xref: /illumos-gate/usr/src/uts/common/inet/tcp/tcp.c (revision c10c16de)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved.
24  */
25 /* Copyright (c) 1990 Mentat Inc. */
26 
27 #include <sys/types.h>
28 #include <sys/stream.h>
29 #include <sys/strsun.h>
30 #include <sys/strsubr.h>
31 #include <sys/stropts.h>
32 #include <sys/strlog.h>
33 #define	_SUN_TPI_VERSION 2
34 #include <sys/tihdr.h>
35 #include <sys/timod.h>
36 #include <sys/ddi.h>
37 #include <sys/sunddi.h>
38 #include <sys/suntpi.h>
39 #include <sys/xti_inet.h>
40 #include <sys/cmn_err.h>
41 #include <sys/debug.h>
42 #include <sys/sdt.h>
43 #include <sys/vtrace.h>
44 #include <sys/kmem.h>
45 #include <sys/ethernet.h>
46 #include <sys/cpuvar.h>
47 #include <sys/dlpi.h>
48 #include <sys/pattr.h>
49 #include <sys/policy.h>
50 #include <sys/priv.h>
51 #include <sys/zone.h>
52 #include <sys/sunldi.h>
53 
54 #include <sys/errno.h>
55 #include <sys/signal.h>
56 #include <sys/socket.h>
57 #include <sys/socketvar.h>
58 #include <sys/sockio.h>
59 #include <sys/isa_defs.h>
60 #include <sys/md5.h>
61 #include <sys/random.h>
62 #include <sys/uio.h>
63 #include <sys/systm.h>
64 #include <netinet/in.h>
65 #include <netinet/tcp.h>
66 #include <netinet/ip6.h>
67 #include <netinet/icmp6.h>
68 #include <net/if.h>
69 #include <net/route.h>
70 #include <inet/ipsec_impl.h>
71 
72 #include <inet/common.h>
73 #include <inet/ip.h>
74 #include <inet/ip_impl.h>
75 #include <inet/ip6.h>
76 #include <inet/ip_ndp.h>
77 #include <inet/proto_set.h>
78 #include <inet/mib2.h>
79 #include <inet/optcom.h>
80 #include <inet/snmpcom.h>
81 #include <inet/kstatcom.h>
82 #include <inet/tcp.h>
83 #include <inet/tcp_impl.h>
84 #include <inet/tcp_cluster.h>
85 #include <inet/udp_impl.h>
86 #include <net/pfkeyv2.h>
87 #include <inet/ipdrop.h>
88 
89 #include <inet/ipclassifier.h>
90 #include <inet/ip_ire.h>
91 #include <inet/ip_ftable.h>
92 #include <inet/ip_if.h>
93 #include <inet/ipp_common.h>
94 #include <inet/ip_rts.h>
95 #include <inet/ip_netinfo.h>
96 #include <sys/squeue_impl.h>
97 #include <sys/squeue.h>
98 #include <sys/tsol/label.h>
99 #include <sys/tsol/tnet.h>
100 #include <rpc/pmap_prot.h>
101 #include <sys/callo.h>
102 
103 /*
104  * TCP Notes: aka FireEngine Phase I (PSARC 2002/433)
105  *
106  * (Read the detailed design doc in PSARC case directory)
107  *
108  * The entire tcp state is contained in tcp_t and conn_t structure
109  * which are allocated in tandem using ipcl_conn_create() and passing
110  * IPCL_TCPCONN as a flag. We use 'conn_ref' and 'conn_lock' to protect
111  * the references on the tcp_t. The tcp_t structure is never compressed
112  * and packets always land on the correct TCP perimeter from the time
113  * eager is created till the time tcp_t dies (as such the old mentat
114  * TCP global queue is not used for detached state and no IPSEC checking
115  * is required). The global queue is still allocated to send out resets
116  * for connection which have no listeners and IP directly calls
117  * tcp_xmit_listeners_reset() which does any policy check.
118  *
119  * Protection and Synchronisation mechanism:
120  *
121  * The tcp data structure does not use any kind of lock for protecting
122  * its state but instead uses 'squeues' for mutual exclusion from various
123  * read and write side threads. To access a tcp member, the thread should
124  * always be behind squeue (via squeue_enter with flags as SQ_FILL, SQ_PROCESS,
125  * or SQ_NODRAIN). Since the squeues allow a direct function call, caller
126  * can pass any tcp function having prototype of edesc_t as argument
127  * (different from traditional STREAMs model where packets come in only
128  * designated entry points). The list of functions that can be directly
129  * called via squeue are listed before the usual function prototype.
130  *
131  * Referencing:
132  *
133  * TCP is MT-Hot and we use a reference based scheme to make sure that the
134  * tcp structure doesn't disappear when its needed. When the application
135  * creates an outgoing connection or accepts an incoming connection, we
136  * start out with 2 references on 'conn_ref'. One for TCP and one for IP.
137  * The IP reference is just a symbolic reference since ip_tcpclose()
138  * looks at tcp structure after tcp_close_output() returns which could
139  * have dropped the last TCP reference. So as long as the connection is
140  * in attached state i.e. !TCP_IS_DETACHED, we have 2 references on the
141  * conn_t. The classifier puts its own reference when the connection is
142  * inserted in listen or connected hash. Anytime a thread needs to enter
143  * the tcp connection perimeter, it retrieves the conn/tcp from q->ptr
144  * on write side or by doing a classify on read side and then puts a
145  * reference on the conn before doing squeue_enter/tryenter/fill. For
146  * read side, the classifier itself puts the reference under fanout lock
147  * to make sure that tcp can't disappear before it gets processed. The
148  * squeue will drop this reference automatically so the called function
149  * doesn't have to do a DEC_REF.
150  *
151  * Opening a new connection:
152  *
153  * The outgoing connection open is pretty simple. tcp_open() does the
154  * work in creating the conn/tcp structure and initializing it. The
155  * squeue assignment is done based on the CPU the application
156  * is running on. So for outbound connections, processing is always done
157  * on application CPU which might be different from the incoming CPU
158  * being interrupted by the NIC. An optimal way would be to figure out
159  * the NIC <-> CPU binding at listen time, and assign the outgoing
160  * connection to the squeue attached to the CPU that will be interrupted
161  * for incoming packets (we know the NIC based on the bind IP address).
162  * This might seem like a problem if more data is going out but the
163  * fact is that in most cases the transmit is ACK driven transmit where
164  * the outgoing data normally sits on TCP's xmit queue waiting to be
165  * transmitted.
166  *
167  * Accepting a connection:
168  *
169  * This is a more interesting case because of various races involved in
170  * establishing a eager in its own perimeter. Read the meta comment on
171  * top of tcp_input_listener(). But briefly, the squeue is picked by
172  * ip_fanout based on the ring or the sender (if loopback).
173  *
174  * Closing a connection:
175  *
176  * The close is fairly straight forward. tcp_close() calls tcp_close_output()
177  * via squeue to do the close and mark the tcp as detached if the connection
178  * was in state TCPS_ESTABLISHED or greater. In the later case, TCP keep its
179  * reference but tcp_close() drop IP's reference always. So if tcp was
180  * not killed, it is sitting in time_wait list with 2 reference - 1 for TCP
181  * and 1 because it is in classifier's connected hash. This is the condition
182  * we use to determine that its OK to clean up the tcp outside of squeue
183  * when time wait expires (check the ref under fanout and conn_lock and
184  * if it is 2, remove it from fanout hash and kill it).
185  *
186  * Although close just drops the necessary references and marks the
187  * tcp_detached state, tcp_close needs to know the tcp_detached has been
188  * set (under squeue) before letting the STREAM go away (because a
189  * inbound packet might attempt to go up the STREAM while the close
190  * has happened and tcp_detached is not set). So a special lock and
191  * flag is used along with a condition variable (tcp_closelock, tcp_closed,
192  * and tcp_closecv) to signal tcp_close that tcp_close_out() has marked
193  * tcp_detached.
194  *
195  * Special provisions and fast paths:
196  *
197  * We make special provisions for sockfs by marking tcp_issocket
198  * whenever we have only sockfs on top of TCP. This allows us to skip
199  * putting the tcp in acceptor hash since a sockfs listener can never
200  * become acceptor and also avoid allocating a tcp_t for acceptor STREAM
201  * since eager has already been allocated and the accept now happens
202  * on acceptor STREAM. There is a big blob of comment on top of
203  * tcp_input_listener explaining the new accept. When socket is POP'd,
204  * sockfs sends us an ioctl to mark the fact and we go back to old
205  * behaviour. Once tcp_issocket is unset, its never set for the
206  * life of that connection.
207  *
208  * IPsec notes :
209  *
210  * Since a packet is always executed on the correct TCP perimeter
211  * all IPsec processing is defered to IP including checking new
212  * connections and setting IPSEC policies for new connection. The
213  * only exception is tcp_xmit_listeners_reset() which is called
214  * directly from IP and needs to policy check to see if TH_RST
215  * can be sent out.
216  */
217 
218 /*
219  * Values for squeue switch:
220  * 1: SQ_NODRAIN
221  * 2: SQ_PROCESS
222  * 3: SQ_FILL
223  */
224 int tcp_squeue_wput = 2;	/* /etc/systems */
225 int tcp_squeue_flag;
226 
227 /*
228  * To prevent memory hog, limit the number of entries in tcp_free_list
229  * to 1% of available memory / number of cpus
230  */
231 uint_t tcp_free_list_max_cnt = 0;
232 
233 #define	TCP_XMIT_LOWATER	4096
234 #define	TCP_XMIT_HIWATER	49152
235 #define	TCP_RECV_LOWATER	2048
236 #define	TCP_RECV_HIWATER	128000
237 
238 #define	TIDUSZ	4096	/* transport interface data unit size */
239 
240 /*
241  * Size of acceptor hash list.  It has to be a power of 2 for hashing.
242  */
243 #define	TCP_ACCEPTOR_FANOUT_SIZE		256
244 
245 #ifdef	_ILP32
246 #define	TCP_ACCEPTOR_HASH(accid)					\
247 		(((uint_t)(accid) >> 8) & (TCP_ACCEPTOR_FANOUT_SIZE - 1))
248 #else
249 #define	TCP_ACCEPTOR_HASH(accid)					\
250 		((uint_t)(accid) & (TCP_ACCEPTOR_FANOUT_SIZE - 1))
251 #endif	/* _ILP32 */
252 
253 /*
254  * Minimum number of connections which can be created per listener.  Used
255  * when the listener connection count is in effect.
256  */
257 static uint32_t tcp_min_conn_listener = 2;
258 
259 uint32_t tcp_early_abort = 30;
260 
261 /* TCP Timer control structure */
262 typedef struct tcpt_s {
263 	pfv_t	tcpt_pfv;	/* The routine we are to call */
264 	tcp_t	*tcpt_tcp;	/* The parameter we are to pass in */
265 } tcpt_t;
266 
267 /*
268  * Functions called directly via squeue having a prototype of edesc_t.
269  */
270 void		tcp_input_listener(void *arg, mblk_t *mp, void *arg2,
271     ip_recv_attr_t *ira);
272 void		tcp_input_data(void *arg, mblk_t *mp, void *arg2,
273     ip_recv_attr_t *ira);
274 static void	tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2,
275     ip_recv_attr_t *dummy);
276 
277 
278 /* Prototype for TCP functions */
279 static void	tcp_random_init(void);
280 int		tcp_random(void);
281 static int	tcp_connect_ipv4(tcp_t *tcp, ipaddr_t *dstaddrp,
282 		    in_port_t dstport, uint_t srcid);
283 static int	tcp_connect_ipv6(tcp_t *tcp, in6_addr_t *dstaddrp,
284 		    in_port_t dstport, uint32_t flowinfo,
285 		    uint_t srcid, uint32_t scope_id);
286 static void	tcp_iss_init(tcp_t *tcp);
287 static void	tcp_reinit(tcp_t *tcp);
288 static void	tcp_reinit_values(tcp_t *tcp);
289 
290 static void	tcp_wsrv(queue_t *q);
291 static void	tcp_update_lso(tcp_t *tcp, ip_xmit_attr_t *ixa);
292 static void	tcp_update_zcopy(tcp_t *tcp);
293 static void	tcp_notify(void *, ip_xmit_attr_t *, ixa_notify_type_t,
294     ixa_notify_arg_t);
295 static void	*tcp_stack_init(netstackid_t stackid, netstack_t *ns);
296 static void	tcp_stack_fini(netstackid_t stackid, void *arg);
297 
298 static int	tcp_squeue_switch(int);
299 
300 static int	tcp_open(queue_t *, dev_t *, int, int, cred_t *, boolean_t);
301 static int	tcp_openv4(queue_t *, dev_t *, int, int, cred_t *);
302 static int	tcp_openv6(queue_t *, dev_t *, int, int, cred_t *);
303 
304 static void	tcp_squeue_add(squeue_t *);
305 
306 struct module_info tcp_rinfo =  {
307 	TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, TCP_RECV_HIWATER, TCP_RECV_LOWATER
308 };
309 
310 static struct module_info tcp_winfo =  {
311 	TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, 127, 16
312 };
313 
314 /*
315  * Entry points for TCP as a device. The normal case which supports
316  * the TCP functionality.
317  * We have separate open functions for the /dev/tcp and /dev/tcp6 devices.
318  */
319 struct qinit tcp_rinitv4 = {
320 	NULL, (pfi_t)tcp_rsrv, tcp_openv4, tcp_tpi_close, NULL, &tcp_rinfo
321 };
322 
323 struct qinit tcp_rinitv6 = {
324 	NULL, (pfi_t)tcp_rsrv, tcp_openv6, tcp_tpi_close, NULL, &tcp_rinfo
325 };
326 
327 struct qinit tcp_winit = {
328 	(pfi_t)tcp_wput, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo
329 };
330 
331 /* Initial entry point for TCP in socket mode. */
332 struct qinit tcp_sock_winit = {
333 	(pfi_t)tcp_wput_sock, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo
334 };
335 
336 /* TCP entry point during fallback */
337 struct qinit tcp_fallback_sock_winit = {
338 	(pfi_t)tcp_wput_fallback, NULL, NULL, NULL, NULL, &tcp_winfo
339 };
340 
341 /*
342  * Entry points for TCP as a acceptor STREAM opened by sockfs when doing
343  * an accept. Avoid allocating data structures since eager has already
344  * been created.
345  */
346 struct qinit tcp_acceptor_rinit = {
347 	NULL, (pfi_t)tcp_rsrv, NULL, tcp_tpi_close_accept, NULL, &tcp_winfo
348 };
349 
350 struct qinit tcp_acceptor_winit = {
351 	(pfi_t)tcp_tpi_accept, NULL, NULL, NULL, NULL, &tcp_winfo
352 };
353 
354 /* For AF_INET aka /dev/tcp */
355 struct streamtab tcpinfov4 = {
356 	&tcp_rinitv4, &tcp_winit
357 };
358 
359 /* For AF_INET6 aka /dev/tcp6 */
360 struct streamtab tcpinfov6 = {
361 	&tcp_rinitv6, &tcp_winit
362 };
363 
364 /*
365  * Following assumes TPI alignment requirements stay along 32 bit
366  * boundaries
367  */
368 #define	ROUNDUP32(x) \
369 	(((x) + (sizeof (int32_t) - 1)) & ~(sizeof (int32_t) - 1))
370 
371 /* Template for response to info request. */
372 struct T_info_ack tcp_g_t_info_ack = {
373 	T_INFO_ACK,		/* PRIM_type */
374 	0,			/* TSDU_size */
375 	T_INFINITE,		/* ETSDU_size */
376 	T_INVALID,		/* CDATA_size */
377 	T_INVALID,		/* DDATA_size */
378 	sizeof (sin_t),		/* ADDR_size */
379 	0,			/* OPT_size - not initialized here */
380 	TIDUSZ,			/* TIDU_size */
381 	T_COTS_ORD,		/* SERV_type */
382 	TCPS_IDLE,		/* CURRENT_state */
383 	(XPG4_1|EXPINLINE)	/* PROVIDER_flag */
384 };
385 
386 struct T_info_ack tcp_g_t_info_ack_v6 = {
387 	T_INFO_ACK,		/* PRIM_type */
388 	0,			/* TSDU_size */
389 	T_INFINITE,		/* ETSDU_size */
390 	T_INVALID,		/* CDATA_size */
391 	T_INVALID,		/* DDATA_size */
392 	sizeof (sin6_t),	/* ADDR_size */
393 	0,			/* OPT_size - not initialized here */
394 	TIDUSZ,		/* TIDU_size */
395 	T_COTS_ORD,		/* SERV_type */
396 	TCPS_IDLE,		/* CURRENT_state */
397 	(XPG4_1|EXPINLINE)	/* PROVIDER_flag */
398 };
399 
400 /*
401  * TCP tunables related declarations. Definitions are in tcp_tunables.c
402  */
403 extern mod_prop_info_t tcp_propinfo_tbl[];
404 extern int tcp_propinfo_count;
405 
406 #define	IS_VMLOANED_MBLK(mp) \
407 	(((mp)->b_datap->db_struioflag & STRUIO_ZC) != 0)
408 
409 uint32_t do_tcpzcopy = 1;		/* 0: disable, 1: enable, 2: force */
410 
411 /*
412  * Forces all connections to obey the value of the tcps_maxpsz_multiplier
413  * tunable settable via NDD.  Otherwise, the per-connection behavior is
414  * determined dynamically during tcp_set_destination(), which is the default.
415  */
416 boolean_t tcp_static_maxpsz = B_FALSE;
417 
418 /*
419  * If the receive buffer size is changed, this function is called to update
420  * the upper socket layer on the new delayed receive wake up threshold.
421  */
422 static void
423 tcp_set_recv_threshold(tcp_t *tcp, uint32_t new_rcvthresh)
424 {
425 	uint32_t default_threshold = SOCKET_RECVHIWATER >> 3;
426 
427 	if (IPCL_IS_NONSTR(tcp->tcp_connp)) {
428 		conn_t *connp = tcp->tcp_connp;
429 		struct sock_proto_props sopp;
430 
431 		/*
432 		 * only increase rcvthresh upto default_threshold
433 		 */
434 		if (new_rcvthresh > default_threshold)
435 			new_rcvthresh = default_threshold;
436 
437 		sopp.sopp_flags = SOCKOPT_RCVTHRESH;
438 		sopp.sopp_rcvthresh = new_rcvthresh;
439 
440 		(*connp->conn_upcalls->su_set_proto_props)
441 		    (connp->conn_upper_handle, &sopp);
442 	}
443 }
444 
445 /*
446  * Figure out the value of window scale opton.  Note that the rwnd is
447  * ASSUMED to be rounded up to the nearest MSS before the calculation.
448  * We cannot find the scale value and then do a round up of tcp_rwnd
449  * because the scale value may not be correct after that.
450  *
451  * Set the compiler flag to make this function inline.
452  */
453 void
454 tcp_set_ws_value(tcp_t *tcp)
455 {
456 	int i;
457 	uint32_t rwnd = tcp->tcp_rwnd;
458 
459 	for (i = 0; rwnd > TCP_MAXWIN && i < TCP_MAX_WINSHIFT;
460 	    i++, rwnd >>= 1)
461 		;
462 	tcp->tcp_rcv_ws = i;
463 }
464 
465 /*
466  * Remove cached/latched IPsec references.
467  */
468 void
469 tcp_ipsec_cleanup(tcp_t *tcp)
470 {
471 	conn_t		*connp = tcp->tcp_connp;
472 
473 	ASSERT(connp->conn_flags & IPCL_TCPCONN);
474 
475 	if (connp->conn_latch != NULL) {
476 		IPLATCH_REFRELE(connp->conn_latch);
477 		connp->conn_latch = NULL;
478 	}
479 	if (connp->conn_latch_in_policy != NULL) {
480 		IPPOL_REFRELE(connp->conn_latch_in_policy);
481 		connp->conn_latch_in_policy = NULL;
482 	}
483 	if (connp->conn_latch_in_action != NULL) {
484 		IPACT_REFRELE(connp->conn_latch_in_action);
485 		connp->conn_latch_in_action = NULL;
486 	}
487 	if (connp->conn_policy != NULL) {
488 		IPPH_REFRELE(connp->conn_policy, connp->conn_netstack);
489 		connp->conn_policy = NULL;
490 	}
491 }
492 
493 /*
494  * Cleaup before placing on free list.
495  * Disassociate from the netstack/tcp_stack_t since the freelist
496  * is per squeue and not per netstack.
497  */
498 void
499 tcp_cleanup(tcp_t *tcp)
500 {
501 	mblk_t		*mp;
502 	conn_t		*connp = tcp->tcp_connp;
503 	tcp_stack_t	*tcps = tcp->tcp_tcps;
504 	netstack_t	*ns = tcps->tcps_netstack;
505 	mblk_t		*tcp_rsrv_mp;
506 
507 	tcp_bind_hash_remove(tcp);
508 
509 	/* Cleanup that which needs the netstack first */
510 	tcp_ipsec_cleanup(tcp);
511 	ixa_cleanup(connp->conn_ixa);
512 
513 	if (connp->conn_ht_iphc != NULL) {
514 		kmem_free(connp->conn_ht_iphc, connp->conn_ht_iphc_allocated);
515 		connp->conn_ht_iphc = NULL;
516 		connp->conn_ht_iphc_allocated = 0;
517 		connp->conn_ht_iphc_len = 0;
518 		connp->conn_ht_ulp = NULL;
519 		connp->conn_ht_ulp_len = 0;
520 		tcp->tcp_ipha = NULL;
521 		tcp->tcp_ip6h = NULL;
522 		tcp->tcp_tcpha = NULL;
523 	}
524 
525 	/* We clear any IP_OPTIONS and extension headers */
526 	ip_pkt_free(&connp->conn_xmit_ipp);
527 
528 	tcp_free(tcp);
529 
530 	/*
531 	 * Since we will bzero the entire structure, we need to
532 	 * remove it and reinsert it in global hash list. We
533 	 * know the walkers can't get to this conn because we
534 	 * had set CONDEMNED flag earlier and checked reference
535 	 * under conn_lock so walker won't pick it and when we
536 	 * go the ipcl_globalhash_remove() below, no walker
537 	 * can get to it.
538 	 */
539 	ipcl_globalhash_remove(connp);
540 
541 	/* Save some state */
542 	mp = tcp->tcp_timercache;
543 
544 	tcp_rsrv_mp = tcp->tcp_rsrv_mp;
545 
546 	if (connp->conn_cred != NULL) {
547 		crfree(connp->conn_cred);
548 		connp->conn_cred = NULL;
549 	}
550 	ipcl_conn_cleanup(connp);
551 	connp->conn_flags = IPCL_TCPCONN;
552 
553 	/*
554 	 * Now it is safe to decrement the reference counts.
555 	 * This might be the last reference on the netstack
556 	 * in which case it will cause the freeing of the IP Instance.
557 	 */
558 	connp->conn_netstack = NULL;
559 	connp->conn_ixa->ixa_ipst = NULL;
560 	netstack_rele(ns);
561 	ASSERT(tcps != NULL);
562 	tcp->tcp_tcps = NULL;
563 
564 	bzero(tcp, sizeof (tcp_t));
565 
566 	/* restore the state */
567 	tcp->tcp_timercache = mp;
568 
569 	tcp->tcp_rsrv_mp = tcp_rsrv_mp;
570 
571 	tcp->tcp_connp = connp;
572 
573 	ASSERT(connp->conn_tcp == tcp);
574 	ASSERT(connp->conn_flags & IPCL_TCPCONN);
575 	connp->conn_state_flags = CONN_INCIPIENT;
576 	ASSERT(connp->conn_proto == IPPROTO_TCP);
577 	ASSERT(connp->conn_ref == 1);
578 }
579 
580 /*
581  * Adapt to the information, such as rtt and rtt_sd, provided from the
582  * DCE and IRE maintained by IP.
583  *
584  * Checks for multicast and broadcast destination address.
585  * Returns zero if ok; an errno on failure.
586  *
587  * Note that the MSS calculation here is based on the info given in
588  * the DCE and IRE.  We do not do any calculation based on TCP options.  They
589  * will be handled in tcp_input_data() when TCP knows which options to use.
590  *
591  * Note on how TCP gets its parameters for a connection.
592  *
593  * When a tcp_t structure is allocated, it gets all the default parameters.
594  * In tcp_set_destination(), it gets those metric parameters, like rtt, rtt_sd,
595  * spipe, rpipe, ... from the route metrics.  Route metric overrides the
596  * default.
597  *
598  * An incoming SYN with a multicast or broadcast destination address is dropped
599  * in ip_fanout_v4/v6.
600  *
601  * An incoming SYN with a multicast or broadcast source address is always
602  * dropped in tcp_set_destination, since IPDF_ALLOW_MCBC is not set in
603  * conn_connect.
604  * The same logic in tcp_set_destination also serves to
605  * reject an attempt to connect to a broadcast or multicast (destination)
606  * address.
607  */
608 int
609 tcp_set_destination(tcp_t *tcp)
610 {
611 	uint32_t	mss_max;
612 	uint32_t	mss;
613 	boolean_t	tcp_detached = TCP_IS_DETACHED(tcp);
614 	conn_t		*connp = tcp->tcp_connp;
615 	tcp_stack_t	*tcps = tcp->tcp_tcps;
616 	iulp_t		uinfo;
617 	int		error;
618 	uint32_t	flags;
619 
620 	flags = IPDF_LSO | IPDF_ZCOPY;
621 	/*
622 	 * Make sure we have a dce for the destination to avoid dce_ident
623 	 * contention for connected sockets.
624 	 */
625 	flags |= IPDF_UNIQUE_DCE;
626 
627 	if (!tcps->tcps_ignore_path_mtu)
628 		connp->conn_ixa->ixa_flags |= IXAF_PMTU_DISCOVERY;
629 
630 	/* Use conn_lock to satify ASSERT; tcp is already serialized */
631 	mutex_enter(&connp->conn_lock);
632 	error = conn_connect(connp, &uinfo, flags);
633 	mutex_exit(&connp->conn_lock);
634 	if (error != 0)
635 		return (error);
636 
637 	error = tcp_build_hdrs(tcp);
638 	if (error != 0)
639 		return (error);
640 
641 	tcp->tcp_localnet = uinfo.iulp_localnet;
642 
643 	if (uinfo.iulp_rtt != 0) {
644 		clock_t	rto;
645 
646 		tcp->tcp_rtt_sa = uinfo.iulp_rtt;
647 		tcp->tcp_rtt_sd = uinfo.iulp_rtt_sd;
648 		rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd +
649 		    tcps->tcps_rexmit_interval_extra +
650 		    (tcp->tcp_rtt_sa >> 5);
651 
652 		TCP_SET_RTO(tcp, rto);
653 	}
654 	if (uinfo.iulp_ssthresh != 0)
655 		tcp->tcp_cwnd_ssthresh = uinfo.iulp_ssthresh;
656 	else
657 		tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN;
658 	if (uinfo.iulp_spipe > 0) {
659 		connp->conn_sndbuf = MIN(uinfo.iulp_spipe,
660 		    tcps->tcps_max_buf);
661 		if (tcps->tcps_snd_lowat_fraction != 0) {
662 			connp->conn_sndlowat = connp->conn_sndbuf /
663 			    tcps->tcps_snd_lowat_fraction;
664 		}
665 		(void) tcp_maxpsz_set(tcp, B_TRUE);
666 	}
667 	/*
668 	 * Note that up till now, acceptor always inherits receive
669 	 * window from the listener.  But if there is a metrics
670 	 * associated with a host, we should use that instead of
671 	 * inheriting it from listener. Thus we need to pass this
672 	 * info back to the caller.
673 	 */
674 	if (uinfo.iulp_rpipe > 0) {
675 		tcp->tcp_rwnd = MIN(uinfo.iulp_rpipe,
676 		    tcps->tcps_max_buf);
677 	}
678 
679 	if (uinfo.iulp_rtomax > 0) {
680 		tcp->tcp_second_timer_threshold =
681 		    uinfo.iulp_rtomax;
682 	}
683 
684 	/*
685 	 * Use the metric option settings, iulp_tstamp_ok and
686 	 * iulp_wscale_ok, only for active open. What this means
687 	 * is that if the other side uses timestamp or window
688 	 * scale option, TCP will also use those options. That
689 	 * is for passive open.  If the application sets a
690 	 * large window, window scale is enabled regardless of
691 	 * the value in iulp_wscale_ok.  This is the behavior
692 	 * since 2.6.  So we keep it.
693 	 * The only case left in passive open processing is the
694 	 * check for SACK.
695 	 * For ECN, it should probably be like SACK.  But the
696 	 * current value is binary, so we treat it like the other
697 	 * cases.  The metric only controls active open.For passive
698 	 * open, the ndd param, tcp_ecn_permitted, controls the
699 	 * behavior.
700 	 */
701 	if (!tcp_detached) {
702 		/*
703 		 * The if check means that the following can only
704 		 * be turned on by the metrics only IRE, but not off.
705 		 */
706 		if (uinfo.iulp_tstamp_ok)
707 			tcp->tcp_snd_ts_ok = B_TRUE;
708 		if (uinfo.iulp_wscale_ok)
709 			tcp->tcp_snd_ws_ok = B_TRUE;
710 		if (uinfo.iulp_sack == 2)
711 			tcp->tcp_snd_sack_ok = B_TRUE;
712 		if (uinfo.iulp_ecn_ok)
713 			tcp->tcp_ecn_ok = B_TRUE;
714 	} else {
715 		/*
716 		 * Passive open.
717 		 *
718 		 * As above, the if check means that SACK can only be
719 		 * turned on by the metric only IRE.
720 		 */
721 		if (uinfo.iulp_sack > 0) {
722 			tcp->tcp_snd_sack_ok = B_TRUE;
723 		}
724 	}
725 
726 	/*
727 	 * XXX Note that currently, iulp_mtu can be as small as 68
728 	 * because of PMTUd.  So tcp_mss may go to negative if combined
729 	 * length of all those options exceeds 28 bytes.  But because
730 	 * of the tcp_mss_min check below, we may not have a problem if
731 	 * tcp_mss_min is of a reasonable value.  The default is 1 so
732 	 * the negative problem still exists.  And the check defeats PMTUd.
733 	 * In fact, if PMTUd finds that the MSS should be smaller than
734 	 * tcp_mss_min, TCP should turn off PMUTd and use the tcp_mss_min
735 	 * value.
736 	 *
737 	 * We do not deal with that now.  All those problems related to
738 	 * PMTUd will be fixed later.
739 	 */
740 	ASSERT(uinfo.iulp_mtu != 0);
741 	mss = tcp->tcp_initial_pmtu = uinfo.iulp_mtu;
742 
743 	/* Sanity check for MSS value. */
744 	if (connp->conn_ipversion == IPV4_VERSION)
745 		mss_max = tcps->tcps_mss_max_ipv4;
746 	else
747 		mss_max = tcps->tcps_mss_max_ipv6;
748 
749 	if (tcp->tcp_ipsec_overhead == 0)
750 		tcp->tcp_ipsec_overhead = conn_ipsec_length(connp);
751 
752 	mss -= tcp->tcp_ipsec_overhead;
753 
754 	if (mss < tcps->tcps_mss_min)
755 		mss = tcps->tcps_mss_min;
756 	if (mss > mss_max)
757 		mss = mss_max;
758 
759 	/* Note that this is the maximum MSS, excluding all options. */
760 	tcp->tcp_mss = mss;
761 
762 	/*
763 	 * Update the tcp connection with LSO capability.
764 	 */
765 	tcp_update_lso(tcp, connp->conn_ixa);
766 
767 	/*
768 	 * Initialize the ISS here now that we have the full connection ID.
769 	 * The RFC 1948 method of initial sequence number generation requires
770 	 * knowledge of the full connection ID before setting the ISS.
771 	 */
772 	tcp_iss_init(tcp);
773 
774 	tcp->tcp_loopback = (uinfo.iulp_loopback | uinfo.iulp_local);
775 
776 	/*
777 	 * Make sure that conn is not marked incipient
778 	 * for incoming connections. A blind
779 	 * removal of incipient flag is cheaper than
780 	 * check and removal.
781 	 */
782 	mutex_enter(&connp->conn_lock);
783 	connp->conn_state_flags &= ~CONN_INCIPIENT;
784 	mutex_exit(&connp->conn_lock);
785 	return (0);
786 }
787 
788 /*
789  * tcp_clean_death / tcp_close_detached must not be called more than once
790  * on a tcp. Thus every function that potentially calls tcp_clean_death
791  * must check for the tcp state before calling tcp_clean_death.
792  * Eg. tcp_input_data, tcp_eager_kill, tcp_clean_death_wrapper,
793  * tcp_timer_handler, all check for the tcp state.
794  */
795 /* ARGSUSED */
796 void
797 tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2,
798     ip_recv_attr_t *dummy)
799 {
800 	tcp_t	*tcp = ((conn_t *)arg)->conn_tcp;
801 
802 	freemsg(mp);
803 	if (tcp->tcp_state > TCPS_BOUND)
804 		(void) tcp_clean_death(((conn_t *)arg)->conn_tcp, ETIMEDOUT);
805 }
806 
807 /*
808  * We are dying for some reason.  Try to do it gracefully.  (May be called
809  * as writer.)
810  *
811  * Return -1 if the structure was not cleaned up (if the cleanup had to be
812  * done by a service procedure).
813  * TBD - Should the return value distinguish between the tcp_t being
814  * freed and it being reinitialized?
815  */
816 int
817 tcp_clean_death(tcp_t *tcp, int err)
818 {
819 	mblk_t	*mp;
820 	queue_t	*q;
821 	conn_t	*connp = tcp->tcp_connp;
822 	tcp_stack_t	*tcps = tcp->tcp_tcps;
823 
824 	if (tcp->tcp_fused)
825 		tcp_unfuse(tcp);
826 
827 	if (tcp->tcp_linger_tid != 0 &&
828 	    TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) {
829 		tcp_stop_lingering(tcp);
830 	}
831 
832 	ASSERT(tcp != NULL);
833 	ASSERT((connp->conn_family == AF_INET &&
834 	    connp->conn_ipversion == IPV4_VERSION) ||
835 	    (connp->conn_family == AF_INET6 &&
836 	    (connp->conn_ipversion == IPV4_VERSION ||
837 	    connp->conn_ipversion == IPV6_VERSION)));
838 
839 	if (TCP_IS_DETACHED(tcp)) {
840 		if (tcp->tcp_hard_binding) {
841 			/*
842 			 * Its an eager that we are dealing with. We close the
843 			 * eager but in case a conn_ind has already gone to the
844 			 * listener, let tcp_accept_finish() send a discon_ind
845 			 * to the listener and drop the last reference. If the
846 			 * listener doesn't even know about the eager i.e. the
847 			 * conn_ind hasn't gone up, blow away the eager and drop
848 			 * the last reference as well. If the conn_ind has gone
849 			 * up, state should be BOUND. tcp_accept_finish
850 			 * will figure out that the connection has received a
851 			 * RST and will send a DISCON_IND to the application.
852 			 */
853 			tcp_closei_local(tcp);
854 			if (!tcp->tcp_tconnind_started) {
855 				CONN_DEC_REF(connp);
856 			} else {
857 				tcp->tcp_state = TCPS_BOUND;
858 				DTRACE_TCP6(state__change, void, NULL,
859 				    ip_xmit_attr_t *, connp->conn_ixa,
860 				    void, NULL, tcp_t *, tcp, void, NULL,
861 				    int32_t, TCPS_CLOSED);
862 			}
863 		} else {
864 			tcp_close_detached(tcp);
865 		}
866 		return (0);
867 	}
868 
869 	TCP_STAT(tcps, tcp_clean_death_nondetached);
870 
871 	/*
872 	 * The connection is dead.  Decrement listener connection counter if
873 	 * necessary.
874 	 */
875 	if (tcp->tcp_listen_cnt != NULL)
876 		TCP_DECR_LISTEN_CNT(tcp);
877 
878 	/*
879 	 * When a connection is moved to TIME_WAIT state, the connection
880 	 * counter is already decremented.  So no need to decrement here
881 	 * again.  See SET_TIME_WAIT() macro.
882 	 */
883 	if (tcp->tcp_state >= TCPS_ESTABLISHED &&
884 	    tcp->tcp_state < TCPS_TIME_WAIT) {
885 		TCPS_CONN_DEC(tcps);
886 	}
887 
888 	q = connp->conn_rq;
889 
890 	/* Trash all inbound data */
891 	if (!IPCL_IS_NONSTR(connp)) {
892 		ASSERT(q != NULL);
893 		flushq(q, FLUSHALL);
894 	}
895 
896 	/*
897 	 * If we are at least part way open and there is error
898 	 * (err==0 implies no error)
899 	 * notify our client by a T_DISCON_IND.
900 	 */
901 	if ((tcp->tcp_state >= TCPS_SYN_SENT) && err) {
902 		if (tcp->tcp_state >= TCPS_ESTABLISHED &&
903 		    !TCP_IS_SOCKET(tcp)) {
904 			/*
905 			 * Send M_FLUSH according to TPI. Because sockets will
906 			 * (and must) ignore FLUSHR we do that only for TPI
907 			 * endpoints and sockets in STREAMS mode.
908 			 */
909 			(void) putnextctl1(q, M_FLUSH, FLUSHR);
910 		}
911 		if (connp->conn_debug) {
912 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR,
913 			    "tcp_clean_death: discon err %d", err);
914 		}
915 		if (IPCL_IS_NONSTR(connp)) {
916 			/* Direct socket, use upcall */
917 			(*connp->conn_upcalls->su_disconnected)(
918 			    connp->conn_upper_handle, tcp->tcp_connid, err);
919 		} else {
920 			mp = mi_tpi_discon_ind(NULL, err, 0);
921 			if (mp != NULL) {
922 				putnext(q, mp);
923 			} else {
924 				if (connp->conn_debug) {
925 					(void) strlog(TCP_MOD_ID, 0, 1,
926 					    SL_ERROR|SL_TRACE,
927 					    "tcp_clean_death, sending M_ERROR");
928 				}
929 				(void) putnextctl1(q, M_ERROR, EPROTO);
930 			}
931 		}
932 		if (tcp->tcp_state <= TCPS_SYN_RCVD) {
933 			/* SYN_SENT or SYN_RCVD */
934 			TCPS_BUMP_MIB(tcps, tcpAttemptFails);
935 		} else if (tcp->tcp_state <= TCPS_CLOSE_WAIT) {
936 			/* ESTABLISHED or CLOSE_WAIT */
937 			TCPS_BUMP_MIB(tcps, tcpEstabResets);
938 		}
939 	}
940 
941 	/*
942 	 * ESTABLISHED non-STREAMS eagers are not 'detached' because
943 	 * an upper handle is obtained when the SYN-ACK comes in. So it
944 	 * should receive the 'disconnected' upcall, but tcp_reinit should
945 	 * not be called since this is an eager.
946 	 */
947 	if (tcp->tcp_listener != NULL && IPCL_IS_NONSTR(connp)) {
948 		tcp_closei_local(tcp);
949 		tcp->tcp_state = TCPS_BOUND;
950 		DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
951 		    connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL,
952 		    int32_t, TCPS_CLOSED);
953 		return (0);
954 	}
955 
956 	tcp_reinit(tcp);
957 	if (IPCL_IS_NONSTR(connp))
958 		(void) tcp_do_unbind(connp);
959 
960 	return (-1);
961 }
962 
963 /*
964  * In case tcp is in the "lingering state" and waits for the SO_LINGER timeout
965  * to expire, stop the wait and finish the close.
966  */
967 void
968 tcp_stop_lingering(tcp_t *tcp)
969 {
970 	clock_t	delta = 0;
971 	tcp_stack_t	*tcps = tcp->tcp_tcps;
972 	conn_t		*connp = tcp->tcp_connp;
973 
974 	tcp->tcp_linger_tid = 0;
975 	if (tcp->tcp_state > TCPS_LISTEN) {
976 		tcp_acceptor_hash_remove(tcp);
977 		mutex_enter(&tcp->tcp_non_sq_lock);
978 		if (tcp->tcp_flow_stopped) {
979 			tcp_clrqfull(tcp);
980 		}
981 		mutex_exit(&tcp->tcp_non_sq_lock);
982 
983 		if (tcp->tcp_timer_tid != 0) {
984 			delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid);
985 			tcp->tcp_timer_tid = 0;
986 		}
987 		/*
988 		 * Need to cancel those timers which will not be used when
989 		 * TCP is detached.  This has to be done before the conn_wq
990 		 * is cleared.
991 		 */
992 		tcp_timers_stop(tcp);
993 
994 		tcp->tcp_detached = B_TRUE;
995 		connp->conn_rq = NULL;
996 		connp->conn_wq = NULL;
997 
998 		if (tcp->tcp_state == TCPS_TIME_WAIT) {
999 			tcp_time_wait_append(tcp);
1000 			TCP_DBGSTAT(tcps, tcp_detach_time_wait);
1001 			goto finish;
1002 		}
1003 
1004 		/*
1005 		 * If delta is zero the timer event wasn't executed and was
1006 		 * successfully canceled. In this case we need to restart it
1007 		 * with the minimal delta possible.
1008 		 */
1009 		if (delta >= 0) {
1010 			tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer,
1011 			    delta ? delta : 1);
1012 		}
1013 	} else {
1014 		tcp_closei_local(tcp);
1015 		CONN_DEC_REF(connp);
1016 	}
1017 finish:
1018 	tcp->tcp_detached = B_TRUE;
1019 	connp->conn_rq = NULL;
1020 	connp->conn_wq = NULL;
1021 
1022 	/* Signal closing thread that it can complete close */
1023 	mutex_enter(&tcp->tcp_closelock);
1024 	tcp->tcp_closed = 1;
1025 	cv_signal(&tcp->tcp_closecv);
1026 	mutex_exit(&tcp->tcp_closelock);
1027 
1028 	/* If we have an upper handle (socket), release it */
1029 	if (IPCL_IS_NONSTR(connp)) {
1030 		ASSERT(connp->conn_upper_handle != NULL);
1031 		(*connp->conn_upcalls->su_closed)(connp->conn_upper_handle);
1032 		connp->conn_upper_handle = NULL;
1033 		connp->conn_upcalls = NULL;
1034 	}
1035 }
1036 
1037 void
1038 tcp_close_common(conn_t *connp, int flags)
1039 {
1040 	tcp_t		*tcp = connp->conn_tcp;
1041 	mblk_t 		*mp = &tcp->tcp_closemp;
1042 	boolean_t	conn_ioctl_cleanup_reqd = B_FALSE;
1043 	mblk_t		*bp;
1044 
1045 	ASSERT(connp->conn_ref >= 2);
1046 
1047 	/*
1048 	 * Mark the conn as closing. ipsq_pending_mp_add will not
1049 	 * add any mp to the pending mp list, after this conn has
1050 	 * started closing.
1051 	 */
1052 	mutex_enter(&connp->conn_lock);
1053 	connp->conn_state_flags |= CONN_CLOSING;
1054 	if (connp->conn_oper_pending_ill != NULL)
1055 		conn_ioctl_cleanup_reqd = B_TRUE;
1056 	CONN_INC_REF_LOCKED(connp);
1057 	mutex_exit(&connp->conn_lock);
1058 	tcp->tcp_closeflags = (uint8_t)flags;
1059 	ASSERT(connp->conn_ref >= 3);
1060 
1061 	/*
1062 	 * tcp_closemp_used is used below without any protection of a lock
1063 	 * as we don't expect any one else to use it concurrently at this
1064 	 * point otherwise it would be a major defect.
1065 	 */
1066 
1067 	if (mp->b_prev == NULL)
1068 		tcp->tcp_closemp_used = B_TRUE;
1069 	else
1070 		cmn_err(CE_PANIC, "tcp_close: concurrent use of tcp_closemp: "
1071 		    "connp %p tcp %p\n", (void *)connp, (void *)tcp);
1072 
1073 	TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15);
1074 
1075 	/*
1076 	 * Cleanup any queued ioctls here. This must be done before the wq/rq
1077 	 * are re-written by tcp_close_output().
1078 	 */
1079 	if (conn_ioctl_cleanup_reqd)
1080 		conn_ioctl_cleanup(connp);
1081 
1082 	/*
1083 	 * As CONN_CLOSING is set, no further ioctls should be passed down to
1084 	 * IP for this conn (see the guards in tcp_ioctl, tcp_wput_ioctl and
1085 	 * tcp_wput_iocdata). If the ioctl was queued on an ipsq,
1086 	 * conn_ioctl_cleanup should have found it and removed it. If the ioctl
1087 	 * was still in flight at the time, we wait for it here. See comments
1088 	 * for CONN_INC_IOCTLREF in ip.h for details.
1089 	 */
1090 	mutex_enter(&connp->conn_lock);
1091 	while (connp->conn_ioctlref > 0)
1092 		cv_wait(&connp->conn_cv, &connp->conn_lock);
1093 	ASSERT(connp->conn_ioctlref == 0);
1094 	ASSERT(connp->conn_oper_pending_ill == NULL);
1095 	mutex_exit(&connp->conn_lock);
1096 
1097 	SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_close_output, connp,
1098 	    NULL, tcp_squeue_flag, SQTAG_IP_TCP_CLOSE);
1099 
1100 	/*
1101 	 * For non-STREAMS sockets, the normal case is that the conn makes
1102 	 * an upcall when it's finally closed, so there is no need to wait
1103 	 * in the protocol. But in case of SO_LINGER the thread sleeps here
1104 	 * so it can properly deal with the thread being interrupted.
1105 	 */
1106 	if (IPCL_IS_NONSTR(connp) && connp->conn_linger == 0)
1107 		goto nowait;
1108 
1109 	mutex_enter(&tcp->tcp_closelock);
1110 	while (!tcp->tcp_closed) {
1111 		if (!cv_wait_sig(&tcp->tcp_closecv, &tcp->tcp_closelock)) {
1112 			/*
1113 			 * The cv_wait_sig() was interrupted. We now do the
1114 			 * following:
1115 			 *
1116 			 * 1) If the endpoint was lingering, we allow this
1117 			 * to be interrupted by cancelling the linger timeout
1118 			 * and closing normally.
1119 			 *
1120 			 * 2) Revert to calling cv_wait()
1121 			 *
1122 			 * We revert to using cv_wait() to avoid an
1123 			 * infinite loop which can occur if the calling
1124 			 * thread is higher priority than the squeue worker
1125 			 * thread and is bound to the same cpu.
1126 			 */
1127 			if (connp->conn_linger && connp->conn_lingertime > 0) {
1128 				mutex_exit(&tcp->tcp_closelock);
1129 				/* Entering squeue, bump ref count. */
1130 				CONN_INC_REF(connp);
1131 				bp = allocb_wait(0, BPRI_HI, STR_NOSIG, NULL);
1132 				SQUEUE_ENTER_ONE(connp->conn_sqp, bp,
1133 				    tcp_linger_interrupted, connp, NULL,
1134 				    tcp_squeue_flag, SQTAG_IP_TCP_CLOSE);
1135 				mutex_enter(&tcp->tcp_closelock);
1136 			}
1137 			break;
1138 		}
1139 	}
1140 	while (!tcp->tcp_closed)
1141 		cv_wait(&tcp->tcp_closecv, &tcp->tcp_closelock);
1142 	mutex_exit(&tcp->tcp_closelock);
1143 
1144 	/*
1145 	 * In the case of listener streams that have eagers in the q or q0
1146 	 * we wait for the eagers to drop their reference to us. conn_rq and
1147 	 * conn_wq of the eagers point to our queues. By waiting for the
1148 	 * refcnt to drop to 1, we are sure that the eagers have cleaned
1149 	 * up their queue pointers and also dropped their references to us.
1150 	 *
1151 	 * For non-STREAMS sockets we do not have to wait here; the
1152 	 * listener will instead make a su_closed upcall when the last
1153 	 * reference is dropped.
1154 	 */
1155 	if (tcp->tcp_wait_for_eagers && !IPCL_IS_NONSTR(connp)) {
1156 		mutex_enter(&connp->conn_lock);
1157 		while (connp->conn_ref != 1) {
1158 			cv_wait(&connp->conn_cv, &connp->conn_lock);
1159 		}
1160 		mutex_exit(&connp->conn_lock);
1161 	}
1162 
1163 nowait:
1164 	connp->conn_cpid = NOPID;
1165 }
1166 
1167 /*
1168  * Called by tcp_close() routine via squeue when lingering is
1169  * interrupted by a signal.
1170  */
1171 
1172 /* ARGSUSED */
1173 static void
1174 tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy)
1175 {
1176 	conn_t	*connp = (conn_t *)arg;
1177 	tcp_t	*tcp = connp->conn_tcp;
1178 
1179 	freeb(mp);
1180 	if (tcp->tcp_linger_tid != 0 &&
1181 	    TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) {
1182 		tcp_stop_lingering(tcp);
1183 		tcp->tcp_client_errno = EINTR;
1184 	}
1185 }
1186 
1187 /*
1188  * Clean up the b_next and b_prev fields of every mblk pointed at by *mpp.
1189  * Some stream heads get upset if they see these later on as anything but NULL.
1190  */
1191 void
1192 tcp_close_mpp(mblk_t **mpp)
1193 {
1194 	mblk_t	*mp;
1195 
1196 	if ((mp = *mpp) != NULL) {
1197 		do {
1198 			mp->b_next = NULL;
1199 			mp->b_prev = NULL;
1200 		} while ((mp = mp->b_cont) != NULL);
1201 
1202 		mp = *mpp;
1203 		*mpp = NULL;
1204 		freemsg(mp);
1205 	}
1206 }
1207 
1208 /* Do detached close. */
1209 void
1210 tcp_close_detached(tcp_t *tcp)
1211 {
1212 	if (tcp->tcp_fused)
1213 		tcp_unfuse(tcp);
1214 
1215 	/*
1216 	 * Clustering code serializes TCP disconnect callbacks and
1217 	 * cluster tcp list walks by blocking a TCP disconnect callback
1218 	 * if a cluster tcp list walk is in progress. This ensures
1219 	 * accurate accounting of TCPs in the cluster code even though
1220 	 * the TCP list walk itself is not atomic.
1221 	 */
1222 	tcp_closei_local(tcp);
1223 	CONN_DEC_REF(tcp->tcp_connp);
1224 }
1225 
1226 /*
1227  * The tcp_t is going away. Remove it from all lists and set it
1228  * to TCPS_CLOSED. The freeing up of memory is deferred until
1229  * tcp_inactive. This is needed since a thread in tcp_rput might have
1230  * done a CONN_INC_REF on this structure before it was removed from the
1231  * hashes.
1232  */
1233 void
1234 tcp_closei_local(tcp_t *tcp)
1235 {
1236 	conn_t		*connp = tcp->tcp_connp;
1237 	tcp_stack_t	*tcps = tcp->tcp_tcps;
1238 	int32_t		oldstate;
1239 
1240 	if (!TCP_IS_SOCKET(tcp))
1241 		tcp_acceptor_hash_remove(tcp);
1242 
1243 	TCPS_UPDATE_MIB(tcps, tcpHCInSegs, tcp->tcp_ibsegs);
1244 	tcp->tcp_ibsegs = 0;
1245 	TCPS_UPDATE_MIB(tcps, tcpHCOutSegs, tcp->tcp_obsegs);
1246 	tcp->tcp_obsegs = 0;
1247 
1248 	/*
1249 	 * This can be called via tcp_time_wait_processing() if TCP gets a
1250 	 * SYN with sequence number outside the TIME-WAIT connection's
1251 	 * window.  So we need to check for TIME-WAIT state here as the
1252 	 * connection counter is already decremented.  See SET_TIME_WAIT()
1253 	 * macro
1254 	 */
1255 	if (tcp->tcp_state >= TCPS_ESTABLISHED &&
1256 	    tcp->tcp_state < TCPS_TIME_WAIT) {
1257 		TCPS_CONN_DEC(tcps);
1258 	}
1259 
1260 	/*
1261 	 * If we are an eager connection hanging off a listener that
1262 	 * hasn't formally accepted the connection yet, get off his
1263 	 * list and blow off any data that we have accumulated.
1264 	 */
1265 	if (tcp->tcp_listener != NULL) {
1266 		tcp_t	*listener = tcp->tcp_listener;
1267 		mutex_enter(&listener->tcp_eager_lock);
1268 		/*
1269 		 * tcp_tconnind_started == B_TRUE means that the
1270 		 * conn_ind has already gone to listener. At
1271 		 * this point, eager will be closed but we
1272 		 * leave it in listeners eager list so that
1273 		 * if listener decides to close without doing
1274 		 * accept, we can clean this up. In tcp_tli_accept
1275 		 * we take care of the case of accept on closed
1276 		 * eager.
1277 		 */
1278 		if (!tcp->tcp_tconnind_started) {
1279 			tcp_eager_unlink(tcp);
1280 			mutex_exit(&listener->tcp_eager_lock);
1281 			/*
1282 			 * We don't want to have any pointers to the
1283 			 * listener queue, after we have released our
1284 			 * reference on the listener
1285 			 */
1286 			ASSERT(tcp->tcp_detached);
1287 			connp->conn_rq = NULL;
1288 			connp->conn_wq = NULL;
1289 			CONN_DEC_REF(listener->tcp_connp);
1290 		} else {
1291 			mutex_exit(&listener->tcp_eager_lock);
1292 		}
1293 	}
1294 
1295 	/* Stop all the timers */
1296 	tcp_timers_stop(tcp);
1297 
1298 	if (tcp->tcp_state == TCPS_LISTEN) {
1299 		if (tcp->tcp_ip_addr_cache) {
1300 			kmem_free((void *)tcp->tcp_ip_addr_cache,
1301 			    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t));
1302 			tcp->tcp_ip_addr_cache = NULL;
1303 		}
1304 	}
1305 
1306 	/* Decrement listerner connection counter if necessary. */
1307 	if (tcp->tcp_listen_cnt != NULL)
1308 		TCP_DECR_LISTEN_CNT(tcp);
1309 
1310 	mutex_enter(&tcp->tcp_non_sq_lock);
1311 	if (tcp->tcp_flow_stopped)
1312 		tcp_clrqfull(tcp);
1313 	mutex_exit(&tcp->tcp_non_sq_lock);
1314 
1315 	tcp_bind_hash_remove(tcp);
1316 	/*
1317 	 * If the tcp_time_wait_collector (which runs outside the squeue)
1318 	 * is trying to remove this tcp from the time wait list, we will
1319 	 * block in tcp_time_wait_remove while trying to acquire the
1320 	 * tcp_time_wait_lock. The logic in tcp_time_wait_collector also
1321 	 * requires the ipcl_hash_remove to be ordered after the
1322 	 * tcp_time_wait_remove for the refcnt checks to work correctly.
1323 	 */
1324 	if (tcp->tcp_state == TCPS_TIME_WAIT)
1325 		(void) tcp_time_wait_remove(tcp, NULL);
1326 	CL_INET_DISCONNECT(connp);
1327 	ipcl_hash_remove(connp);
1328 	oldstate = tcp->tcp_state;
1329 	tcp->tcp_state = TCPS_CLOSED;
1330 	/* Need to probe before ixa_cleanup() is called */
1331 	DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
1332 	    connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL,
1333 	    int32_t, oldstate);
1334 	ixa_cleanup(connp->conn_ixa);
1335 
1336 	/*
1337 	 * Mark the conn as CONDEMNED
1338 	 */
1339 	mutex_enter(&connp->conn_lock);
1340 	connp->conn_state_flags |= CONN_CONDEMNED;
1341 	mutex_exit(&connp->conn_lock);
1342 
1343 	ASSERT(tcp->tcp_time_wait_next == NULL);
1344 	ASSERT(tcp->tcp_time_wait_prev == NULL);
1345 	ASSERT(tcp->tcp_time_wait_expire == 0);
1346 
1347 	tcp_ipsec_cleanup(tcp);
1348 }
1349 
1350 /*
1351  * tcp is dying (called from ipcl_conn_destroy and error cases).
1352  * Free the tcp_t in either case.
1353  */
1354 void
1355 tcp_free(tcp_t *tcp)
1356 {
1357 	mblk_t		*mp;
1358 	conn_t		*connp = tcp->tcp_connp;
1359 
1360 	ASSERT(tcp != NULL);
1361 	ASSERT(tcp->tcp_ptpahn == NULL && tcp->tcp_acceptor_hash == NULL);
1362 
1363 	connp->conn_rq = NULL;
1364 	connp->conn_wq = NULL;
1365 
1366 	tcp_close_mpp(&tcp->tcp_xmit_head);
1367 	tcp_close_mpp(&tcp->tcp_reass_head);
1368 	if (tcp->tcp_rcv_list != NULL) {
1369 		/* Free b_next chain */
1370 		tcp_close_mpp(&tcp->tcp_rcv_list);
1371 	}
1372 	if ((mp = tcp->tcp_urp_mp) != NULL) {
1373 		freemsg(mp);
1374 	}
1375 	if ((mp = tcp->tcp_urp_mark_mp) != NULL) {
1376 		freemsg(mp);
1377 	}
1378 
1379 	if (tcp->tcp_fused_sigurg_mp != NULL) {
1380 		ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp));
1381 		freeb(tcp->tcp_fused_sigurg_mp);
1382 		tcp->tcp_fused_sigurg_mp = NULL;
1383 	}
1384 
1385 	if (tcp->tcp_ordrel_mp != NULL) {
1386 		ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp));
1387 		freeb(tcp->tcp_ordrel_mp);
1388 		tcp->tcp_ordrel_mp = NULL;
1389 	}
1390 
1391 	TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, tcp);
1392 	bzero(&tcp->tcp_sack_info, sizeof (tcp_sack_info_t));
1393 
1394 	if (tcp->tcp_hopopts != NULL) {
1395 		mi_free(tcp->tcp_hopopts);
1396 		tcp->tcp_hopopts = NULL;
1397 		tcp->tcp_hopoptslen = 0;
1398 	}
1399 	ASSERT(tcp->tcp_hopoptslen == 0);
1400 	if (tcp->tcp_dstopts != NULL) {
1401 		mi_free(tcp->tcp_dstopts);
1402 		tcp->tcp_dstopts = NULL;
1403 		tcp->tcp_dstoptslen = 0;
1404 	}
1405 	ASSERT(tcp->tcp_dstoptslen == 0);
1406 	if (tcp->tcp_rthdrdstopts != NULL) {
1407 		mi_free(tcp->tcp_rthdrdstopts);
1408 		tcp->tcp_rthdrdstopts = NULL;
1409 		tcp->tcp_rthdrdstoptslen = 0;
1410 	}
1411 	ASSERT(tcp->tcp_rthdrdstoptslen == 0);
1412 	if (tcp->tcp_rthdr != NULL) {
1413 		mi_free(tcp->tcp_rthdr);
1414 		tcp->tcp_rthdr = NULL;
1415 		tcp->tcp_rthdrlen = 0;
1416 	}
1417 	ASSERT(tcp->tcp_rthdrlen == 0);
1418 
1419 	/*
1420 	 * Following is really a blowing away a union.
1421 	 * It happens to have exactly two members of identical size
1422 	 * the following code is enough.
1423 	 */
1424 	tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind);
1425 
1426 	/*
1427 	 * If this is a non-STREAM socket still holding on to an upper
1428 	 * handle, release it. As a result of fallback we might also see
1429 	 * STREAMS based conns with upper handles, in which case there is
1430 	 * nothing to do other than clearing the field.
1431 	 */
1432 	if (connp->conn_upper_handle != NULL) {
1433 		if (IPCL_IS_NONSTR(connp)) {
1434 			(*connp->conn_upcalls->su_closed)(
1435 			    connp->conn_upper_handle);
1436 			tcp->tcp_detached = B_TRUE;
1437 		}
1438 		connp->conn_upper_handle = NULL;
1439 		connp->conn_upcalls = NULL;
1440 	}
1441 }
1442 
1443 /*
1444  * tcp_get_conn/tcp_free_conn
1445  *
1446  * tcp_get_conn is used to get a clean tcp connection structure.
1447  * It tries to reuse the connections put on the freelist by the
1448  * time_wait_collector failing which it goes to kmem_cache. This
1449  * way has two benefits compared to just allocating from and
1450  * freeing to kmem_cache.
1451  * 1) The time_wait_collector can free (which includes the cleanup)
1452  * outside the squeue. So when the interrupt comes, we have a clean
1453  * connection sitting in the freelist. Obviously, this buys us
1454  * performance.
1455  *
1456  * 2) Defence against DOS attack. Allocating a tcp/conn in tcp_input_listener
1457  * has multiple disadvantages - tying up the squeue during alloc.
1458  * But allocating the conn/tcp in IP land is also not the best since
1459  * we can't check the 'q' and 'q0' which are protected by squeue and
1460  * blindly allocate memory which might have to be freed here if we are
1461  * not allowed to accept the connection. By using the freelist and
1462  * putting the conn/tcp back in freelist, we don't pay a penalty for
1463  * allocating memory without checking 'q/q0' and freeing it if we can't
1464  * accept the connection.
1465  *
1466  * Care should be taken to put the conn back in the same squeue's freelist
1467  * from which it was allocated. Best results are obtained if conn is
1468  * allocated from listener's squeue and freed to the same. Time wait
1469  * collector will free up the freelist is the connection ends up sitting
1470  * there for too long.
1471  */
1472 void *
1473 tcp_get_conn(void *arg, tcp_stack_t *tcps)
1474 {
1475 	tcp_t			*tcp = NULL;
1476 	conn_t			*connp = NULL;
1477 	squeue_t		*sqp = (squeue_t *)arg;
1478 	tcp_squeue_priv_t 	*tcp_time_wait;
1479 	netstack_t		*ns;
1480 	mblk_t			*tcp_rsrv_mp = NULL;
1481 
1482 	tcp_time_wait =
1483 	    *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP));
1484 
1485 	mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1486 	tcp = tcp_time_wait->tcp_free_list;
1487 	ASSERT((tcp != NULL) ^ (tcp_time_wait->tcp_free_list_cnt == 0));
1488 	if (tcp != NULL) {
1489 		tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next;
1490 		tcp_time_wait->tcp_free_list_cnt--;
1491 		mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1492 		tcp->tcp_time_wait_next = NULL;
1493 		connp = tcp->tcp_connp;
1494 		connp->conn_flags |= IPCL_REUSED;
1495 
1496 		ASSERT(tcp->tcp_tcps == NULL);
1497 		ASSERT(connp->conn_netstack == NULL);
1498 		ASSERT(tcp->tcp_rsrv_mp != NULL);
1499 		ns = tcps->tcps_netstack;
1500 		netstack_hold(ns);
1501 		connp->conn_netstack = ns;
1502 		connp->conn_ixa->ixa_ipst = ns->netstack_ip;
1503 		tcp->tcp_tcps = tcps;
1504 		ipcl_globalhash_insert(connp);
1505 
1506 		connp->conn_ixa->ixa_notify_cookie = tcp;
1507 		ASSERT(connp->conn_ixa->ixa_notify == tcp_notify);
1508 		connp->conn_recv = tcp_input_data;
1509 		ASSERT(connp->conn_recvicmp == tcp_icmp_input);
1510 		ASSERT(connp->conn_verifyicmp == tcp_verifyicmp);
1511 		return ((void *)connp);
1512 	}
1513 	mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1514 	/*
1515 	 * Pre-allocate the tcp_rsrv_mp. This mblk will not be freed until
1516 	 * this conn_t/tcp_t is freed at ipcl_conn_destroy().
1517 	 */
1518 	tcp_rsrv_mp = allocb(0, BPRI_HI);
1519 	if (tcp_rsrv_mp == NULL)
1520 		return (NULL);
1521 
1522 	if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP,
1523 	    tcps->tcps_netstack)) == NULL) {
1524 		freeb(tcp_rsrv_mp);
1525 		return (NULL);
1526 	}
1527 
1528 	tcp = connp->conn_tcp;
1529 	tcp->tcp_rsrv_mp = tcp_rsrv_mp;
1530 	mutex_init(&tcp->tcp_rsrv_mp_lock, NULL, MUTEX_DEFAULT, NULL);
1531 
1532 	tcp->tcp_tcps = tcps;
1533 
1534 	connp->conn_recv = tcp_input_data;
1535 	connp->conn_recvicmp = tcp_icmp_input;
1536 	connp->conn_verifyicmp = tcp_verifyicmp;
1537 
1538 	/*
1539 	 * Register tcp_notify to listen to capability changes detected by IP.
1540 	 * This upcall is made in the context of the call to conn_ip_output
1541 	 * thus it is inside the squeue.
1542 	 */
1543 	connp->conn_ixa->ixa_notify = tcp_notify;
1544 	connp->conn_ixa->ixa_notify_cookie = tcp;
1545 
1546 	return ((void *)connp);
1547 }
1548 
1549 /*
1550  * Handle connect to IPv4 destinations, including connections for AF_INET6
1551  * sockets connecting to IPv4 mapped IPv6 destinations.
1552  * Returns zero if OK, a positive errno, or a negative TLI error.
1553  */
1554 static int
1555 tcp_connect_ipv4(tcp_t *tcp, ipaddr_t *dstaddrp, in_port_t dstport,
1556     uint_t srcid)
1557 {
1558 	ipaddr_t 	dstaddr = *dstaddrp;
1559 	uint16_t 	lport;
1560 	conn_t		*connp = tcp->tcp_connp;
1561 	tcp_stack_t	*tcps = tcp->tcp_tcps;
1562 	int		error;
1563 
1564 	ASSERT(connp->conn_ipversion == IPV4_VERSION);
1565 
1566 	/* Check for attempt to connect to INADDR_ANY */
1567 	if (dstaddr == INADDR_ANY)  {
1568 		/*
1569 		 * SunOS 4.x and 4.3 BSD allow an application
1570 		 * to connect a TCP socket to INADDR_ANY.
1571 		 * When they do this, the kernel picks the
1572 		 * address of one interface and uses it
1573 		 * instead.  The kernel usually ends up
1574 		 * picking the address of the loopback
1575 		 * interface.  This is an undocumented feature.
1576 		 * However, we provide the same thing here
1577 		 * in order to have source and binary
1578 		 * compatibility with SunOS 4.x.
1579 		 * Update the T_CONN_REQ (sin/sin6) since it is used to
1580 		 * generate the T_CONN_CON.
1581 		 */
1582 		dstaddr = htonl(INADDR_LOOPBACK);
1583 		*dstaddrp = dstaddr;
1584 	}
1585 
1586 	/* Handle __sin6_src_id if socket not bound to an IP address */
1587 	if (srcid != 0 && connp->conn_laddr_v4 == INADDR_ANY) {
1588 		ip_srcid_find_id(srcid, &connp->conn_laddr_v6,
1589 		    IPCL_ZONEID(connp), tcps->tcps_netstack);
1590 		connp->conn_saddr_v6 = connp->conn_laddr_v6;
1591 	}
1592 
1593 	IN6_IPADDR_TO_V4MAPPED(dstaddr, &connp->conn_faddr_v6);
1594 	connp->conn_fport = dstport;
1595 
1596 	/*
1597 	 * At this point the remote destination address and remote port fields
1598 	 * in the tcp-four-tuple have been filled in the tcp structure. Now we
1599 	 * have to see which state tcp was in so we can take appropriate action.
1600 	 */
1601 	if (tcp->tcp_state == TCPS_IDLE) {
1602 		/*
1603 		 * We support a quick connect capability here, allowing
1604 		 * clients to transition directly from IDLE to SYN_SENT
1605 		 * tcp_bindi will pick an unused port, insert the connection
1606 		 * in the bind hash and transition to BOUND state.
1607 		 */
1608 		lport = tcp_update_next_port(tcps->tcps_next_port_to_try,
1609 		    tcp, B_TRUE);
1610 		lport = tcp_bindi(tcp, lport, &connp->conn_laddr_v6, 0, B_TRUE,
1611 		    B_FALSE, B_FALSE);
1612 		if (lport == 0)
1613 			return (-TNOADDR);
1614 	}
1615 
1616 	/*
1617 	 * Lookup the route to determine a source address and the uinfo.
1618 	 * Setup TCP parameters based on the metrics/DCE.
1619 	 */
1620 	error = tcp_set_destination(tcp);
1621 	if (error != 0)
1622 		return (error);
1623 
1624 	/*
1625 	 * Don't let an endpoint connect to itself.
1626 	 */
1627 	if (connp->conn_faddr_v4 == connp->conn_laddr_v4 &&
1628 	    connp->conn_fport == connp->conn_lport)
1629 		return (-TBADADDR);
1630 
1631 	tcp->tcp_state = TCPS_SYN_SENT;
1632 
1633 	return (ipcl_conn_insert_v4(connp));
1634 }
1635 
1636 /*
1637  * Handle connect to IPv6 destinations.
1638  * Returns zero if OK, a positive errno, or a negative TLI error.
1639  */
1640 static int
1641 tcp_connect_ipv6(tcp_t *tcp, in6_addr_t *dstaddrp, in_port_t dstport,
1642     uint32_t flowinfo, uint_t srcid, uint32_t scope_id)
1643 {
1644 	uint16_t 	lport;
1645 	conn_t		*connp = tcp->tcp_connp;
1646 	tcp_stack_t	*tcps = tcp->tcp_tcps;
1647 	int		error;
1648 
1649 	ASSERT(connp->conn_family == AF_INET6);
1650 
1651 	/*
1652 	 * If we're here, it means that the destination address is a native
1653 	 * IPv6 address.  Return an error if conn_ipversion is not IPv6.  A
1654 	 * reason why it might not be IPv6 is if the socket was bound to an
1655 	 * IPv4-mapped IPv6 address.
1656 	 */
1657 	if (connp->conn_ipversion != IPV6_VERSION)
1658 		return (-TBADADDR);
1659 
1660 	/*
1661 	 * Interpret a zero destination to mean loopback.
1662 	 * Update the T_CONN_REQ (sin/sin6) since it is used to
1663 	 * generate the T_CONN_CON.
1664 	 */
1665 	if (IN6_IS_ADDR_UNSPECIFIED(dstaddrp))
1666 		*dstaddrp = ipv6_loopback;
1667 
1668 	/* Handle __sin6_src_id if socket not bound to an IP address */
1669 	if (srcid != 0 && IN6_IS_ADDR_UNSPECIFIED(&connp->conn_laddr_v6)) {
1670 		ip_srcid_find_id(srcid, &connp->conn_laddr_v6,
1671 		    IPCL_ZONEID(connp), tcps->tcps_netstack);
1672 		connp->conn_saddr_v6 = connp->conn_laddr_v6;
1673 	}
1674 
1675 	/*
1676 	 * Take care of the scope_id now.
1677 	 */
1678 	if (scope_id != 0 && IN6_IS_ADDR_LINKSCOPE(dstaddrp)) {
1679 		connp->conn_ixa->ixa_flags |= IXAF_SCOPEID_SET;
1680 		connp->conn_ixa->ixa_scopeid = scope_id;
1681 	} else {
1682 		connp->conn_ixa->ixa_flags &= ~IXAF_SCOPEID_SET;
1683 	}
1684 
1685 	connp->conn_flowinfo = flowinfo;
1686 	connp->conn_faddr_v6 = *dstaddrp;
1687 	connp->conn_fport = dstport;
1688 
1689 	/*
1690 	 * At this point the remote destination address and remote port fields
1691 	 * in the tcp-four-tuple have been filled in the tcp structure. Now we
1692 	 * have to see which state tcp was in so we can take appropriate action.
1693 	 */
1694 	if (tcp->tcp_state == TCPS_IDLE) {
1695 		/*
1696 		 * We support a quick connect capability here, allowing
1697 		 * clients to transition directly from IDLE to SYN_SENT
1698 		 * tcp_bindi will pick an unused port, insert the connection
1699 		 * in the bind hash and transition to BOUND state.
1700 		 */
1701 		lport = tcp_update_next_port(tcps->tcps_next_port_to_try,
1702 		    tcp, B_TRUE);
1703 		lport = tcp_bindi(tcp, lport, &connp->conn_laddr_v6, 0, B_TRUE,
1704 		    B_FALSE, B_FALSE);
1705 		if (lport == 0)
1706 			return (-TNOADDR);
1707 	}
1708 
1709 	/*
1710 	 * Lookup the route to determine a source address and the uinfo.
1711 	 * Setup TCP parameters based on the metrics/DCE.
1712 	 */
1713 	error = tcp_set_destination(tcp);
1714 	if (error != 0)
1715 		return (error);
1716 
1717 	/*
1718 	 * Don't let an endpoint connect to itself.
1719 	 */
1720 	if (IN6_ARE_ADDR_EQUAL(&connp->conn_faddr_v6, &connp->conn_laddr_v6) &&
1721 	    connp->conn_fport == connp->conn_lport)
1722 		return (-TBADADDR);
1723 
1724 	tcp->tcp_state = TCPS_SYN_SENT;
1725 
1726 	return (ipcl_conn_insert_v6(connp));
1727 }
1728 
1729 /*
1730  * Disconnect
1731  * Note that unlike other functions this returns a positive tli error
1732  * when it fails; it never returns an errno.
1733  */
1734 static int
1735 tcp_disconnect_common(tcp_t *tcp, t_scalar_t seqnum)
1736 {
1737 	conn_t		*lconnp;
1738 	tcp_stack_t	*tcps = tcp->tcp_tcps;
1739 	conn_t		*connp = tcp->tcp_connp;
1740 
1741 	/*
1742 	 * Right now, upper modules pass down a T_DISCON_REQ to TCP,
1743 	 * when the stream is in BOUND state. Do not send a reset,
1744 	 * since the destination IP address is not valid, and it can
1745 	 * be the initialized value of all zeros (broadcast address).
1746 	 */
1747 	if (tcp->tcp_state <= TCPS_BOUND) {
1748 		if (connp->conn_debug) {
1749 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
1750 			    "tcp_disconnect: bad state, %d", tcp->tcp_state);
1751 		}
1752 		return (TOUTSTATE);
1753 	} else if (tcp->tcp_state >= TCPS_ESTABLISHED) {
1754 		TCPS_CONN_DEC(tcps);
1755 	}
1756 
1757 	if (seqnum == -1 || tcp->tcp_conn_req_max == 0) {
1758 
1759 		/*
1760 		 * According to TPI, for non-listeners, ignore seqnum
1761 		 * and disconnect.
1762 		 * Following interpretation of -1 seqnum is historical
1763 		 * and implied TPI ? (TPI only states that for T_CONN_IND,
1764 		 * a valid seqnum should not be -1).
1765 		 *
1766 		 *	-1 means disconnect everything
1767 		 *	regardless even on a listener.
1768 		 */
1769 
1770 		int old_state = tcp->tcp_state;
1771 		ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
1772 
1773 		/*
1774 		 * The connection can't be on the tcp_time_wait_head list
1775 		 * since it is not detached.
1776 		 */
1777 		ASSERT(tcp->tcp_time_wait_next == NULL);
1778 		ASSERT(tcp->tcp_time_wait_prev == NULL);
1779 		ASSERT(tcp->tcp_time_wait_expire == 0);
1780 		/*
1781 		 * If it used to be a listener, check to make sure no one else
1782 		 * has taken the port before switching back to LISTEN state.
1783 		 */
1784 		if (connp->conn_ipversion == IPV4_VERSION) {
1785 			lconnp = ipcl_lookup_listener_v4(connp->conn_lport,
1786 			    connp->conn_laddr_v4, IPCL_ZONEID(connp), ipst);
1787 		} else {
1788 			uint_t ifindex = 0;
1789 
1790 			if (connp->conn_ixa->ixa_flags & IXAF_SCOPEID_SET)
1791 				ifindex = connp->conn_ixa->ixa_scopeid;
1792 
1793 			/* Allow conn_bound_if listeners? */
1794 			lconnp = ipcl_lookup_listener_v6(connp->conn_lport,
1795 			    &connp->conn_laddr_v6, ifindex, IPCL_ZONEID(connp),
1796 			    ipst);
1797 		}
1798 		if (tcp->tcp_conn_req_max && lconnp == NULL) {
1799 			tcp->tcp_state = TCPS_LISTEN;
1800 			DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
1801 			    connp->conn_ixa, void, NULL, tcp_t *, tcp, void,
1802 			    NULL, int32_t, old_state);
1803 		} else if (old_state > TCPS_BOUND) {
1804 			tcp->tcp_conn_req_max = 0;
1805 			tcp->tcp_state = TCPS_BOUND;
1806 			DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
1807 			    connp->conn_ixa, void, NULL, tcp_t *, tcp, void,
1808 			    NULL, int32_t, old_state);
1809 
1810 			/*
1811 			 * If this end point is not going to become a listener,
1812 			 * decrement the listener connection count if
1813 			 * necessary.  Note that we do not do this if it is
1814 			 * going to be a listner (the above if case) since
1815 			 * then it may remove the counter struct.
1816 			 */
1817 			if (tcp->tcp_listen_cnt != NULL)
1818 				TCP_DECR_LISTEN_CNT(tcp);
1819 		}
1820 		if (lconnp != NULL)
1821 			CONN_DEC_REF(lconnp);
1822 		switch (old_state) {
1823 		case TCPS_SYN_SENT:
1824 		case TCPS_SYN_RCVD:
1825 			TCPS_BUMP_MIB(tcps, tcpAttemptFails);
1826 			break;
1827 		case TCPS_ESTABLISHED:
1828 		case TCPS_CLOSE_WAIT:
1829 			TCPS_BUMP_MIB(tcps, tcpEstabResets);
1830 			break;
1831 		}
1832 
1833 		if (tcp->tcp_fused)
1834 			tcp_unfuse(tcp);
1835 
1836 		mutex_enter(&tcp->tcp_eager_lock);
1837 		if ((tcp->tcp_conn_req_cnt_q0 != 0) ||
1838 		    (tcp->tcp_conn_req_cnt_q != 0)) {
1839 			tcp_eager_cleanup(tcp, 0);
1840 		}
1841 		mutex_exit(&tcp->tcp_eager_lock);
1842 
1843 		tcp_xmit_ctl("tcp_disconnect", tcp, tcp->tcp_snxt,
1844 		    tcp->tcp_rnxt, TH_RST | TH_ACK);
1845 
1846 		tcp_reinit(tcp);
1847 
1848 		return (0);
1849 	} else if (!tcp_eager_blowoff(tcp, seqnum)) {
1850 		return (TBADSEQ);
1851 	}
1852 	return (0);
1853 }
1854 
1855 /*
1856  * Our client hereby directs us to reject the connection request
1857  * that tcp_input_listener() marked with 'seqnum'.  Rejection consists
1858  * of sending the appropriate RST, not an ICMP error.
1859  */
1860 void
1861 tcp_disconnect(tcp_t *tcp, mblk_t *mp)
1862 {
1863 	t_scalar_t seqnum;
1864 	int	error;
1865 	conn_t	*connp = tcp->tcp_connp;
1866 
1867 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
1868 	if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_discon_req)) {
1869 		tcp_err_ack(tcp, mp, TPROTO, 0);
1870 		return;
1871 	}
1872 	seqnum = ((struct T_discon_req *)mp->b_rptr)->SEQ_number;
1873 	error = tcp_disconnect_common(tcp, seqnum);
1874 	if (error != 0)
1875 		tcp_err_ack(tcp, mp, error, 0);
1876 	else {
1877 		if (tcp->tcp_state >= TCPS_ESTABLISHED) {
1878 			/* Send M_FLUSH according to TPI */
1879 			(void) putnextctl1(connp->conn_rq, M_FLUSH, FLUSHRW);
1880 		}
1881 		mp = mi_tpi_ok_ack_alloc(mp);
1882 		if (mp != NULL)
1883 			putnext(connp->conn_rq, mp);
1884 	}
1885 }
1886 
1887 /*
1888  * Handle reinitialization of a tcp structure.
1889  * Maintain "binding state" resetting the state to BOUND, LISTEN, or IDLE.
1890  */
1891 static void
1892 tcp_reinit(tcp_t *tcp)
1893 {
1894 	mblk_t		*mp;
1895 	tcp_stack_t	*tcps = tcp->tcp_tcps;
1896 	conn_t		*connp  = tcp->tcp_connp;
1897 	int32_t		oldstate;
1898 
1899 	/* tcp_reinit should never be called for detached tcp_t's */
1900 	ASSERT(tcp->tcp_listener == NULL);
1901 	ASSERT((connp->conn_family == AF_INET &&
1902 	    connp->conn_ipversion == IPV4_VERSION) ||
1903 	    (connp->conn_family == AF_INET6 &&
1904 	    (connp->conn_ipversion == IPV4_VERSION ||
1905 	    connp->conn_ipversion == IPV6_VERSION)));
1906 
1907 	/* Cancel outstanding timers */
1908 	tcp_timers_stop(tcp);
1909 
1910 	/*
1911 	 * Reset everything in the state vector, after updating global
1912 	 * MIB data from instance counters.
1913 	 */
1914 	TCPS_UPDATE_MIB(tcps, tcpHCInSegs, tcp->tcp_ibsegs);
1915 	tcp->tcp_ibsegs = 0;
1916 	TCPS_UPDATE_MIB(tcps, tcpHCOutSegs, tcp->tcp_obsegs);
1917 	tcp->tcp_obsegs = 0;
1918 
1919 	tcp_close_mpp(&tcp->tcp_xmit_head);
1920 	if (tcp->tcp_snd_zcopy_aware)
1921 		tcp_zcopy_notify(tcp);
1922 	tcp->tcp_xmit_last = tcp->tcp_xmit_tail = NULL;
1923 	tcp->tcp_unsent = tcp->tcp_xmit_tail_unsent = 0;
1924 	mutex_enter(&tcp->tcp_non_sq_lock);
1925 	if (tcp->tcp_flow_stopped &&
1926 	    TCP_UNSENT_BYTES(tcp) <= connp->conn_sndlowat) {
1927 		tcp_clrqfull(tcp);
1928 	}
1929 	mutex_exit(&tcp->tcp_non_sq_lock);
1930 	tcp_close_mpp(&tcp->tcp_reass_head);
1931 	tcp->tcp_reass_tail = NULL;
1932 	if (tcp->tcp_rcv_list != NULL) {
1933 		/* Free b_next chain */
1934 		tcp_close_mpp(&tcp->tcp_rcv_list);
1935 		tcp->tcp_rcv_last_head = NULL;
1936 		tcp->tcp_rcv_last_tail = NULL;
1937 		tcp->tcp_rcv_cnt = 0;
1938 	}
1939 	tcp->tcp_rcv_last_tail = NULL;
1940 
1941 	if ((mp = tcp->tcp_urp_mp) != NULL) {
1942 		freemsg(mp);
1943 		tcp->tcp_urp_mp = NULL;
1944 	}
1945 	if ((mp = tcp->tcp_urp_mark_mp) != NULL) {
1946 		freemsg(mp);
1947 		tcp->tcp_urp_mark_mp = NULL;
1948 	}
1949 	if (tcp->tcp_fused_sigurg_mp != NULL) {
1950 		ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp));
1951 		freeb(tcp->tcp_fused_sigurg_mp);
1952 		tcp->tcp_fused_sigurg_mp = NULL;
1953 	}
1954 	if (tcp->tcp_ordrel_mp != NULL) {
1955 		ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp));
1956 		freeb(tcp->tcp_ordrel_mp);
1957 		tcp->tcp_ordrel_mp = NULL;
1958 	}
1959 
1960 	/*
1961 	 * Following is a union with two members which are
1962 	 * identical types and size so the following cleanup
1963 	 * is enough.
1964 	 */
1965 	tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind);
1966 
1967 	CL_INET_DISCONNECT(connp);
1968 
1969 	/*
1970 	 * The connection can't be on the tcp_time_wait_head list
1971 	 * since it is not detached.
1972 	 */
1973 	ASSERT(tcp->tcp_time_wait_next == NULL);
1974 	ASSERT(tcp->tcp_time_wait_prev == NULL);
1975 	ASSERT(tcp->tcp_time_wait_expire == 0);
1976 
1977 	/*
1978 	 * Reset/preserve other values
1979 	 */
1980 	tcp_reinit_values(tcp);
1981 	ipcl_hash_remove(connp);
1982 	/* Note that ixa_cred gets cleared in ixa_cleanup */
1983 	ixa_cleanup(connp->conn_ixa);
1984 	tcp_ipsec_cleanup(tcp);
1985 
1986 	connp->conn_laddr_v6 = connp->conn_bound_addr_v6;
1987 	connp->conn_saddr_v6 = connp->conn_bound_addr_v6;
1988 	oldstate = tcp->tcp_state;
1989 
1990 	if (tcp->tcp_conn_req_max != 0) {
1991 		/*
1992 		 * This is the case when a TLI program uses the same
1993 		 * transport end point to accept a connection.  This
1994 		 * makes the TCP both a listener and acceptor.  When
1995 		 * this connection is closed, we need to set the state
1996 		 * back to TCPS_LISTEN.  Make sure that the eager list
1997 		 * is reinitialized.
1998 		 *
1999 		 * Note that this stream is still bound to the four
2000 		 * tuples of the previous connection in IP.  If a new
2001 		 * SYN with different foreign address comes in, IP will
2002 		 * not find it and will send it to the global queue.  In
2003 		 * the global queue, TCP will do a tcp_lookup_listener()
2004 		 * to find this stream.  This works because this stream
2005 		 * is only removed from connected hash.
2006 		 *
2007 		 */
2008 		tcp->tcp_state = TCPS_LISTEN;
2009 		tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp;
2010 		tcp->tcp_eager_next_drop_q0 = tcp;
2011 		tcp->tcp_eager_prev_drop_q0 = tcp;
2012 		/*
2013 		 * Initially set conn_recv to tcp_input_listener_unbound to try
2014 		 * to pick a good squeue for the listener when the first SYN
2015 		 * arrives. tcp_input_listener_unbound sets it to
2016 		 * tcp_input_listener on that first SYN.
2017 		 */
2018 		connp->conn_recv = tcp_input_listener_unbound;
2019 
2020 		connp->conn_proto = IPPROTO_TCP;
2021 		connp->conn_faddr_v6 = ipv6_all_zeros;
2022 		connp->conn_fport = 0;
2023 
2024 		(void) ipcl_bind_insert(connp);
2025 	} else {
2026 		tcp->tcp_state = TCPS_BOUND;
2027 	}
2028 
2029 	/*
2030 	 * Initialize to default values
2031 	 */
2032 	tcp_init_values(tcp, NULL);
2033 
2034 	DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
2035 	    connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL,
2036 	    int32_t, oldstate);
2037 
2038 	ASSERT(tcp->tcp_ptpbhn != NULL);
2039 	tcp->tcp_rwnd = connp->conn_rcvbuf;
2040 	tcp->tcp_mss = connp->conn_ipversion != IPV4_VERSION ?
2041 	    tcps->tcps_mss_def_ipv6 : tcps->tcps_mss_def_ipv4;
2042 }
2043 
2044 /*
2045  * Force values to zero that need be zero.
2046  * Do not touch values asociated with the BOUND or LISTEN state
2047  * since the connection will end up in that state after the reinit.
2048  * NOTE: tcp_reinit_values MUST have a line for each field in the tcp_t
2049  * structure!
2050  */
2051 static void
2052 tcp_reinit_values(tcp)
2053 	tcp_t *tcp;
2054 {
2055 	tcp_stack_t	*tcps = tcp->tcp_tcps;
2056 	conn_t		*connp = tcp->tcp_connp;
2057 
2058 #ifndef	lint
2059 #define	DONTCARE(x)
2060 #define	PRESERVE(x)
2061 #else
2062 #define	DONTCARE(x)	((x) = (x))
2063 #define	PRESERVE(x)	((x) = (x))
2064 #endif	/* lint */
2065 
2066 	PRESERVE(tcp->tcp_bind_hash_port);
2067 	PRESERVE(tcp->tcp_bind_hash);
2068 	PRESERVE(tcp->tcp_ptpbhn);
2069 	PRESERVE(tcp->tcp_acceptor_hash);
2070 	PRESERVE(tcp->tcp_ptpahn);
2071 
2072 	/* Should be ASSERT NULL on these with new code! */
2073 	ASSERT(tcp->tcp_time_wait_next == NULL);
2074 	ASSERT(tcp->tcp_time_wait_prev == NULL);
2075 	ASSERT(tcp->tcp_time_wait_expire == 0);
2076 	PRESERVE(tcp->tcp_state);
2077 	PRESERVE(connp->conn_rq);
2078 	PRESERVE(connp->conn_wq);
2079 
2080 	ASSERT(tcp->tcp_xmit_head == NULL);
2081 	ASSERT(tcp->tcp_xmit_last == NULL);
2082 	ASSERT(tcp->tcp_unsent == 0);
2083 	ASSERT(tcp->tcp_xmit_tail == NULL);
2084 	ASSERT(tcp->tcp_xmit_tail_unsent == 0);
2085 
2086 	tcp->tcp_snxt = 0;			/* Displayed in mib */
2087 	tcp->tcp_suna = 0;			/* Displayed in mib */
2088 	tcp->tcp_swnd = 0;
2089 	DONTCARE(tcp->tcp_cwnd);	/* Init in tcp_process_options */
2090 
2091 	ASSERT(tcp->tcp_ibsegs == 0);
2092 	ASSERT(tcp->tcp_obsegs == 0);
2093 
2094 	if (connp->conn_ht_iphc != NULL) {
2095 		kmem_free(connp->conn_ht_iphc, connp->conn_ht_iphc_allocated);
2096 		connp->conn_ht_iphc = NULL;
2097 		connp->conn_ht_iphc_allocated = 0;
2098 		connp->conn_ht_iphc_len = 0;
2099 		connp->conn_ht_ulp = NULL;
2100 		connp->conn_ht_ulp_len = 0;
2101 		tcp->tcp_ipha = NULL;
2102 		tcp->tcp_ip6h = NULL;
2103 		tcp->tcp_tcpha = NULL;
2104 	}
2105 
2106 	/* We clear any IP_OPTIONS and extension headers */
2107 	ip_pkt_free(&connp->conn_xmit_ipp);
2108 
2109 	DONTCARE(tcp->tcp_naglim);		/* Init in tcp_init_values */
2110 	DONTCARE(tcp->tcp_ipha);
2111 	DONTCARE(tcp->tcp_ip6h);
2112 	DONTCARE(tcp->tcp_tcpha);
2113 	tcp->tcp_valid_bits = 0;
2114 
2115 	DONTCARE(tcp->tcp_timer_backoff);	/* Init in tcp_init_values */
2116 	DONTCARE(tcp->tcp_last_recv_time);	/* Init in tcp_init_values */
2117 	tcp->tcp_last_rcv_lbolt = 0;
2118 
2119 	tcp->tcp_init_cwnd = 0;
2120 
2121 	tcp->tcp_urp_last_valid = 0;
2122 	tcp->tcp_hard_binding = 0;
2123 
2124 	tcp->tcp_fin_acked = 0;
2125 	tcp->tcp_fin_rcvd = 0;
2126 	tcp->tcp_fin_sent = 0;
2127 	tcp->tcp_ordrel_done = 0;
2128 
2129 	tcp->tcp_detached = 0;
2130 
2131 	tcp->tcp_snd_ws_ok = B_FALSE;
2132 	tcp->tcp_snd_ts_ok = B_FALSE;
2133 	tcp->tcp_zero_win_probe = 0;
2134 
2135 	tcp->tcp_loopback = 0;
2136 	tcp->tcp_localnet = 0;
2137 	tcp->tcp_syn_defense = 0;
2138 	tcp->tcp_set_timer = 0;
2139 
2140 	tcp->tcp_active_open = 0;
2141 	tcp->tcp_rexmit = B_FALSE;
2142 	tcp->tcp_xmit_zc_clean = B_FALSE;
2143 
2144 	tcp->tcp_snd_sack_ok = B_FALSE;
2145 	tcp->tcp_hwcksum = B_FALSE;
2146 
2147 	DONTCARE(tcp->tcp_maxpsz_multiplier);	/* Init in tcp_init_values */
2148 
2149 	tcp->tcp_conn_def_q0 = 0;
2150 	tcp->tcp_ip_forward_progress = B_FALSE;
2151 	tcp->tcp_ecn_ok = B_FALSE;
2152 
2153 	tcp->tcp_cwr = B_FALSE;
2154 	tcp->tcp_ecn_echo_on = B_FALSE;
2155 	tcp->tcp_is_wnd_shrnk = B_FALSE;
2156 
2157 	TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, tcp);
2158 	bzero(&tcp->tcp_sack_info, sizeof (tcp_sack_info_t));
2159 
2160 	tcp->tcp_rcv_ws = 0;
2161 	tcp->tcp_snd_ws = 0;
2162 	tcp->tcp_ts_recent = 0;
2163 	tcp->tcp_rnxt = 0;			/* Displayed in mib */
2164 	DONTCARE(tcp->tcp_rwnd);		/* Set in tcp_reinit() */
2165 	tcp->tcp_initial_pmtu = 0;
2166 
2167 	ASSERT(tcp->tcp_reass_head == NULL);
2168 	ASSERT(tcp->tcp_reass_tail == NULL);
2169 
2170 	tcp->tcp_cwnd_cnt = 0;
2171 
2172 	ASSERT(tcp->tcp_rcv_list == NULL);
2173 	ASSERT(tcp->tcp_rcv_last_head == NULL);
2174 	ASSERT(tcp->tcp_rcv_last_tail == NULL);
2175 	ASSERT(tcp->tcp_rcv_cnt == 0);
2176 
2177 	DONTCARE(tcp->tcp_cwnd_ssthresh); /* Init in tcp_set_destination */
2178 	DONTCARE(tcp->tcp_cwnd_max);		/* Init in tcp_init_values */
2179 	tcp->tcp_csuna = 0;
2180 
2181 	tcp->tcp_rto = 0;			/* Displayed in MIB */
2182 	DONTCARE(tcp->tcp_rtt_sa);		/* Init in tcp_init_values */
2183 	DONTCARE(tcp->tcp_rtt_sd);		/* Init in tcp_init_values */
2184 	tcp->tcp_rtt_update = 0;
2185 
2186 	DONTCARE(tcp->tcp_swl1); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */
2187 	DONTCARE(tcp->tcp_swl2); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */
2188 
2189 	tcp->tcp_rack = 0;			/* Displayed in mib */
2190 	tcp->tcp_rack_cnt = 0;
2191 	tcp->tcp_rack_cur_max = 0;
2192 	tcp->tcp_rack_abs_max = 0;
2193 
2194 	tcp->tcp_max_swnd = 0;
2195 
2196 	ASSERT(tcp->tcp_listener == NULL);
2197 
2198 	DONTCARE(tcp->tcp_irs);			/* tcp_valid_bits cleared */
2199 	DONTCARE(tcp->tcp_iss);			/* tcp_valid_bits cleared */
2200 	DONTCARE(tcp->tcp_fss);			/* tcp_valid_bits cleared */
2201 	DONTCARE(tcp->tcp_urg);			/* tcp_valid_bits cleared */
2202 
2203 	ASSERT(tcp->tcp_conn_req_cnt_q == 0);
2204 	ASSERT(tcp->tcp_conn_req_cnt_q0 == 0);
2205 	PRESERVE(tcp->tcp_conn_req_max);
2206 	PRESERVE(tcp->tcp_conn_req_seqnum);
2207 
2208 	DONTCARE(tcp->tcp_first_timer_threshold); /* Init in tcp_init_values */
2209 	DONTCARE(tcp->tcp_second_timer_threshold); /* Init in tcp_init_values */
2210 	DONTCARE(tcp->tcp_first_ctimer_threshold); /* Init in tcp_init_values */
2211 	DONTCARE(tcp->tcp_second_ctimer_threshold); /* in tcp_init_values */
2212 
2213 	DONTCARE(tcp->tcp_urp_last);	/* tcp_urp_last_valid is cleared */
2214 	ASSERT(tcp->tcp_urp_mp == NULL);
2215 	ASSERT(tcp->tcp_urp_mark_mp == NULL);
2216 	ASSERT(tcp->tcp_fused_sigurg_mp == NULL);
2217 
2218 	ASSERT(tcp->tcp_eager_next_q == NULL);
2219 	ASSERT(tcp->tcp_eager_last_q == NULL);
2220 	ASSERT((tcp->tcp_eager_next_q0 == NULL &&
2221 	    tcp->tcp_eager_prev_q0 == NULL) ||
2222 	    tcp->tcp_eager_next_q0 == tcp->tcp_eager_prev_q0);
2223 	ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL);
2224 
2225 	ASSERT((tcp->tcp_eager_next_drop_q0 == NULL &&
2226 	    tcp->tcp_eager_prev_drop_q0 == NULL) ||
2227 	    tcp->tcp_eager_next_drop_q0 == tcp->tcp_eager_prev_drop_q0);
2228 
2229 	tcp->tcp_client_errno = 0;
2230 
2231 	DONTCARE(connp->conn_sum);		/* Init in tcp_init_values */
2232 
2233 	connp->conn_faddr_v6 = ipv6_all_zeros;	/* Displayed in MIB */
2234 
2235 	PRESERVE(connp->conn_bound_addr_v6);
2236 	tcp->tcp_last_sent_len = 0;
2237 	tcp->tcp_dupack_cnt = 0;
2238 
2239 	connp->conn_fport = 0;			/* Displayed in MIB */
2240 	PRESERVE(connp->conn_lport);
2241 
2242 	PRESERVE(tcp->tcp_acceptor_lockp);
2243 
2244 	ASSERT(tcp->tcp_ordrel_mp == NULL);
2245 	PRESERVE(tcp->tcp_acceptor_id);
2246 	DONTCARE(tcp->tcp_ipsec_overhead);
2247 
2248 	PRESERVE(connp->conn_family);
2249 	/* Remove any remnants of mapped address binding */
2250 	if (connp->conn_family == AF_INET6) {
2251 		connp->conn_ipversion = IPV6_VERSION;
2252 		tcp->tcp_mss = tcps->tcps_mss_def_ipv6;
2253 	} else {
2254 		connp->conn_ipversion = IPV4_VERSION;
2255 		tcp->tcp_mss = tcps->tcps_mss_def_ipv4;
2256 	}
2257 
2258 	connp->conn_bound_if = 0;
2259 	connp->conn_recv_ancillary.crb_all = 0;
2260 	tcp->tcp_recvifindex = 0;
2261 	tcp->tcp_recvhops = 0;
2262 	tcp->tcp_closed = 0;
2263 	if (tcp->tcp_hopopts != NULL) {
2264 		mi_free(tcp->tcp_hopopts);
2265 		tcp->tcp_hopopts = NULL;
2266 		tcp->tcp_hopoptslen = 0;
2267 	}
2268 	ASSERT(tcp->tcp_hopoptslen == 0);
2269 	if (tcp->tcp_dstopts != NULL) {
2270 		mi_free(tcp->tcp_dstopts);
2271 		tcp->tcp_dstopts = NULL;
2272 		tcp->tcp_dstoptslen = 0;
2273 	}
2274 	ASSERT(tcp->tcp_dstoptslen == 0);
2275 	if (tcp->tcp_rthdrdstopts != NULL) {
2276 		mi_free(tcp->tcp_rthdrdstopts);
2277 		tcp->tcp_rthdrdstopts = NULL;
2278 		tcp->tcp_rthdrdstoptslen = 0;
2279 	}
2280 	ASSERT(tcp->tcp_rthdrdstoptslen == 0);
2281 	if (tcp->tcp_rthdr != NULL) {
2282 		mi_free(tcp->tcp_rthdr);
2283 		tcp->tcp_rthdr = NULL;
2284 		tcp->tcp_rthdrlen = 0;
2285 	}
2286 	ASSERT(tcp->tcp_rthdrlen == 0);
2287 
2288 	/* Reset fusion-related fields */
2289 	tcp->tcp_fused = B_FALSE;
2290 	tcp->tcp_unfusable = B_FALSE;
2291 	tcp->tcp_fused_sigurg = B_FALSE;
2292 	tcp->tcp_loopback_peer = NULL;
2293 
2294 	tcp->tcp_lso = B_FALSE;
2295 
2296 	tcp->tcp_in_ack_unsent = 0;
2297 	tcp->tcp_cork = B_FALSE;
2298 	tcp->tcp_tconnind_started = B_FALSE;
2299 
2300 	PRESERVE(tcp->tcp_squeue_bytes);
2301 
2302 	tcp->tcp_closemp_used = B_FALSE;
2303 
2304 	PRESERVE(tcp->tcp_rsrv_mp);
2305 	PRESERVE(tcp->tcp_rsrv_mp_lock);
2306 
2307 #ifdef DEBUG
2308 	DONTCARE(tcp->tcmp_stk[0]);
2309 #endif
2310 
2311 	PRESERVE(tcp->tcp_connid);
2312 
2313 	ASSERT(tcp->tcp_listen_cnt == NULL);
2314 	ASSERT(tcp->tcp_reass_tid == 0);
2315 
2316 #undef	DONTCARE
2317 #undef	PRESERVE
2318 }
2319 
2320 /*
2321  * Initialize the various fields in tcp_t.  If parent (the listener) is non
2322  * NULL, certain values will be inheritted from it.
2323  */
2324 void
2325 tcp_init_values(tcp_t *tcp, tcp_t *parent)
2326 {
2327 	tcp_stack_t	*tcps = tcp->tcp_tcps;
2328 	conn_t		*connp = tcp->tcp_connp;
2329 	clock_t		rto;
2330 
2331 	ASSERT((connp->conn_family == AF_INET &&
2332 	    connp->conn_ipversion == IPV4_VERSION) ||
2333 	    (connp->conn_family == AF_INET6 &&
2334 	    (connp->conn_ipversion == IPV4_VERSION ||
2335 	    connp->conn_ipversion == IPV6_VERSION)));
2336 
2337 	if (parent == NULL) {
2338 		tcp->tcp_naglim = tcps->tcps_naglim_def;
2339 
2340 		tcp->tcp_rto_initial = tcps->tcps_rexmit_interval_initial;
2341 		tcp->tcp_rto_min = tcps->tcps_rexmit_interval_min;
2342 		tcp->tcp_rto_max = tcps->tcps_rexmit_interval_max;
2343 
2344 		tcp->tcp_first_ctimer_threshold =
2345 		    tcps->tcps_ip_notify_cinterval;
2346 		tcp->tcp_second_ctimer_threshold =
2347 		    tcps->tcps_ip_abort_cinterval;
2348 		tcp->tcp_first_timer_threshold = tcps->tcps_ip_notify_interval;
2349 		tcp->tcp_second_timer_threshold = tcps->tcps_ip_abort_interval;
2350 
2351 		tcp->tcp_fin_wait_2_flush_interval =
2352 		    tcps->tcps_fin_wait_2_flush_interval;
2353 
2354 		tcp->tcp_ka_interval = tcps->tcps_keepalive_interval;
2355 		tcp->tcp_ka_abort_thres = tcps->tcps_keepalive_abort_interval;
2356 
2357 		/*
2358 		 * Default value of tcp_init_cwnd is 0, so no need to set here
2359 		 * if parent is NULL.  But we need to inherit it from parent.
2360 		 */
2361 	} else {
2362 		/* Inherit various TCP parameters from the parent. */
2363 		tcp->tcp_naglim = parent->tcp_naglim;
2364 
2365 		tcp->tcp_rto_initial = parent->tcp_rto_initial;
2366 		tcp->tcp_rto_min = parent->tcp_rto_min;
2367 		tcp->tcp_rto_max = parent->tcp_rto_max;
2368 
2369 		tcp->tcp_first_ctimer_threshold =
2370 		    parent->tcp_first_ctimer_threshold;
2371 		tcp->tcp_second_ctimer_threshold =
2372 		    parent->tcp_second_ctimer_threshold;
2373 		tcp->tcp_first_timer_threshold =
2374 		    parent->tcp_first_timer_threshold;
2375 		tcp->tcp_second_timer_threshold =
2376 		    parent->tcp_second_timer_threshold;
2377 
2378 		tcp->tcp_fin_wait_2_flush_interval =
2379 		    parent->tcp_fin_wait_2_flush_interval;
2380 
2381 		tcp->tcp_ka_interval = parent->tcp_ka_interval;
2382 		tcp->tcp_ka_abort_thres = parent->tcp_ka_abort_thres;
2383 
2384 		tcp->tcp_init_cwnd = parent->tcp_init_cwnd;
2385 	}
2386 
2387 	/*
2388 	 * Initialize tcp_rtt_sa and tcp_rtt_sd so that the calculated RTO
2389 	 * will be close to tcp_rexmit_interval_initial.  By doing this, we
2390 	 * allow the algorithm to adjust slowly to large fluctuations of RTT
2391 	 * during first few transmissions of a connection as seen in slow
2392 	 * links.
2393 	 */
2394 	tcp->tcp_rtt_sa = tcp->tcp_rto_initial << 2;
2395 	tcp->tcp_rtt_sd = tcp->tcp_rto_initial >> 1;
2396 	rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd +
2397 	    tcps->tcps_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5) +
2398 	    tcps->tcps_conn_grace_period;
2399 	TCP_SET_RTO(tcp, rto);
2400 
2401 	tcp->tcp_timer_backoff = 0;
2402 	tcp->tcp_ms_we_have_waited = 0;
2403 	tcp->tcp_last_recv_time = ddi_get_lbolt();
2404 	tcp->tcp_cwnd_max = tcps->tcps_cwnd_max_;
2405 	tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN;
2406 	tcp->tcp_snd_burst = TCP_CWND_INFINITE;
2407 
2408 	tcp->tcp_maxpsz_multiplier = tcps->tcps_maxpsz_multiplier;
2409 
2410 	/* NOTE:  ISS is now set in tcp_set_destination(). */
2411 
2412 	/* Reset fusion-related fields */
2413 	tcp->tcp_fused = B_FALSE;
2414 	tcp->tcp_unfusable = B_FALSE;
2415 	tcp->tcp_fused_sigurg = B_FALSE;
2416 	tcp->tcp_loopback_peer = NULL;
2417 
2418 	/* We rebuild the header template on the next connect/conn_request */
2419 
2420 	connp->conn_mlp_type = mlptSingle;
2421 
2422 	/*
2423 	 * Init the window scale to the max so tcp_rwnd_set() won't pare
2424 	 * down tcp_rwnd. tcp_set_destination() will set the right value later.
2425 	 */
2426 	tcp->tcp_rcv_ws = TCP_MAX_WINSHIFT;
2427 	tcp->tcp_rwnd = connp->conn_rcvbuf;
2428 
2429 	tcp->tcp_cork = B_FALSE;
2430 	/*
2431 	 * Init the tcp_debug option if it wasn't already set.  This value
2432 	 * determines whether TCP
2433 	 * calls strlog() to print out debug messages.  Doing this
2434 	 * initialization here means that this value is not inherited thru
2435 	 * tcp_reinit().
2436 	 */
2437 	if (!connp->conn_debug)
2438 		connp->conn_debug = tcps->tcps_dbg;
2439 }
2440 
2441 /*
2442  * Update the TCP connection according to change of PMTU.
2443  *
2444  * Path MTU might have changed by either increase or decrease, so need to
2445  * adjust the MSS based on the value of ixa_pmtu. No need to handle tiny
2446  * or negative MSS, since tcp_mss_set() will do it.
2447  */
2448 void
2449 tcp_update_pmtu(tcp_t *tcp, boolean_t decrease_only)
2450 {
2451 	uint32_t	pmtu;
2452 	int32_t		mss;
2453 	conn_t		*connp = tcp->tcp_connp;
2454 	ip_xmit_attr_t	*ixa = connp->conn_ixa;
2455 	iaflags_t	ixaflags;
2456 
2457 	if (tcp->tcp_tcps->tcps_ignore_path_mtu)
2458 		return;
2459 
2460 	if (tcp->tcp_state < TCPS_ESTABLISHED)
2461 		return;
2462 
2463 	/*
2464 	 * Always call ip_get_pmtu() to make sure that IP has updated
2465 	 * ixa_flags properly.
2466 	 */
2467 	pmtu = ip_get_pmtu(ixa);
2468 	ixaflags = ixa->ixa_flags;
2469 
2470 	/*
2471 	 * Calculate the MSS by decreasing the PMTU by conn_ht_iphc_len and
2472 	 * IPsec overhead if applied. Make sure to use the most recent
2473 	 * IPsec information.
2474 	 */
2475 	mss = pmtu - connp->conn_ht_iphc_len - conn_ipsec_length(connp);
2476 
2477 	/*
2478 	 * Nothing to change, so just return.
2479 	 */
2480 	if (mss == tcp->tcp_mss)
2481 		return;
2482 
2483 	/*
2484 	 * Currently, for ICMP errors, only PMTU decrease is handled.
2485 	 */
2486 	if (mss > tcp->tcp_mss && decrease_only)
2487 		return;
2488 
2489 	DTRACE_PROBE2(tcp_update_pmtu, int32_t, tcp->tcp_mss, uint32_t, mss);
2490 
2491 	/*
2492 	 * Update ixa_fragsize and ixa_pmtu.
2493 	 */
2494 	ixa->ixa_fragsize = ixa->ixa_pmtu = pmtu;
2495 
2496 	/*
2497 	 * Adjust MSS and all relevant variables.
2498 	 */
2499 	tcp_mss_set(tcp, mss);
2500 
2501 	/*
2502 	 * If the PMTU is below the min size maintained by IP, then ip_get_pmtu
2503 	 * has set IXAF_PMTU_TOO_SMALL and cleared IXAF_PMTU_IPV4_DF. Since TCP
2504 	 * has a (potentially different) min size we do the same. Make sure to
2505 	 * clear IXAF_DONTFRAG, which is used by IP to decide whether to
2506 	 * fragment the packet.
2507 	 *
2508 	 * LSO over IPv6 can not be fragmented. So need to disable LSO
2509 	 * when IPv6 fragmentation is needed.
2510 	 */
2511 	if (mss < tcp->tcp_tcps->tcps_mss_min)
2512 		ixaflags |= IXAF_PMTU_TOO_SMALL;
2513 
2514 	if (ixaflags & IXAF_PMTU_TOO_SMALL)
2515 		ixaflags &= ~(IXAF_DONTFRAG | IXAF_PMTU_IPV4_DF);
2516 
2517 	if ((connp->conn_ipversion == IPV4_VERSION) &&
2518 	    !(ixaflags & IXAF_PMTU_IPV4_DF)) {
2519 		tcp->tcp_ipha->ipha_fragment_offset_and_flags = 0;
2520 	}
2521 	ixa->ixa_flags = ixaflags;
2522 }
2523 
2524 int
2525 tcp_maxpsz_set(tcp_t *tcp, boolean_t set_maxblk)
2526 {
2527 	conn_t	*connp = tcp->tcp_connp;
2528 	queue_t	*q = connp->conn_rq;
2529 	int32_t	mss = tcp->tcp_mss;
2530 	int	maxpsz;
2531 
2532 	if (TCP_IS_DETACHED(tcp))
2533 		return (mss);
2534 	if (tcp->tcp_fused) {
2535 		maxpsz = tcp_fuse_maxpsz(tcp);
2536 		mss = INFPSZ;
2537 	} else if (tcp->tcp_maxpsz_multiplier == 0) {
2538 		/*
2539 		 * Set the sd_qn_maxpsz according to the socket send buffer
2540 		 * size, and sd_maxblk to INFPSZ (-1).  This will essentially
2541 		 * instruct the stream head to copyin user data into contiguous
2542 		 * kernel-allocated buffers without breaking it up into smaller
2543 		 * chunks.  We round up the buffer size to the nearest SMSS.
2544 		 */
2545 		maxpsz = MSS_ROUNDUP(connp->conn_sndbuf, mss);
2546 		mss = INFPSZ;
2547 	} else {
2548 		/*
2549 		 * Set sd_qn_maxpsz to approx half the (receivers) buffer
2550 		 * (and a multiple of the mss).  This instructs the stream
2551 		 * head to break down larger than SMSS writes into SMSS-
2552 		 * size mblks, up to tcp_maxpsz_multiplier mblks at a time.
2553 		 */
2554 		maxpsz = tcp->tcp_maxpsz_multiplier * mss;
2555 		if (maxpsz > connp->conn_sndbuf / 2) {
2556 			maxpsz = connp->conn_sndbuf / 2;
2557 			/* Round up to nearest mss */
2558 			maxpsz = MSS_ROUNDUP(maxpsz, mss);
2559 		}
2560 	}
2561 
2562 	(void) proto_set_maxpsz(q, connp, maxpsz);
2563 	if (!(IPCL_IS_NONSTR(connp)))
2564 		connp->conn_wq->q_maxpsz = maxpsz;
2565 	if (set_maxblk)
2566 		(void) proto_set_tx_maxblk(q, connp, mss);
2567 	return (mss);
2568 }
2569 
2570 /* For /dev/tcp aka AF_INET open */
2571 static int
2572 tcp_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
2573 {
2574 	return (tcp_open(q, devp, flag, sflag, credp, B_FALSE));
2575 }
2576 
2577 /* For /dev/tcp6 aka AF_INET6 open */
2578 static int
2579 tcp_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
2580 {
2581 	return (tcp_open(q, devp, flag, sflag, credp, B_TRUE));
2582 }
2583 
2584 conn_t *
2585 tcp_create_common(cred_t *credp, boolean_t isv6, boolean_t issocket,
2586     int *errorp)
2587 {
2588 	tcp_t		*tcp = NULL;
2589 	conn_t		*connp;
2590 	zoneid_t	zoneid;
2591 	tcp_stack_t	*tcps;
2592 	squeue_t	*sqp;
2593 
2594 	ASSERT(errorp != NULL);
2595 	/*
2596 	 * Find the proper zoneid and netstack.
2597 	 */
2598 	/*
2599 	 * Special case for install: miniroot needs to be able to
2600 	 * access files via NFS as though it were always in the
2601 	 * global zone.
2602 	 */
2603 	if (credp == kcred && nfs_global_client_only != 0) {
2604 		zoneid = GLOBAL_ZONEID;
2605 		tcps = netstack_find_by_stackid(GLOBAL_NETSTACKID)->
2606 		    netstack_tcp;
2607 		ASSERT(tcps != NULL);
2608 	} else {
2609 		netstack_t *ns;
2610 		int err;
2611 
2612 		if ((err = secpolicy_basic_net_access(credp)) != 0) {
2613 			*errorp = err;
2614 			return (NULL);
2615 		}
2616 
2617 		ns = netstack_find_by_cred(credp);
2618 		ASSERT(ns != NULL);
2619 		tcps = ns->netstack_tcp;
2620 		ASSERT(tcps != NULL);
2621 
2622 		/*
2623 		 * For exclusive stacks we set the zoneid to zero
2624 		 * to make TCP operate as if in the global zone.
2625 		 */
2626 		if (tcps->tcps_netstack->netstack_stackid !=
2627 		    GLOBAL_NETSTACKID)
2628 			zoneid = GLOBAL_ZONEID;
2629 		else
2630 			zoneid = crgetzoneid(credp);
2631 	}
2632 
2633 	sqp = IP_SQUEUE_GET((uint_t)gethrtime());
2634 	connp = (conn_t *)tcp_get_conn(sqp, tcps);
2635 	/*
2636 	 * Both tcp_get_conn and netstack_find_by_cred incremented refcnt,
2637 	 * so we drop it by one.
2638 	 */
2639 	netstack_rele(tcps->tcps_netstack);
2640 	if (connp == NULL) {
2641 		*errorp = ENOSR;
2642 		return (NULL);
2643 	}
2644 	ASSERT(connp->conn_ixa->ixa_protocol == connp->conn_proto);
2645 
2646 	connp->conn_sqp = sqp;
2647 	connp->conn_initial_sqp = connp->conn_sqp;
2648 	connp->conn_ixa->ixa_sqp = connp->conn_sqp;
2649 	tcp = connp->conn_tcp;
2650 
2651 	/*
2652 	 * Besides asking IP to set the checksum for us, have conn_ip_output
2653 	 * to do the following checks when necessary:
2654 	 *
2655 	 * IXAF_VERIFY_SOURCE: drop packets when our outer source goes invalid
2656 	 * IXAF_VERIFY_PMTU: verify PMTU changes
2657 	 * IXAF_VERIFY_LSO: verify LSO capability changes
2658 	 */
2659 	connp->conn_ixa->ixa_flags |= IXAF_SET_ULP_CKSUM | IXAF_VERIFY_SOURCE |
2660 	    IXAF_VERIFY_PMTU | IXAF_VERIFY_LSO;
2661 
2662 	if (!tcps->tcps_dev_flow_ctl)
2663 		connp->conn_ixa->ixa_flags |= IXAF_NO_DEV_FLOW_CTL;
2664 
2665 	if (isv6) {
2666 		connp->conn_ixa->ixa_src_preferences = IPV6_PREFER_SRC_DEFAULT;
2667 		connp->conn_ipversion = IPV6_VERSION;
2668 		connp->conn_family = AF_INET6;
2669 		tcp->tcp_mss = tcps->tcps_mss_def_ipv6;
2670 		connp->conn_default_ttl = tcps->tcps_ipv6_hoplimit;
2671 	} else {
2672 		connp->conn_ipversion = IPV4_VERSION;
2673 		connp->conn_family = AF_INET;
2674 		tcp->tcp_mss = tcps->tcps_mss_def_ipv4;
2675 		connp->conn_default_ttl = tcps->tcps_ipv4_ttl;
2676 	}
2677 	connp->conn_xmit_ipp.ipp_unicast_hops = connp->conn_default_ttl;
2678 
2679 	crhold(credp);
2680 	connp->conn_cred = credp;
2681 	connp->conn_cpid = curproc->p_pid;
2682 	connp->conn_open_time = ddi_get_lbolt64();
2683 
2684 	/* Cache things in the ixa without any refhold */
2685 	ASSERT(!(connp->conn_ixa->ixa_free_flags & IXA_FREE_CRED));
2686 	connp->conn_ixa->ixa_cred = credp;
2687 	connp->conn_ixa->ixa_cpid = connp->conn_cpid;
2688 
2689 	connp->conn_zoneid = zoneid;
2690 	/* conn_allzones can not be set this early, hence no IPCL_ZONEID */
2691 	connp->conn_ixa->ixa_zoneid = zoneid;
2692 	connp->conn_mlp_type = mlptSingle;
2693 	ASSERT(connp->conn_netstack == tcps->tcps_netstack);
2694 	ASSERT(tcp->tcp_tcps == tcps);
2695 
2696 	/*
2697 	 * If the caller has the process-wide flag set, then default to MAC
2698 	 * exempt mode.  This allows read-down to unlabeled hosts.
2699 	 */
2700 	if (getpflags(NET_MAC_AWARE, credp) != 0)
2701 		connp->conn_mac_mode = CONN_MAC_AWARE;
2702 
2703 	connp->conn_zone_is_global = (crgetzoneid(credp) == GLOBAL_ZONEID);
2704 
2705 	if (issocket) {
2706 		tcp->tcp_issocket = 1;
2707 	}
2708 
2709 	connp->conn_rcvbuf = tcps->tcps_recv_hiwat;
2710 	connp->conn_sndbuf = tcps->tcps_xmit_hiwat;
2711 	connp->conn_sndlowat = tcps->tcps_xmit_lowat;
2712 	connp->conn_so_type = SOCK_STREAM;
2713 	connp->conn_wroff = connp->conn_ht_iphc_allocated +
2714 	    tcps->tcps_wroff_xtra;
2715 
2716 	SOCK_CONNID_INIT(tcp->tcp_connid);
2717 	/* DTrace ignores this - it isn't a tcp:::state-change */
2718 	tcp->tcp_state = TCPS_IDLE;
2719 	tcp_init_values(tcp, NULL);
2720 	return (connp);
2721 }
2722 
2723 static int
2724 tcp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp,
2725     boolean_t isv6)
2726 {
2727 	tcp_t		*tcp = NULL;
2728 	conn_t		*connp = NULL;
2729 	int		err;
2730 	vmem_t		*minor_arena = NULL;
2731 	dev_t		conn_dev;
2732 	boolean_t	issocket;
2733 
2734 	if (q->q_ptr != NULL)
2735 		return (0);
2736 
2737 	if (sflag == MODOPEN)
2738 		return (EINVAL);
2739 
2740 	if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) &&
2741 	    ((conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) {
2742 		minor_arena = ip_minor_arena_la;
2743 	} else {
2744 		/*
2745 		 * Either minor numbers in the large arena were exhausted
2746 		 * or a non socket application is doing the open.
2747 		 * Try to allocate from the small arena.
2748 		 */
2749 		if ((conn_dev = inet_minor_alloc(ip_minor_arena_sa)) == 0) {
2750 			return (EBUSY);
2751 		}
2752 		minor_arena = ip_minor_arena_sa;
2753 	}
2754 
2755 	ASSERT(minor_arena != NULL);
2756 
2757 	*devp = makedevice(getmajor(*devp), (minor_t)conn_dev);
2758 
2759 	if (flag & SO_FALLBACK) {
2760 		/*
2761 		 * Non streams socket needs a stream to fallback to
2762 		 */
2763 		RD(q)->q_ptr = (void *)conn_dev;
2764 		WR(q)->q_qinfo = &tcp_fallback_sock_winit;
2765 		WR(q)->q_ptr = (void *)minor_arena;
2766 		qprocson(q);
2767 		return (0);
2768 	} else if (flag & SO_ACCEPTOR) {
2769 		q->q_qinfo = &tcp_acceptor_rinit;
2770 		/*
2771 		 * the conn_dev and minor_arena will be subsequently used by
2772 		 * tcp_tli_accept() and tcp_tpi_close_accept() to figure out
2773 		 * the minor device number for this connection from the q_ptr.
2774 		 */
2775 		RD(q)->q_ptr = (void *)conn_dev;
2776 		WR(q)->q_qinfo = &tcp_acceptor_winit;
2777 		WR(q)->q_ptr = (void *)minor_arena;
2778 		qprocson(q);
2779 		return (0);
2780 	}
2781 
2782 	issocket = flag & SO_SOCKSTR;
2783 	connp = tcp_create_common(credp, isv6, issocket, &err);
2784 
2785 	if (connp == NULL) {
2786 		inet_minor_free(minor_arena, conn_dev);
2787 		q->q_ptr = WR(q)->q_ptr = NULL;
2788 		return (err);
2789 	}
2790 
2791 	connp->conn_rq = q;
2792 	connp->conn_wq = WR(q);
2793 	q->q_ptr = WR(q)->q_ptr = connp;
2794 
2795 	connp->conn_dev = conn_dev;
2796 	connp->conn_minor_arena = minor_arena;
2797 
2798 	ASSERT(q->q_qinfo == &tcp_rinitv4 || q->q_qinfo == &tcp_rinitv6);
2799 	ASSERT(WR(q)->q_qinfo == &tcp_winit);
2800 
2801 	tcp = connp->conn_tcp;
2802 
2803 	if (issocket) {
2804 		WR(q)->q_qinfo = &tcp_sock_winit;
2805 	} else {
2806 #ifdef  _ILP32
2807 		tcp->tcp_acceptor_id = (t_uscalar_t)RD(q);
2808 #else
2809 		tcp->tcp_acceptor_id = conn_dev;
2810 #endif  /* _ILP32 */
2811 		tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp);
2812 	}
2813 
2814 	/*
2815 	 * Put the ref for TCP. Ref for IP was already put
2816 	 * by ipcl_conn_create. Also Make the conn_t globally
2817 	 * visible to walkers
2818 	 */
2819 	mutex_enter(&connp->conn_lock);
2820 	CONN_INC_REF_LOCKED(connp);
2821 	ASSERT(connp->conn_ref == 2);
2822 	connp->conn_state_flags &= ~CONN_INCIPIENT;
2823 	mutex_exit(&connp->conn_lock);
2824 
2825 	qprocson(q);
2826 	return (0);
2827 }
2828 
2829 /*
2830  * Build/update the tcp header template (in conn_ht_iphc) based on
2831  * conn_xmit_ipp. The headers include ip6_t, any extension
2832  * headers, and the maximum size tcp header (to avoid reallocation
2833  * on the fly for additional tcp options).
2834  *
2835  * Assumes the caller has already set conn_{faddr,laddr,fport,lport,flowinfo}.
2836  * Returns failure if can't allocate memory.
2837  */
2838 int
2839 tcp_build_hdrs(tcp_t *tcp)
2840 {
2841 	tcp_stack_t	*tcps = tcp->tcp_tcps;
2842 	conn_t		*connp = tcp->tcp_connp;
2843 	char		buf[TCP_MAX_HDR_LENGTH];
2844 	uint_t		buflen;
2845 	uint_t		ulplen = TCP_MIN_HEADER_LENGTH;
2846 	uint_t		extralen = TCP_MAX_TCP_OPTIONS_LENGTH;
2847 	tcpha_t		*tcpha;
2848 	uint32_t	cksum;
2849 	int		error;
2850 
2851 	/*
2852 	 * We might be called after the connection is set up, and we might
2853 	 * have TS options already in the TCP header. Thus we  save any
2854 	 * existing tcp header.
2855 	 */
2856 	buflen = connp->conn_ht_ulp_len;
2857 	if (buflen != 0) {
2858 		bcopy(connp->conn_ht_ulp, buf, buflen);
2859 		extralen -= buflen - ulplen;
2860 		ulplen = buflen;
2861 	}
2862 
2863 	/* Grab lock to satisfy ASSERT; TCP is serialized using squeue */
2864 	mutex_enter(&connp->conn_lock);
2865 	error = conn_build_hdr_template(connp, ulplen, extralen,
2866 	    &connp->conn_laddr_v6, &connp->conn_faddr_v6, connp->conn_flowinfo);
2867 	mutex_exit(&connp->conn_lock);
2868 	if (error != 0)
2869 		return (error);
2870 
2871 	/*
2872 	 * Any routing header/option has been massaged. The checksum difference
2873 	 * is stored in conn_sum for later use.
2874 	 */
2875 	tcpha = (tcpha_t *)connp->conn_ht_ulp;
2876 	tcp->tcp_tcpha = tcpha;
2877 
2878 	/* restore any old tcp header */
2879 	if (buflen != 0) {
2880 		bcopy(buf, connp->conn_ht_ulp, buflen);
2881 	} else {
2882 		tcpha->tha_sum = 0;
2883 		tcpha->tha_urp = 0;
2884 		tcpha->tha_ack = 0;
2885 		tcpha->tha_offset_and_reserved = (5 << 4);
2886 		tcpha->tha_lport = connp->conn_lport;
2887 		tcpha->tha_fport = connp->conn_fport;
2888 	}
2889 
2890 	/*
2891 	 * IP wants our header length in the checksum field to
2892 	 * allow it to perform a single pseudo-header+checksum
2893 	 * calculation on behalf of TCP.
2894 	 * Include the adjustment for a source route once IP_OPTIONS is set.
2895 	 */
2896 	cksum = sizeof (tcpha_t) + connp->conn_sum;
2897 	cksum = (cksum >> 16) + (cksum & 0xFFFF);
2898 	ASSERT(cksum < 0x10000);
2899 	tcpha->tha_sum = htons(cksum);
2900 
2901 	if (connp->conn_ipversion == IPV4_VERSION)
2902 		tcp->tcp_ipha = (ipha_t *)connp->conn_ht_iphc;
2903 	else
2904 		tcp->tcp_ip6h = (ip6_t *)connp->conn_ht_iphc;
2905 
2906 	if (connp->conn_ht_iphc_allocated + tcps->tcps_wroff_xtra >
2907 	    connp->conn_wroff) {
2908 		connp->conn_wroff = connp->conn_ht_iphc_allocated +
2909 		    tcps->tcps_wroff_xtra;
2910 		(void) proto_set_tx_wroff(connp->conn_rq, connp,
2911 		    connp->conn_wroff);
2912 	}
2913 	return (0);
2914 }
2915 
2916 /*
2917  * tcp_rwnd_set() is called to adjust the receive window to a desired value.
2918  * We do not allow the receive window to shrink.  After setting rwnd,
2919  * set the flow control hiwat of the stream.
2920  *
2921  * This function is called in 2 cases:
2922  *
2923  * 1) Before data transfer begins, in tcp_input_listener() for accepting a
2924  *    connection (passive open) and in tcp_input_data() for active connect.
2925  *    This is called after tcp_mss_set() when the desired MSS value is known.
2926  *    This makes sure that our window size is a mutiple of the other side's
2927  *    MSS.
2928  * 2) Handling SO_RCVBUF option.
2929  *
2930  * It is ASSUMED that the requested size is a multiple of the current MSS.
2931  *
2932  * XXX - Should allow a lower rwnd than tcp_recv_hiwat_minmss * mss if the
2933  * user requests so.
2934  */
2935 int
2936 tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd)
2937 {
2938 	uint32_t	mss = tcp->tcp_mss;
2939 	uint32_t	old_max_rwnd;
2940 	uint32_t	max_transmittable_rwnd;
2941 	boolean_t	tcp_detached = TCP_IS_DETACHED(tcp);
2942 	tcp_stack_t	*tcps = tcp->tcp_tcps;
2943 	conn_t		*connp = tcp->tcp_connp;
2944 
2945 	/*
2946 	 * Insist on a receive window that is at least
2947 	 * tcp_recv_hiwat_minmss * MSS (default 4 * MSS) to avoid
2948 	 * funny TCP interactions of Nagle algorithm, SWS avoidance
2949 	 * and delayed acknowledgement.
2950 	 */
2951 	rwnd = MAX(rwnd, tcps->tcps_recv_hiwat_minmss * mss);
2952 
2953 	if (tcp->tcp_fused) {
2954 		size_t sth_hiwat;
2955 		tcp_t *peer_tcp = tcp->tcp_loopback_peer;
2956 
2957 		ASSERT(peer_tcp != NULL);
2958 		sth_hiwat = tcp_fuse_set_rcv_hiwat(tcp, rwnd);
2959 		if (!tcp_detached) {
2960 			(void) proto_set_rx_hiwat(connp->conn_rq, connp,
2961 			    sth_hiwat);
2962 			tcp_set_recv_threshold(tcp, sth_hiwat >> 3);
2963 		}
2964 
2965 		/* Caller could have changed tcp_rwnd; update tha_win */
2966 		if (tcp->tcp_tcpha != NULL) {
2967 			tcp->tcp_tcpha->tha_win =
2968 			    htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws);
2969 		}
2970 		if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max)
2971 			tcp->tcp_cwnd_max = rwnd;
2972 
2973 		/*
2974 		 * In the fusion case, the maxpsz stream head value of
2975 		 * our peer is set according to its send buffer size
2976 		 * and our receive buffer size; since the latter may
2977 		 * have changed we need to update the peer's maxpsz.
2978 		 */
2979 		(void) tcp_maxpsz_set(peer_tcp, B_TRUE);
2980 		return (sth_hiwat);
2981 	}
2982 
2983 	if (tcp_detached)
2984 		old_max_rwnd = tcp->tcp_rwnd;
2985 	else
2986 		old_max_rwnd = connp->conn_rcvbuf;
2987 
2988 
2989 	/*
2990 	 * If window size info has already been exchanged, TCP should not
2991 	 * shrink the window.  Shrinking window is doable if done carefully.
2992 	 * We may add that support later.  But so far there is not a real
2993 	 * need to do that.
2994 	 */
2995 	if (rwnd < old_max_rwnd && tcp->tcp_state > TCPS_SYN_SENT) {
2996 		/* MSS may have changed, do a round up again. */
2997 		rwnd = MSS_ROUNDUP(old_max_rwnd, mss);
2998 	}
2999 
3000 	/*
3001 	 * tcp_rcv_ws starts with TCP_MAX_WINSHIFT so the following check
3002 	 * can be applied even before the window scale option is decided.
3003 	 */
3004 	max_transmittable_rwnd = TCP_MAXWIN << tcp->tcp_rcv_ws;
3005 	if (rwnd > max_transmittable_rwnd) {
3006 		rwnd = max_transmittable_rwnd -
3007 		    (max_transmittable_rwnd % mss);
3008 		if (rwnd < mss)
3009 			rwnd = max_transmittable_rwnd;
3010 		/*
3011 		 * If we're over the limit we may have to back down tcp_rwnd.
3012 		 * The increment below won't work for us. So we set all three
3013 		 * here and the increment below will have no effect.
3014 		 */
3015 		tcp->tcp_rwnd = old_max_rwnd = rwnd;
3016 	}
3017 	if (tcp->tcp_localnet) {
3018 		tcp->tcp_rack_abs_max =
3019 		    MIN(tcps->tcps_local_dacks_max, rwnd / mss / 2);
3020 	} else {
3021 		/*
3022 		 * For a remote host on a different subnet (through a router),
3023 		 * we ack every other packet to be conforming to RFC1122.
3024 		 * tcp_deferred_acks_max is default to 2.
3025 		 */
3026 		tcp->tcp_rack_abs_max =
3027 		    MIN(tcps->tcps_deferred_acks_max, rwnd / mss / 2);
3028 	}
3029 	if (tcp->tcp_rack_cur_max > tcp->tcp_rack_abs_max)
3030 		tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max;
3031 	else
3032 		tcp->tcp_rack_cur_max = 0;
3033 	/*
3034 	 * Increment the current rwnd by the amount the maximum grew (we
3035 	 * can not overwrite it since we might be in the middle of a
3036 	 * connection.)
3037 	 */
3038 	tcp->tcp_rwnd += rwnd - old_max_rwnd;
3039 	connp->conn_rcvbuf = rwnd;
3040 
3041 	/* Are we already connected? */
3042 	if (tcp->tcp_tcpha != NULL) {
3043 		tcp->tcp_tcpha->tha_win =
3044 		    htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws);
3045 	}
3046 
3047 	if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max)
3048 		tcp->tcp_cwnd_max = rwnd;
3049 
3050 	if (tcp_detached)
3051 		return (rwnd);
3052 
3053 	tcp_set_recv_threshold(tcp, rwnd >> 3);
3054 
3055 	(void) proto_set_rx_hiwat(connp->conn_rq, connp, rwnd);
3056 	return (rwnd);
3057 }
3058 
3059 int
3060 tcp_do_unbind(conn_t *connp)
3061 {
3062 	tcp_t *tcp = connp->conn_tcp;
3063 	int32_t oldstate;
3064 
3065 	switch (tcp->tcp_state) {
3066 	case TCPS_BOUND:
3067 	case TCPS_LISTEN:
3068 		break;
3069 	default:
3070 		return (-TOUTSTATE);
3071 	}
3072 
3073 	/*
3074 	 * Need to clean up all the eagers since after the unbind, segments
3075 	 * will no longer be delivered to this listener stream.
3076 	 */
3077 	mutex_enter(&tcp->tcp_eager_lock);
3078 	if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) {
3079 		tcp_eager_cleanup(tcp, 0);
3080 	}
3081 	mutex_exit(&tcp->tcp_eager_lock);
3082 
3083 	/* Clean up the listener connection counter if necessary. */
3084 	if (tcp->tcp_listen_cnt != NULL)
3085 		TCP_DECR_LISTEN_CNT(tcp);
3086 	connp->conn_laddr_v6 = ipv6_all_zeros;
3087 	connp->conn_saddr_v6 = ipv6_all_zeros;
3088 	tcp_bind_hash_remove(tcp);
3089 	oldstate = tcp->tcp_state;
3090 	tcp->tcp_state = TCPS_IDLE;
3091 	DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
3092 	    connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL,
3093 	    int32_t, oldstate);
3094 
3095 	ip_unbind(connp);
3096 	bzero(&connp->conn_ports, sizeof (connp->conn_ports));
3097 
3098 	return (0);
3099 }
3100 
3101 /*
3102  * Collect protocol properties to send to the upper handle.
3103  */
3104 void
3105 tcp_get_proto_props(tcp_t *tcp, struct sock_proto_props *sopp)
3106 {
3107 	conn_t *connp = tcp->tcp_connp;
3108 
3109 	sopp->sopp_flags = SOCKOPT_RCVHIWAT | SOCKOPT_MAXBLK | SOCKOPT_WROFF;
3110 	sopp->sopp_maxblk = tcp_maxpsz_set(tcp, B_FALSE);
3111 
3112 	sopp->sopp_rxhiwat = tcp->tcp_fused ?
3113 	    tcp_fuse_set_rcv_hiwat(tcp, connp->conn_rcvbuf) :
3114 	    connp->conn_rcvbuf;
3115 	/*
3116 	 * Determine what write offset value to use depending on SACK and
3117 	 * whether the endpoint is fused or not.
3118 	 */
3119 	if (tcp->tcp_fused) {
3120 		ASSERT(tcp->tcp_loopback);
3121 		ASSERT(tcp->tcp_loopback_peer != NULL);
3122 		/*
3123 		 * For fused tcp loopback, set the stream head's write
3124 		 * offset value to zero since we won't be needing any room
3125 		 * for TCP/IP headers.  This would also improve performance
3126 		 * since it would reduce the amount of work done by kmem.
3127 		 * Non-fused tcp loopback case is handled separately below.
3128 		 */
3129 		sopp->sopp_wroff = 0;
3130 		/*
3131 		 * Update the peer's transmit parameters according to
3132 		 * our recently calculated high water mark value.
3133 		 */
3134 		(void) tcp_maxpsz_set(tcp->tcp_loopback_peer, B_TRUE);
3135 	} else if (tcp->tcp_snd_sack_ok) {
3136 		sopp->sopp_wroff = connp->conn_ht_iphc_allocated +
3137 		    (tcp->tcp_loopback ? 0 : tcp->tcp_tcps->tcps_wroff_xtra);
3138 	} else {
3139 		sopp->sopp_wroff = connp->conn_ht_iphc_len +
3140 		    (tcp->tcp_loopback ? 0 : tcp->tcp_tcps->tcps_wroff_xtra);
3141 	}
3142 
3143 	if (tcp->tcp_loopback) {
3144 		sopp->sopp_flags |= SOCKOPT_LOOPBACK;
3145 		sopp->sopp_loopback = B_TRUE;
3146 	}
3147 }
3148 
3149 /*
3150  * Check the usability of ZEROCOPY. It's instead checking the flag set by IP.
3151  */
3152 boolean_t
3153 tcp_zcopy_check(tcp_t *tcp)
3154 {
3155 	conn_t		*connp = tcp->tcp_connp;
3156 	ip_xmit_attr_t	*ixa = connp->conn_ixa;
3157 	boolean_t	zc_enabled = B_FALSE;
3158 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3159 
3160 	if (do_tcpzcopy == 2)
3161 		zc_enabled = B_TRUE;
3162 	else if ((do_tcpzcopy == 1) && (ixa->ixa_flags & IXAF_ZCOPY_CAPAB))
3163 		zc_enabled = B_TRUE;
3164 
3165 	tcp->tcp_snd_zcopy_on = zc_enabled;
3166 	if (!TCP_IS_DETACHED(tcp)) {
3167 		if (zc_enabled) {
3168 			ixa->ixa_flags |= IXAF_VERIFY_ZCOPY;
3169 			(void) proto_set_tx_copyopt(connp->conn_rq, connp,
3170 			    ZCVMSAFE);
3171 			TCP_STAT(tcps, tcp_zcopy_on);
3172 		} else {
3173 			ixa->ixa_flags &= ~IXAF_VERIFY_ZCOPY;
3174 			(void) proto_set_tx_copyopt(connp->conn_rq, connp,
3175 			    ZCVMUNSAFE);
3176 			TCP_STAT(tcps, tcp_zcopy_off);
3177 		}
3178 	}
3179 	return (zc_enabled);
3180 }
3181 
3182 /*
3183  * Backoff from a zero-copy message by copying data to a new allocated
3184  * message and freeing the original desballoca'ed segmapped message.
3185  *
3186  * This function is called by following two callers:
3187  * 1. tcp_timer: fix_xmitlist is set to B_TRUE, because it's safe to free
3188  *    the origial desballoca'ed message and notify sockfs. This is in re-
3189  *    transmit state.
3190  * 2. tcp_output: fix_xmitlist is set to B_FALSE. Flag STRUIO_ZCNOTIFY need
3191  *    to be copied to new message.
3192  */
3193 mblk_t *
3194 tcp_zcopy_backoff(tcp_t *tcp, mblk_t *bp, boolean_t fix_xmitlist)
3195 {
3196 	mblk_t		*nbp;
3197 	mblk_t		*head = NULL;
3198 	mblk_t		*tail = NULL;
3199 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3200 
3201 	ASSERT(bp != NULL);
3202 	while (bp != NULL) {
3203 		if (IS_VMLOANED_MBLK(bp)) {
3204 			TCP_STAT(tcps, tcp_zcopy_backoff);
3205 			if ((nbp = copyb(bp)) == NULL) {
3206 				tcp->tcp_xmit_zc_clean = B_FALSE;
3207 				if (tail != NULL)
3208 					tail->b_cont = bp;
3209 				return ((head == NULL) ? bp : head);
3210 			}
3211 
3212 			if (bp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) {
3213 				if (fix_xmitlist)
3214 					tcp_zcopy_notify(tcp);
3215 				else
3216 					nbp->b_datap->db_struioflag |=
3217 					    STRUIO_ZCNOTIFY;
3218 			}
3219 			nbp->b_cont = bp->b_cont;
3220 
3221 			/*
3222 			 * Copy saved information and adjust tcp_xmit_tail
3223 			 * if needed.
3224 			 */
3225 			if (fix_xmitlist) {
3226 				nbp->b_prev = bp->b_prev;
3227 				nbp->b_next = bp->b_next;
3228 
3229 				if (tcp->tcp_xmit_tail == bp)
3230 					tcp->tcp_xmit_tail = nbp;
3231 			}
3232 
3233 			/* Free the original message. */
3234 			bp->b_prev = NULL;
3235 			bp->b_next = NULL;
3236 			freeb(bp);
3237 
3238 			bp = nbp;
3239 		}
3240 
3241 		if (head == NULL) {
3242 			head = bp;
3243 		}
3244 		if (tail == NULL) {
3245 			tail = bp;
3246 		} else {
3247 			tail->b_cont = bp;
3248 			tail = bp;
3249 		}
3250 
3251 		/* Move forward. */
3252 		bp = bp->b_cont;
3253 	}
3254 
3255 	if (fix_xmitlist) {
3256 		tcp->tcp_xmit_last = tail;
3257 		tcp->tcp_xmit_zc_clean = B_TRUE;
3258 	}
3259 
3260 	return (head);
3261 }
3262 
3263 void
3264 tcp_zcopy_notify(tcp_t *tcp)
3265 {
3266 	struct stdata	*stp;
3267 	conn_t		*connp;
3268 
3269 	if (tcp->tcp_detached)
3270 		return;
3271 	connp = tcp->tcp_connp;
3272 	if (IPCL_IS_NONSTR(connp)) {
3273 		(*connp->conn_upcalls->su_zcopy_notify)
3274 		    (connp->conn_upper_handle);
3275 		return;
3276 	}
3277 	stp = STREAM(connp->conn_rq);
3278 	mutex_enter(&stp->sd_lock);
3279 	stp->sd_flag |= STZCNOTIFY;
3280 	cv_broadcast(&stp->sd_zcopy_wait);
3281 	mutex_exit(&stp->sd_lock);
3282 }
3283 
3284 /*
3285  * Update the TCP connection according to change of LSO capability.
3286  */
3287 static void
3288 tcp_update_lso(tcp_t *tcp, ip_xmit_attr_t *ixa)
3289 {
3290 	/*
3291 	 * We check against IPv4 header length to preserve the old behavior
3292 	 * of only enabling LSO when there are no IP options.
3293 	 * But this restriction might not be necessary at all. Before removing
3294 	 * it, need to verify how LSO is handled for source routing case, with
3295 	 * which IP does software checksum.
3296 	 *
3297 	 * For IPv6, whenever any extension header is needed, LSO is supressed.
3298 	 */
3299 	if (ixa->ixa_ip_hdr_length != ((ixa->ixa_flags & IXAF_IS_IPV4) ?
3300 	    IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN))
3301 		return;
3302 
3303 	/*
3304 	 * Either the LSO capability newly became usable, or it has changed.
3305 	 */
3306 	if (ixa->ixa_flags & IXAF_LSO_CAPAB) {
3307 		ill_lso_capab_t	*lsoc = &ixa->ixa_lso_capab;
3308 
3309 		ASSERT(lsoc->ill_lso_max > 0);
3310 		tcp->tcp_lso_max = MIN(TCP_MAX_LSO_LENGTH, lsoc->ill_lso_max);
3311 
3312 		DTRACE_PROBE3(tcp_update_lso, boolean_t, tcp->tcp_lso,
3313 		    boolean_t, B_TRUE, uint32_t, tcp->tcp_lso_max);
3314 
3315 		/*
3316 		 * If LSO to be enabled, notify the STREAM header with larger
3317 		 * data block.
3318 		 */
3319 		if (!tcp->tcp_lso)
3320 			tcp->tcp_maxpsz_multiplier = 0;
3321 
3322 		tcp->tcp_lso = B_TRUE;
3323 		TCP_STAT(tcp->tcp_tcps, tcp_lso_enabled);
3324 	} else { /* LSO capability is not usable any more. */
3325 		DTRACE_PROBE3(tcp_update_lso, boolean_t, tcp->tcp_lso,
3326 		    boolean_t, B_FALSE, uint32_t, tcp->tcp_lso_max);
3327 
3328 		/*
3329 		 * If LSO to be disabled, notify the STREAM header with smaller
3330 		 * data block. And need to restore fragsize to PMTU.
3331 		 */
3332 		if (tcp->tcp_lso) {
3333 			tcp->tcp_maxpsz_multiplier =
3334 			    tcp->tcp_tcps->tcps_maxpsz_multiplier;
3335 			ixa->ixa_fragsize = ixa->ixa_pmtu;
3336 			tcp->tcp_lso = B_FALSE;
3337 			TCP_STAT(tcp->tcp_tcps, tcp_lso_disabled);
3338 		}
3339 	}
3340 
3341 	(void) tcp_maxpsz_set(tcp, B_TRUE);
3342 }
3343 
3344 /*
3345  * Update the TCP connection according to change of ZEROCOPY capability.
3346  */
3347 static void
3348 tcp_update_zcopy(tcp_t *tcp)
3349 {
3350 	conn_t		*connp = tcp->tcp_connp;
3351 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3352 
3353 	if (tcp->tcp_snd_zcopy_on) {
3354 		tcp->tcp_snd_zcopy_on = B_FALSE;
3355 		if (!TCP_IS_DETACHED(tcp)) {
3356 			(void) proto_set_tx_copyopt(connp->conn_rq, connp,
3357 			    ZCVMUNSAFE);
3358 			TCP_STAT(tcps, tcp_zcopy_off);
3359 		}
3360 	} else {
3361 		tcp->tcp_snd_zcopy_on = B_TRUE;
3362 		if (!TCP_IS_DETACHED(tcp)) {
3363 			(void) proto_set_tx_copyopt(connp->conn_rq, connp,
3364 			    ZCVMSAFE);
3365 			TCP_STAT(tcps, tcp_zcopy_on);
3366 		}
3367 	}
3368 }
3369 
3370 /*
3371  * Notify function registered with ip_xmit_attr_t. It's called in the squeue
3372  * so it's safe to update the TCP connection.
3373  */
3374 /* ARGSUSED1 */
3375 static void
3376 tcp_notify(void *arg, ip_xmit_attr_t *ixa, ixa_notify_type_t ntype,
3377     ixa_notify_arg_t narg)
3378 {
3379 	tcp_t		*tcp = (tcp_t *)arg;
3380 	conn_t		*connp = tcp->tcp_connp;
3381 
3382 	switch (ntype) {
3383 	case IXAN_LSO:
3384 		tcp_update_lso(tcp, connp->conn_ixa);
3385 		break;
3386 	case IXAN_PMTU:
3387 		tcp_update_pmtu(tcp, B_FALSE);
3388 		break;
3389 	case IXAN_ZCOPY:
3390 		tcp_update_zcopy(tcp);
3391 		break;
3392 	default:
3393 		break;
3394 	}
3395 }
3396 
3397 /*
3398  * The TCP write service routine should never be called...
3399  */
3400 /* ARGSUSED */
3401 static void
3402 tcp_wsrv(queue_t *q)
3403 {
3404 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
3405 
3406 	TCP_STAT(tcps, tcp_wsrv_called);
3407 }
3408 
3409 /*
3410  * Hash list lookup routine for tcp_t structures.
3411  * Returns with a CONN_INC_REF tcp structure. Caller must do a CONN_DEC_REF.
3412  */
3413 tcp_t *
3414 tcp_acceptor_hash_lookup(t_uscalar_t id, tcp_stack_t *tcps)
3415 {
3416 	tf_t	*tf;
3417 	tcp_t	*tcp;
3418 
3419 	tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)];
3420 	mutex_enter(&tf->tf_lock);
3421 	for (tcp = tf->tf_tcp; tcp != NULL;
3422 	    tcp = tcp->tcp_acceptor_hash) {
3423 		if (tcp->tcp_acceptor_id == id) {
3424 			CONN_INC_REF(tcp->tcp_connp);
3425 			mutex_exit(&tf->tf_lock);
3426 			return (tcp);
3427 		}
3428 	}
3429 	mutex_exit(&tf->tf_lock);
3430 	return (NULL);
3431 }
3432 
3433 /*
3434  * Hash list insertion routine for tcp_t structures.
3435  */
3436 void
3437 tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp)
3438 {
3439 	tf_t	*tf;
3440 	tcp_t	**tcpp;
3441 	tcp_t	*tcpnext;
3442 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3443 
3444 	tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)];
3445 
3446 	if (tcp->tcp_ptpahn != NULL)
3447 		tcp_acceptor_hash_remove(tcp);
3448 	tcpp = &tf->tf_tcp;
3449 	mutex_enter(&tf->tf_lock);
3450 	tcpnext = tcpp[0];
3451 	if (tcpnext)
3452 		tcpnext->tcp_ptpahn = &tcp->tcp_acceptor_hash;
3453 	tcp->tcp_acceptor_hash = tcpnext;
3454 	tcp->tcp_ptpahn = tcpp;
3455 	tcpp[0] = tcp;
3456 	tcp->tcp_acceptor_lockp = &tf->tf_lock;	/* For tcp_*_hash_remove */
3457 	mutex_exit(&tf->tf_lock);
3458 }
3459 
3460 /*
3461  * Hash list removal routine for tcp_t structures.
3462  */
3463 void
3464 tcp_acceptor_hash_remove(tcp_t *tcp)
3465 {
3466 	tcp_t	*tcpnext;
3467 	kmutex_t *lockp;
3468 
3469 	/*
3470 	 * Extract the lock pointer in case there are concurrent
3471 	 * hash_remove's for this instance.
3472 	 */
3473 	lockp = tcp->tcp_acceptor_lockp;
3474 
3475 	if (tcp->tcp_ptpahn == NULL)
3476 		return;
3477 
3478 	ASSERT(lockp != NULL);
3479 	mutex_enter(lockp);
3480 	if (tcp->tcp_ptpahn) {
3481 		tcpnext = tcp->tcp_acceptor_hash;
3482 		if (tcpnext) {
3483 			tcpnext->tcp_ptpahn = tcp->tcp_ptpahn;
3484 			tcp->tcp_acceptor_hash = NULL;
3485 		}
3486 		*tcp->tcp_ptpahn = tcpnext;
3487 		tcp->tcp_ptpahn = NULL;
3488 	}
3489 	mutex_exit(lockp);
3490 	tcp->tcp_acceptor_lockp = NULL;
3491 }
3492 
3493 /*
3494  * Type three generator adapted from the random() function in 4.4 BSD:
3495  */
3496 
3497 /*
3498  * Copyright (c) 1983, 1993
3499  *	The Regents of the University of California.  All rights reserved.
3500  *
3501  * Redistribution and use in source and binary forms, with or without
3502  * modification, are permitted provided that the following conditions
3503  * are met:
3504  * 1. Redistributions of source code must retain the above copyright
3505  *    notice, this list of conditions and the following disclaimer.
3506  * 2. Redistributions in binary form must reproduce the above copyright
3507  *    notice, this list of conditions and the following disclaimer in the
3508  *    documentation and/or other materials provided with the distribution.
3509  * 3. All advertising materials mentioning features or use of this software
3510  *    must display the following acknowledgement:
3511  *	This product includes software developed by the University of
3512  *	California, Berkeley and its contributors.
3513  * 4. Neither the name of the University nor the names of its contributors
3514  *    may be used to endorse or promote products derived from this software
3515  *    without specific prior written permission.
3516  *
3517  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
3518  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
3519  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
3520  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
3521  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
3522  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
3523  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
3524  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
3525  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
3526  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
3527  * SUCH DAMAGE.
3528  */
3529 
3530 /* Type 3 -- x**31 + x**3 + 1 */
3531 #define	DEG_3		31
3532 #define	SEP_3		3
3533 
3534 
3535 /* Protected by tcp_random_lock */
3536 static int tcp_randtbl[DEG_3 + 1];
3537 
3538 static int *tcp_random_fptr = &tcp_randtbl[SEP_3 + 1];
3539 static int *tcp_random_rptr = &tcp_randtbl[1];
3540 
3541 static int *tcp_random_state = &tcp_randtbl[1];
3542 static int *tcp_random_end_ptr = &tcp_randtbl[DEG_3 + 1];
3543 
3544 kmutex_t tcp_random_lock;
3545 
3546 void
3547 tcp_random_init(void)
3548 {
3549 	int i;
3550 	hrtime_t hrt;
3551 	time_t wallclock;
3552 	uint64_t result;
3553 
3554 	/*
3555 	 * Use high-res timer and current time for seed.  Gethrtime() returns
3556 	 * a longlong, which may contain resolution down to nanoseconds.
3557 	 * The current time will either be a 32-bit or a 64-bit quantity.
3558 	 * XOR the two together in a 64-bit result variable.
3559 	 * Convert the result to a 32-bit value by multiplying the high-order
3560 	 * 32-bits by the low-order 32-bits.
3561 	 */
3562 
3563 	hrt = gethrtime();
3564 	(void) drv_getparm(TIME, &wallclock);
3565 	result = (uint64_t)wallclock ^ (uint64_t)hrt;
3566 	mutex_enter(&tcp_random_lock);
3567 	tcp_random_state[0] = ((result >> 32) & 0xffffffff) *
3568 	    (result & 0xffffffff);
3569 
3570 	for (i = 1; i < DEG_3; i++)
3571 		tcp_random_state[i] = 1103515245 * tcp_random_state[i - 1]
3572 		    + 12345;
3573 	tcp_random_fptr = &tcp_random_state[SEP_3];
3574 	tcp_random_rptr = &tcp_random_state[0];
3575 	mutex_exit(&tcp_random_lock);
3576 	for (i = 0; i < 10 * DEG_3; i++)
3577 		(void) tcp_random();
3578 }
3579 
3580 /*
3581  * tcp_random: Return a random number in the range [1 - (128K + 1)].
3582  * This range is selected to be approximately centered on TCP_ISS / 2,
3583  * and easy to compute. We get this value by generating a 32-bit random
3584  * number, selecting out the high-order 17 bits, and then adding one so
3585  * that we never return zero.
3586  */
3587 int
3588 tcp_random(void)
3589 {
3590 	int i;
3591 
3592 	mutex_enter(&tcp_random_lock);
3593 	*tcp_random_fptr += *tcp_random_rptr;
3594 
3595 	/*
3596 	 * The high-order bits are more random than the low-order bits,
3597 	 * so we select out the high-order 17 bits and add one so that
3598 	 * we never return zero.
3599 	 */
3600 	i = ((*tcp_random_fptr >> 15) & 0x1ffff) + 1;
3601 	if (++tcp_random_fptr >= tcp_random_end_ptr) {
3602 		tcp_random_fptr = tcp_random_state;
3603 		++tcp_random_rptr;
3604 	} else if (++tcp_random_rptr >= tcp_random_end_ptr)
3605 		tcp_random_rptr = tcp_random_state;
3606 
3607 	mutex_exit(&tcp_random_lock);
3608 	return (i);
3609 }
3610 
3611 /*
3612  * Split this function out so that if the secret changes, I'm okay.
3613  *
3614  * Initialize the tcp_iss_cookie and tcp_iss_key.
3615  */
3616 
3617 #define	PASSWD_SIZE 16  /* MUST be multiple of 4 */
3618 
3619 void
3620 tcp_iss_key_init(uint8_t *phrase, int len, tcp_stack_t *tcps)
3621 {
3622 	struct {
3623 		int32_t current_time;
3624 		uint32_t randnum;
3625 		uint16_t pad;
3626 		uint8_t ether[6];
3627 		uint8_t passwd[PASSWD_SIZE];
3628 	} tcp_iss_cookie;
3629 	time_t t;
3630 
3631 	/*
3632 	 * Start with the current absolute time.
3633 	 */
3634 	(void) drv_getparm(TIME, &t);
3635 	tcp_iss_cookie.current_time = t;
3636 
3637 	/*
3638 	 * XXX - Need a more random number per RFC 1750, not this crap.
3639 	 * OTOH, if what follows is pretty random, then I'm in better shape.
3640 	 */
3641 	tcp_iss_cookie.randnum = (uint32_t)(gethrtime() + tcp_random());
3642 	tcp_iss_cookie.pad = 0x365c;  /* Picked from HMAC pad values. */
3643 
3644 	/*
3645 	 * The cpu_type_info is pretty non-random.  Ugggh.  It does serve
3646 	 * as a good template.
3647 	 */
3648 	bcopy(&cpu_list->cpu_type_info, &tcp_iss_cookie.passwd,
3649 	    min(PASSWD_SIZE, sizeof (cpu_list->cpu_type_info)));
3650 
3651 	/*
3652 	 * The pass-phrase.  Normally this is supplied by user-called NDD.
3653 	 */
3654 	bcopy(phrase, &tcp_iss_cookie.passwd, min(PASSWD_SIZE, len));
3655 
3656 	/*
3657 	 * See 4010593 if this section becomes a problem again,
3658 	 * but the local ethernet address is useful here.
3659 	 */
3660 	(void) localetheraddr(NULL,
3661 	    (struct ether_addr *)&tcp_iss_cookie.ether);
3662 
3663 	/*
3664 	 * Hash 'em all together.  The MD5Final is called per-connection.
3665 	 */
3666 	mutex_enter(&tcps->tcps_iss_key_lock);
3667 	MD5Init(&tcps->tcps_iss_key);
3668 	MD5Update(&tcps->tcps_iss_key, (uchar_t *)&tcp_iss_cookie,
3669 	    sizeof (tcp_iss_cookie));
3670 	mutex_exit(&tcps->tcps_iss_key_lock);
3671 }
3672 
3673 /*
3674  * Called by IP when IP is loaded into the kernel
3675  */
3676 void
3677 tcp_ddi_g_init(void)
3678 {
3679 	tcp_timercache = kmem_cache_create("tcp_timercache",
3680 	    sizeof (tcp_timer_t) + sizeof (mblk_t), 0,
3681 	    NULL, NULL, NULL, NULL, NULL, 0);
3682 
3683 	tcp_notsack_blk_cache = kmem_cache_create("tcp_notsack_blk_cache",
3684 	    sizeof (notsack_blk_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
3685 
3686 	mutex_init(&tcp_random_lock, NULL, MUTEX_DEFAULT, NULL);
3687 
3688 	/* Initialize the random number generator */
3689 	tcp_random_init();
3690 
3691 	/* A single callback independently of how many netstacks we have */
3692 	ip_squeue_init(tcp_squeue_add);
3693 
3694 	tcp_g_kstat = tcp_g_kstat_init(&tcp_g_statistics);
3695 
3696 	tcp_squeue_flag = tcp_squeue_switch(tcp_squeue_wput);
3697 
3698 	/*
3699 	 * We want to be informed each time a stack is created or
3700 	 * destroyed in the kernel, so we can maintain the
3701 	 * set of tcp_stack_t's.
3702 	 */
3703 	netstack_register(NS_TCP, tcp_stack_init, NULL, tcp_stack_fini);
3704 }
3705 
3706 
3707 #define	INET_NAME	"ip"
3708 
3709 /*
3710  * Initialize the TCP stack instance.
3711  */
3712 static void *
3713 tcp_stack_init(netstackid_t stackid, netstack_t *ns)
3714 {
3715 	tcp_stack_t	*tcps;
3716 	int		i;
3717 	int		error = 0;
3718 	major_t		major;
3719 	size_t		arrsz;
3720 
3721 	tcps = (tcp_stack_t *)kmem_zalloc(sizeof (*tcps), KM_SLEEP);
3722 	tcps->tcps_netstack = ns;
3723 
3724 	/* Initialize locks */
3725 	mutex_init(&tcps->tcps_iss_key_lock, NULL, MUTEX_DEFAULT, NULL);
3726 	mutex_init(&tcps->tcps_epriv_port_lock, NULL, MUTEX_DEFAULT, NULL);
3727 
3728 	tcps->tcps_g_num_epriv_ports = TCP_NUM_EPRIV_PORTS;
3729 	tcps->tcps_g_epriv_ports[0] = ULP_DEF_EPRIV_PORT1;
3730 	tcps->tcps_g_epriv_ports[1] = ULP_DEF_EPRIV_PORT2;
3731 	tcps->tcps_min_anonpriv_port = 512;
3732 
3733 	tcps->tcps_bind_fanout = kmem_zalloc(sizeof (tf_t) *
3734 	    TCP_BIND_FANOUT_SIZE, KM_SLEEP);
3735 	tcps->tcps_acceptor_fanout = kmem_zalloc(sizeof (tf_t) *
3736 	    TCP_ACCEPTOR_FANOUT_SIZE, KM_SLEEP);
3737 
3738 	for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) {
3739 		mutex_init(&tcps->tcps_bind_fanout[i].tf_lock, NULL,
3740 		    MUTEX_DEFAULT, NULL);
3741 	}
3742 
3743 	for (i = 0; i < TCP_ACCEPTOR_FANOUT_SIZE; i++) {
3744 		mutex_init(&tcps->tcps_acceptor_fanout[i].tf_lock, NULL,
3745 		    MUTEX_DEFAULT, NULL);
3746 	}
3747 
3748 	/* TCP's IPsec code calls the packet dropper. */
3749 	ip_drop_register(&tcps->tcps_dropper, "TCP IPsec policy enforcement");
3750 
3751 	arrsz = tcp_propinfo_count * sizeof (mod_prop_info_t);
3752 	tcps->tcps_propinfo_tbl = (mod_prop_info_t *)kmem_alloc(arrsz,
3753 	    KM_SLEEP);
3754 	bcopy(tcp_propinfo_tbl, tcps->tcps_propinfo_tbl, arrsz);
3755 
3756 	/*
3757 	 * Note: To really walk the device tree you need the devinfo
3758 	 * pointer to your device which is only available after probe/attach.
3759 	 * The following is safe only because it uses ddi_root_node()
3760 	 */
3761 	tcp_max_optsize = optcom_max_optsize(tcp_opt_obj.odb_opt_des_arr,
3762 	    tcp_opt_obj.odb_opt_arr_cnt);
3763 
3764 	/*
3765 	 * Initialize RFC 1948 secret values.  This will probably be reset once
3766 	 * by the boot scripts.
3767 	 *
3768 	 * Use NULL name, as the name is caught by the new lockstats.
3769 	 *
3770 	 * Initialize with some random, non-guessable string, like the global
3771 	 * T_INFO_ACK.
3772 	 */
3773 
3774 	tcp_iss_key_init((uint8_t *)&tcp_g_t_info_ack,
3775 	    sizeof (tcp_g_t_info_ack), tcps);
3776 
3777 	tcps->tcps_kstat = tcp_kstat2_init(stackid);
3778 	tcps->tcps_mibkp = tcp_kstat_init(stackid);
3779 
3780 	major = mod_name_to_major(INET_NAME);
3781 	error = ldi_ident_from_major(major, &tcps->tcps_ldi_ident);
3782 	ASSERT(error == 0);
3783 	tcps->tcps_ixa_cleanup_mp = allocb_wait(0, BPRI_MED, STR_NOSIG, NULL);
3784 	ASSERT(tcps->tcps_ixa_cleanup_mp != NULL);
3785 	cv_init(&tcps->tcps_ixa_cleanup_cv, NULL, CV_DEFAULT, NULL);
3786 	mutex_init(&tcps->tcps_ixa_cleanup_lock, NULL, MUTEX_DEFAULT, NULL);
3787 
3788 	mutex_init(&tcps->tcps_reclaim_lock, NULL, MUTEX_DEFAULT, NULL);
3789 	tcps->tcps_reclaim = B_FALSE;
3790 	tcps->tcps_reclaim_tid = 0;
3791 	tcps->tcps_reclaim_period = tcps->tcps_rexmit_interval_max;
3792 
3793 	/*
3794 	 * ncpus is the current number of CPUs, which can be bigger than
3795 	 * boot_ncpus.  But we don't want to use ncpus to allocate all the
3796 	 * tcp_stats_cpu_t at system boot up time since it will be 1.  While
3797 	 * we handle adding CPU in tcp_cpu_update(), it will be slow if
3798 	 * there are many CPUs as we will be adding them 1 by 1.
3799 	 *
3800 	 * Note that tcps_sc_cnt never decreases and the tcps_sc[x] pointers
3801 	 * are not freed until the stack is going away.  So there is no need
3802 	 * to grab a lock to access the per CPU tcps_sc[x] pointer.
3803 	 */
3804 	mutex_enter(&cpu_lock);
3805 	tcps->tcps_sc_cnt = MAX(ncpus, boot_ncpus);
3806 	mutex_exit(&cpu_lock);
3807 	tcps->tcps_sc = kmem_zalloc(max_ncpus  * sizeof (tcp_stats_cpu_t *),
3808 	    KM_SLEEP);
3809 	for (i = 0; i < tcps->tcps_sc_cnt; i++) {
3810 		tcps->tcps_sc[i] = kmem_zalloc(sizeof (tcp_stats_cpu_t),
3811 		    KM_SLEEP);
3812 	}
3813 
3814 	mutex_init(&tcps->tcps_listener_conf_lock, NULL, MUTEX_DEFAULT, NULL);
3815 	list_create(&tcps->tcps_listener_conf, sizeof (tcp_listener_t),
3816 	    offsetof(tcp_listener_t, tl_link));
3817 
3818 	return (tcps);
3819 }
3820 
3821 /*
3822  * Called when the IP module is about to be unloaded.
3823  */
3824 void
3825 tcp_ddi_g_destroy(void)
3826 {
3827 	tcp_g_kstat_fini(tcp_g_kstat);
3828 	tcp_g_kstat = NULL;
3829 	bzero(&tcp_g_statistics, sizeof (tcp_g_statistics));
3830 
3831 	mutex_destroy(&tcp_random_lock);
3832 
3833 	kmem_cache_destroy(tcp_timercache);
3834 	kmem_cache_destroy(tcp_notsack_blk_cache);
3835 
3836 	netstack_unregister(NS_TCP);
3837 }
3838 
3839 /*
3840  * Free the TCP stack instance.
3841  */
3842 static void
3843 tcp_stack_fini(netstackid_t stackid, void *arg)
3844 {
3845 	tcp_stack_t *tcps = (tcp_stack_t *)arg;
3846 	int i;
3847 
3848 	freeb(tcps->tcps_ixa_cleanup_mp);
3849 	tcps->tcps_ixa_cleanup_mp = NULL;
3850 	cv_destroy(&tcps->tcps_ixa_cleanup_cv);
3851 	mutex_destroy(&tcps->tcps_ixa_cleanup_lock);
3852 
3853 	/*
3854 	 * Set tcps_reclaim to false tells tcp_reclaim_timer() not to restart
3855 	 * the timer.
3856 	 */
3857 	mutex_enter(&tcps->tcps_reclaim_lock);
3858 	tcps->tcps_reclaim = B_FALSE;
3859 	mutex_exit(&tcps->tcps_reclaim_lock);
3860 	if (tcps->tcps_reclaim_tid != 0)
3861 		(void) untimeout(tcps->tcps_reclaim_tid);
3862 	mutex_destroy(&tcps->tcps_reclaim_lock);
3863 
3864 	tcp_listener_conf_cleanup(tcps);
3865 
3866 	for (i = 0; i < tcps->tcps_sc_cnt; i++)
3867 		kmem_free(tcps->tcps_sc[i], sizeof (tcp_stats_cpu_t));
3868 	kmem_free(tcps->tcps_sc, max_ncpus * sizeof (tcp_stats_cpu_t *));
3869 
3870 	kmem_free(tcps->tcps_propinfo_tbl,
3871 	    tcp_propinfo_count * sizeof (mod_prop_info_t));
3872 	tcps->tcps_propinfo_tbl = NULL;
3873 
3874 	for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) {
3875 		ASSERT(tcps->tcps_bind_fanout[i].tf_tcp == NULL);
3876 		mutex_destroy(&tcps->tcps_bind_fanout[i].tf_lock);
3877 	}
3878 
3879 	for (i = 0; i < TCP_ACCEPTOR_FANOUT_SIZE; i++) {
3880 		ASSERT(tcps->tcps_acceptor_fanout[i].tf_tcp == NULL);
3881 		mutex_destroy(&tcps->tcps_acceptor_fanout[i].tf_lock);
3882 	}
3883 
3884 	kmem_free(tcps->tcps_bind_fanout, sizeof (tf_t) * TCP_BIND_FANOUT_SIZE);
3885 	tcps->tcps_bind_fanout = NULL;
3886 
3887 	kmem_free(tcps->tcps_acceptor_fanout, sizeof (tf_t) *
3888 	    TCP_ACCEPTOR_FANOUT_SIZE);
3889 	tcps->tcps_acceptor_fanout = NULL;
3890 
3891 	mutex_destroy(&tcps->tcps_iss_key_lock);
3892 	mutex_destroy(&tcps->tcps_epriv_port_lock);
3893 
3894 	ip_drop_unregister(&tcps->tcps_dropper);
3895 
3896 	tcp_kstat2_fini(stackid, tcps->tcps_kstat);
3897 	tcps->tcps_kstat = NULL;
3898 
3899 	tcp_kstat_fini(stackid, tcps->tcps_mibkp);
3900 	tcps->tcps_mibkp = NULL;
3901 
3902 	ldi_ident_release(tcps->tcps_ldi_ident);
3903 	kmem_free(tcps, sizeof (*tcps));
3904 }
3905 
3906 /*
3907  * Generate ISS, taking into account NDD changes may happen halfway through.
3908  * (If the iss is not zero, set it.)
3909  */
3910 
3911 static void
3912 tcp_iss_init(tcp_t *tcp)
3913 {
3914 	MD5_CTX context;
3915 	struct { uint32_t ports; in6_addr_t src; in6_addr_t dst; } arg;
3916 	uint32_t answer[4];
3917 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3918 	conn_t		*connp = tcp->tcp_connp;
3919 
3920 	tcps->tcps_iss_incr_extra += (ISS_INCR >> 1);
3921 	tcp->tcp_iss = tcps->tcps_iss_incr_extra;
3922 	switch (tcps->tcps_strong_iss) {
3923 	case 2:
3924 		mutex_enter(&tcps->tcps_iss_key_lock);
3925 		context = tcps->tcps_iss_key;
3926 		mutex_exit(&tcps->tcps_iss_key_lock);
3927 		arg.ports = connp->conn_ports;
3928 		arg.src = connp->conn_laddr_v6;
3929 		arg.dst = connp->conn_faddr_v6;
3930 		MD5Update(&context, (uchar_t *)&arg, sizeof (arg));
3931 		MD5Final((uchar_t *)answer, &context);
3932 		tcp->tcp_iss += answer[0] ^ answer[1] ^ answer[2] ^ answer[3];
3933 		/*
3934 		 * Now that we've hashed into a unique per-connection sequence
3935 		 * space, add a random increment per strong_iss == 1.  So I
3936 		 * guess we'll have to...
3937 		 */
3938 		/* FALLTHRU */
3939 	case 1:
3940 		tcp->tcp_iss += (gethrtime() >> ISS_NSEC_SHT) + tcp_random();
3941 		break;
3942 	default:
3943 		tcp->tcp_iss += (uint32_t)gethrestime_sec() * ISS_INCR;
3944 		break;
3945 	}
3946 	tcp->tcp_valid_bits = TCP_ISS_VALID;
3947 	tcp->tcp_fss = tcp->tcp_iss - 1;
3948 	tcp->tcp_suna = tcp->tcp_iss;
3949 	tcp->tcp_snxt = tcp->tcp_iss + 1;
3950 	tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
3951 	tcp->tcp_csuna = tcp->tcp_snxt;
3952 }
3953 
3954 /*
3955  * tcp_{set,clr}qfull() functions are used to either set or clear QFULL
3956  * on the specified backing STREAMS q. Note, the caller may make the
3957  * decision to call based on the tcp_t.tcp_flow_stopped value which
3958  * when check outside the q's lock is only an advisory check ...
3959  */
3960 void
3961 tcp_setqfull(tcp_t *tcp)
3962 {
3963 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3964 	conn_t	*connp = tcp->tcp_connp;
3965 
3966 	if (tcp->tcp_closed)
3967 		return;
3968 
3969 	conn_setqfull(connp, &tcp->tcp_flow_stopped);
3970 	if (tcp->tcp_flow_stopped)
3971 		TCP_STAT(tcps, tcp_flwctl_on);
3972 }
3973 
3974 void
3975 tcp_clrqfull(tcp_t *tcp)
3976 {
3977 	conn_t  *connp = tcp->tcp_connp;
3978 
3979 	if (tcp->tcp_closed)
3980 		return;
3981 	conn_clrqfull(connp, &tcp->tcp_flow_stopped);
3982 }
3983 
3984 static int
3985 tcp_squeue_switch(int val)
3986 {
3987 	int rval = SQ_FILL;
3988 
3989 	switch (val) {
3990 	case 1:
3991 		rval = SQ_NODRAIN;
3992 		break;
3993 	case 2:
3994 		rval = SQ_PROCESS;
3995 		break;
3996 	default:
3997 		break;
3998 	}
3999 	return (rval);
4000 }
4001 
4002 /*
4003  * This is called once for each squeue - globally for all stack
4004  * instances.
4005  */
4006 static void
4007 tcp_squeue_add(squeue_t *sqp)
4008 {
4009 	tcp_squeue_priv_t *tcp_time_wait = kmem_zalloc(
4010 	    sizeof (tcp_squeue_priv_t), KM_SLEEP);
4011 
4012 	*squeue_getprivate(sqp, SQPRIVATE_TCP) = (intptr_t)tcp_time_wait;
4013 	if (tcp_free_list_max_cnt == 0) {
4014 		int tcp_ncpus = ((boot_max_ncpus == -1) ?
4015 		    max_ncpus : boot_max_ncpus);
4016 
4017 		/*
4018 		 * Limit number of entries to 1% of availble memory / tcp_ncpus
4019 		 */
4020 		tcp_free_list_max_cnt = (freemem * PAGESIZE) /
4021 		    (tcp_ncpus * sizeof (tcp_t) * 100);
4022 	}
4023 	tcp_time_wait->tcp_free_list_cnt = 0;
4024 }
4025 /*
4026  * Return unix error is tli error is TSYSERR, otherwise return a negative
4027  * tli error.
4028  */
4029 int
4030 tcp_do_bind(conn_t *connp, struct sockaddr *sa, socklen_t len, cred_t *cr,
4031     boolean_t bind_to_req_port_only)
4032 {
4033 	int error;
4034 	tcp_t *tcp = connp->conn_tcp;
4035 
4036 	if (tcp->tcp_state >= TCPS_BOUND) {
4037 		if (connp->conn_debug) {
4038 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
4039 			    "tcp_bind: bad state, %d", tcp->tcp_state);
4040 		}
4041 		return (-TOUTSTATE);
4042 	}
4043 
4044 	error = tcp_bind_check(connp, sa, len, cr, bind_to_req_port_only);
4045 	if (error != 0)
4046 		return (error);
4047 
4048 	ASSERT(tcp->tcp_state == TCPS_BOUND);
4049 	tcp->tcp_conn_req_max = 0;
4050 	return (0);
4051 }
4052 
4053 /*
4054  * If the return value from this function is positive, it's a UNIX error.
4055  * Otherwise, if it's negative, then the absolute value is a TLI error.
4056  * the TPI routine tcp_tpi_connect() is a wrapper function for this.
4057  */
4058 int
4059 tcp_do_connect(conn_t *connp, const struct sockaddr *sa, socklen_t len,
4060     cred_t *cr, pid_t pid)
4061 {
4062 	tcp_t		*tcp = connp->conn_tcp;
4063 	sin_t		*sin = (sin_t *)sa;
4064 	sin6_t		*sin6 = (sin6_t *)sa;
4065 	ipaddr_t	*dstaddrp;
4066 	in_port_t	dstport;
4067 	uint_t		srcid;
4068 	int		error;
4069 	uint32_t	mss;
4070 	mblk_t		*syn_mp;
4071 	tcp_stack_t	*tcps = tcp->tcp_tcps;
4072 	int32_t		oldstate;
4073 	ip_xmit_attr_t	*ixa = connp->conn_ixa;
4074 
4075 	oldstate = tcp->tcp_state;
4076 
4077 	switch (len) {
4078 	default:
4079 		/*
4080 		 * Should never happen
4081 		 */
4082 		return (EINVAL);
4083 
4084 	case sizeof (sin_t):
4085 		sin = (sin_t *)sa;
4086 		if (sin->sin_port == 0) {
4087 			return (-TBADADDR);
4088 		}
4089 		if (connp->conn_ipv6_v6only) {
4090 			return (EAFNOSUPPORT);
4091 		}
4092 		break;
4093 
4094 	case sizeof (sin6_t):
4095 		sin6 = (sin6_t *)sa;
4096 		if (sin6->sin6_port == 0) {
4097 			return (-TBADADDR);
4098 		}
4099 		break;
4100 	}
4101 	/*
4102 	 * If we're connecting to an IPv4-mapped IPv6 address, we need to
4103 	 * make sure that the conn_ipversion is IPV4_VERSION.  We
4104 	 * need to this before we call tcp_bindi() so that the port lookup
4105 	 * code will look for ports in the correct port space (IPv4 and
4106 	 * IPv6 have separate port spaces).
4107 	 */
4108 	if (connp->conn_family == AF_INET6 &&
4109 	    connp->conn_ipversion == IPV6_VERSION &&
4110 	    IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
4111 		if (connp->conn_ipv6_v6only)
4112 			return (EADDRNOTAVAIL);
4113 
4114 		connp->conn_ipversion = IPV4_VERSION;
4115 	}
4116 
4117 	switch (tcp->tcp_state) {
4118 	case TCPS_LISTEN:
4119 		/*
4120 		 * Listening sockets are not allowed to issue connect().
4121 		 */
4122 		if (IPCL_IS_NONSTR(connp))
4123 			return (EOPNOTSUPP);
4124 		/* FALLTHRU */
4125 	case TCPS_IDLE:
4126 		/*
4127 		 * We support quick connect, refer to comments in
4128 		 * tcp_connect_*()
4129 		 */
4130 		/* FALLTHRU */
4131 	case TCPS_BOUND:
4132 		break;
4133 	default:
4134 		return (-TOUTSTATE);
4135 	}
4136 
4137 	/*
4138 	 * We update our cred/cpid based on the caller of connect
4139 	 */
4140 	if (connp->conn_cred != cr) {
4141 		crhold(cr);
4142 		crfree(connp->conn_cred);
4143 		connp->conn_cred = cr;
4144 	}
4145 	connp->conn_cpid = pid;
4146 
4147 	/* Cache things in the ixa without any refhold */
4148 	ASSERT(!(ixa->ixa_free_flags & IXA_FREE_CRED));
4149 	ixa->ixa_cred = cr;
4150 	ixa->ixa_cpid = pid;
4151 	if (is_system_labeled()) {
4152 		/* We need to restart with a label based on the cred */
4153 		ip_xmit_attr_restore_tsl(ixa, ixa->ixa_cred);
4154 	}
4155 
4156 	if (connp->conn_family == AF_INET6) {
4157 		if (!IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
4158 			error = tcp_connect_ipv6(tcp, &sin6->sin6_addr,
4159 			    sin6->sin6_port, sin6->sin6_flowinfo,
4160 			    sin6->__sin6_src_id, sin6->sin6_scope_id);
4161 		} else {
4162 			/*
4163 			 * Destination adress is mapped IPv6 address.
4164 			 * Source bound address should be unspecified or
4165 			 * IPv6 mapped address as well.
4166 			 */
4167 			if (!IN6_IS_ADDR_UNSPECIFIED(
4168 			    &connp->conn_bound_addr_v6) &&
4169 			    !IN6_IS_ADDR_V4MAPPED(&connp->conn_bound_addr_v6)) {
4170 				return (EADDRNOTAVAIL);
4171 			}
4172 			dstaddrp = &V4_PART_OF_V6((sin6->sin6_addr));
4173 			dstport = sin6->sin6_port;
4174 			srcid = sin6->__sin6_src_id;
4175 			error = tcp_connect_ipv4(tcp, dstaddrp, dstport,
4176 			    srcid);
4177 		}
4178 	} else {
4179 		dstaddrp = &sin->sin_addr.s_addr;
4180 		dstport = sin->sin_port;
4181 		srcid = 0;
4182 		error = tcp_connect_ipv4(tcp, dstaddrp, dstport, srcid);
4183 	}
4184 
4185 	if (error != 0)
4186 		goto connect_failed;
4187 
4188 	CL_INET_CONNECT(connp, B_TRUE, error);
4189 	if (error != 0)
4190 		goto connect_failed;
4191 
4192 	/* connect succeeded */
4193 	TCPS_BUMP_MIB(tcps, tcpActiveOpens);
4194 	tcp->tcp_active_open = 1;
4195 
4196 	/*
4197 	 * tcp_set_destination() does not adjust for TCP/IP header length.
4198 	 */
4199 	mss = tcp->tcp_mss - connp->conn_ht_iphc_len;
4200 
4201 	/*
4202 	 * Just make sure our rwnd is at least rcvbuf * MSS large, and round up
4203 	 * to the nearest MSS.
4204 	 *
4205 	 * We do the round up here because we need to get the interface MTU
4206 	 * first before we can do the round up.
4207 	 */
4208 	tcp->tcp_rwnd = connp->conn_rcvbuf;
4209 	tcp->tcp_rwnd = MAX(MSS_ROUNDUP(tcp->tcp_rwnd, mss),
4210 	    tcps->tcps_recv_hiwat_minmss * mss);
4211 	connp->conn_rcvbuf = tcp->tcp_rwnd;
4212 	tcp_set_ws_value(tcp);
4213 	tcp->tcp_tcpha->tha_win = htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws);
4214 	if (tcp->tcp_rcv_ws > 0 || tcps->tcps_wscale_always)
4215 		tcp->tcp_snd_ws_ok = B_TRUE;
4216 
4217 	/*
4218 	 * Set tcp_snd_ts_ok to true
4219 	 * so that tcp_xmit_mp will
4220 	 * include the timestamp
4221 	 * option in the SYN segment.
4222 	 */
4223 	if (tcps->tcps_tstamp_always ||
4224 	    (tcp->tcp_rcv_ws && tcps->tcps_tstamp_if_wscale)) {
4225 		tcp->tcp_snd_ts_ok = B_TRUE;
4226 	}
4227 
4228 	/*
4229 	 * Note that tcp_snd_sack_ok can be set in tcp_set_destination() if
4230 	 * the SACK metric is set.  So here we just check the per stack SACK
4231 	 * permitted param.
4232 	 */
4233 	if (tcps->tcps_sack_permitted == 2) {
4234 		ASSERT(tcp->tcp_num_sack_blk == 0);
4235 		ASSERT(tcp->tcp_notsack_list == NULL);
4236 		tcp->tcp_snd_sack_ok = B_TRUE;
4237 	}
4238 
4239 	/*
4240 	 * Should we use ECN?  Note that the current
4241 	 * default value (SunOS 5.9) of tcp_ecn_permitted
4242 	 * is 1.  The reason for doing this is that there
4243 	 * are equipments out there that will drop ECN
4244 	 * enabled IP packets.  Setting it to 1 avoids
4245 	 * compatibility problems.
4246 	 */
4247 	if (tcps->tcps_ecn_permitted == 2)
4248 		tcp->tcp_ecn_ok = B_TRUE;
4249 
4250 	/* Trace change from BOUND -> SYN_SENT here */
4251 	DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
4252 	    connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL,
4253 	    int32_t, TCPS_BOUND);
4254 
4255 	TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
4256 	syn_mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL,
4257 	    tcp->tcp_iss, B_FALSE, NULL, B_FALSE);
4258 	if (syn_mp != NULL) {
4259 		/*
4260 		 * We must bump the generation before sending the syn
4261 		 * to ensure that we use the right generation in case
4262 		 * this thread issues a "connected" up call.
4263 		 */
4264 		SOCK_CONNID_BUMP(tcp->tcp_connid);
4265 		/*
4266 		 * DTrace sending the first SYN as a
4267 		 * tcp:::connect-request event.
4268 		 */
4269 		DTRACE_TCP5(connect__request, mblk_t *, NULL,
4270 		    ip_xmit_attr_t *, connp->conn_ixa,
4271 		    void_ip_t *, syn_mp->b_rptr, tcp_t *, tcp,
4272 		    tcph_t *,
4273 		    &syn_mp->b_rptr[connp->conn_ixa->ixa_ip_hdr_length]);
4274 		tcp_send_data(tcp, syn_mp);
4275 	}
4276 
4277 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
4278 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
4279 	return (0);
4280 
4281 connect_failed:
4282 	connp->conn_faddr_v6 = ipv6_all_zeros;
4283 	connp->conn_fport = 0;
4284 	tcp->tcp_state = oldstate;
4285 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
4286 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
4287 	return (error);
4288 }
4289 
4290 int
4291 tcp_do_listen(conn_t *connp, struct sockaddr *sa, socklen_t len,
4292     int backlog, cred_t *cr, boolean_t bind_to_req_port_only)
4293 {
4294 	tcp_t		*tcp = connp->conn_tcp;
4295 	int		error = 0;
4296 	tcp_stack_t	*tcps = tcp->tcp_tcps;
4297 	int32_t		oldstate;
4298 
4299 	/* All Solaris components should pass a cred for this operation. */
4300 	ASSERT(cr != NULL);
4301 
4302 	if (tcp->tcp_state >= TCPS_BOUND) {
4303 		if ((tcp->tcp_state == TCPS_BOUND ||
4304 		    tcp->tcp_state == TCPS_LISTEN) && backlog > 0) {
4305 			/*
4306 			 * Handle listen() increasing backlog.
4307 			 * This is more "liberal" then what the TPI spec
4308 			 * requires but is needed to avoid a t_unbind
4309 			 * when handling listen() since the port number
4310 			 * might be "stolen" between the unbind and bind.
4311 			 */
4312 			goto do_listen;
4313 		}
4314 		if (connp->conn_debug) {
4315 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
4316 			    "tcp_listen: bad state, %d", tcp->tcp_state);
4317 		}
4318 		return (-TOUTSTATE);
4319 	} else {
4320 		if (sa == NULL) {
4321 			sin6_t	addr;
4322 			sin_t *sin;
4323 			sin6_t *sin6;
4324 
4325 			ASSERT(IPCL_IS_NONSTR(connp));
4326 			/* Do an implicit bind: Request for a generic port. */
4327 			if (connp->conn_family == AF_INET) {
4328 				len = sizeof (sin_t);
4329 				sin = (sin_t *)&addr;
4330 				*sin = sin_null;
4331 				sin->sin_family = AF_INET;
4332 			} else {
4333 				ASSERT(connp->conn_family == AF_INET6);
4334 				len = sizeof (sin6_t);
4335 				sin6 = (sin6_t *)&addr;
4336 				*sin6 = sin6_null;
4337 				sin6->sin6_family = AF_INET6;
4338 			}
4339 			sa = (struct sockaddr *)&addr;
4340 		}
4341 
4342 		error = tcp_bind_check(connp, sa, len, cr,
4343 		    bind_to_req_port_only);
4344 		if (error)
4345 			return (error);
4346 		/* Fall through and do the fanout insertion */
4347 	}
4348 
4349 do_listen:
4350 	ASSERT(tcp->tcp_state == TCPS_BOUND || tcp->tcp_state == TCPS_LISTEN);
4351 	tcp->tcp_conn_req_max = backlog;
4352 	if (tcp->tcp_conn_req_max) {
4353 		if (tcp->tcp_conn_req_max < tcps->tcps_conn_req_min)
4354 			tcp->tcp_conn_req_max = tcps->tcps_conn_req_min;
4355 		if (tcp->tcp_conn_req_max > tcps->tcps_conn_req_max_q)
4356 			tcp->tcp_conn_req_max = tcps->tcps_conn_req_max_q;
4357 		/*
4358 		 * If this is a listener, do not reset the eager list
4359 		 * and other stuffs.  Note that we don't check if the
4360 		 * existing eager list meets the new tcp_conn_req_max
4361 		 * requirement.
4362 		 */
4363 		if (tcp->tcp_state != TCPS_LISTEN) {
4364 			tcp->tcp_state = TCPS_LISTEN;
4365 			DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
4366 			    connp->conn_ixa, void, NULL, tcp_t *, tcp,
4367 			    void, NULL, int32_t, TCPS_BOUND);
4368 			/* Initialize the chain. Don't need the eager_lock */
4369 			tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp;
4370 			tcp->tcp_eager_next_drop_q0 = tcp;
4371 			tcp->tcp_eager_prev_drop_q0 = tcp;
4372 			tcp->tcp_second_ctimer_threshold =
4373 			    tcps->tcps_ip_abort_linterval;
4374 		}
4375 	}
4376 
4377 	/*
4378 	 * We need to make sure that the conn_recv is set to a non-null
4379 	 * value before we insert the conn into the classifier table.
4380 	 * This is to avoid a race with an incoming packet which does an
4381 	 * ipcl_classify().
4382 	 * We initially set it to tcp_input_listener_unbound to try to
4383 	 * pick a good squeue for the listener when the first SYN arrives.
4384 	 * tcp_input_listener_unbound sets it to tcp_input_listener on that
4385 	 * first SYN.
4386 	 */
4387 	connp->conn_recv = tcp_input_listener_unbound;
4388 
4389 	/* Insert the listener in the classifier table */
4390 	error = ip_laddr_fanout_insert(connp);
4391 	if (error != 0) {
4392 		/* Undo the bind - release the port number */
4393 		oldstate = tcp->tcp_state;
4394 		tcp->tcp_state = TCPS_IDLE;
4395 		DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *,
4396 		    connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL,
4397 		    int32_t, oldstate);
4398 		connp->conn_bound_addr_v6 = ipv6_all_zeros;
4399 
4400 		connp->conn_laddr_v6 = ipv6_all_zeros;
4401 		connp->conn_saddr_v6 = ipv6_all_zeros;
4402 		connp->conn_ports = 0;
4403 
4404 		if (connp->conn_anon_port) {
4405 			zone_t		*zone;
4406 
4407 			zone = crgetzone(cr);
4408 			connp->conn_anon_port = B_FALSE;
4409 			(void) tsol_mlp_anon(zone, connp->conn_mlp_type,
4410 			    connp->conn_proto, connp->conn_lport, B_FALSE);
4411 		}
4412 		connp->conn_mlp_type = mlptSingle;
4413 
4414 		tcp_bind_hash_remove(tcp);
4415 		return (error);
4416 	} else {
4417 		/*
4418 		 * If there is a connection limit, allocate and initialize
4419 		 * the counter struct.  Note that since listen can be called
4420 		 * multiple times, the struct may have been allready allocated.
4421 		 */
4422 		if (!list_is_empty(&tcps->tcps_listener_conf) &&
4423 		    tcp->tcp_listen_cnt == NULL) {
4424 			tcp_listen_cnt_t *tlc;
4425 			uint32_t ratio;
4426 
4427 			ratio = tcp_find_listener_conf(tcps,
4428 			    ntohs(connp->conn_lport));
4429 			if (ratio != 0) {
4430 				uint32_t mem_ratio, tot_buf;
4431 
4432 				tlc = kmem_alloc(sizeof (tcp_listen_cnt_t),
4433 				    KM_SLEEP);
4434 				/*
4435 				 * Calculate the connection limit based on
4436 				 * the configured ratio and maxusers.  Maxusers
4437 				 * are calculated based on memory size,
4438 				 * ~ 1 user per MB.  Note that the conn_rcvbuf
4439 				 * and conn_sndbuf may change after a
4440 				 * connection is accepted.  So what we have
4441 				 * is only an approximation.
4442 				 */
4443 				if ((tot_buf = connp->conn_rcvbuf +
4444 				    connp->conn_sndbuf) < MB) {
4445 					mem_ratio = MB / tot_buf;
4446 					tlc->tlc_max = maxusers / ratio *
4447 					    mem_ratio;
4448 				} else {
4449 					mem_ratio = tot_buf / MB;
4450 					tlc->tlc_max = maxusers / ratio /
4451 					    mem_ratio;
4452 				}
4453 				/* At least we should allow two connections! */
4454 				if (tlc->tlc_max <= tcp_min_conn_listener)
4455 					tlc->tlc_max = tcp_min_conn_listener;
4456 				tlc->tlc_cnt = 1;
4457 				tlc->tlc_drop = 0;
4458 				tcp->tcp_listen_cnt = tlc;
4459 			}
4460 		}
4461 	}
4462 	return (error);
4463 }
4464