1 /*
2  * This file is provided under a CDDLv1 license.  When using or
3  * redistributing this file, you may do so under this license.
4  * In redistributing this file this license must be included
5  * and no other modification of this header file is permitted.
6  *
7  * CDDL LICENSE SUMMARY
8  *
9  * Copyright(c) 1999 - 2008 Intel Corporation. All rights reserved.
10  *
11  * The contents of this file are subject to the terms of Version
12  * 1.0 of the Common Development and Distribution License (the "License").
13  *
14  * You should have received a copy of the License with this software.
15  * You can obtain a copy of the License at
16  *	http://www.opensolaris.org/os/licensing.
17  * See the License for the specific language governing permissions
18  * and limitations under the License.
19  */
20 
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * **********************************************************************
28  *									*
29  * Module Name:								*
30  *   e1000g_main.c							*
31  *									*
32  * Abstract:								*
33  *   This file contains the interface routines for the solaris OS.	*
34  *   It has all DDI entry point routines and GLD entry point routines.	*
35  *									*
36  *   This file also contains routines that take care of initialization	*
37  *   uninit routine and interrupt routine.				*
38  *									*
39  * **********************************************************************
40  */
41 
42 #include <sys/dlpi.h>
43 #include <sys/mac.h>
44 #include "e1000g_sw.h"
45 #include "e1000g_debug.h"
46 
47 static char ident[] = "Intel PRO/1000 Ethernet";
48 static char e1000g_string[] = "Intel(R) PRO/1000 Network Connection";
49 static char e1000g_version[] = "Driver Ver. 5.2.14";
50 
51 /*
52  * Proto types for DDI entry points
53  */
54 static int e1000g_attach(dev_info_t *, ddi_attach_cmd_t);
55 static int e1000g_detach(dev_info_t *, ddi_detach_cmd_t);
56 static int e1000g_quiesce(dev_info_t *);
57 
58 /*
59  * init and intr routines prototype
60  */
61 static int e1000g_resume(dev_info_t *);
62 static int e1000g_suspend(dev_info_t *);
63 static uint_t e1000g_intr_pciexpress(caddr_t);
64 static uint_t e1000g_intr(caddr_t);
65 static void e1000g_intr_work(struct e1000g *, uint32_t);
66 #pragma inline(e1000g_intr_work)
67 static uint32_t e1000g_get_itr(uint32_t, uint32_t, uint32_t);
68 #pragma inline(e1000g_get_itr)
69 static int e1000g_init(struct e1000g *);
70 static int e1000g_start(struct e1000g *, boolean_t);
71 static void e1000g_stop(struct e1000g *, boolean_t);
72 static int e1000g_m_start(void *);
73 static void e1000g_m_stop(void *);
74 static int e1000g_m_promisc(void *, boolean_t);
75 static boolean_t e1000g_m_getcapab(void *, mac_capab_t, void *);
76 static int e1000g_m_unicst(void *, const uint8_t *);
77 static int e1000g_m_unicst_add(void *, mac_multi_addr_t *);
78 static int e1000g_m_unicst_remove(void *, mac_addr_slot_t);
79 static int e1000g_m_unicst_modify(void *, mac_multi_addr_t *);
80 static int e1000g_m_unicst_get(void *, mac_multi_addr_t *);
81 static int e1000g_m_multicst(void *, boolean_t, const uint8_t *);
82 static void e1000g_m_ioctl(void *, queue_t *, mblk_t *);
83 static int e1000g_m_setprop(void *, const char *, mac_prop_id_t,
84     uint_t, const void *);
85 static int e1000g_m_getprop(void *, const char *, mac_prop_id_t,
86     uint_t, uint_t, void *, uint_t *);
87 static int e1000g_set_priv_prop(struct e1000g *, const char *, uint_t,
88     const void *);
89 static int e1000g_get_priv_prop(struct e1000g *, const char *, uint_t,
90     uint_t, void *, uint_t *);
91 static void e1000g_init_locks(struct e1000g *);
92 static void e1000g_destroy_locks(struct e1000g *);
93 static int e1000g_identify_hardware(struct e1000g *);
94 static int e1000g_regs_map(struct e1000g *);
95 static int e1000g_set_driver_params(struct e1000g *);
96 static void e1000g_set_bufsize(struct e1000g *);
97 static int e1000g_register_mac(struct e1000g *);
98 static boolean_t e1000g_rx_drain(struct e1000g *);
99 static boolean_t e1000g_tx_drain(struct e1000g *);
100 static void e1000g_init_unicst(struct e1000g *);
101 static int e1000g_unicst_set(struct e1000g *, const uint8_t *, mac_addr_slot_t);
102 
103 /*
104  * Local routines
105  */
106 static boolean_t e1000g_reset_adapter(struct e1000g *);
107 static void e1000g_tx_clean(struct e1000g *);
108 static void e1000g_rx_clean(struct e1000g *);
109 static void e1000g_link_timer(void *);
110 static void e1000g_local_timer(void *);
111 static boolean_t e1000g_link_check(struct e1000g *);
112 static boolean_t e1000g_stall_check(struct e1000g *);
113 static void e1000g_smartspeed(struct e1000g *);
114 static void e1000g_get_conf(struct e1000g *);
115 static int e1000g_get_prop(struct e1000g *, char *, int, int, int);
116 static void enable_watchdog_timer(struct e1000g *);
117 static void disable_watchdog_timer(struct e1000g *);
118 static void start_watchdog_timer(struct e1000g *);
119 static void restart_watchdog_timer(struct e1000g *);
120 static void stop_watchdog_timer(struct e1000g *);
121 static void stop_link_timer(struct e1000g *);
122 static void stop_82547_timer(e1000g_tx_ring_t *);
123 static void e1000g_force_speed_duplex(struct e1000g *);
124 static void e1000g_get_max_frame_size(struct e1000g *);
125 static boolean_t is_valid_mac_addr(uint8_t *);
126 static void e1000g_unattach(dev_info_t *, struct e1000g *);
127 #ifdef E1000G_DEBUG
128 static void e1000g_ioc_peek_reg(struct e1000g *, e1000g_peekpoke_t *);
129 static void e1000g_ioc_poke_reg(struct e1000g *, e1000g_peekpoke_t *);
130 static void e1000g_ioc_peek_mem(struct e1000g *, e1000g_peekpoke_t *);
131 static void e1000g_ioc_poke_mem(struct e1000g *, e1000g_peekpoke_t *);
132 static enum ioc_reply e1000g_pp_ioctl(struct e1000g *,
133     struct iocblk *, mblk_t *);
134 #endif
135 static enum ioc_reply e1000g_loopback_ioctl(struct e1000g *,
136     struct iocblk *, mblk_t *);
137 static boolean_t e1000g_check_loopback_support(struct e1000_hw *);
138 static boolean_t e1000g_set_loopback_mode(struct e1000g *, uint32_t);
139 static void e1000g_set_internal_loopback(struct e1000g *);
140 static void e1000g_set_external_loopback_1000(struct e1000g *);
141 static void e1000g_set_external_loopback_100(struct e1000g *);
142 static void e1000g_set_external_loopback_10(struct e1000g *);
143 static int e1000g_add_intrs(struct e1000g *);
144 static int e1000g_intr_add(struct e1000g *, int);
145 static int e1000g_rem_intrs(struct e1000g *);
146 static int e1000g_enable_intrs(struct e1000g *);
147 static int e1000g_disable_intrs(struct e1000g *);
148 static boolean_t e1000g_link_up(struct e1000g *);
149 #ifdef __sparc
150 static boolean_t e1000g_find_mac_address(struct e1000g *);
151 #endif
152 static void e1000g_get_phy_state(struct e1000g *);
153 static void e1000g_free_priv_devi_node(struct e1000g *, boolean_t);
154 static int e1000g_fm_error_cb(dev_info_t *dip, ddi_fm_error_t *err,
155     const void *impl_data);
156 static void e1000g_fm_init(struct e1000g *Adapter);
157 static void e1000g_fm_fini(struct e1000g *Adapter);
158 static int e1000g_get_def_val(struct e1000g *, mac_prop_id_t, uint_t, void *);
159 static void e1000g_param_sync(struct e1000g *);
160 static void e1000g_get_driver_control(struct e1000_hw *);
161 static void e1000g_release_driver_control(struct e1000_hw *);
162 static void e1000g_restore_promisc(struct e1000g *Adapter);
163 
164 mac_priv_prop_t e1000g_priv_props[] = {
165 	{"_tx_bcopy_threshold", MAC_PROP_PERM_RW},
166 	{"_tx_interrupt_enable", MAC_PROP_PERM_RW},
167 	{"_tx_intr_delay", MAC_PROP_PERM_RW},
168 	{"_tx_intr_abs_delay", MAC_PROP_PERM_RW},
169 	{"_rx_bcopy_threshold", MAC_PROP_PERM_RW},
170 	{"_max_num_rcv_packets", MAC_PROP_PERM_RW},
171 	{"_rx_intr_delay", MAC_PROP_PERM_RW},
172 	{"_rx_intr_abs_delay", MAC_PROP_PERM_RW},
173 	{"_intr_throttling_rate", MAC_PROP_PERM_RW},
174 	{"_intr_adaptive", MAC_PROP_PERM_RW},
175 	{"_tx_recycle_thresh", MAC_PROP_PERM_RW},
176 	{"_adv_pause_cap", MAC_PROP_PERM_READ},
177 	{"_adv_asym_pause_cap", MAC_PROP_PERM_READ},
178 	{"_tx_recycle_num", MAC_PROP_PERM_RW}
179 };
180 #define	E1000G_MAX_PRIV_PROPS	\
181 	(sizeof (e1000g_priv_props)/sizeof (mac_priv_prop_t))
182 
183 
184 static struct cb_ops cb_ws_ops = {
185 	nulldev,		/* cb_open */
186 	nulldev,		/* cb_close */
187 	nodev,			/* cb_strategy */
188 	nodev,			/* cb_print */
189 	nodev,			/* cb_dump */
190 	nodev,			/* cb_read */
191 	nodev,			/* cb_write */
192 	nodev,			/* cb_ioctl */
193 	nodev,			/* cb_devmap */
194 	nodev,			/* cb_mmap */
195 	nodev,			/* cb_segmap */
196 	nochpoll,		/* cb_chpoll */
197 	ddi_prop_op,		/* cb_prop_op */
198 	NULL,			/* cb_stream */
199 	D_MP | D_HOTPLUG,	/* cb_flag */
200 	CB_REV,			/* cb_rev */
201 	nodev,			/* cb_aread */
202 	nodev			/* cb_awrite */
203 };
204 
205 static struct dev_ops ws_ops = {
206 	DEVO_REV,		/* devo_rev */
207 	0,			/* devo_refcnt */
208 	NULL,			/* devo_getinfo */
209 	nulldev,		/* devo_identify */
210 	nulldev,		/* devo_probe */
211 	e1000g_attach,		/* devo_attach */
212 	e1000g_detach,		/* devo_detach */
213 	nodev,			/* devo_reset */
214 	&cb_ws_ops,		/* devo_cb_ops */
215 	NULL,			/* devo_bus_ops */
216 	ddi_power,		/* devo_power */
217 	e1000g_quiesce		/* devo_quiesce */
218 };
219 
220 static struct modldrv modldrv = {
221 	&mod_driverops,		/* Type of module.  This one is a driver */
222 	ident,			/* Discription string */
223 	&ws_ops,		/* driver ops */
224 };
225 
226 static struct modlinkage modlinkage = {
227 	MODREV_1, &modldrv, NULL
228 };
229 
230 /* Access attributes for register mapping */
231 static ddi_device_acc_attr_t e1000g_regs_acc_attr = {
232 	DDI_DEVICE_ATTR_V0,
233 	DDI_STRUCTURE_LE_ACC,
234 	DDI_STRICTORDER_ACC,
235 	DDI_FLAGERR_ACC
236 };
237 
238 #define	E1000G_M_CALLBACK_FLAGS \
239 	(MC_IOCTL | MC_GETCAPAB | MC_SETPROP | MC_GETPROP)
240 
241 static mac_callbacks_t e1000g_m_callbacks = {
242 	E1000G_M_CALLBACK_FLAGS,
243 	e1000g_m_stat,
244 	e1000g_m_start,
245 	e1000g_m_stop,
246 	e1000g_m_promisc,
247 	e1000g_m_multicst,
248 	e1000g_m_unicst,
249 	e1000g_m_tx,
250 	NULL,
251 	e1000g_m_ioctl,
252 	e1000g_m_getcapab,
253 	NULL,
254 	NULL,
255 	e1000g_m_setprop,
256 	e1000g_m_getprop
257 };
258 
259 /*
260  * Global variables
261  */
262 uint32_t e1000g_mblks_pending = 0;
263 /*
264  * Workaround for Dynamic Reconfiguration support, for x86 platform only.
265  * Here we maintain a private dev_info list if e1000g_force_detach is
266  * enabled. If we force the driver to detach while there are still some
267  * rx buffers retained in the upper layer, we have to keep a copy of the
268  * dev_info. In some cases (Dynamic Reconfiguration), the dev_info data
269  * structure will be freed after the driver is detached. However when we
270  * finally free those rx buffers released by the upper layer, we need to
271  * refer to the dev_info to free the dma buffers. So we save a copy of
272  * the dev_info for this purpose. On x86 platform, we assume this copy
273  * of dev_info is always valid, but on SPARC platform, it could be invalid
274  * after the system board level DR operation. For this reason, the global
275  * variable e1000g_force_detach must be B_FALSE on SPARC platform.
276  */
277 #ifdef __sparc
278 boolean_t e1000g_force_detach = B_FALSE;
279 #else
280 boolean_t e1000g_force_detach = B_TRUE;
281 #endif
282 private_devi_list_t *e1000g_private_devi_list = NULL;
283 
284 /*
285  * The rwlock is defined to protect the whole processing of rx recycling
286  * and the rx packets release in detach processing to make them mutually
287  * exclusive.
288  * The rx recycling processes different rx packets in different threads,
289  * so it will be protected with RW_READER and it won't block any other rx
290  * recycling threads.
291  * While the detach processing will be protected with RW_WRITER to make
292  * it mutually exclusive with the rx recycling.
293  */
294 krwlock_t e1000g_rx_detach_lock;
295 /*
296  * The rwlock e1000g_dma_type_lock is defined to protect the global flag
297  * e1000g_dma_type. For SPARC, the initial value of the flag is "USE_DVMA".
298  * If there are many e1000g instances, the system may run out of DVMA
299  * resources during the initialization of the instances, then the flag will
300  * be changed to "USE_DMA". Because different e1000g instances are initialized
301  * in parallel, we need to use this lock to protect the flag.
302  */
303 krwlock_t e1000g_dma_type_lock;
304 
305 /*
306  * The 82546 chipset is a dual-port device, both the ports share one eeprom.
307  * Based on the information from Intel, the 82546 chipset has some hardware
308  * problem. When one port is being reset and the other port is trying to
309  * access the eeprom, it could cause system hang or panic. To workaround this
310  * hardware problem, we use a global mutex to prevent such operations from
311  * happening simultaneously on different instances. This workaround is applied
312  * to all the devices supported by this driver.
313  */
314 kmutex_t e1000g_nvm_lock;
315 
316 /*
317  * Loadable module configuration entry points for the driver
318  */
319 
320 /*
321  * _init - module initialization
322  */
323 int
324 _init(void)
325 {
326 	int status;
327 
328 	mac_init_ops(&ws_ops, WSNAME);
329 	status = mod_install(&modlinkage);
330 	if (status != DDI_SUCCESS)
331 		mac_fini_ops(&ws_ops);
332 	else {
333 		rw_init(&e1000g_rx_detach_lock, NULL, RW_DRIVER, NULL);
334 		rw_init(&e1000g_dma_type_lock, NULL, RW_DRIVER, NULL);
335 		mutex_init(&e1000g_nvm_lock, NULL, MUTEX_DRIVER, NULL);
336 	}
337 
338 	return (status);
339 }
340 
341 /*
342  * _fini - module finalization
343  */
344 int
345 _fini(void)
346 {
347 	int status;
348 
349 	rw_enter(&e1000g_rx_detach_lock, RW_READER);
350 	if (e1000g_mblks_pending != 0) {
351 		rw_exit(&e1000g_rx_detach_lock);
352 		return (EBUSY);
353 	}
354 	rw_exit(&e1000g_rx_detach_lock);
355 
356 	status = mod_remove(&modlinkage);
357 	if (status == DDI_SUCCESS) {
358 		mac_fini_ops(&ws_ops);
359 
360 		if (e1000g_force_detach) {
361 			private_devi_list_t *devi_node;
362 
363 			rw_enter(&e1000g_rx_detach_lock, RW_WRITER);
364 			while (e1000g_private_devi_list != NULL) {
365 				devi_node = e1000g_private_devi_list;
366 				e1000g_private_devi_list =
367 				    e1000g_private_devi_list->next;
368 
369 				kmem_free(devi_node->priv_dip,
370 				    sizeof (struct dev_info));
371 				kmem_free(devi_node,
372 				    sizeof (private_devi_list_t));
373 			}
374 			rw_exit(&e1000g_rx_detach_lock);
375 		}
376 
377 		rw_destroy(&e1000g_rx_detach_lock);
378 		rw_destroy(&e1000g_dma_type_lock);
379 		mutex_destroy(&e1000g_nvm_lock);
380 	}
381 
382 	return (status);
383 }
384 
385 /*
386  * _info - module information
387  */
388 int
389 _info(struct modinfo *modinfop)
390 {
391 	return (mod_info(&modlinkage, modinfop));
392 }
393 
394 /*
395  * e1000g_attach - driver attach
396  *
397  * This function is the device-specific initialization entry
398  * point. This entry point is required and must be written.
399  * The DDI_ATTACH command must be provided in the attach entry
400  * point. When attach() is called with cmd set to DDI_ATTACH,
401  * all normal kernel services (such as kmem_alloc(9F)) are
402  * available for use by the driver.
403  *
404  * The attach() function will be called once for each instance
405  * of  the  device  on  the  system with cmd set to DDI_ATTACH.
406  * Until attach() succeeds, the only driver entry points which
407  * may be called are open(9E) and getinfo(9E).
408  */
409 static int
410 e1000g_attach(dev_info_t *devinfo, ddi_attach_cmd_t cmd)
411 {
412 	struct e1000g *Adapter;
413 	struct e1000_hw *hw;
414 	struct e1000g_osdep *osdep;
415 	int instance;
416 
417 	switch (cmd) {
418 	default:
419 		e1000g_log(NULL, CE_WARN,
420 		    "Unsupported command send to e1000g_attach... ");
421 		return (DDI_FAILURE);
422 
423 	case DDI_RESUME:
424 		return (e1000g_resume(devinfo));
425 
426 	case DDI_ATTACH:
427 		break;
428 	}
429 
430 	/*
431 	 * get device instance number
432 	 */
433 	instance = ddi_get_instance(devinfo);
434 
435 	/*
436 	 * Allocate soft data structure
437 	 */
438 	Adapter =
439 	    (struct e1000g *)kmem_zalloc(sizeof (*Adapter), KM_SLEEP);
440 
441 	Adapter->dip = devinfo;
442 	Adapter->instance = instance;
443 	Adapter->tx_ring->adapter = Adapter;
444 	Adapter->rx_ring->adapter = Adapter;
445 
446 	hw = &Adapter->shared;
447 	osdep = &Adapter->osdep;
448 	hw->back = osdep;
449 	osdep->adapter = Adapter;
450 
451 	ddi_set_driver_private(devinfo, (caddr_t)Adapter);
452 
453 	/*
454 	 * Initialize for fma support
455 	 */
456 	Adapter->fm_capabilities = e1000g_get_prop(Adapter, "fm-capable",
457 	    0, 0x0f,
458 	    DDI_FM_EREPORT_CAPABLE | DDI_FM_ACCCHK_CAPABLE |
459 	    DDI_FM_DMACHK_CAPABLE | DDI_FM_ERRCB_CAPABLE);
460 	e1000g_fm_init(Adapter);
461 	Adapter->attach_progress |= ATTACH_PROGRESS_FMINIT;
462 
463 	/*
464 	 * PCI Configure
465 	 */
466 	if (pci_config_setup(devinfo, &osdep->cfg_handle) != DDI_SUCCESS) {
467 		e1000g_log(Adapter, CE_WARN, "PCI configuration failed");
468 		goto attach_fail;
469 	}
470 	Adapter->attach_progress |= ATTACH_PROGRESS_PCI_CONFIG;
471 
472 	/*
473 	 * Setup hardware
474 	 */
475 	if (e1000g_identify_hardware(Adapter) != DDI_SUCCESS) {
476 		e1000g_log(Adapter, CE_WARN, "Identify hardware failed");
477 		goto attach_fail;
478 	}
479 
480 	/*
481 	 * Map in the device registers.
482 	 */
483 	if (e1000g_regs_map(Adapter) != DDI_SUCCESS) {
484 		e1000g_log(Adapter, CE_WARN, "Mapping registers failed");
485 		goto attach_fail;
486 	}
487 	Adapter->attach_progress |= ATTACH_PROGRESS_REGS_MAP;
488 
489 	/*
490 	 * Initialize driver parameters
491 	 */
492 	if (e1000g_set_driver_params(Adapter) != DDI_SUCCESS) {
493 		goto attach_fail;
494 	}
495 	Adapter->attach_progress |= ATTACH_PROGRESS_SETUP;
496 
497 	if (e1000g_check_acc_handle(Adapter->osdep.cfg_handle) != DDI_FM_OK) {
498 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
499 		goto attach_fail;
500 	}
501 
502 	/*
503 	 * Initialize interrupts
504 	 */
505 	if (e1000g_add_intrs(Adapter) != DDI_SUCCESS) {
506 		e1000g_log(Adapter, CE_WARN, "Add interrupts failed");
507 		goto attach_fail;
508 	}
509 	Adapter->attach_progress |= ATTACH_PROGRESS_ADD_INTR;
510 
511 	/*
512 	 * Initialize mutex's for this device.
513 	 * Do this before enabling the interrupt handler and
514 	 * register the softint to avoid the condition where
515 	 * interrupt handler can try using uninitialized mutex
516 	 */
517 	e1000g_init_locks(Adapter);
518 	Adapter->attach_progress |= ATTACH_PROGRESS_LOCKS;
519 
520 	/*
521 	 * Initialize Driver Counters
522 	 */
523 	if (e1000g_init_stats(Adapter) != DDI_SUCCESS) {
524 		e1000g_log(Adapter, CE_WARN, "Init stats failed");
525 		goto attach_fail;
526 	}
527 	Adapter->attach_progress |= ATTACH_PROGRESS_KSTATS;
528 
529 	/*
530 	 * Initialize chip hardware and software structures
531 	 */
532 	if (e1000g_init(Adapter) != DDI_SUCCESS) {
533 		e1000g_log(Adapter, CE_WARN, "Adapter initialization failed");
534 		goto attach_fail;
535 	}
536 	Adapter->attach_progress |= ATTACH_PROGRESS_INIT;
537 
538 	/*
539 	 * Register the driver to the MAC
540 	 */
541 	if (e1000g_register_mac(Adapter) != DDI_SUCCESS) {
542 		e1000g_log(Adapter, CE_WARN, "Register MAC failed");
543 		goto attach_fail;
544 	}
545 	Adapter->attach_progress |= ATTACH_PROGRESS_MAC;
546 
547 	/*
548 	 * Now that mutex locks are initialized, and the chip is also
549 	 * initialized, enable interrupts.
550 	 */
551 	if (e1000g_enable_intrs(Adapter) != DDI_SUCCESS) {
552 		e1000g_log(Adapter, CE_WARN, "Enable DDI interrupts failed");
553 		goto attach_fail;
554 	}
555 	Adapter->attach_progress |= ATTACH_PROGRESS_ENABLE_INTR;
556 
557 	/*
558 	 * If e1000g_force_detach is enabled, in global private dip list,
559 	 * we will create a new entry, which maintains the priv_dip for DR
560 	 * supports after driver detached.
561 	 */
562 	if (e1000g_force_detach) {
563 		private_devi_list_t *devi_node;
564 
565 		Adapter->priv_dip =
566 		    kmem_zalloc(sizeof (struct dev_info), KM_SLEEP);
567 		bcopy(DEVI(devinfo), DEVI(Adapter->priv_dip),
568 		    sizeof (struct dev_info));
569 
570 		devi_node =
571 		    kmem_zalloc(sizeof (private_devi_list_t), KM_SLEEP);
572 
573 		rw_enter(&e1000g_rx_detach_lock, RW_WRITER);
574 		devi_node->priv_dip = Adapter->priv_dip;
575 		devi_node->flag = E1000G_PRIV_DEVI_ATTACH;
576 		devi_node->next = e1000g_private_devi_list;
577 		e1000g_private_devi_list = devi_node;
578 		rw_exit(&e1000g_rx_detach_lock);
579 	}
580 
581 	cmn_err(CE_CONT, "!%s, %s\n", e1000g_string, e1000g_version);
582 
583 	return (DDI_SUCCESS);
584 
585 attach_fail:
586 	e1000g_unattach(devinfo, Adapter);
587 	return (DDI_FAILURE);
588 }
589 
590 static int
591 e1000g_register_mac(struct e1000g *Adapter)
592 {
593 	struct e1000_hw *hw = &Adapter->shared;
594 	mac_register_t *mac;
595 	int err;
596 
597 	if ((mac = mac_alloc(MAC_VERSION)) == NULL)
598 		return (DDI_FAILURE);
599 
600 	mac->m_type_ident = MAC_PLUGIN_IDENT_ETHER;
601 	mac->m_driver = Adapter;
602 	mac->m_dip = Adapter->dip;
603 	mac->m_src_addr = hw->mac.addr;
604 	mac->m_callbacks = &e1000g_m_callbacks;
605 	mac->m_min_sdu = 0;
606 	mac->m_max_sdu = Adapter->default_mtu;
607 	mac->m_margin = VLAN_TAGSZ;
608 	mac->m_priv_props = e1000g_priv_props;
609 	mac->m_priv_prop_count = E1000G_MAX_PRIV_PROPS;
610 
611 	err = mac_register(mac, &Adapter->mh);
612 	mac_free(mac);
613 
614 	return (err == 0 ? DDI_SUCCESS : DDI_FAILURE);
615 }
616 
617 static int
618 e1000g_identify_hardware(struct e1000g *Adapter)
619 {
620 	struct e1000_hw *hw = &Adapter->shared;
621 	struct e1000g_osdep *osdep = &Adapter->osdep;
622 
623 	/* Get the device id */
624 	hw->vendor_id =
625 	    pci_config_get16(osdep->cfg_handle, PCI_CONF_VENID);
626 	hw->device_id =
627 	    pci_config_get16(osdep->cfg_handle, PCI_CONF_DEVID);
628 	hw->revision_id =
629 	    pci_config_get8(osdep->cfg_handle, PCI_CONF_REVID);
630 	hw->subsystem_device_id =
631 	    pci_config_get16(osdep->cfg_handle, PCI_CONF_SUBSYSID);
632 	hw->subsystem_vendor_id =
633 	    pci_config_get16(osdep->cfg_handle, PCI_CONF_SUBVENID);
634 
635 	if (e1000_set_mac_type(hw) != E1000_SUCCESS) {
636 		E1000G_DEBUGLOG_0(Adapter, E1000G_INFO_LEVEL,
637 		    "MAC type could not be set properly.");
638 		return (DDI_FAILURE);
639 	}
640 
641 	return (DDI_SUCCESS);
642 }
643 
644 static int
645 e1000g_regs_map(struct e1000g *Adapter)
646 {
647 	dev_info_t *devinfo = Adapter->dip;
648 	struct e1000_hw *hw = &Adapter->shared;
649 	struct e1000g_osdep *osdep = &Adapter->osdep;
650 	off_t mem_size;
651 
652 	/* Get size of adapter register memory */
653 	if (ddi_dev_regsize(devinfo, ADAPTER_REG_SET, &mem_size) !=
654 	    DDI_SUCCESS) {
655 		E1000G_DEBUGLOG_0(Adapter, CE_WARN,
656 		    "ddi_dev_regsize for registers failed");
657 		return (DDI_FAILURE);
658 	}
659 
660 	/* Map adapter register memory */
661 	if ((ddi_regs_map_setup(devinfo, ADAPTER_REG_SET,
662 	    (caddr_t *)&hw->hw_addr, 0, mem_size, &e1000g_regs_acc_attr,
663 	    &osdep->reg_handle)) != DDI_SUCCESS) {
664 		E1000G_DEBUGLOG_0(Adapter, CE_WARN,
665 		    "ddi_regs_map_setup for registers failed");
666 		goto regs_map_fail;
667 	}
668 
669 	/* ICH needs to map flash memory */
670 	if (hw->mac.type == e1000_ich8lan ||
671 	    hw->mac.type == e1000_ich9lan ||
672 	    hw->mac.type == e1000_ich10lan) {
673 		/* get flash size */
674 		if (ddi_dev_regsize(devinfo, ICH_FLASH_REG_SET,
675 		    &mem_size) != DDI_SUCCESS) {
676 			E1000G_DEBUGLOG_0(Adapter, CE_WARN,
677 			    "ddi_dev_regsize for ICH flash failed");
678 			goto regs_map_fail;
679 		}
680 
681 		/* map flash in */
682 		if (ddi_regs_map_setup(devinfo, ICH_FLASH_REG_SET,
683 		    (caddr_t *)&hw->flash_address, 0,
684 		    mem_size, &e1000g_regs_acc_attr,
685 		    &osdep->ich_flash_handle) != DDI_SUCCESS) {
686 			E1000G_DEBUGLOG_0(Adapter, CE_WARN,
687 			    "ddi_regs_map_setup for ICH flash failed");
688 			goto regs_map_fail;
689 		}
690 	}
691 
692 	return (DDI_SUCCESS);
693 
694 regs_map_fail:
695 	if (osdep->reg_handle != NULL)
696 		ddi_regs_map_free(&osdep->reg_handle);
697 
698 	return (DDI_FAILURE);
699 }
700 
701 static int
702 e1000g_set_driver_params(struct e1000g *Adapter)
703 {
704 	struct e1000_hw *hw;
705 	uint32_t mem_bar, io_bar, bar64;
706 
707 	hw = &Adapter->shared;
708 
709 	/* Set MAC type and initialize hardware functions */
710 	if (e1000_setup_init_funcs(hw, B_TRUE) != E1000_SUCCESS) {
711 		E1000G_DEBUGLOG_0(Adapter, CE_WARN,
712 		    "Could not setup hardware functions");
713 		return (DDI_FAILURE);
714 	}
715 
716 	/* Get bus information */
717 	if (e1000_get_bus_info(hw) != E1000_SUCCESS) {
718 		E1000G_DEBUGLOG_0(Adapter, CE_WARN,
719 		    "Could not get bus information");
720 		return (DDI_FAILURE);
721 	}
722 
723 	/* get mem_base addr */
724 	mem_bar = pci_config_get32(Adapter->osdep.cfg_handle, PCI_CONF_BASE0);
725 	bar64 = mem_bar & PCI_BASE_TYPE_ALL;
726 
727 	/* get io_base addr */
728 	if (hw->mac.type >= e1000_82544) {
729 		if (bar64) {
730 			/* IO BAR is different for 64 bit BAR mode */
731 			io_bar = pci_config_get32(Adapter->osdep.cfg_handle,
732 			    PCI_CONF_BASE4);
733 		} else {
734 			/* normal 32-bit BAR mode */
735 			io_bar = pci_config_get32(Adapter->osdep.cfg_handle,
736 			    PCI_CONF_BASE2);
737 		}
738 		hw->io_base = io_bar & PCI_BASE_IO_ADDR_M;
739 	} else {
740 		/* no I/O access for adapters prior to 82544 */
741 		hw->io_base = 0x0;
742 	}
743 
744 	e1000_read_pci_cfg(hw, PCI_COMMAND_REGISTER, &hw->bus.pci_cmd_word);
745 
746 	hw->mac.autoneg_failed = B_TRUE;
747 
748 	/* Set the autoneg_wait_to_complete flag to B_FALSE */
749 	hw->phy.autoneg_wait_to_complete = B_FALSE;
750 
751 	/* Adaptive IFS related changes */
752 	hw->mac.adaptive_ifs = B_TRUE;
753 
754 	/* Enable phy init script for IGP phy of 82541/82547 */
755 	if ((hw->mac.type == e1000_82547) ||
756 	    (hw->mac.type == e1000_82541) ||
757 	    (hw->mac.type == e1000_82547_rev_2) ||
758 	    (hw->mac.type == e1000_82541_rev_2))
759 		e1000_init_script_state_82541(hw, B_TRUE);
760 
761 	/* Enable the TTL workaround for 82541/82547 */
762 	e1000_set_ttl_workaround_state_82541(hw, B_TRUE);
763 
764 #ifdef __sparc
765 	Adapter->strip_crc = B_TRUE;
766 #else
767 	Adapter->strip_crc = B_FALSE;
768 #endif
769 
770 	/* Get conf file properties */
771 	e1000g_get_conf(Adapter);
772 
773 	/* Get speed/duplex settings in conf file */
774 	hw->mac.forced_speed_duplex = ADVERTISE_100_FULL;
775 	hw->phy.autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
776 	e1000g_force_speed_duplex(Adapter);
777 
778 	/* Get Jumbo Frames settings in conf file */
779 	e1000g_get_max_frame_size(Adapter);
780 
781 	/* Set Rx/Tx buffer size */
782 	e1000g_set_bufsize(Adapter);
783 
784 	/* Master Latency Timer */
785 	Adapter->master_latency_timer = DEFAULT_MASTER_LATENCY_TIMER;
786 
787 	/* copper options */
788 	if (hw->phy.media_type == e1000_media_type_copper) {
789 		hw->phy.mdix = 0;	/* AUTO_ALL_MODES */
790 		hw->phy.disable_polarity_correction = B_FALSE;
791 		hw->phy.ms_type = e1000_ms_hw_default;	/* E1000_MASTER_SLAVE */
792 	}
793 
794 	/* The initial link state should be "unknown" */
795 	Adapter->link_state = LINK_STATE_UNKNOWN;
796 
797 	/* Initialize rx parameters */
798 	Adapter->rx_intr_delay = DEFAULT_RX_INTR_DELAY;
799 	Adapter->rx_intr_abs_delay = DEFAULT_RX_INTR_ABS_DELAY;
800 
801 	/* Initialize tx parameters */
802 	Adapter->tx_intr_enable = DEFAULT_TX_INTR_ENABLE;
803 	Adapter->tx_bcopy_thresh = DEFAULT_TX_BCOPY_THRESHOLD;
804 	Adapter->tx_intr_delay = DEFAULT_TX_INTR_DELAY;
805 	Adapter->tx_intr_abs_delay = DEFAULT_TX_INTR_ABS_DELAY;
806 
807 	/* Initialize rx parameters */
808 	Adapter->rx_bcopy_thresh = DEFAULT_RX_BCOPY_THRESHOLD;
809 
810 	return (DDI_SUCCESS);
811 }
812 
813 static void
814 e1000g_set_bufsize(struct e1000g *Adapter)
815 {
816 	struct e1000_mac_info *mac = &Adapter->shared.mac;
817 	uint64_t rx_size;
818 	uint64_t tx_size;
819 
820 	dev_info_t *devinfo = Adapter->dip;
821 #ifdef __sparc
822 	ulong_t iommu_pagesize;
823 #endif
824 	/* Get the system page size */
825 	Adapter->sys_page_sz = ddi_ptob(devinfo, (ulong_t)1);
826 
827 #ifdef __sparc
828 	iommu_pagesize = dvma_pagesize(devinfo);
829 	if (iommu_pagesize != 0) {
830 		if (Adapter->sys_page_sz == iommu_pagesize) {
831 			if (iommu_pagesize > 0x4000)
832 				Adapter->sys_page_sz = 0x4000;
833 		} else {
834 			if (Adapter->sys_page_sz > iommu_pagesize)
835 				Adapter->sys_page_sz = iommu_pagesize;
836 		}
837 	}
838 	if (Adapter->lso_enable) {
839 		Adapter->dvma_page_num = E1000_LSO_MAXLEN /
840 		    Adapter->sys_page_sz + E1000G_DEFAULT_DVMA_PAGE_NUM;
841 	} else {
842 		Adapter->dvma_page_num = Adapter->max_frame_size /
843 		    Adapter->sys_page_sz + E1000G_DEFAULT_DVMA_PAGE_NUM;
844 	}
845 	ASSERT(Adapter->dvma_page_num >= E1000G_DEFAULT_DVMA_PAGE_NUM);
846 #endif
847 
848 	Adapter->min_frame_size = ETHERMIN + ETHERFCSL;
849 
850 	if ((mac->type == e1000_82545) ||
851 	    (mac->type == e1000_82546) ||
852 	    (mac->type == e1000_82546_rev_3)) {
853 		Adapter->rx_buffer_size = E1000_RX_BUFFER_SIZE_2K;
854 	} else {
855 		rx_size = Adapter->max_frame_size + E1000G_IPALIGNPRESERVEROOM;
856 		if ((rx_size > FRAME_SIZE_UPTO_2K) &&
857 		    (rx_size <= FRAME_SIZE_UPTO_4K))
858 			Adapter->rx_buffer_size = E1000_RX_BUFFER_SIZE_4K;
859 		else if ((rx_size > FRAME_SIZE_UPTO_4K) &&
860 		    (rx_size <= FRAME_SIZE_UPTO_8K))
861 			Adapter->rx_buffer_size = E1000_RX_BUFFER_SIZE_8K;
862 		else if ((rx_size > FRAME_SIZE_UPTO_8K) &&
863 		    (rx_size <= FRAME_SIZE_UPTO_16K))
864 			Adapter->rx_buffer_size = E1000_RX_BUFFER_SIZE_16K;
865 		else
866 			Adapter->rx_buffer_size = E1000_RX_BUFFER_SIZE_2K;
867 	}
868 
869 	tx_size = Adapter->max_frame_size;
870 	if ((tx_size > FRAME_SIZE_UPTO_2K) && (tx_size <= FRAME_SIZE_UPTO_4K))
871 		Adapter->tx_buffer_size = E1000_TX_BUFFER_SIZE_4K;
872 	else if ((tx_size > FRAME_SIZE_UPTO_4K) &&
873 	    (tx_size <= FRAME_SIZE_UPTO_8K))
874 		Adapter->tx_buffer_size = E1000_TX_BUFFER_SIZE_8K;
875 	else if ((tx_size > FRAME_SIZE_UPTO_8K) &&
876 	    (tx_size <= FRAME_SIZE_UPTO_16K))
877 		Adapter->tx_buffer_size = E1000_TX_BUFFER_SIZE_16K;
878 	else
879 		Adapter->tx_buffer_size = E1000_TX_BUFFER_SIZE_2K;
880 
881 	/*
882 	 * For Wiseman adapters we have an requirement of having receive
883 	 * buffers aligned at 256 byte boundary. Since Livengood does not
884 	 * require this and forcing it for all hardwares will have
885 	 * performance implications, I am making it applicable only for
886 	 * Wiseman and for Jumbo frames enabled mode as rest of the time,
887 	 * it is okay to have normal frames...but it does involve a
888 	 * potential risk where we may loose data if buffer is not
889 	 * aligned...so all wiseman boards to have 256 byte aligned
890 	 * buffers
891 	 */
892 	if (mac->type < e1000_82543)
893 		Adapter->rx_buf_align = RECEIVE_BUFFER_ALIGN_SIZE;
894 	else if ((mac->type == e1000_82545) ||
895 	    (mac->type == e1000_82546) ||
896 	    (mac->type == e1000_82546_rev_3))
897 		Adapter->rx_buf_align = RECEIVE_BUFFER_ALIGN_SIZE_82546;
898 	else
899 		Adapter->rx_buf_align = 1;
900 }
901 
902 /*
903  * e1000g_detach - driver detach
904  *
905  * The detach() function is the complement of the attach routine.
906  * If cmd is set to DDI_DETACH, detach() is used to remove  the
907  * state  associated  with  a  given  instance of a device node
908  * prior to the removal of that instance from the system.
909  *
910  * The detach() function will be called once for each  instance
911  * of the device for which there has been a successful attach()
912  * once there are no longer  any  opens  on  the  device.
913  *
914  * Interrupts routine are disabled, All memory allocated by this
915  * driver are freed.
916  */
917 static int
918 e1000g_detach(dev_info_t *devinfo, ddi_detach_cmd_t cmd)
919 {
920 	struct e1000g *Adapter;
921 	boolean_t rx_drain;
922 
923 	switch (cmd) {
924 	default:
925 		return (DDI_FAILURE);
926 
927 	case DDI_SUSPEND:
928 		return (e1000g_suspend(devinfo));
929 
930 	case DDI_DETACH:
931 		break;
932 	}
933 
934 	Adapter = (struct e1000g *)ddi_get_driver_private(devinfo);
935 	if (Adapter == NULL)
936 		return (DDI_FAILURE);
937 
938 	if (mac_unregister(Adapter->mh) != 0) {
939 		e1000g_log(Adapter, CE_WARN, "Unregister MAC failed");
940 		return (DDI_FAILURE);
941 	}
942 	Adapter->attach_progress &= ~ATTACH_PROGRESS_MAC;
943 
944 
945 	if (Adapter->chip_state != E1000G_STOP)
946 		e1000g_stop(Adapter, B_TRUE);
947 
948 	rx_drain = e1000g_rx_drain(Adapter);
949 
950 	/*
951 	 * If e1000g_force_detach is enabled, driver detach is safe.
952 	 * We will let e1000g_free_priv_devi_node routine determine
953 	 * whether we need to free the priv_dip entry for current
954 	 * driver instance.
955 	 */
956 	if (e1000g_force_detach) {
957 		e1000g_free_priv_devi_node(Adapter, rx_drain);
958 	} else {
959 		if (!rx_drain)
960 			return (DDI_FAILURE);
961 	}
962 
963 	e1000g_unattach(devinfo, Adapter);
964 
965 	return (DDI_SUCCESS);
966 }
967 
968 /*
969  * e1000g_free_priv_devi_node - free a priv_dip entry for driver instance
970  *
971  * If free_flag is true, that indicates the upper layer is not holding
972  * the rx buffers, we could free the priv_dip entry safely.
973  *
974  * Otherwise, we have to keep this entry even after driver detached,
975  * and we also need to mark this entry with E1000G_PRIV_DEVI_DETACH flag,
976  * so that driver could free it while all of rx buffers are returned
977  * by upper layer later.
978  */
979 static void
980 e1000g_free_priv_devi_node(struct e1000g *Adapter, boolean_t free_flag)
981 {
982 	private_devi_list_t *devi_node, *devi_del;
983 
984 	rw_enter(&e1000g_rx_detach_lock, RW_WRITER);
985 	ASSERT(e1000g_private_devi_list != NULL);
986 	ASSERT(Adapter->priv_dip != NULL);
987 
988 	devi_node = e1000g_private_devi_list;
989 	if (devi_node->priv_dip == Adapter->priv_dip) {
990 		if (free_flag) {
991 			e1000g_private_devi_list =
992 			    devi_node->next;
993 			kmem_free(devi_node->priv_dip,
994 			    sizeof (struct dev_info));
995 			kmem_free(devi_node,
996 			    sizeof (private_devi_list_t));
997 		} else {
998 			ASSERT(e1000g_mblks_pending != 0);
999 			devi_node->flag =
1000 			    E1000G_PRIV_DEVI_DETACH;
1001 		}
1002 		rw_exit(&e1000g_rx_detach_lock);
1003 		return;
1004 	}
1005 
1006 	devi_node = e1000g_private_devi_list;
1007 	while (devi_node->next != NULL) {
1008 		if (devi_node->next->priv_dip == Adapter->priv_dip) {
1009 			if (free_flag) {
1010 				devi_del = devi_node->next;
1011 				devi_node->next = devi_del->next;
1012 				kmem_free(devi_del->priv_dip,
1013 				    sizeof (struct dev_info));
1014 				kmem_free(devi_del,
1015 				    sizeof (private_devi_list_t));
1016 			} else {
1017 				ASSERT(e1000g_mblks_pending != 0);
1018 				devi_node->next->flag =
1019 				    E1000G_PRIV_DEVI_DETACH;
1020 			}
1021 			break;
1022 		}
1023 		devi_node = devi_node->next;
1024 	}
1025 	rw_exit(&e1000g_rx_detach_lock);
1026 }
1027 
1028 static void
1029 e1000g_unattach(dev_info_t *devinfo, struct e1000g *Adapter)
1030 {
1031 	int result;
1032 
1033 	if (Adapter->attach_progress & ATTACH_PROGRESS_ENABLE_INTR) {
1034 		(void) e1000g_disable_intrs(Adapter);
1035 	}
1036 
1037 	if (Adapter->attach_progress & ATTACH_PROGRESS_MAC) {
1038 		(void) mac_unregister(Adapter->mh);
1039 	}
1040 
1041 	if (Adapter->attach_progress & ATTACH_PROGRESS_ADD_INTR) {
1042 		(void) e1000g_rem_intrs(Adapter);
1043 	}
1044 
1045 	if (Adapter->attach_progress & ATTACH_PROGRESS_SETUP) {
1046 		(void) ddi_prop_remove_all(devinfo);
1047 	}
1048 
1049 	if (Adapter->attach_progress & ATTACH_PROGRESS_KSTATS) {
1050 		kstat_delete((kstat_t *)Adapter->e1000g_ksp);
1051 	}
1052 
1053 	if (Adapter->attach_progress & ATTACH_PROGRESS_INIT) {
1054 		stop_link_timer(Adapter);
1055 
1056 		mutex_enter(&e1000g_nvm_lock);
1057 		result = e1000_reset_hw(&Adapter->shared);
1058 		mutex_exit(&e1000g_nvm_lock);
1059 
1060 		if (result != E1000_SUCCESS) {
1061 			e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1062 			ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
1063 		}
1064 	}
1065 
1066 	if (Adapter->attach_progress & ATTACH_PROGRESS_REGS_MAP) {
1067 		if (Adapter->osdep.reg_handle != NULL)
1068 			ddi_regs_map_free(&Adapter->osdep.reg_handle);
1069 		if (Adapter->osdep.ich_flash_handle != NULL)
1070 			ddi_regs_map_free(&Adapter->osdep.ich_flash_handle);
1071 	}
1072 
1073 	if (Adapter->attach_progress & ATTACH_PROGRESS_PCI_CONFIG) {
1074 		if (Adapter->osdep.cfg_handle != NULL)
1075 			pci_config_teardown(&Adapter->osdep.cfg_handle);
1076 	}
1077 
1078 	if (Adapter->attach_progress & ATTACH_PROGRESS_LOCKS) {
1079 		e1000g_destroy_locks(Adapter);
1080 	}
1081 
1082 	if (Adapter->attach_progress & ATTACH_PROGRESS_FMINIT) {
1083 		e1000g_fm_fini(Adapter);
1084 	}
1085 
1086 	e1000_remove_device(&Adapter->shared);
1087 
1088 	kmem_free((caddr_t)Adapter, sizeof (struct e1000g));
1089 
1090 	/*
1091 	 * Another hotplug spec requirement,
1092 	 * run ddi_set_driver_private(devinfo, null);
1093 	 */
1094 	ddi_set_driver_private(devinfo, NULL);
1095 }
1096 
1097 static void
1098 e1000g_init_locks(struct e1000g *Adapter)
1099 {
1100 	e1000g_tx_ring_t *tx_ring;
1101 	e1000g_rx_ring_t *rx_ring;
1102 
1103 	rw_init(&Adapter->chip_lock, NULL,
1104 	    RW_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1105 	mutex_init(&Adapter->link_lock, NULL,
1106 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1107 	mutex_init(&Adapter->watchdog_lock, NULL,
1108 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1109 
1110 	tx_ring = Adapter->tx_ring;
1111 
1112 	mutex_init(&tx_ring->tx_lock, NULL,
1113 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1114 	mutex_init(&tx_ring->usedlist_lock, NULL,
1115 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1116 	mutex_init(&tx_ring->freelist_lock, NULL,
1117 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1118 
1119 	rx_ring = Adapter->rx_ring;
1120 
1121 	mutex_init(&rx_ring->rx_lock, NULL,
1122 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1123 	mutex_init(&rx_ring->freelist_lock, NULL,
1124 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1125 }
1126 
1127 static void
1128 e1000g_destroy_locks(struct e1000g *Adapter)
1129 {
1130 	e1000g_tx_ring_t *tx_ring;
1131 	e1000g_rx_ring_t *rx_ring;
1132 
1133 	tx_ring = Adapter->tx_ring;
1134 	mutex_destroy(&tx_ring->tx_lock);
1135 	mutex_destroy(&tx_ring->usedlist_lock);
1136 	mutex_destroy(&tx_ring->freelist_lock);
1137 
1138 	rx_ring = Adapter->rx_ring;
1139 	mutex_destroy(&rx_ring->rx_lock);
1140 	mutex_destroy(&rx_ring->freelist_lock);
1141 
1142 	mutex_destroy(&Adapter->link_lock);
1143 	mutex_destroy(&Adapter->watchdog_lock);
1144 	rw_destroy(&Adapter->chip_lock);
1145 }
1146 
1147 static int
1148 e1000g_resume(dev_info_t *devinfo)
1149 {
1150 	struct e1000g *Adapter;
1151 
1152 	Adapter = (struct e1000g *)ddi_get_driver_private(devinfo);
1153 	if (Adapter == NULL)
1154 		return (DDI_FAILURE);
1155 
1156 	if (e1000g_start(Adapter, B_TRUE))
1157 		return (DDI_FAILURE);
1158 
1159 	return (DDI_SUCCESS);
1160 }
1161 
1162 static int
1163 e1000g_suspend(dev_info_t *devinfo)
1164 {
1165 	struct e1000g *Adapter;
1166 
1167 	Adapter = (struct e1000g *)ddi_get_driver_private(devinfo);
1168 	if (Adapter == NULL)
1169 		return (DDI_FAILURE);
1170 
1171 	e1000g_stop(Adapter, B_TRUE);
1172 
1173 	return (DDI_SUCCESS);
1174 }
1175 
1176 static int
1177 e1000g_init(struct e1000g *Adapter)
1178 {
1179 	uint32_t pba;
1180 	uint32_t high_water;
1181 	struct e1000_hw *hw;
1182 	clock_t link_timeout;
1183 	int result;
1184 
1185 	hw = &Adapter->shared;
1186 
1187 	rw_enter(&Adapter->chip_lock, RW_WRITER);
1188 
1189 	/*
1190 	 * reset to put the hardware in a known state
1191 	 * before we try to do anything with the eeprom
1192 	 */
1193 	mutex_enter(&e1000g_nvm_lock);
1194 	result = e1000_reset_hw(hw);
1195 	mutex_exit(&e1000g_nvm_lock);
1196 
1197 	if (result != E1000_SUCCESS) {
1198 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1199 		goto init_fail;
1200 	}
1201 
1202 	mutex_enter(&e1000g_nvm_lock);
1203 	result = e1000_validate_nvm_checksum(hw);
1204 	if (result < E1000_SUCCESS) {
1205 		/*
1206 		 * Some PCI-E parts fail the first check due to
1207 		 * the link being in sleep state.  Call it again,
1208 		 * if it fails a second time its a real issue.
1209 		 */
1210 		result = e1000_validate_nvm_checksum(hw);
1211 	}
1212 	mutex_exit(&e1000g_nvm_lock);
1213 
1214 	if (result < E1000_SUCCESS) {
1215 		e1000g_log(Adapter, CE_WARN,
1216 		    "Invalid NVM checksum. Please contact "
1217 		    "the vendor to update the NVM.");
1218 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1219 		goto init_fail;
1220 	}
1221 
1222 	result = 0;
1223 #ifdef __sparc
1224 	/*
1225 	 * First, we try to get the local ethernet address from OBP. If
1226 	 * failed, then we get it from the EEPROM of NIC card.
1227 	 */
1228 	result = e1000g_find_mac_address(Adapter);
1229 #endif
1230 	/* Get the local ethernet address. */
1231 	if (!result) {
1232 		mutex_enter(&e1000g_nvm_lock);
1233 		result = e1000_read_mac_addr(hw);
1234 		mutex_exit(&e1000g_nvm_lock);
1235 	}
1236 
1237 	if (result < E1000_SUCCESS) {
1238 		e1000g_log(Adapter, CE_WARN, "Read mac addr failed");
1239 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1240 		goto init_fail;
1241 	}
1242 
1243 	/* check for valid mac address */
1244 	if (!is_valid_mac_addr(hw->mac.addr)) {
1245 		e1000g_log(Adapter, CE_WARN, "Invalid mac addr");
1246 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1247 		goto init_fail;
1248 	}
1249 
1250 	/* Set LAA state for 82571 chipset */
1251 	e1000_set_laa_state_82571(hw, B_TRUE);
1252 
1253 	/* Master Latency Timer implementation */
1254 	if (Adapter->master_latency_timer) {
1255 		pci_config_put8(Adapter->osdep.cfg_handle,
1256 		    PCI_CONF_LATENCY_TIMER, Adapter->master_latency_timer);
1257 	}
1258 
1259 	if (hw->mac.type < e1000_82547) {
1260 		/*
1261 		 * Total FIFO is 64K
1262 		 */
1263 		if (Adapter->max_frame_size > FRAME_SIZE_UPTO_8K)
1264 			pba = E1000_PBA_40K;	/* 40K for Rx, 24K for Tx */
1265 		else
1266 			pba = E1000_PBA_48K;	/* 48K for Rx, 16K for Tx */
1267 	} else if ((hw->mac.type == e1000_82571) ||
1268 	    (hw->mac.type == e1000_82572) ||
1269 	    (hw->mac.type == e1000_80003es2lan)) {
1270 		/*
1271 		 * Total FIFO is 48K
1272 		 */
1273 		if (Adapter->max_frame_size > FRAME_SIZE_UPTO_8K)
1274 			pba = E1000_PBA_30K;	/* 30K for Rx, 18K for Tx */
1275 		else
1276 			pba = E1000_PBA_38K;	/* 38K for Rx, 10K for Tx */
1277 	} else if (hw->mac.type == e1000_82573) {
1278 		pba = E1000_PBA_20K;		/* 20K for Rx, 12K for Tx */
1279 	} else if (hw->mac.type == e1000_82574) {
1280 		/* Keep adapter default: 20K for Rx, 20K for Tx */
1281 		pba = E1000_READ_REG(hw, E1000_PBA);
1282 	} else if (hw->mac.type == e1000_ich8lan) {
1283 		pba = E1000_PBA_8K;		/* 8K for Rx, 12K for Tx */
1284 	} else if (hw->mac.type == e1000_ich9lan) {
1285 		pba = E1000_PBA_10K;
1286 	} else if (hw->mac.type == e1000_ich10lan) {
1287 		pba = E1000_PBA_10K;
1288 	} else {
1289 		/*
1290 		 * Total FIFO is 40K
1291 		 */
1292 		if (Adapter->max_frame_size > FRAME_SIZE_UPTO_8K)
1293 			pba = E1000_PBA_22K;	/* 22K for Rx, 18K for Tx */
1294 		else
1295 			pba = E1000_PBA_30K;	/* 30K for Rx, 10K for Tx */
1296 	}
1297 	E1000_WRITE_REG(hw, E1000_PBA, pba);
1298 
1299 	/*
1300 	 * These parameters set thresholds for the adapter's generation(Tx)
1301 	 * and response(Rx) to Ethernet PAUSE frames.  These are just threshold
1302 	 * settings.  Flow control is enabled or disabled in the configuration
1303 	 * file.
1304 	 * High-water mark is set down from the top of the rx fifo (not
1305 	 * sensitive to max_frame_size) and low-water is set just below
1306 	 * high-water mark.
1307 	 * The high water mark must be low enough to fit one full frame above
1308 	 * it in the rx FIFO.  Should be the lower of:
1309 	 * 90% of the Rx FIFO size and the full Rx FIFO size minus the early
1310 	 * receive size (assuming ERT set to E1000_ERT_2048), or the full
1311 	 * Rx FIFO size minus one full frame.
1312 	 */
1313 	high_water = min(((pba << 10) * 9 / 10),
1314 	    ((hw->mac.type == e1000_82573 || hw->mac.type == e1000_ich9lan ||
1315 	    hw->mac.type == e1000_ich10lan) ?
1316 	    ((pba << 10) - (E1000_ERT_2048 << 3)) :
1317 	    ((pba << 10) - Adapter->max_frame_size)));
1318 
1319 	hw->fc.high_water = high_water & 0xFFF8;
1320 	hw->fc.low_water = hw->fc.high_water - 8;
1321 
1322 	if (hw->mac.type == e1000_80003es2lan)
1323 		hw->fc.pause_time = 0xFFFF;
1324 	else
1325 		hw->fc.pause_time = E1000_FC_PAUSE_TIME;
1326 	hw->fc.send_xon = B_TRUE;
1327 
1328 	/*
1329 	 * Reset the adapter hardware the second time.
1330 	 */
1331 	mutex_enter(&e1000g_nvm_lock);
1332 	result = e1000_reset_hw(hw);
1333 	mutex_exit(&e1000g_nvm_lock);
1334 
1335 	if (result != E1000_SUCCESS) {
1336 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1337 		goto init_fail;
1338 	}
1339 
1340 	/* disable wakeup control by default */
1341 	if (hw->mac.type >= e1000_82544)
1342 		E1000_WRITE_REG(hw, E1000_WUC, 0);
1343 
1344 	/*
1345 	 * MWI should be disabled on 82546.
1346 	 */
1347 	if (hw->mac.type == e1000_82546)
1348 		e1000_pci_clear_mwi(hw);
1349 	else
1350 		e1000_pci_set_mwi(hw);
1351 
1352 	/*
1353 	 * Configure/Initialize hardware
1354 	 */
1355 	mutex_enter(&e1000g_nvm_lock);
1356 	result = e1000_init_hw(hw);
1357 	mutex_exit(&e1000g_nvm_lock);
1358 
1359 	if (result < E1000_SUCCESS) {
1360 		e1000g_log(Adapter, CE_WARN, "Initialize hw failed");
1361 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1362 		goto init_fail;
1363 	}
1364 
1365 	/*
1366 	 * Restore LED settings to the default from EEPROM
1367 	 * to meet the standard for Sun platforms.
1368 	 */
1369 	(void) e1000_cleanup_led(hw);
1370 
1371 	/* Disable Smart Power Down */
1372 	phy_spd_state(hw, B_FALSE);
1373 
1374 	/* Make sure driver has control */
1375 	e1000g_get_driver_control(hw);
1376 
1377 	/*
1378 	 * Initialize unicast addresses.
1379 	 */
1380 	e1000g_init_unicst(Adapter);
1381 
1382 	/*
1383 	 * Setup and initialize the mctable structures.  After this routine
1384 	 * completes  Multicast table will be set
1385 	 */
1386 	e1000g_setup_multicast(Adapter);
1387 	msec_delay(5);
1388 
1389 	/*
1390 	 * Implement Adaptive IFS
1391 	 */
1392 	e1000_reset_adaptive(hw);
1393 
1394 	/* Setup Interrupt Throttling Register */
1395 	if (hw->mac.type >= e1000_82540) {
1396 		E1000_WRITE_REG(hw, E1000_ITR, Adapter->intr_throttling_rate);
1397 	} else
1398 		Adapter->intr_adaptive = B_FALSE;
1399 
1400 	/* Start the timer for link setup */
1401 	if (hw->mac.autoneg)
1402 		link_timeout = PHY_AUTO_NEG_LIMIT * drv_usectohz(100000);
1403 	else
1404 		link_timeout = PHY_FORCE_LIMIT * drv_usectohz(100000);
1405 
1406 	mutex_enter(&Adapter->link_lock);
1407 	if (hw->phy.autoneg_wait_to_complete) {
1408 		Adapter->link_complete = B_TRUE;
1409 	} else {
1410 		Adapter->link_complete = B_FALSE;
1411 		Adapter->link_tid = timeout(e1000g_link_timer,
1412 		    (void *)Adapter, link_timeout);
1413 	}
1414 	mutex_exit(&Adapter->link_lock);
1415 
1416 	/* Enable PCI-Ex master */
1417 	if (hw->bus.type == e1000_bus_type_pci_express) {
1418 		e1000_enable_pciex_master(hw);
1419 	}
1420 
1421 	/* Save the state of the phy */
1422 	e1000g_get_phy_state(Adapter);
1423 
1424 	e1000g_param_sync(Adapter);
1425 
1426 	Adapter->init_count++;
1427 
1428 	if (e1000g_check_acc_handle(Adapter->osdep.cfg_handle) != DDI_FM_OK) {
1429 		goto init_fail;
1430 	}
1431 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
1432 		goto init_fail;
1433 	}
1434 
1435 	rw_exit(&Adapter->chip_lock);
1436 
1437 	return (DDI_SUCCESS);
1438 
1439 init_fail:
1440 	rw_exit(&Adapter->chip_lock);
1441 	ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
1442 	return (DDI_FAILURE);
1443 }
1444 
1445 /*
1446  * Check if the link is up
1447  */
1448 static boolean_t
1449 e1000g_link_up(struct e1000g *Adapter)
1450 {
1451 	struct e1000_hw *hw;
1452 	boolean_t link_up;
1453 
1454 	hw = &Adapter->shared;
1455 
1456 	(void) e1000_check_for_link(hw);
1457 
1458 	if ((E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU) ||
1459 	    ((!hw->mac.get_link_status) && (hw->mac.type == e1000_82543)) ||
1460 	    ((hw->phy.media_type == e1000_media_type_internal_serdes) &&
1461 	    (hw->mac.serdes_has_link))) {
1462 		link_up = B_TRUE;
1463 	} else {
1464 		link_up = B_FALSE;
1465 	}
1466 
1467 	return (link_up);
1468 }
1469 
1470 static void
1471 e1000g_m_ioctl(void *arg, queue_t *q, mblk_t *mp)
1472 {
1473 	struct iocblk *iocp;
1474 	struct e1000g *e1000gp;
1475 	enum ioc_reply status;
1476 
1477 	iocp = (struct iocblk *)(uintptr_t)mp->b_rptr;
1478 	iocp->ioc_error = 0;
1479 	e1000gp = (struct e1000g *)arg;
1480 
1481 	ASSERT(e1000gp);
1482 	if (e1000gp == NULL) {
1483 		miocnak(q, mp, 0, EINVAL);
1484 		return;
1485 	}
1486 
1487 	switch (iocp->ioc_cmd) {
1488 
1489 	case LB_GET_INFO_SIZE:
1490 	case LB_GET_INFO:
1491 	case LB_GET_MODE:
1492 	case LB_SET_MODE:
1493 		status = e1000g_loopback_ioctl(e1000gp, iocp, mp);
1494 		break;
1495 
1496 
1497 #ifdef E1000G_DEBUG
1498 	case E1000G_IOC_REG_PEEK:
1499 	case E1000G_IOC_REG_POKE:
1500 		status = e1000g_pp_ioctl(e1000gp, iocp, mp);
1501 		break;
1502 	case E1000G_IOC_CHIP_RESET:
1503 		e1000gp->reset_count++;
1504 		if (e1000g_reset_adapter(e1000gp))
1505 			status = IOC_ACK;
1506 		else
1507 			status = IOC_INVAL;
1508 		break;
1509 #endif
1510 	default:
1511 		status = IOC_INVAL;
1512 		break;
1513 	}
1514 
1515 	/*
1516 	 * Decide how to reply
1517 	 */
1518 	switch (status) {
1519 	default:
1520 	case IOC_INVAL:
1521 		/*
1522 		 * Error, reply with a NAK and EINVAL or the specified error
1523 		 */
1524 		miocnak(q, mp, 0, iocp->ioc_error == 0 ?
1525 		    EINVAL : iocp->ioc_error);
1526 		break;
1527 
1528 	case IOC_DONE:
1529 		/*
1530 		 * OK, reply already sent
1531 		 */
1532 		break;
1533 
1534 	case IOC_ACK:
1535 		/*
1536 		 * OK, reply with an ACK
1537 		 */
1538 		miocack(q, mp, 0, 0);
1539 		break;
1540 
1541 	case IOC_REPLY:
1542 		/*
1543 		 * OK, send prepared reply as ACK or NAK
1544 		 */
1545 		mp->b_datap->db_type = iocp->ioc_error == 0 ?
1546 		    M_IOCACK : M_IOCNAK;
1547 		qreply(q, mp);
1548 		break;
1549 	}
1550 }
1551 
1552 static int
1553 e1000g_m_start(void *arg)
1554 {
1555 	struct e1000g *Adapter = (struct e1000g *)arg;
1556 
1557 	return (e1000g_start(Adapter, B_TRUE));
1558 }
1559 
1560 static int
1561 e1000g_start(struct e1000g *Adapter, boolean_t global)
1562 {
1563 	if (global) {
1564 		/* Allocate dma resources for descriptors and buffers */
1565 		if (e1000g_alloc_dma_resources(Adapter) != DDI_SUCCESS) {
1566 			e1000g_log(Adapter, CE_WARN,
1567 			    "Alloc DMA resources failed");
1568 			return (ENOTACTIVE);
1569 		}
1570 		Adapter->rx_buffer_setup = B_FALSE;
1571 	}
1572 
1573 	if (!(Adapter->attach_progress & ATTACH_PROGRESS_INIT)) {
1574 		if (e1000g_init(Adapter) != DDI_SUCCESS) {
1575 			e1000g_log(Adapter, CE_WARN,
1576 			    "Adapter initialization failed");
1577 			if (global)
1578 				e1000g_release_dma_resources(Adapter);
1579 			return (ENOTACTIVE);
1580 		}
1581 	}
1582 
1583 	rw_enter(&Adapter->chip_lock, RW_WRITER);
1584 
1585 	/* Setup and initialize the transmit structures */
1586 	e1000g_tx_setup(Adapter);
1587 	msec_delay(5);
1588 
1589 	/* Setup and initialize the receive structures */
1590 	e1000g_rx_setup(Adapter);
1591 	msec_delay(5);
1592 
1593 	/* Restore the e1000g promiscuous mode */
1594 	e1000g_restore_promisc(Adapter);
1595 
1596 	e1000g_mask_interrupt(Adapter);
1597 
1598 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
1599 		rw_exit(&Adapter->chip_lock);
1600 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
1601 		return (ENOTACTIVE);
1602 	}
1603 
1604 	Adapter->chip_state = E1000G_START;
1605 	Adapter->attach_progress |= ATTACH_PROGRESS_INIT;
1606 
1607 	rw_exit(&Adapter->chip_lock);
1608 
1609 	/* Enable and start the watchdog timer */
1610 	enable_watchdog_timer(Adapter);
1611 
1612 	return (0);
1613 }
1614 
1615 static void
1616 e1000g_m_stop(void *arg)
1617 {
1618 	struct e1000g *Adapter = (struct e1000g *)arg;
1619 
1620 	e1000g_stop(Adapter, B_TRUE);
1621 }
1622 
1623 static void
1624 e1000g_stop(struct e1000g *Adapter, boolean_t global)
1625 {
1626 	int result;
1627 
1628 	/* Set stop flags */
1629 	rw_enter(&Adapter->chip_lock, RW_WRITER);
1630 
1631 	Adapter->chip_state = E1000G_STOP;
1632 	Adapter->attach_progress &= ~ATTACH_PROGRESS_INIT;
1633 
1634 	rw_exit(&Adapter->chip_lock);
1635 
1636 	/* Drain tx sessions */
1637 	(void) e1000g_tx_drain(Adapter);
1638 
1639 	/* Disable and stop all the timers */
1640 	disable_watchdog_timer(Adapter);
1641 	stop_link_timer(Adapter);
1642 	stop_82547_timer(Adapter->tx_ring);
1643 
1644 	/* Stop the chip and release pending resources */
1645 	rw_enter(&Adapter->chip_lock, RW_WRITER);
1646 
1647 	/* Tell firmware driver is no longer in control */
1648 	e1000g_release_driver_control(&Adapter->shared);
1649 
1650 	e1000g_clear_all_interrupts(Adapter);
1651 
1652 	mutex_enter(&e1000g_nvm_lock);
1653 	result = e1000_reset_hw(&Adapter->shared);
1654 	mutex_exit(&e1000g_nvm_lock);
1655 
1656 	if (result != E1000_SUCCESS) {
1657 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1658 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
1659 	}
1660 
1661 	/* Release resources still held by the TX descriptors */
1662 	e1000g_tx_clean(Adapter);
1663 
1664 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK)
1665 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
1666 
1667 	/* Clean the pending rx jumbo packet fragment */
1668 	e1000g_rx_clean(Adapter);
1669 
1670 	rw_exit(&Adapter->chip_lock);
1671 
1672 	if (global)
1673 		e1000g_release_dma_resources(Adapter);
1674 }
1675 
1676 static void
1677 e1000g_rx_clean(struct e1000g *Adapter)
1678 {
1679 	e1000g_rx_ring_t *rx_ring = Adapter->rx_ring;
1680 
1681 	if (rx_ring->rx_mblk != NULL) {
1682 		freemsg(rx_ring->rx_mblk);
1683 		rx_ring->rx_mblk = NULL;
1684 		rx_ring->rx_mblk_tail = NULL;
1685 		rx_ring->rx_mblk_len = 0;
1686 	}
1687 }
1688 
1689 static void
1690 e1000g_tx_clean(struct e1000g *Adapter)
1691 {
1692 	e1000g_tx_ring_t *tx_ring;
1693 	p_tx_sw_packet_t packet;
1694 	mblk_t *mp;
1695 	mblk_t *nmp;
1696 	uint32_t packet_count;
1697 
1698 	tx_ring = Adapter->tx_ring;
1699 
1700 	/*
1701 	 * Here we don't need to protect the lists using
1702 	 * the usedlist_lock and freelist_lock, for they
1703 	 * have been protected by the chip_lock.
1704 	 */
1705 	mp = NULL;
1706 	nmp = NULL;
1707 	packet_count = 0;
1708 	packet = (p_tx_sw_packet_t)QUEUE_GET_HEAD(&tx_ring->used_list);
1709 	while (packet != NULL) {
1710 		if (packet->mp != NULL) {
1711 			/* Assemble the message chain */
1712 			if (mp == NULL) {
1713 				mp = packet->mp;
1714 				nmp = packet->mp;
1715 			} else {
1716 				nmp->b_next = packet->mp;
1717 				nmp = packet->mp;
1718 			}
1719 			/* Disconnect the message from the sw packet */
1720 			packet->mp = NULL;
1721 		}
1722 
1723 		e1000g_free_tx_swpkt(packet);
1724 		packet_count++;
1725 
1726 		packet = (p_tx_sw_packet_t)
1727 		    QUEUE_GET_NEXT(&tx_ring->used_list, &packet->Link);
1728 	}
1729 
1730 	if (mp != NULL)
1731 		freemsgchain(mp);
1732 
1733 	if (packet_count > 0) {
1734 		QUEUE_APPEND(&tx_ring->free_list, &tx_ring->used_list);
1735 		QUEUE_INIT_LIST(&tx_ring->used_list);
1736 
1737 		/* Setup TX descriptor pointers */
1738 		tx_ring->tbd_next = tx_ring->tbd_first;
1739 		tx_ring->tbd_oldest = tx_ring->tbd_first;
1740 
1741 		/* Setup our HW Tx Head & Tail descriptor pointers */
1742 		E1000_WRITE_REG(&Adapter->shared, E1000_TDH(0), 0);
1743 		E1000_WRITE_REG(&Adapter->shared, E1000_TDT(0), 0);
1744 	}
1745 }
1746 
1747 static boolean_t
1748 e1000g_tx_drain(struct e1000g *Adapter)
1749 {
1750 	int i;
1751 	boolean_t done;
1752 	e1000g_tx_ring_t *tx_ring;
1753 
1754 	tx_ring = Adapter->tx_ring;
1755 
1756 	/* Allow up to 'wsdraintime' for pending xmit's to complete. */
1757 	for (i = 0; i < TX_DRAIN_TIME; i++) {
1758 		mutex_enter(&tx_ring->usedlist_lock);
1759 		done = IS_QUEUE_EMPTY(&tx_ring->used_list);
1760 		mutex_exit(&tx_ring->usedlist_lock);
1761 
1762 		if (done)
1763 			break;
1764 
1765 		msec_delay(1);
1766 	}
1767 
1768 	return (done);
1769 }
1770 
1771 static boolean_t
1772 e1000g_rx_drain(struct e1000g *Adapter)
1773 {
1774 	e1000g_rx_ring_t *rx_ring;
1775 	p_rx_sw_packet_t packet;
1776 	boolean_t done;
1777 
1778 	rx_ring = Adapter->rx_ring;
1779 	done = B_TRUE;
1780 
1781 	rw_enter(&e1000g_rx_detach_lock, RW_WRITER);
1782 
1783 	while (rx_ring->pending_list != NULL) {
1784 		packet = rx_ring->pending_list;
1785 		rx_ring->pending_list =
1786 		    rx_ring->pending_list->next;
1787 
1788 		if (packet->flag == E1000G_RX_SW_STOP) {
1789 			packet->flag = E1000G_RX_SW_DETACH;
1790 			done = B_FALSE;
1791 		} else {
1792 			ASSERT(packet->flag == E1000G_RX_SW_FREE);
1793 			ASSERT(packet->mp == NULL);
1794 			e1000g_free_rx_sw_packet(packet);
1795 		}
1796 	}
1797 
1798 	rw_exit(&e1000g_rx_detach_lock);
1799 
1800 	return (done);
1801 }
1802 
1803 static boolean_t
1804 e1000g_reset_adapter(struct e1000g *Adapter)
1805 {
1806 	e1000g_stop(Adapter, B_FALSE);
1807 
1808 	if (e1000g_start(Adapter, B_FALSE)) {
1809 		e1000g_log(Adapter, CE_WARN, "Reset failed");
1810 		return (B_FALSE);
1811 	}
1812 
1813 	return (B_TRUE);
1814 }
1815 
1816 boolean_t
1817 e1000g_global_reset(struct e1000g *Adapter)
1818 {
1819 	e1000g_stop(Adapter, B_TRUE);
1820 
1821 	Adapter->init_count = 0;
1822 
1823 	if (e1000g_start(Adapter, B_TRUE)) {
1824 		e1000g_log(Adapter, CE_WARN, "Reset failed");
1825 		return (B_FALSE);
1826 	}
1827 
1828 	return (B_TRUE);
1829 }
1830 
1831 /*
1832  * e1000g_intr_pciexpress - ISR for PCI Express chipsets
1833  *
1834  * This interrupt service routine is for PCI-Express adapters.
1835  * The ICR contents is valid only when the E1000_ICR_INT_ASSERTED
1836  * bit is set.
1837  */
1838 static uint_t
1839 e1000g_intr_pciexpress(caddr_t arg)
1840 {
1841 	struct e1000g *Adapter;
1842 	uint32_t icr;
1843 
1844 	Adapter = (struct e1000g *)(uintptr_t)arg;
1845 	icr = E1000_READ_REG(&Adapter->shared, E1000_ICR);
1846 
1847 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK)
1848 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
1849 
1850 	if (icr & E1000_ICR_INT_ASSERTED) {
1851 		/*
1852 		 * E1000_ICR_INT_ASSERTED bit was set:
1853 		 * Read(Clear) the ICR, claim this interrupt,
1854 		 * look for work to do.
1855 		 */
1856 		e1000g_intr_work(Adapter, icr);
1857 		return (DDI_INTR_CLAIMED);
1858 	} else {
1859 		/*
1860 		 * E1000_ICR_INT_ASSERTED bit was not set:
1861 		 * Don't claim this interrupt, return immediately.
1862 		 */
1863 		return (DDI_INTR_UNCLAIMED);
1864 	}
1865 }
1866 
1867 /*
1868  * e1000g_intr - ISR for PCI/PCI-X chipsets
1869  *
1870  * This interrupt service routine is for PCI/PCI-X adapters.
1871  * We check the ICR contents no matter the E1000_ICR_INT_ASSERTED
1872  * bit is set or not.
1873  */
1874 static uint_t
1875 e1000g_intr(caddr_t arg)
1876 {
1877 	struct e1000g *Adapter;
1878 	uint32_t icr;
1879 
1880 	Adapter = (struct e1000g *)(uintptr_t)arg;
1881 	icr = E1000_READ_REG(&Adapter->shared, E1000_ICR);
1882 
1883 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK)
1884 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
1885 
1886 	if (icr) {
1887 		/*
1888 		 * Any bit was set in ICR:
1889 		 * Read(Clear) the ICR, claim this interrupt,
1890 		 * look for work to do.
1891 		 */
1892 		e1000g_intr_work(Adapter, icr);
1893 		return (DDI_INTR_CLAIMED);
1894 	} else {
1895 		/*
1896 		 * No bit was set in ICR:
1897 		 * Don't claim this interrupt, return immediately.
1898 		 */
1899 		return (DDI_INTR_UNCLAIMED);
1900 	}
1901 }
1902 
1903 /*
1904  * e1000g_intr_work - actual processing of ISR
1905  *
1906  * Read(clear) the ICR contents and call appropriate interrupt
1907  * processing routines.
1908  */
1909 static void
1910 e1000g_intr_work(struct e1000g *Adapter, uint32_t icr)
1911 {
1912 	struct e1000_hw *hw;
1913 	hw = &Adapter->shared;
1914 	e1000g_tx_ring_t *tx_ring = Adapter->tx_ring;
1915 	uint32_t itr;
1916 
1917 	Adapter->rx_pkt_cnt = 0;
1918 	Adapter->tx_pkt_cnt = 0;
1919 
1920 	rw_enter(&Adapter->chip_lock, RW_READER);
1921 	/*
1922 	 * Here we need to check the "chip_state" flag within the chip_lock to
1923 	 * ensure the receive routine will not execute when the adapter is
1924 	 * being reset.
1925 	 */
1926 	if (Adapter->chip_state != E1000G_START) {
1927 		rw_exit(&Adapter->chip_lock);
1928 		return;
1929 	}
1930 
1931 	if (icr & E1000_ICR_RXT0) {
1932 		mblk_t *mp;
1933 
1934 		mutex_enter(&Adapter->rx_ring->rx_lock);
1935 		mp = e1000g_receive(Adapter);
1936 		mutex_exit(&Adapter->rx_ring->rx_lock);
1937 
1938 		rw_exit(&Adapter->chip_lock);
1939 
1940 		if (mp != NULL)
1941 			mac_rx(Adapter->mh, Adapter->mrh, mp);
1942 	} else
1943 		rw_exit(&Adapter->chip_lock);
1944 
1945 	if (icr & E1000_ICR_TXDW) {
1946 		if (!Adapter->tx_intr_enable)
1947 			e1000g_clear_tx_interrupt(Adapter);
1948 
1949 		/* Recycle the tx descriptors */
1950 		rw_enter(&Adapter->chip_lock, RW_READER);
1951 		(void) e1000g_recycle(tx_ring);
1952 		E1000G_DEBUG_STAT(tx_ring->stat_recycle_intr);
1953 		rw_exit(&Adapter->chip_lock);
1954 
1955 		/* Schedule the re-transmit */
1956 		if (tx_ring->resched_needed &&
1957 		    (tx_ring->tbd_avail > DEFAULT_TX_UPDATE_THRESHOLD)) {
1958 			tx_ring->resched_needed = B_FALSE;
1959 			mac_tx_update(Adapter->mh);
1960 			E1000G_STAT(tx_ring->stat_reschedule);
1961 		}
1962 	}
1963 
1964 	if (Adapter->intr_adaptive) {
1965 		itr = e1000g_get_itr(Adapter->rx_pkt_cnt, Adapter->tx_pkt_cnt,
1966 		    Adapter->intr_throttling_rate);
1967 		if (itr) {
1968 			E1000_WRITE_REG(hw, E1000_ITR, itr);
1969 			Adapter->intr_throttling_rate = itr;
1970 		}
1971 	}
1972 
1973 	/*
1974 	 * The Receive Sequence errors RXSEQ and the link status change LSC
1975 	 * are checked to detect that the cable has been pulled out. For
1976 	 * the Wiseman 2.0 silicon, the receive sequence errors interrupt
1977 	 * are an indication that cable is not connected.
1978 	 */
1979 	if ((icr & E1000_ICR_RXSEQ) ||
1980 	    (icr & E1000_ICR_LSC) ||
1981 	    (icr & E1000_ICR_GPI_EN1)) {
1982 		boolean_t link_changed;
1983 		timeout_id_t tid = 0;
1984 
1985 		stop_watchdog_timer(Adapter);
1986 
1987 		rw_enter(&Adapter->chip_lock, RW_WRITER);
1988 
1989 		/*
1990 		 * Because we got a link-status-change interrupt, force
1991 		 * e1000_check_for_link() to look at phy
1992 		 */
1993 		Adapter->shared.mac.get_link_status = B_TRUE;
1994 
1995 		/* e1000g_link_check takes care of link status change */
1996 		link_changed = e1000g_link_check(Adapter);
1997 
1998 		/* Get new phy state */
1999 		e1000g_get_phy_state(Adapter);
2000 
2001 		/*
2002 		 * If the link timer has not timed out, we'll not notify
2003 		 * the upper layer with any link state until the link is up.
2004 		 */
2005 		if (link_changed && !Adapter->link_complete) {
2006 			if (Adapter->link_state == LINK_STATE_UP) {
2007 				mutex_enter(&Adapter->link_lock);
2008 				Adapter->link_complete = B_TRUE;
2009 				tid = Adapter->link_tid;
2010 				Adapter->link_tid = 0;
2011 				mutex_exit(&Adapter->link_lock);
2012 			} else {
2013 				link_changed = B_FALSE;
2014 			}
2015 		}
2016 		rw_exit(&Adapter->chip_lock);
2017 
2018 		if (link_changed) {
2019 			if (tid != 0)
2020 				(void) untimeout(tid);
2021 
2022 			/*
2023 			 * Workaround for esb2. Data stuck in fifo on a link
2024 			 * down event. Stop receiver here and reset in watchdog.
2025 			 */
2026 			if ((Adapter->link_state == LINK_STATE_DOWN) &&
2027 			    (Adapter->shared.mac.type == e1000_80003es2lan)) {
2028 				uint32_t rctl = E1000_READ_REG(hw, E1000_RCTL);
2029 				E1000_WRITE_REG(hw, E1000_RCTL,
2030 				    rctl & ~E1000_RCTL_EN);
2031 				e1000g_log(Adapter, CE_WARN,
2032 				    "ESB2 receiver disabled");
2033 				Adapter->esb2_workaround = B_TRUE;
2034 			}
2035 
2036 			mac_link_update(Adapter->mh, Adapter->link_state);
2037 		}
2038 
2039 		start_watchdog_timer(Adapter);
2040 	}
2041 }
2042 
2043 static uint32_t
2044 e1000g_get_itr(uint32_t rx_packet, uint32_t tx_packet, uint32_t cur_itr)
2045 {
2046 	uint32_t new_itr;
2047 
2048 	/*
2049 	 * Determine a propper itr according to rx/tx packet count
2050 	 * per interrupt, the value of itr are based on document
2051 	 * and testing.
2052 	 */
2053 	if ((rx_packet < DEFAULT_INTR_PACKET_LOW) ||
2054 	    (tx_packet < DEFAULT_INTR_PACKET_LOW)) {
2055 		new_itr = DEFAULT_INTR_THROTTLING_LOW;
2056 		goto itr_done;
2057 	}
2058 	if ((rx_packet > DEFAULT_INTR_PACKET_HIGH) ||
2059 	    (tx_packet > DEFAULT_INTR_PACKET_HIGH)) {
2060 		new_itr = DEFAULT_INTR_THROTTLING_LOW;
2061 		goto itr_done;
2062 	}
2063 	if (cur_itr < DEFAULT_INTR_THROTTLING_HIGH) {
2064 		new_itr = cur_itr + (DEFAULT_INTR_THROTTLING_HIGH >> 2);
2065 		if (new_itr > DEFAULT_INTR_THROTTLING_HIGH)
2066 			new_itr = DEFAULT_INTR_THROTTLING_HIGH;
2067 	} else
2068 		new_itr = DEFAULT_INTR_THROTTLING_HIGH;
2069 
2070 itr_done:
2071 	if (cur_itr == new_itr)
2072 		return (0);
2073 	else
2074 		return (new_itr);
2075 }
2076 
2077 static void
2078 e1000g_init_unicst(struct e1000g *Adapter)
2079 {
2080 	struct e1000_hw *hw;
2081 	int slot;
2082 
2083 	hw = &Adapter->shared;
2084 
2085 	if (!Adapter->unicst_init) {
2086 		/* Initialize the multiple unicast addresses */
2087 		Adapter->unicst_total = MAX_NUM_UNICAST_ADDRESSES;
2088 
2089 		if ((hw->mac.type == e1000_82571) &&
2090 		    (e1000_get_laa_state_82571(hw) == B_TRUE))
2091 			Adapter->unicst_total--;
2092 
2093 		Adapter->unicst_avail = Adapter->unicst_total - 1;
2094 
2095 		/* Store the default mac address */
2096 		e1000_rar_set(hw, hw->mac.addr, 0);
2097 		if ((hw->mac.type == e1000_82571) &&
2098 		    (e1000_get_laa_state_82571(hw) == B_TRUE))
2099 			e1000_rar_set(hw, hw->mac.addr, LAST_RAR_ENTRY);
2100 
2101 		bcopy(hw->mac.addr, Adapter->unicst_addr[0].mac.addr,
2102 		    ETHERADDRL);
2103 		Adapter->unicst_addr[0].mac.set = 1;
2104 
2105 		for (slot = 1; slot < Adapter->unicst_total; slot++)
2106 			Adapter->unicst_addr[slot].mac.set = 0;
2107 
2108 		Adapter->unicst_init = B_TRUE;
2109 	} else {
2110 		/* Recover the default mac address */
2111 		bcopy(Adapter->unicst_addr[0].mac.addr, hw->mac.addr,
2112 		    ETHERADDRL);
2113 
2114 		/* Store the default mac address */
2115 		e1000_rar_set(hw, hw->mac.addr, 0);
2116 		if ((hw->mac.type == e1000_82571) &&
2117 		    (e1000_get_laa_state_82571(hw) == B_TRUE))
2118 			e1000_rar_set(hw, hw->mac.addr, LAST_RAR_ENTRY);
2119 
2120 		/* Re-configure the RAR registers */
2121 		for (slot = 1; slot < Adapter->unicst_total; slot++)
2122 			e1000_rar_set(hw,
2123 			    Adapter->unicst_addr[slot].mac.addr, slot);
2124 	}
2125 
2126 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK)
2127 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2128 }
2129 
2130 static int
2131 e1000g_m_unicst(void *arg, const uint8_t *mac_addr)
2132 {
2133 	struct e1000g *Adapter;
2134 
2135 	Adapter = (struct e1000g *)arg;
2136 
2137 	/* Store the default MAC address */
2138 	bcopy(mac_addr, Adapter->shared.mac.addr, ETHERADDRL);
2139 
2140 	/* Set MAC address in address slot 0, which is the default address */
2141 	return (e1000g_unicst_set(Adapter, mac_addr, 0));
2142 }
2143 
2144 static int
2145 e1000g_unicst_set(struct e1000g *Adapter, const uint8_t *mac_addr,
2146     mac_addr_slot_t slot)
2147 {
2148 	struct e1000_hw *hw;
2149 
2150 	hw = &Adapter->shared;
2151 
2152 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2153 
2154 	/*
2155 	 * The first revision of Wiseman silicon (rev 2.0) has an errata
2156 	 * that requires the receiver to be in reset when any of the
2157 	 * receive address registers (RAR regs) are accessed.  The first
2158 	 * rev of Wiseman silicon also requires MWI to be disabled when
2159 	 * a global reset or a receive reset is issued.  So before we
2160 	 * initialize the RARs, we check the rev of the Wiseman controller
2161 	 * and work around any necessary HW errata.
2162 	 */
2163 	if ((hw->mac.type == e1000_82542) &&
2164 	    (hw->revision_id == E1000_REVISION_2)) {
2165 		e1000_pci_clear_mwi(hw);
2166 		E1000_WRITE_REG(hw, E1000_RCTL, E1000_RCTL_RST);
2167 		msec_delay(5);
2168 	}
2169 
2170 	bcopy(mac_addr, Adapter->unicst_addr[slot].mac.addr, ETHERADDRL);
2171 	e1000_rar_set(hw, (uint8_t *)mac_addr, slot);
2172 
2173 	if (slot == 0) {
2174 		if ((hw->mac.type == e1000_82571) &&
2175 		    (e1000_get_laa_state_82571(hw) == B_TRUE))
2176 			e1000_rar_set(hw, (uint8_t *)mac_addr, LAST_RAR_ENTRY);
2177 	}
2178 
2179 	/*
2180 	 * If we are using Wiseman rev 2.0 silicon, we will have previously
2181 	 * put the receive in reset, and disabled MWI, to work around some
2182 	 * HW errata.  Now we should take the receiver out of reset, and
2183 	 * re-enabled if MWI if it was previously enabled by the PCI BIOS.
2184 	 */
2185 	if ((hw->mac.type == e1000_82542) &&
2186 	    (hw->revision_id == E1000_REVISION_2)) {
2187 		E1000_WRITE_REG(hw, E1000_RCTL, 0);
2188 		msec_delay(1);
2189 		if (hw->bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
2190 			e1000_pci_set_mwi(hw);
2191 		e1000g_rx_setup(Adapter);
2192 	}
2193 
2194 	rw_exit(&Adapter->chip_lock);
2195 
2196 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
2197 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2198 		return (EIO);
2199 	}
2200 
2201 	return (0);
2202 }
2203 
2204 /*
2205  * e1000g_m_unicst_add() - will find an unused address slot, set the
2206  * address value to the one specified, reserve that slot and enable
2207  * the NIC to start filtering on the new MAC address.
2208  * Returns 0 on success.
2209  */
2210 static int
2211 e1000g_m_unicst_add(void *arg, mac_multi_addr_t *maddr)
2212 {
2213 	struct e1000g *Adapter = (struct e1000g *)arg;
2214 	mac_addr_slot_t slot;
2215 	int err;
2216 
2217 	if (mac_unicst_verify(Adapter->mh,
2218 	    maddr->mma_addr, maddr->mma_addrlen) == B_FALSE)
2219 		return (EINVAL);
2220 
2221 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2222 	if (Adapter->unicst_avail == 0) {
2223 		/* no slots available */
2224 		rw_exit(&Adapter->chip_lock);
2225 		return (ENOSPC);
2226 	}
2227 
2228 	/*
2229 	 * Primary/default address is in slot 0. The next addresses
2230 	 * are the multiple MAC addresses. So multiple MAC address 0
2231 	 * is in slot 1, 1 in slot 2, and so on. So the first multiple
2232 	 * MAC address resides in slot 1.
2233 	 */
2234 	for (slot = 1; slot < Adapter->unicst_total; slot++) {
2235 		if (Adapter->unicst_addr[slot].mac.set == 0) {
2236 			Adapter->unicst_addr[slot].mac.set = 1;
2237 			break;
2238 		}
2239 	}
2240 
2241 	ASSERT((slot > 0) && (slot < Adapter->unicst_total));
2242 
2243 	Adapter->unicst_avail--;
2244 	rw_exit(&Adapter->chip_lock);
2245 
2246 	maddr->mma_slot = slot;
2247 
2248 	if ((err = e1000g_unicst_set(Adapter, maddr->mma_addr, slot)) != 0) {
2249 		rw_enter(&Adapter->chip_lock, RW_WRITER);
2250 		Adapter->unicst_addr[slot].mac.set = 0;
2251 		Adapter->unicst_avail++;
2252 		rw_exit(&Adapter->chip_lock);
2253 	}
2254 
2255 	return (err);
2256 }
2257 
2258 /*
2259  * e1000g_m_unicst_remove() - removes a MAC address that was added by a
2260  * call to e1000g_m_unicst_add(). The slot number that was returned in
2261  * e1000g_m_unicst_add() is passed in the call to remove the address.
2262  * Returns 0 on success.
2263  */
2264 static int
2265 e1000g_m_unicst_remove(void *arg, mac_addr_slot_t slot)
2266 {
2267 	struct e1000g *Adapter = (struct e1000g *)arg;
2268 	int err;
2269 
2270 	if ((slot <= 0) || (slot >= Adapter->unicst_total))
2271 		return (EINVAL);
2272 
2273 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2274 	if (Adapter->unicst_addr[slot].mac.set == 1) {
2275 		Adapter->unicst_addr[slot].mac.set = 0;
2276 		Adapter->unicst_avail++;
2277 		rw_exit(&Adapter->chip_lock);
2278 
2279 		/* Copy the default address to the passed slot */
2280 		if ((err = e1000g_unicst_set(Adapter,
2281 		    Adapter->unicst_addr[0].mac.addr, slot)) != 0) {
2282 			rw_enter(&Adapter->chip_lock, RW_WRITER);
2283 			Adapter->unicst_addr[slot].mac.set = 1;
2284 			Adapter->unicst_avail--;
2285 			rw_exit(&Adapter->chip_lock);
2286 		}
2287 		return (err);
2288 	}
2289 	rw_exit(&Adapter->chip_lock);
2290 
2291 	return (EINVAL);
2292 }
2293 
2294 /*
2295  * e1000g_m_unicst_modify() - modifies the value of an address that
2296  * has been added by e1000g_m_unicst_add(). The new address, address
2297  * length and the slot number that was returned in the call to add
2298  * should be passed to e1000g_m_unicst_modify(). mma_flags should be
2299  * set to 0. Returns 0 on success.
2300  */
2301 static int
2302 e1000g_m_unicst_modify(void *arg, mac_multi_addr_t *maddr)
2303 {
2304 	struct e1000g *Adapter = (struct e1000g *)arg;
2305 	mac_addr_slot_t slot;
2306 
2307 	if (mac_unicst_verify(Adapter->mh,
2308 	    maddr->mma_addr, maddr->mma_addrlen) == B_FALSE)
2309 		return (EINVAL);
2310 
2311 	slot = maddr->mma_slot;
2312 
2313 	if ((slot <= 0) || (slot >= Adapter->unicst_total))
2314 		return (EINVAL);
2315 
2316 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2317 	if (Adapter->unicst_addr[slot].mac.set == 1) {
2318 		rw_exit(&Adapter->chip_lock);
2319 
2320 		return (e1000g_unicst_set(Adapter, maddr->mma_addr, slot));
2321 	}
2322 	rw_exit(&Adapter->chip_lock);
2323 
2324 	return (EINVAL);
2325 }
2326 
2327 /*
2328  * e1000g_m_unicst_get() - will get the MAC address and all other
2329  * information related to the address slot passed in mac_multi_addr_t.
2330  * mma_flags should be set to 0 in the call.
2331  * On return, mma_flags can take the following values:
2332  * 1) MMAC_SLOT_UNUSED
2333  * 2) MMAC_SLOT_USED | MMAC_VENDOR_ADDR
2334  * 3) MMAC_SLOT_UNUSED | MMAC_VENDOR_ADDR
2335  * 4) MMAC_SLOT_USED
2336  */
2337 static int
2338 e1000g_m_unicst_get(void *arg, mac_multi_addr_t *maddr)
2339 {
2340 	struct e1000g *Adapter = (struct e1000g *)arg;
2341 	mac_addr_slot_t slot;
2342 
2343 	slot = maddr->mma_slot;
2344 
2345 	if ((slot <= 0) || (slot >= Adapter->unicst_total))
2346 		return (EINVAL);
2347 
2348 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2349 	if (Adapter->unicst_addr[slot].mac.set == 1) {
2350 		bcopy(Adapter->unicst_addr[slot].mac.addr,
2351 		    maddr->mma_addr, ETHERADDRL);
2352 		maddr->mma_flags = MMAC_SLOT_USED;
2353 	} else {
2354 		maddr->mma_flags = MMAC_SLOT_UNUSED;
2355 	}
2356 	rw_exit(&Adapter->chip_lock);
2357 
2358 	return (0);
2359 }
2360 
2361 static int
2362 multicst_add(struct e1000g *Adapter, const uint8_t *multiaddr)
2363 {
2364 	struct e1000_hw *hw = &Adapter->shared;
2365 	int res = 0;
2366 
2367 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2368 
2369 	if ((multiaddr[0] & 01) == 0) {
2370 		res = EINVAL;
2371 		goto done;
2372 	}
2373 
2374 	if (Adapter->mcast_count >= MAX_NUM_MULTICAST_ADDRESSES) {
2375 		res = ENOENT;
2376 		goto done;
2377 	}
2378 
2379 	bcopy(multiaddr,
2380 	    &Adapter->mcast_table[Adapter->mcast_count], ETHERADDRL);
2381 	Adapter->mcast_count++;
2382 
2383 	/*
2384 	 * Update the MC table in the hardware
2385 	 */
2386 	e1000g_clear_interrupt(Adapter);
2387 
2388 	e1000g_setup_multicast(Adapter);
2389 
2390 	if ((hw->mac.type == e1000_82542) &&
2391 	    (hw->revision_id == E1000_REVISION_2))
2392 		e1000g_rx_setup(Adapter);
2393 
2394 	e1000g_mask_interrupt(Adapter);
2395 
2396 done:
2397 	rw_exit(&Adapter->chip_lock);
2398 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
2399 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2400 		res = EIO;
2401 	}
2402 
2403 	return (res);
2404 }
2405 
2406 static int
2407 multicst_remove(struct e1000g *Adapter, const uint8_t *multiaddr)
2408 {
2409 	struct e1000_hw *hw = &Adapter->shared;
2410 	unsigned i;
2411 
2412 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2413 
2414 	for (i = 0; i < Adapter->mcast_count; i++) {
2415 		if (bcmp(multiaddr, &Adapter->mcast_table[i],
2416 		    ETHERADDRL) == 0) {
2417 			for (i++; i < Adapter->mcast_count; i++) {
2418 				Adapter->mcast_table[i - 1] =
2419 				    Adapter->mcast_table[i];
2420 			}
2421 			Adapter->mcast_count--;
2422 			break;
2423 		}
2424 	}
2425 
2426 	/*
2427 	 * Update the MC table in the hardware
2428 	 */
2429 	e1000g_clear_interrupt(Adapter);
2430 
2431 	e1000g_setup_multicast(Adapter);
2432 
2433 	if ((hw->mac.type == e1000_82542) &&
2434 	    (hw->revision_id == E1000_REVISION_2))
2435 		e1000g_rx_setup(Adapter);
2436 
2437 	e1000g_mask_interrupt(Adapter);
2438 
2439 done:
2440 	rw_exit(&Adapter->chip_lock);
2441 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
2442 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2443 		return (EIO);
2444 	}
2445 
2446 	return (0);
2447 }
2448 
2449 /*
2450  * e1000g_setup_multicast - setup multicast data structures
2451  *
2452  * This routine initializes all of the multicast related structures.
2453  */
2454 void
2455 e1000g_setup_multicast(struct e1000g *Adapter)
2456 {
2457 	uint8_t *mc_addr_list;
2458 	uint32_t mc_addr_count;
2459 	uint32_t rctl;
2460 	struct e1000_hw *hw;
2461 
2462 	hw = &Adapter->shared;
2463 
2464 	/*
2465 	 * The e1000g has the ability to do perfect filtering of 16
2466 	 * addresses. The driver uses one of the e1000g's 16 receive
2467 	 * address registers for its node/network/mac/individual address.
2468 	 * So, we have room for up to 15 multicast addresses in the CAM,
2469 	 * additional MC addresses are handled by the MTA (Multicast Table
2470 	 * Array)
2471 	 */
2472 
2473 	rctl = E1000_READ_REG(hw, E1000_RCTL);
2474 
2475 	mc_addr_list = (uint8_t *)Adapter->mcast_table;
2476 
2477 	if (Adapter->mcast_count > MAX_NUM_MULTICAST_ADDRESSES) {
2478 		E1000G_DEBUGLOG_1(Adapter, CE_WARN,
2479 		    "Adapter requested more than %d MC Addresses.\n",
2480 		    MAX_NUM_MULTICAST_ADDRESSES);
2481 		mc_addr_count = MAX_NUM_MULTICAST_ADDRESSES;
2482 	} else {
2483 		/*
2484 		 * Set the number of MC addresses that we are being
2485 		 * requested to use
2486 		 */
2487 		mc_addr_count = Adapter->mcast_count;
2488 	}
2489 	/*
2490 	 * The Wiseman 2.0 silicon has an errata by which the receiver will
2491 	 * hang  while writing to the receive address registers if the receiver
2492 	 * is not in reset before writing to the registers. Updating the RAR
2493 	 * is done during the setting up of the multicast table, hence the
2494 	 * receiver has to be put in reset before updating the multicast table
2495 	 * and then taken out of reset at the end
2496 	 */
2497 	/*
2498 	 * if WMI was enabled then dis able it before issueing the global
2499 	 * reset to the hardware.
2500 	 */
2501 	/*
2502 	 * Only required for WISEMAN_2_0
2503 	 */
2504 	if ((hw->mac.type == e1000_82542) &&
2505 	    (hw->revision_id == E1000_REVISION_2)) {
2506 		e1000_pci_clear_mwi(hw);
2507 		/*
2508 		 * The e1000g must be in reset before changing any RA
2509 		 * registers. Reset receive unit.  The chip will remain in
2510 		 * the reset state until software explicitly restarts it.
2511 		 */
2512 		E1000_WRITE_REG(hw, E1000_RCTL, E1000_RCTL_RST);
2513 		/* Allow receiver time to go in to reset */
2514 		msec_delay(5);
2515 	}
2516 
2517 	e1000_update_mc_addr_list(hw, mc_addr_list, mc_addr_count,
2518 	    Adapter->unicst_total, hw->mac.rar_entry_count);
2519 
2520 	/*
2521 	 * Only for Wiseman_2_0
2522 	 * If MWI was enabled then re-enable it after issueing (as we
2523 	 * disabled it up there) the receive reset command.
2524 	 * Wainwright does not have a receive reset command and only thing
2525 	 * close to it is global reset which will require tx setup also
2526 	 */
2527 	if ((hw->mac.type == e1000_82542) &&
2528 	    (hw->revision_id == E1000_REVISION_2)) {
2529 		/*
2530 		 * if WMI was enabled then reenable it after issueing the
2531 		 * global or receive reset to the hardware.
2532 		 */
2533 
2534 		/*
2535 		 * Take receiver out of reset
2536 		 * clear E1000_RCTL_RST bit (and all others)
2537 		 */
2538 		E1000_WRITE_REG(hw, E1000_RCTL, 0);
2539 		msec_delay(5);
2540 		if (hw->bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
2541 			e1000_pci_set_mwi(hw);
2542 	}
2543 
2544 	/*
2545 	 * Restore original value
2546 	 */
2547 	E1000_WRITE_REG(hw, E1000_RCTL, rctl);
2548 }
2549 
2550 int
2551 e1000g_m_multicst(void *arg, boolean_t add, const uint8_t *addr)
2552 {
2553 	struct e1000g *Adapter = (struct e1000g *)arg;
2554 
2555 	return ((add) ? multicst_add(Adapter, addr)
2556 	    : multicst_remove(Adapter, addr));
2557 }
2558 
2559 int
2560 e1000g_m_promisc(void *arg, boolean_t on)
2561 {
2562 	struct e1000g *Adapter = (struct e1000g *)arg;
2563 	uint32_t rctl;
2564 
2565 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2566 
2567 	rctl = E1000_READ_REG(&Adapter->shared, E1000_RCTL);
2568 
2569 	if (on)
2570 		rctl |=
2571 		    (E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_BAM);
2572 	else
2573 		rctl &= (~(E1000_RCTL_UPE | E1000_RCTL_MPE));
2574 
2575 	E1000_WRITE_REG(&Adapter->shared, E1000_RCTL, rctl);
2576 
2577 	Adapter->e1000g_promisc = on;
2578 
2579 	rw_exit(&Adapter->chip_lock);
2580 
2581 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
2582 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2583 		return (EIO);
2584 	}
2585 
2586 	return (0);
2587 }
2588 
2589 static boolean_t
2590 e1000g_m_getcapab(void *arg, mac_capab_t cap, void *cap_data)
2591 {
2592 	struct e1000g *Adapter = (struct e1000g *)arg;
2593 
2594 	switch (cap) {
2595 	case MAC_CAPAB_HCKSUM: {
2596 		uint32_t *txflags = cap_data;
2597 
2598 		if (Adapter->tx_hcksum_enable)
2599 			*txflags = HCKSUM_IPHDRCKSUM |
2600 			    HCKSUM_INET_PARTIAL;
2601 		else
2602 			return (B_FALSE);
2603 		break;
2604 	}
2605 	case MAC_CAPAB_POLL:
2606 		/*
2607 		 * There's nothing for us to fill in, simply returning
2608 		 * B_TRUE stating that we support polling is sufficient.
2609 		 */
2610 		break;
2611 
2612 	case MAC_CAPAB_MULTIADDRESS: {
2613 		multiaddress_capab_t *mmacp = cap_data;
2614 
2615 		/*
2616 		 * The number of MAC addresses made available by
2617 		 * this capability is one less than the total as
2618 		 * the primary address in slot 0 is counted in
2619 		 * the total.
2620 		 */
2621 		mmacp->maddr_naddr = Adapter->unicst_total - 1;
2622 		mmacp->maddr_naddrfree = Adapter->unicst_avail;
2623 		/* No multiple factory addresses, set mma_flag to 0 */
2624 		mmacp->maddr_flag = 0;
2625 		mmacp->maddr_handle = Adapter;
2626 		mmacp->maddr_add = e1000g_m_unicst_add;
2627 		mmacp->maddr_remove = e1000g_m_unicst_remove;
2628 		mmacp->maddr_modify = e1000g_m_unicst_modify;
2629 		mmacp->maddr_get = e1000g_m_unicst_get;
2630 		mmacp->maddr_reserve = NULL;
2631 		break;
2632 	}
2633 
2634 	case MAC_CAPAB_LSO: {
2635 		mac_capab_lso_t *cap_lso = cap_data;
2636 
2637 		if (Adapter->lso_enable) {
2638 			cap_lso->lso_flags = LSO_TX_BASIC_TCP_IPV4;
2639 			cap_lso->lso_basic_tcp_ipv4.lso_max =
2640 			    E1000_LSO_MAXLEN;
2641 		} else
2642 			return (B_FALSE);
2643 		break;
2644 	}
2645 
2646 	default:
2647 		return (B_FALSE);
2648 	}
2649 	return (B_TRUE);
2650 }
2651 
2652 static boolean_t
2653 e1000g_param_locked(mac_prop_id_t pr_num)
2654 {
2655 	/*
2656 	 * All en_* parameters are locked (read-only) while
2657 	 * the device is in any sort of loopback mode ...
2658 	 */
2659 	switch (pr_num) {
2660 		case MAC_PROP_EN_1000FDX_CAP:
2661 		case MAC_PROP_EN_1000HDX_CAP:
2662 		case MAC_PROP_EN_100FDX_CAP:
2663 		case MAC_PROP_EN_100HDX_CAP:
2664 		case MAC_PROP_EN_10FDX_CAP:
2665 		case MAC_PROP_EN_10HDX_CAP:
2666 		case MAC_PROP_AUTONEG:
2667 		case MAC_PROP_FLOWCTRL:
2668 			return (B_TRUE);
2669 	}
2670 	return (B_FALSE);
2671 }
2672 
2673 /*
2674  * callback function for set/get of properties
2675  */
2676 static int
2677 e1000g_m_setprop(void *arg, const char *pr_name, mac_prop_id_t pr_num,
2678     uint_t pr_valsize, const void *pr_val)
2679 {
2680 	struct e1000g *Adapter = arg;
2681 	struct e1000_mac_info *mac = &Adapter->shared.mac;
2682 	struct e1000_phy_info *phy = &Adapter->shared.phy;
2683 	struct e1000_fc_info *fc = &Adapter->shared.fc;
2684 	int err = 0;
2685 	link_flowctrl_t flowctrl;
2686 	uint32_t cur_mtu, new_mtu;
2687 	uint64_t tmp = 0;
2688 
2689 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2690 	if (Adapter->loopback_mode != E1000G_LB_NONE &&
2691 	    e1000g_param_locked(pr_num)) {
2692 		/*
2693 		 * All en_* parameters are locked (read-only)
2694 		 * while the device is in any sort of loopback mode.
2695 		 */
2696 		rw_exit(&Adapter->chip_lock);
2697 		return (EBUSY);
2698 	}
2699 
2700 	switch (pr_num) {
2701 		case MAC_PROP_EN_1000FDX_CAP:
2702 			Adapter->param_en_1000fdx = *(uint8_t *)pr_val;
2703 			Adapter->param_adv_1000fdx = *(uint8_t *)pr_val;
2704 			goto reset;
2705 		case MAC_PROP_EN_100FDX_CAP:
2706 			Adapter->param_en_100fdx = *(uint8_t *)pr_val;
2707 			Adapter->param_adv_100fdx = *(uint8_t *)pr_val;
2708 			goto reset;
2709 		case MAC_PROP_EN_100HDX_CAP:
2710 			Adapter->param_en_100hdx = *(uint8_t *)pr_val;
2711 			Adapter->param_adv_100hdx = *(uint8_t *)pr_val;
2712 			goto reset;
2713 		case MAC_PROP_EN_10FDX_CAP:
2714 			Adapter->param_en_10fdx = *(uint8_t *)pr_val;
2715 			Adapter->param_adv_10fdx = *(uint8_t *)pr_val;
2716 			goto reset;
2717 		case MAC_PROP_EN_10HDX_CAP:
2718 			Adapter->param_en_10hdx = *(uint8_t *)pr_val;
2719 			Adapter->param_adv_10hdx = *(uint8_t *)pr_val;
2720 			goto reset;
2721 		case MAC_PROP_AUTONEG:
2722 			Adapter->param_adv_autoneg = *(uint8_t *)pr_val;
2723 			goto reset;
2724 		case MAC_PROP_FLOWCTRL:
2725 			fc->send_xon = B_TRUE;
2726 			bcopy(pr_val, &flowctrl, sizeof (flowctrl));
2727 
2728 			switch (flowctrl) {
2729 			default:
2730 				err = EINVAL;
2731 				break;
2732 			case LINK_FLOWCTRL_NONE:
2733 				fc->type = e1000_fc_none;
2734 				break;
2735 			case LINK_FLOWCTRL_RX:
2736 				fc->type = e1000_fc_rx_pause;
2737 				break;
2738 			case LINK_FLOWCTRL_TX:
2739 				fc->type = e1000_fc_tx_pause;
2740 				break;
2741 			case LINK_FLOWCTRL_BI:
2742 				fc->type = e1000_fc_full;
2743 				break;
2744 			}
2745 reset:
2746 			if (err == 0) {
2747 				if (e1000g_reset_link(Adapter) != DDI_SUCCESS)
2748 					err = EINVAL;
2749 			}
2750 			break;
2751 		case MAC_PROP_ADV_1000FDX_CAP:
2752 		case MAC_PROP_ADV_1000HDX_CAP:
2753 		case MAC_PROP_ADV_100FDX_CAP:
2754 		case MAC_PROP_ADV_100HDX_CAP:
2755 		case MAC_PROP_ADV_10FDX_CAP:
2756 		case MAC_PROP_ADV_10HDX_CAP:
2757 		case MAC_PROP_EN_1000HDX_CAP:
2758 		case MAC_PROP_STATUS:
2759 		case MAC_PROP_SPEED:
2760 		case MAC_PROP_DUPLEX:
2761 			err = ENOTSUP; /* read-only prop. Can't set this. */
2762 			break;
2763 		case MAC_PROP_MTU:
2764 			cur_mtu = Adapter->default_mtu;
2765 			bcopy(pr_val, &new_mtu, sizeof (new_mtu));
2766 			if (new_mtu == cur_mtu) {
2767 				err = 0;
2768 				break;
2769 			}
2770 
2771 			tmp = new_mtu + sizeof (struct ether_vlan_header) +
2772 			    ETHERFCSL;
2773 			if ((tmp < DEFAULT_FRAME_SIZE) ||
2774 			    (tmp > MAXIMUM_FRAME_SIZE)) {
2775 				err = EINVAL;
2776 				break;
2777 			}
2778 
2779 			/* ich8 does not support jumbo frames */
2780 			if ((mac->type == e1000_ich8lan) &&
2781 			    (tmp > DEFAULT_FRAME_SIZE)) {
2782 				err = EINVAL;
2783 				break;
2784 			}
2785 			/* ich9 does not do jumbo frames on one phy type */
2786 			if ((mac->type == e1000_ich9lan) &&
2787 			    (phy->type == e1000_phy_ife) &&
2788 			    (tmp > DEFAULT_FRAME_SIZE)) {
2789 				err = EINVAL;
2790 				break;
2791 			}
2792 			if (Adapter->chip_state != E1000G_STOP) {
2793 				err = EBUSY;
2794 				break;
2795 			}
2796 
2797 			err = mac_maxsdu_update(Adapter->mh, new_mtu);
2798 			if (err == 0) {
2799 				Adapter->max_frame_size = (uint32_t)tmp;
2800 				Adapter->default_mtu = new_mtu;
2801 				e1000g_set_bufsize(Adapter);
2802 			}
2803 			break;
2804 		case MAC_PROP_PRIVATE:
2805 			err = e1000g_set_priv_prop(Adapter, pr_name,
2806 			    pr_valsize, pr_val);
2807 			break;
2808 		default:
2809 			err = ENOTSUP;
2810 			break;
2811 	}
2812 	rw_exit(&Adapter->chip_lock);
2813 	return (err);
2814 }
2815 
2816 static int
2817 e1000g_m_getprop(void *arg, const char *pr_name, mac_prop_id_t pr_num,
2818     uint_t pr_flags, uint_t pr_valsize, void *pr_val, uint_t *perm)
2819 {
2820 	struct e1000g *Adapter = arg;
2821 	struct e1000_fc_info *fc = &Adapter->shared.fc;
2822 	int err = 0;
2823 	link_flowctrl_t flowctrl;
2824 	uint64_t tmp = 0;
2825 
2826 	if (pr_valsize == 0)
2827 		return (EINVAL);
2828 
2829 	*perm = MAC_PROP_PERM_RW;
2830 
2831 	bzero(pr_val, pr_valsize);
2832 	if ((pr_flags & MAC_PROP_DEFAULT) && (pr_num != MAC_PROP_PRIVATE)) {
2833 		return (e1000g_get_def_val(Adapter, pr_num,
2834 		    pr_valsize, pr_val));
2835 	}
2836 
2837 	switch (pr_num) {
2838 		case MAC_PROP_DUPLEX:
2839 			*perm = MAC_PROP_PERM_READ;
2840 			if (pr_valsize >= sizeof (link_duplex_t)) {
2841 				bcopy(&Adapter->link_duplex, pr_val,
2842 				    sizeof (link_duplex_t));
2843 			} else
2844 				err = EINVAL;
2845 			break;
2846 		case MAC_PROP_SPEED:
2847 			*perm = MAC_PROP_PERM_READ;
2848 			if (pr_valsize >= sizeof (uint64_t)) {
2849 				tmp = Adapter->link_speed * 1000000ull;
2850 				bcopy(&tmp, pr_val, sizeof (tmp));
2851 			} else
2852 				err = EINVAL;
2853 			break;
2854 		case MAC_PROP_AUTONEG:
2855 			*(uint8_t *)pr_val = Adapter->param_adv_autoneg;
2856 			break;
2857 		case MAC_PROP_FLOWCTRL:
2858 			if (pr_valsize >= sizeof (link_flowctrl_t)) {
2859 				switch (fc->type) {
2860 					case e1000_fc_none:
2861 						flowctrl = LINK_FLOWCTRL_NONE;
2862 						break;
2863 					case e1000_fc_rx_pause:
2864 						flowctrl = LINK_FLOWCTRL_RX;
2865 						break;
2866 					case e1000_fc_tx_pause:
2867 						flowctrl = LINK_FLOWCTRL_TX;
2868 						break;
2869 					case e1000_fc_full:
2870 						flowctrl = LINK_FLOWCTRL_BI;
2871 						break;
2872 				}
2873 				bcopy(&flowctrl, pr_val, sizeof (flowctrl));
2874 			} else
2875 				err = EINVAL;
2876 			break;
2877 		case MAC_PROP_ADV_1000FDX_CAP:
2878 			*perm = MAC_PROP_PERM_READ;
2879 			*(uint8_t *)pr_val = Adapter->param_adv_1000fdx;
2880 			break;
2881 		case MAC_PROP_EN_1000FDX_CAP:
2882 			*(uint8_t *)pr_val = Adapter->param_en_1000fdx;
2883 			break;
2884 		case MAC_PROP_ADV_1000HDX_CAP:
2885 			*perm = MAC_PROP_PERM_READ;
2886 			*(uint8_t *)pr_val = Adapter->param_adv_1000hdx;
2887 			break;
2888 		case MAC_PROP_EN_1000HDX_CAP:
2889 			*perm = MAC_PROP_PERM_READ;
2890 			*(uint8_t *)pr_val = Adapter->param_en_1000hdx;
2891 			break;
2892 		case MAC_PROP_ADV_100FDX_CAP:
2893 			*perm = MAC_PROP_PERM_READ;
2894 			*(uint8_t *)pr_val = Adapter->param_adv_100fdx;
2895 			break;
2896 		case MAC_PROP_EN_100FDX_CAP:
2897 			*(uint8_t *)pr_val = Adapter->param_en_100fdx;
2898 			break;
2899 		case MAC_PROP_ADV_100HDX_CAP:
2900 			*perm = MAC_PROP_PERM_READ;
2901 			*(uint8_t *)pr_val = Adapter->param_adv_100hdx;
2902 			break;
2903 		case MAC_PROP_EN_100HDX_CAP:
2904 			*(uint8_t *)pr_val = Adapter->param_en_100hdx;
2905 			break;
2906 		case MAC_PROP_ADV_10FDX_CAP:
2907 			*perm = MAC_PROP_PERM_READ;
2908 			*(uint8_t *)pr_val = Adapter->param_adv_10fdx;
2909 			break;
2910 		case MAC_PROP_EN_10FDX_CAP:
2911 			*(uint8_t *)pr_val = Adapter->param_en_10fdx;
2912 			break;
2913 		case MAC_PROP_ADV_10HDX_CAP:
2914 			*perm = MAC_PROP_PERM_READ;
2915 			*(uint8_t *)pr_val = Adapter->param_adv_10hdx;
2916 			break;
2917 		case MAC_PROP_EN_10HDX_CAP:
2918 			*(uint8_t *)pr_val = Adapter->param_en_10hdx;
2919 			break;
2920 		case MAC_PROP_ADV_100T4_CAP:
2921 		case MAC_PROP_EN_100T4_CAP:
2922 			*perm = MAC_PROP_PERM_READ;
2923 			*(uint8_t *)pr_val = Adapter->param_adv_100t4;
2924 			break;
2925 		case MAC_PROP_PRIVATE:
2926 			err = e1000g_get_priv_prop(Adapter, pr_name,
2927 			    pr_flags, pr_valsize, pr_val, perm);
2928 			break;
2929 		default:
2930 			err = ENOTSUP;
2931 			break;
2932 	}
2933 	return (err);
2934 }
2935 
2936 /* ARGSUSED2 */
2937 static int
2938 e1000g_set_priv_prop(struct e1000g *Adapter, const char *pr_name,
2939     uint_t pr_valsize, const void *pr_val)
2940 {
2941 	int err = 0;
2942 	long result;
2943 	struct e1000_hw *hw = &Adapter->shared;
2944 
2945 	if (strcmp(pr_name, "_tx_bcopy_threshold") == 0) {
2946 		if (pr_val == NULL) {
2947 			err = EINVAL;
2948 			return (err);
2949 		}
2950 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
2951 		if (result < MIN_TX_BCOPY_THRESHOLD ||
2952 		    result > MAX_TX_BCOPY_THRESHOLD)
2953 			err = EINVAL;
2954 		else {
2955 			Adapter->tx_bcopy_thresh = (uint32_t)result;
2956 		}
2957 		return (err);
2958 	}
2959 	if (strcmp(pr_name, "_tx_interrupt_enable") == 0) {
2960 		if (pr_val == NULL) {
2961 			err = EINVAL;
2962 			return (err);
2963 		}
2964 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
2965 		if (result < 0 || result > 1)
2966 			err = EINVAL;
2967 		else {
2968 			Adapter->tx_intr_enable = (result == 1) ?
2969 			    B_TRUE: B_FALSE;
2970 			if (Adapter->tx_intr_enable)
2971 				e1000g_mask_tx_interrupt(Adapter);
2972 			else
2973 				e1000g_clear_tx_interrupt(Adapter);
2974 			if (e1000g_check_acc_handle(
2975 			    Adapter->osdep.reg_handle) != DDI_FM_OK)
2976 				ddi_fm_service_impact(Adapter->dip,
2977 				    DDI_SERVICE_DEGRADED);
2978 		}
2979 		return (err);
2980 	}
2981 	if (strcmp(pr_name, "_tx_intr_delay") == 0) {
2982 		if (pr_val == NULL) {
2983 			err = EINVAL;
2984 			return (err);
2985 		}
2986 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
2987 		if (result < MIN_TX_INTR_DELAY ||
2988 		    result > MAX_TX_INTR_DELAY)
2989 			err = EINVAL;
2990 		else {
2991 			Adapter->tx_intr_delay = (uint32_t)result;
2992 			E1000_WRITE_REG(hw, E1000_TIDV, Adapter->tx_intr_delay);
2993 			if (e1000g_check_acc_handle(
2994 			    Adapter->osdep.reg_handle) != DDI_FM_OK)
2995 				ddi_fm_service_impact(Adapter->dip,
2996 				    DDI_SERVICE_DEGRADED);
2997 		}
2998 		return (err);
2999 	}
3000 	if (strcmp(pr_name, "_tx_intr_abs_delay") == 0) {
3001 		if (pr_val == NULL) {
3002 			err = EINVAL;
3003 			return (err);
3004 		}
3005 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3006 		if (result < MIN_TX_INTR_ABS_DELAY ||
3007 		    result > MAX_TX_INTR_ABS_DELAY)
3008 			err = EINVAL;
3009 		else {
3010 			Adapter->tx_intr_abs_delay = (uint32_t)result;
3011 			E1000_WRITE_REG(hw, E1000_TADV,
3012 			    Adapter->tx_intr_abs_delay);
3013 			if (e1000g_check_acc_handle(
3014 			    Adapter->osdep.reg_handle) != DDI_FM_OK)
3015 				ddi_fm_service_impact(Adapter->dip,
3016 				    DDI_SERVICE_DEGRADED);
3017 		}
3018 		return (err);
3019 	}
3020 	if (strcmp(pr_name, "_rx_bcopy_threshold") == 0) {
3021 		if (pr_val == NULL) {
3022 			err = EINVAL;
3023 			return (err);
3024 		}
3025 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3026 		if (result < MIN_RX_BCOPY_THRESHOLD ||
3027 		    result > MAX_RX_BCOPY_THRESHOLD)
3028 			err = EINVAL;
3029 		else
3030 			Adapter->rx_bcopy_thresh = (uint32_t)result;
3031 		return (err);
3032 	}
3033 	if (strcmp(pr_name, "_max_num_rcv_packets") == 0) {
3034 		if (pr_val == NULL) {
3035 			err = EINVAL;
3036 			return (err);
3037 		}
3038 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3039 		if (result < MIN_RX_LIMIT_ON_INTR ||
3040 		    result > MAX_RX_LIMIT_ON_INTR)
3041 			err = EINVAL;
3042 		else
3043 			Adapter->rx_limit_onintr = (uint32_t)result;
3044 		return (err);
3045 	}
3046 	if (strcmp(pr_name, "_rx_intr_delay") == 0) {
3047 		if (pr_val == NULL) {
3048 			err = EINVAL;
3049 			return (err);
3050 		}
3051 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3052 		if (result < MIN_RX_INTR_DELAY ||
3053 		    result > MAX_RX_INTR_DELAY)
3054 			err = EINVAL;
3055 		else {
3056 			Adapter->rx_intr_delay = (uint32_t)result;
3057 			E1000_WRITE_REG(hw, E1000_RDTR, Adapter->rx_intr_delay);
3058 			if (e1000g_check_acc_handle(
3059 			    Adapter->osdep.reg_handle) != DDI_FM_OK)
3060 				ddi_fm_service_impact(Adapter->dip,
3061 				    DDI_SERVICE_DEGRADED);
3062 		}
3063 		return (err);
3064 	}
3065 	if (strcmp(pr_name, "_rx_intr_abs_delay") == 0) {
3066 		if (pr_val == NULL) {
3067 			err = EINVAL;
3068 			return (err);
3069 		}
3070 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3071 		if (result < MIN_RX_INTR_ABS_DELAY ||
3072 		    result > MAX_RX_INTR_ABS_DELAY)
3073 			err = EINVAL;
3074 		else {
3075 			Adapter->rx_intr_abs_delay = (uint32_t)result;
3076 			E1000_WRITE_REG(hw, E1000_RADV,
3077 			    Adapter->rx_intr_abs_delay);
3078 			if (e1000g_check_acc_handle(
3079 			    Adapter->osdep.reg_handle) != DDI_FM_OK)
3080 				ddi_fm_service_impact(Adapter->dip,
3081 				    DDI_SERVICE_DEGRADED);
3082 		}
3083 		return (err);
3084 	}
3085 	if (strcmp(pr_name, "_intr_throttling_rate") == 0) {
3086 		if (pr_val == NULL) {
3087 			err = EINVAL;
3088 			return (err);
3089 		}
3090 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3091 		if (result < MIN_INTR_THROTTLING ||
3092 		    result > MAX_INTR_THROTTLING)
3093 			err = EINVAL;
3094 		else {
3095 			if (hw->mac.type >= e1000_82540) {
3096 				Adapter->intr_throttling_rate =
3097 				    (uint32_t)result;
3098 				E1000_WRITE_REG(hw, E1000_ITR,
3099 				    Adapter->intr_throttling_rate);
3100 				if (e1000g_check_acc_handle(
3101 				    Adapter->osdep.reg_handle) != DDI_FM_OK)
3102 					ddi_fm_service_impact(Adapter->dip,
3103 					    DDI_SERVICE_DEGRADED);
3104 			} else
3105 				err = EINVAL;
3106 		}
3107 		return (err);
3108 	}
3109 	if (strcmp(pr_name, "_intr_adaptive") == 0) {
3110 		if (pr_val == NULL) {
3111 			err = EINVAL;
3112 			return (err);
3113 		}
3114 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3115 		if (result < 0 || result > 1)
3116 			err = EINVAL;
3117 		else {
3118 			if (hw->mac.type >= e1000_82540) {
3119 				Adapter->intr_adaptive = (result == 1) ?
3120 				    B_TRUE : B_FALSE;
3121 			} else {
3122 				err = EINVAL;
3123 			}
3124 		}
3125 		return (err);
3126 	}
3127 	if (strcmp(pr_name, "_tx_recycle_thresh") == 0) {
3128 		if (pr_val == NULL) {
3129 			err = EINVAL;
3130 			return (err);
3131 		}
3132 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3133 		if (result < MIN_TX_RECYCLE_THRESHOLD ||
3134 		    result > MAX_TX_RECYCLE_THRESHOLD)
3135 			err = EINVAL;
3136 		else
3137 			Adapter->tx_recycle_thresh = (uint32_t)result;
3138 		return (err);
3139 	}
3140 	if (strcmp(pr_name, "_tx_recycle_num") == 0) {
3141 		if (pr_val == NULL) {
3142 			err = EINVAL;
3143 			return (err);
3144 		}
3145 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3146 		if (result < MIN_TX_RECYCLE_NUM ||
3147 		    result > MAX_TX_RECYCLE_NUM)
3148 			err = EINVAL;
3149 		else
3150 			Adapter->tx_recycle_num = (uint32_t)result;
3151 		return (err);
3152 	}
3153 	return (ENOTSUP);
3154 }
3155 
3156 static int
3157 e1000g_get_priv_prop(struct e1000g *Adapter, const char *pr_name,
3158     uint_t pr_flags, uint_t pr_valsize, void *pr_val, uint_t *perm)
3159 {
3160 	int err = ENOTSUP;
3161 	boolean_t is_default = (pr_flags & MAC_PROP_DEFAULT);
3162 	int value;
3163 
3164 	if (strcmp(pr_name, "_adv_pause_cap") == 0) {
3165 		*perm = MAC_PROP_PERM_READ;
3166 		if (is_default)
3167 			goto done;
3168 		value = Adapter->param_adv_pause;
3169 		err = 0;
3170 		goto done;
3171 	}
3172 	if (strcmp(pr_name, "_adv_asym_pause_cap") == 0) {
3173 		*perm = MAC_PROP_PERM_READ;
3174 		if (is_default)
3175 			goto done;
3176 		value = Adapter->param_adv_asym_pause;
3177 		err = 0;
3178 		goto done;
3179 	}
3180 	if (strcmp(pr_name, "_tx_bcopy_threshold") == 0) {
3181 		value = (is_default ? DEFAULT_TX_BCOPY_THRESHOLD :
3182 		    Adapter->tx_bcopy_thresh);
3183 		err = 0;
3184 		goto done;
3185 	}
3186 	if (strcmp(pr_name, "_tx_interrupt_enable") == 0) {
3187 		value = (is_default ? DEFAULT_TX_INTR_ENABLE :
3188 		    Adapter->tx_intr_enable);
3189 		err = 0;
3190 		goto done;
3191 	}
3192 	if (strcmp(pr_name, "_tx_intr_delay") == 0) {
3193 		value = (is_default ? DEFAULT_TX_INTR_DELAY :
3194 		    Adapter->tx_intr_delay);
3195 		err = 0;
3196 		goto done;
3197 	}
3198 	if (strcmp(pr_name, "_tx_intr_abs_delay") == 0) {
3199 		value = (is_default ? DEFAULT_TX_INTR_ABS_DELAY :
3200 		    Adapter->tx_intr_abs_delay);
3201 		err = 0;
3202 		goto done;
3203 	}
3204 	if (strcmp(pr_name, "_rx_bcopy_threshold") == 0) {
3205 		value = (is_default ? DEFAULT_RX_BCOPY_THRESHOLD :
3206 		    Adapter->rx_bcopy_thresh);
3207 		err = 0;
3208 		goto done;
3209 	}
3210 	if (strcmp(pr_name, "_max_num_rcv_packets") == 0) {
3211 		value = (is_default ? DEFAULT_RX_LIMIT_ON_INTR :
3212 		    Adapter->rx_limit_onintr);
3213 		err = 0;
3214 		goto done;
3215 	}
3216 	if (strcmp(pr_name, "_rx_intr_delay") == 0) {
3217 		value = (is_default ? DEFAULT_RX_INTR_DELAY :
3218 		    Adapter->rx_intr_delay);
3219 		err = 0;
3220 		goto done;
3221 	}
3222 	if (strcmp(pr_name, "_rx_intr_abs_delay") == 0) {
3223 		value = (is_default ? DEFAULT_RX_INTR_ABS_DELAY :
3224 		    Adapter->rx_intr_abs_delay);
3225 		err = 0;
3226 		goto done;
3227 	}
3228 	if (strcmp(pr_name, "_intr_throttling_rate") == 0) {
3229 		value = (is_default ? DEFAULT_INTR_THROTTLING :
3230 		    Adapter->intr_throttling_rate);
3231 		err = 0;
3232 		goto done;
3233 	}
3234 	if (strcmp(pr_name, "_intr_adaptive") == 0) {
3235 		value = (is_default ? 1 : Adapter->intr_adaptive);
3236 		err = 0;
3237 		goto done;
3238 	}
3239 	if (strcmp(pr_name, "_tx_recycle_thresh") == 0) {
3240 		value = (is_default ? DEFAULT_TX_RECYCLE_THRESHOLD :
3241 		    Adapter->tx_recycle_thresh);
3242 		err = 0;
3243 		goto done;
3244 	}
3245 	if (strcmp(pr_name, "_tx_recycle_num") == 0) {
3246 		value = (is_default ? DEFAULT_TX_RECYCLE_NUM :
3247 		    Adapter->tx_recycle_num);
3248 		err = 0;
3249 		goto done;
3250 	}
3251 done:
3252 	if (err == 0) {
3253 		(void) snprintf(pr_val, pr_valsize, "%d", value);
3254 	}
3255 	return (err);
3256 }
3257 
3258 /*
3259  * e1000g_get_conf - get configurations set in e1000g.conf
3260  * This routine gets user-configured values out of the configuration
3261  * file e1000g.conf.
3262  *
3263  * For each configurable value, there is a minimum, a maximum, and a
3264  * default.
3265  * If user does not configure a value, use the default.
3266  * If user configures below the minimum, use the minumum.
3267  * If user configures above the maximum, use the maxumum.
3268  */
3269 static void
3270 e1000g_get_conf(struct e1000g *Adapter)
3271 {
3272 	struct e1000_hw *hw = &Adapter->shared;
3273 	boolean_t tbi_compatibility = B_FALSE;
3274 
3275 	/*
3276 	 * get each configurable property from e1000g.conf
3277 	 */
3278 
3279 	/*
3280 	 * NumTxDescriptors
3281 	 */
3282 	Adapter->tx_desc_num =
3283 	    e1000g_get_prop(Adapter, "NumTxDescriptors",
3284 	    MIN_NUM_TX_DESCRIPTOR, MAX_NUM_TX_DESCRIPTOR,
3285 	    DEFAULT_NUM_TX_DESCRIPTOR);
3286 
3287 	/*
3288 	 * NumRxDescriptors
3289 	 */
3290 	Adapter->rx_desc_num =
3291 	    e1000g_get_prop(Adapter, "NumRxDescriptors",
3292 	    MIN_NUM_RX_DESCRIPTOR, MAX_NUM_RX_DESCRIPTOR,
3293 	    DEFAULT_NUM_RX_DESCRIPTOR);
3294 
3295 	/*
3296 	 * NumRxFreeList
3297 	 */
3298 	Adapter->rx_freelist_num =
3299 	    e1000g_get_prop(Adapter, "NumRxFreeList",
3300 	    MIN_NUM_RX_FREELIST, MAX_NUM_RX_FREELIST,
3301 	    DEFAULT_NUM_RX_FREELIST);
3302 
3303 	/*
3304 	 * NumTxPacketList
3305 	 */
3306 	Adapter->tx_freelist_num =
3307 	    e1000g_get_prop(Adapter, "NumTxPacketList",
3308 	    MIN_NUM_TX_FREELIST, MAX_NUM_TX_FREELIST,
3309 	    DEFAULT_NUM_TX_FREELIST);
3310 
3311 	/*
3312 	 * FlowControl
3313 	 */
3314 	hw->fc.send_xon = B_TRUE;
3315 	hw->fc.type =
3316 	    e1000g_get_prop(Adapter, "FlowControl",
3317 	    e1000_fc_none, 4, DEFAULT_FLOW_CONTROL);
3318 	/* 4 is the setting that says "let the eeprom decide" */
3319 	if (hw->fc.type == 4)
3320 		hw->fc.type = e1000_fc_default;
3321 
3322 	/*
3323 	 * Max Num Receive Packets on Interrupt
3324 	 */
3325 	Adapter->rx_limit_onintr =
3326 	    e1000g_get_prop(Adapter, "MaxNumReceivePackets",
3327 	    MIN_RX_LIMIT_ON_INTR, MAX_RX_LIMIT_ON_INTR,
3328 	    DEFAULT_RX_LIMIT_ON_INTR);
3329 
3330 	/*
3331 	 * PHY master slave setting
3332 	 */
3333 	hw->phy.ms_type =
3334 	    e1000g_get_prop(Adapter, "SetMasterSlave",
3335 	    e1000_ms_hw_default, e1000_ms_auto,
3336 	    e1000_ms_hw_default);
3337 
3338 	/*
3339 	 * Parameter which controls TBI mode workaround, which is only
3340 	 * needed on certain switches such as Cisco 6500/Foundry
3341 	 */
3342 	tbi_compatibility =
3343 	    e1000g_get_prop(Adapter, "TbiCompatibilityEnable",
3344 	    0, 1, DEFAULT_TBI_COMPAT_ENABLE);
3345 	e1000_set_tbi_compatibility_82543(hw, tbi_compatibility);
3346 
3347 	/*
3348 	 * MSI Enable
3349 	 */
3350 	Adapter->msi_enable =
3351 	    e1000g_get_prop(Adapter, "MSIEnable",
3352 	    0, 1, DEFAULT_MSI_ENABLE);
3353 
3354 	/*
3355 	 * Interrupt Throttling Rate
3356 	 */
3357 	Adapter->intr_throttling_rate =
3358 	    e1000g_get_prop(Adapter, "intr_throttling_rate",
3359 	    MIN_INTR_THROTTLING, MAX_INTR_THROTTLING,
3360 	    DEFAULT_INTR_THROTTLING);
3361 
3362 	/*
3363 	 * Adaptive Interrupt Blanking Enable/Disable
3364 	 * It is enabled by default
3365 	 */
3366 	Adapter->intr_adaptive =
3367 	    (e1000g_get_prop(Adapter, "intr_adaptive", 0, 1, 1) == 1) ?
3368 	    B_TRUE : B_FALSE;
3369 
3370 	/*
3371 	 * Tx recycle threshold
3372 	 */
3373 	Adapter->tx_recycle_thresh =
3374 	    e1000g_get_prop(Adapter, "tx_recycle_thresh",
3375 	    MIN_TX_RECYCLE_THRESHOLD, MAX_TX_RECYCLE_THRESHOLD,
3376 	    DEFAULT_TX_RECYCLE_THRESHOLD);
3377 
3378 	/*
3379 	 * Tx recycle descriptor number
3380 	 */
3381 	Adapter->tx_recycle_num =
3382 	    e1000g_get_prop(Adapter, "tx_recycle_num",
3383 	    MIN_TX_RECYCLE_NUM, MAX_TX_RECYCLE_NUM,
3384 	    DEFAULT_TX_RECYCLE_NUM);
3385 
3386 	/*
3387 	 * Hardware checksum enable/disable parameter
3388 	 */
3389 	Adapter->tx_hcksum_enable =
3390 	    e1000g_get_prop(Adapter, "tx_hcksum_enable",
3391 	    0, 1, DEFAULT_TX_HCKSUM_ENABLE);
3392 	/*
3393 	 * Checksum on/off selection via global parameters.
3394 	 *
3395 	 * If the chip is flagged as not capable of (correctly)
3396 	 * handling checksumming, we don't enable it on either
3397 	 * Rx or Tx side.  Otherwise, we take this chip's settings
3398 	 * from the patchable global defaults.
3399 	 *
3400 	 * We advertise our capabilities only if TX offload is
3401 	 * enabled.  On receive, the stack will accept checksummed
3402 	 * packets anyway, even if we haven't said we can deliver
3403 	 * them.
3404 	 */
3405 	switch (hw->mac.type) {
3406 		case e1000_82540:
3407 		case e1000_82544:
3408 		case e1000_82545:
3409 		case e1000_82545_rev_3:
3410 		case e1000_82546:
3411 		case e1000_82546_rev_3:
3412 		case e1000_82571:
3413 		case e1000_82572:
3414 		case e1000_82573:
3415 		case e1000_80003es2lan:
3416 			break;
3417 		/*
3418 		 * For the following Intel PRO/1000 chipsets, we have not
3419 		 * tested the hardware checksum offload capability, so we
3420 		 * disable the capability for them.
3421 		 *	e1000_82542,
3422 		 *	e1000_82543,
3423 		 *	e1000_82541,
3424 		 *	e1000_82541_rev_2,
3425 		 *	e1000_82547,
3426 		 *	e1000_82547_rev_2,
3427 		 */
3428 		default:
3429 			Adapter->tx_hcksum_enable = B_FALSE;
3430 	}
3431 
3432 	/*
3433 	 * Large Send Offloading(LSO) Enable/Disable
3434 	 * If the tx hardware checksum is not enabled, LSO should be
3435 	 * disabled.
3436 	 */
3437 	Adapter->lso_enable =
3438 	    e1000g_get_prop(Adapter, "lso_enable",
3439 	    0, 1, DEFAULT_LSO_ENABLE);
3440 
3441 	switch (hw->mac.type) {
3442 		case e1000_82546:
3443 		case e1000_82546_rev_3:
3444 			if (Adapter->lso_enable)
3445 				Adapter->lso_premature_issue = B_TRUE;
3446 			/* FALLTHRU */
3447 		case e1000_82571:
3448 		case e1000_82572:
3449 		case e1000_82573:
3450 		case e1000_80003es2lan:
3451 			break;
3452 		default:
3453 			Adapter->lso_enable = B_FALSE;
3454 	}
3455 
3456 	if (!Adapter->tx_hcksum_enable) {
3457 		Adapter->lso_premature_issue = B_FALSE;
3458 		Adapter->lso_enable = B_FALSE;
3459 	}
3460 }
3461 
3462 /*
3463  * e1000g_get_prop - routine to read properties
3464  *
3465  * Get a user-configure property value out of the configuration
3466  * file e1000g.conf.
3467  *
3468  * Caller provides name of the property, a default value, a minimum
3469  * value, and a maximum value.
3470  *
3471  * Return configured value of the property, with default, minimum and
3472  * maximum properly applied.
3473  */
3474 static int
3475 e1000g_get_prop(struct e1000g *Adapter,	/* point to per-adapter structure */
3476     char *propname,		/* name of the property */
3477     int minval,			/* minimum acceptable value */
3478     int maxval,			/* maximim acceptable value */
3479     int defval)			/* default value */
3480 {
3481 	int propval;		/* value returned for requested property */
3482 	int *props;		/* point to array of properties returned */
3483 	uint_t nprops;		/* number of property value returned */
3484 
3485 	/*
3486 	 * get the array of properties from the config file
3487 	 */
3488 	if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, Adapter->dip,
3489 	    DDI_PROP_DONTPASS, propname, &props, &nprops) == DDI_PROP_SUCCESS) {
3490 		/* got some properties, test if we got enough */
3491 		if (Adapter->instance < nprops) {
3492 			propval = props[Adapter->instance];
3493 		} else {
3494 			/* not enough properties configured */
3495 			propval = defval;
3496 			E1000G_DEBUGLOG_2(Adapter, E1000G_INFO_LEVEL,
3497 			    "Not Enough %s values found in e1000g.conf"
3498 			    " - set to %d\n",
3499 			    propname, propval);
3500 		}
3501 
3502 		/* free memory allocated for properties */
3503 		ddi_prop_free(props);
3504 
3505 	} else {
3506 		propval = defval;
3507 	}
3508 
3509 	/*
3510 	 * enforce limits
3511 	 */
3512 	if (propval > maxval) {
3513 		propval = maxval;
3514 		E1000G_DEBUGLOG_2(Adapter, E1000G_INFO_LEVEL,
3515 		    "Too High %s value in e1000g.conf - set to %d\n",
3516 		    propname, propval);
3517 	}
3518 
3519 	if (propval < minval) {
3520 		propval = minval;
3521 		E1000G_DEBUGLOG_2(Adapter, E1000G_INFO_LEVEL,
3522 		    "Too Low %s value in e1000g.conf - set to %d\n",
3523 		    propname, propval);
3524 	}
3525 
3526 	return (propval);
3527 }
3528 
3529 static boolean_t
3530 e1000g_link_check(struct e1000g *Adapter)
3531 {
3532 	uint16_t speed, duplex, phydata;
3533 	boolean_t link_changed = B_FALSE;
3534 	struct e1000_hw *hw;
3535 	uint32_t reg_tarc;
3536 
3537 	hw = &Adapter->shared;
3538 
3539 	if (e1000g_link_up(Adapter)) {
3540 		/*
3541 		 * The Link is up, check whether it was marked as down earlier
3542 		 */
3543 		if (Adapter->link_state != LINK_STATE_UP) {
3544 			(void) e1000_get_speed_and_duplex(hw, &speed, &duplex);
3545 			Adapter->link_speed = speed;
3546 			Adapter->link_duplex = duplex;
3547 			Adapter->link_state = LINK_STATE_UP;
3548 			link_changed = B_TRUE;
3549 
3550 			Adapter->tx_link_down_timeout = 0;
3551 
3552 			if ((hw->mac.type == e1000_82571) ||
3553 			    (hw->mac.type == e1000_82572)) {
3554 				reg_tarc = E1000_READ_REG(hw, E1000_TARC(0));
3555 				if (speed == SPEED_1000)
3556 					reg_tarc |= (1 << 21);
3557 				else
3558 					reg_tarc &= ~(1 << 21);
3559 				E1000_WRITE_REG(hw, E1000_TARC(0), reg_tarc);
3560 			}
3561 		}
3562 		Adapter->smartspeed = 0;
3563 	} else {
3564 		if (Adapter->link_state != LINK_STATE_DOWN) {
3565 			Adapter->link_speed = 0;
3566 			Adapter->link_duplex = 0;
3567 			Adapter->link_state = LINK_STATE_DOWN;
3568 			link_changed = B_TRUE;
3569 
3570 			/*
3571 			 * SmartSpeed workaround for Tabor/TanaX, When the
3572 			 * driver loses link disable auto master/slave
3573 			 * resolution.
3574 			 */
3575 			if (hw->phy.type == e1000_phy_igp) {
3576 				(void) e1000_read_phy_reg(hw,
3577 				    PHY_1000T_CTRL, &phydata);
3578 				phydata |= CR_1000T_MS_ENABLE;
3579 				(void) e1000_write_phy_reg(hw,
3580 				    PHY_1000T_CTRL, phydata);
3581 			}
3582 		} else {
3583 			e1000g_smartspeed(Adapter);
3584 		}
3585 
3586 		if (Adapter->chip_state == E1000G_START) {
3587 			if (Adapter->tx_link_down_timeout <
3588 			    MAX_TX_LINK_DOWN_TIMEOUT) {
3589 				Adapter->tx_link_down_timeout++;
3590 			} else if (Adapter->tx_link_down_timeout ==
3591 			    MAX_TX_LINK_DOWN_TIMEOUT) {
3592 				e1000g_tx_clean(Adapter);
3593 				Adapter->tx_link_down_timeout++;
3594 			}
3595 		}
3596 	}
3597 
3598 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK)
3599 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
3600 
3601 	return (link_changed);
3602 }
3603 
3604 /*
3605  * e1000g_reset_link - Using the link properties to setup the link
3606  */
3607 int
3608 e1000g_reset_link(struct e1000g *Adapter)
3609 {
3610 	struct e1000_mac_info *mac;
3611 	struct e1000_phy_info *phy;
3612 	boolean_t invalid;
3613 
3614 	mac = &Adapter->shared.mac;
3615 	phy = &Adapter->shared.phy;
3616 	invalid = B_FALSE;
3617 
3618 	if (Adapter->param_adv_autoneg == 1) {
3619 		mac->autoneg = B_TRUE;
3620 		phy->autoneg_advertised = 0;
3621 
3622 		/*
3623 		 * 1000hdx is not supported for autonegotiation
3624 		 */
3625 		if (Adapter->param_adv_1000fdx == 1)
3626 			phy->autoneg_advertised |= ADVERTISE_1000_FULL;
3627 
3628 		if (Adapter->param_adv_100fdx == 1)
3629 			phy->autoneg_advertised |= ADVERTISE_100_FULL;
3630 
3631 		if (Adapter->param_adv_100hdx == 1)
3632 			phy->autoneg_advertised |= ADVERTISE_100_HALF;
3633 
3634 		if (Adapter->param_adv_10fdx == 1)
3635 			phy->autoneg_advertised |= ADVERTISE_10_FULL;
3636 
3637 		if (Adapter->param_adv_10hdx == 1)
3638 			phy->autoneg_advertised |= ADVERTISE_10_HALF;
3639 
3640 		if (phy->autoneg_advertised == 0)
3641 			invalid = B_TRUE;
3642 	} else {
3643 		mac->autoneg = B_FALSE;
3644 
3645 		/*
3646 		 * 1000fdx and 1000hdx are not supported for forced link
3647 		 */
3648 		if (Adapter->param_adv_100fdx == 1)
3649 			mac->forced_speed_duplex = ADVERTISE_100_FULL;
3650 		else if (Adapter->param_adv_100hdx == 1)
3651 			mac->forced_speed_duplex = ADVERTISE_100_HALF;
3652 		else if (Adapter->param_adv_10fdx == 1)
3653 			mac->forced_speed_duplex = ADVERTISE_10_FULL;
3654 		else if (Adapter->param_adv_10hdx == 1)
3655 			mac->forced_speed_duplex = ADVERTISE_10_HALF;
3656 		else
3657 			invalid = B_TRUE;
3658 
3659 	}
3660 
3661 	if (invalid) {
3662 		e1000g_log(Adapter, CE_WARN,
3663 		    "Invalid link sets. Setup link to"
3664 		    "support autonegotiation with all link capabilities.");
3665 		mac->autoneg = B_TRUE;
3666 		phy->autoneg_advertised = ADVERTISE_1000_FULL |
3667 		    ADVERTISE_100_FULL | ADVERTISE_100_HALF |
3668 		    ADVERTISE_10_FULL | ADVERTISE_10_HALF;
3669 	}
3670 
3671 	return (e1000_setup_link(&Adapter->shared));
3672 }
3673 
3674 static void
3675 e1000g_local_timer(void *ws)
3676 {
3677 	struct e1000g *Adapter = (struct e1000g *)ws;
3678 	struct e1000_hw *hw;
3679 	e1000g_ether_addr_t ether_addr;
3680 	boolean_t link_changed;
3681 
3682 	hw = &Adapter->shared;
3683 
3684 	if (Adapter->chip_state == E1000G_ERROR) {
3685 		Adapter->reset_count++;
3686 		if (e1000g_global_reset(Adapter))
3687 			ddi_fm_service_impact(Adapter->dip,
3688 			    DDI_SERVICE_RESTORED);
3689 		else
3690 			ddi_fm_service_impact(Adapter->dip,
3691 			    DDI_SERVICE_LOST);
3692 		return;
3693 	}
3694 
3695 	if (e1000g_stall_check(Adapter)) {
3696 		E1000G_DEBUGLOG_0(Adapter, E1000G_INFO_LEVEL,
3697 		    "Tx stall detected. Activate automatic recovery.\n");
3698 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_STALL);
3699 		Adapter->reset_count++;
3700 		if (e1000g_reset_adapter(Adapter))
3701 			ddi_fm_service_impact(Adapter->dip,
3702 			    DDI_SERVICE_RESTORED);
3703 		else
3704 			ddi_fm_service_impact(Adapter->dip,
3705 			    DDI_SERVICE_LOST);
3706 		return;
3707 	}
3708 
3709 	link_changed = B_FALSE;
3710 	rw_enter(&Adapter->chip_lock, RW_READER);
3711 	if (Adapter->link_complete)
3712 		link_changed = e1000g_link_check(Adapter);
3713 	rw_exit(&Adapter->chip_lock);
3714 
3715 	if (link_changed)
3716 		mac_link_update(Adapter->mh, Adapter->link_state);
3717 
3718 	/*
3719 	 * Workaround for esb2. Data stuck in fifo on a link
3720 	 * down event. Reset the adapter to recover it.
3721 	 */
3722 	if (Adapter->esb2_workaround) {
3723 		Adapter->esb2_workaround = B_FALSE;
3724 		(void) e1000g_reset_adapter(Adapter);
3725 	}
3726 
3727 	/*
3728 	 * With 82571 controllers, any locally administered address will
3729 	 * be overwritten when there is a reset on the other port.
3730 	 * Detect this circumstance and correct it.
3731 	 */
3732 	if ((hw->mac.type == e1000_82571) &&
3733 	    (e1000_get_laa_state_82571(hw) == B_TRUE)) {
3734 		ether_addr.reg.low = E1000_READ_REG_ARRAY(hw, E1000_RA, 0);
3735 		ether_addr.reg.high = E1000_READ_REG_ARRAY(hw, E1000_RA, 1);
3736 
3737 		ether_addr.reg.low = ntohl(ether_addr.reg.low);
3738 		ether_addr.reg.high = ntohl(ether_addr.reg.high);
3739 
3740 		if ((ether_addr.mac.addr[5] != hw->mac.addr[0]) ||
3741 		    (ether_addr.mac.addr[4] != hw->mac.addr[1]) ||
3742 		    (ether_addr.mac.addr[3] != hw->mac.addr[2]) ||
3743 		    (ether_addr.mac.addr[2] != hw->mac.addr[3]) ||
3744 		    (ether_addr.mac.addr[1] != hw->mac.addr[4]) ||
3745 		    (ether_addr.mac.addr[0] != hw->mac.addr[5])) {
3746 			e1000_rar_set(hw, hw->mac.addr, 0);
3747 		}
3748 	}
3749 
3750 	/*
3751 	 * Long TTL workaround for 82541/82547
3752 	 */
3753 	(void) e1000_igp_ttl_workaround_82547(hw);
3754 
3755 	/*
3756 	 * Check for Adaptive IFS settings If there are lots of collisions
3757 	 * change the value in steps...
3758 	 * These properties should only be set for 10/100
3759 	 */
3760 	if ((hw->phy.media_type == e1000_media_type_copper) &&
3761 	    ((Adapter->link_speed == SPEED_100) ||
3762 	    (Adapter->link_speed == SPEED_10))) {
3763 		e1000_update_adaptive(hw);
3764 	}
3765 	/*
3766 	 * Set Timer Interrupts
3767 	 */
3768 	E1000_WRITE_REG(hw, E1000_ICS, E1000_IMS_RXT0);
3769 
3770 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK)
3771 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
3772 
3773 	restart_watchdog_timer(Adapter);
3774 }
3775 
3776 /*
3777  * The function e1000g_link_timer() is called when the timer for link setup
3778  * is expired, which indicates the completion of the link setup. The link
3779  * state will not be updated until the link setup is completed. And the
3780  * link state will not be sent to the upper layer through mac_link_update()
3781  * in this function. It will be updated in the local timer routine or the
3782  * interrupt service routine after the interface is started (plumbed).
3783  */
3784 static void
3785 e1000g_link_timer(void *arg)
3786 {
3787 	struct e1000g *Adapter = (struct e1000g *)arg;
3788 
3789 	mutex_enter(&Adapter->link_lock);
3790 	Adapter->link_complete = B_TRUE;
3791 	Adapter->link_tid = 0;
3792 	mutex_exit(&Adapter->link_lock);
3793 }
3794 
3795 /*
3796  * e1000g_force_speed_duplex - read forced speed/duplex out of e1000g.conf
3797  *
3798  * This function read the forced speed and duplex for 10/100 Mbps speeds
3799  * and also for 1000 Mbps speeds from the e1000g.conf file
3800  */
3801 static void
3802 e1000g_force_speed_duplex(struct e1000g *Adapter)
3803 {
3804 	int forced;
3805 	struct e1000_mac_info *mac = &Adapter->shared.mac;
3806 	struct e1000_phy_info *phy = &Adapter->shared.phy;
3807 
3808 	/*
3809 	 * get value out of config file
3810 	 */
3811 	forced = e1000g_get_prop(Adapter, "ForceSpeedDuplex",
3812 	    GDIAG_10_HALF, GDIAG_ANY, GDIAG_ANY);
3813 
3814 	switch (forced) {
3815 	case GDIAG_10_HALF:
3816 		/*
3817 		 * Disable Auto Negotiation
3818 		 */
3819 		mac->autoneg = B_FALSE;
3820 		mac->forced_speed_duplex = ADVERTISE_10_HALF;
3821 		break;
3822 	case GDIAG_10_FULL:
3823 		/*
3824 		 * Disable Auto Negotiation
3825 		 */
3826 		mac->autoneg = B_FALSE;
3827 		mac->forced_speed_duplex = ADVERTISE_10_FULL;
3828 		break;
3829 	case GDIAG_100_HALF:
3830 		/*
3831 		 * Disable Auto Negotiation
3832 		 */
3833 		mac->autoneg = B_FALSE;
3834 		mac->forced_speed_duplex = ADVERTISE_100_HALF;
3835 		break;
3836 	case GDIAG_100_FULL:
3837 		/*
3838 		 * Disable Auto Negotiation
3839 		 */
3840 		mac->autoneg = B_FALSE;
3841 		mac->forced_speed_duplex = ADVERTISE_100_FULL;
3842 		break;
3843 	case GDIAG_1000_FULL:
3844 		/*
3845 		 * The gigabit spec requires autonegotiation.  Therefore,
3846 		 * when the user wants to force the speed to 1000Mbps, we
3847 		 * enable AutoNeg, but only allow the harware to advertise
3848 		 * 1000Mbps.  This is different from 10/100 operation, where
3849 		 * we are allowed to link without any negotiation.
3850 		 */
3851 		mac->autoneg = B_TRUE;
3852 		phy->autoneg_advertised = ADVERTISE_1000_FULL;
3853 		break;
3854 	default:	/* obey the setting of AutoNegAdvertised */
3855 		mac->autoneg = B_TRUE;
3856 		phy->autoneg_advertised =
3857 		    (uint16_t)e1000g_get_prop(Adapter, "AutoNegAdvertised",
3858 		    0, AUTONEG_ADVERTISE_SPEED_DEFAULT,
3859 		    AUTONEG_ADVERTISE_SPEED_DEFAULT);
3860 		break;
3861 	}	/* switch */
3862 }
3863 
3864 /*
3865  * e1000g_get_max_frame_size - get jumbo frame setting from e1000g.conf
3866  *
3867  * This function reads MaxFrameSize from e1000g.conf
3868  */
3869 static void
3870 e1000g_get_max_frame_size(struct e1000g *Adapter)
3871 {
3872 	int max_frame;
3873 	struct e1000_mac_info *mac = &Adapter->shared.mac;
3874 	struct e1000_phy_info *phy = &Adapter->shared.phy;
3875 
3876 	/*
3877 	 * get value out of config file
3878 	 */
3879 	max_frame = e1000g_get_prop(Adapter, "MaxFrameSize", 0, 3, 0);
3880 
3881 	switch (max_frame) {
3882 	case 0:
3883 		Adapter->default_mtu = ETHERMTU;
3884 		break;
3885 	/*
3886 	 * To avoid excessive memory allocation for rx buffers,
3887 	 * the bytes of E1000G_IPALIGNPRESERVEROOM are reserved.
3888 	 */
3889 	case 1:
3890 		Adapter->default_mtu = FRAME_SIZE_UPTO_4K -
3891 		    sizeof (struct ether_vlan_header) - ETHERFCSL -
3892 		    E1000G_IPALIGNPRESERVEROOM;
3893 		break;
3894 	case 2:
3895 		Adapter->default_mtu = FRAME_SIZE_UPTO_8K -
3896 		    sizeof (struct ether_vlan_header) - ETHERFCSL -
3897 		    E1000G_IPALIGNPRESERVEROOM;
3898 		break;
3899 	case 3:
3900 		if (mac->type >= e1000_82571)
3901 			Adapter->default_mtu = MAXIMUM_MTU;
3902 		else
3903 			Adapter->default_mtu = FRAME_SIZE_UPTO_16K -
3904 			    sizeof (struct ether_vlan_header) - ETHERFCSL -
3905 			    E1000G_IPALIGNPRESERVEROOM;
3906 		break;
3907 	default:
3908 		Adapter->default_mtu = ETHERMTU;
3909 		break;
3910 	}	/* switch */
3911 
3912 	Adapter->max_frame_size = Adapter->default_mtu +
3913 	    sizeof (struct ether_vlan_header) + ETHERFCSL;
3914 
3915 	/* ich8 does not do jumbo frames */
3916 	if (mac->type == e1000_ich8lan) {
3917 		Adapter->default_mtu = ETHERMTU;
3918 		Adapter->max_frame_size = ETHERMTU +
3919 		    sizeof (struct ether_vlan_header) + ETHERFCSL;
3920 	}
3921 
3922 	/* ich9 does not do jumbo frames on one phy type */
3923 	if ((mac->type == e1000_ich9lan) &&
3924 	    (phy->type == e1000_phy_ife)) {
3925 		Adapter->default_mtu = ETHERMTU;
3926 		Adapter->max_frame_size = ETHERMTU +
3927 		    sizeof (struct ether_vlan_header) + ETHERFCSL;
3928 	}
3929 }
3930 
3931 static void
3932 arm_watchdog_timer(struct e1000g *Adapter)
3933 {
3934 	Adapter->watchdog_tid =
3935 	    timeout(e1000g_local_timer,
3936 	    (void *)Adapter, 1 * drv_usectohz(1000000));
3937 }
3938 #pragma inline(arm_watchdog_timer)
3939 
3940 static void
3941 enable_watchdog_timer(struct e1000g *Adapter)
3942 {
3943 	mutex_enter(&Adapter->watchdog_lock);
3944 
3945 	if (!Adapter->watchdog_timer_enabled) {
3946 		Adapter->watchdog_timer_enabled = B_TRUE;
3947 		Adapter->watchdog_timer_started = B_TRUE;
3948 		arm_watchdog_timer(Adapter);
3949 	}
3950 
3951 	mutex_exit(&Adapter->watchdog_lock);
3952 }
3953 
3954 static void
3955 disable_watchdog_timer(struct e1000g *Adapter)
3956 {
3957 	timeout_id_t tid;
3958 
3959 	mutex_enter(&Adapter->watchdog_lock);
3960 
3961 	Adapter->watchdog_timer_enabled = B_FALSE;
3962 	Adapter->watchdog_timer_started = B_FALSE;
3963 	tid = Adapter->watchdog_tid;
3964 	Adapter->watchdog_tid = 0;
3965 
3966 	mutex_exit(&Adapter->watchdog_lock);
3967 
3968 	if (tid != 0)
3969 		(void) untimeout(tid);
3970 }
3971 
3972 static void
3973 start_watchdog_timer(struct e1000g *Adapter)
3974 {
3975 	mutex_enter(&Adapter->watchdog_lock);
3976 
3977 	if (Adapter->watchdog_timer_enabled) {
3978 		if (!Adapter->watchdog_timer_started) {
3979 			Adapter->watchdog_timer_started = B_TRUE;
3980 			arm_watchdog_timer(Adapter);
3981 		}
3982 	}
3983 
3984 	mutex_exit(&Adapter->watchdog_lock);
3985 }
3986 
3987 static void
3988 restart_watchdog_timer(struct e1000g *Adapter)
3989 {
3990 	mutex_enter(&Adapter->watchdog_lock);
3991 
3992 	if (Adapter->watchdog_timer_started)
3993 		arm_watchdog_timer(Adapter);
3994 
3995 	mutex_exit(&Adapter->watchdog_lock);
3996 }
3997 
3998 static void
3999 stop_watchdog_timer(struct e1000g *Adapter)
4000 {
4001 	timeout_id_t tid;
4002 
4003 	mutex_enter(&Adapter->watchdog_lock);
4004 
4005 	Adapter->watchdog_timer_started = B_FALSE;
4006 	tid = Adapter->watchdog_tid;
4007 	Adapter->watchdog_tid = 0;
4008 
4009 	mutex_exit(&Adapter->watchdog_lock);
4010 
4011 	if (tid != 0)
4012 		(void) untimeout(tid);
4013 }
4014 
4015 static void
4016 stop_link_timer(struct e1000g *Adapter)
4017 {
4018 	timeout_id_t tid;
4019 
4020 	/* Disable the link timer */
4021 	mutex_enter(&Adapter->link_lock);
4022 
4023 	tid = Adapter->link_tid;
4024 	Adapter->link_tid = 0;
4025 
4026 	mutex_exit(&Adapter->link_lock);
4027 
4028 	if (tid != 0)
4029 		(void) untimeout(tid);
4030 }
4031 
4032 static void
4033 stop_82547_timer(e1000g_tx_ring_t *tx_ring)
4034 {
4035 	timeout_id_t tid;
4036 
4037 	/* Disable the tx timer for 82547 chipset */
4038 	mutex_enter(&tx_ring->tx_lock);
4039 
4040 	tx_ring->timer_enable_82547 = B_FALSE;
4041 	tid = tx_ring->timer_id_82547;
4042 	tx_ring->timer_id_82547 = 0;
4043 
4044 	mutex_exit(&tx_ring->tx_lock);
4045 
4046 	if (tid != 0)
4047 		(void) untimeout(tid);
4048 }
4049 
4050 void
4051 e1000g_clear_interrupt(struct e1000g *Adapter)
4052 {
4053 	E1000_WRITE_REG(&Adapter->shared, E1000_IMC,
4054 	    0xffffffff & ~E1000_IMS_RXSEQ);
4055 }
4056 
4057 void
4058 e1000g_mask_interrupt(struct e1000g *Adapter)
4059 {
4060 	E1000_WRITE_REG(&Adapter->shared, E1000_IMS,
4061 	    IMS_ENABLE_MASK & ~E1000_IMS_TXDW);
4062 
4063 	if (Adapter->tx_intr_enable)
4064 		e1000g_mask_tx_interrupt(Adapter);
4065 }
4066 
4067 /*
4068  * This routine is called by e1000g_quiesce(), therefore must not block.
4069  */
4070 void
4071 e1000g_clear_all_interrupts(struct e1000g *Adapter)
4072 {
4073 	E1000_WRITE_REG(&Adapter->shared, E1000_IMC, 0xffffffff);
4074 }
4075 
4076 void
4077 e1000g_mask_tx_interrupt(struct e1000g *Adapter)
4078 {
4079 	E1000_WRITE_REG(&Adapter->shared, E1000_IMS, E1000_IMS_TXDW);
4080 }
4081 
4082 void
4083 e1000g_clear_tx_interrupt(struct e1000g *Adapter)
4084 {
4085 	E1000_WRITE_REG(&Adapter->shared, E1000_IMC, E1000_IMS_TXDW);
4086 }
4087 
4088 static void
4089 e1000g_smartspeed(struct e1000g *Adapter)
4090 {
4091 	struct e1000_hw *hw = &Adapter->shared;
4092 	uint16_t phy_status;
4093 	uint16_t phy_ctrl;
4094 
4095 	/*
4096 	 * If we're not T-or-T, or we're not autoneg'ing, or we're not
4097 	 * advertising 1000Full, we don't even use the workaround
4098 	 */
4099 	if ((hw->phy.type != e1000_phy_igp) ||
4100 	    !hw->mac.autoneg ||
4101 	    !(hw->phy.autoneg_advertised & ADVERTISE_1000_FULL))
4102 		return;
4103 
4104 	/*
4105 	 * True if this is the first call of this function or after every
4106 	 * 30 seconds of not having link
4107 	 */
4108 	if (Adapter->smartspeed == 0) {
4109 		/*
4110 		 * If Master/Slave config fault is asserted twice, we
4111 		 * assume back-to-back
4112 		 */
4113 		(void) e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4114 		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4115 			return;
4116 
4117 		(void) e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4118 		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4119 			return;
4120 		/*
4121 		 * We're assuming back-2-back because our status register
4122 		 * insists! there's a fault in the master/slave
4123 		 * relationship that was "negotiated"
4124 		 */
4125 		(void) e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4126 		/*
4127 		 * Is the phy configured for manual configuration of
4128 		 * master/slave?
4129 		 */
4130 		if (phy_ctrl & CR_1000T_MS_ENABLE) {
4131 			/*
4132 			 * Yes.  Then disable manual configuration (enable
4133 			 * auto configuration) of master/slave
4134 			 */
4135 			phy_ctrl &= ~CR_1000T_MS_ENABLE;
4136 			(void) e1000_write_phy_reg(hw,
4137 			    PHY_1000T_CTRL, phy_ctrl);
4138 			/*
4139 			 * Effectively starting the clock
4140 			 */
4141 			Adapter->smartspeed++;
4142 			/*
4143 			 * Restart autonegotiation
4144 			 */
4145 			if (!e1000_phy_setup_autoneg(hw) &&
4146 			    !e1000_read_phy_reg(hw, PHY_CONTROL, &phy_ctrl)) {
4147 				phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4148 				    MII_CR_RESTART_AUTO_NEG);
4149 				(void) e1000_write_phy_reg(hw,
4150 				    PHY_CONTROL, phy_ctrl);
4151 			}
4152 		}
4153 		return;
4154 		/*
4155 		 * Has 6 seconds transpired still without link? Remember,
4156 		 * you should reset the smartspeed counter once you obtain
4157 		 * link
4158 		 */
4159 	} else if (Adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4160 		/*
4161 		 * Yes.  Remember, we did at the start determine that
4162 		 * there's a master/slave configuration fault, so we're
4163 		 * still assuming there's someone on the other end, but we
4164 		 * just haven't yet been able to talk to it. We then
4165 		 * re-enable auto configuration of master/slave to see if
4166 		 * we're running 2/3 pair cables.
4167 		 */
4168 		/*
4169 		 * If still no link, perhaps using 2/3 pair cable
4170 		 */
4171 		(void) e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4172 		phy_ctrl |= CR_1000T_MS_ENABLE;
4173 		(void) e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4174 		/*
4175 		 * Restart autoneg with phy enabled for manual
4176 		 * configuration of master/slave
4177 		 */
4178 		if (!e1000_phy_setup_autoneg(hw) &&
4179 		    !e1000_read_phy_reg(hw, PHY_CONTROL, &phy_ctrl)) {
4180 			phy_ctrl |=
4181 			    (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
4182 			(void) e1000_write_phy_reg(hw, PHY_CONTROL, phy_ctrl);
4183 		}
4184 		/*
4185 		 * Hopefully, there are no more faults and we've obtained
4186 		 * link as a result.
4187 		 */
4188 	}
4189 	/*
4190 	 * Restart process after E1000_SMARTSPEED_MAX iterations (30
4191 	 * seconds)
4192 	 */
4193 	if (Adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4194 		Adapter->smartspeed = 0;
4195 }
4196 
4197 static boolean_t
4198 is_valid_mac_addr(uint8_t *mac_addr)
4199 {
4200 	const uint8_t addr_test1[6] = { 0, 0, 0, 0, 0, 0 };
4201 	const uint8_t addr_test2[6] =
4202 	    { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
4203 
4204 	if (!(bcmp(addr_test1, mac_addr, ETHERADDRL)) ||
4205 	    !(bcmp(addr_test2, mac_addr, ETHERADDRL)))
4206 		return (B_FALSE);
4207 
4208 	return (B_TRUE);
4209 }
4210 
4211 /*
4212  * e1000g_stall_check - check for tx stall
4213  *
4214  * This function checks if the adapter is stalled (in transmit).
4215  *
4216  * It is called each time the watchdog timeout is invoked.
4217  * If the transmit descriptor reclaim continuously fails,
4218  * the watchdog value will increment by 1. If the watchdog
4219  * value exceeds the threshold, the adapter is assumed to
4220  * have stalled and need to be reset.
4221  */
4222 static boolean_t
4223 e1000g_stall_check(struct e1000g *Adapter)
4224 {
4225 	e1000g_tx_ring_t *tx_ring;
4226 
4227 	tx_ring = Adapter->tx_ring;
4228 
4229 	if (Adapter->link_state != LINK_STATE_UP)
4230 		return (B_FALSE);
4231 
4232 	if (tx_ring->recycle_fail > 0)
4233 		tx_ring->stall_watchdog++;
4234 	else
4235 		tx_ring->stall_watchdog = 0;
4236 
4237 	if (tx_ring->stall_watchdog < E1000G_STALL_WATCHDOG_COUNT)
4238 		return (B_FALSE);
4239 
4240 	tx_ring->stall_watchdog = 0;
4241 	tx_ring->recycle_fail = 0;
4242 
4243 	return (B_TRUE);
4244 }
4245 
4246 #ifdef E1000G_DEBUG
4247 static enum ioc_reply
4248 e1000g_pp_ioctl(struct e1000g *e1000gp, struct iocblk *iocp, mblk_t *mp)
4249 {
4250 	void (*ppfn)(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd);
4251 	e1000g_peekpoke_t *ppd;
4252 	uint64_t mem_va;
4253 	uint64_t maxoff;
4254 	boolean_t peek;
4255 
4256 	switch (iocp->ioc_cmd) {
4257 
4258 	case E1000G_IOC_REG_PEEK:
4259 		peek = B_TRUE;
4260 		break;
4261 
4262 	case E1000G_IOC_REG_POKE:
4263 		peek = B_FALSE;
4264 		break;
4265 
4266 	deault:
4267 		E1000G_DEBUGLOG_1(e1000gp, E1000G_INFO_LEVEL,
4268 		    "e1000g_diag_ioctl: invalid ioctl command 0x%X\n",
4269 		    iocp->ioc_cmd);
4270 		return (IOC_INVAL);
4271 	}
4272 
4273 	/*
4274 	 * Validate format of ioctl
4275 	 */
4276 	if (iocp->ioc_count != sizeof (e1000g_peekpoke_t))
4277 		return (IOC_INVAL);
4278 	if (mp->b_cont == NULL)
4279 		return (IOC_INVAL);
4280 
4281 	ppd = (e1000g_peekpoke_t *)(uintptr_t)mp->b_cont->b_rptr;
4282 
4283 	/*
4284 	 * Validate request parameters
4285 	 */
4286 	switch (ppd->pp_acc_space) {
4287 
4288 	default:
4289 		E1000G_DEBUGLOG_1(e1000gp, E1000G_INFO_LEVEL,
4290 		    "e1000g_diag_ioctl: invalid access space 0x%X\n",
4291 		    ppd->pp_acc_space);
4292 		return (IOC_INVAL);
4293 
4294 	case E1000G_PP_SPACE_REG:
4295 		/*
4296 		 * Memory-mapped I/O space
4297 		 */
4298 		ASSERT(ppd->pp_acc_size == 4);
4299 		if (ppd->pp_acc_size != 4)
4300 			return (IOC_INVAL);
4301 
4302 		if ((ppd->pp_acc_offset % ppd->pp_acc_size) != 0)
4303 			return (IOC_INVAL);
4304 
4305 		mem_va = 0;
4306 		maxoff = 0x10000;
4307 		ppfn = peek ? e1000g_ioc_peek_reg : e1000g_ioc_poke_reg;
4308 		break;
4309 
4310 	case E1000G_PP_SPACE_E1000G:
4311 		/*
4312 		 * E1000g data structure!
4313 		 */
4314 		mem_va = (uintptr_t)e1000gp;
4315 		maxoff = sizeof (struct e1000g);
4316 		ppfn = peek ? e1000g_ioc_peek_mem : e1000g_ioc_poke_mem;
4317 		break;
4318 
4319 	}
4320 
4321 	if (ppd->pp_acc_offset >= maxoff)
4322 		return (IOC_INVAL);
4323 
4324 	if (ppd->pp_acc_offset + ppd->pp_acc_size > maxoff)
4325 		return (IOC_INVAL);
4326 
4327 	/*
4328 	 * All OK - go!
4329 	 */
4330 	ppd->pp_acc_offset += mem_va;
4331 	(*ppfn)(e1000gp, ppd);
4332 	return (peek ? IOC_REPLY : IOC_ACK);
4333 }
4334 
4335 static void
4336 e1000g_ioc_peek_reg(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd)
4337 {
4338 	ddi_acc_handle_t handle;
4339 	uint32_t *regaddr;
4340 
4341 	handle = e1000gp->osdep.reg_handle;
4342 	regaddr = (uint32_t *)((uintptr_t)e1000gp->shared.hw_addr +
4343 	    (uintptr_t)ppd->pp_acc_offset);
4344 
4345 	ppd->pp_acc_data = ddi_get32(handle, regaddr);
4346 }
4347 
4348 static void
4349 e1000g_ioc_poke_reg(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd)
4350 {
4351 	ddi_acc_handle_t handle;
4352 	uint32_t *regaddr;
4353 	uint32_t value;
4354 
4355 	handle = e1000gp->osdep.reg_handle;
4356 	regaddr = (uint32_t *)((uintptr_t)e1000gp->shared.hw_addr +
4357 	    (uintptr_t)ppd->pp_acc_offset);
4358 	value = (uint32_t)ppd->pp_acc_data;
4359 
4360 	ddi_put32(handle, regaddr, value);
4361 }
4362 
4363 static void
4364 e1000g_ioc_peek_mem(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd)
4365 {
4366 	uint64_t value;
4367 	void *vaddr;
4368 
4369 	vaddr = (void *)(uintptr_t)ppd->pp_acc_offset;
4370 
4371 	switch (ppd->pp_acc_size) {
4372 	case 1:
4373 		value = *(uint8_t *)vaddr;
4374 		break;
4375 
4376 	case 2:
4377 		value = *(uint16_t *)vaddr;
4378 		break;
4379 
4380 	case 4:
4381 		value = *(uint32_t *)vaddr;
4382 		break;
4383 
4384 	case 8:
4385 		value = *(uint64_t *)vaddr;
4386 		break;
4387 	}
4388 
4389 	E1000G_DEBUGLOG_4(e1000gp, E1000G_INFO_LEVEL,
4390 	    "e1000g_ioc_peek_mem($%p, $%p) peeked 0x%llx from $%p\n",
4391 	    (void *)e1000gp, (void *)ppd, value, vaddr);
4392 
4393 	ppd->pp_acc_data = value;
4394 }
4395 
4396 static void
4397 e1000g_ioc_poke_mem(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd)
4398 {
4399 	uint64_t value;
4400 	void *vaddr;
4401 
4402 	vaddr = (void *)(uintptr_t)ppd->pp_acc_offset;
4403 	value = ppd->pp_acc_data;
4404 
4405 	E1000G_DEBUGLOG_4(e1000gp, E1000G_INFO_LEVEL,
4406 	    "e1000g_ioc_poke_mem($%p, $%p) poking 0x%llx at $%p\n",
4407 	    (void *)e1000gp, (void *)ppd, value, vaddr);
4408 
4409 	switch (ppd->pp_acc_size) {
4410 	case 1:
4411 		*(uint8_t *)vaddr = (uint8_t)value;
4412 		break;
4413 
4414 	case 2:
4415 		*(uint16_t *)vaddr = (uint16_t)value;
4416 		break;
4417 
4418 	case 4:
4419 		*(uint32_t *)vaddr = (uint32_t)value;
4420 		break;
4421 
4422 	case 8:
4423 		*(uint64_t *)vaddr = (uint64_t)value;
4424 		break;
4425 	}
4426 }
4427 #endif
4428 
4429 /*
4430  * Loopback Support
4431  */
4432 static lb_property_t lb_normal =
4433 	{ normal,	"normal",	E1000G_LB_NONE		};
4434 static lb_property_t lb_external1000 =
4435 	{ external,	"1000Mbps",	E1000G_LB_EXTERNAL_1000	};
4436 static lb_property_t lb_external100 =
4437 	{ external,	"100Mbps",	E1000G_LB_EXTERNAL_100	};
4438 static lb_property_t lb_external10 =
4439 	{ external,	"10Mbps",	E1000G_LB_EXTERNAL_10	};
4440 static lb_property_t lb_phy =
4441 	{ internal,	"PHY",		E1000G_LB_INTERNAL_PHY	};
4442 
4443 static enum ioc_reply
4444 e1000g_loopback_ioctl(struct e1000g *Adapter, struct iocblk *iocp, mblk_t *mp)
4445 {
4446 	lb_info_sz_t *lbsp;
4447 	lb_property_t *lbpp;
4448 	struct e1000_hw *hw;
4449 	uint32_t *lbmp;
4450 	uint32_t size;
4451 	uint32_t value;
4452 
4453 	hw = &Adapter->shared;
4454 
4455 	if (mp->b_cont == NULL)
4456 		return (IOC_INVAL);
4457 
4458 	if (!e1000g_check_loopback_support(hw)) {
4459 		e1000g_log(NULL, CE_WARN,
4460 		    "Loopback is not supported on e1000g%d", Adapter->instance);
4461 		return (IOC_INVAL);
4462 	}
4463 
4464 	switch (iocp->ioc_cmd) {
4465 	default:
4466 		return (IOC_INVAL);
4467 
4468 	case LB_GET_INFO_SIZE:
4469 		size = sizeof (lb_info_sz_t);
4470 		if (iocp->ioc_count != size)
4471 			return (IOC_INVAL);
4472 
4473 		rw_enter(&Adapter->chip_lock, RW_WRITER);
4474 		e1000g_get_phy_state(Adapter);
4475 
4476 		/*
4477 		 * Workaround for hardware faults. In order to get a stable
4478 		 * state of phy, we will wait for a specific interval and
4479 		 * try again. The time delay is an experiential value based
4480 		 * on our testing.
4481 		 */
4482 		msec_delay(100);
4483 		e1000g_get_phy_state(Adapter);
4484 		rw_exit(&Adapter->chip_lock);
4485 
4486 		value = sizeof (lb_normal);
4487 		if ((Adapter->phy_ext_status & IEEE_ESR_1000T_FD_CAPS) ||
4488 		    (Adapter->phy_ext_status & IEEE_ESR_1000X_FD_CAPS) ||
4489 		    (hw->phy.media_type == e1000_media_type_fiber) ||
4490 		    (hw->phy.media_type == e1000_media_type_internal_serdes)) {
4491 			value += sizeof (lb_phy);
4492 			switch (hw->mac.type) {
4493 			case e1000_82571:
4494 			case e1000_82572:
4495 			case e1000_80003es2lan:
4496 				value += sizeof (lb_external1000);
4497 				break;
4498 			}
4499 		}
4500 		if ((Adapter->phy_status & MII_SR_100X_FD_CAPS) ||
4501 		    (Adapter->phy_status & MII_SR_100T2_FD_CAPS))
4502 			value += sizeof (lb_external100);
4503 		if (Adapter->phy_status & MII_SR_10T_FD_CAPS)
4504 			value += sizeof (lb_external10);
4505 
4506 		lbsp = (lb_info_sz_t *)(uintptr_t)mp->b_cont->b_rptr;
4507 		*lbsp = value;
4508 		break;
4509 
4510 	case LB_GET_INFO:
4511 		value = sizeof (lb_normal);
4512 		if ((Adapter->phy_ext_status & IEEE_ESR_1000T_FD_CAPS) ||
4513 		    (Adapter->phy_ext_status & IEEE_ESR_1000X_FD_CAPS) ||
4514 		    (hw->phy.media_type == e1000_media_type_fiber) ||
4515 		    (hw->phy.media_type == e1000_media_type_internal_serdes)) {
4516 			value += sizeof (lb_phy);
4517 			switch (hw->mac.type) {
4518 			case e1000_82571:
4519 			case e1000_82572:
4520 			case e1000_80003es2lan:
4521 				value += sizeof (lb_external1000);
4522 				break;
4523 			}
4524 		}
4525 		if ((Adapter->phy_status & MII_SR_100X_FD_CAPS) ||
4526 		    (Adapter->phy_status & MII_SR_100T2_FD_CAPS))
4527 			value += sizeof (lb_external100);
4528 		if (Adapter->phy_status & MII_SR_10T_FD_CAPS)
4529 			value += sizeof (lb_external10);
4530 
4531 		size = value;
4532 		if (iocp->ioc_count != size)
4533 			return (IOC_INVAL);
4534 
4535 		value = 0;
4536 		lbpp = (lb_property_t *)(uintptr_t)mp->b_cont->b_rptr;
4537 		lbpp[value++] = lb_normal;
4538 		if ((Adapter->phy_ext_status & IEEE_ESR_1000T_FD_CAPS) ||
4539 		    (Adapter->phy_ext_status & IEEE_ESR_1000X_FD_CAPS) ||
4540 		    (hw->phy.media_type == e1000_media_type_fiber) ||
4541 		    (hw->phy.media_type == e1000_media_type_internal_serdes)) {
4542 			lbpp[value++] = lb_phy;
4543 			switch (hw->mac.type) {
4544 			case e1000_82571:
4545 			case e1000_82572:
4546 			case e1000_80003es2lan:
4547 				lbpp[value++] = lb_external1000;
4548 				break;
4549 			}
4550 		}
4551 		if ((Adapter->phy_status & MII_SR_100X_FD_CAPS) ||
4552 		    (Adapter->phy_status & MII_SR_100T2_FD_CAPS))
4553 			lbpp[value++] = lb_external100;
4554 		if (Adapter->phy_status & MII_SR_10T_FD_CAPS)
4555 			lbpp[value++] = lb_external10;
4556 		break;
4557 
4558 	case LB_GET_MODE:
4559 		size = sizeof (uint32_t);
4560 		if (iocp->ioc_count != size)
4561 			return (IOC_INVAL);
4562 
4563 		lbmp = (uint32_t *)(uintptr_t)mp->b_cont->b_rptr;
4564 		*lbmp = Adapter->loopback_mode;
4565 		break;
4566 
4567 	case LB_SET_MODE:
4568 		size = 0;
4569 		if (iocp->ioc_count != sizeof (uint32_t))
4570 			return (IOC_INVAL);
4571 
4572 		lbmp = (uint32_t *)(uintptr_t)mp->b_cont->b_rptr;
4573 		if (!e1000g_set_loopback_mode(Adapter, *lbmp))
4574 			return (IOC_INVAL);
4575 		break;
4576 	}
4577 
4578 	iocp->ioc_count = size;
4579 	iocp->ioc_error = 0;
4580 
4581 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
4582 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
4583 		return (IOC_INVAL);
4584 	}
4585 
4586 	return (IOC_REPLY);
4587 }
4588 
4589 static boolean_t
4590 e1000g_check_loopback_support(struct e1000_hw *hw)
4591 {
4592 	switch (hw->mac.type) {
4593 	case e1000_82540:
4594 	case e1000_82545:
4595 	case e1000_82545_rev_3:
4596 	case e1000_82546:
4597 	case e1000_82546_rev_3:
4598 	case e1000_82541:
4599 	case e1000_82541_rev_2:
4600 	case e1000_82547:
4601 	case e1000_82547_rev_2:
4602 	case e1000_82571:
4603 	case e1000_82572:
4604 	case e1000_82573:
4605 	case e1000_80003es2lan:
4606 		return (B_TRUE);
4607 	}
4608 	return (B_FALSE);
4609 }
4610 
4611 static boolean_t
4612 e1000g_set_loopback_mode(struct e1000g *Adapter, uint32_t mode)
4613 {
4614 	struct e1000_hw *hw;
4615 	int i, times;
4616 	boolean_t link_up;
4617 
4618 	if (mode == Adapter->loopback_mode)
4619 		return (B_TRUE);
4620 
4621 	hw = &Adapter->shared;
4622 	times = 0;
4623 
4624 	Adapter->loopback_mode = mode;
4625 
4626 	if (mode == E1000G_LB_NONE) {
4627 		/* Reset the chip */
4628 		hw->phy.autoneg_wait_to_complete = B_TRUE;
4629 		(void) e1000g_reset_adapter(Adapter);
4630 		hw->phy.autoneg_wait_to_complete = B_FALSE;
4631 		return (B_TRUE);
4632 	}
4633 
4634 again:
4635 
4636 	rw_enter(&Adapter->chip_lock, RW_WRITER);
4637 
4638 	switch (mode) {
4639 	default:
4640 		rw_exit(&Adapter->chip_lock);
4641 		return (B_FALSE);
4642 
4643 	case E1000G_LB_EXTERNAL_1000:
4644 		e1000g_set_external_loopback_1000(Adapter);
4645 		break;
4646 
4647 	case E1000G_LB_EXTERNAL_100:
4648 		e1000g_set_external_loopback_100(Adapter);
4649 		break;
4650 
4651 	case E1000G_LB_EXTERNAL_10:
4652 		e1000g_set_external_loopback_10(Adapter);
4653 		break;
4654 
4655 	case E1000G_LB_INTERNAL_PHY:
4656 		e1000g_set_internal_loopback(Adapter);
4657 		break;
4658 	}
4659 
4660 	times++;
4661 
4662 	rw_exit(&Adapter->chip_lock);
4663 
4664 	/* Wait for link up */
4665 	for (i = (PHY_FORCE_LIMIT * 2); i > 0; i--)
4666 		msec_delay(100);
4667 
4668 	rw_enter(&Adapter->chip_lock, RW_WRITER);
4669 
4670 	link_up = e1000g_link_up(Adapter);
4671 
4672 	rw_exit(&Adapter->chip_lock);
4673 
4674 	if (!link_up) {
4675 		E1000G_DEBUGLOG_0(Adapter, E1000G_INFO_LEVEL,
4676 		    "Failed to get the link up");
4677 		if (times < 2) {
4678 			/* Reset the link */
4679 			E1000G_DEBUGLOG_0(Adapter, E1000G_INFO_LEVEL,
4680 			    "Reset the link ...");
4681 			(void) e1000g_reset_adapter(Adapter);
4682 			goto again;
4683 		}
4684 	}
4685 
4686 	return (B_TRUE);
4687 }
4688 
4689 /*
4690  * The following loopback settings are from Intel's technical
4691  * document - "How To Loopback". All the register settings and
4692  * time delay values are directly inherited from the document
4693  * without more explanations available.
4694  */
4695 static void
4696 e1000g_set_internal_loopback(struct e1000g *Adapter)
4697 {
4698 	struct e1000_hw *hw;
4699 	uint32_t ctrl;
4700 	uint32_t status;
4701 	uint16_t phy_ctrl;
4702 	uint32_t txcw;
4703 
4704 	hw = &Adapter->shared;
4705 
4706 	/* Disable Smart Power Down */
4707 	phy_spd_state(hw, B_FALSE);
4708 
4709 	(void) e1000_read_phy_reg(hw, PHY_CONTROL, &phy_ctrl);
4710 	phy_ctrl &= ~(MII_CR_AUTO_NEG_EN | MII_CR_SPEED_100 | MII_CR_SPEED_10);
4711 	phy_ctrl |= MII_CR_FULL_DUPLEX | MII_CR_SPEED_1000;
4712 
4713 	switch (hw->mac.type) {
4714 	case e1000_82540:
4715 	case e1000_82545:
4716 	case e1000_82545_rev_3:
4717 	case e1000_82546:
4718 	case e1000_82546_rev_3:
4719 	case e1000_82573:
4720 		/* Auto-MDI/MDIX off */
4721 		(void) e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
4722 		/* Reset PHY to update Auto-MDI/MDIX */
4723 		(void) e1000_write_phy_reg(hw, PHY_CONTROL,
4724 		    phy_ctrl | MII_CR_RESET | MII_CR_AUTO_NEG_EN);
4725 		/* Reset PHY to auto-neg off and force 1000 */
4726 		(void) e1000_write_phy_reg(hw, PHY_CONTROL,
4727 		    phy_ctrl | MII_CR_RESET);
4728 		/*
4729 		 * Disable PHY receiver for 82540/545/546 and 82573 Family.
4730 		 * See comments above e1000g_set_internal_loopback() for the
4731 		 * background.
4732 		 */
4733 		(void) e1000_write_phy_reg(hw, 29, 0x001F);
4734 		(void) e1000_write_phy_reg(hw, 30, 0x8FFC);
4735 		(void) e1000_write_phy_reg(hw, 29, 0x001A);
4736 		(void) e1000_write_phy_reg(hw, 30, 0x8FF0);
4737 		break;
4738 	case e1000_80003es2lan:
4739 		/* Force Link Up */
4740 		(void) e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
4741 		    0x1CC);
4742 		/* Sets PCS loopback at 1Gbs */
4743 		(void) e1000_write_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL,
4744 		    0x1046);
4745 		break;
4746 	}
4747 
4748 	/* Set loopback */
4749 	(void) e1000_write_phy_reg(hw, PHY_CONTROL, phy_ctrl | MII_CR_LOOPBACK);
4750 
4751 	msec_delay(250);
4752 
4753 	/* Now set up the MAC to the same speed/duplex as the PHY. */
4754 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
4755 	ctrl &= ~E1000_CTRL_SPD_SEL;	/* Clear the speed sel bits */
4756 	ctrl |= (E1000_CTRL_FRCSPD |	/* Set the Force Speed Bit */
4757 	    E1000_CTRL_FRCDPX |		/* Set the Force Duplex Bit */
4758 	    E1000_CTRL_SPD_1000 |	/* Force Speed to 1000 */
4759 	    E1000_CTRL_FD);		/* Force Duplex to FULL */
4760 
4761 	switch (hw->mac.type) {
4762 	case e1000_82540:
4763 	case e1000_82545:
4764 	case e1000_82545_rev_3:
4765 	case e1000_82546:
4766 	case e1000_82546_rev_3:
4767 		/*
4768 		 * For some serdes we'll need to commit the writes now
4769 		 * so that the status is updated on link
4770 		 */
4771 		if (hw->phy.media_type == e1000_media_type_internal_serdes) {
4772 			E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
4773 			msec_delay(100);
4774 			ctrl = E1000_READ_REG(hw, E1000_CTRL);
4775 		}
4776 
4777 		if (hw->phy.media_type == e1000_media_type_copper) {
4778 			/* Invert Loss of Signal */
4779 			ctrl |= E1000_CTRL_ILOS;
4780 		} else {
4781 			/* Set ILOS on fiber nic if half duplex is detected */
4782 			status = E1000_READ_REG(hw, E1000_STATUS);
4783 			if ((status & E1000_STATUS_FD) == 0)
4784 				ctrl |= E1000_CTRL_ILOS | E1000_CTRL_SLU;
4785 		}
4786 		E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
4787 		break;
4788 
4789 	case e1000_82571:
4790 	case e1000_82572:
4791 		/*
4792 		 * The fiber/SerDes versions of this adapter do not contain an
4793 		 * accessible PHY. Therefore, loopback beyond MAC must be done
4794 		 * using SerDes analog loopback.
4795 		 */
4796 		if (hw->phy.media_type != e1000_media_type_copper) {
4797 			status = E1000_READ_REG(hw, E1000_STATUS);
4798 			/* Set ILOS on fiber nic if half duplex is detected */
4799 			if (((status & E1000_STATUS_LU) == 0) ||
4800 			    ((status & E1000_STATUS_FD) == 0) ||
4801 			    (hw->phy.media_type ==
4802 			    e1000_media_type_internal_serdes))
4803 				ctrl |= E1000_CTRL_ILOS | E1000_CTRL_SLU;
4804 
4805 			/* Disable autoneg by setting bit 31 of TXCW to zero */
4806 			txcw = E1000_READ_REG(hw, E1000_TXCW);
4807 			txcw &= ~((uint32_t)1 << 31);
4808 			E1000_WRITE_REG(hw, E1000_TXCW, txcw);
4809 
4810 			/*
4811 			 * Write 0x410 to Serdes Control register
4812 			 * to enable Serdes analog loopback
4813 			 */
4814 			E1000_WRITE_REG(hw, E1000_SCTL, 0x0410);
4815 			msec_delay(10);
4816 		}
4817 		E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
4818 		break;
4819 
4820 	case e1000_82573:
4821 		ctrl |= E1000_CTRL_ILOS;
4822 		E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
4823 		break;
4824 	}
4825 }
4826 
4827 static void
4828 e1000g_set_external_loopback_1000(struct e1000g *Adapter)
4829 {
4830 	struct e1000_hw *hw;
4831 	uint32_t rctl;
4832 	uint32_t ctrl_ext;
4833 	uint32_t ctrl;
4834 	uint32_t status;
4835 	uint32_t txcw;
4836 	uint16_t phydata;
4837 
4838 	hw = &Adapter->shared;
4839 
4840 	/* Disable Smart Power Down */
4841 	phy_spd_state(hw, B_FALSE);
4842 
4843 	switch (hw->mac.type) {
4844 	case e1000_82571:
4845 	case e1000_82572:
4846 		switch (hw->phy.media_type) {
4847 		case e1000_media_type_copper:
4848 			/* Force link up (Must be done before the PHY writes) */
4849 			ctrl = E1000_READ_REG(hw, E1000_CTRL);
4850 			ctrl |= E1000_CTRL_SLU;	/* Force Link Up */
4851 			E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
4852 
4853 			rctl = E1000_READ_REG(hw, E1000_RCTL);
4854 			rctl |= (E1000_RCTL_EN |
4855 			    E1000_RCTL_SBP |
4856 			    E1000_RCTL_UPE |
4857 			    E1000_RCTL_MPE |
4858 			    E1000_RCTL_LPE |
4859 			    E1000_RCTL_BAM);		/* 0x803E */
4860 			E1000_WRITE_REG(hw, E1000_RCTL, rctl);
4861 
4862 			ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
4863 			ctrl_ext |= (E1000_CTRL_EXT_SDP4_DATA |
4864 			    E1000_CTRL_EXT_SDP6_DATA |
4865 			    E1000_CTRL_EXT_SDP7_DATA |
4866 			    E1000_CTRL_EXT_SDP4_DIR |
4867 			    E1000_CTRL_EXT_SDP6_DIR |
4868 			    E1000_CTRL_EXT_SDP7_DIR);	/* 0x0DD0 */
4869 			E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
4870 
4871 			/*
4872 			 * This sequence tunes the PHY's SDP and no customer
4873 			 * settable values. For background, see comments above
4874 			 * e1000g_set_internal_loopback().
4875 			 */
4876 			(void) e1000_write_phy_reg(hw, 0x0, 0x140);
4877 			msec_delay(10);
4878 			(void) e1000_write_phy_reg(hw, 0x9, 0x1A00);
4879 			(void) e1000_write_phy_reg(hw, 0x12, 0xC10);
4880 			(void) e1000_write_phy_reg(hw, 0x12, 0x1C10);
4881 			(void) e1000_write_phy_reg(hw, 0x1F37, 0x76);
4882 			(void) e1000_write_phy_reg(hw, 0x1F33, 0x1);
4883 			(void) e1000_write_phy_reg(hw, 0x1F33, 0x0);
4884 
4885 			(void) e1000_write_phy_reg(hw, 0x1F35, 0x65);
4886 			(void) e1000_write_phy_reg(hw, 0x1837, 0x3F7C);
4887 			(void) e1000_write_phy_reg(hw, 0x1437, 0x3FDC);
4888 			(void) e1000_write_phy_reg(hw, 0x1237, 0x3F7C);
4889 			(void) e1000_write_phy_reg(hw, 0x1137, 0x3FDC);
4890 
4891 			msec_delay(50);
4892 			break;
4893 		case e1000_media_type_fiber:
4894 		case e1000_media_type_internal_serdes:
4895 			status = E1000_READ_REG(hw, E1000_STATUS);
4896 			if (((status & E1000_STATUS_LU) == 0) ||
4897 			    (hw->phy.media_type ==
4898 			    e1000_media_type_internal_serdes)) {
4899 				ctrl = E1000_READ_REG(hw, E1000_CTRL);
4900 				ctrl |= E1000_CTRL_ILOS | E1000_CTRL_SLU;
4901 				E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
4902 			}
4903 
4904 			/* Disable autoneg by setting bit 31 of TXCW to zero */
4905 			txcw = E1000_READ_REG(hw, E1000_TXCW);
4906 			txcw &= ~((uint32_t)1 << 31);
4907 			E1000_WRITE_REG(hw, E1000_TXCW, txcw);
4908 
4909 			/*
4910 			 * Write 0x410 to Serdes Control register
4911 			 * to enable Serdes analog loopback
4912 			 */
4913 			E1000_WRITE_REG(hw, E1000_SCTL, 0x0410);
4914 			msec_delay(10);
4915 			break;
4916 		default:
4917 			break;
4918 		}
4919 		break;
4920 	case e1000_80003es2lan:
4921 		(void) e1000_read_phy_reg(hw, GG82563_REG(6, 16), &phydata);
4922 		(void) e1000_write_phy_reg(hw, GG82563_REG(6, 16),
4923 		    phydata | (1 << 5));
4924 		Adapter->param_adv_autoneg = 1;
4925 		Adapter->param_adv_1000fdx = 1;
4926 		(void) e1000g_reset_link(Adapter);
4927 		break;
4928 	}
4929 }
4930 
4931 static void
4932 e1000g_set_external_loopback_100(struct e1000g *Adapter)
4933 {
4934 	struct e1000_hw *hw;
4935 	uint32_t ctrl;
4936 	uint16_t phy_ctrl;
4937 
4938 	hw = &Adapter->shared;
4939 
4940 	/* Disable Smart Power Down */
4941 	phy_spd_state(hw, B_FALSE);
4942 
4943 	phy_ctrl = (MII_CR_FULL_DUPLEX |
4944 	    MII_CR_SPEED_100);
4945 
4946 	/* Force 100/FD, reset PHY */
4947 	(void) e1000_write_phy_reg(hw, PHY_CONTROL,
4948 	    phy_ctrl | MII_CR_RESET);	/* 0xA100 */
4949 	msec_delay(10);
4950 
4951 	/* Force 100/FD */
4952 	(void) e1000_write_phy_reg(hw, PHY_CONTROL,
4953 	    phy_ctrl);			/* 0x2100 */
4954 	msec_delay(10);
4955 
4956 	/* Now setup the MAC to the same speed/duplex as the PHY. */
4957 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
4958 	ctrl &= ~E1000_CTRL_SPD_SEL;	/* Clear the speed sel bits */
4959 	ctrl |= (E1000_CTRL_SLU |	/* Force Link Up */
4960 	    E1000_CTRL_FRCSPD |		/* Set the Force Speed Bit */
4961 	    E1000_CTRL_FRCDPX |		/* Set the Force Duplex Bit */
4962 	    E1000_CTRL_SPD_100 |	/* Force Speed to 100 */
4963 	    E1000_CTRL_FD);		/* Force Duplex to FULL */
4964 
4965 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
4966 }
4967 
4968 static void
4969 e1000g_set_external_loopback_10(struct e1000g *Adapter)
4970 {
4971 	struct e1000_hw *hw;
4972 	uint32_t ctrl;
4973 	uint16_t phy_ctrl;
4974 
4975 	hw = &Adapter->shared;
4976 
4977 	/* Disable Smart Power Down */
4978 	phy_spd_state(hw, B_FALSE);
4979 
4980 	phy_ctrl = (MII_CR_FULL_DUPLEX |
4981 	    MII_CR_SPEED_10);
4982 
4983 	/* Force 10/FD, reset PHY */
4984 	(void) e1000_write_phy_reg(hw, PHY_CONTROL,
4985 	    phy_ctrl | MII_CR_RESET);	/* 0x8100 */
4986 	msec_delay(10);
4987 
4988 	/* Force 10/FD */
4989 	(void) e1000_write_phy_reg(hw, PHY_CONTROL,
4990 	    phy_ctrl);			/* 0x0100 */
4991 	msec_delay(10);
4992 
4993 	/* Now setup the MAC to the same speed/duplex as the PHY. */
4994 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
4995 	ctrl &= ~E1000_CTRL_SPD_SEL;	/* Clear the speed sel bits */
4996 	ctrl |= (E1000_CTRL_SLU |	/* Force Link Up */
4997 	    E1000_CTRL_FRCSPD |		/* Set the Force Speed Bit */
4998 	    E1000_CTRL_FRCDPX |		/* Set the Force Duplex Bit */
4999 	    E1000_CTRL_SPD_10 |		/* Force Speed to 10 */
5000 	    E1000_CTRL_FD);		/* Force Duplex to FULL */
5001 
5002 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
5003 }
5004 
5005 #ifdef __sparc
5006 static boolean_t
5007 e1000g_find_mac_address(struct e1000g *Adapter)
5008 {
5009 	struct e1000_hw *hw = &Adapter->shared;
5010 	uchar_t *bytes;
5011 	struct ether_addr sysaddr;
5012 	uint_t nelts;
5013 	int err;
5014 	boolean_t found = B_FALSE;
5015 
5016 	/*
5017 	 * The "vendor's factory-set address" may already have
5018 	 * been extracted from the chip, but if the property
5019 	 * "local-mac-address" is set we use that instead.
5020 	 *
5021 	 * We check whether it looks like an array of 6
5022 	 * bytes (which it should, if OBP set it).  If we can't
5023 	 * make sense of it this way, we'll ignore it.
5024 	 */
5025 	err = ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, Adapter->dip,
5026 	    DDI_PROP_DONTPASS, "local-mac-address", &bytes, &nelts);
5027 	if (err == DDI_PROP_SUCCESS) {
5028 		if (nelts == ETHERADDRL) {
5029 			while (nelts--)
5030 				hw->mac.addr[nelts] = bytes[nelts];
5031 			found = B_TRUE;
5032 		}
5033 		ddi_prop_free(bytes);
5034 	}
5035 
5036 	/*
5037 	 * Look up the OBP property "local-mac-address?". If the user has set
5038 	 * 'local-mac-address? = false', use "the system address" instead.
5039 	 */
5040 	if (ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, Adapter->dip, 0,
5041 	    "local-mac-address?", &bytes, &nelts) == DDI_PROP_SUCCESS) {
5042 		if (strncmp("false", (caddr_t)bytes, (size_t)nelts) == 0) {
5043 			if (localetheraddr(NULL, &sysaddr) != 0) {
5044 				bcopy(&sysaddr, hw->mac.addr, ETHERADDRL);
5045 				found = B_TRUE;
5046 			}
5047 		}
5048 		ddi_prop_free(bytes);
5049 	}
5050 
5051 	/*
5052 	 * Finally(!), if there's a valid "mac-address" property (created
5053 	 * if we netbooted from this interface), we must use this instead
5054 	 * of any of the above to ensure that the NFS/install server doesn't
5055 	 * get confused by the address changing as Solaris takes over!
5056 	 */
5057 	err = ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, Adapter->dip,
5058 	    DDI_PROP_DONTPASS, "mac-address", &bytes, &nelts);
5059 	if (err == DDI_PROP_SUCCESS) {
5060 		if (nelts == ETHERADDRL) {
5061 			while (nelts--)
5062 				hw->mac.addr[nelts] = bytes[nelts];
5063 			found = B_TRUE;
5064 		}
5065 		ddi_prop_free(bytes);
5066 	}
5067 
5068 	if (found) {
5069 		bcopy(hw->mac.addr, hw->mac.perm_addr,
5070 		    ETHERADDRL);
5071 	}
5072 
5073 	return (found);
5074 }
5075 #endif
5076 
5077 static int
5078 e1000g_add_intrs(struct e1000g *Adapter)
5079 {
5080 	dev_info_t *devinfo;
5081 	int intr_types;
5082 	int rc;
5083 
5084 	devinfo = Adapter->dip;
5085 
5086 	/* Get supported interrupt types */
5087 	rc = ddi_intr_get_supported_types(devinfo, &intr_types);
5088 
5089 	if (rc != DDI_SUCCESS) {
5090 		E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5091 		    "Get supported interrupt types failed: %d\n", rc);
5092 		return (DDI_FAILURE);
5093 	}
5094 
5095 	/*
5096 	 * Based on Intel Technical Advisory document (TA-160), there are some
5097 	 * cases where some older Intel PCI-X NICs may "advertise" to the OS
5098 	 * that it supports MSI, but in fact has problems.
5099 	 * So we should only enable MSI for PCI-E NICs and disable MSI for old
5100 	 * PCI/PCI-X NICs.
5101 	 */
5102 	if (Adapter->shared.mac.type < e1000_82571)
5103 		Adapter->msi_enable = B_FALSE;
5104 
5105 	if ((intr_types & DDI_INTR_TYPE_MSI) && Adapter->msi_enable) {
5106 		rc = e1000g_intr_add(Adapter, DDI_INTR_TYPE_MSI);
5107 
5108 		if (rc != DDI_SUCCESS) {
5109 			E1000G_DEBUGLOG_0(Adapter, E1000G_WARN_LEVEL,
5110 			    "Add MSI failed, trying Legacy interrupts\n");
5111 		} else {
5112 			Adapter->intr_type = DDI_INTR_TYPE_MSI;
5113 		}
5114 	}
5115 
5116 	if ((Adapter->intr_type == 0) &&
5117 	    (intr_types & DDI_INTR_TYPE_FIXED)) {
5118 		rc = e1000g_intr_add(Adapter, DDI_INTR_TYPE_FIXED);
5119 
5120 		if (rc != DDI_SUCCESS) {
5121 			E1000G_DEBUGLOG_0(Adapter, E1000G_WARN_LEVEL,
5122 			    "Add Legacy interrupts failed\n");
5123 			return (DDI_FAILURE);
5124 		}
5125 
5126 		Adapter->intr_type = DDI_INTR_TYPE_FIXED;
5127 	}
5128 
5129 	if (Adapter->intr_type == 0) {
5130 		E1000G_DEBUGLOG_0(Adapter, E1000G_WARN_LEVEL,
5131 		    "No interrupts registered\n");
5132 		return (DDI_FAILURE);
5133 	}
5134 
5135 	return (DDI_SUCCESS);
5136 }
5137 
5138 /*
5139  * e1000g_intr_add() handles MSI/Legacy interrupts
5140  */
5141 static int
5142 e1000g_intr_add(struct e1000g *Adapter, int intr_type)
5143 {
5144 	dev_info_t *devinfo;
5145 	int count, avail, actual;
5146 	int x, y, rc, inum = 0;
5147 	int flag;
5148 	ddi_intr_handler_t *intr_handler;
5149 
5150 	devinfo = Adapter->dip;
5151 
5152 	/* get number of interrupts */
5153 	rc = ddi_intr_get_nintrs(devinfo, intr_type, &count);
5154 	if ((rc != DDI_SUCCESS) || (count == 0)) {
5155 		E1000G_DEBUGLOG_2(Adapter, E1000G_WARN_LEVEL,
5156 		    "Get interrupt number failed. Return: %d, count: %d\n",
5157 		    rc, count);
5158 		return (DDI_FAILURE);
5159 	}
5160 
5161 	/* get number of available interrupts */
5162 	rc = ddi_intr_get_navail(devinfo, intr_type, &avail);
5163 	if ((rc != DDI_SUCCESS) || (avail == 0)) {
5164 		E1000G_DEBUGLOG_2(Adapter, E1000G_WARN_LEVEL,
5165 		    "Get interrupt available number failed. "
5166 		    "Return: %d, available: %d\n", rc, avail);
5167 		return (DDI_FAILURE);
5168 	}
5169 
5170 	if (avail < count) {
5171 		E1000G_DEBUGLOG_2(Adapter, E1000G_WARN_LEVEL,
5172 		    "Interrupts count: %d, available: %d\n",
5173 		    count, avail);
5174 	}
5175 
5176 	/* Allocate an array of interrupt handles */
5177 	Adapter->intr_size = count * sizeof (ddi_intr_handle_t);
5178 	Adapter->htable = kmem_alloc(Adapter->intr_size, KM_SLEEP);
5179 
5180 	/* Set NORMAL behavior for both MSI and FIXED interrupt */
5181 	flag = DDI_INTR_ALLOC_NORMAL;
5182 
5183 	/* call ddi_intr_alloc() */
5184 	rc = ddi_intr_alloc(devinfo, Adapter->htable, intr_type, inum,
5185 	    count, &actual, flag);
5186 
5187 	if ((rc != DDI_SUCCESS) || (actual == 0)) {
5188 		E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5189 		    "Allocate interrupts failed: %d\n", rc);
5190 
5191 		kmem_free(Adapter->htable, Adapter->intr_size);
5192 		return (DDI_FAILURE);
5193 	}
5194 
5195 	if (actual < count) {
5196 		E1000G_DEBUGLOG_2(Adapter, E1000G_WARN_LEVEL,
5197 		    "Interrupts requested: %d, received: %d\n",
5198 		    count, actual);
5199 	}
5200 
5201 	Adapter->intr_cnt = actual;
5202 
5203 	/* Get priority for first msi, assume remaining are all the same */
5204 	rc = ddi_intr_get_pri(Adapter->htable[0], &Adapter->intr_pri);
5205 
5206 	if (rc != DDI_SUCCESS) {
5207 		E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5208 		    "Get interrupt priority failed: %d\n", rc);
5209 
5210 		/* Free already allocated intr */
5211 		for (y = 0; y < actual; y++)
5212 			(void) ddi_intr_free(Adapter->htable[y]);
5213 
5214 		kmem_free(Adapter->htable, Adapter->intr_size);
5215 		return (DDI_FAILURE);
5216 	}
5217 
5218 	/*
5219 	 * In Legacy Interrupt mode, for PCI-Express adapters, we should
5220 	 * use the interrupt service routine e1000g_intr_pciexpress()
5221 	 * to avoid interrupt stealing when sharing interrupt with other
5222 	 * devices.
5223 	 */
5224 	if (Adapter->shared.mac.type < e1000_82571)
5225 		intr_handler = (ddi_intr_handler_t *)e1000g_intr;
5226 	else
5227 		intr_handler = (ddi_intr_handler_t *)e1000g_intr_pciexpress;
5228 
5229 	/* Call ddi_intr_add_handler() */
5230 	for (x = 0; x < actual; x++) {
5231 		rc = ddi_intr_add_handler(Adapter->htable[x],
5232 		    intr_handler, (caddr_t)Adapter, NULL);
5233 
5234 		if (rc != DDI_SUCCESS) {
5235 			E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5236 			    "Add interrupt handler failed: %d\n", rc);
5237 
5238 			/* Remove already added handler */
5239 			for (y = 0; y < x; y++)
5240 				(void) ddi_intr_remove_handler(
5241 				    Adapter->htable[y]);
5242 
5243 			/* Free already allocated intr */
5244 			for (y = 0; y < actual; y++)
5245 				(void) ddi_intr_free(Adapter->htable[y]);
5246 
5247 			kmem_free(Adapter->htable, Adapter->intr_size);
5248 			return (DDI_FAILURE);
5249 		}
5250 	}
5251 
5252 	rc = ddi_intr_get_cap(Adapter->htable[0], &Adapter->intr_cap);
5253 
5254 	if (rc != DDI_SUCCESS) {
5255 		E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5256 		    "Get interrupt cap failed: %d\n", rc);
5257 
5258 		/* Free already allocated intr */
5259 		for (y = 0; y < actual; y++) {
5260 			(void) ddi_intr_remove_handler(Adapter->htable[y]);
5261 			(void) ddi_intr_free(Adapter->htable[y]);
5262 		}
5263 
5264 		kmem_free(Adapter->htable, Adapter->intr_size);
5265 		return (DDI_FAILURE);
5266 	}
5267 
5268 	return (DDI_SUCCESS);
5269 }
5270 
5271 static int
5272 e1000g_rem_intrs(struct e1000g *Adapter)
5273 {
5274 	int x;
5275 	int rc;
5276 
5277 	for (x = 0; x < Adapter->intr_cnt; x++) {
5278 		rc = ddi_intr_remove_handler(Adapter->htable[x]);
5279 		if (rc != DDI_SUCCESS) {
5280 			E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5281 			    "Remove intr handler failed: %d\n", rc);
5282 			return (DDI_FAILURE);
5283 		}
5284 
5285 		rc = ddi_intr_free(Adapter->htable[x]);
5286 		if (rc != DDI_SUCCESS) {
5287 			E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5288 			    "Free intr failed: %d\n", rc);
5289 			return (DDI_FAILURE);
5290 		}
5291 	}
5292 
5293 	kmem_free(Adapter->htable, Adapter->intr_size);
5294 
5295 	return (DDI_SUCCESS);
5296 }
5297 
5298 static int
5299 e1000g_enable_intrs(struct e1000g *Adapter)
5300 {
5301 	int x;
5302 	int rc;
5303 
5304 	/* Enable interrupts */
5305 	if (Adapter->intr_cap & DDI_INTR_FLAG_BLOCK) {
5306 		/* Call ddi_intr_block_enable() for MSI */
5307 		rc = ddi_intr_block_enable(Adapter->htable,
5308 		    Adapter->intr_cnt);
5309 		if (rc != DDI_SUCCESS) {
5310 			E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5311 			    "Enable block intr failed: %d\n", rc);
5312 			return (DDI_FAILURE);
5313 		}
5314 	} else {
5315 		/* Call ddi_intr_enable() for Legacy/MSI non block enable */
5316 		for (x = 0; x < Adapter->intr_cnt; x++) {
5317 			rc = ddi_intr_enable(Adapter->htable[x]);
5318 			if (rc != DDI_SUCCESS) {
5319 				E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5320 				    "Enable intr failed: %d\n", rc);
5321 				return (DDI_FAILURE);
5322 			}
5323 		}
5324 	}
5325 
5326 	return (DDI_SUCCESS);
5327 }
5328 
5329 static int
5330 e1000g_disable_intrs(struct e1000g *Adapter)
5331 {
5332 	int x;
5333 	int rc;
5334 
5335 	/* Disable all interrupts */
5336 	if (Adapter->intr_cap & DDI_INTR_FLAG_BLOCK) {
5337 		rc = ddi_intr_block_disable(Adapter->htable,
5338 		    Adapter->intr_cnt);
5339 		if (rc != DDI_SUCCESS) {
5340 			E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5341 			    "Disable block intr failed: %d\n", rc);
5342 			return (DDI_FAILURE);
5343 		}
5344 	} else {
5345 		for (x = 0; x < Adapter->intr_cnt; x++) {
5346 			rc = ddi_intr_disable(Adapter->htable[x]);
5347 			if (rc != DDI_SUCCESS) {
5348 				E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
5349 				    "Disable intr failed: %d\n", rc);
5350 				return (DDI_FAILURE);
5351 			}
5352 		}
5353 	}
5354 
5355 	return (DDI_SUCCESS);
5356 }
5357 
5358 /*
5359  * e1000g_get_phy_state - get the state of PHY registers, save in the adapter
5360  */
5361 static void
5362 e1000g_get_phy_state(struct e1000g *Adapter)
5363 {
5364 	struct e1000_hw *hw = &Adapter->shared;
5365 
5366 	(void) e1000_read_phy_reg(hw, PHY_CONTROL, &Adapter->phy_ctrl);
5367 	(void) e1000_read_phy_reg(hw, PHY_STATUS, &Adapter->phy_status);
5368 	(void) e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &Adapter->phy_an_adv);
5369 	(void) e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &Adapter->phy_an_exp);
5370 	(void) e1000_read_phy_reg(hw, PHY_EXT_STATUS, &Adapter->phy_ext_status);
5371 	(void) e1000_read_phy_reg(hw, PHY_1000T_CTRL, &Adapter->phy_1000t_ctrl);
5372 	(void) e1000_read_phy_reg(hw, PHY_1000T_STATUS,
5373 	    &Adapter->phy_1000t_status);
5374 	(void) e1000_read_phy_reg(hw, PHY_LP_ABILITY, &Adapter->phy_lp_able);
5375 
5376 	Adapter->param_autoneg_cap =
5377 	    (Adapter->phy_status & MII_SR_AUTONEG_CAPS) ? 1 : 0;
5378 	Adapter->param_pause_cap =
5379 	    (Adapter->phy_an_adv & NWAY_AR_PAUSE) ? 1 : 0;
5380 	Adapter->param_asym_pause_cap =
5381 	    (Adapter->phy_an_adv & NWAY_AR_ASM_DIR) ? 1 : 0;
5382 	Adapter->param_1000fdx_cap =
5383 	    ((Adapter->phy_ext_status & IEEE_ESR_1000T_FD_CAPS) ||
5384 	    (Adapter->phy_ext_status & IEEE_ESR_1000X_FD_CAPS)) ? 1 : 0;
5385 	Adapter->param_1000hdx_cap =
5386 	    ((Adapter->phy_ext_status & IEEE_ESR_1000T_HD_CAPS) ||
5387 	    (Adapter->phy_ext_status & IEEE_ESR_1000X_HD_CAPS)) ? 1 : 0;
5388 	Adapter->param_100t4_cap =
5389 	    (Adapter->phy_status & MII_SR_100T4_CAPS) ? 1 : 0;
5390 	Adapter->param_100fdx_cap =
5391 	    ((Adapter->phy_status & MII_SR_100X_FD_CAPS) ||
5392 	    (Adapter->phy_status & MII_SR_100T2_FD_CAPS)) ? 1 : 0;
5393 	Adapter->param_100hdx_cap =
5394 	    ((Adapter->phy_status & MII_SR_100X_HD_CAPS) ||
5395 	    (Adapter->phy_status & MII_SR_100T2_HD_CAPS)) ? 1 : 0;
5396 	Adapter->param_10fdx_cap =
5397 	    (Adapter->phy_status & MII_SR_10T_FD_CAPS) ? 1 : 0;
5398 	Adapter->param_10hdx_cap =
5399 	    (Adapter->phy_status & MII_SR_10T_HD_CAPS) ? 1 : 0;
5400 
5401 	Adapter->param_adv_autoneg = hw->mac.autoneg;
5402 	Adapter->param_adv_pause =
5403 	    (Adapter->phy_an_adv & NWAY_AR_PAUSE) ? 1 : 0;
5404 	Adapter->param_adv_asym_pause =
5405 	    (Adapter->phy_an_adv & NWAY_AR_ASM_DIR) ? 1 : 0;
5406 	Adapter->param_adv_1000hdx =
5407 	    (Adapter->phy_1000t_ctrl & CR_1000T_HD_CAPS) ? 1 : 0;
5408 	Adapter->param_adv_100t4 =
5409 	    (Adapter->phy_an_adv & NWAY_AR_100T4_CAPS) ? 1 : 0;
5410 	if (Adapter->param_adv_autoneg == 1) {
5411 		Adapter->param_adv_1000fdx =
5412 		    (Adapter->phy_1000t_ctrl & CR_1000T_FD_CAPS) ? 1 : 0;
5413 		Adapter->param_adv_100fdx =
5414 		    (Adapter->phy_an_adv & NWAY_AR_100TX_FD_CAPS) ? 1 : 0;
5415 		Adapter->param_adv_100hdx =
5416 		    (Adapter->phy_an_adv & NWAY_AR_100TX_HD_CAPS) ? 1 : 0;
5417 		Adapter->param_adv_10fdx =
5418 		    (Adapter->phy_an_adv & NWAY_AR_10T_FD_CAPS) ? 1 : 0;
5419 		Adapter->param_adv_10hdx =
5420 		    (Adapter->phy_an_adv & NWAY_AR_10T_HD_CAPS) ? 1 : 0;
5421 	}
5422 
5423 	Adapter->param_lp_autoneg =
5424 	    (Adapter->phy_an_exp & NWAY_ER_LP_NWAY_CAPS) ? 1 : 0;
5425 	Adapter->param_lp_pause =
5426 	    (Adapter->phy_lp_able & NWAY_LPAR_PAUSE) ? 1 : 0;
5427 	Adapter->param_lp_asym_pause =
5428 	    (Adapter->phy_lp_able & NWAY_LPAR_ASM_DIR) ? 1 : 0;
5429 	Adapter->param_lp_1000fdx =
5430 	    (Adapter->phy_1000t_status & SR_1000T_LP_FD_CAPS) ? 1 : 0;
5431 	Adapter->param_lp_1000hdx =
5432 	    (Adapter->phy_1000t_status & SR_1000T_LP_HD_CAPS) ? 1 : 0;
5433 	Adapter->param_lp_100t4 =
5434 	    (Adapter->phy_lp_able & NWAY_LPAR_100T4_CAPS) ? 1 : 0;
5435 	Adapter->param_lp_100fdx =
5436 	    (Adapter->phy_lp_able & NWAY_LPAR_100TX_FD_CAPS) ? 1 : 0;
5437 	Adapter->param_lp_100hdx =
5438 	    (Adapter->phy_lp_able & NWAY_LPAR_100TX_HD_CAPS) ? 1 : 0;
5439 	Adapter->param_lp_10fdx =
5440 	    (Adapter->phy_lp_able & NWAY_LPAR_10T_FD_CAPS) ? 1 : 0;
5441 	Adapter->param_lp_10hdx =
5442 	    (Adapter->phy_lp_able & NWAY_LPAR_10T_HD_CAPS) ? 1 : 0;
5443 }
5444 
5445 /*
5446  * FMA support
5447  */
5448 
5449 int
5450 e1000g_check_acc_handle(ddi_acc_handle_t handle)
5451 {
5452 	ddi_fm_error_t de;
5453 
5454 	ddi_fm_acc_err_get(handle, &de, DDI_FME_VERSION);
5455 	ddi_fm_acc_err_clear(handle, DDI_FME_VERSION);
5456 	return (de.fme_status);
5457 }
5458 
5459 int
5460 e1000g_check_dma_handle(ddi_dma_handle_t handle)
5461 {
5462 	ddi_fm_error_t de;
5463 
5464 	ddi_fm_dma_err_get(handle, &de, DDI_FME_VERSION);
5465 	return (de.fme_status);
5466 }
5467 
5468 /*
5469  * The IO fault service error handling callback function
5470  */
5471 /* ARGSUSED2 */
5472 static int
5473 e1000g_fm_error_cb(dev_info_t *dip, ddi_fm_error_t *err, const void *impl_data)
5474 {
5475 	/*
5476 	 * as the driver can always deal with an error in any dma or
5477 	 * access handle, we can just return the fme_status value.
5478 	 */
5479 	pci_ereport_post(dip, err, NULL);
5480 	return (err->fme_status);
5481 }
5482 
5483 static void
5484 e1000g_fm_init(struct e1000g *Adapter)
5485 {
5486 	ddi_iblock_cookie_t iblk;
5487 	int fma_acc_flag, fma_dma_flag;
5488 
5489 	/* Only register with IO Fault Services if we have some capability */
5490 	if (Adapter->fm_capabilities & DDI_FM_ACCCHK_CAPABLE) {
5491 		e1000g_regs_acc_attr.devacc_attr_access = DDI_FLAGERR_ACC;
5492 		fma_acc_flag = 1;
5493 	} else {
5494 		e1000g_regs_acc_attr.devacc_attr_access = DDI_DEFAULT_ACC;
5495 		fma_acc_flag = 0;
5496 	}
5497 
5498 	if (Adapter->fm_capabilities & DDI_FM_DMACHK_CAPABLE) {
5499 		fma_dma_flag = 1;
5500 	} else {
5501 		fma_dma_flag = 0;
5502 	}
5503 
5504 	(void) e1000g_set_fma_flags(Adapter, fma_acc_flag, fma_dma_flag);
5505 
5506 	if (Adapter->fm_capabilities) {
5507 
5508 		/* Register capabilities with IO Fault Services */
5509 		ddi_fm_init(Adapter->dip, &Adapter->fm_capabilities, &iblk);
5510 
5511 		/*
5512 		 * Initialize pci ereport capabilities if ereport capable
5513 		 */
5514 		if (DDI_FM_EREPORT_CAP(Adapter->fm_capabilities) ||
5515 		    DDI_FM_ERRCB_CAP(Adapter->fm_capabilities))
5516 			pci_ereport_setup(Adapter->dip);
5517 
5518 		/*
5519 		 * Register error callback if error callback capable
5520 		 */
5521 		if (DDI_FM_ERRCB_CAP(Adapter->fm_capabilities))
5522 			ddi_fm_handler_register(Adapter->dip,
5523 			    e1000g_fm_error_cb, (void*) Adapter);
5524 	}
5525 }
5526 
5527 static void
5528 e1000g_fm_fini(struct e1000g *Adapter)
5529 {
5530 	/* Only unregister FMA capabilities if we registered some */
5531 	if (Adapter->fm_capabilities) {
5532 
5533 		/*
5534 		 * Release any resources allocated by pci_ereport_setup()
5535 		 */
5536 		if (DDI_FM_EREPORT_CAP(Adapter->fm_capabilities) ||
5537 		    DDI_FM_ERRCB_CAP(Adapter->fm_capabilities))
5538 			pci_ereport_teardown(Adapter->dip);
5539 
5540 		/*
5541 		 * Un-register error callback if error callback capable
5542 		 */
5543 		if (DDI_FM_ERRCB_CAP(Adapter->fm_capabilities))
5544 			ddi_fm_handler_unregister(Adapter->dip);
5545 
5546 		/* Unregister from IO Fault Services */
5547 		ddi_fm_fini(Adapter->dip);
5548 	}
5549 }
5550 
5551 void
5552 e1000g_fm_ereport(struct e1000g *Adapter, char *detail)
5553 {
5554 	uint64_t ena;
5555 	char buf[FM_MAX_CLASS];
5556 
5557 	(void) snprintf(buf, FM_MAX_CLASS, "%s.%s", DDI_FM_DEVICE, detail);
5558 	ena = fm_ena_generate(0, FM_ENA_FMT1);
5559 	if (DDI_FM_EREPORT_CAP(Adapter->fm_capabilities)) {
5560 		ddi_fm_ereport_post(Adapter->dip, buf, ena, DDI_NOSLEEP,
5561 		    FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0, NULL);
5562 	}
5563 }
5564 
5565 /*
5566  * quiesce(9E) entry point.
5567  *
5568  * This function is called when the system is single-threaded at high
5569  * PIL with preemption disabled. Therefore, this function must not be
5570  * blocked.
5571  *
5572  * This function returns DDI_SUCCESS on success, or DDI_FAILURE on failure.
5573  * DDI_FAILURE indicates an error condition and should almost never happen.
5574  */
5575 static int
5576 e1000g_quiesce(dev_info_t *devinfo)
5577 {
5578 	struct e1000g *Adapter;
5579 
5580 	Adapter = (struct e1000g *)ddi_get_driver_private(devinfo);
5581 
5582 	if (Adapter == NULL)
5583 		return (DDI_FAILURE);
5584 
5585 	e1000g_clear_all_interrupts(Adapter);
5586 
5587 	(void) e1000_reset_hw(&Adapter->shared);
5588 
5589 	/* Setup our HW Tx Head & Tail descriptor pointers */
5590 	E1000_WRITE_REG(&Adapter->shared, E1000_TDH(0), 0);
5591 	E1000_WRITE_REG(&Adapter->shared, E1000_TDT(0), 0);
5592 
5593 	/* Setup our HW Rx Head & Tail descriptor pointers */
5594 	E1000_WRITE_REG(&Adapter->shared, E1000_RDH(0), 0);
5595 	E1000_WRITE_REG(&Adapter->shared, E1000_RDT(0), 0);
5596 
5597 	return (DDI_SUCCESS);
5598 }
5599 
5600 static int
5601 e1000g_get_def_val(struct e1000g *Adapter, mac_prop_id_t pr_num,
5602     uint_t pr_valsize, void *pr_val)
5603 {
5604 	link_flowctrl_t fl;
5605 	int err = 0;
5606 
5607 	ASSERT(pr_valsize > 0);
5608 	switch (pr_num) {
5609 	case MAC_PROP_AUTONEG:
5610 		*(uint8_t *)pr_val =
5611 		    ((Adapter->phy_status & MII_SR_AUTONEG_CAPS) ? 1 : 0);
5612 		break;
5613 	case MAC_PROP_FLOWCTRL:
5614 		if (pr_valsize < sizeof (link_flowctrl_t))
5615 			return (EINVAL);
5616 		fl = LINK_FLOWCTRL_BI;
5617 		bcopy(&fl, pr_val, sizeof (fl));
5618 		break;
5619 	case MAC_PROP_ADV_1000FDX_CAP:
5620 	case MAC_PROP_EN_1000FDX_CAP:
5621 		*(uint8_t *)pr_val =
5622 		    ((Adapter->phy_ext_status & IEEE_ESR_1000T_FD_CAPS) ||
5623 		    (Adapter->phy_ext_status & IEEE_ESR_1000X_FD_CAPS)) ? 1 : 0;
5624 		break;
5625 	case MAC_PROP_ADV_1000HDX_CAP:
5626 	case MAC_PROP_EN_1000HDX_CAP:
5627 		*(uint8_t *)pr_val =
5628 		    ((Adapter->phy_ext_status & IEEE_ESR_1000T_HD_CAPS) ||
5629 		    (Adapter->phy_ext_status & IEEE_ESR_1000X_HD_CAPS)) ? 1 : 0;
5630 		break;
5631 	case MAC_PROP_ADV_100FDX_CAP:
5632 	case MAC_PROP_EN_100FDX_CAP:
5633 		*(uint8_t *)pr_val =
5634 		    ((Adapter->phy_status & MII_SR_100X_FD_CAPS) ||
5635 		    (Adapter->phy_status & MII_SR_100T2_FD_CAPS)) ? 1 : 0;
5636 		break;
5637 	case MAC_PROP_ADV_100HDX_CAP:
5638 	case MAC_PROP_EN_100HDX_CAP:
5639 		*(uint8_t *)pr_val =
5640 		    ((Adapter->phy_status & MII_SR_100X_HD_CAPS) ||
5641 		    (Adapter->phy_status & MII_SR_100T2_HD_CAPS)) ? 1 : 0;
5642 		break;
5643 	case MAC_PROP_ADV_10FDX_CAP:
5644 	case MAC_PROP_EN_10FDX_CAP:
5645 		*(uint8_t *)pr_val =
5646 		    (Adapter->phy_status & MII_SR_10T_FD_CAPS) ? 1 : 0;
5647 		break;
5648 	case MAC_PROP_ADV_10HDX_CAP:
5649 	case MAC_PROP_EN_10HDX_CAP:
5650 		*(uint8_t *)pr_val =
5651 		    (Adapter->phy_status & MII_SR_10T_HD_CAPS) ? 1 : 0;
5652 		break;
5653 	default:
5654 		err = ENOTSUP;
5655 		break;
5656 	}
5657 	return (err);
5658 }
5659 
5660 /*
5661  * synchronize the adv* and en* parameters.
5662  *
5663  * See comments in <sys/dld.h> for details of the *_en_*
5664  * parameters. The usage of ndd for setting adv parameters will
5665  * synchronize all the en parameters with the e1000g parameters,
5666  * implicitly disabling any settings made via dladm.
5667  */
5668 static void
5669 e1000g_param_sync(struct e1000g *Adapter)
5670 {
5671 	Adapter->param_en_1000fdx = Adapter->param_adv_1000fdx;
5672 	Adapter->param_en_1000hdx = Adapter->param_adv_1000hdx;
5673 	Adapter->param_en_100fdx = Adapter->param_adv_100fdx;
5674 	Adapter->param_en_100hdx = Adapter->param_adv_100hdx;
5675 	Adapter->param_en_10fdx = Adapter->param_adv_10fdx;
5676 	Adapter->param_en_10hdx = Adapter->param_adv_10hdx;
5677 }
5678 
5679 /*
5680  * e1000g_get_driver_control - tell manageability firmware that the driver
5681  * has control.
5682  */
5683 static void
5684 e1000g_get_driver_control(struct e1000_hw *hw)
5685 {
5686 	uint32_t ctrl_ext;
5687 	uint32_t swsm;
5688 
5689 	/* tell manageability firmware the driver has taken over */
5690 	switch (hw->mac.type) {
5691 	case e1000_82573:
5692 		swsm = E1000_READ_REG(hw, E1000_SWSM);
5693 		E1000_WRITE_REG(hw, E1000_SWSM, swsm | E1000_SWSM_DRV_LOAD);
5694 		break;
5695 	case e1000_82571:
5696 	case e1000_82572:
5697 	case e1000_82574:
5698 	case e1000_80003es2lan:
5699 	case e1000_ich8lan:
5700 	case e1000_ich9lan:
5701 	case e1000_ich10lan:
5702 		ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
5703 		E1000_WRITE_REG(hw, E1000_CTRL_EXT,
5704 		    ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
5705 		break;
5706 	default:
5707 		/* no manageability firmware: do nothing */
5708 		break;
5709 	}
5710 }
5711 
5712 /*
5713  * e1000g_release_driver_control - tell manageability firmware that the driver
5714  * has released control.
5715  */
5716 static void
5717 e1000g_release_driver_control(struct e1000_hw *hw)
5718 {
5719 	uint32_t ctrl_ext;
5720 	uint32_t swsm;
5721 
5722 	/* tell manageability firmware the driver has released control */
5723 	switch (hw->mac.type) {
5724 	case e1000_82573:
5725 		swsm = E1000_READ_REG(hw, E1000_SWSM);
5726 		E1000_WRITE_REG(hw, E1000_SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
5727 		break;
5728 	case e1000_82571:
5729 	case e1000_82572:
5730 	case e1000_82574:
5731 	case e1000_80003es2lan:
5732 	case e1000_ich8lan:
5733 	case e1000_ich9lan:
5734 	case e1000_ich10lan:
5735 		ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
5736 		E1000_WRITE_REG(hw, E1000_CTRL_EXT,
5737 		    ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
5738 		break;
5739 	default:
5740 		/* no manageability firmware: do nothing */
5741 		break;
5742 	}
5743 }
5744 
5745 /*
5746  * Restore e1000g promiscuous mode.
5747  */
5748 static void
5749 e1000g_restore_promisc(struct e1000g *Adapter)
5750 {
5751 	if (Adapter->e1000g_promisc) {
5752 		uint32_t rctl;
5753 
5754 		rctl = E1000_READ_REG(&Adapter->shared, E1000_RCTL);
5755 		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_BAM);
5756 		E1000_WRITE_REG(&Adapter->shared, E1000_RCTL, rctl);
5757 	}
5758 }
5759