 struct ihandle_arg {
739 	uint32_t ihandle;
740 	ire_t	 *ire;
741 };
742 
743 static int
744 ire_ihandle_onlink_match(struct radix_node *rn, void *arg)
745 {
746 	struct rt_entry *rt;
747 	irb_t *irb;
748 	ire_t *ire;
749 	struct ihandle_arg *ih = arg;
750 
751 	rt = (struct rt_entry *)rn;
752 	ASSERT(rt != NULL);
753 	irb = &rt->rt_irb;
754 	for (ire = irb->irb_ire; ire != NULL; ire = ire->ire_next) {
755 		if ((ire->ire_type & IRE_INTERFACE) &&
756 		    (ire->ire_ihandle == ih->ihandle)) {
757 			ih->ire = ire;
758 			IRE_REFHOLD(ire);
759 			return (1);
760 		}
761 	}
762 	return (0);
763 }
764 
765 /*
766  * Locate the interface ire that is tied to the cache ire 'cire' via
767  * cire->ire_ihandle.
768  *
769  * We are trying to create the cache ire for an onlink destn. or
770  * gateway in 'cire'. We are called from ire_add_v4() in the IRE_IF_RESOLVER
771  * case, after the ire has come back from ARP.
772  */
773 ire_t *
774 ire_ihandle_lookup_onlink(ire_t *cire)
775 {
776 	ire_t	*ire;
777 	int	match_flags;
778 	struct ihandle_arg ih;
779 	ip_stack_t *ipst;
780 
781 	ASSERT(cire != NULL);
782 	ipst = cire->ire_ipst;
783 
784 	/*
785 	 * We don't need to specify the zoneid to ire_ftable_lookup() below
786 	 * because the ihandle refers to an ipif which can be in only one zone.
787 	 */
788 	match_flags =  MATCH_IRE_TYPE | MATCH_IRE_IHANDLE | MATCH_IRE_MASK;
789 	/*
790 	 * We know that the mask of the interface ire equals cire->ire_cmask.
791 	 * (When ip_newroute() created 'cire' for an on-link destn. it set its
792 	 * cmask from the interface ire's mask)
793 	 */
794 	ire = ire_ftable_lookup(cire->ire_addr, cire->ire_cmask, 0,
795 	    IRE_INTERFACE, NULL, NULL, ALL_ZONES, cire->ire_ihandle,
796 	    NULL, match_flags, ipst);
797 	if (ire != NULL)
798 		return (ire);
799 	/*
800 	 * If we didn't find an interface ire above, we can't declare failure.
801 	 * For backwards compatibility, we need to support prefix routes
802 	 * pointing to next hop gateways that are not on-link.
803 	 *
804 	 * In the resolver/noresolver case, ip_newroute() thinks it is creating
805 	 * the cache ire for an onlink destination in 'cire'. But 'cire' is
806 	 * not actually onlink, because ire_ftable_lookup() cheated it, by
807 	 * doing ire_route_lookup() twice and returning an interface ire.
808 	 *
809 	 * Eg. default	-	gw1			(line 1)
810 	 *	gw1	-	gw2			(line 2)
811 	 *	gw2	-	hme0			(line 3)
812 	 *
813 	 * In the above example, ip_newroute() tried to create the cache ire
814 	 * 'cire' for gw1, based on the interface route in line 3. The
815 	 * ire_ftable_lookup() above fails, because there is no interface route
816 	 * to reach gw1. (it is gw2). We fall thru below.
817 	 *
818 	 * Do a brute force search based on the ihandle in a subset of the
819 	 * forwarding tables, corresponding to cire->ire_cmask. Otherwise
820 	 * things become very complex, since we don't have 'pire' in this
821 	 * case. (Also note that this method is not possible in the offlink
822 	 * case because we don't know the mask)
823 	 */
824 	(void) memset(&ih, 0, sizeof (ih));
825 	ih.ihandle = cire->ire_ihandle;
826 	(void) ipst->ips_ip_ftable->rnh_walktree_mt(ipst->ips_ip_ftable,
827 	    ire_ihandle_onlink_match, &ih, irb_refhold_rn, irb_refrele_rn);
828 	return (ih.ire);
829 }
830 
831 /*
832  * IRE iterator used by ire_ftable_lookup[_v6]() to process multiple default
833  * routes. Given a starting point in the hash list (ire_origin), walk the IREs
834  * in the bucket skipping default interface routes and deleted entries.
835  * Returns the next IRE (unheld), or NULL when we're back to the starting point.
836  * Assumes that the caller holds a reference on the IRE bucket.
837  */
838 ire_t *
839 ire_get_next_default_ire(ire_t *ire, ire_t *ire_origin)
840 {
841 	ASSERT(ire_origin->ire_bucket != NULL);
842 	ASSERT(ire != NULL);
843 
844 	do {
845 		ire = ire->ire_next;
846 		if (ire == NULL)
847 			ire = ire_origin->ire_bucket->irb_ire;
848 		if (ire == ire_origin)
849 			return (NULL);
850 	} while ((ire->ire_type & IRE_INTERFACE) ||
851 	    (ire->ire_marks & IRE_MARK_CONDEMNED));
852 	ASSERT(ire != NULL);
853 	return (ire);
854 }
855 
856 static ipif_t *
857 ire_forward_src_ipif(ipaddr_t dst, ire_t *sire, ire_t *ire, ill_t *dst_ill,
858     int zoneid, ushort_t *marks)
859 {
860 	ipif_t *src_ipif;
861 	ip_stack_t *ipst = dst_ill->ill_ipst;
862 
863 	/*
864 	 * Pick the best source address from dst_ill.
865 	 *
866 	 * 1) If it is part of a multipathing group, we would
867 	 *    like to spread the inbound packets across different
868 	 *    interfaces. ipif_select_source picks a random source
869 	 *    across the different ills in the group.
870 	 *
871 	 * 2) If it is not part of a multipathing group, we try
872 	 *    to pick the source address from the destination
873 	 *    route. Clustering assumes that when we have multiple
874 	 *    prefixes hosted on an interface, the prefix of the
875 	 *    source address matches the prefix of the destination
876 	 *    route. We do this only if the address is not
877 	 *    DEPRECATED.
878 	 *
879 	 * 3) If the conn is in a different zone than the ire, we
880 	 *    need to pick a source address from the right zone.
881 	 *
882 	 * NOTE : If we hit case (1) above, the prefix of the source
883 	 *	  address picked may not match the prefix of the
884 	 *	  destination routes prefix as ipif_select_source
885 	 *	  does not look at "dst" while picking a source
886 	 *	  address.
887 	 *	  If we want the same behavior as (2), we will need
888 	 *	  to change the behavior of ipif_select_source.
889 	 */
890 
891 	if ((sire != NULL) && (sire->ire_flags & RTF_SETSRC)) {
892 		/*
893 		 * The RTF_SETSRC flag is set in the parent ire (sire).
894 		 * Check that the ipif matching the requested source
895 		 * address still exists.
896 		 */
897 		src_ipif = ipif_lookup_addr(sire->ire_src_addr, NULL,
898 		    zoneid, NULL, NULL, NULL, NULL, ipst);
899 		return (src_ipif);
900 	}
901 	*marks |= IRE_MARK_USESRC_CHECK;
902 	if ((dst_ill->ill_group != NULL) ||
903 	    (ire->ire_ipif->ipif_flags & IPIF_DEPRECATED) ||
904 	    (dst_ill->ill_usesrc_ifindex != 0)) {
905 		src_ipif = ipif_select_source(dst_ill, dst, zoneid);
906 		if (src_ipif == NULL)
907 			return (NULL);
908 
909 	} else {
910 		src_ipif = ire->ire_ipif;
911 		ASSERT(src_ipif != NULL);
912 		/* hold src_ipif for uniformity */
913 		ipif_refhold(src_ipif);
914 	}
915 	return (src_ipif);
916 }
917 
918 /*
919  * This function is called by ip_rput_noire() and ip_fast_forward()
920  * to resolve the route of incoming packet that needs to be forwarded.
921  * If the ire of the nexthop is not already in the cachetable, this
922  * routine will insert it to the table, but won't trigger ARP resolution yet.
923  * Thus unlike ip_newroute, this function adds incomplete ires to
924  * the cachetable. ARP resolution for these ires are  delayed until
925  * after all of the packet processing is completed and its ready to
926  * be sent out on the wire, Eventually, the packet transmit routine
927  * ip_xmit_v4() attempts to send a packet  to the driver. If it finds
928  * that there is no link layer information, it will do the arp
929  * resolution and queue the packet in ire->ire_nce->nce_qd_mp and
930  * then send it out once the arp resolution is over
931  * (see ip_xmit_v4()->ire_arpresolve()). This scheme is similar to
932  * the model of BSD/SunOS 4
933  *
934  * In future, the insertion of incomplete ires in the cachetable should
935  * be implemented in hostpath as well, as doing so will greatly reduce
936  * the existing complexity for code paths that depend on the context of
937  * the sender (such as IPsec).
938  *
939  * Thus this scheme of adding incomplete ires in cachetable in forwarding
940  * path can be used as a template for simplifying the hostpath.
941  */
942 
943 ire_t *
944 ire_forward(ipaddr_t dst, enum ire_forward_action *ret_action,
945     ire_t *supplied_ire, ire_t *supplied_sire, const struct ts_label_s *tsl,
946     ip_stack_t *ipst)
947 {
948 	ipaddr_t gw = 0;
949 	ire_t	*ire = NULL;
950 	ire_t   *sire = NULL, *save_ire;
951 	ill_t *dst_ill = NULL;
952 	int error;
953 	zoneid_t zoneid;
954 	ipif_t *src_ipif = NULL;
955 	mblk_t *res_mp;
956 	ushort_t ire_marks = 0;
957 	tsol_gcgrp_t *gcgrp = NULL;
958 	tsol_gcgrp_addr_t ga;
959 
960 	zoneid = GLOBAL_ZONEID;
961 
962 	if (supplied_ire != NULL) {
963 		/* We have arrived here from ipfil_sendpkt */
964 		ire = supplied_ire;
965 		sire = supplied_sire;
966 		goto create_irecache;
967 	}
968 
969 	ire = ire_ftable_lookup(dst, 0, 0, 0, NULL, &sire, zoneid, 0,
970 	    tsl, MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT |
971 	    MATCH_IRE_RJ_BHOLE | MATCH_IRE_PARENT|MATCH_IRE_SECATTR, ipst);
972 
973 	if (ire == NULL) {
974 		ip_rts_change(RTM_MISS, dst, 0, 0, 0, 0, 0, 0, RTA_DST, ipst);
975 		goto icmp_err_ret;
976 	}
977 
978 	/*
979 	 * If we encounter CGTP, we should  have the caller use
980 	 * ip_newroute to resolve multirt instead of this function.
981 	 * CGTP specs explicitly state that it can't be used with routers.
982 	 * This essentially prevents insertion of incomplete RTF_MULTIRT
983 	 * ires in cachetable.
984 	 */
985 	if (ipst->ips_ip_cgtp_filter &&
986 	    ((ire->ire_flags & RTF_MULTIRT) ||
987 	    ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)))) {
988 		ip3dbg(("ire_forward: packet is to be multirouted- "
989 		    "handing it to ip_newroute\n"));
990 		if (sire != NULL)
991 			ire_refrele(sire);
992 		ire_refrele(ire);
993 		/*
994 		 * Inform caller about encountering of multirt so that
995 		 * ip_newroute() can be called.
996 		 */
997 		*ret_action = Forward_check_multirt;
998 		return (NULL);
999 	}
1000 
1001 	/*
1002 	 * Verify that the returned IRE does not have either
1003 	 * the RTF_REJECT or RTF_BLACKHOLE flags set and that the IRE is
1004 	 * either an IRE_CACHE, IRE_IF_NORESOLVER or IRE_IF_RESOLVER.
1005 	 */
1006 	if ((ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) ||
1007 	    (ire->ire_type & (IRE_CACHE | IRE_INTERFACE)) == 0) {
1008 		ip3dbg(("ire 0x%p is not cache/resolver/noresolver\n",
1009 		    (void *)ire));
1010 		goto icmp_err_ret;
1011 	}
1012 
1013 	/*
1014 	 * If we already have a fully resolved IRE CACHE of the
1015 	 * nexthop router, just hand over the cache entry
1016 	 * and we are done.
1017 	 */
1018 
1019 	if (ire->ire_type & IRE_CACHE) {
1020 
1021 		/*
1022 		 * If we are using this ire cache entry as a
1023 		 * gateway to forward packets, chances are we
1024 		 * will be using it again. So turn off
1025 		 * the temporary flag, thus reducing its
1026 		 * chances of getting deleted frequently.
1027 		 */
1028 		if (ire->ire_marks & IRE_MARK_TEMPORARY) {
1029 			irb_t *irb = ire->ire_bucket;
1030 			rw_enter(&irb->irb_lock, RW_WRITER);
1031 			/*
1032 			 * We need to recheck for IRE_MARK_TEMPORARY after
1033 			 * acquiring the lock in order to guarantee
1034 			 * irb_tmp_ire_cnt
1035 			 */
1036 			if (ire->ire_marks & IRE_MARK_TEMPORARY) {
1037 				ire->ire_marks &= ~IRE_MARK_TEMPORARY;
1038 				irb->irb_tmp_ire_cnt--;
1039 			}
1040 			rw_exit(&irb->irb_lock);
1041 		}
1042 
1043 		if (sire != NULL) {
1044 			UPDATE_OB_PKT_COUNT(sire);
1045 			sire->ire_last_used_time = lbolt;
1046 			ire_refrele(sire);
1047 		}
1048 		*ret_action = Forward_ok;
1049 		return (ire);
1050 	}
1051 create_irecache:
1052 	/*
1053 	 * Increment the ire_ob_pkt_count field for ire if it is an
1054 	 * INTERFACE (IF_RESOLVER or IF_NORESOLVER) IRE type, and
1055 	 * increment the same for the parent IRE, sire, if it is some
1056 	 * sort of prefix IRE (which includes DEFAULT, PREFIX, and HOST).
1057 	 */
1058 	if ((ire->ire_type & IRE_INTERFACE) != 0) {
1059 		UPDATE_OB_PKT_COUNT(ire);
1060 		ire->ire_last_used_time = lbolt;
1061 	}
1062 
1063 	/*
1064 	 * sire must be either IRE_CACHETABLE OR IRE_INTERFACE type
1065 	 */
1066 	if (sire != NULL) {
1067 		gw = sire->ire_gateway_addr;
1068 		ASSERT((sire->ire_type &
1069 		    (IRE_CACHETABLE | IRE_INTERFACE)) == 0);
1070 		UPDATE_OB_PKT_COUNT(sire);
1071 		sire->ire_last_used_time = lbolt;
1072 	}
1073 
1074 	/* Obtain dst_ill */
1075 	dst_ill = ip_newroute_get_dst_ill(ire->ire_ipif->ipif_ill);
1076 	if (dst_ill == NULL) {
1077 		ip2dbg(("ire_forward no dst ill; ire 0x%p\n",
1078 		    (void *)ire));
1079 		goto icmp_err_ret;
1080 	}
1081 
1082 	ASSERT(src_ipif == NULL);
1083 	/* Now obtain the src_ipif */
1084 	src_ipif = ire_forward_src_ipif(dst, sire, ire, dst_ill,
1085 	    zoneid, &ire_marks);
1086 	if (src_ipif == NULL)
1087 		goto icmp_err_ret;
1088 
1089 	switch (ire->ire_type) {
1090 	case IRE_IF_NORESOLVER:
1091 		/* create ire_cache for ire_addr endpoint */
1092 		if (dst_ill->ill_phys_addr_length != IP_ADDR_LEN &&
1093 		    dst_ill->ill_resolver_mp == NULL) {
1094 			ip1dbg(("ire_forward: dst_ill %p "
1095 			    "for IRE_IF_NORESOLVER ire %p has "
1096 			    "no ill_resolver_mp\n",
1097 			    (void *)dst_ill, (void *)ire));
1098 			goto icmp_err_ret;
1099 		}
1100 		/* FALLTHRU */
1101 	case IRE_IF_RESOLVER:
1102 		/*
1103 		 * We have the IRE_IF_RESOLVER of the nexthop gateway
1104 		 * and now need to build a IRE_CACHE for it.
1105 		 * In this case, we have the following :
1106 		 *
1107 		 * 1) src_ipif - used for getting a source address.
1108 		 *
1109 		 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This
1110 		 *    means packets using the IRE_CACHE that we will build
1111 		 *    here will go out on dst_ill.
1112 		 *
1113 		 * 3) sire may or may not be NULL. But, the IRE_CACHE that is
1114 		 *    to be created will only be tied to the IRE_INTERFACE
1115 		 *    that was derived from the ire_ihandle field.
1116 		 *
1117 		 *    If sire is non-NULL, it means the destination is
1118 		 *    off-link and we will first create the IRE_CACHE for the
1119 		 *    gateway.
1120 		 */
1121 		res_mp = dst_ill->ill_resolver_mp;
1122 		if (ire->ire_type == IRE_IF_RESOLVER &&
1123 		    (!OK_RESOLVER_MP(res_mp))) {
1124 			goto icmp_err_ret;
1125 		}
1126 		/*
1127 		 * To be at this point in the code with a non-zero gw
1128 		 * means that dst is reachable through a gateway that
1129 		 * we have never resolved.  By changing dst to the gw
1130 		 * addr we resolve the gateway first.
1131 		 */
1132 		if (gw != INADDR_ANY) {
1133 			/*
1134 			 * The source ipif that was determined above was
1135 			 * relative to the destination address, not the
1136 			 * gateway's. If src_ipif was not taken out of
1137 			 * the IRE_IF_RESOLVER entry, we'll need to call
1138 			 * ipif_select_source() again.
1139 			 */
1140 			if (src_ipif != ire->ire_ipif) {
1141 				ipif_refrele(src_ipif);
1142 				src_ipif = ipif_select_source(dst_ill,
1143 				    gw, zoneid);
1144 				if (src_ipif == NULL)
1145 					goto icmp_err_ret;
1146 			}
1147 			dst = gw;
1148 			gw = INADDR_ANY;
1149 		}
1150 		/*
1151 		 * dst has been set to the address of the nexthop.
1152 		 *
1153 		 * TSol note: get security attributes of the nexthop;
1154 		 * Note that the nexthop may either be a gateway, or the
1155 		 * packet destination itself; Detailed explanation of
1156 		 * issues involved is  provided in the  IRE_IF_NORESOLVER
1157 		 * logic in ip_newroute().
1158 		 */
1159 		ga.ga_af = AF_INET;
1160 		IN6_IPADDR_TO_V4MAPPED(dst, &ga.ga_addr);
1161 		gcgrp = gcgrp_lookup(&ga, B_FALSE);
1162 
1163 		if (ire->ire_type == IRE_IF_NORESOLVER)
1164 			dst = ire->ire_addr; /* ire_cache for tunnel endpoint */
1165 
1166 		save_ire = ire;
1167 		/*
1168 		 * create an incomplete IRE_CACHE.
1169 		 * An areq_mp will be generated in ire_arpresolve() for
1170 		 * RESOLVER interfaces.
1171 		 */
1172 		ire = ire_create(
1173 		    (uchar_t *)&dst,		/* dest address */
1174 		    (uchar_t *)&ip_g_all_ones,	/* mask */
1175 		    (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */
1176 		    (uchar_t *)&gw,		/* gateway address */
1177 		    (save_ire->ire_type == IRE_IF_RESOLVER ?  NULL:
1178 		    &save_ire->ire_max_frag),
1179 		    NULL,
1180 		    dst_ill->ill_rq,		/* recv-from queue */
1181 		    dst_ill->ill_wq,		/* send-to queue */
1182 		    IRE_CACHE,			/* IRE type */
1183 		    src_ipif,
1184 		    ire->ire_mask,		/* Parent mask */
1185 		    0,
1186 		    ire->ire_ihandle,	/* Interface handle */
1187 		    0,
1188 		    &(ire->ire_uinfo),
1189 		    NULL,
1190 		    gcgrp,
1191 		    ipst);
1192 		ip1dbg(("incomplete ire_cache 0x%p\n", (void *)ire));
1193 		if (ire != NULL) {
1194 			gcgrp = NULL; /* reference now held by IRE */
1195 			ire->ire_marks |= ire_marks;
1196 			/* add the incomplete ire: */
1197 			error = ire_add(&ire, NULL, NULL, NULL, B_TRUE);
1198 			if (error == 0 && ire != NULL) {
1199 				ire->ire_max_frag = save_ire->ire_max_frag;
1200 				ip1dbg(("setting max_frag to %d in ire 0x%p\n",
1201 				    ire->ire_max_frag, (void *)ire));
1202 			} else {
1203 				ire_refrele(save_ire);
1204 				goto icmp_err_ret;
1205 			}
1206 		} else {
1207 			if (gcgrp != NULL) {
1208 				GCGRP_REFRELE(gcgrp);
1209 				gcgrp = NULL;
1210 			}
1211 		}
1212 
1213 		ire_refrele(save_ire);
1214 		break;
1215 	default:
1216 		break;
1217 	}
1218 
1219 	*ret_action = Forward_ok;
1220 	if (sire != NULL)
1221 		ire_refrele(sire);
1222 	if (dst_ill != NULL)
1223 		ill_refrele(dst_ill);
1224 	if (src_ipif != NULL)
1225 		ipif_refrele(src_ipif);
1226 	return (ire);
1227 icmp_err_ret:
1228 	*ret_action = Forward_ret_icmp_err;
1229 	if (sire != NULL)
1230 		ire_refrele(sire);
1231 	if (dst_ill != NULL)
1232 		ill_refrele(dst_ill);
1233 	if (src_ipif != NULL)
1234 		ipif_refrele(src_ipif);
1235 	if (ire != NULL) {
1236 		if (ire->ire_flags & RTF_BLACKHOLE)
1237 			*ret_action = Forward_blackhole;
1238 		ire_refrele(ire);
1239 	}
1240 	return (NULL);
1241 }
1242 
1243 /*
1244  * Since caller is ip_fast_forward, there is no CGTP or Tsol test
1245  * Also we dont call ftable lookup with MATCH_IRE_PARENT
1246  */
1247 
1248 ire_t *
1249 ire_forward_simple(ipaddr_t dst, enum ire_forward_action *ret_action,
1250     ip_stack_t *ipst)
1251 {
1252 	ipaddr_t gw = 0;
1253 	ire_t	*ire = NULL;
1254 	ire_t   *sire = NULL, *save_ire;
1255 	ill_t *dst_ill = NULL;
1256 	int error;
1257 	zoneid_t zoneid;
1258 	ipif_t *src_ipif = NULL;
1259 	mblk_t *res_mp;
1260 	ushort_t ire_marks = 0;
1261 
1262 	zoneid = GLOBAL_ZONEID;
1263 
1264 
1265 	ire = ire_ftable_lookup_simple(dst, &sire, zoneid,
1266 	    MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT |
1267 	    MATCH_IRE_RJ_BHOLE, ipst);
1268 
1269 	if (ire == NULL) {
1270 		ip_rts_change(RTM_MISS, dst, 0, 0, 0, 0, 0, 0, RTA_DST, ipst);
1271 		goto icmp_err_ret;
1272 	}
1273 
1274 	/*
1275 	 * Verify that the returned IRE does not have either
1276 	 * the RTF_REJECT or RTF_BLACKHOLE flags set and that the IRE is
1277 	 * either an IRE_CACHE, IRE_IF_NORESOLVER or IRE_IF_RESOLVER.
1278 	 */
1279 	if ((ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE))) {
1280 		ASSERT(ire->ire_type & (IRE_CACHE | IRE_INTERFACE));
1281 		ip3dbg(("ire 0x%p is not cache/resolver/noresolver\n",
1282 		    (void *)ire));
1283 		goto icmp_err_ret;
1284 	}
1285 
1286 	/*
1287 	 * If we already have a fully resolved IRE CACHE of the
1288 	 * nexthop router, just hand over the cache entry
1289 	 * and we are done.
1290 	 */
1291 
1292 	if (ire->ire_type & IRE_CACHE) {
1293 
1294 		/*
1295 		 * If we are using this ire cache entry as a
1296 		 * gateway to forward packets, chances are we
1297 		 * will be using it again. So turn off
1298 		 * the temporary flag, thus reducing its
1299 		 * chances of getting deleted frequently.
1300 		 */
1301 		if (ire->ire_marks & IRE_MARK_TEMPORARY) {
1302 			irb_t *irb = ire->ire_bucket;
1303 			rw_enter(&irb->irb_lock, RW_WRITER);
1304 			ire->ire_marks &= ~IRE_MARK_TEMPORARY;
1305 			irb->irb_tmp_ire_cnt--;
1306 			rw_exit(&irb->irb_lock);
1307 		}
1308 
1309 		if (sire != NULL) {
1310 			UPDATE_OB_PKT_COUNT(sire);
1311 			ire_refrele(sire);
1312 		}
1313 		*ret_action = Forward_ok;
1314 		return (ire);
1315 	}
1316 	/*
1317 	 * Increment the ire_ob_pkt_count field for ire if it is an
1318 	 * INTERFACE (IF_RESOLVER or IF_NORESOLVER) IRE type, and
1319 	 * increment the same for the parent IRE, sire, if it is some
1320 	 * sort of prefix IRE (which includes DEFAULT, PREFIX, and HOST).
1321 	 */
1322 	if ((ire->ire_type & IRE_INTERFACE) != 0) {
1323 		UPDATE_OB_PKT_COUNT(ire);
1324 		ire->ire_last_used_time = lbolt;
1325 	}
1326 
1327 	/*
1328 	 * sire must be either IRE_CACHETABLE OR IRE_INTERFACE type
1329 	 */
1330 	if (sire != NULL) {
1331 		gw = sire->ire_gateway_addr;
1332 		ASSERT((sire->ire_type &
1333 		    (IRE_CACHETABLE | IRE_INTERFACE)) == 0);
1334 		UPDATE_OB_PKT_COUNT(sire);
1335 	}
1336 
1337 	/* Obtain dst_ill */
1338 	dst_ill = ip_newroute_get_dst_ill(ire->ire_ipif->ipif_ill);
1339 	if (dst_ill == NULL) {
1340 		ip2dbg(("ire_forward no dst ill; ire 0x%p\n",
1341 		    (void *)ire));
1342 		goto icmp_err_ret;
1343 	}
1344 
1345 	ASSERT(src_ipif == NULL);
1346 	/* Now obtain the src_ipif */
1347 	src_ipif = ire_forward_src_ipif(dst, sire, ire, dst_ill,
1348 	    zoneid, &ire_marks);
1349 	if (src_ipif == NULL)
1350 		goto icmp_err_ret;
1351 
1352 	switch (ire->ire_type) {
1353 	case IRE_IF_NORESOLVER:
1354 		/* create ire_cache for ire_addr endpoint */
1355 	case IRE_IF_RESOLVER:
1356 		/*
1357 		 * We have the IRE_IF_RESOLVER of the nexthop gateway
1358 		 * and now need to build a IRE_CACHE for it.
1359 		 * In this case, we have the following :
1360 		 *
1361 		 * 1) src_ipif - used for getting a source address.
1362 		 *
1363 		 * 2) dst_ill - from which we derive ire_stq/ire_rfq. This
1364 		 *    means packets using the IRE_CACHE that we will build
1365 		 *    here will go out on dst_ill.
1366 		 *
1367 		 * 3) sire may or may not be NULL. But, the IRE_CACHE that is
1368 		 *    to be created will only be tied to the IRE_INTERFACE
1369 		 *    that was derived from the ire_ihandle field.
1370 		 *
1371 		 *    If sire is non-NULL, it means the destination is
1372 		 *    off-link and we will first create the IRE_CACHE for the
1373 		 *    gateway.
1374 		 */
1375 		res_mp = dst_ill->ill_resolver_mp;
1376 		if (ire->ire_type == IRE_IF_RESOLVER &&
1377 		    (!OK_RESOLVER_MP(res_mp))) {
1378 			ire_refrele(ire);
1379 			ire = NULL;
1380 			goto out;
1381 		}
1382 		/*
1383 		 * To be at this point in the code with a non-zero gw
1384 		 * means that dst is reachable through a gateway that
1385 		 * we have never resolved.  By changing dst to the gw
1386 		 * addr we resolve the gateway first.
1387 		 */
1388 		if (gw != INADDR_ANY) {
1389 			/*
1390 			 * The source ipif that was determined above was
1391 			 * relative to the destination address, not the
1392 			 * gateway's. If src_ipif was not taken out of
1393 			 * the IRE_IF_RESOLVER entry, we'll need to call
1394 			 * ipif_select_source() again.
1395 			 */
1396 			if (src_ipif != ire->ire_ipif) {
1397 				ipif_refrele(src_ipif);
1398 				src_ipif = ipif_select_source(dst_ill,
1399 				    gw, zoneid);
1400 				if (src_ipif == NULL)
1401 					goto icmp_err_ret;
1402 			}
1403 			dst = gw;
1404 			gw = INADDR_ANY;
1405 		}
1406 
1407 		if (ire->ire_type == IRE_IF_NORESOLVER)
1408 			dst = ire->ire_addr; /* ire_cache for tunnel endpoint */
1409 
1410 		save_ire = ire;
1411 		/*
1412 		 * create an incomplete IRE_CACHE.
1413 		 * An areq_mp will be generated in ire_arpresolve() for
1414 		 * RESOLVER interfaces.
1415 		 */
1416 		ire = ire_create(
1417 		    (uchar_t *)&dst,		/* dest address */
1418 		    (uchar_t *)&ip_g_all_ones,	/* mask */
1419 		    (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */
1420 		    (uchar_t *)&gw,		/* gateway address */
1421 		    (save_ire->ire_type == IRE_IF_RESOLVER ?  NULL:
1422 		    &save_ire->ire_max_frag),
1423 		    NULL,
1424 		    dst_ill->ill_rq,		/* recv-from queue */
1425 		    dst_ill->ill_wq,		/* send-to queue */
1426 		    IRE_CACHE,			/* IRE type */
1427 		    src_ipif,
1428 		    ire->ire_mask,		/* Parent mask */
1429 		    0,
1430 		    ire->ire_ihandle,	/* Interface handle */
1431 		    0,
1432 		    &(ire->ire_uinfo),
1433 		    NULL,
1434 		    NULL,
1435 		    ipst);
1436 		ip1dbg(("incomplete ire_cache 0x%p\n", (void *)ire));
1437 		if (ire != NULL) {
1438 			ire->ire_marks |= ire_marks;
1439 			/* add the incomplete ire: */
1440 			error = ire_add(&ire, NULL, NULL, NULL, B_TRUE);
1441 			if (error == 0 && ire != NULL) {
1442 				ire->ire_max_frag = save_ire->ire_max_frag;
1443 				ip1dbg(("setting max_frag to %d in ire 0x%p\n",
1444 				    ire->ire_max_frag, (void *)ire));
1445 			} else {
1446 				ire_refrele(save_ire);
1447 				goto icmp_err_ret;
1448 			}
1449 		}
1450 
1451 		ire_refrele(save_ire);
1452 		break;
1453 	default:
1454 		break;
1455 	}
1456 
1457 out:
1458 	*ret_action = Forward_ok;
1459 	if (sire != NULL)
1460 		ire_refrele(sire);
1461 	if (dst_ill != NULL)
1462 		ill_refrele(dst_ill);
1463 	if (src_ipif != NULL)
1464 		ipif_refrele(src_ipif);
1465 	return (ire);
1466 icmp_err_ret:
1467 	*ret_action = Forward_ret_icmp_err;
1468 	if (src_ipif != NULL)
1469 		ipif_refrele(src_ipif);
1470 	if (dst_ill != NULL)
1471 		ill_refrele(dst_ill);
1472 	if (sire != NULL)
1473 		ire_refrele(sire);
1474 	if (ire != NULL) {
1475 		if (ire->ire_flags & RTF_BLACKHOLE)
1476 			*ret_action = Forward_blackhole;
1477 		ire_refrele(ire);
1478 	}
1479 	/* caller needs to send icmp error message */
1480 	return (NULL);
1481 
1482 }
1483 
1484 /*
1485  * Obtain the rt_entry and rt_irb for the route to be added to
1486  * the ips_ip_ftable.
1487  * First attempt to add a node to the radix tree via rn_addroute. If the
1488  * route already exists, return the bucket for the existing route.
1489  *
1490  * Locking notes: Need to hold the global radix tree lock in write mode to
1491  * add a radix node. To prevent the node from being deleted, ire_get_bucket()
1492  * returns with a ref'ed irb_t. The ire itself is added in ire_add_v4()
1493  * while holding the irb_lock, but not the radix tree lock.
1494  */
1495 irb_t *
1496 ire_get_bucket(ire_t *ire)
1497 {
1498 	struct radix_node *rn;
1499 	struct rt_entry *rt;
1500 	struct rt_sockaddr rmask, rdst;
1501 	irb_t *irb = NULL;
1502 	ip_stack_t *ipst = ire->ire_ipst;
1503 
1504 	ASSERT(ipst->ips_ip_ftable != NULL);
1505 
1506 	/* first try to see if route exists (based on rtalloc1) */
1507 	(void) memset(&rdst, 0, sizeof (rdst));
1508 	rdst.rt_sin_len = sizeof (rdst);
1509 	rdst.rt_sin_family = AF_INET;
1510 	rdst.rt_sin_addr.s_addr = ire->ire_addr;
1511 
1512 	(void) memset(&rmask, 0, sizeof (rmask));
1513 	rmask.rt_sin_len = sizeof (rmask);
1514 	rmask.rt_sin_family = AF_INET;
1515 	rmask.rt_sin_addr.s_addr = ire->ire_mask;
1516 
1517 	/*
1518 	 * add the route. based on BSD's rtrequest1(RTM_ADD)
1519 	 */
1520 	R_Malloc(rt, rt_entry_cache,  sizeof (*rt));
1521 	/* kmem_alloc failed */
1522 	if (rt == NULL)
1523 		return (NULL);
1524 
1525 	(void) memset(rt, 0, sizeof (*rt));
1526 	rt->rt_nodes->rn_key = (char *)&rt->rt_dst;
1527 	rt->rt_dst = rdst;
1528 	irb = &rt->rt_irb;
1529 	irb->irb_marks |= IRB_MARK_FTABLE; /* dynamically allocated/freed */
1530 	irb->irb_ipst = ipst;
1531 	rw_init(&irb->irb_lock, NULL, RW_DEFAULT, NULL);
1532 	RADIX_NODE_HEAD_WLOCK(ipst->ips_ip_ftable);
1533 	rn = ipst->ips_ip_ftable->rnh_addaddr(&rt->rt_dst, &rmask,
1534 	    ipst->ips_ip_ftable, (struct radix_node *)rt);
1535 	if (rn == NULL) {
1536 		RADIX_NODE_HEAD_UNLOCK(ipst->ips_ip_ftable);
1537 		Free(rt, rt_entry_cache);
1538 		rt = NULL;
1539 		irb = NULL;
1540 		RADIX_NODE_HEAD_RLOCK(ipst->ips_ip_ftable);
1541 		rn = ipst->ips_ip_ftable->rnh_lookup(&rdst, &rmask,
1542 		    ipst->ips_ip_ftable);
1543 		if (rn != NULL && ((rn->rn_flags & RNF_ROOT) == 0)) {
1544 			/* found a non-root match */
1545 			rt = (struct rt_entry *)rn;
1546 		}
1547 	}
1548 	if (rt != NULL) {
1549 		irb = &rt->rt_irb;
1550 		IRB_REFHOLD(irb);
1551 	}
1552 	RADIX_NODE_HEAD_UNLOCK(ipst->ips_ip_ftable);
1553 	return (irb);
1554 }
1555 
1556 /*
1557  * This function is used when the caller wants to know the outbound
1558  * interface for a packet given only the address.
1559  * If this is a offlink IP address and there are multiple
1560  * routes to this destination, this routine will utilise the
1561  * first route it finds to IP address
1562  * Return values:
1563  * 	0	- FAILURE
1564  *	nonzero	- ifindex
1565  */
1566 uint_t
1567 ifindex_lookup(const struct sockaddr *ipaddr, zoneid_t zoneid)
1568 {
1569 	uint_t ifindex = 0;
1570 	ire_t *ire;
1571 	ill_t *ill;
1572 	netstack_t *ns;
1573 	ip_stack_t *ipst;
1574 
1575 	if (zoneid == ALL_ZONES)
1576 		ns = netstack_find_by_zoneid(GLOBAL_ZONEID);
1577 	else
1578 		ns = netstack_find_by_zoneid(zoneid);
1579 	ASSERT(ns != NULL);
1580 
1581 	/*
1582 	 * For exclusive stacks we set the zoneid to zero
1583 	 * since IP uses the global zoneid in the exclusive stacks.
1584 	 */
1585 	if (ns->netstack_stackid != GLOBAL_NETSTACKID)
1586 		zoneid = GLOBAL_ZONEID;
1587 	ipst = ns->netstack_ip;
1588 
1589 	ASSERT(ipaddr->sa_family == AF_INET || ipaddr->sa_family == AF_INET6);
1590 
1591 	if ((ire =  route_to_dst(ipaddr, zoneid, ipst)) != NULL) {
1592 		ill = ire_to_ill(ire);
1593 		if (ill != NULL)
1594 			ifindex = ill->ill_phyint->phyint_ifindex;
1595 		ire_refrele(ire);
1596 	}
1597 	netstack_rele(ns);
1598 	return (ifindex);
1599 }
1600 
1601 /*
1602  * Routine to find the route to a destination. If a ifindex is supplied
1603  * it tries to match the the route to the corresponding ipif for the ifindex
1604  */
1605 static	ire_t *
1606 route_to_dst(const struct sockaddr *dst_addr, zoneid_t zoneid, ip_stack_t *ipst)
1607 {
1608 	ire_t *ire = NULL;
1609 	int match_flags;
1610 
1611 	match_flags = (MATCH_IRE_DSTONLY | MATCH_IRE_DEFAULT |
1612 	    MATCH_IRE_RECURSIVE | MATCH_IRE_RJ_BHOLE);
1613 
1614 	/* XXX pass NULL tsl for now */
1615 
1616 	if (dst_addr->sa_family == AF_INET) {
1617 		ire = ire_route_lookup(
1618 		    ((struct sockaddr_in *)dst_addr)->sin_addr.s_addr,
1619 		    0, 0, 0, NULL, NULL, zoneid, NULL, match_flags, ipst);
1620 	} else {
1621 		ire = ire_route_lookup_v6(
1622 		    &((struct sockaddr_in6 *)dst_addr)->sin6_addr,
1623 		    0, 0, 0, NULL, NULL, zoneid, NULL, match_flags, ipst);
1624 	}
1625 	return (ire);
1626 }
1627 
1628 /*
1629  * This routine is called by IP Filter to send a packet out on the wire
1630  * to a specified V4 dst (which may be onlink or offlink). The ifindex may or
1631  * may not be 0. A non-null ifindex indicates IP Filter has stipulated
1632  * an outgoing interface and requires the nexthop to be on that interface.
1633  * IP WILL NOT DO the following to the data packet before sending it out:
1634  *	a. manipulate ttl
1635  *	b. ipsec work
1636  *	c. fragmentation
1637  *
1638  * If the packet has been prepared for hardware checksum then it will be
1639  * passed off to ip_send_align_cksum() to check that the flags set on the
1640  * packet are in alignment with the capabilities of the new outgoing NIC.
1641  *
1642  * Return values:
1643  *	0:		IP was able to send of the data pkt
1644  *	ECOMM:		Could not send packet
1645  *	ENONET		No route to dst. It is up to the caller
1646  *			to send icmp unreachable error message,
1647  *	EINPROGRESS	The macaddr of the onlink dst or that
1648  *			of the offlink dst's nexthop needs to get
1649  *			resolved before packet can be sent to dst.
1650  *			Thus transmission is not guaranteed.
1651  *
1652  */
1653 
1654 int
1655 ipfil_sendpkt(const struct sockaddr *dst_addr, mblk_t *mp, uint_t ifindex,
1656     zoneid_t zoneid)
1657 {
1658 	ire_t *ire = NULL, *sire = NULL;
1659 	ire_t *ire_cache = NULL;
1660 	int value;
1661 	int match_flags;
1662 	ipaddr_t dst;
1663 	netstack_t *ns;
1664 	ip_stack_t *ipst;
1665 	enum ire_forward_action ret_action;
1666 
1667 	ASSERT(mp != NULL);
1668 
1669 	if (zoneid == ALL_ZONES)
1670 		ns = netstack_find_by_zoneid(GLOBAL_ZONEID);
1671 	else
1672 		ns = netstack_find_by_zoneid(zoneid);
1673 	ASSERT(ns != NULL);
1674 
1675 	/*
1676 	 * For exclusive stacks we set the zoneid to zero
1677 	 * since IP uses the global zoneid in the exclusive stacks.
1678 	 */
1679 	if (ns->netstack_stackid != GLOBAL_NETSTACKID)
1680 		zoneid = GLOBAL_ZONEID;
1681 	ipst = ns->netstack_ip;
1682 
1683 	ASSERT(dst_addr->sa_family == AF_INET ||
1684 	    dst_addr->sa_family == AF_INET6);
1685 
1686 	if (dst_addr->sa_family == AF_INET) {
1687 		dst = ((struct sockaddr_in *)dst_addr)->sin_addr.s_addr;
1688 	} else {
1689 		/*
1690 		 * We dont have support for V6 yet. It will be provided
1691 		 * once RFE  6399103  has been delivered.
1692 		 * Until then, for V6 dsts, IP Filter will not call
1693 		 * this function. Instead the netinfo framework provides
1694 		 * its own code path, in ip_inject_impl(), to achieve
1695 		 * what it needs to do, for the time being.
1696 		 */
1697 		ip1dbg(("ipfil_sendpkt: no V6 support \n"));
1698 		value = ECOMM;
1699 		freemsg(mp);
1700 		goto discard;
1701 	}
1702 
1703 	/*
1704 	 * Lets get the ire. We might get the ire cache entry,
1705 	 * or the ire,sire pair needed to create the cache entry.
1706 	 * XXX pass NULL tsl for now.
1707 	 */
1708 
1709 	if (ifindex == 0) {
1710 		/* There is no supplied index. So use the FIB info */
1711 
1712 		match_flags = (MATCH_IRE_DSTONLY | MATCH_IRE_DEFAULT |
1713 		    MATCH_IRE_RECURSIVE | MATCH_IRE_RJ_BHOLE);
1714 		ire = ire_route_lookup(dst,
1715 		    0, 0, 0, NULL, &sire, zoneid, MBLK_GETLABEL(mp),
1716 		    match_flags, ipst);
1717 	} else {
1718 		ipif_t *supplied_ipif;
1719 		ill_t *ill;
1720 
1721 		match_flags = (MATCH_IRE_DSTONLY | MATCH_IRE_DEFAULT |
1722 		    MATCH_IRE_RECURSIVE| MATCH_IRE_RJ_BHOLE|
1723 		    MATCH_IRE_SECATTR);
1724 
1725 		/*
1726 		 * If supplied ifindex is non-null, the only valid
1727 		 * nexthop is one off of the interface or group corresponding
1728 		 * to the specified ifindex.
1729 		 */
1730 		ill = ill_lookup_on_ifindex(ifindex, B_FALSE,
1731 		    NULL, NULL, NULL, NULL, ipst);
1732 		if (ill != NULL) {
1733 			match_flags |= MATCH_IRE_ILL;
1734 		} else {
1735 			/* Fallback to group names if hook_emulation set */
1736 			if (ipst->ips_ipmp_hook_emulation) {
1737 				ill = ill_group_lookup_on_ifindex(ifindex,
1738 				    B_FALSE, ipst);
1739 			}
1740 			if (ill == NULL) {
1741 				ip1dbg(("ipfil_sendpkt: Could not find"
1742 				    " route to dst\n"));
1743 				value = ECOMM;
1744 				freemsg(mp);
1745 				goto discard;
1746 			}
1747 			match_flags |= MATCH_IRE_ILL_GROUP;
1748 		}
1749 		supplied_ipif = ipif_get_next_ipif(NULL, ill);
1750 
1751 		ire = ire_route_lookup(dst, 0, 0, 0, supplied_ipif,
1752 		    &sire, zoneid, MBLK_GETLABEL(mp), match_flags, ipst);
1753 		ipif_refrele(supplied_ipif);
1754 		ill_refrele(ill);
1755 	}
1756 
1757 	/*
1758 	 * Verify that the returned IRE is non-null and does
1759 	 * not have either the RTF_REJECT or RTF_BLACKHOLE
1760 	 * flags set and that the IRE is  either an IRE_CACHE,
1761 	 * IRE_IF_NORESOLVER or IRE_IF_RESOLVER.
1762 	 */
1763 	if (ire == NULL ||
1764 	    ((ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE)) ||
1765 	    (ire->ire_type & (IRE_CACHE | IRE_INTERFACE)) == 0)) {
1766 		/*
1767 		 * Either ire could not be found or we got
1768 		 * an invalid one
1769 		 */
1770 		ip1dbg(("ipfil_sendpkt: Could not find route to dst\n"));
1771 		value = ENONET;
1772 		freemsg(mp);
1773 		goto discard;
1774 	}
1775 
1776 	/* IP Filter and CGTP dont mix. So bail out if CGTP is on */
1777 	if (ipst->ips_ip_cgtp_filter &&
1778 	    ((ire->ire_flags & RTF_MULTIRT) ||
1779 	    ((sire != NULL) && (sire->ire_flags & RTF_MULTIRT)))) {
1780 		ip1dbg(("ipfil_sendpkt: IPFilter does not work with CGTP\n"));
1781 		value = ECOMM;
1782 		freemsg(mp);
1783 		goto discard;
1784 	}
1785 
1786 	ASSERT(ire->ire_type != IRE_CACHE || ire->ire_nce != NULL);
1787 
1788 	/*
1789 	 * If needed, we will create the ire cache entry for the
1790 	 * nexthop, resolve its link-layer address and then send
1791 	 * the packet out without ttl or IPSec processing.
1792 	 */
1793 	switch (ire->ire_type) {
1794 	case IRE_CACHE:
1795 		if (sire != NULL) {
1796 			UPDATE_OB_PKT_COUNT(sire);
1797 			sire->ire_last_used_time = lbolt;
1798 			ire_refrele(sire);
1799 		}
1800 		ire_cache = ire;
1801 		break;
1802 	case IRE_IF_NORESOLVER:
1803 	case IRE_IF_RESOLVER:
1804 		/*
1805 		 * Call ire_forward(). This function
1806 		 * will, create the ire cache entry of the
1807 		 * the nexthop and adds this incomplete ire
1808 		 * to the ire cache table
1809 		 */
1810 		ire_cache = ire_forward(dst, &ret_action, ire, sire,
1811 		    MBLK_GETLABEL(mp), ipst);
1812 		if (ire_cache == NULL) {
1813 			ip1dbg(("ipfil_sendpkt: failed to create the"
1814 			    " ire cache entry \n"));
1815 			value = ENONET;
1816 			freemsg(mp);
1817 			sire = NULL;
1818 			ire = NULL;
1819 			goto discard;
1820 		}
1821 		break;
1822 	}
1823 
1824 	if (DB_CKSUMFLAGS(mp)) {
1825 		if (ip_send_align_hcksum_flags(mp, ire_to_ill(ire_cache)))
1826 			goto cleanup;
1827 	}
1828 
1829 	/*
1830 	 * Now that we have the ire cache entry of the nexthop, call
1831 	 * ip_xmit_v4() to trigger mac addr resolution
1832 	 * if necessary and send it once ready.
1833 	 */
1834 
1835 	value = ip_xmit_v4(mp, ire_cache, NULL, B_FALSE, NULL);
1836 cleanup:
1837 	ire_refrele(ire_cache);
1838 	/*
1839 	 * At this point, the reference for these have already been
1840 	 * released within ire_forward() and/or ip_xmit_v4(). So we set
1841 	 * them to NULL to make sure we dont drop the references
1842 	 * again in case ip_xmit_v4() returns with either SEND_FAILED
1843 	 * or LLHDR_RESLV_FAILED
1844 	 */
1845 	sire = NULL;
1846 	ire = NULL;
1847 
1848 	switch (value) {
1849 	case SEND_FAILED:
1850 		ip1dbg(("ipfil_sendpkt: Send failed\n"));
1851 		value = ECOMM;
1852 		break;
1853 	case LLHDR_RESLV_FAILED:
1854 		ip1dbg(("ipfil_sendpkt: Link-layer resolution"
1855 		    "  failed\n"));
1856 		value = ECOMM;
1857 		break;
1858 	case LOOKUP_IN_PROGRESS:
1859 		netstack_rele(ns);
1860 		return (EINPROGRESS);
1861 	case SEND_PASSED:
1862 		netstack_rele(ns);
1863 		return (0);
1864 	}
1865 discard:
1866 	if (dst_addr->sa_family == AF_INET) {
1867 		BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards);
1868 	} else {
1869 		BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsOutDiscards);
1870 	}
1871 	if (ire != NULL)
1872 		ire_refrele(ire);
1873 	if (sire != NULL)
1874 		ire_refrele(sire);
1875 	netstack_rele(ns);
1876 	return (value);
1877 }
1878 
1879 
1880 /*
1881  * We don't check for dohwcksum in here because it should be being used
1882  * elsewhere to control what flags are being set on the mblk.  That is,
1883  * if DB_CKSUMFLAGS() is non-zero then we assume dohwcksum to be true
1884  * for this packet.
1885  *
1886  * This function assumes that it is *only* being called for TCP or UDP
1887  * packets and nothing else.
1888  */
1889 static int
1890 ip_send_align_hcksum_flags(mblk_t *mp, ill_t *ill)
1891 {
1892 	int illhckflags;
1893 	int mbhckflags;
1894 	uint16_t *up;
1895 	uint32_t cksum;
1896 	ipha_t *ipha;
1897 	ip6_t *ip6;
1898 	int proto;
1899 	int ipversion;
1900 	int length;
1901 	int start;
1902 	ip6_pkt_t ipp;
1903 
1904 	mbhckflags = DB_CKSUMFLAGS(mp);
1905 	ASSERT(mbhckflags != 0);
1906 	ASSERT(mp->b_datap->db_type == M_DATA);
1907 	/*
1908 	 * Since this function only knows how to manage the hardware checksum
1909 	 * issue, reject and packets that have flags set on the aside from
1910 	 * checksum related attributes as we cannot necessarily safely map
1911 	 * that packet onto the new NIC.  Packets that can be potentially
1912 	 * dropped here include those marked for LSO.
1913 	 */
1914 	if ((mbhckflags &
1915 	    ~(HCK_FULLCKSUM|HCK_PARTIALCKSUM|HCK_IPV4_HDRCKSUM)) != 0) {
1916 		DTRACE_PROBE2(pbr__incapable, (mblk_t *), mp, (ill_t *), ill);
1917 		freemsg(mp);
1918 		return (-1);
1919 	}
1920 
1921 	ipha = (ipha_t *)mp->b_rptr;
1922 
1923 	/*
1924 	 * Find out what the new NIC is capable of, if anything, and
1925 	 * only allow it to be used with M_DATA mblks being sent out.
1926 	 */
1927 	if (ILL_HCKSUM_CAPABLE(ill)) {
1928 		illhckflags = ill->ill_hcksum_capab->ill_hcksum_txflags;
1929 	} else {
1930 		/*
1931 		 * No capabilities, so turn off everything.
1932 		 */
1933 		illhckflags = 0;
1934 		(void) hcksum_assoc(mp, NULL, NULL, 0, 0, 0, 0, 0, 0);
1935 		mp->b_datap->db_struioflag &= ~STRUIO_IP;
1936 	}
1937 
1938 	DTRACE_PROBE4(pbr__info__a, (mblk_t *), mp, (ill_t *), ill,
1939 	    uint32_t, illhckflags, uint32_t, mbhckflags);
1940 	/*
1941 	 * This block of code that looks for the position of the TCP/UDP
1942 	 * checksum is early in this function because we need to know
1943 	 * what needs to be blanked out for the hardware checksum case.
1944 	 *
1945 	 * That we're in this function implies that the packet is either
1946 	 * TCP or UDP on Solaris, so checks are made for one protocol and
1947 	 * if that fails, the other is therefore implied.
1948 	 */
1949 	ipversion = IPH_HDR_VERSION(ipha);
1950 
1951 	if (ipversion == IPV4_VERSION) {
1952 		proto = ipha->ipha_protocol;
1953 		if (proto == IPPROTO_TCP) {
1954 			up = IPH_TCPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH);
1955 		} else {
1956 			up = IPH_UDPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH);
1957 		}
1958 	} else {
1959 		uint8_t lasthdr;
1960 
1961 		/*
1962 		 * Nothing I've seen indicates that IPv6 checksum'ing
1963 		 * precludes the presence of extension headers, so we
1964 		 * can't just look at the next header value in the IPv6
1965 		 * packet header to see if it is TCP/UDP.
1966 		 */
1967 		ip6 = (ip6_t *)ipha;
1968 		(void) memset(&ipp, 0, sizeof (ipp));
1969 		start = ip_find_hdr_v6(mp, ip6, &ipp, &lasthdr);
1970 		proto = lasthdr;
1971 
1972 		if (proto == IPPROTO_TCP) {
1973 			up = IPH_TCPH_CHECKSUMP(ipha, start);
1974 		} else {
1975 			up = IPH_UDPH_CHECKSUMP(ipha, start);
1976 		}
1977 	}
1978 
1979 	/*
1980 	 * The first case here is easiest:
1981 	 * mblk hasn't asked for full checksum, but the card supports it.
1982 	 *
1983 	 * In addition, check for IPv4 header capability.  Note that only
1984 	 * the mblk flag is checked and not ipversion.
1985 	 */
1986 	if ((((illhckflags & HCKSUM_INET_FULL_V4) && (ipversion == 4)) ||
1987 	    (((illhckflags & HCKSUM_INET_FULL_V6) && (ipversion == 6)))) &&
1988 	    ((mbhckflags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) != 0)) {
1989 		int newflags = HCK_FULLCKSUM;
1990 
1991 		if ((mbhckflags & HCK_IPV4_HDRCKSUM) != 0) {
1992 			if ((illhckflags & HCKSUM_IPHDRCKSUM) != 0) {
1993 				newflags |= HCK_IPV4_HDRCKSUM;
1994 			} else {
1995 				/*
1996 				 * Rather than call a function, just inline
1997 				 * the computation of the basic IPv4 header.
1998 				 */
1999 				cksum = (ipha->ipha_dst >> 16) +
2000 				    (ipha->ipha_dst & 0xFFFF) +
2001 				    (ipha->ipha_src >> 16) +
2002 				    (ipha->ipha_src & 0xFFFF);
2003 				IP_HDR_CKSUM(ipha, cksum,
2004 				    ((uint32_t *)ipha)[0],
2005 				    ((uint16_t *)ipha)[4]);
2006 			}
2007 		}
2008 
2009 		*up = 0;
2010 		(void) hcksum_assoc(mp, NULL, NULL, 0, 0, 0, 0,
2011 		    newflags, 0);
2012 		return (0);
2013 	}
2014 
2015 	DTRACE_PROBE2(pbr__info__b, int, ipversion, int, proto);
2016 
2017 	/*
2018 	 * Start calculating the pseudo checksum over the IP packet header.
2019 	 * Although the final pseudo checksum used by TCP/UDP consists of
2020 	 * more than just the address fields, we can use the result of
2021 	 * adding those together a little bit further down for IPv4.
2022 	 */
2023 	if (ipversion == IPV4_VERSION) {
2024 		cksum = (ipha->ipha_dst >> 16) + (ipha->ipha_dst & 0xFFFF) +
2025 		    (ipha->ipha_src >> 16) + (ipha->ipha_src & 0xFFFF);
2026 		start = IP_SIMPLE_HDR_LENGTH;
2027 		length = ntohs(ipha->ipha_length);
2028 		DTRACE_PROBE3(pbr__info__e, uint32_t, ipha->ipha_src,
2029 		    uint32_t, ipha->ipha_dst, int, cksum);
2030 	} else {
2031 		uint16_t *pseudo;
2032 
2033 		pseudo = (uint16_t *)&ip6->ip6_src;
2034 
2035 		/* calculate pseudo-header checksum */
2036 		cksum = pseudo[0] + pseudo[1] + pseudo[2] + pseudo[3] +
2037 		    pseudo[4] + pseudo[5] + pseudo[6] + pseudo[7] +
2038 		    pseudo[8] + pseudo[9] + pseudo[10] + pseudo[11] +
2039 		    pseudo[12] + pseudo[13] + pseudo[14] + pseudo[15];
2040 
2041 		length = ntohs(ip6->ip6_plen) + sizeof (ip6_t);
2042 	}
2043 
2044 	/* Fold the initial sum */
2045 	cksum = (cksum & 0xffff) + (cksum >> 16);
2046 
2047 	/*
2048 	 * If the packet was asking for an IPv4 header checksum to be
2049 	 * calculated but the interface doesn't support that, fill it in
2050 	 * using our pseudo checksum as a starting point.
2051 	 */
2052 	if (((mbhckflags & HCK_IPV4_HDRCKSUM) != 0) &&
2053 	    ((illhckflags & HCKSUM_IPHDRCKSUM) == 0)) {
2054 		/*
2055 		 * IP_HDR_CKSUM uses the 2rd arg to the macro in a destructive
2056 		 * way so pass in a copy of the checksum calculated thus far.
2057 		 */
2058 		uint32_t ipsum = cksum;
2059 
2060 		DB_CKSUMFLAGS(mp) &= ~HCK_IPV4_HDRCKSUM;
2061 
2062 		IP_HDR_CKSUM(ipha, ipsum, ((uint32_t *)ipha)[0],
2063 		    ((uint16_t *)ipha)[4]);
2064 	}
2065 
2066 	DTRACE_PROBE3(pbr__info__c, int, start, int, length, int, cksum);
2067 
2068 	if (proto == IPPROTO_TCP) {
2069 		cksum += IP_TCP_CSUM_COMP;
2070 	} else {
2071 		cksum += IP_UDP_CSUM_COMP;
2072 	}
2073 	cksum += htons(length - start);
2074 	cksum = (cksum & 0xffff) + (cksum >> 16);
2075 
2076 	/*
2077 	 * For TCP/UDP, we either want to setup the packet for partial
2078 	 * checksum or we want to do it all ourselves because the NIC
2079 	 * offers no support for either partial or full checksum.
2080 	 */
2081 	if ((illhckflags & HCKSUM_INET_PARTIAL) != 0) {
2082 		/*
2083 		 * The only case we care about here is if the mblk was
2084 		 * previously set for full checksum offload.  If it was
2085 		 * marked for partial (and the NIC does partial), then
2086 		 * we have nothing to do.  Similarly if the packet was
2087 		 * not set for partial or full, we do nothing as this
2088 		 * is cheaper than more work to set something up.
2089 		 */
2090 		if ((mbhckflags & HCK_FULLCKSUM) != 0) {
2091 			uint32_t offset;
2092 
2093 			if (proto == IPPROTO_TCP) {
2094 				offset = TCP_CHECKSUM_OFFSET;
2095 			} else {
2096 				offset = UDP_CHECKSUM_OFFSET;
2097 			}
2098 			*up = cksum;
2099 
2100 			DTRACE_PROBE3(pbr__info__f, int, length - start, int,
2101 			    cksum, int, offset);
2102 
2103 			(void) hcksum_assoc(mp, NULL, NULL, start,
2104 			    start + offset, length, 0,
2105 			    DB_CKSUMFLAGS(mp) | HCK_PARTIALCKSUM, 0);
2106 		}
2107 
2108 	} else if (mbhckflags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)) {
2109 		DB_CKSUMFLAGS(mp) &= ~(HCK_PARTIALCKSUM|HCK_FULLCKSUM);
2110 
2111 		*up = 0;
2112 		*up = IP_CSUM(mp, start, cksum);
2113 	}
2114 
2115 	DTRACE_PROBE4(pbr__info__d, (mblk_t *), mp, (ipha_t *), ipha,
2116 	    (uint16_t *), up, int, cksum);
2117 	return (0);
2118 }
2119 
2120 /*
2121  * callback function provided by ire_ftable_lookup when calling
2122  * rn_match_args(). Invoke ire_match_args on each matching leaf node in
2123  * the radix tree.
2124  */
2125 boolean_t
2126 ire_find_best_route(struct radix_node *rn, void *arg)
2127 {
2128 	struct rt_entry *rt = (struct rt_entry *)rn;
2129 	irb_t *irb_ptr;
2130 	ire_t *ire;
2131 	ire_ftable_args_t *margs = arg;
2132 	ipaddr_t match_mask;
2133 
2134 	ASSERT(rt != NULL);
2135 
2136 	irb_ptr = &rt->rt_irb;
2137 
2138 	if (irb_ptr->irb_ire_cnt == 0)
2139 		return (B_FALSE);
2140 
2141 	rw_enter(&irb_ptr->irb_lock, RW_READER);
2142 	for (ire = irb_ptr->irb_ire; ire != NULL; ire = ire->ire_next) {
2143 		if (ire->ire_marks & IRE_MARK_CONDEMNED)
2144 			continue;
2145 		if (margs->ift_flags & MATCH_IRE_MASK)
2146 			match_mask = margs->ift_mask;
2147 		else
2148 			match_mask = ire->ire_mask;
2149 
2150 		if (ire_match_args(ire, margs->ift_addr, match_mask,
2151 		    margs->ift_gateway, margs->ift_type, margs->ift_ipif,
2152 		    margs->ift_zoneid, margs->ift_ihandle, margs->ift_tsl,
2153 		    margs->ift_flags, NULL)) {
2154 			IRE_REFHOLD(ire);
2155 			rw_exit(&irb_ptr->irb_lock);
2156 			margs->ift_best_ire = ire;
2157 			return (B_TRUE);
2158 		}
2159 	}
2160 	rw_exit(&irb_ptr->irb_lock);
2161 	return (B_FALSE);
2162 }
2163 
2164 /*
2165  * ftable irb_t structures are dynamically allocated, and we need to
2166  * check if the irb_t (and associated ftable tree attachment) needs to
2167  * be cleaned up when the irb_refcnt goes to 0. The conditions that need
2168  * be verified are:
2169  * - no other walkers of the irebucket, i.e., quiescent irb_refcnt,
2170  * - no other threads holding references to ire's in the bucket,
2171  *   i.e., irb_nire == 0
2172  * - no active ire's in the bucket, i.e., irb_ire_cnt == 0
2173  * - need to hold the global tree lock and irb_lock in write mode.
2174  */
2175 void
2176 irb_refrele_ftable(irb_t *irb)
2177 {
2178 	for (;;) {
2179 		rw_enter(&irb->irb_lock, RW_WRITER);
2180 		ASSERT(irb->irb_refcnt != 0);
2181 		if (irb->irb_refcnt != 1) {
2182 			/*
2183 			 * Someone has a reference to this radix node
2184 			 * or there is some bucket walker.
2185 			 */
2186 			irb->irb_refcnt--;
2187 			rw_exit(&irb->irb_lock);
2188 			return;
2189 		} else {
2190 			/*
2191 			 * There is no other walker, nor is there any
2192 			 * other thread that holds a direct ref to this
2193 			 * radix node. Do the clean up if needed. Call
2194 			 * to ire_unlink will clear the IRB_MARK_CONDEMNED flag
2195 			 */
2196 			if (irb->irb_marks & IRB_MARK_CONDEMNED)  {
2197 				ire_t *ire_list;
2198 
2199 				ire_list = ire_unlink(irb);
2200 				rw_exit(&irb->irb_lock);
2201 
2202 				if (ire_list != NULL)
2203 					ire_cleanup(ire_list);
2204 				/*
2205 				 * more CONDEMNED entries could have
2206 				 * been added while we dropped the lock,
2207 				 * so we have to re-check.
2208 				 */
2209 				continue;
2210 			}
2211 
2212 			/*
2213 			 * Now check if there are still any ires
2214 			 * associated with this radix node.
2215 			 */
2216 			if (irb->irb_nire != 0) {
2217 				/*
2218 				 * someone is still holding on
2219 				 * to ires in this bucket
2220 				 */
2221 				irb->irb_refcnt--;
2222 				rw_exit(&irb->irb_lock);
2223 				return;
2224 			} else {
2225 				/*
2226 				 * Everything is clear. Zero walkers,
2227 				 * Zero threads with a ref to this
2228 				 * radix node, Zero ires associated with
2229 				 * this radix node. Due to lock order,
2230 				 * check the above conditions again
2231 				 * after grabbing all locks in the right order
2232 				 */
2233 				rw_exit(&irb->irb_lock);
2234 				if (irb_inactive(irb))
2235 					return;
2236 				/*
2237 				 * irb_inactive could not free the irb.
2238 				 * See if there are any walkers, if not
2239 				 * try to clean up again.
2240 				 */
2241 			}
2242 		}
2243 	}
2244 }
2245 
2246 /*
2247  * IRE iterator used by ire_ftable_lookup() to process multiple default
2248  * routes. Given a starting point in the hash list (ire_origin), walk the IREs
2249  * in the bucket skipping default interface routes and deleted entries.
2250  * Returns the next IRE (unheld), or NULL when we're back to the starting point.
2251  * Assumes that the caller holds a reference on the IRE bucket.
2252  *
2253  * In the absence of good IRE_DEFAULT routes, this function will return
2254  * the first IRE_INTERFACE route found (if any).
2255  */
2256 ire_t *
2257 ire_round_robin(irb_t *irb_ptr, zoneid_t zoneid, ire_ftable_args_t *margs,
2258 	ip_stack_t *ipst)
2259 {
2260 	ire_t	*ire_origin;
2261 	ire_t	*ire, *maybe_ire = NULL;
2262 
2263 	rw_enter(&irb_ptr->irb_lock, RW_WRITER);
2264 	ire_origin = irb_ptr->irb_rr_origin;
2265 	if (ire_origin != NULL) {
2266 		ire_origin = ire_origin->ire_next;
2267 		IRE_FIND_NEXT_ORIGIN(ire_origin);
2268 	}
2269 
2270 	if (ire_origin == NULL) {
2271 		/*
2272 		 * first time through routine, or we dropped off the end
2273 		 * of list.
2274 		 */
2275 		ire_origin = irb_ptr->irb_ire;
2276 		IRE_FIND_NEXT_ORIGIN(ire_origin);
2277 	}
2278 	irb_ptr->irb_rr_origin = ire_origin;
2279 	IRB_REFHOLD_LOCKED(irb_ptr);
2280 	rw_exit(&irb_ptr->irb_lock);
2281 
2282 	DTRACE_PROBE2(ire__rr__origin, (irb_t *), irb_ptr,
2283 	    (ire_t *), ire_origin);
2284 
2285 	/*
2286 	 * Round-robin the routers list looking for a route that
2287 	 * matches the passed in parameters.
2288 	 * We start with the ire we found above and we walk the hash
2289 	 * list until we're back where we started. It doesn't matter if
2290 	 * routes are added or deleted by other threads - we know this
2291 	 * ire will stay in the list because we hold a reference on the
2292 	 * ire bucket.
2293 	 */
2294 	ire = ire_origin;
2295 	while (ire != NULL) {
2296 		int match_flags = MATCH_IRE_TYPE | MATCH_IRE_SECATTR;
2297 		ire_t *rire;
2298 
2299 		if (ire->ire_marks & IRE_MARK_CONDEMNED)
2300 			goto next_ire;
2301 
2302 		if (!ire_match_args(ire, margs->ift_addr, (ipaddr_t)0,
2303 		    margs->ift_gateway, margs->ift_type, margs->ift_ipif,
2304 		    margs->ift_zoneid, margs->ift_ihandle, margs->ift_tsl,
2305 		    margs->ift_flags, NULL))
2306 			goto next_ire;
2307 
2308 		if (ire->ire_type & IRE_INTERFACE) {
2309 			/*
2310 			 * keep looking to see if there is a non-interface
2311 			 * default ire, but save this one as a last resort.
2312 			 */
2313 			if (maybe_ire == NULL)
2314 				maybe_ire = ire;
2315 			goto next_ire;
2316 		}
2317 
2318 		if (zoneid == ALL_ZONES) {
2319 			IRE_REFHOLD(ire);
2320 			IRB_REFRELE(irb_ptr);
2321 			return (ire);
2322 		}
2323 		/*
2324 		 * When we're in a non-global zone, we're only
2325 		 * interested in routers that are
2326 		 * reachable through ipifs within our zone.
2327 		 */
2328 		if (ire->ire_ipif != NULL) {
2329 			match_flags |= MATCH_IRE_ILL_GROUP;
2330 		}
2331 		rire = ire_route_lookup(ire->ire_gateway_addr, 0, 0,
2332 		    IRE_INTERFACE, ire->ire_ipif, NULL, zoneid, margs->ift_tsl,
2333 		    match_flags, ipst);
2334 		if (rire != NULL) {
2335 			ire_refrele(rire);
2336 			IRE_REFHOLD(ire);
2337 			IRB_REFRELE(irb_ptr);
2338 			return (ire);
2339 		}
2340 next_ire:
2341 		ire = (ire->ire_next ?  ire->ire_next : irb_ptr->irb_ire);
2342 		if (ire == ire_origin)
2343 			break;
2344 	}
2345 	if (maybe_ire != NULL)
2346 		IRE_REFHOLD(maybe_ire);
2347 	IRB_REFRELE(irb_ptr);
2348 	return (maybe_ire);
2349 }
2350 
2351 void
2352 irb_refhold_rn(struct radix_node *rn)
2353 {
2354 	if ((rn->rn_flags & RNF_ROOT) == 0)
2355 		IRB_REFHOLD(&((rt_t *)(rn))->rt_irb);
2356 }
2357 
2358 void
2359 irb_refrele_rn(struct radix_node *rn)
2360 {
2361 	if ((rn->rn_flags & RNF_ROOT) == 0)
2362 		irb_refrele_ftable(&((rt_t *)(rn))->rt_irb);
2363 }
2364