xref: /illumos-gate/usr/src/uts/common/inet/ip/spd.c (revision dfc11533)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  * Copyright (c) 2012 Nexenta Systems, Inc. All rights reserved.
25  * Copyright (c) 2016 by Delphix. All rights reserved.
26  */
27 
28 /*
29  * IPsec Security Policy Database.
30  *
31  * This module maintains the SPD and provides routines used by ip and ip6
32  * to apply IPsec policy to inbound and outbound datagrams.
33  */
34 
35 #include <sys/types.h>
36 #include <sys/stream.h>
37 #include <sys/stropts.h>
38 #include <sys/sysmacros.h>
39 #include <sys/strsubr.h>
40 #include <sys/strsun.h>
41 #include <sys/strlog.h>
42 #include <sys/strsun.h>
43 #include <sys/cmn_err.h>
44 #include <sys/zone.h>
45 
46 #include <sys/systm.h>
47 #include <sys/param.h>
48 #include <sys/kmem.h>
49 #include <sys/ddi.h>
50 
51 #include <sys/crypto/api.h>
52 
53 #include <inet/common.h>
54 #include <inet/mi.h>
55 
56 #include <netinet/ip6.h>
57 #include <netinet/icmp6.h>
58 #include <netinet/udp.h>
59 
60 #include <inet/ip.h>
61 #include <inet/ip6.h>
62 
63 #include <net/pfkeyv2.h>
64 #include <net/pfpolicy.h>
65 #include <inet/sadb.h>
66 #include <inet/ipsec_impl.h>
67 
68 #include <inet/ip_impl.h>	/* For IP_MOD_ID */
69 
70 #include <inet/ipsecah.h>
71 #include <inet/ipsecesp.h>
72 #include <inet/ipdrop.h>
73 #include <inet/ipclassifier.h>
74 #include <inet/iptun.h>
75 #include <inet/iptun/iptun_impl.h>
76 
77 static void ipsec_update_present_flags(ipsec_stack_t *);
78 static ipsec_act_t *ipsec_act_wildcard_expand(ipsec_act_t *, uint_t *,
79     netstack_t *);
80 static mblk_t *ipsec_check_ipsecin_policy(mblk_t *, ipsec_policy_t *,
81     ipha_t *, ip6_t *, uint64_t, ip_recv_attr_t *, netstack_t *);
82 static void ipsec_action_free_table(ipsec_action_t *);
83 static void ipsec_action_reclaim(void *);
84 static void ipsec_action_reclaim_stack(ipsec_stack_t *);
85 static void ipsid_init(netstack_t *);
86 static void ipsid_fini(netstack_t *);
87 
88 /* sel_flags values for ipsec_init_inbound_sel(). */
89 #define	SEL_NONE	0x0000
90 #define	SEL_PORT_POLICY	0x0001
91 #define	SEL_IS_ICMP	0x0002
92 #define	SEL_TUNNEL_MODE	0x0004
93 #define	SEL_POST_FRAG	0x0008
94 
95 /* Return values for ipsec_init_inbound_sel(). */
96 typedef enum { SELRET_NOMEM, SELRET_BADPKT, SELRET_SUCCESS, SELRET_TUNFRAG}
97     selret_t;
98 
99 static selret_t ipsec_init_inbound_sel(ipsec_selector_t *, mblk_t *,
100     ipha_t *, ip6_t *, uint8_t);
101 
102 static boolean_t ipsec_check_ipsecin_action(ip_recv_attr_t *, mblk_t *,
103     struct ipsec_action_s *, ipha_t *ipha, ip6_t *ip6h, const char **,
104     kstat_named_t **, netstack_t *);
105 static void ipsec_unregister_prov_update(void);
106 static void ipsec_prov_update_callback_stack(uint32_t, void *, netstack_t *);
107 static boolean_t ipsec_compare_action(ipsec_policy_t *, ipsec_policy_t *);
108 static uint32_t selector_hash(ipsec_selector_t *, ipsec_policy_root_t *);
109 static boolean_t ipsec_kstat_init(ipsec_stack_t *);
110 static void ipsec_kstat_destroy(ipsec_stack_t *);
111 static int ipsec_free_tables(ipsec_stack_t *);
112 static int tunnel_compare(const void *, const void *);
113 static void ipsec_freemsg_chain(mblk_t *);
114 static void ip_drop_packet_chain(mblk_t *, boolean_t, ill_t *,
115     struct kstat_named *, ipdropper_t *);
116 static boolean_t ipsec_kstat_init(ipsec_stack_t *);
117 static void ipsec_kstat_destroy(ipsec_stack_t *);
118 static int ipsec_free_tables(ipsec_stack_t *);
119 static int tunnel_compare(const void *, const void *);
120 static void ipsec_freemsg_chain(mblk_t *);
121 
122 /*
123  * Selector hash table is statically sized at module load time.
124  * we default to 251 buckets, which is the largest prime number under 255
125  */
126 
127 #define	IPSEC_SPDHASH_DEFAULT 251
128 
129 /* SPD hash-size tunable per tunnel. */
130 #define	TUN_SPDHASH_DEFAULT 5
131 
132 uint32_t ipsec_spd_hashsize;
133 uint32_t tun_spd_hashsize;
134 
135 #define	IPSEC_SEL_NOHASH ((uint32_t)(~0))
136 
137 /*
138  * Handle global across all stack instances
139  */
140 static crypto_notify_handle_t prov_update_handle = NULL;
141 
142 static kmem_cache_t *ipsec_action_cache;
143 static kmem_cache_t *ipsec_sel_cache;
144 static kmem_cache_t *ipsec_pol_cache;
145 
146 /* Frag cache prototypes */
147 static void ipsec_fragcache_clean(ipsec_fragcache_t *, ipsec_stack_t *);
148 static ipsec_fragcache_entry_t *fragcache_delentry(int,
149     ipsec_fragcache_entry_t *, ipsec_fragcache_t *, ipsec_stack_t *);
150 boolean_t ipsec_fragcache_init(ipsec_fragcache_t *);
151 void ipsec_fragcache_uninit(ipsec_fragcache_t *, ipsec_stack_t *ipss);
152 mblk_t *ipsec_fragcache_add(ipsec_fragcache_t *, mblk_t *, mblk_t *,
153     int, ipsec_stack_t *);
154 
155 int ipsec_hdr_pullup_needed = 0;
156 int ipsec_weird_null_inbound_policy = 0;
157 
158 #define	ALGBITS_ROUND_DOWN(x, align)	(((x)/(align))*(align))
159 #define	ALGBITS_ROUND_UP(x, align)	ALGBITS_ROUND_DOWN((x)+(align)-1, align)
160 
161 /*
162  * Inbound traffic should have matching identities for both SA's.
163  */
164 
165 #define	SA_IDS_MATCH(sa1, sa2) 						\
166 	(((sa1) == NULL) || ((sa2) == NULL) ||				\
167 	(((sa1)->ipsa_src_cid == (sa2)->ipsa_src_cid) &&		\
168 	    (((sa1)->ipsa_dst_cid == (sa2)->ipsa_dst_cid))))
169 
170 /*
171  * IPv6 Fragments
172  */
173 #define	IS_V6_FRAGMENT(ipp)	(ipp.ipp_fields & IPPF_FRAGHDR)
174 
175 /*
176  * Policy failure messages.
177  */
178 static char *ipsec_policy_failure_msgs[] = {
179 
180 	/* IPSEC_POLICY_NOT_NEEDED */
181 	"%s: Dropping the datagram because the incoming packet "
182 	"is %s, but the recipient expects clear; Source %s, "
183 	"Destination %s.\n",
184 
185 	/* IPSEC_POLICY_MISMATCH */
186 	"%s: Policy Failure for the incoming packet (%s); Source %s, "
187 	"Destination %s.\n",
188 
189 	/* IPSEC_POLICY_AUTH_NOT_NEEDED	*/
190 	"%s: Authentication present while not expected in the "
191 	"incoming %s packet; Source %s, Destination %s.\n",
192 
193 	/* IPSEC_POLICY_ENCR_NOT_NEEDED */
194 	"%s: Encryption present while not expected in the "
195 	"incoming %s packet; Source %s, Destination %s.\n",
196 
197 	/* IPSEC_POLICY_SE_NOT_NEEDED */
198 	"%s: Self-Encapsulation present while not expected in the "
199 	"incoming %s packet; Source %s, Destination %s.\n",
200 };
201 
202 /*
203  * General overviews:
204  *
205  * Locking:
206  *
207  *	All of the system policy structures are protected by a single
208  *	rwlock.  These structures are threaded in a
209  *	fairly complex fashion and are not expected to change on a
210  *	regular basis, so this should not cause scaling/contention
211  *	problems.  As a result, policy checks should (hopefully) be MT-hot.
212  *
213  * Allocation policy:
214  *
215  *	We use custom kmem cache types for the various
216  *	bits & pieces of the policy data structures.  All allocations
217  *	use KM_NOSLEEP instead of KM_SLEEP for policy allocation.  The
218  *	policy table is of potentially unbounded size, so we don't
219  *	want to provide a way to hog all system memory with policy
220  *	entries..
221  */
222 
223 /* Convenient functions for freeing or dropping a b_next linked mblk chain */
224 
225 /* Free all messages in an mblk chain */
226 static void
227 ipsec_freemsg_chain(mblk_t *mp)
228 {
229 	mblk_t *mpnext;
230 	while (mp != NULL) {
231 		ASSERT(mp->b_prev == NULL);
232 		mpnext = mp->b_next;
233 		mp->b_next = NULL;
234 		freemsg(mp);
235 		mp = mpnext;
236 	}
237 }
238 
239 /*
240  * ip_drop all messages in an mblk chain
241  * Can handle a b_next chain of ip_recv_attr_t mblks, or just a b_next chain
242  * of data.
243  */
244 static void
245 ip_drop_packet_chain(mblk_t *mp, boolean_t inbound, ill_t *ill,
246     struct kstat_named *counter, ipdropper_t *who_called)
247 {
248 	mblk_t *mpnext;
249 	while (mp != NULL) {
250 		ASSERT(mp->b_prev == NULL);
251 		mpnext = mp->b_next;
252 		mp->b_next = NULL;
253 		if (ip_recv_attr_is_mblk(mp))
254 			mp = ip_recv_attr_free_mblk(mp);
255 		ip_drop_packet(mp, inbound, ill, counter, who_called);
256 		mp = mpnext;
257 	}
258 }
259 
260 /*
261  * AVL tree comparison function.
262  * the in-kernel avl assumes unique keys for all objects.
263  * Since sometimes policy will duplicate rules, we may insert
264  * multiple rules with the same rule id, so we need a tie-breaker.
265  */
266 static int
267 ipsec_policy_cmpbyid(const void *a, const void *b)
268 {
269 	const ipsec_policy_t *ipa, *ipb;
270 	uint64_t idxa, idxb;
271 
272 	ipa = (const ipsec_policy_t *)a;
273 	ipb = (const ipsec_policy_t *)b;
274 	idxa = ipa->ipsp_index;
275 	idxb = ipb->ipsp_index;
276 
277 	if (idxa < idxb)
278 		return (-1);
279 	if (idxa > idxb)
280 		return (1);
281 	/*
282 	 * Tie-breaker #1: All installed policy rules have a non-NULL
283 	 * ipsl_sel (selector set), so an entry with a NULL ipsp_sel is not
284 	 * actually in-tree but rather a template node being used in
285 	 * an avl_find query; see ipsec_policy_delete().  This gives us
286 	 * a placeholder in the ordering just before the first entry with
287 	 * a key >= the one we're looking for, so we can walk forward from
288 	 * that point to get the remaining entries with the same id.
289 	 */
290 	if ((ipa->ipsp_sel == NULL) && (ipb->ipsp_sel != NULL))
291 		return (-1);
292 	if ((ipb->ipsp_sel == NULL) && (ipa->ipsp_sel != NULL))
293 		return (1);
294 	/*
295 	 * At most one of the arguments to the comparison should have a
296 	 * NULL selector pointer; if not, the tree is broken.
297 	 */
298 	ASSERT(ipa->ipsp_sel != NULL);
299 	ASSERT(ipb->ipsp_sel != NULL);
300 	/*
301 	 * Tie-breaker #2: use the virtual address of the policy node
302 	 * to arbitrarily break ties.  Since we use the new tree node in
303 	 * the avl_find() in ipsec_insert_always, the new node will be
304 	 * inserted into the tree in the right place in the sequence.
305 	 */
306 	if (ipa < ipb)
307 		return (-1);
308 	if (ipa > ipb)
309 		return (1);
310 	return (0);
311 }
312 
313 /*
314  * Free what ipsec_alloc_table allocated.
315  */
316 void
317 ipsec_polhead_free_table(ipsec_policy_head_t *iph)
318 {
319 	int dir;
320 	int i;
321 
322 	for (dir = 0; dir < IPSEC_NTYPES; dir++) {
323 		ipsec_policy_root_t *ipr = &iph->iph_root[dir];
324 
325 		if (ipr->ipr_hash == NULL)
326 			continue;
327 
328 		for (i = 0; i < ipr->ipr_nchains; i++) {
329 			ASSERT(ipr->ipr_hash[i].hash_head == NULL);
330 		}
331 		kmem_free(ipr->ipr_hash, ipr->ipr_nchains *
332 		    sizeof (ipsec_policy_hash_t));
333 		ipr->ipr_hash = NULL;
334 	}
335 }
336 
337 void
338 ipsec_polhead_destroy(ipsec_policy_head_t *iph)
339 {
340 	int dir;
341 
342 	avl_destroy(&iph->iph_rulebyid);
343 	rw_destroy(&iph->iph_lock);
344 
345 	for (dir = 0; dir < IPSEC_NTYPES; dir++) {
346 		ipsec_policy_root_t *ipr = &iph->iph_root[dir];
347 		int chain;
348 
349 		for (chain = 0; chain < ipr->ipr_nchains; chain++)
350 			mutex_destroy(&(ipr->ipr_hash[chain].hash_lock));
351 
352 	}
353 	ipsec_polhead_free_table(iph);
354 }
355 
356 /*
357  * Free the IPsec stack instance.
358  */
359 /* ARGSUSED */
360 static void
361 ipsec_stack_fini(netstackid_t stackid, void *arg)
362 {
363 	ipsec_stack_t	*ipss = (ipsec_stack_t *)arg;
364 	void *cookie;
365 	ipsec_tun_pol_t *node;
366 	netstack_t	*ns = ipss->ipsec_netstack;
367 	int		i;
368 	ipsec_algtype_t	algtype;
369 
370 	ipsec_loader_destroy(ipss);
371 
372 	rw_enter(&ipss->ipsec_tunnel_policy_lock, RW_WRITER);
373 	/*
374 	 * It's possible we can just ASSERT() the tree is empty.  After all,
375 	 * we aren't called until IP is ready to unload (and presumably all
376 	 * tunnels have been unplumbed).  But we'll play it safe for now, the
377 	 * loop will just exit immediately if it's empty.
378 	 */
379 	cookie = NULL;
380 	while ((node = (ipsec_tun_pol_t *)
381 	    avl_destroy_nodes(&ipss->ipsec_tunnel_policies,
382 	    &cookie)) != NULL) {
383 		ITP_REFRELE(node, ns);
384 	}
385 	avl_destroy(&ipss->ipsec_tunnel_policies);
386 	rw_exit(&ipss->ipsec_tunnel_policy_lock);
387 	rw_destroy(&ipss->ipsec_tunnel_policy_lock);
388 
389 	ipsec_config_flush(ns);
390 
391 	ipsec_kstat_destroy(ipss);
392 
393 	ip_drop_unregister(&ipss->ipsec_dropper);
394 
395 	ip_drop_unregister(&ipss->ipsec_spd_dropper);
396 	ip_drop_destroy(ipss);
397 	/*
398 	 * Globals start with ref == 1 to prevent IPPH_REFRELE() from
399 	 * attempting to free them, hence they should have 1 now.
400 	 */
401 	ipsec_polhead_destroy(&ipss->ipsec_system_policy);
402 	ASSERT(ipss->ipsec_system_policy.iph_refs == 1);
403 	ipsec_polhead_destroy(&ipss->ipsec_inactive_policy);
404 	ASSERT(ipss->ipsec_inactive_policy.iph_refs == 1);
405 
406 	for (i = 0; i < IPSEC_ACTION_HASH_SIZE; i++) {
407 		ipsec_action_free_table(ipss->ipsec_action_hash[i].hash_head);
408 		ipss->ipsec_action_hash[i].hash_head = NULL;
409 		mutex_destroy(&(ipss->ipsec_action_hash[i].hash_lock));
410 	}
411 
412 	for (i = 0; i < ipss->ipsec_spd_hashsize; i++) {
413 		ASSERT(ipss->ipsec_sel_hash[i].hash_head == NULL);
414 		mutex_destroy(&(ipss->ipsec_sel_hash[i].hash_lock));
415 	}
416 
417 	rw_enter(&ipss->ipsec_alg_lock, RW_WRITER);
418 	for (algtype = 0; algtype < IPSEC_NALGTYPES; algtype ++) {
419 		int nalgs = ipss->ipsec_nalgs[algtype];
420 
421 		for (i = 0; i < nalgs; i++) {
422 			if (ipss->ipsec_alglists[algtype][i] != NULL)
423 				ipsec_alg_unreg(algtype, i, ns);
424 		}
425 	}
426 	rw_exit(&ipss->ipsec_alg_lock);
427 	rw_destroy(&ipss->ipsec_alg_lock);
428 
429 	ipsid_gc(ns);
430 	ipsid_fini(ns);
431 
432 	(void) ipsec_free_tables(ipss);
433 	kmem_free(ipss, sizeof (*ipss));
434 }
435 
436 void
437 ipsec_policy_g_destroy(void)
438 {
439 	kmem_cache_destroy(ipsec_action_cache);
440 	kmem_cache_destroy(ipsec_sel_cache);
441 	kmem_cache_destroy(ipsec_pol_cache);
442 
443 	ipsec_unregister_prov_update();
444 
445 	netstack_unregister(NS_IPSEC);
446 }
447 
448 
449 /*
450  * Free what ipsec_alloc_tables allocated.
451  * Called when table allocation fails to free the table.
452  */
453 static int
454 ipsec_free_tables(ipsec_stack_t *ipss)
455 {
456 	int i;
457 
458 	if (ipss->ipsec_sel_hash != NULL) {
459 		for (i = 0; i < ipss->ipsec_spd_hashsize; i++) {
460 			ASSERT(ipss->ipsec_sel_hash[i].hash_head == NULL);
461 		}
462 		kmem_free(ipss->ipsec_sel_hash, ipss->ipsec_spd_hashsize *
463 		    sizeof (*ipss->ipsec_sel_hash));
464 		ipss->ipsec_sel_hash = NULL;
465 		ipss->ipsec_spd_hashsize = 0;
466 	}
467 	ipsec_polhead_free_table(&ipss->ipsec_system_policy);
468 	ipsec_polhead_free_table(&ipss->ipsec_inactive_policy);
469 
470 	return (ENOMEM);
471 }
472 
473 /*
474  * Attempt to allocate the tables in a single policy head.
475  * Return nonzero on failure after cleaning up any work in progress.
476  */
477 int
478 ipsec_alloc_table(ipsec_policy_head_t *iph, int nchains, int kmflag,
479     boolean_t global_cleanup, netstack_t *ns)
480 {
481 	int dir;
482 
483 	for (dir = 0; dir < IPSEC_NTYPES; dir++) {
484 		ipsec_policy_root_t *ipr = &iph->iph_root[dir];
485 
486 		ipr->ipr_nchains = nchains;
487 		ipr->ipr_hash = kmem_zalloc(nchains *
488 		    sizeof (ipsec_policy_hash_t), kmflag);
489 		if (ipr->ipr_hash == NULL)
490 			return (global_cleanup ?
491 			    ipsec_free_tables(ns->netstack_ipsec) :
492 			    ENOMEM);
493 	}
494 	return (0);
495 }
496 
497 /*
498  * Attempt to allocate the various tables.  Return nonzero on failure
499  * after cleaning up any work in progress.
500  */
501 static int
502 ipsec_alloc_tables(int kmflag, netstack_t *ns)
503 {
504 	int error;
505 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
506 
507 	error = ipsec_alloc_table(&ipss->ipsec_system_policy,
508 	    ipss->ipsec_spd_hashsize, kmflag, B_TRUE, ns);
509 	if (error != 0)
510 		return (error);
511 
512 	error = ipsec_alloc_table(&ipss->ipsec_inactive_policy,
513 	    ipss->ipsec_spd_hashsize, kmflag, B_TRUE, ns);
514 	if (error != 0)
515 		return (error);
516 
517 	ipss->ipsec_sel_hash = kmem_zalloc(ipss->ipsec_spd_hashsize *
518 	    sizeof (*ipss->ipsec_sel_hash), kmflag);
519 
520 	if (ipss->ipsec_sel_hash == NULL)
521 		return (ipsec_free_tables(ipss));
522 
523 	return (0);
524 }
525 
526 /*
527  * After table allocation, initialize a policy head.
528  */
529 void
530 ipsec_polhead_init(ipsec_policy_head_t *iph, int nchains)
531 {
532 	int dir, chain;
533 
534 	rw_init(&iph->iph_lock, NULL, RW_DEFAULT, NULL);
535 	avl_create(&iph->iph_rulebyid, ipsec_policy_cmpbyid,
536 	    sizeof (ipsec_policy_t), offsetof(ipsec_policy_t, ipsp_byid));
537 
538 	for (dir = 0; dir < IPSEC_NTYPES; dir++) {
539 		ipsec_policy_root_t *ipr = &iph->iph_root[dir];
540 		ipr->ipr_nchains = nchains;
541 
542 		for (chain = 0; chain < nchains; chain++) {
543 			mutex_init(&(ipr->ipr_hash[chain].hash_lock),
544 			    NULL, MUTEX_DEFAULT, NULL);
545 		}
546 	}
547 }
548 
549 static boolean_t
550 ipsec_kstat_init(ipsec_stack_t *ipss)
551 {
552 	ipss->ipsec_ksp = kstat_create_netstack("ip", 0, "ipsec_stat", "net",
553 	    KSTAT_TYPE_NAMED, sizeof (ipsec_kstats_t) / sizeof (kstat_named_t),
554 	    KSTAT_FLAG_PERSISTENT, ipss->ipsec_netstack->netstack_stackid);
555 
556 	if (ipss->ipsec_ksp == NULL || ipss->ipsec_ksp->ks_data == NULL)
557 		return (B_FALSE);
558 
559 	ipss->ipsec_kstats = ipss->ipsec_ksp->ks_data;
560 
561 #define	KI(x) kstat_named_init(&ipss->ipsec_kstats->x, #x, KSTAT_DATA_UINT64)
562 	KI(esp_stat_in_requests);
563 	KI(esp_stat_in_discards);
564 	KI(esp_stat_lookup_failure);
565 	KI(ah_stat_in_requests);
566 	KI(ah_stat_in_discards);
567 	KI(ah_stat_lookup_failure);
568 	KI(sadb_acquire_maxpackets);
569 	KI(sadb_acquire_qhiwater);
570 #undef KI
571 
572 	kstat_install(ipss->ipsec_ksp);
573 	return (B_TRUE);
574 }
575 
576 static void
577 ipsec_kstat_destroy(ipsec_stack_t *ipss)
578 {
579 	kstat_delete_netstack(ipss->ipsec_ksp,
580 	    ipss->ipsec_netstack->netstack_stackid);
581 	ipss->ipsec_kstats = NULL;
582 
583 }
584 
585 /*
586  * Initialize the IPsec stack instance.
587  */
588 /* ARGSUSED */
589 static void *
590 ipsec_stack_init(netstackid_t stackid, netstack_t *ns)
591 {
592 	ipsec_stack_t	*ipss;
593 	int i;
594 
595 	ipss = (ipsec_stack_t *)kmem_zalloc(sizeof (*ipss), KM_SLEEP);
596 	ipss->ipsec_netstack = ns;
597 
598 	/*
599 	 * FIXME: netstack_ipsec is used by some of the routines we call
600 	 * below, but it isn't set until this routine returns.
601 	 * Either we introduce optional xxx_stack_alloc() functions
602 	 * that will be called by the netstack framework before xxx_stack_init,
603 	 * or we switch spd.c and sadb.c to operate on ipsec_stack_t
604 	 * (latter has some include file order issues for sadb.h, but makes
605 	 * sense if we merge some of the ipsec related stack_t's together.
606 	 */
607 	ns->netstack_ipsec = ipss;
608 
609 	/*
610 	 * Make two attempts to allocate policy hash tables; try it at
611 	 * the "preferred" size (may be set in /etc/system) first,
612 	 * then fall back to the default size.
613 	 */
614 	ipss->ipsec_spd_hashsize = (ipsec_spd_hashsize == 0) ?
615 	    IPSEC_SPDHASH_DEFAULT : ipsec_spd_hashsize;
616 
617 	if (ipsec_alloc_tables(KM_NOSLEEP, ns) != 0) {
618 		cmn_err(CE_WARN,
619 		    "Unable to allocate %d entry IPsec policy hash table",
620 		    ipss->ipsec_spd_hashsize);
621 		ipss->ipsec_spd_hashsize = IPSEC_SPDHASH_DEFAULT;
622 		cmn_err(CE_WARN, "Falling back to %d entries",
623 		    ipss->ipsec_spd_hashsize);
624 		(void) ipsec_alloc_tables(KM_SLEEP, ns);
625 	}
626 
627 	/* Just set a default for tunnels. */
628 	ipss->ipsec_tun_spd_hashsize = (tun_spd_hashsize == 0) ?
629 	    TUN_SPDHASH_DEFAULT : tun_spd_hashsize;
630 
631 	ipsid_init(ns);
632 	/*
633 	 * Globals need ref == 1 to prevent IPPH_REFRELE() from attempting
634 	 * to free them.
635 	 */
636 	ipss->ipsec_system_policy.iph_refs = 1;
637 	ipss->ipsec_inactive_policy.iph_refs = 1;
638 	ipsec_polhead_init(&ipss->ipsec_system_policy,
639 	    ipss->ipsec_spd_hashsize);
640 	ipsec_polhead_init(&ipss->ipsec_inactive_policy,
641 	    ipss->ipsec_spd_hashsize);
642 	rw_init(&ipss->ipsec_tunnel_policy_lock, NULL, RW_DEFAULT, NULL);
643 	avl_create(&ipss->ipsec_tunnel_policies, tunnel_compare,
644 	    sizeof (ipsec_tun_pol_t), 0);
645 
646 	ipss->ipsec_next_policy_index = 1;
647 
648 	rw_init(&ipss->ipsec_system_policy.iph_lock, NULL, RW_DEFAULT, NULL);
649 	rw_init(&ipss->ipsec_inactive_policy.iph_lock, NULL, RW_DEFAULT, NULL);
650 
651 	for (i = 0; i < IPSEC_ACTION_HASH_SIZE; i++)
652 		mutex_init(&(ipss->ipsec_action_hash[i].hash_lock),
653 		    NULL, MUTEX_DEFAULT, NULL);
654 
655 	for (i = 0; i < ipss->ipsec_spd_hashsize; i++)
656 		mutex_init(&(ipss->ipsec_sel_hash[i].hash_lock),
657 		    NULL, MUTEX_DEFAULT, NULL);
658 
659 	rw_init(&ipss->ipsec_alg_lock, NULL, RW_DEFAULT, NULL);
660 	for (i = 0; i < IPSEC_NALGTYPES; i++) {
661 		ipss->ipsec_nalgs[i] = 0;
662 	}
663 
664 	ip_drop_init(ipss);
665 	ip_drop_register(&ipss->ipsec_spd_dropper, "IPsec SPD");
666 
667 	/* IP's IPsec code calls the packet dropper */
668 	ip_drop_register(&ipss->ipsec_dropper, "IP IPsec processing");
669 
670 	(void) ipsec_kstat_init(ipss);
671 
672 	ipsec_loader_init(ipss);
673 	ipsec_loader_start(ipss);
674 
675 	return (ipss);
676 }
677 
678 /* Global across all stack instances */
679 void
680 ipsec_policy_g_init(void)
681 {
682 	ipsec_action_cache = kmem_cache_create("ipsec_actions",
683 	    sizeof (ipsec_action_t), _POINTER_ALIGNMENT, NULL, NULL,
684 	    ipsec_action_reclaim, NULL, NULL, 0);
685 	ipsec_sel_cache = kmem_cache_create("ipsec_selectors",
686 	    sizeof (ipsec_sel_t), _POINTER_ALIGNMENT, NULL, NULL,
687 	    NULL, NULL, NULL, 0);
688 	ipsec_pol_cache = kmem_cache_create("ipsec_policy",
689 	    sizeof (ipsec_policy_t), _POINTER_ALIGNMENT, NULL, NULL,
690 	    NULL, NULL, NULL, 0);
691 
692 	/*
693 	 * We want to be informed each time a stack is created or
694 	 * destroyed in the kernel, so we can maintain the
695 	 * set of ipsec_stack_t's.
696 	 */
697 	netstack_register(NS_IPSEC, ipsec_stack_init, NULL, ipsec_stack_fini);
698 }
699 
700 /*
701  * Sort algorithm lists.
702  *
703  * I may need to split this based on
704  * authentication/encryption, and I may wish to have an administrator
705  * configure this list.  Hold on to some NDD variables...
706  *
707  * XXX For now, sort on minimum key size (GAG!).  While minimum key size is
708  * not the ideal metric, it's the only quantifiable measure available.
709  * We need a better metric for sorting algorithms by preference.
710  */
711 static void
712 alg_insert_sortlist(enum ipsec_algtype at, uint8_t algid, netstack_t *ns)
713 {
714 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
715 	ipsec_alginfo_t *ai = ipss->ipsec_alglists[at][algid];
716 	uint8_t holder, swap;
717 	uint_t i;
718 	uint_t count = ipss->ipsec_nalgs[at];
719 	ASSERT(ai != NULL);
720 	ASSERT(algid == ai->alg_id);
721 
722 	ASSERT(RW_WRITE_HELD(&ipss->ipsec_alg_lock));
723 
724 	holder = algid;
725 
726 	for (i = 0; i < count - 1; i++) {
727 		ipsec_alginfo_t *alt;
728 
729 		alt = ipss->ipsec_alglists[at][ipss->ipsec_sortlist[at][i]];
730 		/*
731 		 * If you want to give precedence to newly added algs,
732 		 * add the = in the > comparison.
733 		 */
734 		if ((holder != algid) || (ai->alg_minbits > alt->alg_minbits)) {
735 			/* Swap sortlist[i] and holder. */
736 			swap = ipss->ipsec_sortlist[at][i];
737 			ipss->ipsec_sortlist[at][i] = holder;
738 			holder = swap;
739 			ai = alt;
740 		} /* Else just continue. */
741 	}
742 
743 	/* Store holder in last slot. */
744 	ipss->ipsec_sortlist[at][i] = holder;
745 }
746 
747 /*
748  * Remove an algorithm from a sorted algorithm list.
749  * This should be considerably easier, even with complex sorting.
750  */
751 static void
752 alg_remove_sortlist(enum ipsec_algtype at, uint8_t algid, netstack_t *ns)
753 {
754 	boolean_t copyback = B_FALSE;
755 	int i;
756 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
757 	int newcount = ipss->ipsec_nalgs[at];
758 
759 	ASSERT(RW_WRITE_HELD(&ipss->ipsec_alg_lock));
760 
761 	for (i = 0; i <= newcount; i++) {
762 		if (copyback) {
763 			ipss->ipsec_sortlist[at][i-1] =
764 			    ipss->ipsec_sortlist[at][i];
765 		} else if (ipss->ipsec_sortlist[at][i] == algid) {
766 			copyback = B_TRUE;
767 		}
768 	}
769 }
770 
771 /*
772  * Add the specified algorithm to the algorithm tables.
773  * Must be called while holding the algorithm table writer lock.
774  */
775 void
776 ipsec_alg_reg(ipsec_algtype_t algtype, ipsec_alginfo_t *alg, netstack_t *ns)
777 {
778 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
779 
780 	ASSERT(RW_WRITE_HELD(&ipss->ipsec_alg_lock));
781 
782 	ASSERT(ipss->ipsec_alglists[algtype][alg->alg_id] == NULL);
783 	ipsec_alg_fix_min_max(alg, algtype, ns);
784 	ipss->ipsec_alglists[algtype][alg->alg_id] = alg;
785 
786 	ipss->ipsec_nalgs[algtype]++;
787 	alg_insert_sortlist(algtype, alg->alg_id, ns);
788 }
789 
790 /*
791  * Remove the specified algorithm from the algorithm tables.
792  * Must be called while holding the algorithm table writer lock.
793  */
794 void
795 ipsec_alg_unreg(ipsec_algtype_t algtype, uint8_t algid, netstack_t *ns)
796 {
797 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
798 
799 	ASSERT(RW_WRITE_HELD(&ipss->ipsec_alg_lock));
800 
801 	ASSERT(ipss->ipsec_alglists[algtype][algid] != NULL);
802 	ipsec_alg_free(ipss->ipsec_alglists[algtype][algid]);
803 	ipss->ipsec_alglists[algtype][algid] = NULL;
804 
805 	ipss->ipsec_nalgs[algtype]--;
806 	alg_remove_sortlist(algtype, algid, ns);
807 }
808 
809 /*
810  * Hooks for spdsock to get a grip on system policy.
811  */
812 
813 ipsec_policy_head_t *
814 ipsec_system_policy(netstack_t *ns)
815 {
816 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
817 	ipsec_policy_head_t *h = &ipss->ipsec_system_policy;
818 
819 	IPPH_REFHOLD(h);
820 	return (h);
821 }
822 
823 ipsec_policy_head_t *
824 ipsec_inactive_policy(netstack_t *ns)
825 {
826 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
827 	ipsec_policy_head_t *h = &ipss->ipsec_inactive_policy;
828 
829 	IPPH_REFHOLD(h);
830 	return (h);
831 }
832 
833 /*
834  * Lock inactive policy, then active policy, then exchange policy root
835  * pointers.
836  */
837 void
838 ipsec_swap_policy(ipsec_policy_head_t *active, ipsec_policy_head_t *inactive,
839     netstack_t *ns)
840 {
841 	int af, dir;
842 	avl_tree_t r1, r2;
843 
844 	rw_enter(&inactive->iph_lock, RW_WRITER);
845 	rw_enter(&active->iph_lock, RW_WRITER);
846 
847 	r1 = active->iph_rulebyid;
848 	r2 = inactive->iph_rulebyid;
849 	active->iph_rulebyid = r2;
850 	inactive->iph_rulebyid = r1;
851 
852 	for (dir = 0; dir < IPSEC_NTYPES; dir++) {
853 		ipsec_policy_hash_t *h1, *h2;
854 
855 		h1 = active->iph_root[dir].ipr_hash;
856 		h2 = inactive->iph_root[dir].ipr_hash;
857 		active->iph_root[dir].ipr_hash = h2;
858 		inactive->iph_root[dir].ipr_hash = h1;
859 
860 		for (af = 0; af < IPSEC_NAF; af++) {
861 			ipsec_policy_t *t1, *t2;
862 
863 			t1 = active->iph_root[dir].ipr_nonhash[af];
864 			t2 = inactive->iph_root[dir].ipr_nonhash[af];
865 			active->iph_root[dir].ipr_nonhash[af] = t2;
866 			inactive->iph_root[dir].ipr_nonhash[af] = t1;
867 			if (t1 != NULL) {
868 				t1->ipsp_hash.hash_pp =
869 				    &(inactive->iph_root[dir].ipr_nonhash[af]);
870 			}
871 			if (t2 != NULL) {
872 				t2->ipsp_hash.hash_pp =
873 				    &(active->iph_root[dir].ipr_nonhash[af]);
874 			}
875 
876 		}
877 	}
878 	active->iph_gen++;
879 	inactive->iph_gen++;
880 	ipsec_update_present_flags(ns->netstack_ipsec);
881 	rw_exit(&active->iph_lock);
882 	rw_exit(&inactive->iph_lock);
883 }
884 
885 /*
886  * Swap global policy primary/secondary.
887  */
888 void
889 ipsec_swap_global_policy(netstack_t *ns)
890 {
891 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
892 
893 	ipsec_swap_policy(&ipss->ipsec_system_policy,
894 	    &ipss->ipsec_inactive_policy, ns);
895 }
896 
897 /*
898  * Clone one policy rule..
899  */
900 static ipsec_policy_t *
901 ipsec_copy_policy(const ipsec_policy_t *src)
902 {
903 	ipsec_policy_t *dst = kmem_cache_alloc(ipsec_pol_cache, KM_NOSLEEP);
904 
905 	if (dst == NULL)
906 		return (NULL);
907 
908 	/*
909 	 * Adjust refcounts of cloned state.
910 	 */
911 	IPACT_REFHOLD(src->ipsp_act);
912 	src->ipsp_sel->ipsl_refs++;
913 
914 	HASH_NULL(dst, ipsp_hash);
915 	dst->ipsp_netstack = src->ipsp_netstack;
916 	dst->ipsp_refs = 1;
917 	dst->ipsp_sel = src->ipsp_sel;
918 	dst->ipsp_act = src->ipsp_act;
919 	dst->ipsp_prio = src->ipsp_prio;
920 	dst->ipsp_index = src->ipsp_index;
921 
922 	return (dst);
923 }
924 
925 void
926 ipsec_insert_always(avl_tree_t *tree, void *new_node)
927 {
928 	void *node;
929 	avl_index_t where;
930 
931 	node = avl_find(tree, new_node, &where);
932 	ASSERT(node == NULL);
933 	avl_insert(tree, new_node, where);
934 }
935 
936 
937 static int
938 ipsec_copy_chain(ipsec_policy_head_t *dph, ipsec_policy_t *src,
939     ipsec_policy_t **dstp)
940 {
941 	for (; src != NULL; src = src->ipsp_hash.hash_next) {
942 		ipsec_policy_t *dst = ipsec_copy_policy(src);
943 		if (dst == NULL)
944 			return (ENOMEM);
945 
946 		HASHLIST_INSERT(dst, ipsp_hash, *dstp);
947 		ipsec_insert_always(&dph->iph_rulebyid, dst);
948 	}
949 	return (0);
950 }
951 
952 
953 
954 /*
955  * Make one policy head look exactly like another.
956  *
957  * As with ipsec_swap_policy, we lock the destination policy head first, then
958  * the source policy head. Note that we only need to read-lock the source
959  * policy head as we are not changing it.
960  */
961 int
962 ipsec_copy_polhead(ipsec_policy_head_t *sph, ipsec_policy_head_t *dph,
963     netstack_t *ns)
964 {
965 	int af, dir, chain, nchains;
966 
967 	rw_enter(&dph->iph_lock, RW_WRITER);
968 
969 	ipsec_polhead_flush(dph, ns);
970 
971 	rw_enter(&sph->iph_lock, RW_READER);
972 
973 	for (dir = 0; dir < IPSEC_NTYPES; dir++) {
974 		ipsec_policy_root_t *dpr = &dph->iph_root[dir];
975 		ipsec_policy_root_t *spr = &sph->iph_root[dir];
976 		nchains = dpr->ipr_nchains;
977 
978 		ASSERT(dpr->ipr_nchains == spr->ipr_nchains);
979 
980 		for (af = 0; af < IPSEC_NAF; af++) {
981 			if (ipsec_copy_chain(dph, spr->ipr_nonhash[af],
982 			    &dpr->ipr_nonhash[af]))
983 				goto abort_copy;
984 		}
985 
986 		for (chain = 0; chain < nchains; chain++) {
987 			if (ipsec_copy_chain(dph,
988 			    spr->ipr_hash[chain].hash_head,
989 			    &dpr->ipr_hash[chain].hash_head))
990 				goto abort_copy;
991 		}
992 	}
993 
994 	dph->iph_gen++;
995 
996 	rw_exit(&sph->iph_lock);
997 	rw_exit(&dph->iph_lock);
998 	return (0);
999 
1000 abort_copy:
1001 	ipsec_polhead_flush(dph, ns);
1002 	rw_exit(&sph->iph_lock);
1003 	rw_exit(&dph->iph_lock);
1004 	return (ENOMEM);
1005 }
1006 
1007 /*
1008  * Clone currently active policy to the inactive policy list.
1009  */
1010 int
1011 ipsec_clone_system_policy(netstack_t *ns)
1012 {
1013 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
1014 
1015 	return (ipsec_copy_polhead(&ipss->ipsec_system_policy,
1016 	    &ipss->ipsec_inactive_policy, ns));
1017 }
1018 
1019 /*
1020  * Extract the string from ipsec_policy_failure_msgs[type] and
1021  * log it.
1022  *
1023  */
1024 void
1025 ipsec_log_policy_failure(int type, char *func_name, ipha_t *ipha, ip6_t *ip6h,
1026     boolean_t secure, netstack_t *ns)
1027 {
1028 	char	sbuf[INET6_ADDRSTRLEN];
1029 	char	dbuf[INET6_ADDRSTRLEN];
1030 	char	*s;
1031 	char	*d;
1032 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
1033 
1034 	ASSERT((ipha == NULL && ip6h != NULL) ||
1035 	    (ip6h == NULL && ipha != NULL));
1036 
1037 	if (ipha != NULL) {
1038 		s = inet_ntop(AF_INET, &ipha->ipha_src, sbuf, sizeof (sbuf));
1039 		d = inet_ntop(AF_INET, &ipha->ipha_dst, dbuf, sizeof (dbuf));
1040 	} else {
1041 		s = inet_ntop(AF_INET6, &ip6h->ip6_src, sbuf, sizeof (sbuf));
1042 		d = inet_ntop(AF_INET6, &ip6h->ip6_dst, dbuf, sizeof (dbuf));
1043 
1044 	}
1045 
1046 	/* Always bump the policy failure counter. */
1047 	ipss->ipsec_policy_failure_count[type]++;
1048 
1049 	ipsec_rl_strlog(ns, IP_MOD_ID, 0, 0, SL_ERROR|SL_WARN|SL_CONSOLE,
1050 	    ipsec_policy_failure_msgs[type], func_name,
1051 	    (secure ? "secure" : "not secure"), s, d);
1052 }
1053 
1054 /*
1055  * Rate-limiting front-end to strlog() for AH and ESP.	Uses the ndd variables
1056  * in /dev/ip and the same rate-limiting clock so that there's a single
1057  * knob to turn to throttle the rate of messages.
1058  */
1059 void
1060 ipsec_rl_strlog(netstack_t *ns, short mid, short sid, char level, ushort_t sl,
1061     char *fmt, ...)
1062 {
1063 	va_list adx;
1064 	hrtime_t current = gethrtime();
1065 	ip_stack_t	*ipst = ns->netstack_ip;
1066 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
1067 
1068 	sl |= SL_CONSOLE;
1069 	/*
1070 	 * Throttle logging to stop syslog from being swamped. If variable
1071 	 * 'ipsec_policy_log_interval' is zero, don't log any messages at
1072 	 * all, otherwise log only one message every 'ipsec_policy_log_interval'
1073 	 * msec. Convert interval (in msec) to hrtime (in nsec).
1074 	 */
1075 
1076 	if (ipst->ips_ipsec_policy_log_interval) {
1077 		if (ipss->ipsec_policy_failure_last +
1078 		    MSEC2NSEC(ipst->ips_ipsec_policy_log_interval) <= current) {
1079 			va_start(adx, fmt);
1080 			(void) vstrlog(mid, sid, level, sl, fmt, adx);
1081 			va_end(adx);
1082 			ipss->ipsec_policy_failure_last = current;
1083 		}
1084 	}
1085 }
1086 
1087 void
1088 ipsec_config_flush(netstack_t *ns)
1089 {
1090 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
1091 
1092 	rw_enter(&ipss->ipsec_system_policy.iph_lock, RW_WRITER);
1093 	ipsec_polhead_flush(&ipss->ipsec_system_policy, ns);
1094 	ipss->ipsec_next_policy_index = 1;
1095 	rw_exit(&ipss->ipsec_system_policy.iph_lock);
1096 	ipsec_action_reclaim_stack(ipss);
1097 }
1098 
1099 /*
1100  * Clip a policy's min/max keybits vs. the capabilities of the
1101  * algorithm.
1102  */
1103 static void
1104 act_alg_adjust(uint_t algtype, uint_t algid,
1105     uint16_t *minbits, uint16_t *maxbits, netstack_t *ns)
1106 {
1107 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
1108 	ipsec_alginfo_t *algp = ipss->ipsec_alglists[algtype][algid];
1109 
1110 	if (algp != NULL) {
1111 		/*
1112 		 * If passed-in minbits is zero, we assume the caller trusts
1113 		 * us with setting the minimum key size.  We pick the
1114 		 * algorithms DEFAULT key size for the minimum in this case.
1115 		 */
1116 		if (*minbits == 0) {
1117 			*minbits = algp->alg_default_bits;
1118 			ASSERT(*minbits >= algp->alg_minbits);
1119 		} else {
1120 			*minbits = MAX(MIN(*minbits, algp->alg_maxbits),
1121 			    algp->alg_minbits);
1122 		}
1123 		if (*maxbits == 0)
1124 			*maxbits = algp->alg_maxbits;
1125 		else
1126 			*maxbits = MIN(MAX(*maxbits, algp->alg_minbits),
1127 			    algp->alg_maxbits);
1128 		ASSERT(*minbits <= *maxbits);
1129 	} else {
1130 		*minbits = 0;
1131 		*maxbits = 0;
1132 	}
1133 }
1134 
1135 /*
1136  * Check an action's requested algorithms against the algorithms currently
1137  * loaded in the system.
1138  */
1139 boolean_t
1140 ipsec_check_action(ipsec_act_t *act, int *diag, netstack_t *ns)
1141 {
1142 	ipsec_prot_t *ipp;
1143 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
1144 
1145 	ipp = &act->ipa_apply;
1146 
1147 	if (ipp->ipp_use_ah &&
1148 	    ipss->ipsec_alglists[IPSEC_ALG_AUTH][ipp->ipp_auth_alg] == NULL) {
1149 		*diag = SPD_DIAGNOSTIC_UNSUPP_AH_ALG;
1150 		return (B_FALSE);
1151 	}
1152 	if (ipp->ipp_use_espa &&
1153 	    ipss->ipsec_alglists[IPSEC_ALG_AUTH][ipp->ipp_esp_auth_alg] ==
1154 	    NULL) {
1155 		*diag = SPD_DIAGNOSTIC_UNSUPP_ESP_AUTH_ALG;
1156 		return (B_FALSE);
1157 	}
1158 	if (ipp->ipp_use_esp &&
1159 	    ipss->ipsec_alglists[IPSEC_ALG_ENCR][ipp->ipp_encr_alg] == NULL) {
1160 		*diag = SPD_DIAGNOSTIC_UNSUPP_ESP_ENCR_ALG;
1161 		return (B_FALSE);
1162 	}
1163 
1164 	act_alg_adjust(IPSEC_ALG_AUTH, ipp->ipp_auth_alg,
1165 	    &ipp->ipp_ah_minbits, &ipp->ipp_ah_maxbits, ns);
1166 	act_alg_adjust(IPSEC_ALG_AUTH, ipp->ipp_esp_auth_alg,
1167 	    &ipp->ipp_espa_minbits, &ipp->ipp_espa_maxbits, ns);
1168 	act_alg_adjust(IPSEC_ALG_ENCR, ipp->ipp_encr_alg,
1169 	    &ipp->ipp_espe_minbits, &ipp->ipp_espe_maxbits, ns);
1170 
1171 	if (ipp->ipp_ah_minbits > ipp->ipp_ah_maxbits) {
1172 		*diag = SPD_DIAGNOSTIC_UNSUPP_AH_KEYSIZE;
1173 		return (B_FALSE);
1174 	}
1175 	if (ipp->ipp_espa_minbits > ipp->ipp_espa_maxbits) {
1176 		*diag = SPD_DIAGNOSTIC_UNSUPP_ESP_AUTH_KEYSIZE;
1177 		return (B_FALSE);
1178 	}
1179 	if (ipp->ipp_espe_minbits > ipp->ipp_espe_maxbits) {
1180 		*diag = SPD_DIAGNOSTIC_UNSUPP_ESP_ENCR_KEYSIZE;
1181 		return (B_FALSE);
1182 	}
1183 	/* TODO: sanity check lifetimes */
1184 	return (B_TRUE);
1185 }
1186 
1187 /*
1188  * Set up a single action during wildcard expansion..
1189  */
1190 static void
1191 ipsec_setup_act(ipsec_act_t *outact, ipsec_act_t *act,
1192     uint_t auth_alg, uint_t encr_alg, uint_t eauth_alg, netstack_t *ns)
1193 {
1194 	ipsec_prot_t *ipp;
1195 
1196 	*outact = *act;
1197 	ipp = &outact->ipa_apply;
1198 	ipp->ipp_auth_alg = (uint8_t)auth_alg;
1199 	ipp->ipp_encr_alg = (uint8_t)encr_alg;
1200 	ipp->ipp_esp_auth_alg = (uint8_t)eauth_alg;
1201 
1202 	act_alg_adjust(IPSEC_ALG_AUTH, auth_alg,
1203 	    &ipp->ipp_ah_minbits, &ipp->ipp_ah_maxbits, ns);
1204 	act_alg_adjust(IPSEC_ALG_AUTH, eauth_alg,
1205 	    &ipp->ipp_espa_minbits, &ipp->ipp_espa_maxbits, ns);
1206 	act_alg_adjust(IPSEC_ALG_ENCR, encr_alg,
1207 	    &ipp->ipp_espe_minbits, &ipp->ipp_espe_maxbits, ns);
1208 }
1209 
1210 /*
1211  * combinatoric expansion time: expand a wildcarded action into an
1212  * array of wildcarded actions; we return the exploded action list,
1213  * and return a count in *nact (output only).
1214  */
1215 static ipsec_act_t *
1216 ipsec_act_wildcard_expand(ipsec_act_t *act, uint_t *nact, netstack_t *ns)
1217 {
1218 	boolean_t use_ah, use_esp, use_espa;
1219 	boolean_t wild_auth, wild_encr, wild_eauth;
1220 	uint_t	auth_alg, auth_idx, auth_min, auth_max;
1221 	uint_t	eauth_alg, eauth_idx, eauth_min, eauth_max;
1222 	uint_t  encr_alg, encr_idx, encr_min, encr_max;
1223 	uint_t	action_count, ai;
1224 	ipsec_act_t *outact;
1225 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
1226 
1227 	if (act->ipa_type != IPSEC_ACT_APPLY) {
1228 		outact = kmem_alloc(sizeof (*act), KM_NOSLEEP);
1229 		*nact = 1;
1230 		if (outact != NULL)
1231 			bcopy(act, outact, sizeof (*act));
1232 		return (outact);
1233 	}
1234 	/*
1235 	 * compute the combinatoric explosion..
1236 	 *
1237 	 * we assume a request for encr if esp_req is PREF_REQUIRED
1238 	 * we assume a request for ah auth if ah_req is PREF_REQUIRED.
1239 	 * we assume a request for esp auth if !ah and esp_req is PREF_REQUIRED
1240 	 */
1241 
1242 	use_ah = act->ipa_apply.ipp_use_ah;
1243 	use_esp = act->ipa_apply.ipp_use_esp;
1244 	use_espa = act->ipa_apply.ipp_use_espa;
1245 	auth_alg = act->ipa_apply.ipp_auth_alg;
1246 	eauth_alg = act->ipa_apply.ipp_esp_auth_alg;
1247 	encr_alg = act->ipa_apply.ipp_encr_alg;
1248 
1249 	wild_auth = use_ah && (auth_alg == 0);
1250 	wild_eauth = use_espa && (eauth_alg == 0);
1251 	wild_encr = use_esp && (encr_alg == 0);
1252 
1253 	action_count = 1;
1254 	auth_min = auth_max = auth_alg;
1255 	eauth_min = eauth_max = eauth_alg;
1256 	encr_min = encr_max = encr_alg;
1257 
1258 	/*
1259 	 * set up for explosion.. for each dimension, expand output
1260 	 * size by the explosion factor.
1261 	 *
1262 	 * Don't include the "any" algorithms, if defined, as no
1263 	 * kernel policies should be set for these algorithms.
1264 	 */
1265 
1266 #define	SET_EXP_MINMAX(type, wild, alg, min, max, ipss)		\
1267 	if (wild) {						\
1268 		int nalgs = ipss->ipsec_nalgs[type];		\
1269 		if (ipss->ipsec_alglists[type][alg] != NULL)	\
1270 			nalgs--;				\
1271 		action_count *= nalgs;				\
1272 		min = 0;					\
1273 		max = ipss->ipsec_nalgs[type] - 1;		\
1274 	}
1275 
1276 	SET_EXP_MINMAX(IPSEC_ALG_AUTH, wild_auth, SADB_AALG_NONE,
1277 	    auth_min, auth_max, ipss);
1278 	SET_EXP_MINMAX(IPSEC_ALG_AUTH, wild_eauth, SADB_AALG_NONE,
1279 	    eauth_min, eauth_max, ipss);
1280 	SET_EXP_MINMAX(IPSEC_ALG_ENCR, wild_encr, SADB_EALG_NONE,
1281 	    encr_min, encr_max, ipss);
1282 
1283 #undef	SET_EXP_MINMAX
1284 
1285 	/*
1286 	 * ok, allocate the whole mess..
1287 	 */
1288 
1289 	outact = kmem_alloc(sizeof (*outact) * action_count, KM_NOSLEEP);
1290 	if (outact == NULL)
1291 		return (NULL);
1292 
1293 	/*
1294 	 * Now compute all combinations.  Note that non-wildcarded
1295 	 * dimensions just get a single value from auth_min, while
1296 	 * wildcarded dimensions indirect through the sortlist.
1297 	 *
1298 	 * We do encryption outermost since, at this time, there's
1299 	 * greater difference in security and performance between
1300 	 * encryption algorithms vs. authentication algorithms.
1301 	 */
1302 
1303 	ai = 0;
1304 
1305 #define	WHICH_ALG(type, wild, idx, ipss) \
1306 	((wild)?(ipss->ipsec_sortlist[type][idx]):(idx))
1307 
1308 	for (encr_idx = encr_min; encr_idx <= encr_max; encr_idx++) {
1309 		encr_alg = WHICH_ALG(IPSEC_ALG_ENCR, wild_encr, encr_idx, ipss);
1310 		if (wild_encr && encr_alg == SADB_EALG_NONE)
1311 			continue;
1312 		for (auth_idx = auth_min; auth_idx <= auth_max; auth_idx++) {
1313 			auth_alg = WHICH_ALG(IPSEC_ALG_AUTH, wild_auth,
1314 			    auth_idx, ipss);
1315 			if (wild_auth && auth_alg == SADB_AALG_NONE)
1316 				continue;
1317 			for (eauth_idx = eauth_min; eauth_idx <= eauth_max;
1318 			    eauth_idx++) {
1319 				eauth_alg = WHICH_ALG(IPSEC_ALG_AUTH,
1320 				    wild_eauth, eauth_idx, ipss);
1321 				if (wild_eauth && eauth_alg == SADB_AALG_NONE)
1322 					continue;
1323 
1324 				ipsec_setup_act(&outact[ai], act,
1325 				    auth_alg, encr_alg, eauth_alg, ns);
1326 				ai++;
1327 			}
1328 		}
1329 	}
1330 
1331 #undef WHICH_ALG
1332 
1333 	ASSERT(ai == action_count);
1334 	*nact = action_count;
1335 	return (outact);
1336 }
1337 
1338 /*
1339  * Extract the parts of an ipsec_prot_t from an old-style ipsec_req_t.
1340  */
1341 static void
1342 ipsec_prot_from_req(const ipsec_req_t *req, ipsec_prot_t *ipp)
1343 {
1344 	bzero(ipp, sizeof (*ipp));
1345 	/*
1346 	 * ipp_use_* are bitfields.  Look at "!!" in the following as a
1347 	 * "boolean canonicalization" operator.
1348 	 */
1349 	ipp->ipp_use_ah = !!(req->ipsr_ah_req & IPSEC_PREF_REQUIRED);
1350 	ipp->ipp_use_esp = !!(req->ipsr_esp_req & IPSEC_PREF_REQUIRED);
1351 	ipp->ipp_use_espa = !!(req->ipsr_esp_auth_alg);
1352 	ipp->ipp_use_se = !!(req->ipsr_self_encap_req & IPSEC_PREF_REQUIRED);
1353 	ipp->ipp_use_unique = !!((req->ipsr_ah_req|req->ipsr_esp_req) &
1354 	    IPSEC_PREF_UNIQUE);
1355 	ipp->ipp_encr_alg = req->ipsr_esp_alg;
1356 	/*
1357 	 * SADB_AALG_ANY is a placeholder to distinguish "any" from
1358 	 * "none" above.  If auth is required, as determined above,
1359 	 * SADB_AALG_ANY becomes 0, which is the representation
1360 	 * of "any" and "none" in PF_KEY v2.
1361 	 */
1362 	ipp->ipp_auth_alg = (req->ipsr_auth_alg != SADB_AALG_ANY) ?
1363 	    req->ipsr_auth_alg : 0;
1364 	ipp->ipp_esp_auth_alg = (req->ipsr_esp_auth_alg != SADB_AALG_ANY) ?
1365 	    req->ipsr_esp_auth_alg : 0;
1366 }
1367 
1368 /*
1369  * Extract a new-style action from a request.
1370  */
1371 void
1372 ipsec_actvec_from_req(const ipsec_req_t *req, ipsec_act_t **actp, uint_t *nactp,
1373     netstack_t *ns)
1374 {
1375 	struct ipsec_act act;
1376 
1377 	bzero(&act, sizeof (act));
1378 	if ((req->ipsr_ah_req & IPSEC_PREF_NEVER) &&
1379 	    (req->ipsr_esp_req & IPSEC_PREF_NEVER)) {
1380 		act.ipa_type = IPSEC_ACT_BYPASS;
1381 	} else {
1382 		act.ipa_type = IPSEC_ACT_APPLY;
1383 		ipsec_prot_from_req(req, &act.ipa_apply);
1384 	}
1385 	*actp = ipsec_act_wildcard_expand(&act, nactp, ns);
1386 }
1387 
1388 /*
1389  * Convert a new-style "prot" back to an ipsec_req_t (more backwards compat).
1390  * We assume caller has already zero'ed *req for us.
1391  */
1392 static int
1393 ipsec_req_from_prot(ipsec_prot_t *ipp, ipsec_req_t *req)
1394 {
1395 	req->ipsr_esp_alg = ipp->ipp_encr_alg;
1396 	req->ipsr_auth_alg = ipp->ipp_auth_alg;
1397 	req->ipsr_esp_auth_alg = ipp->ipp_esp_auth_alg;
1398 
1399 	if (ipp->ipp_use_unique) {
1400 		req->ipsr_ah_req |= IPSEC_PREF_UNIQUE;
1401 		req->ipsr_esp_req |= IPSEC_PREF_UNIQUE;
1402 	}
1403 	if (ipp->ipp_use_se)
1404 		req->ipsr_self_encap_req |= IPSEC_PREF_REQUIRED;
1405 	if (ipp->ipp_use_ah)
1406 		req->ipsr_ah_req |= IPSEC_PREF_REQUIRED;
1407 	if (ipp->ipp_use_esp)
1408 		req->ipsr_esp_req |= IPSEC_PREF_REQUIRED;
1409 	return (sizeof (*req));
1410 }
1411 
1412 /*
1413  * Convert a new-style action back to an ipsec_req_t (more backwards compat).
1414  * We assume caller has already zero'ed *req for us.
1415  */
1416 static int
1417 ipsec_req_from_act(ipsec_action_t *ap, ipsec_req_t *req)
1418 {
1419 	switch (ap->ipa_act.ipa_type) {
1420 	case IPSEC_ACT_BYPASS:
1421 		req->ipsr_ah_req = IPSEC_PREF_NEVER;
1422 		req->ipsr_esp_req = IPSEC_PREF_NEVER;
1423 		return (sizeof (*req));
1424 	case IPSEC_ACT_APPLY:
1425 		return (ipsec_req_from_prot(&ap->ipa_act.ipa_apply, req));
1426 	}
1427 	return (sizeof (*req));
1428 }
1429 
1430 /*
1431  * Convert a new-style action back to an ipsec_req_t (more backwards compat).
1432  * We assume caller has already zero'ed *req for us.
1433  */
1434 int
1435 ipsec_req_from_head(ipsec_policy_head_t *ph, ipsec_req_t *req, int af)
1436 {
1437 	ipsec_policy_t *p;
1438 
1439 	/*
1440 	 * FULL-PERSOCK: consult hash table, too?
1441 	 */
1442 	for (p = ph->iph_root[IPSEC_INBOUND].ipr_nonhash[af];
1443 	    p != NULL;
1444 	    p = p->ipsp_hash.hash_next) {
1445 		if ((p->ipsp_sel->ipsl_key.ipsl_valid & IPSL_WILDCARD) == 0)
1446 			return (ipsec_req_from_act(p->ipsp_act, req));
1447 	}
1448 	return (sizeof (*req));
1449 }
1450 
1451 /*
1452  * Based on per-socket or latched policy, convert to an appropriate
1453  * IP_SEC_OPT ipsec_req_t for the socket option; return size so we can
1454  * be tail-called from ip.
1455  */
1456 int
1457 ipsec_req_from_conn(conn_t *connp, ipsec_req_t *req, int af)
1458 {
1459 	ipsec_latch_t *ipl;
1460 	int rv = sizeof (ipsec_req_t);
1461 
1462 	bzero(req, sizeof (*req));
1463 
1464 	ASSERT(MUTEX_HELD(&connp->conn_lock));
1465 	ipl = connp->conn_latch;
1466 
1467 	/*
1468 	 * Find appropriate policy.  First choice is latched action;
1469 	 * failing that, see latched policy; failing that,
1470 	 * look at configured policy.
1471 	 */
1472 	if (ipl != NULL) {
1473 		if (connp->conn_latch_in_action != NULL) {
1474 			rv = ipsec_req_from_act(connp->conn_latch_in_action,
1475 			    req);
1476 			goto done;
1477 		}
1478 		if (connp->conn_latch_in_policy != NULL) {
1479 			rv = ipsec_req_from_act(
1480 			    connp->conn_latch_in_policy->ipsp_act, req);
1481 			goto done;
1482 		}
1483 	}
1484 	if (connp->conn_policy != NULL)
1485 		rv = ipsec_req_from_head(connp->conn_policy, req, af);
1486 done:
1487 	return (rv);
1488 }
1489 
1490 void
1491 ipsec_actvec_free(ipsec_act_t *act, uint_t nact)
1492 {
1493 	kmem_free(act, nact * sizeof (*act));
1494 }
1495 
1496 /*
1497  * Consumes a reference to ipsp.
1498  */
1499 static mblk_t *
1500 ipsec_check_loopback_policy(mblk_t *data_mp, ip_recv_attr_t *ira,
1501     ipsec_policy_t *ipsp)
1502 {
1503 	if (!(ira->ira_flags & IRAF_IPSEC_SECURE))
1504 		return (data_mp);
1505 
1506 	ASSERT(ira->ira_flags & IRAF_LOOPBACK);
1507 
1508 	IPPOL_REFRELE(ipsp);
1509 
1510 	/*
1511 	 * We should do an actual policy check here.  Revisit this
1512 	 * when we revisit the IPsec API.  (And pass a conn_t in when we
1513 	 * get there.)
1514 	 */
1515 
1516 	return (data_mp);
1517 }
1518 
1519 /*
1520  * Check that packet's inbound ports & proto match the selectors
1521  * expected by the SAs it traversed on the way in.
1522  */
1523 static boolean_t
1524 ipsec_check_ipsecin_unique(ip_recv_attr_t *ira, const char **reason,
1525     kstat_named_t **counter, uint64_t pkt_unique, netstack_t *ns)
1526 {
1527 	uint64_t ah_mask, esp_mask;
1528 	ipsa_t *ah_assoc;
1529 	ipsa_t *esp_assoc;
1530 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
1531 
1532 	ASSERT(ira->ira_flags & IRAF_IPSEC_SECURE);
1533 	ASSERT(!(ira->ira_flags & IRAF_LOOPBACK));
1534 
1535 	ah_assoc = ira->ira_ipsec_ah_sa;
1536 	esp_assoc = ira->ira_ipsec_esp_sa;
1537 	ASSERT((ah_assoc != NULL) || (esp_assoc != NULL));
1538 
1539 	ah_mask = (ah_assoc != NULL) ? ah_assoc->ipsa_unique_mask : 0;
1540 	esp_mask = (esp_assoc != NULL) ? esp_assoc->ipsa_unique_mask : 0;
1541 
1542 	if ((ah_mask == 0) && (esp_mask == 0))
1543 		return (B_TRUE);
1544 
1545 	/*
1546 	 * The pkt_unique check will also check for tunnel mode on the SA
1547 	 * vs. the tunneled_packet boolean.  "Be liberal in what you receive"
1548 	 * should not apply in this case.  ;)
1549 	 */
1550 
1551 	if (ah_mask != 0 &&
1552 	    ah_assoc->ipsa_unique_id != (pkt_unique & ah_mask)) {
1553 		*reason = "AH inner header mismatch";
1554 		*counter = DROPPER(ipss, ipds_spd_ah_innermismatch);
1555 		return (B_FALSE);
1556 	}
1557 	if (esp_mask != 0 &&
1558 	    esp_assoc->ipsa_unique_id != (pkt_unique & esp_mask)) {
1559 		*reason = "ESP inner header mismatch";
1560 		*counter = DROPPER(ipss, ipds_spd_esp_innermismatch);
1561 		return (B_FALSE);
1562 	}
1563 	return (B_TRUE);
1564 }
1565 
1566 static boolean_t
1567 ipsec_check_ipsecin_action(ip_recv_attr_t *ira, mblk_t *mp, ipsec_action_t *ap,
1568     ipha_t *ipha, ip6_t *ip6h, const char **reason, kstat_named_t **counter,
1569     netstack_t *ns)
1570 {
1571 	boolean_t ret = B_TRUE;
1572 	ipsec_prot_t *ipp;
1573 	ipsa_t *ah_assoc;
1574 	ipsa_t *esp_assoc;
1575 	boolean_t decaps;
1576 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
1577 
1578 	ASSERT((ipha == NULL && ip6h != NULL) ||
1579 	    (ip6h == NULL && ipha != NULL));
1580 
1581 	if (ira->ira_flags & IRAF_LOOPBACK) {
1582 		/*
1583 		 * Besides accepting pointer-equivalent actions, we also
1584 		 * accept any ICMP errors we generated for ourselves,
1585 		 * regardless of policy.  If we do not wish to make this
1586 		 * assumption in the future, check here, and where
1587 		 * IXAF_TRUSTED_ICMP is initialized in ip.c and ip6.c.
1588 		 */
1589 		if (ap == ira->ira_ipsec_action ||
1590 		    (ira->ira_flags & IRAF_TRUSTED_ICMP))
1591 			return (B_TRUE);
1592 
1593 		/* Deep compare necessary here?? */
1594 		*counter = DROPPER(ipss, ipds_spd_loopback_mismatch);
1595 		*reason = "loopback policy mismatch";
1596 		return (B_FALSE);
1597 	}
1598 	ASSERT(!(ira->ira_flags & IRAF_TRUSTED_ICMP));
1599 	ASSERT(ira->ira_flags & IRAF_IPSEC_SECURE);
1600 
1601 	ah_assoc = ira->ira_ipsec_ah_sa;
1602 	esp_assoc = ira->ira_ipsec_esp_sa;
1603 
1604 	decaps = (ira->ira_flags & IRAF_IPSEC_DECAPS);
1605 
1606 	switch (ap->ipa_act.ipa_type) {
1607 	case IPSEC_ACT_DISCARD:
1608 	case IPSEC_ACT_REJECT:
1609 		/* Should "fail hard" */
1610 		*counter = DROPPER(ipss, ipds_spd_explicit);
1611 		*reason = "blocked by policy";
1612 		return (B_FALSE);
1613 
1614 	case IPSEC_ACT_BYPASS:
1615 	case IPSEC_ACT_CLEAR:
1616 		*counter = DROPPER(ipss, ipds_spd_got_secure);
1617 		*reason = "expected clear, got protected";
1618 		return (B_FALSE);
1619 
1620 	case IPSEC_ACT_APPLY:
1621 		ipp = &ap->ipa_act.ipa_apply;
1622 		/*
1623 		 * As of now we do the simple checks of whether
1624 		 * the datagram has gone through the required IPSEC
1625 		 * protocol constraints or not. We might have more
1626 		 * in the future like sensitive levels, key bits, etc.
1627 		 * If it fails the constraints, check whether we would
1628 		 * have accepted this if it had come in clear.
1629 		 */
1630 		if (ipp->ipp_use_ah) {
1631 			if (ah_assoc == NULL) {
1632 				ret = ipsec_inbound_accept_clear(mp, ipha,
1633 				    ip6h);
1634 				*counter = DROPPER(ipss, ipds_spd_got_clear);
1635 				*reason = "unprotected not accepted";
1636 				break;
1637 			}
1638 			ASSERT(ah_assoc != NULL);
1639 			ASSERT(ipp->ipp_auth_alg != 0);
1640 
1641 			if (ah_assoc->ipsa_auth_alg !=
1642 			    ipp->ipp_auth_alg) {
1643 				*counter = DROPPER(ipss, ipds_spd_bad_ahalg);
1644 				*reason = "unacceptable ah alg";
1645 				ret = B_FALSE;
1646 				break;
1647 			}
1648 		} else if (ah_assoc != NULL) {
1649 			/*
1650 			 * Don't allow this. Check IPSEC NOTE above
1651 			 * ip_fanout_proto().
1652 			 */
1653 			*counter = DROPPER(ipss, ipds_spd_got_ah);
1654 			*reason = "unexpected AH";
1655 			ret = B_FALSE;
1656 			break;
1657 		}
1658 		if (ipp->ipp_use_esp) {
1659 			if (esp_assoc == NULL) {
1660 				ret = ipsec_inbound_accept_clear(mp, ipha,
1661 				    ip6h);
1662 				*counter = DROPPER(ipss, ipds_spd_got_clear);
1663 				*reason = "unprotected not accepted";
1664 				break;
1665 			}
1666 			ASSERT(esp_assoc != NULL);
1667 			ASSERT(ipp->ipp_encr_alg != 0);
1668 
1669 			if (esp_assoc->ipsa_encr_alg !=
1670 			    ipp->ipp_encr_alg) {
1671 				*counter = DROPPER(ipss, ipds_spd_bad_espealg);
1672 				*reason = "unacceptable esp alg";
1673 				ret = B_FALSE;
1674 				break;
1675 			}
1676 			/*
1677 			 * If the client does not need authentication,
1678 			 * we don't verify the alogrithm.
1679 			 */
1680 			if (ipp->ipp_use_espa) {
1681 				if (esp_assoc->ipsa_auth_alg !=
1682 				    ipp->ipp_esp_auth_alg) {
1683 					*counter = DROPPER(ipss,
1684 					    ipds_spd_bad_espaalg);
1685 					*reason = "unacceptable esp auth alg";
1686 					ret = B_FALSE;
1687 					break;
1688 				}
1689 			}
1690 		} else if (esp_assoc != NULL) {
1691 			/*
1692 			 * Don't allow this. Check IPSEC NOTE above
1693 			 * ip_fanout_proto().
1694 			 */
1695 			*counter = DROPPER(ipss, ipds_spd_got_esp);
1696 			*reason = "unexpected ESP";
1697 			ret = B_FALSE;
1698 			break;
1699 		}
1700 		if (ipp->ipp_use_se) {
1701 			if (!decaps) {
1702 				ret = ipsec_inbound_accept_clear(mp, ipha,
1703 				    ip6h);
1704 				if (!ret) {
1705 					/* XXX mutant? */
1706 					*counter = DROPPER(ipss,
1707 					    ipds_spd_bad_selfencap);
1708 					*reason = "self encap not found";
1709 					break;
1710 				}
1711 			}
1712 		} else if (decaps) {
1713 			/*
1714 			 * XXX If the packet comes in tunneled and the
1715 			 * recipient does not expect it to be tunneled, it
1716 			 * is okay. But we drop to be consistent with the
1717 			 * other cases.
1718 			 */
1719 			*counter = DROPPER(ipss, ipds_spd_got_selfencap);
1720 			*reason = "unexpected self encap";
1721 			ret = B_FALSE;
1722 			break;
1723 		}
1724 		if (ira->ira_ipsec_action != NULL) {
1725 			/*
1726 			 * This can happen if we do a double policy-check on
1727 			 * a packet
1728 			 * XXX XXX should fix this case!
1729 			 */
1730 			IPACT_REFRELE(ira->ira_ipsec_action);
1731 		}
1732 		ASSERT(ira->ira_flags & IRAF_IPSEC_SECURE);
1733 		ASSERT(ira->ira_ipsec_action == NULL);
1734 		IPACT_REFHOLD(ap);
1735 		ira->ira_ipsec_action = ap;
1736 		break;	/* from switch */
1737 	}
1738 	return (ret);
1739 }
1740 
1741 static boolean_t
1742 spd_match_inbound_ids(ipsec_latch_t *ipl, ipsa_t *sa)
1743 {
1744 	ASSERT(ipl->ipl_ids_latched == B_TRUE);
1745 	return ipsid_equal(ipl->ipl_remote_cid, sa->ipsa_src_cid) &&
1746 	    ipsid_equal(ipl->ipl_local_cid, sa->ipsa_dst_cid);
1747 }
1748 
1749 /*
1750  * Takes a latched conn and an inbound packet and returns a unique_id suitable
1751  * for SA comparisons.  Most of the time we will copy from the conn_t, but
1752  * there are cases when the conn_t is latched but it has wildcard selectors,
1753  * and then we need to fallback to scooping them out of the packet.
1754  *
1755  * Assume we'll never have 0 with a conn_t present, so use 0 as a failure.  We
1756  * can get away with this because we only have non-zero ports/proto for
1757  * latched conn_ts.
1758  *
1759  * Ideal candidate for an "inline" keyword, as we're JUST convoluted enough
1760  * to not be a nice macro.
1761  */
1762 static uint64_t
1763 conn_to_unique(conn_t *connp, mblk_t *data_mp, ipha_t *ipha, ip6_t *ip6h)
1764 {
1765 	ipsec_selector_t sel;
1766 	uint8_t ulp = connp->conn_proto;
1767 
1768 	ASSERT(connp->conn_latch_in_policy != NULL);
1769 
1770 	if ((ulp == IPPROTO_TCP || ulp == IPPROTO_UDP || ulp == IPPROTO_SCTP) &&
1771 	    (connp->conn_fport == 0 || connp->conn_lport == 0)) {
1772 		/* Slow path - we gotta grab from the packet. */
1773 		if (ipsec_init_inbound_sel(&sel, data_mp, ipha, ip6h,
1774 		    SEL_NONE) != SELRET_SUCCESS) {
1775 			/* Failure -> have caller free packet with ENOMEM. */
1776 			return (0);
1777 		}
1778 		return (SA_UNIQUE_ID(sel.ips_remote_port, sel.ips_local_port,
1779 		    sel.ips_protocol, 0));
1780 	}
1781 
1782 #ifdef DEBUG_NOT_UNTIL_6478464
1783 	if (ipsec_init_inbound_sel(&sel, data_mp, ipha, ip6h, SEL_NONE) ==
1784 	    SELRET_SUCCESS) {
1785 		ASSERT(sel.ips_local_port == connp->conn_lport);
1786 		ASSERT(sel.ips_remote_port == connp->conn_fport);
1787 		ASSERT(sel.ips_protocol == connp->conn_proto);
1788 	}
1789 	ASSERT(connp->conn_proto != 0);
1790 #endif
1791 
1792 	return (SA_UNIQUE_ID(connp->conn_fport, connp->conn_lport, ulp, 0));
1793 }
1794 
1795 /*
1796  * Called to check policy on a latched connection.
1797  * Note that we don't dereference conn_latch or conn_ihere since the conn might
1798  * be closing. The caller passes a held ipsec_latch_t instead.
1799  */
1800 static boolean_t
1801 ipsec_check_ipsecin_latch(ip_recv_attr_t *ira, mblk_t *mp, ipsec_latch_t *ipl,
1802     ipsec_action_t *ap, ipha_t *ipha, ip6_t *ip6h, const char **reason,
1803     kstat_named_t **counter, conn_t *connp, netstack_t *ns)
1804 {
1805 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
1806 
1807 	ASSERT(ipl->ipl_ids_latched == B_TRUE);
1808 	ASSERT(ira->ira_flags & IRAF_IPSEC_SECURE);
1809 
1810 	if (!(ira->ira_flags & IRAF_LOOPBACK)) {
1811 		/*
1812 		 * Over loopback, there aren't real security associations,
1813 		 * so there are neither identities nor "unique" values
1814 		 * for us to check the packet against.
1815 		 */
1816 		if (ira->ira_ipsec_ah_sa != NULL) {
1817 			if (!spd_match_inbound_ids(ipl,
1818 			    ira->ira_ipsec_ah_sa)) {
1819 				*counter = DROPPER(ipss, ipds_spd_ah_badid);
1820 				*reason = "AH identity mismatch";
1821 				return (B_FALSE);
1822 			}
1823 		}
1824 
1825 		if (ira->ira_ipsec_esp_sa != NULL) {
1826 			if (!spd_match_inbound_ids(ipl,
1827 			    ira->ira_ipsec_esp_sa)) {
1828 				*counter = DROPPER(ipss, ipds_spd_esp_badid);
1829 				*reason = "ESP identity mismatch";
1830 				return (B_FALSE);
1831 			}
1832 		}
1833 
1834 		/*
1835 		 * Can fudge pkt_unique from connp because we're latched.
1836 		 * In DEBUG kernels (see conn_to_unique()'s implementation),
1837 		 * verify this even if it REALLY slows things down.
1838 		 */
1839 		if (!ipsec_check_ipsecin_unique(ira, reason, counter,
1840 		    conn_to_unique(connp, mp, ipha, ip6h), ns)) {
1841 			return (B_FALSE);
1842 		}
1843 	}
1844 	return (ipsec_check_ipsecin_action(ira, mp, ap, ipha, ip6h, reason,
1845 	    counter, ns));
1846 }
1847 
1848 /*
1849  * Check to see whether this secured datagram meets the policy
1850  * constraints specified in ipsp.
1851  *
1852  * Called from ipsec_check_global_policy, and ipsec_check_inbound_policy.
1853  *
1854  * Consumes a reference to ipsp.
1855  * Returns the mblk if ok.
1856  */
1857 static mblk_t *
1858 ipsec_check_ipsecin_policy(mblk_t *data_mp, ipsec_policy_t *ipsp,
1859     ipha_t *ipha, ip6_t *ip6h, uint64_t pkt_unique, ip_recv_attr_t *ira,
1860     netstack_t *ns)
1861 {
1862 	ipsec_action_t *ap;
1863 	const char *reason = "no policy actions found";
1864 	ip_stack_t	*ipst = ns->netstack_ip;
1865 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
1866 	kstat_named_t *counter;
1867 
1868 	counter = DROPPER(ipss, ipds_spd_got_secure);
1869 
1870 	ASSERT(ipsp != NULL);
1871 
1872 	ASSERT((ipha == NULL && ip6h != NULL) ||
1873 	    (ip6h == NULL && ipha != NULL));
1874 
1875 	if (ira->ira_flags & IRAF_LOOPBACK)
1876 		return (ipsec_check_loopback_policy(data_mp, ira, ipsp));
1877 
1878 	ASSERT(ira->ira_flags & IRAF_IPSEC_SECURE);
1879 
1880 	if (ira->ira_ipsec_action != NULL) {
1881 		/*
1882 		 * this can happen if we do a double policy-check on a packet
1883 		 * Would be nice to be able to delete this test..
1884 		 */
1885 		IPACT_REFRELE(ira->ira_ipsec_action);
1886 	}
1887 	ASSERT(ira->ira_ipsec_action == NULL);
1888 
1889 	if (!SA_IDS_MATCH(ira->ira_ipsec_ah_sa, ira->ira_ipsec_esp_sa)) {
1890 		reason = "inbound AH and ESP identities differ";
1891 		counter = DROPPER(ipss, ipds_spd_ahesp_diffid);
1892 		goto drop;
1893 	}
1894 
1895 	if (!ipsec_check_ipsecin_unique(ira, &reason, &counter, pkt_unique,
1896 	    ns))
1897 		goto drop;
1898 
1899 	/*
1900 	 * Ok, now loop through the possible actions and see if any
1901 	 * of them work for us.
1902 	 */
1903 
1904 	for (ap = ipsp->ipsp_act; ap != NULL; ap = ap->ipa_next) {
1905 		if (ipsec_check_ipsecin_action(ira, data_mp, ap,
1906 		    ipha, ip6h, &reason, &counter, ns)) {
1907 			BUMP_MIB(&ipst->ips_ip_mib, ipsecInSucceeded);
1908 			IPPOL_REFRELE(ipsp);
1909 			return (data_mp);
1910 		}
1911 	}
1912 drop:
1913 	ipsec_rl_strlog(ns, IP_MOD_ID, 0, 0, SL_ERROR|SL_WARN|SL_CONSOLE,
1914 	    "ipsec inbound policy mismatch: %s, packet dropped\n",
1915 	    reason);
1916 	IPPOL_REFRELE(ipsp);
1917 	ASSERT(ira->ira_ipsec_action == NULL);
1918 	BUMP_MIB(&ipst->ips_ip_mib, ipsecInFailed);
1919 	ip_drop_packet(data_mp, B_TRUE, NULL, counter,
1920 	    &ipss->ipsec_spd_dropper);
1921 	return (NULL);
1922 }
1923 
1924 /*
1925  * sleazy prefix-length-based compare.
1926  * another inlining candidate..
1927  */
1928 boolean_t
1929 ip_addr_match(uint8_t *addr1, int pfxlen, in6_addr_t *addr2p)
1930 {
1931 	int offset = pfxlen>>3;
1932 	int bitsleft = pfxlen & 7;
1933 	uint8_t *addr2 = (uint8_t *)addr2p;
1934 
1935 	/*
1936 	 * and there was much evil..
1937 	 * XXX should inline-expand the bcmp here and do this 32 bits
1938 	 * or 64 bits at a time..
1939 	 */
1940 	return ((bcmp(addr1, addr2, offset) == 0) &&
1941 	    ((bitsleft == 0) ||
1942 	    (((addr1[offset] ^ addr2[offset]) & (0xff<<(8-bitsleft))) == 0)));
1943 }
1944 
1945 static ipsec_policy_t *
1946 ipsec_find_policy_chain(ipsec_policy_t *best, ipsec_policy_t *chain,
1947     ipsec_selector_t *sel, boolean_t is_icmp_inv_acq)
1948 {
1949 	ipsec_selkey_t *isel;
1950 	ipsec_policy_t *p;
1951 	int bpri = best ? best->ipsp_prio : 0;
1952 
1953 	for (p = chain; p != NULL; p = p->ipsp_hash.hash_next) {
1954 		uint32_t valid;
1955 
1956 		if (p->ipsp_prio <= bpri)
1957 			continue;
1958 		isel = &p->ipsp_sel->ipsl_key;
1959 		valid = isel->ipsl_valid;
1960 
1961 		if ((valid & IPSL_PROTOCOL) &&
1962 		    (isel->ipsl_proto != sel->ips_protocol))
1963 			continue;
1964 
1965 		if ((valid & IPSL_REMOTE_ADDR) &&
1966 		    !ip_addr_match((uint8_t *)&isel->ipsl_remote,
1967 		    isel->ipsl_remote_pfxlen, &sel->ips_remote_addr_v6))
1968 			continue;
1969 
1970 		if ((valid & IPSL_LOCAL_ADDR) &&
1971 		    !ip_addr_match((uint8_t *)&isel->ipsl_local,
1972 		    isel->ipsl_local_pfxlen, &sel->ips_local_addr_v6))
1973 			continue;
1974 
1975 		if ((valid & IPSL_REMOTE_PORT) &&
1976 		    isel->ipsl_rport != sel->ips_remote_port)
1977 			continue;
1978 
1979 		if ((valid & IPSL_LOCAL_PORT) &&
1980 		    isel->ipsl_lport != sel->ips_local_port)
1981 			continue;
1982 
1983 		if (!is_icmp_inv_acq) {
1984 			if ((valid & IPSL_ICMP_TYPE) &&
1985 			    (isel->ipsl_icmp_type > sel->ips_icmp_type ||
1986 			    isel->ipsl_icmp_type_end < sel->ips_icmp_type)) {
1987 				continue;
1988 			}
1989 
1990 			if ((valid & IPSL_ICMP_CODE) &&
1991 			    (isel->ipsl_icmp_code > sel->ips_icmp_code ||
1992 			    isel->ipsl_icmp_code_end <
1993 			    sel->ips_icmp_code)) {
1994 				continue;
1995 			}
1996 		} else {
1997 			/*
1998 			 * special case for icmp inverse acquire
1999 			 * we only want policies that aren't drop/pass
2000 			 */
2001 			if (p->ipsp_act->ipa_act.ipa_type != IPSEC_ACT_APPLY)
2002 				continue;
2003 		}
2004 
2005 		/* we matched all the packet-port-field selectors! */
2006 		best = p;
2007 		bpri = p->ipsp_prio;
2008 	}
2009 
2010 	return (best);
2011 }
2012 
2013 /*
2014  * Try to find and return the best policy entry under a given policy
2015  * root for a given set of selectors; the first parameter "best" is
2016  * the current best policy so far.  If "best" is non-null, we have a
2017  * reference to it.  We return a reference to a policy; if that policy
2018  * is not the original "best", we need to release that reference
2019  * before returning.
2020  */
2021 ipsec_policy_t *
2022 ipsec_find_policy_head(ipsec_policy_t *best, ipsec_policy_head_t *head,
2023     int direction, ipsec_selector_t *sel)
2024 {
2025 	ipsec_policy_t *curbest;
2026 	ipsec_policy_root_t *root;
2027 	uint8_t is_icmp_inv_acq = sel->ips_is_icmp_inv_acq;
2028 	int af = sel->ips_isv4 ? IPSEC_AF_V4 : IPSEC_AF_V6;
2029 
2030 	curbest = best;
2031 	root = &head->iph_root[direction];
2032 
2033 #ifdef DEBUG
2034 	if (is_icmp_inv_acq) {
2035 		if (sel->ips_isv4) {
2036 			if (sel->ips_protocol != IPPROTO_ICMP) {
2037 				cmn_err(CE_WARN, "ipsec_find_policy_head:"
2038 				    " expecting icmp, got %d",
2039 				    sel->ips_protocol);
2040 			}
2041 		} else {
2042 			if (sel->ips_protocol != IPPROTO_ICMPV6) {
2043 				cmn_err(CE_WARN, "ipsec_find_policy_head:"
2044 				    " expecting icmpv6, got %d",
2045 				    sel->ips_protocol);
2046 			}
2047 		}
2048 	}
2049 #endif
2050 
2051 	rw_enter(&head->iph_lock, RW_READER);
2052 
2053 	if (root->ipr_nchains > 0) {
2054 		curbest = ipsec_find_policy_chain(curbest,
2055 		    root->ipr_hash[selector_hash(sel, root)].hash_head, sel,
2056 		    is_icmp_inv_acq);
2057 	}
2058 	curbest = ipsec_find_policy_chain(curbest, root->ipr_nonhash[af], sel,
2059 	    is_icmp_inv_acq);
2060 
2061 	/*
2062 	 * Adjust reference counts if we found anything new.
2063 	 */
2064 	if (curbest != best) {
2065 		ASSERT(curbest != NULL);
2066 		IPPOL_REFHOLD(curbest);
2067 
2068 		if (best != NULL) {
2069 			IPPOL_REFRELE(best);
2070 		}
2071 	}
2072 
2073 	rw_exit(&head->iph_lock);
2074 
2075 	return (curbest);
2076 }
2077 
2078 /*
2079  * Find the best system policy (either global or per-interface) which
2080  * applies to the given selector; look in all the relevant policy roots
2081  * to figure out which policy wins.
2082  *
2083  * Returns a reference to a policy; caller must release this
2084  * reference when done.
2085  */
2086 ipsec_policy_t *
2087 ipsec_find_policy(int direction, const conn_t *connp, ipsec_selector_t *sel,
2088     netstack_t *ns)
2089 {
2090 	ipsec_policy_t *p;
2091 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
2092 
2093 	p = ipsec_find_policy_head(NULL, &ipss->ipsec_system_policy,
2094 	    direction, sel);
2095 	if ((connp != NULL) && (connp->conn_policy != NULL)) {
2096 		p = ipsec_find_policy_head(p, connp->conn_policy,
2097 		    direction, sel);
2098 	}
2099 
2100 	return (p);
2101 }
2102 
2103 /*
2104  * Check with global policy and see whether this inbound
2105  * packet meets the policy constraints.
2106  *
2107  * Locate appropriate policy from global policy, supplemented by the
2108  * conn's configured and/or cached policy if the conn is supplied.
2109  *
2110  * Dispatch to ipsec_check_ipsecin_policy if we have policy and an
2111  * encrypted packet to see if they match.
2112  *
2113  * Otherwise, see if the policy allows cleartext; if not, drop it on the
2114  * floor.
2115  */
2116 mblk_t *
2117 ipsec_check_global_policy(mblk_t *data_mp, conn_t *connp,
2118     ipha_t *ipha, ip6_t *ip6h, ip_recv_attr_t *ira, netstack_t *ns)
2119 {
2120 	ipsec_policy_t *p;
2121 	ipsec_selector_t sel;
2122 	boolean_t policy_present;
2123 	kstat_named_t *counter;
2124 	uint64_t pkt_unique;
2125 	ip_stack_t	*ipst = ns->netstack_ip;
2126 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
2127 
2128 	sel.ips_is_icmp_inv_acq = 0;
2129 
2130 	ASSERT((ipha == NULL && ip6h != NULL) ||
2131 	    (ip6h == NULL && ipha != NULL));
2132 
2133 	if (ipha != NULL)
2134 		policy_present = ipss->ipsec_inbound_v4_policy_present;
2135 	else
2136 		policy_present = ipss->ipsec_inbound_v6_policy_present;
2137 
2138 	if (!policy_present && connp == NULL) {
2139 		/*
2140 		 * No global policy and no per-socket policy;
2141 		 * just pass it back (but we shouldn't get here in that case)
2142 		 */
2143 		return (data_mp);
2144 	}
2145 
2146 	/*
2147 	 * If we have cached policy, use it.
2148 	 * Otherwise consult system policy.
2149 	 */
2150 	if ((connp != NULL) && (connp->conn_latch != NULL)) {
2151 		p = connp->conn_latch_in_policy;
2152 		if (p != NULL) {
2153 			IPPOL_REFHOLD(p);
2154 		}
2155 		/*
2156 		 * Fudge sel for UNIQUE_ID setting below.
2157 		 */
2158 		pkt_unique = conn_to_unique(connp, data_mp, ipha, ip6h);
2159 	} else {
2160 		/* Initialize the ports in the selector */
2161 		if (ipsec_init_inbound_sel(&sel, data_mp, ipha, ip6h,
2162 		    SEL_NONE) == SELRET_NOMEM) {
2163 			/*
2164 			 * Technically not a policy mismatch, but it is
2165 			 * an internal failure.
2166 			 */
2167 			ipsec_log_policy_failure(IPSEC_POLICY_MISMATCH,
2168 			    "ipsec_init_inbound_sel", ipha, ip6h, B_TRUE, ns);
2169 			counter = DROPPER(ipss, ipds_spd_nomem);
2170 			goto fail;
2171 		}
2172 
2173 		/*
2174 		 * Find the policy which best applies.
2175 		 *
2176 		 * If we find global policy, we should look at both
2177 		 * local policy and global policy and see which is
2178 		 * stronger and match accordingly.
2179 		 *
2180 		 * If we don't find a global policy, check with
2181 		 * local policy alone.
2182 		 */
2183 
2184 		p = ipsec_find_policy(IPSEC_TYPE_INBOUND, connp, &sel, ns);
2185 		pkt_unique = SA_UNIQUE_ID(sel.ips_remote_port,
2186 		    sel.ips_local_port, sel.ips_protocol, 0);
2187 	}
2188 
2189 	if (p == NULL) {
2190 		if (!(ira->ira_flags & IRAF_IPSEC_SECURE)) {
2191 			/*
2192 			 * We have no policy; default to succeeding.
2193 			 * XXX paranoid system design doesn't do this.
2194 			 */
2195 			BUMP_MIB(&ipst->ips_ip_mib, ipsecInSucceeded);
2196 			return (data_mp);
2197 		} else {
2198 			counter = DROPPER(ipss, ipds_spd_got_secure);
2199 			ipsec_log_policy_failure(IPSEC_POLICY_NOT_NEEDED,
2200 			    "ipsec_check_global_policy", ipha, ip6h, B_TRUE,
2201 			    ns);
2202 			goto fail;
2203 		}
2204 	}
2205 	if (ira->ira_flags & IRAF_IPSEC_SECURE) {
2206 		return (ipsec_check_ipsecin_policy(data_mp, p, ipha, ip6h,
2207 		    pkt_unique, ira, ns));
2208 	}
2209 	if (p->ipsp_act->ipa_allow_clear) {
2210 		BUMP_MIB(&ipst->ips_ip_mib, ipsecInSucceeded);
2211 		IPPOL_REFRELE(p);
2212 		return (data_mp);
2213 	}
2214 	IPPOL_REFRELE(p);
2215 	/*
2216 	 * If we reach here, we will drop the packet because it failed the
2217 	 * global policy check because the packet was cleartext, and it
2218 	 * should not have been.
2219 	 */
2220 	ipsec_log_policy_failure(IPSEC_POLICY_MISMATCH,
2221 	    "ipsec_check_global_policy", ipha, ip6h, B_FALSE, ns);
2222 	counter = DROPPER(ipss, ipds_spd_got_clear);
2223 
2224 fail:
2225 	ip_drop_packet(data_mp, B_TRUE, NULL, counter,
2226 	    &ipss->ipsec_spd_dropper);
2227 	BUMP_MIB(&ipst->ips_ip_mib, ipsecInFailed);
2228 	return (NULL);
2229 }
2230 
2231 /*
2232  * We check whether an inbound datagram is a valid one
2233  * to accept in clear. If it is secure, it is the job
2234  * of IPSEC to log information appropriately if it
2235  * suspects that it may not be the real one.
2236  *
2237  * It is called only while fanning out to the ULP
2238  * where ULP accepts only secure data and the incoming
2239  * is clear. Usually we never accept clear datagrams in
2240  * such cases. ICMP is the only exception.
2241  *
2242  * NOTE : We don't call this function if the client (ULP)
2243  * is willing to accept things in clear.
2244  */
2245 boolean_t
2246 ipsec_inbound_accept_clear(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h)
2247 {
2248 	ushort_t iph_hdr_length;
2249 	icmph_t *icmph;
2250 	icmp6_t *icmp6;
2251 	uint8_t *nexthdrp;
2252 
2253 	ASSERT((ipha != NULL && ip6h == NULL) ||
2254 	    (ipha == NULL && ip6h != NULL));
2255 
2256 	if (ip6h != NULL) {
2257 		iph_hdr_length = ip_hdr_length_v6(mp, ip6h);
2258 		if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length,
2259 		    &nexthdrp)) {
2260 			return (B_FALSE);
2261 		}
2262 		if (*nexthdrp != IPPROTO_ICMPV6)
2263 			return (B_FALSE);
2264 		icmp6 = (icmp6_t *)(&mp->b_rptr[iph_hdr_length]);
2265 		/* Match IPv6 ICMP policy as closely as IPv4 as possible. */
2266 		switch (icmp6->icmp6_type) {
2267 		case ICMP6_PARAM_PROB:
2268 			/* Corresponds to port/proto unreach in IPv4. */
2269 		case ICMP6_ECHO_REQUEST:
2270 			/* Just like IPv4. */
2271 			return (B_FALSE);
2272 
2273 		case MLD_LISTENER_QUERY:
2274 		case MLD_LISTENER_REPORT:
2275 		case MLD_LISTENER_REDUCTION:
2276 			/*
2277 			 * XXX Seperate NDD in IPv4 what about here?
2278 			 * Plus, mcast is important to ND.
2279 			 */
2280 		case ICMP6_DST_UNREACH:
2281 			/* Corresponds to HOST/NET unreachable in IPv4. */
2282 		case ICMP6_PACKET_TOO_BIG:
2283 		case ICMP6_ECHO_REPLY:
2284 			/* These are trusted in IPv4. */
2285 		case ND_ROUTER_SOLICIT:
2286 		case ND_ROUTER_ADVERT:
2287 		case ND_NEIGHBOR_SOLICIT:
2288 		case ND_NEIGHBOR_ADVERT:
2289 		case ND_REDIRECT:
2290 			/* Trust ND messages for now. */
2291 		case ICMP6_TIME_EXCEEDED:
2292 		default:
2293 			return (B_TRUE);
2294 		}
2295 	} else {
2296 		/*
2297 		 * If it is not ICMP, fail this request.
2298 		 */
2299 		if (ipha->ipha_protocol != IPPROTO_ICMP) {
2300 #ifdef FRAGCACHE_DEBUG
2301 			cmn_err(CE_WARN, "Dropping - ipha_proto = %d\n",
2302 			    ipha->ipha_protocol);
2303 #endif
2304 			return (B_FALSE);
2305 		}
2306 		iph_hdr_length = IPH_HDR_LENGTH(ipha);
2307 		icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length];
2308 		/*
2309 		 * It is an insecure icmp message. Check to see whether we are
2310 		 * willing to accept this one.
2311 		 */
2312 
2313 		switch (icmph->icmph_type) {
2314 		case ICMP_ECHO_REPLY:
2315 		case ICMP_TIME_STAMP_REPLY:
2316 		case ICMP_INFO_REPLY:
2317 		case ICMP_ROUTER_ADVERTISEMENT:
2318 			/*
2319 			 * We should not encourage clear replies if this
2320 			 * client expects secure. If somebody is replying
2321 			 * in clear some mailicious user watching both the
2322 			 * request and reply, can do chosen-plain-text attacks.
2323 			 * With global policy we might be just expecting secure
2324 			 * but sending out clear. We don't know what the right
2325 			 * thing is. We can't do much here as we can't control
2326 			 * the sender here. Till we are sure of what to do,
2327 			 * accept them.
2328 			 */
2329 			return (B_TRUE);
2330 		case ICMP_ECHO_REQUEST:
2331 		case ICMP_TIME_STAMP_REQUEST:
2332 		case ICMP_INFO_REQUEST:
2333 		case ICMP_ADDRESS_MASK_REQUEST:
2334 		case ICMP_ROUTER_SOLICITATION:
2335 		case ICMP_ADDRESS_MASK_REPLY:
2336 			/*
2337 			 * Don't accept this as somebody could be sending
2338 			 * us plain text to get encrypted data. If we reply,
2339 			 * it will lead to chosen plain text attack.
2340 			 */
2341 			return (B_FALSE);
2342 		case ICMP_DEST_UNREACHABLE:
2343 			switch (icmph->icmph_code) {
2344 			case ICMP_FRAGMENTATION_NEEDED:
2345 				/*
2346 				 * Be in sync with icmp_inbound, where we have
2347 				 * already set dce_pmtu
2348 				 */
2349 #ifdef FRAGCACHE_DEBUG
2350 			cmn_err(CE_WARN, "ICMP frag needed\n");
2351 #endif
2352 				return (B_TRUE);
2353 			case ICMP_HOST_UNREACHABLE:
2354 			case ICMP_NET_UNREACHABLE:
2355 				/*
2356 				 * By accepting, we could reset a connection.
2357 				 * How do we solve the problem of some
2358 				 * intermediate router sending in-secure ICMP
2359 				 * messages ?
2360 				 */
2361 				return (B_TRUE);
2362 			case ICMP_PORT_UNREACHABLE:
2363 			case ICMP_PROTOCOL_UNREACHABLE:
2364 			default :
2365 				return (B_FALSE);
2366 			}
2367 		case ICMP_SOURCE_QUENCH:
2368 			/*
2369 			 * If this is an attack, TCP will slow start
2370 			 * because of this. Is it very harmful ?
2371 			 */
2372 			return (B_TRUE);
2373 		case ICMP_PARAM_PROBLEM:
2374 			return (B_FALSE);
2375 		case ICMP_TIME_EXCEEDED:
2376 			return (B_TRUE);
2377 		case ICMP_REDIRECT:
2378 			return (B_FALSE);
2379 		default :
2380 			return (B_FALSE);
2381 		}
2382 	}
2383 }
2384 
2385 void
2386 ipsec_latch_ids(ipsec_latch_t *ipl, ipsid_t *local, ipsid_t *remote)
2387 {
2388 	mutex_enter(&ipl->ipl_lock);
2389 
2390 	if (ipl->ipl_ids_latched) {
2391 		/* I lost, someone else got here before me */
2392 		mutex_exit(&ipl->ipl_lock);
2393 		return;
2394 	}
2395 
2396 	if (local != NULL)
2397 		IPSID_REFHOLD(local);
2398 	if (remote != NULL)
2399 		IPSID_REFHOLD(remote);
2400 
2401 	ipl->ipl_local_cid = local;
2402 	ipl->ipl_remote_cid = remote;
2403 	ipl->ipl_ids_latched = B_TRUE;
2404 	mutex_exit(&ipl->ipl_lock);
2405 }
2406 
2407 void
2408 ipsec_latch_inbound(conn_t *connp, ip_recv_attr_t *ira)
2409 {
2410 	ipsa_t *sa;
2411 	ipsec_latch_t *ipl = connp->conn_latch;
2412 
2413 	if (!ipl->ipl_ids_latched) {
2414 		ipsid_t *local = NULL;
2415 		ipsid_t *remote = NULL;
2416 
2417 		if (!(ira->ira_flags & IRAF_LOOPBACK)) {
2418 			ASSERT(ira->ira_flags & IRAF_IPSEC_SECURE);
2419 			if (ira->ira_ipsec_esp_sa != NULL)
2420 				sa = ira->ira_ipsec_esp_sa;
2421 			else
2422 				sa = ira->ira_ipsec_ah_sa;
2423 			ASSERT(sa != NULL);
2424 			local = sa->ipsa_dst_cid;
2425 			remote = sa->ipsa_src_cid;
2426 		}
2427 		ipsec_latch_ids(ipl, local, remote);
2428 	}
2429 	if (ira->ira_flags & IRAF_IPSEC_SECURE) {
2430 		if (connp->conn_latch_in_action != NULL) {
2431 			/*
2432 			 * Previously cached action.  This is probably
2433 			 * harmless, but in DEBUG kernels, check for
2434 			 * action equality.
2435 			 *
2436 			 * Preserve the existing action to preserve latch
2437 			 * invariance.
2438 			 */
2439 			ASSERT(connp->conn_latch_in_action ==
2440 			    ira->ira_ipsec_action);
2441 			return;
2442 		}
2443 		connp->conn_latch_in_action = ira->ira_ipsec_action;
2444 		IPACT_REFHOLD(connp->conn_latch_in_action);
2445 	}
2446 }
2447 
2448 /*
2449  * Check whether the policy constraints are met either for an
2450  * inbound datagram; called from IP in numerous places.
2451  *
2452  * Note that this is not a chokepoint for inbound policy checks;
2453  * see also ipsec_check_ipsecin_latch() and ipsec_check_global_policy()
2454  */
2455 mblk_t *
2456 ipsec_check_inbound_policy(mblk_t *mp, conn_t *connp,
2457     ipha_t *ipha, ip6_t *ip6h, ip_recv_attr_t *ira)
2458 {
2459 	boolean_t	ret;
2460 	ipsec_latch_t	*ipl;
2461 	ipsec_action_t	*ap;
2462 	uint64_t	unique_id;
2463 	ipsec_stack_t	*ipss;
2464 	ip_stack_t	*ipst;
2465 	netstack_t	*ns;
2466 	ipsec_policy_head_t *policy_head;
2467 	ipsec_policy_t	*p = NULL;
2468 
2469 	ASSERT(connp != NULL);
2470 	ns = connp->conn_netstack;
2471 	ipss = ns->netstack_ipsec;
2472 	ipst = ns->netstack_ip;
2473 
2474 	if (!(ira->ira_flags & IRAF_IPSEC_SECURE)) {
2475 		/*
2476 		 * This is the case where the incoming datagram is
2477 		 * cleartext and we need to see whether this client
2478 		 * would like to receive such untrustworthy things from
2479 		 * the wire.
2480 		 */
2481 		ASSERT(mp != NULL);
2482 
2483 		mutex_enter(&connp->conn_lock);
2484 		if (connp->conn_state_flags & CONN_CONDEMNED) {
2485 			mutex_exit(&connp->conn_lock);
2486 			ip_drop_packet(mp, B_TRUE, NULL,
2487 			    DROPPER(ipss, ipds_spd_got_clear),
2488 			    &ipss->ipsec_spd_dropper);
2489 			BUMP_MIB(&ipst->ips_ip_mib, ipsecInFailed);
2490 			return (NULL);
2491 		}
2492 		if (connp->conn_latch != NULL) {
2493 			/* Hold a reference in case the conn is closing */
2494 			p = connp->conn_latch_in_policy;
2495 			if (p != NULL)
2496 				IPPOL_REFHOLD(p);
2497 			mutex_exit(&connp->conn_lock);
2498 			/*
2499 			 * Policy is cached in the conn.
2500 			 */
2501 			if (p != NULL && !p->ipsp_act->ipa_allow_clear) {
2502 				ret = ipsec_inbound_accept_clear(mp,
2503 				    ipha, ip6h);
2504 				if (ret) {
2505 					BUMP_MIB(&ipst->ips_ip_mib,
2506 					    ipsecInSucceeded);
2507 					IPPOL_REFRELE(p);
2508 					return (mp);
2509 				} else {
2510 					ipsec_log_policy_failure(
2511 					    IPSEC_POLICY_MISMATCH,
2512 					    "ipsec_check_inbound_policy", ipha,
2513 					    ip6h, B_FALSE, ns);
2514 					ip_drop_packet(mp, B_TRUE, NULL,
2515 					    DROPPER(ipss, ipds_spd_got_clear),
2516 					    &ipss->ipsec_spd_dropper);
2517 					BUMP_MIB(&ipst->ips_ip_mib,
2518 					    ipsecInFailed);
2519 					IPPOL_REFRELE(p);
2520 					return (NULL);
2521 				}
2522 			} else {
2523 				BUMP_MIB(&ipst->ips_ip_mib, ipsecInSucceeded);
2524 				if (p != NULL)
2525 					IPPOL_REFRELE(p);
2526 				return (mp);
2527 			}
2528 		} else {
2529 			policy_head = connp->conn_policy;
2530 
2531 			/* Hold a reference in case the conn is closing */
2532 			if (policy_head != NULL)
2533 				IPPH_REFHOLD(policy_head);
2534 			mutex_exit(&connp->conn_lock);
2535 			/*
2536 			 * As this is a non-hardbound connection we need
2537 			 * to look at both per-socket policy and global
2538 			 * policy.
2539 			 */
2540 			mp = ipsec_check_global_policy(mp, connp,
2541 			    ipha, ip6h, ira, ns);
2542 			if (policy_head != NULL)
2543 				IPPH_REFRELE(policy_head, ns);
2544 			return (mp);
2545 		}
2546 	}
2547 
2548 	mutex_enter(&connp->conn_lock);
2549 	/* Connection is closing */
2550 	if (connp->conn_state_flags & CONN_CONDEMNED) {
2551 		mutex_exit(&connp->conn_lock);
2552 		ip_drop_packet(mp, B_TRUE, NULL,
2553 		    DROPPER(ipss, ipds_spd_got_clear),
2554 		    &ipss->ipsec_spd_dropper);
2555 		BUMP_MIB(&ipst->ips_ip_mib, ipsecInFailed);
2556 		return (NULL);
2557 	}
2558 
2559 	/*
2560 	 * Once a connection is latched it remains so for life, the conn_latch
2561 	 * pointer on the conn has not changed, simply initializing ipl here
2562 	 * as the earlier initialization was done only in the cleartext case.
2563 	 */
2564 	if ((ipl = connp->conn_latch) == NULL) {
2565 		mblk_t *retmp;
2566 		policy_head = connp->conn_policy;
2567 
2568 		/* Hold a reference in case the conn is closing */
2569 		if (policy_head != NULL)
2570 			IPPH_REFHOLD(policy_head);
2571 		mutex_exit(&connp->conn_lock);
2572 		/*
2573 		 * We don't have policies cached in the conn
2574 		 * for this stream. So, look at the global
2575 		 * policy. It will check against conn or global
2576 		 * depending on whichever is stronger.
2577 		 */
2578 		retmp = ipsec_check_global_policy(mp, connp,
2579 		    ipha, ip6h, ira, ns);
2580 		if (policy_head != NULL)
2581 			IPPH_REFRELE(policy_head, ns);
2582 		return (retmp);
2583 	}
2584 
2585 	IPLATCH_REFHOLD(ipl);
2586 	/* Hold reference on conn_latch_in_action in case conn is closing */
2587 	ap = connp->conn_latch_in_action;
2588 	if (ap != NULL)
2589 		IPACT_REFHOLD(ap);
2590 	mutex_exit(&connp->conn_lock);
2591 
2592 	if (ap != NULL) {
2593 		/* Policy is cached & latched; fast(er) path */
2594 		const char *reason;
2595 		kstat_named_t *counter;
2596 
2597 		if (ipsec_check_ipsecin_latch(ira, mp, ipl, ap,
2598 		    ipha, ip6h, &reason, &counter, connp, ns)) {
2599 			BUMP_MIB(&ipst->ips_ip_mib, ipsecInSucceeded);
2600 			IPLATCH_REFRELE(ipl);
2601 			IPACT_REFRELE(ap);
2602 			return (mp);
2603 		}
2604 		ipsec_rl_strlog(ns, IP_MOD_ID, 0, 0,
2605 		    SL_ERROR|SL_WARN|SL_CONSOLE,
2606 		    "ipsec inbound policy mismatch: %s, packet dropped\n",
2607 		    reason);
2608 		ip_drop_packet(mp, B_TRUE, NULL, counter,
2609 		    &ipss->ipsec_spd_dropper);
2610 		BUMP_MIB(&ipst->ips_ip_mib, ipsecInFailed);
2611 		IPLATCH_REFRELE(ipl);
2612 		IPACT_REFRELE(ap);
2613 		return (NULL);
2614 	}
2615 	if ((p = connp->conn_latch_in_policy) == NULL) {
2616 		ipsec_weird_null_inbound_policy++;
2617 		IPLATCH_REFRELE(ipl);
2618 		return (mp);
2619 	}
2620 
2621 	unique_id = conn_to_unique(connp, mp, ipha, ip6h);
2622 	IPPOL_REFHOLD(p);
2623 	mp = ipsec_check_ipsecin_policy(mp, p, ipha, ip6h, unique_id, ira, ns);
2624 	/*
2625 	 * NOTE: ipsecIn{Failed,Succeeeded} bumped by
2626 	 * ipsec_check_ipsecin_policy().
2627 	 */
2628 	if (mp != NULL)
2629 		ipsec_latch_inbound(connp, ira);
2630 	IPLATCH_REFRELE(ipl);
2631 	return (mp);
2632 }
2633 
2634 /*
2635  * Handle all sorts of cases like tunnel-mode and ICMP.
2636  */
2637 static int
2638 prepended_length(mblk_t *mp, uintptr_t hptr)
2639 {
2640 	int rc = 0;
2641 
2642 	while (mp != NULL) {
2643 		if (hptr >= (uintptr_t)mp->b_rptr && hptr <
2644 		    (uintptr_t)mp->b_wptr) {
2645 			rc += (int)(hptr - (uintptr_t)mp->b_rptr);
2646 			break;	/* out of while loop */
2647 		}
2648 		rc += (int)MBLKL(mp);
2649 		mp = mp->b_cont;
2650 	}
2651 
2652 	if (mp == NULL) {
2653 		/*
2654 		 * IF (big IF) we make it here by naturally exiting the loop,
2655 		 * then ip6h isn't in the mblk chain "mp" at all.
2656 		 *
2657 		 * The only case where this happens is with a reversed IP
2658 		 * header that gets passed up by inbound ICMP processing.
2659 		 * This unfortunately triggers longstanding bug 6478464.  For
2660 		 * now, just pass up 0 for the answer.
2661 		 */
2662 #ifdef DEBUG_NOT_UNTIL_6478464
2663 		ASSERT(mp != NULL);
2664 #endif
2665 		rc = 0;
2666 	}
2667 
2668 	return (rc);
2669 }
2670 
2671 /*
2672  * Returns:
2673  *
2674  * SELRET_NOMEM --> msgpullup() needed to gather things failed.
2675  * SELRET_BADPKT --> If we're being called after tunnel-mode fragment
2676  *		     gathering, the initial fragment is too short for
2677  *		     useful data.  Only returned if SEL_TUNNEL_FIRSTFRAG is
2678  *		     set.
2679  * SELRET_SUCCESS --> "sel" now has initialized IPsec selector data.
2680  * SELRET_TUNFRAG --> This is a fragment in a tunnel-mode packet.  Caller
2681  *		      should put this packet in a fragment-gathering queue.
2682  *		      Only returned if SEL_TUNNEL_MODE and SEL_PORT_POLICY
2683  *		      is set.
2684  *
2685  * Note that ipha/ip6h can be in a different mblk (mp->b_cont) in the case
2686  * of tunneled packets.
2687  * Also, mp->b_rptr can be an ICMP error where ipha/ip6h is the packet in
2688  * error past the ICMP error.
2689  */
2690 static selret_t
2691 ipsec_init_inbound_sel(ipsec_selector_t *sel, mblk_t *mp, ipha_t *ipha,
2692     ip6_t *ip6h, uint8_t sel_flags)
2693 {
2694 	uint16_t *ports;
2695 	int outer_hdr_len = 0;	/* For ICMP or tunnel-mode cases... */
2696 	ushort_t hdr_len;
2697 	mblk_t *spare_mp = NULL;
2698 	uint8_t *nexthdrp, *transportp;
2699 	uint8_t nexthdr;
2700 	uint8_t icmp_proto;
2701 	ip_pkt_t ipp;
2702 	boolean_t port_policy_present = (sel_flags & SEL_PORT_POLICY);
2703 	boolean_t is_icmp = (sel_flags & SEL_IS_ICMP);
2704 	boolean_t tunnel_mode = (sel_flags & SEL_TUNNEL_MODE);
2705 	boolean_t post_frag = (sel_flags & SEL_POST_FRAG);
2706 
2707 	ASSERT((ipha == NULL && ip6h != NULL) ||
2708 	    (ipha != NULL && ip6h == NULL));
2709 
2710 	if (ip6h != NULL) {
2711 		outer_hdr_len = prepended_length(mp, (uintptr_t)ip6h);
2712 		nexthdr = ip6h->ip6_nxt;
2713 		icmp_proto = IPPROTO_ICMPV6;
2714 		sel->ips_isv4 = B_FALSE;
2715 		sel->ips_local_addr_v6 = ip6h->ip6_dst;
2716 		sel->ips_remote_addr_v6 = ip6h->ip6_src;
2717 
2718 		bzero(&ipp, sizeof (ipp));
2719 
2720 		switch (nexthdr) {
2721 		case IPPROTO_HOPOPTS:
2722 		case IPPROTO_ROUTING:
2723 		case IPPROTO_DSTOPTS:
2724 		case IPPROTO_FRAGMENT:
2725 			/*
2726 			 * Use ip_hdr_length_nexthdr_v6().  And have a spare
2727 			 * mblk that's contiguous to feed it
2728 			 */
2729 			if ((spare_mp = msgpullup(mp, -1)) == NULL)
2730 				return (SELRET_NOMEM);
2731 			if (!ip_hdr_length_nexthdr_v6(spare_mp,
2732 			    (ip6_t *)(spare_mp->b_rptr + outer_hdr_len),
2733 			    &hdr_len, &nexthdrp)) {
2734 				/* Malformed packet - caller frees. */
2735 				ipsec_freemsg_chain(spare_mp);
2736 				return (SELRET_BADPKT);
2737 			}
2738 			/* Repopulate now that we have the whole packet */
2739 			ip6h = (ip6_t *)(spare_mp->b_rptr + outer_hdr_len);
2740 			(void) ip_find_hdr_v6(spare_mp, ip6h, B_FALSE, &ipp,
2741 			    NULL);
2742 			nexthdr = *nexthdrp;
2743 			/* We can just extract based on hdr_len now. */
2744 			break;
2745 		default:
2746 			(void) ip_find_hdr_v6(mp, ip6h, B_FALSE, &ipp, NULL);
2747 			hdr_len = IPV6_HDR_LEN;
2748 			break;
2749 		}
2750 		if (port_policy_present && IS_V6_FRAGMENT(ipp) && !is_icmp) {
2751 			/* IPv6 Fragment */
2752 			ipsec_freemsg_chain(spare_mp);
2753 			return (SELRET_TUNFRAG);
2754 		}
2755 		transportp = (uint8_t *)ip6h + hdr_len;
2756 	} else {
2757 		outer_hdr_len = prepended_length(mp, (uintptr_t)ipha);
2758 		icmp_proto = IPPROTO_ICMP;
2759 		sel->ips_isv4 = B_TRUE;
2760 		sel->ips_local_addr_v4 = ipha->ipha_dst;
2761 		sel->ips_remote_addr_v4 = ipha->ipha_src;
2762 		nexthdr = ipha->ipha_protocol;
2763 		hdr_len = IPH_HDR_LENGTH(ipha);
2764 
2765 		if (port_policy_present &&
2766 		    IS_V4_FRAGMENT(ipha->ipha_fragment_offset_and_flags) &&
2767 		    !is_icmp) {
2768 			/* IPv4 Fragment */
2769 			ipsec_freemsg_chain(spare_mp);
2770 			return (SELRET_TUNFRAG);
2771 		}
2772 		transportp = (uint8_t *)ipha + hdr_len;
2773 	}
2774 	sel->ips_protocol = nexthdr;
2775 
2776 	if ((nexthdr != IPPROTO_TCP && nexthdr != IPPROTO_UDP &&
2777 	    nexthdr != IPPROTO_SCTP && nexthdr != icmp_proto) ||
2778 	    (!port_policy_present && !post_frag && tunnel_mode)) {
2779 		sel->ips_remote_port = sel->ips_local_port = 0;
2780 		ipsec_freemsg_chain(spare_mp);
2781 		return (SELRET_SUCCESS);
2782 	}
2783 
2784 	if (transportp + 4 > mp->b_wptr) {
2785 		/* If we didn't pullup a copy already, do so now. */
2786 		/*
2787 		 * XXX performance, will upper-layers frequently split TCP/UDP
2788 		 * apart from IP or options?  If so, perhaps we should revisit
2789 		 * the spare_mp strategy.
2790 		 */
2791 		ipsec_hdr_pullup_needed++;
2792 		if (spare_mp == NULL &&
2793 		    (spare_mp = msgpullup(mp, -1)) == NULL) {
2794 			return (SELRET_NOMEM);
2795 		}
2796 		transportp = &spare_mp->b_rptr[hdr_len + outer_hdr_len];
2797 	}
2798 
2799 	if (nexthdr == icmp_proto) {
2800 		sel->ips_icmp_type = *transportp++;
2801 		sel->ips_icmp_code = *transportp;
2802 		sel->ips_remote_port = sel->ips_local_port = 0;
2803 	} else {
2804 		ports = (uint16_t *)transportp;
2805 		sel->ips_remote_port = *ports++;
2806 		sel->ips_local_port = *ports;
2807 	}
2808 	ipsec_freemsg_chain(spare_mp);
2809 	return (SELRET_SUCCESS);
2810 }
2811 
2812 /*
2813  * This is called with a b_next chain of messages from the fragcache code,
2814  * hence it needs to discard a chain on error.
2815  */
2816 static boolean_t
2817 ipsec_init_outbound_ports(ipsec_selector_t *sel, mblk_t *mp, ipha_t *ipha,
2818     ip6_t *ip6h, int outer_hdr_len, ipsec_stack_t *ipss)
2819 {
2820 	/*
2821 	 * XXX cut&paste shared with ipsec_init_inbound_sel
2822 	 */
2823 	uint16_t *ports;
2824 	ushort_t hdr_len;
2825 	mblk_t *spare_mp = NULL;
2826 	uint8_t *nexthdrp;
2827 	uint8_t nexthdr;
2828 	uint8_t *typecode;
2829 	uint8_t check_proto;
2830 
2831 	ASSERT((ipha == NULL && ip6h != NULL) ||
2832 	    (ipha != NULL && ip6h == NULL));
2833 
2834 	if (ip6h != NULL) {
2835 		check_proto = IPPROTO_ICMPV6;
2836 		nexthdr = ip6h->ip6_nxt;
2837 		switch (nexthdr) {
2838 		case IPPROTO_HOPOPTS:
2839 		case IPPROTO_ROUTING:
2840 		case IPPROTO_DSTOPTS:
2841 		case IPPROTO_FRAGMENT:
2842 			/*
2843 			 * Use ip_hdr_length_nexthdr_v6().  And have a spare
2844 			 * mblk that's contiguous to feed it
2845 			 */
2846 			spare_mp = msgpullup(mp, -1);
2847 			if (spare_mp == NULL ||
2848 			    !ip_hdr_length_nexthdr_v6(spare_mp,
2849 			    (ip6_t *)(spare_mp->b_rptr + outer_hdr_len),
2850 			    &hdr_len, &nexthdrp)) {
2851 				/* Always works, even if NULL. */
2852 				ipsec_freemsg_chain(spare_mp);
2853 				ip_drop_packet_chain(mp, B_FALSE, NULL,
2854 				    DROPPER(ipss, ipds_spd_nomem),
2855 				    &ipss->ipsec_spd_dropper);
2856 				return (B_FALSE);
2857 			} else {
2858 				nexthdr = *nexthdrp;
2859 				/* We can just extract based on hdr_len now. */
2860 			}
2861 			break;
2862 		default:
2863 			hdr_len = IPV6_HDR_LEN;
2864 			break;
2865 		}
2866 	} else {
2867 		check_proto = IPPROTO_ICMP;
2868 		hdr_len = IPH_HDR_LENGTH(ipha);
2869 		nexthdr = ipha->ipha_protocol;
2870 	}
2871 
2872 	sel->ips_protocol = nexthdr;
2873 	if (nexthdr != IPPROTO_TCP && nexthdr != IPPROTO_UDP &&
2874 	    nexthdr != IPPROTO_SCTP && nexthdr != check_proto) {
2875 		sel->ips_local_port = sel->ips_remote_port = 0;
2876 		ipsec_freemsg_chain(spare_mp); /* Always works, even if NULL */
2877 		return (B_TRUE);
2878 	}
2879 
2880 	if (&mp->b_rptr[hdr_len] + 4 + outer_hdr_len > mp->b_wptr) {
2881 		/* If we didn't pullup a copy already, do so now. */
2882 		/*
2883 		 * XXX performance, will upper-layers frequently split TCP/UDP
2884 		 * apart from IP or options?  If so, perhaps we should revisit
2885 		 * the spare_mp strategy.
2886 		 *
2887 		 * XXX should this be msgpullup(mp, hdr_len+4) ???
2888 		 */
2889 		if (spare_mp == NULL &&
2890 		    (spare_mp = msgpullup(mp, -1)) == NULL) {
2891 			ip_drop_packet_chain(mp, B_FALSE, NULL,
2892 			    DROPPER(ipss, ipds_spd_nomem),
2893 			    &ipss->ipsec_spd_dropper);
2894 			return (B_FALSE);
2895 		}
2896 		ports = (uint16_t *)&spare_mp->b_rptr[hdr_len + outer_hdr_len];
2897 	} else {
2898 		ports = (uint16_t *)&mp->b_rptr[hdr_len + outer_hdr_len];
2899 	}
2900 
2901 	if (nexthdr == check_proto) {
2902 		typecode = (uint8_t *)ports;
2903 		sel->ips_icmp_type = *typecode++;
2904 		sel->ips_icmp_code = *typecode;
2905 		sel->ips_remote_port = sel->ips_local_port = 0;
2906 	} else {
2907 		sel->ips_local_port = *ports++;
2908 		sel->ips_remote_port = *ports;
2909 	}
2910 	ipsec_freemsg_chain(spare_mp);	/* Always works, even if NULL */
2911 	return (B_TRUE);
2912 }
2913 
2914 /*
2915  * Prepend an mblk with a ipsec_crypto_t to the message chain.
2916  * Frees the argument and returns NULL should the allocation fail.
2917  * Returns the pointer to the crypto data part.
2918  */
2919 mblk_t *
2920 ipsec_add_crypto_data(mblk_t *data_mp, ipsec_crypto_t **icp)
2921 {
2922 	mblk_t	*mp;
2923 
2924 	mp = allocb(sizeof (ipsec_crypto_t), BPRI_MED);
2925 	if (mp == NULL) {
2926 		freemsg(data_mp);
2927 		return (NULL);
2928 	}
2929 	bzero(mp->b_rptr, sizeof (ipsec_crypto_t));
2930 	mp->b_wptr += sizeof (ipsec_crypto_t);
2931 	mp->b_cont = data_mp;
2932 	mp->b_datap->db_type = M_EVENT;	/* For ASSERT */
2933 	*icp = (ipsec_crypto_t *)mp->b_rptr;
2934 	return (mp);
2935 }
2936 
2937 /*
2938  * Remove what was prepended above. Return b_cont and a pointer to the
2939  * crypto data.
2940  * The caller must call ipsec_free_crypto_data for mblk once it is done
2941  * with the crypto data.
2942  */
2943 mblk_t *
2944 ipsec_remove_crypto_data(mblk_t *crypto_mp, ipsec_crypto_t **icp)
2945 {
2946 	ASSERT(crypto_mp->b_datap->db_type == M_EVENT);
2947 	ASSERT(MBLKL(crypto_mp) == sizeof (ipsec_crypto_t));
2948 
2949 	*icp = (ipsec_crypto_t *)crypto_mp->b_rptr;
2950 	return (crypto_mp->b_cont);
2951 }
2952 
2953 /*
2954  * Free what was prepended above. Return b_cont.
2955  */
2956 mblk_t *
2957 ipsec_free_crypto_data(mblk_t *crypto_mp)
2958 {
2959 	mblk_t	*mp;
2960 
2961 	ASSERT(crypto_mp->b_datap->db_type == M_EVENT);
2962 	ASSERT(MBLKL(crypto_mp) == sizeof (ipsec_crypto_t));
2963 
2964 	mp = crypto_mp->b_cont;
2965 	freeb(crypto_mp);
2966 	return (mp);
2967 }
2968 
2969 /*
2970  * Create an ipsec_action_t based on the way an inbound packet was protected.
2971  * Used to reflect traffic back to a sender.
2972  *
2973  * We don't bother interning the action into the hash table.
2974  */
2975 ipsec_action_t *
2976 ipsec_in_to_out_action(ip_recv_attr_t *ira)
2977 {
2978 	ipsa_t *ah_assoc, *esp_assoc;
2979 	uint_t auth_alg = 0, encr_alg = 0, espa_alg = 0;
2980 	ipsec_action_t *ap;
2981 	boolean_t unique;
2982 
2983 	ap = kmem_cache_alloc(ipsec_action_cache, KM_NOSLEEP);
2984 
2985 	if (ap == NULL)
2986 		return (NULL);
2987 
2988 	bzero(ap, sizeof (*ap));
2989 	HASH_NULL(ap, ipa_hash);
2990 	ap->ipa_next = NULL;
2991 	ap->ipa_refs = 1;
2992 
2993 	/*
2994 	 * Get the algorithms that were used for this packet.
2995 	 */
2996 	ap->ipa_act.ipa_type = IPSEC_ACT_APPLY;
2997 	ap->ipa_act.ipa_log = 0;
2998 	ASSERT(ira->ira_flags & IRAF_IPSEC_SECURE);
2999 
3000 	ah_assoc = ira->ira_ipsec_ah_sa;
3001 	ap->ipa_act.ipa_apply.ipp_use_ah = (ah_assoc != NULL);
3002 
3003 	esp_assoc = ira->ira_ipsec_esp_sa;
3004 	ap->ipa_act.ipa_apply.ipp_use_esp = (esp_assoc != NULL);
3005 
3006 	if (esp_assoc != NULL) {
3007 		encr_alg = esp_assoc->ipsa_encr_alg;
3008 		espa_alg = esp_assoc->ipsa_auth_alg;
3009 		ap->ipa_act.ipa_apply.ipp_use_espa = (espa_alg != 0);
3010 	}
3011 	if (ah_assoc != NULL)
3012 		auth_alg = ah_assoc->ipsa_auth_alg;
3013 
3014 	ap->ipa_act.ipa_apply.ipp_encr_alg = (uint8_t)encr_alg;
3015 	ap->ipa_act.ipa_apply.ipp_auth_alg = (uint8_t)auth_alg;
3016 	ap->ipa_act.ipa_apply.ipp_esp_auth_alg = (uint8_t)espa_alg;
3017 	ap->ipa_act.ipa_apply.ipp_use_se =
3018 	    !!(ira->ira_flags & IRAF_IPSEC_DECAPS);
3019 	unique = B_FALSE;
3020 
3021 	if (esp_assoc != NULL) {
3022 		ap->ipa_act.ipa_apply.ipp_espa_minbits =
3023 		    esp_assoc->ipsa_authkeybits;
3024 		ap->ipa_act.ipa_apply.ipp_espa_maxbits =
3025 		    esp_assoc->ipsa_authkeybits;
3026 		ap->ipa_act.ipa_apply.ipp_espe_minbits =
3027 		    esp_assoc->ipsa_encrkeybits;
3028 		ap->ipa_act.ipa_apply.ipp_espe_maxbits =
3029 		    esp_assoc->ipsa_encrkeybits;
3030 		ap->ipa_act.ipa_apply.ipp_km_proto = esp_assoc->ipsa_kmp;
3031 		ap->ipa_act.ipa_apply.ipp_km_cookie = esp_assoc->ipsa_kmc;
3032 		if (esp_assoc->ipsa_flags & IPSA_F_UNIQUE)
3033 			unique = B_TRUE;
3034 	}
3035 	if (ah_assoc != NULL) {
3036 		ap->ipa_act.ipa_apply.ipp_ah_minbits =
3037 		    ah_assoc->ipsa_authkeybits;
3038 		ap->ipa_act.ipa_apply.ipp_ah_maxbits =
3039 		    ah_assoc->ipsa_authkeybits;
3040 		ap->ipa_act.ipa_apply.ipp_km_proto = ah_assoc->ipsa_kmp;
3041 		ap->ipa_act.ipa_apply.ipp_km_cookie = ah_assoc->ipsa_kmc;
3042 		if (ah_assoc->ipsa_flags & IPSA_F_UNIQUE)
3043 			unique = B_TRUE;
3044 	}
3045 	ap->ipa_act.ipa_apply.ipp_use_unique = unique;
3046 	ap->ipa_want_unique = unique;
3047 	ap->ipa_allow_clear = B_FALSE;
3048 	ap->ipa_want_se = !!(ira->ira_flags & IRAF_IPSEC_DECAPS);
3049 	ap->ipa_want_ah = (ah_assoc != NULL);
3050 	ap->ipa_want_esp = (esp_assoc != NULL);
3051 
3052 	ap->ipa_ovhd = ipsec_act_ovhd(&ap->ipa_act);
3053 
3054 	ap->ipa_act.ipa_apply.ipp_replay_depth = 0; /* don't care */
3055 
3056 	return (ap);
3057 }
3058 
3059 
3060 /*
3061  * Compute the worst-case amount of extra space required by an action.
3062  * Note that, because of the ESP considerations listed below, this is
3063  * actually not the same as the best-case reduction in the MTU; in the
3064  * future, we should pass additional information to this function to
3065  * allow the actual MTU impact to be computed.
3066  *
3067  * AH: Revisit this if we implement algorithms with
3068  * a verifier size of more than 12 bytes.
3069  *
3070  * ESP: A more exact but more messy computation would take into
3071  * account the interaction between the cipher block size and the
3072  * effective MTU, yielding the inner payload size which reflects a
3073  * packet with *minimum* ESP padding..
3074  */
3075 int32_t
3076 ipsec_act_ovhd(const ipsec_act_t *act)
3077 {
3078 	int32_t overhead = 0;
3079 
3080 	if (act->ipa_type == IPSEC_ACT_APPLY) {
3081 		const ipsec_prot_t *ipp = &act->ipa_apply;
3082 
3083 		if (ipp->ipp_use_ah)
3084 			overhead += IPSEC_MAX_AH_HDR_SIZE;
3085 		if (ipp->ipp_use_esp) {
3086 			overhead += IPSEC_MAX_ESP_HDR_SIZE;
3087 			overhead += sizeof (struct udphdr);
3088 		}
3089 		if (ipp->ipp_use_se)
3090 			overhead += IP_SIMPLE_HDR_LENGTH;
3091 	}
3092 	return (overhead);
3093 }
3094 
3095 /*
3096  * This hash function is used only when creating policies and thus is not
3097  * performance-critical for packet flows.
3098  *
3099  * Future work: canonicalize the structures hashed with this (i.e.,
3100  * zeroize padding) so the hash works correctly.
3101  */
3102 /* ARGSUSED */
3103 static uint32_t
3104 policy_hash(int size, const void *start, const void *end)
3105 {
3106 	return (0);
3107 }
3108 
3109 
3110 /*
3111  * Hash function macros for each address type.
3112  *
3113  * The IPV6 hash function assumes that the low order 32-bits of the
3114  * address (typically containing the low order 24 bits of the mac
3115  * address) are reasonably well-distributed.  Revisit this if we run
3116  * into trouble from lots of collisions on ::1 addresses and the like
3117  * (seems unlikely).
3118  */
3119 #define	IPSEC_IPV4_HASH(a, n) ((a) % (n))
3120 #define	IPSEC_IPV6_HASH(a, n) (((a).s6_addr32[3]) % (n))
3121 
3122 /*
3123  * These two hash functions should produce coordinated values
3124  * but have slightly different roles.
3125  */
3126 static uint32_t
3127 selkey_hash(const ipsec_selkey_t *selkey, netstack_t *ns)
3128 {
3129 	uint32_t valid = selkey->ipsl_valid;
3130 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
3131 
3132 	if (!(valid & IPSL_REMOTE_ADDR))
3133 		return (IPSEC_SEL_NOHASH);
3134 
3135 	if (valid & IPSL_IPV4) {
3136 		if (selkey->ipsl_remote_pfxlen == 32) {
3137 			return (IPSEC_IPV4_HASH(selkey->ipsl_remote.ipsad_v4,
3138 			    ipss->ipsec_spd_hashsize));
3139 		}
3140 	}
3141 	if (valid & IPSL_IPV6) {
3142 		if (selkey->ipsl_remote_pfxlen == 128) {
3143 			return (IPSEC_IPV6_HASH(selkey->ipsl_remote.ipsad_v6,
3144 			    ipss->ipsec_spd_hashsize));
3145 		}
3146 	}
3147 	return (IPSEC_SEL_NOHASH);
3148 }
3149 
3150 static uint32_t
3151 selector_hash(ipsec_selector_t *sel, ipsec_policy_root_t *root)
3152 {
3153 	if (sel->ips_isv4) {
3154 		return (IPSEC_IPV4_HASH(sel->ips_remote_addr_v4,
3155 		    root->ipr_nchains));
3156 	}
3157 	return (IPSEC_IPV6_HASH(sel->ips_remote_addr_v6, root->ipr_nchains));
3158 }
3159 
3160 /*
3161  * Intern actions into the action hash table.
3162  */
3163 ipsec_action_t *
3164 ipsec_act_find(const ipsec_act_t *a, int n, netstack_t *ns)
3165 {
3166 	int i;
3167 	uint32_t hval;
3168 	ipsec_action_t *ap;
3169 	ipsec_action_t *prev = NULL;
3170 	int32_t overhead, maxovhd = 0;
3171 	boolean_t allow_clear = B_FALSE;
3172 	boolean_t want_ah = B_FALSE;
3173 	boolean_t want_esp = B_FALSE;
3174 	boolean_t want_se = B_FALSE;
3175 	boolean_t want_unique = B_FALSE;
3176 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
3177 
3178 	/*
3179 	 * TODO: should canonicalize a[] (i.e., zeroize any padding)
3180 	 * so we can use a non-trivial policy_hash function.
3181 	 */
3182 	for (i = n-1; i >= 0; i--) {
3183 		hval = policy_hash(IPSEC_ACTION_HASH_SIZE, &a[i], &a[n]);
3184 
3185 		HASH_LOCK(ipss->ipsec_action_hash, hval);
3186 
3187 		for (HASH_ITERATE(ap, ipa_hash,
3188 		    ipss->ipsec_action_hash, hval)) {
3189 			if (bcmp(&ap->ipa_act, &a[i], sizeof (*a)) != 0)
3190 				continue;
3191 			if (ap->ipa_next != prev)
3192 				continue;
3193 			break;
3194 		}
3195 		if (ap != NULL) {
3196 			HASH_UNLOCK(ipss->ipsec_action_hash, hval);
3197 			prev = ap;
3198 			continue;
3199 		}
3200 		/*
3201 		 * need to allocate a new one..
3202 		 */
3203 		ap = kmem_cache_alloc(ipsec_action_cache, KM_NOSLEEP);
3204 		if (ap == NULL) {
3205 			HASH_UNLOCK(ipss->ipsec_action_hash, hval);
3206 			if (prev != NULL)
3207 				ipsec_action_free(prev);
3208 			return (NULL);
3209 		}
3210 		HASH_INSERT(ap, ipa_hash, ipss->ipsec_action_hash, hval);
3211 
3212 		ap->ipa_next = prev;
3213 		ap->ipa_act = a[i];
3214 
3215 		overhead = ipsec_act_ovhd(&a[i]);
3216 		if (maxovhd < overhead)
3217 			maxovhd = overhead;
3218 
3219 		if ((a[i].ipa_type == IPSEC_ACT_BYPASS) ||
3220 		    (a[i].ipa_type == IPSEC_ACT_CLEAR))
3221 			allow_clear = B_TRUE;
3222 		if (a[i].ipa_type == IPSEC_ACT_APPLY) {
3223 			const ipsec_prot_t *ipp = &a[i].ipa_apply;
3224 
3225 			ASSERT(ipp->ipp_use_ah || ipp->ipp_use_esp);
3226 			want_ah |= ipp->ipp_use_ah;
3227 			want_esp |= ipp->ipp_use_esp;
3228 			want_se |= ipp->ipp_use_se;
3229 			want_unique |= ipp->ipp_use_unique;
3230 		}
3231 		ap->ipa_allow_clear = allow_clear;
3232 		ap->ipa_want_ah = want_ah;
3233 		ap->ipa_want_esp = want_esp;
3234 		ap->ipa_want_se = want_se;
3235 		ap->ipa_want_unique = want_unique;
3236 		ap->ipa_refs = 1; /* from the hash table */
3237 		ap->ipa_ovhd = maxovhd;
3238 		if (prev)
3239 			prev->ipa_refs++;
3240 		prev = ap;
3241 		HASH_UNLOCK(ipss->ipsec_action_hash, hval);
3242 	}
3243 
3244 	ap->ipa_refs++;		/* caller's reference */
3245 
3246 	return (ap);
3247 }
3248 
3249 /*
3250  * Called when refcount goes to 0, indicating that all references to this
3251  * node are gone.
3252  *
3253  * This does not unchain the action from the hash table.
3254  */
3255 void
3256 ipsec_action_free(ipsec_action_t *ap)
3257 {
3258 	for (;;) {
3259 		ipsec_action_t *np = ap->ipa_next;
3260 		ASSERT(ap->ipa_refs == 0);
3261 		ASSERT(ap->ipa_hash.hash_pp == NULL);
3262 		kmem_cache_free(ipsec_action_cache, ap);
3263 		ap = np;
3264 		/* Inlined IPACT_REFRELE -- avoid recursion */
3265 		if (ap == NULL)
3266 			break;
3267 		membar_exit();
3268 		if (atomic_dec_32_nv(&(ap)->ipa_refs) != 0)
3269 			break;
3270 		/* End inlined IPACT_REFRELE */
3271 	}
3272 }
3273 
3274 /*
3275  * Called when the action hash table goes away.
3276  *
3277  * The actions can be queued on an mblk with ipsec_in or
3278  * ipsec_out, hence the actions might still be around.
3279  * But we decrement ipa_refs here since we no longer have
3280  * a reference to the action from the hash table.
3281  */
3282 static void
3283 ipsec_action_free_table(ipsec_action_t *ap)
3284 {
3285 	while (ap != NULL) {
3286 		ipsec_action_t *np = ap->ipa_next;
3287 
3288 		/* FIXME: remove? */
3289 		(void) printf("ipsec_action_free_table(%p) ref %d\n",
3290 		    (void *)ap, ap->ipa_refs);
3291 		ASSERT(ap->ipa_refs > 0);
3292 		IPACT_REFRELE(ap);
3293 		ap = np;
3294 	}
3295 }
3296 
3297 /*
3298  * Need to walk all stack instances since the reclaim function
3299  * is global for all instances
3300  */
3301 /* ARGSUSED */
3302 static void
3303 ipsec_action_reclaim(void *arg)
3304 {
3305 	netstack_handle_t nh;
3306 	netstack_t *ns;
3307 	ipsec_stack_t *ipss;
3308 
3309 	netstack_next_init(&nh);
3310 	while ((ns = netstack_next(&nh)) != NULL) {
3311 		/*
3312 		 * netstack_next() can return a netstack_t with a NULL
3313 		 * netstack_ipsec at boot time.
3314 		 */
3315 		if ((ipss = ns->netstack_ipsec) == NULL) {
3316 			netstack_rele(ns);
3317 			continue;
3318 		}
3319 		ipsec_action_reclaim_stack(ipss);
3320 		netstack_rele(ns);
3321 	}
3322 	netstack_next_fini(&nh);
3323 }
3324 
3325 /*
3326  * Periodically sweep action hash table for actions with refcount==1, and
3327  * nuke them.  We cannot do this "on demand" (i.e., from IPACT_REFRELE)
3328  * because we can't close the race between another thread finding the action
3329  * in the hash table without holding the bucket lock during IPACT_REFRELE.
3330  * Instead, we run this function sporadically to clean up after ourselves;
3331  * we also set it as the "reclaim" function for the action kmem_cache.
3332  *
3333  * Note that it may take several passes of ipsec_action_gc() to free all
3334  * "stale" actions.
3335  */
3336 static void
3337 ipsec_action_reclaim_stack(ipsec_stack_t *ipss)
3338 {
3339 	int i;
3340 
3341 	for (i = 0; i < IPSEC_ACTION_HASH_SIZE; i++) {
3342 		ipsec_action_t *ap, *np;
3343 
3344 		/* skip the lock if nobody home */
3345 		if (ipss->ipsec_action_hash[i].hash_head == NULL)
3346 			continue;
3347 
3348 		HASH_LOCK(ipss->ipsec_action_hash, i);
3349 		for (ap = ipss->ipsec_action_hash[i].hash_head;
3350 		    ap != NULL; ap = np) {
3351 			ASSERT(ap->ipa_refs > 0);
3352 			np = ap->ipa_hash.hash_next;
3353 			if (ap->ipa_refs > 1)
3354 				continue;
3355 			HASH_UNCHAIN(ap, ipa_hash,
3356 			    ipss->ipsec_action_hash, i);
3357 			IPACT_REFRELE(ap);
3358 		}
3359 		HASH_UNLOCK(ipss->ipsec_action_hash, i);
3360 	}
3361 }
3362 
3363 /*
3364  * Intern a selector set into the selector set hash table.
3365  * This is simpler than the actions case..
3366  */
3367 static ipsec_sel_t *
3368 ipsec_find_sel(ipsec_selkey_t *selkey, netstack_t *ns)
3369 {
3370 	ipsec_sel_t *sp;
3371 	uint32_t hval, bucket;
3372 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
3373 
3374 	/*
3375 	 * Exactly one AF bit should be set in selkey.
3376 	 */
3377 	ASSERT(!(selkey->ipsl_valid & IPSL_IPV4) ^
3378 	    !(selkey->ipsl_valid & IPSL_IPV6));
3379 
3380 	hval = selkey_hash(selkey, ns);
3381 	/* Set pol_hval to uninitialized until we put it in a polhead. */
3382 	selkey->ipsl_sel_hval = hval;
3383 
3384 	bucket = (hval == IPSEC_SEL_NOHASH) ? 0 : hval;
3385 
3386 	ASSERT(!HASH_LOCKED(ipss->ipsec_sel_hash, bucket));
3387 	HASH_LOCK(ipss->ipsec_sel_hash, bucket);
3388 
3389 	for (HASH_ITERATE(sp, ipsl_hash, ipss->ipsec_sel_hash, bucket)) {
3390 		if (bcmp(&sp->ipsl_key, selkey,
3391 		    offsetof(ipsec_selkey_t, ipsl_pol_hval)) == 0)
3392 			break;
3393 	}
3394 	if (sp != NULL) {
3395 		sp->ipsl_refs++;
3396 
3397 		HASH_UNLOCK(ipss->ipsec_sel_hash, bucket);
3398 		return (sp);
3399 	}
3400 
3401 	sp = kmem_cache_alloc(ipsec_sel_cache, KM_NOSLEEP);
3402 	if (sp == NULL) {
3403 		HASH_UNLOCK(ipss->ipsec_sel_hash, bucket);
3404 		return (NULL);
3405 	}
3406 
3407 	HASH_INSERT(sp, ipsl_hash, ipss->ipsec_sel_hash, bucket);
3408 	sp->ipsl_refs = 2;	/* one for hash table, one for caller */
3409 	sp->ipsl_key = *selkey;
3410 	/* Set to uninitalized and have insertion into polhead fix things. */
3411 	if (selkey->ipsl_sel_hval != IPSEC_SEL_NOHASH)
3412 		sp->ipsl_key.ipsl_pol_hval = 0;
3413 	else
3414 		sp->ipsl_key.ipsl_pol_hval = IPSEC_SEL_NOHASH;
3415 
3416 	HASH_UNLOCK(ipss->ipsec_sel_hash, bucket);
3417 
3418 	return (sp);
3419 }
3420 
3421 static void
3422 ipsec_sel_rel(ipsec_sel_t **spp, netstack_t *ns)
3423 {
3424 	ipsec_sel_t *sp = *spp;
3425 	int hval = sp->ipsl_key.ipsl_sel_hval;
3426 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
3427 
3428 	*spp = NULL;
3429 
3430 	if (hval == IPSEC_SEL_NOHASH)
3431 		hval = 0;
3432 
3433 	ASSERT(!HASH_LOCKED(ipss->ipsec_sel_hash, hval));
3434 	HASH_LOCK(ipss->ipsec_sel_hash, hval);
3435 	if (--sp->ipsl_refs == 1) {
3436 		HASH_UNCHAIN(sp, ipsl_hash, ipss->ipsec_sel_hash, hval);
3437 		sp->ipsl_refs--;
3438 		HASH_UNLOCK(ipss->ipsec_sel_hash, hval);
3439 		ASSERT(sp->ipsl_refs == 0);
3440 		kmem_cache_free(ipsec_sel_cache, sp);
3441 		/* Caller unlocks */
3442 		return;
3443 	}
3444 
3445 	HASH_UNLOCK(ipss->ipsec_sel_hash, hval);
3446 }
3447 
3448 /*
3449  * Free a policy rule which we know is no longer being referenced.
3450  */
3451 void
3452 ipsec_policy_free(ipsec_policy_t *ipp)
3453 {
3454 	ASSERT(ipp->ipsp_refs == 0);
3455 	ASSERT(ipp->ipsp_sel != NULL);
3456 	ASSERT(ipp->ipsp_act != NULL);
3457 	ASSERT(ipp->ipsp_netstack != NULL);
3458 
3459 	ipsec_sel_rel(&ipp->ipsp_sel, ipp->ipsp_netstack);
3460 	IPACT_REFRELE(ipp->ipsp_act);
3461 	kmem_cache_free(ipsec_pol_cache, ipp);
3462 }
3463 
3464 /*
3465  * Construction of new policy rules; construct a policy, and add it to
3466  * the appropriate tables.
3467  */
3468 ipsec_policy_t *
3469 ipsec_policy_create(ipsec_selkey_t *keys, const ipsec_act_t *a,
3470     int nacts, int prio, uint64_t *index_ptr, netstack_t *ns)
3471 {
3472 	ipsec_action_t *ap;
3473 	ipsec_sel_t *sp;
3474 	ipsec_policy_t *ipp;
3475 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
3476 
3477 	if (index_ptr == NULL)
3478 		index_ptr = &ipss->ipsec_next_policy_index;
3479 
3480 	ipp = kmem_cache_alloc(ipsec_pol_cache, KM_NOSLEEP);
3481 	ap = ipsec_act_find(a, nacts, ns);
3482 	sp = ipsec_find_sel(keys, ns);
3483 
3484 	if ((ap == NULL) || (sp == NULL) || (ipp == NULL)) {
3485 		if (ap != NULL) {
3486 			IPACT_REFRELE(ap);
3487 		}
3488 		if (sp != NULL)
3489 			ipsec_sel_rel(&sp, ns);
3490 		if (ipp != NULL)
3491 			kmem_cache_free(ipsec_pol_cache, ipp);
3492 		return (NULL);
3493 	}
3494 
3495 	HASH_NULL(ipp, ipsp_hash);
3496 
3497 	ipp->ipsp_netstack = ns;	/* Needed for ipsec_policy_free */
3498 	ipp->ipsp_refs = 1;	/* caller's reference */
3499 	ipp->ipsp_sel = sp;
3500 	ipp->ipsp_act = ap;
3501 	ipp->ipsp_prio = prio;	/* rule priority */
3502 	ipp->ipsp_index = *index_ptr;
3503 	(*index_ptr)++;
3504 
3505 	return (ipp);
3506 }
3507 
3508 static void
3509 ipsec_update_present_flags(ipsec_stack_t *ipss)
3510 {
3511 	boolean_t hashpol;
3512 
3513 	hashpol = (avl_numnodes(&ipss->ipsec_system_policy.iph_rulebyid) > 0);
3514 
3515 	if (hashpol) {
3516 		ipss->ipsec_outbound_v4_policy_present = B_TRUE;
3517 		ipss->ipsec_outbound_v6_policy_present = B_TRUE;
3518 		ipss->ipsec_inbound_v4_policy_present = B_TRUE;
3519 		ipss->ipsec_inbound_v6_policy_present = B_TRUE;
3520 		return;
3521 	}
3522 
3523 	ipss->ipsec_outbound_v4_policy_present = (NULL !=
3524 	    ipss->ipsec_system_policy.iph_root[IPSEC_TYPE_OUTBOUND].
3525 	    ipr_nonhash[IPSEC_AF_V4]);
3526 	ipss->ipsec_outbound_v6_policy_present = (NULL !=
3527 	    ipss->ipsec_system_policy.iph_root[IPSEC_TYPE_OUTBOUND].
3528 	    ipr_nonhash[IPSEC_AF_V6]);
3529 	ipss->ipsec_inbound_v4_policy_present = (NULL !=
3530 	    ipss->ipsec_system_policy.iph_root[IPSEC_TYPE_INBOUND].
3531 	    ipr_nonhash[IPSEC_AF_V4]);
3532 	ipss->ipsec_inbound_v6_policy_present = (NULL !=
3533 	    ipss->ipsec_system_policy.iph_root[IPSEC_TYPE_INBOUND].
3534 	    ipr_nonhash[IPSEC_AF_V6]);
3535 }
3536 
3537 boolean_t
3538 ipsec_policy_delete(ipsec_policy_head_t *php, ipsec_selkey_t *keys, int dir,
3539     netstack_t *ns)
3540 {
3541 	ipsec_sel_t *sp;
3542 	ipsec_policy_t *ip, *nip, *head;
3543 	int af;
3544 	ipsec_policy_root_t *pr = &php->iph_root[dir];
3545 
3546 	sp = ipsec_find_sel(keys, ns);
3547 
3548 	if (sp == NULL)
3549 		return (B_FALSE);
3550 
3551 	af = (sp->ipsl_key.ipsl_valid & IPSL_IPV4) ? IPSEC_AF_V4 : IPSEC_AF_V6;
3552 
3553 	rw_enter(&php->iph_lock, RW_WRITER);
3554 
3555 	if (sp->ipsl_key.ipsl_pol_hval == IPSEC_SEL_NOHASH) {
3556 		head = pr->ipr_nonhash[af];
3557 	} else {
3558 		head = pr->ipr_hash[sp->ipsl_key.ipsl_pol_hval].hash_head;
3559 	}
3560 
3561 	for (ip = head; ip != NULL; ip = nip) {
3562 		nip = ip->ipsp_hash.hash_next;
3563 		if (ip->ipsp_sel != sp) {
3564 			continue;
3565 		}
3566 
3567 		IPPOL_UNCHAIN(php, ip);
3568 
3569 		php->iph_gen++;
3570 		ipsec_update_present_flags(ns->netstack_ipsec);
3571 
3572 		rw_exit(&php->iph_lock);
3573 
3574 		ipsec_sel_rel(&sp, ns);
3575 
3576 		return (B_TRUE);
3577 	}
3578 
3579 	rw_exit(&php->iph_lock);
3580 	ipsec_sel_rel(&sp, ns);
3581 	return (B_FALSE);
3582 }
3583 
3584 int
3585 ipsec_policy_delete_index(ipsec_policy_head_t *php, uint64_t policy_index,
3586     netstack_t *ns)
3587 {
3588 	boolean_t found = B_FALSE;
3589 	ipsec_policy_t ipkey;
3590 	ipsec_policy_t *ip;
3591 	avl_index_t where;
3592 
3593 	bzero(&ipkey, sizeof (ipkey));
3594 	ipkey.ipsp_index = policy_index;
3595 
3596 	rw_enter(&php->iph_lock, RW_WRITER);
3597 
3598 	/*
3599 	 * We could be cleverer here about the walk.
3600 	 * but well, (k+1)*log(N) will do for now (k==number of matches,
3601 	 * N==number of table entries
3602 	 */
3603 	for (;;) {
3604 		ip = (ipsec_policy_t *)avl_find(&php->iph_rulebyid,
3605 		    (void *)&ipkey, &where);
3606 		ASSERT(ip == NULL);
3607 
3608 		ip = avl_nearest(&php->iph_rulebyid, where, AVL_AFTER);
3609 
3610 		if (ip == NULL)
3611 			break;
3612 
3613 		if (ip->ipsp_index != policy_index) {
3614 			ASSERT(ip->ipsp_index > policy_index);
3615 			break;
3616 		}
3617 
3618 		IPPOL_UNCHAIN(php, ip);
3619 		found = B_TRUE;
3620 	}
3621 
3622 	if (found) {
3623 		php->iph_gen++;
3624 		ipsec_update_present_flags(ns->netstack_ipsec);
3625 	}
3626 
3627 	rw_exit(&php->iph_lock);
3628 
3629 	return (found ? 0 : ENOENT);
3630 }
3631 
3632 /*
3633  * Given a constructed ipsec_policy_t policy rule, see if it can be entered
3634  * into the correct policy ruleset.  As a side-effect, it sets the hash
3635  * entries on "ipp"'s ipsp_pol_hval.
3636  *
3637  * Returns B_TRUE if it can be entered, B_FALSE if it can't be (because a
3638  * duplicate policy exists with exactly the same selectors), or an icmp
3639  * rule exists with a different encryption/authentication action.
3640  */
3641 boolean_t
3642 ipsec_check_policy(ipsec_policy_head_t *php, ipsec_policy_t *ipp, int direction)
3643 {
3644 	ipsec_policy_root_t *pr = &php->iph_root[direction];
3645 	int af = -1;
3646 	ipsec_policy_t *p2, *head;
3647 	uint8_t check_proto;
3648 	ipsec_selkey_t *selkey = &ipp->ipsp_sel->ipsl_key;
3649 	uint32_t	valid = selkey->ipsl_valid;
3650 
3651 	if (valid & IPSL_IPV6) {
3652 		ASSERT(!(valid & IPSL_IPV4));
3653 		af = IPSEC_AF_V6;
3654 		check_proto = IPPROTO_ICMPV6;
3655 	} else {
3656 		ASSERT(valid & IPSL_IPV4);
3657 		af = IPSEC_AF_V4;
3658 		check_proto = IPPROTO_ICMP;
3659 	}
3660 
3661 	ASSERT(RW_WRITE_HELD(&php->iph_lock));
3662 
3663 	/*
3664 	 * Double-check that we don't have any duplicate selectors here.
3665 	 * Because selectors are interned below, we need only compare pointers
3666 	 * for equality.
3667 	 */
3668 	if (selkey->ipsl_sel_hval == IPSEC_SEL_NOHASH) {
3669 		head = pr->ipr_nonhash[af];
3670 	} else {
3671 		selkey->ipsl_pol_hval =
3672 		    (selkey->ipsl_valid & IPSL_IPV4) ?
3673 		    IPSEC_IPV4_HASH(selkey->ipsl_remote.ipsad_v4,
3674 		    pr->ipr_nchains) :
3675 		    IPSEC_IPV6_HASH(selkey->ipsl_remote.ipsad_v6,
3676 		    pr->ipr_nchains);
3677 
3678 		head = pr->ipr_hash[selkey->ipsl_pol_hval].hash_head;
3679 	}
3680 
3681 	for (p2 = head; p2 != NULL; p2 = p2->ipsp_hash.hash_next) {
3682 		if (p2->ipsp_sel == ipp->ipsp_sel)
3683 			return (B_FALSE);
3684 	}
3685 
3686 	/*
3687 	 * If it's ICMP and not a drop or pass rule, run through the ICMP
3688 	 * rules and make sure the action is either new or the same as any
3689 	 * other actions.  We don't have to check the full chain because
3690 	 * discard and bypass will override all other actions
3691 	 */
3692 
3693 	if (valid & IPSL_PROTOCOL &&
3694 	    selkey->ipsl_proto == check_proto &&
3695 	    (ipp->ipsp_act->ipa_act.ipa_type == IPSEC_ACT_APPLY)) {
3696 
3697 		for (p2 = head; p2 != NULL; p2 = p2->ipsp_hash.hash_next) {
3698 
3699 			if (p2->ipsp_sel->ipsl_key.ipsl_valid & IPSL_PROTOCOL &&
3700 			    p2->ipsp_sel->ipsl_key.ipsl_proto == check_proto &&
3701 			    (p2->ipsp_act->ipa_act.ipa_type ==
3702 			    IPSEC_ACT_APPLY)) {
3703 				return (ipsec_compare_action(p2, ipp));
3704 			}
3705 		}
3706 	}
3707 
3708 	return (B_TRUE);
3709 }
3710 
3711 /*
3712  * compare the action chains of two policies for equality
3713  * B_TRUE -> effective equality
3714  */
3715 
3716 static boolean_t
3717 ipsec_compare_action(ipsec_policy_t *p1, ipsec_policy_t *p2)
3718 {
3719 
3720 	ipsec_action_t *act1, *act2;
3721 
3722 	/* We have a valid rule. Let's compare the actions */
3723 	if (p1->ipsp_act == p2->ipsp_act) {
3724 		/* same action. We are good */
3725 		return (B_TRUE);
3726 	}
3727 
3728 	/* we have to walk the chain */
3729 
3730 	act1 = p1->ipsp_act;
3731 	act2 = p2->ipsp_act;
3732 
3733 	while (act1 != NULL && act2 != NULL) {
3734 
3735 		/* otherwise, Are we close enough? */
3736 		if (act1->ipa_allow_clear != act2->ipa_allow_clear ||
3737 		    act1->ipa_want_ah != act2->ipa_want_ah ||
3738 		    act1->ipa_want_esp != act2->ipa_want_esp ||
3739 		    act1->ipa_want_se != act2->ipa_want_se) {
3740 			/* Nope, we aren't */
3741 			return (B_FALSE);
3742 		}
3743 
3744 		if (act1->ipa_want_ah) {
3745 			if (act1->ipa_act.ipa_apply.ipp_auth_alg !=
3746 			    act2->ipa_act.ipa_apply.ipp_auth_alg) {
3747 				return (B_FALSE);
3748 			}
3749 
3750 			if (act1->ipa_act.ipa_apply.ipp_ah_minbits !=
3751 			    act2->ipa_act.ipa_apply.ipp_ah_minbits ||
3752 			    act1->ipa_act.ipa_apply.ipp_ah_maxbits !=
3753 			    act2->ipa_act.ipa_apply.ipp_ah_maxbits) {
3754 				return (B_FALSE);
3755 			}
3756 		}
3757 
3758 		if (act1->ipa_want_esp) {
3759 			if (act1->ipa_act.ipa_apply.ipp_use_esp !=
3760 			    act2->ipa_act.ipa_apply.ipp_use_esp ||
3761 			    act1->ipa_act.ipa_apply.ipp_use_espa !=
3762 			    act2->ipa_act.ipa_apply.ipp_use_espa) {
3763 				return (B_FALSE);
3764 			}
3765 
3766 			if (act1->ipa_act.ipa_apply.ipp_use_esp) {
3767 				if (act1->ipa_act.ipa_apply.ipp_encr_alg !=
3768 				    act2->ipa_act.ipa_apply.ipp_encr_alg) {
3769 					return (B_FALSE);
3770 				}
3771 
3772 				if (act1->ipa_act.ipa_apply.ipp_espe_minbits !=
3773 				    act2->ipa_act.ipa_apply.ipp_espe_minbits ||
3774 				    act1->ipa_act.ipa_apply.ipp_espe_maxbits !=
3775 				    act2->ipa_act.ipa_apply.ipp_espe_maxbits) {
3776 					return (B_FALSE);
3777 				}
3778 			}
3779 
3780 			if (act1->ipa_act.ipa_apply.ipp_use_espa) {
3781 				if (act1->ipa_act.ipa_apply.ipp_esp_auth_alg !=
3782 				    act2->ipa_act.ipa_apply.ipp_esp_auth_alg) {
3783 					return (B_FALSE);
3784 				}
3785 
3786 				if (act1->ipa_act.ipa_apply.ipp_espa_minbits !=
3787 				    act2->ipa_act.ipa_apply.ipp_espa_minbits ||
3788 				    act1->ipa_act.ipa_apply.ipp_espa_maxbits !=
3789 				    act2->ipa_act.ipa_apply.ipp_espa_maxbits) {
3790 					return (B_FALSE);
3791 				}
3792 			}
3793 
3794 		}
3795 
3796 		act1 = act1->ipa_next;
3797 		act2 = act2->ipa_next;
3798 	}
3799 
3800 	if (act1 != NULL || act2 != NULL) {
3801 		return (B_FALSE);
3802 	}
3803 
3804 	return (B_TRUE);
3805 }
3806 
3807 
3808 /*
3809  * Given a constructed ipsec_policy_t policy rule, enter it into
3810  * the correct policy ruleset.
3811  *
3812  * ipsec_check_policy() is assumed to have succeeded first (to check for
3813  * duplicates).
3814  */
3815 void
3816 ipsec_enter_policy(ipsec_policy_head_t *php, ipsec_policy_t *ipp, int direction,
3817     netstack_t *ns)
3818 {
3819 	ipsec_policy_root_t *pr = &php->iph_root[direction];
3820 	ipsec_selkey_t *selkey = &ipp->ipsp_sel->ipsl_key;
3821 	uint32_t valid = selkey->ipsl_valid;
3822 	uint32_t hval = selkey->ipsl_pol_hval;
3823 	int af = -1;
3824 
3825 	ASSERT(RW_WRITE_HELD(&php->iph_lock));
3826 
3827 	if (valid & IPSL_IPV6) {
3828 		ASSERT(!(valid & IPSL_IPV4));
3829 		af = IPSEC_AF_V6;
3830 	} else {
3831 		ASSERT(valid & IPSL_IPV4);
3832 		af = IPSEC_AF_V4;
3833 	}
3834 
3835 	php->iph_gen++;
3836 
3837 	if (hval == IPSEC_SEL_NOHASH) {
3838 		HASHLIST_INSERT(ipp, ipsp_hash, pr->ipr_nonhash[af]);
3839 	} else {
3840 		HASH_LOCK(pr->ipr_hash, hval);
3841 		HASH_INSERT(ipp, ipsp_hash, pr->ipr_hash, hval);
3842 		HASH_UNLOCK(pr->ipr_hash, hval);
3843 	}
3844 
3845 	ipsec_insert_always(&php->iph_rulebyid, ipp);
3846 
3847 	ipsec_update_present_flags(ns->netstack_ipsec);
3848 }
3849 
3850 static void
3851 ipsec_ipr_flush(ipsec_policy_head_t *php, ipsec_policy_root_t *ipr)
3852 {
3853 	ipsec_policy_t *ip, *nip;
3854 	int af, chain, nchain;
3855 
3856 	for (af = 0; af < IPSEC_NAF; af++) {
3857 		for (ip = ipr->ipr_nonhash[af]; ip != NULL; ip = nip) {
3858 			nip = ip->ipsp_hash.hash_next;
3859 			IPPOL_UNCHAIN(php, ip);
3860 		}
3861 		ipr->ipr_nonhash[af] = NULL;
3862 	}
3863 	nchain = ipr->ipr_nchains;
3864 
3865 	for (chain = 0; chain < nchain; chain++) {
3866 		for (ip = ipr->ipr_hash[chain].hash_head; ip != NULL;
3867 		    ip = nip) {
3868 			nip = ip->ipsp_hash.hash_next;
3869 			IPPOL_UNCHAIN(php, ip);
3870 		}
3871 		ipr->ipr_hash[chain].hash_head = NULL;
3872 	}
3873 }
3874 
3875 /*
3876  * Create and insert inbound or outbound policy associated with actp for the
3877  * address family fam into the policy head ph.  Returns B_TRUE if policy was
3878  * inserted, and B_FALSE otherwise.
3879  */
3880 boolean_t
3881 ipsec_polhead_insert(ipsec_policy_head_t *ph, ipsec_act_t *actp, uint_t nact,
3882     int fam, int ptype, netstack_t *ns)
3883 {
3884 	ipsec_selkey_t		sel;
3885 	ipsec_policy_t		*pol;
3886 	ipsec_policy_root_t	*pr;
3887 
3888 	bzero(&sel, sizeof (sel));
3889 	sel.ipsl_valid = (fam == IPSEC_AF_V4 ? IPSL_IPV4 : IPSL_IPV6);
3890 	if ((pol = ipsec_policy_create(&sel, actp, nact, IPSEC_PRIO_SOCKET,
3891 	    NULL, ns)) != NULL) {
3892 		pr = &ph->iph_root[ptype];
3893 		HASHLIST_INSERT(pol, ipsp_hash, pr->ipr_nonhash[fam]);
3894 		ipsec_insert_always(&ph->iph_rulebyid, pol);
3895 	}
3896 	return (pol != NULL);
3897 }
3898 
3899 void
3900 ipsec_polhead_flush(ipsec_policy_head_t *php, netstack_t *ns)
3901 {
3902 	int dir;
3903 
3904 	ASSERT(RW_WRITE_HELD(&php->iph_lock));
3905 
3906 	for (dir = 0; dir < IPSEC_NTYPES; dir++)
3907 		ipsec_ipr_flush(php, &php->iph_root[dir]);
3908 
3909 	php->iph_gen++;
3910 	ipsec_update_present_flags(ns->netstack_ipsec);
3911 }
3912 
3913 void
3914 ipsec_polhead_free(ipsec_policy_head_t *php, netstack_t *ns)
3915 {
3916 	int dir;
3917 
3918 	ASSERT(php->iph_refs == 0);
3919 
3920 	rw_enter(&php->iph_lock, RW_WRITER);
3921 	ipsec_polhead_flush(php, ns);
3922 	rw_exit(&php->iph_lock);
3923 	rw_destroy(&php->iph_lock);
3924 	for (dir = 0; dir < IPSEC_NTYPES; dir++) {
3925 		ipsec_policy_root_t *ipr = &php->iph_root[dir];
3926 		int chain;
3927 
3928 		for (chain = 0; chain < ipr->ipr_nchains; chain++)
3929 			mutex_destroy(&(ipr->ipr_hash[chain].hash_lock));
3930 
3931 	}
3932 	ipsec_polhead_free_table(php);
3933 	kmem_free(php, sizeof (*php));
3934 }
3935 
3936 static void
3937 ipsec_ipr_init(ipsec_policy_root_t *ipr)
3938 {
3939 	int af;
3940 
3941 	ipr->ipr_nchains = 0;
3942 	ipr->ipr_hash = NULL;
3943 
3944 	for (af = 0; af < IPSEC_NAF; af++) {
3945 		ipr->ipr_nonhash[af] = NULL;
3946 	}
3947 }
3948 
3949 ipsec_policy_head_t *
3950 ipsec_polhead_create(void)
3951 {
3952 	ipsec_policy_head_t *php;
3953 
3954 	php = kmem_alloc(sizeof (*php), KM_NOSLEEP);
3955 	if (php == NULL)
3956 		return (php);
3957 
3958 	rw_init(&php->iph_lock, NULL, RW_DEFAULT, NULL);
3959 	php->iph_refs = 1;
3960 	php->iph_gen = 0;
3961 
3962 	ipsec_ipr_init(&php->iph_root[IPSEC_TYPE_INBOUND]);
3963 	ipsec_ipr_init(&php->iph_root[IPSEC_TYPE_OUTBOUND]);
3964 
3965 	avl_create(&php->iph_rulebyid, ipsec_policy_cmpbyid,
3966 	    sizeof (ipsec_policy_t), offsetof(ipsec_policy_t, ipsp_byid));
3967 
3968 	return (php);
3969 }
3970 
3971 /*
3972  * Clone the policy head into a new polhead; release one reference to the
3973  * old one and return the only reference to the new one.
3974  * If the old one had a refcount of 1, just return it.
3975  */
3976 ipsec_policy_head_t *
3977 ipsec_polhead_split(ipsec_policy_head_t *php, netstack_t *ns)
3978 {
3979 	ipsec_policy_head_t *nphp;
3980 
3981 	if (php == NULL)
3982 		return (ipsec_polhead_create());
3983 	else if (php->iph_refs == 1)
3984 		return (php);
3985 
3986 	nphp = ipsec_polhead_create();
3987 	if (nphp == NULL)
3988 		return (NULL);
3989 
3990 	if (ipsec_copy_polhead(php, nphp, ns) != 0) {
3991 		ipsec_polhead_free(nphp, ns);
3992 		return (NULL);
3993 	}
3994 	IPPH_REFRELE(php, ns);
3995 	return (nphp);
3996 }
3997 
3998 /*
3999  * When sending a response to a ICMP request or generating a RST
4000  * in the TCP case, the outbound packets need to go at the same level
4001  * of protection as the incoming ones i.e we associate our outbound
4002  * policy with how the packet came in. We call this after we have
4003  * accepted the incoming packet which may or may not have been in
4004  * clear and hence we are sending the reply back with the policy
4005  * matching the incoming datagram's policy.
4006  *
4007  * NOTE : This technology serves two purposes :
4008  *
4009  * 1) If we have multiple outbound policies, we send out a reply
4010  *    matching with how it came in rather than matching the outbound
4011  *    policy.
4012  *
4013  * 2) For assymetric policies, we want to make sure that incoming
4014  *    and outgoing has the same level of protection. Assymetric
4015  *    policies exist only with global policy where we may not have
4016  *    both outbound and inbound at the same time.
4017  *
4018  * NOTE2:	This function is called by cleartext cases, so it needs to be
4019  *		in IP proper.
4020  *
4021  * Note: the caller has moved other parts of ira into ixa already.
4022  */
4023 boolean_t
4024 ipsec_in_to_out(ip_recv_attr_t *ira, ip_xmit_attr_t *ixa, mblk_t *data_mp,
4025     ipha_t *ipha, ip6_t *ip6h)
4026 {
4027 	ipsec_selector_t sel;
4028 	ipsec_action_t	*reflect_action = NULL;
4029 	netstack_t	*ns = ixa->ixa_ipst->ips_netstack;
4030 
4031 	bzero((void*)&sel, sizeof (sel));
4032 
4033 	if (ira->ira_ipsec_action != NULL) {
4034 		/* transfer reference.. */
4035 		reflect_action = ira->ira_ipsec_action;
4036 		ira->ira_ipsec_action = NULL;
4037 	} else if (!(ira->ira_flags & IRAF_LOOPBACK))
4038 		reflect_action = ipsec_in_to_out_action(ira);
4039 
4040 	/*
4041 	 * The caller is going to send the datagram out which might
4042 	 * go on the wire or delivered locally through ire_send_local.
4043 	 *
4044 	 * 1) If it goes out on the wire, new associations will be
4045 	 *    obtained.
4046 	 * 2) If it is delivered locally, ire_send_local will convert
4047 	 *    this ip_xmit_attr_t back to a ip_recv_attr_t looking at the
4048 	 *    requests.
4049 	 */
4050 	ixa->ixa_ipsec_action = reflect_action;
4051 
4052 	if (!ipsec_init_outbound_ports(&sel, data_mp, ipha, ip6h, 0,
4053 	    ns->netstack_ipsec)) {
4054 		/* Note: data_mp already consumed and ip_drop_packet done */
4055 		return (B_FALSE);
4056 	}
4057 	ixa->ixa_ipsec_src_port = sel.ips_local_port;
4058 	ixa->ixa_ipsec_dst_port = sel.ips_remote_port;
4059 	ixa->ixa_ipsec_proto = sel.ips_protocol;
4060 	ixa->ixa_ipsec_icmp_type = sel.ips_icmp_type;
4061 	ixa->ixa_ipsec_icmp_code = sel.ips_icmp_code;
4062 
4063 	/*
4064 	 * Don't use global policy for this, as we want
4065 	 * to use the same protection that was applied to the inbound packet.
4066 	 * Thus we set IXAF_NO_IPSEC is it arrived in the clear to make
4067 	 * it be sent in the clear.
4068 	 */
4069 	if (ira->ira_flags & IRAF_IPSEC_SECURE)
4070 		ixa->ixa_flags |= IXAF_IPSEC_SECURE;
4071 	else
4072 		ixa->ixa_flags |= IXAF_NO_IPSEC;
4073 
4074 	return (B_TRUE);
4075 }
4076 
4077 void
4078 ipsec_out_release_refs(ip_xmit_attr_t *ixa)
4079 {
4080 	if (!(ixa->ixa_flags & IXAF_IPSEC_SECURE))
4081 		return;
4082 
4083 	if (ixa->ixa_ipsec_ah_sa != NULL) {
4084 		IPSA_REFRELE(ixa->ixa_ipsec_ah_sa);
4085 		ixa->ixa_ipsec_ah_sa = NULL;
4086 	}
4087 	if (ixa->ixa_ipsec_esp_sa != NULL) {
4088 		IPSA_REFRELE(ixa->ixa_ipsec_esp_sa);
4089 		ixa->ixa_ipsec_esp_sa = NULL;
4090 	}
4091 	if (ixa->ixa_ipsec_policy != NULL) {
4092 		IPPOL_REFRELE(ixa->ixa_ipsec_policy);
4093 		ixa->ixa_ipsec_policy = NULL;
4094 	}
4095 	if (ixa->ixa_ipsec_action != NULL) {
4096 		IPACT_REFRELE(ixa->ixa_ipsec_action);
4097 		ixa->ixa_ipsec_action = NULL;
4098 	}
4099 	if (ixa->ixa_ipsec_latch) {
4100 		IPLATCH_REFRELE(ixa->ixa_ipsec_latch);
4101 		ixa->ixa_ipsec_latch = NULL;
4102 	}
4103 	/* Clear the soft references to the SAs */
4104 	ixa->ixa_ipsec_ref[0].ipsr_sa = NULL;
4105 	ixa->ixa_ipsec_ref[0].ipsr_bucket = NULL;
4106 	ixa->ixa_ipsec_ref[0].ipsr_gen = 0;
4107 	ixa->ixa_ipsec_ref[1].ipsr_sa = NULL;
4108 	ixa->ixa_ipsec_ref[1].ipsr_bucket = NULL;
4109 	ixa->ixa_ipsec_ref[1].ipsr_gen = 0;
4110 	ixa->ixa_flags &= ~IXAF_IPSEC_SECURE;
4111 }
4112 
4113 void
4114 ipsec_in_release_refs(ip_recv_attr_t *ira)
4115 {
4116 	if (!(ira->ira_flags & IRAF_IPSEC_SECURE))
4117 		return;
4118 
4119 	if (ira->ira_ipsec_ah_sa != NULL) {
4120 		IPSA_REFRELE(ira->ira_ipsec_ah_sa);
4121 		ira->ira_ipsec_ah_sa = NULL;
4122 	}
4123 	if (ira->ira_ipsec_esp_sa != NULL) {
4124 		IPSA_REFRELE(ira->ira_ipsec_esp_sa);
4125 		ira->ira_ipsec_esp_sa = NULL;
4126 	}
4127 	ira->ira_flags &= ~IRAF_IPSEC_SECURE;
4128 }
4129 
4130 /*
4131  * This is called from ire_send_local when a packet
4132  * is looped back. We setup the ip_recv_attr_t "borrowing" the references
4133  * held by the callers.
4134  * Note that we don't do any IPsec but we carry the actions and IPSEC flags
4135  * across so that the fanout policy checks see that IPsec was applied.
4136  *
4137  * The caller should do ipsec_in_release_refs() on the ira by calling
4138  * ira_cleanup().
4139  */
4140 void
4141 ipsec_out_to_in(ip_xmit_attr_t *ixa, ill_t *ill, ip_recv_attr_t *ira)
4142 {
4143 	ipsec_policy_t *pol;
4144 	ipsec_action_t *act;
4145 
4146 	/* Non-IPsec operations */
4147 	ira->ira_free_flags = 0;
4148 	ira->ira_zoneid = ixa->ixa_zoneid;
4149 	ira->ira_cred = ixa->ixa_cred;
4150 	ira->ira_cpid = ixa->ixa_cpid;
4151 	ira->ira_tsl = ixa->ixa_tsl;
4152 	ira->ira_ill = ira->ira_rill = ill;
4153 	ira->ira_flags = ixa->ixa_flags & IAF_MASK;
4154 	ira->ira_no_loop_zoneid = ixa->ixa_no_loop_zoneid;
4155 	ira->ira_pktlen = ixa->ixa_pktlen;
4156 	ira->ira_ip_hdr_length = ixa->ixa_ip_hdr_length;
4157 	ira->ira_protocol = ixa->ixa_protocol;
4158 	ira->ira_mhip = NULL;
4159 
4160 	ira->ira_flags |= IRAF_LOOPBACK | IRAF_L2SRC_LOOPBACK;
4161 
4162 	ira->ira_sqp = ixa->ixa_sqp;
4163 	ira->ira_ring = NULL;
4164 
4165 	ira->ira_ruifindex = ill->ill_phyint->phyint_ifindex;
4166 	ira->ira_rifindex = ira->ira_ruifindex;
4167 
4168 	if (!(ixa->ixa_flags & IXAF_IPSEC_SECURE))
4169 		return;
4170 
4171 	ira->ira_flags |= IRAF_IPSEC_SECURE;
4172 
4173 	ira->ira_ipsec_ah_sa = NULL;
4174 	ira->ira_ipsec_esp_sa = NULL;
4175 
4176 	act = ixa->ixa_ipsec_action;
4177 	if (act == NULL) {
4178 		pol = ixa->ixa_ipsec_policy;
4179 		if (pol != NULL) {
4180 			act = pol->ipsp_act;
4181 			IPACT_REFHOLD(act);
4182 		}
4183 	}
4184 	ixa->ixa_ipsec_action = NULL;
4185 	ira->ira_ipsec_action = act;
4186 }
4187 
4188 /*
4189  * Consults global policy and per-socket policy to see whether this datagram
4190  * should go out secure. If so it updates the ip_xmit_attr_t
4191  * Should not be used when connecting, since then we want to latch the policy.
4192  *
4193  * If connp is NULL we just look at the global policy.
4194  *
4195  * Returns NULL if the packet was dropped, in which case the MIB has
4196  * been incremented and ip_drop_packet done.
4197  */
4198 mblk_t *
4199 ip_output_attach_policy(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h,
4200     const conn_t *connp, ip_xmit_attr_t *ixa)
4201 {
4202 	ipsec_selector_t sel;
4203 	boolean_t	policy_present;
4204 	ip_stack_t	*ipst = ixa->ixa_ipst;
4205 	netstack_t	*ns = ipst->ips_netstack;
4206 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
4207 	ipsec_policy_t	*p;
4208 
4209 	ixa->ixa_ipsec_policy_gen = ipss->ipsec_system_policy.iph_gen;
4210 	ASSERT((ipha != NULL && ip6h == NULL) ||
4211 	    (ip6h != NULL && ipha == NULL));
4212 
4213 	if (ipha != NULL)
4214 		policy_present = ipss->ipsec_outbound_v4_policy_present;
4215 	else
4216 		policy_present = ipss->ipsec_outbound_v6_policy_present;
4217 
4218 	if (!policy_present && (connp == NULL || connp->conn_policy == NULL))
4219 		return (mp);
4220 
4221 	bzero((void*)&sel, sizeof (sel));
4222 
4223 	if (ipha != NULL) {
4224 		sel.ips_local_addr_v4 = ipha->ipha_src;
4225 		sel.ips_remote_addr_v4 = ip_get_dst(ipha);
4226 		sel.ips_isv4 = B_TRUE;
4227 	} else {
4228 		sel.ips_isv4 = B_FALSE;
4229 		sel.ips_local_addr_v6 = ip6h->ip6_src;
4230 		sel.ips_remote_addr_v6 = ip_get_dst_v6(ip6h, mp, NULL);
4231 	}
4232 	sel.ips_protocol = ixa->ixa_protocol;
4233 
4234 	if (!ipsec_init_outbound_ports(&sel, mp, ipha, ip6h, 0, ipss)) {
4235 		if (ipha != NULL) {
4236 			BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards);
4237 		} else {
4238 			BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsOutDiscards);
4239 		}
4240 		/* Note: mp already consumed and ip_drop_packet done */
4241 		return (NULL);
4242 	}
4243 
4244 	ASSERT(ixa->ixa_ipsec_policy == NULL);
4245 	p = ipsec_find_policy(IPSEC_TYPE_OUTBOUND, connp, &sel, ns);
4246 	ixa->ixa_ipsec_policy = p;
4247 	if (p != NULL) {
4248 		ixa->ixa_flags |= IXAF_IPSEC_SECURE;
4249 		if (connp == NULL || connp->conn_policy == NULL)
4250 			ixa->ixa_flags |= IXAF_IPSEC_GLOBAL_POLICY;
4251 	} else {
4252 		ixa->ixa_flags &= ~IXAF_IPSEC_SECURE;
4253 	}
4254 
4255 	/*
4256 	 * Copy the right port information.
4257 	 */
4258 	ixa->ixa_ipsec_src_port = sel.ips_local_port;
4259 	ixa->ixa_ipsec_dst_port = sel.ips_remote_port;
4260 	ixa->ixa_ipsec_icmp_type = sel.ips_icmp_type;
4261 	ixa->ixa_ipsec_icmp_code = sel.ips_icmp_code;
4262 	ixa->ixa_ipsec_proto = sel.ips_protocol;
4263 	return (mp);
4264 }
4265 
4266 /*
4267  * When appropriate, this function caches inbound and outbound policy
4268  * for this connection. The outbound policy is stored in conn_ixa.
4269  * Note that it can not be used for SCTP since conn_faddr isn't set for SCTP.
4270  *
4271  * XXX need to work out more details about per-interface policy and
4272  * caching here!
4273  *
4274  * XXX may want to split inbound and outbound caching for ill..
4275  */
4276 int
4277 ipsec_conn_cache_policy(conn_t *connp, boolean_t isv4)
4278 {
4279 	boolean_t global_policy_present;
4280 	netstack_t	*ns = connp->conn_netstack;
4281 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
4282 
4283 	connp->conn_ixa->ixa_ipsec_policy_gen =
4284 	    ipss->ipsec_system_policy.iph_gen;
4285 	/*
4286 	 * There is no policy latching for ICMP sockets because we can't
4287 	 * decide on which policy to use until we see the packet and get
4288 	 * type/code selectors.
4289 	 */
4290 	if (connp->conn_proto == IPPROTO_ICMP ||
4291 	    connp->conn_proto == IPPROTO_ICMPV6) {
4292 		connp->conn_in_enforce_policy =
4293 		    connp->conn_out_enforce_policy = B_TRUE;
4294 		if (connp->conn_latch != NULL) {
4295 			IPLATCH_REFRELE(connp->conn_latch);
4296 			connp->conn_latch = NULL;
4297 		}
4298 		if (connp->conn_latch_in_policy != NULL) {
4299 			IPPOL_REFRELE(connp->conn_latch_in_policy);
4300 			connp->conn_latch_in_policy = NULL;
4301 		}
4302 		if (connp->conn_latch_in_action != NULL) {
4303 			IPACT_REFRELE(connp->conn_latch_in_action);
4304 			connp->conn_latch_in_action = NULL;
4305 		}
4306 		if (connp->conn_ixa->ixa_ipsec_policy != NULL) {
4307 			IPPOL_REFRELE(connp->conn_ixa->ixa_ipsec_policy);
4308 			connp->conn_ixa->ixa_ipsec_policy = NULL;
4309 		}
4310 		if (connp->conn_ixa->ixa_ipsec_action != NULL) {
4311 			IPACT_REFRELE(connp->conn_ixa->ixa_ipsec_action);
4312 			connp->conn_ixa->ixa_ipsec_action = NULL;
4313 		}
4314 		connp->conn_ixa->ixa_flags &= ~IXAF_IPSEC_SECURE;
4315 		return (0);
4316 	}
4317 
4318 	global_policy_present = isv4 ?
4319 	    (ipss->ipsec_outbound_v4_policy_present ||
4320 	    ipss->ipsec_inbound_v4_policy_present) :
4321 	    (ipss->ipsec_outbound_v6_policy_present ||
4322 	    ipss->ipsec_inbound_v6_policy_present);
4323 
4324 	if ((connp->conn_policy != NULL) || global_policy_present) {
4325 		ipsec_selector_t sel;
4326 		ipsec_policy_t	*p;
4327 
4328 		if (connp->conn_latch == NULL &&
4329 		    (connp->conn_latch = iplatch_create()) == NULL) {
4330 			return (ENOMEM);
4331 		}
4332 
4333 		bzero((void*)&sel, sizeof (sel));
4334 
4335 		sel.ips_protocol = connp->conn_proto;
4336 		sel.ips_local_port = connp->conn_lport;
4337 		sel.ips_remote_port = connp->conn_fport;
4338 		sel.ips_is_icmp_inv_acq = 0;
4339 		sel.ips_isv4 = isv4;
4340 		if (isv4) {
4341 			sel.ips_local_addr_v4 = connp->conn_laddr_v4;
4342 			sel.ips_remote_addr_v4 = connp->conn_faddr_v4;
4343 		} else {
4344 			sel.ips_local_addr_v6 = connp->conn_laddr_v6;
4345 			sel.ips_remote_addr_v6 = connp->conn_faddr_v6;
4346 		}
4347 
4348 		p = ipsec_find_policy(IPSEC_TYPE_INBOUND, connp, &sel, ns);
4349 		if (connp->conn_latch_in_policy != NULL)
4350 			IPPOL_REFRELE(connp->conn_latch_in_policy);
4351 		connp->conn_latch_in_policy = p;
4352 		connp->conn_in_enforce_policy = (p != NULL);
4353 
4354 		p = ipsec_find_policy(IPSEC_TYPE_OUTBOUND, connp, &sel, ns);
4355 		if (connp->conn_ixa->ixa_ipsec_policy != NULL)
4356 			IPPOL_REFRELE(connp->conn_ixa->ixa_ipsec_policy);
4357 		connp->conn_ixa->ixa_ipsec_policy = p;
4358 		connp->conn_out_enforce_policy = (p != NULL);
4359 		if (p != NULL) {
4360 			connp->conn_ixa->ixa_flags |= IXAF_IPSEC_SECURE;
4361 			if (connp->conn_policy == NULL) {
4362 				connp->conn_ixa->ixa_flags |=
4363 				    IXAF_IPSEC_GLOBAL_POLICY;
4364 			}
4365 		} else {
4366 			connp->conn_ixa->ixa_flags &= ~IXAF_IPSEC_SECURE;
4367 		}
4368 		/* Clear the latched actions too, in case we're recaching. */
4369 		if (connp->conn_ixa->ixa_ipsec_action != NULL) {
4370 			IPACT_REFRELE(connp->conn_ixa->ixa_ipsec_action);
4371 			connp->conn_ixa->ixa_ipsec_action = NULL;
4372 		}
4373 		if (connp->conn_latch_in_action != NULL) {
4374 			IPACT_REFRELE(connp->conn_latch_in_action);
4375 			connp->conn_latch_in_action = NULL;
4376 		}
4377 		connp->conn_ixa->ixa_ipsec_src_port = sel.ips_local_port;
4378 		connp->conn_ixa->ixa_ipsec_dst_port = sel.ips_remote_port;
4379 		connp->conn_ixa->ixa_ipsec_icmp_type = sel.ips_icmp_type;
4380 		connp->conn_ixa->ixa_ipsec_icmp_code = sel.ips_icmp_code;
4381 		connp->conn_ixa->ixa_ipsec_proto = sel.ips_protocol;
4382 	} else {
4383 		connp->conn_ixa->ixa_flags &= ~IXAF_IPSEC_SECURE;
4384 	}
4385 
4386 	/*
4387 	 * We may or may not have policy for this endpoint.  We still set
4388 	 * conn_policy_cached so that inbound datagrams don't have to look
4389 	 * at global policy as policy is considered latched for these
4390 	 * endpoints.  We should not set conn_policy_cached until the conn
4391 	 * reflects the actual policy. If we *set* this before inheriting
4392 	 * the policy there is a window where the check
4393 	 * CONN_INBOUND_POLICY_PRESENT, will neither check with the policy
4394 	 * on the conn (because we have not yet copied the policy on to
4395 	 * conn and hence not set conn_in_enforce_policy) nor with the
4396 	 * global policy (because conn_policy_cached is already set).
4397 	 */
4398 	connp->conn_policy_cached = B_TRUE;
4399 	return (0);
4400 }
4401 
4402 /*
4403  * When appropriate, this function caches outbound policy for faddr/fport.
4404  * It is used when we are not connected i.e., when we can not latch the
4405  * policy.
4406  */
4407 void
4408 ipsec_cache_outbound_policy(const conn_t *connp, const in6_addr_t *v6src,
4409     const in6_addr_t *v6dst, in_port_t dstport, ip_xmit_attr_t *ixa)
4410 {
4411 	boolean_t	isv4 = (ixa->ixa_flags & IXAF_IS_IPV4) != 0;
4412 	boolean_t	global_policy_present;
4413 	netstack_t	*ns = connp->conn_netstack;
4414 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
4415 
4416 	ixa->ixa_ipsec_policy_gen = ipss->ipsec_system_policy.iph_gen;
4417 
4418 	/*
4419 	 * There is no policy caching for ICMP sockets because we can't
4420 	 * decide on which policy to use until we see the packet and get
4421 	 * type/code selectors.
4422 	 */
4423 	if (connp->conn_proto == IPPROTO_ICMP ||
4424 	    connp->conn_proto == IPPROTO_ICMPV6) {
4425 		ixa->ixa_flags &= ~IXAF_IPSEC_SECURE;
4426 		if (ixa->ixa_ipsec_policy != NULL) {
4427 			IPPOL_REFRELE(ixa->ixa_ipsec_policy);
4428 			ixa->ixa_ipsec_policy = NULL;
4429 		}
4430 		if (ixa->ixa_ipsec_action != NULL) {
4431 			IPACT_REFRELE(ixa->ixa_ipsec_action);
4432 			ixa->ixa_ipsec_action = NULL;
4433 		}
4434 		return;
4435 	}
4436 
4437 	global_policy_present = isv4 ?
4438 	    (ipss->ipsec_outbound_v4_policy_present ||
4439 	    ipss->ipsec_inbound_v4_policy_present) :
4440 	    (ipss->ipsec_outbound_v6_policy_present ||
4441 	    ipss->ipsec_inbound_v6_policy_present);
4442 
4443 	if ((connp->conn_policy != NULL) || global_policy_present) {
4444 		ipsec_selector_t sel;
4445 		ipsec_policy_t	*p;
4446 
4447 		bzero((void*)&sel, sizeof (sel));
4448 
4449 		sel.ips_protocol = connp->conn_proto;
4450 		sel.ips_local_port = connp->conn_lport;
4451 		sel.ips_remote_port = dstport;
4452 		sel.ips_is_icmp_inv_acq = 0;
4453 		sel.ips_isv4 = isv4;
4454 		if (isv4) {
4455 			IN6_V4MAPPED_TO_IPADDR(v6src, sel.ips_local_addr_v4);
4456 			IN6_V4MAPPED_TO_IPADDR(v6dst, sel.ips_remote_addr_v4);
4457 		} else {
4458 			sel.ips_local_addr_v6 = *v6src;
4459 			sel.ips_remote_addr_v6 = *v6dst;
4460 		}
4461 
4462 		p = ipsec_find_policy(IPSEC_TYPE_OUTBOUND, connp, &sel, ns);
4463 		if (ixa->ixa_ipsec_policy != NULL)
4464 			IPPOL_REFRELE(ixa->ixa_ipsec_policy);
4465 		ixa->ixa_ipsec_policy = p;
4466 		if (p != NULL) {
4467 			ixa->ixa_flags |= IXAF_IPSEC_SECURE;
4468 			if (connp->conn_policy == NULL)
4469 				ixa->ixa_flags |= IXAF_IPSEC_GLOBAL_POLICY;
4470 		} else {
4471 			ixa->ixa_flags &= ~IXAF_IPSEC_SECURE;
4472 		}
4473 		/* Clear the latched actions too, in case we're recaching. */
4474 		if (ixa->ixa_ipsec_action != NULL) {
4475 			IPACT_REFRELE(ixa->ixa_ipsec_action);
4476 			ixa->ixa_ipsec_action = NULL;
4477 		}
4478 
4479 		ixa->ixa_ipsec_src_port = sel.ips_local_port;
4480 		ixa->ixa_ipsec_dst_port = sel.ips_remote_port;
4481 		ixa->ixa_ipsec_icmp_type = sel.ips_icmp_type;
4482 		ixa->ixa_ipsec_icmp_code = sel.ips_icmp_code;
4483 		ixa->ixa_ipsec_proto = sel.ips_protocol;
4484 	} else {
4485 		ixa->ixa_flags &= ~IXAF_IPSEC_SECURE;
4486 		if (ixa->ixa_ipsec_policy != NULL) {
4487 			IPPOL_REFRELE(ixa->ixa_ipsec_policy);
4488 			ixa->ixa_ipsec_policy = NULL;
4489 		}
4490 		if (ixa->ixa_ipsec_action != NULL) {
4491 			IPACT_REFRELE(ixa->ixa_ipsec_action);
4492 			ixa->ixa_ipsec_action = NULL;
4493 		}
4494 	}
4495 }
4496 
4497 /*
4498  * Returns B_FALSE if the policy has gone stale.
4499  */
4500 boolean_t
4501 ipsec_outbound_policy_current(ip_xmit_attr_t *ixa)
4502 {
4503 	ipsec_stack_t	*ipss = ixa->ixa_ipst->ips_netstack->netstack_ipsec;
4504 
4505 	if (!(ixa->ixa_flags & IXAF_IPSEC_GLOBAL_POLICY))
4506 		return (B_TRUE);
4507 
4508 	return (ixa->ixa_ipsec_policy_gen == ipss->ipsec_system_policy.iph_gen);
4509 }
4510 
4511 void
4512 iplatch_free(ipsec_latch_t *ipl)
4513 {
4514 	if (ipl->ipl_local_cid != NULL)
4515 		IPSID_REFRELE(ipl->ipl_local_cid);
4516 	if (ipl->ipl_remote_cid != NULL)
4517 		IPSID_REFRELE(ipl->ipl_remote_cid);
4518 	mutex_destroy(&ipl->ipl_lock);
4519 	kmem_free(ipl, sizeof (*ipl));
4520 }
4521 
4522 ipsec_latch_t *
4523 iplatch_create()
4524 {
4525 	ipsec_latch_t *ipl = kmem_zalloc(sizeof (*ipl), KM_NOSLEEP);
4526 	if (ipl == NULL)
4527 		return (ipl);
4528 	mutex_init(&ipl->ipl_lock, NULL, MUTEX_DEFAULT, NULL);
4529 	ipl->ipl_refcnt = 1;
4530 	return (ipl);
4531 }
4532 
4533 /*
4534  * Hash function for ID hash table.
4535  */
4536 static uint32_t
4537 ipsid_hash(int idtype, char *idstring)
4538 {
4539 	uint32_t hval = idtype;
4540 	unsigned char c;
4541 
4542 	while ((c = *idstring++) != 0) {
4543 		hval = (hval << 4) | (hval >> 28);
4544 		hval ^= c;
4545 	}
4546 	hval = hval ^ (hval >> 16);
4547 	return (hval & (IPSID_HASHSIZE-1));
4548 }
4549 
4550 /*
4551  * Look up identity string in hash table.  Return identity object
4552  * corresponding to the name -- either preexisting, or newly allocated.
4553  *
4554  * Return NULL if we need to allocate a new one and can't get memory.
4555  */
4556 ipsid_t *
4557 ipsid_lookup(int idtype, char *idstring, netstack_t *ns)
4558 {
4559 	ipsid_t *retval;
4560 	char *nstr;
4561 	int idlen = strlen(idstring) + 1;
4562 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
4563 	ipsif_t *bucket;
4564 
4565 	bucket = &ipss->ipsec_ipsid_buckets[ipsid_hash(idtype, idstring)];
4566 
4567 	mutex_enter(&bucket->ipsif_lock);
4568 
4569 	for (retval = bucket->ipsif_head; retval != NULL;
4570 	    retval = retval->ipsid_next) {
4571 		if (idtype != retval->ipsid_type)
4572 			continue;
4573 		if (bcmp(idstring, retval->ipsid_cid, idlen) != 0)
4574 			continue;
4575 
4576 		IPSID_REFHOLD(retval);
4577 		mutex_exit(&bucket->ipsif_lock);
4578 		return (retval);
4579 	}
4580 
4581 	retval = kmem_alloc(sizeof (*retval), KM_NOSLEEP);
4582 	if (!retval) {
4583 		mutex_exit(&bucket->ipsif_lock);
4584 		return (NULL);
4585 	}
4586 
4587 	nstr = kmem_alloc(idlen, KM_NOSLEEP);
4588 	if (!nstr) {
4589 		mutex_exit(&bucket->ipsif_lock);
4590 		kmem_free(retval, sizeof (*retval));
4591 		return (NULL);
4592 	}
4593 
4594 	retval->ipsid_refcnt = 1;
4595 	retval->ipsid_next = bucket->ipsif_head;
4596 	if (retval->ipsid_next != NULL)
4597 		retval->ipsid_next->ipsid_ptpn = &retval->ipsid_next;
4598 	retval->ipsid_ptpn = &bucket->ipsif_head;
4599 	retval->ipsid_type = idtype;
4600 	retval->ipsid_cid = nstr;
4601 	bucket->ipsif_head = retval;
4602 	bcopy(idstring, nstr, idlen);
4603 	mutex_exit(&bucket->ipsif_lock);
4604 
4605 	return (retval);
4606 }
4607 
4608 /*
4609  * Garbage collect the identity hash table.
4610  */
4611 void
4612 ipsid_gc(netstack_t *ns)
4613 {
4614 	int i, len;
4615 	ipsid_t *id, *nid;
4616 	ipsif_t *bucket;
4617 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
4618 
4619 	for (i = 0; i < IPSID_HASHSIZE; i++) {
4620 		bucket = &ipss->ipsec_ipsid_buckets[i];
4621 		mutex_enter(&bucket->ipsif_lock);
4622 		for (id = bucket->ipsif_head; id != NULL; id = nid) {
4623 			nid = id->ipsid_next;
4624 			if (id->ipsid_refcnt == 0) {
4625 				*id->ipsid_ptpn = nid;
4626 				if (nid != NULL)
4627 					nid->ipsid_ptpn = id->ipsid_ptpn;
4628 				len = strlen(id->ipsid_cid) + 1;
4629 				kmem_free(id->ipsid_cid, len);
4630 				kmem_free(id, sizeof (*id));
4631 			}
4632 		}
4633 		mutex_exit(&bucket->ipsif_lock);
4634 	}
4635 }
4636 
4637 /*
4638  * Return true if two identities are the same.
4639  */
4640 boolean_t
4641 ipsid_equal(ipsid_t *id1, ipsid_t *id2)
4642 {
4643 	if (id1 == id2)
4644 		return (B_TRUE);
4645 #ifdef DEBUG
4646 	if ((id1 == NULL) || (id2 == NULL))
4647 		return (B_FALSE);
4648 	/*
4649 	 * test that we're interning id's correctly..
4650 	 */
4651 	ASSERT((strcmp(id1->ipsid_cid, id2->ipsid_cid) != 0) ||
4652 	    (id1->ipsid_type != id2->ipsid_type));
4653 #endif
4654 	return (B_FALSE);
4655 }
4656 
4657 /*
4658  * Initialize identity table; called during module initialization.
4659  */
4660 static void
4661 ipsid_init(netstack_t *ns)
4662 {
4663 	ipsif_t *bucket;
4664 	int i;
4665 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
4666 
4667 	for (i = 0; i < IPSID_HASHSIZE; i++) {
4668 		bucket = &ipss->ipsec_ipsid_buckets[i];
4669 		mutex_init(&bucket->ipsif_lock, NULL, MUTEX_DEFAULT, NULL);
4670 	}
4671 }
4672 
4673 /*
4674  * Free identity table (preparatory to module unload)
4675  */
4676 static void
4677 ipsid_fini(netstack_t *ns)
4678 {
4679 	ipsif_t *bucket;
4680 	int i;
4681 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
4682 
4683 	for (i = 0; i < IPSID_HASHSIZE; i++) {
4684 		bucket = &ipss->ipsec_ipsid_buckets[i];
4685 		ASSERT(bucket->ipsif_head == NULL);
4686 		mutex_destroy(&bucket->ipsif_lock);
4687 	}
4688 }
4689 
4690 /*
4691  * Update the minimum and maximum supported key sizes for the
4692  * specified algorithm. Must be called while holding the algorithms lock.
4693  */
4694 void
4695 ipsec_alg_fix_min_max(ipsec_alginfo_t *alg, ipsec_algtype_t alg_type,
4696     netstack_t *ns)
4697 {
4698 	size_t crypto_min = (size_t)-1, crypto_max = 0;
4699 	size_t cur_crypto_min, cur_crypto_max;
4700 	boolean_t is_valid;
4701 	crypto_mechanism_info_t *mech_infos;
4702 	uint_t nmech_infos;
4703 	int crypto_rc, i;
4704 	crypto_mech_usage_t mask;
4705 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
4706 
4707 	ASSERT(RW_WRITE_HELD(&ipss->ipsec_alg_lock));
4708 
4709 	/*
4710 	 * Compute the min, max, and default key sizes (in number of
4711 	 * increments to the default key size in bits) as defined
4712 	 * by the algorithm mappings. This range of key sizes is used
4713 	 * for policy related operations. The effective key sizes
4714 	 * supported by the framework could be more limited than
4715 	 * those defined for an algorithm.
4716 	 */
4717 	alg->alg_default_bits = alg->alg_key_sizes[0];
4718 	alg->alg_default = 0;
4719 	if (alg->alg_increment != 0) {
4720 		/* key sizes are defined by range & increment */
4721 		alg->alg_minbits = alg->alg_key_sizes[1];
4722 		alg->alg_maxbits = alg->alg_key_sizes[2];
4723 	} else if (alg->alg_nkey_sizes == 0) {
4724 		/* no specified key size for algorithm */
4725 		alg->alg_minbits = alg->alg_maxbits = 0;
4726 	} else {
4727 		/* key sizes are defined by enumeration */
4728 		alg->alg_minbits = (uint16_t)-1;
4729 		alg->alg_maxbits = 0;
4730 
4731 		for (i = 0; i < alg->alg_nkey_sizes; i++) {
4732 			if (alg->alg_key_sizes[i] < alg->alg_minbits)
4733 				alg->alg_minbits = alg->alg_key_sizes[i];
4734 			if (alg->alg_key_sizes[i] > alg->alg_maxbits)
4735 				alg->alg_maxbits = alg->alg_key_sizes[i];
4736 		}
4737 	}
4738 
4739 	if (!(alg->alg_flags & ALG_FLAG_VALID))
4740 		return;
4741 
4742 	/*
4743 	 * Mechanisms do not apply to the NULL encryption
4744 	 * algorithm, so simply return for this case.
4745 	 */
4746 	if (alg->alg_id == SADB_EALG_NULL)
4747 		return;
4748 
4749 	/*
4750 	 * Find the min and max key sizes supported by the cryptographic
4751 	 * framework providers.
4752 	 */
4753 
4754 	/* get the key sizes supported by the framework */
4755 	crypto_rc = crypto_get_all_mech_info(alg->alg_mech_type,
4756 	    &mech_infos, &nmech_infos, KM_SLEEP);
4757 	if (crypto_rc != CRYPTO_SUCCESS || nmech_infos == 0) {
4758 		alg->alg_flags &= ~ALG_FLAG_VALID;
4759 		return;
4760 	}
4761 
4762 	/* min and max key sizes supported by framework */
4763 	for (i = 0, is_valid = B_FALSE; i < nmech_infos; i++) {
4764 		int unit_bits;
4765 
4766 		/*
4767 		 * Ignore entries that do not support the operations
4768 		 * needed for the algorithm type.
4769 		 */
4770 		if (alg_type == IPSEC_ALG_AUTH) {
4771 			mask = CRYPTO_MECH_USAGE_MAC;
4772 		} else {
4773 			mask = CRYPTO_MECH_USAGE_ENCRYPT |
4774 			    CRYPTO_MECH_USAGE_DECRYPT;
4775 		}
4776 		if ((mech_infos[i].mi_usage & mask) != mask)
4777 			continue;
4778 
4779 		unit_bits = (mech_infos[i].mi_keysize_unit ==
4780 		    CRYPTO_KEYSIZE_UNIT_IN_BYTES)  ? 8 : 1;
4781 		/* adjust min/max supported by framework */
4782 		cur_crypto_min = mech_infos[i].mi_min_key_size * unit_bits;
4783 		cur_crypto_max = mech_infos[i].mi_max_key_size * unit_bits;
4784 
4785 		if (cur_crypto_min < crypto_min)
4786 			crypto_min = cur_crypto_min;
4787 
4788 		/*
4789 		 * CRYPTO_EFFECTIVELY_INFINITE is a special value of
4790 		 * the crypto framework which means "no upper limit".
4791 		 */
4792 		if (mech_infos[i].mi_max_key_size ==
4793 		    CRYPTO_EFFECTIVELY_INFINITE) {
4794 			crypto_max = (size_t)-1;
4795 		} else if (cur_crypto_max > crypto_max) {
4796 			crypto_max = cur_crypto_max;
4797 		}
4798 
4799 		is_valid = B_TRUE;
4800 	}
4801 
4802 	kmem_free(mech_infos, sizeof (crypto_mechanism_info_t) *
4803 	    nmech_infos);
4804 
4805 	if (!is_valid) {
4806 		/* no key sizes supported by framework */
4807 		alg->alg_flags &= ~ALG_FLAG_VALID;
4808 		return;
4809 	}
4810 
4811 	/*
4812 	 * Determine min and max key sizes from alg_key_sizes[].
4813 	 * defined for the algorithm entry. Adjust key sizes based on
4814 	 * those supported by the framework.
4815 	 */
4816 	alg->alg_ef_default_bits = alg->alg_key_sizes[0];
4817 
4818 	/*
4819 	 * For backwards compatability, assume that the IV length
4820 	 * is the same as the data length.
4821 	 */
4822 	alg->alg_ivlen = alg->alg_datalen;
4823 
4824 	/*
4825 	 * Copy any algorithm parameters (if provided) into dedicated
4826 	 * elements in the ipsec_alginfo_t structure.
4827 	 * There may be a better place to put this code.
4828 	 */
4829 	for (i = 0; i < alg->alg_nparams; i++) {
4830 		switch (i) {
4831 		case 0:
4832 			/* Initialisation Vector length (bytes) */
4833 			alg->alg_ivlen =  alg->alg_params[0];
4834 			break;
4835 		case 1:
4836 			/* Integrity Check Vector length (bytes) */
4837 			alg->alg_icvlen = alg->alg_params[1];
4838 			break;
4839 		case 2:
4840 			/* Salt length (bytes) */
4841 			alg->alg_saltlen = (uint8_t)alg->alg_params[2];
4842 			break;
4843 		default:
4844 			break;
4845 		}
4846 	}
4847 
4848 	/* Default if the IV length is not specified. */
4849 	if (alg_type == IPSEC_ALG_ENCR && alg->alg_ivlen == 0)
4850 		alg->alg_ivlen = alg->alg_datalen;
4851 
4852 	alg_flag_check(alg);
4853 
4854 	if (alg->alg_increment != 0) {
4855 		/* supported key sizes are defined by range  & increment */
4856 		crypto_min = ALGBITS_ROUND_UP(crypto_min, alg->alg_increment);
4857 		crypto_max = ALGBITS_ROUND_DOWN(crypto_max, alg->alg_increment);
4858 
4859 		alg->alg_ef_minbits = MAX(alg->alg_minbits,
4860 		    (uint16_t)crypto_min);
4861 		alg->alg_ef_maxbits = MIN(alg->alg_maxbits,
4862 		    (uint16_t)crypto_max);
4863 
4864 		/*
4865 		 * If the sizes supported by the framework are outside
4866 		 * the range of sizes defined by the algorithm mappings,
4867 		 * the algorithm cannot be used. Check for this
4868 		 * condition here.
4869 		 */
4870 		if (alg->alg_ef_minbits > alg->alg_ef_maxbits) {
4871 			alg->alg_flags &= ~ALG_FLAG_VALID;
4872 			return;
4873 		}
4874 		if (alg->alg_ef_default_bits < alg->alg_ef_minbits)
4875 			alg->alg_ef_default_bits = alg->alg_ef_minbits;
4876 		if (alg->alg_ef_default_bits > alg->alg_ef_maxbits)
4877 			alg->alg_ef_default_bits = alg->alg_ef_maxbits;
4878 	} else if (alg->alg_nkey_sizes == 0) {
4879 		/* no specified key size for algorithm */
4880 		alg->alg_ef_minbits = alg->alg_ef_maxbits = 0;
4881 	} else {
4882 		/* supported key sizes are defined by enumeration */
4883 		alg->alg_ef_minbits = (uint16_t)-1;
4884 		alg->alg_ef_maxbits = 0;
4885 
4886 		for (i = 0, is_valid = B_FALSE; i < alg->alg_nkey_sizes; i++) {
4887 			/*
4888 			 * Ignore the current key size if it is not in the
4889 			 * range of sizes supported by the framework.
4890 			 */
4891 			if (alg->alg_key_sizes[i] < crypto_min ||
4892 			    alg->alg_key_sizes[i] > crypto_max)
4893 				continue;
4894 			if (alg->alg_key_sizes[i] < alg->alg_ef_minbits)
4895 				alg->alg_ef_minbits = alg->alg_key_sizes[i];
4896 			if (alg->alg_key_sizes[i] > alg->alg_ef_maxbits)
4897 				alg->alg_ef_maxbits = alg->alg_key_sizes[i];
4898 			is_valid = B_TRUE;
4899 		}
4900 
4901 		if (!is_valid) {
4902 			alg->alg_flags &= ~ALG_FLAG_VALID;
4903 			return;
4904 		}
4905 		alg->alg_ef_default = 0;
4906 	}
4907 }
4908 
4909 /*
4910  * Sanity check parameters provided by ipsecalgs(1m). Assume that
4911  * the algoritm is marked as valid, there is a check at the top
4912  * of this function. If any of the checks below fail, the algorithm
4913  * entry is invalid.
4914  */
4915 void
4916 alg_flag_check(ipsec_alginfo_t *alg)
4917 {
4918 	alg->alg_flags &= ~ALG_FLAG_VALID;
4919 
4920 	/*
4921 	 * Can't have the algorithm marked as CCM and GCM.
4922 	 * Check the ALG_FLAG_COMBINED and ALG_FLAG_COUNTERMODE
4923 	 * flags are set for CCM & GCM.
4924 	 */
4925 	if ((alg->alg_flags & (ALG_FLAG_CCM|ALG_FLAG_GCM)) ==
4926 	    (ALG_FLAG_CCM|ALG_FLAG_GCM))
4927 		return;
4928 	if (alg->alg_flags & (ALG_FLAG_CCM|ALG_FLAG_GCM)) {
4929 		if (!(alg->alg_flags & ALG_FLAG_COUNTERMODE))
4930 			return;
4931 		if (!(alg->alg_flags & ALG_FLAG_COMBINED))
4932 			return;
4933 	}
4934 
4935 	/*
4936 	 * For ALG_FLAG_COUNTERMODE, check the parameters
4937 	 * fit in the ipsec_nonce_t structure.
4938 	 */
4939 	if (alg->alg_flags & ALG_FLAG_COUNTERMODE) {
4940 		if (alg->alg_ivlen != sizeof (((ipsec_nonce_t *)NULL)->iv))
4941 			return;
4942 		if (alg->alg_saltlen > sizeof (((ipsec_nonce_t *)NULL)->salt))
4943 			return;
4944 	}
4945 	if ((alg->alg_flags & ALG_FLAG_COMBINED) &&
4946 	    (alg->alg_icvlen == 0))
4947 		return;
4948 
4949 	/* all is well. */
4950 	alg->alg_flags |= ALG_FLAG_VALID;
4951 }
4952 
4953 /*
4954  * Free the memory used by the specified algorithm.
4955  */
4956 void
4957 ipsec_alg_free(ipsec_alginfo_t *alg)
4958 {
4959 	if (alg == NULL)
4960 		return;
4961 
4962 	if (alg->alg_key_sizes != NULL) {
4963 		kmem_free(alg->alg_key_sizes,
4964 		    (alg->alg_nkey_sizes + 1) * sizeof (uint16_t));
4965 		alg->alg_key_sizes = NULL;
4966 	}
4967 	if (alg->alg_block_sizes != NULL) {
4968 		kmem_free(alg->alg_block_sizes,
4969 		    (alg->alg_nblock_sizes + 1) * sizeof (uint16_t));
4970 		alg->alg_block_sizes = NULL;
4971 	}
4972 	if (alg->alg_params != NULL) {
4973 		kmem_free(alg->alg_params,
4974 		    (alg->alg_nparams + 1) * sizeof (uint16_t));
4975 		alg->alg_params = NULL;
4976 	}
4977 	kmem_free(alg, sizeof (*alg));
4978 }
4979 
4980 /*
4981  * Check the validity of the specified key size for an algorithm.
4982  * Returns B_TRUE if key size is valid, B_FALSE otherwise.
4983  */
4984 boolean_t
4985 ipsec_valid_key_size(uint16_t key_size, ipsec_alginfo_t *alg)
4986 {
4987 	if (key_size < alg->alg_ef_minbits || key_size > alg->alg_ef_maxbits)
4988 		return (B_FALSE);
4989 
4990 	if (alg->alg_increment == 0 && alg->alg_nkey_sizes != 0) {
4991 		/*
4992 		 * If the key sizes are defined by enumeration, the new
4993 		 * key size must be equal to one of the supported values.
4994 		 */
4995 		int i;
4996 
4997 		for (i = 0; i < alg->alg_nkey_sizes; i++)
4998 			if (key_size == alg->alg_key_sizes[i])
4999 				break;
5000 		if (i == alg->alg_nkey_sizes)
5001 			return (B_FALSE);
5002 	}
5003 
5004 	return (B_TRUE);
5005 }
5006 
5007 /*
5008  * Callback function invoked by the crypto framework when a provider
5009  * registers or unregisters. This callback updates the algorithms
5010  * tables when a crypto algorithm is no longer available or becomes
5011  * available, and triggers the freeing/creation of context templates
5012  * associated with existing SAs, if needed.
5013  *
5014  * Need to walk all stack instances since the callback is global
5015  * for all instances
5016  */
5017 void
5018 ipsec_prov_update_callback(uint32_t event, void *event_arg)
5019 {
5020 	netstack_handle_t nh;
5021 	netstack_t *ns;
5022 
5023 	netstack_next_init(&nh);
5024 	while ((ns = netstack_next(&nh)) != NULL) {
5025 		ipsec_prov_update_callback_stack(event, event_arg, ns);
5026 		netstack_rele(ns);
5027 	}
5028 	netstack_next_fini(&nh);
5029 }
5030 
5031 static void
5032 ipsec_prov_update_callback_stack(uint32_t event, void *event_arg,
5033     netstack_t *ns)
5034 {
5035 	crypto_notify_event_change_t *prov_change =
5036 	    (crypto_notify_event_change_t *)event_arg;
5037 	uint_t algidx, algid, algtype, mech_count, mech_idx;
5038 	ipsec_alginfo_t *alg;
5039 	ipsec_alginfo_t oalg;
5040 	crypto_mech_name_t *mechs;
5041 	boolean_t alg_changed = B_FALSE;
5042 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
5043 
5044 	/* ignore events for which we didn't register */
5045 	if (event != CRYPTO_EVENT_MECHS_CHANGED) {
5046 		ip1dbg(("ipsec_prov_update_callback: unexpected event 0x%x "
5047 		    " received from crypto framework\n", event));
5048 		return;
5049 	}
5050 
5051 	mechs = crypto_get_mech_list(&mech_count, KM_SLEEP);
5052 	if (mechs == NULL)
5053 		return;
5054 
5055 	/*
5056 	 * Walk the list of currently defined IPsec algorithm. Update
5057 	 * the algorithm valid flag and trigger an update of the
5058 	 * SAs that depend on that algorithm.
5059 	 */
5060 	rw_enter(&ipss->ipsec_alg_lock, RW_WRITER);
5061 	for (algtype = 0; algtype < IPSEC_NALGTYPES; algtype++) {
5062 		for (algidx = 0; algidx < ipss->ipsec_nalgs[algtype];
5063 		    algidx++) {
5064 
5065 			algid = ipss->ipsec_sortlist[algtype][algidx];
5066 			alg = ipss->ipsec_alglists[algtype][algid];
5067 			ASSERT(alg != NULL);
5068 
5069 			/*
5070 			 * Skip the algorithms which do not map to the
5071 			 * crypto framework provider being added or removed.
5072 			 */
5073 			if (strncmp(alg->alg_mech_name,
5074 			    prov_change->ec_mech_name,
5075 			    CRYPTO_MAX_MECH_NAME) != 0)
5076 				continue;
5077 
5078 			/*
5079 			 * Determine if the mechanism is valid. If it
5080 			 * is not, mark the algorithm as being invalid. If
5081 			 * it is, mark the algorithm as being valid.
5082 			 */
5083 			for (mech_idx = 0; mech_idx < mech_count; mech_idx++)
5084 				if (strncmp(alg->alg_mech_name,
5085 				    mechs[mech_idx], CRYPTO_MAX_MECH_NAME) == 0)
5086 					break;
5087 			if (mech_idx == mech_count &&
5088 			    alg->alg_flags & ALG_FLAG_VALID) {
5089 				alg->alg_flags &= ~ALG_FLAG_VALID;
5090 				alg_changed = B_TRUE;
5091 			} else if (mech_idx < mech_count &&
5092 			    !(alg->alg_flags & ALG_FLAG_VALID)) {
5093 				alg->alg_flags |= ALG_FLAG_VALID;
5094 				alg_changed = B_TRUE;
5095 			}
5096 
5097 			/*
5098 			 * Update the supported key sizes, regardless
5099 			 * of whether a crypto provider was added or
5100 			 * removed.
5101 			 */
5102 			oalg = *alg;
5103 			ipsec_alg_fix_min_max(alg, algtype, ns);
5104 			if (!alg_changed &&
5105 			    alg->alg_ef_minbits != oalg.alg_ef_minbits ||
5106 			    alg->alg_ef_maxbits != oalg.alg_ef_maxbits ||
5107 			    alg->alg_ef_default != oalg.alg_ef_default ||
5108 			    alg->alg_ef_default_bits !=
5109 			    oalg.alg_ef_default_bits)
5110 				alg_changed = B_TRUE;
5111 
5112 			/*
5113 			 * Update the affected SAs if a software provider is
5114 			 * being added or removed.
5115 			 */
5116 			if (prov_change->ec_provider_type ==
5117 			    CRYPTO_SW_PROVIDER)
5118 				sadb_alg_update(algtype, alg->alg_id,
5119 				    prov_change->ec_change ==
5120 				    CRYPTO_MECH_ADDED, ns);
5121 		}
5122 	}
5123 	rw_exit(&ipss->ipsec_alg_lock);
5124 	crypto_free_mech_list(mechs, mech_count);
5125 
5126 	if (alg_changed) {
5127 		/*
5128 		 * An algorithm has changed, i.e. it became valid or
5129 		 * invalid, or its support key sizes have changed.
5130 		 * Notify ipsecah and ipsecesp of this change so
5131 		 * that they can send a SADB_REGISTER to their consumers.
5132 		 */
5133 		ipsecah_algs_changed(ns);
5134 		ipsecesp_algs_changed(ns);
5135 	}
5136 }
5137 
5138 /*
5139  * Registers with the crypto framework to be notified of crypto
5140  * providers changes. Used to update the algorithm tables and
5141  * to free or create context templates if needed. Invoked after IPsec
5142  * is loaded successfully.
5143  *
5144  * This is called separately for each IP instance, so we ensure we only
5145  * register once.
5146  */
5147 void
5148 ipsec_register_prov_update(void)
5149 {
5150 	if (prov_update_handle != NULL)
5151 		return;
5152 
5153 	prov_update_handle = crypto_notify_events(
5154 	    ipsec_prov_update_callback, CRYPTO_EVENT_MECHS_CHANGED);
5155 }
5156 
5157 /*
5158  * Unregisters from the framework to be notified of crypto providers
5159  * changes. Called from ipsec_policy_g_destroy().
5160  */
5161 static void
5162 ipsec_unregister_prov_update(void)
5163 {
5164 	if (prov_update_handle != NULL)
5165 		crypto_unnotify_events(prov_update_handle);
5166 }
5167 
5168 /*
5169  * Tunnel-mode support routines.
5170  */
5171 
5172 /*
5173  * Returns an mblk chain suitable for putnext() if policies match and IPsec
5174  * SAs are available.  If there's no per-tunnel policy, or a match comes back
5175  * with no match, then still return the packet and have global policy take
5176  * a crack at it in IP.
5177  * This updates the ip_xmit_attr with the IPsec policy.
5178  *
5179  * Remember -> we can be forwarding packets.  Keep that in mind w.r.t.
5180  * inner-packet contents.
5181  */
5182 mblk_t *
5183 ipsec_tun_outbound(mblk_t *mp, iptun_t *iptun, ipha_t *inner_ipv4,
5184     ip6_t *inner_ipv6, ipha_t *outer_ipv4, ip6_t *outer_ipv6, int outer_hdr_len,
5185     ip_xmit_attr_t *ixa)
5186 {
5187 	ipsec_policy_head_t *polhead;
5188 	ipsec_selector_t sel;
5189 	mblk_t *nmp;
5190 	boolean_t is_fragment;
5191 	ipsec_policy_t *pol;
5192 	ipsec_tun_pol_t *itp = iptun->iptun_itp;
5193 	netstack_t *ns = iptun->iptun_ns;
5194 	ipsec_stack_t *ipss = ns->netstack_ipsec;
5195 
5196 	ASSERT(outer_ipv6 != NULL && outer_ipv4 == NULL ||
5197 	    outer_ipv4 != NULL && outer_ipv6 == NULL);
5198 	/* We take care of inners in a bit. */
5199 
5200 	/* Are the IPsec fields initialized at all? */
5201 	if (!(ixa->ixa_flags & IXAF_IPSEC_SECURE)) {
5202 		ASSERT(ixa->ixa_ipsec_policy == NULL);
5203 		ASSERT(ixa->ixa_ipsec_latch == NULL);
5204 		ASSERT(ixa->ixa_ipsec_action == NULL);
5205 		ASSERT(ixa->ixa_ipsec_ah_sa == NULL);
5206 		ASSERT(ixa->ixa_ipsec_esp_sa == NULL);
5207 	}
5208 
5209 	ASSERT(itp != NULL && (itp->itp_flags & ITPF_P_ACTIVE));
5210 	polhead = itp->itp_policy;
5211 
5212 	bzero(&sel, sizeof (sel));
5213 	if (inner_ipv4 != NULL) {
5214 		ASSERT(inner_ipv6 == NULL);
5215 		sel.ips_isv4 = B_TRUE;
5216 		sel.ips_local_addr_v4 = inner_ipv4->ipha_src;
5217 		sel.ips_remote_addr_v4 = inner_ipv4->ipha_dst;
5218 		sel.ips_protocol = (uint8_t)inner_ipv4->ipha_protocol;
5219 	} else {
5220 		ASSERT(inner_ipv6 != NULL);
5221 		sel.ips_isv4 = B_FALSE;
5222 		sel.ips_local_addr_v6 = inner_ipv6->ip6_src;
5223 		/*
5224 		 * We don't care about routing-header dests in the
5225 		 * forwarding/tunnel path, so just grab ip6_dst.
5226 		 */
5227 		sel.ips_remote_addr_v6 = inner_ipv6->ip6_dst;
5228 	}
5229 
5230 	if (itp->itp_flags & ITPF_P_PER_PORT_SECURITY) {
5231 		/*
5232 		 * Caller can prepend the outer header, which means
5233 		 * inner_ipv[46] may be stuck in the middle.  Pullup the whole
5234 		 * mess now if need-be, for easier processing later.  Don't
5235 		 * forget to rewire the outer header too.
5236 		 */
5237 		if (mp->b_cont != NULL) {
5238 			nmp = msgpullup(mp, -1);
5239 			if (nmp == NULL) {
5240 				ip_drop_packet(mp, B_FALSE, NULL,
5241 				    DROPPER(ipss, ipds_spd_nomem),
5242 				    &ipss->ipsec_spd_dropper);
5243 				return (NULL);
5244 			}
5245 			freemsg(mp);
5246 			mp = nmp;
5247 			if (outer_ipv4 != NULL)
5248 				outer_ipv4 = (ipha_t *)mp->b_rptr;
5249 			else
5250 				outer_ipv6 = (ip6_t *)mp->b_rptr;
5251 			if (inner_ipv4 != NULL) {
5252 				inner_ipv4 =
5253 				    (ipha_t *)(mp->b_rptr + outer_hdr_len);
5254 			} else {
5255 				inner_ipv6 =
5256 				    (ip6_t *)(mp->b_rptr + outer_hdr_len);
5257 			}
5258 		}
5259 		if (inner_ipv4 != NULL) {
5260 			is_fragment = IS_V4_FRAGMENT(
5261 			    inner_ipv4->ipha_fragment_offset_and_flags);
5262 		} else {
5263 			sel.ips_remote_addr_v6 = ip_get_dst_v6(inner_ipv6, mp,
5264 			    &is_fragment);
5265 		}
5266 
5267 		if (is_fragment) {
5268 			ipha_t *oiph;
5269 			ipha_t *iph = NULL;
5270 			ip6_t *ip6h = NULL;
5271 			int hdr_len;
5272 			uint16_t ip6_hdr_length;
5273 			uint8_t v6_proto;
5274 			uint8_t *v6_proto_p;
5275 
5276 			/*
5277 			 * We have a fragment we need to track!
5278 			 */
5279 			mp = ipsec_fragcache_add(&itp->itp_fragcache, NULL, mp,
5280 			    outer_hdr_len, ipss);
5281 			if (mp == NULL)
5282 				return (NULL);
5283 			ASSERT(mp->b_cont == NULL);
5284 
5285 			/*
5286 			 * If we get here, we have a full fragment chain
5287 			 */
5288 
5289 			oiph = (ipha_t *)mp->b_rptr;
5290 			if (IPH_HDR_VERSION(oiph) == IPV4_VERSION) {
5291 				hdr_len = ((outer_hdr_len != 0) ?
5292 				    IPH_HDR_LENGTH(oiph) : 0);
5293 				iph = (ipha_t *)(mp->b_rptr + hdr_len);
5294 			} else {
5295 				ASSERT(IPH_HDR_VERSION(oiph) == IPV6_VERSION);
5296 				ip6h = (ip6_t *)mp->b_rptr;
5297 				if (!ip_hdr_length_nexthdr_v6(mp, ip6h,
5298 				    &ip6_hdr_length, &v6_proto_p)) {
5299 					ip_drop_packet_chain(mp, B_FALSE, NULL,
5300 					    DROPPER(ipss,
5301 					    ipds_spd_malformed_packet),
5302 					    &ipss->ipsec_spd_dropper);
5303 					return (NULL);
5304 				}
5305 				hdr_len = ip6_hdr_length;
5306 			}
5307 			outer_hdr_len = hdr_len;
5308 
5309 			if (sel.ips_isv4) {
5310 				if (iph == NULL) {
5311 					/* Was v6 outer */
5312 					iph = (ipha_t *)(mp->b_rptr + hdr_len);
5313 				}
5314 				inner_ipv4 = iph;
5315 				sel.ips_local_addr_v4 = inner_ipv4->ipha_src;
5316 				sel.ips_remote_addr_v4 = inner_ipv4->ipha_dst;
5317 				sel.ips_protocol =
5318 				    (uint8_t)inner_ipv4->ipha_protocol;
5319 			} else {
5320 				inner_ipv6 = (ip6_t *)(mp->b_rptr +
5321 				    hdr_len);
5322 				sel.ips_local_addr_v6 = inner_ipv6->ip6_src;
5323 				sel.ips_remote_addr_v6 = inner_ipv6->ip6_dst;
5324 				if (!ip_hdr_length_nexthdr_v6(mp,
5325 				    inner_ipv6, &ip6_hdr_length, &v6_proto_p)) {
5326 					ip_drop_packet_chain(mp, B_FALSE, NULL,
5327 					    DROPPER(ipss,
5328 					    ipds_spd_malformed_frag),
5329 					    &ipss->ipsec_spd_dropper);
5330 					return (NULL);
5331 				}
5332 				v6_proto = *v6_proto_p;
5333 				sel.ips_protocol = v6_proto;
5334 #ifdef FRAGCACHE_DEBUG
5335 				cmn_err(CE_WARN, "v6_sel.ips_protocol = %d\n",
5336 				    sel.ips_protocol);
5337 #endif
5338 			}
5339 			/* Ports are extracted below */
5340 		}
5341 
5342 		/* Get ports... */
5343 		if (!ipsec_init_outbound_ports(&sel, mp,
5344 		    inner_ipv4, inner_ipv6, outer_hdr_len, ipss)) {
5345 			/* callee did ip_drop_packet_chain() on mp. */
5346 			return (NULL);
5347 		}
5348 #ifdef FRAGCACHE_DEBUG
5349 		if (inner_ipv4 != NULL)
5350 			cmn_err(CE_WARN,
5351 			    "(v4) sel.ips_protocol = %d, "
5352 			    "sel.ips_local_port = %d, "
5353 			    "sel.ips_remote_port = %d\n",
5354 			    sel.ips_protocol, ntohs(sel.ips_local_port),
5355 			    ntohs(sel.ips_remote_port));
5356 		if (inner_ipv6 != NULL)
5357 			cmn_err(CE_WARN,
5358 			    "(v6) sel.ips_protocol = %d, "
5359 			    "sel.ips_local_port = %d, "
5360 			    "sel.ips_remote_port = %d\n",
5361 			    sel.ips_protocol, ntohs(sel.ips_local_port),
5362 			    ntohs(sel.ips_remote_port));
5363 #endif
5364 		/* Success so far! */
5365 	}
5366 	rw_enter(&polhead->iph_lock, RW_READER);
5367 	pol = ipsec_find_policy_head(NULL, polhead, IPSEC_TYPE_OUTBOUND, &sel);
5368 	rw_exit(&polhead->iph_lock);
5369 	if (pol == NULL) {
5370 		/*
5371 		 * No matching policy on this tunnel, drop the packet.
5372 		 *
5373 		 * NOTE:  Tunnel-mode tunnels are different from the
5374 		 * IP global transport mode policy head.  For a tunnel-mode
5375 		 * tunnel, we drop the packet in lieu of passing it
5376 		 * along accepted the way a global-policy miss would.
5377 		 *
5378 		 * NOTE2:  "negotiate transport" tunnels should match ALL
5379 		 * inbound packets, but we do not uncomment the ASSERT()
5380 		 * below because if/when we open PF_POLICY, a user can
5381 		 * shoot themself in the foot with a 0 priority.
5382 		 */
5383 
5384 		/* ASSERT(itp->itp_flags & ITPF_P_TUNNEL); */
5385 #ifdef FRAGCACHE_DEBUG
5386 		cmn_err(CE_WARN, "ipsec_tun_outbound(): No matching tunnel "
5387 		    "per-port policy\n");
5388 #endif
5389 		ip_drop_packet_chain(mp, B_FALSE, NULL,
5390 		    DROPPER(ipss, ipds_spd_explicit),
5391 		    &ipss->ipsec_spd_dropper);
5392 		return (NULL);
5393 	}
5394 
5395 #ifdef FRAGCACHE_DEBUG
5396 	cmn_err(CE_WARN, "Having matching tunnel per-port policy\n");
5397 #endif
5398 
5399 	/*
5400 	 * NOTE: ixa_cleanup() function will release pol references.
5401 	 */
5402 	ixa->ixa_ipsec_policy = pol;
5403 	/*
5404 	 * NOTE: There is a subtle difference between iptun_zoneid and
5405 	 * iptun_connp->conn_zoneid explained in iptun_conn_create().  When
5406 	 * interacting with the ip module, we must use conn_zoneid.
5407 	 */
5408 	ixa->ixa_zoneid = iptun->iptun_connp->conn_zoneid;
5409 
5410 	ASSERT((outer_ipv4 != NULL) ? (ixa->ixa_flags & IXAF_IS_IPV4) :
5411 	    !(ixa->ixa_flags & IXAF_IS_IPV4));
5412 	ASSERT(ixa->ixa_ipsec_policy != NULL);
5413 	ixa->ixa_flags |= IXAF_IPSEC_SECURE;
5414 
5415 	if (!(itp->itp_flags & ITPF_P_TUNNEL)) {
5416 		/* Set up transport mode for tunnelled packets. */
5417 		ixa->ixa_ipsec_proto = (inner_ipv4 != NULL) ? IPPROTO_ENCAP :
5418 		    IPPROTO_IPV6;
5419 		return (mp);
5420 	}
5421 
5422 	/* Fill in tunnel-mode goodies here. */
5423 	ixa->ixa_flags |= IXAF_IPSEC_TUNNEL;
5424 	/* XXX Do I need to fill in all of the goodies here? */
5425 	if (inner_ipv4) {
5426 		ixa->ixa_ipsec_inaf = AF_INET;
5427 		ixa->ixa_ipsec_insrc[0] =
5428 		    pol->ipsp_sel->ipsl_key.ipsl_local.ipsad_v4;
5429 		ixa->ixa_ipsec_indst[0] =
5430 		    pol->ipsp_sel->ipsl_key.ipsl_remote.ipsad_v4;
5431 	} else {
5432 		ixa->ixa_ipsec_inaf = AF_INET6;
5433 		ixa->ixa_ipsec_insrc[0] =
5434 		    pol->ipsp_sel->ipsl_key.ipsl_local.ipsad_v6.s6_addr32[0];
5435 		ixa->ixa_ipsec_insrc[1] =
5436 		    pol->ipsp_sel->ipsl_key.ipsl_local.ipsad_v6.s6_addr32[1];
5437 		ixa->ixa_ipsec_insrc[2] =
5438 		    pol->ipsp_sel->ipsl_key.ipsl_local.ipsad_v6.s6_addr32[2];
5439 		ixa->ixa_ipsec_insrc[3] =
5440 		    pol->ipsp_sel->ipsl_key.ipsl_local.ipsad_v6.s6_addr32[3];
5441 		ixa->ixa_ipsec_indst[0] =
5442 		    pol->ipsp_sel->ipsl_key.ipsl_remote.ipsad_v6.s6_addr32[0];
5443 		ixa->ixa_ipsec_indst[1] =
5444 		    pol->ipsp_sel->ipsl_key.ipsl_remote.ipsad_v6.s6_addr32[1];
5445 		ixa->ixa_ipsec_indst[2] =
5446 		    pol->ipsp_sel->ipsl_key.ipsl_remote.ipsad_v6.s6_addr32[2];
5447 		ixa->ixa_ipsec_indst[3] =
5448 		    pol->ipsp_sel->ipsl_key.ipsl_remote.ipsad_v6.s6_addr32[3];
5449 	}
5450 	ixa->ixa_ipsec_insrcpfx = pol->ipsp_sel->ipsl_key.ipsl_local_pfxlen;
5451 	ixa->ixa_ipsec_indstpfx = pol->ipsp_sel->ipsl_key.ipsl_remote_pfxlen;
5452 	/* NOTE:  These are used for transport mode too. */
5453 	ixa->ixa_ipsec_src_port = pol->ipsp_sel->ipsl_key.ipsl_lport;
5454 	ixa->ixa_ipsec_dst_port = pol->ipsp_sel->ipsl_key.ipsl_rport;
5455 	ixa->ixa_ipsec_proto = pol->ipsp_sel->ipsl_key.ipsl_proto;
5456 
5457 	return (mp);
5458 }
5459 
5460 /*
5461  * NOTE: The following releases pol's reference and
5462  * calls ip_drop_packet() for me on NULL returns.
5463  */
5464 mblk_t *
5465 ipsec_check_ipsecin_policy_reasm(mblk_t *attr_mp, ipsec_policy_t *pol,
5466     ipha_t *inner_ipv4, ip6_t *inner_ipv6, uint64_t pkt_unique, netstack_t *ns)
5467 {
5468 	/* Assume attr_mp is a chain of b_next-linked ip_recv_attr mblk. */
5469 	mblk_t *data_chain = NULL, *data_tail = NULL;
5470 	mblk_t *next;
5471 	mblk_t *data_mp;
5472 	ip_recv_attr_t	iras;
5473 
5474 	while (attr_mp != NULL) {
5475 		ASSERT(ip_recv_attr_is_mblk(attr_mp));
5476 		next = attr_mp->b_next;
5477 		attr_mp->b_next = NULL;  /* No tripping asserts. */
5478 
5479 		data_mp = attr_mp->b_cont;
5480 		attr_mp->b_cont = NULL;
5481 		if (!ip_recv_attr_from_mblk(attr_mp, &iras)) {
5482 			/* The ill or ip_stack_t disappeared on us */
5483 			freemsg(data_mp);	/* ip_drop_packet?? */
5484 			ira_cleanup(&iras, B_TRUE);
5485 			goto fail;
5486 		}
5487 
5488 		/*
5489 		 * Need IPPOL_REFHOLD(pol) for extras because
5490 		 * ipsecin_policy does the refrele.
5491 		 */
5492 		IPPOL_REFHOLD(pol);
5493 
5494 		data_mp = ipsec_check_ipsecin_policy(data_mp, pol, inner_ipv4,
5495 		    inner_ipv6, pkt_unique, &iras, ns);
5496 		ira_cleanup(&iras, B_TRUE);
5497 
5498 		if (data_mp == NULL)
5499 			goto fail;
5500 
5501 		if (data_tail == NULL) {
5502 			/* First one */
5503 			data_chain = data_tail = data_mp;
5504 		} else {
5505 			data_tail->b_next = data_mp;
5506 			data_tail = data_mp;
5507 		}
5508 		attr_mp = next;
5509 	}
5510 	/*
5511 	 * One last release because either the loop bumped it up, or we never
5512 	 * called ipsec_check_ipsecin_policy().
5513 	 */
5514 	IPPOL_REFRELE(pol);
5515 
5516 	/* data_chain is ready for return to tun module. */
5517 	return (data_chain);
5518 
5519 fail:
5520 	/*
5521 	 * Need to get rid of any extra pol
5522 	 * references, and any remaining bits as well.
5523 	 */
5524 	IPPOL_REFRELE(pol);
5525 	ipsec_freemsg_chain(data_chain);
5526 	ipsec_freemsg_chain(next);	/* ipdrop stats? */
5527 	return (NULL);
5528 }
5529 
5530 /*
5531  * Return a message if the inbound packet passed an IPsec policy check.  Returns
5532  * NULL if it failed or if it is a fragment needing its friends before a
5533  * policy check can be performed.
5534  *
5535  * Expects a non-NULL data_mp, and a non-NULL polhead.
5536  * The returned mblk may be a b_next chain of packets if fragments
5537  * neeeded to be collected for a proper policy check.
5538  *
5539  * This function calls ip_drop_packet() on data_mp if need be.
5540  *
5541  * NOTE:  outer_hdr_len is signed.  If it's a negative value, the caller
5542  * is inspecting an ICMP packet.
5543  */
5544 mblk_t *
5545 ipsec_tun_inbound(ip_recv_attr_t *ira, mblk_t *data_mp, ipsec_tun_pol_t *itp,
5546     ipha_t *inner_ipv4, ip6_t *inner_ipv6, ipha_t *outer_ipv4,
5547     ip6_t *outer_ipv6, int outer_hdr_len, netstack_t *ns)
5548 {
5549 	ipsec_policy_head_t *polhead;
5550 	ipsec_selector_t sel;
5551 	ipsec_policy_t *pol;
5552 	uint16_t tmpport;
5553 	selret_t rc;
5554 	boolean_t port_policy_present, is_icmp, global_present;
5555 	in6_addr_t tmpaddr;
5556 	ipaddr_t tmp4;
5557 	uint8_t flags, *inner_hdr;
5558 	ipsec_stack_t *ipss = ns->netstack_ipsec;
5559 
5560 	sel.ips_is_icmp_inv_acq = 0;
5561 
5562 	if (outer_ipv4 != NULL) {
5563 		ASSERT(outer_ipv6 == NULL);
5564 		global_present = ipss->ipsec_inbound_v4_policy_present;
5565 	} else {
5566 		ASSERT(outer_ipv6 != NULL);
5567 		global_present = ipss->ipsec_inbound_v6_policy_present;
5568 	}
5569 
5570 	ASSERT(inner_ipv4 != NULL && inner_ipv6 == NULL ||
5571 	    inner_ipv4 == NULL && inner_ipv6 != NULL);
5572 
5573 	if (outer_hdr_len < 0) {
5574 		outer_hdr_len = (-outer_hdr_len);
5575 		is_icmp = B_TRUE;
5576 	} else {
5577 		is_icmp = B_FALSE;
5578 	}
5579 
5580 	if (itp != NULL && (itp->itp_flags & ITPF_P_ACTIVE)) {
5581 		mblk_t *mp = data_mp;
5582 
5583 		polhead = itp->itp_policy;
5584 		/*
5585 		 * We need to perform full Tunnel-Mode enforcement,
5586 		 * and we need to have inner-header data for such enforcement.
5587 		 *
5588 		 * See ipsec_init_inbound_sel() for the 0x80000000 on inbound
5589 		 * and on return.
5590 		 */
5591 
5592 		port_policy_present = ((itp->itp_flags &
5593 		    ITPF_P_PER_PORT_SECURITY) ? B_TRUE : B_FALSE);
5594 		/*
5595 		 * NOTE:  Even if our policy is transport mode, set the
5596 		 * SEL_TUNNEL_MODE flag so ipsec_init_inbound_sel() can
5597 		 * do the right thing w.r.t. outer headers.
5598 		 */
5599 		flags = ((port_policy_present ? SEL_PORT_POLICY : SEL_NONE) |
5600 		    (is_icmp ? SEL_IS_ICMP : SEL_NONE) | SEL_TUNNEL_MODE);
5601 
5602 		rc = ipsec_init_inbound_sel(&sel, data_mp, inner_ipv4,
5603 		    inner_ipv6, flags);
5604 
5605 		switch (rc) {
5606 		case SELRET_NOMEM:
5607 			ip_drop_packet(data_mp, B_TRUE, NULL,
5608 			    DROPPER(ipss, ipds_spd_nomem),
5609 			    &ipss->ipsec_spd_dropper);
5610 			return (NULL);
5611 		case SELRET_TUNFRAG:
5612 			/*
5613 			 * At this point, if we're cleartext, we don't want
5614 			 * to go there.
5615 			 */
5616 			if (!(ira->ira_flags & IRAF_IPSEC_SECURE)) {
5617 				ip_drop_packet(data_mp, B_TRUE, NULL,
5618 				    DROPPER(ipss, ipds_spd_got_clear),
5619 				    &ipss->ipsec_spd_dropper);
5620 				return (NULL);
5621 			}
5622 
5623 			/*
5624 			 * Inner and outer headers may not be contiguous.
5625 			 * Pullup the data_mp now to satisfy assumptions of
5626 			 * ipsec_fragcache_add()
5627 			 */
5628 			if (data_mp->b_cont != NULL) {
5629 				mblk_t *nmp;
5630 
5631 				nmp = msgpullup(data_mp, -1);
5632 				if (nmp == NULL) {
5633 					ip_drop_packet(data_mp, B_TRUE, NULL,
5634 					    DROPPER(ipss, ipds_spd_nomem),
5635 					    &ipss->ipsec_spd_dropper);
5636 					return (NULL);
5637 				}
5638 				freemsg(data_mp);
5639 				data_mp = nmp;
5640 				if (outer_ipv4 != NULL)
5641 					outer_ipv4 =
5642 					    (ipha_t *)data_mp->b_rptr;
5643 				else
5644 					outer_ipv6 =
5645 					    (ip6_t *)data_mp->b_rptr;
5646 				if (inner_ipv4 != NULL) {
5647 					inner_ipv4 =
5648 					    (ipha_t *)(data_mp->b_rptr +
5649 					    outer_hdr_len);
5650 				} else {
5651 					inner_ipv6 =
5652 					    (ip6_t *)(data_mp->b_rptr +
5653 					    outer_hdr_len);
5654 				}
5655 			}
5656 
5657 			/*
5658 			 * If we need to queue the packet. First we
5659 			 * get an mblk with the attributes. ipsec_fragcache_add
5660 			 * will prepend that to the queued data and return
5661 			 * a list of b_next messages each of which starts with
5662 			 * the attribute mblk.
5663 			 */
5664 			mp = ip_recv_attr_to_mblk(ira);
5665 			if (mp == NULL) {
5666 				ip_drop_packet(data_mp, B_TRUE, NULL,
5667 				    DROPPER(ipss, ipds_spd_nomem),
5668 				    &ipss->ipsec_spd_dropper);
5669 				return (NULL);
5670 			}
5671 
5672 			mp = ipsec_fragcache_add(&itp->itp_fragcache,
5673 			    mp, data_mp, outer_hdr_len, ipss);
5674 
5675 			if (mp == NULL) {
5676 				/*
5677 				 * Data is cached, fragment chain is not
5678 				 * complete.
5679 				 */
5680 				return (NULL);
5681 			}
5682 
5683 			/*
5684 			 * If we get here, we have a full fragment chain.
5685 			 * Reacquire headers and selectors from first fragment.
5686 			 */
5687 			ASSERT(ip_recv_attr_is_mblk(mp));
5688 			data_mp = mp->b_cont;
5689 			inner_hdr = data_mp->b_rptr;
5690 			if (outer_ipv4 != NULL) {
5691 				inner_hdr += IPH_HDR_LENGTH(
5692 				    (ipha_t *)data_mp->b_rptr);
5693 			} else {
5694 				inner_hdr += ip_hdr_length_v6(data_mp,
5695 				    (ip6_t *)data_mp->b_rptr);
5696 			}
5697 			ASSERT(inner_hdr <= data_mp->b_wptr);
5698 
5699 			if (inner_ipv4 != NULL) {
5700 				inner_ipv4 = (ipha_t *)inner_hdr;
5701 				inner_ipv6 = NULL;
5702 			} else {
5703 				inner_ipv6 = (ip6_t *)inner_hdr;
5704 				inner_ipv4 = NULL;
5705 			}
5706 
5707 			/*
5708 			 * Use SEL_TUNNEL_MODE to take into account the outer
5709 			 * header.  Use SEL_POST_FRAG so we always get ports.
5710 			 */
5711 			rc = ipsec_init_inbound_sel(&sel, data_mp,
5712 			    inner_ipv4, inner_ipv6,
5713 			    SEL_TUNNEL_MODE | SEL_POST_FRAG);
5714 			switch (rc) {
5715 			case SELRET_SUCCESS:
5716 				/*
5717 				 * Get to same place as first caller's
5718 				 * SELRET_SUCCESS case.
5719 				 */
5720 				break;
5721 			case SELRET_NOMEM:
5722 				ip_drop_packet_chain(mp, B_TRUE, NULL,
5723 				    DROPPER(ipss, ipds_spd_nomem),
5724 				    &ipss->ipsec_spd_dropper);
5725 				return (NULL);
5726 			case SELRET_BADPKT:
5727 				ip_drop_packet_chain(mp, B_TRUE, NULL,
5728 				    DROPPER(ipss, ipds_spd_malformed_frag),
5729 				    &ipss->ipsec_spd_dropper);
5730 				return (NULL);
5731 			case SELRET_TUNFRAG:
5732 				cmn_err(CE_WARN, "(TUNFRAG on 2nd call...)");
5733 				/* FALLTHRU */
5734 			default:
5735 				cmn_err(CE_WARN, "ipsec_init_inbound_sel(mark2)"
5736 				    " returns bizarro 0x%x", rc);
5737 				/* Guaranteed panic! */
5738 				ASSERT(rc == SELRET_NOMEM);
5739 				return (NULL);
5740 			}
5741 			/* FALLTHRU */
5742 		case SELRET_SUCCESS:
5743 			/*
5744 			 * Common case:
5745 			 * No per-port policy or a non-fragment.  Keep going.
5746 			 */
5747 			break;
5748 		case SELRET_BADPKT:
5749 			/*
5750 			 * We may receive ICMP (with IPv6 inner) packets that
5751 			 * trigger this return value.  Send 'em in for
5752 			 * enforcement checking.
5753 			 */
5754 			cmn_err(CE_NOTE, "ipsec_tun_inbound(): "
5755 			    "sending 'bad packet' in for enforcement");
5756 			break;
5757 		default:
5758 			cmn_err(CE_WARN,
5759 			    "ipsec_init_inbound_sel() returns bizarro 0x%x",
5760 			    rc);
5761 			ASSERT(rc == SELRET_NOMEM);	/* Guaranteed panic! */
5762 			return (NULL);
5763 		}
5764 
5765 		if (is_icmp) {
5766 			/*
5767 			 * Swap local/remote because this is an ICMP packet.
5768 			 */
5769 			tmpaddr = sel.ips_local_addr_v6;
5770 			sel.ips_local_addr_v6 = sel.ips_remote_addr_v6;
5771 			sel.ips_remote_addr_v6 = tmpaddr;
5772 			tmpport = sel.ips_local_port;
5773 			sel.ips_local_port = sel.ips_remote_port;
5774 			sel.ips_remote_port = tmpport;
5775 		}
5776 
5777 		/* find_policy_head() */
5778 		rw_enter(&polhead->iph_lock, RW_READER);
5779 		pol = ipsec_find_policy_head(NULL, polhead, IPSEC_TYPE_INBOUND,
5780 		    &sel);
5781 		rw_exit(&polhead->iph_lock);
5782 		if (pol != NULL) {
5783 			uint64_t pkt_unique;
5784 
5785 			if (!(ira->ira_flags & IRAF_IPSEC_SECURE)) {
5786 				if (!pol->ipsp_act->ipa_allow_clear) {
5787 					/*
5788 					 * XXX should never get here with
5789 					 * tunnel reassembled fragments?
5790 					 */
5791 					ASSERT(mp == data_mp);
5792 					ip_drop_packet(data_mp, B_TRUE, NULL,
5793 					    DROPPER(ipss, ipds_spd_got_clear),
5794 					    &ipss->ipsec_spd_dropper);
5795 					IPPOL_REFRELE(pol);
5796 					return (NULL);
5797 				} else {
5798 					IPPOL_REFRELE(pol);
5799 					return (mp);
5800 				}
5801 			}
5802 			pkt_unique = SA_UNIQUE_ID(sel.ips_remote_port,
5803 			    sel.ips_local_port,
5804 			    (inner_ipv4 == NULL) ? IPPROTO_IPV6 :
5805 			    IPPROTO_ENCAP, sel.ips_protocol);
5806 
5807 			/*
5808 			 * NOTE: The following releases pol's reference and
5809 			 * calls ip_drop_packet() for me on NULL returns.
5810 			 *
5811 			 * "sel" is still good here, so let's use it!
5812 			 */
5813 			if (data_mp == mp) {
5814 				/* A single packet without attributes */
5815 				data_mp = ipsec_check_ipsecin_policy(data_mp,
5816 				    pol, inner_ipv4, inner_ipv6, pkt_unique,
5817 				    ira, ns);
5818 			} else {
5819 				/*
5820 				 * We pass in the b_next chain of attr_mp's
5821 				 * and get back a b_next chain of data_mp's.
5822 				 */
5823 				data_mp = ipsec_check_ipsecin_policy_reasm(mp,
5824 				    pol, inner_ipv4, inner_ipv6, pkt_unique,
5825 				    ns);
5826 			}
5827 			return (data_mp);
5828 		}
5829 
5830 		/*
5831 		 * Else fallthru and check the global policy on the outer
5832 		 * header(s) if this tunnel is an old-style transport-mode
5833 		 * one.  Drop the packet explicitly (no policy entry) for
5834 		 * a new-style tunnel-mode tunnel.
5835 		 */
5836 		if ((itp->itp_flags & ITPF_P_TUNNEL) && !is_icmp) {
5837 			ip_drop_packet_chain(data_mp, B_TRUE, NULL,
5838 			    DROPPER(ipss, ipds_spd_explicit),
5839 			    &ipss->ipsec_spd_dropper);
5840 			return (NULL);
5841 		}
5842 	}
5843 
5844 	/*
5845 	 * NOTE:  If we reach here, we will not have packet chains from
5846 	 * fragcache_add(), because the only way I get chains is on a
5847 	 * tunnel-mode tunnel, which either returns with a pass, or gets
5848 	 * hit by the ip_drop_packet_chain() call right above here.
5849 	 */
5850 	ASSERT(data_mp->b_next == NULL);
5851 
5852 	/* If no per-tunnel security, check global policy now. */
5853 	if ((ira->ira_flags & IRAF_IPSEC_SECURE) && !global_present) {
5854 		if (ira->ira_flags & IRAF_TRUSTED_ICMP) {
5855 			/*
5856 			 * This is an ICMP message that was geenrated locally.
5857 			 * We should accept it.
5858 			 */
5859 			return (data_mp);
5860 		}
5861 
5862 		ip_drop_packet(data_mp, B_TRUE, NULL,
5863 		    DROPPER(ipss, ipds_spd_got_secure),
5864 		    &ipss->ipsec_spd_dropper);
5865 		return (NULL);
5866 	}
5867 
5868 	if (is_icmp) {
5869 		/*
5870 		 * For ICMP packets, "outer_ipvN" is set to the outer header
5871 		 * that is *INSIDE* the ICMP payload.  For global policy
5872 		 * checking, we need to reverse src/dst on the payload in
5873 		 * order to construct selectors appropriately.  See "ripha"
5874 		 * constructions in ip.c.  To avoid a bug like 6478464 (see
5875 		 * earlier in this file), we will actually exchange src/dst
5876 		 * in the packet, and reverse if after the call to
5877 		 * ipsec_check_global_policy().
5878 		 */
5879 		if (outer_ipv4 != NULL) {
5880 			tmp4 = outer_ipv4->ipha_src;
5881 			outer_ipv4->ipha_src = outer_ipv4->ipha_dst;
5882 			outer_ipv4->ipha_dst = tmp4;
5883 		} else {
5884 			ASSERT(outer_ipv6 != NULL);
5885 			tmpaddr = outer_ipv6->ip6_src;
5886 			outer_ipv6->ip6_src = outer_ipv6->ip6_dst;
5887 			outer_ipv6->ip6_dst = tmpaddr;
5888 		}
5889 	}
5890 
5891 	data_mp = ipsec_check_global_policy(data_mp, NULL, outer_ipv4,
5892 	    outer_ipv6, ira, ns);
5893 	if (data_mp == NULL)
5894 		return (NULL);
5895 
5896 	if (is_icmp) {
5897 		/* Set things back to normal. */
5898 		if (outer_ipv4 != NULL) {
5899 			tmp4 = outer_ipv4->ipha_src;
5900 			outer_ipv4->ipha_src = outer_ipv4->ipha_dst;
5901 			outer_ipv4->ipha_dst = tmp4;
5902 		} else {
5903 			/* No need for ASSERT()s now. */
5904 			tmpaddr = outer_ipv6->ip6_src;
5905 			outer_ipv6->ip6_src = outer_ipv6->ip6_dst;
5906 			outer_ipv6->ip6_dst = tmpaddr;
5907 		}
5908 	}
5909 
5910 	/*
5911 	 * At this point, we pretend it's a cleartext accepted
5912 	 * packet.
5913 	 */
5914 	return (data_mp);
5915 }
5916 
5917 /*
5918  * AVL comparison routine for our list of tunnel polheads.
5919  */
5920 static int
5921 tunnel_compare(const void *arg1, const void *arg2)
5922 {
5923 	ipsec_tun_pol_t *left, *right;
5924 	int rc;
5925 
5926 	left = (ipsec_tun_pol_t *)arg1;
5927 	right = (ipsec_tun_pol_t *)arg2;
5928 
5929 	rc = strncmp(left->itp_name, right->itp_name, LIFNAMSIZ);
5930 	return (rc == 0 ? rc : (rc > 0 ? 1 : -1));
5931 }
5932 
5933 /*
5934  * Free a tunnel policy node.
5935  */
5936 void
5937 itp_free(ipsec_tun_pol_t *node, netstack_t *ns)
5938 {
5939 	if (node->itp_policy != NULL) {
5940 		IPPH_REFRELE(node->itp_policy, ns);
5941 		node->itp_policy = NULL;
5942 	}
5943 	if (node->itp_inactive != NULL) {
5944 		IPPH_REFRELE(node->itp_inactive, ns);
5945 		node->itp_inactive = NULL;
5946 	}
5947 	mutex_destroy(&node->itp_lock);
5948 	kmem_free(node, sizeof (*node));
5949 }
5950 
5951 void
5952 itp_unlink(ipsec_tun_pol_t *node, netstack_t *ns)
5953 {
5954 	ipsec_stack_t *ipss = ns->netstack_ipsec;
5955 
5956 	rw_enter(&ipss->ipsec_tunnel_policy_lock, RW_WRITER);
5957 	ipss->ipsec_tunnel_policy_gen++;
5958 	ipsec_fragcache_uninit(&node->itp_fragcache, ipss);
5959 	avl_remove(&ipss->ipsec_tunnel_policies, node);
5960 	rw_exit(&ipss->ipsec_tunnel_policy_lock);
5961 	ITP_REFRELE(node, ns);
5962 }
5963 
5964 /*
5965  * Public interface to look up a tunnel security policy by name.  Used by
5966  * spdsock mostly.  Returns "node" with a bumped refcnt.
5967  */
5968 ipsec_tun_pol_t *
5969 get_tunnel_policy(char *name, netstack_t *ns)
5970 {
5971 	ipsec_tun_pol_t *node, lookup;
5972 	ipsec_stack_t *ipss = ns->netstack_ipsec;
5973 
5974 	(void) strncpy(lookup.itp_name, name, LIFNAMSIZ);
5975 
5976 	rw_enter(&ipss->ipsec_tunnel_policy_lock, RW_READER);
5977 	node = (ipsec_tun_pol_t *)avl_find(&ipss->ipsec_tunnel_policies,
5978 	    &lookup, NULL);
5979 	if (node != NULL) {
5980 		ITP_REFHOLD(node);
5981 	}
5982 	rw_exit(&ipss->ipsec_tunnel_policy_lock);
5983 
5984 	return (node);
5985 }
5986 
5987 /*
5988  * Public interface to walk all tunnel security polcies.  Useful for spdsock
5989  * DUMP operations.  iterator() will not consume a reference.
5990  */
5991 void
5992 itp_walk(void (*iterator)(ipsec_tun_pol_t *, void *, netstack_t *),
5993     void *arg, netstack_t *ns)
5994 {
5995 	ipsec_tun_pol_t *node;
5996 	ipsec_stack_t *ipss = ns->netstack_ipsec;
5997 
5998 	rw_enter(&ipss->ipsec_tunnel_policy_lock, RW_READER);
5999 	for (node = avl_first(&ipss->ipsec_tunnel_policies); node != NULL;
6000 	    node = AVL_NEXT(&ipss->ipsec_tunnel_policies, node)) {
6001 		iterator(node, arg, ns);
6002 	}
6003 	rw_exit(&ipss->ipsec_tunnel_policy_lock);
6004 }
6005 
6006 /*
6007  * Initialize policy head.  This can only fail if there's a memory problem.
6008  */
6009 static boolean_t
6010 tunnel_polhead_init(ipsec_policy_head_t *iph, netstack_t *ns)
6011 {
6012 	ipsec_stack_t *ipss = ns->netstack_ipsec;
6013 
6014 	rw_init(&iph->iph_lock, NULL, RW_DEFAULT, NULL);
6015 	iph->iph_refs = 1;
6016 	iph->iph_gen = 0;
6017 	if (ipsec_alloc_table(iph, ipss->ipsec_tun_spd_hashsize,
6018 	    KM_SLEEP, B_FALSE, ns) != 0) {
6019 		ipsec_polhead_free_table(iph);
6020 		return (B_FALSE);
6021 	}
6022 	ipsec_polhead_init(iph, ipss->ipsec_tun_spd_hashsize);
6023 	return (B_TRUE);
6024 }
6025 
6026 /*
6027  * Create a tunnel policy node with "name".  Set errno with
6028  * ENOMEM if there's a memory problem, and EEXIST if there's an existing
6029  * node.
6030  */
6031 ipsec_tun_pol_t *
6032 create_tunnel_policy(char *name, int *errno, uint64_t *gen, netstack_t *ns)
6033 {
6034 	ipsec_tun_pol_t *newbie, *existing;
6035 	avl_index_t where;
6036 	ipsec_stack_t *ipss = ns->netstack_ipsec;
6037 
6038 	newbie = kmem_zalloc(sizeof (*newbie), KM_NOSLEEP);
6039 	if (newbie == NULL) {
6040 		*errno = ENOMEM;
6041 		return (NULL);
6042 	}
6043 	if (!ipsec_fragcache_init(&newbie->itp_fragcache)) {
6044 		kmem_free(newbie, sizeof (*newbie));
6045 		*errno = ENOMEM;
6046 		return (NULL);
6047 	}
6048 
6049 	(void) strncpy(newbie->itp_name, name, LIFNAMSIZ);
6050 
6051 	rw_enter(&ipss->ipsec_tunnel_policy_lock, RW_WRITER);
6052 	existing = (ipsec_tun_pol_t *)avl_find(&ipss->ipsec_tunnel_policies,
6053 	    newbie, &where);
6054 	if (existing != NULL) {
6055 		itp_free(newbie, ns);
6056 		*errno = EEXIST;
6057 		rw_exit(&ipss->ipsec_tunnel_policy_lock);
6058 		return (NULL);
6059 	}
6060 	ipss->ipsec_tunnel_policy_gen++;
6061 	*gen = ipss->ipsec_tunnel_policy_gen;
6062 	newbie->itp_refcnt = 2;	/* One for the caller, one for the tree. */
6063 	newbie->itp_next_policy_index = 1;
6064 	avl_insert(&ipss->ipsec_tunnel_policies, newbie, where);
6065 	mutex_init(&newbie->itp_lock, NULL, MUTEX_DEFAULT, NULL);
6066 	newbie->itp_policy = kmem_zalloc(sizeof (ipsec_policy_head_t),
6067 	    KM_NOSLEEP);
6068 	if (newbie->itp_policy == NULL)
6069 		goto nomem;
6070 	newbie->itp_inactive = kmem_zalloc(sizeof (ipsec_policy_head_t),
6071 	    KM_NOSLEEP);
6072 	if (newbie->itp_inactive == NULL) {
6073 		kmem_free(newbie->itp_policy, sizeof (ipsec_policy_head_t));
6074 		goto nomem;
6075 	}
6076 
6077 	if (!tunnel_polhead_init(newbie->itp_policy, ns)) {
6078 		kmem_free(newbie->itp_policy, sizeof (ipsec_policy_head_t));
6079 		kmem_free(newbie->itp_inactive, sizeof (ipsec_policy_head_t));
6080 		goto nomem;
6081 	} else if (!tunnel_polhead_init(newbie->itp_inactive, ns)) {
6082 		IPPH_REFRELE(newbie->itp_policy, ns);
6083 		kmem_free(newbie->itp_inactive, sizeof (ipsec_policy_head_t));
6084 		goto nomem;
6085 	}
6086 	rw_exit(&ipss->ipsec_tunnel_policy_lock);
6087 
6088 	return (newbie);
6089 nomem:
6090 	*errno = ENOMEM;
6091 	kmem_free(newbie, sizeof (*newbie));
6092 	return (NULL);
6093 }
6094 
6095 /*
6096  * Given two addresses, find a tunnel instance's IPsec policy heads.
6097  * Returns NULL on failure.
6098  */
6099 ipsec_tun_pol_t *
6100 itp_get_byaddr(uint32_t *laddr, uint32_t *faddr, int af, ip_stack_t *ipst)
6101 {
6102 	conn_t *connp;
6103 	iptun_t *iptun;
6104 	ipsec_tun_pol_t *itp = NULL;
6105 
6106 	/* Classifiers are used to "src" being foreign. */
6107 	if (af == AF_INET) {
6108 		connp = ipcl_iptun_classify_v4((ipaddr_t *)faddr,
6109 		    (ipaddr_t *)laddr, ipst);
6110 	} else {
6111 		ASSERT(af == AF_INET6);
6112 		ASSERT(!IN6_IS_ADDR_V4MAPPED((in6_addr_t *)laddr));
6113 		ASSERT(!IN6_IS_ADDR_V4MAPPED((in6_addr_t *)faddr));
6114 		connp = ipcl_iptun_classify_v6((in6_addr_t *)faddr,
6115 		    (in6_addr_t *)laddr, ipst);
6116 	}
6117 
6118 	if (connp == NULL)
6119 		return (NULL);
6120 
6121 	if (IPCL_IS_IPTUN(connp)) {
6122 		iptun = connp->conn_iptun;
6123 		if (iptun != NULL) {
6124 			itp = iptun->iptun_itp;
6125 			if (itp != NULL) {
6126 				/* Braces due to the macro's nature... */
6127 				ITP_REFHOLD(itp);
6128 			}
6129 		}  /* Else itp is already NULL. */
6130 	}
6131 
6132 	CONN_DEC_REF(connp);
6133 	return (itp);
6134 }
6135 
6136 /*
6137  * Frag cache code, based on SunScreen 3.2 source
6138  *	screen/kernel/common/screen_fragcache.c
6139  */
6140 
6141 #define	IPSEC_FRAG_TTL_MAX	5
6142 /*
6143  * Note that the following parameters create 256 hash buckets
6144  * with 1024 free entries to be distributed.  Things are cleaned
6145  * periodically and are attempted to be cleaned when there is no
6146  * free space, but this system errs on the side of dropping packets
6147  * over creating memory exhaustion.  We may decide to make hash
6148  * factor a tunable if this proves to be a bad decision.
6149  */
6150 #define	IPSEC_FRAG_HASH_SLOTS	(1<<8)
6151 #define	IPSEC_FRAG_HASH_FACTOR	4
6152 #define	IPSEC_FRAG_HASH_SIZE	(IPSEC_FRAG_HASH_SLOTS * IPSEC_FRAG_HASH_FACTOR)
6153 
6154 #define	IPSEC_FRAG_HASH_MASK		(IPSEC_FRAG_HASH_SLOTS - 1)
6155 #define	IPSEC_FRAG_HASH_FUNC(id)	(((id) & IPSEC_FRAG_HASH_MASK) ^ \
6156 					    (((id) / \
6157 					    (ushort_t)IPSEC_FRAG_HASH_SLOTS) & \
6158 					    IPSEC_FRAG_HASH_MASK))
6159 
6160 /* Maximum fragments per packet.  48 bytes payload x 1366 packets > 64KB */
6161 #define	IPSEC_MAX_FRAGS		1366
6162 
6163 #define	V4_FRAG_OFFSET(ipha) ((ntohs(ipha->ipha_fragment_offset_and_flags) & \
6164 				    IPH_OFFSET) << 3)
6165 #define	V4_MORE_FRAGS(ipha) (ntohs(ipha->ipha_fragment_offset_and_flags) & \
6166 		IPH_MF)
6167 
6168 /*
6169  * Initialize an ipsec fragcache instance.
6170  * Returns B_FALSE if memory allocation fails.
6171  */
6172 boolean_t
6173 ipsec_fragcache_init(ipsec_fragcache_t *frag)
6174 {
6175 	ipsec_fragcache_entry_t *ftemp;
6176 	int i;
6177 
6178 	mutex_init(&frag->itpf_lock, NULL, MUTEX_DEFAULT, NULL);
6179 	frag->itpf_ptr = (ipsec_fragcache_entry_t **)
6180 	    kmem_zalloc(sizeof (ipsec_fragcache_entry_t *) *
6181 	    IPSEC_FRAG_HASH_SLOTS, KM_NOSLEEP);
6182 	if (frag->itpf_ptr == NULL)
6183 		return (B_FALSE);
6184 
6185 	ftemp = (ipsec_fragcache_entry_t *)
6186 	    kmem_zalloc(sizeof (ipsec_fragcache_entry_t) *
6187 	    IPSEC_FRAG_HASH_SIZE, KM_NOSLEEP);
6188 	if (ftemp == NULL) {
6189 		kmem_free(frag->itpf_ptr, sizeof (ipsec_fragcache_entry_t *) *
6190 		    IPSEC_FRAG_HASH_SLOTS);
6191 		return (B_FALSE);
6192 	}
6193 
6194 	frag->itpf_freelist = NULL;
6195 
6196 	for (i = 0; i < IPSEC_FRAG_HASH_SIZE; i++) {
6197 		ftemp->itpfe_next = frag->itpf_freelist;
6198 		frag->itpf_freelist = ftemp;
6199 		ftemp++;
6200 	}
6201 
6202 	frag->itpf_expire_hint = 0;
6203 
6204 	return (B_TRUE);
6205 }
6206 
6207 void
6208 ipsec_fragcache_uninit(ipsec_fragcache_t *frag, ipsec_stack_t *ipss)
6209 {
6210 	ipsec_fragcache_entry_t *fep;
6211 	int i;
6212 
6213 	mutex_enter(&frag->itpf_lock);
6214 	if (frag->itpf_ptr) {
6215 		/* Delete any existing fragcache entry chains */
6216 		for (i = 0; i < IPSEC_FRAG_HASH_SLOTS; i++) {
6217 			fep = (frag->itpf_ptr)[i];
6218 			while (fep != NULL) {
6219 				/* Returned fep is next in chain or NULL */
6220 				fep = fragcache_delentry(i, fep, frag, ipss);
6221 			}
6222 		}
6223 		/*
6224 		 * Chase the pointers back to the beginning
6225 		 * of the memory allocation and then
6226 		 * get rid of the allocated freelist
6227 		 */
6228 		while (frag->itpf_freelist->itpfe_next != NULL)
6229 			frag->itpf_freelist = frag->itpf_freelist->itpfe_next;
6230 		/*
6231 		 * XXX - If we ever dynamically grow the freelist
6232 		 * then we'll have to free entries individually
6233 		 * or determine how many entries or chunks we have
6234 		 * grown since the initial allocation.
6235 		 */
6236 		kmem_free(frag->itpf_freelist,
6237 		    sizeof (ipsec_fragcache_entry_t) *
6238 		    IPSEC_FRAG_HASH_SIZE);
6239 		/* Free the fragcache structure */
6240 		kmem_free(frag->itpf_ptr,
6241 		    sizeof (ipsec_fragcache_entry_t *) *
6242 		    IPSEC_FRAG_HASH_SLOTS);
6243 	}
6244 	mutex_exit(&frag->itpf_lock);
6245 	mutex_destroy(&frag->itpf_lock);
6246 }
6247 
6248 /*
6249  * Add a fragment to the fragment cache.   Consumes mp if NULL is returned.
6250  * Returns mp if a whole fragment has been assembled, NULL otherwise
6251  * The returned mp could be a b_next chain of fragments.
6252  *
6253  * The iramp argument is set on inbound; NULL if outbound.
6254  */
6255 mblk_t *
6256 ipsec_fragcache_add(ipsec_fragcache_t *frag, mblk_t *iramp, mblk_t *mp,
6257     int outer_hdr_len, ipsec_stack_t *ipss)
6258 {
6259 	boolean_t is_v4;
6260 	time_t itpf_time;
6261 	ipha_t *iph;
6262 	ipha_t *oiph;
6263 	ip6_t *ip6h = NULL;
6264 	uint8_t v6_proto;
6265 	uint8_t *v6_proto_p;
6266 	uint16_t ip6_hdr_length;
6267 	ip_pkt_t ipp;
6268 	ip6_frag_t *fraghdr;
6269 	ipsec_fragcache_entry_t *fep;
6270 	int i;
6271 	mblk_t *nmp, *prevmp;
6272 	int firstbyte, lastbyte;
6273 	int offset;
6274 	int last;
6275 	boolean_t inbound = (iramp != NULL);
6276 
6277 #ifdef FRAGCACHE_DEBUG
6278 	cmn_err(CE_WARN, "Fragcache: %s\n", inbound ? "INBOUND" : "OUTBOUND");
6279 #endif
6280 	/*
6281 	 * You're on the slow path, so insure that every packet in the
6282 	 * cache is a single-mblk one.
6283 	 */
6284 	if (mp->b_cont != NULL) {
6285 		nmp = msgpullup(mp, -1);
6286 		if (nmp == NULL) {
6287 			ip_drop_packet(mp, inbound, NULL,
6288 			    DROPPER(ipss, ipds_spd_nomem),
6289 			    &ipss->ipsec_spd_dropper);
6290 			if (inbound)
6291 				(void) ip_recv_attr_free_mblk(iramp);
6292 			return (NULL);
6293 		}
6294 		freemsg(mp);
6295 		mp = nmp;
6296 	}
6297 
6298 	mutex_enter(&frag->itpf_lock);
6299 
6300 	oiph  = (ipha_t *)mp->b_rptr;
6301 	iph  = (ipha_t *)(mp->b_rptr + outer_hdr_len);
6302 
6303 	if (IPH_HDR_VERSION(iph) == IPV4_VERSION) {
6304 		is_v4 = B_TRUE;
6305 	} else {
6306 		ASSERT(IPH_HDR_VERSION(iph) == IPV6_VERSION);
6307 		ip6h = (ip6_t *)(mp->b_rptr + outer_hdr_len);
6308 
6309 		if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &ip6_hdr_length,
6310 		    &v6_proto_p)) {
6311 			/*
6312 			 * Find upper layer protocol.
6313 			 * If it fails we have a malformed packet
6314 			 */
6315 			mutex_exit(&frag->itpf_lock);
6316 			ip_drop_packet(mp, inbound, NULL,
6317 			    DROPPER(ipss, ipds_spd_malformed_packet),
6318 			    &ipss->ipsec_spd_dropper);
6319 			if (inbound)
6320 				(void) ip_recv_attr_free_mblk(iramp);
6321 			return (NULL);
6322 		} else {
6323 			v6_proto = *v6_proto_p;
6324 		}
6325 
6326 
6327 		bzero(&ipp, sizeof (ipp));
6328 		(void) ip_find_hdr_v6(mp, ip6h, B_FALSE, &ipp, NULL);
6329 		if (!(ipp.ipp_fields & IPPF_FRAGHDR)) {
6330 			/*
6331 			 * We think this is a fragment, but didn't find
6332 			 * a fragment header.  Something is wrong.
6333 			 */
6334 			mutex_exit(&frag->itpf_lock);
6335 			ip_drop_packet(mp, inbound, NULL,
6336 			    DROPPER(ipss, ipds_spd_malformed_frag),
6337 			    &ipss->ipsec_spd_dropper);
6338 			if (inbound)
6339 				(void) ip_recv_attr_free_mblk(iramp);
6340 			return (NULL);
6341 		}
6342 		fraghdr = ipp.ipp_fraghdr;
6343 		is_v4 = B_FALSE;
6344 	}
6345 
6346 	/* Anything to cleanup? */
6347 
6348 	/*
6349 	 * This cleanup call could be put in a timer loop
6350 	 * but it may actually be just as reasonable a decision to
6351 	 * leave it here.  The disadvantage is this only gets called when
6352 	 * frags are added.  The advantage is that it is not
6353 	 * susceptible to race conditions like a time-based cleanup
6354 	 * may be.
6355 	 */
6356 	itpf_time = gethrestime_sec();
6357 	if (itpf_time >= frag->itpf_expire_hint)
6358 		ipsec_fragcache_clean(frag, ipss);
6359 
6360 	/* Lookup to see if there is an existing entry */
6361 
6362 	if (is_v4)
6363 		i = IPSEC_FRAG_HASH_FUNC(iph->ipha_ident);
6364 	else
6365 		i = IPSEC_FRAG_HASH_FUNC(fraghdr->ip6f_ident);
6366 
6367 	for (fep = (frag->itpf_ptr)[i]; fep; fep = fep->itpfe_next) {
6368 		if (is_v4) {
6369 			ASSERT(iph != NULL);
6370 			if ((fep->itpfe_id == iph->ipha_ident) &&
6371 			    (fep->itpfe_src == iph->ipha_src) &&
6372 			    (fep->itpfe_dst == iph->ipha_dst) &&
6373 			    (fep->itpfe_proto == iph->ipha_protocol))
6374 				break;
6375 		} else {
6376 			ASSERT(fraghdr != NULL);
6377 			ASSERT(fep != NULL);
6378 			if ((fep->itpfe_id == fraghdr->ip6f_ident) &&
6379 			    IN6_ARE_ADDR_EQUAL(&fep->itpfe_src6,
6380 			    &ip6h->ip6_src) &&
6381 			    IN6_ARE_ADDR_EQUAL(&fep->itpfe_dst6,
6382 			    &ip6h->ip6_dst) && (fep->itpfe_proto == v6_proto))
6383 				break;
6384 		}
6385 	}
6386 
6387 	if (is_v4) {
6388 		firstbyte = V4_FRAG_OFFSET(iph);
6389 		lastbyte  = firstbyte + ntohs(iph->ipha_length) -
6390 		    IPH_HDR_LENGTH(iph);
6391 		last = (V4_MORE_FRAGS(iph) == 0);
6392 #ifdef FRAGCACHE_DEBUG
6393 		cmn_err(CE_WARN, "V4 fragcache: firstbyte = %d, lastbyte = %d, "
6394 		    "is_last_frag = %d, id = %d, mp = %p\n", firstbyte,
6395 		    lastbyte, last, iph->ipha_ident, mp);
6396 #endif
6397 	} else {
6398 		firstbyte = ntohs(fraghdr->ip6f_offlg & IP6F_OFF_MASK);
6399 		lastbyte  = firstbyte + ntohs(ip6h->ip6_plen) +
6400 		    sizeof (ip6_t) - ip6_hdr_length;
6401 		last = (fraghdr->ip6f_offlg & IP6F_MORE_FRAG) == 0;
6402 #ifdef FRAGCACHE_DEBUG
6403 		cmn_err(CE_WARN, "V6 fragcache: firstbyte = %d, lastbyte = %d, "
6404 		    "is_last_frag = %d, id = %d, fraghdr = %p, mp = %p\n",
6405 		    firstbyte, lastbyte, last, fraghdr->ip6f_ident, fraghdr,
6406 		    mp);
6407 #endif
6408 	}
6409 
6410 	/* check for bogus fragments and delete the entry */
6411 	if (firstbyte > 0 && firstbyte <= 8) {
6412 		if (fep != NULL)
6413 			(void) fragcache_delentry(i, fep, frag, ipss);
6414 		mutex_exit(&frag->itpf_lock);
6415 		ip_drop_packet(mp, inbound, NULL,
6416 		    DROPPER(ipss, ipds_spd_malformed_frag),
6417 		    &ipss->ipsec_spd_dropper);
6418 		if (inbound)
6419 			(void) ip_recv_attr_free_mblk(iramp);
6420 		return (NULL);
6421 	}
6422 
6423 	/* Not found, allocate a new entry */
6424 	if (fep == NULL) {
6425 		if (frag->itpf_freelist == NULL) {
6426 			/* see if there is some space */
6427 			ipsec_fragcache_clean(frag, ipss);
6428 			if (frag->itpf_freelist == NULL) {
6429 				mutex_exit(&frag->itpf_lock);
6430 				ip_drop_packet(mp, inbound, NULL,
6431 				    DROPPER(ipss, ipds_spd_nomem),
6432 				    &ipss->ipsec_spd_dropper);
6433 				if (inbound)
6434 					(void) ip_recv_attr_free_mblk(iramp);
6435 				return (NULL);
6436 			}
6437 		}
6438 
6439 		fep = frag->itpf_freelist;
6440 		frag->itpf_freelist = fep->itpfe_next;
6441 
6442 		if (is_v4) {
6443 			bcopy((caddr_t)&iph->ipha_src, (caddr_t)&fep->itpfe_src,
6444 			    sizeof (struct in_addr));
6445 			bcopy((caddr_t)&iph->ipha_dst, (caddr_t)&fep->itpfe_dst,
6446 			    sizeof (struct in_addr));
6447 			fep->itpfe_id = iph->ipha_ident;
6448 			fep->itpfe_proto = iph->ipha_protocol;
6449 			i = IPSEC_FRAG_HASH_FUNC(fep->itpfe_id);
6450 		} else {
6451 			bcopy((in6_addr_t *)&ip6h->ip6_src,
6452 			    (in6_addr_t *)&fep->itpfe_src6,
6453 			    sizeof (struct in6_addr));
6454 			bcopy((in6_addr_t *)&ip6h->ip6_dst,
6455 			    (in6_addr_t *)&fep->itpfe_dst6,
6456 			    sizeof (struct in6_addr));
6457 			fep->itpfe_id = fraghdr->ip6f_ident;
6458 			fep->itpfe_proto = v6_proto;
6459 			i = IPSEC_FRAG_HASH_FUNC(fep->itpfe_id);
6460 		}
6461 		itpf_time = gethrestime_sec();
6462 		fep->itpfe_exp = itpf_time + IPSEC_FRAG_TTL_MAX + 1;
6463 		fep->itpfe_last = 0;
6464 		fep->itpfe_fraglist = NULL;
6465 		fep->itpfe_depth = 0;
6466 		fep->itpfe_next = (frag->itpf_ptr)[i];
6467 		(frag->itpf_ptr)[i] = fep;
6468 
6469 		if (frag->itpf_expire_hint > fep->itpfe_exp)
6470 			frag->itpf_expire_hint = fep->itpfe_exp;
6471 
6472 	}
6473 
6474 	/* Insert it in the frag list */
6475 	/* List is in order by starting offset of fragments */
6476 
6477 	prevmp = NULL;
6478 	for (nmp = fep->itpfe_fraglist; nmp; nmp = nmp->b_next) {
6479 		ipha_t *niph;
6480 		ipha_t *oniph;
6481 		ip6_t *nip6h;
6482 		ip_pkt_t nipp;
6483 		ip6_frag_t *nfraghdr;
6484 		uint16_t nip6_hdr_length;
6485 		uint8_t *nv6_proto_p;
6486 		int nfirstbyte, nlastbyte;
6487 		char *data, *ndata;
6488 		mblk_t *ndata_mp = (inbound ? nmp->b_cont : nmp);
6489 		int hdr_len;
6490 
6491 		oniph  = (ipha_t *)mp->b_rptr;
6492 		nip6h = NULL;
6493 		niph = NULL;
6494 
6495 		/*
6496 		 * Determine outer header type and length and set
6497 		 * pointers appropriately
6498 		 */
6499 
6500 		if (IPH_HDR_VERSION(oniph) == IPV4_VERSION) {
6501 			hdr_len = ((outer_hdr_len != 0) ?
6502 			    IPH_HDR_LENGTH(oiph) : 0);
6503 			niph = (ipha_t *)(ndata_mp->b_rptr + hdr_len);
6504 		} else {
6505 			ASSERT(IPH_HDR_VERSION(oniph) == IPV6_VERSION);
6506 			ASSERT(ndata_mp->b_cont == NULL);
6507 			nip6h = (ip6_t *)ndata_mp->b_rptr;
6508 			(void) ip_hdr_length_nexthdr_v6(ndata_mp, nip6h,
6509 			    &nip6_hdr_length, &v6_proto_p);
6510 			hdr_len = ((outer_hdr_len != 0) ? nip6_hdr_length : 0);
6511 		}
6512 
6513 		/*
6514 		 * Determine inner header type and length and set
6515 		 * pointers appropriately
6516 		 */
6517 
6518 		if (is_v4) {
6519 			if (niph == NULL) {
6520 				/* Was v6 outer */
6521 				niph = (ipha_t *)(ndata_mp->b_rptr + hdr_len);
6522 			}
6523 			nfirstbyte = V4_FRAG_OFFSET(niph);
6524 			nlastbyte = nfirstbyte + ntohs(niph->ipha_length) -
6525 			    IPH_HDR_LENGTH(niph);
6526 		} else {
6527 			ASSERT(ndata_mp->b_cont == NULL);
6528 			nip6h = (ip6_t *)(ndata_mp->b_rptr + hdr_len);
6529 			if (!ip_hdr_length_nexthdr_v6(ndata_mp, nip6h,
6530 			    &nip6_hdr_length, &nv6_proto_p)) {
6531 				mutex_exit(&frag->itpf_lock);
6532 				ip_drop_packet_chain(nmp, inbound, NULL,
6533 				    DROPPER(ipss, ipds_spd_malformed_frag),
6534 				    &ipss->ipsec_spd_dropper);
6535 				ipsec_freemsg_chain(ndata_mp);
6536 				if (inbound)
6537 					(void) ip_recv_attr_free_mblk(iramp);
6538 				return (NULL);
6539 			}
6540 			bzero(&nipp, sizeof (nipp));
6541 			(void) ip_find_hdr_v6(ndata_mp, nip6h, B_FALSE, &nipp,
6542 			    NULL);
6543 			nfraghdr = nipp.ipp_fraghdr;
6544 			nfirstbyte = ntohs(nfraghdr->ip6f_offlg &
6545 			    IP6F_OFF_MASK);
6546 			nlastbyte  = nfirstbyte + ntohs(nip6h->ip6_plen) +
6547 			    sizeof (ip6_t) - nip6_hdr_length;
6548 		}
6549 
6550 		/* Check for overlapping fragments */
6551 		if (firstbyte >= nfirstbyte && firstbyte < nlastbyte) {
6552 			/*
6553 			 * Overlap Check:
6554 			 *  ~~~~---------		# Check if the newly
6555 			 * ~	ndata_mp|		# received fragment
6556 			 *  ~~~~---------		# overlaps with the
6557 			 *	 ---------~~~~~~	# current fragment.
6558 			 *	|    mp		~
6559 			 *	 ---------~~~~~~
6560 			 */
6561 			if (is_v4) {
6562 				data  = (char *)iph  + IPH_HDR_LENGTH(iph) +
6563 				    firstbyte - nfirstbyte;
6564 				ndata = (char *)niph + IPH_HDR_LENGTH(niph);
6565 			} else {
6566 				data  = (char *)ip6h  +
6567 				    nip6_hdr_length + firstbyte -
6568 				    nfirstbyte;
6569 				ndata = (char *)nip6h + nip6_hdr_length;
6570 			}
6571 			if (bcmp(data, ndata, MIN(lastbyte, nlastbyte) -
6572 			    firstbyte)) {
6573 				/* Overlapping data does not match */
6574 				(void) fragcache_delentry(i, fep, frag, ipss);
6575 				mutex_exit(&frag->itpf_lock);
6576 				ip_drop_packet(mp, inbound, NULL,
6577 				    DROPPER(ipss, ipds_spd_overlap_frag),
6578 				    &ipss->ipsec_spd_dropper);
6579 				if (inbound)
6580 					(void) ip_recv_attr_free_mblk(iramp);
6581 				return (NULL);
6582 			}
6583 			/* Part of defense for jolt2.c fragmentation attack */
6584 			if (firstbyte >= nfirstbyte && lastbyte <= nlastbyte) {
6585 				/*
6586 				 * Check for identical or subset fragments:
6587 				 *  ----------	    ~~~~--------~~~~~
6588 				 * |    nmp   | or  ~	   nmp	    ~
6589 				 *  ----------	    ~~~~--------~~~~~
6590 				 *  ----------		  ------
6591 				 * |	mp    |		 |  mp  |
6592 				 *  ----------		  ------
6593 				 */
6594 				mutex_exit(&frag->itpf_lock);
6595 				ip_drop_packet(mp, inbound, NULL,
6596 				    DROPPER(ipss, ipds_spd_evil_frag),
6597 				    &ipss->ipsec_spd_dropper);
6598 				if (inbound)
6599 					(void) ip_recv_attr_free_mblk(iramp);
6600 				return (NULL);
6601 			}
6602 
6603 		}
6604 
6605 		/* Correct location for this fragment? */
6606 		if (firstbyte <= nfirstbyte) {
6607 			/*
6608 			 * Check if the tail end of the new fragment overlaps
6609 			 * with the head of the current fragment.
6610 			 *	  --------~~~~~~~
6611 			 *	 |    nmp	~
6612 			 *	  --------~~~~~~~
6613 			 *  ~~~~~--------
6614 			 *  ~	mp	 |
6615 			 *  ~~~~~--------
6616 			 */
6617 			if (lastbyte > nfirstbyte) {
6618 				/* Fragments overlap */
6619 				data  = (char *)iph  + IPH_HDR_LENGTH(iph) +
6620 				    firstbyte - nfirstbyte;
6621 				ndata = (char *)niph + IPH_HDR_LENGTH(niph);
6622 				if (is_v4) {
6623 					data  = (char *)iph +
6624 					    IPH_HDR_LENGTH(iph) + firstbyte -
6625 					    nfirstbyte;
6626 					ndata = (char *)niph +
6627 					    IPH_HDR_LENGTH(niph);
6628 				} else {
6629 					data  = (char *)ip6h  +
6630 					    nip6_hdr_length + firstbyte -
6631 					    nfirstbyte;
6632 					ndata = (char *)nip6h + nip6_hdr_length;
6633 				}
6634 				if (bcmp(data, ndata, MIN(lastbyte, nlastbyte)
6635 				    - nfirstbyte)) {
6636 					/* Overlap mismatch */
6637 					(void) fragcache_delentry(i, fep, frag,
6638 					    ipss);
6639 					mutex_exit(&frag->itpf_lock);
6640 					ip_drop_packet(mp, inbound, NULL,
6641 					    DROPPER(ipss,
6642 					    ipds_spd_overlap_frag),
6643 					    &ipss->ipsec_spd_dropper);
6644 					if (inbound) {
6645 						(void) ip_recv_attr_free_mblk(
6646 						    iramp);
6647 					}
6648 					return (NULL);
6649 				}
6650 			}
6651 
6652 			/*
6653 			 * Fragment does not illegally overlap and can now
6654 			 * be inserted into the chain
6655 			 */
6656 			break;
6657 		}
6658 
6659 		prevmp = nmp;
6660 	}
6661 	/* Prepend the attributes before we link it in */
6662 	if (iramp != NULL) {
6663 		ASSERT(iramp->b_cont == NULL);
6664 		iramp->b_cont = mp;
6665 		mp = iramp;
6666 		iramp = NULL;
6667 	}
6668 	mp->b_next = nmp;
6669 
6670 	if (prevmp == NULL) {
6671 		fep->itpfe_fraglist = mp;
6672 	} else {
6673 		prevmp->b_next = mp;
6674 	}
6675 	if (last)
6676 		fep->itpfe_last = 1;
6677 
6678 	/* Part of defense for jolt2.c fragmentation attack */
6679 	if (++(fep->itpfe_depth) > IPSEC_MAX_FRAGS) {
6680 		(void) fragcache_delentry(i, fep, frag, ipss);
6681 		mutex_exit(&frag->itpf_lock);
6682 		if (inbound)
6683 			mp = ip_recv_attr_free_mblk(mp);
6684 
6685 		ip_drop_packet(mp, inbound, NULL,
6686 		    DROPPER(ipss, ipds_spd_max_frags),
6687 		    &ipss->ipsec_spd_dropper);
6688 		return (NULL);
6689 	}
6690 
6691 	/* Check for complete packet */
6692 
6693 	if (!fep->itpfe_last) {
6694 		mutex_exit(&frag->itpf_lock);
6695 #ifdef FRAGCACHE_DEBUG
6696 		cmn_err(CE_WARN, "Fragment cached, last not yet seen.\n");
6697 #endif
6698 		return (NULL);
6699 	}
6700 
6701 	offset = 0;
6702 	for (mp = fep->itpfe_fraglist; mp; mp = mp->b_next) {
6703 		mblk_t *data_mp = (inbound ? mp->b_cont : mp);
6704 		int hdr_len;
6705 
6706 		oiph  = (ipha_t *)data_mp->b_rptr;
6707 		ip6h = NULL;
6708 		iph = NULL;
6709 
6710 		if (IPH_HDR_VERSION(oiph) == IPV4_VERSION) {
6711 			hdr_len = ((outer_hdr_len != 0) ?
6712 			    IPH_HDR_LENGTH(oiph) : 0);
6713 			iph = (ipha_t *)(data_mp->b_rptr + hdr_len);
6714 		} else {
6715 			ASSERT(IPH_HDR_VERSION(oiph) == IPV6_VERSION);
6716 			ASSERT(data_mp->b_cont == NULL);
6717 			ip6h = (ip6_t *)data_mp->b_rptr;
6718 			(void) ip_hdr_length_nexthdr_v6(data_mp, ip6h,
6719 			    &ip6_hdr_length, &v6_proto_p);
6720 			hdr_len = ((outer_hdr_len != 0) ? ip6_hdr_length : 0);
6721 		}
6722 
6723 		/* Calculate current fragment start/end */
6724 		if (is_v4) {
6725 			if (iph == NULL) {
6726 				/* Was v6 outer */
6727 				iph = (ipha_t *)(data_mp->b_rptr + hdr_len);
6728 			}
6729 			firstbyte = V4_FRAG_OFFSET(iph);
6730 			lastbyte = firstbyte + ntohs(iph->ipha_length) -
6731 			    IPH_HDR_LENGTH(iph);
6732 		} else {
6733 			ASSERT(data_mp->b_cont == NULL);
6734 			ip6h = (ip6_t *)(data_mp->b_rptr + hdr_len);
6735 			if (!ip_hdr_length_nexthdr_v6(data_mp, ip6h,
6736 			    &ip6_hdr_length, &v6_proto_p)) {
6737 				mutex_exit(&frag->itpf_lock);
6738 				ip_drop_packet_chain(mp, inbound, NULL,
6739 				    DROPPER(ipss, ipds_spd_malformed_frag),
6740 				    &ipss->ipsec_spd_dropper);
6741 				return (NULL);
6742 			}
6743 			v6_proto = *v6_proto_p;
6744 			bzero(&ipp, sizeof (ipp));
6745 			(void) ip_find_hdr_v6(data_mp, ip6h, B_FALSE, &ipp,
6746 			    NULL);
6747 			fraghdr = ipp.ipp_fraghdr;
6748 			firstbyte = ntohs(fraghdr->ip6f_offlg &
6749 			    IP6F_OFF_MASK);
6750 			lastbyte  = firstbyte + ntohs(ip6h->ip6_plen) +
6751 			    sizeof (ip6_t) - ip6_hdr_length;
6752 		}
6753 
6754 		/*
6755 		 * If this fragment is greater than current offset,
6756 		 * we have a missing fragment so return NULL
6757 		 */
6758 		if (firstbyte > offset) {
6759 			mutex_exit(&frag->itpf_lock);
6760 #ifdef FRAGCACHE_DEBUG
6761 			/*
6762 			 * Note, this can happen when the last frag
6763 			 * gets sent through because it is smaller
6764 			 * than the MTU.  It is not necessarily an
6765 			 * error condition.
6766 			 */
6767 			cmn_err(CE_WARN, "Frag greater than offset! : "
6768 			    "missing fragment: firstbyte = %d, offset = %d, "
6769 			    "mp = %p\n", firstbyte, offset, mp);
6770 #endif
6771 			return (NULL);
6772 		}
6773 #ifdef FRAGCACHE_DEBUG
6774 		cmn_err(CE_WARN, "Frag offsets : "
6775 		    "firstbyte = %d, offset = %d, mp = %p\n",
6776 		    firstbyte, offset, mp);
6777 #endif
6778 
6779 		/*
6780 		 * If we are at the last fragment, we have the complete
6781 		 * packet, so rechain things and return it to caller
6782 		 * for processing
6783 		 */
6784 
6785 		if ((is_v4 && !V4_MORE_FRAGS(iph)) ||
6786 		    (!is_v4 && !(fraghdr->ip6f_offlg & IP6F_MORE_FRAG))) {
6787 			mp = fep->itpfe_fraglist;
6788 			fep->itpfe_fraglist = NULL;
6789 			(void) fragcache_delentry(i, fep, frag, ipss);
6790 			mutex_exit(&frag->itpf_lock);
6791 
6792 			if ((is_v4 && (firstbyte + ntohs(iph->ipha_length) >
6793 			    65535)) || (!is_v4 && (firstbyte +
6794 			    ntohs(ip6h->ip6_plen) > 65535))) {
6795 				/* It is an invalid "ping-o-death" packet */
6796 				/* Discard it */
6797 				ip_drop_packet_chain(mp, inbound, NULL,
6798 				    DROPPER(ipss, ipds_spd_evil_frag),
6799 				    &ipss->ipsec_spd_dropper);
6800 				return (NULL);
6801 			}
6802 #ifdef FRAGCACHE_DEBUG
6803 			cmn_err(CE_WARN, "Fragcache returning mp = %p, "
6804 			    "mp->b_next = %p", mp, mp->b_next);
6805 #endif
6806 			/*
6807 			 * For inbound case, mp has attrmp b_next'd chain
6808 			 * For outbound case, it is just data mp chain
6809 			 */
6810 			return (mp);
6811 		}
6812 
6813 		/*
6814 		 * Update new ending offset if this
6815 		 * fragment extends the packet
6816 		 */
6817 		if (offset < lastbyte)
6818 			offset = lastbyte;
6819 	}
6820 
6821 	mutex_exit(&frag->itpf_lock);
6822 
6823 	/* Didn't find last fragment, so return NULL */
6824 	return (NULL);
6825 }
6826 
6827 static void
6828 ipsec_fragcache_clean(ipsec_fragcache_t *frag, ipsec_stack_t *ipss)
6829 {
6830 	ipsec_fragcache_entry_t *fep;
6831 	int i;
6832 	ipsec_fragcache_entry_t *earlyfep = NULL;
6833 	time_t itpf_time;
6834 	int earlyexp;
6835 	int earlyi = 0;
6836 
6837 	ASSERT(MUTEX_HELD(&frag->itpf_lock));
6838 
6839 	itpf_time = gethrestime_sec();
6840 	earlyexp = itpf_time + 10000;
6841 
6842 	for (i = 0; i < IPSEC_FRAG_HASH_SLOTS; i++) {
6843 		fep = (frag->itpf_ptr)[i];
6844 		while (fep) {
6845 			if (fep->itpfe_exp < itpf_time) {
6846 				/* found */
6847 				fep = fragcache_delentry(i, fep, frag, ipss);
6848 			} else {
6849 				if (fep->itpfe_exp < earlyexp) {
6850 					earlyfep = fep;
6851 					earlyexp = fep->itpfe_exp;
6852 					earlyi = i;
6853 				}
6854 				fep = fep->itpfe_next;
6855 			}
6856 		}
6857 	}
6858 
6859 	frag->itpf_expire_hint = earlyexp;
6860 
6861 	/* if (!found) */
6862 	if (frag->itpf_freelist == NULL)
6863 		(void) fragcache_delentry(earlyi, earlyfep, frag, ipss);
6864 }
6865 
6866 static ipsec_fragcache_entry_t *
6867 fragcache_delentry(int slot, ipsec_fragcache_entry_t *fep,
6868     ipsec_fragcache_t *frag, ipsec_stack_t *ipss)
6869 {
6870 	ipsec_fragcache_entry_t *targp;
6871 	ipsec_fragcache_entry_t *nextp = fep->itpfe_next;
6872 
6873 	ASSERT(MUTEX_HELD(&frag->itpf_lock));
6874 
6875 	/* Free up any fragment list still in cache entry */
6876 	if (fep->itpfe_fraglist != NULL) {
6877 		ip_drop_packet_chain(fep->itpfe_fraglist,
6878 		    ip_recv_attr_is_mblk(fep->itpfe_fraglist), NULL,
6879 		    DROPPER(ipss, ipds_spd_expired_frags),
6880 		    &ipss->ipsec_spd_dropper);
6881 	}
6882 	fep->itpfe_fraglist = NULL;
6883 
6884 	targp = (frag->itpf_ptr)[slot];
6885 	ASSERT(targp != 0);
6886 
6887 	if (targp == fep) {
6888 		/* unlink from head of hash chain */
6889 		(frag->itpf_ptr)[slot] = nextp;
6890 		/* link into free list */
6891 		fep->itpfe_next = frag->itpf_freelist;
6892 		frag->itpf_freelist = fep;
6893 		return (nextp);
6894 	}
6895 
6896 	/* maybe should use double linked list to make update faster */
6897 	/* must be past front of chain */
6898 	while (targp) {
6899 		if (targp->itpfe_next == fep) {
6900 			/* unlink from hash chain */
6901 			targp->itpfe_next = nextp;
6902 			/* link into free list */
6903 			fep->itpfe_next = frag->itpf_freelist;
6904 			frag->itpf_freelist = fep;
6905 			return (nextp);
6906 		}
6907 		targp = targp->itpfe_next;
6908 		ASSERT(targp != 0);
6909 	}
6910 	/* NOTREACHED */
6911 	return (NULL);
6912 }
6913