xref: /illumos-gate/usr/src/uts/common/io/bge/bge_main2.c (revision bb25c06c)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 #include "bge_impl.h"
30 #include <sys/sdt.h>
31 
32 /*
33  * This is the string displayed by modinfo, etc.
34  * Make sure you keep the version ID up to date!
35  */
36 static char bge_ident[] = "Broadcom Gb Ethernet v0.52";
37 
38 /*
39  * Property names
40  */
41 static char debug_propname[] = "bge-debug-flags";
42 static char clsize_propname[] = "cache-line-size";
43 static char latency_propname[] = "latency-timer";
44 static char localmac_boolname[] = "local-mac-address?";
45 static char localmac_propname[] = "local-mac-address";
46 static char macaddr_propname[] = "mac-address";
47 static char subdev_propname[] = "subsystem-id";
48 static char subven_propname[] = "subsystem-vendor-id";
49 static char rxrings_propname[] = "bge-rx-rings";
50 static char txrings_propname[] = "bge-tx-rings";
51 static char fm_cap[] = "fm-capable";
52 static char default_mtu[] = "default_mtu";
53 
54 static int bge_add_intrs(bge_t *, int);
55 static void bge_rem_intrs(bge_t *);
56 
57 /*
58  * Describes the chip's DMA engine
59  */
60 static ddi_dma_attr_t dma_attr = {
61 	DMA_ATTR_V0,			/* dma_attr version	*/
62 	0x0000000000000000ull,		/* dma_attr_addr_lo	*/
63 	0xFFFFFFFFFFFFFFFFull,		/* dma_attr_addr_hi	*/
64 	0x00000000FFFFFFFFull,		/* dma_attr_count_max	*/
65 	0x0000000000000001ull,		/* dma_attr_align	*/
66 	0x00000FFF,			/* dma_attr_burstsizes	*/
67 	0x00000001,			/* dma_attr_minxfer	*/
68 	0x000000000000FFFFull,		/* dma_attr_maxxfer	*/
69 	0xFFFFFFFFFFFFFFFFull,		/* dma_attr_seg		*/
70 	1,				/* dma_attr_sgllen 	*/
71 	0x00000001,			/* dma_attr_granular 	*/
72 	DDI_DMA_FLAGERR			/* dma_attr_flags */
73 };
74 
75 /*
76  * PIO access attributes for registers
77  */
78 static ddi_device_acc_attr_t bge_reg_accattr = {
79 	DDI_DEVICE_ATTR_V0,
80 	DDI_NEVERSWAP_ACC,
81 	DDI_STRICTORDER_ACC,
82 	DDI_FLAGERR_ACC
83 };
84 
85 /*
86  * DMA access attributes for descriptors: NOT to be byte swapped.
87  */
88 static ddi_device_acc_attr_t bge_desc_accattr = {
89 	DDI_DEVICE_ATTR_V0,
90 	DDI_NEVERSWAP_ACC,
91 	DDI_STRICTORDER_ACC,
92 	DDI_FLAGERR_ACC
93 };
94 
95 /*
96  * DMA access attributes for data: NOT to be byte swapped.
97  */
98 static ddi_device_acc_attr_t bge_data_accattr = {
99 	DDI_DEVICE_ATTR_V0,
100 	DDI_NEVERSWAP_ACC,
101 	DDI_STRICTORDER_ACC
102 };
103 
104 static ether_addr_t bge_broadcast_addr = {
105 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff
106 };
107 
108 /*
109  * Versions of the O/S up to Solaris 8 didn't support network booting
110  * from any network interface except the first (NET0).  Patching this
111  * flag to a non-zero value will tell the driver to work around this
112  * limitation by creating an extra (internal) pathname node.  To do
113  * this, just add a line like the following to the CLIENT'S etc/system
114  * file ON THE ROOT FILESYSTEM SERVER before booting the client:
115  *
116  *	set bge:bge_net1_boot_support = 1;
117  */
118 static uint32_t bge_net1_boot_support = 1;
119 
120 static int		bge_m_start(void *);
121 static void		bge_m_stop(void *);
122 static int		bge_m_promisc(void *, boolean_t);
123 static int		bge_m_multicst(void *, boolean_t, const uint8_t *);
124 static int		bge_m_unicst(void *, const uint8_t *);
125 static void		bge_m_resources(void *);
126 static void		bge_m_ioctl(void *, queue_t *, mblk_t *);
127 static boolean_t	bge_m_getcapab(void *, mac_capab_t, void *);
128 static int		bge_unicst_set(void *, const uint8_t *,
129     mac_addr_slot_t);
130 static int		bge_m_unicst_add(void *, mac_multi_addr_t *);
131 static int		bge_m_unicst_remove(void *, mac_addr_slot_t);
132 static int		bge_m_unicst_modify(void *, mac_multi_addr_t *);
133 static int		bge_m_unicst_get(void *, mac_multi_addr_t *);
134 
135 #define	BGE_M_CALLBACK_FLAGS	(MC_RESOURCES | MC_IOCTL | MC_GETCAPAB)
136 
137 static mac_callbacks_t bge_m_callbacks = {
138 	BGE_M_CALLBACK_FLAGS,
139 	bge_m_stat,
140 	bge_m_start,
141 	bge_m_stop,
142 	bge_m_promisc,
143 	bge_m_multicst,
144 	bge_m_unicst,
145 	bge_m_tx,
146 	bge_m_resources,
147 	bge_m_ioctl,
148 	bge_m_getcapab
149 };
150 
151 /*
152  * ========== Transmit and receive ring reinitialisation ==========
153  */
154 
155 /*
156  * These <reinit> routines each reset the specified ring to an initial
157  * state, assuming that the corresponding <init> routine has already
158  * been called exactly once.
159  */
160 
161 static void
162 bge_reinit_send_ring(send_ring_t *srp)
163 {
164 	/*
165 	 * Reinitialise control variables ...
166 	 */
167 	ASSERT(srp->tx_flow == 0);
168 	srp->tx_next = 0;
169 	srp->tx_free = srp->desc.nslots;
170 
171 	ASSERT(mutex_owned(srp->tc_lock));
172 	srp->tc_next = 0;
173 
174 	/*
175 	 * Zero and sync all the h/w Send Buffer Descriptors
176 	 */
177 	DMA_ZERO(srp->desc);
178 	DMA_SYNC(srp->desc, DDI_DMA_SYNC_FORDEV);
179 }
180 
181 static void
182 bge_reinit_recv_ring(recv_ring_t *rrp)
183 {
184 	/*
185 	 * Reinitialise control variables ...
186 	 */
187 	rrp->rx_next = 0;
188 }
189 
190 static void
191 bge_reinit_buff_ring(buff_ring_t *brp, uint64_t ring)
192 {
193 	bge_rbd_t *hw_rbd_p;
194 	sw_rbd_t *srbdp;
195 	uint32_t bufsize;
196 	uint32_t nslots;
197 	uint32_t slot;
198 
199 	static uint16_t ring_type_flag[BGE_BUFF_RINGS_MAX] = {
200 		RBD_FLAG_STD_RING,
201 		RBD_FLAG_JUMBO_RING,
202 		RBD_FLAG_MINI_RING
203 	};
204 
205 	/*
206 	 * Zero, initialise and sync all the h/w Receive Buffer Descriptors
207 	 * Note: all the remaining fields (<type>, <flags>, <ip_cksum>,
208 	 * <tcp_udp_cksum>, <error_flag>, <vlan_tag>, and <reserved>)
209 	 * should be zeroed, and so don't need to be set up specifically
210 	 * once the whole area has been cleared.
211 	 */
212 	DMA_ZERO(brp->desc);
213 
214 	hw_rbd_p = DMA_VPTR(brp->desc);
215 	nslots = brp->desc.nslots;
216 	ASSERT(brp->buf[0].nslots == nslots/BGE_SPLIT);
217 	bufsize = brp->buf[0].size;
218 	srbdp = brp->sw_rbds;
219 	for (slot = 0; slot < nslots; ++hw_rbd_p, ++srbdp, ++slot) {
220 		hw_rbd_p->host_buf_addr = srbdp->pbuf.cookie.dmac_laddress;
221 		hw_rbd_p->index = slot;
222 		hw_rbd_p->len = bufsize;
223 		hw_rbd_p->opaque = srbdp->pbuf.token;
224 		hw_rbd_p->flags |= ring_type_flag[ring];
225 	}
226 
227 	DMA_SYNC(brp->desc, DDI_DMA_SYNC_FORDEV);
228 
229 	/*
230 	 * Finally, reinitialise the ring control variables ...
231 	 */
232 	brp->rf_next = (nslots != 0) ? (nslots-1) : 0;
233 }
234 
235 /*
236  * Reinitialize all rings
237  */
238 static void
239 bge_reinit_rings(bge_t *bgep)
240 {
241 	uint64_t ring;
242 
243 	ASSERT(mutex_owned(bgep->genlock));
244 
245 	/*
246 	 * Send Rings ...
247 	 */
248 	for (ring = 0; ring < bgep->chipid.tx_rings; ++ring)
249 		bge_reinit_send_ring(&bgep->send[ring]);
250 
251 	/*
252 	 * Receive Return Rings ...
253 	 */
254 	for (ring = 0; ring < bgep->chipid.rx_rings; ++ring)
255 		bge_reinit_recv_ring(&bgep->recv[ring]);
256 
257 	/*
258 	 * Receive Producer Rings ...
259 	 */
260 	for (ring = 0; ring < BGE_BUFF_RINGS_USED; ++ring)
261 		bge_reinit_buff_ring(&bgep->buff[ring], ring);
262 }
263 
264 /*
265  * ========== Internal state management entry points ==========
266  */
267 
268 #undef	BGE_DBG
269 #define	BGE_DBG		BGE_DBG_NEMO	/* debug flag for this code	*/
270 
271 /*
272  * These routines provide all the functionality required by the
273  * corresponding GLD entry points, but don't update the GLD state
274  * so they can be called internally without disturbing our record
275  * of what GLD thinks we should be doing ...
276  */
277 
278 /*
279  *	bge_reset() -- reset h/w & rings to initial state
280  */
281 static int
282 #ifdef BGE_IPMI_ASF
283 bge_reset(bge_t *bgep, uint_t asf_mode)
284 #else
285 bge_reset(bge_t *bgep)
286 #endif
287 {
288 	uint64_t	ring;
289 	int retval;
290 
291 	BGE_TRACE(("bge_reset($%p)", (void *)bgep));
292 
293 	ASSERT(mutex_owned(bgep->genlock));
294 
295 	/*
296 	 * Grab all the other mutexes in the world (this should
297 	 * ensure no other threads are manipulating driver state)
298 	 */
299 	for (ring = 0; ring < BGE_RECV_RINGS_MAX; ++ring)
300 		mutex_enter(bgep->recv[ring].rx_lock);
301 	for (ring = 0; ring < BGE_BUFF_RINGS_MAX; ++ring)
302 		mutex_enter(bgep->buff[ring].rf_lock);
303 	rw_enter(bgep->errlock, RW_WRITER);
304 	for (ring = 0; ring < BGE_SEND_RINGS_MAX; ++ring)
305 		mutex_enter(bgep->send[ring].tc_lock);
306 
307 #ifdef BGE_IPMI_ASF
308 	retval = bge_chip_reset(bgep, B_TRUE, asf_mode);
309 #else
310 	retval = bge_chip_reset(bgep, B_TRUE);
311 #endif
312 	bge_reinit_rings(bgep);
313 
314 	/*
315 	 * Free the world ...
316 	 */
317 	for (ring = BGE_SEND_RINGS_MAX; ring-- > 0; )
318 		mutex_exit(bgep->send[ring].tc_lock);
319 	rw_exit(bgep->errlock);
320 	for (ring = BGE_BUFF_RINGS_MAX; ring-- > 0; )
321 		mutex_exit(bgep->buff[ring].rf_lock);
322 	for (ring = BGE_RECV_RINGS_MAX; ring-- > 0; )
323 		mutex_exit(bgep->recv[ring].rx_lock);
324 
325 	BGE_DEBUG(("bge_reset($%p) done", (void *)bgep));
326 	return (retval);
327 }
328 
329 /*
330  *	bge_stop() -- stop processing, don't reset h/w or rings
331  */
332 static void
333 bge_stop(bge_t *bgep)
334 {
335 	BGE_TRACE(("bge_stop($%p)", (void *)bgep));
336 
337 	ASSERT(mutex_owned(bgep->genlock));
338 
339 #ifdef BGE_IPMI_ASF
340 	if (bgep->asf_enabled) {
341 		bgep->asf_pseudostop = B_TRUE;
342 	} else {
343 #endif
344 		bge_chip_stop(bgep, B_FALSE);
345 #ifdef BGE_IPMI_ASF
346 	}
347 #endif
348 
349 	BGE_DEBUG(("bge_stop($%p) done", (void *)bgep));
350 }
351 
352 /*
353  *	bge_start() -- start transmitting/receiving
354  */
355 static int
356 bge_start(bge_t *bgep, boolean_t reset_phys)
357 {
358 	int retval;
359 
360 	BGE_TRACE(("bge_start($%p, %d)", (void *)bgep, reset_phys));
361 
362 	ASSERT(mutex_owned(bgep->genlock));
363 
364 	/*
365 	 * Start chip processing, including enabling interrupts
366 	 */
367 	retval = bge_chip_start(bgep, reset_phys);
368 
369 	BGE_DEBUG(("bge_start($%p, %d) done", (void *)bgep, reset_phys));
370 	return (retval);
371 }
372 
373 /*
374  * bge_restart - restart transmitting/receiving after error or suspend
375  */
376 int
377 bge_restart(bge_t *bgep, boolean_t reset_phys)
378 {
379 	int retval = DDI_SUCCESS;
380 	ASSERT(mutex_owned(bgep->genlock));
381 
382 #ifdef BGE_IPMI_ASF
383 	if (bgep->asf_enabled) {
384 		if (bge_reset(bgep, ASF_MODE_POST_INIT) != DDI_SUCCESS)
385 			retval = DDI_FAILURE;
386 	} else
387 		if (bge_reset(bgep, ASF_MODE_NONE) != DDI_SUCCESS)
388 			retval = DDI_FAILURE;
389 #else
390 	if (bge_reset(bgep) != DDI_SUCCESS)
391 		retval = DDI_FAILURE;
392 #endif
393 	if (bgep->bge_mac_state == BGE_MAC_STARTED) {
394 		if (bge_start(bgep, reset_phys) != DDI_SUCCESS)
395 			retval = DDI_FAILURE;
396 		bgep->watchdog = 0;
397 		ddi_trigger_softintr(bgep->resched_id);
398 	}
399 
400 	BGE_DEBUG(("bge_restart($%p, %d) done", (void *)bgep, reset_phys));
401 	return (retval);
402 }
403 
404 
405 /*
406  * ========== Nemo-required management entry points ==========
407  */
408 
409 #undef	BGE_DBG
410 #define	BGE_DBG		BGE_DBG_NEMO	/* debug flag for this code	*/
411 
412 /*
413  *	bge_m_stop() -- stop transmitting/receiving
414  */
415 static void
416 bge_m_stop(void *arg)
417 {
418 	bge_t *bgep = arg;		/* private device info	*/
419 
420 	BGE_TRACE(("bge_m_stop($%p)", arg));
421 
422 	/*
423 	 * Just stop processing, then record new GLD state
424 	 */
425 	mutex_enter(bgep->genlock);
426 	if (!(bgep->progress & PROGRESS_INTR)) {
427 		/* can happen during autorecovery */
428 		mutex_exit(bgep->genlock);
429 		return;
430 	}
431 
432 	bgep->link_up_msg = bgep->link_down_msg = " (stopped)";
433 	bge_stop(bgep);
434 	bgep->bge_mac_state = BGE_MAC_STOPPED;
435 	BGE_DEBUG(("bge_m_stop($%p) done", arg));
436 	if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
437 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_UNAFFECTED);
438 	mutex_exit(bgep->genlock);
439 }
440 
441 /*
442  *	bge_m_start() -- start transmitting/receiving
443  */
444 static int
445 bge_m_start(void *arg)
446 {
447 	bge_t *bgep = arg;		/* private device info	*/
448 
449 	BGE_TRACE(("bge_m_start($%p)", arg));
450 
451 	/*
452 	 * Start processing and record new GLD state
453 	 */
454 	mutex_enter(bgep->genlock);
455 	if (!(bgep->progress & PROGRESS_INTR)) {
456 		/* can happen during autorecovery */
457 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
458 		mutex_exit(bgep->genlock);
459 		return (EIO);
460 	}
461 #ifdef BGE_IPMI_ASF
462 	if (bgep->asf_enabled) {
463 		if ((bgep->asf_status == ASF_STAT_RUN) &&
464 			(bgep->asf_pseudostop)) {
465 
466 			bgep->link_up_msg = bgep->link_down_msg
467 				= " (initialized)";
468 			bgep->bge_mac_state = BGE_MAC_STARTED;
469 			mutex_exit(bgep->genlock);
470 			return (0);
471 		}
472 	}
473 	if (bge_reset(bgep, ASF_MODE_INIT) != DDI_SUCCESS) {
474 #else
475 	if (bge_reset(bgep) != DDI_SUCCESS) {
476 #endif
477 		(void) bge_check_acc_handle(bgep, bgep->cfg_handle);
478 		(void) bge_check_acc_handle(bgep, bgep->io_handle);
479 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
480 		mutex_exit(bgep->genlock);
481 		return (EIO);
482 	}
483 	bgep->link_up_msg = bgep->link_down_msg = " (initialized)";
484 	if (bge_start(bgep, B_TRUE) != DDI_SUCCESS) {
485 		(void) bge_check_acc_handle(bgep, bgep->cfg_handle);
486 		(void) bge_check_acc_handle(bgep, bgep->io_handle);
487 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
488 		mutex_exit(bgep->genlock);
489 		return (EIO);
490 	}
491 	bgep->bge_mac_state = BGE_MAC_STARTED;
492 	BGE_DEBUG(("bge_m_start($%p) done", arg));
493 
494 	if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK) {
495 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
496 		mutex_exit(bgep->genlock);
497 		return (EIO);
498 	}
499 	if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK) {
500 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
501 		mutex_exit(bgep->genlock);
502 		return (EIO);
503 	}
504 #ifdef BGE_IPMI_ASF
505 	if (bgep->asf_enabled) {
506 		if (bgep->asf_status != ASF_STAT_RUN) {
507 			/* start ASF heart beat */
508 			bgep->asf_timeout_id = timeout(bge_asf_heartbeat,
509 				(void *)bgep,
510 				drv_usectohz(BGE_ASF_HEARTBEAT_INTERVAL));
511 			bgep->asf_status = ASF_STAT_RUN;
512 		}
513 	}
514 #endif
515 	mutex_exit(bgep->genlock);
516 
517 	return (0);
518 }
519 
520 /*
521  *	bge_m_unicst() -- set the physical network address
522  */
523 static int
524 bge_m_unicst(void *arg, const uint8_t *macaddr)
525 {
526 	/*
527 	 * Request to set address in
528 	 * address slot 0, i.e., default address
529 	 */
530 	return (bge_unicst_set(arg, macaddr, 0));
531 }
532 
533 /*
534  *	bge_unicst_set() -- set the physical network address
535  */
536 static int
537 bge_unicst_set(void *arg, const uint8_t *macaddr, mac_addr_slot_t slot)
538 {
539 	bge_t *bgep = arg;		/* private device info	*/
540 
541 	BGE_TRACE(("bge_m_unicst_set($%p, %s)", arg,
542 		ether_sprintf((void *)macaddr)));
543 	/*
544 	 * Remember the new current address in the driver state
545 	 * Sync the chip's idea of the address too ...
546 	 */
547 	mutex_enter(bgep->genlock);
548 	if (!(bgep->progress & PROGRESS_INTR)) {
549 		/* can happen during autorecovery */
550 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
551 		mutex_exit(bgep->genlock);
552 		return (EIO);
553 	}
554 	ethaddr_copy(macaddr, bgep->curr_addr[slot].addr);
555 #ifdef BGE_IPMI_ASF
556 	if (bge_chip_sync(bgep, B_FALSE) == DDI_FAILURE) {
557 #else
558 	if (bge_chip_sync(bgep) == DDI_FAILURE) {
559 #endif
560 		(void) bge_check_acc_handle(bgep, bgep->cfg_handle);
561 		(void) bge_check_acc_handle(bgep, bgep->io_handle);
562 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
563 		mutex_exit(bgep->genlock);
564 		return (EIO);
565 	}
566 #ifdef BGE_IPMI_ASF
567 	if (bgep->asf_enabled) {
568 		/*
569 		 * The above bge_chip_sync() function wrote the ethernet MAC
570 		 * addresses registers which destroyed the IPMI/ASF sideband.
571 		 * Here, we have to reset chip to make IPMI/ASF sideband work.
572 		 */
573 		if (bgep->asf_status == ASF_STAT_RUN) {
574 			/*
575 			 * We must stop ASF heart beat before bge_chip_stop(),
576 			 * otherwise some computers (ex. IBM HS20 blade server)
577 			 * may crash.
578 			 */
579 			bge_asf_update_status(bgep);
580 			bge_asf_stop_timer(bgep);
581 			bgep->asf_status = ASF_STAT_STOP;
582 
583 			bge_asf_pre_reset_operations(bgep, BGE_INIT_RESET);
584 		}
585 		bge_chip_stop(bgep, B_FALSE);
586 
587 		if (bge_restart(bgep, B_FALSE) == DDI_FAILURE) {
588 			(void) bge_check_acc_handle(bgep, bgep->cfg_handle);
589 			(void) bge_check_acc_handle(bgep, bgep->io_handle);
590 			ddi_fm_service_impact(bgep->devinfo,
591 			    DDI_SERVICE_DEGRADED);
592 			mutex_exit(bgep->genlock);
593 			return (EIO);
594 		}
595 
596 		/*
597 		 * Start our ASF heartbeat counter as soon as possible.
598 		 */
599 		if (bgep->asf_status != ASF_STAT_RUN) {
600 			/* start ASF heart beat */
601 			bgep->asf_timeout_id = timeout(bge_asf_heartbeat,
602 				(void *)bgep,
603 				drv_usectohz(BGE_ASF_HEARTBEAT_INTERVAL));
604 			bgep->asf_status = ASF_STAT_RUN;
605 		}
606 	}
607 #endif
608 	BGE_DEBUG(("bge_m_unicst_set($%p) done", arg));
609 	if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK) {
610 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
611 		mutex_exit(bgep->genlock);
612 		return (EIO);
613 	}
614 	if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK) {
615 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
616 		mutex_exit(bgep->genlock);
617 		return (EIO);
618 	}
619 	mutex_exit(bgep->genlock);
620 
621 	return (0);
622 }
623 
624 /*
625  * The following four routines are used as callbacks for multiple MAC
626  * address support:
627  *    -  bge_m_unicst_add(void *, mac_multi_addr_t *);
628  *    -  bge_m_unicst_remove(void *, mac_addr_slot_t);
629  *    -  bge_m_unicst_modify(void *, mac_multi_addr_t *);
630  *    -  bge_m_unicst_get(void *, mac_multi_addr_t *);
631  */
632 
633 /*
634  * bge_m_unicst_add() - will find an unused address slot, set the
635  * address value to the one specified, reserve that slot and enable
636  * the NIC to start filtering on the new MAC address.
637  * address slot. Returns 0 on success.
638  */
639 static int
640 bge_m_unicst_add(void *arg, mac_multi_addr_t *maddr)
641 {
642 	bge_t *bgep = arg;		/* private device info	*/
643 	mac_addr_slot_t slot;
644 	int err;
645 
646 	if (mac_unicst_verify(bgep->mh,
647 	    maddr->mma_addr, maddr->mma_addrlen) == B_FALSE)
648 		return (EINVAL);
649 
650 	mutex_enter(bgep->genlock);
651 	if (bgep->unicst_addr_avail == 0) {
652 		/* no slots available */
653 		mutex_exit(bgep->genlock);
654 		return (ENOSPC);
655 	}
656 
657 	/*
658 	 * Primary/default address is in slot 0. The next three
659 	 * addresses are the multiple MAC addresses. So multiple
660 	 * MAC address 0 is in slot 1, 1 in slot 2, and so on.
661 	 * So the first multiple MAC address resides in slot 1.
662 	 */
663 	for (slot = 1; slot < bgep->unicst_addr_total; slot++) {
664 		if (bgep->curr_addr[slot].set == B_FALSE) {
665 			bgep->curr_addr[slot].set = B_TRUE;
666 			break;
667 		}
668 	}
669 
670 	ASSERT(slot < bgep->unicst_addr_total);
671 	bgep->unicst_addr_avail--;
672 	mutex_exit(bgep->genlock);
673 	maddr->mma_slot = slot;
674 
675 	if ((err = bge_unicst_set(bgep, maddr->mma_addr, slot)) != 0) {
676 		mutex_enter(bgep->genlock);
677 		bgep->curr_addr[slot].set = B_FALSE;
678 		bgep->unicst_addr_avail++;
679 		mutex_exit(bgep->genlock);
680 	}
681 	return (err);
682 }
683 
684 /*
685  * bge_m_unicst_remove() - removes a MAC address that was added by a
686  * call to bge_m_unicst_add(). The slot number that was returned in
687  * add() is passed in the call to remove the address.
688  * Returns 0 on success.
689  */
690 static int
691 bge_m_unicst_remove(void *arg, mac_addr_slot_t slot)
692 {
693 	bge_t *bgep = arg;		/* private device info	*/
694 
695 	if (slot <= 0 || slot >= bgep->unicst_addr_total)
696 		return (EINVAL);
697 
698 	mutex_enter(bgep->genlock);
699 	if (bgep->curr_addr[slot].set == B_TRUE) {
700 		bgep->curr_addr[slot].set = B_FALSE;
701 		bgep->unicst_addr_avail++;
702 		mutex_exit(bgep->genlock);
703 		/*
704 		 * Copy the default address to the passed slot
705 		 */
706 		return (bge_unicst_set(bgep, bgep->curr_addr[0].addr, slot));
707 	}
708 	mutex_exit(bgep->genlock);
709 	return (EINVAL);
710 }
711 
712 /*
713  * bge_m_unicst_modify() - modifies the value of an address that
714  * has been added by bge_m_unicst_add(). The new address, address
715  * length and the slot number that was returned in the call to add
716  * should be passed to bge_m_unicst_modify(). mma_flags should be
717  * set to 0. Returns 0 on success.
718  */
719 static int
720 bge_m_unicst_modify(void *arg, mac_multi_addr_t *maddr)
721 {
722 	bge_t *bgep = arg;		/* private device info	*/
723 	mac_addr_slot_t slot;
724 
725 	if (mac_unicst_verify(bgep->mh,
726 	    maddr->mma_addr, maddr->mma_addrlen) == B_FALSE)
727 		return (EINVAL);
728 
729 	slot = maddr->mma_slot;
730 
731 	if (slot <= 0 || slot >= bgep->unicst_addr_total)
732 		return (EINVAL);
733 
734 	mutex_enter(bgep->genlock);
735 	if (bgep->curr_addr[slot].set == B_TRUE) {
736 		mutex_exit(bgep->genlock);
737 		return (bge_unicst_set(bgep, maddr->mma_addr, slot));
738 	}
739 	mutex_exit(bgep->genlock);
740 
741 	return (EINVAL);
742 }
743 
744 /*
745  * bge_m_unicst_get() - will get the MAC address and all other
746  * information related to the address slot passed in mac_multi_addr_t.
747  * mma_flags should be set to 0 in the call.
748  * On return, mma_flags can take the following values:
749  * 1) MMAC_SLOT_UNUSED
750  * 2) MMAC_SLOT_USED | MMAC_VENDOR_ADDR
751  * 3) MMAC_SLOT_UNUSED | MMAC_VENDOR_ADDR
752  * 4) MMAC_SLOT_USED
753  */
754 static int
755 bge_m_unicst_get(void *arg, mac_multi_addr_t *maddr)
756 {
757 	bge_t *bgep = arg;		/* private device info	*/
758 	mac_addr_slot_t slot;
759 
760 	slot = maddr->mma_slot;
761 
762 	if (slot <= 0 || slot >= bgep->unicst_addr_total)
763 		return (EINVAL);
764 
765 	mutex_enter(bgep->genlock);
766 	if (bgep->curr_addr[slot].set == B_TRUE) {
767 		ethaddr_copy(bgep->curr_addr[slot].addr,
768 		    maddr->mma_addr);
769 		maddr->mma_flags = MMAC_SLOT_USED;
770 	} else {
771 		maddr->mma_flags = MMAC_SLOT_UNUSED;
772 	}
773 	mutex_exit(bgep->genlock);
774 
775 	return (0);
776 }
777 
778 /*
779  * Compute the index of the required bit in the multicast hash map.
780  * This must mirror the way the hardware actually does it!
781  * See Broadcom document 570X-PG102-R page 125.
782  */
783 static uint32_t
784 bge_hash_index(const uint8_t *mca)
785 {
786 	uint32_t hash;
787 
788 	CRC32(hash, mca, ETHERADDRL, -1U, crc32_table);
789 
790 	return (hash);
791 }
792 
793 /*
794  *	bge_m_multicst_add() -- enable/disable a multicast address
795  */
796 static int
797 bge_m_multicst(void *arg, boolean_t add, const uint8_t *mca)
798 {
799 	bge_t *bgep = arg;		/* private device info	*/
800 	uint32_t hash;
801 	uint32_t index;
802 	uint32_t word;
803 	uint32_t bit;
804 	uint8_t *refp;
805 
806 	BGE_TRACE(("bge_m_multicst($%p, %s, %s)", arg,
807 		(add) ? "add" : "remove", ether_sprintf((void *)mca)));
808 
809 	/*
810 	 * Precalculate all required masks, pointers etc ...
811 	 */
812 	hash = bge_hash_index(mca);
813 	index = hash % BGE_HASH_TABLE_SIZE;
814 	word = index/32u;
815 	bit = 1 << (index % 32u);
816 	refp = &bgep->mcast_refs[index];
817 
818 	BGE_DEBUG(("bge_m_multicst: hash 0x%x index %d (%d:0x%x) = %d",
819 		hash, index, word, bit, *refp));
820 
821 	/*
822 	 * We must set the appropriate bit in the hash map (and the
823 	 * corresponding h/w register) when the refcount goes from 0
824 	 * to >0, and clear it when the last ref goes away (refcount
825 	 * goes from >0 back to 0).  If we change the hash map, we
826 	 * must also update the chip's hardware map registers.
827 	 */
828 	mutex_enter(bgep->genlock);
829 	if (!(bgep->progress & PROGRESS_INTR)) {
830 		/* can happen during autorecovery */
831 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
832 		mutex_exit(bgep->genlock);
833 		return (EIO);
834 	}
835 	if (add) {
836 		if ((*refp)++ == 0) {
837 			bgep->mcast_hash[word] |= bit;
838 #ifdef BGE_IPMI_ASF
839 			if (bge_chip_sync(bgep, B_TRUE) == DDI_FAILURE) {
840 #else
841 			if (bge_chip_sync(bgep) == DDI_FAILURE) {
842 #endif
843 				(void) bge_check_acc_handle(bgep,
844 				    bgep->cfg_handle);
845 				(void) bge_check_acc_handle(bgep,
846 				    bgep->io_handle);
847 				ddi_fm_service_impact(bgep->devinfo,
848 				    DDI_SERVICE_DEGRADED);
849 				mutex_exit(bgep->genlock);
850 				return (EIO);
851 			}
852 		}
853 	} else {
854 		if (--(*refp) == 0) {
855 			bgep->mcast_hash[word] &= ~bit;
856 #ifdef BGE_IPMI_ASF
857 			if (bge_chip_sync(bgep, B_TRUE) == DDI_FAILURE) {
858 #else
859 			if (bge_chip_sync(bgep) == DDI_FAILURE) {
860 #endif
861 				(void) bge_check_acc_handle(bgep,
862 				    bgep->cfg_handle);
863 				(void) bge_check_acc_handle(bgep,
864 				    bgep->io_handle);
865 				ddi_fm_service_impact(bgep->devinfo,
866 				    DDI_SERVICE_DEGRADED);
867 				mutex_exit(bgep->genlock);
868 				return (EIO);
869 			}
870 		}
871 	}
872 	BGE_DEBUG(("bge_m_multicst($%p) done", arg));
873 	if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK) {
874 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
875 		mutex_exit(bgep->genlock);
876 		return (EIO);
877 	}
878 	if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK) {
879 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
880 		mutex_exit(bgep->genlock);
881 		return (EIO);
882 	}
883 	mutex_exit(bgep->genlock);
884 
885 	return (0);
886 }
887 
888 /*
889  * bge_m_promisc() -- set or reset promiscuous mode on the board
890  *
891  *	Program the hardware to enable/disable promiscuous and/or
892  *	receive-all-multicast modes.
893  */
894 static int
895 bge_m_promisc(void *arg, boolean_t on)
896 {
897 	bge_t *bgep = arg;
898 
899 	BGE_TRACE(("bge_m_promisc_set($%p, %d)", arg, on));
900 
901 	/*
902 	 * Store MAC layer specified mode and pass to chip layer to update h/w
903 	 */
904 	mutex_enter(bgep->genlock);
905 	if (!(bgep->progress & PROGRESS_INTR)) {
906 		/* can happen during autorecovery */
907 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
908 		mutex_exit(bgep->genlock);
909 		return (EIO);
910 	}
911 	bgep->promisc = on;
912 #ifdef BGE_IPMI_ASF
913 	if (bge_chip_sync(bgep, B_TRUE) == DDI_FAILURE) {
914 #else
915 	if (bge_chip_sync(bgep) == DDI_FAILURE) {
916 #endif
917 		(void) bge_check_acc_handle(bgep, bgep->cfg_handle);
918 		(void) bge_check_acc_handle(bgep, bgep->io_handle);
919 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
920 		mutex_exit(bgep->genlock);
921 		return (EIO);
922 	}
923 	BGE_DEBUG(("bge_m_promisc_set($%p) done", arg));
924 	if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK) {
925 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
926 		mutex_exit(bgep->genlock);
927 		return (EIO);
928 	}
929 	if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK) {
930 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
931 		mutex_exit(bgep->genlock);
932 		return (EIO);
933 	}
934 	mutex_exit(bgep->genlock);
935 	return (0);
936 }
937 
938 /*ARGSUSED*/
939 static boolean_t
940 bge_m_getcapab(void *arg, mac_capab_t cap, void *cap_data)
941 {
942 	bge_t *bgep = arg;
943 
944 	switch (cap) {
945 	case MAC_CAPAB_HCKSUM: {
946 		uint32_t *txflags = cap_data;
947 
948 		*txflags = HCKSUM_INET_FULL_V4 | HCKSUM_IPHDRCKSUM;
949 		break;
950 	}
951 
952 	case MAC_CAPAB_POLL:
953 		/*
954 		 * There's nothing for us to fill in, simply returning
955 		 * B_TRUE stating that we support polling is sufficient.
956 		 */
957 		break;
958 
959 	case MAC_CAPAB_MULTIADDRESS: {
960 		multiaddress_capab_t	*mmacp = cap_data;
961 
962 		mutex_enter(bgep->genlock);
963 		/*
964 		 * The number of MAC addresses made available by
965 		 * this capability is one less than the total as
966 		 * the primary address in slot 0 is counted in
967 		 * the total.
968 		 */
969 		mmacp->maddr_naddr = bgep->unicst_addr_total - 1;
970 		mmacp->maddr_naddrfree = bgep->unicst_addr_avail;
971 		/* No multiple factory addresses, set mma_flag to 0 */
972 		mmacp->maddr_flag = 0;
973 		mmacp->maddr_handle = bgep;
974 		mmacp->maddr_add = bge_m_unicst_add;
975 		mmacp->maddr_remove = bge_m_unicst_remove;
976 		mmacp->maddr_modify = bge_m_unicst_modify;
977 		mmacp->maddr_get = bge_m_unicst_get;
978 		mmacp->maddr_reserve = NULL;
979 		mutex_exit(bgep->genlock);
980 		break;
981 	}
982 
983 	default:
984 		return (B_FALSE);
985 	}
986 	return (B_TRUE);
987 }
988 
989 /*
990  * Loopback ioctl code
991  */
992 
993 static lb_property_t loopmodes[] = {
994 	{ normal,	"normal",	BGE_LOOP_NONE		},
995 	{ external,	"1000Mbps",	BGE_LOOP_EXTERNAL_1000	},
996 	{ external,	"100Mbps",	BGE_LOOP_EXTERNAL_100	},
997 	{ external,	"10Mbps",	BGE_LOOP_EXTERNAL_10	},
998 	{ internal,	"PHY",		BGE_LOOP_INTERNAL_PHY	},
999 	{ internal,	"MAC",		BGE_LOOP_INTERNAL_MAC	}
1000 };
1001 
1002 static enum ioc_reply
1003 bge_set_loop_mode(bge_t *bgep, uint32_t mode)
1004 {
1005 	const char *msg;
1006 
1007 	/*
1008 	 * If the mode isn't being changed, there's nothing to do ...
1009 	 */
1010 	if (mode == bgep->param_loop_mode)
1011 		return (IOC_ACK);
1012 
1013 	/*
1014 	 * Validate the requested mode and prepare a suitable message
1015 	 * to explain the link down/up cycle that the change will
1016 	 * probably induce ...
1017 	 */
1018 	switch (mode) {
1019 	default:
1020 		return (IOC_INVAL);
1021 
1022 	case BGE_LOOP_NONE:
1023 		msg = " (loopback disabled)";
1024 		break;
1025 
1026 	case BGE_LOOP_EXTERNAL_1000:
1027 	case BGE_LOOP_EXTERNAL_100:
1028 	case BGE_LOOP_EXTERNAL_10:
1029 		msg = " (external loopback selected)";
1030 		break;
1031 
1032 	case BGE_LOOP_INTERNAL_PHY:
1033 		msg = " (PHY internal loopback selected)";
1034 		break;
1035 
1036 	case BGE_LOOP_INTERNAL_MAC:
1037 		msg = " (MAC internal loopback selected)";
1038 		break;
1039 	}
1040 
1041 	/*
1042 	 * All OK; tell the caller to reprogram
1043 	 * the PHY and/or MAC for the new mode ...
1044 	 */
1045 	bgep->link_down_msg = bgep->link_up_msg = msg;
1046 	bgep->param_loop_mode = mode;
1047 	return (IOC_RESTART_ACK);
1048 }
1049 
1050 static enum ioc_reply
1051 bge_loop_ioctl(bge_t *bgep, queue_t *wq, mblk_t *mp, struct iocblk *iocp)
1052 {
1053 	lb_info_sz_t *lbsp;
1054 	lb_property_t *lbpp;
1055 	uint32_t *lbmp;
1056 	int cmd;
1057 
1058 	_NOTE(ARGUNUSED(wq))
1059 
1060 	/*
1061 	 * Validate format of ioctl
1062 	 */
1063 	if (mp->b_cont == NULL)
1064 		return (IOC_INVAL);
1065 
1066 	cmd = iocp->ioc_cmd;
1067 	switch (cmd) {
1068 	default:
1069 		/* NOTREACHED */
1070 		bge_error(bgep, "bge_loop_ioctl: invalid cmd 0x%x", cmd);
1071 		return (IOC_INVAL);
1072 
1073 	case LB_GET_INFO_SIZE:
1074 		if (iocp->ioc_count != sizeof (lb_info_sz_t))
1075 			return (IOC_INVAL);
1076 		lbsp = (lb_info_sz_t *)mp->b_cont->b_rptr;
1077 		*lbsp = sizeof (loopmodes);
1078 		return (IOC_REPLY);
1079 
1080 	case LB_GET_INFO:
1081 		if (iocp->ioc_count != sizeof (loopmodes))
1082 			return (IOC_INVAL);
1083 		lbpp = (lb_property_t *)mp->b_cont->b_rptr;
1084 		bcopy(loopmodes, lbpp, sizeof (loopmodes));
1085 		return (IOC_REPLY);
1086 
1087 	case LB_GET_MODE:
1088 		if (iocp->ioc_count != sizeof (uint32_t))
1089 			return (IOC_INVAL);
1090 		lbmp = (uint32_t *)mp->b_cont->b_rptr;
1091 		*lbmp = bgep->param_loop_mode;
1092 		return (IOC_REPLY);
1093 
1094 	case LB_SET_MODE:
1095 		if (iocp->ioc_count != sizeof (uint32_t))
1096 			return (IOC_INVAL);
1097 		lbmp = (uint32_t *)mp->b_cont->b_rptr;
1098 		return (bge_set_loop_mode(bgep, *lbmp));
1099 	}
1100 }
1101 
1102 /*
1103  * Specific bge IOCTLs, the gld module handles the generic ones.
1104  */
1105 static void
1106 bge_m_ioctl(void *arg, queue_t *wq, mblk_t *mp)
1107 {
1108 	bge_t *bgep = arg;
1109 	struct iocblk *iocp;
1110 	enum ioc_reply status;
1111 	boolean_t need_privilege;
1112 	int err;
1113 	int cmd;
1114 
1115 	/*
1116 	 * Validate the command before bothering with the mutex ...
1117 	 */
1118 	iocp = (struct iocblk *)mp->b_rptr;
1119 	iocp->ioc_error = 0;
1120 	need_privilege = B_TRUE;
1121 	cmd = iocp->ioc_cmd;
1122 	switch (cmd) {
1123 	default:
1124 		miocnak(wq, mp, 0, EINVAL);
1125 		return;
1126 
1127 	case BGE_MII_READ:
1128 	case BGE_MII_WRITE:
1129 	case BGE_SEE_READ:
1130 	case BGE_SEE_WRITE:
1131 	case BGE_FLASH_READ:
1132 	case BGE_FLASH_WRITE:
1133 	case BGE_DIAG:
1134 	case BGE_PEEK:
1135 	case BGE_POKE:
1136 	case BGE_PHY_RESET:
1137 	case BGE_SOFT_RESET:
1138 	case BGE_HARD_RESET:
1139 		break;
1140 
1141 	case LB_GET_INFO_SIZE:
1142 	case LB_GET_INFO:
1143 	case LB_GET_MODE:
1144 		need_privilege = B_FALSE;
1145 		/* FALLTHRU */
1146 	case LB_SET_MODE:
1147 		break;
1148 
1149 	case ND_GET:
1150 		need_privilege = B_FALSE;
1151 		/* FALLTHRU */
1152 	case ND_SET:
1153 		break;
1154 	}
1155 
1156 	if (need_privilege) {
1157 		/*
1158 		 * Check for specific net_config privilege on Solaris 10+.
1159 		 */
1160 		err = secpolicy_net_config(iocp->ioc_cr, B_FALSE);
1161 		if (err != 0) {
1162 			miocnak(wq, mp, 0, err);
1163 			return;
1164 		}
1165 	}
1166 
1167 	mutex_enter(bgep->genlock);
1168 	if (!(bgep->progress & PROGRESS_INTR)) {
1169 		/* can happen during autorecovery */
1170 		mutex_exit(bgep->genlock);
1171 		miocnak(wq, mp, 0, EIO);
1172 		return;
1173 	}
1174 
1175 	switch (cmd) {
1176 	default:
1177 		_NOTE(NOTREACHED)
1178 		status = IOC_INVAL;
1179 		break;
1180 
1181 	case BGE_MII_READ:
1182 	case BGE_MII_WRITE:
1183 	case BGE_SEE_READ:
1184 	case BGE_SEE_WRITE:
1185 	case BGE_FLASH_READ:
1186 	case BGE_FLASH_WRITE:
1187 	case BGE_DIAG:
1188 	case BGE_PEEK:
1189 	case BGE_POKE:
1190 	case BGE_PHY_RESET:
1191 	case BGE_SOFT_RESET:
1192 	case BGE_HARD_RESET:
1193 		status = bge_chip_ioctl(bgep, wq, mp, iocp);
1194 		break;
1195 
1196 	case LB_GET_INFO_SIZE:
1197 	case LB_GET_INFO:
1198 	case LB_GET_MODE:
1199 	case LB_SET_MODE:
1200 		status = bge_loop_ioctl(bgep, wq, mp, iocp);
1201 		break;
1202 
1203 	case ND_GET:
1204 	case ND_SET:
1205 		status = bge_nd_ioctl(bgep, wq, mp, iocp);
1206 		break;
1207 	}
1208 
1209 	/*
1210 	 * Do we need to reprogram the PHY and/or the MAC?
1211 	 * Do it now, while we still have the mutex.
1212 	 *
1213 	 * Note: update the PHY first, 'cos it controls the
1214 	 * speed/duplex parameters that the MAC code uses.
1215 	 */
1216 	switch (status) {
1217 	case IOC_RESTART_REPLY:
1218 	case IOC_RESTART_ACK:
1219 		if (bge_phys_update(bgep) != DDI_SUCCESS) {
1220 			ddi_fm_service_impact(bgep->devinfo,
1221 			    DDI_SERVICE_DEGRADED);
1222 			status = IOC_INVAL;
1223 		}
1224 #ifdef BGE_IPMI_ASF
1225 		if (bge_chip_sync(bgep, B_TRUE) == DDI_FAILURE) {
1226 #else
1227 		if (bge_chip_sync(bgep) == DDI_FAILURE) {
1228 #endif
1229 			ddi_fm_service_impact(bgep->devinfo,
1230 			    DDI_SERVICE_DEGRADED);
1231 			status = IOC_INVAL;
1232 		}
1233 		if (bgep->intr_type == DDI_INTR_TYPE_MSI)
1234 			bge_chip_msi_trig(bgep);
1235 		break;
1236 	}
1237 
1238 	if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK) {
1239 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
1240 		status = IOC_INVAL;
1241 	}
1242 	if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK) {
1243 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
1244 		status = IOC_INVAL;
1245 	}
1246 	mutex_exit(bgep->genlock);
1247 
1248 	/*
1249 	 * Finally, decide how to reply
1250 	 */
1251 	switch (status) {
1252 	default:
1253 	case IOC_INVAL:
1254 		/*
1255 		 * Error, reply with a NAK and EINVAL or the specified error
1256 		 */
1257 		miocnak(wq, mp, 0, iocp->ioc_error == 0 ?
1258 			EINVAL : iocp->ioc_error);
1259 		break;
1260 
1261 	case IOC_DONE:
1262 		/*
1263 		 * OK, reply already sent
1264 		 */
1265 		break;
1266 
1267 	case IOC_RESTART_ACK:
1268 	case IOC_ACK:
1269 		/*
1270 		 * OK, reply with an ACK
1271 		 */
1272 		miocack(wq, mp, 0, 0);
1273 		break;
1274 
1275 	case IOC_RESTART_REPLY:
1276 	case IOC_REPLY:
1277 		/*
1278 		 * OK, send prepared reply as ACK or NAK
1279 		 */
1280 		mp->b_datap->db_type = iocp->ioc_error == 0 ?
1281 			M_IOCACK : M_IOCNAK;
1282 		qreply(wq, mp);
1283 		break;
1284 	}
1285 }
1286 
1287 static void
1288 bge_m_resources(void *arg)
1289 {
1290 	bge_t *bgep = arg;
1291 	recv_ring_t *rrp;
1292 	mac_rx_fifo_t mrf;
1293 	int ring;
1294 
1295 	mutex_enter(bgep->genlock);
1296 
1297 	/*
1298 	 * Register Rx rings as resources and save mac
1299 	 * resource id for future reference
1300 	 */
1301 	mrf.mrf_type = MAC_RX_FIFO;
1302 	mrf.mrf_blank = bge_chip_blank;
1303 	mrf.mrf_arg = (void *)bgep;
1304 	mrf.mrf_normal_blank_time = bge_rx_ticks_norm;
1305 	mrf.mrf_normal_pkt_count = bge_rx_count_norm;
1306 
1307 	for (ring = 0; ring < bgep->chipid.rx_rings; ring++) {
1308 		rrp = &bgep->recv[ring];
1309 		rrp->handle = mac_resource_add(bgep->mh,
1310 		    (mac_resource_t *)&mrf);
1311 	}
1312 
1313 	mutex_exit(bgep->genlock);
1314 }
1315 
1316 /*
1317  * ========== Per-instance setup/teardown code ==========
1318  */
1319 
1320 #undef	BGE_DBG
1321 #define	BGE_DBG		BGE_DBG_INIT	/* debug flag for this code	*/
1322 
1323 /*
1324  * Utility routine to carve a slice off a chunk of allocated memory,
1325  * updating the chunk descriptor accordingly.  The size of the slice
1326  * is given by the product of the <qty> and <size> parameters.
1327  */
1328 static void
1329 bge_slice_chunk(dma_area_t *slice, dma_area_t *chunk,
1330 	uint32_t qty, uint32_t size)
1331 {
1332 	static uint32_t sequence = 0xbcd5704a;
1333 	size_t totsize;
1334 
1335 	totsize = qty*size;
1336 	ASSERT(size >= 0);
1337 	ASSERT(totsize <= chunk->alength);
1338 
1339 	*slice = *chunk;
1340 	slice->nslots = qty;
1341 	slice->size = size;
1342 	slice->alength = totsize;
1343 	slice->token = ++sequence;
1344 
1345 	chunk->mem_va = (caddr_t)chunk->mem_va + totsize;
1346 	chunk->alength -= totsize;
1347 	chunk->offset += totsize;
1348 	chunk->cookie.dmac_laddress += totsize;
1349 	chunk->cookie.dmac_size -= totsize;
1350 }
1351 
1352 /*
1353  * Initialise the specified Receive Producer (Buffer) Ring, using
1354  * the information in the <dma_area> descriptors that it contains
1355  * to set up all the other fields. This routine should be called
1356  * only once for each ring.
1357  */
1358 static void
1359 bge_init_buff_ring(bge_t *bgep, uint64_t ring)
1360 {
1361 	buff_ring_t *brp;
1362 	bge_status_t *bsp;
1363 	sw_rbd_t *srbdp;
1364 	dma_area_t pbuf;
1365 	uint32_t bufsize;
1366 	uint32_t nslots;
1367 	uint32_t slot;
1368 	uint32_t split;
1369 
1370 	static bge_regno_t nic_ring_addrs[BGE_BUFF_RINGS_MAX] = {
1371 		NIC_MEM_SHADOW_BUFF_STD,
1372 		NIC_MEM_SHADOW_BUFF_JUMBO,
1373 		NIC_MEM_SHADOW_BUFF_MINI
1374 	};
1375 	static bge_regno_t mailbox_regs[BGE_BUFF_RINGS_MAX] = {
1376 		RECV_STD_PROD_INDEX_REG,
1377 		RECV_JUMBO_PROD_INDEX_REG,
1378 		RECV_MINI_PROD_INDEX_REG
1379 	};
1380 	static bge_regno_t buff_cons_xref[BGE_BUFF_RINGS_MAX] = {
1381 		STATUS_STD_BUFF_CONS_INDEX,
1382 		STATUS_JUMBO_BUFF_CONS_INDEX,
1383 		STATUS_MINI_BUFF_CONS_INDEX
1384 	};
1385 
1386 	BGE_TRACE(("bge_init_buff_ring($%p, %d)",
1387 		(void *)bgep, ring));
1388 
1389 	brp = &bgep->buff[ring];
1390 	nslots = brp->desc.nslots;
1391 	ASSERT(brp->buf[0].nslots == nslots/BGE_SPLIT);
1392 	bufsize = brp->buf[0].size;
1393 
1394 	/*
1395 	 * Set up the copy of the h/w RCB
1396 	 *
1397 	 * Note: unlike Send & Receive Return Rings, (where the max_len
1398 	 * field holds the number of slots), in a Receive Buffer Ring
1399 	 * this field indicates the size of each buffer in the ring.
1400 	 */
1401 	brp->hw_rcb.host_ring_addr = brp->desc.cookie.dmac_laddress;
1402 	brp->hw_rcb.max_len = bufsize;
1403 	brp->hw_rcb.flags = nslots > 0 ? 0 : RCB_FLAG_RING_DISABLED;
1404 	brp->hw_rcb.nic_ring_addr = nic_ring_addrs[ring];
1405 
1406 	/*
1407 	 * Other one-off initialisation of per-ring data
1408 	 */
1409 	brp->bgep = bgep;
1410 	bsp = DMA_VPTR(bgep->status_block);
1411 	brp->cons_index_p = &bsp->buff_cons_index[buff_cons_xref[ring]];
1412 	brp->chip_mbx_reg = mailbox_regs[ring];
1413 	mutex_init(brp->rf_lock, NULL, MUTEX_DRIVER,
1414 	    DDI_INTR_PRI(bgep->intr_pri));
1415 
1416 	/*
1417 	 * Allocate the array of s/w Receive Buffer Descriptors
1418 	 */
1419 	srbdp = kmem_zalloc(nslots*sizeof (*srbdp), KM_SLEEP);
1420 	brp->sw_rbds = srbdp;
1421 
1422 	/*
1423 	 * Now initialise each array element once and for all
1424 	 */
1425 	for (split = 0; split < BGE_SPLIT; ++split) {
1426 		pbuf = brp->buf[split];
1427 		for (slot = 0; slot < nslots/BGE_SPLIT; ++srbdp, ++slot)
1428 			bge_slice_chunk(&srbdp->pbuf, &pbuf, 1, bufsize);
1429 		ASSERT(pbuf.alength == 0);
1430 	}
1431 }
1432 
1433 /*
1434  * Clean up initialisation done above before the memory is freed
1435  */
1436 static void
1437 bge_fini_buff_ring(bge_t *bgep, uint64_t ring)
1438 {
1439 	buff_ring_t *brp;
1440 	sw_rbd_t *srbdp;
1441 
1442 	BGE_TRACE(("bge_fini_buff_ring($%p, %d)",
1443 		(void *)bgep, ring));
1444 
1445 	brp = &bgep->buff[ring];
1446 	srbdp = brp->sw_rbds;
1447 	kmem_free(srbdp, brp->desc.nslots*sizeof (*srbdp));
1448 
1449 	mutex_destroy(brp->rf_lock);
1450 }
1451 
1452 /*
1453  * Initialise the specified Receive (Return) Ring, using the
1454  * information in the <dma_area> descriptors that it contains
1455  * to set up all the other fields. This routine should be called
1456  * only once for each ring.
1457  */
1458 static void
1459 bge_init_recv_ring(bge_t *bgep, uint64_t ring)
1460 {
1461 	recv_ring_t *rrp;
1462 	bge_status_t *bsp;
1463 	uint32_t nslots;
1464 
1465 	BGE_TRACE(("bge_init_recv_ring($%p, %d)",
1466 		(void *)bgep, ring));
1467 
1468 	/*
1469 	 * The chip architecture requires that receive return rings have
1470 	 * 512 or 1024 or 2048 elements per ring.  See 570X-PG108-R page 103.
1471 	 */
1472 	rrp = &bgep->recv[ring];
1473 	nslots = rrp->desc.nslots;
1474 	ASSERT(nslots == 0 || nslots == 512 ||
1475 		nslots == 1024 || nslots == 2048);
1476 
1477 	/*
1478 	 * Set up the copy of the h/w RCB
1479 	 */
1480 	rrp->hw_rcb.host_ring_addr = rrp->desc.cookie.dmac_laddress;
1481 	rrp->hw_rcb.max_len = nslots;
1482 	rrp->hw_rcb.flags = nslots > 0 ? 0 : RCB_FLAG_RING_DISABLED;
1483 	rrp->hw_rcb.nic_ring_addr = 0;
1484 
1485 	/*
1486 	 * Other one-off initialisation of per-ring data
1487 	 */
1488 	rrp->bgep = bgep;
1489 	bsp = DMA_VPTR(bgep->status_block);
1490 	rrp->prod_index_p = RECV_INDEX_P(bsp, ring);
1491 	rrp->chip_mbx_reg = RECV_RING_CONS_INDEX_REG(ring);
1492 	mutex_init(rrp->rx_lock, NULL, MUTEX_DRIVER,
1493 	    DDI_INTR_PRI(bgep->intr_pri));
1494 }
1495 
1496 
1497 /*
1498  * Clean up initialisation done above before the memory is freed
1499  */
1500 static void
1501 bge_fini_recv_ring(bge_t *bgep, uint64_t ring)
1502 {
1503 	recv_ring_t *rrp;
1504 
1505 	BGE_TRACE(("bge_fini_recv_ring($%p, %d)",
1506 		(void *)bgep, ring));
1507 
1508 	rrp = &bgep->recv[ring];
1509 	if (rrp->rx_softint)
1510 		ddi_remove_softintr(rrp->rx_softint);
1511 	mutex_destroy(rrp->rx_lock);
1512 }
1513 
1514 /*
1515  * Initialise the specified Send Ring, using the information in the
1516  * <dma_area> descriptors that it contains to set up all the other
1517  * fields. This routine should be called only once for each ring.
1518  */
1519 static void
1520 bge_init_send_ring(bge_t *bgep, uint64_t ring)
1521 {
1522 	send_ring_t *srp;
1523 	bge_status_t *bsp;
1524 	sw_sbd_t *ssbdp;
1525 	dma_area_t desc;
1526 	dma_area_t pbuf;
1527 	uint32_t nslots;
1528 	uint32_t slot;
1529 	uint32_t split;
1530 
1531 	BGE_TRACE(("bge_init_send_ring($%p, %d)",
1532 		(void *)bgep, ring));
1533 
1534 	/*
1535 	 * The chip architecture requires that host-based send rings
1536 	 * have 512 elements per ring.  See 570X-PG102-R page 56.
1537 	 */
1538 	srp = &bgep->send[ring];
1539 	nslots = srp->desc.nslots;
1540 	ASSERT(nslots == 0 || nslots == 512);
1541 
1542 	/*
1543 	 * Set up the copy of the h/w RCB
1544 	 */
1545 	srp->hw_rcb.host_ring_addr = srp->desc.cookie.dmac_laddress;
1546 	srp->hw_rcb.max_len = nslots;
1547 	srp->hw_rcb.flags = nslots > 0 ? 0 : RCB_FLAG_RING_DISABLED;
1548 	srp->hw_rcb.nic_ring_addr = NIC_MEM_SHADOW_SEND_RING(ring, nslots);
1549 
1550 	/*
1551 	 * Other one-off initialisation of per-ring data
1552 	 */
1553 	srp->bgep = bgep;
1554 	bsp = DMA_VPTR(bgep->status_block);
1555 	srp->cons_index_p = SEND_INDEX_P(bsp, ring);
1556 	srp->chip_mbx_reg = SEND_RING_HOST_INDEX_REG(ring);
1557 	mutex_init(srp->tx_lock, NULL, MUTEX_DRIVER,
1558 	    DDI_INTR_PRI(bgep->intr_pri));
1559 	mutex_init(srp->tc_lock, NULL, MUTEX_DRIVER,
1560 	    DDI_INTR_PRI(bgep->intr_pri));
1561 
1562 	/*
1563 	 * Allocate the array of s/w Send Buffer Descriptors
1564 	 */
1565 	ssbdp = kmem_zalloc(nslots*sizeof (*ssbdp), KM_SLEEP);
1566 	srp->sw_sbds = ssbdp;
1567 
1568 	/*
1569 	 * Now initialise each array element once and for all
1570 	 */
1571 	desc = srp->desc;
1572 	for (split = 0; split < BGE_SPLIT; ++split) {
1573 		pbuf = srp->buf[split];
1574 		for (slot = 0; slot < nslots/BGE_SPLIT; ++ssbdp, ++slot) {
1575 			bge_slice_chunk(&ssbdp->desc, &desc, 1,
1576 				sizeof (bge_sbd_t));
1577 			bge_slice_chunk(&ssbdp->pbuf, &pbuf, 1,
1578 				bgep->chipid.snd_buff_size);
1579 		}
1580 		ASSERT(pbuf.alength == 0);
1581 	}
1582 	ASSERT(desc.alength == 0);
1583 }
1584 
1585 /*
1586  * Clean up initialisation done above before the memory is freed
1587  */
1588 static void
1589 bge_fini_send_ring(bge_t *bgep, uint64_t ring)
1590 {
1591 	send_ring_t *srp;
1592 	sw_sbd_t *ssbdp;
1593 
1594 	BGE_TRACE(("bge_fini_send_ring($%p, %d)",
1595 		(void *)bgep, ring));
1596 
1597 	srp = &bgep->send[ring];
1598 	ssbdp = srp->sw_sbds;
1599 	kmem_free(ssbdp, srp->desc.nslots*sizeof (*ssbdp));
1600 
1601 	mutex_destroy(srp->tx_lock);
1602 	mutex_destroy(srp->tc_lock);
1603 }
1604 
1605 /*
1606  * Initialise all transmit, receive, and buffer rings.
1607  */
1608 void
1609 bge_init_rings(bge_t *bgep)
1610 {
1611 	uint64_t ring;
1612 
1613 	BGE_TRACE(("bge_init_rings($%p)", (void *)bgep));
1614 
1615 	/*
1616 	 * Perform one-off initialisation of each ring ...
1617 	 */
1618 	for (ring = 0; ring < BGE_SEND_RINGS_MAX; ++ring)
1619 		bge_init_send_ring(bgep, ring);
1620 	for (ring = 0; ring < BGE_RECV_RINGS_MAX; ++ring)
1621 		bge_init_recv_ring(bgep, ring);
1622 	for (ring = 0; ring < BGE_BUFF_RINGS_MAX; ++ring)
1623 		bge_init_buff_ring(bgep, ring);
1624 }
1625 
1626 /*
1627  * Undo the work of bge_init_rings() above before the memory is freed
1628  */
1629 void
1630 bge_fini_rings(bge_t *bgep)
1631 {
1632 	uint64_t ring;
1633 
1634 	BGE_TRACE(("bge_fini_rings($%p)", (void *)bgep));
1635 
1636 	for (ring = 0; ring < BGE_BUFF_RINGS_MAX; ++ring)
1637 		bge_fini_buff_ring(bgep, ring);
1638 	for (ring = 0; ring < BGE_RECV_RINGS_MAX; ++ring)
1639 		bge_fini_recv_ring(bgep, ring);
1640 	for (ring = 0; ring < BGE_SEND_RINGS_MAX; ++ring)
1641 		bge_fini_send_ring(bgep, ring);
1642 }
1643 
1644 /*
1645  * Allocate an area of memory and a DMA handle for accessing it
1646  */
1647 static int
1648 bge_alloc_dma_mem(bge_t *bgep, size_t memsize, ddi_device_acc_attr_t *attr_p,
1649 	uint_t dma_flags, dma_area_t *dma_p)
1650 {
1651 	caddr_t va;
1652 	int err;
1653 
1654 	BGE_TRACE(("bge_alloc_dma_mem($%p, %ld, $%p, 0x%x, $%p)",
1655 		(void *)bgep, memsize, attr_p, dma_flags, dma_p));
1656 
1657 	/*
1658 	 * Allocate handle
1659 	 */
1660 	err = ddi_dma_alloc_handle(bgep->devinfo, &dma_attr,
1661 		DDI_DMA_SLEEP, NULL, &dma_p->dma_hdl);
1662 	if (err != DDI_SUCCESS)
1663 		return (DDI_FAILURE);
1664 
1665 	/*
1666 	 * Allocate memory
1667 	 */
1668 	err = ddi_dma_mem_alloc(dma_p->dma_hdl, memsize, attr_p,
1669 		dma_flags & (DDI_DMA_CONSISTENT | DDI_DMA_STREAMING),
1670 		DDI_DMA_SLEEP, NULL, &va, &dma_p->alength, &dma_p->acc_hdl);
1671 	if (err != DDI_SUCCESS)
1672 		return (DDI_FAILURE);
1673 
1674 	/*
1675 	 * Bind the two together
1676 	 */
1677 	dma_p->mem_va = va;
1678 	err = ddi_dma_addr_bind_handle(dma_p->dma_hdl, NULL,
1679 		va, dma_p->alength, dma_flags, DDI_DMA_SLEEP, NULL,
1680 		&dma_p->cookie, &dma_p->ncookies);
1681 
1682 	BGE_DEBUG(("bge_alloc_dma_mem(): bind %d bytes; err %d, %d cookies",
1683 		dma_p->alength, err, dma_p->ncookies));
1684 
1685 	if (err != DDI_DMA_MAPPED || dma_p->ncookies != 1)
1686 		return (DDI_FAILURE);
1687 
1688 	dma_p->nslots = ~0U;
1689 	dma_p->size = ~0U;
1690 	dma_p->token = ~0U;
1691 	dma_p->offset = 0;
1692 	return (DDI_SUCCESS);
1693 }
1694 
1695 /*
1696  * Free one allocated area of DMAable memory
1697  */
1698 static void
1699 bge_free_dma_mem(dma_area_t *dma_p)
1700 {
1701 	if (dma_p->dma_hdl != NULL) {
1702 		if (dma_p->ncookies) {
1703 			(void) ddi_dma_unbind_handle(dma_p->dma_hdl);
1704 			dma_p->ncookies = 0;
1705 		}
1706 		ddi_dma_free_handle(&dma_p->dma_hdl);
1707 		dma_p->dma_hdl = NULL;
1708 	}
1709 
1710 	if (dma_p->acc_hdl != NULL) {
1711 		ddi_dma_mem_free(&dma_p->acc_hdl);
1712 		dma_p->acc_hdl = NULL;
1713 	}
1714 }
1715 
1716 /*
1717  * This function allocates all the transmit and receive buffers
1718  * and descriptors, in four chunks (or one, if MONOLITHIC).
1719  */
1720 int
1721 bge_alloc_bufs(bge_t *bgep)
1722 {
1723 	dma_area_t area;
1724 	size_t rxbuffsize;
1725 	size_t txbuffsize;
1726 	size_t rxbuffdescsize;
1727 	size_t rxdescsize;
1728 	size_t txdescsize;
1729 	uint64_t ring;
1730 	uint64_t rx_rings = bgep->chipid.rx_rings;
1731 	uint64_t tx_rings = bgep->chipid.tx_rings;
1732 	int split;
1733 	int err;
1734 
1735 	BGE_TRACE(("bge_alloc_bufs($%p)",
1736 		(void *)bgep));
1737 
1738 	rxbuffsize = BGE_STD_SLOTS_USED*bgep->chipid.std_buf_size;
1739 	rxbuffsize += bgep->chipid.jumbo_slots*bgep->chipid.recv_jumbo_size;
1740 	rxbuffsize += BGE_MINI_SLOTS_USED*BGE_MINI_BUFF_SIZE;
1741 
1742 	txbuffsize = BGE_SEND_SLOTS_USED*bgep->chipid.snd_buff_size;
1743 	txbuffsize *= tx_rings;
1744 
1745 	rxdescsize = rx_rings*bgep->chipid.recv_slots;
1746 	rxdescsize *= sizeof (bge_rbd_t);
1747 
1748 	rxbuffdescsize = BGE_STD_SLOTS_USED;
1749 	rxbuffdescsize += bgep->chipid.jumbo_slots;
1750 	rxbuffdescsize += BGE_MINI_SLOTS_USED;
1751 	rxbuffdescsize *= sizeof (bge_rbd_t);
1752 
1753 	txdescsize = tx_rings*BGE_SEND_SLOTS_USED;
1754 	txdescsize *= sizeof (bge_sbd_t);
1755 	txdescsize += sizeof (bge_statistics_t);
1756 	txdescsize += sizeof (bge_status_t);
1757 	txdescsize += BGE_STATUS_PADDING;
1758 
1759 #if	BGE_MONOLITHIC
1760 
1761 	err = bge_alloc_dma_mem(bgep,
1762 		rxbuffsize+txbuffsize+rxbuffdescsize+rxdescsize+txdescsize,
1763 		&bge_data_accattr, DDI_DMA_RDWR | DDI_DMA_CONSISTENT, &area);
1764 	if (err != DDI_SUCCESS)
1765 		return (DDI_FAILURE);
1766 
1767 	BGE_DEBUG(("allocated range $%p-$%p (0x%lx-0x%lx)",
1768 		DMA_VPTR(area),
1769 		(caddr_t)DMA_VPTR(area)+area.alength,
1770 		area.cookie.dmac_laddress,
1771 		area.cookie.dmac_laddress+area.alength));
1772 
1773 	bge_slice_chunk(&bgep->rx_buff[0], &area, 1, rxbuffsize);
1774 	bge_slice_chunk(&bgep->tx_buff[0], &area, 1, txbuffsize);
1775 	bge_slice_chunk(&bgep->rx_desc[0], &area, 1, rxdescsize);
1776 	bge_slice_chunk(&bgep->tx_desc, &area, 1, txdescsize);
1777 
1778 #else
1779 	/*
1780 	 * Allocate memory & handles for RX buffers
1781 	 */
1782 	ASSERT((rxbuffsize % BGE_SPLIT) == 0);
1783 	for (split = 0; split < BGE_SPLIT; ++split) {
1784 		err = bge_alloc_dma_mem(bgep, rxbuffsize/BGE_SPLIT,
1785 			&bge_data_accattr, DDI_DMA_READ | BGE_DMA_MODE,
1786 			&bgep->rx_buff[split]);
1787 		if (err != DDI_SUCCESS)
1788 			return (DDI_FAILURE);
1789 	}
1790 
1791 	/*
1792 	 * Allocate memory & handles for TX buffers
1793 	 */
1794 	ASSERT((txbuffsize % BGE_SPLIT) == 0);
1795 	for (split = 0; split < BGE_SPLIT; ++split) {
1796 		err = bge_alloc_dma_mem(bgep, txbuffsize/BGE_SPLIT,
1797 			&bge_data_accattr, DDI_DMA_WRITE | BGE_DMA_MODE,
1798 			&bgep->tx_buff[split]);
1799 		if (err != DDI_SUCCESS)
1800 			return (DDI_FAILURE);
1801 	}
1802 
1803 	/*
1804 	 * Allocate memory & handles for receive return rings
1805 	 */
1806 	ASSERT((rxdescsize % rx_rings) == 0);
1807 	for (split = 0; split < rx_rings; ++split) {
1808 		err = bge_alloc_dma_mem(bgep, rxdescsize/rx_rings,
1809 			&bge_desc_accattr, DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
1810 			&bgep->rx_desc[split]);
1811 		if (err != DDI_SUCCESS)
1812 			return (DDI_FAILURE);
1813 	}
1814 
1815 	/*
1816 	 * Allocate memory & handles for buffer (producer) descriptor rings
1817 	 */
1818 	err = bge_alloc_dma_mem(bgep, rxbuffdescsize, &bge_desc_accattr,
1819 		DDI_DMA_RDWR | DDI_DMA_CONSISTENT, &bgep->rx_desc[split]);
1820 	if (err != DDI_SUCCESS)
1821 		return (DDI_FAILURE);
1822 
1823 	/*
1824 	 * Allocate memory & handles for TX descriptor rings,
1825 	 * status block, and statistics area
1826 	 */
1827 	err = bge_alloc_dma_mem(bgep, txdescsize, &bge_desc_accattr,
1828 		DDI_DMA_RDWR | DDI_DMA_CONSISTENT, &bgep->tx_desc);
1829 	if (err != DDI_SUCCESS)
1830 		return (DDI_FAILURE);
1831 
1832 #endif	/* BGE_MONOLITHIC */
1833 
1834 	/*
1835 	 * Now carve up each of the allocated areas ...
1836 	 */
1837 	for (split = 0; split < BGE_SPLIT; ++split) {
1838 		area = bgep->rx_buff[split];
1839 		bge_slice_chunk(&bgep->buff[BGE_STD_BUFF_RING].buf[split],
1840 			&area, BGE_STD_SLOTS_USED/BGE_SPLIT,
1841 			bgep->chipid.std_buf_size);
1842 		bge_slice_chunk(&bgep->buff[BGE_JUMBO_BUFF_RING].buf[split],
1843 			&area, bgep->chipid.jumbo_slots/BGE_SPLIT,
1844 			bgep->chipid.recv_jumbo_size);
1845 		bge_slice_chunk(&bgep->buff[BGE_MINI_BUFF_RING].buf[split],
1846 			&area, BGE_MINI_SLOTS_USED/BGE_SPLIT,
1847 			BGE_MINI_BUFF_SIZE);
1848 		ASSERT(area.alength >= 0);
1849 	}
1850 
1851 	for (split = 0; split < BGE_SPLIT; ++split) {
1852 		area = bgep->tx_buff[split];
1853 		for (ring = 0; ring < tx_rings; ++ring)
1854 			bge_slice_chunk(&bgep->send[ring].buf[split],
1855 				&area, BGE_SEND_SLOTS_USED/BGE_SPLIT,
1856 				bgep->chipid.snd_buff_size);
1857 		for (; ring < BGE_SEND_RINGS_MAX; ++ring)
1858 			bge_slice_chunk(&bgep->send[ring].buf[split],
1859 				&area, 0/BGE_SPLIT,
1860 				bgep->chipid.snd_buff_size);
1861 		ASSERT(area.alength >= 0);
1862 	}
1863 
1864 	for (ring = 0; ring < rx_rings; ++ring)
1865 		bge_slice_chunk(&bgep->recv[ring].desc, &bgep->rx_desc[ring],
1866 			bgep->chipid.recv_slots, sizeof (bge_rbd_t));
1867 
1868 	area = bgep->rx_desc[rx_rings];
1869 	for (; ring < BGE_RECV_RINGS_MAX; ++ring)
1870 		bge_slice_chunk(&bgep->recv[ring].desc, &area,
1871 			0, sizeof (bge_rbd_t));
1872 	bge_slice_chunk(&bgep->buff[BGE_STD_BUFF_RING].desc, &area,
1873 		BGE_STD_SLOTS_USED, sizeof (bge_rbd_t));
1874 	bge_slice_chunk(&bgep->buff[BGE_JUMBO_BUFF_RING].desc, &area,
1875 		bgep->chipid.jumbo_slots, sizeof (bge_rbd_t));
1876 	bge_slice_chunk(&bgep->buff[BGE_MINI_BUFF_RING].desc, &area,
1877 		BGE_MINI_SLOTS_USED, sizeof (bge_rbd_t));
1878 	ASSERT(area.alength == 0);
1879 
1880 	area = bgep->tx_desc;
1881 	for (ring = 0; ring < tx_rings; ++ring)
1882 		bge_slice_chunk(&bgep->send[ring].desc, &area,
1883 			BGE_SEND_SLOTS_USED, sizeof (bge_sbd_t));
1884 	for (; ring < BGE_SEND_RINGS_MAX; ++ring)
1885 		bge_slice_chunk(&bgep->send[ring].desc, &area,
1886 			0, sizeof (bge_sbd_t));
1887 	bge_slice_chunk(&bgep->statistics, &area, 1, sizeof (bge_statistics_t));
1888 	bge_slice_chunk(&bgep->status_block, &area, 1, sizeof (bge_status_t));
1889 	ASSERT(area.alength == BGE_STATUS_PADDING);
1890 	DMA_ZERO(bgep->status_block);
1891 
1892 	return (DDI_SUCCESS);
1893 }
1894 
1895 /*
1896  * This routine frees the transmit and receive buffers and descriptors.
1897  * Make sure the chip is stopped before calling it!
1898  */
1899 void
1900 bge_free_bufs(bge_t *bgep)
1901 {
1902 	int split;
1903 
1904 	BGE_TRACE(("bge_free_bufs($%p)",
1905 		(void *)bgep));
1906 
1907 #if	BGE_MONOLITHIC
1908 	bge_free_dma_mem(&bgep->rx_buff[0]);
1909 #else
1910 	bge_free_dma_mem(&bgep->tx_desc);
1911 	for (split = 0; split < BGE_RECV_RINGS_SPLIT; ++split)
1912 		bge_free_dma_mem(&bgep->rx_desc[split]);
1913 	for (split = 0; split < BGE_SPLIT; ++split)
1914 		bge_free_dma_mem(&bgep->tx_buff[split]);
1915 	for (split = 0; split < BGE_SPLIT; ++split)
1916 		bge_free_dma_mem(&bgep->rx_buff[split]);
1917 #endif	/* BGE_MONOLITHIC */
1918 }
1919 
1920 /*
1921  * Determine (initial) MAC address ("BIA") to use for this interface
1922  */
1923 
1924 static void
1925 bge_find_mac_address(bge_t *bgep, chip_id_t *cidp)
1926 {
1927 	struct ether_addr sysaddr;
1928 	char propbuf[8];		/* "true" or "false", plus NUL	*/
1929 	uchar_t *bytes;
1930 	int *ints;
1931 	uint_t nelts;
1932 	int err;
1933 
1934 	BGE_TRACE(("bge_find_mac_address($%p)",
1935 		(void *)bgep));
1936 
1937 	BGE_DEBUG(("bge_find_mac_address: hw_mac_addr %012llx, => %s (%sset)",
1938 		cidp->hw_mac_addr,
1939 		ether_sprintf((void *)cidp->vendor_addr.addr),
1940 		cidp->vendor_addr.set ? "" : "not "));
1941 
1942 	/*
1943 	 * The "vendor's factory-set address" may already have
1944 	 * been extracted from the chip, but if the property
1945 	 * "local-mac-address" is set we use that instead.  It
1946 	 * will normally be set by OBP, but it could also be
1947 	 * specified in a .conf file(!)
1948 	 *
1949 	 * There doesn't seem to be a way to define byte-array
1950 	 * properties in a .conf, so we check whether it looks
1951 	 * like an array of 6 ints instead.
1952 	 *
1953 	 * Then, we check whether it looks like an array of 6
1954 	 * bytes (which it should, if OBP set it).  If we can't
1955 	 * make sense of it either way, we'll ignore it.
1956 	 */
1957 	err = ddi_prop_lookup_int_array(DDI_DEV_T_ANY, bgep->devinfo,
1958 		DDI_PROP_DONTPASS, localmac_propname, &ints, &nelts);
1959 	if (err == DDI_PROP_SUCCESS) {
1960 		if (nelts == ETHERADDRL) {
1961 			while (nelts--)
1962 				cidp->vendor_addr.addr[nelts] = ints[nelts];
1963 			cidp->vendor_addr.set = B_TRUE;
1964 		}
1965 		ddi_prop_free(ints);
1966 	}
1967 
1968 	err = ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, bgep->devinfo,
1969 		DDI_PROP_DONTPASS, localmac_propname, &bytes, &nelts);
1970 	if (err == DDI_PROP_SUCCESS) {
1971 		if (nelts == ETHERADDRL) {
1972 			while (nelts--)
1973 				cidp->vendor_addr.addr[nelts] = bytes[nelts];
1974 			cidp->vendor_addr.set = B_TRUE;
1975 		}
1976 		ddi_prop_free(bytes);
1977 	}
1978 
1979 	BGE_DEBUG(("bge_find_mac_address: +local %s (%sset)",
1980 		ether_sprintf((void *)cidp->vendor_addr.addr),
1981 		cidp->vendor_addr.set ? "" : "not "));
1982 
1983 	/*
1984 	 * Look up the OBP property "local-mac-address?".  Note that even
1985 	 * though its value is a string (which should be "true" or "false"),
1986 	 * it can't be decoded by ddi_prop_lookup_string(9F).  So, we zero
1987 	 * the buffer first and then fetch the property as an untyped array;
1988 	 * this may or may not include a final NUL, but since there will
1989 	 * always be one left at the end of the buffer we can now treat it
1990 	 * as a string anyway.
1991 	 */
1992 	nelts = sizeof (propbuf);
1993 	bzero(propbuf, nelts--);
1994 	err = ddi_getlongprop_buf(DDI_DEV_T_ANY, bgep->devinfo,
1995 		DDI_PROP_CANSLEEP, localmac_boolname, propbuf, (int *)&nelts);
1996 
1997 	/*
1998 	 * Now, if the address still isn't set from the hardware (SEEPROM)
1999 	 * or the OBP or .conf property, OR if the user has foolishly set
2000 	 * 'local-mac-address? = false', use "the system address" instead
2001 	 * (but only if it's non-null i.e. has been set from the IDPROM).
2002 	 */
2003 	if (cidp->vendor_addr.set == B_FALSE || strcmp(propbuf, "false") == 0)
2004 		if (localetheraddr(NULL, &sysaddr) != 0) {
2005 			ethaddr_copy(&sysaddr, cidp->vendor_addr.addr);
2006 			cidp->vendor_addr.set = B_TRUE;
2007 		}
2008 
2009 	BGE_DEBUG(("bge_find_mac_address: +system %s (%sset)",
2010 		ether_sprintf((void *)cidp->vendor_addr.addr),
2011 		cidp->vendor_addr.set ? "" : "not "));
2012 
2013 	/*
2014 	 * Finally(!), if there's a valid "mac-address" property (created
2015 	 * if we netbooted from this interface), we must use this instead
2016 	 * of any of the above to ensure that the NFS/install server doesn't
2017 	 * get confused by the address changing as Solaris takes over!
2018 	 */
2019 	err = ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, bgep->devinfo,
2020 		DDI_PROP_DONTPASS, macaddr_propname, &bytes, &nelts);
2021 	if (err == DDI_PROP_SUCCESS) {
2022 		if (nelts == ETHERADDRL) {
2023 			while (nelts--)
2024 				cidp->vendor_addr.addr[nelts] = bytes[nelts];
2025 			cidp->vendor_addr.set = B_TRUE;
2026 		}
2027 		ddi_prop_free(bytes);
2028 	}
2029 
2030 	BGE_DEBUG(("bge_find_mac_address: =final %s (%sset)",
2031 		ether_sprintf((void *)cidp->vendor_addr.addr),
2032 		cidp->vendor_addr.set ? "" : "not "));
2033 }
2034 
2035 
2036 /*ARGSUSED*/
2037 int
2038 bge_check_acc_handle(bge_t *bgep, ddi_acc_handle_t handle)
2039 {
2040 	ddi_fm_error_t de;
2041 
2042 	ddi_fm_acc_err_get(handle, &de, DDI_FME_VERSION);
2043 	ddi_fm_acc_err_clear(handle, DDI_FME_VERSION);
2044 	return (de.fme_status);
2045 }
2046 
2047 /*ARGSUSED*/
2048 int
2049 bge_check_dma_handle(bge_t *bgep, ddi_dma_handle_t handle)
2050 {
2051 	ddi_fm_error_t de;
2052 
2053 	ASSERT(bgep->progress & PROGRESS_BUFS);
2054 	ddi_fm_dma_err_get(handle, &de, DDI_FME_VERSION);
2055 	return (de.fme_status);
2056 }
2057 
2058 /*
2059  * The IO fault service error handling callback function
2060  */
2061 /*ARGSUSED*/
2062 static int
2063 bge_fm_error_cb(dev_info_t *dip, ddi_fm_error_t *err, const void *impl_data)
2064 {
2065 	/*
2066 	 * as the driver can always deal with an error in any dma or
2067 	 * access handle, we can just return the fme_status value.
2068 	 */
2069 	pci_ereport_post(dip, err, NULL);
2070 	return (err->fme_status);
2071 }
2072 
2073 static void
2074 bge_fm_init(bge_t *bgep)
2075 {
2076 	ddi_iblock_cookie_t iblk;
2077 
2078 	/* Only register with IO Fault Services if we have some capability */
2079 	if (bgep->fm_capabilities) {
2080 		bge_reg_accattr.devacc_attr_access = DDI_FLAGERR_ACC;
2081 		bge_desc_accattr.devacc_attr_access = DDI_FLAGERR_ACC;
2082 		dma_attr.dma_attr_flags = DDI_DMA_FLAGERR;
2083 
2084 		/* Register capabilities with IO Fault Services */
2085 		ddi_fm_init(bgep->devinfo, &bgep->fm_capabilities, &iblk);
2086 
2087 		/*
2088 		 * Initialize pci ereport capabilities if ereport capable
2089 		 */
2090 		if (DDI_FM_EREPORT_CAP(bgep->fm_capabilities) ||
2091 		    DDI_FM_ERRCB_CAP(bgep->fm_capabilities))
2092 			pci_ereport_setup(bgep->devinfo);
2093 
2094 		/*
2095 		 * Register error callback if error callback capable
2096 		 */
2097 		if (DDI_FM_ERRCB_CAP(bgep->fm_capabilities))
2098 			ddi_fm_handler_register(bgep->devinfo,
2099 			bge_fm_error_cb, (void*) bgep);
2100 	} else {
2101 		/*
2102 		 * These fields have to be cleared of FMA if there are no
2103 		 * FMA capabilities at runtime.
2104 		 */
2105 		bge_reg_accattr.devacc_attr_access = DDI_DEFAULT_ACC;
2106 		bge_desc_accattr.devacc_attr_access = DDI_DEFAULT_ACC;
2107 		dma_attr.dma_attr_flags = 0;
2108 	}
2109 }
2110 
2111 static void
2112 bge_fm_fini(bge_t *bgep)
2113 {
2114 	/* Only unregister FMA capabilities if we registered some */
2115 	if (bgep->fm_capabilities) {
2116 
2117 		/*
2118 		 * Release any resources allocated by pci_ereport_setup()
2119 		 */
2120 		if (DDI_FM_EREPORT_CAP(bgep->fm_capabilities) ||
2121 		    DDI_FM_ERRCB_CAP(bgep->fm_capabilities))
2122 			pci_ereport_teardown(bgep->devinfo);
2123 
2124 		/*
2125 		 * Un-register error callback if error callback capable
2126 		 */
2127 		if (DDI_FM_ERRCB_CAP(bgep->fm_capabilities))
2128 			ddi_fm_handler_unregister(bgep->devinfo);
2129 
2130 		/* Unregister from IO Fault Services */
2131 		ddi_fm_fini(bgep->devinfo);
2132 	}
2133 }
2134 
2135 static void
2136 #ifdef BGE_IPMI_ASF
2137 bge_unattach(bge_t *bgep, uint_t asf_mode)
2138 #else
2139 bge_unattach(bge_t *bgep)
2140 #endif
2141 {
2142 	BGE_TRACE(("bge_unattach($%p)",
2143 		(void *)bgep));
2144 
2145 	/*
2146 	 * Flag that no more activity may be initiated
2147 	 */
2148 	bgep->progress &= ~PROGRESS_READY;
2149 
2150 	/*
2151 	 * Quiesce the PHY and MAC (leave it reset but still powered).
2152 	 * Clean up and free all BGE data structures
2153 	 */
2154 	if (bgep->cyclic_id) {
2155 		mutex_enter(&cpu_lock);
2156 		cyclic_remove(bgep->cyclic_id);
2157 		mutex_exit(&cpu_lock);
2158 	}
2159 	if (bgep->progress & PROGRESS_KSTATS)
2160 		bge_fini_kstats(bgep);
2161 	if (bgep->progress & PROGRESS_NDD)
2162 		bge_nd_cleanup(bgep);
2163 	if (bgep->progress & PROGRESS_PHY)
2164 		bge_phys_reset(bgep);
2165 	if (bgep->progress & PROGRESS_HWINT) {
2166 		mutex_enter(bgep->genlock);
2167 #ifdef BGE_IPMI_ASF
2168 		if (bge_chip_reset(bgep, B_FALSE, asf_mode) != DDI_SUCCESS)
2169 #else
2170 		if (bge_chip_reset(bgep, B_FALSE) != DDI_SUCCESS)
2171 #endif
2172 			ddi_fm_service_impact(bgep->devinfo,
2173 			    DDI_SERVICE_UNAFFECTED);
2174 #ifdef BGE_IPMI_ASF
2175 		if (bgep->asf_enabled) {
2176 			/*
2177 			 * This register has been overlaid. We restore its
2178 			 * initial value here.
2179 			 */
2180 			bge_nic_put32(bgep, BGE_NIC_DATA_SIG_ADDR,
2181 			    BGE_NIC_DATA_SIG);
2182 		}
2183 #endif
2184 		if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK)
2185 			ddi_fm_service_impact(bgep->devinfo,
2186 			    DDI_SERVICE_UNAFFECTED);
2187 		if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
2188 			ddi_fm_service_impact(bgep->devinfo,
2189 			    DDI_SERVICE_UNAFFECTED);
2190 		mutex_exit(bgep->genlock);
2191 	}
2192 	if (bgep->progress & PROGRESS_INTR) {
2193 		bge_intr_disable(bgep);
2194 		bge_fini_rings(bgep);
2195 	}
2196 	if (bgep->progress & PROGRESS_HWINT) {
2197 		bge_rem_intrs(bgep);
2198 		rw_destroy(bgep->errlock);
2199 		mutex_destroy(bgep->softintrlock);
2200 		mutex_destroy(bgep->genlock);
2201 	}
2202 	if (bgep->progress & PROGRESS_FACTOTUM)
2203 		ddi_remove_softintr(bgep->factotum_id);
2204 	if (bgep->progress & PROGRESS_RESCHED)
2205 		ddi_remove_softintr(bgep->resched_id);
2206 	if (bgep->progress & PROGRESS_BUFS)
2207 		bge_free_bufs(bgep);
2208 	if (bgep->progress & PROGRESS_REGS)
2209 		ddi_regs_map_free(&bgep->io_handle);
2210 	if (bgep->progress & PROGRESS_CFG)
2211 		pci_config_teardown(&bgep->cfg_handle);
2212 
2213 	bge_fm_fini(bgep);
2214 
2215 	ddi_remove_minor_node(bgep->devinfo, NULL);
2216 	kmem_free(bgep, sizeof (*bgep));
2217 }
2218 
2219 static int
2220 bge_resume(dev_info_t *devinfo)
2221 {
2222 	bge_t *bgep;				/* Our private data	*/
2223 	chip_id_t *cidp;
2224 	chip_id_t chipid;
2225 
2226 	bgep = ddi_get_driver_private(devinfo);
2227 	if (bgep == NULL)
2228 		return (DDI_FAILURE);
2229 
2230 	/*
2231 	 * Refuse to resume if the data structures aren't consistent
2232 	 */
2233 	if (bgep->devinfo != devinfo)
2234 		return (DDI_FAILURE);
2235 
2236 #ifdef BGE_IPMI_ASF
2237 	/*
2238 	 * Power management hasn't been supported in BGE now. If you
2239 	 * want to implement it, please add the ASF/IPMI related
2240 	 * code here.
2241 	 */
2242 
2243 #endif
2244 
2245 	/*
2246 	 * Read chip ID & set up config space command register(s)
2247 	 * Refuse to resume if the chip has changed its identity!
2248 	 */
2249 	cidp = &bgep->chipid;
2250 	mutex_enter(bgep->genlock);
2251 	bge_chip_cfg_init(bgep, &chipid, B_FALSE);
2252 	if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK) {
2253 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_LOST);
2254 		mutex_exit(bgep->genlock);
2255 		return (DDI_FAILURE);
2256 	}
2257 	mutex_exit(bgep->genlock);
2258 	if (chipid.vendor != cidp->vendor)
2259 		return (DDI_FAILURE);
2260 	if (chipid.device != cidp->device)
2261 		return (DDI_FAILURE);
2262 	if (chipid.revision != cidp->revision)
2263 		return (DDI_FAILURE);
2264 	if (chipid.asic_rev != cidp->asic_rev)
2265 		return (DDI_FAILURE);
2266 
2267 	/*
2268 	 * All OK, reinitialise h/w & kick off GLD scheduling
2269 	 */
2270 	mutex_enter(bgep->genlock);
2271 	if (bge_restart(bgep, B_TRUE) != DDI_SUCCESS) {
2272 		(void) bge_check_acc_handle(bgep, bgep->cfg_handle);
2273 		(void) bge_check_acc_handle(bgep, bgep->io_handle);
2274 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_LOST);
2275 		mutex_exit(bgep->genlock);
2276 		return (DDI_FAILURE);
2277 	}
2278 	if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK) {
2279 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_LOST);
2280 		mutex_exit(bgep->genlock);
2281 		return (DDI_FAILURE);
2282 	}
2283 	if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK) {
2284 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_LOST);
2285 		mutex_exit(bgep->genlock);
2286 		return (DDI_FAILURE);
2287 	}
2288 	mutex_exit(bgep->genlock);
2289 	return (DDI_SUCCESS);
2290 }
2291 
2292 /*
2293  * attach(9E) -- Attach a device to the system
2294  *
2295  * Called once for each board successfully probed.
2296  */
2297 static int
2298 bge_attach(dev_info_t *devinfo, ddi_attach_cmd_t cmd)
2299 {
2300 	bge_t *bgep;				/* Our private data	*/
2301 	mac_register_t *macp;
2302 	chip_id_t *cidp;
2303 	cyc_handler_t cychand;
2304 	cyc_time_t cyctime;
2305 	caddr_t regs;
2306 	int instance;
2307 	int err;
2308 	int intr_types;
2309 #ifdef BGE_IPMI_ASF
2310 	uint32_t mhcrValue;
2311 #endif
2312 
2313 	instance = ddi_get_instance(devinfo);
2314 
2315 	BGE_GTRACE(("bge_attach($%p, %d) instance %d",
2316 		(void *)devinfo, cmd, instance));
2317 	BGE_BRKPT(NULL, "bge_attach");
2318 
2319 	switch (cmd) {
2320 	default:
2321 		return (DDI_FAILURE);
2322 
2323 	case DDI_RESUME:
2324 		return (bge_resume(devinfo));
2325 
2326 	case DDI_ATTACH:
2327 		break;
2328 	}
2329 
2330 	bgep = kmem_zalloc(sizeof (*bgep), KM_SLEEP);
2331 	ddi_set_driver_private(devinfo, bgep);
2332 	bgep->bge_guard = BGE_GUARD;
2333 	bgep->devinfo = devinfo;
2334 
2335 	/*
2336 	 * Initialize more fields in BGE private data
2337 	 */
2338 	bgep->debug = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
2339 		DDI_PROP_DONTPASS, debug_propname, bge_debug);
2340 	(void) snprintf(bgep->ifname, sizeof (bgep->ifname), "%s%d",
2341 		BGE_DRIVER_NAME, instance);
2342 
2343 	/*
2344 	 * Initialize for fma support
2345 	 */
2346 	bgep->fm_capabilities = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
2347 	    DDI_PROP_DONTPASS, fm_cap,
2348 	    DDI_FM_EREPORT_CAPABLE | DDI_FM_ACCCHK_CAPABLE |
2349 	    DDI_FM_DMACHK_CAPABLE | DDI_FM_ERRCB_CAPABLE);
2350 	BGE_DEBUG(("bgep->fm_capabilities = %d", bgep->fm_capabilities));
2351 	bge_fm_init(bgep);
2352 
2353 	/*
2354 	 * Look up the IOMMU's page size for DVMA mappings (must be
2355 	 * a power of 2) and convert to a mask.  This can be used to
2356 	 * determine whether a message buffer crosses a page boundary.
2357 	 * Note: in 2s complement binary notation, if X is a power of
2358 	 * 2, then -X has the representation "11...1100...00".
2359 	 */
2360 	bgep->pagemask = dvma_pagesize(devinfo);
2361 	ASSERT(ddi_ffs(bgep->pagemask) == ddi_fls(bgep->pagemask));
2362 	bgep->pagemask = -bgep->pagemask;
2363 
2364 	/*
2365 	 * Map config space registers
2366 	 * Read chip ID & set up config space command register(s)
2367 	 *
2368 	 * Note: this leaves the chip accessible by Memory Space
2369 	 * accesses, but with interrupts and Bus Mastering off.
2370 	 * This should ensure that nothing untoward will happen
2371 	 * if it has been left active by the (net-)bootloader.
2372 	 * We'll re-enable Bus Mastering once we've reset the chip,
2373 	 * and allow interrupts only when everything else is set up.
2374 	 */
2375 	err = pci_config_setup(devinfo, &bgep->cfg_handle);
2376 #ifdef BGE_IPMI_ASF
2377 	mhcrValue = pci_config_get32(bgep->cfg_handle, PCI_CONF_BGE_MHCR);
2378 	if (mhcrValue & MHCR_ENABLE_ENDIAN_WORD_SWAP) {
2379 		bgep->asf_wordswapped = B_TRUE;
2380 	} else {
2381 		bgep->asf_wordswapped = B_FALSE;
2382 	}
2383 	bge_asf_get_config(bgep);
2384 #endif
2385 	if (err != DDI_SUCCESS) {
2386 		bge_problem(bgep, "pci_config_setup() failed");
2387 		goto attach_fail;
2388 	}
2389 	bgep->progress |= PROGRESS_CFG;
2390 	cidp = &bgep->chipid;
2391 	bzero(cidp, sizeof (*cidp));
2392 	bge_chip_cfg_init(bgep, cidp, B_FALSE);
2393 	if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK) {
2394 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_LOST);
2395 		goto attach_fail;
2396 	}
2397 
2398 #ifdef BGE_IPMI_ASF
2399 	if (DEVICE_5721_SERIES_CHIPSETS(bgep) ||
2400 	    DEVICE_5714_SERIES_CHIPSETS(bgep)) {
2401 		bgep->asf_newhandshake = B_TRUE;
2402 	} else {
2403 		bgep->asf_newhandshake = B_FALSE;
2404 	}
2405 #endif
2406 
2407 	/*
2408 	 * Update those parts of the chip ID derived from volatile
2409 	 * registers with the values seen by OBP (in case the chip
2410 	 * has been reset externally and therefore lost them).
2411 	 */
2412 	cidp->subven = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
2413 		DDI_PROP_DONTPASS, subven_propname, cidp->subven);
2414 	cidp->subdev = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
2415 		DDI_PROP_DONTPASS, subdev_propname, cidp->subdev);
2416 	cidp->clsize = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
2417 		DDI_PROP_DONTPASS, clsize_propname, cidp->clsize);
2418 	cidp->latency = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
2419 		DDI_PROP_DONTPASS, latency_propname, cidp->latency);
2420 	cidp->rx_rings = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
2421 		DDI_PROP_DONTPASS, rxrings_propname, cidp->rx_rings);
2422 	cidp->tx_rings = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
2423 		DDI_PROP_DONTPASS, txrings_propname, cidp->tx_rings);
2424 
2425 	if (bge_jumbo_enable == B_TRUE) {
2426 		cidp->default_mtu = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
2427 			DDI_PROP_DONTPASS, default_mtu, BGE_DEFAULT_MTU);
2428 		if ((cidp->default_mtu < BGE_DEFAULT_MTU)||
2429 			(cidp->default_mtu > BGE_MAXIMUM_MTU)) {
2430 			cidp->default_mtu = BGE_DEFAULT_MTU;
2431 		}
2432 	}
2433 	/*
2434 	 * Map operating registers
2435 	 */
2436 	err = ddi_regs_map_setup(devinfo, BGE_PCI_OPREGS_RNUMBER,
2437 		&regs, 0, 0, &bge_reg_accattr, &bgep->io_handle);
2438 	if (err != DDI_SUCCESS) {
2439 		bge_problem(bgep, "ddi_regs_map_setup() failed");
2440 		goto attach_fail;
2441 	}
2442 	bgep->io_regs = regs;
2443 	bgep->progress |= PROGRESS_REGS;
2444 
2445 	/*
2446 	 * Characterise the device, so we know its requirements.
2447 	 * Then allocate the appropriate TX and RX descriptors & buffers.
2448 	 */
2449 	if (bge_chip_id_init(bgep) == EIO) {
2450 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_LOST);
2451 		goto attach_fail;
2452 	}
2453 	err = bge_alloc_bufs(bgep);
2454 	if (err != DDI_SUCCESS) {
2455 		bge_problem(bgep, "DMA buffer allocation failed");
2456 		goto attach_fail;
2457 	}
2458 	bgep->progress |= PROGRESS_BUFS;
2459 
2460 	/*
2461 	 * Add the softint handlers:
2462 	 *
2463 	 * Both of these handlers are used to avoid restrictions on the
2464 	 * context and/or mutexes required for some operations.  In
2465 	 * particular, the hardware interrupt handler and its subfunctions
2466 	 * can detect a number of conditions that we don't want to handle
2467 	 * in that context or with that set of mutexes held.  So, these
2468 	 * softints are triggered instead:
2469 	 *
2470 	 * the <resched> softint is triggered if we have previously
2471 	 * had to refuse to send a packet because of resource shortage
2472 	 * (we've run out of transmit buffers), but the send completion
2473 	 * interrupt handler has now detected that more buffers have
2474 	 * become available.
2475 	 *
2476 	 * the <factotum> is triggered if the h/w interrupt handler
2477 	 * sees the <link state changed> or <error> bits in the status
2478 	 * block.  It's also triggered periodically to poll the link
2479 	 * state, just in case we aren't getting link status change
2480 	 * interrupts ...
2481 	 */
2482 	err = ddi_add_softintr(devinfo, DDI_SOFTINT_LOW, &bgep->resched_id,
2483 		NULL, NULL, bge_reschedule, (caddr_t)bgep);
2484 	if (err != DDI_SUCCESS) {
2485 		bge_problem(bgep, "ddi_add_softintr() failed");
2486 		goto attach_fail;
2487 	}
2488 	bgep->progress |= PROGRESS_RESCHED;
2489 	err = ddi_add_softintr(devinfo, DDI_SOFTINT_LOW, &bgep->factotum_id,
2490 		NULL, NULL, bge_chip_factotum, (caddr_t)bgep);
2491 	if (err != DDI_SUCCESS) {
2492 		bge_problem(bgep, "ddi_add_softintr() failed");
2493 		goto attach_fail;
2494 	}
2495 	bgep->progress |= PROGRESS_FACTOTUM;
2496 
2497 	/* Get supported interrupt types */
2498 	if (ddi_intr_get_supported_types(devinfo, &intr_types) != DDI_SUCCESS) {
2499 		bge_error(bgep, "ddi_intr_get_supported_types failed\n");
2500 
2501 		goto attach_fail;
2502 	}
2503 
2504 	BGE_DEBUG(("%s: ddi_intr_get_supported_types() returned: %x",
2505 		bgep->ifname, intr_types));
2506 
2507 	if ((intr_types & DDI_INTR_TYPE_MSI) && bgep->chipid.msi_enabled) {
2508 		if (bge_add_intrs(bgep, DDI_INTR_TYPE_MSI) != DDI_SUCCESS) {
2509 			bge_error(bgep, "MSI registration failed, "
2510 			    "trying FIXED interrupt type\n");
2511 		} else {
2512 			BGE_DEBUG(("%s: Using MSI interrupt type",
2513 				bgep->ifname));
2514 			bgep->intr_type = DDI_INTR_TYPE_MSI;
2515 			bgep->progress |= PROGRESS_HWINT;
2516 		}
2517 	}
2518 
2519 	if (!(bgep->progress & PROGRESS_HWINT) &&
2520 	    (intr_types & DDI_INTR_TYPE_FIXED)) {
2521 		if (bge_add_intrs(bgep, DDI_INTR_TYPE_FIXED) != DDI_SUCCESS) {
2522 			bge_error(bgep, "FIXED interrupt "
2523 			    "registration failed\n");
2524 			goto attach_fail;
2525 		}
2526 
2527 		BGE_DEBUG(("%s: Using FIXED interrupt type", bgep->ifname));
2528 
2529 		bgep->intr_type = DDI_INTR_TYPE_FIXED;
2530 		bgep->progress |= PROGRESS_HWINT;
2531 	}
2532 
2533 	if (!(bgep->progress & PROGRESS_HWINT)) {
2534 		bge_error(bgep, "No interrupts registered\n");
2535 		goto attach_fail;
2536 	}
2537 
2538 	/*
2539 	 * Note that interrupts are not enabled yet as
2540 	 * mutex locks are not initialized. Initialize mutex locks.
2541 	 */
2542 	mutex_init(bgep->genlock, NULL, MUTEX_DRIVER,
2543 	    DDI_INTR_PRI(bgep->intr_pri));
2544 	mutex_init(bgep->softintrlock, NULL, MUTEX_DRIVER,
2545 	    DDI_INTR_PRI(bgep->intr_pri));
2546 	rw_init(bgep->errlock, NULL, RW_DRIVER,
2547 	    DDI_INTR_PRI(bgep->intr_pri));
2548 
2549 	/*
2550 	 * Initialize rings.
2551 	 */
2552 	bge_init_rings(bgep);
2553 
2554 	/*
2555 	 * Now that mutex locks are initialized, enable interrupts.
2556 	 */
2557 	bge_intr_enable(bgep);
2558 	bgep->progress |= PROGRESS_INTR;
2559 
2560 	/*
2561 	 * Initialise link state variables
2562 	 * Stop, reset & reinitialise the chip.
2563 	 * Initialise the (internal) PHY.
2564 	 */
2565 	bgep->link_state = LINK_STATE_UNKNOWN;
2566 	bgep->link_up_msg = bgep->link_down_msg = " (initialized)";
2567 
2568 	mutex_enter(bgep->genlock);
2569 
2570 	/*
2571 	 * Reset chip & rings to initial state; also reset address
2572 	 * filtering, promiscuity, loopback mode.
2573 	 */
2574 #ifdef BGE_IPMI_ASF
2575 	if (bge_reset(bgep, ASF_MODE_SHUTDOWN) != DDI_SUCCESS) {
2576 #else
2577 	if (bge_reset(bgep) != DDI_SUCCESS) {
2578 #endif
2579 		(void) bge_check_acc_handle(bgep, bgep->cfg_handle);
2580 		(void) bge_check_acc_handle(bgep, bgep->io_handle);
2581 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_LOST);
2582 		mutex_exit(bgep->genlock);
2583 		goto attach_fail;
2584 	}
2585 
2586 #ifdef BGE_IPMI_ASF
2587 	if (bgep->asf_enabled) {
2588 		bgep->asf_status = ASF_STAT_RUN_INIT;
2589 	}
2590 #endif
2591 
2592 	bzero(bgep->mcast_hash, sizeof (bgep->mcast_hash));
2593 	bzero(bgep->mcast_refs, sizeof (bgep->mcast_refs));
2594 	bgep->promisc = B_FALSE;
2595 	bgep->param_loop_mode = BGE_LOOP_NONE;
2596 	if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK) {
2597 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_LOST);
2598 		mutex_exit(bgep->genlock);
2599 		goto attach_fail;
2600 	}
2601 	if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK) {
2602 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_LOST);
2603 		mutex_exit(bgep->genlock);
2604 		goto attach_fail;
2605 	}
2606 
2607 	mutex_exit(bgep->genlock);
2608 
2609 	if (bge_phys_init(bgep) == EIO) {
2610 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_LOST);
2611 		goto attach_fail;
2612 	}
2613 	bgep->progress |= PROGRESS_PHY;
2614 
2615 	/*
2616 	 * Register NDD-tweakable parameters
2617 	 */
2618 	if (bge_nd_init(bgep)) {
2619 		bge_problem(bgep, "bge_nd_init() failed");
2620 		goto attach_fail;
2621 	}
2622 	bgep->progress |= PROGRESS_NDD;
2623 
2624 	/*
2625 	 * Create & initialise named kstats
2626 	 */
2627 	bge_init_kstats(bgep, instance);
2628 	bgep->progress |= PROGRESS_KSTATS;
2629 
2630 	/*
2631 	 * Determine whether to override the chip's own MAC address
2632 	 */
2633 	bge_find_mac_address(bgep, cidp);
2634 	ethaddr_copy(cidp->vendor_addr.addr, bgep->curr_addr[0].addr);
2635 	bgep->curr_addr[0].set = B_TRUE;
2636 
2637 	bgep->unicst_addr_total = MAC_ADDRESS_REGS_MAX;
2638 	/*
2639 	 * Address available is one less than MAX
2640 	 * as primary address is not advertised
2641 	 * as a multiple MAC address.
2642 	 */
2643 	bgep->unicst_addr_avail = MAC_ADDRESS_REGS_MAX - 1;
2644 
2645 	if ((macp = mac_alloc(MAC_VERSION)) == NULL)
2646 		goto attach_fail;
2647 	macp->m_type_ident = MAC_PLUGIN_IDENT_ETHER;
2648 	macp->m_driver = bgep;
2649 	macp->m_dip = devinfo;
2650 	macp->m_src_addr = bgep->curr_addr[0].addr;
2651 	macp->m_callbacks = &bge_m_callbacks;
2652 	macp->m_min_sdu = 0;
2653 	macp->m_max_sdu = cidp->ethmax_size - sizeof (struct ether_header);
2654 	/*
2655 	 * Finally, we're ready to register ourselves with the MAC layer
2656 	 * interface; if this succeeds, we're all ready to start()
2657 	 */
2658 	err = mac_register(macp, &bgep->mh);
2659 	mac_free(macp);
2660 	if (err != 0)
2661 		goto attach_fail;
2662 
2663 	cychand.cyh_func = bge_chip_cyclic;
2664 	cychand.cyh_arg = bgep;
2665 	cychand.cyh_level = CY_LOCK_LEVEL;
2666 	cyctime.cyt_when = 0;
2667 	cyctime.cyt_interval = BGE_CYCLIC_PERIOD;
2668 	mutex_enter(&cpu_lock);
2669 	bgep->cyclic_id = cyclic_add(&cychand, &cyctime);
2670 	mutex_exit(&cpu_lock);
2671 
2672 	bgep->progress |= PROGRESS_READY;
2673 	ASSERT(bgep->bge_guard == BGE_GUARD);
2674 	return (DDI_SUCCESS);
2675 
2676 attach_fail:
2677 #ifdef BGE_IPMI_ASF
2678 	bge_unattach(bgep, ASF_MODE_SHUTDOWN);
2679 #else
2680 	bge_unattach(bgep);
2681 #endif
2682 	return (DDI_FAILURE);
2683 }
2684 
2685 /*
2686  *	bge_suspend() -- suspend transmit/receive for powerdown
2687  */
2688 static int
2689 bge_suspend(bge_t *bgep)
2690 {
2691 	/*
2692 	 * Stop processing and idle (powerdown) the PHY ...
2693 	 */
2694 	mutex_enter(bgep->genlock);
2695 #ifdef BGE_IPMI_ASF
2696 	/*
2697 	 * Power management hasn't been supported in BGE now. If you
2698 	 * want to implement it, please add the ASF/IPMI related
2699 	 * code here.
2700 	 */
2701 #endif
2702 	bge_stop(bgep);
2703 	if (bge_phys_idle(bgep) != DDI_SUCCESS) {
2704 		(void) bge_check_acc_handle(bgep, bgep->io_handle);
2705 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
2706 		mutex_exit(bgep->genlock);
2707 		return (DDI_FAILURE);
2708 	}
2709 	if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK) {
2710 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
2711 		mutex_exit(bgep->genlock);
2712 		return (DDI_FAILURE);
2713 	}
2714 	mutex_exit(bgep->genlock);
2715 
2716 	return (DDI_SUCCESS);
2717 }
2718 
2719 /*
2720  * detach(9E) -- Detach a device from the system
2721  */
2722 static int
2723 bge_detach(dev_info_t *devinfo, ddi_detach_cmd_t cmd)
2724 {
2725 	bge_t *bgep;
2726 #ifdef BGE_IPMI_ASF
2727 	uint_t asf_mode;
2728 	asf_mode = ASF_MODE_NONE;
2729 #endif
2730 
2731 	BGE_GTRACE(("bge_detach($%p, %d)", (void *)devinfo, cmd));
2732 
2733 	bgep = ddi_get_driver_private(devinfo);
2734 
2735 	switch (cmd) {
2736 	default:
2737 		return (DDI_FAILURE);
2738 
2739 	case DDI_SUSPEND:
2740 		return (bge_suspend(bgep));
2741 
2742 	case DDI_DETACH:
2743 		break;
2744 	}
2745 
2746 #ifdef BGE_IPMI_ASF
2747 	mutex_enter(bgep->genlock);
2748 	if (bgep->asf_enabled && ((bgep->asf_status == ASF_STAT_RUN) ||
2749 		(bgep->asf_status == ASF_STAT_RUN_INIT))) {
2750 
2751 		bge_asf_update_status(bgep);
2752 		if (bgep->asf_status == ASF_STAT_RUN) {
2753 			bge_asf_stop_timer(bgep);
2754 		}
2755 		bgep->asf_status = ASF_STAT_STOP;
2756 
2757 		bge_asf_pre_reset_operations(bgep, BGE_SHUTDOWN_RESET);
2758 
2759 		if (bgep->asf_pseudostop) {
2760 			bgep->link_up_msg = bgep->link_down_msg = " (stopped)";
2761 			bge_chip_stop(bgep, B_FALSE);
2762 			bgep->bge_mac_state = BGE_MAC_STOPPED;
2763 			bgep->asf_pseudostop = B_FALSE;
2764 		}
2765 
2766 		asf_mode = ASF_MODE_POST_SHUTDOWN;
2767 
2768 		if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK)
2769 			ddi_fm_service_impact(bgep->devinfo,
2770 			    DDI_SERVICE_UNAFFECTED);
2771 		if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
2772 			ddi_fm_service_impact(bgep->devinfo,
2773 			    DDI_SERVICE_UNAFFECTED);
2774 	}
2775 	mutex_exit(bgep->genlock);
2776 #endif
2777 
2778 	/*
2779 	 * Unregister from the GLD subsystem.  This can fail, in
2780 	 * particular if there are DLPI style-2 streams still open -
2781 	 * in which case we just return failure without shutting
2782 	 * down chip operations.
2783 	 */
2784 	if (mac_unregister(bgep->mh) != 0)
2785 		return (DDI_FAILURE);
2786 
2787 	/*
2788 	 * All activity stopped, so we can clean up & exit
2789 	 */
2790 #ifdef BGE_IPMI_ASF
2791 	bge_unattach(bgep, asf_mode);
2792 #else
2793 	bge_unattach(bgep);
2794 #endif
2795 	return (DDI_SUCCESS);
2796 }
2797 
2798 
2799 /*
2800  * ========== Module Loading Data & Entry Points ==========
2801  */
2802 
2803 #undef	BGE_DBG
2804 #define	BGE_DBG		BGE_DBG_INIT	/* debug flag for this code	*/
2805 
2806 DDI_DEFINE_STREAM_OPS(bge_dev_ops, nulldev, nulldev, bge_attach, bge_detach,
2807     nodev, NULL, D_MP, NULL);
2808 
2809 static struct modldrv bge_modldrv = {
2810 	&mod_driverops,		/* Type of module.  This one is a driver */
2811 	bge_ident,		/* short description */
2812 	&bge_dev_ops		/* driver specific ops */
2813 };
2814 
2815 static struct modlinkage modlinkage = {
2816 	MODREV_1, (void *)&bge_modldrv, NULL
2817 };
2818 
2819 
2820 int
2821 _info(struct modinfo *modinfop)
2822 {
2823 	return (mod_info(&modlinkage, modinfop));
2824 }
2825 
2826 int
2827 _init(void)
2828 {
2829 	int status;
2830 
2831 	mac_init_ops(&bge_dev_ops, "bge");
2832 	status = mod_install(&modlinkage);
2833 	if (status == DDI_SUCCESS)
2834 		mutex_init(bge_log_mutex, NULL, MUTEX_DRIVER, NULL);
2835 	else
2836 		mac_fini_ops(&bge_dev_ops);
2837 	return (status);
2838 }
2839 
2840 int
2841 _fini(void)
2842 {
2843 	int status;
2844 
2845 	status = mod_remove(&modlinkage);
2846 	if (status == DDI_SUCCESS) {
2847 		mac_fini_ops(&bge_dev_ops);
2848 		mutex_destroy(bge_log_mutex);
2849 	}
2850 	return (status);
2851 }
2852 
2853 
2854 /*
2855  * bge_add_intrs:
2856  *
2857  * Register FIXED or MSI interrupts.
2858  */
2859 static int
2860 bge_add_intrs(bge_t *bgep, int	intr_type)
2861 {
2862 	dev_info_t	*dip = bgep->devinfo;
2863 	int		avail, actual, intr_size, count = 0;
2864 	int		i, flag, ret;
2865 
2866 	BGE_DEBUG(("bge_add_intrs($%p, 0x%x)", (void *)bgep, intr_type));
2867 
2868 	/* Get number of interrupts */
2869 	ret = ddi_intr_get_nintrs(dip, intr_type, &count);
2870 	if ((ret != DDI_SUCCESS) || (count == 0)) {
2871 		bge_error(bgep, "ddi_intr_get_nintrs() failure, ret: %d, "
2872 		    "count: %d", ret, count);
2873 
2874 		return (DDI_FAILURE);
2875 	}
2876 
2877 	/* Get number of available interrupts */
2878 	ret = ddi_intr_get_navail(dip, intr_type, &avail);
2879 	if ((ret != DDI_SUCCESS) || (avail == 0)) {
2880 		bge_error(bgep, "ddi_intr_get_navail() failure, "
2881 		    "ret: %d, avail: %d\n", ret, avail);
2882 
2883 		return (DDI_FAILURE);
2884 	}
2885 
2886 	if (avail < count) {
2887 		BGE_DEBUG(("%s: nintrs() returned %d, navail returned %d",
2888 		    bgep->ifname, count, avail));
2889 	}
2890 
2891 	/*
2892 	 * BGE hardware generates only single MSI even though it claims
2893 	 * to support multiple MSIs. So, hard code MSI count value to 1.
2894 	 */
2895 	if (intr_type == DDI_INTR_TYPE_MSI) {
2896 		count = 1;
2897 		flag = DDI_INTR_ALLOC_STRICT;
2898 	} else {
2899 		flag = DDI_INTR_ALLOC_NORMAL;
2900 	}
2901 
2902 	/* Allocate an array of interrupt handles */
2903 	intr_size = count * sizeof (ddi_intr_handle_t);
2904 	bgep->htable = kmem_alloc(intr_size, KM_SLEEP);
2905 
2906 	/* Call ddi_intr_alloc() */
2907 	ret = ddi_intr_alloc(dip, bgep->htable, intr_type, 0,
2908 	    count, &actual, flag);
2909 
2910 	if ((ret != DDI_SUCCESS) || (actual == 0)) {
2911 		bge_error(bgep, "ddi_intr_alloc() failed %d\n", ret);
2912 
2913 		kmem_free(bgep->htable, intr_size);
2914 		return (DDI_FAILURE);
2915 	}
2916 
2917 	if (actual < count) {
2918 		BGE_DEBUG(("%s: Requested: %d, Received: %d",
2919 			bgep->ifname, count, actual));
2920 	}
2921 
2922 	bgep->intr_cnt = actual;
2923 
2924 	/*
2925 	 * Get priority for first msi, assume remaining are all the same
2926 	 */
2927 	if ((ret = ddi_intr_get_pri(bgep->htable[0], &bgep->intr_pri)) !=
2928 	    DDI_SUCCESS) {
2929 		bge_error(bgep, "ddi_intr_get_pri() failed %d\n", ret);
2930 
2931 		/* Free already allocated intr */
2932 		for (i = 0; i < actual; i++) {
2933 			(void) ddi_intr_free(bgep->htable[i]);
2934 		}
2935 
2936 		kmem_free(bgep->htable, intr_size);
2937 		return (DDI_FAILURE);
2938 	}
2939 
2940 	/* Call ddi_intr_add_handler() */
2941 	for (i = 0; i < actual; i++) {
2942 		if ((ret = ddi_intr_add_handler(bgep->htable[i], bge_intr,
2943 		    (caddr_t)bgep, (caddr_t)(uintptr_t)i)) != DDI_SUCCESS) {
2944 			bge_error(bgep, "ddi_intr_add_handler() "
2945 			    "failed %d\n", ret);
2946 
2947 			/* Free already allocated intr */
2948 			for (i = 0; i < actual; i++) {
2949 				(void) ddi_intr_free(bgep->htable[i]);
2950 			}
2951 
2952 			kmem_free(bgep->htable, intr_size);
2953 			return (DDI_FAILURE);
2954 		}
2955 	}
2956 
2957 	if ((ret = ddi_intr_get_cap(bgep->htable[0], &bgep->intr_cap))
2958 		!= DDI_SUCCESS) {
2959 		bge_error(bgep, "ddi_intr_get_cap() failed %d\n", ret);
2960 
2961 		for (i = 0; i < actual; i++) {
2962 			(void) ddi_intr_remove_handler(bgep->htable[i]);
2963 			(void) ddi_intr_free(bgep->htable[i]);
2964 		}
2965 
2966 		kmem_free(bgep->htable, intr_size);
2967 		return (DDI_FAILURE);
2968 	}
2969 
2970 	return (DDI_SUCCESS);
2971 }
2972 
2973 /*
2974  * bge_rem_intrs:
2975  *
2976  * Unregister FIXED or MSI interrupts
2977  */
2978 static void
2979 bge_rem_intrs(bge_t *bgep)
2980 {
2981 	int	i;
2982 
2983 	BGE_DEBUG(("bge_rem_intrs($%p)", (void *)bgep));
2984 
2985 	/* Call ddi_intr_remove_handler() */
2986 	for (i = 0; i < bgep->intr_cnt; i++) {
2987 		(void) ddi_intr_remove_handler(bgep->htable[i]);
2988 		(void) ddi_intr_free(bgep->htable[i]);
2989 	}
2990 
2991 	kmem_free(bgep->htable, bgep->intr_cnt * sizeof (ddi_intr_handle_t));
2992 }
2993 
2994 
2995 void
2996 bge_intr_enable(bge_t *bgep)
2997 {
2998 	int i;
2999 
3000 	if (bgep->intr_cap & DDI_INTR_FLAG_BLOCK) {
3001 		/* Call ddi_intr_block_enable() for MSI interrupts */
3002 		(void) ddi_intr_block_enable(bgep->htable, bgep->intr_cnt);
3003 	} else {
3004 		/* Call ddi_intr_enable for MSI or FIXED interrupts */
3005 		for (i = 0; i < bgep->intr_cnt; i++) {
3006 			(void) ddi_intr_enable(bgep->htable[i]);
3007 		}
3008 	}
3009 }
3010 
3011 
3012 void
3013 bge_intr_disable(bge_t *bgep)
3014 {
3015 	int i;
3016 
3017 	if (bgep->intr_cap & DDI_INTR_FLAG_BLOCK) {
3018 		/* Call ddi_intr_block_disable() */
3019 		(void) ddi_intr_block_disable(bgep->htable, bgep->intr_cnt);
3020 	} else {
3021 		for (i = 0; i < bgep->intr_cnt; i++) {
3022 			(void) ddi_intr_disable(bgep->htable[i]);
3023 		}
3024 	}
3025 }
3026