xref: /illumos-gate/usr/src/uts/common/io/afe/afe.c (revision 85bb5f1d)
1 /*
2  * Solaris driver for ethernet cards based on the ADMtek Centaur
3  *
4  * Copyright (c) 2007 by Garrett D'Amore <garrett@damore.org>.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the author nor the names of any co-contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER AND CONTRIBUTORS ``AS IS''
20  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
23  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 /*
32  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
33  * Use is subject to license terms.
34  */
35 
36 #pragma ident	"%Z%%M%	%I%	%E% SMI"
37 
38 #include <sys/varargs.h>
39 #include <sys/types.h>
40 #include <sys/modctl.h>
41 #include <sys/conf.h>
42 #include <sys/devops.h>
43 #include <sys/stream.h>
44 #include <sys/strsun.h>
45 #include <sys/cmn_err.h>
46 #include <sys/ethernet.h>
47 #include <sys/kmem.h>
48 #include <sys/time.h>
49 #include <sys/crc32.h>
50 #include <sys/miiregs.h>
51 #include <sys/mac.h>
52 #include <sys/mac_ether.h>
53 #include <sys/ddi.h>
54 #include <sys/sunddi.h>
55 #include <sys/vlan.h>
56 
57 #include "afe.h"
58 #include "afeimpl.h"
59 
60 /*
61  * Driver globals.
62  */
63 
64 /* patchable debug flag ... must not be static! */
65 #ifdef	DEBUG
66 unsigned		afe_debug = DWARN;
67 #endif
68 
69 /* table of supported devices */
70 static afe_card_t afe_cards[] = {
71 
72 	/*
73 	 * ADMtek Centaur and Comet
74 	 */
75 	{ 0x1317, 0x0981, "ADMtek AL981", MODEL_COMET },
76 	{ 0x1317, 0x0985, "ADMtek AN983", MODEL_CENTAUR },
77 	{ 0x1317, 0x1985, "ADMtek AN985", MODEL_CENTAUR },
78 	{ 0x1317, 0x9511, "ADMtek ADM9511", MODEL_CENTAUR },
79 	{ 0x1317, 0x9513, "ADMtek ADM9513", MODEL_CENTAUR },
80 	/*
81 	 * Accton just relabels other companies' controllers
82 	 */
83 	{ 0x1113, 0x1216, "Accton EN5251", MODEL_CENTAUR },
84 	/*
85 	 * Models listed here.
86 	 */
87 	{ 0x10b7, 0x9300, "3Com 3CSOHO100B-TX", MODEL_CENTAUR },
88 	{ 0x1113, 0xec02, "SMC SMC1244TX", MODEL_CENTAUR },
89 	{ 0x10b8, 0x1255, "SMC SMC1255TX", MODEL_CENTAUR },
90 	{ 0x111a, 0x1020, "Siemens SpeedStream PCI 10/100", MODEL_CENTAUR },
91 	{ 0x1113, 0x1207, "Accton EN1207F", MODEL_CENTAUR },
92 	{ 0x1113, 0x2242, "Accton EN2242", MODEL_CENTAUR },
93 	{ 0x1113, 0x2220, "Accton EN2220", MODEL_CENTAUR },
94 	{ 0x1113, 0x9216, "3M VOL-N100VF+TX", MODEL_CENTAUR },
95 	{ 0x1317, 0x0574, "Linksys LNE100TX", MODEL_CENTAUR },
96 	{ 0x1317, 0x0570, "Linksys NC100", MODEL_CENTAUR },
97 	{ 0x1385, 0x511a, "Netgear FA511", MODEL_CENTAUR },
98 	{ 0x13d1, 0xab02, "AboCom FE2500", MODEL_CENTAUR },
99 	{ 0x13d1, 0xab03, "AboCom PCM200", MODEL_CENTAUR },
100 	{ 0x13d1, 0xab08, "AboCom FE2500MX", MODEL_CENTAUR },
101 	{ 0x1414, 0x0001, "Microsoft MN-120", MODEL_CENTAUR },
102 	{ 0x16ec, 0x00ed, "U.S. Robotics USR997900", MODEL_CENTAUR },
103 	{ 0x1734, 0x100c, "Fujitsu-Siemens D1961", MODEL_CENTAUR },
104 	{ 0x1737, 0xab08, "Linksys PCMPC200", MODEL_CENTAUR },
105 	{ 0x1737, 0xab09, "Linksys PCM200", MODEL_CENTAUR },
106 	{ 0x17b3, 0xab08, "Hawking PN672TX", MODEL_CENTAUR },
107 };
108 
109 #define	ETHERVLANMTU	(ETHERMAX + 4)
110 
111 /*
112  * Function prototypes
113  */
114 static int	afe_attach(dev_info_t *, ddi_attach_cmd_t);
115 static int	afe_detach(dev_info_t *, ddi_detach_cmd_t);
116 static int	afe_resume(dev_info_t *);
117 static int	afe_m_unicst(void *, const uint8_t *);
118 static int	afe_m_multicst(void *, boolean_t, const uint8_t *);
119 static int	afe_m_promisc(void *, boolean_t);
120 static mblk_t	*afe_m_tx(void *, mblk_t *);
121 static int	afe_m_stat(void *, uint_t, uint64_t *);
122 static int	afe_m_start(void *);
123 static void	afe_m_stop(void *);
124 static int	afe_m_getprop(void *, const char *, mac_prop_id_t, uint_t,
125     uint_t, void *);
126 static int	afe_m_setprop(void *, const char *, mac_prop_id_t, uint_t,
127     const void *);
128 static unsigned	afe_intr(caddr_t);
129 static void	afe_startmac(afe_t *);
130 static void	afe_stopmac(afe_t *);
131 static void	afe_resetrings(afe_t *);
132 static boolean_t	afe_initialize(afe_t *);
133 static void	afe_startall(afe_t *);
134 static void	afe_stopall(afe_t *);
135 static void	afe_resetall(afe_t *);
136 static afe_txbuf_t *afe_alloctxbuf(afe_t *);
137 static void	afe_destroytxbuf(afe_txbuf_t *);
138 static afe_rxbuf_t *afe_allocrxbuf(afe_t *);
139 static void	afe_destroyrxbuf(afe_rxbuf_t *);
140 static boolean_t	afe_send(afe_t *, mblk_t *);
141 static int	afe_allocrxring(afe_t *);
142 static void	afe_freerxring(afe_t *);
143 static int	afe_alloctxring(afe_t *);
144 static void	afe_freetxring(afe_t *);
145 static void	afe_error(dev_info_t *, char *, ...);
146 static void	afe_setrxfilt(afe_t *);
147 static uint8_t	afe_sromwidth(afe_t *);
148 static uint16_t	afe_readsromword(afe_t *, unsigned);
149 static void	afe_readsrom(afe_t *, unsigned, unsigned, char *);
150 static void	afe_getfactaddr(afe_t *, uchar_t *);
151 static uint8_t	afe_miireadbit(afe_t *);
152 static void	afe_miiwritebit(afe_t *, uint8_t);
153 static void	afe_miitristate(afe_t *);
154 static uint16_t	afe_miiread(afe_t *, int, int);
155 static void	afe_miiwrite(afe_t *, int, int, uint16_t);
156 static uint16_t	afe_miireadgeneral(afe_t *, int, int);
157 static void	afe_miiwritegeneral(afe_t *, int, int, uint16_t);
158 static uint16_t	afe_miireadcomet(afe_t *, int, int);
159 static void	afe_miiwritecomet(afe_t *, int, int, uint16_t);
160 static int	afe_getmiibit(afe_t *, uint16_t, uint16_t);
161 static void	afe_startphy(afe_t *);
162 static void	afe_stopphy(afe_t *);
163 static void	afe_reportlink(afe_t *);
164 static void	afe_checklink(afe_t *);
165 static void	afe_checklinkcomet(afe_t *);
166 static void	afe_checklinkcentaur(afe_t *);
167 static void	afe_checklinkmii(afe_t *);
168 static void	afe_disableinterrupts(afe_t *);
169 static void	afe_enableinterrupts(afe_t *);
170 static void	afe_reclaim(afe_t *);
171 static mblk_t	*afe_receive(afe_t *);
172 
173 #ifdef	DEBUG
174 static void	afe_dprintf(afe_t *, const char *, int, char *, ...);
175 #endif
176 
177 #define	KIOIP	KSTAT_INTR_PTR(afep->afe_intrstat)
178 
179 static mac_callbacks_t afe_m_callbacks = {
180 	MC_SETPROP | MC_GETPROP,
181 	afe_m_stat,
182 	afe_m_start,
183 	afe_m_stop,
184 	afe_m_promisc,
185 	afe_m_multicst,
186 	afe_m_unicst,
187 	afe_m_tx,
188 	NULL,		/* mc_resources */
189 	NULL,		/* mc_ioctl */
190 	NULL,		/* mc_getcapab */
191 	NULL,		/* mc_open */
192 	NULL,		/* mc_close */
193 	afe_m_setprop,
194 	afe_m_getprop,
195 };
196 
197 
198 /*
199  * Stream information
200  */
201 DDI_DEFINE_STREAM_OPS(afe_devops, nulldev, nulldev, afe_attach, afe_detach,
202     nodev, NULL, D_MP, NULL);
203 
204 /*
205  * Module linkage information.
206  */
207 
208 static struct modldrv afe_modldrv = {
209 	&mod_driverops,			/* drv_modops */
210 	"ADMtek Fast Ethernet",		/* drv_linkinfo */
211 	&afe_devops			/* drv_dev_ops */
212 };
213 
214 static struct modlinkage afe_modlinkage = {
215 	MODREV_1,		/* ml_rev */
216 	{ &afe_modldrv, NULL }	/* ml_linkage */
217 };
218 
219 /*
220  * Device attributes.
221  */
222 static ddi_device_acc_attr_t afe_devattr = {
223 	DDI_DEVICE_ATTR_V0,
224 	DDI_STRUCTURE_LE_ACC,
225 	DDI_STRICTORDER_ACC
226 };
227 
228 static ddi_device_acc_attr_t afe_bufattr = {
229 	DDI_DEVICE_ATTR_V0,
230 	DDI_NEVERSWAP_ACC,
231 	DDI_STRICTORDER_ACC
232 };
233 
234 static ddi_dma_attr_t afe_dma_attr = {
235 	DMA_ATTR_V0,		/* dma_attr_version */
236 	0,			/* dma_attr_addr_lo */
237 	0xFFFFFFFFU,		/* dma_attr_addr_hi */
238 	0x7FFFFFFFU,		/* dma_attr_count_max */
239 	4,			/* dma_attr_align */
240 	0x3F,			/* dma_attr_burstsizes */
241 	1,			/* dma_attr_minxfer */
242 	0xFFFFFFFFU,		/* dma_attr_maxxfer */
243 	0xFFFFFFFFU,		/* dma_attr_seg */
244 	1,			/* dma_attr_sgllen */
245 	1,			/* dma_attr_granular */
246 	0			/* dma_attr_flags */
247 };
248 
249 /*
250  * Tx buffers can be arbitrarily aligned.  Additionally, they can
251  * cross a page boundary, so we use the two buffer addresses of the
252  * chip to provide a two-entry scatter-gather list.
253  */
254 static ddi_dma_attr_t afe_dma_txattr = {
255 	DMA_ATTR_V0,		/* dma_attr_version */
256 	0,			/* dma_attr_addr_lo */
257 	0xFFFFFFFFU,		/* dma_attr_addr_hi */
258 	0x7FFFFFFFU,		/* dma_attr_count_max */
259 	1,			/* dma_attr_align */
260 	0x3F,			/* dma_attr_burstsizes */
261 	1,			/* dma_attr_minxfer */
262 	0xFFFFFFFFU,		/* dma_attr_maxxfer */
263 	0xFFFFFFFFU,		/* dma_attr_seg */
264 	2,			/* dma_attr_sgllen */
265 	1,			/* dma_attr_granular */
266 	0			/* dma_attr_flags */
267 };
268 
269 /*
270  * Ethernet addresses.
271  */
272 static uchar_t afe_broadcast[ETHERADDRL] = {
273 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff
274 };
275 
276 /*
277  * DDI entry points.
278  */
279 int
280 _init(void)
281 {
282 	int	rv;
283 	mac_init_ops(&afe_devops, "afe");
284 	if ((rv = mod_install(&afe_modlinkage)) != DDI_SUCCESS) {
285 		mac_fini_ops(&afe_devops);
286 	}
287 	return (rv);
288 }
289 
290 int
291 _fini(void)
292 {
293 	int	rv;
294 	if ((rv = mod_remove(&afe_modlinkage)) == DDI_SUCCESS) {
295 		mac_fini_ops(&afe_devops);
296 	}
297 	return (rv);
298 }
299 
300 int
301 _info(struct modinfo *modinfop)
302 {
303 	return (mod_info(&afe_modlinkage, modinfop));
304 }
305 
306 int
307 afe_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
308 {
309 	afe_t			*afep;
310 	mac_register_t		*macp;
311 	int			inst = ddi_get_instance(dip);
312 	ddi_acc_handle_t	pci;
313 	uint16_t		venid;
314 	uint16_t		devid;
315 	uint16_t		svid;
316 	uint16_t		ssid;
317 	uint16_t		cachesize;
318 	afe_card_t		*cardp;
319 	int			i;
320 
321 	switch (cmd) {
322 	case DDI_RESUME:
323 		return (afe_resume(dip));
324 
325 	case DDI_ATTACH:
326 		break;
327 
328 	default:
329 		return (DDI_FAILURE);
330 	}
331 
332 	/* this card is a bus master, reject any slave-only slot */
333 	if (ddi_slaveonly(dip) == DDI_SUCCESS) {
334 		afe_error(dip, "slot does not support PCI bus-master");
335 		return (DDI_FAILURE);
336 	}
337 	/* PCI devices shouldn't generate hilevel interrupts */
338 	if (ddi_intr_hilevel(dip, 0) != 0) {
339 		afe_error(dip, "hilevel interrupts not supported");
340 		return (DDI_FAILURE);
341 	}
342 	if (pci_config_setup(dip, &pci) != DDI_SUCCESS) {
343 		afe_error(dip, "unable to setup PCI config handle");
344 		return (DDI_FAILURE);
345 	}
346 
347 	venid = pci_config_get16(pci, PCI_VID);
348 	devid = pci_config_get16(pci, PCI_DID);
349 	svid = pci_config_get16(pci, PCI_SVID);
350 	ssid = pci_config_get16(pci, PCI_SSID);
351 
352 	/*
353 	 * Note: ADMtek boards seem to misprogram themselves with bogus
354 	 * timings, which do not seem to work properly on SPARC.  We
355 	 * reprogram them zero (but only if they appear to be broken),
356 	 * which seems to at least work.  Its unclear that this is a
357 	 * legal or wise practice to me, but it certainly works better
358 	 * than the original values.  (I would love to hear
359 	 * suggestions for better values, or a better strategy.)
360 	 */
361 	if ((pci_config_get8(pci, PCI_MINGNT) == 0xff) &&
362 	    (pci_config_get8(pci, PCI_MAXLAT) == 0xff)) {
363 		pci_config_put8(pci, PCI_MINGNT, 0);
364 		pci_config_put8(pci, PCI_MAXLAT, 0);
365 	}
366 
367 	/*
368 	 * the last entry in the card table matches every possible
369 	 * card, so the for-loop always terminates properly.
370 	 */
371 	cardp = NULL;
372 	for (i = 0; i < (sizeof (afe_cards) / sizeof (afe_card_t)); i++) {
373 		if ((venid == afe_cards[i].card_venid) &&
374 		    (devid == afe_cards[i].card_devid)) {
375 			cardp = &afe_cards[i];
376 		}
377 		if ((svid == afe_cards[i].card_venid) &&
378 		    (ssid == afe_cards[i].card_devid)) {
379 			cardp = &afe_cards[i];
380 			break;
381 		}
382 	}
383 
384 	if (cardp == NULL) {
385 		pci_config_teardown(&pci);
386 		afe_error(dip, "Unable to identify PCI card");
387 		return (DDI_FAILURE);
388 	}
389 
390 	if (ddi_prop_update_string(DDI_DEV_T_NONE, dip, "model",
391 	    cardp->card_cardname) != DDI_PROP_SUCCESS) {
392 		pci_config_teardown(&pci);
393 		afe_error(dip, "Unable to create model property");
394 		return (DDI_FAILURE);
395 	}
396 
397 	/*
398 	 * Grab the PCI cachesize -- we use this to program the
399 	 * cache-optimization bus access bits.
400 	 */
401 	cachesize = pci_config_get8(pci, PCI_CLS);
402 
403 	/* this cannot fail */
404 	afep = kmem_zalloc(sizeof (afe_t), KM_SLEEP);
405 	ddi_set_driver_private(dip, afep);
406 
407 	/* get the interrupt block cookie */
408 	if (ddi_get_iblock_cookie(dip, 0, &afep->afe_icookie) != DDI_SUCCESS) {
409 		afe_error(dip, "ddi_get_iblock_cookie failed");
410 		pci_config_teardown(&pci);
411 		kmem_free(afep, sizeof (afe_t));
412 		return (DDI_FAILURE);
413 	}
414 
415 	afep->afe_dip = dip;
416 	afep->afe_cardp = cardp;
417 	afep->afe_phyaddr = -1;
418 	afep->afe_cachesize = cachesize;
419 
420 	/* default properties */
421 	afep->afe_adv_aneg = !!ddi_prop_get_int(DDI_DEV_T_ANY, dip, 0,
422 	    "adv_autoneg_cap", 1);
423 	afep->afe_adv_100T4 = !!ddi_prop_get_int(DDI_DEV_T_ANY, dip, 0,
424 	    "adv_100T4_cap", 1);
425 	afep->afe_adv_100fdx = !!ddi_prop_get_int(DDI_DEV_T_ANY, dip, 0,
426 	    "adv_100fdx_cap", 1);
427 	afep->afe_adv_100hdx = !!ddi_prop_get_int(DDI_DEV_T_ANY, dip, 0,
428 	    "adv_100hdx_cap", 1);
429 	afep->afe_adv_10fdx = !!ddi_prop_get_int(DDI_DEV_T_ANY, dip, 0,
430 	    "adv_10fdx_cap", 1);
431 	afep->afe_adv_10hdx = !!ddi_prop_get_int(DDI_DEV_T_ANY, dip, 0,
432 	    "adv_10hdx_cap", 1);
433 
434 	afep->afe_forcefiber = ddi_prop_get_int(DDI_DEV_T_ANY, dip, 0,
435 	    "fiber", 0);
436 
437 	DBG(DPCI, "PCI vendor id = %x", venid);
438 	DBG(DPCI, "PCI device id = %x", devid);
439 	DBG(DPCI, "PCI cachesize = %d", cachesize);
440 	DBG(DPCI, "PCI COMM = %x", pci_config_get8(pci, PCI_CMD));
441 	DBG(DPCI, "PCI STAT = %x", pci_config_get8(pci, PCI_STAT));
442 
443 	mutex_init(&afep->afe_xmtlock, NULL, MUTEX_DRIVER, afep->afe_icookie);
444 	mutex_init(&afep->afe_intrlock, NULL, MUTEX_DRIVER, afep->afe_icookie);
445 
446 	/*
447 	 * Enable bus master, IO space, and memory space accesses.
448 	 */
449 	pci_config_put16(pci, PCI_CMD,
450 	    pci_config_get16(pci, PCI_CMD) | PCI_CMD_BME | PCI_CMD_MAE);
451 
452 	/* we're done with this now, drop it */
453 	pci_config_teardown(&pci);
454 
455 	/*
456 	 * Initialize interrupt kstat.  This should not normally fail, since
457 	 * we don't use a persistent stat.  We do it this way to avoid having
458 	 * to test for it at run time on the hot path.
459 	 */
460 	afep->afe_intrstat = kstat_create("afe", inst, "intr", "controller",
461 	    KSTAT_TYPE_INTR, 1, 0);
462 	if (afep->afe_intrstat == NULL) {
463 		afe_error(dip, "kstat_create failed");
464 		goto failed;
465 	}
466 	kstat_install(afep->afe_intrstat);
467 
468 	/*
469 	 * Map in the device registers.
470 	 */
471 	if (ddi_regs_map_setup(dip, 1, (caddr_t *)&afep->afe_regs,
472 	    0, 0, &afe_devattr, &afep->afe_regshandle)) {
473 		afe_error(dip, "ddi_regs_map_setup failed");
474 		goto failed;
475 	}
476 
477 	/*
478 	 * Allocate DMA resources (descriptor rings and buffers).
479 	 */
480 	if ((afe_allocrxring(afep) != DDI_SUCCESS) ||
481 	    (afe_alloctxring(afep) != DDI_SUCCESS)) {
482 		afe_error(dip, "unable to allocate DMA resources");
483 		goto failed;
484 	}
485 
486 	/* Initialize the chip. */
487 	mutex_enter(&afep->afe_intrlock);
488 	mutex_enter(&afep->afe_xmtlock);
489 	if (!afe_initialize(afep)) {
490 		mutex_exit(&afep->afe_xmtlock);
491 		mutex_exit(&afep->afe_intrlock);
492 		goto failed;
493 	}
494 	mutex_exit(&afep->afe_xmtlock);
495 	mutex_exit(&afep->afe_intrlock);
496 
497 	/* Determine the number of address bits to our EEPROM. */
498 	afep->afe_sromwidth = afe_sromwidth(afep);
499 
500 	/*
501 	 * Get the factory ethernet address.  This becomes the current
502 	 * ethernet address (it can be overridden later via ifconfig).
503 	 */
504 	afe_getfactaddr(afep, afep->afe_curraddr);
505 	afep->afe_promisc = B_FALSE;
506 
507 	/* make sure we add configure the initial filter */
508 	(void) afe_m_unicst(afep, afep->afe_curraddr);
509 	(void) afe_m_multicst(afep, B_TRUE, afe_broadcast);
510 
511 	/*
512 	 * Establish interrupt handler.
513 	 */
514 	if (ddi_add_intr(dip, 0, NULL, NULL, afe_intr, (caddr_t)afep) !=
515 	    DDI_SUCCESS) {
516 		afe_error(dip, "unable to add interrupt");
517 		goto failed;
518 	}
519 
520 	/* TODO: do the power management stuff */
521 
522 	if ((macp = mac_alloc(MAC_VERSION)) == NULL) {
523 		afe_error(dip, "mac_alloc failed");
524 		goto failed;
525 	}
526 
527 	macp->m_type_ident = MAC_PLUGIN_IDENT_ETHER;
528 	macp->m_driver = afep;
529 	macp->m_dip = dip;
530 	macp->m_src_addr = afep->afe_curraddr;
531 	macp->m_callbacks = &afe_m_callbacks;
532 	macp->m_min_sdu = 0;
533 	macp->m_max_sdu = ETHERMTU;
534 	macp->m_margin = VLAN_TAGSZ;
535 
536 	if (mac_register(macp, &afep->afe_mh) == DDI_SUCCESS) {
537 		mac_free(macp);
538 		return (DDI_SUCCESS);
539 	}
540 
541 	/* failed to register with MAC */
542 	mac_free(macp);
543 failed:
544 	if (afep->afe_icookie != NULL) {
545 		ddi_remove_intr(dip, 0, afep->afe_icookie);
546 	}
547 	if (afep->afe_intrstat) {
548 		kstat_delete(afep->afe_intrstat);
549 	}
550 	mutex_destroy(&afep->afe_intrlock);
551 	mutex_destroy(&afep->afe_xmtlock);
552 
553 	afe_freerxring(afep);
554 	afe_freetxring(afep);
555 
556 	if (afep->afe_regshandle != NULL) {
557 		ddi_regs_map_free(&afep->afe_regshandle);
558 	}
559 	kmem_free(afep, sizeof (afe_t));
560 	return (DDI_FAILURE);
561 }
562 
563 int
564 afe_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
565 {
566 	afe_t		*afep;
567 
568 	afep = ddi_get_driver_private(dip);
569 	if (afep == NULL) {
570 		afe_error(dip, "no soft state in detach!");
571 		return (DDI_FAILURE);
572 	}
573 
574 	switch (cmd) {
575 	case DDI_DETACH:
576 
577 		if (mac_unregister(afep->afe_mh) != 0) {
578 			return (DDI_FAILURE);
579 		}
580 
581 		/* make sure hardware is quiesced */
582 		mutex_enter(&afep->afe_intrlock);
583 		mutex_enter(&afep->afe_xmtlock);
584 		afep->afe_flags &= ~AFE_RUNNING;
585 		afe_stopall(afep);
586 		mutex_exit(&afep->afe_xmtlock);
587 		mutex_exit(&afep->afe_intrlock);
588 
589 		/* clean up and shut down device */
590 		ddi_remove_intr(dip, 0, afep->afe_icookie);
591 
592 		/* clean up kstats */
593 		kstat_delete(afep->afe_intrstat);
594 
595 		ddi_prop_remove_all(dip);
596 
597 		/* free up any left over buffers or DMA resources */
598 		afe_freerxring(afep);
599 		afe_freetxring(afep);
600 
601 		ddi_regs_map_free(&afep->afe_regshandle);
602 		mutex_destroy(&afep->afe_intrlock);
603 		mutex_destroy(&afep->afe_xmtlock);
604 
605 		kmem_free(afep, sizeof (afe_t));
606 		return (DDI_SUCCESS);
607 
608 	case DDI_SUSPEND:
609 		/* quiesce the hardware */
610 		mutex_enter(&afep->afe_intrlock);
611 		mutex_enter(&afep->afe_xmtlock);
612 		afep->afe_flags |= AFE_SUSPENDED;
613 		afe_stopall(afep);
614 		mutex_exit(&afep->afe_xmtlock);
615 		mutex_exit(&afep->afe_intrlock);
616 		return (DDI_SUCCESS);
617 	default:
618 		return (DDI_FAILURE);
619 	}
620 }
621 
622 int
623 afe_resume(dev_info_t *dip)
624 {
625 	afe_t	*afep;
626 
627 	if ((afep = ddi_get_driver_private(dip)) == NULL) {
628 		return (DDI_FAILURE);
629 	}
630 
631 	mutex_enter(&afep->afe_intrlock);
632 	mutex_enter(&afep->afe_xmtlock);
633 
634 	afep->afe_flags &= ~AFE_SUSPENDED;
635 
636 	/* re-initialize chip */
637 	if (!afe_initialize(afep)) {
638 		afe_error(afep->afe_dip, "unable to resume chip!");
639 		afep->afe_flags |= AFE_SUSPENDED;
640 		mutex_exit(&afep->afe_intrlock);
641 		mutex_exit(&afep->afe_xmtlock);
642 		return (DDI_SUCCESS);
643 	}
644 
645 	/* start the chip */
646 	if (afep->afe_flags & AFE_RUNNING) {
647 		afe_startall(afep);
648 	}
649 
650 	/* drop locks */
651 	mutex_exit(&afep->afe_xmtlock);
652 	mutex_exit(&afep->afe_intrlock);
653 
654 	return (DDI_SUCCESS);
655 }
656 
657 void
658 afe_setrxfilt(afe_t *afep)
659 {
660 	unsigned rxen, pa0, pa1;
661 
662 	if (afep->afe_flags & AFE_SUSPENDED) {
663 		/* don't touch a suspended interface */
664 		return;
665 	}
666 
667 	rxen = GETCSR(afep, CSR_NAR) & NAR_RX_ENABLE;
668 
669 	/* stop receiver */
670 	if (rxen) {
671 		afe_stopmac(afep);
672 	}
673 
674 	/* program promiscuous mode */
675 	if (afep->afe_promisc)
676 		SETBIT(afep, CSR_NAR, NAR_RX_PROMISC);
677 	else
678 		CLRBIT(afep, CSR_NAR, NAR_RX_PROMISC);
679 
680 	/* program mac address */
681 	pa0 = (afep->afe_curraddr[3] << 24) | (afep->afe_curraddr[2] << 16) |
682 	    (afep->afe_curraddr[1] << 8) | afep->afe_curraddr[0];
683 	pa1 = (afep->afe_curraddr[5] << 8) | afep->afe_curraddr[4];
684 
685 	DBG(DMACID, "programming PAR0 with %x", pa0);
686 	DBG(DMACID, "programming PAR1 with %x", pa1);
687 	PUTCSR(afep, CSR_PAR0, pa0);
688 	PUTCSR(afep, CSR_PAR1, pa1);
689 	if (rxen) {
690 		SETBIT(afep, CSR_NAR, rxen);
691 	}
692 
693 	DBG(DMACID, "programming MAR0 = %x", afep->afe_mctab[0]);
694 	DBG(DMACID, "programming MAR1 = %x", afep->afe_mctab[1]);
695 
696 	/* program multicast filter */
697 	if (AFE_MODEL(afep) == MODEL_COMET) {
698 		if (afep->afe_mctab[0] || afep->afe_mctab[1]) {
699 			SETBIT(afep, CSR_NAR, NAR_RX_MULTI);
700 		} else {
701 			CLRBIT(afep, CSR_NAR, NAR_RX_MULTI);
702 		}
703 	} else {
704 		CLRBIT(afep, CSR_NAR, NAR_RX_MULTI);
705 		PUTCSR(afep, CSR_MAR0, afep->afe_mctab[0]);
706 		PUTCSR(afep, CSR_MAR1, afep->afe_mctab[1]);
707 	}
708 
709 	/* restart receiver */
710 	if (rxen) {
711 		afe_startmac(afep);
712 	}
713 }
714 
715 int
716 afe_m_multicst(void *arg, boolean_t add, const uint8_t *macaddr)
717 {
718 	afe_t		*afep = arg;
719 	int		index;
720 	uint32_t	crc;
721 	uint32_t	bit;
722 	uint32_t	newval, oldval;
723 
724 	CRC32(crc, macaddr, ETHERADDRL, -1U, crc32_table);
725 	crc %= AFE_MCHASH;
726 
727 	/* bit within a 32-bit word */
728 	index = crc / 32;
729 	bit = (1 << (crc % 32));
730 
731 	mutex_enter(&afep->afe_intrlock);
732 	mutex_enter(&afep->afe_xmtlock);
733 	newval = oldval = afep->afe_mctab[index];
734 
735 	if (add) {
736 		afep->afe_mccount[crc]++;
737 		if (afep->afe_mccount[crc] == 1)
738 			newval |= bit;
739 	} else {
740 		afep->afe_mccount[crc]--;
741 		if (afep->afe_mccount[crc] == 0)
742 			newval &= ~bit;
743 	}
744 	if (newval != oldval) {
745 		afep->afe_mctab[index] = newval;
746 		afe_setrxfilt(afep);
747 	}
748 
749 	mutex_exit(&afep->afe_xmtlock);
750 	mutex_exit(&afep->afe_intrlock);
751 
752 	return (0);
753 }
754 
755 int
756 afe_m_promisc(void *arg, boolean_t on)
757 {
758 	afe_t		*afep = arg;
759 
760 	/* exclusive access to the card while we reprogram it */
761 	mutex_enter(&afep->afe_intrlock);
762 	mutex_enter(&afep->afe_xmtlock);
763 	/* save current promiscuous mode state for replay in resume */
764 	afep->afe_promisc = on;
765 
766 	afe_setrxfilt(afep);
767 	mutex_exit(&afep->afe_xmtlock);
768 	mutex_exit(&afep->afe_intrlock);
769 
770 	return (0);
771 }
772 
773 int
774 afe_m_unicst(void *arg, const uint8_t *macaddr)
775 {
776 	afe_t		*afep = arg;
777 
778 	/* exclusive access to the card while we reprogram it */
779 	mutex_enter(&afep->afe_intrlock);
780 	mutex_enter(&afep->afe_xmtlock);
781 
782 	bcopy(macaddr, afep->afe_curraddr, ETHERADDRL);
783 	afe_setrxfilt(afep);
784 
785 	mutex_exit(&afep->afe_xmtlock);
786 	mutex_exit(&afep->afe_intrlock);
787 
788 	return (0);
789 }
790 
791 mblk_t *
792 afe_m_tx(void *arg, mblk_t *mp)
793 {
794 	afe_t	*afep = arg;
795 	mblk_t	*nmp;
796 
797 	mutex_enter(&afep->afe_xmtlock);
798 
799 	if (afep->afe_flags & AFE_SUSPENDED) {
800 		while ((nmp = mp) != NULL) {
801 			afep->afe_carrier_errors++;
802 			mp = mp->b_next;
803 			freemsg(nmp);
804 		}
805 		mutex_exit(&afep->afe_xmtlock);
806 		return (NULL);
807 	}
808 
809 	while (mp != NULL) {
810 		nmp = mp->b_next;
811 		mp->b_next = NULL;
812 
813 		if (!afe_send(afep, mp)) {
814 			mp->b_next = nmp;
815 			break;
816 		}
817 		mp = nmp;
818 	}
819 	mutex_exit(&afep->afe_xmtlock);
820 
821 	return (mp);
822 }
823 
824 /*
825  * Hardware management.
826  */
827 static boolean_t
828 afe_initialize(afe_t *afep)
829 {
830 	int		i;
831 	unsigned	val;
832 	uint32_t	par, nar;
833 
834 	ASSERT(mutex_owned(&afep->afe_intrlock));
835 	ASSERT(mutex_owned(&afep->afe_xmtlock));
836 
837 	DBG(DCHATTY, "resetting!");
838 	SETBIT(afep, CSR_PAR, PAR_RESET);
839 	for (i = 1; i < 10; i++) {
840 		drv_usecwait(5);
841 		val = GETCSR(afep, CSR_PAR);
842 		if (!(val & PAR_RESET)) {
843 			break;
844 		}
845 	}
846 	if (i == 10) {
847 		afe_error(afep->afe_dip, "timed out waiting for reset!");
848 		return (B_FALSE);
849 	}
850 
851 	/*
852 	 * Updated Centaur data sheets show that the Comet and Centaur are
853 	 * alike here (contrary to earlier versions of the data sheet).
854 	 */
855 	/* XXX:? chip problems */
856 	/* par = PAR_MRLE | PAR_MRME | PAR_MWIE; */
857 	par = 0;
858 	switch (afep->afe_cachesize) {
859 	case 8:
860 		par |= PAR_CALIGN_8 | PAR_BURST_8;
861 		break;
862 	case 16:
863 		par |= PAR_CALIGN_16 | PAR_BURST_16;
864 		break;
865 	case 32:
866 		par |= PAR_CALIGN_32 | PAR_BURST_32;
867 		break;
868 	default:
869 		par |= PAR_BURST_32;
870 		par &= ~(PAR_MWIE | PAR_MRLE | PAR_MRME);
871 		break;
872 
873 	}
874 
875 	PUTCSR(afep, CSR_PAR, par);
876 
877 	/* enable transmit underrun auto-recovery */
878 	SETBIT(afep, CSR_CR, CR_TXURAUTOR);
879 
880 	afe_resetrings(afep);
881 
882 	/* clear the lost packet counter (cleared on read) */
883 	(void) GETCSR(afep, CSR_LPC);
884 
885 	nar = GETCSR(afep, CSR_NAR);
886 	nar &= ~NAR_TR;		/* clear tx threshold */
887 	nar |= NAR_SF;		/* store-and-forward */
888 	nar |= NAR_HBD;		/* disable SQE test */
889 	PUTCSR(afep, CSR_NAR, nar);
890 
891 	afe_setrxfilt(afep);
892 
893 	return (B_TRUE);
894 }
895 
896 /*
897  * Serial EEPROM access - inspired by the FreeBSD implementation.
898  */
899 
900 uint8_t
901 afe_sromwidth(afe_t *afep)
902 {
903 	int		i;
904 	uint32_t	eeread;
905 	uint8_t		addrlen = 8;
906 
907 	eeread = SPR_SROM_READ | SPR_SROM_SEL | SPR_SROM_CHIP;
908 
909 	PUTCSR(afep, CSR_SPR, eeread & ~SPR_SROM_CHIP);
910 	drv_usecwait(1);
911 	PUTCSR(afep, CSR_SPR, eeread);
912 
913 	/* command bits first */
914 	for (i = 4; i != 0; i >>= 1) {
915 		unsigned val = (SROM_READCMD & i) ? SPR_SROM_DIN : 0;
916 
917 		PUTCSR(afep, CSR_SPR, eeread | val);
918 		drv_usecwait(1);
919 		PUTCSR(afep, CSR_SPR, eeread | val | SPR_SROM_CLOCK);
920 		drv_usecwait(1);
921 	}
922 
923 	PUTCSR(afep, CSR_SPR, eeread);
924 
925 	for (addrlen = 1; addrlen <= 12; addrlen++) {
926 		PUTCSR(afep, CSR_SPR, eeread | SPR_SROM_CLOCK);
927 		drv_usecwait(1);
928 		if (!(GETCSR(afep, CSR_SPR) & SPR_SROM_DOUT)) {
929 			PUTCSR(afep, CSR_SPR, eeread);
930 			drv_usecwait(1);
931 			break;
932 		}
933 		PUTCSR(afep, CSR_SPR, eeread);
934 		drv_usecwait(1);
935 	}
936 
937 	/* turn off accesses to the EEPROM */
938 	PUTCSR(afep, CSR_SPR, eeread &~ SPR_SROM_CHIP);
939 
940 	DBG(DSROM, "detected srom width = %d bits", addrlen);
941 
942 	return ((addrlen < 4 || addrlen > 12) ? 6 : addrlen);
943 }
944 
945 /*
946  * The words in EEPROM are stored in little endian order.  We
947  * shift bits out in big endian order, though.  This requires
948  * a byte swap on some platforms.
949  */
950 uint16_t
951 afe_readsromword(afe_t *afep, unsigned romaddr)
952 {
953 	int		i;
954 	uint16_t	word = 0;
955 	uint16_t	retval;
956 	int		eeread;
957 	uint8_t		addrlen;
958 	int		readcmd;
959 	uchar_t		*ptr;
960 
961 	eeread = SPR_SROM_READ | SPR_SROM_SEL | SPR_SROM_CHIP;
962 	addrlen = afep->afe_sromwidth;
963 	readcmd = (SROM_READCMD << addrlen) | romaddr;
964 
965 	if (romaddr >= (1 << addrlen)) {
966 		/* too big to fit! */
967 		return (0);
968 	}
969 
970 	PUTCSR(afep, CSR_SPR, eeread & ~SPR_SROM_CHIP);
971 	PUTCSR(afep, CSR_SPR, eeread);
972 
973 	/* command and address bits */
974 	for (i = 4 + addrlen; i >= 0; i--) {
975 		short val = (readcmd & (1 << i)) ? SPR_SROM_DIN : 0;
976 
977 		PUTCSR(afep, CSR_SPR, eeread | val);
978 		drv_usecwait(1);
979 		PUTCSR(afep, CSR_SPR, eeread | val | SPR_SROM_CLOCK);
980 		drv_usecwait(1);
981 	}
982 
983 	PUTCSR(afep, CSR_SPR, eeread);
984 
985 	for (i = 0; i < 16; i++) {
986 		PUTCSR(afep, CSR_SPR, eeread | SPR_SROM_CLOCK);
987 		drv_usecwait(1);
988 		word <<= 1;
989 		if (GETCSR(afep, CSR_SPR) & SPR_SROM_DOUT) {
990 			word |= 1;
991 		}
992 		PUTCSR(afep, CSR_SPR, eeread);
993 		drv_usecwait(1);
994 	}
995 
996 	/* turn off accesses to the EEPROM */
997 	PUTCSR(afep, CSR_SPR, eeread &~ SPR_SROM_CHIP);
998 
999 	/*
1000 	 * Fix up the endianness thing.  Note that the values
1001 	 * are stored in little endian format on the SROM.
1002 	 */
1003 	ptr = (uchar_t *)&word;
1004 	retval = (ptr[1] << 8) | ptr[0];
1005 	return (retval);
1006 }
1007 
1008 void
1009 afe_readsrom(afe_t *afep, unsigned romaddr, unsigned len, char *dest)
1010 {
1011 	int	i;
1012 	uint16_t	word;
1013 	uint16_t	*ptr = (uint16_t *)((void *)dest);
1014 	for (i = 0; i < len; i++) {
1015 		word = afe_readsromword(afep, romaddr + i);
1016 		*ptr = word;
1017 		ptr++;
1018 	}
1019 }
1020 
1021 void
1022 afe_getfactaddr(afe_t *afep, uchar_t *eaddr)
1023 {
1024 	afe_readsrom(afep, SROM_ENADDR, ETHERADDRL / 2, (char *)eaddr);
1025 
1026 	DBG(DMACID,
1027 	    "factory ethernet address = %02x:%02x:%02x:%02x:%02x:%02x",
1028 	    eaddr[0], eaddr[1], eaddr[2], eaddr[3], eaddr[4], eaddr[5]);
1029 }
1030 
1031 /*
1032  * MII management.
1033  */
1034 void
1035 afe_startphy(afe_t *afep)
1036 {
1037 	unsigned	phyaddr;
1038 	unsigned	bmcr;
1039 	unsigned	bmsr;
1040 	unsigned	anar;
1041 	unsigned	phyidr1;
1042 	unsigned	phyidr2;
1043 	unsigned	nosqe = 0;
1044 	int		retries;
1045 	int		fiber;
1046 	int		cnt;
1047 
1048 	/* ADMtek devices just use the PHY at address 1 */
1049 	afep->afe_phyaddr = phyaddr = 1;
1050 
1051 	phyidr1 = afe_miiread(afep, phyaddr, MII_PHYIDH);
1052 	phyidr2 = afe_miiread(afep, phyaddr, MII_PHYIDL);
1053 	if ((phyidr1 == 0x0022) &&
1054 	    ((phyidr2 & 0xfff0) ==  0x5410)) {
1055 		nosqe = 1;
1056 		/* only 983B has fiber support */
1057 		afep->afe_flags |= AFE_HASFIBER;
1058 	}
1059 	afep->afe_phyid = (phyidr1 << 16) | phyidr2;
1060 
1061 	DBG(DPHY, "phy at %d: %x,%x", phyaddr, phyidr1, phyidr2);
1062 	DBG(DPHY, "bmsr = %x", afe_miiread(afep,
1063 	    afep->afe_phyaddr, MII_STATUS));
1064 	DBG(DPHY, "anar = %x", afe_miiread(afep,
1065 	    afep->afe_phyaddr, MII_AN_ADVERT));
1066 	DBG(DPHY, "anlpar = %x", afe_miiread(afep,
1067 	    afep->afe_phyaddr, MII_AN_LPABLE));
1068 	DBG(DPHY, "aner = %x", afe_miiread(afep,
1069 	    afep->afe_phyaddr, MII_AN_EXPANSION));
1070 
1071 	DBG(DPHY, "resetting phy");
1072 
1073 	/* we reset the phy block */
1074 	afe_miiwrite(afep, phyaddr, MII_CONTROL, MII_CONTROL_RESET);
1075 	/*
1076 	 * wait for it to complete -- 500usec is still to short to
1077 	 * bother getting the system clock involved.
1078 	 */
1079 	drv_usecwait(500);
1080 	for (retries = 0; retries < 10; retries++) {
1081 		if (afe_miiread(afep, phyaddr, MII_CONTROL) &
1082 		    MII_CONTROL_RESET) {
1083 			drv_usecwait(500);
1084 			continue;
1085 		}
1086 		break;
1087 	}
1088 	if (retries == 100) {
1089 		afe_error(afep->afe_dip, "timeout waiting on phy to reset");
1090 		return;
1091 	}
1092 
1093 	DBG(DPHY, "phy reset complete");
1094 
1095 	bmsr = afe_miiread(afep, phyaddr, MII_STATUS);
1096 	anar = afe_miiread(afep, phyaddr, MII_AN_ADVERT);
1097 
1098 	anar &= ~(MII_ABILITY_100BASE_T4 |
1099 	    MII_ABILITY_100BASE_TX_FD | MII_ABILITY_100BASE_TX |
1100 	    MII_ABILITY_10BASE_T_FD | MII_ABILITY_10BASE_T);
1101 
1102 	fiber = 0;
1103 
1104 	/* if fiber is being forced, and device supports fiber... */
1105 	if (afep->afe_flags & AFE_HASFIBER) {
1106 
1107 		uint16_t	mcr;
1108 
1109 		DBG(DPHY, "device supports 100BaseFX");
1110 		mcr = afe_miiread(afep, phyaddr, PHY_MCR);
1111 		switch (afep->afe_forcefiber) {
1112 		case 0:
1113 			/* UTP Port */
1114 			DBG(DPHY, "forcing twpair");
1115 			mcr &= ~MCR_FIBER;
1116 			fiber = 0;
1117 			break;
1118 		case 1:
1119 			/* Fiber Port */
1120 			DBG(DPHY, "forcing 100BaseFX");
1121 			mcr |= MCR_FIBER;
1122 			bmcr = (MII_CONTROL_100MB | MII_CONTROL_FDUPLEX);
1123 			fiber = 1;
1124 			break;
1125 		default:
1126 			DBG(DPHY, "checking for 100BaseFX link");
1127 			/* fiber is 100 Mb FDX */
1128 			afe_miiwrite(afep, phyaddr, MII_CONTROL,
1129 			    MII_CONTROL_100MB | MII_CONTROL_FDUPLEX);
1130 			drv_usecwait(50);
1131 
1132 			mcr = afe_miiread(afep, phyaddr, PHY_MCR);
1133 			mcr |= MCR_FIBER;
1134 			afe_miiwrite(afep, phyaddr, PHY_MCR, mcr);
1135 			drv_usecwait(500);
1136 
1137 			/* if fiber is active, use it */
1138 			if ((afe_miiread(afep, phyaddr, MII_STATUS) &
1139 			    MII_STATUS_LINKUP)) {
1140 				bmcr = MII_CONTROL_100MB | MII_CONTROL_FDUPLEX;
1141 				fiber = 1;
1142 			} else {
1143 				mcr &= ~MCR_FIBER;
1144 				fiber = 0;
1145 			}
1146 			break;
1147 		}
1148 		afe_miiwrite(afep, phyaddr, PHY_MCR, mcr);
1149 		drv_usecwait(500);
1150 	}
1151 
1152 	if (fiber) {
1153 		/* fiber only supports 100FDX(?) */
1154 		bmsr &= ~(MII_STATUS_100_BASE_T4 |
1155 		    MII_STATUS_100_BASEX | MII_STATUS_10_FD | MII_STATUS_10);
1156 		bmsr |= MII_STATUS_100_BASEX_FD;
1157 	}
1158 
1159 	/* assume full support for everything to start */
1160 	afep->afe_cap_aneg = afep->afe_cap_100T4 =
1161 	    afep->afe_cap_100fdx = afep->afe_cap_100hdx =
1162 	    afep->afe_cap_10fdx = afep->afe_cap_10hdx = 1;
1163 
1164 	/* disable modes not supported in hardware */
1165 	if (!(bmsr & MII_STATUS_100_BASEX_FD)) {
1166 		afep->afe_adv_100fdx = 0;
1167 		afep->afe_cap_100fdx = 0;
1168 	}
1169 	if (!(bmsr & MII_STATUS_100_BASE_T4)) {
1170 		afep->afe_adv_100T4 = 0;
1171 		afep->afe_cap_100T4 = 0;
1172 	}
1173 	if (!(bmsr & MII_STATUS_100_BASEX)) {
1174 		afep->afe_adv_100hdx = 0;
1175 		afep->afe_cap_100hdx = 0;
1176 	}
1177 	if (!(bmsr & MII_STATUS_10_FD)) {
1178 		afep->afe_adv_10fdx = 0;
1179 		afep->afe_cap_10fdx = 0;
1180 	}
1181 	if (!(bmsr & MII_STATUS_10)) {
1182 		afep->afe_adv_10hdx = 0;
1183 		afep->afe_cap_10hdx = 0;
1184 	}
1185 	if (!(bmsr & MII_STATUS_CANAUTONEG)) {
1186 		afep->afe_adv_aneg = 0;
1187 		afep->afe_cap_aneg = 0;
1188 	}
1189 
1190 	cnt = 0;
1191 	if (afep->afe_adv_100fdx) {
1192 		anar |= MII_ABILITY_100BASE_TX_FD;
1193 		cnt++;
1194 	}
1195 	if (afep->afe_adv_100T4) {
1196 		anar |= MII_ABILITY_100BASE_T4;
1197 		cnt++;
1198 	}
1199 	if (afep->afe_adv_100hdx) {
1200 		anar |= MII_ABILITY_100BASE_TX;
1201 		cnt++;
1202 	}
1203 	if (afep->afe_adv_10fdx) {
1204 		anar |= MII_ABILITY_10BASE_T_FD;
1205 		cnt++;
1206 	}
1207 	if (afep->afe_adv_10hdx) {
1208 		anar |= MII_ABILITY_10BASE_T;
1209 		cnt++;
1210 	}
1211 
1212 	/*
1213 	 * Make certain at least one valid link mode is selected.
1214 	 */
1215 	if (!cnt) {
1216 		afe_error(afep->afe_dip, "No valid link mode selected.");
1217 		afe_error(afep->afe_dip, "Powering down PHY.");
1218 		afe_stopphy(afep);
1219 		afep->afe_linkup = LINK_STATE_DOWN;
1220 		if (afep->afe_flags & AFE_RUNNING)
1221 			afe_reportlink(afep);
1222 		return;
1223 	}
1224 
1225 	if (fiber) {
1226 		bmcr = MII_CONTROL_100MB | MII_CONTROL_FDUPLEX;
1227 	} else if ((afep->afe_adv_aneg) && (bmsr & MII_STATUS_CANAUTONEG)) {
1228 		DBG(DPHY, "using autoneg mode");
1229 		bmcr = (MII_CONTROL_ANE | MII_CONTROL_RSAN);
1230 	} else {
1231 		DBG(DPHY, "using forced mode");
1232 		if (afep->afe_adv_100fdx) {
1233 			bmcr = (MII_CONTROL_100MB | MII_CONTROL_FDUPLEX);
1234 		} else if (afep->afe_adv_100hdx) {
1235 			bmcr = MII_CONTROL_100MB;
1236 		} else if (afep->afe_adv_10fdx) {
1237 			bmcr = MII_CONTROL_FDUPLEX;
1238 		} else {
1239 			/* 10HDX */
1240 			bmcr = 0;
1241 		}
1242 	}
1243 
1244 	DBG(DPHY, "programming anar to 0x%x", anar);
1245 	afe_miiwrite(afep, phyaddr, MII_AN_ADVERT, anar);
1246 	DBG(DPHY, "programming bmcr to 0x%x", bmcr);
1247 	afe_miiwrite(afep, phyaddr, MII_CONTROL, bmcr);
1248 
1249 	if (nosqe) {
1250 		uint16_t	pilr;
1251 		/*
1252 		 * work around for errata 983B_0416 -- duplex light flashes
1253 		 * in 10 HDX.  we just disable SQE testing on the device.
1254 		 */
1255 		pilr = afe_miiread(afep, phyaddr, PHY_PILR);
1256 		pilr |= PILR_NOSQE;
1257 		afe_miiwrite(afep, phyaddr, PHY_PILR, pilr);
1258 	}
1259 
1260 	/*
1261 	 * schedule a query of the link status
1262 	 */
1263 	PUTCSR(afep, CSR_TIMER, TIMER_LOOP |
1264 	    (AFE_LINKTIMER * 1000 / TIMER_USEC));
1265 }
1266 
1267 void
1268 afe_stopphy(afe_t *afep)
1269 {
1270 	/* stop the phy timer */
1271 	PUTCSR(afep, CSR_TIMER, 0);
1272 
1273 	/*
1274 	 * phy in isolate & powerdown mode...
1275 	 */
1276 	afe_miiwrite(afep, afep->afe_phyaddr, MII_CONTROL,
1277 	    MII_CONTROL_PWRDN | MII_CONTROL_ISOLATE);
1278 
1279 	/*
1280 	 * mark the link state unknown
1281 	 */
1282 	if (!afep->afe_resetting) {
1283 		afep->afe_linkup = LINK_STATE_UNKNOWN;
1284 		afep->afe_ifspeed = 0;
1285 		afep->afe_duplex = LINK_DUPLEX_UNKNOWN;
1286 		if (afep->afe_flags & AFE_RUNNING)
1287 			afe_reportlink(afep);
1288 	}
1289 }
1290 
1291 void
1292 afe_reportlink(afe_t *afep)
1293 {
1294 	int changed = 0;
1295 
1296 	if (afep->afe_ifspeed != afep->afe_lastifspeed) {
1297 		afep->afe_lastifspeed = afep->afe_ifspeed;
1298 		changed++;
1299 	}
1300 	if (afep->afe_duplex != afep->afe_lastduplex) {
1301 		afep->afe_lastduplex = afep->afe_duplex;
1302 		changed++;
1303 	}
1304 	if (changed)
1305 		mac_link_update(afep->afe_mh, afep->afe_linkup);
1306 }
1307 
1308 void
1309 afe_checklink(afe_t *afep)
1310 {
1311 	if ((afep->afe_flags & AFE_RUNNING) == 0)
1312 		return;
1313 
1314 	if ((afep->afe_txstall_time != 0) &&
1315 	    (gethrtime() > afep->afe_txstall_time) &&
1316 	    (afep->afe_txavail != AFE_TXRING)) {
1317 		afep->afe_txstall_time = 0;
1318 		afe_error(afep->afe_dip, "TX stall detected!");
1319 		afe_resetall(afep);
1320 		return;
1321 	}
1322 
1323 	switch (AFE_MODEL(afep)) {
1324 	case MODEL_COMET:
1325 		afe_checklinkcomet(afep);
1326 		break;
1327 	case MODEL_CENTAUR:
1328 		afe_checklinkcentaur(afep);
1329 		break;
1330 	}
1331 }
1332 
1333 void
1334 afe_checklinkcomet(afe_t *afep)
1335 {
1336 	uint16_t	xciis;
1337 	int		reinit = 0;
1338 
1339 	xciis = GETCSR16(afep, CSR_XCIIS);
1340 	if (xciis & XCIIS_PDF) {
1341 		afe_error(afep->afe_dip, "Parallel detection fault detected!");
1342 	}
1343 	if (xciis & XCIIS_RF) {
1344 		afe_error(afep->afe_dip, "Remote fault detected.");
1345 	}
1346 	if (xciis & XCIIS_LFAIL) {
1347 		if (afep->afe_linkup == LINK_STATE_UP) {
1348 			reinit++;
1349 		}
1350 		afep->afe_ifspeed = 0;
1351 		afep->afe_linkup = LINK_STATE_DOWN;
1352 		afep->afe_duplex = LINK_DUPLEX_UNKNOWN;
1353 		afe_reportlink(afep);
1354 		if (reinit) {
1355 			afe_startphy(afep);
1356 		}
1357 		return;
1358 	}
1359 
1360 	afep->afe_linkup = LINK_STATE_UP;
1361 	afep->afe_ifspeed = (xciis & XCIIS_SPEED) ? 100000000 : 10000000;
1362 	if (xciis & XCIIS_DUPLEX) {
1363 		afep->afe_duplex = LINK_DUPLEX_FULL;
1364 	} else {
1365 		afep->afe_duplex = LINK_DUPLEX_HALF;
1366 	}
1367 
1368 	afe_reportlink(afep);
1369 }
1370 
1371 void
1372 afe_checklinkcentaur(afe_t *afep)
1373 {
1374 	unsigned	opmode;
1375 	int		reinit = 0;
1376 
1377 	opmode = GETCSR(afep, CSR_OPM);
1378 	if ((opmode & OPM_MODE) == OPM_MACONLY) {
1379 		DBG(DPHY, "Centaur running in MAC-only mode");
1380 		afe_checklinkmii(afep);
1381 		return;
1382 	}
1383 	DBG(DPHY, "Centaur running in single chip mode");
1384 	if ((opmode & OPM_LINK) == 0) {
1385 		if (afep->afe_linkup == LINK_STATE_UP) {
1386 			reinit++;
1387 		}
1388 		afep->afe_ifspeed = 0;
1389 		afep->afe_duplex = LINK_DUPLEX_UNKNOWN;
1390 		afep->afe_linkup = LINK_STATE_DOWN;
1391 		afe_reportlink(afep);
1392 		if (reinit) {
1393 			afe_startphy(afep);
1394 		}
1395 		return;
1396 	}
1397 
1398 	afep->afe_linkup = LINK_STATE_UP;
1399 	afep->afe_ifspeed = (opmode & OPM_SPEED) ? 100000000 : 10000000;
1400 	if (opmode & OPM_DUPLEX) {
1401 		afep->afe_duplex = LINK_DUPLEX_FULL;
1402 	} else {
1403 		afep->afe_duplex = LINK_DUPLEX_HALF;
1404 	}
1405 	afe_reportlink(afep);
1406 }
1407 
1408 void
1409 afe_checklinkmii(afe_t *afep)
1410 {
1411 	/* read MII state registers */
1412 	uint16_t	bmsr;
1413 	uint16_t	bmcr;
1414 	uint16_t	anar;
1415 	uint16_t	anlpar;
1416 	int			reinit = 0;
1417 
1418 	/* read this twice, to clear latched link state */
1419 	bmsr = afe_miiread(afep, afep->afe_phyaddr, MII_STATUS);
1420 	bmsr = afe_miiread(afep, afep->afe_phyaddr, MII_STATUS);
1421 	bmcr = afe_miiread(afep, afep->afe_phyaddr, MII_CONTROL);
1422 	anar = afe_miiread(afep, afep->afe_phyaddr, MII_AN_ADVERT);
1423 	anlpar = afe_miiread(afep, afep->afe_phyaddr, MII_AN_LPABLE);
1424 
1425 	if (bmsr & MII_STATUS_REMFAULT) {
1426 		afe_error(afep->afe_dip, "Remote fault detected.");
1427 	}
1428 	if (bmsr & MII_STATUS_JABBERING) {
1429 		afe_error(afep->afe_dip, "Jabber condition detected.");
1430 	}
1431 	if ((bmsr & MII_STATUS_LINKUP) == 0) {
1432 		/* no link */
1433 		if (afep->afe_linkup == LINK_STATE_UP) {
1434 			reinit = 1;
1435 		}
1436 		afep->afe_ifspeed = 0;
1437 		afep->afe_duplex = LINK_DUPLEX_UNKNOWN;
1438 		afep->afe_linkup = LINK_STATE_DOWN;
1439 		afe_reportlink(afep);
1440 		if (reinit) {
1441 			afe_startphy(afep);
1442 		}
1443 		return;
1444 	}
1445 
1446 	DBG(DCHATTY, "link up!");
1447 	afep->afe_linkup = LINK_STATE_UP;
1448 
1449 	if (!(bmcr & MII_CONTROL_ANE)) {
1450 		/* forced mode */
1451 		if (bmcr & MII_CONTROL_100MB) {
1452 			afep->afe_ifspeed = 100000000;
1453 		} else {
1454 			afep->afe_ifspeed = 10000000;
1455 		}
1456 		if (bmcr & MII_CONTROL_FDUPLEX) {
1457 			afep->afe_duplex = LINK_DUPLEX_FULL;
1458 		} else {
1459 			afep->afe_duplex = LINK_DUPLEX_HALF;
1460 		}
1461 	} else if ((!(bmsr & MII_STATUS_CANAUTONEG)) ||
1462 	    (!(bmsr & MII_STATUS_ANDONE))) {
1463 		afep->afe_ifspeed = 0;
1464 		afep->afe_duplex = LINK_DUPLEX_UNKNOWN;
1465 	} else if (anar & anlpar & MII_ABILITY_100BASE_TX_FD) {
1466 		afep->afe_ifspeed = 100000000;
1467 		afep->afe_duplex = LINK_DUPLEX_FULL;
1468 	} else if (anar & anlpar & MII_ABILITY_100BASE_T4) {
1469 		afep->afe_ifspeed = 100000000;
1470 		afep->afe_duplex = LINK_DUPLEX_HALF;
1471 	} else if (anar & anlpar & MII_ABILITY_100BASE_TX) {
1472 		afep->afe_ifspeed = 100000000;
1473 		afep->afe_duplex = LINK_DUPLEX_HALF;
1474 	} else if (anar & anlpar & MII_ABILITY_10BASE_T_FD) {
1475 		afep->afe_ifspeed = 10000000;
1476 		afep->afe_duplex = LINK_DUPLEX_FULL;
1477 	} else if (anar & anlpar & MII_ABILITY_10BASE_T) {
1478 		afep->afe_ifspeed = 10000000;
1479 		afep->afe_duplex = LINK_DUPLEX_HALF;
1480 	} else {
1481 		afep->afe_ifspeed = 0;
1482 		afep->afe_duplex = LINK_DUPLEX_UNKNOWN;
1483 	}
1484 
1485 	afe_reportlink(afep);
1486 }
1487 
1488 void
1489 afe_miitristate(afe_t *afep)
1490 {
1491 	uint32_t val = SPR_SROM_WRITE | SPR_MII_CTRL;
1492 
1493 	PUTCSR(afep, CSR_SPR, val);
1494 	drv_usecwait(1);
1495 	PUTCSR(afep, CSR_SPR, val | SPR_MII_CLOCK);
1496 	drv_usecwait(1);
1497 }
1498 
1499 void
1500 afe_miiwritebit(afe_t *afep, uint8_t bit)
1501 {
1502 	uint32_t val = bit ? SPR_MII_DOUT : 0;
1503 
1504 	PUTCSR(afep, CSR_SPR, val);
1505 	drv_usecwait(1);
1506 	PUTCSR(afep, CSR_SPR, val | SPR_MII_CLOCK);
1507 	drv_usecwait(1);
1508 }
1509 
1510 uint8_t
1511 afe_miireadbit(afe_t *afep)
1512 {
1513 	uint32_t	val = SPR_MII_CTRL | SPR_SROM_READ;
1514 	uint8_t		bit;
1515 
1516 	PUTCSR(afep, CSR_SPR, val);
1517 	drv_usecwait(1);
1518 	bit = (GETCSR(afep, CSR_SPR) & SPR_MII_DIN) ? 1 : 0;
1519 	PUTCSR(afep, CSR_SPR, val | SPR_MII_CLOCK);
1520 	drv_usecwait(1);
1521 	return (bit);
1522 }
1523 
1524 uint16_t
1525 afe_miiread(afe_t *afep, int phy, int reg)
1526 {
1527 	/*
1528 	 * ADMtek bugs ignore address decode bits -- they only
1529 	 * support PHY at 1.
1530 	 */
1531 	if (phy != 1) {
1532 		return (0xffff);
1533 	}
1534 	switch (AFE_MODEL(afep)) {
1535 	case MODEL_COMET:
1536 		return (afe_miireadcomet(afep, phy, reg));
1537 	case MODEL_CENTAUR:
1538 		return (afe_miireadgeneral(afep, phy, reg));
1539 	}
1540 	return (0xffff);
1541 }
1542 
1543 uint16_t
1544 afe_miireadgeneral(afe_t *afep, int phy, int reg)
1545 {
1546 	uint16_t	value = 0;
1547 	int		i;
1548 
1549 	/* send the 32 bit preamble */
1550 	for (i = 0; i < 32; i++) {
1551 		afe_miiwritebit(afep, 1);
1552 	}
1553 
1554 	/* send the start code - 01b */
1555 	afe_miiwritebit(afep, 0);
1556 	afe_miiwritebit(afep, 1);
1557 
1558 	/* send the opcode for read, - 10b */
1559 	afe_miiwritebit(afep, 1);
1560 	afe_miiwritebit(afep, 0);
1561 
1562 	/* next we send the 5 bit phy address */
1563 	for (i = 0x10; i > 0; i >>= 1) {
1564 		afe_miiwritebit(afep, (phy & i) ? 1 : 0);
1565 	}
1566 
1567 	/* the 5 bit register address goes next */
1568 	for (i = 0x10; i > 0; i >>= 1) {
1569 		afe_miiwritebit(afep, (reg & i) ? 1 : 0);
1570 	}
1571 
1572 	/* turnaround - tristate followed by logic 0 */
1573 	afe_miitristate(afep);
1574 	afe_miiwritebit(afep, 0);
1575 
1576 	/* read the 16 bit register value */
1577 	for (i = 0x8000; i > 0; i >>= 1) {
1578 		value <<= 1;
1579 		value |= afe_miireadbit(afep);
1580 	}
1581 	afe_miitristate(afep);
1582 	return (value);
1583 }
1584 
1585 uint16_t
1586 afe_miireadcomet(afe_t *afep, int phy, int reg)
1587 {
1588 	if (phy != 1) {
1589 		return (0xffff);
1590 	}
1591 	switch (reg) {
1592 	case MII_CONTROL:
1593 		reg = CSR_BMCR;
1594 		break;
1595 	case MII_STATUS:
1596 		reg = CSR_BMSR;
1597 		break;
1598 	case MII_PHYIDH:
1599 		reg = CSR_PHYIDR1;
1600 		break;
1601 	case MII_PHYIDL:
1602 		reg = CSR_PHYIDR2;
1603 		break;
1604 	case MII_AN_ADVERT:
1605 		reg = CSR_ANAR;
1606 		break;
1607 	case MII_AN_LPABLE:
1608 		reg = CSR_ANLPAR;
1609 		break;
1610 	case MII_AN_EXPANSION:
1611 		reg = CSR_ANER;
1612 		break;
1613 	default:
1614 		return (0);
1615 	}
1616 	return (GETCSR16(afep, reg) & 0xFFFF);
1617 }
1618 
1619 void
1620 afe_miiwrite(afe_t *afep, int phy, int reg, uint16_t val)
1621 {
1622 	/*
1623 	 * ADMtek bugs ignore address decode bits -- they only
1624 	 * support PHY at 1.
1625 	 */
1626 	if (phy != 1) {
1627 		return;
1628 	}
1629 	switch (AFE_MODEL(afep)) {
1630 	case MODEL_COMET:
1631 		afe_miiwritecomet(afep, phy, reg, val);
1632 		break;
1633 	case MODEL_CENTAUR:
1634 		afe_miiwritegeneral(afep, phy, reg, val);
1635 		break;
1636 	}
1637 }
1638 
1639 void
1640 afe_miiwritegeneral(afe_t *afep, int phy, int reg, uint16_t val)
1641 {
1642 	int i;
1643 
1644 	/* send the 32 bit preamble */
1645 	for (i = 0; i < 32; i++) {
1646 		afe_miiwritebit(afep, 1);
1647 	}
1648 
1649 	/* send the start code - 01b */
1650 	afe_miiwritebit(afep, 0);
1651 	afe_miiwritebit(afep, 1);
1652 
1653 	/* send the opcode for write, - 01b */
1654 	afe_miiwritebit(afep, 0);
1655 	afe_miiwritebit(afep, 1);
1656 
1657 	/* next we send the 5 bit phy address */
1658 	for (i = 0x10; i > 0; i >>= 1) {
1659 		afe_miiwritebit(afep, (phy & i) ? 1 : 0);
1660 	}
1661 
1662 	/* the 5 bit register address goes next */
1663 	for (i = 0x10; i > 0; i >>= 1) {
1664 		afe_miiwritebit(afep, (reg & i) ? 1 : 0);
1665 	}
1666 
1667 	/* turnaround - tristate followed by logic 0 */
1668 	afe_miitristate(afep);
1669 	afe_miiwritebit(afep, 0);
1670 
1671 	/* now write out our data (16 bits) */
1672 	for (i = 0x8000; i > 0; i >>= 1) {
1673 		afe_miiwritebit(afep, (val & i) ? 1 : 0);
1674 	}
1675 
1676 	/* idle mode */
1677 	afe_miitristate(afep);
1678 }
1679 
1680 void
1681 afe_miiwritecomet(afe_t *afep, int phy, int reg, uint16_t val)
1682 {
1683 	if (phy != 1) {
1684 		return;
1685 	}
1686 	switch (reg) {
1687 	case MII_CONTROL:
1688 		reg = CSR_BMCR;
1689 		break;
1690 	case MII_STATUS:
1691 		reg = CSR_BMSR;
1692 		break;
1693 	case MII_PHYIDH:
1694 		reg = CSR_PHYIDR1;
1695 		break;
1696 	case MII_PHYIDL:
1697 		reg = CSR_PHYIDR2;
1698 		break;
1699 	case MII_AN_ADVERT:
1700 		reg = CSR_ANAR;
1701 		break;
1702 	case MII_AN_LPABLE:
1703 		reg = CSR_ANLPAR;
1704 		break;
1705 	case MII_AN_EXPANSION:
1706 		reg = CSR_ANER;
1707 		break;
1708 	default:
1709 		return;
1710 	}
1711 	PUTCSR16(afep, reg, val);
1712 }
1713 
1714 int
1715 afe_m_start(void *arg)
1716 {
1717 	afe_t	*afep = arg;
1718 
1719 	/* grab exclusive access to the card */
1720 	mutex_enter(&afep->afe_intrlock);
1721 	mutex_enter(&afep->afe_xmtlock);
1722 
1723 	afe_startall(afep);
1724 	afep->afe_flags |= AFE_RUNNING;
1725 
1726 	mutex_exit(&afep->afe_xmtlock);
1727 	mutex_exit(&afep->afe_intrlock);
1728 	return (0);
1729 }
1730 
1731 void
1732 afe_m_stop(void *arg)
1733 {
1734 	afe_t	*afep = arg;
1735 
1736 	/* exclusive access to the hardware! */
1737 	mutex_enter(&afep->afe_intrlock);
1738 	mutex_enter(&afep->afe_xmtlock);
1739 
1740 	afe_stopall(afep);
1741 	afep->afe_flags &= ~AFE_RUNNING;
1742 
1743 	mutex_exit(&afep->afe_xmtlock);
1744 	mutex_exit(&afep->afe_intrlock);
1745 }
1746 
1747 void
1748 afe_startmac(afe_t *afep)
1749 {
1750 	/* verify exclusive access to the card */
1751 	ASSERT(mutex_owned(&afep->afe_intrlock));
1752 	ASSERT(mutex_owned(&afep->afe_xmtlock));
1753 
1754 	/* start the card */
1755 	SETBIT(afep, CSR_NAR, NAR_TX_ENABLE | NAR_RX_ENABLE);
1756 
1757 	if (afep->afe_txavail != AFE_TXRING)
1758 		PUTCSR(afep, CSR_TDR, 0);
1759 
1760 	/* tell the mac that we are ready to go! */
1761 	if (afep->afe_flags & AFE_RUNNING)
1762 		mac_tx_update(afep->afe_mh);
1763 }
1764 
1765 void
1766 afe_stopmac(afe_t *afep)
1767 {
1768 	int		i;
1769 
1770 	/* exclusive access to the hardware! */
1771 	ASSERT(mutex_owned(&afep->afe_intrlock));
1772 	ASSERT(mutex_owned(&afep->afe_xmtlock));
1773 
1774 	CLRBIT(afep, CSR_NAR, NAR_TX_ENABLE | NAR_RX_ENABLE);
1775 
1776 	/*
1777 	 * A 1518 byte frame at 10Mbps takes about 1.2 msec to drain.
1778 	 * We just add up to the nearest msec (2), which should be
1779 	 * plenty to complete.
1780 	 *
1781 	 * Note that some chips never seem to indicate the transition to
1782 	 * the stopped state properly.  Experience shows that we can safely
1783 	 * proceed anyway, after waiting the requisite timeout.
1784 	 */
1785 	for (i = 2000; i != 0; i -= 10) {
1786 		if ((GETCSR(afep, CSR_SR) & (SR_TX_STATE | SR_RX_STATE)) == 0)
1787 			break;
1788 		drv_usecwait(10);
1789 	}
1790 
1791 	/* prevent an interrupt */
1792 	PUTCSR(afep, CSR_SR2, INT_RXSTOPPED | INT_TXSTOPPED);
1793 }
1794 
1795 void
1796 afe_resetrings(afe_t *afep)
1797 {
1798 	int	i;
1799 
1800 	/* now we need to reset the pointers... */
1801 	PUTCSR(afep, CSR_RDB, 0);
1802 	PUTCSR(afep, CSR_TDB, 0);
1803 
1804 	/* reset the descriptor ring pointers */
1805 	afep->afe_rxhead = 0;
1806 	afep->afe_txreclaim = 0;
1807 	afep->afe_txsend = 0;
1808 	afep->afe_txavail = AFE_TXRING;
1809 
1810 	/* set up transmit descriptor ring */
1811 	for (i = 0; i < AFE_TXRING; i++) {
1812 		afe_desc_t	*tmdp = &afep->afe_txdescp[i];
1813 		unsigned	control = 0;
1814 		if (i == (AFE_TXRING - 1)) {
1815 			control |= TXCTL_ENDRING;
1816 		}
1817 		PUTTXDESC(afep, tmdp->desc_status, 0);
1818 		PUTTXDESC(afep, tmdp->desc_control, control);
1819 		PUTTXDESC(afep, tmdp->desc_buffer1, 0);
1820 		PUTTXDESC(afep, tmdp->desc_buffer2, 0);
1821 		SYNCTXDESC(afep, i, DDI_DMA_SYNC_FORDEV);
1822 	}
1823 	PUTCSR(afep, CSR_TDB, afep->afe_txdesc_paddr);
1824 
1825 	/* make the receive buffers available */
1826 	for (i = 0; i < AFE_RXRING; i++) {
1827 		afe_rxbuf_t	*rxb = afep->afe_rxbufs[i];
1828 		afe_desc_t	*rmdp = &afep->afe_rxdescp[i];
1829 		unsigned	control;
1830 
1831 		control = AFE_BUFSZ & RXCTL_BUFLEN1;
1832 		if (i == (AFE_RXRING - 1)) {
1833 			control |= RXCTL_ENDRING;
1834 		}
1835 		PUTRXDESC(afep, rmdp->desc_buffer1, rxb->rxb_paddr);
1836 		PUTRXDESC(afep, rmdp->desc_buffer2, 0);
1837 		PUTRXDESC(afep, rmdp->desc_control, control);
1838 		PUTRXDESC(afep, rmdp->desc_status, RXSTAT_OWN);
1839 		SYNCRXDESC(afep, i, DDI_DMA_SYNC_FORDEV);
1840 	}
1841 	PUTCSR(afep, CSR_RDB, afep->afe_rxdesc_paddr);
1842 }
1843 
1844 void
1845 afe_stopall(afe_t *afep)
1846 {
1847 	afe_disableinterrupts(afep);
1848 
1849 	afe_stopmac(afep);
1850 
1851 	/* stop the phy */
1852 	afe_stopphy(afep);
1853 }
1854 
1855 void
1856 afe_startall(afe_t *afep)
1857 {
1858 	ASSERT(mutex_owned(&afep->afe_intrlock));
1859 	ASSERT(mutex_owned(&afep->afe_xmtlock));
1860 
1861 	/* make sure interrupts are disabled to begin */
1862 	afe_disableinterrupts(afep);
1863 
1864 	/* initialize the chip */
1865 	(void) afe_initialize(afep);
1866 
1867 	/* now we can enable interrupts */
1868 	afe_enableinterrupts(afep);
1869 
1870 	/* start up the phy */
1871 	afe_startphy(afep);
1872 
1873 	/* start up the mac */
1874 	afe_startmac(afep);
1875 }
1876 
1877 void
1878 afe_resetall(afe_t *afep)
1879 {
1880 	afep->afe_resetting = B_TRUE;
1881 	afe_stopall(afep);
1882 	afep->afe_resetting = B_FALSE;
1883 	afe_startall(afep);
1884 }
1885 
1886 afe_txbuf_t *
1887 afe_alloctxbuf(afe_t *afep)
1888 {
1889 	ddi_dma_cookie_t	dmac;
1890 	unsigned		ncookies;
1891 	afe_txbuf_t		*txb;
1892 	size_t			len;
1893 
1894 	txb = kmem_zalloc(sizeof (*txb), KM_SLEEP);
1895 
1896 	if (ddi_dma_alloc_handle(afep->afe_dip, &afe_dma_txattr,
1897 	    DDI_DMA_SLEEP, NULL, &txb->txb_dmah) != DDI_SUCCESS) {
1898 		return (NULL);
1899 	}
1900 
1901 	if (ddi_dma_mem_alloc(txb->txb_dmah, AFE_BUFSZ, &afe_bufattr,
1902 	    DDI_DMA_STREAMING, DDI_DMA_SLEEP, NULL, &txb->txb_buf, &len,
1903 	    &txb->txb_acch) != DDI_SUCCESS) {
1904 		return (NULL);
1905 	}
1906 	if (ddi_dma_addr_bind_handle(txb->txb_dmah, NULL, txb->txb_buf,
1907 	    len, DDI_DMA_WRITE | DDI_DMA_STREAMING, DDI_DMA_SLEEP, NULL,
1908 	    &dmac, &ncookies) != DDI_DMA_MAPPED) {
1909 		return (NULL);
1910 	}
1911 	txb->txb_paddr = dmac.dmac_address;
1912 
1913 	return (txb);
1914 }
1915 
1916 void
1917 afe_destroytxbuf(afe_txbuf_t *txb)
1918 {
1919 	if (txb != NULL) {
1920 		if (txb->txb_paddr)
1921 			(void) ddi_dma_unbind_handle(txb->txb_dmah);
1922 		if (txb->txb_acch)
1923 			ddi_dma_mem_free(&txb->txb_acch);
1924 		if (txb->txb_dmah)
1925 			ddi_dma_free_handle(&txb->txb_dmah);
1926 		kmem_free(txb, sizeof (*txb));
1927 	}
1928 }
1929 
1930 afe_rxbuf_t *
1931 afe_allocrxbuf(afe_t *afep)
1932 {
1933 	afe_rxbuf_t		*rxb;
1934 	size_t			len;
1935 	unsigned		ccnt;
1936 	ddi_dma_cookie_t	dmac;
1937 
1938 	rxb = kmem_zalloc(sizeof (*rxb), KM_SLEEP);
1939 
1940 	if (ddi_dma_alloc_handle(afep->afe_dip, &afe_dma_attr,
1941 	    DDI_DMA_SLEEP, NULL, &rxb->rxb_dmah) != DDI_SUCCESS) {
1942 		kmem_free(rxb, sizeof (*rxb));
1943 		return (NULL);
1944 	}
1945 	if (ddi_dma_mem_alloc(rxb->rxb_dmah, AFE_BUFSZ, &afe_bufattr,
1946 	    DDI_DMA_STREAMING, DDI_DMA_SLEEP, NULL, &rxb->rxb_buf, &len,
1947 	    &rxb->rxb_acch) != DDI_SUCCESS) {
1948 		ddi_dma_free_handle(&rxb->rxb_dmah);
1949 		kmem_free(rxb, sizeof (*rxb));
1950 		return (NULL);
1951 	}
1952 	if (ddi_dma_addr_bind_handle(rxb->rxb_dmah, NULL, rxb->rxb_buf, len,
1953 	    DDI_DMA_READ | DDI_DMA_STREAMING, DDI_DMA_SLEEP, NULL, &dmac,
1954 	    &ccnt) != DDI_DMA_MAPPED) {
1955 		ddi_dma_mem_free(&rxb->rxb_acch);
1956 		ddi_dma_free_handle(&rxb->rxb_dmah);
1957 		kmem_free(rxb, sizeof (*rxb));
1958 		return (NULL);
1959 	}
1960 	rxb->rxb_paddr = dmac.dmac_address;
1961 
1962 	return (rxb);
1963 }
1964 
1965 void
1966 afe_destroyrxbuf(afe_rxbuf_t *rxb)
1967 {
1968 	if (rxb) {
1969 		(void) ddi_dma_unbind_handle(rxb->rxb_dmah);
1970 		ddi_dma_mem_free(&rxb->rxb_acch);
1971 		ddi_dma_free_handle(&rxb->rxb_dmah);
1972 		kmem_free(rxb, sizeof (*rxb));
1973 	}
1974 }
1975 
1976 /*
1977  * Allocate receive resources.
1978  */
1979 int
1980 afe_allocrxring(afe_t *afep)
1981 {
1982 	int			rval;
1983 	int			i;
1984 	size_t			size;
1985 	size_t			len;
1986 	ddi_dma_cookie_t	dmac;
1987 	unsigned		ncookies;
1988 	caddr_t			kaddr;
1989 
1990 	size = AFE_RXRING * sizeof (afe_desc_t);
1991 
1992 	rval = ddi_dma_alloc_handle(afep->afe_dip, &afe_dma_attr,
1993 	    DDI_DMA_SLEEP, NULL, &afep->afe_rxdesc_dmah);
1994 	if (rval != DDI_SUCCESS) {
1995 		afe_error(afep->afe_dip,
1996 		    "unable to allocate DMA handle for rx descriptors");
1997 		return (DDI_FAILURE);
1998 	}
1999 
2000 	rval = ddi_dma_mem_alloc(afep->afe_rxdesc_dmah, size, &afe_devattr,
2001 	    DDI_DMA_CONSISTENT, DDI_DMA_SLEEP, NULL, &kaddr, &len,
2002 	    &afep->afe_rxdesc_acch);
2003 	if (rval != DDI_SUCCESS) {
2004 		afe_error(afep->afe_dip,
2005 		    "unable to allocate DMA memory for rx descriptors");
2006 		return (DDI_FAILURE);
2007 	}
2008 
2009 	rval = ddi_dma_addr_bind_handle(afep->afe_rxdesc_dmah, NULL, kaddr,
2010 	    size, DDI_DMA_RDWR | DDI_DMA_CONSISTENT, DDI_DMA_SLEEP, NULL,
2011 	    &dmac, &ncookies);
2012 	if (rval != DDI_DMA_MAPPED) {
2013 		afe_error(afep->afe_dip,
2014 		    "unable to bind DMA for rx descriptors");
2015 		return (DDI_FAILURE);
2016 	}
2017 
2018 	/* because of afe_dma_attr */
2019 	ASSERT(ncookies == 1);
2020 
2021 	/* we take the 32-bit physical address out of the cookie */
2022 	afep->afe_rxdesc_paddr = dmac.dmac_address;
2023 	afep->afe_rxdescp = (void *)kaddr;
2024 
2025 	/* allocate buffer pointers (not the buffers themselves, yet) */
2026 	afep->afe_rxbufs = kmem_zalloc(AFE_RXRING * sizeof (afe_rxbuf_t *),
2027 	    KM_SLEEP);
2028 
2029 	/* now allocate rx buffers */
2030 	for (i = 0; i < AFE_RXRING; i++) {
2031 		afe_rxbuf_t *rxb = afe_allocrxbuf(afep);
2032 		if (rxb == NULL)
2033 			return (DDI_FAILURE);
2034 		afep->afe_rxbufs[i] = rxb;
2035 	}
2036 
2037 	return (DDI_SUCCESS);
2038 }
2039 
2040 /*
2041  * Allocate transmit resources.
2042  */
2043 int
2044 afe_alloctxring(afe_t *afep)
2045 {
2046 	int			rval;
2047 	int			i;
2048 	size_t			size;
2049 	size_t			len;
2050 	ddi_dma_cookie_t	dmac;
2051 	unsigned		ncookies;
2052 	caddr_t			kaddr;
2053 
2054 	size = AFE_TXRING * sizeof (afe_desc_t);
2055 
2056 	rval = ddi_dma_alloc_handle(afep->afe_dip, &afe_dma_attr,
2057 	    DDI_DMA_SLEEP, NULL, &afep->afe_txdesc_dmah);
2058 	if (rval != DDI_SUCCESS) {
2059 		afe_error(afep->afe_dip,
2060 		    "unable to allocate DMA handle for tx descriptors");
2061 		return (DDI_FAILURE);
2062 	}
2063 
2064 	rval = ddi_dma_mem_alloc(afep->afe_txdesc_dmah, size, &afe_devattr,
2065 	    DDI_DMA_CONSISTENT, DDI_DMA_SLEEP, NULL, &kaddr, &len,
2066 	    &afep->afe_txdesc_acch);
2067 	if (rval != DDI_SUCCESS) {
2068 		afe_error(afep->afe_dip,
2069 		    "unable to allocate DMA memory for tx descriptors");
2070 		return (DDI_FAILURE);
2071 	}
2072 
2073 	rval = ddi_dma_addr_bind_handle(afep->afe_txdesc_dmah, NULL, kaddr,
2074 	    size, DDI_DMA_RDWR | DDI_DMA_CONSISTENT, DDI_DMA_SLEEP, NULL,
2075 	    &dmac, &ncookies);
2076 	if (rval != DDI_DMA_MAPPED) {
2077 		afe_error(afep->afe_dip,
2078 		    "unable to bind DMA for tx descriptors");
2079 		return (DDI_FAILURE);
2080 	}
2081 
2082 	/* because of afe_dma_attr */
2083 	ASSERT(ncookies == 1);
2084 
2085 	/* we take the 32-bit physical address out of the cookie */
2086 	afep->afe_txdesc_paddr = dmac.dmac_address;
2087 	afep->afe_txdescp = (void *)kaddr;
2088 
2089 	/* allocate buffer pointers (not the buffers themselves, yet) */
2090 	afep->afe_txbufs = kmem_zalloc(AFE_TXRING * sizeof (afe_txbuf_t *),
2091 	    KM_SLEEP);
2092 
2093 	/* now allocate tx buffers */
2094 	for (i = 0; i < AFE_TXRING; i++) {
2095 		afe_txbuf_t *txb = afe_alloctxbuf(afep);
2096 		if (txb == NULL)
2097 			return (DDI_FAILURE);
2098 		afep->afe_txbufs[i] = txb;
2099 	}
2100 
2101 	return (DDI_SUCCESS);
2102 }
2103 
2104 void
2105 afe_freerxring(afe_t *afep)
2106 {
2107 	int		i;
2108 
2109 	for (i = 0; i < AFE_RXRING; i++) {
2110 		afe_destroyrxbuf(afep->afe_rxbufs[i]);
2111 	}
2112 
2113 	if (afep->afe_rxbufs) {
2114 		kmem_free(afep->afe_rxbufs,
2115 		    AFE_RXRING * sizeof (afe_rxbuf_t *));
2116 	}
2117 
2118 	if (afep->afe_rxdesc_paddr)
2119 		(void) ddi_dma_unbind_handle(afep->afe_rxdesc_dmah);
2120 	if (afep->afe_rxdesc_acch)
2121 		ddi_dma_mem_free(&afep->afe_rxdesc_acch);
2122 	if (afep->afe_rxdesc_dmah)
2123 		ddi_dma_free_handle(&afep->afe_rxdesc_dmah);
2124 }
2125 
2126 void
2127 afe_freetxring(afe_t *afep)
2128 {
2129 	int			i;
2130 
2131 	for (i = 0; i < AFE_TXRING; i++) {
2132 		afe_destroytxbuf(afep->afe_txbufs[i]);
2133 	}
2134 
2135 	if (afep->afe_txbufs) {
2136 		kmem_free(afep->afe_txbufs,
2137 		    AFE_TXRING * sizeof (afe_txbuf_t *));
2138 	}
2139 	if (afep->afe_txdesc_paddr)
2140 		(void) ddi_dma_unbind_handle(afep->afe_txdesc_dmah);
2141 	if (afep->afe_txdesc_acch)
2142 		ddi_dma_mem_free(&afep->afe_txdesc_acch);
2143 	if (afep->afe_txdesc_dmah)
2144 		ddi_dma_free_handle(&afep->afe_txdesc_dmah);
2145 }
2146 
2147 /*
2148  * Interrupt service routine.
2149  */
2150 unsigned
2151 afe_intr(caddr_t arg)
2152 {
2153 	afe_t		*afep = (void *)arg;
2154 	uint32_t	status;
2155 	mblk_t		*mp = NULL;
2156 
2157 	mutex_enter(&afep->afe_intrlock);
2158 
2159 	if (afep->afe_flags & AFE_SUSPENDED) {
2160 		/* we cannot receive interrupts! */
2161 		mutex_exit(&afep->afe_intrlock);
2162 		return (DDI_INTR_UNCLAIMED);
2163 	}
2164 
2165 	/* check interrupt status bits, did we interrupt? */
2166 	status = GETCSR(afep, CSR_SR2) & INT_ALL;
2167 
2168 	if (status == 0) {
2169 		KIOIP->intrs[KSTAT_INTR_SPURIOUS]++;
2170 		mutex_exit(&afep->afe_intrlock);
2171 		return (DDI_INTR_UNCLAIMED);
2172 	}
2173 	/* ack the interrupt */
2174 	PUTCSR(afep, CSR_SR2, status);
2175 	KIOIP->intrs[KSTAT_INTR_HARD]++;
2176 
2177 	if (!(afep->afe_flags & AFE_RUNNING)) {
2178 		/* not running, don't touch anything */
2179 		mutex_exit(&afep->afe_intrlock);
2180 		return (DDI_INTR_CLAIMED);
2181 	}
2182 
2183 	if (status & (INT_RXOK|INT_RXNOBUF)) {
2184 		/* receive packets */
2185 		mp = afe_receive(afep);
2186 		if (status & INT_RXNOBUF)
2187 			PUTCSR(afep, CSR_RDR, 0);	/* wake up chip */
2188 	}
2189 
2190 	if (status & INT_TXOK) {
2191 		/* transmit completed */
2192 		mutex_enter(&afep->afe_xmtlock);
2193 		afe_reclaim(afep);
2194 		mutex_exit(&afep->afe_xmtlock);
2195 	}
2196 
2197 	if (status & (INT_LINKCHG|INT_TIMER)) {
2198 		mutex_enter(&afep->afe_xmtlock);
2199 		afe_checklink(afep);
2200 		mutex_exit(&afep->afe_xmtlock);
2201 	}
2202 
2203 	if (status & (INT_RXSTOPPED|INT_TXSTOPPED|
2204 	    INT_RXJABBER|INT_TXJABBER|INT_TXUNDERFLOW)) {
2205 
2206 		if (status & (INT_RXJABBER | INT_TXJABBER)) {
2207 			afep->afe_jabber++;
2208 		}
2209 		DBG(DWARN, "resetting mac, status %x", status);
2210 		mutex_enter(&afep->afe_xmtlock);
2211 		afe_resetall(afep);
2212 		mutex_exit(&afep->afe_xmtlock);
2213 	}
2214 
2215 	if (status & INT_BUSERR) {
2216 		switch (GETCSR(afep, CSR_SR) & SR_BERR_TYPE) {
2217 		case SR_BERR_PARITY:
2218 			afe_error(afep->afe_dip, "PCI parity error");
2219 			break;
2220 		case SR_BERR_TARGET_ABORT:
2221 			afe_error(afep->afe_dip, "PCI target abort");
2222 			break;
2223 		case SR_BERR_MASTER_ABORT:
2224 			afe_error(afep->afe_dip, "PCI master abort");
2225 			break;
2226 		default:
2227 			afe_error(afep->afe_dip, "Unknown PCI error");
2228 			break;
2229 		}
2230 
2231 		/* reset the chip in an attempt to fix things */
2232 		mutex_enter(&afep->afe_xmtlock);
2233 		afe_resetall(afep);
2234 		mutex_exit(&afep->afe_xmtlock);
2235 	}
2236 
2237 	mutex_exit(&afep->afe_intrlock);
2238 
2239 	/*
2240 	 * Send up packets.  We do this outside of the intrlock.
2241 	 */
2242 	if (mp) {
2243 		mac_rx(afep->afe_mh, NULL, mp);
2244 	}
2245 
2246 	return (DDI_INTR_CLAIMED);
2247 }
2248 
2249 void
2250 afe_enableinterrupts(afe_t *afep)
2251 {
2252 	unsigned mask = INT_WANTED;
2253 
2254 	if (afep->afe_wantw)
2255 		mask |= INT_TXOK;
2256 
2257 	PUTCSR(afep, CSR_IER2, mask);
2258 
2259 	if (AFE_MODEL(afep) == MODEL_COMET) {
2260 		/*
2261 		 * On the Comet, this is the internal transceiver
2262 		 * interrupt.  We program the Comet's built-in PHY to
2263 		 * enable certain interrupts.
2264 		 */
2265 		PUTCSR16(afep, CSR_XIE, XIE_LDE | XIE_ANCE);
2266 	}
2267 }
2268 
2269 void
2270 afe_disableinterrupts(afe_t *afep)
2271 {
2272 	/* disable further interrupts */
2273 	PUTCSR(afep, CSR_IER2, INT_NONE);
2274 
2275 	/* clear any pending interrupts */
2276 	PUTCSR(afep, CSR_SR2, INT_ALL);
2277 }
2278 
2279 boolean_t
2280 afe_send(afe_t *afep, mblk_t *mp)
2281 {
2282 	size_t			len;
2283 	afe_txbuf_t		*txb;
2284 	afe_desc_t		*tmd;
2285 	uint32_t		control;
2286 	int			txsend;
2287 
2288 	ASSERT(mutex_owned(&afep->afe_xmtlock));
2289 	ASSERT(mp != NULL);
2290 
2291 	len = msgsize(mp);
2292 	if (len > ETHERVLANMTU) {
2293 		DBG(DXMIT, "frame too long: %d", len);
2294 		afep->afe_macxmt_errors++;
2295 		freemsg(mp);
2296 		return (B_TRUE);
2297 	}
2298 
2299 	if (afep->afe_txavail < AFE_TXRECLAIM)
2300 		afe_reclaim(afep);
2301 
2302 	if (afep->afe_txavail == 0) {
2303 		/* no more tmds */
2304 		afep->afe_wantw = B_TRUE;
2305 		/* enable TX interrupt */
2306 		afe_enableinterrupts(afep);
2307 		return (B_FALSE);
2308 	}
2309 
2310 	txsend = afep->afe_txsend;
2311 
2312 	/*
2313 	 * For simplicity, we just do a copy into a preallocated
2314 	 * DMA buffer.
2315 	 */
2316 
2317 	txb = afep->afe_txbufs[txsend];
2318 	mcopymsg(mp, txb->txb_buf);	/* frees mp! */
2319 
2320 	/*
2321 	 * Statistics.
2322 	 */
2323 	afep->afe_opackets++;
2324 	afep->afe_obytes += len;
2325 	if (txb->txb_buf[0] & 0x1) {
2326 		if (bcmp(txb->txb_buf, afe_broadcast, ETHERADDRL) != 0)
2327 			afep->afe_multixmt++;
2328 		else
2329 			afep->afe_brdcstxmt++;
2330 	}
2331 
2332 	/* note len is already known to be a small unsigned */
2333 	control = len | TXCTL_FIRST | TXCTL_LAST | TXCTL_INTCMPLTE;
2334 
2335 	if (txsend == (AFE_TXRING - 1))
2336 		control |= TXCTL_ENDRING;
2337 
2338 	tmd = &afep->afe_txdescp[txsend];
2339 
2340 	SYNCTXBUF(txb, len, DDI_DMA_SYNC_FORDEV);
2341 	PUTTXDESC(afep, tmd->desc_control, control);
2342 	PUTTXDESC(afep, tmd->desc_buffer1, txb->txb_paddr);
2343 	PUTTXDESC(afep, tmd->desc_buffer2, 0);
2344 	PUTTXDESC(afep, tmd->desc_status, TXSTAT_OWN);
2345 	/* sync the descriptor out to the device */
2346 	SYNCTXDESC(afep, txsend, DDI_DMA_SYNC_FORDEV);
2347 
2348 	/*
2349 	 * Note the new values of txavail and txsend.
2350 	 */
2351 	afep->afe_txavail--;
2352 	afep->afe_txsend = (txsend + 1) % AFE_TXRING;
2353 
2354 	/*
2355 	 * It should never, ever take more than 5 seconds to drain
2356 	 * the ring.  If it happens, then we are stuck!
2357 	 */
2358 	afep->afe_txstall_time = gethrtime() + (5 * 1000000000ULL);
2359 
2360 	/*
2361 	 * wake up the chip ... inside the lock to protect against DR suspend,
2362 	 * etc.
2363 	 */
2364 	PUTCSR(afep, CSR_TDR, 0);
2365 
2366 	return (B_TRUE);
2367 }
2368 
2369 /*
2370  * Reclaim buffers that have completed transmission.
2371  */
2372 void
2373 afe_reclaim(afe_t *afep)
2374 {
2375 	afe_desc_t	*tmdp;
2376 
2377 	while (afep->afe_txavail != AFE_TXRING) {
2378 		uint32_t	status;
2379 		uint32_t	control;
2380 		int		index = afep->afe_txreclaim;
2381 
2382 		tmdp = &afep->afe_txdescp[index];
2383 
2384 		/* sync it before we read it */
2385 		SYNCTXDESC(afep, index, DDI_DMA_SYNC_FORKERNEL);
2386 
2387 		control = GETTXDESC(afep, tmdp->desc_control);
2388 		status = GETTXDESC(afep, tmdp->desc_status);
2389 
2390 		if (status & TXSTAT_OWN) {
2391 			/* chip is still working on it, we're done */
2392 			break;
2393 		}
2394 
2395 		afep->afe_txavail++;
2396 		afep->afe_txreclaim = (index + 1) % AFE_TXRING;
2397 
2398 		/* in the most common successful case, all bits are clear */
2399 		if (status == 0)
2400 			continue;
2401 
2402 		if ((control & TXCTL_LAST) == 0)
2403 			continue;
2404 
2405 		if (status & TXSTAT_TXERR) {
2406 			afep->afe_errxmt++;
2407 
2408 			if (status & TXSTAT_JABBER) {
2409 				/* transmit jabber timeout */
2410 				afep->afe_macxmt_errors++;
2411 			}
2412 			if (status &
2413 			    (TXSTAT_CARRLOST | TXSTAT_NOCARR)) {
2414 				afep->afe_carrier_errors++;
2415 			}
2416 			if (status & TXSTAT_UFLOW) {
2417 				afep->afe_underflow++;
2418 			}
2419 			if (status & TXSTAT_LATECOL) {
2420 				afep->afe_tx_late_collisions++;
2421 			}
2422 			if (status & TXSTAT_EXCOLL) {
2423 				afep->afe_ex_collisions++;
2424 				afep->afe_collisions += 16;
2425 			}
2426 		}
2427 
2428 		if (status & TXSTAT_DEFER) {
2429 			afep->afe_defer_xmts++;
2430 		}
2431 
2432 		/* collision counting */
2433 		if (TXCOLLCNT(status) == 1) {
2434 			afep->afe_collisions++;
2435 			afep->afe_first_collisions++;
2436 		} else if (TXCOLLCNT(status)) {
2437 			afep->afe_collisions += TXCOLLCNT(status);
2438 			afep->afe_multi_collisions += TXCOLLCNT(status);
2439 		}
2440 	}
2441 
2442 	if (afep->afe_txavail >= AFE_TXRESCHED) {
2443 		if (afep->afe_wantw) {
2444 			/*
2445 			 * we were able to reclaim some packets, so
2446 			 * disable tx interrupts
2447 			 */
2448 			afep->afe_wantw = B_FALSE;
2449 			afe_enableinterrupts(afep);
2450 			mac_tx_update(afep->afe_mh);
2451 		}
2452 	}
2453 }
2454 
2455 mblk_t *
2456 afe_receive(afe_t *afep)
2457 {
2458 	unsigned		len;
2459 	afe_rxbuf_t		*rxb;
2460 	afe_desc_t		*rmd;
2461 	uint32_t		status;
2462 	mblk_t			*mpchain, **mpp, *mp;
2463 	int			head, cnt;
2464 
2465 	mpchain = NULL;
2466 	mpp = &mpchain;
2467 	head = afep->afe_rxhead;
2468 
2469 	/* limit the number of packets we process to a half ring size */
2470 	for (cnt = 0; cnt < AFE_RXRING / 2; cnt++) {
2471 
2472 		DBG(DRECV, "receive at index %d", head);
2473 
2474 		rmd = &afep->afe_rxdescp[head];
2475 		rxb = afep->afe_rxbufs[head];
2476 
2477 		SYNCRXDESC(afep, head, DDI_DMA_SYNC_FORKERNEL);
2478 		status = GETRXDESC(afep, rmd->desc_status);
2479 		if (status & RXSTAT_OWN) {
2480 			/* chip is still chewing on it */
2481 			break;
2482 		}
2483 
2484 		/* discard the ethernet frame checksum */
2485 		len = RXLENGTH(status) - ETHERFCSL;
2486 
2487 		DBG(DRECV, "recv length %d, status %x", len, status);
2488 
2489 		if ((status & (RXSTAT_ERRS | RXSTAT_FIRST | RXSTAT_LAST)) !=
2490 		    (RXSTAT_FIRST | RXSTAT_LAST)) {
2491 
2492 			afep->afe_errrcv++;
2493 
2494 			/*
2495 			 * Abnormal status bits detected, analyze further.
2496 			 */
2497 			if ((status & (RXSTAT_LAST|RXSTAT_FIRST)) !=
2498 			    (RXSTAT_LAST|RXSTAT_FIRST)) {
2499 				DBG(DRECV, "rx packet overspill");
2500 				if (status & RXSTAT_FIRST) {
2501 					afep->afe_toolong_errors++;
2502 				}
2503 			} else if (status & RXSTAT_DESCERR) {
2504 				afep->afe_macrcv_errors++;
2505 
2506 			} else if (status & RXSTAT_RUNT) {
2507 				afep->afe_runt++;
2508 
2509 			} else if (status & RXSTAT_COLLSEEN) {
2510 				/* this should really be rx_late_collisions */
2511 				afep->afe_macrcv_errors++;
2512 
2513 			} else if (status & RXSTAT_DRIBBLE) {
2514 				afep->afe_align_errors++;
2515 
2516 			} else if (status & RXSTAT_CRCERR) {
2517 				afep->afe_fcs_errors++;
2518 
2519 			} else if (status & RXSTAT_OFLOW) {
2520 				afep->afe_overflow++;
2521 			}
2522 		}
2523 
2524 		else if (len > ETHERVLANMTU) {
2525 			afep->afe_errrcv++;
2526 			afep->afe_toolong_errors++;
2527 		}
2528 
2529 		/*
2530 		 * At this point, the chip thinks the packet is OK.
2531 		 */
2532 		else {
2533 			mp = allocb(len + AFE_HEADROOM, 0);
2534 			if (mp == NULL) {
2535 				afep->afe_errrcv++;
2536 				afep->afe_norcvbuf++;
2537 				goto skip;
2538 			}
2539 
2540 			/* sync the buffer before we look at it */
2541 			SYNCRXBUF(rxb, len, DDI_DMA_SYNC_FORKERNEL);
2542 			mp->b_rptr += AFE_HEADROOM;
2543 			mp->b_wptr = mp->b_rptr + len;
2544 			bcopy((char *)rxb->rxb_buf, mp->b_rptr, len);
2545 
2546 			afep->afe_ipackets++;
2547 			afep->afe_rbytes += len;
2548 			if (status & RXSTAT_GROUP) {
2549 				if (bcmp(mp->b_rptr, afe_broadcast,
2550 				    ETHERADDRL) == 0)
2551 					afep->afe_brdcstrcv++;
2552 				else
2553 					afep->afe_multircv++;
2554 			}
2555 			*mpp = mp;
2556 			mpp = &mp->b_next;
2557 		}
2558 
2559 skip:
2560 		/* return ring entry to the hardware */
2561 		PUTRXDESC(afep, rmd->desc_status, RXSTAT_OWN);
2562 		SYNCRXDESC(afep, head, DDI_DMA_SYNC_FORDEV);
2563 
2564 		/* advance to next RMD */
2565 		head = (head + 1) % AFE_RXRING;
2566 	}
2567 
2568 	afep->afe_rxhead = head;
2569 
2570 	return (mpchain);
2571 }
2572 
2573 int
2574 afe_getmiibit(afe_t *afep, uint16_t reg, uint16_t bit)
2575 {
2576 	unsigned	val;
2577 
2578 	mutex_enter(&afep->afe_xmtlock);
2579 	if (afep->afe_flags & AFE_SUSPENDED) {
2580 		mutex_exit(&afep->afe_xmtlock);
2581 		/* device is suspended */
2582 		return (0);
2583 	}
2584 	val = afe_miiread(afep, afep->afe_phyaddr, reg);
2585 	mutex_exit(&afep->afe_xmtlock);
2586 
2587 	return (val & bit ? 1 : 0);
2588 }
2589 #define	GETMIIBIT(reg, bit) afe_getmiibit(afep, reg, bit)
2590 
2591 int
2592 afe_m_stat(void *arg, uint_t stat, uint64_t *val)
2593 {
2594 	afe_t	*afep = arg;
2595 
2596 	mutex_enter(&afep->afe_xmtlock);
2597 	if ((afep->afe_flags & (AFE_RUNNING|AFE_SUSPENDED)) == AFE_RUNNING)
2598 		afe_reclaim(afep);
2599 	mutex_exit(&afep->afe_xmtlock);
2600 
2601 	switch (stat) {
2602 	case MAC_STAT_IFSPEED:
2603 		*val = afep->afe_ifspeed;
2604 		break;
2605 
2606 	case MAC_STAT_MULTIRCV:
2607 		*val = afep->afe_multircv;
2608 		break;
2609 
2610 	case MAC_STAT_BRDCSTRCV:
2611 		*val = afep->afe_brdcstrcv;
2612 		break;
2613 
2614 	case MAC_STAT_MULTIXMT:
2615 		*val = afep->afe_multixmt;
2616 		break;
2617 
2618 	case MAC_STAT_BRDCSTXMT:
2619 		*val = afep->afe_brdcstxmt;
2620 		break;
2621 
2622 	case MAC_STAT_IPACKETS:
2623 		*val = afep->afe_ipackets;
2624 		break;
2625 
2626 	case MAC_STAT_RBYTES:
2627 		*val = afep->afe_rbytes;
2628 		break;
2629 
2630 	case MAC_STAT_OPACKETS:
2631 		*val = afep->afe_opackets;
2632 		break;
2633 
2634 	case MAC_STAT_OBYTES:
2635 		*val = afep->afe_obytes;
2636 		break;
2637 
2638 	case MAC_STAT_NORCVBUF:
2639 		*val = afep->afe_norcvbuf;
2640 		break;
2641 
2642 	case MAC_STAT_NOXMTBUF:
2643 		*val = 0;
2644 		break;
2645 
2646 	case MAC_STAT_COLLISIONS:
2647 		*val = afep->afe_collisions;
2648 		break;
2649 
2650 	case MAC_STAT_IERRORS:
2651 		*val = afep->afe_errrcv;
2652 		break;
2653 
2654 	case MAC_STAT_OERRORS:
2655 		*val = afep->afe_errxmt;
2656 		break;
2657 
2658 	case ETHER_STAT_LINK_DUPLEX:
2659 		*val = afep->afe_duplex;
2660 		break;
2661 
2662 	case ETHER_STAT_ALIGN_ERRORS:
2663 		*val = afep->afe_align_errors;
2664 		break;
2665 
2666 	case ETHER_STAT_FCS_ERRORS:
2667 		*val = afep->afe_fcs_errors;
2668 		break;
2669 
2670 	case ETHER_STAT_SQE_ERRORS:
2671 		*val = afep->afe_sqe_errors;
2672 		break;
2673 
2674 	case ETHER_STAT_DEFER_XMTS:
2675 		*val = afep->afe_defer_xmts;
2676 		break;
2677 
2678 	case ETHER_STAT_FIRST_COLLISIONS:
2679 		*val = afep->afe_first_collisions;
2680 		break;
2681 
2682 	case ETHER_STAT_MULTI_COLLISIONS:
2683 		*val = afep->afe_multi_collisions;
2684 		break;
2685 
2686 	case ETHER_STAT_TX_LATE_COLLISIONS:
2687 		*val = afep->afe_tx_late_collisions;
2688 		break;
2689 
2690 	case ETHER_STAT_EX_COLLISIONS:
2691 		*val = afep->afe_ex_collisions;
2692 		break;
2693 
2694 	case ETHER_STAT_MACXMT_ERRORS:
2695 		*val = afep->afe_macxmt_errors;
2696 		break;
2697 
2698 	case ETHER_STAT_CARRIER_ERRORS:
2699 		*val = afep->afe_carrier_errors;
2700 		break;
2701 
2702 	case ETHER_STAT_TOOLONG_ERRORS:
2703 		*val = afep->afe_toolong_errors;
2704 		break;
2705 
2706 	case ETHER_STAT_MACRCV_ERRORS:
2707 		*val = afep->afe_macrcv_errors;
2708 		break;
2709 
2710 	case MAC_STAT_OVERFLOWS:
2711 		*val = afep->afe_overflow;
2712 		break;
2713 
2714 	case MAC_STAT_UNDERFLOWS:
2715 		*val = afep->afe_underflow;
2716 		break;
2717 
2718 	case ETHER_STAT_TOOSHORT_ERRORS:
2719 		*val = afep->afe_runt;
2720 		break;
2721 
2722 	case ETHER_STAT_JABBER_ERRORS:
2723 		*val = afep->afe_jabber;
2724 		break;
2725 
2726 	case ETHER_STAT_CAP_100T4:
2727 		*val = afep->afe_cap_100T4;
2728 		break;
2729 
2730 	case ETHER_STAT_CAP_100FDX:
2731 		*val = afep->afe_cap_100fdx;
2732 		break;
2733 
2734 	case ETHER_STAT_CAP_100HDX:
2735 		*val = afep->afe_cap_100hdx;
2736 		break;
2737 
2738 	case ETHER_STAT_CAP_10FDX:
2739 		*val = afep->afe_cap_10fdx;
2740 		break;
2741 
2742 	case ETHER_STAT_CAP_10HDX:
2743 		*val = afep->afe_cap_10hdx;
2744 		break;
2745 
2746 	case ETHER_STAT_CAP_AUTONEG:
2747 		*val = afep->afe_cap_aneg;
2748 		break;
2749 
2750 	case ETHER_STAT_LINK_AUTONEG:
2751 		*val = ((afep->afe_adv_aneg != 0) &&
2752 		    (GETMIIBIT(MII_AN_LPABLE, MII_AN_EXP_LPCANAN) != 0));
2753 		break;
2754 
2755 	case ETHER_STAT_ADV_CAP_100T4:
2756 		*val = afep->afe_adv_100T4;
2757 		break;
2758 
2759 	case ETHER_STAT_ADV_CAP_100FDX:
2760 		*val = afep->afe_adv_100fdx;
2761 		break;
2762 
2763 	case ETHER_STAT_ADV_CAP_100HDX:
2764 		*val = afep->afe_adv_100hdx;
2765 		break;
2766 
2767 	case ETHER_STAT_ADV_CAP_10FDX:
2768 		*val = afep->afe_adv_10fdx;
2769 		break;
2770 
2771 	case ETHER_STAT_ADV_CAP_10HDX:
2772 		*val = afep->afe_adv_10hdx;
2773 		break;
2774 
2775 	case ETHER_STAT_ADV_CAP_AUTONEG:
2776 		*val = afep->afe_adv_aneg;
2777 		break;
2778 
2779 	case ETHER_STAT_LP_CAP_100T4:
2780 		*val = GETMIIBIT(MII_AN_LPABLE, MII_ABILITY_100BASE_T4);
2781 		break;
2782 
2783 	case ETHER_STAT_LP_CAP_100FDX:
2784 		*val = GETMIIBIT(MII_AN_LPABLE, MII_ABILITY_100BASE_TX_FD);
2785 		break;
2786 
2787 	case ETHER_STAT_LP_CAP_100HDX:
2788 		*val = GETMIIBIT(MII_AN_LPABLE, MII_ABILITY_100BASE_TX);
2789 		break;
2790 
2791 	case ETHER_STAT_LP_CAP_10FDX:
2792 		*val = GETMIIBIT(MII_AN_LPABLE, MII_ABILITY_10BASE_T_FD);
2793 		break;
2794 
2795 	case ETHER_STAT_LP_CAP_10HDX:
2796 		*val = GETMIIBIT(MII_AN_LPABLE, MII_ABILITY_10BASE_T);
2797 		break;
2798 
2799 	case ETHER_STAT_LP_CAP_AUTONEG:
2800 		*val = GETMIIBIT(MII_AN_EXPANSION, MII_AN_EXP_LPCANAN);
2801 		break;
2802 
2803 	case ETHER_STAT_XCVR_ADDR:
2804 		*val = afep->afe_phyaddr;
2805 		break;
2806 
2807 	case ETHER_STAT_XCVR_ID:
2808 		*val = afep->afe_phyid;
2809 		break;
2810 
2811 	default:
2812 		return (ENOTSUP);
2813 	}
2814 	return (0);
2815 }
2816 
2817 /*ARGSUSED*/
2818 int
2819 afe_m_getprop(void *arg, const char *name, mac_prop_id_t num, uint_t flags,
2820     uint_t sz, void *val)
2821 {
2822 	afe_t		*afep = arg;
2823 	int		err = 0;
2824 	boolean_t	dfl = flags & MAC_PROP_DEFAULT;
2825 
2826 	if (sz == 0)
2827 		return (EINVAL);
2828 
2829 	switch (num) {
2830 	case MAC_PROP_DUPLEX:
2831 		if (sz >= sizeof (link_duplex_t)) {
2832 			bcopy(&afep->afe_duplex, val, sizeof (link_duplex_t));
2833 		} else {
2834 			err = EINVAL;
2835 		}
2836 		break;
2837 
2838 	case MAC_PROP_SPEED:
2839 		if (sz >= sizeof (uint64_t)) {
2840 			bcopy(&afep->afe_ifspeed, val, sizeof (uint64_t));
2841 		} else {
2842 			err = EINVAL;
2843 		}
2844 		break;
2845 
2846 	case MAC_PROP_AUTONEG:
2847 		*(uint8_t *)val =
2848 		    dfl ? afep->afe_cap_aneg : afep->afe_adv_aneg;
2849 		break;
2850 
2851 #if 0
2852 	case MAC_PROP_ADV_1000FDX_CAP:
2853 	case MAC_PROP_EN_1000FDX_CAP:
2854 	case MAC_PROP_ADV_1000HDX_CAP:
2855 	case MAC_PROP_EN_1000HDX_CAP:
2856 		/* We don't support gigabit! */
2857 		*(uint8_t *)val = 0;
2858 		break;
2859 #endif
2860 
2861 	case MAC_PROP_ADV_100FDX_CAP:
2862 	case MAC_PROP_EN_100FDX_CAP:
2863 		*(uint8_t *)val =
2864 		    dfl ? afep->afe_cap_100fdx : afep->afe_adv_100fdx;
2865 		break;
2866 
2867 	case MAC_PROP_ADV_100HDX_CAP:
2868 	case MAC_PROP_EN_100HDX_CAP:
2869 		*(uint8_t *)val =
2870 		    dfl ? afep->afe_cap_100hdx : afep->afe_adv_100hdx;
2871 		break;
2872 
2873 	case MAC_PROP_ADV_10FDX_CAP:
2874 	case MAC_PROP_EN_10FDX_CAP:
2875 		*(uint8_t *)val =
2876 		    dfl ? afep->afe_cap_10fdx : afep->afe_adv_10fdx;
2877 		break;
2878 
2879 	case MAC_PROP_ADV_10HDX_CAP:
2880 	case MAC_PROP_EN_10HDX_CAP:
2881 		*(uint8_t *)val =
2882 		    dfl ? afep->afe_cap_10hdx : afep->afe_adv_10hdx;
2883 		break;
2884 
2885 	case MAC_PROP_ADV_100T4_CAP:
2886 	case MAC_PROP_EN_100T4_CAP:
2887 		*(uint8_t *)val =
2888 		    dfl ? afep->afe_cap_100T4 : afep->afe_adv_100T4;
2889 		break;
2890 
2891 	default:
2892 		err = ENOTSUP;
2893 	}
2894 
2895 	return (err);
2896 }
2897 
2898 /*ARGSUSED*/
2899 int
2900 afe_m_setprop(void *arg, const char *name, mac_prop_id_t num, uint_t sz,
2901     const void *val)
2902 {
2903 	afe_t		*afep = arg;
2904 	uint8_t		*advp;
2905 	uint8_t		*capp;
2906 
2907 	switch (num) {
2908 	case MAC_PROP_EN_100FDX_CAP:
2909 		advp = &afep->afe_adv_100fdx;
2910 		capp = &afep->afe_cap_100fdx;
2911 		break;
2912 
2913 	case MAC_PROP_EN_100HDX_CAP:
2914 		advp = &afep->afe_adv_100hdx;
2915 		capp = &afep->afe_cap_100hdx;
2916 		break;
2917 
2918 	case MAC_PROP_EN_10FDX_CAP:
2919 		advp = &afep->afe_adv_10fdx;
2920 		capp = &afep->afe_cap_10fdx;
2921 		break;
2922 
2923 	case MAC_PROP_EN_10HDX_CAP:
2924 		advp = &afep->afe_adv_10hdx;
2925 		capp = &afep->afe_cap_10hdx;
2926 		break;
2927 
2928 	case MAC_PROP_EN_100T4_CAP:
2929 		advp = &afep->afe_adv_100T4;
2930 		capp = &afep->afe_cap_100T4;
2931 		break;
2932 
2933 	case MAC_PROP_AUTONEG:
2934 		advp = &afep->afe_adv_aneg;
2935 		capp = &afep->afe_cap_aneg;
2936 		break;
2937 
2938 	default:
2939 		return (ENOTSUP);
2940 	}
2941 
2942 	if (*capp == 0)		/* ensure phy can support value */
2943 		return (ENOTSUP);
2944 
2945 	mutex_enter(&afep->afe_intrlock);
2946 	mutex_enter(&afep->afe_xmtlock);
2947 
2948 	if (*advp != *(const uint8_t *)val) {
2949 		*advp = *(const uint8_t *)val;
2950 
2951 		if ((afep->afe_flags & (AFE_RUNNING|AFE_SUSPENDED)) ==
2952 		    AFE_RUNNING) {
2953 			/*
2954 			 * This re-initializes the phy, but it also
2955 			 * restarts transmit and receive rings.
2956 			 * Needless to say, changing the link
2957 			 * parameters is destructive to traffic in
2958 			 * progress.
2959 			 */
2960 			afe_resetall(afep);
2961 		}
2962 	}
2963 	mutex_exit(&afep->afe_xmtlock);
2964 	mutex_exit(&afep->afe_intrlock);
2965 
2966 	return (0);
2967 }
2968 
2969 /*
2970  * Debugging and error reporting.
2971  */
2972 void
2973 afe_error(dev_info_t *dip, char *fmt, ...)
2974 {
2975 	va_list	ap;
2976 	char	buf[256];
2977 
2978 	va_start(ap, fmt);
2979 	(void) vsnprintf(buf, sizeof (buf), fmt, ap);
2980 	va_end(ap);
2981 
2982 	if (dip) {
2983 		cmn_err(CE_WARN, "%s%d: %s",
2984 		    ddi_driver_name(dip), ddi_get_instance(dip), buf);
2985 	} else {
2986 		cmn_err(CE_WARN, "afe: %s", buf);
2987 	}
2988 }
2989 
2990 #ifdef	DEBUG
2991 
2992 void
2993 afe_dprintf(afe_t *afep, const char *func, int level, char *fmt, ...)
2994 {
2995 	va_list	ap;
2996 
2997 	va_start(ap, fmt);
2998 	if (afe_debug & level) {
2999 		char	tag[64];
3000 		char	buf[256];
3001 
3002 		if (afep && afep->afe_dip) {
3003 			(void) snprintf(tag, sizeof (tag), "%s%d",
3004 			    ddi_driver_name(afep->afe_dip),
3005 			    ddi_get_instance(afep->afe_dip));
3006 		} else {
3007 			(void) snprintf(tag, sizeof (tag), "afe");
3008 		}
3009 
3010 		(void) snprintf(buf, sizeof (buf), "%s: %s: %s\n",
3011 		    tag, func, fmt);
3012 
3013 		vcmn_err(CE_CONT, buf, ap);
3014 	}
3015 	va_end(ap);
3016 }
3017 
3018 #endif
3019