xref: /illumos-gate/usr/src/uts/common/inet/udp/udp.c (revision 79033acb)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 /* Copyright (c) 1990 Mentat Inc. */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 const char udp_version[] = "%Z%%M%	%I%	%E% SMI";
30 
31 #include <sys/types.h>
32 #include <sys/stream.h>
33 #include <sys/dlpi.h>
34 #include <sys/pattr.h>
35 #include <sys/stropts.h>
36 #include <sys/strlog.h>
37 #include <sys/strsun.h>
38 #include <sys/time.h>
39 #define	_SUN_TPI_VERSION 2
40 #include <sys/tihdr.h>
41 #include <sys/timod.h>
42 #include <sys/ddi.h>
43 #include <sys/sunddi.h>
44 #include <sys/strsubr.h>
45 #include <sys/suntpi.h>
46 #include <sys/xti_inet.h>
47 #include <sys/cmn_err.h>
48 #include <sys/kmem.h>
49 #include <sys/policy.h>
50 #include <sys/ucred.h>
51 #include <sys/zone.h>
52 
53 #include <sys/socket.h>
54 #include <sys/sockio.h>
55 #include <sys/vtrace.h>
56 #include <sys/debug.h>
57 #include <sys/isa_defs.h>
58 #include <sys/random.h>
59 #include <netinet/in.h>
60 #include <netinet/ip6.h>
61 #include <netinet/icmp6.h>
62 #include <netinet/udp.h>
63 #include <net/if.h>
64 #include <net/route.h>
65 
66 #include <inet/common.h>
67 #include <inet/ip.h>
68 #include <inet/ip_impl.h>
69 #include <inet/ip6.h>
70 #include <inet/ip_ire.h>
71 #include <inet/ip_if.h>
72 #include <inet/ip_multi.h>
73 #include <inet/mi.h>
74 #include <inet/mib2.h>
75 #include <inet/nd.h>
76 #include <inet/optcom.h>
77 #include <inet/snmpcom.h>
78 #include <inet/kstatcom.h>
79 #include <inet/udp_impl.h>
80 #include <inet/ipclassifier.h>
81 #include <inet/ipsec_impl.h>
82 #include <inet/ipp_common.h>
83 
84 /*
85  * The ipsec_info.h header file is here since it has the definition for the
86  * M_CTL message types used by IP to convey information to the ULP. The
87  * ipsec_info.h needs the pfkeyv2.h, hence the latter's presence.
88  */
89 #include <net/pfkeyv2.h>
90 #include <inet/ipsec_info.h>
91 
92 #include <sys/tsol/label.h>
93 #include <sys/tsol/tnet.h>
94 #include <rpc/pmap_prot.h>
95 
96 /*
97  * Synchronization notes:
98  *
99  * UDP uses a combination of its internal perimeter, a global lock and
100  * a set of bind hash locks to protect its data structures.  Please see
101  * the note above udp_mode_assertions for details about the internal
102  * perimeter.
103  *
104  * When a UDP endpoint is bound to a local port, it is inserted into
105  * a bind hash list.  The list consists of an array of udp_fanout_t buckets.
106  * The size of the array is controlled by the udp_bind_fanout_size variable.
107  * This variable can be changed in /etc/system if the default value is
108  * not large enough.  Each bind hash bucket is protected by a per bucket
109  * lock.  It protects the udp_bind_hash and udp_ptpbhn fields in the udp_t
110  * structure.  An UDP endpoint is removed from the bind hash list only
111  * when it is being unbound or being closed.  The per bucket lock also
112  * protects a UDP endpoint's state changes.
113  *
114  * Plumbing notes:
115  *
116  * Both udp and ip are merged, but the streams plumbing is kept unchanged
117  * in that udp is always pushed atop /dev/ip.  This is done to preserve
118  * backwards compatibility for certain applications which rely on such
119  * plumbing geometry to do things such as issuing I_POP on the stream
120  * in order to obtain direct access to /dev/ip, etc.
121  *
122  * All UDP processings happen in the /dev/ip instance; the udp module
123  * instance does not possess any state about the endpoint, and merely
124  * acts as a dummy module whose presence is to keep the streams plumbing
125  * appearance unchanged.  At open time /dev/ip allocates a conn_t that
126  * happens to embed a udp_t.  This stays dormant until the time udp is
127  * pushed, which indicates to /dev/ip that it must convert itself from
128  * an IP to a UDP endpoint.
129  *
130  * We only allow for the following plumbing cases:
131  *
132  * Normal:
133  *	/dev/ip is first opened and later udp is pushed directly on top.
134  *	This is the default action that happens when a udp socket or
135  *	/dev/udp is opened.  The conn_t created by /dev/ip instance is
136  *	now shared and is marked with IPCL_UDP.
137  *
138  * SNMP-only:
139  *	udp is pushed on top of a module other than /dev/ip.  When this
140  *	happens it will support only SNMP semantics.  A new conn_t is
141  *	allocated and marked with IPCL_UDPMOD.
142  *
143  * The above cases imply that we don't support any intermediate module to
144  * reside in between /dev/ip and udp -- in fact, we never supported such
145  * scenario in the past as the inter-layer communication semantics have
146  * always been private.  Also note that the normal case allows for SNMP
147  * requests to be processed in addition to the rest of UDP operations.
148  *
149  * The normal case plumbing is depicted by the following diagram:
150  *
151  *	+---------------+---------------+
152  *	|		|		| udp
153  *	|     udp_wq	|    udp_rq	|
154  *	|		|    UDP_RD	|
155  *	|		|		|
156  *	+---------------+---------------+
157  *		|		^
158  *		v		|
159  *	+---------------+---------------+
160  *	|		|		| /dev/ip
161  *	|     ip_wq	|     ip_rq	| conn_t
162  *	|     UDP_WR	|		|
163  *	|		|		|
164  *	+---------------+---------------+
165  *
166  * Messages arriving at udp_wq from above will end up in ip_wq before
167  * it gets processed, i.e. udp write entry points will advance udp_wq
168  * and use its q_next value as ip_wq in order to use the conn_t that
169  * is stored in its q_ptr.  Likewise, messages generated by ip to the
170  * module above udp will appear as if they are originated from udp_rq,
171  * i.e. putnext() calls to the module above udp is done using the
172  * udp_rq instead of ip_rq in order to avoid udp_rput() which does
173  * nothing more than calling putnext().
174  *
175  * The above implies the following rule of thumb:
176  *
177  *   1. udp_t is obtained from conn_t, which is created by the /dev/ip
178  *	instance and is stored in q_ptr of both ip_wq and ip_rq.  There
179  *	is no direct reference to conn_t from either udp_wq or udp_rq.
180  *
181  *   2. Write-side entry points of udp can obtain the conn_t via the
182  *	Q_TO_CONN() macro, using the queue value obtain from UDP_WR().
183  *
184  *   3. While in /dev/ip context, putnext() to the module above udp can
185  *	be done by supplying the queue value obtained from UDP_RD().
186  *
187  */
188 
189 static queue_t *UDP_WR(queue_t *);
190 static queue_t *UDP_RD(queue_t *);
191 
192 udp_stat_t udp_statistics = {
193 	{ "udp_ip_send",		KSTAT_DATA_UINT64 },
194 	{ "udp_ip_ire_send",		KSTAT_DATA_UINT64 },
195 	{ "udp_ire_null",		KSTAT_DATA_UINT64 },
196 	{ "udp_drain",			KSTAT_DATA_UINT64 },
197 	{ "udp_sock_fallback",		KSTAT_DATA_UINT64 },
198 	{ "udp_rrw_busy",		KSTAT_DATA_UINT64 },
199 	{ "udp_rrw_msgcnt",		KSTAT_DATA_UINT64 },
200 	{ "udp_out_sw_cksum",		KSTAT_DATA_UINT64 },
201 	{ "udp_out_sw_cksum_bytes",	KSTAT_DATA_UINT64 },
202 	{ "udp_out_opt",		KSTAT_DATA_UINT64 },
203 	{ "udp_out_err_notconn",	KSTAT_DATA_UINT64 },
204 	{ "udp_out_err_output",		KSTAT_DATA_UINT64 },
205 	{ "udp_out_err_tudr",		KSTAT_DATA_UINT64 },
206 	{ "udp_in_pktinfo",		KSTAT_DATA_UINT64 },
207 	{ "udp_in_recvdstaddr",		KSTAT_DATA_UINT64 },
208 	{ "udp_in_recvopts",		KSTAT_DATA_UINT64 },
209 	{ "udp_in_recvif",		KSTAT_DATA_UINT64 },
210 	{ "udp_in_recvslla",		KSTAT_DATA_UINT64 },
211 	{ "udp_in_recvucred",		KSTAT_DATA_UINT64 },
212 	{ "udp_in_recvttl",		KSTAT_DATA_UINT64 },
213 	{ "udp_in_recvhopopts",		KSTAT_DATA_UINT64 },
214 	{ "udp_in_recvhoplimit",	KSTAT_DATA_UINT64 },
215 	{ "udp_in_recvdstopts",		KSTAT_DATA_UINT64 },
216 	{ "udp_in_recvrtdstopts",	KSTAT_DATA_UINT64 },
217 	{ "udp_in_recvrthdr",		KSTAT_DATA_UINT64 },
218 	{ "udp_in_recvpktinfo",		KSTAT_DATA_UINT64 },
219 	{ "udp_in_recvtclass",		KSTAT_DATA_UINT64 },
220 	{ "udp_in_timestamp",		KSTAT_DATA_UINT64 },
221 #ifdef DEBUG
222 	{ "udp_data_conn",		KSTAT_DATA_UINT64 },
223 	{ "udp_data_notconn",		KSTAT_DATA_UINT64 },
224 #endif
225 };
226 
227 static kstat_t *udp_ksp;
228 struct kmem_cache *udp_cache;
229 
230 /*
231  * Bind hash list size and hash function.  It has to be a power of 2 for
232  * hashing.
233  */
234 #define	UDP_BIND_FANOUT_SIZE	512
235 #define	UDP_BIND_HASH(lport) \
236 	((ntohs((uint16_t)lport)) & (udp_bind_fanout_size - 1))
237 
238 /* UDP bind fanout hash structure. */
239 typedef struct udp_fanout_s {
240 	udp_t *uf_udp;
241 	kmutex_t uf_lock;
242 #if defined(_LP64) || defined(_I32LPx)
243 	char	uf_pad[48];
244 #else
245 	char	uf_pad[56];
246 #endif
247 } udp_fanout_t;
248 
249 uint_t udp_bind_fanout_size = UDP_BIND_FANOUT_SIZE;
250 /* udp_fanout_t *udp_bind_fanout. */
251 static udp_fanout_t *udp_bind_fanout;
252 
253 /*
254  * This controls the rate some ndd info report functions can be used
255  * by non-privileged users.  It stores the last time such info is
256  * requested.  When those report functions are called again, this
257  * is checked with the current time and compare with the ndd param
258  * udp_ndd_get_info_interval.
259  */
260 static clock_t udp_last_ndd_get_info_time;
261 #define	NDD_TOO_QUICK_MSG \
262 	"ndd get info rate too high for non-privileged users, try again " \
263 	"later.\n"
264 #define	NDD_OUT_OF_BUF_MSG	"<< Out of buffer >>\n"
265 
266 /* Option processing attrs */
267 typedef struct udpattrs_s {
268 	ip6_pkt_t	*udpattr_ipp;
269 	mblk_t		*udpattr_mb;
270 	boolean_t	udpattr_credset;
271 } udpattrs_t;
272 
273 static void	udp_addr_req(queue_t *q, mblk_t *mp);
274 static void	udp_bind(queue_t *q, mblk_t *mp);
275 static void	udp_bind_hash_insert(udp_fanout_t *uf, udp_t *udp);
276 static void	udp_bind_hash_remove(udp_t *udp, boolean_t caller_holds_lock);
277 static int	udp_build_hdrs(queue_t *q, udp_t *udp);
278 static void	udp_capability_req(queue_t *q, mblk_t *mp);
279 static int	udp_close(queue_t *q);
280 static void	udp_connect(queue_t *q, mblk_t *mp);
281 static void	udp_disconnect(queue_t *q, mblk_t *mp);
282 static void	udp_err_ack(queue_t *q, mblk_t *mp, t_scalar_t t_error,
283 		    int sys_error);
284 static void	udp_err_ack_prim(queue_t *q, mblk_t *mp, int primitive,
285 		    t_scalar_t tlierr, int unixerr);
286 static int	udp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp,
287 		    cred_t *cr);
288 static int	udp_extra_priv_ports_add(queue_t *q, mblk_t *mp,
289 		    char *value, caddr_t cp, cred_t *cr);
290 static int	udp_extra_priv_ports_del(queue_t *q, mblk_t *mp,
291 		    char *value, caddr_t cp, cred_t *cr);
292 static void	udp_icmp_error(queue_t *q, mblk_t *mp);
293 static void	udp_icmp_error_ipv6(queue_t *q, mblk_t *mp);
294 static void	udp_info_req(queue_t *q, mblk_t *mp);
295 static mblk_t	*udp_ip_bind_mp(udp_t *udp, t_scalar_t bind_prim,
296 		    t_scalar_t addr_length);
297 static int	udp_open(queue_t *q, dev_t *devp, int flag, int sflag,
298 		    cred_t *credp);
299 static  int	udp_unitdata_opt_process(queue_t *q, mblk_t *mp,
300 		    int *errorp, udpattrs_t *udpattrs);
301 static boolean_t udp_opt_allow_udr_set(t_scalar_t level, t_scalar_t name);
302 static int	udp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr);
303 static boolean_t udp_param_register(udpparam_t *udppa, int cnt);
304 static int	udp_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
305 		    cred_t *cr);
306 static void	udp_report_item(mblk_t *mp, udp_t *udp);
307 static void	udp_rput(queue_t *q, mblk_t *mp);
308 static void	udp_rput_other(queue_t *, mblk_t *);
309 static int	udp_rinfop(queue_t *q, infod_t *dp);
310 static int	udp_rrw(queue_t *q, struiod_t *dp);
311 static	void	udp_rput_bind_ack(queue_t *q, mblk_t *mp);
312 static int	udp_status_report(queue_t *q, mblk_t *mp, caddr_t cp,
313 		    cred_t *cr);
314 static void	udp_send_data(udp_t *udp, queue_t *q, mblk_t *mp, ipha_t *ipha);
315 static void	udp_ud_err(queue_t *q, mblk_t *mp, uchar_t *destaddr,
316 		    t_scalar_t destlen, t_scalar_t err);
317 static void	udp_unbind(queue_t *q, mblk_t *mp);
318 static in_port_t udp_update_next_port(udp_t *udp, in_port_t port,
319     boolean_t random);
320 static void	udp_wput(queue_t *q, mblk_t *mp);
321 static mblk_t	*udp_output_v4(conn_t *, mblk_t *mp, ipaddr_t v4dst,
322 		    uint16_t port, uint_t srcid, int *error);
323 static mblk_t	*udp_output_v6(conn_t *connp, mblk_t *mp, sin6_t *sin6,
324 		    int *error);
325 static void	udp_wput_other(queue_t *q, mblk_t *mp);
326 static void	udp_wput_iocdata(queue_t *q, mblk_t *mp);
327 static void	udp_output(conn_t *connp, mblk_t *mp, struct sockaddr *addr,
328 		    socklen_t addrlen);
329 static size_t	udp_set_rcv_hiwat(udp_t *udp, size_t size);
330 
331 static void	udp_kstat_init(void);
332 static void	udp_kstat_fini(void);
333 static int	udp_kstat_update(kstat_t *kp, int rw);
334 static void	udp_input_wrapper(void *arg, mblk_t *mp, void *arg2);
335 static void	udp_rput_other_wrapper(void *arg, mblk_t *mp, void *arg2);
336 static void	udp_wput_other_wrapper(void *arg, mblk_t *mp, void *arg2);
337 static void	udp_resume_bind_cb(void *arg, mblk_t *mp, void *arg2);
338 
339 static void	udp_rcv_enqueue(queue_t *q, udp_t *udp, mblk_t *mp,
340 		    uint_t pkt_len);
341 static void	udp_rcv_drain(queue_t *q, udp_t *udp, boolean_t closing);
342 static void	udp_enter(conn_t *, mblk_t *, sqproc_t, uint8_t);
343 static void	udp_exit(conn_t *);
344 static void	udp_become_writer(conn_t *, mblk_t *, sqproc_t, uint8_t);
345 #ifdef DEBUG
346 static void	udp_mode_assertions(udp_t *, int);
347 #endif /* DEBUG */
348 
349 major_t UDP6_MAJ;
350 #define	UDP6 "udp6"
351 
352 #define	UDP_RECV_HIWATER	(56 * 1024)
353 #define	UDP_RECV_LOWATER	128
354 #define	UDP_XMIT_HIWATER	(56 * 1024)
355 #define	UDP_XMIT_LOWATER	1024
356 
357 static struct module_info udp_info =  {
358 	UDP_MOD_ID, UDP_MOD_NAME, 1, INFPSZ, UDP_RECV_HIWATER, UDP_RECV_LOWATER
359 };
360 
361 static struct qinit udp_rinit = {
362 	(pfi_t)udp_rput, NULL, udp_open, udp_close, NULL,
363 	&udp_info, NULL, udp_rrw, udp_rinfop, STRUIOT_STANDARD
364 };
365 
366 static struct qinit udp_winit = {
367 	(pfi_t)udp_wput, NULL, NULL, NULL, NULL,
368 	&udp_info, NULL, NULL, NULL, STRUIOT_NONE
369 };
370 
371 static struct qinit winit = {
372 	(pfi_t)putnext, NULL, NULL, NULL, NULL,
373 	&udp_info, NULL, NULL, NULL, STRUIOT_NONE
374 };
375 
376 /* Support for just SNMP if UDP is not pushed directly over device IP */
377 struct qinit udp_snmp_rinit = {
378 	(pfi_t)putnext, NULL, udp_open, ip_snmpmod_close, NULL,
379 	&udp_info, NULL, NULL, NULL, STRUIOT_NONE
380 };
381 
382 struct qinit udp_snmp_winit = {
383 	(pfi_t)ip_snmpmod_wput, NULL, udp_open, ip_snmpmod_close, NULL,
384 	&udp_info, NULL, NULL, NULL, STRUIOT_NONE
385 };
386 
387 struct streamtab udpinfo = {
388 	&udp_rinit, &winit
389 };
390 
391 static	sin_t	sin_null;	/* Zero address for quick clears */
392 static	sin6_t	sin6_null;	/* Zero address for quick clears */
393 
394 /* Hint not protected by any lock */
395 static in_port_t	udp_g_next_port_to_try;
396 
397 /*
398  * Extra privileged ports. In host byte order.
399  */
400 #define	UDP_NUM_EPRIV_PORTS	64
401 static int	udp_g_num_epriv_ports = UDP_NUM_EPRIV_PORTS;
402 static in_port_t udp_g_epriv_ports[UDP_NUM_EPRIV_PORTS] = { 2049, 4045 };
403 
404 /* Only modified during _init and _fini thus no locking is needed. */
405 static IDP	udp_g_nd;	/* Points to table of UDP ND variables. */
406 
407 /* MIB-2 stuff for SNMP */
408 static mib2_udp_t	udp_mib;	/* SNMP fixed size info */
409 static kstat_t		*udp_mibkp;	/* kstat exporting udp_mib data */
410 
411 #define	UDP_MAXPACKET_IPV4 (IP_MAXPACKET - UDPH_SIZE - IP_SIMPLE_HDR_LENGTH)
412 
413 /* Default structure copied into T_INFO_ACK messages */
414 static struct T_info_ack udp_g_t_info_ack_ipv4 = {
415 	T_INFO_ACK,
416 	UDP_MAXPACKET_IPV4,	/* TSDU_size. Excl. headers */
417 	T_INVALID,	/* ETSU_size.  udp does not support expedited data. */
418 	T_INVALID,	/* CDATA_size. udp does not support connect data. */
419 	T_INVALID,	/* DDATA_size. udp does not support disconnect data. */
420 	sizeof (sin_t),	/* ADDR_size. */
421 	0,		/* OPT_size - not initialized here */
422 	UDP_MAXPACKET_IPV4,	/* TIDU_size.  Excl. headers */
423 	T_CLTS,		/* SERV_type.  udp supports connection-less. */
424 	TS_UNBND,	/* CURRENT_state.  This is set from udp_state. */
425 	(XPG4_1|SENDZERO) /* PROVIDER_flag */
426 };
427 
428 #define	UDP_MAXPACKET_IPV6 (IP_MAXPACKET - UDPH_SIZE - IPV6_HDR_LEN)
429 
430 static	struct T_info_ack udp_g_t_info_ack_ipv6 = {
431 	T_INFO_ACK,
432 	UDP_MAXPACKET_IPV6,	/* TSDU_size.  Excl. headers */
433 	T_INVALID,	/* ETSU_size.  udp does not support expedited data. */
434 	T_INVALID,	/* CDATA_size. udp does not support connect data. */
435 	T_INVALID,	/* DDATA_size. udp does not support disconnect data. */
436 	sizeof (sin6_t), /* ADDR_size. */
437 	0,		/* OPT_size - not initialized here */
438 	UDP_MAXPACKET_IPV6,	/* TIDU_size. Excl. headers */
439 	T_CLTS,		/* SERV_type.  udp supports connection-less. */
440 	TS_UNBND,	/* CURRENT_state.  This is set from udp_state. */
441 	(XPG4_1|SENDZERO) /* PROVIDER_flag */
442 };
443 
444 /* largest UDP port number */
445 #define	UDP_MAX_PORT	65535
446 
447 /*
448  * Table of ND variables supported by udp.  These are loaded into udp_g_nd
449  * in udp_open.
450  * All of these are alterable, within the min/max values given, at run time.
451  */
452 /* BEGIN CSTYLED */
453 udpparam_t udp_param_arr[] = {
454  /*min		max		value		name */
455  { 0L,		256,		32,		"udp_wroff_extra" },
456  { 1L,		255,		255,		"udp_ipv4_ttl" },
457  { 0,		IPV6_MAX_HOPS,	IPV6_DEFAULT_HOPS, "udp_ipv6_hoplimit"},
458  { 1024,	(32 * 1024),	1024,		"udp_smallest_nonpriv_port" },
459  { 0,		1,		1,		"udp_do_checksum" },
460  { 1024,	UDP_MAX_PORT,	(32 * 1024),	"udp_smallest_anon_port" },
461  { 1024,	UDP_MAX_PORT,	UDP_MAX_PORT,	"udp_largest_anon_port" },
462  { UDP_XMIT_LOWATER, (1<<30), UDP_XMIT_HIWATER,	"udp_xmit_hiwat"},
463  { 0,		     (1<<30), UDP_XMIT_LOWATER, "udp_xmit_lowat"},
464  { UDP_RECV_LOWATER, (1<<30), UDP_RECV_HIWATER,	"udp_recv_hiwat"},
465  { 65536,	(1<<30),	2*1024*1024,	"udp_max_buf"},
466  { 100,		60000,		1000,		"udp_ndd_get_info_interval"},
467 };
468 /* END CSTYLED */
469 
470 /*
471  * The smallest anonymous port in the privileged port range which UDP
472  * looks for free port.  Use in the option UDP_ANONPRIVBIND.
473  */
474 static in_port_t udp_min_anonpriv_port = 512;
475 
476 /* If set to 0, pick ephemeral port sequentially; otherwise randomly. */
477 uint32_t udp_random_anon_port = 1;
478 
479 /*
480  * Hook functions to enable cluster networking.
481  * On non-clustered systems these vectors must always be NULL
482  */
483 
484 void (*cl_inet_bind)(uchar_t protocol, sa_family_t addr_family,
485     uint8_t *laddrp, in_port_t lport) = NULL;
486 void (*cl_inet_unbind)(uint8_t protocol, sa_family_t addr_family,
487     uint8_t *laddrp, in_port_t lport) = NULL;
488 
489 typedef union T_primitives *t_primp_t;
490 
491 #define	UDP_ENQUEUE_MP(udp, mp, proc, tag) {			\
492 	ASSERT((mp)->b_prev == NULL && (mp)->b_queue == NULL);	\
493 	ASSERT(MUTEX_HELD(&(udp)->udp_connp->conn_lock));	\
494 	(mp)->b_queue = (queue_t *)((uintptr_t)tag);		\
495 	(mp)->b_prev = (mblk_t *)proc;				\
496 	if ((udp)->udp_mphead == NULL)				\
497 		(udp)->udp_mphead = (mp);			\
498 	else							\
499 		(udp)->udp_mptail->b_next = (mp);		\
500 	(udp)->udp_mptail = (mp);				\
501 	(udp)->udp_mpcount++;					\
502 }
503 
504 #define	UDP_READERS_INCREF(udp) {				\
505 	ASSERT(MUTEX_HELD(&(udp)->udp_connp->conn_lock));	\
506 	(udp)->udp_reader_count++;				\
507 }
508 
509 #define	UDP_READERS_DECREF(udp) {				\
510 	ASSERT(MUTEX_HELD(&(udp)->udp_connp->conn_lock));	\
511 	(udp)->udp_reader_count--;				\
512 	if ((udp)->udp_reader_count == 0)			\
513 		cv_broadcast(&(udp)->udp_connp->conn_cv);	\
514 }
515 
516 #define	UDP_SQUEUE_DECREF(udp) {				\
517 	ASSERT(MUTEX_HELD(&(udp)->udp_connp->conn_lock));	\
518 	(udp)->udp_squeue_count--;				\
519 	if ((udp)->udp_squeue_count == 0)			\
520 		cv_broadcast(&(udp)->udp_connp->conn_cv);	\
521 }
522 
523 /*
524  * Notes on UDP endpoint synchronization:
525  *
526  * UDP needs exclusive operation on a per endpoint basis, when executing
527  * functions that modify the endpoint state.  udp_rput_other() deals with
528  * packets with IP options, and processing these packets end up having
529  * to update the endpoint's option related state.  udp_wput_other() deals
530  * with control operations from the top, e.g. connect() that needs to
531  * update the endpoint state.  These could be synchronized using locks,
532  * but the current version uses squeues for this purpose.  squeues may
533  * give performance improvement for certain cases such as connected UDP
534  * sockets; thus the framework allows for using squeues.
535  *
536  * The perimeter routines are described as follows:
537  *
538  * udp_enter():
539  *	Enter the UDP endpoint perimeter.
540  *
541  * udp_become_writer():
542  *	Become exclusive on the UDP endpoint.  Specifies a function
543  *	that will be called exclusively either immediately or later
544  *	when the perimeter is available exclusively.
545  *
546  * udp_exit():
547  *	Exit the UDP perimeter.
548  *
549  * Entering UDP from the top or from the bottom must be done using
550  * udp_enter().  No lock must be held while attempting to enter the UDP
551  * perimeter.  When finished, udp_exit() must be called to get out of
552  * the perimeter.
553  *
554  * UDP operates in either MT_HOT mode or in SQUEUE mode.  In MT_HOT mode,
555  * multiple threads may enter a UDP endpoint concurrently.  This is used
556  * for sending and/or receiving normal data.  Control operations and other
557  * special cases call udp_become_writer() to become exclusive on a per
558  * endpoint basis and this results in transitioning to SQUEUE mode.  squeue
559  * by definition serializes access to the conn_t.  When there are no more
560  * pending messages on the squeue for the UDP connection, the endpoint
561  * reverts to MT_HOT mode.  During the interregnum when not all MT threads
562  * of an endpoint have finished, messages are queued in the UDP endpoint
563  * and the UDP is in UDP_MT_QUEUED mode or UDP_QUEUED_SQUEUE mode.
564  *
565  * These modes have the following analogs:
566  *
567  *	UDP_MT_HOT/udp_reader_count==0		none
568  *	UDP_MT_HOT/udp_reader_count>0		RW_READ_LOCK
569  *	UDP_MT_QUEUED				RW_WRITE_WANTED
570  *	UDP_SQUEUE or UDP_QUEUED_SQUEUE		RW_WRITE_LOCKED
571  *
572  * Stable modes:	UDP_MT_HOT, UDP_SQUEUE
573  * Transient modes:	UDP_MT_QUEUED, UDP_QUEUED_SQUEUE
574  *
575  * While in stable modes, UDP keeps track of the number of threads
576  * operating on the endpoint.  The udp_reader_count variable represents
577  * the number of threads entering the endpoint as readers while it is
578  * in UDP_MT_HOT mode.  Transitioning to UDP_SQUEUE happens when there
579  * is only a single reader, i.e. when this counter drops to 1.  Likewise,
580  * udp_squeue_count represents the number of threads operating on the
581  * endpoint's squeue while it is in UDP_SQUEUE mode.  The mode transition
582  * to UDP_MT_HOT happens after the last thread exits the endpoint, i.e.
583  * when this counter drops to 0.
584  *
585  * The default mode is set to UDP_MT_HOT and UDP alternates between
586  * UDP_MT_HOT and UDP_SQUEUE as shown in the state transition below.
587  *
588  * Mode transition:
589  * ----------------------------------------------------------------
590  * old mode		Event				New mode
591  * ----------------------------------------------------------------
592  * UDP_MT_HOT		Call to udp_become_writer()	UDP_SQUEUE
593  *			and udp_reader_count == 1
594  *
595  * UDP_MT_HOT		Call to udp_become_writer()	UDP_MT_QUEUED
596  *			and udp_reader_count > 1
597  *
598  * UDP_MT_QUEUED	udp_reader_count drops to zero	UDP_QUEUED_SQUEUE
599  *
600  * UDP_QUEUED_SQUEUE	All messages enqueued on the	UDP_SQUEUE
601  *			internal UDP queue successfully
602  *			moved to squeue AND udp_squeue_count != 0
603  *
604  * UDP_QUEUED_SQUEUE	All messages enqueued on the	UDP_MT_HOT
605  *			internal UDP queue successfully
606  *			moved to squeue AND udp_squeue_count
607  *			drops to zero
608  *
609  * UDP_SQUEUE		udp_squeue_count drops to zero	UDP_MT_HOT
610  * ----------------------------------------------------------------
611  */
612 
613 static queue_t *
614 UDP_WR(queue_t *q)
615 {
616 	ASSERT(q->q_ptr == NULL && _OTHERQ(q)->q_ptr == NULL);
617 	ASSERT(WR(q)->q_next != NULL && WR(q)->q_next->q_ptr != NULL);
618 	ASSERT(IPCL_IS_UDP(Q_TO_CONN(WR(q)->q_next)));
619 
620 	return (_WR(q)->q_next);
621 }
622 
623 static queue_t *
624 UDP_RD(queue_t *q)
625 {
626 	ASSERT(q->q_ptr != NULL && _OTHERQ(q)->q_ptr != NULL);
627 	ASSERT(IPCL_IS_UDP(Q_TO_CONN(q)));
628 	ASSERT(RD(q)->q_next != NULL && RD(q)->q_next->q_ptr == NULL);
629 
630 	return (_RD(q)->q_next);
631 }
632 
633 #ifdef DEBUG
634 #define	UDP_MODE_ASSERTIONS(udp, caller) udp_mode_assertions(udp, caller)
635 #else
636 #define	UDP_MODE_ASSERTIONS(udp, caller)
637 #endif
638 
639 /* Invariants */
640 #ifdef DEBUG
641 
642 uint32_t udp_count[4];
643 
644 /* Context of udp_mode_assertions */
645 #define	UDP_ENTER		1
646 #define	UDP_BECOME_WRITER	2
647 #define	UDP_EXIT		3
648 
649 static void
650 udp_mode_assertions(udp_t *udp, int caller)
651 {
652 	ASSERT(MUTEX_HELD(&udp->udp_connp->conn_lock));
653 
654 	switch (udp->udp_mode) {
655 	case UDP_MT_HOT:
656 		/*
657 		 * Messages have not yet been enqueued on the internal queue,
658 		 * otherwise we would have switched to UDP_MT_QUEUED. Likewise
659 		 * by definition, there can't be any messages enqueued on the
660 		 * squeue. The UDP could be quiescent, so udp_reader_count
661 		 * could be zero at entry.
662 		 */
663 		ASSERT(udp->udp_mphead == NULL && udp->udp_mpcount == 0 &&
664 		    udp->udp_squeue_count == 0);
665 		ASSERT(caller == UDP_ENTER || udp->udp_reader_count != 0);
666 		udp_count[0]++;
667 		break;
668 
669 	case UDP_MT_QUEUED:
670 		/*
671 		 * The last MT thread to exit the udp perimeter empties the
672 		 * internal queue and then switches the UDP to
673 		 * UDP_QUEUED_SQUEUE mode. Since we are still in UDP_MT_QUEUED
674 		 * mode, it means there must be at least 1 MT thread still in
675 		 * the perimeter and at least 1 message on the internal queue.
676 		 */
677 		ASSERT(udp->udp_reader_count >= 1 && udp->udp_mphead != NULL &&
678 		    udp->udp_mpcount != 0 && udp->udp_squeue_count == 0);
679 		udp_count[1]++;
680 		break;
681 
682 	case UDP_QUEUED_SQUEUE:
683 		/*
684 		 * The switch has happened from MT to SQUEUE. So there can't
685 		 * any MT threads. Messages could still pile up on the internal
686 		 * queue until the transition is complete and we move to
687 		 * UDP_SQUEUE mode. We can't assert on nonzero udp_squeue_count
688 		 * since the squeue could drain any time.
689 		 */
690 		ASSERT(udp->udp_reader_count == 0);
691 		udp_count[2]++;
692 		break;
693 
694 	case UDP_SQUEUE:
695 		/*
696 		 * The transition is complete. Thre can't be any messages on
697 		 * the internal queue. The udp could be quiescent or the squeue
698 		 * could drain any time, so we can't assert on nonzero
699 		 * udp_squeue_count during entry. Nor can we assert that
700 		 * udp_reader_count is zero, since, a reader thread could have
701 		 * directly become writer in line by calling udp_become_writer
702 		 * without going through the queued states.
703 		 */
704 		ASSERT(udp->udp_mphead == NULL && udp->udp_mpcount == 0);
705 		ASSERT(caller == UDP_ENTER || udp->udp_squeue_count != 0);
706 		udp_count[3]++;
707 		break;
708 	}
709 }
710 #endif
711 
712 #define	_UDP_ENTER(connp, mp, proc, tag) {				\
713 	udp_t *_udp = (connp)->conn_udp;				\
714 									\
715 	mutex_enter(&(connp)->conn_lock);				\
716 	if ((connp)->conn_state_flags & CONN_CLOSING) {			\
717 		mutex_exit(&(connp)->conn_lock);			\
718 		freemsg(mp);						\
719 	} else {							\
720 		UDP_MODE_ASSERTIONS(_udp, UDP_ENTER);			\
721 									\
722 		switch (_udp->udp_mode) {				\
723 		case UDP_MT_HOT:					\
724 			/* We can execute as reader right away. */	\
725 			UDP_READERS_INCREF(_udp);			\
726 			mutex_exit(&(connp)->conn_lock);		\
727 			(*(proc))(connp, mp, (connp)->conn_sqp);	\
728 			break;						\
729 									\
730 		case UDP_SQUEUE:					\
731 			/*						\
732 			 * We are in squeue mode, send the		\
733 			 * packet to the squeue				\
734 			 */						\
735 			_udp->udp_squeue_count++;			\
736 			CONN_INC_REF_LOCKED(connp);			\
737 			mutex_exit(&(connp)->conn_lock);		\
738 			squeue_enter((connp)->conn_sqp, mp, proc,	\
739 			    connp, tag);				\
740 			break;						\
741 									\
742 		case UDP_MT_QUEUED:					\
743 		case UDP_QUEUED_SQUEUE:					\
744 			/*						\
745 			 * Some messages may have been enqueued		\
746 			 * ahead of us.  Enqueue the new message	\
747 			 * at the tail of the internal queue to		\
748 			 * preserve message ordering.			\
749 			 */						\
750 			UDP_ENQUEUE_MP(_udp, mp, proc, tag);		\
751 			mutex_exit(&(connp)->conn_lock);		\
752 			break;						\
753 		}							\
754 	}								\
755 }
756 
757 static void
758 udp_enter(conn_t *connp, mblk_t *mp, sqproc_t proc, uint8_t tag)
759 {
760 	_UDP_ENTER(connp, mp, proc, tag);
761 }
762 
763 static void
764 udp_become_writer(conn_t *connp, mblk_t *mp, sqproc_t proc, uint8_t tag)
765 {
766 	udp_t	*udp;
767 
768 	udp = connp->conn_udp;
769 
770 	mutex_enter(&connp->conn_lock);
771 
772 	UDP_MODE_ASSERTIONS(udp, UDP_BECOME_WRITER);
773 
774 	switch (udp->udp_mode) {
775 	case UDP_MT_HOT:
776 		if (udp->udp_reader_count == 1) {
777 			/*
778 			 * We are the only MT thread. Switch to squeue mode
779 			 * immediately.
780 			 */
781 			udp->udp_mode = UDP_SQUEUE;
782 			udp->udp_squeue_count = 1;
783 			CONN_INC_REF_LOCKED(connp);
784 			mutex_exit(&connp->conn_lock);
785 			squeue_enter(connp->conn_sqp, mp, proc, connp, tag);
786 			return;
787 		}
788 		/* FALLTHRU */
789 
790 	case UDP_MT_QUEUED:
791 		/* Enqueue the packet internally in UDP */
792 		udp->udp_mode = UDP_MT_QUEUED;
793 		UDP_ENQUEUE_MP(udp, mp, proc, tag);
794 		mutex_exit(&connp->conn_lock);
795 		return;
796 
797 	case UDP_SQUEUE:
798 	case UDP_QUEUED_SQUEUE:
799 		/*
800 		 * We are already exclusive. i.e. we are already
801 		 * writer. Simply call the desired function.
802 		 */
803 		udp->udp_squeue_count++;
804 		mutex_exit(&connp->conn_lock);
805 		(*proc)(connp, mp, connp->conn_sqp);
806 		return;
807 	}
808 }
809 
810 /*
811  * Transition from MT mode to SQUEUE mode, when the last MT thread
812  * is exiting the UDP perimeter. Move all messages from the internal
813  * udp queue to the squeue. A better way would be to move all the
814  * messages in one shot, this needs more support from the squeue framework
815  */
816 static void
817 udp_switch_to_squeue(udp_t *udp)
818 {
819 	mblk_t *mp;
820 	mblk_t	*mp_next;
821 	sqproc_t proc;
822 	uint8_t	tag;
823 	conn_t	*connp = udp->udp_connp;
824 
825 	ASSERT(MUTEX_HELD(&connp->conn_lock));
826 	ASSERT(udp->udp_mode == UDP_MT_QUEUED);
827 	while (udp->udp_mphead != NULL) {
828 		mp = udp->udp_mphead;
829 		udp->udp_mphead = NULL;
830 		udp->udp_mptail = NULL;
831 		udp->udp_mpcount = 0;
832 		udp->udp_mode = UDP_QUEUED_SQUEUE;
833 		mutex_exit(&connp->conn_lock);
834 		/*
835 		 * It is best not to hold any locks across the calls
836 		 * to squeue functions. Since we drop the lock we
837 		 * need to go back and check the udp_mphead once again
838 		 * after the squeue_fill and hence the while loop at
839 		 * the top of this function
840 		 */
841 		for (; mp != NULL; mp = mp_next) {
842 			mp_next = mp->b_next;
843 			proc = (sqproc_t)mp->b_prev;
844 			tag = (uint8_t)((uintptr_t)mp->b_queue);
845 			mp->b_next = NULL;
846 			mp->b_prev = NULL;
847 			mp->b_queue = NULL;
848 			CONN_INC_REF(connp);
849 			udp->udp_squeue_count++;
850 			squeue_fill(connp->conn_sqp, mp, proc, connp,
851 			    tag);
852 		}
853 		mutex_enter(&connp->conn_lock);
854 	}
855 	/*
856 	 * udp_squeue_count of zero implies that the squeue has drained
857 	 * even before we arrived here (i.e. after the squeue_fill above)
858 	 */
859 	udp->udp_mode = (udp->udp_squeue_count != 0) ?
860 	    UDP_SQUEUE : UDP_MT_HOT;
861 }
862 
863 #define	_UDP_EXIT(connp) {						\
864 	udp_t *_udp = (connp)->conn_udp;				\
865 									\
866 	mutex_enter(&(connp)->conn_lock);				\
867 	UDP_MODE_ASSERTIONS(_udp, UDP_EXIT);				\
868 									\
869 	switch (_udp->udp_mode) {					\
870 	case UDP_MT_HOT:						\
871 		UDP_READERS_DECREF(_udp);				\
872 		mutex_exit(&(connp)->conn_lock);			\
873 		break;							\
874 									\
875 	case UDP_SQUEUE:						\
876 		UDP_SQUEUE_DECREF(_udp);				\
877 		if (_udp->udp_squeue_count == 0)			\
878 		    _udp->udp_mode = UDP_MT_HOT;			\
879 		mutex_exit(&(connp)->conn_lock);			\
880 		break;							\
881 									\
882 	case UDP_MT_QUEUED:						\
883 		/*							\
884 		 * If this is the last MT thread, we need to		\
885 		 * switch to squeue mode				\
886 		 */							\
887 		UDP_READERS_DECREF(_udp);				\
888 		if (_udp->udp_reader_count == 0)			\
889 			udp_switch_to_squeue(_udp);			\
890 		mutex_exit(&(connp)->conn_lock);			\
891 		break;							\
892 									\
893 	case UDP_QUEUED_SQUEUE:						\
894 		UDP_SQUEUE_DECREF(_udp);				\
895 		/*							\
896 		 * Even if the udp_squeue_count drops to zero, we	\
897 		 * don't want to change udp_mode to UDP_MT_HOT here.	\
898 		 * The thread in udp_switch_to_squeue will take care	\
899 		 * of the transition to UDP_MT_HOT, after emptying	\
900 		 * any more new messages that have been enqueued in	\
901 		 * udp_mphead.						\
902 		 */							\
903 		mutex_exit(&(connp)->conn_lock);			\
904 		break;							\
905 	}								\
906 }
907 
908 static void
909 udp_exit(conn_t *connp)
910 {
911 	_UDP_EXIT(connp);
912 }
913 
914 /*
915  * Return the next anonymous port in the privileged port range for
916  * bind checking.
917  *
918  * Trusted Extension (TX) notes: TX allows administrator to mark or
919  * reserve ports as Multilevel ports (MLP). MLP has special function
920  * on TX systems. Once a port is made MLP, it's not available as
921  * ordinary port. This creates "holes" in the port name space. It
922  * may be necessary to skip the "holes" find a suitable anon port.
923  */
924 static in_port_t
925 udp_get_next_priv_port(udp_t *udp)
926 {
927 	static in_port_t next_priv_port = IPPORT_RESERVED - 1;
928 	in_port_t nextport;
929 	boolean_t restart = B_FALSE;
930 
931 retry:
932 	if (next_priv_port < udp_min_anonpriv_port ||
933 	    next_priv_port >= IPPORT_RESERVED) {
934 		next_priv_port = IPPORT_RESERVED - 1;
935 		if (restart)
936 			return (0);
937 		restart = B_TRUE;
938 	}
939 
940 	if (is_system_labeled() &&
941 	    (nextport = tsol_next_port(crgetzone(udp->udp_connp->conn_cred),
942 	    next_priv_port, IPPROTO_UDP, B_FALSE)) != 0) {
943 		next_priv_port = nextport;
944 		goto retry;
945 	}
946 
947 	return (next_priv_port--);
948 }
949 
950 /* UDP bind hash report triggered via the Named Dispatch mechanism. */
951 /* ARGSUSED */
952 static int
953 udp_bind_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
954 {
955 	udp_fanout_t	*udpf;
956 	int		i;
957 	zoneid_t	zoneid;
958 	conn_t		*connp;
959 	udp_t		*udp;
960 
961 	connp = Q_TO_CONN(q);
962 	udp = connp->conn_udp;
963 
964 	/* Refer to comments in udp_status_report(). */
965 	if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) {
966 		if (ddi_get_lbolt() - udp_last_ndd_get_info_time <
967 		    drv_usectohz(udp_ndd_get_info_interval * 1000)) {
968 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
969 			return (0);
970 		}
971 	}
972 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
973 		/* The following may work even if we cannot get a large buf. */
974 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
975 		return (0);
976 	}
977 
978 	(void) mi_mpprintf(mp,
979 	    "UDP     " MI_COL_HDRPAD_STR
980 	/*   12345678[89ABCDEF] */
981 	    " zone lport src addr        dest addr       port  state");
982 	/*    1234 12345 xxx.xxx.xxx.xxx xxx.xxx.xxx.xxx 12345 UNBOUND */
983 
984 	zoneid = connp->conn_zoneid;
985 
986 	for (i = 0; i < udp_bind_fanout_size; i++) {
987 		udpf = &udp_bind_fanout[i];
988 		mutex_enter(&udpf->uf_lock);
989 
990 		/* Print the hash index. */
991 		udp = udpf->uf_udp;
992 		if (zoneid != GLOBAL_ZONEID) {
993 			/* skip to first entry in this zone; might be none */
994 			while (udp != NULL &&
995 			    udp->udp_connp->conn_zoneid != zoneid)
996 				udp = udp->udp_bind_hash;
997 		}
998 		if (udp != NULL) {
999 			uint_t print_len, buf_len;
1000 
1001 			buf_len = mp->b_cont->b_datap->db_lim -
1002 			    mp->b_cont->b_wptr;
1003 			print_len = snprintf((char *)mp->b_cont->b_wptr,
1004 			    buf_len, "%d\n", i);
1005 			if (print_len < buf_len) {
1006 				mp->b_cont->b_wptr += print_len;
1007 			} else {
1008 				mp->b_cont->b_wptr += buf_len;
1009 			}
1010 			for (; udp != NULL; udp = udp->udp_bind_hash) {
1011 				if (zoneid == GLOBAL_ZONEID ||
1012 				    zoneid == udp->udp_connp->conn_zoneid)
1013 					udp_report_item(mp->b_cont, udp);
1014 			}
1015 		}
1016 		mutex_exit(&udpf->uf_lock);
1017 	}
1018 	udp_last_ndd_get_info_time = ddi_get_lbolt();
1019 	return (0);
1020 }
1021 
1022 /*
1023  * Hash list removal routine for udp_t structures.
1024  */
1025 static void
1026 udp_bind_hash_remove(udp_t *udp, boolean_t caller_holds_lock)
1027 {
1028 	udp_t	*udpnext;
1029 	kmutex_t *lockp;
1030 
1031 	if (udp->udp_ptpbhn == NULL)
1032 		return;
1033 
1034 	/*
1035 	 * Extract the lock pointer in case there are concurrent
1036 	 * hash_remove's for this instance.
1037 	 */
1038 	ASSERT(udp->udp_port != 0);
1039 	if (!caller_holds_lock) {
1040 		lockp = &udp_bind_fanout[UDP_BIND_HASH(udp->udp_port)].uf_lock;
1041 		ASSERT(lockp != NULL);
1042 		mutex_enter(lockp);
1043 	}
1044 	if (udp->udp_ptpbhn != NULL) {
1045 		udpnext = udp->udp_bind_hash;
1046 		if (udpnext != NULL) {
1047 			udpnext->udp_ptpbhn = udp->udp_ptpbhn;
1048 			udp->udp_bind_hash = NULL;
1049 		}
1050 		*udp->udp_ptpbhn = udpnext;
1051 		udp->udp_ptpbhn = NULL;
1052 	}
1053 	if (!caller_holds_lock) {
1054 		mutex_exit(lockp);
1055 	}
1056 }
1057 
1058 static void
1059 udp_bind_hash_insert(udp_fanout_t *uf, udp_t *udp)
1060 {
1061 	udp_t	**udpp;
1062 	udp_t	*udpnext;
1063 
1064 	ASSERT(MUTEX_HELD(&uf->uf_lock));
1065 	if (udp->udp_ptpbhn != NULL) {
1066 		udp_bind_hash_remove(udp, B_TRUE);
1067 	}
1068 	udpp = &uf->uf_udp;
1069 	udpnext = udpp[0];
1070 	if (udpnext != NULL) {
1071 		/*
1072 		 * If the new udp bound to the INADDR_ANY address
1073 		 * and the first one in the list is not bound to
1074 		 * INADDR_ANY we skip all entries until we find the
1075 		 * first one bound to INADDR_ANY.
1076 		 * This makes sure that applications binding to a
1077 		 * specific address get preference over those binding to
1078 		 * INADDR_ANY.
1079 		 */
1080 		if (V6_OR_V4_INADDR_ANY(udp->udp_bound_v6src) &&
1081 		    !V6_OR_V4_INADDR_ANY(udpnext->udp_bound_v6src)) {
1082 			while ((udpnext = udpp[0]) != NULL &&
1083 			    !V6_OR_V4_INADDR_ANY(
1084 			    udpnext->udp_bound_v6src)) {
1085 				udpp = &(udpnext->udp_bind_hash);
1086 			}
1087 			if (udpnext != NULL)
1088 				udpnext->udp_ptpbhn = &udp->udp_bind_hash;
1089 		} else {
1090 			udpnext->udp_ptpbhn = &udp->udp_bind_hash;
1091 		}
1092 	}
1093 	udp->udp_bind_hash = udpnext;
1094 	udp->udp_ptpbhn = udpp;
1095 	udpp[0] = udp;
1096 }
1097 
1098 /*
1099  * This routine is called to handle each O_T_BIND_REQ/T_BIND_REQ message
1100  * passed to udp_wput.
1101  * It associates a port number and local address with the stream.
1102  * The O_T_BIND_REQ/T_BIND_REQ is passed downstream to ip with the UDP
1103  * protocol type (IPPROTO_UDP) placed in the message following the address.
1104  * A T_BIND_ACK message is passed upstream when ip acknowledges the request.
1105  * (Called as writer.)
1106  *
1107  * Note that UDP over IPv4 and IPv6 sockets can use the same port number
1108  * without setting SO_REUSEADDR. This is needed so that they
1109  * can be viewed as two independent transport protocols.
1110  * However, anonymouns ports are allocated from the same range to avoid
1111  * duplicating the udp_g_next_port_to_try.
1112  */
1113 static void
1114 udp_bind(queue_t *q, mblk_t *mp)
1115 {
1116 	sin_t		*sin;
1117 	sin6_t		*sin6;
1118 	mblk_t		*mp1;
1119 	in_port_t	port;		/* Host byte order */
1120 	in_port_t	requested_port;	/* Host byte order */
1121 	struct T_bind_req *tbr;
1122 	int		count;
1123 	in6_addr_t	v6src;
1124 	boolean_t	bind_to_req_port_only;
1125 	int		loopmax;
1126 	udp_fanout_t	*udpf;
1127 	in_port_t	lport;		/* Network byte order */
1128 	zoneid_t	zoneid;
1129 	conn_t		*connp;
1130 	udp_t		*udp;
1131 	boolean_t	is_inaddr_any;
1132 	mlp_type_t	addrtype, mlptype;
1133 
1134 	connp = Q_TO_CONN(q);
1135 	udp = connp->conn_udp;
1136 	if ((mp->b_wptr - mp->b_rptr) < sizeof (*tbr)) {
1137 		(void) mi_strlog(q, 1, SL_ERROR|SL_TRACE,
1138 		    "udp_bind: bad req, len %u",
1139 		    (uint_t)(mp->b_wptr - mp->b_rptr));
1140 		udp_err_ack(q, mp, TPROTO, 0);
1141 		return;
1142 	}
1143 
1144 	if (udp->udp_state != TS_UNBND) {
1145 		(void) mi_strlog(q, 1, SL_ERROR|SL_TRACE,
1146 		    "udp_bind: bad state, %u", udp->udp_state);
1147 		udp_err_ack(q, mp, TOUTSTATE, 0);
1148 		return;
1149 	}
1150 	/*
1151 	 * Reallocate the message to make sure we have enough room for an
1152 	 * address and the protocol type.
1153 	 */
1154 	mp1 = reallocb(mp, sizeof (struct T_bind_ack) + sizeof (sin6_t) + 1, 1);
1155 	if (!mp1) {
1156 		udp_err_ack(q, mp, TSYSERR, ENOMEM);
1157 		return;
1158 	}
1159 
1160 	mp = mp1;
1161 	tbr = (struct T_bind_req *)mp->b_rptr;
1162 	switch (tbr->ADDR_length) {
1163 	case 0:			/* Request for a generic port */
1164 		tbr->ADDR_offset = sizeof (struct T_bind_req);
1165 		if (udp->udp_family == AF_INET) {
1166 			tbr->ADDR_length = sizeof (sin_t);
1167 			sin = (sin_t *)&tbr[1];
1168 			*sin = sin_null;
1169 			sin->sin_family = AF_INET;
1170 			mp->b_wptr = (uchar_t *)&sin[1];
1171 		} else {
1172 			ASSERT(udp->udp_family == AF_INET6);
1173 			tbr->ADDR_length = sizeof (sin6_t);
1174 			sin6 = (sin6_t *)&tbr[1];
1175 			*sin6 = sin6_null;
1176 			sin6->sin6_family = AF_INET6;
1177 			mp->b_wptr = (uchar_t *)&sin6[1];
1178 		}
1179 		port = 0;
1180 		break;
1181 
1182 	case sizeof (sin_t):	/* Complete IPv4 address */
1183 		sin = (sin_t *)mi_offset_param(mp, tbr->ADDR_offset,
1184 		    sizeof (sin_t));
1185 		if (sin == NULL || !OK_32PTR((char *)sin)) {
1186 			udp_err_ack(q, mp, TSYSERR, EINVAL);
1187 			return;
1188 		}
1189 		if (udp->udp_family != AF_INET ||
1190 		    sin->sin_family != AF_INET) {
1191 			udp_err_ack(q, mp, TSYSERR, EAFNOSUPPORT);
1192 			return;
1193 		}
1194 		port = ntohs(sin->sin_port);
1195 		break;
1196 
1197 	case sizeof (sin6_t):	/* complete IPv6 address */
1198 		sin6 = (sin6_t *)mi_offset_param(mp, tbr->ADDR_offset,
1199 		    sizeof (sin6_t));
1200 		if (sin6 == NULL || !OK_32PTR((char *)sin6)) {
1201 			udp_err_ack(q, mp, TSYSERR, EINVAL);
1202 			return;
1203 		}
1204 		if (udp->udp_family != AF_INET6 ||
1205 		    sin6->sin6_family != AF_INET6) {
1206 			udp_err_ack(q, mp, TSYSERR, EAFNOSUPPORT);
1207 			return;
1208 		}
1209 		port = ntohs(sin6->sin6_port);
1210 		break;
1211 
1212 	default:		/* Invalid request */
1213 		(void) mi_strlog(q, 1, SL_ERROR|SL_TRACE,
1214 		    "udp_bind: bad ADDR_length length %u", tbr->ADDR_length);
1215 		udp_err_ack(q, mp, TBADADDR, 0);
1216 		return;
1217 	}
1218 
1219 	requested_port = port;
1220 
1221 	if (requested_port == 0 || tbr->PRIM_type == O_T_BIND_REQ)
1222 		bind_to_req_port_only = B_FALSE;
1223 	else			/* T_BIND_REQ and requested_port != 0 */
1224 		bind_to_req_port_only = B_TRUE;
1225 
1226 	if (requested_port == 0) {
1227 		/*
1228 		 * If the application passed in zero for the port number, it
1229 		 * doesn't care which port number we bind to. Get one in the
1230 		 * valid range.
1231 		 */
1232 		if (udp->udp_anon_priv_bind) {
1233 			port = udp_get_next_priv_port(udp);
1234 		} else {
1235 			port = udp_update_next_port(udp,
1236 			    udp_g_next_port_to_try, B_TRUE);
1237 		}
1238 	} else {
1239 		/*
1240 		 * If the port is in the well-known privileged range,
1241 		 * make sure the caller was privileged.
1242 		 */
1243 		int i;
1244 		boolean_t priv = B_FALSE;
1245 
1246 		if (port < udp_smallest_nonpriv_port) {
1247 			priv = B_TRUE;
1248 		} else {
1249 			for (i = 0; i < udp_g_num_epriv_ports; i++) {
1250 				if (port == udp_g_epriv_ports[i]) {
1251 					priv = B_TRUE;
1252 					break;
1253 				}
1254 			}
1255 		}
1256 
1257 		if (priv) {
1258 			cred_t *cr = DB_CREDDEF(mp, connp->conn_cred);
1259 
1260 			if (secpolicy_net_privaddr(cr, port) != 0) {
1261 				udp_err_ack(q, mp, TACCES, 0);
1262 				return;
1263 			}
1264 		}
1265 	}
1266 
1267 	if (port == 0) {
1268 		udp_err_ack(q, mp, TNOADDR, 0);
1269 		return;
1270 	}
1271 
1272 	/*
1273 	 * Copy the source address into our udp structure. This address
1274 	 * may still be zero; if so, IP will fill in the correct address
1275 	 * each time an outbound packet is passed to it.
1276 	 */
1277 	if (udp->udp_family == AF_INET) {
1278 		ASSERT(sin != NULL);
1279 		ASSERT(udp->udp_ipversion == IPV4_VERSION);
1280 		udp->udp_max_hdr_len = IP_SIMPLE_HDR_LENGTH + UDPH_SIZE +
1281 		    udp->udp_ip_snd_options_len;
1282 		IN6_IPADDR_TO_V4MAPPED(sin->sin_addr.s_addr, &v6src);
1283 	} else {
1284 		ASSERT(sin6 != NULL);
1285 		v6src = sin6->sin6_addr;
1286 		if (IN6_IS_ADDR_V4MAPPED(&v6src)) {
1287 			udp->udp_ipversion = IPV4_VERSION;
1288 			udp->udp_max_hdr_len = IP_SIMPLE_HDR_LENGTH +
1289 			    UDPH_SIZE + udp->udp_ip_snd_options_len;
1290 		} else {
1291 			udp->udp_ipversion = IPV6_VERSION;
1292 			udp->udp_max_hdr_len = udp->udp_sticky_hdrs_len;
1293 		}
1294 	}
1295 
1296 	/*
1297 	 * If udp_reuseaddr is not set, then we have to make sure that
1298 	 * the IP address and port number the application requested
1299 	 * (or we selected for the application) is not being used by
1300 	 * another stream.  If another stream is already using the
1301 	 * requested IP address and port, the behavior depends on
1302 	 * "bind_to_req_port_only". If set the bind fails; otherwise we
1303 	 * search for any an unused port to bind to the the stream.
1304 	 *
1305 	 * As per the BSD semantics, as modified by the Deering multicast
1306 	 * changes, if udp_reuseaddr is set, then we allow multiple binds
1307 	 * to the same port independent of the local IP address.
1308 	 *
1309 	 * This is slightly different than in SunOS 4.X which did not
1310 	 * support IP multicast. Note that the change implemented by the
1311 	 * Deering multicast code effects all binds - not only binding
1312 	 * to IP multicast addresses.
1313 	 *
1314 	 * Note that when binding to port zero we ignore SO_REUSEADDR in
1315 	 * order to guarantee a unique port.
1316 	 */
1317 
1318 	count = 0;
1319 	if (udp->udp_anon_priv_bind) {
1320 		/* loopmax = (IPPORT_RESERVED-1) - udp_min_anonpriv_port + 1 */
1321 		loopmax = IPPORT_RESERVED - udp_min_anonpriv_port;
1322 	} else {
1323 		loopmax = udp_largest_anon_port - udp_smallest_anon_port + 1;
1324 	}
1325 
1326 	is_inaddr_any = V6_OR_V4_INADDR_ANY(v6src);
1327 	zoneid = connp->conn_zoneid;
1328 
1329 	for (;;) {
1330 		udp_t		*udp1;
1331 		boolean_t	found_exclbind = B_FALSE;
1332 
1333 		/*
1334 		 * Walk through the list of udp streams bound to
1335 		 * requested port with the same IP address.
1336 		 */
1337 		lport = htons(port);
1338 		udpf = &udp_bind_fanout[UDP_BIND_HASH(lport)];
1339 		mutex_enter(&udpf->uf_lock);
1340 		for (udp1 = udpf->uf_udp; udp1 != NULL;
1341 		    udp1 = udp1->udp_bind_hash) {
1342 			if (lport != udp1->udp_port)
1343 				continue;
1344 
1345 			/*
1346 			 * On a labeled system, we must treat bindings to ports
1347 			 * on shared IP addresses by sockets with MAC exemption
1348 			 * privilege as being in all zones, as there's
1349 			 * otherwise no way to identify the right receiver.
1350 			 */
1351 			if (zoneid != udp1->udp_connp->conn_zoneid &&
1352 			    !udp->udp_mac_exempt && !udp1->udp_mac_exempt)
1353 				continue;
1354 
1355 			/*
1356 			 * If UDP_EXCLBIND is set for either the bound or
1357 			 * binding endpoint, the semantics of bind
1358 			 * is changed according to the following chart.
1359 			 *
1360 			 * spec = specified address (v4 or v6)
1361 			 * unspec = unspecified address (v4 or v6)
1362 			 * A = specified addresses are different for endpoints
1363 			 *
1364 			 * bound	bind to		allowed?
1365 			 * -------------------------------------
1366 			 * unspec	unspec		no
1367 			 * unspec	spec		no
1368 			 * spec		unspec		no
1369 			 * spec		spec		yes if A
1370 			 *
1371 			 * For labeled systems, SO_MAC_EXEMPT behaves the same
1372 			 * as UDP_EXCLBIND, except that zoneid is ignored.
1373 			 */
1374 			if (udp1->udp_exclbind || udp->udp_exclbind ||
1375 			    udp1->udp_mac_exempt || udp->udp_mac_exempt) {
1376 				if (V6_OR_V4_INADDR_ANY(
1377 				    udp1->udp_bound_v6src) ||
1378 				    is_inaddr_any ||
1379 				    IN6_ARE_ADDR_EQUAL(&udp1->udp_bound_v6src,
1380 				    &v6src)) {
1381 					found_exclbind = B_TRUE;
1382 					break;
1383 				}
1384 				continue;
1385 			}
1386 
1387 			/*
1388 			 * Check ipversion to allow IPv4 and IPv6 sockets to
1389 			 * have disjoint port number spaces.
1390 			 */
1391 			if (udp->udp_ipversion != udp1->udp_ipversion) {
1392 
1393 				/*
1394 				 * On the first time through the loop, if the
1395 				 * the user intentionally specified a
1396 				 * particular port number, then ignore any
1397 				 * bindings of the other protocol that may
1398 				 * conflict. This allows the user to bind IPv6
1399 				 * alone and get both v4 and v6, or bind both
1400 				 * both and get each seperately. On subsequent
1401 				 * times through the loop, we're checking a
1402 				 * port that we chose (not the user) and thus
1403 				 * we do not allow casual duplicate bindings.
1404 				 */
1405 				if (count == 0 && requested_port != 0)
1406 					continue;
1407 			}
1408 
1409 			/*
1410 			 * No difference depending on SO_REUSEADDR.
1411 			 *
1412 			 * If existing port is bound to a
1413 			 * non-wildcard IP address and
1414 			 * the requesting stream is bound to
1415 			 * a distinct different IP addresses
1416 			 * (non-wildcard, also), keep going.
1417 			 */
1418 			if (!is_inaddr_any &&
1419 			    !V6_OR_V4_INADDR_ANY(udp1->udp_bound_v6src) &&
1420 			    !IN6_ARE_ADDR_EQUAL(&udp1->udp_bound_v6src,
1421 			    &v6src)) {
1422 				continue;
1423 			}
1424 			break;
1425 		}
1426 
1427 		if (!found_exclbind &&
1428 		    (udp->udp_reuseaddr && requested_port != 0)) {
1429 			break;
1430 		}
1431 
1432 		if (udp1 == NULL) {
1433 			/*
1434 			 * No other stream has this IP address
1435 			 * and port number. We can use it.
1436 			 */
1437 			break;
1438 		}
1439 		mutex_exit(&udpf->uf_lock);
1440 		if (bind_to_req_port_only) {
1441 			/*
1442 			 * We get here only when requested port
1443 			 * is bound (and only first  of the for()
1444 			 * loop iteration).
1445 			 *
1446 			 * The semantics of this bind request
1447 			 * require it to fail so we return from
1448 			 * the routine (and exit the loop).
1449 			 *
1450 			 */
1451 			udp_err_ack(q, mp, TADDRBUSY, 0);
1452 			return;
1453 		}
1454 
1455 		if (udp->udp_anon_priv_bind) {
1456 			port = udp_get_next_priv_port(udp);
1457 		} else {
1458 			if ((count == 0) && (requested_port != 0)) {
1459 				/*
1460 				 * If the application wants us to find
1461 				 * a port, get one to start with. Set
1462 				 * requested_port to 0, so that we will
1463 				 * update udp_g_next_port_to_try below.
1464 				 */
1465 				port = udp_update_next_port(udp,
1466 				    udp_g_next_port_to_try, B_TRUE);
1467 				requested_port = 0;
1468 			} else {
1469 				port = udp_update_next_port(udp, port + 1,
1470 				    B_FALSE);
1471 			}
1472 		}
1473 
1474 		if (port == 0 || ++count >= loopmax) {
1475 			/*
1476 			 * We've tried every possible port number and
1477 			 * there are none available, so send an error
1478 			 * to the user.
1479 			 */
1480 			udp_err_ack(q, mp, TNOADDR, 0);
1481 			return;
1482 		}
1483 	}
1484 
1485 	/*
1486 	 * Copy the source address into our udp structure.  This address
1487 	 * may still be zero; if so, ip will fill in the correct address
1488 	 * each time an outbound packet is passed to it.
1489 	 * If we are binding to a broadcast or multicast address udp_rput
1490 	 * will clear the source address when it receives the T_BIND_ACK.
1491 	 */
1492 	udp->udp_v6src = udp->udp_bound_v6src = v6src;
1493 	udp->udp_port = lport;
1494 	/*
1495 	 * Now reset the the next anonymous port if the application requested
1496 	 * an anonymous port, or we handed out the next anonymous port.
1497 	 */
1498 	if ((requested_port == 0) && (!udp->udp_anon_priv_bind)) {
1499 		udp_g_next_port_to_try = port + 1;
1500 	}
1501 
1502 	/* Initialize the O_T_BIND_REQ/T_BIND_REQ for ip. */
1503 	if (udp->udp_family == AF_INET) {
1504 		sin->sin_port = udp->udp_port;
1505 	} else {
1506 		int error;
1507 
1508 		sin6->sin6_port = udp->udp_port;
1509 		/* Rebuild the header template */
1510 		error = udp_build_hdrs(q, udp);
1511 		if (error != 0) {
1512 			mutex_exit(&udpf->uf_lock);
1513 			udp_err_ack(q, mp, TSYSERR, error);
1514 			return;
1515 		}
1516 	}
1517 	udp->udp_state = TS_IDLE;
1518 	udp_bind_hash_insert(udpf, udp);
1519 	mutex_exit(&udpf->uf_lock);
1520 
1521 	if (cl_inet_bind) {
1522 		/*
1523 		 * Running in cluster mode - register bind information
1524 		 */
1525 		if (udp->udp_ipversion == IPV4_VERSION) {
1526 			(*cl_inet_bind)(IPPROTO_UDP, AF_INET,
1527 			    (uint8_t *)(&V4_PART_OF_V6(udp->udp_v6src)),
1528 			    (in_port_t)udp->udp_port);
1529 		} else {
1530 			(*cl_inet_bind)(IPPROTO_UDP, AF_INET6,
1531 			    (uint8_t *)&(udp->udp_v6src),
1532 			    (in_port_t)udp->udp_port);
1533 		}
1534 
1535 	}
1536 
1537 	connp->conn_anon_port = (is_system_labeled() && requested_port == 0);
1538 	if (is_system_labeled() && (!connp->conn_anon_port ||
1539 	    connp->conn_anon_mlp)) {
1540 		uint16_t mlpport;
1541 		cred_t *cr = connp->conn_cred;
1542 		zone_t *zone;
1543 
1544 		connp->conn_mlp_type = udp->udp_recvucred ? mlptBoth :
1545 		    mlptSingle;
1546 		addrtype = tsol_mlp_addr_type(zoneid, IPV6_VERSION, &v6src);
1547 		if (addrtype == mlptSingle) {
1548 			udp_err_ack(q, mp, TNOADDR, 0);
1549 			connp->conn_anon_port = B_FALSE;
1550 			connp->conn_mlp_type = mlptSingle;
1551 			return;
1552 		}
1553 		mlpport = connp->conn_anon_port ? PMAPPORT : port;
1554 		zone = crgetzone(cr);
1555 		mlptype = tsol_mlp_port_type(zone, IPPROTO_UDP, mlpport,
1556 		    addrtype);
1557 		if (mlptype != mlptSingle &&
1558 		    (connp->conn_mlp_type == mlptSingle ||
1559 		    secpolicy_net_bindmlp(cr) != 0)) {
1560 			if (udp->udp_debug) {
1561 				(void) strlog(UDP_MOD_ID, 0, 1,
1562 				    SL_ERROR|SL_TRACE,
1563 				    "udp_bind: no priv for multilevel port %d",
1564 				    mlpport);
1565 			}
1566 			udp_err_ack(q, mp, TACCES, 0);
1567 			connp->conn_anon_port = B_FALSE;
1568 			connp->conn_mlp_type = mlptSingle;
1569 			return;
1570 		}
1571 
1572 		/*
1573 		 * If we're specifically binding a shared IP address and the
1574 		 * port is MLP on shared addresses, then check to see if this
1575 		 * zone actually owns the MLP.  Reject if not.
1576 		 */
1577 		if (mlptype == mlptShared && addrtype == mlptShared) {
1578 			zoneid_t mlpzone;
1579 
1580 			mlpzone = tsol_mlp_findzone(IPPROTO_UDP,
1581 			    htons(mlpport));
1582 			if (connp->conn_zoneid != mlpzone) {
1583 				if (udp->udp_debug) {
1584 					(void) strlog(UDP_MOD_ID, 0, 1,
1585 					    SL_ERROR|SL_TRACE,
1586 					    "udp_bind: attempt to bind port "
1587 					    "%d on shared addr in zone %d "
1588 					    "(should be %d)",
1589 					    mlpport, connp->conn_zoneid,
1590 					    mlpzone);
1591 				}
1592 				udp_err_ack(q, mp, TACCES, 0);
1593 				connp->conn_anon_port = B_FALSE;
1594 				connp->conn_mlp_type = mlptSingle;
1595 				return;
1596 			}
1597 		}
1598 		if (connp->conn_anon_port) {
1599 			int error;
1600 
1601 			error = tsol_mlp_anon(zone, mlptype, connp->conn_ulp,
1602 			    port, B_TRUE);
1603 			if (error != 0) {
1604 				if (udp->udp_debug) {
1605 					(void) strlog(UDP_MOD_ID, 0, 1,
1606 					    SL_ERROR|SL_TRACE,
1607 					    "udp_bind: cannot establish anon "
1608 					    "MLP for port %d", port);
1609 				}
1610 				udp_err_ack(q, mp, TACCES, 0);
1611 				connp->conn_anon_port = B_FALSE;
1612 				connp->conn_mlp_type = mlptSingle;
1613 				return;
1614 			}
1615 		}
1616 		connp->conn_mlp_type = mlptype;
1617 	}
1618 
1619 	/* Pass the protocol number in the message following the address. */
1620 	*mp->b_wptr++ = IPPROTO_UDP;
1621 	if (!V6_OR_V4_INADDR_ANY(udp->udp_v6src)) {
1622 		/*
1623 		 * Append a request for an IRE if udp_v6src not
1624 		 * zero (IPv4 - INADDR_ANY, or IPv6 - all-zeroes address).
1625 		 */
1626 		mp->b_cont = allocb(sizeof (ire_t), BPRI_HI);
1627 		if (!mp->b_cont) {
1628 			udp_err_ack(q, mp, TSYSERR, ENOMEM);
1629 			return;
1630 		}
1631 		mp->b_cont->b_wptr += sizeof (ire_t);
1632 		mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE;
1633 	}
1634 	if (udp->udp_family == AF_INET6)
1635 		mp = ip_bind_v6(q, mp, connp, NULL);
1636 	else
1637 		mp = ip_bind_v4(q, mp, connp);
1638 
1639 	if (mp != NULL)
1640 		udp_rput_other(_RD(q), mp);
1641 	else
1642 		CONN_INC_REF(connp);
1643 }
1644 
1645 
1646 void
1647 udp_resume_bind(conn_t *connp, mblk_t *mp)
1648 {
1649 	udp_enter(connp, mp, udp_resume_bind_cb, SQTAG_BIND_RETRY);
1650 }
1651 
1652 /*
1653  * This is called from ip_wput_nondata to resume a deferred UDP bind.
1654  */
1655 /* ARGSUSED */
1656 static void
1657 udp_resume_bind_cb(void *arg, mblk_t *mp, void *arg2)
1658 {
1659 	conn_t *connp = arg;
1660 
1661 	ASSERT(connp != NULL && IPCL_IS_UDP(connp));
1662 
1663 	udp_rput_other(connp->conn_rq, mp);
1664 
1665 	CONN_OPER_PENDING_DONE(connp);
1666 	udp_exit(connp);
1667 }
1668 
1669 /*
1670  * This routine handles each T_CONN_REQ message passed to udp.  It
1671  * associates a default destination address with the stream.
1672  *
1673  * This routine sends down a T_BIND_REQ to IP with the following mblks:
1674  *	T_BIND_REQ	- specifying local and remote address/port
1675  *	IRE_DB_REQ_TYPE	- to get an IRE back containing ire_type and src
1676  *	T_OK_ACK	- for the T_CONN_REQ
1677  *	T_CONN_CON	- to keep the TPI user happy
1678  *
1679  * The connect completes in udp_rput.
1680  * When a T_BIND_ACK is received information is extracted from the IRE
1681  * and the two appended messages are sent to the TPI user.
1682  * Should udp_rput receive T_ERROR_ACK for the T_BIND_REQ it will convert
1683  * it to an error ack for the appropriate primitive.
1684  */
1685 static void
1686 udp_connect(queue_t *q, mblk_t *mp)
1687 {
1688 	sin6_t	*sin6;
1689 	sin_t	*sin;
1690 	struct T_conn_req	*tcr;
1691 	in6_addr_t v6dst;
1692 	ipaddr_t v4dst;
1693 	uint16_t dstport;
1694 	uint32_t flowinfo;
1695 	mblk_t	*mp1, *mp2;
1696 	udp_fanout_t	*udpf;
1697 	udp_t	*udp, *udp1;
1698 
1699 	udp = Q_TO_UDP(q);
1700 
1701 	tcr = (struct T_conn_req *)mp->b_rptr;
1702 
1703 	/* A bit of sanity checking */
1704 	if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_conn_req)) {
1705 		udp_err_ack(q, mp, TPROTO, 0);
1706 		return;
1707 	}
1708 	/*
1709 	 * This UDP must have bound to a port already before doing
1710 	 * a connect.
1711 	 */
1712 	if (udp->udp_state == TS_UNBND) {
1713 		(void) mi_strlog(q, 1, SL_ERROR|SL_TRACE,
1714 		    "udp_connect: bad state, %u", udp->udp_state);
1715 		udp_err_ack(q, mp, TOUTSTATE, 0);
1716 		return;
1717 	}
1718 	ASSERT(udp->udp_port != 0 && udp->udp_ptpbhn != NULL);
1719 
1720 	udpf = &udp_bind_fanout[UDP_BIND_HASH(udp->udp_port)];
1721 
1722 	if (udp->udp_state == TS_DATA_XFER) {
1723 		/* Already connected - clear out state */
1724 		mutex_enter(&udpf->uf_lock);
1725 		udp->udp_v6src = udp->udp_bound_v6src;
1726 		udp->udp_state = TS_IDLE;
1727 		mutex_exit(&udpf->uf_lock);
1728 	}
1729 
1730 	if (tcr->OPT_length != 0) {
1731 		udp_err_ack(q, mp, TBADOPT, 0);
1732 		return;
1733 	}
1734 
1735 	/*
1736 	 * Determine packet type based on type of address passed in
1737 	 * the request should contain an IPv4 or IPv6 address.
1738 	 * Make sure that address family matches the type of
1739 	 * family of the the address passed down
1740 	 */
1741 	switch (tcr->DEST_length) {
1742 	default:
1743 		udp_err_ack(q, mp, TBADADDR, 0);
1744 		return;
1745 
1746 	case sizeof (sin_t):
1747 		sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset,
1748 		    sizeof (sin_t));
1749 		if (sin == NULL || !OK_32PTR((char *)sin)) {
1750 			udp_err_ack(q, mp, TSYSERR, EINVAL);
1751 			return;
1752 		}
1753 		if (udp->udp_family != AF_INET ||
1754 		    sin->sin_family != AF_INET) {
1755 			udp_err_ack(q, mp, TSYSERR, EAFNOSUPPORT);
1756 			return;
1757 		}
1758 		v4dst = sin->sin_addr.s_addr;
1759 		dstport = sin->sin_port;
1760 		IN6_IPADDR_TO_V4MAPPED(v4dst, &v6dst);
1761 		ASSERT(udp->udp_ipversion == IPV4_VERSION);
1762 		udp->udp_max_hdr_len = IP_SIMPLE_HDR_LENGTH + UDPH_SIZE +
1763 		    udp->udp_ip_snd_options_len;
1764 		break;
1765 
1766 	case sizeof (sin6_t):
1767 		sin6 = (sin6_t *)mi_offset_param(mp, tcr->DEST_offset,
1768 		    sizeof (sin6_t));
1769 		if (sin6 == NULL || !OK_32PTR((char *)sin6)) {
1770 			udp_err_ack(q, mp, TSYSERR, EINVAL);
1771 			return;
1772 		}
1773 		if (udp->udp_family != AF_INET6 ||
1774 		    sin6->sin6_family != AF_INET6) {
1775 			udp_err_ack(q, mp, TSYSERR, EAFNOSUPPORT);
1776 			return;
1777 		}
1778 		v6dst = sin6->sin6_addr;
1779 		if (IN6_IS_ADDR_V4MAPPED(&v6dst)) {
1780 			IN6_V4MAPPED_TO_IPADDR(&v6dst, v4dst);
1781 			udp->udp_ipversion = IPV4_VERSION;
1782 			udp->udp_max_hdr_len = IP_SIMPLE_HDR_LENGTH +
1783 			    UDPH_SIZE + udp->udp_ip_snd_options_len;
1784 			flowinfo = 0;
1785 		} else {
1786 			udp->udp_ipversion = IPV6_VERSION;
1787 			udp->udp_max_hdr_len = udp->udp_sticky_hdrs_len;
1788 			flowinfo = sin6->sin6_flowinfo;
1789 		}
1790 		dstport = sin6->sin6_port;
1791 		break;
1792 	}
1793 	if (dstport == 0) {
1794 		udp_err_ack(q, mp, TBADADDR, 0);
1795 		return;
1796 	}
1797 
1798 	/*
1799 	 * Create a default IP header with no IP options.
1800 	 */
1801 	udp->udp_dstport = dstport;
1802 	if (udp->udp_ipversion == IPV4_VERSION) {
1803 		/*
1804 		 * Interpret a zero destination to mean loopback.
1805 		 * Update the T_CONN_REQ (sin/sin6) since it is used to
1806 		 * generate the T_CONN_CON.
1807 		 */
1808 		if (v4dst == INADDR_ANY) {
1809 			v4dst = htonl(INADDR_LOOPBACK);
1810 			IN6_IPADDR_TO_V4MAPPED(v4dst, &v6dst);
1811 			if (udp->udp_family == AF_INET) {
1812 				sin->sin_addr.s_addr = v4dst;
1813 			} else {
1814 				sin6->sin6_addr = v6dst;
1815 			}
1816 		}
1817 		udp->udp_v6dst = v6dst;
1818 		udp->udp_flowinfo = 0;
1819 
1820 		/*
1821 		 * If the destination address is multicast and
1822 		 * an outgoing multicast interface has been set,
1823 		 * use the address of that interface as our
1824 		 * source address if no source address has been set.
1825 		 */
1826 		if (V4_PART_OF_V6(udp->udp_v6src) == INADDR_ANY &&
1827 		    CLASSD(v4dst) &&
1828 		    udp->udp_multicast_if_addr != INADDR_ANY) {
1829 			IN6_IPADDR_TO_V4MAPPED(udp->udp_multicast_if_addr,
1830 			    &udp->udp_v6src);
1831 		}
1832 	} else {
1833 		ASSERT(udp->udp_ipversion == IPV6_VERSION);
1834 		/*
1835 		 * Interpret a zero destination to mean loopback.
1836 		 * Update the T_CONN_REQ (sin/sin6) since it is used to
1837 		 * generate the T_CONN_CON.
1838 		 */
1839 		if (IN6_IS_ADDR_UNSPECIFIED(&v6dst)) {
1840 			v6dst = ipv6_loopback;
1841 			sin6->sin6_addr = v6dst;
1842 		}
1843 		udp->udp_v6dst = v6dst;
1844 		udp->udp_flowinfo = flowinfo;
1845 		/*
1846 		 * If the destination address is multicast and
1847 		 * an outgoing multicast interface has been set,
1848 		 * then the ip bind logic will pick the correct source
1849 		 * address (i.e. matching the outgoing multicast interface).
1850 		 */
1851 	}
1852 
1853 	/*
1854 	 * Verify that the src/port/dst/port is unique for all
1855 	 * connections in TS_DATA_XFER
1856 	 */
1857 	mutex_enter(&udpf->uf_lock);
1858 	for (udp1 = udpf->uf_udp; udp1 != NULL; udp1 = udp1->udp_bind_hash) {
1859 		if (udp1->udp_state != TS_DATA_XFER)
1860 			continue;
1861 		if (udp->udp_port != udp1->udp_port ||
1862 		    udp->udp_ipversion != udp1->udp_ipversion ||
1863 		    dstport != udp1->udp_dstport ||
1864 		    !IN6_ARE_ADDR_EQUAL(&udp->udp_v6src, &udp1->udp_v6src) ||
1865 		    !IN6_ARE_ADDR_EQUAL(&v6dst, &udp1->udp_v6dst))
1866 			continue;
1867 		mutex_exit(&udpf->uf_lock);
1868 		udp_err_ack(q, mp, TBADADDR, 0);
1869 		return;
1870 	}
1871 	udp->udp_state = TS_DATA_XFER;
1872 	mutex_exit(&udpf->uf_lock);
1873 
1874 	/*
1875 	 * Send down bind to IP to verify that there is a route
1876 	 * and to determine the source address.
1877 	 * This will come back as T_BIND_ACK with an IRE_DB_TYPE in rput.
1878 	 */
1879 	if (udp->udp_family == AF_INET)
1880 		mp1 = udp_ip_bind_mp(udp, O_T_BIND_REQ, sizeof (ipa_conn_t));
1881 	else
1882 		mp1 = udp_ip_bind_mp(udp, O_T_BIND_REQ, sizeof (ipa6_conn_t));
1883 	if (mp1 == NULL) {
1884 		udp_err_ack(q, mp, TSYSERR, ENOMEM);
1885 bind_failed:
1886 		mutex_enter(&udpf->uf_lock);
1887 		udp->udp_state = TS_IDLE;
1888 		mutex_exit(&udpf->uf_lock);
1889 		return;
1890 	}
1891 
1892 	/*
1893 	 * We also have to send a connection confirmation to
1894 	 * keep TLI happy. Prepare it for udp_rput.
1895 	 */
1896 	if (udp->udp_family == AF_INET)
1897 		mp2 = mi_tpi_conn_con(NULL, (char *)sin,
1898 		    sizeof (*sin), NULL, 0);
1899 	else
1900 		mp2 = mi_tpi_conn_con(NULL, (char *)sin6,
1901 		    sizeof (*sin6), NULL, 0);
1902 	if (mp2 == NULL) {
1903 		freemsg(mp1);
1904 		udp_err_ack(q, mp, TSYSERR, ENOMEM);
1905 		goto bind_failed;
1906 	}
1907 
1908 	mp = mi_tpi_ok_ack_alloc(mp);
1909 	if (mp == NULL) {
1910 		/* Unable to reuse the T_CONN_REQ for the ack. */
1911 		freemsg(mp2);
1912 		udp_err_ack_prim(q, mp1, T_CONN_REQ, TSYSERR, ENOMEM);
1913 		goto bind_failed;
1914 	}
1915 
1916 	/* Hang onto the T_OK_ACK and T_CONN_CON for later. */
1917 	linkb(mp1, mp);
1918 	linkb(mp1, mp2);
1919 
1920 	mblk_setcred(mp1, udp->udp_connp->conn_cred);
1921 	if (udp->udp_family == AF_INET)
1922 		mp1 = ip_bind_v4(q, mp1, udp->udp_connp);
1923 	else
1924 		mp1 = ip_bind_v6(q, mp1, udp->udp_connp, NULL);
1925 
1926 	if (mp1 != NULL)
1927 		udp_rput_other(_RD(q), mp1);
1928 	else
1929 		CONN_INC_REF(udp->udp_connp);
1930 }
1931 
1932 static int
1933 udp_close(queue_t *q)
1934 {
1935 	conn_t	*connp = Q_TO_CONN(UDP_WR(q));
1936 	udp_t	*udp;
1937 	queue_t	*ip_rq = RD(UDP_WR(q));
1938 
1939 	ASSERT(connp != NULL && IPCL_IS_UDP(connp));
1940 	udp = connp->conn_udp;
1941 
1942 	ip_quiesce_conn(connp);
1943 	/*
1944 	 * Disable read-side synchronous stream
1945 	 * interface and drain any queued data.
1946 	 */
1947 	udp_rcv_drain(q, udp, B_TRUE);
1948 	ASSERT(!udp->udp_direct_sockfs);
1949 
1950 	qprocsoff(q);
1951 
1952 	/* restore IP module's high and low water marks to default values */
1953 	ip_rq->q_hiwat = ip_rq->q_qinfo->qi_minfo->mi_hiwat;
1954 	WR(ip_rq)->q_hiwat = WR(ip_rq)->q_qinfo->qi_minfo->mi_hiwat;
1955 	WR(ip_rq)->q_lowat = WR(ip_rq)->q_qinfo->qi_minfo->mi_lowat;
1956 
1957 	ASSERT(udp->udp_rcv_cnt == 0);
1958 	ASSERT(udp->udp_rcv_msgcnt == 0);
1959 	ASSERT(udp->udp_rcv_list_head == NULL);
1960 	ASSERT(udp->udp_rcv_list_tail == NULL);
1961 
1962 	/* connp is now single threaded. */
1963 	udp_close_free(connp);
1964 	/*
1965 	 * Restore connp as an IP endpoint.  We don't need
1966 	 * any locks since we are now single threaded
1967 	 */
1968 	connp->conn_flags &= ~IPCL_UDP;
1969 	connp->conn_state_flags &=
1970 	    ~(CONN_CLOSING | CONN_CONDEMNED | CONN_QUIESCED);
1971 	connp->conn_ulp_labeled = B_FALSE;
1972 	return (0);
1973 }
1974 
1975 /*
1976  * Called in the close path from IP (ip_quiesce_conn) to quiesce the conn
1977  */
1978 void
1979 udp_quiesce_conn(conn_t *connp)
1980 {
1981 	udp_t	*udp = connp->conn_udp;
1982 
1983 	if (cl_inet_unbind != NULL && udp->udp_state == TS_IDLE) {
1984 		/*
1985 		 * Running in cluster mode - register unbind information
1986 		 */
1987 		if (udp->udp_ipversion == IPV4_VERSION) {
1988 			(*cl_inet_unbind)(IPPROTO_UDP, AF_INET,
1989 			    (uint8_t *)(&(V4_PART_OF_V6(udp->udp_v6src))),
1990 			    (in_port_t)udp->udp_port);
1991 		} else {
1992 			(*cl_inet_unbind)(IPPROTO_UDP, AF_INET6,
1993 			    (uint8_t *)(&(udp->udp_v6src)),
1994 			    (in_port_t)udp->udp_port);
1995 		}
1996 	}
1997 
1998 	udp_bind_hash_remove(udp, B_FALSE);
1999 
2000 	mutex_enter(&connp->conn_lock);
2001 	while (udp->udp_reader_count != 0 || udp->udp_squeue_count != 0 ||
2002 	    udp->udp_mode != UDP_MT_HOT) {
2003 		cv_wait(&connp->conn_cv, &connp->conn_lock);
2004 	}
2005 	mutex_exit(&connp->conn_lock);
2006 }
2007 
2008 void
2009 udp_close_free(conn_t *connp)
2010 {
2011 	udp_t *udp = connp->conn_udp;
2012 
2013 	/* If there are any options associated with the stream, free them. */
2014 	if (udp->udp_ip_snd_options) {
2015 		mi_free((char *)udp->udp_ip_snd_options);
2016 		udp->udp_ip_snd_options = NULL;
2017 	}
2018 
2019 	if (udp->udp_ip_rcv_options) {
2020 		mi_free((char *)udp->udp_ip_rcv_options);
2021 		udp->udp_ip_rcv_options = NULL;
2022 	}
2023 
2024 	/* Free memory associated with sticky options */
2025 	if (udp->udp_sticky_hdrs_len != 0) {
2026 		kmem_free(udp->udp_sticky_hdrs,
2027 		    udp->udp_sticky_hdrs_len);
2028 		udp->udp_sticky_hdrs = NULL;
2029 		udp->udp_sticky_hdrs_len = 0;
2030 	}
2031 
2032 	ip6_pkt_free(&udp->udp_sticky_ipp);
2033 
2034 	udp->udp_connp = NULL;
2035 	connp->conn_udp = NULL;
2036 	kmem_cache_free(udp_cache, udp);
2037 }
2038 
2039 /*
2040  * This routine handles each T_DISCON_REQ message passed to udp
2041  * as an indicating that UDP is no longer connected. This results
2042  * in sending a T_BIND_REQ to IP to restore the binding to just
2043  * the local address/port.
2044  *
2045  * This routine sends down a T_BIND_REQ to IP with the following mblks:
2046  *	T_BIND_REQ	- specifying just the local address/port
2047  *	T_OK_ACK	- for the T_DISCON_REQ
2048  *
2049  * The disconnect completes in udp_rput.
2050  * When a T_BIND_ACK is received the appended T_OK_ACK is sent to the TPI user.
2051  * Should udp_rput receive T_ERROR_ACK for the T_BIND_REQ it will convert
2052  * it to an error ack for the appropriate primitive.
2053  */
2054 static void
2055 udp_disconnect(queue_t *q, mblk_t *mp)
2056 {
2057 	udp_t	*udp = Q_TO_UDP(q);
2058 	mblk_t	*mp1;
2059 	udp_fanout_t *udpf;
2060 
2061 	if (udp->udp_state != TS_DATA_XFER) {
2062 		(void) mi_strlog(q, 1, SL_ERROR|SL_TRACE,
2063 		    "udp_disconnect: bad state, %u", udp->udp_state);
2064 		udp_err_ack(q, mp, TOUTSTATE, 0);
2065 		return;
2066 	}
2067 	udpf = &udp_bind_fanout[UDP_BIND_HASH(udp->udp_port)];
2068 	mutex_enter(&udpf->uf_lock);
2069 	udp->udp_v6src = udp->udp_bound_v6src;
2070 	udp->udp_state = TS_IDLE;
2071 	mutex_exit(&udpf->uf_lock);
2072 
2073 	/*
2074 	 * Send down bind to IP to remove the full binding and revert
2075 	 * to the local address binding.
2076 	 */
2077 	if (udp->udp_family == AF_INET)
2078 		mp1 = udp_ip_bind_mp(udp, O_T_BIND_REQ, sizeof (sin_t));
2079 	else
2080 		mp1 = udp_ip_bind_mp(udp, O_T_BIND_REQ, sizeof (sin6_t));
2081 	if (mp1 == NULL) {
2082 		udp_err_ack(q, mp, TSYSERR, ENOMEM);
2083 		return;
2084 	}
2085 	mp = mi_tpi_ok_ack_alloc(mp);
2086 	if (mp == NULL) {
2087 		/* Unable to reuse the T_DISCON_REQ for the ack. */
2088 		udp_err_ack_prim(q, mp1, T_DISCON_REQ, TSYSERR, ENOMEM);
2089 		return;
2090 	}
2091 
2092 	if (udp->udp_family == AF_INET6) {
2093 		int error;
2094 
2095 		/* Rebuild the header template */
2096 		error = udp_build_hdrs(q, udp);
2097 		if (error != 0) {
2098 			udp_err_ack_prim(q, mp, T_DISCON_REQ, TSYSERR, error);
2099 			freemsg(mp1);
2100 			return;
2101 		}
2102 	}
2103 	mutex_enter(&udpf->uf_lock);
2104 	udp->udp_discon_pending = 1;
2105 	mutex_exit(&udpf->uf_lock);
2106 
2107 	/* Append the T_OK_ACK to the T_BIND_REQ for udp_rput */
2108 	linkb(mp1, mp);
2109 
2110 	if (udp->udp_family == AF_INET6)
2111 		mp1 = ip_bind_v6(q, mp1, udp->udp_connp, NULL);
2112 	else
2113 		mp1 = ip_bind_v4(q, mp1, udp->udp_connp);
2114 
2115 	if (mp1 != NULL)
2116 		udp_rput_other(_RD(q), mp1);
2117 	else
2118 		CONN_INC_REF(udp->udp_connp);
2119 }
2120 
2121 /* This routine creates a T_ERROR_ACK message and passes it upstream. */
2122 static void
2123 udp_err_ack(queue_t *q, mblk_t *mp, t_scalar_t t_error, int sys_error)
2124 {
2125 	if ((mp = mi_tpi_err_ack_alloc(mp, t_error, sys_error)) != NULL)
2126 		putnext(UDP_RD(q), mp);
2127 }
2128 
2129 /* Shorthand to generate and send TPI error acks to our client */
2130 static void
2131 udp_err_ack_prim(queue_t *q, mblk_t *mp, int primitive, t_scalar_t t_error,
2132     int sys_error)
2133 {
2134 	struct T_error_ack	*teackp;
2135 
2136 	if ((mp = tpi_ack_alloc(mp, sizeof (struct T_error_ack),
2137 	    M_PCPROTO, T_ERROR_ACK)) != NULL) {
2138 		teackp = (struct T_error_ack *)mp->b_rptr;
2139 		teackp->ERROR_prim = primitive;
2140 		teackp->TLI_error = t_error;
2141 		teackp->UNIX_error = sys_error;
2142 		putnext(UDP_RD(q), mp);
2143 	}
2144 }
2145 
2146 /*ARGSUSED*/
2147 static int
2148 udp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
2149 {
2150 	int i;
2151 
2152 	for (i = 0; i < udp_g_num_epriv_ports; i++) {
2153 		if (udp_g_epriv_ports[i] != 0)
2154 			(void) mi_mpprintf(mp, "%d ", udp_g_epriv_ports[i]);
2155 	}
2156 	return (0);
2157 }
2158 
2159 /* ARGSUSED */
2160 static int
2161 udp_extra_priv_ports_add(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
2162     cred_t *cr)
2163 {
2164 	long	new_value;
2165 	int	i;
2166 
2167 	/*
2168 	 * Fail the request if the new value does not lie within the
2169 	 * port number limits.
2170 	 */
2171 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
2172 	    new_value <= 0 || new_value >= 65536) {
2173 		return (EINVAL);
2174 	}
2175 
2176 	/* Check if the value is already in the list */
2177 	for (i = 0; i < udp_g_num_epriv_ports; i++) {
2178 		if (new_value == udp_g_epriv_ports[i]) {
2179 			return (EEXIST);
2180 		}
2181 	}
2182 	/* Find an empty slot */
2183 	for (i = 0; i < udp_g_num_epriv_ports; i++) {
2184 		if (udp_g_epriv_ports[i] == 0)
2185 			break;
2186 	}
2187 	if (i == udp_g_num_epriv_ports) {
2188 		return (EOVERFLOW);
2189 	}
2190 
2191 	/* Set the new value */
2192 	udp_g_epriv_ports[i] = (in_port_t)new_value;
2193 	return (0);
2194 }
2195 
2196 /* ARGSUSED */
2197 static int
2198 udp_extra_priv_ports_del(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
2199     cred_t *cr)
2200 {
2201 	long	new_value;
2202 	int	i;
2203 
2204 	/*
2205 	 * Fail the request if the new value does not lie within the
2206 	 * port number limits.
2207 	 */
2208 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
2209 	    new_value <= 0 || new_value >= 65536) {
2210 		return (EINVAL);
2211 	}
2212 
2213 	/* Check that the value is already in the list */
2214 	for (i = 0; i < udp_g_num_epriv_ports; i++) {
2215 		if (udp_g_epriv_ports[i] == new_value)
2216 			break;
2217 	}
2218 	if (i == udp_g_num_epriv_ports) {
2219 		return (ESRCH);
2220 	}
2221 
2222 	/* Clear the value */
2223 	udp_g_epriv_ports[i] = 0;
2224 	return (0);
2225 }
2226 
2227 /* At minimum we need 4 bytes of UDP header */
2228 #define	ICMP_MIN_UDP_HDR	4
2229 
2230 /*
2231  * udp_icmp_error is called by udp_rput to process ICMP msgs. passed up by IP.
2232  * Generates the appropriate T_UDERROR_IND for permanent (non-transient) errors.
2233  * Assumes that IP has pulled up everything up to and including the ICMP header.
2234  * An M_CTL could potentially come here from some other module (i.e. if UDP
2235  * is pushed on some module other than IP). Thus, if we find that the M_CTL
2236  * does not have enough ICMP information , following STREAMS conventions,
2237  * we send it upstream assuming it is an M_CTL we don't understand.
2238  */
2239 static void
2240 udp_icmp_error(queue_t *q, mblk_t *mp)
2241 {
2242 	icmph_t *icmph;
2243 	ipha_t	*ipha;
2244 	int	iph_hdr_length;
2245 	udpha_t	*udpha;
2246 	sin_t	sin;
2247 	sin6_t	sin6;
2248 	mblk_t	*mp1;
2249 	int	error = 0;
2250 	size_t	mp_size = MBLKL(mp);
2251 	udp_t	*udp = Q_TO_UDP(q);
2252 
2253 	/*
2254 	 * Assume IP provides aligned packets - otherwise toss
2255 	 */
2256 	if (!OK_32PTR(mp->b_rptr)) {
2257 		freemsg(mp);
2258 		return;
2259 	}
2260 
2261 	/*
2262 	 * Verify that we have a complete IP header and the application has
2263 	 * asked for errors. If not, send it upstream.
2264 	 */
2265 	if (!udp->udp_dgram_errind || mp_size < sizeof (ipha_t)) {
2266 noticmpv4:
2267 		putnext(UDP_RD(q), mp);
2268 		return;
2269 	}
2270 
2271 	ipha = (ipha_t *)mp->b_rptr;
2272 	/*
2273 	 * Verify IP version. Anything other than IPv4 or IPv6 packet is sent
2274 	 * upstream. ICMPv6  is handled in udp_icmp_error_ipv6.
2275 	 */
2276 	switch (IPH_HDR_VERSION(ipha)) {
2277 	case IPV6_VERSION:
2278 		udp_icmp_error_ipv6(q, mp);
2279 		return;
2280 	case IPV4_VERSION:
2281 		break;
2282 	default:
2283 		goto noticmpv4;
2284 	}
2285 
2286 	/* Skip past the outer IP and ICMP headers */
2287 	iph_hdr_length = IPH_HDR_LENGTH(ipha);
2288 	icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length];
2289 	/*
2290 	 * If we don't have the correct outer IP header length or if the ULP
2291 	 * is not IPPROTO_ICMP or if we don't have a complete inner IP header
2292 	 * send the packet upstream.
2293 	 */
2294 	if (iph_hdr_length < sizeof (ipha_t) ||
2295 	    ipha->ipha_protocol != IPPROTO_ICMP ||
2296 	    (ipha_t *)&icmph[1] + 1 > (ipha_t *)mp->b_wptr) {
2297 		goto noticmpv4;
2298 	}
2299 	ipha = (ipha_t *)&icmph[1];
2300 
2301 	/* Skip past the inner IP and find the ULP header */
2302 	iph_hdr_length = IPH_HDR_LENGTH(ipha);
2303 	udpha = (udpha_t *)((char *)ipha + iph_hdr_length);
2304 	/*
2305 	 * If we don't have the correct inner IP header length or if the ULP
2306 	 * is not IPPROTO_UDP or if we don't have at least ICMP_MIN_UDP_HDR
2307 	 * bytes of UDP header, send it upstream.
2308 	 */
2309 	if (iph_hdr_length < sizeof (ipha_t) ||
2310 	    ipha->ipha_protocol != IPPROTO_UDP ||
2311 	    (uchar_t *)udpha + ICMP_MIN_UDP_HDR > mp->b_wptr) {
2312 		goto noticmpv4;
2313 	}
2314 
2315 	switch (icmph->icmph_type) {
2316 	case ICMP_DEST_UNREACHABLE:
2317 		switch (icmph->icmph_code) {
2318 		case ICMP_FRAGMENTATION_NEEDED:
2319 			/*
2320 			 * IP has already adjusted the path MTU.
2321 			 * XXX Somehow pass MTU indication to application?
2322 			 */
2323 			break;
2324 		case ICMP_PORT_UNREACHABLE:
2325 		case ICMP_PROTOCOL_UNREACHABLE:
2326 			error = ECONNREFUSED;
2327 			break;
2328 		default:
2329 			/* Transient errors */
2330 			break;
2331 		}
2332 		break;
2333 	default:
2334 		/* Transient errors */
2335 		break;
2336 	}
2337 	if (error == 0) {
2338 		freemsg(mp);
2339 		return;
2340 	}
2341 
2342 	switch (udp->udp_family) {
2343 	case AF_INET:
2344 		sin = sin_null;
2345 		sin.sin_family = AF_INET;
2346 		sin.sin_addr.s_addr = ipha->ipha_dst;
2347 		sin.sin_port = udpha->uha_dst_port;
2348 		mp1 = mi_tpi_uderror_ind((char *)&sin, sizeof (sin_t), NULL, 0,
2349 		    error);
2350 		break;
2351 	case AF_INET6:
2352 		sin6 = sin6_null;
2353 		sin6.sin6_family = AF_INET6;
2354 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &sin6.sin6_addr);
2355 		sin6.sin6_port = udpha->uha_dst_port;
2356 
2357 		mp1 = mi_tpi_uderror_ind((char *)&sin6, sizeof (sin6_t),
2358 		    NULL, 0, error);
2359 		break;
2360 	}
2361 	if (mp1)
2362 		putnext(UDP_RD(q), mp1);
2363 	freemsg(mp);
2364 }
2365 
2366 /*
2367  * udp_icmp_error_ipv6 is called by udp_icmp_error to process ICMP for IPv6.
2368  * Generates the appropriate T_UDERROR_IND for permanent (non-transient) errors.
2369  * Assumes that IP has pulled up all the extension headers as well as the
2370  * ICMPv6 header.
2371  * An M_CTL could potentially come here from some other module (i.e. if UDP
2372  * is pushed on some module other than IP). Thus, if we find that the M_CTL
2373  * does not have enough ICMP information , following STREAMS conventions,
2374  * we send it upstream assuming it is an M_CTL we don't understand. The reason
2375  * it might get here is if the non-ICMP M_CTL accidently has 6 in the version
2376  * field (when cast to ipha_t in udp_icmp_error).
2377  */
2378 static void
2379 udp_icmp_error_ipv6(queue_t *q, mblk_t *mp)
2380 {
2381 	icmp6_t		*icmp6;
2382 	ip6_t		*ip6h, *outer_ip6h;
2383 	uint16_t	hdr_length;
2384 	uint8_t		*nexthdrp;
2385 	udpha_t		*udpha;
2386 	sin6_t		sin6;
2387 	mblk_t		*mp1;
2388 	int		error = 0;
2389 	size_t		mp_size = MBLKL(mp);
2390 	udp_t		*udp = Q_TO_UDP(q);
2391 
2392 	/*
2393 	 * Verify that we have a complete IP header. If not, send it upstream.
2394 	 */
2395 	if (mp_size < sizeof (ip6_t)) {
2396 noticmpv6:
2397 		putnext(UDP_RD(q), mp);
2398 		return;
2399 	}
2400 
2401 	outer_ip6h = (ip6_t *)mp->b_rptr;
2402 	/*
2403 	 * Verify this is an ICMPV6 packet, else send it upstream
2404 	 */
2405 	if (outer_ip6h->ip6_nxt == IPPROTO_ICMPV6) {
2406 		hdr_length = IPV6_HDR_LEN;
2407 	} else if (!ip_hdr_length_nexthdr_v6(mp, outer_ip6h, &hdr_length,
2408 	    &nexthdrp) ||
2409 	    *nexthdrp != IPPROTO_ICMPV6) {
2410 		goto noticmpv6;
2411 	}
2412 	icmp6 = (icmp6_t *)&mp->b_rptr[hdr_length];
2413 	ip6h = (ip6_t *)&icmp6[1];
2414 	/*
2415 	 * Verify we have a complete ICMP and inner IP header.
2416 	 */
2417 	if ((uchar_t *)&ip6h[1] > mp->b_wptr)
2418 		goto noticmpv6;
2419 
2420 	if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &hdr_length, &nexthdrp))
2421 		goto noticmpv6;
2422 	udpha = (udpha_t *)((char *)ip6h + hdr_length);
2423 	/*
2424 	 * Validate inner header. If the ULP is not IPPROTO_UDP or if we don't
2425 	 * have at least ICMP_MIN_UDP_HDR bytes of  UDP header send the
2426 	 * packet upstream.
2427 	 */
2428 	if ((*nexthdrp != IPPROTO_UDP) ||
2429 	    ((uchar_t *)udpha + ICMP_MIN_UDP_HDR) > mp->b_wptr) {
2430 		goto noticmpv6;
2431 	}
2432 
2433 	switch (icmp6->icmp6_type) {
2434 	case ICMP6_DST_UNREACH:
2435 		switch (icmp6->icmp6_code) {
2436 		case ICMP6_DST_UNREACH_NOPORT:
2437 			error = ECONNREFUSED;
2438 			break;
2439 		case ICMP6_DST_UNREACH_ADMIN:
2440 		case ICMP6_DST_UNREACH_NOROUTE:
2441 		case ICMP6_DST_UNREACH_BEYONDSCOPE:
2442 		case ICMP6_DST_UNREACH_ADDR:
2443 			/* Transient errors */
2444 			break;
2445 		default:
2446 			break;
2447 		}
2448 		break;
2449 	case ICMP6_PACKET_TOO_BIG: {
2450 		struct T_unitdata_ind	*tudi;
2451 		struct T_opthdr		*toh;
2452 		size_t			udi_size;
2453 		mblk_t			*newmp;
2454 		t_scalar_t		opt_length = sizeof (struct T_opthdr) +
2455 		    sizeof (struct ip6_mtuinfo);
2456 		sin6_t			*sin6;
2457 		struct ip6_mtuinfo	*mtuinfo;
2458 
2459 		/*
2460 		 * If the application has requested to receive path mtu
2461 		 * information, send up an empty message containing an
2462 		 * IPV6_PATHMTU ancillary data item.
2463 		 */
2464 		if (!udp->udp_ipv6_recvpathmtu)
2465 			break;
2466 
2467 		udi_size = sizeof (struct T_unitdata_ind) + sizeof (sin6_t) +
2468 		    opt_length;
2469 		if ((newmp = allocb(udi_size, BPRI_MED)) == NULL) {
2470 			BUMP_MIB(&udp_mib, udpInErrors);
2471 			break;
2472 		}
2473 
2474 		/*
2475 		 * newmp->b_cont is left to NULL on purpose.  This is an
2476 		 * empty message containing only ancillary data.
2477 		 */
2478 		newmp->b_datap->db_type = M_PROTO;
2479 		tudi = (struct T_unitdata_ind *)newmp->b_rptr;
2480 		newmp->b_wptr = (uchar_t *)tudi + udi_size;
2481 		tudi->PRIM_type = T_UNITDATA_IND;
2482 		tudi->SRC_length = sizeof (sin6_t);
2483 		tudi->SRC_offset = sizeof (struct T_unitdata_ind);
2484 		tudi->OPT_offset = tudi->SRC_offset + sizeof (sin6_t);
2485 		tudi->OPT_length = opt_length;
2486 
2487 		sin6 = (sin6_t *)&tudi[1];
2488 		bzero(sin6, sizeof (sin6_t));
2489 		sin6->sin6_family = AF_INET6;
2490 		sin6->sin6_addr = udp->udp_v6dst;
2491 
2492 		toh = (struct T_opthdr *)&sin6[1];
2493 		toh->level = IPPROTO_IPV6;
2494 		toh->name = IPV6_PATHMTU;
2495 		toh->len = opt_length;
2496 		toh->status = 0;
2497 
2498 		mtuinfo = (struct ip6_mtuinfo *)&toh[1];
2499 		bzero(mtuinfo, sizeof (struct ip6_mtuinfo));
2500 		mtuinfo->ip6m_addr.sin6_family = AF_INET6;
2501 		mtuinfo->ip6m_addr.sin6_addr = ip6h->ip6_dst;
2502 		mtuinfo->ip6m_mtu = icmp6->icmp6_mtu;
2503 		/*
2504 		 * We've consumed everything we need from the original
2505 		 * message.  Free it, then send our empty message.
2506 		 */
2507 		freemsg(mp);
2508 		putnext(UDP_RD(q), newmp);
2509 		return;
2510 	}
2511 	case ICMP6_TIME_EXCEEDED:
2512 		/* Transient errors */
2513 		break;
2514 	case ICMP6_PARAM_PROB:
2515 		/* If this corresponds to an ICMP_PROTOCOL_UNREACHABLE */
2516 		if (icmp6->icmp6_code == ICMP6_PARAMPROB_NEXTHEADER &&
2517 		    (uchar_t *)ip6h + icmp6->icmp6_pptr ==
2518 		    (uchar_t *)nexthdrp) {
2519 			error = ECONNREFUSED;
2520 			break;
2521 		}
2522 		break;
2523 	}
2524 	if (error == 0) {
2525 		freemsg(mp);
2526 		return;
2527 	}
2528 
2529 	sin6 = sin6_null;
2530 	sin6.sin6_family = AF_INET6;
2531 	sin6.sin6_addr = ip6h->ip6_dst;
2532 	sin6.sin6_port = udpha->uha_dst_port;
2533 	sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK;
2534 
2535 	mp1 = mi_tpi_uderror_ind((char *)&sin6, sizeof (sin6_t), NULL, 0,
2536 	    error);
2537 	if (mp1)
2538 		putnext(UDP_RD(q), mp1);
2539 	freemsg(mp);
2540 }
2541 
2542 /*
2543  * This routine responds to T_ADDR_REQ messages.  It is called by udp_wput.
2544  * The local address is filled in if endpoint is bound. The remote address
2545  * is filled in if remote address has been precified ("connected endpoint")
2546  * (The concept of connected CLTS sockets is alien to published TPI
2547  *  but we support it anyway).
2548  */
2549 static void
2550 udp_addr_req(queue_t *q, mblk_t *mp)
2551 {
2552 	sin_t	*sin;
2553 	sin6_t	*sin6;
2554 	mblk_t	*ackmp;
2555 	struct T_addr_ack *taa;
2556 	udp_t	*udp = Q_TO_UDP(q);
2557 
2558 	/* Make it large enough for worst case */
2559 	ackmp = reallocb(mp, sizeof (struct T_addr_ack) +
2560 	    2 * sizeof (sin6_t), 1);
2561 	if (ackmp == NULL) {
2562 		udp_err_ack(q, mp, TSYSERR, ENOMEM);
2563 		return;
2564 	}
2565 	taa = (struct T_addr_ack *)ackmp->b_rptr;
2566 
2567 	bzero(taa, sizeof (struct T_addr_ack));
2568 	ackmp->b_wptr = (uchar_t *)&taa[1];
2569 
2570 	taa->PRIM_type = T_ADDR_ACK;
2571 	ackmp->b_datap->db_type = M_PCPROTO;
2572 	/*
2573 	 * Note: Following code assumes 32 bit alignment of basic
2574 	 * data structures like sin_t and struct T_addr_ack.
2575 	 */
2576 	if (udp->udp_state != TS_UNBND) {
2577 		/*
2578 		 * Fill in local address first
2579 		 */
2580 		taa->LOCADDR_offset = sizeof (*taa);
2581 		if (udp->udp_family == AF_INET) {
2582 			taa->LOCADDR_length = sizeof (sin_t);
2583 			sin = (sin_t *)&taa[1];
2584 			/* Fill zeroes and then initialize non-zero fields */
2585 			*sin = sin_null;
2586 			sin->sin_family = AF_INET;
2587 			if (!IN6_IS_ADDR_V4MAPPED_ANY(&udp->udp_v6src) &&
2588 			    !IN6_IS_ADDR_UNSPECIFIED(&udp->udp_v6src)) {
2589 				IN6_V4MAPPED_TO_IPADDR(&udp->udp_v6src,
2590 				    sin->sin_addr.s_addr);
2591 			} else {
2592 				/*
2593 				 * INADDR_ANY
2594 				 * udp_v6src is not set, we might be bound to
2595 				 * broadcast/multicast. Use udp_bound_v6src as
2596 				 * local address instead (that could
2597 				 * also still be INADDR_ANY)
2598 				 */
2599 				IN6_V4MAPPED_TO_IPADDR(&udp->udp_bound_v6src,
2600 				    sin->sin_addr.s_addr);
2601 			}
2602 			sin->sin_port = udp->udp_port;
2603 			ackmp->b_wptr = (uchar_t *)&sin[1];
2604 			if (udp->udp_state == TS_DATA_XFER) {
2605 				/*
2606 				 * connected, fill remote address too
2607 				 */
2608 				taa->REMADDR_length = sizeof (sin_t);
2609 				/* assumed 32-bit alignment */
2610 				taa->REMADDR_offset = taa->LOCADDR_offset +
2611 				    taa->LOCADDR_length;
2612 
2613 				sin = (sin_t *)(ackmp->b_rptr +
2614 				    taa->REMADDR_offset);
2615 				/* initialize */
2616 				*sin = sin_null;
2617 				sin->sin_family = AF_INET;
2618 				sin->sin_addr.s_addr =
2619 				    V4_PART_OF_V6(udp->udp_v6dst);
2620 				sin->sin_port = udp->udp_dstport;
2621 				ackmp->b_wptr = (uchar_t *)&sin[1];
2622 			}
2623 		} else {
2624 			taa->LOCADDR_length = sizeof (sin6_t);
2625 			sin6 = (sin6_t *)&taa[1];
2626 			/* Fill zeroes and then initialize non-zero fields */
2627 			*sin6 = sin6_null;
2628 			sin6->sin6_family = AF_INET6;
2629 			if (!IN6_IS_ADDR_UNSPECIFIED(&udp->udp_v6src)) {
2630 				sin6->sin6_addr = udp->udp_v6src;
2631 			} else {
2632 				/*
2633 				 * UNSPECIFIED
2634 				 * udp_v6src is not set, we might be bound to
2635 				 * broadcast/multicast. Use udp_bound_v6src as
2636 				 * local address instead (that could
2637 				 * also still be UNSPECIFIED)
2638 				 */
2639 				sin6->sin6_addr =
2640 				    udp->udp_bound_v6src;
2641 			}
2642 			sin6->sin6_port = udp->udp_port;
2643 			ackmp->b_wptr = (uchar_t *)&sin6[1];
2644 			if (udp->udp_state == TS_DATA_XFER) {
2645 				/*
2646 				 * connected, fill remote address too
2647 				 */
2648 				taa->REMADDR_length = sizeof (sin6_t);
2649 				/* assumed 32-bit alignment */
2650 				taa->REMADDR_offset = taa->LOCADDR_offset +
2651 				    taa->LOCADDR_length;
2652 
2653 				sin6 = (sin6_t *)(ackmp->b_rptr +
2654 				    taa->REMADDR_offset);
2655 				/* initialize */
2656 				*sin6 = sin6_null;
2657 				sin6->sin6_family = AF_INET6;
2658 				sin6->sin6_addr = udp->udp_v6dst;
2659 				sin6->sin6_port =  udp->udp_dstport;
2660 				ackmp->b_wptr = (uchar_t *)&sin6[1];
2661 			}
2662 			ackmp->b_wptr = (uchar_t *)&sin6[1];
2663 		}
2664 	}
2665 	ASSERT(ackmp->b_wptr <= ackmp->b_datap->db_lim);
2666 	putnext(UDP_RD(q), ackmp);
2667 }
2668 
2669 static void
2670 udp_copy_info(struct T_info_ack *tap, udp_t *udp)
2671 {
2672 	if (udp->udp_family == AF_INET) {
2673 		*tap = udp_g_t_info_ack_ipv4;
2674 	} else {
2675 		*tap = udp_g_t_info_ack_ipv6;
2676 	}
2677 	tap->CURRENT_state = udp->udp_state;
2678 	tap->OPT_size = udp_max_optsize;
2679 }
2680 
2681 /*
2682  * This routine responds to T_CAPABILITY_REQ messages.  It is called by
2683  * udp_wput.  Much of the T_CAPABILITY_ACK information is copied from
2684  * udp_g_t_info_ack.  The current state of the stream is copied from
2685  * udp_state.
2686  */
2687 static void
2688 udp_capability_req(queue_t *q, mblk_t *mp)
2689 {
2690 	t_uscalar_t		cap_bits1;
2691 	struct T_capability_ack	*tcap;
2692 	udp_t	*udp = Q_TO_UDP(q);
2693 
2694 	cap_bits1 = ((struct T_capability_req *)mp->b_rptr)->CAP_bits1;
2695 
2696 	mp = tpi_ack_alloc(mp, sizeof (struct T_capability_ack),
2697 	    mp->b_datap->db_type, T_CAPABILITY_ACK);
2698 	if (!mp)
2699 		return;
2700 
2701 	tcap = (struct T_capability_ack *)mp->b_rptr;
2702 	tcap->CAP_bits1 = 0;
2703 
2704 	if (cap_bits1 & TC1_INFO) {
2705 		udp_copy_info(&tcap->INFO_ack, udp);
2706 		tcap->CAP_bits1 |= TC1_INFO;
2707 	}
2708 
2709 	putnext(UDP_RD(q), mp);
2710 }
2711 
2712 /*
2713  * This routine responds to T_INFO_REQ messages.  It is called by udp_wput.
2714  * Most of the T_INFO_ACK information is copied from udp_g_t_info_ack.
2715  * The current state of the stream is copied from udp_state.
2716  */
2717 static void
2718 udp_info_req(queue_t *q, mblk_t *mp)
2719 {
2720 	udp_t *udp = Q_TO_UDP(q);
2721 
2722 	/* Create a T_INFO_ACK message. */
2723 	mp = tpi_ack_alloc(mp, sizeof (struct T_info_ack), M_PCPROTO,
2724 	    T_INFO_ACK);
2725 	if (!mp)
2726 		return;
2727 	udp_copy_info((struct T_info_ack *)mp->b_rptr, udp);
2728 	putnext(UDP_RD(q), mp);
2729 }
2730 
2731 /*
2732  * IP recognizes seven kinds of bind requests:
2733  *
2734  * - A zero-length address binds only to the protocol number.
2735  *
2736  * - A 4-byte address is treated as a request to
2737  * validate that the address is a valid local IPv4
2738  * address, appropriate for an application to bind to.
2739  * IP does the verification, but does not make any note
2740  * of the address at this time.
2741  *
2742  * - A 16-byte address contains is treated as a request
2743  * to validate a local IPv6 address, as the 4-byte
2744  * address case above.
2745  *
2746  * - A 16-byte sockaddr_in to validate the local IPv4 address and also
2747  * use it for the inbound fanout of packets.
2748  *
2749  * - A 24-byte sockaddr_in6 to validate the local IPv6 address and also
2750  * use it for the inbound fanout of packets.
2751  *
2752  * - A 12-byte address (ipa_conn_t) containing complete IPv4 fanout
2753  * information consisting of local and remote addresses
2754  * and ports.  In this case, the addresses are both
2755  * validated as appropriate for this operation, and, if
2756  * so, the information is retained for use in the
2757  * inbound fanout.
2758  *
2759  * - A 36-byte address address (ipa6_conn_t) containing complete IPv6
2760  * fanout information, like the 12-byte case above.
2761  *
2762  * IP will also fill in the IRE request mblk with information
2763  * regarding our peer.  In all cases, we notify IP of our protocol
2764  * type by appending a single protocol byte to the bind request.
2765  */
2766 static mblk_t *
2767 udp_ip_bind_mp(udp_t *udp, t_scalar_t bind_prim, t_scalar_t addr_length)
2768 {
2769 	char	*cp;
2770 	mblk_t	*mp;
2771 	struct T_bind_req *tbr;
2772 	ipa_conn_t	*ac;
2773 	ipa6_conn_t	*ac6;
2774 	sin_t		*sin;
2775 	sin6_t		*sin6;
2776 
2777 	ASSERT(bind_prim == O_T_BIND_REQ || bind_prim == T_BIND_REQ);
2778 
2779 	mp = allocb(sizeof (*tbr) + addr_length + 1, BPRI_HI);
2780 	if (!mp)
2781 		return (mp);
2782 	mp->b_datap->db_type = M_PROTO;
2783 	tbr = (struct T_bind_req *)mp->b_rptr;
2784 	tbr->PRIM_type = bind_prim;
2785 	tbr->ADDR_offset = sizeof (*tbr);
2786 	tbr->CONIND_number = 0;
2787 	tbr->ADDR_length = addr_length;
2788 	cp = (char *)&tbr[1];
2789 	switch (addr_length) {
2790 	case sizeof (ipa_conn_t):
2791 		ASSERT(udp->udp_family == AF_INET);
2792 		/* Append a request for an IRE */
2793 		mp->b_cont = allocb(sizeof (ire_t), BPRI_HI);
2794 		if (!mp->b_cont) {
2795 			freemsg(mp);
2796 			return (NULL);
2797 		}
2798 		mp->b_cont->b_wptr += sizeof (ire_t);
2799 		mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE;
2800 
2801 		/* cp known to be 32 bit aligned */
2802 		ac = (ipa_conn_t *)cp;
2803 		ac->ac_laddr = V4_PART_OF_V6(udp->udp_v6src);
2804 		ac->ac_faddr = V4_PART_OF_V6(udp->udp_v6dst);
2805 		ac->ac_fport = udp->udp_dstport;
2806 		ac->ac_lport = udp->udp_port;
2807 		break;
2808 
2809 	case sizeof (ipa6_conn_t):
2810 		ASSERT(udp->udp_family == AF_INET6);
2811 		/* Append a request for an IRE */
2812 		mp->b_cont = allocb(sizeof (ire_t), BPRI_HI);
2813 		if (!mp->b_cont) {
2814 			freemsg(mp);
2815 			return (NULL);
2816 		}
2817 		mp->b_cont->b_wptr += sizeof (ire_t);
2818 		mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE;
2819 
2820 		/* cp known to be 32 bit aligned */
2821 		ac6 = (ipa6_conn_t *)cp;
2822 		ac6->ac6_laddr = udp->udp_v6src;
2823 		ac6->ac6_faddr = udp->udp_v6dst;
2824 		ac6->ac6_fport = udp->udp_dstport;
2825 		ac6->ac6_lport = udp->udp_port;
2826 		break;
2827 
2828 	case sizeof (sin_t):
2829 		ASSERT(udp->udp_family == AF_INET);
2830 		/* Append a request for an IRE */
2831 		mp->b_cont = allocb(sizeof (ire_t), BPRI_HI);
2832 		if (!mp->b_cont) {
2833 			freemsg(mp);
2834 			return (NULL);
2835 		}
2836 		mp->b_cont->b_wptr += sizeof (ire_t);
2837 		mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE;
2838 
2839 		sin = (sin_t *)cp;
2840 		*sin = sin_null;
2841 		sin->sin_family = AF_INET;
2842 		sin->sin_addr.s_addr = V4_PART_OF_V6(udp->udp_bound_v6src);
2843 		sin->sin_port = udp->udp_port;
2844 		break;
2845 
2846 	case sizeof (sin6_t):
2847 		ASSERT(udp->udp_family == AF_INET6);
2848 		/* Append a request for an IRE */
2849 		mp->b_cont = allocb(sizeof (ire_t), BPRI_HI);
2850 		if (!mp->b_cont) {
2851 			freemsg(mp);
2852 			return (NULL);
2853 		}
2854 		mp->b_cont->b_wptr += sizeof (ire_t);
2855 		mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE;
2856 
2857 		sin6 = (sin6_t *)cp;
2858 		*sin6 = sin6_null;
2859 		sin6->sin6_family = AF_INET6;
2860 		sin6->sin6_addr = udp->udp_bound_v6src;
2861 		sin6->sin6_port = udp->udp_port;
2862 		break;
2863 	}
2864 	/* Add protocol number to end */
2865 	cp[addr_length] = (char)IPPROTO_UDP;
2866 	mp->b_wptr = (uchar_t *)&cp[addr_length + 1];
2867 	return (mp);
2868 }
2869 
2870 /*
2871  * This is the open routine for udp.  It allocates a udp_t structure for
2872  * the stream and, on the first open of the module, creates an ND table.
2873  */
2874 /* ARGSUSED */
2875 static int
2876 udp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
2877 {
2878 	int	err;
2879 	udp_t	*udp;
2880 	conn_t *connp;
2881 	zoneid_t zoneid = getzoneid();
2882 	queue_t	*ip_wq;
2883 	char	*name;
2884 
2885 	TRACE_1(TR_FAC_UDP, TR_UDP_OPEN, "udp_open: q %p", q);
2886 
2887 	/* If the stream is already open, return immediately. */
2888 	if (q->q_ptr != NULL)
2889 		return (0);
2890 
2891 	/* If this is not a push of udp as a module, fail. */
2892 	if (sflag != MODOPEN)
2893 		return (EINVAL);
2894 
2895 	q->q_hiwat = udp_recv_hiwat;
2896 	WR(q)->q_hiwat = udp_xmit_hiwat;
2897 	WR(q)->q_lowat = udp_xmit_lowat;
2898 
2899 	/* Insert ourselves in the stream since we're about to walk q_next */
2900 	qprocson(q);
2901 
2902 	udp = kmem_cache_alloc(udp_cache, KM_SLEEP);
2903 	bzero(udp, sizeof (*udp));
2904 
2905 	/*
2906 	 * UDP is supported only as a module and it has to be pushed directly
2907 	 * above the device instance of IP. If UDP is pushed anywhere else
2908 	 * on a stream, it will support just T_SVR4_OPTMGMT_REQ for the
2909 	 * sake of MIB browsers and fail everything else.
2910 	 */
2911 	ip_wq = WR(q)->q_next;
2912 	if (ip_wq->q_next != NULL ||
2913 	    (name = ip_wq->q_qinfo->qi_minfo->mi_idname) == NULL ||
2914 	    strcmp(name, IP_MOD_NAME) != 0 ||
2915 	    ip_wq->q_qinfo->qi_minfo->mi_idnum != IP_MOD_ID) {
2916 		/* Support just SNMP for MIB browsers */
2917 		connp = ipcl_conn_create(IPCL_IPCCONN, KM_SLEEP);
2918 		connp->conn_rq = q;
2919 		connp->conn_wq = WR(q);
2920 		connp->conn_flags |= IPCL_UDPMOD;
2921 		connp->conn_cred = credp;
2922 		connp->conn_zoneid = zoneid;
2923 		connp->conn_udp = udp;
2924 		udp->udp_connp = connp;
2925 		q->q_ptr = WR(q)->q_ptr = connp;
2926 		crhold(credp);
2927 		q->q_qinfo = &udp_snmp_rinit;
2928 		WR(q)->q_qinfo = &udp_snmp_winit;
2929 		return (0);
2930 	}
2931 
2932 	/*
2933 	 * Initialize the udp_t structure for this stream.
2934 	 */
2935 	q = RD(ip_wq);
2936 	connp = Q_TO_CONN(q);
2937 	mutex_enter(&connp->conn_lock);
2938 	connp->conn_proto = IPPROTO_UDP;
2939 	connp->conn_flags |= IPCL_UDP;
2940 	connp->conn_sqp = IP_SQUEUE_GET(lbolt);
2941 	connp->conn_udp = udp;
2942 
2943 	/* Set the initial state of the stream and the privilege status. */
2944 	udp->udp_connp = connp;
2945 	udp->udp_state = TS_UNBND;
2946 	udp->udp_mode = UDP_MT_HOT;
2947 	if (getmajor(*devp) == (major_t)UDP6_MAJ) {
2948 		udp->udp_family = AF_INET6;
2949 		udp->udp_ipversion = IPV6_VERSION;
2950 		udp->udp_max_hdr_len = IPV6_HDR_LEN + UDPH_SIZE;
2951 		udp->udp_ttl = udp_ipv6_hoplimit;
2952 		connp->conn_af_isv6 = B_TRUE;
2953 		connp->conn_flags |= IPCL_ISV6;
2954 	} else {
2955 		udp->udp_family = AF_INET;
2956 		udp->udp_ipversion = IPV4_VERSION;
2957 		udp->udp_max_hdr_len = IP_SIMPLE_HDR_LENGTH + UDPH_SIZE;
2958 		udp->udp_ttl = udp_ipv4_ttl;
2959 		connp->conn_af_isv6 = B_FALSE;
2960 		connp->conn_flags &= ~IPCL_ISV6;
2961 	}
2962 
2963 	udp->udp_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
2964 	connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
2965 	connp->conn_zoneid = zoneid;
2966 
2967 	/*
2968 	 * If the caller has the process-wide flag set, then default to MAC
2969 	 * exempt mode.  This allows read-down to unlabeled hosts.
2970 	 */
2971 	if (getpflags(NET_MAC_AWARE, credp) != 0)
2972 		udp->udp_mac_exempt = B_TRUE;
2973 
2974 	if (connp->conn_flags & IPCL_SOCKET) {
2975 		udp->udp_issocket = B_TRUE;
2976 		udp->udp_direct_sockfs = B_TRUE;
2977 	}
2978 
2979 	connp->conn_ulp_labeled = is_system_labeled();
2980 
2981 	mutex_exit(&connp->conn_lock);
2982 
2983 	/*
2984 	 * The transmit hiwat/lowat is only looked at on IP's queue.
2985 	 * Store in q_hiwat in order to return on SO_SNDBUF/SO_RCVBUF
2986 	 * getsockopts.
2987 	 */
2988 	q->q_hiwat = udp_recv_hiwat;
2989 	WR(q)->q_hiwat = udp_xmit_hiwat;
2990 	WR(q)->q_lowat = udp_xmit_lowat;
2991 
2992 	if (udp->udp_family == AF_INET6) {
2993 		/* Build initial header template for transmit */
2994 		if ((err = udp_build_hdrs(q, udp)) != 0) {
2995 error:
2996 			qprocsoff(UDP_RD(q));
2997 			udp->udp_connp = NULL;
2998 			connp->conn_udp = NULL;
2999 			kmem_cache_free(udp_cache, udp);
3000 			return (err);
3001 		}
3002 	}
3003 
3004 	/* Set the Stream head write offset and high watermark. */
3005 	(void) mi_set_sth_wroff(UDP_RD(q),
3006 	    udp->udp_max_hdr_len + udp_wroff_extra);
3007 	(void) mi_set_sth_hiwat(UDP_RD(q), udp_set_rcv_hiwat(udp, q->q_hiwat));
3008 
3009 	WR(UDP_RD(q))->q_qinfo = &udp_winit;
3010 
3011 	return (0);
3012 }
3013 
3014 /*
3015  * Which UDP options OK to set through T_UNITDATA_REQ...
3016  */
3017 /* ARGSUSED */
3018 static boolean_t
3019 udp_opt_allow_udr_set(t_scalar_t level, t_scalar_t name)
3020 {
3021 	return (B_TRUE);
3022 }
3023 
3024 /*
3025  * This routine gets default values of certain options whose default
3026  * values are maintained by protcol specific code
3027  */
3028 /* ARGSUSED */
3029 int
3030 udp_opt_default(queue_t	*q, t_scalar_t level, t_scalar_t name, uchar_t *ptr)
3031 {
3032 	int *i1 = (int *)ptr;
3033 
3034 	switch (level) {
3035 	case IPPROTO_IP:
3036 		switch (name) {
3037 		case IP_MULTICAST_TTL:
3038 			*ptr = (uchar_t)IP_DEFAULT_MULTICAST_TTL;
3039 			return (sizeof (uchar_t));
3040 		case IP_MULTICAST_LOOP:
3041 			*ptr = (uchar_t)IP_DEFAULT_MULTICAST_LOOP;
3042 			return (sizeof (uchar_t));
3043 		}
3044 		break;
3045 	case IPPROTO_IPV6:
3046 		switch (name) {
3047 		case IPV6_MULTICAST_HOPS:
3048 			*i1 = IP_DEFAULT_MULTICAST_TTL;
3049 			return (sizeof (int));
3050 		case IPV6_MULTICAST_LOOP:
3051 			*i1 = IP_DEFAULT_MULTICAST_LOOP;
3052 			return (sizeof (int));
3053 		case IPV6_UNICAST_HOPS:
3054 			*i1 = udp_ipv6_hoplimit;
3055 			return (sizeof (int));
3056 		}
3057 		break;
3058 	}
3059 	return (-1);
3060 }
3061 
3062 /*
3063  * This routine retrieves the current status of socket options
3064  * and expects the caller to pass in the queue pointer of the
3065  * upper instance.  It returns the size of the option retrieved.
3066  */
3067 int
3068 udp_opt_get(queue_t *q, t_scalar_t level, t_scalar_t name, uchar_t *ptr)
3069 {
3070 	int	*i1 = (int *)ptr;
3071 	conn_t	*connp;
3072 	udp_t	*udp;
3073 	ip6_pkt_t *ipp;
3074 	int	len;
3075 
3076 	q = UDP_WR(q);
3077 	connp = Q_TO_CONN(q);
3078 	udp = connp->conn_udp;
3079 	ipp = &udp->udp_sticky_ipp;
3080 
3081 	switch (level) {
3082 	case SOL_SOCKET:
3083 		switch (name) {
3084 		case SO_DEBUG:
3085 			*i1 = udp->udp_debug;
3086 			break;	/* goto sizeof (int) option return */
3087 		case SO_REUSEADDR:
3088 			*i1 = udp->udp_reuseaddr;
3089 			break;	/* goto sizeof (int) option return */
3090 		case SO_TYPE:
3091 			*i1 = SOCK_DGRAM;
3092 			break;	/* goto sizeof (int) option return */
3093 
3094 		/*
3095 		 * The following three items are available here,
3096 		 * but are only meaningful to IP.
3097 		 */
3098 		case SO_DONTROUTE:
3099 			*i1 = udp->udp_dontroute;
3100 			break;	/* goto sizeof (int) option return */
3101 		case SO_USELOOPBACK:
3102 			*i1 = udp->udp_useloopback;
3103 			break;	/* goto sizeof (int) option return */
3104 		case SO_BROADCAST:
3105 			*i1 = udp->udp_broadcast;
3106 			break;	/* goto sizeof (int) option return */
3107 
3108 		case SO_SNDBUF:
3109 			*i1 = q->q_hiwat;
3110 			break;	/* goto sizeof (int) option return */
3111 		case SO_RCVBUF:
3112 			*i1 = RD(q)->q_hiwat;
3113 			break;	/* goto sizeof (int) option return */
3114 		case SO_DGRAM_ERRIND:
3115 			*i1 = udp->udp_dgram_errind;
3116 			break;	/* goto sizeof (int) option return */
3117 		case SO_RECVUCRED:
3118 			*i1 = udp->udp_recvucred;
3119 			break;	/* goto sizeof (int) option return */
3120 		case SO_TIMESTAMP:
3121 			*i1 = udp->udp_timestamp;
3122 			break;	/* goto sizeof (int) option return */
3123 		case SO_ANON_MLP:
3124 			*i1 = udp->udp_anon_mlp;
3125 			break;	/* goto sizeof (int) option return */
3126 		case SO_MAC_EXEMPT:
3127 			*i1 = udp->udp_mac_exempt;
3128 			break;	/* goto sizeof (int) option return */
3129 		case SO_ALLZONES:
3130 			*i1 = connp->conn_allzones;
3131 			break;	/* goto sizeof (int) option return */
3132 		case SO_EXCLBIND:
3133 			*i1 = udp->udp_exclbind ? SO_EXCLBIND : 0;
3134 			break;
3135 		default:
3136 			return (-1);
3137 		}
3138 		break;
3139 	case IPPROTO_IP:
3140 		if (udp->udp_family != AF_INET)
3141 			return (-1);
3142 		switch (name) {
3143 		case IP_OPTIONS:
3144 		case T_IP_OPTIONS:
3145 			len = udp->udp_ip_rcv_options_len - udp->udp_label_len;
3146 			if (len > 0) {
3147 				bcopy(udp->udp_ip_rcv_options +
3148 				    udp->udp_label_len, ptr, len);
3149 			}
3150 			return (len);
3151 		case IP_TOS:
3152 		case T_IP_TOS:
3153 			*i1 = (int)udp->udp_type_of_service;
3154 			break;	/* goto sizeof (int) option return */
3155 		case IP_TTL:
3156 			*i1 = (int)udp->udp_ttl;
3157 			break;	/* goto sizeof (int) option return */
3158 		case IP_NEXTHOP:
3159 			/* Handled at IP level */
3160 			return (-EINVAL);
3161 		case IP_MULTICAST_IF:
3162 			/* 0 address if not set */
3163 			*(ipaddr_t *)ptr = udp->udp_multicast_if_addr;
3164 			return (sizeof (ipaddr_t));
3165 		case IP_MULTICAST_TTL:
3166 			*(uchar_t *)ptr = udp->udp_multicast_ttl;
3167 			return (sizeof (uchar_t));
3168 		case IP_MULTICAST_LOOP:
3169 			*ptr = connp->conn_multicast_loop;
3170 			return (sizeof (uint8_t));
3171 		case IP_RECVOPTS:
3172 			*i1 = udp->udp_recvopts;
3173 			break;	/* goto sizeof (int) option return */
3174 		case IP_RECVDSTADDR:
3175 			*i1 = udp->udp_recvdstaddr;
3176 			break;	/* goto sizeof (int) option return */
3177 		case IP_RECVIF:
3178 			*i1 = udp->udp_recvif;
3179 			break;	/* goto sizeof (int) option return */
3180 		case IP_RECVSLLA:
3181 			*i1 = udp->udp_recvslla;
3182 			break;	/* goto sizeof (int) option return */
3183 		case IP_RECVTTL:
3184 			*i1 = udp->udp_recvttl;
3185 			break;	/* goto sizeof (int) option return */
3186 		case IP_ADD_MEMBERSHIP:
3187 		case IP_DROP_MEMBERSHIP:
3188 		case IP_BLOCK_SOURCE:
3189 		case IP_UNBLOCK_SOURCE:
3190 		case IP_ADD_SOURCE_MEMBERSHIP:
3191 		case IP_DROP_SOURCE_MEMBERSHIP:
3192 		case MCAST_JOIN_GROUP:
3193 		case MCAST_LEAVE_GROUP:
3194 		case MCAST_BLOCK_SOURCE:
3195 		case MCAST_UNBLOCK_SOURCE:
3196 		case MCAST_JOIN_SOURCE_GROUP:
3197 		case MCAST_LEAVE_SOURCE_GROUP:
3198 		case IP_DONTFAILOVER_IF:
3199 			/* cannot "get" the value for these */
3200 			return (-1);
3201 		case IP_BOUND_IF:
3202 			/* Zero if not set */
3203 			*i1 = udp->udp_bound_if;
3204 			break;	/* goto sizeof (int) option return */
3205 		case IP_UNSPEC_SRC:
3206 			*i1 = udp->udp_unspec_source;
3207 			break;	/* goto sizeof (int) option return */
3208 		case IP_XMIT_IF:
3209 			*i1 = udp->udp_xmit_if;
3210 			break; /* goto sizeof (int) option return */
3211 		default:
3212 			return (-1);
3213 		}
3214 		break;
3215 	case IPPROTO_IPV6:
3216 		if (udp->udp_family != AF_INET6)
3217 			return (-1);
3218 		switch (name) {
3219 		case IPV6_UNICAST_HOPS:
3220 			*i1 = (unsigned int)udp->udp_ttl;
3221 			break;	/* goto sizeof (int) option return */
3222 		case IPV6_MULTICAST_IF:
3223 			/* 0 index if not set */
3224 			*i1 = udp->udp_multicast_if_index;
3225 			break;	/* goto sizeof (int) option return */
3226 		case IPV6_MULTICAST_HOPS:
3227 			*i1 = udp->udp_multicast_ttl;
3228 			break;	/* goto sizeof (int) option return */
3229 		case IPV6_MULTICAST_LOOP:
3230 			*i1 = connp->conn_multicast_loop;
3231 			break;	/* goto sizeof (int) option return */
3232 		case IPV6_JOIN_GROUP:
3233 		case IPV6_LEAVE_GROUP:
3234 		case MCAST_JOIN_GROUP:
3235 		case MCAST_LEAVE_GROUP:
3236 		case MCAST_BLOCK_SOURCE:
3237 		case MCAST_UNBLOCK_SOURCE:
3238 		case MCAST_JOIN_SOURCE_GROUP:
3239 		case MCAST_LEAVE_SOURCE_GROUP:
3240 			/* cannot "get" the value for these */
3241 			return (-1);
3242 		case IPV6_BOUND_IF:
3243 			/* Zero if not set */
3244 			*i1 = udp->udp_bound_if;
3245 			break;	/* goto sizeof (int) option return */
3246 		case IPV6_UNSPEC_SRC:
3247 			*i1 = udp->udp_unspec_source;
3248 			break;	/* goto sizeof (int) option return */
3249 		case IPV6_RECVPKTINFO:
3250 			*i1 = udp->udp_ipv6_recvpktinfo;
3251 			break;	/* goto sizeof (int) option return */
3252 		case IPV6_RECVTCLASS:
3253 			*i1 = udp->udp_ipv6_recvtclass;
3254 			break;	/* goto sizeof (int) option return */
3255 		case IPV6_RECVPATHMTU:
3256 			*i1 = udp->udp_ipv6_recvpathmtu;
3257 			break;	/* goto sizeof (int) option return */
3258 		case IPV6_RECVHOPLIMIT:
3259 			*i1 = udp->udp_ipv6_recvhoplimit;
3260 			break;	/* goto sizeof (int) option return */
3261 		case IPV6_RECVHOPOPTS:
3262 			*i1 = udp->udp_ipv6_recvhopopts;
3263 			break;	/* goto sizeof (int) option return */
3264 		case IPV6_RECVDSTOPTS:
3265 			*i1 = udp->udp_ipv6_recvdstopts;
3266 			break;	/* goto sizeof (int) option return */
3267 		case _OLD_IPV6_RECVDSTOPTS:
3268 			*i1 = udp->udp_old_ipv6_recvdstopts;
3269 			break;	/* goto sizeof (int) option return */
3270 		case IPV6_RECVRTHDRDSTOPTS:
3271 			*i1 = udp->udp_ipv6_recvrthdrdstopts;
3272 			break;	/* goto sizeof (int) option return */
3273 		case IPV6_RECVRTHDR:
3274 			*i1 = udp->udp_ipv6_recvrthdr;
3275 			break;	/* goto sizeof (int) option return */
3276 		case IPV6_PKTINFO: {
3277 			/* XXX assumes that caller has room for max size! */
3278 			struct in6_pktinfo *pkti;
3279 
3280 			pkti = (struct in6_pktinfo *)ptr;
3281 			if (ipp->ipp_fields & IPPF_IFINDEX)
3282 				pkti->ipi6_ifindex = ipp->ipp_ifindex;
3283 			else
3284 				pkti->ipi6_ifindex = 0;
3285 			if (ipp->ipp_fields & IPPF_ADDR)
3286 				pkti->ipi6_addr = ipp->ipp_addr;
3287 			else
3288 				pkti->ipi6_addr = ipv6_all_zeros;
3289 			return (sizeof (struct in6_pktinfo));
3290 		}
3291 		case IPV6_TCLASS:
3292 			if (ipp->ipp_fields & IPPF_TCLASS)
3293 				*i1 = ipp->ipp_tclass;
3294 			else
3295 				*i1 = IPV6_FLOW_TCLASS(
3296 				    IPV6_DEFAULT_VERS_AND_FLOW);
3297 			break;	/* goto sizeof (int) option return */
3298 		case IPV6_NEXTHOP: {
3299 			sin6_t *sin6 = (sin6_t *)ptr;
3300 
3301 			if (!(ipp->ipp_fields & IPPF_NEXTHOP))
3302 				return (0);
3303 			*sin6 = sin6_null;
3304 			sin6->sin6_family = AF_INET6;
3305 			sin6->sin6_addr = ipp->ipp_nexthop;
3306 			return (sizeof (sin6_t));
3307 		}
3308 		case IPV6_HOPOPTS:
3309 			if (!(ipp->ipp_fields & IPPF_HOPOPTS))
3310 				return (0);
3311 			if (ipp->ipp_hopoptslen <= udp->udp_label_len_v6)
3312 				return (0);
3313 			/*
3314 			 * The cipso/label option is added by kernel.
3315 			 * User is not usually aware of this option.
3316 			 * We copy out the hbh opt after the label option.
3317 			 */
3318 			bcopy((char *)ipp->ipp_hopopts + udp->udp_label_len_v6,
3319 			    ptr, ipp->ipp_hopoptslen - udp->udp_label_len_v6);
3320 			if (udp->udp_label_len_v6 > 0) {
3321 				ptr[0] = ((char *)ipp->ipp_hopopts)[0];
3322 				ptr[1] = (ipp->ipp_hopoptslen -
3323 				    udp->udp_label_len_v6 + 7) / 8 - 1;
3324 			}
3325 			return (ipp->ipp_hopoptslen - udp->udp_label_len_v6);
3326 		case IPV6_RTHDRDSTOPTS:
3327 			if (!(ipp->ipp_fields & IPPF_RTDSTOPTS))
3328 				return (0);
3329 			bcopy(ipp->ipp_rtdstopts, ptr, ipp->ipp_rtdstoptslen);
3330 			return (ipp->ipp_rtdstoptslen);
3331 		case IPV6_RTHDR:
3332 			if (!(ipp->ipp_fields & IPPF_RTHDR))
3333 				return (0);
3334 			bcopy(ipp->ipp_rthdr, ptr, ipp->ipp_rthdrlen);
3335 			return (ipp->ipp_rthdrlen);
3336 		case IPV6_DSTOPTS:
3337 			if (!(ipp->ipp_fields & IPPF_DSTOPTS))
3338 				return (0);
3339 			bcopy(ipp->ipp_dstopts, ptr, ipp->ipp_dstoptslen);
3340 			return (ipp->ipp_dstoptslen);
3341 		case IPV6_PATHMTU:
3342 			return (ip_fill_mtuinfo(&udp->udp_v6dst,
3343 				udp->udp_dstport, (struct ip6_mtuinfo *)ptr));
3344 		default:
3345 			return (-1);
3346 		}
3347 		break;
3348 	case IPPROTO_UDP:
3349 		switch (name) {
3350 		case UDP_ANONPRIVBIND:
3351 			*i1 = udp->udp_anon_priv_bind;
3352 			break;
3353 		case UDP_EXCLBIND:
3354 			*i1 = udp->udp_exclbind ? UDP_EXCLBIND : 0;
3355 			break;
3356 		case UDP_RCVHDR:
3357 			*i1 = udp->udp_rcvhdr ? 1 : 0;
3358 			break;
3359 		default:
3360 			return (-1);
3361 		}
3362 		break;
3363 	default:
3364 		return (-1);
3365 	}
3366 	return (sizeof (int));
3367 }
3368 
3369 /*
3370  * This routine sets socket options; it expects the caller
3371  * to pass in the queue pointer of the upper instance.
3372  */
3373 /* ARGSUSED */
3374 int
3375 udp_opt_set(queue_t *q, uint_t optset_context, int level,
3376     int name, uint_t inlen, uchar_t *invalp, uint_t *outlenp,
3377     uchar_t *outvalp, void *thisdg_attrs, cred_t *cr, mblk_t *mblk)
3378 {
3379 	udpattrs_t *attrs = thisdg_attrs;
3380 	int	*i1 = (int *)invalp;
3381 	boolean_t onoff = (*i1 == 0) ? 0 : 1;
3382 	boolean_t checkonly;
3383 	int	error;
3384 	conn_t	*connp;
3385 	udp_t	*udp;
3386 	uint_t	newlen;
3387 
3388 	q = UDP_WR(q);
3389 	connp = Q_TO_CONN(q);
3390 	udp = connp->conn_udp;
3391 
3392 	switch (optset_context) {
3393 	case SETFN_OPTCOM_CHECKONLY:
3394 		checkonly = B_TRUE;
3395 		/*
3396 		 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ
3397 		 * inlen != 0 implies value supplied and
3398 		 * 	we have to "pretend" to set it.
3399 		 * inlen == 0 implies that there is no
3400 		 * 	value part in T_CHECK request and just validation
3401 		 * done elsewhere should be enough, we just return here.
3402 		 */
3403 		if (inlen == 0) {
3404 			*outlenp = 0;
3405 			return (0);
3406 		}
3407 		break;
3408 	case SETFN_OPTCOM_NEGOTIATE:
3409 		checkonly = B_FALSE;
3410 		break;
3411 	case SETFN_UD_NEGOTIATE:
3412 	case SETFN_CONN_NEGOTIATE:
3413 		checkonly = B_FALSE;
3414 		/*
3415 		 * Negotiating local and "association-related" options
3416 		 * through T_UNITDATA_REQ.
3417 		 *
3418 		 * Following routine can filter out ones we do not
3419 		 * want to be "set" this way.
3420 		 */
3421 		if (!udp_opt_allow_udr_set(level, name)) {
3422 			*outlenp = 0;
3423 			return (EINVAL);
3424 		}
3425 		break;
3426 	default:
3427 		/*
3428 		 * We should never get here
3429 		 */
3430 		*outlenp = 0;
3431 		return (EINVAL);
3432 	}
3433 
3434 	ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) ||
3435 	    (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0));
3436 
3437 	/*
3438 	 * For fixed length options, no sanity check
3439 	 * of passed in length is done. It is assumed *_optcom_req()
3440 	 * routines do the right thing.
3441 	 */
3442 
3443 	switch (level) {
3444 	case SOL_SOCKET:
3445 		switch (name) {
3446 		case SO_REUSEADDR:
3447 			if (!checkonly)
3448 				udp->udp_reuseaddr = onoff;
3449 			break;
3450 		case SO_DEBUG:
3451 			if (!checkonly)
3452 				udp->udp_debug = onoff;
3453 			break;
3454 		/*
3455 		 * The following three items are available here,
3456 		 * but are only meaningful to IP.
3457 		 */
3458 		case SO_DONTROUTE:
3459 			if (!checkonly)
3460 				udp->udp_dontroute = onoff;
3461 			break;
3462 		case SO_USELOOPBACK:
3463 			if (!checkonly)
3464 				udp->udp_useloopback = onoff;
3465 			break;
3466 		case SO_BROADCAST:
3467 			if (!checkonly)
3468 				udp->udp_broadcast = onoff;
3469 			break;
3470 
3471 		case SO_SNDBUF:
3472 			if (*i1 > udp_max_buf) {
3473 				*outlenp = 0;
3474 				return (ENOBUFS);
3475 			}
3476 			if (!checkonly) {
3477 				q->q_hiwat = *i1;
3478 				WR(UDP_RD(q))->q_hiwat = *i1;
3479 			}
3480 			break;
3481 		case SO_RCVBUF:
3482 			if (*i1 > udp_max_buf) {
3483 				*outlenp = 0;
3484 				return (ENOBUFS);
3485 			}
3486 			if (!checkonly) {
3487 				RD(q)->q_hiwat = *i1;
3488 				UDP_RD(q)->q_hiwat = *i1;
3489 				(void) mi_set_sth_hiwat(UDP_RD(q),
3490 				    udp_set_rcv_hiwat(udp, *i1));
3491 			}
3492 			break;
3493 		case SO_DGRAM_ERRIND:
3494 			if (!checkonly)
3495 				udp->udp_dgram_errind = onoff;
3496 			break;
3497 		case SO_RECVUCRED:
3498 			if (!checkonly)
3499 				udp->udp_recvucred = onoff;
3500 			break;
3501 		case SO_ALLZONES:
3502 			/*
3503 			 * "soft" error (negative)
3504 			 * option not handled at this level
3505 			 * Do not modify *outlenp.
3506 			 */
3507 			return (-EINVAL);
3508 		case SO_TIMESTAMP:
3509 			if (!checkonly)
3510 				udp->udp_timestamp = onoff;
3511 			break;
3512 		case SO_ANON_MLP:
3513 			if (!checkonly)
3514 				udp->udp_anon_mlp = onoff;
3515 			break;
3516 		case SO_MAC_EXEMPT:
3517 			if (secpolicy_net_mac_aware(cr) != 0 ||
3518 			    udp->udp_state != TS_UNBND)
3519 				return (EACCES);
3520 			if (!checkonly)
3521 				udp->udp_mac_exempt = onoff;
3522 			break;
3523 		case SCM_UCRED: {
3524 			struct ucred_s *ucr;
3525 			cred_t *cr, *newcr;
3526 			ts_label_t *tsl;
3527 
3528 			/*
3529 			 * Only sockets that have proper privileges and are
3530 			 * bound to MLPs will have any other value here, so
3531 			 * this implicitly tests for privilege to set label.
3532 			 */
3533 			if (connp->conn_mlp_type == mlptSingle)
3534 				break;
3535 			ucr = (struct ucred_s *)invalp;
3536 			if (inlen != ucredsize ||
3537 			    ucr->uc_labeloff < sizeof (*ucr) ||
3538 			    ucr->uc_labeloff + sizeof (bslabel_t) > inlen)
3539 				return (EINVAL);
3540 			if (!checkonly) {
3541 				mblk_t *mb;
3542 
3543 				if (attrs == NULL ||
3544 				    (mb = attrs->udpattr_mb) == NULL)
3545 					return (EINVAL);
3546 				if ((cr = DB_CRED(mb)) == NULL)
3547 					cr = udp->udp_connp->conn_cred;
3548 				ASSERT(cr != NULL);
3549 				if ((tsl = crgetlabel(cr)) == NULL)
3550 					return (EINVAL);
3551 				newcr = copycred_from_bslabel(cr, UCLABEL(ucr),
3552 				    tsl->tsl_doi, KM_NOSLEEP);
3553 				if (newcr == NULL)
3554 					return (ENOSR);
3555 				mblk_setcred(mb, newcr);
3556 				attrs->udpattr_credset = B_TRUE;
3557 				crfree(newcr);
3558 			}
3559 			break;
3560 		}
3561 		case SO_EXCLBIND:
3562 			if (!checkonly)
3563 				udp->udp_exclbind = onoff;
3564 			break;
3565 		default:
3566 			*outlenp = 0;
3567 			return (EINVAL);
3568 		}
3569 		break;
3570 	case IPPROTO_IP:
3571 		if (udp->udp_family != AF_INET) {
3572 			*outlenp = 0;
3573 			return (ENOPROTOOPT);
3574 		}
3575 		switch (name) {
3576 		case IP_OPTIONS:
3577 		case T_IP_OPTIONS:
3578 			/* Save options for use by IP. */
3579 			newlen = inlen + udp->udp_label_len;
3580 			if ((inlen & 0x3) || newlen > IP_MAX_OPT_LENGTH) {
3581 				*outlenp = 0;
3582 				return (EINVAL);
3583 			}
3584 			if (checkonly)
3585 				break;
3586 
3587 			if (!tsol_option_set(&udp->udp_ip_snd_options,
3588 			    &udp->udp_ip_snd_options_len,
3589 			    udp->udp_label_len, invalp, inlen)) {
3590 				*outlenp = 0;
3591 				return (ENOMEM);
3592 			}
3593 
3594 			udp->udp_max_hdr_len = IP_SIMPLE_HDR_LENGTH +
3595 			    UDPH_SIZE + udp->udp_ip_snd_options_len;
3596 			(void) mi_set_sth_wroff(RD(q), udp->udp_max_hdr_len +
3597 			    udp_wroff_extra);
3598 			break;
3599 
3600 		case IP_TTL:
3601 			if (!checkonly) {
3602 				udp->udp_ttl = (uchar_t)*i1;
3603 			}
3604 			break;
3605 		case IP_TOS:
3606 		case T_IP_TOS:
3607 			if (!checkonly) {
3608 				udp->udp_type_of_service = (uchar_t)*i1;
3609 			}
3610 			break;
3611 		case IP_MULTICAST_IF: {
3612 			/*
3613 			 * TODO should check OPTMGMT reply and undo this if
3614 			 * there is an error.
3615 			 */
3616 			struct in_addr *inap = (struct in_addr *)invalp;
3617 			if (!checkonly) {
3618 				udp->udp_multicast_if_addr =
3619 				    inap->s_addr;
3620 			}
3621 			break;
3622 		}
3623 		case IP_MULTICAST_TTL:
3624 			if (!checkonly)
3625 				udp->udp_multicast_ttl = *invalp;
3626 			break;
3627 		case IP_MULTICAST_LOOP:
3628 			if (!checkonly)
3629 				connp->conn_multicast_loop = *invalp;
3630 			break;
3631 		case IP_RECVOPTS:
3632 			if (!checkonly)
3633 				udp->udp_recvopts = onoff;
3634 			break;
3635 		case IP_RECVDSTADDR:
3636 			if (!checkonly)
3637 				udp->udp_recvdstaddr = onoff;
3638 			break;
3639 		case IP_RECVIF:
3640 			if (!checkonly)
3641 				udp->udp_recvif = onoff;
3642 			break;
3643 		case IP_RECVSLLA:
3644 			if (!checkonly)
3645 				udp->udp_recvslla = onoff;
3646 			break;
3647 		case IP_RECVTTL:
3648 			if (!checkonly)
3649 				udp->udp_recvttl = onoff;
3650 			break;
3651 		case IP_ADD_MEMBERSHIP:
3652 		case IP_DROP_MEMBERSHIP:
3653 		case IP_BLOCK_SOURCE:
3654 		case IP_UNBLOCK_SOURCE:
3655 		case IP_ADD_SOURCE_MEMBERSHIP:
3656 		case IP_DROP_SOURCE_MEMBERSHIP:
3657 		case MCAST_JOIN_GROUP:
3658 		case MCAST_LEAVE_GROUP:
3659 		case MCAST_BLOCK_SOURCE:
3660 		case MCAST_UNBLOCK_SOURCE:
3661 		case MCAST_JOIN_SOURCE_GROUP:
3662 		case MCAST_LEAVE_SOURCE_GROUP:
3663 		case IP_SEC_OPT:
3664 		case IP_NEXTHOP:
3665 			/*
3666 			 * "soft" error (negative)
3667 			 * option not handled at this level
3668 			 * Do not modify *outlenp.
3669 			 */
3670 			return (-EINVAL);
3671 		case IP_BOUND_IF:
3672 			if (!checkonly)
3673 				udp->udp_bound_if = *i1;
3674 			break;
3675 		case IP_UNSPEC_SRC:
3676 			if (!checkonly)
3677 				udp->udp_unspec_source = onoff;
3678 			break;
3679 		case IP_XMIT_IF:
3680 			if (!checkonly)
3681 				udp->udp_xmit_if = *i1;
3682 			break;
3683 		default:
3684 			*outlenp = 0;
3685 			return (EINVAL);
3686 		}
3687 		break;
3688 	case IPPROTO_IPV6: {
3689 		ip6_pkt_t		*ipp;
3690 		boolean_t		sticky;
3691 
3692 		if (udp->udp_family != AF_INET6) {
3693 			*outlenp = 0;
3694 			return (ENOPROTOOPT);
3695 		}
3696 		/*
3697 		 * Deal with both sticky options and ancillary data
3698 		 */
3699 		sticky = B_FALSE;
3700 		if (attrs == NULL || (ipp = attrs->udpattr_ipp) == NULL) {
3701 			/* sticky options, or none */
3702 			ipp = &udp->udp_sticky_ipp;
3703 			sticky = B_TRUE;
3704 		}
3705 
3706 		switch (name) {
3707 		case IPV6_MULTICAST_IF:
3708 			if (!checkonly)
3709 				udp->udp_multicast_if_index = *i1;
3710 			break;
3711 		case IPV6_UNICAST_HOPS:
3712 			/* -1 means use default */
3713 			if (*i1 < -1 || *i1 > IPV6_MAX_HOPS) {
3714 				*outlenp = 0;
3715 				return (EINVAL);
3716 			}
3717 			if (!checkonly) {
3718 				if (*i1 == -1) {
3719 					udp->udp_ttl = ipp->ipp_unicast_hops =
3720 					    udp_ipv6_hoplimit;
3721 					ipp->ipp_fields &= ~IPPF_UNICAST_HOPS;
3722 					/* Pass modified value to IP. */
3723 					*i1 = udp->udp_ttl;
3724 				} else {
3725 					udp->udp_ttl = ipp->ipp_unicast_hops =
3726 					    (uint8_t)*i1;
3727 					ipp->ipp_fields |= IPPF_UNICAST_HOPS;
3728 				}
3729 				/* Rebuild the header template */
3730 				error = udp_build_hdrs(q, udp);
3731 				if (error != 0) {
3732 					*outlenp = 0;
3733 					return (error);
3734 				}
3735 			}
3736 			break;
3737 		case IPV6_MULTICAST_HOPS:
3738 			/* -1 means use default */
3739 			if (*i1 < -1 || *i1 > IPV6_MAX_HOPS) {
3740 				*outlenp = 0;
3741 				return (EINVAL);
3742 			}
3743 			if (!checkonly) {
3744 				if (*i1 == -1) {
3745 					udp->udp_multicast_ttl =
3746 					    ipp->ipp_multicast_hops =
3747 					    IP_DEFAULT_MULTICAST_TTL;
3748 					ipp->ipp_fields &= ~IPPF_MULTICAST_HOPS;
3749 					/* Pass modified value to IP. */
3750 					*i1 = udp->udp_multicast_ttl;
3751 				} else {
3752 					udp->udp_multicast_ttl =
3753 					    ipp->ipp_multicast_hops =
3754 					    (uint8_t)*i1;
3755 					ipp->ipp_fields |= IPPF_MULTICAST_HOPS;
3756 				}
3757 			}
3758 			break;
3759 		case IPV6_MULTICAST_LOOP:
3760 			if (*i1 != 0 && *i1 != 1) {
3761 				*outlenp = 0;
3762 				return (EINVAL);
3763 			}
3764 			if (!checkonly)
3765 				connp->conn_multicast_loop = *i1;
3766 			break;
3767 		case IPV6_JOIN_GROUP:
3768 		case IPV6_LEAVE_GROUP:
3769 		case MCAST_JOIN_GROUP:
3770 		case MCAST_LEAVE_GROUP:
3771 		case MCAST_BLOCK_SOURCE:
3772 		case MCAST_UNBLOCK_SOURCE:
3773 		case MCAST_JOIN_SOURCE_GROUP:
3774 		case MCAST_LEAVE_SOURCE_GROUP:
3775 			/*
3776 			 * "soft" error (negative)
3777 			 * option not handled at this level
3778 			 * Note: Do not modify *outlenp
3779 			 */
3780 			return (-EINVAL);
3781 		case IPV6_BOUND_IF:
3782 			if (!checkonly)
3783 				udp->udp_bound_if = *i1;
3784 			break;
3785 		case IPV6_UNSPEC_SRC:
3786 			if (!checkonly)
3787 				udp->udp_unspec_source = onoff;
3788 			break;
3789 		/*
3790 		 * Set boolean switches for ancillary data delivery
3791 		 */
3792 		case IPV6_RECVPKTINFO:
3793 			if (!checkonly)
3794 				udp->udp_ipv6_recvpktinfo = onoff;
3795 			break;
3796 		case IPV6_RECVTCLASS:
3797 			if (!checkonly) {
3798 				udp->udp_ipv6_recvtclass = onoff;
3799 			}
3800 			break;
3801 		case IPV6_RECVPATHMTU:
3802 			if (!checkonly) {
3803 				udp->udp_ipv6_recvpathmtu = onoff;
3804 			}
3805 			break;
3806 		case IPV6_RECVHOPLIMIT:
3807 			if (!checkonly)
3808 				udp->udp_ipv6_recvhoplimit = onoff;
3809 			break;
3810 		case IPV6_RECVHOPOPTS:
3811 			if (!checkonly)
3812 				udp->udp_ipv6_recvhopopts = onoff;
3813 			break;
3814 		case IPV6_RECVDSTOPTS:
3815 			if (!checkonly)
3816 				udp->udp_ipv6_recvdstopts = onoff;
3817 			break;
3818 		case _OLD_IPV6_RECVDSTOPTS:
3819 			if (!checkonly)
3820 				udp->udp_old_ipv6_recvdstopts = onoff;
3821 			break;
3822 		case IPV6_RECVRTHDRDSTOPTS:
3823 			if (!checkonly)
3824 				udp->udp_ipv6_recvrthdrdstopts = onoff;
3825 			break;
3826 		case IPV6_RECVRTHDR:
3827 			if (!checkonly)
3828 				udp->udp_ipv6_recvrthdr = onoff;
3829 			break;
3830 		/*
3831 		 * Set sticky options or ancillary data.
3832 		 * If sticky options, (re)build any extension headers
3833 		 * that might be needed as a result.
3834 		 */
3835 		case IPV6_PKTINFO:
3836 			/*
3837 			 * The source address and ifindex are verified
3838 			 * in ip_opt_set(). For ancillary data the
3839 			 * source address is checked in ip_wput_v6.
3840 			 */
3841 			if (inlen != 0 && inlen != sizeof (struct in6_pktinfo))
3842 				return (EINVAL);
3843 			if (checkonly)
3844 				break;
3845 
3846 			if (inlen == 0) {
3847 				ipp->ipp_fields &= ~(IPPF_IFINDEX|IPPF_ADDR);
3848 				ipp->ipp_sticky_ignored |=
3849 				    (IPPF_IFINDEX|IPPF_ADDR);
3850 			} else {
3851 				struct in6_pktinfo *pkti;
3852 
3853 				pkti = (struct in6_pktinfo *)invalp;
3854 				ipp->ipp_ifindex = pkti->ipi6_ifindex;
3855 				ipp->ipp_addr = pkti->ipi6_addr;
3856 				if (ipp->ipp_ifindex != 0)
3857 					ipp->ipp_fields |= IPPF_IFINDEX;
3858 				else
3859 					ipp->ipp_fields &= ~IPPF_IFINDEX;
3860 				if (!IN6_IS_ADDR_UNSPECIFIED(
3861 				    &ipp->ipp_addr))
3862 					ipp->ipp_fields |= IPPF_ADDR;
3863 				else
3864 					ipp->ipp_fields &= ~IPPF_ADDR;
3865 			}
3866 			if (sticky) {
3867 				error = udp_build_hdrs(q, udp);
3868 				if (error != 0)
3869 					return (error);
3870 			}
3871 			break;
3872 		case IPV6_HOPLIMIT:
3873 			if (sticky)
3874 				return (EINVAL);
3875 			if (inlen != 0 && inlen != sizeof (int))
3876 				return (EINVAL);
3877 			if (checkonly)
3878 				break;
3879 
3880 			if (inlen == 0) {
3881 				ipp->ipp_fields &= ~IPPF_HOPLIMIT;
3882 				ipp->ipp_sticky_ignored |= IPPF_HOPLIMIT;
3883 			} else {
3884 				if (*i1 > 255 || *i1 < -1)
3885 					return (EINVAL);
3886 				if (*i1 == -1)
3887 					ipp->ipp_hoplimit = udp_ipv6_hoplimit;
3888 				else
3889 					ipp->ipp_hoplimit = *i1;
3890 				ipp->ipp_fields |= IPPF_HOPLIMIT;
3891 			}
3892 			break;
3893 		case IPV6_TCLASS:
3894 			if (inlen != 0 && inlen != sizeof (int))
3895 				return (EINVAL);
3896 			if (checkonly)
3897 				break;
3898 
3899 			if (inlen == 0) {
3900 				ipp->ipp_fields &= ~IPPF_TCLASS;
3901 				ipp->ipp_sticky_ignored |= IPPF_TCLASS;
3902 			} else {
3903 				if (*i1 > 255 || *i1 < -1)
3904 					return (EINVAL);
3905 				if (*i1 == -1)
3906 					ipp->ipp_tclass = 0;
3907 				else
3908 					ipp->ipp_tclass = *i1;
3909 				ipp->ipp_fields |= IPPF_TCLASS;
3910 			}
3911 			if (sticky) {
3912 				error = udp_build_hdrs(q, udp);
3913 				if (error != 0)
3914 					return (error);
3915 			}
3916 			break;
3917 		case IPV6_NEXTHOP:
3918 			/*
3919 			 * IP will verify that the nexthop is reachable
3920 			 * and fail for sticky options.
3921 			 */
3922 			if (inlen != 0 && inlen != sizeof (sin6_t))
3923 				return (EINVAL);
3924 			if (checkonly)
3925 				break;
3926 
3927 			if (inlen == 0) {
3928 				ipp->ipp_fields &= ~IPPF_NEXTHOP;
3929 				ipp->ipp_sticky_ignored |= IPPF_NEXTHOP;
3930 			} else {
3931 				sin6_t *sin6 = (sin6_t *)invalp;
3932 
3933 				if (sin6->sin6_family != AF_INET6)
3934 					return (EAFNOSUPPORT);
3935 				if (IN6_IS_ADDR_V4MAPPED(
3936 				    &sin6->sin6_addr))
3937 					return (EADDRNOTAVAIL);
3938 				ipp->ipp_nexthop = sin6->sin6_addr;
3939 				if (!IN6_IS_ADDR_UNSPECIFIED(
3940 				    &ipp->ipp_nexthop))
3941 					ipp->ipp_fields |= IPPF_NEXTHOP;
3942 				else
3943 					ipp->ipp_fields &= ~IPPF_NEXTHOP;
3944 			}
3945 			if (sticky) {
3946 				error = udp_build_hdrs(q, udp);
3947 				if (error != 0)
3948 					return (error);
3949 			}
3950 			break;
3951 		case IPV6_HOPOPTS: {
3952 			ip6_hbh_t *hopts = (ip6_hbh_t *)invalp;
3953 			/*
3954 			 * Sanity checks - minimum size, size a multiple of
3955 			 * eight bytes, and matching size passed in.
3956 			 */
3957 			if (inlen != 0 &&
3958 			    inlen != (8 * (hopts->ip6h_len + 1)))
3959 				return (EINVAL);
3960 
3961 			if (checkonly)
3962 				break;
3963 
3964 			error = optcom_pkt_set(invalp, inlen, sticky,
3965 			    (uchar_t **)&ipp->ipp_hopopts,
3966 			    &ipp->ipp_hopoptslen,
3967 			    sticky ? udp->udp_label_len_v6 : 0);
3968 			if (error != 0)
3969 				return (error);
3970 			if (ipp->ipp_hopoptslen == 0) {
3971 				ipp->ipp_fields &= ~IPPF_HOPOPTS;
3972 				ipp->ipp_sticky_ignored |= IPPF_HOPOPTS;
3973 			} else {
3974 				ipp->ipp_fields |= IPPF_HOPOPTS;
3975 			}
3976 			if (sticky) {
3977 				error = udp_build_hdrs(q, udp);
3978 				if (error != 0)
3979 					return (error);
3980 			}
3981 			break;
3982 		}
3983 		case IPV6_RTHDRDSTOPTS: {
3984 			ip6_dest_t *dopts = (ip6_dest_t *)invalp;
3985 
3986 			/*
3987 			 * Sanity checks - minimum size, size a multiple of
3988 			 * eight bytes, and matching size passed in.
3989 			 */
3990 			if (inlen != 0 &&
3991 			    inlen != (8 * (dopts->ip6d_len + 1)))
3992 				return (EINVAL);
3993 
3994 			if (checkonly)
3995 				break;
3996 
3997 			if (inlen == 0) {
3998 				if (sticky &&
3999 				    (ipp->ipp_fields & IPPF_RTDSTOPTS) != 0) {
4000 					kmem_free(ipp->ipp_rtdstopts,
4001 					    ipp->ipp_rtdstoptslen);
4002 					ipp->ipp_rtdstopts = NULL;
4003 					ipp->ipp_rtdstoptslen = 0;
4004 				}
4005 
4006 				ipp->ipp_fields &= ~IPPF_RTDSTOPTS;
4007 				ipp->ipp_sticky_ignored |= IPPF_RTDSTOPTS;
4008 			} else {
4009 				error = optcom_pkt_set(invalp, inlen, sticky,
4010 				    (uchar_t **)&ipp->ipp_rtdstopts,
4011 				    &ipp->ipp_rtdstoptslen, 0);
4012 				if (error != 0)
4013 					return (error);
4014 				ipp->ipp_fields |= IPPF_RTDSTOPTS;
4015 			}
4016 			if (sticky) {
4017 				error = udp_build_hdrs(q, udp);
4018 				if (error != 0)
4019 					return (error);
4020 			}
4021 			break;
4022 		}
4023 		case IPV6_DSTOPTS: {
4024 			ip6_dest_t *dopts = (ip6_dest_t *)invalp;
4025 
4026 			/*
4027 			 * Sanity checks - minimum size, size a multiple of
4028 			 * eight bytes, and matching size passed in.
4029 			 */
4030 			if (inlen != 0 &&
4031 			    inlen != (8 * (dopts->ip6d_len + 1)))
4032 				return (EINVAL);
4033 
4034 			if (checkonly)
4035 				break;
4036 
4037 			if (inlen == 0) {
4038 				if (sticky &&
4039 				    (ipp->ipp_fields & IPPF_DSTOPTS) != 0) {
4040 					kmem_free(ipp->ipp_dstopts,
4041 					    ipp->ipp_dstoptslen);
4042 					ipp->ipp_dstopts = NULL;
4043 					ipp->ipp_dstoptslen = 0;
4044 				}
4045 				ipp->ipp_fields &= ~IPPF_DSTOPTS;
4046 				ipp->ipp_sticky_ignored |= IPPF_DSTOPTS;
4047 			} else {
4048 				error = optcom_pkt_set(invalp, inlen, sticky,
4049 				    (uchar_t **)&ipp->ipp_dstopts,
4050 				    &ipp->ipp_dstoptslen, 0);
4051 				if (error != 0)
4052 					return (error);
4053 				ipp->ipp_fields |= IPPF_DSTOPTS;
4054 			}
4055 			if (sticky) {
4056 				error = udp_build_hdrs(q, udp);
4057 				if (error != 0)
4058 					return (error);
4059 			}
4060 			break;
4061 		}
4062 		case IPV6_RTHDR: {
4063 			ip6_rthdr_t *rt = (ip6_rthdr_t *)invalp;
4064 
4065 			/*
4066 			 * Sanity checks - minimum size, size a multiple of
4067 			 * eight bytes, and matching size passed in.
4068 			 */
4069 			if (inlen != 0 &&
4070 			    inlen != (8 * (rt->ip6r_len + 1)))
4071 				return (EINVAL);
4072 
4073 			if (checkonly)
4074 				break;
4075 
4076 			if (inlen == 0) {
4077 				if (sticky &&
4078 				    (ipp->ipp_fields & IPPF_RTHDR) != 0) {
4079 					kmem_free(ipp->ipp_rthdr,
4080 					    ipp->ipp_rthdrlen);
4081 					ipp->ipp_rthdr = NULL;
4082 					ipp->ipp_rthdrlen = 0;
4083 				}
4084 				ipp->ipp_fields &= ~IPPF_RTHDR;
4085 				ipp->ipp_sticky_ignored |= IPPF_RTHDR;
4086 			} else {
4087 				error = optcom_pkt_set(invalp, inlen, sticky,
4088 				    (uchar_t **)&ipp->ipp_rthdr,
4089 				    &ipp->ipp_rthdrlen, 0);
4090 				if (error != 0)
4091 					return (error);
4092 				ipp->ipp_fields |= IPPF_RTHDR;
4093 			}
4094 			if (sticky) {
4095 				error = udp_build_hdrs(q, udp);
4096 				if (error != 0)
4097 					return (error);
4098 			}
4099 			break;
4100 		}
4101 
4102 		case IPV6_DONTFRAG:
4103 			if (checkonly)
4104 				break;
4105 
4106 			if (onoff) {
4107 				ipp->ipp_fields |= IPPF_DONTFRAG;
4108 			} else {
4109 				ipp->ipp_fields &= ~IPPF_DONTFRAG;
4110 			}
4111 			break;
4112 
4113 		case IPV6_USE_MIN_MTU:
4114 			if (inlen != sizeof (int))
4115 				return (EINVAL);
4116 
4117 			if (*i1 < -1 || *i1 > 1)
4118 				return (EINVAL);
4119 
4120 			if (checkonly)
4121 				break;
4122 
4123 			ipp->ipp_fields |= IPPF_USE_MIN_MTU;
4124 			ipp->ipp_use_min_mtu = *i1;
4125 			break;
4126 
4127 		case IPV6_BOUND_PIF:
4128 		case IPV6_SEC_OPT:
4129 		case IPV6_DONTFAILOVER_IF:
4130 		case IPV6_SRC_PREFERENCES:
4131 		case IPV6_V6ONLY:
4132 			/* Handled at the IP level */
4133 			return (-EINVAL);
4134 		default:
4135 			*outlenp = 0;
4136 			return (EINVAL);
4137 		}
4138 		break;
4139 		}		/* end IPPROTO_IPV6 */
4140 	case IPPROTO_UDP:
4141 		switch (name) {
4142 		case UDP_ANONPRIVBIND:
4143 			if ((error = secpolicy_net_privaddr(cr, 0)) != 0) {
4144 				*outlenp = 0;
4145 				return (error);
4146 			}
4147 			if (!checkonly) {
4148 				udp->udp_anon_priv_bind = onoff;
4149 			}
4150 			break;
4151 		case UDP_EXCLBIND:
4152 			if (!checkonly)
4153 				udp->udp_exclbind = onoff;
4154 			break;
4155 		case UDP_RCVHDR:
4156 			if (!checkonly)
4157 				udp->udp_rcvhdr = onoff;
4158 			break;
4159 		default:
4160 			*outlenp = 0;
4161 			return (EINVAL);
4162 		}
4163 		break;
4164 	default:
4165 		*outlenp = 0;
4166 		return (EINVAL);
4167 	}
4168 	/*
4169 	 * Common case of OK return with outval same as inval.
4170 	 */
4171 	if (invalp != outvalp) {
4172 		/* don't trust bcopy for identical src/dst */
4173 		(void) bcopy(invalp, outvalp, inlen);
4174 	}
4175 	*outlenp = inlen;
4176 	return (0);
4177 }
4178 
4179 /*
4180  * Update udp_sticky_hdrs based on udp_sticky_ipp, udp_v6src, and udp_ttl.
4181  * The headers include ip6i_t (if needed), ip6_t, any sticky extension
4182  * headers, and the udp header.
4183  * Returns failure if can't allocate memory.
4184  */
4185 static int
4186 udp_build_hdrs(queue_t *q, udp_t *udp)
4187 {
4188 	uchar_t	*hdrs;
4189 	uint_t	hdrs_len;
4190 	ip6_t	*ip6h;
4191 	ip6i_t	*ip6i;
4192 	udpha_t	*udpha;
4193 	ip6_pkt_t *ipp = &udp->udp_sticky_ipp;
4194 
4195 	hdrs_len = ip_total_hdrs_len_v6(ipp) + UDPH_SIZE;
4196 	ASSERT(hdrs_len != 0);
4197 	if (hdrs_len != udp->udp_sticky_hdrs_len) {
4198 		/* Need to reallocate */
4199 		hdrs = kmem_alloc(hdrs_len, KM_NOSLEEP);
4200 		if (hdrs == NULL)
4201 			return (ENOMEM);
4202 
4203 		if (udp->udp_sticky_hdrs_len != 0) {
4204 			kmem_free(udp->udp_sticky_hdrs,
4205 			    udp->udp_sticky_hdrs_len);
4206 		}
4207 		udp->udp_sticky_hdrs = hdrs;
4208 		udp->udp_sticky_hdrs_len = hdrs_len;
4209 	}
4210 	ip_build_hdrs_v6(udp->udp_sticky_hdrs,
4211 	    udp->udp_sticky_hdrs_len - UDPH_SIZE, ipp, IPPROTO_UDP);
4212 
4213 	/* Set header fields not in ipp */
4214 	if (ipp->ipp_fields & IPPF_HAS_IP6I) {
4215 		ip6i = (ip6i_t *)udp->udp_sticky_hdrs;
4216 		ip6h = (ip6_t *)&ip6i[1];
4217 	} else {
4218 		ip6h = (ip6_t *)udp->udp_sticky_hdrs;
4219 	}
4220 
4221 	if (!(ipp->ipp_fields & IPPF_ADDR))
4222 		ip6h->ip6_src = udp->udp_v6src;
4223 
4224 	udpha = (udpha_t *)(udp->udp_sticky_hdrs + hdrs_len - UDPH_SIZE);
4225 	udpha->uha_src_port = udp->udp_port;
4226 
4227 	/* Try to get everything in a single mblk */
4228 	if (hdrs_len > udp->udp_max_hdr_len) {
4229 		udp->udp_max_hdr_len = hdrs_len;
4230 		(void) mi_set_sth_wroff(RD(q), udp->udp_max_hdr_len +
4231 		    udp_wroff_extra);
4232 	}
4233 	return (0);
4234 }
4235 
4236 /*
4237  * This routine retrieves the value of an ND variable in a udpparam_t
4238  * structure.  It is called through nd_getset when a user reads the
4239  * variable.
4240  */
4241 /* ARGSUSED */
4242 static int
4243 udp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
4244 {
4245 	udpparam_t *udppa = (udpparam_t *)cp;
4246 
4247 	(void) mi_mpprintf(mp, "%d", udppa->udp_param_value);
4248 	return (0);
4249 }
4250 
4251 /*
4252  * Walk through the param array specified registering each element with the
4253  * named dispatch (ND) handler.
4254  */
4255 static boolean_t
4256 udp_param_register(udpparam_t *udppa, int cnt)
4257 {
4258 	for (; cnt-- > 0; udppa++) {
4259 		if (udppa->udp_param_name && udppa->udp_param_name[0]) {
4260 			if (!nd_load(&udp_g_nd, udppa->udp_param_name,
4261 			    udp_param_get, udp_param_set,
4262 			    (caddr_t)udppa)) {
4263 				nd_free(&udp_g_nd);
4264 				return (B_FALSE);
4265 			}
4266 		}
4267 	}
4268 	if (!nd_load(&udp_g_nd, "udp_extra_priv_ports",
4269 	    udp_extra_priv_ports_get, NULL, NULL)) {
4270 		nd_free(&udp_g_nd);
4271 		return (B_FALSE);
4272 	}
4273 	if (!nd_load(&udp_g_nd, "udp_extra_priv_ports_add",
4274 	    NULL, udp_extra_priv_ports_add, NULL)) {
4275 		nd_free(&udp_g_nd);
4276 		return (B_FALSE);
4277 	}
4278 	if (!nd_load(&udp_g_nd, "udp_extra_priv_ports_del",
4279 	    NULL, udp_extra_priv_ports_del, NULL)) {
4280 		nd_free(&udp_g_nd);
4281 		return (B_FALSE);
4282 	}
4283 	if (!nd_load(&udp_g_nd, "udp_status", udp_status_report, NULL,
4284 	    NULL)) {
4285 		nd_free(&udp_g_nd);
4286 		return (B_FALSE);
4287 	}
4288 	if (!nd_load(&udp_g_nd, "udp_bind_hash", udp_bind_hash_report, NULL,
4289 	    NULL)) {
4290 		nd_free(&udp_g_nd);
4291 		return (B_FALSE);
4292 	}
4293 	return (B_TRUE);
4294 }
4295 
4296 /* This routine sets an ND variable in a udpparam_t structure. */
4297 /* ARGSUSED */
4298 static int
4299 udp_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr)
4300 {
4301 	long		new_value;
4302 	udpparam_t	*udppa = (udpparam_t *)cp;
4303 
4304 	/*
4305 	 * Fail the request if the new value does not lie within the
4306 	 * required bounds.
4307 	 */
4308 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
4309 	    new_value < udppa->udp_param_min ||
4310 	    new_value > udppa->udp_param_max) {
4311 		return (EINVAL);
4312 	}
4313 
4314 	/* Set the new value */
4315 	udppa->udp_param_value = new_value;
4316 	return (0);
4317 }
4318 
4319 /*
4320  * Copy hop-by-hop option from ipp->ipp_hopopts to the buffer provided (with
4321  * T_opthdr) and return the number of bytes copied.  'dbuf' may be NULL to
4322  * just count the length needed for allocation.  If 'dbuf' is non-NULL,
4323  * then it's assumed to be allocated to be large enough.
4324  *
4325  * Returns zero if trimming of the security option causes all options to go
4326  * away.
4327  */
4328 static size_t
4329 copy_hop_opts(const ip6_pkt_t *ipp, uchar_t *dbuf)
4330 {
4331 	struct T_opthdr *toh;
4332 	size_t hol = ipp->ipp_hopoptslen;
4333 	ip6_hbh_t *dstopt = NULL;
4334 	const ip6_hbh_t *srcopt = ipp->ipp_hopopts;
4335 	size_t tlen, olen, plen;
4336 	boolean_t deleting;
4337 	const struct ip6_opt *sopt, *lastpad;
4338 	struct ip6_opt *dopt;
4339 
4340 	if ((toh = (struct T_opthdr *)dbuf) != NULL) {
4341 		toh->level = IPPROTO_IPV6;
4342 		toh->name = IPV6_HOPOPTS;
4343 		toh->status = 0;
4344 		dstopt = (ip6_hbh_t *)(toh + 1);
4345 	}
4346 
4347 	/*
4348 	 * If labeling is enabled, then skip the label option
4349 	 * but get other options if there are any.
4350 	 */
4351 	if (is_system_labeled()) {
4352 		dopt = NULL;
4353 		if (dstopt != NULL) {
4354 			/* will fill in ip6h_len later */
4355 			dstopt->ip6h_nxt = srcopt->ip6h_nxt;
4356 			dopt = (struct ip6_opt *)(dstopt + 1);
4357 		}
4358 		sopt = (const struct ip6_opt *)(srcopt + 1);
4359 		hol -= sizeof (*srcopt);
4360 		tlen = sizeof (*dstopt);
4361 		lastpad = NULL;
4362 		deleting = B_FALSE;
4363 		/*
4364 		 * This loop finds the first (lastpad pointer) of any number of
4365 		 * pads that preceeds the security option, then treats the
4366 		 * security option as though it were a pad, and then finds the
4367 		 * next non-pad option (or end of list).
4368 		 *
4369 		 * It then treats the entire block as one big pad.  To preserve
4370 		 * alignment of any options that follow, or just the end of the
4371 		 * list, it computes a minimal new padding size that keeps the
4372 		 * same alignment for the next option.
4373 		 *
4374 		 * If it encounters just a sequence of pads with no security
4375 		 * option, those are copied as-is rather than collapsed.
4376 		 *
4377 		 * Note that to handle the end of list case, the code makes one
4378 		 * loop with 'hol' set to zero.
4379 		 */
4380 		for (;;) {
4381 			if (hol > 0) {
4382 				if (sopt->ip6o_type == IP6OPT_PAD1) {
4383 					if (lastpad == NULL)
4384 						lastpad = sopt;
4385 					sopt = (const struct ip6_opt *)
4386 					    &sopt->ip6o_len;
4387 					hol--;
4388 					continue;
4389 				}
4390 				olen = sopt->ip6o_len + sizeof (*sopt);
4391 				if (olen > hol)
4392 					olen = hol;
4393 				if (sopt->ip6o_type == IP6OPT_PADN ||
4394 				    sopt->ip6o_type == ip6opt_ls) {
4395 					if (sopt->ip6o_type == ip6opt_ls)
4396 						deleting = B_TRUE;
4397 					if (lastpad == NULL)
4398 						lastpad = sopt;
4399 					sopt = (const struct ip6_opt *)
4400 					    ((const char *)sopt + olen);
4401 					hol -= olen;
4402 					continue;
4403 				}
4404 			} else {
4405 				/* if nothing was copied at all, then delete */
4406 				if (tlen == sizeof (*dstopt))
4407 					return (0);
4408 				/* last pass; pick up any trailing padding */
4409 				olen = 0;
4410 			}
4411 			if (deleting) {
4412 				/*
4413 				 * compute aligning effect of deleted material
4414 				 * to reproduce with pad.
4415 				 */
4416 				plen = ((const char *)sopt -
4417 				    (const char *)lastpad) & 7;
4418 				tlen += plen;
4419 				if (dopt != NULL) {
4420 					if (plen == 1) {
4421 						dopt->ip6o_type = IP6OPT_PAD1;
4422 					} else if (plen > 1) {
4423 						plen -= sizeof (*dopt);
4424 						dopt->ip6o_type = IP6OPT_PADN;
4425 						dopt->ip6o_len = plen;
4426 						if (plen > 0)
4427 							bzero(dopt + 1, plen);
4428 					}
4429 					dopt = (struct ip6_opt *)
4430 					    ((char *)dopt + plen);
4431 				}
4432 				deleting = B_FALSE;
4433 				lastpad = NULL;
4434 			}
4435 			/* if there's uncopied padding, then copy that now */
4436 			if (lastpad != NULL) {
4437 				olen += (const char *)sopt -
4438 				    (const char *)lastpad;
4439 				sopt = lastpad;
4440 				lastpad = NULL;
4441 			}
4442 			if (dopt != NULL && olen > 0) {
4443 				bcopy(sopt, dopt, olen);
4444 				dopt = (struct ip6_opt *)((char *)dopt + olen);
4445 			}
4446 			if (hol == 0)
4447 				break;
4448 			tlen += olen;
4449 			sopt = (const struct ip6_opt *)
4450 			    ((const char *)sopt + olen);
4451 			hol -= olen;
4452 		}
4453 		/* go back and patch up the length value, rounded upward */
4454 		if (dstopt != NULL)
4455 			dstopt->ip6h_len = (tlen - 1) >> 3;
4456 	} else {
4457 		tlen = hol;
4458 		if (dstopt != NULL)
4459 			bcopy(srcopt, dstopt, hol);
4460 	}
4461 
4462 	tlen += sizeof (*toh);
4463 	if (toh != NULL)
4464 		toh->len = tlen;
4465 
4466 	return (tlen);
4467 }
4468 
4469 static void
4470 udp_input(conn_t *connp, mblk_t *mp)
4471 {
4472 	struct T_unitdata_ind	*tudi;
4473 	uchar_t			*rptr;		/* Pointer to IP header */
4474 	int			hdr_length;	/* Length of IP+UDP headers */
4475 	int			udi_size;	/* Size of T_unitdata_ind */
4476 	int			mp_len;
4477 	udp_t			*udp;
4478 	udpha_t			*udpha;
4479 	int			ipversion;
4480 	ip6_pkt_t		ipp;
4481 	ip6_t			*ip6h;
4482 	ip6i_t			*ip6i;
4483 	mblk_t			*mp1;
4484 	mblk_t			*options_mp = NULL;
4485 	in_pktinfo_t		*pinfo = NULL;
4486 	cred_t			*cr = NULL;
4487 	queue_t			*q = connp->conn_rq;
4488 	pid_t			cpid;
4489 	cred_t			*rcr = connp->conn_cred;
4490 
4491 	TRACE_2(TR_FAC_UDP, TR_UDP_RPUT_START,
4492 	    "udp_rput_start: q %p mp %p", q, mp);
4493 
4494 	udp = connp->conn_udp;
4495 	rptr = mp->b_rptr;
4496 	ASSERT(DB_TYPE(mp) == M_DATA || DB_TYPE(mp) == M_CTL);
4497 	ASSERT(OK_32PTR(rptr));
4498 
4499 	/*
4500 	 * IP should have prepended the options data in an M_CTL
4501 	 * Check M_CTL "type" to make sure are not here bcos of
4502 	 * a valid ICMP message
4503 	 */
4504 	if (DB_TYPE(mp) == M_CTL) {
4505 		if (MBLKL(mp) == sizeof (in_pktinfo_t) &&
4506 		    ((in_pktinfo_t *)mp->b_rptr)->in_pkt_ulp_type ==
4507 		    IN_PKTINFO) {
4508 			/*
4509 			 * IP_RECVIF or IP_RECVSLLA information has been
4510 			 * appended to the packet by IP. We need to
4511 			 * extract the mblk and adjust the rptr
4512 			 */
4513 			pinfo = (in_pktinfo_t *)mp->b_rptr;
4514 			options_mp = mp;
4515 			mp = mp->b_cont;
4516 			rptr = mp->b_rptr;
4517 			UDP_STAT(udp_in_pktinfo);
4518 		} else {
4519 			/*
4520 			 * ICMP messages.
4521 			 */
4522 			udp_icmp_error(q, mp);
4523 			TRACE_2(TR_FAC_UDP, TR_UDP_RPUT_END,
4524 				"udp_rput_end: q %p (%S)", q, "m_ctl");
4525 			return;
4526 		}
4527 	}
4528 
4529 	mp_len = msgdsize(mp);
4530 	/*
4531 	 * This is the inbound data path.
4532 	 * First, we check to make sure the IP version number is correct,
4533 	 * and then pull the IP and UDP headers into the first mblk.
4534 	 * Assume IP provides aligned packets - otherwise toss.
4535 	 * Also, check if we have a complete IP header.
4536 	 */
4537 
4538 	/* Initialize regardless if ipversion is IPv4 or IPv6 */
4539 	ipp.ipp_fields = 0;
4540 
4541 	ipversion = IPH_HDR_VERSION(rptr);
4542 	switch (ipversion) {
4543 	case IPV4_VERSION:
4544 		ASSERT(MBLKL(mp) >= sizeof (ipha_t));
4545 		ASSERT(((ipha_t *)rptr)->ipha_protocol == IPPROTO_UDP);
4546 		hdr_length = IPH_HDR_LENGTH(rptr) + UDPH_SIZE;
4547 		if ((hdr_length > IP_SIMPLE_HDR_LENGTH + UDPH_SIZE) ||
4548 		    (udp->udp_ip_rcv_options_len)) {
4549 			/*
4550 			 * Handle IPv4 packets with options outside of the
4551 			 * main data path. Not needed for AF_INET6 sockets
4552 			 * since they don't support a getsockopt of IP_OPTIONS.
4553 			 */
4554 			if (udp->udp_family == AF_INET6)
4555 				break;
4556 			/*
4557 			 * UDP length check performed for IPv4 packets with
4558 			 * options to check whether UDP length specified in
4559 			 * the header is the same as the physical length of
4560 			 * the packet.
4561 			 */
4562 			udpha = (udpha_t *)(rptr + (hdr_length - UDPH_SIZE));
4563 			if (mp_len != (ntohs(udpha->uha_length) +
4564 			    hdr_length - UDPH_SIZE)) {
4565 				goto tossit;
4566 			}
4567 			/*
4568 			 * Handle the case where the packet has IP options
4569 			 * and the IP_RECVSLLA & IP_RECVIF are set
4570 			 */
4571 			if (pinfo != NULL)
4572 				mp = options_mp;
4573 			udp_become_writer(connp, mp, udp_rput_other_wrapper,
4574 			    SQTAG_UDP_INPUT);
4575 			TRACE_2(TR_FAC_UDP, TR_UDP_RPUT_END,
4576 				"udp_rput_end: q %p (%S)", q, "end");
4577 			return;
4578 		}
4579 
4580 		/* Handle IPV6_RECVHOPLIMIT. */
4581 		if ((udp->udp_family == AF_INET6) && (pinfo != NULL) &&
4582 		    udp->udp_ipv6_recvpktinfo) {
4583 			if (pinfo->in_pkt_flags & IPF_RECVIF) {
4584 				ipp.ipp_fields |= IPPF_IFINDEX;
4585 				ipp.ipp_ifindex = pinfo->in_pkt_ifindex;
4586 			}
4587 		}
4588 		break;
4589 	case IPV6_VERSION:
4590 		/*
4591 		 * IPv6 packets can only be received by applications
4592 		 * that are prepared to receive IPv6 addresses.
4593 		 * The IP fanout must ensure this.
4594 		 */
4595 		ASSERT(udp->udp_family == AF_INET6);
4596 
4597 		ip6h = (ip6_t *)rptr;
4598 		ASSERT((uchar_t *)&ip6h[1] <= mp->b_wptr);
4599 
4600 		if (ip6h->ip6_nxt != IPPROTO_UDP) {
4601 			uint8_t nexthdrp;
4602 			/* Look for ifindex information */
4603 			if (ip6h->ip6_nxt == IPPROTO_RAW) {
4604 				ip6i = (ip6i_t *)ip6h;
4605 				if ((uchar_t *)&ip6i[1] > mp->b_wptr)
4606 					goto tossit;
4607 
4608 				if (ip6i->ip6i_flags & IP6I_IFINDEX) {
4609 					ASSERT(ip6i->ip6i_ifindex != 0);
4610 					ipp.ipp_fields |= IPPF_IFINDEX;
4611 					ipp.ipp_ifindex = ip6i->ip6i_ifindex;
4612 				}
4613 				rptr = (uchar_t *)&ip6i[1];
4614 				mp->b_rptr = rptr;
4615 				if (rptr == mp->b_wptr) {
4616 					mp1 = mp->b_cont;
4617 					freeb(mp);
4618 					mp = mp1;
4619 					rptr = mp->b_rptr;
4620 				}
4621 				if (MBLKL(mp) < (IPV6_HDR_LEN + UDPH_SIZE))
4622 					goto tossit;
4623 				ip6h = (ip6_t *)rptr;
4624 				mp_len = msgdsize(mp);
4625 			}
4626 			/*
4627 			 * Find any potentially interesting extension headers
4628 			 * as well as the length of the IPv6 + extension
4629 			 * headers.
4630 			 */
4631 			hdr_length = ip_find_hdr_v6(mp, ip6h, &ipp, &nexthdrp) +
4632 			    UDPH_SIZE;
4633 			ASSERT(nexthdrp == IPPROTO_UDP);
4634 		} else {
4635 			hdr_length = IPV6_HDR_LEN + UDPH_SIZE;
4636 			ip6i = NULL;
4637 		}
4638 		break;
4639 	default:
4640 		ASSERT(0);
4641 	}
4642 
4643 	/*
4644 	 * IP inspected the UDP header thus all of it must be in the mblk.
4645 	 * UDP length check is performed for IPv6 packets and IPv4 packets
4646 	 * without options to check if the size of the packet as specified
4647 	 * by the header is the same as the physical size of the packet.
4648 	 */
4649 	udpha = (udpha_t *)(rptr + (hdr_length - UDPH_SIZE));
4650 	if ((MBLKL(mp) < hdr_length) ||
4651 	    (mp_len != (ntohs(udpha->uha_length) + hdr_length - UDPH_SIZE))) {
4652 		goto tossit;
4653 	}
4654 
4655 	/* Walk past the headers. */
4656 	if (!udp->udp_rcvhdr) {
4657 		mp->b_rptr = rptr + hdr_length;
4658 		mp_len -= hdr_length;
4659 	}
4660 
4661 	/*
4662 	 * This is the inbound data path.  Packets are passed upstream as
4663 	 * T_UNITDATA_IND messages with full IP headers still attached.
4664 	 */
4665 	if (udp->udp_family == AF_INET) {
4666 		sin_t *sin;
4667 
4668 		ASSERT(IPH_HDR_VERSION((ipha_t *)rptr) == IPV4_VERSION);
4669 
4670 		/*
4671 		 * Normally only send up the address.
4672 		 * If IP_RECVDSTADDR is set we include the destination IP
4673 		 * address as an option. With IP_RECVOPTS we include all
4674 		 * the IP options. Only ip_rput_other() handles packets
4675 		 * that contain IP options.
4676 		 */
4677 		udi_size = sizeof (struct T_unitdata_ind) + sizeof (sin_t);
4678 		if (udp->udp_recvdstaddr) {
4679 			udi_size += sizeof (struct T_opthdr) +
4680 			    sizeof (struct in_addr);
4681 			UDP_STAT(udp_in_recvdstaddr);
4682 		}
4683 
4684 		/*
4685 		 * If the IP_RECVSLLA or the IP_RECVIF is set then allocate
4686 		 * space accordingly
4687 		 */
4688 		if (udp->udp_recvif && (pinfo != NULL) &&
4689 		    (pinfo->in_pkt_flags & IPF_RECVIF)) {
4690 			udi_size += sizeof (struct T_opthdr) + sizeof (uint_t);
4691 			UDP_STAT(udp_in_recvif);
4692 		}
4693 
4694 		if (udp->udp_recvslla && (pinfo != NULL) &&
4695 		    (pinfo->in_pkt_flags & IPF_RECVSLLA)) {
4696 			udi_size += sizeof (struct T_opthdr) +
4697 			    sizeof (struct sockaddr_dl);
4698 			UDP_STAT(udp_in_recvslla);
4699 		}
4700 
4701 		if (udp->udp_recvucred && (cr = DB_CRED(mp)) != NULL) {
4702 			udi_size += sizeof (struct T_opthdr) + ucredsize;
4703 			cpid = DB_CPID(mp);
4704 			UDP_STAT(udp_in_recvucred);
4705 		}
4706 
4707 		/*
4708 		 * If SO_TIMESTAMP is set allocate the appropriate sized
4709 		 * buffer. Since gethrestime() expects a pointer aligned
4710 		 * argument, we allocate space necessary for extra
4711 		 * alignment (even though it might not be used).
4712 		 */
4713 		if (udp->udp_timestamp) {
4714 			udi_size += sizeof (struct T_opthdr) +
4715 			    sizeof (timestruc_t) + _POINTER_ALIGNMENT;
4716 			UDP_STAT(udp_in_timestamp);
4717 		}
4718 
4719 		/*
4720 		 * If IP_RECVTTL is set allocate the appropriate sized buffer
4721 		 */
4722 		if (udp->udp_recvttl) {
4723 			udi_size += sizeof (struct T_opthdr) + sizeof (uint8_t);
4724 			UDP_STAT(udp_in_recvttl);
4725 		}
4726 		ASSERT(IPH_HDR_LENGTH((ipha_t *)rptr) == IP_SIMPLE_HDR_LENGTH);
4727 
4728 		/* Allocate a message block for the T_UNITDATA_IND structure. */
4729 		mp1 = allocb(udi_size, BPRI_MED);
4730 		if (mp1 == NULL) {
4731 			freemsg(mp);
4732 			if (options_mp != NULL)
4733 				freeb(options_mp);
4734 			TRACE_2(TR_FAC_UDP, TR_UDP_RPUT_END,
4735 				"udp_rput_end: q %p (%S)", q, "allocbfail");
4736 			BUMP_MIB(&udp_mib, udpInErrors);
4737 			return;
4738 		}
4739 		mp1->b_cont = mp;
4740 		mp = mp1;
4741 		mp->b_datap->db_type = M_PROTO;
4742 		tudi = (struct T_unitdata_ind *)mp->b_rptr;
4743 		mp->b_wptr = (uchar_t *)tudi + udi_size;
4744 		tudi->PRIM_type = T_UNITDATA_IND;
4745 		tudi->SRC_length = sizeof (sin_t);
4746 		tudi->SRC_offset = sizeof (struct T_unitdata_ind);
4747 		tudi->OPT_offset = sizeof (struct T_unitdata_ind) +
4748 		    sizeof (sin_t);
4749 		udi_size -= (sizeof (struct T_unitdata_ind) + sizeof (sin_t));
4750 		tudi->OPT_length = udi_size;
4751 		sin = (sin_t *)&tudi[1];
4752 		sin->sin_addr.s_addr = ((ipha_t *)rptr)->ipha_src;
4753 		sin->sin_port =	udpha->uha_src_port;
4754 		sin->sin_family = udp->udp_family;
4755 		*(uint32_t *)&sin->sin_zero[0] = 0;
4756 		*(uint32_t *)&sin->sin_zero[4] = 0;
4757 
4758 		/*
4759 		 * Add options if IP_RECVDSTADDR, IP_RECVIF, IP_RECVSLLA or
4760 		 * IP_RECVTTL has been set.
4761 		 */
4762 		if (udi_size != 0) {
4763 			/*
4764 			 * Copy in destination address before options to avoid
4765 			 * any padding issues.
4766 			 */
4767 			char *dstopt;
4768 
4769 			dstopt = (char *)&sin[1];
4770 			if (udp->udp_recvdstaddr) {
4771 				struct T_opthdr *toh;
4772 				ipaddr_t *dstptr;
4773 
4774 				toh = (struct T_opthdr *)dstopt;
4775 				toh->level = IPPROTO_IP;
4776 				toh->name = IP_RECVDSTADDR;
4777 				toh->len = sizeof (struct T_opthdr) +
4778 				    sizeof (ipaddr_t);
4779 				toh->status = 0;
4780 				dstopt += sizeof (struct T_opthdr);
4781 				dstptr = (ipaddr_t *)dstopt;
4782 				*dstptr = ((ipha_t *)rptr)->ipha_dst;
4783 				dstopt = (char *)toh + toh->len;
4784 				udi_size -= toh->len;
4785 			}
4786 
4787 			if (udp->udp_recvslla && (pinfo != NULL) &&
4788 			    (pinfo->in_pkt_flags & IPF_RECVSLLA)) {
4789 
4790 				struct T_opthdr *toh;
4791 				struct sockaddr_dl	*dstptr;
4792 
4793 				toh = (struct T_opthdr *)dstopt;
4794 				toh->level = IPPROTO_IP;
4795 				toh->name = IP_RECVSLLA;
4796 				toh->len = sizeof (struct T_opthdr) +
4797 					sizeof (struct sockaddr_dl);
4798 				toh->status = 0;
4799 				dstopt += sizeof (struct T_opthdr);
4800 				dstptr = (struct sockaddr_dl *)dstopt;
4801 				bcopy(&pinfo->in_pkt_slla, dstptr,
4802 				    sizeof (struct sockaddr_dl));
4803 				dstopt = (char *)toh + toh->len;
4804 				udi_size -= toh->len;
4805 			}
4806 
4807 			if (udp->udp_recvif && (pinfo != NULL) &&
4808 			    (pinfo->in_pkt_flags & IPF_RECVIF)) {
4809 
4810 				struct T_opthdr *toh;
4811 				uint_t		*dstptr;
4812 
4813 				toh = (struct T_opthdr *)dstopt;
4814 				toh->level = IPPROTO_IP;
4815 				toh->name = IP_RECVIF;
4816 				toh->len = sizeof (struct T_opthdr) +
4817 					sizeof (uint_t);
4818 				toh->status = 0;
4819 				dstopt += sizeof (struct T_opthdr);
4820 				dstptr = (uint_t *)dstopt;
4821 				*dstptr = pinfo->in_pkt_ifindex;
4822 				dstopt = (char *)toh + toh->len;
4823 				udi_size -= toh->len;
4824 			}
4825 
4826 			if (cr != NULL) {
4827 				struct T_opthdr *toh;
4828 
4829 				toh = (struct T_opthdr *)dstopt;
4830 				toh->level = SOL_SOCKET;
4831 				toh->name = SCM_UCRED;
4832 				toh->len = sizeof (struct T_opthdr) + ucredsize;
4833 				toh->status = 0;
4834 				(void) cred2ucred(cr, cpid, &toh[1], rcr);
4835 				dstopt = (char *)toh + toh->len;
4836 				udi_size -= toh->len;
4837 			}
4838 
4839 			if (udp->udp_timestamp) {
4840 				struct	T_opthdr *toh;
4841 
4842 				toh = (struct T_opthdr *)dstopt;
4843 				toh->level = SOL_SOCKET;
4844 				toh->name = SCM_TIMESTAMP;
4845 				toh->len = sizeof (struct T_opthdr) +
4846 				    sizeof (timestruc_t) + _POINTER_ALIGNMENT;
4847 				toh->status = 0;
4848 				dstopt += sizeof (struct T_opthdr);
4849 				/* Align for gethrestime() */
4850 				dstopt = (char *)P2ROUNDUP((intptr_t)dstopt,
4851 				    sizeof (intptr_t));
4852 				gethrestime((timestruc_t *)dstopt);
4853 				dstopt = (char *)toh + toh->len;
4854 				udi_size -= toh->len;
4855 			}
4856 
4857 			/*
4858 			 * CAUTION:
4859 			 * Due to aligment issues
4860 			 * Processing of IP_RECVTTL option
4861 			 * should always be the last. Adding
4862 			 * any option processing after this will
4863 			 * cause alignment panic.
4864 			 */
4865 			if (udp->udp_recvttl) {
4866 				struct	T_opthdr *toh;
4867 				uint8_t	*dstptr;
4868 
4869 				toh = (struct T_opthdr *)dstopt;
4870 				toh->level = IPPROTO_IP;
4871 				toh->name = IP_RECVTTL;
4872 				toh->len = sizeof (struct T_opthdr) +
4873 				    sizeof (uint8_t);
4874 				toh->status = 0;
4875 				dstopt += sizeof (struct T_opthdr);
4876 				dstptr = (uint8_t *)dstopt;
4877 				*dstptr = ((ipha_t *)rptr)->ipha_ttl;
4878 				dstopt = (char *)toh + toh->len;
4879 				udi_size -= toh->len;
4880 			}
4881 
4882 			/* Consumed all of allocated space */
4883 			ASSERT(udi_size == 0);
4884 		}
4885 	} else {
4886 		sin6_t *sin6;
4887 
4888 		/*
4889 		 * Handle both IPv4 and IPv6 packets for IPv6 sockets.
4890 		 *
4891 		 * Normally we only send up the address. If receiving of any
4892 		 * optional receive side information is enabled, we also send
4893 		 * that up as options.
4894 		 * [ Only udp_rput_other() handles packets that contain IP
4895 		 * options so code to account for does not appear immediately
4896 		 * below but elsewhere ]
4897 		 */
4898 		udi_size = sizeof (struct T_unitdata_ind) + sizeof (sin6_t);
4899 
4900 		if (ipp.ipp_fields & (IPPF_HOPOPTS|IPPF_DSTOPTS|IPPF_RTDSTOPTS|
4901 		    IPPF_RTHDR|IPPF_IFINDEX)) {
4902 			if (udp->udp_ipv6_recvhopopts &&
4903 			    (ipp.ipp_fields & IPPF_HOPOPTS)) {
4904 				size_t hlen;
4905 
4906 				UDP_STAT(udp_in_recvhopopts);
4907 				hlen = copy_hop_opts(&ipp, NULL);
4908 				if (hlen == 0)
4909 					ipp.ipp_fields &= ~IPPF_HOPOPTS;
4910 				udi_size += hlen;
4911 			}
4912 			if ((udp->udp_ipv6_recvdstopts ||
4913 				udp->udp_old_ipv6_recvdstopts) &&
4914 			    (ipp.ipp_fields & IPPF_DSTOPTS)) {
4915 				udi_size += sizeof (struct T_opthdr) +
4916 				    ipp.ipp_dstoptslen;
4917 				UDP_STAT(udp_in_recvdstopts);
4918 			}
4919 			if (((udp->udp_ipv6_recvdstopts &&
4920 			    udp->udp_ipv6_recvrthdr &&
4921 			    (ipp.ipp_fields & IPPF_RTHDR)) ||
4922 			    udp->udp_ipv6_recvrthdrdstopts) &&
4923 			    (ipp.ipp_fields & IPPF_RTDSTOPTS)) {
4924 				udi_size += sizeof (struct T_opthdr) +
4925 				    ipp.ipp_rtdstoptslen;
4926 				UDP_STAT(udp_in_recvrtdstopts);
4927 			}
4928 			if (udp->udp_ipv6_recvrthdr &&
4929 			    (ipp.ipp_fields & IPPF_RTHDR)) {
4930 				udi_size += sizeof (struct T_opthdr) +
4931 				    ipp.ipp_rthdrlen;
4932 				UDP_STAT(udp_in_recvrthdr);
4933 			}
4934 			if (udp->udp_ipv6_recvpktinfo &&
4935 			    (ipp.ipp_fields & IPPF_IFINDEX)) {
4936 				udi_size += sizeof (struct T_opthdr) +
4937 				    sizeof (struct in6_pktinfo);
4938 				UDP_STAT(udp_in_recvpktinfo);
4939 			}
4940 
4941 		}
4942 		if (udp->udp_recvucred && (cr = DB_CRED(mp)) != NULL) {
4943 			udi_size += sizeof (struct T_opthdr) + ucredsize;
4944 			cpid = DB_CPID(mp);
4945 			UDP_STAT(udp_in_recvucred);
4946 		}
4947 
4948 		if (udp->udp_ipv6_recvhoplimit) {
4949 			udi_size += sizeof (struct T_opthdr) + sizeof (int);
4950 			UDP_STAT(udp_in_recvhoplimit);
4951 		}
4952 
4953 		if (udp->udp_ipv6_recvtclass) {
4954 			udi_size += sizeof (struct T_opthdr) + sizeof (int);
4955 			UDP_STAT(udp_in_recvtclass);
4956 		}
4957 
4958 		mp1 = allocb(udi_size, BPRI_MED);
4959 		if (mp1 == NULL) {
4960 			freemsg(mp);
4961 			if (options_mp != NULL)
4962 				freeb(options_mp);
4963 			TRACE_2(TR_FAC_UDP, TR_UDP_RPUT_END,
4964 				"udp_rput_end: q %p (%S)", q, "allocbfail");
4965 			BUMP_MIB(&udp_mib, udpInErrors);
4966 			return;
4967 		}
4968 		mp1->b_cont = mp;
4969 		mp = mp1;
4970 		mp->b_datap->db_type = M_PROTO;
4971 		tudi = (struct T_unitdata_ind *)mp->b_rptr;
4972 		mp->b_wptr = (uchar_t *)tudi + udi_size;
4973 		tudi->PRIM_type = T_UNITDATA_IND;
4974 		tudi->SRC_length = sizeof (sin6_t);
4975 		tudi->SRC_offset = sizeof (struct T_unitdata_ind);
4976 		tudi->OPT_offset = sizeof (struct T_unitdata_ind) +
4977 		    sizeof (sin6_t);
4978 		udi_size -= (sizeof (struct T_unitdata_ind) + sizeof (sin6_t));
4979 		tudi->OPT_length = udi_size;
4980 		sin6 = (sin6_t *)&tudi[1];
4981 		if (ipversion == IPV4_VERSION) {
4982 			in6_addr_t v6dst;
4983 
4984 			IN6_IPADDR_TO_V4MAPPED(((ipha_t *)rptr)->ipha_src,
4985 			    &sin6->sin6_addr);
4986 			IN6_IPADDR_TO_V4MAPPED(((ipha_t *)rptr)->ipha_dst,
4987 			    &v6dst);
4988 			sin6->sin6_flowinfo = 0;
4989 			sin6->sin6_scope_id = 0;
4990 			sin6->__sin6_src_id = ip_srcid_find_addr(&v6dst,
4991 			    connp->conn_zoneid);
4992 		} else {
4993 			sin6->sin6_addr = ip6h->ip6_src;
4994 			/* No sin6_flowinfo per API */
4995 			sin6->sin6_flowinfo = 0;
4996 			/* For link-scope source pass up scope id */
4997 			if ((ipp.ipp_fields & IPPF_IFINDEX) &&
4998 			    IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src))
4999 				sin6->sin6_scope_id = ipp.ipp_ifindex;
5000 			else
5001 				sin6->sin6_scope_id = 0;
5002 			sin6->__sin6_src_id = ip_srcid_find_addr(
5003 			    &ip6h->ip6_dst, connp->conn_zoneid);
5004 		}
5005 		sin6->sin6_port = udpha->uha_src_port;
5006 		sin6->sin6_family = udp->udp_family;
5007 
5008 		if (udi_size != 0) {
5009 			uchar_t *dstopt;
5010 
5011 			dstopt = (uchar_t *)&sin6[1];
5012 			if (udp->udp_ipv6_recvpktinfo &&
5013 			    (ipp.ipp_fields & IPPF_IFINDEX)) {
5014 				struct T_opthdr *toh;
5015 				struct in6_pktinfo *pkti;
5016 
5017 				toh = (struct T_opthdr *)dstopt;
5018 				toh->level = IPPROTO_IPV6;
5019 				toh->name = IPV6_PKTINFO;
5020 				toh->len = sizeof (struct T_opthdr) +
5021 				    sizeof (*pkti);
5022 				toh->status = 0;
5023 				dstopt += sizeof (struct T_opthdr);
5024 				pkti = (struct in6_pktinfo *)dstopt;
5025 				if (ipversion == IPV6_VERSION)
5026 					pkti->ipi6_addr = ip6h->ip6_dst;
5027 				else
5028 					IN6_IPADDR_TO_V4MAPPED(
5029 						((ipha_t *)rptr)->ipha_dst,
5030 						    &pkti->ipi6_addr);
5031 				pkti->ipi6_ifindex = ipp.ipp_ifindex;
5032 				dstopt += sizeof (*pkti);
5033 				udi_size -= toh->len;
5034 			}
5035 			if (udp->udp_ipv6_recvhoplimit) {
5036 				struct T_opthdr *toh;
5037 
5038 				toh = (struct T_opthdr *)dstopt;
5039 				toh->level = IPPROTO_IPV6;
5040 				toh->name = IPV6_HOPLIMIT;
5041 				toh->len = sizeof (struct T_opthdr) +
5042 				    sizeof (uint_t);
5043 				toh->status = 0;
5044 				dstopt += sizeof (struct T_opthdr);
5045 				if (ipversion == IPV6_VERSION)
5046 					*(uint_t *)dstopt = ip6h->ip6_hops;
5047 				else
5048 					*(uint_t *)dstopt =
5049 					    ((ipha_t *)rptr)->ipha_ttl;
5050 				dstopt += sizeof (uint_t);
5051 				udi_size -= toh->len;
5052 			}
5053 			if (udp->udp_ipv6_recvtclass) {
5054 				struct T_opthdr *toh;
5055 
5056 				toh = (struct T_opthdr *)dstopt;
5057 				toh->level = IPPROTO_IPV6;
5058 				toh->name = IPV6_TCLASS;
5059 				toh->len = sizeof (struct T_opthdr) +
5060 				    sizeof (uint_t);
5061 				toh->status = 0;
5062 				dstopt += sizeof (struct T_opthdr);
5063 				if (ipversion == IPV6_VERSION) {
5064 					*(uint_t *)dstopt =
5065 					IPV6_FLOW_TCLASS(ip6h->ip6_flow);
5066 				} else {
5067 					ipha_t *ipha = (ipha_t *)rptr;
5068 					*(uint_t *)dstopt =
5069 					    ipha->ipha_type_of_service;
5070 				}
5071 				dstopt += sizeof (uint_t);
5072 				udi_size -= toh->len;
5073 			}
5074 			if (udp->udp_ipv6_recvhopopts &&
5075 			    (ipp.ipp_fields & IPPF_HOPOPTS)) {
5076 				size_t hlen;
5077 
5078 				hlen = copy_hop_opts(&ipp, dstopt);
5079 				dstopt += hlen;
5080 				udi_size -= hlen;
5081 			}
5082 			if (udp->udp_ipv6_recvdstopts &&
5083 			    udp->udp_ipv6_recvrthdr &&
5084 			    (ipp.ipp_fields & IPPF_RTHDR) &&
5085 			    (ipp.ipp_fields & IPPF_RTDSTOPTS)) {
5086 				struct T_opthdr *toh;
5087 
5088 				toh = (struct T_opthdr *)dstopt;
5089 				toh->level = IPPROTO_IPV6;
5090 				toh->name = IPV6_DSTOPTS;
5091 				toh->len = sizeof (struct T_opthdr) +
5092 				    ipp.ipp_rtdstoptslen;
5093 				toh->status = 0;
5094 				dstopt += sizeof (struct T_opthdr);
5095 				bcopy(ipp.ipp_rtdstopts, dstopt,
5096 				    ipp.ipp_rtdstoptslen);
5097 				dstopt += ipp.ipp_rtdstoptslen;
5098 				udi_size -= toh->len;
5099 			}
5100 			if (udp->udp_ipv6_recvrthdr &&
5101 			    (ipp.ipp_fields & IPPF_RTHDR)) {
5102 				struct T_opthdr *toh;
5103 
5104 				toh = (struct T_opthdr *)dstopt;
5105 				toh->level = IPPROTO_IPV6;
5106 				toh->name = IPV6_RTHDR;
5107 				toh->len = sizeof (struct T_opthdr) +
5108 				    ipp.ipp_rthdrlen;
5109 				toh->status = 0;
5110 				dstopt += sizeof (struct T_opthdr);
5111 				bcopy(ipp.ipp_rthdr, dstopt, ipp.ipp_rthdrlen);
5112 				dstopt += ipp.ipp_rthdrlen;
5113 				udi_size -= toh->len;
5114 			}
5115 			if (udp->udp_ipv6_recvdstopts &&
5116 			    (ipp.ipp_fields & IPPF_DSTOPTS)) {
5117 				struct T_opthdr *toh;
5118 
5119 				toh = (struct T_opthdr *)dstopt;
5120 				toh->level = IPPROTO_IPV6;
5121 				toh->name = IPV6_DSTOPTS;
5122 				toh->len = sizeof (struct T_opthdr) +
5123 				    ipp.ipp_dstoptslen;
5124 				toh->status = 0;
5125 				dstopt += sizeof (struct T_opthdr);
5126 				bcopy(ipp.ipp_dstopts, dstopt,
5127 				    ipp.ipp_dstoptslen);
5128 				dstopt += ipp.ipp_dstoptslen;
5129 				udi_size -= toh->len;
5130 			}
5131 
5132 			if (cr != NULL) {
5133 				struct T_opthdr *toh;
5134 
5135 				toh = (struct T_opthdr *)dstopt;
5136 				toh->level = SOL_SOCKET;
5137 				toh->name = SCM_UCRED;
5138 				toh->len = sizeof (struct T_opthdr) + ucredsize;
5139 				toh->status = 0;
5140 				(void) cred2ucred(cr, cpid, &toh[1], rcr);
5141 				dstopt += toh->len;
5142 				udi_size -= toh->len;
5143 			}
5144 			/* Consumed all of allocated space */
5145 			ASSERT(udi_size == 0);
5146 		}
5147 #undef	sin6
5148 		/* No IP_RECVDSTADDR for IPv6. */
5149 	}
5150 
5151 	BUMP_MIB(&udp_mib, udpInDatagrams);
5152 	TRACE_2(TR_FAC_UDP, TR_UDP_RPUT_END,
5153 		"udp_rput_end: q %p (%S)", q, "end");
5154 	if (options_mp != NULL)
5155 		freeb(options_mp);
5156 
5157 	if (udp->udp_direct_sockfs) {
5158 		/*
5159 		 * There is nothing above us except for the stream head;
5160 		 * use the read-side synchronous stream interface in
5161 		 * order to reduce the time spent in interrupt thread.
5162 		 */
5163 		ASSERT(udp->udp_issocket);
5164 		udp_rcv_enqueue(UDP_RD(q), udp, mp, mp_len);
5165 	} else {
5166 		/*
5167 		 * Use regular STREAMS interface to pass data upstream
5168 		 * if this is not a socket endpoint, or if we have
5169 		 * switched over to the slow mode due to sockmod being
5170 		 * popped or a module being pushed on top of us.
5171 		 */
5172 		putnext(UDP_RD(q), mp);
5173 	}
5174 	return;
5175 
5176 tossit:
5177 	freemsg(mp);
5178 	if (options_mp != NULL)
5179 		freeb(options_mp);
5180 	BUMP_MIB(&udp_mib, udpInErrors);
5181 }
5182 
5183 void
5184 udp_conn_recv(conn_t *connp, mblk_t *mp)
5185 {
5186 	_UDP_ENTER(connp, mp, udp_input_wrapper, SQTAG_UDP_FANOUT);
5187 }
5188 
5189 /* ARGSUSED */
5190 static void
5191 udp_input_wrapper(void *arg, mblk_t *mp, void *arg2)
5192 {
5193 	udp_input((conn_t *)arg, mp);
5194 	_UDP_EXIT((conn_t *)arg);
5195 }
5196 
5197 /*
5198  * Process non-M_DATA messages as well as M_DATA messages that requires
5199  * modifications to udp_ip_rcv_options i.e. IPv4 packets with IP options.
5200  */
5201 static void
5202 udp_rput_other(queue_t *q, mblk_t *mp)
5203 {
5204 	struct T_unitdata_ind	*tudi;
5205 	mblk_t			*mp1;
5206 	uchar_t			*rptr;
5207 	uchar_t			*new_rptr;
5208 	int			hdr_length;
5209 	int			udi_size;	/* Size of T_unitdata_ind */
5210 	int			opt_len;	/* Length of IP options */
5211 	sin_t			*sin;
5212 	struct T_error_ack	*tea;
5213 	mblk_t			*options_mp = NULL;
5214 	in_pktinfo_t		*pinfo;
5215 	boolean_t		recv_on = B_FALSE;
5216 	cred_t			*cr = NULL;
5217 	udp_t			*udp = Q_TO_UDP(q);
5218 	pid_t			cpid;
5219 	cred_t			*rcr = udp->udp_connp->conn_cred;
5220 
5221 	TRACE_2(TR_FAC_UDP, TR_UDP_RPUT_START,
5222 	    "udp_rput_other: q %p mp %p", q, mp);
5223 
5224 	ASSERT(OK_32PTR(mp->b_rptr));
5225 	rptr = mp->b_rptr;
5226 
5227 	switch (mp->b_datap->db_type) {
5228 	case M_CTL:
5229 		/*
5230 		 * We are here only if IP_RECVSLLA and/or IP_RECVIF are set
5231 		 */
5232 		recv_on = B_TRUE;
5233 		options_mp = mp;
5234 		pinfo = (in_pktinfo_t *)options_mp->b_rptr;
5235 
5236 		/*
5237 		 * The actual data is in mp->b_cont
5238 		 */
5239 		mp = mp->b_cont;
5240 		ASSERT(OK_32PTR(mp->b_rptr));
5241 		rptr = mp->b_rptr;
5242 		break;
5243 	case M_DATA:
5244 		/*
5245 		 * M_DATA messages contain IPv4 datagrams.  They are handled
5246 		 * after this switch.
5247 		 */
5248 		break;
5249 	case M_PROTO:
5250 	case M_PCPROTO:
5251 		/* M_PROTO messages contain some type of TPI message. */
5252 		ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX);
5253 		if (mp->b_wptr - rptr < sizeof (t_scalar_t)) {
5254 			freemsg(mp);
5255 			TRACE_2(TR_FAC_UDP, TR_UDP_RPUT_END,
5256 			    "udp_rput_other_end: q %p (%S)", q, "protoshort");
5257 			return;
5258 		}
5259 		tea = (struct T_error_ack *)rptr;
5260 
5261 		switch (tea->PRIM_type) {
5262 		case T_ERROR_ACK:
5263 			switch (tea->ERROR_prim) {
5264 			case O_T_BIND_REQ:
5265 			case T_BIND_REQ: {
5266 				/*
5267 				 * If our O_T_BIND_REQ/T_BIND_REQ fails,
5268 				 * clear out the associated port and source
5269 				 * address before passing the message
5270 				 * upstream. If this was caused by a T_CONN_REQ
5271 				 * revert back to bound state.
5272 				 */
5273 				udp_fanout_t	*udpf;
5274 
5275 				udpf = &udp_bind_fanout[
5276 				    UDP_BIND_HASH(udp->udp_port)];
5277 				mutex_enter(&udpf->uf_lock);
5278 				if (udp->udp_state == TS_DATA_XFER) {
5279 					/* Connect failed */
5280 					tea->ERROR_prim = T_CONN_REQ;
5281 					/* Revert back to the bound source */
5282 					udp->udp_v6src = udp->udp_bound_v6src;
5283 					udp->udp_state = TS_IDLE;
5284 					mutex_exit(&udpf->uf_lock);
5285 					if (udp->udp_family == AF_INET6)
5286 						(void) udp_build_hdrs(q, udp);
5287 					break;
5288 				}
5289 
5290 				if (udp->udp_discon_pending) {
5291 					tea->ERROR_prim = T_DISCON_REQ;
5292 					udp->udp_discon_pending = 0;
5293 				}
5294 				V6_SET_ZERO(udp->udp_v6src);
5295 				V6_SET_ZERO(udp->udp_bound_v6src);
5296 				udp->udp_state = TS_UNBND;
5297 				udp_bind_hash_remove(udp, B_TRUE);
5298 				udp->udp_port = 0;
5299 				mutex_exit(&udpf->uf_lock);
5300 				if (udp->udp_family == AF_INET6)
5301 					(void) udp_build_hdrs(q, udp);
5302 				break;
5303 			}
5304 			default:
5305 				break;
5306 			}
5307 			break;
5308 		case T_BIND_ACK:
5309 			udp_rput_bind_ack(q, mp);
5310 			return;
5311 
5312 		case T_OPTMGMT_ACK:
5313 		case T_OK_ACK:
5314 			break;
5315 		default:
5316 			freemsg(mp);
5317 			return;
5318 		}
5319 		putnext(UDP_RD(q), mp);
5320 		return;
5321 	}
5322 
5323 	/*
5324 	 * This is the inbound data path.
5325 	 * First, we make sure the data contains both IP and UDP headers.
5326 	 *
5327 	 * This handle IPv4 packets for only AF_INET sockets.
5328 	 * AF_INET6 sockets can never access udp_ip_rcv_options thus there
5329 	 * is no need saving the options.
5330 	 */
5331 	ASSERT(IPH_HDR_VERSION((ipha_t *)rptr) == IPV4_VERSION);
5332 	hdr_length = IPH_HDR_LENGTH(rptr) + UDPH_SIZE;
5333 	if (mp->b_wptr - rptr < hdr_length) {
5334 		if (!pullupmsg(mp, hdr_length)) {
5335 			freemsg(mp);
5336 			if (options_mp != NULL)
5337 				freeb(options_mp);
5338 			BUMP_MIB(&udp_mib, udpInErrors);
5339 			TRACE_2(TR_FAC_UDP, TR_UDP_RPUT_END,
5340 			    "udp_rput_other_end: q %p (%S)", q, "hdrshort");
5341 			BUMP_MIB(&udp_mib, udpInErrors);
5342 			return;
5343 		}
5344 		rptr = mp->b_rptr;
5345 	}
5346 	/* Walk past the headers. */
5347 	new_rptr = rptr + hdr_length;
5348 	if (!udp->udp_rcvhdr)
5349 		mp->b_rptr = new_rptr;
5350 
5351 	/* Save the options if any */
5352 	opt_len = hdr_length - (IP_SIMPLE_HDR_LENGTH + UDPH_SIZE);
5353 	if (opt_len > 0) {
5354 		if (opt_len > udp->udp_ip_rcv_options_len) {
5355 			if (udp->udp_ip_rcv_options_len)
5356 				mi_free((char *)udp->udp_ip_rcv_options);
5357 			udp->udp_ip_rcv_options_len = 0;
5358 			udp->udp_ip_rcv_options =
5359 			    (uchar_t *)mi_alloc(opt_len, BPRI_HI);
5360 			if (udp->udp_ip_rcv_options)
5361 				udp->udp_ip_rcv_options_len = opt_len;
5362 		}
5363 		if (udp->udp_ip_rcv_options_len) {
5364 			bcopy(rptr + IP_SIMPLE_HDR_LENGTH,
5365 			    udp->udp_ip_rcv_options, opt_len);
5366 			/* Adjust length if we are resusing the space */
5367 			udp->udp_ip_rcv_options_len = opt_len;
5368 		}
5369 	} else if (udp->udp_ip_rcv_options_len) {
5370 		mi_free((char *)udp->udp_ip_rcv_options);
5371 		udp->udp_ip_rcv_options = NULL;
5372 		udp->udp_ip_rcv_options_len = 0;
5373 	}
5374 
5375 	/*
5376 	 * Normally only send up the address.
5377 	 * If IP_RECVDSTADDR is set we include the destination IP
5378 	 * address as an option. With IP_RECVOPTS we include all
5379 	 * the IP options.
5380 	 */
5381 	udi_size = sizeof (struct T_unitdata_ind) + sizeof (sin_t);
5382 	if (udp->udp_recvdstaddr) {
5383 		udi_size += sizeof (struct T_opthdr) + sizeof (struct in_addr);
5384 		UDP_STAT(udp_in_recvdstaddr);
5385 	}
5386 	if (udp->udp_recvopts && opt_len > 0) {
5387 		udi_size += sizeof (struct T_opthdr) + opt_len;
5388 		UDP_STAT(udp_in_recvopts);
5389 	}
5390 
5391 	/*
5392 	 * If the IP_RECVSLLA or the IP_RECVIF is set then allocate
5393 	 * space accordingly
5394 	 */
5395 	if (udp->udp_recvif && recv_on &&
5396 	    (pinfo->in_pkt_flags & IPF_RECVIF)) {
5397 		udi_size += sizeof (struct T_opthdr) + sizeof (uint_t);
5398 		UDP_STAT(udp_in_recvif);
5399 	}
5400 
5401 	if (udp->udp_recvslla && recv_on &&
5402 	    (pinfo->in_pkt_flags & IPF_RECVSLLA)) {
5403 		udi_size += sizeof (struct T_opthdr) +
5404 		    sizeof (struct sockaddr_dl);
5405 		UDP_STAT(udp_in_recvslla);
5406 	}
5407 
5408 	if (udp->udp_recvucred && (cr = DB_CRED(mp)) != NULL) {
5409 		udi_size += sizeof (struct T_opthdr) + ucredsize;
5410 		cpid = DB_CPID(mp);
5411 		UDP_STAT(udp_in_recvucred);
5412 	}
5413 	/*
5414 	 * If IP_RECVTTL is set allocate the appropriate sized buffer
5415 	 */
5416 	if (udp->udp_recvttl) {
5417 		udi_size += sizeof (struct T_opthdr) + sizeof (uint8_t);
5418 		UDP_STAT(udp_in_recvttl);
5419 	}
5420 
5421 	/* Allocate a message block for the T_UNITDATA_IND structure. */
5422 	mp1 = allocb(udi_size, BPRI_MED);
5423 	if (mp1 == NULL) {
5424 		freemsg(mp);
5425 		if (options_mp != NULL)
5426 			freeb(options_mp);
5427 		TRACE_2(TR_FAC_UDP, TR_UDP_RPUT_END,
5428 			"udp_rput_other_end: q %p (%S)", q, "allocbfail");
5429 		BUMP_MIB(&udp_mib, udpInErrors);
5430 		return;
5431 	}
5432 	mp1->b_cont = mp;
5433 	mp = mp1;
5434 	mp->b_datap->db_type = M_PROTO;
5435 	tudi = (struct T_unitdata_ind *)mp->b_rptr;
5436 	mp->b_wptr = (uchar_t *)tudi + udi_size;
5437 	tudi->PRIM_type = T_UNITDATA_IND;
5438 	tudi->SRC_length = sizeof (sin_t);
5439 	tudi->SRC_offset = sizeof (struct T_unitdata_ind);
5440 	tudi->OPT_offset = sizeof (struct T_unitdata_ind) + sizeof (sin_t);
5441 	udi_size -= (sizeof (struct T_unitdata_ind) + sizeof (sin_t));
5442 	tudi->OPT_length = udi_size;
5443 
5444 	sin = (sin_t *)&tudi[1];
5445 	sin->sin_addr.s_addr = ((ipha_t *)rptr)->ipha_src;
5446 	sin->sin_port =	((in_port_t *)
5447 	    new_rptr)[-(UDPH_SIZE/sizeof (in_port_t))];
5448 	sin->sin_family = AF_INET;
5449 	*(uint32_t *)&sin->sin_zero[0] = 0;
5450 	*(uint32_t *)&sin->sin_zero[4] = 0;
5451 
5452 	/*
5453 	 * Add options if IP_RECVDSTADDR, IP_RECVIF, IP_RECVSLLA or
5454 	 * IP_RECVTTL has been set.
5455 	 */
5456 	if (udi_size != 0) {
5457 		/*
5458 		 * Copy in destination address before options to avoid any
5459 		 * padding issues.
5460 		 */
5461 		char *dstopt;
5462 
5463 		dstopt = (char *)&sin[1];
5464 		if (udp->udp_recvdstaddr) {
5465 			struct T_opthdr *toh;
5466 			ipaddr_t *dstptr;
5467 
5468 			toh = (struct T_opthdr *)dstopt;
5469 			toh->level = IPPROTO_IP;
5470 			toh->name = IP_RECVDSTADDR;
5471 			toh->len = sizeof (struct T_opthdr) + sizeof (ipaddr_t);
5472 			toh->status = 0;
5473 			dstopt += sizeof (struct T_opthdr);
5474 			dstptr = (ipaddr_t *)dstopt;
5475 			*dstptr = (((ipaddr_t *)rptr)[4]);
5476 			dstopt += sizeof (ipaddr_t);
5477 			udi_size -= toh->len;
5478 		}
5479 		if (udp->udp_recvopts && udi_size != 0) {
5480 			struct T_opthdr *toh;
5481 
5482 			toh = (struct T_opthdr *)dstopt;
5483 			toh->level = IPPROTO_IP;
5484 			toh->name = IP_RECVOPTS;
5485 			toh->len = sizeof (struct T_opthdr) + opt_len;
5486 			toh->status = 0;
5487 			dstopt += sizeof (struct T_opthdr);
5488 			bcopy(rptr + IP_SIMPLE_HDR_LENGTH, dstopt, opt_len);
5489 			dstopt += opt_len;
5490 			udi_size -= toh->len;
5491 		}
5492 
5493 		if (udp->udp_recvslla && recv_on &&
5494 		    (pinfo->in_pkt_flags & IPF_RECVSLLA)) {
5495 
5496 			struct T_opthdr *toh;
5497 			struct sockaddr_dl	*dstptr;
5498 
5499 			toh = (struct T_opthdr *)dstopt;
5500 			toh->level = IPPROTO_IP;
5501 			toh->name = IP_RECVSLLA;
5502 			toh->len = sizeof (struct T_opthdr) +
5503 			    sizeof (struct sockaddr_dl);
5504 			toh->status = 0;
5505 			dstopt += sizeof (struct T_opthdr);
5506 			dstptr = (struct sockaddr_dl *)dstopt;
5507 			bcopy(&pinfo->in_pkt_slla, dstptr,
5508 			    sizeof (struct sockaddr_dl));
5509 			dstopt += sizeof (struct sockaddr_dl);
5510 			udi_size -= toh->len;
5511 		}
5512 
5513 		if (udp->udp_recvif && recv_on &&
5514 		    (pinfo->in_pkt_flags & IPF_RECVIF)) {
5515 
5516 			struct T_opthdr *toh;
5517 			uint_t		*dstptr;
5518 
5519 			toh = (struct T_opthdr *)dstopt;
5520 			toh->level = IPPROTO_IP;
5521 			toh->name = IP_RECVIF;
5522 			toh->len = sizeof (struct T_opthdr) +
5523 			    sizeof (uint_t);
5524 			toh->status = 0;
5525 			dstopt += sizeof (struct T_opthdr);
5526 			dstptr = (uint_t *)dstopt;
5527 			*dstptr = pinfo->in_pkt_ifindex;
5528 			dstopt += sizeof (uint_t);
5529 			udi_size -= toh->len;
5530 		}
5531 
5532 		if (cr != NULL) {
5533 			struct T_opthdr *toh;
5534 
5535 			toh = (struct T_opthdr *)dstopt;
5536 			toh->level = SOL_SOCKET;
5537 			toh->name = SCM_UCRED;
5538 			toh->len = sizeof (struct T_opthdr) + ucredsize;
5539 			toh->status = 0;
5540 			(void) cred2ucred(cr, cpid, &toh[1], rcr);
5541 			dstopt += toh->len;
5542 			udi_size -= toh->len;
5543 		}
5544 
5545 		if (udp->udp_recvttl) {
5546 			struct	T_opthdr *toh;
5547 			uint8_t	*dstptr;
5548 
5549 			toh = (struct T_opthdr *)dstopt;
5550 			toh->level = IPPROTO_IP;
5551 			toh->name = IP_RECVTTL;
5552 			toh->len = sizeof (struct T_opthdr) +
5553 			    sizeof (uint8_t);
5554 			toh->status = 0;
5555 			dstopt += sizeof (struct T_opthdr);
5556 			dstptr = (uint8_t *)dstopt;
5557 			*dstptr = ((ipha_t *)rptr)->ipha_ttl;
5558 			dstopt += sizeof (uint8_t);
5559 			udi_size -= toh->len;
5560 		}
5561 
5562 		ASSERT(udi_size == 0);	/* "Consumed" all of allocated space */
5563 	}
5564 	BUMP_MIB(&udp_mib, udpInDatagrams);
5565 	TRACE_2(TR_FAC_UDP, TR_UDP_RPUT_END,
5566 	    "udp_rput_other_end: q %p (%S)", q, "end");
5567 	if (options_mp != NULL)
5568 		freeb(options_mp);
5569 
5570 	if (udp->udp_direct_sockfs) {
5571 		/*
5572 		 * There is nothing above us except for the stream head;
5573 		 * use the read-side synchronous stream interface in
5574 		 * order to reduce the time spent in interrupt thread.
5575 		 */
5576 		ASSERT(udp->udp_issocket);
5577 		udp_rcv_enqueue(UDP_RD(q), udp, mp, msgdsize(mp));
5578 	} else {
5579 		/*
5580 		 * Use regular STREAMS interface to pass data upstream
5581 		 * if this is not a socket endpoint, or if we have
5582 		 * switched over to the slow mode due to sockmod being
5583 		 * popped or a module being pushed on top of us.
5584 		 */
5585 		putnext(UDP_RD(q), mp);
5586 	}
5587 }
5588 
5589 /* ARGSUSED */
5590 static void
5591 udp_rput_other_wrapper(void *arg, mblk_t *mp, void *arg2)
5592 {
5593 	conn_t *connp = arg;
5594 
5595 	udp_rput_other(connp->conn_rq, mp);
5596 	udp_exit(connp);
5597 }
5598 
5599 /*
5600  * Process a T_BIND_ACK
5601  */
5602 static void
5603 udp_rput_bind_ack(queue_t *q, mblk_t *mp)
5604 {
5605 	udp_t	*udp = Q_TO_UDP(q);
5606 	mblk_t	*mp1;
5607 	ire_t	*ire;
5608 	struct T_bind_ack *tba;
5609 	uchar_t *addrp;
5610 	ipa_conn_t	*ac;
5611 	ipa6_conn_t	*ac6;
5612 
5613 	if (udp->udp_discon_pending)
5614 		udp->udp_discon_pending = 0;
5615 
5616 	/*
5617 	 * If a broadcast/multicast address was bound set
5618 	 * the source address to 0.
5619 	 * This ensures no datagrams with broadcast address
5620 	 * as source address are emitted (which would violate
5621 	 * RFC1122 - Hosts requirements)
5622 	 *
5623 	 * Note that when connecting the returned IRE is
5624 	 * for the destination address and we only perform
5625 	 * the broadcast check for the source address (it
5626 	 * is OK to connect to a broadcast/multicast address.)
5627 	 */
5628 	mp1 = mp->b_cont;
5629 	if (mp1 != NULL && mp1->b_datap->db_type == IRE_DB_TYPE) {
5630 		ire = (ire_t *)mp1->b_rptr;
5631 
5632 		/*
5633 		 * Note: we get IRE_BROADCAST for IPv6 to "mark" a multicast
5634 		 * local address.
5635 		 */
5636 		if (ire->ire_type == IRE_BROADCAST &&
5637 		    udp->udp_state != TS_DATA_XFER) {
5638 			/* This was just a local bind to a broadcast addr */
5639 			V6_SET_ZERO(udp->udp_v6src);
5640 			if (udp->udp_family == AF_INET6)
5641 				(void) udp_build_hdrs(q, udp);
5642 		} else if (V6_OR_V4_INADDR_ANY(udp->udp_v6src)) {
5643 			/*
5644 			 * Local address not yet set - pick it from the
5645 			 * T_bind_ack
5646 			 */
5647 			tba = (struct T_bind_ack *)mp->b_rptr;
5648 			addrp = &mp->b_rptr[tba->ADDR_offset];
5649 			switch (udp->udp_family) {
5650 			case AF_INET:
5651 				if (tba->ADDR_length == sizeof (ipa_conn_t)) {
5652 					ac = (ipa_conn_t *)addrp;
5653 				} else {
5654 					ASSERT(tba->ADDR_length ==
5655 					    sizeof (ipa_conn_x_t));
5656 					ac = &((ipa_conn_x_t *)addrp)->acx_conn;
5657 				}
5658 				IN6_IPADDR_TO_V4MAPPED(ac->ac_laddr,
5659 				    &udp->udp_v6src);
5660 				break;
5661 			case AF_INET6:
5662 				if (tba->ADDR_length == sizeof (ipa6_conn_t)) {
5663 					ac6 = (ipa6_conn_t *)addrp;
5664 				} else {
5665 					ASSERT(tba->ADDR_length ==
5666 					    sizeof (ipa6_conn_x_t));
5667 					ac6 = &((ipa6_conn_x_t *)
5668 					    addrp)->ac6x_conn;
5669 				}
5670 				udp->udp_v6src = ac6->ac6_laddr;
5671 				(void) udp_build_hdrs(q, udp);
5672 				break;
5673 			}
5674 		}
5675 		mp1 = mp1->b_cont;
5676 	}
5677 	/*
5678 	 * Look for one or more appended ACK message added by
5679 	 * udp_connect or udp_disconnect.
5680 	 * If none found just send up the T_BIND_ACK.
5681 	 * udp_connect has appended a T_OK_ACK and a T_CONN_CON.
5682 	 * udp_disconnect has appended a T_OK_ACK.
5683 	 */
5684 	if (mp1 != NULL) {
5685 		if (mp->b_cont == mp1)
5686 			mp->b_cont = NULL;
5687 		else {
5688 			ASSERT(mp->b_cont->b_cont == mp1);
5689 			mp->b_cont->b_cont = NULL;
5690 		}
5691 		freemsg(mp);
5692 		mp = mp1;
5693 		while (mp != NULL) {
5694 			mp1 = mp->b_cont;
5695 			mp->b_cont = NULL;
5696 			putnext(UDP_RD(q), mp);
5697 			mp = mp1;
5698 		}
5699 		return;
5700 	}
5701 	freemsg(mp->b_cont);
5702 	mp->b_cont = NULL;
5703 	putnext(UDP_RD(q), mp);
5704 }
5705 
5706 /*
5707  * return SNMP stuff in buffer in mpdata
5708  */
5709 int
5710 udp_snmp_get(queue_t *q, mblk_t *mpctl)
5711 {
5712 	mblk_t			*mpdata;
5713 	mblk_t			*mp_conn_ctl;
5714 	mblk_t			*mp_attr_ctl;
5715 	mblk_t			*mp6_conn_ctl;
5716 	mblk_t			*mp6_attr_ctl;
5717 	mblk_t			*mp_conn_tail;
5718 	mblk_t			*mp_attr_tail;
5719 	mblk_t			*mp6_conn_tail;
5720 	mblk_t			*mp6_attr_tail;
5721 	struct opthdr		*optp;
5722 	mib2_udpEntry_t		ude;
5723 	mib2_udp6Entry_t	ude6;
5724 	mib2_transportMLPEntry_t mlp;
5725 	int			state;
5726 	zoneid_t		zoneid;
5727 	int			i;
5728 	connf_t			*connfp;
5729 	conn_t			*connp = Q_TO_CONN(q);
5730 	udp_t			*udp = connp->conn_udp;
5731 	int			v4_conn_idx;
5732 	int			v6_conn_idx;
5733 	boolean_t		needattr;
5734 
5735 	mp_conn_ctl = mp_attr_ctl = mp6_conn_ctl = NULL;
5736 	if (mpctl == NULL ||
5737 	    (mpdata = mpctl->b_cont) == NULL ||
5738 	    (mp_conn_ctl = copymsg(mpctl)) == NULL ||
5739 	    (mp_attr_ctl = copymsg(mpctl)) == NULL ||
5740 	    (mp6_conn_ctl = copymsg(mpctl)) == NULL ||
5741 	    (mp6_attr_ctl = copymsg(mpctl)) == NULL) {
5742 		freemsg(mp_conn_ctl);
5743 		freemsg(mp_attr_ctl);
5744 		freemsg(mp6_conn_ctl);
5745 		return (0);
5746 	}
5747 
5748 	zoneid = connp->conn_zoneid;
5749 
5750 	/* fixed length structure for IPv4 and IPv6 counters */
5751 	SET_MIB(udp_mib.udpEntrySize, sizeof (mib2_udpEntry_t));
5752 	SET_MIB(udp_mib.udp6EntrySize, sizeof (mib2_udp6Entry_t));
5753 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
5754 	optp->level = MIB2_UDP;
5755 	optp->name = 0;
5756 	(void) snmp_append_data(mpdata, (char *)&udp_mib, sizeof (udp_mib));
5757 	optp->len = msgdsize(mpdata);
5758 	qreply(q, mpctl);
5759 
5760 	mp_conn_tail = mp_attr_tail = mp6_conn_tail = mp6_attr_tail = NULL;
5761 	v4_conn_idx = v6_conn_idx = 0;
5762 
5763 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
5764 		connfp = &ipcl_globalhash_fanout[i];
5765 		connp = NULL;
5766 
5767 		while ((connp = ipcl_get_next_conn(connfp, connp,
5768 		    IPCL_UDP))) {
5769 			udp = connp->conn_udp;
5770 			if (zoneid != connp->conn_zoneid)
5771 				continue;
5772 
5773 			/*
5774 			 * Note that the port numbers are sent in
5775 			 * host byte order
5776 			 */
5777 
5778 			if (udp->udp_state == TS_UNBND)
5779 				state = MIB2_UDP_unbound;
5780 			else if (udp->udp_state == TS_IDLE)
5781 				state = MIB2_UDP_idle;
5782 			else if (udp->udp_state == TS_DATA_XFER)
5783 				state = MIB2_UDP_connected;
5784 			else
5785 				state = MIB2_UDP_unknown;
5786 
5787 			needattr = B_FALSE;
5788 			bzero(&mlp, sizeof (mlp));
5789 			if (connp->conn_mlp_type != mlptSingle) {
5790 				if (connp->conn_mlp_type == mlptShared ||
5791 				    connp->conn_mlp_type == mlptBoth)
5792 					mlp.tme_flags |= MIB2_TMEF_SHARED;
5793 				if (connp->conn_mlp_type == mlptPrivate ||
5794 				    connp->conn_mlp_type == mlptBoth)
5795 					mlp.tme_flags |= MIB2_TMEF_PRIVATE;
5796 				needattr = B_TRUE;
5797 			}
5798 
5799 			/*
5800 			 * Create an IPv4 table entry for IPv4 entries and also
5801 			 * any IPv6 entries which are bound to in6addr_any
5802 			 * (i.e. anything a IPv4 peer could connect/send to).
5803 			 */
5804 			if (udp->udp_ipversion == IPV4_VERSION ||
5805 			    (udp->udp_state <= TS_IDLE &&
5806 			    IN6_IS_ADDR_UNSPECIFIED(&udp->udp_v6src))) {
5807 				ude.udpEntryInfo.ue_state = state;
5808 				/*
5809 				 * If in6addr_any this will set it to
5810 				 * INADDR_ANY
5811 				 */
5812 				ude.udpLocalAddress =
5813 				    V4_PART_OF_V6(udp->udp_v6src);
5814 				ude.udpLocalPort = ntohs(udp->udp_port);
5815 				if (udp->udp_state == TS_DATA_XFER) {
5816 					/*
5817 					 * Can potentially get here for
5818 					 * v6 socket if another process
5819 					 * (say, ping) has just done a
5820 					 * sendto(), changing the state
5821 					 * from the TS_IDLE above to
5822 					 * TS_DATA_XFER by the time we hit
5823 					 * this part of the code.
5824 					 */
5825 					ude.udpEntryInfo.ue_RemoteAddress =
5826 					    V4_PART_OF_V6(udp->udp_v6dst);
5827 					ude.udpEntryInfo.ue_RemotePort =
5828 					    ntohs(udp->udp_dstport);
5829 				} else {
5830 					ude.udpEntryInfo.ue_RemoteAddress = 0;
5831 					ude.udpEntryInfo.ue_RemotePort = 0;
5832 				}
5833 				(void) snmp_append_data2(mp_conn_ctl->b_cont,
5834 				    &mp_conn_tail, (char *)&ude, sizeof (ude));
5835 				mlp.tme_connidx = v4_conn_idx++;
5836 				if (needattr)
5837 					(void) snmp_append_data2(
5838 					    mp_attr_ctl->b_cont, &mp_attr_tail,
5839 					    (char *)&mlp, sizeof (mlp));
5840 			}
5841 			if (udp->udp_ipversion == IPV6_VERSION) {
5842 				ude6.udp6EntryInfo.ue_state  = state;
5843 				ude6.udp6LocalAddress = udp->udp_v6src;
5844 				ude6.udp6LocalPort = ntohs(udp->udp_port);
5845 				ude6.udp6IfIndex = udp->udp_bound_if;
5846 				if (udp->udp_state == TS_DATA_XFER) {
5847 					ude6.udp6EntryInfo.ue_RemoteAddress =
5848 					    udp->udp_v6dst;
5849 					ude6.udp6EntryInfo.ue_RemotePort =
5850 					    ntohs(udp->udp_dstport);
5851 				} else {
5852 					ude6.udp6EntryInfo.ue_RemoteAddress =
5853 					    sin6_null.sin6_addr;
5854 					ude6.udp6EntryInfo.ue_RemotePort = 0;
5855 				}
5856 				(void) snmp_append_data2(mp6_conn_ctl->b_cont,
5857 				    &mp6_conn_tail, (char *)&ude6,
5858 				    sizeof (ude6));
5859 				mlp.tme_connidx = v6_conn_idx++;
5860 				if (needattr)
5861 					(void) snmp_append_data2(
5862 					    mp6_attr_ctl->b_cont,
5863 					    &mp6_attr_tail, (char *)&mlp,
5864 					    sizeof (mlp));
5865 			}
5866 		}
5867 	}
5868 
5869 	/* IPv4 UDP endpoints */
5870 	optp = (struct opthdr *)&mp_conn_ctl->b_rptr[
5871 	    sizeof (struct T_optmgmt_ack)];
5872 	optp->level = MIB2_UDP;
5873 	optp->name = MIB2_UDP_ENTRY;
5874 	optp->len = msgdsize(mp_conn_ctl->b_cont);
5875 	qreply(q, mp_conn_ctl);
5876 
5877 	/* table of MLP attributes... */
5878 	optp = (struct opthdr *)&mp_attr_ctl->b_rptr[
5879 	    sizeof (struct T_optmgmt_ack)];
5880 	optp->level = MIB2_UDP;
5881 	optp->name = EXPER_XPORT_MLP;
5882 	optp->len = msgdsize(mp_attr_ctl->b_cont);
5883 	if (optp->len == 0)
5884 		freemsg(mp_attr_ctl);
5885 	else
5886 		qreply(q, mp_attr_ctl);
5887 
5888 	/* IPv6 UDP endpoints */
5889 	optp = (struct opthdr *)&mp6_conn_ctl->b_rptr[
5890 	    sizeof (struct T_optmgmt_ack)];
5891 	optp->level = MIB2_UDP6;
5892 	optp->name = MIB2_UDP6_ENTRY;
5893 	optp->len = msgdsize(mp6_conn_ctl->b_cont);
5894 	qreply(q, mp6_conn_ctl);
5895 
5896 	/* table of MLP attributes... */
5897 	optp = (struct opthdr *)&mp6_attr_ctl->b_rptr[
5898 	    sizeof (struct T_optmgmt_ack)];
5899 	optp->level = MIB2_UDP6;
5900 	optp->name = EXPER_XPORT_MLP;
5901 	optp->len = msgdsize(mp6_attr_ctl->b_cont);
5902 	if (optp->len == 0)
5903 		freemsg(mp6_attr_ctl);
5904 	else
5905 		qreply(q, mp6_attr_ctl);
5906 
5907 	return (1);
5908 }
5909 
5910 /*
5911  * Return 0 if invalid set request, 1 otherwise, including non-udp requests.
5912  * NOTE: Per MIB-II, UDP has no writable data.
5913  * TODO:  If this ever actually tries to set anything, it needs to be
5914  * to do the appropriate locking.
5915  */
5916 /* ARGSUSED */
5917 int
5918 udp_snmp_set(queue_t *q, t_scalar_t level, t_scalar_t name,
5919     uchar_t *ptr, int len)
5920 {
5921 	switch (level) {
5922 	case MIB2_UDP:
5923 		return (0);
5924 	default:
5925 		return (1);
5926 	}
5927 }
5928 
5929 static void
5930 udp_report_item(mblk_t *mp, udp_t *udp)
5931 {
5932 	char *state;
5933 	char addrbuf1[INET6_ADDRSTRLEN];
5934 	char addrbuf2[INET6_ADDRSTRLEN];
5935 	uint_t print_len, buf_len;
5936 
5937 	buf_len = mp->b_datap->db_lim - mp->b_wptr;
5938 	ASSERT(buf_len >= 0);
5939 	if (buf_len == 0)
5940 		return;
5941 
5942 	if (udp->udp_state == TS_UNBND)
5943 		state = "UNBOUND";
5944 	else if (udp->udp_state == TS_IDLE)
5945 		state = "IDLE";
5946 	else if (udp->udp_state == TS_DATA_XFER)
5947 		state = "CONNECTED";
5948 	else
5949 		state = "UnkState";
5950 	print_len = snprintf((char *)mp->b_wptr, buf_len,
5951 	    MI_COL_PTRFMT_STR "%4d %5u %s %s %5u %s\n",
5952 	    (void *)udp, udp->udp_connp->conn_zoneid, ntohs(udp->udp_port),
5953 	    inet_ntop(AF_INET6, &udp->udp_v6src,
5954 		addrbuf1, sizeof (addrbuf1)),
5955 	    inet_ntop(AF_INET6, &udp->udp_v6dst,
5956 		addrbuf2, sizeof (addrbuf2)),
5957 	    ntohs(udp->udp_dstport), state);
5958 	if (print_len < buf_len) {
5959 		mp->b_wptr += print_len;
5960 	} else {
5961 		mp->b_wptr += buf_len;
5962 	}
5963 }
5964 
5965 /* Report for ndd "udp_status" */
5966 /* ARGSUSED */
5967 static int
5968 udp_status_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
5969 {
5970 	zoneid_t zoneid;
5971 	connf_t	*connfp;
5972 	conn_t	*connp = Q_TO_CONN(q);
5973 	udp_t	*udp = connp->conn_udp;
5974 	int	i;
5975 
5976 	/*
5977 	 * Because of the ndd constraint, at most we can have 64K buffer
5978 	 * to put in all UDP info.  So to be more efficient, just
5979 	 * allocate a 64K buffer here, assuming we need that large buffer.
5980 	 * This may be a problem as any user can read udp_status.  Therefore
5981 	 * we limit the rate of doing this using udp_ndd_get_info_interval.
5982 	 * This should be OK as normal users should not do this too often.
5983 	 */
5984 	if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) {
5985 		if (ddi_get_lbolt() - udp_last_ndd_get_info_time <
5986 		    drv_usectohz(udp_ndd_get_info_interval * 1000)) {
5987 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
5988 			return (0);
5989 		}
5990 	}
5991 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
5992 		/* The following may work even if we cannot get a large buf. */
5993 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
5994 		return (0);
5995 	}
5996 	(void) mi_mpprintf(mp,
5997 	    "UDP     " MI_COL_HDRPAD_STR
5998 	/*   12345678[89ABCDEF] */
5999 	    " zone lport src addr        dest addr       port  state");
6000 	/*    1234 12345 xxx.xxx.xxx.xxx xxx.xxx.xxx.xxx 12345 UNBOUND */
6001 
6002 	zoneid = connp->conn_zoneid;
6003 
6004 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
6005 		connfp = &ipcl_globalhash_fanout[i];
6006 		connp = NULL;
6007 
6008 		while ((connp = ipcl_get_next_conn(connfp, connp,
6009 		    IPCL_UDP))) {
6010 			udp = connp->conn_udp;
6011 			if (zoneid != GLOBAL_ZONEID &&
6012 			    zoneid != connp->conn_zoneid)
6013 				continue;
6014 
6015 			udp_report_item(mp->b_cont, udp);
6016 		}
6017 	}
6018 	udp_last_ndd_get_info_time = ddi_get_lbolt();
6019 	return (0);
6020 }
6021 
6022 /*
6023  * This routine creates a T_UDERROR_IND message and passes it upstream.
6024  * The address and options are copied from the T_UNITDATA_REQ message
6025  * passed in mp.  This message is freed.
6026  */
6027 static void
6028 udp_ud_err(queue_t *q, mblk_t *mp, uchar_t *destaddr, t_scalar_t destlen,
6029     t_scalar_t err)
6030 {
6031 	struct T_unitdata_req *tudr;
6032 	mblk_t	*mp1;
6033 	uchar_t	*optaddr;
6034 	t_scalar_t optlen;
6035 
6036 	if (DB_TYPE(mp) == M_DATA) {
6037 		ASSERT(destaddr != NULL && destlen != 0);
6038 		optaddr = NULL;
6039 		optlen = 0;
6040 	} else {
6041 		if ((mp->b_wptr < mp->b_rptr) ||
6042 		    (MBLKL(mp)) < sizeof (struct T_unitdata_req)) {
6043 			goto done;
6044 		}
6045 		tudr = (struct T_unitdata_req *)mp->b_rptr;
6046 		destaddr = mp->b_rptr + tudr->DEST_offset;
6047 		if (destaddr < mp->b_rptr || destaddr >= mp->b_wptr ||
6048 		    destaddr + tudr->DEST_length < mp->b_rptr ||
6049 		    destaddr + tudr->DEST_length > mp->b_wptr) {
6050 			goto done;
6051 		}
6052 		optaddr = mp->b_rptr + tudr->OPT_offset;
6053 		if (optaddr < mp->b_rptr || optaddr >= mp->b_wptr ||
6054 		    optaddr + tudr->OPT_length < mp->b_rptr ||
6055 		    optaddr + tudr->OPT_length > mp->b_wptr) {
6056 			goto done;
6057 		}
6058 		destlen = tudr->DEST_length;
6059 		optlen = tudr->OPT_length;
6060 	}
6061 
6062 	mp1 = mi_tpi_uderror_ind((char *)destaddr, destlen,
6063 	    (char *)optaddr, optlen, err);
6064 	if (mp1 != NULL)
6065 		putnext(UDP_RD(q), mp1);
6066 
6067 done:
6068 	freemsg(mp);
6069 }
6070 
6071 /*
6072  * This routine removes a port number association from a stream.  It
6073  * is called by udp_wput to handle T_UNBIND_REQ messages.
6074  */
6075 static void
6076 udp_unbind(queue_t *q, mblk_t *mp)
6077 {
6078 	udp_t *udp = Q_TO_UDP(q);
6079 
6080 	/* If a bind has not been done, we can't unbind. */
6081 	if (udp->udp_state == TS_UNBND) {
6082 		udp_err_ack(q, mp, TOUTSTATE, 0);
6083 		return;
6084 	}
6085 	if (cl_inet_unbind != NULL) {
6086 		/*
6087 		 * Running in cluster mode - register unbind information
6088 		 */
6089 		if (udp->udp_ipversion == IPV4_VERSION) {
6090 			(*cl_inet_unbind)(IPPROTO_UDP, AF_INET,
6091 			    (uint8_t *)(&V4_PART_OF_V6(udp->udp_v6src)),
6092 			    (in_port_t)udp->udp_port);
6093 		} else {
6094 			(*cl_inet_unbind)(IPPROTO_UDP, AF_INET6,
6095 			    (uint8_t *)&(udp->udp_v6src),
6096 			    (in_port_t)udp->udp_port);
6097 		}
6098 	}
6099 
6100 	udp_bind_hash_remove(udp, B_FALSE);
6101 	V6_SET_ZERO(udp->udp_v6src);
6102 	V6_SET_ZERO(udp->udp_bound_v6src);
6103 	udp->udp_port = 0;
6104 	udp->udp_state = TS_UNBND;
6105 
6106 	if (udp->udp_family == AF_INET6) {
6107 		int error;
6108 
6109 		/* Rebuild the header template */
6110 		error = udp_build_hdrs(q, udp);
6111 		if (error != 0) {
6112 			udp_err_ack(q, mp, TSYSERR, error);
6113 			return;
6114 		}
6115 	}
6116 	/*
6117 	 * Pass the unbind to IP; T_UNBIND_REQ is larger than T_OK_ACK
6118 	 * and therefore ip_unbind must never return NULL.
6119 	 */
6120 	mp = ip_unbind(q, mp);
6121 	ASSERT(mp != NULL);
6122 	putnext(UDP_RD(q), mp);
6123 }
6124 
6125 /*
6126  * Don't let port fall into the privileged range.
6127  * Since the extra privileged ports can be arbitrary we also
6128  * ensure that we exclude those from consideration.
6129  * udp_g_epriv_ports is not sorted thus we loop over it until
6130  * there are no changes.
6131  */
6132 static in_port_t
6133 udp_update_next_port(udp_t *udp, in_port_t port, boolean_t random)
6134 {
6135 	int i;
6136 	in_port_t nextport;
6137 	boolean_t restart = B_FALSE;
6138 
6139 	if (random && udp_random_anon_port != 0) {
6140 		(void) random_get_pseudo_bytes((uint8_t *)&port,
6141 		    sizeof (in_port_t));
6142 		/*
6143 		 * Unless changed by a sys admin, the smallest anon port
6144 		 * is 32768 and the largest anon port is 65535.  It is
6145 		 * very likely (50%) for the random port to be smaller
6146 		 * than the smallest anon port.  When that happens,
6147 		 * add port % (anon port range) to the smallest anon
6148 		 * port to get the random port.  It should fall into the
6149 		 * valid anon port range.
6150 		 */
6151 		if (port < udp_smallest_anon_port) {
6152 			port = udp_smallest_anon_port +
6153 			    port % (udp_largest_anon_port -
6154 			    udp_smallest_anon_port);
6155 		}
6156 	}
6157 
6158 retry:
6159 	if (port < udp_smallest_anon_port)
6160 		port = udp_smallest_anon_port;
6161 
6162 	if (port > udp_largest_anon_port) {
6163 		port = udp_smallest_anon_port;
6164 		if (restart)
6165 			return (0);
6166 		restart = B_TRUE;
6167 	}
6168 
6169 	if (port < udp_smallest_nonpriv_port)
6170 		port = udp_smallest_nonpriv_port;
6171 
6172 	for (i = 0; i < udp_g_num_epriv_ports; i++) {
6173 		if (port == udp_g_epriv_ports[i]) {
6174 			port++;
6175 			/*
6176 			 * Make sure that the port is in the
6177 			 * valid range.
6178 			 */
6179 			goto retry;
6180 		}
6181 	}
6182 
6183 	if (is_system_labeled() &&
6184 	    (nextport = tsol_next_port(crgetzone(udp->udp_connp->conn_cred),
6185 	    port, IPPROTO_UDP, B_TRUE)) != 0) {
6186 		port = nextport;
6187 		goto retry;
6188 	}
6189 
6190 	return (port);
6191 }
6192 
6193 static int
6194 udp_update_label(queue_t *wq, mblk_t *mp, ipaddr_t dst)
6195 {
6196 	int err;
6197 	uchar_t opt_storage[IP_MAX_OPT_LENGTH];
6198 	udp_t *udp = Q_TO_UDP(wq);
6199 
6200 	err = tsol_compute_label(DB_CREDDEF(mp, udp->udp_connp->conn_cred), dst,
6201 	    opt_storage, udp->udp_mac_exempt);
6202 	if (err == 0) {
6203 		err = tsol_update_options(&udp->udp_ip_snd_options,
6204 		    &udp->udp_ip_snd_options_len, &udp->udp_label_len,
6205 		    opt_storage);
6206 	}
6207 	if (err != 0) {
6208 		DTRACE_PROBE4(
6209 		    tx__ip__log__info__updatelabel__udp,
6210 		    char *, "queue(1) failed to update options(2) on mp(3)",
6211 		    queue_t *, wq, char *, opt_storage, mblk_t *, mp);
6212 	} else {
6213 		IN6_IPADDR_TO_V4MAPPED(dst, &udp->udp_v6lastdst);
6214 	}
6215 	return (err);
6216 }
6217 
6218 static mblk_t *
6219 udp_output_v4(conn_t *connp, mblk_t *mp, ipaddr_t v4dst, uint16_t port,
6220     uint_t srcid, int *error)
6221 {
6222 	udp_t	*udp = connp->conn_udp;
6223 	queue_t	*q = connp->conn_wq;
6224 	mblk_t	*mp1 = mp;
6225 	mblk_t	*mp2;
6226 	ipha_t	*ipha;
6227 	int	ip_hdr_length;
6228 	uint32_t ip_len;
6229 	udpha_t	*udpha;
6230 	udpattrs_t	attrs;
6231 	uchar_t	ip_snd_opt[IP_MAX_OPT_LENGTH];
6232 	uint32_t	ip_snd_opt_len = 0;
6233 
6234 	*error = 0;
6235 
6236 	if (v4dst == INADDR_ANY)
6237 		v4dst = htonl(INADDR_LOOPBACK);
6238 
6239 	/*
6240 	 * If options passed in, feed it for verification and handling
6241 	 */
6242 	attrs.udpattr_credset = B_FALSE;
6243 	if (DB_TYPE(mp) != M_DATA) {
6244 		mp1 = mp->b_cont;
6245 		if (((struct T_unitdata_req *)mp->b_rptr)->OPT_length != 0) {
6246 			attrs.udpattr_ipp = NULL;
6247 			attrs.udpattr_mb = mp;
6248 			if (udp_unitdata_opt_process(q, mp, error, &attrs) < 0)
6249 				goto done;
6250 			/*
6251 			 * Note: success in processing options.
6252 			 * mp option buffer represented by
6253 			 * OPT_length/offset now potentially modified
6254 			 * and contain option setting results
6255 			 */
6256 			ASSERT(*error == 0);
6257 		}
6258 	}
6259 
6260 	/* mp1 points to the M_DATA mblk carrying the packet */
6261 	ASSERT(mp1 != NULL && DB_TYPE(mp1) == M_DATA);
6262 
6263 	/*
6264 	 * Check if our saved options are valid; update if not
6265 	 * TSOL Note: Since we are not in WRITER mode, UDP packets
6266 	 * to different destination may require different labels.
6267 	 * We use conn_lock to ensure that lastdst, ip_snd_options,
6268 	 * and ip_snd_options_len are consistent for the current
6269 	 * destination and are updated atomically.
6270 	 */
6271 	mutex_enter(&connp->conn_lock);
6272 	if (is_system_labeled()) {
6273 		/* Using UDP MLP requires SCM_UCRED from user */
6274 		if (connp->conn_mlp_type != mlptSingle &&
6275 		    !attrs.udpattr_credset) {
6276 			mutex_exit(&connp->conn_lock);
6277 			DTRACE_PROBE4(
6278 			    tx__ip__log__info__output__udp,
6279 			    char *, "MLP mp(1) lacks SCM_UCRED attr(2) on q(3)",
6280 			    mblk_t *, mp1, udpattrs_t *, &attrs, queue_t *, q);
6281 			*error = ECONNREFUSED;
6282 			goto done;
6283 		}
6284 		if ((!IN6_IS_ADDR_V4MAPPED(&udp->udp_v6lastdst) ||
6285 		    V4_PART_OF_V6(udp->udp_v6lastdst) != v4dst) &&
6286 		    (*error = udp_update_label(q, mp, v4dst)) != 0) {
6287 			mutex_exit(&connp->conn_lock);
6288 			goto done;
6289 		}
6290 	}
6291 	if (udp->udp_ip_snd_options_len > 0) {
6292 		ip_snd_opt_len = udp->udp_ip_snd_options_len;
6293 		bcopy(udp->udp_ip_snd_options, ip_snd_opt, ip_snd_opt_len);
6294 	}
6295 	mutex_exit(&connp->conn_lock);
6296 
6297 	/* Add an IP header */
6298 	ip_hdr_length = IP_SIMPLE_HDR_LENGTH + UDPH_SIZE + ip_snd_opt_len;
6299 	ipha = (ipha_t *)&mp1->b_rptr[-ip_hdr_length];
6300 	if (DB_REF(mp1) != 1 || (uchar_t *)ipha < DB_BASE(mp1) ||
6301 	    !OK_32PTR(ipha)) {
6302 		mp2 = allocb(ip_hdr_length + udp_wroff_extra, BPRI_LO);
6303 		if (mp2 == NULL) {
6304 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END,
6305 			    "udp_wput_end: q %p (%S)", q, "allocbfail2");
6306 			*error = ENOMEM;
6307 			goto done;
6308 		}
6309 		mp2->b_wptr = DB_LIM(mp2);
6310 		mp2->b_cont = mp1;
6311 		mp1 = mp2;
6312 		if (DB_TYPE(mp) != M_DATA)
6313 			mp->b_cont = mp1;
6314 		else
6315 			mp = mp1;
6316 
6317 		ipha = (ipha_t *)(mp1->b_wptr - ip_hdr_length);
6318 	}
6319 	ip_hdr_length -= UDPH_SIZE;
6320 #ifdef	_BIG_ENDIAN
6321 	/* Set version, header length, and tos */
6322 	*(uint16_t *)&ipha->ipha_version_and_hdr_length =
6323 	    ((((IP_VERSION << 4) | (ip_hdr_length>>2)) << 8) |
6324 		udp->udp_type_of_service);
6325 	/* Set ttl and protocol */
6326 	*(uint16_t *)&ipha->ipha_ttl = (udp->udp_ttl << 8) | IPPROTO_UDP;
6327 #else
6328 	/* Set version, header length, and tos */
6329 	*(uint16_t *)&ipha->ipha_version_and_hdr_length =
6330 		((udp->udp_type_of_service << 8) |
6331 		    ((IP_VERSION << 4) | (ip_hdr_length>>2)));
6332 	/* Set ttl and protocol */
6333 	*(uint16_t *)&ipha->ipha_ttl = (IPPROTO_UDP << 8) | udp->udp_ttl;
6334 #endif
6335 	/*
6336 	 * Copy our address into the packet.  If this is zero,
6337 	 * first look at __sin6_src_id for a hint. If we leave the source
6338 	 * as INADDR_ANY then ip will fill in the real source address.
6339 	 */
6340 	IN6_V4MAPPED_TO_IPADDR(&udp->udp_v6src, ipha->ipha_src);
6341 	if (srcid != 0 && ipha->ipha_src == INADDR_ANY) {
6342 		in6_addr_t v6src;
6343 
6344 		ip_srcid_find_id(srcid, &v6src, connp->conn_zoneid);
6345 		IN6_V4MAPPED_TO_IPADDR(&v6src, ipha->ipha_src);
6346 	}
6347 
6348 	ipha->ipha_fragment_offset_and_flags = 0;
6349 	ipha->ipha_ident = 0;
6350 
6351 	mp1->b_rptr = (uchar_t *)ipha;
6352 
6353 	ASSERT((uintptr_t)(mp1->b_wptr - (uchar_t *)ipha) <=
6354 	    (uintptr_t)UINT_MAX);
6355 
6356 	/* Determine length of packet */
6357 	ip_len = (uint32_t)(mp1->b_wptr - (uchar_t *)ipha);
6358 	if ((mp2 = mp1->b_cont) != NULL) {
6359 		do {
6360 			ASSERT((uintptr_t)MBLKL(mp2) <= (uintptr_t)UINT_MAX);
6361 			ip_len += (uint32_t)MBLKL(mp2);
6362 		} while ((mp2 = mp2->b_cont) != NULL);
6363 	}
6364 	/*
6365 	 * If the size of the packet is greater than the maximum allowed by
6366 	 * ip, return an error. Passing this down could cause panics because
6367 	 * the size will have wrapped and be inconsistent with the msg size.
6368 	 */
6369 	if (ip_len > IP_MAXPACKET) {
6370 		TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END,
6371 		    "udp_wput_end: q %p (%S)", q, "IP length exceeded");
6372 		*error = EMSGSIZE;
6373 		goto done;
6374 	}
6375 	ipha->ipha_length = htons((uint16_t)ip_len);
6376 	ip_len -= ip_hdr_length;
6377 	ip_len = htons((uint16_t)ip_len);
6378 	udpha = (udpha_t *)(((uchar_t *)ipha) + ip_hdr_length);
6379 
6380 	/*
6381 	 * Copy in the destination address
6382 	 */
6383 	ipha->ipha_dst = v4dst;
6384 
6385 	/*
6386 	 * Set ttl based on IP_MULTICAST_TTL to match IPv6 logic.
6387 	 */
6388 	if (CLASSD(v4dst))
6389 		ipha->ipha_ttl = udp->udp_multicast_ttl;
6390 
6391 	udpha->uha_dst_port = port;
6392 	udpha->uha_src_port = udp->udp_port;
6393 
6394 	if (ip_hdr_length > IP_SIMPLE_HDR_LENGTH) {
6395 		uint32_t	cksum;
6396 
6397 		bcopy(ip_snd_opt, &ipha[1], ip_snd_opt_len);
6398 		/*
6399 		 * Massage source route putting first source route in ipha_dst.
6400 		 * Ignore the destination in T_unitdata_req.
6401 		 * Create a checksum adjustment for a source route, if any.
6402 		 */
6403 		cksum = ip_massage_options(ipha);
6404 		cksum = (cksum & 0xFFFF) + (cksum >> 16);
6405 		cksum -= ((ipha->ipha_dst >> 16) & 0xFFFF) +
6406 		    (ipha->ipha_dst & 0xFFFF);
6407 		if ((int)cksum < 0)
6408 			cksum--;
6409 		cksum = (cksum & 0xFFFF) + (cksum >> 16);
6410 		/*
6411 		 * IP does the checksum if uha_checksum is non-zero,
6412 		 * We make it easy for IP to include our pseudo header
6413 		 * by putting our length in uha_checksum.
6414 		 */
6415 		cksum += ip_len;
6416 		cksum = (cksum & 0xFFFF) + (cksum >> 16);
6417 		/* There might be a carry. */
6418 		cksum = (cksum & 0xFFFF) + (cksum >> 16);
6419 #ifdef _LITTLE_ENDIAN
6420 		if (udp_do_checksum)
6421 			ip_len = (cksum << 16) | ip_len;
6422 #else
6423 		if (udp_do_checksum)
6424 			ip_len = (ip_len << 16) | cksum;
6425 		else
6426 			ip_len <<= 16;
6427 #endif
6428 	} else {
6429 		/*
6430 		 * IP does the checksum if uha_checksum is non-zero,
6431 		 * We make it easy for IP to include our pseudo header
6432 		 * by putting our length in uha_checksum.
6433 		 */
6434 		if (udp_do_checksum)
6435 			ip_len |= (ip_len << 16);
6436 #ifndef _LITTLE_ENDIAN
6437 		else
6438 			ip_len <<= 16;
6439 #endif
6440 	}
6441 	/* Set UDP length and checksum */
6442 	*((uint32_t *)&udpha->uha_length) = ip_len;
6443 	if (DB_CRED(mp) != NULL)
6444 		mblk_setcred(mp1, DB_CRED(mp));
6445 
6446 	if (DB_TYPE(mp) != M_DATA) {
6447 		ASSERT(mp != mp1);
6448 		freeb(mp);
6449 	}
6450 
6451 	/* mp has been consumed and we'll return success */
6452 	ASSERT(*error == 0);
6453 	mp = NULL;
6454 
6455 	/* We're done.  Pass the packet to ip. */
6456 	BUMP_MIB(&udp_mib, udpOutDatagrams);
6457 	TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END,
6458 		"udp_wput_end: q %p (%S)", q, "end");
6459 
6460 	if ((connp->conn_flags & IPCL_CHECK_POLICY) != 0 ||
6461 	    CONN_OUTBOUND_POLICY_PRESENT(connp) ||
6462 	    connp->conn_dontroute || connp->conn_xmit_if_ill != NULL ||
6463 	    connp->conn_nofailover_ill != NULL ||
6464 	    connp->conn_outgoing_ill != NULL ||
6465 	    ipha->ipha_version_and_hdr_length != IP_SIMPLE_HDR_VERSION ||
6466 	    IPP_ENABLED(IPP_LOCAL_OUT) || ip_g_mrouter != NULL) {
6467 		UDP_STAT(udp_ip_send);
6468 		ip_output(connp, mp1, connp->conn_wq, IP_WPUT);
6469 	} else {
6470 		udp_send_data(udp, connp->conn_wq, mp1, ipha);
6471 	}
6472 
6473 done:
6474 	if (*error != 0) {
6475 		ASSERT(mp != NULL);
6476 		BUMP_MIB(&udp_mib, udpOutErrors);
6477 	}
6478 	return (mp);
6479 }
6480 
6481 static void
6482 udp_send_data(udp_t *udp, queue_t *q, mblk_t *mp, ipha_t *ipha)
6483 {
6484 	conn_t	*connp = udp->udp_connp;
6485 	ipaddr_t src, dst;
6486 	ill_t	*ill;
6487 	ire_t	*ire;
6488 	ipif_t	*ipif = NULL;
6489 	mblk_t	*ire_fp_mp;
6490 	uint_t	ire_fp_mp_len;
6491 	uint16_t *up;
6492 	uint32_t cksum, hcksum_txflags;
6493 	queue_t	*dev_q;
6494 	boolean_t retry_caching;
6495 
6496 	dst = ipha->ipha_dst;
6497 	src = ipha->ipha_src;
6498 	ASSERT(ipha->ipha_ident == 0);
6499 
6500 	if (CLASSD(dst)) {
6501 		int err;
6502 
6503 		ipif = conn_get_held_ipif(connp,
6504 		    &connp->conn_multicast_ipif, &err);
6505 
6506 		if (ipif == NULL || ipif->ipif_isv6 ||
6507 		    (ipif->ipif_ill->ill_phyint->phyint_flags &
6508 		    PHYI_LOOPBACK)) {
6509 			if (ipif != NULL)
6510 				ipif_refrele(ipif);
6511 			UDP_STAT(udp_ip_send);
6512 			ip_output(connp, mp, q, IP_WPUT);
6513 			return;
6514 		}
6515 	}
6516 
6517 	retry_caching = B_FALSE;
6518 	mutex_enter(&connp->conn_lock);
6519 	ire = connp->conn_ire_cache;
6520 	ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT));
6521 
6522 	if (ire == NULL || ire->ire_addr != dst ||
6523 	    (ire->ire_marks & IRE_MARK_CONDEMNED)) {
6524 		retry_caching = B_TRUE;
6525 	} else if (CLASSD(dst) && (ire->ire_type & IRE_CACHE)) {
6526 		ill_t *stq_ill = (ill_t *)ire->ire_stq->q_ptr;
6527 
6528 		ASSERT(ipif != NULL);
6529 		if (stq_ill != ipif->ipif_ill && (stq_ill->ill_group == NULL ||
6530 		    stq_ill->ill_group != ipif->ipif_ill->ill_group))
6531 			retry_caching = B_TRUE;
6532 	}
6533 
6534 	if (!retry_caching) {
6535 		ASSERT(ire != NULL);
6536 		IRE_REFHOLD(ire);
6537 		mutex_exit(&connp->conn_lock);
6538 	} else {
6539 		boolean_t cached = B_FALSE;
6540 
6541 		connp->conn_ire_cache = NULL;
6542 		mutex_exit(&connp->conn_lock);
6543 
6544 		/* Release the old ire */
6545 		if (ire != NULL) {
6546 			IRE_REFRELE_NOTR(ire);
6547 			ire = NULL;
6548 		}
6549 
6550 		if (CLASSD(dst)) {
6551 			ASSERT(ipif != NULL);
6552 			ire = ire_ctable_lookup(dst, 0, 0, ipif,
6553 			    connp->conn_zoneid, MBLK_GETLABEL(mp),
6554 			    MATCH_IRE_ILL_GROUP);
6555 		} else {
6556 			ASSERT(ipif == NULL);
6557 			ire = ire_cache_lookup(dst, connp->conn_zoneid,
6558 			    MBLK_GETLABEL(mp));
6559 		}
6560 
6561 		if (ire == NULL) {
6562 			if (ipif != NULL)
6563 				ipif_refrele(ipif);
6564 			UDP_STAT(udp_ire_null);
6565 			ip_output(connp, mp, q, IP_WPUT);
6566 			return;
6567 		}
6568 		IRE_REFHOLD_NOTR(ire);
6569 
6570 		mutex_enter(&connp->conn_lock);
6571 		if (!(connp->conn_state_flags & CONN_CLOSING) &&
6572 		    connp->conn_ire_cache == NULL) {
6573 			rw_enter(&ire->ire_bucket->irb_lock, RW_READER);
6574 			if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) {
6575 				connp->conn_ire_cache = ire;
6576 				cached = B_TRUE;
6577 			}
6578 			rw_exit(&ire->ire_bucket->irb_lock);
6579 		}
6580 		mutex_exit(&connp->conn_lock);
6581 
6582 		/*
6583 		 * We can continue to use the ire but since it was not
6584 		 * cached, we should drop the extra reference.
6585 		 */
6586 		if (!cached)
6587 			IRE_REFRELE_NOTR(ire);
6588 	}
6589 	ASSERT(ire != NULL && ire->ire_ipversion == IPV4_VERSION);
6590 	ASSERT(!CLASSD(dst) || ipif != NULL);
6591 
6592 	if ((ire->ire_type & (IRE_BROADCAST|IRE_LOCAL|IRE_LOOPBACK)) ||
6593 	    (ire->ire_flags & RTF_MULTIRT) || ire->ire_stq == NULL ||
6594 	    ire->ire_max_frag < ntohs(ipha->ipha_length) ||
6595 	    (ire_fp_mp = ire->ire_fp_mp) == NULL ||
6596 	    (connp->conn_nexthop_set) ||
6597 	    (ire_fp_mp_len = MBLKL(ire_fp_mp)) > MBLKHEAD(mp)) {
6598 		if (ipif != NULL)
6599 			ipif_refrele(ipif);
6600 		UDP_STAT(udp_ip_ire_send);
6601 		IRE_REFRELE(ire);
6602 		ip_output(connp, mp, q, IP_WPUT);
6603 		return;
6604 	}
6605 
6606 	BUMP_MIB(&ip_mib, ipOutRequests);
6607 
6608 	ill = ire_to_ill(ire);
6609 	ASSERT(ill != NULL);
6610 
6611 	dev_q = ire->ire_stq->q_next;
6612 	ASSERT(dev_q != NULL);
6613 	/*
6614 	 * If the service thread is already running, or if the driver
6615 	 * queue is currently flow-controlled, queue this packet.
6616 	 */
6617 	if ((q->q_first != NULL || connp->conn_draining) ||
6618 	    ((dev_q->q_next || dev_q->q_first) && !canput(dev_q))) {
6619 		if (ip_output_queue) {
6620 			(void) putq(q, mp);
6621 		} else {
6622 			BUMP_MIB(&ip_mib, ipOutDiscards);
6623 			freemsg(mp);
6624 		}
6625 		if (ipif != NULL)
6626 			ipif_refrele(ipif);
6627 		IRE_REFRELE(ire);
6628 		return;
6629 	}
6630 
6631 	ipha->ipha_ident = (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1);
6632 #ifndef _BIG_ENDIAN
6633 	ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8);
6634 #endif
6635 
6636 	if (src == INADDR_ANY && !connp->conn_unspec_src) {
6637 		if (CLASSD(dst) && !(ire->ire_flags & RTF_SETSRC))
6638 			src = ipha->ipha_src = ipif->ipif_src_addr;
6639 		else
6640 			src = ipha->ipha_src = ire->ire_src_addr;
6641 	}
6642 
6643 	if (ILL_HCKSUM_CAPABLE(ill) && dohwcksum) {
6644 		ASSERT(ill->ill_hcksum_capab != NULL);
6645 		hcksum_txflags = ill->ill_hcksum_capab->ill_hcksum_txflags;
6646 	} else {
6647 		hcksum_txflags = 0;
6648 	}
6649 
6650 	/* pseudo-header checksum (do it in parts for IP header checksum) */
6651 	cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF);
6652 
6653 	ASSERT(ipha->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION);
6654 	up = IPH_UDPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH);
6655 	if (*up != 0) {
6656 		IP_CKSUM_XMIT_FAST(ire->ire_ipversion, hcksum_txflags,
6657 		    mp, ipha, up, IPPROTO_UDP, IP_SIMPLE_HDR_LENGTH,
6658 		    ntohs(ipha->ipha_length), cksum);
6659 
6660 		/* Software checksum? */
6661 		if (DB_CKSUMFLAGS(mp) == 0) {
6662 			UDP_STAT(udp_out_sw_cksum);
6663 			UDP_STAT_UPDATE(udp_out_sw_cksum_bytes,
6664 			    ntohs(ipha->ipha_length) - IP_SIMPLE_HDR_LENGTH);
6665 		}
6666 	}
6667 
6668 	ipha->ipha_fragment_offset_and_flags |=
6669 	    (uint32_t)htons(ire->ire_frag_flag);
6670 
6671 	/* Calculate IP header checksum if hardware isn't capable */
6672 	if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) {
6673 		IP_HDR_CKSUM(ipha, cksum, ((uint32_t *)ipha)[0],
6674 		    ((uint16_t *)ipha)[4]);
6675 	}
6676 
6677 	if (CLASSD(dst)) {
6678 		ilm_t *ilm;
6679 
6680 		ILM_WALKER_HOLD(ill);
6681 		ilm = ilm_lookup_ill(ill, dst, ALL_ZONES);
6682 		ILM_WALKER_RELE(ill);
6683 		if (ilm != NULL) {
6684 			ip_multicast_loopback(q, ill, mp,
6685 			    connp->conn_multicast_loop ? 0 :
6686 			    IP_FF_NO_MCAST_LOOP, connp->conn_zoneid);
6687 		}
6688 
6689 		/* If multicast TTL is 0 then we are done */
6690 		if (ipha->ipha_ttl == 0) {
6691 			if (ipif != NULL)
6692 				ipif_refrele(ipif);
6693 			freemsg(mp);
6694 			IRE_REFRELE(ire);
6695 			return;
6696 		}
6697 	}
6698 
6699 	ASSERT(DB_TYPE(ire_fp_mp) == M_DATA);
6700 	mp->b_rptr = (uchar_t *)ipha - ire_fp_mp_len;
6701 	bcopy(ire_fp_mp->b_rptr, mp->b_rptr, ire_fp_mp_len);
6702 
6703 	UPDATE_OB_PKT_COUNT(ire);
6704 	ire->ire_last_used_time = lbolt;
6705 
6706 	if (ILL_DLS_CAPABLE(ill)) {
6707 		/*
6708 		 * Send the packet directly to DLD, where it may be queued
6709 		 * depending on the availability of transmit resources at
6710 		 * the media layer.
6711 		 */
6712 		IP_DLS_ILL_TX(ill, mp);
6713 	} else {
6714 		putnext(ire->ire_stq, mp);
6715 	}
6716 
6717 	if (ipif != NULL)
6718 		ipif_refrele(ipif);
6719 	IRE_REFRELE(ire);
6720 }
6721 
6722 static boolean_t
6723 udp_update_label_v6(queue_t *wq, mblk_t *mp, in6_addr_t *dst)
6724 {
6725 	udp_t *udp = Q_TO_UDP(wq);
6726 	int err;
6727 	uchar_t opt_storage[TSOL_MAX_IPV6_OPTION];
6728 
6729 	err = tsol_compute_label_v6(DB_CREDDEF(mp, udp->udp_connp->conn_cred),
6730 	    dst, opt_storage, udp->udp_mac_exempt);
6731 	if (err == 0) {
6732 		err = tsol_update_sticky(&udp->udp_sticky_ipp,
6733 		    &udp->udp_label_len_v6, opt_storage);
6734 	}
6735 	if (err != 0) {
6736 		DTRACE_PROBE4(
6737 		    tx__ip__log__drop__updatelabel__udp6,
6738 		    char *, "queue(1) failed to update options(2) on mp(3)",
6739 		    queue_t *, wq, char *, opt_storage, mblk_t *, mp);
6740 	} else {
6741 		udp->udp_v6lastdst = *dst;
6742 	}
6743 	return (err);
6744 }
6745 
6746 /*
6747  * This routine handles all messages passed downstream.  It either
6748  * consumes the message or passes it downstream; it never queues a
6749  * a message.
6750  */
6751 static void
6752 udp_output(conn_t *connp, mblk_t *mp, struct sockaddr *addr, socklen_t addrlen)
6753 {
6754 	sin6_t		*sin6;
6755 	sin_t		*sin;
6756 	ipaddr_t	v4dst;
6757 	uint16_t	port;
6758 	uint_t		srcid;
6759 	queue_t		*q = connp->conn_wq;
6760 	udp_t		*udp = connp->conn_udp;
6761 	int		error = 0;
6762 	struct sockaddr_storage ss;
6763 
6764 	TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_START,
6765 	    "udp_wput_start: connp %p mp %p", connp, mp);
6766 
6767 	/*
6768 	 * We directly handle several cases here: T_UNITDATA_REQ message
6769 	 * coming down as M_PROTO/M_PCPROTO and M_DATA messages for both
6770 	 * connected and non-connected socket.  The latter carries the
6771 	 * address structure along when this routine gets called.
6772 	 */
6773 	switch (DB_TYPE(mp)) {
6774 	case M_DATA:
6775 		if (!udp->udp_direct_sockfs || udp->udp_state != TS_DATA_XFER) {
6776 			if (!udp->udp_direct_sockfs ||
6777 			    addr == NULL || addrlen == 0) {
6778 				/* Not connected; address is required */
6779 				BUMP_MIB(&udp_mib, udpOutErrors);
6780 				UDP_STAT(udp_out_err_notconn);
6781 				freemsg(mp);
6782 				TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END,
6783 				    "udp_wput_end: connp %p (%S)", connp,
6784 				    "not-connected; address required");
6785 				return;
6786 			}
6787 			ASSERT(udp->udp_issocket);
6788 			UDP_DBGSTAT(udp_data_notconn);
6789 			/* Not connected; do some more checks below */
6790 			break;
6791 		}
6792 		/* M_DATA for connected socket */
6793 		UDP_DBGSTAT(udp_data_conn);
6794 		IN6_V4MAPPED_TO_IPADDR(&udp->udp_v6dst, v4dst);
6795 
6796 		/* Initialize addr and addrlen as if they're passed in */
6797 		if (udp->udp_family == AF_INET) {
6798 			sin = (sin_t *)&ss;
6799 			sin->sin_family = AF_INET;
6800 			sin->sin_port = udp->udp_dstport;
6801 			sin->sin_addr.s_addr = v4dst;
6802 			addr = (struct sockaddr *)sin;
6803 			addrlen = sizeof (*sin);
6804 		} else {
6805 			sin6 = (sin6_t *)&ss;
6806 			sin6->sin6_family = AF_INET6;
6807 			sin6->sin6_port = udp->udp_dstport;
6808 			sin6->sin6_flowinfo = udp->udp_flowinfo;
6809 			sin6->sin6_addr = udp->udp_v6dst;
6810 			sin6->sin6_scope_id = 0;
6811 			sin6->__sin6_src_id = 0;
6812 			addr = (struct sockaddr *)sin6;
6813 			addrlen = sizeof (*sin6);
6814 		}
6815 
6816 		if (udp->udp_family == AF_INET ||
6817 		    IN6_IS_ADDR_V4MAPPED(&udp->udp_v6dst)) {
6818 			/*
6819 			 * Handle both AF_INET and AF_INET6; the latter
6820 			 * for IPV4 mapped destination addresses.  Note
6821 			 * here that both addr and addrlen point to the
6822 			 * corresponding struct depending on the address
6823 			 * family of the socket.
6824 			 */
6825 			mp = udp_output_v4(connp, mp, v4dst,
6826 			    udp->udp_dstport, 0, &error);
6827 		} else {
6828 			mp = udp_output_v6(connp, mp, sin6, &error);
6829 		}
6830 		if (error != 0) {
6831 			ASSERT(addr != NULL && addrlen != 0);
6832 			goto ud_error;
6833 		}
6834 		return;
6835 	case M_PROTO:
6836 	case M_PCPROTO: {
6837 		struct T_unitdata_req *tudr;
6838 
6839 		ASSERT((uintptr_t)MBLKL(mp) <= (uintptr_t)INT_MAX);
6840 		tudr = (struct T_unitdata_req *)mp->b_rptr;
6841 
6842 		/* Handle valid T_UNITDATA_REQ here */
6843 		if (MBLKL(mp) >= sizeof (*tudr) &&
6844 		    ((t_primp_t)mp->b_rptr)->type == T_UNITDATA_REQ) {
6845 			if (mp->b_cont == NULL) {
6846 				TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END,
6847 				    "udp_wput_end: q %p (%S)", q, "badaddr");
6848 				error = EPROTO;
6849 				goto ud_error;
6850 			}
6851 
6852 			if (!MBLKIN(mp, 0, tudr->DEST_offset +
6853 			    tudr->DEST_length)) {
6854 				TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END,
6855 				    "udp_wput_end: q %p (%S)", q, "badaddr");
6856 				error = EADDRNOTAVAIL;
6857 				goto ud_error;
6858 			}
6859 			/*
6860 			 * If a port has not been bound to the stream, fail.
6861 			 * This is not a problem when sockfs is directly
6862 			 * above us, because it will ensure that the socket
6863 			 * is first bound before allowing data to be sent.
6864 			 */
6865 			if (udp->udp_state == TS_UNBND) {
6866 				TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END,
6867 				    "udp_wput_end: q %p (%S)", q, "outstate");
6868 				error = EPROTO;
6869 				goto ud_error;
6870 			}
6871 			addr = (struct sockaddr *)
6872 			    &mp->b_rptr[tudr->DEST_offset];
6873 			addrlen = tudr->DEST_length;
6874 			if (tudr->OPT_length != 0)
6875 				UDP_STAT(udp_out_opt);
6876 			break;
6877 		}
6878 		/* FALLTHRU */
6879 	}
6880 	default:
6881 		udp_become_writer(connp, mp, udp_wput_other_wrapper,
6882 		    SQTAG_UDP_OUTPUT);
6883 		return;
6884 	}
6885 	ASSERT(addr != NULL);
6886 
6887 	switch (udp->udp_family) {
6888 	case AF_INET6:
6889 		sin6 = (sin6_t *)addr;
6890 		if (!OK_32PTR((char *)sin6) || addrlen != sizeof (sin6_t) ||
6891 		    sin6->sin6_family != AF_INET6) {
6892 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END,
6893 			    "udp_wput_end: q %p (%S)", q, "badaddr");
6894 			error = EADDRNOTAVAIL;
6895 			goto ud_error;
6896 		}
6897 
6898 		if (!IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
6899 			/*
6900 			 * Destination is a non-IPv4-compatible IPv6 address.
6901 			 * Send out an IPv6 format packet.
6902 			 */
6903 			mp = udp_output_v6(connp, mp, sin6, &error);
6904 			if (error != 0)
6905 				goto ud_error;
6906 
6907 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END,
6908 			    "udp_wput_end: q %p (%S)", q, "udp_output_v6");
6909 			return;
6910 		}
6911 		/*
6912 		 * If the local address is not zero or a mapped address
6913 		 * return an error.  It would be possible to send an IPv4
6914 		 * packet but the response would never make it back to the
6915 		 * application since it is bound to a non-mapped address.
6916 		 */
6917 		if (!IN6_IS_ADDR_V4MAPPED(&udp->udp_v6src) &&
6918 		    !IN6_IS_ADDR_UNSPECIFIED(&udp->udp_v6src)) {
6919 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END,
6920 			    "udp_wput_end: q %p (%S)", q, "badaddr");
6921 			error = EADDRNOTAVAIL;
6922 			goto ud_error;
6923 		}
6924 		/* Send IPv4 packet without modifying udp_ipversion */
6925 		/* Extract port and ipaddr */
6926 		port = sin6->sin6_port;
6927 		IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, v4dst);
6928 		srcid = sin6->__sin6_src_id;
6929 		break;
6930 
6931 	case AF_INET:
6932 		sin = (sin_t *)addr;
6933 		if (!OK_32PTR((char *)sin) || addrlen != sizeof (sin_t) ||
6934 		    sin->sin_family != AF_INET) {
6935 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END,
6936 			    "udp_wput_end: q %p (%S)", q, "badaddr");
6937 			error = EADDRNOTAVAIL;
6938 			goto ud_error;
6939 		}
6940 		/* Extract port and ipaddr */
6941 		port = sin->sin_port;
6942 		v4dst = sin->sin_addr.s_addr;
6943 		srcid = 0;
6944 		break;
6945 	}
6946 
6947 	mp = udp_output_v4(connp, mp, v4dst, port, srcid, &error);
6948 	if (error != 0) {
6949 ud_error:
6950 		UDP_STAT(udp_out_err_output);
6951 		ASSERT(mp != NULL);
6952 		/* mp is freed by the following routine */
6953 		udp_ud_err(q, mp, (uchar_t *)addr, (t_scalar_t)addrlen,
6954 		    (t_scalar_t)error);
6955 	}
6956 }
6957 
6958 /* ARGSUSED */
6959 static void
6960 udp_output_wrapper(void *arg, mblk_t *mp, void *arg2)
6961 {
6962 	udp_output((conn_t *)arg, mp, NULL, 0);
6963 	_UDP_EXIT((conn_t *)arg);
6964 }
6965 
6966 static void
6967 udp_wput(queue_t *q, mblk_t *mp)
6968 {
6969 	_UDP_ENTER(Q_TO_CONN(UDP_WR(q)), mp, udp_output_wrapper,
6970 	    SQTAG_UDP_WPUT);
6971 }
6972 
6973 /*
6974  * Allocate and prepare a T_UNITDATA_REQ message.
6975  */
6976 static mblk_t *
6977 udp_tudr_alloc(struct sockaddr *addr, socklen_t addrlen)
6978 {
6979 	struct T_unitdata_req *tudr;
6980 	mblk_t *mp;
6981 
6982 	mp = allocb(sizeof (*tudr) + addrlen, BPRI_MED);
6983 	if (mp != NULL) {
6984 		mp->b_wptr += sizeof (*tudr) + addrlen;
6985 		DB_TYPE(mp) = M_PROTO;
6986 
6987 		tudr = (struct T_unitdata_req *)mp->b_rptr;
6988 		tudr->PRIM_type = T_UNITDATA_REQ;
6989 		tudr->DEST_length = addrlen;
6990 		tudr->DEST_offset = (t_scalar_t)sizeof (*tudr);
6991 		tudr->OPT_length = 0;
6992 		tudr->OPT_offset = 0;
6993 		bcopy(addr, tudr+1, addrlen);
6994 	}
6995 	return (mp);
6996 }
6997 
6998 /*
6999  * Entry point for sockfs when udp is in "direct sockfs" mode.  This mode
7000  * is valid when we are directly beneath the stream head, and thus sockfs
7001  * is able to bypass STREAMS and directly call us, passing along the sockaddr
7002  * structure without the cumbersome T_UNITDATA_REQ interface.  Note that
7003  * this is done for both connected and non-connected endpoint.
7004  */
7005 void
7006 udp_wput_data(queue_t *q, mblk_t *mp, struct sockaddr *addr, socklen_t addrlen)
7007 {
7008 	conn_t	*connp;
7009 	udp_t	*udp;
7010 
7011 	q = UDP_WR(q);
7012 	connp = Q_TO_CONN(q);
7013 	udp = connp->conn_udp;
7014 
7015 	/* udpsockfs should only send down M_DATA for this entry point */
7016 	ASSERT(DB_TYPE(mp) == M_DATA);
7017 
7018 	mutex_enter(&connp->conn_lock);
7019 	UDP_MODE_ASSERTIONS(udp, UDP_ENTER);
7020 
7021 	if (udp->udp_mode != UDP_MT_HOT) {
7022 		/*
7023 		 * We can't enter this conn right away because another
7024 		 * thread is currently executing as writer; therefore we
7025 		 * need to deposit the message into the squeue to be
7026 		 * drained later.  If a socket address is present, we
7027 		 * need to create a T_UNITDATA_REQ message as placeholder.
7028 		 */
7029 		if (addr != NULL && addrlen != 0) {
7030 			mblk_t *tudr_mp = udp_tudr_alloc(addr, addrlen);
7031 
7032 			if (tudr_mp == NULL) {
7033 				mutex_exit(&connp->conn_lock);
7034 				BUMP_MIB(&udp_mib, udpOutErrors);
7035 				UDP_STAT(udp_out_err_tudr);
7036 				freemsg(mp);
7037 				return;
7038 			}
7039 			/* Tag the packet with T_UNITDATA_REQ */
7040 			tudr_mp->b_cont = mp;
7041 			mp = tudr_mp;
7042 		}
7043 		mutex_exit(&connp->conn_lock);
7044 		udp_enter(connp, mp, udp_output_wrapper, SQTAG_UDP_WPUT);
7045 		return;
7046 	}
7047 
7048 	/* We can execute as reader right away. */
7049 	UDP_READERS_INCREF(udp);
7050 	mutex_exit(&connp->conn_lock);
7051 
7052 	udp_output(connp, mp, addr, addrlen);
7053 
7054 	udp_exit(connp);
7055 }
7056 
7057 /*
7058  * udp_output_v6():
7059  * Assumes that udp_wput did some sanity checking on the destination
7060  * address.
7061  */
7062 static mblk_t *
7063 udp_output_v6(conn_t *connp, mblk_t *mp, sin6_t *sin6, int *error)
7064 {
7065 	ip6_t		*ip6h;
7066 	ip6i_t		*ip6i;	/* mp1->b_rptr even if no ip6i_t */
7067 	mblk_t		*mp1 = mp;
7068 	mblk_t		*mp2;
7069 	int		udp_ip_hdr_len = IPV6_HDR_LEN + UDPH_SIZE;
7070 	size_t		ip_len;
7071 	udpha_t		*udph;
7072 	udp_t		*udp = connp->conn_udp;
7073 	queue_t		*q = connp->conn_wq;
7074 	ip6_pkt_t	ipp_s;	/* For ancillary data options */
7075 	ip6_pkt_t	*ipp = &ipp_s;
7076 	ip6_pkt_t	*tipp;	/* temporary ipp */
7077 	uint32_t	csum = 0;
7078 	uint_t		ignore = 0;
7079 	uint_t		option_exists = 0, is_sticky = 0;
7080 	uint8_t		*cp;
7081 	uint8_t		*nxthdr_ptr;
7082 	in6_addr_t	ip6_dst;
7083 	udpattrs_t	attrs;
7084 	boolean_t	opt_present;
7085 	ip6_hbh_t	*hopoptsptr = NULL;
7086 	uint_t		hopoptslen = 0;
7087 	boolean_t	is_ancillary = B_FALSE;
7088 
7089 	*error = 0;
7090 
7091 	/*
7092 	 * If the local address is a mapped address return
7093 	 * an error.
7094 	 * It would be possible to send an IPv6 packet but the
7095 	 * response would never make it back to the application
7096 	 * since it is bound to a mapped address.
7097 	 */
7098 	if (IN6_IS_ADDR_V4MAPPED(&udp->udp_v6src)) {
7099 		*error = EADDRNOTAVAIL;
7100 		goto done;
7101 	}
7102 
7103 	ipp->ipp_fields = 0;
7104 	ipp->ipp_sticky_ignored = 0;
7105 
7106 	/*
7107 	 * If TPI options passed in, feed it for verification and handling
7108 	 */
7109 	attrs.udpattr_credset = B_FALSE;
7110 	opt_present = B_FALSE;
7111 	if (DB_TYPE(mp) != M_DATA) {
7112 		mp1 = mp->b_cont;
7113 		if (((struct T_unitdata_req *)mp->b_rptr)->OPT_length != 0) {
7114 			attrs.udpattr_ipp = ipp;
7115 			attrs.udpattr_mb = mp;
7116 			if (udp_unitdata_opt_process(q, mp, error, &attrs) < 0)
7117 				goto done;
7118 			ASSERT(*error == 0);
7119 			opt_present = B_TRUE;
7120 		}
7121 	}
7122 	ignore = ipp->ipp_sticky_ignored;
7123 
7124 	/* mp1 points to the M_DATA mblk carrying the packet */
7125 	ASSERT(mp1 != NULL && DB_TYPE(mp1) == M_DATA);
7126 
7127 	if (sin6->sin6_scope_id != 0 &&
7128 	    IN6_IS_ADDR_LINKLOCAL(&sin6->sin6_addr)) {
7129 		/*
7130 		 * IPPF_SCOPE_ID is special.  It's neither a sticky
7131 		 * option nor ancillary data.  It needs to be
7132 		 * explicitly set in options_exists.
7133 		 */
7134 		option_exists |= IPPF_SCOPE_ID;
7135 	}
7136 
7137 	/*
7138 	 * Compute the destination address
7139 	 */
7140 	ip6_dst = sin6->sin6_addr;
7141 	if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr))
7142 		ip6_dst = ipv6_loopback;
7143 
7144 	/*
7145 	 * If we're not going to the same destination as last time, then
7146 	 * recompute the label required.  This is done in a separate routine to
7147 	 * avoid blowing up our stack here.
7148 	 *
7149 	 * TSOL Note: Since we are not in WRITER mode, UDP packets
7150 	 * to different destination may require different labels.
7151 	 * We use conn_lock to ensure that lastdst, sticky ipp_hopopts,
7152 	 * and sticky ipp_hopoptslen are consistent for the current
7153 	 * destination and are updated atomically.
7154 	 */
7155 	mutex_enter(&connp->conn_lock);
7156 	if (is_system_labeled()) {
7157 		/* Using UDP MLP requires SCM_UCRED from user */
7158 		if (connp->conn_mlp_type != mlptSingle &&
7159 		    !attrs.udpattr_credset) {
7160 			DTRACE_PROBE4(
7161 			    tx__ip__log__info__output__udp6,
7162 			    char *, "MLP mp(1) lacks SCM_UCRED attr(2) on q(3)",
7163 			    mblk_t *, mp1, udpattrs_t *, &attrs, queue_t *, q);
7164 			*error = ECONNREFUSED;
7165 			mutex_exit(&connp->conn_lock);
7166 			goto done;
7167 		}
7168 		if ((opt_present ||
7169 		    !IN6_ARE_ADDR_EQUAL(&udp->udp_v6lastdst, &ip6_dst)) &&
7170 		    (*error = udp_update_label_v6(q, mp, &ip6_dst)) != 0) {
7171 			mutex_exit(&connp->conn_lock);
7172 			goto done;
7173 		}
7174 	}
7175 
7176 	/*
7177 	 * If there's a security label here, then we ignore any options the
7178 	 * user may try to set.  We keep the peer's label as a hidden sticky
7179 	 * option. We make a private copy of this label before releasing the
7180 	 * lock so that label is kept consistent with the destination addr.
7181 	 */
7182 	if (udp->udp_label_len_v6 > 0) {
7183 		ignore &= ~IPPF_HOPOPTS;
7184 		ipp->ipp_fields &= ~IPPF_HOPOPTS;
7185 	}
7186 
7187 	if ((udp->udp_sticky_ipp.ipp_fields == 0) && (ipp->ipp_fields == 0)) {
7188 		/* No sticky options nor ancillary data. */
7189 		mutex_exit(&connp->conn_lock);
7190 		goto no_options;
7191 	}
7192 
7193 	/*
7194 	 * Go through the options figuring out where each is going to
7195 	 * come from and build two masks.  The first mask indicates if
7196 	 * the option exists at all.  The second mask indicates if the
7197 	 * option is sticky or ancillary.
7198 	 */
7199 	if (!(ignore & IPPF_HOPOPTS)) {
7200 		if (ipp->ipp_fields & IPPF_HOPOPTS) {
7201 			option_exists |= IPPF_HOPOPTS;
7202 			udp_ip_hdr_len += ipp->ipp_hopoptslen;
7203 		} else if (udp->udp_sticky_ipp.ipp_fields & IPPF_HOPOPTS) {
7204 			option_exists |= IPPF_HOPOPTS;
7205 			is_sticky |= IPPF_HOPOPTS;
7206 			ASSERT(udp->udp_sticky_ipp.ipp_hopoptslen != 0);
7207 			hopoptsptr = kmem_alloc(
7208 			    udp->udp_sticky_ipp.ipp_hopoptslen, KM_NOSLEEP);
7209 			if (hopoptsptr == NULL) {
7210 				*error = ENOMEM;
7211 				mutex_exit(&connp->conn_lock);
7212 				goto done;
7213 			}
7214 			hopoptslen = udp->udp_sticky_ipp.ipp_hopoptslen;
7215 			bcopy(udp->udp_sticky_ipp.ipp_hopopts, hopoptsptr,
7216 			    hopoptslen);
7217 			udp_ip_hdr_len += hopoptslen;
7218 		}
7219 	}
7220 	mutex_exit(&connp->conn_lock);
7221 
7222 	if (!(ignore & IPPF_RTHDR)) {
7223 		if (ipp->ipp_fields & IPPF_RTHDR) {
7224 			option_exists |= IPPF_RTHDR;
7225 			udp_ip_hdr_len += ipp->ipp_rthdrlen;
7226 		} else if (udp->udp_sticky_ipp.ipp_fields & IPPF_RTHDR) {
7227 			option_exists |= IPPF_RTHDR;
7228 			is_sticky |= IPPF_RTHDR;
7229 			udp_ip_hdr_len += udp->udp_sticky_ipp.ipp_rthdrlen;
7230 		}
7231 	}
7232 
7233 	if (!(ignore & IPPF_RTDSTOPTS) && (option_exists & IPPF_RTHDR)) {
7234 		if (ipp->ipp_fields & IPPF_RTDSTOPTS) {
7235 			option_exists |= IPPF_RTDSTOPTS;
7236 			udp_ip_hdr_len += ipp->ipp_rtdstoptslen;
7237 		} else if (udp->udp_sticky_ipp.ipp_fields & IPPF_RTDSTOPTS) {
7238 			option_exists |= IPPF_RTDSTOPTS;
7239 			is_sticky |= IPPF_RTDSTOPTS;
7240 			udp_ip_hdr_len += udp->udp_sticky_ipp.ipp_rtdstoptslen;
7241 		}
7242 	}
7243 
7244 	if (!(ignore & IPPF_DSTOPTS)) {
7245 		if (ipp->ipp_fields & IPPF_DSTOPTS) {
7246 			option_exists |= IPPF_DSTOPTS;
7247 			udp_ip_hdr_len += ipp->ipp_dstoptslen;
7248 		} else if (udp->udp_sticky_ipp.ipp_fields & IPPF_DSTOPTS) {
7249 			option_exists |= IPPF_DSTOPTS;
7250 			is_sticky |= IPPF_DSTOPTS;
7251 			udp_ip_hdr_len += udp->udp_sticky_ipp.ipp_dstoptslen;
7252 		}
7253 	}
7254 
7255 	if (!(ignore & IPPF_IFINDEX)) {
7256 		if (ipp->ipp_fields & IPPF_IFINDEX) {
7257 			option_exists |= IPPF_IFINDEX;
7258 		} else if (udp->udp_sticky_ipp.ipp_fields & IPPF_IFINDEX) {
7259 			option_exists |= IPPF_IFINDEX;
7260 			is_sticky |= IPPF_IFINDEX;
7261 		}
7262 	}
7263 
7264 	if (!(ignore & IPPF_ADDR)) {
7265 		if (ipp->ipp_fields & IPPF_ADDR) {
7266 			option_exists |= IPPF_ADDR;
7267 		} else if (udp->udp_sticky_ipp.ipp_fields & IPPF_ADDR) {
7268 			option_exists |= IPPF_ADDR;
7269 			is_sticky |= IPPF_ADDR;
7270 		}
7271 	}
7272 
7273 	if (!(ignore & IPPF_DONTFRAG)) {
7274 		if (ipp->ipp_fields & IPPF_DONTFRAG) {
7275 			option_exists |= IPPF_DONTFRAG;
7276 		} else if (udp->udp_sticky_ipp.ipp_fields & IPPF_DONTFRAG) {
7277 			option_exists |= IPPF_DONTFRAG;
7278 			is_sticky |= IPPF_DONTFRAG;
7279 		}
7280 	}
7281 
7282 	if (!(ignore & IPPF_USE_MIN_MTU)) {
7283 		if (ipp->ipp_fields & IPPF_USE_MIN_MTU) {
7284 			option_exists |= IPPF_USE_MIN_MTU;
7285 		} else if (udp->udp_sticky_ipp.ipp_fields &
7286 		    IPPF_USE_MIN_MTU) {
7287 			option_exists |= IPPF_USE_MIN_MTU;
7288 			is_sticky |= IPPF_USE_MIN_MTU;
7289 		}
7290 	}
7291 
7292 	if (!(ignore & IPPF_HOPLIMIT) && (ipp->ipp_fields & IPPF_HOPLIMIT))
7293 		option_exists |= IPPF_HOPLIMIT;
7294 	/* IPV6_HOPLIMIT can never be sticky */
7295 	ASSERT(!(udp->udp_sticky_ipp.ipp_fields & IPPF_HOPLIMIT));
7296 
7297 	if (!(ignore & IPPF_UNICAST_HOPS) &&
7298 	    (udp->udp_sticky_ipp.ipp_fields & IPPF_UNICAST_HOPS)) {
7299 		option_exists |= IPPF_UNICAST_HOPS;
7300 		is_sticky |= IPPF_UNICAST_HOPS;
7301 	}
7302 
7303 	if (!(ignore & IPPF_MULTICAST_HOPS) &&
7304 	    (udp->udp_sticky_ipp.ipp_fields & IPPF_MULTICAST_HOPS)) {
7305 		option_exists |= IPPF_MULTICAST_HOPS;
7306 		is_sticky |= IPPF_MULTICAST_HOPS;
7307 	}
7308 
7309 	if (!(ignore & IPPF_TCLASS)) {
7310 		if (ipp->ipp_fields & IPPF_TCLASS) {
7311 			option_exists |= IPPF_TCLASS;
7312 		} else if (udp->udp_sticky_ipp.ipp_fields & IPPF_TCLASS) {
7313 			option_exists |= IPPF_TCLASS;
7314 			is_sticky |= IPPF_TCLASS;
7315 		}
7316 	}
7317 
7318 no_options:
7319 
7320 	/*
7321 	 * If any options carried in the ip6i_t were specified, we
7322 	 * need to account for the ip6i_t in the data we'll be sending
7323 	 * down.
7324 	 */
7325 	if (option_exists & IPPF_HAS_IP6I)
7326 		udp_ip_hdr_len += sizeof (ip6i_t);
7327 
7328 	/* check/fix buffer config, setup pointers into it */
7329 	ip6h = (ip6_t *)&mp1->b_rptr[-udp_ip_hdr_len];
7330 	if (DB_REF(mp1) != 1 || ((unsigned char *)ip6h < DB_BASE(mp1)) ||
7331 	    !OK_32PTR(ip6h)) {
7332 		/* Try to get everything in a single mblk next time */
7333 		if (udp_ip_hdr_len > udp->udp_max_hdr_len) {
7334 			udp->udp_max_hdr_len = udp_ip_hdr_len;
7335 			(void) mi_set_sth_wroff(UDP_RD(q),
7336 			    udp->udp_max_hdr_len + udp_wroff_extra);
7337 		}
7338 		mp2 = allocb(udp_ip_hdr_len + udp_wroff_extra, BPRI_LO);
7339 		if (mp2 == NULL) {
7340 			*error = ENOMEM;
7341 			goto done;
7342 		}
7343 		mp2->b_wptr = DB_LIM(mp2);
7344 		mp2->b_cont = mp1;
7345 		mp1 = mp2;
7346 		if (DB_TYPE(mp) != M_DATA)
7347 			mp->b_cont = mp1;
7348 		else
7349 			mp = mp1;
7350 
7351 		ip6h = (ip6_t *)(mp1->b_wptr - udp_ip_hdr_len);
7352 	}
7353 	mp1->b_rptr = (unsigned char *)ip6h;
7354 	ip6i = (ip6i_t *)ip6h;
7355 
7356 #define	ANCIL_OR_STICKY_PTR(f) ((is_sticky & f) ? &udp->udp_sticky_ipp : ipp)
7357 	if (option_exists & IPPF_HAS_IP6I) {
7358 		ip6h = (ip6_t *)&ip6i[1];
7359 		ip6i->ip6i_flags = 0;
7360 		ip6i->ip6i_vcf = IPV6_DEFAULT_VERS_AND_FLOW;
7361 
7362 		/* sin6_scope_id takes precendence over IPPF_IFINDEX */
7363 		if (option_exists & IPPF_SCOPE_ID) {
7364 			ip6i->ip6i_flags |= IP6I_IFINDEX;
7365 			ip6i->ip6i_ifindex = sin6->sin6_scope_id;
7366 		} else if (option_exists & IPPF_IFINDEX) {
7367 			tipp = ANCIL_OR_STICKY_PTR(IPPF_IFINDEX);
7368 			ASSERT(tipp->ipp_ifindex != 0);
7369 			ip6i->ip6i_flags |= IP6I_IFINDEX;
7370 			ip6i->ip6i_ifindex = tipp->ipp_ifindex;
7371 		}
7372 
7373 		if (option_exists & IPPF_ADDR) {
7374 			/*
7375 			 * Enable per-packet source address verification if
7376 			 * IPV6_PKTINFO specified the source address.
7377 			 * ip6_src is set in the transport's _wput function.
7378 			 */
7379 			ip6i->ip6i_flags |= IP6I_VERIFY_SRC;
7380 		}
7381 
7382 		if (option_exists & IPPF_DONTFRAG) {
7383 			ip6i->ip6i_flags |= IP6I_DONTFRAG;
7384 		}
7385 
7386 		if (option_exists & IPPF_USE_MIN_MTU) {
7387 			ip6i->ip6i_flags = IP6I_API_USE_MIN_MTU(
7388 			    ip6i->ip6i_flags, ipp->ipp_use_min_mtu);
7389 		}
7390 
7391 		if (option_exists & IPPF_NEXTHOP) {
7392 			tipp = ANCIL_OR_STICKY_PTR(IPPF_NEXTHOP);
7393 			ASSERT(!IN6_IS_ADDR_UNSPECIFIED(&tipp->ipp_nexthop));
7394 			ip6i->ip6i_flags |= IP6I_NEXTHOP;
7395 			ip6i->ip6i_nexthop = tipp->ipp_nexthop;
7396 		}
7397 
7398 		/*
7399 		 * tell IP this is an ip6i_t private header
7400 		 */
7401 		ip6i->ip6i_nxt = IPPROTO_RAW;
7402 	}
7403 
7404 	/* Initialize IPv6 header */
7405 	ip6h->ip6_vcf = IPV6_DEFAULT_VERS_AND_FLOW;
7406 	bzero(&ip6h->ip6_src, sizeof (ip6h->ip6_src));
7407 
7408 	/* Set the hoplimit of the outgoing packet. */
7409 	if (option_exists & IPPF_HOPLIMIT) {
7410 		/* IPV6_HOPLIMIT ancillary data overrides all other settings. */
7411 		ip6h->ip6_hops = ipp->ipp_hoplimit;
7412 		ip6i->ip6i_flags |= IP6I_HOPLIMIT;
7413 	} else if (IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr)) {
7414 		ip6h->ip6_hops = udp->udp_multicast_ttl;
7415 		if (option_exists & IPPF_MULTICAST_HOPS)
7416 			ip6i->ip6i_flags |= IP6I_HOPLIMIT;
7417 	} else {
7418 		ip6h->ip6_hops = udp->udp_ttl;
7419 		if (option_exists & IPPF_UNICAST_HOPS)
7420 			ip6i->ip6i_flags |= IP6I_HOPLIMIT;
7421 	}
7422 
7423 	if (option_exists & IPPF_ADDR) {
7424 		tipp = ANCIL_OR_STICKY_PTR(IPPF_ADDR);
7425 		ASSERT(!IN6_IS_ADDR_UNSPECIFIED(&tipp->ipp_addr));
7426 		ip6h->ip6_src = tipp->ipp_addr;
7427 	} else {
7428 		/*
7429 		 * The source address was not set using IPV6_PKTINFO.
7430 		 * First look at the bound source.
7431 		 * If unspecified fallback to __sin6_src_id.
7432 		 */
7433 		ip6h->ip6_src = udp->udp_v6src;
7434 		if (sin6->__sin6_src_id != 0 &&
7435 		    IN6_IS_ADDR_UNSPECIFIED(&ip6h->ip6_src)) {
7436 			ip_srcid_find_id(sin6->__sin6_src_id,
7437 			    &ip6h->ip6_src, connp->conn_zoneid);
7438 		}
7439 	}
7440 
7441 	nxthdr_ptr = (uint8_t *)&ip6h->ip6_nxt;
7442 	cp = (uint8_t *)&ip6h[1];
7443 
7444 	/*
7445 	 * Here's where we have to start stringing together
7446 	 * any extension headers in the right order:
7447 	 * Hop-by-hop, destination, routing, and final destination opts.
7448 	 */
7449 	if (option_exists & IPPF_HOPOPTS) {
7450 		/* Hop-by-hop options */
7451 		ip6_hbh_t *hbh = (ip6_hbh_t *)cp;
7452 		tipp = ANCIL_OR_STICKY_PTR(IPPF_HOPOPTS);
7453 		if (hopoptslen == 0) {
7454 			hopoptsptr = tipp->ipp_hopopts;
7455 			hopoptslen = tipp->ipp_hopoptslen;
7456 			is_ancillary = B_TRUE;
7457 		}
7458 
7459 		*nxthdr_ptr = IPPROTO_HOPOPTS;
7460 		nxthdr_ptr = &hbh->ip6h_nxt;
7461 
7462 		bcopy(hopoptsptr, cp, hopoptslen);
7463 		cp += hopoptslen;
7464 
7465 		if (hopoptsptr != NULL && !is_ancillary) {
7466 			kmem_free(hopoptsptr, hopoptslen);
7467 			hopoptsptr = NULL;
7468 			hopoptslen = 0;
7469 		}
7470 	}
7471 	/*
7472 	 * En-route destination options
7473 	 * Only do them if there's a routing header as well
7474 	 */
7475 	if (option_exists & IPPF_RTDSTOPTS) {
7476 		ip6_dest_t *dst = (ip6_dest_t *)cp;
7477 		tipp = ANCIL_OR_STICKY_PTR(IPPF_RTDSTOPTS);
7478 
7479 		*nxthdr_ptr = IPPROTO_DSTOPTS;
7480 		nxthdr_ptr = &dst->ip6d_nxt;
7481 
7482 		bcopy(tipp->ipp_rtdstopts, cp, tipp->ipp_rtdstoptslen);
7483 		cp += tipp->ipp_rtdstoptslen;
7484 	}
7485 	/*
7486 	 * Routing header next
7487 	 */
7488 	if (option_exists & IPPF_RTHDR) {
7489 		ip6_rthdr_t *rt = (ip6_rthdr_t *)cp;
7490 		tipp = ANCIL_OR_STICKY_PTR(IPPF_RTHDR);
7491 
7492 		*nxthdr_ptr = IPPROTO_ROUTING;
7493 		nxthdr_ptr = &rt->ip6r_nxt;
7494 
7495 		bcopy(tipp->ipp_rthdr, cp, tipp->ipp_rthdrlen);
7496 		cp += tipp->ipp_rthdrlen;
7497 	}
7498 	/*
7499 	 * Do ultimate destination options
7500 	 */
7501 	if (option_exists & IPPF_DSTOPTS) {
7502 		ip6_dest_t *dest = (ip6_dest_t *)cp;
7503 		tipp = ANCIL_OR_STICKY_PTR(IPPF_DSTOPTS);
7504 
7505 		*nxthdr_ptr = IPPROTO_DSTOPTS;
7506 		nxthdr_ptr = &dest->ip6d_nxt;
7507 
7508 		bcopy(tipp->ipp_dstopts, cp, tipp->ipp_dstoptslen);
7509 		cp += tipp->ipp_dstoptslen;
7510 	}
7511 	/*
7512 	 * Now set the last header pointer to the proto passed in
7513 	 */
7514 	ASSERT((int)(cp - (uint8_t *)ip6i) == (udp_ip_hdr_len - UDPH_SIZE));
7515 	*nxthdr_ptr = IPPROTO_UDP;
7516 
7517 	/* Update UDP header */
7518 	udph = (udpha_t *)((uchar_t *)ip6i + udp_ip_hdr_len - UDPH_SIZE);
7519 	udph->uha_dst_port = sin6->sin6_port;
7520 	udph->uha_src_port = udp->udp_port;
7521 
7522 	/*
7523 	 * Copy in the destination address
7524 	 */
7525 	ip6h->ip6_dst = ip6_dst;
7526 
7527 	ip6h->ip6_vcf =
7528 	    (IPV6_DEFAULT_VERS_AND_FLOW & IPV6_VERS_AND_FLOW_MASK) |
7529 	    (sin6->sin6_flowinfo & ~IPV6_VERS_AND_FLOW_MASK);
7530 
7531 	if (option_exists & IPPF_TCLASS) {
7532 		tipp = ANCIL_OR_STICKY_PTR(IPPF_TCLASS);
7533 		ip6h->ip6_vcf = IPV6_TCLASS_FLOW(ip6h->ip6_vcf,
7534 		    tipp->ipp_tclass);
7535 	}
7536 
7537 	if (option_exists & IPPF_RTHDR) {
7538 		ip6_rthdr_t	*rth;
7539 
7540 		/*
7541 		 * Perform any processing needed for source routing.
7542 		 * We know that all extension headers will be in the same mblk
7543 		 * as the IPv6 header.
7544 		 */
7545 		rth = ip_find_rthdr_v6(ip6h, mp1->b_wptr);
7546 		if (rth != NULL && rth->ip6r_segleft != 0) {
7547 			if (rth->ip6r_type != IPV6_RTHDR_TYPE_0) {
7548 				/*
7549 				 * Drop packet - only support Type 0 routing.
7550 				 * Notify the application as well.
7551 				 */
7552 				*error = EPROTO;
7553 				goto done;
7554 			}
7555 
7556 			/*
7557 			 * rth->ip6r_len is twice the number of
7558 			 * addresses in the header. Thus it must be even.
7559 			 */
7560 			if (rth->ip6r_len & 0x1) {
7561 				*error = EPROTO;
7562 				goto done;
7563 			}
7564 			/*
7565 			 * Shuffle the routing header and ip6_dst
7566 			 * addresses, and get the checksum difference
7567 			 * between the first hop (in ip6_dst) and
7568 			 * the destination (in the last routing hdr entry).
7569 			 */
7570 			csum = ip_massage_options_v6(ip6h, rth);
7571 			/*
7572 			 * Verify that the first hop isn't a mapped address.
7573 			 * Routers along the path need to do this verification
7574 			 * for subsequent hops.
7575 			 */
7576 			if (IN6_IS_ADDR_V4MAPPED(&ip6h->ip6_dst)) {
7577 				*error = EADDRNOTAVAIL;
7578 				goto done;
7579 			}
7580 
7581 			cp += (rth->ip6r_len + 1)*8;
7582 		}
7583 	}
7584 
7585 	/* count up length of UDP packet */
7586 	ip_len = (mp1->b_wptr - (unsigned char *)ip6h) - IPV6_HDR_LEN;
7587 	if ((mp2 = mp1->b_cont) != NULL) {
7588 		do {
7589 			ASSERT((uintptr_t)MBLKL(mp2) <= (uintptr_t)UINT_MAX);
7590 			ip_len += (uint32_t)MBLKL(mp2);
7591 		} while ((mp2 = mp2->b_cont) != NULL);
7592 	}
7593 
7594 	/*
7595 	 * If the size of the packet is greater than the maximum allowed by
7596 	 * ip, return an error. Passing this down could cause panics because
7597 	 * the size will have wrapped and be inconsistent with the msg size.
7598 	 */
7599 	if (ip_len > IP_MAXPACKET) {
7600 		*error = EMSGSIZE;
7601 		goto done;
7602 	}
7603 
7604 	/* Store the UDP length. Subtract length of extension hdrs */
7605 	udph->uha_length = htons(ip_len + IPV6_HDR_LEN -
7606 	    (int)((uchar_t *)udph - (uchar_t *)ip6h));
7607 
7608 	/*
7609 	 * We make it easy for IP to include our pseudo header
7610 	 * by putting our length in uh_checksum, modified (if
7611 	 * we have a routing header) by the checksum difference
7612 	 * between the ultimate destination and first hop addresses.
7613 	 * Note: UDP over IPv6 must always checksum the packet.
7614 	 */
7615 	csum += udph->uha_length;
7616 	csum = (csum & 0xFFFF) + (csum >> 16);
7617 	udph->uha_checksum = (uint16_t)csum;
7618 
7619 #ifdef _LITTLE_ENDIAN
7620 	ip_len = htons(ip_len);
7621 #endif
7622 	ip6h->ip6_plen = ip_len;
7623 	if (DB_CRED(mp) != NULL)
7624 		mblk_setcred(mp1, DB_CRED(mp));
7625 
7626 	if (DB_TYPE(mp) != M_DATA) {
7627 		ASSERT(mp != mp1);
7628 		freeb(mp);
7629 	}
7630 
7631 	/* mp has been consumed and we'll return success */
7632 	ASSERT(*error == 0);
7633 	mp = NULL;
7634 
7635 	/* We're done. Pass the packet to IP */
7636 	BUMP_MIB(&udp_mib, udpOutDatagrams);
7637 	ip_output_v6(connp, mp1, q, IP_WPUT);
7638 
7639 done:
7640 	if (hopoptsptr != NULL && !is_ancillary) {
7641 		kmem_free(hopoptsptr, hopoptslen);
7642 		hopoptsptr = NULL;
7643 	}
7644 	if (*error != 0) {
7645 		ASSERT(mp != NULL);
7646 		BUMP_MIB(&udp_mib, udpOutErrors);
7647 	}
7648 	return (mp);
7649 }
7650 
7651 static void
7652 udp_wput_other(queue_t *q, mblk_t *mp)
7653 {
7654 	uchar_t	*rptr = mp->b_rptr;
7655 	struct datab *db;
7656 	struct iocblk *iocp;
7657 	cred_t	*cr;
7658 	conn_t	*connp = Q_TO_CONN(q);
7659 	udp_t	*udp = connp->conn_udp;
7660 
7661 	TRACE_1(TR_FAC_UDP, TR_UDP_WPUT_OTHER_START,
7662 		"udp_wput_other_start: q %p", q);
7663 
7664 	db = mp->b_datap;
7665 
7666 	cr = DB_CREDDEF(mp, connp->conn_cred);
7667 
7668 	switch (db->db_type) {
7669 	case M_PROTO:
7670 	case M_PCPROTO:
7671 		if (mp->b_wptr - rptr < sizeof (t_scalar_t)) {
7672 			freemsg(mp);
7673 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7674 				"udp_wput_other_end: q %p (%S)",
7675 				q, "protoshort");
7676 			return;
7677 		}
7678 		switch (((t_primp_t)rptr)->type) {
7679 		case T_ADDR_REQ:
7680 			udp_addr_req(q, mp);
7681 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7682 				"udp_wput_other_end: q %p (%S)", q, "addrreq");
7683 			return;
7684 		case O_T_BIND_REQ:
7685 		case T_BIND_REQ:
7686 			udp_bind(q, mp);
7687 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7688 				"udp_wput_other_end: q %p (%S)", q, "bindreq");
7689 			return;
7690 		case T_CONN_REQ:
7691 			udp_connect(q, mp);
7692 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7693 				"udp_wput_other_end: q %p (%S)", q, "connreq");
7694 			return;
7695 		case T_CAPABILITY_REQ:
7696 			udp_capability_req(q, mp);
7697 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7698 				"udp_wput_other_end: q %p (%S)", q, "capabreq");
7699 			return;
7700 		case T_INFO_REQ:
7701 			udp_info_req(q, mp);
7702 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7703 				"udp_wput_other_end: q %p (%S)", q, "inforeq");
7704 			return;
7705 		case T_UNITDATA_REQ:
7706 			/*
7707 			 * If a T_UNITDATA_REQ gets here, the address must
7708 			 * be bad.  Valid T_UNITDATA_REQs are handled
7709 			 * in udp_wput.
7710 			 */
7711 			udp_ud_err(q, mp, NULL, 0, EADDRNOTAVAIL);
7712 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7713 				"udp_wput_other_end: q %p (%S)",
7714 				q, "unitdatareq");
7715 			return;
7716 		case T_UNBIND_REQ:
7717 			udp_unbind(q, mp);
7718 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7719 			    "udp_wput_other_end: q %p (%S)", q, "unbindreq");
7720 			return;
7721 		case T_SVR4_OPTMGMT_REQ:
7722 			if (!snmpcom_req(q, mp, udp_snmp_set, udp_snmp_get, cr))
7723 				/*
7724 				 * Use upper queue for option processing in
7725 				 * case the request is not handled at this
7726 				 * level and needs to be passed down to IP.
7727 				 */
7728 				(void) svr4_optcom_req(_WR(UDP_RD(q)),
7729 				    mp, cr, &udp_opt_obj);
7730 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7731 			    "udp_wput_other_end: q %p (%S)",
7732 			    q, "optmgmtreq");
7733 			return;
7734 
7735 		case T_OPTMGMT_REQ:
7736 			/*
7737 			 * Use upper queue for option processing in
7738 			 * case the request is not handled at this
7739 			 * level and needs to be passed down to IP.
7740 			 */
7741 			(void) tpi_optcom_req(_WR(UDP_RD(q)),
7742 			    mp, cr, &udp_opt_obj);
7743 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7744 				"udp_wput_other_end: q %p (%S)",
7745 				q, "optmgmtreq");
7746 			return;
7747 
7748 		case T_DISCON_REQ:
7749 			udp_disconnect(q, mp);
7750 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7751 				"udp_wput_other_end: q %p (%S)",
7752 				q, "disconreq");
7753 			return;
7754 
7755 		/* The following TPI message is not supported by udp. */
7756 		case O_T_CONN_RES:
7757 		case T_CONN_RES:
7758 			udp_err_ack(q, mp, TNOTSUPPORT, 0);
7759 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7760 				"udp_wput_other_end: q %p (%S)",
7761 				q, "connres/disconreq");
7762 			return;
7763 
7764 		/* The following 3 TPI messages are illegal for udp. */
7765 		case T_DATA_REQ:
7766 		case T_EXDATA_REQ:
7767 		case T_ORDREL_REQ:
7768 			udp_err_ack(q, mp, TNOTSUPPORT, 0);
7769 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7770 				"udp_wput_other_end: q %p (%S)",
7771 				q, "data/exdata/ordrel");
7772 			return;
7773 		default:
7774 			break;
7775 		}
7776 		break;
7777 	case M_FLUSH:
7778 		if (*rptr & FLUSHW)
7779 			flushq(q, FLUSHDATA);
7780 		break;
7781 	case M_IOCTL:
7782 		iocp = (struct iocblk *)mp->b_rptr;
7783 		switch (iocp->ioc_cmd) {
7784 		case TI_GETPEERNAME:
7785 			if (udp->udp_state != TS_DATA_XFER) {
7786 				/*
7787 				 * If a default destination address has not
7788 				 * been associated with the stream, then we
7789 				 * don't know the peer's name.
7790 				 */
7791 				iocp->ioc_error = ENOTCONN;
7792 				iocp->ioc_count = 0;
7793 				mp->b_datap->db_type = M_IOCACK;
7794 				putnext(UDP_RD(q), mp);
7795 				TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7796 					"udp_wput_other_end: q %p (%S)",
7797 					q, "getpeername");
7798 				return;
7799 			}
7800 			/* FALLTHRU */
7801 		case TI_GETMYNAME: {
7802 			/*
7803 			 * For TI_GETPEERNAME and TI_GETMYNAME, we first
7804 			 * need to copyin the user's strbuf structure.
7805 			 * Processing will continue in the M_IOCDATA case
7806 			 * below.
7807 			 */
7808 			mi_copyin(q, mp, NULL,
7809 			    SIZEOF_STRUCT(strbuf, iocp->ioc_flag));
7810 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7811 				"udp_wput_other_end: q %p (%S)",
7812 				q, "getmyname");
7813 			return;
7814 			}
7815 		case ND_SET:
7816 			/* nd_getset performs the necessary checking */
7817 		case ND_GET:
7818 			if (nd_getset(q, udp_g_nd, mp)) {
7819 				putnext(UDP_RD(q), mp);
7820 				TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7821 					"udp_wput_other_end: q %p (%S)",
7822 					q, "get");
7823 				return;
7824 			}
7825 			break;
7826 		case _SIOCSOCKFALLBACK:
7827 			/*
7828 			 * Either sockmod is about to be popped and the
7829 			 * socket would now be treated as a plain stream,
7830 			 * or a module is about to be pushed so we could
7831 			 * no longer use read-side synchronous stream.
7832 			 * Drain any queued data and disable direct sockfs
7833 			 * interface from now on.
7834 			 */
7835 			if (!udp->udp_issocket) {
7836 				DB_TYPE(mp) = M_IOCNAK;
7837 				iocp->ioc_error = EINVAL;
7838 			} else {
7839 				udp->udp_issocket = B_FALSE;
7840 				if (udp->udp_direct_sockfs) {
7841 					/*
7842 					 * Disable read-side synchronous
7843 					 * stream interface and drain any
7844 					 * queued data.
7845 					 */
7846 					udp_rcv_drain(UDP_RD(q), udp,
7847 					    B_FALSE);
7848 					ASSERT(!udp->udp_direct_sockfs);
7849 					UDP_STAT(udp_sock_fallback);
7850 				}
7851 				DB_TYPE(mp) = M_IOCACK;
7852 				iocp->ioc_error = 0;
7853 			}
7854 			iocp->ioc_count = 0;
7855 			iocp->ioc_rval = 0;
7856 			putnext(UDP_RD(q), mp);
7857 			return;
7858 		default:
7859 			break;
7860 		}
7861 		break;
7862 	case M_IOCDATA:
7863 		udp_wput_iocdata(q, mp);
7864 		TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7865 			"udp_wput_other_end: q %p (%S)", q, "iocdata");
7866 		return;
7867 	default:
7868 		/* Unrecognized messages are passed through without change. */
7869 		break;
7870 	}
7871 	TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7872 		"udp_wput_other_end: q %p (%S)", q, "end");
7873 	ip_output(connp, mp, q, IP_WPUT);
7874 }
7875 
7876 /* ARGSUSED */
7877 static void
7878 udp_wput_other_wrapper(void *arg, mblk_t *mp, void *arg2)
7879 {
7880 	udp_wput_other(((conn_t *)arg)->conn_wq, mp);
7881 	udp_exit((conn_t *)arg);
7882 }
7883 
7884 /*
7885  * udp_wput_iocdata is called by udp_wput_other to handle all M_IOCDATA
7886  * messages.
7887  */
7888 static void
7889 udp_wput_iocdata(queue_t *q, mblk_t *mp)
7890 {
7891 	mblk_t	*mp1;
7892 	STRUCT_HANDLE(strbuf, sb);
7893 	uint16_t port;
7894 	in6_addr_t	v6addr;
7895 	ipaddr_t	v4addr;
7896 	uint32_t	flowinfo = 0;
7897 	int		addrlen;
7898 	udp_t		*udp = Q_TO_UDP(q);
7899 
7900 	/* Make sure it is one of ours. */
7901 	switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) {
7902 	case TI_GETMYNAME:
7903 	case TI_GETPEERNAME:
7904 		break;
7905 	default:
7906 		ip_output(Q_TO_CONN(q), mp, q, IP_WPUT);
7907 		return;
7908 	}
7909 
7910 	q = WR(UDP_RD(q));
7911 	switch (mi_copy_state(q, mp, &mp1)) {
7912 	case -1:
7913 		return;
7914 	case MI_COPY_CASE(MI_COPY_IN, 1):
7915 		break;
7916 	case MI_COPY_CASE(MI_COPY_OUT, 1):
7917 		/*
7918 		 * The address has been copied out, so now
7919 		 * copyout the strbuf.
7920 		 */
7921 		mi_copyout(q, mp);
7922 		return;
7923 	case MI_COPY_CASE(MI_COPY_OUT, 2):
7924 		/*
7925 		 * The address and strbuf have been copied out.
7926 		 * We're done, so just acknowledge the original
7927 		 * M_IOCTL.
7928 		 */
7929 		mi_copy_done(q, mp, 0);
7930 		return;
7931 	default:
7932 		/*
7933 		 * Something strange has happened, so acknowledge
7934 		 * the original M_IOCTL with an EPROTO error.
7935 		 */
7936 		mi_copy_done(q, mp, EPROTO);
7937 		return;
7938 	}
7939 
7940 	/*
7941 	 * Now we have the strbuf structure for TI_GETMYNAME
7942 	 * and TI_GETPEERNAME.  Next we copyout the requested
7943 	 * address and then we'll copyout the strbuf.
7944 	 */
7945 	STRUCT_SET_HANDLE(sb, ((struct iocblk *)mp->b_rptr)->ioc_flag,
7946 	    (void *)mp1->b_rptr);
7947 	if (udp->udp_family == AF_INET)
7948 		addrlen = sizeof (sin_t);
7949 	else
7950 		addrlen = sizeof (sin6_t);
7951 
7952 	if (STRUCT_FGET(sb, maxlen) < addrlen) {
7953 		mi_copy_done(q, mp, EINVAL);
7954 		return;
7955 	}
7956 	switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) {
7957 	case TI_GETMYNAME:
7958 		if (udp->udp_family == AF_INET) {
7959 			ASSERT(udp->udp_ipversion == IPV4_VERSION);
7960 			if (!IN6_IS_ADDR_V4MAPPED_ANY(&udp->udp_v6src) &&
7961 			    !IN6_IS_ADDR_UNSPECIFIED(&udp->udp_v6src)) {
7962 				v4addr = V4_PART_OF_V6(udp->udp_v6src);
7963 			} else {
7964 				/*
7965 				 * INADDR_ANY
7966 				 * udp_v6src is not set, we might be bound to
7967 				 * broadcast/multicast. Use udp_bound_v6src as
7968 				 * local address instead (that could
7969 				 * also still be INADDR_ANY)
7970 				 */
7971 				v4addr = V4_PART_OF_V6(udp->udp_bound_v6src);
7972 			}
7973 		} else {
7974 			/* udp->udp_family == AF_INET6 */
7975 			if (!IN6_IS_ADDR_UNSPECIFIED(&udp->udp_v6src)) {
7976 				v6addr = udp->udp_v6src;
7977 			} else {
7978 				/*
7979 				 * UNSPECIFIED
7980 				 * udp_v6src is not set, we might be bound to
7981 				 * broadcast/multicast. Use udp_bound_v6src as
7982 				 * local address instead (that could
7983 				 * also still be UNSPECIFIED)
7984 				 */
7985 				v6addr = udp->udp_bound_v6src;
7986 			}
7987 		}
7988 		port = udp->udp_port;
7989 		break;
7990 	case TI_GETPEERNAME:
7991 		if (udp->udp_state != TS_DATA_XFER) {
7992 			mi_copy_done(q, mp, ENOTCONN);
7993 			return;
7994 		}
7995 		if (udp->udp_family == AF_INET) {
7996 			ASSERT(udp->udp_ipversion == IPV4_VERSION);
7997 			v4addr = V4_PART_OF_V6(udp->udp_v6dst);
7998 		} else {
7999 			/* udp->udp_family == AF_INET6) */
8000 			v6addr = udp->udp_v6dst;
8001 			flowinfo = udp->udp_flowinfo;
8002 		}
8003 		port = udp->udp_dstport;
8004 		break;
8005 	default:
8006 		mi_copy_done(q, mp, EPROTO);
8007 		return;
8008 	}
8009 	mp1 = mi_copyout_alloc(q, mp, STRUCT_FGETP(sb, buf), addrlen, B_TRUE);
8010 	if (!mp1)
8011 		return;
8012 
8013 	if (udp->udp_family == AF_INET) {
8014 		sin_t *sin;
8015 
8016 		STRUCT_FSET(sb, len, (int)sizeof (sin_t));
8017 		sin = (sin_t *)mp1->b_rptr;
8018 		mp1->b_wptr = (uchar_t *)&sin[1];
8019 		*sin = sin_null;
8020 		sin->sin_family = AF_INET;
8021 		sin->sin_addr.s_addr = v4addr;
8022 		sin->sin_port = port;
8023 	} else {
8024 		/* udp->udp_family == AF_INET6 */
8025 		sin6_t *sin6;
8026 
8027 		STRUCT_FSET(sb, len, (int)sizeof (sin6_t));
8028 		sin6 = (sin6_t *)mp1->b_rptr;
8029 		mp1->b_wptr = (uchar_t *)&sin6[1];
8030 		*sin6 = sin6_null;
8031 		sin6->sin6_family = AF_INET6;
8032 		sin6->sin6_flowinfo = flowinfo;
8033 		sin6->sin6_addr = v6addr;
8034 		sin6->sin6_port = port;
8035 	}
8036 	/* Copy out the address */
8037 	mi_copyout(q, mp);
8038 }
8039 
8040 
8041 static int
8042 udp_unitdata_opt_process(queue_t *q, mblk_t *mp, int *errorp,
8043     udpattrs_t *udpattrs)
8044 {
8045 	struct T_unitdata_req *udreqp;
8046 	int is_absreq_failure;
8047 	cred_t *cr;
8048 	conn_t	*connp = Q_TO_CONN(q);
8049 
8050 	ASSERT(((t_primp_t)mp->b_rptr)->type);
8051 
8052 	cr = DB_CREDDEF(mp, connp->conn_cred);
8053 
8054 	udreqp = (struct T_unitdata_req *)mp->b_rptr;
8055 
8056 	/*
8057 	 * Use upper queue for option processing since the callback
8058 	 * routines expect to be called in UDP instance instead of IP.
8059 	 */
8060 	*errorp = tpi_optcom_buf(_WR(UDP_RD(q)), mp, &udreqp->OPT_length,
8061 	    udreqp->OPT_offset, cr, &udp_opt_obj,
8062 	    udpattrs, &is_absreq_failure);
8063 
8064 	if (*errorp != 0) {
8065 		/*
8066 		 * Note: No special action needed in this
8067 		 * module for "is_absreq_failure"
8068 		 */
8069 		return (-1);		/* failure */
8070 	}
8071 	ASSERT(is_absreq_failure == 0);
8072 	return (0);	/* success */
8073 }
8074 
8075 void
8076 udp_ddi_init(void)
8077 {
8078 	int i;
8079 
8080 	UDP6_MAJ = ddi_name_to_major(UDP6);
8081 
8082 	udp_max_optsize = optcom_max_optsize(udp_opt_obj.odb_opt_des_arr,
8083 	    udp_opt_obj.odb_opt_arr_cnt);
8084 
8085 	if (udp_bind_fanout_size & (udp_bind_fanout_size - 1)) {
8086 		/* Not a power of two. Round up to nearest power of two */
8087 		for (i = 0; i < 31; i++) {
8088 			if (udp_bind_fanout_size < (1 << i))
8089 				break;
8090 		}
8091 		udp_bind_fanout_size = 1 << i;
8092 	}
8093 	udp_bind_fanout = kmem_zalloc(udp_bind_fanout_size *
8094 	    sizeof (udp_fanout_t), KM_SLEEP);
8095 	for (i = 0; i < udp_bind_fanout_size; i++) {
8096 		mutex_init(&udp_bind_fanout[i].uf_lock, NULL, MUTEX_DEFAULT,
8097 		    NULL);
8098 	}
8099 	(void) udp_param_register(udp_param_arr, A_CNT(udp_param_arr));
8100 
8101 	udp_kstat_init();
8102 
8103 	udp_cache = kmem_cache_create("udp_cache", sizeof (udp_t),
8104 	    CACHE_ALIGN_SIZE, NULL, NULL, NULL, NULL, NULL, 0);
8105 }
8106 
8107 void
8108 udp_ddi_destroy(void)
8109 {
8110 	int i;
8111 
8112 	nd_free(&udp_g_nd);
8113 
8114 	for (i = 0; i < udp_bind_fanout_size; i++) {
8115 		mutex_destroy(&udp_bind_fanout[i].uf_lock);
8116 	}
8117 
8118 	kmem_free(udp_bind_fanout, udp_bind_fanout_size *
8119 	    sizeof (udp_fanout_t));
8120 
8121 	udp_kstat_fini();
8122 
8123 	kmem_cache_destroy(udp_cache);
8124 }
8125 
8126 static void
8127 udp_kstat_init(void)
8128 {
8129 	udp_named_kstat_t template = {
8130 		{ "inDatagrams",	KSTAT_DATA_UINT32, 0 },
8131 		{ "inErrors",		KSTAT_DATA_UINT32, 0 },
8132 		{ "outDatagrams",	KSTAT_DATA_UINT32, 0 },
8133 		{ "entrySize",		KSTAT_DATA_INT32, 0 },
8134 		{ "entry6Size",		KSTAT_DATA_INT32, 0 },
8135 		{ "outErrors",		KSTAT_DATA_UINT32, 0 },
8136 	};
8137 
8138 	udp_mibkp = kstat_create(UDP_MOD_NAME, 0, UDP_MOD_NAME,
8139 	    "mib2", KSTAT_TYPE_NAMED, NUM_OF_FIELDS(udp_named_kstat_t), 0);
8140 
8141 	if (udp_mibkp == NULL)
8142 		return;
8143 
8144 	template.entrySize.value.ui32 = sizeof (mib2_udpEntry_t);
8145 	template.entry6Size.value.ui32 = sizeof (mib2_udp6Entry_t);
8146 
8147 	bcopy(&template, udp_mibkp->ks_data, sizeof (template));
8148 
8149 	udp_mibkp->ks_update = udp_kstat_update;
8150 
8151 	kstat_install(udp_mibkp);
8152 
8153 	if ((udp_ksp = kstat_create(UDP_MOD_NAME, 0, "udpstat",
8154 	    "net", KSTAT_TYPE_NAMED,
8155 	    sizeof (udp_statistics) / sizeof (kstat_named_t),
8156 	    KSTAT_FLAG_VIRTUAL)) != NULL) {
8157 		udp_ksp->ks_data = &udp_statistics;
8158 		kstat_install(udp_ksp);
8159 	}
8160 }
8161 
8162 static void
8163 udp_kstat_fini(void)
8164 {
8165 	if (udp_ksp != NULL) {
8166 		kstat_delete(udp_ksp);
8167 		udp_ksp = NULL;
8168 	}
8169 	if (udp_mibkp != NULL) {
8170 		kstat_delete(udp_mibkp);
8171 		udp_mibkp = NULL;
8172 	}
8173 }
8174 
8175 static int
8176 udp_kstat_update(kstat_t *kp, int rw)
8177 {
8178 	udp_named_kstat_t *udpkp;
8179 
8180 	if ((kp == NULL) || (kp->ks_data == NULL))
8181 		return (EIO);
8182 
8183 	if (rw == KSTAT_WRITE)
8184 		return (EACCES);
8185 
8186 	udpkp = (udp_named_kstat_t *)kp->ks_data;
8187 
8188 	udpkp->inDatagrams.value.ui32 =	udp_mib.udpInDatagrams;
8189 	udpkp->inErrors.value.ui32 =	udp_mib.udpInErrors;
8190 	udpkp->outDatagrams.value.ui32 = udp_mib.udpOutDatagrams;
8191 	udpkp->outErrors.value.ui32 =	udp_mib.udpOutErrors;
8192 
8193 	return (0);
8194 }
8195 
8196 /* ARGSUSED */
8197 static void
8198 udp_rput(queue_t *q, mblk_t *mp)
8199 {
8200 	/*
8201 	 * We get here whenever we do qreply() from IP,
8202 	 * i.e as part of handlings ioctls, etc.
8203 	 */
8204 	putnext(q, mp);
8205 }
8206 
8207 /*
8208  * Read-side synchronous stream info entry point, called as a
8209  * result of handling certain STREAMS ioctl operations.
8210  */
8211 static int
8212 udp_rinfop(queue_t *q, infod_t *dp)
8213 {
8214 	mblk_t	*mp;
8215 	uint_t	cmd = dp->d_cmd;
8216 	int	res = 0;
8217 	int	error = 0;
8218 	udp_t	*udp = Q_TO_UDP(RD(UDP_WR(q)));
8219 	struct stdata *stp = STREAM(q);
8220 
8221 	mutex_enter(&udp->udp_drain_lock);
8222 	/* If shutdown on read has happened, return nothing */
8223 	mutex_enter(&stp->sd_lock);
8224 	if (stp->sd_flag & STREOF) {
8225 		mutex_exit(&stp->sd_lock);
8226 		goto done;
8227 	}
8228 	mutex_exit(&stp->sd_lock);
8229 
8230 	if ((mp = udp->udp_rcv_list_head) == NULL)
8231 		goto done;
8232 
8233 	ASSERT(DB_TYPE(mp) != M_DATA && mp->b_cont != NULL);
8234 
8235 	if (cmd & INFOD_COUNT) {
8236 		/*
8237 		 * Return the number of messages.
8238 		 */
8239 		dp->d_count += udp->udp_rcv_msgcnt;
8240 		res |= INFOD_COUNT;
8241 	}
8242 	if (cmd & INFOD_BYTES) {
8243 		/*
8244 		 * Return size of all data messages.
8245 		 */
8246 		dp->d_bytes += udp->udp_rcv_cnt;
8247 		res |= INFOD_BYTES;
8248 	}
8249 	if (cmd & INFOD_FIRSTBYTES) {
8250 		/*
8251 		 * Return size of first data message.
8252 		 */
8253 		dp->d_bytes = msgdsize(mp);
8254 		res |= INFOD_FIRSTBYTES;
8255 		dp->d_cmd &= ~INFOD_FIRSTBYTES;
8256 	}
8257 	if (cmd & INFOD_COPYOUT) {
8258 		mblk_t *mp1 = mp->b_cont;
8259 		int n;
8260 		/*
8261 		 * Return data contents of first message.
8262 		 */
8263 		ASSERT(DB_TYPE(mp1) == M_DATA);
8264 		while (mp1 != NULL && dp->d_uiop->uio_resid > 0) {
8265 			n = MIN(dp->d_uiop->uio_resid, MBLKL(mp1));
8266 			if (n != 0 && (error = uiomove((char *)mp1->b_rptr, n,
8267 			    UIO_READ, dp->d_uiop)) != 0) {
8268 				goto done;
8269 			}
8270 			mp1 = mp1->b_cont;
8271 		}
8272 		res |= INFOD_COPYOUT;
8273 		dp->d_cmd &= ~INFOD_COPYOUT;
8274 	}
8275 done:
8276 	mutex_exit(&udp->udp_drain_lock);
8277 
8278 	dp->d_res |= res;
8279 
8280 	return (error);
8281 }
8282 
8283 /*
8284  * Read-side synchronous stream entry point.  This is called as a result
8285  * of recv/read operation done at sockfs, and is guaranteed to execute
8286  * outside of the interrupt thread context.  It returns a single datagram
8287  * (b_cont chain of T_UNITDATA_IND plus data) to the upper layer.
8288  */
8289 static int
8290 udp_rrw(queue_t *q, struiod_t *dp)
8291 {
8292 	mblk_t	*mp;
8293 	udp_t	*udp = Q_TO_UDP(_RD(UDP_WR(q)));
8294 
8295 	/* We should never get here when we're in SNMP mode */
8296 	ASSERT(!(udp->udp_connp->conn_flags & IPCL_UDPMOD));
8297 
8298 	/*
8299 	 * Dequeue datagram from the head of the list and return
8300 	 * it to caller; also ensure that RSLEEP sd_wakeq flag is
8301 	 * set/cleared depending on whether or not there's data
8302 	 * remaining in the list.
8303 	 */
8304 	mutex_enter(&udp->udp_drain_lock);
8305 	if (!udp->udp_direct_sockfs) {
8306 		mutex_exit(&udp->udp_drain_lock);
8307 		UDP_STAT(udp_rrw_busy);
8308 		return (EBUSY);
8309 	}
8310 	if ((mp = udp->udp_rcv_list_head) != NULL) {
8311 		uint_t size = msgdsize(mp);
8312 
8313 		/* Last datagram in the list? */
8314 		if ((udp->udp_rcv_list_head = mp->b_next) == NULL)
8315 			udp->udp_rcv_list_tail = NULL;
8316 		mp->b_next = NULL;
8317 
8318 		udp->udp_rcv_cnt -= size;
8319 		udp->udp_rcv_msgcnt--;
8320 		UDP_STAT(udp_rrw_msgcnt);
8321 
8322 		/* No longer flow-controlling? */
8323 		if (udp->udp_rcv_cnt < udp->udp_rcv_hiwat &&
8324 		    udp->udp_rcv_msgcnt < udp->udp_rcv_hiwat)
8325 			udp->udp_drain_qfull = B_FALSE;
8326 	}
8327 	if (udp->udp_rcv_list_head == NULL) {
8328 		/*
8329 		 * Either we just dequeued the last datagram or
8330 		 * we get here from sockfs and have nothing to
8331 		 * return; in this case clear RSLEEP.
8332 		 */
8333 		ASSERT(udp->udp_rcv_cnt == 0);
8334 		ASSERT(udp->udp_rcv_msgcnt == 0);
8335 		ASSERT(udp->udp_rcv_list_tail == NULL);
8336 		STR_WAKEUP_CLEAR(STREAM(q));
8337 	} else {
8338 		/*
8339 		 * More data follows; we need udp_rrw() to be
8340 		 * called in future to pick up the rest.
8341 		 */
8342 		STR_WAKEUP_SET(STREAM(q));
8343 	}
8344 	mutex_exit(&udp->udp_drain_lock);
8345 	dp->d_mp = mp;
8346 	return (0);
8347 }
8348 
8349 /*
8350  * Enqueue a completely-built T_UNITDATA_IND message into the receive
8351  * list; this is typically executed within the interrupt thread context
8352  * and so we do things as quickly as possible.
8353  */
8354 static void
8355 udp_rcv_enqueue(queue_t *q, udp_t *udp, mblk_t *mp, uint_t pkt_len)
8356 {
8357 	ASSERT(q == RD(q));
8358 	ASSERT(pkt_len == msgdsize(mp));
8359 	ASSERT(mp->b_next == NULL && mp->b_cont != NULL);
8360 	ASSERT(DB_TYPE(mp) == M_PROTO && DB_TYPE(mp->b_cont) == M_DATA);
8361 	ASSERT(MBLKL(mp) >= sizeof (struct T_unitdata_ind));
8362 
8363 	mutex_enter(&udp->udp_drain_lock);
8364 	/*
8365 	 * Wake up and signal the receiving app; it is okay to do this
8366 	 * before enqueueing the mp because we are holding the drain lock.
8367 	 * One of the advantages of synchronous stream is the ability for
8368 	 * us to find out when the application performs a read on the
8369 	 * socket by way of udp_rrw() entry point being called.  We need
8370 	 * to generate SIGPOLL/SIGIO for each received data in the case
8371 	 * of asynchronous socket just as in the strrput() case.  However,
8372 	 * we only wake the application up when necessary, i.e. during the
8373 	 * first enqueue.  When udp_rrw() is called, we send up a single
8374 	 * datagram upstream and call STR_WAKEUP_SET() again when there
8375 	 * are still data remaining in our receive queue.
8376 	 */
8377 	if (udp->udp_rcv_list_head == NULL) {
8378 		STR_WAKEUP_SET(STREAM(q));
8379 		udp->udp_rcv_list_head = mp;
8380 	} else {
8381 		udp->udp_rcv_list_tail->b_next = mp;
8382 	}
8383 	udp->udp_rcv_list_tail = mp;
8384 	udp->udp_rcv_cnt += pkt_len;
8385 	udp->udp_rcv_msgcnt++;
8386 
8387 	/* Need to flow-control? */
8388 	if (udp->udp_rcv_cnt >= udp->udp_rcv_hiwat ||
8389 	    udp->udp_rcv_msgcnt >= udp->udp_rcv_hiwat)
8390 		udp->udp_drain_qfull = B_TRUE;
8391 
8392 	/* Update poll events and send SIGPOLL/SIGIO if necessary */
8393 	STR_SENDSIG(STREAM(q));
8394 	mutex_exit(&udp->udp_drain_lock);
8395 }
8396 
8397 /*
8398  * Drain the contents of receive list to the module upstream; we do
8399  * this during close or when we fallback to the slow mode due to
8400  * sockmod being popped or a module being pushed on top of us.
8401  */
8402 static void
8403 udp_rcv_drain(queue_t *q, udp_t *udp, boolean_t closing)
8404 {
8405 	mblk_t *mp;
8406 
8407 	ASSERT(q == RD(q));
8408 
8409 	mutex_enter(&udp->udp_drain_lock);
8410 	/*
8411 	 * There is no race with a concurrent udp_input() sending
8412 	 * up packets using putnext() after we have cleared the
8413 	 * udp_direct_sockfs flag but before we have completed
8414 	 * sending up the packets in udp_rcv_list, since we are
8415 	 * either a writer or we have quiesced the conn.
8416 	 */
8417 	udp->udp_direct_sockfs = B_FALSE;
8418 	mutex_exit(&udp->udp_drain_lock);
8419 
8420 	if (udp->udp_rcv_list_head != NULL)
8421 		UDP_STAT(udp_drain);
8422 
8423 	/*
8424 	 * Send up everything via putnext(); note here that we
8425 	 * don't need the udp_drain_lock to protect us since
8426 	 * nothing can enter udp_rrw() and that we currently
8427 	 * have exclusive access to this udp.
8428 	 */
8429 	while ((mp = udp->udp_rcv_list_head) != NULL) {
8430 		udp->udp_rcv_list_head = mp->b_next;
8431 		mp->b_next = NULL;
8432 		udp->udp_rcv_cnt -= msgdsize(mp);
8433 		udp->udp_rcv_msgcnt--;
8434 		if (closing) {
8435 			freemsg(mp);
8436 		} else {
8437 			putnext(q, mp);
8438 		}
8439 	}
8440 	ASSERT(udp->udp_rcv_cnt == 0);
8441 	ASSERT(udp->udp_rcv_msgcnt == 0);
8442 	ASSERT(udp->udp_rcv_list_head == NULL);
8443 	udp->udp_rcv_list_tail = NULL;
8444 	udp->udp_drain_qfull = B_FALSE;
8445 }
8446 
8447 static size_t
8448 udp_set_rcv_hiwat(udp_t *udp, size_t size)
8449 {
8450 	/* We add a bit of extra buffering */
8451 	size += size >> 1;
8452 	if (size > udp_max_buf)
8453 		size = udp_max_buf;
8454 
8455 	udp->udp_rcv_hiwat = size;
8456 	return (size);
8457 }
8458 
8459 /*
8460  * Little helper for IPsec's NAT-T processing.
8461  */
8462 boolean_t
8463 udp_compute_checksum(void)
8464 {
8465 	return (udp_do_checksum);
8466 }
8467