xref: /illumos-gate/usr/src/uts/common/inet/ip/spd.c (revision bb25c06c)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 /*
29  * IPsec Security Policy Database.
30  *
31  * This module maintains the SPD and provides routines used by ip and ip6
32  * to apply IPsec policy to inbound and outbound datagrams.
33  */
34 
35 #include <sys/types.h>
36 #include <sys/stream.h>
37 #include <sys/stropts.h>
38 #include <sys/sysmacros.h>
39 #include <sys/strsubr.h>
40 #include <sys/strlog.h>
41 #include <sys/cmn_err.h>
42 #include <sys/zone.h>
43 
44 #include <sys/systm.h>
45 #include <sys/param.h>
46 #include <sys/kmem.h>
47 #include <sys/ddi.h>
48 
49 #include <sys/crypto/api.h>
50 
51 #include <inet/common.h>
52 #include <inet/mi.h>
53 
54 #include <netinet/ip6.h>
55 #include <netinet/icmp6.h>
56 #include <netinet/udp.h>
57 
58 #include <inet/ip.h>
59 #include <inet/ip6.h>
60 
61 #include <net/pfkeyv2.h>
62 #include <net/pfpolicy.h>
63 #include <inet/ipsec_info.h>
64 #include <inet/sadb.h>
65 #include <inet/ipsec_impl.h>
66 #include <inet/ipsecah.h>
67 #include <inet/ipsecesp.h>
68 #include <inet/ipdrop.h>
69 #include <inet/ipclassifier.h>
70 #include <inet/tun.h>
71 
72 static void ipsec_update_present_flags();
73 static ipsec_act_t *ipsec_act_wildcard_expand(ipsec_act_t *, uint_t *);
74 static void ipsec_out_free(void *);
75 static void ipsec_in_free(void *);
76 static mblk_t *ipsec_attach_global_policy(mblk_t *, conn_t *,
77     ipsec_selector_t *);
78 static mblk_t *ipsec_apply_global_policy(mblk_t *, conn_t *,
79     ipsec_selector_t *);
80 static mblk_t *ipsec_check_ipsecin_policy(queue_t *, mblk_t *,
81     ipsec_policy_t *, ipha_t *, ip6_t *, uint64_t);
82 static void ipsec_in_release_refs(ipsec_in_t *);
83 static void ipsec_out_release_refs(ipsec_out_t *);
84 static void ipsec_action_reclaim(void *);
85 static void ipsid_init(void);
86 static void ipsid_fini(void);
87 
88 /* sel_flags values for ipsec_init_inbound_sel(). */
89 #define	SEL_NONE	0x0000
90 #define	SEL_PORT_POLICY	0x0001
91 #define	SEL_IS_ICMP	0x0002
92 #define	SEL_TUNNEL_MODE	0x0004
93 
94 /* Return values for ipsec_init_inbound_sel(). */
95 typedef enum { SELRET_NOMEM, SELRET_BADPKT, SELRET_SUCCESS, SELRET_TUNFRAG}
96     selret_t;
97 
98 static selret_t ipsec_init_inbound_sel(ipsec_selector_t *, mblk_t *,
99     ipha_t *, ip6_t *, uint8_t);
100 
101 static boolean_t ipsec_check_ipsecin_action(struct ipsec_in_s *, mblk_t *,
102     struct ipsec_action_s *, ipha_t *ipha, ip6_t *ip6h, const char **,
103     kstat_named_t **);
104 static void ipsec_unregister_prov_update(void);
105 static boolean_t ipsec_compare_action(ipsec_policy_t *, ipsec_policy_t *);
106 static uint32_t selector_hash(ipsec_selector_t *, ipsec_policy_root_t *);
107 static int tunnel_compare(const void *, const void *);
108 static void ipsec_freemsg_chain(mblk_t *);
109 static void ip_drop_packet_chain(mblk_t *, boolean_t, ill_t *, ire_t *,
110     struct kstat_named *, ipdropper_t *);
111 
112 /*
113  * Policy rule index generator.  We assume this won't wrap in the
114  * lifetime of a system.  If we make 2^20 policy changes per second,
115  * this will last 2^44 seconds, or roughly 500,000 years, so we don't
116  * have to worry about reusing policy index values.
117  *
118  * Protected by ipsec_conf_lock.
119  */
120 uint64_t	ipsec_next_policy_index = 1;
121 
122 /*
123  * Active & Inactive system policy roots
124  */
125 static ipsec_policy_head_t system_policy;
126 static ipsec_policy_head_t inactive_policy;
127 
128 /*
129  * Tunnel policies - AVL tree indexed by tunnel name.
130  */
131 krwlock_t tunnel_policy_lock;
132 uint64_t tunnel_policy_gen;	/* To keep track of updates w/o searches. */
133 avl_tree_t tunnel_policies;
134 
135 /* Packet dropper for generic SPD drops. */
136 ipdropper_t spd_dropper;
137 
138 /*
139  * For now, use a trivially sized hash table for actions.
140  * In the future we can add the structure canonicalization necessary
141  * to get the hash function to behave correctly..
142  */
143 #define	IPSEC_ACTION_HASH_SIZE 1
144 
145 /*
146  * Selector hash table is statically sized at module load time.
147  * we default to 251 buckets, which is the largest prime number under 255
148  */
149 
150 #define	IPSEC_SPDHASH_DEFAULT 251
151 uint32_t ipsec_spd_hashsize = 0;
152 
153 /* SPD hash-size tunable per tunnel. */
154 #define	TUN_SPDHASH_DEFAULT 5
155 uint32_t tun_spd_hashsize;
156 
157 
158 #define	IPSEC_SEL_NOHASH ((uint32_t)(~0))
159 
160 static HASH_HEAD(ipsec_action_s) ipsec_action_hash[IPSEC_ACTION_HASH_SIZE];
161 static HASH_HEAD(ipsec_sel) *ipsec_sel_hash;
162 
163 static kmem_cache_t *ipsec_action_cache;
164 static kmem_cache_t *ipsec_sel_cache;
165 static kmem_cache_t *ipsec_pol_cache;
166 static kmem_cache_t *ipsec_info_cache;
167 
168 boolean_t ipsec_inbound_v4_policy_present = B_FALSE;
169 boolean_t ipsec_outbound_v4_policy_present = B_FALSE;
170 boolean_t ipsec_inbound_v6_policy_present = B_FALSE;
171 boolean_t ipsec_outbound_v6_policy_present = B_FALSE;
172 
173 /* Frag cache prototypes */
174 static void ipsec_fragcache_clean(ipsec_fragcache_t *);
175 static ipsec_fragcache_entry_t *fragcache_delentry(int,
176     ipsec_fragcache_entry_t *, ipsec_fragcache_t *);
177 boolean_t ipsec_fragcache_init(ipsec_fragcache_t *);
178 void ipsec_fragcache_uninit(ipsec_fragcache_t *);
179 mblk_t *ipsec_fragcache_add(ipsec_fragcache_t *, mblk_t *, mblk_t *, int);
180 
181 /*
182  * Because policy needs to know what algorithms are supported, keep the
183  * lists of algorithms here.
184  */
185 
186 kmutex_t alg_lock;
187 krwlock_t itp_get_byaddr_rw_lock;
188 ipsec_tun_pol_t *(*itp_get_byaddr)(uint32_t *, uint32_t *, int);
189 uint8_t ipsec_nalgs[IPSEC_NALGTYPES];
190 ipsec_alginfo_t *ipsec_alglists[IPSEC_NALGTYPES][IPSEC_MAX_ALGS];
191 uint8_t ipsec_sortlist[IPSEC_NALGTYPES][IPSEC_MAX_ALGS];
192 ipsec_algs_exec_mode_t ipsec_algs_exec_mode[IPSEC_NALGTYPES];
193 static crypto_notify_handle_t prov_update_handle = NULL;
194 
195 int ipsec_hdr_pullup_needed = 0;
196 int ipsec_weird_null_inbound_policy = 0;
197 
198 #define	ALGBITS_ROUND_DOWN(x, align)	(((x)/(align))*(align))
199 #define	ALGBITS_ROUND_UP(x, align)	ALGBITS_ROUND_DOWN((x)+(align)-1, align)
200 
201 /*
202  * Inbound traffic should have matching identities for both SA's.
203  */
204 
205 #define	SA_IDS_MATCH(sa1, sa2) 						\
206 	(((sa1) == NULL) || ((sa2) == NULL) ||				\
207 	(((sa1)->ipsa_src_cid == (sa2)->ipsa_src_cid) &&		\
208 	    (((sa1)->ipsa_dst_cid == (sa2)->ipsa_dst_cid))))
209 
210 /*
211  * IPv4 Fragments
212  */
213 #define	IS_V4_FRAGMENT(ipha_fragment_offset_and_flags)			\
214 	(((ntohs(ipha_fragment_offset_and_flags) & IPH_OFFSET) != 0) ||	\
215 	((ntohs(ipha_fragment_offset_and_flags) & IPH_MF) != 0))
216 
217 /*
218  * IPv6 Fragments
219  */
220 #define	IS_V6_FRAGMENT(ipp)	(ipp.ipp_fields & IPPF_FRAGHDR)
221 
222 /*
223  * Policy failure messages.
224  */
225 static char *ipsec_policy_failure_msgs[] = {
226 
227 	/* IPSEC_POLICY_NOT_NEEDED */
228 	"%s: Dropping the datagram because the incoming packet "
229 	"is %s, but the recipient expects clear; Source %s, "
230 	"Destination %s.\n",
231 
232 	/* IPSEC_POLICY_MISMATCH */
233 	"%s: Policy Failure for the incoming packet (%s); Source %s, "
234 	"Destination %s.\n",
235 
236 	/* IPSEC_POLICY_AUTH_NOT_NEEDED	*/
237 	"%s: Authentication present while not expected in the "
238 	"incoming %s packet; Source %s, Destination %s.\n",
239 
240 	/* IPSEC_POLICY_ENCR_NOT_NEEDED */
241 	"%s: Encryption present while not expected in the "
242 	"incoming %s packet; Source %s, Destination %s.\n",
243 
244 	/* IPSEC_POLICY_SE_NOT_NEEDED */
245 	"%s: Self-Encapsulation present while not expected in the "
246 	"incoming %s packet; Source %s, Destination %s.\n",
247 };
248 /*
249  * Have a counter for every possible policy message in the previous array.
250  */
251 static uint32_t ipsec_policy_failure_count[IPSEC_POLICY_MAX];
252 /* Time since last ipsec policy failure that printed a message. */
253 hrtime_t ipsec_policy_failure_last = 0;
254 
255 /*
256  * General overviews:
257  *
258  * Locking:
259  *
260  *	All of the system policy structures are protected by a single
261  *	rwlock, ipsec_conf_lock.  These structures are threaded in a
262  *	fairly complex fashion and are not expected to change on a
263  *	regular basis, so this should not cause scaling/contention
264  *	problems.  As a result, policy checks should (hopefully) be MT-hot.
265  *
266  * Allocation policy:
267  *
268  *	We use custom kmem cache types for the various
269  *	bits & pieces of the policy data structures.  All allocations
270  *	use KM_NOSLEEP instead of KM_SLEEP for policy allocation.  The
271  *	policy table is of potentially unbounded size, so we don't
272  *	want to provide a way to hog all system memory with policy
273  *	entries..
274  */
275 
276 /* Convenient functions for freeing or dropping a b_next linked mblk chain */
277 
278 /* Free all messages in an mblk chain */
279 static void
280 ipsec_freemsg_chain(mblk_t *mp)
281 {
282 	mblk_t *mpnext;
283 	while (mp != NULL) {
284 		ASSERT(mp->b_prev == NULL);
285 		mpnext = mp->b_next;
286 		mp->b_next = NULL;
287 		freemsg(mp);	/* Always works, even if NULL */
288 		mp = mpnext;
289 	}
290 }
291 
292 /* ip_drop all messages in an mblk chain */
293 static void
294 ip_drop_packet_chain(mblk_t *mp, boolean_t inbound, ill_t *arriving,
295     ire_t *outbound_ire, struct kstat_named *counter, ipdropper_t *who_called)
296 {
297 	mblk_t *mpnext;
298 	while (mp != NULL) {
299 		ASSERT(mp->b_prev == NULL);
300 		mpnext = mp->b_next;
301 		mp->b_next = NULL;
302 		ip_drop_packet(mp, inbound, arriving, outbound_ire, counter,
303 		    who_called);
304 		mp = mpnext;
305 	}
306 }
307 
308 /*
309  * AVL tree comparison function.
310  * the in-kernel avl assumes unique keys for all objects.
311  * Since sometimes policy will duplicate rules, we may insert
312  * multiple rules with the same rule id, so we need a tie-breaker.
313  */
314 static int
315 ipsec_policy_cmpbyid(const void *a, const void *b)
316 {
317 	const ipsec_policy_t *ipa, *ipb;
318 	uint64_t idxa, idxb;
319 
320 	ipa = (const ipsec_policy_t *)a;
321 	ipb = (const ipsec_policy_t *)b;
322 	idxa = ipa->ipsp_index;
323 	idxb = ipb->ipsp_index;
324 
325 	if (idxa < idxb)
326 		return (-1);
327 	if (idxa > idxb)
328 		return (1);
329 	/*
330 	 * Tie-breaker #1: All installed policy rules have a non-NULL
331 	 * ipsl_sel (selector set), so an entry with a NULL ipsp_sel is not
332 	 * actually in-tree but rather a template node being used in
333 	 * an avl_find query; see ipsec_policy_delete().  This gives us
334 	 * a placeholder in the ordering just before the the first entry with
335 	 * a key >= the one we're looking for, so we can walk forward from
336 	 * that point to get the remaining entries with the same id.
337 	 */
338 	if ((ipa->ipsp_sel == NULL) && (ipb->ipsp_sel != NULL))
339 		return (-1);
340 	if ((ipb->ipsp_sel == NULL) && (ipa->ipsp_sel != NULL))
341 		return (1);
342 	/*
343 	 * At most one of the arguments to the comparison should have a
344 	 * NULL selector pointer; if not, the tree is broken.
345 	 */
346 	ASSERT(ipa->ipsp_sel != NULL);
347 	ASSERT(ipb->ipsp_sel != NULL);
348 	/*
349 	 * Tie-breaker #2: use the virtual address of the policy node
350 	 * to arbitrarily break ties.  Since we use the new tree node in
351 	 * the avl_find() in ipsec_insert_always, the new node will be
352 	 * inserted into the tree in the right place in the sequence.
353 	 */
354 	if (ipa < ipb)
355 		return (-1);
356 	if (ipa > ipb)
357 		return (1);
358 	return (0);
359 }
360 
361 void
362 ipsec_polhead_free_table(ipsec_policy_head_t *iph)
363 {
364 	int dir;
365 
366 	for (dir = 0; dir < IPSEC_NTYPES; dir++) {
367 		ipsec_policy_root_t *ipr = &iph->iph_root[dir];
368 
369 		if (ipr->ipr_hash == NULL)
370 			continue;
371 
372 		kmem_free(ipr->ipr_hash, ipr->ipr_nchains *
373 		    sizeof (ipsec_policy_hash_t));
374 	}
375 }
376 
377 void
378 ipsec_polhead_destroy(ipsec_policy_head_t *iph)
379 {
380 	int dir;
381 
382 	avl_destroy(&iph->iph_rulebyid);
383 	rw_destroy(&iph->iph_lock);
384 
385 	for (dir = 0; dir < IPSEC_NTYPES; dir++) {
386 		ipsec_policy_root_t *ipr = &iph->iph_root[dir];
387 		int chain;
388 
389 		for (chain = 0; chain < ipr->ipr_nchains; chain++)
390 			mutex_destroy(&(ipr->ipr_hash[chain].hash_lock));
391 
392 	}
393 	ipsec_polhead_free_table(iph);
394 }
395 
396 /*
397  * Module unload hook.
398  */
399 void
400 ipsec_policy_destroy(void)
401 {
402 	int i;
403 	void *cookie;
404 	ipsec_tun_pol_t *node;
405 
406 	ip_drop_unregister(&spd_dropper);
407 	ip_drop_destroy();
408 
409 	rw_enter(&tunnel_policy_lock, RW_WRITER);
410 	/*
411 	 * It's possible we can just ASSERT() the tree is empty.  After all,
412 	 * we aren't called until IP is ready to unload (and presumably all
413 	 * tunnels have been unplumbed).  But we'll play it safe for now, the
414 	 * loop will just exit immediately if it's empty.
415 	 */
416 	cookie = NULL;
417 	while ((node = (ipsec_tun_pol_t *)
418 		    avl_destroy_nodes(&tunnel_policies, &cookie)) != NULL) {
419 		ITP_REFRELE(node);
420 	}
421 	avl_destroy(&tunnel_policies);
422 	rw_exit(&tunnel_policy_lock);
423 	rw_destroy(&tunnel_policy_lock);
424 	ipsec_polhead_destroy(&system_policy);
425 	ipsec_polhead_destroy(&inactive_policy);
426 
427 	for (i = 0; i < IPSEC_ACTION_HASH_SIZE; i++)
428 		mutex_destroy(&(ipsec_action_hash[i].hash_lock));
429 
430 	for (i = 0; i < ipsec_spd_hashsize; i++)
431 		mutex_destroy(&(ipsec_sel_hash[i].hash_lock));
432 
433 	ipsec_unregister_prov_update();
434 
435 	mutex_destroy(&alg_lock);
436 
437 	kmem_cache_destroy(ipsec_action_cache);
438 	kmem_cache_destroy(ipsec_sel_cache);
439 	kmem_cache_destroy(ipsec_pol_cache);
440 	kmem_cache_destroy(ipsec_info_cache);
441 	ipsid_gc();
442 	ipsid_fini();
443 }
444 
445 
446 /*
447  * Called when table allocation fails to free the table.
448  */
449 static int
450 ipsec_alloc_tables_failed()
451 {
452 	if (ipsec_sel_hash != NULL) {
453 		kmem_free(ipsec_sel_hash, ipsec_spd_hashsize *
454 		    sizeof (*ipsec_sel_hash));
455 		ipsec_sel_hash = NULL;
456 	}
457 	ipsec_polhead_free_table(&system_policy);
458 	ipsec_polhead_free_table(&inactive_policy);
459 
460 	return (ENOMEM);
461 }
462 
463 /*
464  * Attempt to allocate the tables in a single policy head.
465  * Return nonzero on failure after cleaning up any work in progress.
466  */
467 int
468 ipsec_alloc_table(ipsec_policy_head_t *iph, int nchains, int kmflag,
469     boolean_t global_cleanup)
470 {
471 	int dir;
472 
473 	for (dir = 0; dir < IPSEC_NTYPES; dir++) {
474 		ipsec_policy_root_t *ipr = &iph->iph_root[dir];
475 
476 		ipr->ipr_nchains = nchains;
477 		ipr->ipr_hash = kmem_zalloc(nchains *
478 		    sizeof (ipsec_policy_hash_t), kmflag);
479 		if (ipr->ipr_hash == NULL)
480 			return (global_cleanup ? ipsec_alloc_tables_failed() :
481 			    ENOMEM);
482 	}
483 	return (0);
484 }
485 
486 /*
487  * Attempt to allocate the various tables.  Return nonzero on failure
488  * after cleaning up any work in progress.
489  */
490 static int
491 ipsec_alloc_tables(int kmflag)
492 {
493 	int error;
494 
495 	error = ipsec_alloc_table(&system_policy, ipsec_spd_hashsize, kmflag,
496 	    B_TRUE);
497 	if (error != 0)
498 		return (error);
499 
500 	error = ipsec_alloc_table(&inactive_policy, ipsec_spd_hashsize, kmflag,
501 	    B_TRUE);
502 	if (error != 0)
503 		return (error);
504 
505 	ipsec_sel_hash = kmem_zalloc(ipsec_spd_hashsize *
506 	    sizeof (*ipsec_sel_hash), kmflag);
507 
508 	if (ipsec_sel_hash == NULL)
509 		return (ipsec_alloc_tables_failed());
510 
511 	return (0);
512 }
513 
514 /*
515  * After table allocation, initialize a policy head.
516  */
517 void
518 ipsec_polhead_init(ipsec_policy_head_t *iph, int nchains)
519 {
520 	int dir, chain;
521 
522 	rw_init(&iph->iph_lock, NULL, RW_DEFAULT, NULL);
523 	avl_create(&iph->iph_rulebyid, ipsec_policy_cmpbyid,
524 	    sizeof (ipsec_policy_t), offsetof(ipsec_policy_t, ipsp_byid));
525 
526 	for (dir = 0; dir < IPSEC_NTYPES; dir++) {
527 		ipsec_policy_root_t *ipr = &iph->iph_root[dir];
528 		ipr->ipr_nchains = nchains;
529 
530 		for (chain = 0; chain < nchains; chain++) {
531 			mutex_init(&(ipr->ipr_hash[chain].hash_lock),
532 			    NULL, MUTEX_DEFAULT, NULL);
533 		}
534 	}
535 }
536 
537 /*
538  * Module load hook.
539  */
540 void
541 ipsec_policy_init()
542 {
543 	int i;
544 
545 	/*
546 	 * Make two attempts to allocate policy hash tables; try it at
547 	 * the "preferred" size (may be set in /etc/system) first,
548 	 * then fall back to the default size.
549 	 */
550 	if (ipsec_spd_hashsize == 0)
551 		ipsec_spd_hashsize = IPSEC_SPDHASH_DEFAULT;
552 
553 	if (ipsec_alloc_tables(KM_NOSLEEP) != 0) {
554 		cmn_err(CE_WARN,
555 		    "Unable to allocate %d entry IPsec policy hash table",
556 		    ipsec_spd_hashsize);
557 		ipsec_spd_hashsize = IPSEC_SPDHASH_DEFAULT;
558 		cmn_err(CE_WARN, "Falling back to %d entries",
559 		    ipsec_spd_hashsize);
560 		(void) ipsec_alloc_tables(KM_SLEEP);
561 	}
562 
563 	/* Just set a default for tunnels. */
564 	if (tun_spd_hashsize == 0)
565 		tun_spd_hashsize = TUN_SPDHASH_DEFAULT;
566 
567 	ipsid_init();
568 	/*
569 	 * Globals need ref == 1 to prevent IPPH_REFRELE() from attempting
570 	 * to free them.
571 	 */
572 	system_policy.iph_refs = 1;
573 	inactive_policy.iph_refs = 1;
574 	ipsec_polhead_init(&system_policy, ipsec_spd_hashsize);
575 	ipsec_polhead_init(&inactive_policy, ipsec_spd_hashsize);
576 	rw_init(&tunnel_policy_lock, NULL, RW_DEFAULT, NULL);
577 	avl_create(&tunnel_policies, tunnel_compare, sizeof (ipsec_tun_pol_t),
578 	    0);
579 
580 	for (i = 0; i < IPSEC_ACTION_HASH_SIZE; i++)
581 		mutex_init(&(ipsec_action_hash[i].hash_lock),
582 		    NULL, MUTEX_DEFAULT, NULL);
583 
584 	for (i = 0; i < ipsec_spd_hashsize; i++)
585 		mutex_init(&(ipsec_sel_hash[i].hash_lock),
586 		    NULL, MUTEX_DEFAULT, NULL);
587 
588 	mutex_init(&alg_lock, NULL, MUTEX_DEFAULT, NULL);
589 
590 	for (i = 0; i < IPSEC_NALGTYPES; i++)
591 		ipsec_nalgs[i] = 0;
592 
593 	ipsec_action_cache = kmem_cache_create("ipsec_actions",
594 	    sizeof (ipsec_action_t), _POINTER_ALIGNMENT, NULL, NULL,
595 	    ipsec_action_reclaim, NULL, NULL, 0);
596 	ipsec_sel_cache = kmem_cache_create("ipsec_selectors",
597 	    sizeof (ipsec_sel_t), _POINTER_ALIGNMENT, NULL, NULL,
598 	    NULL, NULL, NULL, 0);
599 	ipsec_pol_cache = kmem_cache_create("ipsec_policy",
600 	    sizeof (ipsec_policy_t), _POINTER_ALIGNMENT, NULL, NULL,
601 	    NULL, NULL, NULL, 0);
602 	ipsec_info_cache = kmem_cache_create("ipsec_info",
603 	    sizeof (ipsec_info_t), _POINTER_ALIGNMENT, NULL, NULL,
604 	    NULL, NULL, NULL, 0);
605 
606 	ip_drop_init();
607 	ip_drop_register(&spd_dropper, "IPsec SPD");
608 
609 	/* Set function to dummy until tun is loaded */
610 	rw_init(&itp_get_byaddr_rw_lock, NULL, RW_DEFAULT, NULL);
611 	rw_enter(&itp_get_byaddr_rw_lock, RW_WRITER);
612 	itp_get_byaddr = itp_get_byaddr_dummy;
613 	rw_exit(&itp_get_byaddr_rw_lock);
614 }
615 
616 /*
617  * Sort algorithm lists.
618  *
619  * I may need to split this based on
620  * authentication/encryption, and I may wish to have an administrator
621  * configure this list.  Hold on to some NDD variables...
622  *
623  * XXX For now, sort on minimum key size (GAG!).  While minimum key size is
624  * not the ideal metric, it's the only quantifiable measure available.
625  * We need a better metric for sorting algorithms by preference.
626  */
627 static void
628 alg_insert_sortlist(enum ipsec_algtype at, uint8_t algid)
629 {
630 	ipsec_alginfo_t *ai = ipsec_alglists[at][algid];
631 	uint8_t holder, swap;
632 	uint_t i;
633 	uint_t count = ipsec_nalgs[at];
634 	ASSERT(ai != NULL);
635 	ASSERT(algid == ai->alg_id);
636 
637 	ASSERT(MUTEX_HELD(&alg_lock));
638 
639 	holder = algid;
640 
641 	for (i = 0; i < count - 1; i++) {
642 		ipsec_alginfo_t *alt;
643 
644 		alt = ipsec_alglists[at][ipsec_sortlist[at][i]];
645 		/*
646 		 * If you want to give precedence to newly added algs,
647 		 * add the = in the > comparison.
648 		 */
649 		if ((holder != algid) || (ai->alg_minbits > alt->alg_minbits)) {
650 			/* Swap sortlist[i] and holder. */
651 			swap = ipsec_sortlist[at][i];
652 			ipsec_sortlist[at][i] = holder;
653 			holder = swap;
654 			ai = alt;
655 		} /* Else just continue. */
656 	}
657 
658 	/* Store holder in last slot. */
659 	ipsec_sortlist[at][i] = holder;
660 }
661 
662 /*
663  * Remove an algorithm from a sorted algorithm list.
664  * This should be considerably easier, even with complex sorting.
665  */
666 static void
667 alg_remove_sortlist(enum ipsec_algtype at, uint8_t algid)
668 {
669 	boolean_t copyback = B_FALSE;
670 	int i;
671 	int newcount = ipsec_nalgs[at];
672 
673 	ASSERT(MUTEX_HELD(&alg_lock));
674 
675 	for (i = 0; i <= newcount; i++) {
676 		if (copyback)
677 			ipsec_sortlist[at][i-1] = ipsec_sortlist[at][i];
678 		else if (ipsec_sortlist[at][i] == algid)
679 			copyback = B_TRUE;
680 	}
681 }
682 
683 /*
684  * Add the specified algorithm to the algorithm tables.
685  * Must be called while holding the algorithm table writer lock.
686  */
687 void
688 ipsec_alg_reg(ipsec_algtype_t algtype, ipsec_alginfo_t *alg)
689 {
690 	ASSERT(MUTEX_HELD(&alg_lock));
691 
692 	ASSERT(ipsec_alglists[algtype][alg->alg_id] == NULL);
693 	ipsec_alg_fix_min_max(alg, algtype);
694 	ipsec_alglists[algtype][alg->alg_id] = alg;
695 
696 	ipsec_nalgs[algtype]++;
697 	alg_insert_sortlist(algtype, alg->alg_id);
698 }
699 
700 /*
701  * Remove the specified algorithm from the algorithm tables.
702  * Must be called while holding the algorithm table writer lock.
703  */
704 void
705 ipsec_alg_unreg(ipsec_algtype_t algtype, uint8_t algid)
706 {
707 	ASSERT(MUTEX_HELD(&alg_lock));
708 
709 	ASSERT(ipsec_alglists[algtype][algid] != NULL);
710 	ipsec_alg_free(ipsec_alglists[algtype][algid]);
711 	ipsec_alglists[algtype][algid] = NULL;
712 
713 	ipsec_nalgs[algtype]--;
714 	alg_remove_sortlist(algtype, algid);
715 }
716 
717 /*
718  * Hooks for spdsock to get a grip on system policy.
719  */
720 
721 ipsec_policy_head_t *
722 ipsec_system_policy(void)
723 {
724 	ipsec_policy_head_t *h = &system_policy;
725 	IPPH_REFHOLD(h);
726 	return (h);
727 }
728 
729 ipsec_policy_head_t *
730 ipsec_inactive_policy(void)
731 {
732 	ipsec_policy_head_t *h = &inactive_policy;
733 	IPPH_REFHOLD(h);
734 	return (h);
735 }
736 
737 /*
738  * Lock inactive policy, then active policy, then exchange policy root
739  * pointers.
740  */
741 void
742 ipsec_swap_policy(ipsec_policy_head_t *active, ipsec_policy_head_t *inactive)
743 {
744 	int af, dir;
745 	avl_tree_t r1, r2;
746 
747 	rw_enter(&inactive->iph_lock, RW_WRITER);
748 	rw_enter(&active->iph_lock, RW_WRITER);
749 
750 	r1 = active->iph_rulebyid;
751 	r2 = inactive->iph_rulebyid;
752 	active->iph_rulebyid = r2;
753 	inactive->iph_rulebyid = r1;
754 
755 	for (dir = 0; dir < IPSEC_NTYPES; dir++) {
756 		ipsec_policy_hash_t *h1, *h2;
757 
758 		h1 = active->iph_root[dir].ipr_hash;
759 		h2 = inactive->iph_root[dir].ipr_hash;
760 		active->iph_root[dir].ipr_hash = h2;
761 		inactive->iph_root[dir].ipr_hash = h1;
762 
763 		for (af = 0; af < IPSEC_NAF; af++) {
764 			ipsec_policy_t *t1, *t2;
765 
766 			t1 = active->iph_root[dir].ipr_nonhash[af];
767 			t2 = inactive->iph_root[dir].ipr_nonhash[af];
768 			active->iph_root[dir].ipr_nonhash[af] = t2;
769 			inactive->iph_root[dir].ipr_nonhash[af] = t1;
770 			if (t1 != NULL) {
771 				t1->ipsp_hash.hash_pp =
772 				    &(inactive->iph_root[dir].ipr_nonhash[af]);
773 			}
774 			if (t2 != NULL) {
775 				t2->ipsp_hash.hash_pp =
776 				    &(active->iph_root[dir].ipr_nonhash[af]);
777 			}
778 
779 		}
780 	}
781 	active->iph_gen++;
782 	inactive->iph_gen++;
783 	ipsec_update_present_flags();
784 	rw_exit(&active->iph_lock);
785 	rw_exit(&inactive->iph_lock);
786 }
787 
788 /*
789  * Swap global policy primary/secondary.
790  */
791 void
792 ipsec_swap_global_policy(void)
793 {
794 	ipsec_swap_policy(&system_policy, &inactive_policy);
795 }
796 
797 /*
798  * Clone one policy rule..
799  */
800 static ipsec_policy_t *
801 ipsec_copy_policy(const ipsec_policy_t *src)
802 {
803 	ipsec_policy_t *dst = kmem_cache_alloc(ipsec_pol_cache, KM_NOSLEEP);
804 
805 	if (dst == NULL)
806 		return (NULL);
807 
808 	/*
809 	 * Adjust refcounts of cloned state.
810 	 */
811 	IPACT_REFHOLD(src->ipsp_act);
812 	src->ipsp_sel->ipsl_refs++;
813 
814 	HASH_NULL(dst, ipsp_hash);
815 	dst->ipsp_refs = 1;
816 	dst->ipsp_sel = src->ipsp_sel;
817 	dst->ipsp_act = src->ipsp_act;
818 	dst->ipsp_prio = src->ipsp_prio;
819 	dst->ipsp_index = src->ipsp_index;
820 
821 	return (dst);
822 }
823 
824 void
825 ipsec_insert_always(avl_tree_t *tree, void *new_node)
826 {
827 	void *node;
828 	avl_index_t where;
829 
830 	node = avl_find(tree, new_node, &where);
831 	ASSERT(node == NULL);
832 	avl_insert(tree, new_node, where);
833 }
834 
835 
836 static int
837 ipsec_copy_chain(ipsec_policy_head_t *dph, ipsec_policy_t *src,
838     ipsec_policy_t **dstp)
839 {
840 	for (; src != NULL; src = src->ipsp_hash.hash_next) {
841 		ipsec_policy_t *dst = ipsec_copy_policy(src);
842 		if (dst == NULL)
843 			return (ENOMEM);
844 
845 		HASHLIST_INSERT(dst, ipsp_hash, *dstp);
846 		ipsec_insert_always(&dph->iph_rulebyid, dst);
847 	}
848 	return (0);
849 }
850 
851 
852 
853 /*
854  * Make one policy head look exactly like another.
855  *
856  * As with ipsec_swap_policy, we lock the destination policy head first, then
857  * the source policy head. Note that we only need to read-lock the source
858  * policy head as we are not changing it.
859  */
860 int
861 ipsec_copy_polhead(ipsec_policy_head_t *sph, ipsec_policy_head_t *dph)
862 {
863 	int af, dir, chain, nchains;
864 
865 	rw_enter(&dph->iph_lock, RW_WRITER);
866 
867 	ipsec_polhead_flush(dph);
868 
869 	rw_enter(&sph->iph_lock, RW_READER);
870 
871 	for (dir = 0; dir < IPSEC_NTYPES; dir++) {
872 		ipsec_policy_root_t *dpr = &dph->iph_root[dir];
873 		ipsec_policy_root_t *spr = &sph->iph_root[dir];
874 		nchains = dpr->ipr_nchains;
875 
876 		ASSERT(dpr->ipr_nchains == spr->ipr_nchains);
877 
878 		for (af = 0; af < IPSEC_NAF; af++) {
879 			if (ipsec_copy_chain(dph, spr->ipr_nonhash[af],
880 			    &dpr->ipr_nonhash[af]))
881 				goto abort_copy;
882 		}
883 
884 		for (chain = 0; chain < nchains; chain++) {
885 			if (ipsec_copy_chain(dph,
886 			    spr->ipr_hash[chain].hash_head,
887 			    &dpr->ipr_hash[chain].hash_head))
888 				goto abort_copy;
889 		}
890 	}
891 
892 	dph->iph_gen++;
893 
894 	rw_exit(&sph->iph_lock);
895 	rw_exit(&dph->iph_lock);
896 	return (0);
897 
898 abort_copy:
899 	ipsec_polhead_flush(dph);
900 	rw_exit(&sph->iph_lock);
901 	rw_exit(&dph->iph_lock);
902 	return (ENOMEM);
903 }
904 
905 /*
906  * Clone currently active policy to the inactive policy list.
907  */
908 int
909 ipsec_clone_system_policy(void)
910 {
911 	return (ipsec_copy_polhead(&system_policy, &inactive_policy));
912 }
913 
914 /*
915  * Generic "do we have IPvN policy" answer.
916  */
917 boolean_t
918 iph_ipvN(ipsec_policy_head_t *iph, boolean_t v6)
919 {
920 	int i, hval;
921 	uint32_t valbit;
922 	ipsec_policy_root_t *ipr;
923 	ipsec_policy_t *ipp;
924 
925 	if (v6) {
926 		valbit = IPSL_IPV6;
927 		hval = IPSEC_AF_V6;
928 	} else {
929 		valbit = IPSL_IPV4;
930 		hval = IPSEC_AF_V4;
931 	}
932 
933 	ASSERT(RW_LOCK_HELD(&iph->iph_lock));
934 	for (ipr = iph->iph_root; ipr < &(iph->iph_root[IPSEC_NTYPES]); ipr++) {
935 		if (ipr->ipr_nonhash[hval] != NULL)
936 			return (B_TRUE);
937 		for (i = 0; i < ipr->ipr_nchains; i++) {
938 			for (ipp = ipr->ipr_hash[i].hash_head; ipp != NULL;
939 			    ipp = ipp->ipsp_hash.hash_next) {
940 				if (ipp->ipsp_sel->ipsl_key.ipsl_valid & valbit)
941 					return (B_TRUE);
942 			}
943 		}
944 	}
945 
946 	return (B_FALSE);
947 }
948 
949 /*
950  * Extract the string from ipsec_policy_failure_msgs[type] and
951  * log it.
952  *
953  */
954 void
955 ipsec_log_policy_failure(queue_t *q, int type, char *func_name, ipha_t *ipha,
956     ip6_t *ip6h, boolean_t secure)
957 {
958 	char	sbuf[INET6_ADDRSTRLEN];
959 	char	dbuf[INET6_ADDRSTRLEN];
960 	char	*s;
961 	char	*d;
962 	short mid = 0;
963 
964 	ASSERT((ipha == NULL && ip6h != NULL) ||
965 	    (ip6h == NULL && ipha != NULL));
966 
967 	if (ipha != NULL) {
968 		s = inet_ntop(AF_INET, &ipha->ipha_src, sbuf, sizeof (sbuf));
969 		d = inet_ntop(AF_INET, &ipha->ipha_dst, dbuf, sizeof (dbuf));
970 	} else {
971 		s = inet_ntop(AF_INET6, &ip6h->ip6_src, sbuf, sizeof (sbuf));
972 		d = inet_ntop(AF_INET6, &ip6h->ip6_dst, dbuf, sizeof (dbuf));
973 
974 	}
975 
976 	/* Always bump the policy failure counter. */
977 	ipsec_policy_failure_count[type]++;
978 
979 	if (q != NULL) {
980 		mid = q->q_qinfo->qi_minfo->mi_idnum;
981 	}
982 	ipsec_rl_strlog(mid, 0, 0, SL_ERROR|SL_WARN|SL_CONSOLE,
983 		ipsec_policy_failure_msgs[type],
984 		func_name,
985 		(secure ? "secure" : "not secure"), s, d);
986 }
987 
988 /*
989  * Rate-limiting front-end to strlog() for AH and ESP.	Uses the ndd variables
990  * in /dev/ip and the same rate-limiting clock so that there's a single
991  * knob to turn to throttle the rate of messages.
992  */
993 void
994 ipsec_rl_strlog(short mid, short sid, char level, ushort_t sl, char *fmt, ...)
995 {
996 	va_list adx;
997 	hrtime_t current = gethrtime();
998 
999 	sl |= SL_CONSOLE;
1000 	/*
1001 	 * Throttle logging to stop syslog from being swamped. If variable
1002 	 * 'ipsec_policy_log_interval' is zero, don't log any messages at
1003 	 * all, otherwise log only one message every 'ipsec_policy_log_interval'
1004 	 * msec. Convert interval (in msec) to hrtime (in nsec).
1005 	 */
1006 
1007 	if (ipsec_policy_log_interval) {
1008 		if (ipsec_policy_failure_last +
1009 		    ((hrtime_t)ipsec_policy_log_interval * (hrtime_t)1000000) <=
1010 		    current) {
1011 			va_start(adx, fmt);
1012 			(void) vstrlog(mid, sid, level, sl, fmt, adx);
1013 			va_end(adx);
1014 			ipsec_policy_failure_last = current;
1015 		}
1016 	}
1017 }
1018 
1019 void
1020 ipsec_config_flush()
1021 {
1022 	rw_enter(&system_policy.iph_lock, RW_WRITER);
1023 	ipsec_polhead_flush(&system_policy);
1024 	ipsec_next_policy_index = 1;
1025 	rw_exit(&system_policy.iph_lock);
1026 	ipsec_action_reclaim(0);
1027 }
1028 
1029 /*
1030  * Clip a policy's min/max keybits vs. the capabilities of the
1031  * algorithm.
1032  */
1033 static void
1034 act_alg_adjust(uint_t algtype, uint_t algid,
1035     uint16_t *minbits, uint16_t *maxbits)
1036 {
1037 	ipsec_alginfo_t *algp = ipsec_alglists[algtype][algid];
1038 	if (algp != NULL) {
1039 		/*
1040 		 * If passed-in minbits is zero, we assume the caller trusts
1041 		 * us with setting the minimum key size.  We pick the
1042 		 * algorithms DEFAULT key size for the minimum in this case.
1043 		 */
1044 		if (*minbits == 0) {
1045 			*minbits = algp->alg_default_bits;
1046 			ASSERT(*minbits >= algp->alg_minbits);
1047 		} else {
1048 			*minbits = MAX(MIN(*minbits, algp->alg_maxbits),
1049 			    algp->alg_minbits);
1050 		}
1051 		if (*maxbits == 0)
1052 			*maxbits = algp->alg_maxbits;
1053 		else
1054 			*maxbits = MIN(MAX(*maxbits, algp->alg_minbits),
1055 			    algp->alg_maxbits);
1056 		ASSERT(*minbits <= *maxbits);
1057 	} else {
1058 		*minbits = 0;
1059 		*maxbits = 0;
1060 	}
1061 }
1062 
1063 /*
1064  * Check an action's requested algorithms against the algorithms currently
1065  * loaded in the system.
1066  */
1067 boolean_t
1068 ipsec_check_action(ipsec_act_t *act, int *diag)
1069 {
1070 	ipsec_prot_t *ipp;
1071 
1072 	ipp = &act->ipa_apply;
1073 
1074 	if (ipp->ipp_use_ah &&
1075 	    ipsec_alglists[IPSEC_ALG_AUTH][ipp->ipp_auth_alg] == NULL) {
1076 		*diag = SPD_DIAGNOSTIC_UNSUPP_AH_ALG;
1077 		return (B_FALSE);
1078 	}
1079 	if (ipp->ipp_use_espa &&
1080 	    ipsec_alglists[IPSEC_ALG_AUTH][ipp->ipp_esp_auth_alg] == NULL) {
1081 		*diag = SPD_DIAGNOSTIC_UNSUPP_ESP_AUTH_ALG;
1082 		return (B_FALSE);
1083 	}
1084 	if (ipp->ipp_use_esp &&
1085 	    ipsec_alglists[IPSEC_ALG_ENCR][ipp->ipp_encr_alg] == NULL) {
1086 		*diag = SPD_DIAGNOSTIC_UNSUPP_ESP_ENCR_ALG;
1087 		return (B_FALSE);
1088 	}
1089 
1090 	act_alg_adjust(IPSEC_ALG_AUTH, ipp->ipp_auth_alg,
1091 	    &ipp->ipp_ah_minbits, &ipp->ipp_ah_maxbits);
1092 	act_alg_adjust(IPSEC_ALG_AUTH, ipp->ipp_esp_auth_alg,
1093 	    &ipp->ipp_espa_minbits, &ipp->ipp_espa_maxbits);
1094 	act_alg_adjust(IPSEC_ALG_ENCR, ipp->ipp_encr_alg,
1095 	    &ipp->ipp_espe_minbits, &ipp->ipp_espe_maxbits);
1096 
1097 	if (ipp->ipp_ah_minbits > ipp->ipp_ah_maxbits) {
1098 		*diag = SPD_DIAGNOSTIC_UNSUPP_AH_KEYSIZE;
1099 		return (B_FALSE);
1100 	}
1101 	if (ipp->ipp_espa_minbits > ipp->ipp_espa_maxbits) {
1102 		*diag = SPD_DIAGNOSTIC_UNSUPP_ESP_AUTH_KEYSIZE;
1103 		return (B_FALSE);
1104 	}
1105 	if (ipp->ipp_espe_minbits > ipp->ipp_espe_maxbits) {
1106 		*diag = SPD_DIAGNOSTIC_UNSUPP_ESP_ENCR_KEYSIZE;
1107 		return (B_FALSE);
1108 	}
1109 	/* TODO: sanity check lifetimes */
1110 	return (B_TRUE);
1111 }
1112 
1113 /*
1114  * Set up a single action during wildcard expansion..
1115  */
1116 static void
1117 ipsec_setup_act(ipsec_act_t *outact, ipsec_act_t *act,
1118     uint_t auth_alg, uint_t encr_alg, uint_t eauth_alg)
1119 {
1120 	ipsec_prot_t *ipp;
1121 
1122 	*outact = *act;
1123 	ipp = &outact->ipa_apply;
1124 	ipp->ipp_auth_alg = (uint8_t)auth_alg;
1125 	ipp->ipp_encr_alg = (uint8_t)encr_alg;
1126 	ipp->ipp_esp_auth_alg = (uint8_t)eauth_alg;
1127 
1128 	act_alg_adjust(IPSEC_ALG_AUTH, auth_alg,
1129 	    &ipp->ipp_ah_minbits, &ipp->ipp_ah_maxbits);
1130 	act_alg_adjust(IPSEC_ALG_AUTH, eauth_alg,
1131 	    &ipp->ipp_espa_minbits, &ipp->ipp_espa_maxbits);
1132 	act_alg_adjust(IPSEC_ALG_ENCR, encr_alg,
1133 	    &ipp->ipp_espe_minbits, &ipp->ipp_espe_maxbits);
1134 }
1135 
1136 /*
1137  * combinatoric expansion time: expand a wildcarded action into an
1138  * array of wildcarded actions; we return the exploded action list,
1139  * and return a count in *nact (output only).
1140  */
1141 static ipsec_act_t *
1142 ipsec_act_wildcard_expand(ipsec_act_t *act, uint_t *nact)
1143 {
1144 	boolean_t use_ah, use_esp, use_espa;
1145 	boolean_t wild_auth, wild_encr, wild_eauth;
1146 	uint_t	auth_alg, auth_idx, auth_min, auth_max;
1147 	uint_t	eauth_alg, eauth_idx, eauth_min, eauth_max;
1148 	uint_t  encr_alg, encr_idx, encr_min, encr_max;
1149 	uint_t	action_count, ai;
1150 	ipsec_act_t *outact;
1151 
1152 	if (act->ipa_type != IPSEC_ACT_APPLY) {
1153 		outact = kmem_alloc(sizeof (*act), KM_NOSLEEP);
1154 		*nact = 1;
1155 		if (outact != NULL)
1156 			bcopy(act, outact, sizeof (*act));
1157 		return (outact);
1158 	}
1159 	/*
1160 	 * compute the combinatoric explosion..
1161 	 *
1162 	 * we assume a request for encr if esp_req is PREF_REQUIRED
1163 	 * we assume a request for ah auth if ah_req is PREF_REQUIRED.
1164 	 * we assume a request for esp auth if !ah and esp_req is PREF_REQUIRED
1165 	 */
1166 
1167 	use_ah = act->ipa_apply.ipp_use_ah;
1168 	use_esp = act->ipa_apply.ipp_use_esp;
1169 	use_espa = act->ipa_apply.ipp_use_espa;
1170 	auth_alg = act->ipa_apply.ipp_auth_alg;
1171 	eauth_alg = act->ipa_apply.ipp_esp_auth_alg;
1172 	encr_alg = act->ipa_apply.ipp_encr_alg;
1173 
1174 	wild_auth = use_ah && (auth_alg == 0);
1175 	wild_eauth = use_espa && (eauth_alg == 0);
1176 	wild_encr = use_esp && (encr_alg == 0);
1177 
1178 	action_count = 1;
1179 	auth_min = auth_max = auth_alg;
1180 	eauth_min = eauth_max = eauth_alg;
1181 	encr_min = encr_max = encr_alg;
1182 
1183 	/*
1184 	 * set up for explosion.. for each dimension, expand output
1185 	 * size by the explosion factor.
1186 	 *
1187 	 * Don't include the "any" algorithms, if defined, as no
1188 	 * kernel policies should be set for these algorithms.
1189 	 */
1190 
1191 #define	SET_EXP_MINMAX(type, wild, alg, min, max) if (wild) {	\
1192 		int nalgs = ipsec_nalgs[type];			\
1193 		if (ipsec_alglists[type][alg] != NULL)		\
1194 			nalgs--;				\
1195 		action_count *= nalgs;				\
1196 		min = 0;					\
1197 		max = ipsec_nalgs[type] - 1;			\
1198 	}
1199 
1200 	SET_EXP_MINMAX(IPSEC_ALG_AUTH, wild_auth, SADB_AALG_NONE,
1201 	    auth_min, auth_max);
1202 	SET_EXP_MINMAX(IPSEC_ALG_AUTH, wild_eauth, SADB_AALG_NONE,
1203 	    eauth_min, eauth_max);
1204 	SET_EXP_MINMAX(IPSEC_ALG_ENCR, wild_encr, SADB_EALG_NONE,
1205 	    encr_min, encr_max);
1206 
1207 #undef	SET_EXP_MINMAX
1208 
1209 	/*
1210 	 * ok, allocate the whole mess..
1211 	 */
1212 
1213 	outact = kmem_alloc(sizeof (*outact) * action_count, KM_NOSLEEP);
1214 	if (outact == NULL)
1215 		return (NULL);
1216 
1217 	/*
1218 	 * Now compute all combinations.  Note that non-wildcarded
1219 	 * dimensions just get a single value from auth_min, while
1220 	 * wildcarded dimensions indirect through the sortlist.
1221 	 *
1222 	 * We do encryption outermost since, at this time, there's
1223 	 * greater difference in security and performance between
1224 	 * encryption algorithms vs. authentication algorithms.
1225 	 */
1226 
1227 	ai = 0;
1228 
1229 #define	WHICH_ALG(type, wild, idx) ((wild)?(ipsec_sortlist[type][idx]):(idx))
1230 
1231 	for (encr_idx = encr_min; encr_idx <= encr_max; encr_idx++) {
1232 		encr_alg = WHICH_ALG(IPSEC_ALG_ENCR, wild_encr, encr_idx);
1233 		if (wild_encr && encr_alg == SADB_EALG_NONE)
1234 			continue;
1235 		for (auth_idx = auth_min; auth_idx <= auth_max; auth_idx++) {
1236 			auth_alg = WHICH_ALG(IPSEC_ALG_AUTH, wild_auth,
1237 			    auth_idx);
1238 			if (wild_auth && auth_alg == SADB_AALG_NONE)
1239 				continue;
1240 			for (eauth_idx = eauth_min; eauth_idx <= eauth_max;
1241 			    eauth_idx++) {
1242 				eauth_alg = WHICH_ALG(IPSEC_ALG_AUTH,
1243 				    wild_eauth, eauth_idx);
1244 				if (wild_eauth && eauth_alg == SADB_AALG_NONE)
1245 					continue;
1246 
1247 				ipsec_setup_act(&outact[ai], act,
1248 				    auth_alg, encr_alg, eauth_alg);
1249 				ai++;
1250 			}
1251 		}
1252 	}
1253 
1254 #undef WHICH_ALG
1255 
1256 	ASSERT(ai == action_count);
1257 	*nact = action_count;
1258 	return (outact);
1259 }
1260 
1261 /*
1262  * Extract the parts of an ipsec_prot_t from an old-style ipsec_req_t.
1263  */
1264 static void
1265 ipsec_prot_from_req(ipsec_req_t *req, ipsec_prot_t *ipp)
1266 {
1267 	bzero(ipp, sizeof (*ipp));
1268 	/*
1269 	 * ipp_use_* are bitfields.  Look at "!!" in the following as a
1270 	 * "boolean canonicalization" operator.
1271 	 */
1272 	ipp->ipp_use_ah = !!(req->ipsr_ah_req & IPSEC_PREF_REQUIRED);
1273 	ipp->ipp_use_esp = !!(req->ipsr_esp_req & IPSEC_PREF_REQUIRED);
1274 	ipp->ipp_use_espa = !!(req->ipsr_esp_auth_alg) || !ipp->ipp_use_ah;
1275 	ipp->ipp_use_se = !!(req->ipsr_self_encap_req & IPSEC_PREF_REQUIRED);
1276 	ipp->ipp_use_unique = !!((req->ipsr_ah_req|req->ipsr_esp_req) &
1277 	    IPSEC_PREF_UNIQUE);
1278 	ipp->ipp_encr_alg = req->ipsr_esp_alg;
1279 	ipp->ipp_auth_alg = req->ipsr_auth_alg;
1280 	ipp->ipp_esp_auth_alg = req->ipsr_esp_auth_alg;
1281 }
1282 
1283 /*
1284  * Extract a new-style action from a request.
1285  */
1286 void
1287 ipsec_actvec_from_req(ipsec_req_t *req, ipsec_act_t **actp, uint_t *nactp)
1288 {
1289 	struct ipsec_act act;
1290 	bzero(&act, sizeof (act));
1291 	if ((req->ipsr_ah_req & IPSEC_PREF_NEVER) &&
1292 	    (req->ipsr_esp_req & IPSEC_PREF_NEVER)) {
1293 		act.ipa_type = IPSEC_ACT_BYPASS;
1294 	} else {
1295 		act.ipa_type = IPSEC_ACT_APPLY;
1296 		ipsec_prot_from_req(req, &act.ipa_apply);
1297 	}
1298 	*actp = ipsec_act_wildcard_expand(&act, nactp);
1299 }
1300 
1301 /*
1302  * Convert a new-style "prot" back to an ipsec_req_t (more backwards compat).
1303  * We assume caller has already zero'ed *req for us.
1304  */
1305 static int
1306 ipsec_req_from_prot(ipsec_prot_t *ipp, ipsec_req_t *req)
1307 {
1308 	req->ipsr_esp_alg = ipp->ipp_encr_alg;
1309 	req->ipsr_auth_alg = ipp->ipp_auth_alg;
1310 	req->ipsr_esp_auth_alg = ipp->ipp_esp_auth_alg;
1311 
1312 	if (ipp->ipp_use_unique) {
1313 		req->ipsr_ah_req |= IPSEC_PREF_UNIQUE;
1314 		req->ipsr_esp_req |= IPSEC_PREF_UNIQUE;
1315 	}
1316 	if (ipp->ipp_use_se)
1317 		req->ipsr_self_encap_req |= IPSEC_PREF_REQUIRED;
1318 	if (ipp->ipp_use_ah)
1319 		req->ipsr_ah_req |= IPSEC_PREF_REQUIRED;
1320 	if (ipp->ipp_use_esp)
1321 		req->ipsr_esp_req |= IPSEC_PREF_REQUIRED;
1322 	return (sizeof (*req));
1323 }
1324 
1325 /*
1326  * Convert a new-style action back to an ipsec_req_t (more backwards compat).
1327  * We assume caller has already zero'ed *req for us.
1328  */
1329 static int
1330 ipsec_req_from_act(ipsec_action_t *ap, ipsec_req_t *req)
1331 {
1332 	switch (ap->ipa_act.ipa_type) {
1333 	case IPSEC_ACT_BYPASS:
1334 		req->ipsr_ah_req = IPSEC_PREF_NEVER;
1335 		req->ipsr_esp_req = IPSEC_PREF_NEVER;
1336 		return (sizeof (*req));
1337 	case IPSEC_ACT_APPLY:
1338 		return (ipsec_req_from_prot(&ap->ipa_act.ipa_apply, req));
1339 	}
1340 	return (sizeof (*req));
1341 }
1342 
1343 /*
1344  * Convert a new-style action back to an ipsec_req_t (more backwards compat).
1345  * We assume caller has already zero'ed *req for us.
1346  */
1347 int
1348 ipsec_req_from_head(ipsec_policy_head_t *ph, ipsec_req_t *req, int af)
1349 {
1350 	ipsec_policy_t *p;
1351 
1352 	/*
1353 	 * FULL-PERSOCK: consult hash table, too?
1354 	 */
1355 	for (p = ph->iph_root[IPSEC_INBOUND].ipr_nonhash[af];
1356 	    p != NULL;
1357 	    p = p->ipsp_hash.hash_next) {
1358 		if ((p->ipsp_sel->ipsl_key.ipsl_valid & IPSL_WILDCARD) == 0)
1359 			return (ipsec_req_from_act(p->ipsp_act, req));
1360 	}
1361 	return (sizeof (*req));
1362 }
1363 
1364 /*
1365  * Based on per-socket or latched policy, convert to an appropriate
1366  * IP_SEC_OPT ipsec_req_t for the socket option; return size so we can
1367  * be tail-called from ip.
1368  */
1369 int
1370 ipsec_req_from_conn(conn_t *connp, ipsec_req_t *req, int af)
1371 {
1372 	ipsec_latch_t *ipl;
1373 	int rv = sizeof (ipsec_req_t);
1374 
1375 	bzero(req, sizeof (*req));
1376 
1377 	mutex_enter(&connp->conn_lock);
1378 	ipl = connp->conn_latch;
1379 
1380 	/*
1381 	 * Find appropriate policy.  First choice is latched action;
1382 	 * failing that, see latched policy; failing that,
1383 	 * look at configured policy.
1384 	 */
1385 	if (ipl != NULL) {
1386 		if (ipl->ipl_in_action != NULL) {
1387 			rv = ipsec_req_from_act(ipl->ipl_in_action, req);
1388 			goto done;
1389 		}
1390 		if (ipl->ipl_in_policy != NULL) {
1391 			rv = ipsec_req_from_act(ipl->ipl_in_policy->ipsp_act,
1392 			    req);
1393 			goto done;
1394 		}
1395 	}
1396 	if (connp->conn_policy != NULL)
1397 		rv = ipsec_req_from_head(connp->conn_policy, req, af);
1398 done:
1399 	mutex_exit(&connp->conn_lock);
1400 	return (rv);
1401 }
1402 
1403 void
1404 ipsec_actvec_free(ipsec_act_t *act, uint_t nact)
1405 {
1406 	kmem_free(act, nact * sizeof (*act));
1407 }
1408 
1409 /*
1410  * When outbound policy is not cached, look it up the hard way and attach
1411  * an ipsec_out_t to the packet..
1412  */
1413 static mblk_t *
1414 ipsec_attach_global_policy(mblk_t *mp, conn_t *connp, ipsec_selector_t *sel)
1415 {
1416 	ipsec_policy_t *p;
1417 
1418 	p = ipsec_find_policy(IPSEC_TYPE_OUTBOUND, connp, NULL, sel);
1419 
1420 	if (p == NULL)
1421 		return (NULL);
1422 	return (ipsec_attach_ipsec_out(mp, connp, p, sel->ips_protocol));
1423 }
1424 
1425 /*
1426  * We have an ipsec_out already, but don't have cached policy; fill it in
1427  * with the right actions.
1428  */
1429 static mblk_t *
1430 ipsec_apply_global_policy(mblk_t *ipsec_mp, conn_t *connp,
1431     ipsec_selector_t *sel)
1432 {
1433 	ipsec_out_t *io;
1434 	ipsec_policy_t *p;
1435 
1436 	ASSERT(ipsec_mp->b_datap->db_type == M_CTL);
1437 	ASSERT(ipsec_mp->b_cont->b_datap->db_type == M_DATA);
1438 
1439 	io = (ipsec_out_t *)ipsec_mp->b_rptr;
1440 
1441 	if (io->ipsec_out_policy == NULL) {
1442 		p = ipsec_find_policy(IPSEC_TYPE_OUTBOUND, connp, io, sel);
1443 		io->ipsec_out_policy = p;
1444 	}
1445 	return (ipsec_mp);
1446 }
1447 
1448 
1449 /* ARGSUSED */
1450 /*
1451  * Consumes a reference to ipsp.
1452  */
1453 static mblk_t *
1454 ipsec_check_loopback_policy(queue_t *q, mblk_t *first_mp,
1455     boolean_t mctl_present, ipsec_policy_t *ipsp)
1456 {
1457 	mblk_t *ipsec_mp;
1458 	ipsec_in_t *ii;
1459 
1460 	if (!mctl_present)
1461 		return (first_mp);
1462 
1463 	ipsec_mp = first_mp;
1464 
1465 	ii = (ipsec_in_t *)ipsec_mp->b_rptr;
1466 	ASSERT(ii->ipsec_in_loopback);
1467 	IPPOL_REFRELE(ipsp);
1468 
1469 	/*
1470 	 * We should do an actual policy check here.  Revisit this
1471 	 * when we revisit the IPsec API.
1472 	 */
1473 
1474 	return (first_mp);
1475 }
1476 
1477 /*
1478  * Check that packet's inbound ports & proto match the selectors
1479  * expected by the SAs it traversed on the way in.
1480  */
1481 static boolean_t
1482 ipsec_check_ipsecin_unique(ipsec_in_t *ii, const char **reason,
1483     kstat_named_t **counter, uint64_t pkt_unique)
1484 {
1485 	uint64_t ah_mask, esp_mask;
1486 	ipsa_t *ah_assoc;
1487 	ipsa_t *esp_assoc;
1488 
1489 	ASSERT(ii->ipsec_in_secure);
1490 	ASSERT(!ii->ipsec_in_loopback);
1491 
1492 	ah_assoc = ii->ipsec_in_ah_sa;
1493 	esp_assoc = ii->ipsec_in_esp_sa;
1494 	ASSERT((ah_assoc != NULL) || (esp_assoc != NULL));
1495 
1496 	ah_mask = (ah_assoc != NULL) ? ah_assoc->ipsa_unique_mask : 0;
1497 	esp_mask = (esp_assoc != NULL) ? esp_assoc->ipsa_unique_mask : 0;
1498 
1499 	if ((ah_mask == 0) && (esp_mask == 0))
1500 		return (B_TRUE);
1501 
1502 	/*
1503 	 * The pkt_unique check will also check for tunnel mode on the SA
1504 	 * vs. the tunneled_packet boolean.  "Be liberal in what you receive"
1505 	 * should not apply in this case.  ;)
1506 	 */
1507 
1508 	if (ah_mask != 0 &&
1509 	    ah_assoc->ipsa_unique_id != (pkt_unique & ah_mask)) {
1510 		*reason = "AH inner header mismatch";
1511 		*counter = &ipdrops_spd_ah_innermismatch;
1512 		return (B_FALSE);
1513 	}
1514 	if (esp_mask != 0 &&
1515 	    esp_assoc->ipsa_unique_id != (pkt_unique & esp_mask)) {
1516 		*reason = "ESP inner header mismatch";
1517 		*counter = &ipdrops_spd_esp_innermismatch;
1518 		return (B_FALSE);
1519 	}
1520 	return (B_TRUE);
1521 }
1522 
1523 static boolean_t
1524 ipsec_check_ipsecin_action(ipsec_in_t *ii, mblk_t *mp, ipsec_action_t *ap,
1525     ipha_t *ipha, ip6_t *ip6h, const char **reason, kstat_named_t **counter)
1526 {
1527 	boolean_t ret = B_TRUE;
1528 	ipsec_prot_t *ipp;
1529 	ipsa_t *ah_assoc;
1530 	ipsa_t *esp_assoc;
1531 	boolean_t decaps;
1532 
1533 	ASSERT((ipha == NULL && ip6h != NULL) ||
1534 	    (ip6h == NULL && ipha != NULL));
1535 
1536 	if (ii->ipsec_in_loopback) {
1537 		/*
1538 		 * Besides accepting pointer-equivalent actions, we also
1539 		 * accept any ICMP errors we generated for ourselves,
1540 		 * regardless of policy.  If we do not wish to make this
1541 		 * assumption in the future, check here, and where
1542 		 * icmp_loopback is initialized in ip.c and ip6.c.  (Look for
1543 		 * ipsec_out_icmp_loopback.)
1544 		 */
1545 		if (ap == ii->ipsec_in_action || ii->ipsec_in_icmp_loopback)
1546 			return (B_TRUE);
1547 
1548 		/* Deep compare necessary here?? */
1549 		*counter = &ipdrops_spd_loopback_mismatch;
1550 		*reason = "loopback policy mismatch";
1551 		return (B_FALSE);
1552 	}
1553 	ASSERT(!ii->ipsec_in_icmp_loopback);
1554 
1555 	ah_assoc = ii->ipsec_in_ah_sa;
1556 	esp_assoc = ii->ipsec_in_esp_sa;
1557 
1558 	decaps = ii->ipsec_in_decaps;
1559 
1560 	switch (ap->ipa_act.ipa_type) {
1561 	case IPSEC_ACT_DISCARD:
1562 	case IPSEC_ACT_REJECT:
1563 		/* Should "fail hard" */
1564 		*counter = &ipdrops_spd_explicit;
1565 		*reason = "blocked by policy";
1566 		return (B_FALSE);
1567 
1568 	case IPSEC_ACT_BYPASS:
1569 	case IPSEC_ACT_CLEAR:
1570 		*counter = &ipdrops_spd_got_secure;
1571 		*reason = "expected clear, got protected";
1572 		return (B_FALSE);
1573 
1574 	case IPSEC_ACT_APPLY:
1575 		ipp = &ap->ipa_act.ipa_apply;
1576 		/*
1577 		 * As of now we do the simple checks of whether
1578 		 * the datagram has gone through the required IPSEC
1579 		 * protocol constraints or not. We might have more
1580 		 * in the future like sensitive levels, key bits, etc.
1581 		 * If it fails the constraints, check whether we would
1582 		 * have accepted this if it had come in clear.
1583 		 */
1584 		if (ipp->ipp_use_ah) {
1585 			if (ah_assoc == NULL) {
1586 				ret = ipsec_inbound_accept_clear(mp, ipha,
1587 				    ip6h);
1588 				*counter = &ipdrops_spd_got_clear;
1589 				*reason = "unprotected not accepted";
1590 				break;
1591 			}
1592 			ASSERT(ah_assoc != NULL);
1593 			ASSERT(ipp->ipp_auth_alg != 0);
1594 
1595 			if (ah_assoc->ipsa_auth_alg !=
1596 			    ipp->ipp_auth_alg) {
1597 				*counter = &ipdrops_spd_bad_ahalg;
1598 				*reason = "unacceptable ah alg";
1599 				ret = B_FALSE;
1600 				break;
1601 			}
1602 		} else if (ah_assoc != NULL) {
1603 			/*
1604 			 * Don't allow this. Check IPSEC NOTE above
1605 			 * ip_fanout_proto().
1606 			 */
1607 			*counter = &ipdrops_spd_got_ah;
1608 			*reason = "unexpected AH";
1609 			ret = B_FALSE;
1610 			break;
1611 		}
1612 		if (ipp->ipp_use_esp) {
1613 			if (esp_assoc == NULL) {
1614 				ret = ipsec_inbound_accept_clear(mp, ipha,
1615 				    ip6h);
1616 				*counter = &ipdrops_spd_got_clear;
1617 				*reason = "unprotected not accepted";
1618 				break;
1619 			}
1620 			ASSERT(esp_assoc != NULL);
1621 			ASSERT(ipp->ipp_encr_alg != 0);
1622 
1623 			if (esp_assoc->ipsa_encr_alg !=
1624 			    ipp->ipp_encr_alg) {
1625 				*counter = &ipdrops_spd_bad_espealg;
1626 				*reason = "unacceptable esp alg";
1627 				ret = B_FALSE;
1628 				break;
1629 			}
1630 			/*
1631 			 * If the client does not need authentication,
1632 			 * we don't verify the alogrithm.
1633 			 */
1634 			if (ipp->ipp_use_espa) {
1635 				if (esp_assoc->ipsa_auth_alg !=
1636 				    ipp->ipp_esp_auth_alg) {
1637 					*counter = &ipdrops_spd_bad_espaalg;
1638 					*reason = "unacceptable esp auth alg";
1639 					ret = B_FALSE;
1640 					break;
1641 				}
1642 			}
1643 		} else if (esp_assoc != NULL) {
1644 				/*
1645 				 * Don't allow this. Check IPSEC NOTE above
1646 				 * ip_fanout_proto().
1647 				 */
1648 			*counter = &ipdrops_spd_got_esp;
1649 			*reason = "unexpected ESP";
1650 			ret = B_FALSE;
1651 			break;
1652 		}
1653 		if (ipp->ipp_use_se) {
1654 			if (!decaps) {
1655 				ret = ipsec_inbound_accept_clear(mp, ipha,
1656 				    ip6h);
1657 				if (!ret) {
1658 					/* XXX mutant? */
1659 					*counter = &ipdrops_spd_bad_selfencap;
1660 					*reason = "self encap not found";
1661 					break;
1662 				}
1663 			}
1664 		} else if (decaps) {
1665 			/*
1666 			 * XXX If the packet comes in tunneled and the
1667 			 * recipient does not expect it to be tunneled, it
1668 			 * is okay. But we drop to be consistent with the
1669 			 * other cases.
1670 			 */
1671 			*counter = &ipdrops_spd_got_selfencap;
1672 			*reason = "unexpected self encap";
1673 			ret = B_FALSE;
1674 			break;
1675 		}
1676 		if (ii->ipsec_in_action != NULL) {
1677 			/*
1678 			 * This can happen if we do a double policy-check on
1679 			 * a packet
1680 			 * XXX XXX should fix this case!
1681 			 */
1682 			IPACT_REFRELE(ii->ipsec_in_action);
1683 		}
1684 		ASSERT(ii->ipsec_in_action == NULL);
1685 		IPACT_REFHOLD(ap);
1686 		ii->ipsec_in_action = ap;
1687 		break;	/* from switch */
1688 	}
1689 	return (ret);
1690 }
1691 
1692 static boolean_t
1693 spd_match_inbound_ids(ipsec_latch_t *ipl, ipsa_t *sa)
1694 {
1695 	ASSERT(ipl->ipl_ids_latched == B_TRUE);
1696 	return ipsid_equal(ipl->ipl_remote_cid, sa->ipsa_src_cid) &&
1697 	    ipsid_equal(ipl->ipl_local_cid, sa->ipsa_dst_cid);
1698 }
1699 
1700 /*
1701  * Takes a latched conn and an inbound packet and returns a unique_id suitable
1702  * for SA comparisons.  Most of the time we will copy from the conn_t, but
1703  * there are cases when the conn_t is latched but it has wildcard selectors,
1704  * and then we need to fallback to scooping them out of the packet.
1705  *
1706  * Assume we'll never have 0 with a conn_t present, so use 0 as a failure.  We
1707  * can get away with this because we only have non-zero ports/proto for
1708  * latched conn_ts.
1709  *
1710  * Ideal candidate for an "inline" keyword, as we're JUST convoluted enough
1711  * to not be a nice macro.
1712  */
1713 static uint64_t
1714 conn_to_unique(conn_t *connp, mblk_t *data_mp, ipha_t *ipha, ip6_t *ip6h)
1715 {
1716 	ipsec_selector_t sel;
1717 	uint8_t ulp = connp->conn_ulp;
1718 
1719 	ASSERT(connp->conn_latch->ipl_in_policy != NULL);
1720 
1721 	if ((ulp == IPPROTO_TCP || ulp == IPPROTO_UDP || ulp == IPPROTO_SCTP) &&
1722 	    (connp->conn_fport == 0 || connp->conn_lport == 0)) {
1723 		/* Slow path - we gotta grab from the packet. */
1724 		if (ipsec_init_inbound_sel(&sel, data_mp, ipha, ip6h,
1725 			SEL_NONE) != SELRET_SUCCESS) {
1726 			/* Failure -> have caller free packet with ENOMEM. */
1727 			return (0);
1728 		}
1729 		return (SA_UNIQUE_ID(sel.ips_remote_port, sel.ips_local_port,
1730 			    sel.ips_protocol, 0));
1731 	}
1732 
1733 #ifdef DEBUG_NOT_UNTIL_6478464
1734 	if (ipsec_init_inbound_sel(&sel, data_mp, ipha, ip6h, SEL_NONE) ==
1735 	    SELRET_SUCCESS) {
1736 		ASSERT(sel.ips_local_port == connp->conn_lport);
1737 		ASSERT(sel.ips_remote_port == connp->conn_fport);
1738 		ASSERT(sel.ips_protocol == connp->conn_ulp);
1739 	}
1740 	ASSERT(connp->conn_ulp != 0);
1741 #endif
1742 
1743 	return (SA_UNIQUE_ID(connp->conn_fport, connp->conn_lport, ulp, 0));
1744 }
1745 
1746 /*
1747  * Called to check policy on a latched connection, both from this file
1748  * and from tcp.c
1749  */
1750 boolean_t
1751 ipsec_check_ipsecin_latch(ipsec_in_t *ii, mblk_t *mp, ipsec_latch_t *ipl,
1752     ipha_t *ipha, ip6_t *ip6h, const char **reason, kstat_named_t **counter,
1753     conn_t *connp)
1754 {
1755 	ASSERT(ipl->ipl_ids_latched == B_TRUE);
1756 
1757 	if (!ii->ipsec_in_loopback) {
1758 		/*
1759 		 * Over loopback, there aren't real security associations,
1760 		 * so there are neither identities nor "unique" values
1761 		 * for us to check the packet against.
1762 		 */
1763 		if ((ii->ipsec_in_ah_sa != NULL) &&
1764 		    (!spd_match_inbound_ids(ipl, ii->ipsec_in_ah_sa))) {
1765 			*counter = &ipdrops_spd_ah_badid;
1766 			*reason = "AH identity mismatch";
1767 			return (B_FALSE);
1768 		}
1769 
1770 		if ((ii->ipsec_in_esp_sa != NULL) &&
1771 		    (!spd_match_inbound_ids(ipl, ii->ipsec_in_esp_sa))) {
1772 			*counter = &ipdrops_spd_esp_badid;
1773 			*reason = "ESP identity mismatch";
1774 			return (B_FALSE);
1775 		}
1776 
1777 		/*
1778 		 * Can fudge pkt_unique from connp because we're latched.
1779 		 * In DEBUG kernels (see conn_to_unique()'s implementation),
1780 		 * verify this even if it REALLY slows things down.
1781 		 */
1782 		if (!ipsec_check_ipsecin_unique(ii, reason, counter,
1783 			conn_to_unique(connp, mp, ipha, ip6h))) {
1784 			return (B_FALSE);
1785 		}
1786 	}
1787 
1788 	return (ipsec_check_ipsecin_action(ii, mp, ipl->ipl_in_action,
1789 	    ipha, ip6h, reason, counter));
1790 }
1791 
1792 /*
1793  * Check to see whether this secured datagram meets the policy
1794  * constraints specified in ipsp.
1795  *
1796  * Called from ipsec_check_global_policy, and ipsec_check_inbound_policy.
1797  *
1798  * Consumes a reference to ipsp.
1799  */
1800 static mblk_t *
1801 ipsec_check_ipsecin_policy(queue_t *q, mblk_t *first_mp, ipsec_policy_t *ipsp,
1802     ipha_t *ipha, ip6_t *ip6h, uint64_t pkt_unique)
1803 {
1804 	ipsec_in_t *ii;
1805 	ipsec_action_t *ap;
1806 	const char *reason = "no policy actions found";
1807 	mblk_t *data_mp, *ipsec_mp;
1808 	short mid = 0;
1809 	kstat_named_t *counter = &ipdrops_spd_got_secure;
1810 
1811 	data_mp = first_mp->b_cont;
1812 	ipsec_mp = first_mp;
1813 
1814 	ASSERT(ipsp != NULL);
1815 
1816 	ASSERT((ipha == NULL && ip6h != NULL) ||
1817 	    (ip6h == NULL && ipha != NULL));
1818 
1819 	ii = (ipsec_in_t *)ipsec_mp->b_rptr;
1820 
1821 	if (ii->ipsec_in_loopback)
1822 		return (ipsec_check_loopback_policy(q, first_mp, B_TRUE, ipsp));
1823 	ASSERT(ii->ipsec_in_type == IPSEC_IN);
1824 	ASSERT(ii->ipsec_in_secure);
1825 
1826 	if (ii->ipsec_in_action != NULL) {
1827 		/*
1828 		 * this can happen if we do a double policy-check on a packet
1829 		 * Would be nice to be able to delete this test..
1830 		 */
1831 		IPACT_REFRELE(ii->ipsec_in_action);
1832 	}
1833 	ASSERT(ii->ipsec_in_action == NULL);
1834 
1835 	if (!SA_IDS_MATCH(ii->ipsec_in_ah_sa, ii->ipsec_in_esp_sa)) {
1836 		reason = "inbound AH and ESP identities differ";
1837 		counter = &ipdrops_spd_ahesp_diffid;
1838 		goto drop;
1839 	}
1840 
1841 	if (!ipsec_check_ipsecin_unique(ii, &reason, &counter, pkt_unique))
1842 		goto drop;
1843 
1844 	/*
1845 	 * Ok, now loop through the possible actions and see if any
1846 	 * of them work for us.
1847 	 */
1848 
1849 	for (ap = ipsp->ipsp_act; ap != NULL; ap = ap->ipa_next) {
1850 		if (ipsec_check_ipsecin_action(ii, data_mp, ap,
1851 		    ipha, ip6h, &reason, &counter)) {
1852 			BUMP_MIB(&ip_mib, ipsecInSucceeded);
1853 			IPPOL_REFRELE(ipsp);
1854 			return (first_mp);
1855 		}
1856 	}
1857 drop:
1858 	if (q != NULL) {
1859 		mid = q->q_qinfo->qi_minfo->mi_idnum;
1860 	}
1861 	ipsec_rl_strlog(mid, 0, 0, SL_ERROR|SL_WARN|SL_CONSOLE,
1862 	    "ipsec inbound policy mismatch: %s, packet dropped\n",
1863 	    reason);
1864 	IPPOL_REFRELE(ipsp);
1865 	ASSERT(ii->ipsec_in_action == NULL);
1866 	BUMP_MIB(&ip_mib, ipsecInFailed);
1867 	ip_drop_packet(first_mp, B_TRUE, NULL, NULL, counter, &spd_dropper);
1868 	return (NULL);
1869 }
1870 
1871 /*
1872  * sleazy prefix-length-based compare.
1873  * another inlining candidate..
1874  */
1875 boolean_t
1876 ip_addr_match(uint8_t *addr1, int pfxlen, in6_addr_t *addr2p)
1877 {
1878 	int offset = pfxlen>>3;
1879 	int bitsleft = pfxlen & 7;
1880 	uint8_t *addr2 = (uint8_t *)addr2p;
1881 
1882 	/*
1883 	 * and there was much evil..
1884 	 * XXX should inline-expand the bcmp here and do this 32 bits
1885 	 * or 64 bits at a time..
1886 	 */
1887 	return ((bcmp(addr1, addr2, offset) == 0) &&
1888 	    ((bitsleft == 0) ||
1889 		(((addr1[offset] ^ addr2[offset]) &
1890 		    (0xff<<(8-bitsleft))) == 0)));
1891 }
1892 
1893 static ipsec_policy_t *
1894 ipsec_find_policy_chain(ipsec_policy_t *best, ipsec_policy_t *chain,
1895     ipsec_selector_t *sel, boolean_t is_icmp_inv_acq)
1896 {
1897 	ipsec_selkey_t *isel;
1898 	ipsec_policy_t *p;
1899 	int bpri = best ? best->ipsp_prio : 0;
1900 
1901 	for (p = chain; p != NULL; p = p->ipsp_hash.hash_next) {
1902 		uint32_t valid;
1903 
1904 		if (p->ipsp_prio <= bpri)
1905 			continue;
1906 		isel = &p->ipsp_sel->ipsl_key;
1907 		valid = isel->ipsl_valid;
1908 
1909 		if ((valid & IPSL_PROTOCOL) &&
1910 		    (isel->ipsl_proto != sel->ips_protocol))
1911 			continue;
1912 
1913 		if ((valid & IPSL_REMOTE_ADDR) &&
1914 		    !ip_addr_match((uint8_t *)&isel->ipsl_remote,
1915 			isel->ipsl_remote_pfxlen,
1916 			&sel->ips_remote_addr_v6))
1917 			continue;
1918 
1919 		if ((valid & IPSL_LOCAL_ADDR) &&
1920 		    !ip_addr_match((uint8_t *)&isel->ipsl_local,
1921 			isel->ipsl_local_pfxlen,
1922 			&sel->ips_local_addr_v6))
1923 			continue;
1924 
1925 		if ((valid & IPSL_REMOTE_PORT) &&
1926 		    isel->ipsl_rport != sel->ips_remote_port)
1927 			continue;
1928 
1929 		if ((valid & IPSL_LOCAL_PORT) &&
1930 		    isel->ipsl_lport != sel->ips_local_port)
1931 			continue;
1932 
1933 		if (!is_icmp_inv_acq) {
1934 			if ((valid & IPSL_ICMP_TYPE) &&
1935 			    (isel->ipsl_icmp_type > sel->ips_icmp_type ||
1936 			    isel->ipsl_icmp_type_end < sel->ips_icmp_type)) {
1937 				continue;
1938 			}
1939 
1940 			if ((valid & IPSL_ICMP_CODE) &&
1941 			    (isel->ipsl_icmp_code > sel->ips_icmp_code ||
1942 			    isel->ipsl_icmp_code_end <
1943 			    sel->ips_icmp_code)) {
1944 				continue;
1945 			}
1946 		} else {
1947 			/*
1948 			 * special case for icmp inverse acquire
1949 			 * we only want policies that aren't drop/pass
1950 			 */
1951 			if (p->ipsp_act->ipa_act.ipa_type != IPSEC_ACT_APPLY)
1952 				continue;
1953 		}
1954 
1955 		/* we matched all the packet-port-field selectors! */
1956 		best = p;
1957 		bpri = p->ipsp_prio;
1958 	}
1959 
1960 	return (best);
1961 }
1962 
1963 /*
1964  * Try to find and return the best policy entry under a given policy
1965  * root for a given set of selectors; the first parameter "best" is
1966  * the current best policy so far.  If "best" is non-null, we have a
1967  * reference to it.  We return a reference to a policy; if that policy
1968  * is not the original "best", we need to release that reference
1969  * before returning.
1970  */
1971 ipsec_policy_t *
1972 ipsec_find_policy_head(ipsec_policy_t *best, ipsec_policy_head_t *head,
1973     int direction, ipsec_selector_t *sel)
1974 {
1975 	ipsec_policy_t *curbest;
1976 	ipsec_policy_root_t *root;
1977 	uint8_t is_icmp_inv_acq = sel->ips_is_icmp_inv_acq;
1978 	int af = sel->ips_isv4 ? IPSEC_AF_V4 : IPSEC_AF_V6;
1979 
1980 	curbest = best;
1981 	root = &head->iph_root[direction];
1982 
1983 #ifdef DEBUG
1984 	if (is_icmp_inv_acq) {
1985 		if (sel->ips_isv4) {
1986 			if (sel->ips_protocol != IPPROTO_ICMP) {
1987 			    cmn_err(CE_WARN, "ipsec_find_policy_head:"
1988 			    " expecting icmp, got %d", sel->ips_protocol);
1989 			}
1990 		} else {
1991 			if (sel->ips_protocol != IPPROTO_ICMPV6) {
1992 				cmn_err(CE_WARN, "ipsec_find_policy_head:"
1993 				" expecting icmpv6, got %d", sel->ips_protocol);
1994 			}
1995 		}
1996 	}
1997 #endif
1998 
1999 	rw_enter(&head->iph_lock, RW_READER);
2000 
2001 	if (root->ipr_nchains > 0) {
2002 		curbest = ipsec_find_policy_chain(curbest,
2003 		    root->ipr_hash[selector_hash(sel, root)].hash_head, sel,
2004 		    is_icmp_inv_acq);
2005 	}
2006 	curbest = ipsec_find_policy_chain(curbest, root->ipr_nonhash[af], sel,
2007 	    is_icmp_inv_acq);
2008 
2009 	/*
2010 	 * Adjust reference counts if we found anything new.
2011 	 */
2012 	if (curbest != best) {
2013 		ASSERT(curbest != NULL);
2014 		IPPOL_REFHOLD(curbest);
2015 
2016 		if (best != NULL) {
2017 			IPPOL_REFRELE(best);
2018 		}
2019 	}
2020 
2021 	rw_exit(&head->iph_lock);
2022 
2023 	return (curbest);
2024 }
2025 
2026 /*
2027  * Find the best system policy (either global or per-interface) which
2028  * applies to the given selector; look in all the relevant policy roots
2029  * to figure out which policy wins.
2030  *
2031  * Returns a reference to a policy; caller must release this
2032  * reference when done.
2033  */
2034 ipsec_policy_t *
2035 ipsec_find_policy(int direction, conn_t *connp, ipsec_out_t *io,
2036     ipsec_selector_t *sel)
2037 {
2038 	ipsec_policy_t *p;
2039 
2040 	p = ipsec_find_policy_head(NULL, &system_policy, direction, sel);
2041 	if ((connp != NULL) && (connp->conn_policy != NULL)) {
2042 		p = ipsec_find_policy_head(p, connp->conn_policy,
2043 		    direction, sel);
2044 	} else if ((io != NULL) && (io->ipsec_out_polhead != NULL)) {
2045 		p = ipsec_find_policy_head(p, io->ipsec_out_polhead,
2046 		    direction, sel);
2047 	}
2048 
2049 	return (p);
2050 }
2051 
2052 /*
2053  * Check with global policy and see whether this inbound
2054  * packet meets the policy constraints.
2055  *
2056  * Locate appropriate policy from global policy, supplemented by the
2057  * conn's configured and/or cached policy if the conn is supplied.
2058  *
2059  * Dispatch to ipsec_check_ipsecin_policy if we have policy and an
2060  * encrypted packet to see if they match.
2061  *
2062  * Otherwise, see if the policy allows cleartext; if not, drop it on the
2063  * floor.
2064  */
2065 mblk_t *
2066 ipsec_check_global_policy(mblk_t *first_mp, conn_t *connp,
2067     ipha_t *ipha, ip6_t *ip6h, boolean_t mctl_present)
2068 {
2069 	ipsec_policy_t *p;
2070 	ipsec_selector_t sel;
2071 	queue_t *q = NULL;
2072 	mblk_t *data_mp, *ipsec_mp;
2073 	boolean_t policy_present;
2074 	kstat_named_t *counter;
2075 	ipsec_in_t *ii = NULL;
2076 	uint64_t pkt_unique;
2077 
2078 	data_mp = mctl_present ? first_mp->b_cont : first_mp;
2079 	ipsec_mp = mctl_present ? first_mp : NULL;
2080 
2081 	sel.ips_is_icmp_inv_acq = 0;
2082 
2083 	ASSERT((ipha == NULL && ip6h != NULL) ||
2084 	    (ip6h == NULL && ipha != NULL));
2085 
2086 	if (ipha != NULL)
2087 		policy_present = ipsec_inbound_v4_policy_present;
2088 	else
2089 		policy_present = ipsec_inbound_v6_policy_present;
2090 
2091 	if (!policy_present && connp == NULL) {
2092 		/*
2093 		 * No global policy and no per-socket policy;
2094 		 * just pass it back (but we shouldn't get here in that case)
2095 		 */
2096 		return (first_mp);
2097 	}
2098 
2099 	if (connp != NULL)
2100 		q = CONNP_TO_WQ(connp);
2101 
2102 	if (ipsec_mp != NULL) {
2103 		ASSERT(ipsec_mp->b_datap->db_type == M_CTL);
2104 		ii = (ipsec_in_t *)(ipsec_mp->b_rptr);
2105 		ASSERT(ii->ipsec_in_type == IPSEC_IN);
2106 	}
2107 
2108 	/*
2109 	 * If we have cached policy, use it.
2110 	 * Otherwise consult system policy.
2111 	 */
2112 	if ((connp != NULL) && (connp->conn_latch != NULL)) {
2113 		p = connp->conn_latch->ipl_in_policy;
2114 		if (p != NULL) {
2115 			IPPOL_REFHOLD(p);
2116 		}
2117 		/*
2118 		 * Fudge sel for UNIQUE_ID setting below.
2119 		 */
2120 		pkt_unique = conn_to_unique(connp, data_mp, ipha, ip6h);
2121 	} else {
2122 		/* Initialize the ports in the selector */
2123 		if (ipsec_init_inbound_sel(&sel, data_mp, ipha, ip6h,
2124 			SEL_NONE) == SELRET_NOMEM) {
2125 			/*
2126 			 * Technically not a policy mismatch, but it is
2127 			 * an internal failure.
2128 			 */
2129 			ipsec_log_policy_failure(q, IPSEC_POLICY_MISMATCH,
2130 			    "ipsec_init_inbound_sel", ipha, ip6h, B_FALSE);
2131 			counter = &ipdrops_spd_nomem;
2132 			goto fail;
2133 		}
2134 
2135 		/*
2136 		 * Find the policy which best applies.
2137 		 *
2138 		 * If we find global policy, we should look at both
2139 		 * local policy and global policy and see which is
2140 		 * stronger and match accordingly.
2141 		 *
2142 		 * If we don't find a global policy, check with
2143 		 * local policy alone.
2144 		 */
2145 
2146 		p = ipsec_find_policy(IPSEC_TYPE_INBOUND, connp, NULL, &sel);
2147 		pkt_unique = SA_UNIQUE_ID(sel.ips_remote_port,
2148 		    sel.ips_local_port, sel.ips_protocol, 0);
2149 	}
2150 
2151 	if (p == NULL) {
2152 		if (ipsec_mp == NULL) {
2153 			/*
2154 			 * We have no policy; default to succeeding.
2155 			 * XXX paranoid system design doesn't do this.
2156 			 */
2157 			BUMP_MIB(&ip_mib, ipsecInSucceeded);
2158 			return (first_mp);
2159 		} else {
2160 			counter = &ipdrops_spd_got_secure;
2161 			ipsec_log_policy_failure(q, IPSEC_POLICY_NOT_NEEDED,
2162 			    "ipsec_check_global_policy", ipha, ip6h, B_TRUE);
2163 			goto fail;
2164 		}
2165 	}
2166 	if ((ii != NULL) && (ii->ipsec_in_secure))
2167 		return (ipsec_check_ipsecin_policy(q, ipsec_mp, p, ipha, ip6h,
2168 			    pkt_unique));
2169 	if (p->ipsp_act->ipa_allow_clear) {
2170 		BUMP_MIB(&ip_mib, ipsecInSucceeded);
2171 		IPPOL_REFRELE(p);
2172 		return (first_mp);
2173 	}
2174 	IPPOL_REFRELE(p);
2175 	/*
2176 	 * If we reach here, we will drop the packet because it failed the
2177 	 * global policy check because the packet was cleartext, and it
2178 	 * should not have been.
2179 	 */
2180 	ipsec_log_policy_failure(q, IPSEC_POLICY_MISMATCH,
2181 	    "ipsec_check_global_policy", ipha, ip6h, B_FALSE);
2182 	counter = &ipdrops_spd_got_clear;
2183 
2184 fail:
2185 	ip_drop_packet(first_mp, B_TRUE, NULL, NULL, counter, &spd_dropper);
2186 	BUMP_MIB(&ip_mib, ipsecInFailed);
2187 	return (NULL);
2188 }
2189 
2190 /*
2191  * We check whether an inbound datagram is a valid one
2192  * to accept in clear. If it is secure, it is the job
2193  * of IPSEC to log information appropriately if it
2194  * suspects that it may not be the real one.
2195  *
2196  * It is called only while fanning out to the ULP
2197  * where ULP accepts only secure data and the incoming
2198  * is clear. Usually we never accept clear datagrams in
2199  * such cases. ICMP is the only exception.
2200  *
2201  * NOTE : We don't call this function if the client (ULP)
2202  * is willing to accept things in clear.
2203  */
2204 boolean_t
2205 ipsec_inbound_accept_clear(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h)
2206 {
2207 	ushort_t iph_hdr_length;
2208 	icmph_t *icmph;
2209 	icmp6_t *icmp6;
2210 	uint8_t *nexthdrp;
2211 
2212 	ASSERT((ipha != NULL && ip6h == NULL) ||
2213 	    (ipha == NULL && ip6h != NULL));
2214 
2215 	if (ip6h != NULL) {
2216 		iph_hdr_length = ip_hdr_length_v6(mp, ip6h);
2217 		if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length,
2218 		    &nexthdrp)) {
2219 			return (B_FALSE);
2220 		}
2221 		if (*nexthdrp != IPPROTO_ICMPV6)
2222 			return (B_FALSE);
2223 		icmp6 = (icmp6_t *)(&mp->b_rptr[iph_hdr_length]);
2224 		/* Match IPv6 ICMP policy as closely as IPv4 as possible. */
2225 		switch (icmp6->icmp6_type) {
2226 		case ICMP6_PARAM_PROB:
2227 			/* Corresponds to port/proto unreach in IPv4. */
2228 		case ICMP6_ECHO_REQUEST:
2229 			/* Just like IPv4. */
2230 			return (B_FALSE);
2231 
2232 		case MLD_LISTENER_QUERY:
2233 		case MLD_LISTENER_REPORT:
2234 		case MLD_LISTENER_REDUCTION:
2235 			/*
2236 			 * XXX Seperate NDD in IPv4 what about here?
2237 			 * Plus, mcast is important to ND.
2238 			 */
2239 		case ICMP6_DST_UNREACH:
2240 			/* Corresponds to HOST/NET unreachable in IPv4. */
2241 		case ICMP6_PACKET_TOO_BIG:
2242 		case ICMP6_ECHO_REPLY:
2243 			/* These are trusted in IPv4. */
2244 		case ND_ROUTER_SOLICIT:
2245 		case ND_ROUTER_ADVERT:
2246 		case ND_NEIGHBOR_SOLICIT:
2247 		case ND_NEIGHBOR_ADVERT:
2248 		case ND_REDIRECT:
2249 			/* Trust ND messages for now. */
2250 		case ICMP6_TIME_EXCEEDED:
2251 		default:
2252 			return (B_TRUE);
2253 		}
2254 	} else {
2255 		/*
2256 		 * If it is not ICMP, fail this request.
2257 		 */
2258 		if (ipha->ipha_protocol != IPPROTO_ICMP) {
2259 #ifdef FRAGCACHE_DEBUG
2260 			cmn_err(CE_WARN, "Dropping - ipha_proto = %d\n",
2261 			    ipha->ipha_protocol);
2262 #endif
2263 			return (B_FALSE);
2264 		}
2265 		iph_hdr_length = IPH_HDR_LENGTH(ipha);
2266 		icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length];
2267 		/*
2268 		 * It is an insecure icmp message. Check to see whether we are
2269 		 * willing to accept this one.
2270 		 */
2271 
2272 		switch (icmph->icmph_type) {
2273 		case ICMP_ECHO_REPLY:
2274 		case ICMP_TIME_STAMP_REPLY:
2275 		case ICMP_INFO_REPLY:
2276 		case ICMP_ROUTER_ADVERTISEMENT:
2277 			/*
2278 			 * We should not encourage clear replies if this
2279 			 * client expects secure. If somebody is replying
2280 			 * in clear some mailicious user watching both the
2281 			 * request and reply, can do chosen-plain-text attacks.
2282 			 * With global policy we might be just expecting secure
2283 			 * but sending out clear. We don't know what the right
2284 			 * thing is. We can't do much here as we can't control
2285 			 * the sender here. Till we are sure of what to do,
2286 			 * accept them.
2287 			 */
2288 			return (B_TRUE);
2289 		case ICMP_ECHO_REQUEST:
2290 		case ICMP_TIME_STAMP_REQUEST:
2291 		case ICMP_INFO_REQUEST:
2292 		case ICMP_ADDRESS_MASK_REQUEST:
2293 		case ICMP_ROUTER_SOLICITATION:
2294 		case ICMP_ADDRESS_MASK_REPLY:
2295 			/*
2296 			 * Don't accept this as somebody could be sending
2297 			 * us plain text to get encrypted data. If we reply,
2298 			 * it will lead to chosen plain text attack.
2299 			 */
2300 			return (B_FALSE);
2301 		case ICMP_DEST_UNREACHABLE:
2302 			switch (icmph->icmph_code) {
2303 			case ICMP_FRAGMENTATION_NEEDED:
2304 				/*
2305 				 * Be in sync with icmp_inbound, where we have
2306 				 * already set ire_max_frag.
2307 				 */
2308 #ifdef FRAGCACHE_DEBUG
2309 			cmn_err(CE_WARN, "ICMP frag needed\n");
2310 #endif
2311 				return (B_TRUE);
2312 			case ICMP_HOST_UNREACHABLE:
2313 			case ICMP_NET_UNREACHABLE:
2314 				/*
2315 				 * By accepting, we could reset a connection.
2316 				 * How do we solve the problem of some
2317 				 * intermediate router sending in-secure ICMP
2318 				 * messages ?
2319 				 */
2320 				return (B_TRUE);
2321 			case ICMP_PORT_UNREACHABLE:
2322 			case ICMP_PROTOCOL_UNREACHABLE:
2323 			default :
2324 				return (B_FALSE);
2325 			}
2326 		case ICMP_SOURCE_QUENCH:
2327 			/*
2328 			 * If this is an attack, TCP will slow start
2329 			 * because of this. Is it very harmful ?
2330 			 */
2331 			return (B_TRUE);
2332 		case ICMP_PARAM_PROBLEM:
2333 			return (B_FALSE);
2334 		case ICMP_TIME_EXCEEDED:
2335 			return (B_TRUE);
2336 		case ICMP_REDIRECT:
2337 			return (B_FALSE);
2338 		default :
2339 			return (B_FALSE);
2340 		}
2341 	}
2342 }
2343 
2344 void
2345 ipsec_latch_ids(ipsec_latch_t *ipl, ipsid_t *local, ipsid_t *remote)
2346 {
2347 	mutex_enter(&ipl->ipl_lock);
2348 
2349 	if (ipl->ipl_ids_latched) {
2350 		/* I lost, someone else got here before me */
2351 		mutex_exit(&ipl->ipl_lock);
2352 		return;
2353 	}
2354 
2355 	if (local != NULL)
2356 		IPSID_REFHOLD(local);
2357 	if (remote != NULL)
2358 		IPSID_REFHOLD(remote);
2359 
2360 	ipl->ipl_local_cid = local;
2361 	ipl->ipl_remote_cid = remote;
2362 	ipl->ipl_ids_latched = B_TRUE;
2363 	mutex_exit(&ipl->ipl_lock);
2364 }
2365 
2366 void
2367 ipsec_latch_inbound(ipsec_latch_t *ipl, ipsec_in_t *ii)
2368 {
2369 	ipsa_t *sa;
2370 
2371 	if (!ipl->ipl_ids_latched) {
2372 		ipsid_t *local = NULL;
2373 		ipsid_t *remote = NULL;
2374 
2375 		if (!ii->ipsec_in_loopback) {
2376 			if (ii->ipsec_in_esp_sa != NULL)
2377 				sa = ii->ipsec_in_esp_sa;
2378 			else
2379 				sa = ii->ipsec_in_ah_sa;
2380 			ASSERT(sa != NULL);
2381 			local = sa->ipsa_dst_cid;
2382 			remote = sa->ipsa_src_cid;
2383 		}
2384 		ipsec_latch_ids(ipl, local, remote);
2385 	}
2386 	ipl->ipl_in_action = ii->ipsec_in_action;
2387 	IPACT_REFHOLD(ipl->ipl_in_action);
2388 }
2389 
2390 /*
2391  * Check whether the policy constraints are met either for an
2392  * inbound datagram; called from IP in numerous places.
2393  *
2394  * Note that this is not a chokepoint for inbound policy checks;
2395  * see also ipsec_check_ipsecin_latch() and ipsec_check_global_policy()
2396  */
2397 mblk_t *
2398 ipsec_check_inbound_policy(mblk_t *first_mp, conn_t *connp,
2399     ipha_t *ipha, ip6_t *ip6h, boolean_t mctl_present)
2400 {
2401 	ipsec_in_t *ii;
2402 	boolean_t ret;
2403 	queue_t *q;
2404 	short mid = 0;
2405 	mblk_t *mp = mctl_present ? first_mp->b_cont : first_mp;
2406 	mblk_t *ipsec_mp = mctl_present ? first_mp : NULL;
2407 	ipsec_latch_t *ipl;
2408 	uint64_t unique_id;
2409 
2410 	ASSERT(connp != NULL);
2411 	ipl = connp->conn_latch;
2412 
2413 	if (ipsec_mp == NULL) {
2414 clear:
2415 		/*
2416 		 * This is the case where the incoming datagram is
2417 		 * cleartext and we need to see whether this client
2418 		 * would like to receive such untrustworthy things from
2419 		 * the wire.
2420 		 */
2421 		ASSERT(mp != NULL);
2422 
2423 		if (ipl != NULL) {
2424 			/*
2425 			 * Policy is cached in the conn.
2426 			 */
2427 			if ((ipl->ipl_in_policy != NULL) &&
2428 			    (!ipl->ipl_in_policy->ipsp_act->ipa_allow_clear)) {
2429 				ret = ipsec_inbound_accept_clear(mp,
2430 				    ipha, ip6h);
2431 				if (ret) {
2432 					BUMP_MIB(&ip_mib, ipsecInSucceeded);
2433 					return (first_mp);
2434 				} else {
2435 					ipsec_log_policy_failure(
2436 					    CONNP_TO_WQ(connp),
2437 					    IPSEC_POLICY_MISMATCH,
2438 					    "ipsec_check_inbound_policy", ipha,
2439 					    ip6h, B_FALSE);
2440 					ip_drop_packet(first_mp, B_TRUE, NULL,
2441 					    NULL, &ipdrops_spd_got_clear,
2442 					    &spd_dropper);
2443 					BUMP_MIB(&ip_mib, ipsecInFailed);
2444 					return (NULL);
2445 				}
2446 			} else {
2447 				BUMP_MIB(&ip_mib, ipsecInSucceeded);
2448 				return (first_mp);
2449 			}
2450 		} else {
2451 			/*
2452 			 * As this is a non-hardbound connection we need
2453 			 * to look at both per-socket policy and global
2454 			 * policy. As this is cleartext, mark the mp as
2455 			 * M_DATA in case if it is an ICMP error being
2456 			 * reported before calling ipsec_check_global_policy
2457 			 * so that it does not mistake it for IPSEC_IN.
2458 			 */
2459 			uchar_t db_type = mp->b_datap->db_type;
2460 			mp->b_datap->db_type = M_DATA;
2461 			first_mp = ipsec_check_global_policy(first_mp, connp,
2462 			    ipha, ip6h, mctl_present);
2463 			if (first_mp != NULL)
2464 				mp->b_datap->db_type = db_type;
2465 			return (first_mp);
2466 		}
2467 	}
2468 	/*
2469 	 * If it is inbound check whether the attached message
2470 	 * is secure or not. We have a special case for ICMP,
2471 	 * where we have a IPSEC_IN message and the attached
2472 	 * message is not secure. See icmp_inbound_error_fanout
2473 	 * for details.
2474 	 */
2475 	ASSERT(ipsec_mp != NULL);
2476 	ASSERT(ipsec_mp->b_datap->db_type == M_CTL);
2477 	ii = (ipsec_in_t *)ipsec_mp->b_rptr;
2478 
2479 	if (!ii->ipsec_in_secure)
2480 		goto clear;
2481 
2482 	/*
2483 	 * mp->b_cont could be either a M_CTL message
2484 	 * for icmp errors being sent up or a M_DATA message.
2485 	 */
2486 	ASSERT(mp->b_datap->db_type == M_CTL || mp->b_datap->db_type == M_DATA);
2487 
2488 	ASSERT(ii->ipsec_in_type == IPSEC_IN);
2489 
2490 	if (ipl == NULL) {
2491 		/*
2492 		 * We don't have policies cached in the conn
2493 		 * for this stream. So, look at the global
2494 		 * policy. It will check against conn or global
2495 		 * depending on whichever is stronger.
2496 		 */
2497 		return (ipsec_check_global_policy(first_mp, connp,
2498 		    ipha, ip6h, mctl_present));
2499 	}
2500 
2501 	if (ipl->ipl_in_action != NULL) {
2502 		/* Policy is cached & latched; fast(er) path */
2503 		const char *reason;
2504 		kstat_named_t *counter;
2505 		if (ipsec_check_ipsecin_latch(ii, mp, ipl,
2506 		    ipha, ip6h, &reason, &counter, connp)) {
2507 			BUMP_MIB(&ip_mib, ipsecInSucceeded);
2508 			return (first_mp);
2509 		}
2510 		q = CONNP_TO_WQ(connp);
2511 		if (q != NULL) {
2512 			mid = q->q_qinfo->qi_minfo->mi_idnum;
2513 		}
2514 		ipsec_rl_strlog(mid, 0, 0, SL_ERROR|SL_WARN|SL_CONSOLE,
2515 		    "ipsec inbound policy mismatch: %s, packet dropped\n",
2516 		    reason);
2517 		ip_drop_packet(first_mp, B_TRUE, NULL, NULL, counter,
2518 		    &spd_dropper);
2519 		BUMP_MIB(&ip_mib, ipsecInFailed);
2520 		return (NULL);
2521 	} else if (ipl->ipl_in_policy == NULL) {
2522 		ipsec_weird_null_inbound_policy++;
2523 		return (first_mp);
2524 	}
2525 
2526 	unique_id = conn_to_unique(connp, mp, ipha, ip6h);
2527 	IPPOL_REFHOLD(ipl->ipl_in_policy);
2528 	first_mp = ipsec_check_ipsecin_policy(CONNP_TO_WQ(connp), first_mp,
2529 	    ipl->ipl_in_policy, ipha, ip6h, unique_id);
2530 	/*
2531 	 * NOTE: ipsecIn{Failed,Succeeeded} bumped by
2532 	 * ipsec_check_ipsecin_policy().
2533 	 */
2534 	if (first_mp != NULL)
2535 		ipsec_latch_inbound(ipl, ii);
2536 	return (first_mp);
2537 }
2538 
2539 /*
2540  * Returns:
2541  *
2542  * SELRET_NOMEM --> msgpullup() needed to gather things failed.
2543  * SELRET_BADPKT --> If we're being called after tunnel-mode fragment
2544  *		     gathering, the initial fragment is too short for
2545  *		     useful data.  Only returned if SEL_TUNNEL_FIRSTFRAG is
2546  *		     set.
2547  * SELRET_SUCCESS --> "sel" now has initialized IPsec selector data.
2548  * SELRET_TUNFRAG --> This is a fragment in a tunnel-mode packet.  Caller
2549  *		      should put this packet in a fragment-gathering queue.
2550  *		      Only returned if SEL_TUNNEL_MODE and SEL_PORT_POLICY
2551  *		      is set.
2552  */
2553 static selret_t
2554 ipsec_init_inbound_sel(ipsec_selector_t *sel, mblk_t *mp, ipha_t *ipha,
2555     ip6_t *ip6h, uint8_t sel_flags)
2556 {
2557 	uint16_t *ports;
2558 	ushort_t hdr_len;
2559 	int outer_hdr_len = 0;	/* For ICMP tunnel-mode cases... */
2560 	mblk_t *spare_mp = NULL;
2561 	uint8_t *nexthdrp;
2562 	uint8_t nexthdr;
2563 	uint8_t *typecode;
2564 	uint8_t check_proto;
2565 	ip6_pkt_t ipp;
2566 	boolean_t port_policy_present = (sel_flags & SEL_PORT_POLICY);
2567 	boolean_t is_icmp = (sel_flags & SEL_IS_ICMP);
2568 	boolean_t tunnel_mode = (sel_flags & SEL_TUNNEL_MODE);
2569 
2570 	ASSERT((ipha == NULL && ip6h != NULL) ||
2571 	    (ipha != NULL && ip6h == NULL));
2572 
2573 	if (ip6h != NULL) {
2574 		if (is_icmp)
2575 			outer_hdr_len = ((uint8_t *)ip6h) - mp->b_rptr;
2576 
2577 		check_proto = IPPROTO_ICMPV6;
2578 		sel->ips_isv4 = B_FALSE;
2579 		sel->ips_local_addr_v6 = ip6h->ip6_dst;
2580 		sel->ips_remote_addr_v6 = ip6h->ip6_src;
2581 
2582 		bzero(&ipp, sizeof (ipp));
2583 		(void) ip_find_hdr_v6(mp, ip6h, &ipp, NULL);
2584 
2585 		nexthdr = ip6h->ip6_nxt;
2586 		switch (nexthdr) {
2587 		case IPPROTO_HOPOPTS:
2588 		case IPPROTO_ROUTING:
2589 		case IPPROTO_DSTOPTS:
2590 		case IPPROTO_FRAGMENT:
2591 			/*
2592 			 * Use ip_hdr_length_nexthdr_v6().  And have a spare
2593 			 * mblk that's contiguous to feed it
2594 			 */
2595 			if ((spare_mp = msgpullup(mp, -1)) == NULL)
2596 				return (SELRET_NOMEM);
2597 			if (!ip_hdr_length_nexthdr_v6(spare_mp,
2598 			    (ip6_t *)(spare_mp->b_rptr + outer_hdr_len),
2599 				&hdr_len, &nexthdrp)) {
2600 				/* Malformed packet - caller frees. */
2601 				ipsec_freemsg_chain(spare_mp);
2602 				return (SELRET_BADPKT);
2603 			}
2604 			nexthdr = *nexthdrp;
2605 			/* We can just extract based on hdr_len now. */
2606 			break;
2607 		default:
2608 			hdr_len = IPV6_HDR_LEN;
2609 			break;
2610 		}
2611 
2612 		if (port_policy_present && IS_V6_FRAGMENT(ipp) && !is_icmp) {
2613 			/* IPv6 Fragment */
2614 			ipsec_freemsg_chain(spare_mp);
2615 			return (SELRET_TUNFRAG);
2616 		}
2617 	} else {
2618 		if (is_icmp)
2619 			outer_hdr_len = ((uint8_t *)ipha) - mp->b_rptr;
2620 		check_proto = IPPROTO_ICMP;
2621 		sel->ips_isv4 = B_TRUE;
2622 		sel->ips_local_addr_v4 = ipha->ipha_dst;
2623 		sel->ips_remote_addr_v4 = ipha->ipha_src;
2624 		nexthdr = ipha->ipha_protocol;
2625 		hdr_len = IPH_HDR_LENGTH(ipha);
2626 
2627 		if (port_policy_present &&
2628 		    IS_V4_FRAGMENT(ipha->ipha_fragment_offset_and_flags) &&
2629 		    !is_icmp) {
2630 			/* IPv4 Fragment */
2631 			ipsec_freemsg_chain(spare_mp);
2632 			return (SELRET_TUNFRAG);
2633 		}
2634 
2635 	}
2636 	sel->ips_protocol = nexthdr;
2637 
2638 	if ((nexthdr != IPPROTO_TCP && nexthdr != IPPROTO_UDP &&
2639 		nexthdr != IPPROTO_SCTP && nexthdr != check_proto) ||
2640 	    (!port_policy_present && tunnel_mode)) {
2641 		sel->ips_remote_port = sel->ips_local_port = 0;
2642 		ipsec_freemsg_chain(spare_mp);
2643 		return (SELRET_SUCCESS);
2644 	}
2645 
2646 	if (&mp->b_rptr[hdr_len] + 4 > mp->b_wptr) {
2647 		/* If we didn't pullup a copy already, do so now. */
2648 		/*
2649 		 * XXX performance, will upper-layers frequently split TCP/UDP
2650 		 * apart from IP or options?  If so, perhaps we should revisit
2651 		 * the spare_mp strategy.
2652 		 */
2653 		ipsec_hdr_pullup_needed++;
2654 		if (spare_mp == NULL &&
2655 		    (spare_mp = msgpullup(mp, -1)) == NULL) {
2656 			return (SELRET_NOMEM);
2657 		}
2658 		ports = (uint16_t *)&spare_mp->b_rptr[hdr_len + outer_hdr_len];
2659 	} else {
2660 		ports = (uint16_t *)&mp->b_rptr[hdr_len + outer_hdr_len];
2661 	}
2662 
2663 	if (nexthdr == check_proto) {
2664 		typecode = (uint8_t *)ports;
2665 		sel->ips_icmp_type = *typecode++;
2666 		sel->ips_icmp_code = *typecode;
2667 		sel->ips_remote_port = sel->ips_local_port = 0;
2668 	} else {
2669 		sel->ips_remote_port = *ports++;
2670 		sel->ips_local_port = *ports;
2671 	}
2672 	ipsec_freemsg_chain(spare_mp);
2673 	return (SELRET_SUCCESS);
2674 }
2675 
2676 static boolean_t
2677 ipsec_init_outbound_ports(ipsec_selector_t *sel, mblk_t *mp, ipha_t *ipha,
2678     ip6_t *ip6h, int outer_hdr_len)
2679 {
2680 	/*
2681 	 * XXX cut&paste shared with ipsec_init_inbound_sel
2682 	 */
2683 	uint16_t *ports;
2684 	ushort_t hdr_len;
2685 	mblk_t *spare_mp = NULL;
2686 	uint8_t *nexthdrp;
2687 	uint8_t nexthdr;
2688 	uint8_t *typecode;
2689 	uint8_t check_proto;
2690 
2691 	ASSERT((ipha == NULL && ip6h != NULL) ||
2692 	    (ipha != NULL && ip6h == NULL));
2693 
2694 	if (ip6h != NULL) {
2695 		check_proto = IPPROTO_ICMPV6;
2696 		nexthdr = ip6h->ip6_nxt;
2697 		switch (nexthdr) {
2698 		case IPPROTO_HOPOPTS:
2699 		case IPPROTO_ROUTING:
2700 		case IPPROTO_DSTOPTS:
2701 		case IPPROTO_FRAGMENT:
2702 			/*
2703 			 * Use ip_hdr_length_nexthdr_v6().  And have a spare
2704 			 * mblk that's contiguous to feed it
2705 			 */
2706 			spare_mp = msgpullup(mp, -1);
2707 			if (spare_mp == NULL ||
2708 			    !ip_hdr_length_nexthdr_v6(spare_mp,
2709 				(ip6_t *)(spare_mp->b_rptr + outer_hdr_len),
2710 				&hdr_len, &nexthdrp)) {
2711 				/* Always works, even if NULL. */
2712 				ipsec_freemsg_chain(spare_mp);
2713 				ip_drop_packet_chain(mp, B_FALSE, NULL, NULL,
2714 				    &ipdrops_spd_nomem, &spd_dropper);
2715 				return (B_FALSE);
2716 			} else {
2717 				nexthdr = *nexthdrp;
2718 				/* We can just extract based on hdr_len now. */
2719 			}
2720 			break;
2721 		default:
2722 			hdr_len = IPV6_HDR_LEN;
2723 			break;
2724 		}
2725 	} else {
2726 		check_proto = IPPROTO_ICMP;
2727 		hdr_len = IPH_HDR_LENGTH(ipha);
2728 		nexthdr = ipha->ipha_protocol;
2729 	}
2730 
2731 	sel->ips_protocol = nexthdr;
2732 	if (nexthdr != IPPROTO_TCP && nexthdr != IPPROTO_UDP &&
2733 	    nexthdr != IPPROTO_SCTP && nexthdr != check_proto) {
2734 		sel->ips_local_port = sel->ips_remote_port = 0;
2735 		ipsec_freemsg_chain(spare_mp); /* Always works, even if NULL */
2736 		return (B_TRUE);
2737 	}
2738 
2739 	if (&mp->b_rptr[hdr_len] + 4 + outer_hdr_len > mp->b_wptr) {
2740 		/* If we didn't pullup a copy already, do so now. */
2741 		/*
2742 		 * XXX performance, will upper-layers frequently split TCP/UDP
2743 		 * apart from IP or options?  If so, perhaps we should revisit
2744 		 * the spare_mp strategy.
2745 		 *
2746 		 * XXX should this be msgpullup(mp, hdr_len+4) ???
2747 		 */
2748 		if (spare_mp == NULL &&
2749 		    (spare_mp = msgpullup(mp, -1)) == NULL) {
2750 			ip_drop_packet_chain(mp, B_FALSE, NULL, NULL,
2751 			    &ipdrops_spd_nomem, &spd_dropper);
2752 			return (B_FALSE);
2753 		}
2754 		ports = (uint16_t *)&spare_mp->b_rptr[hdr_len + outer_hdr_len];
2755 	} else {
2756 		ports = (uint16_t *)&mp->b_rptr[hdr_len + outer_hdr_len];
2757 	}
2758 
2759 	if (nexthdr == check_proto) {
2760 		typecode = (uint8_t *)ports;
2761 		sel->ips_icmp_type = *typecode++;
2762 		sel->ips_icmp_code = *typecode;
2763 		sel->ips_remote_port = sel->ips_local_port = 0;
2764 	} else {
2765 		sel->ips_local_port = *ports++;
2766 		sel->ips_remote_port = *ports;
2767 	}
2768 	ipsec_freemsg_chain(spare_mp);	/* Always works, even if NULL */
2769 	return (B_TRUE);
2770 }
2771 
2772 /*
2773  * Create an ipsec_action_t based on the way an inbound packet was protected.
2774  * Used to reflect traffic back to a sender.
2775  *
2776  * We don't bother interning the action into the hash table.
2777  */
2778 ipsec_action_t *
2779 ipsec_in_to_out_action(ipsec_in_t *ii)
2780 {
2781 	ipsa_t *ah_assoc, *esp_assoc;
2782 	uint_t auth_alg = 0, encr_alg = 0, espa_alg = 0;
2783 	ipsec_action_t *ap;
2784 	boolean_t unique;
2785 
2786 	ap = kmem_cache_alloc(ipsec_action_cache, KM_NOSLEEP);
2787 
2788 	if (ap == NULL)
2789 		return (NULL);
2790 
2791 	bzero(ap, sizeof (*ap));
2792 	HASH_NULL(ap, ipa_hash);
2793 	ap->ipa_next = NULL;
2794 	ap->ipa_refs = 1;
2795 
2796 	/*
2797 	 * Get the algorithms that were used for this packet.
2798 	 */
2799 	ap->ipa_act.ipa_type = IPSEC_ACT_APPLY;
2800 	ap->ipa_act.ipa_log = 0;
2801 	ah_assoc = ii->ipsec_in_ah_sa;
2802 	ap->ipa_act.ipa_apply.ipp_use_ah = (ah_assoc != NULL);
2803 
2804 	esp_assoc = ii->ipsec_in_esp_sa;
2805 	ap->ipa_act.ipa_apply.ipp_use_esp = (esp_assoc != NULL);
2806 
2807 	if (esp_assoc != NULL) {
2808 		encr_alg = esp_assoc->ipsa_encr_alg;
2809 		espa_alg = esp_assoc->ipsa_auth_alg;
2810 		ap->ipa_act.ipa_apply.ipp_use_espa = (espa_alg != 0);
2811 	}
2812 	if (ah_assoc != NULL)
2813 		auth_alg = ah_assoc->ipsa_auth_alg;
2814 
2815 	ap->ipa_act.ipa_apply.ipp_encr_alg = (uint8_t)encr_alg;
2816 	ap->ipa_act.ipa_apply.ipp_auth_alg = (uint8_t)auth_alg;
2817 	ap->ipa_act.ipa_apply.ipp_esp_auth_alg = (uint8_t)espa_alg;
2818 	ap->ipa_act.ipa_apply.ipp_use_se = ii->ipsec_in_decaps;
2819 	unique = B_FALSE;
2820 
2821 	if (esp_assoc != NULL) {
2822 		ap->ipa_act.ipa_apply.ipp_espa_minbits =
2823 		    esp_assoc->ipsa_authkeybits;
2824 		ap->ipa_act.ipa_apply.ipp_espa_maxbits =
2825 		    esp_assoc->ipsa_authkeybits;
2826 		ap->ipa_act.ipa_apply.ipp_espe_minbits =
2827 		    esp_assoc->ipsa_encrkeybits;
2828 		ap->ipa_act.ipa_apply.ipp_espe_maxbits =
2829 		    esp_assoc->ipsa_encrkeybits;
2830 		ap->ipa_act.ipa_apply.ipp_km_proto = esp_assoc->ipsa_kmp;
2831 		ap->ipa_act.ipa_apply.ipp_km_cookie = esp_assoc->ipsa_kmc;
2832 		if (esp_assoc->ipsa_flags & IPSA_F_UNIQUE)
2833 			unique = B_TRUE;
2834 	}
2835 	if (ah_assoc != NULL) {
2836 		ap->ipa_act.ipa_apply.ipp_ah_minbits =
2837 		    ah_assoc->ipsa_authkeybits;
2838 		ap->ipa_act.ipa_apply.ipp_ah_maxbits =
2839 		    ah_assoc->ipsa_authkeybits;
2840 		ap->ipa_act.ipa_apply.ipp_km_proto = ah_assoc->ipsa_kmp;
2841 		ap->ipa_act.ipa_apply.ipp_km_cookie = ah_assoc->ipsa_kmc;
2842 		if (ah_assoc->ipsa_flags & IPSA_F_UNIQUE)
2843 			unique = B_TRUE;
2844 	}
2845 	ap->ipa_act.ipa_apply.ipp_use_unique = unique;
2846 	ap->ipa_want_unique = unique;
2847 	ap->ipa_allow_clear = B_FALSE;
2848 	ap->ipa_want_se = ii->ipsec_in_decaps;
2849 	ap->ipa_want_ah = (ah_assoc != NULL);
2850 	ap->ipa_want_esp = (esp_assoc != NULL);
2851 
2852 	ap->ipa_ovhd = ipsec_act_ovhd(&ap->ipa_act);
2853 
2854 	ap->ipa_act.ipa_apply.ipp_replay_depth = 0; /* don't care */
2855 
2856 	return (ap);
2857 }
2858 
2859 
2860 /*
2861  * Compute the worst-case amount of extra space required by an action.
2862  * Note that, because of the ESP considerations listed below, this is
2863  * actually not the same as the best-case reduction in the MTU; in the
2864  * future, we should pass additional information to this function to
2865  * allow the actual MTU impact to be computed.
2866  *
2867  * AH: Revisit this if we implement algorithms with
2868  * a verifier size of more than 12 bytes.
2869  *
2870  * ESP: A more exact but more messy computation would take into
2871  * account the interaction between the cipher block size and the
2872  * effective MTU, yielding the inner payload size which reflects a
2873  * packet with *minimum* ESP padding..
2874  */
2875 int32_t
2876 ipsec_act_ovhd(const ipsec_act_t *act)
2877 {
2878 	int32_t overhead = 0;
2879 
2880 	if (act->ipa_type == IPSEC_ACT_APPLY) {
2881 		const ipsec_prot_t *ipp = &act->ipa_apply;
2882 
2883 		if (ipp->ipp_use_ah)
2884 			overhead += IPSEC_MAX_AH_HDR_SIZE;
2885 		if (ipp->ipp_use_esp) {
2886 			overhead += IPSEC_MAX_ESP_HDR_SIZE;
2887 			overhead += sizeof (struct udphdr);
2888 		}
2889 		if (ipp->ipp_use_se)
2890 			overhead += IP_SIMPLE_HDR_LENGTH;
2891 	}
2892 	return (overhead);
2893 }
2894 
2895 /*
2896  * This hash function is used only when creating policies and thus is not
2897  * performance-critical for packet flows.
2898  *
2899  * Future work: canonicalize the structures hashed with this (i.e.,
2900  * zeroize padding) so the hash works correctly.
2901  */
2902 /* ARGSUSED */
2903 static uint32_t
2904 policy_hash(int size, const void *start, const void *end)
2905 {
2906 	return (0);
2907 }
2908 
2909 
2910 /*
2911  * Hash function macros for each address type.
2912  *
2913  * The IPV6 hash function assumes that the low order 32-bits of the
2914  * address (typically containing the low order 24 bits of the mac
2915  * address) are reasonably well-distributed.  Revisit this if we run
2916  * into trouble from lots of collisions on ::1 addresses and the like
2917  * (seems unlikely).
2918  */
2919 #define	IPSEC_IPV4_HASH(a, n) ((a) % (n))
2920 #define	IPSEC_IPV6_HASH(a, n) (((a).s6_addr32[3]) % (n))
2921 
2922 /*
2923  * These two hash functions should produce coordinated values
2924  * but have slightly different roles.
2925  */
2926 static uint32_t
2927 selkey_hash(const ipsec_selkey_t *selkey)
2928 {
2929 	uint32_t valid = selkey->ipsl_valid;
2930 
2931 	if (!(valid & IPSL_REMOTE_ADDR))
2932 		return (IPSEC_SEL_NOHASH);
2933 
2934 	if (valid & IPSL_IPV4) {
2935 		if (selkey->ipsl_remote_pfxlen == 32)
2936 			return (IPSEC_IPV4_HASH(selkey->ipsl_remote.ipsad_v4,
2937 				    ipsec_spd_hashsize));
2938 	}
2939 	if (valid & IPSL_IPV6) {
2940 		if (selkey->ipsl_remote_pfxlen == 128)
2941 			return (IPSEC_IPV6_HASH(selkey->ipsl_remote.ipsad_v6,
2942 				    ipsec_spd_hashsize));
2943 	}
2944 	return (IPSEC_SEL_NOHASH);
2945 }
2946 
2947 static uint32_t
2948 selector_hash(ipsec_selector_t *sel, ipsec_policy_root_t *root)
2949 {
2950 	if (sel->ips_isv4) {
2951 		return (IPSEC_IPV4_HASH(sel->ips_remote_addr_v4,
2952 			    root->ipr_nchains));
2953 	}
2954 	return (IPSEC_IPV6_HASH(sel->ips_remote_addr_v6, root->ipr_nchains));
2955 }
2956 
2957 /*
2958  * Intern actions into the action hash table.
2959  */
2960 ipsec_action_t *
2961 ipsec_act_find(const ipsec_act_t *a, int n)
2962 {
2963 	int i;
2964 	uint32_t hval;
2965 	ipsec_action_t *ap;
2966 	ipsec_action_t *prev = NULL;
2967 	int32_t overhead, maxovhd = 0;
2968 	boolean_t allow_clear = B_FALSE;
2969 	boolean_t want_ah = B_FALSE;
2970 	boolean_t want_esp = B_FALSE;
2971 	boolean_t want_se = B_FALSE;
2972 	boolean_t want_unique = B_FALSE;
2973 
2974 	/*
2975 	 * TODO: should canonicalize a[] (i.e., zeroize any padding)
2976 	 * so we can use a non-trivial policy_hash function.
2977 	 */
2978 	for (i = n-1; i >= 0; i--) {
2979 		hval = policy_hash(IPSEC_ACTION_HASH_SIZE, &a[i], &a[n]);
2980 
2981 		HASH_LOCK(ipsec_action_hash, hval);
2982 
2983 		for (HASH_ITERATE(ap, ipa_hash, ipsec_action_hash, hval)) {
2984 			if (bcmp(&ap->ipa_act, &a[i], sizeof (*a)) != 0)
2985 				continue;
2986 			if (ap->ipa_next != prev)
2987 				continue;
2988 			break;
2989 		}
2990 		if (ap != NULL) {
2991 			HASH_UNLOCK(ipsec_action_hash, hval);
2992 			prev = ap;
2993 			continue;
2994 		}
2995 		/*
2996 		 * need to allocate a new one..
2997 		 */
2998 		ap = kmem_cache_alloc(ipsec_action_cache, KM_NOSLEEP);
2999 		if (ap == NULL) {
3000 			HASH_UNLOCK(ipsec_action_hash, hval);
3001 			if (prev != NULL)
3002 				ipsec_action_free(prev);
3003 			return (NULL);
3004 		}
3005 		HASH_INSERT(ap, ipa_hash, ipsec_action_hash, hval);
3006 
3007 		ap->ipa_next = prev;
3008 		ap->ipa_act = a[i];
3009 
3010 		overhead = ipsec_act_ovhd(&a[i]);
3011 		if (maxovhd < overhead)
3012 			maxovhd = overhead;
3013 
3014 		if ((a[i].ipa_type == IPSEC_ACT_BYPASS) ||
3015 		    (a[i].ipa_type == IPSEC_ACT_CLEAR))
3016 			allow_clear = B_TRUE;
3017 		if (a[i].ipa_type == IPSEC_ACT_APPLY) {
3018 			const ipsec_prot_t *ipp = &a[i].ipa_apply;
3019 
3020 			ASSERT(ipp->ipp_use_ah || ipp->ipp_use_esp);
3021 			want_ah |= ipp->ipp_use_ah;
3022 			want_esp |= ipp->ipp_use_esp;
3023 			want_se |= ipp->ipp_use_se;
3024 			want_unique |= ipp->ipp_use_unique;
3025 		}
3026 		ap->ipa_allow_clear = allow_clear;
3027 		ap->ipa_want_ah = want_ah;
3028 		ap->ipa_want_esp = want_esp;
3029 		ap->ipa_want_se = want_se;
3030 		ap->ipa_want_unique = want_unique;
3031 		ap->ipa_refs = 1; /* from the hash table */
3032 		ap->ipa_ovhd = maxovhd;
3033 		if (prev)
3034 			prev->ipa_refs++;
3035 		prev = ap;
3036 		HASH_UNLOCK(ipsec_action_hash, hval);
3037 	}
3038 
3039 	ap->ipa_refs++;		/* caller's reference */
3040 
3041 	return (ap);
3042 }
3043 
3044 /*
3045  * Called when refcount goes to 0, indicating that all references to this
3046  * node are gone.
3047  *
3048  * This does not unchain the action from the hash table.
3049  */
3050 void
3051 ipsec_action_free(ipsec_action_t *ap)
3052 {
3053 	for (;;) {
3054 		ipsec_action_t *np = ap->ipa_next;
3055 		ASSERT(ap->ipa_refs == 0);
3056 		ASSERT(ap->ipa_hash.hash_pp == NULL);
3057 		kmem_cache_free(ipsec_action_cache, ap);
3058 		ap = np;
3059 		/* Inlined IPACT_REFRELE -- avoid recursion */
3060 		if (ap == NULL)
3061 			break;
3062 		membar_exit();
3063 		if (atomic_add_32_nv(&(ap)->ipa_refs, -1) != 0)
3064 			break;
3065 		/* End inlined IPACT_REFRELE */
3066 	}
3067 }
3068 
3069 /*
3070  * Periodically sweep action hash table for actions with refcount==1, and
3071  * nuke them.  We cannot do this "on demand" (i.e., from IPACT_REFRELE)
3072  * because we can't close the race between another thread finding the action
3073  * in the hash table without holding the bucket lock during IPACT_REFRELE.
3074  * Instead, we run this function sporadically to clean up after ourselves;
3075  * we also set it as the "reclaim" function for the action kmem_cache.
3076  *
3077  * Note that it may take several passes of ipsec_action_gc() to free all
3078  * "stale" actions.
3079  */
3080 /* ARGSUSED */
3081 static void
3082 ipsec_action_reclaim(void *dummy)
3083 {
3084 	int i;
3085 
3086 	for (i = 0; i < IPSEC_ACTION_HASH_SIZE; i++) {
3087 		ipsec_action_t *ap, *np;
3088 
3089 		/* skip the lock if nobody home */
3090 		if (ipsec_action_hash[i].hash_head == NULL)
3091 			continue;
3092 
3093 		HASH_LOCK(ipsec_action_hash, i);
3094 		for (ap = ipsec_action_hash[i].hash_head;
3095 		    ap != NULL; ap = np) {
3096 			ASSERT(ap->ipa_refs > 0);
3097 			np = ap->ipa_hash.hash_next;
3098 			if (ap->ipa_refs > 1)
3099 				continue;
3100 			HASH_UNCHAIN(ap, ipa_hash, ipsec_action_hash, i);
3101 			IPACT_REFRELE(ap);
3102 		}
3103 		HASH_UNLOCK(ipsec_action_hash, i);
3104 	}
3105 }
3106 
3107 /*
3108  * Intern a selector set into the selector set hash table.
3109  * This is simpler than the actions case..
3110  */
3111 static ipsec_sel_t *
3112 ipsec_find_sel(ipsec_selkey_t *selkey)
3113 {
3114 	ipsec_sel_t *sp;
3115 	uint32_t hval, bucket;
3116 
3117 	/*
3118 	 * Exactly one AF bit should be set in selkey.
3119 	 */
3120 	ASSERT(!(selkey->ipsl_valid & IPSL_IPV4) ^
3121 	    !(selkey->ipsl_valid & IPSL_IPV6));
3122 
3123 	hval = selkey_hash(selkey);
3124 	/* Set pol_hval to uninitialized until we put it in a polhead. */
3125 	selkey->ipsl_sel_hval = hval;
3126 
3127 	bucket = (hval == IPSEC_SEL_NOHASH) ? 0 : hval;
3128 
3129 	ASSERT(!HASH_LOCKED(ipsec_sel_hash, bucket));
3130 	HASH_LOCK(ipsec_sel_hash, bucket);
3131 
3132 	for (HASH_ITERATE(sp, ipsl_hash, ipsec_sel_hash, bucket)) {
3133 		if (bcmp(&sp->ipsl_key, selkey,
3134 		    offsetof(ipsec_selkey_t, ipsl_pol_hval)) == 0)
3135 			break;
3136 	}
3137 	if (sp != NULL) {
3138 		sp->ipsl_refs++;
3139 
3140 		HASH_UNLOCK(ipsec_sel_hash, bucket);
3141 		return (sp);
3142 	}
3143 
3144 	sp = kmem_cache_alloc(ipsec_sel_cache, KM_NOSLEEP);
3145 	if (sp == NULL) {
3146 		HASH_UNLOCK(ipsec_sel_hash, bucket);
3147 		return (NULL);
3148 	}
3149 
3150 	HASH_INSERT(sp, ipsl_hash, ipsec_sel_hash, bucket);
3151 	sp->ipsl_refs = 2;	/* one for hash table, one for caller */
3152 	sp->ipsl_key = *selkey;
3153 	/* Set to uninitalized and have insertion into polhead fix things. */
3154 	if (selkey->ipsl_sel_hval != IPSEC_SEL_NOHASH)
3155 		sp->ipsl_key.ipsl_pol_hval = 0;
3156 	else
3157 		sp->ipsl_key.ipsl_pol_hval = IPSEC_SEL_NOHASH;
3158 
3159 	HASH_UNLOCK(ipsec_sel_hash, bucket);
3160 
3161 	return (sp);
3162 }
3163 
3164 static void
3165 ipsec_sel_rel(ipsec_sel_t **spp)
3166 {
3167 	ipsec_sel_t *sp = *spp;
3168 	int hval = sp->ipsl_key.ipsl_sel_hval;
3169 	*spp = NULL;
3170 
3171 	if (hval == IPSEC_SEL_NOHASH)
3172 		hval = 0;
3173 
3174 	ASSERT(!HASH_LOCKED(ipsec_sel_hash, hval));
3175 	HASH_LOCK(ipsec_sel_hash, hval);
3176 	if (--sp->ipsl_refs == 1) {
3177 		HASH_UNCHAIN(sp, ipsl_hash, ipsec_sel_hash, hval);
3178 		sp->ipsl_refs--;
3179 		HASH_UNLOCK(ipsec_sel_hash, hval);
3180 		ASSERT(sp->ipsl_refs == 0);
3181 		kmem_cache_free(ipsec_sel_cache, sp);
3182 		/* Caller unlocks */
3183 		return;
3184 	}
3185 
3186 	HASH_UNLOCK(ipsec_sel_hash, hval);
3187 }
3188 
3189 /*
3190  * Free a policy rule which we know is no longer being referenced.
3191  */
3192 void
3193 ipsec_policy_free(ipsec_policy_t *ipp)
3194 {
3195 	ASSERT(ipp->ipsp_refs == 0);
3196 	ASSERT(ipp->ipsp_sel != NULL);
3197 	ASSERT(ipp->ipsp_act != NULL);
3198 	ipsec_sel_rel(&ipp->ipsp_sel);
3199 	IPACT_REFRELE(ipp->ipsp_act);
3200 	kmem_cache_free(ipsec_pol_cache, ipp);
3201 }
3202 
3203 /*
3204  * Construction of new policy rules; construct a policy, and add it to
3205  * the appropriate tables.
3206  */
3207 ipsec_policy_t *
3208 ipsec_policy_create(ipsec_selkey_t *keys, const ipsec_act_t *a,
3209     int nacts, int prio, uint64_t *index_ptr)
3210 {
3211 	ipsec_action_t *ap;
3212 	ipsec_sel_t *sp;
3213 	ipsec_policy_t *ipp;
3214 
3215 	if (index_ptr == NULL)
3216 		index_ptr = &ipsec_next_policy_index;
3217 
3218 	ipp = kmem_cache_alloc(ipsec_pol_cache, KM_NOSLEEP);
3219 	ap = ipsec_act_find(a, nacts);
3220 	sp = ipsec_find_sel(keys);
3221 
3222 	if ((ap == NULL) || (sp == NULL) || (ipp == NULL)) {
3223 		if (ap != NULL) {
3224 			IPACT_REFRELE(ap);
3225 		}
3226 		if (sp != NULL)
3227 			ipsec_sel_rel(&sp);
3228 		if (ipp != NULL)
3229 			kmem_cache_free(ipsec_pol_cache, ipp);
3230 		return (NULL);
3231 	}
3232 
3233 	HASH_NULL(ipp, ipsp_hash);
3234 
3235 	ipp->ipsp_refs = 1;	/* caller's reference */
3236 	ipp->ipsp_sel = sp;
3237 	ipp->ipsp_act = ap;
3238 	ipp->ipsp_prio = prio;	/* rule priority */
3239 	ipp->ipsp_index = *index_ptr;
3240 	(*index_ptr)++;
3241 
3242 	return (ipp);
3243 }
3244 
3245 static void
3246 ipsec_update_present_flags()
3247 {
3248 	boolean_t hashpol = (avl_numnodes(&system_policy.iph_rulebyid) > 0);
3249 
3250 	if (hashpol) {
3251 		ipsec_outbound_v4_policy_present = B_TRUE;
3252 		ipsec_outbound_v6_policy_present = B_TRUE;
3253 		ipsec_inbound_v4_policy_present = B_TRUE;
3254 		ipsec_inbound_v6_policy_present = B_TRUE;
3255 		return;
3256 	}
3257 
3258 	ipsec_outbound_v4_policy_present = (NULL !=
3259 	    system_policy.iph_root[IPSEC_TYPE_OUTBOUND].
3260 	    ipr_nonhash[IPSEC_AF_V4]);
3261 	ipsec_outbound_v6_policy_present = (NULL !=
3262 	    system_policy.iph_root[IPSEC_TYPE_OUTBOUND].
3263 	    ipr_nonhash[IPSEC_AF_V6]);
3264 	ipsec_inbound_v4_policy_present = (NULL !=
3265 	    system_policy.iph_root[IPSEC_TYPE_INBOUND].
3266 	    ipr_nonhash[IPSEC_AF_V4]);
3267 	ipsec_inbound_v6_policy_present = (NULL !=
3268 	    system_policy.iph_root[IPSEC_TYPE_INBOUND].
3269 	    ipr_nonhash[IPSEC_AF_V6]);
3270 }
3271 
3272 boolean_t
3273 ipsec_policy_delete(ipsec_policy_head_t *php, ipsec_selkey_t *keys, int dir)
3274 {
3275 	ipsec_sel_t *sp;
3276 	ipsec_policy_t *ip, *nip, *head;
3277 	int af;
3278 	ipsec_policy_root_t *pr = &php->iph_root[dir];
3279 
3280 	sp = ipsec_find_sel(keys);
3281 
3282 	if (sp == NULL)
3283 		return (B_FALSE);
3284 
3285 	af = (sp->ipsl_key.ipsl_valid & IPSL_IPV4) ? IPSEC_AF_V4 : IPSEC_AF_V6;
3286 
3287 	rw_enter(&php->iph_lock, RW_WRITER);
3288 
3289 	if (sp->ipsl_key.ipsl_pol_hval == IPSEC_SEL_NOHASH) {
3290 		head = pr->ipr_nonhash[af];
3291 	} else {
3292 		head = pr->ipr_hash[sp->ipsl_key.ipsl_pol_hval].hash_head;
3293 	}
3294 
3295 	for (ip = head; ip != NULL; ip = nip) {
3296 		nip = ip->ipsp_hash.hash_next;
3297 		if (ip->ipsp_sel != sp) {
3298 			continue;
3299 		}
3300 
3301 		IPPOL_UNCHAIN(php, ip);
3302 
3303 		php->iph_gen++;
3304 		ipsec_update_present_flags();
3305 
3306 		rw_exit(&php->iph_lock);
3307 
3308 		ipsec_sel_rel(&sp);
3309 
3310 		return (B_TRUE);
3311 	}
3312 
3313 	rw_exit(&php->iph_lock);
3314 	ipsec_sel_rel(&sp);
3315 	return (B_FALSE);
3316 }
3317 
3318 int
3319 ipsec_policy_delete_index(ipsec_policy_head_t *php, uint64_t policy_index)
3320 {
3321 	boolean_t found = B_FALSE;
3322 	ipsec_policy_t ipkey;
3323 	ipsec_policy_t *ip;
3324 	avl_index_t where;
3325 
3326 	(void) memset(&ipkey, 0, sizeof (ipkey));
3327 	ipkey.ipsp_index = policy_index;
3328 
3329 	rw_enter(&php->iph_lock, RW_WRITER);
3330 
3331 	/*
3332 	 * We could be cleverer here about the walk.
3333 	 * but well, (k+1)*log(N) will do for now (k==number of matches,
3334 	 * N==number of table entries
3335 	 */
3336 	for (;;) {
3337 		ip = (ipsec_policy_t *)avl_find(&php->iph_rulebyid,
3338 		    (void *)&ipkey, &where);
3339 		ASSERT(ip == NULL);
3340 
3341 		ip = avl_nearest(&php->iph_rulebyid, where, AVL_AFTER);
3342 
3343 		if (ip == NULL)
3344 			break;
3345 
3346 		if (ip->ipsp_index != policy_index) {
3347 			ASSERT(ip->ipsp_index > policy_index);
3348 			break;
3349 		}
3350 
3351 		IPPOL_UNCHAIN(php, ip);
3352 		found = B_TRUE;
3353 	}
3354 
3355 	if (found) {
3356 		php->iph_gen++;
3357 		ipsec_update_present_flags();
3358 	}
3359 
3360 	rw_exit(&php->iph_lock);
3361 
3362 	return (found ? 0 : ENOENT);
3363 }
3364 
3365 /*
3366  * Given a constructed ipsec_policy_t policy rule, see if it can be entered
3367  * into the correct policy ruleset.  As a side-effect, it sets the hash
3368  * entries on "ipp"'s ipsp_pol_hval.
3369  *
3370  * Returns B_TRUE if it can be entered, B_FALSE if it can't be (because a
3371  * duplicate policy exists with exactly the same selectors), or an icmp
3372  * rule exists with a different encryption/authentication action.
3373  */
3374 boolean_t
3375 ipsec_check_policy(ipsec_policy_head_t *php, ipsec_policy_t *ipp, int direction)
3376 {
3377 	ipsec_policy_root_t *pr = &php->iph_root[direction];
3378 	int af = -1;
3379 	ipsec_policy_t *p2, *head;
3380 	uint8_t check_proto;
3381 	ipsec_selkey_t *selkey = &ipp->ipsp_sel->ipsl_key;
3382 	uint32_t	valid = selkey->ipsl_valid;
3383 
3384 	if (valid & IPSL_IPV6) {
3385 		ASSERT(!(valid & IPSL_IPV4));
3386 		af = IPSEC_AF_V6;
3387 		check_proto = IPPROTO_ICMPV6;
3388 	} else {
3389 		ASSERT(valid & IPSL_IPV4);
3390 		af = IPSEC_AF_V4;
3391 		check_proto = IPPROTO_ICMP;
3392 	}
3393 
3394 	ASSERT(RW_WRITE_HELD(&php->iph_lock));
3395 
3396 	/*
3397 	 * Double-check that we don't have any duplicate selectors here.
3398 	 * Because selectors are interned below, we need only compare pointers
3399 	 * for equality.
3400 	 */
3401 	if (selkey->ipsl_sel_hval == IPSEC_SEL_NOHASH) {
3402 		head = pr->ipr_nonhash[af];
3403 	} else {
3404 		selkey->ipsl_pol_hval =
3405 		    (selkey->ipsl_valid & IPSL_IPV4) ?
3406 		    IPSEC_IPV4_HASH(selkey->ipsl_remote.ipsad_v4,
3407 			pr->ipr_nchains) :
3408 		    IPSEC_IPV6_HASH(selkey->ipsl_remote.ipsad_v6,
3409 			pr->ipr_nchains);
3410 
3411 		head = pr->ipr_hash[selkey->ipsl_pol_hval].hash_head;
3412 	}
3413 
3414 	for (p2 = head; p2 != NULL; p2 = p2->ipsp_hash.hash_next) {
3415 		if (p2->ipsp_sel == ipp->ipsp_sel)
3416 			return (B_FALSE);
3417 	}
3418 
3419 	/*
3420 	 * If it's ICMP and not a drop or pass rule, run through the ICMP
3421 	 * rules and make sure the action is either new or the same as any
3422 	 * other actions.  We don't have to check the full chain because
3423 	 * discard and bypass will override all other actions
3424 	 */
3425 
3426 	if (valid & IPSL_PROTOCOL &&
3427 	    selkey->ipsl_proto == check_proto &&
3428 	    (ipp->ipsp_act->ipa_act.ipa_type == IPSEC_ACT_APPLY)) {
3429 
3430 		for (p2 = head; p2 != NULL; p2 = p2->ipsp_hash.hash_next) {
3431 
3432 			if (p2->ipsp_sel->ipsl_key.ipsl_valid & IPSL_PROTOCOL &&
3433 			    p2->ipsp_sel->ipsl_key.ipsl_proto == check_proto &&
3434 			    (p2->ipsp_act->ipa_act.ipa_type ==
3435 				IPSEC_ACT_APPLY)) {
3436 				return (ipsec_compare_action(p2, ipp));
3437 			}
3438 		}
3439 	}
3440 
3441 	return (B_TRUE);
3442 }
3443 
3444 /*
3445  * compare the action chains of two policies for equality
3446  * B_TRUE -> effective equality
3447  */
3448 
3449 static boolean_t
3450 ipsec_compare_action(ipsec_policy_t *p1, ipsec_policy_t *p2)
3451 {
3452 
3453 	ipsec_action_t *act1, *act2;
3454 
3455 	/* We have a valid rule. Let's compare the actions */
3456 	if (p1->ipsp_act == p2->ipsp_act) {
3457 		/* same action. We are good */
3458 		return (B_TRUE);
3459 	}
3460 
3461 	/* we have to walk the chain */
3462 
3463 	act1 = p1->ipsp_act;
3464 	act2 = p2->ipsp_act;
3465 
3466 	while (act1 != NULL && act2 != NULL) {
3467 
3468 		/* otherwise, Are we close enough? */
3469 		if (act1->ipa_allow_clear != act2->ipa_allow_clear ||
3470 		    act1->ipa_want_ah != act2->ipa_want_ah ||
3471 		    act1->ipa_want_esp != act2->ipa_want_esp ||
3472 		    act1->ipa_want_se != act2->ipa_want_se) {
3473 			/* Nope, we aren't */
3474 			return (B_FALSE);
3475 		}
3476 
3477 		if (act1->ipa_want_ah) {
3478 			if (act1->ipa_act.ipa_apply.ipp_auth_alg !=
3479 			    act2->ipa_act.ipa_apply.ipp_auth_alg) {
3480 				return (B_FALSE);
3481 			}
3482 
3483 			if (act1->ipa_act.ipa_apply.ipp_ah_minbits !=
3484 			    act2->ipa_act.ipa_apply.ipp_ah_minbits ||
3485 			    act1->ipa_act.ipa_apply.ipp_ah_maxbits !=
3486 			    act2->ipa_act.ipa_apply.ipp_ah_maxbits) {
3487 				return (B_FALSE);
3488 			}
3489 		}
3490 
3491 		if (act1->ipa_want_esp) {
3492 			if (act1->ipa_act.ipa_apply.ipp_use_esp !=
3493 			    act2->ipa_act.ipa_apply.ipp_use_esp ||
3494 			    act1->ipa_act.ipa_apply.ipp_use_espa !=
3495 			    act2->ipa_act.ipa_apply.ipp_use_espa) {
3496 				return (B_FALSE);
3497 			}
3498 
3499 			if (act1->ipa_act.ipa_apply.ipp_use_esp) {
3500 				if (act1->ipa_act.ipa_apply.ipp_encr_alg !=
3501 				    act2->ipa_act.ipa_apply.ipp_encr_alg) {
3502 					return (B_FALSE);
3503 				}
3504 
3505 				if (act1->ipa_act.ipa_apply.ipp_espe_minbits !=
3506 				    act2->ipa_act.ipa_apply.ipp_espe_minbits ||
3507 				    act1->ipa_act.ipa_apply.ipp_espe_maxbits !=
3508 				    act2->ipa_act.ipa_apply.ipp_espe_maxbits) {
3509 					return (B_FALSE);
3510 				}
3511 			}
3512 
3513 			if (act1->ipa_act.ipa_apply.ipp_use_espa) {
3514 				if (act1->ipa_act.ipa_apply.ipp_esp_auth_alg !=
3515 				    act2->ipa_act.ipa_apply.ipp_esp_auth_alg) {
3516 					return (B_FALSE);
3517 				}
3518 
3519 				if (act1->ipa_act.ipa_apply.ipp_espa_minbits !=
3520 				    act2->ipa_act.ipa_apply.ipp_espa_minbits ||
3521 				    act1->ipa_act.ipa_apply.ipp_espa_maxbits !=
3522 				    act2->ipa_act.ipa_apply.ipp_espa_maxbits) {
3523 					return (B_FALSE);
3524 				}
3525 			}
3526 
3527 		}
3528 
3529 		act1 = act1->ipa_next;
3530 		act2 = act2->ipa_next;
3531 	}
3532 
3533 	if (act1 != NULL || act2 != NULL) {
3534 		return (B_FALSE);
3535 	}
3536 
3537 	return (B_TRUE);
3538 }
3539 
3540 
3541 /*
3542  * Given a constructed ipsec_policy_t policy rule, enter it into
3543  * the correct policy ruleset.
3544  *
3545  * ipsec_check_policy() is assumed to have succeeded first (to check for
3546  * duplicates).
3547  */
3548 void
3549 ipsec_enter_policy(ipsec_policy_head_t *php, ipsec_policy_t *ipp, int direction)
3550 {
3551 	ipsec_policy_root_t *pr = &php->iph_root[direction];
3552 	ipsec_selkey_t *selkey = &ipp->ipsp_sel->ipsl_key;
3553 	uint32_t valid = selkey->ipsl_valid;
3554 	uint32_t hval = selkey->ipsl_pol_hval;
3555 	int af = -1;
3556 
3557 	ASSERT(RW_WRITE_HELD(&php->iph_lock));
3558 
3559 	if (valid & IPSL_IPV6) {
3560 		ASSERT(!(valid & IPSL_IPV4));
3561 		af = IPSEC_AF_V6;
3562 	} else {
3563 		ASSERT(valid & IPSL_IPV4);
3564 		af = IPSEC_AF_V4;
3565 	}
3566 
3567 	php->iph_gen++;
3568 
3569 	if (hval == IPSEC_SEL_NOHASH) {
3570 		HASHLIST_INSERT(ipp, ipsp_hash, pr->ipr_nonhash[af]);
3571 	} else {
3572 		HASH_LOCK(pr->ipr_hash, hval);
3573 		HASH_INSERT(ipp, ipsp_hash, pr->ipr_hash, hval);
3574 		HASH_UNLOCK(pr->ipr_hash, hval);
3575 	}
3576 
3577 	ipsec_insert_always(&php->iph_rulebyid, ipp);
3578 
3579 	ipsec_update_present_flags();
3580 }
3581 
3582 static void
3583 ipsec_ipr_flush(ipsec_policy_head_t *php, ipsec_policy_root_t *ipr)
3584 {
3585 	ipsec_policy_t *ip, *nip;
3586 
3587 	int af, chain, nchain;
3588 
3589 	for (af = 0; af < IPSEC_NAF; af++) {
3590 		for (ip = ipr->ipr_nonhash[af]; ip != NULL; ip = nip) {
3591 			nip = ip->ipsp_hash.hash_next;
3592 			IPPOL_UNCHAIN(php, ip);
3593 		}
3594 		ipr->ipr_nonhash[af] = NULL;
3595 	}
3596 	nchain = ipr->ipr_nchains;
3597 
3598 	for (chain = 0; chain < nchain; chain++) {
3599 		for (ip = ipr->ipr_hash[chain].hash_head; ip != NULL;
3600 		    ip = nip) {
3601 			nip = ip->ipsp_hash.hash_next;
3602 			IPPOL_UNCHAIN(php, ip);
3603 		}
3604 		ipr->ipr_hash[chain].hash_head = NULL;
3605 	}
3606 }
3607 
3608 void
3609 ipsec_polhead_flush(ipsec_policy_head_t *php)
3610 {
3611 	int dir;
3612 
3613 	ASSERT(RW_WRITE_HELD(&php->iph_lock));
3614 
3615 	for (dir = 0; dir < IPSEC_NTYPES; dir++)
3616 		ipsec_ipr_flush(php, &php->iph_root[dir]);
3617 
3618 	ipsec_update_present_flags();
3619 }
3620 
3621 void
3622 ipsec_polhead_free(ipsec_policy_head_t *php)
3623 {
3624 	int dir;
3625 
3626 	ASSERT(php->iph_refs == 0);
3627 	rw_enter(&php->iph_lock, RW_WRITER);
3628 	ipsec_polhead_flush(php);
3629 	rw_exit(&php->iph_lock);
3630 	rw_destroy(&php->iph_lock);
3631 	for (dir = 0; dir < IPSEC_NTYPES; dir++) {
3632 		ipsec_policy_root_t *ipr = &php->iph_root[dir];
3633 		int chain;
3634 
3635 		for (chain = 0; chain < ipr->ipr_nchains; chain++)
3636 			mutex_destroy(&(ipr->ipr_hash[chain].hash_lock));
3637 
3638 	}
3639 	ipsec_polhead_free_table(php);
3640 	kmem_free(php, sizeof (*php));
3641 }
3642 
3643 static void
3644 ipsec_ipr_init(ipsec_policy_root_t *ipr)
3645 {
3646 	int af;
3647 
3648 	ipr->ipr_nchains = 0;
3649 	ipr->ipr_hash = NULL;
3650 
3651 	for (af = 0; af < IPSEC_NAF; af++) {
3652 		ipr->ipr_nonhash[af] = NULL;
3653 	}
3654 }
3655 
3656 ipsec_policy_head_t *
3657 ipsec_polhead_create(void)
3658 {
3659 	ipsec_policy_head_t *php;
3660 
3661 	php = kmem_alloc(sizeof (*php), KM_NOSLEEP);
3662 	if (php == NULL)
3663 		return (php);
3664 
3665 	rw_init(&php->iph_lock, NULL, RW_DEFAULT, NULL);
3666 	php->iph_refs = 1;
3667 	php->iph_gen = 0;
3668 
3669 	ipsec_ipr_init(&php->iph_root[IPSEC_TYPE_INBOUND]);
3670 	ipsec_ipr_init(&php->iph_root[IPSEC_TYPE_OUTBOUND]);
3671 
3672 	avl_create(&php->iph_rulebyid, ipsec_policy_cmpbyid,
3673 	    sizeof (ipsec_policy_t), offsetof(ipsec_policy_t, ipsp_byid));
3674 
3675 	return (php);
3676 }
3677 
3678 /*
3679  * Clone the policy head into a new polhead; release one reference to the
3680  * old one and return the only reference to the new one.
3681  * If the old one had a refcount of 1, just return it.
3682  */
3683 ipsec_policy_head_t *
3684 ipsec_polhead_split(ipsec_policy_head_t *php)
3685 {
3686 	ipsec_policy_head_t *nphp;
3687 
3688 	if (php == NULL)
3689 		return (ipsec_polhead_create());
3690 	else if (php->iph_refs == 1)
3691 		return (php);
3692 
3693 	nphp = ipsec_polhead_create();
3694 	if (nphp == NULL)
3695 		return (NULL);
3696 
3697 	if (ipsec_copy_polhead(php, nphp) != 0) {
3698 		ipsec_polhead_free(nphp);
3699 		return (NULL);
3700 	}
3701 	IPPH_REFRELE(php);
3702 	return (nphp);
3703 }
3704 
3705 /*
3706  * When sending a response to a ICMP request or generating a RST
3707  * in the TCP case, the outbound packets need to go at the same level
3708  * of protection as the incoming ones i.e we associate our outbound
3709  * policy with how the packet came in. We call this after we have
3710  * accepted the incoming packet which may or may not have been in
3711  * clear and hence we are sending the reply back with the policy
3712  * matching the incoming datagram's policy.
3713  *
3714  * NOTE : This technology serves two purposes :
3715  *
3716  * 1) If we have multiple outbound policies, we send out a reply
3717  *    matching with how it came in rather than matching the outbound
3718  *    policy.
3719  *
3720  * 2) For assymetric policies, we want to make sure that incoming
3721  *    and outgoing has the same level of protection. Assymetric
3722  *    policies exist only with global policy where we may not have
3723  *    both outbound and inbound at the same time.
3724  *
3725  * NOTE2:	This function is called by cleartext cases, so it needs to be
3726  *		in IP proper.
3727  */
3728 boolean_t
3729 ipsec_in_to_out(mblk_t *ipsec_mp, ipha_t *ipha, ip6_t *ip6h)
3730 {
3731 	ipsec_in_t  *ii;
3732 	ipsec_out_t  *io;
3733 	boolean_t v4;
3734 	mblk_t *mp;
3735 	boolean_t secure, attach_if;
3736 	uint_t ifindex;
3737 	ipsec_selector_t sel;
3738 	ipsec_action_t *reflect_action = NULL;
3739 	zoneid_t zoneid;
3740 
3741 	ASSERT(ipsec_mp->b_datap->db_type == M_CTL);
3742 
3743 	bzero((void*)&sel, sizeof (sel));
3744 
3745 	ii = (ipsec_in_t *)ipsec_mp->b_rptr;
3746 
3747 	mp = ipsec_mp->b_cont;
3748 	ASSERT(mp != NULL);
3749 
3750 	if (ii->ipsec_in_action != NULL) {
3751 		/* transfer reference.. */
3752 		reflect_action = ii->ipsec_in_action;
3753 		ii->ipsec_in_action = NULL;
3754 	} else if (!ii->ipsec_in_loopback)
3755 		reflect_action = ipsec_in_to_out_action(ii);
3756 	secure = ii->ipsec_in_secure;
3757 	attach_if = ii->ipsec_in_attach_if;
3758 	ifindex = ii->ipsec_in_ill_index;
3759 	zoneid = ii->ipsec_in_zoneid;
3760 	ASSERT(zoneid != ALL_ZONES);
3761 	v4 = ii->ipsec_in_v4;
3762 
3763 	ipsec_in_release_refs(ii);
3764 
3765 	/*
3766 	 * The caller is going to send the datagram out which might
3767 	 * go on the wire or delivered locally through ip_wput_local.
3768 	 *
3769 	 * 1) If it goes out on the wire, new associations will be
3770 	 *    obtained.
3771 	 * 2) If it is delivered locally, ip_wput_local will convert
3772 	 *    this IPSEC_OUT to a IPSEC_IN looking at the requests.
3773 	 */
3774 
3775 	io = (ipsec_out_t *)ipsec_mp->b_rptr;
3776 	bzero(io, sizeof (ipsec_out_t));
3777 	io->ipsec_out_type = IPSEC_OUT;
3778 	io->ipsec_out_len = sizeof (ipsec_out_t);
3779 	io->ipsec_out_frtn.free_func = ipsec_out_free;
3780 	io->ipsec_out_frtn.free_arg = (char *)io;
3781 	io->ipsec_out_act = reflect_action;
3782 
3783 	if (!ipsec_init_outbound_ports(&sel, mp, ipha, ip6h, 0))
3784 		return (B_FALSE);
3785 
3786 	io->ipsec_out_src_port = sel.ips_local_port;
3787 	io->ipsec_out_dst_port = sel.ips_remote_port;
3788 	io->ipsec_out_proto = sel.ips_protocol;
3789 	io->ipsec_out_icmp_type = sel.ips_icmp_type;
3790 	io->ipsec_out_icmp_code = sel.ips_icmp_code;
3791 
3792 	/*
3793 	 * Don't use global policy for this, as we want
3794 	 * to use the same protection that was applied to the inbound packet.
3795 	 */
3796 	io->ipsec_out_use_global_policy = B_FALSE;
3797 	io->ipsec_out_proc_begin = B_FALSE;
3798 	io->ipsec_out_secure = secure;
3799 	io->ipsec_out_v4 = v4;
3800 	io->ipsec_out_attach_if = attach_if;
3801 	io->ipsec_out_ill_index = ifindex;
3802 	io->ipsec_out_zoneid = zoneid;
3803 	return (B_TRUE);
3804 }
3805 
3806 mblk_t *
3807 ipsec_in_tag(mblk_t *mp, mblk_t *cont)
3808 {
3809 	ipsec_in_t *ii = (ipsec_in_t *)mp->b_rptr;
3810 	ipsec_in_t *nii;
3811 	mblk_t *nmp;
3812 	frtn_t nfrtn;
3813 
3814 	ASSERT(ii->ipsec_in_type == IPSEC_IN);
3815 	ASSERT(ii->ipsec_in_len == sizeof (ipsec_in_t));
3816 
3817 	nmp = ipsec_in_alloc(ii->ipsec_in_v4);
3818 
3819 	ASSERT(nmp->b_datap->db_type == M_CTL);
3820 	ASSERT(nmp->b_wptr == (nmp->b_rptr + sizeof (ipsec_info_t)));
3821 
3822 	/*
3823 	 * Bump refcounts.
3824 	 */
3825 	if (ii->ipsec_in_ah_sa != NULL)
3826 		IPSA_REFHOLD(ii->ipsec_in_ah_sa);
3827 	if (ii->ipsec_in_esp_sa != NULL)
3828 		IPSA_REFHOLD(ii->ipsec_in_esp_sa);
3829 	if (ii->ipsec_in_policy != NULL)
3830 		IPPH_REFHOLD(ii->ipsec_in_policy);
3831 
3832 	/*
3833 	 * Copy everything, but preserve the free routine provided by
3834 	 * ipsec_in_alloc().
3835 	 */
3836 	nii = (ipsec_in_t *)nmp->b_rptr;
3837 	nfrtn = nii->ipsec_in_frtn;
3838 	bcopy(ii, nii, sizeof (*ii));
3839 	nii->ipsec_in_frtn = nfrtn;
3840 
3841 	nmp->b_cont = cont;
3842 
3843 	return (nmp);
3844 }
3845 
3846 mblk_t *
3847 ipsec_out_tag(mblk_t *mp, mblk_t *cont)
3848 {
3849 	ipsec_out_t *io = (ipsec_out_t *)mp->b_rptr;
3850 	ipsec_out_t *nio;
3851 	mblk_t *nmp;
3852 	frtn_t nfrtn;
3853 
3854 	ASSERT(io->ipsec_out_type == IPSEC_OUT);
3855 	ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t));
3856 
3857 	nmp = ipsec_alloc_ipsec_out();
3858 	if (nmp == NULL) {
3859 		ip_drop_packet_chain(cont, B_FALSE, NULL, NULL,
3860 		    &ipdrops_spd_nomem, &spd_dropper);
3861 		return (NULL);
3862 	}
3863 	ASSERT(nmp->b_datap->db_type == M_CTL);
3864 	ASSERT(nmp->b_wptr == (nmp->b_rptr + sizeof (ipsec_info_t)));
3865 
3866 	/*
3867 	 * Bump refcounts.
3868 	 */
3869 	if (io->ipsec_out_ah_sa != NULL)
3870 		IPSA_REFHOLD(io->ipsec_out_ah_sa);
3871 	if (io->ipsec_out_esp_sa != NULL)
3872 		IPSA_REFHOLD(io->ipsec_out_esp_sa);
3873 	if (io->ipsec_out_polhead != NULL)
3874 		IPPH_REFHOLD(io->ipsec_out_polhead);
3875 	if (io->ipsec_out_policy != NULL)
3876 		IPPOL_REFHOLD(io->ipsec_out_policy);
3877 	if (io->ipsec_out_act != NULL)
3878 		IPACT_REFHOLD(io->ipsec_out_act);
3879 	if (io->ipsec_out_latch != NULL)
3880 		IPLATCH_REFHOLD(io->ipsec_out_latch);
3881 	if (io->ipsec_out_cred != NULL)
3882 		crhold(io->ipsec_out_cred);
3883 
3884 	/*
3885 	 * Copy everything, but preserve the free routine provided by
3886 	 * ipsec_alloc_ipsec_out().
3887 	 */
3888 	nio = (ipsec_out_t *)nmp->b_rptr;
3889 	nfrtn = nio->ipsec_out_frtn;
3890 	bcopy(io, nio, sizeof (*io));
3891 	nio->ipsec_out_frtn = nfrtn;
3892 
3893 	nmp->b_cont = cont;
3894 
3895 	return (nmp);
3896 }
3897 
3898 static void
3899 ipsec_out_release_refs(ipsec_out_t *io)
3900 {
3901 	ASSERT(io->ipsec_out_type == IPSEC_OUT);
3902 	ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t));
3903 
3904 	/* Note: IPSA_REFRELE is multi-line macro */
3905 	if (io->ipsec_out_ah_sa != NULL)
3906 		IPSA_REFRELE(io->ipsec_out_ah_sa);
3907 	if (io->ipsec_out_esp_sa != NULL)
3908 		IPSA_REFRELE(io->ipsec_out_esp_sa);
3909 	if (io->ipsec_out_polhead != NULL)
3910 		IPPH_REFRELE(io->ipsec_out_polhead);
3911 	if (io->ipsec_out_policy != NULL)
3912 		IPPOL_REFRELE(io->ipsec_out_policy);
3913 	if (io->ipsec_out_act != NULL)
3914 		IPACT_REFRELE(io->ipsec_out_act);
3915 	if (io->ipsec_out_cred != NULL) {
3916 		crfree(io->ipsec_out_cred);
3917 		io->ipsec_out_cred = NULL;
3918 	}
3919 	if (io->ipsec_out_latch) {
3920 		IPLATCH_REFRELE(io->ipsec_out_latch);
3921 		io->ipsec_out_latch = NULL;
3922 	}
3923 }
3924 
3925 static void
3926 ipsec_out_free(void *arg)
3927 {
3928 	ipsec_out_t *io = (ipsec_out_t *)arg;
3929 	ipsec_out_release_refs(io);
3930 	kmem_cache_free(ipsec_info_cache, arg);
3931 }
3932 
3933 static void
3934 ipsec_in_release_refs(ipsec_in_t *ii)
3935 {
3936 	/* Note: IPSA_REFRELE is multi-line macro */
3937 	if (ii->ipsec_in_ah_sa != NULL)
3938 		IPSA_REFRELE(ii->ipsec_in_ah_sa);
3939 	if (ii->ipsec_in_esp_sa != NULL)
3940 		IPSA_REFRELE(ii->ipsec_in_esp_sa);
3941 	if (ii->ipsec_in_policy != NULL)
3942 		IPPH_REFRELE(ii->ipsec_in_policy);
3943 	if (ii->ipsec_in_da != NULL) {
3944 		freeb(ii->ipsec_in_da);
3945 		ii->ipsec_in_da = NULL;
3946 	}
3947 }
3948 
3949 static void
3950 ipsec_in_free(void *arg)
3951 {
3952 	ipsec_in_t *ii = (ipsec_in_t *)arg;
3953 	ipsec_in_release_refs(ii);
3954 	kmem_cache_free(ipsec_info_cache, arg);
3955 }
3956 
3957 /*
3958  * This is called only for outbound datagrams if the datagram needs to
3959  * go out secure.  A NULL mp can be passed to get an ipsec_out. This
3960  * facility is used by ip_unbind.
3961  *
3962  * NOTE : o As the data part could be modified by ipsec_out_process etc.
3963  *	    we can't make it fast by calling a dup.
3964  */
3965 mblk_t *
3966 ipsec_alloc_ipsec_out()
3967 {
3968 	mblk_t *ipsec_mp;
3969 
3970 	ipsec_out_t *io = kmem_cache_alloc(ipsec_info_cache, KM_NOSLEEP);
3971 
3972 	if (io == NULL)
3973 		return (NULL);
3974 
3975 	bzero(io, sizeof (ipsec_out_t));
3976 
3977 	io->ipsec_out_type = IPSEC_OUT;
3978 	io->ipsec_out_len = sizeof (ipsec_out_t);
3979 	io->ipsec_out_frtn.free_func = ipsec_out_free;
3980 	io->ipsec_out_frtn.free_arg = (char *)io;
3981 
3982 	/*
3983 	 * Set the zoneid to ALL_ZONES which is used as an invalid value. Code
3984 	 * using ipsec_out_zoneid should assert that the zoneid has been set to
3985 	 * a sane value.
3986 	 */
3987 	io->ipsec_out_zoneid = ALL_ZONES;
3988 
3989 	ipsec_mp = desballoc((uint8_t *)io, sizeof (ipsec_info_t), BPRI_HI,
3990 	    &io->ipsec_out_frtn);
3991 	if (ipsec_mp == NULL) {
3992 		ipsec_out_free(io);
3993 
3994 		return (NULL);
3995 	}
3996 	ipsec_mp->b_datap->db_type = M_CTL;
3997 	ipsec_mp->b_wptr = ipsec_mp->b_rptr + sizeof (ipsec_info_t);
3998 
3999 	return (ipsec_mp);
4000 }
4001 
4002 /*
4003  * Attach an IPSEC_OUT; use pol for policy if it is non-null.
4004  * Otherwise initialize using conn.
4005  *
4006  * If pol is non-null, we consume a reference to it.
4007  */
4008 mblk_t *
4009 ipsec_attach_ipsec_out(mblk_t *mp, conn_t *connp, ipsec_policy_t *pol,
4010     uint8_t proto)
4011 {
4012 	mblk_t *ipsec_mp;
4013 	queue_t *q;
4014 	short mid = 0;
4015 
4016 	ASSERT((pol != NULL) || (connp != NULL));
4017 
4018 	ipsec_mp = ipsec_alloc_ipsec_out();
4019 	if (ipsec_mp == NULL) {
4020 		q = CONNP_TO_WQ(connp);
4021 		if (q != NULL) {
4022 			mid = q->q_qinfo->qi_minfo->mi_idnum;
4023 		}
4024 		ipsec_rl_strlog(mid, 0, 0, SL_ERROR|SL_NOTE,
4025 		    "ipsec_attach_ipsec_out: Allocation failure\n");
4026 		BUMP_MIB(&ip_mib, ipOutDiscards);
4027 		ip_drop_packet(mp, B_FALSE, NULL, NULL, &ipdrops_spd_nomem,
4028 		    &spd_dropper);
4029 		return (NULL);
4030 	}
4031 	ipsec_mp->b_cont = mp;
4032 	return (ipsec_init_ipsec_out(ipsec_mp, connp, pol, proto));
4033 }
4034 
4035 /*
4036  * Initialize the IPSEC_OUT (ipsec_mp) using pol if it is non-null.
4037  * Otherwise initialize using conn.
4038  *
4039  * If pol is non-null, we consume a reference to it.
4040  */
4041 mblk_t *
4042 ipsec_init_ipsec_out(mblk_t *ipsec_mp, conn_t *connp, ipsec_policy_t *pol,
4043     uint8_t proto)
4044 {
4045 	mblk_t *mp;
4046 	ipsec_out_t *io;
4047 	ipsec_policy_t *p;
4048 	ipha_t *ipha;
4049 	ip6_t *ip6h;
4050 
4051 	ASSERT((pol != NULL) || (connp != NULL));
4052 
4053 	/*
4054 	 * If mp is NULL, we won't/should not be using it.
4055 	 */
4056 	mp = ipsec_mp->b_cont;
4057 
4058 	ASSERT(ipsec_mp->b_datap->db_type == M_CTL);
4059 	ASSERT(ipsec_mp->b_wptr == (ipsec_mp->b_rptr + sizeof (ipsec_info_t)));
4060 	io = (ipsec_out_t *)ipsec_mp->b_rptr;
4061 	ASSERT(io->ipsec_out_type == IPSEC_OUT);
4062 	ASSERT(io->ipsec_out_len == sizeof (ipsec_out_t));
4063 	io->ipsec_out_latch = NULL;
4064 	/*
4065 	 * Set the zoneid when we have the connp.
4066 	 * Otherwise, we're called from ip_wput_attach_policy() who will take
4067 	 * care of setting the zoneid.
4068 	 */
4069 	if (connp != NULL)
4070 		io->ipsec_out_zoneid = connp->conn_zoneid;
4071 
4072 	if (mp != NULL) {
4073 		ipha = (ipha_t *)mp->b_rptr;
4074 		if (IPH_HDR_VERSION(ipha) == IP_VERSION) {
4075 			io->ipsec_out_v4 = B_TRUE;
4076 			ip6h = NULL;
4077 		} else {
4078 			io->ipsec_out_v4 = B_FALSE;
4079 			ip6h = (ip6_t *)ipha;
4080 			ipha = NULL;
4081 		}
4082 	} else {
4083 		ASSERT(connp != NULL && connp->conn_policy_cached);
4084 		ip6h = NULL;
4085 		ipha = NULL;
4086 		io->ipsec_out_v4 = !connp->conn_pkt_isv6;
4087 	}
4088 
4089 	p = NULL;
4090 
4091 	/*
4092 	 * Take latched policies over global policy.  Check here again for
4093 	 * this, in case we had conn_latch set while the packet was flying
4094 	 * around in IP.
4095 	 */
4096 	if (connp != NULL && connp->conn_latch != NULL) {
4097 		p = connp->conn_latch->ipl_out_policy;
4098 		io->ipsec_out_latch = connp->conn_latch;
4099 		IPLATCH_REFHOLD(connp->conn_latch);
4100 		if (p != NULL) {
4101 			IPPOL_REFHOLD(p);
4102 		}
4103 		io->ipsec_out_src_port = connp->conn_lport;
4104 		io->ipsec_out_dst_port = connp->conn_fport;
4105 		io->ipsec_out_icmp_type = io->ipsec_out_icmp_code = 0;
4106 		if (pol != NULL)
4107 			IPPOL_REFRELE(pol);
4108 	} else if (pol != NULL) {
4109 		ipsec_selector_t sel;
4110 
4111 		bzero((void*)&sel, sizeof (sel));
4112 
4113 		p = pol;
4114 		/*
4115 		 * conn does not have the port information. Get
4116 		 * it from the packet.
4117 		 */
4118 
4119 		if (!ipsec_init_outbound_ports(&sel, mp, ipha, ip6h, 0)) {
4120 			/* Callee did ip_drop_packet(). */
4121 			return (NULL);
4122 		}
4123 		io->ipsec_out_src_port = sel.ips_local_port;
4124 		io->ipsec_out_dst_port = sel.ips_remote_port;
4125 		io->ipsec_out_icmp_type = sel.ips_icmp_type;
4126 		io->ipsec_out_icmp_code = sel.ips_icmp_code;
4127 	}
4128 
4129 	io->ipsec_out_proto = proto;
4130 	io->ipsec_out_use_global_policy = B_TRUE;
4131 	io->ipsec_out_secure = (p != NULL);
4132 	io->ipsec_out_policy = p;
4133 
4134 	if (p == NULL) {
4135 		if (connp->conn_policy != NULL) {
4136 			io->ipsec_out_secure = B_TRUE;
4137 			ASSERT(io->ipsec_out_latch == NULL);
4138 			ASSERT(io->ipsec_out_use_global_policy == B_TRUE);
4139 			io->ipsec_out_need_policy = B_TRUE;
4140 			ASSERT(io->ipsec_out_polhead == NULL);
4141 			IPPH_REFHOLD(connp->conn_policy);
4142 			io->ipsec_out_polhead = connp->conn_policy;
4143 		}
4144 	} else {
4145 		/* Handle explicit drop action. */
4146 		if (p->ipsp_act->ipa_act.ipa_type == IPSEC_ACT_DISCARD ||
4147 		    p->ipsp_act->ipa_act.ipa_type == IPSEC_ACT_REJECT) {
4148 			ip_drop_packet(ipsec_mp, B_FALSE, NULL, NULL,
4149 			    &ipdrops_spd_explicit, &spd_dropper);
4150 			ipsec_mp = NULL;
4151 		}
4152 	}
4153 
4154 	return (ipsec_mp);
4155 }
4156 
4157 /*
4158  * Allocate an IPSEC_IN mblk.  This will be prepended to an inbound datagram
4159  * and keep track of what-if-any IPsec processing will be applied to the
4160  * datagram.
4161  */
4162 mblk_t *
4163 ipsec_in_alloc(boolean_t isv4)
4164 {
4165 	mblk_t *ipsec_in;
4166 	ipsec_in_t *ii = kmem_cache_alloc(ipsec_info_cache, KM_NOSLEEP);
4167 
4168 	if (ii == NULL)
4169 		return (NULL);
4170 
4171 	bzero(ii, sizeof (ipsec_info_t));
4172 	ii->ipsec_in_type = IPSEC_IN;
4173 	ii->ipsec_in_len = sizeof (ipsec_in_t);
4174 
4175 	ii->ipsec_in_v4 = isv4;
4176 	ii->ipsec_in_secure = B_TRUE;
4177 
4178 	ii->ipsec_in_frtn.free_func = ipsec_in_free;
4179 	ii->ipsec_in_frtn.free_arg = (char *)ii;
4180 
4181 	ipsec_in = desballoc((uint8_t *)ii, sizeof (ipsec_info_t), BPRI_HI,
4182 	    &ii->ipsec_in_frtn);
4183 	if (ipsec_in == NULL) {
4184 		ip1dbg(("ipsec_in_alloc: IPSEC_IN allocation failure.\n"));
4185 		ipsec_in_free(ii);
4186 		return (NULL);
4187 	}
4188 
4189 	ipsec_in->b_datap->db_type = M_CTL;
4190 	ipsec_in->b_wptr += sizeof (ipsec_info_t);
4191 
4192 	return (ipsec_in);
4193 }
4194 
4195 /*
4196  * This is called from ip_wput_local when a packet which needs
4197  * security is looped back, to convert the IPSEC_OUT to a IPSEC_IN
4198  * before fanout, where the policy check happens.  In most of the
4199  * cases, IPSEC processing has *never* been done.  There is one case
4200  * (ip_wput_ire_fragmentit -> ip_wput_frag -> icmp_frag_needed) where
4201  * the packet is destined for localhost, IPSEC processing has already
4202  * been done.
4203  *
4204  * Future: This could happen after SA selection has occurred for
4205  * outbound.. which will tell us who the src and dst identities are..
4206  * Then it's just a matter of splicing the ah/esp SA pointers from the
4207  * ipsec_out_t to the ipsec_in_t.
4208  */
4209 void
4210 ipsec_out_to_in(mblk_t *ipsec_mp)
4211 {
4212 	ipsec_in_t  *ii;
4213 	ipsec_out_t *io;
4214 	ipsec_policy_t *pol;
4215 	ipsec_action_t *act;
4216 	boolean_t v4, icmp_loopback;
4217 	zoneid_t zoneid;
4218 
4219 	ASSERT(ipsec_mp->b_datap->db_type == M_CTL);
4220 
4221 	io = (ipsec_out_t *)ipsec_mp->b_rptr;
4222 
4223 	v4 = io->ipsec_out_v4;
4224 	zoneid = io->ipsec_out_zoneid;
4225 	icmp_loopback = io->ipsec_out_icmp_loopback;
4226 
4227 	act = io->ipsec_out_act;
4228 	if (act == NULL) {
4229 		pol = io->ipsec_out_policy;
4230 		if (pol != NULL) {
4231 			act = pol->ipsp_act;
4232 			IPACT_REFHOLD(act);
4233 		}
4234 	}
4235 	io->ipsec_out_act = NULL;
4236 
4237 	ipsec_out_release_refs(io);
4238 
4239 	ii = (ipsec_in_t *)ipsec_mp->b_rptr;
4240 	bzero(ii, sizeof (ipsec_in_t));
4241 	ii->ipsec_in_type = IPSEC_IN;
4242 	ii->ipsec_in_len = sizeof (ipsec_in_t);
4243 	ii->ipsec_in_loopback = B_TRUE;
4244 	ii->ipsec_in_frtn.free_func = ipsec_in_free;
4245 	ii->ipsec_in_frtn.free_arg = (char *)ii;
4246 	ii->ipsec_in_action = act;
4247 	ii->ipsec_in_zoneid = zoneid;
4248 
4249 	/*
4250 	 * In most of the cases, we can't look at the ipsec_out_XXX_sa
4251 	 * because this never went through IPSEC processing. So, look at
4252 	 * the requests and infer whether it would have gone through
4253 	 * IPSEC processing or not. Initialize the "done" fields with
4254 	 * the requests. The possible values for "done" fields are :
4255 	 *
4256 	 * 1) zero, indicates that a particular preference was never
4257 	 *    requested.
4258 	 * 2) non-zero, indicates that it could be IPSEC_PREF_REQUIRED/
4259 	 *    IPSEC_PREF_NEVER. If IPSEC_REQ_DONE is set, it means that
4260 	 *    IPSEC processing has been completed.
4261 	 */
4262 	ii->ipsec_in_secure = B_TRUE;
4263 	ii->ipsec_in_v4 = v4;
4264 	ii->ipsec_in_icmp_loopback = icmp_loopback;
4265 	ii->ipsec_in_attach_if = B_FALSE;
4266 }
4267 
4268 /*
4269  * Consults global policy to see whether this datagram should
4270  * go out secure. If so it attaches a ipsec_mp in front and
4271  * returns.
4272  */
4273 mblk_t *
4274 ip_wput_attach_policy(mblk_t *ipsec_mp, ipha_t *ipha, ip6_t *ip6h, ire_t *ire,
4275     conn_t *connp, boolean_t unspec_src, zoneid_t zoneid)
4276 {
4277 	mblk_t *mp;
4278 	ipsec_out_t *io = NULL;
4279 	ipsec_selector_t sel;
4280 	uint_t	ill_index;
4281 	boolean_t conn_dontroutex;
4282 	boolean_t conn_multicast_loopx;
4283 	boolean_t policy_present;
4284 
4285 	ASSERT((ipha != NULL && ip6h == NULL) ||
4286 	    (ip6h != NULL && ipha == NULL));
4287 
4288 	bzero((void*)&sel, sizeof (sel));
4289 
4290 	if (ipha != NULL)
4291 		policy_present = ipsec_outbound_v4_policy_present;
4292 	else
4293 		policy_present = ipsec_outbound_v6_policy_present;
4294 	/*
4295 	 * Fast Path to see if there is any policy.
4296 	 */
4297 	if (!policy_present) {
4298 		if (ipsec_mp->b_datap->db_type == M_CTL) {
4299 			io = (ipsec_out_t *)ipsec_mp->b_rptr;
4300 			if (!io->ipsec_out_secure) {
4301 				/*
4302 				 * If there is no global policy and ip_wput
4303 				 * or ip_wput_multicast has attached this mp
4304 				 * for multicast case, free the ipsec_mp and
4305 				 * return the original mp.
4306 				 */
4307 				mp = ipsec_mp->b_cont;
4308 				freeb(ipsec_mp);
4309 				ipsec_mp = mp;
4310 				io = NULL;
4311 			}
4312 			ASSERT(io == NULL || !io->ipsec_out_tunnel);
4313 		}
4314 		if (((io == NULL) || (io->ipsec_out_polhead == NULL)) &&
4315 		    ((connp == NULL) || (connp->conn_policy == NULL)))
4316 			return (ipsec_mp);
4317 	}
4318 
4319 	ill_index = 0;
4320 	conn_multicast_loopx = conn_dontroutex = B_FALSE;
4321 	mp = ipsec_mp;
4322 	if (ipsec_mp->b_datap->db_type == M_CTL) {
4323 		mp = ipsec_mp->b_cont;
4324 		/*
4325 		 * This is a connection where we have some per-socket
4326 		 * policy or ip_wput has attached an ipsec_mp for
4327 		 * the multicast datagram.
4328 		 */
4329 		io = (ipsec_out_t *)ipsec_mp->b_rptr;
4330 		if (!io->ipsec_out_secure) {
4331 			/*
4332 			 * This ipsec_mp was allocated in ip_wput or
4333 			 * ip_wput_multicast so that we will know the
4334 			 * value of ill_index, conn_dontroute,
4335 			 * conn_multicast_loop in the multicast case if
4336 			 * we inherit global policy here.
4337 			 */
4338 			ill_index = io->ipsec_out_ill_index;
4339 			conn_dontroutex = io->ipsec_out_dontroute;
4340 			conn_multicast_loopx = io->ipsec_out_multicast_loop;
4341 			freeb(ipsec_mp);
4342 			ipsec_mp = mp;
4343 			io = NULL;
4344 		}
4345 		ASSERT(io == NULL || !io->ipsec_out_tunnel);
4346 	}
4347 
4348 	if (ipha != NULL) {
4349 		sel.ips_local_addr_v4 = (ipha->ipha_src != 0 ?
4350 		    ipha->ipha_src : ire->ire_src_addr);
4351 		sel.ips_remote_addr_v4 = ip_get_dst(ipha);
4352 		sel.ips_protocol = (uint8_t)ipha->ipha_protocol;
4353 		sel.ips_isv4 = B_TRUE;
4354 	} else {
4355 		ushort_t hdr_len;
4356 		uint8_t	*nexthdrp;
4357 		boolean_t is_fragment;
4358 
4359 		sel.ips_isv4 = B_FALSE;
4360 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6h->ip6_src)) {
4361 			if (!unspec_src)
4362 				sel.ips_local_addr_v6 = ire->ire_src_addr_v6;
4363 		} else {
4364 			sel.ips_local_addr_v6 = ip6h->ip6_src;
4365 		}
4366 
4367 		sel.ips_remote_addr_v6 = ip_get_dst_v6(ip6h, &is_fragment);
4368 		if (is_fragment) {
4369 			/*
4370 			 * It's a packet fragment for a packet that
4371 			 * we have already processed (since IPsec processing
4372 			 * is done before fragmentation), so we don't
4373 			 * have to do policy checks again. Fragments can
4374 			 * come back to us for processing if they have
4375 			 * been queued up due to flow control.
4376 			 */
4377 			if (ipsec_mp->b_datap->db_type == M_CTL) {
4378 				mp = ipsec_mp->b_cont;
4379 				freeb(ipsec_mp);
4380 				ipsec_mp = mp;
4381 			}
4382 			return (ipsec_mp);
4383 		}
4384 
4385 		/* IPv6 common-case. */
4386 		sel.ips_protocol = ip6h->ip6_nxt;
4387 		switch (ip6h->ip6_nxt) {
4388 		case IPPROTO_TCP:
4389 		case IPPROTO_UDP:
4390 		case IPPROTO_SCTP:
4391 		case IPPROTO_ICMPV6:
4392 			break;
4393 		default:
4394 			if (!ip_hdr_length_nexthdr_v6(mp, ip6h,
4395 			    &hdr_len, &nexthdrp)) {
4396 				BUMP_MIB(&ip6_mib, ipv6OutDiscards);
4397 				freemsg(ipsec_mp); /* Not IPsec-related drop. */
4398 				return (NULL);
4399 			}
4400 			sel.ips_protocol = *nexthdrp;
4401 			break;
4402 		}
4403 	}
4404 
4405 	if (!ipsec_init_outbound_ports(&sel, mp, ipha, ip6h, 0)) {
4406 		if (ipha != NULL) {
4407 			BUMP_MIB(&ip_mib, ipOutDiscards);
4408 		} else {
4409 			BUMP_MIB(&ip6_mib, ipv6OutDiscards);
4410 		}
4411 
4412 		/* Callee dropped the packet. */
4413 		return (NULL);
4414 	}
4415 
4416 	if (io != NULL) {
4417 		/*
4418 		 * We seem to have some local policy (we already have
4419 		 * an ipsec_out).  Look at global policy and see
4420 		 * whether we have to inherit or not.
4421 		 */
4422 		io->ipsec_out_need_policy = B_FALSE;
4423 		ipsec_mp = ipsec_apply_global_policy(ipsec_mp, connp, &sel);
4424 		ASSERT((io->ipsec_out_policy != NULL) ||
4425 		    (io->ipsec_out_act != NULL));
4426 		ASSERT(io->ipsec_out_need_policy == B_FALSE);
4427 		return (ipsec_mp);
4428 	}
4429 	ipsec_mp = ipsec_attach_global_policy(mp, connp, &sel);
4430 	if (ipsec_mp == NULL)
4431 		return (mp);
4432 
4433 	/*
4434 	 * Copy the right port information.
4435 	 */
4436 	ASSERT(ipsec_mp->b_datap->db_type == M_CTL);
4437 	io = (ipsec_out_t *)ipsec_mp->b_rptr;
4438 
4439 	ASSERT(io->ipsec_out_need_policy == B_FALSE);
4440 	ASSERT((io->ipsec_out_policy != NULL) ||
4441 	    (io->ipsec_out_act != NULL));
4442 	io->ipsec_out_src_port = sel.ips_local_port;
4443 	io->ipsec_out_dst_port = sel.ips_remote_port;
4444 	io->ipsec_out_icmp_type = sel.ips_icmp_type;
4445 	io->ipsec_out_icmp_code = sel.ips_icmp_code;
4446 	/*
4447 	 * Set ill_index, conn_dontroute and conn_multicast_loop
4448 	 * for multicast datagrams.
4449 	 */
4450 	io->ipsec_out_ill_index = ill_index;
4451 	io->ipsec_out_dontroute = conn_dontroutex;
4452 	io->ipsec_out_multicast_loop = conn_multicast_loopx;
4453 
4454 	if (zoneid == ALL_ZONES)
4455 		zoneid = GLOBAL_ZONEID;
4456 	io->ipsec_out_zoneid = zoneid;
4457 	return (ipsec_mp);
4458 }
4459 
4460 /*
4461  * When appropriate, this function caches inbound and outbound policy
4462  * for this connection.
4463  *
4464  * XXX need to work out more details about per-interface policy and
4465  * caching here!
4466  *
4467  * XXX may want to split inbound and outbound caching for ill..
4468  */
4469 int
4470 ipsec_conn_cache_policy(conn_t *connp, boolean_t isv4)
4471 {
4472 	boolean_t global_policy_present;
4473 
4474 	/*
4475 	 * There is no policy latching for ICMP sockets because we can't
4476 	 * decide on which policy to use until we see the packet and get
4477 	 * type/code selectors.
4478 	 */
4479 	if (connp->conn_ulp == IPPROTO_ICMP ||
4480 	    connp->conn_ulp == IPPROTO_ICMPV6) {
4481 		connp->conn_in_enforce_policy =
4482 		    connp->conn_out_enforce_policy = B_TRUE;
4483 		if (connp->conn_latch != NULL) {
4484 			IPLATCH_REFRELE(connp->conn_latch);
4485 			connp->conn_latch = NULL;
4486 		}
4487 		connp->conn_flags |= IPCL_CHECK_POLICY;
4488 		return (0);
4489 	}
4490 
4491 	global_policy_present = isv4 ?
4492 	    (ipsec_outbound_v4_policy_present ||
4493 		ipsec_inbound_v4_policy_present) :
4494 	    (ipsec_outbound_v6_policy_present ||
4495 		ipsec_inbound_v6_policy_present);
4496 
4497 	if ((connp->conn_policy != NULL) || global_policy_present) {
4498 		ipsec_selector_t sel;
4499 		ipsec_policy_t	*p;
4500 
4501 		if (connp->conn_latch == NULL &&
4502 		    (connp->conn_latch = iplatch_create()) == NULL) {
4503 			return (ENOMEM);
4504 		}
4505 
4506 		sel.ips_protocol = connp->conn_ulp;
4507 		sel.ips_local_port = connp->conn_lport;
4508 		sel.ips_remote_port = connp->conn_fport;
4509 		sel.ips_is_icmp_inv_acq = 0;
4510 		sel.ips_isv4 = isv4;
4511 		if (isv4) {
4512 			sel.ips_local_addr_v4 = connp->conn_src;
4513 			sel.ips_remote_addr_v4 = connp->conn_rem;
4514 		} else {
4515 			sel.ips_local_addr_v6 = connp->conn_srcv6;
4516 			sel.ips_remote_addr_v6 = connp->conn_remv6;
4517 		}
4518 
4519 		p = ipsec_find_policy(IPSEC_TYPE_INBOUND, connp, NULL, &sel);
4520 		if (connp->conn_latch->ipl_in_policy != NULL)
4521 			IPPOL_REFRELE(connp->conn_latch->ipl_in_policy);
4522 		connp->conn_latch->ipl_in_policy = p;
4523 		connp->conn_in_enforce_policy = (p != NULL);
4524 
4525 		p = ipsec_find_policy(IPSEC_TYPE_OUTBOUND, connp, NULL, &sel);
4526 		if (connp->conn_latch->ipl_out_policy != NULL)
4527 			IPPOL_REFRELE(connp->conn_latch->ipl_out_policy);
4528 		connp->conn_latch->ipl_out_policy = p;
4529 		connp->conn_out_enforce_policy = (p != NULL);
4530 
4531 		/* Clear the latched actions too, in case we're recaching. */
4532 		if (connp->conn_latch->ipl_out_action != NULL)
4533 			IPACT_REFRELE(connp->conn_latch->ipl_out_action);
4534 		if (connp->conn_latch->ipl_in_action != NULL)
4535 			IPACT_REFRELE(connp->conn_latch->ipl_in_action);
4536 	}
4537 
4538 	/*
4539 	 * We may or may not have policy for this endpoint.  We still set
4540 	 * conn_policy_cached so that inbound datagrams don't have to look
4541 	 * at global policy as policy is considered latched for these
4542 	 * endpoints.  We should not set conn_policy_cached until the conn
4543 	 * reflects the actual policy. If we *set* this before inheriting
4544 	 * the policy there is a window where the check
4545 	 * CONN_INBOUND_POLICY_PRESENT, will neither check with the policy
4546 	 * on the conn (because we have not yet copied the policy on to
4547 	 * conn and hence not set conn_in_enforce_policy) nor with the
4548 	 * global policy (because conn_policy_cached is already set).
4549 	 */
4550 	connp->conn_policy_cached = B_TRUE;
4551 	if (connp->conn_in_enforce_policy)
4552 		connp->conn_flags |= IPCL_CHECK_POLICY;
4553 	return (0);
4554 }
4555 
4556 void
4557 iplatch_free(ipsec_latch_t *ipl)
4558 {
4559 	if (ipl->ipl_out_policy != NULL)
4560 		IPPOL_REFRELE(ipl->ipl_out_policy);
4561 	if (ipl->ipl_in_policy != NULL)
4562 		IPPOL_REFRELE(ipl->ipl_in_policy);
4563 	if (ipl->ipl_in_action != NULL)
4564 		IPACT_REFRELE(ipl->ipl_in_action);
4565 	if (ipl->ipl_out_action != NULL)
4566 		IPACT_REFRELE(ipl->ipl_out_action);
4567 	if (ipl->ipl_local_cid != NULL)
4568 		IPSID_REFRELE(ipl->ipl_local_cid);
4569 	if (ipl->ipl_remote_cid != NULL)
4570 		IPSID_REFRELE(ipl->ipl_remote_cid);
4571 	if (ipl->ipl_local_id != NULL)
4572 		crfree(ipl->ipl_local_id);
4573 	mutex_destroy(&ipl->ipl_lock);
4574 	kmem_free(ipl, sizeof (*ipl));
4575 }
4576 
4577 ipsec_latch_t *
4578 iplatch_create()
4579 {
4580 	ipsec_latch_t *ipl = kmem_alloc(sizeof (*ipl), KM_NOSLEEP);
4581 	if (ipl == NULL)
4582 		return (ipl);
4583 	bzero(ipl, sizeof (*ipl));
4584 	mutex_init(&ipl->ipl_lock, NULL, MUTEX_DEFAULT, NULL);
4585 	ipl->ipl_refcnt = 1;
4586 	return (ipl);
4587 }
4588 
4589 /*
4590  * Identity hash table.
4591  *
4592  * Identities are refcounted and "interned" into the hash table.
4593  * Only references coming from other objects (SA's, latching state)
4594  * are counted in ipsid_refcnt.
4595  *
4596  * Locking: IPSID_REFHOLD is safe only when (a) the object's hash bucket
4597  * is locked, (b) we know that the refcount must be > 0.
4598  *
4599  * The ipsid_next and ipsid_ptpn fields are only to be referenced or
4600  * modified when the bucket lock is held; in particular, we only
4601  * delete objects while holding the bucket lock, and we only increase
4602  * the refcount from 0 to 1 while the bucket lock is held.
4603  */
4604 
4605 #define	IPSID_HASHSIZE 64
4606 
4607 typedef struct ipsif_s
4608 {
4609 	ipsid_t *ipsif_head;
4610 	kmutex_t ipsif_lock;
4611 } ipsif_t;
4612 
4613 ipsif_t ipsid_buckets[IPSID_HASHSIZE];
4614 
4615 /*
4616  * Hash function for ID hash table.
4617  */
4618 static uint32_t
4619 ipsid_hash(int idtype, char *idstring)
4620 {
4621 	uint32_t hval = idtype;
4622 	unsigned char c;
4623 
4624 	while ((c = *idstring++) != 0) {
4625 		hval = (hval << 4) | (hval >> 28);
4626 		hval ^= c;
4627 	}
4628 	hval = hval ^ (hval >> 16);
4629 	return (hval & (IPSID_HASHSIZE-1));
4630 }
4631 
4632 /*
4633  * Look up identity string in hash table.  Return identity object
4634  * corresponding to the name -- either preexisting, or newly allocated.
4635  *
4636  * Return NULL if we need to allocate a new one and can't get memory.
4637  */
4638 ipsid_t *
4639 ipsid_lookup(int idtype, char *idstring)
4640 {
4641 	ipsid_t *retval;
4642 	char *nstr;
4643 	int idlen = strlen(idstring) + 1;
4644 
4645 	ipsif_t *bucket = &ipsid_buckets[ipsid_hash(idtype, idstring)];
4646 
4647 	mutex_enter(&bucket->ipsif_lock);
4648 
4649 	for (retval = bucket->ipsif_head; retval != NULL;
4650 	    retval = retval->ipsid_next) {
4651 		if (idtype != retval->ipsid_type)
4652 			continue;
4653 		if (bcmp(idstring, retval->ipsid_cid, idlen) != 0)
4654 			continue;
4655 
4656 		IPSID_REFHOLD(retval);
4657 		mutex_exit(&bucket->ipsif_lock);
4658 		return (retval);
4659 	}
4660 
4661 	retval = kmem_alloc(sizeof (*retval), KM_NOSLEEP);
4662 	if (!retval) {
4663 		mutex_exit(&bucket->ipsif_lock);
4664 		return (NULL);
4665 	}
4666 
4667 	nstr = kmem_alloc(idlen, KM_NOSLEEP);
4668 	if (!nstr) {
4669 		mutex_exit(&bucket->ipsif_lock);
4670 		kmem_free(retval, sizeof (*retval));
4671 		return (NULL);
4672 	}
4673 
4674 	retval->ipsid_refcnt = 1;
4675 	retval->ipsid_next = bucket->ipsif_head;
4676 	if (retval->ipsid_next != NULL)
4677 		retval->ipsid_next->ipsid_ptpn = &retval->ipsid_next;
4678 	retval->ipsid_ptpn = &bucket->ipsif_head;
4679 	retval->ipsid_type = idtype;
4680 	retval->ipsid_cid = nstr;
4681 	bucket->ipsif_head = retval;
4682 	bcopy(idstring, nstr, idlen);
4683 	mutex_exit(&bucket->ipsif_lock);
4684 
4685 	return (retval);
4686 }
4687 
4688 /*
4689  * Garbage collect the identity hash table.
4690  */
4691 void
4692 ipsid_gc()
4693 {
4694 	int i, len;
4695 	ipsid_t *id, *nid;
4696 	ipsif_t *bucket;
4697 
4698 	for (i = 0; i < IPSID_HASHSIZE; i++) {
4699 		bucket = &ipsid_buckets[i];
4700 		mutex_enter(&bucket->ipsif_lock);
4701 		for (id = bucket->ipsif_head; id != NULL; id = nid) {
4702 			nid = id->ipsid_next;
4703 			if (id->ipsid_refcnt == 0) {
4704 				*id->ipsid_ptpn = nid;
4705 				if (nid != NULL)
4706 					nid->ipsid_ptpn = id->ipsid_ptpn;
4707 				len = strlen(id->ipsid_cid) + 1;
4708 				kmem_free(id->ipsid_cid, len);
4709 				kmem_free(id, sizeof (*id));
4710 			}
4711 		}
4712 		mutex_exit(&bucket->ipsif_lock);
4713 	}
4714 }
4715 
4716 /*
4717  * Return true if two identities are the same.
4718  */
4719 boolean_t
4720 ipsid_equal(ipsid_t *id1, ipsid_t *id2)
4721 {
4722 	if (id1 == id2)
4723 		return (B_TRUE);
4724 #ifdef DEBUG
4725 	if ((id1 == NULL) || (id2 == NULL))
4726 		return (B_FALSE);
4727 	/*
4728 	 * test that we're interning id's correctly..
4729 	 */
4730 	ASSERT((strcmp(id1->ipsid_cid, id2->ipsid_cid) != 0) ||
4731 	    (id1->ipsid_type != id2->ipsid_type));
4732 #endif
4733 	return (B_FALSE);
4734 }
4735 
4736 /*
4737  * Initialize identity table; called during module initialization.
4738  */
4739 static void
4740 ipsid_init()
4741 {
4742 	ipsif_t *bucket;
4743 	int i;
4744 
4745 	for (i = 0; i < IPSID_HASHSIZE; i++) {
4746 		bucket = &ipsid_buckets[i];
4747 		mutex_init(&bucket->ipsif_lock, NULL, MUTEX_DEFAULT, NULL);
4748 	}
4749 }
4750 
4751 /*
4752  * Free identity table (preparatory to module unload)
4753  */
4754 static void
4755 ipsid_fini()
4756 {
4757 	ipsif_t *bucket;
4758 	int i;
4759 
4760 	for (i = 0; i < IPSID_HASHSIZE; i++) {
4761 		bucket = &ipsid_buckets[i];
4762 		mutex_destroy(&bucket->ipsif_lock);
4763 	}
4764 }
4765 
4766 /*
4767  * Update the minimum and maximum supported key sizes for the
4768  * specified algorithm. Must be called while holding the algorithms lock.
4769  */
4770 void
4771 ipsec_alg_fix_min_max(ipsec_alginfo_t *alg, ipsec_algtype_t alg_type)
4772 {
4773 	size_t crypto_min = (size_t)-1, crypto_max = 0;
4774 	size_t cur_crypto_min, cur_crypto_max;
4775 	boolean_t is_valid;
4776 	crypto_mechanism_info_t *mech_infos;
4777 	uint_t nmech_infos;
4778 	int crypto_rc, i;
4779 	crypto_mech_usage_t mask;
4780 
4781 	ASSERT(MUTEX_HELD(&alg_lock));
4782 
4783 	/*
4784 	 * Compute the min, max, and default key sizes (in number of
4785 	 * increments to the default key size in bits) as defined
4786 	 * by the algorithm mappings. This range of key sizes is used
4787 	 * for policy related operations. The effective key sizes
4788 	 * supported by the framework could be more limited than
4789 	 * those defined for an algorithm.
4790 	 */
4791 	alg->alg_default_bits = alg->alg_key_sizes[0];
4792 	if (alg->alg_increment != 0) {
4793 		/* key sizes are defined by range & increment */
4794 		alg->alg_minbits = alg->alg_key_sizes[1];
4795 		alg->alg_maxbits = alg->alg_key_sizes[2];
4796 
4797 		alg->alg_default = SADB_ALG_DEFAULT_INCR(alg->alg_minbits,
4798 		    alg->alg_increment, alg->alg_default_bits);
4799 	} else if (alg->alg_nkey_sizes == 0) {
4800 		/* no specified key size for algorithm */
4801 		alg->alg_minbits = alg->alg_maxbits = 0;
4802 	} else {
4803 		/* key sizes are defined by enumeration */
4804 		alg->alg_minbits = (uint16_t)-1;
4805 		alg->alg_maxbits = 0;
4806 
4807 		for (i = 0; i < alg->alg_nkey_sizes; i++) {
4808 			if (alg->alg_key_sizes[i] < alg->alg_minbits)
4809 				alg->alg_minbits = alg->alg_key_sizes[i];
4810 			if (alg->alg_key_sizes[i] > alg->alg_maxbits)
4811 				alg->alg_maxbits = alg->alg_key_sizes[i];
4812 		}
4813 		alg->alg_default = 0;
4814 	}
4815 
4816 	if (!(alg->alg_flags & ALG_FLAG_VALID))
4817 		return;
4818 
4819 	/*
4820 	 * Mechanisms do not apply to the NULL encryption
4821 	 * algorithm, so simply return for this case.
4822 	 */
4823 	if (alg->alg_id == SADB_EALG_NULL)
4824 		return;
4825 
4826 	/*
4827 	 * Find the min and max key sizes supported by the cryptographic
4828 	 * framework providers.
4829 	 */
4830 
4831 	/* get the key sizes supported by the framework */
4832 	crypto_rc = crypto_get_all_mech_info(alg->alg_mech_type,
4833 	    &mech_infos, &nmech_infos, KM_SLEEP);
4834 	if (crypto_rc != CRYPTO_SUCCESS || nmech_infos == 0) {
4835 		alg->alg_flags &= ~ALG_FLAG_VALID;
4836 		return;
4837 	}
4838 
4839 	/* min and max key sizes supported by framework */
4840 	for (i = 0, is_valid = B_FALSE; i < nmech_infos; i++) {
4841 		int unit_bits;
4842 
4843 		/*
4844 		 * Ignore entries that do not support the operations
4845 		 * needed for the algorithm type.
4846 		 */
4847 		if (alg_type == IPSEC_ALG_AUTH)
4848 			mask = CRYPTO_MECH_USAGE_MAC;
4849 		else
4850 			mask = CRYPTO_MECH_USAGE_ENCRYPT |
4851 				CRYPTO_MECH_USAGE_DECRYPT;
4852 		if ((mech_infos[i].mi_usage & mask) != mask)
4853 			continue;
4854 
4855 		unit_bits = (mech_infos[i].mi_keysize_unit ==
4856 		    CRYPTO_KEYSIZE_UNIT_IN_BYTES)  ? 8 : 1;
4857 		/* adjust min/max supported by framework */
4858 		cur_crypto_min = mech_infos[i].mi_min_key_size * unit_bits;
4859 		cur_crypto_max = mech_infos[i].mi_max_key_size * unit_bits;
4860 
4861 		if (cur_crypto_min < crypto_min)
4862 			crypto_min = cur_crypto_min;
4863 
4864 		/*
4865 		 * CRYPTO_EFFECTIVELY_INFINITE is a special value of
4866 		 * the crypto framework which means "no upper limit".
4867 		 */
4868 		if (mech_infos[i].mi_max_key_size ==
4869 		    CRYPTO_EFFECTIVELY_INFINITE)
4870 			crypto_max = (size_t)-1;
4871 		else if (cur_crypto_max > crypto_max)
4872 			crypto_max = cur_crypto_max;
4873 
4874 		is_valid = B_TRUE;
4875 	}
4876 
4877 	kmem_free(mech_infos, sizeof (crypto_mechanism_info_t) *
4878 	    nmech_infos);
4879 
4880 	if (!is_valid) {
4881 		/* no key sizes supported by framework */
4882 		alg->alg_flags &= ~ALG_FLAG_VALID;
4883 		return;
4884 	}
4885 
4886 	/*
4887 	 * Determine min and max key sizes from alg_key_sizes[].
4888 	 * defined for the algorithm entry. Adjust key sizes based on
4889 	 * those supported by the framework.
4890 	 */
4891 	alg->alg_ef_default_bits = alg->alg_key_sizes[0];
4892 	if (alg->alg_increment != 0) {
4893 		/* supported key sizes are defined by range  & increment */
4894 		crypto_min = ALGBITS_ROUND_UP(crypto_min, alg->alg_increment);
4895 		crypto_max = ALGBITS_ROUND_DOWN(crypto_max, alg->alg_increment);
4896 
4897 		alg->alg_ef_minbits = MAX(alg->alg_minbits,
4898 		    (uint16_t)crypto_min);
4899 		alg->alg_ef_maxbits = MIN(alg->alg_maxbits,
4900 		    (uint16_t)crypto_max);
4901 
4902 		/*
4903 		 * If the sizes supported by the framework are outside
4904 		 * the range of sizes defined by the algorithm mappings,
4905 		 * the algorithm cannot be used. Check for this
4906 		 * condition here.
4907 		 */
4908 		if (alg->alg_ef_minbits > alg->alg_ef_maxbits) {
4909 			alg->alg_flags &= ~ALG_FLAG_VALID;
4910 			return;
4911 		}
4912 
4913 		if (alg->alg_ef_default_bits < alg->alg_ef_minbits)
4914 		    alg->alg_ef_default_bits = alg->alg_ef_minbits;
4915 		if (alg->alg_ef_default_bits > alg->alg_ef_maxbits)
4916 		    alg->alg_ef_default_bits = alg->alg_ef_maxbits;
4917 
4918 		alg->alg_ef_default = SADB_ALG_DEFAULT_INCR(alg->alg_ef_minbits,
4919 		    alg->alg_increment, alg->alg_ef_default_bits);
4920 	} else if (alg->alg_nkey_sizes == 0) {
4921 		/* no specified key size for algorithm */
4922 		alg->alg_ef_minbits = alg->alg_ef_maxbits = 0;
4923 	} else {
4924 		/* supported key sizes are defined by enumeration */
4925 		alg->alg_ef_minbits = (uint16_t)-1;
4926 		alg->alg_ef_maxbits = 0;
4927 
4928 		for (i = 0, is_valid = B_FALSE; i < alg->alg_nkey_sizes; i++) {
4929 			/*
4930 			 * Ignore the current key size if it is not in the
4931 			 * range of sizes supported by the framework.
4932 			 */
4933 			if (alg->alg_key_sizes[i] < crypto_min ||
4934 			    alg->alg_key_sizes[i] > crypto_max)
4935 				continue;
4936 			if (alg->alg_key_sizes[i] < alg->alg_ef_minbits)
4937 				alg->alg_ef_minbits = alg->alg_key_sizes[i];
4938 			if (alg->alg_key_sizes[i] > alg->alg_ef_maxbits)
4939 				alg->alg_ef_maxbits = alg->alg_key_sizes[i];
4940 			is_valid = B_TRUE;
4941 		}
4942 
4943 		if (!is_valid) {
4944 			alg->alg_flags &= ~ALG_FLAG_VALID;
4945 			return;
4946 		}
4947 		alg->alg_ef_default = 0;
4948 	}
4949 }
4950 
4951 /*
4952  * Free the memory used by the specified algorithm.
4953  */
4954 void
4955 ipsec_alg_free(ipsec_alginfo_t *alg)
4956 {
4957 	if (alg == NULL)
4958 		return;
4959 
4960 	if (alg->alg_key_sizes != NULL)
4961 		kmem_free(alg->alg_key_sizes,
4962 		    (alg->alg_nkey_sizes + 1) * sizeof (uint16_t));
4963 
4964 	if (alg->alg_block_sizes != NULL)
4965 		kmem_free(alg->alg_block_sizes,
4966 		    (alg->alg_nblock_sizes + 1) * sizeof (uint16_t));
4967 
4968 	kmem_free(alg, sizeof (*alg));
4969 }
4970 
4971 /*
4972  * Check the validity of the specified key size for an algorithm.
4973  * Returns B_TRUE if key size is valid, B_FALSE otherwise.
4974  */
4975 boolean_t
4976 ipsec_valid_key_size(uint16_t key_size, ipsec_alginfo_t *alg)
4977 {
4978 	if (key_size < alg->alg_ef_minbits || key_size > alg->alg_ef_maxbits)
4979 		return (B_FALSE);
4980 
4981 	if (alg->alg_increment == 0 && alg->alg_nkey_sizes != 0) {
4982 		/*
4983 		 * If the key sizes are defined by enumeration, the new
4984 		 * key size must be equal to one of the supported values.
4985 		 */
4986 		int i;
4987 
4988 		for (i = 0; i < alg->alg_nkey_sizes; i++)
4989 			if (key_size == alg->alg_key_sizes[i])
4990 				break;
4991 		if (i == alg->alg_nkey_sizes)
4992 			return (B_FALSE);
4993 	}
4994 
4995 	return (B_TRUE);
4996 }
4997 
4998 /*
4999  * Callback function invoked by the crypto framework when a provider
5000  * registers or unregisters. This callback updates the algorithms
5001  * tables when a crypto algorithm is no longer available or becomes
5002  * available, and triggers the freeing/creation of context templates
5003  * associated with existing SAs, if needed.
5004  */
5005 void
5006 ipsec_prov_update_callback(uint32_t event, void *event_arg)
5007 {
5008 	crypto_notify_event_change_t *prov_change =
5009 	    (crypto_notify_event_change_t *)event_arg;
5010 	uint_t algidx, algid, algtype, mech_count, mech_idx;
5011 	ipsec_alginfo_t *alg;
5012 	ipsec_alginfo_t oalg;
5013 	crypto_mech_name_t *mechs;
5014 	boolean_t alg_changed = B_FALSE;
5015 
5016 	/* ignore events for which we didn't register */
5017 	if (event != CRYPTO_EVENT_MECHS_CHANGED) {
5018 		ip1dbg(("ipsec_prov_update_callback: unexpected event 0x%x "
5019 			" received from crypto framework\n", event));
5020 		return;
5021 	}
5022 
5023 	mechs = crypto_get_mech_list(&mech_count, KM_SLEEP);
5024 	if (mechs == NULL)
5025 		return;
5026 
5027 	/*
5028 	 * Walk the list of currently defined IPsec algorithm. Update
5029 	 * the algorithm valid flag and trigger an update of the
5030 	 * SAs that depend on that algorithm.
5031 	 */
5032 	mutex_enter(&alg_lock);
5033 	for (algtype = 0; algtype < IPSEC_NALGTYPES; algtype++) {
5034 		for (algidx = 0; algidx < ipsec_nalgs[algtype]; algidx++) {
5035 
5036 			algid = ipsec_sortlist[algtype][algidx];
5037 			alg = ipsec_alglists[algtype][algid];
5038 			ASSERT(alg != NULL);
5039 
5040 			/*
5041 			 * Skip the algorithms which do not map to the
5042 			 * crypto framework provider being added or removed.
5043 			 */
5044 			if (strncmp(alg->alg_mech_name,
5045 			    prov_change->ec_mech_name,
5046 			    CRYPTO_MAX_MECH_NAME) != 0)
5047 				continue;
5048 
5049 			/*
5050 			 * Determine if the mechanism is valid. If it
5051 			 * is not, mark the algorithm as being invalid. If
5052 			 * it is, mark the algorithm as being valid.
5053 			 */
5054 			for (mech_idx = 0; mech_idx < mech_count; mech_idx++)
5055 				if (strncmp(alg->alg_mech_name,
5056 				    mechs[mech_idx], CRYPTO_MAX_MECH_NAME) == 0)
5057 					break;
5058 			if (mech_idx == mech_count &&
5059 			    alg->alg_flags & ALG_FLAG_VALID) {
5060 				alg->alg_flags &= ~ALG_FLAG_VALID;
5061 				alg_changed = B_TRUE;
5062 			} else if (mech_idx < mech_count &&
5063 			    !(alg->alg_flags & ALG_FLAG_VALID)) {
5064 				alg->alg_flags |= ALG_FLAG_VALID;
5065 				alg_changed = B_TRUE;
5066 			}
5067 
5068 			/*
5069 			 * Update the supported key sizes, regardless
5070 			 * of whether a crypto provider was added or
5071 			 * removed.
5072 			 */
5073 			oalg = *alg;
5074 			ipsec_alg_fix_min_max(alg, algtype);
5075 			if (!alg_changed &&
5076 			    alg->alg_ef_minbits != oalg.alg_ef_minbits ||
5077 			    alg->alg_ef_maxbits != oalg.alg_ef_maxbits ||
5078 			    alg->alg_ef_default != oalg.alg_ef_default ||
5079 			    alg->alg_ef_default_bits !=
5080 			    oalg.alg_ef_default_bits)
5081 				alg_changed = B_TRUE;
5082 
5083 			/*
5084 			 * Update the affected SAs if a software provider is
5085 			 * being added or removed.
5086 			 */
5087 			if (prov_change->ec_provider_type ==
5088 			    CRYPTO_SW_PROVIDER)
5089 				sadb_alg_update(algtype, alg->alg_id,
5090 				    prov_change->ec_change ==
5091 				    CRYPTO_MECH_ADDED);
5092 		}
5093 	}
5094 	mutex_exit(&alg_lock);
5095 	crypto_free_mech_list(mechs, mech_count);
5096 
5097 	if (alg_changed) {
5098 		/*
5099 		 * An algorithm has changed, i.e. it became valid or
5100 		 * invalid, or its support key sizes have changed.
5101 		 * Notify ipsecah and ipsecesp of this change so
5102 		 * that they can send a SADB_REGISTER to their consumers.
5103 		 */
5104 		ipsecah_algs_changed();
5105 		ipsecesp_algs_changed();
5106 	}
5107 }
5108 
5109 /*
5110  * Registers with the crypto framework to be notified of crypto
5111  * providers changes. Used to update the algorithm tables and
5112  * to free or create context templates if needed. Invoked after IPsec
5113  * is loaded successfully.
5114  */
5115 void
5116 ipsec_register_prov_update(void)
5117 {
5118 	prov_update_handle = crypto_notify_events(
5119 	    ipsec_prov_update_callback, CRYPTO_EVENT_MECHS_CHANGED);
5120 }
5121 
5122 /*
5123  * Unregisters from the framework to be notified of crypto providers
5124  * changes. Called from ipsec_policy_destroy().
5125  */
5126 static void
5127 ipsec_unregister_prov_update(void)
5128 {
5129 	if (prov_update_handle != NULL)
5130 		crypto_unnotify_events(prov_update_handle);
5131 }
5132 
5133 /*
5134  * Tunnel-mode support routines.
5135  */
5136 
5137 /*
5138  * Returns an mblk chain suitable for putnext() if policies match and IPsec
5139  * SAs are available.  If there's no per-tunnel policy, or a match comes back
5140  * with no match, then still return the packet and have global policy take
5141  * a crack at it in IP.
5142  *
5143  * Remember -> we can be forwarding packets.  Keep that in mind w.r.t.
5144  * inner-packet contents.
5145  */
5146 mblk_t *
5147 ipsec_tun_outbound(mblk_t *mp, tun_t *atp, ipha_t *inner_ipv4,
5148     ip6_t *inner_ipv6, ipha_t *outer_ipv4, ip6_t *outer_ipv6, int outer_hdr_len)
5149 {
5150 	ipsec_tun_pol_t *itp = atp->tun_itp;
5151 	ipsec_policy_head_t *polhead;
5152 	ipsec_selector_t sel;
5153 	mblk_t *ipsec_mp, *ipsec_mp_head, *nmp;
5154 	mblk_t *spare_mp = NULL;
5155 	ipsec_out_t *io;
5156 	boolean_t is_fragment;
5157 	ipsec_policy_t *pol;
5158 
5159 	ASSERT(outer_ipv6 != NULL && outer_ipv4 == NULL ||
5160 	    outer_ipv4 != NULL && outer_ipv6 == NULL);
5161 	/* We take care of inners in a bit. */
5162 
5163 	/* No policy on this tunnel - let global policy have at it. */
5164 	if (itp == NULL || !(itp->itp_flags & ITPF_P_ACTIVE))
5165 		return (mp);
5166 	polhead = itp->itp_policy;
5167 
5168 	bzero(&sel, sizeof (sel));
5169 	if (inner_ipv4 != NULL) {
5170 		ASSERT(inner_ipv6 == NULL);
5171 		sel.ips_isv4 = B_TRUE;
5172 		sel.ips_local_addr_v4 = inner_ipv4->ipha_src;
5173 		sel.ips_remote_addr_v4 = inner_ipv4->ipha_dst;
5174 		sel.ips_protocol = (uint8_t)inner_ipv4->ipha_protocol;
5175 		is_fragment =
5176 		    IS_V4_FRAGMENT(inner_ipv4->ipha_fragment_offset_and_flags);
5177 	} else {
5178 		ASSERT(inner_ipv6 != NULL);
5179 		sel.ips_isv4 = B_FALSE;
5180 		sel.ips_local_addr_v6 = inner_ipv6->ip6_src;
5181 		/* Use ip_get_dst_v6() just for the fragment bit. */
5182 		sel.ips_remote_addr_v6 = ip_get_dst_v6(inner_ipv6,
5183 		    &is_fragment);
5184 		/*
5185 		 * Reset, because we don't care about routing-header dests
5186 		 * in the forwarding/tunnel path.
5187 		 */
5188 		sel.ips_remote_addr_v6 = inner_ipv6->ip6_dst;
5189 	}
5190 
5191 	if (itp->itp_flags & ITPF_P_PER_PORT_SECURITY) {
5192 		if (is_fragment) {
5193 			ipha_t *oiph;
5194 			ipha_t *iph = NULL;
5195 			ip6_t *ip6h = NULL;
5196 			int hdr_len;
5197 			uint16_t ip6_hdr_length;
5198 			uint8_t v6_proto;
5199 			uint8_t *v6_proto_p;
5200 
5201 			/*
5202 			 * We have a fragment we need to track!
5203 			 */
5204 			mp = ipsec_fragcache_add(&itp->itp_fragcache, NULL, mp,
5205 			    outer_hdr_len);
5206 			if (mp == NULL)
5207 				return (NULL);
5208 
5209 			/*
5210 			 * If we get here, we have a full
5211 			 * fragment chain
5212 			 */
5213 
5214 			oiph = (ipha_t *)mp->b_rptr;
5215 			if (IPH_HDR_VERSION(oiph) == IPV4_VERSION) {
5216 				hdr_len = ((outer_hdr_len != 0) ?
5217 				    IPH_HDR_LENGTH(oiph) : 0);
5218 				iph = (ipha_t *)(mp->b_rptr + hdr_len);
5219 			} else {
5220 				ASSERT(IPH_HDR_VERSION(oiph) == IPV6_VERSION);
5221 				if ((spare_mp = msgpullup(mp, -1)) == NULL) {
5222 					ip_drop_packet_chain(mp, B_FALSE,
5223 					    NULL, NULL, &ipdrops_spd_nomem,
5224 					    &spd_dropper);
5225 				}
5226 				ip6h = (ip6_t *)spare_mp->b_rptr;
5227 				(void) ip_hdr_length_nexthdr_v6(spare_mp, ip6h,
5228 				    &ip6_hdr_length, &v6_proto_p);
5229 				hdr_len = ip6_hdr_length;
5230 			}
5231 			outer_hdr_len = hdr_len;
5232 
5233 			if (sel.ips_isv4) {
5234 				if (iph == NULL) {
5235 					/* Was v6 outer */
5236 					iph = (ipha_t *)(mp->b_rptr + hdr_len);
5237 				}
5238 				inner_ipv4 = iph;
5239 				sel.ips_local_addr_v4 = inner_ipv4->ipha_src;
5240 				sel.ips_remote_addr_v4 = inner_ipv4->ipha_dst;
5241 				sel.ips_protocol =
5242 				    (uint8_t)inner_ipv4->ipha_protocol;
5243 			} else {
5244 				if ((spare_mp == NULL) &&
5245 				    ((spare_mp = msgpullup(mp, -1)) == NULL)) {
5246 					ip_drop_packet_chain(mp, B_FALSE,
5247 					    NULL, NULL, &ipdrops_spd_nomem,
5248 					    &spd_dropper);
5249 				}
5250 				inner_ipv6 = (ip6_t *)(spare_mp->b_rptr +
5251 				    hdr_len);
5252 				sel.ips_local_addr_v6 = inner_ipv6->ip6_src;
5253 				sel.ips_remote_addr_v6 = inner_ipv6->ip6_dst;
5254 				(void) ip_hdr_length_nexthdr_v6(spare_mp,
5255 				    inner_ipv6, &ip6_hdr_length,
5256 				    &v6_proto_p);
5257 				v6_proto = *v6_proto_p;
5258 				sel.ips_protocol = v6_proto;
5259 #ifdef FRAGCACHE_DEBUG
5260 				cmn_err(CE_WARN, "v6_sel.ips_protocol = %d\n",
5261 				    sel.ips_protocol);
5262 #endif
5263 			}
5264 			/* Ports are extracted below */
5265 		}
5266 
5267 		/* Get ports... */
5268 		if (spare_mp != NULL) {
5269 			if (!ipsec_init_outbound_ports(&sel, spare_mp,
5270 			    inner_ipv4, inner_ipv6, outer_hdr_len)) {
5271 				/*
5272 				 * callee did ip_drop_packet_chain() on
5273 				 * spare_mp
5274 				 */
5275 				ipsec_freemsg_chain(mp);
5276 				return (NULL);
5277 			}
5278 		} else {
5279 			if (!ipsec_init_outbound_ports(&sel, mp,
5280 			    inner_ipv4, inner_ipv6, outer_hdr_len)) {
5281 				/* callee did ip_drop_packet_chain() on mp. */
5282 				return (NULL);
5283 			}
5284 		}
5285 #ifdef FRAGCACHE_DEBUG
5286 		if (inner_ipv4 != NULL)
5287 			cmn_err(CE_WARN,
5288 			    "(v4) sel.ips_protocol = %d, "
5289 			    "sel.ips_local_port = %d, "
5290 			    "sel.ips_remote_port = %d\n",
5291 			    sel.ips_protocol, ntohs(sel.ips_local_port),
5292 			    ntohs(sel.ips_remote_port));
5293 		if (inner_ipv6 != NULL)
5294 			cmn_err(CE_WARN,
5295 			    "(v6) sel.ips_protocol = %d, "
5296 			    "sel.ips_local_port = %d, "
5297 			    "sel.ips_remote_port = %d\n",
5298 			    sel.ips_protocol, ntohs(sel.ips_local_port),
5299 			    ntohs(sel.ips_remote_port));
5300 #endif
5301 		/* Success so far - done with spare_mp */
5302 		ipsec_freemsg_chain(spare_mp);
5303 	}
5304 	rw_enter(&polhead->iph_lock, RW_READER);
5305 	pol = ipsec_find_policy_head(NULL, polhead, IPSEC_TYPE_OUTBOUND, &sel);
5306 	rw_exit(&polhead->iph_lock);
5307 	if (pol == NULL) {
5308 		/*
5309 		 * No matching policy on this tunnel, drop the packet.
5310 		 *
5311 		 * NOTE:  Tunnel-mode tunnels are different from the
5312 		 * IP global transport mode policy head.  For a tunnel-mode
5313 		 * tunnel, we drop the packet in lieu of passing it
5314 		 * along accepted the way a global-policy miss would.
5315 		 *
5316 		 * NOTE2:  "negotiate transport" tunnels should match ALL
5317 		 * inbound packets, but we do not uncomment the ASSERT()
5318 		 * below because if/when we open PF_POLICY, a user can
5319 		 * shoot him/her-self in the foot with a 0 priority.
5320 		 */
5321 
5322 		/* ASSERT(itp->itp_flags & ITPF_P_TUNNEL); */
5323 #ifdef FRAGCACHE_DEBUG
5324 		cmn_err(CE_WARN, "ipsec_tun_outbound(): No matching tunnel "
5325 		    "per-port policy\n");
5326 #endif
5327 		ip_drop_packet_chain(mp, B_FALSE, NULL, NULL,
5328 		    &ipdrops_spd_explicit, &spd_dropper);
5329 		return (NULL);
5330 	}
5331 
5332 #ifdef FRAGCACHE_DEBUG
5333 	cmn_err(CE_WARN, "Having matching tunnel per-port policy\n");
5334 #endif
5335 
5336 	/* Construct an IPSEC_OUT message. */
5337 	ipsec_mp = ipsec_mp_head = ipsec_alloc_ipsec_out();
5338 	if (ipsec_mp == NULL) {
5339 		IPPOL_REFRELE(pol);
5340 		ip_drop_packet(mp, B_FALSE, NULL, NULL, &ipdrops_spd_nomem,
5341 		    &spd_dropper);
5342 		return (NULL);
5343 	}
5344 	ipsec_mp->b_cont = mp;
5345 	io = (ipsec_out_t *)ipsec_mp->b_rptr;
5346 	IPPH_REFHOLD(polhead);
5347 	/*
5348 	 * NOTE: free() function of ipsec_out mblk will release polhead and
5349 	 * pol references.
5350 	 */
5351 	io->ipsec_out_polhead = polhead;
5352 	io->ipsec_out_policy = pol;
5353 	io->ipsec_out_zoneid = atp->tun_zoneid;
5354 	io->ipsec_out_v4 = (outer_ipv4 != NULL);
5355 	io->ipsec_out_secure = B_TRUE;
5356 
5357 	if (!(itp->itp_flags & ITPF_P_TUNNEL)) {
5358 		/* Set up transport mode for tunnelled packets. */
5359 		io->ipsec_out_proto = (inner_ipv4 != NULL) ? IPPROTO_ENCAP :
5360 		    IPPROTO_IPV6;
5361 		return (ipsec_mp);
5362 	}
5363 
5364 	/* Fill in tunnel-mode goodies here. */
5365 	io->ipsec_out_tunnel = B_TRUE;
5366 	/* XXX Do I need to fill in all of the goodies here? */
5367 	if (inner_ipv4) {
5368 		io->ipsec_out_inaf = AF_INET;
5369 		io->ipsec_out_insrc[0] =
5370 		    pol->ipsp_sel->ipsl_key.ipsl_local.ipsad_v4;
5371 		io->ipsec_out_indst[0] =
5372 		    pol->ipsp_sel->ipsl_key.ipsl_remote.ipsad_v4;
5373 	} else {
5374 		io->ipsec_out_inaf = AF_INET6;
5375 		io->ipsec_out_insrc[0] =
5376 		    pol->ipsp_sel->ipsl_key.ipsl_local.ipsad_v6.s6_addr32[0];
5377 		io->ipsec_out_insrc[1] =
5378 		    pol->ipsp_sel->ipsl_key.ipsl_local.ipsad_v6.s6_addr32[1];
5379 		io->ipsec_out_insrc[2] =
5380 		    pol->ipsp_sel->ipsl_key.ipsl_local.ipsad_v6.s6_addr32[2];
5381 		io->ipsec_out_insrc[3] =
5382 		    pol->ipsp_sel->ipsl_key.ipsl_local.ipsad_v6.s6_addr32[3];
5383 		io->ipsec_out_indst[0] =
5384 		    pol->ipsp_sel->ipsl_key.ipsl_remote.ipsad_v6.s6_addr32[0];
5385 		io->ipsec_out_indst[1] =
5386 		    pol->ipsp_sel->ipsl_key.ipsl_remote.ipsad_v6.s6_addr32[1];
5387 		io->ipsec_out_indst[2] =
5388 		    pol->ipsp_sel->ipsl_key.ipsl_remote.ipsad_v6.s6_addr32[2];
5389 		io->ipsec_out_indst[3] =
5390 		    pol->ipsp_sel->ipsl_key.ipsl_remote.ipsad_v6.s6_addr32[3];
5391 	}
5392 	io->ipsec_out_insrcpfx = pol->ipsp_sel->ipsl_key.ipsl_local_pfxlen;
5393 	io->ipsec_out_indstpfx = pol->ipsp_sel->ipsl_key.ipsl_remote_pfxlen;
5394 	/* NOTE:  These are used for transport mode too. */
5395 	io->ipsec_out_src_port = pol->ipsp_sel->ipsl_key.ipsl_lport;
5396 	io->ipsec_out_dst_port = pol->ipsp_sel->ipsl_key.ipsl_rport;
5397 	io->ipsec_out_proto = pol->ipsp_sel->ipsl_key.ipsl_proto;
5398 
5399 	/*
5400 	 * The mp pointer still valid
5401 	 * Add ipsec_out to each fragment.
5402 	 * The fragment head already has one
5403 	 */
5404 	nmp = mp->b_next;
5405 	mp->b_next = NULL;
5406 	mp = nmp;
5407 	ASSERT(ipsec_mp != NULL);
5408 	while (mp != NULL) {
5409 		nmp = mp->b_next;
5410 		ipsec_mp->b_next = ipsec_out_tag(ipsec_mp_head, mp);
5411 		if (ipsec_mp->b_next == NULL) {
5412 			ip_drop_packet_chain(ipsec_mp_head, B_FALSE, NULL, NULL,
5413 			    &ipdrops_spd_nomem, &spd_dropper);
5414 			ip_drop_packet_chain(mp, B_FALSE, NULL, NULL,
5415 			    &ipdrops_spd_nomem, &spd_dropper);
5416 			return (NULL);
5417 		}
5418 		ipsec_mp = ipsec_mp->b_next;
5419 		mp->b_next = NULL;
5420 		mp = nmp;
5421 	}
5422 	return (ipsec_mp_head);
5423 }
5424 
5425 /*
5426  * NOTE: The following releases pol's reference and
5427  * calls ip_drop_packet() for me on NULL returns.
5428  */
5429 mblk_t *
5430 ipsec_check_ipsecin_policy_reasm(mblk_t *ipsec_mp, ipsec_policy_t *pol,
5431     ipha_t *inner_ipv4, ip6_t *inner_ipv6, uint64_t pkt_unique)
5432 {
5433 	/* Assume ipsec_mp is a chain of b_next-linked IPSEC_IN M_CTLs. */
5434 	mblk_t *data_chain = NULL, *data_tail = NULL;
5435 	mblk_t *ii_next;
5436 
5437 	while (ipsec_mp != NULL) {
5438 		ii_next = ipsec_mp->b_next;
5439 		ipsec_mp->b_next = NULL;  /* No tripping asserts. */
5440 
5441 		/*
5442 		 * Need IPPOL_REFHOLD(pol) for extras because
5443 		 * ipsecin_policy does the refrele.
5444 		 */
5445 		IPPOL_REFHOLD(pol);
5446 
5447 		if (ipsec_check_ipsecin_policy(NULL, ipsec_mp, pol,
5448 		    inner_ipv4, inner_ipv6, pkt_unique) != NULL) {
5449 			if (data_tail == NULL) {
5450 				/* First one */
5451 				data_chain = data_tail = ipsec_mp->b_cont;
5452 			} else {
5453 				data_tail->b_next = ipsec_mp->b_cont;
5454 				data_tail = data_tail->b_next;
5455 			}
5456 			freeb(ipsec_mp);
5457 		} else {
5458 			/*
5459 			 * ipsec_check_ipsecin_policy() freed ipsec_mp
5460 			 * already.   Need to get rid of any extra pol
5461 			 * references, and any remaining bits as well.
5462 			 */
5463 			IPPOL_REFRELE(pol);
5464 			ipsec_freemsg_chain(data_chain);
5465 			ipsec_freemsg_chain(ii_next);	/* ipdrop stats? */
5466 			return (NULL);
5467 		}
5468 		ipsec_mp = ii_next;
5469 	}
5470 	/*
5471 	 * One last release because either the loop bumped it up, or we never
5472 	 * called ipsec_check_ipsecin_policy().
5473 	 */
5474 	IPPOL_REFRELE(pol);
5475 
5476 	/* data_chain is ready for return to tun module. */
5477 	return (data_chain);
5478 }
5479 
5480 
5481 /*
5482  * Returns B_TRUE if the inbound packet passed an IPsec policy check.  Returns
5483  * B_FALSE if it failed or if it is a fragment needing its friends before a
5484  * policy check can be performed.
5485  *
5486  * Expects a non-NULL *data_mp, an optional ipsec_mp, and a non-NULL polhead.
5487  * data_mp may be reassigned with a b_next chain of packets if fragments
5488  * neeeded to be collected for a proper policy check.
5489  *
5490  * Always frees ipsec_mp, but only frees data_mp if returns B_FALSE.  This
5491  * function calls ip_drop_packet() on data_mp if need be.
5492  *
5493  * NOTE:  outer_hdr_len is signed.  If it's a negative value, the caller
5494  * is inspecting an ICMP packet.
5495  */
5496 boolean_t
5497 ipsec_tun_inbound(mblk_t *ipsec_mp, mblk_t **data_mp, ipsec_tun_pol_t *itp,
5498     ipha_t *inner_ipv4, ip6_t *inner_ipv6, ipha_t *outer_ipv4,
5499     ip6_t *outer_ipv6, int outer_hdr_len)
5500 {
5501 	ipsec_policy_head_t *polhead;
5502 	ipsec_selector_t sel;
5503 	mblk_t *message = (ipsec_mp == NULL) ? *data_mp : ipsec_mp;
5504 	ipsec_policy_t *pol;
5505 	uint16_t tmpport;
5506 	selret_t rc;
5507 	boolean_t retval, port_policy_present, is_icmp;
5508 	in6_addr_t tmpaddr;
5509 	uint8_t flags;
5510 
5511 	sel.ips_is_icmp_inv_acq = 0;
5512 
5513 	ASSERT(outer_ipv4 != NULL && outer_ipv6 == NULL ||
5514 	    outer_ipv4 == NULL && outer_ipv6 != NULL);
5515 	ASSERT(inner_ipv4 != NULL && inner_ipv6 == NULL ||
5516 	    inner_ipv4 == NULL && inner_ipv6 != NULL);
5517 	ASSERT(message == *data_mp || message->b_cont == *data_mp);
5518 
5519 	if (outer_hdr_len < 0) {
5520 		outer_hdr_len = (-outer_hdr_len);
5521 		is_icmp = B_TRUE;
5522 	} else {
5523 		is_icmp = B_FALSE;
5524 	}
5525 
5526 	if (itp != NULL && (itp->itp_flags & ITPF_P_ACTIVE)) {
5527 		polhead = itp->itp_policy;
5528 		/*
5529 		 * We need to perform full Tunnel-Mode enforcement,
5530 		 * and we need to have inner-header data for such enforcement.
5531 		 *
5532 		 * See ipsec_init_inbound_sel() for the 0x80000000 on inbound
5533 		 * and on return.
5534 		 */
5535 
5536 		port_policy_present = ((itp->itp_flags &
5537 		    ITPF_P_PER_PORT_SECURITY) ? B_TRUE : B_FALSE);
5538 		flags = ((port_policy_present ? SEL_PORT_POLICY : SEL_NONE) |
5539 		    (is_icmp ? SEL_IS_ICMP : SEL_NONE) | SEL_TUNNEL_MODE);
5540 
5541 		rc = ipsec_init_inbound_sel(&sel, *data_mp, inner_ipv4,
5542 		    inner_ipv6, flags);
5543 
5544 		switch (rc) {
5545 		case SELRET_NOMEM:
5546 			ip_drop_packet(message, B_TRUE, NULL, NULL,
5547 			    &ipdrops_spd_nomem, &spd_dropper);
5548 			return (B_FALSE);
5549 		case SELRET_TUNFRAG:
5550 			/*
5551 			 * At this point, if we're cleartext, we don't want
5552 			 * to go there.
5553 			 */
5554 			if (ipsec_mp == NULL) {
5555 				ip_drop_packet(*data_mp, B_TRUE, NULL, NULL,
5556 				    &ipdrops_spd_got_clear, &spd_dropper);
5557 				*data_mp = NULL;
5558 				return (B_FALSE);
5559 			}
5560 			ASSERT(((ipsec_in_t *)ipsec_mp->b_rptr)->
5561 			    ipsec_in_secure);
5562 			message = ipsec_fragcache_add(&itp->itp_fragcache,
5563 			    ipsec_mp, *data_mp, outer_hdr_len);
5564 
5565 			if (message == NULL) {
5566 				/*
5567 				 * Data is cached, fragment chain is not
5568 				 * complete.  I consume ipsec_mp and data_mp
5569 				 */
5570 				return (B_FALSE);
5571 			}
5572 
5573 			/*
5574 			 * If we get here, we have a full fragment chain.
5575 			 * Reacquire headers and selectors from first fragment.
5576 			 */
5577 			if (inner_ipv4 != NULL) {
5578 				inner_ipv4 = (ipha_t *)message->b_cont->b_rptr;
5579 				ASSERT(message->b_cont->b_wptr -
5580 				    message->b_cont->b_rptr > sizeof (ipha_t));
5581 			} else {
5582 				inner_ipv6 = (ip6_t *)message->b_cont->b_rptr;
5583 				ASSERT(message->b_cont->b_wptr -
5584 				    message->b_cont->b_rptr > sizeof (ip6_t));
5585 			}
5586 			/* Use SEL_NONE so we always get ports! */
5587 			rc = ipsec_init_inbound_sel(&sel, message->b_cont,
5588 			    inner_ipv4, inner_ipv6, SEL_NONE);
5589 			switch (rc) {
5590 			case SELRET_SUCCESS:
5591 				/*
5592 				 * Get to same place as first caller's
5593 				 * SELRET_SUCCESS case.
5594 				 */
5595 				break;
5596 			case SELRET_NOMEM:
5597 				ip_drop_packet_chain(message, B_TRUE, NULL,
5598 				    NULL, &ipdrops_spd_nomem, &spd_dropper);
5599 				return (B_FALSE);
5600 			case SELRET_BADPKT:
5601 				ip_drop_packet_chain(message, B_TRUE, NULL,
5602 				    NULL, &ipdrops_spd_malformed_frag,
5603 				    &spd_dropper);
5604 				return (B_FALSE);
5605 			case SELRET_TUNFRAG:
5606 				cmn_err(CE_WARN, "(TUNFRAG on 2nd call...)");
5607 				/* FALLTHRU */
5608 			default:
5609 				cmn_err(CE_WARN, "ipsec_init_inbound_sel(mark2)"
5610 				    " returns bizarro 0x%x", rc);
5611 				/* Guaranteed panic! */
5612 				ASSERT(rc == SELRET_NOMEM);
5613 				return (B_FALSE);
5614 			}
5615 			/* FALLTHRU */
5616 		case SELRET_SUCCESS:
5617 			/*
5618 			 * Common case:
5619 			 * No per-port policy or a non-fragment.  Keep going.
5620 			 */
5621 			break;
5622 		case SELRET_BADPKT:
5623 			/*
5624 			 * We may receive ICMP (with IPv6 inner) packets that
5625 			 * trigger this return value.  Send 'em in for
5626 			 * enforcement checking.
5627 			 */
5628 			cmn_err(CE_NOTE, "ipsec_tun_inbound(): "
5629 			    "sending 'bad packet' in for enforcement");
5630 			break;
5631 		default:
5632 			cmn_err(CE_WARN,
5633 			    "ipsec_init_inbound_sel() returns bizarro 0x%x",
5634 			    rc);
5635 			ASSERT(rc == SELRET_NOMEM);	/* Guaranteed panic! */
5636 			return (B_FALSE);
5637 		}
5638 
5639 		if (is_icmp) {
5640 			/*
5641 			 * Swap local/remote because this is an ICMP packet.
5642 			 */
5643 			tmpaddr = sel.ips_local_addr_v6;
5644 			sel.ips_local_addr_v6 = sel.ips_remote_addr_v6;
5645 			sel.ips_remote_addr_v6 = tmpaddr;
5646 			tmpport = sel.ips_local_port;
5647 			sel.ips_local_port = sel.ips_remote_port;
5648 			sel.ips_remote_port = tmpport;
5649 		}
5650 
5651 		/* find_policy_head() */
5652 		rw_enter(&polhead->iph_lock, RW_READER);
5653 		pol = ipsec_find_policy_head(NULL, polhead, IPSEC_TYPE_INBOUND,
5654 		    &sel);
5655 		rw_exit(&polhead->iph_lock);
5656 		if (pol != NULL) {
5657 			if (ipsec_mp == NULL ||
5658 			    !((ipsec_in_t *)ipsec_mp->b_rptr)->
5659 				ipsec_in_secure) {
5660 				retval = pol->ipsp_act->ipa_allow_clear;
5661 				if (!retval) {
5662 					/*
5663 					 * XXX should never get here with
5664 					 * tunnel reassembled fragments?
5665 					 */
5666 					ASSERT(message->b_next == NULL);
5667 					ip_drop_packet(message, B_TRUE, NULL,
5668 					    NULL, &ipdrops_spd_got_clear,
5669 					    &spd_dropper);
5670 				} else if (ipsec_mp != NULL) {
5671 					freeb(ipsec_mp);
5672 				}
5673 
5674 				IPPOL_REFRELE(pol);
5675 				return (retval);
5676 			}
5677 			/*
5678 			 * NOTE: The following releases pol's reference and
5679 			 * calls ip_drop_packet() for me on NULL returns.
5680 			 *
5681 			 * "sel" is still good here, so let's use it!
5682 			 */
5683 			*data_mp = ipsec_check_ipsecin_policy_reasm(message,
5684 			    pol, inner_ipv4, inner_ipv6, SA_UNIQUE_ID(
5685 				sel.ips_remote_port, sel.ips_local_port,
5686 				(inner_ipv4 == NULL) ? IPPROTO_IPV6 :
5687 				IPPROTO_ENCAP, sel.ips_protocol));
5688 			return (*data_mp != NULL);
5689 		}
5690 
5691 		/*
5692 		 * Else fallthru and check the global policy on the outer
5693 		 * header(s) if this tunnel is an old-style transport-mode
5694 		 * one.  Drop the packet explicitly (no policy entry) for
5695 		 * a new-style tunnel-mode tunnel.
5696 		 */
5697 		if ((itp->itp_flags & ITPF_P_TUNNEL) && !is_icmp) {
5698 			ip_drop_packet_chain(message, B_TRUE, NULL,
5699 			    NULL, &ipdrops_spd_explicit, &spd_dropper);
5700 			return (B_FALSE);
5701 		}
5702 	}
5703 
5704 	/*
5705 	 * NOTE:  If we reach here, we will not have packet chains from
5706 	 * fragcache_add(), because the only way I get chains is on a
5707 	 * tunnel-mode tunnel, which either returns with a pass, or gets
5708 	 * hit by the ip_drop_packet_chain() call right above here.
5709 	 */
5710 
5711 	/* If no per-tunnel security, check global policy now. */
5712 	if (ipsec_mp != NULL &&
5713 	    (((outer_ipv4 != NULL) && !ipsec_inbound_v4_policy_present) ||
5714 		((outer_ipv6 != NULL) && !ipsec_inbound_v6_policy_present))) {
5715 		if (((ipsec_in_t *)(ipsec_mp->b_rptr))->
5716 		    ipsec_in_icmp_loopback) {
5717 			/*
5718 			 * This is an ICMP message with an ipsec_mp
5719 			 * attached.  We should accept it.
5720 			 */
5721 			if (ipsec_mp != NULL)
5722 				freeb(ipsec_mp);
5723 			return (B_TRUE);
5724 		}
5725 
5726 		ip_drop_packet(ipsec_mp, B_TRUE, NULL, NULL,
5727 		    &ipdrops_spd_got_secure, &spd_dropper);
5728 		return (B_FALSE);
5729 	}
5730 
5731 	/* NOTE:  Frees message if it returns NULL. */
5732 	if (ipsec_check_global_policy(message, NULL, outer_ipv4, outer_ipv6,
5733 		(ipsec_mp != NULL)) == NULL) {
5734 		return (B_FALSE);
5735 	}
5736 
5737 	if (ipsec_mp != NULL)
5738 		freeb(ipsec_mp);
5739 
5740 	/*
5741 	 * At this point, we pretend it's a cleartext accepted
5742 	 * packet.
5743 	 */
5744 	return (B_TRUE);
5745 }
5746 
5747 /*
5748  * AVL comparison routine for our list of tunnel polheads.
5749  */
5750 static int
5751 tunnel_compare(const void *arg1, const void *arg2)
5752 {
5753 	ipsec_tun_pol_t *left, *right;
5754 	int rc;
5755 
5756 	left = (ipsec_tun_pol_t *)arg1;
5757 	right = (ipsec_tun_pol_t *)arg2;
5758 
5759 	rc = strncmp(left->itp_name, right->itp_name, LIFNAMSIZ);
5760 	return (rc == 0 ? rc : (rc > 0 ? 1 : -1));
5761 }
5762 
5763 /*
5764  * Free a tunnel policy node.
5765  */
5766 void
5767 itp_free(ipsec_tun_pol_t *node)
5768 {
5769 	IPPH_REFRELE(node->itp_policy);
5770 	IPPH_REFRELE(node->itp_inactive);
5771 	mutex_destroy(&node->itp_lock);
5772 	kmem_free(node, sizeof (*node));
5773 }
5774 
5775 void
5776 itp_unlink(ipsec_tun_pol_t *node)
5777 {
5778 	rw_enter(&tunnel_policy_lock, RW_WRITER);
5779 	tunnel_policy_gen++;
5780 	ipsec_fragcache_uninit(&node->itp_fragcache);
5781 	avl_remove(&tunnel_policies, node);
5782 	rw_exit(&tunnel_policy_lock);
5783 	ITP_REFRELE(node);
5784 }
5785 
5786 /*
5787  * Public interface to look up a tunnel security policy by name.  Used by
5788  * spdsock mostly.  Returns "node" with a bumped refcnt.
5789  */
5790 ipsec_tun_pol_t *
5791 get_tunnel_policy(char *name)
5792 {
5793 	ipsec_tun_pol_t *node, lookup;
5794 
5795 	(void) strncpy(lookup.itp_name, name, LIFNAMSIZ);
5796 
5797 	rw_enter(&tunnel_policy_lock, RW_READER);
5798 	node = (ipsec_tun_pol_t *)avl_find(&tunnel_policies, &lookup, NULL);
5799 	if (node != NULL) {
5800 		ITP_REFHOLD(node);
5801 	}
5802 	rw_exit(&tunnel_policy_lock);
5803 
5804 	return (node);
5805 }
5806 
5807 /*
5808  * Public interface to walk all tunnel security polcies.  Useful for spdsock
5809  * DUMP operations.  iterator() will not consume a reference.
5810  */
5811 void
5812 itp_walk(void (*iterator)(ipsec_tun_pol_t *, void *), void *arg)
5813 {
5814 	ipsec_tun_pol_t *node;
5815 
5816 	rw_enter(&tunnel_policy_lock, RW_READER);
5817 	for (node = avl_first(&tunnel_policies); node != NULL;
5818 	    node = AVL_NEXT(&tunnel_policies, node)) {
5819 		iterator(node, arg);
5820 	}
5821 	rw_exit(&tunnel_policy_lock);
5822 }
5823 
5824 /*
5825  * Initialize policy head.  This can only fail if there's a memory problem.
5826  */
5827 static boolean_t
5828 tunnel_polhead_init(ipsec_policy_head_t *iph)
5829 {
5830 	rw_init(&iph->iph_lock, NULL, RW_DEFAULT, NULL);
5831 	iph->iph_refs = 1;
5832 	iph->iph_gen = 0;
5833 	if (ipsec_alloc_table(iph, tun_spd_hashsize, KM_SLEEP, B_FALSE) != 0) {
5834 		ipsec_polhead_free_table(iph);
5835 		return (B_FALSE);
5836 	}
5837 	ipsec_polhead_init(iph, tun_spd_hashsize);
5838 	return (B_TRUE);
5839 }
5840 
5841 /*
5842  * Create a tunnel policy node with "name".  Set errno with
5843  * ENOMEM if there's a memory problem, and EEXIST if there's an existing
5844  * node.
5845  */
5846 ipsec_tun_pol_t *
5847 create_tunnel_policy(char *name, int *errno, uint64_t *gen)
5848 {
5849 	ipsec_tun_pol_t *newbie, *existing;
5850 	avl_index_t where;
5851 
5852 	newbie = kmem_zalloc(sizeof (*newbie), KM_NOSLEEP);
5853 	if (newbie == NULL) {
5854 		*errno = ENOMEM;
5855 		return (NULL);
5856 	}
5857 	if (!ipsec_fragcache_init(&newbie->itp_fragcache)) {
5858 		kmem_free(newbie, sizeof (*newbie));
5859 		*errno = ENOMEM;
5860 		return (NULL);
5861 	}
5862 
5863 	(void) strncpy(newbie->itp_name, name, LIFNAMSIZ);
5864 
5865 	rw_enter(&tunnel_policy_lock, RW_WRITER);
5866 	existing = (ipsec_tun_pol_t *)avl_find(&tunnel_policies, newbie,
5867 	    &where);
5868 	if (existing != NULL) {
5869 		itp_free(newbie);
5870 		*errno = EEXIST;
5871 		rw_exit(&tunnel_policy_lock);
5872 		return (NULL);
5873 	}
5874 	tunnel_policy_gen++;
5875 	*gen = tunnel_policy_gen;
5876 	newbie->itp_refcnt = 2;	/* One for the caller, one for the tree. */
5877 	newbie->itp_next_policy_index = 1;
5878 	avl_insert(&tunnel_policies, newbie, where);
5879 	mutex_init(&newbie->itp_lock, NULL, MUTEX_DEFAULT, NULL);
5880 	newbie->itp_policy = kmem_zalloc(sizeof (ipsec_policy_head_t),
5881 	    KM_NOSLEEP);
5882 	if (newbie->itp_policy == NULL)
5883 		goto nomem;
5884 	newbie->itp_inactive = kmem_zalloc(sizeof (ipsec_policy_head_t),
5885 	    KM_NOSLEEP);
5886 	if (newbie->itp_inactive == NULL) {
5887 		kmem_free(newbie->itp_inactive, sizeof (ipsec_policy_head_t));
5888 		goto nomem;
5889 	}
5890 
5891 	if (!tunnel_polhead_init(newbie->itp_policy)) {
5892 		kmem_free(newbie->itp_policy, sizeof (ipsec_policy_head_t));
5893 		kmem_free(newbie->itp_inactive, sizeof (ipsec_policy_head_t));
5894 		goto nomem;
5895 	} else if (!tunnel_polhead_init(newbie->itp_inactive)) {
5896 		IPPH_REFRELE(newbie->itp_policy);
5897 		kmem_free(newbie->itp_inactive, sizeof (ipsec_policy_head_t));
5898 		goto nomem;
5899 	}
5900 	rw_exit(&tunnel_policy_lock);
5901 
5902 	return (newbie);
5903 nomem:
5904 	*errno = ENOMEM;
5905 	kmem_free(newbie, sizeof (*newbie));
5906 	return (NULL);
5907 }
5908 
5909 /*
5910  * We can't call the tun_t lookup function until tun is
5911  * loaded, so create a dummy function to avoid symbol
5912  * lookup errors on boot.
5913  */
5914 /* ARGSUSED */
5915 ipsec_tun_pol_t *
5916 itp_get_byaddr_dummy(uint32_t *laddr, uint32_t *faddr, int af)
5917 {
5918 	return (NULL);  /* Always return NULL. */
5919 }
5920 
5921 /*
5922  * Frag cache code, based on SunScreen 3.2 source
5923  *	screen/kernel/common/screen_fragcache.c
5924  */
5925 
5926 #define	IPSEC_FRAG_TTL_MAX	5
5927 /*
5928  * Note that the following parameters create 256 hash buckets
5929  * with 1024 free entries to be distributed.  Things are cleaned
5930  * periodically and are attempted to be cleaned when there is no
5931  * free space, but this system errs on the side of dropping packets
5932  * over creating memory exhaustion.  We may decide to make hash
5933  * factor a tunable if this proves to be a bad decision.
5934  */
5935 #define	IPSEC_FRAG_HASH_SLOTS	(1<<8)
5936 #define	IPSEC_FRAG_HASH_FACTOR	4
5937 #define	IPSEC_FRAG_HASH_SIZE	(IPSEC_FRAG_HASH_SLOTS * IPSEC_FRAG_HASH_FACTOR)
5938 
5939 #define	IPSEC_FRAG_HASH_MASK		(IPSEC_FRAG_HASH_SLOTS - 1)
5940 #define	IPSEC_FRAG_HASH_FUNC(id)	(((id) & IPSEC_FRAG_HASH_MASK) ^ \
5941 					    (((id) / \
5942 					    (ushort_t)IPSEC_FRAG_HASH_SLOTS) & \
5943 					    IPSEC_FRAG_HASH_MASK))
5944 
5945 /* Maximum fragments per packet.  48 bytes payload x 1366 packets > 64KB */
5946 #define	IPSEC_MAX_FRAGS		1366
5947 
5948 #define	V4_FRAG_OFFSET(ipha) ((ntohs(ipha->ipha_fragment_offset_and_flags) & \
5949 				    IPH_OFFSET) << 3)
5950 #define	V4_MORE_FRAGS(ipha) (ntohs(ipha->ipha_fragment_offset_and_flags) & \
5951 		IPH_MF)
5952 
5953 /*
5954  * Initialize an ipsec fragcache instance.
5955  * Returns B_FALSE if memory allocation fails.
5956  */
5957 boolean_t
5958 ipsec_fragcache_init(ipsec_fragcache_t *frag)
5959 {
5960 	ipsec_fragcache_entry_t *ftemp;
5961 	int i;
5962 
5963 	mutex_init(&frag->itpf_lock, NULL, MUTEX_DEFAULT, NULL);
5964 	frag->itpf_ptr = (ipsec_fragcache_entry_t **)
5965 		kmem_zalloc(
5966 		    sizeof (ipsec_fragcache_entry_t *) *
5967 		    IPSEC_FRAG_HASH_SLOTS, KM_NOSLEEP);
5968 	if (frag->itpf_ptr == NULL)
5969 		return (B_FALSE);
5970 
5971 	ftemp = (ipsec_fragcache_entry_t *)
5972 		kmem_zalloc(sizeof (ipsec_fragcache_entry_t) *
5973 		    IPSEC_FRAG_HASH_SIZE, KM_NOSLEEP);
5974 	if (ftemp == NULL) {
5975 		kmem_free(frag->itpf_ptr,
5976 		    sizeof (ipsec_fragcache_entry_t *) *
5977 		    IPSEC_FRAG_HASH_SLOTS);
5978 		return (B_FALSE);
5979 	}
5980 
5981 	frag->itpf_freelist = NULL;
5982 
5983 	for (i = 0; i < IPSEC_FRAG_HASH_SIZE; i++) {
5984 	    ftemp->itpfe_next = frag->itpf_freelist;
5985 	    frag->itpf_freelist = ftemp;
5986 	    ftemp++;
5987 	}
5988 
5989 	frag->itpf_expire_hint = 0;
5990 
5991 	return (B_TRUE);
5992 }
5993 
5994 void
5995 ipsec_fragcache_uninit(ipsec_fragcache_t *frag)
5996 {
5997 	ipsec_fragcache_entry_t *fep;
5998 	int i;
5999 
6000 	mutex_enter(&frag->itpf_lock);
6001 	if (frag->itpf_ptr) {
6002 		/* Delete any existing fragcache entry chains */
6003 		for (i = 0; i < IPSEC_FRAG_HASH_SLOTS; i++) {
6004 			fep = (frag->itpf_ptr)[i];
6005 			while (fep != NULL) {
6006 				/* Returned fep is next in chain or NULL */
6007 				fep = fragcache_delentry(i, fep, frag);
6008 			}
6009 		}
6010 		/*
6011 		 * Chase the pointers back to the beginning
6012 		 * of the memory allocation and then
6013 		 * get rid of the allocated freelist
6014 		 */
6015 		while (frag->itpf_freelist->itpfe_next != NULL)
6016 			frag->itpf_freelist = frag->itpf_freelist->itpfe_next;
6017 		/*
6018 		 * XXX - If we ever dynamically grow the freelist
6019 		 * then we'll have to free entries individually
6020 		 * or determine how many entries or chunks we have
6021 		 * grown since the initial allocation.
6022 		 */
6023 		kmem_free(frag->itpf_freelist,
6024 		    sizeof (ipsec_fragcache_entry_t) *
6025 		    IPSEC_FRAG_HASH_SIZE);
6026 		/* Free the fragcache structure */
6027 		kmem_free(frag->itpf_ptr,
6028 		    sizeof (ipsec_fragcache_entry_t *) *
6029 		    IPSEC_FRAG_HASH_SLOTS);
6030 	}
6031 	mutex_exit(&frag->itpf_lock);
6032 	mutex_destroy(&frag->itpf_lock);
6033 }
6034 
6035 /*
6036  * Add a fragment to the fragment cache.   Consumes mp if NULL is returned.
6037  * Returns mp if a whole fragment has been assembled, NULL otherwise
6038  */
6039 
6040 mblk_t *
6041 ipsec_fragcache_add(ipsec_fragcache_t *frag, mblk_t *ipsec_mp, mblk_t *mp,
6042     int outer_hdr_len)
6043 {
6044 	boolean_t is_v4;
6045 	time_t itpf_time;
6046 	ipha_t *iph;
6047 	ipha_t *oiph;
6048 	ip6_t *ip6h = NULL;
6049 	uint8_t v6_proto;
6050 	uint8_t *v6_proto_p;
6051 	uint16_t ip6_hdr_length;
6052 	ip6_pkt_t ipp;
6053 	ip6_frag_t *fraghdr;
6054 	ipsec_fragcache_entry_t *fep;
6055 	int i;
6056 	mblk_t *nmp, *prevmp, *spare_mp = NULL;
6057 	int firstbyte, lastbyte;
6058 	int offset;
6059 	int last;
6060 	boolean_t inbound = (ipsec_mp != NULL);
6061 	mblk_t *first_mp = inbound ? ipsec_mp : mp;
6062 
6063 	mutex_enter(&frag->itpf_lock);
6064 
6065 	oiph  = (ipha_t *)mp->b_rptr;
6066 	iph  = (ipha_t *)(mp->b_rptr + outer_hdr_len);
6067 	if (IPH_HDR_VERSION(iph) == IPV4_VERSION) {
6068 		is_v4 = B_TRUE;
6069 	} else {
6070 		ASSERT(IPH_HDR_VERSION(iph) == IPV6_VERSION);
6071 		if ((spare_mp = msgpullup(mp, -1)) == NULL) {
6072 			mutex_exit(&frag->itpf_lock);
6073 			ip_drop_packet(first_mp, inbound, NULL, NULL,
6074 			    &ipdrops_spd_nomem, &spd_dropper);
6075 			return (NULL);
6076 		}
6077 		ip6h = (ip6_t *)(spare_mp->b_rptr + outer_hdr_len);
6078 
6079 		if (!ip_hdr_length_nexthdr_v6(spare_mp, ip6h, &ip6_hdr_length,
6080 		    &v6_proto_p)) {
6081 			/*
6082 			 * Find upper layer protocol.
6083 			 * If it fails we have a malformed packet
6084 			 */
6085 			mutex_exit(&frag->itpf_lock);
6086 			ip_drop_packet(first_mp, inbound, NULL, NULL,
6087 			    &ipdrops_spd_malformed_packet, &spd_dropper);
6088 			freemsg(spare_mp);
6089 			return (NULL);
6090 		} else {
6091 			v6_proto = *v6_proto_p;
6092 		}
6093 
6094 
6095 		bzero(&ipp, sizeof (ipp));
6096 		(void) ip_find_hdr_v6(spare_mp, ip6h, &ipp, NULL);
6097 		if (!(ipp.ipp_fields & IPPF_FRAGHDR)) {
6098 			/*
6099 			 * We think this is a fragment, but didn't find
6100 			 * a fragment header.  Something is wrong.
6101 			 */
6102 			mutex_exit(&frag->itpf_lock);
6103 			ip_drop_packet(first_mp, inbound, NULL, NULL,
6104 			    &ipdrops_spd_malformed_frag, &spd_dropper);
6105 			freemsg(spare_mp);
6106 			return (NULL);
6107 		}
6108 		fraghdr = ipp.ipp_fraghdr;
6109 		is_v4 = B_FALSE;
6110 	}
6111 
6112 	/* Anything to cleanup? */
6113 
6114 	/*
6115 	 * This cleanup call could be put in a timer loop
6116 	 * but it may actually be just as reasonable a decision to
6117 	 * leave it here.  The disadvantage is this only gets called when
6118 	 * frags are added.  The advantage is that it is not
6119 	 * susceptible to race conditions like a time-based cleanup
6120 	 * may be.
6121 	 */
6122 	itpf_time = gethrestime_sec();
6123 	if (itpf_time >= frag->itpf_expire_hint)
6124 		ipsec_fragcache_clean(frag);
6125 
6126 	/* Lookup to see if there is an existing entry */
6127 
6128 	if (is_v4)
6129 		i = IPSEC_FRAG_HASH_FUNC(iph->ipha_ident);
6130 	else
6131 		i = IPSEC_FRAG_HASH_FUNC(fraghdr->ip6f_ident);
6132 
6133 	for (fep = (frag->itpf_ptr)[i]; fep; fep = fep->itpfe_next) {
6134 		if (is_v4) {
6135 			ASSERT(iph != NULL);
6136 			if ((fep->itpfe_id == iph->ipha_ident) &&
6137 			    (fep->itpfe_src == iph->ipha_src) &&
6138 			    (fep->itpfe_dst == iph->ipha_dst) &&
6139 			    (fep->itpfe_proto == iph->ipha_protocol))
6140 				break;
6141 		} else {
6142 			ASSERT(fraghdr != NULL);
6143 			ASSERT(fep != NULL);
6144 			if ((fep->itpfe_id == fraghdr->ip6f_ident) &&
6145 			    IN6_ARE_ADDR_EQUAL(&fep->itpfe_src6,
6146 			    &ip6h->ip6_src) &&
6147 			    IN6_ARE_ADDR_EQUAL(&fep->itpfe_dst6,
6148 			    &ip6h->ip6_dst) && (fep->itpfe_proto == v6_proto))
6149 				break;
6150 		}
6151 	}
6152 
6153 	if (is_v4) {
6154 		firstbyte = V4_FRAG_OFFSET(iph);
6155 		lastbyte  = firstbyte + ntohs(iph->ipha_length) -
6156 		    IPH_HDR_LENGTH(iph);
6157 		last = (V4_MORE_FRAGS(iph) == 0);
6158 #ifdef FRAGCACHE_DEBUG
6159 		cmn_err(CE_WARN, "V4 fragcache: firstbyte = %d, lastbyte = %d, "
6160 		    "last = %d, id = %d\n", firstbyte, lastbyte, last,
6161 		    iph->ipha_ident);
6162 #endif
6163 	} else {
6164 		firstbyte = ntohs(fraghdr->ip6f_offlg & IP6F_OFF_MASK);
6165 		lastbyte  = firstbyte + ntohs(ip6h->ip6_plen) +
6166 		    sizeof (ip6_t) - ip6_hdr_length;
6167 		last = (fraghdr->ip6f_offlg & IP6F_MORE_FRAG) == 0;
6168 #ifdef FRAGCACHE_DEBUG
6169 		cmn_err(CE_WARN, "V6 fragcache: firstbyte = %d, lastbyte = %d, "
6170 		    "last = %d, id = %d, fraghdr = %p, spare_mp = %p\n",
6171 		    firstbyte, lastbyte, last, fraghdr->ip6f_ident,
6172 		    fraghdr, spare_mp);
6173 #endif
6174 	}
6175 
6176 	/* check for bogus fragments and delete the entry */
6177 	if (firstbyte > 0 && firstbyte <= 8) {
6178 		if (fep != NULL)
6179 			(void) fragcache_delentry(i, fep, frag);
6180 		mutex_exit(&frag->itpf_lock);
6181 		ip_drop_packet(first_mp, inbound, NULL, NULL,
6182 		    &ipdrops_spd_malformed_frag, &spd_dropper);
6183 		freemsg(spare_mp);
6184 		return (NULL);
6185 	}
6186 
6187 	/* Not found, allocate a new entry */
6188 	if (fep == NULL) {
6189 		if (frag->itpf_freelist == NULL) {
6190 			/* see if there is some space */
6191 			ipsec_fragcache_clean(frag);
6192 			if (frag->itpf_freelist == NULL) {
6193 				mutex_exit(&frag->itpf_lock);
6194 				ip_drop_packet(first_mp, inbound, NULL, NULL,
6195 				    &ipdrops_spd_nomem, &spd_dropper);
6196 				freemsg(spare_mp);
6197 				return (NULL);
6198 			}
6199 		}
6200 
6201 		fep = frag->itpf_freelist;
6202 		frag->itpf_freelist = fep->itpfe_next;
6203 
6204 		if (is_v4) {
6205 			bcopy((caddr_t)&iph->ipha_src, (caddr_t)&fep->itpfe_src,
6206 			    sizeof (struct in_addr));
6207 			bcopy((caddr_t)&iph->ipha_dst, (caddr_t)&fep->itpfe_dst,
6208 			    sizeof (struct in_addr));
6209 			fep->itpfe_id = iph->ipha_ident;
6210 			fep->itpfe_proto = iph->ipha_protocol;
6211 			i = IPSEC_FRAG_HASH_FUNC(fep->itpfe_id);
6212 		} else {
6213 			bcopy((in6_addr_t *)&ip6h->ip6_src,
6214 			    (in6_addr_t *)&fep->itpfe_src6,
6215 			    sizeof (struct in6_addr));
6216 			bcopy((in6_addr_t *)&ip6h->ip6_dst,
6217 			    (in6_addr_t *)&fep->itpfe_dst6,
6218 			    sizeof (struct in6_addr));
6219 			fep->itpfe_id = fraghdr->ip6f_ident;
6220 			fep->itpfe_proto = v6_proto;
6221 			i = IPSEC_FRAG_HASH_FUNC(fep->itpfe_id);
6222 		}
6223 		itpf_time = gethrestime_sec();
6224 		fep->itpfe_exp = itpf_time + IPSEC_FRAG_TTL_MAX + 1;
6225 		fep->itpfe_last = 0;
6226 		fep->itpfe_fraglist = NULL;
6227 		fep->itpfe_depth = 0;
6228 		fep->itpfe_next = (frag->itpf_ptr)[i];
6229 		(frag->itpf_ptr)[i] = fep;
6230 
6231 		if (frag->itpf_expire_hint > fep->itpfe_exp)
6232 			frag->itpf_expire_hint = fep->itpfe_exp;
6233 
6234 	}
6235 	freemsg(spare_mp);
6236 
6237 	/* Insert it in the frag list */
6238 	/* List is in order by starting offset of fragments */
6239 
6240 	prevmp = NULL;
6241 	for (nmp = fep->itpfe_fraglist; nmp; nmp = nmp->b_next) {
6242 		ipha_t *niph;
6243 		ipha_t *oniph;
6244 		ip6_t *nip6h;
6245 		ip6_pkt_t nipp;
6246 		ip6_frag_t *nfraghdr;
6247 		uint16_t nip6_hdr_length;
6248 		uint8_t *nv6_proto_p;
6249 		int nfirstbyte, nlastbyte;
6250 		char *data, *ndata;
6251 		mblk_t *nspare_mp = NULL;
6252 		mblk_t *ndata_mp = (inbound ? nmp->b_cont : nmp);
6253 		int hdr_len;
6254 
6255 		oniph  = (ipha_t *)mp->b_rptr;
6256 		nip6h = NULL;
6257 		niph = NULL;
6258 
6259 		/*
6260 		 * Determine outer header type and length and set
6261 		 * pointers appropriately
6262 		 */
6263 
6264 		if (IPH_HDR_VERSION(oniph) == IPV4_VERSION) {
6265 			hdr_len = ((outer_hdr_len != 0) ?
6266 			    IPH_HDR_LENGTH(oiph) : 0);
6267 			niph = (ipha_t *)(ndata_mp->b_rptr + hdr_len);
6268 		} else {
6269 			ASSERT(IPH_HDR_VERSION(oniph) == IPV6_VERSION);
6270 			if ((nspare_mp = msgpullup(ndata_mp, -1)) == NULL) {
6271 				mutex_exit(&frag->itpf_lock);
6272 				ip_drop_packet_chain(nmp, inbound, NULL, NULL,
6273 				    &ipdrops_spd_nomem, &spd_dropper);
6274 				return (NULL);
6275 			}
6276 			nip6h = (ip6_t *)nspare_mp->b_rptr;
6277 			(void) ip_hdr_length_nexthdr_v6(nspare_mp, nip6h,
6278 			    &nip6_hdr_length, &v6_proto_p);
6279 			hdr_len = ((outer_hdr_len != 0) ? nip6_hdr_length : 0);
6280 		}
6281 
6282 		/*
6283 		 * Determine inner header type and length and set
6284 		 * pointers appropriately
6285 		 */
6286 
6287 		if (is_v4) {
6288 			if (niph == NULL) {
6289 				/* Was v6 outer */
6290 				niph = (ipha_t *)(ndata_mp->b_rptr + hdr_len);
6291 			}
6292 			nfirstbyte = V4_FRAG_OFFSET(niph);
6293 			nlastbyte = nfirstbyte + ntohs(niph->ipha_length) -
6294 			    IPH_HDR_LENGTH(niph);
6295 		} else {
6296 			if ((nspare_mp == NULL) &&
6297 			    ((nspare_mp = msgpullup(ndata_mp, -1)) == NULL)) {
6298 				mutex_exit(&frag->itpf_lock);
6299 				ip_drop_packet_chain(nmp, inbound, NULL, NULL,
6300 				    &ipdrops_spd_nomem, &spd_dropper);
6301 				return (NULL);
6302 			}
6303 			nip6h = (ip6_t *)(nspare_mp->b_rptr + hdr_len);
6304 			if (!ip_hdr_length_nexthdr_v6(nspare_mp, nip6h,
6305 			    &nip6_hdr_length, &nv6_proto_p)) {
6306 				mutex_exit(&frag->itpf_lock);
6307 			    ip_drop_packet_chain(nmp, inbound, NULL, NULL,
6308 				&ipdrops_spd_malformed_frag, &spd_dropper);
6309 			    ipsec_freemsg_chain(nspare_mp);
6310 			    return (NULL);
6311 			}
6312 			bzero(&nipp, sizeof (nipp));
6313 			(void) ip_find_hdr_v6(nspare_mp, nip6h, &nipp, NULL);
6314 			nfraghdr = nipp.ipp_fraghdr;
6315 			nfirstbyte = ntohs(nfraghdr->ip6f_offlg &
6316 			    IP6F_OFF_MASK);
6317 			nlastbyte  = nfirstbyte + ntohs(nip6h->ip6_plen) +
6318 			    sizeof (ip6_t) - nip6_hdr_length;
6319 		}
6320 		ipsec_freemsg_chain(nspare_mp);
6321 
6322 		/* Check for overlapping fragments */
6323 		if (firstbyte >= nfirstbyte && firstbyte < nlastbyte) {
6324 			/*
6325 			 * Overlap Check:
6326 			 *  ~~~~---------		# Check if the newly
6327 			 * ~	ndata_mp|		# received fragment
6328 			 *  ~~~~---------		# overlaps with the
6329 			 *	 ---------~~~~~~	# current fragment.
6330 			 *	|    mp		~
6331 			 *	 ---------~~~~~~
6332 			 */
6333 			if (is_v4) {
6334 				data  = (char *)iph  + IPH_HDR_LENGTH(iph) +
6335 				    firstbyte - nfirstbyte;
6336 				ndata = (char *)niph + IPH_HDR_LENGTH(niph);
6337 			} else {
6338 				data  = (char *)ip6h  +
6339 				    nip6_hdr_length + firstbyte -
6340 				    nfirstbyte;
6341 				ndata = (char *)nip6h + nip6_hdr_length;
6342 			}
6343 			if (bcmp(data, ndata, MIN(lastbyte, nlastbyte)
6344 			    - firstbyte)) {
6345 				/* Overlapping data does not match */
6346 				(void) fragcache_delentry(i, fep, frag);
6347 				mutex_exit(&frag->itpf_lock);
6348 				ip_drop_packet(first_mp, inbound, NULL, NULL,
6349 				    &ipdrops_spd_overlap_frag, &spd_dropper);
6350 				return (NULL);
6351 			}
6352 			/* Part of defense for jolt2.c fragmentation attack */
6353 			if (firstbyte >= nfirstbyte && lastbyte <= nlastbyte) {
6354 				/*
6355 				 * Check for identical or subset fragments:
6356 				 *  ----------	    ~~~~--------~~~~~
6357 				 * |    nmp   | or  ~	   nmp	    ~
6358 				 *  ----------	    ~~~~--------~~~~~
6359 				 *  ----------		  ------
6360 				 * |	mp    |		 |  mp  |
6361 				 *  ----------		  ------
6362 				 */
6363 				mutex_exit(&frag->itpf_lock);
6364 				ip_drop_packet(first_mp, inbound, NULL, NULL,
6365 				    &ipdrops_spd_evil_frag, &spd_dropper);
6366 				return (NULL);
6367 			}
6368 
6369 		}
6370 
6371 		/* Correct location for this fragment? */
6372 		if (firstbyte <= nfirstbyte) {
6373 			/*
6374 			 * Check if the tail end of the new fragment overlaps
6375 			 * with the head of the current fragment.
6376 			 *	  --------~~~~~~~
6377 			 *	 |    nmp	~
6378 			 *	  --------~~~~~~~
6379 			 *  ~~~~~--------
6380 			 *  ~	mp	 |
6381 			 *  ~~~~~--------
6382 			 */
6383 			if (lastbyte > nfirstbyte) {
6384 				/* Fragments overlap */
6385 				data  = (char *)iph  + IPH_HDR_LENGTH(iph) +
6386 				    firstbyte - nfirstbyte;
6387 				ndata = (char *)niph + IPH_HDR_LENGTH(niph);
6388 				if (is_v4) {
6389 					data  = (char *)iph +
6390 					    IPH_HDR_LENGTH(iph) + firstbyte -
6391 					    nfirstbyte;
6392 					ndata = (char *)niph +
6393 					    IPH_HDR_LENGTH(niph);
6394 				} else {
6395 					data  = (char *)ip6h  +
6396 					    nip6_hdr_length + firstbyte -
6397 					    nfirstbyte;
6398 					ndata = (char *)nip6h + nip6_hdr_length;
6399 				}
6400 				if (bcmp(data, ndata, MIN(lastbyte, nlastbyte)
6401 				    - nfirstbyte)) {
6402 					/* Overlap mismatch */
6403 					(void) fragcache_delentry(i, fep, frag);
6404 					mutex_exit(&frag->itpf_lock);
6405 					ip_drop_packet(first_mp, inbound, NULL,
6406 					    NULL, &ipdrops_spd_overlap_frag,
6407 					    &spd_dropper);
6408 					return (NULL);
6409 				}
6410 			}
6411 
6412 			/*
6413 			 * Fragment does not illegally overlap and can now
6414 			 * be inserted into the chain
6415 			 */
6416 			break;
6417 		}
6418 
6419 		prevmp = nmp;
6420 	}
6421 	first_mp->b_next = nmp;
6422 
6423 	if (prevmp == NULL) {
6424 		fep->itpfe_fraglist = first_mp;
6425 	} else {
6426 		prevmp->b_next = first_mp;
6427 	}
6428 	if (last)
6429 		fep->itpfe_last = 1;
6430 
6431 	/* Part of defense for jolt2.c fragmentation attack */
6432 	if (++(fep->itpfe_depth) > IPSEC_MAX_FRAGS) {
6433 		(void) fragcache_delentry(i, fep, frag);
6434 		mutex_exit(&frag->itpf_lock);
6435 		ip_drop_packet(first_mp, inbound, NULL, NULL,
6436 		    &ipdrops_spd_max_frags, &spd_dropper);
6437 		return (NULL);
6438 	}
6439 
6440 	/* Check for complete packet */
6441 
6442 	if (!fep->itpfe_last) {
6443 		mutex_exit(&frag->itpf_lock);
6444 #ifdef FRAGCACHE_DEBUG
6445 		cmn_err(CE_WARN, "Fragment cached, not last.\n");
6446 #endif
6447 		return (NULL);
6448 	}
6449 
6450 #ifdef FRAGCACHE_DEBUG
6451 	cmn_err(CE_WARN, "Last fragment cached.\n");
6452 	cmn_err(CE_WARN, "mp = %p, first_mp = %p.\n", mp, first_mp);
6453 #endif
6454 
6455 	offset = 0;
6456 	for (mp = fep->itpfe_fraglist; mp; mp = mp->b_next) {
6457 		mblk_t *data_mp = (inbound ? mp->b_cont : mp);
6458 		int hdr_len;
6459 
6460 		oiph  = (ipha_t *)data_mp->b_rptr;
6461 		ip6h = NULL;
6462 		iph = NULL;
6463 
6464 		spare_mp = NULL;
6465 		if (IPH_HDR_VERSION(oiph) == IPV4_VERSION) {
6466 			hdr_len = ((outer_hdr_len != 0) ?
6467 			    IPH_HDR_LENGTH(oiph) : 0);
6468 			iph = (ipha_t *)(data_mp->b_rptr + hdr_len);
6469 		} else {
6470 			ASSERT(IPH_HDR_VERSION(oiph) == IPV6_VERSION);
6471 			if ((spare_mp = msgpullup(data_mp, -1)) == NULL) {
6472 				mutex_exit(&frag->itpf_lock);
6473 				ip_drop_packet_chain(mp, inbound, NULL, NULL,
6474 				    &ipdrops_spd_nomem, &spd_dropper);
6475 				return (NULL);
6476 			}
6477 			ip6h = (ip6_t *)spare_mp->b_rptr;
6478 			(void) ip_hdr_length_nexthdr_v6(spare_mp, ip6h,
6479 			    &ip6_hdr_length, &v6_proto_p);
6480 			hdr_len = ((outer_hdr_len != 0) ? ip6_hdr_length : 0);
6481 		}
6482 
6483 		/* Calculate current fragment start/end */
6484 		if (is_v4) {
6485 			if (iph == NULL) {
6486 				/* Was v6 outer */
6487 				iph = (ipha_t *)(data_mp->b_rptr + hdr_len);
6488 			}
6489 			firstbyte = V4_FRAG_OFFSET(iph);
6490 			lastbyte = firstbyte + ntohs(iph->ipha_length) -
6491 			    IPH_HDR_LENGTH(iph);
6492 		} else {
6493 			if ((spare_mp == NULL) &&
6494 				((spare_mp = msgpullup(data_mp, -1)) == NULL)) {
6495 				mutex_exit(&frag->itpf_lock);
6496 				ip_drop_packet_chain(mp, inbound, NULL, NULL,
6497 				    &ipdrops_spd_nomem, &spd_dropper);
6498 				return (NULL);
6499 			}
6500 			ip6h = (ip6_t *)(spare_mp->b_rptr + hdr_len);
6501 			if (!ip_hdr_length_nexthdr_v6(spare_mp, ip6h,
6502 			    &ip6_hdr_length, &v6_proto_p)) {
6503 				mutex_exit(&frag->itpf_lock);
6504 				ip_drop_packet_chain(mp, inbound, NULL, NULL,
6505 				    &ipdrops_spd_malformed_frag, &spd_dropper);
6506 				ipsec_freemsg_chain(spare_mp);
6507 				return (NULL);
6508 			}
6509 			v6_proto = *v6_proto_p;
6510 			bzero(&ipp, sizeof (ipp));
6511 			(void) ip_find_hdr_v6(spare_mp, ip6h, &ipp, NULL);
6512 			fraghdr = ipp.ipp_fraghdr;
6513 			firstbyte = ntohs(fraghdr->ip6f_offlg &
6514 			    IP6F_OFF_MASK);
6515 			lastbyte  = firstbyte + ntohs(ip6h->ip6_plen) +
6516 			    sizeof (ip6_t) - ip6_hdr_length;
6517 		}
6518 
6519 		/*
6520 		 * If this fragment is greater than current offset,
6521 		 * we have a missing fragment so return NULL
6522 		 */
6523 		if (firstbyte > offset) {
6524 			mutex_exit(&frag->itpf_lock);
6525 #ifdef FRAGCACHE_DEBUG
6526 			/*
6527 			 * Note, this can happen when the last frag
6528 			 * gets sent through because it is smaller
6529 			 * than the MTU.  It is not necessarily an
6530 			 * error condition.
6531 			 */
6532 			cmn_err(CE_WARN, "Frag greater than offset! : "
6533 			    "missing fragment: firstbyte = %d, offset = %d, "
6534 			    "mp = %p\n", firstbyte, offset, mp);
6535 #endif
6536 			ipsec_freemsg_chain(spare_mp);
6537 			return (NULL);
6538 		}
6539 
6540 		/*
6541 		 * If we are at the last fragment, we have the complete
6542 		 * packet, so rechain things and return it to caller
6543 		 * for processing
6544 		 */
6545 
6546 		if ((is_v4 && !V4_MORE_FRAGS(iph)) ||
6547 		    (!is_v4 && !(fraghdr->ip6f_offlg & IP6F_MORE_FRAG))) {
6548 			mp = fep->itpfe_fraglist;
6549 			fep->itpfe_fraglist = NULL;
6550 			(void) fragcache_delentry(i, fep, frag);
6551 			mutex_exit(&frag->itpf_lock);
6552 
6553 			if ((is_v4 && (firstbyte + ntohs(iph->ipha_length) >
6554 			    65535)) || (!is_v4 && (firstbyte +
6555 			    ntohs(ip6h->ip6_plen) > 65535))) {
6556 				/* It is an invalid "ping-o-death" packet */
6557 				/* Discard it */
6558 				ip_drop_packet_chain(mp, inbound, NULL, NULL,
6559 				    &ipdrops_spd_evil_frag, &spd_dropper);
6560 				ipsec_freemsg_chain(spare_mp);
6561 				return (NULL);
6562 			}
6563 #ifdef FRAGCACHE_DEBUG
6564 			cmn_err(CE_WARN, "Fragcache returning mp = %p, "
6565 				"mp->b_next = %p", mp, mp->b_next);
6566 #endif
6567 			ipsec_freemsg_chain(spare_mp);
6568 			/*
6569 			 * For inbound case, mp has ipsec_in b_next'd chain
6570 			 * For outbound case, it is just data mp chain
6571 			 */
6572 			return (mp);
6573 		}
6574 		ipsec_freemsg_chain(spare_mp);
6575 
6576 		/*
6577 		 * Update new ending offset if this
6578 		 * fragment extends the packet
6579 		 */
6580 		if (offset < lastbyte)
6581 			offset = lastbyte;
6582 	}
6583 
6584 	mutex_exit(&frag->itpf_lock);
6585 
6586 	/* Didn't find last fragment, so return NULL */
6587 	return (NULL);
6588 }
6589 
6590 static void
6591 ipsec_fragcache_clean(ipsec_fragcache_t *frag)
6592 {
6593 	ipsec_fragcache_entry_t *fep;
6594 	int i;
6595 	ipsec_fragcache_entry_t *earlyfep = NULL;
6596 	time_t itpf_time;
6597 	int earlyexp;
6598 	int earlyi = 0;
6599 
6600 	ASSERT(MUTEX_HELD(&frag->itpf_lock));
6601 
6602 	itpf_time = gethrestime_sec();
6603 	earlyexp = itpf_time + 10000;
6604 
6605 	for (i = 0; i < IPSEC_FRAG_HASH_SLOTS; i++) {
6606 	    fep = (frag->itpf_ptr)[i];
6607 	    while (fep) {
6608 		if (fep->itpfe_exp < itpf_time) {
6609 			/* found */
6610 			fep = fragcache_delentry(i, fep, frag);
6611 		} else {
6612 			if (fep->itpfe_exp < earlyexp) {
6613 				earlyfep = fep;
6614 				earlyexp = fep->itpfe_exp;
6615 				earlyi = i;
6616 			}
6617 			fep = fep->itpfe_next;
6618 		}
6619 	    }
6620 	}
6621 
6622 	frag->itpf_expire_hint = earlyexp;
6623 
6624 	/* if (!found) */
6625 	if (frag->itpf_freelist == NULL)
6626 		(void) fragcache_delentry(earlyi, earlyfep, frag);
6627 }
6628 
6629 static ipsec_fragcache_entry_t *
6630 fragcache_delentry(int slot, ipsec_fragcache_entry_t *fep,
6631     ipsec_fragcache_t *frag)
6632 {
6633 	ipsec_fragcache_entry_t *targp;
6634 	ipsec_fragcache_entry_t *nextp = fep->itpfe_next;
6635 
6636 	ASSERT(MUTEX_HELD(&frag->itpf_lock));
6637 
6638 	/* Free up any fragment list still in cache entry */
6639 	ipsec_freemsg_chain(fep->itpfe_fraglist);
6640 
6641 	targp = (frag->itpf_ptr)[slot];
6642 	ASSERT(targp != 0);
6643 
6644 	if (targp == fep) {
6645 		/* unlink from head of hash chain */
6646 		(frag->itpf_ptr)[slot] = nextp;
6647 		/* link into free list */
6648 		fep->itpfe_next = frag->itpf_freelist;
6649 		frag->itpf_freelist = fep;
6650 		return (nextp);
6651 	}
6652 
6653 	/* maybe should use double linked list to make update faster */
6654 	/* must be past front of chain */
6655 	while (targp) {
6656 	    if (targp->itpfe_next == fep) {
6657 		    /* unlink from hash chain */
6658 		    targp->itpfe_next = nextp;
6659 		    /* link into free list */
6660 		    fep->itpfe_next = frag->itpf_freelist;
6661 		    frag->itpf_freelist = fep;
6662 		    return (nextp);
6663 	    }
6664 	    targp = targp->itpfe_next;
6665 	    ASSERT(targp != 0);
6666 	}
6667 	/* NOTREACHED */
6668 	return (NULL);
6669 }
6670