xref: /illumos-gate/usr/src/uts/common/inet/sadb.h (revision fcf3ce44)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #ifndef	_INET_SADB_H
27 #define	_INET_SADB_H
28 
29 #ifdef	__cplusplus
30 extern "C" {
31 #endif
32 
33 #include <inet/ipsec_info.h>
34 #include <sys/crypto/common.h>
35 #include <sys/crypto/api.h>
36 #include <sys/note.h>
37 
38 #define	IPSA_MAX_ADDRLEN 4	/* Max address len. (in 32-bits) for an SA. */
39 
40 /*
41  * Return codes of IPsec processing functions.
42  */
43 typedef enum {
44 	IPSEC_STATUS_SUCCESS = 1,
45 	IPSEC_STATUS_FAILED = 2,
46 	IPSEC_STATUS_PENDING = 3
47 } ipsec_status_t;
48 
49 /*
50  * IP security association.  Synchronization assumes 32-bit loads, so
51  * the 64-bit quantities can't even be be read w/o locking it down!
52  */
53 
54 /* keying info */
55 typedef struct ipsa_key_s {
56 	void *sak_key;		/* Algorithm key. */
57 	uint_t sak_keylen;	/* Algorithm key length (in bytes). */
58 	uint_t sak_keybits;	/* Algorithm key length (in bits) */
59 	uint_t sak_algid;	/* Algorithm ID number. */
60 } ipsa_key_t;
61 
62 /* the security association */
63 typedef struct ipsa_s {
64 	struct ipsa_s *ipsa_next;	/* Next in hash bucket */
65 	struct ipsa_s **ipsa_ptpn;	/* Pointer to previous next pointer. */
66 	kmutex_t *ipsa_linklock;	/* Pointer to hash-chain lock. */
67 	void (*ipsa_freefunc)(struct ipsa_s *); /* freeassoc function */
68 	/*
69 	 * NOTE: I may need more pointers, depending on future SA
70 	 * requirements.
71 	 */
72 	ipsa_key_t ipsa_authkeydata;
73 #define	ipsa_authkey ipsa_authkeydata.sak_key
74 #define	ipsa_authkeylen ipsa_authkeydata.sak_keylen
75 #define	ipsa_authkeybits ipsa_authkeydata.sak_keybits
76 #define	ipsa_auth_alg ipsa_authkeydata.sak_algid
77 	ipsa_key_t ipsa_encrkeydata;
78 #define	ipsa_encrkey ipsa_encrkeydata.sak_key
79 #define	ipsa_encrkeylen ipsa_encrkeydata.sak_keylen
80 #define	ipsa_encrkeybits ipsa_encrkeydata.sak_keybits
81 #define	ipsa_encr_alg ipsa_encrkeydata.sak_algid
82 
83 	struct ipsid_s *ipsa_src_cid;	/* Source certificate identity */
84 	struct ipsid_s *ipsa_dst_cid;	/* Destination certificate identity */
85 	uint64_t *ipsa_integ;	/* Integrity bitmap */
86 	uint64_t *ipsa_sens;	/* Sensitivity bitmap */
87 	mblk_t	*ipsa_lpkt;	/* Packet received while larval (CAS me) */
88 	mblk_t	*ipsa_bpkt_head;	/* Packets received while idle */
89 	mblk_t	*ipsa_bpkt_tail;
90 #define	SADB_MAX_IDLEPKTS	100
91 	uint8_t	ipsa_mblkcnt;	/* Number of packets received while idle */
92 
93 	/*
94 	 * PF_KEYv2 supports a replay window size of 255.  Hence there is a
95 	 * need a bit vector to support a replay window of 255.  256 is a nice
96 	 * round number, so I support that.
97 	 *
98 	 * Use an array of uint64_t for best performance on 64-bit
99 	 * processors.  (And hope that 32-bit compilers can handle things
100 	 * okay.)  The " >> 6 " is to get the appropriate number of 64-bit
101 	 * ints.
102 	 */
103 #define	SADB_MAX_REPLAY 256	/* Must be 0 mod 64. */
104 	uint64_t ipsa_replay_arr[SADB_MAX_REPLAY >> 6];
105 
106 	uint64_t ipsa_unique_id;	/* Non-zero for unique SAs */
107 	uint64_t ipsa_unique_mask;	/* mask value for unique_id */
108 
109 	/*
110 	 * Reference count semantics:
111 	 *
112 	 *	An SA has a reference count of 1 if something's pointing
113 	 *	to it.  This includes being in a hash table.  So if an
114 	 *	SA is in a hash table, it has a reference count of at least 1.
115 	 *
116 	 *	When a ptr. to an IPSA is assigned, you MUST REFHOLD after
117 	 *	said assignment.  When a ptr. to an IPSA is released
118 	 *	you MUST REFRELE.  When the refcount hits 0, REFRELE
119 	 *	will free the IPSA.
120 	 */
121 	kmutex_t ipsa_lock;	/* Locks non-linkage/refcnt fields. */
122 	/* Q:  Since I may be doing refcnts differently, will I need cv? */
123 	uint_t ipsa_refcnt;	/* Reference count. */
124 
125 	/*
126 	 * The following four time fields are the ones monitored by ah_ager()
127 	 * and esp_ager() respectively.  They are all absolute wall-clock
128 	 * times.  The times of creation (i.e. add time) and first use are
129 	 * pretty straightforward.  The soft and hard expire times are
130 	 * derived from the times of first use and creation, plus the minimum
131 	 * expiration times in the fields that follow this.
132 	 *
133 	 * For example, if I had a hard add time of 30 seconds, and a hard
134 	 * use time of 15, the ipsa_hardexpiretime would be time of add, plus
135 	 * 30 seconds.  If I USE the SA such that time of first use plus 15
136 	 * seconds would be earlier than the add time plus 30 seconds, then
137 	 * ipsa_hardexpiretime would become this earlier time.
138 	 */
139 	time_t ipsa_addtime;	/* Time I was added. */
140 	time_t ipsa_usetime;	/* Time of my first use. */
141 	time_t ipsa_lastuse;	/* Time of my last use. */
142 	time_t	ipsa_idletime;	/* Seconds of idle time */
143 	time_t ipsa_last_nat_t_ka;	/* Time of my last NAT-T keepalive. */
144 	time_t ipsa_softexpiretime;	/* Time of my first soft expire. */
145 	time_t ipsa_hardexpiretime;	/* Time of my first hard expire. */
146 	time_t	ipsa_idleexpiretime;	/* Time of my next idle expire time */
147 
148 	/*
149 	 * The following fields are directly reflected in PF_KEYv2 LIFETIME
150 	 * extensions.  The time_ts are in number-of-seconds, and the bytes
151 	 * are in... bytes.
152 	 */
153 	time_t ipsa_softaddlt;	/* Seconds of soft lifetime after add. */
154 	time_t ipsa_softuselt;	/* Seconds of soft lifetime after first use. */
155 	time_t ipsa_hardaddlt;	/* Seconds of hard lifetime after add. */
156 	time_t ipsa_harduselt;	/* Seconds of hard lifetime after first use. */
157 	time_t ipsa_idleaddlt;	/* Seconds of idle time after add */
158 	time_t ipsa_idleuselt;	/* Seconds of idle time after first use */
159 	uint64_t ipsa_softbyteslt;	/* Bytes of soft lifetime. */
160 	uint64_t ipsa_hardbyteslt;	/* Bytes of hard lifetime. */
161 	uint64_t ipsa_bytes;	/* Bytes encrypted/authed by this SA. */
162 
163 	/*
164 	 * "Allocations" are a concept mentioned in PF_KEYv2.  We do not
165 	 * support them, except to record them per the PF_KEYv2 spec.
166 	 */
167 	uint_t ipsa_softalloc;	/* Allocations allowed (soft). */
168 	uint_t ipsa_hardalloc;	/* Allocations allowed (hard). */
169 	uint_t ipsa_alloc;	/* Allocations made. */
170 
171 	uint_t ipsa_integlen;	/* Length of the integrity bitmap (bytes). */
172 	uint_t ipsa_senslen;	/* Length of the sensitivity bitmap (bytes). */
173 
174 	uint_t ipsa_type;	/* Type of security association. (AH/etc.) */
175 	uint_t ipsa_dpd;	/* Domain for sensitivity bit vectors. */
176 	uint_t ipsa_senslevel;	/* Sensitivity level. */
177 	uint_t ipsa_integlevel;	/* Integrity level. */
178 	uint_t ipsa_state;	/* State of my association. */
179 	uint_t ipsa_replay_wsize; /* Size of replay window */
180 	uint32_t ipsa_flags;	/* Flags for security association. */
181 	uint32_t ipsa_spi;	/* Security parameters index. */
182 	uint32_t ipsa_replay;	/* Highest seen replay value for this SA. */
183 	uint32_t ipsa_kmp;	/* key management proto */
184 	uint32_t ipsa_kmc;	/* key management cookie */
185 
186 	boolean_t ipsa_haspeer;		/* Has peer in another table. */
187 
188 	/*
189 	 * Address storage.
190 	 * The source address can be INADDR_ANY, IN6ADDR_ANY, etc.
191 	 *
192 	 * Address families (per sys/socket.h) guide us.  We could have just
193 	 * used sockaddr_storage
194 	 */
195 	sa_family_t ipsa_addrfam;
196 	sa_family_t ipsa_innerfam;	/* Inner AF can be != src/dst AF. */
197 
198 	uint32_t ipsa_srcaddr[IPSA_MAX_ADDRLEN];
199 	uint32_t ipsa_dstaddr[IPSA_MAX_ADDRLEN];
200 	uint32_t ipsa_innersrc[IPSA_MAX_ADDRLEN];
201 	uint32_t ipsa_innerdst[IPSA_MAX_ADDRLEN];
202 
203 	uint8_t ipsa_innersrcpfx;
204 	uint8_t ipsa_innerdstpfx;
205 
206 	uint16_t ipsa_inbound_cksum; /* cksum correction for inbound packets */
207 	uint16_t ipsa_local_nat_port;	/* Local NAT-T port.  (0 --> 4500) */
208 	uint16_t ipsa_remote_nat_port; /* The other port that isn't 4500 */
209 
210 	/* these can only be v4 */
211 	uint32_t ipsa_natt_addr_loc;
212 	uint32_t ipsa_natt_addr_rem;
213 
214 	/*
215 	 * icmp type and code. *_end are to specify ranges. if only
216 	 * a single value, * and *_end are the same value.
217 	 */
218 	uint8_t ipsa_icmp_type;
219 	uint8_t ipsa_icmp_type_end;
220 	uint8_t ipsa_icmp_code;
221 	uint8_t ipsa_icmp_code_end;
222 
223 	/*
224 	 * For the kernel crypto framework.
225 	 */
226 	crypto_key_t ipsa_kcfauthkey;		/* authentication key */
227 	crypto_key_t ipsa_kcfencrkey;		/* encryption key */
228 	crypto_ctx_template_t ipsa_authtmpl;	/* auth context template */
229 	crypto_ctx_template_t ipsa_encrtmpl;	/* encr context template */
230 	crypto_mechanism_t ipsa_amech;		/* auth mech type and ICV len */
231 	crypto_mechanism_t ipsa_emech;		/* encr mech type */
232 	size_t ipsa_mac_len;			/* auth MAC length */
233 	size_t ipsa_iv_len;			/* encr IV length */
234 
235 	/*
236 	 * Input and output processing functions called from IP.
237 	 */
238 	ipsec_status_t (*ipsa_output_func)(mblk_t *);
239 	ipsec_status_t (*ipsa_input_func)(mblk_t *, void *);
240 
241 	/*
242 	 * Soft reference to paired SA
243 	 */
244 	uint32_t	ipsa_otherspi;
245 
246 	/* MLS boxen will probably need more fields in here. */
247 
248 	netstack_t	*ipsa_netstack;	/* Does not have a netstack_hold */
249 } ipsa_t;
250 
251 /*
252  * ipsa_t address handling macros.  We want these to be inlined, and deal
253  * with 32-bit words to avoid bcmp/bcopy calls.
254  *
255  * Assume we only have AF_INET and AF_INET6 addresses for now.  Also assume
256  * that we have 32-bit alignment on everything.
257  */
258 #define	IPSA_IS_ADDR_UNSPEC(addr, fam) ((((uint32_t *)(addr))[0] == 0) && \
259 	(((fam) == AF_INET) || (((uint32_t *)(addr))[3] == 0 && \
260 	((uint32_t *)(addr))[2] == 0 && ((uint32_t *)(addr))[1] == 0)))
261 #define	IPSA_ARE_ADDR_EQUAL(addr1, addr2, fam) \
262 	((((uint32_t *)(addr1))[0] == ((uint32_t *)(addr2))[0]) && \
263 	(((fam) == AF_INET) || \
264 	(((uint32_t *)(addr1))[3] == ((uint32_t *)(addr2))[3] && \
265 	((uint32_t *)(addr1))[2] == ((uint32_t *)(addr2))[2] && \
266 	((uint32_t *)(addr1))[1] == ((uint32_t *)(addr2))[1])))
267 #define	IPSA_COPY_ADDR(dstaddr, srcaddr, fam) { \
268 	((uint32_t *)(dstaddr))[0] = ((uint32_t *)(srcaddr))[0]; \
269 	if ((fam) == AF_INET6) {\
270 		((uint32_t *)(dstaddr))[1] = ((uint32_t *)(srcaddr))[1]; \
271 		((uint32_t *)(dstaddr))[2] = ((uint32_t *)(srcaddr))[2]; \
272 		((uint32_t *)(dstaddr))[3] = ((uint32_t *)(srcaddr))[3]; } }
273 
274 /*
275  * ipsa_t reference hold/release macros.
276  *
277  * If you have a pointer, you REFHOLD.  If you are releasing a pointer, you
278  * REFRELE.  An ipsa_t that is newly inserted into the table should have
279  * a reference count of 1 (for the table's pointer), plus 1 more for every
280  * pointer that is referencing the ipsa_t.
281  */
282 
283 #define	IPSA_REFHOLD(ipsa) {			\
284 	atomic_add_32(&(ipsa)->ipsa_refcnt, 1);	\
285 	ASSERT((ipsa)->ipsa_refcnt != 0);	\
286 }
287 
288 /*
289  * Decrement the reference count on the SA.
290  * In architectures e.g sun4u, where atomic_add_32_nv is just
291  * a cas, we need to maintain the right memory barrier semantics
292  * as that of mutex_exit i.e all the loads and stores should complete
293  * before the cas is executed. membar_exit() does that here.
294  */
295 
296 #define	IPSA_REFRELE(ipsa) {					\
297 	ASSERT((ipsa)->ipsa_refcnt != 0);			\
298 	membar_exit();						\
299 	if (atomic_add_32_nv(&(ipsa)->ipsa_refcnt, -1) == 0)	\
300 		((ipsa)->ipsa_freefunc)(ipsa);			\
301 }
302 
303 /*
304  * Security association hash macros and definitions.  For now, assume the
305  * IPsec model, and hash outbounds on destination address, and inbounds on
306  * SPI.
307  */
308 
309 #define	IPSEC_DEFAULT_HASH_SIZE 256
310 
311 #define	INBOUND_HASH(sadb, spi) ((spi) % ((sadb)->sdb_hashsize))
312 #define	OUTBOUND_HASH_V4(sadb, v4addr) ((v4addr) % ((sadb)->sdb_hashsize))
313 #define	OUTBOUND_HASH_V6(sadb, v6addr) OUTBOUND_HASH_V4((sadb), \
314 	(*(uint32_t *)&(v6addr)) ^ (*(((uint32_t *)&(v6addr)) + 1)) ^ \
315 	(*(((uint32_t *)&(v6addr)) + 2)) ^ (*(((uint32_t *)&(v6addr)) + 3)))
316 
317 /*
318  * Syntactic sugar to find the appropriate hash bucket directly.
319  */
320 
321 #define	INBOUND_BUCKET(sadb, spi) &(((sadb)->sdb_if)[INBOUND_HASH(sadb, spi)])
322 #define	OUTBOUND_BUCKET_V4(sadb, v4addr) \
323 	&(((sadb)->sdb_of)[OUTBOUND_HASH_V4(sadb, v4addr)])
324 #define	OUTBOUND_BUCKET_V6(sadb, v6addr) \
325 	&(((sadb)->sdb_of)[OUTBOUND_HASH_V6(sadb, v6addr)])
326 
327 #define	IPSA_F_PFS	SADB_SAFLAGS_PFS	/* PFS in use for this SA? */
328 #define	IPSA_F_NOREPFLD	SADB_SAFLAGS_NOREPLAY	/* No replay field, for */
329 						/* backward compat. */
330 #define	IPSA_F_USED	SADB_X_SAFLAGS_USED	/* SA has been used. */
331 #define	IPSA_F_UNIQUE	SADB_X_SAFLAGS_UNIQUE	/* SA is unique */
332 #define	IPSA_F_AALG1	SADB_X_SAFLAGS_AALG1	/* Auth alg flag 1 */
333 #define	IPSA_F_AALG2	SADB_X_SAFLAGS_AALG2	/* Auth alg flag 2 */
334 #define	IPSA_F_EALG1	SADB_X_SAFLAGS_EALG1	/* Encrypt alg flag 1 */
335 #define	IPSA_F_EALG2	SADB_X_SAFLAGS_EALG2	/* Encrypt alg flag 2 */
336 
337 #define	IPSA_F_HW	0x200000		/* hwaccel capable SA */
338 #define	IPSA_F_NATT_LOC	SADB_X_SAFLAGS_NATT_LOC
339 #define	IPSA_F_NATT_REM	SADB_X_SAFLAGS_NATT_REM
340 #define	IPSA_F_BEHIND_NAT SADB_X_SAFLAGS_NATTED
341 #define	IPSA_F_NATT	(SADB_X_SAFLAGS_NATT_LOC | SADB_X_SAFLAGS_NATT_REM | \
342 	SADB_X_SAFLAGS_NATTED)
343 #define	IPSA_F_CINVALID	0x40000		/* SA shouldn't be cached */
344 #define	IPSA_F_PAIRED	SADB_X_SAFLAGS_PAIRED	/* SA is one of a pair */
345 #define	IPSA_F_OUTBOUND	SADB_X_SAFLAGS_OUTBOUND	/* SA direction bit */
346 #define	IPSA_F_INBOUND	SADB_X_SAFLAGS_INBOUND	/* SA direction bit */
347 #define	IPSA_F_TUNNEL	SADB_X_SAFLAGS_TUNNEL
348 
349 /*
350  * Sets of flags that are allowed to by set or modified by PF_KEY apps.
351  */
352 #define	AH_UPDATE_SETTABLE_FLAGS \
353 	(SADB_X_SAFLAGS_PAIRED | SADB_SAFLAGS_NOREPLAY | \
354 	SADB_X_SAFLAGS_OUTBOUND | SADB_X_SAFLAGS_INBOUND | \
355 	SADB_X_SAFLAGS_KM1 | SADB_X_SAFLAGS_KM2 | \
356 	SADB_X_SAFLAGS_KM3 | SADB_X_SAFLAGS_KM4)
357 
358 /* AH can't set NAT flags (or even use NAT).  Add NAT flags to the ESP set. */
359 #define	ESP_UPDATE_SETTABLE_FLAGS (AH_UPDATE_SETTABLE_FLAGS | IPSA_F_NATT)
360 
361 #define	AH_ADD_SETTABLE_FLAGS \
362 	(AH_UPDATE_SETTABLE_FLAGS | SADB_X_SAFLAGS_AALG1 | \
363 	SADB_X_SAFLAGS_AALG2 | SADB_X_SAFLAGS_TUNNEL | \
364 	SADB_SAFLAGS_NOREPLAY)
365 
366 /* AH can't set NAT flags (or even use NAT).  Add NAT flags to the ESP set. */
367 #define	ESP_ADD_SETTABLE_FLAGS (AH_ADD_SETTABLE_FLAGS | IPSA_F_NATT | \
368 	SADB_X_SAFLAGS_EALG1 | SADB_X_SAFLAGS_EALG2)
369 
370 
371 
372 /* SA states are important for handling UPDATE PF_KEY messages. */
373 #define	IPSA_STATE_LARVAL		SADB_SASTATE_LARVAL
374 #define	IPSA_STATE_MATURE		SADB_SASTATE_MATURE
375 #define	IPSA_STATE_DYING		SADB_SASTATE_DYING
376 #define	IPSA_STATE_DEAD			SADB_SASTATE_DEAD
377 #define	IPSA_STATE_IDLE			SADB_X_SASTATE_IDLE
378 #define	IPSA_STATE_ACTIVE_ELSEWHERE	SADB_X_SASTATE_ACTIVE_ELSEWHERE
379 
380 /*
381  * NOTE:  If the document authors do things right in defining algorithms, we'll
382  *	  probably have flags for what all is here w.r.t. replay, ESP w/HMAC,
383  *	  etc.
384  */
385 
386 #define	IPSA_T_ACQUIRE	SEC_TYPE_NONE	/* If this typed returned, sa needed */
387 #define	IPSA_T_AH	SEC_TYPE_AH	/* IPsec AH association */
388 #define	IPSA_T_ESP	SEC_TYPE_ESP	/* IPsec ESP association */
389 
390 #define	IPSA_AALG_NONE	SADB_AALG_NONE		/* No auth. algorithm */
391 #define	IPSA_AALG_MD5H	SADB_AALG_MD5HMAC	/* MD5-HMAC algorithm */
392 #define	IPSA_AALG_SHA1H	SADB_AALG_SHA1HMAC	/* SHA1-HMAC algorithm */
393 
394 #define	IPSA_EALG_NONE		SADB_EALG_NONE	/* No encryption algorithm */
395 #define	IPSA_EALG_DES_CBC	SADB_EALG_DESCBC
396 #define	IPSA_EALG_3DES		SADB_EALG_3DESCBC
397 
398 /*
399  * Protect each ipsa_t bucket (and linkage) with a lock.
400  */
401 
402 typedef struct isaf_s {
403 	ipsa_t *isaf_ipsa;
404 	kmutex_t isaf_lock;
405 	uint64_t isaf_gen;
406 } isaf_t;
407 
408 /*
409  * ACQUIRE record.  If AH/ESP/whatever cannot find an association for outbound
410  * traffic, it sends up an SADB_ACQUIRE message and create an ACQUIRE record.
411  */
412 
413 #define	IPSACQ_MAXPACKETS 4	/* Number of packets that can be queued up */
414 				/* waiting for an ACQUIRE to finish. */
415 
416 typedef struct ipsacq_s {
417 	struct ipsacq_s *ipsacq_next;
418 	struct ipsacq_s **ipsacq_ptpn;
419 	kmutex_t *ipsacq_linklock;
420 	struct ipsec_policy_s  *ipsacq_policy;
421 	struct ipsec_action_s  *ipsacq_act;
422 
423 	sa_family_t ipsacq_addrfam;	/* Address family. */
424 	sa_family_t ipsacq_inneraddrfam; /* Inner-packet address family. */
425 	int ipsacq_numpackets;		/* How many packets queued up so far. */
426 	uint32_t ipsacq_seq;		/* PF_KEY sequence number. */
427 	uint64_t ipsacq_unique_id;	/* Unique ID for SAs that need it. */
428 
429 	kmutex_t ipsacq_lock;	/* Protects non-linkage fields. */
430 	time_t ipsacq_expire;	/* Wall-clock time when this record expires. */
431 	mblk_t *ipsacq_mp;	/* List of datagrams waiting for an SA. */
432 
433 	/* These two point inside the last mblk inserted. */
434 	uint32_t *ipsacq_srcaddr;
435 	uint32_t *ipsacq_dstaddr;
436 
437 	/* Cache these instead of point so we can mask off accordingly */
438 	uint32_t ipsacq_innersrc[IPSA_MAX_ADDRLEN];
439 	uint32_t ipsacq_innerdst[IPSA_MAX_ADDRLEN];
440 
441 	/* These may change per-acquire. */
442 	uint16_t ipsacq_srcport;
443 	uint16_t ipsacq_dstport;
444 	uint8_t ipsacq_proto;
445 	uint8_t ipsacq_inner_proto;
446 	uint8_t ipsacq_innersrcpfx;
447 	uint8_t ipsacq_innerdstpfx;
448 
449 	/* icmp type and code of triggering packet (if applicable) */
450 	uint8_t	ipsacq_icmp_type;
451 	uint8_t ipsacq_icmp_code;
452 } ipsacq_t;
453 
454 /*
455  * Kernel-generated sequence numbers will be no less than 0x80000000 to
456  * forestall any cretinous problems with manual keying accidentally updating
457  * an ACQUIRE entry.
458  */
459 #define	IACQF_LOWEST_SEQ 0x80000000
460 
461 #define	SADB_AGE_INTERVAL_DEFAULT 1000
462 
463 /*
464  * ACQUIRE fanout.  Protect each linkage with a lock.
465  */
466 
467 typedef struct iacqf_s {
468 	ipsacq_t *iacqf_ipsacq;
469 	kmutex_t iacqf_lock;
470 } iacqf_t;
471 
472 /*
473  * A (network protocol, ipsec protocol) specific SADB.
474  * (i.e., one each for {ah, esp} and {v4, v6}.
475  *
476  * Keep outbound assocs about the same as ire_cache entries for now.
477  * One danger point, multiple SAs for a single dest will clog a bucket.
478  * For the future, consider two-level hashing (2nd hash on IPC?), then probe.
479  */
480 
481 typedef struct sadb_s
482 {
483 	isaf_t	*sdb_of;
484 	isaf_t	*sdb_if;
485 	iacqf_t	*sdb_acq;
486 	int	sdb_hashsize;
487 } sadb_t;
488 
489 /*
490  * A pair of SADB's (one for v4, one for v6), and related state (including
491  * acquire callbacks).
492  */
493 
494 typedef struct sadbp_s
495 {
496 	uint32_t	s_satype;
497 	queue_t		*s_ip_q;
498 	uint32_t	*s_acquire_timeout;
499 	void 		(*s_acqfn)(ipsacq_t *, mblk_t *, netstack_t *);
500 	sadb_t		s_v4;
501 	sadb_t		s_v6;
502 	uint32_t	s_addflags;
503 	uint32_t	s_updateflags;
504 } sadbp_t;
505 
506 /*
507  * A pair of SA's for a single connection, the structure contains a
508  * pointer to a SA and the SA its paired with (opposite direction) as well
509  * as the SA's respective hash buckets.
510  */
511 typedef struct ipsap_s
512 {
513 	isaf_t		*ipsap_bucket;
514 	ipsa_t		*ipsap_sa_ptr;
515 	isaf_t		*ipsap_pbucket;
516 	ipsa_t		*ipsap_psa_ptr;
517 } ipsap_t;
518 
519 typedef struct templist_s
520 {
521 	ipsa_t		*ipsa;
522 	struct templist_s	*next;
523 } templist_t;
524 
525 /* Pointer to an all-zeroes IPv6 address. */
526 #define	ALL_ZEROES_PTR	((uint32_t *)&ipv6_all_zeros)
527 
528 /*
529  * Form unique id from ipsec_out_t
530  */
531 
532 #define	SA_FORM_UNIQUE_ID(io)				\
533 	SA_UNIQUE_ID((io)->ipsec_out_src_port, (io)->ipsec_out_dst_port, \
534 		((io)->ipsec_out_tunnel ? ((io)->ipsec_out_inaf == AF_INET6 ? \
535 		    IPPROTO_IPV6 : IPPROTO_ENCAP) : (io)->ipsec_out_proto), \
536 		((io)->ipsec_out_tunnel ? (io)->ipsec_out_proto : 0))
537 
538 /*
539  * This macro is used to generate unique ids (along with the addresses, both
540  * inner and outer) for outbound datagrams that require unique SAs.
541  *
542  * N.B. casts and unsigned shift amounts discourage unwarranted
543  * sign extension of dstport, proto, and iproto.
544  *
545  * Unique ID is 64-bits allocated as follows (pardon my big-endian bias):
546  *
547  *   6               4      43      33              11
548  *   3               7      09      21              65              0
549  *   +---------------*-------+-------+--------------+---------------+
550  *   |  MUST-BE-ZERO |<iprot>|<proto>| <src port>   |  <dest port>  |
551  *   +---------------*-------+-------+--------------+---------------+
552  *
553  * If there are inner addresses (tunnel mode) the ports come from the
554  * inner addresses.  If there are no inner addresses, the ports come from
555  * the outer addresses (transport mode).  Tunnel mode MUST have <proto>
556  * set to either IPPROTO_ENCAP or IPPPROTO_IPV6.
557  */
558 #define	SA_UNIQUE_ID(srcport, dstport, proto, iproto) 	\
559 	((srcport) | ((uint64_t)(dstport) << 16U) | \
560 	((uint64_t)(proto) << 32U) | ((uint64_t)(iproto) << 40U))
561 
562 /*
563  * SA_UNIQUE_MASK generates a mask value to use when comparing the unique value
564  * from a packet to an SA.
565  */
566 
567 #define	SA_UNIQUE_MASK(srcport, dstport, proto, iproto) 	\
568 	SA_UNIQUE_ID((srcport != 0) ? 0xffff : 0,		\
569 		    (dstport != 0) ? 0xffff : 0,		\
570 		    (proto != 0) ? 0xff : 0,			\
571 		    (iproto != 0) ? 0xff : 0)
572 
573 /*
574  * Decompose unique id back into its original fields.
575  */
576 #define	SA_IPROTO(ipsa) ((ipsa)->ipsa_unique_id>>40)&0xff
577 #define	SA_PROTO(ipsa) ((ipsa)->ipsa_unique_id>>32)&0xff
578 #define	SA_SRCPORT(ipsa) ((ipsa)->ipsa_unique_id & 0xffff)
579 #define	SA_DSTPORT(ipsa) (((ipsa)->ipsa_unique_id >> 16) & 0xffff)
580 
581 /*
582  * All functions that return an ipsa_t will return it with IPSA_REFHOLD()
583  * already called.
584  */
585 
586 /* SA retrieval (inbound and outbound) */
587 ipsa_t *ipsec_getassocbyspi(isaf_t *, uint32_t, uint32_t *, uint32_t *,
588     sa_family_t);
589 ipsa_t *ipsec_getassocbyconn(isaf_t *, ipsec_out_t *, uint32_t *, uint32_t *,
590     sa_family_t, uint8_t);
591 ipsap_t *get_ipsa_pair(sadb_sa_t *, sadb_address_t *, sadb_address_t *,
592     sadbp_t *);
593 void destroy_ipsa_pair(ipsap_t *);
594 int update_pairing(ipsap_t *, keysock_in_t *, int *, sadbp_t *);
595 
596 /* SA insertion. */
597 int sadb_insertassoc(ipsa_t *, isaf_t *);
598 
599 /* SA table construction and destruction. */
600 void sadbp_init(const char *name, sadbp_t *, int, int, netstack_t *);
601 void sadbp_flush(sadbp_t *, netstack_t *);
602 void sadbp_destroy(sadbp_t *, netstack_t *);
603 
604 /* SA insertion and deletion. */
605 int sadb_insertassoc(ipsa_t *, isaf_t *);
606 void sadb_unlinkassoc(ipsa_t *);
607 
608 /* Support routines to interface a keysock consumer to PF_KEY. */
609 mblk_t *sadb_keysock_out(minor_t);
610 int sadb_hardsoftchk(sadb_lifetime_t *, sadb_lifetime_t *, sadb_lifetime_t *);
611 void sadb_pfkey_echo(queue_t *, mblk_t *, sadb_msg_t *, struct keysock_in_s *,
612     ipsa_t *);
613 void sadb_pfkey_error(queue_t *, mblk_t *, int, int, uint_t);
614 void sadb_keysock_hello(queue_t **, queue_t *, mblk_t *, void (*)(void *),
615     void *, timeout_id_t *, int);
616 int sadb_addrcheck(queue_t *, mblk_t *, sadb_ext_t *, uint_t, netstack_t *);
617 boolean_t sadb_addrfix(keysock_in_t *, queue_t *, mblk_t *, netstack_t *);
618 int sadb_addrset(ire_t *);
619 int sadb_delget_sa(mblk_t *, keysock_in_t *, sadbp_t *, int *, queue_t *,
620     uint8_t);
621 
622 int sadb_purge_sa(mblk_t *, keysock_in_t *, sadb_t *, queue_t *, queue_t *);
623 int sadb_common_add(queue_t *, queue_t *, mblk_t *, sadb_msg_t *,
624     keysock_in_t *, isaf_t *, isaf_t *, ipsa_t *, boolean_t, boolean_t, int *,
625     netstack_t *, sadbp_t *);
626 void sadb_set_usetime(ipsa_t *);
627 boolean_t sadb_age_bytes(queue_t *, ipsa_t *, uint64_t, boolean_t);
628 int sadb_update_sa(mblk_t *, keysock_in_t *, mblk_t **, sadbp_t *,
629     int *, queue_t *, int (*)(mblk_t *, keysock_in_t *, int *, netstack_t *),
630     netstack_t *, uint8_t);
631 void sadb_acquire(mblk_t *, ipsec_out_t *, boolean_t, boolean_t);
632 
633 void sadb_destroy_acquire(ipsacq_t *, netstack_t *);
634 struct ipsec_stack;
635 mblk_t *sadb_setup_acquire(ipsacq_t *, uint8_t, struct ipsec_stack *);
636 ipsa_t *sadb_getspi(keysock_in_t *, uint32_t, int *, netstack_t *, uint_t);
637 void sadb_in_acquire(sadb_msg_t *, sadbp_t *, queue_t *, netstack_t *);
638 boolean_t sadb_replay_check(ipsa_t *, uint32_t);
639 boolean_t sadb_replay_peek(ipsa_t *, uint32_t);
640 int sadb_dump(queue_t *, mblk_t *, keysock_in_t *, sadb_t *);
641 void sadb_replay_delete(ipsa_t *);
642 void sadb_ager(sadb_t *, queue_t *, queue_t *, int, netstack_t *);
643 
644 timeout_id_t sadb_retimeout(hrtime_t, queue_t *, void (*)(void *), void *,
645     uint_t *, uint_t, short);
646 void sadb_sa_refrele(void *target);
647 void sadb_set_lpkt(ipsa_t *, mblk_t *, netstack_t *);
648 mblk_t *sadb_clear_lpkt(ipsa_t *);
649 void sadb_buf_pkt(ipsa_t *, mblk_t *, netstack_t *);
650 void sadb_clear_buf_pkt(void *ipkt);
651 
652 #define	HANDLE_BUF_PKT(taskq, stack, dropper, buf_pkt)			\
653 {									\
654 	if (buf_pkt != NULL) {						\
655 		if (taskq_dispatch(taskq, sadb_clear_buf_pkt,		\
656 		    (void *) buf_pkt, TQ_NOSLEEP) == 0) {		\
657 		    /* Dispatch was unsuccessful drop the packets. */	\
658 			mblk_t		*tmp;				\
659 			while (buf_pkt != NULL) {			\
660 				tmp = buf_pkt->b_next;			\
661 				buf_pkt->b_next = NULL;			\
662 				ip_drop_packet(buf_pkt, B_TRUE, NULL,	\
663 				    NULL, DROPPER(stack,		\
664 				    ipds_sadb_inidle_timeout),		\
665 				    &dropper);				\
666 				buf_pkt = tmp;				\
667 			}						\
668 		}							\
669 	}								\
670 }									\
671 
672 /*
673  * Hw accel-related calls (downloading sadb to driver)
674  */
675 void sadb_ill_download(ill_t *, uint_t);
676 mblk_t *sadb_fmt_sa_req(uint_t, uint_t, ipsa_t *, boolean_t);
677 /*
678  * Sub-set of the IPsec hardware acceleration capabilities functions
679  * implemented by ip_if.c
680  */
681 extern	boolean_t ipsec_capab_match(ill_t *, uint_t, boolean_t, ipsa_t *,
682     netstack_t *);
683 extern	void	ill_ipsec_capab_send_all(uint_t, mblk_t *, ipsa_t *,
684     netstack_t *);
685 
686 
687 /*
688  * One IPsec -> IP linking routine, and two IPsec rate-limiting routines.
689  */
690 extern boolean_t sadb_t_bind_req(queue_t *, int);
691 /*PRINTFLIKE6*/
692 extern void ipsec_rl_strlog(netstack_t *, short, short, char,
693     ushort_t, char *, ...)
694     __KPRINTFLIKE(6);
695 extern void ipsec_assocfailure(short, short, char, ushort_t, char *, uint32_t,
696     void *, int, netstack_t *);
697 
698 /*
699  * Algorithm types.
700  */
701 
702 #define	IPSEC_NALGTYPES 	2
703 
704 typedef enum ipsec_algtype {
705 	IPSEC_ALG_AUTH = 0,
706 	IPSEC_ALG_ENCR = 1
707 } ipsec_algtype_t;
708 
709 /*
710  * Definitions as per IPsec/ISAKMP DOI.
711  */
712 
713 #define	IPSEC_MAX_ALGS		256
714 #define	PROTO_IPSEC_AH		2
715 #define	PROTO_IPSEC_ESP		3
716 
717 /*
718  * Common algorithm info.
719  */
720 typedef struct ipsec_alginfo
721 {
722 	uint8_t		alg_id;
723 	uint8_t		alg_flags;
724 	uint16_t	*alg_key_sizes;
725 	uint16_t	*alg_block_sizes;
726 	uint16_t	alg_nkey_sizes;
727 	uint16_t	alg_nblock_sizes;
728 	uint16_t	alg_minbits;
729 	uint16_t	alg_maxbits;
730 	uint16_t	alg_datalen;
731 	/*
732 	 * increment: number of bits from keysize to keysize
733 	 * default: # of increments from min to default key len
734 	 */
735 	uint16_t	alg_increment;
736 	uint16_t	alg_default;
737 	uint16_t	alg_default_bits;
738 	/*
739 	 * Min, max, and default key sizes effectively supported
740 	 * by the encryption framework.
741 	 */
742 	uint16_t	alg_ef_minbits;
743 	uint16_t	alg_ef_maxbits;
744 	uint16_t	alg_ef_default;
745 	uint16_t	alg_ef_default_bits;
746 
747 	crypto_mech_type_t alg_mech_type;	/* KCF mechanism type */
748 	crypto_mech_name_t alg_mech_name;	/* KCF mechanism name */
749 } ipsec_alginfo_t;
750 
751 #define	alg_datalen alg_block_sizes[0]
752 
753 #define	ALG_FLAG_VALID	0x01
754 #define	ALG_VALID(_alg)	((_alg)->alg_flags & ALG_FLAG_VALID)
755 
756 /*
757  * Software crypto execution mode.
758  */
759 typedef enum {
760 	IPSEC_ALGS_EXEC_SYNC = 0,
761 	IPSEC_ALGS_EXEC_ASYNC = 1
762 } ipsec_algs_exec_mode_t;
763 
764 extern void ipsec_alg_reg(ipsec_algtype_t, ipsec_alginfo_t *, netstack_t *);
765 extern void ipsec_alg_unreg(ipsec_algtype_t, uint8_t, netstack_t *);
766 extern void ipsec_alg_fix_min_max(ipsec_alginfo_t *, ipsec_algtype_t,
767     netstack_t *ns);
768 extern void ipsec_alg_free(ipsec_alginfo_t *);
769 extern void ipsec_register_prov_update(void);
770 extern void sadb_alg_update(ipsec_algtype_t, uint8_t, boolean_t,
771     netstack_t *);
772 
773 /*
774  * Context templates management.
775  */
776 
777 #define	IPSEC_CTX_TMPL_ALLOC ((crypto_ctx_template_t)-1)
778 #define	IPSEC_CTX_TMPL(_sa, _which, _type, _tmpl) {			\
779 	if ((_tmpl = (_sa)->_which) == IPSEC_CTX_TMPL_ALLOC) {		\
780 		mutex_enter(&assoc->ipsa_lock);				\
781 		if ((_sa)->_which == IPSEC_CTX_TMPL_ALLOC) {		\
782 			ipsec_stack_t *ipss;				\
783 									\
784 			ipss = assoc->ipsa_netstack->netstack_ipsec;	\
785 			mutex_enter(&ipss->ipsec_alg_lock);		\
786 			(void) ipsec_create_ctx_tmpl(_sa, _type);	\
787 			mutex_exit(&ipss->ipsec_alg_lock);		\
788 		}							\
789 		mutex_exit(&assoc->ipsa_lock);				\
790 		if ((_tmpl = (_sa)->_which) == IPSEC_CTX_TMPL_ALLOC)	\
791 			_tmpl = NULL;					\
792 	}								\
793 }
794 
795 extern int ipsec_create_ctx_tmpl(ipsa_t *, ipsec_algtype_t);
796 extern void ipsec_destroy_ctx_tmpl(ipsa_t *, ipsec_algtype_t);
797 
798 /* key checking */
799 extern int ipsec_check_key(crypto_mech_type_t, sadb_key_t *, boolean_t, int *);
800 
801 typedef struct ipsec_kstats_s {
802 	kstat_named_t esp_stat_in_requests;
803 	kstat_named_t esp_stat_in_discards;
804 	kstat_named_t esp_stat_lookup_failure;
805 	kstat_named_t ah_stat_in_requests;
806 	kstat_named_t ah_stat_in_discards;
807 	kstat_named_t ah_stat_lookup_failure;
808 	kstat_named_t sadb_acquire_maxpackets;
809 	kstat_named_t sadb_acquire_qhiwater;
810 } ipsec_kstats_t;
811 
812 /*
813  * (ipss)->ipsec_kstats is equal to (ipss)->ipsec_ksp->ks_data if
814  * kstat_create_netstack for (ipss)->ipsec_ksp succeeds, but when it
815  * fails, it will be NULL. Note this is done for all stack instances,
816  * so it *could* fail. hence a non-NULL checking is done for
817  * IP_ESP_BUMP_STAT, IP_AH_BUMP_STAT and IP_ACQUIRE_STAT
818  */
819 #define	IP_ESP_BUMP_STAT(ipss, x)					\
820 do {									\
821 	if ((ipss)->ipsec_kstats != NULL)				\
822 		((ipss)->ipsec_kstats->esp_stat_ ## x).value.ui64++;	\
823 _NOTE(CONSTCOND)							\
824 } while (0)
825 
826 #define	IP_AH_BUMP_STAT(ipss, x)					\
827 do {									\
828 	if ((ipss)->ipsec_kstats != NULL)				\
829 		((ipss)->ipsec_kstats->ah_stat_ ## x).value.ui64++;	\
830 _NOTE(CONSTCOND)							\
831 } while (0)
832 
833 #define	IP_ACQUIRE_STAT(ipss, val, new)					\
834 do {									\
835 	if ((ipss)->ipsec_kstats != NULL &&				\
836 	    ((uint64_t)(new)) >						\
837 	    ((ipss)->ipsec_kstats->sadb_acquire_ ## val).value.ui64)	\
838 		((ipss)->ipsec_kstats->sadb_acquire_ ## val).value.ui64 = \
839 			((uint64_t)(new));				\
840 _NOTE(CONSTCOND)							\
841 } while (0)
842 
843 
844 #ifdef	__cplusplus
845 }
846 #endif
847 
848 #endif /* _INET_SADB_H */
849