1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #include <sys/types.h>
27 #include <sys/stream.h>
28 #include <sys/strsun.h>
29 #include <sys/strsubr.h>
30 #include <sys/debug.h>
31 #include <sys/sdt.h>
32 #include <sys/cmn_err.h>
33 #include <sys/tihdr.h>
34 
35 #include <inet/common.h>
36 #include <inet/optcom.h>
37 #include <inet/ip.h>
38 #include <inet/ip_impl.h>
39 #include <inet/tcp.h>
40 #include <inet/tcp_impl.h>
41 #include <inet/ipsec_impl.h>
42 #include <inet/ipclassifier.h>
43 #include <inet/ipp_common.h>
44 #include <inet/ip_if.h>
45 
46 /*
47  * This file implements TCP fusion - a protocol-less data path for TCP
48  * loopback connections.  The fusion of two local TCP endpoints occurs
49  * at connection establishment time.  Various conditions (see details
50  * in tcp_fuse()) need to be met for fusion to be successful.  If it
51  * fails, we fall back to the regular TCP data path; if it succeeds,
52  * both endpoints proceed to use tcp_fuse_output() as the transmit path.
53  * tcp_fuse_output() enqueues application data directly onto the peer's
54  * receive queue; no protocol processing is involved.  After enqueueing
55  * the data, the sender can either push (putnext) data up the receiver's
56  * read queue; or the sender can simply return and let the receiver
57  * retrieve the enqueued data via the synchronous streams entry point
58  * tcp_fuse_rrw().  The latter path is taken if synchronous streams is
59  * enabled (the default).  It is disabled if sockfs no longer resides
60  * directly on top of tcp module due to a module insertion or removal.
61  * It also needs to be temporarily disabled when sending urgent data
62  * because the tcp_fuse_rrw() path bypasses the M_PROTO processing done
63  * by strsock_proto() hook.
64  *
65  * Sychronization is handled by squeue and the mutex tcp_non_sq_lock.
66  * One of the requirements for fusion to succeed is that both endpoints
67  * need to be using the same squeue.  This ensures that neither side
68  * can disappear while the other side is still sending data.  By itself,
69  * squeue is not sufficient for guaranteeing safety when synchronous
70  * streams is enabled.  The reason is that tcp_fuse_rrw() doesn't enter
71  * the squeue and its access to tcp_rcv_list and other fusion-related
72  * fields needs to be sychronized with the sender.  tcp_non_sq_lock is
73  * used for this purpose.  When there is urgent data, the sender needs
74  * to push the data up the receiver's streams read queue.  In order to
75  * avoid holding the tcp_non_sq_lock across putnext(), the sender sets
76  * the peer tcp's tcp_fuse_syncstr_plugged bit and releases tcp_non_sq_lock
77  * (see macro TCP_FUSE_SYNCSTR_PLUG_DRAIN()).  If tcp_fuse_rrw() enters
78  * after this point, it will see that synchronous streams is plugged and
79  * will wait on tcp_fuse_plugcv.  After the sender has finished pushing up
80  * all urgent data, it will clear the tcp_fuse_syncstr_plugged bit using
81  * TCP_FUSE_SYNCSTR_UNPLUG_DRAIN().  This will cause any threads waiting
82  * on tcp_fuse_plugcv to return EBUSY, and in turn cause strget() to call
83  * getq_noenab() to dequeue data from the stream head instead.  Once the
84  * data on the stream head has been consumed, tcp_fuse_rrw() may again
85  * be used to process tcp_rcv_list.  However, if TCP_FUSE_SYNCSTR_STOP()
86  * has been called, all future calls to tcp_fuse_rrw() will return EBUSY,
87  * effectively disabling synchronous streams.
88  *
89  * The following note applies only to the synchronous streams mode.
90  *
91  * Flow control is done by checking the size of receive buffer and
92  * the number of data blocks, both set to different limits.  This is
93  * different than regular streams flow control where cumulative size
94  * check dominates block count check -- streams queue high water mark
95  * typically represents bytes.  Each enqueue triggers notifications
96  * to the receiving process; a build up of data blocks indicates a
97  * slow receiver and the sender should be blocked or informed at the
98  * earliest moment instead of further wasting system resources.  In
99  * effect, this is equivalent to limiting the number of outstanding
100  * segments in flight.
101  */
102 
103 /*
104  * Setting this to false means we disable fusion altogether and
105  * loopback connections would go through the protocol paths.
106  */
107 boolean_t do_tcp_fusion = B_TRUE;
108 
109 /*
110  * Enabling this flag allows sockfs to retrieve data directly
111  * from a fused tcp endpoint using synchronous streams interface.
112  */
113 boolean_t do_tcp_direct_sockfs = B_TRUE;
114 
115 /*
116  * This is the minimum amount of outstanding writes allowed on
117  * a synchronous streams-enabled receiving endpoint before the
118  * sender gets flow-controlled.  Setting this value to 0 means
119  * that the data block limit is equivalent to the byte count
120  * limit, which essentially disables the check.
121  */
122 #define	TCP_FUSION_RCV_UNREAD_MIN	8
123 uint_t tcp_fusion_rcv_unread_min = TCP_FUSION_RCV_UNREAD_MIN;
124 
125 static void		tcp_fuse_syncstr_enable(tcp_t *);
126 static void		tcp_fuse_syncstr_disable(tcp_t *);
127 static boolean_t	strrput_sig(queue_t *, boolean_t);
128 
129 /*
130  * Return true if this connection needs some IP functionality
131  */
132 static boolean_t
133 tcp_loopback_needs_ip(tcp_t *tcp, netstack_t *ns)
134 {
135 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
136 
137 	/*
138 	 * If ire is not cached, do not use fusion
139 	 */
140 	if (tcp->tcp_connp->conn_ire_cache == NULL) {
141 		/*
142 		 * There is no need to hold conn_lock here because when called
143 		 * from tcp_fuse() there can be no window where conn_ire_cache
144 		 * can change. This is not true when called from
145 		 * tcp_fuse_output() as conn_ire_cache can become null just
146 		 * after the check. It will be necessary to recheck for a NULL
147 		 * conn_ire_cache in tcp_fuse_output() to avoid passing a
148 		 * stale ill pointer to FW_HOOKS.
149 		 */
150 		return (B_TRUE);
151 	}
152 	if (tcp->tcp_ipversion == IPV4_VERSION) {
153 		if (tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH)
154 			return (B_TRUE);
155 		if (CONN_OUTBOUND_POLICY_PRESENT(tcp->tcp_connp, ipss))
156 			return (B_TRUE);
157 		if (CONN_INBOUND_POLICY_PRESENT(tcp->tcp_connp, ipss))
158 			return (B_TRUE);
159 	} else {
160 		if (tcp->tcp_ip_hdr_len != IPV6_HDR_LEN)
161 			return (B_TRUE);
162 		if (CONN_OUTBOUND_POLICY_PRESENT_V6(tcp->tcp_connp, ipss))
163 			return (B_TRUE);
164 		if (CONN_INBOUND_POLICY_PRESENT_V6(tcp->tcp_connp, ipss))
165 			return (B_TRUE);
166 	}
167 	if (!CONN_IS_LSO_MD_FASTPATH(tcp->tcp_connp))
168 		return (B_TRUE);
169 	return (B_FALSE);
170 }
171 
172 
173 /*
174  * This routine gets called by the eager tcp upon changing state from
175  * SYN_RCVD to ESTABLISHED.  It fuses a direct path between itself
176  * and the active connect tcp such that the regular tcp processings
177  * may be bypassed under allowable circumstances.  Because the fusion
178  * requires both endpoints to be in the same squeue, it does not work
179  * for simultaneous active connects because there is no easy way to
180  * switch from one squeue to another once the connection is created.
181  * This is different from the eager tcp case where we assign it the
182  * same squeue as the one given to the active connect tcp during open.
183  */
184 void
185 tcp_fuse(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph)
186 {
187 	conn_t *peer_connp, *connp = tcp->tcp_connp;
188 	tcp_t *peer_tcp;
189 	tcp_stack_t	*tcps = tcp->tcp_tcps;
190 	netstack_t	*ns;
191 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
192 
193 	ASSERT(!tcp->tcp_fused);
194 	ASSERT(tcp->tcp_loopback);
195 	ASSERT(tcp->tcp_loopback_peer == NULL);
196 	/*
197 	 * We need to inherit q_hiwat of the listener tcp, but we can't
198 	 * really use tcp_listener since we get here after sending up
199 	 * T_CONN_IND and tcp_wput_accept() may be called independently,
200 	 * at which point tcp_listener is cleared; this is why we use
201 	 * tcp_saved_listener.  The listener itself is guaranteed to be
202 	 * around until tcp_accept_finish() is called on this eager --
203 	 * this won't happen until we're done since we're inside the
204 	 * eager's perimeter now.
205 	 *
206 	 * We can also get called in the case were a connection needs
207 	 * to be re-fused. In this case tcp_saved_listener will be
208 	 * NULL but tcp_refuse will be true.
209 	 */
210 	ASSERT(tcp->tcp_saved_listener != NULL || tcp->tcp_refuse);
211 	/*
212 	 * Lookup peer endpoint; search for the remote endpoint having
213 	 * the reversed address-port quadruplet in ESTABLISHED state,
214 	 * which is guaranteed to be unique in the system.  Zone check
215 	 * is applied accordingly for loopback address, but not for
216 	 * local address since we want fusion to happen across Zones.
217 	 */
218 	if (tcp->tcp_ipversion == IPV4_VERSION) {
219 		peer_connp = ipcl_conn_tcp_lookup_reversed_ipv4(connp,
220 		    (ipha_t *)iphdr, tcph, ipst);
221 	} else {
222 		peer_connp = ipcl_conn_tcp_lookup_reversed_ipv6(connp,
223 		    (ip6_t *)iphdr, tcph, ipst);
224 	}
225 
226 	/*
227 	 * We can only proceed if peer exists, resides in the same squeue
228 	 * as our conn and is not raw-socket.  The squeue assignment of
229 	 * this eager tcp was done earlier at the time of SYN processing
230 	 * in ip_fanout_tcp{_v6}.  Note that similar squeues by itself
231 	 * doesn't guarantee a safe condition to fuse, hence we perform
232 	 * additional tests below.
233 	 */
234 	ASSERT(peer_connp == NULL || peer_connp != connp);
235 	if (peer_connp == NULL || peer_connp->conn_sqp != connp->conn_sqp ||
236 	    !IPCL_IS_TCP(peer_connp)) {
237 		if (peer_connp != NULL) {
238 			TCP_STAT(tcps, tcp_fusion_unqualified);
239 			CONN_DEC_REF(peer_connp);
240 		}
241 		return;
242 	}
243 	peer_tcp = peer_connp->conn_tcp;	/* active connect tcp */
244 
245 	ASSERT(peer_tcp != NULL && peer_tcp != tcp && !peer_tcp->tcp_fused);
246 	ASSERT(peer_tcp->tcp_loopback && peer_tcp->tcp_loopback_peer == NULL);
247 	ASSERT(peer_connp->conn_sqp == connp->conn_sqp);
248 
249 	/*
250 	 * Fuse the endpoints; we perform further checks against both
251 	 * tcp endpoints to ensure that a fusion is allowed to happen.
252 	 * In particular we bail out for non-simple TCP/IP or if IPsec/
253 	 * IPQoS policy/kernel SSL exists.
254 	 */
255 	ns = tcps->tcps_netstack;
256 	ipst = ns->netstack_ip;
257 
258 	if (!tcp->tcp_unfusable && !peer_tcp->tcp_unfusable &&
259 	    !tcp_loopback_needs_ip(tcp, ns) &&
260 	    !tcp_loopback_needs_ip(peer_tcp, ns) &&
261 	    tcp->tcp_kssl_ent == NULL &&
262 	    !IPP_ENABLED(IPP_LOCAL_OUT|IPP_LOCAL_IN, ipst)) {
263 		mblk_t *mp;
264 		struct stroptions *stropt;
265 		queue_t *peer_rq = peer_tcp->tcp_rq;
266 
267 		ASSERT(!TCP_IS_DETACHED(peer_tcp) && peer_rq != NULL);
268 		ASSERT(tcp->tcp_fused_sigurg_mp == NULL);
269 		ASSERT(peer_tcp->tcp_fused_sigurg_mp == NULL);
270 		ASSERT(tcp->tcp_kssl_ctx == NULL);
271 
272 		/*
273 		 * We need to drain data on both endpoints during unfuse.
274 		 * If we need to send up SIGURG at the time of draining,
275 		 * we want to be sure that an mblk is readily available.
276 		 * This is why we pre-allocate the M_PCSIG mblks for both
277 		 * endpoints which will only be used during/after unfuse.
278 		 */
279 		if ((mp = allocb(1, BPRI_HI)) == NULL)
280 			goto failed;
281 
282 		tcp->tcp_fused_sigurg_mp = mp;
283 
284 		if ((mp = allocb(1, BPRI_HI)) == NULL)
285 			goto failed;
286 
287 		peer_tcp->tcp_fused_sigurg_mp = mp;
288 
289 		/* Allocate M_SETOPTS mblk */
290 		if ((mp = allocb(sizeof (*stropt), BPRI_HI)) == NULL)
291 			goto failed;
292 
293 		/* If either tcp or peer_tcp sodirect enabled then disable */
294 		if (tcp->tcp_sodirect != NULL) {
295 			mutex_enter(tcp->tcp_sodirect->sod_lockp);
296 			SOD_DISABLE(tcp->tcp_sodirect);
297 			mutex_exit(tcp->tcp_sodirect->sod_lockp);
298 			tcp->tcp_sodirect = NULL;
299 		}
300 		if (peer_tcp->tcp_sodirect != NULL) {
301 			mutex_enter(peer_tcp->tcp_sodirect->sod_lockp);
302 			SOD_DISABLE(peer_tcp->tcp_sodirect);
303 			mutex_exit(peer_tcp->tcp_sodirect->sod_lockp);
304 			peer_tcp->tcp_sodirect = NULL;
305 		}
306 
307 		/* Fuse both endpoints */
308 		peer_tcp->tcp_loopback_peer = tcp;
309 		tcp->tcp_loopback_peer = peer_tcp;
310 		peer_tcp->tcp_fused = tcp->tcp_fused = B_TRUE;
311 
312 		/*
313 		 * We never use regular tcp paths in fusion and should
314 		 * therefore clear tcp_unsent on both endpoints.  Having
315 		 * them set to non-zero values means asking for trouble
316 		 * especially after unfuse, where we may end up sending
317 		 * through regular tcp paths which expect xmit_list and
318 		 * friends to be correctly setup.
319 		 */
320 		peer_tcp->tcp_unsent = tcp->tcp_unsent = 0;
321 
322 		tcp_timers_stop(tcp);
323 		tcp_timers_stop(peer_tcp);
324 
325 		/*
326 		 * At this point we are a detached eager tcp and therefore
327 		 * don't have a queue assigned to us until accept happens.
328 		 * In the mean time the peer endpoint may immediately send
329 		 * us data as soon as fusion is finished, and we need to be
330 		 * able to flow control it in case it sends down huge amount
331 		 * of data while we're still detached.  To prevent that we
332 		 * inherit the listener's q_hiwat value; this is temporary
333 		 * since we'll repeat the process in tcp_accept_finish().
334 		 */
335 		if (!tcp->tcp_refuse) {
336 			(void) tcp_fuse_set_rcv_hiwat(tcp,
337 			    tcp->tcp_saved_listener->tcp_rq->q_hiwat);
338 
339 			/*
340 			 * Set the stream head's write offset value to zero
341 			 * since we won't be needing any room for TCP/IP
342 			 * headers; tell it to not break up the writes (this
343 			 * would reduce the amount of work done by kmem); and
344 			 * configure our receive buffer. Note that we can only
345 			 * do this for the active connect tcp since our eager
346 			 * is still detached; it will be dealt with later in
347 			 * tcp_accept_finish().
348 			 */
349 			DB_TYPE(mp) = M_SETOPTS;
350 			mp->b_wptr += sizeof (*stropt);
351 
352 			stropt = (struct stroptions *)mp->b_rptr;
353 			stropt->so_flags = SO_MAXBLK | SO_WROFF | SO_HIWAT;
354 			stropt->so_maxblk = tcp_maxpsz_set(peer_tcp, B_FALSE);
355 			stropt->so_wroff = 0;
356 
357 			/*
358 			 * Record the stream head's high water mark for
359 			 * peer endpoint; this is used for flow-control
360 			 * purposes in tcp_fuse_output().
361 			 */
362 			stropt->so_hiwat = tcp_fuse_set_rcv_hiwat(peer_tcp,
363 			    peer_rq->q_hiwat);
364 
365 			tcp->tcp_refuse = B_FALSE;
366 			peer_tcp->tcp_refuse = B_FALSE;
367 			/* Send the options up */
368 			putnext(peer_rq, mp);
369 		}
370 		tcp->tcp_refuse = B_FALSE;
371 		peer_tcp->tcp_refuse = B_FALSE;
372 	} else {
373 		TCP_STAT(tcps, tcp_fusion_unqualified);
374 	}
375 	CONN_DEC_REF(peer_connp);
376 	return;
377 
378 failed:
379 	if (tcp->tcp_fused_sigurg_mp != NULL) {
380 		freeb(tcp->tcp_fused_sigurg_mp);
381 		tcp->tcp_fused_sigurg_mp = NULL;
382 	}
383 	if (peer_tcp->tcp_fused_sigurg_mp != NULL) {
384 		freeb(peer_tcp->tcp_fused_sigurg_mp);
385 		peer_tcp->tcp_fused_sigurg_mp = NULL;
386 	}
387 	CONN_DEC_REF(peer_connp);
388 }
389 
390 /*
391  * Unfuse a previously-fused pair of tcp loopback endpoints.
392  */
393 void
394 tcp_unfuse(tcp_t *tcp)
395 {
396 	tcp_t *peer_tcp = tcp->tcp_loopback_peer;
397 
398 	ASSERT(tcp->tcp_fused && peer_tcp != NULL);
399 	ASSERT(peer_tcp->tcp_fused && peer_tcp->tcp_loopback_peer == tcp);
400 	ASSERT(tcp->tcp_connp->conn_sqp == peer_tcp->tcp_connp->conn_sqp);
401 	ASSERT(tcp->tcp_unsent == 0 && peer_tcp->tcp_unsent == 0);
402 	ASSERT(tcp->tcp_fused_sigurg_mp != NULL);
403 	ASSERT(peer_tcp->tcp_fused_sigurg_mp != NULL);
404 
405 	/*
406 	 * We disable synchronous streams, drain any queued data and
407 	 * clear tcp_direct_sockfs.  The synchronous streams entry
408 	 * points will become no-ops after this point.
409 	 */
410 	tcp_fuse_disable_pair(tcp, B_TRUE);
411 
412 	/*
413 	 * Update th_seq and th_ack in the header template
414 	 */
415 	U32_TO_ABE32(tcp->tcp_snxt, tcp->tcp_tcph->th_seq);
416 	U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack);
417 	U32_TO_ABE32(peer_tcp->tcp_snxt, peer_tcp->tcp_tcph->th_seq);
418 	U32_TO_ABE32(peer_tcp->tcp_rnxt, peer_tcp->tcp_tcph->th_ack);
419 
420 	/* Unfuse the endpoints */
421 	peer_tcp->tcp_fused = tcp->tcp_fused = B_FALSE;
422 	peer_tcp->tcp_loopback_peer = tcp->tcp_loopback_peer = NULL;
423 	freeb(peer_tcp->tcp_fused_sigurg_mp);
424 	freeb(tcp->tcp_fused_sigurg_mp);
425 	peer_tcp->tcp_fused_sigurg_mp = NULL;
426 	tcp->tcp_fused_sigurg_mp = NULL;
427 }
428 
429 /*
430  * Fusion output routine for urgent data.  This routine is called by
431  * tcp_fuse_output() for handling non-M_DATA mblks.
432  */
433 void
434 tcp_fuse_output_urg(tcp_t *tcp, mblk_t *mp)
435 {
436 	mblk_t *mp1;
437 	struct T_exdata_ind *tei;
438 	tcp_t *peer_tcp = tcp->tcp_loopback_peer;
439 	mblk_t *head, *prev_head = NULL;
440 	tcp_stack_t	*tcps = tcp->tcp_tcps;
441 
442 	ASSERT(tcp->tcp_fused);
443 	ASSERT(peer_tcp != NULL && peer_tcp->tcp_loopback_peer == tcp);
444 	ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO);
445 	ASSERT(mp->b_cont != NULL && DB_TYPE(mp->b_cont) == M_DATA);
446 	ASSERT(MBLKL(mp) >= sizeof (*tei) && MBLKL(mp->b_cont) > 0);
447 
448 	/*
449 	 * Urgent data arrives in the form of T_EXDATA_REQ from above.
450 	 * Each occurence denotes a new urgent pointer.  For each new
451 	 * urgent pointer we signal (SIGURG) the receiving app to indicate
452 	 * that it needs to go into urgent mode.  This is similar to the
453 	 * urgent data handling in the regular tcp.  We don't need to keep
454 	 * track of where the urgent pointer is, because each T_EXDATA_REQ
455 	 * "advances" the urgent pointer for us.
456 	 *
457 	 * The actual urgent data carried by T_EXDATA_REQ is then prepended
458 	 * by a T_EXDATA_IND before being enqueued behind any existing data
459 	 * destined for the receiving app.  There is only a single urgent
460 	 * pointer (out-of-band mark) for a given tcp.  If the new urgent
461 	 * data arrives before the receiving app reads some existing urgent
462 	 * data, the previous marker is lost.  This behavior is emulated
463 	 * accordingly below, by removing any existing T_EXDATA_IND messages
464 	 * and essentially converting old urgent data into non-urgent.
465 	 */
466 	ASSERT(tcp->tcp_valid_bits & TCP_URG_VALID);
467 	/* Let sender get out of urgent mode */
468 	tcp->tcp_valid_bits &= ~TCP_URG_VALID;
469 
470 	/*
471 	 * This flag indicates that a signal needs to be sent up.
472 	 * This flag will only get cleared once SIGURG is delivered and
473 	 * is not affected by the tcp_fused flag -- delivery will still
474 	 * happen even after an endpoint is unfused, to handle the case
475 	 * where the sending endpoint immediately closes/unfuses after
476 	 * sending urgent data and the accept is not yet finished.
477 	 */
478 	peer_tcp->tcp_fused_sigurg = B_TRUE;
479 
480 	/* Reuse T_EXDATA_REQ mblk for T_EXDATA_IND */
481 	DB_TYPE(mp) = M_PROTO;
482 	tei = (struct T_exdata_ind *)mp->b_rptr;
483 	tei->PRIM_type = T_EXDATA_IND;
484 	tei->MORE_flag = 0;
485 	mp->b_wptr = (uchar_t *)&tei[1];
486 
487 	TCP_STAT(tcps, tcp_fusion_urg);
488 	BUMP_MIB(&tcps->tcps_mib, tcpOutUrg);
489 
490 	head = peer_tcp->tcp_rcv_list;
491 	while (head != NULL) {
492 		/*
493 		 * Remove existing T_EXDATA_IND, keep the data which follows
494 		 * it and relink our list.  Note that we don't modify the
495 		 * tcp_rcv_last_tail since it never points to T_EXDATA_IND.
496 		 */
497 		if (DB_TYPE(head) != M_DATA) {
498 			mp1 = head;
499 
500 			ASSERT(DB_TYPE(mp1->b_cont) == M_DATA);
501 			head = mp1->b_cont;
502 			mp1->b_cont = NULL;
503 			head->b_next = mp1->b_next;
504 			mp1->b_next = NULL;
505 			if (prev_head != NULL)
506 				prev_head->b_next = head;
507 			if (peer_tcp->tcp_rcv_list == mp1)
508 				peer_tcp->tcp_rcv_list = head;
509 			if (peer_tcp->tcp_rcv_last_head == mp1)
510 				peer_tcp->tcp_rcv_last_head = head;
511 			freeb(mp1);
512 		}
513 		prev_head = head;
514 		head = head->b_next;
515 	}
516 }
517 
518 /*
519  * Fusion output routine, called by tcp_output() and tcp_wput_proto().
520  * If we are modifying any member that can be changed outside the squeue,
521  * like tcp_flow_stopped, we need to take tcp_non_sq_lock.
522  */
523 boolean_t
524 tcp_fuse_output(tcp_t *tcp, mblk_t *mp, uint32_t send_size)
525 {
526 	tcp_t *peer_tcp = tcp->tcp_loopback_peer;
527 	uint_t max_unread;
528 	boolean_t flow_stopped, peer_data_queued = B_FALSE;
529 	boolean_t urgent = (DB_TYPE(mp) != M_DATA);
530 	mblk_t *mp1 = mp;
531 	ill_t *ilp, *olp;
532 	ipif_t *iifp, *oifp;
533 	ipha_t *ipha;
534 	ip6_t *ip6h;
535 	tcph_t *tcph;
536 	uint_t ip_hdr_len;
537 	uint32_t seq;
538 	uint32_t recv_size = send_size;
539 	tcp_stack_t	*tcps = tcp->tcp_tcps;
540 	netstack_t	*ns = tcps->tcps_netstack;
541 	ip_stack_t	*ipst = ns->netstack_ip;
542 
543 	ASSERT(tcp->tcp_fused);
544 	ASSERT(peer_tcp != NULL && peer_tcp->tcp_loopback_peer == tcp);
545 	ASSERT(tcp->tcp_connp->conn_sqp == peer_tcp->tcp_connp->conn_sqp);
546 	ASSERT(DB_TYPE(mp) == M_DATA || DB_TYPE(mp) == M_PROTO ||
547 	    DB_TYPE(mp) == M_PCPROTO);
548 
549 
550 	/* If this connection requires IP, unfuse and use regular path */
551 	if (tcp_loopback_needs_ip(tcp, ns) ||
552 	    tcp_loopback_needs_ip(peer_tcp, ns) ||
553 	    IPP_ENABLED(IPP_LOCAL_OUT|IPP_LOCAL_IN, ipst) ||
554 	    list_head(&ipst->ips_ipobs_cb_list) != NULL) {
555 		TCP_STAT(tcps, tcp_fusion_aborted);
556 		tcp->tcp_refuse = B_TRUE;
557 		peer_tcp->tcp_refuse = B_TRUE;
558 
559 		bcopy(peer_tcp->tcp_tcph, &tcp->tcp_saved_tcph,
560 		    sizeof (tcph_t));
561 		bcopy(tcp->tcp_tcph, &peer_tcp->tcp_saved_tcph,
562 		    sizeof (tcph_t));
563 		if (tcp->tcp_ipversion == IPV4_VERSION) {
564 			bcopy(peer_tcp->tcp_ipha, &tcp->tcp_saved_ipha,
565 			    sizeof (ipha_t));
566 			bcopy(tcp->tcp_ipha, &peer_tcp->tcp_saved_ipha,
567 			    sizeof (ipha_t));
568 		} else {
569 			bcopy(peer_tcp->tcp_ip6h, &tcp->tcp_saved_ip6h,
570 			    sizeof (ip6_t));
571 			bcopy(tcp->tcp_ip6h, &peer_tcp->tcp_saved_ip6h,
572 			    sizeof (ip6_t));
573 		}
574 		goto unfuse;
575 	}
576 
577 	if (send_size == 0) {
578 		freemsg(mp);
579 		return (B_TRUE);
580 	}
581 	max_unread = peer_tcp->tcp_fuse_rcv_unread_hiwater;
582 
583 	/*
584 	 * Handle urgent data; we either send up SIGURG to the peer now
585 	 * or do it later when we drain, in case the peer is detached
586 	 * or if we're short of memory for M_PCSIG mblk.
587 	 */
588 	if (urgent) {
589 		/*
590 		 * We stop synchronous streams when we have urgent data
591 		 * queued to prevent tcp_fuse_rrw() from pulling it.  If
592 		 * for some reasons the urgent data can't be delivered
593 		 * below, synchronous streams will remain stopped until
594 		 * someone drains the tcp_rcv_list.
595 		 */
596 		TCP_FUSE_SYNCSTR_PLUG_DRAIN(peer_tcp);
597 		tcp_fuse_output_urg(tcp, mp);
598 
599 		mp1 = mp->b_cont;
600 	}
601 
602 	if (tcp->tcp_ipversion == IPV4_VERSION &&
603 	    (HOOKS4_INTERESTED_LOOPBACK_IN(ipst) ||
604 	    HOOKS4_INTERESTED_LOOPBACK_OUT(ipst)) ||
605 	    tcp->tcp_ipversion == IPV6_VERSION &&
606 	    (HOOKS6_INTERESTED_LOOPBACK_IN(ipst) ||
607 	    HOOKS6_INTERESTED_LOOPBACK_OUT(ipst))) {
608 		/*
609 		 * Build ip and tcp header to satisfy FW_HOOKS.
610 		 * We only build it when any hook is present.
611 		 */
612 		if ((mp1 = tcp_xmit_mp(tcp, mp1, tcp->tcp_mss, NULL, NULL,
613 		    tcp->tcp_snxt, B_TRUE, NULL, B_FALSE)) == NULL)
614 			/* If tcp_xmit_mp fails, use regular path */
615 			goto unfuse;
616 
617 		/*
618 		 * The ipif and ill can be safely referenced under the
619 		 * protection of conn_lock - see head of function comment for
620 		 * conn_get_held_ipif(). It is necessary to check that both
621 		 * the ipif and ill can be looked up (i.e. not condemned). If
622 		 * not, bail out and unfuse this connection.
623 		 */
624 		mutex_enter(&peer_tcp->tcp_connp->conn_lock);
625 		if ((peer_tcp->tcp_connp->conn_ire_cache == NULL) ||
626 		    (peer_tcp->tcp_connp->conn_ire_cache->ire_marks &
627 		    IRE_MARK_CONDEMNED) ||
628 		    ((oifp = peer_tcp->tcp_connp->conn_ire_cache->ire_ipif)
629 		    == NULL) ||
630 		    (!IPIF_CAN_LOOKUP(oifp)) ||
631 		    ((olp = oifp->ipif_ill) == NULL) ||
632 		    (ill_check_and_refhold(olp) != 0)) {
633 			mutex_exit(&peer_tcp->tcp_connp->conn_lock);
634 			goto unfuse;
635 		}
636 		mutex_exit(&peer_tcp->tcp_connp->conn_lock);
637 
638 		/* PFHooks: LOOPBACK_OUT */
639 		if (tcp->tcp_ipversion == IPV4_VERSION) {
640 			ipha = (ipha_t *)mp1->b_rptr;
641 
642 			DTRACE_PROBE4(ip4__loopback__out__start,
643 			    ill_t *, NULL, ill_t *, olp,
644 			    ipha_t *, ipha, mblk_t *, mp1);
645 			FW_HOOKS(ipst->ips_ip4_loopback_out_event,
646 			    ipst->ips_ipv4firewall_loopback_out,
647 			    NULL, olp, ipha, mp1, mp1, 0, ipst);
648 			DTRACE_PROBE1(ip4__loopback__out__end, mblk_t *, mp1);
649 		} else {
650 			ip6h = (ip6_t *)mp1->b_rptr;
651 
652 			DTRACE_PROBE4(ip6__loopback__out__start,
653 			    ill_t *, NULL, ill_t *, olp,
654 			    ip6_t *, ip6h, mblk_t *, mp1);
655 			FW_HOOKS6(ipst->ips_ip6_loopback_out_event,
656 			    ipst->ips_ipv6firewall_loopback_out,
657 			    NULL, olp, ip6h, mp1, mp1, 0, ipst);
658 			DTRACE_PROBE1(ip6__loopback__out__end, mblk_t *, mp1);
659 		}
660 		ill_refrele(olp);
661 
662 		if (mp1 == NULL)
663 			goto unfuse;
664 
665 		/*
666 		 * The ipif and ill can be safely referenced under the
667 		 * protection of conn_lock - see head of function comment for
668 		 * conn_get_held_ipif(). It is necessary to check that both
669 		 * the ipif and ill can be looked up (i.e. not condemned). If
670 		 * not, bail out and unfuse this connection.
671 		 */
672 		mutex_enter(&tcp->tcp_connp->conn_lock);
673 		if ((tcp->tcp_connp->conn_ire_cache == NULL) ||
674 		    (tcp->tcp_connp->conn_ire_cache->ire_marks &
675 		    IRE_MARK_CONDEMNED) ||
676 		    ((iifp = tcp->tcp_connp->conn_ire_cache->ire_ipif)
677 		    == NULL) ||
678 		    (!IPIF_CAN_LOOKUP(iifp)) ||
679 		    ((ilp = iifp->ipif_ill) == NULL) ||
680 		    (ill_check_and_refhold(ilp) != 0)) {
681 			mutex_exit(&tcp->tcp_connp->conn_lock);
682 			goto unfuse;
683 		}
684 		mutex_exit(&tcp->tcp_connp->conn_lock);
685 
686 		/* PFHooks: LOOPBACK_IN */
687 		if (tcp->tcp_ipversion == IPV4_VERSION) {
688 			DTRACE_PROBE4(ip4__loopback__in__start,
689 			    ill_t *, ilp, ill_t *, NULL,
690 			    ipha_t *, ipha, mblk_t *, mp1);
691 			FW_HOOKS(ipst->ips_ip4_loopback_in_event,
692 			    ipst->ips_ipv4firewall_loopback_in,
693 			    ilp, NULL, ipha, mp1, mp1, 0, ipst);
694 			DTRACE_PROBE1(ip4__loopback__in__end, mblk_t *, mp1);
695 			ill_refrele(ilp);
696 			if (mp1 == NULL)
697 				goto unfuse;
698 
699 			ip_hdr_len = IPH_HDR_LENGTH(ipha);
700 		} else {
701 			DTRACE_PROBE4(ip6__loopback__in__start,
702 			    ill_t *, ilp, ill_t *, NULL,
703 			    ip6_t *, ip6h, mblk_t *, mp1);
704 			FW_HOOKS6(ipst->ips_ip6_loopback_in_event,
705 			    ipst->ips_ipv6firewall_loopback_in,
706 			    ilp, NULL, ip6h, mp1, mp1, 0, ipst);
707 			DTRACE_PROBE1(ip6__loopback__in__end, mblk_t *, mp1);
708 			ill_refrele(ilp);
709 			if (mp1 == NULL)
710 				goto unfuse;
711 
712 			ip_hdr_len = ip_hdr_length_v6(mp1, ip6h);
713 		}
714 
715 		/* Data length might be changed by FW_HOOKS */
716 		tcph = (tcph_t *)&mp1->b_rptr[ip_hdr_len];
717 		seq = ABE32_TO_U32(tcph->th_seq);
718 		recv_size += seq - tcp->tcp_snxt;
719 
720 		/*
721 		 * The message duplicated by tcp_xmit_mp is freed.
722 		 * Note: the original message passed in remains unchanged.
723 		 */
724 		freemsg(mp1);
725 	}
726 
727 	mutex_enter(&peer_tcp->tcp_non_sq_lock);
728 	/*
729 	 * Wake up and signal the peer; it is okay to do this before
730 	 * enqueueing because we are holding the lock.  One of the
731 	 * advantages of synchronous streams is the ability for us to
732 	 * find out when the application performs a read on the socket,
733 	 * by way of tcp_fuse_rrw() entry point being called.  Every
734 	 * data that gets enqueued onto the receiver is treated as if
735 	 * it has arrived at the receiving endpoint, thus generating
736 	 * SIGPOLL/SIGIO for asynchronous socket just as in the strrput()
737 	 * case.  However, we only wake up the application when necessary,
738 	 * i.e. during the first enqueue.  When tcp_fuse_rrw() is called
739 	 * it will send everything upstream.
740 	 */
741 	if (peer_tcp->tcp_direct_sockfs && !urgent &&
742 	    !TCP_IS_DETACHED(peer_tcp)) {
743 		/* Update poll events and send SIGPOLL/SIGIO if necessary */
744 		STR_WAKEUP_SENDSIG(STREAM(peer_tcp->tcp_rq),
745 		    peer_tcp->tcp_rcv_list);
746 	}
747 
748 	/*
749 	 * Enqueue data into the peer's receive list; we may or may not
750 	 * drain the contents depending on the conditions below.
751 	 */
752 	tcp_rcv_enqueue(peer_tcp, mp, recv_size);
753 
754 	/* In case it wrapped around and also to keep it constant */
755 	peer_tcp->tcp_rwnd += recv_size;
756 	/*
757 	 * We increase the peer's unread message count here whilst still
758 	 * holding it's tcp_non_sq_lock. This ensures that the increment
759 	 * occurs in the same lock acquisition perimeter as the enqueue.
760 	 * Depending on lock hierarchy, we can release these locks which
761 	 * creates a window in which we can race with tcp_fuse_rrw()
762 	 */
763 	peer_tcp->tcp_fuse_rcv_unread_cnt++;
764 
765 	/*
766 	 * Exercise flow-control when needed; we will get back-enabled
767 	 * in either tcp_accept_finish(), tcp_unfuse(), or tcp_fuse_rrw().
768 	 * If tcp_direct_sockfs is on or if the peer endpoint is detached,
769 	 * we emulate streams flow control by checking the peer's queue
770 	 * size and high water mark; otherwise we simply use canputnext()
771 	 * to decide if we need to stop our flow.
772 	 *
773 	 * The outstanding unread data block check does not apply for a
774 	 * detached receiver; this is to avoid unnecessary blocking of the
775 	 * sender while the accept is currently in progress and is quite
776 	 * similar to the regular tcp.
777 	 */
778 	if (TCP_IS_DETACHED(peer_tcp) || max_unread == 0)
779 		max_unread = UINT_MAX;
780 
781 	/*
782 	 * Since we are accessing our tcp_flow_stopped and might modify it,
783 	 * we need to take tcp->tcp_non_sq_lock. The lock for the highest
784 	 * address is held first. Dropping peer_tcp->tcp_non_sq_lock should
785 	 * not be an issue here since we are within the squeue and the peer
786 	 * won't disappear.
787 	 */
788 	if (tcp > peer_tcp) {
789 		mutex_exit(&peer_tcp->tcp_non_sq_lock);
790 		mutex_enter(&tcp->tcp_non_sq_lock);
791 		mutex_enter(&peer_tcp->tcp_non_sq_lock);
792 	} else {
793 		mutex_enter(&tcp->tcp_non_sq_lock);
794 	}
795 	flow_stopped = tcp->tcp_flow_stopped;
796 	if (((peer_tcp->tcp_direct_sockfs || TCP_IS_DETACHED(peer_tcp)) &&
797 	    (peer_tcp->tcp_rcv_cnt >= peer_tcp->tcp_fuse_rcv_hiwater ||
798 	    peer_tcp->tcp_fuse_rcv_unread_cnt >= max_unread)) ||
799 	    (!peer_tcp->tcp_direct_sockfs && !TCP_IS_DETACHED(peer_tcp) &&
800 	    !canputnext(peer_tcp->tcp_rq))) {
801 		peer_data_queued = B_TRUE;
802 	}
803 
804 	if (!flow_stopped && (peer_data_queued ||
805 	    (TCP_UNSENT_BYTES(tcp) >= tcp->tcp_xmit_hiwater))) {
806 		tcp_setqfull(tcp);
807 		flow_stopped = B_TRUE;
808 		TCP_STAT(tcps, tcp_fusion_flowctl);
809 		DTRACE_PROBE4(tcp__fuse__output__flowctl, tcp_t *, tcp,
810 		    uint_t, send_size, uint_t, peer_tcp->tcp_rcv_cnt,
811 		    uint_t, peer_tcp->tcp_fuse_rcv_unread_cnt);
812 	} else if (flow_stopped && !peer_data_queued &&
813 	    (TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater)) {
814 		tcp_clrqfull(tcp);
815 		TCP_STAT(tcps, tcp_fusion_backenabled);
816 		flow_stopped = B_FALSE;
817 	}
818 	mutex_exit(&tcp->tcp_non_sq_lock);
819 
820 	/*
821 	 * If we are in synchronous streams mode and the peer read queue is
822 	 * not full then schedule a push timer if one is not scheduled
823 	 * already. This is needed for applications which use MSG_PEEK to
824 	 * determine the number of bytes available before issuing a 'real'
825 	 * read. It also makes flow control more deterministic, particularly
826 	 * for smaller message sizes.
827 	 */
828 	if (!urgent && peer_tcp->tcp_direct_sockfs &&
829 	    peer_tcp->tcp_push_tid == 0 && !TCP_IS_DETACHED(peer_tcp) &&
830 	    canputnext(peer_tcp->tcp_rq)) {
831 		peer_tcp->tcp_push_tid = TCP_TIMER(peer_tcp, tcp_push_timer,
832 		    MSEC_TO_TICK(tcps->tcps_push_timer_interval));
833 	}
834 	mutex_exit(&peer_tcp->tcp_non_sq_lock);
835 	ipst->ips_loopback_packets++;
836 	tcp->tcp_last_sent_len = send_size;
837 
838 	/* Need to adjust the following SNMP MIB-related variables */
839 	tcp->tcp_snxt += send_size;
840 	tcp->tcp_suna = tcp->tcp_snxt;
841 	peer_tcp->tcp_rnxt += recv_size;
842 	peer_tcp->tcp_rack = peer_tcp->tcp_rnxt;
843 
844 	BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs);
845 	UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, send_size);
846 
847 	BUMP_MIB(&tcps->tcps_mib, tcpInSegs);
848 	BUMP_MIB(&tcps->tcps_mib, tcpInDataInorderSegs);
849 	UPDATE_MIB(&tcps->tcps_mib, tcpInDataInorderBytes, send_size);
850 
851 	BUMP_LOCAL(tcp->tcp_obsegs);
852 	BUMP_LOCAL(peer_tcp->tcp_ibsegs);
853 
854 	DTRACE_PROBE2(tcp__fuse__output, tcp_t *, tcp, uint_t, send_size);
855 
856 	if (!TCP_IS_DETACHED(peer_tcp)) {
857 		/*
858 		 * Drain the peer's receive queue it has urgent data or if
859 		 * we're not flow-controlled.  There is no need for draining
860 		 * normal data when tcp_direct_sockfs is on because the peer
861 		 * will pull the data via tcp_fuse_rrw().
862 		 */
863 		if (urgent || (!flow_stopped && !peer_tcp->tcp_direct_sockfs)) {
864 			ASSERT(peer_tcp->tcp_rcv_list != NULL);
865 			/*
866 			 * For TLI-based streams, a thread in tcp_accept_swap()
867 			 * can race with us.  That thread will ensure that the
868 			 * correct peer_tcp->tcp_rq is globally visible before
869 			 * peer_tcp->tcp_detached is visible as clear, but we
870 			 * must also ensure that the load of tcp_rq cannot be
871 			 * reordered to be before the tcp_detached check.
872 			 */
873 			membar_consumer();
874 			(void) tcp_fuse_rcv_drain(peer_tcp->tcp_rq, peer_tcp,
875 			    NULL);
876 			/*
877 			 * If synchronous streams was stopped above due
878 			 * to the presence of urgent data, re-enable it.
879 			 */
880 			if (urgent)
881 				TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(peer_tcp);
882 		}
883 	}
884 	return (B_TRUE);
885 unfuse:
886 	tcp_unfuse(tcp);
887 	return (B_FALSE);
888 }
889 
890 /*
891  * This routine gets called to deliver data upstream on a fused or
892  * previously fused tcp loopback endpoint; the latter happens only
893  * when there is a pending SIGURG signal plus urgent data that can't
894  * be sent upstream in the past.
895  */
896 boolean_t
897 tcp_fuse_rcv_drain(queue_t *q, tcp_t *tcp, mblk_t **sigurg_mpp)
898 {
899 	mblk_t *mp;
900 #ifdef DEBUG
901 	uint_t cnt = 0;
902 #endif
903 	tcp_stack_t	*tcps = tcp->tcp_tcps;
904 	tcp_t		*peer_tcp = tcp->tcp_loopback_peer;
905 	boolean_t	sd_rd_eof = B_FALSE;
906 
907 	ASSERT(tcp->tcp_loopback);
908 	ASSERT(tcp->tcp_fused || tcp->tcp_fused_sigurg);
909 	ASSERT(!tcp->tcp_fused || tcp->tcp_loopback_peer != NULL);
910 	ASSERT(sigurg_mpp != NULL || tcp->tcp_fused);
911 
912 	/* No need for the push timer now, in case it was scheduled */
913 	if (tcp->tcp_push_tid != 0) {
914 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid);
915 		tcp->tcp_push_tid = 0;
916 	}
917 	/*
918 	 * If there's urgent data sitting in receive list and we didn't
919 	 * get a chance to send up a SIGURG signal, make sure we send
920 	 * it first before draining in order to ensure that SIOCATMARK
921 	 * works properly.
922 	 */
923 	if (tcp->tcp_fused_sigurg) {
924 		/*
925 		 * sigurg_mpp is normally NULL, i.e. when we're still
926 		 * fused and didn't get here because of tcp_unfuse().
927 		 * In this case try hard to allocate the M_PCSIG mblk.
928 		 */
929 		if (sigurg_mpp == NULL &&
930 		    (mp = allocb(1, BPRI_HI)) == NULL &&
931 		    (mp = allocb_tryhard(1)) == NULL) {
932 			/* Alloc failed; try again next time */
933 			tcp->tcp_push_tid = TCP_TIMER(tcp, tcp_push_timer,
934 			    MSEC_TO_TICK(tcps->tcps_push_timer_interval));
935 			return (B_TRUE);
936 		} else if (sigurg_mpp != NULL) {
937 			/*
938 			 * Use the supplied M_PCSIG mblk; it means we're
939 			 * either unfused or in the process of unfusing,
940 			 * and the drain must happen now.
941 			 */
942 			mp = *sigurg_mpp;
943 			*sigurg_mpp = NULL;
944 		}
945 		ASSERT(mp != NULL);
946 
947 		tcp->tcp_fused_sigurg = B_FALSE;
948 		/* Send up the signal */
949 		DB_TYPE(mp) = M_PCSIG;
950 		*mp->b_wptr++ = (uchar_t)SIGURG;
951 		putnext(q, mp);
952 		/*
953 		 * Let the regular tcp_rcv_drain() path handle
954 		 * draining the data if we're no longer fused.
955 		 */
956 		if (!tcp->tcp_fused)
957 			return (B_FALSE);
958 	}
959 
960 	/*
961 	 * In the synchronous streams case, we generate SIGPOLL/SIGIO for
962 	 * each M_DATA that gets enqueued onto the receiver.  At this point
963 	 * we are about to drain any queued data via putnext().  In order
964 	 * to avoid extraneous signal generation from strrput(), we set
965 	 * STRGETINPROG flag at the stream head prior to the draining and
966 	 * restore it afterwards.  This masks out signal generation only
967 	 * for M_DATA messages and does not affect urgent data. We only do
968 	 * this if the STREOF flag is not set which can happen if the
969 	 * application shuts down the read side of a stream. In this case
970 	 * we simply free these messages to approximate the flushq behavior
971 	 * which normally occurs when STREOF is on the stream head read queue.
972 	 */
973 	if (tcp->tcp_direct_sockfs)
974 		sd_rd_eof = strrput_sig(q, B_FALSE);
975 
976 	/* Drain the data */
977 	while ((mp = tcp->tcp_rcv_list) != NULL) {
978 		tcp->tcp_rcv_list = mp->b_next;
979 		mp->b_next = NULL;
980 #ifdef DEBUG
981 		cnt += msgdsize(mp);
982 #endif
983 		if (sd_rd_eof) {
984 			freemsg(mp);
985 		} else {
986 			putnext(q, mp);
987 			TCP_STAT(tcps, tcp_fusion_putnext);
988 		}
989 	}
990 
991 	if (tcp->tcp_direct_sockfs && !sd_rd_eof)
992 		(void) strrput_sig(q, B_TRUE);
993 
994 	ASSERT(cnt == tcp->tcp_rcv_cnt);
995 	tcp->tcp_rcv_last_head = NULL;
996 	tcp->tcp_rcv_last_tail = NULL;
997 	tcp->tcp_rcv_cnt = 0;
998 	tcp->tcp_fuse_rcv_unread_cnt = 0;
999 	tcp->tcp_rwnd = q->q_hiwat;
1000 
1001 	if (peer_tcp->tcp_flow_stopped && (TCP_UNSENT_BYTES(peer_tcp) <=
1002 	    peer_tcp->tcp_xmit_lowater)) {
1003 		tcp_clrqfull(peer_tcp);
1004 		TCP_STAT(tcps, tcp_fusion_backenabled);
1005 	}
1006 
1007 	return (B_TRUE);
1008 }
1009 
1010 /*
1011  * Synchronous stream entry point for sockfs to retrieve
1012  * data directly from tcp_rcv_list.
1013  * tcp_fuse_rrw() might end up modifying the peer's tcp_flow_stopped,
1014  * for which it  must take the tcp_non_sq_lock of the peer as well
1015  * making any change. The order of taking the locks is based on
1016  * the TCP pointer itself. Before we get the peer we need to take
1017  * our tcp_non_sq_lock so that the peer doesn't disappear. However,
1018  * we cannot drop the lock if we have to grab the peer's lock (because
1019  * of ordering), since the peer might disappear in the interim. So,
1020  * we take our tcp_non_sq_lock, get the peer, increment the ref on the
1021  * peer's conn, drop all the locks and then take the tcp_non_sq_lock in the
1022  * desired order. Incrementing the conn ref on the peer means that the
1023  * peer won't disappear when we drop our tcp_non_sq_lock.
1024  */
1025 int
1026 tcp_fuse_rrw(queue_t *q, struiod_t *dp)
1027 {
1028 	tcp_t *tcp = Q_TO_CONN(q)->conn_tcp;
1029 	mblk_t *mp;
1030 	tcp_t *peer_tcp;
1031 	tcp_stack_t	*tcps = tcp->tcp_tcps;
1032 
1033 	mutex_enter(&tcp->tcp_non_sq_lock);
1034 
1035 	/*
1036 	 * If tcp_fuse_syncstr_plugged is set, then another thread is moving
1037 	 * the underlying data to the stream head.  We need to wait until it's
1038 	 * done, then return EBUSY so that strget() will dequeue data from the
1039 	 * stream head to ensure data is drained in-order.
1040 	 */
1041 plugged:
1042 	if (tcp->tcp_fuse_syncstr_plugged) {
1043 		do {
1044 			cv_wait(&tcp->tcp_fuse_plugcv, &tcp->tcp_non_sq_lock);
1045 		} while (tcp->tcp_fuse_syncstr_plugged);
1046 
1047 		mutex_exit(&tcp->tcp_non_sq_lock);
1048 		TCP_STAT(tcps, tcp_fusion_rrw_plugged);
1049 		TCP_STAT(tcps, tcp_fusion_rrw_busy);
1050 		return (EBUSY);
1051 	}
1052 
1053 	peer_tcp = tcp->tcp_loopback_peer;
1054 
1055 	/*
1056 	 * If someone had turned off tcp_direct_sockfs or if synchronous
1057 	 * streams is stopped, we return EBUSY.  This causes strget() to
1058 	 * dequeue data from the stream head instead.
1059 	 */
1060 	if (!tcp->tcp_direct_sockfs || tcp->tcp_fuse_syncstr_stopped) {
1061 		mutex_exit(&tcp->tcp_non_sq_lock);
1062 		TCP_STAT(tcps, tcp_fusion_rrw_busy);
1063 		return (EBUSY);
1064 	}
1065 
1066 	/*
1067 	 * Grab lock in order. The highest addressed tcp is locked first.
1068 	 * We don't do this within the tcp_rcv_list check since if we
1069 	 * have to drop the lock, for ordering, then the tcp_rcv_list
1070 	 * could change.
1071 	 */
1072 	if (peer_tcp > tcp) {
1073 		CONN_INC_REF(peer_tcp->tcp_connp);
1074 		mutex_exit(&tcp->tcp_non_sq_lock);
1075 		mutex_enter(&peer_tcp->tcp_non_sq_lock);
1076 		mutex_enter(&tcp->tcp_non_sq_lock);
1077 		/*
1078 		 * This might have changed in the interim
1079 		 * Once read-side tcp_non_sq_lock is dropped above
1080 		 * anything can happen, we need to check all
1081 		 * known conditions again once we reaquire
1082 		 * read-side tcp_non_sq_lock.
1083 		 */
1084 		if (tcp->tcp_fuse_syncstr_plugged) {
1085 			mutex_exit(&peer_tcp->tcp_non_sq_lock);
1086 			CONN_DEC_REF(peer_tcp->tcp_connp);
1087 			goto plugged;
1088 		}
1089 		if (!tcp->tcp_direct_sockfs || tcp->tcp_fuse_syncstr_stopped) {
1090 			mutex_exit(&tcp->tcp_non_sq_lock);
1091 			mutex_exit(&peer_tcp->tcp_non_sq_lock);
1092 			CONN_DEC_REF(peer_tcp->tcp_connp);
1093 			TCP_STAT(tcps, tcp_fusion_rrw_busy);
1094 			return (EBUSY);
1095 		}
1096 		CONN_DEC_REF(peer_tcp->tcp_connp);
1097 	} else {
1098 		mutex_enter(&peer_tcp->tcp_non_sq_lock);
1099 	}
1100 
1101 	if ((mp = tcp->tcp_rcv_list) != NULL) {
1102 
1103 		DTRACE_PROBE3(tcp__fuse__rrw, tcp_t *, tcp,
1104 		    uint32_t, tcp->tcp_rcv_cnt, ssize_t, dp->d_uio.uio_resid);
1105 
1106 		tcp->tcp_rcv_list = NULL;
1107 		TCP_STAT(tcps, tcp_fusion_rrw_msgcnt);
1108 
1109 		/*
1110 		 * At this point nothing should be left in tcp_rcv_list.
1111 		 * The only possible case where we would have a chain of
1112 		 * b_next-linked messages is urgent data, but we wouldn't
1113 		 * be here if that's true since urgent data is delivered
1114 		 * via putnext() and synchronous streams is stopped until
1115 		 * tcp_fuse_rcv_drain() is finished.
1116 		 */
1117 		ASSERT(DB_TYPE(mp) == M_DATA && mp->b_next == NULL);
1118 
1119 		tcp->tcp_rcv_last_head = NULL;
1120 		tcp->tcp_rcv_last_tail = NULL;
1121 		tcp->tcp_rcv_cnt = 0;
1122 		tcp->tcp_fuse_rcv_unread_cnt = 0;
1123 
1124 		if (peer_tcp->tcp_flow_stopped &&
1125 		    (TCP_UNSENT_BYTES(peer_tcp) <=
1126 		    peer_tcp->tcp_xmit_lowater)) {
1127 			tcp_clrqfull(peer_tcp);
1128 			TCP_STAT(tcps, tcp_fusion_backenabled);
1129 		}
1130 	}
1131 	mutex_exit(&peer_tcp->tcp_non_sq_lock);
1132 	/*
1133 	 * Either we just dequeued everything or we get here from sockfs
1134 	 * and have nothing to return; in this case clear RSLEEP.
1135 	 */
1136 	ASSERT(tcp->tcp_rcv_last_head == NULL);
1137 	ASSERT(tcp->tcp_rcv_last_tail == NULL);
1138 	ASSERT(tcp->tcp_rcv_cnt == 0);
1139 	ASSERT(tcp->tcp_fuse_rcv_unread_cnt == 0);
1140 	STR_WAKEUP_CLEAR(STREAM(q));
1141 
1142 	mutex_exit(&tcp->tcp_non_sq_lock);
1143 	dp->d_mp = mp;
1144 	return (0);
1145 }
1146 
1147 /*
1148  * Synchronous stream entry point used by certain ioctls to retrieve
1149  * information about or peek into the tcp_rcv_list.
1150  */
1151 int
1152 tcp_fuse_rinfop(queue_t *q, infod_t *dp)
1153 {
1154 	tcp_t	*tcp = Q_TO_CONN(q)->conn_tcp;
1155 	mblk_t	*mp;
1156 	uint_t	cmd = dp->d_cmd;
1157 	int	res = 0;
1158 	int	error = 0;
1159 	struct stdata *stp = STREAM(q);
1160 
1161 	mutex_enter(&tcp->tcp_non_sq_lock);
1162 	/* If shutdown on read has happened, return nothing */
1163 	mutex_enter(&stp->sd_lock);
1164 	if (stp->sd_flag & STREOF) {
1165 		mutex_exit(&stp->sd_lock);
1166 		goto done;
1167 	}
1168 	mutex_exit(&stp->sd_lock);
1169 
1170 	/*
1171 	 * It is OK not to return an answer if tcp_rcv_list is
1172 	 * currently not accessible.
1173 	 */
1174 	if (!tcp->tcp_direct_sockfs || tcp->tcp_fuse_syncstr_stopped ||
1175 	    tcp->tcp_fuse_syncstr_plugged || (mp = tcp->tcp_rcv_list) == NULL)
1176 		goto done;
1177 
1178 	if (cmd & INFOD_COUNT) {
1179 		/*
1180 		 * We have at least one message and
1181 		 * could return only one at a time.
1182 		 */
1183 		dp->d_count++;
1184 		res |= INFOD_COUNT;
1185 	}
1186 	if (cmd & INFOD_BYTES) {
1187 		/*
1188 		 * Return size of all data messages.
1189 		 */
1190 		dp->d_bytes += tcp->tcp_rcv_cnt;
1191 		res |= INFOD_BYTES;
1192 	}
1193 	if (cmd & INFOD_FIRSTBYTES) {
1194 		/*
1195 		 * Return size of first data message.
1196 		 */
1197 		dp->d_bytes = msgdsize(mp);
1198 		res |= INFOD_FIRSTBYTES;
1199 		dp->d_cmd &= ~INFOD_FIRSTBYTES;
1200 	}
1201 	if (cmd & INFOD_COPYOUT) {
1202 		mblk_t *mp1;
1203 		int n;
1204 
1205 		if (DB_TYPE(mp) == M_DATA) {
1206 			mp1 = mp;
1207 		} else {
1208 			mp1 = mp->b_cont;
1209 			ASSERT(mp1 != NULL);
1210 		}
1211 
1212 		/*
1213 		 * Return data contents of first message.
1214 		 */
1215 		ASSERT(DB_TYPE(mp1) == M_DATA);
1216 		while (mp1 != NULL && dp->d_uiop->uio_resid > 0) {
1217 			n = MIN(dp->d_uiop->uio_resid, MBLKL(mp1));
1218 			if (n != 0 && (error = uiomove((char *)mp1->b_rptr, n,
1219 			    UIO_READ, dp->d_uiop)) != 0) {
1220 				goto done;
1221 			}
1222 			mp1 = mp1->b_cont;
1223 		}
1224 		res |= INFOD_COPYOUT;
1225 		dp->d_cmd &= ~INFOD_COPYOUT;
1226 	}
1227 done:
1228 	mutex_exit(&tcp->tcp_non_sq_lock);
1229 
1230 	dp->d_res |= res;
1231 
1232 	return (error);
1233 }
1234 
1235 /*
1236  * Enable synchronous streams on a fused tcp loopback endpoint.
1237  */
1238 static void
1239 tcp_fuse_syncstr_enable(tcp_t *tcp)
1240 {
1241 	queue_t *rq = tcp->tcp_rq;
1242 	struct stdata *stp = STREAM(rq);
1243 
1244 	/* We can only enable synchronous streams for sockfs mode */
1245 	tcp->tcp_direct_sockfs = tcp->tcp_issocket && do_tcp_direct_sockfs;
1246 
1247 	if (!tcp->tcp_direct_sockfs)
1248 		return;
1249 
1250 	mutex_enter(&stp->sd_lock);
1251 	mutex_enter(QLOCK(rq));
1252 
1253 	/*
1254 	 * We replace our q_qinfo with one that has the qi_rwp entry point.
1255 	 * Clear SR_SIGALLDATA because we generate the equivalent signal(s)
1256 	 * for every enqueued data in tcp_fuse_output().
1257 	 */
1258 	rq->q_qinfo = &tcp_loopback_rinit;
1259 	rq->q_struiot = tcp_loopback_rinit.qi_struiot;
1260 	stp->sd_struiordq = rq;
1261 	stp->sd_rput_opt &= ~SR_SIGALLDATA;
1262 
1263 	mutex_exit(QLOCK(rq));
1264 	mutex_exit(&stp->sd_lock);
1265 }
1266 
1267 /*
1268  * Disable synchronous streams on a fused tcp loopback endpoint.
1269  */
1270 static void
1271 tcp_fuse_syncstr_disable(tcp_t *tcp)
1272 {
1273 	queue_t *rq = tcp->tcp_rq;
1274 	struct stdata *stp = STREAM(rq);
1275 
1276 	if (!tcp->tcp_direct_sockfs)
1277 		return;
1278 
1279 	mutex_enter(&stp->sd_lock);
1280 	mutex_enter(QLOCK(rq));
1281 
1282 	/*
1283 	 * Reset q_qinfo to point to the default tcp entry points.
1284 	 * Also restore SR_SIGALLDATA so that strrput() can generate
1285 	 * the signals again for future M_DATA messages.
1286 	 */
1287 	rq->q_qinfo = &tcp_rinitv4;	/* No open - same as rinitv6 */
1288 	rq->q_struiot = tcp_rinitv4.qi_struiot;
1289 	stp->sd_struiordq = NULL;
1290 	stp->sd_rput_opt |= SR_SIGALLDATA;
1291 	tcp->tcp_direct_sockfs = B_FALSE;
1292 
1293 	mutex_exit(QLOCK(rq));
1294 	mutex_exit(&stp->sd_lock);
1295 }
1296 
1297 /*
1298  * Enable synchronous streams on a pair of fused tcp endpoints.
1299  */
1300 void
1301 tcp_fuse_syncstr_enable_pair(tcp_t *tcp)
1302 {
1303 	tcp_t *peer_tcp = tcp->tcp_loopback_peer;
1304 
1305 	ASSERT(tcp->tcp_fused);
1306 	ASSERT(peer_tcp != NULL);
1307 
1308 	tcp_fuse_syncstr_enable(tcp);
1309 	tcp_fuse_syncstr_enable(peer_tcp);
1310 }
1311 
1312 /*
1313  * Used to enable/disable signal generation at the stream head. We already
1314  * generated the signal(s) for these messages when they were enqueued on the
1315  * receiver. We also check if STREOF is set here. If it is, we return false
1316  * and let the caller decide what to do.
1317  */
1318 static boolean_t
1319 strrput_sig(queue_t *q, boolean_t on)
1320 {
1321 	struct stdata *stp = STREAM(q);
1322 
1323 	mutex_enter(&stp->sd_lock);
1324 	if (stp->sd_flag == STREOF) {
1325 		mutex_exit(&stp->sd_lock);
1326 		return (B_TRUE);
1327 	}
1328 	if (on)
1329 		stp->sd_flag &= ~STRGETINPROG;
1330 	else
1331 		stp->sd_flag |= STRGETINPROG;
1332 	mutex_exit(&stp->sd_lock);
1333 
1334 	return (B_FALSE);
1335 }
1336 
1337 /*
1338  * Disable synchronous streams on a pair of fused tcp endpoints and drain
1339  * any queued data; called either during unfuse or upon transitioning from
1340  * a socket to a stream endpoint due to _SIOCSOCKFALLBACK.
1341  */
1342 void
1343 tcp_fuse_disable_pair(tcp_t *tcp, boolean_t unfusing)
1344 {
1345 	tcp_t *peer_tcp = tcp->tcp_loopback_peer;
1346 	tcp_stack_t	*tcps = tcp->tcp_tcps;
1347 
1348 	ASSERT(tcp->tcp_fused);
1349 	ASSERT(peer_tcp != NULL);
1350 
1351 	/*
1352 	 * Force any tcp_fuse_rrw() calls to block until we've moved the data
1353 	 * onto the stream head.
1354 	 */
1355 	TCP_FUSE_SYNCSTR_PLUG_DRAIN(tcp);
1356 	TCP_FUSE_SYNCSTR_PLUG_DRAIN(peer_tcp);
1357 
1358 	/*
1359 	 * Cancel any pending push timers.
1360 	 */
1361 	if (tcp->tcp_push_tid != 0) {
1362 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid);
1363 		tcp->tcp_push_tid = 0;
1364 	}
1365 	if (peer_tcp->tcp_push_tid != 0) {
1366 		(void) TCP_TIMER_CANCEL(peer_tcp, peer_tcp->tcp_push_tid);
1367 		peer_tcp->tcp_push_tid = 0;
1368 	}
1369 
1370 	/*
1371 	 * Drain any pending data; the detached check is needed because
1372 	 * we may be called as a result of a tcp_unfuse() triggered by
1373 	 * tcp_fuse_output().  Note that in case of a detached tcp, the
1374 	 * draining will happen later after the tcp is unfused.  For non-
1375 	 * urgent data, this can be handled by the regular tcp_rcv_drain().
1376 	 * If we have urgent data sitting in the receive list, we will
1377 	 * need to send up a SIGURG signal first before draining the data.
1378 	 * All of these will be handled by the code in tcp_fuse_rcv_drain()
1379 	 * when called from tcp_rcv_drain().
1380 	 */
1381 	if (!TCP_IS_DETACHED(tcp)) {
1382 		(void) tcp_fuse_rcv_drain(tcp->tcp_rq, tcp,
1383 		    (unfusing ? &tcp->tcp_fused_sigurg_mp : NULL));
1384 	}
1385 	if (!TCP_IS_DETACHED(peer_tcp)) {
1386 		(void) tcp_fuse_rcv_drain(peer_tcp->tcp_rq, peer_tcp,
1387 		    (unfusing ? &peer_tcp->tcp_fused_sigurg_mp : NULL));
1388 	}
1389 
1390 	/*
1391 	 * Make all current and future tcp_fuse_rrw() calls fail with EBUSY.
1392 	 * To ensure threads don't sneak past the checks in tcp_fuse_rrw(),
1393 	 * a given stream must be stopped prior to being unplugged (but the
1394 	 * ordering of operations between the streams is unimportant).
1395 	 */
1396 	TCP_FUSE_SYNCSTR_STOP(tcp);
1397 	TCP_FUSE_SYNCSTR_STOP(peer_tcp);
1398 	TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(tcp);
1399 	TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(peer_tcp);
1400 
1401 	/* Lift up any flow-control conditions */
1402 	if (tcp->tcp_flow_stopped) {
1403 		tcp_clrqfull(tcp);
1404 		TCP_STAT(tcps, tcp_fusion_backenabled);
1405 	}
1406 	if (peer_tcp->tcp_flow_stopped) {
1407 		tcp_clrqfull(peer_tcp);
1408 		TCP_STAT(tcps, tcp_fusion_backenabled);
1409 	}
1410 
1411 	/* Disable synchronous streams */
1412 	tcp_fuse_syncstr_disable(tcp);
1413 	tcp_fuse_syncstr_disable(peer_tcp);
1414 }
1415 
1416 /*
1417  * Calculate the size of receive buffer for a fused tcp endpoint.
1418  */
1419 size_t
1420 tcp_fuse_set_rcv_hiwat(tcp_t *tcp, size_t rwnd)
1421 {
1422 	tcp_stack_t	*tcps = tcp->tcp_tcps;
1423 
1424 	ASSERT(tcp->tcp_fused);
1425 
1426 	/* Ensure that value is within the maximum upper bound */
1427 	if (rwnd > tcps->tcps_max_buf)
1428 		rwnd = tcps->tcps_max_buf;
1429 
1430 	/* Obey the absolute minimum tcp receive high water mark */
1431 	if (rwnd < tcps->tcps_sth_rcv_hiwat)
1432 		rwnd = tcps->tcps_sth_rcv_hiwat;
1433 
1434 	/*
1435 	 * Round up to system page size in case SO_RCVBUF is modified
1436 	 * after SO_SNDBUF; the latter is also similarly rounded up.
1437 	 */
1438 	rwnd = P2ROUNDUP_TYPED(rwnd, PAGESIZE, size_t);
1439 	tcp->tcp_fuse_rcv_hiwater = rwnd;
1440 	return (rwnd);
1441 }
1442 
1443 /*
1444  * Calculate the maximum outstanding unread data block for a fused tcp endpoint.
1445  */
1446 int
1447 tcp_fuse_maxpsz_set(tcp_t *tcp)
1448 {
1449 	tcp_t *peer_tcp = tcp->tcp_loopback_peer;
1450 	uint_t sndbuf = tcp->tcp_xmit_hiwater;
1451 	uint_t maxpsz = sndbuf;
1452 
1453 	ASSERT(tcp->tcp_fused);
1454 	ASSERT(peer_tcp != NULL);
1455 	ASSERT(peer_tcp->tcp_fuse_rcv_hiwater != 0);
1456 	/*
1457 	 * In the fused loopback case, we want the stream head to split
1458 	 * up larger writes into smaller chunks for a more accurate flow-
1459 	 * control accounting.  Our maxpsz is half of the sender's send
1460 	 * buffer or the receiver's receive buffer, whichever is smaller.
1461 	 * We round up the buffer to system page size due to the lack of
1462 	 * TCP MSS concept in Fusion.
1463 	 */
1464 	if (maxpsz > peer_tcp->tcp_fuse_rcv_hiwater)
1465 		maxpsz = peer_tcp->tcp_fuse_rcv_hiwater;
1466 	maxpsz = P2ROUNDUP_TYPED(maxpsz, PAGESIZE, uint_t) >> 1;
1467 
1468 	/*
1469 	 * Calculate the peer's limit for the number of outstanding unread
1470 	 * data block.  This is the amount of data blocks that are allowed
1471 	 * to reside in the receiver's queue before the sender gets flow
1472 	 * controlled.  It is used only in the synchronous streams mode as
1473 	 * a way to throttle the sender when it performs consecutive writes
1474 	 * faster than can be read.  The value is derived from SO_SNDBUF in
1475 	 * order to give the sender some control; we divide it with a large
1476 	 * value (16KB) to produce a fairly low initial limit.
1477 	 */
1478 	if (tcp_fusion_rcv_unread_min == 0) {
1479 		/* A value of 0 means that we disable the check */
1480 		peer_tcp->tcp_fuse_rcv_unread_hiwater = 0;
1481 	} else {
1482 		peer_tcp->tcp_fuse_rcv_unread_hiwater =
1483 		    MAX(sndbuf >> 14, tcp_fusion_rcv_unread_min);
1484 	}
1485 	return (maxpsz);
1486 }
1487