xref: /illumos-gate/usr/src/uts/common/inet/tcp/tcp.c (revision b6c3f786)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 /* Copyright (c) 1990 Mentat Inc. */
27 
28 #pragma ident	"%Z%%M%	%I%	%E% SMI"
29 const char tcp_version[] = "%Z%%M%	%I%	%E% SMI";
30 
31 
32 #include <sys/types.h>
33 #include <sys/stream.h>
34 #include <sys/strsun.h>
35 #include <sys/strsubr.h>
36 #include <sys/stropts.h>
37 #include <sys/strlog.h>
38 #include <sys/strsun.h>
39 #define	_SUN_TPI_VERSION 2
40 #include <sys/tihdr.h>
41 #include <sys/timod.h>
42 #include <sys/ddi.h>
43 #include <sys/sunddi.h>
44 #include <sys/suntpi.h>
45 #include <sys/xti_inet.h>
46 #include <sys/cmn_err.h>
47 #include <sys/debug.h>
48 #include <sys/sdt.h>
49 #include <sys/vtrace.h>
50 #include <sys/kmem.h>
51 #include <sys/ethernet.h>
52 #include <sys/cpuvar.h>
53 #include <sys/dlpi.h>
54 #include <sys/multidata.h>
55 #include <sys/multidata_impl.h>
56 #include <sys/pattr.h>
57 #include <sys/policy.h>
58 #include <sys/priv.h>
59 #include <sys/zone.h>
60 #include <sys/sunldi.h>
61 
62 #include <sys/errno.h>
63 #include <sys/signal.h>
64 #include <sys/socket.h>
65 #include <sys/sockio.h>
66 #include <sys/isa_defs.h>
67 #include <sys/md5.h>
68 #include <sys/random.h>
69 #include <netinet/in.h>
70 #include <netinet/tcp.h>
71 #include <netinet/ip6.h>
72 #include <netinet/icmp6.h>
73 #include <net/if.h>
74 #include <net/route.h>
75 #include <inet/ipsec_impl.h>
76 
77 #include <inet/common.h>
78 #include <inet/ip.h>
79 #include <inet/ip_impl.h>
80 #include <inet/ip6.h>
81 #include <inet/ip_ndp.h>
82 #include <inet/mi.h>
83 #include <inet/mib2.h>
84 #include <inet/nd.h>
85 #include <inet/optcom.h>
86 #include <inet/snmpcom.h>
87 #include <inet/kstatcom.h>
88 #include <inet/tcp.h>
89 #include <inet/tcp_impl.h>
90 #include <net/pfkeyv2.h>
91 #include <inet/ipsec_info.h>
92 #include <inet/ipdrop.h>
93 #include <inet/tcp_trace.h>
94 
95 #include <inet/ipclassifier.h>
96 #include <inet/ip_ire.h>
97 #include <inet/ip_ftable.h>
98 #include <inet/ip_if.h>
99 #include <inet/ipp_common.h>
100 #include <inet/ip_netinfo.h>
101 #include <sys/squeue.h>
102 #include <inet/kssl/ksslapi.h>
103 #include <sys/tsol/label.h>
104 #include <sys/tsol/tnet.h>
105 #include <rpc/pmap_prot.h>
106 
107 /*
108  * TCP Notes: aka FireEngine Phase I (PSARC 2002/433)
109  *
110  * (Read the detailed design doc in PSARC case directory)
111  *
112  * The entire tcp state is contained in tcp_t and conn_t structure
113  * which are allocated in tandem using ipcl_conn_create() and passing
114  * IPCL_CONNTCP as a flag. We use 'conn_ref' and 'conn_lock' to protect
115  * the references on the tcp_t. The tcp_t structure is never compressed
116  * and packets always land on the correct TCP perimeter from the time
117  * eager is created till the time tcp_t dies (as such the old mentat
118  * TCP global queue is not used for detached state and no IPSEC checking
119  * is required). The global queue is still allocated to send out resets
120  * for connection which have no listeners and IP directly calls
121  * tcp_xmit_listeners_reset() which does any policy check.
122  *
123  * Protection and Synchronisation mechanism:
124  *
125  * The tcp data structure does not use any kind of lock for protecting
126  * its state but instead uses 'squeues' for mutual exclusion from various
127  * read and write side threads. To access a tcp member, the thread should
128  * always be behind squeue (via squeue_enter, squeue_enter_nodrain, or
129  * squeue_fill). Since the squeues allow a direct function call, caller
130  * can pass any tcp function having prototype of edesc_t as argument
131  * (different from traditional STREAMs model where packets come in only
132  * designated entry points). The list of functions that can be directly
133  * called via squeue are listed before the usual function prototype.
134  *
135  * Referencing:
136  *
137  * TCP is MT-Hot and we use a reference based scheme to make sure that the
138  * tcp structure doesn't disappear when its needed. When the application
139  * creates an outgoing connection or accepts an incoming connection, we
140  * start out with 2 references on 'conn_ref'. One for TCP and one for IP.
141  * The IP reference is just a symbolic reference since ip_tcpclose()
142  * looks at tcp structure after tcp_close_output() returns which could
143  * have dropped the last TCP reference. So as long as the connection is
144  * in attached state i.e. !TCP_IS_DETACHED, we have 2 references on the
145  * conn_t. The classifier puts its own reference when the connection is
146  * inserted in listen or connected hash. Anytime a thread needs to enter
147  * the tcp connection perimeter, it retrieves the conn/tcp from q->ptr
148  * on write side or by doing a classify on read side and then puts a
149  * reference on the conn before doing squeue_enter/tryenter/fill. For
150  * read side, the classifier itself puts the reference under fanout lock
151  * to make sure that tcp can't disappear before it gets processed. The
152  * squeue will drop this reference automatically so the called function
153  * doesn't have to do a DEC_REF.
154  *
155  * Opening a new connection:
156  *
157  * The outgoing connection open is pretty simple. tcp_open() does the
158  * work in creating the conn/tcp structure and initializing it. The
159  * squeue assignment is done based on the CPU the application
160  * is running on. So for outbound connections, processing is always done
161  * on application CPU which might be different from the incoming CPU
162  * being interrupted by the NIC. An optimal way would be to figure out
163  * the NIC <-> CPU binding at listen time, and assign the outgoing
164  * connection to the squeue attached to the CPU that will be interrupted
165  * for incoming packets (we know the NIC based on the bind IP address).
166  * This might seem like a problem if more data is going out but the
167  * fact is that in most cases the transmit is ACK driven transmit where
168  * the outgoing data normally sits on TCP's xmit queue waiting to be
169  * transmitted.
170  *
171  * Accepting a connection:
172  *
173  * This is a more interesting case because of various races involved in
174  * establishing a eager in its own perimeter. Read the meta comment on
175  * top of tcp_conn_request(). But briefly, the squeue is picked by
176  * ip_tcp_input()/ip_fanout_tcp_v6() based on the interrupted CPU.
177  *
178  * Closing a connection:
179  *
180  * The close is fairly straight forward. tcp_close() calls tcp_close_output()
181  * via squeue to do the close and mark the tcp as detached if the connection
182  * was in state TCPS_ESTABLISHED or greater. In the later case, TCP keep its
183  * reference but tcp_close() drop IP's reference always. So if tcp was
184  * not killed, it is sitting in time_wait list with 2 reference - 1 for TCP
185  * and 1 because it is in classifier's connected hash. This is the condition
186  * we use to determine that its OK to clean up the tcp outside of squeue
187  * when time wait expires (check the ref under fanout and conn_lock and
188  * if it is 2, remove it from fanout hash and kill it).
189  *
190  * Although close just drops the necessary references and marks the
191  * tcp_detached state, tcp_close needs to know the tcp_detached has been
192  * set (under squeue) before letting the STREAM go away (because a
193  * inbound packet might attempt to go up the STREAM while the close
194  * has happened and tcp_detached is not set). So a special lock and
195  * flag is used along with a condition variable (tcp_closelock, tcp_closed,
196  * and tcp_closecv) to signal tcp_close that tcp_close_out() has marked
197  * tcp_detached.
198  *
199  * Special provisions and fast paths:
200  *
201  * We make special provision for (AF_INET, SOCK_STREAM) sockets which
202  * can't have 'ipv6_recvpktinfo' set and for these type of sockets, IP
203  * will never send a M_CTL to TCP. As such, ip_tcp_input() which handles
204  * all TCP packets from the wire makes a IPCL_IS_TCP4_CONNECTED_NO_POLICY
205  * check to send packets directly to tcp_rput_data via squeue. Everyone
206  * else comes through tcp_input() on the read side.
207  *
208  * We also make special provisions for sockfs by marking tcp_issocket
209  * whenever we have only sockfs on top of TCP. This allows us to skip
210  * putting the tcp in acceptor hash since a sockfs listener can never
211  * become acceptor and also avoid allocating a tcp_t for acceptor STREAM
212  * since eager has already been allocated and the accept now happens
213  * on acceptor STREAM. There is a big blob of comment on top of
214  * tcp_conn_request explaining the new accept. When socket is POP'd,
215  * sockfs sends us an ioctl to mark the fact and we go back to old
216  * behaviour. Once tcp_issocket is unset, its never set for the
217  * life of that connection.
218  *
219  * IPsec notes :
220  *
221  * Since a packet is always executed on the correct TCP perimeter
222  * all IPsec processing is defered to IP including checking new
223  * connections and setting IPSEC policies for new connection. The
224  * only exception is tcp_xmit_listeners_reset() which is called
225  * directly from IP and needs to policy check to see if TH_RST
226  * can be sent out.
227  *
228  * PFHooks notes :
229  *
230  * For mdt case, one meta buffer contains multiple packets. Mblks for every
231  * packet are assembled and passed to the hooks. When packets are blocked,
232  * or boundary of any packet is changed, the mdt processing is stopped, and
233  * packets of the meta buffer are send to the IP path one by one.
234  */
235 
236 /*
237  * Values for squeue switch:
238  * 1: squeue_enter_nodrain
239  * 2: squeue_enter
240  * 3: squeue_fill
241  */
242 int tcp_squeue_close = 2;	/* Setable in /etc/system */
243 int tcp_squeue_wput = 2;
244 
245 squeue_func_t tcp_squeue_close_proc;
246 squeue_func_t tcp_squeue_wput_proc;
247 
248 /*
249  * This controls how tiny a write must be before we try to copy it
250  * into the the mblk on the tail of the transmit queue.  Not much
251  * speedup is observed for values larger than sixteen.  Zero will
252  * disable the optimisation.
253  */
254 int tcp_tx_pull_len = 16;
255 
256 /*
257  * TCP Statistics.
258  *
259  * How TCP statistics work.
260  *
261  * There are two types of statistics invoked by two macros.
262  *
263  * TCP_STAT(name) does non-atomic increment of a named stat counter. It is
264  * supposed to be used in non MT-hot paths of the code.
265  *
266  * TCP_DBGSTAT(name) does atomic increment of a named stat counter. It is
267  * supposed to be used for DEBUG purposes and may be used on a hot path.
268  *
269  * Both TCP_STAT and TCP_DBGSTAT counters are available using kstat
270  * (use "kstat tcp" to get them).
271  *
272  * There is also additional debugging facility that marks tcp_clean_death()
273  * instances and saves them in tcp_t structure. It is triggered by
274  * TCP_TAG_CLEAN_DEATH define. Also, there is a global array of counters for
275  * tcp_clean_death() calls that counts the number of times each tag was hit. It
276  * is triggered by TCP_CLD_COUNTERS define.
277  *
278  * How to add new counters.
279  *
280  * 1) Add a field in the tcp_stat structure describing your counter.
281  * 2) Add a line in the template in tcp_kstat2_init() with the name
282  *    of the counter.
283  *
284  *    IMPORTANT!! - make sure that both are in sync !!
285  * 3) Use either TCP_STAT or TCP_DBGSTAT with the name.
286  *
287  * Please avoid using private counters which are not kstat-exported.
288  *
289  * TCP_TAG_CLEAN_DEATH set to 1 enables tagging of tcp_clean_death() instances
290  * in tcp_t structure.
291  *
292  * TCP_MAX_CLEAN_DEATH_TAG is the maximum number of possible clean death tags.
293  */
294 
295 #ifndef TCP_DEBUG_COUNTER
296 #ifdef DEBUG
297 #define	TCP_DEBUG_COUNTER 1
298 #else
299 #define	TCP_DEBUG_COUNTER 0
300 #endif
301 #endif
302 
303 #define	TCP_CLD_COUNTERS 0
304 
305 #define	TCP_TAG_CLEAN_DEATH 1
306 #define	TCP_MAX_CLEAN_DEATH_TAG 32
307 
308 #ifdef lint
309 static int _lint_dummy_;
310 #endif
311 
312 #if TCP_CLD_COUNTERS
313 static uint_t tcp_clean_death_stat[TCP_MAX_CLEAN_DEATH_TAG];
314 #define	TCP_CLD_STAT(x) tcp_clean_death_stat[x]++
315 #elif defined(lint)
316 #define	TCP_CLD_STAT(x) ASSERT(_lint_dummy_ == 0);
317 #else
318 #define	TCP_CLD_STAT(x)
319 #endif
320 
321 #if TCP_DEBUG_COUNTER
322 #define	TCP_DBGSTAT(tcps, x)	\
323 	atomic_add_64(&((tcps)->tcps_statistics.x.value.ui64), 1)
324 #define	TCP_G_DBGSTAT(x)	\
325 	atomic_add_64(&(tcp_g_statistics.x.value.ui64), 1)
326 #elif defined(lint)
327 #define	TCP_DBGSTAT(tcps, x) ASSERT(_lint_dummy_ == 0);
328 #define	TCP_G_DBGSTAT(x) ASSERT(_lint_dummy_ == 0);
329 #else
330 #define	TCP_DBGSTAT(tcps, x)
331 #define	TCP_G_DBGSTAT(x)
332 #endif
333 
334 #define	TCP_G_STAT(x)	(tcp_g_statistics.x.value.ui64++)
335 
336 tcp_g_stat_t	tcp_g_statistics;
337 kstat_t		*tcp_g_kstat;
338 
339 /*
340  * Call either ip_output or ip_output_v6. This replaces putnext() calls on the
341  * tcp write side.
342  */
343 #define	CALL_IP_WPUT(connp, q, mp) {					\
344 	tcp_stack_t	*tcps;						\
345 									\
346 	tcps = connp->conn_netstack->netstack_tcp;			\
347 	ASSERT(((q)->q_flag & QREADR) == 0);				\
348 	TCP_DBGSTAT(tcps, tcp_ip_output);				\
349 	connp->conn_send(connp, (mp), (q), IP_WPUT);			\
350 }
351 
352 /* Macros for timestamp comparisons */
353 #define	TSTMP_GEQ(a, b)	((int32_t)((a)-(b)) >= 0)
354 #define	TSTMP_LT(a, b)	((int32_t)((a)-(b)) < 0)
355 
356 /*
357  * Parameters for TCP Initial Send Sequence number (ISS) generation.  When
358  * tcp_strong_iss is set to 1, which is the default, the ISS is calculated
359  * by adding three components: a time component which grows by 1 every 4096
360  * nanoseconds (versus every 4 microseconds suggested by RFC 793, page 27);
361  * a per-connection component which grows by 125000 for every new connection;
362  * and an "extra" component that grows by a random amount centered
363  * approximately on 64000.  This causes the the ISS generator to cycle every
364  * 4.89 hours if no TCP connections are made, and faster if connections are
365  * made.
366  *
367  * When tcp_strong_iss is set to 0, ISS is calculated by adding two
368  * components: a time component which grows by 250000 every second; and
369  * a per-connection component which grows by 125000 for every new connections.
370  *
371  * A third method, when tcp_strong_iss is set to 2, for generating ISS is
372  * prescribed by Steve Bellovin.  This involves adding time, the 125000 per
373  * connection, and a one-way hash (MD5) of the connection ID <sport, dport,
374  * src, dst>, a "truly" random (per RFC 1750) number, and a console-entered
375  * password.
376  */
377 #define	ISS_INCR	250000
378 #define	ISS_NSEC_SHT	12
379 
380 static sin_t	sin_null;	/* Zero address for quick clears */
381 static sin6_t	sin6_null;	/* Zero address for quick clears */
382 
383 /*
384  * This implementation follows the 4.3BSD interpretation of the urgent
385  * pointer and not RFC 1122. Switching to RFC 1122 behavior would cause
386  * incompatible changes in protocols like telnet and rlogin.
387  */
388 #define	TCP_OLD_URP_INTERPRETATION	1
389 
390 #define	TCP_IS_DETACHED_NONEAGER(tcp)	\
391 	(TCP_IS_DETACHED(tcp) && \
392 	    (!(tcp)->tcp_hard_binding))
393 
394 /*
395  * TCP reassembly macros.  We hide starting and ending sequence numbers in
396  * b_next and b_prev of messages on the reassembly queue.  The messages are
397  * chained using b_cont.  These macros are used in tcp_reass() so we don't
398  * have to see the ugly casts and assignments.
399  */
400 #define	TCP_REASS_SEQ(mp)		((uint32_t)(uintptr_t)((mp)->b_next))
401 #define	TCP_REASS_SET_SEQ(mp, u)	((mp)->b_next = \
402 					(mblk_t *)(uintptr_t)(u))
403 #define	TCP_REASS_END(mp)		((uint32_t)(uintptr_t)((mp)->b_prev))
404 #define	TCP_REASS_SET_END(mp, u)	((mp)->b_prev = \
405 					(mblk_t *)(uintptr_t)(u))
406 
407 /*
408  * Implementation of TCP Timers.
409  * =============================
410  *
411  * INTERFACE:
412  *
413  * There are two basic functions dealing with tcp timers:
414  *
415  *	timeout_id_t	tcp_timeout(connp, func, time)
416  * 	clock_t		tcp_timeout_cancel(connp, timeout_id)
417  *	TCP_TIMER_RESTART(tcp, intvl)
418  *
419  * tcp_timeout() starts a timer for the 'tcp' instance arranging to call 'func'
420  * after 'time' ticks passed. The function called by timeout() must adhere to
421  * the same restrictions as a driver soft interrupt handler - it must not sleep
422  * or call other functions that might sleep. The value returned is the opaque
423  * non-zero timeout identifier that can be passed to tcp_timeout_cancel() to
424  * cancel the request. The call to tcp_timeout() may fail in which case it
425  * returns zero. This is different from the timeout(9F) function which never
426  * fails.
427  *
428  * The call-back function 'func' always receives 'connp' as its single
429  * argument. It is always executed in the squeue corresponding to the tcp
430  * structure. The tcp structure is guaranteed to be present at the time the
431  * call-back is called.
432  *
433  * NOTE: The call-back function 'func' is never called if tcp is in
434  * 	the TCPS_CLOSED state.
435  *
436  * tcp_timeout_cancel() attempts to cancel a pending tcp_timeout()
437  * request. locks acquired by the call-back routine should not be held across
438  * the call to tcp_timeout_cancel() or a deadlock may result.
439  *
440  * tcp_timeout_cancel() returns -1 if it can not cancel the timeout request.
441  * Otherwise, it returns an integer value greater than or equal to 0. In
442  * particular, if the call-back function is already placed on the squeue, it can
443  * not be canceled.
444  *
445  * NOTE: both tcp_timeout() and tcp_timeout_cancel() should always be called
446  * 	within squeue context corresponding to the tcp instance. Since the
447  *	call-back is also called via the same squeue, there are no race
448  *	conditions described in untimeout(9F) manual page since all calls are
449  *	strictly serialized.
450  *
451  *      TCP_TIMER_RESTART() is a macro that attempts to cancel a pending timeout
452  *	stored in tcp_timer_tid and starts a new one using
453  *	MSEC_TO_TICK(intvl). It always uses tcp_timer() function as a call-back
454  *	and stores the return value of tcp_timeout() in the tcp->tcp_timer_tid
455  *	field.
456  *
457  * NOTE: since the timeout cancellation is not guaranteed, the cancelled
458  *	call-back may still be called, so it is possible tcp_timer() will be
459  *	called several times. This should not be a problem since tcp_timer()
460  *	should always check the tcp instance state.
461  *
462  *
463  * IMPLEMENTATION:
464  *
465  * TCP timers are implemented using three-stage process. The call to
466  * tcp_timeout() uses timeout(9F) function to call tcp_timer_callback() function
467  * when the timer expires. The tcp_timer_callback() arranges the call of the
468  * tcp_timer_handler() function via squeue corresponding to the tcp
469  * instance. The tcp_timer_handler() calls actual requested timeout call-back
470  * and passes tcp instance as an argument to it. Information is passed between
471  * stages using the tcp_timer_t structure which contains the connp pointer, the
472  * tcp call-back to call and the timeout id returned by the timeout(9F).
473  *
474  * The tcp_timer_t structure is not used directly, it is embedded in an mblk_t -
475  * like structure that is used to enter an squeue. The mp->b_rptr of this pseudo
476  * mblk points to the beginning of tcp_timer_t structure. The tcp_timeout()
477  * returns the pointer to this mblk.
478  *
479  * The pseudo mblk is allocated from a special tcp_timer_cache kmem cache. It
480  * looks like a normal mblk without actual dblk attached to it.
481  *
482  * To optimize performance each tcp instance holds a small cache of timer
483  * mblocks. In the current implementation it caches up to two timer mblocks per
484  * tcp instance. The cache is preserved over tcp frees and is only freed when
485  * the whole tcp structure is destroyed by its kmem destructor. Since all tcp
486  * timer processing happens on a corresponding squeue, the cache manipulation
487  * does not require any locks. Experiments show that majority of timer mblocks
488  * allocations are satisfied from the tcp cache and do not involve kmem calls.
489  *
490  * The tcp_timeout() places a refhold on the connp instance which guarantees
491  * that it will be present at the time the call-back function fires. The
492  * tcp_timer_handler() drops the reference after calling the call-back, so the
493  * call-back function does not need to manipulate the references explicitly.
494  */
495 
496 typedef struct tcp_timer_s {
497 	conn_t	*connp;
498 	void 	(*tcpt_proc)(void *);
499 	timeout_id_t   tcpt_tid;
500 } tcp_timer_t;
501 
502 static kmem_cache_t *tcp_timercache;
503 kmem_cache_t	*tcp_sack_info_cache;
504 kmem_cache_t	*tcp_iphc_cache;
505 
506 /*
507  * For scalability, we must not run a timer for every TCP connection
508  * in TIME_WAIT state.  To see why, consider (for time wait interval of
509  * 4 minutes):
510  *	1000 connections/sec * 240 seconds/time wait = 240,000 active conn's
511  *
512  * This list is ordered by time, so you need only delete from the head
513  * until you get to entries which aren't old enough to delete yet.
514  * The list consists of only the detached TIME_WAIT connections.
515  *
516  * Note that the timer (tcp_time_wait_expire) is started when the tcp_t
517  * becomes detached TIME_WAIT (either by changing the state and already
518  * being detached or the other way around). This means that the TIME_WAIT
519  * state can be extended (up to doubled) if the connection doesn't become
520  * detached for a long time.
521  *
522  * The list manipulations (including tcp_time_wait_next/prev)
523  * are protected by the tcp_time_wait_lock. The content of the
524  * detached TIME_WAIT connections is protected by the normal perimeters.
525  *
526  * This list is per squeue and squeues are shared across the tcp_stack_t's.
527  * Things on tcp_time_wait_head remain associated with the tcp_stack_t
528  * and conn_netstack.
529  * The tcp_t's that are added to tcp_free_list are disassociated and
530  * have NULL tcp_tcps and conn_netstack pointers.
531  */
532 typedef struct tcp_squeue_priv_s {
533 	kmutex_t	tcp_time_wait_lock;
534 	timeout_id_t	tcp_time_wait_tid;
535 	tcp_t		*tcp_time_wait_head;
536 	tcp_t		*tcp_time_wait_tail;
537 	tcp_t		*tcp_free_list;
538 	uint_t		tcp_free_list_cnt;
539 } tcp_squeue_priv_t;
540 
541 /*
542  * TCP_TIME_WAIT_DELAY governs how often the time_wait_collector runs.
543  * Running it every 5 seconds seems to give the best results.
544  */
545 #define	TCP_TIME_WAIT_DELAY drv_usectohz(5000000)
546 
547 /*
548  * To prevent memory hog, limit the number of entries in tcp_free_list
549  * to 1% of available memory / number of cpus
550  */
551 uint_t tcp_free_list_max_cnt = 0;
552 
553 #define	TCP_XMIT_LOWATER	4096
554 #define	TCP_XMIT_HIWATER	49152
555 #define	TCP_RECV_LOWATER	2048
556 #define	TCP_RECV_HIWATER	49152
557 
558 /*
559  *  PAWS needs a timer for 24 days.  This is the number of ticks in 24 days
560  */
561 #define	PAWS_TIMEOUT	((clock_t)(24*24*60*60*hz))
562 
563 #define	TIDUSZ	4096	/* transport interface data unit size */
564 
565 /*
566  * Bind hash list size and has function.  It has to be a power of 2 for
567  * hashing.
568  */
569 #define	TCP_BIND_FANOUT_SIZE	512
570 #define	TCP_BIND_HASH(lport) (ntohs(lport) & (TCP_BIND_FANOUT_SIZE - 1))
571 /*
572  * Size of listen and acceptor hash list.  It has to be a power of 2 for
573  * hashing.
574  */
575 #define	TCP_FANOUT_SIZE		256
576 
577 #ifdef	_ILP32
578 #define	TCP_ACCEPTOR_HASH(accid)					\
579 		(((uint_t)(accid) >> 8) & (TCP_FANOUT_SIZE - 1))
580 #else
581 #define	TCP_ACCEPTOR_HASH(accid)					\
582 		((uint_t)(accid) & (TCP_FANOUT_SIZE - 1))
583 #endif	/* _ILP32 */
584 
585 #define	IP_ADDR_CACHE_SIZE	2048
586 #define	IP_ADDR_CACHE_HASH(faddr)					\
587 	(ntohl(faddr) & (IP_ADDR_CACHE_SIZE -1))
588 
589 /* Hash for HSPs uses all 32 bits, since both networks and hosts are in table */
590 #define	TCP_HSP_HASH_SIZE 256
591 
592 #define	TCP_HSP_HASH(addr)					\
593 	(((addr>>24) ^ (addr >>16) ^			\
594 	    (addr>>8) ^ (addr)) % TCP_HSP_HASH_SIZE)
595 
596 /*
597  * TCP options struct returned from tcp_parse_options.
598  */
599 typedef struct tcp_opt_s {
600 	uint32_t	tcp_opt_mss;
601 	uint32_t	tcp_opt_wscale;
602 	uint32_t	tcp_opt_ts_val;
603 	uint32_t	tcp_opt_ts_ecr;
604 	tcp_t		*tcp;
605 } tcp_opt_t;
606 
607 /*
608  * RFC1323-recommended phrasing of TSTAMP option, for easier parsing
609  */
610 
611 #ifdef _BIG_ENDIAN
612 #define	TCPOPT_NOP_NOP_TSTAMP ((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | \
613 	(TCPOPT_TSTAMP << 8) | 10)
614 #else
615 #define	TCPOPT_NOP_NOP_TSTAMP ((10 << 24) | (TCPOPT_TSTAMP << 16) | \
616 	(TCPOPT_NOP << 8) | TCPOPT_NOP)
617 #endif
618 
619 /*
620  * Flags returned from tcp_parse_options.
621  */
622 #define	TCP_OPT_MSS_PRESENT	1
623 #define	TCP_OPT_WSCALE_PRESENT	2
624 #define	TCP_OPT_TSTAMP_PRESENT	4
625 #define	TCP_OPT_SACK_OK_PRESENT	8
626 #define	TCP_OPT_SACK_PRESENT	16
627 
628 /* TCP option length */
629 #define	TCPOPT_NOP_LEN		1
630 #define	TCPOPT_MAXSEG_LEN	4
631 #define	TCPOPT_WS_LEN		3
632 #define	TCPOPT_REAL_WS_LEN	(TCPOPT_WS_LEN+1)
633 #define	TCPOPT_TSTAMP_LEN	10
634 #define	TCPOPT_REAL_TS_LEN	(TCPOPT_TSTAMP_LEN+2)
635 #define	TCPOPT_SACK_OK_LEN	2
636 #define	TCPOPT_REAL_SACK_OK_LEN	(TCPOPT_SACK_OK_LEN+2)
637 #define	TCPOPT_REAL_SACK_LEN	4
638 #define	TCPOPT_MAX_SACK_LEN	36
639 #define	TCPOPT_HEADER_LEN	2
640 
641 /* TCP cwnd burst factor. */
642 #define	TCP_CWND_INFINITE	65535
643 #define	TCP_CWND_SS		3
644 #define	TCP_CWND_NORMAL		5
645 
646 /* Maximum TCP initial cwin (start/restart). */
647 #define	TCP_MAX_INIT_CWND	8
648 
649 /*
650  * Initialize cwnd according to RFC 3390.  def_max_init_cwnd is
651  * either tcp_slow_start_initial or tcp_slow_start_after idle
652  * depending on the caller.  If the upper layer has not used the
653  * TCP_INIT_CWND option to change the initial cwnd, tcp_init_cwnd
654  * should be 0 and we use the formula in RFC 3390 to set tcp_cwnd.
655  * If the upper layer has changed set the tcp_init_cwnd, just use
656  * it to calculate the tcp_cwnd.
657  */
658 #define	SET_TCP_INIT_CWND(tcp, mss, def_max_init_cwnd)			\
659 {									\
660 	if ((tcp)->tcp_init_cwnd == 0) {				\
661 		(tcp)->tcp_cwnd = MIN(def_max_init_cwnd * (mss),	\
662 		    MIN(4 * (mss), MAX(2 * (mss), 4380 / (mss) * (mss)))); \
663 	} else {							\
664 		(tcp)->tcp_cwnd = (tcp)->tcp_init_cwnd * (mss);		\
665 	}								\
666 	tcp->tcp_cwnd_cnt = 0;						\
667 }
668 
669 /* TCP Timer control structure */
670 typedef struct tcpt_s {
671 	pfv_t	tcpt_pfv;	/* The routine we are to call */
672 	tcp_t	*tcpt_tcp;	/* The parameter we are to pass in */
673 } tcpt_t;
674 
675 /* Host Specific Parameter structure */
676 typedef struct tcp_hsp {
677 	struct tcp_hsp	*tcp_hsp_next;
678 	in6_addr_t	tcp_hsp_addr_v6;
679 	in6_addr_t	tcp_hsp_subnet_v6;
680 	uint_t		tcp_hsp_vers;	/* IPV4_VERSION | IPV6_VERSION */
681 	int32_t		tcp_hsp_sendspace;
682 	int32_t		tcp_hsp_recvspace;
683 	int32_t		tcp_hsp_tstamp;
684 } tcp_hsp_t;
685 #define	tcp_hsp_addr	V4_PART_OF_V6(tcp_hsp_addr_v6)
686 #define	tcp_hsp_subnet	V4_PART_OF_V6(tcp_hsp_subnet_v6)
687 
688 /*
689  * Functions called directly via squeue having a prototype of edesc_t.
690  */
691 void		tcp_conn_request(void *arg, mblk_t *mp, void *arg2);
692 static void	tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2);
693 void		tcp_accept_finish(void *arg, mblk_t *mp, void *arg2);
694 static void	tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2);
695 static void	tcp_wput_proto(void *arg, mblk_t *mp, void *arg2);
696 void 		tcp_input(void *arg, mblk_t *mp, void *arg2);
697 void		tcp_rput_data(void *arg, mblk_t *mp, void *arg2);
698 static void	tcp_close_output(void *arg, mblk_t *mp, void *arg2);
699 void		tcp_output(void *arg, mblk_t *mp, void *arg2);
700 static void	tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2);
701 static void	tcp_timer_handler(void *arg, mblk_t *mp, void *arg2);
702 static void	tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2);
703 
704 
705 /* Prototype for TCP functions */
706 static void	tcp_random_init(void);
707 int		tcp_random(void);
708 static void	tcp_accept(tcp_t *tcp, mblk_t *mp);
709 static void	tcp_accept_swap(tcp_t *listener, tcp_t *acceptor,
710 		    tcp_t *eager);
711 static int	tcp_adapt_ire(tcp_t *tcp, mblk_t *ire_mp);
712 static in_port_t tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr,
713     int reuseaddr, boolean_t quick_connect, boolean_t bind_to_req_port_only,
714     boolean_t user_specified);
715 static void	tcp_closei_local(tcp_t *tcp);
716 static void	tcp_close_detached(tcp_t *tcp);
717 static boolean_t tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph,
718 			mblk_t *idmp, mblk_t **defermp);
719 static void	tcp_connect(tcp_t *tcp, mblk_t *mp);
720 static void	tcp_connect_ipv4(tcp_t *tcp, mblk_t *mp, ipaddr_t *dstaddrp,
721 		    in_port_t dstport, uint_t srcid);
722 static void	tcp_connect_ipv6(tcp_t *tcp, mblk_t *mp, in6_addr_t *dstaddrp,
723 		    in_port_t dstport, uint32_t flowinfo, uint_t srcid,
724 		    uint32_t scope_id);
725 static int	tcp_clean_death(tcp_t *tcp, int err, uint8_t tag);
726 static void	tcp_def_q_set(tcp_t *tcp, mblk_t *mp);
727 static void	tcp_disconnect(tcp_t *tcp, mblk_t *mp);
728 static char	*tcp_display(tcp_t *tcp, char *, char);
729 static boolean_t tcp_eager_blowoff(tcp_t *listener, t_scalar_t seqnum);
730 static void	tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only);
731 static void	tcp_eager_unlink(tcp_t *tcp);
732 static void	tcp_err_ack(tcp_t *tcp, mblk_t *mp, int tlierr,
733 		    int unixerr);
734 static void	tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive,
735 		    int tlierr, int unixerr);
736 static int	tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp,
737 		    cred_t *cr);
738 static int	tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp,
739 		    char *value, caddr_t cp, cred_t *cr);
740 static int	tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp,
741 		    char *value, caddr_t cp, cred_t *cr);
742 static int	tcp_tpistate(tcp_t *tcp);
743 static void	tcp_bind_hash_insert(tf_t *tf, tcp_t *tcp,
744     int caller_holds_lock);
745 static void	tcp_bind_hash_remove(tcp_t *tcp);
746 static tcp_t	*tcp_acceptor_hash_lookup(t_uscalar_t id, tcp_stack_t *);
747 void		tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp);
748 static void	tcp_acceptor_hash_remove(tcp_t *tcp);
749 static void	tcp_capability_req(tcp_t *tcp, mblk_t *mp);
750 static void	tcp_info_req(tcp_t *tcp, mblk_t *mp);
751 static void	tcp_addr_req(tcp_t *tcp, mblk_t *mp);
752 static void	tcp_addr_req_ipv6(tcp_t *tcp, mblk_t *mp);
753 void		tcp_g_q_setup(tcp_stack_t *);
754 void		tcp_g_q_create(tcp_stack_t *);
755 void		tcp_g_q_destroy(tcp_stack_t *);
756 static int	tcp_header_init_ipv4(tcp_t *tcp);
757 static int	tcp_header_init_ipv6(tcp_t *tcp);
758 int		tcp_init(tcp_t *tcp, queue_t *q);
759 static int	tcp_init_values(tcp_t *tcp);
760 static mblk_t	*tcp_ip_advise_mblk(void *addr, int addr_len, ipic_t **ipic);
761 static mblk_t	*tcp_ip_bind_mp(tcp_t *tcp, t_scalar_t bind_prim,
762 		    t_scalar_t addr_length);
763 static void	tcp_ip_ire_mark_advice(tcp_t *tcp);
764 static void	tcp_ip_notify(tcp_t *tcp);
765 static mblk_t	*tcp_ire_mp(mblk_t *mp);
766 static void	tcp_iss_init(tcp_t *tcp);
767 static void	tcp_keepalive_killer(void *arg);
768 static int	tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt);
769 static void	tcp_mss_set(tcp_t *tcp, uint32_t size, boolean_t do_ss);
770 static int	tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp,
771 		    int *do_disconnectp, int *t_errorp, int *sys_errorp);
772 static boolean_t tcp_allow_connopt_set(int level, int name);
773 int		tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr);
774 int		tcp_opt_get(queue_t *q, int level, int name, uchar_t *ptr);
775 int		tcp_opt_set(queue_t *q, uint_t optset_context, int level,
776 		    int name, uint_t inlen, uchar_t *invalp, uint_t *outlenp,
777 		    uchar_t *outvalp, void *thisdg_attrs, cred_t *cr,
778 		    mblk_t *mblk);
779 static void	tcp_opt_reverse(tcp_t *tcp, ipha_t *ipha);
780 static int	tcp_opt_set_header(tcp_t *tcp, boolean_t checkonly,
781 		    uchar_t *ptr, uint_t len);
782 static int	tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr);
783 static boolean_t tcp_param_register(IDP *ndp, tcpparam_t *tcppa, int cnt,
784     tcp_stack_t *);
785 static int	tcp_param_set(queue_t *q, mblk_t *mp, char *value,
786 		    caddr_t cp, cred_t *cr);
787 static int	tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value,
788 		    caddr_t cp, cred_t *cr);
789 static void	tcp_iss_key_init(uint8_t *phrase, int len, tcp_stack_t *);
790 static int	tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value,
791 		    caddr_t cp, cred_t *cr);
792 static void	tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_cnt);
793 static mblk_t	*tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start);
794 static void	tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp);
795 static void	tcp_reinit(tcp_t *tcp);
796 static void	tcp_reinit_values(tcp_t *tcp);
797 static void	tcp_report_item(mblk_t *mp, tcp_t *tcp, int hashval,
798 		    tcp_t *thisstream, cred_t *cr);
799 
800 static uint_t	tcp_rcv_drain(queue_t *q, tcp_t *tcp);
801 static void	tcp_sack_rxmit(tcp_t *tcp, uint_t *flags);
802 static boolean_t tcp_send_rst_chk(tcp_stack_t *);
803 static void	tcp_ss_rexmit(tcp_t *tcp);
804 static mblk_t	*tcp_rput_add_ancillary(tcp_t *tcp, mblk_t *mp, ip6_pkt_t *ipp);
805 static void	tcp_process_options(tcp_t *, tcph_t *);
806 static void	tcp_rput_common(tcp_t *tcp, mblk_t *mp);
807 static void	tcp_rsrv(queue_t *q);
808 static int	tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd);
809 static int	tcp_snmp_state(tcp_t *tcp);
810 static int	tcp_status_report(queue_t *q, mblk_t *mp, caddr_t cp,
811 		    cred_t *cr);
812 static int	tcp_bind_hash_report(queue_t *q, mblk_t *mp, caddr_t cp,
813 		    cred_t *cr);
814 static int	tcp_listen_hash_report(queue_t *q, mblk_t *mp, caddr_t cp,
815 		    cred_t *cr);
816 static int	tcp_conn_hash_report(queue_t *q, mblk_t *mp, caddr_t cp,
817 		    cred_t *cr);
818 static int	tcp_acceptor_hash_report(queue_t *q, mblk_t *mp, caddr_t cp,
819 		    cred_t *cr);
820 static int	tcp_host_param_set(queue_t *q, mblk_t *mp, char *value,
821 		    caddr_t cp, cred_t *cr);
822 static int	tcp_host_param_set_ipv6(queue_t *q, mblk_t *mp, char *value,
823 		    caddr_t cp, cred_t *cr);
824 static int	tcp_host_param_report(queue_t *q, mblk_t *mp, caddr_t cp,
825 		    cred_t *cr);
826 static void	tcp_timer(void *arg);
827 static void	tcp_timer_callback(void *);
828 static in_port_t tcp_update_next_port(in_port_t port, const tcp_t *tcp,
829     boolean_t random);
830 static in_port_t tcp_get_next_priv_port(const tcp_t *);
831 static void	tcp_wput_sock(queue_t *q, mblk_t *mp);
832 void		tcp_wput_accept(queue_t *q, mblk_t *mp);
833 static void	tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent);
834 static void	tcp_wput_flush(tcp_t *tcp, mblk_t *mp);
835 static void	tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp);
836 static int	tcp_send(queue_t *q, tcp_t *tcp, const int mss,
837 		    const int tcp_hdr_len, const int tcp_tcp_hdr_len,
838 		    const int num_sack_blk, int *usable, uint_t *snxt,
839 		    int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time,
840 		    const int mdt_thres);
841 static int	tcp_multisend(queue_t *q, tcp_t *tcp, const int mss,
842 		    const int tcp_hdr_len, const int tcp_tcp_hdr_len,
843 		    const int num_sack_blk, int *usable, uint_t *snxt,
844 		    int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time,
845 		    const int mdt_thres);
846 static void	tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now,
847 		    int num_sack_blk);
848 static void	tcp_wsrv(queue_t *q);
849 static int	tcp_xmit_end(tcp_t *tcp);
850 static void	tcp_ack_timer(void *arg);
851 static mblk_t	*tcp_ack_mp(tcp_t *tcp);
852 static void	tcp_xmit_early_reset(char *str, mblk_t *mp,
853 		    uint32_t seq, uint32_t ack, int ctl, uint_t ip_hdr_len,
854 		    zoneid_t zoneid, tcp_stack_t *, conn_t *connp);
855 static void	tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq,
856 		    uint32_t ack, int ctl);
857 static tcp_hsp_t *tcp_hsp_lookup(ipaddr_t addr, tcp_stack_t *);
858 static tcp_hsp_t *tcp_hsp_lookup_ipv6(in6_addr_t *addr, tcp_stack_t *);
859 static int	setmaxps(queue_t *q, int maxpsz);
860 static void	tcp_set_rto(tcp_t *, time_t);
861 static boolean_t tcp_check_policy(tcp_t *, mblk_t *, ipha_t *, ip6_t *,
862 		    boolean_t, boolean_t);
863 static void	tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp,
864 		    boolean_t ipsec_mctl);
865 static mblk_t	*tcp_setsockopt_mp(int level, int cmd,
866 		    char *opt, int optlen);
867 static int	tcp_build_hdrs(queue_t *, tcp_t *);
868 static void	tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp,
869 		    uint32_t seg_seq, uint32_t seg_ack, int seg_len,
870 		    tcph_t *tcph);
871 boolean_t	tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp);
872 boolean_t	tcp_reserved_port_add(int, in_port_t *, in_port_t *);
873 boolean_t	tcp_reserved_port_del(in_port_t, in_port_t);
874 boolean_t	tcp_reserved_port_check(in_port_t, tcp_stack_t *);
875 static tcp_t	*tcp_alloc_temp_tcp(in_port_t, tcp_stack_t *);
876 static int	tcp_reserved_port_list(queue_t *, mblk_t *, caddr_t, cred_t *);
877 static mblk_t	*tcp_mdt_info_mp(mblk_t *);
878 static void	tcp_mdt_update(tcp_t *, ill_mdt_capab_t *, boolean_t);
879 static int	tcp_mdt_add_attrs(multidata_t *, const mblk_t *,
880 		    const boolean_t, const uint32_t, const uint32_t,
881 		    const uint32_t, const uint32_t, tcp_stack_t *);
882 static void	tcp_multisend_data(tcp_t *, ire_t *, const ill_t *, mblk_t *,
883 		    const uint_t, const uint_t, boolean_t *);
884 static mblk_t	*tcp_lso_info_mp(mblk_t *);
885 static void	tcp_lso_update(tcp_t *, ill_lso_capab_t *);
886 static void	tcp_send_data(tcp_t *, queue_t *, mblk_t *);
887 extern mblk_t	*tcp_timermp_alloc(int);
888 extern void	tcp_timermp_free(tcp_t *);
889 static void	tcp_timer_free(tcp_t *tcp, mblk_t *mp);
890 static void	tcp_stop_lingering(tcp_t *tcp);
891 static void	tcp_close_linger_timeout(void *arg);
892 static void	*tcp_stack_init(netstackid_t stackid, netstack_t *ns);
893 static void	tcp_stack_shutdown(netstackid_t stackid, void *arg);
894 static void	tcp_stack_fini(netstackid_t stackid, void *arg);
895 static void	*tcp_g_kstat_init(tcp_g_stat_t *);
896 static void	tcp_g_kstat_fini(kstat_t *);
897 static void	*tcp_kstat_init(netstackid_t, tcp_stack_t *);
898 static void	tcp_kstat_fini(netstackid_t, kstat_t *);
899 static void	*tcp_kstat2_init(netstackid_t, tcp_stat_t *);
900 static void	tcp_kstat2_fini(netstackid_t, kstat_t *);
901 static int	tcp_kstat_update(kstat_t *kp, int rw);
902 void		tcp_reinput(conn_t *connp, mblk_t *mp, squeue_t *sqp);
903 static int	tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp,
904 			tcph_t *tcph, uint_t ipvers, mblk_t *idmp);
905 static int	tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, ipha_t *ipha,
906 			tcph_t *tcph, mblk_t *idmp);
907 static squeue_func_t tcp_squeue_switch(int);
908 
909 static int	tcp_open(queue_t *, dev_t *, int, int, cred_t *, boolean_t);
910 static int	tcp_openv4(queue_t *, dev_t *, int, int, cred_t *);
911 static int	tcp_openv6(queue_t *, dev_t *, int, int, cred_t *);
912 static int	tcp_close(queue_t *, int);
913 static int	tcpclose_accept(queue_t *);
914 
915 static void	tcp_squeue_add(squeue_t *);
916 static boolean_t tcp_zcopy_check(tcp_t *);
917 static void	tcp_zcopy_notify(tcp_t *);
918 static mblk_t	*tcp_zcopy_disable(tcp_t *, mblk_t *);
919 static mblk_t	*tcp_zcopy_backoff(tcp_t *, mblk_t *, int);
920 static void	tcp_ire_ill_check(tcp_t *, ire_t *, ill_t *, boolean_t);
921 
922 extern void	tcp_kssl_input(tcp_t *, mblk_t *);
923 
924 void tcp_eager_kill(void *arg, mblk_t *mp, void *arg2);
925 void tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2);
926 
927 /*
928  * Routines related to the TCP_IOC_ABORT_CONN ioctl command.
929  *
930  * TCP_IOC_ABORT_CONN is a non-transparent ioctl command used for aborting
931  * TCP connections. To invoke this ioctl, a tcp_ioc_abort_conn_t structure
932  * (defined in tcp.h) needs to be filled in and passed into the kernel
933  * via an I_STR ioctl command (see streamio(7I)). The tcp_ioc_abort_conn_t
934  * structure contains the four-tuple of a TCP connection and a range of TCP
935  * states (specified by ac_start and ac_end). The use of wildcard addresses
936  * and ports is allowed. Connections with a matching four tuple and a state
937  * within the specified range will be aborted. The valid states for the
938  * ac_start and ac_end fields are in the range TCPS_SYN_SENT to TCPS_TIME_WAIT,
939  * inclusive.
940  *
941  * An application which has its connection aborted by this ioctl will receive
942  * an error that is dependent on the connection state at the time of the abort.
943  * If the connection state is < TCPS_TIME_WAIT, an application should behave as
944  * though a RST packet has been received.  If the connection state is equal to
945  * TCPS_TIME_WAIT, the 2MSL timeout will immediately be canceled by the kernel
946  * and all resources associated with the connection will be freed.
947  */
948 static mblk_t	*tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *, tcp_t *);
949 static void	tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *);
950 static void	tcp_ioctl_abort_handler(tcp_t *, mblk_t *);
951 static int	tcp_ioctl_abort(tcp_ioc_abort_conn_t *, tcp_stack_t *tcps);
952 static void	tcp_ioctl_abort_conn(queue_t *, mblk_t *);
953 static int	tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *, int, int *,
954     boolean_t, tcp_stack_t *);
955 
956 static struct module_info tcp_rinfo =  {
957 	TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, TCP_RECV_HIWATER, TCP_RECV_LOWATER
958 };
959 
960 static struct module_info tcp_winfo =  {
961 	TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, 127, 16
962 };
963 
964 /*
965  * Entry points for TCP as a device. The normal case which supports
966  * the TCP functionality.
967  * We have separate open functions for the /dev/tcp and /dev/tcp6 devices.
968  */
969 struct qinit tcp_rinitv4 = {
970 	NULL, (pfi_t)tcp_rsrv, tcp_openv4, tcp_close, NULL, &tcp_rinfo
971 };
972 
973 struct qinit tcp_rinitv6 = {
974 	NULL, (pfi_t)tcp_rsrv, tcp_openv6, tcp_close, NULL, &tcp_rinfo
975 };
976 
977 struct qinit tcp_winit = {
978 	(pfi_t)tcp_wput, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo
979 };
980 
981 /* Initial entry point for TCP in socket mode. */
982 struct qinit tcp_sock_winit = {
983 	(pfi_t)tcp_wput_sock, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo
984 };
985 
986 /*
987  * Entry points for TCP as a acceptor STREAM opened by sockfs when doing
988  * an accept. Avoid allocating data structures since eager has already
989  * been created.
990  */
991 struct qinit tcp_acceptor_rinit = {
992 	NULL, (pfi_t)tcp_rsrv, NULL, tcpclose_accept, NULL, &tcp_winfo
993 };
994 
995 struct qinit tcp_acceptor_winit = {
996 	(pfi_t)tcp_wput_accept, NULL, NULL, NULL, NULL, &tcp_winfo
997 };
998 
999 /*
1000  * Entry points for TCP loopback (read side only)
1001  * The open routine is only used for reopens, thus no need to
1002  * have a separate one for tcp_openv6.
1003  */
1004 struct qinit tcp_loopback_rinit = {
1005 	(pfi_t)0, (pfi_t)tcp_rsrv, tcp_openv4, tcp_close, (pfi_t)0,
1006 	&tcp_rinfo, NULL, tcp_fuse_rrw, tcp_fuse_rinfop, STRUIOT_STANDARD
1007 };
1008 
1009 /* For AF_INET aka /dev/tcp */
1010 struct streamtab tcpinfov4 = {
1011 	&tcp_rinitv4, &tcp_winit
1012 };
1013 
1014 /* For AF_INET6 aka /dev/tcp6 */
1015 struct streamtab tcpinfov6 = {
1016 	&tcp_rinitv6, &tcp_winit
1017 };
1018 
1019 /*
1020  * Have to ensure that tcp_g_q_close is not done by an
1021  * interrupt thread.
1022  */
1023 static taskq_t *tcp_taskq;
1024 
1025 /*
1026  * TCP has a private interface for other kernel modules to reserve a
1027  * port range for them to use.  Once reserved, TCP will not use any ports
1028  * in the range.  This interface relies on the TCP_EXCLBIND feature.  If
1029  * the semantics of TCP_EXCLBIND is changed, implementation of this interface
1030  * has to be verified.
1031  *
1032  * There can be TCP_RESERVED_PORTS_ARRAY_MAX_SIZE port ranges.  Each port
1033  * range can cover at most TCP_RESERVED_PORTS_RANGE_MAX ports.  A port
1034  * range is [port a, port b] inclusive.  And each port range is between
1035  * TCP_LOWESET_RESERVED_PORT and TCP_LARGEST_RESERVED_PORT inclusive.
1036  *
1037  * Note that the default anonymous port range starts from 32768.  There is
1038  * no port "collision" between that and the reserved port range.  If there
1039  * is port collision (because the default smallest anonymous port is lowered
1040  * or some apps specifically bind to ports in the reserved port range), the
1041  * system may not be able to reserve a port range even there are enough
1042  * unbound ports as a reserved port range contains consecutive ports .
1043  */
1044 #define	TCP_RESERVED_PORTS_ARRAY_MAX_SIZE	5
1045 #define	TCP_RESERVED_PORTS_RANGE_MAX		1000
1046 #define	TCP_SMALLEST_RESERVED_PORT		10240
1047 #define	TCP_LARGEST_RESERVED_PORT		20480
1048 
1049 /* Structure to represent those reserved port ranges. */
1050 typedef struct tcp_rport_s {
1051 	in_port_t	lo_port;
1052 	in_port_t	hi_port;
1053 	tcp_t		**temp_tcp_array;
1054 } tcp_rport_t;
1055 
1056 /* Setable only in /etc/system. Move to ndd? */
1057 boolean_t tcp_icmp_source_quench = B_FALSE;
1058 
1059 /*
1060  * Following assumes TPI alignment requirements stay along 32 bit
1061  * boundaries
1062  */
1063 #define	ROUNDUP32(x) \
1064 	(((x) + (sizeof (int32_t) - 1)) & ~(sizeof (int32_t) - 1))
1065 
1066 /* Template for response to info request. */
1067 static struct T_info_ack tcp_g_t_info_ack = {
1068 	T_INFO_ACK,		/* PRIM_type */
1069 	0,			/* TSDU_size */
1070 	T_INFINITE,		/* ETSDU_size */
1071 	T_INVALID,		/* CDATA_size */
1072 	T_INVALID,		/* DDATA_size */
1073 	sizeof (sin_t),		/* ADDR_size */
1074 	0,			/* OPT_size - not initialized here */
1075 	TIDUSZ,			/* TIDU_size */
1076 	T_COTS_ORD,		/* SERV_type */
1077 	TCPS_IDLE,		/* CURRENT_state */
1078 	(XPG4_1|EXPINLINE)	/* PROVIDER_flag */
1079 };
1080 
1081 static struct T_info_ack tcp_g_t_info_ack_v6 = {
1082 	T_INFO_ACK,		/* PRIM_type */
1083 	0,			/* TSDU_size */
1084 	T_INFINITE,		/* ETSDU_size */
1085 	T_INVALID,		/* CDATA_size */
1086 	T_INVALID,		/* DDATA_size */
1087 	sizeof (sin6_t),	/* ADDR_size */
1088 	0,			/* OPT_size - not initialized here */
1089 	TIDUSZ,		/* TIDU_size */
1090 	T_COTS_ORD,		/* SERV_type */
1091 	TCPS_IDLE,		/* CURRENT_state */
1092 	(XPG4_1|EXPINLINE)	/* PROVIDER_flag */
1093 };
1094 
1095 #define	MS	1L
1096 #define	SECONDS	(1000 * MS)
1097 #define	MINUTES	(60 * SECONDS)
1098 #define	HOURS	(60 * MINUTES)
1099 #define	DAYS	(24 * HOURS)
1100 
1101 #define	PARAM_MAX (~(uint32_t)0)
1102 
1103 /* Max size IP datagram is 64k - 1 */
1104 #define	TCP_MSS_MAX_IPV4 (IP_MAXPACKET - (sizeof (ipha_t) + sizeof (tcph_t)))
1105 #define	TCP_MSS_MAX_IPV6 (IP_MAXPACKET - (sizeof (ip6_t) + sizeof (tcph_t)))
1106 /* Max of the above */
1107 #define	TCP_MSS_MAX	TCP_MSS_MAX_IPV4
1108 
1109 /* Largest TCP port number */
1110 #define	TCP_MAX_PORT	(64 * 1024 - 1)
1111 
1112 /*
1113  * tcp_wroff_xtra is the extra space in front of TCP/IP header for link
1114  * layer header.  It has to be a multiple of 4.
1115  */
1116 static tcpparam_t lcl_tcp_wroff_xtra_param = { 0, 256, 32, "tcp_wroff_xtra" };
1117 #define	tcps_wroff_xtra	tcps_wroff_xtra_param->tcp_param_val
1118 
1119 /*
1120  * All of these are alterable, within the min/max values given, at run time.
1121  * Note that the default value of "tcp_time_wait_interval" is four minutes,
1122  * per the TCP spec.
1123  */
1124 /* BEGIN CSTYLED */
1125 static tcpparam_t	lcl_tcp_param_arr[] = {
1126  /*min		max		value		name */
1127  { 1*SECONDS,	10*MINUTES,	1*MINUTES,	"tcp_time_wait_interval"},
1128  { 1,		PARAM_MAX,	128,		"tcp_conn_req_max_q" },
1129  { 0,		PARAM_MAX,	1024,		"tcp_conn_req_max_q0" },
1130  { 1,		1024,		1,		"tcp_conn_req_min" },
1131  { 0*MS,	20*SECONDS,	0*MS,		"tcp_conn_grace_period" },
1132  { 128,		(1<<30),	1024*1024,	"tcp_cwnd_max" },
1133  { 0,		10,		0,		"tcp_debug" },
1134  { 1024,	(32*1024),	1024,		"tcp_smallest_nonpriv_port"},
1135  { 1*SECONDS,	PARAM_MAX,	3*MINUTES,	"tcp_ip_abort_cinterval"},
1136  { 1*SECONDS,	PARAM_MAX,	3*MINUTES,	"tcp_ip_abort_linterval"},
1137  { 500*MS,	PARAM_MAX,	8*MINUTES,	"tcp_ip_abort_interval"},
1138  { 1*SECONDS,	PARAM_MAX,	10*SECONDS,	"tcp_ip_notify_cinterval"},
1139  { 500*MS,	PARAM_MAX,	10*SECONDS,	"tcp_ip_notify_interval"},
1140  { 1,		255,		64,		"tcp_ipv4_ttl"},
1141  { 10*SECONDS,	10*DAYS,	2*HOURS,	"tcp_keepalive_interval"},
1142  { 0,		100,		10,		"tcp_maxpsz_multiplier" },
1143  { 1,		TCP_MSS_MAX_IPV4, 536,		"tcp_mss_def_ipv4"},
1144  { 1,		TCP_MSS_MAX_IPV4, TCP_MSS_MAX_IPV4, "tcp_mss_max_ipv4"},
1145  { 1,		TCP_MSS_MAX,	108,		"tcp_mss_min"},
1146  { 1,		(64*1024)-1,	(4*1024)-1,	"tcp_naglim_def"},
1147  { 1*MS,	20*SECONDS,	3*SECONDS,	"tcp_rexmit_interval_initial"},
1148  { 1*MS,	2*HOURS,	60*SECONDS,	"tcp_rexmit_interval_max"},
1149  { 1*MS,	2*HOURS,	400*MS,		"tcp_rexmit_interval_min"},
1150  { 1*MS,	1*MINUTES,	100*MS,		"tcp_deferred_ack_interval" },
1151  { 0,		16,		0,		"tcp_snd_lowat_fraction" },
1152  { 0,		128000,		0,		"tcp_sth_rcv_hiwat" },
1153  { 0,		128000,		0,		"tcp_sth_rcv_lowat" },
1154  { 1,		10000,		3,		"tcp_dupack_fast_retransmit" },
1155  { 0,		1,		0,		"tcp_ignore_path_mtu" },
1156  { 1024,	TCP_MAX_PORT,	32*1024,	"tcp_smallest_anon_port"},
1157  { 1024,	TCP_MAX_PORT,	TCP_MAX_PORT,	"tcp_largest_anon_port"},
1158  { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_HIWATER,"tcp_xmit_hiwat"},
1159  { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_LOWATER,"tcp_xmit_lowat"},
1160  { TCP_RECV_LOWATER, (1<<30), TCP_RECV_HIWATER,"tcp_recv_hiwat"},
1161  { 1,		65536,		4,		"tcp_recv_hiwat_minmss"},
1162  { 1*SECONDS,	PARAM_MAX,	675*SECONDS,	"tcp_fin_wait_2_flush_interval"},
1163  { 0,		TCP_MSS_MAX,	64,		"tcp_co_min"},
1164  { 8192,	(1<<30),	1024*1024,	"tcp_max_buf"},
1165 /*
1166  * Question:  What default value should I set for tcp_strong_iss?
1167  */
1168  { 0,		2,		1,		"tcp_strong_iss"},
1169  { 0,		65536,		20,		"tcp_rtt_updates"},
1170  { 0,		1,		1,		"tcp_wscale_always"},
1171  { 0,		1,		0,		"tcp_tstamp_always"},
1172  { 0,		1,		1,		"tcp_tstamp_if_wscale"},
1173  { 0*MS,	2*HOURS,	0*MS,		"tcp_rexmit_interval_extra"},
1174  { 0,		16,		2,		"tcp_deferred_acks_max"},
1175  { 1,		16384,		4,		"tcp_slow_start_after_idle"},
1176  { 1,		4,		4,		"tcp_slow_start_initial"},
1177  { 10*MS,	50*MS,		20*MS,		"tcp_co_timer_interval"},
1178  { 0,		2,		2,		"tcp_sack_permitted"},
1179  { 0,		1,		0,		"tcp_trace"},
1180  { 0,		1,		1,		"tcp_compression_enabled"},
1181  { 0,		IPV6_MAX_HOPS,	IPV6_DEFAULT_HOPS,	"tcp_ipv6_hoplimit"},
1182  { 1,		TCP_MSS_MAX_IPV6, 1220,		"tcp_mss_def_ipv6"},
1183  { 1,		TCP_MSS_MAX_IPV6, TCP_MSS_MAX_IPV6, "tcp_mss_max_ipv6"},
1184  { 0,		1,		0,		"tcp_rev_src_routes"},
1185  { 10*MS,	500*MS,		50*MS,		"tcp_local_dack_interval"},
1186  { 100*MS,	60*SECONDS,	1*SECONDS,	"tcp_ndd_get_info_interval"},
1187  { 0,		16,		8,		"tcp_local_dacks_max"},
1188  { 0,		2,		1,		"tcp_ecn_permitted"},
1189  { 0,		1,		1,		"tcp_rst_sent_rate_enabled"},
1190  { 0,		PARAM_MAX,	40,		"tcp_rst_sent_rate"},
1191  { 0,		100*MS,		50*MS,		"tcp_push_timer_interval"},
1192  { 0,		1,		0,		"tcp_use_smss_as_mss_opt"},
1193  { 0,		PARAM_MAX,	8*MINUTES,	"tcp_keepalive_abort_interval"},
1194 };
1195 /* END CSTYLED */
1196 
1197 /*
1198  * tcp_mdt_hdr_{head,tail}_min are the leading and trailing spaces of
1199  * each header fragment in the header buffer.  Each parameter value has
1200  * to be a multiple of 4 (32-bit aligned).
1201  */
1202 static tcpparam_t lcl_tcp_mdt_head_param =
1203 	{ 32, 256, 32, "tcp_mdt_hdr_head_min" };
1204 static tcpparam_t lcl_tcp_mdt_tail_param =
1205 	{ 0,  256, 32, "tcp_mdt_hdr_tail_min" };
1206 #define	tcps_mdt_hdr_head_min	tcps_mdt_head_param->tcp_param_val
1207 #define	tcps_mdt_hdr_tail_min	tcps_mdt_tail_param->tcp_param_val
1208 
1209 /*
1210  * tcp_mdt_max_pbufs is the upper limit value that tcp uses to figure out
1211  * the maximum number of payload buffers associated per Multidata.
1212  */
1213 static tcpparam_t lcl_tcp_mdt_max_pbufs_param =
1214 	{ 1, MULTIDATA_MAX_PBUFS, MULTIDATA_MAX_PBUFS, "tcp_mdt_max_pbufs" };
1215 #define	tcps_mdt_max_pbufs	tcps_mdt_max_pbufs_param->tcp_param_val
1216 
1217 /* Round up the value to the nearest mss. */
1218 #define	MSS_ROUNDUP(value, mss)		((((value) - 1) / (mss) + 1) * (mss))
1219 
1220 /*
1221  * Set ECN capable transport (ECT) code point in IP header.
1222  *
1223  * Note that there are 2 ECT code points '01' and '10', which are called
1224  * ECT(1) and ECT(0) respectively.  Here we follow the original ECT code
1225  * point ECT(0) for TCP as described in RFC 2481.
1226  */
1227 #define	SET_ECT(tcp, iph) \
1228 	if ((tcp)->tcp_ipversion == IPV4_VERSION) { \
1229 		/* We need to clear the code point first. */ \
1230 		((ipha_t *)(iph))->ipha_type_of_service &= 0xFC; \
1231 		((ipha_t *)(iph))->ipha_type_of_service |= IPH_ECN_ECT0; \
1232 	} else { \
1233 		((ip6_t *)(iph))->ip6_vcf &= htonl(0xFFCFFFFF); \
1234 		((ip6_t *)(iph))->ip6_vcf |= htonl(IPH_ECN_ECT0 << 20); \
1235 	}
1236 
1237 /*
1238  * The format argument to pass to tcp_display().
1239  * DISP_PORT_ONLY means that the returned string has only port info.
1240  * DISP_ADDR_AND_PORT means that the returned string also contains the
1241  * remote and local IP address.
1242  */
1243 #define	DISP_PORT_ONLY		1
1244 #define	DISP_ADDR_AND_PORT	2
1245 
1246 #define	NDD_TOO_QUICK_MSG \
1247 	"ndd get info rate too high for non-privileged users, try again " \
1248 	"later.\n"
1249 #define	NDD_OUT_OF_BUF_MSG	"<< Out of buffer >>\n"
1250 
1251 #define	IS_VMLOANED_MBLK(mp) \
1252 	(((mp)->b_datap->db_struioflag & STRUIO_ZC) != 0)
1253 
1254 
1255 /* Enable or disable b_cont M_MULTIDATA chaining for MDT. */
1256 boolean_t tcp_mdt_chain = B_TRUE;
1257 
1258 /*
1259  * MDT threshold in the form of effective send MSS multiplier; we take
1260  * the MDT path if the amount of unsent data exceeds the threshold value
1261  * (default threshold is 1*SMSS).
1262  */
1263 uint_t tcp_mdt_smss_threshold = 1;
1264 
1265 uint32_t do_tcpzcopy = 1;		/* 0: disable, 1: enable, 2: force */
1266 
1267 /*
1268  * Forces all connections to obey the value of the tcps_maxpsz_multiplier
1269  * tunable settable via NDD.  Otherwise, the per-connection behavior is
1270  * determined dynamically during tcp_adapt_ire(), which is the default.
1271  */
1272 boolean_t tcp_static_maxpsz = B_FALSE;
1273 
1274 /* Setable in /etc/system */
1275 /* If set to 0, pick ephemeral port sequentially; otherwise randomly. */
1276 uint32_t tcp_random_anon_port = 1;
1277 
1278 /*
1279  * To reach to an eager in Q0 which can be dropped due to an incoming
1280  * new SYN request when Q0 is full, a new doubly linked list is
1281  * introduced. This list allows to select an eager from Q0 in O(1) time.
1282  * This is needed to avoid spending too much time walking through the
1283  * long list of eagers in Q0 when tcp_drop_q0() is called. Each member of
1284  * this new list has to be a member of Q0.
1285  * This list is headed by listener's tcp_t. When the list is empty,
1286  * both the pointers - tcp_eager_next_drop_q0 and tcp_eager_prev_drop_q0,
1287  * of listener's tcp_t point to listener's tcp_t itself.
1288  *
1289  * Given an eager in Q0 and a listener, MAKE_DROPPABLE() puts the eager
1290  * in the list. MAKE_UNDROPPABLE() takes the eager out of the list.
1291  * These macros do not affect the eager's membership to Q0.
1292  */
1293 
1294 
1295 #define	MAKE_DROPPABLE(listener, eager)					\
1296 	if ((eager)->tcp_eager_next_drop_q0 == NULL) {			\
1297 		(listener)->tcp_eager_next_drop_q0->tcp_eager_prev_drop_q0\
1298 		    = (eager);						\
1299 		(eager)->tcp_eager_prev_drop_q0 = (listener);		\
1300 		(eager)->tcp_eager_next_drop_q0 =			\
1301 		    (listener)->tcp_eager_next_drop_q0;			\
1302 		(listener)->tcp_eager_next_drop_q0 = (eager);		\
1303 	}
1304 
1305 #define	MAKE_UNDROPPABLE(eager)						\
1306 	if ((eager)->tcp_eager_next_drop_q0 != NULL) {			\
1307 		(eager)->tcp_eager_next_drop_q0->tcp_eager_prev_drop_q0	\
1308 		    = (eager)->tcp_eager_prev_drop_q0;			\
1309 		(eager)->tcp_eager_prev_drop_q0->tcp_eager_next_drop_q0	\
1310 		    = (eager)->tcp_eager_next_drop_q0;			\
1311 		(eager)->tcp_eager_prev_drop_q0 = NULL;			\
1312 		(eager)->tcp_eager_next_drop_q0 = NULL;			\
1313 	}
1314 
1315 /*
1316  * If tcp_drop_ack_unsent_cnt is greater than 0, when TCP receives more
1317  * than tcp_drop_ack_unsent_cnt number of ACKs which acknowledge unsent
1318  * data, TCP will not respond with an ACK.  RFC 793 requires that
1319  * TCP responds with an ACK for such a bogus ACK.  By not following
1320  * the RFC, we prevent TCP from getting into an ACK storm if somehow
1321  * an attacker successfully spoofs an acceptable segment to our
1322  * peer; or when our peer is "confused."
1323  */
1324 uint32_t tcp_drop_ack_unsent_cnt = 10;
1325 
1326 /*
1327  * Hook functions to enable cluster networking
1328  * On non-clustered systems these vectors must always be NULL.
1329  */
1330 
1331 void (*cl_inet_listen)(uint8_t protocol, sa_family_t addr_family,
1332 			    uint8_t *laddrp, in_port_t lport) = NULL;
1333 void (*cl_inet_unlisten)(uint8_t protocol, sa_family_t addr_family,
1334 			    uint8_t *laddrp, in_port_t lport) = NULL;
1335 void (*cl_inet_connect)(uint8_t protocol, sa_family_t addr_family,
1336 			    uint8_t *laddrp, in_port_t lport,
1337 			    uint8_t *faddrp, in_port_t fport) = NULL;
1338 void (*cl_inet_disconnect)(uint8_t protocol, sa_family_t addr_family,
1339 			    uint8_t *laddrp, in_port_t lport,
1340 			    uint8_t *faddrp, in_port_t fport) = NULL;
1341 
1342 /*
1343  * The following are defined in ip.c
1344  */
1345 extern int (*cl_inet_isclusterwide)(uint8_t protocol, sa_family_t addr_family,
1346 				uint8_t *laddrp);
1347 extern uint32_t (*cl_inet_ipident)(uint8_t protocol, sa_family_t addr_family,
1348 				uint8_t *laddrp, uint8_t *faddrp);
1349 
1350 #define	CL_INET_CONNECT(tcp)		{			\
1351 	if (cl_inet_connect != NULL) {				\
1352 		/*						\
1353 		 * Running in cluster mode - register active connection	\
1354 		 * information						\
1355 		 */							\
1356 		if ((tcp)->tcp_ipversion == IPV4_VERSION) {		\
1357 			if ((tcp)->tcp_ipha->ipha_src != 0) {		\
1358 				(*cl_inet_connect)(IPPROTO_TCP, AF_INET,\
1359 				    (uint8_t *)(&((tcp)->tcp_ipha->ipha_src)),\
1360 				    (in_port_t)(tcp)->tcp_lport,	\
1361 				    (uint8_t *)(&((tcp)->tcp_ipha->ipha_dst)),\
1362 				    (in_port_t)(tcp)->tcp_fport);	\
1363 			}						\
1364 		} else {						\
1365 			if (!IN6_IS_ADDR_UNSPECIFIED(			\
1366 			    &(tcp)->tcp_ip6h->ip6_src)) {\
1367 				(*cl_inet_connect)(IPPROTO_TCP, AF_INET6,\
1368 				    (uint8_t *)(&((tcp)->tcp_ip6h->ip6_src)),\
1369 				    (in_port_t)(tcp)->tcp_lport,	\
1370 				    (uint8_t *)(&((tcp)->tcp_ip6h->ip6_dst)),\
1371 				    (in_port_t)(tcp)->tcp_fport);	\
1372 			}						\
1373 		}							\
1374 	}								\
1375 }
1376 
1377 #define	CL_INET_DISCONNECT(tcp)	{				\
1378 	if (cl_inet_disconnect != NULL) {				\
1379 		/*							\
1380 		 * Running in cluster mode - deregister active		\
1381 		 * connection information				\
1382 		 */							\
1383 		if ((tcp)->tcp_ipversion == IPV4_VERSION) {		\
1384 			if ((tcp)->tcp_ip_src != 0) {			\
1385 				(*cl_inet_disconnect)(IPPROTO_TCP,	\
1386 				    AF_INET,				\
1387 				    (uint8_t *)(&((tcp)->tcp_ip_src)),\
1388 				    (in_port_t)(tcp)->tcp_lport,	\
1389 				    (uint8_t *)				\
1390 				    (&((tcp)->tcp_ipha->ipha_dst)),\
1391 				    (in_port_t)(tcp)->tcp_fport);	\
1392 			}						\
1393 		} else {						\
1394 			if (!IN6_IS_ADDR_UNSPECIFIED(			\
1395 			    &(tcp)->tcp_ip_src_v6)) {			\
1396 				(*cl_inet_disconnect)(IPPROTO_TCP, AF_INET6,\
1397 				    (uint8_t *)(&((tcp)->tcp_ip_src_v6)),\
1398 				    (in_port_t)(tcp)->tcp_lport,	\
1399 				    (uint8_t *)				\
1400 				    (&((tcp)->tcp_ip6h->ip6_dst)),\
1401 				    (in_port_t)(tcp)->tcp_fport);	\
1402 			}						\
1403 		}							\
1404 	}								\
1405 }
1406 
1407 /*
1408  * Cluster networking hook for traversing current connection list.
1409  * This routine is used to extract the current list of live connections
1410  * which must continue to to be dispatched to this node.
1411  */
1412 int cl_tcp_walk_list(int (*callback)(cl_tcp_info_t *, void *), void *arg);
1413 
1414 static int cl_tcp_walk_list_stack(int (*callback)(cl_tcp_info_t *, void *),
1415     void *arg, tcp_stack_t *tcps);
1416 
1417 /*
1418  * Figure out the value of window scale opton.  Note that the rwnd is
1419  * ASSUMED to be rounded up to the nearest MSS before the calculation.
1420  * We cannot find the scale value and then do a round up of tcp_rwnd
1421  * because the scale value may not be correct after that.
1422  *
1423  * Set the compiler flag to make this function inline.
1424  */
1425 static void
1426 tcp_set_ws_value(tcp_t *tcp)
1427 {
1428 	int i;
1429 	uint32_t rwnd = tcp->tcp_rwnd;
1430 
1431 	for (i = 0; rwnd > TCP_MAXWIN && i < TCP_MAX_WINSHIFT;
1432 	    i++, rwnd >>= 1)
1433 		;
1434 	tcp->tcp_rcv_ws = i;
1435 }
1436 
1437 /*
1438  * Remove a connection from the list of detached TIME_WAIT connections.
1439  * It returns B_FALSE if it can't remove the connection from the list
1440  * as the connection has already been removed from the list due to an
1441  * earlier call to tcp_time_wait_remove(); otherwise it returns B_TRUE.
1442  */
1443 static boolean_t
1444 tcp_time_wait_remove(tcp_t *tcp, tcp_squeue_priv_t *tcp_time_wait)
1445 {
1446 	boolean_t	locked = B_FALSE;
1447 
1448 	if (tcp_time_wait == NULL) {
1449 		tcp_time_wait = *((tcp_squeue_priv_t **)
1450 		    squeue_getprivate(tcp->tcp_connp->conn_sqp, SQPRIVATE_TCP));
1451 		mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1452 		locked = B_TRUE;
1453 	} else {
1454 		ASSERT(MUTEX_HELD(&tcp_time_wait->tcp_time_wait_lock));
1455 	}
1456 
1457 	if (tcp->tcp_time_wait_expire == 0) {
1458 		ASSERT(tcp->tcp_time_wait_next == NULL);
1459 		ASSERT(tcp->tcp_time_wait_prev == NULL);
1460 		if (locked)
1461 			mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1462 		return (B_FALSE);
1463 	}
1464 	ASSERT(TCP_IS_DETACHED(tcp));
1465 	ASSERT(tcp->tcp_state == TCPS_TIME_WAIT);
1466 
1467 	if (tcp == tcp_time_wait->tcp_time_wait_head) {
1468 		ASSERT(tcp->tcp_time_wait_prev == NULL);
1469 		tcp_time_wait->tcp_time_wait_head = tcp->tcp_time_wait_next;
1470 		if (tcp_time_wait->tcp_time_wait_head != NULL) {
1471 			tcp_time_wait->tcp_time_wait_head->tcp_time_wait_prev =
1472 			    NULL;
1473 		} else {
1474 			tcp_time_wait->tcp_time_wait_tail = NULL;
1475 		}
1476 	} else if (tcp == tcp_time_wait->tcp_time_wait_tail) {
1477 		ASSERT(tcp != tcp_time_wait->tcp_time_wait_head);
1478 		ASSERT(tcp->tcp_time_wait_next == NULL);
1479 		tcp_time_wait->tcp_time_wait_tail = tcp->tcp_time_wait_prev;
1480 		ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL);
1481 		tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = NULL;
1482 	} else {
1483 		ASSERT(tcp->tcp_time_wait_prev->tcp_time_wait_next == tcp);
1484 		ASSERT(tcp->tcp_time_wait_next->tcp_time_wait_prev == tcp);
1485 		tcp->tcp_time_wait_prev->tcp_time_wait_next =
1486 		    tcp->tcp_time_wait_next;
1487 		tcp->tcp_time_wait_next->tcp_time_wait_prev =
1488 		    tcp->tcp_time_wait_prev;
1489 	}
1490 	tcp->tcp_time_wait_next = NULL;
1491 	tcp->tcp_time_wait_prev = NULL;
1492 	tcp->tcp_time_wait_expire = 0;
1493 
1494 	if (locked)
1495 		mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1496 	return (B_TRUE);
1497 }
1498 
1499 /*
1500  * Add a connection to the list of detached TIME_WAIT connections
1501  * and set its time to expire.
1502  */
1503 static void
1504 tcp_time_wait_append(tcp_t *tcp)
1505 {
1506 	tcp_stack_t	*tcps = tcp->tcp_tcps;
1507 	tcp_squeue_priv_t *tcp_time_wait =
1508 	    *((tcp_squeue_priv_t **)squeue_getprivate(tcp->tcp_connp->conn_sqp,
1509 	    SQPRIVATE_TCP));
1510 
1511 	tcp_timers_stop(tcp);
1512 
1513 	/* Freed above */
1514 	ASSERT(tcp->tcp_timer_tid == 0);
1515 	ASSERT(tcp->tcp_ack_tid == 0);
1516 
1517 	/* must have happened at the time of detaching the tcp */
1518 	ASSERT(tcp->tcp_ptpahn == NULL);
1519 	ASSERT(tcp->tcp_flow_stopped == 0);
1520 	ASSERT(tcp->tcp_time_wait_next == NULL);
1521 	ASSERT(tcp->tcp_time_wait_prev == NULL);
1522 	ASSERT(tcp->tcp_time_wait_expire == NULL);
1523 	ASSERT(tcp->tcp_listener == NULL);
1524 
1525 	tcp->tcp_time_wait_expire = ddi_get_lbolt();
1526 	/*
1527 	 * The value computed below in tcp->tcp_time_wait_expire may
1528 	 * appear negative or wrap around. That is ok since our
1529 	 * interest is only in the difference between the current lbolt
1530 	 * value and tcp->tcp_time_wait_expire. But the value should not
1531 	 * be zero, since it means the tcp is not in the TIME_WAIT list.
1532 	 * The corresponding comparison in tcp_time_wait_collector() uses
1533 	 * modular arithmetic.
1534 	 */
1535 	tcp->tcp_time_wait_expire +=
1536 	    drv_usectohz(tcps->tcps_time_wait_interval * 1000);
1537 	if (tcp->tcp_time_wait_expire == 0)
1538 		tcp->tcp_time_wait_expire = 1;
1539 
1540 	ASSERT(TCP_IS_DETACHED(tcp));
1541 	ASSERT(tcp->tcp_state == TCPS_TIME_WAIT);
1542 	ASSERT(tcp->tcp_time_wait_next == NULL);
1543 	ASSERT(tcp->tcp_time_wait_prev == NULL);
1544 	TCP_DBGSTAT(tcps, tcp_time_wait);
1545 
1546 	mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1547 	if (tcp_time_wait->tcp_time_wait_head == NULL) {
1548 		ASSERT(tcp_time_wait->tcp_time_wait_tail == NULL);
1549 		tcp_time_wait->tcp_time_wait_head = tcp;
1550 	} else {
1551 		ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL);
1552 		ASSERT(tcp_time_wait->tcp_time_wait_tail->tcp_state ==
1553 		    TCPS_TIME_WAIT);
1554 		tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = tcp;
1555 		tcp->tcp_time_wait_prev = tcp_time_wait->tcp_time_wait_tail;
1556 	}
1557 	tcp_time_wait->tcp_time_wait_tail = tcp;
1558 	mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1559 }
1560 
1561 /* ARGSUSED */
1562 void
1563 tcp_timewait_output(void *arg, mblk_t *mp, void *arg2)
1564 {
1565 	conn_t	*connp = (conn_t *)arg;
1566 	tcp_t	*tcp = connp->conn_tcp;
1567 	tcp_stack_t	*tcps = tcp->tcp_tcps;
1568 
1569 	ASSERT(tcp != NULL);
1570 	if (tcp->tcp_state == TCPS_CLOSED) {
1571 		return;
1572 	}
1573 
1574 	ASSERT((tcp->tcp_family == AF_INET &&
1575 	    tcp->tcp_ipversion == IPV4_VERSION) ||
1576 	    (tcp->tcp_family == AF_INET6 &&
1577 	    (tcp->tcp_ipversion == IPV4_VERSION ||
1578 	    tcp->tcp_ipversion == IPV6_VERSION)));
1579 	ASSERT(!tcp->tcp_listener);
1580 
1581 	TCP_STAT(tcps, tcp_time_wait_reap);
1582 	ASSERT(TCP_IS_DETACHED(tcp));
1583 
1584 	/*
1585 	 * Because they have no upstream client to rebind or tcp_close()
1586 	 * them later, we axe the connection here and now.
1587 	 */
1588 	tcp_close_detached(tcp);
1589 }
1590 
1591 /*
1592  * Remove cached/latched IPsec references.
1593  */
1594 void
1595 tcp_ipsec_cleanup(tcp_t *tcp)
1596 {
1597 	conn_t		*connp = tcp->tcp_connp;
1598 
1599 	ASSERT(connp->conn_flags & IPCL_TCPCONN);
1600 
1601 	if (connp->conn_latch != NULL) {
1602 		IPLATCH_REFRELE(connp->conn_latch,
1603 		    connp->conn_netstack);
1604 		connp->conn_latch = NULL;
1605 	}
1606 	if (connp->conn_policy != NULL) {
1607 		IPPH_REFRELE(connp->conn_policy, connp->conn_netstack);
1608 		connp->conn_policy = NULL;
1609 	}
1610 }
1611 
1612 /*
1613  * Cleaup before placing on free list.
1614  * Disassociate from the netstack/tcp_stack_t since the freelist
1615  * is per squeue and not per netstack.
1616  */
1617 void
1618 tcp_cleanup(tcp_t *tcp)
1619 {
1620 	mblk_t		*mp;
1621 	char		*tcp_iphc;
1622 	int		tcp_iphc_len;
1623 	int		tcp_hdr_grown;
1624 	tcp_sack_info_t	*tcp_sack_info;
1625 	conn_t		*connp = tcp->tcp_connp;
1626 	tcp_stack_t	*tcps = tcp->tcp_tcps;
1627 	netstack_t	*ns = tcps->tcps_netstack;
1628 
1629 	tcp_bind_hash_remove(tcp);
1630 
1631 	/* Cleanup that which needs the netstack first */
1632 	tcp_ipsec_cleanup(tcp);
1633 
1634 	tcp_free(tcp);
1635 
1636 	/* Release any SSL context */
1637 	if (tcp->tcp_kssl_ent != NULL) {
1638 		kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY);
1639 		tcp->tcp_kssl_ent = NULL;
1640 	}
1641 
1642 	if (tcp->tcp_kssl_ctx != NULL) {
1643 		kssl_release_ctx(tcp->tcp_kssl_ctx);
1644 		tcp->tcp_kssl_ctx = NULL;
1645 	}
1646 	tcp->tcp_kssl_pending = B_FALSE;
1647 
1648 	conn_delete_ire(connp, NULL);
1649 
1650 	/*
1651 	 * Since we will bzero the entire structure, we need to
1652 	 * remove it and reinsert it in global hash list. We
1653 	 * know the walkers can't get to this conn because we
1654 	 * had set CONDEMNED flag earlier and checked reference
1655 	 * under conn_lock so walker won't pick it and when we
1656 	 * go the ipcl_globalhash_remove() below, no walker
1657 	 * can get to it.
1658 	 */
1659 	ipcl_globalhash_remove(connp);
1660 
1661 	/*
1662 	 * Now it is safe to decrement the reference counts.
1663 	 * This might be the last reference on the netstack and TCPS
1664 	 * in which case it will cause the tcp_g_q_close and
1665 	 * the freeing of the IP Instance.
1666 	 */
1667 	connp->conn_netstack = NULL;
1668 	netstack_rele(ns);
1669 	ASSERT(tcps != NULL);
1670 	tcp->tcp_tcps = NULL;
1671 	TCPS_REFRELE(tcps);
1672 
1673 	/* Save some state */
1674 	mp = tcp->tcp_timercache;
1675 
1676 	tcp_sack_info = tcp->tcp_sack_info;
1677 	tcp_iphc = tcp->tcp_iphc;
1678 	tcp_iphc_len = tcp->tcp_iphc_len;
1679 	tcp_hdr_grown = tcp->tcp_hdr_grown;
1680 
1681 	if (connp->conn_cred != NULL) {
1682 		crfree(connp->conn_cred);
1683 		connp->conn_cred = NULL;
1684 	}
1685 	if (connp->conn_peercred != NULL) {
1686 		crfree(connp->conn_peercred);
1687 		connp->conn_peercred = NULL;
1688 	}
1689 	ipcl_conn_cleanup(connp);
1690 	connp->conn_flags = IPCL_TCPCONN;
1691 	bzero(tcp, sizeof (tcp_t));
1692 
1693 	/* restore the state */
1694 	tcp->tcp_timercache = mp;
1695 
1696 	tcp->tcp_sack_info = tcp_sack_info;
1697 	tcp->tcp_iphc = tcp_iphc;
1698 	tcp->tcp_iphc_len = tcp_iphc_len;
1699 	tcp->tcp_hdr_grown = tcp_hdr_grown;
1700 
1701 	tcp->tcp_connp = connp;
1702 
1703 	ASSERT(connp->conn_tcp == tcp);
1704 	ASSERT(connp->conn_flags & IPCL_TCPCONN);
1705 	connp->conn_state_flags = CONN_INCIPIENT;
1706 	ASSERT(connp->conn_ulp == IPPROTO_TCP);
1707 	ASSERT(connp->conn_ref == 1);
1708 }
1709 
1710 /*
1711  * Blows away all tcps whose TIME_WAIT has expired. List traversal
1712  * is done forwards from the head.
1713  * This walks all stack instances since
1714  * tcp_time_wait remains global across all stacks.
1715  */
1716 /* ARGSUSED */
1717 void
1718 tcp_time_wait_collector(void *arg)
1719 {
1720 	tcp_t *tcp;
1721 	clock_t now;
1722 	mblk_t *mp;
1723 	conn_t *connp;
1724 	kmutex_t *lock;
1725 	boolean_t removed;
1726 
1727 	squeue_t *sqp = (squeue_t *)arg;
1728 	tcp_squeue_priv_t *tcp_time_wait =
1729 	    *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP));
1730 
1731 	mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1732 	tcp_time_wait->tcp_time_wait_tid = 0;
1733 
1734 	if (tcp_time_wait->tcp_free_list != NULL &&
1735 	    tcp_time_wait->tcp_free_list->tcp_in_free_list == B_TRUE) {
1736 		TCP_G_STAT(tcp_freelist_cleanup);
1737 		while ((tcp = tcp_time_wait->tcp_free_list) != NULL) {
1738 			tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next;
1739 			tcp->tcp_time_wait_next = NULL;
1740 			tcp_time_wait->tcp_free_list_cnt--;
1741 			ASSERT(tcp->tcp_tcps == NULL);
1742 			CONN_DEC_REF(tcp->tcp_connp);
1743 		}
1744 		ASSERT(tcp_time_wait->tcp_free_list_cnt == 0);
1745 	}
1746 
1747 	/*
1748 	 * In order to reap time waits reliably, we should use a
1749 	 * source of time that is not adjustable by the user -- hence
1750 	 * the call to ddi_get_lbolt().
1751 	 */
1752 	now = ddi_get_lbolt();
1753 	while ((tcp = tcp_time_wait->tcp_time_wait_head) != NULL) {
1754 		/*
1755 		 * Compare times using modular arithmetic, since
1756 		 * lbolt can wrapover.
1757 		 */
1758 		if ((now - tcp->tcp_time_wait_expire) < 0) {
1759 			break;
1760 		}
1761 
1762 		removed = tcp_time_wait_remove(tcp, tcp_time_wait);
1763 		ASSERT(removed);
1764 
1765 		connp = tcp->tcp_connp;
1766 		ASSERT(connp->conn_fanout != NULL);
1767 		lock = &connp->conn_fanout->connf_lock;
1768 		/*
1769 		 * This is essentially a TW reclaim fast path optimization for
1770 		 * performance where the timewait collector checks under the
1771 		 * fanout lock (so that no one else can get access to the
1772 		 * conn_t) that the refcnt is 2 i.e. one for TCP and one for
1773 		 * the classifier hash list. If ref count is indeed 2, we can
1774 		 * just remove the conn under the fanout lock and avoid
1775 		 * cleaning up the conn under the squeue, provided that
1776 		 * clustering callbacks are not enabled. If clustering is
1777 		 * enabled, we need to make the clustering callback before
1778 		 * setting the CONDEMNED flag and after dropping all locks and
1779 		 * so we forego this optimization and fall back to the slow
1780 		 * path. Also please see the comments in tcp_closei_local
1781 		 * regarding the refcnt logic.
1782 		 *
1783 		 * Since we are holding the tcp_time_wait_lock, its better
1784 		 * not to block on the fanout_lock because other connections
1785 		 * can't add themselves to time_wait list. So we do a
1786 		 * tryenter instead of mutex_enter.
1787 		 */
1788 		if (mutex_tryenter(lock)) {
1789 			mutex_enter(&connp->conn_lock);
1790 			if ((connp->conn_ref == 2) &&
1791 			    (cl_inet_disconnect == NULL)) {
1792 				ipcl_hash_remove_locked(connp,
1793 				    connp->conn_fanout);
1794 				/*
1795 				 * Set the CONDEMNED flag now itself so that
1796 				 * the refcnt cannot increase due to any
1797 				 * walker. But we have still not cleaned up
1798 				 * conn_ire_cache. This is still ok since
1799 				 * we are going to clean it up in tcp_cleanup
1800 				 * immediately and any interface unplumb
1801 				 * thread will wait till the ire is blown away
1802 				 */
1803 				connp->conn_state_flags |= CONN_CONDEMNED;
1804 				mutex_exit(lock);
1805 				mutex_exit(&connp->conn_lock);
1806 				if (tcp_time_wait->tcp_free_list_cnt <
1807 				    tcp_free_list_max_cnt) {
1808 					/* Add to head of tcp_free_list */
1809 					mutex_exit(
1810 					    &tcp_time_wait->tcp_time_wait_lock);
1811 					tcp_cleanup(tcp);
1812 					ASSERT(connp->conn_latch == NULL);
1813 					ASSERT(connp->conn_policy == NULL);
1814 					ASSERT(tcp->tcp_tcps == NULL);
1815 					ASSERT(connp->conn_netstack == NULL);
1816 
1817 					mutex_enter(
1818 					    &tcp_time_wait->tcp_time_wait_lock);
1819 					tcp->tcp_time_wait_next =
1820 					    tcp_time_wait->tcp_free_list;
1821 					tcp_time_wait->tcp_free_list = tcp;
1822 					tcp_time_wait->tcp_free_list_cnt++;
1823 					continue;
1824 				} else {
1825 					/* Do not add to tcp_free_list */
1826 					mutex_exit(
1827 					    &tcp_time_wait->tcp_time_wait_lock);
1828 					tcp_bind_hash_remove(tcp);
1829 					conn_delete_ire(tcp->tcp_connp, NULL);
1830 					tcp_ipsec_cleanup(tcp);
1831 					CONN_DEC_REF(tcp->tcp_connp);
1832 				}
1833 			} else {
1834 				CONN_INC_REF_LOCKED(connp);
1835 				mutex_exit(lock);
1836 				mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1837 				mutex_exit(&connp->conn_lock);
1838 				/*
1839 				 * We can reuse the closemp here since conn has
1840 				 * detached (otherwise we wouldn't even be in
1841 				 * time_wait list). tcp_closemp_used can safely
1842 				 * be changed without taking a lock as no other
1843 				 * thread can concurrently access it at this
1844 				 * point in the connection lifecycle.
1845 				 */
1846 
1847 				if (tcp->tcp_closemp.b_prev == NULL)
1848 					tcp->tcp_closemp_used = B_TRUE;
1849 				else
1850 					cmn_err(CE_PANIC,
1851 					    "tcp_timewait_collector: "
1852 					    "concurrent use of tcp_closemp: "
1853 					    "connp %p tcp %p\n", (void *)connp,
1854 					    (void *)tcp);
1855 
1856 				TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15);
1857 				mp = &tcp->tcp_closemp;
1858 				squeue_fill(connp->conn_sqp, mp,
1859 				    tcp_timewait_output, connp,
1860 				    SQTAG_TCP_TIMEWAIT);
1861 			}
1862 		} else {
1863 			mutex_enter(&connp->conn_lock);
1864 			CONN_INC_REF_LOCKED(connp);
1865 			mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1866 			mutex_exit(&connp->conn_lock);
1867 			/*
1868 			 * We can reuse the closemp here since conn has
1869 			 * detached (otherwise we wouldn't even be in
1870 			 * time_wait list). tcp_closemp_used can safely
1871 			 * be changed without taking a lock as no other
1872 			 * thread can concurrently access it at this
1873 			 * point in the connection lifecycle.
1874 			 */
1875 
1876 			if (tcp->tcp_closemp.b_prev == NULL)
1877 				tcp->tcp_closemp_used = B_TRUE;
1878 			else
1879 				cmn_err(CE_PANIC, "tcp_timewait_collector: "
1880 				    "concurrent use of tcp_closemp: "
1881 				    "connp %p tcp %p\n", (void *)connp,
1882 				    (void *)tcp);
1883 
1884 			TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15);
1885 			mp = &tcp->tcp_closemp;
1886 			squeue_fill(connp->conn_sqp, mp,
1887 			    tcp_timewait_output, connp, 0);
1888 		}
1889 		mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1890 	}
1891 
1892 	if (tcp_time_wait->tcp_free_list != NULL)
1893 		tcp_time_wait->tcp_free_list->tcp_in_free_list = B_TRUE;
1894 
1895 	tcp_time_wait->tcp_time_wait_tid =
1896 	    timeout(tcp_time_wait_collector, sqp, TCP_TIME_WAIT_DELAY);
1897 	mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1898 }
1899 /*
1900  * Reply to a clients T_CONN_RES TPI message. This function
1901  * is used only for TLI/XTI listener. Sockfs sends T_CONN_RES
1902  * on the acceptor STREAM and processed in tcp_wput_accept().
1903  * Read the block comment on top of tcp_conn_request().
1904  */
1905 static void
1906 tcp_accept(tcp_t *listener, mblk_t *mp)
1907 {
1908 	tcp_t	*acceptor;
1909 	tcp_t	*eager;
1910 	tcp_t   *tcp;
1911 	struct T_conn_res	*tcr;
1912 	t_uscalar_t	acceptor_id;
1913 	t_scalar_t	seqnum;
1914 	mblk_t	*opt_mp = NULL;	/* T_OPTMGMT_REQ messages */
1915 	mblk_t	*ok_mp;
1916 	mblk_t	*mp1;
1917 	tcp_stack_t	*tcps = listener->tcp_tcps;
1918 
1919 	if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) {
1920 		tcp_err_ack(listener, mp, TPROTO, 0);
1921 		return;
1922 	}
1923 	tcr = (struct T_conn_res *)mp->b_rptr;
1924 
1925 	/*
1926 	 * Under ILP32 the stream head points tcr->ACCEPTOR_id at the
1927 	 * read side queue of the streams device underneath us i.e. the
1928 	 * read side queue of 'ip'. Since we can't deference QUEUE_ptr we
1929 	 * look it up in the queue_hash.  Under LP64 it sends down the
1930 	 * minor_t of the accepting endpoint.
1931 	 *
1932 	 * Once the acceptor/eager are modified (in tcp_accept_swap) the
1933 	 * fanout hash lock is held.
1934 	 * This prevents any thread from entering the acceptor queue from
1935 	 * below (since it has not been hard bound yet i.e. any inbound
1936 	 * packets will arrive on the listener or default tcp queue and
1937 	 * go through tcp_lookup).
1938 	 * The CONN_INC_REF will prevent the acceptor from closing.
1939 	 *
1940 	 * XXX It is still possible for a tli application to send down data
1941 	 * on the accepting stream while another thread calls t_accept.
1942 	 * This should not be a problem for well-behaved applications since
1943 	 * the T_OK_ACK is sent after the queue swapping is completed.
1944 	 *
1945 	 * If the accepting fd is the same as the listening fd, avoid
1946 	 * queue hash lookup since that will return an eager listener in a
1947 	 * already established state.
1948 	 */
1949 	acceptor_id = tcr->ACCEPTOR_id;
1950 	mutex_enter(&listener->tcp_eager_lock);
1951 	if (listener->tcp_acceptor_id == acceptor_id) {
1952 		eager = listener->tcp_eager_next_q;
1953 		/* only count how many T_CONN_INDs so don't count q0 */
1954 		if ((listener->tcp_conn_req_cnt_q != 1) ||
1955 		    (eager->tcp_conn_req_seqnum != tcr->SEQ_number)) {
1956 			mutex_exit(&listener->tcp_eager_lock);
1957 			tcp_err_ack(listener, mp, TBADF, 0);
1958 			return;
1959 		}
1960 		if (listener->tcp_conn_req_cnt_q0 != 0) {
1961 			/* Throw away all the eagers on q0. */
1962 			tcp_eager_cleanup(listener, 1);
1963 		}
1964 		if (listener->tcp_syn_defense) {
1965 			listener->tcp_syn_defense = B_FALSE;
1966 			if (listener->tcp_ip_addr_cache != NULL) {
1967 				kmem_free(listener->tcp_ip_addr_cache,
1968 				    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t));
1969 				listener->tcp_ip_addr_cache = NULL;
1970 			}
1971 		}
1972 		/*
1973 		 * Transfer tcp_conn_req_max to the eager so that when
1974 		 * a disconnect occurs we can revert the endpoint to the
1975 		 * listen state.
1976 		 */
1977 		eager->tcp_conn_req_max = listener->tcp_conn_req_max;
1978 		ASSERT(listener->tcp_conn_req_cnt_q0 == 0);
1979 		/*
1980 		 * Get a reference on the acceptor just like the
1981 		 * tcp_acceptor_hash_lookup below.
1982 		 */
1983 		acceptor = listener;
1984 		CONN_INC_REF(acceptor->tcp_connp);
1985 	} else {
1986 		acceptor = tcp_acceptor_hash_lookup(acceptor_id, tcps);
1987 		if (acceptor == NULL) {
1988 			if (listener->tcp_debug) {
1989 				(void) strlog(TCP_MOD_ID, 0, 1,
1990 				    SL_ERROR|SL_TRACE,
1991 				    "tcp_accept: did not find acceptor 0x%x\n",
1992 				    acceptor_id);
1993 			}
1994 			mutex_exit(&listener->tcp_eager_lock);
1995 			tcp_err_ack(listener, mp, TPROVMISMATCH, 0);
1996 			return;
1997 		}
1998 		/*
1999 		 * Verify acceptor state. The acceptable states for an acceptor
2000 		 * include TCPS_IDLE and TCPS_BOUND.
2001 		 */
2002 		switch (acceptor->tcp_state) {
2003 		case TCPS_IDLE:
2004 			/* FALLTHRU */
2005 		case TCPS_BOUND:
2006 			break;
2007 		default:
2008 			CONN_DEC_REF(acceptor->tcp_connp);
2009 			mutex_exit(&listener->tcp_eager_lock);
2010 			tcp_err_ack(listener, mp, TOUTSTATE, 0);
2011 			return;
2012 		}
2013 	}
2014 
2015 	/* The listener must be in TCPS_LISTEN */
2016 	if (listener->tcp_state != TCPS_LISTEN) {
2017 		CONN_DEC_REF(acceptor->tcp_connp);
2018 		mutex_exit(&listener->tcp_eager_lock);
2019 		tcp_err_ack(listener, mp, TOUTSTATE, 0);
2020 		return;
2021 	}
2022 
2023 	/*
2024 	 * Rendezvous with an eager connection request packet hanging off
2025 	 * 'tcp' that has the 'seqnum' tag.  We tagged the detached open
2026 	 * tcp structure when the connection packet arrived in
2027 	 * tcp_conn_request().
2028 	 */
2029 	seqnum = tcr->SEQ_number;
2030 	eager = listener;
2031 	do {
2032 		eager = eager->tcp_eager_next_q;
2033 		if (eager == NULL) {
2034 			CONN_DEC_REF(acceptor->tcp_connp);
2035 			mutex_exit(&listener->tcp_eager_lock);
2036 			tcp_err_ack(listener, mp, TBADSEQ, 0);
2037 			return;
2038 		}
2039 	} while (eager->tcp_conn_req_seqnum != seqnum);
2040 	mutex_exit(&listener->tcp_eager_lock);
2041 
2042 	/*
2043 	 * At this point, both acceptor and listener have 2 ref
2044 	 * that they begin with. Acceptor has one additional ref
2045 	 * we placed in lookup while listener has 3 additional
2046 	 * ref for being behind the squeue (tcp_accept() is
2047 	 * done on listener's squeue); being in classifier hash;
2048 	 * and eager's ref on listener.
2049 	 */
2050 	ASSERT(listener->tcp_connp->conn_ref >= 5);
2051 	ASSERT(acceptor->tcp_connp->conn_ref >= 3);
2052 
2053 	/*
2054 	 * The eager at this point is set in its own squeue and
2055 	 * could easily have been killed (tcp_accept_finish will
2056 	 * deal with that) because of a TH_RST so we can only
2057 	 * ASSERT for a single ref.
2058 	 */
2059 	ASSERT(eager->tcp_connp->conn_ref >= 1);
2060 
2061 	/* Pre allocate the stroptions mblk also */
2062 	opt_mp = allocb(sizeof (struct stroptions), BPRI_HI);
2063 	if (opt_mp == NULL) {
2064 		CONN_DEC_REF(acceptor->tcp_connp);
2065 		CONN_DEC_REF(eager->tcp_connp);
2066 		tcp_err_ack(listener, mp, TSYSERR, ENOMEM);
2067 		return;
2068 	}
2069 	DB_TYPE(opt_mp) = M_SETOPTS;
2070 	opt_mp->b_wptr += sizeof (struct stroptions);
2071 
2072 	/*
2073 	 * Prepare for inheriting IPV6_BOUND_IF and IPV6_RECVPKTINFO
2074 	 * from listener to acceptor. The message is chained on opt_mp
2075 	 * which will be sent onto eager's squeue.
2076 	 */
2077 	if (listener->tcp_bound_if != 0) {
2078 		/* allocate optmgmt req */
2079 		mp1 = tcp_setsockopt_mp(IPPROTO_IPV6,
2080 		    IPV6_BOUND_IF, (char *)&listener->tcp_bound_if,
2081 		    sizeof (int));
2082 		if (mp1 != NULL)
2083 			linkb(opt_mp, mp1);
2084 	}
2085 	if (listener->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) {
2086 		uint_t on = 1;
2087 
2088 		/* allocate optmgmt req */
2089 		mp1 = tcp_setsockopt_mp(IPPROTO_IPV6,
2090 		    IPV6_RECVPKTINFO, (char *)&on, sizeof (on));
2091 		if (mp1 != NULL)
2092 			linkb(opt_mp, mp1);
2093 	}
2094 
2095 	/* Re-use mp1 to hold a copy of mp, in case reallocb fails */
2096 	if ((mp1 = copymsg(mp)) == NULL) {
2097 		CONN_DEC_REF(acceptor->tcp_connp);
2098 		CONN_DEC_REF(eager->tcp_connp);
2099 		freemsg(opt_mp);
2100 		tcp_err_ack(listener, mp, TSYSERR, ENOMEM);
2101 		return;
2102 	}
2103 
2104 	tcr = (struct T_conn_res *)mp1->b_rptr;
2105 
2106 	/*
2107 	 * This is an expanded version of mi_tpi_ok_ack_alloc()
2108 	 * which allocates a larger mblk and appends the new
2109 	 * local address to the ok_ack.  The address is copied by
2110 	 * soaccept() for getsockname().
2111 	 */
2112 	{
2113 		int extra;
2114 
2115 		extra = (eager->tcp_family == AF_INET) ?
2116 		    sizeof (sin_t) : sizeof (sin6_t);
2117 
2118 		/*
2119 		 * Try to re-use mp, if possible.  Otherwise, allocate
2120 		 * an mblk and return it as ok_mp.  In any case, mp
2121 		 * is no longer usable upon return.
2122 		 */
2123 		if ((ok_mp = mi_tpi_ok_ack_alloc_extra(mp, extra)) == NULL) {
2124 			CONN_DEC_REF(acceptor->tcp_connp);
2125 			CONN_DEC_REF(eager->tcp_connp);
2126 			freemsg(opt_mp);
2127 			/* Original mp has been freed by now, so use mp1 */
2128 			tcp_err_ack(listener, mp1, TSYSERR, ENOMEM);
2129 			return;
2130 		}
2131 
2132 		mp = NULL;	/* We should never use mp after this point */
2133 
2134 		switch (extra) {
2135 		case sizeof (sin_t): {
2136 				sin_t *sin = (sin_t *)ok_mp->b_wptr;
2137 
2138 				ok_mp->b_wptr += extra;
2139 				sin->sin_family = AF_INET;
2140 				sin->sin_port = eager->tcp_lport;
2141 				sin->sin_addr.s_addr =
2142 				    eager->tcp_ipha->ipha_src;
2143 				break;
2144 			}
2145 		case sizeof (sin6_t): {
2146 				sin6_t *sin6 = (sin6_t *)ok_mp->b_wptr;
2147 
2148 				ok_mp->b_wptr += extra;
2149 				sin6->sin6_family = AF_INET6;
2150 				sin6->sin6_port = eager->tcp_lport;
2151 				if (eager->tcp_ipversion == IPV4_VERSION) {
2152 					sin6->sin6_flowinfo = 0;
2153 					IN6_IPADDR_TO_V4MAPPED(
2154 					    eager->tcp_ipha->ipha_src,
2155 					    &sin6->sin6_addr);
2156 				} else {
2157 					ASSERT(eager->tcp_ip6h != NULL);
2158 					sin6->sin6_flowinfo =
2159 					    eager->tcp_ip6h->ip6_vcf &
2160 					    ~IPV6_VERS_AND_FLOW_MASK;
2161 					sin6->sin6_addr =
2162 					    eager->tcp_ip6h->ip6_src;
2163 				}
2164 				sin6->sin6_scope_id = 0;
2165 				sin6->__sin6_src_id = 0;
2166 				break;
2167 			}
2168 		default:
2169 			break;
2170 		}
2171 		ASSERT(ok_mp->b_wptr <= ok_mp->b_datap->db_lim);
2172 	}
2173 
2174 	/*
2175 	 * If there are no options we know that the T_CONN_RES will
2176 	 * succeed. However, we can't send the T_OK_ACK upstream until
2177 	 * the tcp_accept_swap is done since it would be dangerous to
2178 	 * let the application start using the new fd prior to the swap.
2179 	 */
2180 	tcp_accept_swap(listener, acceptor, eager);
2181 
2182 	/*
2183 	 * tcp_accept_swap unlinks eager from listener but does not drop
2184 	 * the eager's reference on the listener.
2185 	 */
2186 	ASSERT(eager->tcp_listener == NULL);
2187 	ASSERT(listener->tcp_connp->conn_ref >= 5);
2188 
2189 	/*
2190 	 * The eager is now associated with its own queue. Insert in
2191 	 * the hash so that the connection can be reused for a future
2192 	 * T_CONN_RES.
2193 	 */
2194 	tcp_acceptor_hash_insert(acceptor_id, eager);
2195 
2196 	/*
2197 	 * We now do the processing of options with T_CONN_RES.
2198 	 * We delay till now since we wanted to have queue to pass to
2199 	 * option processing routines that points back to the right
2200 	 * instance structure which does not happen until after
2201 	 * tcp_accept_swap().
2202 	 *
2203 	 * Note:
2204 	 * The sanity of the logic here assumes that whatever options
2205 	 * are appropriate to inherit from listner=>eager are done
2206 	 * before this point, and whatever were to be overridden (or not)
2207 	 * in transfer logic from eager=>acceptor in tcp_accept_swap().
2208 	 * [ Warning: acceptor endpoint can have T_OPTMGMT_REQ done to it
2209 	 *   before its ACCEPTOR_id comes down in T_CONN_RES ]
2210 	 * This may not be true at this point in time but can be fixed
2211 	 * independently. This option processing code starts with
2212 	 * the instantiated acceptor instance and the final queue at
2213 	 * this point.
2214 	 */
2215 
2216 	if (tcr->OPT_length != 0) {
2217 		/* Options to process */
2218 		int t_error = 0;
2219 		int sys_error = 0;
2220 		int do_disconnect = 0;
2221 
2222 		if (tcp_conprim_opt_process(eager, mp1,
2223 		    &do_disconnect, &t_error, &sys_error) < 0) {
2224 			eager->tcp_accept_error = 1;
2225 			if (do_disconnect) {
2226 				/*
2227 				 * An option failed which does not allow
2228 				 * connection to be accepted.
2229 				 *
2230 				 * We allow T_CONN_RES to succeed and
2231 				 * put a T_DISCON_IND on the eager queue.
2232 				 */
2233 				ASSERT(t_error == 0 && sys_error == 0);
2234 				eager->tcp_send_discon_ind = 1;
2235 			} else {
2236 				ASSERT(t_error != 0);
2237 				freemsg(ok_mp);
2238 				/*
2239 				 * Original mp was either freed or set
2240 				 * to ok_mp above, so use mp1 instead.
2241 				 */
2242 				tcp_err_ack(listener, mp1, t_error, sys_error);
2243 				goto finish;
2244 			}
2245 		}
2246 		/*
2247 		 * Most likely success in setting options (except if
2248 		 * eager->tcp_send_discon_ind set).
2249 		 * mp1 option buffer represented by OPT_length/offset
2250 		 * potentially modified and contains results of setting
2251 		 * options at this point
2252 		 */
2253 	}
2254 
2255 	/* We no longer need mp1, since all options processing has passed */
2256 	freemsg(mp1);
2257 
2258 	putnext(listener->tcp_rq, ok_mp);
2259 
2260 	mutex_enter(&listener->tcp_eager_lock);
2261 	if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) {
2262 		tcp_t	*tail;
2263 		mblk_t	*conn_ind;
2264 
2265 		/*
2266 		 * This path should not be executed if listener and
2267 		 * acceptor streams are the same.
2268 		 */
2269 		ASSERT(listener != acceptor);
2270 
2271 		tcp = listener->tcp_eager_prev_q0;
2272 		/*
2273 		 * listener->tcp_eager_prev_q0 points to the TAIL of the
2274 		 * deferred T_conn_ind queue. We need to get to the head of
2275 		 * the queue in order to send up T_conn_ind the same order as
2276 		 * how the 3WHS is completed.
2277 		 */
2278 		while (tcp != listener) {
2279 			if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0)
2280 				break;
2281 			else
2282 				tcp = tcp->tcp_eager_prev_q0;
2283 		}
2284 		ASSERT(tcp != listener);
2285 		conn_ind = tcp->tcp_conn.tcp_eager_conn_ind;
2286 		ASSERT(conn_ind != NULL);
2287 		tcp->tcp_conn.tcp_eager_conn_ind = NULL;
2288 
2289 		/* Move from q0 to q */
2290 		ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
2291 		listener->tcp_conn_req_cnt_q0--;
2292 		listener->tcp_conn_req_cnt_q++;
2293 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
2294 		    tcp->tcp_eager_prev_q0;
2295 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
2296 		    tcp->tcp_eager_next_q0;
2297 		tcp->tcp_eager_prev_q0 = NULL;
2298 		tcp->tcp_eager_next_q0 = NULL;
2299 		tcp->tcp_conn_def_q0 = B_FALSE;
2300 
2301 		/* Make sure the tcp isn't in the list of droppables */
2302 		ASSERT(tcp->tcp_eager_next_drop_q0 == NULL &&
2303 		    tcp->tcp_eager_prev_drop_q0 == NULL);
2304 
2305 		/*
2306 		 * Insert at end of the queue because sockfs sends
2307 		 * down T_CONN_RES in chronological order. Leaving
2308 		 * the older conn indications at front of the queue
2309 		 * helps reducing search time.
2310 		 */
2311 		tail = listener->tcp_eager_last_q;
2312 		if (tail != NULL)
2313 			tail->tcp_eager_next_q = tcp;
2314 		else
2315 			listener->tcp_eager_next_q = tcp;
2316 		listener->tcp_eager_last_q = tcp;
2317 		tcp->tcp_eager_next_q = NULL;
2318 		mutex_exit(&listener->tcp_eager_lock);
2319 		putnext(tcp->tcp_rq, conn_ind);
2320 	} else {
2321 		mutex_exit(&listener->tcp_eager_lock);
2322 	}
2323 
2324 	/*
2325 	 * Done with the acceptor - free it
2326 	 *
2327 	 * Note: from this point on, no access to listener should be made
2328 	 * as listener can be equal to acceptor.
2329 	 */
2330 finish:
2331 	ASSERT(acceptor->tcp_detached);
2332 	ASSERT(tcps->tcps_g_q != NULL);
2333 	acceptor->tcp_rq = tcps->tcps_g_q;
2334 	acceptor->tcp_wq = WR(tcps->tcps_g_q);
2335 	(void) tcp_clean_death(acceptor, 0, 2);
2336 	CONN_DEC_REF(acceptor->tcp_connp);
2337 
2338 	/*
2339 	 * In case we already received a FIN we have to make tcp_rput send
2340 	 * the ordrel_ind. This will also send up a window update if the window
2341 	 * has opened up.
2342 	 *
2343 	 * In the normal case of a successful connection acceptance
2344 	 * we give the O_T_BIND_REQ to the read side put procedure as an
2345 	 * indication that this was just accepted. This tells tcp_rput to
2346 	 * pass up any data queued in tcp_rcv_list.
2347 	 *
2348 	 * In the fringe case where options sent with T_CONN_RES failed and
2349 	 * we required, we would be indicating a T_DISCON_IND to blow
2350 	 * away this connection.
2351 	 */
2352 
2353 	/*
2354 	 * XXX: we currently have a problem if XTI application closes the
2355 	 * acceptor stream in between. This problem exists in on10-gate also
2356 	 * and is well know but nothing can be done short of major rewrite
2357 	 * to fix it. Now it is possible to take care of it by assigning TLI/XTI
2358 	 * eager same squeue as listener (we can distinguish non socket
2359 	 * listeners at the time of handling a SYN in tcp_conn_request)
2360 	 * and do most of the work that tcp_accept_finish does here itself
2361 	 * and then get behind the acceptor squeue to access the acceptor
2362 	 * queue.
2363 	 */
2364 	/*
2365 	 * We already have a ref on tcp so no need to do one before squeue_fill
2366 	 */
2367 	squeue_fill(eager->tcp_connp->conn_sqp, opt_mp,
2368 	    tcp_accept_finish, eager->tcp_connp, SQTAG_TCP_ACCEPT_FINISH);
2369 }
2370 
2371 /*
2372  * Swap information between the eager and acceptor for a TLI/XTI client.
2373  * The sockfs accept is done on the acceptor stream and control goes
2374  * through tcp_wput_accept() and tcp_accept()/tcp_accept_swap() is not
2375  * called. In either case, both the eager and listener are in their own
2376  * perimeter (squeue) and the code has to deal with potential race.
2377  *
2378  * See the block comment on top of tcp_accept() and tcp_wput_accept().
2379  */
2380 static void
2381 tcp_accept_swap(tcp_t *listener, tcp_t *acceptor, tcp_t *eager)
2382 {
2383 	conn_t	*econnp, *aconnp;
2384 
2385 	ASSERT(eager->tcp_rq == listener->tcp_rq);
2386 	ASSERT(eager->tcp_detached && !acceptor->tcp_detached);
2387 	ASSERT(!eager->tcp_hard_bound);
2388 	ASSERT(!TCP_IS_SOCKET(acceptor));
2389 	ASSERT(!TCP_IS_SOCKET(eager));
2390 	ASSERT(!TCP_IS_SOCKET(listener));
2391 
2392 	acceptor->tcp_detached = B_TRUE;
2393 	/*
2394 	 * To permit stream re-use by TLI/XTI, the eager needs a copy of
2395 	 * the acceptor id.
2396 	 */
2397 	eager->tcp_acceptor_id = acceptor->tcp_acceptor_id;
2398 
2399 	/* remove eager from listen list... */
2400 	mutex_enter(&listener->tcp_eager_lock);
2401 	tcp_eager_unlink(eager);
2402 	ASSERT(eager->tcp_eager_next_q == NULL &&
2403 	    eager->tcp_eager_last_q == NULL);
2404 	ASSERT(eager->tcp_eager_next_q0 == NULL &&
2405 	    eager->tcp_eager_prev_q0 == NULL);
2406 	mutex_exit(&listener->tcp_eager_lock);
2407 	eager->tcp_rq = acceptor->tcp_rq;
2408 	eager->tcp_wq = acceptor->tcp_wq;
2409 
2410 	econnp = eager->tcp_connp;
2411 	aconnp = acceptor->tcp_connp;
2412 
2413 	eager->tcp_rq->q_ptr = econnp;
2414 	eager->tcp_wq->q_ptr = econnp;
2415 
2416 	/*
2417 	 * In the TLI/XTI loopback case, we are inside the listener's squeue,
2418 	 * which might be a different squeue from our peer TCP instance.
2419 	 * For TCP Fusion, the peer expects that whenever tcp_detached is
2420 	 * clear, our TCP queues point to the acceptor's queues.  Thus, use
2421 	 * membar_producer() to ensure that the assignments of tcp_rq/tcp_wq
2422 	 * above reach global visibility prior to the clearing of tcp_detached.
2423 	 */
2424 	membar_producer();
2425 	eager->tcp_detached = B_FALSE;
2426 
2427 	ASSERT(eager->tcp_ack_tid == 0);
2428 
2429 	econnp->conn_dev = aconnp->conn_dev;
2430 	econnp->conn_minor_arena = aconnp->conn_minor_arena;
2431 	ASSERT(econnp->conn_minor_arena != NULL);
2432 	if (eager->tcp_cred != NULL)
2433 		crfree(eager->tcp_cred);
2434 	eager->tcp_cred = econnp->conn_cred = aconnp->conn_cred;
2435 	ASSERT(econnp->conn_netstack == aconnp->conn_netstack);
2436 	ASSERT(eager->tcp_tcps == acceptor->tcp_tcps);
2437 
2438 	aconnp->conn_cred = NULL;
2439 
2440 	econnp->conn_zoneid = aconnp->conn_zoneid;
2441 	econnp->conn_allzones = aconnp->conn_allzones;
2442 
2443 	econnp->conn_mac_exempt = aconnp->conn_mac_exempt;
2444 	aconnp->conn_mac_exempt = B_FALSE;
2445 
2446 	ASSERT(aconnp->conn_peercred == NULL);
2447 
2448 	/* Do the IPC initialization */
2449 	CONN_INC_REF(econnp);
2450 
2451 	econnp->conn_multicast_loop = aconnp->conn_multicast_loop;
2452 	econnp->conn_af_isv6 = aconnp->conn_af_isv6;
2453 	econnp->conn_pkt_isv6 = aconnp->conn_pkt_isv6;
2454 
2455 	/* Done with old IPC. Drop its ref on its connp */
2456 	CONN_DEC_REF(aconnp);
2457 }
2458 
2459 
2460 /*
2461  * Adapt to the information, such as rtt and rtt_sd, provided from the
2462  * ire cached in conn_cache_ire. If no ire cached, do a ire lookup.
2463  *
2464  * Checks for multicast and broadcast destination address.
2465  * Returns zero on failure; non-zero if ok.
2466  *
2467  * Note that the MSS calculation here is based on the info given in
2468  * the IRE.  We do not do any calculation based on TCP options.  They
2469  * will be handled in tcp_rput_other() and tcp_rput_data() when TCP
2470  * knows which options to use.
2471  *
2472  * Note on how TCP gets its parameters for a connection.
2473  *
2474  * When a tcp_t structure is allocated, it gets all the default parameters.
2475  * In tcp_adapt_ire(), it gets those metric parameters, like rtt, rtt_sd,
2476  * spipe, rpipe, ... from the route metrics.  Route metric overrides the
2477  * default.  But if there is an associated tcp_host_param, it will override
2478  * the metrics.
2479  *
2480  * An incoming SYN with a multicast or broadcast destination address, is dropped
2481  * in 1 of 2 places.
2482  *
2483  * 1. If the packet was received over the wire it is dropped in
2484  * ip_rput_process_broadcast()
2485  *
2486  * 2. If the packet was received through internal IP loopback, i.e. the packet
2487  * was generated and received on the same machine, it is dropped in
2488  * ip_wput_local()
2489  *
2490  * An incoming SYN with a multicast or broadcast source address is always
2491  * dropped in tcp_adapt_ire. The same logic in tcp_adapt_ire also serves to
2492  * reject an attempt to connect to a broadcast or multicast (destination)
2493  * address.
2494  */
2495 static int
2496 tcp_adapt_ire(tcp_t *tcp, mblk_t *ire_mp)
2497 {
2498 	tcp_hsp_t	*hsp;
2499 	ire_t		*ire;
2500 	ire_t		*sire = NULL;
2501 	iulp_t		*ire_uinfo = NULL;
2502 	uint32_t	mss_max;
2503 	uint32_t	mss;
2504 	boolean_t	tcp_detached = TCP_IS_DETACHED(tcp);
2505 	conn_t		*connp = tcp->tcp_connp;
2506 	boolean_t	ire_cacheable = B_FALSE;
2507 	zoneid_t	zoneid = connp->conn_zoneid;
2508 	int		match_flags = MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT |
2509 	    MATCH_IRE_SECATTR;
2510 	ts_label_t	*tsl = crgetlabel(CONN_CRED(connp));
2511 	ill_t		*ill = NULL;
2512 	boolean_t	incoming = (ire_mp == NULL);
2513 	tcp_stack_t	*tcps = tcp->tcp_tcps;
2514 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
2515 
2516 	ASSERT(connp->conn_ire_cache == NULL);
2517 
2518 	if (tcp->tcp_ipversion == IPV4_VERSION) {
2519 
2520 		if (CLASSD(tcp->tcp_connp->conn_rem)) {
2521 			BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards);
2522 			return (0);
2523 		}
2524 		/*
2525 		 * If IP_NEXTHOP is set, then look for an IRE_CACHE
2526 		 * for the destination with the nexthop as gateway.
2527 		 * ire_ctable_lookup() is used because this particular
2528 		 * ire, if it exists, will be marked private.
2529 		 * If that is not available, use the interface ire
2530 		 * for the nexthop.
2531 		 *
2532 		 * TSol: tcp_update_label will detect label mismatches based
2533 		 * only on the destination's label, but that would not
2534 		 * detect label mismatches based on the security attributes
2535 		 * of routes or next hop gateway. Hence we need to pass the
2536 		 * label to ire_ftable_lookup below in order to locate the
2537 		 * right prefix (and/or) ire cache. Similarly we also need
2538 		 * pass the label to the ire_cache_lookup below to locate
2539 		 * the right ire that also matches on the label.
2540 		 */
2541 		if (tcp->tcp_connp->conn_nexthop_set) {
2542 			ire = ire_ctable_lookup(tcp->tcp_connp->conn_rem,
2543 			    tcp->tcp_connp->conn_nexthop_v4, 0, NULL, zoneid,
2544 			    tsl, MATCH_IRE_MARK_PRIVATE_ADDR | MATCH_IRE_GW,
2545 			    ipst);
2546 			if (ire == NULL) {
2547 				ire = ire_ftable_lookup(
2548 				    tcp->tcp_connp->conn_nexthop_v4,
2549 				    0, 0, IRE_INTERFACE, NULL, NULL, zoneid, 0,
2550 				    tsl, match_flags, ipst);
2551 				if (ire == NULL)
2552 					return (0);
2553 			} else {
2554 				ire_uinfo = &ire->ire_uinfo;
2555 			}
2556 		} else {
2557 			ire = ire_cache_lookup(tcp->tcp_connp->conn_rem,
2558 			    zoneid, tsl, ipst);
2559 			if (ire != NULL) {
2560 				ire_cacheable = B_TRUE;
2561 				ire_uinfo = (ire_mp != NULL) ?
2562 				    &((ire_t *)ire_mp->b_rptr)->ire_uinfo:
2563 				    &ire->ire_uinfo;
2564 
2565 			} else {
2566 				if (ire_mp == NULL) {
2567 					ire = ire_ftable_lookup(
2568 					    tcp->tcp_connp->conn_rem,
2569 					    0, 0, 0, NULL, &sire, zoneid, 0,
2570 					    tsl, (MATCH_IRE_RECURSIVE |
2571 					    MATCH_IRE_DEFAULT), ipst);
2572 					if (ire == NULL)
2573 						return (0);
2574 					ire_uinfo = (sire != NULL) ?
2575 					    &sire->ire_uinfo :
2576 					    &ire->ire_uinfo;
2577 				} else {
2578 					ire = (ire_t *)ire_mp->b_rptr;
2579 					ire_uinfo =
2580 					    &((ire_t *)
2581 					    ire_mp->b_rptr)->ire_uinfo;
2582 				}
2583 			}
2584 		}
2585 		ASSERT(ire != NULL);
2586 
2587 		if ((ire->ire_src_addr == INADDR_ANY) ||
2588 		    (ire->ire_type & IRE_BROADCAST)) {
2589 			/*
2590 			 * ire->ire_mp is non null when ire_mp passed in is used
2591 			 * ire->ire_mp is set in ip_bind_insert_ire[_v6]().
2592 			 */
2593 			if (ire->ire_mp == NULL)
2594 				ire_refrele(ire);
2595 			if (sire != NULL)
2596 				ire_refrele(sire);
2597 			return (0);
2598 		}
2599 
2600 		if (tcp->tcp_ipha->ipha_src == INADDR_ANY) {
2601 			ipaddr_t src_addr;
2602 
2603 			/*
2604 			 * ip_bind_connected() has stored the correct source
2605 			 * address in conn_src.
2606 			 */
2607 			src_addr = tcp->tcp_connp->conn_src;
2608 			tcp->tcp_ipha->ipha_src = src_addr;
2609 			/*
2610 			 * Copy of the src addr. in tcp_t is needed
2611 			 * for the lookup funcs.
2612 			 */
2613 			IN6_IPADDR_TO_V4MAPPED(src_addr, &tcp->tcp_ip_src_v6);
2614 		}
2615 		/*
2616 		 * Set the fragment bit so that IP will tell us if the MTU
2617 		 * should change. IP tells us the latest setting of
2618 		 * ip_path_mtu_discovery through ire_frag_flag.
2619 		 */
2620 		if (ipst->ips_ip_path_mtu_discovery) {
2621 			tcp->tcp_ipha->ipha_fragment_offset_and_flags =
2622 			    htons(IPH_DF);
2623 		}
2624 		/*
2625 		 * If ire_uinfo is NULL, this is the IRE_INTERFACE case
2626 		 * for IP_NEXTHOP. No cache ire has been found for the
2627 		 * destination and we are working with the nexthop's
2628 		 * interface ire. Since we need to forward all packets
2629 		 * to the nexthop first, we "blindly" set tcp_localnet
2630 		 * to false, eventhough the destination may also be
2631 		 * onlink.
2632 		 */
2633 		if (ire_uinfo == NULL)
2634 			tcp->tcp_localnet = 0;
2635 		else
2636 			tcp->tcp_localnet = (ire->ire_gateway_addr == 0);
2637 	} else {
2638 		/*
2639 		 * For incoming connection ire_mp = NULL
2640 		 * For outgoing connection ire_mp != NULL
2641 		 * Technically we should check conn_incoming_ill
2642 		 * when ire_mp is NULL and conn_outgoing_ill when
2643 		 * ire_mp is non-NULL. But this is performance
2644 		 * critical path and for IPV*_BOUND_IF, outgoing
2645 		 * and incoming ill are always set to the same value.
2646 		 */
2647 		ill_t	*dst_ill = NULL;
2648 		ipif_t  *dst_ipif = NULL;
2649 
2650 		ASSERT(connp->conn_outgoing_ill == connp->conn_incoming_ill);
2651 
2652 		if (connp->conn_outgoing_ill != NULL) {
2653 			/* Outgoing or incoming path */
2654 			int   err;
2655 
2656 			dst_ill = conn_get_held_ill(connp,
2657 			    &connp->conn_outgoing_ill, &err);
2658 			if (err == ILL_LOOKUP_FAILED || dst_ill == NULL) {
2659 				ip1dbg(("tcp_adapt_ire: ill_lookup failed\n"));
2660 				return (0);
2661 			}
2662 			match_flags |= MATCH_IRE_ILL;
2663 			dst_ipif = dst_ill->ill_ipif;
2664 		}
2665 		ire = ire_ctable_lookup_v6(&tcp->tcp_connp->conn_remv6,
2666 		    0, 0, dst_ipif, zoneid, tsl, match_flags, ipst);
2667 
2668 		if (ire != NULL) {
2669 			ire_cacheable = B_TRUE;
2670 			ire_uinfo = (ire_mp != NULL) ?
2671 			    &((ire_t *)ire_mp->b_rptr)->ire_uinfo:
2672 			    &ire->ire_uinfo;
2673 		} else {
2674 			if (ire_mp == NULL) {
2675 				ire = ire_ftable_lookup_v6(
2676 				    &tcp->tcp_connp->conn_remv6,
2677 				    0, 0, 0, dst_ipif, &sire, zoneid,
2678 				    0, tsl, match_flags, ipst);
2679 				if (ire == NULL) {
2680 					if (dst_ill != NULL)
2681 						ill_refrele(dst_ill);
2682 					return (0);
2683 				}
2684 				ire_uinfo = (sire != NULL) ? &sire->ire_uinfo :
2685 				    &ire->ire_uinfo;
2686 			} else {
2687 				ire = (ire_t *)ire_mp->b_rptr;
2688 				ire_uinfo =
2689 				    &((ire_t *)ire_mp->b_rptr)->ire_uinfo;
2690 			}
2691 		}
2692 		if (dst_ill != NULL)
2693 			ill_refrele(dst_ill);
2694 
2695 		ASSERT(ire != NULL);
2696 		ASSERT(ire_uinfo != NULL);
2697 
2698 		if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_src_addr_v6) ||
2699 		    IN6_IS_ADDR_MULTICAST(&ire->ire_addr_v6)) {
2700 			/*
2701 			 * ire->ire_mp is non null when ire_mp passed in is used
2702 			 * ire->ire_mp is set in ip_bind_insert_ire[_v6]().
2703 			 */
2704 			if (ire->ire_mp == NULL)
2705 				ire_refrele(ire);
2706 			if (sire != NULL)
2707 				ire_refrele(sire);
2708 			return (0);
2709 		}
2710 
2711 		if (IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip6h->ip6_src)) {
2712 			in6_addr_t	src_addr;
2713 
2714 			/*
2715 			 * ip_bind_connected_v6() has stored the correct source
2716 			 * address per IPv6 addr. selection policy in
2717 			 * conn_src_v6.
2718 			 */
2719 			src_addr = tcp->tcp_connp->conn_srcv6;
2720 
2721 			tcp->tcp_ip6h->ip6_src = src_addr;
2722 			/*
2723 			 * Copy of the src addr. in tcp_t is needed
2724 			 * for the lookup funcs.
2725 			 */
2726 			tcp->tcp_ip_src_v6 = src_addr;
2727 			ASSERT(IN6_ARE_ADDR_EQUAL(&tcp->tcp_ip6h->ip6_src,
2728 			    &connp->conn_srcv6));
2729 		}
2730 		tcp->tcp_localnet =
2731 		    IN6_IS_ADDR_UNSPECIFIED(&ire->ire_gateway_addr_v6);
2732 	}
2733 
2734 	/*
2735 	 * This allows applications to fail quickly when connections are made
2736 	 * to dead hosts. Hosts can be labeled dead by adding a reject route
2737 	 * with both the RTF_REJECT and RTF_PRIVATE flags set.
2738 	 */
2739 	if ((ire->ire_flags & RTF_REJECT) &&
2740 	    (ire->ire_flags & RTF_PRIVATE))
2741 		goto error;
2742 
2743 	/*
2744 	 * Make use of the cached rtt and rtt_sd values to calculate the
2745 	 * initial RTO.  Note that they are already initialized in
2746 	 * tcp_init_values().
2747 	 * If ire_uinfo is NULL, i.e., we do not have a cache ire for
2748 	 * IP_NEXTHOP, but instead are using the interface ire for the
2749 	 * nexthop, then we do not use the ire_uinfo from that ire to
2750 	 * do any initializations.
2751 	 */
2752 	if (ire_uinfo != NULL) {
2753 		if (ire_uinfo->iulp_rtt != 0) {
2754 			clock_t	rto;
2755 
2756 			tcp->tcp_rtt_sa = ire_uinfo->iulp_rtt;
2757 			tcp->tcp_rtt_sd = ire_uinfo->iulp_rtt_sd;
2758 			rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd +
2759 			    tcps->tcps_rexmit_interval_extra +
2760 			    (tcp->tcp_rtt_sa >> 5);
2761 
2762 			if (rto > tcps->tcps_rexmit_interval_max) {
2763 				tcp->tcp_rto = tcps->tcps_rexmit_interval_max;
2764 			} else if (rto < tcps->tcps_rexmit_interval_min) {
2765 				tcp->tcp_rto = tcps->tcps_rexmit_interval_min;
2766 			} else {
2767 				tcp->tcp_rto = rto;
2768 			}
2769 		}
2770 		if (ire_uinfo->iulp_ssthresh != 0)
2771 			tcp->tcp_cwnd_ssthresh = ire_uinfo->iulp_ssthresh;
2772 		else
2773 			tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN;
2774 		if (ire_uinfo->iulp_spipe > 0) {
2775 			tcp->tcp_xmit_hiwater = MIN(ire_uinfo->iulp_spipe,
2776 			    tcps->tcps_max_buf);
2777 			if (tcps->tcps_snd_lowat_fraction != 0)
2778 				tcp->tcp_xmit_lowater = tcp->tcp_xmit_hiwater /
2779 				    tcps->tcps_snd_lowat_fraction;
2780 			(void) tcp_maxpsz_set(tcp, B_TRUE);
2781 		}
2782 		/*
2783 		 * Note that up till now, acceptor always inherits receive
2784 		 * window from the listener.  But if there is a metrics
2785 		 * associated with a host, we should use that instead of
2786 		 * inheriting it from listener. Thus we need to pass this
2787 		 * info back to the caller.
2788 		 */
2789 		if (ire_uinfo->iulp_rpipe > 0) {
2790 			tcp->tcp_rwnd = MIN(ire_uinfo->iulp_rpipe,
2791 			    tcps->tcps_max_buf);
2792 		}
2793 
2794 		if (ire_uinfo->iulp_rtomax > 0) {
2795 			tcp->tcp_second_timer_threshold =
2796 			    ire_uinfo->iulp_rtomax;
2797 		}
2798 
2799 		/*
2800 		 * Use the metric option settings, iulp_tstamp_ok and
2801 		 * iulp_wscale_ok, only for active open. What this means
2802 		 * is that if the other side uses timestamp or window
2803 		 * scale option, TCP will also use those options. That
2804 		 * is for passive open.  If the application sets a
2805 		 * large window, window scale is enabled regardless of
2806 		 * the value in iulp_wscale_ok.  This is the behavior
2807 		 * since 2.6.  So we keep it.
2808 		 * The only case left in passive open processing is the
2809 		 * check for SACK.
2810 		 * For ECN, it should probably be like SACK.  But the
2811 		 * current value is binary, so we treat it like the other
2812 		 * cases.  The metric only controls active open.For passive
2813 		 * open, the ndd param, tcp_ecn_permitted, controls the
2814 		 * behavior.
2815 		 */
2816 		if (!tcp_detached) {
2817 			/*
2818 			 * The if check means that the following can only
2819 			 * be turned on by the metrics only IRE, but not off.
2820 			 */
2821 			if (ire_uinfo->iulp_tstamp_ok)
2822 				tcp->tcp_snd_ts_ok = B_TRUE;
2823 			if (ire_uinfo->iulp_wscale_ok)
2824 				tcp->tcp_snd_ws_ok = B_TRUE;
2825 			if (ire_uinfo->iulp_sack == 2)
2826 				tcp->tcp_snd_sack_ok = B_TRUE;
2827 			if (ire_uinfo->iulp_ecn_ok)
2828 				tcp->tcp_ecn_ok = B_TRUE;
2829 		} else {
2830 			/*
2831 			 * Passive open.
2832 			 *
2833 			 * As above, the if check means that SACK can only be
2834 			 * turned on by the metric only IRE.
2835 			 */
2836 			if (ire_uinfo->iulp_sack > 0) {
2837 				tcp->tcp_snd_sack_ok = B_TRUE;
2838 			}
2839 		}
2840 	}
2841 
2842 
2843 	/*
2844 	 * XXX: Note that currently, ire_max_frag can be as small as 68
2845 	 * because of PMTUd.  So tcp_mss may go to negative if combined
2846 	 * length of all those options exceeds 28 bytes.  But because
2847 	 * of the tcp_mss_min check below, we may not have a problem if
2848 	 * tcp_mss_min is of a reasonable value.  The default is 1 so
2849 	 * the negative problem still exists.  And the check defeats PMTUd.
2850 	 * In fact, if PMTUd finds that the MSS should be smaller than
2851 	 * tcp_mss_min, TCP should turn off PMUTd and use the tcp_mss_min
2852 	 * value.
2853 	 *
2854 	 * We do not deal with that now.  All those problems related to
2855 	 * PMTUd will be fixed later.
2856 	 */
2857 	ASSERT(ire->ire_max_frag != 0);
2858 	mss = tcp->tcp_if_mtu = ire->ire_max_frag;
2859 	if (tcp->tcp_ipp_fields & IPPF_USE_MIN_MTU) {
2860 		if (tcp->tcp_ipp_use_min_mtu == IPV6_USE_MIN_MTU_NEVER) {
2861 			mss = MIN(mss, IPV6_MIN_MTU);
2862 		}
2863 	}
2864 
2865 	/* Sanity check for MSS value. */
2866 	if (tcp->tcp_ipversion == IPV4_VERSION)
2867 		mss_max = tcps->tcps_mss_max_ipv4;
2868 	else
2869 		mss_max = tcps->tcps_mss_max_ipv6;
2870 
2871 	if (tcp->tcp_ipversion == IPV6_VERSION &&
2872 	    (ire->ire_frag_flag & IPH_FRAG_HDR)) {
2873 		/*
2874 		 * After receiving an ICMPv6 "packet too big" message with a
2875 		 * MTU < 1280, and for multirouted IPv6 packets, the IP layer
2876 		 * will insert a 8-byte fragment header in every packet; we
2877 		 * reduce the MSS by that amount here.
2878 		 */
2879 		mss -= sizeof (ip6_frag_t);
2880 	}
2881 
2882 	if (tcp->tcp_ipsec_overhead == 0)
2883 		tcp->tcp_ipsec_overhead = conn_ipsec_length(connp);
2884 
2885 	mss -= tcp->tcp_ipsec_overhead;
2886 
2887 	if (mss < tcps->tcps_mss_min)
2888 		mss = tcps->tcps_mss_min;
2889 	if (mss > mss_max)
2890 		mss = mss_max;
2891 
2892 	/* Note that this is the maximum MSS, excluding all options. */
2893 	tcp->tcp_mss = mss;
2894 
2895 	/*
2896 	 * Initialize the ISS here now that we have the full connection ID.
2897 	 * The RFC 1948 method of initial sequence number generation requires
2898 	 * knowledge of the full connection ID before setting the ISS.
2899 	 */
2900 
2901 	tcp_iss_init(tcp);
2902 
2903 	if (ire->ire_type & (IRE_LOOPBACK | IRE_LOCAL))
2904 		tcp->tcp_loopback = B_TRUE;
2905 
2906 	if (tcp->tcp_ipversion == IPV4_VERSION) {
2907 		hsp = tcp_hsp_lookup(tcp->tcp_remote, tcps);
2908 	} else {
2909 		hsp = tcp_hsp_lookup_ipv6(&tcp->tcp_remote_v6, tcps);
2910 	}
2911 
2912 	if (hsp != NULL) {
2913 		/* Only modify if we're going to make them bigger */
2914 		if (hsp->tcp_hsp_sendspace > tcp->tcp_xmit_hiwater) {
2915 			tcp->tcp_xmit_hiwater = hsp->tcp_hsp_sendspace;
2916 			if (tcps->tcps_snd_lowat_fraction != 0)
2917 				tcp->tcp_xmit_lowater = tcp->tcp_xmit_hiwater /
2918 				    tcps->tcps_snd_lowat_fraction;
2919 		}
2920 
2921 		if (hsp->tcp_hsp_recvspace > tcp->tcp_rwnd) {
2922 			tcp->tcp_rwnd = hsp->tcp_hsp_recvspace;
2923 		}
2924 
2925 		/* Copy timestamp flag only for active open */
2926 		if (!tcp_detached)
2927 			tcp->tcp_snd_ts_ok = hsp->tcp_hsp_tstamp;
2928 	}
2929 
2930 	if (sire != NULL)
2931 		IRE_REFRELE(sire);
2932 
2933 	/*
2934 	 * If we got an IRE_CACHE and an ILL, go through their properties;
2935 	 * otherwise, this is deferred until later when we have an IRE_CACHE.
2936 	 */
2937 	if (tcp->tcp_loopback ||
2938 	    (ire_cacheable && (ill = ire_to_ill(ire)) != NULL)) {
2939 		/*
2940 		 * For incoming, see if this tcp may be MDT-capable.  For
2941 		 * outgoing, this process has been taken care of through
2942 		 * tcp_rput_other.
2943 		 */
2944 		tcp_ire_ill_check(tcp, ire, ill, incoming);
2945 		tcp->tcp_ire_ill_check_done = B_TRUE;
2946 	}
2947 
2948 	mutex_enter(&connp->conn_lock);
2949 	/*
2950 	 * Make sure that conn is not marked incipient
2951 	 * for incoming connections. A blind
2952 	 * removal of incipient flag is cheaper than
2953 	 * check and removal.
2954 	 */
2955 	connp->conn_state_flags &= ~CONN_INCIPIENT;
2956 
2957 	/*
2958 	 * Must not cache forwarding table routes
2959 	 * or recache an IRE after the conn_t has
2960 	 * had conn_ire_cache cleared and is flagged
2961 	 * unusable, (see the CONN_CACHE_IRE() macro).
2962 	 */
2963 	if (ire_cacheable && CONN_CACHE_IRE(connp)) {
2964 		rw_enter(&ire->ire_bucket->irb_lock, RW_READER);
2965 		if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) {
2966 			connp->conn_ire_cache = ire;
2967 			IRE_UNTRACE_REF(ire);
2968 			rw_exit(&ire->ire_bucket->irb_lock);
2969 			mutex_exit(&connp->conn_lock);
2970 			return (1);
2971 		}
2972 		rw_exit(&ire->ire_bucket->irb_lock);
2973 	}
2974 	mutex_exit(&connp->conn_lock);
2975 
2976 	if (ire->ire_mp == NULL)
2977 		ire_refrele(ire);
2978 	return (1);
2979 
2980 error:
2981 	if (ire->ire_mp == NULL)
2982 		ire_refrele(ire);
2983 	if (sire != NULL)
2984 		ire_refrele(sire);
2985 	return (0);
2986 }
2987 
2988 /*
2989  * tcp_bind is called (holding the writer lock) by tcp_wput_proto to process a
2990  * O_T_BIND_REQ/T_BIND_REQ message.
2991  */
2992 static void
2993 tcp_bind(tcp_t *tcp, mblk_t *mp)
2994 {
2995 	sin_t	*sin;
2996 	sin6_t	*sin6;
2997 	mblk_t	*mp1;
2998 	in_port_t requested_port;
2999 	in_port_t allocated_port;
3000 	struct T_bind_req *tbr;
3001 	boolean_t	bind_to_req_port_only;
3002 	boolean_t	backlog_update = B_FALSE;
3003 	boolean_t	user_specified;
3004 	in6_addr_t	v6addr;
3005 	ipaddr_t	v4addr;
3006 	uint_t	origipversion;
3007 	int	err;
3008 	queue_t *q = tcp->tcp_wq;
3009 	conn_t	*connp = tcp->tcp_connp;
3010 	mlp_type_t addrtype, mlptype;
3011 	zone_t	*zone;
3012 	cred_t	*cr;
3013 	in_port_t mlp_port;
3014 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3015 
3016 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
3017 	if ((mp->b_wptr - mp->b_rptr) < sizeof (*tbr)) {
3018 		if (tcp->tcp_debug) {
3019 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
3020 			    "tcp_bind: bad req, len %u",
3021 			    (uint_t)(mp->b_wptr - mp->b_rptr));
3022 		}
3023 		tcp_err_ack(tcp, mp, TPROTO, 0);
3024 		return;
3025 	}
3026 	/* Make sure the largest address fits */
3027 	mp1 = reallocb(mp, sizeof (struct T_bind_ack) + sizeof (sin6_t) + 1, 1);
3028 	if (mp1 == NULL) {
3029 		tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
3030 		return;
3031 	}
3032 	mp = mp1;
3033 	tbr = (struct T_bind_req *)mp->b_rptr;
3034 	if (tcp->tcp_state >= TCPS_BOUND) {
3035 		if ((tcp->tcp_state == TCPS_BOUND ||
3036 		    tcp->tcp_state == TCPS_LISTEN) &&
3037 		    tcp->tcp_conn_req_max != tbr->CONIND_number &&
3038 		    tbr->CONIND_number > 0) {
3039 			/*
3040 			 * Handle listen() increasing CONIND_number.
3041 			 * This is more "liberal" then what the TPI spec
3042 			 * requires but is needed to avoid a t_unbind
3043 			 * when handling listen() since the port number
3044 			 * might be "stolen" between the unbind and bind.
3045 			 */
3046 			backlog_update = B_TRUE;
3047 			goto do_bind;
3048 		}
3049 		if (tcp->tcp_debug) {
3050 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
3051 			    "tcp_bind: bad state, %d", tcp->tcp_state);
3052 		}
3053 		tcp_err_ack(tcp, mp, TOUTSTATE, 0);
3054 		return;
3055 	}
3056 	origipversion = tcp->tcp_ipversion;
3057 
3058 	switch (tbr->ADDR_length) {
3059 	case 0:			/* request for a generic port */
3060 		tbr->ADDR_offset = sizeof (struct T_bind_req);
3061 		if (tcp->tcp_family == AF_INET) {
3062 			tbr->ADDR_length = sizeof (sin_t);
3063 			sin = (sin_t *)&tbr[1];
3064 			*sin = sin_null;
3065 			sin->sin_family = AF_INET;
3066 			mp->b_wptr = (uchar_t *)&sin[1];
3067 			tcp->tcp_ipversion = IPV4_VERSION;
3068 			IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &v6addr);
3069 		} else {
3070 			ASSERT(tcp->tcp_family == AF_INET6);
3071 			tbr->ADDR_length = sizeof (sin6_t);
3072 			sin6 = (sin6_t *)&tbr[1];
3073 			*sin6 = sin6_null;
3074 			sin6->sin6_family = AF_INET6;
3075 			mp->b_wptr = (uchar_t *)&sin6[1];
3076 			tcp->tcp_ipversion = IPV6_VERSION;
3077 			V6_SET_ZERO(v6addr);
3078 		}
3079 		requested_port = 0;
3080 		break;
3081 
3082 	case sizeof (sin_t):	/* Complete IPv4 address */
3083 		sin = (sin_t *)mi_offset_param(mp, tbr->ADDR_offset,
3084 		    sizeof (sin_t));
3085 		if (sin == NULL || !OK_32PTR((char *)sin)) {
3086 			if (tcp->tcp_debug) {
3087 				(void) strlog(TCP_MOD_ID, 0, 1,
3088 				    SL_ERROR|SL_TRACE,
3089 				    "tcp_bind: bad address parameter, "
3090 				    "offset %d, len %d",
3091 				    tbr->ADDR_offset, tbr->ADDR_length);
3092 			}
3093 			tcp_err_ack(tcp, mp, TPROTO, 0);
3094 			return;
3095 		}
3096 		/*
3097 		 * With sockets sockfs will accept bogus sin_family in
3098 		 * bind() and replace it with the family used in the socket
3099 		 * call.
3100 		 */
3101 		if (sin->sin_family != AF_INET ||
3102 		    tcp->tcp_family != AF_INET) {
3103 			tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT);
3104 			return;
3105 		}
3106 		requested_port = ntohs(sin->sin_port);
3107 		tcp->tcp_ipversion = IPV4_VERSION;
3108 		v4addr = sin->sin_addr.s_addr;
3109 		IN6_IPADDR_TO_V4MAPPED(v4addr, &v6addr);
3110 		break;
3111 
3112 	case sizeof (sin6_t): /* Complete IPv6 address */
3113 		sin6 = (sin6_t *)mi_offset_param(mp,
3114 		    tbr->ADDR_offset, sizeof (sin6_t));
3115 		if (sin6 == NULL || !OK_32PTR((char *)sin6)) {
3116 			if (tcp->tcp_debug) {
3117 				(void) strlog(TCP_MOD_ID, 0, 1,
3118 				    SL_ERROR|SL_TRACE,
3119 				    "tcp_bind: bad IPv6 address parameter, "
3120 				    "offset %d, len %d", tbr->ADDR_offset,
3121 				    tbr->ADDR_length);
3122 			}
3123 			tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
3124 			return;
3125 		}
3126 		if (sin6->sin6_family != AF_INET6 ||
3127 		    tcp->tcp_family != AF_INET6) {
3128 			tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT);
3129 			return;
3130 		}
3131 		requested_port = ntohs(sin6->sin6_port);
3132 		tcp->tcp_ipversion = IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr) ?
3133 		    IPV4_VERSION : IPV6_VERSION;
3134 		v6addr = sin6->sin6_addr;
3135 		break;
3136 
3137 	default:
3138 		if (tcp->tcp_debug) {
3139 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
3140 			    "tcp_bind: bad address length, %d",
3141 			    tbr->ADDR_length);
3142 		}
3143 		tcp_err_ack(tcp, mp, TBADADDR, 0);
3144 		return;
3145 	}
3146 	tcp->tcp_bound_source_v6 = v6addr;
3147 
3148 	/* Check for change in ipversion */
3149 	if (origipversion != tcp->tcp_ipversion) {
3150 		ASSERT(tcp->tcp_family == AF_INET6);
3151 		err = tcp->tcp_ipversion == IPV6_VERSION ?
3152 		    tcp_header_init_ipv6(tcp) : tcp_header_init_ipv4(tcp);
3153 		if (err) {
3154 			tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
3155 			return;
3156 		}
3157 	}
3158 
3159 	/*
3160 	 * Initialize family specific fields. Copy of the src addr.
3161 	 * in tcp_t is needed for the lookup funcs.
3162 	 */
3163 	if (tcp->tcp_ipversion == IPV6_VERSION) {
3164 		tcp->tcp_ip6h->ip6_src = v6addr;
3165 	} else {
3166 		IN6_V4MAPPED_TO_IPADDR(&v6addr, tcp->tcp_ipha->ipha_src);
3167 	}
3168 	tcp->tcp_ip_src_v6 = v6addr;
3169 
3170 	/*
3171 	 * For O_T_BIND_REQ:
3172 	 * Verify that the target port/addr is available, or choose
3173 	 * another.
3174 	 * For  T_BIND_REQ:
3175 	 * Verify that the target port/addr is available or fail.
3176 	 * In both cases when it succeeds the tcp is inserted in the
3177 	 * bind hash table. This ensures that the operation is atomic
3178 	 * under the lock on the hash bucket.
3179 	 */
3180 	bind_to_req_port_only = requested_port != 0 &&
3181 	    tbr->PRIM_type != O_T_BIND_REQ;
3182 	/*
3183 	 * Get a valid port (within the anonymous range and should not
3184 	 * be a privileged one) to use if the user has not given a port.
3185 	 * If multiple threads are here, they may all start with
3186 	 * with the same initial port. But, it should be fine as long as
3187 	 * tcp_bindi will ensure that no two threads will be assigned
3188 	 * the same port.
3189 	 *
3190 	 * NOTE: XXX If a privileged process asks for an anonymous port, we
3191 	 * still check for ports only in the range > tcp_smallest_non_priv_port,
3192 	 * unless TCP_ANONPRIVBIND option is set.
3193 	 */
3194 	mlptype = mlptSingle;
3195 	mlp_port = requested_port;
3196 	if (requested_port == 0) {
3197 		requested_port = tcp->tcp_anon_priv_bind ?
3198 		    tcp_get_next_priv_port(tcp) :
3199 		    tcp_update_next_port(tcps->tcps_next_port_to_try,
3200 		    tcp, B_TRUE);
3201 		if (requested_port == 0) {
3202 			tcp_err_ack(tcp, mp, TNOADDR, 0);
3203 			return;
3204 		}
3205 		user_specified = B_FALSE;
3206 
3207 		/*
3208 		 * If the user went through one of the RPC interfaces to create
3209 		 * this socket and RPC is MLP in this zone, then give him an
3210 		 * anonymous MLP.
3211 		 */
3212 		cr = DB_CREDDEF(mp, tcp->tcp_cred);
3213 		if (connp->conn_anon_mlp && is_system_labeled()) {
3214 			zone = crgetzone(cr);
3215 			addrtype = tsol_mlp_addr_type(zone->zone_id,
3216 			    IPV6_VERSION, &v6addr,
3217 			    tcps->tcps_netstack->netstack_ip);
3218 			if (addrtype == mlptSingle) {
3219 				tcp_err_ack(tcp, mp, TNOADDR, 0);
3220 				return;
3221 			}
3222 			mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP,
3223 			    PMAPPORT, addrtype);
3224 			mlp_port = PMAPPORT;
3225 		}
3226 	} else {
3227 		int i;
3228 		boolean_t priv = B_FALSE;
3229 
3230 		/*
3231 		 * If the requested_port is in the well-known privileged range,
3232 		 * verify that the stream was opened by a privileged user.
3233 		 * Note: No locks are held when inspecting tcp_g_*epriv_ports
3234 		 * but instead the code relies on:
3235 		 * - the fact that the address of the array and its size never
3236 		 *   changes
3237 		 * - the atomic assignment of the elements of the array
3238 		 */
3239 		cr = DB_CREDDEF(mp, tcp->tcp_cred);
3240 		if (requested_port < tcps->tcps_smallest_nonpriv_port) {
3241 			priv = B_TRUE;
3242 		} else {
3243 			for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
3244 				if (requested_port ==
3245 				    tcps->tcps_g_epriv_ports[i]) {
3246 					priv = B_TRUE;
3247 					break;
3248 				}
3249 			}
3250 		}
3251 		if (priv) {
3252 			if (secpolicy_net_privaddr(cr, requested_port) != 0) {
3253 				if (tcp->tcp_debug) {
3254 					(void) strlog(TCP_MOD_ID, 0, 1,
3255 					    SL_ERROR|SL_TRACE,
3256 					    "tcp_bind: no priv for port %d",
3257 					    requested_port);
3258 				}
3259 				tcp_err_ack(tcp, mp, TACCES, 0);
3260 				return;
3261 			}
3262 		}
3263 		user_specified = B_TRUE;
3264 
3265 		if (is_system_labeled()) {
3266 			zone = crgetzone(cr);
3267 			addrtype = tsol_mlp_addr_type(zone->zone_id,
3268 			    IPV6_VERSION, &v6addr,
3269 			    tcps->tcps_netstack->netstack_ip);
3270 			if (addrtype == mlptSingle) {
3271 				tcp_err_ack(tcp, mp, TNOADDR, 0);
3272 				return;
3273 			}
3274 			mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP,
3275 			    requested_port, addrtype);
3276 		}
3277 	}
3278 
3279 	if (mlptype != mlptSingle) {
3280 		if (secpolicy_net_bindmlp(cr) != 0) {
3281 			if (tcp->tcp_debug) {
3282 				(void) strlog(TCP_MOD_ID, 0, 1,
3283 				    SL_ERROR|SL_TRACE,
3284 				    "tcp_bind: no priv for multilevel port %d",
3285 				    requested_port);
3286 			}
3287 			tcp_err_ack(tcp, mp, TACCES, 0);
3288 			return;
3289 		}
3290 
3291 		/*
3292 		 * If we're specifically binding a shared IP address and the
3293 		 * port is MLP on shared addresses, then check to see if this
3294 		 * zone actually owns the MLP.  Reject if not.
3295 		 */
3296 		if (mlptype == mlptShared && addrtype == mlptShared) {
3297 			/*
3298 			 * No need to handle exclusive-stack zones since
3299 			 * ALL_ZONES only applies to the shared stack.
3300 			 */
3301 			zoneid_t mlpzone;
3302 
3303 			mlpzone = tsol_mlp_findzone(IPPROTO_TCP,
3304 			    htons(mlp_port));
3305 			if (connp->conn_zoneid != mlpzone) {
3306 				if (tcp->tcp_debug) {
3307 					(void) strlog(TCP_MOD_ID, 0, 1,
3308 					    SL_ERROR|SL_TRACE,
3309 					    "tcp_bind: attempt to bind port "
3310 					    "%d on shared addr in zone %d "
3311 					    "(should be %d)",
3312 					    mlp_port, connp->conn_zoneid,
3313 					    mlpzone);
3314 				}
3315 				tcp_err_ack(tcp, mp, TACCES, 0);
3316 				return;
3317 			}
3318 		}
3319 
3320 		if (!user_specified) {
3321 			err = tsol_mlp_anon(zone, mlptype, connp->conn_ulp,
3322 			    requested_port, B_TRUE);
3323 			if (err != 0) {
3324 				if (tcp->tcp_debug) {
3325 					(void) strlog(TCP_MOD_ID, 0, 1,
3326 					    SL_ERROR|SL_TRACE,
3327 					    "tcp_bind: cannot establish anon "
3328 					    "MLP for port %d",
3329 					    requested_port);
3330 				}
3331 				tcp_err_ack(tcp, mp, TSYSERR, err);
3332 				return;
3333 			}
3334 			connp->conn_anon_port = B_TRUE;
3335 		}
3336 		connp->conn_mlp_type = mlptype;
3337 	}
3338 
3339 	allocated_port = tcp_bindi(tcp, requested_port, &v6addr,
3340 	    tcp->tcp_reuseaddr, B_FALSE, bind_to_req_port_only, user_specified);
3341 
3342 	if (allocated_port == 0) {
3343 		connp->conn_mlp_type = mlptSingle;
3344 		if (connp->conn_anon_port) {
3345 			connp->conn_anon_port = B_FALSE;
3346 			(void) tsol_mlp_anon(zone, mlptype, connp->conn_ulp,
3347 			    requested_port, B_FALSE);
3348 		}
3349 		if (bind_to_req_port_only) {
3350 			if (tcp->tcp_debug) {
3351 				(void) strlog(TCP_MOD_ID, 0, 1,
3352 				    SL_ERROR|SL_TRACE,
3353 				    "tcp_bind: requested addr busy");
3354 			}
3355 			tcp_err_ack(tcp, mp, TADDRBUSY, 0);
3356 		} else {
3357 			/* If we are out of ports, fail the bind. */
3358 			if (tcp->tcp_debug) {
3359 				(void) strlog(TCP_MOD_ID, 0, 1,
3360 				    SL_ERROR|SL_TRACE,
3361 				    "tcp_bind: out of ports?");
3362 			}
3363 			tcp_err_ack(tcp, mp, TNOADDR, 0);
3364 		}
3365 		return;
3366 	}
3367 	ASSERT(tcp->tcp_state == TCPS_BOUND);
3368 do_bind:
3369 	if (!backlog_update) {
3370 		if (tcp->tcp_family == AF_INET)
3371 			sin->sin_port = htons(allocated_port);
3372 		else
3373 			sin6->sin6_port = htons(allocated_port);
3374 	}
3375 	if (tcp->tcp_family == AF_INET) {
3376 		if (tbr->CONIND_number != 0) {
3377 			mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type,
3378 			    sizeof (sin_t));
3379 		} else {
3380 			/* Just verify the local IP address */
3381 			mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type, IP_ADDR_LEN);
3382 		}
3383 	} else {
3384 		if (tbr->CONIND_number != 0) {
3385 			mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type,
3386 			    sizeof (sin6_t));
3387 		} else {
3388 			/* Just verify the local IP address */
3389 			mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type,
3390 			    IPV6_ADDR_LEN);
3391 		}
3392 	}
3393 	if (mp1 == NULL) {
3394 		if (connp->conn_anon_port) {
3395 			connp->conn_anon_port = B_FALSE;
3396 			(void) tsol_mlp_anon(zone, mlptype, connp->conn_ulp,
3397 			    requested_port, B_FALSE);
3398 		}
3399 		connp->conn_mlp_type = mlptSingle;
3400 		tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
3401 		return;
3402 	}
3403 
3404 	tbr->PRIM_type = T_BIND_ACK;
3405 	mp->b_datap->db_type = M_PCPROTO;
3406 
3407 	/* Chain in the reply mp for tcp_rput() */
3408 	mp1->b_cont = mp;
3409 	mp = mp1;
3410 
3411 	tcp->tcp_conn_req_max = tbr->CONIND_number;
3412 	if (tcp->tcp_conn_req_max) {
3413 		if (tcp->tcp_conn_req_max < tcps->tcps_conn_req_min)
3414 			tcp->tcp_conn_req_max = tcps->tcps_conn_req_min;
3415 		if (tcp->tcp_conn_req_max > tcps->tcps_conn_req_max_q)
3416 			tcp->tcp_conn_req_max = tcps->tcps_conn_req_max_q;
3417 		/*
3418 		 * If this is a listener, do not reset the eager list
3419 		 * and other stuffs.  Note that we don't check if the
3420 		 * existing eager list meets the new tcp_conn_req_max
3421 		 * requirement.
3422 		 */
3423 		if (tcp->tcp_state != TCPS_LISTEN) {
3424 			tcp->tcp_state = TCPS_LISTEN;
3425 			/* Initialize the chain. Don't need the eager_lock */
3426 			tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp;
3427 			tcp->tcp_eager_next_drop_q0 = tcp;
3428 			tcp->tcp_eager_prev_drop_q0 = tcp;
3429 			tcp->tcp_second_ctimer_threshold =
3430 			    tcps->tcps_ip_abort_linterval;
3431 		}
3432 	}
3433 
3434 	/*
3435 	 * We can call ip_bind directly which returns a T_BIND_ACK mp. The
3436 	 * processing continues in tcp_rput_other().
3437 	 *
3438 	 * We need to make sure that the conn_recv is set to a non-null
3439 	 * value before we insert the conn into the classifier table.
3440 	 * This is to avoid a race with an incoming packet which does an
3441 	 * ipcl_classify().
3442 	 */
3443 	connp->conn_recv = tcp_conn_request;
3444 	if (tcp->tcp_family == AF_INET6) {
3445 		ASSERT(tcp->tcp_connp->conn_af_isv6);
3446 		mp = ip_bind_v6(q, mp, tcp->tcp_connp, &tcp->tcp_sticky_ipp);
3447 	} else {
3448 		ASSERT(!tcp->tcp_connp->conn_af_isv6);
3449 		mp = ip_bind_v4(q, mp, tcp->tcp_connp);
3450 	}
3451 	/*
3452 	 * If the bind cannot complete immediately
3453 	 * IP will arrange to call tcp_rput_other
3454 	 * when the bind completes.
3455 	 */
3456 	if (mp != NULL) {
3457 		tcp_rput_other(tcp, mp);
3458 	} else {
3459 		/*
3460 		 * Bind will be resumed later. Need to ensure
3461 		 * that conn doesn't disappear when that happens.
3462 		 * This will be decremented in ip_resume_tcp_bind().
3463 		 */
3464 		CONN_INC_REF(tcp->tcp_connp);
3465 	}
3466 }
3467 
3468 
3469 /*
3470  * If the "bind_to_req_port_only" parameter is set, if the requested port
3471  * number is available, return it, If not return 0
3472  *
3473  * If "bind_to_req_port_only" parameter is not set and
3474  * If the requested port number is available, return it.  If not, return
3475  * the first anonymous port we happen across.  If no anonymous ports are
3476  * available, return 0. addr is the requested local address, if any.
3477  *
3478  * In either case, when succeeding update the tcp_t to record the port number
3479  * and insert it in the bind hash table.
3480  *
3481  * Note that TCP over IPv4 and IPv6 sockets can use the same port number
3482  * without setting SO_REUSEADDR. This is needed so that they
3483  * can be viewed as two independent transport protocols.
3484  */
3485 static in_port_t
3486 tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr,
3487     int reuseaddr, boolean_t quick_connect,
3488     boolean_t bind_to_req_port_only, boolean_t user_specified)
3489 {
3490 	/* number of times we have run around the loop */
3491 	int count = 0;
3492 	/* maximum number of times to run around the loop */
3493 	int loopmax;
3494 	conn_t *connp = tcp->tcp_connp;
3495 	zoneid_t zoneid = connp->conn_zoneid;
3496 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3497 
3498 	/*
3499 	 * Lookup for free addresses is done in a loop and "loopmax"
3500 	 * influences how long we spin in the loop
3501 	 */
3502 	if (bind_to_req_port_only) {
3503 		/*
3504 		 * If the requested port is busy, don't bother to look
3505 		 * for a new one. Setting loop maximum count to 1 has
3506 		 * that effect.
3507 		 */
3508 		loopmax = 1;
3509 	} else {
3510 		/*
3511 		 * If the requested port is busy, look for a free one
3512 		 * in the anonymous port range.
3513 		 * Set loopmax appropriately so that one does not look
3514 		 * forever in the case all of the anonymous ports are in use.
3515 		 */
3516 		if (tcp->tcp_anon_priv_bind) {
3517 			/*
3518 			 * loopmax =
3519 			 * 	(IPPORT_RESERVED-1) - tcp_min_anonpriv_port + 1
3520 			 */
3521 			loopmax = IPPORT_RESERVED -
3522 			    tcps->tcps_min_anonpriv_port;
3523 		} else {
3524 			loopmax = (tcps->tcps_largest_anon_port -
3525 			    tcps->tcps_smallest_anon_port + 1);
3526 		}
3527 	}
3528 	do {
3529 		uint16_t	lport;
3530 		tf_t		*tbf;
3531 		tcp_t		*ltcp;
3532 		conn_t		*lconnp;
3533 
3534 		lport = htons(port);
3535 
3536 		/*
3537 		 * Ensure that the tcp_t is not currently in the bind hash.
3538 		 * Hold the lock on the hash bucket to ensure that
3539 		 * the duplicate check plus the insertion is an atomic
3540 		 * operation.
3541 		 *
3542 		 * This function does an inline lookup on the bind hash list
3543 		 * Make sure that we access only members of tcp_t
3544 		 * and that we don't look at tcp_tcp, since we are not
3545 		 * doing a CONN_INC_REF.
3546 		 */
3547 		tcp_bind_hash_remove(tcp);
3548 		tbf = &tcps->tcps_bind_fanout[TCP_BIND_HASH(lport)];
3549 		mutex_enter(&tbf->tf_lock);
3550 		for (ltcp = tbf->tf_tcp; ltcp != NULL;
3551 		    ltcp = ltcp->tcp_bind_hash) {
3552 			boolean_t not_socket;
3553 			boolean_t exclbind;
3554 
3555 			if (lport != ltcp->tcp_lport)
3556 				continue;
3557 
3558 			lconnp = ltcp->tcp_connp;
3559 
3560 			/*
3561 			 * On a labeled system, we must treat bindings to ports
3562 			 * on shared IP addresses by sockets with MAC exemption
3563 			 * privilege as being in all zones, as there's
3564 			 * otherwise no way to identify the right receiver.
3565 			 */
3566 			if (!(IPCL_ZONE_MATCH(ltcp->tcp_connp, zoneid) ||
3567 			    IPCL_ZONE_MATCH(connp,
3568 			    ltcp->tcp_connp->conn_zoneid)) &&
3569 			    !lconnp->conn_mac_exempt &&
3570 			    !connp->conn_mac_exempt)
3571 				continue;
3572 
3573 			/*
3574 			 * If TCP_EXCLBIND is set for either the bound or
3575 			 * binding endpoint, the semantics of bind
3576 			 * is changed according to the following.
3577 			 *
3578 			 * spec = specified address (v4 or v6)
3579 			 * unspec = unspecified address (v4 or v6)
3580 			 * A = specified addresses are different for endpoints
3581 			 *
3582 			 * bound	bind to		allowed
3583 			 * -------------------------------------
3584 			 * unspec	unspec		no
3585 			 * unspec	spec		no
3586 			 * spec		unspec		no
3587 			 * spec		spec		yes if A
3588 			 *
3589 			 * For labeled systems, SO_MAC_EXEMPT behaves the same
3590 			 * as TCP_EXCLBIND, except that zoneid is ignored.
3591 			 *
3592 			 * Note:
3593 			 *
3594 			 * 1. Because of TLI semantics, an endpoint can go
3595 			 * back from, say TCP_ESTABLISHED to TCPS_LISTEN or
3596 			 * TCPS_BOUND, depending on whether it is originally
3597 			 * a listener or not.  That is why we need to check
3598 			 * for states greater than or equal to TCPS_BOUND
3599 			 * here.
3600 			 *
3601 			 * 2. Ideally, we should only check for state equals
3602 			 * to TCPS_LISTEN. And the following check should be
3603 			 * added.
3604 			 *
3605 			 * if (ltcp->tcp_state == TCPS_LISTEN ||
3606 			 *	!reuseaddr || !ltcp->tcp_reuseaddr) {
3607 			 *		...
3608 			 * }
3609 			 *
3610 			 * The semantics will be changed to this.  If the
3611 			 * endpoint on the list is in state not equal to
3612 			 * TCPS_LISTEN and both endpoints have SO_REUSEADDR
3613 			 * set, let the bind succeed.
3614 			 *
3615 			 * Because of (1), we cannot do that for TLI
3616 			 * endpoints.  But we can do that for socket endpoints.
3617 			 * If in future, we can change this going back
3618 			 * semantics, we can use the above check for TLI also.
3619 			 */
3620 			not_socket = !(TCP_IS_SOCKET(ltcp) &&
3621 			    TCP_IS_SOCKET(tcp));
3622 			exclbind = ltcp->tcp_exclbind || tcp->tcp_exclbind;
3623 
3624 			if (lconnp->conn_mac_exempt || connp->conn_mac_exempt ||
3625 			    (exclbind && (not_socket ||
3626 			    ltcp->tcp_state <= TCPS_ESTABLISHED))) {
3627 				if (V6_OR_V4_INADDR_ANY(
3628 				    ltcp->tcp_bound_source_v6) ||
3629 				    V6_OR_V4_INADDR_ANY(*laddr) ||
3630 				    IN6_ARE_ADDR_EQUAL(laddr,
3631 				    &ltcp->tcp_bound_source_v6)) {
3632 					break;
3633 				}
3634 				continue;
3635 			}
3636 
3637 			/*
3638 			 * Check ipversion to allow IPv4 and IPv6 sockets to
3639 			 * have disjoint port number spaces, if *_EXCLBIND
3640 			 * is not set and only if the application binds to a
3641 			 * specific port. We use the same autoassigned port
3642 			 * number space for IPv4 and IPv6 sockets.
3643 			 */
3644 			if (tcp->tcp_ipversion != ltcp->tcp_ipversion &&
3645 			    bind_to_req_port_only)
3646 				continue;
3647 
3648 			/*
3649 			 * Ideally, we should make sure that the source
3650 			 * address, remote address, and remote port in the
3651 			 * four tuple for this tcp-connection is unique.
3652 			 * However, trying to find out the local source
3653 			 * address would require too much code duplication
3654 			 * with IP, since IP needs needs to have that code
3655 			 * to support userland TCP implementations.
3656 			 */
3657 			if (quick_connect &&
3658 			    (ltcp->tcp_state > TCPS_LISTEN) &&
3659 			    ((tcp->tcp_fport != ltcp->tcp_fport) ||
3660 			    !IN6_ARE_ADDR_EQUAL(&tcp->tcp_remote_v6,
3661 			    &ltcp->tcp_remote_v6)))
3662 				continue;
3663 
3664 			if (!reuseaddr) {
3665 				/*
3666 				 * No socket option SO_REUSEADDR.
3667 				 * If existing port is bound to
3668 				 * a non-wildcard IP address
3669 				 * and the requesting stream is
3670 				 * bound to a distinct
3671 				 * different IP addresses
3672 				 * (non-wildcard, also), keep
3673 				 * going.
3674 				 */
3675 				if (!V6_OR_V4_INADDR_ANY(*laddr) &&
3676 				    !V6_OR_V4_INADDR_ANY(
3677 				    ltcp->tcp_bound_source_v6) &&
3678 				    !IN6_ARE_ADDR_EQUAL(laddr,
3679 				    &ltcp->tcp_bound_source_v6))
3680 					continue;
3681 				if (ltcp->tcp_state >= TCPS_BOUND) {
3682 					/*
3683 					 * This port is being used and
3684 					 * its state is >= TCPS_BOUND,
3685 					 * so we can't bind to it.
3686 					 */
3687 					break;
3688 				}
3689 			} else {
3690 				/*
3691 				 * socket option SO_REUSEADDR is set on the
3692 				 * binding tcp_t.
3693 				 *
3694 				 * If two streams are bound to
3695 				 * same IP address or both addr
3696 				 * and bound source are wildcards
3697 				 * (INADDR_ANY), we want to stop
3698 				 * searching.
3699 				 * We have found a match of IP source
3700 				 * address and source port, which is
3701 				 * refused regardless of the
3702 				 * SO_REUSEADDR setting, so we break.
3703 				 */
3704 				if (IN6_ARE_ADDR_EQUAL(laddr,
3705 				    &ltcp->tcp_bound_source_v6) &&
3706 				    (ltcp->tcp_state == TCPS_LISTEN ||
3707 				    ltcp->tcp_state == TCPS_BOUND))
3708 					break;
3709 			}
3710 		}
3711 		if (ltcp != NULL) {
3712 			/* The port number is busy */
3713 			mutex_exit(&tbf->tf_lock);
3714 		} else {
3715 			/*
3716 			 * This port is ours. Insert in fanout and mark as
3717 			 * bound to prevent others from getting the port
3718 			 * number.
3719 			 */
3720 			tcp->tcp_state = TCPS_BOUND;
3721 			tcp->tcp_lport = htons(port);
3722 			*(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport;
3723 
3724 			ASSERT(&tcps->tcps_bind_fanout[TCP_BIND_HASH(
3725 			    tcp->tcp_lport)] == tbf);
3726 			tcp_bind_hash_insert(tbf, tcp, 1);
3727 
3728 			mutex_exit(&tbf->tf_lock);
3729 
3730 			/*
3731 			 * We don't want tcp_next_port_to_try to "inherit"
3732 			 * a port number supplied by the user in a bind.
3733 			 */
3734 			if (user_specified)
3735 				return (port);
3736 
3737 			/*
3738 			 * This is the only place where tcp_next_port_to_try
3739 			 * is updated. After the update, it may or may not
3740 			 * be in the valid range.
3741 			 */
3742 			if (!tcp->tcp_anon_priv_bind)
3743 				tcps->tcps_next_port_to_try = port + 1;
3744 			return (port);
3745 		}
3746 
3747 		if (tcp->tcp_anon_priv_bind) {
3748 			port = tcp_get_next_priv_port(tcp);
3749 		} else {
3750 			if (count == 0 && user_specified) {
3751 				/*
3752 				 * We may have to return an anonymous port. So
3753 				 * get one to start with.
3754 				 */
3755 				port =
3756 				    tcp_update_next_port(
3757 				    tcps->tcps_next_port_to_try,
3758 				    tcp, B_TRUE);
3759 				user_specified = B_FALSE;
3760 			} else {
3761 				port = tcp_update_next_port(port + 1, tcp,
3762 				    B_FALSE);
3763 			}
3764 		}
3765 		if (port == 0)
3766 			break;
3767 
3768 		/*
3769 		 * Don't let this loop run forever in the case where
3770 		 * all of the anonymous ports are in use.
3771 		 */
3772 	} while (++count < loopmax);
3773 	return (0);
3774 }
3775 
3776 /*
3777  * tcp_clean_death / tcp_close_detached must not be called more than once
3778  * on a tcp. Thus every function that potentially calls tcp_clean_death
3779  * must check for the tcp state before calling tcp_clean_death.
3780  * Eg. tcp_input, tcp_rput_data, tcp_eager_kill, tcp_clean_death_wrapper,
3781  * tcp_timer_handler, all check for the tcp state.
3782  */
3783 /* ARGSUSED */
3784 void
3785 tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2)
3786 {
3787 	tcp_t	*tcp = ((conn_t *)arg)->conn_tcp;
3788 
3789 	freemsg(mp);
3790 	if (tcp->tcp_state > TCPS_BOUND)
3791 		(void) tcp_clean_death(((conn_t *)arg)->conn_tcp,
3792 		    ETIMEDOUT, 5);
3793 }
3794 
3795 /*
3796  * We are dying for some reason.  Try to do it gracefully.  (May be called
3797  * as writer.)
3798  *
3799  * Return -1 if the structure was not cleaned up (if the cleanup had to be
3800  * done by a service procedure).
3801  * TBD - Should the return value distinguish between the tcp_t being
3802  * freed and it being reinitialized?
3803  */
3804 static int
3805 tcp_clean_death(tcp_t *tcp, int err, uint8_t tag)
3806 {
3807 	mblk_t	*mp;
3808 	queue_t	*q;
3809 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3810 
3811 	TCP_CLD_STAT(tag);
3812 
3813 #if TCP_TAG_CLEAN_DEATH
3814 	tcp->tcp_cleandeathtag = tag;
3815 #endif
3816 
3817 	if (tcp->tcp_fused)
3818 		tcp_unfuse(tcp);
3819 
3820 	if (tcp->tcp_linger_tid != 0 &&
3821 	    TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) {
3822 		tcp_stop_lingering(tcp);
3823 	}
3824 
3825 	ASSERT(tcp != NULL);
3826 	ASSERT((tcp->tcp_family == AF_INET &&
3827 	    tcp->tcp_ipversion == IPV4_VERSION) ||
3828 	    (tcp->tcp_family == AF_INET6 &&
3829 	    (tcp->tcp_ipversion == IPV4_VERSION ||
3830 	    tcp->tcp_ipversion == IPV6_VERSION)));
3831 
3832 	if (TCP_IS_DETACHED(tcp)) {
3833 		if (tcp->tcp_hard_binding) {
3834 			/*
3835 			 * Its an eager that we are dealing with. We close the
3836 			 * eager but in case a conn_ind has already gone to the
3837 			 * listener, let tcp_accept_finish() send a discon_ind
3838 			 * to the listener and drop the last reference. If the
3839 			 * listener doesn't even know about the eager i.e. the
3840 			 * conn_ind hasn't gone up, blow away the eager and drop
3841 			 * the last reference as well. If the conn_ind has gone
3842 			 * up, state should be BOUND. tcp_accept_finish
3843 			 * will figure out that the connection has received a
3844 			 * RST and will send a DISCON_IND to the application.
3845 			 */
3846 			tcp_closei_local(tcp);
3847 			if (!tcp->tcp_tconnind_started) {
3848 				CONN_DEC_REF(tcp->tcp_connp);
3849 			} else {
3850 				tcp->tcp_state = TCPS_BOUND;
3851 			}
3852 		} else {
3853 			tcp_close_detached(tcp);
3854 		}
3855 		return (0);
3856 	}
3857 
3858 	TCP_STAT(tcps, tcp_clean_death_nondetached);
3859 
3860 	/*
3861 	 * If T_ORDREL_IND has not been sent yet (done when service routine
3862 	 * is run) postpone cleaning up the endpoint until service routine
3863 	 * has sent up the T_ORDREL_IND. Avoid clearing out an existing
3864 	 * client_errno since tcp_close uses the client_errno field.
3865 	 */
3866 	if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) {
3867 		if (err != 0)
3868 			tcp->tcp_client_errno = err;
3869 
3870 		tcp->tcp_deferred_clean_death = B_TRUE;
3871 		return (-1);
3872 	}
3873 
3874 	q = tcp->tcp_rq;
3875 
3876 	/* Trash all inbound data */
3877 	flushq(q, FLUSHALL);
3878 
3879 	/*
3880 	 * If we are at least part way open and there is error
3881 	 * (err==0 implies no error)
3882 	 * notify our client by a T_DISCON_IND.
3883 	 */
3884 	if ((tcp->tcp_state >= TCPS_SYN_SENT) && err) {
3885 		if (tcp->tcp_state >= TCPS_ESTABLISHED &&
3886 		    !TCP_IS_SOCKET(tcp)) {
3887 			/*
3888 			 * Send M_FLUSH according to TPI. Because sockets will
3889 			 * (and must) ignore FLUSHR we do that only for TPI
3890 			 * endpoints and sockets in STREAMS mode.
3891 			 */
3892 			(void) putnextctl1(q, M_FLUSH, FLUSHR);
3893 		}
3894 		if (tcp->tcp_debug) {
3895 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR,
3896 			    "tcp_clean_death: discon err %d", err);
3897 		}
3898 		mp = mi_tpi_discon_ind(NULL, err, 0);
3899 		if (mp != NULL) {
3900 			putnext(q, mp);
3901 		} else {
3902 			if (tcp->tcp_debug) {
3903 				(void) strlog(TCP_MOD_ID, 0, 1,
3904 				    SL_ERROR|SL_TRACE,
3905 				    "tcp_clean_death, sending M_ERROR");
3906 			}
3907 			(void) putnextctl1(q, M_ERROR, EPROTO);
3908 		}
3909 		if (tcp->tcp_state <= TCPS_SYN_RCVD) {
3910 			/* SYN_SENT or SYN_RCVD */
3911 			BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails);
3912 		} else if (tcp->tcp_state <= TCPS_CLOSE_WAIT) {
3913 			/* ESTABLISHED or CLOSE_WAIT */
3914 			BUMP_MIB(&tcps->tcps_mib, tcpEstabResets);
3915 		}
3916 	}
3917 
3918 	tcp_reinit(tcp);
3919 	return (-1);
3920 }
3921 
3922 /*
3923  * In case tcp is in the "lingering state" and waits for the SO_LINGER timeout
3924  * to expire, stop the wait and finish the close.
3925  */
3926 static void
3927 tcp_stop_lingering(tcp_t *tcp)
3928 {
3929 	clock_t	delta = 0;
3930 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3931 
3932 	tcp->tcp_linger_tid = 0;
3933 	if (tcp->tcp_state > TCPS_LISTEN) {
3934 		tcp_acceptor_hash_remove(tcp);
3935 		mutex_enter(&tcp->tcp_non_sq_lock);
3936 		if (tcp->tcp_flow_stopped) {
3937 			tcp_clrqfull(tcp);
3938 		}
3939 		mutex_exit(&tcp->tcp_non_sq_lock);
3940 
3941 		if (tcp->tcp_timer_tid != 0) {
3942 			delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid);
3943 			tcp->tcp_timer_tid = 0;
3944 		}
3945 		/*
3946 		 * Need to cancel those timers which will not be used when
3947 		 * TCP is detached.  This has to be done before the tcp_wq
3948 		 * is set to the global queue.
3949 		 */
3950 		tcp_timers_stop(tcp);
3951 
3952 
3953 		tcp->tcp_detached = B_TRUE;
3954 		ASSERT(tcps->tcps_g_q != NULL);
3955 		tcp->tcp_rq = tcps->tcps_g_q;
3956 		tcp->tcp_wq = WR(tcps->tcps_g_q);
3957 
3958 		if (tcp->tcp_state == TCPS_TIME_WAIT) {
3959 			tcp_time_wait_append(tcp);
3960 			TCP_DBGSTAT(tcps, tcp_detach_time_wait);
3961 			goto finish;
3962 		}
3963 
3964 		/*
3965 		 * If delta is zero the timer event wasn't executed and was
3966 		 * successfully canceled. In this case we need to restart it
3967 		 * with the minimal delta possible.
3968 		 */
3969 		if (delta >= 0) {
3970 			tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer,
3971 			    delta ? delta : 1);
3972 		}
3973 	} else {
3974 		tcp_closei_local(tcp);
3975 		CONN_DEC_REF(tcp->tcp_connp);
3976 	}
3977 finish:
3978 	/* Signal closing thread that it can complete close */
3979 	mutex_enter(&tcp->tcp_closelock);
3980 	tcp->tcp_detached = B_TRUE;
3981 	ASSERT(tcps->tcps_g_q != NULL);
3982 	tcp->tcp_rq = tcps->tcps_g_q;
3983 	tcp->tcp_wq = WR(tcps->tcps_g_q);
3984 	tcp->tcp_closed = 1;
3985 	cv_signal(&tcp->tcp_closecv);
3986 	mutex_exit(&tcp->tcp_closelock);
3987 }
3988 
3989 /*
3990  * Handle lingering timeouts. This function is called when the SO_LINGER timeout
3991  * expires.
3992  */
3993 static void
3994 tcp_close_linger_timeout(void *arg)
3995 {
3996 	conn_t	*connp = (conn_t *)arg;
3997 	tcp_t 	*tcp = connp->conn_tcp;
3998 
3999 	tcp->tcp_client_errno = ETIMEDOUT;
4000 	tcp_stop_lingering(tcp);
4001 }
4002 
4003 static int
4004 tcp_close(queue_t *q, int flags)
4005 {
4006 	conn_t		*connp = Q_TO_CONN(q);
4007 	tcp_t		*tcp = connp->conn_tcp;
4008 	mblk_t 		*mp = &tcp->tcp_closemp;
4009 	boolean_t	conn_ioctl_cleanup_reqd = B_FALSE;
4010 	mblk_t		*bp;
4011 
4012 	ASSERT(WR(q)->q_next == NULL);
4013 	ASSERT(connp->conn_ref >= 2);
4014 
4015 	/*
4016 	 * We are being closed as /dev/tcp or /dev/tcp6.
4017 	 *
4018 	 * Mark the conn as closing. ill_pending_mp_add will not
4019 	 * add any mp to the pending mp list, after this conn has
4020 	 * started closing. Same for sq_pending_mp_add
4021 	 */
4022 	mutex_enter(&connp->conn_lock);
4023 	connp->conn_state_flags |= CONN_CLOSING;
4024 	if (connp->conn_oper_pending_ill != NULL)
4025 		conn_ioctl_cleanup_reqd = B_TRUE;
4026 	CONN_INC_REF_LOCKED(connp);
4027 	mutex_exit(&connp->conn_lock);
4028 	tcp->tcp_closeflags = (uint8_t)flags;
4029 	ASSERT(connp->conn_ref >= 3);
4030 
4031 	/*
4032 	 * tcp_closemp_used is used below without any protection of a lock
4033 	 * as we don't expect any one else to use it concurrently at this
4034 	 * point otherwise it would be a major defect.
4035 	 */
4036 
4037 	if (mp->b_prev == NULL)
4038 		tcp->tcp_closemp_used = B_TRUE;
4039 	else
4040 		cmn_err(CE_PANIC, "tcp_close: concurrent use of tcp_closemp: "
4041 		    "connp %p tcp %p\n", (void *)connp, (void *)tcp);
4042 
4043 	TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15);
4044 
4045 	(*tcp_squeue_close_proc)(connp->conn_sqp, mp,
4046 	    tcp_close_output, connp, SQTAG_IP_TCP_CLOSE);
4047 
4048 	mutex_enter(&tcp->tcp_closelock);
4049 	while (!tcp->tcp_closed) {
4050 		if (!cv_wait_sig(&tcp->tcp_closecv, &tcp->tcp_closelock)) {
4051 			/*
4052 			 * The cv_wait_sig() was interrupted. We now do the
4053 			 * following:
4054 			 *
4055 			 * 1) If the endpoint was lingering, we allow this
4056 			 * to be interrupted by cancelling the linger timeout
4057 			 * and closing normally.
4058 			 *
4059 			 * 2) Revert to calling cv_wait()
4060 			 *
4061 			 * We revert to using cv_wait() to avoid an
4062 			 * infinite loop which can occur if the calling
4063 			 * thread is higher priority than the squeue worker
4064 			 * thread and is bound to the same cpu.
4065 			 */
4066 			if (tcp->tcp_linger && tcp->tcp_lingertime > 0) {
4067 				mutex_exit(&tcp->tcp_closelock);
4068 				/* Entering squeue, bump ref count. */
4069 				CONN_INC_REF(connp);
4070 				bp = allocb_wait(0, BPRI_HI, STR_NOSIG, NULL);
4071 				squeue_enter(connp->conn_sqp, bp,
4072 				    tcp_linger_interrupted, connp,
4073 				    SQTAG_IP_TCP_CLOSE);
4074 				mutex_enter(&tcp->tcp_closelock);
4075 			}
4076 			break;
4077 		}
4078 	}
4079 	while (!tcp->tcp_closed)
4080 		cv_wait(&tcp->tcp_closecv, &tcp->tcp_closelock);
4081 	mutex_exit(&tcp->tcp_closelock);
4082 
4083 	/*
4084 	 * In the case of listener streams that have eagers in the q or q0
4085 	 * we wait for the eagers to drop their reference to us. tcp_rq and
4086 	 * tcp_wq of the eagers point to our queues. By waiting for the
4087 	 * refcnt to drop to 1, we are sure that the eagers have cleaned
4088 	 * up their queue pointers and also dropped their references to us.
4089 	 */
4090 	if (tcp->tcp_wait_for_eagers) {
4091 		mutex_enter(&connp->conn_lock);
4092 		while (connp->conn_ref != 1) {
4093 			cv_wait(&connp->conn_cv, &connp->conn_lock);
4094 		}
4095 		mutex_exit(&connp->conn_lock);
4096 	}
4097 	/*
4098 	 * ioctl cleanup. The mp is queued in the
4099 	 * ill_pending_mp or in the sq_pending_mp.
4100 	 */
4101 	if (conn_ioctl_cleanup_reqd)
4102 		conn_ioctl_cleanup(connp);
4103 
4104 	qprocsoff(q);
4105 	inet_minor_free(connp->conn_minor_arena, connp->conn_dev);
4106 
4107 	tcp->tcp_cpid = -1;
4108 
4109 	/*
4110 	 * Drop IP's reference on the conn. This is the last reference
4111 	 * on the connp if the state was less than established. If the
4112 	 * connection has gone into timewait state, then we will have
4113 	 * one ref for the TCP and one more ref (total of two) for the
4114 	 * classifier connected hash list (a timewait connections stays
4115 	 * in connected hash till closed).
4116 	 *
4117 	 * We can't assert the references because there might be other
4118 	 * transient reference places because of some walkers or queued
4119 	 * packets in squeue for the timewait state.
4120 	 */
4121 	CONN_DEC_REF(connp);
4122 	q->q_ptr = WR(q)->q_ptr = NULL;
4123 	return (0);
4124 }
4125 
4126 static int
4127 tcpclose_accept(queue_t *q)
4128 {
4129 	vmem_t	*minor_arena;
4130 	dev_t	conn_dev;
4131 
4132 	ASSERT(WR(q)->q_qinfo == &tcp_acceptor_winit);
4133 
4134 	/*
4135 	 * We had opened an acceptor STREAM for sockfs which is
4136 	 * now being closed due to some error.
4137 	 */
4138 	qprocsoff(q);
4139 
4140 	minor_arena = (vmem_t *)WR(q)->q_ptr;
4141 	conn_dev = (dev_t)RD(q)->q_ptr;
4142 	ASSERT(minor_arena != NULL);
4143 	ASSERT(conn_dev != 0);
4144 	inet_minor_free(minor_arena, conn_dev);
4145 	q->q_ptr = WR(q)->q_ptr = NULL;
4146 	return (0);
4147 }
4148 
4149 /*
4150  * Called by tcp_close() routine via squeue when lingering is
4151  * interrupted by a signal.
4152  */
4153 
4154 /* ARGSUSED */
4155 static void
4156 tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2)
4157 {
4158 	conn_t	*connp = (conn_t *)arg;
4159 	tcp_t	*tcp = connp->conn_tcp;
4160 
4161 	freeb(mp);
4162 	if (tcp->tcp_linger_tid != 0 &&
4163 	    TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) {
4164 		tcp_stop_lingering(tcp);
4165 		tcp->tcp_client_errno = EINTR;
4166 	}
4167 }
4168 
4169 /*
4170  * Called by streams close routine via squeues when our client blows off her
4171  * descriptor, we take this to mean: "close the stream state NOW, close the tcp
4172  * connection politely" When SO_LINGER is set (with a non-zero linger time and
4173  * it is not a nonblocking socket) then this routine sleeps until the FIN is
4174  * acked.
4175  *
4176  * NOTE: tcp_close potentially returns error when lingering.
4177  * However, the stream head currently does not pass these errors
4178  * to the application. 4.4BSD only returns EINTR and EWOULDBLOCK
4179  * errors to the application (from tsleep()) and not errors
4180  * like ECONNRESET caused by receiving a reset packet.
4181  */
4182 
4183 /* ARGSUSED */
4184 static void
4185 tcp_close_output(void *arg, mblk_t *mp, void *arg2)
4186 {
4187 	char	*msg;
4188 	conn_t	*connp = (conn_t *)arg;
4189 	tcp_t	*tcp = connp->conn_tcp;
4190 	clock_t	delta = 0;
4191 	tcp_stack_t	*tcps = tcp->tcp_tcps;
4192 
4193 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
4194 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
4195 
4196 	/* Cancel any pending timeout */
4197 	if (tcp->tcp_ordrelid != 0) {
4198 		if (tcp->tcp_timeout) {
4199 			(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ordrelid);
4200 		}
4201 		tcp->tcp_ordrelid = 0;
4202 		tcp->tcp_timeout = B_FALSE;
4203 	}
4204 
4205 	mutex_enter(&tcp->tcp_eager_lock);
4206 	if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) {
4207 		/* Cleanup for listener */
4208 		tcp_eager_cleanup(tcp, 0);
4209 		tcp->tcp_wait_for_eagers = 1;
4210 	}
4211 	mutex_exit(&tcp->tcp_eager_lock);
4212 
4213 	connp->conn_mdt_ok = B_FALSE;
4214 	tcp->tcp_mdt = B_FALSE;
4215 
4216 	connp->conn_lso_ok = B_FALSE;
4217 	tcp->tcp_lso = B_FALSE;
4218 
4219 	msg = NULL;
4220 	switch (tcp->tcp_state) {
4221 	case TCPS_CLOSED:
4222 	case TCPS_IDLE:
4223 	case TCPS_BOUND:
4224 	case TCPS_LISTEN:
4225 		break;
4226 	case TCPS_SYN_SENT:
4227 		msg = "tcp_close, during connect";
4228 		break;
4229 	case TCPS_SYN_RCVD:
4230 		/*
4231 		 * Close during the connect 3-way handshake
4232 		 * but here there may or may not be pending data
4233 		 * already on queue. Process almost same as in
4234 		 * the ESTABLISHED state.
4235 		 */
4236 		/* FALLTHRU */
4237 	default:
4238 		if (tcp->tcp_fused)
4239 			tcp_unfuse(tcp);
4240 
4241 		/*
4242 		 * If SO_LINGER has set a zero linger time, abort the
4243 		 * connection with a reset.
4244 		 */
4245 		if (tcp->tcp_linger && tcp->tcp_lingertime == 0) {
4246 			msg = "tcp_close, zero lingertime";
4247 			break;
4248 		}
4249 
4250 		ASSERT(tcp->tcp_hard_bound || tcp->tcp_hard_binding);
4251 		/*
4252 		 * Abort connection if there is unread data queued.
4253 		 */
4254 		if (tcp->tcp_rcv_list || tcp->tcp_reass_head) {
4255 			msg = "tcp_close, unread data";
4256 			break;
4257 		}
4258 		/*
4259 		 * tcp_hard_bound is now cleared thus all packets go through
4260 		 * tcp_lookup. This fact is used by tcp_detach below.
4261 		 *
4262 		 * We have done a qwait() above which could have possibly
4263 		 * drained more messages in turn causing transition to a
4264 		 * different state. Check whether we have to do the rest
4265 		 * of the processing or not.
4266 		 */
4267 		if (tcp->tcp_state <= TCPS_LISTEN)
4268 			break;
4269 
4270 		/*
4271 		 * Transmit the FIN before detaching the tcp_t.
4272 		 * After tcp_detach returns this queue/perimeter
4273 		 * no longer owns the tcp_t thus others can modify it.
4274 		 */
4275 		(void) tcp_xmit_end(tcp);
4276 
4277 		/*
4278 		 * If lingering on close then wait until the fin is acked,
4279 		 * the SO_LINGER time passes, or a reset is sent/received.
4280 		 */
4281 		if (tcp->tcp_linger && tcp->tcp_lingertime > 0 &&
4282 		    !(tcp->tcp_fin_acked) &&
4283 		    tcp->tcp_state >= TCPS_ESTABLISHED) {
4284 			if (tcp->tcp_closeflags & (FNDELAY|FNONBLOCK)) {
4285 				tcp->tcp_client_errno = EWOULDBLOCK;
4286 			} else if (tcp->tcp_client_errno == 0) {
4287 
4288 				ASSERT(tcp->tcp_linger_tid == 0);
4289 
4290 				tcp->tcp_linger_tid = TCP_TIMER(tcp,
4291 				    tcp_close_linger_timeout,
4292 				    tcp->tcp_lingertime * hz);
4293 
4294 				/* tcp_close_linger_timeout will finish close */
4295 				if (tcp->tcp_linger_tid == 0)
4296 					tcp->tcp_client_errno = ENOSR;
4297 				else
4298 					return;
4299 			}
4300 
4301 			/*
4302 			 * Check if we need to detach or just close
4303 			 * the instance.
4304 			 */
4305 			if (tcp->tcp_state <= TCPS_LISTEN)
4306 				break;
4307 		}
4308 
4309 		/*
4310 		 * Make sure that no other thread will access the tcp_rq of
4311 		 * this instance (through lookups etc.) as tcp_rq will go
4312 		 * away shortly.
4313 		 */
4314 		tcp_acceptor_hash_remove(tcp);
4315 
4316 		mutex_enter(&tcp->tcp_non_sq_lock);
4317 		if (tcp->tcp_flow_stopped) {
4318 			tcp_clrqfull(tcp);
4319 		}
4320 		mutex_exit(&tcp->tcp_non_sq_lock);
4321 
4322 		if (tcp->tcp_timer_tid != 0) {
4323 			delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid);
4324 			tcp->tcp_timer_tid = 0;
4325 		}
4326 		/*
4327 		 * Need to cancel those timers which will not be used when
4328 		 * TCP is detached.  This has to be done before the tcp_wq
4329 		 * is set to the global queue.
4330 		 */
4331 		tcp_timers_stop(tcp);
4332 
4333 		tcp->tcp_detached = B_TRUE;
4334 		if (tcp->tcp_state == TCPS_TIME_WAIT) {
4335 			tcp_time_wait_append(tcp);
4336 			TCP_DBGSTAT(tcps, tcp_detach_time_wait);
4337 			ASSERT(connp->conn_ref >= 3);
4338 			goto finish;
4339 		}
4340 
4341 		/*
4342 		 * If delta is zero the timer event wasn't executed and was
4343 		 * successfully canceled. In this case we need to restart it
4344 		 * with the minimal delta possible.
4345 		 */
4346 		if (delta >= 0)
4347 			tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer,
4348 			    delta ? delta : 1);
4349 
4350 		ASSERT(connp->conn_ref >= 3);
4351 		goto finish;
4352 	}
4353 
4354 	/* Detach did not complete. Still need to remove q from stream. */
4355 	if (msg) {
4356 		if (tcp->tcp_state == TCPS_ESTABLISHED ||
4357 		    tcp->tcp_state == TCPS_CLOSE_WAIT)
4358 			BUMP_MIB(&tcps->tcps_mib, tcpEstabResets);
4359 		if (tcp->tcp_state == TCPS_SYN_SENT ||
4360 		    tcp->tcp_state == TCPS_SYN_RCVD)
4361 			BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails);
4362 		tcp_xmit_ctl(msg, tcp,  tcp->tcp_snxt, 0, TH_RST);
4363 	}
4364 
4365 	tcp_closei_local(tcp);
4366 	CONN_DEC_REF(connp);
4367 	ASSERT(connp->conn_ref >= 2);
4368 
4369 finish:
4370 	/*
4371 	 * Although packets are always processed on the correct
4372 	 * tcp's perimeter and access is serialized via squeue's,
4373 	 * IP still needs a queue when sending packets in time_wait
4374 	 * state so use WR(tcps_g_q) till ip_output() can be
4375 	 * changed to deal with just connp. For read side, we
4376 	 * could have set tcp_rq to NULL but there are some cases
4377 	 * in tcp_rput_data() from early days of this code which
4378 	 * do a putnext without checking if tcp is closed. Those
4379 	 * need to be identified before both tcp_rq and tcp_wq
4380 	 * can be set to NULL and tcps_g_q can disappear forever.
4381 	 */
4382 	mutex_enter(&tcp->tcp_closelock);
4383 	/*
4384 	 * Don't change the queues in the case of a listener that has
4385 	 * eagers in its q or q0. It could surprise the eagers.
4386 	 * Instead wait for the eagers outside the squeue.
4387 	 */
4388 	if (!tcp->tcp_wait_for_eagers) {
4389 		tcp->tcp_detached = B_TRUE;
4390 		/*
4391 		 * When default queue is closing we set tcps_g_q to NULL
4392 		 * after the close is done.
4393 		 */
4394 		ASSERT(tcps->tcps_g_q != NULL);
4395 		tcp->tcp_rq = tcps->tcps_g_q;
4396 		tcp->tcp_wq = WR(tcps->tcps_g_q);
4397 	}
4398 
4399 	/* Signal tcp_close() to finish closing. */
4400 	tcp->tcp_closed = 1;
4401 	cv_signal(&tcp->tcp_closecv);
4402 	mutex_exit(&tcp->tcp_closelock);
4403 }
4404 
4405 
4406 /*
4407  * Clean up the b_next and b_prev fields of every mblk pointed at by *mpp.
4408  * Some stream heads get upset if they see these later on as anything but NULL.
4409  */
4410 static void
4411 tcp_close_mpp(mblk_t **mpp)
4412 {
4413 	mblk_t	*mp;
4414 
4415 	if ((mp = *mpp) != NULL) {
4416 		do {
4417 			mp->b_next = NULL;
4418 			mp->b_prev = NULL;
4419 		} while ((mp = mp->b_cont) != NULL);
4420 
4421 		mp = *mpp;
4422 		*mpp = NULL;
4423 		freemsg(mp);
4424 	}
4425 }
4426 
4427 /* Do detached close. */
4428 static void
4429 tcp_close_detached(tcp_t *tcp)
4430 {
4431 	if (tcp->tcp_fused)
4432 		tcp_unfuse(tcp);
4433 
4434 	/*
4435 	 * Clustering code serializes TCP disconnect callbacks and
4436 	 * cluster tcp list walks by blocking a TCP disconnect callback
4437 	 * if a cluster tcp list walk is in progress. This ensures
4438 	 * accurate accounting of TCPs in the cluster code even though
4439 	 * the TCP list walk itself is not atomic.
4440 	 */
4441 	tcp_closei_local(tcp);
4442 	CONN_DEC_REF(tcp->tcp_connp);
4443 }
4444 
4445 /*
4446  * Stop all TCP timers, and free the timer mblks if requested.
4447  */
4448 void
4449 tcp_timers_stop(tcp_t *tcp)
4450 {
4451 	if (tcp->tcp_timer_tid != 0) {
4452 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid);
4453 		tcp->tcp_timer_tid = 0;
4454 	}
4455 	if (tcp->tcp_ka_tid != 0) {
4456 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ka_tid);
4457 		tcp->tcp_ka_tid = 0;
4458 	}
4459 	if (tcp->tcp_ack_tid != 0) {
4460 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid);
4461 		tcp->tcp_ack_tid = 0;
4462 	}
4463 	if (tcp->tcp_push_tid != 0) {
4464 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid);
4465 		tcp->tcp_push_tid = 0;
4466 	}
4467 }
4468 
4469 /*
4470  * The tcp_t is going away. Remove it from all lists and set it
4471  * to TCPS_CLOSED. The freeing up of memory is deferred until
4472  * tcp_inactive. This is needed since a thread in tcp_rput might have
4473  * done a CONN_INC_REF on this structure before it was removed from the
4474  * hashes.
4475  */
4476 static void
4477 tcp_closei_local(tcp_t *tcp)
4478 {
4479 	ire_t 	*ire;
4480 	conn_t	*connp = tcp->tcp_connp;
4481 	tcp_stack_t	*tcps = tcp->tcp_tcps;
4482 
4483 	if (!TCP_IS_SOCKET(tcp))
4484 		tcp_acceptor_hash_remove(tcp);
4485 
4486 	UPDATE_MIB(&tcps->tcps_mib, tcpHCInSegs, tcp->tcp_ibsegs);
4487 	tcp->tcp_ibsegs = 0;
4488 	UPDATE_MIB(&tcps->tcps_mib, tcpHCOutSegs, tcp->tcp_obsegs);
4489 	tcp->tcp_obsegs = 0;
4490 
4491 	/*
4492 	 * If we are an eager connection hanging off a listener that
4493 	 * hasn't formally accepted the connection yet, get off his
4494 	 * list and blow off any data that we have accumulated.
4495 	 */
4496 	if (tcp->tcp_listener != NULL) {
4497 		tcp_t	*listener = tcp->tcp_listener;
4498 		mutex_enter(&listener->tcp_eager_lock);
4499 		/*
4500 		 * tcp_tconnind_started == B_TRUE means that the
4501 		 * conn_ind has already gone to listener. At
4502 		 * this point, eager will be closed but we
4503 		 * leave it in listeners eager list so that
4504 		 * if listener decides to close without doing
4505 		 * accept, we can clean this up. In tcp_wput_accept
4506 		 * we take care of the case of accept on closed
4507 		 * eager.
4508 		 */
4509 		if (!tcp->tcp_tconnind_started) {
4510 			tcp_eager_unlink(tcp);
4511 			mutex_exit(&listener->tcp_eager_lock);
4512 			/*
4513 			 * We don't want to have any pointers to the
4514 			 * listener queue, after we have released our
4515 			 * reference on the listener
4516 			 */
4517 			ASSERT(tcps->tcps_g_q != NULL);
4518 			tcp->tcp_rq = tcps->tcps_g_q;
4519 			tcp->tcp_wq = WR(tcps->tcps_g_q);
4520 			CONN_DEC_REF(listener->tcp_connp);
4521 		} else {
4522 			mutex_exit(&listener->tcp_eager_lock);
4523 		}
4524 	}
4525 
4526 	/* Stop all the timers */
4527 	tcp_timers_stop(tcp);
4528 
4529 	if (tcp->tcp_state == TCPS_LISTEN) {
4530 		if (tcp->tcp_ip_addr_cache) {
4531 			kmem_free((void *)tcp->tcp_ip_addr_cache,
4532 			    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t));
4533 			tcp->tcp_ip_addr_cache = NULL;
4534 		}
4535 	}
4536 	mutex_enter(&tcp->tcp_non_sq_lock);
4537 	if (tcp->tcp_flow_stopped)
4538 		tcp_clrqfull(tcp);
4539 	mutex_exit(&tcp->tcp_non_sq_lock);
4540 
4541 	tcp_bind_hash_remove(tcp);
4542 	/*
4543 	 * If the tcp_time_wait_collector (which runs outside the squeue)
4544 	 * is trying to remove this tcp from the time wait list, we will
4545 	 * block in tcp_time_wait_remove while trying to acquire the
4546 	 * tcp_time_wait_lock. The logic in tcp_time_wait_collector also
4547 	 * requires the ipcl_hash_remove to be ordered after the
4548 	 * tcp_time_wait_remove for the refcnt checks to work correctly.
4549 	 */
4550 	if (tcp->tcp_state == TCPS_TIME_WAIT)
4551 		(void) tcp_time_wait_remove(tcp, NULL);
4552 	CL_INET_DISCONNECT(tcp);
4553 	ipcl_hash_remove(connp);
4554 
4555 	/*
4556 	 * Delete the cached ire in conn_ire_cache and also mark
4557 	 * the conn as CONDEMNED
4558 	 */
4559 	mutex_enter(&connp->conn_lock);
4560 	connp->conn_state_flags |= CONN_CONDEMNED;
4561 	ire = connp->conn_ire_cache;
4562 	connp->conn_ire_cache = NULL;
4563 	mutex_exit(&connp->conn_lock);
4564 	if (ire != NULL)
4565 		IRE_REFRELE_NOTR(ire);
4566 
4567 	/* Need to cleanup any pending ioctls */
4568 	ASSERT(tcp->tcp_time_wait_next == NULL);
4569 	ASSERT(tcp->tcp_time_wait_prev == NULL);
4570 	ASSERT(tcp->tcp_time_wait_expire == 0);
4571 	tcp->tcp_state = TCPS_CLOSED;
4572 
4573 	/* Release any SSL context */
4574 	if (tcp->tcp_kssl_ent != NULL) {
4575 		kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY);
4576 		tcp->tcp_kssl_ent = NULL;
4577 	}
4578 	if (tcp->tcp_kssl_ctx != NULL) {
4579 		kssl_release_ctx(tcp->tcp_kssl_ctx);
4580 		tcp->tcp_kssl_ctx = NULL;
4581 	}
4582 	tcp->tcp_kssl_pending = B_FALSE;
4583 
4584 	tcp_ipsec_cleanup(tcp);
4585 }
4586 
4587 /*
4588  * tcp is dying (called from ipcl_conn_destroy and error cases).
4589  * Free the tcp_t in either case.
4590  */
4591 void
4592 tcp_free(tcp_t *tcp)
4593 {
4594 	mblk_t	*mp;
4595 	ip6_pkt_t	*ipp;
4596 
4597 	ASSERT(tcp != NULL);
4598 	ASSERT(tcp->tcp_ptpahn == NULL && tcp->tcp_acceptor_hash == NULL);
4599 
4600 	tcp->tcp_rq = NULL;
4601 	tcp->tcp_wq = NULL;
4602 
4603 	tcp_close_mpp(&tcp->tcp_xmit_head);
4604 	tcp_close_mpp(&tcp->tcp_reass_head);
4605 	if (tcp->tcp_rcv_list != NULL) {
4606 		/* Free b_next chain */
4607 		tcp_close_mpp(&tcp->tcp_rcv_list);
4608 	}
4609 	if ((mp = tcp->tcp_urp_mp) != NULL) {
4610 		freemsg(mp);
4611 	}
4612 	if ((mp = tcp->tcp_urp_mark_mp) != NULL) {
4613 		freemsg(mp);
4614 	}
4615 
4616 	if (tcp->tcp_fused_sigurg_mp != NULL) {
4617 		freeb(tcp->tcp_fused_sigurg_mp);
4618 		tcp->tcp_fused_sigurg_mp = NULL;
4619 	}
4620 
4621 	if (tcp->tcp_sack_info != NULL) {
4622 		if (tcp->tcp_notsack_list != NULL) {
4623 			TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list);
4624 		}
4625 		bzero(tcp->tcp_sack_info, sizeof (tcp_sack_info_t));
4626 	}
4627 
4628 	if (tcp->tcp_hopopts != NULL) {
4629 		mi_free(tcp->tcp_hopopts);
4630 		tcp->tcp_hopopts = NULL;
4631 		tcp->tcp_hopoptslen = 0;
4632 	}
4633 	ASSERT(tcp->tcp_hopoptslen == 0);
4634 	if (tcp->tcp_dstopts != NULL) {
4635 		mi_free(tcp->tcp_dstopts);
4636 		tcp->tcp_dstopts = NULL;
4637 		tcp->tcp_dstoptslen = 0;
4638 	}
4639 	ASSERT(tcp->tcp_dstoptslen == 0);
4640 	if (tcp->tcp_rtdstopts != NULL) {
4641 		mi_free(tcp->tcp_rtdstopts);
4642 		tcp->tcp_rtdstopts = NULL;
4643 		tcp->tcp_rtdstoptslen = 0;
4644 	}
4645 	ASSERT(tcp->tcp_rtdstoptslen == 0);
4646 	if (tcp->tcp_rthdr != NULL) {
4647 		mi_free(tcp->tcp_rthdr);
4648 		tcp->tcp_rthdr = NULL;
4649 		tcp->tcp_rthdrlen = 0;
4650 	}
4651 	ASSERT(tcp->tcp_rthdrlen == 0);
4652 
4653 	ipp = &tcp->tcp_sticky_ipp;
4654 	if (ipp->ipp_fields & (IPPF_HOPOPTS | IPPF_RTDSTOPTS | IPPF_DSTOPTS |
4655 	    IPPF_RTHDR))
4656 		ip6_pkt_free(ipp);
4657 
4658 	/*
4659 	 * Free memory associated with the tcp/ip header template.
4660 	 */
4661 
4662 	if (tcp->tcp_iphc != NULL)
4663 		bzero(tcp->tcp_iphc, tcp->tcp_iphc_len);
4664 
4665 	/*
4666 	 * Following is really a blowing away a union.
4667 	 * It happens to have exactly two members of identical size
4668 	 * the following code is enough.
4669 	 */
4670 	tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind);
4671 
4672 	if (tcp->tcp_tracebuf != NULL) {
4673 		kmem_free(tcp->tcp_tracebuf, sizeof (tcptrch_t));
4674 		tcp->tcp_tracebuf = NULL;
4675 	}
4676 }
4677 
4678 
4679 /*
4680  * Put a connection confirmation message upstream built from the
4681  * address information within 'iph' and 'tcph'.  Report our success or failure.
4682  */
4683 static boolean_t
4684 tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph, mblk_t *idmp,
4685     mblk_t **defermp)
4686 {
4687 	sin_t	sin;
4688 	sin6_t	sin6;
4689 	mblk_t	*mp;
4690 	char	*optp = NULL;
4691 	int	optlen = 0;
4692 	cred_t	*cr;
4693 
4694 	if (defermp != NULL)
4695 		*defermp = NULL;
4696 
4697 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL) {
4698 		/*
4699 		 * Return in T_CONN_CON results of option negotiation through
4700 		 * the T_CONN_REQ. Note: If there is an real end-to-end option
4701 		 * negotiation, then what is received from remote end needs
4702 		 * to be taken into account but there is no such thing (yet?)
4703 		 * in our TCP/IP.
4704 		 * Note: We do not use mi_offset_param() here as
4705 		 * tcp_opts_conn_req contents do not directly come from
4706 		 * an application and are either generated in kernel or
4707 		 * from user input that was already verified.
4708 		 */
4709 		mp = tcp->tcp_conn.tcp_opts_conn_req;
4710 		optp = (char *)(mp->b_rptr +
4711 		    ((struct T_conn_req *)mp->b_rptr)->OPT_offset);
4712 		optlen = (int)
4713 		    ((struct T_conn_req *)mp->b_rptr)->OPT_length;
4714 	}
4715 
4716 	if (IPH_HDR_VERSION(iphdr) == IPV4_VERSION) {
4717 		ipha_t *ipha = (ipha_t *)iphdr;
4718 
4719 		/* packet is IPv4 */
4720 		if (tcp->tcp_family == AF_INET) {
4721 			sin = sin_null;
4722 			sin.sin_addr.s_addr = ipha->ipha_src;
4723 			sin.sin_port = *(uint16_t *)tcph->th_lport;
4724 			sin.sin_family = AF_INET;
4725 			mp = mi_tpi_conn_con(NULL, (char *)&sin,
4726 			    (int)sizeof (sin_t), optp, optlen);
4727 		} else {
4728 			sin6 = sin6_null;
4729 			IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &sin6.sin6_addr);
4730 			sin6.sin6_port = *(uint16_t *)tcph->th_lport;
4731 			sin6.sin6_family = AF_INET6;
4732 			mp = mi_tpi_conn_con(NULL, (char *)&sin6,
4733 			    (int)sizeof (sin6_t), optp, optlen);
4734 
4735 		}
4736 	} else {
4737 		ip6_t	*ip6h = (ip6_t *)iphdr;
4738 
4739 		ASSERT(IPH_HDR_VERSION(iphdr) == IPV6_VERSION);
4740 		ASSERT(tcp->tcp_family == AF_INET6);
4741 		sin6 = sin6_null;
4742 		sin6.sin6_addr = ip6h->ip6_src;
4743 		sin6.sin6_port = *(uint16_t *)tcph->th_lport;
4744 		sin6.sin6_family = AF_INET6;
4745 		sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK;
4746 		mp = mi_tpi_conn_con(NULL, (char *)&sin6,
4747 		    (int)sizeof (sin6_t), optp, optlen);
4748 	}
4749 
4750 	if (!mp)
4751 		return (B_FALSE);
4752 
4753 	if ((cr = DB_CRED(idmp)) != NULL) {
4754 		mblk_setcred(mp, cr);
4755 		DB_CPID(mp) = DB_CPID(idmp);
4756 	}
4757 
4758 	if (defermp == NULL)
4759 		putnext(tcp->tcp_rq, mp);
4760 	else
4761 		*defermp = mp;
4762 
4763 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
4764 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
4765 	return (B_TRUE);
4766 }
4767 
4768 /*
4769  * Defense for the SYN attack -
4770  * 1. When q0 is full, drop from the tail (tcp_eager_prev_drop_q0) the oldest
4771  *    one from the list of droppable eagers. This list is a subset of q0.
4772  *    see comments before the definition of MAKE_DROPPABLE().
4773  * 2. Don't drop a SYN request before its first timeout. This gives every
4774  *    request at least til the first timeout to complete its 3-way handshake.
4775  * 3. Maintain tcp_syn_rcvd_timeout as an accurate count of how many
4776  *    requests currently on the queue that has timed out. This will be used
4777  *    as an indicator of whether an attack is under way, so that appropriate
4778  *    actions can be taken. (It's incremented in tcp_timer() and decremented
4779  *    either when eager goes into ESTABLISHED, or gets freed up.)
4780  * 4. The current threshold is - # of timeout > q0len/4 => SYN alert on
4781  *    # of timeout drops back to <= q0len/32 => SYN alert off
4782  */
4783 static boolean_t
4784 tcp_drop_q0(tcp_t *tcp)
4785 {
4786 	tcp_t	*eager;
4787 	mblk_t	*mp;
4788 	tcp_stack_t	*tcps = tcp->tcp_tcps;
4789 
4790 	ASSERT(MUTEX_HELD(&tcp->tcp_eager_lock));
4791 	ASSERT(tcp->tcp_eager_next_q0 != tcp->tcp_eager_prev_q0);
4792 
4793 	/* Pick oldest eager from the list of droppable eagers */
4794 	eager = tcp->tcp_eager_prev_drop_q0;
4795 
4796 	/* If list is empty. return B_FALSE */
4797 	if (eager == tcp) {
4798 		return (B_FALSE);
4799 	}
4800 
4801 	/* If allocated, the mp will be freed in tcp_clean_death_wrapper() */
4802 	if ((mp = allocb(0, BPRI_HI)) == NULL)
4803 		return (B_FALSE);
4804 
4805 	/*
4806 	 * Take this eager out from the list of droppable eagers since we are
4807 	 * going to drop it.
4808 	 */
4809 	MAKE_UNDROPPABLE(eager);
4810 
4811 	if (tcp->tcp_debug) {
4812 		(void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE,
4813 		    "tcp_drop_q0: listen half-open queue (max=%d) overflow"
4814 		    " (%d pending) on %s, drop one", tcps->tcps_conn_req_max_q0,
4815 		    tcp->tcp_conn_req_cnt_q0,
4816 		    tcp_display(tcp, NULL, DISP_PORT_ONLY));
4817 	}
4818 
4819 	BUMP_MIB(&tcps->tcps_mib, tcpHalfOpenDrop);
4820 
4821 	/* Put a reference on the conn as we are enqueueing it in the sqeue */
4822 	CONN_INC_REF(eager->tcp_connp);
4823 
4824 	/* Mark the IRE created for this SYN request temporary */
4825 	tcp_ip_ire_mark_advice(eager);
4826 	squeue_fill(eager->tcp_connp->conn_sqp, mp,
4827 	    tcp_clean_death_wrapper, eager->tcp_connp, SQTAG_TCP_DROP_Q0);
4828 
4829 	return (B_TRUE);
4830 }
4831 
4832 int
4833 tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp,
4834     tcph_t *tcph, uint_t ipvers, mblk_t *idmp)
4835 {
4836 	tcp_t 		*ltcp = lconnp->conn_tcp;
4837 	tcp_t		*tcp = connp->conn_tcp;
4838 	mblk_t		*tpi_mp;
4839 	ipha_t		*ipha;
4840 	ip6_t		*ip6h;
4841 	sin6_t 		sin6;
4842 	in6_addr_t 	v6dst;
4843 	int		err;
4844 	int		ifindex = 0;
4845 	cred_t		*cr;
4846 	tcp_stack_t	*tcps = tcp->tcp_tcps;
4847 
4848 	if (ipvers == IPV4_VERSION) {
4849 		ipha = (ipha_t *)mp->b_rptr;
4850 
4851 		connp->conn_send = ip_output;
4852 		connp->conn_recv = tcp_input;
4853 
4854 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_srcv6);
4855 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_remv6);
4856 
4857 		sin6 = sin6_null;
4858 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &sin6.sin6_addr);
4859 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &v6dst);
4860 		sin6.sin6_port = *(uint16_t *)tcph->th_lport;
4861 		sin6.sin6_family = AF_INET6;
4862 		sin6.__sin6_src_id = ip_srcid_find_addr(&v6dst,
4863 		    lconnp->conn_zoneid, tcps->tcps_netstack);
4864 		if (tcp->tcp_recvdstaddr) {
4865 			sin6_t	sin6d;
4866 
4867 			sin6d = sin6_null;
4868 			IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst,
4869 			    &sin6d.sin6_addr);
4870 			sin6d.sin6_port = *(uint16_t *)tcph->th_fport;
4871 			sin6d.sin6_family = AF_INET;
4872 			tpi_mp = mi_tpi_extconn_ind(NULL,
4873 			    (char *)&sin6d, sizeof (sin6_t),
4874 			    (char *)&tcp,
4875 			    (t_scalar_t)sizeof (intptr_t),
4876 			    (char *)&sin6d, sizeof (sin6_t),
4877 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4878 		} else {
4879 			tpi_mp = mi_tpi_conn_ind(NULL,
4880 			    (char *)&sin6, sizeof (sin6_t),
4881 			    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
4882 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4883 		}
4884 	} else {
4885 		ip6h = (ip6_t *)mp->b_rptr;
4886 
4887 		connp->conn_send = ip_output_v6;
4888 		connp->conn_recv = tcp_input;
4889 
4890 		connp->conn_srcv6 = ip6h->ip6_dst;
4891 		connp->conn_remv6 = ip6h->ip6_src;
4892 
4893 		/* db_cksumstuff is set at ip_fanout_tcp_v6 */
4894 		ifindex = (int)DB_CKSUMSTUFF(mp);
4895 		DB_CKSUMSTUFF(mp) = 0;
4896 
4897 		sin6 = sin6_null;
4898 		sin6.sin6_addr = ip6h->ip6_src;
4899 		sin6.sin6_port = *(uint16_t *)tcph->th_lport;
4900 		sin6.sin6_family = AF_INET6;
4901 		sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK;
4902 		sin6.__sin6_src_id = ip_srcid_find_addr(&ip6h->ip6_dst,
4903 		    lconnp->conn_zoneid, tcps->tcps_netstack);
4904 
4905 		if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) {
4906 			/* Pass up the scope_id of remote addr */
4907 			sin6.sin6_scope_id = ifindex;
4908 		} else {
4909 			sin6.sin6_scope_id = 0;
4910 		}
4911 		if (tcp->tcp_recvdstaddr) {
4912 			sin6_t	sin6d;
4913 
4914 			sin6d = sin6_null;
4915 			sin6.sin6_addr = ip6h->ip6_dst;
4916 			sin6d.sin6_port = *(uint16_t *)tcph->th_fport;
4917 			sin6d.sin6_family = AF_INET;
4918 			tpi_mp = mi_tpi_extconn_ind(NULL,
4919 			    (char *)&sin6d, sizeof (sin6_t),
4920 			    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
4921 			    (char *)&sin6d, sizeof (sin6_t),
4922 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4923 		} else {
4924 			tpi_mp = mi_tpi_conn_ind(NULL,
4925 			    (char *)&sin6, sizeof (sin6_t),
4926 			    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
4927 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4928 		}
4929 	}
4930 
4931 	if (tpi_mp == NULL)
4932 		return (ENOMEM);
4933 
4934 	connp->conn_fport = *(uint16_t *)tcph->th_lport;
4935 	connp->conn_lport = *(uint16_t *)tcph->th_fport;
4936 	connp->conn_flags |= (IPCL_TCP6|IPCL_EAGER);
4937 	connp->conn_fully_bound = B_FALSE;
4938 
4939 	if (tcps->tcps_trace)
4940 		tcp->tcp_tracebuf = kmem_zalloc(sizeof (tcptrch_t), KM_NOSLEEP);
4941 
4942 	/* Inherit information from the "parent" */
4943 	tcp->tcp_ipversion = ltcp->tcp_ipversion;
4944 	tcp->tcp_family = ltcp->tcp_family;
4945 	tcp->tcp_wq = ltcp->tcp_wq;
4946 	tcp->tcp_rq = ltcp->tcp_rq;
4947 	tcp->tcp_mss = tcps->tcps_mss_def_ipv6;
4948 	tcp->tcp_detached = B_TRUE;
4949 	if ((err = tcp_init_values(tcp)) != 0) {
4950 		freemsg(tpi_mp);
4951 		return (err);
4952 	}
4953 
4954 	if (ipvers == IPV4_VERSION) {
4955 		if ((err = tcp_header_init_ipv4(tcp)) != 0) {
4956 			freemsg(tpi_mp);
4957 			return (err);
4958 		}
4959 		ASSERT(tcp->tcp_ipha != NULL);
4960 	} else {
4961 		/* ifindex must be already set */
4962 		ASSERT(ifindex != 0);
4963 
4964 		if (ltcp->tcp_bound_if != 0) {
4965 			/*
4966 			 * Set newtcp's bound_if equal to
4967 			 * listener's value. If ifindex is
4968 			 * not the same as ltcp->tcp_bound_if,
4969 			 * it must be a packet for the ipmp group
4970 			 * of interfaces
4971 			 */
4972 			tcp->tcp_bound_if = ltcp->tcp_bound_if;
4973 		} else if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) {
4974 			tcp->tcp_bound_if = ifindex;
4975 		}
4976 
4977 		tcp->tcp_ipv6_recvancillary = ltcp->tcp_ipv6_recvancillary;
4978 		tcp->tcp_recvifindex = 0;
4979 		tcp->tcp_recvhops = 0xffffffffU;
4980 		ASSERT(tcp->tcp_ip6h != NULL);
4981 	}
4982 
4983 	tcp->tcp_lport = ltcp->tcp_lport;
4984 
4985 	if (ltcp->tcp_ipversion == tcp->tcp_ipversion) {
4986 		if (tcp->tcp_iphc_len != ltcp->tcp_iphc_len) {
4987 			/*
4988 			 * Listener had options of some sort; eager inherits.
4989 			 * Free up the eager template and allocate one
4990 			 * of the right size.
4991 			 */
4992 			if (tcp->tcp_hdr_grown) {
4993 				kmem_free(tcp->tcp_iphc, tcp->tcp_iphc_len);
4994 			} else {
4995 				bzero(tcp->tcp_iphc, tcp->tcp_iphc_len);
4996 				kmem_cache_free(tcp_iphc_cache, tcp->tcp_iphc);
4997 			}
4998 			tcp->tcp_iphc = kmem_zalloc(ltcp->tcp_iphc_len,
4999 			    KM_NOSLEEP);
5000 			if (tcp->tcp_iphc == NULL) {
5001 				tcp->tcp_iphc_len = 0;
5002 				freemsg(tpi_mp);
5003 				return (ENOMEM);
5004 			}
5005 			tcp->tcp_iphc_len = ltcp->tcp_iphc_len;
5006 			tcp->tcp_hdr_grown = B_TRUE;
5007 		}
5008 		tcp->tcp_hdr_len = ltcp->tcp_hdr_len;
5009 		tcp->tcp_ip_hdr_len = ltcp->tcp_ip_hdr_len;
5010 		tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len;
5011 		tcp->tcp_ip6_hops = ltcp->tcp_ip6_hops;
5012 		tcp->tcp_ip6_vcf = ltcp->tcp_ip6_vcf;
5013 
5014 		/*
5015 		 * Copy the IP+TCP header template from listener to eager
5016 		 */
5017 		bcopy(ltcp->tcp_iphc, tcp->tcp_iphc, ltcp->tcp_hdr_len);
5018 		if (tcp->tcp_ipversion == IPV6_VERSION) {
5019 			if (((ip6i_t *)(tcp->tcp_iphc))->ip6i_nxt ==
5020 			    IPPROTO_RAW) {
5021 				tcp->tcp_ip6h =
5022 				    (ip6_t *)(tcp->tcp_iphc +
5023 				    sizeof (ip6i_t));
5024 			} else {
5025 				tcp->tcp_ip6h =
5026 				    (ip6_t *)(tcp->tcp_iphc);
5027 			}
5028 			tcp->tcp_ipha = NULL;
5029 		} else {
5030 			tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc;
5031 			tcp->tcp_ip6h = NULL;
5032 		}
5033 		tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc +
5034 		    tcp->tcp_ip_hdr_len);
5035 	} else {
5036 		/*
5037 		 * only valid case when ipversion of listener and
5038 		 * eager differ is when listener is IPv6 and
5039 		 * eager is IPv4.
5040 		 * Eager header template has been initialized to the
5041 		 * maximum v4 header sizes, which includes space for
5042 		 * TCP and IP options.
5043 		 */
5044 		ASSERT((ltcp->tcp_ipversion == IPV6_VERSION) &&
5045 		    (tcp->tcp_ipversion == IPV4_VERSION));
5046 		ASSERT(tcp->tcp_iphc_len >=
5047 		    TCP_MAX_COMBINED_HEADER_LENGTH);
5048 		tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len;
5049 		/* copy IP header fields individually */
5050 		tcp->tcp_ipha->ipha_ttl =
5051 		    ltcp->tcp_ip6h->ip6_hops;
5052 		bcopy(ltcp->tcp_tcph->th_lport,
5053 		    tcp->tcp_tcph->th_lport, sizeof (ushort_t));
5054 	}
5055 
5056 	bcopy(tcph->th_lport, tcp->tcp_tcph->th_fport, sizeof (in_port_t));
5057 	bcopy(tcp->tcp_tcph->th_fport, &tcp->tcp_fport,
5058 	    sizeof (in_port_t));
5059 
5060 	if (ltcp->tcp_lport == 0) {
5061 		tcp->tcp_lport = *(in_port_t *)tcph->th_fport;
5062 		bcopy(tcph->th_fport, tcp->tcp_tcph->th_lport,
5063 		    sizeof (in_port_t));
5064 	}
5065 
5066 	if (tcp->tcp_ipversion == IPV4_VERSION) {
5067 		ASSERT(ipha != NULL);
5068 		tcp->tcp_ipha->ipha_dst = ipha->ipha_src;
5069 		tcp->tcp_ipha->ipha_src = ipha->ipha_dst;
5070 
5071 		/* Source routing option copyover (reverse it) */
5072 		if (tcps->tcps_rev_src_routes)
5073 			tcp_opt_reverse(tcp, ipha);
5074 	} else {
5075 		ASSERT(ip6h != NULL);
5076 		tcp->tcp_ip6h->ip6_dst = ip6h->ip6_src;
5077 		tcp->tcp_ip6h->ip6_src = ip6h->ip6_dst;
5078 	}
5079 
5080 	ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL);
5081 	ASSERT(!tcp->tcp_tconnind_started);
5082 	/*
5083 	 * If the SYN contains a credential, it's a loopback packet; attach
5084 	 * the credential to the TPI message.
5085 	 */
5086 	if ((cr = DB_CRED(idmp)) != NULL) {
5087 		mblk_setcred(tpi_mp, cr);
5088 		DB_CPID(tpi_mp) = DB_CPID(idmp);
5089 	}
5090 	tcp->tcp_conn.tcp_eager_conn_ind = tpi_mp;
5091 
5092 	/* Inherit the listener's SSL protection state */
5093 
5094 	if ((tcp->tcp_kssl_ent = ltcp->tcp_kssl_ent) != NULL) {
5095 		kssl_hold_ent(tcp->tcp_kssl_ent);
5096 		tcp->tcp_kssl_pending = B_TRUE;
5097 	}
5098 
5099 	return (0);
5100 }
5101 
5102 
5103 int
5104 tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, ipha_t *ipha,
5105     tcph_t *tcph, mblk_t *idmp)
5106 {
5107 	tcp_t 		*ltcp = lconnp->conn_tcp;
5108 	tcp_t		*tcp = connp->conn_tcp;
5109 	sin_t		sin;
5110 	mblk_t		*tpi_mp = NULL;
5111 	int		err;
5112 	cred_t		*cr;
5113 	tcp_stack_t	*tcps = tcp->tcp_tcps;
5114 
5115 	sin = sin_null;
5116 	sin.sin_addr.s_addr = ipha->ipha_src;
5117 	sin.sin_port = *(uint16_t *)tcph->th_lport;
5118 	sin.sin_family = AF_INET;
5119 	if (ltcp->tcp_recvdstaddr) {
5120 		sin_t	sind;
5121 
5122 		sind = sin_null;
5123 		sind.sin_addr.s_addr = ipha->ipha_dst;
5124 		sind.sin_port = *(uint16_t *)tcph->th_fport;
5125 		sind.sin_family = AF_INET;
5126 		tpi_mp = mi_tpi_extconn_ind(NULL,
5127 		    (char *)&sind, sizeof (sin_t), (char *)&tcp,
5128 		    (t_scalar_t)sizeof (intptr_t), (char *)&sind,
5129 		    sizeof (sin_t), (t_scalar_t)ltcp->tcp_conn_req_seqnum);
5130 	} else {
5131 		tpi_mp = mi_tpi_conn_ind(NULL,
5132 		    (char *)&sin, sizeof (sin_t),
5133 		    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
5134 		    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
5135 	}
5136 
5137 	if (tpi_mp == NULL) {
5138 		return (ENOMEM);
5139 	}
5140 
5141 	connp->conn_flags |= (IPCL_TCP4|IPCL_EAGER);
5142 	connp->conn_send = ip_output;
5143 	connp->conn_recv = tcp_input;
5144 	connp->conn_fully_bound = B_FALSE;
5145 
5146 	IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_srcv6);
5147 	IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_remv6);
5148 	connp->conn_fport = *(uint16_t *)tcph->th_lport;
5149 	connp->conn_lport = *(uint16_t *)tcph->th_fport;
5150 
5151 	if (tcps->tcps_trace) {
5152 		tcp->tcp_tracebuf = kmem_zalloc(sizeof (tcptrch_t), KM_NOSLEEP);
5153 	}
5154 
5155 	/* Inherit information from the "parent" */
5156 	tcp->tcp_ipversion = ltcp->tcp_ipversion;
5157 	tcp->tcp_family = ltcp->tcp_family;
5158 	tcp->tcp_wq = ltcp->tcp_wq;
5159 	tcp->tcp_rq = ltcp->tcp_rq;
5160 	tcp->tcp_mss = tcps->tcps_mss_def_ipv4;
5161 	tcp->tcp_detached = B_TRUE;
5162 	if ((err = tcp_init_values(tcp)) != 0) {
5163 		freemsg(tpi_mp);
5164 		return (err);
5165 	}
5166 
5167 	/*
5168 	 * Let's make sure that eager tcp template has enough space to
5169 	 * copy IPv4 listener's tcp template. Since the conn_t structure is
5170 	 * preserved and tcp_iphc_len is also preserved, an eager conn_t may
5171 	 * have a tcp_template of total len TCP_MAX_COMBINED_HEADER_LENGTH or
5172 	 * more (in case of re-allocation of conn_t with tcp-IPv6 template with
5173 	 * extension headers or with ip6i_t struct). Note that bcopy() below
5174 	 * copies listener tcp's hdr_len which cannot be greater than TCP_MAX_
5175 	 * COMBINED_HEADER_LENGTH as this listener must be a IPv4 listener.
5176 	 */
5177 	ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH);
5178 	ASSERT(ltcp->tcp_hdr_len <= TCP_MAX_COMBINED_HEADER_LENGTH);
5179 
5180 	tcp->tcp_hdr_len = ltcp->tcp_hdr_len;
5181 	tcp->tcp_ip_hdr_len = ltcp->tcp_ip_hdr_len;
5182 	tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len;
5183 	tcp->tcp_ttl = ltcp->tcp_ttl;
5184 	tcp->tcp_tos = ltcp->tcp_tos;
5185 
5186 	/* Copy the IP+TCP header template from listener to eager */
5187 	bcopy(ltcp->tcp_iphc, tcp->tcp_iphc, ltcp->tcp_hdr_len);
5188 	tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc;
5189 	tcp->tcp_ip6h = NULL;
5190 	tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc +
5191 	    tcp->tcp_ip_hdr_len);
5192 
5193 	/* Initialize the IP addresses and Ports */
5194 	tcp->tcp_ipha->ipha_dst = ipha->ipha_src;
5195 	tcp->tcp_ipha->ipha_src = ipha->ipha_dst;
5196 	bcopy(tcph->th_lport, tcp->tcp_tcph->th_fport, sizeof (in_port_t));
5197 	bcopy(tcph->th_fport, tcp->tcp_tcph->th_lport, sizeof (in_port_t));
5198 
5199 	/* Source routing option copyover (reverse it) */
5200 	if (tcps->tcps_rev_src_routes)
5201 		tcp_opt_reverse(tcp, ipha);
5202 
5203 	ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL);
5204 	ASSERT(!tcp->tcp_tconnind_started);
5205 
5206 	/*
5207 	 * If the SYN contains a credential, it's a loopback packet; attach
5208 	 * the credential to the TPI message.
5209 	 */
5210 	if ((cr = DB_CRED(idmp)) != NULL) {
5211 		mblk_setcred(tpi_mp, cr);
5212 		DB_CPID(tpi_mp) = DB_CPID(idmp);
5213 	}
5214 	tcp->tcp_conn.tcp_eager_conn_ind = tpi_mp;
5215 
5216 	/* Inherit the listener's SSL protection state */
5217 	if ((tcp->tcp_kssl_ent = ltcp->tcp_kssl_ent) != NULL) {
5218 		kssl_hold_ent(tcp->tcp_kssl_ent);
5219 		tcp->tcp_kssl_pending = B_TRUE;
5220 	}
5221 
5222 	return (0);
5223 }
5224 
5225 /*
5226  * sets up conn for ipsec.
5227  * if the first mblk is M_CTL it is consumed and mpp is updated.
5228  * in case of error mpp is freed.
5229  */
5230 conn_t *
5231 tcp_get_ipsec_conn(tcp_t *tcp, squeue_t *sqp, mblk_t **mpp)
5232 {
5233 	conn_t 		*connp = tcp->tcp_connp;
5234 	conn_t 		*econnp;
5235 	squeue_t 	*new_sqp;
5236 	mblk_t 		*first_mp = *mpp;
5237 	mblk_t		*mp = *mpp;
5238 	boolean_t	mctl_present = B_FALSE;
5239 	uint_t		ipvers;
5240 
5241 	econnp = tcp_get_conn(sqp, tcp->tcp_tcps);
5242 	if (econnp == NULL) {
5243 		freemsg(first_mp);
5244 		return (NULL);
5245 	}
5246 	if (DB_TYPE(mp) == M_CTL) {
5247 		if (mp->b_cont == NULL ||
5248 		    mp->b_cont->b_datap->db_type != M_DATA) {
5249 			freemsg(first_mp);
5250 			return (NULL);
5251 		}
5252 		mp = mp->b_cont;
5253 		if ((mp->b_datap->db_struioflag & STRUIO_EAGER) == 0) {
5254 			freemsg(first_mp);
5255 			return (NULL);
5256 		}
5257 
5258 		mp->b_datap->db_struioflag &= ~STRUIO_EAGER;
5259 		first_mp->b_datap->db_struioflag &= ~STRUIO_POLICY;
5260 		mctl_present = B_TRUE;
5261 	} else {
5262 		ASSERT(mp->b_datap->db_struioflag & STRUIO_POLICY);
5263 		mp->b_datap->db_struioflag &= ~STRUIO_POLICY;
5264 	}
5265 
5266 	new_sqp = (squeue_t *)DB_CKSUMSTART(mp);
5267 	DB_CKSUMSTART(mp) = 0;
5268 
5269 	ASSERT(OK_32PTR(mp->b_rptr));
5270 	ipvers = IPH_HDR_VERSION(mp->b_rptr);
5271 	if (ipvers == IPV4_VERSION) {
5272 		uint16_t  	*up;
5273 		uint32_t	ports;
5274 		ipha_t		*ipha;
5275 
5276 		ipha = (ipha_t *)mp->b_rptr;
5277 		up = (uint16_t *)((uchar_t *)ipha +
5278 		    IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET);
5279 		ports = *(uint32_t *)up;
5280 		IPCL_TCP_EAGER_INIT(econnp, IPPROTO_TCP,
5281 		    ipha->ipha_dst, ipha->ipha_src, ports);
5282 	} else {
5283 		uint16_t  	*up;
5284 		uint32_t	ports;
5285 		uint16_t	ip_hdr_len;
5286 		uint8_t		*nexthdrp;
5287 		ip6_t 		*ip6h;
5288 		tcph_t		*tcph;
5289 
5290 		ip6h = (ip6_t *)mp->b_rptr;
5291 		if (ip6h->ip6_nxt == IPPROTO_TCP) {
5292 			ip_hdr_len = IPV6_HDR_LEN;
5293 		} else if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &ip_hdr_len,
5294 		    &nexthdrp) || *nexthdrp != IPPROTO_TCP) {
5295 			CONN_DEC_REF(econnp);
5296 			freemsg(first_mp);
5297 			return (NULL);
5298 		}
5299 		tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len];
5300 		up = (uint16_t *)tcph->th_lport;
5301 		ports = *(uint32_t *)up;
5302 		IPCL_TCP_EAGER_INIT_V6(econnp, IPPROTO_TCP,
5303 		    ip6h->ip6_dst, ip6h->ip6_src, ports);
5304 	}
5305 
5306 	/*
5307 	 * The caller already ensured that there is a sqp present.
5308 	 */
5309 	econnp->conn_sqp = new_sqp;
5310 
5311 	if (connp->conn_policy != NULL) {
5312 		ipsec_in_t *ii;
5313 		ii = (ipsec_in_t *)(first_mp->b_rptr);
5314 		ASSERT(ii->ipsec_in_policy == NULL);
5315 		IPPH_REFHOLD(connp->conn_policy);
5316 		ii->ipsec_in_policy = connp->conn_policy;
5317 
5318 		first_mp->b_datap->db_type = IPSEC_POLICY_SET;
5319 		if (!ip_bind_ipsec_policy_set(econnp, first_mp)) {
5320 			CONN_DEC_REF(econnp);
5321 			freemsg(first_mp);
5322 			return (NULL);
5323 		}
5324 	}
5325 
5326 	if (ipsec_conn_cache_policy(econnp, ipvers == IPV4_VERSION) != 0) {
5327 		CONN_DEC_REF(econnp);
5328 		freemsg(first_mp);
5329 		return (NULL);
5330 	}
5331 
5332 	/*
5333 	 * If we know we have some policy, pass the "IPSEC"
5334 	 * options size TCP uses this adjust the MSS.
5335 	 */
5336 	econnp->conn_tcp->tcp_ipsec_overhead = conn_ipsec_length(econnp);
5337 	if (mctl_present) {
5338 		freeb(first_mp);
5339 		*mpp = mp;
5340 	}
5341 
5342 	return (econnp);
5343 }
5344 
5345 /*
5346  * tcp_get_conn/tcp_free_conn
5347  *
5348  * tcp_get_conn is used to get a clean tcp connection structure.
5349  * It tries to reuse the connections put on the freelist by the
5350  * time_wait_collector failing which it goes to kmem_cache. This
5351  * way has two benefits compared to just allocating from and
5352  * freeing to kmem_cache.
5353  * 1) The time_wait_collector can free (which includes the cleanup)
5354  * outside the squeue. So when the interrupt comes, we have a clean
5355  * connection sitting in the freelist. Obviously, this buys us
5356  * performance.
5357  *
5358  * 2) Defence against DOS attack. Allocating a tcp/conn in tcp_conn_request
5359  * has multiple disadvantages - tying up the squeue during alloc, and the
5360  * fact that IPSec policy initialization has to happen here which
5361  * requires us sending a M_CTL and checking for it i.e. real ugliness.
5362  * But allocating the conn/tcp in IP land is also not the best since
5363  * we can't check the 'q' and 'q0' which are protected by squeue and
5364  * blindly allocate memory which might have to be freed here if we are
5365  * not allowed to accept the connection. By using the freelist and
5366  * putting the conn/tcp back in freelist, we don't pay a penalty for
5367  * allocating memory without checking 'q/q0' and freeing it if we can't
5368  * accept the connection.
5369  *
5370  * Care should be taken to put the conn back in the same squeue's freelist
5371  * from which it was allocated. Best results are obtained if conn is
5372  * allocated from listener's squeue and freed to the same. Time wait
5373  * collector will free up the freelist is the connection ends up sitting
5374  * there for too long.
5375  */
5376 void *
5377 tcp_get_conn(void *arg, tcp_stack_t *tcps)
5378 {
5379 	tcp_t			*tcp = NULL;
5380 	conn_t			*connp = NULL;
5381 	squeue_t		*sqp = (squeue_t *)arg;
5382 	tcp_squeue_priv_t 	*tcp_time_wait;
5383 	netstack_t		*ns;
5384 
5385 	tcp_time_wait =
5386 	    *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP));
5387 
5388 	mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
5389 	tcp = tcp_time_wait->tcp_free_list;
5390 	ASSERT((tcp != NULL) ^ (tcp_time_wait->tcp_free_list_cnt == 0));
5391 	if (tcp != NULL) {
5392 		tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next;
5393 		tcp_time_wait->tcp_free_list_cnt--;
5394 		mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
5395 		tcp->tcp_time_wait_next = NULL;
5396 		connp = tcp->tcp_connp;
5397 		connp->conn_flags |= IPCL_REUSED;
5398 
5399 		ASSERT(tcp->tcp_tcps == NULL);
5400 		ASSERT(connp->conn_netstack == NULL);
5401 		ns = tcps->tcps_netstack;
5402 		netstack_hold(ns);
5403 		connp->conn_netstack = ns;
5404 		tcp->tcp_tcps = tcps;
5405 		TCPS_REFHOLD(tcps);
5406 		ipcl_globalhash_insert(connp);
5407 		return ((void *)connp);
5408 	}
5409 	mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
5410 	if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP,
5411 	    tcps->tcps_netstack)) == NULL)
5412 		return (NULL);
5413 	tcp = connp->conn_tcp;
5414 	tcp->tcp_tcps = tcps;
5415 	TCPS_REFHOLD(tcps);
5416 	return ((void *)connp);
5417 }
5418 
5419 /*
5420  * Update the cached label for the given tcp_t.  This should be called once per
5421  * connection, and before any packets are sent or tcp_process_options is
5422  * invoked.  Returns B_FALSE if the correct label could not be constructed.
5423  */
5424 static boolean_t
5425 tcp_update_label(tcp_t *tcp, const cred_t *cr)
5426 {
5427 	conn_t *connp = tcp->tcp_connp;
5428 
5429 	if (tcp->tcp_ipversion == IPV4_VERSION) {
5430 		uchar_t optbuf[IP_MAX_OPT_LENGTH];
5431 		int added;
5432 
5433 		if (tsol_compute_label(cr, tcp->tcp_remote, optbuf,
5434 		    connp->conn_mac_exempt,
5435 		    tcp->tcp_tcps->tcps_netstack->netstack_ip) != 0)
5436 			return (B_FALSE);
5437 
5438 		added = tsol_remove_secopt(tcp->tcp_ipha, tcp->tcp_hdr_len);
5439 		if (added == -1)
5440 			return (B_FALSE);
5441 		tcp->tcp_hdr_len += added;
5442 		tcp->tcp_tcph = (tcph_t *)((uchar_t *)tcp->tcp_tcph + added);
5443 		tcp->tcp_ip_hdr_len += added;
5444 		if ((tcp->tcp_label_len = optbuf[IPOPT_OLEN]) != 0) {
5445 			tcp->tcp_label_len = (tcp->tcp_label_len + 3) & ~3;
5446 			added = tsol_prepend_option(optbuf, tcp->tcp_ipha,
5447 			    tcp->tcp_hdr_len);
5448 			if (added == -1)
5449 				return (B_FALSE);
5450 			tcp->tcp_hdr_len += added;
5451 			tcp->tcp_tcph = (tcph_t *)
5452 			    ((uchar_t *)tcp->tcp_tcph + added);
5453 			tcp->tcp_ip_hdr_len += added;
5454 		}
5455 	} else {
5456 		uchar_t optbuf[TSOL_MAX_IPV6_OPTION];
5457 
5458 		if (tsol_compute_label_v6(cr, &tcp->tcp_remote_v6, optbuf,
5459 		    connp->conn_mac_exempt,
5460 		    tcp->tcp_tcps->tcps_netstack->netstack_ip) != 0)
5461 			return (B_FALSE);
5462 		if (tsol_update_sticky(&tcp->tcp_sticky_ipp,
5463 		    &tcp->tcp_label_len, optbuf) != 0)
5464 			return (B_FALSE);
5465 		if (tcp_build_hdrs(tcp->tcp_rq, tcp) != 0)
5466 			return (B_FALSE);
5467 	}
5468 
5469 	connp->conn_ulp_labeled = 1;
5470 
5471 	return (B_TRUE);
5472 }
5473 
5474 /* BEGIN CSTYLED */
5475 /*
5476  *
5477  * The sockfs ACCEPT path:
5478  * =======================
5479  *
5480  * The eager is now established in its own perimeter as soon as SYN is
5481  * received in tcp_conn_request(). When sockfs receives conn_ind, it
5482  * completes the accept processing on the acceptor STREAM. The sending
5483  * of conn_ind part is common for both sockfs listener and a TLI/XTI
5484  * listener but a TLI/XTI listener completes the accept processing
5485  * on the listener perimeter.
5486  *
5487  * Common control flow for 3 way handshake:
5488  * ----------------------------------------
5489  *
5490  * incoming SYN (listener perimeter) 	-> tcp_rput_data()
5491  *					-> tcp_conn_request()
5492  *
5493  * incoming SYN-ACK-ACK (eager perim) 	-> tcp_rput_data()
5494  * send T_CONN_IND (listener perim)	-> tcp_send_conn_ind()
5495  *
5496  * Sockfs ACCEPT Path:
5497  * -------------------
5498  *
5499  * open acceptor stream (tcp_open allocates tcp_wput_accept()
5500  * as STREAM entry point)
5501  *
5502  * soaccept() sends T_CONN_RES on the acceptor STREAM to tcp_wput_accept()
5503  *
5504  * tcp_wput_accept() extracts the eager and makes the q->q_ptr <-> eager
5505  * association (we are not behind eager's squeue but sockfs is protecting us
5506  * and no one knows about this stream yet. The STREAMS entry point q->q_info
5507  * is changed to point at tcp_wput().
5508  *
5509  * tcp_wput_accept() sends any deferred eagers via tcp_send_pending() to
5510  * listener (done on listener's perimeter).
5511  *
5512  * tcp_wput_accept() calls tcp_accept_finish() on eagers perimeter to finish
5513  * accept.
5514  *
5515  * TLI/XTI client ACCEPT path:
5516  * ---------------------------
5517  *
5518  * soaccept() sends T_CONN_RES on the listener STREAM.
5519  *
5520  * tcp_accept() -> tcp_accept_swap() complete the processing and send
5521  * the bind_mp to eager perimeter to finish accept (tcp_rput_other()).
5522  *
5523  * Locks:
5524  * ======
5525  *
5526  * listener->tcp_eager_lock protects the listeners->tcp_eager_next_q0 and
5527  * and listeners->tcp_eager_next_q.
5528  *
5529  * Referencing:
5530  * ============
5531  *
5532  * 1) We start out in tcp_conn_request by eager placing a ref on
5533  * listener and listener adding eager to listeners->tcp_eager_next_q0.
5534  *
5535  * 2) When a SYN-ACK-ACK arrives, we send the conn_ind to listener. Before
5536  * doing so we place a ref on the eager. This ref is finally dropped at the
5537  * end of tcp_accept_finish() while unwinding from the squeue, i.e. the
5538  * reference is dropped by the squeue framework.
5539  *
5540  * 3) The ref on listener placed in 1 above is dropped in tcp_accept_finish
5541  *
5542  * The reference must be released by the same entity that added the reference
5543  * In the above scheme, the eager is the entity that adds and releases the
5544  * references. Note that tcp_accept_finish executes in the squeue of the eager
5545  * (albeit after it is attached to the acceptor stream). Though 1. executes
5546  * in the listener's squeue, the eager is nascent at this point and the
5547  * reference can be considered to have been added on behalf of the eager.
5548  *
5549  * Eager getting a Reset or listener closing:
5550  * ==========================================
5551  *
5552  * Once the listener and eager are linked, the listener never does the unlink.
5553  * If the listener needs to close, tcp_eager_cleanup() is called which queues
5554  * a message on all eager perimeter. The eager then does the unlink, clears
5555  * any pointers to the listener's queue and drops the reference to the
5556  * listener. The listener waits in tcp_close outside the squeue until its
5557  * refcount has dropped to 1. This ensures that the listener has waited for
5558  * all eagers to clear their association with the listener.
5559  *
5560  * Similarly, if eager decides to go away, it can unlink itself and close.
5561  * When the T_CONN_RES comes down, we check if eager has closed. Note that
5562  * the reference to eager is still valid because of the extra ref we put
5563  * in tcp_send_conn_ind.
5564  *
5565  * Listener can always locate the eager under the protection
5566  * of the listener->tcp_eager_lock, and then do a refhold
5567  * on the eager during the accept processing.
5568  *
5569  * The acceptor stream accesses the eager in the accept processing
5570  * based on the ref placed on eager before sending T_conn_ind.
5571  * The only entity that can negate this refhold is a listener close
5572  * which is mutually exclusive with an active acceptor stream.
5573  *
5574  * Eager's reference on the listener
5575  * ===================================
5576  *
5577  * If the accept happens (even on a closed eager) the eager drops its
5578  * reference on the listener at the start of tcp_accept_finish. If the
5579  * eager is killed due to an incoming RST before the T_conn_ind is sent up,
5580  * the reference is dropped in tcp_closei_local. If the listener closes,
5581  * the reference is dropped in tcp_eager_kill. In all cases the reference
5582  * is dropped while executing in the eager's context (squeue).
5583  */
5584 /* END CSTYLED */
5585 
5586 /* Process the SYN packet, mp, directed at the listener 'tcp' */
5587 
5588 /*
5589  * THIS FUNCTION IS DIRECTLY CALLED BY IP VIA SQUEUE FOR SYN.
5590  * tcp_rput_data will not see any SYN packets.
5591  */
5592 /* ARGSUSED */
5593 void
5594 tcp_conn_request(void *arg, mblk_t *mp, void *arg2)
5595 {
5596 	tcph_t		*tcph;
5597 	uint32_t	seg_seq;
5598 	tcp_t		*eager;
5599 	uint_t		ipvers;
5600 	ipha_t		*ipha;
5601 	ip6_t		*ip6h;
5602 	int		err;
5603 	conn_t		*econnp = NULL;
5604 	squeue_t	*new_sqp;
5605 	mblk_t		*mp1;
5606 	uint_t 		ip_hdr_len;
5607 	conn_t		*connp = (conn_t *)arg;
5608 	tcp_t		*tcp = connp->conn_tcp;
5609 	cred_t		*credp;
5610 	tcp_stack_t	*tcps = tcp->tcp_tcps;
5611 	ip_stack_t	*ipst;
5612 
5613 	if (tcp->tcp_state != TCPS_LISTEN)
5614 		goto error2;
5615 
5616 	ASSERT((tcp->tcp_connp->conn_flags & IPCL_BOUND) != 0);
5617 
5618 	mutex_enter(&tcp->tcp_eager_lock);
5619 	if (tcp->tcp_conn_req_cnt_q >= tcp->tcp_conn_req_max) {
5620 		mutex_exit(&tcp->tcp_eager_lock);
5621 		TCP_STAT(tcps, tcp_listendrop);
5622 		BUMP_MIB(&tcps->tcps_mib, tcpListenDrop);
5623 		if (tcp->tcp_debug) {
5624 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR,
5625 			    "tcp_conn_request: listen backlog (max=%d) "
5626 			    "overflow (%d pending) on %s",
5627 			    tcp->tcp_conn_req_max, tcp->tcp_conn_req_cnt_q,
5628 			    tcp_display(tcp, NULL, DISP_PORT_ONLY));
5629 		}
5630 		goto error2;
5631 	}
5632 
5633 	if (tcp->tcp_conn_req_cnt_q0 >=
5634 	    tcp->tcp_conn_req_max + tcps->tcps_conn_req_max_q0) {
5635 		/*
5636 		 * Q0 is full. Drop a pending half-open req from the queue
5637 		 * to make room for the new SYN req. Also mark the time we
5638 		 * drop a SYN.
5639 		 *
5640 		 * A more aggressive defense against SYN attack will
5641 		 * be to set the "tcp_syn_defense" flag now.
5642 		 */
5643 		TCP_STAT(tcps, tcp_listendropq0);
5644 		tcp->tcp_last_rcv_lbolt = lbolt64;
5645 		if (!tcp_drop_q0(tcp)) {
5646 			mutex_exit(&tcp->tcp_eager_lock);
5647 			BUMP_MIB(&tcps->tcps_mib, tcpListenDropQ0);
5648 			if (tcp->tcp_debug) {
5649 				(void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE,
5650 				    "tcp_conn_request: listen half-open queue "
5651 				    "(max=%d) full (%d pending) on %s",
5652 				    tcps->tcps_conn_req_max_q0,
5653 				    tcp->tcp_conn_req_cnt_q0,
5654 				    tcp_display(tcp, NULL,
5655 				    DISP_PORT_ONLY));
5656 			}
5657 			goto error2;
5658 		}
5659 	}
5660 	mutex_exit(&tcp->tcp_eager_lock);
5661 
5662 	/*
5663 	 * IP adds STRUIO_EAGER and ensures that the received packet is
5664 	 * M_DATA even if conn_ipv6_recvpktinfo is enabled or for ip6
5665 	 * link local address.  If IPSec is enabled, db_struioflag has
5666 	 * STRUIO_POLICY set (mutually exclusive from STRUIO_EAGER);
5667 	 * otherwise an error case if neither of them is set.
5668 	 */
5669 	if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) {
5670 		new_sqp = (squeue_t *)DB_CKSUMSTART(mp);
5671 		DB_CKSUMSTART(mp) = 0;
5672 		mp->b_datap->db_struioflag &= ~STRUIO_EAGER;
5673 		econnp = (conn_t *)tcp_get_conn(arg2, tcps);
5674 		if (econnp == NULL)
5675 			goto error2;
5676 		ASSERT(econnp->conn_netstack == connp->conn_netstack);
5677 		econnp->conn_sqp = new_sqp;
5678 	} else if ((mp->b_datap->db_struioflag & STRUIO_POLICY) != 0) {
5679 		/*
5680 		 * mp is updated in tcp_get_ipsec_conn().
5681 		 */
5682 		econnp = tcp_get_ipsec_conn(tcp, arg2, &mp);
5683 		if (econnp == NULL) {
5684 			/*
5685 			 * mp freed by tcp_get_ipsec_conn.
5686 			 */
5687 			return;
5688 		}
5689 		ASSERT(econnp->conn_netstack == connp->conn_netstack);
5690 	} else {
5691 		goto error2;
5692 	}
5693 
5694 	ASSERT(DB_TYPE(mp) == M_DATA);
5695 
5696 	ipvers = IPH_HDR_VERSION(mp->b_rptr);
5697 	ASSERT(ipvers == IPV6_VERSION || ipvers == IPV4_VERSION);
5698 	ASSERT(OK_32PTR(mp->b_rptr));
5699 	if (ipvers == IPV4_VERSION) {
5700 		ipha = (ipha_t *)mp->b_rptr;
5701 		ip_hdr_len = IPH_HDR_LENGTH(ipha);
5702 		tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len];
5703 	} else {
5704 		ip6h = (ip6_t *)mp->b_rptr;
5705 		ip_hdr_len = ip_hdr_length_v6(mp, ip6h);
5706 		tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len];
5707 	}
5708 
5709 	if (tcp->tcp_family == AF_INET) {
5710 		ASSERT(ipvers == IPV4_VERSION);
5711 		err = tcp_conn_create_v4(connp, econnp, ipha, tcph, mp);
5712 	} else {
5713 		err = tcp_conn_create_v6(connp, econnp, mp, tcph, ipvers, mp);
5714 	}
5715 
5716 	if (err)
5717 		goto error3;
5718 
5719 	eager = econnp->conn_tcp;
5720 
5721 	/* Inherit various TCP parameters from the listener */
5722 	eager->tcp_naglim = tcp->tcp_naglim;
5723 	eager->tcp_first_timer_threshold =
5724 	    tcp->tcp_first_timer_threshold;
5725 	eager->tcp_second_timer_threshold =
5726 	    tcp->tcp_second_timer_threshold;
5727 
5728 	eager->tcp_first_ctimer_threshold =
5729 	    tcp->tcp_first_ctimer_threshold;
5730 	eager->tcp_second_ctimer_threshold =
5731 	    tcp->tcp_second_ctimer_threshold;
5732 
5733 	/*
5734 	 * tcp_adapt_ire() may change tcp_rwnd according to the ire metrics.
5735 	 * If it does not, the eager's receive window will be set to the
5736 	 * listener's receive window later in this function.
5737 	 */
5738 	eager->tcp_rwnd = 0;
5739 
5740 	/*
5741 	 * Inherit listener's tcp_init_cwnd.  Need to do this before
5742 	 * calling tcp_process_options() where tcp_mss_set() is called
5743 	 * to set the initial cwnd.
5744 	 */
5745 	eager->tcp_init_cwnd = tcp->tcp_init_cwnd;
5746 
5747 	/*
5748 	 * Zones: tcp_adapt_ire() and tcp_send_data() both need the
5749 	 * zone id before the accept is completed in tcp_wput_accept().
5750 	 */
5751 	econnp->conn_zoneid = connp->conn_zoneid;
5752 	econnp->conn_allzones = connp->conn_allzones;
5753 
5754 	/* Copy nexthop information from listener to eager */
5755 	if (connp->conn_nexthop_set) {
5756 		econnp->conn_nexthop_set = connp->conn_nexthop_set;
5757 		econnp->conn_nexthop_v4 = connp->conn_nexthop_v4;
5758 	}
5759 
5760 	/*
5761 	 * TSOL: tsol_input_proc() needs the eager's cred before the
5762 	 * eager is accepted
5763 	 */
5764 	econnp->conn_cred = eager->tcp_cred = credp = connp->conn_cred;
5765 	crhold(credp);
5766 
5767 	/*
5768 	 * If the caller has the process-wide flag set, then default to MAC
5769 	 * exempt mode.  This allows read-down to unlabeled hosts.
5770 	 */
5771 	if (getpflags(NET_MAC_AWARE, credp) != 0)
5772 		econnp->conn_mac_exempt = B_TRUE;
5773 
5774 	if (is_system_labeled()) {
5775 		cred_t *cr;
5776 
5777 		if (connp->conn_mlp_type != mlptSingle) {
5778 			cr = econnp->conn_peercred = DB_CRED(mp);
5779 			if (cr != NULL)
5780 				crhold(cr);
5781 			else
5782 				cr = econnp->conn_cred;
5783 			DTRACE_PROBE2(mlp_syn_accept, conn_t *,
5784 			    econnp, cred_t *, cr)
5785 		} else {
5786 			cr = econnp->conn_cred;
5787 			DTRACE_PROBE2(syn_accept, conn_t *,
5788 			    econnp, cred_t *, cr)
5789 		}
5790 
5791 		if (!tcp_update_label(eager, cr)) {
5792 			DTRACE_PROBE3(
5793 			    tx__ip__log__error__connrequest__tcp,
5794 			    char *, "eager connp(1) label on SYN mp(2) failed",
5795 			    conn_t *, econnp, mblk_t *, mp);
5796 			goto error3;
5797 		}
5798 	}
5799 
5800 	eager->tcp_hard_binding = B_TRUE;
5801 
5802 	tcp_bind_hash_insert(&tcps->tcps_bind_fanout[
5803 	    TCP_BIND_HASH(eager->tcp_lport)], eager, 0);
5804 
5805 	CL_INET_CONNECT(eager);
5806 
5807 	/*
5808 	 * No need to check for multicast destination since ip will only pass
5809 	 * up multicasts to those that have expressed interest
5810 	 * TODO: what about rejecting broadcasts?
5811 	 * Also check that source is not a multicast or broadcast address.
5812 	 */
5813 	eager->tcp_state = TCPS_SYN_RCVD;
5814 
5815 
5816 	/*
5817 	 * There should be no ire in the mp as we are being called after
5818 	 * receiving the SYN.
5819 	 */
5820 	ASSERT(tcp_ire_mp(mp) == NULL);
5821 
5822 	/*
5823 	 * Adapt our mss, ttl, ... according to information provided in IRE.
5824 	 */
5825 
5826 	if (tcp_adapt_ire(eager, NULL) == 0) {
5827 		/* Undo the bind_hash_insert */
5828 		tcp_bind_hash_remove(eager);
5829 		goto error3;
5830 	}
5831 
5832 	/* Process all TCP options. */
5833 	tcp_process_options(eager, tcph);
5834 
5835 	/* Is the other end ECN capable? */
5836 	if (tcps->tcps_ecn_permitted >= 1 &&
5837 	    (tcph->th_flags[0] & (TH_ECE|TH_CWR)) == (TH_ECE|TH_CWR)) {
5838 		eager->tcp_ecn_ok = B_TRUE;
5839 	}
5840 
5841 	/*
5842 	 * listener->tcp_rq->q_hiwat should be the default window size or a
5843 	 * window size changed via SO_RCVBUF option.  First round up the
5844 	 * eager's tcp_rwnd to the nearest MSS.  Then find out the window
5845 	 * scale option value if needed.  Call tcp_rwnd_set() to finish the
5846 	 * setting.
5847 	 *
5848 	 * Note if there is a rpipe metric associated with the remote host,
5849 	 * we should not inherit receive window size from listener.
5850 	 */
5851 	eager->tcp_rwnd = MSS_ROUNDUP(
5852 	    (eager->tcp_rwnd == 0 ? tcp->tcp_rq->q_hiwat :
5853 	    eager->tcp_rwnd), eager->tcp_mss);
5854 	if (eager->tcp_snd_ws_ok)
5855 		tcp_set_ws_value(eager);
5856 	/*
5857 	 * Note that this is the only place tcp_rwnd_set() is called for
5858 	 * accepting a connection.  We need to call it here instead of
5859 	 * after the 3-way handshake because we need to tell the other
5860 	 * side our rwnd in the SYN-ACK segment.
5861 	 */
5862 	(void) tcp_rwnd_set(eager, eager->tcp_rwnd);
5863 
5864 	/*
5865 	 * We eliminate the need for sockfs to send down a T_SVR4_OPTMGMT_REQ
5866 	 * via soaccept()->soinheritoptions() which essentially applies
5867 	 * all the listener options to the new STREAM. The options that we
5868 	 * need to take care of are:
5869 	 * SO_DEBUG, SO_REUSEADDR, SO_KEEPALIVE, SO_DONTROUTE, SO_BROADCAST,
5870 	 * SO_USELOOPBACK, SO_OOBINLINE, SO_DGRAM_ERRIND, SO_LINGER,
5871 	 * SO_SNDBUF, SO_RCVBUF.
5872 	 *
5873 	 * SO_RCVBUF:	tcp_rwnd_set() above takes care of it.
5874 	 * SO_SNDBUF:	Set the tcp_xmit_hiwater for the eager. When
5875 	 *		tcp_maxpsz_set() gets called later from
5876 	 *		tcp_accept_finish(), the option takes effect.
5877 	 *
5878 	 */
5879 	/* Set the TCP options */
5880 	eager->tcp_xmit_hiwater = tcp->tcp_xmit_hiwater;
5881 	eager->tcp_dgram_errind = tcp->tcp_dgram_errind;
5882 	eager->tcp_oobinline = tcp->tcp_oobinline;
5883 	eager->tcp_reuseaddr = tcp->tcp_reuseaddr;
5884 	eager->tcp_broadcast = tcp->tcp_broadcast;
5885 	eager->tcp_useloopback = tcp->tcp_useloopback;
5886 	eager->tcp_dontroute = tcp->tcp_dontroute;
5887 	eager->tcp_linger = tcp->tcp_linger;
5888 	eager->tcp_lingertime = tcp->tcp_lingertime;
5889 	if (tcp->tcp_ka_enabled)
5890 		eager->tcp_ka_enabled = 1;
5891 
5892 	/* Set the IP options */
5893 	econnp->conn_broadcast = connp->conn_broadcast;
5894 	econnp->conn_loopback = connp->conn_loopback;
5895 	econnp->conn_dontroute = connp->conn_dontroute;
5896 	econnp->conn_reuseaddr = connp->conn_reuseaddr;
5897 
5898 	/* Put a ref on the listener for the eager. */
5899 	CONN_INC_REF(connp);
5900 	mutex_enter(&tcp->tcp_eager_lock);
5901 	tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = eager;
5902 	eager->tcp_eager_next_q0 = tcp->tcp_eager_next_q0;
5903 	tcp->tcp_eager_next_q0 = eager;
5904 	eager->tcp_eager_prev_q0 = tcp;
5905 
5906 	/* Set tcp_listener before adding it to tcp_conn_fanout */
5907 	eager->tcp_listener = tcp;
5908 	eager->tcp_saved_listener = tcp;
5909 
5910 	/*
5911 	 * Tag this detached tcp vector for later retrieval
5912 	 * by our listener client in tcp_accept().
5913 	 */
5914 	eager->tcp_conn_req_seqnum = tcp->tcp_conn_req_seqnum;
5915 	tcp->tcp_conn_req_cnt_q0++;
5916 	if (++tcp->tcp_conn_req_seqnum == -1) {
5917 		/*
5918 		 * -1 is "special" and defined in TPI as something
5919 		 * that should never be used in T_CONN_IND
5920 		 */
5921 		++tcp->tcp_conn_req_seqnum;
5922 	}
5923 	mutex_exit(&tcp->tcp_eager_lock);
5924 
5925 	if (tcp->tcp_syn_defense) {
5926 		/* Don't drop the SYN that comes from a good IP source */
5927 		ipaddr_t *addr_cache = (ipaddr_t *)(tcp->tcp_ip_addr_cache);
5928 		if (addr_cache != NULL && eager->tcp_remote ==
5929 		    addr_cache[IP_ADDR_CACHE_HASH(eager->tcp_remote)]) {
5930 			eager->tcp_dontdrop = B_TRUE;
5931 		}
5932 	}
5933 
5934 	/*
5935 	 * We need to insert the eager in its own perimeter but as soon
5936 	 * as we do that, we expose the eager to the classifier and
5937 	 * should not touch any field outside the eager's perimeter.
5938 	 * So do all the work necessary before inserting the eager
5939 	 * in its own perimeter. Be optimistic that ipcl_conn_insert()
5940 	 * will succeed but undo everything if it fails.
5941 	 */
5942 	seg_seq = ABE32_TO_U32(tcph->th_seq);
5943 	eager->tcp_irs = seg_seq;
5944 	eager->tcp_rack = seg_seq;
5945 	eager->tcp_rnxt = seg_seq + 1;
5946 	U32_TO_ABE32(eager->tcp_rnxt, eager->tcp_tcph->th_ack);
5947 	BUMP_MIB(&tcps->tcps_mib, tcpPassiveOpens);
5948 	eager->tcp_state = TCPS_SYN_RCVD;
5949 	mp1 = tcp_xmit_mp(eager, eager->tcp_xmit_head, eager->tcp_mss,
5950 	    NULL, NULL, eager->tcp_iss, B_FALSE, NULL, B_FALSE);
5951 	if (mp1 == NULL) {
5952 		/*
5953 		 * Increment the ref count as we are going to
5954 		 * enqueueing an mp in squeue
5955 		 */
5956 		CONN_INC_REF(econnp);
5957 		goto error;
5958 	}
5959 	DB_CPID(mp1) = tcp->tcp_cpid;
5960 	eager->tcp_cpid = tcp->tcp_cpid;
5961 	eager->tcp_open_time = lbolt64;
5962 
5963 	/*
5964 	 * We need to start the rto timer. In normal case, we start
5965 	 * the timer after sending the packet on the wire (or at
5966 	 * least believing that packet was sent by waiting for
5967 	 * CALL_IP_WPUT() to return). Since this is the first packet
5968 	 * being sent on the wire for the eager, our initial tcp_rto
5969 	 * is at least tcp_rexmit_interval_min which is a fairly
5970 	 * large value to allow the algorithm to adjust slowly to large
5971 	 * fluctuations of RTT during first few transmissions.
5972 	 *
5973 	 * Starting the timer first and then sending the packet in this
5974 	 * case shouldn't make much difference since tcp_rexmit_interval_min
5975 	 * is of the order of several 100ms and starting the timer
5976 	 * first and then sending the packet will result in difference
5977 	 * of few micro seconds.
5978 	 *
5979 	 * Without this optimization, we are forced to hold the fanout
5980 	 * lock across the ipcl_bind_insert() and sending the packet
5981 	 * so that we don't race against an incoming packet (maybe RST)
5982 	 * for this eager.
5983 	 *
5984 	 * It is necessary to acquire an extra reference on the eager
5985 	 * at this point and hold it until after tcp_send_data() to
5986 	 * ensure against an eager close race.
5987 	 */
5988 
5989 	CONN_INC_REF(eager->tcp_connp);
5990 
5991 	TCP_RECORD_TRACE(eager, mp1, TCP_TRACE_SEND_PKT);
5992 	TCP_TIMER_RESTART(eager, eager->tcp_rto);
5993 
5994 
5995 	/*
5996 	 * Insert the eager in its own perimeter now. We are ready to deal
5997 	 * with any packets on eager.
5998 	 */
5999 	if (eager->tcp_ipversion == IPV4_VERSION) {
6000 		if (ipcl_conn_insert(econnp, IPPROTO_TCP, 0, 0, 0) != 0) {
6001 			goto error;
6002 		}
6003 	} else {
6004 		if (ipcl_conn_insert_v6(econnp, IPPROTO_TCP, 0, 0, 0, 0) != 0) {
6005 			goto error;
6006 		}
6007 	}
6008 
6009 	/* mark conn as fully-bound */
6010 	econnp->conn_fully_bound = B_TRUE;
6011 
6012 	/* Send the SYN-ACK */
6013 	tcp_send_data(eager, eager->tcp_wq, mp1);
6014 	CONN_DEC_REF(eager->tcp_connp);
6015 	freemsg(mp);
6016 
6017 	return;
6018 error:
6019 	freemsg(mp1);
6020 	eager->tcp_closemp_used = B_TRUE;
6021 	TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15);
6022 	squeue_fill(econnp->conn_sqp, &eager->tcp_closemp, tcp_eager_kill,
6023 	    econnp, SQTAG_TCP_CONN_REQ_2);
6024 
6025 	/*
6026 	 * If a connection already exists, send the mp to that connections so
6027 	 * that it can be appropriately dealt with.
6028 	 */
6029 	ipst = tcps->tcps_netstack->netstack_ip;
6030 
6031 	if ((econnp = ipcl_classify(mp, connp->conn_zoneid, ipst)) != NULL) {
6032 		if (!IPCL_IS_CONNECTED(econnp)) {
6033 			/*
6034 			 * Something bad happened. ipcl_conn_insert()
6035 			 * failed because a connection already existed
6036 			 * in connected hash but we can't find it
6037 			 * anymore (someone blew it away). Just
6038 			 * free this message and hopefully remote
6039 			 * will retransmit at which time the SYN can be
6040 			 * treated as a new connection or dealth with
6041 			 * a TH_RST if a connection already exists.
6042 			 */
6043 			CONN_DEC_REF(econnp);
6044 			freemsg(mp);
6045 		} else {
6046 			squeue_fill(econnp->conn_sqp, mp, tcp_input,
6047 			    econnp, SQTAG_TCP_CONN_REQ_1);
6048 		}
6049 	} else {
6050 		/* Nobody wants this packet */
6051 		freemsg(mp);
6052 	}
6053 	return;
6054 error3:
6055 	CONN_DEC_REF(econnp);
6056 error2:
6057 	freemsg(mp);
6058 }
6059 
6060 /*
6061  * In an ideal case of vertical partition in NUMA architecture, its
6062  * beneficial to have the listener and all the incoming connections
6063  * tied to the same squeue. The other constraint is that incoming
6064  * connections should be tied to the squeue attached to interrupted
6065  * CPU for obvious locality reason so this leaves the listener to
6066  * be tied to the same squeue. Our only problem is that when listener
6067  * is binding, the CPU that will get interrupted by the NIC whose
6068  * IP address the listener is binding to is not even known. So
6069  * the code below allows us to change that binding at the time the
6070  * CPU is interrupted by virtue of incoming connection's squeue.
6071  *
6072  * This is usefull only in case of a listener bound to a specific IP
6073  * address. For other kind of listeners, they get bound the
6074  * very first time and there is no attempt to rebind them.
6075  */
6076 void
6077 tcp_conn_request_unbound(void *arg, mblk_t *mp, void *arg2)
6078 {
6079 	conn_t		*connp = (conn_t *)arg;
6080 	squeue_t	*sqp = (squeue_t *)arg2;
6081 	squeue_t	*new_sqp;
6082 	uint32_t	conn_flags;
6083 
6084 	if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) {
6085 		new_sqp = (squeue_t *)DB_CKSUMSTART(mp);
6086 	} else {
6087 		goto done;
6088 	}
6089 
6090 	if (connp->conn_fanout == NULL)
6091 		goto done;
6092 
6093 	if (!(connp->conn_flags & IPCL_FULLY_BOUND)) {
6094 		mutex_enter(&connp->conn_fanout->connf_lock);
6095 		mutex_enter(&connp->conn_lock);
6096 		/*
6097 		 * No one from read or write side can access us now
6098 		 * except for already queued packets on this squeue.
6099 		 * But since we haven't changed the squeue yet, they
6100 		 * can't execute. If they are processed after we have
6101 		 * changed the squeue, they are sent back to the
6102 		 * correct squeue down below.
6103 		 * But a listner close can race with processing of
6104 		 * incoming SYN. If incoming SYN processing changes
6105 		 * the squeue then the listener close which is waiting
6106 		 * to enter the squeue would operate on the wrong
6107 		 * squeue. Hence we don't change the squeue here unless
6108 		 * the refcount is exactly the minimum refcount. The
6109 		 * minimum refcount of 4 is counted as - 1 each for
6110 		 * TCP and IP, 1 for being in the classifier hash, and
6111 		 * 1 for the mblk being processed.
6112 		 */
6113 
6114 		if (connp->conn_ref != 4 ||
6115 		    connp->conn_tcp->tcp_state != TCPS_LISTEN) {
6116 			mutex_exit(&connp->conn_lock);
6117 			mutex_exit(&connp->conn_fanout->connf_lock);
6118 			goto done;
6119 		}
6120 		if (connp->conn_sqp != new_sqp) {
6121 			while (connp->conn_sqp != new_sqp)
6122 				(void) casptr(&connp->conn_sqp, sqp, new_sqp);
6123 		}
6124 
6125 		do {
6126 			conn_flags = connp->conn_flags;
6127 			conn_flags |= IPCL_FULLY_BOUND;
6128 			(void) cas32(&connp->conn_flags, connp->conn_flags,
6129 			    conn_flags);
6130 		} while (!(connp->conn_flags & IPCL_FULLY_BOUND));
6131 
6132 		mutex_exit(&connp->conn_fanout->connf_lock);
6133 		mutex_exit(&connp->conn_lock);
6134 	}
6135 
6136 done:
6137 	if (connp->conn_sqp != sqp) {
6138 		CONN_INC_REF(connp);
6139 		squeue_fill(connp->conn_sqp, mp,
6140 		    connp->conn_recv, connp, SQTAG_TCP_CONN_REQ_UNBOUND);
6141 	} else {
6142 		tcp_conn_request(connp, mp, sqp);
6143 	}
6144 }
6145 
6146 /*
6147  * Successful connect request processing begins when our client passes
6148  * a T_CONN_REQ message into tcp_wput() and ends when tcp_rput() passes
6149  * our T_OK_ACK reply message upstream.  The control flow looks like this:
6150  *   upstream -> tcp_wput() -> tcp_wput_proto() -> tcp_connect() -> IP
6151  *   upstream <- tcp_rput()                <- IP
6152  * After various error checks are completed, tcp_connect() lays
6153  * the target address and port into the composite header template,
6154  * preallocates the T_OK_ACK reply message, construct a full 12 byte bind
6155  * request followed by an IRE request, and passes the three mblk message
6156  * down to IP looking like this:
6157  *   O_T_BIND_REQ for IP  --> IRE req --> T_OK_ACK for our client
6158  * Processing continues in tcp_rput() when we receive the following message:
6159  *   T_BIND_ACK from IP --> IRE ack --> T_OK_ACK for our client
6160  * After consuming the first two mblks, tcp_rput() calls tcp_timer(),
6161  * to fire off the connection request, and then passes the T_OK_ACK mblk
6162  * upstream that we filled in below.  There are, of course, numerous
6163  * error conditions along the way which truncate the processing described
6164  * above.
6165  */
6166 static void
6167 tcp_connect(tcp_t *tcp, mblk_t *mp)
6168 {
6169 	sin_t		*sin;
6170 	sin6_t		*sin6;
6171 	queue_t		*q = tcp->tcp_wq;
6172 	struct T_conn_req	*tcr;
6173 	ipaddr_t	*dstaddrp;
6174 	in_port_t	dstport;
6175 	uint_t		srcid;
6176 
6177 	tcr = (struct T_conn_req *)mp->b_rptr;
6178 
6179 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
6180 	if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) {
6181 		tcp_err_ack(tcp, mp, TPROTO, 0);
6182 		return;
6183 	}
6184 
6185 	/*
6186 	 * Determine packet type based on type of address passed in
6187 	 * the request should contain an IPv4 or IPv6 address.
6188 	 * Make sure that address family matches the type of
6189 	 * family of the the address passed down
6190 	 */
6191 	switch (tcr->DEST_length) {
6192 	default:
6193 		tcp_err_ack(tcp, mp, TBADADDR, 0);
6194 		return;
6195 
6196 	case (sizeof (sin_t) - sizeof (sin->sin_zero)): {
6197 		/*
6198 		 * XXX: The check for valid DEST_length was not there
6199 		 * in earlier releases and some buggy
6200 		 * TLI apps (e.g Sybase) got away with not feeding
6201 		 * in sin_zero part of address.
6202 		 * We allow that bug to keep those buggy apps humming.
6203 		 * Test suites require the check on DEST_length.
6204 		 * We construct a new mblk with valid DEST_length
6205 		 * free the original so the rest of the code does
6206 		 * not have to keep track of this special shorter
6207 		 * length address case.
6208 		 */
6209 		mblk_t *nmp;
6210 		struct T_conn_req *ntcr;
6211 		sin_t *nsin;
6212 
6213 		nmp = allocb(sizeof (struct T_conn_req) + sizeof (sin_t) +
6214 		    tcr->OPT_length, BPRI_HI);
6215 		if (nmp == NULL) {
6216 			tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
6217 			return;
6218 		}
6219 		ntcr = (struct T_conn_req *)nmp->b_rptr;
6220 		bzero(ntcr, sizeof (struct T_conn_req)); /* zero fill */
6221 		ntcr->PRIM_type = T_CONN_REQ;
6222 		ntcr->DEST_length = sizeof (sin_t);
6223 		ntcr->DEST_offset = sizeof (struct T_conn_req);
6224 
6225 		nsin = (sin_t *)((uchar_t *)ntcr + ntcr->DEST_offset);
6226 		*nsin = sin_null;
6227 		/* Get pointer to shorter address to copy from original mp */
6228 		sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset,
6229 		    tcr->DEST_length); /* extract DEST_length worth of sin_t */
6230 		if (sin == NULL || !OK_32PTR((char *)sin)) {
6231 			freemsg(nmp);
6232 			tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
6233 			return;
6234 		}
6235 		nsin->sin_family = sin->sin_family;
6236 		nsin->sin_port = sin->sin_port;
6237 		nsin->sin_addr = sin->sin_addr;
6238 		/* Note:nsin->sin_zero zero-fill with sin_null assign above */
6239 		nmp->b_wptr = (uchar_t *)&nsin[1];
6240 		if (tcr->OPT_length != 0) {
6241 			ntcr->OPT_length = tcr->OPT_length;
6242 			ntcr->OPT_offset = nmp->b_wptr - nmp->b_rptr;
6243 			bcopy((uchar_t *)tcr + tcr->OPT_offset,
6244 			    (uchar_t *)ntcr + ntcr->OPT_offset,
6245 			    tcr->OPT_length);
6246 			nmp->b_wptr += tcr->OPT_length;
6247 		}
6248 		freemsg(mp);	/* original mp freed */
6249 		mp = nmp;	/* re-initialize original variables */
6250 		tcr = ntcr;
6251 	}
6252 	/* FALLTHRU */
6253 
6254 	case sizeof (sin_t):
6255 		sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset,
6256 		    sizeof (sin_t));
6257 		if (sin == NULL || !OK_32PTR((char *)sin)) {
6258 			tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
6259 			return;
6260 		}
6261 		if (tcp->tcp_family != AF_INET ||
6262 		    sin->sin_family != AF_INET) {
6263 			tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT);
6264 			return;
6265 		}
6266 		if (sin->sin_port == 0) {
6267 			tcp_err_ack(tcp, mp, TBADADDR, 0);
6268 			return;
6269 		}
6270 		if (tcp->tcp_connp && tcp->tcp_connp->conn_ipv6_v6only) {
6271 			tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT);
6272 			return;
6273 		}
6274 
6275 		break;
6276 
6277 	case sizeof (sin6_t):
6278 		sin6 = (sin6_t *)mi_offset_param(mp, tcr->DEST_offset,
6279 		    sizeof (sin6_t));
6280 		if (sin6 == NULL || !OK_32PTR((char *)sin6)) {
6281 			tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
6282 			return;
6283 		}
6284 		if (tcp->tcp_family != AF_INET6 ||
6285 		    sin6->sin6_family != AF_INET6) {
6286 			tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT);
6287 			return;
6288 		}
6289 		if (sin6->sin6_port == 0) {
6290 			tcp_err_ack(tcp, mp, TBADADDR, 0);
6291 			return;
6292 		}
6293 		break;
6294 	}
6295 	/*
6296 	 * TODO: If someone in TCPS_TIME_WAIT has this dst/port we
6297 	 * should key on their sequence number and cut them loose.
6298 	 */
6299 
6300 	/*
6301 	 * If options passed in, feed it for verification and handling
6302 	 */
6303 	if (tcr->OPT_length != 0) {
6304 		mblk_t	*ok_mp;
6305 		mblk_t	*discon_mp;
6306 		mblk_t  *conn_opts_mp;
6307 		int t_error, sys_error, do_disconnect;
6308 
6309 		conn_opts_mp = NULL;
6310 
6311 		if (tcp_conprim_opt_process(tcp, mp,
6312 		    &do_disconnect, &t_error, &sys_error) < 0) {
6313 			if (do_disconnect) {
6314 				ASSERT(t_error == 0 && sys_error == 0);
6315 				discon_mp = mi_tpi_discon_ind(NULL,
6316 				    ECONNREFUSED, 0);
6317 				if (!discon_mp) {
6318 					tcp_err_ack_prim(tcp, mp, T_CONN_REQ,
6319 					    TSYSERR, ENOMEM);
6320 					return;
6321 				}
6322 				ok_mp = mi_tpi_ok_ack_alloc(mp);
6323 				if (!ok_mp) {
6324 					tcp_err_ack_prim(tcp, NULL, T_CONN_REQ,
6325 					    TSYSERR, ENOMEM);
6326 					return;
6327 				}
6328 				qreply(q, ok_mp);
6329 				qreply(q, discon_mp); /* no flush! */
6330 			} else {
6331 				ASSERT(t_error != 0);
6332 				tcp_err_ack_prim(tcp, mp, T_CONN_REQ, t_error,
6333 				    sys_error);
6334 			}
6335 			return;
6336 		}
6337 		/*
6338 		 * Success in setting options, the mp option buffer represented
6339 		 * by OPT_length/offset has been potentially modified and
6340 		 * contains results of option processing. We copy it in
6341 		 * another mp to save it for potentially influencing returning
6342 		 * it in T_CONN_CONN.
6343 		 */
6344 		if (tcr->OPT_length != 0) { /* there are resulting options */
6345 			conn_opts_mp = copyb(mp);
6346 			if (!conn_opts_mp) {
6347 				tcp_err_ack_prim(tcp, mp, T_CONN_REQ,
6348 				    TSYSERR, ENOMEM);
6349 				return;
6350 			}
6351 			ASSERT(tcp->tcp_conn.tcp_opts_conn_req == NULL);
6352 			tcp->tcp_conn.tcp_opts_conn_req = conn_opts_mp;
6353 			/*
6354 			 * Note:
6355 			 * These resulting option negotiation can include any
6356 			 * end-to-end negotiation options but there no such
6357 			 * thing (yet?) in our TCP/IP.
6358 			 */
6359 		}
6360 	}
6361 
6362 	/*
6363 	 * If we're connecting to an IPv4-mapped IPv6 address, we need to
6364 	 * make sure that the template IP header in the tcp structure is an
6365 	 * IPv4 header, and that the tcp_ipversion is IPV4_VERSION.  We
6366 	 * need to this before we call tcp_bindi() so that the port lookup
6367 	 * code will look for ports in the correct port space (IPv4 and
6368 	 * IPv6 have separate port spaces).
6369 	 */
6370 	if (tcp->tcp_family == AF_INET6 && tcp->tcp_ipversion == IPV6_VERSION &&
6371 	    IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
6372 		int err = 0;
6373 
6374 		err = tcp_header_init_ipv4(tcp);
6375 		if (err != 0) {
6376 			mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM);
6377 			goto connect_failed;
6378 		}
6379 		if (tcp->tcp_lport != 0)
6380 			*(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport;
6381 	}
6382 
6383 	switch (tcp->tcp_state) {
6384 	case TCPS_IDLE:
6385 		/*
6386 		 * We support quick connect, refer to comments in
6387 		 * tcp_connect_*()
6388 		 */
6389 		/* FALLTHRU */
6390 	case TCPS_BOUND:
6391 	case TCPS_LISTEN:
6392 		if (tcp->tcp_family == AF_INET6) {
6393 			if (!IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
6394 				tcp_connect_ipv6(tcp, mp,
6395 				    &sin6->sin6_addr,
6396 				    sin6->sin6_port, sin6->sin6_flowinfo,
6397 				    sin6->__sin6_src_id, sin6->sin6_scope_id);
6398 				return;
6399 			}
6400 			/*
6401 			 * Destination adress is mapped IPv6 address.
6402 			 * Source bound address should be unspecified or
6403 			 * IPv6 mapped address as well.
6404 			 */
6405 			if (!IN6_IS_ADDR_UNSPECIFIED(
6406 			    &tcp->tcp_bound_source_v6) &&
6407 			    !IN6_IS_ADDR_V4MAPPED(&tcp->tcp_bound_source_v6)) {
6408 				mp = mi_tpi_err_ack_alloc(mp, TSYSERR,
6409 				    EADDRNOTAVAIL);
6410 				break;
6411 			}
6412 			dstaddrp = &V4_PART_OF_V6((sin6->sin6_addr));
6413 			dstport = sin6->sin6_port;
6414 			srcid = sin6->__sin6_src_id;
6415 		} else {
6416 			dstaddrp = &sin->sin_addr.s_addr;
6417 			dstport = sin->sin_port;
6418 			srcid = 0;
6419 		}
6420 
6421 		tcp_connect_ipv4(tcp, mp, dstaddrp, dstport, srcid);
6422 		return;
6423 	default:
6424 		mp = mi_tpi_err_ack_alloc(mp, TOUTSTATE, 0);
6425 		break;
6426 	}
6427 	/*
6428 	 * Note: Code below is the "failure" case
6429 	 */
6430 	/* return error ack and blow away saved option results if any */
6431 connect_failed:
6432 	if (mp != NULL)
6433 		putnext(tcp->tcp_rq, mp);
6434 	else {
6435 		tcp_err_ack_prim(tcp, NULL, T_CONN_REQ,
6436 		    TSYSERR, ENOMEM);
6437 	}
6438 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
6439 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
6440 }
6441 
6442 /*
6443  * Handle connect to IPv4 destinations, including connections for AF_INET6
6444  * sockets connecting to IPv4 mapped IPv6 destinations.
6445  */
6446 static void
6447 tcp_connect_ipv4(tcp_t *tcp, mblk_t *mp, ipaddr_t *dstaddrp, in_port_t dstport,
6448     uint_t srcid)
6449 {
6450 	tcph_t	*tcph;
6451 	mblk_t	*mp1;
6452 	ipaddr_t dstaddr = *dstaddrp;
6453 	int32_t	oldstate;
6454 	uint16_t lport;
6455 	tcp_stack_t	*tcps = tcp->tcp_tcps;
6456 
6457 	ASSERT(tcp->tcp_ipversion == IPV4_VERSION);
6458 
6459 	/* Check for attempt to connect to INADDR_ANY */
6460 	if (dstaddr == INADDR_ANY)  {
6461 		/*
6462 		 * SunOS 4.x and 4.3 BSD allow an application
6463 		 * to connect a TCP socket to INADDR_ANY.
6464 		 * When they do this, the kernel picks the
6465 		 * address of one interface and uses it
6466 		 * instead.  The kernel usually ends up
6467 		 * picking the address of the loopback
6468 		 * interface.  This is an undocumented feature.
6469 		 * However, we provide the same thing here
6470 		 * in order to have source and binary
6471 		 * compatibility with SunOS 4.x.
6472 		 * Update the T_CONN_REQ (sin/sin6) since it is used to
6473 		 * generate the T_CONN_CON.
6474 		 */
6475 		dstaddr = htonl(INADDR_LOOPBACK);
6476 		*dstaddrp = dstaddr;
6477 	}
6478 
6479 	/* Handle __sin6_src_id if socket not bound to an IP address */
6480 	if (srcid != 0 && tcp->tcp_ipha->ipha_src == INADDR_ANY) {
6481 		ip_srcid_find_id(srcid, &tcp->tcp_ip_src_v6,
6482 		    tcp->tcp_connp->conn_zoneid, tcps->tcps_netstack);
6483 		IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_ip_src_v6,
6484 		    tcp->tcp_ipha->ipha_src);
6485 	}
6486 
6487 	/*
6488 	 * Don't let an endpoint connect to itself.  Note that
6489 	 * the test here does not catch the case where the
6490 	 * source IP addr was left unspecified by the user. In
6491 	 * this case, the source addr is set in tcp_adapt_ire()
6492 	 * using the reply to the T_BIND message that we send
6493 	 * down to IP here and the check is repeated in tcp_rput_other.
6494 	 */
6495 	if (dstaddr == tcp->tcp_ipha->ipha_src &&
6496 	    dstport == tcp->tcp_lport) {
6497 		mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0);
6498 		goto failed;
6499 	}
6500 
6501 	tcp->tcp_ipha->ipha_dst = dstaddr;
6502 	IN6_IPADDR_TO_V4MAPPED(dstaddr, &tcp->tcp_remote_v6);
6503 
6504 	/*
6505 	 * Massage a source route if any putting the first hop
6506 	 * in iph_dst. Compute a starting value for the checksum which
6507 	 * takes into account that the original iph_dst should be
6508 	 * included in the checksum but that ip will include the
6509 	 * first hop in the source route in the tcp checksum.
6510 	 */
6511 	tcp->tcp_sum = ip_massage_options(tcp->tcp_ipha, tcps->tcps_netstack);
6512 	tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16);
6513 	tcp->tcp_sum -= ((tcp->tcp_ipha->ipha_dst >> 16) +
6514 	    (tcp->tcp_ipha->ipha_dst & 0xffff));
6515 	if ((int)tcp->tcp_sum < 0)
6516 		tcp->tcp_sum--;
6517 	tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16);
6518 	tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) +
6519 	    (tcp->tcp_sum >> 16));
6520 	tcph = tcp->tcp_tcph;
6521 	*(uint16_t *)tcph->th_fport = dstport;
6522 	tcp->tcp_fport = dstport;
6523 
6524 	oldstate = tcp->tcp_state;
6525 	/*
6526 	 * At this point the remote destination address and remote port fields
6527 	 * in the tcp-four-tuple have been filled in the tcp structure. Now we
6528 	 * have to see which state tcp was in so we can take apropriate action.
6529 	 */
6530 	if (oldstate == TCPS_IDLE) {
6531 		/*
6532 		 * We support a quick connect capability here, allowing
6533 		 * clients to transition directly from IDLE to SYN_SENT
6534 		 * tcp_bindi will pick an unused port, insert the connection
6535 		 * in the bind hash and transition to BOUND state.
6536 		 */
6537 		lport = tcp_update_next_port(tcps->tcps_next_port_to_try,
6538 		    tcp, B_TRUE);
6539 		lport = tcp_bindi(tcp, lport, &tcp->tcp_ip_src_v6, 0, B_TRUE,
6540 		    B_FALSE, B_FALSE);
6541 		if (lport == 0) {
6542 			mp = mi_tpi_err_ack_alloc(mp, TNOADDR, 0);
6543 			goto failed;
6544 		}
6545 	}
6546 	tcp->tcp_state = TCPS_SYN_SENT;
6547 
6548 	/*
6549 	 * TODO: allow data with connect requests
6550 	 * by unlinking M_DATA trailers here and
6551 	 * linking them in behind the T_OK_ACK mblk.
6552 	 * The tcp_rput() bind ack handler would then
6553 	 * feed them to tcp_wput_data() rather than call
6554 	 * tcp_timer().
6555 	 */
6556 	mp = mi_tpi_ok_ack_alloc(mp);
6557 	if (!mp) {
6558 		tcp->tcp_state = oldstate;
6559 		goto failed;
6560 	}
6561 	if (tcp->tcp_family == AF_INET) {
6562 		mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ,
6563 		    sizeof (ipa_conn_t));
6564 	} else {
6565 		mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ,
6566 		    sizeof (ipa6_conn_t));
6567 	}
6568 	if (mp1) {
6569 		/*
6570 		 * We need to make sure that the conn_recv is set to a non-null
6571 		 * value before we insert the conn_t into the classifier table.
6572 		 * This is to avoid a race with an incoming packet which does
6573 		 * an ipcl_classify().
6574 		 */
6575 		tcp->tcp_connp->conn_recv = tcp_input;
6576 
6577 		/* Hang onto the T_OK_ACK for later. */
6578 		linkb(mp1, mp);
6579 		mblk_setcred(mp1, tcp->tcp_cred);
6580 		if (tcp->tcp_family == AF_INET)
6581 			mp1 = ip_bind_v4(tcp->tcp_wq, mp1, tcp->tcp_connp);
6582 		else {
6583 			mp1 = ip_bind_v6(tcp->tcp_wq, mp1, tcp->tcp_connp,
6584 			    &tcp->tcp_sticky_ipp);
6585 		}
6586 		BUMP_MIB(&tcps->tcps_mib, tcpActiveOpens);
6587 		tcp->tcp_active_open = 1;
6588 		/*
6589 		 * If the bind cannot complete immediately
6590 		 * IP will arrange to call tcp_rput_other
6591 		 * when the bind completes.
6592 		 */
6593 		if (mp1 != NULL)
6594 			tcp_rput_other(tcp, mp1);
6595 		return;
6596 	}
6597 	/* Error case */
6598 	tcp->tcp_state = oldstate;
6599 	mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM);
6600 
6601 failed:
6602 	/* return error ack and blow away saved option results if any */
6603 	if (mp != NULL)
6604 		putnext(tcp->tcp_rq, mp);
6605 	else {
6606 		tcp_err_ack_prim(tcp, NULL, T_CONN_REQ,
6607 		    TSYSERR, ENOMEM);
6608 	}
6609 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
6610 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
6611 
6612 }
6613 
6614 /*
6615  * Handle connect to IPv6 destinations.
6616  */
6617 static void
6618 tcp_connect_ipv6(tcp_t *tcp, mblk_t *mp, in6_addr_t *dstaddrp,
6619     in_port_t dstport, uint32_t flowinfo, uint_t srcid, uint32_t scope_id)
6620 {
6621 	tcph_t	*tcph;
6622 	mblk_t	*mp1;
6623 	ip6_rthdr_t *rth;
6624 	int32_t  oldstate;
6625 	uint16_t lport;
6626 	tcp_stack_t	*tcps = tcp->tcp_tcps;
6627 
6628 	ASSERT(tcp->tcp_family == AF_INET6);
6629 
6630 	/*
6631 	 * If we're here, it means that the destination address is a native
6632 	 * IPv6 address.  Return an error if tcp_ipversion is not IPv6.  A
6633 	 * reason why it might not be IPv6 is if the socket was bound to an
6634 	 * IPv4-mapped IPv6 address.
6635 	 */
6636 	if (tcp->tcp_ipversion != IPV6_VERSION) {
6637 		mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0);
6638 		goto failed;
6639 	}
6640 
6641 	/*
6642 	 * Interpret a zero destination to mean loopback.
6643 	 * Update the T_CONN_REQ (sin/sin6) since it is used to
6644 	 * generate the T_CONN_CON.
6645 	 */
6646 	if (IN6_IS_ADDR_UNSPECIFIED(dstaddrp)) {
6647 		*dstaddrp = ipv6_loopback;
6648 	}
6649 
6650 	/* Handle __sin6_src_id if socket not bound to an IP address */
6651 	if (srcid != 0 && IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip6h->ip6_src)) {
6652 		ip_srcid_find_id(srcid, &tcp->tcp_ip6h->ip6_src,
6653 		    tcp->tcp_connp->conn_zoneid, tcps->tcps_netstack);
6654 		tcp->tcp_ip_src_v6 = tcp->tcp_ip6h->ip6_src;
6655 	}
6656 
6657 	/*
6658 	 * Take care of the scope_id now and add ip6i_t
6659 	 * if ip6i_t is not already allocated through TCP
6660 	 * sticky options. At this point tcp_ip6h does not
6661 	 * have dst info, thus use dstaddrp.
6662 	 */
6663 	if (scope_id != 0 &&
6664 	    IN6_IS_ADDR_LINKSCOPE(dstaddrp)) {
6665 		ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp;
6666 		ip6i_t  *ip6i;
6667 
6668 		ipp->ipp_ifindex = scope_id;
6669 		ip6i = (ip6i_t *)tcp->tcp_iphc;
6670 
6671 		if ((ipp->ipp_fields & IPPF_HAS_IP6I) &&
6672 		    ip6i != NULL && (ip6i->ip6i_nxt == IPPROTO_RAW)) {
6673 			/* Already allocated */
6674 			ip6i->ip6i_flags |= IP6I_IFINDEX;
6675 			ip6i->ip6i_ifindex = ipp->ipp_ifindex;
6676 			ipp->ipp_fields |= IPPF_SCOPE_ID;
6677 		} else {
6678 			int reterr;
6679 
6680 			ipp->ipp_fields |= IPPF_SCOPE_ID;
6681 			if (ipp->ipp_fields & IPPF_HAS_IP6I)
6682 				ip2dbg(("tcp_connect_v6: SCOPE_ID set\n"));
6683 			reterr = tcp_build_hdrs(tcp->tcp_rq, tcp);
6684 			if (reterr != 0)
6685 				goto failed;
6686 			ip1dbg(("tcp_connect_ipv6: tcp_bld_hdrs returned\n"));
6687 		}
6688 	}
6689 
6690 	/*
6691 	 * Don't let an endpoint connect to itself.  Note that
6692 	 * the test here does not catch the case where the
6693 	 * source IP addr was left unspecified by the user. In
6694 	 * this case, the source addr is set in tcp_adapt_ire()
6695 	 * using the reply to the T_BIND message that we send
6696 	 * down to IP here and the check is repeated in tcp_rput_other.
6697 	 */
6698 	if (IN6_ARE_ADDR_EQUAL(dstaddrp, &tcp->tcp_ip6h->ip6_src) &&
6699 	    (dstport == tcp->tcp_lport)) {
6700 		mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0);
6701 		goto failed;
6702 	}
6703 
6704 	tcp->tcp_ip6h->ip6_dst = *dstaddrp;
6705 	tcp->tcp_remote_v6 = *dstaddrp;
6706 	tcp->tcp_ip6h->ip6_vcf =
6707 	    (IPV6_DEFAULT_VERS_AND_FLOW & IPV6_VERS_AND_FLOW_MASK) |
6708 	    (flowinfo & ~IPV6_VERS_AND_FLOW_MASK);
6709 
6710 
6711 	/*
6712 	 * Massage a routing header (if present) putting the first hop
6713 	 * in ip6_dst. Compute a starting value for the checksum which
6714 	 * takes into account that the original ip6_dst should be
6715 	 * included in the checksum but that ip will include the
6716 	 * first hop in the source route in the tcp checksum.
6717 	 */
6718 	rth = ip_find_rthdr_v6(tcp->tcp_ip6h, (uint8_t *)tcp->tcp_tcph);
6719 	if (rth != NULL) {
6720 		tcp->tcp_sum = ip_massage_options_v6(tcp->tcp_ip6h, rth,
6721 		    tcps->tcps_netstack);
6722 		tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) +
6723 		    (tcp->tcp_sum >> 16));
6724 	} else {
6725 		tcp->tcp_sum = 0;
6726 	}
6727 
6728 	tcph = tcp->tcp_tcph;
6729 	*(uint16_t *)tcph->th_fport = dstport;
6730 	tcp->tcp_fport = dstport;
6731 
6732 	oldstate = tcp->tcp_state;
6733 	/*
6734 	 * At this point the remote destination address and remote port fields
6735 	 * in the tcp-four-tuple have been filled in the tcp structure. Now we
6736 	 * have to see which state tcp was in so we can take apropriate action.
6737 	 */
6738 	if (oldstate == TCPS_IDLE) {
6739 		/*
6740 		 * We support a quick connect capability here, allowing
6741 		 * clients to transition directly from IDLE to SYN_SENT
6742 		 * tcp_bindi will pick an unused port, insert the connection
6743 		 * in the bind hash and transition to BOUND state.
6744 		 */
6745 		lport = tcp_update_next_port(tcps->tcps_next_port_to_try,
6746 		    tcp, B_TRUE);
6747 		lport = tcp_bindi(tcp, lport, &tcp->tcp_ip_src_v6, 0, B_TRUE,
6748 		    B_FALSE, B_FALSE);
6749 		if (lport == 0) {
6750 			mp = mi_tpi_err_ack_alloc(mp, TNOADDR, 0);
6751 			goto failed;
6752 		}
6753 	}
6754 	tcp->tcp_state = TCPS_SYN_SENT;
6755 	/*
6756 	 * TODO: allow data with connect requests
6757 	 * by unlinking M_DATA trailers here and
6758 	 * linking them in behind the T_OK_ACK mblk.
6759 	 * The tcp_rput() bind ack handler would then
6760 	 * feed them to tcp_wput_data() rather than call
6761 	 * tcp_timer().
6762 	 */
6763 	mp = mi_tpi_ok_ack_alloc(mp);
6764 	if (!mp) {
6765 		tcp->tcp_state = oldstate;
6766 		goto failed;
6767 	}
6768 	mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, sizeof (ipa6_conn_t));
6769 	if (mp1) {
6770 		/*
6771 		 * We need to make sure that the conn_recv is set to a non-null
6772 		 * value before we insert the conn_t into the classifier table.
6773 		 * This is to avoid a race with an incoming packet which does
6774 		 * an ipcl_classify().
6775 		 */
6776 		tcp->tcp_connp->conn_recv = tcp_input;
6777 
6778 		/* Hang onto the T_OK_ACK for later. */
6779 		linkb(mp1, mp);
6780 		mblk_setcred(mp1, tcp->tcp_cred);
6781 		mp1 = ip_bind_v6(tcp->tcp_wq, mp1, tcp->tcp_connp,
6782 		    &tcp->tcp_sticky_ipp);
6783 		BUMP_MIB(&tcps->tcps_mib, tcpActiveOpens);
6784 		tcp->tcp_active_open = 1;
6785 		/* ip_bind_v6() may return ACK or ERROR */
6786 		if (mp1 != NULL)
6787 			tcp_rput_other(tcp, mp1);
6788 		return;
6789 	}
6790 	/* Error case */
6791 	tcp->tcp_state = oldstate;
6792 	mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM);
6793 
6794 failed:
6795 	/* return error ack and blow away saved option results if any */
6796 	if (mp != NULL)
6797 		putnext(tcp->tcp_rq, mp);
6798 	else {
6799 		tcp_err_ack_prim(tcp, NULL, T_CONN_REQ,
6800 		    TSYSERR, ENOMEM);
6801 	}
6802 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
6803 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
6804 }
6805 
6806 /*
6807  * We need a stream q for detached closing tcp connections
6808  * to use.  Our client hereby indicates that this q is the
6809  * one to use.
6810  */
6811 static void
6812 tcp_def_q_set(tcp_t *tcp, mblk_t *mp)
6813 {
6814 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
6815 	queue_t	*q = tcp->tcp_wq;
6816 	tcp_stack_t	*tcps = tcp->tcp_tcps;
6817 
6818 #ifdef NS_DEBUG
6819 	(void) printf("TCP_IOC_DEFAULT_Q for stack %d\n",
6820 	    tcps->tcps_netstack->netstack_stackid);
6821 #endif
6822 	mp->b_datap->db_type = M_IOCACK;
6823 	iocp->ioc_count = 0;
6824 	mutex_enter(&tcps->tcps_g_q_lock);
6825 	if (tcps->tcps_g_q != NULL) {
6826 		mutex_exit(&tcps->tcps_g_q_lock);
6827 		iocp->ioc_error = EALREADY;
6828 	} else {
6829 		mblk_t *mp1;
6830 
6831 		mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, 0);
6832 		if (mp1 == NULL) {
6833 			mutex_exit(&tcps->tcps_g_q_lock);
6834 			iocp->ioc_error = ENOMEM;
6835 		} else {
6836 			tcps->tcps_g_q = tcp->tcp_rq;
6837 			mutex_exit(&tcps->tcps_g_q_lock);
6838 			iocp->ioc_error = 0;
6839 			iocp->ioc_rval = 0;
6840 			/*
6841 			 * We are passing tcp_sticky_ipp as NULL
6842 			 * as it is not useful for tcp_default queue
6843 			 *
6844 			 * Set conn_recv just in case.
6845 			 */
6846 			tcp->tcp_connp->conn_recv = tcp_conn_request;
6847 
6848 			mp1 = ip_bind_v6(q, mp1, tcp->tcp_connp, NULL);
6849 			if (mp1 != NULL)
6850 				tcp_rput_other(tcp, mp1);
6851 		}
6852 	}
6853 	qreply(q, mp);
6854 }
6855 
6856 /*
6857  * Our client hereby directs us to reject the connection request
6858  * that tcp_conn_request() marked with 'seqnum'.  Rejection consists
6859  * of sending the appropriate RST, not an ICMP error.
6860  */
6861 static void
6862 tcp_disconnect(tcp_t *tcp, mblk_t *mp)
6863 {
6864 	tcp_t	*ltcp = NULL;
6865 	t_scalar_t seqnum;
6866 	conn_t	*connp;
6867 	tcp_stack_t	*tcps = tcp->tcp_tcps;
6868 
6869 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
6870 	if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_discon_req)) {
6871 		tcp_err_ack(tcp, mp, TPROTO, 0);
6872 		return;
6873 	}
6874 
6875 	/*
6876 	 * Right now, upper modules pass down a T_DISCON_REQ to TCP,
6877 	 * when the stream is in BOUND state. Do not send a reset,
6878 	 * since the destination IP address is not valid, and it can
6879 	 * be the initialized value of all zeros (broadcast address).
6880 	 *
6881 	 * If TCP has sent down a bind request to IP and has not
6882 	 * received the reply, reject the request.  Otherwise, TCP
6883 	 * will be confused.
6884 	 */
6885 	if (tcp->tcp_state <= TCPS_BOUND || tcp->tcp_hard_binding) {
6886 		if (tcp->tcp_debug) {
6887 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
6888 			    "tcp_disconnect: bad state, %d", tcp->tcp_state);
6889 		}
6890 		tcp_err_ack(tcp, mp, TOUTSTATE, 0);
6891 		return;
6892 	}
6893 
6894 	seqnum = ((struct T_discon_req *)mp->b_rptr)->SEQ_number;
6895 
6896 	if (seqnum == -1 || tcp->tcp_conn_req_max == 0) {
6897 
6898 		/*
6899 		 * According to TPI, for non-listeners, ignore seqnum
6900 		 * and disconnect.
6901 		 * Following interpretation of -1 seqnum is historical
6902 		 * and implied TPI ? (TPI only states that for T_CONN_IND,
6903 		 * a valid seqnum should not be -1).
6904 		 *
6905 		 *	-1 means disconnect everything
6906 		 *	regardless even on a listener.
6907 		 */
6908 
6909 		int old_state = tcp->tcp_state;
6910 		ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
6911 
6912 		/*
6913 		 * The connection can't be on the tcp_time_wait_head list
6914 		 * since it is not detached.
6915 		 */
6916 		ASSERT(tcp->tcp_time_wait_next == NULL);
6917 		ASSERT(tcp->tcp_time_wait_prev == NULL);
6918 		ASSERT(tcp->tcp_time_wait_expire == 0);
6919 		ltcp = NULL;
6920 		/*
6921 		 * If it used to be a listener, check to make sure no one else
6922 		 * has taken the port before switching back to LISTEN state.
6923 		 */
6924 		if (tcp->tcp_ipversion == IPV4_VERSION) {
6925 			connp = ipcl_lookup_listener_v4(tcp->tcp_lport,
6926 			    tcp->tcp_ipha->ipha_src,
6927 			    tcp->tcp_connp->conn_zoneid, ipst);
6928 			if (connp != NULL)
6929 				ltcp = connp->conn_tcp;
6930 		} else {
6931 			/* Allow tcp_bound_if listeners? */
6932 			connp = ipcl_lookup_listener_v6(tcp->tcp_lport,
6933 			    &tcp->tcp_ip6h->ip6_src, 0,
6934 			    tcp->tcp_connp->conn_zoneid, ipst);
6935 			if (connp != NULL)
6936 				ltcp = connp->conn_tcp;
6937 		}
6938 		if (tcp->tcp_conn_req_max && ltcp == NULL) {
6939 			tcp->tcp_state = TCPS_LISTEN;
6940 		} else if (old_state > TCPS_BOUND) {
6941 			tcp->tcp_conn_req_max = 0;
6942 			tcp->tcp_state = TCPS_BOUND;
6943 		}
6944 		if (ltcp != NULL)
6945 			CONN_DEC_REF(ltcp->tcp_connp);
6946 		if (old_state == TCPS_SYN_SENT || old_state == TCPS_SYN_RCVD) {
6947 			BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails);
6948 		} else if (old_state == TCPS_ESTABLISHED ||
6949 		    old_state == TCPS_CLOSE_WAIT) {
6950 			BUMP_MIB(&tcps->tcps_mib, tcpEstabResets);
6951 		}
6952 
6953 		if (tcp->tcp_fused)
6954 			tcp_unfuse(tcp);
6955 
6956 		mutex_enter(&tcp->tcp_eager_lock);
6957 		if ((tcp->tcp_conn_req_cnt_q0 != 0) ||
6958 		    (tcp->tcp_conn_req_cnt_q != 0)) {
6959 			tcp_eager_cleanup(tcp, 0);
6960 		}
6961 		mutex_exit(&tcp->tcp_eager_lock);
6962 
6963 		tcp_xmit_ctl("tcp_disconnect", tcp, tcp->tcp_snxt,
6964 		    tcp->tcp_rnxt, TH_RST | TH_ACK);
6965 
6966 		tcp_reinit(tcp);
6967 
6968 		if (old_state >= TCPS_ESTABLISHED) {
6969 			/* Send M_FLUSH according to TPI */
6970 			(void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW);
6971 		}
6972 		mp = mi_tpi_ok_ack_alloc(mp);
6973 		if (mp)
6974 			putnext(tcp->tcp_rq, mp);
6975 		return;
6976 	} else if (!tcp_eager_blowoff(tcp, seqnum)) {
6977 		tcp_err_ack(tcp, mp, TBADSEQ, 0);
6978 		return;
6979 	}
6980 	if (tcp->tcp_state >= TCPS_ESTABLISHED) {
6981 		/* Send M_FLUSH according to TPI */
6982 		(void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW);
6983 	}
6984 	mp = mi_tpi_ok_ack_alloc(mp);
6985 	if (mp)
6986 		putnext(tcp->tcp_rq, mp);
6987 }
6988 
6989 /*
6990  * Diagnostic routine used to return a string associated with the tcp state.
6991  * Note that if the caller does not supply a buffer, it will use an internal
6992  * static string.  This means that if multiple threads call this function at
6993  * the same time, output can be corrupted...  Note also that this function
6994  * does not check the size of the supplied buffer.  The caller has to make
6995  * sure that it is big enough.
6996  */
6997 static char *
6998 tcp_display(tcp_t *tcp, char *sup_buf, char format)
6999 {
7000 	char		buf1[30];
7001 	static char	priv_buf[INET6_ADDRSTRLEN * 2 + 80];
7002 	char		*buf;
7003 	char		*cp;
7004 	in6_addr_t	local, remote;
7005 	char		local_addrbuf[INET6_ADDRSTRLEN];
7006 	char		remote_addrbuf[INET6_ADDRSTRLEN];
7007 
7008 	if (sup_buf != NULL)
7009 		buf = sup_buf;
7010 	else
7011 		buf = priv_buf;
7012 
7013 	if (tcp == NULL)
7014 		return ("NULL_TCP");
7015 	switch (tcp->tcp_state) {
7016 	case TCPS_CLOSED:
7017 		cp = "TCP_CLOSED";
7018 		break;
7019 	case TCPS_IDLE:
7020 		cp = "TCP_IDLE";
7021 		break;
7022 	case TCPS_BOUND:
7023 		cp = "TCP_BOUND";
7024 		break;
7025 	case TCPS_LISTEN:
7026 		cp = "TCP_LISTEN";
7027 		break;
7028 	case TCPS_SYN_SENT:
7029 		cp = "TCP_SYN_SENT";
7030 		break;
7031 	case TCPS_SYN_RCVD:
7032 		cp = "TCP_SYN_RCVD";
7033 		break;
7034 	case TCPS_ESTABLISHED:
7035 		cp = "TCP_ESTABLISHED";
7036 		break;
7037 	case TCPS_CLOSE_WAIT:
7038 		cp = "TCP_CLOSE_WAIT";
7039 		break;
7040 	case TCPS_FIN_WAIT_1:
7041 		cp = "TCP_FIN_WAIT_1";
7042 		break;
7043 	case TCPS_CLOSING:
7044 		cp = "TCP_CLOSING";
7045 		break;
7046 	case TCPS_LAST_ACK:
7047 		cp = "TCP_LAST_ACK";
7048 		break;
7049 	case TCPS_FIN_WAIT_2:
7050 		cp = "TCP_FIN_WAIT_2";
7051 		break;
7052 	case TCPS_TIME_WAIT:
7053 		cp = "TCP_TIME_WAIT";
7054 		break;
7055 	default:
7056 		(void) mi_sprintf(buf1, "TCPUnkState(%d)", tcp->tcp_state);
7057 		cp = buf1;
7058 		break;
7059 	}
7060 	switch (format) {
7061 	case DISP_ADDR_AND_PORT:
7062 		if (tcp->tcp_ipversion == IPV4_VERSION) {
7063 			/*
7064 			 * Note that we use the remote address in the tcp_b
7065 			 * structure.  This means that it will print out
7066 			 * the real destination address, not the next hop's
7067 			 * address if source routing is used.
7068 			 */
7069 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ip_src, &local);
7070 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_remote, &remote);
7071 
7072 		} else {
7073 			local = tcp->tcp_ip_src_v6;
7074 			remote = tcp->tcp_remote_v6;
7075 		}
7076 		(void) inet_ntop(AF_INET6, &local, local_addrbuf,
7077 		    sizeof (local_addrbuf));
7078 		(void) inet_ntop(AF_INET6, &remote, remote_addrbuf,
7079 		    sizeof (remote_addrbuf));
7080 		(void) mi_sprintf(buf, "[%s.%u, %s.%u] %s",
7081 		    local_addrbuf, ntohs(tcp->tcp_lport), remote_addrbuf,
7082 		    ntohs(tcp->tcp_fport), cp);
7083 		break;
7084 	case DISP_PORT_ONLY:
7085 	default:
7086 		(void) mi_sprintf(buf, "[%u, %u] %s",
7087 		    ntohs(tcp->tcp_lport), ntohs(tcp->tcp_fport), cp);
7088 		break;
7089 	}
7090 
7091 	return (buf);
7092 }
7093 
7094 /*
7095  * Called via squeue to get on to eager's perimeter. It sends a
7096  * TH_RST if eager is in the fanout table. The listener wants the
7097  * eager to disappear either by means of tcp_eager_blowoff() or
7098  * tcp_eager_cleanup() being called. tcp_eager_kill() can also be
7099  * called (via squeue) if the eager cannot be inserted in the
7100  * fanout table in tcp_conn_request().
7101  */
7102 /* ARGSUSED */
7103 void
7104 tcp_eager_kill(void *arg, mblk_t *mp, void *arg2)
7105 {
7106 	conn_t	*econnp = (conn_t *)arg;
7107 	tcp_t	*eager = econnp->conn_tcp;
7108 	tcp_t	*listener = eager->tcp_listener;
7109 	tcp_stack_t	*tcps = eager->tcp_tcps;
7110 
7111 	/*
7112 	 * We could be called because listener is closing. Since
7113 	 * the eager is using listener's queue's, its not safe.
7114 	 * Better use the default queue just to send the TH_RST
7115 	 * out.
7116 	 */
7117 	ASSERT(tcps->tcps_g_q != NULL);
7118 	eager->tcp_rq = tcps->tcps_g_q;
7119 	eager->tcp_wq = WR(tcps->tcps_g_q);
7120 
7121 	/*
7122 	 * An eager's conn_fanout will be NULL if it's a duplicate
7123 	 * for an existing 4-tuples in the conn fanout table.
7124 	 * We don't want to send an RST out in such case.
7125 	 */
7126 	if (econnp->conn_fanout != NULL && eager->tcp_state > TCPS_LISTEN) {
7127 		tcp_xmit_ctl("tcp_eager_kill, can't wait",
7128 		    eager, eager->tcp_snxt, 0, TH_RST);
7129 	}
7130 
7131 	/* We are here because listener wants this eager gone */
7132 	if (listener != NULL) {
7133 		mutex_enter(&listener->tcp_eager_lock);
7134 		tcp_eager_unlink(eager);
7135 		if (eager->tcp_tconnind_started) {
7136 			/*
7137 			 * The eager has sent a conn_ind up to the
7138 			 * listener but listener decides to close
7139 			 * instead. We need to drop the extra ref
7140 			 * placed on eager in tcp_rput_data() before
7141 			 * sending the conn_ind to listener.
7142 			 */
7143 			CONN_DEC_REF(econnp);
7144 		}
7145 		mutex_exit(&listener->tcp_eager_lock);
7146 		CONN_DEC_REF(listener->tcp_connp);
7147 	}
7148 
7149 	if (eager->tcp_state > TCPS_BOUND)
7150 		tcp_close_detached(eager);
7151 }
7152 
7153 /*
7154  * Reset any eager connection hanging off this listener marked
7155  * with 'seqnum' and then reclaim it's resources.
7156  */
7157 static boolean_t
7158 tcp_eager_blowoff(tcp_t	*listener, t_scalar_t seqnum)
7159 {
7160 	tcp_t	*eager;
7161 	mblk_t 	*mp;
7162 	tcp_stack_t	*tcps = listener->tcp_tcps;
7163 
7164 	TCP_STAT(tcps, tcp_eager_blowoff_calls);
7165 	eager = listener;
7166 	mutex_enter(&listener->tcp_eager_lock);
7167 	do {
7168 		eager = eager->tcp_eager_next_q;
7169 		if (eager == NULL) {
7170 			mutex_exit(&listener->tcp_eager_lock);
7171 			return (B_FALSE);
7172 		}
7173 	} while (eager->tcp_conn_req_seqnum != seqnum);
7174 
7175 	if (eager->tcp_closemp_used) {
7176 		mutex_exit(&listener->tcp_eager_lock);
7177 		return (B_TRUE);
7178 	}
7179 	eager->tcp_closemp_used = B_TRUE;
7180 	TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15);
7181 	CONN_INC_REF(eager->tcp_connp);
7182 	mutex_exit(&listener->tcp_eager_lock);
7183 	mp = &eager->tcp_closemp;
7184 	squeue_fill(eager->tcp_connp->conn_sqp, mp, tcp_eager_kill,
7185 	    eager->tcp_connp, SQTAG_TCP_EAGER_BLOWOFF);
7186 	return (B_TRUE);
7187 }
7188 
7189 /*
7190  * Reset any eager connection hanging off this listener
7191  * and then reclaim it's resources.
7192  */
7193 static void
7194 tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only)
7195 {
7196 	tcp_t	*eager;
7197 	mblk_t	*mp;
7198 	tcp_stack_t	*tcps = listener->tcp_tcps;
7199 
7200 	ASSERT(MUTEX_HELD(&listener->tcp_eager_lock));
7201 
7202 	if (!q0_only) {
7203 		/* First cleanup q */
7204 		TCP_STAT(tcps, tcp_eager_blowoff_q);
7205 		eager = listener->tcp_eager_next_q;
7206 		while (eager != NULL) {
7207 			if (!eager->tcp_closemp_used) {
7208 				eager->tcp_closemp_used = B_TRUE;
7209 				TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15);
7210 				CONN_INC_REF(eager->tcp_connp);
7211 				mp = &eager->tcp_closemp;
7212 				squeue_fill(eager->tcp_connp->conn_sqp, mp,
7213 				    tcp_eager_kill, eager->tcp_connp,
7214 				    SQTAG_TCP_EAGER_CLEANUP);
7215 			}
7216 			eager = eager->tcp_eager_next_q;
7217 		}
7218 	}
7219 	/* Then cleanup q0 */
7220 	TCP_STAT(tcps, tcp_eager_blowoff_q0);
7221 	eager = listener->tcp_eager_next_q0;
7222 	while (eager != listener) {
7223 		if (!eager->tcp_closemp_used) {
7224 			eager->tcp_closemp_used = B_TRUE;
7225 			TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15);
7226 			CONN_INC_REF(eager->tcp_connp);
7227 			mp = &eager->tcp_closemp;
7228 			squeue_fill(eager->tcp_connp->conn_sqp, mp,
7229 			    tcp_eager_kill, eager->tcp_connp,
7230 			    SQTAG_TCP_EAGER_CLEANUP_Q0);
7231 		}
7232 		eager = eager->tcp_eager_next_q0;
7233 	}
7234 }
7235 
7236 /*
7237  * If we are an eager connection hanging off a listener that hasn't
7238  * formally accepted the connection yet, get off his list and blow off
7239  * any data that we have accumulated.
7240  */
7241 static void
7242 tcp_eager_unlink(tcp_t *tcp)
7243 {
7244 	tcp_t	*listener = tcp->tcp_listener;
7245 
7246 	ASSERT(MUTEX_HELD(&listener->tcp_eager_lock));
7247 	ASSERT(listener != NULL);
7248 	if (tcp->tcp_eager_next_q0 != NULL) {
7249 		ASSERT(tcp->tcp_eager_prev_q0 != NULL);
7250 
7251 		/* Remove the eager tcp from q0 */
7252 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
7253 		    tcp->tcp_eager_prev_q0;
7254 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
7255 		    tcp->tcp_eager_next_q0;
7256 		ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
7257 		listener->tcp_conn_req_cnt_q0--;
7258 
7259 		tcp->tcp_eager_next_q0 = NULL;
7260 		tcp->tcp_eager_prev_q0 = NULL;
7261 
7262 		/*
7263 		 * Take the eager out, if it is in the list of droppable
7264 		 * eagers.
7265 		 */
7266 		MAKE_UNDROPPABLE(tcp);
7267 
7268 		if (tcp->tcp_syn_rcvd_timeout != 0) {
7269 			/* we have timed out before */
7270 			ASSERT(listener->tcp_syn_rcvd_timeout > 0);
7271 			listener->tcp_syn_rcvd_timeout--;
7272 		}
7273 	} else {
7274 		tcp_t   **tcpp = &listener->tcp_eager_next_q;
7275 		tcp_t	*prev = NULL;
7276 
7277 		for (; tcpp[0]; tcpp = &tcpp[0]->tcp_eager_next_q) {
7278 			if (tcpp[0] == tcp) {
7279 				if (listener->tcp_eager_last_q == tcp) {
7280 					/*
7281 					 * If we are unlinking the last
7282 					 * element on the list, adjust
7283 					 * tail pointer. Set tail pointer
7284 					 * to nil when list is empty.
7285 					 */
7286 					ASSERT(tcp->tcp_eager_next_q == NULL);
7287 					if (listener->tcp_eager_last_q ==
7288 					    listener->tcp_eager_next_q) {
7289 						listener->tcp_eager_last_q =
7290 						    NULL;
7291 					} else {
7292 						/*
7293 						 * We won't get here if there
7294 						 * is only one eager in the
7295 						 * list.
7296 						 */
7297 						ASSERT(prev != NULL);
7298 						listener->tcp_eager_last_q =
7299 						    prev;
7300 					}
7301 				}
7302 				tcpp[0] = tcp->tcp_eager_next_q;
7303 				tcp->tcp_eager_next_q = NULL;
7304 				tcp->tcp_eager_last_q = NULL;
7305 				ASSERT(listener->tcp_conn_req_cnt_q > 0);
7306 				listener->tcp_conn_req_cnt_q--;
7307 				break;
7308 			}
7309 			prev = tcpp[0];
7310 		}
7311 	}
7312 	tcp->tcp_listener = NULL;
7313 }
7314 
7315 /* Shorthand to generate and send TPI error acks to our client */
7316 static void
7317 tcp_err_ack(tcp_t *tcp, mblk_t *mp, int t_error, int sys_error)
7318 {
7319 	if ((mp = mi_tpi_err_ack_alloc(mp, t_error, sys_error)) != NULL)
7320 		putnext(tcp->tcp_rq, mp);
7321 }
7322 
7323 /* Shorthand to generate and send TPI error acks to our client */
7324 static void
7325 tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive,
7326     int t_error, int sys_error)
7327 {
7328 	struct T_error_ack	*teackp;
7329 
7330 	if ((mp = tpi_ack_alloc(mp, sizeof (struct T_error_ack),
7331 	    M_PCPROTO, T_ERROR_ACK)) != NULL) {
7332 		teackp = (struct T_error_ack *)mp->b_rptr;
7333 		teackp->ERROR_prim = primitive;
7334 		teackp->TLI_error = t_error;
7335 		teackp->UNIX_error = sys_error;
7336 		putnext(tcp->tcp_rq, mp);
7337 	}
7338 }
7339 
7340 /*
7341  * Note: No locks are held when inspecting tcp_g_*epriv_ports
7342  * but instead the code relies on:
7343  * - the fact that the address of the array and its size never changes
7344  * - the atomic assignment of the elements of the array
7345  */
7346 /* ARGSUSED */
7347 static int
7348 tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
7349 {
7350 	int i;
7351 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
7352 
7353 	for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
7354 		if (tcps->tcps_g_epriv_ports[i] != 0)
7355 			(void) mi_mpprintf(mp, "%d ",
7356 			    tcps->tcps_g_epriv_ports[i]);
7357 	}
7358 	return (0);
7359 }
7360 
7361 /*
7362  * Hold a lock while changing tcp_g_epriv_ports to prevent multiple
7363  * threads from changing it at the same time.
7364  */
7365 /* ARGSUSED */
7366 static int
7367 tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
7368     cred_t *cr)
7369 {
7370 	long	new_value;
7371 	int	i;
7372 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
7373 
7374 	/*
7375 	 * Fail the request if the new value does not lie within the
7376 	 * port number limits.
7377 	 */
7378 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
7379 	    new_value <= 0 || new_value >= 65536) {
7380 		return (EINVAL);
7381 	}
7382 
7383 	mutex_enter(&tcps->tcps_epriv_port_lock);
7384 	/* Check if the value is already in the list */
7385 	for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
7386 		if (new_value == tcps->tcps_g_epriv_ports[i]) {
7387 			mutex_exit(&tcps->tcps_epriv_port_lock);
7388 			return (EEXIST);
7389 		}
7390 	}
7391 	/* Find an empty slot */
7392 	for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
7393 		if (tcps->tcps_g_epriv_ports[i] == 0)
7394 			break;
7395 	}
7396 	if (i == tcps->tcps_g_num_epriv_ports) {
7397 		mutex_exit(&tcps->tcps_epriv_port_lock);
7398 		return (EOVERFLOW);
7399 	}
7400 	/* Set the new value */
7401 	tcps->tcps_g_epriv_ports[i] = (uint16_t)new_value;
7402 	mutex_exit(&tcps->tcps_epriv_port_lock);
7403 	return (0);
7404 }
7405 
7406 /*
7407  * Hold a lock while changing tcp_g_epriv_ports to prevent multiple
7408  * threads from changing it at the same time.
7409  */
7410 /* ARGSUSED */
7411 static int
7412 tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
7413     cred_t *cr)
7414 {
7415 	long	new_value;
7416 	int	i;
7417 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
7418 
7419 	/*
7420 	 * Fail the request if the new value does not lie within the
7421 	 * port number limits.
7422 	 */
7423 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 || new_value <= 0 ||
7424 	    new_value >= 65536) {
7425 		return (EINVAL);
7426 	}
7427 
7428 	mutex_enter(&tcps->tcps_epriv_port_lock);
7429 	/* Check that the value is already in the list */
7430 	for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
7431 		if (tcps->tcps_g_epriv_ports[i] == new_value)
7432 			break;
7433 	}
7434 	if (i == tcps->tcps_g_num_epriv_ports) {
7435 		mutex_exit(&tcps->tcps_epriv_port_lock);
7436 		return (ESRCH);
7437 	}
7438 	/* Clear the value */
7439 	tcps->tcps_g_epriv_ports[i] = 0;
7440 	mutex_exit(&tcps->tcps_epriv_port_lock);
7441 	return (0);
7442 }
7443 
7444 /* Return the TPI/TLI equivalent of our current tcp_state */
7445 static int
7446 tcp_tpistate(tcp_t *tcp)
7447 {
7448 	switch (tcp->tcp_state) {
7449 	case TCPS_IDLE:
7450 		return (TS_UNBND);
7451 	case TCPS_LISTEN:
7452 		/*
7453 		 * Return whether there are outstanding T_CONN_IND waiting
7454 		 * for the matching T_CONN_RES. Therefore don't count q0.
7455 		 */
7456 		if (tcp->tcp_conn_req_cnt_q > 0)
7457 			return (TS_WRES_CIND);
7458 		else
7459 			return (TS_IDLE);
7460 	case TCPS_BOUND:
7461 		return (TS_IDLE);
7462 	case TCPS_SYN_SENT:
7463 		return (TS_WCON_CREQ);
7464 	case TCPS_SYN_RCVD:
7465 		/*
7466 		 * Note: assumption: this has to the active open SYN_RCVD.
7467 		 * The passive instance is detached in SYN_RCVD stage of
7468 		 * incoming connection processing so we cannot get request
7469 		 * for T_info_ack on it.
7470 		 */
7471 		return (TS_WACK_CRES);
7472 	case TCPS_ESTABLISHED:
7473 		return (TS_DATA_XFER);
7474 	case TCPS_CLOSE_WAIT:
7475 		return (TS_WREQ_ORDREL);
7476 	case TCPS_FIN_WAIT_1:
7477 		return (TS_WIND_ORDREL);
7478 	case TCPS_FIN_WAIT_2:
7479 		return (TS_WIND_ORDREL);
7480 
7481 	case TCPS_CLOSING:
7482 	case TCPS_LAST_ACK:
7483 	case TCPS_TIME_WAIT:
7484 	case TCPS_CLOSED:
7485 		/*
7486 		 * Following TS_WACK_DREQ7 is a rendition of "not
7487 		 * yet TS_IDLE" TPI state. There is no best match to any
7488 		 * TPI state for TCPS_{CLOSING, LAST_ACK, TIME_WAIT} but we
7489 		 * choose a value chosen that will map to TLI/XTI level
7490 		 * state of TSTATECHNG (state is process of changing) which
7491 		 * captures what this dummy state represents.
7492 		 */
7493 		return (TS_WACK_DREQ7);
7494 	default:
7495 		cmn_err(CE_WARN, "tcp_tpistate: strange state (%d) %s",
7496 		    tcp->tcp_state, tcp_display(tcp, NULL,
7497 		    DISP_PORT_ONLY));
7498 		return (TS_UNBND);
7499 	}
7500 }
7501 
7502 static void
7503 tcp_copy_info(struct T_info_ack *tia, tcp_t *tcp)
7504 {
7505 	tcp_stack_t	*tcps = tcp->tcp_tcps;
7506 
7507 	if (tcp->tcp_family == AF_INET6)
7508 		*tia = tcp_g_t_info_ack_v6;
7509 	else
7510 		*tia = tcp_g_t_info_ack;
7511 	tia->CURRENT_state = tcp_tpistate(tcp);
7512 	tia->OPT_size = tcp_max_optsize;
7513 	if (tcp->tcp_mss == 0) {
7514 		/* Not yet set - tcp_open does not set mss */
7515 		if (tcp->tcp_ipversion == IPV4_VERSION)
7516 			tia->TIDU_size = tcps->tcps_mss_def_ipv4;
7517 		else
7518 			tia->TIDU_size = tcps->tcps_mss_def_ipv6;
7519 	} else {
7520 		tia->TIDU_size = tcp->tcp_mss;
7521 	}
7522 	/* TODO: Default ETSDU is 1.  Is that correct for tcp? */
7523 }
7524 
7525 /*
7526  * This routine responds to T_CAPABILITY_REQ messages.  It is called by
7527  * tcp_wput.  Much of the T_CAPABILITY_ACK information is copied from
7528  * tcp_g_t_info_ack.  The current state of the stream is copied from
7529  * tcp_state.
7530  */
7531 static void
7532 tcp_capability_req(tcp_t *tcp, mblk_t *mp)
7533 {
7534 	t_uscalar_t		cap_bits1;
7535 	struct T_capability_ack	*tcap;
7536 
7537 	if (MBLKL(mp) < sizeof (struct T_capability_req)) {
7538 		freemsg(mp);
7539 		return;
7540 	}
7541 
7542 	cap_bits1 = ((struct T_capability_req *)mp->b_rptr)->CAP_bits1;
7543 
7544 	mp = tpi_ack_alloc(mp, sizeof (struct T_capability_ack),
7545 	    mp->b_datap->db_type, T_CAPABILITY_ACK);
7546 	if (mp == NULL)
7547 		return;
7548 
7549 	tcap = (struct T_capability_ack *)mp->b_rptr;
7550 	tcap->CAP_bits1 = 0;
7551 
7552 	if (cap_bits1 & TC1_INFO) {
7553 		tcp_copy_info(&tcap->INFO_ack, tcp);
7554 		tcap->CAP_bits1 |= TC1_INFO;
7555 	}
7556 
7557 	if (cap_bits1 & TC1_ACCEPTOR_ID) {
7558 		tcap->ACCEPTOR_id = tcp->tcp_acceptor_id;
7559 		tcap->CAP_bits1 |= TC1_ACCEPTOR_ID;
7560 	}
7561 
7562 	putnext(tcp->tcp_rq, mp);
7563 }
7564 
7565 /*
7566  * This routine responds to T_INFO_REQ messages.  It is called by tcp_wput.
7567  * Most of the T_INFO_ACK information is copied from tcp_g_t_info_ack.
7568  * The current state of the stream is copied from tcp_state.
7569  */
7570 static void
7571 tcp_info_req(tcp_t *tcp, mblk_t *mp)
7572 {
7573 	mp = tpi_ack_alloc(mp, sizeof (struct T_info_ack), M_PCPROTO,
7574 	    T_INFO_ACK);
7575 	if (!mp) {
7576 		tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
7577 		return;
7578 	}
7579 	tcp_copy_info((struct T_info_ack *)mp->b_rptr, tcp);
7580 	putnext(tcp->tcp_rq, mp);
7581 }
7582 
7583 /* Respond to the TPI addr request */
7584 static void
7585 tcp_addr_req(tcp_t *tcp, mblk_t *mp)
7586 {
7587 	sin_t	*sin;
7588 	mblk_t	*ackmp;
7589 	struct T_addr_ack *taa;
7590 
7591 	/* Make it large enough for worst case */
7592 	ackmp = reallocb(mp, sizeof (struct T_addr_ack) +
7593 	    2 * sizeof (sin6_t), 1);
7594 	if (ackmp == NULL) {
7595 		tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
7596 		return;
7597 	}
7598 
7599 	if (tcp->tcp_ipversion == IPV6_VERSION) {
7600 		tcp_addr_req_ipv6(tcp, ackmp);
7601 		return;
7602 	}
7603 	taa = (struct T_addr_ack *)ackmp->b_rptr;
7604 
7605 	bzero(taa, sizeof (struct T_addr_ack));
7606 	ackmp->b_wptr = (uchar_t *)&taa[1];
7607 
7608 	taa->PRIM_type = T_ADDR_ACK;
7609 	ackmp->b_datap->db_type = M_PCPROTO;
7610 
7611 	/*
7612 	 * Note: Following code assumes 32 bit alignment of basic
7613 	 * data structures like sin_t and struct T_addr_ack.
7614 	 */
7615 	if (tcp->tcp_state >= TCPS_BOUND) {
7616 		/*
7617 		 * Fill in local address
7618 		 */
7619 		taa->LOCADDR_length = sizeof (sin_t);
7620 		taa->LOCADDR_offset = sizeof (*taa);
7621 
7622 		sin = (sin_t *)&taa[1];
7623 
7624 		/* Fill zeroes and then intialize non-zero fields */
7625 		*sin = sin_null;
7626 
7627 		sin->sin_family = AF_INET;
7628 
7629 		sin->sin_addr.s_addr = tcp->tcp_ipha->ipha_src;
7630 		sin->sin_port = *(uint16_t *)tcp->tcp_tcph->th_lport;
7631 
7632 		ackmp->b_wptr = (uchar_t *)&sin[1];
7633 
7634 		if (tcp->tcp_state >= TCPS_SYN_RCVD) {
7635 			/*
7636 			 * Fill in Remote address
7637 			 */
7638 			taa->REMADDR_length = sizeof (sin_t);
7639 			taa->REMADDR_offset = ROUNDUP32(taa->LOCADDR_offset +
7640 			    taa->LOCADDR_length);
7641 
7642 			sin = (sin_t *)(ackmp->b_rptr + taa->REMADDR_offset);
7643 			*sin = sin_null;
7644 			sin->sin_family = AF_INET;
7645 			sin->sin_addr.s_addr = tcp->tcp_remote;
7646 			sin->sin_port = tcp->tcp_fport;
7647 
7648 			ackmp->b_wptr = (uchar_t *)&sin[1];
7649 		}
7650 	}
7651 	putnext(tcp->tcp_rq, ackmp);
7652 }
7653 
7654 /* Assumes that tcp_addr_req gets enough space and alignment */
7655 static void
7656 tcp_addr_req_ipv6(tcp_t *tcp, mblk_t *ackmp)
7657 {
7658 	sin6_t	*sin6;
7659 	struct T_addr_ack *taa;
7660 
7661 	ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
7662 	ASSERT(OK_32PTR(ackmp->b_rptr));
7663 	ASSERT(ackmp->b_wptr - ackmp->b_rptr >= sizeof (struct T_addr_ack) +
7664 	    2 * sizeof (sin6_t));
7665 
7666 	taa = (struct T_addr_ack *)ackmp->b_rptr;
7667 
7668 	bzero(taa, sizeof (struct T_addr_ack));
7669 	ackmp->b_wptr = (uchar_t *)&taa[1];
7670 
7671 	taa->PRIM_type = T_ADDR_ACK;
7672 	ackmp->b_datap->db_type = M_PCPROTO;
7673 
7674 	/*
7675 	 * Note: Following code assumes 32 bit alignment of basic
7676 	 * data structures like sin6_t and struct T_addr_ack.
7677 	 */
7678 	if (tcp->tcp_state >= TCPS_BOUND) {
7679 		/*
7680 		 * Fill in local address
7681 		 */
7682 		taa->LOCADDR_length = sizeof (sin6_t);
7683 		taa->LOCADDR_offset = sizeof (*taa);
7684 
7685 		sin6 = (sin6_t *)&taa[1];
7686 		*sin6 = sin6_null;
7687 
7688 		sin6->sin6_family = AF_INET6;
7689 		sin6->sin6_addr = tcp->tcp_ip6h->ip6_src;
7690 		sin6->sin6_port = tcp->tcp_lport;
7691 
7692 		ackmp->b_wptr = (uchar_t *)&sin6[1];
7693 
7694 		if (tcp->tcp_state >= TCPS_SYN_RCVD) {
7695 			/*
7696 			 * Fill in Remote address
7697 			 */
7698 			taa->REMADDR_length = sizeof (sin6_t);
7699 			taa->REMADDR_offset = ROUNDUP32(taa->LOCADDR_offset +
7700 			    taa->LOCADDR_length);
7701 
7702 			sin6 = (sin6_t *)(ackmp->b_rptr + taa->REMADDR_offset);
7703 			*sin6 = sin6_null;
7704 			sin6->sin6_family = AF_INET6;
7705 			sin6->sin6_flowinfo =
7706 			    tcp->tcp_ip6h->ip6_vcf &
7707 			    ~IPV6_VERS_AND_FLOW_MASK;
7708 			sin6->sin6_addr = tcp->tcp_remote_v6;
7709 			sin6->sin6_port = tcp->tcp_fport;
7710 
7711 			ackmp->b_wptr = (uchar_t *)&sin6[1];
7712 		}
7713 	}
7714 	putnext(tcp->tcp_rq, ackmp);
7715 }
7716 
7717 /*
7718  * Handle reinitialization of a tcp structure.
7719  * Maintain "binding state" resetting the state to BOUND, LISTEN, or IDLE.
7720  */
7721 static void
7722 tcp_reinit(tcp_t *tcp)
7723 {
7724 	mblk_t	*mp;
7725 	int 	err;
7726 	tcp_stack_t	*tcps = tcp->tcp_tcps;
7727 
7728 	TCP_STAT(tcps, tcp_reinit_calls);
7729 
7730 	/* tcp_reinit should never be called for detached tcp_t's */
7731 	ASSERT(tcp->tcp_listener == NULL);
7732 	ASSERT((tcp->tcp_family == AF_INET &&
7733 	    tcp->tcp_ipversion == IPV4_VERSION) ||
7734 	    (tcp->tcp_family == AF_INET6 &&
7735 	    (tcp->tcp_ipversion == IPV4_VERSION ||
7736 	    tcp->tcp_ipversion == IPV6_VERSION)));
7737 
7738 	/* Cancel outstanding timers */
7739 	tcp_timers_stop(tcp);
7740 
7741 	/*
7742 	 * Reset everything in the state vector, after updating global
7743 	 * MIB data from instance counters.
7744 	 */
7745 	UPDATE_MIB(&tcps->tcps_mib, tcpHCInSegs, tcp->tcp_ibsegs);
7746 	tcp->tcp_ibsegs = 0;
7747 	UPDATE_MIB(&tcps->tcps_mib, tcpHCOutSegs, tcp->tcp_obsegs);
7748 	tcp->tcp_obsegs = 0;
7749 
7750 	tcp_close_mpp(&tcp->tcp_xmit_head);
7751 	if (tcp->tcp_snd_zcopy_aware)
7752 		tcp_zcopy_notify(tcp);
7753 	tcp->tcp_xmit_last = tcp->tcp_xmit_tail = NULL;
7754 	tcp->tcp_unsent = tcp->tcp_xmit_tail_unsent = 0;
7755 	mutex_enter(&tcp->tcp_non_sq_lock);
7756 	if (tcp->tcp_flow_stopped &&
7757 	    TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) {
7758 		tcp_clrqfull(tcp);
7759 	}
7760 	mutex_exit(&tcp->tcp_non_sq_lock);
7761 	tcp_close_mpp(&tcp->tcp_reass_head);
7762 	tcp->tcp_reass_tail = NULL;
7763 	if (tcp->tcp_rcv_list != NULL) {
7764 		/* Free b_next chain */
7765 		tcp_close_mpp(&tcp->tcp_rcv_list);
7766 		tcp->tcp_rcv_last_head = NULL;
7767 		tcp->tcp_rcv_last_tail = NULL;
7768 		tcp->tcp_rcv_cnt = 0;
7769 	}
7770 	tcp->tcp_rcv_last_tail = NULL;
7771 
7772 	if ((mp = tcp->tcp_urp_mp) != NULL) {
7773 		freemsg(mp);
7774 		tcp->tcp_urp_mp = NULL;
7775 	}
7776 	if ((mp = tcp->tcp_urp_mark_mp) != NULL) {
7777 		freemsg(mp);
7778 		tcp->tcp_urp_mark_mp = NULL;
7779 	}
7780 	if (tcp->tcp_fused_sigurg_mp != NULL) {
7781 		freeb(tcp->tcp_fused_sigurg_mp);
7782 		tcp->tcp_fused_sigurg_mp = NULL;
7783 	}
7784 
7785 	/*
7786 	 * Following is a union with two members which are
7787 	 * identical types and size so the following cleanup
7788 	 * is enough.
7789 	 */
7790 	tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind);
7791 
7792 	CL_INET_DISCONNECT(tcp);
7793 
7794 	/*
7795 	 * The connection can't be on the tcp_time_wait_head list
7796 	 * since it is not detached.
7797 	 */
7798 	ASSERT(tcp->tcp_time_wait_next == NULL);
7799 	ASSERT(tcp->tcp_time_wait_prev == NULL);
7800 	ASSERT(tcp->tcp_time_wait_expire == 0);
7801 
7802 	if (tcp->tcp_kssl_pending) {
7803 		tcp->tcp_kssl_pending = B_FALSE;
7804 
7805 		/* Don't reset if the initialized by bind. */
7806 		if (tcp->tcp_kssl_ent != NULL) {
7807 			kssl_release_ent(tcp->tcp_kssl_ent, NULL,
7808 			    KSSL_NO_PROXY);
7809 		}
7810 	}
7811 	if (tcp->tcp_kssl_ctx != NULL) {
7812 		kssl_release_ctx(tcp->tcp_kssl_ctx);
7813 		tcp->tcp_kssl_ctx = NULL;
7814 	}
7815 
7816 	/*
7817 	 * Reset/preserve other values
7818 	 */
7819 	tcp_reinit_values(tcp);
7820 	ipcl_hash_remove(tcp->tcp_connp);
7821 	conn_delete_ire(tcp->tcp_connp, NULL);
7822 	tcp_ipsec_cleanup(tcp);
7823 
7824 	if (tcp->tcp_conn_req_max != 0) {
7825 		/*
7826 		 * This is the case when a TLI program uses the same
7827 		 * transport end point to accept a connection.  This
7828 		 * makes the TCP both a listener and acceptor.  When
7829 		 * this connection is closed, we need to set the state
7830 		 * back to TCPS_LISTEN.  Make sure that the eager list
7831 		 * is reinitialized.
7832 		 *
7833 		 * Note that this stream is still bound to the four
7834 		 * tuples of the previous connection in IP.  If a new
7835 		 * SYN with different foreign address comes in, IP will
7836 		 * not find it and will send it to the global queue.  In
7837 		 * the global queue, TCP will do a tcp_lookup_listener()
7838 		 * to find this stream.  This works because this stream
7839 		 * is only removed from connected hash.
7840 		 *
7841 		 */
7842 		tcp->tcp_state = TCPS_LISTEN;
7843 		tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp;
7844 		tcp->tcp_eager_next_drop_q0 = tcp;
7845 		tcp->tcp_eager_prev_drop_q0 = tcp;
7846 		tcp->tcp_connp->conn_recv = tcp_conn_request;
7847 		if (tcp->tcp_family == AF_INET6) {
7848 			ASSERT(tcp->tcp_connp->conn_af_isv6);
7849 			(void) ipcl_bind_insert_v6(tcp->tcp_connp, IPPROTO_TCP,
7850 			    &tcp->tcp_ip6h->ip6_src, tcp->tcp_lport);
7851 		} else {
7852 			ASSERT(!tcp->tcp_connp->conn_af_isv6);
7853 			(void) ipcl_bind_insert(tcp->tcp_connp, IPPROTO_TCP,
7854 			    tcp->tcp_ipha->ipha_src, tcp->tcp_lport);
7855 		}
7856 	} else {
7857 		tcp->tcp_state = TCPS_BOUND;
7858 	}
7859 
7860 	/*
7861 	 * Initialize to default values
7862 	 * Can't fail since enough header template space already allocated
7863 	 * at open().
7864 	 */
7865 	err = tcp_init_values(tcp);
7866 	ASSERT(err == 0);
7867 	/* Restore state in tcp_tcph */
7868 	bcopy(&tcp->tcp_lport, tcp->tcp_tcph->th_lport, TCP_PORT_LEN);
7869 	if (tcp->tcp_ipversion == IPV4_VERSION)
7870 		tcp->tcp_ipha->ipha_src = tcp->tcp_bound_source;
7871 	else
7872 		tcp->tcp_ip6h->ip6_src = tcp->tcp_bound_source_v6;
7873 	/*
7874 	 * Copy of the src addr. in tcp_t is needed in tcp_t
7875 	 * since the lookup funcs can only lookup on tcp_t
7876 	 */
7877 	tcp->tcp_ip_src_v6 = tcp->tcp_bound_source_v6;
7878 
7879 	ASSERT(tcp->tcp_ptpbhn != NULL);
7880 	tcp->tcp_rq->q_hiwat = tcps->tcps_recv_hiwat;
7881 	tcp->tcp_rwnd = tcps->tcps_recv_hiwat;
7882 	tcp->tcp_mss = tcp->tcp_ipversion != IPV4_VERSION ?
7883 	    tcps->tcps_mss_def_ipv6 : tcps->tcps_mss_def_ipv4;
7884 }
7885 
7886 /*
7887  * Force values to zero that need be zero.
7888  * Do not touch values asociated with the BOUND or LISTEN state
7889  * since the connection will end up in that state after the reinit.
7890  * NOTE: tcp_reinit_values MUST have a line for each field in the tcp_t
7891  * structure!
7892  */
7893 static void
7894 tcp_reinit_values(tcp)
7895 	tcp_t *tcp;
7896 {
7897 	tcp_stack_t	*tcps = tcp->tcp_tcps;
7898 
7899 #ifndef	lint
7900 #define	DONTCARE(x)
7901 #define	PRESERVE(x)
7902 #else
7903 #define	DONTCARE(x)	((x) = (x))
7904 #define	PRESERVE(x)	((x) = (x))
7905 #endif	/* lint */
7906 
7907 	PRESERVE(tcp->tcp_bind_hash);
7908 	PRESERVE(tcp->tcp_ptpbhn);
7909 	PRESERVE(tcp->tcp_acceptor_hash);
7910 	PRESERVE(tcp->tcp_ptpahn);
7911 
7912 	/* Should be ASSERT NULL on these with new code! */
7913 	ASSERT(tcp->tcp_time_wait_next == NULL);
7914 	ASSERT(tcp->tcp_time_wait_prev == NULL);
7915 	ASSERT(tcp->tcp_time_wait_expire == 0);
7916 	PRESERVE(tcp->tcp_state);
7917 	PRESERVE(tcp->tcp_rq);
7918 	PRESERVE(tcp->tcp_wq);
7919 
7920 	ASSERT(tcp->tcp_xmit_head == NULL);
7921 	ASSERT(tcp->tcp_xmit_last == NULL);
7922 	ASSERT(tcp->tcp_unsent == 0);
7923 	ASSERT(tcp->tcp_xmit_tail == NULL);
7924 	ASSERT(tcp->tcp_xmit_tail_unsent == 0);
7925 
7926 	tcp->tcp_snxt = 0;			/* Displayed in mib */
7927 	tcp->tcp_suna = 0;			/* Displayed in mib */
7928 	tcp->tcp_swnd = 0;
7929 	DONTCARE(tcp->tcp_cwnd);		/* Init in tcp_mss_set */
7930 
7931 	ASSERT(tcp->tcp_ibsegs == 0);
7932 	ASSERT(tcp->tcp_obsegs == 0);
7933 
7934 	if (tcp->tcp_iphc != NULL) {
7935 		ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH);
7936 		bzero(tcp->tcp_iphc, tcp->tcp_iphc_len);
7937 	}
7938 
7939 	DONTCARE(tcp->tcp_naglim);		/* Init in tcp_init_values */
7940 	DONTCARE(tcp->tcp_hdr_len);		/* Init in tcp_init_values */
7941 	DONTCARE(tcp->tcp_ipha);
7942 	DONTCARE(tcp->tcp_ip6h);
7943 	DONTCARE(tcp->tcp_ip_hdr_len);
7944 	DONTCARE(tcp->tcp_tcph);
7945 	DONTCARE(tcp->tcp_tcp_hdr_len);		/* Init in tcp_init_values */
7946 	tcp->tcp_valid_bits = 0;
7947 
7948 	DONTCARE(tcp->tcp_xmit_hiwater);	/* Init in tcp_init_values */
7949 	DONTCARE(tcp->tcp_timer_backoff);	/* Init in tcp_init_values */
7950 	DONTCARE(tcp->tcp_last_recv_time);	/* Init in tcp_init_values */
7951 	tcp->tcp_last_rcv_lbolt = 0;
7952 
7953 	tcp->tcp_init_cwnd = 0;
7954 
7955 	tcp->tcp_urp_last_valid = 0;
7956 	tcp->tcp_hard_binding = 0;
7957 	tcp->tcp_hard_bound = 0;
7958 	PRESERVE(tcp->tcp_cred);
7959 	PRESERVE(tcp->tcp_cpid);
7960 	PRESERVE(tcp->tcp_open_time);
7961 	PRESERVE(tcp->tcp_exclbind);
7962 
7963 	tcp->tcp_fin_acked = 0;
7964 	tcp->tcp_fin_rcvd = 0;
7965 	tcp->tcp_fin_sent = 0;
7966 	tcp->tcp_ordrel_done = 0;
7967 
7968 	tcp->tcp_debug = 0;
7969 	tcp->tcp_dontroute = 0;
7970 	tcp->tcp_broadcast = 0;
7971 
7972 	tcp->tcp_useloopback = 0;
7973 	tcp->tcp_reuseaddr = 0;
7974 	tcp->tcp_oobinline = 0;
7975 	tcp->tcp_dgram_errind = 0;
7976 
7977 	tcp->tcp_detached = 0;
7978 	tcp->tcp_bind_pending = 0;
7979 	tcp->tcp_unbind_pending = 0;
7980 	tcp->tcp_deferred_clean_death = 0;
7981 
7982 	tcp->tcp_snd_ws_ok = B_FALSE;
7983 	tcp->tcp_snd_ts_ok = B_FALSE;
7984 	tcp->tcp_linger = 0;
7985 	tcp->tcp_ka_enabled = 0;
7986 	tcp->tcp_zero_win_probe = 0;
7987 
7988 	tcp->tcp_loopback = 0;
7989 	tcp->tcp_localnet = 0;
7990 	tcp->tcp_syn_defense = 0;
7991 	tcp->tcp_set_timer = 0;
7992 
7993 	tcp->tcp_active_open = 0;
7994 	ASSERT(tcp->tcp_timeout == B_FALSE);
7995 	tcp->tcp_rexmit = B_FALSE;
7996 	tcp->tcp_xmit_zc_clean = B_FALSE;
7997 
7998 	tcp->tcp_snd_sack_ok = B_FALSE;
7999 	PRESERVE(tcp->tcp_recvdstaddr);
8000 	tcp->tcp_hwcksum = B_FALSE;
8001 
8002 	tcp->tcp_ire_ill_check_done = B_FALSE;
8003 	DONTCARE(tcp->tcp_maxpsz);		/* Init in tcp_init_values */
8004 
8005 	tcp->tcp_mdt = B_FALSE;
8006 	tcp->tcp_mdt_hdr_head = 0;
8007 	tcp->tcp_mdt_hdr_tail = 0;
8008 
8009 	tcp->tcp_conn_def_q0 = 0;
8010 	tcp->tcp_ip_forward_progress = B_FALSE;
8011 	tcp->tcp_anon_priv_bind = 0;
8012 	tcp->tcp_ecn_ok = B_FALSE;
8013 
8014 	tcp->tcp_cwr = B_FALSE;
8015 	tcp->tcp_ecn_echo_on = B_FALSE;
8016 
8017 	if (tcp->tcp_sack_info != NULL) {
8018 		if (tcp->tcp_notsack_list != NULL) {
8019 			TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list);
8020 		}
8021 		kmem_cache_free(tcp_sack_info_cache, tcp->tcp_sack_info);
8022 		tcp->tcp_sack_info = NULL;
8023 	}
8024 
8025 	tcp->tcp_rcv_ws = 0;
8026 	tcp->tcp_snd_ws = 0;
8027 	tcp->tcp_ts_recent = 0;
8028 	tcp->tcp_rnxt = 0;			/* Displayed in mib */
8029 	DONTCARE(tcp->tcp_rwnd);		/* Set in tcp_reinit() */
8030 	tcp->tcp_if_mtu = 0;
8031 
8032 	ASSERT(tcp->tcp_reass_head == NULL);
8033 	ASSERT(tcp->tcp_reass_tail == NULL);
8034 
8035 	tcp->tcp_cwnd_cnt = 0;
8036 
8037 	ASSERT(tcp->tcp_rcv_list == NULL);
8038 	ASSERT(tcp->tcp_rcv_last_head == NULL);
8039 	ASSERT(tcp->tcp_rcv_last_tail == NULL);
8040 	ASSERT(tcp->tcp_rcv_cnt == 0);
8041 
8042 	DONTCARE(tcp->tcp_cwnd_ssthresh);	/* Init in tcp_adapt_ire */
8043 	DONTCARE(tcp->tcp_cwnd_max);		/* Init in tcp_init_values */
8044 	tcp->tcp_csuna = 0;
8045 
8046 	tcp->tcp_rto = 0;			/* Displayed in MIB */
8047 	DONTCARE(tcp->tcp_rtt_sa);		/* Init in tcp_init_values */
8048 	DONTCARE(tcp->tcp_rtt_sd);		/* Init in tcp_init_values */
8049 	tcp->tcp_rtt_update = 0;
8050 
8051 	DONTCARE(tcp->tcp_swl1); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */
8052 	DONTCARE(tcp->tcp_swl2); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */
8053 
8054 	tcp->tcp_rack = 0;			/* Displayed in mib */
8055 	tcp->tcp_rack_cnt = 0;
8056 	tcp->tcp_rack_cur_max = 0;
8057 	tcp->tcp_rack_abs_max = 0;
8058 
8059 	tcp->tcp_max_swnd = 0;
8060 
8061 	ASSERT(tcp->tcp_listener == NULL);
8062 
8063 	DONTCARE(tcp->tcp_xmit_lowater);	/* Init in tcp_init_values */
8064 
8065 	DONTCARE(tcp->tcp_irs);			/* tcp_valid_bits cleared */
8066 	DONTCARE(tcp->tcp_iss);			/* tcp_valid_bits cleared */
8067 	DONTCARE(tcp->tcp_fss);			/* tcp_valid_bits cleared */
8068 	DONTCARE(tcp->tcp_urg);			/* tcp_valid_bits cleared */
8069 
8070 	ASSERT(tcp->tcp_conn_req_cnt_q == 0);
8071 	ASSERT(tcp->tcp_conn_req_cnt_q0 == 0);
8072 	PRESERVE(tcp->tcp_conn_req_max);
8073 	PRESERVE(tcp->tcp_conn_req_seqnum);
8074 
8075 	DONTCARE(tcp->tcp_ip_hdr_len);		/* Init in tcp_init_values */
8076 	DONTCARE(tcp->tcp_first_timer_threshold); /* Init in tcp_init_values */
8077 	DONTCARE(tcp->tcp_second_timer_threshold); /* Init in tcp_init_values */
8078 	DONTCARE(tcp->tcp_first_ctimer_threshold); /* Init in tcp_init_values */
8079 	DONTCARE(tcp->tcp_second_ctimer_threshold); /* in tcp_init_values */
8080 
8081 	tcp->tcp_lingertime = 0;
8082 
8083 	DONTCARE(tcp->tcp_urp_last);	/* tcp_urp_last_valid is cleared */
8084 	ASSERT(tcp->tcp_urp_mp == NULL);
8085 	ASSERT(tcp->tcp_urp_mark_mp == NULL);
8086 	ASSERT(tcp->tcp_fused_sigurg_mp == NULL);
8087 
8088 	ASSERT(tcp->tcp_eager_next_q == NULL);
8089 	ASSERT(tcp->tcp_eager_last_q == NULL);
8090 	ASSERT((tcp->tcp_eager_next_q0 == NULL &&
8091 	    tcp->tcp_eager_prev_q0 == NULL) ||
8092 	    tcp->tcp_eager_next_q0 == tcp->tcp_eager_prev_q0);
8093 	ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL);
8094 
8095 	ASSERT((tcp->tcp_eager_next_drop_q0 == NULL &&
8096 	    tcp->tcp_eager_prev_drop_q0 == NULL) ||
8097 	    tcp->tcp_eager_next_drop_q0 == tcp->tcp_eager_prev_drop_q0);
8098 
8099 	tcp->tcp_client_errno = 0;
8100 
8101 	DONTCARE(tcp->tcp_sum);			/* Init in tcp_init_values */
8102 
8103 	tcp->tcp_remote_v6 = ipv6_all_zeros;	/* Displayed in MIB */
8104 
8105 	PRESERVE(tcp->tcp_bound_source_v6);
8106 	tcp->tcp_last_sent_len = 0;
8107 	tcp->tcp_dupack_cnt = 0;
8108 
8109 	tcp->tcp_fport = 0;			/* Displayed in MIB */
8110 	PRESERVE(tcp->tcp_lport);
8111 
8112 	PRESERVE(tcp->tcp_acceptor_lockp);
8113 
8114 	ASSERT(tcp->tcp_ordrelid == 0);
8115 	PRESERVE(tcp->tcp_acceptor_id);
8116 	DONTCARE(tcp->tcp_ipsec_overhead);
8117 
8118 	/*
8119 	 * If tcp_tracing flag is ON (i.e. We have a trace buffer
8120 	 * in tcp structure and now tracing), Re-initialize all
8121 	 * members of tcp_traceinfo.
8122 	 */
8123 	if (tcp->tcp_tracebuf != NULL) {
8124 		bzero(tcp->tcp_tracebuf, sizeof (tcptrch_t));
8125 	}
8126 
8127 	PRESERVE(tcp->tcp_family);
8128 	if (tcp->tcp_family == AF_INET6) {
8129 		tcp->tcp_ipversion = IPV6_VERSION;
8130 		tcp->tcp_mss = tcps->tcps_mss_def_ipv6;
8131 	} else {
8132 		tcp->tcp_ipversion = IPV4_VERSION;
8133 		tcp->tcp_mss = tcps->tcps_mss_def_ipv4;
8134 	}
8135 
8136 	tcp->tcp_bound_if = 0;
8137 	tcp->tcp_ipv6_recvancillary = 0;
8138 	tcp->tcp_recvifindex = 0;
8139 	tcp->tcp_recvhops = 0;
8140 	tcp->tcp_closed = 0;
8141 	tcp->tcp_cleandeathtag = 0;
8142 	if (tcp->tcp_hopopts != NULL) {
8143 		mi_free(tcp->tcp_hopopts);
8144 		tcp->tcp_hopopts = NULL;
8145 		tcp->tcp_hopoptslen = 0;
8146 	}
8147 	ASSERT(tcp->tcp_hopoptslen == 0);
8148 	if (tcp->tcp_dstopts != NULL) {
8149 		mi_free(tcp->tcp_dstopts);
8150 		tcp->tcp_dstopts = NULL;
8151 		tcp->tcp_dstoptslen = 0;
8152 	}
8153 	ASSERT(tcp->tcp_dstoptslen == 0);
8154 	if (tcp->tcp_rtdstopts != NULL) {
8155 		mi_free(tcp->tcp_rtdstopts);
8156 		tcp->tcp_rtdstopts = NULL;
8157 		tcp->tcp_rtdstoptslen = 0;
8158 	}
8159 	ASSERT(tcp->tcp_rtdstoptslen == 0);
8160 	if (tcp->tcp_rthdr != NULL) {
8161 		mi_free(tcp->tcp_rthdr);
8162 		tcp->tcp_rthdr = NULL;
8163 		tcp->tcp_rthdrlen = 0;
8164 	}
8165 	ASSERT(tcp->tcp_rthdrlen == 0);
8166 	PRESERVE(tcp->tcp_drop_opt_ack_cnt);
8167 
8168 	/* Reset fusion-related fields */
8169 	tcp->tcp_fused = B_FALSE;
8170 	tcp->tcp_unfusable = B_FALSE;
8171 	tcp->tcp_fused_sigurg = B_FALSE;
8172 	tcp->tcp_direct_sockfs = B_FALSE;
8173 	tcp->tcp_fuse_syncstr_stopped = B_FALSE;
8174 	tcp->tcp_fuse_syncstr_plugged = B_FALSE;
8175 	tcp->tcp_loopback_peer = NULL;
8176 	tcp->tcp_fuse_rcv_hiwater = 0;
8177 	tcp->tcp_fuse_rcv_unread_hiwater = 0;
8178 	tcp->tcp_fuse_rcv_unread_cnt = 0;
8179 
8180 	tcp->tcp_lso = B_FALSE;
8181 
8182 	tcp->tcp_in_ack_unsent = 0;
8183 	tcp->tcp_cork = B_FALSE;
8184 	tcp->tcp_tconnind_started = B_FALSE;
8185 
8186 	PRESERVE(tcp->tcp_squeue_bytes);
8187 
8188 	ASSERT(tcp->tcp_kssl_ctx == NULL);
8189 	ASSERT(!tcp->tcp_kssl_pending);
8190 	PRESERVE(tcp->tcp_kssl_ent);
8191 
8192 	tcp->tcp_closemp_used = B_FALSE;
8193 
8194 #ifdef DEBUG
8195 	DONTCARE(tcp->tcmp_stk[0]);
8196 #endif
8197 
8198 
8199 #undef	DONTCARE
8200 #undef	PRESERVE
8201 }
8202 
8203 /*
8204  * Allocate necessary resources and initialize state vector.
8205  * Guaranteed not to fail so that when an error is returned,
8206  * the caller doesn't need to do any additional cleanup.
8207  */
8208 int
8209 tcp_init(tcp_t *tcp, queue_t *q)
8210 {
8211 	int	err;
8212 
8213 	tcp->tcp_rq = q;
8214 	tcp->tcp_wq = WR(q);
8215 	tcp->tcp_state = TCPS_IDLE;
8216 	if ((err = tcp_init_values(tcp)) != 0)
8217 		tcp_timers_stop(tcp);
8218 	return (err);
8219 }
8220 
8221 static int
8222 tcp_init_values(tcp_t *tcp)
8223 {
8224 	int	err;
8225 	tcp_stack_t	*tcps = tcp->tcp_tcps;
8226 
8227 	ASSERT((tcp->tcp_family == AF_INET &&
8228 	    tcp->tcp_ipversion == IPV4_VERSION) ||
8229 	    (tcp->tcp_family == AF_INET6 &&
8230 	    (tcp->tcp_ipversion == IPV4_VERSION ||
8231 	    tcp->tcp_ipversion == IPV6_VERSION)));
8232 
8233 	/*
8234 	 * Initialize tcp_rtt_sa and tcp_rtt_sd so that the calculated RTO
8235 	 * will be close to tcp_rexmit_interval_initial.  By doing this, we
8236 	 * allow the algorithm to adjust slowly to large fluctuations of RTT
8237 	 * during first few transmissions of a connection as seen in slow
8238 	 * links.
8239 	 */
8240 	tcp->tcp_rtt_sa = tcps->tcps_rexmit_interval_initial << 2;
8241 	tcp->tcp_rtt_sd = tcps->tcps_rexmit_interval_initial >> 1;
8242 	tcp->tcp_rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd +
8243 	    tcps->tcps_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5) +
8244 	    tcps->tcps_conn_grace_period;
8245 	if (tcp->tcp_rto < tcps->tcps_rexmit_interval_min)
8246 		tcp->tcp_rto = tcps->tcps_rexmit_interval_min;
8247 	tcp->tcp_timer_backoff = 0;
8248 	tcp->tcp_ms_we_have_waited = 0;
8249 	tcp->tcp_last_recv_time = lbolt;
8250 	tcp->tcp_cwnd_max = tcps->tcps_cwnd_max_;
8251 	tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN;
8252 	tcp->tcp_snd_burst = TCP_CWND_INFINITE;
8253 
8254 	tcp->tcp_maxpsz = tcps->tcps_maxpsz_multiplier;
8255 
8256 	tcp->tcp_first_timer_threshold = tcps->tcps_ip_notify_interval;
8257 	tcp->tcp_first_ctimer_threshold = tcps->tcps_ip_notify_cinterval;
8258 	tcp->tcp_second_timer_threshold = tcps->tcps_ip_abort_interval;
8259 	/*
8260 	 * Fix it to tcp_ip_abort_linterval later if it turns out to be a
8261 	 * passive open.
8262 	 */
8263 	tcp->tcp_second_ctimer_threshold = tcps->tcps_ip_abort_cinterval;
8264 
8265 	tcp->tcp_naglim = tcps->tcps_naglim_def;
8266 
8267 	/* NOTE:  ISS is now set in tcp_adapt_ire(). */
8268 
8269 	tcp->tcp_mdt_hdr_head = 0;
8270 	tcp->tcp_mdt_hdr_tail = 0;
8271 
8272 	/* Reset fusion-related fields */
8273 	tcp->tcp_fused = B_FALSE;
8274 	tcp->tcp_unfusable = B_FALSE;
8275 	tcp->tcp_fused_sigurg = B_FALSE;
8276 	tcp->tcp_direct_sockfs = B_FALSE;
8277 	tcp->tcp_fuse_syncstr_stopped = B_FALSE;
8278 	tcp->tcp_fuse_syncstr_plugged = B_FALSE;
8279 	tcp->tcp_loopback_peer = NULL;
8280 	tcp->tcp_fuse_rcv_hiwater = 0;
8281 	tcp->tcp_fuse_rcv_unread_hiwater = 0;
8282 	tcp->tcp_fuse_rcv_unread_cnt = 0;
8283 
8284 	/* Initialize the header template */
8285 	if (tcp->tcp_ipversion == IPV4_VERSION) {
8286 		err = tcp_header_init_ipv4(tcp);
8287 	} else {
8288 		err = tcp_header_init_ipv6(tcp);
8289 	}
8290 	if (err)
8291 		return (err);
8292 
8293 	/*
8294 	 * Init the window scale to the max so tcp_rwnd_set() won't pare
8295 	 * down tcp_rwnd. tcp_adapt_ire() will set the right value later.
8296 	 */
8297 	tcp->tcp_rcv_ws = TCP_MAX_WINSHIFT;
8298 	tcp->tcp_xmit_lowater = tcps->tcps_xmit_lowat;
8299 	tcp->tcp_xmit_hiwater = tcps->tcps_xmit_hiwat;
8300 
8301 	tcp->tcp_cork = B_FALSE;
8302 	/*
8303 	 * Init the tcp_debug option.  This value determines whether TCP
8304 	 * calls strlog() to print out debug messages.  Doing this
8305 	 * initialization here means that this value is not inherited thru
8306 	 * tcp_reinit().
8307 	 */
8308 	tcp->tcp_debug = tcps->tcps_dbg;
8309 
8310 	tcp->tcp_ka_interval = tcps->tcps_keepalive_interval;
8311 	tcp->tcp_ka_abort_thres = tcps->tcps_keepalive_abort_interval;
8312 
8313 	return (0);
8314 }
8315 
8316 /*
8317  * Initialize the IPv4 header. Loses any record of any IP options.
8318  */
8319 static int
8320 tcp_header_init_ipv4(tcp_t *tcp)
8321 {
8322 	tcph_t		*tcph;
8323 	uint32_t	sum;
8324 	conn_t		*connp;
8325 	tcp_stack_t	*tcps = tcp->tcp_tcps;
8326 
8327 	/*
8328 	 * This is a simple initialization. If there's
8329 	 * already a template, it should never be too small,
8330 	 * so reuse it.  Otherwise, allocate space for the new one.
8331 	 */
8332 	if (tcp->tcp_iphc == NULL) {
8333 		ASSERT(tcp->tcp_iphc_len == 0);
8334 		tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH;
8335 		tcp->tcp_iphc = kmem_cache_alloc(tcp_iphc_cache, KM_NOSLEEP);
8336 		if (tcp->tcp_iphc == NULL) {
8337 			tcp->tcp_iphc_len = 0;
8338 			return (ENOMEM);
8339 		}
8340 	}
8341 
8342 	/* options are gone; may need a new label */
8343 	connp = tcp->tcp_connp;
8344 	connp->conn_mlp_type = mlptSingle;
8345 	connp->conn_ulp_labeled = !is_system_labeled();
8346 	ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH);
8347 	tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc;
8348 	tcp->tcp_ip6h = NULL;
8349 	tcp->tcp_ipversion = IPV4_VERSION;
8350 	tcp->tcp_hdr_len = sizeof (ipha_t) + sizeof (tcph_t);
8351 	tcp->tcp_tcp_hdr_len = sizeof (tcph_t);
8352 	tcp->tcp_ip_hdr_len = sizeof (ipha_t);
8353 	tcp->tcp_ipha->ipha_length = htons(sizeof (ipha_t) + sizeof (tcph_t));
8354 	tcp->tcp_ipha->ipha_version_and_hdr_length
8355 	    = (IP_VERSION << 4) | IP_SIMPLE_HDR_LENGTH_IN_WORDS;
8356 	tcp->tcp_ipha->ipha_ident = 0;
8357 
8358 	tcp->tcp_ttl = (uchar_t)tcps->tcps_ipv4_ttl;
8359 	tcp->tcp_tos = 0;
8360 	tcp->tcp_ipha->ipha_fragment_offset_and_flags = 0;
8361 	tcp->tcp_ipha->ipha_ttl = (uchar_t)tcps->tcps_ipv4_ttl;
8362 	tcp->tcp_ipha->ipha_protocol = IPPROTO_TCP;
8363 
8364 	tcph = (tcph_t *)(tcp->tcp_iphc + sizeof (ipha_t));
8365 	tcp->tcp_tcph = tcph;
8366 	tcph->th_offset_and_rsrvd[0] = (5 << 4);
8367 	/*
8368 	 * IP wants our header length in the checksum field to
8369 	 * allow it to perform a single pseudo-header+checksum
8370 	 * calculation on behalf of TCP.
8371 	 * Include the adjustment for a source route once IP_OPTIONS is set.
8372 	 */
8373 	sum = sizeof (tcph_t) + tcp->tcp_sum;
8374 	sum = (sum >> 16) + (sum & 0xFFFF);
8375 	U16_TO_ABE16(sum, tcph->th_sum);
8376 	return (0);
8377 }
8378 
8379 /*
8380  * Initialize the IPv6 header. Loses any record of any IPv6 extension headers.
8381  */
8382 static int
8383 tcp_header_init_ipv6(tcp_t *tcp)
8384 {
8385 	tcph_t	*tcph;
8386 	uint32_t	sum;
8387 	conn_t	*connp;
8388 	tcp_stack_t	*tcps = tcp->tcp_tcps;
8389 
8390 	/*
8391 	 * This is a simple initialization. If there's
8392 	 * already a template, it should never be too small,
8393 	 * so reuse it. Otherwise, allocate space for the new one.
8394 	 * Ensure that there is enough space to "downgrade" the tcp_t
8395 	 * to an IPv4 tcp_t. This requires having space for a full load
8396 	 * of IPv4 options, as well as a full load of TCP options
8397 	 * (TCP_MAX_COMBINED_HEADER_LENGTH, 120 bytes); this is more space
8398 	 * than a v6 header and a TCP header with a full load of TCP options
8399 	 * (IPV6_HDR_LEN is 40 bytes; TCP_MAX_HDR_LENGTH is 60 bytes).
8400 	 * We want to avoid reallocation in the "downgraded" case when
8401 	 * processing outbound IPv4 options.
8402 	 */
8403 	if (tcp->tcp_iphc == NULL) {
8404 		ASSERT(tcp->tcp_iphc_len == 0);
8405 		tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH;
8406 		tcp->tcp_iphc = kmem_cache_alloc(tcp_iphc_cache, KM_NOSLEEP);
8407 		if (tcp->tcp_iphc == NULL) {
8408 			tcp->tcp_iphc_len = 0;
8409 			return (ENOMEM);
8410 		}
8411 	}
8412 
8413 	/* options are gone; may need a new label */
8414 	connp = tcp->tcp_connp;
8415 	connp->conn_mlp_type = mlptSingle;
8416 	connp->conn_ulp_labeled = !is_system_labeled();
8417 
8418 	ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH);
8419 	tcp->tcp_ipversion = IPV6_VERSION;
8420 	tcp->tcp_hdr_len = IPV6_HDR_LEN + sizeof (tcph_t);
8421 	tcp->tcp_tcp_hdr_len = sizeof (tcph_t);
8422 	tcp->tcp_ip_hdr_len = IPV6_HDR_LEN;
8423 	tcp->tcp_ip6h = (ip6_t *)tcp->tcp_iphc;
8424 	tcp->tcp_ipha = NULL;
8425 
8426 	/* Initialize the header template */
8427 
8428 	tcp->tcp_ip6h->ip6_vcf = IPV6_DEFAULT_VERS_AND_FLOW;
8429 	tcp->tcp_ip6h->ip6_plen = ntohs(sizeof (tcph_t));
8430 	tcp->tcp_ip6h->ip6_nxt = IPPROTO_TCP;
8431 	tcp->tcp_ip6h->ip6_hops = (uint8_t)tcps->tcps_ipv6_hoplimit;
8432 
8433 	tcph = (tcph_t *)(tcp->tcp_iphc + IPV6_HDR_LEN);
8434 	tcp->tcp_tcph = tcph;
8435 	tcph->th_offset_and_rsrvd[0] = (5 << 4);
8436 	/*
8437 	 * IP wants our header length in the checksum field to
8438 	 * allow it to perform a single psuedo-header+checksum
8439 	 * calculation on behalf of TCP.
8440 	 * Include the adjustment for a source route when IPV6_RTHDR is set.
8441 	 */
8442 	sum = sizeof (tcph_t) + tcp->tcp_sum;
8443 	sum = (sum >> 16) + (sum & 0xFFFF);
8444 	U16_TO_ABE16(sum, tcph->th_sum);
8445 	return (0);
8446 }
8447 
8448 /* At minimum we need 8 bytes in the TCP header for the lookup */
8449 #define	ICMP_MIN_TCP_HDR	8
8450 
8451 /*
8452  * tcp_icmp_error is called by tcp_rput_other to process ICMP error messages
8453  * passed up by IP. The message is always received on the correct tcp_t.
8454  * Assumes that IP has pulled up everything up to and including the ICMP header.
8455  */
8456 void
8457 tcp_icmp_error(tcp_t *tcp, mblk_t *mp)
8458 {
8459 	icmph_t *icmph;
8460 	ipha_t	*ipha;
8461 	int	iph_hdr_length;
8462 	tcph_t	*tcph;
8463 	boolean_t ipsec_mctl = B_FALSE;
8464 	boolean_t secure;
8465 	mblk_t *first_mp = mp;
8466 	uint32_t new_mss;
8467 	uint32_t ratio;
8468 	size_t mp_size = MBLKL(mp);
8469 	uint32_t seg_seq;
8470 	tcp_stack_t	*tcps = tcp->tcp_tcps;
8471 
8472 	/* Assume IP provides aligned packets - otherwise toss */
8473 	if (!OK_32PTR(mp->b_rptr)) {
8474 		freemsg(mp);
8475 		return;
8476 	}
8477 
8478 	/*
8479 	 * Since ICMP errors are normal data marked with M_CTL when sent
8480 	 * to TCP or UDP, we have to look for a IPSEC_IN value to identify
8481 	 * packets starting with an ipsec_info_t, see ipsec_info.h.
8482 	 */
8483 	if ((mp_size == sizeof (ipsec_info_t)) &&
8484 	    (((ipsec_info_t *)mp->b_rptr)->ipsec_info_type == IPSEC_IN)) {
8485 		ASSERT(mp->b_cont != NULL);
8486 		mp = mp->b_cont;
8487 		/* IP should have done this */
8488 		ASSERT(OK_32PTR(mp->b_rptr));
8489 		mp_size = MBLKL(mp);
8490 		ipsec_mctl = B_TRUE;
8491 	}
8492 
8493 	/*
8494 	 * Verify that we have a complete outer IP header. If not, drop it.
8495 	 */
8496 	if (mp_size < sizeof (ipha_t)) {
8497 noticmpv4:
8498 		freemsg(first_mp);
8499 		return;
8500 	}
8501 
8502 	ipha = (ipha_t *)mp->b_rptr;
8503 	/*
8504 	 * Verify IP version. Anything other than IPv4 or IPv6 packet is sent
8505 	 * upstream. ICMPv6 is handled in tcp_icmp_error_ipv6.
8506 	 */
8507 	switch (IPH_HDR_VERSION(ipha)) {
8508 	case IPV6_VERSION:
8509 		tcp_icmp_error_ipv6(tcp, first_mp, ipsec_mctl);
8510 		return;
8511 	case IPV4_VERSION:
8512 		break;
8513 	default:
8514 		goto noticmpv4;
8515 	}
8516 
8517 	/* Skip past the outer IP and ICMP headers */
8518 	iph_hdr_length = IPH_HDR_LENGTH(ipha);
8519 	icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length];
8520 	/*
8521 	 * If we don't have the correct outer IP header length or if the ULP
8522 	 * is not IPPROTO_ICMP or if we don't have a complete inner IP header
8523 	 * send it upstream.
8524 	 */
8525 	if (iph_hdr_length < sizeof (ipha_t) ||
8526 	    ipha->ipha_protocol != IPPROTO_ICMP ||
8527 	    (ipha_t *)&icmph[1] + 1 > (ipha_t *)mp->b_wptr) {
8528 		goto noticmpv4;
8529 	}
8530 	ipha = (ipha_t *)&icmph[1];
8531 
8532 	/* Skip past the inner IP and find the ULP header */
8533 	iph_hdr_length = IPH_HDR_LENGTH(ipha);
8534 	tcph = (tcph_t *)((char *)ipha + iph_hdr_length);
8535 	/*
8536 	 * If we don't have the correct inner IP header length or if the ULP
8537 	 * is not IPPROTO_TCP or if we don't have at least ICMP_MIN_TCP_HDR
8538 	 * bytes of TCP header, drop it.
8539 	 */
8540 	if (iph_hdr_length < sizeof (ipha_t) ||
8541 	    ipha->ipha_protocol != IPPROTO_TCP ||
8542 	    (uchar_t *)tcph + ICMP_MIN_TCP_HDR > mp->b_wptr) {
8543 		goto noticmpv4;
8544 	}
8545 
8546 	if (TCP_IS_DETACHED_NONEAGER(tcp)) {
8547 		if (ipsec_mctl) {
8548 			secure = ipsec_in_is_secure(first_mp);
8549 		} else {
8550 			secure = B_FALSE;
8551 		}
8552 		if (secure) {
8553 			/*
8554 			 * If we are willing to accept this in clear
8555 			 * we don't have to verify policy.
8556 			 */
8557 			if (!ipsec_inbound_accept_clear(mp, ipha, NULL)) {
8558 				if (!tcp_check_policy(tcp, first_mp,
8559 				    ipha, NULL, secure, ipsec_mctl)) {
8560 					/*
8561 					 * tcp_check_policy called
8562 					 * ip_drop_packet() on failure.
8563 					 */
8564 					return;
8565 				}
8566 			}
8567 		}
8568 	} else if (ipsec_mctl) {
8569 		/*
8570 		 * This is a hard_bound connection. IP has already
8571 		 * verified policy. We don't have to do it again.
8572 		 */
8573 		freeb(first_mp);
8574 		first_mp = mp;
8575 		ipsec_mctl = B_FALSE;
8576 	}
8577 
8578 	seg_seq = ABE32_TO_U32(tcph->th_seq);
8579 	/*
8580 	 * TCP SHOULD check that the TCP sequence number contained in
8581 	 * payload of the ICMP error message is within the range
8582 	 * SND.UNA <= SEG.SEQ < SND.NXT.
8583 	 */
8584 	if (SEQ_LT(seg_seq, tcp->tcp_suna) || SEQ_GEQ(seg_seq, tcp->tcp_snxt)) {
8585 		/*
8586 		 * If the ICMP message is bogus, should we kill the
8587 		 * connection, or should we just drop the bogus ICMP
8588 		 * message? It would probably make more sense to just
8589 		 * drop the message so that if this one managed to get
8590 		 * in, the real connection should not suffer.
8591 		 */
8592 		goto noticmpv4;
8593 	}
8594 
8595 	switch (icmph->icmph_type) {
8596 	case ICMP_DEST_UNREACHABLE:
8597 		switch (icmph->icmph_code) {
8598 		case ICMP_FRAGMENTATION_NEEDED:
8599 			/*
8600 			 * Reduce the MSS based on the new MTU.  This will
8601 			 * eliminate any fragmentation locally.
8602 			 * N.B.  There may well be some funny side-effects on
8603 			 * the local send policy and the remote receive policy.
8604 			 * Pending further research, we provide
8605 			 * tcp_ignore_path_mtu just in case this proves
8606 			 * disastrous somewhere.
8607 			 *
8608 			 * After updating the MSS, retransmit part of the
8609 			 * dropped segment using the new mss by calling
8610 			 * tcp_wput_data().  Need to adjust all those
8611 			 * params to make sure tcp_wput_data() work properly.
8612 			 */
8613 			if (tcps->tcps_ignore_path_mtu)
8614 				break;
8615 
8616 			/*
8617 			 * Decrease the MSS by time stamp options
8618 			 * IP options and IPSEC options. tcp_hdr_len
8619 			 * includes time stamp option and IP option
8620 			 * length.
8621 			 */
8622 
8623 			new_mss = ntohs(icmph->icmph_du_mtu) -
8624 			    tcp->tcp_hdr_len - tcp->tcp_ipsec_overhead;
8625 
8626 			/*
8627 			 * Only update the MSS if the new one is
8628 			 * smaller than the previous one.  This is
8629 			 * to avoid problems when getting multiple
8630 			 * ICMP errors for the same MTU.
8631 			 */
8632 			if (new_mss >= tcp->tcp_mss)
8633 				break;
8634 
8635 			/*
8636 			 * Stop doing PMTU if new_mss is less than 68
8637 			 * or less than tcp_mss_min.
8638 			 * The value 68 comes from rfc 1191.
8639 			 */
8640 			if (new_mss < MAX(68, tcps->tcps_mss_min))
8641 				tcp->tcp_ipha->ipha_fragment_offset_and_flags =
8642 				    0;
8643 
8644 			ratio = tcp->tcp_cwnd / tcp->tcp_mss;
8645 			ASSERT(ratio >= 1);
8646 			tcp_mss_set(tcp, new_mss, B_TRUE);
8647 
8648 			/*
8649 			 * Make sure we have something to
8650 			 * send.
8651 			 */
8652 			if (SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) &&
8653 			    (tcp->tcp_xmit_head != NULL)) {
8654 				/*
8655 				 * Shrink tcp_cwnd in
8656 				 * proportion to the old MSS/new MSS.
8657 				 */
8658 				tcp->tcp_cwnd = ratio * tcp->tcp_mss;
8659 				if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
8660 				    (tcp->tcp_unsent == 0)) {
8661 					tcp->tcp_rexmit_max = tcp->tcp_fss;
8662 				} else {
8663 					tcp->tcp_rexmit_max = tcp->tcp_snxt;
8664 				}
8665 				tcp->tcp_rexmit_nxt = tcp->tcp_suna;
8666 				tcp->tcp_rexmit = B_TRUE;
8667 				tcp->tcp_dupack_cnt = 0;
8668 				tcp->tcp_snd_burst = TCP_CWND_SS;
8669 				tcp_ss_rexmit(tcp);
8670 			}
8671 			break;
8672 		case ICMP_PORT_UNREACHABLE:
8673 		case ICMP_PROTOCOL_UNREACHABLE:
8674 			switch (tcp->tcp_state) {
8675 			case TCPS_SYN_SENT:
8676 			case TCPS_SYN_RCVD:
8677 				/*
8678 				 * ICMP can snipe away incipient
8679 				 * TCP connections as long as
8680 				 * seq number is same as initial
8681 				 * send seq number.
8682 				 */
8683 				if (seg_seq == tcp->tcp_iss) {
8684 					(void) tcp_clean_death(tcp,
8685 					    ECONNREFUSED, 6);
8686 				}
8687 				break;
8688 			}
8689 			break;
8690 		case ICMP_HOST_UNREACHABLE:
8691 		case ICMP_NET_UNREACHABLE:
8692 			/* Record the error in case we finally time out. */
8693 			if (icmph->icmph_code == ICMP_HOST_UNREACHABLE)
8694 				tcp->tcp_client_errno = EHOSTUNREACH;
8695 			else
8696 				tcp->tcp_client_errno = ENETUNREACH;
8697 			if (tcp->tcp_state == TCPS_SYN_RCVD) {
8698 				if (tcp->tcp_listener != NULL &&
8699 				    tcp->tcp_listener->tcp_syn_defense) {
8700 					/*
8701 					 * Ditch the half-open connection if we
8702 					 * suspect a SYN attack is under way.
8703 					 */
8704 					tcp_ip_ire_mark_advice(tcp);
8705 					(void) tcp_clean_death(tcp,
8706 					    tcp->tcp_client_errno, 7);
8707 				}
8708 			}
8709 			break;
8710 		default:
8711 			break;
8712 		}
8713 		break;
8714 	case ICMP_SOURCE_QUENCH: {
8715 		/*
8716 		 * use a global boolean to control
8717 		 * whether TCP should respond to ICMP_SOURCE_QUENCH.
8718 		 * The default is false.
8719 		 */
8720 		if (tcp_icmp_source_quench) {
8721 			/*
8722 			 * Reduce the sending rate as if we got a
8723 			 * retransmit timeout
8724 			 */
8725 			uint32_t npkt;
8726 
8727 			npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) /
8728 			    tcp->tcp_mss;
8729 			tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * tcp->tcp_mss;
8730 			tcp->tcp_cwnd = tcp->tcp_mss;
8731 			tcp->tcp_cwnd_cnt = 0;
8732 		}
8733 		break;
8734 	}
8735 	}
8736 	freemsg(first_mp);
8737 }
8738 
8739 /*
8740  * tcp_icmp_error_ipv6 is called by tcp_rput_other to process ICMPv6
8741  * error messages passed up by IP.
8742  * Assumes that IP has pulled up all the extension headers as well
8743  * as the ICMPv6 header.
8744  */
8745 static void
8746 tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp, boolean_t ipsec_mctl)
8747 {
8748 	icmp6_t *icmp6;
8749 	ip6_t	*ip6h;
8750 	uint16_t	iph_hdr_length;
8751 	tcpha_t	*tcpha;
8752 	uint8_t	*nexthdrp;
8753 	uint32_t new_mss;
8754 	uint32_t ratio;
8755 	boolean_t secure;
8756 	mblk_t *first_mp = mp;
8757 	size_t mp_size;
8758 	uint32_t seg_seq;
8759 	tcp_stack_t	*tcps = tcp->tcp_tcps;
8760 
8761 	/*
8762 	 * The caller has determined if this is an IPSEC_IN packet and
8763 	 * set ipsec_mctl appropriately (see tcp_icmp_error).
8764 	 */
8765 	if (ipsec_mctl)
8766 		mp = mp->b_cont;
8767 
8768 	mp_size = MBLKL(mp);
8769 
8770 	/*
8771 	 * Verify that we have a complete IP header. If not, send it upstream.
8772 	 */
8773 	if (mp_size < sizeof (ip6_t)) {
8774 noticmpv6:
8775 		freemsg(first_mp);
8776 		return;
8777 	}
8778 
8779 	/*
8780 	 * Verify this is an ICMPV6 packet, else send it upstream.
8781 	 */
8782 	ip6h = (ip6_t *)mp->b_rptr;
8783 	if (ip6h->ip6_nxt == IPPROTO_ICMPV6) {
8784 		iph_hdr_length = IPV6_HDR_LEN;
8785 	} else if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length,
8786 	    &nexthdrp) ||
8787 	    *nexthdrp != IPPROTO_ICMPV6) {
8788 		goto noticmpv6;
8789 	}
8790 	icmp6 = (icmp6_t *)&mp->b_rptr[iph_hdr_length];
8791 	ip6h = (ip6_t *)&icmp6[1];
8792 	/*
8793 	 * Verify if we have a complete ICMP and inner IP header.
8794 	 */
8795 	if ((uchar_t *)&ip6h[1] > mp->b_wptr)
8796 		goto noticmpv6;
8797 
8798 	if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, &nexthdrp))
8799 		goto noticmpv6;
8800 	tcpha = (tcpha_t *)((char *)ip6h + iph_hdr_length);
8801 	/*
8802 	 * Validate inner header. If the ULP is not IPPROTO_TCP or if we don't
8803 	 * have at least ICMP_MIN_TCP_HDR bytes of  TCP header drop the
8804 	 * packet.
8805 	 */
8806 	if ((*nexthdrp != IPPROTO_TCP) ||
8807 	    ((uchar_t *)tcpha + ICMP_MIN_TCP_HDR) > mp->b_wptr) {
8808 		goto noticmpv6;
8809 	}
8810 
8811 	/*
8812 	 * ICMP errors come on the right queue or come on
8813 	 * listener/global queue for detached connections and
8814 	 * get switched to the right queue. If it comes on the
8815 	 * right queue, policy check has already been done by IP
8816 	 * and thus free the first_mp without verifying the policy.
8817 	 * If it has come for a non-hard bound connection, we need
8818 	 * to verify policy as IP may not have done it.
8819 	 */
8820 	if (!tcp->tcp_hard_bound) {
8821 		if (ipsec_mctl) {
8822 			secure = ipsec_in_is_secure(first_mp);
8823 		} else {
8824 			secure = B_FALSE;
8825 		}
8826 		if (secure) {
8827 			/*
8828 			 * If we are willing to accept this in clear
8829 			 * we don't have to verify policy.
8830 			 */
8831 			if (!ipsec_inbound_accept_clear(mp, NULL, ip6h)) {
8832 				if (!tcp_check_policy(tcp, first_mp,
8833 				    NULL, ip6h, secure, ipsec_mctl)) {
8834 					/*
8835 					 * tcp_check_policy called
8836 					 * ip_drop_packet() on failure.
8837 					 */
8838 					return;
8839 				}
8840 			}
8841 		}
8842 	} else if (ipsec_mctl) {
8843 		/*
8844 		 * This is a hard_bound connection. IP has already
8845 		 * verified policy. We don't have to do it again.
8846 		 */
8847 		freeb(first_mp);
8848 		first_mp = mp;
8849 		ipsec_mctl = B_FALSE;
8850 	}
8851 
8852 	seg_seq = ntohl(tcpha->tha_seq);
8853 	/*
8854 	 * TCP SHOULD check that the TCP sequence number contained in
8855 	 * payload of the ICMP error message is within the range
8856 	 * SND.UNA <= SEG.SEQ < SND.NXT.
8857 	 */
8858 	if (SEQ_LT(seg_seq, tcp->tcp_suna) || SEQ_GEQ(seg_seq, tcp->tcp_snxt)) {
8859 		/*
8860 		 * If the ICMP message is bogus, should we kill the
8861 		 * connection, or should we just drop the bogus ICMP
8862 		 * message? It would probably make more sense to just
8863 		 * drop the message so that if this one managed to get
8864 		 * in, the real connection should not suffer.
8865 		 */
8866 		goto noticmpv6;
8867 	}
8868 
8869 	switch (icmp6->icmp6_type) {
8870 	case ICMP6_PACKET_TOO_BIG:
8871 		/*
8872 		 * Reduce the MSS based on the new MTU.  This will
8873 		 * eliminate any fragmentation locally.
8874 		 * N.B.  There may well be some funny side-effects on
8875 		 * the local send policy and the remote receive policy.
8876 		 * Pending further research, we provide
8877 		 * tcp_ignore_path_mtu just in case this proves
8878 		 * disastrous somewhere.
8879 		 *
8880 		 * After updating the MSS, retransmit part of the
8881 		 * dropped segment using the new mss by calling
8882 		 * tcp_wput_data().  Need to adjust all those
8883 		 * params to make sure tcp_wput_data() work properly.
8884 		 */
8885 		if (tcps->tcps_ignore_path_mtu)
8886 			break;
8887 
8888 		/*
8889 		 * Decrease the MSS by time stamp options
8890 		 * IP options and IPSEC options. tcp_hdr_len
8891 		 * includes time stamp option and IP option
8892 		 * length.
8893 		 */
8894 		new_mss = ntohs(icmp6->icmp6_mtu) - tcp->tcp_hdr_len -
8895 		    tcp->tcp_ipsec_overhead;
8896 
8897 		/*
8898 		 * Only update the MSS if the new one is
8899 		 * smaller than the previous one.  This is
8900 		 * to avoid problems when getting multiple
8901 		 * ICMP errors for the same MTU.
8902 		 */
8903 		if (new_mss >= tcp->tcp_mss)
8904 			break;
8905 
8906 		ratio = tcp->tcp_cwnd / tcp->tcp_mss;
8907 		ASSERT(ratio >= 1);
8908 		tcp_mss_set(tcp, new_mss, B_TRUE);
8909 
8910 		/*
8911 		 * Make sure we have something to
8912 		 * send.
8913 		 */
8914 		if (SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) &&
8915 		    (tcp->tcp_xmit_head != NULL)) {
8916 			/*
8917 			 * Shrink tcp_cwnd in
8918 			 * proportion to the old MSS/new MSS.
8919 			 */
8920 			tcp->tcp_cwnd = ratio * tcp->tcp_mss;
8921 			if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
8922 			    (tcp->tcp_unsent == 0)) {
8923 				tcp->tcp_rexmit_max = tcp->tcp_fss;
8924 			} else {
8925 				tcp->tcp_rexmit_max = tcp->tcp_snxt;
8926 			}
8927 			tcp->tcp_rexmit_nxt = tcp->tcp_suna;
8928 			tcp->tcp_rexmit = B_TRUE;
8929 			tcp->tcp_dupack_cnt = 0;
8930 			tcp->tcp_snd_burst = TCP_CWND_SS;
8931 			tcp_ss_rexmit(tcp);
8932 		}
8933 		break;
8934 
8935 	case ICMP6_DST_UNREACH:
8936 		switch (icmp6->icmp6_code) {
8937 		case ICMP6_DST_UNREACH_NOPORT:
8938 			if (((tcp->tcp_state == TCPS_SYN_SENT) ||
8939 			    (tcp->tcp_state == TCPS_SYN_RCVD)) &&
8940 			    (seg_seq == tcp->tcp_iss)) {
8941 				(void) tcp_clean_death(tcp,
8942 				    ECONNREFUSED, 8);
8943 			}
8944 			break;
8945 
8946 		case ICMP6_DST_UNREACH_ADMIN:
8947 		case ICMP6_DST_UNREACH_NOROUTE:
8948 		case ICMP6_DST_UNREACH_BEYONDSCOPE:
8949 		case ICMP6_DST_UNREACH_ADDR:
8950 			/* Record the error in case we finally time out. */
8951 			tcp->tcp_client_errno = EHOSTUNREACH;
8952 			if (((tcp->tcp_state == TCPS_SYN_SENT) ||
8953 			    (tcp->tcp_state == TCPS_SYN_RCVD)) &&
8954 			    (seg_seq == tcp->tcp_iss)) {
8955 				if (tcp->tcp_listener != NULL &&
8956 				    tcp->tcp_listener->tcp_syn_defense) {
8957 					/*
8958 					 * Ditch the half-open connection if we
8959 					 * suspect a SYN attack is under way.
8960 					 */
8961 					tcp_ip_ire_mark_advice(tcp);
8962 					(void) tcp_clean_death(tcp,
8963 					    tcp->tcp_client_errno, 9);
8964 				}
8965 			}
8966 
8967 
8968 			break;
8969 		default:
8970 			break;
8971 		}
8972 		break;
8973 
8974 	case ICMP6_PARAM_PROB:
8975 		/* If this corresponds to an ICMP_PROTOCOL_UNREACHABLE */
8976 		if (icmp6->icmp6_code == ICMP6_PARAMPROB_NEXTHEADER &&
8977 		    (uchar_t *)ip6h + icmp6->icmp6_pptr ==
8978 		    (uchar_t *)nexthdrp) {
8979 			if (tcp->tcp_state == TCPS_SYN_SENT ||
8980 			    tcp->tcp_state == TCPS_SYN_RCVD) {
8981 				(void) tcp_clean_death(tcp,
8982 				    ECONNREFUSED, 10);
8983 			}
8984 			break;
8985 		}
8986 		break;
8987 
8988 	case ICMP6_TIME_EXCEEDED:
8989 	default:
8990 		break;
8991 	}
8992 	freemsg(first_mp);
8993 }
8994 
8995 /*
8996  * IP recognizes seven kinds of bind requests:
8997  *
8998  * - A zero-length address binds only to the protocol number.
8999  *
9000  * - A 4-byte address is treated as a request to
9001  * validate that the address is a valid local IPv4
9002  * address, appropriate for an application to bind to.
9003  * IP does the verification, but does not make any note
9004  * of the address at this time.
9005  *
9006  * - A 16-byte address contains is treated as a request
9007  * to validate a local IPv6 address, as the 4-byte
9008  * address case above.
9009  *
9010  * - A 16-byte sockaddr_in to validate the local IPv4 address and also
9011  * use it for the inbound fanout of packets.
9012  *
9013  * - A 24-byte sockaddr_in6 to validate the local IPv6 address and also
9014  * use it for the inbound fanout of packets.
9015  *
9016  * - A 12-byte address (ipa_conn_t) containing complete IPv4 fanout
9017  * information consisting of local and remote addresses
9018  * and ports.  In this case, the addresses are both
9019  * validated as appropriate for this operation, and, if
9020  * so, the information is retained for use in the
9021  * inbound fanout.
9022  *
9023  * - A 36-byte address address (ipa6_conn_t) containing complete IPv6
9024  * fanout information, like the 12-byte case above.
9025  *
9026  * IP will also fill in the IRE request mblk with information
9027  * regarding our peer.  In all cases, we notify IP of our protocol
9028  * type by appending a single protocol byte to the bind request.
9029  */
9030 static mblk_t *
9031 tcp_ip_bind_mp(tcp_t *tcp, t_scalar_t bind_prim, t_scalar_t addr_length)
9032 {
9033 	char	*cp;
9034 	mblk_t	*mp;
9035 	struct T_bind_req *tbr;
9036 	ipa_conn_t	*ac;
9037 	ipa6_conn_t	*ac6;
9038 	sin_t		*sin;
9039 	sin6_t		*sin6;
9040 
9041 	ASSERT(bind_prim == O_T_BIND_REQ || bind_prim == T_BIND_REQ);
9042 	ASSERT((tcp->tcp_family == AF_INET &&
9043 	    tcp->tcp_ipversion == IPV4_VERSION) ||
9044 	    (tcp->tcp_family == AF_INET6 &&
9045 	    (tcp->tcp_ipversion == IPV4_VERSION ||
9046 	    tcp->tcp_ipversion == IPV6_VERSION)));
9047 
9048 	mp = allocb(sizeof (*tbr) + addr_length + 1, BPRI_HI);
9049 	if (!mp)
9050 		return (mp);
9051 	mp->b_datap->db_type = M_PROTO;
9052 	tbr = (struct T_bind_req *)mp->b_rptr;
9053 	tbr->PRIM_type = bind_prim;
9054 	tbr->ADDR_offset = sizeof (*tbr);
9055 	tbr->CONIND_number = 0;
9056 	tbr->ADDR_length = addr_length;
9057 	cp = (char *)&tbr[1];
9058 	switch (addr_length) {
9059 	case sizeof (ipa_conn_t):
9060 		ASSERT(tcp->tcp_family == AF_INET);
9061 		ASSERT(tcp->tcp_ipversion == IPV4_VERSION);
9062 
9063 		mp->b_cont = allocb(sizeof (ire_t), BPRI_HI);
9064 		if (mp->b_cont == NULL) {
9065 			freemsg(mp);
9066 			return (NULL);
9067 		}
9068 		mp->b_cont->b_wptr += sizeof (ire_t);
9069 		mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE;
9070 
9071 		/* cp known to be 32 bit aligned */
9072 		ac = (ipa_conn_t *)cp;
9073 		ac->ac_laddr = tcp->tcp_ipha->ipha_src;
9074 		ac->ac_faddr = tcp->tcp_remote;
9075 		ac->ac_fport = tcp->tcp_fport;
9076 		ac->ac_lport = tcp->tcp_lport;
9077 		tcp->tcp_hard_binding = 1;
9078 		break;
9079 
9080 	case sizeof (ipa6_conn_t):
9081 		ASSERT(tcp->tcp_family == AF_INET6);
9082 
9083 		mp->b_cont = allocb(sizeof (ire_t), BPRI_HI);
9084 		if (mp->b_cont == NULL) {
9085 			freemsg(mp);
9086 			return (NULL);
9087 		}
9088 		mp->b_cont->b_wptr += sizeof (ire_t);
9089 		mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE;
9090 
9091 		/* cp known to be 32 bit aligned */
9092 		ac6 = (ipa6_conn_t *)cp;
9093 		if (tcp->tcp_ipversion == IPV4_VERSION) {
9094 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src,
9095 			    &ac6->ac6_laddr);
9096 		} else {
9097 			ac6->ac6_laddr = tcp->tcp_ip6h->ip6_src;
9098 		}
9099 		ac6->ac6_faddr = tcp->tcp_remote_v6;
9100 		ac6->ac6_fport = tcp->tcp_fport;
9101 		ac6->ac6_lport = tcp->tcp_lport;
9102 		tcp->tcp_hard_binding = 1;
9103 		break;
9104 
9105 	case sizeof (sin_t):
9106 		/*
9107 		 * NOTE: IPV6_ADDR_LEN also has same size.
9108 		 * Use family to discriminate.
9109 		 */
9110 		if (tcp->tcp_family == AF_INET) {
9111 			sin = (sin_t *)cp;
9112 
9113 			*sin = sin_null;
9114 			sin->sin_family = AF_INET;
9115 			sin->sin_addr.s_addr = tcp->tcp_bound_source;
9116 			sin->sin_port = tcp->tcp_lport;
9117 			break;
9118 		} else {
9119 			*(in6_addr_t *)cp = tcp->tcp_bound_source_v6;
9120 		}
9121 		break;
9122 
9123 	case sizeof (sin6_t):
9124 		ASSERT(tcp->tcp_family == AF_INET6);
9125 		sin6 = (sin6_t *)cp;
9126 
9127 		*sin6 = sin6_null;
9128 		sin6->sin6_family = AF_INET6;
9129 		sin6->sin6_addr = tcp->tcp_bound_source_v6;
9130 		sin6->sin6_port = tcp->tcp_lport;
9131 		break;
9132 
9133 	case IP_ADDR_LEN:
9134 		ASSERT(tcp->tcp_ipversion == IPV4_VERSION);
9135 		*(uint32_t *)cp = tcp->tcp_ipha->ipha_src;
9136 		break;
9137 
9138 	}
9139 	/* Add protocol number to end */
9140 	cp[addr_length] = (char)IPPROTO_TCP;
9141 	mp->b_wptr = (uchar_t *)&cp[addr_length + 1];
9142 	return (mp);
9143 }
9144 
9145 /*
9146  * Notify IP that we are having trouble with this connection.  IP should
9147  * blow the IRE away and start over.
9148  */
9149 static void
9150 tcp_ip_notify(tcp_t *tcp)
9151 {
9152 	struct iocblk	*iocp;
9153 	ipid_t	*ipid;
9154 	mblk_t	*mp;
9155 
9156 	/* IPv6 has NUD thus notification to delete the IRE is not needed */
9157 	if (tcp->tcp_ipversion == IPV6_VERSION)
9158 		return;
9159 
9160 	mp = mkiocb(IP_IOCTL);
9161 	if (mp == NULL)
9162 		return;
9163 
9164 	iocp = (struct iocblk *)mp->b_rptr;
9165 	iocp->ioc_count = sizeof (ipid_t) + sizeof (tcp->tcp_ipha->ipha_dst);
9166 
9167 	mp->b_cont = allocb(iocp->ioc_count, BPRI_HI);
9168 	if (!mp->b_cont) {
9169 		freeb(mp);
9170 		return;
9171 	}
9172 
9173 	ipid = (ipid_t *)mp->b_cont->b_rptr;
9174 	mp->b_cont->b_wptr += iocp->ioc_count;
9175 	bzero(ipid, sizeof (*ipid));
9176 	ipid->ipid_cmd = IP_IOC_IRE_DELETE_NO_REPLY;
9177 	ipid->ipid_ire_type = IRE_CACHE;
9178 	ipid->ipid_addr_offset = sizeof (ipid_t);
9179 	ipid->ipid_addr_length = sizeof (tcp->tcp_ipha->ipha_dst);
9180 	/*
9181 	 * Note: in the case of source routing we want to blow away the
9182 	 * route to the first source route hop.
9183 	 */
9184 	bcopy(&tcp->tcp_ipha->ipha_dst, &ipid[1],
9185 	    sizeof (tcp->tcp_ipha->ipha_dst));
9186 
9187 	CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp);
9188 }
9189 
9190 /* Unlink and return any mblk that looks like it contains an ire */
9191 static mblk_t *
9192 tcp_ire_mp(mblk_t *mp)
9193 {
9194 	mblk_t	*prev_mp;
9195 
9196 	for (;;) {
9197 		prev_mp = mp;
9198 		mp = mp->b_cont;
9199 		if (mp == NULL)
9200 			break;
9201 		switch (DB_TYPE(mp)) {
9202 		case IRE_DB_TYPE:
9203 		case IRE_DB_REQ_TYPE:
9204 			if (prev_mp != NULL)
9205 				prev_mp->b_cont = mp->b_cont;
9206 			mp->b_cont = NULL;
9207 			return (mp);
9208 		default:
9209 			break;
9210 		}
9211 	}
9212 	return (mp);
9213 }
9214 
9215 /*
9216  * Timer callback routine for keepalive probe.  We do a fake resend of
9217  * last ACKed byte.  Then set a timer using RTO.  When the timer expires,
9218  * check to see if we have heard anything from the other end for the last
9219  * RTO period.  If we have, set the timer to expire for another
9220  * tcp_keepalive_intrvl and check again.  If we have not, set a timer using
9221  * RTO << 1 and check again when it expires.  Keep exponentially increasing
9222  * the timeout if we have not heard from the other side.  If for more than
9223  * (tcp_ka_interval + tcp_ka_abort_thres) we have not heard anything,
9224  * kill the connection unless the keepalive abort threshold is 0.  In
9225  * that case, we will probe "forever."
9226  */
9227 static void
9228 tcp_keepalive_killer(void *arg)
9229 {
9230 	mblk_t	*mp;
9231 	conn_t	*connp = (conn_t *)arg;
9232 	tcp_t  	*tcp = connp->conn_tcp;
9233 	int32_t	firetime;
9234 	int32_t	idletime;
9235 	int32_t	ka_intrvl;
9236 	tcp_stack_t	*tcps = tcp->tcp_tcps;
9237 
9238 	tcp->tcp_ka_tid = 0;
9239 
9240 	if (tcp->tcp_fused)
9241 		return;
9242 
9243 	BUMP_MIB(&tcps->tcps_mib, tcpTimKeepalive);
9244 	ka_intrvl = tcp->tcp_ka_interval;
9245 
9246 	/*
9247 	 * Keepalive probe should only be sent if the application has not
9248 	 * done a close on the connection.
9249 	 */
9250 	if (tcp->tcp_state > TCPS_CLOSE_WAIT) {
9251 		return;
9252 	}
9253 	/* Timer fired too early, restart it. */
9254 	if (tcp->tcp_state < TCPS_ESTABLISHED) {
9255 		tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer,
9256 		    MSEC_TO_TICK(ka_intrvl));
9257 		return;
9258 	}
9259 
9260 	idletime = TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time);
9261 	/*
9262 	 * If we have not heard from the other side for a long
9263 	 * time, kill the connection unless the keepalive abort
9264 	 * threshold is 0.  In that case, we will probe "forever."
9265 	 */
9266 	if (tcp->tcp_ka_abort_thres != 0 &&
9267 	    idletime > (ka_intrvl + tcp->tcp_ka_abort_thres)) {
9268 		BUMP_MIB(&tcps->tcps_mib, tcpTimKeepaliveDrop);
9269 		(void) tcp_clean_death(tcp, tcp->tcp_client_errno ?
9270 		    tcp->tcp_client_errno : ETIMEDOUT, 11);
9271 		return;
9272 	}
9273 
9274 	if (tcp->tcp_snxt == tcp->tcp_suna &&
9275 	    idletime >= ka_intrvl) {
9276 		/* Fake resend of last ACKed byte. */
9277 		mblk_t	*mp1 = allocb(1, BPRI_LO);
9278 
9279 		if (mp1 != NULL) {
9280 			*mp1->b_wptr++ = '\0';
9281 			mp = tcp_xmit_mp(tcp, mp1, 1, NULL, NULL,
9282 			    tcp->tcp_suna - 1, B_FALSE, NULL, B_TRUE);
9283 			freeb(mp1);
9284 			/*
9285 			 * if allocation failed, fall through to start the
9286 			 * timer back.
9287 			 */
9288 			if (mp != NULL) {
9289 				TCP_RECORD_TRACE(tcp, mp,
9290 				    TCP_TRACE_SEND_PKT);
9291 				tcp_send_data(tcp, tcp->tcp_wq, mp);
9292 				BUMP_MIB(&tcps->tcps_mib,
9293 				    tcpTimKeepaliveProbe);
9294 				if (tcp->tcp_ka_last_intrvl != 0) {
9295 					int max;
9296 					/*
9297 					 * We should probe again at least
9298 					 * in ka_intrvl, but not more than
9299 					 * tcp_rexmit_interval_max.
9300 					 */
9301 					max = tcps->tcps_rexmit_interval_max;
9302 					firetime = MIN(ka_intrvl - 1,
9303 					    tcp->tcp_ka_last_intrvl << 1);
9304 					if (firetime > max)
9305 						firetime = max;
9306 				} else {
9307 					firetime = tcp->tcp_rto;
9308 				}
9309 				tcp->tcp_ka_tid = TCP_TIMER(tcp,
9310 				    tcp_keepalive_killer,
9311 				    MSEC_TO_TICK(firetime));
9312 				tcp->tcp_ka_last_intrvl = firetime;
9313 				return;
9314 			}
9315 		}
9316 	} else {
9317 		tcp->tcp_ka_last_intrvl = 0;
9318 	}
9319 
9320 	/* firetime can be negative if (mp1 == NULL || mp == NULL) */
9321 	if ((firetime = ka_intrvl - idletime) < 0) {
9322 		firetime = ka_intrvl;
9323 	}
9324 	tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer,
9325 	    MSEC_TO_TICK(firetime));
9326 }
9327 
9328 int
9329 tcp_maxpsz_set(tcp_t *tcp, boolean_t set_maxblk)
9330 {
9331 	queue_t	*q = tcp->tcp_rq;
9332 	int32_t	mss = tcp->tcp_mss;
9333 	int	maxpsz;
9334 
9335 	if (TCP_IS_DETACHED(tcp))
9336 		return (mss);
9337 
9338 	if (tcp->tcp_fused) {
9339 		maxpsz = tcp_fuse_maxpsz_set(tcp);
9340 		mss = INFPSZ;
9341 	} else if (tcp->tcp_mdt || tcp->tcp_lso || tcp->tcp_maxpsz == 0) {
9342 		/*
9343 		 * Set the sd_qn_maxpsz according to the socket send buffer
9344 		 * size, and sd_maxblk to INFPSZ (-1).  This will essentially
9345 		 * instruct the stream head to copyin user data into contiguous
9346 		 * kernel-allocated buffers without breaking it up into smaller
9347 		 * chunks.  We round up the buffer size to the nearest SMSS.
9348 		 */
9349 		maxpsz = MSS_ROUNDUP(tcp->tcp_xmit_hiwater, mss);
9350 		if (tcp->tcp_kssl_ctx == NULL)
9351 			mss = INFPSZ;
9352 		else
9353 			mss = SSL3_MAX_RECORD_LEN;
9354 	} else {
9355 		/*
9356 		 * Set sd_qn_maxpsz to approx half the (receivers) buffer
9357 		 * (and a multiple of the mss).  This instructs the stream
9358 		 * head to break down larger than SMSS writes into SMSS-
9359 		 * size mblks, up to tcp_maxpsz_multiplier mblks at a time.
9360 		 */
9361 		maxpsz = tcp->tcp_maxpsz * mss;
9362 		if (maxpsz > tcp->tcp_xmit_hiwater/2) {
9363 			maxpsz = tcp->tcp_xmit_hiwater/2;
9364 			/* Round up to nearest mss */
9365 			maxpsz = MSS_ROUNDUP(maxpsz, mss);
9366 		}
9367 	}
9368 	(void) setmaxps(q, maxpsz);
9369 	tcp->tcp_wq->q_maxpsz = maxpsz;
9370 
9371 	if (set_maxblk)
9372 		(void) mi_set_sth_maxblk(q, mss);
9373 
9374 	return (mss);
9375 }
9376 
9377 /*
9378  * Extract option values from a tcp header.  We put any found values into the
9379  * tcpopt struct and return a bitmask saying which options were found.
9380  */
9381 static int
9382 tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt)
9383 {
9384 	uchar_t		*endp;
9385 	int		len;
9386 	uint32_t	mss;
9387 	uchar_t		*up = (uchar_t *)tcph;
9388 	int		found = 0;
9389 	int32_t		sack_len;
9390 	tcp_seq		sack_begin, sack_end;
9391 	tcp_t		*tcp;
9392 
9393 	endp = up + TCP_HDR_LENGTH(tcph);
9394 	up += TCP_MIN_HEADER_LENGTH;
9395 	while (up < endp) {
9396 		len = endp - up;
9397 		switch (*up) {
9398 		case TCPOPT_EOL:
9399 			break;
9400 
9401 		case TCPOPT_NOP:
9402 			up++;
9403 			continue;
9404 
9405 		case TCPOPT_MAXSEG:
9406 			if (len < TCPOPT_MAXSEG_LEN ||
9407 			    up[1] != TCPOPT_MAXSEG_LEN)
9408 				break;
9409 
9410 			mss = BE16_TO_U16(up+2);
9411 			/* Caller must handle tcp_mss_min and tcp_mss_max_* */
9412 			tcpopt->tcp_opt_mss = mss;
9413 			found |= TCP_OPT_MSS_PRESENT;
9414 
9415 			up += TCPOPT_MAXSEG_LEN;
9416 			continue;
9417 
9418 		case TCPOPT_WSCALE:
9419 			if (len < TCPOPT_WS_LEN || up[1] != TCPOPT_WS_LEN)
9420 				break;
9421 
9422 			if (up[2] > TCP_MAX_WINSHIFT)
9423 				tcpopt->tcp_opt_wscale = TCP_MAX_WINSHIFT;
9424 			else
9425 				tcpopt->tcp_opt_wscale = up[2];
9426 			found |= TCP_OPT_WSCALE_PRESENT;
9427 
9428 			up += TCPOPT_WS_LEN;
9429 			continue;
9430 
9431 		case TCPOPT_SACK_PERMITTED:
9432 			if (len < TCPOPT_SACK_OK_LEN ||
9433 			    up[1] != TCPOPT_SACK_OK_LEN)
9434 				break;
9435 			found |= TCP_OPT_SACK_OK_PRESENT;
9436 			up += TCPOPT_SACK_OK_LEN;
9437 			continue;
9438 
9439 		case TCPOPT_SACK:
9440 			if (len <= 2 || up[1] <= 2 || len < up[1])
9441 				break;
9442 
9443 			/* If TCP is not interested in SACK blks... */
9444 			if ((tcp = tcpopt->tcp) == NULL) {
9445 				up += up[1];
9446 				continue;
9447 			}
9448 			sack_len = up[1] - TCPOPT_HEADER_LEN;
9449 			up += TCPOPT_HEADER_LEN;
9450 
9451 			/*
9452 			 * If the list is empty, allocate one and assume
9453 			 * nothing is sack'ed.
9454 			 */
9455 			ASSERT(tcp->tcp_sack_info != NULL);
9456 			if (tcp->tcp_notsack_list == NULL) {
9457 				tcp_notsack_update(&(tcp->tcp_notsack_list),
9458 				    tcp->tcp_suna, tcp->tcp_snxt,
9459 				    &(tcp->tcp_num_notsack_blk),
9460 				    &(tcp->tcp_cnt_notsack_list));
9461 
9462 				/*
9463 				 * Make sure tcp_notsack_list is not NULL.
9464 				 * This happens when kmem_alloc(KM_NOSLEEP)
9465 				 * returns NULL.
9466 				 */
9467 				if (tcp->tcp_notsack_list == NULL) {
9468 					up += sack_len;
9469 					continue;
9470 				}
9471 				tcp->tcp_fack = tcp->tcp_suna;
9472 			}
9473 
9474 			while (sack_len > 0) {
9475 				if (up + 8 > endp) {
9476 					up = endp;
9477 					break;
9478 				}
9479 				sack_begin = BE32_TO_U32(up);
9480 				up += 4;
9481 				sack_end = BE32_TO_U32(up);
9482 				up += 4;
9483 				sack_len -= 8;
9484 				/*
9485 				 * Bounds checking.  Make sure the SACK
9486 				 * info is within tcp_suna and tcp_snxt.
9487 				 * If this SACK blk is out of bound, ignore
9488 				 * it but continue to parse the following
9489 				 * blks.
9490 				 */
9491 				if (SEQ_LEQ(sack_end, sack_begin) ||
9492 				    SEQ_LT(sack_begin, tcp->tcp_suna) ||
9493 				    SEQ_GT(sack_end, tcp->tcp_snxt)) {
9494 					continue;
9495 				}
9496 				tcp_notsack_insert(&(tcp->tcp_notsack_list),
9497 				    sack_begin, sack_end,
9498 				    &(tcp->tcp_num_notsack_blk),
9499 				    &(tcp->tcp_cnt_notsack_list));
9500 				if (SEQ_GT(sack_end, tcp->tcp_fack)) {
9501 					tcp->tcp_fack = sack_end;
9502 				}
9503 			}
9504 			found |= TCP_OPT_SACK_PRESENT;
9505 			continue;
9506 
9507 		case TCPOPT_TSTAMP:
9508 			if (len < TCPOPT_TSTAMP_LEN ||
9509 			    up[1] != TCPOPT_TSTAMP_LEN)
9510 				break;
9511 
9512 			tcpopt->tcp_opt_ts_val = BE32_TO_U32(up+2);
9513 			tcpopt->tcp_opt_ts_ecr = BE32_TO_U32(up+6);
9514 
9515 			found |= TCP_OPT_TSTAMP_PRESENT;
9516 
9517 			up += TCPOPT_TSTAMP_LEN;
9518 			continue;
9519 
9520 		default:
9521 			if (len <= 1 || len < (int)up[1] || up[1] == 0)
9522 				break;
9523 			up += up[1];
9524 			continue;
9525 		}
9526 		break;
9527 	}
9528 	return (found);
9529 }
9530 
9531 /*
9532  * Set the mss associated with a particular tcp based on its current value,
9533  * and a new one passed in. Observe minimums and maximums, and reset
9534  * other state variables that we want to view as multiples of mss.
9535  *
9536  * This function is called in various places mainly because
9537  * 1) Various stuffs, tcp_mss, tcp_cwnd, ... need to be adjusted when the
9538  *    other side's SYN/SYN-ACK packet arrives.
9539  * 2) PMTUd may get us a new MSS.
9540  * 3) If the other side stops sending us timestamp option, we need to
9541  *    increase the MSS size to use the extra bytes available.
9542  *
9543  * do_ss is used to control whether we will be doing slow start or
9544  * not if there is a change in the mss. Note that for some events like
9545  * tcp_paws_check() we allow the tcp_cwnd to adjust to the new mss but
9546  * do not perform a slow start specifically.
9547  */
9548 static void
9549 tcp_mss_set(tcp_t *tcp, uint32_t mss, boolean_t do_ss)
9550 {
9551 	uint32_t	mss_max;
9552 	tcp_stack_t	*tcps = tcp->tcp_tcps;
9553 
9554 	if (tcp->tcp_ipversion == IPV4_VERSION)
9555 		mss_max = tcps->tcps_mss_max_ipv4;
9556 	else
9557 		mss_max = tcps->tcps_mss_max_ipv6;
9558 
9559 	if (mss < tcps->tcps_mss_min)
9560 		mss = tcps->tcps_mss_min;
9561 	if (mss > mss_max)
9562 		mss = mss_max;
9563 	/*
9564 	 * Unless naglim has been set by our client to
9565 	 * a non-mss value, force naglim to track mss.
9566 	 * This can help to aggregate small writes.
9567 	 */
9568 	if (mss < tcp->tcp_naglim || tcp->tcp_mss == tcp->tcp_naglim)
9569 		tcp->tcp_naglim = mss;
9570 	/*
9571 	 * TCP should be able to buffer at least 4 MSS data for obvious
9572 	 * performance reason.
9573 	 */
9574 	if ((mss << 2) > tcp->tcp_xmit_hiwater)
9575 		tcp->tcp_xmit_hiwater = mss << 2;
9576 
9577 	/*
9578 	 * Check if we need to apply the tcp_init_cwnd here.  If
9579 	 * it is set and the MSS gets bigger (should not happen
9580 	 * normally), we need to adjust the resulting tcp_cwnd properly.
9581 	 * The new tcp_cwnd should not get bigger.
9582 	 */
9583 	/*
9584 	 * We need to avoid setting tcp_cwnd to its slow start value
9585 	 * unnecessarily. However we have to let the tcp_cwnd adjust
9586 	 * to the modified mss.
9587 	 */
9588 	if (tcp->tcp_init_cwnd == 0 && do_ss) {
9589 		tcp->tcp_cwnd = MIN(tcps->tcps_slow_start_initial *
9590 		    mss, MIN(4 * mss, MAX(2 * mss, 4380 / mss * mss)));
9591 	} else {
9592 		if (tcp->tcp_mss < mss) {
9593 			tcp->tcp_cwnd = MAX(1,
9594 			    (tcp->tcp_init_cwnd * tcp->tcp_mss /
9595 			    mss)) * mss;
9596 		} else {
9597 			tcp->tcp_cwnd = tcp->tcp_init_cwnd * mss;
9598 		}
9599 	}
9600 	tcp->tcp_mss = mss;
9601 	tcp->tcp_cwnd_cnt = 0;
9602 	(void) tcp_maxpsz_set(tcp, B_TRUE);
9603 }
9604 
9605 /* For /dev/tcp aka AF_INET open */
9606 static int
9607 tcp_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
9608 {
9609 	return (tcp_open(q, devp, flag, sflag, credp, B_FALSE));
9610 }
9611 
9612 /* For /dev/tcp6 aka AF_INET6 open */
9613 static int
9614 tcp_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
9615 {
9616 	return (tcp_open(q, devp, flag, sflag, credp, B_TRUE));
9617 }
9618 
9619 static int
9620 tcp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp,
9621     boolean_t isv6)
9622 {
9623 	tcp_t		*tcp = NULL;
9624 	conn_t		*connp;
9625 	int		err;
9626 	vmem_t		*minor_arena = NULL;
9627 	dev_t		conn_dev;
9628 	zoneid_t	zoneid;
9629 	tcp_stack_t	*tcps = NULL;
9630 
9631 	if (q->q_ptr != NULL)
9632 		return (0);
9633 
9634 	if (sflag == MODOPEN)
9635 		return (EINVAL);
9636 
9637 	if (!(flag & SO_ACCEPTOR)) {
9638 		/*
9639 		 * Special case for install: miniroot needs to be able to
9640 		 * access files via NFS as though it were always in the
9641 		 * global zone.
9642 		 */
9643 		if (credp == kcred && nfs_global_client_only != 0) {
9644 			zoneid = GLOBAL_ZONEID;
9645 			tcps = netstack_find_by_stackid(GLOBAL_NETSTACKID)->
9646 			    netstack_tcp;
9647 			ASSERT(tcps != NULL);
9648 		} else {
9649 			netstack_t *ns;
9650 
9651 			ns = netstack_find_by_cred(credp);
9652 			ASSERT(ns != NULL);
9653 			tcps = ns->netstack_tcp;
9654 			ASSERT(tcps != NULL);
9655 
9656 			/*
9657 			 * For exclusive stacks we set the zoneid to zero
9658 			 * to make TCP operate as if in the global zone.
9659 			 */
9660 			if (tcps->tcps_netstack->netstack_stackid !=
9661 			    GLOBAL_NETSTACKID)
9662 				zoneid = GLOBAL_ZONEID;
9663 			else
9664 				zoneid = crgetzoneid(credp);
9665 		}
9666 		/*
9667 		 * For stackid zero this is done from strplumb.c, but
9668 		 * non-zero stackids are handled here.
9669 		 */
9670 		if (tcps->tcps_g_q == NULL &&
9671 		    tcps->tcps_netstack->netstack_stackid !=
9672 		    GLOBAL_NETSTACKID) {
9673 			tcp_g_q_setup(tcps);
9674 		}
9675 	}
9676 
9677 	if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) &&
9678 	    ((conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) {
9679 		minor_arena = ip_minor_arena_la;
9680 	} else {
9681 		/*
9682 		 * Either minor numbers in the large arena were exhausted
9683 		 * or a non socket application is doing the open.
9684 		 * Try to allocate from the small arena.
9685 		 */
9686 		if ((conn_dev = inet_minor_alloc(ip_minor_arena_sa)) == 0) {
9687 			if (tcps != NULL)
9688 				netstack_rele(tcps->tcps_netstack);
9689 			return (EBUSY);
9690 		}
9691 		minor_arena = ip_minor_arena_sa;
9692 	}
9693 	ASSERT(minor_arena != NULL);
9694 
9695 	*devp = makedevice(getemajor(*devp), (minor_t)conn_dev);
9696 
9697 	if (flag & SO_ACCEPTOR) {
9698 		/* No netstack_find_by_cred, hence no netstack_rele needed */
9699 		ASSERT(tcps == NULL);
9700 		q->q_qinfo = &tcp_acceptor_rinit;
9701 		/*
9702 		 * the conn_dev and minor_arena will be subsequently used by
9703 		 * tcp_wput_accept() and tcpclose_accept() to figure out the
9704 		 * minor device number for this connection from the q_ptr.
9705 		 */
9706 		RD(q)->q_ptr = (void *)conn_dev;
9707 		WR(q)->q_qinfo = &tcp_acceptor_winit;
9708 		WR(q)->q_ptr = (void *)minor_arena;
9709 		qprocson(q);
9710 		return (0);
9711 	}
9712 
9713 	connp = (conn_t *)tcp_get_conn(IP_SQUEUE_GET(lbolt), tcps);
9714 	/*
9715 	 * Both tcp_get_conn and netstack_find_by_cred incremented refcnt,
9716 	 * so we drop it by one.
9717 	 */
9718 	netstack_rele(tcps->tcps_netstack);
9719 	if (connp == NULL) {
9720 		inet_minor_free(minor_arena, conn_dev);
9721 		q->q_ptr = NULL;
9722 		return (ENOSR);
9723 	}
9724 	connp->conn_sqp = IP_SQUEUE_GET(lbolt);
9725 	tcp = connp->conn_tcp;
9726 
9727 	q->q_ptr = WR(q)->q_ptr = connp;
9728 	if (isv6) {
9729 		connp->conn_flags |= (IPCL_TCP6|IPCL_ISV6);
9730 		connp->conn_send = ip_output_v6;
9731 		connp->conn_af_isv6 = B_TRUE;
9732 		connp->conn_pkt_isv6 = B_TRUE;
9733 		connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT;
9734 		tcp->tcp_ipversion = IPV6_VERSION;
9735 		tcp->tcp_family = AF_INET6;
9736 		tcp->tcp_mss = tcps->tcps_mss_def_ipv6;
9737 	} else {
9738 		connp->conn_flags |= IPCL_TCP4;
9739 		connp->conn_send = ip_output;
9740 		connp->conn_af_isv6 = B_FALSE;
9741 		connp->conn_pkt_isv6 = B_FALSE;
9742 		tcp->tcp_ipversion = IPV4_VERSION;
9743 		tcp->tcp_family = AF_INET;
9744 		tcp->tcp_mss = tcps->tcps_mss_def_ipv4;
9745 	}
9746 
9747 	/*
9748 	 * TCP keeps a copy of cred for cache locality reasons but
9749 	 * we put a reference only once. If connp->conn_cred
9750 	 * becomes invalid, tcp_cred should also be set to NULL.
9751 	 */
9752 	tcp->tcp_cred = connp->conn_cred = credp;
9753 	crhold(connp->conn_cred);
9754 	tcp->tcp_cpid = curproc->p_pid;
9755 	tcp->tcp_open_time = lbolt64;
9756 	connp->conn_zoneid = zoneid;
9757 	connp->conn_mlp_type = mlptSingle;
9758 	connp->conn_ulp_labeled = !is_system_labeled();
9759 	ASSERT(connp->conn_netstack == tcps->tcps_netstack);
9760 	ASSERT(tcp->tcp_tcps == tcps);
9761 
9762 	/*
9763 	 * If the caller has the process-wide flag set, then default to MAC
9764 	 * exempt mode.  This allows read-down to unlabeled hosts.
9765 	 */
9766 	if (getpflags(NET_MAC_AWARE, credp) != 0)
9767 		connp->conn_mac_exempt = B_TRUE;
9768 
9769 	connp->conn_dev = conn_dev;
9770 	connp->conn_minor_arena = minor_arena;
9771 
9772 	ASSERT(q->q_qinfo == &tcp_rinitv4 || q->q_qinfo == &tcp_rinitv6);
9773 	ASSERT(WR(q)->q_qinfo == &tcp_winit);
9774 
9775 	if (flag & SO_SOCKSTR) {
9776 		/*
9777 		 * No need to insert a socket in tcp acceptor hash.
9778 		 * If it was a socket acceptor stream, we dealt with
9779 		 * it above. A socket listener can never accept a
9780 		 * connection and doesn't need acceptor_id.
9781 		 */
9782 		connp->conn_flags |= IPCL_SOCKET;
9783 		tcp->tcp_issocket = 1;
9784 		WR(q)->q_qinfo = &tcp_sock_winit;
9785 	} else {
9786 #ifdef	_ILP32
9787 		tcp->tcp_acceptor_id = (t_uscalar_t)RD(q);
9788 #else
9789 		tcp->tcp_acceptor_id = conn_dev;
9790 #endif	/* _ILP32 */
9791 		tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp);
9792 	}
9793 
9794 	if (tcps->tcps_trace)
9795 		tcp->tcp_tracebuf = kmem_zalloc(sizeof (tcptrch_t), KM_SLEEP);
9796 
9797 	err = tcp_init(tcp, q);
9798 	if (err != 0) {
9799 		inet_minor_free(connp->conn_minor_arena, connp->conn_dev);
9800 		tcp_acceptor_hash_remove(tcp);
9801 		CONN_DEC_REF(connp);
9802 		q->q_ptr = WR(q)->q_ptr = NULL;
9803 		return (err);
9804 	}
9805 
9806 	RD(q)->q_hiwat = tcps->tcps_recv_hiwat;
9807 	tcp->tcp_rwnd = tcps->tcps_recv_hiwat;
9808 
9809 	/* Non-zero default values */
9810 	connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
9811 	/*
9812 	 * Put the ref for TCP. Ref for IP was already put
9813 	 * by ipcl_conn_create. Also Make the conn_t globally
9814 	 * visible to walkers
9815 	 */
9816 	mutex_enter(&connp->conn_lock);
9817 	CONN_INC_REF_LOCKED(connp);
9818 	ASSERT(connp->conn_ref == 2);
9819 	connp->conn_state_flags &= ~CONN_INCIPIENT;
9820 	mutex_exit(&connp->conn_lock);
9821 
9822 	qprocson(q);
9823 	return (0);
9824 }
9825 
9826 /*
9827  * Some TCP options can be "set" by requesting them in the option
9828  * buffer. This is needed for XTI feature test though we do not
9829  * allow it in general. We interpret that this mechanism is more
9830  * applicable to OSI protocols and need not be allowed in general.
9831  * This routine filters out options for which it is not allowed (most)
9832  * and lets through those (few) for which it is. [ The XTI interface
9833  * test suite specifics will imply that any XTI_GENERIC level XTI_* if
9834  * ever implemented will have to be allowed here ].
9835  */
9836 static boolean_t
9837 tcp_allow_connopt_set(int level, int name)
9838 {
9839 
9840 	switch (level) {
9841 	case IPPROTO_TCP:
9842 		switch (name) {
9843 		case TCP_NODELAY:
9844 			return (B_TRUE);
9845 		default:
9846 			return (B_FALSE);
9847 		}
9848 		/*NOTREACHED*/
9849 	default:
9850 		return (B_FALSE);
9851 	}
9852 	/*NOTREACHED*/
9853 }
9854 
9855 /*
9856  * This routine gets default values of certain options whose default
9857  * values are maintained by protocol specific code
9858  */
9859 /* ARGSUSED */
9860 int
9861 tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr)
9862 {
9863 	int32_t	*i1 = (int32_t *)ptr;
9864 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
9865 
9866 	switch (level) {
9867 	case IPPROTO_TCP:
9868 		switch (name) {
9869 		case TCP_NOTIFY_THRESHOLD:
9870 			*i1 = tcps->tcps_ip_notify_interval;
9871 			break;
9872 		case TCP_ABORT_THRESHOLD:
9873 			*i1 = tcps->tcps_ip_abort_interval;
9874 			break;
9875 		case TCP_CONN_NOTIFY_THRESHOLD:
9876 			*i1 = tcps->tcps_ip_notify_cinterval;
9877 			break;
9878 		case TCP_CONN_ABORT_THRESHOLD:
9879 			*i1 = tcps->tcps_ip_abort_cinterval;
9880 			break;
9881 		default:
9882 			return (-1);
9883 		}
9884 		break;
9885 	case IPPROTO_IP:
9886 		switch (name) {
9887 		case IP_TTL:
9888 			*i1 = tcps->tcps_ipv4_ttl;
9889 			break;
9890 		default:
9891 			return (-1);
9892 		}
9893 		break;
9894 	case IPPROTO_IPV6:
9895 		switch (name) {
9896 		case IPV6_UNICAST_HOPS:
9897 			*i1 = tcps->tcps_ipv6_hoplimit;
9898 			break;
9899 		default:
9900 			return (-1);
9901 		}
9902 		break;
9903 	default:
9904 		return (-1);
9905 	}
9906 	return (sizeof (int));
9907 }
9908 
9909 
9910 /*
9911  * TCP routine to get the values of options.
9912  */
9913 int
9914 tcp_opt_get(queue_t *q, int level, int	name, uchar_t *ptr)
9915 {
9916 	int		*i1 = (int *)ptr;
9917 	conn_t		*connp = Q_TO_CONN(q);
9918 	tcp_t		*tcp = connp->conn_tcp;
9919 	ip6_pkt_t	*ipp = &tcp->tcp_sticky_ipp;
9920 
9921 	switch (level) {
9922 	case SOL_SOCKET:
9923 		switch (name) {
9924 		case SO_LINGER:	{
9925 			struct linger *lgr = (struct linger *)ptr;
9926 
9927 			lgr->l_onoff = tcp->tcp_linger ? SO_LINGER : 0;
9928 			lgr->l_linger = tcp->tcp_lingertime;
9929 			}
9930 			return (sizeof (struct linger));
9931 		case SO_DEBUG:
9932 			*i1 = tcp->tcp_debug ? SO_DEBUG : 0;
9933 			break;
9934 		case SO_KEEPALIVE:
9935 			*i1 = tcp->tcp_ka_enabled ? SO_KEEPALIVE : 0;
9936 			break;
9937 		case SO_DONTROUTE:
9938 			*i1 = tcp->tcp_dontroute ? SO_DONTROUTE : 0;
9939 			break;
9940 		case SO_USELOOPBACK:
9941 			*i1 = tcp->tcp_useloopback ? SO_USELOOPBACK : 0;
9942 			break;
9943 		case SO_BROADCAST:
9944 			*i1 = tcp->tcp_broadcast ? SO_BROADCAST : 0;
9945 			break;
9946 		case SO_REUSEADDR:
9947 			*i1 = tcp->tcp_reuseaddr ? SO_REUSEADDR : 0;
9948 			break;
9949 		case SO_OOBINLINE:
9950 			*i1 = tcp->tcp_oobinline ? SO_OOBINLINE : 0;
9951 			break;
9952 		case SO_DGRAM_ERRIND:
9953 			*i1 = tcp->tcp_dgram_errind ? SO_DGRAM_ERRIND : 0;
9954 			break;
9955 		case SO_TYPE:
9956 			*i1 = SOCK_STREAM;
9957 			break;
9958 		case SO_SNDBUF:
9959 			*i1 = tcp->tcp_xmit_hiwater;
9960 			break;
9961 		case SO_RCVBUF:
9962 			*i1 = RD(q)->q_hiwat;
9963 			break;
9964 		case SO_SND_COPYAVOID:
9965 			*i1 = tcp->tcp_snd_zcopy_on ?
9966 			    SO_SND_COPYAVOID : 0;
9967 			break;
9968 		case SO_ALLZONES:
9969 			*i1 = connp->conn_allzones ? 1 : 0;
9970 			break;
9971 		case SO_ANON_MLP:
9972 			*i1 = connp->conn_anon_mlp;
9973 			break;
9974 		case SO_MAC_EXEMPT:
9975 			*i1 = connp->conn_mac_exempt;
9976 			break;
9977 		case SO_EXCLBIND:
9978 			*i1 = tcp->tcp_exclbind ? SO_EXCLBIND : 0;
9979 			break;
9980 		case SO_PROTOTYPE:
9981 			*i1 = IPPROTO_TCP;
9982 			break;
9983 		case SO_DOMAIN:
9984 			*i1 = tcp->tcp_family;
9985 			break;
9986 		default:
9987 			return (-1);
9988 		}
9989 		break;
9990 	case IPPROTO_TCP:
9991 		switch (name) {
9992 		case TCP_NODELAY:
9993 			*i1 = (tcp->tcp_naglim == 1) ? TCP_NODELAY : 0;
9994 			break;
9995 		case TCP_MAXSEG:
9996 			*i1 = tcp->tcp_mss;
9997 			break;
9998 		case TCP_NOTIFY_THRESHOLD:
9999 			*i1 = (int)tcp->tcp_first_timer_threshold;
10000 			break;
10001 		case TCP_ABORT_THRESHOLD:
10002 			*i1 = tcp->tcp_second_timer_threshold;
10003 			break;
10004 		case TCP_CONN_NOTIFY_THRESHOLD:
10005 			*i1 = tcp->tcp_first_ctimer_threshold;
10006 			break;
10007 		case TCP_CONN_ABORT_THRESHOLD:
10008 			*i1 = tcp->tcp_second_ctimer_threshold;
10009 			break;
10010 		case TCP_RECVDSTADDR:
10011 			*i1 = tcp->tcp_recvdstaddr;
10012 			break;
10013 		case TCP_ANONPRIVBIND:
10014 			*i1 = tcp->tcp_anon_priv_bind;
10015 			break;
10016 		case TCP_EXCLBIND:
10017 			*i1 = tcp->tcp_exclbind ? TCP_EXCLBIND : 0;
10018 			break;
10019 		case TCP_INIT_CWND:
10020 			*i1 = tcp->tcp_init_cwnd;
10021 			break;
10022 		case TCP_KEEPALIVE_THRESHOLD:
10023 			*i1 = tcp->tcp_ka_interval;
10024 			break;
10025 		case TCP_KEEPALIVE_ABORT_THRESHOLD:
10026 			*i1 = tcp->tcp_ka_abort_thres;
10027 			break;
10028 		case TCP_CORK:
10029 			*i1 = tcp->tcp_cork;
10030 			break;
10031 		default:
10032 			return (-1);
10033 		}
10034 		break;
10035 	case IPPROTO_IP:
10036 		if (tcp->tcp_family != AF_INET)
10037 			return (-1);
10038 		switch (name) {
10039 		case IP_OPTIONS:
10040 		case T_IP_OPTIONS: {
10041 			/*
10042 			 * This is compatible with BSD in that in only return
10043 			 * the reverse source route with the final destination
10044 			 * as the last entry. The first 4 bytes of the option
10045 			 * will contain the final destination.
10046 			 */
10047 			int	opt_len;
10048 
10049 			opt_len = (char *)tcp->tcp_tcph - (char *)tcp->tcp_ipha;
10050 			opt_len -= tcp->tcp_label_len + IP_SIMPLE_HDR_LENGTH;
10051 			ASSERT(opt_len >= 0);
10052 			/* Caller ensures enough space */
10053 			if (opt_len > 0) {
10054 				/*
10055 				 * TODO: Do we have to handle getsockopt on an
10056 				 * initiator as well?
10057 				 */
10058 				return (ip_opt_get_user(tcp->tcp_ipha, ptr));
10059 			}
10060 			return (0);
10061 			}
10062 		case IP_TOS:
10063 		case T_IP_TOS:
10064 			*i1 = (int)tcp->tcp_ipha->ipha_type_of_service;
10065 			break;
10066 		case IP_TTL:
10067 			*i1 = (int)tcp->tcp_ipha->ipha_ttl;
10068 			break;
10069 		case IP_NEXTHOP:
10070 			/* Handled at IP level */
10071 			return (-EINVAL);
10072 		default:
10073 			return (-1);
10074 		}
10075 		break;
10076 	case IPPROTO_IPV6:
10077 		/*
10078 		 * IPPROTO_IPV6 options are only supported for sockets
10079 		 * that are using IPv6 on the wire.
10080 		 */
10081 		if (tcp->tcp_ipversion != IPV6_VERSION) {
10082 			return (-1);
10083 		}
10084 		switch (name) {
10085 		case IPV6_UNICAST_HOPS:
10086 			*i1 = (unsigned int) tcp->tcp_ip6h->ip6_hops;
10087 			break;	/* goto sizeof (int) option return */
10088 		case IPV6_BOUND_IF:
10089 			/* Zero if not set */
10090 			*i1 = tcp->tcp_bound_if;
10091 			break;	/* goto sizeof (int) option return */
10092 		case IPV6_RECVPKTINFO:
10093 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO)
10094 				*i1 = 1;
10095 			else
10096 				*i1 = 0;
10097 			break;	/* goto sizeof (int) option return */
10098 		case IPV6_RECVTCLASS:
10099 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVTCLASS)
10100 				*i1 = 1;
10101 			else
10102 				*i1 = 0;
10103 			break;	/* goto sizeof (int) option return */
10104 		case IPV6_RECVHOPLIMIT:
10105 			if (tcp->tcp_ipv6_recvancillary &
10106 			    TCP_IPV6_RECVHOPLIMIT)
10107 				*i1 = 1;
10108 			else
10109 				*i1 = 0;
10110 			break;	/* goto sizeof (int) option return */
10111 		case IPV6_RECVHOPOPTS:
10112 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPOPTS)
10113 				*i1 = 1;
10114 			else
10115 				*i1 = 0;
10116 			break;	/* goto sizeof (int) option return */
10117 		case IPV6_RECVDSTOPTS:
10118 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVDSTOPTS)
10119 				*i1 = 1;
10120 			else
10121 				*i1 = 0;
10122 			break;	/* goto sizeof (int) option return */
10123 		case _OLD_IPV6_RECVDSTOPTS:
10124 			if (tcp->tcp_ipv6_recvancillary &
10125 			    TCP_OLD_IPV6_RECVDSTOPTS)
10126 				*i1 = 1;
10127 			else
10128 				*i1 = 0;
10129 			break;	/* goto sizeof (int) option return */
10130 		case IPV6_RECVRTHDR:
10131 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTHDR)
10132 				*i1 = 1;
10133 			else
10134 				*i1 = 0;
10135 			break;	/* goto sizeof (int) option return */
10136 		case IPV6_RECVRTHDRDSTOPTS:
10137 			if (tcp->tcp_ipv6_recvancillary &
10138 			    TCP_IPV6_RECVRTDSTOPTS)
10139 				*i1 = 1;
10140 			else
10141 				*i1 = 0;
10142 			break;	/* goto sizeof (int) option return */
10143 		case IPV6_PKTINFO: {
10144 			/* XXX assumes that caller has room for max size! */
10145 			struct in6_pktinfo *pkti;
10146 
10147 			pkti = (struct in6_pktinfo *)ptr;
10148 			if (ipp->ipp_fields & IPPF_IFINDEX)
10149 				pkti->ipi6_ifindex = ipp->ipp_ifindex;
10150 			else
10151 				pkti->ipi6_ifindex = 0;
10152 			if (ipp->ipp_fields & IPPF_ADDR)
10153 				pkti->ipi6_addr = ipp->ipp_addr;
10154 			else
10155 				pkti->ipi6_addr = ipv6_all_zeros;
10156 			return (sizeof (struct in6_pktinfo));
10157 		}
10158 		case IPV6_TCLASS:
10159 			if (ipp->ipp_fields & IPPF_TCLASS)
10160 				*i1 = ipp->ipp_tclass;
10161 			else
10162 				*i1 = IPV6_FLOW_TCLASS(
10163 				    IPV6_DEFAULT_VERS_AND_FLOW);
10164 			break;	/* goto sizeof (int) option return */
10165 		case IPV6_NEXTHOP: {
10166 			sin6_t *sin6 = (sin6_t *)ptr;
10167 
10168 			if (!(ipp->ipp_fields & IPPF_NEXTHOP))
10169 				return (0);
10170 			*sin6 = sin6_null;
10171 			sin6->sin6_family = AF_INET6;
10172 			sin6->sin6_addr = ipp->ipp_nexthop;
10173 			return (sizeof (sin6_t));
10174 		}
10175 		case IPV6_HOPOPTS:
10176 			if (!(ipp->ipp_fields & IPPF_HOPOPTS))
10177 				return (0);
10178 			if (ipp->ipp_hopoptslen <= tcp->tcp_label_len)
10179 				return (0);
10180 			bcopy((char *)ipp->ipp_hopopts + tcp->tcp_label_len,
10181 			    ptr, ipp->ipp_hopoptslen - tcp->tcp_label_len);
10182 			if (tcp->tcp_label_len > 0) {
10183 				ptr[0] = ((char *)ipp->ipp_hopopts)[0];
10184 				ptr[1] = (ipp->ipp_hopoptslen -
10185 				    tcp->tcp_label_len + 7) / 8 - 1;
10186 			}
10187 			return (ipp->ipp_hopoptslen - tcp->tcp_label_len);
10188 		case IPV6_RTHDRDSTOPTS:
10189 			if (!(ipp->ipp_fields & IPPF_RTDSTOPTS))
10190 				return (0);
10191 			bcopy(ipp->ipp_rtdstopts, ptr, ipp->ipp_rtdstoptslen);
10192 			return (ipp->ipp_rtdstoptslen);
10193 		case IPV6_RTHDR:
10194 			if (!(ipp->ipp_fields & IPPF_RTHDR))
10195 				return (0);
10196 			bcopy(ipp->ipp_rthdr, ptr, ipp->ipp_rthdrlen);
10197 			return (ipp->ipp_rthdrlen);
10198 		case IPV6_DSTOPTS:
10199 			if (!(ipp->ipp_fields & IPPF_DSTOPTS))
10200 				return (0);
10201 			bcopy(ipp->ipp_dstopts, ptr, ipp->ipp_dstoptslen);
10202 			return (ipp->ipp_dstoptslen);
10203 		case IPV6_SRC_PREFERENCES:
10204 			return (ip6_get_src_preferences(connp,
10205 			    (uint32_t *)ptr));
10206 		case IPV6_PATHMTU: {
10207 			struct ip6_mtuinfo *mtuinfo = (struct ip6_mtuinfo *)ptr;
10208 
10209 			if (tcp->tcp_state < TCPS_ESTABLISHED)
10210 				return (-1);
10211 
10212 			return (ip_fill_mtuinfo(&connp->conn_remv6,
10213 			    connp->conn_fport, mtuinfo,
10214 			    connp->conn_netstack));
10215 		}
10216 		default:
10217 			return (-1);
10218 		}
10219 		break;
10220 	default:
10221 		return (-1);
10222 	}
10223 	return (sizeof (int));
10224 }
10225 
10226 /*
10227  * We declare as 'int' rather than 'void' to satisfy pfi_t arg requirements.
10228  * Parameters are assumed to be verified by the caller.
10229  */
10230 /* ARGSUSED */
10231 int
10232 tcp_opt_set(queue_t *q, uint_t optset_context, int level, int name,
10233     uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp,
10234     void *thisdg_attrs, cred_t *cr, mblk_t *mblk)
10235 {
10236 	conn_t	*connp = Q_TO_CONN(q);
10237 	tcp_t	*tcp = connp->conn_tcp;
10238 	int	*i1 = (int *)invalp;
10239 	boolean_t onoff = (*i1 == 0) ? 0 : 1;
10240 	boolean_t checkonly;
10241 	int	reterr;
10242 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
10243 
10244 	switch (optset_context) {
10245 	case SETFN_OPTCOM_CHECKONLY:
10246 		checkonly = B_TRUE;
10247 		/*
10248 		 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ
10249 		 * inlen != 0 implies value supplied and
10250 		 * 	we have to "pretend" to set it.
10251 		 * inlen == 0 implies that there is no
10252 		 * 	value part in T_CHECK request and just validation
10253 		 * done elsewhere should be enough, we just return here.
10254 		 */
10255 		if (inlen == 0) {
10256 			*outlenp = 0;
10257 			return (0);
10258 		}
10259 		break;
10260 	case SETFN_OPTCOM_NEGOTIATE:
10261 		checkonly = B_FALSE;
10262 		break;
10263 	case SETFN_UD_NEGOTIATE: /* error on conn-oriented transports ? */
10264 	case SETFN_CONN_NEGOTIATE:
10265 		checkonly = B_FALSE;
10266 		/*
10267 		 * Negotiating local and "association-related" options
10268 		 * from other (T_CONN_REQ, T_CONN_RES,T_UNITDATA_REQ)
10269 		 * primitives is allowed by XTI, but we choose
10270 		 * to not implement this style negotiation for Internet
10271 		 * protocols (We interpret it is a must for OSI world but
10272 		 * optional for Internet protocols) for all options.
10273 		 * [ Will do only for the few options that enable test
10274 		 * suites that our XTI implementation of this feature
10275 		 * works for transports that do allow it ]
10276 		 */
10277 		if (!tcp_allow_connopt_set(level, name)) {
10278 			*outlenp = 0;
10279 			return (EINVAL);
10280 		}
10281 		break;
10282 	default:
10283 		/*
10284 		 * We should never get here
10285 		 */
10286 		*outlenp = 0;
10287 		return (EINVAL);
10288 	}
10289 
10290 	ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) ||
10291 	    (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0));
10292 
10293 	/*
10294 	 * For TCP, we should have no ancillary data sent down
10295 	 * (sendmsg isn't supported for SOCK_STREAM), so thisdg_attrs
10296 	 * has to be zero.
10297 	 */
10298 	ASSERT(thisdg_attrs == NULL);
10299 
10300 	/*
10301 	 * For fixed length options, no sanity check
10302 	 * of passed in length is done. It is assumed *_optcom_req()
10303 	 * routines do the right thing.
10304 	 */
10305 
10306 	switch (level) {
10307 	case SOL_SOCKET:
10308 		switch (name) {
10309 		case SO_LINGER: {
10310 			struct linger *lgr = (struct linger *)invalp;
10311 
10312 			if (!checkonly) {
10313 				if (lgr->l_onoff) {
10314 					tcp->tcp_linger = 1;
10315 					tcp->tcp_lingertime = lgr->l_linger;
10316 				} else {
10317 					tcp->tcp_linger = 0;
10318 					tcp->tcp_lingertime = 0;
10319 				}
10320 				/* struct copy */
10321 				*(struct linger *)outvalp = *lgr;
10322 			} else {
10323 				if (!lgr->l_onoff) {
10324 					((struct linger *)
10325 					    outvalp)->l_onoff = 0;
10326 					((struct linger *)
10327 					    outvalp)->l_linger = 0;
10328 				} else {
10329 					/* struct copy */
10330 					*(struct linger *)outvalp = *lgr;
10331 				}
10332 			}
10333 			*outlenp = sizeof (struct linger);
10334 			return (0);
10335 		}
10336 		case SO_DEBUG:
10337 			if (!checkonly)
10338 				tcp->tcp_debug = onoff;
10339 			break;
10340 		case SO_KEEPALIVE:
10341 			if (checkonly) {
10342 				/* T_CHECK case */
10343 				break;
10344 			}
10345 
10346 			if (!onoff) {
10347 				if (tcp->tcp_ka_enabled) {
10348 					if (tcp->tcp_ka_tid != 0) {
10349 						(void) TCP_TIMER_CANCEL(tcp,
10350 						    tcp->tcp_ka_tid);
10351 						tcp->tcp_ka_tid = 0;
10352 					}
10353 					tcp->tcp_ka_enabled = 0;
10354 				}
10355 				break;
10356 			}
10357 			if (!tcp->tcp_ka_enabled) {
10358 				/* Crank up the keepalive timer */
10359 				tcp->tcp_ka_last_intrvl = 0;
10360 				tcp->tcp_ka_tid = TCP_TIMER(tcp,
10361 				    tcp_keepalive_killer,
10362 				    MSEC_TO_TICK(tcp->tcp_ka_interval));
10363 				tcp->tcp_ka_enabled = 1;
10364 			}
10365 			break;
10366 		case SO_DONTROUTE:
10367 			/*
10368 			 * SO_DONTROUTE, SO_USELOOPBACK, and SO_BROADCAST are
10369 			 * only of interest to IP.  We track them here only so
10370 			 * that we can report their current value.
10371 			 */
10372 			if (!checkonly) {
10373 				tcp->tcp_dontroute = onoff;
10374 				tcp->tcp_connp->conn_dontroute = onoff;
10375 			}
10376 			break;
10377 		case SO_USELOOPBACK:
10378 			if (!checkonly) {
10379 				tcp->tcp_useloopback = onoff;
10380 				tcp->tcp_connp->conn_loopback = onoff;
10381 			}
10382 			break;
10383 		case SO_BROADCAST:
10384 			if (!checkonly) {
10385 				tcp->tcp_broadcast = onoff;
10386 				tcp->tcp_connp->conn_broadcast = onoff;
10387 			}
10388 			break;
10389 		case SO_REUSEADDR:
10390 			if (!checkonly) {
10391 				tcp->tcp_reuseaddr = onoff;
10392 				tcp->tcp_connp->conn_reuseaddr = onoff;
10393 			}
10394 			break;
10395 		case SO_OOBINLINE:
10396 			if (!checkonly)
10397 				tcp->tcp_oobinline = onoff;
10398 			break;
10399 		case SO_DGRAM_ERRIND:
10400 			if (!checkonly)
10401 				tcp->tcp_dgram_errind = onoff;
10402 			break;
10403 		case SO_SNDBUF: {
10404 			if (*i1 > tcps->tcps_max_buf) {
10405 				*outlenp = 0;
10406 				return (ENOBUFS);
10407 			}
10408 			if (checkonly)
10409 				break;
10410 
10411 			tcp->tcp_xmit_hiwater = *i1;
10412 			if (tcps->tcps_snd_lowat_fraction != 0)
10413 				tcp->tcp_xmit_lowater =
10414 				    tcp->tcp_xmit_hiwater /
10415 				    tcps->tcps_snd_lowat_fraction;
10416 			(void) tcp_maxpsz_set(tcp, B_TRUE);
10417 			/*
10418 			 * If we are flow-controlled, recheck the condition.
10419 			 * There are apps that increase SO_SNDBUF size when
10420 			 * flow-controlled (EWOULDBLOCK), and expect the flow
10421 			 * control condition to be lifted right away.
10422 			 */
10423 			mutex_enter(&tcp->tcp_non_sq_lock);
10424 			if (tcp->tcp_flow_stopped &&
10425 			    TCP_UNSENT_BYTES(tcp) < tcp->tcp_xmit_hiwater) {
10426 				tcp_clrqfull(tcp);
10427 			}
10428 			mutex_exit(&tcp->tcp_non_sq_lock);
10429 			break;
10430 		}
10431 		case SO_RCVBUF:
10432 			if (*i1 > tcps->tcps_max_buf) {
10433 				*outlenp = 0;
10434 				return (ENOBUFS);
10435 			}
10436 			/* Silently ignore zero */
10437 			if (!checkonly && *i1 != 0) {
10438 				*i1 = MSS_ROUNDUP(*i1, tcp->tcp_mss);
10439 				(void) tcp_rwnd_set(tcp, *i1);
10440 			}
10441 			/*
10442 			 * XXX should we return the rwnd here
10443 			 * and tcp_opt_get ?
10444 			 */
10445 			break;
10446 		case SO_SND_COPYAVOID:
10447 			if (!checkonly) {
10448 				/* we only allow enable at most once for now */
10449 				if (tcp->tcp_loopback ||
10450 				    (!tcp->tcp_snd_zcopy_aware &&
10451 				    (onoff != 1 || !tcp_zcopy_check(tcp)))) {
10452 					*outlenp = 0;
10453 					return (EOPNOTSUPP);
10454 				}
10455 				tcp->tcp_snd_zcopy_aware = 1;
10456 			}
10457 			break;
10458 		case SO_ALLZONES:
10459 			/* Handled at the IP level */
10460 			return (-EINVAL);
10461 		case SO_ANON_MLP:
10462 			if (!checkonly) {
10463 				mutex_enter(&connp->conn_lock);
10464 				connp->conn_anon_mlp = onoff;
10465 				mutex_exit(&connp->conn_lock);
10466 			}
10467 			break;
10468 		case SO_MAC_EXEMPT:
10469 			if (secpolicy_net_mac_aware(cr) != 0 ||
10470 			    IPCL_IS_BOUND(connp))
10471 				return (EACCES);
10472 			if (!checkonly) {
10473 				mutex_enter(&connp->conn_lock);
10474 				connp->conn_mac_exempt = onoff;
10475 				mutex_exit(&connp->conn_lock);
10476 			}
10477 			break;
10478 		case SO_EXCLBIND:
10479 			if (!checkonly)
10480 				tcp->tcp_exclbind = onoff;
10481 			break;
10482 		default:
10483 			*outlenp = 0;
10484 			return (EINVAL);
10485 		}
10486 		break;
10487 	case IPPROTO_TCP:
10488 		switch (name) {
10489 		case TCP_NODELAY:
10490 			if (!checkonly)
10491 				tcp->tcp_naglim = *i1 ? 1 : tcp->tcp_mss;
10492 			break;
10493 		case TCP_NOTIFY_THRESHOLD:
10494 			if (!checkonly)
10495 				tcp->tcp_first_timer_threshold = *i1;
10496 			break;
10497 		case TCP_ABORT_THRESHOLD:
10498 			if (!checkonly)
10499 				tcp->tcp_second_timer_threshold = *i1;
10500 			break;
10501 		case TCP_CONN_NOTIFY_THRESHOLD:
10502 			if (!checkonly)
10503 				tcp->tcp_first_ctimer_threshold = *i1;
10504 			break;
10505 		case TCP_CONN_ABORT_THRESHOLD:
10506 			if (!checkonly)
10507 				tcp->tcp_second_ctimer_threshold = *i1;
10508 			break;
10509 		case TCP_RECVDSTADDR:
10510 			if (tcp->tcp_state > TCPS_LISTEN)
10511 				return (EOPNOTSUPP);
10512 			if (!checkonly)
10513 				tcp->tcp_recvdstaddr = onoff;
10514 			break;
10515 		case TCP_ANONPRIVBIND:
10516 			if ((reterr = secpolicy_net_privaddr(cr, 0)) != 0) {
10517 				*outlenp = 0;
10518 				return (reterr);
10519 			}
10520 			if (!checkonly) {
10521 				tcp->tcp_anon_priv_bind = onoff;
10522 			}
10523 			break;
10524 		case TCP_EXCLBIND:
10525 			if (!checkonly)
10526 				tcp->tcp_exclbind = onoff;
10527 			break;	/* goto sizeof (int) option return */
10528 		case TCP_INIT_CWND: {
10529 			uint32_t init_cwnd = *((uint32_t *)invalp);
10530 
10531 			if (checkonly)
10532 				break;
10533 
10534 			/*
10535 			 * Only allow socket with network configuration
10536 			 * privilege to set the initial cwnd to be larger
10537 			 * than allowed by RFC 3390.
10538 			 */
10539 			if (init_cwnd <= MIN(4, MAX(2, 4380 / tcp->tcp_mss))) {
10540 				tcp->tcp_init_cwnd = init_cwnd;
10541 				break;
10542 			}
10543 			if ((reterr = secpolicy_ip_config(cr, B_TRUE)) != 0) {
10544 				*outlenp = 0;
10545 				return (reterr);
10546 			}
10547 			if (init_cwnd > TCP_MAX_INIT_CWND) {
10548 				*outlenp = 0;
10549 				return (EINVAL);
10550 			}
10551 			tcp->tcp_init_cwnd = init_cwnd;
10552 			break;
10553 		}
10554 		case TCP_KEEPALIVE_THRESHOLD:
10555 			if (checkonly)
10556 				break;
10557 
10558 			if (*i1 < tcps->tcps_keepalive_interval_low ||
10559 			    *i1 > tcps->tcps_keepalive_interval_high) {
10560 				*outlenp = 0;
10561 				return (EINVAL);
10562 			}
10563 			if (*i1 != tcp->tcp_ka_interval) {
10564 				tcp->tcp_ka_interval = *i1;
10565 				/*
10566 				 * Check if we need to restart the
10567 				 * keepalive timer.
10568 				 */
10569 				if (tcp->tcp_ka_tid != 0) {
10570 					ASSERT(tcp->tcp_ka_enabled);
10571 					(void) TCP_TIMER_CANCEL(tcp,
10572 					    tcp->tcp_ka_tid);
10573 					tcp->tcp_ka_last_intrvl = 0;
10574 					tcp->tcp_ka_tid = TCP_TIMER(tcp,
10575 					    tcp_keepalive_killer,
10576 					    MSEC_TO_TICK(tcp->tcp_ka_interval));
10577 				}
10578 			}
10579 			break;
10580 		case TCP_KEEPALIVE_ABORT_THRESHOLD:
10581 			if (!checkonly) {
10582 				if (*i1 <
10583 				    tcps->tcps_keepalive_abort_interval_low ||
10584 				    *i1 >
10585 				    tcps->tcps_keepalive_abort_interval_high) {
10586 					*outlenp = 0;
10587 					return (EINVAL);
10588 				}
10589 				tcp->tcp_ka_abort_thres = *i1;
10590 			}
10591 			break;
10592 		case TCP_CORK:
10593 			if (!checkonly) {
10594 				/*
10595 				 * if tcp->tcp_cork was set and is now
10596 				 * being unset, we have to make sure that
10597 				 * the remaining data gets sent out. Also
10598 				 * unset tcp->tcp_cork so that tcp_wput_data()
10599 				 * can send data even if it is less than mss
10600 				 */
10601 				if (tcp->tcp_cork && onoff == 0 &&
10602 				    tcp->tcp_unsent > 0) {
10603 					tcp->tcp_cork = B_FALSE;
10604 					tcp_wput_data(tcp, NULL, B_FALSE);
10605 				}
10606 				tcp->tcp_cork = onoff;
10607 			}
10608 			break;
10609 		default:
10610 			*outlenp = 0;
10611 			return (EINVAL);
10612 		}
10613 		break;
10614 	case IPPROTO_IP:
10615 		if (tcp->tcp_family != AF_INET) {
10616 			*outlenp = 0;
10617 			return (ENOPROTOOPT);
10618 		}
10619 		switch (name) {
10620 		case IP_OPTIONS:
10621 		case T_IP_OPTIONS:
10622 			reterr = tcp_opt_set_header(tcp, checkonly,
10623 			    invalp, inlen);
10624 			if (reterr) {
10625 				*outlenp = 0;
10626 				return (reterr);
10627 			}
10628 			/* OK return - copy input buffer into output buffer */
10629 			if (invalp != outvalp) {
10630 				/* don't trust bcopy for identical src/dst */
10631 				bcopy(invalp, outvalp, inlen);
10632 			}
10633 			*outlenp = inlen;
10634 			return (0);
10635 		case IP_TOS:
10636 		case T_IP_TOS:
10637 			if (!checkonly) {
10638 				tcp->tcp_ipha->ipha_type_of_service =
10639 				    (uchar_t)*i1;
10640 				tcp->tcp_tos = (uchar_t)*i1;
10641 			}
10642 			break;
10643 		case IP_TTL:
10644 			if (!checkonly) {
10645 				tcp->tcp_ipha->ipha_ttl = (uchar_t)*i1;
10646 				tcp->tcp_ttl = (uchar_t)*i1;
10647 			}
10648 			break;
10649 		case IP_BOUND_IF:
10650 		case IP_NEXTHOP:
10651 			/* Handled at the IP level */
10652 			return (-EINVAL);
10653 		case IP_SEC_OPT:
10654 			/*
10655 			 * We should not allow policy setting after
10656 			 * we start listening for connections.
10657 			 */
10658 			if (tcp->tcp_state == TCPS_LISTEN) {
10659 				return (EINVAL);
10660 			} else {
10661 				/* Handled at the IP level */
10662 				return (-EINVAL);
10663 			}
10664 		default:
10665 			*outlenp = 0;
10666 			return (EINVAL);
10667 		}
10668 		break;
10669 	case IPPROTO_IPV6: {
10670 		ip6_pkt_t		*ipp;
10671 
10672 		/*
10673 		 * IPPROTO_IPV6 options are only supported for sockets
10674 		 * that are using IPv6 on the wire.
10675 		 */
10676 		if (tcp->tcp_ipversion != IPV6_VERSION) {
10677 			*outlenp = 0;
10678 			return (ENOPROTOOPT);
10679 		}
10680 		/*
10681 		 * Only sticky options; no ancillary data
10682 		 */
10683 		ASSERT(thisdg_attrs == NULL);
10684 		ipp = &tcp->tcp_sticky_ipp;
10685 
10686 		switch (name) {
10687 		case IPV6_UNICAST_HOPS:
10688 			/* -1 means use default */
10689 			if (*i1 < -1 || *i1 > IPV6_MAX_HOPS) {
10690 				*outlenp = 0;
10691 				return (EINVAL);
10692 			}
10693 			if (!checkonly) {
10694 				if (*i1 == -1) {
10695 					tcp->tcp_ip6h->ip6_hops =
10696 					    ipp->ipp_unicast_hops =
10697 					    (uint8_t)tcps->tcps_ipv6_hoplimit;
10698 					ipp->ipp_fields &= ~IPPF_UNICAST_HOPS;
10699 					/* Pass modified value to IP. */
10700 					*i1 = tcp->tcp_ip6h->ip6_hops;
10701 				} else {
10702 					tcp->tcp_ip6h->ip6_hops =
10703 					    ipp->ipp_unicast_hops =
10704 					    (uint8_t)*i1;
10705 					ipp->ipp_fields |= IPPF_UNICAST_HOPS;
10706 				}
10707 				reterr = tcp_build_hdrs(q, tcp);
10708 				if (reterr != 0)
10709 					return (reterr);
10710 			}
10711 			break;
10712 		case IPV6_BOUND_IF:
10713 			if (!checkonly) {
10714 				int error = 0;
10715 
10716 				tcp->tcp_bound_if = *i1;
10717 				error = ip_opt_set_ill(tcp->tcp_connp, *i1,
10718 				    B_TRUE, checkonly, level, name, mblk);
10719 				if (error != 0) {
10720 					*outlenp = 0;
10721 					return (error);
10722 				}
10723 			}
10724 			break;
10725 		/*
10726 		 * Set boolean switches for ancillary data delivery
10727 		 */
10728 		case IPV6_RECVPKTINFO:
10729 			if (!checkonly) {
10730 				if (onoff)
10731 					tcp->tcp_ipv6_recvancillary |=
10732 					    TCP_IPV6_RECVPKTINFO;
10733 				else
10734 					tcp->tcp_ipv6_recvancillary &=
10735 					    ~TCP_IPV6_RECVPKTINFO;
10736 				/* Force it to be sent up with the next msg */
10737 				tcp->tcp_recvifindex = 0;
10738 			}
10739 			break;
10740 		case IPV6_RECVTCLASS:
10741 			if (!checkonly) {
10742 				if (onoff)
10743 					tcp->tcp_ipv6_recvancillary |=
10744 					    TCP_IPV6_RECVTCLASS;
10745 				else
10746 					tcp->tcp_ipv6_recvancillary &=
10747 					    ~TCP_IPV6_RECVTCLASS;
10748 			}
10749 			break;
10750 		case IPV6_RECVHOPLIMIT:
10751 			if (!checkonly) {
10752 				if (onoff)
10753 					tcp->tcp_ipv6_recvancillary |=
10754 					    TCP_IPV6_RECVHOPLIMIT;
10755 				else
10756 					tcp->tcp_ipv6_recvancillary &=
10757 					    ~TCP_IPV6_RECVHOPLIMIT;
10758 				/* Force it to be sent up with the next msg */
10759 				tcp->tcp_recvhops = 0xffffffffU;
10760 			}
10761 			break;
10762 		case IPV6_RECVHOPOPTS:
10763 			if (!checkonly) {
10764 				if (onoff)
10765 					tcp->tcp_ipv6_recvancillary |=
10766 					    TCP_IPV6_RECVHOPOPTS;
10767 				else
10768 					tcp->tcp_ipv6_recvancillary &=
10769 					    ~TCP_IPV6_RECVHOPOPTS;
10770 			}
10771 			break;
10772 		case IPV6_RECVDSTOPTS:
10773 			if (!checkonly) {
10774 				if (onoff)
10775 					tcp->tcp_ipv6_recvancillary |=
10776 					    TCP_IPV6_RECVDSTOPTS;
10777 				else
10778 					tcp->tcp_ipv6_recvancillary &=
10779 					    ~TCP_IPV6_RECVDSTOPTS;
10780 			}
10781 			break;
10782 		case _OLD_IPV6_RECVDSTOPTS:
10783 			if (!checkonly) {
10784 				if (onoff)
10785 					tcp->tcp_ipv6_recvancillary |=
10786 					    TCP_OLD_IPV6_RECVDSTOPTS;
10787 				else
10788 					tcp->tcp_ipv6_recvancillary &=
10789 					    ~TCP_OLD_IPV6_RECVDSTOPTS;
10790 			}
10791 			break;
10792 		case IPV6_RECVRTHDR:
10793 			if (!checkonly) {
10794 				if (onoff)
10795 					tcp->tcp_ipv6_recvancillary |=
10796 					    TCP_IPV6_RECVRTHDR;
10797 				else
10798 					tcp->tcp_ipv6_recvancillary &=
10799 					    ~TCP_IPV6_RECVRTHDR;
10800 			}
10801 			break;
10802 		case IPV6_RECVRTHDRDSTOPTS:
10803 			if (!checkonly) {
10804 				if (onoff)
10805 					tcp->tcp_ipv6_recvancillary |=
10806 					    TCP_IPV6_RECVRTDSTOPTS;
10807 				else
10808 					tcp->tcp_ipv6_recvancillary &=
10809 					    ~TCP_IPV6_RECVRTDSTOPTS;
10810 			}
10811 			break;
10812 		case IPV6_PKTINFO:
10813 			if (inlen != 0 && inlen != sizeof (struct in6_pktinfo))
10814 				return (EINVAL);
10815 			if (checkonly)
10816 				break;
10817 
10818 			if (inlen == 0) {
10819 				ipp->ipp_fields &= ~(IPPF_IFINDEX|IPPF_ADDR);
10820 			} else {
10821 				struct in6_pktinfo *pkti;
10822 
10823 				pkti = (struct in6_pktinfo *)invalp;
10824 				/*
10825 				 * RFC 3542 states that ipi6_addr must be
10826 				 * the unspecified address when setting the
10827 				 * IPV6_PKTINFO sticky socket option on a
10828 				 * TCP socket.
10829 				 */
10830 				if (!IN6_IS_ADDR_UNSPECIFIED(&pkti->ipi6_addr))
10831 					return (EINVAL);
10832 				/*
10833 				 * ip6_set_pktinfo() validates the source
10834 				 * address and interface index.
10835 				 */
10836 				reterr = ip6_set_pktinfo(cr, tcp->tcp_connp,
10837 				    pkti, mblk);
10838 				if (reterr != 0)
10839 					return (reterr);
10840 				ipp->ipp_ifindex = pkti->ipi6_ifindex;
10841 				ipp->ipp_addr = pkti->ipi6_addr;
10842 				if (ipp->ipp_ifindex != 0)
10843 					ipp->ipp_fields |= IPPF_IFINDEX;
10844 				else
10845 					ipp->ipp_fields &= ~IPPF_IFINDEX;
10846 				if (!IN6_IS_ADDR_UNSPECIFIED(&ipp->ipp_addr))
10847 					ipp->ipp_fields |= IPPF_ADDR;
10848 				else
10849 					ipp->ipp_fields &= ~IPPF_ADDR;
10850 			}
10851 			reterr = tcp_build_hdrs(q, tcp);
10852 			if (reterr != 0)
10853 				return (reterr);
10854 			break;
10855 		case IPV6_TCLASS:
10856 			if (inlen != 0 && inlen != sizeof (int))
10857 				return (EINVAL);
10858 			if (checkonly)
10859 				break;
10860 
10861 			if (inlen == 0) {
10862 				ipp->ipp_fields &= ~IPPF_TCLASS;
10863 			} else {
10864 				if (*i1 > 255 || *i1 < -1)
10865 					return (EINVAL);
10866 				if (*i1 == -1) {
10867 					ipp->ipp_tclass = 0;
10868 					*i1 = 0;
10869 				} else {
10870 					ipp->ipp_tclass = *i1;
10871 				}
10872 				ipp->ipp_fields |= IPPF_TCLASS;
10873 			}
10874 			reterr = tcp_build_hdrs(q, tcp);
10875 			if (reterr != 0)
10876 				return (reterr);
10877 			break;
10878 		case IPV6_NEXTHOP:
10879 			/*
10880 			 * IP will verify that the nexthop is reachable
10881 			 * and fail for sticky options.
10882 			 */
10883 			if (inlen != 0 && inlen != sizeof (sin6_t))
10884 				return (EINVAL);
10885 			if (checkonly)
10886 				break;
10887 
10888 			if (inlen == 0) {
10889 				ipp->ipp_fields &= ~IPPF_NEXTHOP;
10890 			} else {
10891 				sin6_t *sin6 = (sin6_t *)invalp;
10892 
10893 				if (sin6->sin6_family != AF_INET6)
10894 					return (EAFNOSUPPORT);
10895 				if (IN6_IS_ADDR_V4MAPPED(
10896 				    &sin6->sin6_addr))
10897 					return (EADDRNOTAVAIL);
10898 				ipp->ipp_nexthop = sin6->sin6_addr;
10899 				if (!IN6_IS_ADDR_UNSPECIFIED(
10900 				    &ipp->ipp_nexthop))
10901 					ipp->ipp_fields |= IPPF_NEXTHOP;
10902 				else
10903 					ipp->ipp_fields &= ~IPPF_NEXTHOP;
10904 			}
10905 			reterr = tcp_build_hdrs(q, tcp);
10906 			if (reterr != 0)
10907 				return (reterr);
10908 			break;
10909 		case IPV6_HOPOPTS: {
10910 			ip6_hbh_t *hopts = (ip6_hbh_t *)invalp;
10911 
10912 			/*
10913 			 * Sanity checks - minimum size, size a multiple of
10914 			 * eight bytes, and matching size passed in.
10915 			 */
10916 			if (inlen != 0 &&
10917 			    inlen != (8 * (hopts->ip6h_len + 1)))
10918 				return (EINVAL);
10919 
10920 			if (checkonly)
10921 				break;
10922 
10923 			reterr = optcom_pkt_set(invalp, inlen, B_TRUE,
10924 			    (uchar_t **)&ipp->ipp_hopopts,
10925 			    &ipp->ipp_hopoptslen, tcp->tcp_label_len);
10926 			if (reterr != 0)
10927 				return (reterr);
10928 			if (ipp->ipp_hopoptslen == 0)
10929 				ipp->ipp_fields &= ~IPPF_HOPOPTS;
10930 			else
10931 				ipp->ipp_fields |= IPPF_HOPOPTS;
10932 			reterr = tcp_build_hdrs(q, tcp);
10933 			if (reterr != 0)
10934 				return (reterr);
10935 			break;
10936 		}
10937 		case IPV6_RTHDRDSTOPTS: {
10938 			ip6_dest_t *dopts = (ip6_dest_t *)invalp;
10939 
10940 			/*
10941 			 * Sanity checks - minimum size, size a multiple of
10942 			 * eight bytes, and matching size passed in.
10943 			 */
10944 			if (inlen != 0 &&
10945 			    inlen != (8 * (dopts->ip6d_len + 1)))
10946 				return (EINVAL);
10947 
10948 			if (checkonly)
10949 				break;
10950 
10951 			reterr = optcom_pkt_set(invalp, inlen, B_TRUE,
10952 			    (uchar_t **)&ipp->ipp_rtdstopts,
10953 			    &ipp->ipp_rtdstoptslen, 0);
10954 			if (reterr != 0)
10955 				return (reterr);
10956 			if (ipp->ipp_rtdstoptslen == 0)
10957 				ipp->ipp_fields &= ~IPPF_RTDSTOPTS;
10958 			else
10959 				ipp->ipp_fields |= IPPF_RTDSTOPTS;
10960 			reterr = tcp_build_hdrs(q, tcp);
10961 			if (reterr != 0)
10962 				return (reterr);
10963 			break;
10964 		}
10965 		case IPV6_DSTOPTS: {
10966 			ip6_dest_t *dopts = (ip6_dest_t *)invalp;
10967 
10968 			/*
10969 			 * Sanity checks - minimum size, size a multiple of
10970 			 * eight bytes, and matching size passed in.
10971 			 */
10972 			if (inlen != 0 &&
10973 			    inlen != (8 * (dopts->ip6d_len + 1)))
10974 				return (EINVAL);
10975 
10976 			if (checkonly)
10977 				break;
10978 
10979 			reterr = optcom_pkt_set(invalp, inlen, B_TRUE,
10980 			    (uchar_t **)&ipp->ipp_dstopts,
10981 			    &ipp->ipp_dstoptslen, 0);
10982 			if (reterr != 0)
10983 				return (reterr);
10984 			if (ipp->ipp_dstoptslen == 0)
10985 				ipp->ipp_fields &= ~IPPF_DSTOPTS;
10986 			else
10987 				ipp->ipp_fields |= IPPF_DSTOPTS;
10988 			reterr = tcp_build_hdrs(q, tcp);
10989 			if (reterr != 0)
10990 				return (reterr);
10991 			break;
10992 		}
10993 		case IPV6_RTHDR: {
10994 			ip6_rthdr_t *rt = (ip6_rthdr_t *)invalp;
10995 
10996 			/*
10997 			 * Sanity checks - minimum size, size a multiple of
10998 			 * eight bytes, and matching size passed in.
10999 			 */
11000 			if (inlen != 0 &&
11001 			    inlen != (8 * (rt->ip6r_len + 1)))
11002 				return (EINVAL);
11003 
11004 			if (checkonly)
11005 				break;
11006 
11007 			reterr = optcom_pkt_set(invalp, inlen, B_TRUE,
11008 			    (uchar_t **)&ipp->ipp_rthdr,
11009 			    &ipp->ipp_rthdrlen, 0);
11010 			if (reterr != 0)
11011 				return (reterr);
11012 			if (ipp->ipp_rthdrlen == 0)
11013 				ipp->ipp_fields &= ~IPPF_RTHDR;
11014 			else
11015 				ipp->ipp_fields |= IPPF_RTHDR;
11016 			reterr = tcp_build_hdrs(q, tcp);
11017 			if (reterr != 0)
11018 				return (reterr);
11019 			break;
11020 		}
11021 		case IPV6_V6ONLY:
11022 			if (!checkonly)
11023 				tcp->tcp_connp->conn_ipv6_v6only = onoff;
11024 			break;
11025 		case IPV6_USE_MIN_MTU:
11026 			if (inlen != sizeof (int))
11027 				return (EINVAL);
11028 
11029 			if (*i1 < -1 || *i1 > 1)
11030 				return (EINVAL);
11031 
11032 			if (checkonly)
11033 				break;
11034 
11035 			ipp->ipp_fields |= IPPF_USE_MIN_MTU;
11036 			ipp->ipp_use_min_mtu = *i1;
11037 			break;
11038 		case IPV6_BOUND_PIF:
11039 			/* Handled at the IP level */
11040 			return (-EINVAL);
11041 		case IPV6_SEC_OPT:
11042 			/*
11043 			 * We should not allow policy setting after
11044 			 * we start listening for connections.
11045 			 */
11046 			if (tcp->tcp_state == TCPS_LISTEN) {
11047 				return (EINVAL);
11048 			} else {
11049 				/* Handled at the IP level */
11050 				return (-EINVAL);
11051 			}
11052 		case IPV6_SRC_PREFERENCES:
11053 			if (inlen != sizeof (uint32_t))
11054 				return (EINVAL);
11055 			reterr = ip6_set_src_preferences(tcp->tcp_connp,
11056 			    *(uint32_t *)invalp);
11057 			if (reterr != 0) {
11058 				*outlenp = 0;
11059 				return (reterr);
11060 			}
11061 			break;
11062 		default:
11063 			*outlenp = 0;
11064 			return (EINVAL);
11065 		}
11066 		break;
11067 	}		/* end IPPROTO_IPV6 */
11068 	default:
11069 		*outlenp = 0;
11070 		return (EINVAL);
11071 	}
11072 	/*
11073 	 * Common case of OK return with outval same as inval
11074 	 */
11075 	if (invalp != outvalp) {
11076 		/* don't trust bcopy for identical src/dst */
11077 		(void) bcopy(invalp, outvalp, inlen);
11078 	}
11079 	*outlenp = inlen;
11080 	return (0);
11081 }
11082 
11083 /*
11084  * Update tcp_sticky_hdrs based on tcp_sticky_ipp.
11085  * The headers include ip6i_t (if needed), ip6_t, any sticky extension
11086  * headers, and the maximum size tcp header (to avoid reallocation
11087  * on the fly for additional tcp options).
11088  * Returns failure if can't allocate memory.
11089  */
11090 static int
11091 tcp_build_hdrs(queue_t *q, tcp_t *tcp)
11092 {
11093 	char	*hdrs;
11094 	uint_t	hdrs_len;
11095 	ip6i_t	*ip6i;
11096 	char	buf[TCP_MAX_HDR_LENGTH];
11097 	ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp;
11098 	in6_addr_t src, dst;
11099 	tcp_stack_t	*tcps = tcp->tcp_tcps;
11100 
11101 	/*
11102 	 * save the existing tcp header and source/dest IP addresses
11103 	 */
11104 	bcopy(tcp->tcp_tcph, buf, tcp->tcp_tcp_hdr_len);
11105 	src = tcp->tcp_ip6h->ip6_src;
11106 	dst = tcp->tcp_ip6h->ip6_dst;
11107 	hdrs_len = ip_total_hdrs_len_v6(ipp) + TCP_MAX_HDR_LENGTH;
11108 	ASSERT(hdrs_len != 0);
11109 	if (hdrs_len > tcp->tcp_iphc_len) {
11110 		/* Need to reallocate */
11111 		hdrs = kmem_zalloc(hdrs_len, KM_NOSLEEP);
11112 		if (hdrs == NULL)
11113 			return (ENOMEM);
11114 		if (tcp->tcp_iphc != NULL) {
11115 			if (tcp->tcp_hdr_grown) {
11116 				kmem_free(tcp->tcp_iphc, tcp->tcp_iphc_len);
11117 			} else {
11118 				bzero(tcp->tcp_iphc, tcp->tcp_iphc_len);
11119 				kmem_cache_free(tcp_iphc_cache, tcp->tcp_iphc);
11120 			}
11121 			tcp->tcp_iphc_len = 0;
11122 		}
11123 		ASSERT(tcp->tcp_iphc_len == 0);
11124 		tcp->tcp_iphc = hdrs;
11125 		tcp->tcp_iphc_len = hdrs_len;
11126 		tcp->tcp_hdr_grown = B_TRUE;
11127 	}
11128 	ip_build_hdrs_v6((uchar_t *)tcp->tcp_iphc,
11129 	    hdrs_len - TCP_MAX_HDR_LENGTH, ipp, IPPROTO_TCP);
11130 
11131 	/* Set header fields not in ipp */
11132 	if (ipp->ipp_fields & IPPF_HAS_IP6I) {
11133 		ip6i = (ip6i_t *)tcp->tcp_iphc;
11134 		tcp->tcp_ip6h = (ip6_t *)&ip6i[1];
11135 	} else {
11136 		tcp->tcp_ip6h = (ip6_t *)tcp->tcp_iphc;
11137 	}
11138 	/*
11139 	 * tcp->tcp_ip_hdr_len will include ip6i_t if there is one.
11140 	 *
11141 	 * tcp->tcp_tcp_hdr_len doesn't change here.
11142 	 */
11143 	tcp->tcp_ip_hdr_len = hdrs_len - TCP_MAX_HDR_LENGTH;
11144 	tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + tcp->tcp_ip_hdr_len);
11145 	tcp->tcp_hdr_len = tcp->tcp_ip_hdr_len + tcp->tcp_tcp_hdr_len;
11146 
11147 	bcopy(buf, tcp->tcp_tcph, tcp->tcp_tcp_hdr_len);
11148 
11149 	tcp->tcp_ip6h->ip6_src = src;
11150 	tcp->tcp_ip6h->ip6_dst = dst;
11151 
11152 	/*
11153 	 * If the hop limit was not set by ip_build_hdrs_v6(), set it to
11154 	 * the default value for TCP.
11155 	 */
11156 	if (!(ipp->ipp_fields & IPPF_UNICAST_HOPS))
11157 		tcp->tcp_ip6h->ip6_hops = tcps->tcps_ipv6_hoplimit;
11158 
11159 	/*
11160 	 * If we're setting extension headers after a connection
11161 	 * has been established, and if we have a routing header
11162 	 * among the extension headers, call ip_massage_options_v6 to
11163 	 * manipulate the routing header/ip6_dst set the checksum
11164 	 * difference in the tcp header template.
11165 	 * (This happens in tcp_connect_ipv6 if the routing header
11166 	 * is set prior to the connect.)
11167 	 * Set the tcp_sum to zero first in case we've cleared a
11168 	 * routing header or don't have one at all.
11169 	 */
11170 	tcp->tcp_sum = 0;
11171 	if ((tcp->tcp_state >= TCPS_SYN_SENT) &&
11172 	    (tcp->tcp_ipp_fields & IPPF_RTHDR)) {
11173 		ip6_rthdr_t *rth = ip_find_rthdr_v6(tcp->tcp_ip6h,
11174 		    (uint8_t *)tcp->tcp_tcph);
11175 		if (rth != NULL) {
11176 			tcp->tcp_sum = ip_massage_options_v6(tcp->tcp_ip6h,
11177 			    rth, tcps->tcps_netstack);
11178 			tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) +
11179 			    (tcp->tcp_sum >> 16));
11180 		}
11181 	}
11182 
11183 	/* Try to get everything in a single mblk */
11184 	(void) mi_set_sth_wroff(RD(q), hdrs_len + tcps->tcps_wroff_xtra);
11185 	return (0);
11186 }
11187 
11188 /*
11189  * Transfer any source route option from ipha to buf/dst in reversed form.
11190  */
11191 static int
11192 tcp_opt_rev_src_route(ipha_t *ipha, char *buf, uchar_t *dst)
11193 {
11194 	ipoptp_t	opts;
11195 	uchar_t		*opt;
11196 	uint8_t		optval;
11197 	uint8_t		optlen;
11198 	uint32_t	len = 0;
11199 
11200 	for (optval = ipoptp_first(&opts, ipha);
11201 	    optval != IPOPT_EOL;
11202 	    optval = ipoptp_next(&opts)) {
11203 		opt = opts.ipoptp_cur;
11204 		optlen = opts.ipoptp_len;
11205 		switch (optval) {
11206 			int	off1, off2;
11207 		case IPOPT_SSRR:
11208 		case IPOPT_LSRR:
11209 
11210 			/* Reverse source route */
11211 			/*
11212 			 * First entry should be the next to last one in the
11213 			 * current source route (the last entry is our
11214 			 * address.)
11215 			 * The last entry should be the final destination.
11216 			 */
11217 			buf[IPOPT_OPTVAL] = (uint8_t)optval;
11218 			buf[IPOPT_OLEN] = (uint8_t)optlen;
11219 			off1 = IPOPT_MINOFF_SR - 1;
11220 			off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1;
11221 			if (off2 < 0) {
11222 				/* No entries in source route */
11223 				break;
11224 			}
11225 			bcopy(opt + off2, dst, IP_ADDR_LEN);
11226 			/*
11227 			 * Note: use src since ipha has not had its src
11228 			 * and dst reversed (it is in the state it was
11229 			 * received.
11230 			 */
11231 			bcopy(&ipha->ipha_src, buf + off2,
11232 			    IP_ADDR_LEN);
11233 			off2 -= IP_ADDR_LEN;
11234 
11235 			while (off2 > 0) {
11236 				bcopy(opt + off2, buf + off1,
11237 				    IP_ADDR_LEN);
11238 				off1 += IP_ADDR_LEN;
11239 				off2 -= IP_ADDR_LEN;
11240 			}
11241 			buf[IPOPT_OFFSET] = IPOPT_MINOFF_SR;
11242 			buf += optlen;
11243 			len += optlen;
11244 			break;
11245 		}
11246 	}
11247 done:
11248 	/* Pad the resulting options */
11249 	while (len & 0x3) {
11250 		*buf++ = IPOPT_EOL;
11251 		len++;
11252 	}
11253 	return (len);
11254 }
11255 
11256 
11257 /*
11258  * Extract and revert a source route from ipha (if any)
11259  * and then update the relevant fields in both tcp_t and the standard header.
11260  */
11261 static void
11262 tcp_opt_reverse(tcp_t *tcp, ipha_t *ipha)
11263 {
11264 	char	buf[TCP_MAX_HDR_LENGTH];
11265 	uint_t	tcph_len;
11266 	int	len;
11267 
11268 	ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION);
11269 	len = IPH_HDR_LENGTH(ipha);
11270 	if (len == IP_SIMPLE_HDR_LENGTH)
11271 		/* Nothing to do */
11272 		return;
11273 	if (len > IP_SIMPLE_HDR_LENGTH + TCP_MAX_IP_OPTIONS_LENGTH ||
11274 	    (len & 0x3))
11275 		return;
11276 
11277 	tcph_len = tcp->tcp_tcp_hdr_len;
11278 	bcopy(tcp->tcp_tcph, buf, tcph_len);
11279 	tcp->tcp_sum = (tcp->tcp_ipha->ipha_dst >> 16) +
11280 	    (tcp->tcp_ipha->ipha_dst & 0xffff);
11281 	len = tcp_opt_rev_src_route(ipha, (char *)tcp->tcp_ipha +
11282 	    IP_SIMPLE_HDR_LENGTH, (uchar_t *)&tcp->tcp_ipha->ipha_dst);
11283 	len += IP_SIMPLE_HDR_LENGTH;
11284 	tcp->tcp_sum -= ((tcp->tcp_ipha->ipha_dst >> 16) +
11285 	    (tcp->tcp_ipha->ipha_dst & 0xffff));
11286 	if ((int)tcp->tcp_sum < 0)
11287 		tcp->tcp_sum--;
11288 	tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16);
11289 	tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16));
11290 	tcp->tcp_tcph = (tcph_t *)((char *)tcp->tcp_ipha + len);
11291 	bcopy(buf, tcp->tcp_tcph, tcph_len);
11292 	tcp->tcp_ip_hdr_len = len;
11293 	tcp->tcp_ipha->ipha_version_and_hdr_length =
11294 	    (IP_VERSION << 4) | (len >> 2);
11295 	len += tcph_len;
11296 	tcp->tcp_hdr_len = len;
11297 }
11298 
11299 /*
11300  * Copy the standard header into its new location,
11301  * lay in the new options and then update the relevant
11302  * fields in both tcp_t and the standard header.
11303  */
11304 static int
11305 tcp_opt_set_header(tcp_t *tcp, boolean_t checkonly, uchar_t *ptr, uint_t len)
11306 {
11307 	uint_t	tcph_len;
11308 	uint8_t	*ip_optp;
11309 	tcph_t	*new_tcph;
11310 	tcp_stack_t	*tcps = tcp->tcp_tcps;
11311 
11312 	if ((len > TCP_MAX_IP_OPTIONS_LENGTH) || (len & 0x3))
11313 		return (EINVAL);
11314 
11315 	if (len > IP_MAX_OPT_LENGTH - tcp->tcp_label_len)
11316 		return (EINVAL);
11317 
11318 	if (checkonly) {
11319 		/*
11320 		 * do not really set, just pretend to - T_CHECK
11321 		 */
11322 		return (0);
11323 	}
11324 
11325 	ip_optp = (uint8_t *)tcp->tcp_ipha + IP_SIMPLE_HDR_LENGTH;
11326 	if (tcp->tcp_label_len > 0) {
11327 		int padlen;
11328 		uint8_t opt;
11329 
11330 		/* convert list termination to no-ops */
11331 		padlen = tcp->tcp_label_len - ip_optp[IPOPT_OLEN];
11332 		ip_optp += ip_optp[IPOPT_OLEN];
11333 		opt = len > 0 ? IPOPT_NOP : IPOPT_EOL;
11334 		while (--padlen >= 0)
11335 			*ip_optp++ = opt;
11336 	}
11337 	tcph_len = tcp->tcp_tcp_hdr_len;
11338 	new_tcph = (tcph_t *)(ip_optp + len);
11339 	ovbcopy(tcp->tcp_tcph, new_tcph, tcph_len);
11340 	tcp->tcp_tcph = new_tcph;
11341 	bcopy(ptr, ip_optp, len);
11342 
11343 	len += IP_SIMPLE_HDR_LENGTH + tcp->tcp_label_len;
11344 
11345 	tcp->tcp_ip_hdr_len = len;
11346 	tcp->tcp_ipha->ipha_version_and_hdr_length =
11347 	    (IP_VERSION << 4) | (len >> 2);
11348 	tcp->tcp_hdr_len = len + tcph_len;
11349 	if (!TCP_IS_DETACHED(tcp)) {
11350 		/* Always allocate room for all options. */
11351 		(void) mi_set_sth_wroff(tcp->tcp_rq,
11352 		    TCP_MAX_COMBINED_HEADER_LENGTH + tcps->tcps_wroff_xtra);
11353 	}
11354 	return (0);
11355 }
11356 
11357 /* Get callback routine passed to nd_load by tcp_param_register */
11358 /* ARGSUSED */
11359 static int
11360 tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
11361 {
11362 	tcpparam_t	*tcppa = (tcpparam_t *)cp;
11363 
11364 	(void) mi_mpprintf(mp, "%u", tcppa->tcp_param_val);
11365 	return (0);
11366 }
11367 
11368 /*
11369  * Walk through the param array specified registering each element with the
11370  * named dispatch handler.
11371  */
11372 static boolean_t
11373 tcp_param_register(IDP *ndp, tcpparam_t *tcppa, int cnt, tcp_stack_t *tcps)
11374 {
11375 	for (; cnt-- > 0; tcppa++) {
11376 		if (tcppa->tcp_param_name && tcppa->tcp_param_name[0]) {
11377 			if (!nd_load(ndp, tcppa->tcp_param_name,
11378 			    tcp_param_get, tcp_param_set,
11379 			    (caddr_t)tcppa)) {
11380 				nd_free(ndp);
11381 				return (B_FALSE);
11382 			}
11383 		}
11384 	}
11385 	tcps->tcps_wroff_xtra_param = kmem_zalloc(sizeof (tcpparam_t),
11386 	    KM_SLEEP);
11387 	bcopy(&lcl_tcp_wroff_xtra_param, tcps->tcps_wroff_xtra_param,
11388 	    sizeof (tcpparam_t));
11389 	if (!nd_load(ndp, tcps->tcps_wroff_xtra_param->tcp_param_name,
11390 	    tcp_param_get, tcp_param_set_aligned,
11391 	    (caddr_t)tcps->tcps_wroff_xtra_param)) {
11392 		nd_free(ndp);
11393 		return (B_FALSE);
11394 	}
11395 	tcps->tcps_mdt_head_param = kmem_zalloc(sizeof (tcpparam_t),
11396 	    KM_SLEEP);
11397 	bcopy(&lcl_tcp_mdt_head_param, tcps->tcps_mdt_head_param,
11398 	    sizeof (tcpparam_t));
11399 	if (!nd_load(ndp, tcps->tcps_mdt_head_param->tcp_param_name,
11400 	    tcp_param_get, tcp_param_set_aligned,
11401 	    (caddr_t)tcps->tcps_mdt_head_param)) {
11402 		nd_free(ndp);
11403 		return (B_FALSE);
11404 	}
11405 	tcps->tcps_mdt_tail_param = kmem_zalloc(sizeof (tcpparam_t),
11406 	    KM_SLEEP);
11407 	bcopy(&lcl_tcp_mdt_tail_param, tcps->tcps_mdt_tail_param,
11408 	    sizeof (tcpparam_t));
11409 	if (!nd_load(ndp, tcps->tcps_mdt_tail_param->tcp_param_name,
11410 	    tcp_param_get, tcp_param_set_aligned,
11411 	    (caddr_t)tcps->tcps_mdt_tail_param)) {
11412 		nd_free(ndp);
11413 		return (B_FALSE);
11414 	}
11415 	tcps->tcps_mdt_max_pbufs_param = kmem_zalloc(sizeof (tcpparam_t),
11416 	    KM_SLEEP);
11417 	bcopy(&lcl_tcp_mdt_max_pbufs_param, tcps->tcps_mdt_max_pbufs_param,
11418 	    sizeof (tcpparam_t));
11419 	if (!nd_load(ndp, tcps->tcps_mdt_max_pbufs_param->tcp_param_name,
11420 	    tcp_param_get, tcp_param_set_aligned,
11421 	    (caddr_t)tcps->tcps_mdt_max_pbufs_param)) {
11422 		nd_free(ndp);
11423 		return (B_FALSE);
11424 	}
11425 	if (!nd_load(ndp, "tcp_extra_priv_ports",
11426 	    tcp_extra_priv_ports_get, NULL, NULL)) {
11427 		nd_free(ndp);
11428 		return (B_FALSE);
11429 	}
11430 	if (!nd_load(ndp, "tcp_extra_priv_ports_add",
11431 	    NULL, tcp_extra_priv_ports_add, NULL)) {
11432 		nd_free(ndp);
11433 		return (B_FALSE);
11434 	}
11435 	if (!nd_load(ndp, "tcp_extra_priv_ports_del",
11436 	    NULL, tcp_extra_priv_ports_del, NULL)) {
11437 		nd_free(ndp);
11438 		return (B_FALSE);
11439 	}
11440 	if (!nd_load(ndp, "tcp_status", tcp_status_report, NULL,
11441 	    NULL)) {
11442 		nd_free(ndp);
11443 		return (B_FALSE);
11444 	}
11445 	if (!nd_load(ndp, "tcp_bind_hash", tcp_bind_hash_report,
11446 	    NULL, NULL)) {
11447 		nd_free(ndp);
11448 		return (B_FALSE);
11449 	}
11450 	if (!nd_load(ndp, "tcp_listen_hash",
11451 	    tcp_listen_hash_report, NULL, NULL)) {
11452 		nd_free(ndp);
11453 		return (B_FALSE);
11454 	}
11455 	if (!nd_load(ndp, "tcp_conn_hash", tcp_conn_hash_report,
11456 	    NULL, NULL)) {
11457 		nd_free(ndp);
11458 		return (B_FALSE);
11459 	}
11460 	if (!nd_load(ndp, "tcp_acceptor_hash",
11461 	    tcp_acceptor_hash_report, NULL, NULL)) {
11462 		nd_free(ndp);
11463 		return (B_FALSE);
11464 	}
11465 	if (!nd_load(ndp, "tcp_host_param", tcp_host_param_report,
11466 	    tcp_host_param_set, NULL)) {
11467 		nd_free(ndp);
11468 		return (B_FALSE);
11469 	}
11470 	if (!nd_load(ndp, "tcp_host_param_ipv6",
11471 	    tcp_host_param_report, tcp_host_param_set_ipv6, NULL)) {
11472 		nd_free(ndp);
11473 		return (B_FALSE);
11474 	}
11475 	if (!nd_load(ndp, "tcp_1948_phrase", NULL,
11476 	    tcp_1948_phrase_set, NULL)) {
11477 		nd_free(ndp);
11478 		return (B_FALSE);
11479 	}
11480 	if (!nd_load(ndp, "tcp_reserved_port_list",
11481 	    tcp_reserved_port_list, NULL, NULL)) {
11482 		nd_free(ndp);
11483 		return (B_FALSE);
11484 	}
11485 	/*
11486 	 * Dummy ndd variables - only to convey obsolescence information
11487 	 * through printing of their name (no get or set routines)
11488 	 * XXX Remove in future releases ?
11489 	 */
11490 	if (!nd_load(ndp,
11491 	    "tcp_close_wait_interval(obsoleted - "
11492 	    "use tcp_time_wait_interval)", NULL, NULL, NULL)) {
11493 		nd_free(ndp);
11494 		return (B_FALSE);
11495 	}
11496 	return (B_TRUE);
11497 }
11498 
11499 /* ndd set routine for tcp_wroff_xtra, tcp_mdt_hdr_{head,tail}_min. */
11500 /* ARGSUSED */
11501 static int
11502 tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
11503     cred_t *cr)
11504 {
11505 	long new_value;
11506 	tcpparam_t *tcppa = (tcpparam_t *)cp;
11507 
11508 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
11509 	    new_value < tcppa->tcp_param_min ||
11510 	    new_value > tcppa->tcp_param_max) {
11511 		return (EINVAL);
11512 	}
11513 	/*
11514 	 * Need to make sure new_value is a multiple of 4.  If it is not,
11515 	 * round it up.  For future 64 bit requirement, we actually make it
11516 	 * a multiple of 8.
11517 	 */
11518 	if (new_value & 0x7) {
11519 		new_value = (new_value & ~0x7) + 0x8;
11520 	}
11521 	tcppa->tcp_param_val = new_value;
11522 	return (0);
11523 }
11524 
11525 /* Set callback routine passed to nd_load by tcp_param_register */
11526 /* ARGSUSED */
11527 static int
11528 tcp_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr)
11529 {
11530 	long	new_value;
11531 	tcpparam_t	*tcppa = (tcpparam_t *)cp;
11532 
11533 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
11534 	    new_value < tcppa->tcp_param_min ||
11535 	    new_value > tcppa->tcp_param_max) {
11536 		return (EINVAL);
11537 	}
11538 	tcppa->tcp_param_val = new_value;
11539 	return (0);
11540 }
11541 
11542 /*
11543  * Add a new piece to the tcp reassembly queue.  If the gap at the beginning
11544  * is filled, return as much as we can.  The message passed in may be
11545  * multi-part, chained using b_cont.  "start" is the starting sequence
11546  * number for this piece.
11547  */
11548 static mblk_t *
11549 tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start)
11550 {
11551 	uint32_t	end;
11552 	mblk_t		*mp1;
11553 	mblk_t		*mp2;
11554 	mblk_t		*next_mp;
11555 	uint32_t	u1;
11556 	tcp_stack_t	*tcps = tcp->tcp_tcps;
11557 
11558 	/* Walk through all the new pieces. */
11559 	do {
11560 		ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
11561 		    (uintptr_t)INT_MAX);
11562 		end = start + (int)(mp->b_wptr - mp->b_rptr);
11563 		next_mp = mp->b_cont;
11564 		if (start == end) {
11565 			/* Empty.  Blast it. */
11566 			freeb(mp);
11567 			continue;
11568 		}
11569 		mp->b_cont = NULL;
11570 		TCP_REASS_SET_SEQ(mp, start);
11571 		TCP_REASS_SET_END(mp, end);
11572 		mp1 = tcp->tcp_reass_tail;
11573 		if (!mp1) {
11574 			tcp->tcp_reass_tail = mp;
11575 			tcp->tcp_reass_head = mp;
11576 			BUMP_MIB(&tcps->tcps_mib, tcpInDataUnorderSegs);
11577 			UPDATE_MIB(&tcps->tcps_mib,
11578 			    tcpInDataUnorderBytes, end - start);
11579 			continue;
11580 		}
11581 		/* New stuff completely beyond tail? */
11582 		if (SEQ_GEQ(start, TCP_REASS_END(mp1))) {
11583 			/* Link it on end. */
11584 			mp1->b_cont = mp;
11585 			tcp->tcp_reass_tail = mp;
11586 			BUMP_MIB(&tcps->tcps_mib, tcpInDataUnorderSegs);
11587 			UPDATE_MIB(&tcps->tcps_mib,
11588 			    tcpInDataUnorderBytes, end - start);
11589 			continue;
11590 		}
11591 		mp1 = tcp->tcp_reass_head;
11592 		u1 = TCP_REASS_SEQ(mp1);
11593 		/* New stuff at the front? */
11594 		if (SEQ_LT(start, u1)) {
11595 			/* Yes... Check for overlap. */
11596 			mp->b_cont = mp1;
11597 			tcp->tcp_reass_head = mp;
11598 			tcp_reass_elim_overlap(tcp, mp);
11599 			continue;
11600 		}
11601 		/*
11602 		 * The new piece fits somewhere between the head and tail.
11603 		 * We find our slot, where mp1 precedes us and mp2 trails.
11604 		 */
11605 		for (; (mp2 = mp1->b_cont) != NULL; mp1 = mp2) {
11606 			u1 = TCP_REASS_SEQ(mp2);
11607 			if (SEQ_LEQ(start, u1))
11608 				break;
11609 		}
11610 		/* Link ourselves in */
11611 		mp->b_cont = mp2;
11612 		mp1->b_cont = mp;
11613 
11614 		/* Trim overlap with following mblk(s) first */
11615 		tcp_reass_elim_overlap(tcp, mp);
11616 
11617 		/* Trim overlap with preceding mblk */
11618 		tcp_reass_elim_overlap(tcp, mp1);
11619 
11620 	} while (start = end, mp = next_mp);
11621 	mp1 = tcp->tcp_reass_head;
11622 	/* Anything ready to go? */
11623 	if (TCP_REASS_SEQ(mp1) != tcp->tcp_rnxt)
11624 		return (NULL);
11625 	/* Eat what we can off the queue */
11626 	for (;;) {
11627 		mp = mp1->b_cont;
11628 		end = TCP_REASS_END(mp1);
11629 		TCP_REASS_SET_SEQ(mp1, 0);
11630 		TCP_REASS_SET_END(mp1, 0);
11631 		if (!mp) {
11632 			tcp->tcp_reass_tail = NULL;
11633 			break;
11634 		}
11635 		if (end != TCP_REASS_SEQ(mp)) {
11636 			mp1->b_cont = NULL;
11637 			break;
11638 		}
11639 		mp1 = mp;
11640 	}
11641 	mp1 = tcp->tcp_reass_head;
11642 	tcp->tcp_reass_head = mp;
11643 	return (mp1);
11644 }
11645 
11646 /* Eliminate any overlap that mp may have over later mblks */
11647 static void
11648 tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp)
11649 {
11650 	uint32_t	end;
11651 	mblk_t		*mp1;
11652 	uint32_t	u1;
11653 	tcp_stack_t	*tcps = tcp->tcp_tcps;
11654 
11655 	end = TCP_REASS_END(mp);
11656 	while ((mp1 = mp->b_cont) != NULL) {
11657 		u1 = TCP_REASS_SEQ(mp1);
11658 		if (!SEQ_GT(end, u1))
11659 			break;
11660 		if (!SEQ_GEQ(end, TCP_REASS_END(mp1))) {
11661 			mp->b_wptr -= end - u1;
11662 			TCP_REASS_SET_END(mp, u1);
11663 			BUMP_MIB(&tcps->tcps_mib, tcpInDataPartDupSegs);
11664 			UPDATE_MIB(&tcps->tcps_mib,
11665 			    tcpInDataPartDupBytes, end - u1);
11666 			break;
11667 		}
11668 		mp->b_cont = mp1->b_cont;
11669 		TCP_REASS_SET_SEQ(mp1, 0);
11670 		TCP_REASS_SET_END(mp1, 0);
11671 		freeb(mp1);
11672 		BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs);
11673 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes, end - u1);
11674 	}
11675 	if (!mp1)
11676 		tcp->tcp_reass_tail = mp;
11677 }
11678 
11679 /*
11680  * Send up all messages queued on tcp_rcv_list.
11681  */
11682 static uint_t
11683 tcp_rcv_drain(queue_t *q, tcp_t *tcp)
11684 {
11685 	mblk_t *mp;
11686 	uint_t ret = 0;
11687 	uint_t thwin;
11688 #ifdef DEBUG
11689 	uint_t cnt = 0;
11690 #endif
11691 	tcp_stack_t	*tcps = tcp->tcp_tcps;
11692 
11693 	/* Can't drain on an eager connection */
11694 	if (tcp->tcp_listener != NULL)
11695 		return (ret);
11696 
11697 	/*
11698 	 * Handle two cases here: we are currently fused or we were
11699 	 * previously fused and have some urgent data to be delivered
11700 	 * upstream.  The latter happens because we either ran out of
11701 	 * memory or were detached and therefore sending the SIGURG was
11702 	 * deferred until this point.  In either case we pass control
11703 	 * over to tcp_fuse_rcv_drain() since it may need to complete
11704 	 * some work.
11705 	 */
11706 	if ((tcp->tcp_fused || tcp->tcp_fused_sigurg)) {
11707 		ASSERT(tcp->tcp_fused_sigurg_mp != NULL);
11708 		if (tcp_fuse_rcv_drain(q, tcp, tcp->tcp_fused ? NULL :
11709 		    &tcp->tcp_fused_sigurg_mp))
11710 			return (ret);
11711 	}
11712 
11713 	while ((mp = tcp->tcp_rcv_list) != NULL) {
11714 		tcp->tcp_rcv_list = mp->b_next;
11715 		mp->b_next = NULL;
11716 #ifdef DEBUG
11717 		cnt += msgdsize(mp);
11718 #endif
11719 		/* Does this need SSL processing first? */
11720 		if ((tcp->tcp_kssl_ctx != NULL) && (DB_TYPE(mp) == M_DATA)) {
11721 			DTRACE_PROBE1(kssl_mblk__ksslinput_rcvdrain,
11722 			    mblk_t *, mp);
11723 			tcp_kssl_input(tcp, mp);
11724 			continue;
11725 		}
11726 		putnext(q, mp);
11727 	}
11728 	ASSERT(cnt == tcp->tcp_rcv_cnt);
11729 	tcp->tcp_rcv_last_head = NULL;
11730 	tcp->tcp_rcv_last_tail = NULL;
11731 	tcp->tcp_rcv_cnt = 0;
11732 
11733 	/* Learn the latest rwnd information that we sent to the other side. */
11734 	thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win))
11735 	    << tcp->tcp_rcv_ws;
11736 	/* This is peer's calculated send window (our receive window). */
11737 	thwin -= tcp->tcp_rnxt - tcp->tcp_rack;
11738 	/*
11739 	 * Increase the receive window to max.  But we need to do receiver
11740 	 * SWS avoidance.  This means that we need to check the increase of
11741 	 * of receive window is at least 1 MSS.
11742 	 */
11743 	if (canputnext(q) && (q->q_hiwat - thwin >= tcp->tcp_mss)) {
11744 		/*
11745 		 * If the window that the other side knows is less than max
11746 		 * deferred acks segments, send an update immediately.
11747 		 */
11748 		if (thwin < tcp->tcp_rack_cur_max * tcp->tcp_mss) {
11749 			BUMP_MIB(&tcps->tcps_mib, tcpOutWinUpdate);
11750 			ret = TH_ACK_NEEDED;
11751 		}
11752 		tcp->tcp_rwnd = q->q_hiwat;
11753 	}
11754 	/* No need for the push timer now. */
11755 	if (tcp->tcp_push_tid != 0) {
11756 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid);
11757 		tcp->tcp_push_tid = 0;
11758 	}
11759 	return (ret);
11760 }
11761 
11762 /*
11763  * Queue data on tcp_rcv_list which is a b_next chain.
11764  * tcp_rcv_last_head/tail is the last element of this chain.
11765  * Each element of the chain is a b_cont chain.
11766  *
11767  * M_DATA messages are added to the current element.
11768  * Other messages are added as new (b_next) elements.
11769  */
11770 void
11771 tcp_rcv_enqueue(tcp_t *tcp, mblk_t *mp, uint_t seg_len)
11772 {
11773 	ASSERT(seg_len == msgdsize(mp));
11774 	ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_rcv_last_head != NULL);
11775 
11776 	if (tcp->tcp_rcv_list == NULL) {
11777 		ASSERT(tcp->tcp_rcv_last_head == NULL);
11778 		tcp->tcp_rcv_list = mp;
11779 		tcp->tcp_rcv_last_head = mp;
11780 	} else if (DB_TYPE(mp) == DB_TYPE(tcp->tcp_rcv_last_head)) {
11781 		tcp->tcp_rcv_last_tail->b_cont = mp;
11782 	} else {
11783 		tcp->tcp_rcv_last_head->b_next = mp;
11784 		tcp->tcp_rcv_last_head = mp;
11785 	}
11786 
11787 	while (mp->b_cont)
11788 		mp = mp->b_cont;
11789 
11790 	tcp->tcp_rcv_last_tail = mp;
11791 	tcp->tcp_rcv_cnt += seg_len;
11792 	tcp->tcp_rwnd -= seg_len;
11793 }
11794 
11795 /*
11796  * DEFAULT TCP ENTRY POINT via squeue on READ side.
11797  *
11798  * This is the default entry function into TCP on the read side. TCP is
11799  * always entered via squeue i.e. using squeue's for mutual exclusion.
11800  * When classifier does a lookup to find the tcp, it also puts a reference
11801  * on the conn structure associated so the tcp is guaranteed to exist
11802  * when we come here. We still need to check the state because it might
11803  * as well has been closed. The squeue processing function i.e. squeue_enter,
11804  * squeue_enter_nodrain, or squeue_drain is responsible for doing the
11805  * CONN_DEC_REF.
11806  *
11807  * Apart from the default entry point, IP also sends packets directly to
11808  * tcp_rput_data for AF_INET fast path and tcp_conn_request for incoming
11809  * connections.
11810  */
11811 void
11812 tcp_input(void *arg, mblk_t *mp, void *arg2)
11813 {
11814 	conn_t	*connp = (conn_t *)arg;
11815 	tcp_t	*tcp = (tcp_t *)connp->conn_tcp;
11816 
11817 	/* arg2 is the sqp */
11818 	ASSERT(arg2 != NULL);
11819 	ASSERT(mp != NULL);
11820 
11821 	/*
11822 	 * Don't accept any input on a closed tcp as this TCP logically does
11823 	 * not exist on the system. Don't proceed further with this TCP.
11824 	 * For eg. this packet could trigger another close of this tcp
11825 	 * which would be disastrous for tcp_refcnt. tcp_close_detached /
11826 	 * tcp_clean_death / tcp_closei_local must be called at most once
11827 	 * on a TCP. In this case we need to refeed the packet into the
11828 	 * classifier and figure out where the packet should go. Need to
11829 	 * preserve the recv_ill somehow. Until we figure that out, for
11830 	 * now just drop the packet if we can't classify the packet.
11831 	 */
11832 	if (tcp->tcp_state == TCPS_CLOSED ||
11833 	    tcp->tcp_state == TCPS_BOUND) {
11834 		conn_t	*new_connp;
11835 		ip_stack_t *ipst = tcp->tcp_tcps->tcps_netstack->netstack_ip;
11836 
11837 		new_connp = ipcl_classify(mp, connp->conn_zoneid, ipst);
11838 		if (new_connp != NULL) {
11839 			tcp_reinput(new_connp, mp, arg2);
11840 			return;
11841 		}
11842 		/* We failed to classify. For now just drop the packet */
11843 		freemsg(mp);
11844 		return;
11845 	}
11846 
11847 	if (DB_TYPE(mp) == M_DATA)
11848 		tcp_rput_data(connp, mp, arg2);
11849 	else
11850 		tcp_rput_common(tcp, mp);
11851 }
11852 
11853 /*
11854  * The read side put procedure.
11855  * The packets passed up by ip are assume to be aligned according to
11856  * OK_32PTR and the IP+TCP headers fitting in the first mblk.
11857  */
11858 static void
11859 tcp_rput_common(tcp_t *tcp, mblk_t *mp)
11860 {
11861 	/*
11862 	 * tcp_rput_data() does not expect M_CTL except for the case
11863 	 * where tcp_ipv6_recvancillary is set and we get a IN_PKTINFO
11864 	 * type. Need to make sure that any other M_CTLs don't make
11865 	 * it to tcp_rput_data since it is not expecting any and doesn't
11866 	 * check for it.
11867 	 */
11868 	if (DB_TYPE(mp) == M_CTL) {
11869 		switch (*(uint32_t *)(mp->b_rptr)) {
11870 		case TCP_IOC_ABORT_CONN:
11871 			/*
11872 			 * Handle connection abort request.
11873 			 */
11874 			tcp_ioctl_abort_handler(tcp, mp);
11875 			return;
11876 		case IPSEC_IN:
11877 			/*
11878 			 * Only secure icmp arrive in TCP and they
11879 			 * don't go through data path.
11880 			 */
11881 			tcp_icmp_error(tcp, mp);
11882 			return;
11883 		case IN_PKTINFO:
11884 			/*
11885 			 * Handle IPV6_RECVPKTINFO socket option on AF_INET6
11886 			 * sockets that are receiving IPv4 traffic. tcp
11887 			 */
11888 			ASSERT(tcp->tcp_family == AF_INET6);
11889 			ASSERT(tcp->tcp_ipv6_recvancillary &
11890 			    TCP_IPV6_RECVPKTINFO);
11891 			tcp_rput_data(tcp->tcp_connp, mp,
11892 			    tcp->tcp_connp->conn_sqp);
11893 			return;
11894 		case MDT_IOC_INFO_UPDATE:
11895 			/*
11896 			 * Handle Multidata information update; the
11897 			 * following routine will free the message.
11898 			 */
11899 			if (tcp->tcp_connp->conn_mdt_ok) {
11900 				tcp_mdt_update(tcp,
11901 				    &((ip_mdt_info_t *)mp->b_rptr)->mdt_capab,
11902 				    B_FALSE);
11903 			}
11904 			freemsg(mp);
11905 			return;
11906 		case LSO_IOC_INFO_UPDATE:
11907 			/*
11908 			 * Handle LSO information update; the following
11909 			 * routine will free the message.
11910 			 */
11911 			if (tcp->tcp_connp->conn_lso_ok) {
11912 				tcp_lso_update(tcp,
11913 				    &((ip_lso_info_t *)mp->b_rptr)->lso_capab);
11914 			}
11915 			freemsg(mp);
11916 			return;
11917 		default:
11918 			/*
11919 			 * tcp_icmp_err() will process the M_CTL packets.
11920 			 * Non-ICMP packets, if any, will be discarded in
11921 			 * tcp_icmp_err(). We will process the ICMP packet
11922 			 * even if we are TCP_IS_DETACHED_NONEAGER as the
11923 			 * incoming ICMP packet may result in changing
11924 			 * the tcp_mss, which we would need if we have
11925 			 * packets to retransmit.
11926 			 */
11927 			tcp_icmp_error(tcp, mp);
11928 			return;
11929 		}
11930 	}
11931 
11932 	/* No point processing the message if tcp is already closed */
11933 	if (TCP_IS_DETACHED_NONEAGER(tcp)) {
11934 		freemsg(mp);
11935 		return;
11936 	}
11937 
11938 	tcp_rput_other(tcp, mp);
11939 }
11940 
11941 
11942 /* The minimum of smoothed mean deviation in RTO calculation. */
11943 #define	TCP_SD_MIN	400
11944 
11945 /*
11946  * Set RTO for this connection.  The formula is from Jacobson and Karels'
11947  * "Congestion Avoidance and Control" in SIGCOMM '88.  The variable names
11948  * are the same as those in Appendix A.2 of that paper.
11949  *
11950  * m = new measurement
11951  * sa = smoothed RTT average (8 * average estimates).
11952  * sv = smoothed mean deviation (mdev) of RTT (4 * deviation estimates).
11953  */
11954 static void
11955 tcp_set_rto(tcp_t *tcp, clock_t rtt)
11956 {
11957 	long m = TICK_TO_MSEC(rtt);
11958 	clock_t sa = tcp->tcp_rtt_sa;
11959 	clock_t sv = tcp->tcp_rtt_sd;
11960 	clock_t rto;
11961 	tcp_stack_t	*tcps = tcp->tcp_tcps;
11962 
11963 	BUMP_MIB(&tcps->tcps_mib, tcpRttUpdate);
11964 	tcp->tcp_rtt_update++;
11965 
11966 	/* tcp_rtt_sa is not 0 means this is a new sample. */
11967 	if (sa != 0) {
11968 		/*
11969 		 * Update average estimator:
11970 		 *	new rtt = 7/8 old rtt + 1/8 Error
11971 		 */
11972 
11973 		/* m is now Error in estimate. */
11974 		m -= sa >> 3;
11975 		if ((sa += m) <= 0) {
11976 			/*
11977 			 * Don't allow the smoothed average to be negative.
11978 			 * We use 0 to denote reinitialization of the
11979 			 * variables.
11980 			 */
11981 			sa = 1;
11982 		}
11983 
11984 		/*
11985 		 * Update deviation estimator:
11986 		 *	new mdev = 3/4 old mdev + 1/4 (abs(Error) - old mdev)
11987 		 */
11988 		if (m < 0)
11989 			m = -m;
11990 		m -= sv >> 2;
11991 		sv += m;
11992 	} else {
11993 		/*
11994 		 * This follows BSD's implementation.  So the reinitialized
11995 		 * RTO is 3 * m.  We cannot go less than 2 because if the
11996 		 * link is bandwidth dominated, doubling the window size
11997 		 * during slow start means doubling the RTT.  We want to be
11998 		 * more conservative when we reinitialize our estimates.  3
11999 		 * is just a convenient number.
12000 		 */
12001 		sa = m << 3;
12002 		sv = m << 1;
12003 	}
12004 	if (sv < TCP_SD_MIN) {
12005 		/*
12006 		 * We do not know that if sa captures the delay ACK
12007 		 * effect as in a long train of segments, a receiver
12008 		 * does not delay its ACKs.  So set the minimum of sv
12009 		 * to be TCP_SD_MIN, which is default to 400 ms, twice
12010 		 * of BSD DATO.  That means the minimum of mean
12011 		 * deviation is 100 ms.
12012 		 *
12013 		 */
12014 		sv = TCP_SD_MIN;
12015 	}
12016 	tcp->tcp_rtt_sa = sa;
12017 	tcp->tcp_rtt_sd = sv;
12018 	/*
12019 	 * RTO = average estimates (sa / 8) + 4 * deviation estimates (sv)
12020 	 *
12021 	 * Add tcp_rexmit_interval extra in case of extreme environment
12022 	 * where the algorithm fails to work.  The default value of
12023 	 * tcp_rexmit_interval_extra should be 0.
12024 	 *
12025 	 * As we use a finer grained clock than BSD and update
12026 	 * RTO for every ACKs, add in another .25 of RTT to the
12027 	 * deviation of RTO to accomodate burstiness of 1/4 of
12028 	 * window size.
12029 	 */
12030 	rto = (sa >> 3) + sv + tcps->tcps_rexmit_interval_extra + (sa >> 5);
12031 
12032 	if (rto > tcps->tcps_rexmit_interval_max) {
12033 		tcp->tcp_rto = tcps->tcps_rexmit_interval_max;
12034 	} else if (rto < tcps->tcps_rexmit_interval_min) {
12035 		tcp->tcp_rto = tcps->tcps_rexmit_interval_min;
12036 	} else {
12037 		tcp->tcp_rto = rto;
12038 	}
12039 
12040 	/* Now, we can reset tcp_timer_backoff to use the new RTO... */
12041 	tcp->tcp_timer_backoff = 0;
12042 }
12043 
12044 /*
12045  * tcp_get_seg_mp() is called to get the pointer to a segment in the
12046  * send queue which starts at the given seq. no.
12047  *
12048  * Parameters:
12049  *	tcp_t *tcp: the tcp instance pointer.
12050  *	uint32_t seq: the starting seq. no of the requested segment.
12051  *	int32_t *off: after the execution, *off will be the offset to
12052  *		the returned mblk which points to the requested seq no.
12053  *		It is the caller's responsibility to send in a non-null off.
12054  *
12055  * Return:
12056  *	A mblk_t pointer pointing to the requested segment in send queue.
12057  */
12058 static mblk_t *
12059 tcp_get_seg_mp(tcp_t *tcp, uint32_t seq, int32_t *off)
12060 {
12061 	int32_t	cnt;
12062 	mblk_t	*mp;
12063 
12064 	/* Defensive coding.  Make sure we don't send incorrect data. */
12065 	if (SEQ_LT(seq, tcp->tcp_suna) || SEQ_GEQ(seq, tcp->tcp_snxt))
12066 		return (NULL);
12067 
12068 	cnt = seq - tcp->tcp_suna;
12069 	mp = tcp->tcp_xmit_head;
12070 	while (cnt > 0 && mp != NULL) {
12071 		cnt -= mp->b_wptr - mp->b_rptr;
12072 		if (cnt < 0) {
12073 			cnt += mp->b_wptr - mp->b_rptr;
12074 			break;
12075 		}
12076 		mp = mp->b_cont;
12077 	}
12078 	ASSERT(mp != NULL);
12079 	*off = cnt;
12080 	return (mp);
12081 }
12082 
12083 /*
12084  * This function handles all retransmissions if SACK is enabled for this
12085  * connection.  First it calculates how many segments can be retransmitted
12086  * based on tcp_pipe.  Then it goes thru the notsack list to find eligible
12087  * segments.  A segment is eligible if sack_cnt for that segment is greater
12088  * than or equal tcp_dupack_fast_retransmit.  After it has retransmitted
12089  * all eligible segments, it checks to see if TCP can send some new segments
12090  * (fast recovery).  If it can, set the appropriate flag for tcp_rput_data().
12091  *
12092  * Parameters:
12093  *	tcp_t *tcp: the tcp structure of the connection.
12094  *	uint_t *flags: in return, appropriate value will be set for
12095  *	tcp_rput_data().
12096  */
12097 static void
12098 tcp_sack_rxmit(tcp_t *tcp, uint_t *flags)
12099 {
12100 	notsack_blk_t	*notsack_blk;
12101 	int32_t		usable_swnd;
12102 	int32_t		mss;
12103 	uint32_t	seg_len;
12104 	mblk_t		*xmit_mp;
12105 	tcp_stack_t	*tcps = tcp->tcp_tcps;
12106 
12107 	ASSERT(tcp->tcp_sack_info != NULL);
12108 	ASSERT(tcp->tcp_notsack_list != NULL);
12109 	ASSERT(tcp->tcp_rexmit == B_FALSE);
12110 
12111 	/* Defensive coding in case there is a bug... */
12112 	if (tcp->tcp_notsack_list == NULL) {
12113 		return;
12114 	}
12115 	notsack_blk = tcp->tcp_notsack_list;
12116 	mss = tcp->tcp_mss;
12117 
12118 	/*
12119 	 * Limit the num of outstanding data in the network to be
12120 	 * tcp_cwnd_ssthresh, which is half of the original congestion wnd.
12121 	 */
12122 	usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe;
12123 
12124 	/* At least retransmit 1 MSS of data. */
12125 	if (usable_swnd <= 0) {
12126 		usable_swnd = mss;
12127 	}
12128 
12129 	/* Make sure no new RTT samples will be taken. */
12130 	tcp->tcp_csuna = tcp->tcp_snxt;
12131 
12132 	notsack_blk = tcp->tcp_notsack_list;
12133 	while (usable_swnd > 0) {
12134 		mblk_t		*snxt_mp, *tmp_mp;
12135 		tcp_seq		begin = tcp->tcp_sack_snxt;
12136 		tcp_seq		end;
12137 		int32_t		off;
12138 
12139 		for (; notsack_blk != NULL; notsack_blk = notsack_blk->next) {
12140 			if (SEQ_GT(notsack_blk->end, begin) &&
12141 			    (notsack_blk->sack_cnt >=
12142 			    tcps->tcps_dupack_fast_retransmit)) {
12143 				end = notsack_blk->end;
12144 				if (SEQ_LT(begin, notsack_blk->begin)) {
12145 					begin = notsack_blk->begin;
12146 				}
12147 				break;
12148 			}
12149 		}
12150 		/*
12151 		 * All holes are filled.  Manipulate tcp_cwnd to send more
12152 		 * if we can.  Note that after the SACK recovery, tcp_cwnd is
12153 		 * set to tcp_cwnd_ssthresh.
12154 		 */
12155 		if (notsack_blk == NULL) {
12156 			usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe;
12157 			if (usable_swnd <= 0 || tcp->tcp_unsent == 0) {
12158 				tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna;
12159 				ASSERT(tcp->tcp_cwnd > 0);
12160 				return;
12161 			} else {
12162 				usable_swnd = usable_swnd / mss;
12163 				tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna +
12164 				    MAX(usable_swnd * mss, mss);
12165 				*flags |= TH_XMIT_NEEDED;
12166 				return;
12167 			}
12168 		}
12169 
12170 		/*
12171 		 * Note that we may send more than usable_swnd allows here
12172 		 * because of round off, but no more than 1 MSS of data.
12173 		 */
12174 		seg_len = end - begin;
12175 		if (seg_len > mss)
12176 			seg_len = mss;
12177 		snxt_mp = tcp_get_seg_mp(tcp, begin, &off);
12178 		ASSERT(snxt_mp != NULL);
12179 		/* This should not happen.  Defensive coding again... */
12180 		if (snxt_mp == NULL) {
12181 			return;
12182 		}
12183 
12184 		xmit_mp = tcp_xmit_mp(tcp, snxt_mp, seg_len, &off,
12185 		    &tmp_mp, begin, B_TRUE, &seg_len, B_TRUE);
12186 		if (xmit_mp == NULL)
12187 			return;
12188 
12189 		usable_swnd -= seg_len;
12190 		tcp->tcp_pipe += seg_len;
12191 		tcp->tcp_sack_snxt = begin + seg_len;
12192 		TCP_RECORD_TRACE(tcp, xmit_mp, TCP_TRACE_SEND_PKT);
12193 		tcp_send_data(tcp, tcp->tcp_wq, xmit_mp);
12194 
12195 		/*
12196 		 * Update the send timestamp to avoid false retransmission.
12197 		 */
12198 		snxt_mp->b_prev = (mblk_t *)lbolt;
12199 
12200 		BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs);
12201 		UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, seg_len);
12202 		BUMP_MIB(&tcps->tcps_mib, tcpOutSackRetransSegs);
12203 		/*
12204 		 * Update tcp_rexmit_max to extend this SACK recovery phase.
12205 		 * This happens when new data sent during fast recovery is
12206 		 * also lost.  If TCP retransmits those new data, it needs
12207 		 * to extend SACK recover phase to avoid starting another
12208 		 * fast retransmit/recovery unnecessarily.
12209 		 */
12210 		if (SEQ_GT(tcp->tcp_sack_snxt, tcp->tcp_rexmit_max)) {
12211 			tcp->tcp_rexmit_max = tcp->tcp_sack_snxt;
12212 		}
12213 	}
12214 }
12215 
12216 /*
12217  * This function handles policy checking at TCP level for non-hard_bound/
12218  * detached connections.
12219  */
12220 static boolean_t
12221 tcp_check_policy(tcp_t *tcp, mblk_t *first_mp, ipha_t *ipha, ip6_t *ip6h,
12222     boolean_t secure, boolean_t mctl_present)
12223 {
12224 	ipsec_latch_t *ipl = NULL;
12225 	ipsec_action_t *act = NULL;
12226 	mblk_t *data_mp;
12227 	ipsec_in_t *ii;
12228 	const char *reason;
12229 	kstat_named_t *counter;
12230 	tcp_stack_t	*tcps = tcp->tcp_tcps;
12231 	ipsec_stack_t	*ipss;
12232 	ip_stack_t	*ipst;
12233 
12234 	ASSERT(mctl_present || !secure);
12235 
12236 	ASSERT((ipha == NULL && ip6h != NULL) ||
12237 	    (ip6h == NULL && ipha != NULL));
12238 
12239 	/*
12240 	 * We don't necessarily have an ipsec_in_act action to verify
12241 	 * policy because of assymetrical policy where we have only
12242 	 * outbound policy and no inbound policy (possible with global
12243 	 * policy).
12244 	 */
12245 	if (!secure) {
12246 		if (act == NULL || act->ipa_act.ipa_type == IPSEC_ACT_BYPASS ||
12247 		    act->ipa_act.ipa_type == IPSEC_ACT_CLEAR)
12248 			return (B_TRUE);
12249 		ipsec_log_policy_failure(IPSEC_POLICY_MISMATCH,
12250 		    "tcp_check_policy", ipha, ip6h, secure,
12251 		    tcps->tcps_netstack);
12252 		ipss = tcps->tcps_netstack->netstack_ipsec;
12253 
12254 		ip_drop_packet(first_mp, B_TRUE, NULL, NULL,
12255 		    DROPPER(ipss, ipds_tcp_clear),
12256 		    &tcps->tcps_dropper);
12257 		return (B_FALSE);
12258 	}
12259 
12260 	/*
12261 	 * We have a secure packet.
12262 	 */
12263 	if (act == NULL) {
12264 		ipsec_log_policy_failure(IPSEC_POLICY_NOT_NEEDED,
12265 		    "tcp_check_policy", ipha, ip6h, secure,
12266 		    tcps->tcps_netstack);
12267 		ipss = tcps->tcps_netstack->netstack_ipsec;
12268 
12269 		ip_drop_packet(first_mp, B_TRUE, NULL, NULL,
12270 		    DROPPER(ipss, ipds_tcp_secure),
12271 		    &tcps->tcps_dropper);
12272 		return (B_FALSE);
12273 	}
12274 
12275 	/*
12276 	 * XXX This whole routine is currently incorrect.  ipl should
12277 	 * be set to the latch pointer, but is currently not set, so
12278 	 * we initialize it to NULL to avoid picking up random garbage.
12279 	 */
12280 	if (ipl == NULL)
12281 		return (B_TRUE);
12282 
12283 	data_mp = first_mp->b_cont;
12284 
12285 	ii = (ipsec_in_t *)first_mp->b_rptr;
12286 
12287 	ipst = tcps->tcps_netstack->netstack_ip;
12288 
12289 	if (ipsec_check_ipsecin_latch(ii, data_mp, ipl, ipha, ip6h, &reason,
12290 	    &counter, tcp->tcp_connp)) {
12291 		BUMP_MIB(&ipst->ips_ip_mib, ipsecInSucceeded);
12292 		return (B_TRUE);
12293 	}
12294 	(void) strlog(TCP_MOD_ID, 0, 0, SL_ERROR|SL_WARN|SL_CONSOLE,
12295 	    "tcp inbound policy mismatch: %s, packet dropped\n",
12296 	    reason);
12297 	BUMP_MIB(&ipst->ips_ip_mib, ipsecInFailed);
12298 
12299 	ip_drop_packet(first_mp, B_TRUE, NULL, NULL, counter,
12300 	    &tcps->tcps_dropper);
12301 	return (B_FALSE);
12302 }
12303 
12304 /*
12305  * tcp_ss_rexmit() is called in tcp_rput_data() to do slow start
12306  * retransmission after a timeout.
12307  *
12308  * To limit the number of duplicate segments, we limit the number of segment
12309  * to be sent in one time to tcp_snd_burst, the burst variable.
12310  */
12311 static void
12312 tcp_ss_rexmit(tcp_t *tcp)
12313 {
12314 	uint32_t	snxt;
12315 	uint32_t	smax;
12316 	int32_t		win;
12317 	int32_t		mss;
12318 	int32_t		off;
12319 	int32_t		burst = tcp->tcp_snd_burst;
12320 	mblk_t		*snxt_mp;
12321 	tcp_stack_t	*tcps = tcp->tcp_tcps;
12322 
12323 	/*
12324 	 * Note that tcp_rexmit can be set even though TCP has retransmitted
12325 	 * all unack'ed segments.
12326 	 */
12327 	if (SEQ_LT(tcp->tcp_rexmit_nxt, tcp->tcp_rexmit_max)) {
12328 		smax = tcp->tcp_rexmit_max;
12329 		snxt = tcp->tcp_rexmit_nxt;
12330 		if (SEQ_LT(snxt, tcp->tcp_suna)) {
12331 			snxt = tcp->tcp_suna;
12332 		}
12333 		win = MIN(tcp->tcp_cwnd, tcp->tcp_swnd);
12334 		win -= snxt - tcp->tcp_suna;
12335 		mss = tcp->tcp_mss;
12336 		snxt_mp = tcp_get_seg_mp(tcp, snxt, &off);
12337 
12338 		while (SEQ_LT(snxt, smax) && (win > 0) &&
12339 		    (burst > 0) && (snxt_mp != NULL)) {
12340 			mblk_t	*xmit_mp;
12341 			mblk_t	*old_snxt_mp = snxt_mp;
12342 			uint32_t cnt = mss;
12343 
12344 			if (win < cnt) {
12345 				cnt = win;
12346 			}
12347 			if (SEQ_GT(snxt + cnt, smax)) {
12348 				cnt = smax - snxt;
12349 			}
12350 			xmit_mp = tcp_xmit_mp(tcp, snxt_mp, cnt, &off,
12351 			    &snxt_mp, snxt, B_TRUE, &cnt, B_TRUE);
12352 			if (xmit_mp == NULL)
12353 				return;
12354 
12355 			tcp_send_data(tcp, tcp->tcp_wq, xmit_mp);
12356 
12357 			snxt += cnt;
12358 			win -= cnt;
12359 			/*
12360 			 * Update the send timestamp to avoid false
12361 			 * retransmission.
12362 			 */
12363 			old_snxt_mp->b_prev = (mblk_t *)lbolt;
12364 			BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs);
12365 			UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, cnt);
12366 
12367 			tcp->tcp_rexmit_nxt = snxt;
12368 			burst--;
12369 		}
12370 		/*
12371 		 * If we have transmitted all we have at the time
12372 		 * we started the retranmission, we can leave
12373 		 * the rest of the job to tcp_wput_data().  But we
12374 		 * need to check the send window first.  If the
12375 		 * win is not 0, go on with tcp_wput_data().
12376 		 */
12377 		if (SEQ_LT(snxt, smax) || win == 0) {
12378 			return;
12379 		}
12380 	}
12381 	/* Only call tcp_wput_data() if there is data to be sent. */
12382 	if (tcp->tcp_unsent) {
12383 		tcp_wput_data(tcp, NULL, B_FALSE);
12384 	}
12385 }
12386 
12387 /*
12388  * Process all TCP option in SYN segment.  Note that this function should
12389  * be called after tcp_adapt_ire() is called so that the necessary info
12390  * from IRE is already set in the tcp structure.
12391  *
12392  * This function sets up the correct tcp_mss value according to the
12393  * MSS option value and our header size.  It also sets up the window scale
12394  * and timestamp values, and initialize SACK info blocks.  But it does not
12395  * change receive window size after setting the tcp_mss value.  The caller
12396  * should do the appropriate change.
12397  */
12398 void
12399 tcp_process_options(tcp_t *tcp, tcph_t *tcph)
12400 {
12401 	int options;
12402 	tcp_opt_t tcpopt;
12403 	uint32_t mss_max;
12404 	char *tmp_tcph;
12405 	tcp_stack_t	*tcps = tcp->tcp_tcps;
12406 
12407 	tcpopt.tcp = NULL;
12408 	options = tcp_parse_options(tcph, &tcpopt);
12409 
12410 	/*
12411 	 * Process MSS option.  Note that MSS option value does not account
12412 	 * for IP or TCP options.  This means that it is equal to MTU - minimum
12413 	 * IP+TCP header size, which is 40 bytes for IPv4 and 60 bytes for
12414 	 * IPv6.
12415 	 */
12416 	if (!(options & TCP_OPT_MSS_PRESENT)) {
12417 		if (tcp->tcp_ipversion == IPV4_VERSION)
12418 			tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv4;
12419 		else
12420 			tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv6;
12421 	} else {
12422 		if (tcp->tcp_ipversion == IPV4_VERSION)
12423 			mss_max = tcps->tcps_mss_max_ipv4;
12424 		else
12425 			mss_max = tcps->tcps_mss_max_ipv6;
12426 		if (tcpopt.tcp_opt_mss < tcps->tcps_mss_min)
12427 			tcpopt.tcp_opt_mss = tcps->tcps_mss_min;
12428 		else if (tcpopt.tcp_opt_mss > mss_max)
12429 			tcpopt.tcp_opt_mss = mss_max;
12430 	}
12431 
12432 	/* Process Window Scale option. */
12433 	if (options & TCP_OPT_WSCALE_PRESENT) {
12434 		tcp->tcp_snd_ws = tcpopt.tcp_opt_wscale;
12435 		tcp->tcp_snd_ws_ok = B_TRUE;
12436 	} else {
12437 		tcp->tcp_snd_ws = B_FALSE;
12438 		tcp->tcp_snd_ws_ok = B_FALSE;
12439 		tcp->tcp_rcv_ws = B_FALSE;
12440 	}
12441 
12442 	/* Process Timestamp option. */
12443 	if ((options & TCP_OPT_TSTAMP_PRESENT) &&
12444 	    (tcp->tcp_snd_ts_ok || TCP_IS_DETACHED(tcp))) {
12445 		tmp_tcph = (char *)tcp->tcp_tcph;
12446 
12447 		tcp->tcp_snd_ts_ok = B_TRUE;
12448 		tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val;
12449 		tcp->tcp_last_rcv_lbolt = lbolt64;
12450 		ASSERT(OK_32PTR(tmp_tcph));
12451 		ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH);
12452 
12453 		/* Fill in our template header with basic timestamp option. */
12454 		tmp_tcph += tcp->tcp_tcp_hdr_len;
12455 		tmp_tcph[0] = TCPOPT_NOP;
12456 		tmp_tcph[1] = TCPOPT_NOP;
12457 		tmp_tcph[2] = TCPOPT_TSTAMP;
12458 		tmp_tcph[3] = TCPOPT_TSTAMP_LEN;
12459 		tcp->tcp_hdr_len += TCPOPT_REAL_TS_LEN;
12460 		tcp->tcp_tcp_hdr_len += TCPOPT_REAL_TS_LEN;
12461 		tcp->tcp_tcph->th_offset_and_rsrvd[0] += (3 << 4);
12462 	} else {
12463 		tcp->tcp_snd_ts_ok = B_FALSE;
12464 	}
12465 
12466 	/*
12467 	 * Process SACK options.  If SACK is enabled for this connection,
12468 	 * then allocate the SACK info structure.  Note the following ways
12469 	 * when tcp_snd_sack_ok is set to true.
12470 	 *
12471 	 * For active connection: in tcp_adapt_ire() called in
12472 	 * tcp_rput_other(), or in tcp_rput_other() when tcp_sack_permitted
12473 	 * is checked.
12474 	 *
12475 	 * For passive connection: in tcp_adapt_ire() called in
12476 	 * tcp_accept_comm().
12477 	 *
12478 	 * That's the reason why the extra TCP_IS_DETACHED() check is there.
12479 	 * That check makes sure that if we did not send a SACK OK option,
12480 	 * we will not enable SACK for this connection even though the other
12481 	 * side sends us SACK OK option.  For active connection, the SACK
12482 	 * info structure has already been allocated.  So we need to free
12483 	 * it if SACK is disabled.
12484 	 */
12485 	if ((options & TCP_OPT_SACK_OK_PRESENT) &&
12486 	    (tcp->tcp_snd_sack_ok ||
12487 	    (tcps->tcps_sack_permitted != 0 && TCP_IS_DETACHED(tcp)))) {
12488 		/* This should be true only in the passive case. */
12489 		if (tcp->tcp_sack_info == NULL) {
12490 			ASSERT(TCP_IS_DETACHED(tcp));
12491 			tcp->tcp_sack_info =
12492 			    kmem_cache_alloc(tcp_sack_info_cache, KM_NOSLEEP);
12493 		}
12494 		if (tcp->tcp_sack_info == NULL) {
12495 			tcp->tcp_snd_sack_ok = B_FALSE;
12496 		} else {
12497 			tcp->tcp_snd_sack_ok = B_TRUE;
12498 			if (tcp->tcp_snd_ts_ok) {
12499 				tcp->tcp_max_sack_blk = 3;
12500 			} else {
12501 				tcp->tcp_max_sack_blk = 4;
12502 			}
12503 		}
12504 	} else {
12505 		/*
12506 		 * Resetting tcp_snd_sack_ok to B_FALSE so that
12507 		 * no SACK info will be used for this
12508 		 * connection.  This assumes that SACK usage
12509 		 * permission is negotiated.  This may need
12510 		 * to be changed once this is clarified.
12511 		 */
12512 		if (tcp->tcp_sack_info != NULL) {
12513 			ASSERT(tcp->tcp_notsack_list == NULL);
12514 			kmem_cache_free(tcp_sack_info_cache,
12515 			    tcp->tcp_sack_info);
12516 			tcp->tcp_sack_info = NULL;
12517 		}
12518 		tcp->tcp_snd_sack_ok = B_FALSE;
12519 	}
12520 
12521 	/*
12522 	 * Now we know the exact TCP/IP header length, subtract
12523 	 * that from tcp_mss to get our side's MSS.
12524 	 */
12525 	tcp->tcp_mss -= tcp->tcp_hdr_len;
12526 	/*
12527 	 * Here we assume that the other side's header size will be equal to
12528 	 * our header size.  We calculate the real MSS accordingly.  Need to
12529 	 * take into additional stuffs IPsec puts in.
12530 	 *
12531 	 * Real MSS = Opt.MSS - (our TCP/IP header - min TCP/IP header)
12532 	 */
12533 	tcpopt.tcp_opt_mss -= tcp->tcp_hdr_len + tcp->tcp_ipsec_overhead -
12534 	    ((tcp->tcp_ipversion == IPV4_VERSION ?
12535 	    IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) + TCP_MIN_HEADER_LENGTH);
12536 
12537 	/*
12538 	 * Set MSS to the smaller one of both ends of the connection.
12539 	 * We should not have called tcp_mss_set() before, but our
12540 	 * side of the MSS should have been set to a proper value
12541 	 * by tcp_adapt_ire().  tcp_mss_set() will also set up the
12542 	 * STREAM head parameters properly.
12543 	 *
12544 	 * If we have a larger-than-16-bit window but the other side
12545 	 * didn't want to do window scale, tcp_rwnd_set() will take
12546 	 * care of that.
12547 	 */
12548 	tcp_mss_set(tcp, MIN(tcpopt.tcp_opt_mss, tcp->tcp_mss), B_TRUE);
12549 }
12550 
12551 /*
12552  * Sends the T_CONN_IND to the listener. The caller calls this
12553  * functions via squeue to get inside the listener's perimeter
12554  * once the 3 way hand shake is done a T_CONN_IND needs to be
12555  * sent. As an optimization, the caller can call this directly
12556  * if listener's perimeter is same as eager's.
12557  */
12558 /* ARGSUSED */
12559 void
12560 tcp_send_conn_ind(void *arg, mblk_t *mp, void *arg2)
12561 {
12562 	conn_t			*lconnp = (conn_t *)arg;
12563 	tcp_t			*listener = lconnp->conn_tcp;
12564 	tcp_t			*tcp;
12565 	struct T_conn_ind	*conn_ind;
12566 	ipaddr_t 		*addr_cache;
12567 	boolean_t		need_send_conn_ind = B_FALSE;
12568 	tcp_stack_t		*tcps = listener->tcp_tcps;
12569 
12570 	/* retrieve the eager */
12571 	conn_ind = (struct T_conn_ind *)mp->b_rptr;
12572 	ASSERT(conn_ind->OPT_offset != 0 &&
12573 	    conn_ind->OPT_length == sizeof (intptr_t));
12574 	bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp,
12575 	    conn_ind->OPT_length);
12576 
12577 	/*
12578 	 * TLI/XTI applications will get confused by
12579 	 * sending eager as an option since it violates
12580 	 * the option semantics. So remove the eager as
12581 	 * option since TLI/XTI app doesn't need it anyway.
12582 	 */
12583 	if (!TCP_IS_SOCKET(listener)) {
12584 		conn_ind->OPT_length = 0;
12585 		conn_ind->OPT_offset = 0;
12586 	}
12587 	if (listener->tcp_state == TCPS_CLOSED ||
12588 	    TCP_IS_DETACHED(listener)) {
12589 		/*
12590 		 * If listener has closed, it would have caused a
12591 		 * a cleanup/blowoff to happen for the eager. We
12592 		 * just need to return.
12593 		 */
12594 		freemsg(mp);
12595 		return;
12596 	}
12597 
12598 
12599 	/*
12600 	 * if the conn_req_q is full defer passing up the
12601 	 * T_CONN_IND until space is availabe after t_accept()
12602 	 * processing
12603 	 */
12604 	mutex_enter(&listener->tcp_eager_lock);
12605 
12606 	/*
12607 	 * Take the eager out, if it is in the list of droppable eagers
12608 	 * as we are here because the 3W handshake is over.
12609 	 */
12610 	MAKE_UNDROPPABLE(tcp);
12611 
12612 	if (listener->tcp_conn_req_cnt_q < listener->tcp_conn_req_max) {
12613 		tcp_t *tail;
12614 
12615 		/*
12616 		 * The eager already has an extra ref put in tcp_rput_data
12617 		 * so that it stays till accept comes back even though it
12618 		 * might get into TCPS_CLOSED as a result of a TH_RST etc.
12619 		 */
12620 		ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
12621 		listener->tcp_conn_req_cnt_q0--;
12622 		listener->tcp_conn_req_cnt_q++;
12623 
12624 		/* Move from SYN_RCVD to ESTABLISHED list  */
12625 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
12626 		    tcp->tcp_eager_prev_q0;
12627 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
12628 		    tcp->tcp_eager_next_q0;
12629 		tcp->tcp_eager_prev_q0 = NULL;
12630 		tcp->tcp_eager_next_q0 = NULL;
12631 
12632 		/*
12633 		 * Insert at end of the queue because sockfs
12634 		 * sends down T_CONN_RES in chronological
12635 		 * order. Leaving the older conn indications
12636 		 * at front of the queue helps reducing search
12637 		 * time.
12638 		 */
12639 		tail = listener->tcp_eager_last_q;
12640 		if (tail != NULL)
12641 			tail->tcp_eager_next_q = tcp;
12642 		else
12643 			listener->tcp_eager_next_q = tcp;
12644 		listener->tcp_eager_last_q = tcp;
12645 		tcp->tcp_eager_next_q = NULL;
12646 		/*
12647 		 * Delay sending up the T_conn_ind until we are
12648 		 * done with the eager. Once we have have sent up
12649 		 * the T_conn_ind, the accept can potentially complete
12650 		 * any time and release the refhold we have on the eager.
12651 		 */
12652 		need_send_conn_ind = B_TRUE;
12653 	} else {
12654 		/*
12655 		 * Defer connection on q0 and set deferred
12656 		 * connection bit true
12657 		 */
12658 		tcp->tcp_conn_def_q0 = B_TRUE;
12659 
12660 		/* take tcp out of q0 ... */
12661 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
12662 		    tcp->tcp_eager_next_q0;
12663 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
12664 		    tcp->tcp_eager_prev_q0;
12665 
12666 		/* ... and place it at the end of q0 */
12667 		tcp->tcp_eager_prev_q0 = listener->tcp_eager_prev_q0;
12668 		tcp->tcp_eager_next_q0 = listener;
12669 		listener->tcp_eager_prev_q0->tcp_eager_next_q0 = tcp;
12670 		listener->tcp_eager_prev_q0 = tcp;
12671 		tcp->tcp_conn.tcp_eager_conn_ind = mp;
12672 	}
12673 
12674 	/* we have timed out before */
12675 	if (tcp->tcp_syn_rcvd_timeout != 0) {
12676 		tcp->tcp_syn_rcvd_timeout = 0;
12677 		listener->tcp_syn_rcvd_timeout--;
12678 		if (listener->tcp_syn_defense &&
12679 		    listener->tcp_syn_rcvd_timeout <=
12680 		    (tcps->tcps_conn_req_max_q0 >> 5) &&
12681 		    10*MINUTES < TICK_TO_MSEC(lbolt64 -
12682 		    listener->tcp_last_rcv_lbolt)) {
12683 			/*
12684 			 * Turn off the defense mode if we
12685 			 * believe the SYN attack is over.
12686 			 */
12687 			listener->tcp_syn_defense = B_FALSE;
12688 			if (listener->tcp_ip_addr_cache) {
12689 				kmem_free((void *)listener->tcp_ip_addr_cache,
12690 				    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t));
12691 				listener->tcp_ip_addr_cache = NULL;
12692 			}
12693 		}
12694 	}
12695 	addr_cache = (ipaddr_t *)(listener->tcp_ip_addr_cache);
12696 	if (addr_cache != NULL) {
12697 		/*
12698 		 * We have finished a 3-way handshake with this
12699 		 * remote host. This proves the IP addr is good.
12700 		 * Cache it!
12701 		 */
12702 		addr_cache[IP_ADDR_CACHE_HASH(
12703 		    tcp->tcp_remote)] = tcp->tcp_remote;
12704 	}
12705 	mutex_exit(&listener->tcp_eager_lock);
12706 	if (need_send_conn_ind)
12707 		putnext(listener->tcp_rq, mp);
12708 }
12709 
12710 mblk_t *
12711 tcp_find_pktinfo(tcp_t *tcp, mblk_t *mp, uint_t *ipversp, uint_t *ip_hdr_lenp,
12712     uint_t *ifindexp, ip6_pkt_t *ippp)
12713 {
12714 	ip_pktinfo_t	*pinfo;
12715 	ip6_t		*ip6h;
12716 	uchar_t		*rptr;
12717 	mblk_t		*first_mp = mp;
12718 	boolean_t	mctl_present = B_FALSE;
12719 	uint_t 		ifindex = 0;
12720 	ip6_pkt_t	ipp;
12721 	uint_t		ipvers;
12722 	uint_t		ip_hdr_len;
12723 	tcp_stack_t	*tcps = tcp->tcp_tcps;
12724 
12725 	rptr = mp->b_rptr;
12726 	ASSERT(OK_32PTR(rptr));
12727 	ASSERT(tcp != NULL);
12728 	ipp.ipp_fields = 0;
12729 
12730 	switch DB_TYPE(mp) {
12731 	case M_CTL:
12732 		mp = mp->b_cont;
12733 		if (mp == NULL) {
12734 			freemsg(first_mp);
12735 			return (NULL);
12736 		}
12737 		if (DB_TYPE(mp) != M_DATA) {
12738 			freemsg(first_mp);
12739 			return (NULL);
12740 		}
12741 		mctl_present = B_TRUE;
12742 		break;
12743 	case M_DATA:
12744 		break;
12745 	default:
12746 		cmn_err(CE_NOTE, "tcp_find_pktinfo: unknown db_type");
12747 		freemsg(mp);
12748 		return (NULL);
12749 	}
12750 	ipvers = IPH_HDR_VERSION(rptr);
12751 	if (ipvers == IPV4_VERSION) {
12752 		if (tcp == NULL) {
12753 			ip_hdr_len = IPH_HDR_LENGTH(rptr);
12754 			goto done;
12755 		}
12756 
12757 		ipp.ipp_fields |= IPPF_HOPLIMIT;
12758 		ipp.ipp_hoplimit = ((ipha_t *)rptr)->ipha_ttl;
12759 
12760 		/*
12761 		 * If we have IN_PKTINFO in an M_CTL and tcp_ipv6_recvancillary
12762 		 * has TCP_IPV6_RECVPKTINFO set, pass I/F index along in ipp.
12763 		 */
12764 		if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) &&
12765 		    mctl_present) {
12766 			pinfo = (ip_pktinfo_t *)first_mp->b_rptr;
12767 			if ((MBLKL(first_mp) == sizeof (ip_pktinfo_t)) &&
12768 			    (pinfo->ip_pkt_ulp_type == IN_PKTINFO) &&
12769 			    (pinfo->ip_pkt_flags & IPF_RECVIF)) {
12770 				ipp.ipp_fields |= IPPF_IFINDEX;
12771 				ipp.ipp_ifindex = pinfo->ip_pkt_ifindex;
12772 				ifindex = pinfo->ip_pkt_ifindex;
12773 			}
12774 			freeb(first_mp);
12775 			mctl_present = B_FALSE;
12776 		}
12777 		ip_hdr_len = IPH_HDR_LENGTH(rptr);
12778 	} else {
12779 		ip6h = (ip6_t *)rptr;
12780 
12781 		ASSERT(ipvers == IPV6_VERSION);
12782 		ipp.ipp_fields = IPPF_HOPLIMIT | IPPF_TCLASS;
12783 		ipp.ipp_tclass = (ip6h->ip6_flow & 0x0FF00000) >> 20;
12784 		ipp.ipp_hoplimit = ip6h->ip6_hops;
12785 
12786 		if (ip6h->ip6_nxt != IPPROTO_TCP) {
12787 			uint8_t	nexthdrp;
12788 			ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
12789 
12790 			/* Look for ifindex information */
12791 			if (ip6h->ip6_nxt == IPPROTO_RAW) {
12792 				ip6i_t *ip6i = (ip6i_t *)ip6h;
12793 				if ((uchar_t *)&ip6i[1] > mp->b_wptr) {
12794 					BUMP_MIB(&ipst->ips_ip_mib, tcpInErrs);
12795 					freemsg(first_mp);
12796 					return (NULL);
12797 				}
12798 
12799 				if (ip6i->ip6i_flags & IP6I_IFINDEX) {
12800 					ASSERT(ip6i->ip6i_ifindex != 0);
12801 					ipp.ipp_fields |= IPPF_IFINDEX;
12802 					ipp.ipp_ifindex = ip6i->ip6i_ifindex;
12803 					ifindex = ip6i->ip6i_ifindex;
12804 				}
12805 				rptr = (uchar_t *)&ip6i[1];
12806 				mp->b_rptr = rptr;
12807 				if (rptr == mp->b_wptr) {
12808 					mblk_t *mp1;
12809 					mp1 = mp->b_cont;
12810 					freeb(mp);
12811 					mp = mp1;
12812 					rptr = mp->b_rptr;
12813 				}
12814 				if (MBLKL(mp) < IPV6_HDR_LEN +
12815 				    sizeof (tcph_t)) {
12816 					BUMP_MIB(&ipst->ips_ip_mib, tcpInErrs);
12817 					freemsg(first_mp);
12818 					return (NULL);
12819 				}
12820 				ip6h = (ip6_t *)rptr;
12821 			}
12822 
12823 			/*
12824 			 * Find any potentially interesting extension headers
12825 			 * as well as the length of the IPv6 + extension
12826 			 * headers.
12827 			 */
12828 			ip_hdr_len = ip_find_hdr_v6(mp, ip6h, &ipp, &nexthdrp);
12829 			/* Verify if this is a TCP packet */
12830 			if (nexthdrp != IPPROTO_TCP) {
12831 				BUMP_MIB(&ipst->ips_ip_mib, tcpInErrs);
12832 				freemsg(first_mp);
12833 				return (NULL);
12834 			}
12835 		} else {
12836 			ip_hdr_len = IPV6_HDR_LEN;
12837 		}
12838 	}
12839 
12840 done:
12841 	if (ipversp != NULL)
12842 		*ipversp = ipvers;
12843 	if (ip_hdr_lenp != NULL)
12844 		*ip_hdr_lenp = ip_hdr_len;
12845 	if (ippp != NULL)
12846 		*ippp = ipp;
12847 	if (ifindexp != NULL)
12848 		*ifindexp = ifindex;
12849 	if (mctl_present) {
12850 		freeb(first_mp);
12851 	}
12852 	return (mp);
12853 }
12854 
12855 /*
12856  * Handle M_DATA messages from IP. Its called directly from IP via
12857  * squeue for AF_INET type sockets fast path. No M_CTL are expected
12858  * in this path.
12859  *
12860  * For everything else (including AF_INET6 sockets with 'tcp_ipversion'
12861  * v4 and v6), we are called through tcp_input() and a M_CTL can
12862  * be present for options but tcp_find_pktinfo() deals with it. We
12863  * only expect M_DATA packets after tcp_find_pktinfo() is done.
12864  *
12865  * The first argument is always the connp/tcp to which the mp belongs.
12866  * There are no exceptions to this rule. The caller has already put
12867  * a reference on this connp/tcp and once tcp_rput_data() returns,
12868  * the squeue will do the refrele.
12869  *
12870  * The TH_SYN for the listener directly go to tcp_conn_request via
12871  * squeue.
12872  *
12873  * sqp: NULL = recursive, sqp != NULL means called from squeue
12874  */
12875 void
12876 tcp_rput_data(void *arg, mblk_t *mp, void *arg2)
12877 {
12878 	int32_t		bytes_acked;
12879 	int32_t		gap;
12880 	mblk_t		*mp1;
12881 	uint_t		flags;
12882 	uint32_t	new_swnd = 0;
12883 	uchar_t		*iphdr;
12884 	uchar_t		*rptr;
12885 	int32_t		rgap;
12886 	uint32_t	seg_ack;
12887 	int		seg_len;
12888 	uint_t		ip_hdr_len;
12889 	uint32_t	seg_seq;
12890 	tcph_t		*tcph;
12891 	int		urp;
12892 	tcp_opt_t	tcpopt;
12893 	uint_t		ipvers;
12894 	ip6_pkt_t	ipp;
12895 	boolean_t	ofo_seg = B_FALSE; /* Out of order segment */
12896 	uint32_t	cwnd;
12897 	uint32_t	add;
12898 	int		npkt;
12899 	int		mss;
12900 	conn_t		*connp = (conn_t *)arg;
12901 	squeue_t	*sqp = (squeue_t *)arg2;
12902 	tcp_t		*tcp = connp->conn_tcp;
12903 	tcp_stack_t	*tcps = tcp->tcp_tcps;
12904 
12905 	/*
12906 	 * RST from fused tcp loopback peer should trigger an unfuse.
12907 	 */
12908 	if (tcp->tcp_fused) {
12909 		TCP_STAT(tcps, tcp_fusion_aborted);
12910 		tcp_unfuse(tcp);
12911 	}
12912 
12913 	iphdr = mp->b_rptr;
12914 	rptr = mp->b_rptr;
12915 	ASSERT(OK_32PTR(rptr));
12916 
12917 	/*
12918 	 * An AF_INET socket is not capable of receiving any pktinfo. Do inline
12919 	 * processing here. For rest call tcp_find_pktinfo to fill up the
12920 	 * necessary information.
12921 	 */
12922 	if (IPCL_IS_TCP4(connp)) {
12923 		ipvers = IPV4_VERSION;
12924 		ip_hdr_len = IPH_HDR_LENGTH(rptr);
12925 	} else {
12926 		mp = tcp_find_pktinfo(tcp, mp, &ipvers, &ip_hdr_len,
12927 		    NULL, &ipp);
12928 		if (mp == NULL) {
12929 			TCP_STAT(tcps, tcp_rput_v6_error);
12930 			return;
12931 		}
12932 		iphdr = mp->b_rptr;
12933 		rptr = mp->b_rptr;
12934 	}
12935 	ASSERT(DB_TYPE(mp) == M_DATA);
12936 
12937 	tcph = (tcph_t *)&rptr[ip_hdr_len];
12938 	seg_seq = ABE32_TO_U32(tcph->th_seq);
12939 	seg_ack = ABE32_TO_U32(tcph->th_ack);
12940 	ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX);
12941 	seg_len = (int)(mp->b_wptr - rptr) -
12942 	    (ip_hdr_len + TCP_HDR_LENGTH(tcph));
12943 	if ((mp1 = mp->b_cont) != NULL && mp1->b_datap->db_type == M_DATA) {
12944 		do {
12945 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
12946 			    (uintptr_t)INT_MAX);
12947 			seg_len += (int)(mp1->b_wptr - mp1->b_rptr);
12948 		} while ((mp1 = mp1->b_cont) != NULL &&
12949 		    mp1->b_datap->db_type == M_DATA);
12950 	}
12951 
12952 	if (tcp->tcp_state == TCPS_TIME_WAIT) {
12953 		tcp_time_wait_processing(tcp, mp, seg_seq, seg_ack,
12954 		    seg_len, tcph);
12955 		return;
12956 	}
12957 
12958 	if (sqp != NULL) {
12959 		/*
12960 		 * This is the correct place to update tcp_last_recv_time. Note
12961 		 * that it is also updated for tcp structure that belongs to
12962 		 * global and listener queues which do not really need updating.
12963 		 * But that should not cause any harm.  And it is updated for
12964 		 * all kinds of incoming segments, not only for data segments.
12965 		 */
12966 		tcp->tcp_last_recv_time = lbolt;
12967 	}
12968 
12969 	flags = (unsigned int)tcph->th_flags[0] & 0xFF;
12970 
12971 	BUMP_LOCAL(tcp->tcp_ibsegs);
12972 	TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_RECV_PKT);
12973 
12974 	if ((flags & TH_URG) && sqp != NULL) {
12975 		/*
12976 		 * TCP can't handle urgent pointers that arrive before
12977 		 * the connection has been accept()ed since it can't
12978 		 * buffer OOB data.  Discard segment if this happens.
12979 		 *
12980 		 * We can't just rely on a non-null tcp_listener to indicate
12981 		 * that the accept() has completed since unlinking of the
12982 		 * eager and completion of the accept are not atomic.
12983 		 * tcp_detached, when it is not set (B_FALSE) indicates
12984 		 * that the accept() has completed.
12985 		 *
12986 		 * Nor can it reassemble urgent pointers, so discard
12987 		 * if it's not the next segment expected.
12988 		 *
12989 		 * Otherwise, collapse chain into one mblk (discard if
12990 		 * that fails).  This makes sure the headers, retransmitted
12991 		 * data, and new data all are in the same mblk.
12992 		 */
12993 		ASSERT(mp != NULL);
12994 		if (tcp->tcp_detached || !pullupmsg(mp, -1)) {
12995 			freemsg(mp);
12996 			return;
12997 		}
12998 		/* Update pointers into message */
12999 		iphdr = rptr = mp->b_rptr;
13000 		tcph = (tcph_t *)&rptr[ip_hdr_len];
13001 		if (SEQ_GT(seg_seq, tcp->tcp_rnxt)) {
13002 			/*
13003 			 * Since we can't handle any data with this urgent
13004 			 * pointer that is out of sequence, we expunge
13005 			 * the data.  This allows us to still register
13006 			 * the urgent mark and generate the M_PCSIG,
13007 			 * which we can do.
13008 			 */
13009 			mp->b_wptr = (uchar_t *)tcph + TCP_HDR_LENGTH(tcph);
13010 			seg_len = 0;
13011 		}
13012 	}
13013 
13014 	switch (tcp->tcp_state) {
13015 	case TCPS_SYN_SENT:
13016 		if (flags & TH_ACK) {
13017 			/*
13018 			 * Note that our stack cannot send data before a
13019 			 * connection is established, therefore the
13020 			 * following check is valid.  Otherwise, it has
13021 			 * to be changed.
13022 			 */
13023 			if (SEQ_LEQ(seg_ack, tcp->tcp_iss) ||
13024 			    SEQ_GT(seg_ack, tcp->tcp_snxt)) {
13025 				freemsg(mp);
13026 				if (flags & TH_RST)
13027 					return;
13028 				tcp_xmit_ctl("TCPS_SYN_SENT-Bad_seq",
13029 				    tcp, seg_ack, 0, TH_RST);
13030 				return;
13031 			}
13032 			ASSERT(tcp->tcp_suna + 1 == seg_ack);
13033 		}
13034 		if (flags & TH_RST) {
13035 			freemsg(mp);
13036 			if (flags & TH_ACK)
13037 				(void) tcp_clean_death(tcp,
13038 				    ECONNREFUSED, 13);
13039 			return;
13040 		}
13041 		if (!(flags & TH_SYN)) {
13042 			freemsg(mp);
13043 			return;
13044 		}
13045 
13046 		/* Process all TCP options. */
13047 		tcp_process_options(tcp, tcph);
13048 		/*
13049 		 * The following changes our rwnd to be a multiple of the
13050 		 * MIN(peer MSS, our MSS) for performance reason.
13051 		 */
13052 		(void) tcp_rwnd_set(tcp, MSS_ROUNDUP(tcp->tcp_rq->q_hiwat,
13053 		    tcp->tcp_mss));
13054 
13055 		/* Is the other end ECN capable? */
13056 		if (tcp->tcp_ecn_ok) {
13057 			if ((flags & (TH_ECE|TH_CWR)) != TH_ECE) {
13058 				tcp->tcp_ecn_ok = B_FALSE;
13059 			}
13060 		}
13061 		/*
13062 		 * Clear ECN flags because it may interfere with later
13063 		 * processing.
13064 		 */
13065 		flags &= ~(TH_ECE|TH_CWR);
13066 
13067 		tcp->tcp_irs = seg_seq;
13068 		tcp->tcp_rack = seg_seq;
13069 		tcp->tcp_rnxt = seg_seq + 1;
13070 		U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack);
13071 		if (!TCP_IS_DETACHED(tcp)) {
13072 			/* Allocate room for SACK options if needed. */
13073 			if (tcp->tcp_snd_sack_ok) {
13074 				(void) mi_set_sth_wroff(tcp->tcp_rq,
13075 				    tcp->tcp_hdr_len + TCPOPT_MAX_SACK_LEN +
13076 				    (tcp->tcp_loopback ? 0 :
13077 				    tcps->tcps_wroff_xtra));
13078 			} else {
13079 				(void) mi_set_sth_wroff(tcp->tcp_rq,
13080 				    tcp->tcp_hdr_len +
13081 				    (tcp->tcp_loopback ? 0 :
13082 				    tcps->tcps_wroff_xtra));
13083 			}
13084 		}
13085 		if (flags & TH_ACK) {
13086 			/*
13087 			 * If we can't get the confirmation upstream, pretend
13088 			 * we didn't even see this one.
13089 			 *
13090 			 * XXX: how can we pretend we didn't see it if we
13091 			 * have updated rnxt et. al.
13092 			 *
13093 			 * For loopback we defer sending up the T_CONN_CON
13094 			 * until after some checks below.
13095 			 */
13096 			mp1 = NULL;
13097 			if (!tcp_conn_con(tcp, iphdr, tcph, mp,
13098 			    tcp->tcp_loopback ? &mp1 : NULL)) {
13099 				freemsg(mp);
13100 				return;
13101 			}
13102 			/* SYN was acked - making progress */
13103 			if (tcp->tcp_ipversion == IPV6_VERSION)
13104 				tcp->tcp_ip_forward_progress = B_TRUE;
13105 
13106 			/* One for the SYN */
13107 			tcp->tcp_suna = tcp->tcp_iss + 1;
13108 			tcp->tcp_valid_bits &= ~TCP_ISS_VALID;
13109 			tcp->tcp_state = TCPS_ESTABLISHED;
13110 
13111 			/*
13112 			 * If SYN was retransmitted, need to reset all
13113 			 * retransmission info.  This is because this
13114 			 * segment will be treated as a dup ACK.
13115 			 */
13116 			if (tcp->tcp_rexmit) {
13117 				tcp->tcp_rexmit = B_FALSE;
13118 				tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
13119 				tcp->tcp_rexmit_max = tcp->tcp_snxt;
13120 				tcp->tcp_snd_burst = tcp->tcp_localnet ?
13121 				    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
13122 				tcp->tcp_ms_we_have_waited = 0;
13123 
13124 				/*
13125 				 * Set tcp_cwnd back to 1 MSS, per
13126 				 * recommendation from
13127 				 * draft-floyd-incr-init-win-01.txt,
13128 				 * Increasing TCP's Initial Window.
13129 				 */
13130 				tcp->tcp_cwnd = tcp->tcp_mss;
13131 			}
13132 
13133 			tcp->tcp_swl1 = seg_seq;
13134 			tcp->tcp_swl2 = seg_ack;
13135 
13136 			new_swnd = BE16_TO_U16(tcph->th_win);
13137 			tcp->tcp_swnd = new_swnd;
13138 			if (new_swnd > tcp->tcp_max_swnd)
13139 				tcp->tcp_max_swnd = new_swnd;
13140 
13141 			/*
13142 			 * Always send the three-way handshake ack immediately
13143 			 * in order to make the connection complete as soon as
13144 			 * possible on the accepting host.
13145 			 */
13146 			flags |= TH_ACK_NEEDED;
13147 
13148 			/*
13149 			 * Special case for loopback.  At this point we have
13150 			 * received SYN-ACK from the remote endpoint.  In
13151 			 * order to ensure that both endpoints reach the
13152 			 * fused state prior to any data exchange, the final
13153 			 * ACK needs to be sent before we indicate T_CONN_CON
13154 			 * to the module upstream.
13155 			 */
13156 			if (tcp->tcp_loopback) {
13157 				mblk_t *ack_mp;
13158 
13159 				ASSERT(!tcp->tcp_unfusable);
13160 				ASSERT(mp1 != NULL);
13161 				/*
13162 				 * For loopback, we always get a pure SYN-ACK
13163 				 * and only need to send back the final ACK
13164 				 * with no data (this is because the other
13165 				 * tcp is ours and we don't do T/TCP).  This
13166 				 * final ACK triggers the passive side to
13167 				 * perform fusion in ESTABLISHED state.
13168 				 */
13169 				if ((ack_mp = tcp_ack_mp(tcp)) != NULL) {
13170 					if (tcp->tcp_ack_tid != 0) {
13171 						(void) TCP_TIMER_CANCEL(tcp,
13172 						    tcp->tcp_ack_tid);
13173 						tcp->tcp_ack_tid = 0;
13174 					}
13175 					TCP_RECORD_TRACE(tcp, ack_mp,
13176 					    TCP_TRACE_SEND_PKT);
13177 					tcp_send_data(tcp, tcp->tcp_wq, ack_mp);
13178 					BUMP_LOCAL(tcp->tcp_obsegs);
13179 					BUMP_MIB(&tcps->tcps_mib, tcpOutAck);
13180 
13181 					/* Send up T_CONN_CON */
13182 					putnext(tcp->tcp_rq, mp1);
13183 
13184 					freemsg(mp);
13185 					return;
13186 				}
13187 				/*
13188 				 * Forget fusion; we need to handle more
13189 				 * complex cases below.  Send the deferred
13190 				 * T_CONN_CON message upstream and proceed
13191 				 * as usual.  Mark this tcp as not capable
13192 				 * of fusion.
13193 				 */
13194 				TCP_STAT(tcps, tcp_fusion_unfusable);
13195 				tcp->tcp_unfusable = B_TRUE;
13196 				putnext(tcp->tcp_rq, mp1);
13197 			}
13198 
13199 			/*
13200 			 * Check to see if there is data to be sent.  If
13201 			 * yes, set the transmit flag.  Then check to see
13202 			 * if received data processing needs to be done.
13203 			 * If not, go straight to xmit_check.  This short
13204 			 * cut is OK as we don't support T/TCP.
13205 			 */
13206 			if (tcp->tcp_unsent)
13207 				flags |= TH_XMIT_NEEDED;
13208 
13209 			if (seg_len == 0 && !(flags & TH_URG)) {
13210 				freemsg(mp);
13211 				goto xmit_check;
13212 			}
13213 
13214 			flags &= ~TH_SYN;
13215 			seg_seq++;
13216 			break;
13217 		}
13218 		tcp->tcp_state = TCPS_SYN_RCVD;
13219 		mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, tcp->tcp_mss,
13220 		    NULL, NULL, tcp->tcp_iss, B_FALSE, NULL, B_FALSE);
13221 		if (mp1) {
13222 			DB_CPID(mp1) = tcp->tcp_cpid;
13223 			TCP_RECORD_TRACE(tcp, mp1, TCP_TRACE_SEND_PKT);
13224 			tcp_send_data(tcp, tcp->tcp_wq, mp1);
13225 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
13226 		}
13227 		freemsg(mp);
13228 		return;
13229 	case TCPS_SYN_RCVD:
13230 		if (flags & TH_ACK) {
13231 			/*
13232 			 * In this state, a SYN|ACK packet is either bogus
13233 			 * because the other side must be ACKing our SYN which
13234 			 * indicates it has seen the ACK for their SYN and
13235 			 * shouldn't retransmit it or we're crossing SYNs
13236 			 * on active open.
13237 			 */
13238 			if ((flags & TH_SYN) && !tcp->tcp_active_open) {
13239 				freemsg(mp);
13240 				tcp_xmit_ctl("TCPS_SYN_RCVD-bad_syn",
13241 				    tcp, seg_ack, 0, TH_RST);
13242 				return;
13243 			}
13244 			/*
13245 			 * NOTE: RFC 793 pg. 72 says this should be
13246 			 * tcp->tcp_suna <= seg_ack <= tcp->tcp_snxt
13247 			 * but that would mean we have an ack that ignored
13248 			 * our SYN.
13249 			 */
13250 			if (SEQ_LEQ(seg_ack, tcp->tcp_suna) ||
13251 			    SEQ_GT(seg_ack, tcp->tcp_snxt)) {
13252 				freemsg(mp);
13253 				tcp_xmit_ctl("TCPS_SYN_RCVD-bad_ack",
13254 				    tcp, seg_ack, 0, TH_RST);
13255 				return;
13256 			}
13257 		}
13258 		break;
13259 	case TCPS_LISTEN:
13260 		/*
13261 		 * Only a TLI listener can come through this path when a
13262 		 * acceptor is going back to be a listener and a packet
13263 		 * for the acceptor hits the classifier. For a socket
13264 		 * listener, this can never happen because a listener
13265 		 * can never accept connection on itself and hence a
13266 		 * socket acceptor can not go back to being a listener.
13267 		 */
13268 		ASSERT(!TCP_IS_SOCKET(tcp));
13269 		/*FALLTHRU*/
13270 	case TCPS_CLOSED:
13271 	case TCPS_BOUND: {
13272 		conn_t	*new_connp;
13273 		ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
13274 
13275 		new_connp = ipcl_classify(mp, connp->conn_zoneid, ipst);
13276 		if (new_connp != NULL) {
13277 			tcp_reinput(new_connp, mp, connp->conn_sqp);
13278 			return;
13279 		}
13280 		/* We failed to classify. For now just drop the packet */
13281 		freemsg(mp);
13282 		return;
13283 	}
13284 	case TCPS_IDLE:
13285 		/*
13286 		 * Handle the case where the tcp_clean_death() has happened
13287 		 * on a connection (application hasn't closed yet) but a packet
13288 		 * was already queued on squeue before tcp_clean_death()
13289 		 * was processed. Calling tcp_clean_death() twice on same
13290 		 * connection can result in weird behaviour.
13291 		 */
13292 		freemsg(mp);
13293 		return;
13294 	default:
13295 		break;
13296 	}
13297 
13298 	/*
13299 	 * Already on the correct queue/perimeter.
13300 	 * If this is a detached connection and not an eager
13301 	 * connection hanging off a listener then new data
13302 	 * (past the FIN) will cause a reset.
13303 	 * We do a special check here where it
13304 	 * is out of the main line, rather than check
13305 	 * if we are detached every time we see new
13306 	 * data down below.
13307 	 */
13308 	if (TCP_IS_DETACHED_NONEAGER(tcp) &&
13309 	    (seg_len > 0 && SEQ_GT(seg_seq + seg_len, tcp->tcp_rnxt))) {
13310 		BUMP_MIB(&tcps->tcps_mib, tcpInClosed);
13311 		TCP_RECORD_TRACE(tcp,
13312 		    mp, TCP_TRACE_RECV_PKT);
13313 
13314 		freemsg(mp);
13315 		/*
13316 		 * This could be an SSL closure alert. We're detached so just
13317 		 * acknowledge it this last time.
13318 		 */
13319 		if (tcp->tcp_kssl_ctx != NULL) {
13320 			kssl_release_ctx(tcp->tcp_kssl_ctx);
13321 			tcp->tcp_kssl_ctx = NULL;
13322 
13323 			tcp->tcp_rnxt += seg_len;
13324 			U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack);
13325 			flags |= TH_ACK_NEEDED;
13326 			goto ack_check;
13327 		}
13328 
13329 		tcp_xmit_ctl("new data when detached", tcp,
13330 		    tcp->tcp_snxt, 0, TH_RST);
13331 		(void) tcp_clean_death(tcp, EPROTO, 12);
13332 		return;
13333 	}
13334 
13335 	mp->b_rptr = (uchar_t *)tcph + TCP_HDR_LENGTH(tcph);
13336 	urp = BE16_TO_U16(tcph->th_urp) - TCP_OLD_URP_INTERPRETATION;
13337 	new_swnd = BE16_TO_U16(tcph->th_win) <<
13338 	    ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws);
13339 
13340 	if (tcp->tcp_snd_ts_ok) {
13341 		if (!tcp_paws_check(tcp, tcph, &tcpopt)) {
13342 			/*
13343 			 * This segment is not acceptable.
13344 			 * Drop it and send back an ACK.
13345 			 */
13346 			freemsg(mp);
13347 			flags |= TH_ACK_NEEDED;
13348 			goto ack_check;
13349 		}
13350 	} else if (tcp->tcp_snd_sack_ok) {
13351 		ASSERT(tcp->tcp_sack_info != NULL);
13352 		tcpopt.tcp = tcp;
13353 		/*
13354 		 * SACK info in already updated in tcp_parse_options.  Ignore
13355 		 * all other TCP options...
13356 		 */
13357 		(void) tcp_parse_options(tcph, &tcpopt);
13358 	}
13359 try_again:;
13360 	mss = tcp->tcp_mss;
13361 	gap = seg_seq - tcp->tcp_rnxt;
13362 	rgap = tcp->tcp_rwnd - (gap + seg_len);
13363 	/*
13364 	 * gap is the amount of sequence space between what we expect to see
13365 	 * and what we got for seg_seq.  A positive value for gap means
13366 	 * something got lost.  A negative value means we got some old stuff.
13367 	 */
13368 	if (gap < 0) {
13369 		/* Old stuff present.  Is the SYN in there? */
13370 		if (seg_seq == tcp->tcp_irs && (flags & TH_SYN) &&
13371 		    (seg_len != 0)) {
13372 			flags &= ~TH_SYN;
13373 			seg_seq++;
13374 			urp--;
13375 			/* Recompute the gaps after noting the SYN. */
13376 			goto try_again;
13377 		}
13378 		BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs);
13379 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes,
13380 		    (seg_len > -gap ? -gap : seg_len));
13381 		/* Remove the old stuff from seg_len. */
13382 		seg_len += gap;
13383 		/*
13384 		 * Anything left?
13385 		 * Make sure to check for unack'd FIN when rest of data
13386 		 * has been previously ack'd.
13387 		 */
13388 		if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) {
13389 			/*
13390 			 * Resets are only valid if they lie within our offered
13391 			 * window.  If the RST bit is set, we just ignore this
13392 			 * segment.
13393 			 */
13394 			if (flags & TH_RST) {
13395 				freemsg(mp);
13396 				return;
13397 			}
13398 
13399 			/*
13400 			 * The arriving of dup data packets indicate that we
13401 			 * may have postponed an ack for too long, or the other
13402 			 * side's RTT estimate is out of shape. Start acking
13403 			 * more often.
13404 			 */
13405 			if (SEQ_GEQ(seg_seq + seg_len - gap, tcp->tcp_rack) &&
13406 			    tcp->tcp_rack_cnt >= 1 &&
13407 			    tcp->tcp_rack_abs_max > 2) {
13408 				tcp->tcp_rack_abs_max--;
13409 			}
13410 			tcp->tcp_rack_cur_max = 1;
13411 
13412 			/*
13413 			 * This segment is "unacceptable".  None of its
13414 			 * sequence space lies within our advertized window.
13415 			 *
13416 			 * Adjust seg_len to the original value for tracing.
13417 			 */
13418 			seg_len -= gap;
13419 			if (tcp->tcp_debug) {
13420 				(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
13421 				    "tcp_rput: unacceptable, gap %d, rgap %d, "
13422 				    "flags 0x%x, seg_seq %u, seg_ack %u, "
13423 				    "seg_len %d, rnxt %u, snxt %u, %s",
13424 				    gap, rgap, flags, seg_seq, seg_ack,
13425 				    seg_len, tcp->tcp_rnxt, tcp->tcp_snxt,
13426 				    tcp_display(tcp, NULL,
13427 				    DISP_ADDR_AND_PORT));
13428 			}
13429 
13430 			/*
13431 			 * Arrange to send an ACK in response to the
13432 			 * unacceptable segment per RFC 793 page 69. There
13433 			 * is only one small difference between ours and the
13434 			 * acceptability test in the RFC - we accept ACK-only
13435 			 * packet with SEG.SEQ = RCV.NXT+RCV.WND and no ACK
13436 			 * will be generated.
13437 			 *
13438 			 * Note that we have to ACK an ACK-only packet at least
13439 			 * for stacks that send 0-length keep-alives with
13440 			 * SEG.SEQ = SND.NXT-1 as recommended by RFC1122,
13441 			 * section 4.2.3.6. As long as we don't ever generate
13442 			 * an unacceptable packet in response to an incoming
13443 			 * packet that is unacceptable, it should not cause
13444 			 * "ACK wars".
13445 			 */
13446 			flags |=  TH_ACK_NEEDED;
13447 
13448 			/*
13449 			 * Continue processing this segment in order to use the
13450 			 * ACK information it contains, but skip all other
13451 			 * sequence-number processing.	Processing the ACK
13452 			 * information is necessary in order to
13453 			 * re-synchronize connections that may have lost
13454 			 * synchronization.
13455 			 *
13456 			 * We clear seg_len and flag fields related to
13457 			 * sequence number processing as they are not
13458 			 * to be trusted for an unacceptable segment.
13459 			 */
13460 			seg_len = 0;
13461 			flags &= ~(TH_SYN | TH_FIN | TH_URG);
13462 			goto process_ack;
13463 		}
13464 
13465 		/* Fix seg_seq, and chew the gap off the front. */
13466 		seg_seq = tcp->tcp_rnxt;
13467 		urp += gap;
13468 		do {
13469 			mblk_t	*mp2;
13470 			ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
13471 			    (uintptr_t)UINT_MAX);
13472 			gap += (uint_t)(mp->b_wptr - mp->b_rptr);
13473 			if (gap > 0) {
13474 				mp->b_rptr = mp->b_wptr - gap;
13475 				break;
13476 			}
13477 			mp2 = mp;
13478 			mp = mp->b_cont;
13479 			freeb(mp2);
13480 		} while (gap < 0);
13481 		/*
13482 		 * If the urgent data has already been acknowledged, we
13483 		 * should ignore TH_URG below
13484 		 */
13485 		if (urp < 0)
13486 			flags &= ~TH_URG;
13487 	}
13488 	/*
13489 	 * rgap is the amount of stuff received out of window.  A negative
13490 	 * value is the amount out of window.
13491 	 */
13492 	if (rgap < 0) {
13493 		mblk_t	*mp2;
13494 
13495 		if (tcp->tcp_rwnd == 0) {
13496 			BUMP_MIB(&tcps->tcps_mib, tcpInWinProbe);
13497 		} else {
13498 			BUMP_MIB(&tcps->tcps_mib, tcpInDataPastWinSegs);
13499 			UPDATE_MIB(&tcps->tcps_mib,
13500 			    tcpInDataPastWinBytes, -rgap);
13501 		}
13502 
13503 		/*
13504 		 * seg_len does not include the FIN, so if more than
13505 		 * just the FIN is out of window, we act like we don't
13506 		 * see it.  (If just the FIN is out of window, rgap
13507 		 * will be zero and we will go ahead and acknowledge
13508 		 * the FIN.)
13509 		 */
13510 		flags &= ~TH_FIN;
13511 
13512 		/* Fix seg_len and make sure there is something left. */
13513 		seg_len += rgap;
13514 		if (seg_len <= 0) {
13515 			/*
13516 			 * Resets are only valid if they lie within our offered
13517 			 * window.  If the RST bit is set, we just ignore this
13518 			 * segment.
13519 			 */
13520 			if (flags & TH_RST) {
13521 				freemsg(mp);
13522 				return;
13523 			}
13524 
13525 			/* Per RFC 793, we need to send back an ACK. */
13526 			flags |= TH_ACK_NEEDED;
13527 
13528 			/*
13529 			 * Send SIGURG as soon as possible i.e. even
13530 			 * if the TH_URG was delivered in a window probe
13531 			 * packet (which will be unacceptable).
13532 			 *
13533 			 * We generate a signal if none has been generated
13534 			 * for this connection or if this is a new urgent
13535 			 * byte. Also send a zero-length "unmarked" message
13536 			 * to inform SIOCATMARK that this is not the mark.
13537 			 *
13538 			 * tcp_urp_last_valid is cleared when the T_exdata_ind
13539 			 * is sent up. This plus the check for old data
13540 			 * (gap >= 0) handles the wraparound of the sequence
13541 			 * number space without having to always track the
13542 			 * correct MAX(tcp_urp_last, tcp_rnxt). (BSD tracks
13543 			 * this max in its rcv_up variable).
13544 			 *
13545 			 * This prevents duplicate SIGURGS due to a "late"
13546 			 * zero-window probe when the T_EXDATA_IND has already
13547 			 * been sent up.
13548 			 */
13549 			if ((flags & TH_URG) &&
13550 			    (!tcp->tcp_urp_last_valid || SEQ_GT(urp + seg_seq,
13551 			    tcp->tcp_urp_last))) {
13552 				mp1 = allocb(0, BPRI_MED);
13553 				if (mp1 == NULL) {
13554 					freemsg(mp);
13555 					return;
13556 				}
13557 				if (!TCP_IS_DETACHED(tcp) &&
13558 				    !putnextctl1(tcp->tcp_rq, M_PCSIG,
13559 				    SIGURG)) {
13560 					/* Try again on the rexmit. */
13561 					freemsg(mp1);
13562 					freemsg(mp);
13563 					return;
13564 				}
13565 				/*
13566 				 * If the next byte would be the mark
13567 				 * then mark with MARKNEXT else mark
13568 				 * with NOTMARKNEXT.
13569 				 */
13570 				if (gap == 0 && urp == 0)
13571 					mp1->b_flag |= MSGMARKNEXT;
13572 				else
13573 					mp1->b_flag |= MSGNOTMARKNEXT;
13574 				freemsg(tcp->tcp_urp_mark_mp);
13575 				tcp->tcp_urp_mark_mp = mp1;
13576 				flags |= TH_SEND_URP_MARK;
13577 				tcp->tcp_urp_last_valid = B_TRUE;
13578 				tcp->tcp_urp_last = urp + seg_seq;
13579 			}
13580 			/*
13581 			 * If this is a zero window probe, continue to
13582 			 * process the ACK part.  But we need to set seg_len
13583 			 * to 0 to avoid data processing.  Otherwise just
13584 			 * drop the segment and send back an ACK.
13585 			 */
13586 			if (tcp->tcp_rwnd == 0 && seg_seq == tcp->tcp_rnxt) {
13587 				flags &= ~(TH_SYN | TH_URG);
13588 				seg_len = 0;
13589 				goto process_ack;
13590 			} else {
13591 				freemsg(mp);
13592 				goto ack_check;
13593 			}
13594 		}
13595 		/* Pitch out of window stuff off the end. */
13596 		rgap = seg_len;
13597 		mp2 = mp;
13598 		do {
13599 			ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <=
13600 			    (uintptr_t)INT_MAX);
13601 			rgap -= (int)(mp2->b_wptr - mp2->b_rptr);
13602 			if (rgap < 0) {
13603 				mp2->b_wptr += rgap;
13604 				if ((mp1 = mp2->b_cont) != NULL) {
13605 					mp2->b_cont = NULL;
13606 					freemsg(mp1);
13607 				}
13608 				break;
13609 			}
13610 		} while ((mp2 = mp2->b_cont) != NULL);
13611 	}
13612 ok:;
13613 	/*
13614 	 * TCP should check ECN info for segments inside the window only.
13615 	 * Therefore the check should be done here.
13616 	 */
13617 	if (tcp->tcp_ecn_ok) {
13618 		if (flags & TH_CWR) {
13619 			tcp->tcp_ecn_echo_on = B_FALSE;
13620 		}
13621 		/*
13622 		 * Note that both ECN_CE and CWR can be set in the
13623 		 * same segment.  In this case, we once again turn
13624 		 * on ECN_ECHO.
13625 		 */
13626 		if (tcp->tcp_ipversion == IPV4_VERSION) {
13627 			uchar_t tos = ((ipha_t *)rptr)->ipha_type_of_service;
13628 
13629 			if ((tos & IPH_ECN_CE) == IPH_ECN_CE) {
13630 				tcp->tcp_ecn_echo_on = B_TRUE;
13631 			}
13632 		} else {
13633 			uint32_t vcf = ((ip6_t *)rptr)->ip6_vcf;
13634 
13635 			if ((vcf & htonl(IPH_ECN_CE << 20)) ==
13636 			    htonl(IPH_ECN_CE << 20)) {
13637 				tcp->tcp_ecn_echo_on = B_TRUE;
13638 			}
13639 		}
13640 	}
13641 
13642 	/*
13643 	 * Check whether we can update tcp_ts_recent.  This test is
13644 	 * NOT the one in RFC 1323 3.4.  It is from Braden, 1993, "TCP
13645 	 * Extensions for High Performance: An Update", Internet Draft.
13646 	 */
13647 	if (tcp->tcp_snd_ts_ok &&
13648 	    TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) &&
13649 	    SEQ_LEQ(seg_seq, tcp->tcp_rack)) {
13650 		tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val;
13651 		tcp->tcp_last_rcv_lbolt = lbolt64;
13652 	}
13653 
13654 	if (seg_seq != tcp->tcp_rnxt || tcp->tcp_reass_head) {
13655 		/*
13656 		 * FIN in an out of order segment.  We record this in
13657 		 * tcp_valid_bits and the seq num of FIN in tcp_ofo_fin_seq.
13658 		 * Clear the FIN so that any check on FIN flag will fail.
13659 		 * Remember that FIN also counts in the sequence number
13660 		 * space.  So we need to ack out of order FIN only segments.
13661 		 */
13662 		if (flags & TH_FIN) {
13663 			tcp->tcp_valid_bits |= TCP_OFO_FIN_VALID;
13664 			tcp->tcp_ofo_fin_seq = seg_seq + seg_len;
13665 			flags &= ~TH_FIN;
13666 			flags |= TH_ACK_NEEDED;
13667 		}
13668 		if (seg_len > 0) {
13669 			/* Fill in the SACK blk list. */
13670 			if (tcp->tcp_snd_sack_ok) {
13671 				ASSERT(tcp->tcp_sack_info != NULL);
13672 				tcp_sack_insert(tcp->tcp_sack_list,
13673 				    seg_seq, seg_seq + seg_len,
13674 				    &(tcp->tcp_num_sack_blk));
13675 			}
13676 
13677 			/*
13678 			 * Attempt reassembly and see if we have something
13679 			 * ready to go.
13680 			 */
13681 			mp = tcp_reass(tcp, mp, seg_seq);
13682 			/* Always ack out of order packets */
13683 			flags |= TH_ACK_NEEDED | TH_PUSH;
13684 			if (mp) {
13685 				ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
13686 				    (uintptr_t)INT_MAX);
13687 				seg_len = mp->b_cont ? msgdsize(mp) :
13688 				    (int)(mp->b_wptr - mp->b_rptr);
13689 				seg_seq = tcp->tcp_rnxt;
13690 				/*
13691 				 * A gap is filled and the seq num and len
13692 				 * of the gap match that of a previously
13693 				 * received FIN, put the FIN flag back in.
13694 				 */
13695 				if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) &&
13696 				    seg_seq + seg_len == tcp->tcp_ofo_fin_seq) {
13697 					flags |= TH_FIN;
13698 					tcp->tcp_valid_bits &=
13699 					    ~TCP_OFO_FIN_VALID;
13700 				}
13701 			} else {
13702 				/*
13703 				 * Keep going even with NULL mp.
13704 				 * There may be a useful ACK or something else
13705 				 * we don't want to miss.
13706 				 *
13707 				 * But TCP should not perform fast retransmit
13708 				 * because of the ack number.  TCP uses
13709 				 * seg_len == 0 to determine if it is a pure
13710 				 * ACK.  And this is not a pure ACK.
13711 				 */
13712 				seg_len = 0;
13713 				ofo_seg = B_TRUE;
13714 			}
13715 		}
13716 	} else if (seg_len > 0) {
13717 		BUMP_MIB(&tcps->tcps_mib, tcpInDataInorderSegs);
13718 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataInorderBytes, seg_len);
13719 		/*
13720 		 * If an out of order FIN was received before, and the seq
13721 		 * num and len of the new segment match that of the FIN,
13722 		 * put the FIN flag back in.
13723 		 */
13724 		if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) &&
13725 		    seg_seq + seg_len == tcp->tcp_ofo_fin_seq) {
13726 			flags |= TH_FIN;
13727 			tcp->tcp_valid_bits &= ~TCP_OFO_FIN_VALID;
13728 		}
13729 	}
13730 	if ((flags & (TH_RST | TH_SYN | TH_URG | TH_ACK)) != TH_ACK) {
13731 	if (flags & TH_RST) {
13732 		freemsg(mp);
13733 		switch (tcp->tcp_state) {
13734 		case TCPS_SYN_RCVD:
13735 			(void) tcp_clean_death(tcp, ECONNREFUSED, 14);
13736 			break;
13737 		case TCPS_ESTABLISHED:
13738 		case TCPS_FIN_WAIT_1:
13739 		case TCPS_FIN_WAIT_2:
13740 		case TCPS_CLOSE_WAIT:
13741 			(void) tcp_clean_death(tcp, ECONNRESET, 15);
13742 			break;
13743 		case TCPS_CLOSING:
13744 		case TCPS_LAST_ACK:
13745 			(void) tcp_clean_death(tcp, 0, 16);
13746 			break;
13747 		default:
13748 			ASSERT(tcp->tcp_state != TCPS_TIME_WAIT);
13749 			(void) tcp_clean_death(tcp, ENXIO, 17);
13750 			break;
13751 		}
13752 		return;
13753 	}
13754 	if (flags & TH_SYN) {
13755 		/*
13756 		 * See RFC 793, Page 71
13757 		 *
13758 		 * The seq number must be in the window as it should
13759 		 * be "fixed" above.  If it is outside window, it should
13760 		 * be already rejected.  Note that we allow seg_seq to be
13761 		 * rnxt + rwnd because we want to accept 0 window probe.
13762 		 */
13763 		ASSERT(SEQ_GEQ(seg_seq, tcp->tcp_rnxt) &&
13764 		    SEQ_LEQ(seg_seq, tcp->tcp_rnxt + tcp->tcp_rwnd));
13765 		freemsg(mp);
13766 		/*
13767 		 * If the ACK flag is not set, just use our snxt as the
13768 		 * seq number of the RST segment.
13769 		 */
13770 		if (!(flags & TH_ACK)) {
13771 			seg_ack = tcp->tcp_snxt;
13772 		}
13773 		tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1,
13774 		    TH_RST|TH_ACK);
13775 		ASSERT(tcp->tcp_state != TCPS_TIME_WAIT);
13776 		(void) tcp_clean_death(tcp, ECONNRESET, 18);
13777 		return;
13778 	}
13779 	/*
13780 	 * urp could be -1 when the urp field in the packet is 0
13781 	 * and TCP_OLD_URP_INTERPRETATION is set. This implies that the urgent
13782 	 * byte was at seg_seq - 1, in which case we ignore the urgent flag.
13783 	 */
13784 	if (flags & TH_URG && urp >= 0) {
13785 		if (!tcp->tcp_urp_last_valid ||
13786 		    SEQ_GT(urp + seg_seq, tcp->tcp_urp_last)) {
13787 			/*
13788 			 * If we haven't generated the signal yet for this
13789 			 * urgent pointer value, do it now.  Also, send up a
13790 			 * zero-length M_DATA indicating whether or not this is
13791 			 * the mark. The latter is not needed when a
13792 			 * T_EXDATA_IND is sent up. However, if there are
13793 			 * allocation failures this code relies on the sender
13794 			 * retransmitting and the socket code for determining
13795 			 * the mark should not block waiting for the peer to
13796 			 * transmit. Thus, for simplicity we always send up the
13797 			 * mark indication.
13798 			 */
13799 			mp1 = allocb(0, BPRI_MED);
13800 			if (mp1 == NULL) {
13801 				freemsg(mp);
13802 				return;
13803 			}
13804 			if (!TCP_IS_DETACHED(tcp) &&
13805 			    !putnextctl1(tcp->tcp_rq, M_PCSIG, SIGURG)) {
13806 				/* Try again on the rexmit. */
13807 				freemsg(mp1);
13808 				freemsg(mp);
13809 				return;
13810 			}
13811 			/*
13812 			 * Mark with NOTMARKNEXT for now.
13813 			 * The code below will change this to MARKNEXT
13814 			 * if we are at the mark.
13815 			 *
13816 			 * If there are allocation failures (e.g. in dupmsg
13817 			 * below) the next time tcp_rput_data sees the urgent
13818 			 * segment it will send up the MSG*MARKNEXT message.
13819 			 */
13820 			mp1->b_flag |= MSGNOTMARKNEXT;
13821 			freemsg(tcp->tcp_urp_mark_mp);
13822 			tcp->tcp_urp_mark_mp = mp1;
13823 			flags |= TH_SEND_URP_MARK;
13824 #ifdef DEBUG
13825 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
13826 			    "tcp_rput: sent M_PCSIG 2 seq %x urp %x "
13827 			    "last %x, %s",
13828 			    seg_seq, urp, tcp->tcp_urp_last,
13829 			    tcp_display(tcp, NULL, DISP_PORT_ONLY));
13830 #endif /* DEBUG */
13831 			tcp->tcp_urp_last_valid = B_TRUE;
13832 			tcp->tcp_urp_last = urp + seg_seq;
13833 		} else if (tcp->tcp_urp_mark_mp != NULL) {
13834 			/*
13835 			 * An allocation failure prevented the previous
13836 			 * tcp_rput_data from sending up the allocated
13837 			 * MSG*MARKNEXT message - send it up this time
13838 			 * around.
13839 			 */
13840 			flags |= TH_SEND_URP_MARK;
13841 		}
13842 
13843 		/*
13844 		 * If the urgent byte is in this segment, make sure that it is
13845 		 * all by itself.  This makes it much easier to deal with the
13846 		 * possibility of an allocation failure on the T_exdata_ind.
13847 		 * Note that seg_len is the number of bytes in the segment, and
13848 		 * urp is the offset into the segment of the urgent byte.
13849 		 * urp < seg_len means that the urgent byte is in this segment.
13850 		 */
13851 		if (urp < seg_len) {
13852 			if (seg_len != 1) {
13853 				uint32_t  tmp_rnxt;
13854 				/*
13855 				 * Break it up and feed it back in.
13856 				 * Re-attach the IP header.
13857 				 */
13858 				mp->b_rptr = iphdr;
13859 				if (urp > 0) {
13860 					/*
13861 					 * There is stuff before the urgent
13862 					 * byte.
13863 					 */
13864 					mp1 = dupmsg(mp);
13865 					if (!mp1) {
13866 						/*
13867 						 * Trim from urgent byte on.
13868 						 * The rest will come back.
13869 						 */
13870 						(void) adjmsg(mp,
13871 						    urp - seg_len);
13872 						tcp_rput_data(connp,
13873 						    mp, NULL);
13874 						return;
13875 					}
13876 					(void) adjmsg(mp1, urp - seg_len);
13877 					/* Feed this piece back in. */
13878 					tmp_rnxt = tcp->tcp_rnxt;
13879 					tcp_rput_data(connp, mp1, NULL);
13880 					/*
13881 					 * If the data passed back in was not
13882 					 * processed (ie: bad ACK) sending
13883 					 * the remainder back in will cause a
13884 					 * loop. In this case, drop the
13885 					 * packet and let the sender try
13886 					 * sending a good packet.
13887 					 */
13888 					if (tmp_rnxt == tcp->tcp_rnxt) {
13889 						freemsg(mp);
13890 						return;
13891 					}
13892 				}
13893 				if (urp != seg_len - 1) {
13894 					uint32_t  tmp_rnxt;
13895 					/*
13896 					 * There is stuff after the urgent
13897 					 * byte.
13898 					 */
13899 					mp1 = dupmsg(mp);
13900 					if (!mp1) {
13901 						/*
13902 						 * Trim everything beyond the
13903 						 * urgent byte.  The rest will
13904 						 * come back.
13905 						 */
13906 						(void) adjmsg(mp,
13907 						    urp + 1 - seg_len);
13908 						tcp_rput_data(connp,
13909 						    mp, NULL);
13910 						return;
13911 					}
13912 					(void) adjmsg(mp1, urp + 1 - seg_len);
13913 					tmp_rnxt = tcp->tcp_rnxt;
13914 					tcp_rput_data(connp, mp1, NULL);
13915 					/*
13916 					 * If the data passed back in was not
13917 					 * processed (ie: bad ACK) sending
13918 					 * the remainder back in will cause a
13919 					 * loop. In this case, drop the
13920 					 * packet and let the sender try
13921 					 * sending a good packet.
13922 					 */
13923 					if (tmp_rnxt == tcp->tcp_rnxt) {
13924 						freemsg(mp);
13925 						return;
13926 					}
13927 				}
13928 				tcp_rput_data(connp, mp, NULL);
13929 				return;
13930 			}
13931 			/*
13932 			 * This segment contains only the urgent byte.  We
13933 			 * have to allocate the T_exdata_ind, if we can.
13934 			 */
13935 			if (!tcp->tcp_urp_mp) {
13936 				struct T_exdata_ind *tei;
13937 				mp1 = allocb(sizeof (struct T_exdata_ind),
13938 				    BPRI_MED);
13939 				if (!mp1) {
13940 					/*
13941 					 * Sigh... It'll be back.
13942 					 * Generate any MSG*MARK message now.
13943 					 */
13944 					freemsg(mp);
13945 					seg_len = 0;
13946 					if (flags & TH_SEND_URP_MARK) {
13947 
13948 
13949 						ASSERT(tcp->tcp_urp_mark_mp);
13950 						tcp->tcp_urp_mark_mp->b_flag &=
13951 						    ~MSGNOTMARKNEXT;
13952 						tcp->tcp_urp_mark_mp->b_flag |=
13953 						    MSGMARKNEXT;
13954 					}
13955 					goto ack_check;
13956 				}
13957 				mp1->b_datap->db_type = M_PROTO;
13958 				tei = (struct T_exdata_ind *)mp1->b_rptr;
13959 				tei->PRIM_type = T_EXDATA_IND;
13960 				tei->MORE_flag = 0;
13961 				mp1->b_wptr = (uchar_t *)&tei[1];
13962 				tcp->tcp_urp_mp = mp1;
13963 #ifdef DEBUG
13964 				(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
13965 				    "tcp_rput: allocated exdata_ind %s",
13966 				    tcp_display(tcp, NULL,
13967 				    DISP_PORT_ONLY));
13968 #endif /* DEBUG */
13969 				/*
13970 				 * There is no need to send a separate MSG*MARK
13971 				 * message since the T_EXDATA_IND will be sent
13972 				 * now.
13973 				 */
13974 				flags &= ~TH_SEND_URP_MARK;
13975 				freemsg(tcp->tcp_urp_mark_mp);
13976 				tcp->tcp_urp_mark_mp = NULL;
13977 			}
13978 			/*
13979 			 * Now we are all set.  On the next putnext upstream,
13980 			 * tcp_urp_mp will be non-NULL and will get prepended
13981 			 * to what has to be this piece containing the urgent
13982 			 * byte.  If for any reason we abort this segment below,
13983 			 * if it comes back, we will have this ready, or it
13984 			 * will get blown off in close.
13985 			 */
13986 		} else if (urp == seg_len) {
13987 			/*
13988 			 * The urgent byte is the next byte after this sequence
13989 			 * number. If there is data it is marked with
13990 			 * MSGMARKNEXT and any tcp_urp_mark_mp is discarded
13991 			 * since it is not needed. Otherwise, if the code
13992 			 * above just allocated a zero-length tcp_urp_mark_mp
13993 			 * message, that message is tagged with MSGMARKNEXT.
13994 			 * Sending up these MSGMARKNEXT messages makes
13995 			 * SIOCATMARK work correctly even though
13996 			 * the T_EXDATA_IND will not be sent up until the
13997 			 * urgent byte arrives.
13998 			 */
13999 			if (seg_len != 0) {
14000 				flags |= TH_MARKNEXT_NEEDED;
14001 				freemsg(tcp->tcp_urp_mark_mp);
14002 				tcp->tcp_urp_mark_mp = NULL;
14003 				flags &= ~TH_SEND_URP_MARK;
14004 			} else if (tcp->tcp_urp_mark_mp != NULL) {
14005 				flags |= TH_SEND_URP_MARK;
14006 				tcp->tcp_urp_mark_mp->b_flag &=
14007 				    ~MSGNOTMARKNEXT;
14008 				tcp->tcp_urp_mark_mp->b_flag |= MSGMARKNEXT;
14009 			}
14010 #ifdef DEBUG
14011 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
14012 			    "tcp_rput: AT MARK, len %d, flags 0x%x, %s",
14013 			    seg_len, flags,
14014 			    tcp_display(tcp, NULL, DISP_PORT_ONLY));
14015 #endif /* DEBUG */
14016 		} else {
14017 			/* Data left until we hit mark */
14018 #ifdef DEBUG
14019 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
14020 			    "tcp_rput: URP %d bytes left, %s",
14021 			    urp - seg_len, tcp_display(tcp, NULL,
14022 			    DISP_PORT_ONLY));
14023 #endif /* DEBUG */
14024 		}
14025 	}
14026 
14027 process_ack:
14028 	if (!(flags & TH_ACK)) {
14029 		freemsg(mp);
14030 		goto xmit_check;
14031 	}
14032 	}
14033 	bytes_acked = (int)(seg_ack - tcp->tcp_suna);
14034 
14035 	if (tcp->tcp_ipversion == IPV6_VERSION && bytes_acked > 0)
14036 		tcp->tcp_ip_forward_progress = B_TRUE;
14037 	if (tcp->tcp_state == TCPS_SYN_RCVD) {
14038 		if ((tcp->tcp_conn.tcp_eager_conn_ind != NULL) &&
14039 		    ((tcp->tcp_kssl_ent == NULL) || !tcp->tcp_kssl_pending)) {
14040 			/* 3-way handshake complete - pass up the T_CONN_IND */
14041 			tcp_t	*listener = tcp->tcp_listener;
14042 			mblk_t	*mp = tcp->tcp_conn.tcp_eager_conn_ind;
14043 
14044 			tcp->tcp_tconnind_started = B_TRUE;
14045 			tcp->tcp_conn.tcp_eager_conn_ind = NULL;
14046 			/*
14047 			 * We are here means eager is fine but it can
14048 			 * get a TH_RST at any point between now and till
14049 			 * accept completes and disappear. We need to
14050 			 * ensure that reference to eager is valid after
14051 			 * we get out of eager's perimeter. So we do
14052 			 * an extra refhold.
14053 			 */
14054 			CONN_INC_REF(connp);
14055 
14056 			/*
14057 			 * The listener also exists because of the refhold
14058 			 * done in tcp_conn_request. Its possible that it
14059 			 * might have closed. We will check that once we
14060 			 * get inside listeners context.
14061 			 */
14062 			CONN_INC_REF(listener->tcp_connp);
14063 			if (listener->tcp_connp->conn_sqp ==
14064 			    connp->conn_sqp) {
14065 				tcp_send_conn_ind(listener->tcp_connp, mp,
14066 				    listener->tcp_connp->conn_sqp);
14067 				CONN_DEC_REF(listener->tcp_connp);
14068 			} else if (!tcp->tcp_loopback) {
14069 				squeue_fill(listener->tcp_connp->conn_sqp, mp,
14070 				    tcp_send_conn_ind,
14071 				    listener->tcp_connp, SQTAG_TCP_CONN_IND);
14072 			} else {
14073 				squeue_enter(listener->tcp_connp->conn_sqp, mp,
14074 				    tcp_send_conn_ind, listener->tcp_connp,
14075 				    SQTAG_TCP_CONN_IND);
14076 			}
14077 		}
14078 
14079 		if (tcp->tcp_active_open) {
14080 			/*
14081 			 * We are seeing the final ack in the three way
14082 			 * hand shake of a active open'ed connection
14083 			 * so we must send up a T_CONN_CON
14084 			 */
14085 			if (!tcp_conn_con(tcp, iphdr, tcph, mp, NULL)) {
14086 				freemsg(mp);
14087 				return;
14088 			}
14089 			/*
14090 			 * Don't fuse the loopback endpoints for
14091 			 * simultaneous active opens.
14092 			 */
14093 			if (tcp->tcp_loopback) {
14094 				TCP_STAT(tcps, tcp_fusion_unfusable);
14095 				tcp->tcp_unfusable = B_TRUE;
14096 			}
14097 		}
14098 
14099 		tcp->tcp_suna = tcp->tcp_iss + 1;	/* One for the SYN */
14100 		bytes_acked--;
14101 		/* SYN was acked - making progress */
14102 		if (tcp->tcp_ipversion == IPV6_VERSION)
14103 			tcp->tcp_ip_forward_progress = B_TRUE;
14104 
14105 		/*
14106 		 * If SYN was retransmitted, need to reset all
14107 		 * retransmission info as this segment will be
14108 		 * treated as a dup ACK.
14109 		 */
14110 		if (tcp->tcp_rexmit) {
14111 			tcp->tcp_rexmit = B_FALSE;
14112 			tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
14113 			tcp->tcp_rexmit_max = tcp->tcp_snxt;
14114 			tcp->tcp_snd_burst = tcp->tcp_localnet ?
14115 			    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
14116 			tcp->tcp_ms_we_have_waited = 0;
14117 			tcp->tcp_cwnd = mss;
14118 		}
14119 
14120 		/*
14121 		 * We set the send window to zero here.
14122 		 * This is needed if there is data to be
14123 		 * processed already on the queue.
14124 		 * Later (at swnd_update label), the
14125 		 * "new_swnd > tcp_swnd" condition is satisfied
14126 		 * the XMIT_NEEDED flag is set in the current
14127 		 * (SYN_RCVD) state. This ensures tcp_wput_data() is
14128 		 * called if there is already data on queue in
14129 		 * this state.
14130 		 */
14131 		tcp->tcp_swnd = 0;
14132 
14133 		if (new_swnd > tcp->tcp_max_swnd)
14134 			tcp->tcp_max_swnd = new_swnd;
14135 		tcp->tcp_swl1 = seg_seq;
14136 		tcp->tcp_swl2 = seg_ack;
14137 		tcp->tcp_state = TCPS_ESTABLISHED;
14138 		tcp->tcp_valid_bits &= ~TCP_ISS_VALID;
14139 
14140 		/* Fuse when both sides are in ESTABLISHED state */
14141 		if (tcp->tcp_loopback && do_tcp_fusion)
14142 			tcp_fuse(tcp, iphdr, tcph);
14143 
14144 	}
14145 	/* This code follows 4.4BSD-Lite2 mostly. */
14146 	if (bytes_acked < 0)
14147 		goto est;
14148 
14149 	/*
14150 	 * If TCP is ECN capable and the congestion experience bit is
14151 	 * set, reduce tcp_cwnd and tcp_ssthresh.  But this should only be
14152 	 * done once per window (or more loosely, per RTT).
14153 	 */
14154 	if (tcp->tcp_cwr && SEQ_GT(seg_ack, tcp->tcp_cwr_snd_max))
14155 		tcp->tcp_cwr = B_FALSE;
14156 	if (tcp->tcp_ecn_ok && (flags & TH_ECE)) {
14157 		if (!tcp->tcp_cwr) {
14158 			npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / mss;
14159 			tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * mss;
14160 			tcp->tcp_cwnd = npkt * mss;
14161 			/*
14162 			 * If the cwnd is 0, use the timer to clock out
14163 			 * new segments.  This is required by the ECN spec.
14164 			 */
14165 			if (npkt == 0) {
14166 				TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
14167 				/*
14168 				 * This makes sure that when the ACK comes
14169 				 * back, we will increase tcp_cwnd by 1 MSS.
14170 				 */
14171 				tcp->tcp_cwnd_cnt = 0;
14172 			}
14173 			tcp->tcp_cwr = B_TRUE;
14174 			/*
14175 			 * This marks the end of the current window of in
14176 			 * flight data.  That is why we don't use
14177 			 * tcp_suna + tcp_swnd.  Only data in flight can
14178 			 * provide ECN info.
14179 			 */
14180 			tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
14181 			tcp->tcp_ecn_cwr_sent = B_FALSE;
14182 		}
14183 	}
14184 
14185 	mp1 = tcp->tcp_xmit_head;
14186 	if (bytes_acked == 0) {
14187 		if (!ofo_seg && seg_len == 0 && new_swnd == tcp->tcp_swnd) {
14188 			int dupack_cnt;
14189 
14190 			BUMP_MIB(&tcps->tcps_mib, tcpInDupAck);
14191 			/*
14192 			 * Fast retransmit.  When we have seen exactly three
14193 			 * identical ACKs while we have unacked data
14194 			 * outstanding we take it as a hint that our peer
14195 			 * dropped something.
14196 			 *
14197 			 * If TCP is retransmitting, don't do fast retransmit.
14198 			 */
14199 			if (mp1 && tcp->tcp_suna != tcp->tcp_snxt &&
14200 			    ! tcp->tcp_rexmit) {
14201 				/* Do Limited Transmit */
14202 				if ((dupack_cnt = ++tcp->tcp_dupack_cnt) <
14203 				    tcps->tcps_dupack_fast_retransmit) {
14204 					/*
14205 					 * RFC 3042
14206 					 *
14207 					 * What we need to do is temporarily
14208 					 * increase tcp_cwnd so that new
14209 					 * data can be sent if it is allowed
14210 					 * by the receive window (tcp_rwnd).
14211 					 * tcp_wput_data() will take care of
14212 					 * the rest.
14213 					 *
14214 					 * If the connection is SACK capable,
14215 					 * only do limited xmit when there
14216 					 * is SACK info.
14217 					 *
14218 					 * Note how tcp_cwnd is incremented.
14219 					 * The first dup ACK will increase
14220 					 * it by 1 MSS.  The second dup ACK
14221 					 * will increase it by 2 MSS.  This
14222 					 * means that only 1 new segment will
14223 					 * be sent for each dup ACK.
14224 					 */
14225 					if (tcp->tcp_unsent > 0 &&
14226 					    (!tcp->tcp_snd_sack_ok ||
14227 					    (tcp->tcp_snd_sack_ok &&
14228 					    tcp->tcp_notsack_list != NULL))) {
14229 						tcp->tcp_cwnd += mss <<
14230 						    (tcp->tcp_dupack_cnt - 1);
14231 						flags |= TH_LIMIT_XMIT;
14232 					}
14233 				} else if (dupack_cnt ==
14234 				    tcps->tcps_dupack_fast_retransmit) {
14235 
14236 				/*
14237 				 * If we have reduced tcp_ssthresh
14238 				 * because of ECN, do not reduce it again
14239 				 * unless it is already one window of data
14240 				 * away.  After one window of data, tcp_cwr
14241 				 * should then be cleared.  Note that
14242 				 * for non ECN capable connection, tcp_cwr
14243 				 * should always be false.
14244 				 *
14245 				 * Adjust cwnd since the duplicate
14246 				 * ack indicates that a packet was
14247 				 * dropped (due to congestion.)
14248 				 */
14249 				if (!tcp->tcp_cwr) {
14250 					npkt = ((tcp->tcp_snxt -
14251 					    tcp->tcp_suna) >> 1) / mss;
14252 					tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) *
14253 					    mss;
14254 					tcp->tcp_cwnd = (npkt +
14255 					    tcp->tcp_dupack_cnt) * mss;
14256 				}
14257 				if (tcp->tcp_ecn_ok) {
14258 					tcp->tcp_cwr = B_TRUE;
14259 					tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
14260 					tcp->tcp_ecn_cwr_sent = B_FALSE;
14261 				}
14262 
14263 				/*
14264 				 * We do Hoe's algorithm.  Refer to her
14265 				 * paper "Improving the Start-up Behavior
14266 				 * of a Congestion Control Scheme for TCP,"
14267 				 * appeared in SIGCOMM'96.
14268 				 *
14269 				 * Save highest seq no we have sent so far.
14270 				 * Be careful about the invisible FIN byte.
14271 				 */
14272 				if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
14273 				    (tcp->tcp_unsent == 0)) {
14274 					tcp->tcp_rexmit_max = tcp->tcp_fss;
14275 				} else {
14276 					tcp->tcp_rexmit_max = tcp->tcp_snxt;
14277 				}
14278 
14279 				/*
14280 				 * Do not allow bursty traffic during.
14281 				 * fast recovery.  Refer to Fall and Floyd's
14282 				 * paper "Simulation-based Comparisons of
14283 				 * Tahoe, Reno and SACK TCP" (in CCR?)
14284 				 * This is a best current practise.
14285 				 */
14286 				tcp->tcp_snd_burst = TCP_CWND_SS;
14287 
14288 				/*
14289 				 * For SACK:
14290 				 * Calculate tcp_pipe, which is the
14291 				 * estimated number of bytes in
14292 				 * network.
14293 				 *
14294 				 * tcp_fack is the highest sack'ed seq num
14295 				 * TCP has received.
14296 				 *
14297 				 * tcp_pipe is explained in the above quoted
14298 				 * Fall and Floyd's paper.  tcp_fack is
14299 				 * explained in Mathis and Mahdavi's
14300 				 * "Forward Acknowledgment: Refining TCP
14301 				 * Congestion Control" in SIGCOMM '96.
14302 				 */
14303 				if (tcp->tcp_snd_sack_ok) {
14304 					ASSERT(tcp->tcp_sack_info != NULL);
14305 					if (tcp->tcp_notsack_list != NULL) {
14306 						tcp->tcp_pipe = tcp->tcp_snxt -
14307 						    tcp->tcp_fack;
14308 						tcp->tcp_sack_snxt = seg_ack;
14309 						flags |= TH_NEED_SACK_REXMIT;
14310 					} else {
14311 						/*
14312 						 * Always initialize tcp_pipe
14313 						 * even though we don't have
14314 						 * any SACK info.  If later
14315 						 * we get SACK info and
14316 						 * tcp_pipe is not initialized,
14317 						 * funny things will happen.
14318 						 */
14319 						tcp->tcp_pipe =
14320 						    tcp->tcp_cwnd_ssthresh;
14321 					}
14322 				} else {
14323 					flags |= TH_REXMIT_NEEDED;
14324 				} /* tcp_snd_sack_ok */
14325 
14326 				} else {
14327 					/*
14328 					 * Here we perform congestion
14329 					 * avoidance, but NOT slow start.
14330 					 * This is known as the Fast
14331 					 * Recovery Algorithm.
14332 					 */
14333 					if (tcp->tcp_snd_sack_ok &&
14334 					    tcp->tcp_notsack_list != NULL) {
14335 						flags |= TH_NEED_SACK_REXMIT;
14336 						tcp->tcp_pipe -= mss;
14337 						if (tcp->tcp_pipe < 0)
14338 							tcp->tcp_pipe = 0;
14339 					} else {
14340 					/*
14341 					 * We know that one more packet has
14342 					 * left the pipe thus we can update
14343 					 * cwnd.
14344 					 */
14345 					cwnd = tcp->tcp_cwnd + mss;
14346 					if (cwnd > tcp->tcp_cwnd_max)
14347 						cwnd = tcp->tcp_cwnd_max;
14348 					tcp->tcp_cwnd = cwnd;
14349 					if (tcp->tcp_unsent > 0)
14350 						flags |= TH_XMIT_NEEDED;
14351 					}
14352 				}
14353 			}
14354 		} else if (tcp->tcp_zero_win_probe) {
14355 			/*
14356 			 * If the window has opened, need to arrange
14357 			 * to send additional data.
14358 			 */
14359 			if (new_swnd != 0) {
14360 				/* tcp_suna != tcp_snxt */
14361 				/* Packet contains a window update */
14362 				BUMP_MIB(&tcps->tcps_mib, tcpInWinUpdate);
14363 				tcp->tcp_zero_win_probe = 0;
14364 				tcp->tcp_timer_backoff = 0;
14365 				tcp->tcp_ms_we_have_waited = 0;
14366 
14367 				/*
14368 				 * Transmit starting with tcp_suna since
14369 				 * the one byte probe is not ack'ed.
14370 				 * If TCP has sent more than one identical
14371 				 * probe, tcp_rexmit will be set.  That means
14372 				 * tcp_ss_rexmit() will send out the one
14373 				 * byte along with new data.  Otherwise,
14374 				 * fake the retransmission.
14375 				 */
14376 				flags |= TH_XMIT_NEEDED;
14377 				if (!tcp->tcp_rexmit) {
14378 					tcp->tcp_rexmit = B_TRUE;
14379 					tcp->tcp_dupack_cnt = 0;
14380 					tcp->tcp_rexmit_nxt = tcp->tcp_suna;
14381 					tcp->tcp_rexmit_max = tcp->tcp_suna + 1;
14382 				}
14383 			}
14384 		}
14385 		goto swnd_update;
14386 	}
14387 
14388 	/*
14389 	 * Check for "acceptability" of ACK value per RFC 793, pages 72 - 73.
14390 	 * If the ACK value acks something that we have not yet sent, it might
14391 	 * be an old duplicate segment.  Send an ACK to re-synchronize the
14392 	 * other side.
14393 	 * Note: reset in response to unacceptable ACK in SYN_RECEIVE
14394 	 * state is handled above, so we can always just drop the segment and
14395 	 * send an ACK here.
14396 	 *
14397 	 * Should we send ACKs in response to ACK only segments?
14398 	 */
14399 	if (SEQ_GT(seg_ack, tcp->tcp_snxt)) {
14400 		BUMP_MIB(&tcps->tcps_mib, tcpInAckUnsent);
14401 		/* drop the received segment */
14402 		freemsg(mp);
14403 
14404 		/*
14405 		 * Send back an ACK.  If tcp_drop_ack_unsent_cnt is
14406 		 * greater than 0, check if the number of such
14407 		 * bogus ACks is greater than that count.  If yes,
14408 		 * don't send back any ACK.  This prevents TCP from
14409 		 * getting into an ACK storm if somehow an attacker
14410 		 * successfully spoofs an acceptable segment to our
14411 		 * peer.
14412 		 */
14413 		if (tcp_drop_ack_unsent_cnt > 0 &&
14414 		    ++tcp->tcp_in_ack_unsent > tcp_drop_ack_unsent_cnt) {
14415 			TCP_STAT(tcps, tcp_in_ack_unsent_drop);
14416 			return;
14417 		}
14418 		mp = tcp_ack_mp(tcp);
14419 		if (mp != NULL) {
14420 			TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
14421 			BUMP_LOCAL(tcp->tcp_obsegs);
14422 			BUMP_MIB(&tcps->tcps_mib, tcpOutAck);
14423 			tcp_send_data(tcp, tcp->tcp_wq, mp);
14424 		}
14425 		return;
14426 	}
14427 
14428 	/*
14429 	 * TCP gets a new ACK, update the notsack'ed list to delete those
14430 	 * blocks that are covered by this ACK.
14431 	 */
14432 	if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) {
14433 		tcp_notsack_remove(&(tcp->tcp_notsack_list), seg_ack,
14434 		    &(tcp->tcp_num_notsack_blk), &(tcp->tcp_cnt_notsack_list));
14435 	}
14436 
14437 	/*
14438 	 * If we got an ACK after fast retransmit, check to see
14439 	 * if it is a partial ACK.  If it is not and the congestion
14440 	 * window was inflated to account for the other side's
14441 	 * cached packets, retract it.  If it is, do Hoe's algorithm.
14442 	 */
14443 	if (tcp->tcp_dupack_cnt >= tcps->tcps_dupack_fast_retransmit) {
14444 		ASSERT(tcp->tcp_rexmit == B_FALSE);
14445 		if (SEQ_GEQ(seg_ack, tcp->tcp_rexmit_max)) {
14446 			tcp->tcp_dupack_cnt = 0;
14447 			/*
14448 			 * Restore the orig tcp_cwnd_ssthresh after
14449 			 * fast retransmit phase.
14450 			 */
14451 			if (tcp->tcp_cwnd > tcp->tcp_cwnd_ssthresh) {
14452 				tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh;
14453 			}
14454 			tcp->tcp_rexmit_max = seg_ack;
14455 			tcp->tcp_cwnd_cnt = 0;
14456 			tcp->tcp_snd_burst = tcp->tcp_localnet ?
14457 			    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
14458 
14459 			/*
14460 			 * Remove all notsack info to avoid confusion with
14461 			 * the next fast retrasnmit/recovery phase.
14462 			 */
14463 			if (tcp->tcp_snd_sack_ok &&
14464 			    tcp->tcp_notsack_list != NULL) {
14465 				TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list);
14466 			}
14467 		} else {
14468 			if (tcp->tcp_snd_sack_ok &&
14469 			    tcp->tcp_notsack_list != NULL) {
14470 				flags |= TH_NEED_SACK_REXMIT;
14471 				tcp->tcp_pipe -= mss;
14472 				if (tcp->tcp_pipe < 0)
14473 					tcp->tcp_pipe = 0;
14474 			} else {
14475 				/*
14476 				 * Hoe's algorithm:
14477 				 *
14478 				 * Retransmit the unack'ed segment and
14479 				 * restart fast recovery.  Note that we
14480 				 * need to scale back tcp_cwnd to the
14481 				 * original value when we started fast
14482 				 * recovery.  This is to prevent overly
14483 				 * aggressive behaviour in sending new
14484 				 * segments.
14485 				 */
14486 				tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh +
14487 				    tcps->tcps_dupack_fast_retransmit * mss;
14488 				tcp->tcp_cwnd_cnt = tcp->tcp_cwnd;
14489 				flags |= TH_REXMIT_NEEDED;
14490 			}
14491 		}
14492 	} else {
14493 		tcp->tcp_dupack_cnt = 0;
14494 		if (tcp->tcp_rexmit) {
14495 			/*
14496 			 * TCP is retranmitting.  If the ACK ack's all
14497 			 * outstanding data, update tcp_rexmit_max and
14498 			 * tcp_rexmit_nxt.  Otherwise, update tcp_rexmit_nxt
14499 			 * to the correct value.
14500 			 *
14501 			 * Note that SEQ_LEQ() is used.  This is to avoid
14502 			 * unnecessary fast retransmit caused by dup ACKs
14503 			 * received when TCP does slow start retransmission
14504 			 * after a time out.  During this phase, TCP may
14505 			 * send out segments which are already received.
14506 			 * This causes dup ACKs to be sent back.
14507 			 */
14508 			if (SEQ_LEQ(seg_ack, tcp->tcp_rexmit_max)) {
14509 				if (SEQ_GT(seg_ack, tcp->tcp_rexmit_nxt)) {
14510 					tcp->tcp_rexmit_nxt = seg_ack;
14511 				}
14512 				if (seg_ack != tcp->tcp_rexmit_max) {
14513 					flags |= TH_XMIT_NEEDED;
14514 				}
14515 			} else {
14516 				tcp->tcp_rexmit = B_FALSE;
14517 				tcp->tcp_xmit_zc_clean = B_FALSE;
14518 				tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
14519 				tcp->tcp_snd_burst = tcp->tcp_localnet ?
14520 				    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
14521 			}
14522 			tcp->tcp_ms_we_have_waited = 0;
14523 		}
14524 	}
14525 
14526 	BUMP_MIB(&tcps->tcps_mib, tcpInAckSegs);
14527 	UPDATE_MIB(&tcps->tcps_mib, tcpInAckBytes, bytes_acked);
14528 	tcp->tcp_suna = seg_ack;
14529 	if (tcp->tcp_zero_win_probe != 0) {
14530 		tcp->tcp_zero_win_probe = 0;
14531 		tcp->tcp_timer_backoff = 0;
14532 	}
14533 
14534 	/*
14535 	 * If tcp_xmit_head is NULL, then it must be the FIN being ack'ed.
14536 	 * Note that it cannot be the SYN being ack'ed.  The code flow
14537 	 * will not reach here.
14538 	 */
14539 	if (mp1 == NULL) {
14540 		goto fin_acked;
14541 	}
14542 
14543 	/*
14544 	 * Update the congestion window.
14545 	 *
14546 	 * If TCP is not ECN capable or TCP is ECN capable but the
14547 	 * congestion experience bit is not set, increase the tcp_cwnd as
14548 	 * usual.
14549 	 */
14550 	if (!tcp->tcp_ecn_ok || !(flags & TH_ECE)) {
14551 		cwnd = tcp->tcp_cwnd;
14552 		add = mss;
14553 
14554 		if (cwnd >= tcp->tcp_cwnd_ssthresh) {
14555 			/*
14556 			 * This is to prevent an increase of less than 1 MSS of
14557 			 * tcp_cwnd.  With partial increase, tcp_wput_data()
14558 			 * may send out tinygrams in order to preserve mblk
14559 			 * boundaries.
14560 			 *
14561 			 * By initializing tcp_cwnd_cnt to new tcp_cwnd and
14562 			 * decrementing it by 1 MSS for every ACKs, tcp_cwnd is
14563 			 * increased by 1 MSS for every RTTs.
14564 			 */
14565 			if (tcp->tcp_cwnd_cnt <= 0) {
14566 				tcp->tcp_cwnd_cnt = cwnd + add;
14567 			} else {
14568 				tcp->tcp_cwnd_cnt -= add;
14569 				add = 0;
14570 			}
14571 		}
14572 		tcp->tcp_cwnd = MIN(cwnd + add, tcp->tcp_cwnd_max);
14573 	}
14574 
14575 	/* See if the latest urgent data has been acknowledged */
14576 	if ((tcp->tcp_valid_bits & TCP_URG_VALID) &&
14577 	    SEQ_GT(seg_ack, tcp->tcp_urg))
14578 		tcp->tcp_valid_bits &= ~TCP_URG_VALID;
14579 
14580 	/* Can we update the RTT estimates? */
14581 	if (tcp->tcp_snd_ts_ok) {
14582 		/* Ignore zero timestamp echo-reply. */
14583 		if (tcpopt.tcp_opt_ts_ecr != 0) {
14584 			tcp_set_rto(tcp, (int32_t)lbolt -
14585 			    (int32_t)tcpopt.tcp_opt_ts_ecr);
14586 		}
14587 
14588 		/* If needed, restart the timer. */
14589 		if (tcp->tcp_set_timer == 1) {
14590 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
14591 			tcp->tcp_set_timer = 0;
14592 		}
14593 		/*
14594 		 * Update tcp_csuna in case the other side stops sending
14595 		 * us timestamps.
14596 		 */
14597 		tcp->tcp_csuna = tcp->tcp_snxt;
14598 	} else if (SEQ_GT(seg_ack, tcp->tcp_csuna)) {
14599 		/*
14600 		 * An ACK sequence we haven't seen before, so get the RTT
14601 		 * and update the RTO. But first check if the timestamp is
14602 		 * valid to use.
14603 		 */
14604 		if ((mp1->b_next != NULL) &&
14605 		    SEQ_GT(seg_ack, (uint32_t)(uintptr_t)(mp1->b_next)))
14606 			tcp_set_rto(tcp, (int32_t)lbolt -
14607 			    (int32_t)(intptr_t)mp1->b_prev);
14608 		else
14609 			BUMP_MIB(&tcps->tcps_mib, tcpRttNoUpdate);
14610 
14611 		/* Remeber the last sequence to be ACKed */
14612 		tcp->tcp_csuna = seg_ack;
14613 		if (tcp->tcp_set_timer == 1) {
14614 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
14615 			tcp->tcp_set_timer = 0;
14616 		}
14617 	} else {
14618 		BUMP_MIB(&tcps->tcps_mib, tcpRttNoUpdate);
14619 	}
14620 
14621 	/* Eat acknowledged bytes off the xmit queue. */
14622 	for (;;) {
14623 		mblk_t	*mp2;
14624 		uchar_t	*wptr;
14625 
14626 		wptr = mp1->b_wptr;
14627 		ASSERT((uintptr_t)(wptr - mp1->b_rptr) <= (uintptr_t)INT_MAX);
14628 		bytes_acked -= (int)(wptr - mp1->b_rptr);
14629 		if (bytes_acked < 0) {
14630 			mp1->b_rptr = wptr + bytes_acked;
14631 			/*
14632 			 * Set a new timestamp if all the bytes timed by the
14633 			 * old timestamp have been ack'ed.
14634 			 */
14635 			if (SEQ_GT(seg_ack,
14636 			    (uint32_t)(uintptr_t)(mp1->b_next))) {
14637 				mp1->b_prev = (mblk_t *)(uintptr_t)lbolt;
14638 				mp1->b_next = NULL;
14639 			}
14640 			break;
14641 		}
14642 		mp1->b_next = NULL;
14643 		mp1->b_prev = NULL;
14644 		mp2 = mp1;
14645 		mp1 = mp1->b_cont;
14646 
14647 		/*
14648 		 * This notification is required for some zero-copy
14649 		 * clients to maintain a copy semantic. After the data
14650 		 * is ack'ed, client is safe to modify or reuse the buffer.
14651 		 */
14652 		if (tcp->tcp_snd_zcopy_aware &&
14653 		    (mp2->b_datap->db_struioflag & STRUIO_ZCNOTIFY))
14654 			tcp_zcopy_notify(tcp);
14655 		freeb(mp2);
14656 		if (bytes_acked == 0) {
14657 			if (mp1 == NULL) {
14658 				/* Everything is ack'ed, clear the tail. */
14659 				tcp->tcp_xmit_tail = NULL;
14660 				/*
14661 				 * Cancel the timer unless we are still
14662 				 * waiting for an ACK for the FIN packet.
14663 				 */
14664 				if (tcp->tcp_timer_tid != 0 &&
14665 				    tcp->tcp_snxt == tcp->tcp_suna) {
14666 					(void) TCP_TIMER_CANCEL(tcp,
14667 					    tcp->tcp_timer_tid);
14668 					tcp->tcp_timer_tid = 0;
14669 				}
14670 				goto pre_swnd_update;
14671 			}
14672 			if (mp2 != tcp->tcp_xmit_tail)
14673 				break;
14674 			tcp->tcp_xmit_tail = mp1;
14675 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
14676 			    (uintptr_t)INT_MAX);
14677 			tcp->tcp_xmit_tail_unsent = (int)(mp1->b_wptr -
14678 			    mp1->b_rptr);
14679 			break;
14680 		}
14681 		if (mp1 == NULL) {
14682 			/*
14683 			 * More was acked but there is nothing more
14684 			 * outstanding.  This means that the FIN was
14685 			 * just acked or that we're talking to a clown.
14686 			 */
14687 fin_acked:
14688 			ASSERT(tcp->tcp_fin_sent);
14689 			tcp->tcp_xmit_tail = NULL;
14690 			if (tcp->tcp_fin_sent) {
14691 				/* FIN was acked - making progress */
14692 				if (tcp->tcp_ipversion == IPV6_VERSION &&
14693 				    !tcp->tcp_fin_acked)
14694 					tcp->tcp_ip_forward_progress = B_TRUE;
14695 				tcp->tcp_fin_acked = B_TRUE;
14696 				if (tcp->tcp_linger_tid != 0 &&
14697 				    TCP_TIMER_CANCEL(tcp,
14698 				    tcp->tcp_linger_tid) >= 0) {
14699 					tcp_stop_lingering(tcp);
14700 					freemsg(mp);
14701 					mp = NULL;
14702 				}
14703 			} else {
14704 				/*
14705 				 * We should never get here because
14706 				 * we have already checked that the
14707 				 * number of bytes ack'ed should be
14708 				 * smaller than or equal to what we
14709 				 * have sent so far (it is the
14710 				 * acceptability check of the ACK).
14711 				 * We can only get here if the send
14712 				 * queue is corrupted.
14713 				 *
14714 				 * Terminate the connection and
14715 				 * panic the system.  It is better
14716 				 * for us to panic instead of
14717 				 * continuing to avoid other disaster.
14718 				 */
14719 				tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
14720 				    tcp->tcp_rnxt, TH_RST|TH_ACK);
14721 				panic("Memory corruption "
14722 				    "detected for connection %s.",
14723 				    tcp_display(tcp, NULL,
14724 				    DISP_ADDR_AND_PORT));
14725 				/*NOTREACHED*/
14726 			}
14727 			goto pre_swnd_update;
14728 		}
14729 		ASSERT(mp2 != tcp->tcp_xmit_tail);
14730 	}
14731 	if (tcp->tcp_unsent) {
14732 		flags |= TH_XMIT_NEEDED;
14733 	}
14734 pre_swnd_update:
14735 	tcp->tcp_xmit_head = mp1;
14736 swnd_update:
14737 	/*
14738 	 * The following check is different from most other implementations.
14739 	 * For bi-directional transfer, when segments are dropped, the
14740 	 * "normal" check will not accept a window update in those
14741 	 * retransmitted segemnts.  Failing to do that, TCP may send out
14742 	 * segments which are outside receiver's window.  As TCP accepts
14743 	 * the ack in those retransmitted segments, if the window update in
14744 	 * the same segment is not accepted, TCP will incorrectly calculates
14745 	 * that it can send more segments.  This can create a deadlock
14746 	 * with the receiver if its window becomes zero.
14747 	 */
14748 	if (SEQ_LT(tcp->tcp_swl2, seg_ack) ||
14749 	    SEQ_LT(tcp->tcp_swl1, seg_seq) ||
14750 	    (tcp->tcp_swl1 == seg_seq && new_swnd > tcp->tcp_swnd)) {
14751 		/*
14752 		 * The criteria for update is:
14753 		 *
14754 		 * 1. the segment acknowledges some data.  Or
14755 		 * 2. the segment is new, i.e. it has a higher seq num. Or
14756 		 * 3. the segment is not old and the advertised window is
14757 		 * larger than the previous advertised window.
14758 		 */
14759 		if (tcp->tcp_unsent && new_swnd > tcp->tcp_swnd)
14760 			flags |= TH_XMIT_NEEDED;
14761 		tcp->tcp_swnd = new_swnd;
14762 		if (new_swnd > tcp->tcp_max_swnd)
14763 			tcp->tcp_max_swnd = new_swnd;
14764 		tcp->tcp_swl1 = seg_seq;
14765 		tcp->tcp_swl2 = seg_ack;
14766 	}
14767 est:
14768 	if (tcp->tcp_state > TCPS_ESTABLISHED) {
14769 
14770 		switch (tcp->tcp_state) {
14771 		case TCPS_FIN_WAIT_1:
14772 			if (tcp->tcp_fin_acked) {
14773 				tcp->tcp_state = TCPS_FIN_WAIT_2;
14774 				/*
14775 				 * We implement the non-standard BSD/SunOS
14776 				 * FIN_WAIT_2 flushing algorithm.
14777 				 * If there is no user attached to this
14778 				 * TCP endpoint, then this TCP struct
14779 				 * could hang around forever in FIN_WAIT_2
14780 				 * state if the peer forgets to send us
14781 				 * a FIN.  To prevent this, we wait only
14782 				 * 2*MSL (a convenient time value) for
14783 				 * the FIN to arrive.  If it doesn't show up,
14784 				 * we flush the TCP endpoint.  This algorithm,
14785 				 * though a violation of RFC-793, has worked
14786 				 * for over 10 years in BSD systems.
14787 				 * Note: SunOS 4.x waits 675 seconds before
14788 				 * flushing the FIN_WAIT_2 connection.
14789 				 */
14790 				TCP_TIMER_RESTART(tcp,
14791 				    tcps->tcps_fin_wait_2_flush_interval);
14792 			}
14793 			break;
14794 		case TCPS_FIN_WAIT_2:
14795 			break;	/* Shutdown hook? */
14796 		case TCPS_LAST_ACK:
14797 			freemsg(mp);
14798 			if (tcp->tcp_fin_acked) {
14799 				(void) tcp_clean_death(tcp, 0, 19);
14800 				return;
14801 			}
14802 			goto xmit_check;
14803 		case TCPS_CLOSING:
14804 			if (tcp->tcp_fin_acked) {
14805 				tcp->tcp_state = TCPS_TIME_WAIT;
14806 				/*
14807 				 * Unconditionally clear the exclusive binding
14808 				 * bit so this TIME-WAIT connection won't
14809 				 * interfere with new ones.
14810 				 */
14811 				tcp->tcp_exclbind = 0;
14812 				if (!TCP_IS_DETACHED(tcp)) {
14813 					TCP_TIMER_RESTART(tcp,
14814 					    tcps->tcps_time_wait_interval);
14815 				} else {
14816 					tcp_time_wait_append(tcp);
14817 					TCP_DBGSTAT(tcps, tcp_rput_time_wait);
14818 				}
14819 			}
14820 			/*FALLTHRU*/
14821 		case TCPS_CLOSE_WAIT:
14822 			freemsg(mp);
14823 			goto xmit_check;
14824 		default:
14825 			ASSERT(tcp->tcp_state != TCPS_TIME_WAIT);
14826 			break;
14827 		}
14828 	}
14829 	if (flags & TH_FIN) {
14830 		/* Make sure we ack the fin */
14831 		flags |= TH_ACK_NEEDED;
14832 		if (!tcp->tcp_fin_rcvd) {
14833 			tcp->tcp_fin_rcvd = B_TRUE;
14834 			tcp->tcp_rnxt++;
14835 			tcph = tcp->tcp_tcph;
14836 			U32_TO_ABE32(tcp->tcp_rnxt, tcph->th_ack);
14837 
14838 			/*
14839 			 * Generate the ordrel_ind at the end unless we
14840 			 * are an eager guy.
14841 			 * In the eager case tcp_rsrv will do this when run
14842 			 * after tcp_accept is done.
14843 			 */
14844 			if (tcp->tcp_listener == NULL &&
14845 			    !TCP_IS_DETACHED(tcp) && (!tcp->tcp_hard_binding))
14846 				flags |= TH_ORDREL_NEEDED;
14847 			switch (tcp->tcp_state) {
14848 			case TCPS_SYN_RCVD:
14849 			case TCPS_ESTABLISHED:
14850 				tcp->tcp_state = TCPS_CLOSE_WAIT;
14851 				/* Keepalive? */
14852 				break;
14853 			case TCPS_FIN_WAIT_1:
14854 				if (!tcp->tcp_fin_acked) {
14855 					tcp->tcp_state = TCPS_CLOSING;
14856 					break;
14857 				}
14858 				/* FALLTHRU */
14859 			case TCPS_FIN_WAIT_2:
14860 				tcp->tcp_state = TCPS_TIME_WAIT;
14861 				/*
14862 				 * Unconditionally clear the exclusive binding
14863 				 * bit so this TIME-WAIT connection won't
14864 				 * interfere with new ones.
14865 				 */
14866 				tcp->tcp_exclbind = 0;
14867 				if (!TCP_IS_DETACHED(tcp)) {
14868 					TCP_TIMER_RESTART(tcp,
14869 					    tcps->tcps_time_wait_interval);
14870 				} else {
14871 					tcp_time_wait_append(tcp);
14872 					TCP_DBGSTAT(tcps, tcp_rput_time_wait);
14873 				}
14874 				if (seg_len) {
14875 					/*
14876 					 * implies data piggybacked on FIN.
14877 					 * break to handle data.
14878 					 */
14879 					break;
14880 				}
14881 				freemsg(mp);
14882 				goto ack_check;
14883 			}
14884 		}
14885 	}
14886 	if (mp == NULL)
14887 		goto xmit_check;
14888 	if (seg_len == 0) {
14889 		freemsg(mp);
14890 		goto xmit_check;
14891 	}
14892 	if (mp->b_rptr == mp->b_wptr) {
14893 		/*
14894 		 * The header has been consumed, so we remove the
14895 		 * zero-length mblk here.
14896 		 */
14897 		mp1 = mp;
14898 		mp = mp->b_cont;
14899 		freeb(mp1);
14900 	}
14901 	tcph = tcp->tcp_tcph;
14902 	tcp->tcp_rack_cnt++;
14903 	{
14904 		uint32_t cur_max;
14905 
14906 		cur_max = tcp->tcp_rack_cur_max;
14907 		if (tcp->tcp_rack_cnt >= cur_max) {
14908 			/*
14909 			 * We have more unacked data than we should - send
14910 			 * an ACK now.
14911 			 */
14912 			flags |= TH_ACK_NEEDED;
14913 			cur_max++;
14914 			if (cur_max > tcp->tcp_rack_abs_max)
14915 				tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max;
14916 			else
14917 				tcp->tcp_rack_cur_max = cur_max;
14918 		} else if (TCP_IS_DETACHED(tcp)) {
14919 			/* We don't have an ACK timer for detached TCP. */
14920 			flags |= TH_ACK_NEEDED;
14921 		} else if (seg_len < mss) {
14922 			/*
14923 			 * If we get a segment that is less than an mss, and we
14924 			 * already have unacknowledged data, and the amount
14925 			 * unacknowledged is not a multiple of mss, then we
14926 			 * better generate an ACK now.  Otherwise, this may be
14927 			 * the tail piece of a transaction, and we would rather
14928 			 * wait for the response.
14929 			 */
14930 			uint32_t udif;
14931 			ASSERT((uintptr_t)(tcp->tcp_rnxt - tcp->tcp_rack) <=
14932 			    (uintptr_t)INT_MAX);
14933 			udif = (int)(tcp->tcp_rnxt - tcp->tcp_rack);
14934 			if (udif && (udif % mss))
14935 				flags |= TH_ACK_NEEDED;
14936 			else
14937 				flags |= TH_ACK_TIMER_NEEDED;
14938 		} else {
14939 			/* Start delayed ack timer */
14940 			flags |= TH_ACK_TIMER_NEEDED;
14941 		}
14942 	}
14943 	tcp->tcp_rnxt += seg_len;
14944 	U32_TO_ABE32(tcp->tcp_rnxt, tcph->th_ack);
14945 
14946 	/* Update SACK list */
14947 	if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
14948 		tcp_sack_remove(tcp->tcp_sack_list, tcp->tcp_rnxt,
14949 		    &(tcp->tcp_num_sack_blk));
14950 	}
14951 
14952 	if (tcp->tcp_urp_mp) {
14953 		tcp->tcp_urp_mp->b_cont = mp;
14954 		mp = tcp->tcp_urp_mp;
14955 		tcp->tcp_urp_mp = NULL;
14956 		/* Ready for a new signal. */
14957 		tcp->tcp_urp_last_valid = B_FALSE;
14958 #ifdef DEBUG
14959 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
14960 		    "tcp_rput: sending exdata_ind %s",
14961 		    tcp_display(tcp, NULL, DISP_PORT_ONLY));
14962 #endif /* DEBUG */
14963 	}
14964 
14965 	/*
14966 	 * Check for ancillary data changes compared to last segment.
14967 	 */
14968 	if (tcp->tcp_ipv6_recvancillary != 0) {
14969 		mp = tcp_rput_add_ancillary(tcp, mp, &ipp);
14970 		if (mp == NULL)
14971 			return;
14972 	}
14973 
14974 	if (tcp->tcp_listener || tcp->tcp_hard_binding) {
14975 		/*
14976 		 * Side queue inbound data until the accept happens.
14977 		 * tcp_accept/tcp_rput drains this when the accept happens.
14978 		 * M_DATA is queued on b_cont. Otherwise (T_OPTDATA_IND or
14979 		 * T_EXDATA_IND) it is queued on b_next.
14980 		 * XXX Make urgent data use this. Requires:
14981 		 *	Removing tcp_listener check for TH_URG
14982 		 *	Making M_PCPROTO and MARK messages skip the eager case
14983 		 */
14984 
14985 		if (tcp->tcp_kssl_pending) {
14986 			DTRACE_PROBE1(kssl_mblk__ksslinput_pending,
14987 			    mblk_t *, mp);
14988 			tcp_kssl_input(tcp, mp);
14989 		} else {
14990 			tcp_rcv_enqueue(tcp, mp, seg_len);
14991 		}
14992 	} else {
14993 		if (mp->b_datap->db_type != M_DATA ||
14994 		    (flags & TH_MARKNEXT_NEEDED)) {
14995 			if (tcp->tcp_rcv_list != NULL) {
14996 				flags |= tcp_rcv_drain(tcp->tcp_rq, tcp);
14997 			}
14998 			ASSERT(tcp->tcp_rcv_list == NULL ||
14999 			    tcp->tcp_fused_sigurg);
15000 			if (flags & TH_MARKNEXT_NEEDED) {
15001 #ifdef DEBUG
15002 				(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
15003 				    "tcp_rput: sending MSGMARKNEXT %s",
15004 				    tcp_display(tcp, NULL,
15005 				    DISP_PORT_ONLY));
15006 #endif /* DEBUG */
15007 				mp->b_flag |= MSGMARKNEXT;
15008 				flags &= ~TH_MARKNEXT_NEEDED;
15009 			}
15010 
15011 			/* Does this need SSL processing first? */
15012 			if ((tcp->tcp_kssl_ctx != NULL) &&
15013 			    (DB_TYPE(mp) == M_DATA)) {
15014 				DTRACE_PROBE1(kssl_mblk__ksslinput_data1,
15015 				    mblk_t *, mp);
15016 				tcp_kssl_input(tcp, mp);
15017 			} else {
15018 				putnext(tcp->tcp_rq, mp);
15019 				if (!canputnext(tcp->tcp_rq))
15020 					tcp->tcp_rwnd -= seg_len;
15021 			}
15022 		} else if ((flags & (TH_PUSH|TH_FIN)) ||
15023 		    tcp->tcp_rcv_cnt + seg_len >= tcp->tcp_rq->q_hiwat >> 3) {
15024 			if (tcp->tcp_rcv_list != NULL) {
15025 				/*
15026 				 * Enqueue the new segment first and then
15027 				 * call tcp_rcv_drain() to send all data
15028 				 * up.  The other way to do this is to
15029 				 * send all queued data up and then call
15030 				 * putnext() to send the new segment up.
15031 				 * This way can remove the else part later
15032 				 * on.
15033 				 *
15034 				 * We don't this to avoid one more call to
15035 				 * canputnext() as tcp_rcv_drain() needs to
15036 				 * call canputnext().
15037 				 */
15038 				tcp_rcv_enqueue(tcp, mp, seg_len);
15039 				flags |= tcp_rcv_drain(tcp->tcp_rq, tcp);
15040 			} else {
15041 				/* Does this need SSL processing first? */
15042 				if ((tcp->tcp_kssl_ctx != NULL) &&
15043 				    (DB_TYPE(mp) == M_DATA)) {
15044 					DTRACE_PROBE1(
15045 					    kssl_mblk__ksslinput_data2,
15046 					    mblk_t *, mp);
15047 					tcp_kssl_input(tcp, mp);
15048 				} else {
15049 					putnext(tcp->tcp_rq, mp);
15050 					if (!canputnext(tcp->tcp_rq))
15051 						tcp->tcp_rwnd -= seg_len;
15052 				}
15053 			}
15054 		} else {
15055 			/*
15056 			 * Enqueue all packets when processing an mblk
15057 			 * from the co queue and also enqueue normal packets.
15058 			 * For packets which belong to SSL stream do SSL
15059 			 * processing first.
15060 			 */
15061 			if ((tcp->tcp_kssl_ctx != NULL) &&
15062 			    (DB_TYPE(mp) == M_DATA)) {
15063 				DTRACE_PROBE1(kssl_mblk__tcpksslin3,
15064 				    mblk_t *, mp);
15065 				tcp_kssl_input(tcp, mp);
15066 			} else {
15067 				tcp_rcv_enqueue(tcp, mp, seg_len);
15068 			}
15069 		}
15070 		/*
15071 		 * Make sure the timer is running if we have data waiting
15072 		 * for a push bit. This provides resiliency against
15073 		 * implementations that do not correctly generate push bits.
15074 		 */
15075 		if (tcp->tcp_rcv_list != NULL && tcp->tcp_push_tid == 0) {
15076 			/*
15077 			 * The connection may be closed at this point, so don't
15078 			 * do anything for a detached tcp.
15079 			 */
15080 			if (!TCP_IS_DETACHED(tcp))
15081 				tcp->tcp_push_tid = TCP_TIMER(tcp,
15082 				    tcp_push_timer,
15083 				    MSEC_TO_TICK(
15084 				    tcps->tcps_push_timer_interval));
15085 		}
15086 	}
15087 xmit_check:
15088 	/* Is there anything left to do? */
15089 	ASSERT(!(flags & TH_MARKNEXT_NEEDED));
15090 	if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_ACK_NEEDED|
15091 	    TH_NEED_SACK_REXMIT|TH_LIMIT_XMIT|TH_ACK_TIMER_NEEDED|
15092 	    TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0)
15093 		goto done;
15094 
15095 	/* Any transmit work to do and a non-zero window? */
15096 	if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_NEED_SACK_REXMIT|
15097 	    TH_LIMIT_XMIT)) && tcp->tcp_swnd != 0) {
15098 		if (flags & TH_REXMIT_NEEDED) {
15099 			uint32_t snd_size = tcp->tcp_snxt - tcp->tcp_suna;
15100 
15101 			BUMP_MIB(&tcps->tcps_mib, tcpOutFastRetrans);
15102 			if (snd_size > mss)
15103 				snd_size = mss;
15104 			if (snd_size > tcp->tcp_swnd)
15105 				snd_size = tcp->tcp_swnd;
15106 			mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, snd_size,
15107 			    NULL, NULL, tcp->tcp_suna, B_TRUE, &snd_size,
15108 			    B_TRUE);
15109 
15110 			if (mp1 != NULL) {
15111 				tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt;
15112 				tcp->tcp_csuna = tcp->tcp_snxt;
15113 				BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs);
15114 				UPDATE_MIB(&tcps->tcps_mib,
15115 				    tcpRetransBytes, snd_size);
15116 				TCP_RECORD_TRACE(tcp, mp1,
15117 				    TCP_TRACE_SEND_PKT);
15118 				tcp_send_data(tcp, tcp->tcp_wq, mp1);
15119 			}
15120 		}
15121 		if (flags & TH_NEED_SACK_REXMIT) {
15122 			tcp_sack_rxmit(tcp, &flags);
15123 		}
15124 		/*
15125 		 * For TH_LIMIT_XMIT, tcp_wput_data() is called to send
15126 		 * out new segment.  Note that tcp_rexmit should not be
15127 		 * set, otherwise TH_LIMIT_XMIT should not be set.
15128 		 */
15129 		if (flags & (TH_XMIT_NEEDED|TH_LIMIT_XMIT)) {
15130 			if (!tcp->tcp_rexmit) {
15131 				tcp_wput_data(tcp, NULL, B_FALSE);
15132 			} else {
15133 				tcp_ss_rexmit(tcp);
15134 			}
15135 		}
15136 		/*
15137 		 * Adjust tcp_cwnd back to normal value after sending
15138 		 * new data segments.
15139 		 */
15140 		if (flags & TH_LIMIT_XMIT) {
15141 			tcp->tcp_cwnd -= mss << (tcp->tcp_dupack_cnt - 1);
15142 			/*
15143 			 * This will restart the timer.  Restarting the
15144 			 * timer is used to avoid a timeout before the
15145 			 * limited transmitted segment's ACK gets back.
15146 			 */
15147 			if (tcp->tcp_xmit_head != NULL)
15148 				tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt;
15149 		}
15150 
15151 		/* Anything more to do? */
15152 		if ((flags & (TH_ACK_NEEDED|TH_ACK_TIMER_NEEDED|
15153 		    TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0)
15154 			goto done;
15155 	}
15156 ack_check:
15157 	if (flags & TH_SEND_URP_MARK) {
15158 		ASSERT(tcp->tcp_urp_mark_mp);
15159 		/*
15160 		 * Send up any queued data and then send the mark message
15161 		 */
15162 		if (tcp->tcp_rcv_list != NULL) {
15163 			flags |= tcp_rcv_drain(tcp->tcp_rq, tcp);
15164 		}
15165 		ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg);
15166 
15167 		mp1 = tcp->tcp_urp_mark_mp;
15168 		tcp->tcp_urp_mark_mp = NULL;
15169 #ifdef DEBUG
15170 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
15171 		    "tcp_rput: sending zero-length %s %s",
15172 		    ((mp1->b_flag & MSGMARKNEXT) ? "MSGMARKNEXT" :
15173 		    "MSGNOTMARKNEXT"),
15174 		    tcp_display(tcp, NULL, DISP_PORT_ONLY));
15175 #endif /* DEBUG */
15176 		putnext(tcp->tcp_rq, mp1);
15177 		flags &= ~TH_SEND_URP_MARK;
15178 	}
15179 	if (flags & TH_ACK_NEEDED) {
15180 		/*
15181 		 * Time to send an ack for some reason.
15182 		 */
15183 		mp1 = tcp_ack_mp(tcp);
15184 
15185 		if (mp1 != NULL) {
15186 			TCP_RECORD_TRACE(tcp, mp1, TCP_TRACE_SEND_PKT);
15187 			tcp_send_data(tcp, tcp->tcp_wq, mp1);
15188 			BUMP_LOCAL(tcp->tcp_obsegs);
15189 			BUMP_MIB(&tcps->tcps_mib, tcpOutAck);
15190 		}
15191 		if (tcp->tcp_ack_tid != 0) {
15192 			(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid);
15193 			tcp->tcp_ack_tid = 0;
15194 		}
15195 	}
15196 	if (flags & TH_ACK_TIMER_NEEDED) {
15197 		/*
15198 		 * Arrange for deferred ACK or push wait timeout.
15199 		 * Start timer if it is not already running.
15200 		 */
15201 		if (tcp->tcp_ack_tid == 0) {
15202 			tcp->tcp_ack_tid = TCP_TIMER(tcp, tcp_ack_timer,
15203 			    MSEC_TO_TICK(tcp->tcp_localnet ?
15204 			    (clock_t)tcps->tcps_local_dack_interval :
15205 			    (clock_t)tcps->tcps_deferred_ack_interval));
15206 		}
15207 	}
15208 	if (flags & TH_ORDREL_NEEDED) {
15209 		/*
15210 		 * Send up the ordrel_ind unless we are an eager guy.
15211 		 * In the eager case tcp_rsrv will do this when run
15212 		 * after tcp_accept is done.
15213 		 */
15214 		ASSERT(tcp->tcp_listener == NULL);
15215 		if (tcp->tcp_rcv_list != NULL) {
15216 			/*
15217 			 * Push any mblk(s) enqueued from co processing.
15218 			 */
15219 			flags |= tcp_rcv_drain(tcp->tcp_rq, tcp);
15220 		}
15221 		ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg);
15222 		if ((mp1 = mi_tpi_ordrel_ind()) != NULL) {
15223 			tcp->tcp_ordrel_done = B_TRUE;
15224 			putnext(tcp->tcp_rq, mp1);
15225 			if (tcp->tcp_deferred_clean_death) {
15226 				/*
15227 				 * tcp_clean_death was deferred
15228 				 * for T_ORDREL_IND - do it now
15229 				 */
15230 				(void) tcp_clean_death(tcp,
15231 				    tcp->tcp_client_errno, 20);
15232 				tcp->tcp_deferred_clean_death =	B_FALSE;
15233 			}
15234 		} else {
15235 			/*
15236 			 * Run the orderly release in the
15237 			 * service routine.
15238 			 */
15239 			qenable(tcp->tcp_rq);
15240 			/*
15241 			 * Caveat(XXX): The machine may be so
15242 			 * overloaded that tcp_rsrv() is not scheduled
15243 			 * until after the endpoint has transitioned
15244 			 * to TCPS_TIME_WAIT
15245 			 * and tcp_time_wait_interval expires. Then
15246 			 * tcp_timer() will blow away state in tcp_t
15247 			 * and T_ORDREL_IND will never be delivered
15248 			 * upstream. Unlikely but potentially
15249 			 * a problem.
15250 			 */
15251 		}
15252 	}
15253 done:
15254 	ASSERT(!(flags & TH_MARKNEXT_NEEDED));
15255 }
15256 
15257 /*
15258  * This function does PAWS protection check. Returns B_TRUE if the
15259  * segment passes the PAWS test, else returns B_FALSE.
15260  */
15261 boolean_t
15262 tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp)
15263 {
15264 	uint8_t	flags;
15265 	int	options;
15266 	uint8_t *up;
15267 
15268 	flags = (unsigned int)tcph->th_flags[0] & 0xFF;
15269 	/*
15270 	 * If timestamp option is aligned nicely, get values inline,
15271 	 * otherwise call general routine to parse.  Only do that
15272 	 * if timestamp is the only option.
15273 	 */
15274 	if (TCP_HDR_LENGTH(tcph) == (uint32_t)TCP_MIN_HEADER_LENGTH +
15275 	    TCPOPT_REAL_TS_LEN &&
15276 	    OK_32PTR((up = ((uint8_t *)tcph) +
15277 	    TCP_MIN_HEADER_LENGTH)) &&
15278 	    *(uint32_t *)up == TCPOPT_NOP_NOP_TSTAMP) {
15279 		tcpoptp->tcp_opt_ts_val = ABE32_TO_U32((up+4));
15280 		tcpoptp->tcp_opt_ts_ecr = ABE32_TO_U32((up+8));
15281 
15282 		options = TCP_OPT_TSTAMP_PRESENT;
15283 	} else {
15284 		if (tcp->tcp_snd_sack_ok) {
15285 			tcpoptp->tcp = tcp;
15286 		} else {
15287 			tcpoptp->tcp = NULL;
15288 		}
15289 		options = tcp_parse_options(tcph, tcpoptp);
15290 	}
15291 
15292 	if (options & TCP_OPT_TSTAMP_PRESENT) {
15293 		/*
15294 		 * Do PAWS per RFC 1323 section 4.2.  Accept RST
15295 		 * regardless of the timestamp, page 18 RFC 1323.bis.
15296 		 */
15297 		if ((flags & TH_RST) == 0 &&
15298 		    TSTMP_LT(tcpoptp->tcp_opt_ts_val,
15299 		    tcp->tcp_ts_recent)) {
15300 			if (TSTMP_LT(lbolt64, tcp->tcp_last_rcv_lbolt +
15301 			    PAWS_TIMEOUT)) {
15302 				/* This segment is not acceptable. */
15303 				return (B_FALSE);
15304 			} else {
15305 				/*
15306 				 * Connection has been idle for
15307 				 * too long.  Reset the timestamp
15308 				 * and assume the segment is valid.
15309 				 */
15310 				tcp->tcp_ts_recent =
15311 				    tcpoptp->tcp_opt_ts_val;
15312 			}
15313 		}
15314 	} else {
15315 		/*
15316 		 * If we don't get a timestamp on every packet, we
15317 		 * figure we can't really trust 'em, so we stop sending
15318 		 * and parsing them.
15319 		 */
15320 		tcp->tcp_snd_ts_ok = B_FALSE;
15321 
15322 		tcp->tcp_hdr_len -= TCPOPT_REAL_TS_LEN;
15323 		tcp->tcp_tcp_hdr_len -= TCPOPT_REAL_TS_LEN;
15324 		tcp->tcp_tcph->th_offset_and_rsrvd[0] -= (3 << 4);
15325 		/*
15326 		 * Adjust the tcp_mss accordingly. We also need to
15327 		 * adjust tcp_cwnd here in accordance with the new mss.
15328 		 * But we avoid doing a slow start here so as to not
15329 		 * to lose on the transfer rate built up so far.
15330 		 */
15331 		tcp_mss_set(tcp, tcp->tcp_mss + TCPOPT_REAL_TS_LEN, B_FALSE);
15332 		if (tcp->tcp_snd_sack_ok) {
15333 			ASSERT(tcp->tcp_sack_info != NULL);
15334 			tcp->tcp_max_sack_blk = 4;
15335 		}
15336 	}
15337 	return (B_TRUE);
15338 }
15339 
15340 /*
15341  * Attach ancillary data to a received TCP segments for the
15342  * ancillary pieces requested by the application that are
15343  * different than they were in the previous data segment.
15344  *
15345  * Save the "current" values once memory allocation is ok so that
15346  * when memory allocation fails we can just wait for the next data segment.
15347  */
15348 static mblk_t *
15349 tcp_rput_add_ancillary(tcp_t *tcp, mblk_t *mp, ip6_pkt_t *ipp)
15350 {
15351 	struct T_optdata_ind *todi;
15352 	int optlen;
15353 	uchar_t *optptr;
15354 	struct T_opthdr *toh;
15355 	uint_t addflag;	/* Which pieces to add */
15356 	mblk_t *mp1;
15357 
15358 	optlen = 0;
15359 	addflag = 0;
15360 	/* If app asked for pktinfo and the index has changed ... */
15361 	if ((ipp->ipp_fields & IPPF_IFINDEX) &&
15362 	    ipp->ipp_ifindex != tcp->tcp_recvifindex &&
15363 	    (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO)) {
15364 		optlen += sizeof (struct T_opthdr) +
15365 		    sizeof (struct in6_pktinfo);
15366 		addflag |= TCP_IPV6_RECVPKTINFO;
15367 	}
15368 	/* If app asked for hoplimit and it has changed ... */
15369 	if ((ipp->ipp_fields & IPPF_HOPLIMIT) &&
15370 	    ipp->ipp_hoplimit != tcp->tcp_recvhops &&
15371 	    (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPLIMIT)) {
15372 		optlen += sizeof (struct T_opthdr) + sizeof (uint_t);
15373 		addflag |= TCP_IPV6_RECVHOPLIMIT;
15374 	}
15375 	/* If app asked for tclass and it has changed ... */
15376 	if ((ipp->ipp_fields & IPPF_TCLASS) &&
15377 	    ipp->ipp_tclass != tcp->tcp_recvtclass &&
15378 	    (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVTCLASS)) {
15379 		optlen += sizeof (struct T_opthdr) + sizeof (uint_t);
15380 		addflag |= TCP_IPV6_RECVTCLASS;
15381 	}
15382 	/*
15383 	 * If app asked for hopbyhop headers and it has changed ...
15384 	 * For security labels, note that (1) security labels can't change on
15385 	 * a connected socket at all, (2) we're connected to at most one peer,
15386 	 * (3) if anything changes, then it must be some other extra option.
15387 	 */
15388 	if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPOPTS) &&
15389 	    ip_cmpbuf(tcp->tcp_hopopts, tcp->tcp_hopoptslen,
15390 	    (ipp->ipp_fields & IPPF_HOPOPTS),
15391 	    ipp->ipp_hopopts, ipp->ipp_hopoptslen)) {
15392 		optlen += sizeof (struct T_opthdr) + ipp->ipp_hopoptslen -
15393 		    tcp->tcp_label_len;
15394 		addflag |= TCP_IPV6_RECVHOPOPTS;
15395 		if (!ip_allocbuf((void **)&tcp->tcp_hopopts,
15396 		    &tcp->tcp_hopoptslen, (ipp->ipp_fields & IPPF_HOPOPTS),
15397 		    ipp->ipp_hopopts, ipp->ipp_hopoptslen))
15398 			return (mp);
15399 	}
15400 	/* If app asked for dst headers before routing headers ... */
15401 	if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTDSTOPTS) &&
15402 	    ip_cmpbuf(tcp->tcp_rtdstopts, tcp->tcp_rtdstoptslen,
15403 	    (ipp->ipp_fields & IPPF_RTDSTOPTS),
15404 	    ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen)) {
15405 		optlen += sizeof (struct T_opthdr) +
15406 		    ipp->ipp_rtdstoptslen;
15407 		addflag |= TCP_IPV6_RECVRTDSTOPTS;
15408 		if (!ip_allocbuf((void **)&tcp->tcp_rtdstopts,
15409 		    &tcp->tcp_rtdstoptslen, (ipp->ipp_fields & IPPF_RTDSTOPTS),
15410 		    ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen))
15411 			return (mp);
15412 	}
15413 	/* If app asked for routing headers and it has changed ... */
15414 	if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTHDR) &&
15415 	    ip_cmpbuf(tcp->tcp_rthdr, tcp->tcp_rthdrlen,
15416 	    (ipp->ipp_fields & IPPF_RTHDR),
15417 	    ipp->ipp_rthdr, ipp->ipp_rthdrlen)) {
15418 		optlen += sizeof (struct T_opthdr) + ipp->ipp_rthdrlen;
15419 		addflag |= TCP_IPV6_RECVRTHDR;
15420 		if (!ip_allocbuf((void **)&tcp->tcp_rthdr,
15421 		    &tcp->tcp_rthdrlen, (ipp->ipp_fields & IPPF_RTHDR),
15422 		    ipp->ipp_rthdr, ipp->ipp_rthdrlen))
15423 			return (mp);
15424 	}
15425 	/* If app asked for dest headers and it has changed ... */
15426 	if ((tcp->tcp_ipv6_recvancillary &
15427 	    (TCP_IPV6_RECVDSTOPTS | TCP_OLD_IPV6_RECVDSTOPTS)) &&
15428 	    ip_cmpbuf(tcp->tcp_dstopts, tcp->tcp_dstoptslen,
15429 	    (ipp->ipp_fields & IPPF_DSTOPTS),
15430 	    ipp->ipp_dstopts, ipp->ipp_dstoptslen)) {
15431 		optlen += sizeof (struct T_opthdr) + ipp->ipp_dstoptslen;
15432 		addflag |= TCP_IPV6_RECVDSTOPTS;
15433 		if (!ip_allocbuf((void **)&tcp->tcp_dstopts,
15434 		    &tcp->tcp_dstoptslen, (ipp->ipp_fields & IPPF_DSTOPTS),
15435 		    ipp->ipp_dstopts, ipp->ipp_dstoptslen))
15436 			return (mp);
15437 	}
15438 
15439 	if (optlen == 0) {
15440 		/* Nothing to add */
15441 		return (mp);
15442 	}
15443 	mp1 = allocb(sizeof (struct T_optdata_ind) + optlen, BPRI_MED);
15444 	if (mp1 == NULL) {
15445 		/*
15446 		 * Defer sending ancillary data until the next TCP segment
15447 		 * arrives.
15448 		 */
15449 		return (mp);
15450 	}
15451 	mp1->b_cont = mp;
15452 	mp = mp1;
15453 	mp->b_wptr += sizeof (*todi) + optlen;
15454 	mp->b_datap->db_type = M_PROTO;
15455 	todi = (struct T_optdata_ind *)mp->b_rptr;
15456 	todi->PRIM_type = T_OPTDATA_IND;
15457 	todi->DATA_flag = 1;	/* MORE data */
15458 	todi->OPT_length = optlen;
15459 	todi->OPT_offset = sizeof (*todi);
15460 	optptr = (uchar_t *)&todi[1];
15461 	/*
15462 	 * If app asked for pktinfo and the index has changed ...
15463 	 * Note that the local address never changes for the connection.
15464 	 */
15465 	if (addflag & TCP_IPV6_RECVPKTINFO) {
15466 		struct in6_pktinfo *pkti;
15467 
15468 		toh = (struct T_opthdr *)optptr;
15469 		toh->level = IPPROTO_IPV6;
15470 		toh->name = IPV6_PKTINFO;
15471 		toh->len = sizeof (*toh) + sizeof (*pkti);
15472 		toh->status = 0;
15473 		optptr += sizeof (*toh);
15474 		pkti = (struct in6_pktinfo *)optptr;
15475 		if (tcp->tcp_ipversion == IPV6_VERSION)
15476 			pkti->ipi6_addr = tcp->tcp_ip6h->ip6_src;
15477 		else
15478 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src,
15479 			    &pkti->ipi6_addr);
15480 		pkti->ipi6_ifindex = ipp->ipp_ifindex;
15481 		optptr += sizeof (*pkti);
15482 		ASSERT(OK_32PTR(optptr));
15483 		/* Save as "last" value */
15484 		tcp->tcp_recvifindex = ipp->ipp_ifindex;
15485 	}
15486 	/* If app asked for hoplimit and it has changed ... */
15487 	if (addflag & TCP_IPV6_RECVHOPLIMIT) {
15488 		toh = (struct T_opthdr *)optptr;
15489 		toh->level = IPPROTO_IPV6;
15490 		toh->name = IPV6_HOPLIMIT;
15491 		toh->len = sizeof (*toh) + sizeof (uint_t);
15492 		toh->status = 0;
15493 		optptr += sizeof (*toh);
15494 		*(uint_t *)optptr = ipp->ipp_hoplimit;
15495 		optptr += sizeof (uint_t);
15496 		ASSERT(OK_32PTR(optptr));
15497 		/* Save as "last" value */
15498 		tcp->tcp_recvhops = ipp->ipp_hoplimit;
15499 	}
15500 	/* If app asked for tclass and it has changed ... */
15501 	if (addflag & TCP_IPV6_RECVTCLASS) {
15502 		toh = (struct T_opthdr *)optptr;
15503 		toh->level = IPPROTO_IPV6;
15504 		toh->name = IPV6_TCLASS;
15505 		toh->len = sizeof (*toh) + sizeof (uint_t);
15506 		toh->status = 0;
15507 		optptr += sizeof (*toh);
15508 		*(uint_t *)optptr = ipp->ipp_tclass;
15509 		optptr += sizeof (uint_t);
15510 		ASSERT(OK_32PTR(optptr));
15511 		/* Save as "last" value */
15512 		tcp->tcp_recvtclass = ipp->ipp_tclass;
15513 	}
15514 	if (addflag & TCP_IPV6_RECVHOPOPTS) {
15515 		toh = (struct T_opthdr *)optptr;
15516 		toh->level = IPPROTO_IPV6;
15517 		toh->name = IPV6_HOPOPTS;
15518 		toh->len = sizeof (*toh) + ipp->ipp_hopoptslen -
15519 		    tcp->tcp_label_len;
15520 		toh->status = 0;
15521 		optptr += sizeof (*toh);
15522 		bcopy((uchar_t *)ipp->ipp_hopopts + tcp->tcp_label_len, optptr,
15523 		    ipp->ipp_hopoptslen - tcp->tcp_label_len);
15524 		optptr += ipp->ipp_hopoptslen - tcp->tcp_label_len;
15525 		ASSERT(OK_32PTR(optptr));
15526 		/* Save as last value */
15527 		ip_savebuf((void **)&tcp->tcp_hopopts, &tcp->tcp_hopoptslen,
15528 		    (ipp->ipp_fields & IPPF_HOPOPTS),
15529 		    ipp->ipp_hopopts, ipp->ipp_hopoptslen);
15530 	}
15531 	if (addflag & TCP_IPV6_RECVRTDSTOPTS) {
15532 		toh = (struct T_opthdr *)optptr;
15533 		toh->level = IPPROTO_IPV6;
15534 		toh->name = IPV6_RTHDRDSTOPTS;
15535 		toh->len = sizeof (*toh) + ipp->ipp_rtdstoptslen;
15536 		toh->status = 0;
15537 		optptr += sizeof (*toh);
15538 		bcopy(ipp->ipp_rtdstopts, optptr, ipp->ipp_rtdstoptslen);
15539 		optptr += ipp->ipp_rtdstoptslen;
15540 		ASSERT(OK_32PTR(optptr));
15541 		/* Save as last value */
15542 		ip_savebuf((void **)&tcp->tcp_rtdstopts,
15543 		    &tcp->tcp_rtdstoptslen,
15544 		    (ipp->ipp_fields & IPPF_RTDSTOPTS),
15545 		    ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen);
15546 	}
15547 	if (addflag & TCP_IPV6_RECVRTHDR) {
15548 		toh = (struct T_opthdr *)optptr;
15549 		toh->level = IPPROTO_IPV6;
15550 		toh->name = IPV6_RTHDR;
15551 		toh->len = sizeof (*toh) + ipp->ipp_rthdrlen;
15552 		toh->status = 0;
15553 		optptr += sizeof (*toh);
15554 		bcopy(ipp->ipp_rthdr, optptr, ipp->ipp_rthdrlen);
15555 		optptr += ipp->ipp_rthdrlen;
15556 		ASSERT(OK_32PTR(optptr));
15557 		/* Save as last value */
15558 		ip_savebuf((void **)&tcp->tcp_rthdr, &tcp->tcp_rthdrlen,
15559 		    (ipp->ipp_fields & IPPF_RTHDR),
15560 		    ipp->ipp_rthdr, ipp->ipp_rthdrlen);
15561 	}
15562 	if (addflag & (TCP_IPV6_RECVDSTOPTS | TCP_OLD_IPV6_RECVDSTOPTS)) {
15563 		toh = (struct T_opthdr *)optptr;
15564 		toh->level = IPPROTO_IPV6;
15565 		toh->name = IPV6_DSTOPTS;
15566 		toh->len = sizeof (*toh) + ipp->ipp_dstoptslen;
15567 		toh->status = 0;
15568 		optptr += sizeof (*toh);
15569 		bcopy(ipp->ipp_dstopts, optptr, ipp->ipp_dstoptslen);
15570 		optptr += ipp->ipp_dstoptslen;
15571 		ASSERT(OK_32PTR(optptr));
15572 		/* Save as last value */
15573 		ip_savebuf((void **)&tcp->tcp_dstopts, &tcp->tcp_dstoptslen,
15574 		    (ipp->ipp_fields & IPPF_DSTOPTS),
15575 		    ipp->ipp_dstopts, ipp->ipp_dstoptslen);
15576 	}
15577 	ASSERT(optptr == mp->b_wptr);
15578 	return (mp);
15579 }
15580 
15581 
15582 /*
15583  * Handle a *T_BIND_REQ that has failed either due to a T_ERROR_ACK
15584  * or a "bad" IRE detected by tcp_adapt_ire.
15585  * We can't tell if the failure was due to the laddr or the faddr
15586  * thus we clear out all addresses and ports.
15587  */
15588 static void
15589 tcp_bind_failed(tcp_t *tcp, mblk_t *mp, int error)
15590 {
15591 	queue_t	*q = tcp->tcp_rq;
15592 	tcph_t	*tcph;
15593 	struct T_error_ack *tea;
15594 	conn_t	*connp = tcp->tcp_connp;
15595 
15596 
15597 	ASSERT(mp->b_datap->db_type == M_PCPROTO);
15598 
15599 	if (mp->b_cont) {
15600 		freemsg(mp->b_cont);
15601 		mp->b_cont = NULL;
15602 	}
15603 	tea = (struct T_error_ack *)mp->b_rptr;
15604 	switch (tea->PRIM_type) {
15605 	case T_BIND_ACK:
15606 		/*
15607 		 * Need to unbind with classifier since we were just told that
15608 		 * our bind succeeded.
15609 		 */
15610 		tcp->tcp_hard_bound = B_FALSE;
15611 		tcp->tcp_hard_binding = B_FALSE;
15612 
15613 		ipcl_hash_remove(connp);
15614 		/* Reuse the mblk if possible */
15615 		ASSERT(mp->b_datap->db_lim - mp->b_datap->db_base >=
15616 		    sizeof (*tea));
15617 		mp->b_rptr = mp->b_datap->db_base;
15618 		mp->b_wptr = mp->b_rptr + sizeof (*tea);
15619 		tea = (struct T_error_ack *)mp->b_rptr;
15620 		tea->PRIM_type = T_ERROR_ACK;
15621 		tea->TLI_error = TSYSERR;
15622 		tea->UNIX_error = error;
15623 		if (tcp->tcp_state >= TCPS_SYN_SENT) {
15624 			tea->ERROR_prim = T_CONN_REQ;
15625 		} else {
15626 			tea->ERROR_prim = O_T_BIND_REQ;
15627 		}
15628 		break;
15629 
15630 	case T_ERROR_ACK:
15631 		if (tcp->tcp_state >= TCPS_SYN_SENT)
15632 			tea->ERROR_prim = T_CONN_REQ;
15633 		break;
15634 	default:
15635 		panic("tcp_bind_failed: unexpected TPI type");
15636 		/*NOTREACHED*/
15637 	}
15638 
15639 	tcp->tcp_state = TCPS_IDLE;
15640 	if (tcp->tcp_ipversion == IPV4_VERSION)
15641 		tcp->tcp_ipha->ipha_src = 0;
15642 	else
15643 		V6_SET_ZERO(tcp->tcp_ip6h->ip6_src);
15644 	/*
15645 	 * Copy of the src addr. in tcp_t is needed since
15646 	 * the lookup funcs. can only look at tcp_t
15647 	 */
15648 	V6_SET_ZERO(tcp->tcp_ip_src_v6);
15649 
15650 	tcph = tcp->tcp_tcph;
15651 	tcph->th_lport[0] = 0;
15652 	tcph->th_lport[1] = 0;
15653 	tcp_bind_hash_remove(tcp);
15654 	bzero(&connp->u_port, sizeof (connp->u_port));
15655 	/* blow away saved option results if any */
15656 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
15657 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
15658 
15659 	conn_delete_ire(tcp->tcp_connp, NULL);
15660 	putnext(q, mp);
15661 }
15662 
15663 /*
15664  * tcp_rput_other is called by tcp_rput to handle everything other than M_DATA
15665  * messages.
15666  */
15667 void
15668 tcp_rput_other(tcp_t *tcp, mblk_t *mp)
15669 {
15670 	mblk_t	*mp1;
15671 	uchar_t	*rptr = mp->b_rptr;
15672 	queue_t	*q = tcp->tcp_rq;
15673 	struct T_error_ack *tea;
15674 	uint32_t mss;
15675 	mblk_t *syn_mp;
15676 	mblk_t *mdti;
15677 	mblk_t *lsoi;
15678 	int	retval;
15679 	mblk_t *ire_mp;
15680 	tcp_stack_t	*tcps = tcp->tcp_tcps;
15681 
15682 	switch (mp->b_datap->db_type) {
15683 	case M_PROTO:
15684 	case M_PCPROTO:
15685 		ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX);
15686 		if ((mp->b_wptr - rptr) < sizeof (t_scalar_t))
15687 			break;
15688 		tea = (struct T_error_ack *)rptr;
15689 		switch (tea->PRIM_type) {
15690 		case T_BIND_ACK:
15691 			/*
15692 			 * Adapt Multidata information, if any.  The
15693 			 * following tcp_mdt_update routine will free
15694 			 * the message.
15695 			 */
15696 			if ((mdti = tcp_mdt_info_mp(mp)) != NULL) {
15697 				tcp_mdt_update(tcp, &((ip_mdt_info_t *)mdti->
15698 				    b_rptr)->mdt_capab, B_TRUE);
15699 				freemsg(mdti);
15700 			}
15701 
15702 			/*
15703 			 * Check to update LSO information with tcp, and
15704 			 * tcp_lso_update routine will free the message.
15705 			 */
15706 			if ((lsoi = tcp_lso_info_mp(mp)) != NULL) {
15707 				tcp_lso_update(tcp, &((ip_lso_info_t *)lsoi->
15708 				    b_rptr)->lso_capab);
15709 				freemsg(lsoi);
15710 			}
15711 
15712 			/* Get the IRE, if we had requested for it */
15713 			ire_mp = tcp_ire_mp(mp);
15714 
15715 			if (tcp->tcp_hard_binding) {
15716 				tcp->tcp_hard_binding = B_FALSE;
15717 				tcp->tcp_hard_bound = B_TRUE;
15718 				CL_INET_CONNECT(tcp);
15719 			} else {
15720 				if (ire_mp != NULL)
15721 					freeb(ire_mp);
15722 				goto after_syn_sent;
15723 			}
15724 
15725 			retval = tcp_adapt_ire(tcp, ire_mp);
15726 			if (ire_mp != NULL)
15727 				freeb(ire_mp);
15728 			if (retval == 0) {
15729 				tcp_bind_failed(tcp, mp,
15730 				    (int)((tcp->tcp_state >= TCPS_SYN_SENT) ?
15731 				    ENETUNREACH : EADDRNOTAVAIL));
15732 				return;
15733 			}
15734 			/*
15735 			 * Don't let an endpoint connect to itself.
15736 			 * Also checked in tcp_connect() but that
15737 			 * check can't handle the case when the
15738 			 * local IP address is INADDR_ANY.
15739 			 */
15740 			if (tcp->tcp_ipversion == IPV4_VERSION) {
15741 				if ((tcp->tcp_ipha->ipha_dst ==
15742 				    tcp->tcp_ipha->ipha_src) &&
15743 				    (BE16_EQL(tcp->tcp_tcph->th_lport,
15744 				    tcp->tcp_tcph->th_fport))) {
15745 					tcp_bind_failed(tcp, mp, EADDRNOTAVAIL);
15746 					return;
15747 				}
15748 			} else {
15749 				if (IN6_ARE_ADDR_EQUAL(
15750 				    &tcp->tcp_ip6h->ip6_dst,
15751 				    &tcp->tcp_ip6h->ip6_src) &&
15752 				    (BE16_EQL(tcp->tcp_tcph->th_lport,
15753 				    tcp->tcp_tcph->th_fport))) {
15754 					tcp_bind_failed(tcp, mp, EADDRNOTAVAIL);
15755 					return;
15756 				}
15757 			}
15758 			ASSERT(tcp->tcp_state == TCPS_SYN_SENT);
15759 			/*
15760 			 * This should not be possible!  Just for
15761 			 * defensive coding...
15762 			 */
15763 			if (tcp->tcp_state != TCPS_SYN_SENT)
15764 				goto after_syn_sent;
15765 
15766 			if (is_system_labeled() &&
15767 			    !tcp_update_label(tcp, CONN_CRED(tcp->tcp_connp))) {
15768 				tcp_bind_failed(tcp, mp, EHOSTUNREACH);
15769 				return;
15770 			}
15771 
15772 			ASSERT(q == tcp->tcp_rq);
15773 			/*
15774 			 * tcp_adapt_ire() does not adjust
15775 			 * for TCP/IP header length.
15776 			 */
15777 			mss = tcp->tcp_mss - tcp->tcp_hdr_len;
15778 
15779 			/*
15780 			 * Just make sure our rwnd is at
15781 			 * least tcp_recv_hiwat_mss * MSS
15782 			 * large, and round up to the nearest
15783 			 * MSS.
15784 			 *
15785 			 * We do the round up here because
15786 			 * we need to get the interface
15787 			 * MTU first before we can do the
15788 			 * round up.
15789 			 */
15790 			tcp->tcp_rwnd = MAX(MSS_ROUNDUP(tcp->tcp_rwnd, mss),
15791 			    tcps->tcps_recv_hiwat_minmss * mss);
15792 			q->q_hiwat = tcp->tcp_rwnd;
15793 			tcp_set_ws_value(tcp);
15794 			U32_TO_ABE16((tcp->tcp_rwnd >> tcp->tcp_rcv_ws),
15795 			    tcp->tcp_tcph->th_win);
15796 			if (tcp->tcp_rcv_ws > 0 || tcps->tcps_wscale_always)
15797 				tcp->tcp_snd_ws_ok = B_TRUE;
15798 
15799 			/*
15800 			 * Set tcp_snd_ts_ok to true
15801 			 * so that tcp_xmit_mp will
15802 			 * include the timestamp
15803 			 * option in the SYN segment.
15804 			 */
15805 			if (tcps->tcps_tstamp_always ||
15806 			    (tcp->tcp_rcv_ws && tcps->tcps_tstamp_if_wscale)) {
15807 				tcp->tcp_snd_ts_ok = B_TRUE;
15808 			}
15809 
15810 			/*
15811 			 * tcp_snd_sack_ok can be set in
15812 			 * tcp_adapt_ire() if the sack metric
15813 			 * is set.  So check it here also.
15814 			 */
15815 			if (tcps->tcps_sack_permitted == 2 ||
15816 			    tcp->tcp_snd_sack_ok) {
15817 				if (tcp->tcp_sack_info == NULL) {
15818 					tcp->tcp_sack_info =
15819 					    kmem_cache_alloc(
15820 					    tcp_sack_info_cache,
15821 					    KM_SLEEP);
15822 				}
15823 				tcp->tcp_snd_sack_ok = B_TRUE;
15824 			}
15825 
15826 			/*
15827 			 * Should we use ECN?  Note that the current
15828 			 * default value (SunOS 5.9) of tcp_ecn_permitted
15829 			 * is 1.  The reason for doing this is that there
15830 			 * are equipments out there that will drop ECN
15831 			 * enabled IP packets.  Setting it to 1 avoids
15832 			 * compatibility problems.
15833 			 */
15834 			if (tcps->tcps_ecn_permitted == 2)
15835 				tcp->tcp_ecn_ok = B_TRUE;
15836 
15837 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
15838 			syn_mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL,
15839 			    tcp->tcp_iss, B_FALSE, NULL, B_FALSE);
15840 			if (syn_mp) {
15841 				cred_t *cr;
15842 				pid_t pid;
15843 
15844 				/*
15845 				 * Obtain the credential from the
15846 				 * thread calling connect(); the credential
15847 				 * lives on in the second mblk which
15848 				 * originated from T_CONN_REQ and is echoed
15849 				 * with the T_BIND_ACK from ip.  If none
15850 				 * can be found, default to the creator
15851 				 * of the socket.
15852 				 */
15853 				if (mp->b_cont == NULL ||
15854 				    (cr = DB_CRED(mp->b_cont)) == NULL) {
15855 					cr = tcp->tcp_cred;
15856 					pid = tcp->tcp_cpid;
15857 				} else {
15858 					pid = DB_CPID(mp->b_cont);
15859 				}
15860 
15861 				TCP_RECORD_TRACE(tcp, syn_mp,
15862 				    TCP_TRACE_SEND_PKT);
15863 				mblk_setcred(syn_mp, cr);
15864 				DB_CPID(syn_mp) = pid;
15865 				tcp_send_data(tcp, tcp->tcp_wq, syn_mp);
15866 			}
15867 		after_syn_sent:
15868 			/*
15869 			 * A trailer mblk indicates a waiting client upstream.
15870 			 * We complete here the processing begun in
15871 			 * either tcp_bind() or tcp_connect() by passing
15872 			 * upstream the reply message they supplied.
15873 			 */
15874 			mp1 = mp;
15875 			mp = mp->b_cont;
15876 			freeb(mp1);
15877 			if (mp)
15878 				break;
15879 			return;
15880 		case T_ERROR_ACK:
15881 			if (tcp->tcp_debug) {
15882 				(void) strlog(TCP_MOD_ID, 0, 1,
15883 				    SL_TRACE|SL_ERROR,
15884 				    "tcp_rput_other: case T_ERROR_ACK, "
15885 				    "ERROR_prim == %d",
15886 				    tea->ERROR_prim);
15887 			}
15888 			switch (tea->ERROR_prim) {
15889 			case O_T_BIND_REQ:
15890 			case T_BIND_REQ:
15891 				tcp_bind_failed(tcp, mp,
15892 				    (int)((tcp->tcp_state >= TCPS_SYN_SENT) ?
15893 				    ENETUNREACH : EADDRNOTAVAIL));
15894 				return;
15895 			case T_UNBIND_REQ:
15896 				tcp->tcp_hard_binding = B_FALSE;
15897 				tcp->tcp_hard_bound = B_FALSE;
15898 				if (mp->b_cont) {
15899 					freemsg(mp->b_cont);
15900 					mp->b_cont = NULL;
15901 				}
15902 				if (tcp->tcp_unbind_pending)
15903 					tcp->tcp_unbind_pending = 0;
15904 				else {
15905 					/* From tcp_ip_unbind() - free */
15906 					freemsg(mp);
15907 					return;
15908 				}
15909 				break;
15910 			case T_SVR4_OPTMGMT_REQ:
15911 				if (tcp->tcp_drop_opt_ack_cnt > 0) {
15912 					/* T_OPTMGMT_REQ generated by TCP */
15913 					printf("T_SVR4_OPTMGMT_REQ failed "
15914 					    "%d/%d - dropped (cnt %d)\n",
15915 					    tea->TLI_error, tea->UNIX_error,
15916 					    tcp->tcp_drop_opt_ack_cnt);
15917 					freemsg(mp);
15918 					tcp->tcp_drop_opt_ack_cnt--;
15919 					return;
15920 				}
15921 				break;
15922 			}
15923 			if (tea->ERROR_prim == T_SVR4_OPTMGMT_REQ &&
15924 			    tcp->tcp_drop_opt_ack_cnt > 0) {
15925 				printf("T_SVR4_OPTMGMT_REQ failed %d/%d "
15926 				    "- dropped (cnt %d)\n",
15927 				    tea->TLI_error, tea->UNIX_error,
15928 				    tcp->tcp_drop_opt_ack_cnt);
15929 				freemsg(mp);
15930 				tcp->tcp_drop_opt_ack_cnt--;
15931 				return;
15932 			}
15933 			break;
15934 		case T_OPTMGMT_ACK:
15935 			if (tcp->tcp_drop_opt_ack_cnt > 0) {
15936 				/* T_OPTMGMT_REQ generated by TCP */
15937 				freemsg(mp);
15938 				tcp->tcp_drop_opt_ack_cnt--;
15939 				return;
15940 			}
15941 			break;
15942 		default:
15943 			break;
15944 		}
15945 		break;
15946 	case M_FLUSH:
15947 		if (*rptr & FLUSHR)
15948 			flushq(q, FLUSHDATA);
15949 		break;
15950 	default:
15951 		/* M_CTL will be directly sent to tcp_icmp_error() */
15952 		ASSERT(DB_TYPE(mp) != M_CTL);
15953 		break;
15954 	}
15955 	/*
15956 	 * Make sure we set this bit before sending the ACK for
15957 	 * bind. Otherwise accept could possibly run and free
15958 	 * this tcp struct.
15959 	 */
15960 	putnext(q, mp);
15961 }
15962 
15963 /*
15964  * Called as the result of a qbufcall or a qtimeout to remedy a failure
15965  * to allocate a T_ordrel_ind in tcp_rsrv().  qenable(q) will make
15966  * tcp_rsrv() try again.
15967  */
15968 static void
15969 tcp_ordrel_kick(void *arg)
15970 {
15971 	conn_t 	*connp = (conn_t *)arg;
15972 	tcp_t	*tcp = connp->conn_tcp;
15973 
15974 	tcp->tcp_ordrelid = 0;
15975 	tcp->tcp_timeout = B_FALSE;
15976 	if (!TCP_IS_DETACHED(tcp) && tcp->tcp_rq != NULL &&
15977 	    tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) {
15978 		qenable(tcp->tcp_rq);
15979 	}
15980 }
15981 
15982 /* ARGSUSED */
15983 static void
15984 tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2)
15985 {
15986 	conn_t	*connp = (conn_t *)arg;
15987 	tcp_t	*tcp = connp->conn_tcp;
15988 	queue_t	*q = tcp->tcp_rq;
15989 	uint_t	thwin;
15990 	tcp_stack_t	*tcps = tcp->tcp_tcps;
15991 
15992 	freeb(mp);
15993 
15994 	TCP_STAT(tcps, tcp_rsrv_calls);
15995 
15996 	if (TCP_IS_DETACHED(tcp) || q == NULL) {
15997 		return;
15998 	}
15999 
16000 	if (tcp->tcp_fused) {
16001 		tcp_t *peer_tcp = tcp->tcp_loopback_peer;
16002 
16003 		ASSERT(tcp->tcp_fused);
16004 		ASSERT(peer_tcp != NULL && peer_tcp->tcp_fused);
16005 		ASSERT(peer_tcp->tcp_loopback_peer == tcp);
16006 		ASSERT(!TCP_IS_DETACHED(tcp));
16007 		ASSERT(tcp->tcp_connp->conn_sqp ==
16008 		    peer_tcp->tcp_connp->conn_sqp);
16009 
16010 		/*
16011 		 * Normally we would not get backenabled in synchronous
16012 		 * streams mode, but in case this happens, we need to plug
16013 		 * synchronous streams during our drain to prevent a race
16014 		 * with tcp_fuse_rrw() or tcp_fuse_rinfop().
16015 		 */
16016 		TCP_FUSE_SYNCSTR_PLUG_DRAIN(tcp);
16017 		if (tcp->tcp_rcv_list != NULL)
16018 			(void) tcp_rcv_drain(tcp->tcp_rq, tcp);
16019 
16020 		if (peer_tcp > tcp) {
16021 			mutex_enter(&peer_tcp->tcp_non_sq_lock);
16022 			mutex_enter(&tcp->tcp_non_sq_lock);
16023 		} else {
16024 			mutex_enter(&tcp->tcp_non_sq_lock);
16025 			mutex_enter(&peer_tcp->tcp_non_sq_lock);
16026 		}
16027 
16028 		if (peer_tcp->tcp_flow_stopped &&
16029 		    (TCP_UNSENT_BYTES(peer_tcp) <=
16030 		    peer_tcp->tcp_xmit_lowater)) {
16031 			tcp_clrqfull(peer_tcp);
16032 		}
16033 		mutex_exit(&peer_tcp->tcp_non_sq_lock);
16034 		mutex_exit(&tcp->tcp_non_sq_lock);
16035 
16036 		TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(tcp);
16037 		TCP_STAT(tcps, tcp_fusion_backenabled);
16038 		return;
16039 	}
16040 
16041 	if (canputnext(q)) {
16042 		tcp->tcp_rwnd = q->q_hiwat;
16043 		thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win))
16044 		    << tcp->tcp_rcv_ws;
16045 		thwin -= tcp->tcp_rnxt - tcp->tcp_rack;
16046 		/*
16047 		 * Send back a window update immediately if TCP is above
16048 		 * ESTABLISHED state and the increase of the rcv window
16049 		 * that the other side knows is at least 1 MSS after flow
16050 		 * control is lifted.
16051 		 */
16052 		if (tcp->tcp_state >= TCPS_ESTABLISHED &&
16053 		    (q->q_hiwat - thwin >= tcp->tcp_mss)) {
16054 			tcp_xmit_ctl(NULL, tcp,
16055 			    (tcp->tcp_swnd == 0) ? tcp->tcp_suna :
16056 			    tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK);
16057 			BUMP_MIB(&tcps->tcps_mib, tcpOutWinUpdate);
16058 		}
16059 	}
16060 	/* Handle a failure to allocate a T_ORDREL_IND here */
16061 	if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) {
16062 		ASSERT(tcp->tcp_listener == NULL);
16063 		if (tcp->tcp_rcv_list != NULL) {
16064 			(void) tcp_rcv_drain(q, tcp);
16065 		}
16066 		ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg);
16067 		mp = mi_tpi_ordrel_ind();
16068 		if (mp) {
16069 			tcp->tcp_ordrel_done = B_TRUE;
16070 			putnext(q, mp);
16071 			if (tcp->tcp_deferred_clean_death) {
16072 				/*
16073 				 * tcp_clean_death was deferred for
16074 				 * T_ORDREL_IND - do it now
16075 				 */
16076 				tcp->tcp_deferred_clean_death = B_FALSE;
16077 				(void) tcp_clean_death(tcp,
16078 				    tcp->tcp_client_errno, 22);
16079 			}
16080 		} else if (!tcp->tcp_timeout && tcp->tcp_ordrelid == 0) {
16081 			/*
16082 			 * If there isn't already a timer running
16083 			 * start one.  Use a 4 second
16084 			 * timer as a fallback since it can't fail.
16085 			 */
16086 			tcp->tcp_timeout = B_TRUE;
16087 			tcp->tcp_ordrelid = TCP_TIMER(tcp, tcp_ordrel_kick,
16088 			    MSEC_TO_TICK(4000));
16089 		}
16090 	}
16091 }
16092 
16093 /*
16094  * The read side service routine is called mostly when we get back-enabled as a
16095  * result of flow control relief.  Since we don't actually queue anything in
16096  * TCP, we have no data to send out of here.  What we do is clear the receive
16097  * window, and send out a window update.
16098  * This routine is also called to drive an orderly release message upstream
16099  * if the attempt in tcp_rput failed.
16100  */
16101 static void
16102 tcp_rsrv(queue_t *q)
16103 {
16104 	conn_t *connp = Q_TO_CONN(q);
16105 	tcp_t	*tcp = connp->conn_tcp;
16106 	mblk_t	*mp;
16107 	tcp_stack_t	*tcps = tcp->tcp_tcps;
16108 
16109 	/* No code does a putq on the read side */
16110 	ASSERT(q->q_first == NULL);
16111 
16112 	/* Nothing to do for the default queue */
16113 	if (q == tcps->tcps_g_q) {
16114 		return;
16115 	}
16116 
16117 	mp = allocb(0, BPRI_HI);
16118 	if (mp == NULL) {
16119 		/*
16120 		 * We are under memory pressure. Return for now and we
16121 		 * we will be called again later.
16122 		 */
16123 		if (!tcp->tcp_timeout && tcp->tcp_ordrelid == 0) {
16124 			/*
16125 			 * If there isn't already a timer running
16126 			 * start one.  Use a 4 second
16127 			 * timer as a fallback since it can't fail.
16128 			 */
16129 			tcp->tcp_timeout = B_TRUE;
16130 			tcp->tcp_ordrelid = TCP_TIMER(tcp, tcp_ordrel_kick,
16131 			    MSEC_TO_TICK(4000));
16132 		}
16133 		return;
16134 	}
16135 	CONN_INC_REF(connp);
16136 	squeue_enter(connp->conn_sqp, mp, tcp_rsrv_input, connp,
16137 	    SQTAG_TCP_RSRV);
16138 }
16139 
16140 /*
16141  * tcp_rwnd_set() is called to adjust the receive window to a desired value.
16142  * We do not allow the receive window to shrink.  After setting rwnd,
16143  * set the flow control hiwat of the stream.
16144  *
16145  * This function is called in 2 cases:
16146  *
16147  * 1) Before data transfer begins, in tcp_accept_comm() for accepting a
16148  *    connection (passive open) and in tcp_rput_data() for active connect.
16149  *    This is called after tcp_mss_set() when the desired MSS value is known.
16150  *    This makes sure that our window size is a mutiple of the other side's
16151  *    MSS.
16152  * 2) Handling SO_RCVBUF option.
16153  *
16154  * It is ASSUMED that the requested size is a multiple of the current MSS.
16155  *
16156  * XXX - Should allow a lower rwnd than tcp_recv_hiwat_minmss * mss if the
16157  * user requests so.
16158  */
16159 static int
16160 tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd)
16161 {
16162 	uint32_t	mss = tcp->tcp_mss;
16163 	uint32_t	old_max_rwnd;
16164 	uint32_t	max_transmittable_rwnd;
16165 	boolean_t	tcp_detached = TCP_IS_DETACHED(tcp);
16166 	tcp_stack_t	*tcps = tcp->tcp_tcps;
16167 
16168 	if (tcp->tcp_fused) {
16169 		size_t sth_hiwat;
16170 		tcp_t *peer_tcp = tcp->tcp_loopback_peer;
16171 
16172 		ASSERT(peer_tcp != NULL);
16173 		/*
16174 		 * Record the stream head's high water mark for
16175 		 * this endpoint; this is used for flow-control
16176 		 * purposes in tcp_fuse_output().
16177 		 */
16178 		sth_hiwat = tcp_fuse_set_rcv_hiwat(tcp, rwnd);
16179 		if (!tcp_detached)
16180 			(void) mi_set_sth_hiwat(tcp->tcp_rq, sth_hiwat);
16181 
16182 		/*
16183 		 * In the fusion case, the maxpsz stream head value of
16184 		 * our peer is set according to its send buffer size
16185 		 * and our receive buffer size; since the latter may
16186 		 * have changed we need to update the peer's maxpsz.
16187 		 */
16188 		(void) tcp_maxpsz_set(peer_tcp, B_TRUE);
16189 		return (rwnd);
16190 	}
16191 
16192 	if (tcp_detached)
16193 		old_max_rwnd = tcp->tcp_rwnd;
16194 	else
16195 		old_max_rwnd = tcp->tcp_rq->q_hiwat;
16196 
16197 	/*
16198 	 * Insist on a receive window that is at least
16199 	 * tcp_recv_hiwat_minmss * MSS (default 4 * MSS) to avoid
16200 	 * funny TCP interactions of Nagle algorithm, SWS avoidance
16201 	 * and delayed acknowledgement.
16202 	 */
16203 	rwnd = MAX(rwnd, tcps->tcps_recv_hiwat_minmss * mss);
16204 
16205 	/*
16206 	 * If window size info has already been exchanged, TCP should not
16207 	 * shrink the window.  Shrinking window is doable if done carefully.
16208 	 * We may add that support later.  But so far there is not a real
16209 	 * need to do that.
16210 	 */
16211 	if (rwnd < old_max_rwnd && tcp->tcp_state > TCPS_SYN_SENT) {
16212 		/* MSS may have changed, do a round up again. */
16213 		rwnd = MSS_ROUNDUP(old_max_rwnd, mss);
16214 	}
16215 
16216 	/*
16217 	 * tcp_rcv_ws starts with TCP_MAX_WINSHIFT so the following check
16218 	 * can be applied even before the window scale option is decided.
16219 	 */
16220 	max_transmittable_rwnd = TCP_MAXWIN << tcp->tcp_rcv_ws;
16221 	if (rwnd > max_transmittable_rwnd) {
16222 		rwnd = max_transmittable_rwnd -
16223 		    (max_transmittable_rwnd % mss);
16224 		if (rwnd < mss)
16225 			rwnd = max_transmittable_rwnd;
16226 		/*
16227 		 * If we're over the limit we may have to back down tcp_rwnd.
16228 		 * The increment below won't work for us. So we set all three
16229 		 * here and the increment below will have no effect.
16230 		 */
16231 		tcp->tcp_rwnd = old_max_rwnd = rwnd;
16232 	}
16233 	if (tcp->tcp_localnet) {
16234 		tcp->tcp_rack_abs_max =
16235 		    MIN(tcps->tcps_local_dacks_max, rwnd / mss / 2);
16236 	} else {
16237 		/*
16238 		 * For a remote host on a different subnet (through a router),
16239 		 * we ack every other packet to be conforming to RFC1122.
16240 		 * tcp_deferred_acks_max is default to 2.
16241 		 */
16242 		tcp->tcp_rack_abs_max =
16243 		    MIN(tcps->tcps_deferred_acks_max, rwnd / mss / 2);
16244 	}
16245 	if (tcp->tcp_rack_cur_max > tcp->tcp_rack_abs_max)
16246 		tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max;
16247 	else
16248 		tcp->tcp_rack_cur_max = 0;
16249 	/*
16250 	 * Increment the current rwnd by the amount the maximum grew (we
16251 	 * can not overwrite it since we might be in the middle of a
16252 	 * connection.)
16253 	 */
16254 	tcp->tcp_rwnd += rwnd - old_max_rwnd;
16255 	U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, tcp->tcp_tcph->th_win);
16256 	if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max)
16257 		tcp->tcp_cwnd_max = rwnd;
16258 
16259 	if (tcp_detached)
16260 		return (rwnd);
16261 	/*
16262 	 * We set the maximum receive window into rq->q_hiwat.
16263 	 * This is not actually used for flow control.
16264 	 */
16265 	tcp->tcp_rq->q_hiwat = rwnd;
16266 	/*
16267 	 * Set the Stream head high water mark. This doesn't have to be
16268 	 * here, since we are simply using default values, but we would
16269 	 * prefer to choose these values algorithmically, with a likely
16270 	 * relationship to rwnd.
16271 	 */
16272 	(void) mi_set_sth_hiwat(tcp->tcp_rq,
16273 	    MAX(rwnd, tcps->tcps_sth_rcv_hiwat));
16274 	return (rwnd);
16275 }
16276 
16277 /*
16278  * Return SNMP stuff in buffer in mpdata.
16279  */
16280 mblk_t *
16281 tcp_snmp_get(queue_t *q, mblk_t *mpctl)
16282 {
16283 	mblk_t			*mpdata;
16284 	mblk_t			*mp_conn_ctl = NULL;
16285 	mblk_t			*mp_conn_tail;
16286 	mblk_t			*mp_attr_ctl = NULL;
16287 	mblk_t			*mp_attr_tail;
16288 	mblk_t			*mp6_conn_ctl = NULL;
16289 	mblk_t			*mp6_conn_tail;
16290 	mblk_t			*mp6_attr_ctl = NULL;
16291 	mblk_t			*mp6_attr_tail;
16292 	struct opthdr		*optp;
16293 	mib2_tcpConnEntry_t	tce;
16294 	mib2_tcp6ConnEntry_t	tce6;
16295 	mib2_transportMLPEntry_t mlp;
16296 	connf_t			*connfp;
16297 	int			i;
16298 	boolean_t 		ispriv;
16299 	zoneid_t 		zoneid;
16300 	int			v4_conn_idx;
16301 	int			v6_conn_idx;
16302 	conn_t			*connp = Q_TO_CONN(q);
16303 	tcp_stack_t		*tcps;
16304 	ip_stack_t		*ipst;
16305 	mblk_t			*mp2ctl;
16306 
16307 	/*
16308 	 * make a copy of the original message
16309 	 */
16310 	mp2ctl = copymsg(mpctl);
16311 
16312 	if (mpctl == NULL ||
16313 	    (mpdata = mpctl->b_cont) == NULL ||
16314 	    (mp_conn_ctl = copymsg(mpctl)) == NULL ||
16315 	    (mp_attr_ctl = copymsg(mpctl)) == NULL ||
16316 	    (mp6_conn_ctl = copymsg(mpctl)) == NULL ||
16317 	    (mp6_attr_ctl = copymsg(mpctl)) == NULL) {
16318 		freemsg(mp_conn_ctl);
16319 		freemsg(mp_attr_ctl);
16320 		freemsg(mp6_conn_ctl);
16321 		freemsg(mp6_attr_ctl);
16322 		freemsg(mpctl);
16323 		freemsg(mp2ctl);
16324 		return (NULL);
16325 	}
16326 
16327 	ipst = connp->conn_netstack->netstack_ip;
16328 	tcps = connp->conn_netstack->netstack_tcp;
16329 
16330 	/* build table of connections -- need count in fixed part */
16331 	SET_MIB(tcps->tcps_mib.tcpRtoAlgorithm, 4);   /* vanj */
16332 	SET_MIB(tcps->tcps_mib.tcpRtoMin, tcps->tcps_rexmit_interval_min);
16333 	SET_MIB(tcps->tcps_mib.tcpRtoMax, tcps->tcps_rexmit_interval_max);
16334 	SET_MIB(tcps->tcps_mib.tcpMaxConn, -1);
16335 	SET_MIB(tcps->tcps_mib.tcpCurrEstab, 0);
16336 
16337 	ispriv =
16338 	    secpolicy_ip_config((Q_TO_CONN(q))->conn_cred, B_TRUE) == 0;
16339 	zoneid = Q_TO_CONN(q)->conn_zoneid;
16340 
16341 	v4_conn_idx = v6_conn_idx = 0;
16342 	mp_conn_tail = mp_attr_tail = mp6_conn_tail = mp6_attr_tail = NULL;
16343 
16344 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
16345 		ipst = tcps->tcps_netstack->netstack_ip;
16346 
16347 		connfp = &ipst->ips_ipcl_globalhash_fanout[i];
16348 
16349 		connp = NULL;
16350 
16351 		while ((connp =
16352 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
16353 			tcp_t *tcp;
16354 			boolean_t needattr;
16355 
16356 			if (connp->conn_zoneid != zoneid)
16357 				continue;	/* not in this zone */
16358 
16359 			tcp = connp->conn_tcp;
16360 			UPDATE_MIB(&tcps->tcps_mib,
16361 			    tcpHCInSegs, tcp->tcp_ibsegs);
16362 			tcp->tcp_ibsegs = 0;
16363 			UPDATE_MIB(&tcps->tcps_mib,
16364 			    tcpHCOutSegs, tcp->tcp_obsegs);
16365 			tcp->tcp_obsegs = 0;
16366 
16367 			tce6.tcp6ConnState = tce.tcpConnState =
16368 			    tcp_snmp_state(tcp);
16369 			if (tce.tcpConnState == MIB2_TCP_established ||
16370 			    tce.tcpConnState == MIB2_TCP_closeWait)
16371 				BUMP_MIB(&tcps->tcps_mib, tcpCurrEstab);
16372 
16373 			needattr = B_FALSE;
16374 			bzero(&mlp, sizeof (mlp));
16375 			if (connp->conn_mlp_type != mlptSingle) {
16376 				if (connp->conn_mlp_type == mlptShared ||
16377 				    connp->conn_mlp_type == mlptBoth)
16378 					mlp.tme_flags |= MIB2_TMEF_SHARED;
16379 				if (connp->conn_mlp_type == mlptPrivate ||
16380 				    connp->conn_mlp_type == mlptBoth)
16381 					mlp.tme_flags |= MIB2_TMEF_PRIVATE;
16382 				needattr = B_TRUE;
16383 			}
16384 			if (connp->conn_peercred != NULL) {
16385 				ts_label_t *tsl;
16386 
16387 				tsl = crgetlabel(connp->conn_peercred);
16388 				mlp.tme_doi = label2doi(tsl);
16389 				mlp.tme_label = *label2bslabel(tsl);
16390 				needattr = B_TRUE;
16391 			}
16392 
16393 			/* Create a message to report on IPv6 entries */
16394 			if (tcp->tcp_ipversion == IPV6_VERSION) {
16395 			tce6.tcp6ConnLocalAddress = tcp->tcp_ip_src_v6;
16396 			tce6.tcp6ConnRemAddress = tcp->tcp_remote_v6;
16397 			tce6.tcp6ConnLocalPort = ntohs(tcp->tcp_lport);
16398 			tce6.tcp6ConnRemPort = ntohs(tcp->tcp_fport);
16399 			tce6.tcp6ConnIfIndex = tcp->tcp_bound_if;
16400 			/* Don't want just anybody seeing these... */
16401 			if (ispriv) {
16402 				tce6.tcp6ConnEntryInfo.ce_snxt =
16403 				    tcp->tcp_snxt;
16404 				tce6.tcp6ConnEntryInfo.ce_suna =
16405 				    tcp->tcp_suna;
16406 				tce6.tcp6ConnEntryInfo.ce_rnxt =
16407 				    tcp->tcp_rnxt;
16408 				tce6.tcp6ConnEntryInfo.ce_rack =
16409 				    tcp->tcp_rack;
16410 			} else {
16411 				/*
16412 				 * Netstat, unfortunately, uses this to
16413 				 * get send/receive queue sizes.  How to fix?
16414 				 * Why not compute the difference only?
16415 				 */
16416 				tce6.tcp6ConnEntryInfo.ce_snxt =
16417 				    tcp->tcp_snxt - tcp->tcp_suna;
16418 				tce6.tcp6ConnEntryInfo.ce_suna = 0;
16419 				tce6.tcp6ConnEntryInfo.ce_rnxt =
16420 				    tcp->tcp_rnxt - tcp->tcp_rack;
16421 				tce6.tcp6ConnEntryInfo.ce_rack = 0;
16422 			}
16423 
16424 			tce6.tcp6ConnEntryInfo.ce_swnd = tcp->tcp_swnd;
16425 			tce6.tcp6ConnEntryInfo.ce_rwnd = tcp->tcp_rwnd;
16426 			tce6.tcp6ConnEntryInfo.ce_rto =  tcp->tcp_rto;
16427 			tce6.tcp6ConnEntryInfo.ce_mss =  tcp->tcp_mss;
16428 			tce6.tcp6ConnEntryInfo.ce_state = tcp->tcp_state;
16429 
16430 			tce6.tcp6ConnCreationProcess =
16431 			    (tcp->tcp_cpid < 0) ? MIB2_UNKNOWN_PROCESS :
16432 			    tcp->tcp_cpid;
16433 			tce6.tcp6ConnCreationTime = tcp->tcp_open_time;
16434 
16435 			(void) snmp_append_data2(mp6_conn_ctl->b_cont,
16436 			    &mp6_conn_tail, (char *)&tce6, sizeof (tce6));
16437 
16438 			mlp.tme_connidx = v6_conn_idx++;
16439 			if (needattr)
16440 				(void) snmp_append_data2(mp6_attr_ctl->b_cont,
16441 				    &mp6_attr_tail, (char *)&mlp, sizeof (mlp));
16442 			}
16443 			/*
16444 			 * Create an IPv4 table entry for IPv4 entries and also
16445 			 * for IPv6 entries which are bound to in6addr_any
16446 			 * but don't have IPV6_V6ONLY set.
16447 			 * (i.e. anything an IPv4 peer could connect to)
16448 			 */
16449 			if (tcp->tcp_ipversion == IPV4_VERSION ||
16450 			    (tcp->tcp_state <= TCPS_LISTEN &&
16451 			    !tcp->tcp_connp->conn_ipv6_v6only &&
16452 			    IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip_src_v6))) {
16453 				if (tcp->tcp_ipversion == IPV6_VERSION) {
16454 					tce.tcpConnRemAddress = INADDR_ANY;
16455 					tce.tcpConnLocalAddress = INADDR_ANY;
16456 				} else {
16457 					tce.tcpConnRemAddress =
16458 					    tcp->tcp_remote;
16459 					tce.tcpConnLocalAddress =
16460 					    tcp->tcp_ip_src;
16461 				}
16462 				tce.tcpConnLocalPort = ntohs(tcp->tcp_lport);
16463 				tce.tcpConnRemPort = ntohs(tcp->tcp_fport);
16464 				/* Don't want just anybody seeing these... */
16465 				if (ispriv) {
16466 					tce.tcpConnEntryInfo.ce_snxt =
16467 					    tcp->tcp_snxt;
16468 					tce.tcpConnEntryInfo.ce_suna =
16469 					    tcp->tcp_suna;
16470 					tce.tcpConnEntryInfo.ce_rnxt =
16471 					    tcp->tcp_rnxt;
16472 					tce.tcpConnEntryInfo.ce_rack =
16473 					    tcp->tcp_rack;
16474 				} else {
16475 					/*
16476 					 * Netstat, unfortunately, uses this to
16477 					 * get send/receive queue sizes.  How
16478 					 * to fix?
16479 					 * Why not compute the difference only?
16480 					 */
16481 					tce.tcpConnEntryInfo.ce_snxt =
16482 					    tcp->tcp_snxt - tcp->tcp_suna;
16483 					tce.tcpConnEntryInfo.ce_suna = 0;
16484 					tce.tcpConnEntryInfo.ce_rnxt =
16485 					    tcp->tcp_rnxt - tcp->tcp_rack;
16486 					tce.tcpConnEntryInfo.ce_rack = 0;
16487 				}
16488 
16489 				tce.tcpConnEntryInfo.ce_swnd = tcp->tcp_swnd;
16490 				tce.tcpConnEntryInfo.ce_rwnd = tcp->tcp_rwnd;
16491 				tce.tcpConnEntryInfo.ce_rto =  tcp->tcp_rto;
16492 				tce.tcpConnEntryInfo.ce_mss =  tcp->tcp_mss;
16493 				tce.tcpConnEntryInfo.ce_state =
16494 				    tcp->tcp_state;
16495 
16496 				tce.tcpConnCreationProcess =
16497 				    (tcp->tcp_cpid < 0) ? MIB2_UNKNOWN_PROCESS :
16498 				    tcp->tcp_cpid;
16499 				tce.tcpConnCreationTime = tcp->tcp_open_time;
16500 
16501 				(void) snmp_append_data2(mp_conn_ctl->b_cont,
16502 				    &mp_conn_tail, (char *)&tce, sizeof (tce));
16503 
16504 				mlp.tme_connidx = v4_conn_idx++;
16505 				if (needattr)
16506 					(void) snmp_append_data2(
16507 					    mp_attr_ctl->b_cont,
16508 					    &mp_attr_tail, (char *)&mlp,
16509 					    sizeof (mlp));
16510 			}
16511 		}
16512 	}
16513 
16514 	/* fixed length structure for IPv4 and IPv6 counters */
16515 	SET_MIB(tcps->tcps_mib.tcpConnTableSize, sizeof (mib2_tcpConnEntry_t));
16516 	SET_MIB(tcps->tcps_mib.tcp6ConnTableSize,
16517 	    sizeof (mib2_tcp6ConnEntry_t));
16518 	/* synchronize 32- and 64-bit counters */
16519 	SYNC32_MIB(&tcps->tcps_mib, tcpInSegs, tcpHCInSegs);
16520 	SYNC32_MIB(&tcps->tcps_mib, tcpOutSegs, tcpHCOutSegs);
16521 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
16522 	optp->level = MIB2_TCP;
16523 	optp->name = 0;
16524 	(void) snmp_append_data(mpdata, (char *)&tcps->tcps_mib,
16525 	    sizeof (tcps->tcps_mib));
16526 	optp->len = msgdsize(mpdata);
16527 	qreply(q, mpctl);
16528 
16529 	/* table of connections... */
16530 	optp = (struct opthdr *)&mp_conn_ctl->b_rptr[
16531 	    sizeof (struct T_optmgmt_ack)];
16532 	optp->level = MIB2_TCP;
16533 	optp->name = MIB2_TCP_CONN;
16534 	optp->len = msgdsize(mp_conn_ctl->b_cont);
16535 	qreply(q, mp_conn_ctl);
16536 
16537 	/* table of MLP attributes... */
16538 	optp = (struct opthdr *)&mp_attr_ctl->b_rptr[
16539 	    sizeof (struct T_optmgmt_ack)];
16540 	optp->level = MIB2_TCP;
16541 	optp->name = EXPER_XPORT_MLP;
16542 	optp->len = msgdsize(mp_attr_ctl->b_cont);
16543 	if (optp->len == 0)
16544 		freemsg(mp_attr_ctl);
16545 	else
16546 		qreply(q, mp_attr_ctl);
16547 
16548 	/* table of IPv6 connections... */
16549 	optp = (struct opthdr *)&mp6_conn_ctl->b_rptr[
16550 	    sizeof (struct T_optmgmt_ack)];
16551 	optp->level = MIB2_TCP6;
16552 	optp->name = MIB2_TCP6_CONN;
16553 	optp->len = msgdsize(mp6_conn_ctl->b_cont);
16554 	qreply(q, mp6_conn_ctl);
16555 
16556 	/* table of IPv6 MLP attributes... */
16557 	optp = (struct opthdr *)&mp6_attr_ctl->b_rptr[
16558 	    sizeof (struct T_optmgmt_ack)];
16559 	optp->level = MIB2_TCP6;
16560 	optp->name = EXPER_XPORT_MLP;
16561 	optp->len = msgdsize(mp6_attr_ctl->b_cont);
16562 	if (optp->len == 0)
16563 		freemsg(mp6_attr_ctl);
16564 	else
16565 		qreply(q, mp6_attr_ctl);
16566 	return (mp2ctl);
16567 }
16568 
16569 /* Return 0 if invalid set request, 1 otherwise, including non-tcp requests  */
16570 /* ARGSUSED */
16571 int
16572 tcp_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len)
16573 {
16574 	mib2_tcpConnEntry_t	*tce = (mib2_tcpConnEntry_t *)ptr;
16575 
16576 	switch (level) {
16577 	case MIB2_TCP:
16578 		switch (name) {
16579 		case 13:
16580 			if (tce->tcpConnState != MIB2_TCP_deleteTCB)
16581 				return (0);
16582 			/* TODO: delete entry defined by tce */
16583 			return (1);
16584 		default:
16585 			return (0);
16586 		}
16587 	default:
16588 		return (1);
16589 	}
16590 }
16591 
16592 /* Translate TCP state to MIB2 TCP state. */
16593 static int
16594 tcp_snmp_state(tcp_t *tcp)
16595 {
16596 	if (tcp == NULL)
16597 		return (0);
16598 
16599 	switch (tcp->tcp_state) {
16600 	case TCPS_CLOSED:
16601 	case TCPS_IDLE:	/* RFC1213 doesn't have analogue for IDLE & BOUND */
16602 	case TCPS_BOUND:
16603 		return (MIB2_TCP_closed);
16604 	case TCPS_LISTEN:
16605 		return (MIB2_TCP_listen);
16606 	case TCPS_SYN_SENT:
16607 		return (MIB2_TCP_synSent);
16608 	case TCPS_SYN_RCVD:
16609 		return (MIB2_TCP_synReceived);
16610 	case TCPS_ESTABLISHED:
16611 		return (MIB2_TCP_established);
16612 	case TCPS_CLOSE_WAIT:
16613 		return (MIB2_TCP_closeWait);
16614 	case TCPS_FIN_WAIT_1:
16615 		return (MIB2_TCP_finWait1);
16616 	case TCPS_CLOSING:
16617 		return (MIB2_TCP_closing);
16618 	case TCPS_LAST_ACK:
16619 		return (MIB2_TCP_lastAck);
16620 	case TCPS_FIN_WAIT_2:
16621 		return (MIB2_TCP_finWait2);
16622 	case TCPS_TIME_WAIT:
16623 		return (MIB2_TCP_timeWait);
16624 	default:
16625 		return (0);
16626 	}
16627 }
16628 
16629 static char tcp_report_header[] =
16630 	"TCP     " MI_COL_HDRPAD_STR
16631 	"zone dest            snxt     suna     "
16632 	"swnd       rnxt     rack     rwnd       rto   mss   w sw rw t "
16633 	"recent   [lport,fport] state";
16634 
16635 /*
16636  * TCP status report triggered via the Named Dispatch mechanism.
16637  */
16638 /* ARGSUSED */
16639 static void
16640 tcp_report_item(mblk_t *mp, tcp_t *tcp, int hashval, tcp_t *thisstream,
16641     cred_t *cr)
16642 {
16643 	char hash[10], addrbuf[INET6_ADDRSTRLEN];
16644 	boolean_t ispriv = secpolicy_ip_config(cr, B_TRUE) == 0;
16645 	char cflag;
16646 	in6_addr_t	v6dst;
16647 	char buf[80];
16648 	uint_t print_len, buf_len;
16649 
16650 	buf_len = mp->b_datap->db_lim - mp->b_wptr;
16651 	if (buf_len <= 0)
16652 		return;
16653 
16654 	if (hashval >= 0)
16655 		(void) sprintf(hash, "%03d ", hashval);
16656 	else
16657 		hash[0] = '\0';
16658 
16659 	/*
16660 	 * Note that we use the remote address in the tcp_b  structure.
16661 	 * This means that it will print out the real destination address,
16662 	 * not the next hop's address if source routing is used.  This
16663 	 * avoid the confusion on the output because user may not
16664 	 * know that source routing is used for a connection.
16665 	 */
16666 	if (tcp->tcp_ipversion == IPV4_VERSION) {
16667 		IN6_IPADDR_TO_V4MAPPED(tcp->tcp_remote, &v6dst);
16668 	} else {
16669 		v6dst = tcp->tcp_remote_v6;
16670 	}
16671 	(void) inet_ntop(AF_INET6, &v6dst, addrbuf, sizeof (addrbuf));
16672 	/*
16673 	 * the ispriv checks are so that normal users cannot determine
16674 	 * sequence number information using NDD.
16675 	 */
16676 
16677 	if (TCP_IS_DETACHED(tcp))
16678 		cflag = '*';
16679 	else
16680 		cflag = ' ';
16681 	print_len = snprintf((char *)mp->b_wptr, buf_len,
16682 	    "%s " MI_COL_PTRFMT_STR "%d %s %08x %08x %010d %08x %08x "
16683 	    "%010d %05ld %05d %1d %02d %02d %1d %08x %s%c\n",
16684 	    hash,
16685 	    (void *)tcp,
16686 	    tcp->tcp_connp->conn_zoneid,
16687 	    addrbuf,
16688 	    (ispriv) ? tcp->tcp_snxt : 0,
16689 	    (ispriv) ? tcp->tcp_suna : 0,
16690 	    tcp->tcp_swnd,
16691 	    (ispriv) ? tcp->tcp_rnxt : 0,
16692 	    (ispriv) ? tcp->tcp_rack : 0,
16693 	    tcp->tcp_rwnd,
16694 	    tcp->tcp_rto,
16695 	    tcp->tcp_mss,
16696 	    tcp->tcp_snd_ws_ok,
16697 	    tcp->tcp_snd_ws,
16698 	    tcp->tcp_rcv_ws,
16699 	    tcp->tcp_snd_ts_ok,
16700 	    tcp->tcp_ts_recent,
16701 	    tcp_display(tcp, buf, DISP_PORT_ONLY), cflag);
16702 	if (print_len < buf_len) {
16703 		((mblk_t *)mp)->b_wptr += print_len;
16704 	} else {
16705 		((mblk_t *)mp)->b_wptr += buf_len;
16706 	}
16707 }
16708 
16709 /*
16710  * TCP status report (for listeners only) triggered via the Named Dispatch
16711  * mechanism.
16712  */
16713 /* ARGSUSED */
16714 static void
16715 tcp_report_listener(mblk_t *mp, tcp_t *tcp, int hashval)
16716 {
16717 	char addrbuf[INET6_ADDRSTRLEN];
16718 	in6_addr_t	v6dst;
16719 	uint_t print_len, buf_len;
16720 
16721 	buf_len = mp->b_datap->db_lim - mp->b_wptr;
16722 	if (buf_len <= 0)
16723 		return;
16724 
16725 	if (tcp->tcp_ipversion == IPV4_VERSION) {
16726 		IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, &v6dst);
16727 		(void) inet_ntop(AF_INET6, &v6dst, addrbuf, sizeof (addrbuf));
16728 	} else {
16729 		(void) inet_ntop(AF_INET6, &tcp->tcp_ip6h->ip6_src,
16730 		    addrbuf, sizeof (addrbuf));
16731 	}
16732 	print_len = snprintf((char *)mp->b_wptr, buf_len,
16733 	    "%03d "
16734 	    MI_COL_PTRFMT_STR
16735 	    "%d %s %05u %08u %d/%d/%d%c\n",
16736 	    hashval, (void *)tcp,
16737 	    tcp->tcp_connp->conn_zoneid,
16738 	    addrbuf,
16739 	    (uint_t)BE16_TO_U16(tcp->tcp_tcph->th_lport),
16740 	    tcp->tcp_conn_req_seqnum,
16741 	    tcp->tcp_conn_req_cnt_q0, tcp->tcp_conn_req_cnt_q,
16742 	    tcp->tcp_conn_req_max,
16743 	    tcp->tcp_syn_defense ? '*' : ' ');
16744 	if (print_len < buf_len) {
16745 		((mblk_t *)mp)->b_wptr += print_len;
16746 	} else {
16747 		((mblk_t *)mp)->b_wptr += buf_len;
16748 	}
16749 }
16750 
16751 /* TCP status report triggered via the Named Dispatch mechanism. */
16752 /* ARGSUSED */
16753 static int
16754 tcp_status_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
16755 {
16756 	tcp_t	*tcp;
16757 	int	i;
16758 	conn_t	*connp;
16759 	connf_t	*connfp;
16760 	zoneid_t zoneid;
16761 	tcp_stack_t *tcps;
16762 	ip_stack_t *ipst;
16763 
16764 	zoneid = Q_TO_CONN(q)->conn_zoneid;
16765 	tcps = Q_TO_TCP(q)->tcp_tcps;
16766 
16767 	/*
16768 	 * Because of the ndd constraint, at most we can have 64K buffer
16769 	 * to put in all TCP info.  So to be more efficient, just
16770 	 * allocate a 64K buffer here, assuming we need that large buffer.
16771 	 * This may be a problem as any user can read tcp_status.  Therefore
16772 	 * we limit the rate of doing this using tcp_ndd_get_info_interval.
16773 	 * This should be OK as normal users should not do this too often.
16774 	 */
16775 	if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) {
16776 		if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time <
16777 		    drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) {
16778 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
16779 			return (0);
16780 		}
16781 	}
16782 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
16783 		/* The following may work even if we cannot get a large buf. */
16784 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
16785 		return (0);
16786 	}
16787 
16788 	(void) mi_mpprintf(mp, "%s", tcp_report_header);
16789 
16790 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
16791 
16792 		ipst = tcps->tcps_netstack->netstack_ip;
16793 		connfp = &ipst->ips_ipcl_globalhash_fanout[i];
16794 
16795 		connp = NULL;
16796 
16797 		while ((connp =
16798 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
16799 			tcp = connp->conn_tcp;
16800 			if (zoneid != GLOBAL_ZONEID &&
16801 			    zoneid != connp->conn_zoneid)
16802 				continue;
16803 			tcp_report_item(mp->b_cont, tcp, -1, tcp,
16804 			    cr);
16805 		}
16806 
16807 	}
16808 
16809 	tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt();
16810 	return (0);
16811 }
16812 
16813 /* TCP status report triggered via the Named Dispatch mechanism. */
16814 /* ARGSUSED */
16815 static int
16816 tcp_bind_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
16817 {
16818 	tf_t	*tbf;
16819 	tcp_t	*tcp;
16820 	int	i;
16821 	zoneid_t zoneid;
16822 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
16823 
16824 	zoneid = Q_TO_CONN(q)->conn_zoneid;
16825 
16826 	/* Refer to comments in tcp_status_report(). */
16827 	if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) {
16828 		if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time <
16829 		    drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) {
16830 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
16831 			return (0);
16832 		}
16833 	}
16834 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
16835 		/* The following may work even if we cannot get a large buf. */
16836 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
16837 		return (0);
16838 	}
16839 
16840 	(void) mi_mpprintf(mp, "    %s", tcp_report_header);
16841 
16842 	for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) {
16843 		tbf = &tcps->tcps_bind_fanout[i];
16844 		mutex_enter(&tbf->tf_lock);
16845 		for (tcp = tbf->tf_tcp; tcp != NULL;
16846 		    tcp = tcp->tcp_bind_hash) {
16847 			if (zoneid != GLOBAL_ZONEID &&
16848 			    zoneid != tcp->tcp_connp->conn_zoneid)
16849 				continue;
16850 			CONN_INC_REF(tcp->tcp_connp);
16851 			tcp_report_item(mp->b_cont, tcp, i,
16852 			    Q_TO_TCP(q), cr);
16853 			CONN_DEC_REF(tcp->tcp_connp);
16854 		}
16855 		mutex_exit(&tbf->tf_lock);
16856 	}
16857 	tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt();
16858 	return (0);
16859 }
16860 
16861 /* TCP status report triggered via the Named Dispatch mechanism. */
16862 /* ARGSUSED */
16863 static int
16864 tcp_listen_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
16865 {
16866 	connf_t	*connfp;
16867 	conn_t	*connp;
16868 	tcp_t	*tcp;
16869 	int	i;
16870 	zoneid_t zoneid;
16871 	tcp_stack_t *tcps;
16872 	ip_stack_t	*ipst;
16873 
16874 	zoneid = Q_TO_CONN(q)->conn_zoneid;
16875 	tcps = Q_TO_TCP(q)->tcp_tcps;
16876 
16877 	/* Refer to comments in tcp_status_report(). */
16878 	if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) {
16879 		if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time <
16880 		    drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) {
16881 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
16882 			return (0);
16883 		}
16884 	}
16885 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
16886 		/* The following may work even if we cannot get a large buf. */
16887 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
16888 		return (0);
16889 	}
16890 
16891 	(void) mi_mpprintf(mp,
16892 	    "    TCP    " MI_COL_HDRPAD_STR
16893 	    "zone IP addr         port  seqnum   backlog (q0/q/max)");
16894 
16895 	ipst = tcps->tcps_netstack->netstack_ip;
16896 
16897 	for (i = 0; i < ipst->ips_ipcl_bind_fanout_size; i++) {
16898 		connfp = &ipst->ips_ipcl_bind_fanout[i];
16899 		connp = NULL;
16900 		while ((connp =
16901 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
16902 			tcp = connp->conn_tcp;
16903 			if (zoneid != GLOBAL_ZONEID &&
16904 			    zoneid != connp->conn_zoneid)
16905 				continue;
16906 			tcp_report_listener(mp->b_cont, tcp, i);
16907 		}
16908 	}
16909 
16910 	tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt();
16911 	return (0);
16912 }
16913 
16914 /* TCP status report triggered via the Named Dispatch mechanism. */
16915 /* ARGSUSED */
16916 static int
16917 tcp_conn_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
16918 {
16919 	connf_t	*connfp;
16920 	conn_t	*connp;
16921 	tcp_t	*tcp;
16922 	int	i;
16923 	zoneid_t zoneid;
16924 	tcp_stack_t *tcps;
16925 	ip_stack_t *ipst;
16926 
16927 	zoneid = Q_TO_CONN(q)->conn_zoneid;
16928 	tcps = Q_TO_TCP(q)->tcp_tcps;
16929 	ipst = tcps->tcps_netstack->netstack_ip;
16930 
16931 	/* Refer to comments in tcp_status_report(). */
16932 	if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) {
16933 		if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time <
16934 		    drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) {
16935 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
16936 			return (0);
16937 		}
16938 	}
16939 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
16940 		/* The following may work even if we cannot get a large buf. */
16941 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
16942 		return (0);
16943 	}
16944 
16945 	(void) mi_mpprintf(mp, "tcp_conn_hash_size = %d",
16946 	    ipst->ips_ipcl_conn_fanout_size);
16947 	(void) mi_mpprintf(mp, "    %s", tcp_report_header);
16948 
16949 	for (i = 0; i < ipst->ips_ipcl_conn_fanout_size; i++) {
16950 		connfp =  &ipst->ips_ipcl_conn_fanout[i];
16951 		connp = NULL;
16952 		while ((connp =
16953 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
16954 			tcp = connp->conn_tcp;
16955 			if (zoneid != GLOBAL_ZONEID &&
16956 			    zoneid != connp->conn_zoneid)
16957 				continue;
16958 			tcp_report_item(mp->b_cont, tcp, i,
16959 			    Q_TO_TCP(q), cr);
16960 		}
16961 	}
16962 
16963 	tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt();
16964 	return (0);
16965 }
16966 
16967 /* TCP status report triggered via the Named Dispatch mechanism. */
16968 /* ARGSUSED */
16969 static int
16970 tcp_acceptor_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
16971 {
16972 	tf_t	*tf;
16973 	tcp_t	*tcp;
16974 	int	i;
16975 	zoneid_t zoneid;
16976 	tcp_stack_t	*tcps;
16977 
16978 	zoneid = Q_TO_CONN(q)->conn_zoneid;
16979 	tcps = Q_TO_TCP(q)->tcp_tcps;
16980 
16981 	/* Refer to comments in tcp_status_report(). */
16982 	if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) {
16983 		if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time <
16984 		    drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) {
16985 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
16986 			return (0);
16987 		}
16988 	}
16989 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
16990 		/* The following may work even if we cannot get a large buf. */
16991 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
16992 		return (0);
16993 	}
16994 
16995 	(void) mi_mpprintf(mp, "    %s", tcp_report_header);
16996 
16997 	for (i = 0; i < TCP_FANOUT_SIZE; i++) {
16998 		tf = &tcps->tcps_acceptor_fanout[i];
16999 		mutex_enter(&tf->tf_lock);
17000 		for (tcp = tf->tf_tcp; tcp != NULL;
17001 		    tcp = tcp->tcp_acceptor_hash) {
17002 			if (zoneid != GLOBAL_ZONEID &&
17003 			    zoneid != tcp->tcp_connp->conn_zoneid)
17004 				continue;
17005 			tcp_report_item(mp->b_cont, tcp, i,
17006 			    Q_TO_TCP(q), cr);
17007 		}
17008 		mutex_exit(&tf->tf_lock);
17009 	}
17010 	tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt();
17011 	return (0);
17012 }
17013 
17014 /*
17015  * tcp_timer is the timer service routine.  It handles the retransmission,
17016  * FIN_WAIT_2 flush, and zero window probe timeout events.  It figures out
17017  * from the state of the tcp instance what kind of action needs to be done
17018  * at the time it is called.
17019  */
17020 static void
17021 tcp_timer(void *arg)
17022 {
17023 	mblk_t		*mp;
17024 	clock_t		first_threshold;
17025 	clock_t		second_threshold;
17026 	clock_t		ms;
17027 	uint32_t	mss;
17028 	conn_t		*connp = (conn_t *)arg;
17029 	tcp_t		*tcp = connp->conn_tcp;
17030 	tcp_stack_t	*tcps = tcp->tcp_tcps;
17031 
17032 	tcp->tcp_timer_tid = 0;
17033 
17034 	if (tcp->tcp_fused)
17035 		return;
17036 
17037 	first_threshold =  tcp->tcp_first_timer_threshold;
17038 	second_threshold = tcp->tcp_second_timer_threshold;
17039 	switch (tcp->tcp_state) {
17040 	case TCPS_IDLE:
17041 	case TCPS_BOUND:
17042 	case TCPS_LISTEN:
17043 		return;
17044 	case TCPS_SYN_RCVD: {
17045 		tcp_t	*listener = tcp->tcp_listener;
17046 
17047 		if (tcp->tcp_syn_rcvd_timeout == 0 && (listener != NULL)) {
17048 			ASSERT(tcp->tcp_rq == listener->tcp_rq);
17049 			/* it's our first timeout */
17050 			tcp->tcp_syn_rcvd_timeout = 1;
17051 			mutex_enter(&listener->tcp_eager_lock);
17052 			listener->tcp_syn_rcvd_timeout++;
17053 			if (!tcp->tcp_dontdrop && !tcp->tcp_closemp_used) {
17054 				/*
17055 				 * Make this eager available for drop if we
17056 				 * need to drop one to accomodate a new
17057 				 * incoming SYN request.
17058 				 */
17059 				MAKE_DROPPABLE(listener, tcp);
17060 			}
17061 			if (!listener->tcp_syn_defense &&
17062 			    (listener->tcp_syn_rcvd_timeout >
17063 			    (tcps->tcps_conn_req_max_q0 >> 2)) &&
17064 			    (tcps->tcps_conn_req_max_q0 > 200)) {
17065 				/* We may be under attack. Put on a defense. */
17066 				listener->tcp_syn_defense = B_TRUE;
17067 				cmn_err(CE_WARN, "High TCP connect timeout "
17068 				    "rate! System (port %d) may be under a "
17069 				    "SYN flood attack!",
17070 				    BE16_TO_U16(listener->tcp_tcph->th_lport));
17071 
17072 				listener->tcp_ip_addr_cache = kmem_zalloc(
17073 				    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t),
17074 				    KM_NOSLEEP);
17075 			}
17076 			mutex_exit(&listener->tcp_eager_lock);
17077 		} else if (listener != NULL) {
17078 			mutex_enter(&listener->tcp_eager_lock);
17079 			tcp->tcp_syn_rcvd_timeout++;
17080 			if (tcp->tcp_syn_rcvd_timeout > 1 &&
17081 			    !tcp->tcp_closemp_used) {
17082 				/*
17083 				 * This is our second timeout. Put the tcp in
17084 				 * the list of droppable eagers to allow it to
17085 				 * be dropped, if needed. We don't check
17086 				 * whether tcp_dontdrop is set or not to
17087 				 * protect ourselve from a SYN attack where a
17088 				 * remote host can spoof itself as one of the
17089 				 * good IP source and continue to hold
17090 				 * resources too long.
17091 				 */
17092 				MAKE_DROPPABLE(listener, tcp);
17093 			}
17094 			mutex_exit(&listener->tcp_eager_lock);
17095 		}
17096 	}
17097 		/* FALLTHRU */
17098 	case TCPS_SYN_SENT:
17099 		first_threshold =  tcp->tcp_first_ctimer_threshold;
17100 		second_threshold = tcp->tcp_second_ctimer_threshold;
17101 		break;
17102 	case TCPS_ESTABLISHED:
17103 	case TCPS_FIN_WAIT_1:
17104 	case TCPS_CLOSING:
17105 	case TCPS_CLOSE_WAIT:
17106 	case TCPS_LAST_ACK:
17107 		/* If we have data to rexmit */
17108 		if (tcp->tcp_suna != tcp->tcp_snxt) {
17109 			clock_t	time_to_wait;
17110 
17111 			BUMP_MIB(&tcps->tcps_mib, tcpTimRetrans);
17112 			if (!tcp->tcp_xmit_head)
17113 				break;
17114 			time_to_wait = lbolt -
17115 			    (clock_t)tcp->tcp_xmit_head->b_prev;
17116 			time_to_wait = tcp->tcp_rto -
17117 			    TICK_TO_MSEC(time_to_wait);
17118 			/*
17119 			 * If the timer fires too early, 1 clock tick earlier,
17120 			 * restart the timer.
17121 			 */
17122 			if (time_to_wait > msec_per_tick) {
17123 				TCP_STAT(tcps, tcp_timer_fire_early);
17124 				TCP_TIMER_RESTART(tcp, time_to_wait);
17125 				return;
17126 			}
17127 			/*
17128 			 * When we probe zero windows, we force the swnd open.
17129 			 * If our peer acks with a closed window swnd will be
17130 			 * set to zero by tcp_rput(). As long as we are
17131 			 * receiving acks tcp_rput will
17132 			 * reset 'tcp_ms_we_have_waited' so as not to trip the
17133 			 * first and second interval actions.  NOTE: the timer
17134 			 * interval is allowed to continue its exponential
17135 			 * backoff.
17136 			 */
17137 			if (tcp->tcp_swnd == 0 || tcp->tcp_zero_win_probe) {
17138 				if (tcp->tcp_debug) {
17139 					(void) strlog(TCP_MOD_ID, 0, 1,
17140 					    SL_TRACE, "tcp_timer: zero win");
17141 				}
17142 			} else {
17143 				/*
17144 				 * After retransmission, we need to do
17145 				 * slow start.  Set the ssthresh to one
17146 				 * half of current effective window and
17147 				 * cwnd to one MSS.  Also reset
17148 				 * tcp_cwnd_cnt.
17149 				 *
17150 				 * Note that if tcp_ssthresh is reduced because
17151 				 * of ECN, do not reduce it again unless it is
17152 				 * already one window of data away (tcp_cwr
17153 				 * should then be cleared) or this is a
17154 				 * timeout for a retransmitted segment.
17155 				 */
17156 				uint32_t npkt;
17157 
17158 				if (!tcp->tcp_cwr || tcp->tcp_rexmit) {
17159 					npkt = ((tcp->tcp_timer_backoff ?
17160 					    tcp->tcp_cwnd_ssthresh :
17161 					    tcp->tcp_snxt -
17162 					    tcp->tcp_suna) >> 1) / tcp->tcp_mss;
17163 					tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) *
17164 					    tcp->tcp_mss;
17165 				}
17166 				tcp->tcp_cwnd = tcp->tcp_mss;
17167 				tcp->tcp_cwnd_cnt = 0;
17168 				if (tcp->tcp_ecn_ok) {
17169 					tcp->tcp_cwr = B_TRUE;
17170 					tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
17171 					tcp->tcp_ecn_cwr_sent = B_FALSE;
17172 				}
17173 			}
17174 			break;
17175 		}
17176 		/*
17177 		 * We have something to send yet we cannot send.  The
17178 		 * reason can be:
17179 		 *
17180 		 * 1. Zero send window: we need to do zero window probe.
17181 		 * 2. Zero cwnd: because of ECN, we need to "clock out
17182 		 * segments.
17183 		 * 3. SWS avoidance: receiver may have shrunk window,
17184 		 * reset our knowledge.
17185 		 *
17186 		 * Note that condition 2 can happen with either 1 or
17187 		 * 3.  But 1 and 3 are exclusive.
17188 		 */
17189 		if (tcp->tcp_unsent != 0) {
17190 			if (tcp->tcp_cwnd == 0) {
17191 				/*
17192 				 * Set tcp_cwnd to 1 MSS so that a
17193 				 * new segment can be sent out.  We
17194 				 * are "clocking out" new data when
17195 				 * the network is really congested.
17196 				 */
17197 				ASSERT(tcp->tcp_ecn_ok);
17198 				tcp->tcp_cwnd = tcp->tcp_mss;
17199 			}
17200 			if (tcp->tcp_swnd == 0) {
17201 				/* Extend window for zero window probe */
17202 				tcp->tcp_swnd++;
17203 				tcp->tcp_zero_win_probe = B_TRUE;
17204 				BUMP_MIB(&tcps->tcps_mib, tcpOutWinProbe);
17205 			} else {
17206 				/*
17207 				 * Handle timeout from sender SWS avoidance.
17208 				 * Reset our knowledge of the max send window
17209 				 * since the receiver might have reduced its
17210 				 * receive buffer.  Avoid setting tcp_max_swnd
17211 				 * to one since that will essentially disable
17212 				 * the SWS checks.
17213 				 *
17214 				 * Note that since we don't have a SWS
17215 				 * state variable, if the timeout is set
17216 				 * for ECN but not for SWS, this
17217 				 * code will also be executed.  This is
17218 				 * fine as tcp_max_swnd is updated
17219 				 * constantly and it will not affect
17220 				 * anything.
17221 				 */
17222 				tcp->tcp_max_swnd = MAX(tcp->tcp_swnd, 2);
17223 			}
17224 			tcp_wput_data(tcp, NULL, B_FALSE);
17225 			return;
17226 		}
17227 		/* Is there a FIN that needs to be to re retransmitted? */
17228 		if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
17229 		    !tcp->tcp_fin_acked)
17230 			break;
17231 		/* Nothing to do, return without restarting timer. */
17232 		TCP_STAT(tcps, tcp_timer_fire_miss);
17233 		return;
17234 	case TCPS_FIN_WAIT_2:
17235 		/*
17236 		 * User closed the TCP endpoint and peer ACK'ed our FIN.
17237 		 * We waited some time for for peer's FIN, but it hasn't
17238 		 * arrived.  We flush the connection now to avoid
17239 		 * case where the peer has rebooted.
17240 		 */
17241 		if (TCP_IS_DETACHED(tcp)) {
17242 			(void) tcp_clean_death(tcp, 0, 23);
17243 		} else {
17244 			TCP_TIMER_RESTART(tcp,
17245 			    tcps->tcps_fin_wait_2_flush_interval);
17246 		}
17247 		return;
17248 	case TCPS_TIME_WAIT:
17249 		(void) tcp_clean_death(tcp, 0, 24);
17250 		return;
17251 	default:
17252 		if (tcp->tcp_debug) {
17253 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR,
17254 			    "tcp_timer: strange state (%d) %s",
17255 			    tcp->tcp_state, tcp_display(tcp, NULL,
17256 			    DISP_PORT_ONLY));
17257 		}
17258 		return;
17259 	}
17260 	if ((ms = tcp->tcp_ms_we_have_waited) > second_threshold) {
17261 		/*
17262 		 * For zero window probe, we need to send indefinitely,
17263 		 * unless we have not heard from the other side for some
17264 		 * time...
17265 		 */
17266 		if ((tcp->tcp_zero_win_probe == 0) ||
17267 		    (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >
17268 		    second_threshold)) {
17269 			BUMP_MIB(&tcps->tcps_mib, tcpTimRetransDrop);
17270 			/*
17271 			 * If TCP is in SYN_RCVD state, send back a
17272 			 * RST|ACK as BSD does.  Note that tcp_zero_win_probe
17273 			 * should be zero in TCPS_SYN_RCVD state.
17274 			 */
17275 			if (tcp->tcp_state == TCPS_SYN_RCVD) {
17276 				tcp_xmit_ctl("tcp_timer: RST sent on timeout "
17277 				    "in SYN_RCVD",
17278 				    tcp, tcp->tcp_snxt,
17279 				    tcp->tcp_rnxt, TH_RST | TH_ACK);
17280 			}
17281 			(void) tcp_clean_death(tcp,
17282 			    tcp->tcp_client_errno ?
17283 			    tcp->tcp_client_errno : ETIMEDOUT, 25);
17284 			return;
17285 		} else {
17286 			/*
17287 			 * Set tcp_ms_we_have_waited to second_threshold
17288 			 * so that in next timeout, we will do the above
17289 			 * check (lbolt - tcp_last_recv_time).  This is
17290 			 * also to avoid overflow.
17291 			 *
17292 			 * We don't need to decrement tcp_timer_backoff
17293 			 * to avoid overflow because it will be decremented
17294 			 * later if new timeout value is greater than
17295 			 * tcp_rexmit_interval_max.  In the case when
17296 			 * tcp_rexmit_interval_max is greater than
17297 			 * second_threshold, it means that we will wait
17298 			 * longer than second_threshold to send the next
17299 			 * window probe.
17300 			 */
17301 			tcp->tcp_ms_we_have_waited = second_threshold;
17302 		}
17303 	} else if (ms > first_threshold) {
17304 		if (tcp->tcp_snd_zcopy_aware && (!tcp->tcp_xmit_zc_clean) &&
17305 		    tcp->tcp_xmit_head != NULL) {
17306 			tcp->tcp_xmit_head =
17307 			    tcp_zcopy_backoff(tcp, tcp->tcp_xmit_head, 1);
17308 		}
17309 		/*
17310 		 * We have been retransmitting for too long...  The RTT
17311 		 * we calculated is probably incorrect.  Reinitialize it.
17312 		 * Need to compensate for 0 tcp_rtt_sa.  Reset
17313 		 * tcp_rtt_update so that we won't accidentally cache a
17314 		 * bad value.  But only do this if this is not a zero
17315 		 * window probe.
17316 		 */
17317 		if (tcp->tcp_rtt_sa != 0 && tcp->tcp_zero_win_probe == 0) {
17318 			tcp->tcp_rtt_sd += (tcp->tcp_rtt_sa >> 3) +
17319 			    (tcp->tcp_rtt_sa >> 5);
17320 			tcp->tcp_rtt_sa = 0;
17321 			tcp_ip_notify(tcp);
17322 			tcp->tcp_rtt_update = 0;
17323 		}
17324 	}
17325 	tcp->tcp_timer_backoff++;
17326 	if ((ms = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd +
17327 	    tcps->tcps_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5)) <
17328 	    tcps->tcps_rexmit_interval_min) {
17329 		/*
17330 		 * This means the original RTO is tcp_rexmit_interval_min.
17331 		 * So we will use tcp_rexmit_interval_min as the RTO value
17332 		 * and do the backoff.
17333 		 */
17334 		ms = tcps->tcps_rexmit_interval_min << tcp->tcp_timer_backoff;
17335 	} else {
17336 		ms <<= tcp->tcp_timer_backoff;
17337 	}
17338 	if (ms > tcps->tcps_rexmit_interval_max) {
17339 		ms = tcps->tcps_rexmit_interval_max;
17340 		/*
17341 		 * ms is at max, decrement tcp_timer_backoff to avoid
17342 		 * overflow.
17343 		 */
17344 		tcp->tcp_timer_backoff--;
17345 	}
17346 	tcp->tcp_ms_we_have_waited += ms;
17347 	if (tcp->tcp_zero_win_probe == 0) {
17348 		tcp->tcp_rto = ms;
17349 	}
17350 	TCP_TIMER_RESTART(tcp, ms);
17351 	/*
17352 	 * This is after a timeout and tcp_rto is backed off.  Set
17353 	 * tcp_set_timer to 1 so that next time RTO is updated, we will
17354 	 * restart the timer with a correct value.
17355 	 */
17356 	tcp->tcp_set_timer = 1;
17357 	mss = tcp->tcp_snxt - tcp->tcp_suna;
17358 	if (mss > tcp->tcp_mss)
17359 		mss = tcp->tcp_mss;
17360 	if (mss > tcp->tcp_swnd && tcp->tcp_swnd != 0)
17361 		mss = tcp->tcp_swnd;
17362 
17363 	if ((mp = tcp->tcp_xmit_head) != NULL)
17364 		mp->b_prev = (mblk_t *)lbolt;
17365 	mp = tcp_xmit_mp(tcp, mp, mss, NULL, NULL, tcp->tcp_suna, B_TRUE, &mss,
17366 	    B_TRUE);
17367 
17368 	/*
17369 	 * When slow start after retransmission begins, start with
17370 	 * this seq no.  tcp_rexmit_max marks the end of special slow
17371 	 * start phase.  tcp_snd_burst controls how many segments
17372 	 * can be sent because of an ack.
17373 	 */
17374 	tcp->tcp_rexmit_nxt = tcp->tcp_suna;
17375 	tcp->tcp_snd_burst = TCP_CWND_SS;
17376 	if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
17377 	    (tcp->tcp_unsent == 0)) {
17378 		tcp->tcp_rexmit_max = tcp->tcp_fss;
17379 	} else {
17380 		tcp->tcp_rexmit_max = tcp->tcp_snxt;
17381 	}
17382 	tcp->tcp_rexmit = B_TRUE;
17383 	tcp->tcp_dupack_cnt = 0;
17384 
17385 	/*
17386 	 * Remove all rexmit SACK blk to start from fresh.
17387 	 */
17388 	if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) {
17389 		TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list);
17390 		tcp->tcp_num_notsack_blk = 0;
17391 		tcp->tcp_cnt_notsack_list = 0;
17392 	}
17393 	if (mp == NULL) {
17394 		return;
17395 	}
17396 	/* Attach credentials to retransmitted initial SYNs. */
17397 	if (tcp->tcp_state == TCPS_SYN_SENT) {
17398 		mblk_setcred(mp, tcp->tcp_cred);
17399 		DB_CPID(mp) = tcp->tcp_cpid;
17400 	}
17401 
17402 	tcp->tcp_csuna = tcp->tcp_snxt;
17403 	BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs);
17404 	UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, mss);
17405 	TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
17406 	tcp_send_data(tcp, tcp->tcp_wq, mp);
17407 
17408 }
17409 
17410 /* tcp_unbind is called by tcp_wput_proto to handle T_UNBIND_REQ messages. */
17411 static void
17412 tcp_unbind(tcp_t *tcp, mblk_t *mp)
17413 {
17414 	conn_t	*connp;
17415 
17416 	switch (tcp->tcp_state) {
17417 	case TCPS_BOUND:
17418 	case TCPS_LISTEN:
17419 		break;
17420 	default:
17421 		tcp_err_ack(tcp, mp, TOUTSTATE, 0);
17422 		return;
17423 	}
17424 
17425 	/*
17426 	 * Need to clean up all the eagers since after the unbind, segments
17427 	 * will no longer be delivered to this listener stream.
17428 	 */
17429 	mutex_enter(&tcp->tcp_eager_lock);
17430 	if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) {
17431 		tcp_eager_cleanup(tcp, 0);
17432 	}
17433 	mutex_exit(&tcp->tcp_eager_lock);
17434 
17435 	if (tcp->tcp_ipversion == IPV4_VERSION) {
17436 		tcp->tcp_ipha->ipha_src = 0;
17437 	} else {
17438 		V6_SET_ZERO(tcp->tcp_ip6h->ip6_src);
17439 	}
17440 	V6_SET_ZERO(tcp->tcp_ip_src_v6);
17441 	bzero(tcp->tcp_tcph->th_lport, sizeof (tcp->tcp_tcph->th_lport));
17442 	tcp_bind_hash_remove(tcp);
17443 	tcp->tcp_state = TCPS_IDLE;
17444 	tcp->tcp_mdt = B_FALSE;
17445 	/* Send M_FLUSH according to TPI */
17446 	(void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW);
17447 	connp = tcp->tcp_connp;
17448 	connp->conn_mdt_ok = B_FALSE;
17449 	ipcl_hash_remove(connp);
17450 	bzero(&connp->conn_ports, sizeof (connp->conn_ports));
17451 	mp = mi_tpi_ok_ack_alloc(mp);
17452 	putnext(tcp->tcp_rq, mp);
17453 }
17454 
17455 /*
17456  * Don't let port fall into the privileged range.
17457  * Since the extra privileged ports can be arbitrary we also
17458  * ensure that we exclude those from consideration.
17459  * tcp_g_epriv_ports is not sorted thus we loop over it until
17460  * there are no changes.
17461  *
17462  * Note: No locks are held when inspecting tcp_g_*epriv_ports
17463  * but instead the code relies on:
17464  * - the fact that the address of the array and its size never changes
17465  * - the atomic assignment of the elements of the array
17466  *
17467  * Returns 0 if there are no more ports available.
17468  *
17469  * TS note: skip multilevel ports.
17470  */
17471 static in_port_t
17472 tcp_update_next_port(in_port_t port, const tcp_t *tcp, boolean_t random)
17473 {
17474 	int i;
17475 	boolean_t restart = B_FALSE;
17476 	tcp_stack_t *tcps = tcp->tcp_tcps;
17477 
17478 	if (random && tcp_random_anon_port != 0) {
17479 		(void) random_get_pseudo_bytes((uint8_t *)&port,
17480 		    sizeof (in_port_t));
17481 		/*
17482 		 * Unless changed by a sys admin, the smallest anon port
17483 		 * is 32768 and the largest anon port is 65535.  It is
17484 		 * very likely (50%) for the random port to be smaller
17485 		 * than the smallest anon port.  When that happens,
17486 		 * add port % (anon port range) to the smallest anon
17487 		 * port to get the random port.  It should fall into the
17488 		 * valid anon port range.
17489 		 */
17490 		if (port < tcps->tcps_smallest_anon_port) {
17491 			port = tcps->tcps_smallest_anon_port +
17492 			    port % (tcps->tcps_largest_anon_port -
17493 			    tcps->tcps_smallest_anon_port);
17494 		}
17495 	}
17496 
17497 retry:
17498 	if (port < tcps->tcps_smallest_anon_port)
17499 		port = (in_port_t)tcps->tcps_smallest_anon_port;
17500 
17501 	if (port > tcps->tcps_largest_anon_port) {
17502 		if (restart)
17503 			return (0);
17504 		restart = B_TRUE;
17505 		port = (in_port_t)tcps->tcps_smallest_anon_port;
17506 	}
17507 
17508 	if (port < tcps->tcps_smallest_nonpriv_port)
17509 		port = (in_port_t)tcps->tcps_smallest_nonpriv_port;
17510 
17511 	for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
17512 		if (port == tcps->tcps_g_epriv_ports[i]) {
17513 			port++;
17514 			/*
17515 			 * Make sure whether the port is in the
17516 			 * valid range.
17517 			 */
17518 			goto retry;
17519 		}
17520 	}
17521 	if (is_system_labeled() &&
17522 	    (i = tsol_next_port(crgetzone(tcp->tcp_cred), port,
17523 	    IPPROTO_TCP, B_TRUE)) != 0) {
17524 		port = i;
17525 		goto retry;
17526 	}
17527 	return (port);
17528 }
17529 
17530 /*
17531  * Return the next anonymous port in the privileged port range for
17532  * bind checking.  It starts at IPPORT_RESERVED - 1 and goes
17533  * downwards.  This is the same behavior as documented in the userland
17534  * library call rresvport(3N).
17535  *
17536  * TS note: skip multilevel ports.
17537  */
17538 static in_port_t
17539 tcp_get_next_priv_port(const tcp_t *tcp)
17540 {
17541 	static in_port_t next_priv_port = IPPORT_RESERVED - 1;
17542 	in_port_t nextport;
17543 	boolean_t restart = B_FALSE;
17544 	tcp_stack_t *tcps = tcp->tcp_tcps;
17545 retry:
17546 	if (next_priv_port < tcps->tcps_min_anonpriv_port ||
17547 	    next_priv_port >= IPPORT_RESERVED) {
17548 		next_priv_port = IPPORT_RESERVED - 1;
17549 		if (restart)
17550 			return (0);
17551 		restart = B_TRUE;
17552 	}
17553 	if (is_system_labeled() &&
17554 	    (nextport = tsol_next_port(crgetzone(tcp->tcp_cred),
17555 	    next_priv_port, IPPROTO_TCP, B_FALSE)) != 0) {
17556 		next_priv_port = nextport;
17557 		goto retry;
17558 	}
17559 	return (next_priv_port--);
17560 }
17561 
17562 /* The write side r/w procedure. */
17563 
17564 #if CCS_STATS
17565 struct {
17566 	struct {
17567 		int64_t count, bytes;
17568 	} tot, hit;
17569 } wrw_stats;
17570 #endif
17571 
17572 /*
17573  * Call by tcp_wput() to handle all non data, except M_PROTO and M_PCPROTO,
17574  * messages.
17575  */
17576 /* ARGSUSED */
17577 static void
17578 tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2)
17579 {
17580 	conn_t	*connp = (conn_t *)arg;
17581 	tcp_t	*tcp = connp->conn_tcp;
17582 	queue_t	*q = tcp->tcp_wq;
17583 
17584 	ASSERT(DB_TYPE(mp) != M_IOCTL);
17585 	/*
17586 	 * TCP is D_MP and qprocsoff() is done towards the end of the tcp_close.
17587 	 * Once the close starts, streamhead and sockfs will not let any data
17588 	 * packets come down (close ensures that there are no threads using the
17589 	 * queue and no new threads will come down) but since qprocsoff()
17590 	 * hasn't happened yet, a M_FLUSH or some non data message might
17591 	 * get reflected back (in response to our own FLUSHRW) and get
17592 	 * processed after tcp_close() is done. The conn would still be valid
17593 	 * because a ref would have added but we need to check the state
17594 	 * before actually processing the packet.
17595 	 */
17596 	if (TCP_IS_DETACHED(tcp) || (tcp->tcp_state == TCPS_CLOSED)) {
17597 		freemsg(mp);
17598 		return;
17599 	}
17600 
17601 	switch (DB_TYPE(mp)) {
17602 	case M_IOCDATA:
17603 		tcp_wput_iocdata(tcp, mp);
17604 		break;
17605 	case M_FLUSH:
17606 		tcp_wput_flush(tcp, mp);
17607 		break;
17608 	default:
17609 		CALL_IP_WPUT(connp, q, mp);
17610 		break;
17611 	}
17612 }
17613 
17614 /*
17615  * The TCP fast path write put procedure.
17616  * NOTE: the logic of the fast path is duplicated from tcp_wput_data()
17617  */
17618 /* ARGSUSED */
17619 void
17620 tcp_output(void *arg, mblk_t *mp, void *arg2)
17621 {
17622 	int		len;
17623 	int		hdrlen;
17624 	int		plen;
17625 	mblk_t		*mp1;
17626 	uchar_t		*rptr;
17627 	uint32_t	snxt;
17628 	tcph_t		*tcph;
17629 	struct datab	*db;
17630 	uint32_t	suna;
17631 	uint32_t	mss;
17632 	ipaddr_t	*dst;
17633 	ipaddr_t	*src;
17634 	uint32_t	sum;
17635 	int		usable;
17636 	conn_t		*connp = (conn_t *)arg;
17637 	tcp_t		*tcp = connp->conn_tcp;
17638 	uint32_t	msize;
17639 	tcp_stack_t	*tcps = tcp->tcp_tcps;
17640 
17641 	/*
17642 	 * Try and ASSERT the minimum possible references on the
17643 	 * conn early enough. Since we are executing on write side,
17644 	 * the connection is obviously not detached and that means
17645 	 * there is a ref each for TCP and IP. Since we are behind
17646 	 * the squeue, the minimum references needed are 3. If the
17647 	 * conn is in classifier hash list, there should be an
17648 	 * extra ref for that (we check both the possibilities).
17649 	 */
17650 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
17651 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
17652 
17653 	ASSERT(DB_TYPE(mp) == M_DATA);
17654 	msize = (mp->b_cont == NULL) ? MBLKL(mp) : msgdsize(mp);
17655 
17656 	mutex_enter(&tcp->tcp_non_sq_lock);
17657 	tcp->tcp_squeue_bytes -= msize;
17658 	mutex_exit(&tcp->tcp_non_sq_lock);
17659 
17660 	/* Bypass tcp protocol for fused tcp loopback */
17661 	if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize))
17662 		return;
17663 
17664 	mss = tcp->tcp_mss;
17665 	if (tcp->tcp_xmit_zc_clean)
17666 		mp = tcp_zcopy_backoff(tcp, mp, 0);
17667 
17668 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
17669 	len = (int)(mp->b_wptr - mp->b_rptr);
17670 
17671 	/*
17672 	 * Criteria for fast path:
17673 	 *
17674 	 *   1. no unsent data
17675 	 *   2. single mblk in request
17676 	 *   3. connection established
17677 	 *   4. data in mblk
17678 	 *   5. len <= mss
17679 	 *   6. no tcp_valid bits
17680 	 */
17681 	if ((tcp->tcp_unsent != 0) ||
17682 	    (tcp->tcp_cork) ||
17683 	    (mp->b_cont != NULL) ||
17684 	    (tcp->tcp_state != TCPS_ESTABLISHED) ||
17685 	    (len == 0) ||
17686 	    (len > mss) ||
17687 	    (tcp->tcp_valid_bits != 0)) {
17688 		tcp_wput_data(tcp, mp, B_FALSE);
17689 		return;
17690 	}
17691 
17692 	ASSERT(tcp->tcp_xmit_tail_unsent == 0);
17693 	ASSERT(tcp->tcp_fin_sent == 0);
17694 
17695 	/* queue new packet onto retransmission queue */
17696 	if (tcp->tcp_xmit_head == NULL) {
17697 		tcp->tcp_xmit_head = mp;
17698 	} else {
17699 		tcp->tcp_xmit_last->b_cont = mp;
17700 	}
17701 	tcp->tcp_xmit_last = mp;
17702 	tcp->tcp_xmit_tail = mp;
17703 
17704 	/* find out how much we can send */
17705 	/* BEGIN CSTYLED */
17706 	/*
17707 	 *    un-acked           usable
17708 	 *  |--------------|-----------------|
17709 	 *  tcp_suna       tcp_snxt          tcp_suna+tcp_swnd
17710 	 */
17711 	/* END CSTYLED */
17712 
17713 	/* start sending from tcp_snxt */
17714 	snxt = tcp->tcp_snxt;
17715 
17716 	/*
17717 	 * Check to see if this connection has been idled for some
17718 	 * time and no ACK is expected.  If it is, we need to slow
17719 	 * start again to get back the connection's "self-clock" as
17720 	 * described in VJ's paper.
17721 	 *
17722 	 * Refer to the comment in tcp_mss_set() for the calculation
17723 	 * of tcp_cwnd after idle.
17724 	 */
17725 	if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet &&
17726 	    (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) {
17727 		SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_after_idle);
17728 	}
17729 
17730 	usable = tcp->tcp_swnd;		/* tcp window size */
17731 	if (usable > tcp->tcp_cwnd)
17732 		usable = tcp->tcp_cwnd;	/* congestion window smaller */
17733 	usable -= snxt;		/* subtract stuff already sent */
17734 	suna = tcp->tcp_suna;
17735 	usable += suna;
17736 	/* usable can be < 0 if the congestion window is smaller */
17737 	if (len > usable) {
17738 		/* Can't send complete M_DATA in one shot */
17739 		goto slow;
17740 	}
17741 
17742 	mutex_enter(&tcp->tcp_non_sq_lock);
17743 	if (tcp->tcp_flow_stopped &&
17744 	    TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) {
17745 		tcp_clrqfull(tcp);
17746 	}
17747 	mutex_exit(&tcp->tcp_non_sq_lock);
17748 
17749 	/*
17750 	 * determine if anything to send (Nagle).
17751 	 *
17752 	 *   1. len < tcp_mss (i.e. small)
17753 	 *   2. unacknowledged data present
17754 	 *   3. len < nagle limit
17755 	 *   4. last packet sent < nagle limit (previous packet sent)
17756 	 */
17757 	if ((len < mss) && (snxt != suna) &&
17758 	    (len < (int)tcp->tcp_naglim) &&
17759 	    (tcp->tcp_last_sent_len < tcp->tcp_naglim)) {
17760 		/*
17761 		 * This was the first unsent packet and normally
17762 		 * mss < xmit_hiwater so there is no need to worry
17763 		 * about flow control. The next packet will go
17764 		 * through the flow control check in tcp_wput_data().
17765 		 */
17766 		/* leftover work from above */
17767 		tcp->tcp_unsent = len;
17768 		tcp->tcp_xmit_tail_unsent = len;
17769 
17770 		return;
17771 	}
17772 
17773 	/* len <= tcp->tcp_mss && len == unsent so no silly window */
17774 
17775 	if (snxt == suna) {
17776 		TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
17777 	}
17778 
17779 	/* we have always sent something */
17780 	tcp->tcp_rack_cnt = 0;
17781 
17782 	tcp->tcp_snxt = snxt + len;
17783 	tcp->tcp_rack = tcp->tcp_rnxt;
17784 
17785 	if ((mp1 = dupb(mp)) == 0)
17786 		goto no_memory;
17787 	mp->b_prev = (mblk_t *)(uintptr_t)lbolt;
17788 	mp->b_next = (mblk_t *)(uintptr_t)snxt;
17789 
17790 	/* adjust tcp header information */
17791 	tcph = tcp->tcp_tcph;
17792 	tcph->th_flags[0] = (TH_ACK|TH_PUSH);
17793 
17794 	sum = len + tcp->tcp_tcp_hdr_len + tcp->tcp_sum;
17795 	sum = (sum >> 16) + (sum & 0xFFFF);
17796 	U16_TO_ABE16(sum, tcph->th_sum);
17797 
17798 	U32_TO_ABE32(snxt, tcph->th_seq);
17799 
17800 	BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs);
17801 	UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len);
17802 	BUMP_LOCAL(tcp->tcp_obsegs);
17803 
17804 	/* Update the latest receive window size in TCP header. */
17805 	U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
17806 	    tcph->th_win);
17807 
17808 	tcp->tcp_last_sent_len = (ushort_t)len;
17809 
17810 	plen = len + tcp->tcp_hdr_len;
17811 
17812 	if (tcp->tcp_ipversion == IPV4_VERSION) {
17813 		tcp->tcp_ipha->ipha_length = htons(plen);
17814 	} else {
17815 		tcp->tcp_ip6h->ip6_plen = htons(plen -
17816 		    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
17817 	}
17818 
17819 	/* see if we need to allocate a mblk for the headers */
17820 	hdrlen = tcp->tcp_hdr_len;
17821 	rptr = mp1->b_rptr - hdrlen;
17822 	db = mp1->b_datap;
17823 	if ((db->db_ref != 2) || rptr < db->db_base ||
17824 	    (!OK_32PTR(rptr))) {
17825 		/* NOTE: we assume allocb returns an OK_32PTR */
17826 		mp = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH +
17827 		    tcps->tcps_wroff_xtra, BPRI_MED);
17828 		if (!mp) {
17829 			freemsg(mp1);
17830 			goto no_memory;
17831 		}
17832 		mp->b_cont = mp1;
17833 		mp1 = mp;
17834 		/* Leave room for Link Level header */
17835 		/* hdrlen = tcp->tcp_hdr_len; */
17836 		rptr = &mp1->b_rptr[tcps->tcps_wroff_xtra];
17837 		mp1->b_wptr = &rptr[hdrlen];
17838 	}
17839 	mp1->b_rptr = rptr;
17840 
17841 	/* Fill in the timestamp option. */
17842 	if (tcp->tcp_snd_ts_ok) {
17843 		U32_TO_BE32((uint32_t)lbolt,
17844 		    (char *)tcph+TCP_MIN_HEADER_LENGTH+4);
17845 		U32_TO_BE32(tcp->tcp_ts_recent,
17846 		    (char *)tcph+TCP_MIN_HEADER_LENGTH+8);
17847 	} else {
17848 		ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH);
17849 	}
17850 
17851 	/* copy header into outgoing packet */
17852 	dst = (ipaddr_t *)rptr;
17853 	src = (ipaddr_t *)tcp->tcp_iphc;
17854 	dst[0] = src[0];
17855 	dst[1] = src[1];
17856 	dst[2] = src[2];
17857 	dst[3] = src[3];
17858 	dst[4] = src[4];
17859 	dst[5] = src[5];
17860 	dst[6] = src[6];
17861 	dst[7] = src[7];
17862 	dst[8] = src[8];
17863 	dst[9] = src[9];
17864 	if (hdrlen -= 40) {
17865 		hdrlen >>= 2;
17866 		dst += 10;
17867 		src += 10;
17868 		do {
17869 			*dst++ = *src++;
17870 		} while (--hdrlen);
17871 	}
17872 
17873 	/*
17874 	 * Set the ECN info in the TCP header.  Note that this
17875 	 * is not the template header.
17876 	 */
17877 	if (tcp->tcp_ecn_ok) {
17878 		SET_ECT(tcp, rptr);
17879 
17880 		tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len);
17881 		if (tcp->tcp_ecn_echo_on)
17882 			tcph->th_flags[0] |= TH_ECE;
17883 		if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) {
17884 			tcph->th_flags[0] |= TH_CWR;
17885 			tcp->tcp_ecn_cwr_sent = B_TRUE;
17886 		}
17887 	}
17888 
17889 	if (tcp->tcp_ip_forward_progress) {
17890 		ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
17891 		*(uint32_t *)mp1->b_rptr  |= IP_FORWARD_PROG;
17892 		tcp->tcp_ip_forward_progress = B_FALSE;
17893 	}
17894 	TCP_RECORD_TRACE(tcp, mp1, TCP_TRACE_SEND_PKT);
17895 	tcp_send_data(tcp, tcp->tcp_wq, mp1);
17896 	return;
17897 
17898 	/*
17899 	 * If we ran out of memory, we pretend to have sent the packet
17900 	 * and that it was lost on the wire.
17901 	 */
17902 no_memory:
17903 	return;
17904 
17905 slow:
17906 	/* leftover work from above */
17907 	tcp->tcp_unsent = len;
17908 	tcp->tcp_xmit_tail_unsent = len;
17909 	tcp_wput_data(tcp, NULL, B_FALSE);
17910 }
17911 
17912 /*
17913  * The function called through squeue to get behind eager's perimeter to
17914  * finish the accept processing.
17915  */
17916 /* ARGSUSED */
17917 void
17918 tcp_accept_finish(void *arg, mblk_t *mp, void *arg2)
17919 {
17920 	conn_t			*connp = (conn_t *)arg;
17921 	tcp_t			*tcp = connp->conn_tcp;
17922 	queue_t			*q = tcp->tcp_rq;
17923 	mblk_t			*mp1;
17924 	mblk_t			*stropt_mp = mp;
17925 	struct  stroptions	*stropt;
17926 	uint_t			thwin;
17927 	tcp_stack_t	*tcps = tcp->tcp_tcps;
17928 
17929 	/*
17930 	 * Drop the eager's ref on the listener, that was placed when
17931 	 * this eager began life in tcp_conn_request.
17932 	 */
17933 	CONN_DEC_REF(tcp->tcp_saved_listener->tcp_connp);
17934 
17935 	if (tcp->tcp_state <= TCPS_BOUND || tcp->tcp_accept_error) {
17936 		/*
17937 		 * Someone blewoff the eager before we could finish
17938 		 * the accept.
17939 		 *
17940 		 * The only reason eager exists it because we put in
17941 		 * a ref on it when conn ind went up. We need to send
17942 		 * a disconnect indication up while the last reference
17943 		 * on the eager will be dropped by the squeue when we
17944 		 * return.
17945 		 */
17946 		ASSERT(tcp->tcp_listener == NULL);
17947 		if (tcp->tcp_issocket || tcp->tcp_send_discon_ind) {
17948 			struct	T_discon_ind	*tdi;
17949 
17950 			(void) putnextctl1(q, M_FLUSH, FLUSHRW);
17951 			/*
17952 			 * Let us reuse the incoming mblk to avoid memory
17953 			 * allocation failure problems. We know that the
17954 			 * size of the incoming mblk i.e. stroptions is greater
17955 			 * than sizeof T_discon_ind. So the reallocb below
17956 			 * can't fail.
17957 			 */
17958 			freemsg(mp->b_cont);
17959 			mp->b_cont = NULL;
17960 			ASSERT(DB_REF(mp) == 1);
17961 			mp = reallocb(mp, sizeof (struct T_discon_ind),
17962 			    B_FALSE);
17963 			ASSERT(mp != NULL);
17964 			DB_TYPE(mp) = M_PROTO;
17965 			((union T_primitives *)mp->b_rptr)->type = T_DISCON_IND;
17966 			tdi = (struct T_discon_ind *)mp->b_rptr;
17967 			if (tcp->tcp_issocket) {
17968 				tdi->DISCON_reason = ECONNREFUSED;
17969 				tdi->SEQ_number = 0;
17970 			} else {
17971 				tdi->DISCON_reason = ENOPROTOOPT;
17972 				tdi->SEQ_number =
17973 				    tcp->tcp_conn_req_seqnum;
17974 			}
17975 			mp->b_wptr = mp->b_rptr + sizeof (struct T_discon_ind);
17976 			putnext(q, mp);
17977 		} else {
17978 			freemsg(mp);
17979 		}
17980 		if (tcp->tcp_hard_binding) {
17981 			tcp->tcp_hard_binding = B_FALSE;
17982 			tcp->tcp_hard_bound = B_TRUE;
17983 		}
17984 		tcp->tcp_detached = B_FALSE;
17985 		return;
17986 	}
17987 
17988 	mp1 = stropt_mp->b_cont;
17989 	stropt_mp->b_cont = NULL;
17990 	ASSERT(DB_TYPE(stropt_mp) == M_SETOPTS);
17991 	stropt = (struct stroptions *)stropt_mp->b_rptr;
17992 
17993 	while (mp1 != NULL) {
17994 		mp = mp1;
17995 		mp1 = mp1->b_cont;
17996 		mp->b_cont = NULL;
17997 		tcp->tcp_drop_opt_ack_cnt++;
17998 		CALL_IP_WPUT(connp, tcp->tcp_wq, mp);
17999 	}
18000 	mp = NULL;
18001 
18002 	/*
18003 	 * For a loopback connection with tcp_direct_sockfs on, note that
18004 	 * we don't have to protect tcp_rcv_list yet because synchronous
18005 	 * streams has not yet been enabled and tcp_fuse_rrw() cannot
18006 	 * possibly race with us.
18007 	 */
18008 
18009 	/*
18010 	 * Set the max window size (tcp_rq->q_hiwat) of the acceptor
18011 	 * properly.  This is the first time we know of the acceptor'
18012 	 * queue.  So we do it here.
18013 	 */
18014 	if (tcp->tcp_rcv_list == NULL) {
18015 		/*
18016 		 * Recv queue is empty, tcp_rwnd should not have changed.
18017 		 * That means it should be equal to the listener's tcp_rwnd.
18018 		 */
18019 		tcp->tcp_rq->q_hiwat = tcp->tcp_rwnd;
18020 	} else {
18021 #ifdef DEBUG
18022 		uint_t cnt = 0;
18023 
18024 		mp1 = tcp->tcp_rcv_list;
18025 		while ((mp = mp1) != NULL) {
18026 			mp1 = mp->b_next;
18027 			cnt += msgdsize(mp);
18028 		}
18029 		ASSERT(cnt != 0 && tcp->tcp_rcv_cnt == cnt);
18030 #endif
18031 		/* There is some data, add them back to get the max. */
18032 		tcp->tcp_rq->q_hiwat = tcp->tcp_rwnd + tcp->tcp_rcv_cnt;
18033 	}
18034 
18035 	stropt->so_flags = SO_HIWAT;
18036 	stropt->so_hiwat = MAX(q->q_hiwat, tcps->tcps_sth_rcv_hiwat);
18037 
18038 	stropt->so_flags |= SO_MAXBLK;
18039 	stropt->so_maxblk = tcp_maxpsz_set(tcp, B_FALSE);
18040 
18041 	/*
18042 	 * This is the first time we run on the correct
18043 	 * queue after tcp_accept. So fix all the q parameters
18044 	 * here.
18045 	 */
18046 	/* Allocate room for SACK options if needed. */
18047 	stropt->so_flags |= SO_WROFF;
18048 	if (tcp->tcp_fused) {
18049 		ASSERT(tcp->tcp_loopback);
18050 		ASSERT(tcp->tcp_loopback_peer != NULL);
18051 		/*
18052 		 * For fused tcp loopback, set the stream head's write
18053 		 * offset value to zero since we won't be needing any room
18054 		 * for TCP/IP headers.  This would also improve performance
18055 		 * since it would reduce the amount of work done by kmem.
18056 		 * Non-fused tcp loopback case is handled separately below.
18057 		 */
18058 		stropt->so_wroff = 0;
18059 		/*
18060 		 * Record the stream head's high water mark for this endpoint;
18061 		 * this is used for flow-control purposes in tcp_fuse_output().
18062 		 */
18063 		stropt->so_hiwat = tcp_fuse_set_rcv_hiwat(tcp, q->q_hiwat);
18064 		/*
18065 		 * Update the peer's transmit parameters according to
18066 		 * our recently calculated high water mark value.
18067 		 */
18068 		(void) tcp_maxpsz_set(tcp->tcp_loopback_peer, B_TRUE);
18069 	} else if (tcp->tcp_snd_sack_ok) {
18070 		stropt->so_wroff = tcp->tcp_hdr_len + TCPOPT_MAX_SACK_LEN +
18071 		    (tcp->tcp_loopback ? 0 : tcps->tcps_wroff_xtra);
18072 	} else {
18073 		stropt->so_wroff = tcp->tcp_hdr_len + (tcp->tcp_loopback ? 0 :
18074 		    tcps->tcps_wroff_xtra);
18075 	}
18076 
18077 	/*
18078 	 * If this is endpoint is handling SSL, then reserve extra
18079 	 * offset and space at the end.
18080 	 * Also have the stream head allocate SSL3_MAX_RECORD_LEN packets,
18081 	 * overriding the previous setting. The extra cost of signing and
18082 	 * encrypting multiple MSS-size records (12 of them with Ethernet),
18083 	 * instead of a single contiguous one by the stream head
18084 	 * largely outweighs the statistical reduction of ACKs, when
18085 	 * applicable. The peer will also save on decryption and verification
18086 	 * costs.
18087 	 */
18088 	if (tcp->tcp_kssl_ctx != NULL) {
18089 		stropt->so_wroff += SSL3_WROFFSET;
18090 
18091 		stropt->so_flags |= SO_TAIL;
18092 		stropt->so_tail = SSL3_MAX_TAIL_LEN;
18093 
18094 		stropt->so_maxblk = SSL3_MAX_RECORD_LEN;
18095 	}
18096 
18097 	/* Send the options up */
18098 	putnext(q, stropt_mp);
18099 
18100 	/*
18101 	 * Pass up any data and/or a fin that has been received.
18102 	 *
18103 	 * Adjust receive window in case it had decreased
18104 	 * (because there is data <=> tcp_rcv_list != NULL)
18105 	 * while the connection was detached. Note that
18106 	 * in case the eager was flow-controlled, w/o this
18107 	 * code, the rwnd may never open up again!
18108 	 */
18109 	if (tcp->tcp_rcv_list != NULL) {
18110 		/* We drain directly in case of fused tcp loopback */
18111 		if (!tcp->tcp_fused && canputnext(q)) {
18112 			tcp->tcp_rwnd = q->q_hiwat;
18113 			thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win))
18114 			    << tcp->tcp_rcv_ws;
18115 			thwin -= tcp->tcp_rnxt - tcp->tcp_rack;
18116 			if (tcp->tcp_state >= TCPS_ESTABLISHED &&
18117 			    (q->q_hiwat - thwin >= tcp->tcp_mss)) {
18118 				tcp_xmit_ctl(NULL,
18119 				    tcp, (tcp->tcp_swnd == 0) ?
18120 				    tcp->tcp_suna : tcp->tcp_snxt,
18121 				    tcp->tcp_rnxt, TH_ACK);
18122 				BUMP_MIB(&tcps->tcps_mib, tcpOutWinUpdate);
18123 			}
18124 
18125 		}
18126 		(void) tcp_rcv_drain(q, tcp);
18127 
18128 		/*
18129 		 * For fused tcp loopback, back-enable peer endpoint
18130 		 * if it's currently flow-controlled.
18131 		 */
18132 		if (tcp->tcp_fused) {
18133 			tcp_t *peer_tcp = tcp->tcp_loopback_peer;
18134 
18135 			ASSERT(peer_tcp != NULL);
18136 			ASSERT(peer_tcp->tcp_fused);
18137 			/*
18138 			 * In order to change the peer's tcp_flow_stopped,
18139 			 * we need to take locks for both end points. The
18140 			 * highest address is taken first.
18141 			 */
18142 			if (peer_tcp > tcp) {
18143 				mutex_enter(&peer_tcp->tcp_non_sq_lock);
18144 				mutex_enter(&tcp->tcp_non_sq_lock);
18145 			} else {
18146 				mutex_enter(&tcp->tcp_non_sq_lock);
18147 				mutex_enter(&peer_tcp->tcp_non_sq_lock);
18148 			}
18149 			if (peer_tcp->tcp_flow_stopped) {
18150 				tcp_clrqfull(peer_tcp);
18151 				TCP_STAT(tcps, tcp_fusion_backenabled);
18152 			}
18153 			mutex_exit(&peer_tcp->tcp_non_sq_lock);
18154 			mutex_exit(&tcp->tcp_non_sq_lock);
18155 		}
18156 	}
18157 	ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg);
18158 	if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) {
18159 		mp = mi_tpi_ordrel_ind();
18160 		if (mp) {
18161 			tcp->tcp_ordrel_done = B_TRUE;
18162 			putnext(q, mp);
18163 			if (tcp->tcp_deferred_clean_death) {
18164 				/*
18165 				 * tcp_clean_death was deferred
18166 				 * for T_ORDREL_IND - do it now
18167 				 */
18168 				(void) tcp_clean_death(tcp,
18169 				    tcp->tcp_client_errno, 21);
18170 				tcp->tcp_deferred_clean_death = B_FALSE;
18171 			}
18172 		} else {
18173 			/*
18174 			 * Run the orderly release in the
18175 			 * service routine.
18176 			 */
18177 			qenable(q);
18178 		}
18179 	}
18180 	if (tcp->tcp_hard_binding) {
18181 		tcp->tcp_hard_binding = B_FALSE;
18182 		tcp->tcp_hard_bound = B_TRUE;
18183 	}
18184 
18185 	tcp->tcp_detached = B_FALSE;
18186 
18187 	/* We can enable synchronous streams now */
18188 	if (tcp->tcp_fused) {
18189 		tcp_fuse_syncstr_enable_pair(tcp);
18190 	}
18191 
18192 	if (tcp->tcp_ka_enabled) {
18193 		tcp->tcp_ka_last_intrvl = 0;
18194 		tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer,
18195 		    MSEC_TO_TICK(tcp->tcp_ka_interval));
18196 	}
18197 
18198 	/*
18199 	 * At this point, eager is fully established and will
18200 	 * have the following references -
18201 	 *
18202 	 * 2 references for connection to exist (1 for TCP and 1 for IP).
18203 	 * 1 reference for the squeue which will be dropped by the squeue as
18204 	 *	soon as this function returns.
18205 	 * There will be 1 additonal reference for being in classifier
18206 	 *	hash list provided something bad hasn't happened.
18207 	 */
18208 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
18209 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
18210 }
18211 
18212 /*
18213  * The function called through squeue to get behind listener's perimeter to
18214  * send a deffered conn_ind.
18215  */
18216 /* ARGSUSED */
18217 void
18218 tcp_send_pending(void *arg, mblk_t *mp, void *arg2)
18219 {
18220 	conn_t	*connp = (conn_t *)arg;
18221 	tcp_t *listener = connp->conn_tcp;
18222 
18223 	if (listener->tcp_state == TCPS_CLOSED ||
18224 	    TCP_IS_DETACHED(listener)) {
18225 		/*
18226 		 * If listener has closed, it would have caused a
18227 		 * a cleanup/blowoff to happen for the eager.
18228 		 */
18229 		tcp_t *tcp;
18230 		struct T_conn_ind	*conn_ind;
18231 
18232 		conn_ind = (struct T_conn_ind *)mp->b_rptr;
18233 		bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp,
18234 		    conn_ind->OPT_length);
18235 		/*
18236 		 * We need to drop the ref on eager that was put
18237 		 * tcp_rput_data() before trying to send the conn_ind
18238 		 * to listener. The conn_ind was deferred in tcp_send_conn_ind
18239 		 * and tcp_wput_accept() is sending this deferred conn_ind but
18240 		 * listener is closed so we drop the ref.
18241 		 */
18242 		CONN_DEC_REF(tcp->tcp_connp);
18243 		freemsg(mp);
18244 		return;
18245 	}
18246 	putnext(listener->tcp_rq, mp);
18247 }
18248 
18249 
18250 /*
18251  * This is the STREAMS entry point for T_CONN_RES coming down on
18252  * Acceptor STREAM when  sockfs listener does accept processing.
18253  * Read the block comment on top of tcp_conn_request().
18254  */
18255 void
18256 tcp_wput_accept(queue_t *q, mblk_t *mp)
18257 {
18258 	queue_t *rq = RD(q);
18259 	struct T_conn_res *conn_res;
18260 	tcp_t *eager;
18261 	tcp_t *listener;
18262 	struct T_ok_ack *ok;
18263 	t_scalar_t PRIM_type;
18264 	mblk_t *opt_mp;
18265 	conn_t *econnp;
18266 
18267 	ASSERT(DB_TYPE(mp) == M_PROTO);
18268 
18269 	conn_res = (struct T_conn_res *)mp->b_rptr;
18270 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
18271 	if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_conn_res)) {
18272 		mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0);
18273 		if (mp != NULL)
18274 			putnext(rq, mp);
18275 		return;
18276 	}
18277 	switch (conn_res->PRIM_type) {
18278 	case O_T_CONN_RES:
18279 	case T_CONN_RES:
18280 		/*
18281 		 * We pass up an err ack if allocb fails. This will
18282 		 * cause sockfs to issue a T_DISCON_REQ which will cause
18283 		 * tcp_eager_blowoff to be called. sockfs will then call
18284 		 * rq->q_qinfo->qi_qclose to cleanup the acceptor stream.
18285 		 * we need to do the allocb up here because we have to
18286 		 * make sure rq->q_qinfo->qi_qclose still points to the
18287 		 * correct function (tcpclose_accept) in case allocb
18288 		 * fails.
18289 		 */
18290 		opt_mp = allocb(sizeof (struct stroptions), BPRI_HI);
18291 		if (opt_mp == NULL) {
18292 			mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0);
18293 			if (mp != NULL)
18294 				putnext(rq, mp);
18295 			return;
18296 		}
18297 
18298 		bcopy(mp->b_rptr + conn_res->OPT_offset,
18299 		    &eager, conn_res->OPT_length);
18300 		PRIM_type = conn_res->PRIM_type;
18301 		mp->b_datap->db_type = M_PCPROTO;
18302 		mp->b_wptr = mp->b_rptr + sizeof (struct T_ok_ack);
18303 		ok = (struct T_ok_ack *)mp->b_rptr;
18304 		ok->PRIM_type = T_OK_ACK;
18305 		ok->CORRECT_prim = PRIM_type;
18306 		econnp = eager->tcp_connp;
18307 		econnp->conn_dev = (dev_t)RD(q)->q_ptr;
18308 		econnp->conn_minor_arena = (vmem_t *)(WR(q)->q_ptr);
18309 		eager->tcp_rq = rq;
18310 		eager->tcp_wq = q;
18311 		rq->q_ptr = econnp;
18312 		rq->q_qinfo = &tcp_rinitv4;	/* No open - same as rinitv6 */
18313 		q->q_ptr = econnp;
18314 		q->q_qinfo = &tcp_winit;
18315 		listener = eager->tcp_listener;
18316 		eager->tcp_issocket = B_TRUE;
18317 
18318 		econnp->conn_zoneid = listener->tcp_connp->conn_zoneid;
18319 		econnp->conn_allzones = listener->tcp_connp->conn_allzones;
18320 		ASSERT(econnp->conn_netstack ==
18321 		    listener->tcp_connp->conn_netstack);
18322 		ASSERT(eager->tcp_tcps == listener->tcp_tcps);
18323 
18324 		/* Put the ref for IP */
18325 		CONN_INC_REF(econnp);
18326 
18327 		/*
18328 		 * We should have minimum of 3 references on the conn
18329 		 * at this point. One each for TCP and IP and one for
18330 		 * the T_conn_ind that was sent up when the 3-way handshake
18331 		 * completed. In the normal case we would also have another
18332 		 * reference (making a total of 4) for the conn being in the
18333 		 * classifier hash list. However the eager could have received
18334 		 * an RST subsequently and tcp_closei_local could have removed
18335 		 * the eager from the classifier hash list, hence we can't
18336 		 * assert that reference.
18337 		 */
18338 		ASSERT(econnp->conn_ref >= 3);
18339 
18340 		/*
18341 		 * Send the new local address also up to sockfs. There
18342 		 * should already be enough space in the mp that came
18343 		 * down from soaccept().
18344 		 */
18345 		if (eager->tcp_family == AF_INET) {
18346 			sin_t *sin;
18347 
18348 			ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >=
18349 			    (sizeof (struct T_ok_ack) + sizeof (sin_t)));
18350 			sin = (sin_t *)mp->b_wptr;
18351 			mp->b_wptr += sizeof (sin_t);
18352 			sin->sin_family = AF_INET;
18353 			sin->sin_port = eager->tcp_lport;
18354 			sin->sin_addr.s_addr = eager->tcp_ipha->ipha_src;
18355 		} else {
18356 			sin6_t *sin6;
18357 
18358 			ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >=
18359 			    sizeof (struct T_ok_ack) + sizeof (sin6_t));
18360 			sin6 = (sin6_t *)mp->b_wptr;
18361 			mp->b_wptr += sizeof (sin6_t);
18362 			sin6->sin6_family = AF_INET6;
18363 			sin6->sin6_port = eager->tcp_lport;
18364 			if (eager->tcp_ipversion == IPV4_VERSION) {
18365 				sin6->sin6_flowinfo = 0;
18366 				IN6_IPADDR_TO_V4MAPPED(
18367 				    eager->tcp_ipha->ipha_src,
18368 				    &sin6->sin6_addr);
18369 			} else {
18370 				ASSERT(eager->tcp_ip6h != NULL);
18371 				sin6->sin6_flowinfo =
18372 				    eager->tcp_ip6h->ip6_vcf &
18373 				    ~IPV6_VERS_AND_FLOW_MASK;
18374 				sin6->sin6_addr = eager->tcp_ip6h->ip6_src;
18375 			}
18376 			sin6->sin6_scope_id = 0;
18377 			sin6->__sin6_src_id = 0;
18378 		}
18379 
18380 		putnext(rq, mp);
18381 
18382 		opt_mp->b_datap->db_type = M_SETOPTS;
18383 		opt_mp->b_wptr += sizeof (struct stroptions);
18384 
18385 		/*
18386 		 * Prepare for inheriting IPV6_BOUND_IF and IPV6_RECVPKTINFO
18387 		 * from listener to acceptor. The message is chained on the
18388 		 * bind_mp which tcp_rput_other will send down to IP.
18389 		 */
18390 		if (listener->tcp_bound_if != 0) {
18391 			/* allocate optmgmt req */
18392 			mp = tcp_setsockopt_mp(IPPROTO_IPV6,
18393 			    IPV6_BOUND_IF, (char *)&listener->tcp_bound_if,
18394 			    sizeof (int));
18395 			if (mp != NULL)
18396 				linkb(opt_mp, mp);
18397 		}
18398 		if (listener->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) {
18399 			uint_t on = 1;
18400 
18401 			/* allocate optmgmt req */
18402 			mp = tcp_setsockopt_mp(IPPROTO_IPV6,
18403 			    IPV6_RECVPKTINFO, (char *)&on, sizeof (on));
18404 			if (mp != NULL)
18405 				linkb(opt_mp, mp);
18406 		}
18407 
18408 
18409 		mutex_enter(&listener->tcp_eager_lock);
18410 
18411 		if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) {
18412 
18413 			tcp_t *tail;
18414 			tcp_t *tcp;
18415 			mblk_t *mp1;
18416 
18417 			tcp = listener->tcp_eager_prev_q0;
18418 			/*
18419 			 * listener->tcp_eager_prev_q0 points to the TAIL of the
18420 			 * deferred T_conn_ind queue. We need to get to the head
18421 			 * of the queue in order to send up T_conn_ind the same
18422 			 * order as how the 3WHS is completed.
18423 			 */
18424 			while (tcp != listener) {
18425 				if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0 &&
18426 				    !tcp->tcp_kssl_pending)
18427 					break;
18428 				else
18429 					tcp = tcp->tcp_eager_prev_q0;
18430 			}
18431 			/* None of the pending eagers can be sent up now */
18432 			if (tcp == listener)
18433 				goto no_more_eagers;
18434 
18435 			mp1 = tcp->tcp_conn.tcp_eager_conn_ind;
18436 			tcp->tcp_conn.tcp_eager_conn_ind = NULL;
18437 			/* Move from q0 to q */
18438 			ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
18439 			listener->tcp_conn_req_cnt_q0--;
18440 			listener->tcp_conn_req_cnt_q++;
18441 			tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
18442 			    tcp->tcp_eager_prev_q0;
18443 			tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
18444 			    tcp->tcp_eager_next_q0;
18445 			tcp->tcp_eager_prev_q0 = NULL;
18446 			tcp->tcp_eager_next_q0 = NULL;
18447 			tcp->tcp_conn_def_q0 = B_FALSE;
18448 
18449 			/* Make sure the tcp isn't in the list of droppables */
18450 			ASSERT(tcp->tcp_eager_next_drop_q0 == NULL &&
18451 			    tcp->tcp_eager_prev_drop_q0 == NULL);
18452 
18453 			/*
18454 			 * Insert at end of the queue because sockfs sends
18455 			 * down T_CONN_RES in chronological order. Leaving
18456 			 * the older conn indications at front of the queue
18457 			 * helps reducing search time.
18458 			 */
18459 			tail = listener->tcp_eager_last_q;
18460 			if (tail != NULL) {
18461 				tail->tcp_eager_next_q = tcp;
18462 			} else {
18463 				listener->tcp_eager_next_q = tcp;
18464 			}
18465 			listener->tcp_eager_last_q = tcp;
18466 			tcp->tcp_eager_next_q = NULL;
18467 
18468 			/* Need to get inside the listener perimeter */
18469 			CONN_INC_REF(listener->tcp_connp);
18470 			squeue_fill(listener->tcp_connp->conn_sqp, mp1,
18471 			    tcp_send_pending, listener->tcp_connp,
18472 			    SQTAG_TCP_SEND_PENDING);
18473 		}
18474 no_more_eagers:
18475 		tcp_eager_unlink(eager);
18476 		mutex_exit(&listener->tcp_eager_lock);
18477 
18478 		/*
18479 		 * At this point, the eager is detached from the listener
18480 		 * but we still have an extra refs on eager (apart from the
18481 		 * usual tcp references). The ref was placed in tcp_rput_data
18482 		 * before sending the conn_ind in tcp_send_conn_ind.
18483 		 * The ref will be dropped in tcp_accept_finish().
18484 		 */
18485 		squeue_enter_nodrain(econnp->conn_sqp, opt_mp,
18486 		    tcp_accept_finish, econnp, SQTAG_TCP_ACCEPT_FINISH_Q0);
18487 		return;
18488 	default:
18489 		mp = mi_tpi_err_ack_alloc(mp, TNOTSUPPORT, 0);
18490 		if (mp != NULL)
18491 			putnext(rq, mp);
18492 		return;
18493 	}
18494 }
18495 
18496 void
18497 tcp_wput(queue_t *q, mblk_t *mp)
18498 {
18499 	conn_t	*connp = Q_TO_CONN(q);
18500 	tcp_t	*tcp;
18501 	void (*output_proc)();
18502 	t_scalar_t type;
18503 	uchar_t *rptr;
18504 	struct iocblk	*iocp;
18505 	uint32_t	msize;
18506 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
18507 
18508 	ASSERT(connp->conn_ref >= 2);
18509 
18510 	switch (DB_TYPE(mp)) {
18511 	case M_DATA:
18512 		tcp = connp->conn_tcp;
18513 		ASSERT(tcp != NULL);
18514 
18515 		msize = msgdsize(mp);
18516 
18517 		mutex_enter(&tcp->tcp_non_sq_lock);
18518 		tcp->tcp_squeue_bytes += msize;
18519 		if (TCP_UNSENT_BYTES(tcp) > tcp->tcp_xmit_hiwater) {
18520 			tcp_setqfull(tcp);
18521 		}
18522 		mutex_exit(&tcp->tcp_non_sq_lock);
18523 
18524 		CONN_INC_REF(connp);
18525 		(*tcp_squeue_wput_proc)(connp->conn_sqp, mp,
18526 		    tcp_output, connp, SQTAG_TCP_OUTPUT);
18527 		return;
18528 	case M_PROTO:
18529 	case M_PCPROTO:
18530 		/*
18531 		 * if it is a snmp message, don't get behind the squeue
18532 		 */
18533 		tcp = connp->conn_tcp;
18534 		rptr = mp->b_rptr;
18535 		if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) {
18536 			type = ((union T_primitives *)rptr)->type;
18537 		} else {
18538 			if (tcp->tcp_debug) {
18539 				(void) strlog(TCP_MOD_ID, 0, 1,
18540 				    SL_ERROR|SL_TRACE,
18541 				    "tcp_wput_proto, dropping one...");
18542 			}
18543 			freemsg(mp);
18544 			return;
18545 		}
18546 		if (type == T_SVR4_OPTMGMT_REQ) {
18547 			cred_t	*cr = DB_CREDDEF(mp, tcp->tcp_cred);
18548 			if (snmpcom_req(q, mp, tcp_snmp_set, ip_snmp_get,
18549 			    cr)) {
18550 				/*
18551 				 * This was a SNMP request
18552 				 */
18553 				return;
18554 			} else {
18555 				output_proc = tcp_wput_proto;
18556 			}
18557 		} else {
18558 			output_proc = tcp_wput_proto;
18559 		}
18560 		break;
18561 	case M_IOCTL:
18562 		/*
18563 		 * Most ioctls can be processed right away without going via
18564 		 * squeues - process them right here. Those that do require
18565 		 * squeue (currently TCP_IOC_DEFAULT_Q and _SIOCSOCKFALLBACK)
18566 		 * are processed by tcp_wput_ioctl().
18567 		 */
18568 		iocp = (struct iocblk *)mp->b_rptr;
18569 		tcp = connp->conn_tcp;
18570 
18571 		switch (iocp->ioc_cmd) {
18572 		case TCP_IOC_ABORT_CONN:
18573 			tcp_ioctl_abort_conn(q, mp);
18574 			return;
18575 		case TI_GETPEERNAME:
18576 			if (tcp->tcp_state < TCPS_SYN_RCVD) {
18577 				iocp->ioc_error = ENOTCONN;
18578 				iocp->ioc_count = 0;
18579 				mp->b_datap->db_type = M_IOCACK;
18580 				qreply(q, mp);
18581 				return;
18582 			}
18583 			/* FALLTHRU */
18584 		case TI_GETMYNAME:
18585 			mi_copyin(q, mp, NULL,
18586 			    SIZEOF_STRUCT(strbuf, iocp->ioc_flag));
18587 			return;
18588 		case ND_SET:
18589 			/* nd_getset does the necessary checks */
18590 		case ND_GET:
18591 			if (!nd_getset(q, tcps->tcps_g_nd, mp)) {
18592 				CALL_IP_WPUT(connp, q, mp);
18593 				return;
18594 			}
18595 			qreply(q, mp);
18596 			return;
18597 		case TCP_IOC_DEFAULT_Q:
18598 			/*
18599 			 * Wants to be the default wq. Check the credentials
18600 			 * first, the rest is executed via squeue.
18601 			 */
18602 			if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) {
18603 				iocp->ioc_error = EPERM;
18604 				iocp->ioc_count = 0;
18605 				mp->b_datap->db_type = M_IOCACK;
18606 				qreply(q, mp);
18607 				return;
18608 			}
18609 			output_proc = tcp_wput_ioctl;
18610 			break;
18611 		default:
18612 			output_proc = tcp_wput_ioctl;
18613 			break;
18614 		}
18615 		break;
18616 	default:
18617 		output_proc = tcp_wput_nondata;
18618 		break;
18619 	}
18620 
18621 	CONN_INC_REF(connp);
18622 	(*tcp_squeue_wput_proc)(connp->conn_sqp, mp,
18623 	    output_proc, connp, SQTAG_TCP_WPUT_OTHER);
18624 }
18625 
18626 /*
18627  * Initial STREAMS write side put() procedure for sockets. It tries to
18628  * handle the T_CAPABILITY_REQ which sockfs sends down while setting
18629  * up the socket without using the squeue. Non T_CAPABILITY_REQ messages
18630  * are handled by tcp_wput() as usual.
18631  *
18632  * All further messages will also be handled by tcp_wput() because we cannot
18633  * be sure that the above short cut is safe later.
18634  */
18635 static void
18636 tcp_wput_sock(queue_t *wq, mblk_t *mp)
18637 {
18638 	conn_t			*connp = Q_TO_CONN(wq);
18639 	tcp_t			*tcp = connp->conn_tcp;
18640 	struct T_capability_req	*car = (struct T_capability_req *)mp->b_rptr;
18641 
18642 	ASSERT(wq->q_qinfo == &tcp_sock_winit);
18643 	wq->q_qinfo = &tcp_winit;
18644 
18645 	ASSERT(IPCL_IS_TCP(connp));
18646 	ASSERT(TCP_IS_SOCKET(tcp));
18647 
18648 	if (DB_TYPE(mp) == M_PCPROTO &&
18649 	    MBLKL(mp) == sizeof (struct T_capability_req) &&
18650 	    car->PRIM_type == T_CAPABILITY_REQ) {
18651 		tcp_capability_req(tcp, mp);
18652 		return;
18653 	}
18654 
18655 	tcp_wput(wq, mp);
18656 }
18657 
18658 static boolean_t
18659 tcp_zcopy_check(tcp_t *tcp)
18660 {
18661 	conn_t	*connp = tcp->tcp_connp;
18662 	ire_t	*ire;
18663 	boolean_t	zc_enabled = B_FALSE;
18664 	tcp_stack_t	*tcps = tcp->tcp_tcps;
18665 
18666 	if (do_tcpzcopy == 2)
18667 		zc_enabled = B_TRUE;
18668 	else if (tcp->tcp_ipversion == IPV4_VERSION &&
18669 	    IPCL_IS_CONNECTED(connp) &&
18670 	    (connp->conn_flags & IPCL_CHECK_POLICY) == 0 &&
18671 	    connp->conn_dontroute == 0 &&
18672 	    !connp->conn_nexthop_set &&
18673 	    connp->conn_outgoing_ill == NULL &&
18674 	    connp->conn_nofailover_ill == NULL &&
18675 	    do_tcpzcopy == 1) {
18676 		/*
18677 		 * the checks above  closely resemble the fast path checks
18678 		 * in tcp_send_data().
18679 		 */
18680 		mutex_enter(&connp->conn_lock);
18681 		ire = connp->conn_ire_cache;
18682 		ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT));
18683 		if (ire != NULL && !(ire->ire_marks & IRE_MARK_CONDEMNED)) {
18684 			IRE_REFHOLD(ire);
18685 			if (ire->ire_stq != NULL) {
18686 				ill_t	*ill = (ill_t *)ire->ire_stq->q_ptr;
18687 
18688 				zc_enabled = ill && (ill->ill_capabilities &
18689 				    ILL_CAPAB_ZEROCOPY) &&
18690 				    (ill->ill_zerocopy_capab->
18691 				    ill_zerocopy_flags != 0);
18692 			}
18693 			IRE_REFRELE(ire);
18694 		}
18695 		mutex_exit(&connp->conn_lock);
18696 	}
18697 	tcp->tcp_snd_zcopy_on = zc_enabled;
18698 	if (!TCP_IS_DETACHED(tcp)) {
18699 		if (zc_enabled) {
18700 			(void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMSAFE);
18701 			TCP_STAT(tcps, tcp_zcopy_on);
18702 		} else {
18703 			(void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMUNSAFE);
18704 			TCP_STAT(tcps, tcp_zcopy_off);
18705 		}
18706 	}
18707 	return (zc_enabled);
18708 }
18709 
18710 static mblk_t *
18711 tcp_zcopy_disable(tcp_t *tcp, mblk_t *bp)
18712 {
18713 	tcp_stack_t	*tcps = tcp->tcp_tcps;
18714 
18715 	if (do_tcpzcopy == 2)
18716 		return (bp);
18717 	else if (tcp->tcp_snd_zcopy_on) {
18718 		tcp->tcp_snd_zcopy_on = B_FALSE;
18719 		if (!TCP_IS_DETACHED(tcp)) {
18720 			(void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMUNSAFE);
18721 			TCP_STAT(tcps, tcp_zcopy_disable);
18722 		}
18723 	}
18724 	return (tcp_zcopy_backoff(tcp, bp, 0));
18725 }
18726 
18727 /*
18728  * Backoff from a zero-copy mblk by copying data to a new mblk and freeing
18729  * the original desballoca'ed segmapped mblk.
18730  */
18731 static mblk_t *
18732 tcp_zcopy_backoff(tcp_t *tcp, mblk_t *bp, int fix_xmitlist)
18733 {
18734 	mblk_t *head, *tail, *nbp;
18735 	tcp_stack_t	*tcps = tcp->tcp_tcps;
18736 
18737 	if (IS_VMLOANED_MBLK(bp)) {
18738 		TCP_STAT(tcps, tcp_zcopy_backoff);
18739 		if ((head = copyb(bp)) == NULL) {
18740 			/* fail to backoff; leave it for the next backoff */
18741 			tcp->tcp_xmit_zc_clean = B_FALSE;
18742 			return (bp);
18743 		}
18744 		if (bp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) {
18745 			if (fix_xmitlist)
18746 				tcp_zcopy_notify(tcp);
18747 			else
18748 				head->b_datap->db_struioflag |= STRUIO_ZCNOTIFY;
18749 		}
18750 		nbp = bp->b_cont;
18751 		if (fix_xmitlist) {
18752 			head->b_prev = bp->b_prev;
18753 			head->b_next = bp->b_next;
18754 			if (tcp->tcp_xmit_tail == bp)
18755 				tcp->tcp_xmit_tail = head;
18756 		}
18757 		bp->b_next = NULL;
18758 		bp->b_prev = NULL;
18759 		freeb(bp);
18760 	} else {
18761 		head = bp;
18762 		nbp = bp->b_cont;
18763 	}
18764 	tail = head;
18765 	while (nbp) {
18766 		if (IS_VMLOANED_MBLK(nbp)) {
18767 			TCP_STAT(tcps, tcp_zcopy_backoff);
18768 			if ((tail->b_cont = copyb(nbp)) == NULL) {
18769 				tcp->tcp_xmit_zc_clean = B_FALSE;
18770 				tail->b_cont = nbp;
18771 				return (head);
18772 			}
18773 			tail = tail->b_cont;
18774 			if (nbp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) {
18775 				if (fix_xmitlist)
18776 					tcp_zcopy_notify(tcp);
18777 				else
18778 					tail->b_datap->db_struioflag |=
18779 					    STRUIO_ZCNOTIFY;
18780 			}
18781 			bp = nbp;
18782 			nbp = nbp->b_cont;
18783 			if (fix_xmitlist) {
18784 				tail->b_prev = bp->b_prev;
18785 				tail->b_next = bp->b_next;
18786 				if (tcp->tcp_xmit_tail == bp)
18787 					tcp->tcp_xmit_tail = tail;
18788 			}
18789 			bp->b_next = NULL;
18790 			bp->b_prev = NULL;
18791 			freeb(bp);
18792 		} else {
18793 			tail->b_cont = nbp;
18794 			tail = nbp;
18795 			nbp = nbp->b_cont;
18796 		}
18797 	}
18798 	if (fix_xmitlist) {
18799 		tcp->tcp_xmit_last = tail;
18800 		tcp->tcp_xmit_zc_clean = B_TRUE;
18801 	}
18802 	return (head);
18803 }
18804 
18805 static void
18806 tcp_zcopy_notify(tcp_t *tcp)
18807 {
18808 	struct stdata	*stp;
18809 
18810 	if (tcp->tcp_detached)
18811 		return;
18812 	stp = STREAM(tcp->tcp_rq);
18813 	mutex_enter(&stp->sd_lock);
18814 	stp->sd_flag |= STZCNOTIFY;
18815 	cv_broadcast(&stp->sd_zcopy_wait);
18816 	mutex_exit(&stp->sd_lock);
18817 }
18818 
18819 static boolean_t
18820 tcp_send_find_ire(tcp_t *tcp, ipaddr_t *dst, ire_t **irep)
18821 {
18822 	ire_t	*ire;
18823 	conn_t	*connp = tcp->tcp_connp;
18824 	tcp_stack_t	*tcps = tcp->tcp_tcps;
18825 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
18826 
18827 	mutex_enter(&connp->conn_lock);
18828 	ire = connp->conn_ire_cache;
18829 	ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT));
18830 
18831 	if ((ire != NULL) &&
18832 	    (((dst != NULL) && (ire->ire_addr == *dst)) || ((dst == NULL) &&
18833 	    IN6_ARE_ADDR_EQUAL(&ire->ire_addr_v6, &tcp->tcp_ip6h->ip6_dst))) &&
18834 	    !(ire->ire_marks & IRE_MARK_CONDEMNED)) {
18835 		IRE_REFHOLD(ire);
18836 		mutex_exit(&connp->conn_lock);
18837 	} else {
18838 		boolean_t cached = B_FALSE;
18839 		ts_label_t *tsl;
18840 
18841 		/* force a recheck later on */
18842 		tcp->tcp_ire_ill_check_done = B_FALSE;
18843 
18844 		TCP_DBGSTAT(tcps, tcp_ire_null1);
18845 		connp->conn_ire_cache = NULL;
18846 		mutex_exit(&connp->conn_lock);
18847 
18848 		if (ire != NULL)
18849 			IRE_REFRELE_NOTR(ire);
18850 
18851 		tsl = crgetlabel(CONN_CRED(connp));
18852 		ire = (dst ?
18853 		    ire_cache_lookup(*dst, connp->conn_zoneid, tsl, ipst) :
18854 		    ire_cache_lookup_v6(&tcp->tcp_ip6h->ip6_dst,
18855 		    connp->conn_zoneid, tsl, ipst));
18856 
18857 		if (ire == NULL) {
18858 			TCP_STAT(tcps, tcp_ire_null);
18859 			return (B_FALSE);
18860 		}
18861 
18862 		IRE_REFHOLD_NOTR(ire);
18863 		/*
18864 		 * Since we are inside the squeue, there cannot be another
18865 		 * thread in TCP trying to set the conn_ire_cache now.  The
18866 		 * check for IRE_MARK_CONDEMNED ensures that an interface
18867 		 * unplumb thread has not yet started cleaning up the conns.
18868 		 * Hence we don't need to grab the conn lock.
18869 		 */
18870 		if (CONN_CACHE_IRE(connp)) {
18871 			rw_enter(&ire->ire_bucket->irb_lock, RW_READER);
18872 			if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) {
18873 				TCP_CHECK_IREINFO(tcp, ire);
18874 				connp->conn_ire_cache = ire;
18875 				cached = B_TRUE;
18876 			}
18877 			rw_exit(&ire->ire_bucket->irb_lock);
18878 		}
18879 
18880 		/*
18881 		 * We can continue to use the ire but since it was
18882 		 * not cached, we should drop the extra reference.
18883 		 */
18884 		if (!cached)
18885 			IRE_REFRELE_NOTR(ire);
18886 
18887 		/*
18888 		 * Rampart note: no need to select a new label here, since
18889 		 * labels are not allowed to change during the life of a TCP
18890 		 * connection.
18891 		 */
18892 	}
18893 
18894 	*irep = ire;
18895 
18896 	return (B_TRUE);
18897 }
18898 
18899 /*
18900  * Called from tcp_send() or tcp_send_data() to find workable IRE.
18901  *
18902  * 0 = success;
18903  * 1 = failed to find ire and ill.
18904  */
18905 static boolean_t
18906 tcp_send_find_ire_ill(tcp_t *tcp, mblk_t *mp, ire_t **irep, ill_t **illp)
18907 {
18908 	ipha_t		*ipha;
18909 	ipaddr_t	dst;
18910 	ire_t		*ire;
18911 	ill_t		*ill;
18912 	conn_t		*connp = tcp->tcp_connp;
18913 	mblk_t		*ire_fp_mp;
18914 	tcp_stack_t	*tcps = tcp->tcp_tcps;
18915 
18916 	if (mp != NULL)
18917 		ipha = (ipha_t *)mp->b_rptr;
18918 	else
18919 		ipha = tcp->tcp_ipha;
18920 	dst = ipha->ipha_dst;
18921 
18922 	if (!tcp_send_find_ire(tcp, &dst, &ire))
18923 		return (B_FALSE);
18924 
18925 	if ((ire->ire_flags & RTF_MULTIRT) ||
18926 	    (ire->ire_stq == NULL) ||
18927 	    (ire->ire_nce == NULL) ||
18928 	    ((ire_fp_mp = ire->ire_nce->nce_fp_mp) == NULL) ||
18929 	    ((mp != NULL) && (ire->ire_max_frag < ntohs(ipha->ipha_length) ||
18930 	    MBLKL(ire_fp_mp) > MBLKHEAD(mp)))) {
18931 		TCP_STAT(tcps, tcp_ip_ire_send);
18932 		IRE_REFRELE(ire);
18933 		return (B_FALSE);
18934 	}
18935 
18936 	ill = ire_to_ill(ire);
18937 	if (connp->conn_outgoing_ill != NULL) {
18938 		ill_t *conn_outgoing_ill = NULL;
18939 		/*
18940 		 * Choose a good ill in the group to send the packets on.
18941 		 */
18942 		ire = conn_set_outgoing_ill(connp, ire, &conn_outgoing_ill);
18943 		ill = ire_to_ill(ire);
18944 	}
18945 	ASSERT(ill != NULL);
18946 
18947 	if (!tcp->tcp_ire_ill_check_done) {
18948 		tcp_ire_ill_check(tcp, ire, ill, B_TRUE);
18949 		tcp->tcp_ire_ill_check_done = B_TRUE;
18950 	}
18951 
18952 	*irep = ire;
18953 	*illp = ill;
18954 
18955 	return (B_TRUE);
18956 }
18957 
18958 static void
18959 tcp_send_data(tcp_t *tcp, queue_t *q, mblk_t *mp)
18960 {
18961 	ipha_t		*ipha;
18962 	ipaddr_t	src;
18963 	ipaddr_t	dst;
18964 	uint32_t	cksum;
18965 	ire_t		*ire;
18966 	uint16_t	*up;
18967 	ill_t		*ill;
18968 	conn_t		*connp = tcp->tcp_connp;
18969 	uint32_t	hcksum_txflags = 0;
18970 	mblk_t		*ire_fp_mp;
18971 	uint_t		ire_fp_mp_len;
18972 	tcp_stack_t	*tcps = tcp->tcp_tcps;
18973 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
18974 
18975 	ASSERT(DB_TYPE(mp) == M_DATA);
18976 
18977 	if (DB_CRED(mp) == NULL)
18978 		mblk_setcred(mp, CONN_CRED(connp));
18979 
18980 	ipha = (ipha_t *)mp->b_rptr;
18981 	src = ipha->ipha_src;
18982 	dst = ipha->ipha_dst;
18983 
18984 	/*
18985 	 * Drop off fast path for IPv6 and also if options are present or
18986 	 * we need to resolve a TS label.
18987 	 */
18988 	if (tcp->tcp_ipversion != IPV4_VERSION ||
18989 	    !IPCL_IS_CONNECTED(connp) ||
18990 	    !CONN_IS_LSO_MD_FASTPATH(connp) ||
18991 	    (connp->conn_flags & IPCL_CHECK_POLICY) != 0 ||
18992 	    !connp->conn_ulp_labeled ||
18993 	    ipha->ipha_ident == IP_HDR_INCLUDED ||
18994 	    ipha->ipha_version_and_hdr_length != IP_SIMPLE_HDR_VERSION ||
18995 	    IPP_ENABLED(IPP_LOCAL_OUT, ipst)) {
18996 		if (tcp->tcp_snd_zcopy_aware)
18997 			mp = tcp_zcopy_disable(tcp, mp);
18998 		TCP_STAT(tcps, tcp_ip_send);
18999 		CALL_IP_WPUT(connp, q, mp);
19000 		return;
19001 	}
19002 
19003 	if (!tcp_send_find_ire_ill(tcp, mp, &ire, &ill)) {
19004 		if (tcp->tcp_snd_zcopy_aware)
19005 			mp = tcp_zcopy_backoff(tcp, mp, 0);
19006 		CALL_IP_WPUT(connp, q, mp);
19007 		return;
19008 	}
19009 	ire_fp_mp = ire->ire_nce->nce_fp_mp;
19010 	ire_fp_mp_len = MBLKL(ire_fp_mp);
19011 
19012 	ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED);
19013 	ipha->ipha_ident = (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1);
19014 #ifndef _BIG_ENDIAN
19015 	ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8);
19016 #endif
19017 
19018 	/*
19019 	 * Check to see if we need to re-enable LSO/MDT for this connection
19020 	 * because it was previously disabled due to changes in the ill;
19021 	 * note that by doing it here, this re-enabling only applies when
19022 	 * the packet is not dispatched through CALL_IP_WPUT().
19023 	 *
19024 	 * That means for IPv4, it is worth re-enabling LSO/MDT for the fastpath
19025 	 * case, since that's how we ended up here.  For IPv6, we do the
19026 	 * re-enabling work in ip_xmit_v6(), albeit indirectly via squeue.
19027 	 */
19028 	if (connp->conn_lso_ok && !tcp->tcp_lso && ILL_LSO_TCP_USABLE(ill)) {
19029 		/*
19030 		 * Restore LSO for this connection, so that next time around
19031 		 * it is eligible to go through tcp_lsosend() path again.
19032 		 */
19033 		TCP_STAT(tcps, tcp_lso_enabled);
19034 		tcp->tcp_lso = B_TRUE;
19035 		ip1dbg(("tcp_send_data: reenabling LSO for connp %p on "
19036 		    "interface %s\n", (void *)connp, ill->ill_name));
19037 	} else if (connp->conn_mdt_ok && !tcp->tcp_mdt && ILL_MDT_USABLE(ill)) {
19038 		/*
19039 		 * Restore MDT for this connection, so that next time around
19040 		 * it is eligible to go through tcp_multisend() path again.
19041 		 */
19042 		TCP_STAT(tcps, tcp_mdt_conn_resumed1);
19043 		tcp->tcp_mdt = B_TRUE;
19044 		ip1dbg(("tcp_send_data: reenabling MDT for connp %p on "
19045 		    "interface %s\n", (void *)connp, ill->ill_name));
19046 	}
19047 
19048 	if (tcp->tcp_snd_zcopy_aware) {
19049 		if ((ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) == 0 ||
19050 		    (ill->ill_zerocopy_capab->ill_zerocopy_flags == 0))
19051 			mp = tcp_zcopy_disable(tcp, mp);
19052 		/*
19053 		 * we shouldn't need to reset ipha as the mp containing
19054 		 * ipha should never be a zero-copy mp.
19055 		 */
19056 	}
19057 
19058 	if (ILL_HCKSUM_CAPABLE(ill) && dohwcksum) {
19059 		ASSERT(ill->ill_hcksum_capab != NULL);
19060 		hcksum_txflags = ill->ill_hcksum_capab->ill_hcksum_txflags;
19061 	}
19062 
19063 	/* pseudo-header checksum (do it in parts for IP header checksum) */
19064 	cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF);
19065 
19066 	ASSERT(ipha->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION);
19067 	up = IPH_TCPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH);
19068 
19069 	IP_CKSUM_XMIT_FAST(ire->ire_ipversion, hcksum_txflags, mp, ipha, up,
19070 	    IPPROTO_TCP, IP_SIMPLE_HDR_LENGTH, ntohs(ipha->ipha_length), cksum);
19071 
19072 	/* Software checksum? */
19073 	if (DB_CKSUMFLAGS(mp) == 0) {
19074 		TCP_STAT(tcps, tcp_out_sw_cksum);
19075 		TCP_STAT_UPDATE(tcps, tcp_out_sw_cksum_bytes,
19076 		    ntohs(ipha->ipha_length) - IP_SIMPLE_HDR_LENGTH);
19077 	}
19078 
19079 	ipha->ipha_fragment_offset_and_flags |=
19080 	    (uint32_t)htons(ire->ire_frag_flag);
19081 
19082 	/* Calculate IP header checksum if hardware isn't capable */
19083 	if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) {
19084 		IP_HDR_CKSUM(ipha, cksum, ((uint32_t *)ipha)[0],
19085 		    ((uint16_t *)ipha)[4]);
19086 	}
19087 
19088 	ASSERT(DB_TYPE(ire_fp_mp) == M_DATA);
19089 	mp->b_rptr = (uchar_t *)ipha - ire_fp_mp_len;
19090 	bcopy(ire_fp_mp->b_rptr, mp->b_rptr, ire_fp_mp_len);
19091 
19092 	UPDATE_OB_PKT_COUNT(ire);
19093 	ire->ire_last_used_time = lbolt;
19094 
19095 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests);
19096 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits);
19097 	UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets,
19098 	    ntohs(ipha->ipha_length));
19099 
19100 	if (ILL_DLS_CAPABLE(ill)) {
19101 		/*
19102 		 * Send the packet directly to DLD, where it may be queued
19103 		 * depending on the availability of transmit resources at
19104 		 * the media layer.
19105 		 */
19106 		IP_DLS_ILL_TX(ill, ipha, mp, ipst);
19107 	} else {
19108 		ill_t *out_ill = (ill_t *)ire->ire_stq->q_ptr;
19109 		DTRACE_PROBE4(ip4__physical__out__start,
19110 		    ill_t *, NULL, ill_t *, out_ill,
19111 		    ipha_t *, ipha, mblk_t *, mp);
19112 		FW_HOOKS(ipst->ips_ip4_physical_out_event,
19113 		    ipst->ips_ipv4firewall_physical_out,
19114 		    NULL, out_ill, ipha, mp, mp, 0, ipst);
19115 		DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp);
19116 		if (mp != NULL)
19117 			putnext(ire->ire_stq, mp);
19118 	}
19119 	IRE_REFRELE(ire);
19120 }
19121 
19122 /*
19123  * This handles the case when the receiver has shrunk its win. Per RFC 1122
19124  * if the receiver shrinks the window, i.e. moves the right window to the
19125  * left, the we should not send new data, but should retransmit normally the
19126  * old unacked data between suna and suna + swnd. We might has sent data
19127  * that is now outside the new window, pretend that we didn't send  it.
19128  */
19129 static void
19130 tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_count)
19131 {
19132 	uint32_t	snxt = tcp->tcp_snxt;
19133 	mblk_t		*xmit_tail;
19134 	int32_t		offset;
19135 
19136 	ASSERT(shrunk_count > 0);
19137 
19138 	/* Pretend we didn't send the data outside the window */
19139 	snxt -= shrunk_count;
19140 
19141 	/* Get the mblk and the offset in it per the shrunk window */
19142 	xmit_tail = tcp_get_seg_mp(tcp, snxt, &offset);
19143 
19144 	ASSERT(xmit_tail != NULL);
19145 
19146 	/* Reset all the values per the now shrunk window */
19147 	tcp->tcp_snxt = snxt;
19148 	tcp->tcp_xmit_tail = xmit_tail;
19149 	tcp->tcp_xmit_tail_unsent = xmit_tail->b_wptr - xmit_tail->b_rptr -
19150 	    offset;
19151 	tcp->tcp_unsent += shrunk_count;
19152 
19153 	if (tcp->tcp_suna == tcp->tcp_snxt && tcp->tcp_swnd == 0)
19154 		/*
19155 		 * Make sure the timer is running so that we will probe a zero
19156 		 * window.
19157 		 */
19158 		TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
19159 }
19160 
19161 
19162 /*
19163  * The TCP normal data output path.
19164  * NOTE: the logic of the fast path is duplicated from this function.
19165  */
19166 static void
19167 tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent)
19168 {
19169 	int		len;
19170 	mblk_t		*local_time;
19171 	mblk_t		*mp1;
19172 	uint32_t	snxt;
19173 	int		tail_unsent;
19174 	int		tcpstate;
19175 	int		usable = 0;
19176 	mblk_t		*xmit_tail;
19177 	queue_t		*q = tcp->tcp_wq;
19178 	int32_t		mss;
19179 	int32_t		num_sack_blk = 0;
19180 	int32_t		tcp_hdr_len;
19181 	int32_t		tcp_tcp_hdr_len;
19182 	int		mdt_thres;
19183 	int		rc;
19184 	tcp_stack_t	*tcps = tcp->tcp_tcps;
19185 	ip_stack_t	*ipst;
19186 
19187 	tcpstate = tcp->tcp_state;
19188 	if (mp == NULL) {
19189 		/*
19190 		 * tcp_wput_data() with NULL mp should only be called when
19191 		 * there is unsent data.
19192 		 */
19193 		ASSERT(tcp->tcp_unsent > 0);
19194 		/* Really tacky... but we need this for detached closes. */
19195 		len = tcp->tcp_unsent;
19196 		goto data_null;
19197 	}
19198 
19199 #if CCS_STATS
19200 	wrw_stats.tot.count++;
19201 	wrw_stats.tot.bytes += msgdsize(mp);
19202 #endif
19203 	ASSERT(mp->b_datap->db_type == M_DATA);
19204 	/*
19205 	 * Don't allow data after T_ORDREL_REQ or T_DISCON_REQ,
19206 	 * or before a connection attempt has begun.
19207 	 */
19208 	if (tcpstate < TCPS_SYN_SENT || tcpstate > TCPS_CLOSE_WAIT ||
19209 	    (tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) {
19210 		if ((tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) {
19211 #ifdef DEBUG
19212 			cmn_err(CE_WARN,
19213 			    "tcp_wput_data: data after ordrel, %s",
19214 			    tcp_display(tcp, NULL,
19215 			    DISP_ADDR_AND_PORT));
19216 #else
19217 			if (tcp->tcp_debug) {
19218 				(void) strlog(TCP_MOD_ID, 0, 1,
19219 				    SL_TRACE|SL_ERROR,
19220 				    "tcp_wput_data: data after ordrel, %s\n",
19221 				    tcp_display(tcp, NULL,
19222 				    DISP_ADDR_AND_PORT));
19223 			}
19224 #endif /* DEBUG */
19225 		}
19226 		if (tcp->tcp_snd_zcopy_aware &&
19227 		    (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) != 0)
19228 			tcp_zcopy_notify(tcp);
19229 		freemsg(mp);
19230 		mutex_enter(&tcp->tcp_non_sq_lock);
19231 		if (tcp->tcp_flow_stopped &&
19232 		    TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) {
19233 			tcp_clrqfull(tcp);
19234 		}
19235 		mutex_exit(&tcp->tcp_non_sq_lock);
19236 		return;
19237 	}
19238 
19239 	/* Strip empties */
19240 	for (;;) {
19241 		ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
19242 		    (uintptr_t)INT_MAX);
19243 		len = (int)(mp->b_wptr - mp->b_rptr);
19244 		if (len > 0)
19245 			break;
19246 		mp1 = mp;
19247 		mp = mp->b_cont;
19248 		freeb(mp1);
19249 		if (!mp) {
19250 			return;
19251 		}
19252 	}
19253 
19254 	/* If we are the first on the list ... */
19255 	if (tcp->tcp_xmit_head == NULL) {
19256 		tcp->tcp_xmit_head = mp;
19257 		tcp->tcp_xmit_tail = mp;
19258 		tcp->tcp_xmit_tail_unsent = len;
19259 	} else {
19260 		/* If tiny tx and room in txq tail, pullup to save mblks. */
19261 		struct datab *dp;
19262 
19263 		mp1 = tcp->tcp_xmit_last;
19264 		if (len < tcp_tx_pull_len &&
19265 		    (dp = mp1->b_datap)->db_ref == 1 &&
19266 		    dp->db_lim - mp1->b_wptr >= len) {
19267 			ASSERT(len > 0);
19268 			ASSERT(!mp1->b_cont);
19269 			if (len == 1) {
19270 				*mp1->b_wptr++ = *mp->b_rptr;
19271 			} else {
19272 				bcopy(mp->b_rptr, mp1->b_wptr, len);
19273 				mp1->b_wptr += len;
19274 			}
19275 			if (mp1 == tcp->tcp_xmit_tail)
19276 				tcp->tcp_xmit_tail_unsent += len;
19277 			mp1->b_cont = mp->b_cont;
19278 			if (tcp->tcp_snd_zcopy_aware &&
19279 			    (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY))
19280 				mp1->b_datap->db_struioflag |= STRUIO_ZCNOTIFY;
19281 			freeb(mp);
19282 			mp = mp1;
19283 		} else {
19284 			tcp->tcp_xmit_last->b_cont = mp;
19285 		}
19286 		len += tcp->tcp_unsent;
19287 	}
19288 
19289 	/* Tack on however many more positive length mblks we have */
19290 	if ((mp1 = mp->b_cont) != NULL) {
19291 		do {
19292 			int tlen;
19293 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
19294 			    (uintptr_t)INT_MAX);
19295 			tlen = (int)(mp1->b_wptr - mp1->b_rptr);
19296 			if (tlen <= 0) {
19297 				mp->b_cont = mp1->b_cont;
19298 				freeb(mp1);
19299 			} else {
19300 				len += tlen;
19301 				mp = mp1;
19302 			}
19303 		} while ((mp1 = mp->b_cont) != NULL);
19304 	}
19305 	tcp->tcp_xmit_last = mp;
19306 	tcp->tcp_unsent = len;
19307 
19308 	if (urgent)
19309 		usable = 1;
19310 
19311 data_null:
19312 	snxt = tcp->tcp_snxt;
19313 	xmit_tail = tcp->tcp_xmit_tail;
19314 	tail_unsent = tcp->tcp_xmit_tail_unsent;
19315 
19316 	/*
19317 	 * Note that tcp_mss has been adjusted to take into account the
19318 	 * timestamp option if applicable.  Because SACK options do not
19319 	 * appear in every TCP segments and they are of variable lengths,
19320 	 * they cannot be included in tcp_mss.  Thus we need to calculate
19321 	 * the actual segment length when we need to send a segment which
19322 	 * includes SACK options.
19323 	 */
19324 	if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
19325 		int32_t	opt_len;
19326 
19327 		num_sack_blk = MIN(tcp->tcp_max_sack_blk,
19328 		    tcp->tcp_num_sack_blk);
19329 		opt_len = num_sack_blk * sizeof (sack_blk_t) + TCPOPT_NOP_LEN *
19330 		    2 + TCPOPT_HEADER_LEN;
19331 		mss = tcp->tcp_mss - opt_len;
19332 		tcp_hdr_len = tcp->tcp_hdr_len + opt_len;
19333 		tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len + opt_len;
19334 	} else {
19335 		mss = tcp->tcp_mss;
19336 		tcp_hdr_len = tcp->tcp_hdr_len;
19337 		tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len;
19338 	}
19339 
19340 	if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet &&
19341 	    (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) {
19342 		SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_after_idle);
19343 	}
19344 	if (tcpstate == TCPS_SYN_RCVD) {
19345 		/*
19346 		 * The three-way connection establishment handshake is not
19347 		 * complete yet. We want to queue the data for transmission
19348 		 * after entering ESTABLISHED state (RFC793). A jump to
19349 		 * "done" label effectively leaves data on the queue.
19350 		 */
19351 		goto done;
19352 	} else {
19353 		int usable_r;
19354 
19355 		/*
19356 		 * In the special case when cwnd is zero, which can only
19357 		 * happen if the connection is ECN capable, return now.
19358 		 * New segments is sent using tcp_timer().  The timer
19359 		 * is set in tcp_rput_data().
19360 		 */
19361 		if (tcp->tcp_cwnd == 0) {
19362 			/*
19363 			 * Note that tcp_cwnd is 0 before 3-way handshake is
19364 			 * finished.
19365 			 */
19366 			ASSERT(tcp->tcp_ecn_ok ||
19367 			    tcp->tcp_state < TCPS_ESTABLISHED);
19368 			return;
19369 		}
19370 
19371 		/* NOTE: trouble if xmitting while SYN not acked? */
19372 		usable_r = snxt - tcp->tcp_suna;
19373 		usable_r = tcp->tcp_swnd - usable_r;
19374 
19375 		/*
19376 		 * Check if the receiver has shrunk the window.  If
19377 		 * tcp_wput_data() with NULL mp is called, tcp_fin_sent
19378 		 * cannot be set as there is unsent data, so FIN cannot
19379 		 * be sent out.  Otherwise, we need to take into account
19380 		 * of FIN as it consumes an "invisible" sequence number.
19381 		 */
19382 		ASSERT(tcp->tcp_fin_sent == 0);
19383 		if (usable_r < 0) {
19384 			/*
19385 			 * The receiver has shrunk the window and we have sent
19386 			 * -usable_r date beyond the window, re-adjust.
19387 			 *
19388 			 * If TCP window scaling is enabled, there can be
19389 			 * round down error as the advertised receive window
19390 			 * is actually right shifted n bits.  This means that
19391 			 * the lower n bits info is wiped out.  It will look
19392 			 * like the window is shrunk.  Do a check here to
19393 			 * see if the shrunk amount is actually within the
19394 			 * error in window calculation.  If it is, just
19395 			 * return.  Note that this check is inside the
19396 			 * shrunk window check.  This makes sure that even
19397 			 * though tcp_process_shrunk_swnd() is not called,
19398 			 * we will stop further processing.
19399 			 */
19400 			if ((-usable_r >> tcp->tcp_snd_ws) > 0) {
19401 				tcp_process_shrunk_swnd(tcp, -usable_r);
19402 			}
19403 			return;
19404 		}
19405 
19406 		/* usable = MIN(swnd, cwnd) - unacked_bytes */
19407 		if (tcp->tcp_swnd > tcp->tcp_cwnd)
19408 			usable_r -= tcp->tcp_swnd - tcp->tcp_cwnd;
19409 
19410 		/* usable = MIN(usable, unsent) */
19411 		if (usable_r > len)
19412 			usable_r = len;
19413 
19414 		/* usable = MAX(usable, {1 for urgent, 0 for data}) */
19415 		if (usable_r > 0) {
19416 			usable = usable_r;
19417 		} else {
19418 			/* Bypass all other unnecessary processing. */
19419 			goto done;
19420 		}
19421 	}
19422 
19423 	local_time = (mblk_t *)lbolt;
19424 
19425 	/*
19426 	 * "Our" Nagle Algorithm.  This is not the same as in the old
19427 	 * BSD.  This is more in line with the true intent of Nagle.
19428 	 *
19429 	 * The conditions are:
19430 	 * 1. The amount of unsent data (or amount of data which can be
19431 	 *    sent, whichever is smaller) is less than Nagle limit.
19432 	 * 2. The last sent size is also less than Nagle limit.
19433 	 * 3. There is unack'ed data.
19434 	 * 4. Urgent pointer is not set.  Send urgent data ignoring the
19435 	 *    Nagle algorithm.  This reduces the probability that urgent
19436 	 *    bytes get "merged" together.
19437 	 * 5. The app has not closed the connection.  This eliminates the
19438 	 *    wait time of the receiving side waiting for the last piece of
19439 	 *    (small) data.
19440 	 *
19441 	 * If all are satisified, exit without sending anything.  Note
19442 	 * that Nagle limit can be smaller than 1 MSS.  Nagle limit is
19443 	 * the smaller of 1 MSS and global tcp_naglim_def (default to be
19444 	 * 4095).
19445 	 */
19446 	if (usable < (int)tcp->tcp_naglim &&
19447 	    tcp->tcp_naglim > tcp->tcp_last_sent_len &&
19448 	    snxt != tcp->tcp_suna &&
19449 	    !(tcp->tcp_valid_bits & TCP_URG_VALID) &&
19450 	    !(tcp->tcp_valid_bits & TCP_FSS_VALID)) {
19451 		goto done;
19452 	}
19453 
19454 	if (tcp->tcp_cork) {
19455 		/*
19456 		 * if the tcp->tcp_cork option is set, then we have to force
19457 		 * TCP not to send partial segment (smaller than MSS bytes).
19458 		 * We are calculating the usable now based on full mss and
19459 		 * will save the rest of remaining data for later.
19460 		 */
19461 		if (usable < mss)
19462 			goto done;
19463 		usable = (usable / mss) * mss;
19464 	}
19465 
19466 	/* Update the latest receive window size in TCP header. */
19467 	U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
19468 	    tcp->tcp_tcph->th_win);
19469 
19470 	/*
19471 	 * Determine if it's worthwhile to attempt LSO or MDT, based on:
19472 	 *
19473 	 * 1. Simple TCP/IP{v4,v6} (no options).
19474 	 * 2. IPSEC/IPQoS processing is not needed for the TCP connection.
19475 	 * 3. If the TCP connection is in ESTABLISHED state.
19476 	 * 4. The TCP is not detached.
19477 	 *
19478 	 * If any of the above conditions have changed during the
19479 	 * connection, stop using LSO/MDT and restore the stream head
19480 	 * parameters accordingly.
19481 	 */
19482 	ipst = tcps->tcps_netstack->netstack_ip;
19483 
19484 	if ((tcp->tcp_lso || tcp->tcp_mdt) &&
19485 	    ((tcp->tcp_ipversion == IPV4_VERSION &&
19486 	    tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) ||
19487 	    (tcp->tcp_ipversion == IPV6_VERSION &&
19488 	    tcp->tcp_ip_hdr_len != IPV6_HDR_LEN) ||
19489 	    tcp->tcp_state != TCPS_ESTABLISHED ||
19490 	    TCP_IS_DETACHED(tcp) || !CONN_IS_LSO_MD_FASTPATH(tcp->tcp_connp) ||
19491 	    CONN_IPSEC_OUT_ENCAPSULATED(tcp->tcp_connp) ||
19492 	    IPP_ENABLED(IPP_LOCAL_OUT, ipst))) {
19493 		if (tcp->tcp_lso) {
19494 			tcp->tcp_connp->conn_lso_ok = B_FALSE;
19495 			tcp->tcp_lso = B_FALSE;
19496 		} else {
19497 			tcp->tcp_connp->conn_mdt_ok = B_FALSE;
19498 			tcp->tcp_mdt = B_FALSE;
19499 		}
19500 
19501 		/* Anything other than detached is considered pathological */
19502 		if (!TCP_IS_DETACHED(tcp)) {
19503 			if (tcp->tcp_lso)
19504 				TCP_STAT(tcps, tcp_lso_disabled);
19505 			else
19506 				TCP_STAT(tcps, tcp_mdt_conn_halted1);
19507 			(void) tcp_maxpsz_set(tcp, B_TRUE);
19508 		}
19509 	}
19510 
19511 	/* Use MDT if sendable amount is greater than the threshold */
19512 	if (tcp->tcp_mdt &&
19513 	    (mdt_thres = mss << tcp_mdt_smss_threshold, usable > mdt_thres) &&
19514 	    (tail_unsent > mdt_thres || (xmit_tail->b_cont != NULL &&
19515 	    MBLKL(xmit_tail->b_cont) > mdt_thres)) &&
19516 	    (tcp->tcp_valid_bits == 0 ||
19517 	    tcp->tcp_valid_bits == TCP_FSS_VALID)) {
19518 		ASSERT(tcp->tcp_connp->conn_mdt_ok);
19519 		rc = tcp_multisend(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len,
19520 		    num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail,
19521 		    local_time, mdt_thres);
19522 	} else {
19523 		rc = tcp_send(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len,
19524 		    num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail,
19525 		    local_time, INT_MAX);
19526 	}
19527 
19528 	/* Pretend that all we were trying to send really got sent */
19529 	if (rc < 0 && tail_unsent < 0) {
19530 		do {
19531 			xmit_tail = xmit_tail->b_cont;
19532 			xmit_tail->b_prev = local_time;
19533 			ASSERT((uintptr_t)(xmit_tail->b_wptr -
19534 			    xmit_tail->b_rptr) <= (uintptr_t)INT_MAX);
19535 			tail_unsent += (int)(xmit_tail->b_wptr -
19536 			    xmit_tail->b_rptr);
19537 		} while (tail_unsent < 0);
19538 	}
19539 done:;
19540 	tcp->tcp_xmit_tail = xmit_tail;
19541 	tcp->tcp_xmit_tail_unsent = tail_unsent;
19542 	len = tcp->tcp_snxt - snxt;
19543 	if (len) {
19544 		/*
19545 		 * If new data was sent, need to update the notsack
19546 		 * list, which is, afterall, data blocks that have
19547 		 * not been sack'ed by the receiver.  New data is
19548 		 * not sack'ed.
19549 		 */
19550 		if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) {
19551 			/* len is a negative value. */
19552 			tcp->tcp_pipe -= len;
19553 			tcp_notsack_update(&(tcp->tcp_notsack_list),
19554 			    tcp->tcp_snxt, snxt,
19555 			    &(tcp->tcp_num_notsack_blk),
19556 			    &(tcp->tcp_cnt_notsack_list));
19557 		}
19558 		tcp->tcp_snxt = snxt + tcp->tcp_fin_sent;
19559 		tcp->tcp_rack = tcp->tcp_rnxt;
19560 		tcp->tcp_rack_cnt = 0;
19561 		if ((snxt + len) == tcp->tcp_suna) {
19562 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
19563 		}
19564 	} else if (snxt == tcp->tcp_suna && tcp->tcp_swnd == 0) {
19565 		/*
19566 		 * Didn't send anything. Make sure the timer is running
19567 		 * so that we will probe a zero window.
19568 		 */
19569 		TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
19570 	}
19571 	/* Note that len is the amount we just sent but with a negative sign */
19572 	tcp->tcp_unsent += len;
19573 	mutex_enter(&tcp->tcp_non_sq_lock);
19574 	if (tcp->tcp_flow_stopped) {
19575 		if (TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) {
19576 			tcp_clrqfull(tcp);
19577 		}
19578 	} else if (TCP_UNSENT_BYTES(tcp) >= tcp->tcp_xmit_hiwater) {
19579 		tcp_setqfull(tcp);
19580 	}
19581 	mutex_exit(&tcp->tcp_non_sq_lock);
19582 }
19583 
19584 /*
19585  * tcp_fill_header is called by tcp_send() and tcp_multisend() to fill the
19586  * outgoing TCP header with the template header, as well as other
19587  * options such as time-stamp, ECN and/or SACK.
19588  */
19589 static void
19590 tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now, int num_sack_blk)
19591 {
19592 	tcph_t *tcp_tmpl, *tcp_h;
19593 	uint32_t *dst, *src;
19594 	int hdrlen;
19595 
19596 	ASSERT(OK_32PTR(rptr));
19597 
19598 	/* Template header */
19599 	tcp_tmpl = tcp->tcp_tcph;
19600 
19601 	/* Header of outgoing packet */
19602 	tcp_h = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len);
19603 
19604 	/* dst and src are opaque 32-bit fields, used for copying */
19605 	dst = (uint32_t *)rptr;
19606 	src = (uint32_t *)tcp->tcp_iphc;
19607 	hdrlen = tcp->tcp_hdr_len;
19608 
19609 	/* Fill time-stamp option if needed */
19610 	if (tcp->tcp_snd_ts_ok) {
19611 		U32_TO_BE32((uint32_t)now,
19612 		    (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 4);
19613 		U32_TO_BE32(tcp->tcp_ts_recent,
19614 		    (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 8);
19615 	} else {
19616 		ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH);
19617 	}
19618 
19619 	/*
19620 	 * Copy the template header; is this really more efficient than
19621 	 * calling bcopy()?  For simple IPv4/TCP, it may be the case,
19622 	 * but perhaps not for other scenarios.
19623 	 */
19624 	dst[0] = src[0];
19625 	dst[1] = src[1];
19626 	dst[2] = src[2];
19627 	dst[3] = src[3];
19628 	dst[4] = src[4];
19629 	dst[5] = src[5];
19630 	dst[6] = src[6];
19631 	dst[7] = src[7];
19632 	dst[8] = src[8];
19633 	dst[9] = src[9];
19634 	if (hdrlen -= 40) {
19635 		hdrlen >>= 2;
19636 		dst += 10;
19637 		src += 10;
19638 		do {
19639 			*dst++ = *src++;
19640 		} while (--hdrlen);
19641 	}
19642 
19643 	/*
19644 	 * Set the ECN info in the TCP header if it is not a zero
19645 	 * window probe.  Zero window probe is only sent in
19646 	 * tcp_wput_data() and tcp_timer().
19647 	 */
19648 	if (tcp->tcp_ecn_ok && !tcp->tcp_zero_win_probe) {
19649 		SET_ECT(tcp, rptr);
19650 
19651 		if (tcp->tcp_ecn_echo_on)
19652 			tcp_h->th_flags[0] |= TH_ECE;
19653 		if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) {
19654 			tcp_h->th_flags[0] |= TH_CWR;
19655 			tcp->tcp_ecn_cwr_sent = B_TRUE;
19656 		}
19657 	}
19658 
19659 	/* Fill in SACK options */
19660 	if (num_sack_blk > 0) {
19661 		uchar_t *wptr = rptr + tcp->tcp_hdr_len;
19662 		sack_blk_t *tmp;
19663 		int32_t	i;
19664 
19665 		wptr[0] = TCPOPT_NOP;
19666 		wptr[1] = TCPOPT_NOP;
19667 		wptr[2] = TCPOPT_SACK;
19668 		wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk *
19669 		    sizeof (sack_blk_t);
19670 		wptr += TCPOPT_REAL_SACK_LEN;
19671 
19672 		tmp = tcp->tcp_sack_list;
19673 		for (i = 0; i < num_sack_blk; i++) {
19674 			U32_TO_BE32(tmp[i].begin, wptr);
19675 			wptr += sizeof (tcp_seq);
19676 			U32_TO_BE32(tmp[i].end, wptr);
19677 			wptr += sizeof (tcp_seq);
19678 		}
19679 		tcp_h->th_offset_and_rsrvd[0] +=
19680 		    ((num_sack_blk * 2 + 1) << 4);
19681 	}
19682 }
19683 
19684 /*
19685  * tcp_mdt_add_attrs() is called by tcp_multisend() in order to attach
19686  * the destination address and SAP attribute, and if necessary, the
19687  * hardware checksum offload attribute to a Multidata message.
19688  */
19689 static int
19690 tcp_mdt_add_attrs(multidata_t *mmd, const mblk_t *dlmp, const boolean_t hwcksum,
19691     const uint32_t start, const uint32_t stuff, const uint32_t end,
19692     const uint32_t flags, tcp_stack_t *tcps)
19693 {
19694 	/* Add global destination address & SAP attribute */
19695 	if (dlmp == NULL || !ip_md_addr_attr(mmd, NULL, dlmp)) {
19696 		ip1dbg(("tcp_mdt_add_attrs: can't add global physical "
19697 		    "destination address+SAP\n"));
19698 
19699 		if (dlmp != NULL)
19700 			TCP_STAT(tcps, tcp_mdt_allocfail);
19701 		return (-1);
19702 	}
19703 
19704 	/* Add global hwcksum attribute */
19705 	if (hwcksum &&
19706 	    !ip_md_hcksum_attr(mmd, NULL, start, stuff, end, flags)) {
19707 		ip1dbg(("tcp_mdt_add_attrs: can't add global hardware "
19708 		    "checksum attribute\n"));
19709 
19710 		TCP_STAT(tcps, tcp_mdt_allocfail);
19711 		return (-1);
19712 	}
19713 
19714 	return (0);
19715 }
19716 
19717 /*
19718  * Smaller and private version of pdescinfo_t used specifically for TCP,
19719  * which allows for only two payload spans per packet.
19720  */
19721 typedef struct tcp_pdescinfo_s PDESCINFO_STRUCT(2) tcp_pdescinfo_t;
19722 
19723 /*
19724  * tcp_multisend() is called by tcp_wput_data() for Multidata Transmit
19725  * scheme, and returns one the following:
19726  *
19727  * -1 = failed allocation.
19728  *  0 = success; burst count reached, or usable send window is too small,
19729  *      and that we'd rather wait until later before sending again.
19730  */
19731 static int
19732 tcp_multisend(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len,
19733     const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable,
19734     uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time,
19735     const int mdt_thres)
19736 {
19737 	mblk_t		*md_mp_head, *md_mp, *md_pbuf, *md_pbuf_nxt, *md_hbuf;
19738 	multidata_t	*mmd;
19739 	uint_t		obsegs, obbytes, hdr_frag_sz;
19740 	uint_t		cur_hdr_off, cur_pld_off, base_pld_off, first_snxt;
19741 	int		num_burst_seg, max_pld;
19742 	pdesc_t		*pkt;
19743 	tcp_pdescinfo_t	tcp_pkt_info;
19744 	pdescinfo_t	*pkt_info;
19745 	int		pbuf_idx, pbuf_idx_nxt;
19746 	int		seg_len, len, spill, af;
19747 	boolean_t	add_buffer, zcopy, clusterwide;
19748 	boolean_t	buf_trunked = B_FALSE;
19749 	boolean_t	rconfirm = B_FALSE;
19750 	boolean_t	done = B_FALSE;
19751 	uint32_t	cksum;
19752 	uint32_t	hwcksum_flags;
19753 	ire_t		*ire = NULL;
19754 	ill_t		*ill;
19755 	ipha_t		*ipha;
19756 	ip6_t		*ip6h;
19757 	ipaddr_t	src, dst;
19758 	ill_zerocopy_capab_t *zc_cap = NULL;
19759 	uint16_t	*up;
19760 	int		err;
19761 	conn_t		*connp;
19762 	mblk_t		*mp, *mp1, *fw_mp_head = NULL;
19763 	uchar_t		*pld_start;
19764 	tcp_stack_t	*tcps = tcp->tcp_tcps;
19765 	ip_stack_t 	*ipst = tcps->tcps_netstack->netstack_ip;
19766 
19767 #ifdef	_BIG_ENDIAN
19768 #define	IPVER(ip6h)	((((uint32_t *)ip6h)[0] >> 28) & 0x7)
19769 #else
19770 #define	IPVER(ip6h)	((((uint32_t *)ip6h)[0] >> 4) & 0x7)
19771 #endif
19772 
19773 #define	PREP_NEW_MULTIDATA() {			\
19774 	mmd = NULL;				\
19775 	md_mp = md_hbuf = NULL;			\
19776 	cur_hdr_off = 0;			\
19777 	max_pld = tcp->tcp_mdt_max_pld;		\
19778 	pbuf_idx = pbuf_idx_nxt = -1;		\
19779 	add_buffer = B_TRUE;			\
19780 	zcopy = B_FALSE;			\
19781 }
19782 
19783 #define	PREP_NEW_PBUF() {			\
19784 	md_pbuf = md_pbuf_nxt = NULL;		\
19785 	pbuf_idx = pbuf_idx_nxt = -1;		\
19786 	cur_pld_off = 0;			\
19787 	first_snxt = *snxt;			\
19788 	ASSERT(*tail_unsent > 0);		\
19789 	base_pld_off = MBLKL(*xmit_tail) - *tail_unsent; \
19790 }
19791 
19792 	ASSERT(mdt_thres >= mss);
19793 	ASSERT(*usable > 0 && *usable > mdt_thres);
19794 	ASSERT(tcp->tcp_state == TCPS_ESTABLISHED);
19795 	ASSERT(!TCP_IS_DETACHED(tcp));
19796 	ASSERT(tcp->tcp_valid_bits == 0 ||
19797 	    tcp->tcp_valid_bits == TCP_FSS_VALID);
19798 	ASSERT((tcp->tcp_ipversion == IPV4_VERSION &&
19799 	    tcp->tcp_ip_hdr_len == IP_SIMPLE_HDR_LENGTH) ||
19800 	    (tcp->tcp_ipversion == IPV6_VERSION &&
19801 	    tcp->tcp_ip_hdr_len == IPV6_HDR_LEN));
19802 
19803 	connp = tcp->tcp_connp;
19804 	ASSERT(connp != NULL);
19805 	ASSERT(CONN_IS_LSO_MD_FASTPATH(connp));
19806 	ASSERT(!CONN_IPSEC_OUT_ENCAPSULATED(connp));
19807 
19808 	/*
19809 	 * Note that tcp will only declare at most 2 payload spans per
19810 	 * packet, which is much lower than the maximum allowable number
19811 	 * of packet spans per Multidata.  For this reason, we use the
19812 	 * privately declared and smaller descriptor info structure, in
19813 	 * order to save some stack space.
19814 	 */
19815 	pkt_info = (pdescinfo_t *)&tcp_pkt_info;
19816 
19817 	af = (tcp->tcp_ipversion == IPV4_VERSION) ? AF_INET : AF_INET6;
19818 	if (af == AF_INET) {
19819 		dst = tcp->tcp_ipha->ipha_dst;
19820 		src = tcp->tcp_ipha->ipha_src;
19821 		ASSERT(!CLASSD(dst));
19822 	}
19823 	ASSERT(af == AF_INET ||
19824 	    !IN6_IS_ADDR_MULTICAST(&tcp->tcp_ip6h->ip6_dst));
19825 
19826 	obsegs = obbytes = 0;
19827 	num_burst_seg = tcp->tcp_snd_burst;
19828 	md_mp_head = NULL;
19829 	PREP_NEW_MULTIDATA();
19830 
19831 	/*
19832 	 * Before we go on further, make sure there is an IRE that we can
19833 	 * use, and that the ILL supports MDT.  Otherwise, there's no point
19834 	 * in proceeding any further, and we should just hand everything
19835 	 * off to the legacy path.
19836 	 */
19837 	if (!tcp_send_find_ire(tcp, (af == AF_INET) ? &dst : NULL, &ire))
19838 		goto legacy_send_no_md;
19839 
19840 	ASSERT(ire != NULL);
19841 	ASSERT(af != AF_INET || ire->ire_ipversion == IPV4_VERSION);
19842 	ASSERT(af == AF_INET || !IN6_IS_ADDR_V4MAPPED(&(ire->ire_addr_v6)));
19843 	ASSERT(af == AF_INET || ire->ire_nce != NULL);
19844 	ASSERT(!(ire->ire_type & IRE_BROADCAST));
19845 	/*
19846 	 * If we do support loopback for MDT (which requires modifications
19847 	 * to the receiving paths), the following assertions should go away,
19848 	 * and we would be sending the Multidata to loopback conn later on.
19849 	 */
19850 	ASSERT(!IRE_IS_LOCAL(ire));
19851 	ASSERT(ire->ire_stq != NULL);
19852 
19853 	ill = ire_to_ill(ire);
19854 	ASSERT(ill != NULL);
19855 	ASSERT(!ILL_MDT_CAPABLE(ill) || ill->ill_mdt_capab != NULL);
19856 
19857 	if (!tcp->tcp_ire_ill_check_done) {
19858 		tcp_ire_ill_check(tcp, ire, ill, B_TRUE);
19859 		tcp->tcp_ire_ill_check_done = B_TRUE;
19860 	}
19861 
19862 	/*
19863 	 * If the underlying interface conditions have changed, or if the
19864 	 * new interface does not support MDT, go back to legacy path.
19865 	 */
19866 	if (!ILL_MDT_USABLE(ill) || (ire->ire_flags & RTF_MULTIRT) != 0) {
19867 		/* don't go through this path anymore for this connection */
19868 		TCP_STAT(tcps, tcp_mdt_conn_halted2);
19869 		tcp->tcp_mdt = B_FALSE;
19870 		ip1dbg(("tcp_multisend: disabling MDT for connp %p on "
19871 		    "interface %s\n", (void *)connp, ill->ill_name));
19872 		/* IRE will be released prior to returning */
19873 		goto legacy_send_no_md;
19874 	}
19875 
19876 	if (ill->ill_capabilities & ILL_CAPAB_ZEROCOPY)
19877 		zc_cap = ill->ill_zerocopy_capab;
19878 
19879 	/*
19880 	 * Check if we can take tcp fast-path. Note that "incomplete"
19881 	 * ire's (where the link-layer for next hop is not resolved
19882 	 * or where the fast-path header in nce_fp_mp is not available
19883 	 * yet) are sent down the legacy (slow) path.
19884 	 * NOTE: We should fix ip_xmit_v4 to handle M_MULTIDATA
19885 	 */
19886 	if (ire->ire_nce && ire->ire_nce->nce_state != ND_REACHABLE) {
19887 		/* IRE will be released prior to returning */
19888 		goto legacy_send_no_md;
19889 	}
19890 
19891 	/* go to legacy path if interface doesn't support zerocopy */
19892 	if (tcp->tcp_snd_zcopy_aware && do_tcpzcopy != 2 &&
19893 	    (zc_cap == NULL || zc_cap->ill_zerocopy_flags == 0)) {
19894 		/* IRE will be released prior to returning */
19895 		goto legacy_send_no_md;
19896 	}
19897 
19898 	/* does the interface support hardware checksum offload? */
19899 	hwcksum_flags = 0;
19900 	if (ILL_HCKSUM_CAPABLE(ill) &&
19901 	    (ill->ill_hcksum_capab->ill_hcksum_txflags &
19902 	    (HCKSUM_INET_FULL_V4 | HCKSUM_INET_FULL_V6 | HCKSUM_INET_PARTIAL |
19903 	    HCKSUM_IPHDRCKSUM)) && dohwcksum) {
19904 		if (ill->ill_hcksum_capab->ill_hcksum_txflags &
19905 		    HCKSUM_IPHDRCKSUM)
19906 			hwcksum_flags = HCK_IPV4_HDRCKSUM;
19907 
19908 		if (ill->ill_hcksum_capab->ill_hcksum_txflags &
19909 		    (HCKSUM_INET_FULL_V4 | HCKSUM_INET_FULL_V6))
19910 			hwcksum_flags |= HCK_FULLCKSUM;
19911 		else if (ill->ill_hcksum_capab->ill_hcksum_txflags &
19912 		    HCKSUM_INET_PARTIAL)
19913 			hwcksum_flags |= HCK_PARTIALCKSUM;
19914 	}
19915 
19916 	/*
19917 	 * Each header fragment consists of the leading extra space,
19918 	 * followed by the TCP/IP header, and the trailing extra space.
19919 	 * We make sure that each header fragment begins on a 32-bit
19920 	 * aligned memory address (tcp_mdt_hdr_head is already 32-bit
19921 	 * aligned in tcp_mdt_update).
19922 	 */
19923 	hdr_frag_sz = roundup((tcp->tcp_mdt_hdr_head + tcp_hdr_len +
19924 	    tcp->tcp_mdt_hdr_tail), 4);
19925 
19926 	/* are we starting from the beginning of data block? */
19927 	if (*tail_unsent == 0) {
19928 		*xmit_tail = (*xmit_tail)->b_cont;
19929 		ASSERT((uintptr_t)MBLKL(*xmit_tail) <= (uintptr_t)INT_MAX);
19930 		*tail_unsent = (int)MBLKL(*xmit_tail);
19931 	}
19932 
19933 	/*
19934 	 * Here we create one or more Multidata messages, each made up of
19935 	 * one header buffer and up to N payload buffers.  This entire
19936 	 * operation is done within two loops:
19937 	 *
19938 	 * The outer loop mostly deals with creating the Multidata message,
19939 	 * as well as the header buffer that gets added to it.  It also
19940 	 * links the Multidata messages together such that all of them can
19941 	 * be sent down to the lower layer in a single putnext call; this
19942 	 * linking behavior depends on the tcp_mdt_chain tunable.
19943 	 *
19944 	 * The inner loop takes an existing Multidata message, and adds
19945 	 * one or more (up to tcp_mdt_max_pld) payload buffers to it.  It
19946 	 * packetizes those buffers by filling up the corresponding header
19947 	 * buffer fragments with the proper IP and TCP headers, and by
19948 	 * describing the layout of each packet in the packet descriptors
19949 	 * that get added to the Multidata.
19950 	 */
19951 	do {
19952 		/*
19953 		 * If usable send window is too small, or data blocks in
19954 		 * transmit list are smaller than our threshold (i.e. app
19955 		 * performs large writes followed by small ones), we hand
19956 		 * off the control over to the legacy path.  Note that we'll
19957 		 * get back the control once it encounters a large block.
19958 		 */
19959 		if (*usable < mss || (*tail_unsent <= mdt_thres &&
19960 		    (*xmit_tail)->b_cont != NULL &&
19961 		    MBLKL((*xmit_tail)->b_cont) <= mdt_thres)) {
19962 			/* send down what we've got so far */
19963 			if (md_mp_head != NULL) {
19964 				tcp_multisend_data(tcp, ire, ill, md_mp_head,
19965 				    obsegs, obbytes, &rconfirm);
19966 			}
19967 			/*
19968 			 * Pass control over to tcp_send(), but tell it to
19969 			 * return to us once a large-size transmission is
19970 			 * possible.
19971 			 */
19972 			TCP_STAT(tcps, tcp_mdt_legacy_small);
19973 			if ((err = tcp_send(q, tcp, mss, tcp_hdr_len,
19974 			    tcp_tcp_hdr_len, num_sack_blk, usable, snxt,
19975 			    tail_unsent, xmit_tail, local_time,
19976 			    mdt_thres)) <= 0) {
19977 				/* burst count reached, or alloc failed */
19978 				IRE_REFRELE(ire);
19979 				return (err);
19980 			}
19981 
19982 			/* tcp_send() may have sent everything, so check */
19983 			if (*usable <= 0) {
19984 				IRE_REFRELE(ire);
19985 				return (0);
19986 			}
19987 
19988 			TCP_STAT(tcps, tcp_mdt_legacy_ret);
19989 			/*
19990 			 * We may have delivered the Multidata, so make sure
19991 			 * to re-initialize before the next round.
19992 			 */
19993 			md_mp_head = NULL;
19994 			obsegs = obbytes = 0;
19995 			num_burst_seg = tcp->tcp_snd_burst;
19996 			PREP_NEW_MULTIDATA();
19997 
19998 			/* are we starting from the beginning of data block? */
19999 			if (*tail_unsent == 0) {
20000 				*xmit_tail = (*xmit_tail)->b_cont;
20001 				ASSERT((uintptr_t)MBLKL(*xmit_tail) <=
20002 				    (uintptr_t)INT_MAX);
20003 				*tail_unsent = (int)MBLKL(*xmit_tail);
20004 			}
20005 		}
20006 
20007 		/*
20008 		 * max_pld limits the number of mblks in tcp's transmit
20009 		 * queue that can be added to a Multidata message.  Once
20010 		 * this counter reaches zero, no more additional mblks
20011 		 * can be added to it.  What happens afterwards depends
20012 		 * on whether or not we are set to chain the Multidata
20013 		 * messages.  If we are to link them together, reset
20014 		 * max_pld to its original value (tcp_mdt_max_pld) and
20015 		 * prepare to create a new Multidata message which will
20016 		 * get linked to md_mp_head.  Else, leave it alone and
20017 		 * let the inner loop break on its own.
20018 		 */
20019 		if (tcp_mdt_chain && max_pld == 0)
20020 			PREP_NEW_MULTIDATA();
20021 
20022 		/* adding a payload buffer; re-initialize values */
20023 		if (add_buffer)
20024 			PREP_NEW_PBUF();
20025 
20026 		/*
20027 		 * If we don't have a Multidata, either because we just
20028 		 * (re)entered this outer loop, or after we branched off
20029 		 * to tcp_send above, setup the Multidata and header
20030 		 * buffer to be used.
20031 		 */
20032 		if (md_mp == NULL) {
20033 			int md_hbuflen;
20034 			uint32_t start, stuff;
20035 
20036 			/*
20037 			 * Calculate Multidata header buffer size large enough
20038 			 * to hold all of the headers that can possibly be
20039 			 * sent at this moment.  We'd rather over-estimate
20040 			 * the size than running out of space; this is okay
20041 			 * since this buffer is small anyway.
20042 			 */
20043 			md_hbuflen = (howmany(*usable, mss) + 1) * hdr_frag_sz;
20044 
20045 			/*
20046 			 * Start and stuff offset for partial hardware
20047 			 * checksum offload; these are currently for IPv4.
20048 			 * For full checksum offload, they are set to zero.
20049 			 */
20050 			if ((hwcksum_flags & HCK_PARTIALCKSUM)) {
20051 				if (af == AF_INET) {
20052 					start = IP_SIMPLE_HDR_LENGTH;
20053 					stuff = IP_SIMPLE_HDR_LENGTH +
20054 					    TCP_CHECKSUM_OFFSET;
20055 				} else {
20056 					start = IPV6_HDR_LEN;
20057 					stuff = IPV6_HDR_LEN +
20058 					    TCP_CHECKSUM_OFFSET;
20059 				}
20060 			} else {
20061 				start = stuff = 0;
20062 			}
20063 
20064 			/*
20065 			 * Create the header buffer, Multidata, as well as
20066 			 * any necessary attributes (destination address,
20067 			 * SAP and hardware checksum offload) that should
20068 			 * be associated with the Multidata message.
20069 			 */
20070 			ASSERT(cur_hdr_off == 0);
20071 			if ((md_hbuf = allocb(md_hbuflen, BPRI_HI)) == NULL ||
20072 			    ((md_hbuf->b_wptr += md_hbuflen),
20073 			    (mmd = mmd_alloc(md_hbuf, &md_mp,
20074 			    KM_NOSLEEP)) == NULL) || (tcp_mdt_add_attrs(mmd,
20075 			    /* fastpath mblk */
20076 			    ire->ire_nce->nce_res_mp,
20077 			    /* hardware checksum enabled */
20078 			    (hwcksum_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)),
20079 			    /* hardware checksum offsets */
20080 			    start, stuff, 0,
20081 			    /* hardware checksum flag */
20082 			    hwcksum_flags, tcps) != 0)) {
20083 legacy_send:
20084 				if (md_mp != NULL) {
20085 					/* Unlink message from the chain */
20086 					if (md_mp_head != NULL) {
20087 						err = (intptr_t)rmvb(md_mp_head,
20088 						    md_mp);
20089 						/*
20090 						 * We can't assert that rmvb
20091 						 * did not return -1, since we
20092 						 * may get here before linkb
20093 						 * happens.  We do, however,
20094 						 * check if we just removed the
20095 						 * only element in the list.
20096 						 */
20097 						if (err == 0)
20098 							md_mp_head = NULL;
20099 					}
20100 					/* md_hbuf gets freed automatically */
20101 					TCP_STAT(tcps, tcp_mdt_discarded);
20102 					freeb(md_mp);
20103 				} else {
20104 					/* Either allocb or mmd_alloc failed */
20105 					TCP_STAT(tcps, tcp_mdt_allocfail);
20106 					if (md_hbuf != NULL)
20107 						freeb(md_hbuf);
20108 				}
20109 
20110 				/* send down what we've got so far */
20111 				if (md_mp_head != NULL) {
20112 					tcp_multisend_data(tcp, ire, ill,
20113 					    md_mp_head, obsegs, obbytes,
20114 					    &rconfirm);
20115 				}
20116 legacy_send_no_md:
20117 				if (ire != NULL)
20118 					IRE_REFRELE(ire);
20119 				/*
20120 				 * Too bad; let the legacy path handle this.
20121 				 * We specify INT_MAX for the threshold, since
20122 				 * we gave up with the Multidata processings
20123 				 * and let the old path have it all.
20124 				 */
20125 				TCP_STAT(tcps, tcp_mdt_legacy_all);
20126 				return (tcp_send(q, tcp, mss, tcp_hdr_len,
20127 				    tcp_tcp_hdr_len, num_sack_blk, usable,
20128 				    snxt, tail_unsent, xmit_tail, local_time,
20129 				    INT_MAX));
20130 			}
20131 
20132 			/* link to any existing ones, if applicable */
20133 			TCP_STAT(tcps, tcp_mdt_allocd);
20134 			if (md_mp_head == NULL) {
20135 				md_mp_head = md_mp;
20136 			} else if (tcp_mdt_chain) {
20137 				TCP_STAT(tcps, tcp_mdt_linked);
20138 				linkb(md_mp_head, md_mp);
20139 			}
20140 		}
20141 
20142 		ASSERT(md_mp_head != NULL);
20143 		ASSERT(tcp_mdt_chain || md_mp_head->b_cont == NULL);
20144 		ASSERT(md_mp != NULL && mmd != NULL);
20145 		ASSERT(md_hbuf != NULL);
20146 
20147 		/*
20148 		 * Packetize the transmittable portion of the data block;
20149 		 * each data block is essentially added to the Multidata
20150 		 * as a payload buffer.  We also deal with adding more
20151 		 * than one payload buffers, which happens when the remaining
20152 		 * packetized portion of the current payload buffer is less
20153 		 * than MSS, while the next data block in transmit queue
20154 		 * has enough data to make up for one.  This "spillover"
20155 		 * case essentially creates a split-packet, where portions
20156 		 * of the packet's payload fragments may span across two
20157 		 * virtually discontiguous address blocks.
20158 		 */
20159 		seg_len = mss;
20160 		do {
20161 			len = seg_len;
20162 
20163 			ASSERT(len > 0);
20164 			ASSERT(max_pld >= 0);
20165 			ASSERT(!add_buffer || cur_pld_off == 0);
20166 
20167 			/*
20168 			 * First time around for this payload buffer; note
20169 			 * in the case of a spillover, the following has
20170 			 * been done prior to adding the split-packet
20171 			 * descriptor to Multidata, and we don't want to
20172 			 * repeat the process.
20173 			 */
20174 			if (add_buffer) {
20175 				ASSERT(mmd != NULL);
20176 				ASSERT(md_pbuf == NULL);
20177 				ASSERT(md_pbuf_nxt == NULL);
20178 				ASSERT(pbuf_idx == -1 && pbuf_idx_nxt == -1);
20179 
20180 				/*
20181 				 * Have we reached the limit?  We'd get to
20182 				 * this case when we're not chaining the
20183 				 * Multidata messages together, and since
20184 				 * we're done, terminate this loop.
20185 				 */
20186 				if (max_pld == 0)
20187 					break; /* done */
20188 
20189 				if ((md_pbuf = dupb(*xmit_tail)) == NULL) {
20190 					TCP_STAT(tcps, tcp_mdt_allocfail);
20191 					goto legacy_send; /* out_of_mem */
20192 				}
20193 
20194 				if (IS_VMLOANED_MBLK(md_pbuf) && !zcopy &&
20195 				    zc_cap != NULL) {
20196 					if (!ip_md_zcopy_attr(mmd, NULL,
20197 					    zc_cap->ill_zerocopy_flags)) {
20198 						freeb(md_pbuf);
20199 						TCP_STAT(tcps,
20200 						    tcp_mdt_allocfail);
20201 						/* out_of_mem */
20202 						goto legacy_send;
20203 					}
20204 					zcopy = B_TRUE;
20205 				}
20206 
20207 				md_pbuf->b_rptr += base_pld_off;
20208 
20209 				/*
20210 				 * Add a payload buffer to the Multidata; this
20211 				 * operation must not fail, or otherwise our
20212 				 * logic in this routine is broken.  There
20213 				 * is no memory allocation done by the
20214 				 * routine, so any returned failure simply
20215 				 * tells us that we've done something wrong.
20216 				 *
20217 				 * A failure tells us that either we're adding
20218 				 * the same payload buffer more than once, or
20219 				 * we're trying to add more buffers than
20220 				 * allowed (max_pld calculation is wrong).
20221 				 * None of the above cases should happen, and
20222 				 * we panic because either there's horrible
20223 				 * heap corruption, and/or programming mistake.
20224 				 */
20225 				pbuf_idx = mmd_addpldbuf(mmd, md_pbuf);
20226 				if (pbuf_idx < 0) {
20227 					cmn_err(CE_PANIC, "tcp_multisend: "
20228 					    "payload buffer logic error "
20229 					    "detected for tcp %p mmd %p "
20230 					    "pbuf %p (%d)\n",
20231 					    (void *)tcp, (void *)mmd,
20232 					    (void *)md_pbuf, pbuf_idx);
20233 				}
20234 
20235 				ASSERT(max_pld > 0);
20236 				--max_pld;
20237 				add_buffer = B_FALSE;
20238 			}
20239 
20240 			ASSERT(md_mp_head != NULL);
20241 			ASSERT(md_pbuf != NULL);
20242 			ASSERT(md_pbuf_nxt == NULL);
20243 			ASSERT(pbuf_idx != -1);
20244 			ASSERT(pbuf_idx_nxt == -1);
20245 			ASSERT(*usable > 0);
20246 
20247 			/*
20248 			 * We spillover to the next payload buffer only
20249 			 * if all of the following is true:
20250 			 *
20251 			 *   1. There is not enough data on the current
20252 			 *	payload buffer to make up `len',
20253 			 *   2. We are allowed to send `len',
20254 			 *   3. The next payload buffer length is large
20255 			 *	enough to accomodate `spill'.
20256 			 */
20257 			if ((spill = len - *tail_unsent) > 0 &&
20258 			    *usable >= len &&
20259 			    MBLKL((*xmit_tail)->b_cont) >= spill &&
20260 			    max_pld > 0) {
20261 				md_pbuf_nxt = dupb((*xmit_tail)->b_cont);
20262 				if (md_pbuf_nxt == NULL) {
20263 					TCP_STAT(tcps, tcp_mdt_allocfail);
20264 					goto legacy_send; /* out_of_mem */
20265 				}
20266 
20267 				if (IS_VMLOANED_MBLK(md_pbuf_nxt) && !zcopy &&
20268 				    zc_cap != NULL) {
20269 					if (!ip_md_zcopy_attr(mmd, NULL,
20270 					    zc_cap->ill_zerocopy_flags)) {
20271 						freeb(md_pbuf_nxt);
20272 						TCP_STAT(tcps,
20273 						    tcp_mdt_allocfail);
20274 						/* out_of_mem */
20275 						goto legacy_send;
20276 					}
20277 					zcopy = B_TRUE;
20278 				}
20279 
20280 				/*
20281 				 * See comments above on the first call to
20282 				 * mmd_addpldbuf for explanation on the panic.
20283 				 */
20284 				pbuf_idx_nxt = mmd_addpldbuf(mmd, md_pbuf_nxt);
20285 				if (pbuf_idx_nxt < 0) {
20286 					panic("tcp_multisend: "
20287 					    "next payload buffer logic error "
20288 					    "detected for tcp %p mmd %p "
20289 					    "pbuf %p (%d)\n",
20290 					    (void *)tcp, (void *)mmd,
20291 					    (void *)md_pbuf_nxt, pbuf_idx_nxt);
20292 				}
20293 
20294 				ASSERT(max_pld > 0);
20295 				--max_pld;
20296 			} else if (spill > 0) {
20297 				/*
20298 				 * If there's a spillover, but the following
20299 				 * xmit_tail couldn't give us enough octets
20300 				 * to reach "len", then stop the current
20301 				 * Multidata creation and let the legacy
20302 				 * tcp_send() path take over.  We don't want
20303 				 * to send the tiny segment as part of this
20304 				 * Multidata for performance reasons; instead,
20305 				 * we let the legacy path deal with grouping
20306 				 * it with the subsequent small mblks.
20307 				 */
20308 				if (*usable >= len &&
20309 				    MBLKL((*xmit_tail)->b_cont) < spill) {
20310 					max_pld = 0;
20311 					break;	/* done */
20312 				}
20313 
20314 				/*
20315 				 * We can't spillover, and we are near
20316 				 * the end of the current payload buffer,
20317 				 * so send what's left.
20318 				 */
20319 				ASSERT(*tail_unsent > 0);
20320 				len = *tail_unsent;
20321 			}
20322 
20323 			/* tail_unsent is negated if there is a spillover */
20324 			*tail_unsent -= len;
20325 			*usable -= len;
20326 			ASSERT(*usable >= 0);
20327 
20328 			if (*usable < mss)
20329 				seg_len = *usable;
20330 			/*
20331 			 * Sender SWS avoidance; see comments in tcp_send();
20332 			 * everything else is the same, except that we only
20333 			 * do this here if there is no more data to be sent
20334 			 * following the current xmit_tail.  We don't check
20335 			 * for 1-byte urgent data because we shouldn't get
20336 			 * here if TCP_URG_VALID is set.
20337 			 */
20338 			if (*usable > 0 && *usable < mss &&
20339 			    ((md_pbuf_nxt == NULL &&
20340 			    (*xmit_tail)->b_cont == NULL) ||
20341 			    (md_pbuf_nxt != NULL &&
20342 			    (*xmit_tail)->b_cont->b_cont == NULL)) &&
20343 			    seg_len < (tcp->tcp_max_swnd >> 1) &&
20344 			    (tcp->tcp_unsent -
20345 			    ((*snxt + len) - tcp->tcp_snxt)) > seg_len &&
20346 			    !tcp->tcp_zero_win_probe) {
20347 				if ((*snxt + len) == tcp->tcp_snxt &&
20348 				    (*snxt + len) == tcp->tcp_suna) {
20349 					TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
20350 				}
20351 				done = B_TRUE;
20352 			}
20353 
20354 			/*
20355 			 * Prime pump for IP's checksumming on our behalf;
20356 			 * include the adjustment for a source route if any.
20357 			 * Do this only for software/partial hardware checksum
20358 			 * offload, as this field gets zeroed out later for
20359 			 * the full hardware checksum offload case.
20360 			 */
20361 			if (!(hwcksum_flags & HCK_FULLCKSUM)) {
20362 				cksum = len + tcp_tcp_hdr_len + tcp->tcp_sum;
20363 				cksum = (cksum >> 16) + (cksum & 0xFFFF);
20364 				U16_TO_ABE16(cksum, tcp->tcp_tcph->th_sum);
20365 			}
20366 
20367 			U32_TO_ABE32(*snxt, tcp->tcp_tcph->th_seq);
20368 			*snxt += len;
20369 
20370 			tcp->tcp_tcph->th_flags[0] = TH_ACK;
20371 			/*
20372 			 * We set the PUSH bit only if TCP has no more buffered
20373 			 * data to be transmitted (or if sender SWS avoidance
20374 			 * takes place), as opposed to setting it for every
20375 			 * last packet in the burst.
20376 			 */
20377 			if (done ||
20378 			    (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) == 0)
20379 				tcp->tcp_tcph->th_flags[0] |= TH_PUSH;
20380 
20381 			/*
20382 			 * Set FIN bit if this is our last segment; snxt
20383 			 * already includes its length, and it will not
20384 			 * be adjusted after this point.
20385 			 */
20386 			if (tcp->tcp_valid_bits == TCP_FSS_VALID &&
20387 			    *snxt == tcp->tcp_fss) {
20388 				if (!tcp->tcp_fin_acked) {
20389 					tcp->tcp_tcph->th_flags[0] |= TH_FIN;
20390 					BUMP_MIB(&tcps->tcps_mib,
20391 					    tcpOutControl);
20392 				}
20393 				if (!tcp->tcp_fin_sent) {
20394 					tcp->tcp_fin_sent = B_TRUE;
20395 					/*
20396 					 * tcp state must be ESTABLISHED
20397 					 * in order for us to get here in
20398 					 * the first place.
20399 					 */
20400 					tcp->tcp_state = TCPS_FIN_WAIT_1;
20401 
20402 					/*
20403 					 * Upon returning from this routine,
20404 					 * tcp_wput_data() will set tcp_snxt
20405 					 * to be equal to snxt + tcp_fin_sent.
20406 					 * This is essentially the same as
20407 					 * setting it to tcp_fss + 1.
20408 					 */
20409 				}
20410 			}
20411 
20412 			tcp->tcp_last_sent_len = (ushort_t)len;
20413 
20414 			len += tcp_hdr_len;
20415 			if (tcp->tcp_ipversion == IPV4_VERSION)
20416 				tcp->tcp_ipha->ipha_length = htons(len);
20417 			else
20418 				tcp->tcp_ip6h->ip6_plen = htons(len -
20419 				    ((char *)&tcp->tcp_ip6h[1] -
20420 				    tcp->tcp_iphc));
20421 
20422 			pkt_info->flags = (PDESC_HBUF_REF | PDESC_PBUF_REF);
20423 
20424 			/* setup header fragment */
20425 			PDESC_HDR_ADD(pkt_info,
20426 			    md_hbuf->b_rptr + cur_hdr_off,	/* base */
20427 			    tcp->tcp_mdt_hdr_head,		/* head room */
20428 			    tcp_hdr_len,			/* len */
20429 			    tcp->tcp_mdt_hdr_tail);		/* tail room */
20430 
20431 			ASSERT(pkt_info->hdr_lim - pkt_info->hdr_base ==
20432 			    hdr_frag_sz);
20433 			ASSERT(MBLKIN(md_hbuf,
20434 			    (pkt_info->hdr_base - md_hbuf->b_rptr),
20435 			    PDESC_HDRSIZE(pkt_info)));
20436 
20437 			/* setup first payload fragment */
20438 			PDESC_PLD_INIT(pkt_info);
20439 			PDESC_PLD_SPAN_ADD(pkt_info,
20440 			    pbuf_idx,				/* index */
20441 			    md_pbuf->b_rptr + cur_pld_off,	/* start */
20442 			    tcp->tcp_last_sent_len);		/* len */
20443 
20444 			/* create a split-packet in case of a spillover */
20445 			if (md_pbuf_nxt != NULL) {
20446 				ASSERT(spill > 0);
20447 				ASSERT(pbuf_idx_nxt > pbuf_idx);
20448 				ASSERT(!add_buffer);
20449 
20450 				md_pbuf = md_pbuf_nxt;
20451 				md_pbuf_nxt = NULL;
20452 				pbuf_idx = pbuf_idx_nxt;
20453 				pbuf_idx_nxt = -1;
20454 				cur_pld_off = spill;
20455 
20456 				/* trim out first payload fragment */
20457 				PDESC_PLD_SPAN_TRIM(pkt_info, 0, spill);
20458 
20459 				/* setup second payload fragment */
20460 				PDESC_PLD_SPAN_ADD(pkt_info,
20461 				    pbuf_idx,			/* index */
20462 				    md_pbuf->b_rptr,		/* start */
20463 				    spill);			/* len */
20464 
20465 				if ((*xmit_tail)->b_next == NULL) {
20466 					/*
20467 					 * Store the lbolt used for RTT
20468 					 * estimation. We can only record one
20469 					 * timestamp per mblk so we do it when
20470 					 * we reach the end of the payload
20471 					 * buffer.  Also we only take a new
20472 					 * timestamp sample when the previous
20473 					 * timed data from the same mblk has
20474 					 * been ack'ed.
20475 					 */
20476 					(*xmit_tail)->b_prev = local_time;
20477 					(*xmit_tail)->b_next =
20478 					    (mblk_t *)(uintptr_t)first_snxt;
20479 				}
20480 
20481 				first_snxt = *snxt - spill;
20482 
20483 				/*
20484 				 * Advance xmit_tail; usable could be 0 by
20485 				 * the time we got here, but we made sure
20486 				 * above that we would only spillover to
20487 				 * the next data block if usable includes
20488 				 * the spilled-over amount prior to the
20489 				 * subtraction.  Therefore, we are sure
20490 				 * that xmit_tail->b_cont can't be NULL.
20491 				 */
20492 				ASSERT((*xmit_tail)->b_cont != NULL);
20493 				*xmit_tail = (*xmit_tail)->b_cont;
20494 				ASSERT((uintptr_t)MBLKL(*xmit_tail) <=
20495 				    (uintptr_t)INT_MAX);
20496 				*tail_unsent = (int)MBLKL(*xmit_tail) - spill;
20497 			} else {
20498 				cur_pld_off += tcp->tcp_last_sent_len;
20499 			}
20500 
20501 			/*
20502 			 * Fill in the header using the template header, and
20503 			 * add options such as time-stamp, ECN and/or SACK,
20504 			 * as needed.
20505 			 */
20506 			tcp_fill_header(tcp, pkt_info->hdr_rptr,
20507 			    (clock_t)local_time, num_sack_blk);
20508 
20509 			/* take care of some IP header businesses */
20510 			if (af == AF_INET) {
20511 				ipha = (ipha_t *)pkt_info->hdr_rptr;
20512 
20513 				ASSERT(OK_32PTR((uchar_t *)ipha));
20514 				ASSERT(PDESC_HDRL(pkt_info) >=
20515 				    IP_SIMPLE_HDR_LENGTH);
20516 				ASSERT(ipha->ipha_version_and_hdr_length ==
20517 				    IP_SIMPLE_HDR_VERSION);
20518 
20519 				/*
20520 				 * Assign ident value for current packet; see
20521 				 * related comments in ip_wput_ire() about the
20522 				 * contract private interface with clustering
20523 				 * group.
20524 				 */
20525 				clusterwide = B_FALSE;
20526 				if (cl_inet_ipident != NULL) {
20527 					ASSERT(cl_inet_isclusterwide != NULL);
20528 					if ((*cl_inet_isclusterwide)(IPPROTO_IP,
20529 					    AF_INET,
20530 					    (uint8_t *)(uintptr_t)src)) {
20531 						ipha->ipha_ident =
20532 						    (*cl_inet_ipident)
20533 						    (IPPROTO_IP, AF_INET,
20534 						    (uint8_t *)(uintptr_t)src,
20535 						    (uint8_t *)(uintptr_t)dst);
20536 						clusterwide = B_TRUE;
20537 					}
20538 				}
20539 
20540 				if (!clusterwide) {
20541 					ipha->ipha_ident = (uint16_t)
20542 					    atomic_add_32_nv(
20543 						&ire->ire_ident, 1);
20544 				}
20545 #ifndef _BIG_ENDIAN
20546 				ipha->ipha_ident = (ipha->ipha_ident << 8) |
20547 				    (ipha->ipha_ident >> 8);
20548 #endif
20549 			} else {
20550 				ip6h = (ip6_t *)pkt_info->hdr_rptr;
20551 
20552 				ASSERT(OK_32PTR((uchar_t *)ip6h));
20553 				ASSERT(IPVER(ip6h) == IPV6_VERSION);
20554 				ASSERT(ip6h->ip6_nxt == IPPROTO_TCP);
20555 				ASSERT(PDESC_HDRL(pkt_info) >=
20556 				    (IPV6_HDR_LEN + TCP_CHECKSUM_OFFSET +
20557 				    TCP_CHECKSUM_SIZE));
20558 				ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
20559 
20560 				if (tcp->tcp_ip_forward_progress) {
20561 					rconfirm = B_TRUE;
20562 					tcp->tcp_ip_forward_progress = B_FALSE;
20563 				}
20564 			}
20565 
20566 			/* at least one payload span, and at most two */
20567 			ASSERT(pkt_info->pld_cnt > 0 && pkt_info->pld_cnt < 3);
20568 
20569 			/* add the packet descriptor to Multidata */
20570 			if ((pkt = mmd_addpdesc(mmd, pkt_info, &err,
20571 			    KM_NOSLEEP)) == NULL) {
20572 				/*
20573 				 * Any failure other than ENOMEM indicates
20574 				 * that we have passed in invalid pkt_info
20575 				 * or parameters to mmd_addpdesc, which must
20576 				 * not happen.
20577 				 *
20578 				 * EINVAL is a result of failure on boundary
20579 				 * checks against the pkt_info contents.  It
20580 				 * should not happen, and we panic because
20581 				 * either there's horrible heap corruption,
20582 				 * and/or programming mistake.
20583 				 */
20584 				if (err != ENOMEM) {
20585 					cmn_err(CE_PANIC, "tcp_multisend: "
20586 					    "pdesc logic error detected for "
20587 					    "tcp %p mmd %p pinfo %p (%d)\n",
20588 					    (void *)tcp, (void *)mmd,
20589 					    (void *)pkt_info, err);
20590 				}
20591 				TCP_STAT(tcps, tcp_mdt_addpdescfail);
20592 				goto legacy_send; /* out_of_mem */
20593 			}
20594 			ASSERT(pkt != NULL);
20595 
20596 			/* calculate IP header and TCP checksums */
20597 			if (af == AF_INET) {
20598 				/* calculate pseudo-header checksum */
20599 				cksum = (dst >> 16) + (dst & 0xFFFF) +
20600 				    (src >> 16) + (src & 0xFFFF);
20601 
20602 				/* offset for TCP header checksum */
20603 				up = IPH_TCPH_CHECKSUMP(ipha,
20604 				    IP_SIMPLE_HDR_LENGTH);
20605 			} else {
20606 				up = (uint16_t *)&ip6h->ip6_src;
20607 
20608 				/* calculate pseudo-header checksum */
20609 				cksum = up[0] + up[1] + up[2] + up[3] +
20610 				    up[4] + up[5] + up[6] + up[7] +
20611 				    up[8] + up[9] + up[10] + up[11] +
20612 				    up[12] + up[13] + up[14] + up[15];
20613 
20614 				/* Fold the initial sum */
20615 				cksum = (cksum & 0xffff) + (cksum >> 16);
20616 
20617 				up = (uint16_t *)(((uchar_t *)ip6h) +
20618 				    IPV6_HDR_LEN + TCP_CHECKSUM_OFFSET);
20619 			}
20620 
20621 			if (hwcksum_flags & HCK_FULLCKSUM) {
20622 				/* clear checksum field for hardware */
20623 				*up = 0;
20624 			} else if (hwcksum_flags & HCK_PARTIALCKSUM) {
20625 				uint32_t sum;
20626 
20627 				/* pseudo-header checksumming */
20628 				sum = *up + cksum + IP_TCP_CSUM_COMP;
20629 				sum = (sum & 0xFFFF) + (sum >> 16);
20630 				*up = (sum & 0xFFFF) + (sum >> 16);
20631 			} else {
20632 				/* software checksumming */
20633 				TCP_STAT(tcps, tcp_out_sw_cksum);
20634 				TCP_STAT_UPDATE(tcps, tcp_out_sw_cksum_bytes,
20635 				    tcp->tcp_hdr_len + tcp->tcp_last_sent_len);
20636 				*up = IP_MD_CSUM(pkt, tcp->tcp_ip_hdr_len,
20637 				    cksum + IP_TCP_CSUM_COMP);
20638 				if (*up == 0)
20639 					*up = 0xFFFF;
20640 			}
20641 
20642 			/* IPv4 header checksum */
20643 			if (af == AF_INET) {
20644 				ipha->ipha_fragment_offset_and_flags |=
20645 				    (uint32_t)htons(ire->ire_frag_flag);
20646 
20647 				if (hwcksum_flags & HCK_IPV4_HDRCKSUM) {
20648 					ipha->ipha_hdr_checksum = 0;
20649 				} else {
20650 					IP_HDR_CKSUM(ipha, cksum,
20651 					    ((uint32_t *)ipha)[0],
20652 					    ((uint16_t *)ipha)[4]);
20653 				}
20654 			}
20655 
20656 			if (af == AF_INET &&
20657 			    HOOKS4_INTERESTED_PHYSICAL_OUT(ipst) ||
20658 			    af == AF_INET6 &&
20659 			    HOOKS6_INTERESTED_PHYSICAL_OUT(ipst)) {
20660 				/* build header(IP/TCP) mblk for this segment */
20661 				if ((mp = dupb(md_hbuf)) == NULL)
20662 					goto legacy_send;
20663 
20664 				mp->b_rptr = pkt_info->hdr_rptr;
20665 				mp->b_wptr = pkt_info->hdr_wptr;
20666 
20667 				/* build payload mblk for this segment */
20668 				if ((mp1 = dupb(*xmit_tail)) == NULL) {
20669 					freemsg(mp);
20670 					goto legacy_send;
20671 				}
20672 				mp1->b_wptr = md_pbuf->b_rptr + cur_pld_off;
20673 				mp1->b_rptr = mp1->b_wptr -
20674 				    tcp->tcp_last_sent_len;
20675 				linkb(mp, mp1);
20676 
20677 				pld_start = mp1->b_rptr;
20678 
20679 				if (af == AF_INET) {
20680 					DTRACE_PROBE4(
20681 					    ip4__physical__out__start,
20682 					    ill_t *, NULL,
20683 					    ill_t *, ill,
20684 					    ipha_t *, ipha,
20685 					    mblk_t *, mp);
20686 					FW_HOOKS(
20687 					    ipst->ips_ip4_physical_out_event,
20688 					    ipst->ips_ipv4firewall_physical_out,
20689 					    NULL, ill, ipha, mp, mp, 0, ipst);
20690 					DTRACE_PROBE1(
20691 					    ip4__physical__out__end,
20692 					    mblk_t *, mp);
20693 				} else {
20694 					DTRACE_PROBE4(
20695 					    ip6__physical__out_start,
20696 					    ill_t *, NULL,
20697 					    ill_t *, ill,
20698 					    ip6_t *, ip6h,
20699 					    mblk_t *, mp);
20700 					FW_HOOKS6(
20701 					    ipst->ips_ip6_physical_out_event,
20702 					    ipst->ips_ipv6firewall_physical_out,
20703 					    NULL, ill, ip6h, mp, mp, 0, ipst);
20704 					DTRACE_PROBE1(
20705 					    ip6__physical__out__end,
20706 					    mblk_t *, mp);
20707 				}
20708 
20709 				if (buf_trunked && mp != NULL) {
20710 					/*
20711 					 * Need to pass it to normal path.
20712 					 */
20713 					CALL_IP_WPUT(tcp->tcp_connp, q, mp);
20714 				} else if (mp == NULL ||
20715 				    mp->b_rptr != pkt_info->hdr_rptr ||
20716 				    mp->b_wptr != pkt_info->hdr_wptr ||
20717 				    (mp1 = mp->b_cont) == NULL ||
20718 				    mp1->b_rptr != pld_start ||
20719 				    mp1->b_wptr != pld_start +
20720 				    tcp->tcp_last_sent_len ||
20721 				    mp1->b_cont != NULL) {
20722 					/*
20723 					 * Need to pass all packets of this
20724 					 * buffer to normal path, either when
20725 					 * packet is blocked, or when boundary
20726 					 * of header buffer or payload buffer
20727 					 * has been changed by FW_HOOKS[6].
20728 					 */
20729 					buf_trunked = B_TRUE;
20730 					if (md_mp_head != NULL) {
20731 						err = (intptr_t)rmvb(md_mp_head,
20732 						    md_mp);
20733 						if (err == 0)
20734 							md_mp_head = NULL;
20735 					}
20736 
20737 					/* send down what we've got so far */
20738 					if (md_mp_head != NULL) {
20739 						tcp_multisend_data(tcp, ire,
20740 						    ill, md_mp_head, obsegs,
20741 						    obbytes, &rconfirm);
20742 					}
20743 					md_mp_head = NULL;
20744 
20745 					if (mp != NULL)
20746 						CALL_IP_WPUT(tcp->tcp_connp,
20747 						    q, mp);
20748 
20749 					mp1 = fw_mp_head;
20750 					do {
20751 						mp = mp1;
20752 						mp1 = mp1->b_next;
20753 						mp->b_next = NULL;
20754 						mp->b_prev = NULL;
20755 						CALL_IP_WPUT(tcp->tcp_connp,
20756 						    q, mp);
20757 					} while (mp1 != NULL);
20758 
20759 					fw_mp_head = NULL;
20760 				} else {
20761 					if (fw_mp_head == NULL)
20762 						fw_mp_head = mp;
20763 					else
20764 						fw_mp_head->b_prev->b_next = mp;
20765 					fw_mp_head->b_prev = mp;
20766 				}
20767 			}
20768 
20769 			/* advance header offset */
20770 			cur_hdr_off += hdr_frag_sz;
20771 
20772 			obbytes += tcp->tcp_last_sent_len;
20773 			++obsegs;
20774 		} while (!done && *usable > 0 && --num_burst_seg > 0 &&
20775 		    *tail_unsent > 0);
20776 
20777 		if ((*xmit_tail)->b_next == NULL) {
20778 			/*
20779 			 * Store the lbolt used for RTT estimation. We can only
20780 			 * record one timestamp per mblk so we do it when we
20781 			 * reach the end of the payload buffer. Also we only
20782 			 * take a new timestamp sample when the previous timed
20783 			 * data from the same mblk has been ack'ed.
20784 			 */
20785 			(*xmit_tail)->b_prev = local_time;
20786 			(*xmit_tail)->b_next = (mblk_t *)(uintptr_t)first_snxt;
20787 		}
20788 
20789 		ASSERT(*tail_unsent >= 0);
20790 		if (*tail_unsent > 0) {
20791 			/*
20792 			 * We got here because we broke out of the above
20793 			 * loop due to of one of the following cases:
20794 			 *
20795 			 *   1. len < adjusted MSS (i.e. small),
20796 			 *   2. Sender SWS avoidance,
20797 			 *   3. max_pld is zero.
20798 			 *
20799 			 * We are done for this Multidata, so trim our
20800 			 * last payload buffer (if any) accordingly.
20801 			 */
20802 			if (md_pbuf != NULL)
20803 				md_pbuf->b_wptr -= *tail_unsent;
20804 		} else if (*usable > 0) {
20805 			*xmit_tail = (*xmit_tail)->b_cont;
20806 			ASSERT((uintptr_t)MBLKL(*xmit_tail) <=
20807 			    (uintptr_t)INT_MAX);
20808 			*tail_unsent = (int)MBLKL(*xmit_tail);
20809 			add_buffer = B_TRUE;
20810 		}
20811 
20812 		while (fw_mp_head) {
20813 			mp = fw_mp_head;
20814 			fw_mp_head = fw_mp_head->b_next;
20815 			mp->b_prev = mp->b_next = NULL;
20816 			freemsg(mp);
20817 		}
20818 		if (buf_trunked) {
20819 			TCP_STAT(tcps, tcp_mdt_discarded);
20820 			freeb(md_mp);
20821 			buf_trunked = B_FALSE;
20822 		}
20823 	} while (!done && *usable > 0 && num_burst_seg > 0 &&
20824 	    (tcp_mdt_chain || max_pld > 0));
20825 
20826 	if (md_mp_head != NULL) {
20827 		/* send everything down */
20828 		tcp_multisend_data(tcp, ire, ill, md_mp_head, obsegs, obbytes,
20829 		    &rconfirm);
20830 	}
20831 
20832 #undef PREP_NEW_MULTIDATA
20833 #undef PREP_NEW_PBUF
20834 #undef IPVER
20835 
20836 	IRE_REFRELE(ire);
20837 	return (0);
20838 }
20839 
20840 /*
20841  * A wrapper function for sending one or more Multidata messages down to
20842  * the module below ip; this routine does not release the reference of the
20843  * IRE (caller does that).  This routine is analogous to tcp_send_data().
20844  */
20845 static void
20846 tcp_multisend_data(tcp_t *tcp, ire_t *ire, const ill_t *ill, mblk_t *md_mp_head,
20847     const uint_t obsegs, const uint_t obbytes, boolean_t *rconfirm)
20848 {
20849 	uint64_t delta;
20850 	nce_t *nce;
20851 	tcp_stack_t	*tcps = tcp->tcp_tcps;
20852 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
20853 
20854 	ASSERT(ire != NULL && ill != NULL);
20855 	ASSERT(ire->ire_stq != NULL);
20856 	ASSERT(md_mp_head != NULL);
20857 	ASSERT(rconfirm != NULL);
20858 
20859 	/* adjust MIBs and IRE timestamp */
20860 	TCP_RECORD_TRACE(tcp, md_mp_head, TCP_TRACE_SEND_PKT);
20861 	tcp->tcp_obsegs += obsegs;
20862 	UPDATE_MIB(&tcps->tcps_mib, tcpOutDataSegs, obsegs);
20863 	UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, obbytes);
20864 	TCP_STAT_UPDATE(tcps, tcp_mdt_pkt_out, obsegs);
20865 
20866 	if (tcp->tcp_ipversion == IPV4_VERSION) {
20867 		TCP_STAT_UPDATE(tcps, tcp_mdt_pkt_out_v4, obsegs);
20868 	} else {
20869 		TCP_STAT_UPDATE(tcps, tcp_mdt_pkt_out_v6, obsegs);
20870 	}
20871 	UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests, obsegs);
20872 	UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits, obsegs);
20873 	UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, obbytes);
20874 
20875 	ire->ire_ob_pkt_count += obsegs;
20876 	if (ire->ire_ipif != NULL)
20877 		atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, obsegs);
20878 	ire->ire_last_used_time = lbolt;
20879 
20880 	/* send it down */
20881 	if (ILL_DLS_CAPABLE(ill)) {
20882 		ill_dls_capab_t *ill_dls = ill->ill_dls_capab;
20883 		ill_dls->ill_tx(ill_dls->ill_tx_handle, md_mp_head);
20884 	} else {
20885 		putnext(ire->ire_stq, md_mp_head);
20886 	}
20887 
20888 	/* we're done for TCP/IPv4 */
20889 	if (tcp->tcp_ipversion == IPV4_VERSION)
20890 		return;
20891 
20892 	nce = ire->ire_nce;
20893 
20894 	ASSERT(nce != NULL);
20895 	ASSERT(!(nce->nce_flags & (NCE_F_NONUD|NCE_F_PERMANENT)));
20896 	ASSERT(nce->nce_state != ND_INCOMPLETE);
20897 
20898 	/* reachability confirmation? */
20899 	if (*rconfirm) {
20900 		nce->nce_last = TICK_TO_MSEC(lbolt64);
20901 		if (nce->nce_state != ND_REACHABLE) {
20902 			mutex_enter(&nce->nce_lock);
20903 			nce->nce_state = ND_REACHABLE;
20904 			nce->nce_pcnt = ND_MAX_UNICAST_SOLICIT;
20905 			mutex_exit(&nce->nce_lock);
20906 			(void) untimeout(nce->nce_timeout_id);
20907 			if (ip_debug > 2) {
20908 				/* ip1dbg */
20909 				pr_addr_dbg("tcp_multisend_data: state "
20910 				    "for %s changed to REACHABLE\n",
20911 				    AF_INET6, &ire->ire_addr_v6);
20912 			}
20913 		}
20914 		/* reset transport reachability confirmation */
20915 		*rconfirm = B_FALSE;
20916 	}
20917 
20918 	delta =  TICK_TO_MSEC(lbolt64) - nce->nce_last;
20919 	ip1dbg(("tcp_multisend_data: delta = %" PRId64
20920 	    " ill_reachable_time = %d \n", delta, ill->ill_reachable_time));
20921 
20922 	if (delta > (uint64_t)ill->ill_reachable_time) {
20923 		mutex_enter(&nce->nce_lock);
20924 		switch (nce->nce_state) {
20925 		case ND_REACHABLE:
20926 		case ND_STALE:
20927 			/*
20928 			 * ND_REACHABLE is identical to ND_STALE in this
20929 			 * specific case. If reachable time has expired for
20930 			 * this neighbor (delta is greater than reachable
20931 			 * time), conceptually, the neighbor cache is no
20932 			 * longer in REACHABLE state, but already in STALE
20933 			 * state.  So the correct transition here is to
20934 			 * ND_DELAY.
20935 			 */
20936 			nce->nce_state = ND_DELAY;
20937 			mutex_exit(&nce->nce_lock);
20938 			NDP_RESTART_TIMER(nce,
20939 			    ipst->ips_delay_first_probe_time);
20940 			if (ip_debug > 3) {
20941 				/* ip2dbg */
20942 				pr_addr_dbg("tcp_multisend_data: state "
20943 				    "for %s changed to DELAY\n",
20944 				    AF_INET6, &ire->ire_addr_v6);
20945 			}
20946 			break;
20947 		case ND_DELAY:
20948 		case ND_PROBE:
20949 			mutex_exit(&nce->nce_lock);
20950 			/* Timers have already started */
20951 			break;
20952 		case ND_UNREACHABLE:
20953 			/*
20954 			 * ndp timer has detected that this nce is
20955 			 * unreachable and initiated deleting this nce
20956 			 * and all its associated IREs. This is a race
20957 			 * where we found the ire before it was deleted
20958 			 * and have just sent out a packet using this
20959 			 * unreachable nce.
20960 			 */
20961 			mutex_exit(&nce->nce_lock);
20962 			break;
20963 		default:
20964 			ASSERT(0);
20965 		}
20966 	}
20967 }
20968 
20969 /*
20970  * Derived from tcp_send_data().
20971  */
20972 static void
20973 tcp_lsosend_data(tcp_t *tcp, mblk_t *mp, ire_t *ire, ill_t *ill, const int mss,
20974     int num_lso_seg)
20975 {
20976 	ipha_t		*ipha;
20977 	mblk_t		*ire_fp_mp;
20978 	uint_t		ire_fp_mp_len;
20979 	uint32_t	hcksum_txflags = 0;
20980 	ipaddr_t	src;
20981 	ipaddr_t	dst;
20982 	uint32_t	cksum;
20983 	uint16_t	*up;
20984 	tcp_stack_t	*tcps = tcp->tcp_tcps;
20985 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
20986 
20987 	ASSERT(DB_TYPE(mp) == M_DATA);
20988 	ASSERT(tcp->tcp_state == TCPS_ESTABLISHED);
20989 	ASSERT(tcp->tcp_ipversion == IPV4_VERSION);
20990 	ASSERT(tcp->tcp_connp != NULL);
20991 	ASSERT(CONN_IS_LSO_MD_FASTPATH(tcp->tcp_connp));
20992 
20993 	ipha = (ipha_t *)mp->b_rptr;
20994 	src = ipha->ipha_src;
20995 	dst = ipha->ipha_dst;
20996 
20997 	ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED);
20998 	ipha->ipha_ident = (uint16_t)atomic_add_32_nv(&ire->ire_ident,
20999 	    num_lso_seg);
21000 #ifndef _BIG_ENDIAN
21001 	ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8);
21002 #endif
21003 	if (tcp->tcp_snd_zcopy_aware) {
21004 		if ((ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) == 0 ||
21005 		    (ill->ill_zerocopy_capab->ill_zerocopy_flags == 0))
21006 			mp = tcp_zcopy_disable(tcp, mp);
21007 	}
21008 
21009 	if (ILL_HCKSUM_CAPABLE(ill) && dohwcksum) {
21010 		ASSERT(ill->ill_hcksum_capab != NULL);
21011 		hcksum_txflags = ill->ill_hcksum_capab->ill_hcksum_txflags;
21012 	}
21013 
21014 	/*
21015 	 * Since the TCP checksum should be recalculated by h/w, we can just
21016 	 * zero the checksum field for HCK_FULLCKSUM, or calculate partial
21017 	 * pseudo-header checksum for HCK_PARTIALCKSUM.
21018 	 * The partial pseudo-header excludes TCP length, that was calculated
21019 	 * in tcp_send(), so to zero *up before further processing.
21020 	 */
21021 	cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF);
21022 
21023 	up = IPH_TCPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH);
21024 	*up = 0;
21025 
21026 	IP_CKSUM_XMIT_FAST(ire->ire_ipversion, hcksum_txflags, mp, ipha, up,
21027 	    IPPROTO_TCP, IP_SIMPLE_HDR_LENGTH, ntohs(ipha->ipha_length), cksum);
21028 
21029 	/*
21030 	 * Append LSO flag to DB_LSOFLAGS(mp) and set the mss to DB_LSOMSS(mp).
21031 	 */
21032 	DB_LSOFLAGS(mp) |= HW_LSO;
21033 	DB_LSOMSS(mp) = mss;
21034 
21035 	ipha->ipha_fragment_offset_and_flags |=
21036 	    (uint32_t)htons(ire->ire_frag_flag);
21037 
21038 	ire_fp_mp = ire->ire_nce->nce_fp_mp;
21039 	ire_fp_mp_len = MBLKL(ire_fp_mp);
21040 	ASSERT(DB_TYPE(ire_fp_mp) == M_DATA);
21041 	mp->b_rptr = (uchar_t *)ipha - ire_fp_mp_len;
21042 	bcopy(ire_fp_mp->b_rptr, mp->b_rptr, ire_fp_mp_len);
21043 
21044 	UPDATE_OB_PKT_COUNT(ire);
21045 	ire->ire_last_used_time = lbolt;
21046 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests);
21047 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits);
21048 	UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets,
21049 	    ntohs(ipha->ipha_length));
21050 
21051 	if (ILL_DLS_CAPABLE(ill)) {
21052 		/*
21053 		 * Send the packet directly to DLD, where it may be queued
21054 		 * depending on the availability of transmit resources at
21055 		 * the media layer.
21056 		 */
21057 		IP_DLS_ILL_TX(ill, ipha, mp, ipst);
21058 	} else {
21059 		ill_t *out_ill = (ill_t *)ire->ire_stq->q_ptr;
21060 		DTRACE_PROBE4(ip4__physical__out__start,
21061 		    ill_t *, NULL, ill_t *, out_ill,
21062 		    ipha_t *, ipha, mblk_t *, mp);
21063 		FW_HOOKS(ipst->ips_ip4_physical_out_event,
21064 		    ipst->ips_ipv4firewall_physical_out,
21065 		    NULL, out_ill, ipha, mp, mp, 0, ipst);
21066 		DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp);
21067 		if (mp != NULL)
21068 			putnext(ire->ire_stq, mp);
21069 	}
21070 }
21071 
21072 /*
21073  * tcp_send() is called by tcp_wput_data() for non-Multidata transmission
21074  * scheme, and returns one of the following:
21075  *
21076  * -1 = failed allocation.
21077  *  0 = success; burst count reached, or usable send window is too small,
21078  *      and that we'd rather wait until later before sending again.
21079  *  1 = success; we are called from tcp_multisend(), and both usable send
21080  *      window and tail_unsent are greater than the MDT threshold, and thus
21081  *      Multidata Transmit should be used instead.
21082  */
21083 static int
21084 tcp_send(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len,
21085     const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable,
21086     uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time,
21087     const int mdt_thres)
21088 {
21089 	int num_burst_seg = tcp->tcp_snd_burst;
21090 	ire_t		*ire = NULL;
21091 	ill_t		*ill = NULL;
21092 	mblk_t		*ire_fp_mp = NULL;
21093 	uint_t		ire_fp_mp_len = 0;
21094 	int		num_lso_seg = 1;
21095 	uint_t		lso_usable;
21096 	boolean_t	do_lso_send = B_FALSE;
21097 	tcp_stack_t	*tcps = tcp->tcp_tcps;
21098 
21099 	/*
21100 	 * Check LSO capability before any further work. And the similar check
21101 	 * need to be done in for(;;) loop.
21102 	 * LSO will be deployed when therer is more than one mss of available
21103 	 * data and a burst transmission is allowed.
21104 	 */
21105 	if (tcp->tcp_lso &&
21106 	    (tcp->tcp_valid_bits == 0 ||
21107 	    tcp->tcp_valid_bits == TCP_FSS_VALID) &&
21108 	    num_burst_seg >= 2 && (*usable - 1) / mss >= 1) {
21109 		/*
21110 		 * Try to find usable IRE/ILL and do basic check to the ILL.
21111 		 */
21112 		if (tcp_send_find_ire_ill(tcp, NULL, &ire, &ill)) {
21113 			/*
21114 			 * Enable LSO with this transmission.
21115 			 * Since IRE has been hold in
21116 			 * tcp_send_find_ire_ill(), IRE_REFRELE(ire)
21117 			 * should be called before return.
21118 			 */
21119 			do_lso_send = B_TRUE;
21120 			ire_fp_mp = ire->ire_nce->nce_fp_mp;
21121 			ire_fp_mp_len = MBLKL(ire_fp_mp);
21122 			/* Round up to multiple of 4 */
21123 			ire_fp_mp_len = ((ire_fp_mp_len + 3) / 4) * 4;
21124 		} else {
21125 			do_lso_send = B_FALSE;
21126 			ill = NULL;
21127 		}
21128 	}
21129 
21130 	for (;;) {
21131 		struct datab	*db;
21132 		tcph_t		*tcph;
21133 		uint32_t	sum;
21134 		mblk_t		*mp, *mp1;
21135 		uchar_t		*rptr;
21136 		int		len;
21137 
21138 		/*
21139 		 * If we're called by tcp_multisend(), and the amount of
21140 		 * sendable data as well as the size of current xmit_tail
21141 		 * is beyond the MDT threshold, return to the caller and
21142 		 * let the large data transmit be done using MDT.
21143 		 */
21144 		if (*usable > 0 && *usable > mdt_thres &&
21145 		    (*tail_unsent > mdt_thres || (*tail_unsent == 0 &&
21146 		    MBLKL((*xmit_tail)->b_cont) > mdt_thres))) {
21147 			ASSERT(tcp->tcp_mdt);
21148 			return (1);	/* success; do large send */
21149 		}
21150 
21151 		if (num_burst_seg == 0)
21152 			break;		/* success; burst count reached */
21153 
21154 		/*
21155 		 * Calculate the maximum payload length we can send in *one*
21156 		 * time.
21157 		 */
21158 		if (do_lso_send) {
21159 			/*
21160 			 * Check whether need to do LSO any more.
21161 			 */
21162 			if (num_burst_seg >= 2 && (*usable - 1) / mss >= 1) {
21163 				lso_usable = MIN(tcp->tcp_lso_max, *usable);
21164 				lso_usable = MIN(lso_usable,
21165 				    num_burst_seg * mss);
21166 
21167 				num_lso_seg = lso_usable / mss;
21168 				if (lso_usable % mss) {
21169 					num_lso_seg++;
21170 					tcp->tcp_last_sent_len = (ushort_t)
21171 					    (lso_usable % mss);
21172 				} else {
21173 					tcp->tcp_last_sent_len = (ushort_t)mss;
21174 				}
21175 			} else {
21176 				do_lso_send = B_FALSE;
21177 				num_lso_seg = 1;
21178 				lso_usable = mss;
21179 			}
21180 		}
21181 
21182 		ASSERT(num_lso_seg <= IP_MAXPACKET / mss + 1);
21183 
21184 		/*
21185 		 * Adjust num_burst_seg here.
21186 		 */
21187 		num_burst_seg -= num_lso_seg;
21188 
21189 		len = mss;
21190 		if (len > *usable) {
21191 			ASSERT(do_lso_send == B_FALSE);
21192 
21193 			len = *usable;
21194 			if (len <= 0) {
21195 				/* Terminate the loop */
21196 				break;	/* success; too small */
21197 			}
21198 			/*
21199 			 * Sender silly-window avoidance.
21200 			 * Ignore this if we are going to send a
21201 			 * zero window probe out.
21202 			 *
21203 			 * TODO: force data into microscopic window?
21204 			 *	==> (!pushed || (unsent > usable))
21205 			 */
21206 			if (len < (tcp->tcp_max_swnd >> 1) &&
21207 			    (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) > len &&
21208 			    !((tcp->tcp_valid_bits & TCP_URG_VALID) &&
21209 			    len == 1) && (! tcp->tcp_zero_win_probe)) {
21210 				/*
21211 				 * If the retransmit timer is not running
21212 				 * we start it so that we will retransmit
21213 				 * in the case when the the receiver has
21214 				 * decremented the window.
21215 				 */
21216 				if (*snxt == tcp->tcp_snxt &&
21217 				    *snxt == tcp->tcp_suna) {
21218 					/*
21219 					 * We are not supposed to send
21220 					 * anything.  So let's wait a little
21221 					 * bit longer before breaking SWS
21222 					 * avoidance.
21223 					 *
21224 					 * What should the value be?
21225 					 * Suggestion: MAX(init rexmit time,
21226 					 * tcp->tcp_rto)
21227 					 */
21228 					TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
21229 				}
21230 				break;	/* success; too small */
21231 			}
21232 		}
21233 
21234 		tcph = tcp->tcp_tcph;
21235 
21236 		/*
21237 		 * The reason to adjust len here is that we need to set flags
21238 		 * and calculate checksum.
21239 		 */
21240 		if (do_lso_send)
21241 			len = lso_usable;
21242 
21243 		*usable -= len; /* Approximate - can be adjusted later */
21244 		if (*usable > 0)
21245 			tcph->th_flags[0] = TH_ACK;
21246 		else
21247 			tcph->th_flags[0] = (TH_ACK | TH_PUSH);
21248 
21249 		/*
21250 		 * Prime pump for IP's checksumming on our behalf
21251 		 * Include the adjustment for a source route if any.
21252 		 */
21253 		sum = len + tcp_tcp_hdr_len + tcp->tcp_sum;
21254 		sum = (sum >> 16) + (sum & 0xFFFF);
21255 		U16_TO_ABE16(sum, tcph->th_sum);
21256 
21257 		U32_TO_ABE32(*snxt, tcph->th_seq);
21258 
21259 		/*
21260 		 * Branch off to tcp_xmit_mp() if any of the VALID bits is
21261 		 * set.  For the case when TCP_FSS_VALID is the only valid
21262 		 * bit (normal active close), branch off only when we think
21263 		 * that the FIN flag needs to be set.  Note for this case,
21264 		 * that (snxt + len) may not reflect the actual seg_len,
21265 		 * as len may be further reduced in tcp_xmit_mp().  If len
21266 		 * gets modified, we will end up here again.
21267 		 */
21268 		if (tcp->tcp_valid_bits != 0 &&
21269 		    (tcp->tcp_valid_bits != TCP_FSS_VALID ||
21270 		    ((*snxt + len) == tcp->tcp_fss))) {
21271 			uchar_t		*prev_rptr;
21272 			uint32_t	prev_snxt = tcp->tcp_snxt;
21273 
21274 			if (*tail_unsent == 0) {
21275 				ASSERT((*xmit_tail)->b_cont != NULL);
21276 				*xmit_tail = (*xmit_tail)->b_cont;
21277 				prev_rptr = (*xmit_tail)->b_rptr;
21278 				*tail_unsent = (int)((*xmit_tail)->b_wptr -
21279 				    (*xmit_tail)->b_rptr);
21280 			} else {
21281 				prev_rptr = (*xmit_tail)->b_rptr;
21282 				(*xmit_tail)->b_rptr = (*xmit_tail)->b_wptr -
21283 				    *tail_unsent;
21284 			}
21285 			mp = tcp_xmit_mp(tcp, *xmit_tail, len, NULL, NULL,
21286 			    *snxt, B_FALSE, (uint32_t *)&len, B_FALSE);
21287 			/* Restore tcp_snxt so we get amount sent right. */
21288 			tcp->tcp_snxt = prev_snxt;
21289 			if (prev_rptr == (*xmit_tail)->b_rptr) {
21290 				/*
21291 				 * If the previous timestamp is still in use,
21292 				 * don't stomp on it.
21293 				 */
21294 				if ((*xmit_tail)->b_next == NULL) {
21295 					(*xmit_tail)->b_prev = local_time;
21296 					(*xmit_tail)->b_next =
21297 					    (mblk_t *)(uintptr_t)(*snxt);
21298 				}
21299 			} else
21300 				(*xmit_tail)->b_rptr = prev_rptr;
21301 
21302 			if (mp == NULL) {
21303 				if (ire != NULL)
21304 					IRE_REFRELE(ire);
21305 				return (-1);
21306 			}
21307 			mp1 = mp->b_cont;
21308 
21309 			if (len <= mss) /* LSO is unusable (!do_lso_send) */
21310 				tcp->tcp_last_sent_len = (ushort_t)len;
21311 			while (mp1->b_cont) {
21312 				*xmit_tail = (*xmit_tail)->b_cont;
21313 				(*xmit_tail)->b_prev = local_time;
21314 				(*xmit_tail)->b_next =
21315 				    (mblk_t *)(uintptr_t)(*snxt);
21316 				mp1 = mp1->b_cont;
21317 			}
21318 			*snxt += len;
21319 			*tail_unsent = (*xmit_tail)->b_wptr - mp1->b_wptr;
21320 			BUMP_LOCAL(tcp->tcp_obsegs);
21321 			BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs);
21322 			UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len);
21323 			TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
21324 			tcp_send_data(tcp, q, mp);
21325 			continue;
21326 		}
21327 
21328 		*snxt += len;	/* Adjust later if we don't send all of len */
21329 		BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs);
21330 		UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len);
21331 
21332 		if (*tail_unsent) {
21333 			/* Are the bytes above us in flight? */
21334 			rptr = (*xmit_tail)->b_wptr - *tail_unsent;
21335 			if (rptr != (*xmit_tail)->b_rptr) {
21336 				*tail_unsent -= len;
21337 				if (len <= mss) /* LSO is unusable */
21338 					tcp->tcp_last_sent_len = (ushort_t)len;
21339 				len += tcp_hdr_len;
21340 				if (tcp->tcp_ipversion == IPV4_VERSION)
21341 					tcp->tcp_ipha->ipha_length = htons(len);
21342 				else
21343 					tcp->tcp_ip6h->ip6_plen =
21344 					    htons(len -
21345 					    ((char *)&tcp->tcp_ip6h[1] -
21346 					    tcp->tcp_iphc));
21347 				mp = dupb(*xmit_tail);
21348 				if (mp == NULL) {
21349 					if (ire != NULL)
21350 						IRE_REFRELE(ire);
21351 					return (-1);	/* out_of_mem */
21352 				}
21353 				mp->b_rptr = rptr;
21354 				/*
21355 				 * If the old timestamp is no longer in use,
21356 				 * sample a new timestamp now.
21357 				 */
21358 				if ((*xmit_tail)->b_next == NULL) {
21359 					(*xmit_tail)->b_prev = local_time;
21360 					(*xmit_tail)->b_next =
21361 					    (mblk_t *)(uintptr_t)(*snxt-len);
21362 				}
21363 				goto must_alloc;
21364 			}
21365 		} else {
21366 			*xmit_tail = (*xmit_tail)->b_cont;
21367 			ASSERT((uintptr_t)((*xmit_tail)->b_wptr -
21368 			    (*xmit_tail)->b_rptr) <= (uintptr_t)INT_MAX);
21369 			*tail_unsent = (int)((*xmit_tail)->b_wptr -
21370 			    (*xmit_tail)->b_rptr);
21371 		}
21372 
21373 		(*xmit_tail)->b_prev = local_time;
21374 		(*xmit_tail)->b_next = (mblk_t *)(uintptr_t)(*snxt - len);
21375 
21376 		*tail_unsent -= len;
21377 		if (len <= mss) /* LSO is unusable (!do_lso_send) */
21378 			tcp->tcp_last_sent_len = (ushort_t)len;
21379 
21380 		len += tcp_hdr_len;
21381 		if (tcp->tcp_ipversion == IPV4_VERSION)
21382 			tcp->tcp_ipha->ipha_length = htons(len);
21383 		else
21384 			tcp->tcp_ip6h->ip6_plen = htons(len -
21385 			    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
21386 
21387 		mp = dupb(*xmit_tail);
21388 		if (mp == NULL) {
21389 			if (ire != NULL)
21390 				IRE_REFRELE(ire);
21391 			return (-1);	/* out_of_mem */
21392 		}
21393 
21394 		len = tcp_hdr_len;
21395 		/*
21396 		 * There are four reasons to allocate a new hdr mblk:
21397 		 *  1) The bytes above us are in use by another packet
21398 		 *  2) We don't have good alignment
21399 		 *  3) The mblk is being shared
21400 		 *  4) We don't have enough room for a header
21401 		 */
21402 		rptr = mp->b_rptr - len;
21403 		if (!OK_32PTR(rptr) ||
21404 		    ((db = mp->b_datap), db->db_ref != 2) ||
21405 		    rptr < db->db_base + ire_fp_mp_len) {
21406 			/* NOTE: we assume allocb returns an OK_32PTR */
21407 
21408 		must_alloc:;
21409 			mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH +
21410 			    tcps->tcps_wroff_xtra + ire_fp_mp_len, BPRI_MED);
21411 			if (mp1 == NULL) {
21412 				freemsg(mp);
21413 				if (ire != NULL)
21414 					IRE_REFRELE(ire);
21415 				return (-1);	/* out_of_mem */
21416 			}
21417 			mp1->b_cont = mp;
21418 			mp = mp1;
21419 			/* Leave room for Link Level header */
21420 			len = tcp_hdr_len;
21421 			rptr =
21422 			    &mp->b_rptr[tcps->tcps_wroff_xtra + ire_fp_mp_len];
21423 			mp->b_wptr = &rptr[len];
21424 		}
21425 
21426 		/*
21427 		 * Fill in the header using the template header, and add
21428 		 * options such as time-stamp, ECN and/or SACK, as needed.
21429 		 */
21430 		tcp_fill_header(tcp, rptr, (clock_t)local_time, num_sack_blk);
21431 
21432 		mp->b_rptr = rptr;
21433 
21434 		if (*tail_unsent) {
21435 			int spill = *tail_unsent;
21436 
21437 			mp1 = mp->b_cont;
21438 			if (mp1 == NULL)
21439 				mp1 = mp;
21440 
21441 			/*
21442 			 * If we're a little short, tack on more mblks until
21443 			 * there is no more spillover.
21444 			 */
21445 			while (spill < 0) {
21446 				mblk_t *nmp;
21447 				int nmpsz;
21448 
21449 				nmp = (*xmit_tail)->b_cont;
21450 				nmpsz = MBLKL(nmp);
21451 
21452 				/*
21453 				 * Excess data in mblk; can we split it?
21454 				 * If MDT is enabled for the connection,
21455 				 * keep on splitting as this is a transient
21456 				 * send path.
21457 				 */
21458 				if (!do_lso_send && !tcp->tcp_mdt &&
21459 				    (spill + nmpsz > 0)) {
21460 					/*
21461 					 * Don't split if stream head was
21462 					 * told to break up larger writes
21463 					 * into smaller ones.
21464 					 */
21465 					if (tcp->tcp_maxpsz > 0)
21466 						break;
21467 
21468 					/*
21469 					 * Next mblk is less than SMSS/2
21470 					 * rounded up to nearest 64-byte;
21471 					 * let it get sent as part of the
21472 					 * next segment.
21473 					 */
21474 					if (tcp->tcp_localnet &&
21475 					    !tcp->tcp_cork &&
21476 					    (nmpsz < roundup((mss >> 1), 64)))
21477 						break;
21478 				}
21479 
21480 				*xmit_tail = nmp;
21481 				ASSERT((uintptr_t)nmpsz <= (uintptr_t)INT_MAX);
21482 				/* Stash for rtt use later */
21483 				(*xmit_tail)->b_prev = local_time;
21484 				(*xmit_tail)->b_next =
21485 				    (mblk_t *)(uintptr_t)(*snxt - len);
21486 				mp1->b_cont = dupb(*xmit_tail);
21487 				mp1 = mp1->b_cont;
21488 
21489 				spill += nmpsz;
21490 				if (mp1 == NULL) {
21491 					*tail_unsent = spill;
21492 					freemsg(mp);
21493 					if (ire != NULL)
21494 						IRE_REFRELE(ire);
21495 					return (-1);	/* out_of_mem */
21496 				}
21497 			}
21498 
21499 			/* Trim back any surplus on the last mblk */
21500 			if (spill >= 0) {
21501 				mp1->b_wptr -= spill;
21502 				*tail_unsent = spill;
21503 			} else {
21504 				/*
21505 				 * We did not send everything we could in
21506 				 * order to remain within the b_cont limit.
21507 				 */
21508 				*usable -= spill;
21509 				*snxt += spill;
21510 				tcp->tcp_last_sent_len += spill;
21511 				UPDATE_MIB(&tcps->tcps_mib,
21512 				    tcpOutDataBytes, spill);
21513 				/*
21514 				 * Adjust the checksum
21515 				 */
21516 				tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len);
21517 				sum += spill;
21518 				sum = (sum >> 16) + (sum & 0xFFFF);
21519 				U16_TO_ABE16(sum, tcph->th_sum);
21520 				if (tcp->tcp_ipversion == IPV4_VERSION) {
21521 					sum = ntohs(
21522 					    ((ipha_t *)rptr)->ipha_length) +
21523 					    spill;
21524 					((ipha_t *)rptr)->ipha_length =
21525 					    htons(sum);
21526 				} else {
21527 					sum = ntohs(
21528 					    ((ip6_t *)rptr)->ip6_plen) +
21529 					    spill;
21530 					((ip6_t *)rptr)->ip6_plen =
21531 					    htons(sum);
21532 				}
21533 				*tail_unsent = 0;
21534 			}
21535 		}
21536 		if (tcp->tcp_ip_forward_progress) {
21537 			ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
21538 			*(uint32_t *)mp->b_rptr  |= IP_FORWARD_PROG;
21539 			tcp->tcp_ip_forward_progress = B_FALSE;
21540 		}
21541 
21542 		TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
21543 		if (do_lso_send) {
21544 			tcp_lsosend_data(tcp, mp, ire, ill, mss,
21545 			    num_lso_seg);
21546 			tcp->tcp_obsegs += num_lso_seg;
21547 
21548 			TCP_STAT(tcps, tcp_lso_times);
21549 			TCP_STAT_UPDATE(tcps, tcp_lso_pkt_out, num_lso_seg);
21550 		} else {
21551 			tcp_send_data(tcp, q, mp);
21552 			BUMP_LOCAL(tcp->tcp_obsegs);
21553 		}
21554 	}
21555 
21556 	if (ire != NULL)
21557 		IRE_REFRELE(ire);
21558 	return (0);
21559 }
21560 
21561 /* Unlink and return any mblk that looks like it contains a MDT info */
21562 static mblk_t *
21563 tcp_mdt_info_mp(mblk_t *mp)
21564 {
21565 	mblk_t	*prev_mp;
21566 
21567 	for (;;) {
21568 		prev_mp = mp;
21569 		/* no more to process? */
21570 		if ((mp = mp->b_cont) == NULL)
21571 			break;
21572 
21573 		switch (DB_TYPE(mp)) {
21574 		case M_CTL:
21575 			if (*(uint32_t *)mp->b_rptr != MDT_IOC_INFO_UPDATE)
21576 				continue;
21577 			ASSERT(prev_mp != NULL);
21578 			prev_mp->b_cont = mp->b_cont;
21579 			mp->b_cont = NULL;
21580 			return (mp);
21581 		default:
21582 			break;
21583 		}
21584 	}
21585 	return (mp);
21586 }
21587 
21588 /* MDT info update routine, called when IP notifies us about MDT */
21589 static void
21590 tcp_mdt_update(tcp_t *tcp, ill_mdt_capab_t *mdt_capab, boolean_t first)
21591 {
21592 	boolean_t prev_state;
21593 	tcp_stack_t	*tcps = tcp->tcp_tcps;
21594 
21595 	/*
21596 	 * IP is telling us to abort MDT on this connection?  We know
21597 	 * this because the capability is only turned off when IP
21598 	 * encounters some pathological cases, e.g. link-layer change
21599 	 * where the new driver doesn't support MDT, or in situation
21600 	 * where MDT usage on the link-layer has been switched off.
21601 	 * IP would not have sent us the initial MDT_IOC_INFO_UPDATE
21602 	 * if the link-layer doesn't support MDT, and if it does, it
21603 	 * will indicate that the feature is to be turned on.
21604 	 */
21605 	prev_state = tcp->tcp_mdt;
21606 	tcp->tcp_mdt = (mdt_capab->ill_mdt_on != 0);
21607 	if (!tcp->tcp_mdt && !first) {
21608 		TCP_STAT(tcps, tcp_mdt_conn_halted3);
21609 		ip1dbg(("tcp_mdt_update: disabling MDT for connp %p\n",
21610 		    (void *)tcp->tcp_connp));
21611 	}
21612 
21613 	/*
21614 	 * We currently only support MDT on simple TCP/{IPv4,IPv6},
21615 	 * so disable MDT otherwise.  The checks are done here
21616 	 * and in tcp_wput_data().
21617 	 */
21618 	if (tcp->tcp_mdt &&
21619 	    (tcp->tcp_ipversion == IPV4_VERSION &&
21620 	    tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) ||
21621 	    (tcp->tcp_ipversion == IPV6_VERSION &&
21622 	    tcp->tcp_ip_hdr_len != IPV6_HDR_LEN))
21623 		tcp->tcp_mdt = B_FALSE;
21624 
21625 	if (tcp->tcp_mdt) {
21626 		if (mdt_capab->ill_mdt_version != MDT_VERSION_2) {
21627 			cmn_err(CE_NOTE, "tcp_mdt_update: unknown MDT "
21628 			    "version (%d), expected version is %d",
21629 			    mdt_capab->ill_mdt_version, MDT_VERSION_2);
21630 			tcp->tcp_mdt = B_FALSE;
21631 			return;
21632 		}
21633 
21634 		/*
21635 		 * We need the driver to be able to handle at least three
21636 		 * spans per packet in order for tcp MDT to be utilized.
21637 		 * The first is for the header portion, while the rest are
21638 		 * needed to handle a packet that straddles across two
21639 		 * virtually non-contiguous buffers; a typical tcp packet
21640 		 * therefore consists of only two spans.  Note that we take
21641 		 * a zero as "don't care".
21642 		 */
21643 		if (mdt_capab->ill_mdt_span_limit > 0 &&
21644 		    mdt_capab->ill_mdt_span_limit < 3) {
21645 			tcp->tcp_mdt = B_FALSE;
21646 			return;
21647 		}
21648 
21649 		/* a zero means driver wants default value */
21650 		tcp->tcp_mdt_max_pld = MIN(mdt_capab->ill_mdt_max_pld,
21651 		    tcps->tcps_mdt_max_pbufs);
21652 		if (tcp->tcp_mdt_max_pld == 0)
21653 			tcp->tcp_mdt_max_pld = tcps->tcps_mdt_max_pbufs;
21654 
21655 		/* ensure 32-bit alignment */
21656 		tcp->tcp_mdt_hdr_head = roundup(MAX(tcps->tcps_mdt_hdr_head_min,
21657 		    mdt_capab->ill_mdt_hdr_head), 4);
21658 		tcp->tcp_mdt_hdr_tail = roundup(MAX(tcps->tcps_mdt_hdr_tail_min,
21659 		    mdt_capab->ill_mdt_hdr_tail), 4);
21660 
21661 		if (!first && !prev_state) {
21662 			TCP_STAT(tcps, tcp_mdt_conn_resumed2);
21663 			ip1dbg(("tcp_mdt_update: reenabling MDT for connp %p\n",
21664 			    (void *)tcp->tcp_connp));
21665 		}
21666 	}
21667 }
21668 
21669 /* Unlink and return any mblk that looks like it contains a LSO info */
21670 static mblk_t *
21671 tcp_lso_info_mp(mblk_t *mp)
21672 {
21673 	mblk_t	*prev_mp;
21674 
21675 	for (;;) {
21676 		prev_mp = mp;
21677 		/* no more to process? */
21678 		if ((mp = mp->b_cont) == NULL)
21679 			break;
21680 
21681 		switch (DB_TYPE(mp)) {
21682 		case M_CTL:
21683 			if (*(uint32_t *)mp->b_rptr != LSO_IOC_INFO_UPDATE)
21684 				continue;
21685 			ASSERT(prev_mp != NULL);
21686 			prev_mp->b_cont = mp->b_cont;
21687 			mp->b_cont = NULL;
21688 			return (mp);
21689 		default:
21690 			break;
21691 		}
21692 	}
21693 
21694 	return (mp);
21695 }
21696 
21697 /* LSO info update routine, called when IP notifies us about LSO */
21698 static void
21699 tcp_lso_update(tcp_t *tcp, ill_lso_capab_t *lso_capab)
21700 {
21701 	tcp_stack_t *tcps = tcp->tcp_tcps;
21702 
21703 	/*
21704 	 * IP is telling us to abort LSO on this connection?  We know
21705 	 * this because the capability is only turned off when IP
21706 	 * encounters some pathological cases, e.g. link-layer change
21707 	 * where the new NIC/driver doesn't support LSO, or in situation
21708 	 * where LSO usage on the link-layer has been switched off.
21709 	 * IP would not have sent us the initial LSO_IOC_INFO_UPDATE
21710 	 * if the link-layer doesn't support LSO, and if it does, it
21711 	 * will indicate that the feature is to be turned on.
21712 	 */
21713 	tcp->tcp_lso = (lso_capab->ill_lso_on != 0);
21714 	TCP_STAT(tcps, tcp_lso_enabled);
21715 
21716 	/*
21717 	 * We currently only support LSO on simple TCP/IPv4,
21718 	 * so disable LSO otherwise.  The checks are done here
21719 	 * and in tcp_wput_data().
21720 	 */
21721 	if (tcp->tcp_lso &&
21722 	    (tcp->tcp_ipversion == IPV4_VERSION &&
21723 	    tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) ||
21724 	    (tcp->tcp_ipversion == IPV6_VERSION)) {
21725 		tcp->tcp_lso = B_FALSE;
21726 		TCP_STAT(tcps, tcp_lso_disabled);
21727 	} else {
21728 		tcp->tcp_lso_max = MIN(TCP_MAX_LSO_LENGTH,
21729 		    lso_capab->ill_lso_max);
21730 	}
21731 }
21732 
21733 static void
21734 tcp_ire_ill_check(tcp_t *tcp, ire_t *ire, ill_t *ill, boolean_t check_lso_mdt)
21735 {
21736 	conn_t *connp = tcp->tcp_connp;
21737 	tcp_stack_t	*tcps = tcp->tcp_tcps;
21738 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
21739 
21740 	ASSERT(ire != NULL);
21741 
21742 	/*
21743 	 * We may be in the fastpath here, and although we essentially do
21744 	 * similar checks as in ip_bind_connected{_v6}/ip_xxinfo_return,
21745 	 * we try to keep things as brief as possible.  After all, these
21746 	 * are only best-effort checks, and we do more thorough ones prior
21747 	 * to calling tcp_send()/tcp_multisend().
21748 	 */
21749 	if ((ipst->ips_ip_lso_outbound || ipst->ips_ip_multidata_outbound) &&
21750 	    check_lso_mdt && !(ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK)) &&
21751 	    ill != NULL && !CONN_IPSEC_OUT_ENCAPSULATED(connp) &&
21752 	    !(ire->ire_flags & RTF_MULTIRT) &&
21753 	    !IPP_ENABLED(IPP_LOCAL_OUT, ipst) &&
21754 	    CONN_IS_LSO_MD_FASTPATH(connp)) {
21755 		if (ipst->ips_ip_lso_outbound && ILL_LSO_CAPABLE(ill)) {
21756 			/* Cache the result */
21757 			connp->conn_lso_ok = B_TRUE;
21758 
21759 			ASSERT(ill->ill_lso_capab != NULL);
21760 			if (!ill->ill_lso_capab->ill_lso_on) {
21761 				ill->ill_lso_capab->ill_lso_on = 1;
21762 				ip1dbg(("tcp_ire_ill_check: connp %p enables "
21763 				    "LSO for interface %s\n", (void *)connp,
21764 				    ill->ill_name));
21765 			}
21766 			tcp_lso_update(tcp, ill->ill_lso_capab);
21767 		} else if (ipst->ips_ip_multidata_outbound &&
21768 		    ILL_MDT_CAPABLE(ill)) {
21769 			/* Cache the result */
21770 			connp->conn_mdt_ok = B_TRUE;
21771 
21772 			ASSERT(ill->ill_mdt_capab != NULL);
21773 			if (!ill->ill_mdt_capab->ill_mdt_on) {
21774 				ill->ill_mdt_capab->ill_mdt_on = 1;
21775 				ip1dbg(("tcp_ire_ill_check: connp %p enables "
21776 				    "MDT for interface %s\n", (void *)connp,
21777 				    ill->ill_name));
21778 			}
21779 			tcp_mdt_update(tcp, ill->ill_mdt_capab, B_TRUE);
21780 		}
21781 	}
21782 
21783 	/*
21784 	 * The goal is to reduce the number of generated tcp segments by
21785 	 * setting the maxpsz multiplier to 0; this will have an affect on
21786 	 * tcp_maxpsz_set().  With this behavior, tcp will pack more data
21787 	 * into each packet, up to SMSS bytes.  Doing this reduces the number
21788 	 * of outbound segments and incoming ACKs, thus allowing for better
21789 	 * network and system performance.  In contrast the legacy behavior
21790 	 * may result in sending less than SMSS size, because the last mblk
21791 	 * for some packets may have more data than needed to make up SMSS,
21792 	 * and the legacy code refused to "split" it.
21793 	 *
21794 	 * We apply the new behavior on following situations:
21795 	 *
21796 	 *   1) Loopback connections,
21797 	 *   2) Connections in which the remote peer is not on local subnet,
21798 	 *   3) Local subnet connections over the bge interface (see below).
21799 	 *
21800 	 * Ideally, we would like this behavior to apply for interfaces other
21801 	 * than bge.  However, doing so would negatively impact drivers which
21802 	 * perform dynamic mapping and unmapping of DMA resources, which are
21803 	 * increased by setting the maxpsz multiplier to 0 (more mblks per
21804 	 * packet will be generated by tcp).  The bge driver does not suffer
21805 	 * from this, as it copies the mblks into pre-mapped buffers, and
21806 	 * therefore does not require more I/O resources than before.
21807 	 *
21808 	 * Otherwise, this behavior is present on all network interfaces when
21809 	 * the destination endpoint is non-local, since reducing the number
21810 	 * of packets in general is good for the network.
21811 	 *
21812 	 * TODO We need to remove this hard-coded conditional for bge once
21813 	 *	a better "self-tuning" mechanism, or a way to comprehend
21814 	 *	the driver transmit strategy is devised.  Until the solution
21815 	 *	is found and well understood, we live with this hack.
21816 	 */
21817 	if (!tcp_static_maxpsz &&
21818 	    (tcp->tcp_loopback || !tcp->tcp_localnet ||
21819 	    (ill->ill_name_length > 3 && bcmp(ill->ill_name, "bge", 3) == 0))) {
21820 		/* override the default value */
21821 		tcp->tcp_maxpsz = 0;
21822 
21823 		ip3dbg(("tcp_ire_ill_check: connp %p tcp_maxpsz %d on "
21824 		    "interface %s\n", (void *)connp, tcp->tcp_maxpsz,
21825 		    ill != NULL ? ill->ill_name : ipif_loopback_name));
21826 	}
21827 
21828 	/* set the stream head parameters accordingly */
21829 	(void) tcp_maxpsz_set(tcp, B_TRUE);
21830 }
21831 
21832 /* tcp_wput_flush is called by tcp_wput_nondata to handle M_FLUSH messages. */
21833 static void
21834 tcp_wput_flush(tcp_t *tcp, mblk_t *mp)
21835 {
21836 	uchar_t	fval = *mp->b_rptr;
21837 	mblk_t	*tail;
21838 	queue_t	*q = tcp->tcp_wq;
21839 
21840 	/* TODO: How should flush interact with urgent data? */
21841 	if ((fval & FLUSHW) && tcp->tcp_xmit_head &&
21842 	    !(tcp->tcp_valid_bits & TCP_URG_VALID)) {
21843 		/*
21844 		 * Flush only data that has not yet been put on the wire.  If
21845 		 * we flush data that we have already transmitted, life, as we
21846 		 * know it, may come to an end.
21847 		 */
21848 		tail = tcp->tcp_xmit_tail;
21849 		tail->b_wptr -= tcp->tcp_xmit_tail_unsent;
21850 		tcp->tcp_xmit_tail_unsent = 0;
21851 		tcp->tcp_unsent = 0;
21852 		if (tail->b_wptr != tail->b_rptr)
21853 			tail = tail->b_cont;
21854 		if (tail) {
21855 			mblk_t **excess = &tcp->tcp_xmit_head;
21856 			for (;;) {
21857 				mblk_t *mp1 = *excess;
21858 				if (mp1 == tail)
21859 					break;
21860 				tcp->tcp_xmit_tail = mp1;
21861 				tcp->tcp_xmit_last = mp1;
21862 				excess = &mp1->b_cont;
21863 			}
21864 			*excess = NULL;
21865 			tcp_close_mpp(&tail);
21866 			if (tcp->tcp_snd_zcopy_aware)
21867 				tcp_zcopy_notify(tcp);
21868 		}
21869 		/*
21870 		 * We have no unsent data, so unsent must be less than
21871 		 * tcp_xmit_lowater, so re-enable flow.
21872 		 */
21873 		mutex_enter(&tcp->tcp_non_sq_lock);
21874 		if (tcp->tcp_flow_stopped) {
21875 			tcp_clrqfull(tcp);
21876 		}
21877 		mutex_exit(&tcp->tcp_non_sq_lock);
21878 	}
21879 	/*
21880 	 * TODO: you can't just flush these, you have to increase rwnd for one
21881 	 * thing.  For another, how should urgent data interact?
21882 	 */
21883 	if (fval & FLUSHR) {
21884 		*mp->b_rptr = fval & ~FLUSHW;
21885 		/* XXX */
21886 		qreply(q, mp);
21887 		return;
21888 	}
21889 	freemsg(mp);
21890 }
21891 
21892 /*
21893  * tcp_wput_iocdata is called by tcp_wput_nondata to handle all M_IOCDATA
21894  * messages.
21895  */
21896 static void
21897 tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp)
21898 {
21899 	mblk_t	*mp1;
21900 	STRUCT_HANDLE(strbuf, sb);
21901 	uint16_t port;
21902 	queue_t 	*q = tcp->tcp_wq;
21903 	in6_addr_t	v6addr;
21904 	ipaddr_t	v4addr;
21905 	uint32_t	flowinfo = 0;
21906 	int		addrlen;
21907 
21908 	/* Make sure it is one of ours. */
21909 	switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) {
21910 	case TI_GETMYNAME:
21911 	case TI_GETPEERNAME:
21912 		break;
21913 	default:
21914 		CALL_IP_WPUT(tcp->tcp_connp, q, mp);
21915 		return;
21916 	}
21917 	switch (mi_copy_state(q, mp, &mp1)) {
21918 	case -1:
21919 		return;
21920 	case MI_COPY_CASE(MI_COPY_IN, 1):
21921 		break;
21922 	case MI_COPY_CASE(MI_COPY_OUT, 1):
21923 		/* Copy out the strbuf. */
21924 		mi_copyout(q, mp);
21925 		return;
21926 	case MI_COPY_CASE(MI_COPY_OUT, 2):
21927 		/* All done. */
21928 		mi_copy_done(q, mp, 0);
21929 		return;
21930 	default:
21931 		mi_copy_done(q, mp, EPROTO);
21932 		return;
21933 	}
21934 	/* Check alignment of the strbuf */
21935 	if (!OK_32PTR(mp1->b_rptr)) {
21936 		mi_copy_done(q, mp, EINVAL);
21937 		return;
21938 	}
21939 
21940 	STRUCT_SET_HANDLE(sb, ((struct iocblk *)mp->b_rptr)->ioc_flag,
21941 	    (void *)mp1->b_rptr);
21942 	addrlen = tcp->tcp_family == AF_INET ? sizeof (sin_t) : sizeof (sin6_t);
21943 
21944 	if (STRUCT_FGET(sb, maxlen) < addrlen) {
21945 		mi_copy_done(q, mp, EINVAL);
21946 		return;
21947 	}
21948 	switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) {
21949 	case TI_GETMYNAME:
21950 		if (tcp->tcp_family == AF_INET) {
21951 			if (tcp->tcp_ipversion == IPV4_VERSION) {
21952 				v4addr = tcp->tcp_ipha->ipha_src;
21953 			} else {
21954 				/* can't return an address in this case */
21955 				v4addr = 0;
21956 			}
21957 		} else {
21958 			/* tcp->tcp_family == AF_INET6 */
21959 			if (tcp->tcp_ipversion == IPV4_VERSION) {
21960 				IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src,
21961 				    &v6addr);
21962 			} else {
21963 				v6addr = tcp->tcp_ip6h->ip6_src;
21964 			}
21965 		}
21966 		port = tcp->tcp_lport;
21967 		break;
21968 	case TI_GETPEERNAME:
21969 		if (tcp->tcp_family == AF_INET) {
21970 			if (tcp->tcp_ipversion == IPV4_VERSION) {
21971 				IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_remote_v6,
21972 				    v4addr);
21973 			} else {
21974 				/* can't return an address in this case */
21975 				v4addr = 0;
21976 			}
21977 		} else {
21978 			/* tcp->tcp_family == AF_INET6) */
21979 			v6addr = tcp->tcp_remote_v6;
21980 			if (tcp->tcp_ipversion == IPV6_VERSION) {
21981 				/*
21982 				 * No flowinfo if tcp->tcp_ipversion is v4.
21983 				 *
21984 				 * flowinfo was already initialized to zero
21985 				 * where it was declared above, so only
21986 				 * set it if ipversion is v6.
21987 				 */
21988 				flowinfo = tcp->tcp_ip6h->ip6_vcf &
21989 				    ~IPV6_VERS_AND_FLOW_MASK;
21990 			}
21991 		}
21992 		port = tcp->tcp_fport;
21993 		break;
21994 	default:
21995 		mi_copy_done(q, mp, EPROTO);
21996 		return;
21997 	}
21998 	mp1 = mi_copyout_alloc(q, mp, STRUCT_FGETP(sb, buf), addrlen, B_TRUE);
21999 	if (!mp1)
22000 		return;
22001 
22002 	if (tcp->tcp_family == AF_INET) {
22003 		sin_t *sin;
22004 
22005 		STRUCT_FSET(sb, len, (int)sizeof (sin_t));
22006 		sin = (sin_t *)mp1->b_rptr;
22007 		mp1->b_wptr = (uchar_t *)&sin[1];
22008 		*sin = sin_null;
22009 		sin->sin_family = AF_INET;
22010 		sin->sin_addr.s_addr = v4addr;
22011 		sin->sin_port = port;
22012 	} else {
22013 		/* tcp->tcp_family == AF_INET6 */
22014 		sin6_t *sin6;
22015 
22016 		STRUCT_FSET(sb, len, (int)sizeof (sin6_t));
22017 		sin6 = (sin6_t *)mp1->b_rptr;
22018 		mp1->b_wptr = (uchar_t *)&sin6[1];
22019 		*sin6 = sin6_null;
22020 		sin6->sin6_family = AF_INET6;
22021 		sin6->sin6_flowinfo = flowinfo;
22022 		sin6->sin6_addr = v6addr;
22023 		sin6->sin6_port = port;
22024 	}
22025 	/* Copy out the address */
22026 	mi_copyout(q, mp);
22027 }
22028 
22029 /*
22030  * tcp_wput_ioctl is called by tcp_wput_nondata() to handle all M_IOCTL
22031  * messages.
22032  */
22033 /* ARGSUSED */
22034 static void
22035 tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2)
22036 {
22037 	conn_t 	*connp = (conn_t *)arg;
22038 	tcp_t	*tcp = connp->conn_tcp;
22039 	queue_t	*q = tcp->tcp_wq;
22040 	struct iocblk	*iocp;
22041 	tcp_stack_t	*tcps = tcp->tcp_tcps;
22042 
22043 	ASSERT(DB_TYPE(mp) == M_IOCTL);
22044 	/*
22045 	 * Try and ASSERT the minimum possible references on the
22046 	 * conn early enough. Since we are executing on write side,
22047 	 * the connection is obviously not detached and that means
22048 	 * there is a ref each for TCP and IP. Since we are behind
22049 	 * the squeue, the minimum references needed are 3. If the
22050 	 * conn is in classifier hash list, there should be an
22051 	 * extra ref for that (we check both the possibilities).
22052 	 */
22053 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
22054 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
22055 
22056 	iocp = (struct iocblk *)mp->b_rptr;
22057 	switch (iocp->ioc_cmd) {
22058 	case TCP_IOC_DEFAULT_Q:
22059 		/* Wants to be the default wq. */
22060 		if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) {
22061 			iocp->ioc_error = EPERM;
22062 			iocp->ioc_count = 0;
22063 			mp->b_datap->db_type = M_IOCACK;
22064 			qreply(q, mp);
22065 			return;
22066 		}
22067 		tcp_def_q_set(tcp, mp);
22068 		return;
22069 	case _SIOCSOCKFALLBACK:
22070 		/*
22071 		 * Either sockmod is about to be popped and the socket
22072 		 * would now be treated as a plain stream, or a module
22073 		 * is about to be pushed so we could no longer use read-
22074 		 * side synchronous streams for fused loopback tcp.
22075 		 * Drain any queued data and disable direct sockfs
22076 		 * interface from now on.
22077 		 */
22078 		if (!tcp->tcp_issocket) {
22079 			DB_TYPE(mp) = M_IOCNAK;
22080 			iocp->ioc_error = EINVAL;
22081 		} else {
22082 #ifdef	_ILP32
22083 			tcp->tcp_acceptor_id = (t_uscalar_t)RD(q);
22084 #else
22085 			tcp->tcp_acceptor_id = tcp->tcp_connp->conn_dev;
22086 #endif
22087 			/*
22088 			 * Insert this socket into the acceptor hash.
22089 			 * We might need it for T_CONN_RES message
22090 			 */
22091 			tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp);
22092 
22093 			if (tcp->tcp_fused) {
22094 				/*
22095 				 * This is a fused loopback tcp; disable
22096 				 * read-side synchronous streams interface
22097 				 * and drain any queued data.  It is okay
22098 				 * to do this for non-synchronous streams
22099 				 * fused tcp as well.
22100 				 */
22101 				tcp_fuse_disable_pair(tcp, B_FALSE);
22102 			}
22103 			tcp->tcp_issocket = B_FALSE;
22104 			TCP_STAT(tcps, tcp_sock_fallback);
22105 
22106 			DB_TYPE(mp) = M_IOCACK;
22107 			iocp->ioc_error = 0;
22108 		}
22109 		iocp->ioc_count = 0;
22110 		iocp->ioc_rval = 0;
22111 		qreply(q, mp);
22112 		return;
22113 	}
22114 	CALL_IP_WPUT(connp, q, mp);
22115 }
22116 
22117 /*
22118  * This routine is called by tcp_wput() to handle all TPI requests.
22119  */
22120 /* ARGSUSED */
22121 static void
22122 tcp_wput_proto(void *arg, mblk_t *mp, void *arg2)
22123 {
22124 	conn_t 	*connp = (conn_t *)arg;
22125 	tcp_t	*tcp = connp->conn_tcp;
22126 	union T_primitives *tprim = (union T_primitives *)mp->b_rptr;
22127 	uchar_t *rptr;
22128 	t_scalar_t type;
22129 	int len;
22130 	cred_t *cr = DB_CREDDEF(mp, tcp->tcp_cred);
22131 
22132 	/*
22133 	 * Try and ASSERT the minimum possible references on the
22134 	 * conn early enough. Since we are executing on write side,
22135 	 * the connection is obviously not detached and that means
22136 	 * there is a ref each for TCP and IP. Since we are behind
22137 	 * the squeue, the minimum references needed are 3. If the
22138 	 * conn is in classifier hash list, there should be an
22139 	 * extra ref for that (we check both the possibilities).
22140 	 */
22141 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
22142 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
22143 
22144 	rptr = mp->b_rptr;
22145 	ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX);
22146 	if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) {
22147 		type = ((union T_primitives *)rptr)->type;
22148 		if (type == T_EXDATA_REQ) {
22149 			uint32_t msize = msgdsize(mp->b_cont);
22150 
22151 			len = msize - 1;
22152 			if (len < 0) {
22153 				freemsg(mp);
22154 				return;
22155 			}
22156 			/*
22157 			 * Try to force urgent data out on the wire.
22158 			 * Even if we have unsent data this will
22159 			 * at least send the urgent flag.
22160 			 * XXX does not handle more flag correctly.
22161 			 */
22162 			len += tcp->tcp_unsent;
22163 			len += tcp->tcp_snxt;
22164 			tcp->tcp_urg = len;
22165 			tcp->tcp_valid_bits |= TCP_URG_VALID;
22166 
22167 			/* Bypass tcp protocol for fused tcp loopback */
22168 			if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize))
22169 				return;
22170 		} else if (type != T_DATA_REQ) {
22171 			goto non_urgent_data;
22172 		}
22173 		/* TODO: options, flags, ... from user */
22174 		/* Set length to zero for reclamation below */
22175 		tcp_wput_data(tcp, mp->b_cont, B_TRUE);
22176 		freeb(mp);
22177 		return;
22178 	} else {
22179 		if (tcp->tcp_debug) {
22180 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
22181 			    "tcp_wput_proto, dropping one...");
22182 		}
22183 		freemsg(mp);
22184 		return;
22185 	}
22186 
22187 non_urgent_data:
22188 
22189 	switch ((int)tprim->type) {
22190 	case T_SSL_PROXY_BIND_REQ:	/* an SSL proxy endpoint bind request */
22191 		/*
22192 		 * save the kssl_ent_t from the next block, and convert this
22193 		 * back to a normal bind_req.
22194 		 */
22195 		if (mp->b_cont != NULL) {
22196 			ASSERT(MBLKL(mp->b_cont) >= sizeof (kssl_ent_t));
22197 
22198 			if (tcp->tcp_kssl_ent != NULL) {
22199 				kssl_release_ent(tcp->tcp_kssl_ent, NULL,
22200 				    KSSL_NO_PROXY);
22201 				tcp->tcp_kssl_ent = NULL;
22202 			}
22203 			bcopy(mp->b_cont->b_rptr, &tcp->tcp_kssl_ent,
22204 			    sizeof (kssl_ent_t));
22205 			kssl_hold_ent(tcp->tcp_kssl_ent);
22206 			freemsg(mp->b_cont);
22207 			mp->b_cont = NULL;
22208 		}
22209 		tprim->type = T_BIND_REQ;
22210 
22211 	/* FALLTHROUGH */
22212 	case O_T_BIND_REQ:	/* bind request */
22213 	case T_BIND_REQ:	/* new semantics bind request */
22214 		tcp_bind(tcp, mp);
22215 		break;
22216 	case T_UNBIND_REQ:	/* unbind request */
22217 		tcp_unbind(tcp, mp);
22218 		break;
22219 	case O_T_CONN_RES:	/* old connection response XXX */
22220 	case T_CONN_RES:	/* connection response */
22221 		tcp_accept(tcp, mp);
22222 		break;
22223 	case T_CONN_REQ:	/* connection request */
22224 		tcp_connect(tcp, mp);
22225 		break;
22226 	case T_DISCON_REQ:	/* disconnect request */
22227 		tcp_disconnect(tcp, mp);
22228 		break;
22229 	case T_CAPABILITY_REQ:
22230 		tcp_capability_req(tcp, mp);	/* capability request */
22231 		break;
22232 	case T_INFO_REQ:	/* information request */
22233 		tcp_info_req(tcp, mp);
22234 		break;
22235 	case T_SVR4_OPTMGMT_REQ:	/* manage options req */
22236 		(void) svr4_optcom_req(tcp->tcp_wq, mp, cr,
22237 		    &tcp_opt_obj, B_TRUE);
22238 		break;
22239 	case T_OPTMGMT_REQ:
22240 		/*
22241 		 * Note:  no support for snmpcom_req() through new
22242 		 * T_OPTMGMT_REQ. See comments in ip.c
22243 		 */
22244 		/* Only IP is allowed to return meaningful value */
22245 		(void) tpi_optcom_req(tcp->tcp_wq, mp, cr, &tcp_opt_obj,
22246 		    B_TRUE);
22247 		break;
22248 
22249 	case T_UNITDATA_REQ:	/* unitdata request */
22250 		tcp_err_ack(tcp, mp, TNOTSUPPORT, 0);
22251 		break;
22252 	case T_ORDREL_REQ:	/* orderly release req */
22253 		freemsg(mp);
22254 
22255 		if (tcp->tcp_fused)
22256 			tcp_unfuse(tcp);
22257 
22258 		if (tcp_xmit_end(tcp) != 0) {
22259 			/*
22260 			 * We were crossing FINs and got a reset from
22261 			 * the other side. Just ignore it.
22262 			 */
22263 			if (tcp->tcp_debug) {
22264 				(void) strlog(TCP_MOD_ID, 0, 1,
22265 				    SL_ERROR|SL_TRACE,
22266 				    "tcp_wput_proto, T_ORDREL_REQ out of "
22267 				    "state %s",
22268 				    tcp_display(tcp, NULL,
22269 				    DISP_ADDR_AND_PORT));
22270 			}
22271 		}
22272 		break;
22273 	case T_ADDR_REQ:
22274 		tcp_addr_req(tcp, mp);
22275 		break;
22276 	default:
22277 		if (tcp->tcp_debug) {
22278 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
22279 			    "tcp_wput_proto, bogus TPI msg, type %d",
22280 			    tprim->type);
22281 		}
22282 		/*
22283 		 * We used to M_ERROR.  Sending TNOTSUPPORT gives the user
22284 		 * to recover.
22285 		 */
22286 		tcp_err_ack(tcp, mp, TNOTSUPPORT, 0);
22287 		break;
22288 	}
22289 }
22290 
22291 /*
22292  * The TCP write service routine should never be called...
22293  */
22294 /* ARGSUSED */
22295 static void
22296 tcp_wsrv(queue_t *q)
22297 {
22298 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
22299 
22300 	TCP_STAT(tcps, tcp_wsrv_called);
22301 }
22302 
22303 /* Non overlapping byte exchanger */
22304 static void
22305 tcp_xchg(uchar_t *a, uchar_t *b, int len)
22306 {
22307 	uchar_t	uch;
22308 
22309 	while (len-- > 0) {
22310 		uch = a[len];
22311 		a[len] = b[len];
22312 		b[len] = uch;
22313 	}
22314 }
22315 
22316 /*
22317  * Send out a control packet on the tcp connection specified.  This routine
22318  * is typically called where we need a simple ACK or RST generated.
22319  */
22320 static void
22321 tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq, uint32_t ack, int ctl)
22322 {
22323 	uchar_t		*rptr;
22324 	tcph_t		*tcph;
22325 	ipha_t		*ipha = NULL;
22326 	ip6_t		*ip6h = NULL;
22327 	uint32_t	sum;
22328 	int		tcp_hdr_len;
22329 	int		tcp_ip_hdr_len;
22330 	mblk_t		*mp;
22331 	tcp_stack_t	*tcps = tcp->tcp_tcps;
22332 
22333 	/*
22334 	 * Save sum for use in source route later.
22335 	 */
22336 	ASSERT(tcp != NULL);
22337 	sum = tcp->tcp_tcp_hdr_len + tcp->tcp_sum;
22338 	tcp_hdr_len = tcp->tcp_hdr_len;
22339 	tcp_ip_hdr_len = tcp->tcp_ip_hdr_len;
22340 
22341 	/* If a text string is passed in with the request, pass it to strlog. */
22342 	if (str != NULL && tcp->tcp_debug) {
22343 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
22344 		    "tcp_xmit_ctl: '%s', seq 0x%x, ack 0x%x, ctl 0x%x",
22345 		    str, seq, ack, ctl);
22346 	}
22347 	mp = allocb(tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + tcps->tcps_wroff_xtra,
22348 	    BPRI_MED);
22349 	if (mp == NULL) {
22350 		return;
22351 	}
22352 	rptr = &mp->b_rptr[tcps->tcps_wroff_xtra];
22353 	mp->b_rptr = rptr;
22354 	mp->b_wptr = &rptr[tcp_hdr_len];
22355 	bcopy(tcp->tcp_iphc, rptr, tcp_hdr_len);
22356 
22357 	if (tcp->tcp_ipversion == IPV4_VERSION) {
22358 		ipha = (ipha_t *)rptr;
22359 		ipha->ipha_length = htons(tcp_hdr_len);
22360 	} else {
22361 		ip6h = (ip6_t *)rptr;
22362 		ASSERT(tcp != NULL);
22363 		ip6h->ip6_plen = htons(tcp->tcp_hdr_len -
22364 		    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
22365 	}
22366 	tcph = (tcph_t *)&rptr[tcp_ip_hdr_len];
22367 	tcph->th_flags[0] = (uint8_t)ctl;
22368 	if (ctl & TH_RST) {
22369 		BUMP_MIB(&tcps->tcps_mib, tcpOutRsts);
22370 		BUMP_MIB(&tcps->tcps_mib, tcpOutControl);
22371 		/*
22372 		 * Don't send TSopt w/ TH_RST packets per RFC 1323.
22373 		 */
22374 		if (tcp->tcp_snd_ts_ok &&
22375 		    tcp->tcp_state > TCPS_SYN_SENT) {
22376 			mp->b_wptr = &rptr[tcp_hdr_len - TCPOPT_REAL_TS_LEN];
22377 			*(mp->b_wptr) = TCPOPT_EOL;
22378 			if (tcp->tcp_ipversion == IPV4_VERSION) {
22379 				ipha->ipha_length = htons(tcp_hdr_len -
22380 				    TCPOPT_REAL_TS_LEN);
22381 			} else {
22382 				ip6h->ip6_plen = htons(ntohs(ip6h->ip6_plen) -
22383 				    TCPOPT_REAL_TS_LEN);
22384 			}
22385 			tcph->th_offset_and_rsrvd[0] -= (3 << 4);
22386 			sum -= TCPOPT_REAL_TS_LEN;
22387 		}
22388 	}
22389 	if (ctl & TH_ACK) {
22390 		if (tcp->tcp_snd_ts_ok) {
22391 			U32_TO_BE32(lbolt,
22392 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+4);
22393 			U32_TO_BE32(tcp->tcp_ts_recent,
22394 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+8);
22395 		}
22396 
22397 		/* Update the latest receive window size in TCP header. */
22398 		U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
22399 		    tcph->th_win);
22400 		tcp->tcp_rack = ack;
22401 		tcp->tcp_rack_cnt = 0;
22402 		BUMP_MIB(&tcps->tcps_mib, tcpOutAck);
22403 	}
22404 	BUMP_LOCAL(tcp->tcp_obsegs);
22405 	U32_TO_BE32(seq, tcph->th_seq);
22406 	U32_TO_BE32(ack, tcph->th_ack);
22407 	/*
22408 	 * Include the adjustment for a source route if any.
22409 	 */
22410 	sum = (sum >> 16) + (sum & 0xFFFF);
22411 	U16_TO_BE16(sum, tcph->th_sum);
22412 	TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
22413 	tcp_send_data(tcp, tcp->tcp_wq, mp);
22414 }
22415 
22416 /*
22417  * If this routine returns B_TRUE, TCP can generate a RST in response
22418  * to a segment.  If it returns B_FALSE, TCP should not respond.
22419  */
22420 static boolean_t
22421 tcp_send_rst_chk(tcp_stack_t *tcps)
22422 {
22423 	clock_t	now;
22424 
22425 	/*
22426 	 * TCP needs to protect itself from generating too many RSTs.
22427 	 * This can be a DoS attack by sending us random segments
22428 	 * soliciting RSTs.
22429 	 *
22430 	 * What we do here is to have a limit of tcp_rst_sent_rate RSTs
22431 	 * in each 1 second interval.  In this way, TCP still generate
22432 	 * RSTs in normal cases but when under attack, the impact is
22433 	 * limited.
22434 	 */
22435 	if (tcps->tcps_rst_sent_rate_enabled != 0) {
22436 		now = lbolt;
22437 		/* lbolt can wrap around. */
22438 		if ((tcps->tcps_last_rst_intrvl > now) ||
22439 		    (TICK_TO_MSEC(now - tcps->tcps_last_rst_intrvl) >
22440 		    1*SECONDS)) {
22441 			tcps->tcps_last_rst_intrvl = now;
22442 			tcps->tcps_rst_cnt = 1;
22443 		} else if (++tcps->tcps_rst_cnt > tcps->tcps_rst_sent_rate) {
22444 			return (B_FALSE);
22445 		}
22446 	}
22447 	return (B_TRUE);
22448 }
22449 
22450 /*
22451  * Send down the advice IP ioctl to tell IP to mark an IRE temporary.
22452  */
22453 static void
22454 tcp_ip_ire_mark_advice(tcp_t *tcp)
22455 {
22456 	mblk_t *mp;
22457 	ipic_t *ipic;
22458 
22459 	if (tcp->tcp_ipversion == IPV4_VERSION) {
22460 		mp = tcp_ip_advise_mblk(&tcp->tcp_ipha->ipha_dst, IP_ADDR_LEN,
22461 		    &ipic);
22462 	} else {
22463 		mp = tcp_ip_advise_mblk(&tcp->tcp_ip6h->ip6_dst, IPV6_ADDR_LEN,
22464 		    &ipic);
22465 	}
22466 	if (mp == NULL)
22467 		return;
22468 	ipic->ipic_ire_marks |= IRE_MARK_TEMPORARY;
22469 	CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp);
22470 }
22471 
22472 /*
22473  * Return an IP advice ioctl mblk and set ipic to be the pointer
22474  * to the advice structure.
22475  */
22476 static mblk_t *
22477 tcp_ip_advise_mblk(void *addr, int addr_len, ipic_t **ipic)
22478 {
22479 	struct iocblk *ioc;
22480 	mblk_t *mp, *mp1;
22481 
22482 	mp = allocb(sizeof (ipic_t) + addr_len, BPRI_HI);
22483 	if (mp == NULL)
22484 		return (NULL);
22485 	bzero(mp->b_rptr, sizeof (ipic_t) + addr_len);
22486 	*ipic = (ipic_t *)mp->b_rptr;
22487 	(*ipic)->ipic_cmd = IP_IOC_IRE_ADVISE_NO_REPLY;
22488 	(*ipic)->ipic_addr_offset = sizeof (ipic_t);
22489 
22490 	bcopy(addr, *ipic + 1, addr_len);
22491 
22492 	(*ipic)->ipic_addr_length = addr_len;
22493 	mp->b_wptr = &mp->b_rptr[sizeof (ipic_t) + addr_len];
22494 
22495 	mp1 = mkiocb(IP_IOCTL);
22496 	if (mp1 == NULL) {
22497 		freemsg(mp);
22498 		return (NULL);
22499 	}
22500 	mp1->b_cont = mp;
22501 	ioc = (struct iocblk *)mp1->b_rptr;
22502 	ioc->ioc_count = sizeof (ipic_t) + addr_len;
22503 
22504 	return (mp1);
22505 }
22506 
22507 /*
22508  * Generate a reset based on an inbound packet, connp is set by caller
22509  * when RST is in response to an unexpected inbound packet for which
22510  * there is active tcp state in the system.
22511  *
22512  * IPSEC NOTE : Try to send the reply with the same protection as it came
22513  * in.  We still have the ipsec_mp that the packet was attached to. Thus
22514  * the packet will go out at the same level of protection as it came in by
22515  * converting the IPSEC_IN to IPSEC_OUT.
22516  */
22517 static void
22518 tcp_xmit_early_reset(char *str, mblk_t *mp, uint32_t seq,
22519     uint32_t ack, int ctl, uint_t ip_hdr_len, zoneid_t zoneid,
22520     tcp_stack_t *tcps, conn_t *connp)
22521 {
22522 	ipha_t		*ipha = NULL;
22523 	ip6_t		*ip6h = NULL;
22524 	ushort_t	len;
22525 	tcph_t		*tcph;
22526 	int		i;
22527 	mblk_t		*ipsec_mp;
22528 	boolean_t	mctl_present;
22529 	ipic_t		*ipic;
22530 	ipaddr_t	v4addr;
22531 	in6_addr_t	v6addr;
22532 	int		addr_len;
22533 	void		*addr;
22534 	queue_t		*q = tcps->tcps_g_q;
22535 	tcp_t		*tcp;
22536 	cred_t		*cr;
22537 	mblk_t		*nmp;
22538 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
22539 
22540 	if (tcps->tcps_g_q == NULL) {
22541 		/*
22542 		 * For non-zero stackids the default queue isn't created
22543 		 * until the first open, thus there can be a need to send
22544 		 * a reset before then. But we can't do that, hence we just
22545 		 * drop the packet. Later during boot, when the default queue
22546 		 * has been setup, a retransmitted packet from the peer
22547 		 * will result in a reset.
22548 		 */
22549 		ASSERT(tcps->tcps_netstack->netstack_stackid !=
22550 		    GLOBAL_NETSTACKID);
22551 		freemsg(mp);
22552 		return;
22553 	}
22554 
22555 	if (connp != NULL)
22556 		tcp = connp->conn_tcp;
22557 	else
22558 		tcp = Q_TO_TCP(q);
22559 
22560 	if (!tcp_send_rst_chk(tcps)) {
22561 		tcps->tcps_rst_unsent++;
22562 		freemsg(mp);
22563 		return;
22564 	}
22565 
22566 	if (mp->b_datap->db_type == M_CTL) {
22567 		ipsec_mp = mp;
22568 		mp = mp->b_cont;
22569 		mctl_present = B_TRUE;
22570 	} else {
22571 		ipsec_mp = mp;
22572 		mctl_present = B_FALSE;
22573 	}
22574 
22575 	if (str && q && tcps->tcps_dbg) {
22576 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
22577 		    "tcp_xmit_early_reset: '%s', seq 0x%x, ack 0x%x, "
22578 		    "flags 0x%x",
22579 		    str, seq, ack, ctl);
22580 	}
22581 	if (mp->b_datap->db_ref != 1) {
22582 		mblk_t *mp1 = copyb(mp);
22583 		freemsg(mp);
22584 		mp = mp1;
22585 		if (!mp) {
22586 			if (mctl_present)
22587 				freeb(ipsec_mp);
22588 			return;
22589 		} else {
22590 			if (mctl_present) {
22591 				ipsec_mp->b_cont = mp;
22592 			} else {
22593 				ipsec_mp = mp;
22594 			}
22595 		}
22596 	} else if (mp->b_cont) {
22597 		freemsg(mp->b_cont);
22598 		mp->b_cont = NULL;
22599 	}
22600 	/*
22601 	 * We skip reversing source route here.
22602 	 * (for now we replace all IP options with EOL)
22603 	 */
22604 	if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
22605 		ipha = (ipha_t *)mp->b_rptr;
22606 		for (i = IP_SIMPLE_HDR_LENGTH; i < (int)ip_hdr_len; i++)
22607 			mp->b_rptr[i] = IPOPT_EOL;
22608 		/*
22609 		 * Make sure that src address isn't flagrantly invalid.
22610 		 * Not all broadcast address checking for the src address
22611 		 * is possible, since we don't know the netmask of the src
22612 		 * addr.  No check for destination address is done, since
22613 		 * IP will not pass up a packet with a broadcast dest
22614 		 * address to TCP.  Similar checks are done below for IPv6.
22615 		 */
22616 		if (ipha->ipha_src == 0 || ipha->ipha_src == INADDR_BROADCAST ||
22617 		    CLASSD(ipha->ipha_src)) {
22618 			freemsg(ipsec_mp);
22619 			BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards);
22620 			return;
22621 		}
22622 	} else {
22623 		ip6h = (ip6_t *)mp->b_rptr;
22624 
22625 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6h->ip6_src) ||
22626 		    IN6_IS_ADDR_MULTICAST(&ip6h->ip6_src)) {
22627 			freemsg(ipsec_mp);
22628 			BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsInDiscards);
22629 			return;
22630 		}
22631 
22632 		/* Remove any extension headers assuming partial overlay */
22633 		if (ip_hdr_len > IPV6_HDR_LEN) {
22634 			uint8_t *to;
22635 
22636 			to = mp->b_rptr + ip_hdr_len - IPV6_HDR_LEN;
22637 			ovbcopy(ip6h, to, IPV6_HDR_LEN);
22638 			mp->b_rptr += ip_hdr_len - IPV6_HDR_LEN;
22639 			ip_hdr_len = IPV6_HDR_LEN;
22640 			ip6h = (ip6_t *)mp->b_rptr;
22641 			ip6h->ip6_nxt = IPPROTO_TCP;
22642 		}
22643 	}
22644 	tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len];
22645 	if (tcph->th_flags[0] & TH_RST) {
22646 		freemsg(ipsec_mp);
22647 		return;
22648 	}
22649 	tcph->th_offset_and_rsrvd[0] = (5 << 4);
22650 	len = ip_hdr_len + sizeof (tcph_t);
22651 	mp->b_wptr = &mp->b_rptr[len];
22652 	if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
22653 		ipha->ipha_length = htons(len);
22654 		/* Swap addresses */
22655 		v4addr = ipha->ipha_src;
22656 		ipha->ipha_src = ipha->ipha_dst;
22657 		ipha->ipha_dst = v4addr;
22658 		ipha->ipha_ident = 0;
22659 		ipha->ipha_ttl = (uchar_t)tcps->tcps_ipv4_ttl;
22660 		addr_len = IP_ADDR_LEN;
22661 		addr = &v4addr;
22662 	} else {
22663 		/* No ip6i_t in this case */
22664 		ip6h->ip6_plen = htons(len - IPV6_HDR_LEN);
22665 		/* Swap addresses */
22666 		v6addr = ip6h->ip6_src;
22667 		ip6h->ip6_src = ip6h->ip6_dst;
22668 		ip6h->ip6_dst = v6addr;
22669 		ip6h->ip6_hops = (uchar_t)tcps->tcps_ipv6_hoplimit;
22670 		addr_len = IPV6_ADDR_LEN;
22671 		addr = &v6addr;
22672 	}
22673 	tcp_xchg(tcph->th_fport, tcph->th_lport, 2);
22674 	U32_TO_BE32(ack, tcph->th_ack);
22675 	U32_TO_BE32(seq, tcph->th_seq);
22676 	U16_TO_BE16(0, tcph->th_win);
22677 	U16_TO_BE16(sizeof (tcph_t), tcph->th_sum);
22678 	tcph->th_flags[0] = (uint8_t)ctl;
22679 	if (ctl & TH_RST) {
22680 		BUMP_MIB(&tcps->tcps_mib, tcpOutRsts);
22681 		BUMP_MIB(&tcps->tcps_mib, tcpOutControl);
22682 	}
22683 
22684 	/* IP trusts us to set up labels when required. */
22685 	if (is_system_labeled() && (cr = DB_CRED(mp)) != NULL &&
22686 	    crgetlabel(cr) != NULL) {
22687 		int err, adjust;
22688 
22689 		if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION)
22690 			err = tsol_check_label(cr, &mp, &adjust,
22691 			    tcp->tcp_connp->conn_mac_exempt,
22692 			    tcps->tcps_netstack->netstack_ip);
22693 		else
22694 			err = tsol_check_label_v6(cr, &mp, &adjust,
22695 			    tcp->tcp_connp->conn_mac_exempt,
22696 			    tcps->tcps_netstack->netstack_ip);
22697 		if (mctl_present)
22698 			ipsec_mp->b_cont = mp;
22699 		else
22700 			ipsec_mp = mp;
22701 		if (err != 0) {
22702 			freemsg(ipsec_mp);
22703 			return;
22704 		}
22705 		if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
22706 			ipha = (ipha_t *)mp->b_rptr;
22707 			adjust += ntohs(ipha->ipha_length);
22708 			ipha->ipha_length = htons(adjust);
22709 		} else {
22710 			ip6h = (ip6_t *)mp->b_rptr;
22711 		}
22712 	}
22713 
22714 	if (mctl_present) {
22715 		ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr;
22716 
22717 		ASSERT(ii->ipsec_in_type == IPSEC_IN);
22718 		if (!ipsec_in_to_out(ipsec_mp, ipha, ip6h)) {
22719 			return;
22720 		}
22721 	}
22722 	if (zoneid == ALL_ZONES)
22723 		zoneid = GLOBAL_ZONEID;
22724 
22725 	/* Add the zoneid so ip_output routes it properly */
22726 	if ((nmp = ip_prepend_zoneid(ipsec_mp, zoneid, ipst)) == NULL) {
22727 		freemsg(ipsec_mp);
22728 		return;
22729 	}
22730 	ipsec_mp = nmp;
22731 
22732 	/*
22733 	 * NOTE:  one might consider tracing a TCP packet here, but
22734 	 * this function has no active TCP state and no tcp structure
22735 	 * that has a trace buffer.  If we traced here, we would have
22736 	 * to keep a local trace buffer in tcp_record_trace().
22737 	 *
22738 	 * TSol note: The mblk that contains the incoming packet was
22739 	 * reused by tcp_xmit_listener_reset, so it already contains
22740 	 * the right credentials and we don't need to call mblk_setcred.
22741 	 * Also the conn's cred is not right since it is associated
22742 	 * with tcps_g_q.
22743 	 */
22744 	CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, ipsec_mp);
22745 
22746 	/*
22747 	 * Tell IP to mark the IRE used for this destination temporary.
22748 	 * This way, we can limit our exposure to DoS attack because IP
22749 	 * creates an IRE for each destination.  If there are too many,
22750 	 * the time to do any routing lookup will be extremely long.  And
22751 	 * the lookup can be in interrupt context.
22752 	 *
22753 	 * Note that in normal circumstances, this marking should not
22754 	 * affect anything.  It would be nice if only 1 message is
22755 	 * needed to inform IP that the IRE created for this RST should
22756 	 * not be added to the cache table.  But there is currently
22757 	 * not such communication mechanism between TCP and IP.  So
22758 	 * the best we can do now is to send the advice ioctl to IP
22759 	 * to mark the IRE temporary.
22760 	 */
22761 	if ((mp = tcp_ip_advise_mblk(addr, addr_len, &ipic)) != NULL) {
22762 		ipic->ipic_ire_marks |= IRE_MARK_TEMPORARY;
22763 		CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp);
22764 	}
22765 }
22766 
22767 /*
22768  * Initiate closedown sequence on an active connection.  (May be called as
22769  * writer.)  Return value zero for OK return, non-zero for error return.
22770  */
22771 static int
22772 tcp_xmit_end(tcp_t *tcp)
22773 {
22774 	ipic_t	*ipic;
22775 	mblk_t	*mp;
22776 	tcp_stack_t	*tcps = tcp->tcp_tcps;
22777 
22778 	if (tcp->tcp_state < TCPS_SYN_RCVD ||
22779 	    tcp->tcp_state > TCPS_CLOSE_WAIT) {
22780 		/*
22781 		 * Invalid state, only states TCPS_SYN_RCVD,
22782 		 * TCPS_ESTABLISHED and TCPS_CLOSE_WAIT are valid
22783 		 */
22784 		return (-1);
22785 	}
22786 
22787 	tcp->tcp_fss = tcp->tcp_snxt + tcp->tcp_unsent;
22788 	tcp->tcp_valid_bits |= TCP_FSS_VALID;
22789 	/*
22790 	 * If there is nothing more unsent, send the FIN now.
22791 	 * Otherwise, it will go out with the last segment.
22792 	 */
22793 	if (tcp->tcp_unsent == 0) {
22794 		mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL,
22795 		    tcp->tcp_fss, B_FALSE, NULL, B_FALSE);
22796 
22797 		if (mp) {
22798 			TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
22799 			tcp_send_data(tcp, tcp->tcp_wq, mp);
22800 		} else {
22801 			/*
22802 			 * Couldn't allocate msg.  Pretend we got it out.
22803 			 * Wait for rexmit timeout.
22804 			 */
22805 			tcp->tcp_snxt = tcp->tcp_fss + 1;
22806 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
22807 		}
22808 
22809 		/*
22810 		 * If needed, update tcp_rexmit_snxt as tcp_snxt is
22811 		 * changed.
22812 		 */
22813 		if (tcp->tcp_rexmit && tcp->tcp_rexmit_nxt == tcp->tcp_fss) {
22814 			tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
22815 		}
22816 	} else {
22817 		/*
22818 		 * If tcp->tcp_cork is set, then the data will not get sent,
22819 		 * so we have to check that and unset it first.
22820 		 */
22821 		if (tcp->tcp_cork)
22822 			tcp->tcp_cork = B_FALSE;
22823 		tcp_wput_data(tcp, NULL, B_FALSE);
22824 	}
22825 
22826 	/*
22827 	 * If TCP does not get enough samples of RTT or tcp_rtt_updates
22828 	 * is 0, don't update the cache.
22829 	 */
22830 	if (tcps->tcps_rtt_updates == 0 ||
22831 	    tcp->tcp_rtt_update < tcps->tcps_rtt_updates)
22832 		return (0);
22833 
22834 	/*
22835 	 * NOTE: should not update if source routes i.e. if tcp_remote if
22836 	 * different from the destination.
22837 	 */
22838 	if (tcp->tcp_ipversion == IPV4_VERSION) {
22839 		if (tcp->tcp_remote !=  tcp->tcp_ipha->ipha_dst) {
22840 			return (0);
22841 		}
22842 		mp = tcp_ip_advise_mblk(&tcp->tcp_ipha->ipha_dst, IP_ADDR_LEN,
22843 		    &ipic);
22844 	} else {
22845 		if (!(IN6_ARE_ADDR_EQUAL(&tcp->tcp_remote_v6,
22846 		    &tcp->tcp_ip6h->ip6_dst))) {
22847 			return (0);
22848 		}
22849 		mp = tcp_ip_advise_mblk(&tcp->tcp_ip6h->ip6_dst, IPV6_ADDR_LEN,
22850 		    &ipic);
22851 	}
22852 
22853 	/* Record route attributes in the IRE for use by future connections. */
22854 	if (mp == NULL)
22855 		return (0);
22856 
22857 	/*
22858 	 * We do not have a good algorithm to update ssthresh at this time.
22859 	 * So don't do any update.
22860 	 */
22861 	ipic->ipic_rtt = tcp->tcp_rtt_sa;
22862 	ipic->ipic_rtt_sd = tcp->tcp_rtt_sd;
22863 
22864 	CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp);
22865 	return (0);
22866 }
22867 
22868 /*
22869  * Generate a "no listener here" RST in response to an "unknown" segment.
22870  * connp is set by caller when RST is in response to an unexpected
22871  * inbound packet for which there is active tcp state in the system.
22872  * Note that we are reusing the incoming mp to construct the outgoing RST.
22873  */
22874 void
22875 tcp_xmit_listeners_reset(mblk_t *mp, uint_t ip_hdr_len, zoneid_t zoneid,
22876     tcp_stack_t *tcps, conn_t *connp)
22877 {
22878 	uchar_t		*rptr;
22879 	uint32_t	seg_len;
22880 	tcph_t		*tcph;
22881 	uint32_t	seg_seq;
22882 	uint32_t	seg_ack;
22883 	uint_t		flags;
22884 	mblk_t		*ipsec_mp;
22885 	ipha_t 		*ipha;
22886 	ip6_t 		*ip6h;
22887 	boolean_t	mctl_present = B_FALSE;
22888 	boolean_t	check = B_TRUE;
22889 	boolean_t	policy_present;
22890 	ipsec_stack_t	*ipss = tcps->tcps_netstack->netstack_ipsec;
22891 
22892 	TCP_STAT(tcps, tcp_no_listener);
22893 
22894 	ipsec_mp = mp;
22895 
22896 	if (mp->b_datap->db_type == M_CTL) {
22897 		ipsec_in_t *ii;
22898 
22899 		mctl_present = B_TRUE;
22900 		mp = mp->b_cont;
22901 
22902 		ii = (ipsec_in_t *)ipsec_mp->b_rptr;
22903 		ASSERT(ii->ipsec_in_type == IPSEC_IN);
22904 		if (ii->ipsec_in_dont_check) {
22905 			check = B_FALSE;
22906 			if (!ii->ipsec_in_secure) {
22907 				freeb(ipsec_mp);
22908 				mctl_present = B_FALSE;
22909 				ipsec_mp = mp;
22910 			}
22911 		}
22912 	}
22913 
22914 	if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
22915 		policy_present = ipss->ipsec_inbound_v4_policy_present;
22916 		ipha = (ipha_t *)mp->b_rptr;
22917 		ip6h = NULL;
22918 	} else {
22919 		policy_present = ipss->ipsec_inbound_v6_policy_present;
22920 		ipha = NULL;
22921 		ip6h = (ip6_t *)mp->b_rptr;
22922 	}
22923 
22924 	if (check && policy_present) {
22925 		/*
22926 		 * The conn_t parameter is NULL because we already know
22927 		 * nobody's home.
22928 		 */
22929 		ipsec_mp = ipsec_check_global_policy(
22930 		    ipsec_mp, (conn_t *)NULL, ipha, ip6h, mctl_present,
22931 		    tcps->tcps_netstack);
22932 		if (ipsec_mp == NULL)
22933 			return;
22934 	}
22935 	if (is_system_labeled() && !tsol_can_reply_error(mp)) {
22936 		DTRACE_PROBE2(
22937 		    tx__ip__log__error__nolistener__tcp,
22938 		    char *, "Could not reply with RST to mp(1)",
22939 		    mblk_t *, mp);
22940 		ip2dbg(("tcp_xmit_listeners_reset: not permitted to reply\n"));
22941 		freemsg(ipsec_mp);
22942 		return;
22943 	}
22944 
22945 	rptr = mp->b_rptr;
22946 
22947 	tcph = (tcph_t *)&rptr[ip_hdr_len];
22948 	seg_seq = BE32_TO_U32(tcph->th_seq);
22949 	seg_ack = BE32_TO_U32(tcph->th_ack);
22950 	flags = tcph->th_flags[0];
22951 
22952 	seg_len = msgdsize(mp) - (TCP_HDR_LENGTH(tcph) + ip_hdr_len);
22953 	if (flags & TH_RST) {
22954 		freemsg(ipsec_mp);
22955 	} else if (flags & TH_ACK) {
22956 		tcp_xmit_early_reset("no tcp, reset",
22957 		    ipsec_mp, seg_ack, 0, TH_RST, ip_hdr_len, zoneid, tcps,
22958 		    connp);
22959 	} else {
22960 		if (flags & TH_SYN) {
22961 			seg_len++;
22962 		} else {
22963 			/*
22964 			 * Here we violate the RFC.  Note that a normal
22965 			 * TCP will never send a segment without the ACK
22966 			 * flag, except for RST or SYN segment.  This
22967 			 * segment is neither.  Just drop it on the
22968 			 * floor.
22969 			 */
22970 			freemsg(ipsec_mp);
22971 			tcps->tcps_rst_unsent++;
22972 			return;
22973 		}
22974 
22975 		tcp_xmit_early_reset("no tcp, reset/ack",
22976 		    ipsec_mp, 0, seg_seq + seg_len,
22977 		    TH_RST | TH_ACK, ip_hdr_len, zoneid, tcps, connp);
22978 	}
22979 }
22980 
22981 /*
22982  * tcp_xmit_mp is called to return a pointer to an mblk chain complete with
22983  * ip and tcp header ready to pass down to IP.  If the mp passed in is
22984  * non-NULL, then up to max_to_send bytes of data will be dup'ed off that
22985  * mblk. (If sendall is not set the dup'ing will stop at an mblk boundary
22986  * otherwise it will dup partial mblks.)
22987  * Otherwise, an appropriate ACK packet will be generated.  This
22988  * routine is not usually called to send new data for the first time.  It
22989  * is mostly called out of the timer for retransmits, and to generate ACKs.
22990  *
22991  * If offset is not NULL, the returned mblk chain's first mblk's b_rptr will
22992  * be adjusted by *offset.  And after dupb(), the offset and the ending mblk
22993  * of the original mblk chain will be returned in *offset and *end_mp.
22994  */
22995 mblk_t *
22996 tcp_xmit_mp(tcp_t *tcp, mblk_t *mp, int32_t max_to_send, int32_t *offset,
22997     mblk_t **end_mp, uint32_t seq, boolean_t sendall, uint32_t *seg_len,
22998     boolean_t rexmit)
22999 {
23000 	int	data_length;
23001 	int32_t	off = 0;
23002 	uint_t	flags;
23003 	mblk_t	*mp1;
23004 	mblk_t	*mp2;
23005 	uchar_t	*rptr;
23006 	tcph_t	*tcph;
23007 	int32_t	num_sack_blk = 0;
23008 	int32_t	sack_opt_len = 0;
23009 	tcp_stack_t	*tcps = tcp->tcp_tcps;
23010 
23011 	/* Allocate for our maximum TCP header + link-level */
23012 	mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH +
23013 	    tcps->tcps_wroff_xtra, BPRI_MED);
23014 	if (!mp1)
23015 		return (NULL);
23016 	data_length = 0;
23017 
23018 	/*
23019 	 * Note that tcp_mss has been adjusted to take into account the
23020 	 * timestamp option if applicable.  Because SACK options do not
23021 	 * appear in every TCP segments and they are of variable lengths,
23022 	 * they cannot be included in tcp_mss.  Thus we need to calculate
23023 	 * the actual segment length when we need to send a segment which
23024 	 * includes SACK options.
23025 	 */
23026 	if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
23027 		num_sack_blk = MIN(tcp->tcp_max_sack_blk,
23028 		    tcp->tcp_num_sack_blk);
23029 		sack_opt_len = num_sack_blk * sizeof (sack_blk_t) +
23030 		    TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN;
23031 		if (max_to_send + sack_opt_len > tcp->tcp_mss)
23032 			max_to_send -= sack_opt_len;
23033 	}
23034 
23035 	if (offset != NULL) {
23036 		off = *offset;
23037 		/* We use offset as an indicator that end_mp is not NULL. */
23038 		*end_mp = NULL;
23039 	}
23040 	for (mp2 = mp1; mp && data_length != max_to_send; mp = mp->b_cont) {
23041 		/* This could be faster with cooperation from downstream */
23042 		if (mp2 != mp1 && !sendall &&
23043 		    data_length + (int)(mp->b_wptr - mp->b_rptr) >
23044 		    max_to_send)
23045 			/*
23046 			 * Don't send the next mblk since the whole mblk
23047 			 * does not fit.
23048 			 */
23049 			break;
23050 		mp2->b_cont = dupb(mp);
23051 		mp2 = mp2->b_cont;
23052 		if (!mp2) {
23053 			freemsg(mp1);
23054 			return (NULL);
23055 		}
23056 		mp2->b_rptr += off;
23057 		ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <=
23058 		    (uintptr_t)INT_MAX);
23059 
23060 		data_length += (int)(mp2->b_wptr - mp2->b_rptr);
23061 		if (data_length > max_to_send) {
23062 			mp2->b_wptr -= data_length - max_to_send;
23063 			data_length = max_to_send;
23064 			off = mp2->b_wptr - mp->b_rptr;
23065 			break;
23066 		} else {
23067 			off = 0;
23068 		}
23069 	}
23070 	if (offset != NULL) {
23071 		*offset = off;
23072 		*end_mp = mp;
23073 	}
23074 	if (seg_len != NULL) {
23075 		*seg_len = data_length;
23076 	}
23077 
23078 	/* Update the latest receive window size in TCP header. */
23079 	U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
23080 	    tcp->tcp_tcph->th_win);
23081 
23082 	rptr = mp1->b_rptr + tcps->tcps_wroff_xtra;
23083 	mp1->b_rptr = rptr;
23084 	mp1->b_wptr = rptr + tcp->tcp_hdr_len + sack_opt_len;
23085 	bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len);
23086 	tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len];
23087 	U32_TO_ABE32(seq, tcph->th_seq);
23088 
23089 	/*
23090 	 * Use tcp_unsent to determine if the PUSH bit should be used assumes
23091 	 * that this function was called from tcp_wput_data. Thus, when called
23092 	 * to retransmit data the setting of the PUSH bit may appear some
23093 	 * what random in that it might get set when it should not. This
23094 	 * should not pose any performance issues.
23095 	 */
23096 	if (data_length != 0 && (tcp->tcp_unsent == 0 ||
23097 	    tcp->tcp_unsent == data_length)) {
23098 		flags = TH_ACK | TH_PUSH;
23099 	} else {
23100 		flags = TH_ACK;
23101 	}
23102 
23103 	if (tcp->tcp_ecn_ok) {
23104 		if (tcp->tcp_ecn_echo_on)
23105 			flags |= TH_ECE;
23106 
23107 		/*
23108 		 * Only set ECT bit and ECN_CWR if a segment contains new data.
23109 		 * There is no TCP flow control for non-data segments, and
23110 		 * only data segment is transmitted reliably.
23111 		 */
23112 		if (data_length > 0 && !rexmit) {
23113 			SET_ECT(tcp, rptr);
23114 			if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) {
23115 				flags |= TH_CWR;
23116 				tcp->tcp_ecn_cwr_sent = B_TRUE;
23117 			}
23118 		}
23119 	}
23120 
23121 	if (tcp->tcp_valid_bits) {
23122 		uint32_t u1;
23123 
23124 		if ((tcp->tcp_valid_bits & TCP_ISS_VALID) &&
23125 		    seq == tcp->tcp_iss) {
23126 			uchar_t	*wptr;
23127 
23128 			/*
23129 			 * If TCP_ISS_VALID and the seq number is tcp_iss,
23130 			 * TCP can only be in SYN-SENT, SYN-RCVD or
23131 			 * FIN-WAIT-1 state.  It can be FIN-WAIT-1 if
23132 			 * our SYN is not ack'ed but the app closes this
23133 			 * TCP connection.
23134 			 */
23135 			ASSERT(tcp->tcp_state == TCPS_SYN_SENT ||
23136 			    tcp->tcp_state == TCPS_SYN_RCVD ||
23137 			    tcp->tcp_state == TCPS_FIN_WAIT_1);
23138 
23139 			/*
23140 			 * Tack on the MSS option.  It is always needed
23141 			 * for both active and passive open.
23142 			 *
23143 			 * MSS option value should be interface MTU - MIN
23144 			 * TCP/IP header according to RFC 793 as it means
23145 			 * the maximum segment size TCP can receive.  But
23146 			 * to get around some broken middle boxes/end hosts
23147 			 * out there, we allow the option value to be the
23148 			 * same as the MSS option size on the peer side.
23149 			 * In this way, the other side will not send
23150 			 * anything larger than they can receive.
23151 			 *
23152 			 * Note that for SYN_SENT state, the ndd param
23153 			 * tcp_use_smss_as_mss_opt has no effect as we
23154 			 * don't know the peer's MSS option value. So
23155 			 * the only case we need to take care of is in
23156 			 * SYN_RCVD state, which is done later.
23157 			 */
23158 			wptr = mp1->b_wptr;
23159 			wptr[0] = TCPOPT_MAXSEG;
23160 			wptr[1] = TCPOPT_MAXSEG_LEN;
23161 			wptr += 2;
23162 			u1 = tcp->tcp_if_mtu -
23163 			    (tcp->tcp_ipversion == IPV4_VERSION ?
23164 			    IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) -
23165 			    TCP_MIN_HEADER_LENGTH;
23166 			U16_TO_BE16(u1, wptr);
23167 			mp1->b_wptr = wptr + 2;
23168 			/* Update the offset to cover the additional word */
23169 			tcph->th_offset_and_rsrvd[0] += (1 << 4);
23170 
23171 			/*
23172 			 * Note that the following way of filling in
23173 			 * TCP options are not optimal.  Some NOPs can
23174 			 * be saved.  But there is no need at this time
23175 			 * to optimize it.  When it is needed, we will
23176 			 * do it.
23177 			 */
23178 			switch (tcp->tcp_state) {
23179 			case TCPS_SYN_SENT:
23180 				flags = TH_SYN;
23181 
23182 				if (tcp->tcp_snd_ts_ok) {
23183 					uint32_t llbolt = (uint32_t)lbolt;
23184 
23185 					wptr = mp1->b_wptr;
23186 					wptr[0] = TCPOPT_NOP;
23187 					wptr[1] = TCPOPT_NOP;
23188 					wptr[2] = TCPOPT_TSTAMP;
23189 					wptr[3] = TCPOPT_TSTAMP_LEN;
23190 					wptr += 4;
23191 					U32_TO_BE32(llbolt, wptr);
23192 					wptr += 4;
23193 					ASSERT(tcp->tcp_ts_recent == 0);
23194 					U32_TO_BE32(0L, wptr);
23195 					mp1->b_wptr += TCPOPT_REAL_TS_LEN;
23196 					tcph->th_offset_and_rsrvd[0] +=
23197 					    (3 << 4);
23198 				}
23199 
23200 				/*
23201 				 * Set up all the bits to tell other side
23202 				 * we are ECN capable.
23203 				 */
23204 				if (tcp->tcp_ecn_ok) {
23205 					flags |= (TH_ECE | TH_CWR);
23206 				}
23207 				break;
23208 			case TCPS_SYN_RCVD:
23209 				flags |= TH_SYN;
23210 
23211 				/*
23212 				 * Reset the MSS option value to be SMSS
23213 				 * We should probably add back the bytes
23214 				 * for timestamp option and IPsec.  We
23215 				 * don't do that as this is a workaround
23216 				 * for broken middle boxes/end hosts, it
23217 				 * is better for us to be more cautious.
23218 				 * They may not take these things into
23219 				 * account in their SMSS calculation.  Thus
23220 				 * the peer's calculated SMSS may be smaller
23221 				 * than what it can be.  This should be OK.
23222 				 */
23223 				if (tcps->tcps_use_smss_as_mss_opt) {
23224 					u1 = tcp->tcp_mss;
23225 					U16_TO_BE16(u1, wptr);
23226 				}
23227 
23228 				/*
23229 				 * If the other side is ECN capable, reply
23230 				 * that we are also ECN capable.
23231 				 */
23232 				if (tcp->tcp_ecn_ok)
23233 					flags |= TH_ECE;
23234 				break;
23235 			default:
23236 				/*
23237 				 * The above ASSERT() makes sure that this
23238 				 * must be FIN-WAIT-1 state.  Our SYN has
23239 				 * not been ack'ed so retransmit it.
23240 				 */
23241 				flags |= TH_SYN;
23242 				break;
23243 			}
23244 
23245 			if (tcp->tcp_snd_ws_ok) {
23246 				wptr = mp1->b_wptr;
23247 				wptr[0] =  TCPOPT_NOP;
23248 				wptr[1] =  TCPOPT_WSCALE;
23249 				wptr[2] =  TCPOPT_WS_LEN;
23250 				wptr[3] = (uchar_t)tcp->tcp_rcv_ws;
23251 				mp1->b_wptr += TCPOPT_REAL_WS_LEN;
23252 				tcph->th_offset_and_rsrvd[0] += (1 << 4);
23253 			}
23254 
23255 			if (tcp->tcp_snd_sack_ok) {
23256 				wptr = mp1->b_wptr;
23257 				wptr[0] = TCPOPT_NOP;
23258 				wptr[1] = TCPOPT_NOP;
23259 				wptr[2] = TCPOPT_SACK_PERMITTED;
23260 				wptr[3] = TCPOPT_SACK_OK_LEN;
23261 				mp1->b_wptr += TCPOPT_REAL_SACK_OK_LEN;
23262 				tcph->th_offset_and_rsrvd[0] += (1 << 4);
23263 			}
23264 
23265 			/* allocb() of adequate mblk assures space */
23266 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
23267 			    (uintptr_t)INT_MAX);
23268 			u1 = (int)(mp1->b_wptr - mp1->b_rptr);
23269 			/*
23270 			 * Get IP set to checksum on our behalf
23271 			 * Include the adjustment for a source route if any.
23272 			 */
23273 			u1 += tcp->tcp_sum;
23274 			u1 = (u1 >> 16) + (u1 & 0xFFFF);
23275 			U16_TO_BE16(u1, tcph->th_sum);
23276 			BUMP_MIB(&tcps->tcps_mib, tcpOutControl);
23277 		}
23278 		if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
23279 		    (seq + data_length) == tcp->tcp_fss) {
23280 			if (!tcp->tcp_fin_acked) {
23281 				flags |= TH_FIN;
23282 				BUMP_MIB(&tcps->tcps_mib, tcpOutControl);
23283 			}
23284 			if (!tcp->tcp_fin_sent) {
23285 				tcp->tcp_fin_sent = B_TRUE;
23286 				switch (tcp->tcp_state) {
23287 				case TCPS_SYN_RCVD:
23288 				case TCPS_ESTABLISHED:
23289 					tcp->tcp_state = TCPS_FIN_WAIT_1;
23290 					break;
23291 				case TCPS_CLOSE_WAIT:
23292 					tcp->tcp_state = TCPS_LAST_ACK;
23293 					break;
23294 				}
23295 				if (tcp->tcp_suna == tcp->tcp_snxt)
23296 					TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
23297 				tcp->tcp_snxt = tcp->tcp_fss + 1;
23298 			}
23299 		}
23300 		/*
23301 		 * Note the trick here.  u1 is unsigned.  When tcp_urg
23302 		 * is smaller than seq, u1 will become a very huge value.
23303 		 * So the comparison will fail.  Also note that tcp_urp
23304 		 * should be positive, see RFC 793 page 17.
23305 		 */
23306 		u1 = tcp->tcp_urg - seq + TCP_OLD_URP_INTERPRETATION;
23307 		if ((tcp->tcp_valid_bits & TCP_URG_VALID) && u1 != 0 &&
23308 		    u1 < (uint32_t)(64 * 1024)) {
23309 			flags |= TH_URG;
23310 			BUMP_MIB(&tcps->tcps_mib, tcpOutUrg);
23311 			U32_TO_ABE16(u1, tcph->th_urp);
23312 		}
23313 	}
23314 	tcph->th_flags[0] = (uchar_t)flags;
23315 	tcp->tcp_rack = tcp->tcp_rnxt;
23316 	tcp->tcp_rack_cnt = 0;
23317 
23318 	if (tcp->tcp_snd_ts_ok) {
23319 		if (tcp->tcp_state != TCPS_SYN_SENT) {
23320 			uint32_t llbolt = (uint32_t)lbolt;
23321 
23322 			U32_TO_BE32(llbolt,
23323 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+4);
23324 			U32_TO_BE32(tcp->tcp_ts_recent,
23325 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+8);
23326 		}
23327 	}
23328 
23329 	if (num_sack_blk > 0) {
23330 		uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len;
23331 		sack_blk_t *tmp;
23332 		int32_t	i;
23333 
23334 		wptr[0] = TCPOPT_NOP;
23335 		wptr[1] = TCPOPT_NOP;
23336 		wptr[2] = TCPOPT_SACK;
23337 		wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk *
23338 		    sizeof (sack_blk_t);
23339 		wptr += TCPOPT_REAL_SACK_LEN;
23340 
23341 		tmp = tcp->tcp_sack_list;
23342 		for (i = 0; i < num_sack_blk; i++) {
23343 			U32_TO_BE32(tmp[i].begin, wptr);
23344 			wptr += sizeof (tcp_seq);
23345 			U32_TO_BE32(tmp[i].end, wptr);
23346 			wptr += sizeof (tcp_seq);
23347 		}
23348 		tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1) << 4);
23349 	}
23350 	ASSERT((uintptr_t)(mp1->b_wptr - rptr) <= (uintptr_t)INT_MAX);
23351 	data_length += (int)(mp1->b_wptr - rptr);
23352 	if (tcp->tcp_ipversion == IPV4_VERSION) {
23353 		((ipha_t *)rptr)->ipha_length = htons(data_length);
23354 	} else {
23355 		ip6_t *ip6 = (ip6_t *)(rptr +
23356 		    (((ip6_t *)rptr)->ip6_nxt == IPPROTO_RAW ?
23357 		    sizeof (ip6i_t) : 0));
23358 
23359 		ip6->ip6_plen = htons(data_length -
23360 		    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
23361 	}
23362 
23363 	/*
23364 	 * Prime pump for IP
23365 	 * Include the adjustment for a source route if any.
23366 	 */
23367 	data_length -= tcp->tcp_ip_hdr_len;
23368 	data_length += tcp->tcp_sum;
23369 	data_length = (data_length >> 16) + (data_length & 0xFFFF);
23370 	U16_TO_ABE16(data_length, tcph->th_sum);
23371 	if (tcp->tcp_ip_forward_progress) {
23372 		ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
23373 		*(uint32_t *)mp1->b_rptr  |= IP_FORWARD_PROG;
23374 		tcp->tcp_ip_forward_progress = B_FALSE;
23375 	}
23376 	return (mp1);
23377 }
23378 
23379 /* This function handles the push timeout. */
23380 void
23381 tcp_push_timer(void *arg)
23382 {
23383 	conn_t	*connp = (conn_t *)arg;
23384 	tcp_t *tcp = connp->conn_tcp;
23385 	tcp_stack_t	*tcps = tcp->tcp_tcps;
23386 
23387 	TCP_DBGSTAT(tcps, tcp_push_timer_cnt);
23388 
23389 	ASSERT(tcp->tcp_listener == NULL);
23390 
23391 	/*
23392 	 * We need to plug synchronous streams during our drain to prevent
23393 	 * a race with tcp_fuse_rrw() or tcp_fusion_rinfop().
23394 	 */
23395 	TCP_FUSE_SYNCSTR_PLUG_DRAIN(tcp);
23396 	tcp->tcp_push_tid = 0;
23397 	if ((tcp->tcp_rcv_list != NULL) &&
23398 	    (tcp_rcv_drain(tcp->tcp_rq, tcp) == TH_ACK_NEEDED))
23399 		tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK);
23400 	TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(tcp);
23401 }
23402 
23403 /*
23404  * This function handles delayed ACK timeout.
23405  */
23406 static void
23407 tcp_ack_timer(void *arg)
23408 {
23409 	conn_t	*connp = (conn_t *)arg;
23410 	tcp_t *tcp = connp->conn_tcp;
23411 	mblk_t *mp;
23412 	tcp_stack_t	*tcps = tcp->tcp_tcps;
23413 
23414 	TCP_DBGSTAT(tcps, tcp_ack_timer_cnt);
23415 
23416 	tcp->tcp_ack_tid = 0;
23417 
23418 	if (tcp->tcp_fused)
23419 		return;
23420 
23421 	/*
23422 	 * Do not send ACK if there is no outstanding unack'ed data.
23423 	 */
23424 	if (tcp->tcp_rnxt == tcp->tcp_rack) {
23425 		return;
23426 	}
23427 
23428 	if ((tcp->tcp_rnxt - tcp->tcp_rack) > tcp->tcp_mss) {
23429 		/*
23430 		 * Make sure we don't allow deferred ACKs to result in
23431 		 * timer-based ACKing.  If we have held off an ACK
23432 		 * when there was more than an mss here, and the timer
23433 		 * goes off, we have to worry about the possibility
23434 		 * that the sender isn't doing slow-start, or is out
23435 		 * of step with us for some other reason.  We fall
23436 		 * permanently back in the direction of
23437 		 * ACK-every-other-packet as suggested in RFC 1122.
23438 		 */
23439 		if (tcp->tcp_rack_abs_max > 2)
23440 			tcp->tcp_rack_abs_max--;
23441 		tcp->tcp_rack_cur_max = 2;
23442 	}
23443 	mp = tcp_ack_mp(tcp);
23444 
23445 	if (mp != NULL) {
23446 		TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
23447 		BUMP_LOCAL(tcp->tcp_obsegs);
23448 		BUMP_MIB(&tcps->tcps_mib, tcpOutAck);
23449 		BUMP_MIB(&tcps->tcps_mib, tcpOutAckDelayed);
23450 		tcp_send_data(tcp, tcp->tcp_wq, mp);
23451 	}
23452 }
23453 
23454 
23455 /* Generate an ACK-only (no data) segment for a TCP endpoint */
23456 static mblk_t *
23457 tcp_ack_mp(tcp_t *tcp)
23458 {
23459 	uint32_t	seq_no;
23460 	tcp_stack_t	*tcps = tcp->tcp_tcps;
23461 
23462 	/*
23463 	 * There are a few cases to be considered while setting the sequence no.
23464 	 * Essentially, we can come here while processing an unacceptable pkt
23465 	 * in the TCPS_SYN_RCVD state, in which case we set the sequence number
23466 	 * to snxt (per RFC 793), note the swnd wouldn't have been set yet.
23467 	 * If we are here for a zero window probe, stick with suna. In all
23468 	 * other cases, we check if suna + swnd encompasses snxt and set
23469 	 * the sequence number to snxt, if so. If snxt falls outside the
23470 	 * window (the receiver probably shrunk its window), we will go with
23471 	 * suna + swnd, otherwise the sequence no will be unacceptable to the
23472 	 * receiver.
23473 	 */
23474 	if (tcp->tcp_zero_win_probe) {
23475 		seq_no = tcp->tcp_suna;
23476 	} else if (tcp->tcp_state == TCPS_SYN_RCVD) {
23477 		ASSERT(tcp->tcp_swnd == 0);
23478 		seq_no = tcp->tcp_snxt;
23479 	} else {
23480 		seq_no = SEQ_GT(tcp->tcp_snxt,
23481 		    (tcp->tcp_suna + tcp->tcp_swnd)) ?
23482 		    (tcp->tcp_suna + tcp->tcp_swnd) : tcp->tcp_snxt;
23483 	}
23484 
23485 	if (tcp->tcp_valid_bits) {
23486 		/*
23487 		 * For the complex case where we have to send some
23488 		 * controls (FIN or SYN), let tcp_xmit_mp do it.
23489 		 */
23490 		return (tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, seq_no, B_FALSE,
23491 		    NULL, B_FALSE));
23492 	} else {
23493 		/* Generate a simple ACK */
23494 		int	data_length;
23495 		uchar_t	*rptr;
23496 		tcph_t	*tcph;
23497 		mblk_t	*mp1;
23498 		int32_t	tcp_hdr_len;
23499 		int32_t	tcp_tcp_hdr_len;
23500 		int32_t	num_sack_blk = 0;
23501 		int32_t sack_opt_len;
23502 
23503 		/*
23504 		 * Allocate space for TCP + IP headers
23505 		 * and link-level header
23506 		 */
23507 		if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
23508 			num_sack_blk = MIN(tcp->tcp_max_sack_blk,
23509 			    tcp->tcp_num_sack_blk);
23510 			sack_opt_len = num_sack_blk * sizeof (sack_blk_t) +
23511 			    TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN;
23512 			tcp_hdr_len = tcp->tcp_hdr_len + sack_opt_len;
23513 			tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len + sack_opt_len;
23514 		} else {
23515 			tcp_hdr_len = tcp->tcp_hdr_len;
23516 			tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len;
23517 		}
23518 		mp1 = allocb(tcp_hdr_len + tcps->tcps_wroff_xtra, BPRI_MED);
23519 		if (!mp1)
23520 			return (NULL);
23521 
23522 		/* Update the latest receive window size in TCP header. */
23523 		U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
23524 		    tcp->tcp_tcph->th_win);
23525 		/* copy in prototype TCP + IP header */
23526 		rptr = mp1->b_rptr + tcps->tcps_wroff_xtra;
23527 		mp1->b_rptr = rptr;
23528 		mp1->b_wptr = rptr + tcp_hdr_len;
23529 		bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len);
23530 
23531 		tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len];
23532 
23533 		/* Set the TCP sequence number. */
23534 		U32_TO_ABE32(seq_no, tcph->th_seq);
23535 
23536 		/* Set up the TCP flag field. */
23537 		tcph->th_flags[0] = (uchar_t)TH_ACK;
23538 		if (tcp->tcp_ecn_echo_on)
23539 			tcph->th_flags[0] |= TH_ECE;
23540 
23541 		tcp->tcp_rack = tcp->tcp_rnxt;
23542 		tcp->tcp_rack_cnt = 0;
23543 
23544 		/* fill in timestamp option if in use */
23545 		if (tcp->tcp_snd_ts_ok) {
23546 			uint32_t llbolt = (uint32_t)lbolt;
23547 
23548 			U32_TO_BE32(llbolt,
23549 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+4);
23550 			U32_TO_BE32(tcp->tcp_ts_recent,
23551 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+8);
23552 		}
23553 
23554 		/* Fill in SACK options */
23555 		if (num_sack_blk > 0) {
23556 			uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len;
23557 			sack_blk_t *tmp;
23558 			int32_t	i;
23559 
23560 			wptr[0] = TCPOPT_NOP;
23561 			wptr[1] = TCPOPT_NOP;
23562 			wptr[2] = TCPOPT_SACK;
23563 			wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk *
23564 			    sizeof (sack_blk_t);
23565 			wptr += TCPOPT_REAL_SACK_LEN;
23566 
23567 			tmp = tcp->tcp_sack_list;
23568 			for (i = 0; i < num_sack_blk; i++) {
23569 				U32_TO_BE32(tmp[i].begin, wptr);
23570 				wptr += sizeof (tcp_seq);
23571 				U32_TO_BE32(tmp[i].end, wptr);
23572 				wptr += sizeof (tcp_seq);
23573 			}
23574 			tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1)
23575 			    << 4);
23576 		}
23577 
23578 		if (tcp->tcp_ipversion == IPV4_VERSION) {
23579 			((ipha_t *)rptr)->ipha_length = htons(tcp_hdr_len);
23580 		} else {
23581 			/* Check for ip6i_t header in sticky hdrs */
23582 			ip6_t *ip6 = (ip6_t *)(rptr +
23583 			    (((ip6_t *)rptr)->ip6_nxt == IPPROTO_RAW ?
23584 			    sizeof (ip6i_t) : 0));
23585 
23586 			ip6->ip6_plen = htons(tcp_hdr_len -
23587 			    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
23588 		}
23589 
23590 		/*
23591 		 * Prime pump for checksum calculation in IP.  Include the
23592 		 * adjustment for a source route if any.
23593 		 */
23594 		data_length = tcp_tcp_hdr_len + tcp->tcp_sum;
23595 		data_length = (data_length >> 16) + (data_length & 0xFFFF);
23596 		U16_TO_ABE16(data_length, tcph->th_sum);
23597 
23598 		if (tcp->tcp_ip_forward_progress) {
23599 			ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
23600 			*(uint32_t *)mp1->b_rptr  |= IP_FORWARD_PROG;
23601 			tcp->tcp_ip_forward_progress = B_FALSE;
23602 		}
23603 		return (mp1);
23604 	}
23605 }
23606 
23607 /*
23608  * To create a temporary tcp structure for inserting into bind hash list.
23609  * The parameter is assumed to be in network byte order, ready for use.
23610  */
23611 /* ARGSUSED */
23612 static tcp_t *
23613 tcp_alloc_temp_tcp(in_port_t port, tcp_stack_t *tcps)
23614 {
23615 	conn_t	*connp;
23616 	tcp_t	*tcp;
23617 
23618 	connp = ipcl_conn_create(IPCL_TCPCONN, KM_SLEEP, tcps->tcps_netstack);
23619 	if (connp == NULL)
23620 		return (NULL);
23621 
23622 	tcp = connp->conn_tcp;
23623 	tcp->tcp_tcps = tcps;
23624 	TCPS_REFHOLD(tcps);
23625 
23626 	/*
23627 	 * Only initialize the necessary info in those structures.  Note
23628 	 * that since INADDR_ANY is all 0, we do not need to set
23629 	 * tcp_bound_source to INADDR_ANY here.
23630 	 */
23631 	tcp->tcp_state = TCPS_BOUND;
23632 	tcp->tcp_lport = port;
23633 	tcp->tcp_exclbind = 1;
23634 	tcp->tcp_reserved_port = 1;
23635 
23636 	/* Just for place holding... */
23637 	tcp->tcp_ipversion = IPV4_VERSION;
23638 
23639 	return (tcp);
23640 }
23641 
23642 /*
23643  * To remove a port range specified by lo_port and hi_port from the
23644  * reserved port ranges.  This is one of the three public functions of
23645  * the reserved port interface.  Note that a port range has to be removed
23646  * as a whole.  Ports in a range cannot be removed individually.
23647  *
23648  * Params:
23649  *	in_port_t lo_port: the beginning port of the reserved port range to
23650  *		be deleted.
23651  *	in_port_t hi_port: the ending port of the reserved port range to
23652  *		be deleted.
23653  *
23654  * Return:
23655  *	B_TRUE if the deletion is successful, B_FALSE otherwise.
23656  *
23657  * Assumes that nca is only for zoneid=0
23658  */
23659 boolean_t
23660 tcp_reserved_port_del(in_port_t lo_port, in_port_t hi_port)
23661 {
23662 	int	i, j;
23663 	int	size;
23664 	tcp_t	**temp_tcp_array;
23665 	tcp_t	*tcp;
23666 	tcp_stack_t	*tcps;
23667 
23668 	tcps = netstack_find_by_stackid(GLOBAL_NETSTACKID)->netstack_tcp;
23669 	ASSERT(tcps != NULL);
23670 
23671 	rw_enter(&tcps->tcps_reserved_port_lock, RW_WRITER);
23672 
23673 	/* First make sure that the port ranage is indeed reserved. */
23674 	for (i = 0; i < tcps->tcps_reserved_port_array_size; i++) {
23675 		if (tcps->tcps_reserved_port[i].lo_port == lo_port) {
23676 			hi_port = tcps->tcps_reserved_port[i].hi_port;
23677 			temp_tcp_array =
23678 			    tcps->tcps_reserved_port[i].temp_tcp_array;
23679 			break;
23680 		}
23681 	}
23682 	if (i == tcps->tcps_reserved_port_array_size) {
23683 		rw_exit(&tcps->tcps_reserved_port_lock);
23684 		netstack_rele(tcps->tcps_netstack);
23685 		return (B_FALSE);
23686 	}
23687 
23688 	/*
23689 	 * Remove the range from the array.  This simple loop is possible
23690 	 * because port ranges are inserted in ascending order.
23691 	 */
23692 	for (j = i; j < tcps->tcps_reserved_port_array_size - 1; j++) {
23693 		tcps->tcps_reserved_port[j].lo_port =
23694 		    tcps->tcps_reserved_port[j+1].lo_port;
23695 		tcps->tcps_reserved_port[j].hi_port =
23696 		    tcps->tcps_reserved_port[j+1].hi_port;
23697 		tcps->tcps_reserved_port[j].temp_tcp_array =
23698 		    tcps->tcps_reserved_port[j+1].temp_tcp_array;
23699 	}
23700 
23701 	/* Remove all the temporary tcp structures. */
23702 	size = hi_port - lo_port + 1;
23703 	while (size > 0) {
23704 		tcp = temp_tcp_array[size - 1];
23705 		ASSERT(tcp != NULL);
23706 		tcp_bind_hash_remove(tcp);
23707 		CONN_DEC_REF(tcp->tcp_connp);
23708 		size--;
23709 	}
23710 	kmem_free(temp_tcp_array, (hi_port - lo_port + 1) * sizeof (tcp_t *));
23711 	tcps->tcps_reserved_port_array_size--;
23712 	rw_exit(&tcps->tcps_reserved_port_lock);
23713 	netstack_rele(tcps->tcps_netstack);
23714 	return (B_TRUE);
23715 }
23716 
23717 /*
23718  * Macro to remove temporary tcp structure from the bind hash list.  The
23719  * first parameter is the list of tcp to be removed.  The second parameter
23720  * is the number of tcps in the array.
23721  */
23722 #define	TCP_TMP_TCP_REMOVE(tcp_array, num, tcps) \
23723 { \
23724 	while ((num) > 0) { \
23725 		tcp_t *tcp = (tcp_array)[(num) - 1]; \
23726 		tf_t *tbf; \
23727 		tcp_t *tcpnext; \
23728 		tbf = &tcps->tcps_bind_fanout[TCP_BIND_HASH(tcp->tcp_lport)]; \
23729 		mutex_enter(&tbf->tf_lock); \
23730 		tcpnext = tcp->tcp_bind_hash; \
23731 		if (tcpnext) { \
23732 			tcpnext->tcp_ptpbhn = \
23733 				tcp->tcp_ptpbhn; \
23734 		} \
23735 		*tcp->tcp_ptpbhn = tcpnext; \
23736 		mutex_exit(&tbf->tf_lock); \
23737 		kmem_free(tcp, sizeof (tcp_t)); \
23738 		(tcp_array)[(num) - 1] = NULL; \
23739 		(num)--; \
23740 	} \
23741 }
23742 
23743 /*
23744  * The public interface for other modules to call to reserve a port range
23745  * in TCP.  The caller passes in how large a port range it wants.  TCP
23746  * will try to find a range and return it via lo_port and hi_port.  This is
23747  * used by NCA's nca_conn_init.
23748  * NCA can only be used in the global zone so this only affects the global
23749  * zone's ports.
23750  *
23751  * Params:
23752  *	int size: the size of the port range to be reserved.
23753  *	in_port_t *lo_port (referenced): returns the beginning port of the
23754  *		reserved port range added.
23755  *	in_port_t *hi_port (referenced): returns the ending port of the
23756  *		reserved port range added.
23757  *
23758  * Return:
23759  *	B_TRUE if the port reservation is successful, B_FALSE otherwise.
23760  *
23761  * Assumes that nca is only for zoneid=0
23762  */
23763 boolean_t
23764 tcp_reserved_port_add(int size, in_port_t *lo_port, in_port_t *hi_port)
23765 {
23766 	tcp_t		*tcp;
23767 	tcp_t		*tmp_tcp;
23768 	tcp_t		**temp_tcp_array;
23769 	tf_t		*tbf;
23770 	in_port_t	net_port;
23771 	in_port_t	port;
23772 	int32_t		cur_size;
23773 	int		i, j;
23774 	boolean_t	used;
23775 	tcp_rport_t 	tmp_ports[TCP_RESERVED_PORTS_ARRAY_MAX_SIZE];
23776 	zoneid_t	zoneid = GLOBAL_ZONEID;
23777 	tcp_stack_t	*tcps;
23778 
23779 	/* Sanity check. */
23780 	if (size <= 0 || size > TCP_RESERVED_PORTS_RANGE_MAX) {
23781 		return (B_FALSE);
23782 	}
23783 
23784 	tcps = netstack_find_by_stackid(GLOBAL_NETSTACKID)->netstack_tcp;
23785 	ASSERT(tcps != NULL);
23786 
23787 	rw_enter(&tcps->tcps_reserved_port_lock, RW_WRITER);
23788 	if (tcps->tcps_reserved_port_array_size ==
23789 	    TCP_RESERVED_PORTS_ARRAY_MAX_SIZE) {
23790 		rw_exit(&tcps->tcps_reserved_port_lock);
23791 		netstack_rele(tcps->tcps_netstack);
23792 		return (B_FALSE);
23793 	}
23794 
23795 	/*
23796 	 * Find the starting port to try.  Since the port ranges are ordered
23797 	 * in the reserved port array, we can do a simple search here.
23798 	 */
23799 	*lo_port = TCP_SMALLEST_RESERVED_PORT;
23800 	*hi_port = TCP_LARGEST_RESERVED_PORT;
23801 	for (i = 0; i < tcps->tcps_reserved_port_array_size;
23802 	    *lo_port = tcps->tcps_reserved_port[i].hi_port + 1, i++) {
23803 		if (tcps->tcps_reserved_port[i].lo_port - *lo_port >= size) {
23804 			*hi_port = tcps->tcps_reserved_port[i].lo_port - 1;
23805 			break;
23806 		}
23807 	}
23808 	/* No available port range. */
23809 	if (i == tcps->tcps_reserved_port_array_size &&
23810 	    *hi_port - *lo_port < size) {
23811 		rw_exit(&tcps->tcps_reserved_port_lock);
23812 		netstack_rele(tcps->tcps_netstack);
23813 		return (B_FALSE);
23814 	}
23815 
23816 	temp_tcp_array = kmem_zalloc(size * sizeof (tcp_t *), KM_NOSLEEP);
23817 	if (temp_tcp_array == NULL) {
23818 		rw_exit(&tcps->tcps_reserved_port_lock);
23819 		netstack_rele(tcps->tcps_netstack);
23820 		return (B_FALSE);
23821 	}
23822 
23823 	/* Go thru the port range to see if some ports are already bound. */
23824 	for (port = *lo_port, cur_size = 0;
23825 	    cur_size < size && port <= *hi_port;
23826 	    cur_size++, port++) {
23827 		used = B_FALSE;
23828 		net_port = htons(port);
23829 		tbf = &tcps->tcps_bind_fanout[TCP_BIND_HASH(net_port)];
23830 		mutex_enter(&tbf->tf_lock);
23831 		for (tcp = tbf->tf_tcp; tcp != NULL;
23832 		    tcp = tcp->tcp_bind_hash) {
23833 			if (IPCL_ZONE_MATCH(tcp->tcp_connp, zoneid) &&
23834 			    net_port == tcp->tcp_lport) {
23835 				/*
23836 				 * A port is already bound.  Search again
23837 				 * starting from port + 1.  Release all
23838 				 * temporary tcps.
23839 				 */
23840 				mutex_exit(&tbf->tf_lock);
23841 				TCP_TMP_TCP_REMOVE(temp_tcp_array, cur_size,
23842 				    tcps);
23843 				*lo_port = port + 1;
23844 				cur_size = -1;
23845 				used = B_TRUE;
23846 				break;
23847 			}
23848 		}
23849 		if (!used) {
23850 			if ((tmp_tcp = tcp_alloc_temp_tcp(net_port, tcps)) ==
23851 			    NULL) {
23852 				/*
23853 				 * Allocation failure.  Just fail the request.
23854 				 * Need to remove all those temporary tcp
23855 				 * structures.
23856 				 */
23857 				mutex_exit(&tbf->tf_lock);
23858 				TCP_TMP_TCP_REMOVE(temp_tcp_array, cur_size,
23859 				    tcps);
23860 				rw_exit(&tcps->tcps_reserved_port_lock);
23861 				kmem_free(temp_tcp_array,
23862 				    (hi_port - lo_port + 1) *
23863 				    sizeof (tcp_t *));
23864 				netstack_rele(tcps->tcps_netstack);
23865 				return (B_FALSE);
23866 			}
23867 			temp_tcp_array[cur_size] = tmp_tcp;
23868 			tcp_bind_hash_insert(tbf, tmp_tcp, B_TRUE);
23869 			mutex_exit(&tbf->tf_lock);
23870 		}
23871 	}
23872 
23873 	/*
23874 	 * The current range is not large enough.  We can actually do another
23875 	 * search if this search is done between 2 reserved port ranges.  But
23876 	 * for first release, we just stop here and return saying that no port
23877 	 * range is available.
23878 	 */
23879 	if (cur_size < size) {
23880 		TCP_TMP_TCP_REMOVE(temp_tcp_array, cur_size, tcps);
23881 		rw_exit(&tcps->tcps_reserved_port_lock);
23882 		kmem_free(temp_tcp_array, size * sizeof (tcp_t *));
23883 		netstack_rele(tcps->tcps_netstack);
23884 		return (B_FALSE);
23885 	}
23886 	*hi_port = port - 1;
23887 
23888 	/*
23889 	 * Insert range into array in ascending order.  Since this function
23890 	 * must not be called often, we choose to use the simplest method.
23891 	 * The above array should not consume excessive stack space as
23892 	 * the size must be very small.  If in future releases, we find
23893 	 * that we should provide more reserved port ranges, this function
23894 	 * has to be modified to be more efficient.
23895 	 */
23896 	if (tcps->tcps_reserved_port_array_size == 0) {
23897 		tcps->tcps_reserved_port[0].lo_port = *lo_port;
23898 		tcps->tcps_reserved_port[0].hi_port = *hi_port;
23899 		tcps->tcps_reserved_port[0].temp_tcp_array = temp_tcp_array;
23900 	} else {
23901 		for (i = 0, j = 0; i < tcps->tcps_reserved_port_array_size;
23902 		    i++, j++) {
23903 			if (*lo_port < tcps->tcps_reserved_port[i].lo_port &&
23904 			    i == j) {
23905 				tmp_ports[j].lo_port = *lo_port;
23906 				tmp_ports[j].hi_port = *hi_port;
23907 				tmp_ports[j].temp_tcp_array = temp_tcp_array;
23908 				j++;
23909 			}
23910 			tmp_ports[j].lo_port =
23911 			    tcps->tcps_reserved_port[i].lo_port;
23912 			tmp_ports[j].hi_port =
23913 			    tcps->tcps_reserved_port[i].hi_port;
23914 			tmp_ports[j].temp_tcp_array =
23915 			    tcps->tcps_reserved_port[i].temp_tcp_array;
23916 		}
23917 		if (j == i) {
23918 			tmp_ports[j].lo_port = *lo_port;
23919 			tmp_ports[j].hi_port = *hi_port;
23920 			tmp_ports[j].temp_tcp_array = temp_tcp_array;
23921 		}
23922 		bcopy(tmp_ports, tcps->tcps_reserved_port, sizeof (tmp_ports));
23923 	}
23924 	tcps->tcps_reserved_port_array_size++;
23925 	rw_exit(&tcps->tcps_reserved_port_lock);
23926 	netstack_rele(tcps->tcps_netstack);
23927 	return (B_TRUE);
23928 }
23929 
23930 /*
23931  * Check to see if a port is in any reserved port range.
23932  *
23933  * Params:
23934  *	in_port_t port: the port to be verified.
23935  *
23936  * Return:
23937  *	B_TRUE is the port is inside a reserved port range, B_FALSE otherwise.
23938  */
23939 boolean_t
23940 tcp_reserved_port_check(in_port_t port, tcp_stack_t *tcps)
23941 {
23942 	int i;
23943 
23944 	rw_enter(&tcps->tcps_reserved_port_lock, RW_READER);
23945 	for (i = 0; i < tcps->tcps_reserved_port_array_size; i++) {
23946 		if (port >= tcps->tcps_reserved_port[i].lo_port ||
23947 		    port <= tcps->tcps_reserved_port[i].hi_port) {
23948 			rw_exit(&tcps->tcps_reserved_port_lock);
23949 			return (B_TRUE);
23950 		}
23951 	}
23952 	rw_exit(&tcps->tcps_reserved_port_lock);
23953 	return (B_FALSE);
23954 }
23955 
23956 /*
23957  * To list all reserved port ranges.  This is the function to handle
23958  * ndd tcp_reserved_port_list.
23959  */
23960 /* ARGSUSED */
23961 static int
23962 tcp_reserved_port_list(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
23963 {
23964 	int i;
23965 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
23966 
23967 	rw_enter(&tcps->tcps_reserved_port_lock, RW_READER);
23968 	if (tcps->tcps_reserved_port_array_size > 0)
23969 		(void) mi_mpprintf(mp, "The following ports are reserved:");
23970 	else
23971 		(void) mi_mpprintf(mp, "No port is reserved.");
23972 	for (i = 0; i < tcps->tcps_reserved_port_array_size; i++) {
23973 		(void) mi_mpprintf(mp, "%d-%d",
23974 		    tcps->tcps_reserved_port[i].lo_port,
23975 		    tcps->tcps_reserved_port[i].hi_port);
23976 	}
23977 	rw_exit(&tcps->tcps_reserved_port_lock);
23978 	return (0);
23979 }
23980 
23981 /*
23982  * Hash list insertion routine for tcp_t structures.
23983  * Inserts entries with the ones bound to a specific IP address first
23984  * followed by those bound to INADDR_ANY.
23985  */
23986 static void
23987 tcp_bind_hash_insert(tf_t *tbf, tcp_t *tcp, int caller_holds_lock)
23988 {
23989 	tcp_t	**tcpp;
23990 	tcp_t	*tcpnext;
23991 
23992 	if (tcp->tcp_ptpbhn != NULL) {
23993 		ASSERT(!caller_holds_lock);
23994 		tcp_bind_hash_remove(tcp);
23995 	}
23996 	tcpp = &tbf->tf_tcp;
23997 	if (!caller_holds_lock) {
23998 		mutex_enter(&tbf->tf_lock);
23999 	} else {
24000 		ASSERT(MUTEX_HELD(&tbf->tf_lock));
24001 	}
24002 	tcpnext = tcpp[0];
24003 	if (tcpnext) {
24004 		/*
24005 		 * If the new tcp bound to the INADDR_ANY address
24006 		 * and the first one in the list is not bound to
24007 		 * INADDR_ANY we skip all entries until we find the
24008 		 * first one bound to INADDR_ANY.
24009 		 * This makes sure that applications binding to a
24010 		 * specific address get preference over those binding to
24011 		 * INADDR_ANY.
24012 		 */
24013 		if (V6_OR_V4_INADDR_ANY(tcp->tcp_bound_source_v6) &&
24014 		    !V6_OR_V4_INADDR_ANY(tcpnext->tcp_bound_source_v6)) {
24015 			while ((tcpnext = tcpp[0]) != NULL &&
24016 			    !V6_OR_V4_INADDR_ANY(tcpnext->tcp_bound_source_v6))
24017 				tcpp = &(tcpnext->tcp_bind_hash);
24018 			if (tcpnext)
24019 				tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash;
24020 		} else
24021 			tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash;
24022 	}
24023 	tcp->tcp_bind_hash = tcpnext;
24024 	tcp->tcp_ptpbhn = tcpp;
24025 	tcpp[0] = tcp;
24026 	if (!caller_holds_lock)
24027 		mutex_exit(&tbf->tf_lock);
24028 }
24029 
24030 /*
24031  * Hash list removal routine for tcp_t structures.
24032  */
24033 static void
24034 tcp_bind_hash_remove(tcp_t *tcp)
24035 {
24036 	tcp_t	*tcpnext;
24037 	kmutex_t *lockp;
24038 	tcp_stack_t	*tcps = tcp->tcp_tcps;
24039 
24040 	if (tcp->tcp_ptpbhn == NULL)
24041 		return;
24042 
24043 	/*
24044 	 * Extract the lock pointer in case there are concurrent
24045 	 * hash_remove's for this instance.
24046 	 */
24047 	ASSERT(tcp->tcp_lport != 0);
24048 	lockp = &tcps->tcps_bind_fanout[TCP_BIND_HASH(tcp->tcp_lport)].tf_lock;
24049 
24050 	ASSERT(lockp != NULL);
24051 	mutex_enter(lockp);
24052 	if (tcp->tcp_ptpbhn) {
24053 		tcpnext = tcp->tcp_bind_hash;
24054 		if (tcpnext) {
24055 			tcpnext->tcp_ptpbhn = tcp->tcp_ptpbhn;
24056 			tcp->tcp_bind_hash = NULL;
24057 		}
24058 		*tcp->tcp_ptpbhn = tcpnext;
24059 		tcp->tcp_ptpbhn = NULL;
24060 	}
24061 	mutex_exit(lockp);
24062 }
24063 
24064 
24065 /*
24066  * Hash list lookup routine for tcp_t structures.
24067  * Returns with a CONN_INC_REF tcp structure. Caller must do a CONN_DEC_REF.
24068  */
24069 static tcp_t *
24070 tcp_acceptor_hash_lookup(t_uscalar_t id, tcp_stack_t *tcps)
24071 {
24072 	tf_t	*tf;
24073 	tcp_t	*tcp;
24074 
24075 	tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)];
24076 	mutex_enter(&tf->tf_lock);
24077 	for (tcp = tf->tf_tcp; tcp != NULL;
24078 	    tcp = tcp->tcp_acceptor_hash) {
24079 		if (tcp->tcp_acceptor_id == id) {
24080 			CONN_INC_REF(tcp->tcp_connp);
24081 			mutex_exit(&tf->tf_lock);
24082 			return (tcp);
24083 		}
24084 	}
24085 	mutex_exit(&tf->tf_lock);
24086 	return (NULL);
24087 }
24088 
24089 
24090 /*
24091  * Hash list insertion routine for tcp_t structures.
24092  */
24093 void
24094 tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp)
24095 {
24096 	tf_t	*tf;
24097 	tcp_t	**tcpp;
24098 	tcp_t	*tcpnext;
24099 	tcp_stack_t	*tcps = tcp->tcp_tcps;
24100 
24101 	tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)];
24102 
24103 	if (tcp->tcp_ptpahn != NULL)
24104 		tcp_acceptor_hash_remove(tcp);
24105 	tcpp = &tf->tf_tcp;
24106 	mutex_enter(&tf->tf_lock);
24107 	tcpnext = tcpp[0];
24108 	if (tcpnext)
24109 		tcpnext->tcp_ptpahn = &tcp->tcp_acceptor_hash;
24110 	tcp->tcp_acceptor_hash = tcpnext;
24111 	tcp->tcp_ptpahn = tcpp;
24112 	tcpp[0] = tcp;
24113 	tcp->tcp_acceptor_lockp = &tf->tf_lock;	/* For tcp_*_hash_remove */
24114 	mutex_exit(&tf->tf_lock);
24115 }
24116 
24117 /*
24118  * Hash list removal routine for tcp_t structures.
24119  */
24120 static void
24121 tcp_acceptor_hash_remove(tcp_t *tcp)
24122 {
24123 	tcp_t	*tcpnext;
24124 	kmutex_t *lockp;
24125 
24126 	/*
24127 	 * Extract the lock pointer in case there are concurrent
24128 	 * hash_remove's for this instance.
24129 	 */
24130 	lockp = tcp->tcp_acceptor_lockp;
24131 
24132 	if (tcp->tcp_ptpahn == NULL)
24133 		return;
24134 
24135 	ASSERT(lockp != NULL);
24136 	mutex_enter(lockp);
24137 	if (tcp->tcp_ptpahn) {
24138 		tcpnext = tcp->tcp_acceptor_hash;
24139 		if (tcpnext) {
24140 			tcpnext->tcp_ptpahn = tcp->tcp_ptpahn;
24141 			tcp->tcp_acceptor_hash = NULL;
24142 		}
24143 		*tcp->tcp_ptpahn = tcpnext;
24144 		tcp->tcp_ptpahn = NULL;
24145 	}
24146 	mutex_exit(lockp);
24147 	tcp->tcp_acceptor_lockp = NULL;
24148 }
24149 
24150 /* ARGSUSED */
24151 static int
24152 tcp_host_param_setvalue(queue_t *q, mblk_t *mp, char *value, caddr_t cp, int af)
24153 {
24154 	int error = 0;
24155 	int retval;
24156 	char *end;
24157 	tcp_hsp_t *hsp;
24158 	tcp_hsp_t *hspprev;
24159 	ipaddr_t addr = 0;		/* Address we're looking for */
24160 	in6_addr_t v6addr;		/* Address we're looking for */
24161 	uint32_t hash;			/* Hash of that address */
24162 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
24163 
24164 	/*
24165 	 * If the following variables are still zero after parsing the input
24166 	 * string, the user didn't specify them and we don't change them in
24167 	 * the HSP.
24168 	 */
24169 
24170 	ipaddr_t mask = 0;		/* Subnet mask */
24171 	in6_addr_t v6mask;
24172 	long sendspace = 0;		/* Send buffer size */
24173 	long recvspace = 0;		/* Receive buffer size */
24174 	long timestamp = 0;	/* Originate TCP TSTAMP option, 1 = yes */
24175 	boolean_t delete = B_FALSE;	/* User asked to delete this HSP */
24176 
24177 	rw_enter(&tcps->tcps_hsp_lock, RW_WRITER);
24178 
24179 	/* Parse and validate address */
24180 	if (af == AF_INET) {
24181 		retval = inet_pton(af, value, &addr);
24182 		if (retval == 1)
24183 			IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
24184 	} else if (af == AF_INET6) {
24185 		retval = inet_pton(af, value, &v6addr);
24186 	} else {
24187 		error = EINVAL;
24188 		goto done;
24189 	}
24190 	if (retval == 0) {
24191 		error = EINVAL;
24192 		goto done;
24193 	}
24194 
24195 	while ((*value) && *value != ' ')
24196 		value++;
24197 
24198 	/* Parse individual keywords, set variables if found */
24199 	while (*value) {
24200 		/* Skip leading blanks */
24201 
24202 		while (*value == ' ' || *value == '\t')
24203 			value++;
24204 
24205 		/* If at end of string, we're done */
24206 
24207 		if (!*value)
24208 			break;
24209 
24210 		/* We have a word, figure out what it is */
24211 
24212 		if (strncmp("mask", value, 4) == 0) {
24213 			value += 4;
24214 			while (*value == ' ' || *value == '\t')
24215 				value++;
24216 			/* Parse subnet mask */
24217 			if (af == AF_INET) {
24218 				retval = inet_pton(af, value, &mask);
24219 				if (retval == 1) {
24220 					V4MASK_TO_V6(mask, v6mask);
24221 				}
24222 			} else if (af == AF_INET6) {
24223 				retval = inet_pton(af, value, &v6mask);
24224 			}
24225 			if (retval != 1) {
24226 				error = EINVAL;
24227 				goto done;
24228 			}
24229 			while ((*value) && *value != ' ')
24230 				value++;
24231 		} else if (strncmp("sendspace", value, 9) == 0) {
24232 			value += 9;
24233 
24234 			if (ddi_strtol(value, &end, 0, &sendspace) != 0 ||
24235 			    sendspace < TCP_XMIT_HIWATER ||
24236 			    sendspace >= (1L<<30)) {
24237 				error = EINVAL;
24238 				goto done;
24239 			}
24240 			value = end;
24241 		} else if (strncmp("recvspace", value, 9) == 0) {
24242 			value += 9;
24243 
24244 			if (ddi_strtol(value, &end, 0, &recvspace) != 0 ||
24245 			    recvspace < TCP_RECV_HIWATER ||
24246 			    recvspace >= (1L<<30)) {
24247 				error = EINVAL;
24248 				goto done;
24249 			}
24250 			value = end;
24251 		} else if (strncmp("timestamp", value, 9) == 0) {
24252 			value += 9;
24253 
24254 			if (ddi_strtol(value, &end, 0, &timestamp) != 0 ||
24255 			    timestamp < 0 || timestamp > 1) {
24256 				error = EINVAL;
24257 				goto done;
24258 			}
24259 
24260 			/*
24261 			 * We increment timestamp so we know it's been set;
24262 			 * this is undone when we put it in the HSP
24263 			 */
24264 			timestamp++;
24265 			value = end;
24266 		} else if (strncmp("delete", value, 6) == 0) {
24267 			value += 6;
24268 			delete = B_TRUE;
24269 		} else {
24270 			error = EINVAL;
24271 			goto done;
24272 		}
24273 	}
24274 
24275 	/* Hash address for lookup */
24276 
24277 	hash = TCP_HSP_HASH(addr);
24278 
24279 	if (delete) {
24280 		/*
24281 		 * Note that deletes don't return an error if the thing
24282 		 * we're trying to delete isn't there.
24283 		 */
24284 		if (tcps->tcps_hsp_hash == NULL)
24285 			goto done;
24286 		hsp = tcps->tcps_hsp_hash[hash];
24287 
24288 		if (hsp) {
24289 			if (IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6,
24290 			    &v6addr)) {
24291 				tcps->tcps_hsp_hash[hash] = hsp->tcp_hsp_next;
24292 				mi_free((char *)hsp);
24293 			} else {
24294 				hspprev = hsp;
24295 				while ((hsp = hsp->tcp_hsp_next) != NULL) {
24296 					if (IN6_ARE_ADDR_EQUAL(
24297 					    &hsp->tcp_hsp_addr_v6, &v6addr)) {
24298 						hspprev->tcp_hsp_next =
24299 						    hsp->tcp_hsp_next;
24300 						mi_free((char *)hsp);
24301 						break;
24302 					}
24303 					hspprev = hsp;
24304 				}
24305 			}
24306 		}
24307 	} else {
24308 		/*
24309 		 * We're adding/modifying an HSP.  If we haven't already done
24310 		 * so, allocate the hash table.
24311 		 */
24312 
24313 		if (!tcps->tcps_hsp_hash) {
24314 			tcps->tcps_hsp_hash = (tcp_hsp_t **)
24315 			    mi_zalloc(sizeof (tcp_hsp_t *) * TCP_HSP_HASH_SIZE);
24316 			if (!tcps->tcps_hsp_hash) {
24317 				error = EINVAL;
24318 				goto done;
24319 			}
24320 		}
24321 
24322 		/* Get head of hash chain */
24323 
24324 		hsp = tcps->tcps_hsp_hash[hash];
24325 
24326 		/* Try to find pre-existing hsp on hash chain */
24327 		/* Doesn't handle CIDR prefixes. */
24328 		while (hsp) {
24329 			if (IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6, &v6addr))
24330 				break;
24331 			hsp = hsp->tcp_hsp_next;
24332 		}
24333 
24334 		/*
24335 		 * If we didn't, create one with default values and put it
24336 		 * at head of hash chain
24337 		 */
24338 
24339 		if (!hsp) {
24340 			hsp = (tcp_hsp_t *)mi_zalloc(sizeof (tcp_hsp_t));
24341 			if (!hsp) {
24342 				error = EINVAL;
24343 				goto done;
24344 			}
24345 			hsp->tcp_hsp_next = tcps->tcps_hsp_hash[hash];
24346 			tcps->tcps_hsp_hash[hash] = hsp;
24347 		}
24348 
24349 		/* Set values that the user asked us to change */
24350 
24351 		hsp->tcp_hsp_addr_v6 = v6addr;
24352 		if (IN6_IS_ADDR_V4MAPPED(&v6addr))
24353 			hsp->tcp_hsp_vers = IPV4_VERSION;
24354 		else
24355 			hsp->tcp_hsp_vers = IPV6_VERSION;
24356 		hsp->tcp_hsp_subnet_v6 = v6mask;
24357 		if (sendspace > 0)
24358 			hsp->tcp_hsp_sendspace = sendspace;
24359 		if (recvspace > 0)
24360 			hsp->tcp_hsp_recvspace = recvspace;
24361 		if (timestamp > 0)
24362 			hsp->tcp_hsp_tstamp = timestamp - 1;
24363 	}
24364 
24365 done:
24366 	rw_exit(&tcps->tcps_hsp_lock);
24367 	return (error);
24368 }
24369 
24370 /* Set callback routine passed to nd_load by tcp_param_register. */
24371 /* ARGSUSED */
24372 static int
24373 tcp_host_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr)
24374 {
24375 	return (tcp_host_param_setvalue(q, mp, value, cp, AF_INET));
24376 }
24377 /* ARGSUSED */
24378 static int
24379 tcp_host_param_set_ipv6(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
24380     cred_t *cr)
24381 {
24382 	return (tcp_host_param_setvalue(q, mp, value, cp, AF_INET6));
24383 }
24384 
24385 /* TCP host parameters report triggered via the Named Dispatch mechanism. */
24386 /* ARGSUSED */
24387 static int
24388 tcp_host_param_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
24389 {
24390 	tcp_hsp_t *hsp;
24391 	int i;
24392 	char addrbuf[INET6_ADDRSTRLEN], subnetbuf[INET6_ADDRSTRLEN];
24393 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
24394 
24395 	rw_enter(&tcps->tcps_hsp_lock, RW_READER);
24396 	(void) mi_mpprintf(mp,
24397 	    "Hash HSP     " MI_COL_HDRPAD_STR
24398 	    "Address         Subnet Mask     Send       Receive    TStamp");
24399 	if (tcps->tcps_hsp_hash) {
24400 		for (i = 0; i < TCP_HSP_HASH_SIZE; i++) {
24401 			hsp = tcps->tcps_hsp_hash[i];
24402 			while (hsp) {
24403 				if (hsp->tcp_hsp_vers == IPV4_VERSION) {
24404 					(void) inet_ntop(AF_INET,
24405 					    &hsp->tcp_hsp_addr,
24406 					    addrbuf, sizeof (addrbuf));
24407 					(void) inet_ntop(AF_INET,
24408 					    &hsp->tcp_hsp_subnet,
24409 					    subnetbuf, sizeof (subnetbuf));
24410 				} else {
24411 					(void) inet_ntop(AF_INET6,
24412 					    &hsp->tcp_hsp_addr_v6,
24413 					    addrbuf, sizeof (addrbuf));
24414 					(void) inet_ntop(AF_INET6,
24415 					    &hsp->tcp_hsp_subnet_v6,
24416 					    subnetbuf, sizeof (subnetbuf));
24417 				}
24418 				(void) mi_mpprintf(mp,
24419 				    " %03d " MI_COL_PTRFMT_STR
24420 				    "%s %s %010d %010d      %d",
24421 				    i,
24422 				    (void *)hsp,
24423 				    addrbuf,
24424 				    subnetbuf,
24425 				    hsp->tcp_hsp_sendspace,
24426 				    hsp->tcp_hsp_recvspace,
24427 				    hsp->tcp_hsp_tstamp);
24428 
24429 				hsp = hsp->tcp_hsp_next;
24430 			}
24431 		}
24432 	}
24433 	rw_exit(&tcps->tcps_hsp_lock);
24434 	return (0);
24435 }
24436 
24437 
24438 /* Data for fast netmask macro used by tcp_hsp_lookup */
24439 
24440 static ipaddr_t netmasks[] = {
24441 	IN_CLASSA_NET, IN_CLASSA_NET, IN_CLASSB_NET,
24442 	IN_CLASSC_NET | IN_CLASSD_NET  /* Class C,D,E */
24443 };
24444 
24445 #define	netmask(addr) (netmasks[(ipaddr_t)(addr) >> 30])
24446 
24447 /*
24448  * XXX This routine should go away and instead we should use the metrics
24449  * associated with the routes to determine the default sndspace and rcvspace.
24450  */
24451 static tcp_hsp_t *
24452 tcp_hsp_lookup(ipaddr_t addr, tcp_stack_t *tcps)
24453 {
24454 	tcp_hsp_t *hsp = NULL;
24455 
24456 	/* Quick check without acquiring the lock. */
24457 	if (tcps->tcps_hsp_hash == NULL)
24458 		return (NULL);
24459 
24460 	rw_enter(&tcps->tcps_hsp_lock, RW_READER);
24461 
24462 	/* This routine finds the best-matching HSP for address addr. */
24463 
24464 	if (tcps->tcps_hsp_hash) {
24465 		int i;
24466 		ipaddr_t srchaddr;
24467 		tcp_hsp_t *hsp_net;
24468 
24469 		/* We do three passes: host, network, and subnet. */
24470 
24471 		srchaddr = addr;
24472 
24473 		for (i = 1; i <= 3; i++) {
24474 			/* Look for exact match on srchaddr */
24475 
24476 			hsp = tcps->tcps_hsp_hash[TCP_HSP_HASH(srchaddr)];
24477 			while (hsp) {
24478 				if (hsp->tcp_hsp_vers == IPV4_VERSION &&
24479 				    hsp->tcp_hsp_addr == srchaddr)
24480 					break;
24481 				hsp = hsp->tcp_hsp_next;
24482 			}
24483 			ASSERT(hsp == NULL ||
24484 			    hsp->tcp_hsp_vers == IPV4_VERSION);
24485 
24486 			/*
24487 			 * If this is the first pass:
24488 			 *   If we found a match, great, return it.
24489 			 *   If not, search for the network on the second pass.
24490 			 */
24491 
24492 			if (i == 1)
24493 				if (hsp)
24494 					break;
24495 				else
24496 				{
24497 					srchaddr = addr & netmask(addr);
24498 					continue;
24499 				}
24500 
24501 			/*
24502 			 * If this is the second pass:
24503 			 *   If we found a match, but there's a subnet mask,
24504 			 *    save the match but try again using the subnet
24505 			 *    mask on the third pass.
24506 			 *   Otherwise, return whatever we found.
24507 			 */
24508 
24509 			if (i == 2) {
24510 				if (hsp && hsp->tcp_hsp_subnet) {
24511 					hsp_net = hsp;
24512 					srchaddr = addr & hsp->tcp_hsp_subnet;
24513 					continue;
24514 				} else {
24515 					break;
24516 				}
24517 			}
24518 
24519 			/*
24520 			 * This must be the third pass.  If we didn't find
24521 			 * anything, return the saved network HSP instead.
24522 			 */
24523 
24524 			if (!hsp)
24525 				hsp = hsp_net;
24526 		}
24527 	}
24528 
24529 	rw_exit(&tcps->tcps_hsp_lock);
24530 	return (hsp);
24531 }
24532 
24533 /*
24534  * XXX Equally broken as the IPv4 routine. Doesn't handle longest
24535  * match lookup.
24536  */
24537 static tcp_hsp_t *
24538 tcp_hsp_lookup_ipv6(in6_addr_t *v6addr, tcp_stack_t *tcps)
24539 {
24540 	tcp_hsp_t *hsp = NULL;
24541 
24542 	/* Quick check without acquiring the lock. */
24543 	if (tcps->tcps_hsp_hash == NULL)
24544 		return (NULL);
24545 
24546 	rw_enter(&tcps->tcps_hsp_lock, RW_READER);
24547 
24548 	/* This routine finds the best-matching HSP for address addr. */
24549 
24550 	if (tcps->tcps_hsp_hash) {
24551 		int i;
24552 		in6_addr_t v6srchaddr;
24553 		tcp_hsp_t *hsp_net;
24554 
24555 		/* We do three passes: host, network, and subnet. */
24556 
24557 		v6srchaddr = *v6addr;
24558 
24559 		for (i = 1; i <= 3; i++) {
24560 			/* Look for exact match on srchaddr */
24561 
24562 			hsp = tcps->tcps_hsp_hash[TCP_HSP_HASH(
24563 			    V4_PART_OF_V6(v6srchaddr))];
24564 			while (hsp) {
24565 				if (hsp->tcp_hsp_vers == IPV6_VERSION &&
24566 				    IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6,
24567 				    &v6srchaddr))
24568 					break;
24569 				hsp = hsp->tcp_hsp_next;
24570 			}
24571 
24572 			/*
24573 			 * If this is the first pass:
24574 			 *   If we found a match, great, return it.
24575 			 *   If not, search for the network on the second pass.
24576 			 */
24577 
24578 			if (i == 1)
24579 				if (hsp)
24580 					break;
24581 				else {
24582 					/* Assume a 64 bit mask */
24583 					v6srchaddr.s6_addr32[0] =
24584 					    v6addr->s6_addr32[0];
24585 					v6srchaddr.s6_addr32[1] =
24586 					    v6addr->s6_addr32[1];
24587 					v6srchaddr.s6_addr32[2] = 0;
24588 					v6srchaddr.s6_addr32[3] = 0;
24589 					continue;
24590 				}
24591 
24592 			/*
24593 			 * If this is the second pass:
24594 			 *   If we found a match, but there's a subnet mask,
24595 			 *    save the match but try again using the subnet
24596 			 *    mask on the third pass.
24597 			 *   Otherwise, return whatever we found.
24598 			 */
24599 
24600 			if (i == 2) {
24601 				ASSERT(hsp == NULL ||
24602 				    hsp->tcp_hsp_vers == IPV6_VERSION);
24603 				if (hsp &&
24604 				    !IN6_IS_ADDR_UNSPECIFIED(
24605 				    &hsp->tcp_hsp_subnet_v6)) {
24606 					hsp_net = hsp;
24607 					V6_MASK_COPY(*v6addr,
24608 					    hsp->tcp_hsp_subnet_v6, v6srchaddr);
24609 					continue;
24610 				} else {
24611 					break;
24612 				}
24613 			}
24614 
24615 			/*
24616 			 * This must be the third pass.  If we didn't find
24617 			 * anything, return the saved network HSP instead.
24618 			 */
24619 
24620 			if (!hsp)
24621 				hsp = hsp_net;
24622 		}
24623 	}
24624 
24625 	rw_exit(&tcps->tcps_hsp_lock);
24626 	return (hsp);
24627 }
24628 
24629 /*
24630  * Type three generator adapted from the random() function in 4.4 BSD:
24631  */
24632 
24633 /*
24634  * Copyright (c) 1983, 1993
24635  *	The Regents of the University of California.  All rights reserved.
24636  *
24637  * Redistribution and use in source and binary forms, with or without
24638  * modification, are permitted provided that the following conditions
24639  * are met:
24640  * 1. Redistributions of source code must retain the above copyright
24641  *    notice, this list of conditions and the following disclaimer.
24642  * 2. Redistributions in binary form must reproduce the above copyright
24643  *    notice, this list of conditions and the following disclaimer in the
24644  *    documentation and/or other materials provided with the distribution.
24645  * 3. All advertising materials mentioning features or use of this software
24646  *    must display the following acknowledgement:
24647  *	This product includes software developed by the University of
24648  *	California, Berkeley and its contributors.
24649  * 4. Neither the name of the University nor the names of its contributors
24650  *    may be used to endorse or promote products derived from this software
24651  *    without specific prior written permission.
24652  *
24653  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24654  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24655  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24656  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24657  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24658  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24659  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24660  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24661  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24662  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24663  * SUCH DAMAGE.
24664  */
24665 
24666 /* Type 3 -- x**31 + x**3 + 1 */
24667 #define	DEG_3		31
24668 #define	SEP_3		3
24669 
24670 
24671 /* Protected by tcp_random_lock */
24672 static int tcp_randtbl[DEG_3 + 1];
24673 
24674 static int *tcp_random_fptr = &tcp_randtbl[SEP_3 + 1];
24675 static int *tcp_random_rptr = &tcp_randtbl[1];
24676 
24677 static int *tcp_random_state = &tcp_randtbl[1];
24678 static int *tcp_random_end_ptr = &tcp_randtbl[DEG_3 + 1];
24679 
24680 kmutex_t tcp_random_lock;
24681 
24682 void
24683 tcp_random_init(void)
24684 {
24685 	int i;
24686 	hrtime_t hrt;
24687 	time_t wallclock;
24688 	uint64_t result;
24689 
24690 	/*
24691 	 * Use high-res timer and current time for seed.  Gethrtime() returns
24692 	 * a longlong, which may contain resolution down to nanoseconds.
24693 	 * The current time will either be a 32-bit or a 64-bit quantity.
24694 	 * XOR the two together in a 64-bit result variable.
24695 	 * Convert the result to a 32-bit value by multiplying the high-order
24696 	 * 32-bits by the low-order 32-bits.
24697 	 */
24698 
24699 	hrt = gethrtime();
24700 	(void) drv_getparm(TIME, &wallclock);
24701 	result = (uint64_t)wallclock ^ (uint64_t)hrt;
24702 	mutex_enter(&tcp_random_lock);
24703 	tcp_random_state[0] = ((result >> 32) & 0xffffffff) *
24704 	    (result & 0xffffffff);
24705 
24706 	for (i = 1; i < DEG_3; i++)
24707 		tcp_random_state[i] = 1103515245 * tcp_random_state[i - 1]
24708 		    + 12345;
24709 	tcp_random_fptr = &tcp_random_state[SEP_3];
24710 	tcp_random_rptr = &tcp_random_state[0];
24711 	mutex_exit(&tcp_random_lock);
24712 	for (i = 0; i < 10 * DEG_3; i++)
24713 		(void) tcp_random();
24714 }
24715 
24716 /*
24717  * tcp_random: Return a random number in the range [1 - (128K + 1)].
24718  * This range is selected to be approximately centered on TCP_ISS / 2,
24719  * and easy to compute. We get this value by generating a 32-bit random
24720  * number, selecting out the high-order 17 bits, and then adding one so
24721  * that we never return zero.
24722  */
24723 int
24724 tcp_random(void)
24725 {
24726 	int i;
24727 
24728 	mutex_enter(&tcp_random_lock);
24729 	*tcp_random_fptr += *tcp_random_rptr;
24730 
24731 	/*
24732 	 * The high-order bits are more random than the low-order bits,
24733 	 * so we select out the high-order 17 bits and add one so that
24734 	 * we never return zero.
24735 	 */
24736 	i = ((*tcp_random_fptr >> 15) & 0x1ffff) + 1;
24737 	if (++tcp_random_fptr >= tcp_random_end_ptr) {
24738 		tcp_random_fptr = tcp_random_state;
24739 		++tcp_random_rptr;
24740 	} else if (++tcp_random_rptr >= tcp_random_end_ptr)
24741 		tcp_random_rptr = tcp_random_state;
24742 
24743 	mutex_exit(&tcp_random_lock);
24744 	return (i);
24745 }
24746 
24747 /*
24748  * XXX This will go away when TPI is extended to send
24749  * info reqs to sockfs/timod .....
24750  * Given a queue, set the max packet size for the write
24751  * side of the queue below stream head.  This value is
24752  * cached on the stream head.
24753  * Returns 1 on success, 0 otherwise.
24754  */
24755 static int
24756 setmaxps(queue_t *q, int maxpsz)
24757 {
24758 	struct stdata	*stp;
24759 	queue_t		*wq;
24760 	stp = STREAM(q);
24761 
24762 	/*
24763 	 * At this point change of a queue parameter is not allowed
24764 	 * when a multiplexor is sitting on top.
24765 	 */
24766 	if (stp->sd_flag & STPLEX)
24767 		return (0);
24768 
24769 	claimstr(stp->sd_wrq);
24770 	wq = stp->sd_wrq->q_next;
24771 	ASSERT(wq != NULL);
24772 	(void) strqset(wq, QMAXPSZ, 0, maxpsz);
24773 	releasestr(stp->sd_wrq);
24774 	return (1);
24775 }
24776 
24777 static int
24778 tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp, int *do_disconnectp,
24779     int *t_errorp, int *sys_errorp)
24780 {
24781 	int error;
24782 	int is_absreq_failure;
24783 	t_scalar_t *opt_lenp;
24784 	t_scalar_t opt_offset;
24785 	int prim_type;
24786 	struct T_conn_req *tcreqp;
24787 	struct T_conn_res *tcresp;
24788 	cred_t *cr;
24789 
24790 	cr = DB_CREDDEF(mp, tcp->tcp_cred);
24791 
24792 	prim_type = ((union T_primitives *)mp->b_rptr)->type;
24793 	ASSERT(prim_type == T_CONN_REQ || prim_type == O_T_CONN_RES ||
24794 	    prim_type == T_CONN_RES);
24795 
24796 	switch (prim_type) {
24797 	case T_CONN_REQ:
24798 		tcreqp = (struct T_conn_req *)mp->b_rptr;
24799 		opt_offset = tcreqp->OPT_offset;
24800 		opt_lenp = (t_scalar_t *)&tcreqp->OPT_length;
24801 		break;
24802 	case O_T_CONN_RES:
24803 	case T_CONN_RES:
24804 		tcresp = (struct T_conn_res *)mp->b_rptr;
24805 		opt_offset = tcresp->OPT_offset;
24806 		opt_lenp = (t_scalar_t *)&tcresp->OPT_length;
24807 		break;
24808 	}
24809 
24810 	*t_errorp = 0;
24811 	*sys_errorp = 0;
24812 	*do_disconnectp = 0;
24813 
24814 	error = tpi_optcom_buf(tcp->tcp_wq, mp, opt_lenp,
24815 	    opt_offset, cr, &tcp_opt_obj,
24816 	    NULL, &is_absreq_failure);
24817 
24818 	switch (error) {
24819 	case  0:		/* no error */
24820 		ASSERT(is_absreq_failure == 0);
24821 		return (0);
24822 	case ENOPROTOOPT:
24823 		*t_errorp = TBADOPT;
24824 		break;
24825 	case EACCES:
24826 		*t_errorp = TACCES;
24827 		break;
24828 	default:
24829 		*t_errorp = TSYSERR; *sys_errorp = error;
24830 		break;
24831 	}
24832 	if (is_absreq_failure != 0) {
24833 		/*
24834 		 * The connection request should get the local ack
24835 		 * T_OK_ACK and then a T_DISCON_IND.
24836 		 */
24837 		*do_disconnectp = 1;
24838 	}
24839 	return (-1);
24840 }
24841 
24842 /*
24843  * Split this function out so that if the secret changes, I'm okay.
24844  *
24845  * Initialize the tcp_iss_cookie and tcp_iss_key.
24846  */
24847 
24848 #define	PASSWD_SIZE 16  /* MUST be multiple of 4 */
24849 
24850 static void
24851 tcp_iss_key_init(uint8_t *phrase, int len, tcp_stack_t *tcps)
24852 {
24853 	struct {
24854 		int32_t current_time;
24855 		uint32_t randnum;
24856 		uint16_t pad;
24857 		uint8_t ether[6];
24858 		uint8_t passwd[PASSWD_SIZE];
24859 	} tcp_iss_cookie;
24860 	time_t t;
24861 
24862 	/*
24863 	 * Start with the current absolute time.
24864 	 */
24865 	(void) drv_getparm(TIME, &t);
24866 	tcp_iss_cookie.current_time = t;
24867 
24868 	/*
24869 	 * XXX - Need a more random number per RFC 1750, not this crap.
24870 	 * OTOH, if what follows is pretty random, then I'm in better shape.
24871 	 */
24872 	tcp_iss_cookie.randnum = (uint32_t)(gethrtime() + tcp_random());
24873 	tcp_iss_cookie.pad = 0x365c;  /* Picked from HMAC pad values. */
24874 
24875 	/*
24876 	 * The cpu_type_info is pretty non-random.  Ugggh.  It does serve
24877 	 * as a good template.
24878 	 */
24879 	bcopy(&cpu_list->cpu_type_info, &tcp_iss_cookie.passwd,
24880 	    min(PASSWD_SIZE, sizeof (cpu_list->cpu_type_info)));
24881 
24882 	/*
24883 	 * The pass-phrase.  Normally this is supplied by user-called NDD.
24884 	 */
24885 	bcopy(phrase, &tcp_iss_cookie.passwd, min(PASSWD_SIZE, len));
24886 
24887 	/*
24888 	 * See 4010593 if this section becomes a problem again,
24889 	 * but the local ethernet address is useful here.
24890 	 */
24891 	(void) localetheraddr(NULL,
24892 	    (struct ether_addr *)&tcp_iss_cookie.ether);
24893 
24894 	/*
24895 	 * Hash 'em all together.  The MD5Final is called per-connection.
24896 	 */
24897 	mutex_enter(&tcps->tcps_iss_key_lock);
24898 	MD5Init(&tcps->tcps_iss_key);
24899 	MD5Update(&tcps->tcps_iss_key, (uchar_t *)&tcp_iss_cookie,
24900 	    sizeof (tcp_iss_cookie));
24901 	mutex_exit(&tcps->tcps_iss_key_lock);
24902 }
24903 
24904 /*
24905  * Set the RFC 1948 pass phrase
24906  */
24907 /* ARGSUSED */
24908 static int
24909 tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
24910     cred_t *cr)
24911 {
24912 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
24913 
24914 	/*
24915 	 * Basically, value contains a new pass phrase.  Pass it along!
24916 	 */
24917 	tcp_iss_key_init((uint8_t *)value, strlen(value), tcps);
24918 	return (0);
24919 }
24920 
24921 /* ARGSUSED */
24922 static int
24923 tcp_sack_info_constructor(void *buf, void *cdrarg, int kmflags)
24924 {
24925 	bzero(buf, sizeof (tcp_sack_info_t));
24926 	return (0);
24927 }
24928 
24929 /* ARGSUSED */
24930 static int
24931 tcp_iphc_constructor(void *buf, void *cdrarg, int kmflags)
24932 {
24933 	bzero(buf, TCP_MAX_COMBINED_HEADER_LENGTH);
24934 	return (0);
24935 }
24936 
24937 /*
24938  * Make sure we wait until the default queue is setup, yet allow
24939  * tcp_g_q_create() to open a TCP stream.
24940  * We need to allow tcp_g_q_create() do do an open
24941  * of tcp, hence we compare curhread.
24942  * All others have to wait until the tcps_g_q has been
24943  * setup.
24944  */
24945 void
24946 tcp_g_q_setup(tcp_stack_t *tcps)
24947 {
24948 	mutex_enter(&tcps->tcps_g_q_lock);
24949 	if (tcps->tcps_g_q != NULL) {
24950 		mutex_exit(&tcps->tcps_g_q_lock);
24951 		return;
24952 	}
24953 	if (tcps->tcps_g_q_creator == NULL) {
24954 		/* This thread will set it up */
24955 		tcps->tcps_g_q_creator = curthread;
24956 		mutex_exit(&tcps->tcps_g_q_lock);
24957 		tcp_g_q_create(tcps);
24958 		mutex_enter(&tcps->tcps_g_q_lock);
24959 		ASSERT(tcps->tcps_g_q_creator == curthread);
24960 		tcps->tcps_g_q_creator = NULL;
24961 		cv_signal(&tcps->tcps_g_q_cv);
24962 		ASSERT(tcps->tcps_g_q != NULL);
24963 		mutex_exit(&tcps->tcps_g_q_lock);
24964 		return;
24965 	}
24966 	/* Everybody but the creator has to wait */
24967 	if (tcps->tcps_g_q_creator != curthread) {
24968 		while (tcps->tcps_g_q == NULL)
24969 			cv_wait(&tcps->tcps_g_q_cv, &tcps->tcps_g_q_lock);
24970 	}
24971 	mutex_exit(&tcps->tcps_g_q_lock);
24972 }
24973 
24974 #define	IP	"ip"
24975 
24976 #define	TCP6DEV		"/devices/pseudo/tcp6@0:tcp6"
24977 
24978 /*
24979  * Create a default tcp queue here instead of in strplumb
24980  */
24981 void
24982 tcp_g_q_create(tcp_stack_t *tcps)
24983 {
24984 	int error;
24985 	ldi_handle_t	lh = NULL;
24986 	ldi_ident_t	li = NULL;
24987 	int		rval;
24988 	cred_t		*cr;
24989 	major_t IP_MAJ;
24990 
24991 #ifdef NS_DEBUG
24992 	(void) printf("tcp_g_q_create()\n");
24993 #endif
24994 
24995 	IP_MAJ = ddi_name_to_major(IP);
24996 
24997 	ASSERT(tcps->tcps_g_q_creator == curthread);
24998 
24999 	error = ldi_ident_from_major(IP_MAJ, &li);
25000 	if (error) {
25001 #ifdef DEBUG
25002 		printf("tcp_g_q_create: lyr ident get failed error %d\n",
25003 		    error);
25004 #endif
25005 		return;
25006 	}
25007 
25008 	cr = zone_get_kcred(netstackid_to_zoneid(
25009 	    tcps->tcps_netstack->netstack_stackid));
25010 	ASSERT(cr != NULL);
25011 	/*
25012 	 * We set the tcp default queue to IPv6 because IPv4 falls
25013 	 * back to IPv6 when it can't find a client, but
25014 	 * IPv6 does not fall back to IPv4.
25015 	 */
25016 	error = ldi_open_by_name(TCP6DEV, FREAD|FWRITE, cr, &lh, li);
25017 	if (error) {
25018 #ifdef DEBUG
25019 		printf("tcp_g_q_create: open of TCP6DEV failed error %d\n",
25020 		    error);
25021 #endif
25022 		goto out;
25023 	}
25024 
25025 	/*
25026 	 * This ioctl causes the tcp framework to cache a pointer to
25027 	 * this stream, so we don't want to close the stream after
25028 	 * this operation.
25029 	 * Use the kernel credentials that are for the zone we're in.
25030 	 */
25031 	error = ldi_ioctl(lh, TCP_IOC_DEFAULT_Q,
25032 	    (intptr_t)0, FKIOCTL, cr, &rval);
25033 	if (error) {
25034 #ifdef DEBUG
25035 		printf("tcp_g_q_create: ioctl TCP_IOC_DEFAULT_Q failed "
25036 		    "error %d\n", error);
25037 #endif
25038 		goto out;
25039 	}
25040 	tcps->tcps_g_q_lh = lh;	/* For tcp_g_q_close */
25041 	lh = NULL;
25042 out:
25043 	/* Close layered handles */
25044 	if (li)
25045 		ldi_ident_release(li);
25046 	/* Keep cred around until _inactive needs it */
25047 	tcps->tcps_g_q_cr = cr;
25048 }
25049 
25050 /*
25051  * We keep tcp_g_q set until all other tcp_t's in the zone
25052  * has gone away, and then when tcp_g_q_inactive() is called
25053  * we clear it.
25054  */
25055 void
25056 tcp_g_q_destroy(tcp_stack_t *tcps)
25057 {
25058 #ifdef NS_DEBUG
25059 	(void) printf("tcp_g_q_destroy()for stack %d\n",
25060 	    tcps->tcps_netstack->netstack_stackid);
25061 #endif
25062 
25063 	if (tcps->tcps_g_q == NULL) {
25064 		return;	/* Nothing to cleanup */
25065 	}
25066 	/*
25067 	 * Drop reference corresponding to the default queue.
25068 	 * This reference was added from tcp_open when the default queue
25069 	 * was created, hence we compensate for this extra drop in
25070 	 * tcp_g_q_close. If the refcnt drops to zero here it means
25071 	 * the default queue was the last one to be open, in which
25072 	 * case, then tcp_g_q_inactive will be
25073 	 * called as a result of the refrele.
25074 	 */
25075 	TCPS_REFRELE(tcps);
25076 }
25077 
25078 /*
25079  * Called when last tcp_t drops reference count using TCPS_REFRELE.
25080  * Run by tcp_q_q_inactive using a taskq.
25081  */
25082 static void
25083 tcp_g_q_close(void *arg)
25084 {
25085 	tcp_stack_t *tcps = arg;
25086 	int error;
25087 	ldi_handle_t	lh = NULL;
25088 	ldi_ident_t	li = NULL;
25089 	cred_t		*cr;
25090 	major_t IP_MAJ;
25091 
25092 	IP_MAJ = ddi_name_to_major(IP);
25093 
25094 #ifdef NS_DEBUG
25095 	(void) printf("tcp_g_q_inactive() for stack %d refcnt %d\n",
25096 	    tcps->tcps_netstack->netstack_stackid,
25097 	    tcps->tcps_netstack->netstack_refcnt);
25098 #endif
25099 	lh = tcps->tcps_g_q_lh;
25100 	if (lh == NULL)
25101 		return;	/* Nothing to cleanup */
25102 
25103 	ASSERT(tcps->tcps_refcnt == 1);
25104 	ASSERT(tcps->tcps_g_q != NULL);
25105 
25106 	error = ldi_ident_from_major(IP_MAJ, &li);
25107 	if (error) {
25108 #ifdef DEBUG
25109 		printf("tcp_g_q_inactive: lyr ident get failed error %d\n",
25110 		    error);
25111 #endif
25112 		return;
25113 	}
25114 
25115 	cr = tcps->tcps_g_q_cr;
25116 	tcps->tcps_g_q_cr = NULL;
25117 	ASSERT(cr != NULL);
25118 
25119 	/*
25120 	 * Make sure we can break the recursion when tcp_close decrements
25121 	 * the reference count causing g_q_inactive to be called again.
25122 	 */
25123 	tcps->tcps_g_q_lh = NULL;
25124 
25125 	/* close the default queue */
25126 	(void) ldi_close(lh, FREAD|FWRITE, cr);
25127 	/*
25128 	 * At this point in time tcps and the rest of netstack_t might
25129 	 * have been deleted.
25130 	 */
25131 	tcps = NULL;
25132 
25133 	/* Close layered handles */
25134 	ldi_ident_release(li);
25135 	crfree(cr);
25136 }
25137 
25138 /*
25139  * Called when last tcp_t drops reference count using TCPS_REFRELE.
25140  *
25141  * Have to ensure that the ldi routines are not used by an
25142  * interrupt thread by using a taskq.
25143  */
25144 void
25145 tcp_g_q_inactive(tcp_stack_t *tcps)
25146 {
25147 	if (tcps->tcps_g_q_lh == NULL)
25148 		return;	/* Nothing to cleanup */
25149 
25150 	ASSERT(tcps->tcps_refcnt == 0);
25151 	TCPS_REFHOLD(tcps); /* Compensate for what g_q_destroy did */
25152 
25153 	if (servicing_interrupt()) {
25154 		(void) taskq_dispatch(tcp_taskq, tcp_g_q_close,
25155 		    (void *) tcps, TQ_SLEEP);
25156 	} else {
25157 		tcp_g_q_close(tcps);
25158 	}
25159 }
25160 
25161 /*
25162  * Called by IP when IP is loaded into the kernel
25163  */
25164 void
25165 tcp_ddi_g_init(void)
25166 {
25167 	tcp_timercache = kmem_cache_create("tcp_timercache",
25168 	    sizeof (tcp_timer_t) + sizeof (mblk_t), 0,
25169 	    NULL, NULL, NULL, NULL, NULL, 0);
25170 
25171 	tcp_sack_info_cache = kmem_cache_create("tcp_sack_info_cache",
25172 	    sizeof (tcp_sack_info_t), 0,
25173 	    tcp_sack_info_constructor, NULL, NULL, NULL, NULL, 0);
25174 
25175 	tcp_iphc_cache = kmem_cache_create("tcp_iphc_cache",
25176 	    TCP_MAX_COMBINED_HEADER_LENGTH, 0,
25177 	    tcp_iphc_constructor, NULL, NULL, NULL, NULL, 0);
25178 
25179 	mutex_init(&tcp_random_lock, NULL, MUTEX_DEFAULT, NULL);
25180 
25181 	/* Initialize the random number generator */
25182 	tcp_random_init();
25183 
25184 	tcp_squeue_wput_proc = tcp_squeue_switch(tcp_squeue_wput);
25185 	tcp_squeue_close_proc = tcp_squeue_switch(tcp_squeue_close);
25186 
25187 	/* A single callback independently of how many netstacks we have */
25188 	ip_squeue_init(tcp_squeue_add);
25189 
25190 	tcp_g_kstat = tcp_g_kstat_init(&tcp_g_statistics);
25191 
25192 	tcp_taskq = taskq_create("tcp_taskq", 1, minclsyspri, 1, 1,
25193 	    TASKQ_PREPOPULATE);
25194 
25195 	/*
25196 	 * We want to be informed each time a stack is created or
25197 	 * destroyed in the kernel, so we can maintain the
25198 	 * set of tcp_stack_t's.
25199 	 */
25200 	netstack_register(NS_TCP, tcp_stack_init, tcp_stack_shutdown,
25201 	    tcp_stack_fini);
25202 }
25203 
25204 
25205 /*
25206  * Initialize the TCP stack instance.
25207  */
25208 static void *
25209 tcp_stack_init(netstackid_t stackid, netstack_t *ns)
25210 {
25211 	tcp_stack_t	*tcps;
25212 	tcpparam_t	*pa;
25213 	int		i;
25214 
25215 	tcps = (tcp_stack_t *)kmem_zalloc(sizeof (*tcps), KM_SLEEP);
25216 	tcps->tcps_netstack = ns;
25217 
25218 	/* Initialize locks */
25219 	rw_init(&tcps->tcps_hsp_lock, NULL, RW_DEFAULT, NULL);
25220 	mutex_init(&tcps->tcps_g_q_lock, NULL, MUTEX_DEFAULT, NULL);
25221 	cv_init(&tcps->tcps_g_q_cv, NULL, CV_DEFAULT, NULL);
25222 	mutex_init(&tcps->tcps_iss_key_lock, NULL, MUTEX_DEFAULT, NULL);
25223 	mutex_init(&tcps->tcps_epriv_port_lock, NULL, MUTEX_DEFAULT, NULL);
25224 	rw_init(&tcps->tcps_reserved_port_lock, NULL, RW_DEFAULT, NULL);
25225 
25226 	tcps->tcps_g_num_epriv_ports = TCP_NUM_EPRIV_PORTS;
25227 	tcps->tcps_g_epriv_ports[0] = 2049;
25228 	tcps->tcps_g_epriv_ports[1] = 4045;
25229 	tcps->tcps_min_anonpriv_port = 512;
25230 
25231 	tcps->tcps_bind_fanout = kmem_zalloc(sizeof (tf_t) *
25232 	    TCP_BIND_FANOUT_SIZE, KM_SLEEP);
25233 	tcps->tcps_acceptor_fanout = kmem_zalloc(sizeof (tf_t) *
25234 	    TCP_FANOUT_SIZE, KM_SLEEP);
25235 	tcps->tcps_reserved_port = kmem_zalloc(sizeof (tcp_rport_t) *
25236 	    TCP_RESERVED_PORTS_ARRAY_MAX_SIZE, KM_SLEEP);
25237 
25238 	for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) {
25239 		mutex_init(&tcps->tcps_bind_fanout[i].tf_lock, NULL,
25240 		    MUTEX_DEFAULT, NULL);
25241 	}
25242 
25243 	for (i = 0; i < TCP_FANOUT_SIZE; i++) {
25244 		mutex_init(&tcps->tcps_acceptor_fanout[i].tf_lock, NULL,
25245 		    MUTEX_DEFAULT, NULL);
25246 	}
25247 
25248 	/* TCP's IPsec code calls the packet dropper. */
25249 	ip_drop_register(&tcps->tcps_dropper, "TCP IPsec policy enforcement");
25250 
25251 	pa = (tcpparam_t *)kmem_alloc(sizeof (lcl_tcp_param_arr), KM_SLEEP);
25252 	tcps->tcps_params = pa;
25253 	bcopy(lcl_tcp_param_arr, tcps->tcps_params, sizeof (lcl_tcp_param_arr));
25254 
25255 	(void) tcp_param_register(&tcps->tcps_g_nd, tcps->tcps_params,
25256 	    A_CNT(lcl_tcp_param_arr), tcps);
25257 
25258 	/*
25259 	 * Note: To really walk the device tree you need the devinfo
25260 	 * pointer to your device which is only available after probe/attach.
25261 	 * The following is safe only because it uses ddi_root_node()
25262 	 */
25263 	tcp_max_optsize = optcom_max_optsize(tcp_opt_obj.odb_opt_des_arr,
25264 	    tcp_opt_obj.odb_opt_arr_cnt);
25265 
25266 	/*
25267 	 * Initialize RFC 1948 secret values.  This will probably be reset once
25268 	 * by the boot scripts.
25269 	 *
25270 	 * Use NULL name, as the name is caught by the new lockstats.
25271 	 *
25272 	 * Initialize with some random, non-guessable string, like the global
25273 	 * T_INFO_ACK.
25274 	 */
25275 
25276 	tcp_iss_key_init((uint8_t *)&tcp_g_t_info_ack,
25277 	    sizeof (tcp_g_t_info_ack), tcps);
25278 
25279 	tcps->tcps_kstat = tcp_kstat2_init(stackid, &tcps->tcps_statistics);
25280 	tcps->tcps_mibkp = tcp_kstat_init(stackid, tcps);
25281 
25282 	return (tcps);
25283 }
25284 
25285 /*
25286  * Called when the IP module is about to be unloaded.
25287  */
25288 void
25289 tcp_ddi_g_destroy(void)
25290 {
25291 	tcp_g_kstat_fini(tcp_g_kstat);
25292 	tcp_g_kstat = NULL;
25293 	bzero(&tcp_g_statistics, sizeof (tcp_g_statistics));
25294 
25295 	mutex_destroy(&tcp_random_lock);
25296 
25297 	kmem_cache_destroy(tcp_timercache);
25298 	kmem_cache_destroy(tcp_sack_info_cache);
25299 	kmem_cache_destroy(tcp_iphc_cache);
25300 
25301 	netstack_unregister(NS_TCP);
25302 	taskq_destroy(tcp_taskq);
25303 }
25304 
25305 /*
25306  * Shut down the TCP stack instance.
25307  */
25308 /* ARGSUSED */
25309 static void
25310 tcp_stack_shutdown(netstackid_t stackid, void *arg)
25311 {
25312 	tcp_stack_t *tcps = (tcp_stack_t *)arg;
25313 
25314 	tcp_g_q_destroy(tcps);
25315 }
25316 
25317 /*
25318  * Free the TCP stack instance.
25319  */
25320 static void
25321 tcp_stack_fini(netstackid_t stackid, void *arg)
25322 {
25323 	tcp_stack_t *tcps = (tcp_stack_t *)arg;
25324 	int i;
25325 
25326 	nd_free(&tcps->tcps_g_nd);
25327 	kmem_free(tcps->tcps_params, sizeof (lcl_tcp_param_arr));
25328 	tcps->tcps_params = NULL;
25329 	kmem_free(tcps->tcps_wroff_xtra_param, sizeof (tcpparam_t));
25330 	tcps->tcps_wroff_xtra_param = NULL;
25331 	kmem_free(tcps->tcps_mdt_head_param, sizeof (tcpparam_t));
25332 	tcps->tcps_mdt_head_param = NULL;
25333 	kmem_free(tcps->tcps_mdt_tail_param, sizeof (tcpparam_t));
25334 	tcps->tcps_mdt_tail_param = NULL;
25335 	kmem_free(tcps->tcps_mdt_max_pbufs_param, sizeof (tcpparam_t));
25336 	tcps->tcps_mdt_max_pbufs_param = NULL;
25337 
25338 	for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) {
25339 		ASSERT(tcps->tcps_bind_fanout[i].tf_tcp == NULL);
25340 		mutex_destroy(&tcps->tcps_bind_fanout[i].tf_lock);
25341 	}
25342 
25343 	for (i = 0; i < TCP_FANOUT_SIZE; i++) {
25344 		ASSERT(tcps->tcps_acceptor_fanout[i].tf_tcp == NULL);
25345 		mutex_destroy(&tcps->tcps_acceptor_fanout[i].tf_lock);
25346 	}
25347 
25348 	kmem_free(tcps->tcps_bind_fanout, sizeof (tf_t) * TCP_BIND_FANOUT_SIZE);
25349 	tcps->tcps_bind_fanout = NULL;
25350 
25351 	kmem_free(tcps->tcps_acceptor_fanout, sizeof (tf_t) * TCP_FANOUT_SIZE);
25352 	tcps->tcps_acceptor_fanout = NULL;
25353 
25354 	kmem_free(tcps->tcps_reserved_port, sizeof (tcp_rport_t) *
25355 	    TCP_RESERVED_PORTS_ARRAY_MAX_SIZE);
25356 	tcps->tcps_reserved_port = NULL;
25357 
25358 	mutex_destroy(&tcps->tcps_iss_key_lock);
25359 	rw_destroy(&tcps->tcps_hsp_lock);
25360 	mutex_destroy(&tcps->tcps_g_q_lock);
25361 	cv_destroy(&tcps->tcps_g_q_cv);
25362 	mutex_destroy(&tcps->tcps_epriv_port_lock);
25363 	rw_destroy(&tcps->tcps_reserved_port_lock);
25364 
25365 	ip_drop_unregister(&tcps->tcps_dropper);
25366 
25367 	tcp_kstat2_fini(stackid, tcps->tcps_kstat);
25368 	tcps->tcps_kstat = NULL;
25369 	bzero(&tcps->tcps_statistics, sizeof (tcps->tcps_statistics));
25370 
25371 	tcp_kstat_fini(stackid, tcps->tcps_mibkp);
25372 	tcps->tcps_mibkp = NULL;
25373 
25374 	kmem_free(tcps, sizeof (*tcps));
25375 }
25376 
25377 /*
25378  * Generate ISS, taking into account NDD changes may happen halfway through.
25379  * (If the iss is not zero, set it.)
25380  */
25381 
25382 static void
25383 tcp_iss_init(tcp_t *tcp)
25384 {
25385 	MD5_CTX context;
25386 	struct { uint32_t ports; in6_addr_t src; in6_addr_t dst; } arg;
25387 	uint32_t answer[4];
25388 	tcp_stack_t	*tcps = tcp->tcp_tcps;
25389 
25390 	tcps->tcps_iss_incr_extra += (ISS_INCR >> 1);
25391 	tcp->tcp_iss = tcps->tcps_iss_incr_extra;
25392 	switch (tcps->tcps_strong_iss) {
25393 	case 2:
25394 		mutex_enter(&tcps->tcps_iss_key_lock);
25395 		context = tcps->tcps_iss_key;
25396 		mutex_exit(&tcps->tcps_iss_key_lock);
25397 		arg.ports = tcp->tcp_ports;
25398 		if (tcp->tcp_ipversion == IPV4_VERSION) {
25399 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src,
25400 			    &arg.src);
25401 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_dst,
25402 			    &arg.dst);
25403 		} else {
25404 			arg.src = tcp->tcp_ip6h->ip6_src;
25405 			arg.dst = tcp->tcp_ip6h->ip6_dst;
25406 		}
25407 		MD5Update(&context, (uchar_t *)&arg, sizeof (arg));
25408 		MD5Final((uchar_t *)answer, &context);
25409 		tcp->tcp_iss += answer[0] ^ answer[1] ^ answer[2] ^ answer[3];
25410 		/*
25411 		 * Now that we've hashed into a unique per-connection sequence
25412 		 * space, add a random increment per strong_iss == 1.  So I
25413 		 * guess we'll have to...
25414 		 */
25415 		/* FALLTHRU */
25416 	case 1:
25417 		tcp->tcp_iss += (gethrtime() >> ISS_NSEC_SHT) + tcp_random();
25418 		break;
25419 	default:
25420 		tcp->tcp_iss += (uint32_t)gethrestime_sec() * ISS_INCR;
25421 		break;
25422 	}
25423 	tcp->tcp_valid_bits = TCP_ISS_VALID;
25424 	tcp->tcp_fss = tcp->tcp_iss - 1;
25425 	tcp->tcp_suna = tcp->tcp_iss;
25426 	tcp->tcp_snxt = tcp->tcp_iss + 1;
25427 	tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
25428 	tcp->tcp_csuna = tcp->tcp_snxt;
25429 }
25430 
25431 /*
25432  * Exported routine for extracting active tcp connection status.
25433  *
25434  * This is used by the Solaris Cluster Networking software to
25435  * gather a list of connections that need to be forwarded to
25436  * specific nodes in the cluster when configuration changes occur.
25437  *
25438  * The callback is invoked for each tcp_t structure. Returning
25439  * non-zero from the callback routine terminates the search.
25440  */
25441 int
25442 cl_tcp_walk_list(int (*cl_callback)(cl_tcp_info_t *, void *),
25443     void *arg)
25444 {
25445 	netstack_handle_t nh;
25446 	netstack_t *ns;
25447 	int ret = 0;
25448 
25449 	netstack_next_init(&nh);
25450 	while ((ns = netstack_next(&nh)) != NULL) {
25451 		ret = cl_tcp_walk_list_stack(cl_callback, arg,
25452 		    ns->netstack_tcp);
25453 		netstack_rele(ns);
25454 	}
25455 	netstack_next_fini(&nh);
25456 	return (ret);
25457 }
25458 
25459 static int
25460 cl_tcp_walk_list_stack(int (*callback)(cl_tcp_info_t *, void *), void *arg,
25461     tcp_stack_t *tcps)
25462 {
25463 	tcp_t *tcp;
25464 	cl_tcp_info_t	cl_tcpi;
25465 	connf_t	*connfp;
25466 	conn_t	*connp;
25467 	int	i;
25468 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
25469 
25470 	ASSERT(callback != NULL);
25471 
25472 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
25473 		connfp = &ipst->ips_ipcl_globalhash_fanout[i];
25474 		connp = NULL;
25475 
25476 		while ((connp =
25477 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
25478 
25479 			tcp = connp->conn_tcp;
25480 			cl_tcpi.cl_tcpi_version = CL_TCPI_V1;
25481 			cl_tcpi.cl_tcpi_ipversion = tcp->tcp_ipversion;
25482 			cl_tcpi.cl_tcpi_state = tcp->tcp_state;
25483 			cl_tcpi.cl_tcpi_lport = tcp->tcp_lport;
25484 			cl_tcpi.cl_tcpi_fport = tcp->tcp_fport;
25485 			/*
25486 			 * The macros tcp_laddr and tcp_faddr give the IPv4
25487 			 * addresses. They are copied implicitly below as
25488 			 * mapped addresses.
25489 			 */
25490 			cl_tcpi.cl_tcpi_laddr_v6 = tcp->tcp_ip_src_v6;
25491 			if (tcp->tcp_ipversion == IPV4_VERSION) {
25492 				cl_tcpi.cl_tcpi_faddr =
25493 				    tcp->tcp_ipha->ipha_dst;
25494 			} else {
25495 				cl_tcpi.cl_tcpi_faddr_v6 =
25496 				    tcp->tcp_ip6h->ip6_dst;
25497 			}
25498 
25499 			/*
25500 			 * If the callback returns non-zero
25501 			 * we terminate the traversal.
25502 			 */
25503 			if ((*callback)(&cl_tcpi, arg) != 0) {
25504 				CONN_DEC_REF(tcp->tcp_connp);
25505 				return (1);
25506 			}
25507 		}
25508 	}
25509 
25510 	return (0);
25511 }
25512 
25513 /*
25514  * Macros used for accessing the different types of sockaddr
25515  * structures inside a tcp_ioc_abort_conn_t.
25516  */
25517 #define	TCP_AC_V4LADDR(acp) ((sin_t *)&(acp)->ac_local)
25518 #define	TCP_AC_V4RADDR(acp) ((sin_t *)&(acp)->ac_remote)
25519 #define	TCP_AC_V4LOCAL(acp) (TCP_AC_V4LADDR(acp)->sin_addr.s_addr)
25520 #define	TCP_AC_V4REMOTE(acp) (TCP_AC_V4RADDR(acp)->sin_addr.s_addr)
25521 #define	TCP_AC_V4LPORT(acp) (TCP_AC_V4LADDR(acp)->sin_port)
25522 #define	TCP_AC_V4RPORT(acp) (TCP_AC_V4RADDR(acp)->sin_port)
25523 #define	TCP_AC_V6LADDR(acp) ((sin6_t *)&(acp)->ac_local)
25524 #define	TCP_AC_V6RADDR(acp) ((sin6_t *)&(acp)->ac_remote)
25525 #define	TCP_AC_V6LOCAL(acp) (TCP_AC_V6LADDR(acp)->sin6_addr)
25526 #define	TCP_AC_V6REMOTE(acp) (TCP_AC_V6RADDR(acp)->sin6_addr)
25527 #define	TCP_AC_V6LPORT(acp) (TCP_AC_V6LADDR(acp)->sin6_port)
25528 #define	TCP_AC_V6RPORT(acp) (TCP_AC_V6RADDR(acp)->sin6_port)
25529 
25530 /*
25531  * Return the correct error code to mimic the behavior
25532  * of a connection reset.
25533  */
25534 #define	TCP_AC_GET_ERRCODE(state, err) {	\
25535 		switch ((state)) {		\
25536 		case TCPS_SYN_SENT:		\
25537 		case TCPS_SYN_RCVD:		\
25538 			(err) = ECONNREFUSED;	\
25539 			break;			\
25540 		case TCPS_ESTABLISHED:		\
25541 		case TCPS_FIN_WAIT_1:		\
25542 		case TCPS_FIN_WAIT_2:		\
25543 		case TCPS_CLOSE_WAIT:		\
25544 			(err) = ECONNRESET;	\
25545 			break;			\
25546 		case TCPS_CLOSING:		\
25547 		case TCPS_LAST_ACK:		\
25548 		case TCPS_TIME_WAIT:		\
25549 			(err) = 0;		\
25550 			break;			\
25551 		default:			\
25552 			(err) = ENXIO;		\
25553 		}				\
25554 	}
25555 
25556 /*
25557  * Check if a tcp structure matches the info in acp.
25558  */
25559 #define	TCP_AC_ADDR_MATCH(acp, tcp)					\
25560 	(((acp)->ac_local.ss_family == AF_INET) ?		\
25561 	((TCP_AC_V4LOCAL((acp)) == INADDR_ANY ||		\
25562 	TCP_AC_V4LOCAL((acp)) == (tcp)->tcp_ip_src) &&	\
25563 	(TCP_AC_V4REMOTE((acp)) == INADDR_ANY ||		\
25564 	TCP_AC_V4REMOTE((acp)) == (tcp)->tcp_remote) &&	\
25565 	(TCP_AC_V4LPORT((acp)) == 0 ||				\
25566 	TCP_AC_V4LPORT((acp)) == (tcp)->tcp_lport) &&		\
25567 	(TCP_AC_V4RPORT((acp)) == 0 ||				\
25568 	TCP_AC_V4RPORT((acp)) == (tcp)->tcp_fport) &&		\
25569 	(acp)->ac_start <= (tcp)->tcp_state &&	\
25570 	(acp)->ac_end >= (tcp)->tcp_state) :		\
25571 	((IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL((acp))) ||	\
25572 	IN6_ARE_ADDR_EQUAL(&TCP_AC_V6LOCAL((acp)),		\
25573 	&(tcp)->tcp_ip_src_v6)) &&				\
25574 	(IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE((acp))) ||	\
25575 	IN6_ARE_ADDR_EQUAL(&TCP_AC_V6REMOTE((acp)),		\
25576 	&(tcp)->tcp_remote_v6)) &&				\
25577 	(TCP_AC_V6LPORT((acp)) == 0 ||				\
25578 	TCP_AC_V6LPORT((acp)) == (tcp)->tcp_lport) &&		\
25579 	(TCP_AC_V6RPORT((acp)) == 0 ||				\
25580 	TCP_AC_V6RPORT((acp)) == (tcp)->tcp_fport) &&		\
25581 	(acp)->ac_start <= (tcp)->tcp_state &&	\
25582 	(acp)->ac_end >= (tcp)->tcp_state))
25583 
25584 #define	TCP_AC_MATCH(acp, tcp)					\
25585 	(((acp)->ac_zoneid == ALL_ZONES ||			\
25586 	(acp)->ac_zoneid == tcp->tcp_connp->conn_zoneid) ?	\
25587 	TCP_AC_ADDR_MATCH(acp, tcp) : 0)
25588 
25589 /*
25590  * Build a message containing a tcp_ioc_abort_conn_t structure
25591  * which is filled in with information from acp and tp.
25592  */
25593 static mblk_t *
25594 tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *acp, tcp_t *tp)
25595 {
25596 	mblk_t *mp;
25597 	tcp_ioc_abort_conn_t *tacp;
25598 
25599 	mp = allocb(sizeof (uint32_t) + sizeof (*acp), BPRI_LO);
25600 	if (mp == NULL)
25601 		return (NULL);
25602 
25603 	mp->b_datap->db_type = M_CTL;
25604 
25605 	*((uint32_t *)mp->b_rptr) = TCP_IOC_ABORT_CONN;
25606 	tacp = (tcp_ioc_abort_conn_t *)((uchar_t *)mp->b_rptr +
25607 	    sizeof (uint32_t));
25608 
25609 	tacp->ac_start = acp->ac_start;
25610 	tacp->ac_end = acp->ac_end;
25611 	tacp->ac_zoneid = acp->ac_zoneid;
25612 
25613 	if (acp->ac_local.ss_family == AF_INET) {
25614 		tacp->ac_local.ss_family = AF_INET;
25615 		tacp->ac_remote.ss_family = AF_INET;
25616 		TCP_AC_V4LOCAL(tacp) = tp->tcp_ip_src;
25617 		TCP_AC_V4REMOTE(tacp) = tp->tcp_remote;
25618 		TCP_AC_V4LPORT(tacp) = tp->tcp_lport;
25619 		TCP_AC_V4RPORT(tacp) = tp->tcp_fport;
25620 	} else {
25621 		tacp->ac_local.ss_family = AF_INET6;
25622 		tacp->ac_remote.ss_family = AF_INET6;
25623 		TCP_AC_V6LOCAL(tacp) = tp->tcp_ip_src_v6;
25624 		TCP_AC_V6REMOTE(tacp) = tp->tcp_remote_v6;
25625 		TCP_AC_V6LPORT(tacp) = tp->tcp_lport;
25626 		TCP_AC_V6RPORT(tacp) = tp->tcp_fport;
25627 	}
25628 	mp->b_wptr = (uchar_t *)mp->b_rptr + sizeof (uint32_t) + sizeof (*acp);
25629 	return (mp);
25630 }
25631 
25632 /*
25633  * Print a tcp_ioc_abort_conn_t structure.
25634  */
25635 static void
25636 tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *acp)
25637 {
25638 	char lbuf[128];
25639 	char rbuf[128];
25640 	sa_family_t af;
25641 	in_port_t lport, rport;
25642 	ushort_t logflags;
25643 
25644 	af = acp->ac_local.ss_family;
25645 
25646 	if (af == AF_INET) {
25647 		(void) inet_ntop(af, (const void *)&TCP_AC_V4LOCAL(acp),
25648 		    lbuf, 128);
25649 		(void) inet_ntop(af, (const void *)&TCP_AC_V4REMOTE(acp),
25650 		    rbuf, 128);
25651 		lport = ntohs(TCP_AC_V4LPORT(acp));
25652 		rport = ntohs(TCP_AC_V4RPORT(acp));
25653 	} else {
25654 		(void) inet_ntop(af, (const void *)&TCP_AC_V6LOCAL(acp),
25655 		    lbuf, 128);
25656 		(void) inet_ntop(af, (const void *)&TCP_AC_V6REMOTE(acp),
25657 		    rbuf, 128);
25658 		lport = ntohs(TCP_AC_V6LPORT(acp));
25659 		rport = ntohs(TCP_AC_V6RPORT(acp));
25660 	}
25661 
25662 	logflags = SL_TRACE | SL_NOTE;
25663 	/*
25664 	 * Don't print this message to the console if the operation was done
25665 	 * to a non-global zone.
25666 	 */
25667 	if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES)
25668 		logflags |= SL_CONSOLE;
25669 	(void) strlog(TCP_MOD_ID, 0, 1, logflags,
25670 	    "TCP_IOC_ABORT_CONN: local = %s:%d, remote = %s:%d, "
25671 	    "start = %d, end = %d\n", lbuf, lport, rbuf, rport,
25672 	    acp->ac_start, acp->ac_end);
25673 }
25674 
25675 /*
25676  * Called inside tcp_rput when a message built using
25677  * tcp_ioctl_abort_build_msg is put into a queue.
25678  * Note that when we get here there is no wildcard in acp any more.
25679  */
25680 static void
25681 tcp_ioctl_abort_handler(tcp_t *tcp, mblk_t *mp)
25682 {
25683 	tcp_ioc_abort_conn_t *acp;
25684 
25685 	acp = (tcp_ioc_abort_conn_t *)(mp->b_rptr + sizeof (uint32_t));
25686 	if (tcp->tcp_state <= acp->ac_end) {
25687 		/*
25688 		 * If we get here, we are already on the correct
25689 		 * squeue. This ioctl follows the following path
25690 		 * tcp_wput -> tcp_wput_ioctl -> tcp_ioctl_abort_conn
25691 		 * ->tcp_ioctl_abort->squeue_fill (if on a
25692 		 * different squeue)
25693 		 */
25694 		int errcode;
25695 
25696 		TCP_AC_GET_ERRCODE(tcp->tcp_state, errcode);
25697 		(void) tcp_clean_death(tcp, errcode, 26);
25698 	}
25699 	freemsg(mp);
25700 }
25701 
25702 /*
25703  * Abort all matching connections on a hash chain.
25704  */
25705 static int
25706 tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *acp, int index, int *count,
25707     boolean_t exact, tcp_stack_t *tcps)
25708 {
25709 	int nmatch, err = 0;
25710 	tcp_t *tcp;
25711 	MBLKP mp, last, listhead = NULL;
25712 	conn_t	*tconnp;
25713 	connf_t	*connfp;
25714 	ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
25715 
25716 	connfp = &ipst->ips_ipcl_conn_fanout[index];
25717 
25718 startover:
25719 	nmatch = 0;
25720 
25721 	mutex_enter(&connfp->connf_lock);
25722 	for (tconnp = connfp->connf_head; tconnp != NULL;
25723 	    tconnp = tconnp->conn_next) {
25724 		tcp = tconnp->conn_tcp;
25725 		if (TCP_AC_MATCH(acp, tcp)) {
25726 			CONN_INC_REF(tcp->tcp_connp);
25727 			mp = tcp_ioctl_abort_build_msg(acp, tcp);
25728 			if (mp == NULL) {
25729 				err = ENOMEM;
25730 				CONN_DEC_REF(tcp->tcp_connp);
25731 				break;
25732 			}
25733 			mp->b_prev = (mblk_t *)tcp;
25734 
25735 			if (listhead == NULL) {
25736 				listhead = mp;
25737 				last = mp;
25738 			} else {
25739 				last->b_next = mp;
25740 				last = mp;
25741 			}
25742 			nmatch++;
25743 			if (exact)
25744 				break;
25745 		}
25746 
25747 		/* Avoid holding lock for too long. */
25748 		if (nmatch >= 500)
25749 			break;
25750 	}
25751 	mutex_exit(&connfp->connf_lock);
25752 
25753 	/* Pass mp into the correct tcp */
25754 	while ((mp = listhead) != NULL) {
25755 		listhead = listhead->b_next;
25756 		tcp = (tcp_t *)mp->b_prev;
25757 		mp->b_next = mp->b_prev = NULL;
25758 		squeue_fill(tcp->tcp_connp->conn_sqp, mp,
25759 		    tcp_input, tcp->tcp_connp, SQTAG_TCP_ABORT_BUCKET);
25760 	}
25761 
25762 	*count += nmatch;
25763 	if (nmatch >= 500 && err == 0)
25764 		goto startover;
25765 	return (err);
25766 }
25767 
25768 /*
25769  * Abort all connections that matches the attributes specified in acp.
25770  */
25771 static int
25772 tcp_ioctl_abort(tcp_ioc_abort_conn_t *acp, tcp_stack_t *tcps)
25773 {
25774 	sa_family_t af;
25775 	uint32_t  ports;
25776 	uint16_t *pports;
25777 	int err = 0, count = 0;
25778 	boolean_t exact = B_FALSE; /* set when there is no wildcard */
25779 	int index = -1;
25780 	ushort_t logflags;
25781 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
25782 
25783 	af = acp->ac_local.ss_family;
25784 
25785 	if (af == AF_INET) {
25786 		if (TCP_AC_V4REMOTE(acp) != INADDR_ANY &&
25787 		    TCP_AC_V4LPORT(acp) != 0 && TCP_AC_V4RPORT(acp) != 0) {
25788 			pports = (uint16_t *)&ports;
25789 			pports[1] = TCP_AC_V4LPORT(acp);
25790 			pports[0] = TCP_AC_V4RPORT(acp);
25791 			exact = (TCP_AC_V4LOCAL(acp) != INADDR_ANY);
25792 		}
25793 	} else {
25794 		if (!IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE(acp)) &&
25795 		    TCP_AC_V6LPORT(acp) != 0 && TCP_AC_V6RPORT(acp) != 0) {
25796 			pports = (uint16_t *)&ports;
25797 			pports[1] = TCP_AC_V6LPORT(acp);
25798 			pports[0] = TCP_AC_V6RPORT(acp);
25799 			exact = !IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL(acp));
25800 		}
25801 	}
25802 
25803 	/*
25804 	 * For cases where remote addr, local port, and remote port are non-
25805 	 * wildcards, tcp_ioctl_abort_bucket will only be called once.
25806 	 */
25807 	if (index != -1) {
25808 		err = tcp_ioctl_abort_bucket(acp, index,
25809 		    &count, exact, tcps);
25810 	} else {
25811 		/*
25812 		 * loop through all entries for wildcard case
25813 		 */
25814 		for (index = 0;
25815 		    index < ipst->ips_ipcl_conn_fanout_size;
25816 		    index++) {
25817 			err = tcp_ioctl_abort_bucket(acp, index,
25818 			    &count, exact, tcps);
25819 			if (err != 0)
25820 				break;
25821 		}
25822 	}
25823 
25824 	logflags = SL_TRACE | SL_NOTE;
25825 	/*
25826 	 * Don't print this message to the console if the operation was done
25827 	 * to a non-global zone.
25828 	 */
25829 	if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES)
25830 		logflags |= SL_CONSOLE;
25831 	(void) strlog(TCP_MOD_ID, 0, 1, logflags, "TCP_IOC_ABORT_CONN: "
25832 	    "aborted %d connection%c\n", count, ((count > 1) ? 's' : ' '));
25833 	if (err == 0 && count == 0)
25834 		err = ENOENT;
25835 	return (err);
25836 }
25837 
25838 /*
25839  * Process the TCP_IOC_ABORT_CONN ioctl request.
25840  */
25841 static void
25842 tcp_ioctl_abort_conn(queue_t *q, mblk_t *mp)
25843 {
25844 	int	err;
25845 	IOCP    iocp;
25846 	MBLKP   mp1;
25847 	sa_family_t laf, raf;
25848 	tcp_ioc_abort_conn_t *acp;
25849 	zone_t		*zptr;
25850 	conn_t		*connp = Q_TO_CONN(q);
25851 	zoneid_t	zoneid = connp->conn_zoneid;
25852 	tcp_t		*tcp = connp->conn_tcp;
25853 	tcp_stack_t	*tcps = tcp->tcp_tcps;
25854 
25855 	iocp = (IOCP)mp->b_rptr;
25856 
25857 	if ((mp1 = mp->b_cont) == NULL ||
25858 	    iocp->ioc_count != sizeof (tcp_ioc_abort_conn_t)) {
25859 		err = EINVAL;
25860 		goto out;
25861 	}
25862 
25863 	/* check permissions */
25864 	if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) {
25865 		err = EPERM;
25866 		goto out;
25867 	}
25868 
25869 	if (mp1->b_cont != NULL) {
25870 		freemsg(mp1->b_cont);
25871 		mp1->b_cont = NULL;
25872 	}
25873 
25874 	acp = (tcp_ioc_abort_conn_t *)mp1->b_rptr;
25875 	laf = acp->ac_local.ss_family;
25876 	raf = acp->ac_remote.ss_family;
25877 
25878 	/* check that a zone with the supplied zoneid exists */
25879 	if (acp->ac_zoneid != GLOBAL_ZONEID && acp->ac_zoneid != ALL_ZONES) {
25880 		zptr = zone_find_by_id(zoneid);
25881 		if (zptr != NULL) {
25882 			zone_rele(zptr);
25883 		} else {
25884 			err = EINVAL;
25885 			goto out;
25886 		}
25887 	}
25888 
25889 	/*
25890 	 * For exclusive stacks we set the zoneid to zero
25891 	 * to make TCP operate as if in the global zone.
25892 	 */
25893 	if (tcps->tcps_netstack->netstack_stackid != GLOBAL_NETSTACKID)
25894 		acp->ac_zoneid = GLOBAL_ZONEID;
25895 
25896 	if (acp->ac_start < TCPS_SYN_SENT || acp->ac_end > TCPS_TIME_WAIT ||
25897 	    acp->ac_start > acp->ac_end || laf != raf ||
25898 	    (laf != AF_INET && laf != AF_INET6)) {
25899 		err = EINVAL;
25900 		goto out;
25901 	}
25902 
25903 	tcp_ioctl_abort_dump(acp);
25904 	err = tcp_ioctl_abort(acp, tcps);
25905 
25906 out:
25907 	if (mp1 != NULL) {
25908 		freemsg(mp1);
25909 		mp->b_cont = NULL;
25910 	}
25911 
25912 	if (err != 0)
25913 		miocnak(q, mp, 0, err);
25914 	else
25915 		miocack(q, mp, 0, 0);
25916 }
25917 
25918 /*
25919  * tcp_time_wait_processing() handles processing of incoming packets when
25920  * the tcp is in the TIME_WAIT state.
25921  * A TIME_WAIT tcp that has an associated open TCP stream is never put
25922  * on the time wait list.
25923  */
25924 void
25925 tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp, uint32_t seg_seq,
25926     uint32_t seg_ack, int seg_len, tcph_t *tcph)
25927 {
25928 	int32_t		bytes_acked;
25929 	int32_t		gap;
25930 	int32_t		rgap;
25931 	tcp_opt_t	tcpopt;
25932 	uint_t		flags;
25933 	uint32_t	new_swnd = 0;
25934 	conn_t		*connp;
25935 	tcp_stack_t	*tcps = tcp->tcp_tcps;
25936 
25937 	BUMP_LOCAL(tcp->tcp_ibsegs);
25938 	TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_RECV_PKT);
25939 
25940 	flags = (unsigned int)tcph->th_flags[0] & 0xFF;
25941 	new_swnd = BE16_TO_U16(tcph->th_win) <<
25942 	    ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws);
25943 	if (tcp->tcp_snd_ts_ok) {
25944 		if (!tcp_paws_check(tcp, tcph, &tcpopt)) {
25945 			tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
25946 			    tcp->tcp_rnxt, TH_ACK);
25947 			goto done;
25948 		}
25949 	}
25950 	gap = seg_seq - tcp->tcp_rnxt;
25951 	rgap = tcp->tcp_rwnd - (gap + seg_len);
25952 	if (gap < 0) {
25953 		BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs);
25954 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes,
25955 		    (seg_len > -gap ? -gap : seg_len));
25956 		seg_len += gap;
25957 		if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) {
25958 			if (flags & TH_RST) {
25959 				goto done;
25960 			}
25961 			if ((flags & TH_FIN) && seg_len == -1) {
25962 				/*
25963 				 * When TCP receives a duplicate FIN in
25964 				 * TIME_WAIT state, restart the 2 MSL timer.
25965 				 * See page 73 in RFC 793. Make sure this TCP
25966 				 * is already on the TIME_WAIT list. If not,
25967 				 * just restart the timer.
25968 				 */
25969 				if (TCP_IS_DETACHED(tcp)) {
25970 					if (tcp_time_wait_remove(tcp, NULL) ==
25971 					    B_TRUE) {
25972 						tcp_time_wait_append(tcp);
25973 						TCP_DBGSTAT(tcps,
25974 						    tcp_rput_time_wait);
25975 					}
25976 				} else {
25977 					ASSERT(tcp != NULL);
25978 					TCP_TIMER_RESTART(tcp,
25979 					    tcps->tcps_time_wait_interval);
25980 				}
25981 				tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
25982 				    tcp->tcp_rnxt, TH_ACK);
25983 				goto done;
25984 			}
25985 			flags |=  TH_ACK_NEEDED;
25986 			seg_len = 0;
25987 			goto process_ack;
25988 		}
25989 
25990 		/* Fix seg_seq, and chew the gap off the front. */
25991 		seg_seq = tcp->tcp_rnxt;
25992 	}
25993 
25994 	if ((flags & TH_SYN) && gap > 0 && rgap < 0) {
25995 		/*
25996 		 * Make sure that when we accept the connection, pick
25997 		 * an ISS greater than (tcp_snxt + ISS_INCR/2) for the
25998 		 * old connection.
25999 		 *
26000 		 * The next ISS generated is equal to tcp_iss_incr_extra
26001 		 * + ISS_INCR/2 + other components depending on the
26002 		 * value of tcp_strong_iss.  We pre-calculate the new
26003 		 * ISS here and compare with tcp_snxt to determine if
26004 		 * we need to make adjustment to tcp_iss_incr_extra.
26005 		 *
26006 		 * The above calculation is ugly and is a
26007 		 * waste of CPU cycles...
26008 		 */
26009 		uint32_t new_iss = tcps->tcps_iss_incr_extra;
26010 		int32_t adj;
26011 		ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
26012 
26013 		switch (tcps->tcps_strong_iss) {
26014 		case 2: {
26015 			/* Add time and MD5 components. */
26016 			uint32_t answer[4];
26017 			struct {
26018 				uint32_t ports;
26019 				in6_addr_t src;
26020 				in6_addr_t dst;
26021 			} arg;
26022 			MD5_CTX context;
26023 
26024 			mutex_enter(&tcps->tcps_iss_key_lock);
26025 			context = tcps->tcps_iss_key;
26026 			mutex_exit(&tcps->tcps_iss_key_lock);
26027 			arg.ports = tcp->tcp_ports;
26028 			/* We use MAPPED addresses in tcp_iss_init */
26029 			arg.src = tcp->tcp_ip_src_v6;
26030 			if (tcp->tcp_ipversion == IPV4_VERSION) {
26031 				IN6_IPADDR_TO_V4MAPPED(
26032 				    tcp->tcp_ipha->ipha_dst,
26033 				    &arg.dst);
26034 			} else {
26035 				arg.dst =
26036 				    tcp->tcp_ip6h->ip6_dst;
26037 			}
26038 			MD5Update(&context, (uchar_t *)&arg,
26039 			    sizeof (arg));
26040 			MD5Final((uchar_t *)answer, &context);
26041 			answer[0] ^= answer[1] ^ answer[2] ^ answer[3];
26042 			new_iss += (gethrtime() >> ISS_NSEC_SHT) + answer[0];
26043 			break;
26044 		}
26045 		case 1:
26046 			/* Add time component and min random (i.e. 1). */
26047 			new_iss += (gethrtime() >> ISS_NSEC_SHT) + 1;
26048 			break;
26049 		default:
26050 			/* Add only time component. */
26051 			new_iss += (uint32_t)gethrestime_sec() * ISS_INCR;
26052 			break;
26053 		}
26054 		if ((adj = (int32_t)(tcp->tcp_snxt - new_iss)) > 0) {
26055 			/*
26056 			 * New ISS not guaranteed to be ISS_INCR/2
26057 			 * ahead of the current tcp_snxt, so add the
26058 			 * difference to tcp_iss_incr_extra.
26059 			 */
26060 			tcps->tcps_iss_incr_extra += adj;
26061 		}
26062 		/*
26063 		 * If tcp_clean_death() can not perform the task now,
26064 		 * drop the SYN packet and let the other side re-xmit.
26065 		 * Otherwise pass the SYN packet back in, since the
26066 		 * old tcp state has been cleaned up or freed.
26067 		 */
26068 		if (tcp_clean_death(tcp, 0, 27) == -1)
26069 			goto done;
26070 		/*
26071 		 * We will come back to tcp_rput_data
26072 		 * on the global queue. Packets destined
26073 		 * for the global queue will be checked
26074 		 * with global policy. But the policy for
26075 		 * this packet has already been checked as
26076 		 * this was destined for the detached
26077 		 * connection. We need to bypass policy
26078 		 * check this time by attaching a dummy
26079 		 * ipsec_in with ipsec_in_dont_check set.
26080 		 */
26081 		connp = ipcl_classify(mp, tcp->tcp_connp->conn_zoneid, ipst);
26082 		if (connp != NULL) {
26083 			TCP_STAT(tcps, tcp_time_wait_syn_success);
26084 			tcp_reinput(connp, mp, tcp->tcp_connp->conn_sqp);
26085 			return;
26086 		}
26087 		goto done;
26088 	}
26089 
26090 	/*
26091 	 * rgap is the amount of stuff received out of window.  A negative
26092 	 * value is the amount out of window.
26093 	 */
26094 	if (rgap < 0) {
26095 		BUMP_MIB(&tcps->tcps_mib, tcpInDataPastWinSegs);
26096 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataPastWinBytes, -rgap);
26097 		/* Fix seg_len and make sure there is something left. */
26098 		seg_len += rgap;
26099 		if (seg_len <= 0) {
26100 			if (flags & TH_RST) {
26101 				goto done;
26102 			}
26103 			flags |=  TH_ACK_NEEDED;
26104 			seg_len = 0;
26105 			goto process_ack;
26106 		}
26107 	}
26108 	/*
26109 	 * Check whether we can update tcp_ts_recent.  This test is
26110 	 * NOT the one in RFC 1323 3.4.  It is from Braden, 1993, "TCP
26111 	 * Extensions for High Performance: An Update", Internet Draft.
26112 	 */
26113 	if (tcp->tcp_snd_ts_ok &&
26114 	    TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) &&
26115 	    SEQ_LEQ(seg_seq, tcp->tcp_rack)) {
26116 		tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val;
26117 		tcp->tcp_last_rcv_lbolt = lbolt64;
26118 	}
26119 
26120 	if (seg_seq != tcp->tcp_rnxt && seg_len > 0) {
26121 		/* Always ack out of order packets */
26122 		flags |= TH_ACK_NEEDED;
26123 		seg_len = 0;
26124 	} else if (seg_len > 0) {
26125 		BUMP_MIB(&tcps->tcps_mib, tcpInClosed);
26126 		BUMP_MIB(&tcps->tcps_mib, tcpInDataInorderSegs);
26127 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataInorderBytes, seg_len);
26128 	}
26129 	if (flags & TH_RST) {
26130 		(void) tcp_clean_death(tcp, 0, 28);
26131 		goto done;
26132 	}
26133 	if (flags & TH_SYN) {
26134 		tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1,
26135 		    TH_RST|TH_ACK);
26136 		/*
26137 		 * Do not delete the TCP structure if it is in
26138 		 * TIME_WAIT state.  Refer to RFC 1122, 4.2.2.13.
26139 		 */
26140 		goto done;
26141 	}
26142 process_ack:
26143 	if (flags & TH_ACK) {
26144 		bytes_acked = (int)(seg_ack - tcp->tcp_suna);
26145 		if (bytes_acked <= 0) {
26146 			if (bytes_acked == 0 && seg_len == 0 &&
26147 			    new_swnd == tcp->tcp_swnd)
26148 				BUMP_MIB(&tcps->tcps_mib, tcpInDupAck);
26149 		} else {
26150 			/* Acks something not sent */
26151 			flags |= TH_ACK_NEEDED;
26152 		}
26153 	}
26154 	if (flags & TH_ACK_NEEDED) {
26155 		/*
26156 		 * Time to send an ack for some reason.
26157 		 */
26158 		tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
26159 		    tcp->tcp_rnxt, TH_ACK);
26160 	}
26161 done:
26162 	if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) {
26163 		DB_CKSUMSTART(mp) = 0;
26164 		mp->b_datap->db_struioflag &= ~STRUIO_EAGER;
26165 		TCP_STAT(tcps, tcp_time_wait_syn_fail);
26166 	}
26167 	freemsg(mp);
26168 }
26169 
26170 /*
26171  * Allocate a T_SVR4_OPTMGMT_REQ.
26172  * The caller needs to increment tcp_drop_opt_ack_cnt when sending these so
26173  * that tcp_rput_other can drop the acks.
26174  */
26175 static mblk_t *
26176 tcp_setsockopt_mp(int level, int cmd, char *opt, int optlen)
26177 {
26178 	mblk_t *mp;
26179 	struct T_optmgmt_req *tor;
26180 	struct opthdr *oh;
26181 	uint_t size;
26182 	char *optptr;
26183 
26184 	size = sizeof (*tor) + sizeof (*oh) + optlen;
26185 	mp = allocb(size, BPRI_MED);
26186 	if (mp == NULL)
26187 		return (NULL);
26188 
26189 	mp->b_wptr += size;
26190 	mp->b_datap->db_type = M_PROTO;
26191 	tor = (struct T_optmgmt_req *)mp->b_rptr;
26192 	tor->PRIM_type = T_SVR4_OPTMGMT_REQ;
26193 	tor->MGMT_flags = T_NEGOTIATE;
26194 	tor->OPT_length = sizeof (*oh) + optlen;
26195 	tor->OPT_offset = (t_scalar_t)sizeof (*tor);
26196 
26197 	oh = (struct opthdr *)&tor[1];
26198 	oh->level = level;
26199 	oh->name = cmd;
26200 	oh->len = optlen;
26201 	if (optlen != 0) {
26202 		optptr = (char *)&oh[1];
26203 		bcopy(opt, optptr, optlen);
26204 	}
26205 	return (mp);
26206 }
26207 
26208 /*
26209  * TCP Timers Implementation.
26210  */
26211 timeout_id_t
26212 tcp_timeout(conn_t *connp, void (*f)(void *), clock_t tim)
26213 {
26214 	mblk_t *mp;
26215 	tcp_timer_t *tcpt;
26216 	tcp_t *tcp = connp->conn_tcp;
26217 	tcp_stack_t	*tcps = tcp->tcp_tcps;
26218 
26219 	ASSERT(connp->conn_sqp != NULL);
26220 
26221 	TCP_DBGSTAT(tcps, tcp_timeout_calls);
26222 
26223 	if (tcp->tcp_timercache == NULL) {
26224 		mp = tcp_timermp_alloc(KM_NOSLEEP | KM_PANIC);
26225 	} else {
26226 		TCP_DBGSTAT(tcps, tcp_timeout_cached_alloc);
26227 		mp = tcp->tcp_timercache;
26228 		tcp->tcp_timercache = mp->b_next;
26229 		mp->b_next = NULL;
26230 		ASSERT(mp->b_wptr == NULL);
26231 	}
26232 
26233 	CONN_INC_REF(connp);
26234 	tcpt = (tcp_timer_t *)mp->b_rptr;
26235 	tcpt->connp = connp;
26236 	tcpt->tcpt_proc = f;
26237 	tcpt->tcpt_tid = timeout(tcp_timer_callback, mp, tim);
26238 	return ((timeout_id_t)mp);
26239 }
26240 
26241 static void
26242 tcp_timer_callback(void *arg)
26243 {
26244 	mblk_t *mp = (mblk_t *)arg;
26245 	tcp_timer_t *tcpt;
26246 	conn_t	*connp;
26247 
26248 	tcpt = (tcp_timer_t *)mp->b_rptr;
26249 	connp = tcpt->connp;
26250 	squeue_fill(connp->conn_sqp, mp,
26251 	    tcp_timer_handler, connp, SQTAG_TCP_TIMER);
26252 }
26253 
26254 static void
26255 tcp_timer_handler(void *arg, mblk_t *mp, void *arg2)
26256 {
26257 	tcp_timer_t *tcpt;
26258 	conn_t *connp = (conn_t *)arg;
26259 	tcp_t *tcp = connp->conn_tcp;
26260 
26261 	tcpt = (tcp_timer_t *)mp->b_rptr;
26262 	ASSERT(connp == tcpt->connp);
26263 	ASSERT((squeue_t *)arg2 == connp->conn_sqp);
26264 
26265 	/*
26266 	 * If the TCP has reached the closed state, don't proceed any
26267 	 * further. This TCP logically does not exist on the system.
26268 	 * tcpt_proc could for example access queues, that have already
26269 	 * been qprocoff'ed off. Also see comments at the start of tcp_input
26270 	 */
26271 	if (tcp->tcp_state != TCPS_CLOSED) {
26272 		(*tcpt->tcpt_proc)(connp);
26273 	} else {
26274 		tcp->tcp_timer_tid = 0;
26275 	}
26276 	tcp_timer_free(connp->conn_tcp, mp);
26277 }
26278 
26279 /*
26280  * There is potential race with untimeout and the handler firing at the same
26281  * time. The mblock may be freed by the handler while we are trying to use
26282  * it. But since both should execute on the same squeue, this race should not
26283  * occur.
26284  */
26285 clock_t
26286 tcp_timeout_cancel(conn_t *connp, timeout_id_t id)
26287 {
26288 	mblk_t	*mp = (mblk_t *)id;
26289 	tcp_timer_t *tcpt;
26290 	clock_t delta;
26291 	tcp_stack_t	*tcps = connp->conn_tcp->tcp_tcps;
26292 
26293 	TCP_DBGSTAT(tcps, tcp_timeout_cancel_reqs);
26294 
26295 	if (mp == NULL)
26296 		return (-1);
26297 
26298 	tcpt = (tcp_timer_t *)mp->b_rptr;
26299 	ASSERT(tcpt->connp == connp);
26300 
26301 	delta = untimeout(tcpt->tcpt_tid);
26302 
26303 	if (delta >= 0) {
26304 		TCP_DBGSTAT(tcps, tcp_timeout_canceled);
26305 		tcp_timer_free(connp->conn_tcp, mp);
26306 		CONN_DEC_REF(connp);
26307 	}
26308 
26309 	return (delta);
26310 }
26311 
26312 /*
26313  * Allocate space for the timer event. The allocation looks like mblk, but it is
26314  * not a proper mblk. To avoid confusion we set b_wptr to NULL.
26315  *
26316  * Dealing with failures: If we can't allocate from the timer cache we try
26317  * allocating from dblock caches using allocb_tryhard(). In this case b_wptr
26318  * points to b_rptr.
26319  * If we can't allocate anything using allocb_tryhard(), we perform a last
26320  * attempt and use kmem_alloc_tryhard(). In this case we set b_wptr to -1 and
26321  * save the actual allocation size in b_datap.
26322  */
26323 mblk_t *
26324 tcp_timermp_alloc(int kmflags)
26325 {
26326 	mblk_t *mp = (mblk_t *)kmem_cache_alloc(tcp_timercache,
26327 	    kmflags & ~KM_PANIC);
26328 
26329 	if (mp != NULL) {
26330 		mp->b_next = mp->b_prev = NULL;
26331 		mp->b_rptr = (uchar_t *)(&mp[1]);
26332 		mp->b_wptr = NULL;
26333 		mp->b_datap = NULL;
26334 		mp->b_queue = NULL;
26335 		mp->b_cont = NULL;
26336 	} else if (kmflags & KM_PANIC) {
26337 		/*
26338 		 * Failed to allocate memory for the timer. Try allocating from
26339 		 * dblock caches.
26340 		 */
26341 		/* ipclassifier calls this from a constructor - hence no tcps */
26342 		TCP_G_STAT(tcp_timermp_allocfail);
26343 		mp = allocb_tryhard(sizeof (tcp_timer_t));
26344 		if (mp == NULL) {
26345 			size_t size = 0;
26346 			/*
26347 			 * Memory is really low. Try tryhard allocation.
26348 			 *
26349 			 * ipclassifier calls this from a constructor -
26350 			 * hence no tcps
26351 			 */
26352 			TCP_G_STAT(tcp_timermp_allocdblfail);
26353 			mp = kmem_alloc_tryhard(sizeof (mblk_t) +
26354 			    sizeof (tcp_timer_t), &size, kmflags);
26355 			mp->b_rptr = (uchar_t *)(&mp[1]);
26356 			mp->b_next = mp->b_prev = NULL;
26357 			mp->b_wptr = (uchar_t *)-1;
26358 			mp->b_datap = (dblk_t *)size;
26359 			mp->b_queue = NULL;
26360 			mp->b_cont = NULL;
26361 		}
26362 		ASSERT(mp->b_wptr != NULL);
26363 	}
26364 	/* ipclassifier calls this from a constructor - hence no tcps */
26365 	TCP_G_DBGSTAT(tcp_timermp_alloced);
26366 
26367 	return (mp);
26368 }
26369 
26370 /*
26371  * Free per-tcp timer cache.
26372  * It can only contain entries from tcp_timercache.
26373  */
26374 void
26375 tcp_timermp_free(tcp_t *tcp)
26376 {
26377 	mblk_t *mp;
26378 
26379 	while ((mp = tcp->tcp_timercache) != NULL) {
26380 		ASSERT(mp->b_wptr == NULL);
26381 		tcp->tcp_timercache = tcp->tcp_timercache->b_next;
26382 		kmem_cache_free(tcp_timercache, mp);
26383 	}
26384 }
26385 
26386 /*
26387  * Free timer event. Put it on the per-tcp timer cache if there is not too many
26388  * events there already (currently at most two events are cached).
26389  * If the event is not allocated from the timer cache, free it right away.
26390  */
26391 static void
26392 tcp_timer_free(tcp_t *tcp, mblk_t *mp)
26393 {
26394 	mblk_t *mp1 = tcp->tcp_timercache;
26395 	tcp_stack_t	*tcps = tcp->tcp_tcps;
26396 
26397 	if (mp->b_wptr != NULL) {
26398 		/*
26399 		 * This allocation is not from a timer cache, free it right
26400 		 * away.
26401 		 */
26402 		if (mp->b_wptr != (uchar_t *)-1)
26403 			freeb(mp);
26404 		else
26405 			kmem_free(mp, (size_t)mp->b_datap);
26406 	} else if (mp1 == NULL || mp1->b_next == NULL) {
26407 		/* Cache this timer block for future allocations */
26408 		mp->b_rptr = (uchar_t *)(&mp[1]);
26409 		mp->b_next = mp1;
26410 		tcp->tcp_timercache = mp;
26411 	} else {
26412 		kmem_cache_free(tcp_timercache, mp);
26413 		TCP_DBGSTAT(tcps, tcp_timermp_freed);
26414 	}
26415 }
26416 
26417 /*
26418  * End of TCP Timers implementation.
26419  */
26420 
26421 /*
26422  * tcp_{set,clr}qfull() functions are used to either set or clear QFULL
26423  * on the specified backing STREAMS q. Note, the caller may make the
26424  * decision to call based on the tcp_t.tcp_flow_stopped value which
26425  * when check outside the q's lock is only an advisory check ...
26426  */
26427 
26428 void
26429 tcp_setqfull(tcp_t *tcp)
26430 {
26431 	queue_t *q = tcp->tcp_wq;
26432 	tcp_stack_t	*tcps = tcp->tcp_tcps;
26433 
26434 	if (!(q->q_flag & QFULL)) {
26435 		mutex_enter(QLOCK(q));
26436 		if (!(q->q_flag & QFULL)) {
26437 			/* still need to set QFULL */
26438 			q->q_flag |= QFULL;
26439 			tcp->tcp_flow_stopped = B_TRUE;
26440 			mutex_exit(QLOCK(q));
26441 			TCP_STAT(tcps, tcp_flwctl_on);
26442 		} else {
26443 			mutex_exit(QLOCK(q));
26444 		}
26445 	}
26446 }
26447 
26448 void
26449 tcp_clrqfull(tcp_t *tcp)
26450 {
26451 	queue_t *q = tcp->tcp_wq;
26452 
26453 	if (q->q_flag & QFULL) {
26454 		mutex_enter(QLOCK(q));
26455 		if (q->q_flag & QFULL) {
26456 			q->q_flag &= ~QFULL;
26457 			tcp->tcp_flow_stopped = B_FALSE;
26458 			mutex_exit(QLOCK(q));
26459 			if (q->q_flag & QWANTW)
26460 				qbackenable(q, 0);
26461 		} else {
26462 			mutex_exit(QLOCK(q));
26463 		}
26464 	}
26465 }
26466 
26467 
26468 /*
26469  * kstats related to squeues i.e. not per IP instance
26470  */
26471 static void *
26472 tcp_g_kstat_init(tcp_g_stat_t *tcp_g_statp)
26473 {
26474 	kstat_t *ksp;
26475 
26476 	tcp_g_stat_t template = {
26477 		{ "tcp_timermp_alloced",	KSTAT_DATA_UINT64 },
26478 		{ "tcp_timermp_allocfail",	KSTAT_DATA_UINT64 },
26479 		{ "tcp_timermp_allocdblfail",	KSTAT_DATA_UINT64 },
26480 		{ "tcp_freelist_cleanup",	KSTAT_DATA_UINT64 },
26481 	};
26482 
26483 	ksp = kstat_create(TCP_MOD_NAME, 0, "tcpstat_g", "net",
26484 	    KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t),
26485 	    KSTAT_FLAG_VIRTUAL);
26486 
26487 	if (ksp == NULL)
26488 		return (NULL);
26489 
26490 	bcopy(&template, tcp_g_statp, sizeof (template));
26491 	ksp->ks_data = (void *)tcp_g_statp;
26492 
26493 	kstat_install(ksp);
26494 	return (ksp);
26495 }
26496 
26497 static void
26498 tcp_g_kstat_fini(kstat_t *ksp)
26499 {
26500 	if (ksp != NULL) {
26501 		kstat_delete(ksp);
26502 	}
26503 }
26504 
26505 
26506 static void *
26507 tcp_kstat2_init(netstackid_t stackid, tcp_stat_t *tcps_statisticsp)
26508 {
26509 	kstat_t *ksp;
26510 
26511 	tcp_stat_t template = {
26512 		{ "tcp_time_wait",		KSTAT_DATA_UINT64 },
26513 		{ "tcp_time_wait_syn",		KSTAT_DATA_UINT64 },
26514 		{ "tcp_time_wait_success",	KSTAT_DATA_UINT64 },
26515 		{ "tcp_time_wait_fail",		KSTAT_DATA_UINT64 },
26516 		{ "tcp_reinput_syn",		KSTAT_DATA_UINT64 },
26517 		{ "tcp_ip_output",		KSTAT_DATA_UINT64 },
26518 		{ "tcp_detach_non_time_wait",	KSTAT_DATA_UINT64 },
26519 		{ "tcp_detach_time_wait",	KSTAT_DATA_UINT64 },
26520 		{ "tcp_time_wait_reap",		KSTAT_DATA_UINT64 },
26521 		{ "tcp_clean_death_nondetached",	KSTAT_DATA_UINT64 },
26522 		{ "tcp_reinit_calls",		KSTAT_DATA_UINT64 },
26523 		{ "tcp_eager_err1",		KSTAT_DATA_UINT64 },
26524 		{ "tcp_eager_err2",		KSTAT_DATA_UINT64 },
26525 		{ "tcp_eager_blowoff_calls",	KSTAT_DATA_UINT64 },
26526 		{ "tcp_eager_blowoff_q",	KSTAT_DATA_UINT64 },
26527 		{ "tcp_eager_blowoff_q0",	KSTAT_DATA_UINT64 },
26528 		{ "tcp_not_hard_bound",		KSTAT_DATA_UINT64 },
26529 		{ "tcp_no_listener",		KSTAT_DATA_UINT64 },
26530 		{ "tcp_found_eager",		KSTAT_DATA_UINT64 },
26531 		{ "tcp_wrong_queue",		KSTAT_DATA_UINT64 },
26532 		{ "tcp_found_eager_binding1",	KSTAT_DATA_UINT64 },
26533 		{ "tcp_found_eager_bound1",	KSTAT_DATA_UINT64 },
26534 		{ "tcp_eager_has_listener1",	KSTAT_DATA_UINT64 },
26535 		{ "tcp_open_alloc",		KSTAT_DATA_UINT64 },
26536 		{ "tcp_open_detached_alloc",	KSTAT_DATA_UINT64 },
26537 		{ "tcp_rput_time_wait",		KSTAT_DATA_UINT64 },
26538 		{ "tcp_listendrop",		KSTAT_DATA_UINT64 },
26539 		{ "tcp_listendropq0",		KSTAT_DATA_UINT64 },
26540 		{ "tcp_wrong_rq",		KSTAT_DATA_UINT64 },
26541 		{ "tcp_rsrv_calls",		KSTAT_DATA_UINT64 },
26542 		{ "tcp_eagerfree2",		KSTAT_DATA_UINT64 },
26543 		{ "tcp_eagerfree3",		KSTAT_DATA_UINT64 },
26544 		{ "tcp_eagerfree4",		KSTAT_DATA_UINT64 },
26545 		{ "tcp_eagerfree5",		KSTAT_DATA_UINT64 },
26546 		{ "tcp_timewait_syn_fail",	KSTAT_DATA_UINT64 },
26547 		{ "tcp_listen_badflags",	KSTAT_DATA_UINT64 },
26548 		{ "tcp_timeout_calls",		KSTAT_DATA_UINT64 },
26549 		{ "tcp_timeout_cached_alloc",	KSTAT_DATA_UINT64 },
26550 		{ "tcp_timeout_cancel_reqs",	KSTAT_DATA_UINT64 },
26551 		{ "tcp_timeout_canceled",	KSTAT_DATA_UINT64 },
26552 		{ "tcp_timermp_freed",		KSTAT_DATA_UINT64 },
26553 		{ "tcp_push_timer_cnt",		KSTAT_DATA_UINT64 },
26554 		{ "tcp_ack_timer_cnt",		KSTAT_DATA_UINT64 },
26555 		{ "tcp_ire_null1",		KSTAT_DATA_UINT64 },
26556 		{ "tcp_ire_null",		KSTAT_DATA_UINT64 },
26557 		{ "tcp_ip_send",		KSTAT_DATA_UINT64 },
26558 		{ "tcp_ip_ire_send",		KSTAT_DATA_UINT64 },
26559 		{ "tcp_wsrv_called",		KSTAT_DATA_UINT64 },
26560 		{ "tcp_flwctl_on",		KSTAT_DATA_UINT64 },
26561 		{ "tcp_timer_fire_early",	KSTAT_DATA_UINT64 },
26562 		{ "tcp_timer_fire_miss",	KSTAT_DATA_UINT64 },
26563 		{ "tcp_rput_v6_error",		KSTAT_DATA_UINT64 },
26564 		{ "tcp_out_sw_cksum",		KSTAT_DATA_UINT64 },
26565 		{ "tcp_out_sw_cksum_bytes",	KSTAT_DATA_UINT64 },
26566 		{ "tcp_zcopy_on",		KSTAT_DATA_UINT64 },
26567 		{ "tcp_zcopy_off",		KSTAT_DATA_UINT64 },
26568 		{ "tcp_zcopy_backoff",		KSTAT_DATA_UINT64 },
26569 		{ "tcp_zcopy_disable",		KSTAT_DATA_UINT64 },
26570 		{ "tcp_mdt_pkt_out",		KSTAT_DATA_UINT64 },
26571 		{ "tcp_mdt_pkt_out_v4",		KSTAT_DATA_UINT64 },
26572 		{ "tcp_mdt_pkt_out_v6",		KSTAT_DATA_UINT64 },
26573 		{ "tcp_mdt_discarded",		KSTAT_DATA_UINT64 },
26574 		{ "tcp_mdt_conn_halted1",	KSTAT_DATA_UINT64 },
26575 		{ "tcp_mdt_conn_halted2",	KSTAT_DATA_UINT64 },
26576 		{ "tcp_mdt_conn_halted3",	KSTAT_DATA_UINT64 },
26577 		{ "tcp_mdt_conn_resumed1",	KSTAT_DATA_UINT64 },
26578 		{ "tcp_mdt_conn_resumed2",	KSTAT_DATA_UINT64 },
26579 		{ "tcp_mdt_legacy_small",	KSTAT_DATA_UINT64 },
26580 		{ "tcp_mdt_legacy_all",		KSTAT_DATA_UINT64 },
26581 		{ "tcp_mdt_legacy_ret",		KSTAT_DATA_UINT64 },
26582 		{ "tcp_mdt_allocfail",		KSTAT_DATA_UINT64 },
26583 		{ "tcp_mdt_addpdescfail",	KSTAT_DATA_UINT64 },
26584 		{ "tcp_mdt_allocd",		KSTAT_DATA_UINT64 },
26585 		{ "tcp_mdt_linked",		KSTAT_DATA_UINT64 },
26586 		{ "tcp_fusion_flowctl",		KSTAT_DATA_UINT64 },
26587 		{ "tcp_fusion_backenabled",	KSTAT_DATA_UINT64 },
26588 		{ "tcp_fusion_urg",		KSTAT_DATA_UINT64 },
26589 		{ "tcp_fusion_putnext",		KSTAT_DATA_UINT64 },
26590 		{ "tcp_fusion_unfusable",	KSTAT_DATA_UINT64 },
26591 		{ "tcp_fusion_aborted",		KSTAT_DATA_UINT64 },
26592 		{ "tcp_fusion_unqualified",	KSTAT_DATA_UINT64 },
26593 		{ "tcp_fusion_rrw_busy",	KSTAT_DATA_UINT64 },
26594 		{ "tcp_fusion_rrw_msgcnt",	KSTAT_DATA_UINT64 },
26595 		{ "tcp_fusion_rrw_plugged",	KSTAT_DATA_UINT64 },
26596 		{ "tcp_in_ack_unsent_drop",	KSTAT_DATA_UINT64 },
26597 		{ "tcp_sock_fallback",		KSTAT_DATA_UINT64 },
26598 		{ "tcp_lso_enabled",		KSTAT_DATA_UINT64 },
26599 		{ "tcp_lso_disabled",		KSTAT_DATA_UINT64 },
26600 		{ "tcp_lso_times",		KSTAT_DATA_UINT64 },
26601 		{ "tcp_lso_pkt_out",		KSTAT_DATA_UINT64 },
26602 	};
26603 
26604 	ksp = kstat_create_netstack(TCP_MOD_NAME, 0, "tcpstat", "net",
26605 	    KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t),
26606 	    KSTAT_FLAG_VIRTUAL, stackid);
26607 
26608 	if (ksp == NULL)
26609 		return (NULL);
26610 
26611 	bcopy(&template, tcps_statisticsp, sizeof (template));
26612 	ksp->ks_data = (void *)tcps_statisticsp;
26613 	ksp->ks_private = (void *)(uintptr_t)stackid;
26614 
26615 	kstat_install(ksp);
26616 	return (ksp);
26617 }
26618 
26619 static void
26620 tcp_kstat2_fini(netstackid_t stackid, kstat_t *ksp)
26621 {
26622 	if (ksp != NULL) {
26623 		ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private);
26624 		kstat_delete_netstack(ksp, stackid);
26625 	}
26626 }
26627 
26628 /*
26629  * TCP Kstats implementation
26630  */
26631 static void *
26632 tcp_kstat_init(netstackid_t stackid, tcp_stack_t *tcps)
26633 {
26634 	kstat_t	*ksp;
26635 
26636 	tcp_named_kstat_t template = {
26637 		{ "rtoAlgorithm",	KSTAT_DATA_INT32, 0 },
26638 		{ "rtoMin",		KSTAT_DATA_INT32, 0 },
26639 		{ "rtoMax",		KSTAT_DATA_INT32, 0 },
26640 		{ "maxConn",		KSTAT_DATA_INT32, 0 },
26641 		{ "activeOpens",	KSTAT_DATA_UINT32, 0 },
26642 		{ "passiveOpens",	KSTAT_DATA_UINT32, 0 },
26643 		{ "attemptFails",	KSTAT_DATA_UINT32, 0 },
26644 		{ "estabResets",	KSTAT_DATA_UINT32, 0 },
26645 		{ "currEstab",		KSTAT_DATA_UINT32, 0 },
26646 		{ "inSegs",		KSTAT_DATA_UINT64, 0 },
26647 		{ "outSegs",		KSTAT_DATA_UINT64, 0 },
26648 		{ "retransSegs",	KSTAT_DATA_UINT32, 0 },
26649 		{ "connTableSize",	KSTAT_DATA_INT32, 0 },
26650 		{ "outRsts",		KSTAT_DATA_UINT32, 0 },
26651 		{ "outDataSegs",	KSTAT_DATA_UINT32, 0 },
26652 		{ "outDataBytes",	KSTAT_DATA_UINT32, 0 },
26653 		{ "retransBytes",	KSTAT_DATA_UINT32, 0 },
26654 		{ "outAck",		KSTAT_DATA_UINT32, 0 },
26655 		{ "outAckDelayed",	KSTAT_DATA_UINT32, 0 },
26656 		{ "outUrg",		KSTAT_DATA_UINT32, 0 },
26657 		{ "outWinUpdate",	KSTAT_DATA_UINT32, 0 },
26658 		{ "outWinProbe",	KSTAT_DATA_UINT32, 0 },
26659 		{ "outControl",		KSTAT_DATA_UINT32, 0 },
26660 		{ "outFastRetrans",	KSTAT_DATA_UINT32, 0 },
26661 		{ "inAckSegs",		KSTAT_DATA_UINT32, 0 },
26662 		{ "inAckBytes",		KSTAT_DATA_UINT32, 0 },
26663 		{ "inDupAck",		KSTAT_DATA_UINT32, 0 },
26664 		{ "inAckUnsent",	KSTAT_DATA_UINT32, 0 },
26665 		{ "inDataInorderSegs",	KSTAT_DATA_UINT32, 0 },
26666 		{ "inDataInorderBytes",	KSTAT_DATA_UINT32, 0 },
26667 		{ "inDataUnorderSegs",	KSTAT_DATA_UINT32, 0 },
26668 		{ "inDataUnorderBytes",	KSTAT_DATA_UINT32, 0 },
26669 		{ "inDataDupSegs",	KSTAT_DATA_UINT32, 0 },
26670 		{ "inDataDupBytes",	KSTAT_DATA_UINT32, 0 },
26671 		{ "inDataPartDupSegs",	KSTAT_DATA_UINT32, 0 },
26672 		{ "inDataPartDupBytes",	KSTAT_DATA_UINT32, 0 },
26673 		{ "inDataPastWinSegs",	KSTAT_DATA_UINT32, 0 },
26674 		{ "inDataPastWinBytes",	KSTAT_DATA_UINT32, 0 },
26675 		{ "inWinProbe",		KSTAT_DATA_UINT32, 0 },
26676 		{ "inWinUpdate",	KSTAT_DATA_UINT32, 0 },
26677 		{ "inClosed",		KSTAT_DATA_UINT32, 0 },
26678 		{ "rttUpdate",		KSTAT_DATA_UINT32, 0 },
26679 		{ "rttNoUpdate",	KSTAT_DATA_UINT32, 0 },
26680 		{ "timRetrans",		KSTAT_DATA_UINT32, 0 },
26681 		{ "timRetransDrop",	KSTAT_DATA_UINT32, 0 },
26682 		{ "timKeepalive",	KSTAT_DATA_UINT32, 0 },
26683 		{ "timKeepaliveProbe",	KSTAT_DATA_UINT32, 0 },
26684 		{ "timKeepaliveDrop",	KSTAT_DATA_UINT32, 0 },
26685 		{ "listenDrop",		KSTAT_DATA_UINT32, 0 },
26686 		{ "listenDropQ0",	KSTAT_DATA_UINT32, 0 },
26687 		{ "halfOpenDrop",	KSTAT_DATA_UINT32, 0 },
26688 		{ "outSackRetransSegs",	KSTAT_DATA_UINT32, 0 },
26689 		{ "connTableSize6",	KSTAT_DATA_INT32, 0 }
26690 	};
26691 
26692 	ksp = kstat_create_netstack(TCP_MOD_NAME, 0, TCP_MOD_NAME, "mib2",
26693 	    KSTAT_TYPE_NAMED, NUM_OF_FIELDS(tcp_named_kstat_t), 0, stackid);
26694 
26695 	if (ksp == NULL)
26696 		return (NULL);
26697 
26698 	template.rtoAlgorithm.value.ui32 = 4;
26699 	template.rtoMin.value.ui32 = tcps->tcps_rexmit_interval_min;
26700 	template.rtoMax.value.ui32 = tcps->tcps_rexmit_interval_max;
26701 	template.maxConn.value.i32 = -1;
26702 
26703 	bcopy(&template, ksp->ks_data, sizeof (template));
26704 	ksp->ks_update = tcp_kstat_update;
26705 	ksp->ks_private = (void *)(uintptr_t)stackid;
26706 
26707 	kstat_install(ksp);
26708 	return (ksp);
26709 }
26710 
26711 static void
26712 tcp_kstat_fini(netstackid_t stackid, kstat_t *ksp)
26713 {
26714 	if (ksp != NULL) {
26715 		ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private);
26716 		kstat_delete_netstack(ksp, stackid);
26717 	}
26718 }
26719 
26720 static int
26721 tcp_kstat_update(kstat_t *kp, int rw)
26722 {
26723 	tcp_named_kstat_t *tcpkp;
26724 	tcp_t		*tcp;
26725 	connf_t		*connfp;
26726 	conn_t		*connp;
26727 	int 		i;
26728 	netstackid_t	stackid = (netstackid_t)(uintptr_t)kp->ks_private;
26729 	netstack_t	*ns;
26730 	tcp_stack_t	*tcps;
26731 	ip_stack_t	*ipst;
26732 
26733 	if ((kp == NULL) || (kp->ks_data == NULL))
26734 		return (EIO);
26735 
26736 	if (rw == KSTAT_WRITE)
26737 		return (EACCES);
26738 
26739 	ns = netstack_find_by_stackid(stackid);
26740 	if (ns == NULL)
26741 		return (-1);
26742 	tcps = ns->netstack_tcp;
26743 	if (tcps == NULL) {
26744 		netstack_rele(ns);
26745 		return (-1);
26746 	}
26747 	tcpkp = (tcp_named_kstat_t *)kp->ks_data;
26748 
26749 	tcpkp->currEstab.value.ui32 = 0;
26750 
26751 	ipst = ns->netstack_ip;
26752 
26753 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
26754 		connfp = &ipst->ips_ipcl_globalhash_fanout[i];
26755 		connp = NULL;
26756 		while ((connp =
26757 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
26758 			tcp = connp->conn_tcp;
26759 			switch (tcp_snmp_state(tcp)) {
26760 			case MIB2_TCP_established:
26761 			case MIB2_TCP_closeWait:
26762 				tcpkp->currEstab.value.ui32++;
26763 				break;
26764 			}
26765 		}
26766 	}
26767 
26768 	tcpkp->activeOpens.value.ui32 = tcps->tcps_mib.tcpActiveOpens;
26769 	tcpkp->passiveOpens.value.ui32 = tcps->tcps_mib.tcpPassiveOpens;
26770 	tcpkp->attemptFails.value.ui32 = tcps->tcps_mib.tcpAttemptFails;
26771 	tcpkp->estabResets.value.ui32 = tcps->tcps_mib.tcpEstabResets;
26772 	tcpkp->inSegs.value.ui64 = tcps->tcps_mib.tcpHCInSegs;
26773 	tcpkp->outSegs.value.ui64 = tcps->tcps_mib.tcpHCOutSegs;
26774 	tcpkp->retransSegs.value.ui32 =	tcps->tcps_mib.tcpRetransSegs;
26775 	tcpkp->connTableSize.value.i32 = tcps->tcps_mib.tcpConnTableSize;
26776 	tcpkp->outRsts.value.ui32 = tcps->tcps_mib.tcpOutRsts;
26777 	tcpkp->outDataSegs.value.ui32 = tcps->tcps_mib.tcpOutDataSegs;
26778 	tcpkp->outDataBytes.value.ui32 = tcps->tcps_mib.tcpOutDataBytes;
26779 	tcpkp->retransBytes.value.ui32 = tcps->tcps_mib.tcpRetransBytes;
26780 	tcpkp->outAck.value.ui32 = tcps->tcps_mib.tcpOutAck;
26781 	tcpkp->outAckDelayed.value.ui32 = tcps->tcps_mib.tcpOutAckDelayed;
26782 	tcpkp->outUrg.value.ui32 = tcps->tcps_mib.tcpOutUrg;
26783 	tcpkp->outWinUpdate.value.ui32 = tcps->tcps_mib.tcpOutWinUpdate;
26784 	tcpkp->outWinProbe.value.ui32 = tcps->tcps_mib.tcpOutWinProbe;
26785 	tcpkp->outControl.value.ui32 = tcps->tcps_mib.tcpOutControl;
26786 	tcpkp->outFastRetrans.value.ui32 = tcps->tcps_mib.tcpOutFastRetrans;
26787 	tcpkp->inAckSegs.value.ui32 = tcps->tcps_mib.tcpInAckSegs;
26788 	tcpkp->inAckBytes.value.ui32 = tcps->tcps_mib.tcpInAckBytes;
26789 	tcpkp->inDupAck.value.ui32 = tcps->tcps_mib.tcpInDupAck;
26790 	tcpkp->inAckUnsent.value.ui32 = tcps->tcps_mib.tcpInAckUnsent;
26791 	tcpkp->inDataInorderSegs.value.ui32 =
26792 	    tcps->tcps_mib.tcpInDataInorderSegs;
26793 	tcpkp->inDataInorderBytes.value.ui32 =
26794 	    tcps->tcps_mib.tcpInDataInorderBytes;
26795 	tcpkp->inDataUnorderSegs.value.ui32 =
26796 	    tcps->tcps_mib.tcpInDataUnorderSegs;
26797 	tcpkp->inDataUnorderBytes.value.ui32 =
26798 	    tcps->tcps_mib.tcpInDataUnorderBytes;
26799 	tcpkp->inDataDupSegs.value.ui32 = tcps->tcps_mib.tcpInDataDupSegs;
26800 	tcpkp->inDataDupBytes.value.ui32 = tcps->tcps_mib.tcpInDataDupBytes;
26801 	tcpkp->inDataPartDupSegs.value.ui32 =
26802 	    tcps->tcps_mib.tcpInDataPartDupSegs;
26803 	tcpkp->inDataPartDupBytes.value.ui32 =
26804 	    tcps->tcps_mib.tcpInDataPartDupBytes;
26805 	tcpkp->inDataPastWinSegs.value.ui32 =
26806 	    tcps->tcps_mib.tcpInDataPastWinSegs;
26807 	tcpkp->inDataPastWinBytes.value.ui32 =
26808 	    tcps->tcps_mib.tcpInDataPastWinBytes;
26809 	tcpkp->inWinProbe.value.ui32 = tcps->tcps_mib.tcpInWinProbe;
26810 	tcpkp->inWinUpdate.value.ui32 = tcps->tcps_mib.tcpInWinUpdate;
26811 	tcpkp->inClosed.value.ui32 = tcps->tcps_mib.tcpInClosed;
26812 	tcpkp->rttNoUpdate.value.ui32 = tcps->tcps_mib.tcpRttNoUpdate;
26813 	tcpkp->rttUpdate.value.ui32 = tcps->tcps_mib.tcpRttUpdate;
26814 	tcpkp->timRetrans.value.ui32 = tcps->tcps_mib.tcpTimRetrans;
26815 	tcpkp->timRetransDrop.value.ui32 = tcps->tcps_mib.tcpTimRetransDrop;
26816 	tcpkp->timKeepalive.value.ui32 = tcps->tcps_mib.tcpTimKeepalive;
26817 	tcpkp->timKeepaliveProbe.value.ui32 =
26818 	    tcps->tcps_mib.tcpTimKeepaliveProbe;
26819 	tcpkp->timKeepaliveDrop.value.ui32 =
26820 	    tcps->tcps_mib.tcpTimKeepaliveDrop;
26821 	tcpkp->listenDrop.value.ui32 = tcps->tcps_mib.tcpListenDrop;
26822 	tcpkp->listenDropQ0.value.ui32 = tcps->tcps_mib.tcpListenDropQ0;
26823 	tcpkp->halfOpenDrop.value.ui32 = tcps->tcps_mib.tcpHalfOpenDrop;
26824 	tcpkp->outSackRetransSegs.value.ui32 =
26825 	    tcps->tcps_mib.tcpOutSackRetransSegs;
26826 	tcpkp->connTableSize6.value.i32 = tcps->tcps_mib.tcp6ConnTableSize;
26827 
26828 	netstack_rele(ns);
26829 	return (0);
26830 }
26831 
26832 void
26833 tcp_reinput(conn_t *connp, mblk_t *mp, squeue_t *sqp)
26834 {
26835 	uint16_t	hdr_len;
26836 	ipha_t		*ipha;
26837 	uint8_t		*nexthdrp;
26838 	tcph_t		*tcph;
26839 	tcp_stack_t	*tcps = connp->conn_tcp->tcp_tcps;
26840 
26841 	/* Already has an eager */
26842 	if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) {
26843 		TCP_STAT(tcps, tcp_reinput_syn);
26844 		squeue_enter(connp->conn_sqp, mp, connp->conn_recv,
26845 		    connp, SQTAG_TCP_REINPUT_EAGER);
26846 		return;
26847 	}
26848 
26849 	switch (IPH_HDR_VERSION(mp->b_rptr)) {
26850 	case IPV4_VERSION:
26851 		ipha = (ipha_t *)mp->b_rptr;
26852 		hdr_len = IPH_HDR_LENGTH(ipha);
26853 		break;
26854 	case IPV6_VERSION:
26855 		if (!ip_hdr_length_nexthdr_v6(mp, (ip6_t *)mp->b_rptr,
26856 		    &hdr_len, &nexthdrp)) {
26857 			CONN_DEC_REF(connp);
26858 			freemsg(mp);
26859 			return;
26860 		}
26861 		break;
26862 	}
26863 
26864 	tcph = (tcph_t *)&mp->b_rptr[hdr_len];
26865 	if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) {
26866 		mp->b_datap->db_struioflag |= STRUIO_EAGER;
26867 		DB_CKSUMSTART(mp) = (intptr_t)sqp;
26868 	}
26869 
26870 	squeue_fill(connp->conn_sqp, mp, connp->conn_recv, connp,
26871 	    SQTAG_TCP_REINPUT);
26872 }
26873 
26874 static squeue_func_t
26875 tcp_squeue_switch(int val)
26876 {
26877 	squeue_func_t rval = squeue_fill;
26878 
26879 	switch (val) {
26880 	case 1:
26881 		rval = squeue_enter_nodrain;
26882 		break;
26883 	case 2:
26884 		rval = squeue_enter;
26885 		break;
26886 	default:
26887 		break;
26888 	}
26889 	return (rval);
26890 }
26891 
26892 /*
26893  * This is called once for each squeue - globally for all stack
26894  * instances.
26895  */
26896 static void
26897 tcp_squeue_add(squeue_t *sqp)
26898 {
26899 	tcp_squeue_priv_t *tcp_time_wait = kmem_zalloc(
26900 	    sizeof (tcp_squeue_priv_t), KM_SLEEP);
26901 
26902 	*squeue_getprivate(sqp, SQPRIVATE_TCP) = (intptr_t)tcp_time_wait;
26903 	tcp_time_wait->tcp_time_wait_tid = timeout(tcp_time_wait_collector,
26904 	    sqp, TCP_TIME_WAIT_DELAY);
26905 	if (tcp_free_list_max_cnt == 0) {
26906 		int tcp_ncpus = ((boot_max_ncpus == -1) ?
26907 		    max_ncpus : boot_max_ncpus);
26908 
26909 		/*
26910 		 * Limit number of entries to 1% of availble memory / tcp_ncpus
26911 		 */
26912 		tcp_free_list_max_cnt = (freemem * PAGESIZE) /
26913 		    (tcp_ncpus * sizeof (tcp_t) * 100);
26914 	}
26915 	tcp_time_wait->tcp_free_list_cnt = 0;
26916 }
26917