xref: /illumos-gate/usr/src/uts/common/io/devinfo.c (revision 3d63ea05)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 /*
29  * driver for accessing kernel devinfo tree.
30  */
31 #include <sys/types.h>
32 #include <sys/pathname.h>
33 #include <sys/debug.h>
34 #include <sys/autoconf.h>
35 #include <sys/conf.h>
36 #include <sys/file.h>
37 #include <sys/kmem.h>
38 #include <sys/modctl.h>
39 #include <sys/stat.h>
40 #include <sys/ddi.h>
41 #include <sys/sunddi.h>
42 #include <sys/sunldi_impl.h>
43 #include <sys/sunndi.h>
44 #include <sys/esunddi.h>
45 #include <sys/sunmdi.h>
46 #include <sys/ddi_impldefs.h>
47 #include <sys/ndi_impldefs.h>
48 #include <sys/mdi_impldefs.h>
49 #include <sys/devinfo_impl.h>
50 #include <sys/thread.h>
51 #include <sys/modhash.h>
52 #include <sys/bitmap.h>
53 #include <util/qsort.h>
54 #include <sys/disp.h>
55 #include <sys/kobj.h>
56 #include <sys/crc32.h>
57 
58 
59 #ifdef DEBUG
60 static int di_debug;
61 #define	dcmn_err(args) if (di_debug >= 1) cmn_err args
62 #define	dcmn_err2(args) if (di_debug >= 2) cmn_err args
63 #define	dcmn_err3(args) if (di_debug >= 3) cmn_err args
64 #else
65 #define	dcmn_err(args) /* nothing */
66 #define	dcmn_err2(args) /* nothing */
67 #define	dcmn_err3(args) /* nothing */
68 #endif
69 
70 /*
71  * We partition the space of devinfo minor nodes equally between the full and
72  * unprivileged versions of the driver.  The even-numbered minor nodes are the
73  * full version, while the odd-numbered ones are the read-only version.
74  */
75 static int di_max_opens = 32;
76 
77 #define	DI_FULL_PARENT		0
78 #define	DI_READONLY_PARENT	1
79 #define	DI_NODE_SPECIES		2
80 #define	DI_UNPRIVILEGED_NODE(x)	(((x) % 2) != 0)
81 
82 #define	IOC_IDLE	0	/* snapshot ioctl states */
83 #define	IOC_SNAP	1	/* snapshot in progress */
84 #define	IOC_DONE	2	/* snapshot done, but not copied out */
85 #define	IOC_COPY	3	/* copyout in progress */
86 
87 /*
88  * Keep max alignment so we can move snapshot to different platforms
89  */
90 #define	DI_ALIGN(addr)	((addr + 7l) & ~7l)
91 
92 /*
93  * To avoid wasting memory, make a linked list of memory chunks.
94  * Size of each chunk is buf_size.
95  */
96 struct di_mem {
97 	struct di_mem *next;	/* link to next chunk */
98 	char *buf;		/* contiguous kernel memory */
99 	size_t buf_size;	/* size of buf in bytes */
100 	devmap_cookie_t cook;	/* cookie from ddi_umem_alloc */
101 };
102 
103 /*
104  * This is a stack for walking the tree without using recursion.
105  * When the devinfo tree height is above some small size, one
106  * gets watchdog resets on sun4m.
107  */
108 struct di_stack {
109 	void		*offset[MAX_TREE_DEPTH];
110 	struct dev_info *dip[MAX_TREE_DEPTH];
111 	int		circ[MAX_TREE_DEPTH];
112 	int		depth;	/* depth of current node to be copied */
113 };
114 
115 #define	TOP_OFFSET(stack)	\
116 	((di_off_t *)(stack)->offset[(stack)->depth - 1])
117 #define	TOP_NODE(stack)		\
118 	((stack)->dip[(stack)->depth - 1])
119 #define	PARENT_OFFSET(stack)	\
120 	((di_off_t *)(stack)->offset[(stack)->depth - 2])
121 #define	EMPTY_STACK(stack)	((stack)->depth == 0)
122 #define	POP_STACK(stack)	{ \
123 	ndi_devi_exit((dev_info_t *)TOP_NODE(stack), \
124 		(stack)->circ[(stack)->depth - 1]); \
125 	((stack)->depth--); \
126 }
127 #define	PUSH_STACK(stack, node, offp)	{ \
128 	ASSERT(node != NULL); \
129 	ndi_devi_enter((dev_info_t *)node, &(stack)->circ[(stack)->depth]); \
130 	(stack)->dip[(stack)->depth] = (node); \
131 	(stack)->offset[(stack)->depth] = (void *)(offp); \
132 	((stack)->depth)++; \
133 }
134 
135 #define	DI_ALL_PTR(s)	((struct di_all *)(intptr_t)di_mem_addr((s), 0))
136 
137 /*
138  * With devfs, the device tree has no global locks. The device tree is
139  * dynamic and dips may come and go if they are not locked locally. Under
140  * these conditions, pointers are no longer reliable as unique IDs.
141  * Specifically, these pointers cannot be used as keys for hash tables
142  * as the same devinfo structure may be freed in one part of the tree only
143  * to be allocated as the structure for a different device in another
144  * part of the tree. This can happen if DR and the snapshot are
145  * happening concurrently.
146  * The following data structures act as keys for devinfo nodes and
147  * pathinfo nodes.
148  */
149 
150 enum di_ktype {
151 	DI_DKEY = 1,
152 	DI_PKEY = 2
153 };
154 
155 struct di_dkey {
156 	dev_info_t	*dk_dip;
157 	major_t		dk_major;
158 	int		dk_inst;
159 	pnode_t		dk_nodeid;
160 };
161 
162 struct di_pkey {
163 	mdi_pathinfo_t	*pk_pip;
164 	char		*pk_path_addr;
165 	dev_info_t	*pk_client;
166 	dev_info_t	*pk_phci;
167 };
168 
169 struct di_key {
170 	enum di_ktype	k_type;
171 	union {
172 		struct di_dkey dkey;
173 		struct di_pkey pkey;
174 	} k_u;
175 };
176 
177 
178 struct i_lnode;
179 
180 typedef struct i_link {
181 	/*
182 	 * If a di_link struct representing this i_link struct makes it
183 	 * into the snapshot, then self will point to the offset of
184 	 * the di_link struct in the snapshot
185 	 */
186 	di_off_t	self;
187 
188 	int		spec_type;	/* block or char access type */
189 	struct i_lnode	*src_lnode;	/* src i_lnode */
190 	struct i_lnode	*tgt_lnode;	/* tgt i_lnode */
191 	struct i_link	*src_link_next;	/* next src i_link /w same i_lnode */
192 	struct i_link	*tgt_link_next;	/* next tgt i_link /w same i_lnode */
193 } i_link_t;
194 
195 typedef struct i_lnode {
196 	/*
197 	 * If a di_lnode struct representing this i_lnode struct makes it
198 	 * into the snapshot, then self will point to the offset of
199 	 * the di_lnode struct in the snapshot
200 	 */
201 	di_off_t	self;
202 
203 	/*
204 	 * used for hashing and comparing i_lnodes
205 	 */
206 	int		modid;
207 
208 	/*
209 	 * public information describing a link endpoint
210 	 */
211 	struct di_node	*di_node;	/* di_node in snapshot */
212 	dev_t		devt;		/* devt */
213 
214 	/*
215 	 * i_link ptr to links coming into this i_lnode node
216 	 * (this i_lnode is the target of these i_links)
217 	 */
218 	i_link_t	*link_in;
219 
220 	/*
221 	 * i_link ptr to links going out of this i_lnode node
222 	 * (this i_lnode is the source of these i_links)
223 	 */
224 	i_link_t	*link_out;
225 } i_lnode_t;
226 
227 /*
228  * Soft state associated with each instance of driver open.
229  */
230 static struct di_state {
231 	di_off_t mem_size;	/* total # bytes in memlist	*/
232 	struct di_mem *memlist;	/* head of memlist		*/
233 	uint_t command;		/* command from ioctl		*/
234 	int di_iocstate;	/* snapshot ioctl state		*/
235 	mod_hash_t *reg_dip_hash;
236 	mod_hash_t *reg_pip_hash;
237 	int lnode_count;
238 	int link_count;
239 
240 	mod_hash_t *lnode_hash;
241 	mod_hash_t *link_hash;
242 } **di_states;
243 
244 static kmutex_t di_lock;	/* serialize instance assignment */
245 
246 typedef enum {
247 	DI_QUIET = 0,	/* DI_QUIET must always be 0 */
248 	DI_ERR,
249 	DI_INFO,
250 	DI_TRACE,
251 	DI_TRACE1,
252 	DI_TRACE2
253 } di_cache_debug_t;
254 
255 static uint_t	di_chunk = 32;		/* I/O chunk size in pages */
256 
257 #define	DI_CACHE_LOCK(c)	(mutex_enter(&(c).cache_lock))
258 #define	DI_CACHE_UNLOCK(c)	(mutex_exit(&(c).cache_lock))
259 #define	DI_CACHE_LOCKED(c)	(mutex_owned(&(c).cache_lock))
260 
261 /*
262  * Check that whole device tree is being configured as a pre-condition for
263  * cleaning up /etc/devices files.
264  */
265 #define	DEVICES_FILES_CLEANABLE(st)	\
266 	(((st)->command & DINFOSUBTREE) && ((st)->command & DINFOFORCE) && \
267 	strcmp(DI_ALL_PTR(st)->root_path, "/") == 0)
268 
269 #define	CACHE_DEBUG(args)	\
270 	{ if (di_cache_debug != DI_QUIET) di_cache_print args; }
271 
272 typedef struct phci_walk_arg {
273 	di_off_t	off;
274 	struct di_state	*st;
275 } phci_walk_arg_t;
276 
277 static int di_open(dev_t *, int, int, cred_t *);
278 static int di_ioctl(dev_t, int, intptr_t, int, cred_t *, int *);
279 static int di_close(dev_t, int, int, cred_t *);
280 static int di_info(dev_info_t *, ddi_info_cmd_t, void *, void **);
281 static int di_attach(dev_info_t *, ddi_attach_cmd_t);
282 static int di_detach(dev_info_t *, ddi_detach_cmd_t);
283 
284 static di_off_t di_copyformat(di_off_t, struct di_state *, intptr_t, int);
285 static di_off_t di_snapshot_and_clean(struct di_state *);
286 static di_off_t di_copydevnm(di_off_t *, struct di_state *);
287 static di_off_t di_copytree(struct dev_info *, di_off_t *, struct di_state *);
288 static di_off_t di_copynode(struct di_stack *, struct di_state *);
289 static di_off_t di_getmdata(struct ddi_minor_data *, di_off_t *, di_off_t,
290     struct di_state *);
291 static di_off_t di_getppdata(struct dev_info *, di_off_t *, struct di_state *);
292 static di_off_t di_getdpdata(struct dev_info *, di_off_t *, struct di_state *);
293 static di_off_t di_getprop(struct ddi_prop *, di_off_t *,
294     struct di_state *, struct dev_info *, int);
295 static void di_allocmem(struct di_state *, size_t);
296 static void di_freemem(struct di_state *);
297 static void di_copymem(struct di_state *st, caddr_t buf, size_t bufsiz);
298 static di_off_t di_checkmem(struct di_state *, di_off_t, size_t);
299 static caddr_t di_mem_addr(struct di_state *, di_off_t);
300 static int di_setstate(struct di_state *, int);
301 static void di_register_dip(struct di_state *, dev_info_t *, di_off_t);
302 static void di_register_pip(struct di_state *, mdi_pathinfo_t *, di_off_t);
303 static di_off_t di_getpath_data(dev_info_t *, di_off_t *, di_off_t,
304     struct di_state *, int);
305 static di_off_t di_getlink_data(di_off_t, struct di_state *);
306 static int di_dip_find(struct di_state *st, dev_info_t *node, di_off_t *off_p);
307 
308 static int cache_args_valid(struct di_state *st, int *error);
309 static int snapshot_is_cacheable(struct di_state *st);
310 static int di_cache_lookup(struct di_state *st);
311 static int di_cache_update(struct di_state *st);
312 static void di_cache_print(di_cache_debug_t msglevel, char *fmt, ...);
313 int build_vhci_list(dev_info_t *vh_devinfo, void *arg);
314 int build_phci_list(dev_info_t *ph_devinfo, void *arg);
315 
316 static struct cb_ops di_cb_ops = {
317 	di_open,		/* open */
318 	di_close,		/* close */
319 	nodev,			/* strategy */
320 	nodev,			/* print */
321 	nodev,			/* dump */
322 	nodev,			/* read */
323 	nodev,			/* write */
324 	di_ioctl,		/* ioctl */
325 	nodev,			/* devmap */
326 	nodev,			/* mmap */
327 	nodev,			/* segmap */
328 	nochpoll,		/* poll */
329 	ddi_prop_op,		/* prop_op */
330 	NULL,			/* streamtab  */
331 	D_NEW | D_MP		/* Driver compatibility flag */
332 };
333 
334 static struct dev_ops di_ops = {
335 	DEVO_REV,		/* devo_rev, */
336 	0,			/* refcnt  */
337 	di_info,		/* info */
338 	nulldev,		/* identify */
339 	nulldev,		/* probe */
340 	di_attach,		/* attach */
341 	di_detach,		/* detach */
342 	nodev,			/* reset */
343 	&di_cb_ops,		/* driver operations */
344 	NULL			/* bus operations */
345 };
346 
347 /*
348  * Module linkage information for the kernel.
349  */
350 static struct modldrv modldrv = {
351 	&mod_driverops,
352 	"DEVINFO Driver %I%",
353 	&di_ops
354 };
355 
356 static struct modlinkage modlinkage = {
357 	MODREV_1,
358 	&modldrv,
359 	NULL
360 };
361 
362 int
363 _init(void)
364 {
365 	int	error;
366 
367 	mutex_init(&di_lock, NULL, MUTEX_DRIVER, NULL);
368 
369 	error = mod_install(&modlinkage);
370 	if (error != 0) {
371 		mutex_destroy(&di_lock);
372 		return (error);
373 	}
374 
375 	return (0);
376 }
377 
378 int
379 _info(struct modinfo *modinfop)
380 {
381 	return (mod_info(&modlinkage, modinfop));
382 }
383 
384 int
385 _fini(void)
386 {
387 	int	error;
388 
389 	error = mod_remove(&modlinkage);
390 	if (error != 0) {
391 		return (error);
392 	}
393 
394 	mutex_destroy(&di_lock);
395 	return (0);
396 }
397 
398 static dev_info_t *di_dip;
399 
400 /*ARGSUSED*/
401 static int
402 di_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
403 {
404 	int error = DDI_FAILURE;
405 
406 	switch (infocmd) {
407 	case DDI_INFO_DEVT2DEVINFO:
408 		*result = (void *)di_dip;
409 		error = DDI_SUCCESS;
410 		break;
411 	case DDI_INFO_DEVT2INSTANCE:
412 		/*
413 		 * All dev_t's map to the same, single instance.
414 		 */
415 		*result = (void *)0;
416 		error = DDI_SUCCESS;
417 		break;
418 	default:
419 		break;
420 	}
421 
422 	return (error);
423 }
424 
425 static int
426 di_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
427 {
428 	int error = DDI_FAILURE;
429 
430 	switch (cmd) {
431 	case DDI_ATTACH:
432 		di_states = kmem_zalloc(
433 		    di_max_opens * sizeof (struct di_state *), KM_SLEEP);
434 
435 		if (ddi_create_minor_node(dip, "devinfo", S_IFCHR,
436 		    DI_FULL_PARENT, DDI_PSEUDO, NULL) == DDI_FAILURE ||
437 		    ddi_create_minor_node(dip, "devinfo,ro", S_IFCHR,
438 		    DI_READONLY_PARENT, DDI_PSEUDO, NULL) == DDI_FAILURE) {
439 			kmem_free(di_states,
440 			    di_max_opens * sizeof (struct di_state *));
441 			ddi_remove_minor_node(dip, NULL);
442 			error = DDI_FAILURE;
443 		} else {
444 			di_dip = dip;
445 			ddi_report_dev(dip);
446 
447 			error = DDI_SUCCESS;
448 		}
449 		break;
450 	default:
451 		error = DDI_FAILURE;
452 		break;
453 	}
454 
455 	return (error);
456 }
457 
458 static int
459 di_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
460 {
461 	int error = DDI_FAILURE;
462 
463 	switch (cmd) {
464 	case DDI_DETACH:
465 		ddi_remove_minor_node(dip, NULL);
466 		di_dip = NULL;
467 		kmem_free(di_states, di_max_opens * sizeof (struct di_state *));
468 
469 		error = DDI_SUCCESS;
470 		break;
471 	default:
472 		error = DDI_FAILURE;
473 		break;
474 	}
475 
476 	return (error);
477 }
478 
479 /*
480  * Allow multiple opens by tweaking the dev_t such that it looks like each
481  * open is getting a different minor device.  Each minor gets a separate
482  * entry in the di_states[] table.  Based on the original minor number, we
483  * discriminate opens of the full and read-only nodes.  If all of the instances
484  * of the selected minor node are currently open, we return EAGAIN.
485  */
486 /*ARGSUSED*/
487 static int
488 di_open(dev_t *devp, int flag, int otyp, cred_t *credp)
489 {
490 	int m;
491 	minor_t minor_parent = getminor(*devp);
492 
493 	if (minor_parent != DI_FULL_PARENT &&
494 	    minor_parent != DI_READONLY_PARENT)
495 		return (ENXIO);
496 
497 	mutex_enter(&di_lock);
498 
499 	for (m = minor_parent; m < di_max_opens; m += DI_NODE_SPECIES) {
500 		if (di_states[m] != NULL)
501 			continue;
502 
503 		di_states[m] = kmem_zalloc(sizeof (struct di_state), KM_SLEEP);
504 		break;	/* It's ours. */
505 	}
506 
507 	if (m >= di_max_opens) {
508 		/*
509 		 * maximum open instance for device reached
510 		 */
511 		mutex_exit(&di_lock);
512 		dcmn_err((CE_WARN, "devinfo: maximum devinfo open reached"));
513 		return (EAGAIN);
514 	}
515 	mutex_exit(&di_lock);
516 
517 	ASSERT(m < di_max_opens);
518 	*devp = makedevice(getmajor(*devp), (minor_t)(m + DI_NODE_SPECIES));
519 
520 	dcmn_err((CE_CONT, "di_open: thread = %p, assigned minor = %d\n",
521 		(void *)curthread, m + DI_NODE_SPECIES));
522 
523 	return (0);
524 }
525 
526 /*ARGSUSED*/
527 static int
528 di_close(dev_t dev, int flag, int otype, cred_t *cred_p)
529 {
530 	struct di_state *st;
531 	int m = (int)getminor(dev) - DI_NODE_SPECIES;
532 
533 	if (m < 0) {
534 		cmn_err(CE_WARN, "closing non-existent devinfo minor %d",
535 		    m + DI_NODE_SPECIES);
536 		return (ENXIO);
537 	}
538 
539 	st = di_states[m];
540 	ASSERT(m < di_max_opens && st != NULL);
541 
542 	di_freemem(st);
543 	kmem_free(st, sizeof (struct di_state));
544 
545 	/*
546 	 * empty slot in state table
547 	 */
548 	mutex_enter(&di_lock);
549 	di_states[m] = NULL;
550 	dcmn_err((CE_CONT, "di_close: thread = %p, assigned minor = %d\n",
551 		(void *)curthread, m + DI_NODE_SPECIES));
552 	mutex_exit(&di_lock);
553 
554 	return (0);
555 }
556 
557 
558 /*ARGSUSED*/
559 static int
560 di_ioctl(dev_t dev, int cmd, intptr_t arg, int mode, cred_t *credp, int *rvalp)
561 {
562 	int rv, error;
563 	di_off_t off;
564 	struct di_all *all;
565 	struct di_state *st;
566 	int m = (int)getminor(dev) - DI_NODE_SPECIES;
567 
568 	major_t i;
569 	char *drv_name;
570 	size_t map_size, size;
571 	struct di_mem *dcp;
572 	int ndi_flags;
573 
574 	if (m < 0 || m >= di_max_opens) {
575 		return (ENXIO);
576 	}
577 
578 	st = di_states[m];
579 	ASSERT(st != NULL);
580 
581 	dcmn_err2((CE_CONT, "di_ioctl: mode = %x, cmd = %x\n", mode, cmd));
582 
583 	switch (cmd) {
584 	case DINFOIDENT:
585 		/*
586 		 * This is called from di_init to verify that the driver
587 		 * opened is indeed devinfo. The purpose is to guard against
588 		 * sending ioctl to an unknown driver in case of an
589 		 * unresolved major number conflict during bfu.
590 		 */
591 		*rvalp = DI_MAGIC;
592 		return (0);
593 
594 	case DINFOLODRV:
595 		/*
596 		 * Hold an installed driver and return the result
597 		 */
598 		if (DI_UNPRIVILEGED_NODE(m)) {
599 			/*
600 			 * Only the fully enabled instances may issue
601 			 * DINFOLDDRV.
602 			 */
603 			return (EACCES);
604 		}
605 
606 		drv_name = kmem_alloc(MAXNAMELEN, KM_SLEEP);
607 		if (ddi_copyin((void *)arg, drv_name, MAXNAMELEN, mode) != 0) {
608 			kmem_free(drv_name, MAXNAMELEN);
609 			return (EFAULT);
610 		}
611 
612 		/*
613 		 * Some 3rd party driver's _init() walks the device tree,
614 		 * so we load the driver module before configuring driver.
615 		 */
616 		i = ddi_name_to_major(drv_name);
617 		if (ddi_hold_driver(i) == NULL) {
618 			kmem_free(drv_name, MAXNAMELEN);
619 			return (ENXIO);
620 		}
621 
622 		ndi_flags = NDI_DEVI_PERSIST | NDI_CONFIG | NDI_NO_EVENT;
623 
624 		/*
625 		 * i_ddi_load_drvconf() below will trigger a reprobe
626 		 * via reset_nexus_flags(). NDI_DRV_CONF_REPROBE isn't
627 		 * needed here.
628 		 */
629 		modunload_disable();
630 		(void) i_ddi_load_drvconf(i);
631 		(void) ndi_devi_config_driver(ddi_root_node(), ndi_flags, i);
632 		kmem_free(drv_name, MAXNAMELEN);
633 		ddi_rele_driver(i);
634 		rv = i_ddi_devs_attached(i);
635 		modunload_enable();
636 
637 		i_ddi_di_cache_invalidate(KM_SLEEP);
638 
639 		return ((rv == DDI_SUCCESS)? 0 : ENXIO);
640 
641 	case DINFOUSRLD:
642 		/*
643 		 * The case for copying snapshot to userland
644 		 */
645 		if (di_setstate(st, IOC_COPY) == -1)
646 			return (EBUSY);
647 
648 		map_size = ((struct di_all *)
649 		    (intptr_t)di_mem_addr(st, 0))->map_size;
650 		if (map_size == 0) {
651 			(void) di_setstate(st, IOC_DONE);
652 			return (EFAULT);
653 		}
654 
655 		/*
656 		 * copyout the snapshot
657 		 */
658 		map_size = (map_size + PAGEOFFSET) & PAGEMASK;
659 
660 		/*
661 		 * Return the map size, so caller may do a sanity
662 		 * check against the return value of snapshot ioctl()
663 		 */
664 		*rvalp = (int)map_size;
665 
666 		/*
667 		 * Copy one chunk at a time
668 		 */
669 		off = 0;
670 		dcp = st->memlist;
671 		while (map_size) {
672 			size = dcp->buf_size;
673 			if (map_size <= size) {
674 				size = map_size;
675 			}
676 
677 			if (ddi_copyout(di_mem_addr(st, off),
678 			    (void *)(arg + off), size, mode) != 0) {
679 				(void) di_setstate(st, IOC_DONE);
680 				return (EFAULT);
681 			}
682 
683 			map_size -= size;
684 			off += size;
685 			dcp = dcp->next;
686 		}
687 
688 		di_freemem(st);
689 		(void) di_setstate(st, IOC_IDLE);
690 		return (0);
691 
692 	default:
693 		if ((cmd & ~DIIOC_MASK) != DIIOC) {
694 			/*
695 			 * Invalid ioctl command
696 			 */
697 			return (ENOTTY);
698 		}
699 		/*
700 		 * take a snapshot
701 		 */
702 		st->command = cmd & DIIOC_MASK;
703 		/*FALLTHROUGH*/
704 	}
705 
706 	/*
707 	 * Obtain enough memory to hold header + rootpath.  We prevent kernel
708 	 * memory exhaustion by freeing any previously allocated snapshot and
709 	 * refusing the operation; otherwise we would be allowing ioctl(),
710 	 * ioctl(), ioctl(), ..., panic.
711 	 */
712 	if (di_setstate(st, IOC_SNAP) == -1)
713 		return (EBUSY);
714 
715 	size = sizeof (struct di_all) +
716 	    sizeof (((struct dinfo_io *)(NULL))->root_path);
717 	if (size < PAGESIZE)
718 		size = PAGESIZE;
719 	di_allocmem(st, size);
720 
721 	all = (struct di_all *)(intptr_t)di_mem_addr(st, 0);
722 	all->devcnt = devcnt;
723 	all->command = st->command;
724 	all->version = DI_SNAPSHOT_VERSION;
725 	all->top_vhci_devinfo = 0;	/* filled up by build_vhci_list. */
726 
727 	/*
728 	 * Note the endianness in case we need to transport snapshot
729 	 * over the network.
730 	 */
731 #if defined(_LITTLE_ENDIAN)
732 	all->endianness = DI_LITTLE_ENDIAN;
733 #else
734 	all->endianness = DI_BIG_ENDIAN;
735 #endif
736 
737 	/* Copyin ioctl args, store in the snapshot. */
738 	if (copyinstr((void *)arg, all->root_path,
739 	    sizeof (((struct dinfo_io *)(NULL))->root_path), &size) != 0) {
740 		di_freemem(st);
741 		(void) di_setstate(st, IOC_IDLE);
742 		return (EFAULT);
743 	}
744 
745 	if ((st->command & DINFOCLEANUP) && !DEVICES_FILES_CLEANABLE(st)) {
746 		di_freemem(st);
747 		(void) di_setstate(st, IOC_IDLE);
748 		return (EINVAL);
749 	}
750 
751 	error = 0;
752 	if ((st->command & DINFOCACHE) && !cache_args_valid(st, &error)) {
753 		di_freemem(st);
754 		(void) di_setstate(st, IOC_IDLE);
755 		return (error);
756 	}
757 
758 	off = DI_ALIGN(sizeof (struct di_all) + size);
759 
760 	/*
761 	 * Only the fully enabled version may force load drivers or read
762 	 * the parent private data from a driver.
763 	 */
764 	if ((st->command & (DINFOPRIVDATA | DINFOFORCE)) != 0 &&
765 	    DI_UNPRIVILEGED_NODE(m)) {
766 		di_freemem(st);
767 		(void) di_setstate(st, IOC_IDLE);
768 		return (EACCES);
769 	}
770 
771 	/* Do we need private data? */
772 	if (st->command & DINFOPRIVDATA) {
773 		arg += sizeof (((struct dinfo_io *)(NULL))->root_path);
774 
775 #ifdef _MULTI_DATAMODEL
776 		switch (ddi_model_convert_from(mode & FMODELS)) {
777 		case DDI_MODEL_ILP32: {
778 			/*
779 			 * Cannot copy private data from 64-bit kernel
780 			 * to 32-bit app
781 			 */
782 			di_freemem(st);
783 			(void) di_setstate(st, IOC_IDLE);
784 			return (EINVAL);
785 		}
786 		case DDI_MODEL_NONE:
787 			if ((off = di_copyformat(off, st, arg, mode)) == 0) {
788 				di_freemem(st);
789 				(void) di_setstate(st, IOC_IDLE);
790 				return (EFAULT);
791 			}
792 			break;
793 		}
794 #else /* !_MULTI_DATAMODEL */
795 		if ((off = di_copyformat(off, st, arg, mode)) == 0) {
796 			di_freemem(st);
797 			(void) di_setstate(st, IOC_IDLE);
798 			return (EFAULT);
799 		}
800 #endif /* _MULTI_DATAMODEL */
801 	}
802 
803 	all->top_devinfo = DI_ALIGN(off);
804 
805 	/*
806 	 * For cache lookups we reallocate memory from scratch,
807 	 * so the value of "all" is no longer valid.
808 	 */
809 	all = NULL;
810 
811 	if (st->command & DINFOCACHE) {
812 		*rvalp = di_cache_lookup(st);
813 	} else if (snapshot_is_cacheable(st)) {
814 		DI_CACHE_LOCK(di_cache);
815 		*rvalp = di_cache_update(st);
816 		DI_CACHE_UNLOCK(di_cache);
817 	} else
818 		*rvalp = di_snapshot_and_clean(st);
819 
820 	if (*rvalp) {
821 		DI_ALL_PTR(st)->map_size = *rvalp;
822 		(void) di_setstate(st, IOC_DONE);
823 	} else {
824 		di_freemem(st);
825 		(void) di_setstate(st, IOC_IDLE);
826 	}
827 
828 	return (0);
829 }
830 
831 /*
832  * Get a chunk of memory >= size, for the snapshot
833  */
834 static void
835 di_allocmem(struct di_state *st, size_t size)
836 {
837 	struct di_mem *mem = kmem_zalloc(sizeof (struct di_mem),
838 	    KM_SLEEP);
839 	/*
840 	 * Round up size to nearest power of 2. If it is less
841 	 * than st->mem_size, set it to st->mem_size (i.e.,
842 	 * the mem_size is doubled every time) to reduce the
843 	 * number of memory allocations.
844 	 */
845 	size_t tmp = 1;
846 	while (tmp < size) {
847 		tmp <<= 1;
848 	}
849 	size = (tmp > st->mem_size) ? tmp : st->mem_size;
850 
851 	mem->buf = ddi_umem_alloc(size, DDI_UMEM_SLEEP, &mem->cook);
852 	mem->buf_size = size;
853 
854 	dcmn_err2((CE_CONT, "di_allocmem: mem_size=%x\n", st->mem_size));
855 
856 	if (st->mem_size == 0) {	/* first chunk */
857 		st->memlist = mem;
858 	} else {
859 		/*
860 		 * locate end of linked list and add a chunk at the end
861 		 */
862 		struct di_mem *dcp = st->memlist;
863 		while (dcp->next != NULL) {
864 			dcp = dcp->next;
865 		}
866 
867 		dcp->next = mem;
868 	}
869 
870 	st->mem_size += size;
871 }
872 
873 /*
874  * Copy upto bufsiz bytes of the memlist to buf
875  */
876 static void
877 di_copymem(struct di_state *st, caddr_t buf, size_t bufsiz)
878 {
879 	struct di_mem *dcp;
880 	size_t copysz;
881 
882 	if (st->mem_size == 0) {
883 		ASSERT(st->memlist == NULL);
884 		return;
885 	}
886 
887 	copysz = 0;
888 	for (dcp = st->memlist; dcp; dcp = dcp->next) {
889 
890 		ASSERT(bufsiz > 0);
891 
892 		if (bufsiz <= dcp->buf_size)
893 			copysz = bufsiz;
894 		else
895 			copysz = dcp->buf_size;
896 
897 		bcopy(dcp->buf, buf, copysz);
898 
899 		buf += copysz;
900 		bufsiz -= copysz;
901 
902 		if (bufsiz == 0)
903 			break;
904 	}
905 }
906 
907 /*
908  * Free all memory for the snapshot
909  */
910 static void
911 di_freemem(struct di_state *st)
912 {
913 	struct di_mem *dcp, *tmp;
914 
915 	dcmn_err2((CE_CONT, "di_freemem\n"));
916 
917 	if (st->mem_size) {
918 		dcp = st->memlist;
919 		while (dcp) {	/* traverse the linked list */
920 			tmp = dcp;
921 			dcp = dcp->next;
922 			ddi_umem_free(tmp->cook);
923 			kmem_free(tmp, sizeof (struct di_mem));
924 		}
925 		st->mem_size = 0;
926 		st->memlist = NULL;
927 	}
928 
929 	ASSERT(st->mem_size == 0);
930 	ASSERT(st->memlist == NULL);
931 }
932 
933 /*
934  * Copies cached data to the di_state structure.
935  * Returns:
936  *	- size of data copied, on SUCCESS
937  *	- 0 on failure
938  */
939 static int
940 di_cache2mem(struct di_cache *cache, struct di_state *st)
941 {
942 	caddr_t	pa;
943 
944 	ASSERT(st->mem_size == 0);
945 	ASSERT(st->memlist == NULL);
946 	ASSERT(!servicing_interrupt());
947 	ASSERT(DI_CACHE_LOCKED(*cache));
948 
949 	if (cache->cache_size == 0) {
950 		ASSERT(cache->cache_data == NULL);
951 		CACHE_DEBUG((DI_ERR, "Empty cache. Skipping copy"));
952 		return (0);
953 	}
954 
955 	ASSERT(cache->cache_data);
956 
957 	di_allocmem(st, cache->cache_size);
958 
959 	pa = di_mem_addr(st, 0);
960 
961 	ASSERT(pa);
962 
963 	/*
964 	 * Verify that di_allocmem() allocates contiguous memory,
965 	 * so that it is safe to do straight bcopy()
966 	 */
967 	ASSERT(st->memlist != NULL);
968 	ASSERT(st->memlist->next == NULL);
969 	bcopy(cache->cache_data, pa, cache->cache_size);
970 
971 	return (cache->cache_size);
972 }
973 
974 /*
975  * Copies a snapshot from di_state to the cache
976  * Returns:
977  *	- 0 on failure
978  *	- size of copied data on success
979  */
980 static size_t
981 di_mem2cache(struct di_state *st, struct di_cache *cache)
982 {
983 	size_t map_size;
984 
985 	ASSERT(cache->cache_size == 0);
986 	ASSERT(cache->cache_data == NULL);
987 	ASSERT(!servicing_interrupt());
988 	ASSERT(DI_CACHE_LOCKED(*cache));
989 
990 	if (st->mem_size == 0) {
991 		ASSERT(st->memlist == NULL);
992 		CACHE_DEBUG((DI_ERR, "Empty memlist. Skipping copy"));
993 		return (0);
994 	}
995 
996 	ASSERT(st->memlist);
997 
998 	/*
999 	 * The size of the memory list may be much larger than the
1000 	 * size of valid data (map_size). Cache only the valid data
1001 	 */
1002 	map_size = DI_ALL_PTR(st)->map_size;
1003 	if (map_size == 0 || map_size < sizeof (struct di_all) ||
1004 	    map_size > st->mem_size) {
1005 		CACHE_DEBUG((DI_ERR, "cannot cache: bad size: 0x%x", map_size));
1006 		return (0);
1007 	}
1008 
1009 	cache->cache_data = kmem_alloc(map_size, KM_SLEEP);
1010 	cache->cache_size = map_size;
1011 	di_copymem(st, cache->cache_data, cache->cache_size);
1012 
1013 	return (map_size);
1014 }
1015 
1016 /*
1017  * Make sure there is at least "size" bytes memory left before
1018  * going on. Otherwise, start on a new chunk.
1019  */
1020 static di_off_t
1021 di_checkmem(struct di_state *st, di_off_t off, size_t size)
1022 {
1023 	dcmn_err3((CE_CONT, "di_checkmem: off=%x size=%x\n",
1024 			off, (int)size));
1025 
1026 	/*
1027 	 * di_checkmem() shouldn't be called with a size of zero.
1028 	 * But in case it is, we want to make sure we return a valid
1029 	 * offset within the memlist and not an offset that points us
1030 	 * at the end of the memlist.
1031 	 */
1032 	if (size == 0) {
1033 		dcmn_err((CE_WARN, "di_checkmem: invalid zero size used"));
1034 		size = 1;
1035 	}
1036 
1037 	off = DI_ALIGN(off);
1038 	if ((st->mem_size - off) < size) {
1039 		off = st->mem_size;
1040 		di_allocmem(st, size);
1041 	}
1042 
1043 	return (off);
1044 }
1045 
1046 /*
1047  * Copy the private data format from ioctl arg.
1048  * On success, the ending offset is returned. On error 0 is returned.
1049  */
1050 static di_off_t
1051 di_copyformat(di_off_t off, struct di_state *st, intptr_t arg, int mode)
1052 {
1053 	di_off_t size;
1054 	struct di_priv_data *priv;
1055 	struct di_all *all = (struct di_all *)(intptr_t)di_mem_addr(st, 0);
1056 
1057 	dcmn_err2((CE_CONT, "di_copyformat: off=%x, arg=%p mode=%x\n",
1058 		off, (void *)arg, mode));
1059 
1060 	/*
1061 	 * Copyin data and check version.
1062 	 * We only handle private data version 0.
1063 	 */
1064 	priv = kmem_alloc(sizeof (struct di_priv_data), KM_SLEEP);
1065 	if ((ddi_copyin((void *)arg, priv, sizeof (struct di_priv_data),
1066 	    mode) != 0) || (priv->version != DI_PRIVDATA_VERSION_0)) {
1067 		kmem_free(priv, sizeof (struct di_priv_data));
1068 		return (0);
1069 	}
1070 
1071 	/*
1072 	 * Save di_priv_data copied from userland in snapshot.
1073 	 */
1074 	all->pd_version = priv->version;
1075 	all->n_ppdata = priv->n_parent;
1076 	all->n_dpdata = priv->n_driver;
1077 
1078 	/*
1079 	 * copyin private data format, modify offset accordingly
1080 	 */
1081 	if (all->n_ppdata) {	/* parent private data format */
1082 		/*
1083 		 * check memory
1084 		 */
1085 		size = all->n_ppdata * sizeof (struct di_priv_format);
1086 		off = di_checkmem(st, off, size);
1087 		all->ppdata_format = off;
1088 		if (ddi_copyin(priv->parent, di_mem_addr(st, off), size,
1089 		    mode) != 0) {
1090 			kmem_free(priv, sizeof (struct di_priv_data));
1091 			return (0);
1092 		}
1093 
1094 		off += size;
1095 	}
1096 
1097 	if (all->n_dpdata) {	/* driver private data format */
1098 		/*
1099 		 * check memory
1100 		 */
1101 		size = all->n_dpdata * sizeof (struct di_priv_format);
1102 		off = di_checkmem(st, off, size);
1103 		all->dpdata_format = off;
1104 		if (ddi_copyin(priv->driver, di_mem_addr(st, off), size,
1105 		    mode) != 0) {
1106 			kmem_free(priv, sizeof (struct di_priv_data));
1107 			return (0);
1108 		}
1109 
1110 		off += size;
1111 	}
1112 
1113 	kmem_free(priv, sizeof (struct di_priv_data));
1114 	return (off);
1115 }
1116 
1117 /*
1118  * Return the real address based on the offset (off) within snapshot
1119  */
1120 static caddr_t
1121 di_mem_addr(struct di_state *st, di_off_t off)
1122 {
1123 	struct di_mem *dcp = st->memlist;
1124 
1125 	dcmn_err3((CE_CONT, "di_mem_addr: dcp=%p off=%x\n",
1126 		(void *)dcp, off));
1127 
1128 	ASSERT(off < st->mem_size);
1129 
1130 	while (off >= dcp->buf_size) {
1131 		off -= dcp->buf_size;
1132 		dcp = dcp->next;
1133 	}
1134 
1135 	dcmn_err3((CE_CONT, "di_mem_addr: new off=%x, return = %p\n",
1136 		off, (void *)(dcp->buf + off)));
1137 
1138 	return (dcp->buf + off);
1139 }
1140 
1141 /*
1142  * Ideally we would use the whole key to derive the hash
1143  * value. However, the probability that two keys will
1144  * have the same dip (or pip) is very low, so
1145  * hashing by dip (or pip) pointer should suffice.
1146  */
1147 static uint_t
1148 di_hash_byptr(void *arg, mod_hash_key_t key)
1149 {
1150 	struct di_key *dik = key;
1151 	size_t rshift;
1152 	void *ptr;
1153 
1154 	ASSERT(arg == NULL);
1155 
1156 	switch (dik->k_type) {
1157 	case DI_DKEY:
1158 		ptr = dik->k_u.dkey.dk_dip;
1159 		rshift = highbit(sizeof (struct dev_info));
1160 		break;
1161 	case DI_PKEY:
1162 		ptr = dik->k_u.pkey.pk_pip;
1163 		rshift = highbit(sizeof (struct mdi_pathinfo));
1164 		break;
1165 	default:
1166 		panic("devinfo: unknown key type");
1167 		/*NOTREACHED*/
1168 	}
1169 	return (mod_hash_byptr((void *)rshift, ptr));
1170 }
1171 
1172 static void
1173 di_key_dtor(mod_hash_key_t key)
1174 {
1175 	char		*path_addr;
1176 	struct di_key	*dik = key;
1177 
1178 	switch (dik->k_type) {
1179 	case DI_DKEY:
1180 		break;
1181 	case DI_PKEY:
1182 		path_addr = dik->k_u.pkey.pk_path_addr;
1183 		if (path_addr)
1184 			kmem_free(path_addr, strlen(path_addr) + 1);
1185 		break;
1186 	default:
1187 		panic("devinfo: unknown key type");
1188 		/*NOTREACHED*/
1189 	}
1190 
1191 	kmem_free(dik, sizeof (struct di_key));
1192 }
1193 
1194 static int
1195 di_dkey_cmp(struct di_dkey *dk1, struct di_dkey *dk2)
1196 {
1197 	if (dk1->dk_dip !=  dk2->dk_dip)
1198 		return (dk1->dk_dip > dk2->dk_dip ? 1 : -1);
1199 
1200 	if (dk1->dk_major != (major_t)-1 && dk2->dk_major != (major_t)-1) {
1201 		if (dk1->dk_major !=  dk2->dk_major)
1202 			return (dk1->dk_major > dk2->dk_major ? 1 : -1);
1203 
1204 		if (dk1->dk_inst !=  dk2->dk_inst)
1205 			return (dk1->dk_inst > dk2->dk_inst ? 1 : -1);
1206 	}
1207 
1208 	if (dk1->dk_nodeid != dk2->dk_nodeid)
1209 		return (dk1->dk_nodeid > dk2->dk_nodeid ? 1 : -1);
1210 
1211 	return (0);
1212 }
1213 
1214 static int
1215 di_pkey_cmp(struct di_pkey *pk1, struct di_pkey *pk2)
1216 {
1217 	char *p1, *p2;
1218 	int rv;
1219 
1220 	if (pk1->pk_pip !=  pk2->pk_pip)
1221 		return (pk1->pk_pip > pk2->pk_pip ? 1 : -1);
1222 
1223 	p1 = pk1->pk_path_addr;
1224 	p2 = pk2->pk_path_addr;
1225 
1226 	p1 = p1 ? p1 : "";
1227 	p2 = p2 ? p2 : "";
1228 
1229 	rv = strcmp(p1, p2);
1230 	if (rv)
1231 		return (rv > 0  ? 1 : -1);
1232 
1233 	if (pk1->pk_client !=  pk2->pk_client)
1234 		return (pk1->pk_client > pk2->pk_client ? 1 : -1);
1235 
1236 	if (pk1->pk_phci !=  pk2->pk_phci)
1237 		return (pk1->pk_phci > pk2->pk_phci ? 1 : -1);
1238 
1239 	return (0);
1240 }
1241 
1242 static int
1243 di_key_cmp(mod_hash_key_t key1, mod_hash_key_t key2)
1244 {
1245 	struct di_key *dik1, *dik2;
1246 
1247 	dik1 = key1;
1248 	dik2 = key2;
1249 
1250 	if (dik1->k_type != dik2->k_type) {
1251 		panic("devinfo: mismatched keys");
1252 		/*NOTREACHED*/
1253 	}
1254 
1255 	switch (dik1->k_type) {
1256 	case DI_DKEY:
1257 		return (di_dkey_cmp(&(dik1->k_u.dkey), &(dik2->k_u.dkey)));
1258 	case DI_PKEY:
1259 		return (di_pkey_cmp(&(dik1->k_u.pkey), &(dik2->k_u.pkey)));
1260 	default:
1261 		panic("devinfo: unknown key type");
1262 		/*NOTREACHED*/
1263 	}
1264 }
1265 
1266 /*
1267  * This is the main function that takes a snapshot
1268  */
1269 static di_off_t
1270 di_snapshot(struct di_state *st)
1271 {
1272 	di_off_t off;
1273 	struct di_all *all;
1274 	dev_info_t *rootnode;
1275 	char buf[80];
1276 	int plen;
1277 	char *path;
1278 	vnode_t *vp;
1279 
1280 	all = (struct di_all *)(intptr_t)di_mem_addr(st, 0);
1281 	dcmn_err((CE_CONT, "Taking a snapshot of devinfo tree...\n"));
1282 
1283 	/*
1284 	 * Verify path before entrusting it to e_ddi_hold_devi_by_path because
1285 	 * some platforms have OBP bugs where executing the NDI_PROMNAME code
1286 	 * path against an invalid path results in panic.  The lookupnameat
1287 	 * is done relative to rootdir without a leading '/' on "devices/"
1288 	 * to force the lookup to occur in the global zone.
1289 	 */
1290 	plen = strlen("devices/") + strlen(all->root_path) + 1;
1291 	path = kmem_alloc(plen, KM_SLEEP);
1292 	(void) snprintf(path, plen, "devices/%s", all->root_path);
1293 	if (lookupnameat(path, UIO_SYSSPACE, FOLLOW, NULLVPP, &vp, rootdir)) {
1294 		dcmn_err((CE_CONT, "Devinfo node %s not found\n",
1295 		    all->root_path));
1296 		kmem_free(path, plen);
1297 		return (0);
1298 	}
1299 	kmem_free(path, plen);
1300 	VN_RELE(vp);
1301 
1302 	/*
1303 	 * Hold the devinfo node referred by the path.
1304 	 */
1305 	rootnode = e_ddi_hold_devi_by_path(all->root_path, 0);
1306 	if (rootnode == NULL) {
1307 		dcmn_err((CE_CONT, "Devinfo node %s not found\n",
1308 		    all->root_path));
1309 		return (0);
1310 	}
1311 
1312 	(void) snprintf(buf, sizeof (buf),
1313 	    "devinfo registered dips (statep=%p)", (void *)st);
1314 
1315 	st->reg_dip_hash = mod_hash_create_extended(buf, 64,
1316 	    di_key_dtor, mod_hash_null_valdtor, di_hash_byptr,
1317 	    NULL, di_key_cmp, KM_SLEEP);
1318 
1319 
1320 	(void) snprintf(buf, sizeof (buf),
1321 	    "devinfo registered pips (statep=%p)", (void *)st);
1322 
1323 	st->reg_pip_hash = mod_hash_create_extended(buf, 64,
1324 	    di_key_dtor, mod_hash_null_valdtor, di_hash_byptr,
1325 	    NULL, di_key_cmp, KM_SLEEP);
1326 
1327 	/*
1328 	 * copy the device tree
1329 	 */
1330 	off = di_copytree(DEVI(rootnode), &all->top_devinfo, st);
1331 
1332 	if (DINFOPATH & st->command) {
1333 		mdi_walk_vhcis(build_vhci_list, st);
1334 	}
1335 
1336 	ddi_release_devi(rootnode);
1337 
1338 	/*
1339 	 * copy the devnames array
1340 	 */
1341 	all->devnames = off;
1342 	off = di_copydevnm(&all->devnames, st);
1343 
1344 
1345 	/* initialize the hash tables */
1346 	st->lnode_count = 0;
1347 	st->link_count = 0;
1348 
1349 	if (DINFOLYR & st->command) {
1350 		off = di_getlink_data(off, st);
1351 	}
1352 
1353 	/*
1354 	 * Free up hash tables
1355 	 */
1356 	mod_hash_destroy_hash(st->reg_dip_hash);
1357 	mod_hash_destroy_hash(st->reg_pip_hash);
1358 
1359 	/*
1360 	 * Record the timestamp now that we are done with snapshot.
1361 	 *
1362 	 * We compute the checksum later and then only if we cache
1363 	 * the snapshot, since checksumming adds some overhead.
1364 	 * The checksum is checked later if we read the cache file.
1365 	 * from disk.
1366 	 *
1367 	 * Set checksum field to 0 as CRC is calculated with that
1368 	 * field set to 0.
1369 	 */
1370 	all->snapshot_time = ddi_get_time();
1371 	all->cache_checksum = 0;
1372 
1373 	ASSERT(all->snapshot_time != 0);
1374 
1375 	return (off);
1376 }
1377 
1378 /*
1379  * Take a snapshot and clean /etc/devices files if DINFOCLEANUP is set
1380  */
1381 static di_off_t
1382 di_snapshot_and_clean(struct di_state *st)
1383 {
1384 	di_off_t	off;
1385 
1386 	modunload_disable();
1387 	off = di_snapshot(st);
1388 	if (off != 0 && (st->command & DINFOCLEANUP)) {
1389 		ASSERT(DEVICES_FILES_CLEANABLE(st));
1390 		/*
1391 		 * Cleanup /etc/devices files:
1392 		 * In order to accurately account for the system configuration
1393 		 * in /etc/devices files, the appropriate drivers must be
1394 		 * fully configured before the cleanup starts.
1395 		 * So enable modunload only after the cleanup.
1396 		 */
1397 		i_ddi_clean_devices_files();
1398 	}
1399 	modunload_enable();
1400 
1401 	return (off);
1402 }
1403 
1404 /*
1405  * construct vhci linkage in the snapshot.
1406  */
1407 int
1408 build_vhci_list(dev_info_t *vh_devinfo, void *arg)
1409 {
1410 	struct di_all *all;
1411 	struct di_node *me;
1412 	struct di_state *st;
1413 	di_off_t off;
1414 	phci_walk_arg_t pwa;
1415 
1416 	dcmn_err3((CE_CONT, "build_vhci list\n"));
1417 
1418 	dcmn_err3((CE_CONT, "vhci node %s, instance #%d\n",
1419 		DEVI(vh_devinfo)->devi_node_name,
1420 		DEVI(vh_devinfo)->devi_instance));
1421 
1422 	st = (struct di_state *)arg;
1423 	if (di_dip_find(st, vh_devinfo, &off) != 0) {
1424 		dcmn_err((CE_WARN, "di_dip_find error for the given node\n"));
1425 		return (DDI_WALK_TERMINATE);
1426 	}
1427 
1428 	dcmn_err3((CE_CONT, "st->mem_size: %d vh_devinfo off: 0x%x\n",
1429 		st->mem_size, off));
1430 
1431 	all = (struct di_all *)(intptr_t)di_mem_addr(st, 0);
1432 	if (all->top_vhci_devinfo == 0) {
1433 		all->top_vhci_devinfo = off;
1434 	} else {
1435 		me = (struct di_node *)
1436 		    (intptr_t)di_mem_addr(st, all->top_vhci_devinfo);
1437 
1438 		while (me->next_vhci != 0) {
1439 			me = (struct di_node *)
1440 			    (intptr_t)di_mem_addr(st, me->next_vhci);
1441 		}
1442 
1443 		me->next_vhci = off;
1444 	}
1445 
1446 	pwa.off = off;
1447 	pwa.st = st;
1448 	mdi_vhci_walk_phcis(vh_devinfo, build_phci_list, &pwa);
1449 
1450 	return (DDI_WALK_CONTINUE);
1451 }
1452 
1453 /*
1454  * construct phci linkage for the given vhci in the snapshot.
1455  */
1456 int
1457 build_phci_list(dev_info_t *ph_devinfo, void *arg)
1458 {
1459 	struct di_node *vh_di_node;
1460 	struct di_node *me;
1461 	phci_walk_arg_t *pwa;
1462 	di_off_t off;
1463 
1464 	pwa = (phci_walk_arg_t *)arg;
1465 
1466 	dcmn_err3((CE_CONT, "build_phci list for vhci at offset: 0x%x\n",
1467 		pwa->off));
1468 
1469 	vh_di_node = (struct di_node *)(intptr_t)di_mem_addr(pwa->st, pwa->off);
1470 
1471 	if (di_dip_find(pwa->st, ph_devinfo, &off) != 0) {
1472 		dcmn_err((CE_WARN, "di_dip_find error for the given node\n"));
1473 		return (DDI_WALK_TERMINATE);
1474 	}
1475 
1476 	dcmn_err3((CE_CONT, "phci node %s, instance #%d, at offset 0x%x\n",
1477 		DEVI(ph_devinfo)->devi_node_name,
1478 		DEVI(ph_devinfo)->devi_instance, off));
1479 
1480 	if (vh_di_node->top_phci == 0) {
1481 		vh_di_node->top_phci = off;
1482 		return (DDI_WALK_CONTINUE);
1483 	}
1484 
1485 	me = (struct di_node *)
1486 	    (intptr_t)di_mem_addr(pwa->st, vh_di_node->top_phci);
1487 
1488 	while (me->next_phci != 0) {
1489 		me = (struct di_node *)
1490 		    (intptr_t)di_mem_addr(pwa->st, me->next_phci);
1491 	}
1492 	me->next_phci = off;
1493 
1494 	return (DDI_WALK_CONTINUE);
1495 }
1496 
1497 /*
1498  * Assumes all devinfo nodes in device tree have been snapshotted
1499  */
1500 static void
1501 snap_driver_list(struct di_state *st, struct devnames *dnp, di_off_t *poff_p)
1502 {
1503 	struct dev_info *node;
1504 	struct di_node *me;
1505 	di_off_t off;
1506 
1507 	ASSERT(mutex_owned(&dnp->dn_lock));
1508 
1509 	node = DEVI(dnp->dn_head);
1510 	for (; node; node = node->devi_next) {
1511 		if (di_dip_find(st, (dev_info_t *)node, &off) != 0)
1512 			continue;
1513 
1514 		ASSERT(off > 0);
1515 		me = (struct di_node *)(intptr_t)di_mem_addr(st, off);
1516 		ASSERT(me->next == 0 || me->next == -1);
1517 		/*
1518 		 * Only nodes which were BOUND when they were
1519 		 * snapshotted will be added to per-driver list.
1520 		 */
1521 		if (me->next != -1)
1522 			continue;
1523 
1524 		*poff_p = off;
1525 		poff_p = &me->next;
1526 	}
1527 
1528 	*poff_p = 0;
1529 }
1530 
1531 /*
1532  * Copy the devnames array, so we have a list of drivers in the snapshot.
1533  * Also makes it possible to locate the per-driver devinfo nodes.
1534  */
1535 static di_off_t
1536 di_copydevnm(di_off_t *off_p, struct di_state *st)
1537 {
1538 	int i;
1539 	di_off_t off;
1540 	size_t size;
1541 	struct di_devnm *dnp;
1542 
1543 	dcmn_err2((CE_CONT, "di_copydevnm: *off_p = %p\n", (void *)off_p));
1544 
1545 	/*
1546 	 * make sure there is some allocated memory
1547 	 */
1548 	size = devcnt * sizeof (struct di_devnm);
1549 	off = di_checkmem(st, *off_p, size);
1550 	*off_p = off;
1551 
1552 	dcmn_err((CE_CONT, "Start copying devnamesp[%d] at offset 0x%x\n",
1553 		devcnt, off));
1554 
1555 	dnp = (struct di_devnm *)(intptr_t)di_mem_addr(st, off);
1556 	off += size;
1557 
1558 	for (i = 0; i < devcnt; i++) {
1559 		if (devnamesp[i].dn_name == NULL) {
1560 			continue;
1561 		}
1562 
1563 		/*
1564 		 * dn_name is not freed during driver unload or removal.
1565 		 *
1566 		 * There is a race condition when make_devname() changes
1567 		 * dn_name during our strcpy. This should be rare since
1568 		 * only add_drv does this. At any rate, we never had a
1569 		 * problem with ddi_name_to_major(), which should have
1570 		 * the same problem.
1571 		 */
1572 		dcmn_err2((CE_CONT, "di_copydevnm: %s%d, off=%x\n",
1573 			devnamesp[i].dn_name, devnamesp[i].dn_instance,
1574 			off));
1575 
1576 		off = di_checkmem(st, off, strlen(devnamesp[i].dn_name) + 1);
1577 		dnp[i].name = off;
1578 		(void) strcpy((char *)di_mem_addr(st, off),
1579 			devnamesp[i].dn_name);
1580 		off += DI_ALIGN(strlen(devnamesp[i].dn_name) + 1);
1581 
1582 		mutex_enter(&devnamesp[i].dn_lock);
1583 
1584 		/*
1585 		 * Snapshot per-driver node list
1586 		 */
1587 		snap_driver_list(st, &devnamesp[i], &dnp[i].head);
1588 
1589 		/*
1590 		 * This is not used by libdevinfo, leave it for now
1591 		 */
1592 		dnp[i].flags = devnamesp[i].dn_flags;
1593 		dnp[i].instance = devnamesp[i].dn_instance;
1594 
1595 		/*
1596 		 * get global properties
1597 		 */
1598 		if ((DINFOPROP & st->command) &&
1599 		    devnamesp[i].dn_global_prop_ptr) {
1600 			dnp[i].global_prop = off;
1601 			off = di_getprop(
1602 			    devnamesp[i].dn_global_prop_ptr->prop_list,
1603 			    &dnp[i].global_prop, st, NULL, DI_PROP_GLB_LIST);
1604 		}
1605 
1606 		/*
1607 		 * Bit encode driver ops: & bus_ops, cb_ops, & cb_ops->cb_str
1608 		 */
1609 		if (CB_DRV_INSTALLED(devopsp[i])) {
1610 			if (devopsp[i]->devo_cb_ops) {
1611 				dnp[i].ops |= DI_CB_OPS;
1612 				if (devopsp[i]->devo_cb_ops->cb_str)
1613 					dnp[i].ops |= DI_STREAM_OPS;
1614 			}
1615 			if (NEXUS_DRV(devopsp[i])) {
1616 				dnp[i].ops |= DI_BUS_OPS;
1617 			}
1618 		}
1619 
1620 		mutex_exit(&devnamesp[i].dn_lock);
1621 	}
1622 
1623 	dcmn_err((CE_CONT, "End copying devnamesp at offset 0x%x\n", off));
1624 
1625 	return (off);
1626 }
1627 
1628 /*
1629  * Copy the kernel devinfo tree. The tree and the devnames array forms
1630  * the entire snapshot (see also di_copydevnm).
1631  */
1632 static di_off_t
1633 di_copytree(struct dev_info *root, di_off_t *off_p, struct di_state *st)
1634 {
1635 	di_off_t off;
1636 	struct di_stack *dsp = kmem_zalloc(sizeof (struct di_stack), KM_SLEEP);
1637 
1638 	dcmn_err((CE_CONT, "di_copytree: root = %p, *off_p = %x\n",
1639 		(void *)root, *off_p));
1640 
1641 	/* force attach drivers */
1642 	if (i_ddi_devi_attached((dev_info_t *)root) &&
1643 	    (st->command & DINFOSUBTREE) && (st->command & DINFOFORCE)) {
1644 		(void) ndi_devi_config((dev_info_t *)root,
1645 		    NDI_CONFIG | NDI_DEVI_PERSIST | NDI_NO_EVENT |
1646 		    NDI_DRV_CONF_REPROBE);
1647 	}
1648 
1649 	/*
1650 	 * Push top_devinfo onto a stack
1651 	 *
1652 	 * The stack is necessary to avoid recursion, which can overrun
1653 	 * the kernel stack.
1654 	 */
1655 	PUSH_STACK(dsp, root, off_p);
1656 
1657 	/*
1658 	 * As long as there is a node on the stack, copy the node.
1659 	 * di_copynode() is responsible for pushing and popping
1660 	 * child and sibling nodes on the stack.
1661 	 */
1662 	while (!EMPTY_STACK(dsp)) {
1663 		off = di_copynode(dsp, st);
1664 	}
1665 
1666 	/*
1667 	 * Free the stack structure
1668 	 */
1669 	kmem_free(dsp, sizeof (struct di_stack));
1670 
1671 	return (off);
1672 }
1673 
1674 /*
1675  * This is the core function, which copies all data associated with a single
1676  * node into the snapshot. The amount of information is determined by the
1677  * ioctl command.
1678  */
1679 static di_off_t
1680 di_copynode(struct di_stack *dsp, struct di_state *st)
1681 {
1682 	di_off_t off;
1683 	struct di_node *me;
1684 	struct dev_info *node;
1685 
1686 	dcmn_err2((CE_CONT, "di_copynode: depth = %x\n",
1687 			dsp->depth));
1688 
1689 	node = TOP_NODE(dsp);
1690 
1691 	ASSERT(node != NULL);
1692 
1693 	/*
1694 	 * check memory usage, and fix offsets accordingly.
1695 	 */
1696 	off = di_checkmem(st, *(TOP_OFFSET(dsp)), sizeof (struct di_node));
1697 	*(TOP_OFFSET(dsp)) = off;
1698 	me = DI_NODE(di_mem_addr(st, off));
1699 
1700 	dcmn_err((CE_CONT, "copy node %s, instance #%d, at offset 0x%x\n",
1701 			node->devi_node_name, node->devi_instance, off));
1702 
1703 	/*
1704 	 * Node parameters:
1705 	 * self		-- offset of current node within snapshot
1706 	 * nodeid	-- pointer to PROM node (tri-valued)
1707 	 * state	-- hot plugging device state
1708 	 * node_state	-- devinfo node state (CF1, CF2, etc.)
1709 	 */
1710 	me->self = off;
1711 	me->instance = node->devi_instance;
1712 	me->nodeid = node->devi_nodeid;
1713 	me->node_class = node->devi_node_class;
1714 	me->attributes = node->devi_node_attributes;
1715 	me->state = node->devi_state;
1716 	me->flags = node->devi_flags;
1717 	me->node_state = node->devi_node_state;
1718 	me->next_vhci = 0;		/* Filled up by build_vhci_list. */
1719 	me->top_phci = 0;		/* Filled up by build_phci_list. */
1720 	me->next_phci = 0;		/* Filled up by build_phci_list. */
1721 	me->multipath_component = MULTIPATH_COMPONENT_NONE; /* set default. */
1722 	me->user_private_data = NULL;
1723 
1724 	/*
1725 	 * Get parent's offset in snapshot from the stack
1726 	 * and store it in the current node
1727 	 */
1728 	if (dsp->depth > 1) {
1729 		me->parent = *(PARENT_OFFSET(dsp));
1730 	}
1731 
1732 	/*
1733 	 * Save the offset of this di_node in a hash table.
1734 	 * This is used later to resolve references to this
1735 	 * dip from other parts of the tree (per-driver list,
1736 	 * multipathing linkages, layered usage linkages).
1737 	 * The key used for the hash table is derived from
1738 	 * information in the dip.
1739 	 */
1740 	di_register_dip(st, (dev_info_t *)node, me->self);
1741 
1742 	/*
1743 	 * increment offset
1744 	 */
1745 	off += sizeof (struct di_node);
1746 
1747 #ifdef	DEVID_COMPATIBILITY
1748 	/* check for devid as property marker */
1749 	if (node->devi_devid) {
1750 		ddi_devid_t	devid;
1751 		char 		*devidstr;
1752 		int		devid_size;
1753 
1754 		/*
1755 		 * The devid is now represented as a property.
1756 		 * For micro release compatibility with di_devid interface
1757 		 * in libdevinfo we must return it as a binary structure in'
1758 		 * the snapshot.  When di_devid is removed from libdevinfo
1759 		 * in a future release (and devi_devid is deleted) then
1760 		 * code related to DEVID_COMPATIBILITY can be removed.
1761 		 */
1762 		ASSERT(node->devi_devid == DEVID_COMPATIBILITY);
1763 /* XXX should be DDI_DEV_T_NONE! */
1764 		if (ddi_prop_lookup_string(DDI_DEV_T_ANY, (dev_info_t *)node,
1765 		    DDI_PROP_DONTPASS, DEVID_PROP_NAME, &devidstr) ==
1766 		    DDI_PROP_SUCCESS) {
1767 			if (ddi_devid_str_decode(devidstr, &devid, NULL) ==
1768 			    DDI_SUCCESS) {
1769 				devid_size = ddi_devid_sizeof(devid);
1770 				off = di_checkmem(st, off, devid_size);
1771 				me->devid = off;
1772 				bcopy(devid,
1773 				    di_mem_addr(st, off), devid_size);
1774 				off += devid_size;
1775 				ddi_devid_free(devid);
1776 			}
1777 			ddi_prop_free(devidstr);
1778 		}
1779 	}
1780 #endif	/* DEVID_COMPATIBILITY */
1781 
1782 	if (node->devi_node_name) {
1783 		off = di_checkmem(st, off, strlen(node->devi_node_name) + 1);
1784 		me->node_name = off;
1785 		(void) strcpy(di_mem_addr(st, off), node->devi_node_name);
1786 		off += strlen(node->devi_node_name) + 1;
1787 	}
1788 
1789 	if (node->devi_compat_names && (node->devi_compat_length > 1)) {
1790 		off = di_checkmem(st, off, node->devi_compat_length);
1791 		me->compat_names = off;
1792 		me->compat_length = node->devi_compat_length;
1793 		bcopy(node->devi_compat_names, di_mem_addr(st, off),
1794 			node->devi_compat_length);
1795 		off += node->devi_compat_length;
1796 	}
1797 
1798 	if (node->devi_addr) {
1799 		off = di_checkmem(st, off, strlen(node->devi_addr) + 1);
1800 		me->address = off;
1801 		(void) strcpy(di_mem_addr(st, off), node->devi_addr);
1802 		off += strlen(node->devi_addr) + 1;
1803 	}
1804 
1805 	if (node->devi_binding_name) {
1806 		off = di_checkmem(st, off, strlen(node->devi_binding_name) + 1);
1807 		me->bind_name = off;
1808 		(void) strcpy(di_mem_addr(st, off), node->devi_binding_name);
1809 		off += strlen(node->devi_binding_name) + 1;
1810 	}
1811 
1812 	me->drv_major = node->devi_major;
1813 
1814 	/*
1815 	 * If the dip is BOUND, set the next pointer of the
1816 	 * per-instance list to -1, indicating that it is yet to be resolved.
1817 	 * This will be resolved later in snap_driver_list().
1818 	 */
1819 	if (me->drv_major != -1) {
1820 		me->next = -1;
1821 	} else {
1822 		me->next = 0;
1823 	}
1824 
1825 	/*
1826 	 * An optimization to skip mutex_enter when not needed.
1827 	 */
1828 	if (!((DINFOMINOR | DINFOPROP | DINFOPATH) & st->command)) {
1829 		goto priv_data;
1830 	}
1831 
1832 	/*
1833 	 * Grab current per dev_info node lock to
1834 	 * get minor data and properties.
1835 	 */
1836 	mutex_enter(&(node->devi_lock));
1837 
1838 	if (!(DINFOMINOR & st->command)) {
1839 		goto path;
1840 	}
1841 
1842 	if (node->devi_minor) {		/* minor data */
1843 		me->minor_data = DI_ALIGN(off);
1844 		off = di_getmdata(node->devi_minor, &me->minor_data,
1845 		    me->self, st);
1846 	}
1847 
1848 path:
1849 	if (!(DINFOPATH & st->command)) {
1850 		goto property;
1851 	}
1852 
1853 	if (MDI_VHCI(node)) {
1854 		me->multipath_component = MULTIPATH_COMPONENT_VHCI;
1855 	}
1856 
1857 	if (MDI_CLIENT(node)) {
1858 		me->multipath_component = MULTIPATH_COMPONENT_CLIENT;
1859 		me->multipath_client = DI_ALIGN(off);
1860 		off = di_getpath_data((dev_info_t *)node, &me->multipath_client,
1861 		    me->self, st, 1);
1862 		dcmn_err((CE_WARN, "me->multipath_client = %x for node %p "
1863 		    "component type = %d.  off=%d",
1864 		    me->multipath_client,
1865 		    (void *)node, node->devi_mdi_component, off));
1866 	}
1867 
1868 	if (MDI_PHCI(node)) {
1869 		me->multipath_component = MULTIPATH_COMPONENT_PHCI;
1870 		me->multipath_phci = DI_ALIGN(off);
1871 		off = di_getpath_data((dev_info_t *)node, &me->multipath_phci,
1872 		    me->self, st, 0);
1873 		dcmn_err((CE_WARN, "me->multipath_phci = %x for node %p "
1874 		    "component type = %d.  off=%d",
1875 		    me->multipath_phci,
1876 		    (void *)node, node->devi_mdi_component, off));
1877 	}
1878 
1879 property:
1880 	if (!(DINFOPROP & st->command)) {
1881 		goto unlock;
1882 	}
1883 
1884 	if (node->devi_drv_prop_ptr) {	/* driver property list */
1885 		me->drv_prop = DI_ALIGN(off);
1886 		off = di_getprop(node->devi_drv_prop_ptr, &me->drv_prop, st,
1887 			node, DI_PROP_DRV_LIST);
1888 	}
1889 
1890 	if (node->devi_sys_prop_ptr) {	/* system property list */
1891 		me->sys_prop = DI_ALIGN(off);
1892 		off = di_getprop(node->devi_sys_prop_ptr, &me->sys_prop, st,
1893 			node, DI_PROP_SYS_LIST);
1894 	}
1895 
1896 	if (node->devi_hw_prop_ptr) {	/* hardware property list */
1897 		me->hw_prop = DI_ALIGN(off);
1898 		off = di_getprop(node->devi_hw_prop_ptr, &me->hw_prop, st,
1899 			node, DI_PROP_HW_LIST);
1900 	}
1901 
1902 	if (node->devi_global_prop_list == NULL) {
1903 		me->glob_prop = (di_off_t)-1;	/* not global property */
1904 	} else {
1905 		/*
1906 		 * Make copy of global property list if this devinfo refers
1907 		 * global properties different from what's on the devnames
1908 		 * array. It can happen if there has been a forced
1909 		 * driver.conf update. See mod_drv(1M).
1910 		 */
1911 		ASSERT(me->drv_major != -1);
1912 		if (node->devi_global_prop_list !=
1913 		    devnamesp[me->drv_major].dn_global_prop_ptr) {
1914 			me->glob_prop = DI_ALIGN(off);
1915 			off = di_getprop(node->devi_global_prop_list->prop_list,
1916 			    &me->glob_prop, st, node, DI_PROP_GLB_LIST);
1917 		}
1918 	}
1919 
1920 unlock:
1921 	/*
1922 	 * release current per dev_info node lock
1923 	 */
1924 	mutex_exit(&(node->devi_lock));
1925 
1926 priv_data:
1927 	if (!(DINFOPRIVDATA & st->command)) {
1928 		goto pm_info;
1929 	}
1930 
1931 	if (ddi_get_parent_data((dev_info_t *)node) != NULL) {
1932 		me->parent_data = DI_ALIGN(off);
1933 		off = di_getppdata(node, &me->parent_data, st);
1934 	}
1935 
1936 	if (ddi_get_driver_private((dev_info_t *)node) != NULL) {
1937 		me->driver_data = DI_ALIGN(off);
1938 		off = di_getdpdata(node, &me->driver_data, st);
1939 	}
1940 
1941 pm_info: /* NOT implemented */
1942 
1943 subtree:
1944 	if (!(DINFOSUBTREE & st->command)) {
1945 		POP_STACK(dsp);
1946 		return (DI_ALIGN(off));
1947 	}
1948 
1949 child:
1950 	/*
1951 	 * If there is a child--push child onto stack.
1952 	 * Hold the parent busy while doing so.
1953 	 */
1954 	if (node->devi_child) {
1955 		me->child = DI_ALIGN(off);
1956 		PUSH_STACK(dsp, node->devi_child, &me->child);
1957 		return (me->child);
1958 	}
1959 
1960 sibling:
1961 	/*
1962 	 * no child node, unroll the stack till a sibling of
1963 	 * a parent node is found or root node is reached
1964 	 */
1965 	POP_STACK(dsp);
1966 	while (!EMPTY_STACK(dsp) && (node->devi_sibling == NULL)) {
1967 		node = TOP_NODE(dsp);
1968 		me = DI_NODE(di_mem_addr(st, *(TOP_OFFSET(dsp))));
1969 		POP_STACK(dsp);
1970 	}
1971 
1972 	if (!EMPTY_STACK(dsp)) {
1973 		/*
1974 		 * a sibling is found, replace top of stack by its sibling
1975 		 */
1976 		me->sibling = DI_ALIGN(off);
1977 		PUSH_STACK(dsp, node->devi_sibling, &me->sibling);
1978 		return (me->sibling);
1979 	}
1980 
1981 	/*
1982 	 * DONE with all nodes
1983 	 */
1984 	return (DI_ALIGN(off));
1985 }
1986 
1987 static i_lnode_t *
1988 i_lnode_alloc(int modid)
1989 {
1990 	i_lnode_t	*i_lnode;
1991 
1992 	i_lnode = kmem_zalloc(sizeof (i_lnode_t), KM_SLEEP);
1993 
1994 	ASSERT(modid != -1);
1995 	i_lnode->modid = modid;
1996 
1997 	return (i_lnode);
1998 }
1999 
2000 static void
2001 i_lnode_free(i_lnode_t *i_lnode)
2002 {
2003 	kmem_free(i_lnode, sizeof (i_lnode_t));
2004 }
2005 
2006 static void
2007 i_lnode_check_free(i_lnode_t *i_lnode)
2008 {
2009 	/* This lnode and its dip must have been snapshotted */
2010 	ASSERT(i_lnode->self > 0);
2011 	ASSERT(i_lnode->di_node->self > 0);
2012 
2013 	/* at least 1 link (in or out) must exist for this lnode */
2014 	ASSERT(i_lnode->link_in || i_lnode->link_out);
2015 
2016 	i_lnode_free(i_lnode);
2017 }
2018 
2019 static i_link_t *
2020 i_link_alloc(int spec_type)
2021 {
2022 	i_link_t *i_link;
2023 
2024 	i_link = kmem_zalloc(sizeof (i_link_t), KM_SLEEP);
2025 	i_link->spec_type = spec_type;
2026 
2027 	return (i_link);
2028 }
2029 
2030 static void
2031 i_link_check_free(i_link_t *i_link)
2032 {
2033 	/* This link must have been snapshotted */
2034 	ASSERT(i_link->self > 0);
2035 
2036 	/* Both endpoint lnodes must exist for this link */
2037 	ASSERT(i_link->src_lnode);
2038 	ASSERT(i_link->tgt_lnode);
2039 
2040 	kmem_free(i_link, sizeof (i_link_t));
2041 }
2042 
2043 /*ARGSUSED*/
2044 static uint_t
2045 i_lnode_hashfunc(void *arg, mod_hash_key_t key)
2046 {
2047 	i_lnode_t	*i_lnode = (i_lnode_t *)key;
2048 	struct di_node	*ptr;
2049 	dev_t		dev;
2050 
2051 	dev = i_lnode->devt;
2052 	if (dev != DDI_DEV_T_NONE)
2053 		return (i_lnode->modid + getminor(dev) + getmajor(dev));
2054 
2055 	ptr = i_lnode->di_node;
2056 	ASSERT(ptr->self > 0);
2057 	if (ptr) {
2058 		uintptr_t k = (uintptr_t)ptr;
2059 		k >>= (int)highbit(sizeof (struct di_node));
2060 		return ((uint_t)k);
2061 	}
2062 
2063 	return (i_lnode->modid);
2064 }
2065 
2066 static int
2067 i_lnode_cmp(void *arg1, void *arg2)
2068 {
2069 	i_lnode_t	*i_lnode1 = (i_lnode_t *)arg1;
2070 	i_lnode_t	*i_lnode2 = (i_lnode_t *)arg2;
2071 
2072 	if (i_lnode1->modid != i_lnode2->modid) {
2073 		return ((i_lnode1->modid < i_lnode2->modid) ? -1 : 1);
2074 	}
2075 
2076 	if (i_lnode1->di_node != i_lnode2->di_node)
2077 		return ((i_lnode1->di_node < i_lnode2->di_node) ? -1 : 1);
2078 
2079 	if (i_lnode1->devt != i_lnode2->devt)
2080 		return ((i_lnode1->devt < i_lnode2->devt) ? -1 : 1);
2081 
2082 	return (0);
2083 }
2084 
2085 /*
2086  * An lnode represents a {dip, dev_t} tuple. A link represents a
2087  * {src_lnode, tgt_lnode, spec_type} tuple.
2088  * The following callback assumes that LDI framework ref-counts the
2089  * src_dip and tgt_dip while invoking this callback.
2090  */
2091 static int
2092 di_ldi_callback(const ldi_usage_t *ldi_usage, void *arg)
2093 {
2094 	struct di_state	*st = (struct di_state *)arg;
2095 	i_lnode_t	*src_lnode, *tgt_lnode, *i_lnode;
2096 	i_link_t	**i_link_next, *i_link;
2097 	di_off_t	soff, toff;
2098 	mod_hash_val_t	nodep = NULL;
2099 	int		res;
2100 
2101 	/*
2102 	 * if the source or target of this device usage information doesn't
2103 	 * corrospond to a device node then we don't report it via
2104 	 * libdevinfo so return.
2105 	 */
2106 	if ((ldi_usage->src_dip == NULL) || (ldi_usage->tgt_dip == NULL))
2107 		return (LDI_USAGE_CONTINUE);
2108 
2109 	ASSERT(e_ddi_devi_holdcnt(ldi_usage->src_dip));
2110 	ASSERT(e_ddi_devi_holdcnt(ldi_usage->tgt_dip));
2111 
2112 	/*
2113 	 * Skip the ldi_usage if either src or tgt dip is not in the
2114 	 * snapshot. This saves us from pruning bad lnodes/links later.
2115 	 */
2116 	if (di_dip_find(st, ldi_usage->src_dip, &soff) != 0)
2117 		return (LDI_USAGE_CONTINUE);
2118 	if (di_dip_find(st, ldi_usage->tgt_dip, &toff) != 0)
2119 		return (LDI_USAGE_CONTINUE);
2120 
2121 	ASSERT(soff > 0);
2122 	ASSERT(toff > 0);
2123 
2124 	/*
2125 	 * allocate an i_lnode and add it to the lnode hash
2126 	 * if it is not already present. For this particular
2127 	 * link the lnode is a source, but it may
2128 	 * participate as tgt or src in any number of layered
2129 	 * operations - so it may already be in the hash.
2130 	 */
2131 	i_lnode = i_lnode_alloc(ldi_usage->src_modid);
2132 	i_lnode->di_node = (struct di_node *)(intptr_t)di_mem_addr(st, soff);
2133 	i_lnode->devt = ldi_usage->src_devt;
2134 
2135 	res = mod_hash_find(st->lnode_hash, i_lnode, &nodep);
2136 	if (res == MH_ERR_NOTFOUND) {
2137 		/*
2138 		 * new i_lnode
2139 		 * add it to the hash and increment the lnode count
2140 		 */
2141 		res = mod_hash_insert(st->lnode_hash, i_lnode, i_lnode);
2142 		ASSERT(res == 0);
2143 		st->lnode_count++;
2144 		src_lnode = i_lnode;
2145 	} else {
2146 		/* this i_lnode already exists in the lnode_hash */
2147 		i_lnode_free(i_lnode);
2148 		src_lnode = (i_lnode_t *)nodep;
2149 	}
2150 
2151 	/*
2152 	 * allocate a tgt i_lnode and add it to the lnode hash
2153 	 */
2154 	i_lnode = i_lnode_alloc(ldi_usage->tgt_modid);
2155 	i_lnode->di_node = (struct di_node *)(intptr_t)di_mem_addr(st, toff);
2156 	i_lnode->devt = ldi_usage->tgt_devt;
2157 
2158 	res = mod_hash_find(st->lnode_hash, i_lnode, &nodep);
2159 	if (res == MH_ERR_NOTFOUND) {
2160 		/*
2161 		 * new i_lnode
2162 		 * add it to the hash and increment the lnode count
2163 		 */
2164 		res = mod_hash_insert(st->lnode_hash, i_lnode, i_lnode);
2165 		ASSERT(res == 0);
2166 		st->lnode_count++;
2167 		tgt_lnode = i_lnode;
2168 	} else {
2169 		/* this i_lnode already exists in the lnode_hash */
2170 		i_lnode_free(i_lnode);
2171 		tgt_lnode = (i_lnode_t *)nodep;
2172 	}
2173 
2174 	/*
2175 	 * allocate a i_link
2176 	 */
2177 	i_link = i_link_alloc(ldi_usage->tgt_spec_type);
2178 	i_link->src_lnode = src_lnode;
2179 	i_link->tgt_lnode = tgt_lnode;
2180 
2181 	/*
2182 	 * add this link onto the src i_lnodes outbound i_link list
2183 	 */
2184 	i_link_next = &(src_lnode->link_out);
2185 	while (*i_link_next != NULL) {
2186 		if ((i_lnode_cmp(tgt_lnode, (*i_link_next)->tgt_lnode) == 0) &&
2187 		    (i_link->spec_type == (*i_link_next)->spec_type)) {
2188 			/* this link already exists */
2189 			kmem_free(i_link, sizeof (i_link_t));
2190 			return (LDI_USAGE_CONTINUE);
2191 		}
2192 		i_link_next = &((*i_link_next)->src_link_next);
2193 	}
2194 	*i_link_next = i_link;
2195 
2196 	/*
2197 	 * add this link onto the tgt i_lnodes inbound i_link list
2198 	 */
2199 	i_link_next = &(tgt_lnode->link_in);
2200 	while (*i_link_next != NULL) {
2201 		ASSERT(i_lnode_cmp(src_lnode, (*i_link_next)->src_lnode) != 0);
2202 		i_link_next = &((*i_link_next)->tgt_link_next);
2203 	}
2204 	*i_link_next = i_link;
2205 
2206 	/*
2207 	 * add this i_link to the link hash
2208 	 */
2209 	res = mod_hash_insert(st->link_hash, i_link, i_link);
2210 	ASSERT(res == 0);
2211 	st->link_count++;
2212 
2213 	return (LDI_USAGE_CONTINUE);
2214 }
2215 
2216 struct i_layer_data {
2217 	struct di_state	*st;
2218 	int		lnode_count;
2219 	int		link_count;
2220 	di_off_t	lnode_off;
2221 	di_off_t 	link_off;
2222 };
2223 
2224 /*ARGSUSED*/
2225 static uint_t
2226 i_link_walker(mod_hash_key_t key, mod_hash_val_t *val, void *arg)
2227 {
2228 	i_link_t		*i_link  = (i_link_t *)key;
2229 	struct i_layer_data	*data = arg;
2230 	struct di_link		*me;
2231 	struct di_lnode		*melnode;
2232 	struct di_node		*medinode;
2233 
2234 	ASSERT(i_link->self == 0);
2235 
2236 	i_link->self = data->link_off +
2237 	    (data->link_count * sizeof (struct di_link));
2238 	data->link_count++;
2239 
2240 	ASSERT(data->link_off > 0 && data->link_count > 0);
2241 	ASSERT(data->lnode_count == data->st->lnode_count); /* lnodes done */
2242 	ASSERT(data->link_count <= data->st->link_count);
2243 
2244 	/* fill in fields for the di_link snapshot */
2245 	me = (struct di_link *)(intptr_t)di_mem_addr(data->st, i_link->self);
2246 	me->self = i_link->self;
2247 	me->spec_type = i_link->spec_type;
2248 
2249 	/*
2250 	 * The src_lnode and tgt_lnode i_lnode_t for this i_link_t
2251 	 * are created during the LDI table walk. Since we are
2252 	 * walking the link hash, the lnode hash has already been
2253 	 * walked and the lnodes have been snapshotted. Save lnode
2254 	 * offsets.
2255 	 */
2256 	me->src_lnode = i_link->src_lnode->self;
2257 	me->tgt_lnode = i_link->tgt_lnode->self;
2258 
2259 	/*
2260 	 * Save this link's offset in the src_lnode snapshot's link_out
2261 	 * field
2262 	 */
2263 	melnode = (struct di_lnode *)
2264 	    (intptr_t)di_mem_addr(data->st, me->src_lnode);
2265 	me->src_link_next = melnode->link_out;
2266 	melnode->link_out = me->self;
2267 
2268 	/*
2269 	 * Put this link on the tgt_lnode's link_in field
2270 	 */
2271 	melnode = (struct di_lnode *)
2272 	    (intptr_t)di_mem_addr(data->st, me->tgt_lnode);
2273 	me->tgt_link_next = melnode->link_in;
2274 	melnode->link_in = me->self;
2275 
2276 	/*
2277 	 * An i_lnode_t is only created if the corresponding dip exists
2278 	 * in the snapshot. A pointer to the di_node is saved in the
2279 	 * i_lnode_t when it is allocated. For this link, get the di_node
2280 	 * for the source lnode. Then put the link on the di_node's list
2281 	 * of src links
2282 	 */
2283 	medinode = i_link->src_lnode->di_node;
2284 	me->src_node_next = medinode->src_links;
2285 	medinode->src_links = me->self;
2286 
2287 	/*
2288 	 * Put this link on the tgt_links list of the target
2289 	 * dip.
2290 	 */
2291 	medinode = i_link->tgt_lnode->di_node;
2292 	me->tgt_node_next = medinode->tgt_links;
2293 	medinode->tgt_links = me->self;
2294 
2295 	return (MH_WALK_CONTINUE);
2296 }
2297 
2298 /*ARGSUSED*/
2299 static uint_t
2300 i_lnode_walker(mod_hash_key_t key, mod_hash_val_t *val, void *arg)
2301 {
2302 	i_lnode_t		*i_lnode = (i_lnode_t *)key;
2303 	struct i_layer_data	*data = arg;
2304 	struct di_lnode		*me;
2305 	struct di_node		*medinode;
2306 
2307 	ASSERT(i_lnode->self == 0);
2308 
2309 	i_lnode->self = data->lnode_off +
2310 	    (data->lnode_count * sizeof (struct di_lnode));
2311 	data->lnode_count++;
2312 
2313 	ASSERT(data->lnode_off > 0 && data->lnode_count > 0);
2314 	ASSERT(data->link_count == 0); /* links not done yet */
2315 	ASSERT(data->lnode_count <= data->st->lnode_count);
2316 
2317 	/* fill in fields for the di_lnode snapshot */
2318 	me = (struct di_lnode *)(intptr_t)di_mem_addr(data->st, i_lnode->self);
2319 	me->self = i_lnode->self;
2320 
2321 	if (i_lnode->devt == DDI_DEV_T_NONE) {
2322 		me->dev_major = (major_t)-1;
2323 		me->dev_minor = (minor_t)-1;
2324 	} else {
2325 		me->dev_major = getmajor(i_lnode->devt);
2326 		me->dev_minor = getminor(i_lnode->devt);
2327 	}
2328 
2329 	/*
2330 	 * The dip corresponding to this lnode must exist in
2331 	 * the snapshot or we wouldn't have created the i_lnode_t
2332 	 * during LDI walk. Save the offset of the dip.
2333 	 */
2334 	ASSERT(i_lnode->di_node && i_lnode->di_node->self > 0);
2335 	me->node = i_lnode->di_node->self;
2336 
2337 	/*
2338 	 * There must be at least one link in or out of this lnode
2339 	 * or we wouldn't have created it. These fields will be set
2340 	 * during the link hash walk.
2341 	 */
2342 	ASSERT((i_lnode->link_in != NULL) || (i_lnode->link_out != NULL));
2343 
2344 	/*
2345 	 * set the offset of the devinfo node associated with this
2346 	 * lnode. Also update the node_next next pointer.  this pointer
2347 	 * is set if there are multiple lnodes associated with the same
2348 	 * devinfo node.  (could occure when multiple minor nodes
2349 	 * are open for one device, etc.)
2350 	 */
2351 	medinode = i_lnode->di_node;
2352 	me->node_next = medinode->lnodes;
2353 	medinode->lnodes = me->self;
2354 
2355 	return (MH_WALK_CONTINUE);
2356 }
2357 
2358 static di_off_t
2359 di_getlink_data(di_off_t off, struct di_state *st)
2360 {
2361 	struct i_layer_data data = {0};
2362 	size_t size;
2363 
2364 	dcmn_err2((CE_CONT, "di_copylyr: off = %x\n", off));
2365 
2366 	st->lnode_hash = mod_hash_create_extended("di_lnode_hash", 32,
2367 	    mod_hash_null_keydtor, (void (*)(mod_hash_val_t))i_lnode_check_free,
2368 	    i_lnode_hashfunc, NULL, i_lnode_cmp, KM_SLEEP);
2369 
2370 	st->link_hash = mod_hash_create_ptrhash("di_link_hash", 32,
2371 	    (void (*)(mod_hash_val_t))i_link_check_free, sizeof (i_link_t));
2372 
2373 	/* get driver layering information */
2374 	(void) ldi_usage_walker(st, di_ldi_callback);
2375 
2376 	/* check if there is any link data to include in the snapshot */
2377 	if (st->lnode_count == 0) {
2378 		ASSERT(st->link_count == 0);
2379 		goto out;
2380 	}
2381 
2382 	ASSERT(st->link_count != 0);
2383 
2384 	/* get a pointer to snapshot memory for all the di_lnodes */
2385 	size = sizeof (struct di_lnode) * st->lnode_count;
2386 	data.lnode_off = off = di_checkmem(st, off, size);
2387 	off += DI_ALIGN(size);
2388 
2389 	/* get a pointer to snapshot memory for all the di_links */
2390 	size = sizeof (struct di_link) * st->link_count;
2391 	data.link_off = off = di_checkmem(st, off, size);
2392 	off += DI_ALIGN(size);
2393 
2394 	data.lnode_count = data.link_count = 0;
2395 	data.st = st;
2396 
2397 	/*
2398 	 * We have lnodes and links that will go into the
2399 	 * snapshot, so let's walk the respective hashes
2400 	 * and snapshot them. The various linkages are
2401 	 * also set up during the walk.
2402 	 */
2403 	mod_hash_walk(st->lnode_hash, i_lnode_walker, (void *)&data);
2404 	ASSERT(data.lnode_count == st->lnode_count);
2405 
2406 	mod_hash_walk(st->link_hash, i_link_walker, (void *)&data);
2407 	ASSERT(data.link_count == st->link_count);
2408 
2409 out:
2410 	/* free up the i_lnodes and i_links used to create the snapshot */
2411 	mod_hash_destroy_hash(st->lnode_hash);
2412 	mod_hash_destroy_hash(st->link_hash);
2413 	st->lnode_count = 0;
2414 	st->link_count = 0;
2415 
2416 	return (off);
2417 }
2418 
2419 
2420 /*
2421  * Copy all minor data nodes attached to a devinfo node into the snapshot.
2422  * It is called from di_copynode with devi_lock held.
2423  */
2424 static di_off_t
2425 di_getmdata(struct ddi_minor_data *mnode, di_off_t *off_p, di_off_t node,
2426 	struct di_state *st)
2427 {
2428 	di_off_t off;
2429 	struct di_minor *me;
2430 
2431 	dcmn_err2((CE_CONT, "di_getmdata:\n"));
2432 
2433 	/*
2434 	 * check memory first
2435 	 */
2436 	off = di_checkmem(st, *off_p, sizeof (struct di_minor));
2437 	*off_p = off;
2438 
2439 	do {
2440 		me = (struct di_minor *)(intptr_t)di_mem_addr(st, off);
2441 		me->self = off;
2442 		me->type = mnode->type;
2443 		me->node = node;
2444 		me->user_private_data = NULL;
2445 
2446 		off += DI_ALIGN(sizeof (struct di_minor));
2447 
2448 		/*
2449 		 * Split dev_t to major/minor, so it works for
2450 		 * both ILP32 and LP64 model
2451 		 */
2452 		me->dev_major = getmajor(mnode->ddm_dev);
2453 		me->dev_minor = getminor(mnode->ddm_dev);
2454 		me->spec_type = mnode->ddm_spec_type;
2455 
2456 		if (mnode->ddm_name) {
2457 			off = di_checkmem(st, off,
2458 				strlen(mnode->ddm_name) + 1);
2459 			me->name = off;
2460 			(void) strcpy(di_mem_addr(st, off), mnode->ddm_name);
2461 			off += DI_ALIGN(strlen(mnode->ddm_name) + 1);
2462 		}
2463 
2464 		if (mnode->ddm_node_type) {
2465 			off = di_checkmem(st, off,
2466 				strlen(mnode->ddm_node_type) + 1);
2467 			me->node_type = off;
2468 			(void) strcpy(di_mem_addr(st, off),
2469 					mnode->ddm_node_type);
2470 			off += DI_ALIGN(strlen(mnode->ddm_node_type) + 1);
2471 		}
2472 
2473 		off = di_checkmem(st, off, sizeof (struct di_minor));
2474 		me->next = off;
2475 		mnode = mnode->next;
2476 	} while (mnode);
2477 
2478 	me->next = 0;
2479 
2480 	return (off);
2481 }
2482 
2483 /*
2484  * di_register_dip(), di_find_dip(): The dip must be protected
2485  * from deallocation when using these routines - this can either
2486  * be a reference count, a busy hold or a per-driver lock.
2487  */
2488 
2489 static void
2490 di_register_dip(struct di_state *st, dev_info_t *dip, di_off_t off)
2491 {
2492 	struct dev_info *node = DEVI(dip);
2493 	struct di_key *key = kmem_zalloc(sizeof (*key), KM_SLEEP);
2494 	struct di_dkey *dk;
2495 
2496 	ASSERT(dip);
2497 	ASSERT(off > 0);
2498 
2499 	key->k_type = DI_DKEY;
2500 	dk = &(key->k_u.dkey);
2501 
2502 	dk->dk_dip = dip;
2503 	dk->dk_major = node->devi_major;
2504 	dk->dk_inst = node->devi_instance;
2505 	dk->dk_nodeid = node->devi_nodeid;
2506 
2507 	if (mod_hash_insert(st->reg_dip_hash, (mod_hash_key_t)key,
2508 	    (mod_hash_val_t)(uintptr_t)off) != 0) {
2509 		panic(
2510 		    "duplicate devinfo (%p) registered during device "
2511 		    "tree walk", (void *)dip);
2512 	}
2513 }
2514 
2515 
2516 static int
2517 di_dip_find(struct di_state *st, dev_info_t *dip, di_off_t *off_p)
2518 {
2519 	/*
2520 	 * uintptr_t must be used because it matches the size of void *;
2521 	 * mod_hash expects clients to place results into pointer-size
2522 	 * containers; since di_off_t is always a 32-bit offset, alignment
2523 	 * would otherwise be broken on 64-bit kernels.
2524 	 */
2525 	uintptr_t	offset;
2526 	struct		di_key key = {0};
2527 	struct		di_dkey *dk;
2528 
2529 	ASSERT(st->reg_dip_hash);
2530 	ASSERT(dip);
2531 	ASSERT(off_p);
2532 
2533 
2534 	key.k_type = DI_DKEY;
2535 	dk = &(key.k_u.dkey);
2536 
2537 	dk->dk_dip = dip;
2538 	dk->dk_major = DEVI(dip)->devi_major;
2539 	dk->dk_inst = DEVI(dip)->devi_instance;
2540 	dk->dk_nodeid = DEVI(dip)->devi_nodeid;
2541 
2542 	if (mod_hash_find(st->reg_dip_hash, (mod_hash_key_t)&key,
2543 	    (mod_hash_val_t *)&offset) == 0) {
2544 		*off_p = (di_off_t)offset;
2545 		return (0);
2546 	} else {
2547 		return (-1);
2548 	}
2549 }
2550 
2551 /*
2552  * di_register_pip(), di_find_pip(): The pip must be protected from deallocation
2553  * when using these routines. The caller must do this by protecting the
2554  * client(or phci)<->pip linkage while traversing the list and then holding the
2555  * pip when it is found in the list.
2556  */
2557 
2558 static void
2559 di_register_pip(struct di_state *st, mdi_pathinfo_t *pip, di_off_t off)
2560 {
2561 	struct di_key	*key = kmem_zalloc(sizeof (*key), KM_SLEEP);
2562 	char		*path_addr;
2563 	struct di_pkey	*pk;
2564 
2565 	ASSERT(pip);
2566 	ASSERT(off > 0);
2567 
2568 	key->k_type = DI_PKEY;
2569 	pk = &(key->k_u.pkey);
2570 
2571 	pk->pk_pip = pip;
2572 	path_addr = mdi_pi_get_addr(pip);
2573 	if (path_addr)
2574 		pk->pk_path_addr = i_ddi_strdup(path_addr, KM_SLEEP);
2575 	pk->pk_client = mdi_pi_get_client(pip);
2576 	pk->pk_phci = mdi_pi_get_phci(pip);
2577 
2578 	if (mod_hash_insert(st->reg_pip_hash, (mod_hash_key_t)key,
2579 	    (mod_hash_val_t)(uintptr_t)off) != 0) {
2580 		panic(
2581 		    "duplicate pathinfo (%p) registered during device "
2582 		    "tree walk", (void *)pip);
2583 	}
2584 }
2585 
2586 /*
2587  * As with di_register_pip, the caller must hold or lock the pip
2588  */
2589 static int
2590 di_pip_find(struct di_state *st, mdi_pathinfo_t *pip, di_off_t *off_p)
2591 {
2592 	/*
2593 	 * uintptr_t must be used because it matches the size of void *;
2594 	 * mod_hash expects clients to place results into pointer-size
2595 	 * containers; since di_off_t is always a 32-bit offset, alignment
2596 	 * would otherwise be broken on 64-bit kernels.
2597 	 */
2598 	uintptr_t	offset;
2599 	struct di_key	key = {0};
2600 	struct di_pkey	*pk;
2601 
2602 	ASSERT(st->reg_pip_hash);
2603 	ASSERT(off_p);
2604 
2605 	if (pip == NULL) {
2606 		*off_p = 0;
2607 		return (0);
2608 	}
2609 
2610 	key.k_type = DI_PKEY;
2611 	pk = &(key.k_u.pkey);
2612 
2613 	pk->pk_pip = pip;
2614 	pk->pk_path_addr = mdi_pi_get_addr(pip);
2615 	pk->pk_client = mdi_pi_get_client(pip);
2616 	pk->pk_phci = mdi_pi_get_phci(pip);
2617 
2618 	if (mod_hash_find(st->reg_pip_hash, (mod_hash_key_t)&key,
2619 	    (mod_hash_val_t *)&offset) == 0) {
2620 		*off_p = (di_off_t)offset;
2621 		return (0);
2622 	} else {
2623 		return (-1);
2624 	}
2625 }
2626 
2627 static di_path_state_t
2628 path_state_convert(mdi_pathinfo_state_t st)
2629 {
2630 	switch (st) {
2631 	case MDI_PATHINFO_STATE_ONLINE:
2632 		return (DI_PATH_STATE_ONLINE);
2633 	case MDI_PATHINFO_STATE_STANDBY:
2634 		return (DI_PATH_STATE_STANDBY);
2635 	case MDI_PATHINFO_STATE_OFFLINE:
2636 		return (DI_PATH_STATE_OFFLINE);
2637 	case MDI_PATHINFO_STATE_FAULT:
2638 		return (DI_PATH_STATE_FAULT);
2639 	default:
2640 		return (DI_PATH_STATE_UNKNOWN);
2641 	}
2642 }
2643 
2644 
2645 static di_off_t
2646 di_path_getprop(mdi_pathinfo_t *pip, di_off_t off, di_off_t *off_p,
2647     struct di_state *st)
2648 {
2649 	nvpair_t *prop = NULL;
2650 	struct di_path_prop *me;
2651 
2652 	if (mdi_pi_get_next_prop(pip, NULL) == NULL) {
2653 		*off_p = 0;
2654 		return (off);
2655 	}
2656 
2657 	off = di_checkmem(st, off, sizeof (struct di_path_prop));
2658 	*off_p = off;
2659 
2660 	while (prop = mdi_pi_get_next_prop(pip, prop)) {
2661 		int delta = 0;
2662 
2663 		me = (struct di_path_prop *)(intptr_t)di_mem_addr(st, off);
2664 		me->self = off;
2665 		off += sizeof (struct di_path_prop);
2666 
2667 		/*
2668 		 * property name
2669 		 */
2670 		off = di_checkmem(st, off, strlen(nvpair_name(prop)) + 1);
2671 		me->prop_name = off;
2672 		(void) strcpy(di_mem_addr(st, off), nvpair_name(prop));
2673 		off += strlen(nvpair_name(prop)) + 1;
2674 
2675 		switch (nvpair_type(prop)) {
2676 		case DATA_TYPE_BYTE:
2677 		case DATA_TYPE_INT16:
2678 		case DATA_TYPE_UINT16:
2679 		case DATA_TYPE_INT32:
2680 		case DATA_TYPE_UINT32:
2681 			delta = sizeof (int32_t);
2682 			me->prop_type = DDI_PROP_TYPE_INT;
2683 			off = di_checkmem(st, off, delta);
2684 			(void) nvpair_value_int32(prop,
2685 			    (int32_t *)(intptr_t)di_mem_addr(st, off));
2686 			break;
2687 
2688 		case DATA_TYPE_INT64:
2689 		case DATA_TYPE_UINT64:
2690 			delta = sizeof (int64_t);
2691 			me->prop_type = DDI_PROP_TYPE_INT64;
2692 			off = di_checkmem(st, off, delta);
2693 			(void) nvpair_value_int64(prop,
2694 			    (int64_t *)(intptr_t)di_mem_addr(st, off));
2695 			break;
2696 
2697 		case DATA_TYPE_STRING:
2698 		{
2699 			char *str;
2700 			(void) nvpair_value_string(prop, &str);
2701 			delta = strlen(str) + 1;
2702 			me->prop_type = DDI_PROP_TYPE_STRING;
2703 			off = di_checkmem(st, off, delta);
2704 			(void) strcpy(di_mem_addr(st, off), str);
2705 			break;
2706 		}
2707 		case DATA_TYPE_BYTE_ARRAY:
2708 		case DATA_TYPE_INT16_ARRAY:
2709 		case DATA_TYPE_UINT16_ARRAY:
2710 		case DATA_TYPE_INT32_ARRAY:
2711 		case DATA_TYPE_UINT32_ARRAY:
2712 		case DATA_TYPE_INT64_ARRAY:
2713 		case DATA_TYPE_UINT64_ARRAY:
2714 		{
2715 			uchar_t *buf;
2716 			uint_t nelems;
2717 			(void) nvpair_value_byte_array(prop, &buf, &nelems);
2718 			delta = nelems;
2719 			me->prop_type = DDI_PROP_TYPE_BYTE;
2720 			if (nelems != 0) {
2721 				off = di_checkmem(st, off, delta);
2722 				bcopy(buf, di_mem_addr(st, off), nelems);
2723 			}
2724 			break;
2725 		}
2726 
2727 		default:	/* Unknown or unhandled type; skip it */
2728 			delta = 0;
2729 			break;
2730 		}
2731 
2732 		if (delta > 0) {
2733 			me->prop_data = off;
2734 		}
2735 
2736 		me->prop_len = delta;
2737 		off += delta;
2738 
2739 		off = di_checkmem(st, off, sizeof (struct di_path_prop));
2740 		me->prop_next = off;
2741 	}
2742 
2743 	me->prop_next = 0;
2744 	return (off);
2745 }
2746 
2747 
2748 static void
2749 di_path_one_endpoint(struct di_path *me, di_off_t noff, di_off_t **off_pp,
2750     int get_client)
2751 {
2752 	if (get_client) {
2753 		ASSERT(me->path_client == 0);
2754 		me->path_client = noff;
2755 		ASSERT(me->path_c_link == 0);
2756 		*off_pp = &me->path_c_link;
2757 		me->path_snap_state &=
2758 		    ~(DI_PATH_SNAP_NOCLIENT | DI_PATH_SNAP_NOCLINK);
2759 	} else {
2760 		ASSERT(me->path_phci == 0);
2761 		me->path_phci = noff;
2762 		ASSERT(me->path_p_link == 0);
2763 		*off_pp = &me->path_p_link;
2764 		me->path_snap_state &=
2765 		    ~(DI_PATH_SNAP_NOPHCI | DI_PATH_SNAP_NOPLINK);
2766 	}
2767 }
2768 
2769 /*
2770  * poff_p: pointer to the linkage field. This links pips along the client|phci
2771  *	   linkage list.
2772  * noff  : Offset for the endpoint dip snapshot.
2773  */
2774 static di_off_t
2775 di_getpath_data(dev_info_t *dip, di_off_t *poff_p, di_off_t noff,
2776     struct di_state *st, int get_client)
2777 {
2778 	di_off_t off;
2779 	mdi_pathinfo_t *pip;
2780 	struct di_path *me;
2781 	mdi_pathinfo_t *(*next_pip)(dev_info_t *, mdi_pathinfo_t *);
2782 
2783 	dcmn_err2((CE_WARN, "di_getpath_data: client = %d", get_client));
2784 
2785 	/*
2786 	 * The naming of the following mdi_xyz() is unfortunately
2787 	 * non-intuitive. mdi_get_next_phci_path() follows the
2788 	 * client_link i.e. the list of pip's belonging to the
2789 	 * given client dip.
2790 	 */
2791 	if (get_client)
2792 		next_pip = &mdi_get_next_phci_path;
2793 	else
2794 		next_pip = &mdi_get_next_client_path;
2795 
2796 	off = *poff_p;
2797 
2798 	pip = NULL;
2799 	while (pip = (*next_pip)(dip, pip)) {
2800 		mdi_pathinfo_state_t state;
2801 		di_off_t stored_offset;
2802 
2803 		dcmn_err((CE_WARN, "marshalling pip = %p", (void *)pip));
2804 
2805 		mdi_pi_lock(pip);
2806 
2807 		if (di_pip_find(st, pip, &stored_offset) != -1) {
2808 			/*
2809 			 * We've already seen this pathinfo node so we need to
2810 			 * take care not to snap it again; However, one endpoint
2811 			 * and linkage will be set here. The other endpoint
2812 			 * and linkage has already been set when the pip was
2813 			 * first snapshotted i.e. when the other endpoint dip
2814 			 * was snapshotted.
2815 			 */
2816 			me = (struct di_path *)(intptr_t)
2817 			    di_mem_addr(st, stored_offset);
2818 
2819 			*poff_p = stored_offset;
2820 
2821 			di_path_one_endpoint(me, noff, &poff_p, get_client);
2822 
2823 			/*
2824 			 * The other endpoint and linkage were set when this
2825 			 * pip was snapshotted. So we are done with both
2826 			 * endpoints and linkages.
2827 			 */
2828 			ASSERT(!(me->path_snap_state &
2829 			    (DI_PATH_SNAP_NOCLIENT|DI_PATH_SNAP_NOPHCI)));
2830 			ASSERT(!(me->path_snap_state &
2831 			    (DI_PATH_SNAP_NOCLINK|DI_PATH_SNAP_NOPLINK)));
2832 
2833 			mdi_pi_unlock(pip);
2834 			continue;
2835 		}
2836 
2837 		/*
2838 		 * Now that we need to snapshot this pip, check memory
2839 		 */
2840 		off = di_checkmem(st, off, sizeof (struct di_path));
2841 		me = (struct di_path *)(intptr_t)di_mem_addr(st, off);
2842 		me->self = off;
2843 		*poff_p = off;
2844 		off += sizeof (struct di_path);
2845 
2846 		me->path_snap_state =
2847 		    DI_PATH_SNAP_NOCLINK | DI_PATH_SNAP_NOPLINK;
2848 		me->path_snap_state |=
2849 		    DI_PATH_SNAP_NOCLIENT | DI_PATH_SNAP_NOPHCI;
2850 
2851 		/*
2852 		 * Zero out fields as di_checkmem() doesn't guarantee
2853 		 * zero-filled memory
2854 		 */
2855 		me->path_client = me->path_phci = 0;
2856 		me->path_c_link = me->path_p_link = 0;
2857 
2858 		di_path_one_endpoint(me, noff, &poff_p, get_client);
2859 
2860 		/*
2861 		 * Note the existence of this pathinfo
2862 		 */
2863 		di_register_pip(st, pip, me->self);
2864 
2865 		state = mdi_pi_get_state(pip);
2866 		me->path_state = path_state_convert(state);
2867 
2868 		/*
2869 		 * Get intermediate addressing info.
2870 		 */
2871 		off = di_checkmem(st, off, strlen(mdi_pi_get_addr(pip)) + 1);
2872 		me->path_addr = off;
2873 		(void) strcpy(di_mem_addr(st, off), mdi_pi_get_addr(pip));
2874 		off += strlen(mdi_pi_get_addr(pip)) + 1;
2875 
2876 		/*
2877 		 * Get path properties if props are to be included in the
2878 		 * snapshot
2879 		 */
2880 		if (DINFOPROP & st->command) {
2881 			off = di_path_getprop(pip, off, &me->path_prop, st);
2882 		} else {
2883 			me->path_prop = 0;
2884 		}
2885 
2886 		mdi_pi_unlock(pip);
2887 	}
2888 
2889 	*poff_p = 0;
2890 
2891 	return (off);
2892 }
2893 
2894 /*
2895  * Copy a list of properties attached to a devinfo node. Called from
2896  * di_copynode with devi_lock held. The major number is passed in case
2897  * we need to call driver's prop_op entry. The value of list indicates
2898  * which list we are copying. Possible values are:
2899  * DI_PROP_DRV_LIST, DI_PROP_SYS_LIST, DI_PROP_GLB_LIST, DI_PROP_HW_LIST
2900  */
2901 static di_off_t
2902 di_getprop(struct ddi_prop *prop, di_off_t *off_p, struct di_state *st,
2903 	struct dev_info *dip, int list)
2904 {
2905 	dev_t dev;
2906 	int (*prop_op)();
2907 	int off, need_prop_op = 0;
2908 	int prop_op_fail = 0;
2909 	ddi_prop_t *propp = NULL;
2910 	struct di_prop *pp;
2911 	struct dev_ops *ops = NULL;
2912 	int prop_len;
2913 	caddr_t prop_val;
2914 
2915 
2916 	dcmn_err2((CE_CONT, "di_getprop:\n"));
2917 
2918 	ASSERT(st != NULL);
2919 
2920 	dcmn_err((CE_CONT, "copy property list at addr %p\n", (void *)prop));
2921 
2922 	/*
2923 	 * Figure out if we need to call driver's prop_op entry point.
2924 	 * The conditions are:
2925 	 *	-- driver property list
2926 	 *	-- driver must be attached and held
2927 	 *	-- driver's cb_prop_op != ddi_prop_op
2928 	 *		or parent's bus_prop_op != ddi_bus_prop_op
2929 	 */
2930 
2931 	if (list != DI_PROP_DRV_LIST) {
2932 		goto getprop;
2933 	}
2934 
2935 	/*
2936 	 * If driver is not attached or if major is -1, we ignore
2937 	 * the driver property list. No one should rely on such
2938 	 * properties.
2939 	 */
2940 	if (!i_ddi_devi_attached((dev_info_t *)dip)) {
2941 		off = *off_p;
2942 		*off_p = 0;
2943 		return (off);
2944 	}
2945 
2946 	/*
2947 	 * Now we have a driver which is held. We can examine entry points
2948 	 * and check the condition listed above.
2949 	 */
2950 	ops = dip->devi_ops;
2951 
2952 	/*
2953 	 * Some nexus drivers incorrectly set cb_prop_op to nodev,
2954 	 * nulldev or even NULL.
2955 	 */
2956 	if (ops && ops->devo_cb_ops &&
2957 	    (ops->devo_cb_ops->cb_prop_op != ddi_prop_op) &&
2958 	    (ops->devo_cb_ops->cb_prop_op != nodev) &&
2959 	    (ops->devo_cb_ops->cb_prop_op != nulldev) &&
2960 	    (ops->devo_cb_ops->cb_prop_op != NULL)) {
2961 		need_prop_op = 1;
2962 	}
2963 
2964 getprop:
2965 	/*
2966 	 * check memory availability
2967 	 */
2968 	off = di_checkmem(st, *off_p, sizeof (struct di_prop));
2969 	*off_p = off;
2970 	/*
2971 	 * Now copy properties
2972 	 */
2973 	do {
2974 		pp = (struct di_prop *)(intptr_t)di_mem_addr(st, off);
2975 		pp->self = off;
2976 		/*
2977 		 * Split dev_t to major/minor, so it works for
2978 		 * both ILP32 and LP64 model
2979 		 */
2980 		pp->dev_major = getmajor(prop->prop_dev);
2981 		pp->dev_minor = getminor(prop->prop_dev);
2982 		pp->prop_flags = prop->prop_flags;
2983 		pp->prop_list = list;
2984 
2985 		/*
2986 		 * property name
2987 		 */
2988 		off += sizeof (struct di_prop);
2989 		if (prop->prop_name) {
2990 			off = di_checkmem(st, off, strlen(prop->prop_name)
2991 			    + 1);
2992 			pp->prop_name = off;
2993 			(void) strcpy(di_mem_addr(st, off), prop->prop_name);
2994 			off += strlen(prop->prop_name) + 1;
2995 		}
2996 
2997 		/*
2998 		 * Set prop_len here. This may change later
2999 		 * if cb_prop_op returns a different length.
3000 		 */
3001 		pp->prop_len = prop->prop_len;
3002 		if (!need_prop_op) {
3003 			if (prop->prop_val == NULL) {
3004 				dcmn_err((CE_WARN,
3005 				    "devinfo: property fault at %p",
3006 				    (void *)prop));
3007 				pp->prop_data = -1;
3008 			} else if (prop->prop_len != 0) {
3009 				off = di_checkmem(st, off, prop->prop_len);
3010 				pp->prop_data = off;
3011 				bcopy(prop->prop_val, di_mem_addr(st, off),
3012 				    prop->prop_len);
3013 				off += DI_ALIGN(pp->prop_len);
3014 			}
3015 		}
3016 
3017 		off = di_checkmem(st, off, sizeof (struct di_prop));
3018 		pp->next = off;
3019 		prop = prop->prop_next;
3020 	} while (prop);
3021 
3022 	pp->next = 0;
3023 
3024 	if (!need_prop_op) {
3025 		dcmn_err((CE_CONT, "finished property "
3026 		    "list at offset 0x%x\n", off));
3027 		return (off);
3028 	}
3029 
3030 	/*
3031 	 * If there is a need to call driver's prop_op entry,
3032 	 * we must release driver's devi_lock, because the
3033 	 * cb_prop_op entry point will grab it.
3034 	 *
3035 	 * The snapshot memory has already been allocated above,
3036 	 * which means the length of an active property should
3037 	 * remain fixed for this implementation to work.
3038 	 */
3039 
3040 
3041 	prop_op = ops->devo_cb_ops->cb_prop_op;
3042 	pp = (struct di_prop *)(intptr_t)di_mem_addr(st, *off_p);
3043 
3044 	mutex_exit(&dip->devi_lock);
3045 
3046 	do {
3047 		int err;
3048 		struct di_prop *tmp;
3049 
3050 		if (pp->next) {
3051 			tmp = (struct di_prop *)
3052 			    (intptr_t)di_mem_addr(st, pp->next);
3053 		} else {
3054 			tmp = NULL;
3055 		}
3056 
3057 		/*
3058 		 * call into driver's prop_op entry point
3059 		 *
3060 		 * Must search DDI_DEV_T_NONE with DDI_DEV_T_ANY
3061 		 */
3062 		dev = makedevice(pp->dev_major, pp->dev_minor);
3063 		if (dev == DDI_DEV_T_NONE)
3064 			dev = DDI_DEV_T_ANY;
3065 
3066 		dcmn_err((CE_CONT, "call prop_op"
3067 		    "(%lx, %p, PROP_LEN_AND_VAL_BUF, "
3068 		    "DDI_PROP_DONTPASS, \"%s\", %p, &%d)\n",
3069 		    dev,
3070 		    (void *)dip,
3071 		    (char *)di_mem_addr(st, pp->prop_name),
3072 		    (void *)di_mem_addr(st, pp->prop_data),
3073 		    pp->prop_len));
3074 
3075 		if ((err = (*prop_op)(dev, (dev_info_t)dip,
3076 		    PROP_LEN_AND_VAL_ALLOC, DDI_PROP_DONTPASS,
3077 		    (char *)di_mem_addr(st, pp->prop_name),
3078 		    &prop_val, &prop_len)) != DDI_PROP_SUCCESS) {
3079 			if ((propp = i_ddi_prop_search(dev,
3080 			    (char *)di_mem_addr(st, pp->prop_name),
3081 			    (uint_t)pp->prop_flags,
3082 			    &(DEVI(dip)->devi_drv_prop_ptr))) != NULL) {
3083 				pp->prop_len = propp->prop_len;
3084 				if (pp->prop_len != 0) {
3085 					off = di_checkmem(st, off,
3086 					    pp->prop_len);
3087 					pp->prop_data = off;
3088 					bcopy(propp->prop_val, di_mem_addr(st,
3089 					    pp->prop_data), propp->prop_len);
3090 					off += DI_ALIGN(pp->prop_len);
3091 				}
3092 			} else {
3093 				prop_op_fail = 1;
3094 			}
3095 		} else if (prop_len != 0) {
3096 			pp->prop_len = prop_len;
3097 			off = di_checkmem(st, off, prop_len);
3098 			pp->prop_data = off;
3099 			bcopy(prop_val, di_mem_addr(st, off), prop_len);
3100 			off += DI_ALIGN(prop_len);
3101 			kmem_free(prop_val, prop_len);
3102 		}
3103 
3104 		if (prop_op_fail) {
3105 			pp->prop_data = -1;
3106 			dcmn_err((CE_WARN, "devinfo: prop_op failure "
3107 			    "for \"%s\" err %d",
3108 			    di_mem_addr(st, pp->prop_name), err));
3109 		}
3110 
3111 		pp = tmp;
3112 
3113 	} while (pp);
3114 
3115 	mutex_enter(&dip->devi_lock);
3116 	dcmn_err((CE_CONT, "finished property list at offset 0x%x\n", off));
3117 	return (off);
3118 }
3119 
3120 /*
3121  * find private data format attached to a dip
3122  * parent = 1 to match driver name of parent dip (for parent private data)
3123  *	0 to match driver name of current dip (for driver private data)
3124  */
3125 #define	DI_MATCH_DRIVER	0
3126 #define	DI_MATCH_PARENT	1
3127 
3128 struct di_priv_format *
3129 di_match_drv_name(struct dev_info *node, struct di_state *st, int match)
3130 {
3131 	int i, count, len;
3132 	char *drv_name;
3133 	major_t major;
3134 	struct di_all *all;
3135 	struct di_priv_format *form;
3136 
3137 	dcmn_err2((CE_CONT, "di_match_drv_name: node = %s, match = %x\n",
3138 		node->devi_node_name, match));
3139 
3140 	if (match == DI_MATCH_PARENT) {
3141 		node = DEVI(node->devi_parent);
3142 	}
3143 
3144 	if (node == NULL) {
3145 		return (NULL);
3146 	}
3147 
3148 	major = ddi_name_to_major(node->devi_binding_name);
3149 	if (major == (major_t)(-1)) {
3150 		return (NULL);
3151 	}
3152 
3153 	/*
3154 	 * Match the driver name.
3155 	 */
3156 	drv_name = ddi_major_to_name(major);
3157 	if ((drv_name == NULL) || *drv_name == '\0') {
3158 		return (NULL);
3159 	}
3160 
3161 	/* Now get the di_priv_format array */
3162 	all = (struct di_all *)(intptr_t)di_mem_addr(st, 0);
3163 
3164 	if (match == DI_MATCH_PARENT) {
3165 		count = all->n_ppdata;
3166 		form = (struct di_priv_format *)
3167 			(intptr_t)(di_mem_addr(st, 0) + all->ppdata_format);
3168 	} else {
3169 		count = all->n_dpdata;
3170 		form = (struct di_priv_format *)
3171 			(intptr_t)((caddr_t)all + all->dpdata_format);
3172 	}
3173 
3174 	len = strlen(drv_name);
3175 	for (i = 0; i < count; i++) {
3176 		char *tmp;
3177 
3178 		tmp = form[i].drv_name;
3179 		while (tmp && (*tmp != '\0')) {
3180 			if (strncmp(drv_name, tmp, len) == 0) {
3181 				return (&form[i]);
3182 			}
3183 			/*
3184 			 * Move to next driver name, skipping a white space
3185 			 */
3186 			if (tmp = strchr(tmp, ' ')) {
3187 				tmp++;
3188 			}
3189 		}
3190 	}
3191 
3192 	return (NULL);
3193 }
3194 
3195 /*
3196  * The following functions copy data as specified by the format passed in.
3197  * To prevent invalid format from panicing the system, we call on_fault().
3198  * A return value of 0 indicates an error. Otherwise, the total offset
3199  * is returned.
3200  */
3201 #define	DI_MAX_PRIVDATA	(PAGESIZE >> 1)	/* max private data size */
3202 
3203 static di_off_t
3204 di_getprvdata(struct di_priv_format *pdp, struct dev_info *node,
3205     void *data, di_off_t *off_p, struct di_state *st)
3206 {
3207 	caddr_t pa;
3208 	void *ptr;
3209 	int i, size, repeat;
3210 	di_off_t off, off0, *tmp;
3211 	char *path;
3212 
3213 	label_t ljb;
3214 
3215 	dcmn_err2((CE_CONT, "di_getprvdata:\n"));
3216 
3217 	/*
3218 	 * check memory availability. Private data size is
3219 	 * limited to DI_MAX_PRIVDATA.
3220 	 */
3221 	off = di_checkmem(st, *off_p, DI_MAX_PRIVDATA);
3222 
3223 	if ((pdp->bytes == 0) || pdp->bytes > DI_MAX_PRIVDATA) {
3224 		goto failure;
3225 	}
3226 
3227 	if (!on_fault(&ljb)) {
3228 		/* copy the struct */
3229 		bcopy(data, di_mem_addr(st, off), pdp->bytes);
3230 		off0 = DI_ALIGN(pdp->bytes);
3231 
3232 		/* dereferencing pointers */
3233 		for (i = 0; i < MAX_PTR_IN_PRV; i++) {
3234 
3235 			if (pdp->ptr[i].size == 0) {
3236 				goto success;	/* no more ptrs */
3237 			}
3238 
3239 			/*
3240 			 * first, get the pointer content
3241 			 */
3242 			if ((pdp->ptr[i].offset < 0) ||
3243 				(pdp->ptr[i].offset >
3244 				pdp->bytes - sizeof (char *)))
3245 				goto failure;	/* wrong offset */
3246 
3247 			pa = di_mem_addr(st, off + pdp->ptr[i].offset);
3248 
3249 			/* save a tmp ptr to store off_t later */
3250 			tmp = (di_off_t *)(intptr_t)pa;
3251 
3252 			/* get pointer value, if NULL continue */
3253 			ptr = *((void **) (intptr_t)pa);
3254 			if (ptr == NULL) {
3255 				continue;
3256 			}
3257 
3258 			/*
3259 			 * next, find the repeat count (array dimension)
3260 			 */
3261 			repeat = pdp->ptr[i].len_offset;
3262 
3263 			/*
3264 			 * Positive value indicates a fixed sized array.
3265 			 * 0 or negative value indicates variable sized array.
3266 			 *
3267 			 * For variable sized array, the variable must be
3268 			 * an int member of the structure, with an offset
3269 			 * equal to the absolution value of struct member.
3270 			 */
3271 			if (repeat > pdp->bytes - sizeof (int)) {
3272 				goto failure;	/* wrong offset */
3273 			}
3274 
3275 			if (repeat >= 0) {
3276 				repeat = *((int *)
3277 				    (intptr_t)((caddr_t)data + repeat));
3278 			} else {
3279 				repeat = -repeat;
3280 			}
3281 
3282 			/*
3283 			 * next, get the size of the object to be copied
3284 			 */
3285 			size = pdp->ptr[i].size * repeat;
3286 
3287 			/*
3288 			 * Arbitrarily limit the total size of object to be
3289 			 * copied (1 byte to 1/4 page).
3290 			 */
3291 			if ((size <= 0) || (size > (DI_MAX_PRIVDATA - off0))) {
3292 				goto failure;	/* wrong size or too big */
3293 			}
3294 
3295 			/*
3296 			 * Now copy the data
3297 			 */
3298 			*tmp = off0;
3299 			bcopy(ptr, di_mem_addr(st, off + off0), size);
3300 			off0 += DI_ALIGN(size);
3301 		}
3302 	} else {
3303 		goto failure;
3304 	}
3305 
3306 success:
3307 	/*
3308 	 * success if reached here
3309 	 */
3310 	no_fault();
3311 	*off_p = off;
3312 
3313 	return (off + off0);
3314 	/*NOTREACHED*/
3315 
3316 failure:
3317 	/*
3318 	 * fault occurred
3319 	 */
3320 	no_fault();
3321 	path = kmem_alloc(MAXPATHLEN, KM_SLEEP);
3322 	cmn_err(CE_WARN, "devinfo: fault on private data for '%s' at %p",
3323 	    ddi_pathname((dev_info_t *)node, path), data);
3324 	kmem_free(path, MAXPATHLEN);
3325 	*off_p = -1;	/* set private data to indicate error */
3326 
3327 	return (off);
3328 }
3329 
3330 /*
3331  * get parent private data; on error, returns original offset
3332  */
3333 static di_off_t
3334 di_getppdata(struct dev_info *node, di_off_t *off_p, struct di_state *st)
3335 {
3336 	int off;
3337 	struct di_priv_format *ppdp;
3338 
3339 	dcmn_err2((CE_CONT, "di_getppdata:\n"));
3340 
3341 	/* find the parent data format */
3342 	if ((ppdp = di_match_drv_name(node, st, DI_MATCH_PARENT)) == NULL) {
3343 		off = *off_p;
3344 		*off_p = 0;	/* set parent data to none */
3345 		return (off);
3346 	}
3347 
3348 	return (di_getprvdata(ppdp, node,
3349 	    ddi_get_parent_data((dev_info_t *)node), off_p, st));
3350 }
3351 
3352 /*
3353  * get parent private data; returns original offset
3354  */
3355 static di_off_t
3356 di_getdpdata(struct dev_info *node, di_off_t *off_p, struct di_state *st)
3357 {
3358 	int off;
3359 	struct di_priv_format *dpdp;
3360 
3361 	dcmn_err2((CE_CONT, "di_getdpdata:"));
3362 
3363 	/* find the parent data format */
3364 	if ((dpdp = di_match_drv_name(node, st, DI_MATCH_DRIVER)) == NULL) {
3365 		off = *off_p;
3366 		*off_p = 0;	/* set driver data to none */
3367 		return (off);
3368 	}
3369 
3370 	return (di_getprvdata(dpdp, node,
3371 	    ddi_get_driver_private((dev_info_t *)node), off_p, st));
3372 }
3373 
3374 /*
3375  * The driver is stateful across DINFOCPYALL and DINFOUSRLD.
3376  * This function encapsulates the state machine:
3377  *
3378  *	-> IOC_IDLE -> IOC_SNAP -> IOC_DONE -> IOC_COPY ->
3379  *	|		SNAPSHOT		USRLD	 |
3380  *	--------------------------------------------------
3381  *
3382  * Returns 0 on success and -1 on failure
3383  */
3384 static int
3385 di_setstate(struct di_state *st, int new_state)
3386 {
3387 	int ret = 0;
3388 
3389 	mutex_enter(&di_lock);
3390 	switch (new_state) {
3391 	case IOC_IDLE:
3392 	case IOC_DONE:
3393 		break;
3394 	case IOC_SNAP:
3395 		if (st->di_iocstate != IOC_IDLE)
3396 			ret = -1;
3397 		break;
3398 	case IOC_COPY:
3399 		if (st->di_iocstate != IOC_DONE)
3400 			ret = -1;
3401 		break;
3402 	default:
3403 		ret = -1;
3404 	}
3405 
3406 	if (ret == 0)
3407 		st->di_iocstate = new_state;
3408 	else
3409 		cmn_err(CE_NOTE, "incorrect state transition from %d to %d",
3410 		    st->di_iocstate, new_state);
3411 	mutex_exit(&di_lock);
3412 	return (ret);
3413 }
3414 
3415 /*
3416  * We cannot assume the presence of the entire
3417  * snapshot in this routine. All we are guaranteed
3418  * is the di_all struct + 1 byte (for root_path)
3419  */
3420 static int
3421 header_plus_one_ok(struct di_all *all)
3422 {
3423 	/*
3424 	 * Refuse to read old versions
3425 	 */
3426 	if (all->version != DI_SNAPSHOT_VERSION) {
3427 		CACHE_DEBUG((DI_ERR, "bad version: 0x%x", all->version));
3428 		return (0);
3429 	}
3430 
3431 	if (all->cache_magic != DI_CACHE_MAGIC) {
3432 		CACHE_DEBUG((DI_ERR, "bad magic #: 0x%x", all->cache_magic));
3433 		return (0);
3434 	}
3435 
3436 	if (all->snapshot_time == 0) {
3437 		CACHE_DEBUG((DI_ERR, "bad timestamp: %ld", all->snapshot_time));
3438 		return (0);
3439 	}
3440 
3441 	if (all->top_devinfo == 0) {
3442 		CACHE_DEBUG((DI_ERR, "NULL top devinfo"));
3443 		return (0);
3444 	}
3445 
3446 	if (all->map_size < sizeof (*all) + 1) {
3447 		CACHE_DEBUG((DI_ERR, "bad map size: %u", all->map_size));
3448 		return (0);
3449 	}
3450 
3451 	if (all->root_path[0] != '/' || all->root_path[1] != '\0') {
3452 		CACHE_DEBUG((DI_ERR, "bad rootpath: %c%c",
3453 		    all->root_path[0], all->root_path[1]));
3454 		return (0);
3455 	}
3456 
3457 	/*
3458 	 * We can't check checksum here as we just have the header
3459 	 */
3460 
3461 	return (1);
3462 }
3463 
3464 static int
3465 chunk_write(struct vnode *vp, offset_t off, caddr_t buf, size_t len)
3466 {
3467 	rlim64_t	rlimit;
3468 	ssize_t		resid;
3469 	int		error = 0;
3470 
3471 
3472 	rlimit = RLIM64_INFINITY;
3473 
3474 	while (len) {
3475 		resid = 0;
3476 		error = vn_rdwr(UIO_WRITE, vp, buf, len, off,
3477 		    UIO_SYSSPACE, FSYNC, rlimit, kcred, &resid);
3478 
3479 		if (error || resid < 0) {
3480 			error = error ? error : EIO;
3481 			CACHE_DEBUG((DI_ERR, "write error: %d", error));
3482 			break;
3483 		}
3484 
3485 		/*
3486 		 * Check if we are making progress
3487 		 */
3488 		if (resid >= len) {
3489 			error = ENOSPC;
3490 			break;
3491 		}
3492 		buf += len - resid;
3493 		off += len - resid;
3494 		len = resid;
3495 	}
3496 
3497 	return (error);
3498 }
3499 
3500 extern int modrootloaded;
3501 extern void mdi_walk_vhcis(int (*)(dev_info_t *, void *), void *);
3502 extern void mdi_vhci_walk_phcis(dev_info_t *,
3503 	int (*)(dev_info_t *, void *), void *);
3504 
3505 static void
3506 di_cache_write(struct di_cache *cache)
3507 {
3508 	struct di_all	*all;
3509 	struct vnode	*vp;
3510 	int		oflags;
3511 	size_t		map_size;
3512 	size_t		chunk;
3513 	offset_t	off;
3514 	int		error;
3515 	char		*buf;
3516 
3517 	ASSERT(DI_CACHE_LOCKED(*cache));
3518 	ASSERT(!servicing_interrupt());
3519 
3520 	if (cache->cache_size == 0) {
3521 		ASSERT(cache->cache_data == NULL);
3522 		CACHE_DEBUG((DI_ERR, "Empty cache. Skipping write"));
3523 		return;
3524 	}
3525 
3526 	ASSERT(cache->cache_size > 0);
3527 	ASSERT(cache->cache_data);
3528 
3529 	if (!modrootloaded || rootvp == NULL || vn_is_readonly(rootvp)) {
3530 		CACHE_DEBUG((DI_ERR, "Can't write to rootFS. Skipping write"));
3531 		return;
3532 	}
3533 
3534 	all = (struct di_all *)cache->cache_data;
3535 
3536 	if (!header_plus_one_ok(all)) {
3537 		CACHE_DEBUG((DI_ERR, "Invalid header. Skipping write"));
3538 		return;
3539 	}
3540 
3541 	ASSERT(strcmp(all->root_path, "/") == 0);
3542 
3543 	/*
3544 	 * The cache_size is the total allocated memory for the cache.
3545 	 * The map_size is the actual size of valid data in the cache.
3546 	 * map_size may be smaller than cache_size but cannot exceed
3547 	 * cache_size.
3548 	 */
3549 	if (all->map_size > cache->cache_size) {
3550 		CACHE_DEBUG((DI_ERR, "map_size (0x%x) > cache_size (0x%x)."
3551 		    " Skipping write", all->map_size, cache->cache_size));
3552 		return;
3553 	}
3554 
3555 	/*
3556 	 * First unlink the temp file
3557 	 */
3558 	error = vn_remove(DI_CACHE_TEMP, UIO_SYSSPACE, RMFILE);
3559 	if (error && error != ENOENT) {
3560 		CACHE_DEBUG((DI_ERR, "%s: unlink failed: %d",
3561 		    DI_CACHE_TEMP, error));
3562 	}
3563 
3564 	if (error == EROFS) {
3565 		CACHE_DEBUG((DI_ERR, "RDONLY FS. Skipping write"));
3566 		return;
3567 	}
3568 
3569 	vp = NULL;
3570 	oflags = (FCREAT|FWRITE);
3571 	if (error = vn_open(DI_CACHE_TEMP, UIO_SYSSPACE, oflags,
3572 	    DI_CACHE_PERMS, &vp, CRCREAT, 0)) {
3573 		CACHE_DEBUG((DI_ERR, "%s: create failed: %d",
3574 		    DI_CACHE_TEMP, error));
3575 		return;
3576 	}
3577 
3578 	ASSERT(vp);
3579 
3580 	/*
3581 	 * Paranoid: Check if the file is on a read-only FS
3582 	 */
3583 	if (vn_is_readonly(vp)) {
3584 		CACHE_DEBUG((DI_ERR, "cannot write: readonly FS"));
3585 		goto fail;
3586 	}
3587 
3588 	/*
3589 	 * Note that we only write map_size bytes to disk - this saves
3590 	 * space as the actual cache size may be larger than size of
3591 	 * valid data in the cache.
3592 	 * Another advantage is that it makes verification of size
3593 	 * easier when the file is read later.
3594 	 */
3595 	map_size = all->map_size;
3596 	off = 0;
3597 	buf = cache->cache_data;
3598 
3599 	while (map_size) {
3600 		ASSERT(map_size > 0);
3601 		/*
3602 		 * Write in chunks so that VM system
3603 		 * is not overwhelmed
3604 		 */
3605 		if (map_size > di_chunk * PAGESIZE)
3606 			chunk = di_chunk * PAGESIZE;
3607 		else
3608 			chunk = map_size;
3609 
3610 		error = chunk_write(vp, off, buf, chunk);
3611 		if (error) {
3612 			CACHE_DEBUG((DI_ERR, "write failed: off=0x%x: %d",
3613 			    off, error));
3614 			goto fail;
3615 		}
3616 
3617 		off += chunk;
3618 		buf += chunk;
3619 		map_size -= chunk;
3620 
3621 		/* Give pageout a chance to run */
3622 		delay(1);
3623 	}
3624 
3625 	/*
3626 	 * Now sync the file and close it
3627 	 */
3628 	if (error = VOP_FSYNC(vp, FSYNC, kcred)) {
3629 		CACHE_DEBUG((DI_ERR, "FSYNC failed: %d", error));
3630 	}
3631 
3632 	if (error = VOP_CLOSE(vp, oflags, 1, (offset_t)0, kcred)) {
3633 		CACHE_DEBUG((DI_ERR, "close() failed: %d", error));
3634 		VN_RELE(vp);
3635 		return;
3636 	}
3637 
3638 	VN_RELE(vp);
3639 
3640 	/*
3641 	 * Now do the rename
3642 	 */
3643 	if (error = vn_rename(DI_CACHE_TEMP, DI_CACHE_FILE, UIO_SYSSPACE)) {
3644 		CACHE_DEBUG((DI_ERR, "rename failed: %d", error));
3645 		return;
3646 	}
3647 
3648 	CACHE_DEBUG((DI_INFO, "Cache write successful."));
3649 
3650 	return;
3651 
3652 fail:
3653 	(void) VOP_CLOSE(vp, oflags, 1, (offset_t)0, kcred);
3654 	VN_RELE(vp);
3655 }
3656 
3657 
3658 /*
3659  * Since we could be called early in boot,
3660  * use kobj_read_file()
3661  */
3662 static void
3663 di_cache_read(struct di_cache *cache)
3664 {
3665 	struct _buf	*file;
3666 	struct di_all	*all;
3667 	int		n;
3668 	size_t		map_size, sz, chunk;
3669 	offset_t	off;
3670 	caddr_t		buf;
3671 	uint32_t	saved_crc, crc;
3672 
3673 	ASSERT(modrootloaded);
3674 	ASSERT(DI_CACHE_LOCKED(*cache));
3675 	ASSERT(cache->cache_data == NULL);
3676 	ASSERT(cache->cache_size == 0);
3677 	ASSERT(!servicing_interrupt());
3678 
3679 	file = kobj_open_file(DI_CACHE_FILE);
3680 	if (file == (struct _buf *)-1) {
3681 		CACHE_DEBUG((DI_ERR, "%s: open failed: %d",
3682 		    DI_CACHE_FILE, ENOENT));
3683 		return;
3684 	}
3685 
3686 	/*
3687 	 * Read in the header+root_path first. The root_path must be "/"
3688 	 */
3689 	all = kmem_zalloc(sizeof (*all) + 1, KM_SLEEP);
3690 	n = kobj_read_file(file, (caddr_t)all, sizeof (*all) + 1, 0);
3691 
3692 	if ((n != sizeof (*all) + 1) || !header_plus_one_ok(all)) {
3693 		kmem_free(all, sizeof (*all) + 1);
3694 		kobj_close_file(file);
3695 		CACHE_DEBUG((DI_ERR, "cache header: read error or invalid"));
3696 		return;
3697 	}
3698 
3699 	map_size = all->map_size;
3700 
3701 	kmem_free(all, sizeof (*all) + 1);
3702 
3703 	ASSERT(map_size >= sizeof (*all) + 1);
3704 
3705 	buf = di_cache.cache_data = kmem_alloc(map_size, KM_SLEEP);
3706 	sz = map_size;
3707 	off = 0;
3708 	while (sz) {
3709 		/* Don't overload VM with large reads */
3710 		chunk = (sz > di_chunk * PAGESIZE) ? di_chunk * PAGESIZE : sz;
3711 		n = kobj_read_file(file, buf, chunk, off);
3712 		if (n != chunk) {
3713 			CACHE_DEBUG((DI_ERR, "%s: read error at offset: %lld",
3714 			    DI_CACHE_FILE, off));
3715 			goto fail;
3716 		}
3717 		off += chunk;
3718 		buf += chunk;
3719 		sz -= chunk;
3720 	}
3721 
3722 	ASSERT(off == map_size);
3723 
3724 	/*
3725 	 * Read past expected EOF to verify size.
3726 	 */
3727 	if (kobj_read_file(file, (caddr_t)&sz, 1, off) > 0) {
3728 		CACHE_DEBUG((DI_ERR, "%s: file size changed", DI_CACHE_FILE));
3729 		goto fail;
3730 	}
3731 
3732 	all = (struct di_all *)di_cache.cache_data;
3733 	if (!header_plus_one_ok(all)) {
3734 		CACHE_DEBUG((DI_ERR, "%s: file header changed", DI_CACHE_FILE));
3735 		goto fail;
3736 	}
3737 
3738 	/*
3739 	 * Compute CRC with checksum field in the cache data set to 0
3740 	 */
3741 	saved_crc = all->cache_checksum;
3742 	all->cache_checksum = 0;
3743 	CRC32(crc, di_cache.cache_data, map_size, -1U, crc32_table);
3744 	all->cache_checksum = saved_crc;
3745 
3746 	if (crc != all->cache_checksum) {
3747 		CACHE_DEBUG((DI_ERR,
3748 		    "%s: checksum error: expected=0x%x actual=0x%x",
3749 		    DI_CACHE_FILE, all->cache_checksum, crc));
3750 		goto fail;
3751 	}
3752 
3753 	if (all->map_size != map_size) {
3754 		CACHE_DEBUG((DI_ERR, "%s: map size changed", DI_CACHE_FILE));
3755 		goto fail;
3756 	}
3757 
3758 	kobj_close_file(file);
3759 
3760 	di_cache.cache_size = map_size;
3761 
3762 	return;
3763 
3764 fail:
3765 	kmem_free(di_cache.cache_data, map_size);
3766 	kobj_close_file(file);
3767 	di_cache.cache_data = NULL;
3768 	di_cache.cache_size = 0;
3769 }
3770 
3771 
3772 /*
3773  * Checks if arguments are valid for using the cache.
3774  */
3775 static int
3776 cache_args_valid(struct di_state *st, int *error)
3777 {
3778 	ASSERT(error);
3779 	ASSERT(st->mem_size > 0);
3780 	ASSERT(st->memlist != NULL);
3781 
3782 	if (!modrootloaded || !i_ddi_io_initialized()) {
3783 		CACHE_DEBUG((DI_ERR,
3784 		    "cache lookup failure: I/O subsystem not inited"));
3785 		*error = ENOTACTIVE;
3786 		return (0);
3787 	}
3788 
3789 	/*
3790 	 * No other flags allowed with DINFOCACHE
3791 	 */
3792 	if (st->command != (DINFOCACHE & DIIOC_MASK)) {
3793 		CACHE_DEBUG((DI_ERR,
3794 		    "cache lookup failure: bad flags: 0x%x",
3795 		    st->command));
3796 		*error = EINVAL;
3797 		return (0);
3798 	}
3799 
3800 	if (strcmp(DI_ALL_PTR(st)->root_path, "/") != 0) {
3801 		CACHE_DEBUG((DI_ERR,
3802 		    "cache lookup failure: bad root: %s",
3803 		    DI_ALL_PTR(st)->root_path));
3804 		*error = EINVAL;
3805 		return (0);
3806 	}
3807 
3808 	CACHE_DEBUG((DI_INFO, "cache lookup args ok: 0x%x", st->command));
3809 
3810 	*error = 0;
3811 
3812 	return (1);
3813 }
3814 
3815 static int
3816 snapshot_is_cacheable(struct di_state *st)
3817 {
3818 	ASSERT(st->mem_size > 0);
3819 	ASSERT(st->memlist != NULL);
3820 
3821 	if ((st->command & DI_CACHE_SNAPSHOT_FLAGS) !=
3822 	    (DI_CACHE_SNAPSHOT_FLAGS & DIIOC_MASK)) {
3823 		CACHE_DEBUG((DI_INFO,
3824 		    "not cacheable: incompatible flags: 0x%x",
3825 		    st->command));
3826 		return (0);
3827 	}
3828 
3829 	if (strcmp(DI_ALL_PTR(st)->root_path, "/") != 0) {
3830 		CACHE_DEBUG((DI_INFO,
3831 		    "not cacheable: incompatible root path: %s",
3832 		    DI_ALL_PTR(st)->root_path));
3833 		return (0);
3834 	}
3835 
3836 	CACHE_DEBUG((DI_INFO, "cacheable snapshot request: 0x%x", st->command));
3837 
3838 	return (1);
3839 }
3840 
3841 static int
3842 di_cache_lookup(struct di_state *st)
3843 {
3844 	size_t	rval;
3845 	int	cache_valid;
3846 
3847 	ASSERT(cache_args_valid(st, &cache_valid));
3848 	ASSERT(modrootloaded);
3849 
3850 	DI_CACHE_LOCK(di_cache);
3851 
3852 	/*
3853 	 * The following assignment determines the validity
3854 	 * of the cache as far as this snapshot is concerned.
3855 	 */
3856 	cache_valid = di_cache.cache_valid;
3857 
3858 	if (cache_valid && di_cache.cache_data == NULL) {
3859 		di_cache_read(&di_cache);
3860 		/* check for read or file error */
3861 		if (di_cache.cache_data == NULL)
3862 			cache_valid = 0;
3863 	}
3864 
3865 	if (cache_valid) {
3866 		/*
3867 		 * Ok, the cache was valid as of this particular
3868 		 * snapshot. Copy the cached snapshot. This is safe
3869 		 * to do as the cache cannot be freed (we hold the
3870 		 * cache lock). Free the memory allocated in di_state
3871 		 * up until this point - we will simply copy everything
3872 		 * in the cache.
3873 		 */
3874 
3875 		ASSERT(di_cache.cache_data != NULL);
3876 		ASSERT(di_cache.cache_size > 0);
3877 
3878 		di_freemem(st);
3879 
3880 		rval = 0;
3881 		if (di_cache2mem(&di_cache, st) > 0) {
3882 
3883 			ASSERT(DI_ALL_PTR(st));
3884 
3885 			/*
3886 			 * map_size is size of valid data in the
3887 			 * cached snapshot and may be less than
3888 			 * size of the cache.
3889 			 */
3890 			rval = DI_ALL_PTR(st)->map_size;
3891 
3892 			ASSERT(rval >= sizeof (struct di_all));
3893 			ASSERT(rval <= di_cache.cache_size);
3894 		}
3895 	} else {
3896 		/*
3897 		 * The cache isn't valid, we need to take a snapshot.
3898 		 * Set the command flags appropriately
3899 		 */
3900 		ASSERT(st->command == (DINFOCACHE & DIIOC_MASK));
3901 		st->command = (DI_CACHE_SNAPSHOT_FLAGS & DIIOC_MASK);
3902 		rval = di_cache_update(st);
3903 		st->command = (DINFOCACHE & DIIOC_MASK);
3904 	}
3905 
3906 	DI_CACHE_UNLOCK(di_cache);
3907 
3908 	/*
3909 	 * For cached snapshots, the devinfo driver always returns
3910 	 * a snapshot rooted at "/".
3911 	 */
3912 	ASSERT(rval == 0 || strcmp(DI_ALL_PTR(st)->root_path, "/") == 0);
3913 
3914 	return ((int)rval);
3915 }
3916 
3917 /*
3918  * This is a forced update of the cache  - the previous state of the cache
3919  * may be:
3920  *	- unpopulated
3921  *	- populated and invalid
3922  *	- populated and valid
3923  */
3924 static int
3925 di_cache_update(struct di_state *st)
3926 {
3927 	int rval;
3928 	uint32_t crc;
3929 	struct di_all *all;
3930 
3931 	ASSERT(DI_CACHE_LOCKED(di_cache));
3932 	ASSERT(snapshot_is_cacheable(st));
3933 
3934 	/*
3935 	 * Free the in-core cache and the on-disk file (if they exist)
3936 	 */
3937 	i_ddi_di_cache_free(&di_cache);
3938 
3939 	/*
3940 	 * Set valid flag before taking the snapshot,
3941 	 * so that any invalidations that arrive
3942 	 * during or after the snapshot are not
3943 	 * removed by us.
3944 	 */
3945 	atomic_or_32(&di_cache.cache_valid, 1);
3946 
3947 	rval = di_snapshot_and_clean(st);
3948 
3949 	if (rval == 0) {
3950 		CACHE_DEBUG((DI_ERR, "can't update cache: bad snapshot"));
3951 		return (0);
3952 	}
3953 
3954 	DI_ALL_PTR(st)->map_size = rval;
3955 
3956 	if (di_mem2cache(st, &di_cache) == 0) {
3957 		CACHE_DEBUG((DI_ERR, "can't update cache: copy failed"));
3958 		return (0);
3959 	}
3960 
3961 	ASSERT(di_cache.cache_data);
3962 	ASSERT(di_cache.cache_size > 0);
3963 
3964 	/*
3965 	 * Now that we have cached the snapshot, compute its checksum.
3966 	 * The checksum is only computed over the valid data in the
3967 	 * cache, not the entire cache.
3968 	 * Also, set all the fields (except checksum) before computing
3969 	 * checksum.
3970 	 */
3971 	all = (struct di_all *)di_cache.cache_data;
3972 	all->cache_magic = DI_CACHE_MAGIC;
3973 	all->map_size = rval;
3974 
3975 	ASSERT(all->cache_checksum == 0);
3976 	CRC32(crc, di_cache.cache_data, all->map_size, -1U, crc32_table);
3977 	all->cache_checksum = crc;
3978 
3979 	di_cache_write(&di_cache);
3980 
3981 	return (rval);
3982 }
3983 
3984 static void
3985 di_cache_print(di_cache_debug_t msglevel, char *fmt, ...)
3986 {
3987 	va_list	ap;
3988 
3989 	if (di_cache_debug <= DI_QUIET)
3990 		return;
3991 
3992 	if (di_cache_debug < msglevel)
3993 		return;
3994 
3995 	switch (msglevel) {
3996 		case DI_ERR:
3997 			msglevel = CE_WARN;
3998 			break;
3999 		case DI_INFO:
4000 		case DI_TRACE:
4001 		default:
4002 			msglevel = CE_NOTE;
4003 			break;
4004 	}
4005 
4006 	va_start(ap, fmt);
4007 	vcmn_err(msglevel, fmt, ap);
4008 	va_end(ap);
4009 }
4010