1 /*
2  * This file is provided under a CDDLv1 license.  When using or
3  * redistributing this file, you may do so under this license.
4  * In redistributing this file this license must be included
5  * and no other modification of this header file is permitted.
6  *
7  * CDDL LICENSE SUMMARY
8  *
9  * Copyright(c) 1999 - 2009 Intel Corporation. All rights reserved.
10  *
11  * The contents of this file are subject to the terms of Version
12  * 1.0 of the Common Development and Distribution License (the "License").
13  *
14  * You should have received a copy of the License with this software.
15  * You can obtain a copy of the License at
16  *	http://www.opensolaris.org/os/licensing.
17  * See the License for the specific language governing permissions
18  * and limitations under the License.
19  */
20 
21 /*
22  * Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved.
23  */
24 
25 /*
26  * Copyright 2012 DEY Storage Systems, Inc.  All rights reserved.
27  * Copyright 2013 Nexenta Systems, Inc.  All rights reserved.
28  * Copyright (c) 2018, Joyent, Inc.
29  * Copyright 2022 Oxide Computer Company
30  */
31 
32 /*
33  * **********************************************************************
34  *									*
35  * Module Name:								*
36  *   e1000g_main.c							*
37  *									*
38  * Abstract:								*
39  *   This file contains the interface routines for the solaris OS.	*
40  *   It has all DDI entry point routines and GLD entry point routines.	*
41  *									*
42  *   This file also contains routines that take care of initialization	*
43  *   uninit routine and interrupt routine.				*
44  *									*
45  * **********************************************************************
46  */
47 
48 #include <sys/dlpi.h>
49 #include <sys/mac.h>
50 #include "e1000g_sw.h"
51 #include "e1000g_debug.h"
52 
53 static char ident[] = "Intel PRO/1000 Ethernet";
54 /* LINTED E_STATIC_UNUSED */
55 static char e1000g_version[] = "Driver Ver. 5.4.00";
56 
57 /*
58  * Proto types for DDI entry points
59  */
60 static int e1000g_attach(dev_info_t *, ddi_attach_cmd_t);
61 static int e1000g_detach(dev_info_t *, ddi_detach_cmd_t);
62 static int e1000g_quiesce(dev_info_t *);
63 
64 /*
65  * init and intr routines prototype
66  */
67 static int e1000g_resume(dev_info_t *);
68 static int e1000g_suspend(dev_info_t *);
69 static uint_t e1000g_intr_pciexpress(caddr_t, caddr_t);
70 static uint_t e1000g_intr(caddr_t, caddr_t);
71 static void e1000g_intr_work(struct e1000g *, uint32_t);
72 #pragma inline(e1000g_intr_work)
73 static int e1000g_init(struct e1000g *);
74 static int e1000g_start(struct e1000g *, boolean_t);
75 static void e1000g_stop(struct e1000g *, boolean_t);
76 static int e1000g_m_start(void *);
77 static void e1000g_m_stop(void *);
78 static int e1000g_m_promisc(void *, boolean_t);
79 static boolean_t e1000g_m_getcapab(void *, mac_capab_t, void *);
80 static int e1000g_m_multicst(void *, boolean_t, const uint8_t *);
81 static void e1000g_m_ioctl(void *, queue_t *, mblk_t *);
82 static int e1000g_m_setprop(void *, const char *, mac_prop_id_t,
83     uint_t, const void *);
84 static int e1000g_m_getprop(void *, const char *, mac_prop_id_t,
85 			    uint_t, void *);
86 static void e1000g_m_propinfo(void *, const char *, mac_prop_id_t,
87     mac_prop_info_handle_t);
88 static int e1000g_set_priv_prop(struct e1000g *, const char *, uint_t,
89     const void *);
90 static int e1000g_get_priv_prop(struct e1000g *, const char *, uint_t, void *);
91 static void e1000g_init_locks(struct e1000g *);
92 static void e1000g_destroy_locks(struct e1000g *);
93 static int e1000g_identify_hardware(struct e1000g *);
94 static int e1000g_regs_map(struct e1000g *);
95 static int e1000g_set_driver_params(struct e1000g *);
96 static void e1000g_set_bufsize(struct e1000g *);
97 static int e1000g_register_mac(struct e1000g *);
98 static boolean_t e1000g_rx_drain(struct e1000g *);
99 static boolean_t e1000g_tx_drain(struct e1000g *);
100 static void e1000g_init_unicst(struct e1000g *);
101 static int e1000g_unicst_set(struct e1000g *, const uint8_t *, int);
102 static int e1000g_alloc_rx_data(struct e1000g *);
103 static void e1000g_release_multicast(struct e1000g *);
104 static void e1000g_pch_limits(struct e1000g *);
105 static uint32_t e1000g_mtu2maxframe(uint32_t);
106 
107 /*
108  * Local routines
109  */
110 static boolean_t e1000g_reset_adapter(struct e1000g *);
111 static void e1000g_tx_clean(struct e1000g *);
112 static void e1000g_rx_clean(struct e1000g *);
113 static void e1000g_link_timer(void *);
114 static void e1000g_local_timer(void *);
115 static boolean_t e1000g_link_check(struct e1000g *);
116 static boolean_t e1000g_stall_check(struct e1000g *);
117 static void e1000g_smartspeed(struct e1000g *);
118 static void e1000g_get_conf(struct e1000g *);
119 static boolean_t e1000g_get_prop(struct e1000g *, char *, int, int, int,
120     int *);
121 static void enable_watchdog_timer(struct e1000g *);
122 static void disable_watchdog_timer(struct e1000g *);
123 static void start_watchdog_timer(struct e1000g *);
124 static void restart_watchdog_timer(struct e1000g *);
125 static void stop_watchdog_timer(struct e1000g *);
126 static void stop_link_timer(struct e1000g *);
127 static void stop_82547_timer(e1000g_tx_ring_t *);
128 static void e1000g_force_speed_duplex(struct e1000g *);
129 static void e1000g_setup_max_mtu(struct e1000g *);
130 static void e1000g_get_max_frame_size(struct e1000g *);
131 static boolean_t is_valid_mac_addr(uint8_t *);
132 static void e1000g_unattach(dev_info_t *, struct e1000g *);
133 static int e1000g_get_bar_info(dev_info_t *, int, bar_info_t *);
134 #ifdef E1000G_DEBUG
135 static void e1000g_ioc_peek_reg(struct e1000g *, e1000g_peekpoke_t *);
136 static void e1000g_ioc_poke_reg(struct e1000g *, e1000g_peekpoke_t *);
137 static void e1000g_ioc_peek_mem(struct e1000g *, e1000g_peekpoke_t *);
138 static void e1000g_ioc_poke_mem(struct e1000g *, e1000g_peekpoke_t *);
139 static enum ioc_reply e1000g_pp_ioctl(struct e1000g *,
140     struct iocblk *, mblk_t *);
141 #endif
142 static enum ioc_reply e1000g_loopback_ioctl(struct e1000g *,
143     struct iocblk *, mblk_t *);
144 static boolean_t e1000g_check_loopback_support(struct e1000_hw *);
145 static boolean_t e1000g_set_loopback_mode(struct e1000g *, uint32_t);
146 static void e1000g_set_internal_loopback(struct e1000g *);
147 static void e1000g_set_external_loopback_1000(struct e1000g *);
148 static void e1000g_set_external_loopback_100(struct e1000g *);
149 static void e1000g_set_external_loopback_10(struct e1000g *);
150 static int e1000g_add_intrs(struct e1000g *);
151 static int e1000g_intr_add(struct e1000g *, int);
152 static int e1000g_rem_intrs(struct e1000g *);
153 static int e1000g_enable_intrs(struct e1000g *);
154 static int e1000g_disable_intrs(struct e1000g *);
155 static boolean_t e1000g_link_up(struct e1000g *);
156 #ifdef __sparc
157 static boolean_t e1000g_find_mac_address(struct e1000g *);
158 #endif
159 static void e1000g_get_phy_state(struct e1000g *);
160 static int e1000g_fm_error_cb(dev_info_t *dip, ddi_fm_error_t *err,
161     const void *impl_data);
162 static void e1000g_fm_init(struct e1000g *Adapter);
163 static void e1000g_fm_fini(struct e1000g *Adapter);
164 static void e1000g_param_sync(struct e1000g *);
165 static void e1000g_get_driver_control(struct e1000_hw *);
166 static void e1000g_release_driver_control(struct e1000_hw *);
167 static void e1000g_restore_promisc(struct e1000g *Adapter);
168 
169 char *e1000g_priv_props[] = {
170 	"_tx_bcopy_threshold",
171 	"_tx_interrupt_enable",
172 	"_tx_intr_delay",
173 	"_tx_intr_abs_delay",
174 	"_rx_bcopy_threshold",
175 	"_max_num_rcv_packets",
176 	"_rx_intr_delay",
177 	"_rx_intr_abs_delay",
178 	"_intr_throttling_rate",
179 	"_intr_adaptive",
180 	"_adv_pause_cap",
181 	"_adv_asym_pause_cap",
182 	NULL
183 };
184 
185 static struct cb_ops cb_ws_ops = {
186 	nulldev,		/* cb_open */
187 	nulldev,		/* cb_close */
188 	nodev,			/* cb_strategy */
189 	nodev,			/* cb_print */
190 	nodev,			/* cb_dump */
191 	nodev,			/* cb_read */
192 	nodev,			/* cb_write */
193 	nodev,			/* cb_ioctl */
194 	nodev,			/* cb_devmap */
195 	nodev,			/* cb_mmap */
196 	nodev,			/* cb_segmap */
197 	nochpoll,		/* cb_chpoll */
198 	ddi_prop_op,		/* cb_prop_op */
199 	NULL,			/* cb_stream */
200 	D_MP | D_HOTPLUG,	/* cb_flag */
201 	CB_REV,			/* cb_rev */
202 	nodev,			/* cb_aread */
203 	nodev			/* cb_awrite */
204 };
205 
206 static struct dev_ops ws_ops = {
207 	DEVO_REV,		/* devo_rev */
208 	0,			/* devo_refcnt */
209 	NULL,			/* devo_getinfo */
210 	nulldev,		/* devo_identify */
211 	nulldev,		/* devo_probe */
212 	e1000g_attach,		/* devo_attach */
213 	e1000g_detach,		/* devo_detach */
214 	nodev,			/* devo_reset */
215 	&cb_ws_ops,		/* devo_cb_ops */
216 	NULL,			/* devo_bus_ops */
217 	ddi_power,		/* devo_power */
218 	e1000g_quiesce		/* devo_quiesce */
219 };
220 
221 static struct modldrv modldrv = {
222 	&mod_driverops,		/* Type of module.  This one is a driver */
223 	ident,			/* Discription string */
224 	&ws_ops,		/* driver ops */
225 };
226 
227 static struct modlinkage modlinkage = {
228 	MODREV_1, &modldrv, NULL
229 };
230 
231 /* Access attributes for register mapping */
232 static ddi_device_acc_attr_t e1000g_regs_acc_attr = {
233 	DDI_DEVICE_ATTR_V1,
234 	DDI_STRUCTURE_LE_ACC,
235 	DDI_STRICTORDER_ACC,
236 	DDI_FLAGERR_ACC
237 };
238 
239 #define	E1000G_M_CALLBACK_FLAGS \
240 	(MC_IOCTL | MC_GETCAPAB | MC_SETPROP | MC_GETPROP | MC_PROPINFO)
241 
242 static mac_callbacks_t e1000g_m_callbacks = {
243 	E1000G_M_CALLBACK_FLAGS,
244 	e1000g_m_stat,
245 	e1000g_m_start,
246 	e1000g_m_stop,
247 	e1000g_m_promisc,
248 	e1000g_m_multicst,
249 	NULL,
250 	e1000g_m_tx,
251 	NULL,
252 	e1000g_m_ioctl,
253 	e1000g_m_getcapab,
254 	NULL,
255 	NULL,
256 	e1000g_m_setprop,
257 	e1000g_m_getprop,
258 	e1000g_m_propinfo
259 };
260 
261 /*
262  * Global variables
263  */
264 uint32_t e1000g_jumbo_mtu = MAXIMUM_MTU_9K;
265 uint32_t e1000g_mblks_pending = 0;
266 /*
267  * Workaround for Dynamic Reconfiguration support, for x86 platform only.
268  * Here we maintain a private dev_info list if e1000g_force_detach is
269  * enabled. If we force the driver to detach while there are still some
270  * rx buffers retained in the upper layer, we have to keep a copy of the
271  * dev_info. In some cases (Dynamic Reconfiguration), the dev_info data
272  * structure will be freed after the driver is detached. However when we
273  * finally free those rx buffers released by the upper layer, we need to
274  * refer to the dev_info to free the dma buffers. So we save a copy of
275  * the dev_info for this purpose. On x86 platform, we assume this copy
276  * of dev_info is always valid, but on SPARC platform, it could be invalid
277  * after the system board level DR operation. For this reason, the global
278  * variable e1000g_force_detach must be B_FALSE on SPARC platform.
279  */
280 #ifdef __sparc
281 boolean_t e1000g_force_detach = B_FALSE;
282 #else
283 boolean_t e1000g_force_detach = B_TRUE;
284 #endif
285 private_devi_list_t *e1000g_private_devi_list = NULL;
286 
287 /*
288  * The mutex e1000g_rx_detach_lock is defined to protect the processing of
289  * the private dev_info list, and to serialize the processing of rx buffer
290  * freeing and rx buffer recycling.
291  */
292 kmutex_t e1000g_rx_detach_lock;
293 /*
294  * The rwlock e1000g_dma_type_lock is defined to protect the global flag
295  * e1000g_dma_type. For SPARC, the initial value of the flag is "USE_DVMA".
296  * If there are many e1000g instances, the system may run out of DVMA
297  * resources during the initialization of the instances, then the flag will
298  * be changed to "USE_DMA". Because different e1000g instances are initialized
299  * in parallel, we need to use this lock to protect the flag.
300  */
301 krwlock_t e1000g_dma_type_lock;
302 
303 /*
304  * The 82546 chipset is a dual-port device, both the ports share one eeprom.
305  * Based on the information from Intel, the 82546 chipset has some hardware
306  * problem. When one port is being reset and the other port is trying to
307  * access the eeprom, it could cause system hang or panic. To workaround this
308  * hardware problem, we use a global mutex to prevent such operations from
309  * happening simultaneously on different instances. This workaround is applied
310  * to all the devices supported by this driver.
311  */
312 kmutex_t e1000g_nvm_lock;
313 
314 /*
315  * Loadable module configuration entry points for the driver
316  */
317 
318 /*
319  * _init - module initialization
320  */
321 int
322 _init(void)
323 {
324 	int status;
325 
326 	mac_init_ops(&ws_ops, WSNAME);
327 	status = mod_install(&modlinkage);
328 	if (status != DDI_SUCCESS)
329 		mac_fini_ops(&ws_ops);
330 	else {
331 		mutex_init(&e1000g_rx_detach_lock, NULL, MUTEX_DRIVER, NULL);
332 		rw_init(&e1000g_dma_type_lock, NULL, RW_DRIVER, NULL);
333 		mutex_init(&e1000g_nvm_lock, NULL, MUTEX_DRIVER, NULL);
334 	}
335 
336 	return (status);
337 }
338 
339 /*
340  * _fini - module finalization
341  */
342 int
343 _fini(void)
344 {
345 	int status;
346 
347 	if (e1000g_mblks_pending != 0)
348 		return (EBUSY);
349 
350 	status = mod_remove(&modlinkage);
351 	if (status == DDI_SUCCESS) {
352 		mac_fini_ops(&ws_ops);
353 
354 		if (e1000g_force_detach) {
355 			private_devi_list_t *devi_node;
356 
357 			mutex_enter(&e1000g_rx_detach_lock);
358 			while (e1000g_private_devi_list != NULL) {
359 				devi_node = e1000g_private_devi_list;
360 				e1000g_private_devi_list =
361 				    e1000g_private_devi_list->next;
362 
363 				kmem_free(devi_node->priv_dip,
364 				    sizeof (struct dev_info));
365 				kmem_free(devi_node,
366 				    sizeof (private_devi_list_t));
367 			}
368 			mutex_exit(&e1000g_rx_detach_lock);
369 		}
370 
371 		mutex_destroy(&e1000g_rx_detach_lock);
372 		rw_destroy(&e1000g_dma_type_lock);
373 		mutex_destroy(&e1000g_nvm_lock);
374 	}
375 
376 	return (status);
377 }
378 
379 /*
380  * _info - module information
381  */
382 int
383 _info(struct modinfo *modinfop)
384 {
385 	return (mod_info(&modlinkage, modinfop));
386 }
387 
388 /*
389  * e1000g_attach - driver attach
390  *
391  * This function is the device-specific initialization entry
392  * point. This entry point is required and must be written.
393  * The DDI_ATTACH command must be provided in the attach entry
394  * point. When attach() is called with cmd set to DDI_ATTACH,
395  * all normal kernel services (such as kmem_alloc(9F)) are
396  * available for use by the driver.
397  *
398  * The attach() function will be called once for each instance
399  * of  the  device  on  the  system with cmd set to DDI_ATTACH.
400  * Until attach() succeeds, the only driver entry points which
401  * may be called are open(9E) and getinfo(9E).
402  */
403 static int
404 e1000g_attach(dev_info_t *devinfo, ddi_attach_cmd_t cmd)
405 {
406 	struct e1000g *Adapter;
407 	struct e1000_hw *hw;
408 	struct e1000g_osdep *osdep;
409 	int instance;
410 
411 	switch (cmd) {
412 	default:
413 		e1000g_log(NULL, CE_WARN,
414 		    "Unsupported command send to e1000g_attach... ");
415 		return (DDI_FAILURE);
416 
417 	case DDI_RESUME:
418 		return (e1000g_resume(devinfo));
419 
420 	case DDI_ATTACH:
421 		break;
422 	}
423 
424 	/*
425 	 * get device instance number
426 	 */
427 	instance = ddi_get_instance(devinfo);
428 
429 	/*
430 	 * Allocate soft data structure
431 	 */
432 	Adapter =
433 	    (struct e1000g *)kmem_zalloc(sizeof (*Adapter), KM_SLEEP);
434 
435 	Adapter->dip = devinfo;
436 	Adapter->instance = instance;
437 	Adapter->tx_ring->adapter = Adapter;
438 	Adapter->rx_ring->adapter = Adapter;
439 
440 	hw = &Adapter->shared;
441 	osdep = &Adapter->osdep;
442 	hw->back = osdep;
443 	osdep->adapter = Adapter;
444 
445 	ddi_set_driver_private(devinfo, (caddr_t)Adapter);
446 
447 	/*
448 	 * Initialize for fma support
449 	 */
450 	(void) e1000g_get_prop(Adapter, "fm-capable",
451 	    0, 0x0f,
452 	    DDI_FM_EREPORT_CAPABLE | DDI_FM_ACCCHK_CAPABLE |
453 	    DDI_FM_DMACHK_CAPABLE | DDI_FM_ERRCB_CAPABLE,
454 	    &Adapter->fm_capabilities);
455 	e1000g_fm_init(Adapter);
456 	Adapter->attach_progress |= ATTACH_PROGRESS_FMINIT;
457 
458 	/*
459 	 * PCI Configure
460 	 */
461 	if (pci_config_setup(devinfo, &osdep->cfg_handle) != DDI_SUCCESS) {
462 		e1000g_log(Adapter, CE_WARN, "PCI configuration failed");
463 		goto attach_fail;
464 	}
465 	Adapter->attach_progress |= ATTACH_PROGRESS_PCI_CONFIG;
466 
467 	/*
468 	 * Setup hardware
469 	 */
470 	if (e1000g_identify_hardware(Adapter) != DDI_SUCCESS) {
471 		e1000g_log(Adapter, CE_WARN, "Identify hardware failed");
472 		goto attach_fail;
473 	}
474 
475 	/*
476 	 * Map in the device registers.
477 	 */
478 	if (e1000g_regs_map(Adapter) != DDI_SUCCESS) {
479 		e1000g_log(Adapter, CE_WARN, "Mapping registers failed");
480 		goto attach_fail;
481 	}
482 	Adapter->attach_progress |= ATTACH_PROGRESS_REGS_MAP;
483 
484 	/*
485 	 * Initialize driver parameters
486 	 */
487 	if (e1000g_set_driver_params(Adapter) != DDI_SUCCESS) {
488 		goto attach_fail;
489 	}
490 	Adapter->attach_progress |= ATTACH_PROGRESS_SETUP;
491 
492 	if (e1000g_check_acc_handle(Adapter->osdep.cfg_handle) != DDI_FM_OK) {
493 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
494 		goto attach_fail;
495 	}
496 
497 	/*
498 	 * Disable ULP support
499 	 */
500 	(void) e1000_disable_ulp_lpt_lp(hw, TRUE);
501 
502 	/*
503 	 * Initialize interrupts
504 	 */
505 	if (e1000g_add_intrs(Adapter) != DDI_SUCCESS) {
506 		e1000g_log(Adapter, CE_WARN, "Add interrupts failed");
507 		goto attach_fail;
508 	}
509 	Adapter->attach_progress |= ATTACH_PROGRESS_ADD_INTR;
510 
511 	/*
512 	 * Initialize mutex's for this device.
513 	 * Do this before enabling the interrupt handler and
514 	 * register the softint to avoid the condition where
515 	 * interrupt handler can try using uninitialized mutex
516 	 */
517 	e1000g_init_locks(Adapter);
518 	Adapter->attach_progress |= ATTACH_PROGRESS_LOCKS;
519 
520 	/*
521 	 * Initialize Driver Counters
522 	 */
523 	if (e1000g_init_stats(Adapter) != DDI_SUCCESS) {
524 		e1000g_log(Adapter, CE_WARN, "Init stats failed");
525 		goto attach_fail;
526 	}
527 	Adapter->attach_progress |= ATTACH_PROGRESS_KSTATS;
528 
529 	/*
530 	 * Initialize chip hardware and software structures
531 	 */
532 	rw_enter(&Adapter->chip_lock, RW_WRITER);
533 	if (e1000g_init(Adapter) != DDI_SUCCESS) {
534 		rw_exit(&Adapter->chip_lock);
535 		e1000g_log(Adapter, CE_WARN, "Adapter initialization failed");
536 		goto attach_fail;
537 	}
538 	rw_exit(&Adapter->chip_lock);
539 	Adapter->attach_progress |= ATTACH_PROGRESS_INIT;
540 
541 	/*
542 	 * Register the driver to the MAC
543 	 */
544 	if (e1000g_register_mac(Adapter) != DDI_SUCCESS) {
545 		e1000g_log(Adapter, CE_WARN, "Register MAC failed");
546 		goto attach_fail;
547 	}
548 	Adapter->attach_progress |= ATTACH_PROGRESS_MAC;
549 
550 	/*
551 	 * Now that mutex locks are initialized, and the chip is also
552 	 * initialized, enable interrupts.
553 	 */
554 	if (e1000g_enable_intrs(Adapter) != DDI_SUCCESS) {
555 		e1000g_log(Adapter, CE_WARN, "Enable DDI interrupts failed");
556 		goto attach_fail;
557 	}
558 	Adapter->attach_progress |= ATTACH_PROGRESS_ENABLE_INTR;
559 
560 	/*
561 	 * If e1000g_force_detach is enabled, in global private dip list,
562 	 * we will create a new entry, which maintains the priv_dip for DR
563 	 * supports after driver detached.
564 	 */
565 	if (e1000g_force_detach) {
566 		private_devi_list_t *devi_node;
567 
568 		Adapter->priv_dip =
569 		    kmem_zalloc(sizeof (struct dev_info), KM_SLEEP);
570 		bcopy(DEVI(devinfo), DEVI(Adapter->priv_dip),
571 		    sizeof (struct dev_info));
572 
573 		devi_node =
574 		    kmem_zalloc(sizeof (private_devi_list_t), KM_SLEEP);
575 
576 		mutex_enter(&e1000g_rx_detach_lock);
577 		devi_node->priv_dip = Adapter->priv_dip;
578 		devi_node->flag = E1000G_PRIV_DEVI_ATTACH;
579 		devi_node->pending_rx_count = 0;
580 
581 		Adapter->priv_devi_node = devi_node;
582 
583 		if (e1000g_private_devi_list == NULL) {
584 			devi_node->prev = NULL;
585 			devi_node->next = NULL;
586 			e1000g_private_devi_list = devi_node;
587 		} else {
588 			devi_node->prev = NULL;
589 			devi_node->next = e1000g_private_devi_list;
590 			e1000g_private_devi_list->prev = devi_node;
591 			e1000g_private_devi_list = devi_node;
592 		}
593 		mutex_exit(&e1000g_rx_detach_lock);
594 	}
595 
596 	Adapter->e1000g_state = E1000G_INITIALIZED;
597 	return (DDI_SUCCESS);
598 
599 attach_fail:
600 	e1000g_unattach(devinfo, Adapter);
601 	return (DDI_FAILURE);
602 }
603 
604 static int
605 e1000g_register_mac(struct e1000g *Adapter)
606 {
607 	struct e1000_hw *hw = &Adapter->shared;
608 	mac_register_t *mac;
609 	int err;
610 
611 	if ((mac = mac_alloc(MAC_VERSION)) == NULL)
612 		return (DDI_FAILURE);
613 
614 	mac->m_type_ident = MAC_PLUGIN_IDENT_ETHER;
615 	mac->m_driver = Adapter;
616 	mac->m_dip = Adapter->dip;
617 	mac->m_src_addr = hw->mac.addr;
618 	mac->m_callbacks = &e1000g_m_callbacks;
619 	mac->m_min_sdu = 0;
620 	mac->m_max_sdu = Adapter->default_mtu;
621 	mac->m_margin = VLAN_TAGSZ;
622 	mac->m_priv_props = e1000g_priv_props;
623 	mac->m_v12n = MAC_VIRT_LEVEL1;
624 
625 	err = mac_register(mac, &Adapter->mh);
626 	mac_free(mac);
627 
628 	return (err == 0 ? DDI_SUCCESS : DDI_FAILURE);
629 }
630 
631 static int
632 e1000g_identify_hardware(struct e1000g *Adapter)
633 {
634 	struct e1000_hw *hw = &Adapter->shared;
635 	struct e1000g_osdep *osdep = &Adapter->osdep;
636 
637 	/* Get the device id */
638 	hw->vendor_id =
639 	    pci_config_get16(osdep->cfg_handle, PCI_CONF_VENID);
640 	hw->device_id =
641 	    pci_config_get16(osdep->cfg_handle, PCI_CONF_DEVID);
642 	hw->revision_id =
643 	    pci_config_get8(osdep->cfg_handle, PCI_CONF_REVID);
644 	hw->subsystem_device_id =
645 	    pci_config_get16(osdep->cfg_handle, PCI_CONF_SUBSYSID);
646 	hw->subsystem_vendor_id =
647 	    pci_config_get16(osdep->cfg_handle, PCI_CONF_SUBVENID);
648 
649 	if (e1000_set_mac_type(hw) != E1000_SUCCESS) {
650 		E1000G_DEBUGLOG_0(Adapter, E1000G_INFO_LEVEL,
651 		    "MAC type could not be set properly.");
652 		return (DDI_FAILURE);
653 	}
654 
655 	return (DDI_SUCCESS);
656 }
657 
658 static int
659 e1000g_regs_map(struct e1000g *Adapter)
660 {
661 	dev_info_t *devinfo = Adapter->dip;
662 	struct e1000_hw *hw = &Adapter->shared;
663 	struct e1000g_osdep *osdep = &Adapter->osdep;
664 	off_t mem_size;
665 	bar_info_t bar_info;
666 	int offset, rnumber;
667 
668 	rnumber = ADAPTER_REG_SET;
669 	/* Get size of adapter register memory */
670 	if (ddi_dev_regsize(devinfo, rnumber, &mem_size) !=
671 	    DDI_SUCCESS) {
672 		E1000G_DEBUGLOG_0(Adapter, CE_WARN,
673 		    "ddi_dev_regsize for registers failed");
674 		return (DDI_FAILURE);
675 	}
676 
677 	/* Map adapter register memory */
678 	if ((ddi_regs_map_setup(devinfo, rnumber,
679 	    (caddr_t *)&hw->hw_addr, 0, mem_size, &e1000g_regs_acc_attr,
680 	    &osdep->reg_handle)) != DDI_SUCCESS) {
681 		E1000G_DEBUGLOG_0(Adapter, CE_WARN,
682 		    "ddi_regs_map_setup for registers failed");
683 		goto regs_map_fail;
684 	}
685 
686 	/* ICH needs to map flash memory */
687 	switch (hw->mac.type) {
688 	case e1000_ich8lan:
689 	case e1000_ich9lan:
690 	case e1000_ich10lan:
691 	case e1000_pchlan:
692 	case e1000_pch2lan:
693 	case e1000_pch_lpt:
694 		rnumber = ICH_FLASH_REG_SET;
695 
696 		/* get flash size */
697 		if (ddi_dev_regsize(devinfo, rnumber,
698 		    &mem_size) != DDI_SUCCESS) {
699 			E1000G_DEBUGLOG_0(Adapter, CE_WARN,
700 			    "ddi_dev_regsize for ICH flash failed");
701 			goto regs_map_fail;
702 		}
703 
704 		/* map flash in */
705 		if (ddi_regs_map_setup(devinfo, rnumber,
706 		    (caddr_t *)&hw->flash_address, 0,
707 		    mem_size, &e1000g_regs_acc_attr,
708 		    &osdep->ich_flash_handle) != DDI_SUCCESS) {
709 			E1000G_DEBUGLOG_0(Adapter, CE_WARN,
710 			    "ddi_regs_map_setup for ICH flash failed");
711 			goto regs_map_fail;
712 		}
713 		break;
714 	case e1000_pch_spt:
715 	case e1000_pch_cnp:
716 	case e1000_pch_tgp:
717 	case e1000_pch_adp:
718 	case e1000_pch_mtp:
719 	case e1000_pch_lnp:
720 	case e1000_pch_rpl:
721 		/*
722 		 * On the SPT, the device flash is actually in BAR0, not a
723 		 * separate BAR. Therefore we end up setting the
724 		 * ich_flash_handle to be the same as the register handle.
725 		 * We mark the same to reduce the confusion in the other
726 		 * functions and macros. Though this does make the set up and
727 		 * tear-down path slightly more complicated.
728 		 */
729 		osdep->ich_flash_handle = osdep->reg_handle;
730 		hw->flash_address = hw->hw_addr;
731 	default:
732 		break;
733 	}
734 
735 	/* map io space */
736 	switch (hw->mac.type) {
737 	case e1000_82544:
738 	case e1000_82540:
739 	case e1000_82545:
740 	case e1000_82546:
741 	case e1000_82541:
742 	case e1000_82541_rev_2:
743 		/* find the IO bar */
744 		rnumber = -1;
745 		for (offset = PCI_CONF_BASE1;
746 		    offset <= PCI_CONF_BASE5; offset += 4) {
747 			if (e1000g_get_bar_info(devinfo, offset, &bar_info)
748 			    != DDI_SUCCESS)
749 				continue;
750 			if (bar_info.type == E1000G_BAR_IO) {
751 				rnumber = bar_info.rnumber;
752 				break;
753 			}
754 		}
755 
756 		if (rnumber < 0) {
757 			E1000G_DEBUGLOG_0(Adapter, CE_WARN,
758 			    "No io space is found");
759 			goto regs_map_fail;
760 		}
761 
762 		/* get io space size */
763 		if (ddi_dev_regsize(devinfo, rnumber,
764 		    &mem_size) != DDI_SUCCESS) {
765 			E1000G_DEBUGLOG_0(Adapter, CE_WARN,
766 			    "ddi_dev_regsize for io space failed");
767 			goto regs_map_fail;
768 		}
769 
770 		/* map io space */
771 		if ((ddi_regs_map_setup(devinfo, rnumber,
772 		    (caddr_t *)&hw->io_base, 0, mem_size,
773 		    &e1000g_regs_acc_attr,
774 		    &osdep->io_reg_handle)) != DDI_SUCCESS) {
775 			E1000G_DEBUGLOG_0(Adapter, CE_WARN,
776 			    "ddi_regs_map_setup for io space failed");
777 			goto regs_map_fail;
778 		}
779 		break;
780 	default:
781 		hw->io_base = 0;
782 		break;
783 	}
784 
785 	return (DDI_SUCCESS);
786 
787 regs_map_fail:
788 	if (osdep->reg_handle != NULL)
789 		ddi_regs_map_free(&osdep->reg_handle);
790 	if (osdep->ich_flash_handle != NULL && hw->mac.type < e1000_pch_spt)
791 		ddi_regs_map_free(&osdep->ich_flash_handle);
792 	return (DDI_FAILURE);
793 }
794 
795 static int
796 e1000g_set_driver_params(struct e1000g *Adapter)
797 {
798 	struct e1000_hw *hw;
799 
800 	hw = &Adapter->shared;
801 
802 	/* Set MAC type and initialize hardware functions */
803 	if (e1000_setup_init_funcs(hw, B_TRUE) != E1000_SUCCESS) {
804 		E1000G_DEBUGLOG_0(Adapter, CE_WARN,
805 		    "Could not setup hardware functions");
806 		return (DDI_FAILURE);
807 	}
808 
809 	/* Get bus information */
810 	if (e1000_get_bus_info(hw) != E1000_SUCCESS) {
811 		E1000G_DEBUGLOG_0(Adapter, CE_WARN,
812 		    "Could not get bus information");
813 		return (DDI_FAILURE);
814 	}
815 
816 	e1000_read_pci_cfg(hw, PCI_COMMAND_REGISTER, &hw->bus.pci_cmd_word);
817 
818 	hw->mac.autoneg_failed = B_TRUE;
819 
820 	/* Set the autoneg_wait_to_complete flag to B_FALSE */
821 	hw->phy.autoneg_wait_to_complete = B_FALSE;
822 
823 	/* Adaptive IFS related changes */
824 	hw->mac.adaptive_ifs = B_TRUE;
825 
826 	/* Enable phy init script for IGP phy of 82541/82547 */
827 	if ((hw->mac.type == e1000_82547) ||
828 	    (hw->mac.type == e1000_82541) ||
829 	    (hw->mac.type == e1000_82547_rev_2) ||
830 	    (hw->mac.type == e1000_82541_rev_2))
831 		e1000_init_script_state_82541(hw, B_TRUE);
832 
833 	/* Enable the TTL workaround for 82541/82547 */
834 	e1000_set_ttl_workaround_state_82541(hw, B_TRUE);
835 
836 #ifdef __sparc
837 	Adapter->strip_crc = B_TRUE;
838 #else
839 	Adapter->strip_crc = B_FALSE;
840 #endif
841 
842 	/* setup the maximum MTU size of the chip */
843 	e1000g_setup_max_mtu(Adapter);
844 
845 	/* Get speed/duplex settings in conf file */
846 	hw->mac.forced_speed_duplex = ADVERTISE_100_FULL;
847 	hw->phy.autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
848 	e1000g_force_speed_duplex(Adapter);
849 
850 	/* Get Jumbo Frames settings in conf file */
851 	e1000g_get_max_frame_size(Adapter);
852 
853 	/* Get conf file properties */
854 	e1000g_get_conf(Adapter);
855 
856 	/* enforce PCH limits */
857 	e1000g_pch_limits(Adapter);
858 
859 	/* Set Rx/Tx buffer size */
860 	e1000g_set_bufsize(Adapter);
861 
862 	/* Master Latency Timer */
863 	Adapter->master_latency_timer = DEFAULT_MASTER_LATENCY_TIMER;
864 
865 	/* copper options */
866 	if (hw->phy.media_type == e1000_media_type_copper) {
867 		hw->phy.mdix = 0;	/* AUTO_ALL_MODES */
868 		hw->phy.disable_polarity_correction = B_FALSE;
869 		hw->phy.ms_type = e1000_ms_hw_default;	/* E1000_MASTER_SLAVE */
870 	}
871 
872 	/* The initial link state should be "unknown" */
873 	Adapter->link_state = LINK_STATE_UNKNOWN;
874 
875 	/* Initialize rx parameters */
876 	Adapter->rx_intr_delay = DEFAULT_RX_INTR_DELAY;
877 	Adapter->rx_intr_abs_delay = DEFAULT_RX_INTR_ABS_DELAY;
878 
879 	/* Initialize tx parameters */
880 	Adapter->tx_intr_enable = DEFAULT_TX_INTR_ENABLE;
881 	Adapter->tx_bcopy_thresh = DEFAULT_TX_BCOPY_THRESHOLD;
882 	Adapter->tx_intr_delay = DEFAULT_TX_INTR_DELAY;
883 	Adapter->tx_intr_abs_delay = DEFAULT_TX_INTR_ABS_DELAY;
884 
885 	/* Initialize rx parameters */
886 	Adapter->rx_bcopy_thresh = DEFAULT_RX_BCOPY_THRESHOLD;
887 
888 	return (DDI_SUCCESS);
889 }
890 
891 static void
892 e1000g_setup_max_mtu(struct e1000g *Adapter)
893 {
894 	struct e1000_mac_info *mac = &Adapter->shared.mac;
895 	struct e1000_phy_info *phy = &Adapter->shared.phy;
896 
897 	switch (mac->type) {
898 	/* types that do not support jumbo frames */
899 	case e1000_ich8lan:
900 	case e1000_82573:
901 	case e1000_82583:
902 		Adapter->max_mtu = ETHERMTU;
903 		break;
904 	/* ich9 supports jumbo frames except on one phy type */
905 	case e1000_ich9lan:
906 		if (phy->type == e1000_phy_ife)
907 			Adapter->max_mtu = ETHERMTU;
908 		else
909 			Adapter->max_mtu = MAXIMUM_MTU_9K;
910 		break;
911 	/* pch can do jumbo frames up to 4K */
912 	case e1000_pchlan:
913 		Adapter->max_mtu = MAXIMUM_MTU_4K;
914 		break;
915 	/* pch2 can do jumbo frames up to 9K */
916 	case e1000_pch2lan:
917 	case e1000_pch_lpt:
918 	case e1000_pch_spt:
919 	case e1000_pch_cnp:
920 	case e1000_pch_tgp:
921 	case e1000_pch_adp:
922 	case e1000_pch_mtp:
923 	case e1000_pch_lnp:
924 	case e1000_pch_rpl:
925 		Adapter->max_mtu = MAXIMUM_MTU_9K;
926 		break;
927 	/* types with a special limit */
928 	case e1000_82571:
929 	case e1000_82572:
930 	case e1000_82574:
931 	case e1000_80003es2lan:
932 	case e1000_ich10lan:
933 		if (e1000g_jumbo_mtu >= ETHERMTU &&
934 		    e1000g_jumbo_mtu <= MAXIMUM_MTU_9K) {
935 			Adapter->max_mtu = e1000g_jumbo_mtu;
936 		} else {
937 			Adapter->max_mtu = MAXIMUM_MTU_9K;
938 		}
939 		break;
940 	/* default limit is 16K */
941 	default:
942 		Adapter->max_mtu = FRAME_SIZE_UPTO_16K -
943 		    sizeof (struct ether_vlan_header) - ETHERFCSL;
944 		break;
945 	}
946 }
947 
948 static void
949 e1000g_set_bufsize(struct e1000g *Adapter)
950 {
951 	struct e1000_mac_info *mac = &Adapter->shared.mac;
952 	uint64_t rx_size;
953 	uint64_t tx_size;
954 
955 	dev_info_t *devinfo = Adapter->dip;
956 #ifdef __sparc
957 	ulong_t iommu_pagesize;
958 #endif
959 	/* Get the system page size */
960 	Adapter->sys_page_sz = ddi_ptob(devinfo, (ulong_t)1);
961 
962 #ifdef __sparc
963 	iommu_pagesize = dvma_pagesize(devinfo);
964 	if (iommu_pagesize != 0) {
965 		if (Adapter->sys_page_sz == iommu_pagesize) {
966 			if (iommu_pagesize > 0x4000)
967 				Adapter->sys_page_sz = 0x4000;
968 		} else {
969 			if (Adapter->sys_page_sz > iommu_pagesize)
970 				Adapter->sys_page_sz = iommu_pagesize;
971 		}
972 	}
973 	if (Adapter->lso_enable) {
974 		Adapter->dvma_page_num = E1000_LSO_MAXLEN /
975 		    Adapter->sys_page_sz + E1000G_DEFAULT_DVMA_PAGE_NUM;
976 	} else {
977 		Adapter->dvma_page_num = Adapter->max_frame_size /
978 		    Adapter->sys_page_sz + E1000G_DEFAULT_DVMA_PAGE_NUM;
979 	}
980 	ASSERT(Adapter->dvma_page_num >= E1000G_DEFAULT_DVMA_PAGE_NUM);
981 #endif
982 
983 	Adapter->min_frame_size = ETHERMIN + ETHERFCSL;
984 
985 	if (Adapter->mem_workaround_82546 &&
986 	    ((mac->type == e1000_82545) ||
987 	    (mac->type == e1000_82546) ||
988 	    (mac->type == e1000_82546_rev_3))) {
989 		Adapter->rx_buffer_size = E1000_RX_BUFFER_SIZE_2K;
990 	} else {
991 		rx_size = Adapter->max_frame_size;
992 		if ((rx_size > FRAME_SIZE_UPTO_2K) &&
993 		    (rx_size <= FRAME_SIZE_UPTO_4K))
994 			Adapter->rx_buffer_size = E1000_RX_BUFFER_SIZE_4K;
995 		else if ((rx_size > FRAME_SIZE_UPTO_4K) &&
996 		    (rx_size <= FRAME_SIZE_UPTO_8K))
997 			Adapter->rx_buffer_size = E1000_RX_BUFFER_SIZE_8K;
998 		else if ((rx_size > FRAME_SIZE_UPTO_8K) &&
999 		    (rx_size <= FRAME_SIZE_UPTO_16K))
1000 			Adapter->rx_buffer_size = E1000_RX_BUFFER_SIZE_16K;
1001 		else
1002 			Adapter->rx_buffer_size = E1000_RX_BUFFER_SIZE_2K;
1003 	}
1004 	Adapter->rx_buffer_size += E1000G_IPALIGNROOM;
1005 
1006 	tx_size = Adapter->max_frame_size;
1007 	if ((tx_size > FRAME_SIZE_UPTO_2K) && (tx_size <= FRAME_SIZE_UPTO_4K))
1008 		Adapter->tx_buffer_size = E1000_TX_BUFFER_SIZE_4K;
1009 	else if ((tx_size > FRAME_SIZE_UPTO_4K) &&
1010 	    (tx_size <= FRAME_SIZE_UPTO_8K))
1011 		Adapter->tx_buffer_size = E1000_TX_BUFFER_SIZE_8K;
1012 	else if ((tx_size > FRAME_SIZE_UPTO_8K) &&
1013 	    (tx_size <= FRAME_SIZE_UPTO_16K))
1014 		Adapter->tx_buffer_size = E1000_TX_BUFFER_SIZE_16K;
1015 	else
1016 		Adapter->tx_buffer_size = E1000_TX_BUFFER_SIZE_2K;
1017 
1018 	/*
1019 	 * For Wiseman adapters we have an requirement of having receive
1020 	 * buffers aligned at 256 byte boundary. Since Livengood does not
1021 	 * require this and forcing it for all hardwares will have
1022 	 * performance implications, I am making it applicable only for
1023 	 * Wiseman and for Jumbo frames enabled mode as rest of the time,
1024 	 * it is okay to have normal frames...but it does involve a
1025 	 * potential risk where we may loose data if buffer is not
1026 	 * aligned...so all wiseman boards to have 256 byte aligned
1027 	 * buffers
1028 	 */
1029 	if (mac->type < e1000_82543)
1030 		Adapter->rx_buf_align = RECEIVE_BUFFER_ALIGN_SIZE;
1031 	else
1032 		Adapter->rx_buf_align = 1;
1033 }
1034 
1035 /*
1036  * e1000g_detach - driver detach
1037  *
1038  * The detach() function is the complement of the attach routine.
1039  * If cmd is set to DDI_DETACH, detach() is used to remove  the
1040  * state  associated  with  a  given  instance of a device node
1041  * prior to the removal of that instance from the system.
1042  *
1043  * The detach() function will be called once for each  instance
1044  * of the device for which there has been a successful attach()
1045  * once there are no longer  any  opens  on  the  device.
1046  *
1047  * Interrupts routine are disabled, All memory allocated by this
1048  * driver are freed.
1049  */
1050 static int
1051 e1000g_detach(dev_info_t *devinfo, ddi_detach_cmd_t cmd)
1052 {
1053 	struct e1000g *Adapter;
1054 	boolean_t rx_drain;
1055 
1056 	switch (cmd) {
1057 	default:
1058 		return (DDI_FAILURE);
1059 
1060 	case DDI_SUSPEND:
1061 		return (e1000g_suspend(devinfo));
1062 
1063 	case DDI_DETACH:
1064 		break;
1065 	}
1066 
1067 	Adapter = (struct e1000g *)ddi_get_driver_private(devinfo);
1068 	if (Adapter == NULL)
1069 		return (DDI_FAILURE);
1070 
1071 	rx_drain = e1000g_rx_drain(Adapter);
1072 	if (!rx_drain && !e1000g_force_detach)
1073 		return (DDI_FAILURE);
1074 
1075 	if (mac_unregister(Adapter->mh) != 0) {
1076 		e1000g_log(Adapter, CE_WARN, "Unregister MAC failed");
1077 		return (DDI_FAILURE);
1078 	}
1079 	Adapter->attach_progress &= ~ATTACH_PROGRESS_MAC;
1080 
1081 	ASSERT(!(Adapter->e1000g_state & E1000G_STARTED));
1082 
1083 	if (!e1000g_force_detach && !rx_drain)
1084 		return (DDI_FAILURE);
1085 
1086 	e1000g_unattach(devinfo, Adapter);
1087 
1088 	return (DDI_SUCCESS);
1089 }
1090 
1091 /*
1092  * e1000g_free_priv_devi_node - free a priv_dip entry for driver instance
1093  */
1094 void
1095 e1000g_free_priv_devi_node(private_devi_list_t *devi_node)
1096 {
1097 	ASSERT(e1000g_private_devi_list != NULL);
1098 	ASSERT(devi_node != NULL);
1099 
1100 	if (devi_node->prev != NULL)
1101 		devi_node->prev->next = devi_node->next;
1102 	if (devi_node->next != NULL)
1103 		devi_node->next->prev = devi_node->prev;
1104 	if (devi_node == e1000g_private_devi_list)
1105 		e1000g_private_devi_list = devi_node->next;
1106 
1107 	kmem_free(devi_node->priv_dip,
1108 	    sizeof (struct dev_info));
1109 	kmem_free(devi_node,
1110 	    sizeof (private_devi_list_t));
1111 }
1112 
1113 static void
1114 e1000g_unattach(dev_info_t *devinfo, struct e1000g *Adapter)
1115 {
1116 	private_devi_list_t *devi_node;
1117 	int result;
1118 
1119 	if (Adapter->e1000g_blink != NULL) {
1120 		ddi_periodic_delete(Adapter->e1000g_blink);
1121 		Adapter->e1000g_blink = NULL;
1122 	}
1123 
1124 	if (Adapter->attach_progress & ATTACH_PROGRESS_ENABLE_INTR) {
1125 		(void) e1000g_disable_intrs(Adapter);
1126 	}
1127 
1128 	if (Adapter->attach_progress & ATTACH_PROGRESS_MAC) {
1129 		(void) mac_unregister(Adapter->mh);
1130 	}
1131 
1132 	if (Adapter->attach_progress & ATTACH_PROGRESS_ADD_INTR) {
1133 		(void) e1000g_rem_intrs(Adapter);
1134 	}
1135 
1136 	if (Adapter->attach_progress & ATTACH_PROGRESS_SETUP) {
1137 		(void) ddi_prop_remove_all(devinfo);
1138 	}
1139 
1140 	if (Adapter->attach_progress & ATTACH_PROGRESS_KSTATS) {
1141 		kstat_delete((kstat_t *)Adapter->e1000g_ksp);
1142 	}
1143 
1144 	if (Adapter->attach_progress & ATTACH_PROGRESS_INIT) {
1145 		stop_link_timer(Adapter);
1146 
1147 		mutex_enter(&e1000g_nvm_lock);
1148 		result = e1000_reset_hw(&Adapter->shared);
1149 		mutex_exit(&e1000g_nvm_lock);
1150 
1151 		if (result != E1000_SUCCESS) {
1152 			e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1153 			ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
1154 		}
1155 	}
1156 
1157 	e1000g_release_multicast(Adapter);
1158 
1159 	if (Adapter->attach_progress & ATTACH_PROGRESS_REGS_MAP) {
1160 		if (Adapter->osdep.reg_handle != NULL)
1161 			ddi_regs_map_free(&Adapter->osdep.reg_handle);
1162 		if (Adapter->osdep.ich_flash_handle != NULL &&
1163 		    Adapter->shared.mac.type < e1000_pch_spt)
1164 			ddi_regs_map_free(&Adapter->osdep.ich_flash_handle);
1165 		if (Adapter->osdep.io_reg_handle != NULL)
1166 			ddi_regs_map_free(&Adapter->osdep.io_reg_handle);
1167 	}
1168 
1169 	if (Adapter->attach_progress & ATTACH_PROGRESS_PCI_CONFIG) {
1170 		if (Adapter->osdep.cfg_handle != NULL)
1171 			pci_config_teardown(&Adapter->osdep.cfg_handle);
1172 	}
1173 
1174 	if (Adapter->attach_progress & ATTACH_PROGRESS_LOCKS) {
1175 		e1000g_destroy_locks(Adapter);
1176 	}
1177 
1178 	if (Adapter->attach_progress & ATTACH_PROGRESS_FMINIT) {
1179 		e1000g_fm_fini(Adapter);
1180 	}
1181 
1182 	mutex_enter(&e1000g_rx_detach_lock);
1183 	if (e1000g_force_detach && (Adapter->priv_devi_node != NULL)) {
1184 		devi_node = Adapter->priv_devi_node;
1185 		devi_node->flag |= E1000G_PRIV_DEVI_DETACH;
1186 
1187 		if (devi_node->pending_rx_count == 0) {
1188 			e1000g_free_priv_devi_node(devi_node);
1189 		}
1190 	}
1191 	mutex_exit(&e1000g_rx_detach_lock);
1192 
1193 	kmem_free((caddr_t)Adapter, sizeof (struct e1000g));
1194 
1195 	/*
1196 	 * Another hotplug spec requirement,
1197 	 * run ddi_set_driver_private(devinfo, null);
1198 	 */
1199 	ddi_set_driver_private(devinfo, NULL);
1200 }
1201 
1202 /*
1203  * Get the BAR type and rnumber for a given PCI BAR offset
1204  */
1205 static int
1206 e1000g_get_bar_info(dev_info_t *dip, int bar_offset, bar_info_t *bar_info)
1207 {
1208 	pci_regspec_t *regs;
1209 	uint_t regs_length;
1210 	int type, rnumber, rcount;
1211 
1212 	ASSERT((bar_offset >= PCI_CONF_BASE0) &&
1213 	    (bar_offset <= PCI_CONF_BASE5));
1214 
1215 	/*
1216 	 * Get the DDI "reg" property
1217 	 */
1218 	if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dip,
1219 	    DDI_PROP_DONTPASS, "reg", (int **)&regs,
1220 	    &regs_length) != DDI_PROP_SUCCESS) {
1221 		return (DDI_FAILURE);
1222 	}
1223 
1224 	rcount = regs_length * sizeof (int) / sizeof (pci_regspec_t);
1225 	/*
1226 	 * Check the BAR offset
1227 	 */
1228 	for (rnumber = 0; rnumber < rcount; ++rnumber) {
1229 		if (PCI_REG_REG_G(regs[rnumber].pci_phys_hi) == bar_offset) {
1230 			type = regs[rnumber].pci_phys_hi & PCI_ADDR_MASK;
1231 			break;
1232 		}
1233 	}
1234 
1235 	ddi_prop_free(regs);
1236 
1237 	if (rnumber >= rcount)
1238 		return (DDI_FAILURE);
1239 
1240 	switch (type) {
1241 	case PCI_ADDR_CONFIG:
1242 		bar_info->type = E1000G_BAR_CONFIG;
1243 		break;
1244 	case PCI_ADDR_IO:
1245 		bar_info->type = E1000G_BAR_IO;
1246 		break;
1247 	case PCI_ADDR_MEM32:
1248 		bar_info->type = E1000G_BAR_MEM32;
1249 		break;
1250 	case PCI_ADDR_MEM64:
1251 		bar_info->type = E1000G_BAR_MEM64;
1252 		break;
1253 	default:
1254 		return (DDI_FAILURE);
1255 	}
1256 	bar_info->rnumber = rnumber;
1257 	return (DDI_SUCCESS);
1258 }
1259 
1260 static void
1261 e1000g_init_locks(struct e1000g *Adapter)
1262 {
1263 	e1000g_tx_ring_t *tx_ring;
1264 	e1000g_rx_ring_t *rx_ring;
1265 
1266 	rw_init(&Adapter->chip_lock, NULL,
1267 	    RW_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1268 	mutex_init(&Adapter->link_lock, NULL,
1269 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1270 	mutex_init(&Adapter->watchdog_lock, NULL,
1271 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1272 
1273 	tx_ring = Adapter->tx_ring;
1274 
1275 	mutex_init(&tx_ring->tx_lock, NULL,
1276 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1277 	mutex_init(&tx_ring->usedlist_lock, NULL,
1278 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1279 	mutex_init(&tx_ring->freelist_lock, NULL,
1280 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1281 
1282 	rx_ring = Adapter->rx_ring;
1283 
1284 	mutex_init(&rx_ring->rx_lock, NULL,
1285 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1286 
1287 	mutex_init(&Adapter->e1000g_led_lock, NULL,
1288 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1289 }
1290 
1291 static void
1292 e1000g_destroy_locks(struct e1000g *Adapter)
1293 {
1294 	e1000g_tx_ring_t *tx_ring;
1295 	e1000g_rx_ring_t *rx_ring;
1296 
1297 	mutex_destroy(&Adapter->e1000g_led_lock);
1298 
1299 	tx_ring = Adapter->tx_ring;
1300 	mutex_destroy(&tx_ring->tx_lock);
1301 	mutex_destroy(&tx_ring->usedlist_lock);
1302 	mutex_destroy(&tx_ring->freelist_lock);
1303 
1304 	rx_ring = Adapter->rx_ring;
1305 	mutex_destroy(&rx_ring->rx_lock);
1306 
1307 	mutex_destroy(&Adapter->link_lock);
1308 	mutex_destroy(&Adapter->watchdog_lock);
1309 	rw_destroy(&Adapter->chip_lock);
1310 
1311 	/* destory mutex initialized in shared code */
1312 	e1000_destroy_hw_mutex(&Adapter->shared);
1313 }
1314 
1315 static int
1316 e1000g_resume(dev_info_t *devinfo)
1317 {
1318 	struct e1000g *Adapter;
1319 
1320 	Adapter = (struct e1000g *)ddi_get_driver_private(devinfo);
1321 	if (Adapter == NULL)
1322 		e1000g_log(Adapter, CE_PANIC,
1323 		    "Instance pointer is null\n");
1324 
1325 	if (Adapter->dip != devinfo)
1326 		e1000g_log(Adapter, CE_PANIC,
1327 		    "Devinfo is not the same as saved devinfo\n");
1328 
1329 	rw_enter(&Adapter->chip_lock, RW_WRITER);
1330 
1331 	if (Adapter->e1000g_state & E1000G_STARTED) {
1332 		if (e1000g_start(Adapter, B_FALSE) != DDI_SUCCESS) {
1333 			rw_exit(&Adapter->chip_lock);
1334 			/*
1335 			 * We note the failure, but return success, as the
1336 			 * system is still usable without this controller.
1337 			 */
1338 			e1000g_log(Adapter, CE_WARN,
1339 			    "e1000g_resume: failed to restart controller\n");
1340 			return (DDI_SUCCESS);
1341 		}
1342 		/* Enable and start the watchdog timer */
1343 		enable_watchdog_timer(Adapter);
1344 	}
1345 
1346 	Adapter->e1000g_state &= ~E1000G_SUSPENDED;
1347 
1348 	rw_exit(&Adapter->chip_lock);
1349 
1350 	return (DDI_SUCCESS);
1351 }
1352 
1353 static int
1354 e1000g_suspend(dev_info_t *devinfo)
1355 {
1356 	struct e1000g *Adapter;
1357 
1358 	Adapter = (struct e1000g *)ddi_get_driver_private(devinfo);
1359 	if (Adapter == NULL)
1360 		return (DDI_FAILURE);
1361 
1362 	rw_enter(&Adapter->chip_lock, RW_WRITER);
1363 
1364 	Adapter->e1000g_state |= E1000G_SUSPENDED;
1365 
1366 	/* if the port isn't plumbed, we can simply return */
1367 	if (!(Adapter->e1000g_state & E1000G_STARTED)) {
1368 		rw_exit(&Adapter->chip_lock);
1369 		return (DDI_SUCCESS);
1370 	}
1371 
1372 	e1000g_stop(Adapter, B_FALSE);
1373 
1374 	rw_exit(&Adapter->chip_lock);
1375 
1376 	/* Disable and stop all the timers */
1377 	disable_watchdog_timer(Adapter);
1378 	stop_link_timer(Adapter);
1379 	stop_82547_timer(Adapter->tx_ring);
1380 
1381 	return (DDI_SUCCESS);
1382 }
1383 
1384 static int
1385 e1000g_init(struct e1000g *Adapter)
1386 {
1387 	uint32_t pba;
1388 	uint32_t high_water;
1389 	struct e1000_hw *hw;
1390 	clock_t link_timeout;
1391 	int result;
1392 
1393 	hw = &Adapter->shared;
1394 
1395 	/*
1396 	 * reset to put the hardware in a known state
1397 	 * before we try to do anything with the eeprom
1398 	 */
1399 	mutex_enter(&e1000g_nvm_lock);
1400 	result = e1000_reset_hw(hw);
1401 	mutex_exit(&e1000g_nvm_lock);
1402 
1403 	if (result != E1000_SUCCESS) {
1404 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1405 		goto init_fail;
1406 	}
1407 
1408 	mutex_enter(&e1000g_nvm_lock);
1409 	result = e1000_validate_nvm_checksum(hw);
1410 	if (result < E1000_SUCCESS) {
1411 		/*
1412 		 * Some PCI-E parts fail the first check due to
1413 		 * the link being in sleep state.  Call it again,
1414 		 * if it fails a second time its a real issue.
1415 		 */
1416 		result = e1000_validate_nvm_checksum(hw);
1417 	}
1418 	mutex_exit(&e1000g_nvm_lock);
1419 
1420 	if (result < E1000_SUCCESS) {
1421 		e1000g_log(Adapter, CE_WARN,
1422 		    "Invalid NVM checksum. Please contact "
1423 		    "the vendor to update the NVM.");
1424 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1425 		goto init_fail;
1426 	}
1427 
1428 	result = 0;
1429 #ifdef __sparc
1430 	/*
1431 	 * First, we try to get the local ethernet address from OBP. If
1432 	 * failed, then we get it from the EEPROM of NIC card.
1433 	 */
1434 	result = e1000g_find_mac_address(Adapter);
1435 #endif
1436 	/* Get the local ethernet address. */
1437 	if (!result) {
1438 		mutex_enter(&e1000g_nvm_lock);
1439 		result = e1000_read_mac_addr(hw);
1440 		mutex_exit(&e1000g_nvm_lock);
1441 	}
1442 
1443 	if (result < E1000_SUCCESS) {
1444 		e1000g_log(Adapter, CE_WARN, "Read mac addr failed");
1445 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1446 		goto init_fail;
1447 	}
1448 
1449 	/* check for valid mac address */
1450 	if (!is_valid_mac_addr(hw->mac.addr)) {
1451 		e1000g_log(Adapter, CE_WARN, "Invalid mac addr");
1452 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1453 		goto init_fail;
1454 	}
1455 
1456 	/* Set LAA state for 82571 chipset */
1457 	e1000_set_laa_state_82571(hw, B_TRUE);
1458 
1459 	/* Master Latency Timer implementation */
1460 	if (Adapter->master_latency_timer) {
1461 		pci_config_put8(Adapter->osdep.cfg_handle,
1462 		    PCI_CONF_LATENCY_TIMER, Adapter->master_latency_timer);
1463 	}
1464 
1465 	if (hw->mac.type < e1000_82547) {
1466 		/*
1467 		 * Total FIFO is 64K
1468 		 */
1469 		if (Adapter->max_frame_size > FRAME_SIZE_UPTO_8K)
1470 			pba = E1000_PBA_40K;	/* 40K for Rx, 24K for Tx */
1471 		else
1472 			pba = E1000_PBA_48K;	/* 48K for Rx, 16K for Tx */
1473 	} else if ((hw->mac.type == e1000_82571) ||
1474 	    (hw->mac.type == e1000_82572) ||
1475 	    (hw->mac.type == e1000_80003es2lan)) {
1476 		/*
1477 		 * Total FIFO is 48K
1478 		 */
1479 		if (Adapter->max_frame_size > FRAME_SIZE_UPTO_8K)
1480 			pba = E1000_PBA_30K;	/* 30K for Rx, 18K for Tx */
1481 		else
1482 			pba = E1000_PBA_38K;	/* 38K for Rx, 10K for Tx */
1483 	} else if (hw->mac.type == e1000_82573) {
1484 		pba = E1000_PBA_20K;		/* 20K for Rx, 12K for Tx */
1485 	} else if (hw->mac.type == e1000_82574) {
1486 		/* Keep adapter default: 20K for Rx, 20K for Tx */
1487 		pba = E1000_READ_REG(hw, E1000_PBA);
1488 	} else if (hw->mac.type == e1000_ich8lan) {
1489 		pba = E1000_PBA_8K;		/* 8K for Rx, 12K for Tx */
1490 	} else if (hw->mac.type == e1000_ich9lan) {
1491 		pba = E1000_PBA_10K;
1492 	} else if (hw->mac.type == e1000_ich10lan) {
1493 		pba = E1000_PBA_10K;
1494 	} else if (hw->mac.type == e1000_pchlan) {
1495 		pba = E1000_PBA_26K;
1496 	} else if (hw->mac.type == e1000_pch2lan) {
1497 		pba = E1000_PBA_26K;
1498 	} else if (hw->mac.type == e1000_pch_lpt) {
1499 		pba = E1000_PBA_26K;
1500 	} else if (hw->mac.type == e1000_pch_spt) {
1501 		pba = E1000_PBA_26K;
1502 	} else if (hw->mac.type == e1000_pch_cnp) {
1503 		pba = E1000_PBA_26K;
1504 	} else if (hw->mac.type == e1000_pch_tgp) {
1505 		pba = E1000_PBA_26K;
1506 	} else if (hw->mac.type == e1000_pch_adp) {
1507 		pba = E1000_PBA_26K;
1508 	} else if (hw->mac.type == e1000_pch_mtp) {
1509 		pba = E1000_PBA_26K;
1510 	} else if (hw->mac.type == e1000_pch_lnp) {
1511 		pba = E1000_PBA_26K;
1512 	} else if (hw->mac.type == e1000_pch_rpl) {
1513 		pba = E1000_PBA_26K;
1514 	} else {
1515 		/*
1516 		 * Total FIFO is 40K
1517 		 */
1518 		if (Adapter->max_frame_size > FRAME_SIZE_UPTO_8K)
1519 			pba = E1000_PBA_22K;	/* 22K for Rx, 18K for Tx */
1520 		else
1521 			pba = E1000_PBA_30K;	/* 30K for Rx, 10K for Tx */
1522 	}
1523 	E1000_WRITE_REG(hw, E1000_PBA, pba);
1524 
1525 	/*
1526 	 * These parameters set thresholds for the adapter's generation(Tx)
1527 	 * and response(Rx) to Ethernet PAUSE frames.  These are just threshold
1528 	 * settings.  Flow control is enabled or disabled in the configuration
1529 	 * file.
1530 	 * High-water mark is set down from the top of the rx fifo (not
1531 	 * sensitive to max_frame_size) and low-water is set just below
1532 	 * high-water mark.
1533 	 * The high water mark must be low enough to fit one full frame above
1534 	 * it in the rx FIFO.  Should be the lower of:
1535 	 * 90% of the Rx FIFO size and the full Rx FIFO size minus the early
1536 	 * receive size (assuming ERT set to E1000_ERT_2048), or the full
1537 	 * Rx FIFO size minus one full frame.
1538 	 */
1539 	high_water = min(((pba << 10) * 9 / 10),
1540 	    ((hw->mac.type == e1000_82573 || hw->mac.type == e1000_82574 ||
1541 	    hw->mac.type == e1000_ich9lan || hw->mac.type == e1000_ich10lan) ?
1542 	    ((pba << 10) - (E1000_ERT_2048 << 3)) :
1543 	    ((pba << 10) - Adapter->max_frame_size)));
1544 
1545 	hw->fc.high_water = high_water & 0xFFF8;
1546 	hw->fc.low_water = hw->fc.high_water - 8;
1547 
1548 	if (hw->mac.type == e1000_80003es2lan)
1549 		hw->fc.pause_time = 0xFFFF;
1550 	else
1551 		hw->fc.pause_time = E1000_FC_PAUSE_TIME;
1552 	hw->fc.send_xon = B_TRUE;
1553 
1554 	/*
1555 	 * Reset the adapter hardware the second time.
1556 	 */
1557 	mutex_enter(&e1000g_nvm_lock);
1558 	result = e1000_reset_hw(hw);
1559 	mutex_exit(&e1000g_nvm_lock);
1560 
1561 	if (result != E1000_SUCCESS) {
1562 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1563 		goto init_fail;
1564 	}
1565 
1566 	/* disable wakeup control by default */
1567 	if (hw->mac.type >= e1000_82544)
1568 		E1000_WRITE_REG(hw, E1000_WUC, 0);
1569 
1570 	/*
1571 	 * MWI should be disabled on 82546.
1572 	 */
1573 	if (hw->mac.type == e1000_82546)
1574 		e1000_pci_clear_mwi(hw);
1575 	else
1576 		e1000_pci_set_mwi(hw);
1577 
1578 	/*
1579 	 * Configure/Initialize hardware
1580 	 */
1581 	mutex_enter(&e1000g_nvm_lock);
1582 	result = e1000_init_hw(hw);
1583 	mutex_exit(&e1000g_nvm_lock);
1584 
1585 	if (result < E1000_SUCCESS) {
1586 		e1000g_log(Adapter, CE_WARN, "Initialize hw failed");
1587 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1588 		goto init_fail;
1589 	}
1590 
1591 	/*
1592 	 * Restore LED settings to the default from EEPROM
1593 	 * to meet the standard for Sun platforms.
1594 	 */
1595 	(void) e1000_cleanup_led(hw);
1596 
1597 	/* Disable Smart Power Down */
1598 	phy_spd_state(hw, B_FALSE);
1599 
1600 	/* Make sure driver has control */
1601 	e1000g_get_driver_control(hw);
1602 
1603 	/*
1604 	 * Initialize unicast addresses.
1605 	 */
1606 	e1000g_init_unicst(Adapter);
1607 
1608 	/*
1609 	 * Setup and initialize the mctable structures.  After this routine
1610 	 * completes  Multicast table will be set
1611 	 */
1612 	e1000_update_mc_addr_list(hw,
1613 	    (uint8_t *)Adapter->mcast_table, Adapter->mcast_count);
1614 	msec_delay(5);
1615 
1616 	/*
1617 	 * Implement Adaptive IFS
1618 	 */
1619 	e1000_reset_adaptive(hw);
1620 
1621 	/* Setup Interrupt Throttling Register */
1622 	if (hw->mac.type >= e1000_82540) {
1623 		E1000_WRITE_REG(hw, E1000_ITR, Adapter->intr_throttling_rate);
1624 	} else
1625 		Adapter->intr_adaptive = B_FALSE;
1626 
1627 	/* Start the timer for link setup */
1628 	if (hw->mac.autoneg)
1629 		link_timeout = PHY_AUTO_NEG_LIMIT * drv_usectohz(100000);
1630 	else
1631 		link_timeout = PHY_FORCE_LIMIT * drv_usectohz(100000);
1632 
1633 	mutex_enter(&Adapter->link_lock);
1634 	if (hw->phy.autoneg_wait_to_complete) {
1635 		Adapter->link_complete = B_TRUE;
1636 	} else {
1637 		Adapter->link_complete = B_FALSE;
1638 		Adapter->link_tid = timeout(e1000g_link_timer,
1639 		    (void *)Adapter, link_timeout);
1640 	}
1641 	mutex_exit(&Adapter->link_lock);
1642 
1643 	/* Save the state of the phy */
1644 	e1000g_get_phy_state(Adapter);
1645 
1646 	e1000g_param_sync(Adapter);
1647 
1648 	Adapter->init_count++;
1649 
1650 	if (e1000g_check_acc_handle(Adapter->osdep.cfg_handle) != DDI_FM_OK) {
1651 		goto init_fail;
1652 	}
1653 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
1654 		goto init_fail;
1655 	}
1656 
1657 	Adapter->poll_mode = e1000g_poll_mode;
1658 
1659 	return (DDI_SUCCESS);
1660 
1661 init_fail:
1662 	ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
1663 	return (DDI_FAILURE);
1664 }
1665 
1666 static int
1667 e1000g_alloc_rx_data(struct e1000g *Adapter)
1668 {
1669 	e1000g_rx_ring_t *rx_ring;
1670 	e1000g_rx_data_t *rx_data;
1671 
1672 	rx_ring = Adapter->rx_ring;
1673 
1674 	rx_data = kmem_zalloc(sizeof (e1000g_rx_data_t), KM_NOSLEEP);
1675 
1676 	if (rx_data == NULL)
1677 		return (DDI_FAILURE);
1678 
1679 	rx_data->priv_devi_node = Adapter->priv_devi_node;
1680 	rx_data->rx_ring = rx_ring;
1681 
1682 	mutex_init(&rx_data->freelist_lock, NULL,
1683 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1684 	mutex_init(&rx_data->recycle_lock, NULL,
1685 	    MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1686 
1687 	rx_ring->rx_data = rx_data;
1688 
1689 	return (DDI_SUCCESS);
1690 }
1691 
1692 void
1693 e1000g_free_rx_pending_buffers(e1000g_rx_data_t *rx_data)
1694 {
1695 	rx_sw_packet_t *packet, *next_packet;
1696 
1697 	if (rx_data == NULL)
1698 		return;
1699 
1700 	packet = rx_data->packet_area;
1701 	while (packet != NULL) {
1702 		next_packet = packet->next;
1703 		e1000g_free_rx_sw_packet(packet, B_TRUE);
1704 		packet = next_packet;
1705 	}
1706 	rx_data->packet_area = NULL;
1707 }
1708 
1709 void
1710 e1000g_free_rx_data(e1000g_rx_data_t *rx_data)
1711 {
1712 	if (rx_data == NULL)
1713 		return;
1714 
1715 	mutex_destroy(&rx_data->freelist_lock);
1716 	mutex_destroy(&rx_data->recycle_lock);
1717 
1718 	kmem_free(rx_data, sizeof (e1000g_rx_data_t));
1719 }
1720 
1721 /*
1722  * Check if the link is up
1723  */
1724 static boolean_t
1725 e1000g_link_up(struct e1000g *Adapter)
1726 {
1727 	struct e1000_hw *hw = &Adapter->shared;
1728 	boolean_t link_up = B_FALSE;
1729 
1730 	/*
1731 	 * get_link_status is set in the interrupt handler on link-status-change
1732 	 * or rx sequence error interrupt.  get_link_status will stay
1733 	 * false until the e1000_check_for_link establishes link only
1734 	 * for copper adapters.
1735 	 */
1736 	switch (hw->phy.media_type) {
1737 	case e1000_media_type_copper:
1738 		if (hw->mac.get_link_status) {
1739 			/*
1740 			 * SPT and newer devices need a bit of extra time before
1741 			 * we ask them.
1742 			 */
1743 			if (hw->mac.type >= e1000_pch_spt)
1744 				msec_delay(50);
1745 			(void) e1000_check_for_link(hw);
1746 			if ((E1000_READ_REG(hw, E1000_STATUS) &
1747 			    E1000_STATUS_LU)) {
1748 				link_up = B_TRUE;
1749 			} else {
1750 				link_up = !hw->mac.get_link_status;
1751 			}
1752 		} else {
1753 			link_up = B_TRUE;
1754 		}
1755 		break;
1756 	case e1000_media_type_fiber:
1757 		(void) e1000_check_for_link(hw);
1758 		link_up = (E1000_READ_REG(hw, E1000_STATUS) &
1759 		    E1000_STATUS_LU);
1760 		break;
1761 	case e1000_media_type_internal_serdes:
1762 		(void) e1000_check_for_link(hw);
1763 		link_up = hw->mac.serdes_has_link;
1764 		break;
1765 	}
1766 
1767 	return (link_up);
1768 }
1769 
1770 static void
1771 e1000g_m_ioctl(void *arg, queue_t *q, mblk_t *mp)
1772 {
1773 	struct iocblk *iocp;
1774 	struct e1000g *e1000gp;
1775 	enum ioc_reply status;
1776 
1777 	iocp = (struct iocblk *)(uintptr_t)mp->b_rptr;
1778 	iocp->ioc_error = 0;
1779 	e1000gp = (struct e1000g *)arg;
1780 
1781 	ASSERT(e1000gp);
1782 	if (e1000gp == NULL) {
1783 		miocnak(q, mp, 0, EINVAL);
1784 		return;
1785 	}
1786 
1787 	rw_enter(&e1000gp->chip_lock, RW_READER);
1788 	if (e1000gp->e1000g_state & E1000G_SUSPENDED) {
1789 		rw_exit(&e1000gp->chip_lock);
1790 		miocnak(q, mp, 0, EINVAL);
1791 		return;
1792 	}
1793 	rw_exit(&e1000gp->chip_lock);
1794 
1795 	switch (iocp->ioc_cmd) {
1796 
1797 	case LB_GET_INFO_SIZE:
1798 	case LB_GET_INFO:
1799 	case LB_GET_MODE:
1800 	case LB_SET_MODE:
1801 		status = e1000g_loopback_ioctl(e1000gp, iocp, mp);
1802 		break;
1803 
1804 
1805 #ifdef E1000G_DEBUG
1806 	case E1000G_IOC_REG_PEEK:
1807 	case E1000G_IOC_REG_POKE:
1808 		status = e1000g_pp_ioctl(e1000gp, iocp, mp);
1809 		break;
1810 	case E1000G_IOC_CHIP_RESET:
1811 		e1000gp->reset_count++;
1812 		if (e1000g_reset_adapter(e1000gp))
1813 			status = IOC_ACK;
1814 		else
1815 			status = IOC_INVAL;
1816 		break;
1817 #endif
1818 	default:
1819 		status = IOC_INVAL;
1820 		break;
1821 	}
1822 
1823 	/*
1824 	 * Decide how to reply
1825 	 */
1826 	switch (status) {
1827 	default:
1828 	case IOC_INVAL:
1829 		/*
1830 		 * Error, reply with a NAK and EINVAL or the specified error
1831 		 */
1832 		miocnak(q, mp, 0, iocp->ioc_error == 0 ?
1833 		    EINVAL : iocp->ioc_error);
1834 		break;
1835 
1836 	case IOC_DONE:
1837 		/*
1838 		 * OK, reply already sent
1839 		 */
1840 		break;
1841 
1842 	case IOC_ACK:
1843 		/*
1844 		 * OK, reply with an ACK
1845 		 */
1846 		miocack(q, mp, 0, 0);
1847 		break;
1848 
1849 	case IOC_REPLY:
1850 		/*
1851 		 * OK, send prepared reply as ACK or NAK
1852 		 */
1853 		mp->b_datap->db_type = iocp->ioc_error == 0 ?
1854 		    M_IOCACK : M_IOCNAK;
1855 		qreply(q, mp);
1856 		break;
1857 	}
1858 }
1859 
1860 /*
1861  * The default value of e1000g_poll_mode == 0 assumes that the NIC is
1862  * capable of supporting only one interrupt and we shouldn't disable
1863  * the physical interrupt. In this case we let the interrupt come and
1864  * we queue the packets in the rx ring itself in case we are in polling
1865  * mode (better latency but slightly lower performance and a very
1866  * high intrrupt count in mpstat which is harmless).
1867  *
1868  * e1000g_poll_mode == 1 assumes that we have per Rx ring interrupt
1869  * which can be disabled in poll mode. This gives better overall
1870  * throughput (compared to the mode above), shows very low interrupt
1871  * count but has slightly higher latency since we pick the packets when
1872  * the poll thread does polling.
1873  *
1874  * Currently, this flag should be enabled only while doing performance
1875  * measurement or when it can be guaranteed that entire NIC going
1876  * in poll mode will not harm any traffic like cluster heartbeat etc.
1877  */
1878 int e1000g_poll_mode = 0;
1879 
1880 /*
1881  * Called from the upper layers when driver is in polling mode to
1882  * pick up any queued packets. Care should be taken to not block
1883  * this thread.
1884  */
1885 static mblk_t *e1000g_poll_ring(void *arg, int bytes_to_pickup)
1886 {
1887 	e1000g_rx_ring_t	*rx_ring = (e1000g_rx_ring_t *)arg;
1888 	mblk_t			*mp = NULL;
1889 	mblk_t			*tail;
1890 	struct e1000g		*adapter;
1891 
1892 	adapter = rx_ring->adapter;
1893 
1894 	rw_enter(&adapter->chip_lock, RW_READER);
1895 
1896 	if (adapter->e1000g_state & E1000G_SUSPENDED) {
1897 		rw_exit(&adapter->chip_lock);
1898 		return (NULL);
1899 	}
1900 
1901 	mutex_enter(&rx_ring->rx_lock);
1902 	mp = e1000g_receive(rx_ring, &tail, bytes_to_pickup);
1903 	mutex_exit(&rx_ring->rx_lock);
1904 	rw_exit(&adapter->chip_lock);
1905 	return (mp);
1906 }
1907 
1908 static int
1909 e1000g_m_start(void *arg)
1910 {
1911 	struct e1000g *Adapter = (struct e1000g *)arg;
1912 
1913 	rw_enter(&Adapter->chip_lock, RW_WRITER);
1914 
1915 	if (Adapter->e1000g_state & E1000G_SUSPENDED) {
1916 		rw_exit(&Adapter->chip_lock);
1917 		return (ECANCELED);
1918 	}
1919 
1920 	if (e1000g_start(Adapter, B_TRUE) != DDI_SUCCESS) {
1921 		rw_exit(&Adapter->chip_lock);
1922 		return (ENOTACTIVE);
1923 	}
1924 
1925 	Adapter->e1000g_state |= E1000G_STARTED;
1926 
1927 	rw_exit(&Adapter->chip_lock);
1928 
1929 	/* Enable and start the watchdog timer */
1930 	enable_watchdog_timer(Adapter);
1931 
1932 	return (0);
1933 }
1934 
1935 static int
1936 e1000g_start(struct e1000g *Adapter, boolean_t global)
1937 {
1938 	e1000g_rx_data_t *rx_data;
1939 
1940 	if (global) {
1941 		if (e1000g_alloc_rx_data(Adapter) != DDI_SUCCESS) {
1942 			e1000g_log(Adapter, CE_WARN, "Allocate rx data failed");
1943 			goto start_fail;
1944 		}
1945 
1946 		/* Allocate dma resources for descriptors and buffers */
1947 		if (e1000g_alloc_dma_resources(Adapter) != DDI_SUCCESS) {
1948 			e1000g_log(Adapter, CE_WARN,
1949 			    "Alloc DMA resources failed");
1950 			goto start_fail;
1951 		}
1952 		Adapter->rx_buffer_setup = B_FALSE;
1953 	}
1954 
1955 	if (!(Adapter->attach_progress & ATTACH_PROGRESS_INIT)) {
1956 		if (e1000g_init(Adapter) != DDI_SUCCESS) {
1957 			e1000g_log(Adapter, CE_WARN,
1958 			    "Adapter initialization failed");
1959 			goto start_fail;
1960 		}
1961 	}
1962 
1963 	/* Setup and initialize the transmit structures */
1964 	e1000g_tx_setup(Adapter);
1965 	msec_delay(5);
1966 
1967 	/* Setup and initialize the receive structures */
1968 	e1000g_rx_setup(Adapter);
1969 	msec_delay(5);
1970 
1971 	/* Restore the e1000g promiscuous mode */
1972 	e1000g_restore_promisc(Adapter);
1973 
1974 	e1000g_mask_interrupt(Adapter);
1975 
1976 	Adapter->attach_progress |= ATTACH_PROGRESS_INIT;
1977 
1978 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
1979 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
1980 		goto start_fail;
1981 	}
1982 
1983 	return (DDI_SUCCESS);
1984 
1985 start_fail:
1986 	rx_data = Adapter->rx_ring->rx_data;
1987 
1988 	if (global) {
1989 		e1000g_release_dma_resources(Adapter);
1990 		e1000g_free_rx_pending_buffers(rx_data);
1991 		e1000g_free_rx_data(rx_data);
1992 	}
1993 
1994 	mutex_enter(&e1000g_nvm_lock);
1995 	(void) e1000_reset_hw(&Adapter->shared);
1996 	mutex_exit(&e1000g_nvm_lock);
1997 
1998 	return (DDI_FAILURE);
1999 }
2000 
2001 /*
2002  * The I219 has the curious property that if the descriptor rings are not
2003  * emptied before resetting the hardware or before changing the device state
2004  * based on runtime power management, it'll cause the card to hang. This can
2005  * then only be fixed by a PCI reset. As such, for the I219 and it alone, we
2006  * have to flush the rings if we're in this state.
2007  */
2008 static void
2009 e1000g_flush_desc_rings(struct e1000g *Adapter)
2010 {
2011 	struct e1000_hw	*hw = &Adapter->shared;
2012 	u16		hang_state;
2013 	u32		fext_nvm11, tdlen;
2014 
2015 	/* First, disable MULR fix in FEXTNVM11 */
2016 	fext_nvm11 = E1000_READ_REG(hw, E1000_FEXTNVM11);
2017 	fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX;
2018 	E1000_WRITE_REG(hw, E1000_FEXTNVM11, fext_nvm11);
2019 
2020 	/* do nothing if we're not in faulty state, or if the queue is empty */
2021 	tdlen = E1000_READ_REG(hw, E1000_TDLEN(0));
2022 	hang_state = pci_config_get16(Adapter->osdep.cfg_handle,
2023 	    PCICFG_DESC_RING_STATUS);
2024 	if (!(hang_state & FLUSH_DESC_REQUIRED) || !tdlen)
2025 		return;
2026 	e1000g_flush_tx_ring(Adapter);
2027 
2028 	/* recheck, maybe the fault is caused by the rx ring */
2029 	hang_state = pci_config_get16(Adapter->osdep.cfg_handle,
2030 	    PCICFG_DESC_RING_STATUS);
2031 	if (hang_state & FLUSH_DESC_REQUIRED)
2032 		e1000g_flush_rx_ring(Adapter);
2033 
2034 }
2035 
2036 static void
2037 e1000g_m_stop(void *arg)
2038 {
2039 	struct e1000g *Adapter = (struct e1000g *)arg;
2040 
2041 	/* Drain tx sessions */
2042 	(void) e1000g_tx_drain(Adapter);
2043 
2044 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2045 
2046 	if (Adapter->e1000g_state & E1000G_SUSPENDED) {
2047 		rw_exit(&Adapter->chip_lock);
2048 		return;
2049 	}
2050 	Adapter->e1000g_state &= ~E1000G_STARTED;
2051 	e1000g_stop(Adapter, B_TRUE);
2052 
2053 	rw_exit(&Adapter->chip_lock);
2054 
2055 	/* Disable and stop all the timers */
2056 	disable_watchdog_timer(Adapter);
2057 	stop_link_timer(Adapter);
2058 	stop_82547_timer(Adapter->tx_ring);
2059 }
2060 
2061 static void
2062 e1000g_stop(struct e1000g *Adapter, boolean_t global)
2063 {
2064 	private_devi_list_t *devi_node;
2065 	e1000g_rx_data_t *rx_data;
2066 	int result;
2067 
2068 	Adapter->attach_progress &= ~ATTACH_PROGRESS_INIT;
2069 
2070 	/* Stop the chip and release pending resources */
2071 
2072 	/* Tell firmware driver is no longer in control */
2073 	e1000g_release_driver_control(&Adapter->shared);
2074 
2075 	e1000g_clear_all_interrupts(Adapter);
2076 
2077 	mutex_enter(&e1000g_nvm_lock);
2078 	result = e1000_reset_hw(&Adapter->shared);
2079 	mutex_exit(&e1000g_nvm_lock);
2080 
2081 	if (result != E1000_SUCCESS) {
2082 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
2083 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
2084 	}
2085 
2086 	mutex_enter(&Adapter->link_lock);
2087 	Adapter->link_complete = B_FALSE;
2088 	mutex_exit(&Adapter->link_lock);
2089 
2090 	/* Release resources still held by the TX descriptors */
2091 	e1000g_tx_clean(Adapter);
2092 
2093 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK)
2094 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
2095 
2096 	/* Clean the pending rx jumbo packet fragment */
2097 	e1000g_rx_clean(Adapter);
2098 
2099 	/*
2100 	 * The I219, eg. the pch_spt, has bugs such that we must ensure that
2101 	 * rings are flushed before we do anything else. This must be done
2102 	 * before we release DMA resources.
2103 	 */
2104 	if (Adapter->shared.mac.type >= e1000_pch_spt)
2105 		e1000g_flush_desc_rings(Adapter);
2106 
2107 	if (global) {
2108 		e1000g_release_dma_resources(Adapter);
2109 
2110 		mutex_enter(&e1000g_rx_detach_lock);
2111 		rx_data = Adapter->rx_ring->rx_data;
2112 		rx_data->flag |= E1000G_RX_STOPPED;
2113 
2114 		if (rx_data->pending_count == 0) {
2115 			e1000g_free_rx_pending_buffers(rx_data);
2116 			e1000g_free_rx_data(rx_data);
2117 		} else {
2118 			devi_node = rx_data->priv_devi_node;
2119 			if (devi_node != NULL)
2120 				atomic_inc_32(&devi_node->pending_rx_count);
2121 			else
2122 				atomic_inc_32(&Adapter->pending_rx_count);
2123 		}
2124 		mutex_exit(&e1000g_rx_detach_lock);
2125 	}
2126 
2127 	if (Adapter->link_state != LINK_STATE_UNKNOWN) {
2128 		Adapter->link_state = LINK_STATE_UNKNOWN;
2129 		if (!Adapter->reset_flag)
2130 			mac_link_update(Adapter->mh, Adapter->link_state);
2131 	}
2132 }
2133 
2134 static void
2135 e1000g_rx_clean(struct e1000g *Adapter)
2136 {
2137 	e1000g_rx_data_t *rx_data = Adapter->rx_ring->rx_data;
2138 
2139 	if (rx_data == NULL)
2140 		return;
2141 
2142 	if (rx_data->rx_mblk != NULL) {
2143 		freemsg(rx_data->rx_mblk);
2144 		rx_data->rx_mblk = NULL;
2145 		rx_data->rx_mblk_tail = NULL;
2146 		rx_data->rx_mblk_len = 0;
2147 	}
2148 }
2149 
2150 static void
2151 e1000g_tx_clean(struct e1000g *Adapter)
2152 {
2153 	e1000g_tx_ring_t *tx_ring;
2154 	p_tx_sw_packet_t packet;
2155 	mblk_t *mp;
2156 	mblk_t *nmp;
2157 	uint32_t packet_count;
2158 
2159 	tx_ring = Adapter->tx_ring;
2160 
2161 	/*
2162 	 * Here we don't need to protect the lists using
2163 	 * the usedlist_lock and freelist_lock, for they
2164 	 * have been protected by the chip_lock.
2165 	 */
2166 	mp = NULL;
2167 	nmp = NULL;
2168 	packet_count = 0;
2169 	packet = (p_tx_sw_packet_t)QUEUE_GET_HEAD(&tx_ring->used_list);
2170 	while (packet != NULL) {
2171 		if (packet->mp != NULL) {
2172 			/* Assemble the message chain */
2173 			if (mp == NULL) {
2174 				mp = packet->mp;
2175 				nmp = packet->mp;
2176 			} else {
2177 				nmp->b_next = packet->mp;
2178 				nmp = packet->mp;
2179 			}
2180 			/* Disconnect the message from the sw packet */
2181 			packet->mp = NULL;
2182 		}
2183 
2184 		e1000g_free_tx_swpkt(packet);
2185 		packet_count++;
2186 
2187 		packet = (p_tx_sw_packet_t)
2188 		    QUEUE_GET_NEXT(&tx_ring->used_list, &packet->Link);
2189 	}
2190 
2191 	if (mp != NULL)
2192 		freemsgchain(mp);
2193 
2194 	if (packet_count > 0) {
2195 		QUEUE_APPEND(&tx_ring->free_list, &tx_ring->used_list);
2196 		QUEUE_INIT_LIST(&tx_ring->used_list);
2197 
2198 		/* Setup TX descriptor pointers */
2199 		tx_ring->tbd_next = tx_ring->tbd_first;
2200 		tx_ring->tbd_oldest = tx_ring->tbd_first;
2201 
2202 		/* Setup our HW Tx Head & Tail descriptor pointers */
2203 		E1000_WRITE_REG(&Adapter->shared, E1000_TDH(0), 0);
2204 		E1000_WRITE_REG(&Adapter->shared, E1000_TDT(0), 0);
2205 	}
2206 }
2207 
2208 static boolean_t
2209 e1000g_tx_drain(struct e1000g *Adapter)
2210 {
2211 	int i;
2212 	boolean_t done;
2213 	e1000g_tx_ring_t *tx_ring;
2214 
2215 	tx_ring = Adapter->tx_ring;
2216 
2217 	/* Allow up to 'wsdraintime' for pending xmit's to complete. */
2218 	for (i = 0; i < TX_DRAIN_TIME; i++) {
2219 		mutex_enter(&tx_ring->usedlist_lock);
2220 		done = IS_QUEUE_EMPTY(&tx_ring->used_list);
2221 		mutex_exit(&tx_ring->usedlist_lock);
2222 
2223 		if (done)
2224 			break;
2225 
2226 		msec_delay(1);
2227 	}
2228 
2229 	return (done);
2230 }
2231 
2232 static boolean_t
2233 e1000g_rx_drain(struct e1000g *Adapter)
2234 {
2235 	int i;
2236 	boolean_t done;
2237 
2238 	/*
2239 	 * Allow up to RX_DRAIN_TIME for pending received packets to complete.
2240 	 */
2241 	for (i = 0; i < RX_DRAIN_TIME; i++) {
2242 		done = (Adapter->pending_rx_count == 0);
2243 
2244 		if (done)
2245 			break;
2246 
2247 		msec_delay(1);
2248 	}
2249 
2250 	return (done);
2251 }
2252 
2253 static boolean_t
2254 e1000g_reset_adapter(struct e1000g *Adapter)
2255 {
2256 	/* Disable and stop all the timers */
2257 	disable_watchdog_timer(Adapter);
2258 	stop_link_timer(Adapter);
2259 	stop_82547_timer(Adapter->tx_ring);
2260 
2261 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2262 
2263 	if (Adapter->stall_flag) {
2264 		Adapter->stall_flag = B_FALSE;
2265 		Adapter->reset_flag = B_TRUE;
2266 	}
2267 
2268 	if (!(Adapter->e1000g_state & E1000G_STARTED)) {
2269 		rw_exit(&Adapter->chip_lock);
2270 		return (B_TRUE);
2271 	}
2272 
2273 	e1000g_stop(Adapter, B_FALSE);
2274 
2275 	if (e1000g_start(Adapter, B_FALSE) != DDI_SUCCESS) {
2276 		rw_exit(&Adapter->chip_lock);
2277 		e1000g_log(Adapter, CE_WARN, "Reset failed");
2278 			return (B_FALSE);
2279 	}
2280 
2281 	rw_exit(&Adapter->chip_lock);
2282 
2283 	/* Enable and start the watchdog timer */
2284 	enable_watchdog_timer(Adapter);
2285 
2286 	return (B_TRUE);
2287 }
2288 
2289 boolean_t
2290 e1000g_global_reset(struct e1000g *Adapter)
2291 {
2292 	/* Disable and stop all the timers */
2293 	disable_watchdog_timer(Adapter);
2294 	stop_link_timer(Adapter);
2295 	stop_82547_timer(Adapter->tx_ring);
2296 
2297 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2298 
2299 	e1000g_stop(Adapter, B_TRUE);
2300 
2301 	Adapter->init_count = 0;
2302 
2303 	if (e1000g_start(Adapter, B_TRUE) != DDI_SUCCESS) {
2304 		rw_exit(&Adapter->chip_lock);
2305 		e1000g_log(Adapter, CE_WARN, "Reset failed");
2306 		return (B_FALSE);
2307 	}
2308 
2309 	rw_exit(&Adapter->chip_lock);
2310 
2311 	/* Enable and start the watchdog timer */
2312 	enable_watchdog_timer(Adapter);
2313 
2314 	return (B_TRUE);
2315 }
2316 
2317 /*
2318  * e1000g_intr_pciexpress - ISR for PCI Express chipsets
2319  *
2320  * This interrupt service routine is for PCI-Express adapters.
2321  * The ICR contents is valid only when the E1000_ICR_INT_ASSERTED
2322  * bit is set.
2323  */
2324 static uint_t
2325 e1000g_intr_pciexpress(caddr_t arg, caddr_t arg1 __unused)
2326 {
2327 	struct e1000g *Adapter;
2328 	uint32_t icr;
2329 
2330 	Adapter = (struct e1000g *)(uintptr_t)arg;
2331 	icr = E1000_READ_REG(&Adapter->shared, E1000_ICR);
2332 
2333 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
2334 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2335 		return (DDI_INTR_CLAIMED);
2336 	}
2337 
2338 	if (icr & E1000_ICR_INT_ASSERTED) {
2339 		/*
2340 		 * E1000_ICR_INT_ASSERTED bit was set:
2341 		 * Read(Clear) the ICR, claim this interrupt,
2342 		 * look for work to do.
2343 		 */
2344 		e1000g_intr_work(Adapter, icr);
2345 		return (DDI_INTR_CLAIMED);
2346 	} else {
2347 		/*
2348 		 * E1000_ICR_INT_ASSERTED bit was not set:
2349 		 * Don't claim this interrupt, return immediately.
2350 		 */
2351 		return (DDI_INTR_UNCLAIMED);
2352 	}
2353 }
2354 
2355 /*
2356  * e1000g_intr - ISR for PCI/PCI-X chipsets
2357  *
2358  * This interrupt service routine is for PCI/PCI-X adapters.
2359  * We check the ICR contents no matter the E1000_ICR_INT_ASSERTED
2360  * bit is set or not.
2361  */
2362 static uint_t
2363 e1000g_intr(caddr_t arg, caddr_t arg1 __unused)
2364 {
2365 	struct e1000g *Adapter;
2366 	uint32_t icr;
2367 
2368 	Adapter = (struct e1000g *)(uintptr_t)arg;
2369 	icr = E1000_READ_REG(&Adapter->shared, E1000_ICR);
2370 
2371 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
2372 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2373 		return (DDI_INTR_CLAIMED);
2374 	}
2375 
2376 	if (icr) {
2377 		/*
2378 		 * Any bit was set in ICR:
2379 		 * Read(Clear) the ICR, claim this interrupt,
2380 		 * look for work to do.
2381 		 */
2382 		e1000g_intr_work(Adapter, icr);
2383 		return (DDI_INTR_CLAIMED);
2384 	} else {
2385 		/*
2386 		 * No bit was set in ICR:
2387 		 * Don't claim this interrupt, return immediately.
2388 		 */
2389 		return (DDI_INTR_UNCLAIMED);
2390 	}
2391 }
2392 
2393 /*
2394  * e1000g_intr_work - actual processing of ISR
2395  *
2396  * Read(clear) the ICR contents and call appropriate interrupt
2397  * processing routines.
2398  */
2399 static void
2400 e1000g_intr_work(struct e1000g *Adapter, uint32_t icr)
2401 {
2402 	struct e1000_hw *hw;
2403 	hw = &Adapter->shared;
2404 	e1000g_tx_ring_t *tx_ring = Adapter->tx_ring;
2405 
2406 	Adapter->rx_pkt_cnt = 0;
2407 	Adapter->tx_pkt_cnt = 0;
2408 
2409 	rw_enter(&Adapter->chip_lock, RW_READER);
2410 
2411 	if (Adapter->e1000g_state & E1000G_SUSPENDED) {
2412 		rw_exit(&Adapter->chip_lock);
2413 		return;
2414 	}
2415 	/*
2416 	 * Here we need to check the "e1000g_state" flag within the chip_lock to
2417 	 * ensure the receive routine will not execute when the adapter is
2418 	 * being reset.
2419 	 */
2420 	if (!(Adapter->e1000g_state & E1000G_STARTED)) {
2421 		rw_exit(&Adapter->chip_lock);
2422 		return;
2423 	}
2424 
2425 	if (icr & E1000_ICR_RXT0) {
2426 		mblk_t			*mp = NULL;
2427 		mblk_t			*tail = NULL;
2428 		e1000g_rx_ring_t	*rx_ring;
2429 
2430 		rx_ring = Adapter->rx_ring;
2431 		mutex_enter(&rx_ring->rx_lock);
2432 		/*
2433 		 * Sometimes with legacy interrupts, it possible that
2434 		 * there is a single interrupt for Rx/Tx. In which
2435 		 * case, if poll flag is set, we shouldn't really
2436 		 * be doing Rx processing.
2437 		 */
2438 		if (!rx_ring->poll_flag)
2439 			mp = e1000g_receive(rx_ring, &tail,
2440 			    E1000G_CHAIN_NO_LIMIT);
2441 		mutex_exit(&rx_ring->rx_lock);
2442 		rw_exit(&Adapter->chip_lock);
2443 		if (mp != NULL)
2444 			mac_rx_ring(Adapter->mh, rx_ring->mrh,
2445 			    mp, rx_ring->ring_gen_num);
2446 	} else
2447 		rw_exit(&Adapter->chip_lock);
2448 
2449 	if (icr & E1000_ICR_TXDW) {
2450 		if (!Adapter->tx_intr_enable)
2451 			e1000g_clear_tx_interrupt(Adapter);
2452 
2453 		/* Recycle the tx descriptors */
2454 		rw_enter(&Adapter->chip_lock, RW_READER);
2455 		(void) e1000g_recycle(tx_ring);
2456 		E1000G_DEBUG_STAT(tx_ring->stat_recycle_intr);
2457 		rw_exit(&Adapter->chip_lock);
2458 
2459 		if (tx_ring->resched_needed &&
2460 		    (tx_ring->tbd_avail > DEFAULT_TX_UPDATE_THRESHOLD)) {
2461 			tx_ring->resched_needed = B_FALSE;
2462 			mac_tx_update(Adapter->mh);
2463 			E1000G_STAT(tx_ring->stat_reschedule);
2464 		}
2465 	}
2466 
2467 	/*
2468 	 * The Receive Sequence errors RXSEQ and the link status change LSC
2469 	 * are checked to detect that the cable has been pulled out. For
2470 	 * the Wiseman 2.0 silicon, the receive sequence errors interrupt
2471 	 * are an indication that cable is not connected.
2472 	 */
2473 	if ((icr & E1000_ICR_RXSEQ) ||
2474 	    (icr & E1000_ICR_LSC) ||
2475 	    (icr & E1000_ICR_GPI_EN1)) {
2476 		boolean_t link_changed;
2477 		timeout_id_t tid = 0;
2478 
2479 		stop_watchdog_timer(Adapter);
2480 
2481 		rw_enter(&Adapter->chip_lock, RW_WRITER);
2482 
2483 		/*
2484 		 * Because we got a link-status-change interrupt, force
2485 		 * e1000_check_for_link() to look at phy
2486 		 */
2487 		Adapter->shared.mac.get_link_status = B_TRUE;
2488 
2489 		/* e1000g_link_check takes care of link status change */
2490 		link_changed = e1000g_link_check(Adapter);
2491 
2492 		/* Get new phy state */
2493 		e1000g_get_phy_state(Adapter);
2494 
2495 		/*
2496 		 * If the link timer has not timed out, we'll not notify
2497 		 * the upper layer with any link state until the link is up.
2498 		 */
2499 		if (link_changed && !Adapter->link_complete) {
2500 			if (Adapter->link_state == LINK_STATE_UP) {
2501 				mutex_enter(&Adapter->link_lock);
2502 				Adapter->link_complete = B_TRUE;
2503 				tid = Adapter->link_tid;
2504 				Adapter->link_tid = 0;
2505 				mutex_exit(&Adapter->link_lock);
2506 			} else {
2507 				link_changed = B_FALSE;
2508 			}
2509 		}
2510 		rw_exit(&Adapter->chip_lock);
2511 
2512 		if (link_changed) {
2513 			if (tid != 0)
2514 				(void) untimeout(tid);
2515 
2516 			/*
2517 			 * Workaround for esb2. Data stuck in fifo on a link
2518 			 * down event. Stop receiver here and reset in watchdog.
2519 			 */
2520 			if ((Adapter->link_state == LINK_STATE_DOWN) &&
2521 			    (Adapter->shared.mac.type == e1000_80003es2lan)) {
2522 				uint32_t rctl = E1000_READ_REG(hw, E1000_RCTL);
2523 				E1000_WRITE_REG(hw, E1000_RCTL,
2524 				    rctl & ~E1000_RCTL_EN);
2525 				e1000g_log(Adapter, CE_WARN,
2526 				    "ESB2 receiver disabled");
2527 				Adapter->esb2_workaround = B_TRUE;
2528 			}
2529 			if (!Adapter->reset_flag)
2530 				mac_link_update(Adapter->mh,
2531 				    Adapter->link_state);
2532 			if (Adapter->link_state == LINK_STATE_UP)
2533 				Adapter->reset_flag = B_FALSE;
2534 		}
2535 
2536 		start_watchdog_timer(Adapter);
2537 	}
2538 }
2539 
2540 static void
2541 e1000g_init_unicst(struct e1000g *Adapter)
2542 {
2543 	struct e1000_hw *hw;
2544 	int slot;
2545 
2546 	hw = &Adapter->shared;
2547 
2548 	if (Adapter->init_count == 0) {
2549 		/* Initialize the multiple unicast addresses */
2550 		Adapter->unicst_total = min(hw->mac.rar_entry_count,
2551 		    MAX_NUM_UNICAST_ADDRESSES);
2552 
2553 		/*
2554 		 * The common code does not correctly calculate the number of
2555 		 * rar's that could be reserved by firmware for the pch_lpt and
2556 		 * pch_spt macs. The interface has one primary rar, and 11
2557 		 * additional ones. Those 11 additional ones are not always
2558 		 * available.  According to the datasheet, we need to check a
2559 		 * few of the bits set in the FWSM register. If the value is
2560 		 * zero, everything is available. If the value is 1, none of the
2561 		 * additional registers are available. If the value is 2-7, only
2562 		 * that number are available.
2563 		 */
2564 		if (hw->mac.type >= e1000_pch_lpt) {
2565 			uint32_t locked, rar;
2566 
2567 			locked = E1000_READ_REG(hw, E1000_FWSM) &
2568 			    E1000_FWSM_WLOCK_MAC_MASK;
2569 			locked >>= E1000_FWSM_WLOCK_MAC_SHIFT;
2570 			rar = 1;
2571 			if (locked == 0)
2572 				rar += 11;
2573 			else if (locked == 1)
2574 				rar += 0;
2575 			else
2576 				rar += locked;
2577 			Adapter->unicst_total = min(rar,
2578 			    MAX_NUM_UNICAST_ADDRESSES);
2579 		}
2580 
2581 		/* Workaround for an erratum of 82571 chipst */
2582 		if ((hw->mac.type == e1000_82571) &&
2583 		    (e1000_get_laa_state_82571(hw) == B_TRUE))
2584 			Adapter->unicst_total--;
2585 
2586 		/* VMware doesn't support multiple mac addresses properly */
2587 		if (hw->subsystem_vendor_id == 0x15ad)
2588 			Adapter->unicst_total = 1;
2589 
2590 		Adapter->unicst_avail = Adapter->unicst_total;
2591 
2592 		for (slot = 0; slot < Adapter->unicst_total; slot++) {
2593 			/* Clear both the flag and MAC address */
2594 			Adapter->unicst_addr[slot].reg.high = 0;
2595 			Adapter->unicst_addr[slot].reg.low = 0;
2596 		}
2597 	} else {
2598 		/* Workaround for an erratum of 82571 chipst */
2599 		if ((hw->mac.type == e1000_82571) &&
2600 		    (e1000_get_laa_state_82571(hw) == B_TRUE))
2601 			(void) e1000_rar_set(hw, hw->mac.addr, LAST_RAR_ENTRY);
2602 
2603 		/* Re-configure the RAR registers */
2604 		for (slot = 0; slot < Adapter->unicst_total; slot++)
2605 			if (Adapter->unicst_addr[slot].mac.set == 1)
2606 				(void) e1000_rar_set(hw,
2607 				    Adapter->unicst_addr[slot].mac.addr, slot);
2608 	}
2609 
2610 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK)
2611 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2612 }
2613 
2614 static int
2615 e1000g_unicst_set(struct e1000g *Adapter, const uint8_t *mac_addr,
2616     int slot)
2617 {
2618 	struct e1000_hw *hw;
2619 
2620 	hw = &Adapter->shared;
2621 
2622 	/*
2623 	 * The first revision of Wiseman silicon (rev 2.0) has an errata
2624 	 * that requires the receiver to be in reset when any of the
2625 	 * receive address registers (RAR regs) are accessed.  The first
2626 	 * rev of Wiseman silicon also requires MWI to be disabled when
2627 	 * a global reset or a receive reset is issued.  So before we
2628 	 * initialize the RARs, we check the rev of the Wiseman controller
2629 	 * and work around any necessary HW errata.
2630 	 */
2631 	if ((hw->mac.type == e1000_82542) &&
2632 	    (hw->revision_id == E1000_REVISION_2)) {
2633 		e1000_pci_clear_mwi(hw);
2634 		E1000_WRITE_REG(hw, E1000_RCTL, E1000_RCTL_RST);
2635 		msec_delay(5);
2636 	}
2637 	if (mac_addr == NULL) {
2638 		E1000_WRITE_REG_ARRAY(hw, E1000_RA, slot << 1, 0);
2639 		E1000_WRITE_FLUSH(hw);
2640 		E1000_WRITE_REG_ARRAY(hw, E1000_RA, (slot << 1) + 1, 0);
2641 		E1000_WRITE_FLUSH(hw);
2642 		/* Clear both the flag and MAC address */
2643 		Adapter->unicst_addr[slot].reg.high = 0;
2644 		Adapter->unicst_addr[slot].reg.low = 0;
2645 	} else {
2646 		bcopy(mac_addr, Adapter->unicst_addr[slot].mac.addr,
2647 		    ETHERADDRL);
2648 		(void) e1000_rar_set(hw, (uint8_t *)mac_addr, slot);
2649 		Adapter->unicst_addr[slot].mac.set = 1;
2650 	}
2651 
2652 	/* Workaround for an erratum of 82571 chipst */
2653 	if (slot == 0) {
2654 		if ((hw->mac.type == e1000_82571) &&
2655 		    (e1000_get_laa_state_82571(hw) == B_TRUE))
2656 			if (mac_addr == NULL) {
2657 				E1000_WRITE_REG_ARRAY(hw, E1000_RA,
2658 				    slot << 1, 0);
2659 				E1000_WRITE_FLUSH(hw);
2660 				E1000_WRITE_REG_ARRAY(hw, E1000_RA,
2661 				    (slot << 1) + 1, 0);
2662 				E1000_WRITE_FLUSH(hw);
2663 			} else {
2664 				(void) e1000_rar_set(hw, (uint8_t *)mac_addr,
2665 				    LAST_RAR_ENTRY);
2666 			}
2667 	}
2668 
2669 	/*
2670 	 * If we are using Wiseman rev 2.0 silicon, we will have previously
2671 	 * put the receive in reset, and disabled MWI, to work around some
2672 	 * HW errata.  Now we should take the receiver out of reset, and
2673 	 * re-enabled if MWI if it was previously enabled by the PCI BIOS.
2674 	 */
2675 	if ((hw->mac.type == e1000_82542) &&
2676 	    (hw->revision_id == E1000_REVISION_2)) {
2677 		E1000_WRITE_REG(hw, E1000_RCTL, 0);
2678 		msec_delay(1);
2679 		if (hw->bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
2680 			e1000_pci_set_mwi(hw);
2681 		e1000g_rx_setup(Adapter);
2682 	}
2683 
2684 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
2685 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2686 		return (EIO);
2687 	}
2688 
2689 	return (0);
2690 }
2691 
2692 static int
2693 multicst_add(struct e1000g *Adapter, const uint8_t *multiaddr)
2694 {
2695 	struct e1000_hw *hw = &Adapter->shared;
2696 	struct ether_addr *newtable;
2697 	size_t new_len;
2698 	size_t old_len;
2699 	int res = 0;
2700 
2701 	if ((multiaddr[0] & 01) == 0) {
2702 		res = EINVAL;
2703 		e1000g_log(Adapter, CE_WARN, "Illegal multicast address");
2704 		goto done;
2705 	}
2706 
2707 	if (Adapter->mcast_count >= Adapter->mcast_max_num) {
2708 		res = ENOENT;
2709 		e1000g_log(Adapter, CE_WARN,
2710 		    "Adapter requested more than %d mcast addresses",
2711 		    Adapter->mcast_max_num);
2712 		goto done;
2713 	}
2714 
2715 
2716 	if (Adapter->mcast_count == Adapter->mcast_alloc_count) {
2717 		old_len = Adapter->mcast_alloc_count *
2718 		    sizeof (struct ether_addr);
2719 		new_len = (Adapter->mcast_alloc_count + MCAST_ALLOC_SIZE) *
2720 		    sizeof (struct ether_addr);
2721 
2722 		newtable = kmem_alloc(new_len, KM_NOSLEEP);
2723 		if (newtable == NULL) {
2724 			res = ENOMEM;
2725 			e1000g_log(Adapter, CE_WARN,
2726 			    "Not enough memory to alloc mcast table");
2727 			goto done;
2728 		}
2729 
2730 		if (Adapter->mcast_table != NULL) {
2731 			bcopy(Adapter->mcast_table, newtable, old_len);
2732 			kmem_free(Adapter->mcast_table, old_len);
2733 		}
2734 		Adapter->mcast_alloc_count += MCAST_ALLOC_SIZE;
2735 		Adapter->mcast_table = newtable;
2736 	}
2737 
2738 	bcopy(multiaddr,
2739 	    &Adapter->mcast_table[Adapter->mcast_count], ETHERADDRL);
2740 	Adapter->mcast_count++;
2741 
2742 	/*
2743 	 * Update the MC table in the hardware
2744 	 */
2745 	e1000g_clear_interrupt(Adapter);
2746 
2747 	e1000_update_mc_addr_list(hw,
2748 	    (uint8_t *)Adapter->mcast_table, Adapter->mcast_count);
2749 
2750 	e1000g_mask_interrupt(Adapter);
2751 
2752 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
2753 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2754 		res = EIO;
2755 	}
2756 
2757 done:
2758 	return (res);
2759 }
2760 
2761 static int
2762 multicst_remove(struct e1000g *Adapter, const uint8_t *multiaddr)
2763 {
2764 	struct e1000_hw *hw = &Adapter->shared;
2765 	struct ether_addr *newtable;
2766 	size_t new_len;
2767 	size_t old_len;
2768 	unsigned i;
2769 
2770 	for (i = 0; i < Adapter->mcast_count; i++) {
2771 		if (bcmp(multiaddr, &Adapter->mcast_table[i],
2772 		    ETHERADDRL) == 0) {
2773 			for (i++; i < Adapter->mcast_count; i++) {
2774 				Adapter->mcast_table[i - 1] =
2775 				    Adapter->mcast_table[i];
2776 			}
2777 			Adapter->mcast_count--;
2778 			break;
2779 		}
2780 	}
2781 
2782 	if ((Adapter->mcast_alloc_count - Adapter->mcast_count) >
2783 	    MCAST_ALLOC_SIZE) {
2784 		old_len = Adapter->mcast_alloc_count *
2785 		    sizeof (struct ether_addr);
2786 		new_len = (Adapter->mcast_alloc_count - MCAST_ALLOC_SIZE) *
2787 		    sizeof (struct ether_addr);
2788 
2789 		newtable = kmem_alloc(new_len, KM_NOSLEEP);
2790 		if (newtable != NULL) {
2791 			bcopy(Adapter->mcast_table, newtable, new_len);
2792 			kmem_free(Adapter->mcast_table, old_len);
2793 
2794 			Adapter->mcast_alloc_count -= MCAST_ALLOC_SIZE;
2795 			Adapter->mcast_table = newtable;
2796 		}
2797 	}
2798 
2799 	/*
2800 	 * Update the MC table in the hardware
2801 	 */
2802 	e1000g_clear_interrupt(Adapter);
2803 
2804 	e1000_update_mc_addr_list(hw,
2805 	    (uint8_t *)Adapter->mcast_table, Adapter->mcast_count);
2806 
2807 	e1000g_mask_interrupt(Adapter);
2808 
2809 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
2810 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2811 		return (EIO);
2812 	}
2813 
2814 	return (0);
2815 }
2816 
2817 static void
2818 e1000g_release_multicast(struct e1000g *Adapter)
2819 {
2820 	if (Adapter->mcast_table != NULL) {
2821 		kmem_free(Adapter->mcast_table,
2822 		    Adapter->mcast_alloc_count * sizeof (struct ether_addr));
2823 		Adapter->mcast_table = NULL;
2824 	}
2825 }
2826 
2827 int
2828 e1000g_m_multicst(void *arg, boolean_t add, const uint8_t *addr)
2829 {
2830 	struct e1000g *Adapter = (struct e1000g *)arg;
2831 	int result;
2832 
2833 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2834 
2835 	if (Adapter->e1000g_state & E1000G_SUSPENDED) {
2836 		result = ECANCELED;
2837 		goto done;
2838 	}
2839 
2840 	result = (add) ? multicst_add(Adapter, addr)
2841 	    : multicst_remove(Adapter, addr);
2842 
2843 done:
2844 	rw_exit(&Adapter->chip_lock);
2845 	return (result);
2846 
2847 }
2848 
2849 int
2850 e1000g_m_promisc(void *arg, boolean_t on)
2851 {
2852 	struct e1000g *Adapter = (struct e1000g *)arg;
2853 	uint32_t rctl;
2854 
2855 	rw_enter(&Adapter->chip_lock, RW_WRITER);
2856 
2857 	if (Adapter->e1000g_state & E1000G_SUSPENDED) {
2858 		rw_exit(&Adapter->chip_lock);
2859 		return (ECANCELED);
2860 	}
2861 
2862 	rctl = E1000_READ_REG(&Adapter->shared, E1000_RCTL);
2863 
2864 	if (on)
2865 		rctl |=
2866 		    (E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_BAM);
2867 	else
2868 		rctl &= (~(E1000_RCTL_UPE | E1000_RCTL_MPE));
2869 
2870 	E1000_WRITE_REG(&Adapter->shared, E1000_RCTL, rctl);
2871 
2872 	Adapter->e1000g_promisc = on;
2873 
2874 	rw_exit(&Adapter->chip_lock);
2875 
2876 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
2877 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2878 		return (EIO);
2879 	}
2880 
2881 	return (0);
2882 }
2883 
2884 /*
2885  * Entry points to enable and disable interrupts at the granularity of
2886  * a group.
2887  * Turns the poll_mode for the whole adapter on and off to enable or
2888  * override the ring level polling control over the hardware interrupts.
2889  */
2890 static int
2891 e1000g_rx_group_intr_enable(mac_intr_handle_t arg)
2892 {
2893 	struct e1000g		*adapter = (struct e1000g *)arg;
2894 	e1000g_rx_ring_t *rx_ring = adapter->rx_ring;
2895 
2896 	/*
2897 	 * Later interrupts at the granularity of the this ring will
2898 	 * invoke mac_rx() with NULL, indicating the need for another
2899 	 * software classification.
2900 	 * We have a single ring usable per adapter now, so we only need to
2901 	 * reset the rx handle for that one.
2902 	 * When more RX rings can be used, we should update each one of them.
2903 	 */
2904 	mutex_enter(&rx_ring->rx_lock);
2905 	rx_ring->mrh = NULL;
2906 	adapter->poll_mode = B_FALSE;
2907 	mutex_exit(&rx_ring->rx_lock);
2908 	return (0);
2909 }
2910 
2911 static int
2912 e1000g_rx_group_intr_disable(mac_intr_handle_t arg)
2913 {
2914 	struct e1000g *adapter = (struct e1000g *)arg;
2915 	e1000g_rx_ring_t *rx_ring = adapter->rx_ring;
2916 
2917 	mutex_enter(&rx_ring->rx_lock);
2918 
2919 	/*
2920 	 * Later interrupts at the granularity of the this ring will
2921 	 * invoke mac_rx() with the handle for this ring;
2922 	 */
2923 	adapter->poll_mode = B_TRUE;
2924 	rx_ring->mrh = rx_ring->mrh_init;
2925 	mutex_exit(&rx_ring->rx_lock);
2926 	return (0);
2927 }
2928 
2929 /*
2930  * Entry points to enable and disable interrupts at the granularity of
2931  * a ring.
2932  * adapter poll_mode controls whether we actually proceed with hardware
2933  * interrupt toggling.
2934  */
2935 static int
2936 e1000g_rx_ring_intr_enable(mac_intr_handle_t intrh)
2937 {
2938 	e1000g_rx_ring_t	*rx_ring = (e1000g_rx_ring_t *)intrh;
2939 	struct e1000g		*adapter = rx_ring->adapter;
2940 	struct e1000_hw		*hw = &adapter->shared;
2941 	uint32_t		intr_mask;
2942 
2943 	rw_enter(&adapter->chip_lock, RW_READER);
2944 
2945 	if (adapter->e1000g_state & E1000G_SUSPENDED) {
2946 		rw_exit(&adapter->chip_lock);
2947 		return (0);
2948 	}
2949 
2950 	mutex_enter(&rx_ring->rx_lock);
2951 	rx_ring->poll_flag = 0;
2952 	mutex_exit(&rx_ring->rx_lock);
2953 
2954 	/* Rx interrupt enabling for MSI and legacy */
2955 	intr_mask = E1000_READ_REG(hw, E1000_IMS);
2956 	intr_mask |= E1000_IMS_RXT0;
2957 	E1000_WRITE_REG(hw, E1000_IMS, intr_mask);
2958 	E1000_WRITE_FLUSH(hw);
2959 
2960 	/* Trigger a Rx interrupt to check Rx ring */
2961 	E1000_WRITE_REG(hw, E1000_ICS, E1000_IMS_RXT0);
2962 	E1000_WRITE_FLUSH(hw);
2963 
2964 	rw_exit(&adapter->chip_lock);
2965 	return (0);
2966 }
2967 
2968 static int
2969 e1000g_rx_ring_intr_disable(mac_intr_handle_t intrh)
2970 {
2971 	e1000g_rx_ring_t	*rx_ring = (e1000g_rx_ring_t *)intrh;
2972 	struct e1000g		*adapter = rx_ring->adapter;
2973 	struct e1000_hw		*hw = &adapter->shared;
2974 
2975 	rw_enter(&adapter->chip_lock, RW_READER);
2976 
2977 	if (adapter->e1000g_state & E1000G_SUSPENDED) {
2978 		rw_exit(&adapter->chip_lock);
2979 		return (0);
2980 	}
2981 	mutex_enter(&rx_ring->rx_lock);
2982 	rx_ring->poll_flag = 1;
2983 	mutex_exit(&rx_ring->rx_lock);
2984 
2985 	/* Rx interrupt disabling for MSI and legacy */
2986 	E1000_WRITE_REG(hw, E1000_IMC, E1000_IMS_RXT0);
2987 	E1000_WRITE_FLUSH(hw);
2988 
2989 	rw_exit(&adapter->chip_lock);
2990 	return (0);
2991 }
2992 
2993 /*
2994  * e1000g_unicst_find - Find the slot for the specified unicast address
2995  */
2996 static int
2997 e1000g_unicst_find(struct e1000g *Adapter, const uint8_t *mac_addr)
2998 {
2999 	int slot;
3000 
3001 	for (slot = 0; slot < Adapter->unicst_total; slot++) {
3002 		if ((Adapter->unicst_addr[slot].mac.set == 1) &&
3003 		    (bcmp(Adapter->unicst_addr[slot].mac.addr,
3004 		    mac_addr, ETHERADDRL) == 0))
3005 				return (slot);
3006 	}
3007 
3008 	return (-1);
3009 }
3010 
3011 /*
3012  * Entry points to add and remove a MAC address to a ring group.
3013  * The caller takes care of adding and removing the MAC addresses
3014  * to the filter via these two routines.
3015  */
3016 
3017 static int
3018 e1000g_addmac(void *arg, const uint8_t *mac_addr)
3019 {
3020 	struct e1000g *Adapter = (struct e1000g *)arg;
3021 	int slot, err;
3022 
3023 	rw_enter(&Adapter->chip_lock, RW_WRITER);
3024 
3025 	if (Adapter->e1000g_state & E1000G_SUSPENDED) {
3026 		rw_exit(&Adapter->chip_lock);
3027 		return (ECANCELED);
3028 	}
3029 
3030 	if (e1000g_unicst_find(Adapter, mac_addr) != -1) {
3031 		/* The same address is already in slot */
3032 		rw_exit(&Adapter->chip_lock);
3033 		return (0);
3034 	}
3035 
3036 	if (Adapter->unicst_avail == 0) {
3037 		/* no slots available */
3038 		rw_exit(&Adapter->chip_lock);
3039 		return (ENOSPC);
3040 	}
3041 
3042 	/* Search for a free slot */
3043 	for (slot = 0; slot < Adapter->unicst_total; slot++) {
3044 		if (Adapter->unicst_addr[slot].mac.set == 0)
3045 			break;
3046 	}
3047 	ASSERT(slot < Adapter->unicst_total);
3048 
3049 	err = e1000g_unicst_set(Adapter, mac_addr, slot);
3050 	if (err == 0)
3051 		Adapter->unicst_avail--;
3052 
3053 	rw_exit(&Adapter->chip_lock);
3054 
3055 	return (err);
3056 }
3057 
3058 static int
3059 e1000g_remmac(void *arg, const uint8_t *mac_addr)
3060 {
3061 	struct e1000g *Adapter = (struct e1000g *)arg;
3062 	int slot, err;
3063 
3064 	rw_enter(&Adapter->chip_lock, RW_WRITER);
3065 
3066 	if (Adapter->e1000g_state & E1000G_SUSPENDED) {
3067 		rw_exit(&Adapter->chip_lock);
3068 		return (ECANCELED);
3069 	}
3070 
3071 	slot = e1000g_unicst_find(Adapter, mac_addr);
3072 	if (slot == -1) {
3073 		rw_exit(&Adapter->chip_lock);
3074 		return (EINVAL);
3075 	}
3076 
3077 	ASSERT(Adapter->unicst_addr[slot].mac.set);
3078 
3079 	/* Clear this slot */
3080 	err = e1000g_unicst_set(Adapter, NULL, slot);
3081 	if (err == 0)
3082 		Adapter->unicst_avail++;
3083 
3084 	rw_exit(&Adapter->chip_lock);
3085 
3086 	return (err);
3087 }
3088 
3089 static int
3090 e1000g_ring_start(mac_ring_driver_t rh, uint64_t mr_gen_num)
3091 {
3092 	e1000g_rx_ring_t *rx_ring = (e1000g_rx_ring_t *)rh;
3093 
3094 	mutex_enter(&rx_ring->rx_lock);
3095 	rx_ring->ring_gen_num = mr_gen_num;
3096 	mutex_exit(&rx_ring->rx_lock);
3097 	return (0);
3098 }
3099 
3100 /*
3101  * Callback funtion for MAC layer to register all rings.
3102  *
3103  * The hardware supports a single group with currently only one ring
3104  * available.
3105  * Though not offering virtualization ability per se, exposing the
3106  * group/ring still enables the polling and interrupt toggling.
3107  */
3108 /* ARGSUSED */
3109 void
3110 e1000g_fill_ring(void *arg, mac_ring_type_t rtype, const int grp_index,
3111     const int ring_index, mac_ring_info_t *infop, mac_ring_handle_t rh)
3112 {
3113 	struct e1000g *Adapter = (struct e1000g *)arg;
3114 	e1000g_rx_ring_t *rx_ring = Adapter->rx_ring;
3115 	mac_intr_t *mintr;
3116 
3117 	/*
3118 	 * We advertised only RX group/rings, so the MAC framework shouldn't
3119 	 * ask for any thing else.
3120 	 */
3121 	ASSERT(rtype == MAC_RING_TYPE_RX && grp_index == 0 && ring_index == 0);
3122 
3123 	rx_ring->mrh = rx_ring->mrh_init = rh;
3124 	infop->mri_driver = (mac_ring_driver_t)rx_ring;
3125 	infop->mri_start = e1000g_ring_start;
3126 	infop->mri_stop = NULL;
3127 	infop->mri_poll = e1000g_poll_ring;
3128 	infop->mri_stat = e1000g_rx_ring_stat;
3129 
3130 	/* Ring level interrupts */
3131 	mintr = &infop->mri_intr;
3132 	mintr->mi_handle = (mac_intr_handle_t)rx_ring;
3133 	mintr->mi_enable = e1000g_rx_ring_intr_enable;
3134 	mintr->mi_disable = e1000g_rx_ring_intr_disable;
3135 	if (Adapter->msi_enable)
3136 		mintr->mi_ddi_handle = Adapter->htable[0];
3137 }
3138 
3139 /* ARGSUSED */
3140 static void
3141 e1000g_fill_group(void *arg, mac_ring_type_t rtype, const int grp_index,
3142     mac_group_info_t *infop, mac_group_handle_t gh)
3143 {
3144 	struct e1000g *Adapter = (struct e1000g *)arg;
3145 	mac_intr_t *mintr;
3146 
3147 	/*
3148 	 * We advertised a single RX ring. Getting a request for anything else
3149 	 * signifies a bug in the MAC framework.
3150 	 */
3151 	ASSERT(rtype == MAC_RING_TYPE_RX && grp_index == 0);
3152 
3153 	Adapter->rx_group = gh;
3154 
3155 	infop->mgi_driver = (mac_group_driver_t)Adapter;
3156 	infop->mgi_start = NULL;
3157 	infop->mgi_stop = NULL;
3158 	infop->mgi_addmac = e1000g_addmac;
3159 	infop->mgi_remmac = e1000g_remmac;
3160 	infop->mgi_count = 1;
3161 
3162 	/* Group level interrupts */
3163 	mintr = &infop->mgi_intr;
3164 	mintr->mi_handle = (mac_intr_handle_t)Adapter;
3165 	mintr->mi_enable = e1000g_rx_group_intr_enable;
3166 	mintr->mi_disable = e1000g_rx_group_intr_disable;
3167 }
3168 
3169 static void
3170 e1000g_led_blink(void *arg)
3171 {
3172 	e1000g_t *e1000g = arg;
3173 
3174 	mutex_enter(&e1000g->e1000g_led_lock);
3175 	VERIFY(e1000g->e1000g_emul_blink);
3176 	if (e1000g->e1000g_emul_state) {
3177 		(void) e1000_led_on(&e1000g->shared);
3178 	} else {
3179 		(void) e1000_led_off(&e1000g->shared);
3180 	}
3181 	e1000g->e1000g_emul_state = !e1000g->e1000g_emul_state;
3182 	mutex_exit(&e1000g->e1000g_led_lock);
3183 }
3184 
3185 static int
3186 e1000g_led_set(void *arg, mac_led_mode_t mode, uint_t flags)
3187 {
3188 	e1000g_t *e1000g = arg;
3189 
3190 	if (flags != 0)
3191 		return (EINVAL);
3192 
3193 	if (mode != MAC_LED_DEFAULT &&
3194 	    mode != MAC_LED_IDENT &&
3195 	    mode != MAC_LED_OFF &&
3196 	    mode != MAC_LED_ON)
3197 		return (ENOTSUP);
3198 
3199 	mutex_enter(&e1000g->e1000g_led_lock);
3200 
3201 	if ((mode == MAC_LED_IDENT || mode == MAC_LED_OFF ||
3202 	    mode == MAC_LED_ON) &&
3203 	    !e1000g->e1000g_led_setup) {
3204 		if (e1000_setup_led(&e1000g->shared) != E1000_SUCCESS) {
3205 			mutex_exit(&e1000g->e1000g_led_lock);
3206 			return (EIO);
3207 		}
3208 
3209 		e1000g->e1000g_led_setup = B_TRUE;
3210 	}
3211 
3212 	if (mode != MAC_LED_IDENT && e1000g->e1000g_blink != NULL) {
3213 		ddi_periodic_t id = e1000g->e1000g_blink;
3214 		e1000g->e1000g_blink = NULL;
3215 		mutex_exit(&e1000g->e1000g_led_lock);
3216 		ddi_periodic_delete(id);
3217 		mutex_enter(&e1000g->e1000g_led_lock);
3218 	}
3219 
3220 	switch (mode) {
3221 	case MAC_LED_DEFAULT:
3222 		if (e1000g->e1000g_led_setup) {
3223 			if (e1000_cleanup_led(&e1000g->shared) !=
3224 			    E1000_SUCCESS) {
3225 				mutex_exit(&e1000g->e1000g_led_lock);
3226 				return (EIO);
3227 			}
3228 			e1000g->e1000g_led_setup = B_FALSE;
3229 		}
3230 		break;
3231 	case MAC_LED_IDENT:
3232 		if (e1000g->e1000g_emul_blink) {
3233 			if (e1000g->e1000g_blink != NULL)
3234 				break;
3235 
3236 			/*
3237 			 * Note, we use a 200 ms period here as that's what
3238 			 * section 10.1.3 8254x Intel Manual (PCI/PCI-X Family
3239 			 * of Gigabit Ethernet Controllers Software Developer's
3240 			 * Manual) indicates that the optional blink hardware
3241 			 * operates at.
3242 			 */
3243 			e1000g->e1000g_blink =
3244 			    ddi_periodic_add(e1000g_led_blink, e1000g,
3245 			    200ULL * (NANOSEC / MILLISEC), DDI_IPL_0);
3246 		} else if (e1000_blink_led(&e1000g->shared) != E1000_SUCCESS) {
3247 			mutex_exit(&e1000g->e1000g_led_lock);
3248 			return (EIO);
3249 		}
3250 		break;
3251 	case MAC_LED_OFF:
3252 		if (e1000_led_off(&e1000g->shared) != E1000_SUCCESS) {
3253 			mutex_exit(&e1000g->e1000g_led_lock);
3254 			return (EIO);
3255 		}
3256 		break;
3257 	case MAC_LED_ON:
3258 		if (e1000_led_on(&e1000g->shared) != E1000_SUCCESS) {
3259 			mutex_exit(&e1000g->e1000g_led_lock);
3260 			return (EIO);
3261 		}
3262 		break;
3263 	default:
3264 		mutex_exit(&e1000g->e1000g_led_lock);
3265 		return (ENOTSUP);
3266 	}
3267 
3268 	mutex_exit(&e1000g->e1000g_led_lock);
3269 	return (0);
3270 
3271 }
3272 
3273 static boolean_t
3274 e1000g_m_getcapab(void *arg, mac_capab_t cap, void *cap_data)
3275 {
3276 	struct e1000g *Adapter = (struct e1000g *)arg;
3277 
3278 	switch (cap) {
3279 	case MAC_CAPAB_HCKSUM: {
3280 		uint32_t *txflags = cap_data;
3281 
3282 		if (Adapter->tx_hcksum_enable)
3283 			*txflags = HCKSUM_IPHDRCKSUM |
3284 			    HCKSUM_INET_PARTIAL;
3285 		else
3286 			return (B_FALSE);
3287 		break;
3288 	}
3289 
3290 	case MAC_CAPAB_LSO: {
3291 		mac_capab_lso_t *cap_lso = cap_data;
3292 
3293 		if (Adapter->lso_enable) {
3294 			cap_lso->lso_flags = LSO_TX_BASIC_TCP_IPV4;
3295 			cap_lso->lso_basic_tcp_ipv4.lso_max =
3296 			    E1000_LSO_MAXLEN;
3297 		} else
3298 			return (B_FALSE);
3299 		break;
3300 	}
3301 	case MAC_CAPAB_RINGS: {
3302 		mac_capab_rings_t *cap_rings = cap_data;
3303 
3304 		/* No TX rings exposed yet */
3305 		if (cap_rings->mr_type != MAC_RING_TYPE_RX)
3306 			return (B_FALSE);
3307 
3308 		cap_rings->mr_group_type = MAC_GROUP_TYPE_STATIC;
3309 		cap_rings->mr_rnum = 1;
3310 		cap_rings->mr_gnum = 1;
3311 		cap_rings->mr_rget = e1000g_fill_ring;
3312 		cap_rings->mr_gget = e1000g_fill_group;
3313 		break;
3314 	}
3315 	case MAC_CAPAB_LED: {
3316 		mac_capab_led_t *cap_led = cap_data;
3317 
3318 		cap_led->mcl_flags = 0;
3319 		cap_led->mcl_modes = MAC_LED_DEFAULT;
3320 		if (Adapter->shared.mac.ops.blink_led != NULL &&
3321 		    Adapter->shared.mac.ops.blink_led !=
3322 		    e1000_null_ops_generic) {
3323 			cap_led->mcl_modes |= MAC_LED_IDENT;
3324 		}
3325 
3326 		if (Adapter->shared.mac.ops.led_off != NULL &&
3327 		    Adapter->shared.mac.ops.led_off !=
3328 		    e1000_null_ops_generic) {
3329 			cap_led->mcl_modes |= MAC_LED_OFF;
3330 		}
3331 
3332 		if (Adapter->shared.mac.ops.led_on != NULL &&
3333 		    Adapter->shared.mac.ops.led_on !=
3334 		    e1000_null_ops_generic) {
3335 			cap_led->mcl_modes |= MAC_LED_ON;
3336 		}
3337 
3338 		/*
3339 		 * Some hardware doesn't support blinking natively as they're
3340 		 * missing the optional blink circuit. If they have both off and
3341 		 * on then we'll emulate it ourselves.
3342 		 */
3343 		if (((cap_led->mcl_modes & MAC_LED_IDENT) == 0) &&
3344 		    ((cap_led->mcl_modes & MAC_LED_OFF) != 0) &&
3345 		    ((cap_led->mcl_modes & MAC_LED_ON) != 0)) {
3346 			cap_led->mcl_modes |= MAC_LED_IDENT;
3347 			Adapter->e1000g_emul_blink = B_TRUE;
3348 		}
3349 
3350 		cap_led->mcl_set = e1000g_led_set;
3351 		break;
3352 	}
3353 	default:
3354 		return (B_FALSE);
3355 	}
3356 	return (B_TRUE);
3357 }
3358 
3359 static boolean_t
3360 e1000g_param_locked(mac_prop_id_t pr_num)
3361 {
3362 	/*
3363 	 * All en_* parameters are locked (read-only) while
3364 	 * the device is in any sort of loopback mode ...
3365 	 */
3366 	switch (pr_num) {
3367 		case MAC_PROP_EN_1000FDX_CAP:
3368 		case MAC_PROP_EN_1000HDX_CAP:
3369 		case MAC_PROP_EN_100FDX_CAP:
3370 		case MAC_PROP_EN_100HDX_CAP:
3371 		case MAC_PROP_EN_10FDX_CAP:
3372 		case MAC_PROP_EN_10HDX_CAP:
3373 		case MAC_PROP_AUTONEG:
3374 		case MAC_PROP_FLOWCTRL:
3375 			return (B_TRUE);
3376 	}
3377 	return (B_FALSE);
3378 }
3379 
3380 /*
3381  * callback function for set/get of properties
3382  */
3383 static int
3384 e1000g_m_setprop(void *arg, const char *pr_name, mac_prop_id_t pr_num,
3385     uint_t pr_valsize, const void *pr_val)
3386 {
3387 	struct e1000g *Adapter = arg;
3388 	struct e1000_hw *hw = &Adapter->shared;
3389 	struct e1000_fc_info *fc = &Adapter->shared.fc;
3390 	int err = 0;
3391 	link_flowctrl_t flowctrl;
3392 	uint32_t cur_mtu, new_mtu;
3393 
3394 	rw_enter(&Adapter->chip_lock, RW_WRITER);
3395 
3396 	if (Adapter->e1000g_state & E1000G_SUSPENDED) {
3397 		rw_exit(&Adapter->chip_lock);
3398 		return (ECANCELED);
3399 	}
3400 
3401 	if (Adapter->loopback_mode != E1000G_LB_NONE &&
3402 	    e1000g_param_locked(pr_num)) {
3403 		/*
3404 		 * All en_* parameters are locked (read-only)
3405 		 * while the device is in any sort of loopback mode.
3406 		 */
3407 		rw_exit(&Adapter->chip_lock);
3408 		return (EBUSY);
3409 	}
3410 
3411 	switch (pr_num) {
3412 		case MAC_PROP_EN_1000FDX_CAP:
3413 			if (hw->phy.media_type != e1000_media_type_copper) {
3414 				err = ENOTSUP;
3415 				break;
3416 			}
3417 			Adapter->param_en_1000fdx = *(uint8_t *)pr_val;
3418 			Adapter->param_adv_1000fdx = *(uint8_t *)pr_val;
3419 			goto reset;
3420 		case MAC_PROP_EN_100FDX_CAP:
3421 			if (hw->phy.media_type != e1000_media_type_copper) {
3422 				err = ENOTSUP;
3423 				break;
3424 			}
3425 			Adapter->param_en_100fdx = *(uint8_t *)pr_val;
3426 			Adapter->param_adv_100fdx = *(uint8_t *)pr_val;
3427 			goto reset;
3428 		case MAC_PROP_EN_100HDX_CAP:
3429 			if (hw->phy.media_type != e1000_media_type_copper) {
3430 				err = ENOTSUP;
3431 				break;
3432 			}
3433 			Adapter->param_en_100hdx = *(uint8_t *)pr_val;
3434 			Adapter->param_adv_100hdx = *(uint8_t *)pr_val;
3435 			goto reset;
3436 		case MAC_PROP_EN_10FDX_CAP:
3437 			if (hw->phy.media_type != e1000_media_type_copper) {
3438 				err = ENOTSUP;
3439 				break;
3440 			}
3441 			Adapter->param_en_10fdx = *(uint8_t *)pr_val;
3442 			Adapter->param_adv_10fdx = *(uint8_t *)pr_val;
3443 			goto reset;
3444 		case MAC_PROP_EN_10HDX_CAP:
3445 			if (hw->phy.media_type != e1000_media_type_copper) {
3446 				err = ENOTSUP;
3447 				break;
3448 			}
3449 			Adapter->param_en_10hdx = *(uint8_t *)pr_val;
3450 			Adapter->param_adv_10hdx = *(uint8_t *)pr_val;
3451 			goto reset;
3452 		case MAC_PROP_AUTONEG:
3453 			if (hw->phy.media_type != e1000_media_type_copper) {
3454 				err = ENOTSUP;
3455 				break;
3456 			}
3457 			Adapter->param_adv_autoneg = *(uint8_t *)pr_val;
3458 			goto reset;
3459 		case MAC_PROP_FLOWCTRL:
3460 			fc->send_xon = B_TRUE;
3461 			bcopy(pr_val, &flowctrl, sizeof (flowctrl));
3462 
3463 			switch (flowctrl) {
3464 			default:
3465 				err = EINVAL;
3466 				break;
3467 			case LINK_FLOWCTRL_NONE:
3468 				fc->requested_mode = e1000_fc_none;
3469 				break;
3470 			case LINK_FLOWCTRL_RX:
3471 				fc->requested_mode = e1000_fc_rx_pause;
3472 				break;
3473 			case LINK_FLOWCTRL_TX:
3474 				fc->requested_mode = e1000_fc_tx_pause;
3475 				break;
3476 			case LINK_FLOWCTRL_BI:
3477 				fc->requested_mode = e1000_fc_full;
3478 				break;
3479 			}
3480 reset:
3481 			if (err == 0) {
3482 				/* check PCH limits & reset the link */
3483 				e1000g_pch_limits(Adapter);
3484 				if (e1000g_reset_link(Adapter) != DDI_SUCCESS)
3485 					err = EINVAL;
3486 			}
3487 			break;
3488 		case MAC_PROP_ADV_1000FDX_CAP:
3489 		case MAC_PROP_ADV_1000HDX_CAP:
3490 		case MAC_PROP_ADV_100FDX_CAP:
3491 		case MAC_PROP_ADV_100HDX_CAP:
3492 		case MAC_PROP_ADV_10FDX_CAP:
3493 		case MAC_PROP_ADV_10HDX_CAP:
3494 		case MAC_PROP_EN_1000HDX_CAP:
3495 		case MAC_PROP_STATUS:
3496 		case MAC_PROP_SPEED:
3497 		case MAC_PROP_DUPLEX:
3498 		case MAC_PROP_MEDIA:
3499 			err = ENOTSUP; /* read-only prop. Can't set this. */
3500 			break;
3501 		case MAC_PROP_MTU:
3502 			/* adapter must be stopped for an MTU change */
3503 			if (Adapter->e1000g_state & E1000G_STARTED) {
3504 				err = EBUSY;
3505 				break;
3506 			}
3507 
3508 			cur_mtu = Adapter->default_mtu;
3509 
3510 			/* get new requested MTU */
3511 			bcopy(pr_val, &new_mtu, sizeof (new_mtu));
3512 			if (new_mtu == cur_mtu) {
3513 				err = 0;
3514 				break;
3515 			}
3516 
3517 			if ((new_mtu < DEFAULT_MTU) ||
3518 			    (new_mtu > Adapter->max_mtu)) {
3519 				err = EINVAL;
3520 				break;
3521 			}
3522 
3523 			/* inform MAC framework of new MTU */
3524 			err = mac_maxsdu_update(Adapter->mh, new_mtu);
3525 
3526 			if (err == 0) {
3527 				Adapter->default_mtu = new_mtu;
3528 				Adapter->max_frame_size =
3529 				    e1000g_mtu2maxframe(new_mtu);
3530 
3531 				/*
3532 				 * check PCH limits & set buffer sizes to
3533 				 * match new MTU
3534 				 */
3535 				e1000g_pch_limits(Adapter);
3536 				e1000g_set_bufsize(Adapter);
3537 
3538 				/*
3539 				 * decrease the number of descriptors and free
3540 				 * packets for jumbo frames to reduce tx/rx
3541 				 * resource consumption
3542 				 */
3543 				if (Adapter->max_frame_size >=
3544 				    (FRAME_SIZE_UPTO_4K)) {
3545 					if (Adapter->tx_desc_num_flag == 0)
3546 						Adapter->tx_desc_num =
3547 						    DEFAULT_JUMBO_NUM_TX_DESC;
3548 
3549 					if (Adapter->rx_desc_num_flag == 0)
3550 						Adapter->rx_desc_num =
3551 						    DEFAULT_JUMBO_NUM_RX_DESC;
3552 
3553 					if (Adapter->tx_buf_num_flag == 0)
3554 						Adapter->tx_freelist_num =
3555 						    DEFAULT_JUMBO_NUM_TX_BUF;
3556 
3557 					if (Adapter->rx_buf_num_flag == 0)
3558 						Adapter->rx_freelist_limit =
3559 						    DEFAULT_JUMBO_NUM_RX_BUF;
3560 				} else {
3561 					if (Adapter->tx_desc_num_flag == 0)
3562 						Adapter->tx_desc_num =
3563 						    DEFAULT_NUM_TX_DESCRIPTOR;
3564 
3565 					if (Adapter->rx_desc_num_flag == 0)
3566 						Adapter->rx_desc_num =
3567 						    DEFAULT_NUM_RX_DESCRIPTOR;
3568 
3569 					if (Adapter->tx_buf_num_flag == 0)
3570 						Adapter->tx_freelist_num =
3571 						    DEFAULT_NUM_TX_FREELIST;
3572 
3573 					if (Adapter->rx_buf_num_flag == 0)
3574 						Adapter->rx_freelist_limit =
3575 						    DEFAULT_NUM_RX_FREELIST;
3576 				}
3577 			}
3578 			break;
3579 		case MAC_PROP_PRIVATE:
3580 			err = e1000g_set_priv_prop(Adapter, pr_name,
3581 			    pr_valsize, pr_val);
3582 			break;
3583 		default:
3584 			err = ENOTSUP;
3585 			break;
3586 	}
3587 	rw_exit(&Adapter->chip_lock);
3588 	return (err);
3589 }
3590 
3591 static int
3592 e1000g_m_getprop(void *arg, const char *pr_name, mac_prop_id_t pr_num,
3593     uint_t pr_valsize, void *pr_val)
3594 {
3595 	struct e1000g *Adapter = arg;
3596 	struct e1000_hw *hw = &Adapter->shared;
3597 	struct e1000_fc_info *fc = &Adapter->shared.fc;
3598 	int err = 0;
3599 	link_flowctrl_t flowctrl;
3600 	uint64_t tmp = 0;
3601 
3602 	switch (pr_num) {
3603 		case MAC_PROP_DUPLEX:
3604 			ASSERT(pr_valsize >= sizeof (link_duplex_t));
3605 			bcopy(&Adapter->link_duplex, pr_val,
3606 			    sizeof (link_duplex_t));
3607 			break;
3608 		case MAC_PROP_SPEED:
3609 			ASSERT(pr_valsize >= sizeof (uint64_t));
3610 			tmp = Adapter->link_speed * 1000000ull;
3611 			bcopy(&tmp, pr_val, sizeof (tmp));
3612 			break;
3613 		case MAC_PROP_AUTONEG:
3614 			*(uint8_t *)pr_val = Adapter->param_adv_autoneg;
3615 			break;
3616 		case MAC_PROP_FLOWCTRL:
3617 			ASSERT(pr_valsize >= sizeof (link_flowctrl_t));
3618 			switch (fc->current_mode) {
3619 				case e1000_fc_none:
3620 					flowctrl = LINK_FLOWCTRL_NONE;
3621 					break;
3622 				case e1000_fc_rx_pause:
3623 					flowctrl = LINK_FLOWCTRL_RX;
3624 					break;
3625 				case e1000_fc_tx_pause:
3626 					flowctrl = LINK_FLOWCTRL_TX;
3627 					break;
3628 				case e1000_fc_full:
3629 					flowctrl = LINK_FLOWCTRL_BI;
3630 					break;
3631 			}
3632 			bcopy(&flowctrl, pr_val, sizeof (flowctrl));
3633 			break;
3634 		case MAC_PROP_ADV_1000FDX_CAP:
3635 			*(uint8_t *)pr_val = Adapter->param_adv_1000fdx;
3636 			break;
3637 		case MAC_PROP_EN_1000FDX_CAP:
3638 			*(uint8_t *)pr_val = Adapter->param_en_1000fdx;
3639 			break;
3640 		case MAC_PROP_ADV_1000HDX_CAP:
3641 			*(uint8_t *)pr_val = Adapter->param_adv_1000hdx;
3642 			break;
3643 		case MAC_PROP_EN_1000HDX_CAP:
3644 			*(uint8_t *)pr_val = Adapter->param_en_1000hdx;
3645 			break;
3646 		case MAC_PROP_ADV_100FDX_CAP:
3647 			*(uint8_t *)pr_val = Adapter->param_adv_100fdx;
3648 			break;
3649 		case MAC_PROP_EN_100FDX_CAP:
3650 			*(uint8_t *)pr_val = Adapter->param_en_100fdx;
3651 			break;
3652 		case MAC_PROP_ADV_100HDX_CAP:
3653 			*(uint8_t *)pr_val = Adapter->param_adv_100hdx;
3654 			break;
3655 		case MAC_PROP_EN_100HDX_CAP:
3656 			*(uint8_t *)pr_val = Adapter->param_en_100hdx;
3657 			break;
3658 		case MAC_PROP_ADV_10FDX_CAP:
3659 			*(uint8_t *)pr_val = Adapter->param_adv_10fdx;
3660 			break;
3661 		case MAC_PROP_EN_10FDX_CAP:
3662 			*(uint8_t *)pr_val = Adapter->param_en_10fdx;
3663 			break;
3664 		case MAC_PROP_ADV_10HDX_CAP:
3665 			*(uint8_t *)pr_val = Adapter->param_adv_10hdx;
3666 			break;
3667 		case MAC_PROP_EN_10HDX_CAP:
3668 			*(uint8_t *)pr_val = Adapter->param_en_10hdx;
3669 			break;
3670 		case MAC_PROP_ADV_100T4_CAP:
3671 		case MAC_PROP_EN_100T4_CAP:
3672 			*(uint8_t *)pr_val = Adapter->param_adv_100t4;
3673 			break;
3674 		case MAC_PROP_MEDIA:
3675 			*(mac_ether_media_t *)pr_val = e1000_link_to_media(hw,
3676 			    Adapter->link_speed);
3677 			break;
3678 		case MAC_PROP_PRIVATE:
3679 			err = e1000g_get_priv_prop(Adapter, pr_name,
3680 			    pr_valsize, pr_val);
3681 			break;
3682 		default:
3683 			err = ENOTSUP;
3684 			break;
3685 	}
3686 
3687 	return (err);
3688 }
3689 
3690 static void
3691 e1000g_m_propinfo(void *arg, const char *pr_name, mac_prop_id_t pr_num,
3692     mac_prop_info_handle_t prh)
3693 {
3694 	struct e1000g *Adapter = arg;
3695 	struct e1000_hw *hw = &Adapter->shared;
3696 
3697 	switch (pr_num) {
3698 	case MAC_PROP_DUPLEX:
3699 	case MAC_PROP_SPEED:
3700 	case MAC_PROP_ADV_1000FDX_CAP:
3701 	case MAC_PROP_ADV_1000HDX_CAP:
3702 	case MAC_PROP_ADV_100FDX_CAP:
3703 	case MAC_PROP_ADV_100HDX_CAP:
3704 	case MAC_PROP_ADV_10FDX_CAP:
3705 	case MAC_PROP_ADV_10HDX_CAP:
3706 	case MAC_PROP_ADV_100T4_CAP:
3707 	case MAC_PROP_EN_100T4_CAP:
3708 		mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ);
3709 		break;
3710 
3711 	case MAC_PROP_EN_1000FDX_CAP:
3712 		if (hw->phy.media_type != e1000_media_type_copper) {
3713 			mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ);
3714 		} else {
3715 			mac_prop_info_set_default_uint8(prh,
3716 			    ((Adapter->phy_ext_status &
3717 			    IEEE_ESR_1000T_FD_CAPS) ||
3718 			    (Adapter->phy_ext_status &
3719 			    IEEE_ESR_1000X_FD_CAPS)) ? 1 : 0);
3720 		}
3721 		break;
3722 
3723 	case MAC_PROP_EN_100FDX_CAP:
3724 		if (hw->phy.media_type != e1000_media_type_copper) {
3725 			mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ);
3726 		} else {
3727 			mac_prop_info_set_default_uint8(prh,
3728 			    ((Adapter->phy_status & MII_SR_100X_FD_CAPS) ||
3729 			    (Adapter->phy_status & MII_SR_100T2_FD_CAPS))
3730 			    ? 1 : 0);
3731 		}
3732 		break;
3733 
3734 	case MAC_PROP_EN_100HDX_CAP:
3735 		if (hw->phy.media_type != e1000_media_type_copper) {
3736 			mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ);
3737 		} else {
3738 			mac_prop_info_set_default_uint8(prh,
3739 			    ((Adapter->phy_status & MII_SR_100X_HD_CAPS) ||
3740 			    (Adapter->phy_status & MII_SR_100T2_HD_CAPS))
3741 			    ? 1 : 0);
3742 		}
3743 		break;
3744 
3745 	case MAC_PROP_EN_10FDX_CAP:
3746 		if (hw->phy.media_type != e1000_media_type_copper) {
3747 			mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ);
3748 		} else {
3749 			mac_prop_info_set_default_uint8(prh,
3750 			    (Adapter->phy_status & MII_SR_10T_FD_CAPS) ? 1 : 0);
3751 		}
3752 		break;
3753 
3754 	case MAC_PROP_EN_10HDX_CAP:
3755 		if (hw->phy.media_type != e1000_media_type_copper) {
3756 			mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ);
3757 		} else {
3758 			mac_prop_info_set_default_uint8(prh,
3759 			    (Adapter->phy_status & MII_SR_10T_HD_CAPS) ? 1 : 0);
3760 		}
3761 		break;
3762 
3763 	case MAC_PROP_EN_1000HDX_CAP:
3764 		if (hw->phy.media_type != e1000_media_type_copper)
3765 			mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ);
3766 		break;
3767 
3768 	case MAC_PROP_AUTONEG:
3769 		if (hw->phy.media_type != e1000_media_type_copper) {
3770 			mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ);
3771 		} else {
3772 			mac_prop_info_set_default_uint8(prh,
3773 			    (Adapter->phy_status & MII_SR_AUTONEG_CAPS)
3774 			    ? 1 : 0);
3775 		}
3776 		break;
3777 
3778 	case MAC_PROP_FLOWCTRL:
3779 		mac_prop_info_set_default_link_flowctrl(prh, LINK_FLOWCTRL_BI);
3780 		break;
3781 
3782 	case MAC_PROP_MTU: {
3783 		struct e1000_mac_info *mac = &Adapter->shared.mac;
3784 		struct e1000_phy_info *phy = &Adapter->shared.phy;
3785 		uint32_t max;
3786 
3787 		/* some MAC types do not support jumbo frames */
3788 		if ((mac->type == e1000_ich8lan) ||
3789 		    ((mac->type == e1000_ich9lan) && (phy->type ==
3790 		    e1000_phy_ife))) {
3791 			max = DEFAULT_MTU;
3792 		} else {
3793 			max = Adapter->max_mtu;
3794 		}
3795 
3796 		mac_prop_info_set_range_uint32(prh, DEFAULT_MTU, max);
3797 		break;
3798 	}
3799 	case MAC_PROP_PRIVATE: {
3800 		char valstr[64];
3801 		int value;
3802 
3803 		if (strcmp(pr_name, "_adv_pause_cap") == 0 ||
3804 		    strcmp(pr_name, "_adv_asym_pause_cap") == 0) {
3805 			mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ);
3806 			return;
3807 		} else if (strcmp(pr_name, "_tx_bcopy_threshold") == 0) {
3808 			value = DEFAULT_TX_BCOPY_THRESHOLD;
3809 		} else if (strcmp(pr_name, "_tx_interrupt_enable") == 0) {
3810 			value = DEFAULT_TX_INTR_ENABLE;
3811 		} else if (strcmp(pr_name, "_tx_intr_delay") == 0) {
3812 			value = DEFAULT_TX_INTR_DELAY;
3813 		} else if (strcmp(pr_name, "_tx_intr_abs_delay") == 0) {
3814 			value = DEFAULT_TX_INTR_ABS_DELAY;
3815 		} else if (strcmp(pr_name, "_rx_bcopy_threshold") == 0) {
3816 			value = DEFAULT_RX_BCOPY_THRESHOLD;
3817 		} else if (strcmp(pr_name, "_max_num_rcv_packets") == 0) {
3818 			value = DEFAULT_RX_LIMIT_ON_INTR;
3819 		} else if (strcmp(pr_name, "_rx_intr_delay") == 0) {
3820 			value = DEFAULT_RX_INTR_DELAY;
3821 		} else if (strcmp(pr_name, "_rx_intr_abs_delay") == 0) {
3822 			value = DEFAULT_RX_INTR_ABS_DELAY;
3823 		} else if (strcmp(pr_name, "_intr_throttling_rate") == 0) {
3824 			value = DEFAULT_INTR_THROTTLING;
3825 		} else if (strcmp(pr_name, "_intr_adaptive") == 0) {
3826 			value = 1;
3827 		} else {
3828 			return;
3829 		}
3830 
3831 		(void) snprintf(valstr, sizeof (valstr), "%d", value);
3832 		mac_prop_info_set_default_str(prh, valstr);
3833 		break;
3834 	}
3835 	}
3836 }
3837 
3838 /* ARGSUSED2 */
3839 static int
3840 e1000g_set_priv_prop(struct e1000g *Adapter, const char *pr_name,
3841     uint_t pr_valsize, const void *pr_val)
3842 {
3843 	int err = 0;
3844 	long result;
3845 	struct e1000_hw *hw = &Adapter->shared;
3846 
3847 	if (strcmp(pr_name, "_tx_bcopy_threshold") == 0) {
3848 		if (pr_val == NULL) {
3849 			err = EINVAL;
3850 			return (err);
3851 		}
3852 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3853 		if (result < MIN_TX_BCOPY_THRESHOLD ||
3854 		    result > MAX_TX_BCOPY_THRESHOLD)
3855 			err = EINVAL;
3856 		else {
3857 			Adapter->tx_bcopy_thresh = (uint32_t)result;
3858 		}
3859 		return (err);
3860 	}
3861 	if (strcmp(pr_name, "_tx_interrupt_enable") == 0) {
3862 		if (pr_val == NULL) {
3863 			err = EINVAL;
3864 			return (err);
3865 		}
3866 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3867 		if (result < 0 || result > 1)
3868 			err = EINVAL;
3869 		else {
3870 			Adapter->tx_intr_enable = (result == 1) ?
3871 			    B_TRUE: B_FALSE;
3872 			if (Adapter->tx_intr_enable)
3873 				e1000g_mask_tx_interrupt(Adapter);
3874 			else
3875 				e1000g_clear_tx_interrupt(Adapter);
3876 			if (e1000g_check_acc_handle(
3877 			    Adapter->osdep.reg_handle) != DDI_FM_OK) {
3878 				ddi_fm_service_impact(Adapter->dip,
3879 				    DDI_SERVICE_DEGRADED);
3880 				err = EIO;
3881 			}
3882 		}
3883 		return (err);
3884 	}
3885 	if (strcmp(pr_name, "_tx_intr_delay") == 0) {
3886 		if (pr_val == NULL) {
3887 			err = EINVAL;
3888 			return (err);
3889 		}
3890 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3891 		if (result < MIN_TX_INTR_DELAY ||
3892 		    result > MAX_TX_INTR_DELAY)
3893 			err = EINVAL;
3894 		else {
3895 			Adapter->tx_intr_delay = (uint32_t)result;
3896 			E1000_WRITE_REG(hw, E1000_TIDV, Adapter->tx_intr_delay);
3897 			if (e1000g_check_acc_handle(
3898 			    Adapter->osdep.reg_handle) != DDI_FM_OK) {
3899 				ddi_fm_service_impact(Adapter->dip,
3900 				    DDI_SERVICE_DEGRADED);
3901 				err = EIO;
3902 			}
3903 		}
3904 		return (err);
3905 	}
3906 	if (strcmp(pr_name, "_tx_intr_abs_delay") == 0) {
3907 		if (pr_val == NULL) {
3908 			err = EINVAL;
3909 			return (err);
3910 		}
3911 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3912 		if (result < MIN_TX_INTR_ABS_DELAY ||
3913 		    result > MAX_TX_INTR_ABS_DELAY)
3914 			err = EINVAL;
3915 		else {
3916 			Adapter->tx_intr_abs_delay = (uint32_t)result;
3917 			E1000_WRITE_REG(hw, E1000_TADV,
3918 			    Adapter->tx_intr_abs_delay);
3919 			if (e1000g_check_acc_handle(
3920 			    Adapter->osdep.reg_handle) != DDI_FM_OK) {
3921 				ddi_fm_service_impact(Adapter->dip,
3922 				    DDI_SERVICE_DEGRADED);
3923 				err = EIO;
3924 			}
3925 		}
3926 		return (err);
3927 	}
3928 	if (strcmp(pr_name, "_rx_bcopy_threshold") == 0) {
3929 		if (pr_val == NULL) {
3930 			err = EINVAL;
3931 			return (err);
3932 		}
3933 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3934 		if (result < MIN_RX_BCOPY_THRESHOLD ||
3935 		    result > MAX_RX_BCOPY_THRESHOLD)
3936 			err = EINVAL;
3937 		else
3938 			Adapter->rx_bcopy_thresh = (uint32_t)result;
3939 		return (err);
3940 	}
3941 	if (strcmp(pr_name, "_max_num_rcv_packets") == 0) {
3942 		if (pr_val == NULL) {
3943 			err = EINVAL;
3944 			return (err);
3945 		}
3946 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3947 		if (result < MIN_RX_LIMIT_ON_INTR ||
3948 		    result > MAX_RX_LIMIT_ON_INTR)
3949 			err = EINVAL;
3950 		else
3951 			Adapter->rx_limit_onintr = (uint32_t)result;
3952 		return (err);
3953 	}
3954 	if (strcmp(pr_name, "_rx_intr_delay") == 0) {
3955 		if (pr_val == NULL) {
3956 			err = EINVAL;
3957 			return (err);
3958 		}
3959 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3960 		if (result < MIN_RX_INTR_DELAY ||
3961 		    result > MAX_RX_INTR_DELAY)
3962 			err = EINVAL;
3963 		else {
3964 			Adapter->rx_intr_delay = (uint32_t)result;
3965 			E1000_WRITE_REG(hw, E1000_RDTR, Adapter->rx_intr_delay);
3966 			if (e1000g_check_acc_handle(
3967 			    Adapter->osdep.reg_handle) != DDI_FM_OK) {
3968 				ddi_fm_service_impact(Adapter->dip,
3969 				    DDI_SERVICE_DEGRADED);
3970 				err = EIO;
3971 			}
3972 		}
3973 		return (err);
3974 	}
3975 	if (strcmp(pr_name, "_rx_intr_abs_delay") == 0) {
3976 		if (pr_val == NULL) {
3977 			err = EINVAL;
3978 			return (err);
3979 		}
3980 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3981 		if (result < MIN_RX_INTR_ABS_DELAY ||
3982 		    result > MAX_RX_INTR_ABS_DELAY)
3983 			err = EINVAL;
3984 		else {
3985 			Adapter->rx_intr_abs_delay = (uint32_t)result;
3986 			E1000_WRITE_REG(hw, E1000_RADV,
3987 			    Adapter->rx_intr_abs_delay);
3988 			if (e1000g_check_acc_handle(
3989 			    Adapter->osdep.reg_handle) != DDI_FM_OK) {
3990 				ddi_fm_service_impact(Adapter->dip,
3991 				    DDI_SERVICE_DEGRADED);
3992 				err = EIO;
3993 			}
3994 		}
3995 		return (err);
3996 	}
3997 	if (strcmp(pr_name, "_intr_throttling_rate") == 0) {
3998 		if (pr_val == NULL) {
3999 			err = EINVAL;
4000 			return (err);
4001 		}
4002 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
4003 		if (result < MIN_INTR_THROTTLING ||
4004 		    result > MAX_INTR_THROTTLING)
4005 			err = EINVAL;
4006 		else {
4007 			if (hw->mac.type >= e1000_82540) {
4008 				Adapter->intr_throttling_rate =
4009 				    (uint32_t)result;
4010 				E1000_WRITE_REG(hw, E1000_ITR,
4011 				    Adapter->intr_throttling_rate);
4012 				if (e1000g_check_acc_handle(
4013 				    Adapter->osdep.reg_handle) != DDI_FM_OK) {
4014 					ddi_fm_service_impact(Adapter->dip,
4015 					    DDI_SERVICE_DEGRADED);
4016 					err = EIO;
4017 				}
4018 			} else
4019 				err = EINVAL;
4020 		}
4021 		return (err);
4022 	}
4023 	if (strcmp(pr_name, "_intr_adaptive") == 0) {
4024 		if (pr_val == NULL) {
4025 			err = EINVAL;
4026 			return (err);
4027 		}
4028 		(void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
4029 		if (result < 0 || result > 1)
4030 			err = EINVAL;
4031 		else {
4032 			if (hw->mac.type >= e1000_82540) {
4033 				Adapter->intr_adaptive = (result == 1) ?
4034 				    B_TRUE : B_FALSE;
4035 			} else {
4036 				err = EINVAL;
4037 			}
4038 		}
4039 		return (err);
4040 	}
4041 	return (ENOTSUP);
4042 }
4043 
4044 static int
4045 e1000g_get_priv_prop(struct e1000g *Adapter, const char *pr_name,
4046     uint_t pr_valsize, void *pr_val)
4047 {
4048 	int err = ENOTSUP;
4049 	int value;
4050 
4051 	if (strcmp(pr_name, "_adv_pause_cap") == 0) {
4052 		value = Adapter->param_adv_pause;
4053 		err = 0;
4054 		goto done;
4055 	}
4056 	if (strcmp(pr_name, "_adv_asym_pause_cap") == 0) {
4057 		value = Adapter->param_adv_asym_pause;
4058 		err = 0;
4059 		goto done;
4060 	}
4061 	if (strcmp(pr_name, "_tx_bcopy_threshold") == 0) {
4062 		value = Adapter->tx_bcopy_thresh;
4063 		err = 0;
4064 		goto done;
4065 	}
4066 	if (strcmp(pr_name, "_tx_interrupt_enable") == 0) {
4067 		value = Adapter->tx_intr_enable;
4068 		err = 0;
4069 		goto done;
4070 	}
4071 	if (strcmp(pr_name, "_tx_intr_delay") == 0) {
4072 		value = Adapter->tx_intr_delay;
4073 		err = 0;
4074 		goto done;
4075 	}
4076 	if (strcmp(pr_name, "_tx_intr_abs_delay") == 0) {
4077 		value = Adapter->tx_intr_abs_delay;
4078 		err = 0;
4079 		goto done;
4080 	}
4081 	if (strcmp(pr_name, "_rx_bcopy_threshold") == 0) {
4082 		value = Adapter->rx_bcopy_thresh;
4083 		err = 0;
4084 		goto done;
4085 	}
4086 	if (strcmp(pr_name, "_max_num_rcv_packets") == 0) {
4087 		value = Adapter->rx_limit_onintr;
4088 		err = 0;
4089 		goto done;
4090 	}
4091 	if (strcmp(pr_name, "_rx_intr_delay") == 0) {
4092 		value = Adapter->rx_intr_delay;
4093 		err = 0;
4094 		goto done;
4095 	}
4096 	if (strcmp(pr_name, "_rx_intr_abs_delay") == 0) {
4097 		value = Adapter->rx_intr_abs_delay;
4098 		err = 0;
4099 		goto done;
4100 	}
4101 	if (strcmp(pr_name, "_intr_throttling_rate") == 0) {
4102 		value = Adapter->intr_throttling_rate;
4103 		err = 0;
4104 		goto done;
4105 	}
4106 	if (strcmp(pr_name, "_intr_adaptive") == 0) {
4107 		value = Adapter->intr_adaptive;
4108 		err = 0;
4109 		goto done;
4110 	}
4111 done:
4112 	if (err == 0) {
4113 		(void) snprintf(pr_val, pr_valsize, "%d", value);
4114 	}
4115 	return (err);
4116 }
4117 
4118 /*
4119  * e1000g_get_conf - get configurations set in e1000g.conf
4120  * This routine gets user-configured values out of the configuration
4121  * file e1000g.conf.
4122  *
4123  * For each configurable value, there is a minimum, a maximum, and a
4124  * default.
4125  * If user does not configure a value, use the default.
4126  * If user configures below the minimum, use the minumum.
4127  * If user configures above the maximum, use the maxumum.
4128  */
4129 static void
4130 e1000g_get_conf(struct e1000g *Adapter)
4131 {
4132 	struct e1000_hw *hw = &Adapter->shared;
4133 	boolean_t tbi_compatibility = B_FALSE;
4134 	boolean_t is_jumbo = B_FALSE;
4135 	int propval;
4136 	/*
4137 	 * decrease the number of descriptors and free packets
4138 	 * for jumbo frames to reduce tx/rx resource consumption
4139 	 */
4140 	if (Adapter->max_frame_size >= FRAME_SIZE_UPTO_4K) {
4141 		is_jumbo = B_TRUE;
4142 	}
4143 
4144 	/*
4145 	 * get each configurable property from e1000g.conf
4146 	 */
4147 
4148 	/*
4149 	 * NumTxDescriptors
4150 	 */
4151 	Adapter->tx_desc_num_flag =
4152 	    e1000g_get_prop(Adapter, "NumTxDescriptors",
4153 	    MIN_NUM_TX_DESCRIPTOR, MAX_NUM_TX_DESCRIPTOR,
4154 	    is_jumbo ? DEFAULT_JUMBO_NUM_TX_DESC
4155 	    : DEFAULT_NUM_TX_DESCRIPTOR, &propval);
4156 	Adapter->tx_desc_num = propval;
4157 
4158 	/*
4159 	 * NumRxDescriptors
4160 	 */
4161 	Adapter->rx_desc_num_flag =
4162 	    e1000g_get_prop(Adapter, "NumRxDescriptors",
4163 	    MIN_NUM_RX_DESCRIPTOR, MAX_NUM_RX_DESCRIPTOR,
4164 	    is_jumbo ? DEFAULT_JUMBO_NUM_RX_DESC
4165 	    : DEFAULT_NUM_RX_DESCRIPTOR, &propval);
4166 	Adapter->rx_desc_num = propval;
4167 
4168 	/*
4169 	 * NumRxFreeList
4170 	 */
4171 	Adapter->rx_buf_num_flag =
4172 	    e1000g_get_prop(Adapter, "NumRxFreeList",
4173 	    MIN_NUM_RX_FREELIST, MAX_NUM_RX_FREELIST,
4174 	    is_jumbo ? DEFAULT_JUMBO_NUM_RX_BUF
4175 	    : DEFAULT_NUM_RX_FREELIST, &propval);
4176 	Adapter->rx_freelist_limit = propval;
4177 
4178 	/*
4179 	 * NumTxPacketList
4180 	 */
4181 	Adapter->tx_buf_num_flag =
4182 	    e1000g_get_prop(Adapter, "NumTxPacketList",
4183 	    MIN_NUM_TX_FREELIST, MAX_NUM_TX_FREELIST,
4184 	    is_jumbo ? DEFAULT_JUMBO_NUM_TX_BUF
4185 	    : DEFAULT_NUM_TX_FREELIST, &propval);
4186 	Adapter->tx_freelist_num = propval;
4187 
4188 	/*
4189 	 * FlowControl
4190 	 */
4191 	hw->fc.send_xon = B_TRUE;
4192 	(void) e1000g_get_prop(Adapter, "FlowControl",
4193 	    e1000_fc_none, 4, DEFAULT_FLOW_CONTROL, &propval);
4194 	hw->fc.requested_mode = propval;
4195 	/* 4 is the setting that says "let the eeprom decide" */
4196 	if (hw->fc.requested_mode == 4)
4197 		hw->fc.requested_mode = e1000_fc_default;
4198 
4199 	/*
4200 	 * Max Num Receive Packets on Interrupt
4201 	 */
4202 	(void) e1000g_get_prop(Adapter, "MaxNumReceivePackets",
4203 	    MIN_RX_LIMIT_ON_INTR, MAX_RX_LIMIT_ON_INTR,
4204 	    DEFAULT_RX_LIMIT_ON_INTR, &propval);
4205 	Adapter->rx_limit_onintr = propval;
4206 
4207 	/*
4208 	 * PHY master slave setting
4209 	 */
4210 	(void) e1000g_get_prop(Adapter, "SetMasterSlave",
4211 	    e1000_ms_hw_default, e1000_ms_auto,
4212 	    e1000_ms_hw_default, &propval);
4213 	hw->phy.ms_type = propval;
4214 
4215 	/*
4216 	 * Parameter which controls TBI mode workaround, which is only
4217 	 * needed on certain switches such as Cisco 6500/Foundry
4218 	 */
4219 	(void) e1000g_get_prop(Adapter, "TbiCompatibilityEnable",
4220 	    0, 1, DEFAULT_TBI_COMPAT_ENABLE, &propval);
4221 	tbi_compatibility = (propval == 1);
4222 	e1000_set_tbi_compatibility_82543(hw, tbi_compatibility);
4223 
4224 	/*
4225 	 * MSI Enable
4226 	 */
4227 	(void) e1000g_get_prop(Adapter, "MSIEnable",
4228 	    0, 1, DEFAULT_MSI_ENABLE, &propval);
4229 	Adapter->msi_enable = (propval == 1);
4230 
4231 	/*
4232 	 * Interrupt Throttling Rate
4233 	 */
4234 	(void) e1000g_get_prop(Adapter, "intr_throttling_rate",
4235 	    MIN_INTR_THROTTLING, MAX_INTR_THROTTLING,
4236 	    DEFAULT_INTR_THROTTLING, &propval);
4237 	Adapter->intr_throttling_rate = propval;
4238 
4239 	/*
4240 	 * Adaptive Interrupt Blanking Enable/Disable
4241 	 * It is enabled by default
4242 	 */
4243 	(void) e1000g_get_prop(Adapter, "intr_adaptive", 0, 1, 1,
4244 	    &propval);
4245 	Adapter->intr_adaptive = (propval == 1);
4246 
4247 	/*
4248 	 * Hardware checksum enable/disable parameter
4249 	 */
4250 	(void) e1000g_get_prop(Adapter, "tx_hcksum_enable",
4251 	    0, 1, DEFAULT_TX_HCKSUM_ENABLE, &propval);
4252 	Adapter->tx_hcksum_enable = (propval == 1);
4253 	/*
4254 	 * Checksum on/off selection via global parameters.
4255 	 *
4256 	 * If the chip is flagged as not capable of (correctly)
4257 	 * handling checksumming, we don't enable it on either
4258 	 * Rx or Tx side.  Otherwise, we take this chip's settings
4259 	 * from the patchable global defaults.
4260 	 *
4261 	 * We advertise our capabilities only if TX offload is
4262 	 * enabled.  On receive, the stack will accept checksummed
4263 	 * packets anyway, even if we haven't said we can deliver
4264 	 * them.
4265 	 */
4266 	switch (hw->mac.type) {
4267 		case e1000_82540:
4268 		case e1000_82544:
4269 		case e1000_82545:
4270 		case e1000_82545_rev_3:
4271 		case e1000_82546:
4272 		case e1000_82546_rev_3:
4273 		case e1000_82571:
4274 		case e1000_82572:
4275 		case e1000_82573:
4276 		case e1000_80003es2lan:
4277 			break;
4278 		/*
4279 		 * For the following Intel PRO/1000 chipsets, we have not
4280 		 * tested the hardware checksum offload capability, so we
4281 		 * disable the capability for them.
4282 		 *	e1000_82542,
4283 		 *	e1000_82543,
4284 		 *	e1000_82541,
4285 		 *	e1000_82541_rev_2,
4286 		 *	e1000_82547,
4287 		 *	e1000_82547_rev_2,
4288 		 */
4289 		default:
4290 			Adapter->tx_hcksum_enable = B_FALSE;
4291 	}
4292 
4293 	/*
4294 	 * Large Send Offloading(LSO) Enable/Disable
4295 	 * If the tx hardware checksum is not enabled, LSO should be
4296 	 * disabled.
4297 	 */
4298 	(void) e1000g_get_prop(Adapter, "lso_enable",
4299 	    0, 1, DEFAULT_LSO_ENABLE, &propval);
4300 	Adapter->lso_enable = (propval == 1);
4301 
4302 	switch (hw->mac.type) {
4303 		case e1000_82546:
4304 		case e1000_82546_rev_3:
4305 			if (Adapter->lso_enable)
4306 				Adapter->lso_premature_issue = B_TRUE;
4307 			/* FALLTHRU */
4308 		case e1000_82571:
4309 		case e1000_82572:
4310 		case e1000_82573:
4311 		case e1000_80003es2lan:
4312 			break;
4313 		default:
4314 			Adapter->lso_enable = B_FALSE;
4315 	}
4316 
4317 	if (!Adapter->tx_hcksum_enable) {
4318 		Adapter->lso_premature_issue = B_FALSE;
4319 		Adapter->lso_enable = B_FALSE;
4320 	}
4321 
4322 	/*
4323 	 * If mem_workaround_82546 is enabled, the rx buffer allocated by
4324 	 * e1000_82545, e1000_82546 and e1000_82546_rev_3
4325 	 * will not cross 64k boundary.
4326 	 */
4327 	(void) e1000g_get_prop(Adapter, "mem_workaround_82546",
4328 	    0, 1, DEFAULT_MEM_WORKAROUND_82546, &propval);
4329 	Adapter->mem_workaround_82546 = (propval == 1);
4330 
4331 	/*
4332 	 * Max number of multicast addresses
4333 	 */
4334 	(void) e1000g_get_prop(Adapter, "mcast_max_num",
4335 	    MIN_MCAST_NUM, MAX_MCAST_NUM, hw->mac.mta_reg_count * 32,
4336 	    &propval);
4337 	Adapter->mcast_max_num = propval;
4338 }
4339 
4340 /*
4341  * e1000g_get_prop - routine to read properties
4342  *
4343  * Get a user-configure property value out of the configuration
4344  * file e1000g.conf.
4345  *
4346  * Caller provides name of the property, a default value, a minimum
4347  * value, a maximum value and a pointer to the returned property
4348  * value.
4349  *
4350  * Return B_TRUE if the configured value of the property is not a default
4351  * value, otherwise return B_FALSE.
4352  */
4353 static boolean_t
4354 e1000g_get_prop(struct e1000g *Adapter,	/* point to per-adapter structure */
4355     char *propname,		/* name of the property */
4356     int minval,			/* minimum acceptable value */
4357     int maxval,			/* maximim acceptable value */
4358     int defval,			/* default value */
4359     int *propvalue)		/* property value return to caller */
4360 {
4361 	int propval;		/* value returned for requested property */
4362 	int *props;		/* point to array of properties returned */
4363 	uint_t nprops;		/* number of property value returned */
4364 	boolean_t ret = B_TRUE;
4365 
4366 	/*
4367 	 * get the array of properties from the config file
4368 	 */
4369 	if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, Adapter->dip,
4370 	    DDI_PROP_DONTPASS, propname, &props, &nprops) == DDI_PROP_SUCCESS) {
4371 		/* got some properties, test if we got enough */
4372 		if (Adapter->instance < nprops) {
4373 			propval = props[Adapter->instance];
4374 		} else {
4375 			/* not enough properties configured */
4376 			propval = defval;
4377 			E1000G_DEBUGLOG_2(Adapter, E1000G_INFO_LEVEL,
4378 			    "Not Enough %s values found in e1000g.conf"
4379 			    " - set to %d\n",
4380 			    propname, propval);
4381 			ret = B_FALSE;
4382 		}
4383 
4384 		/* free memory allocated for properties */
4385 		ddi_prop_free(props);
4386 
4387 	} else {
4388 		propval = defval;
4389 		ret = B_FALSE;
4390 	}
4391 
4392 	/*
4393 	 * enforce limits
4394 	 */
4395 	if (propval > maxval) {
4396 		propval = maxval;
4397 		E1000G_DEBUGLOG_2(Adapter, E1000G_INFO_LEVEL,
4398 		    "Too High %s value in e1000g.conf - set to %d\n",
4399 		    propname, propval);
4400 	}
4401 
4402 	if (propval < minval) {
4403 		propval = minval;
4404 		E1000G_DEBUGLOG_2(Adapter, E1000G_INFO_LEVEL,
4405 		    "Too Low %s value in e1000g.conf - set to %d\n",
4406 		    propname, propval);
4407 	}
4408 
4409 	*propvalue = propval;
4410 	return (ret);
4411 }
4412 
4413 static boolean_t
4414 e1000g_link_check(struct e1000g *Adapter)
4415 {
4416 	uint16_t speed, duplex, phydata;
4417 	boolean_t link_changed = B_FALSE;
4418 	struct e1000_hw *hw;
4419 	uint32_t reg_tarc;
4420 
4421 	hw = &Adapter->shared;
4422 
4423 	if (e1000g_link_up(Adapter)) {
4424 		/*
4425 		 * The Link is up, check whether it was marked as down earlier
4426 		 */
4427 		if (Adapter->link_state != LINK_STATE_UP) {
4428 			(void) e1000_get_speed_and_duplex(hw, &speed, &duplex);
4429 			Adapter->link_speed = speed;
4430 			Adapter->link_duplex = duplex;
4431 			Adapter->link_state = LINK_STATE_UP;
4432 			link_changed = B_TRUE;
4433 
4434 			if (Adapter->link_speed == SPEED_1000)
4435 				Adapter->stall_threshold = TX_STALL_TIME_2S;
4436 			else
4437 				Adapter->stall_threshold = TX_STALL_TIME_8S;
4438 
4439 			Adapter->tx_link_down_timeout = 0;
4440 
4441 			if ((hw->mac.type == e1000_82571) ||
4442 			    (hw->mac.type == e1000_82572)) {
4443 				reg_tarc = E1000_READ_REG(hw, E1000_TARC(0));
4444 				if (speed == SPEED_1000)
4445 					reg_tarc |= (1 << 21);
4446 				else
4447 					reg_tarc &= ~(1 << 21);
4448 				E1000_WRITE_REG(hw, E1000_TARC(0), reg_tarc);
4449 			}
4450 		}
4451 		Adapter->smartspeed = 0;
4452 	} else {
4453 		if (Adapter->link_state != LINK_STATE_DOWN) {
4454 			Adapter->link_speed = 0;
4455 			Adapter->link_duplex = 0;
4456 			Adapter->link_state = LINK_STATE_DOWN;
4457 			link_changed = B_TRUE;
4458 
4459 			/*
4460 			 * SmartSpeed workaround for Tabor/TanaX, When the
4461 			 * driver loses link disable auto master/slave
4462 			 * resolution.
4463 			 */
4464 			if (hw->phy.type == e1000_phy_igp) {
4465 				(void) e1000_read_phy_reg(hw,
4466 				    PHY_1000T_CTRL, &phydata);
4467 				phydata |= CR_1000T_MS_ENABLE;
4468 				(void) e1000_write_phy_reg(hw,
4469 				    PHY_1000T_CTRL, phydata);
4470 			}
4471 		} else {
4472 			e1000g_smartspeed(Adapter);
4473 		}
4474 
4475 		if (Adapter->e1000g_state & E1000G_STARTED) {
4476 			if (Adapter->tx_link_down_timeout <
4477 			    MAX_TX_LINK_DOWN_TIMEOUT) {
4478 				Adapter->tx_link_down_timeout++;
4479 			} else if (Adapter->tx_link_down_timeout ==
4480 			    MAX_TX_LINK_DOWN_TIMEOUT) {
4481 				e1000g_tx_clean(Adapter);
4482 				Adapter->tx_link_down_timeout++;
4483 			}
4484 		}
4485 	}
4486 
4487 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK)
4488 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
4489 
4490 	return (link_changed);
4491 }
4492 
4493 /*
4494  * e1000g_reset_link - Using the link properties to setup the link
4495  */
4496 int
4497 e1000g_reset_link(struct e1000g *Adapter)
4498 {
4499 	struct e1000_mac_info *mac;
4500 	struct e1000_phy_info *phy;
4501 	struct e1000_hw *hw;
4502 	boolean_t invalid;
4503 
4504 	mac = &Adapter->shared.mac;
4505 	phy = &Adapter->shared.phy;
4506 	hw = &Adapter->shared;
4507 	invalid = B_FALSE;
4508 
4509 	if (hw->phy.media_type != e1000_media_type_copper)
4510 		goto out;
4511 
4512 	if (Adapter->param_adv_autoneg == 1) {
4513 		mac->autoneg = B_TRUE;
4514 		phy->autoneg_advertised = 0;
4515 
4516 		/*
4517 		 * 1000hdx is not supported for autonegotiation
4518 		 */
4519 		if (Adapter->param_adv_1000fdx == 1)
4520 			phy->autoneg_advertised |= ADVERTISE_1000_FULL;
4521 
4522 		if (Adapter->param_adv_100fdx == 1)
4523 			phy->autoneg_advertised |= ADVERTISE_100_FULL;
4524 
4525 		if (Adapter->param_adv_100hdx == 1)
4526 			phy->autoneg_advertised |= ADVERTISE_100_HALF;
4527 
4528 		if (Adapter->param_adv_10fdx == 1)
4529 			phy->autoneg_advertised |= ADVERTISE_10_FULL;
4530 
4531 		if (Adapter->param_adv_10hdx == 1)
4532 			phy->autoneg_advertised |= ADVERTISE_10_HALF;
4533 
4534 		if (phy->autoneg_advertised == 0)
4535 			invalid = B_TRUE;
4536 	} else {
4537 		mac->autoneg = B_FALSE;
4538 
4539 		/*
4540 		 * For Intel copper cards, 1000fdx and 1000hdx are not
4541 		 * supported for forced link
4542 		 */
4543 		if (Adapter->param_adv_100fdx == 1)
4544 			mac->forced_speed_duplex = ADVERTISE_100_FULL;
4545 		else if (Adapter->param_adv_100hdx == 1)
4546 			mac->forced_speed_duplex = ADVERTISE_100_HALF;
4547 		else if (Adapter->param_adv_10fdx == 1)
4548 			mac->forced_speed_duplex = ADVERTISE_10_FULL;
4549 		else if (Adapter->param_adv_10hdx == 1)
4550 			mac->forced_speed_duplex = ADVERTISE_10_HALF;
4551 		else
4552 			invalid = B_TRUE;
4553 
4554 	}
4555 
4556 	if (invalid) {
4557 		e1000g_log(Adapter, CE_WARN,
4558 		    "Invalid link settings. Setup link to "
4559 		    "support autonegotiation with all link capabilities.");
4560 		mac->autoneg = B_TRUE;
4561 		phy->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
4562 	}
4563 
4564 out:
4565 	return (e1000_setup_link(&Adapter->shared));
4566 }
4567 
4568 static void
4569 e1000g_timer_tx_resched(struct e1000g *Adapter)
4570 {
4571 	e1000g_tx_ring_t *tx_ring = Adapter->tx_ring;
4572 
4573 	rw_enter(&Adapter->chip_lock, RW_READER);
4574 
4575 	if (tx_ring->resched_needed &&
4576 	    ((ddi_get_lbolt() - tx_ring->resched_timestamp) >
4577 	    drv_usectohz(1000000)) &&
4578 	    (Adapter->e1000g_state & E1000G_STARTED) &&
4579 	    (tx_ring->tbd_avail >= DEFAULT_TX_NO_RESOURCE)) {
4580 		tx_ring->resched_needed = B_FALSE;
4581 		mac_tx_update(Adapter->mh);
4582 		E1000G_STAT(tx_ring->stat_reschedule);
4583 		E1000G_STAT(tx_ring->stat_timer_reschedule);
4584 	}
4585 
4586 	rw_exit(&Adapter->chip_lock);
4587 }
4588 
4589 static void
4590 e1000g_local_timer(void *ws)
4591 {
4592 	struct e1000g *Adapter = (struct e1000g *)ws;
4593 	struct e1000_hw *hw;
4594 	e1000g_ether_addr_t ether_addr;
4595 	boolean_t link_changed;
4596 
4597 	hw = &Adapter->shared;
4598 
4599 	if (Adapter->e1000g_state & E1000G_ERROR) {
4600 		rw_enter(&Adapter->chip_lock, RW_WRITER);
4601 		Adapter->e1000g_state &= ~E1000G_ERROR;
4602 		rw_exit(&Adapter->chip_lock);
4603 
4604 		Adapter->reset_count++;
4605 		if (e1000g_global_reset(Adapter)) {
4606 			ddi_fm_service_impact(Adapter->dip,
4607 			    DDI_SERVICE_RESTORED);
4608 			e1000g_timer_tx_resched(Adapter);
4609 		} else
4610 			ddi_fm_service_impact(Adapter->dip,
4611 			    DDI_SERVICE_LOST);
4612 		return;
4613 	}
4614 
4615 	if (e1000g_stall_check(Adapter)) {
4616 		E1000G_DEBUGLOG_0(Adapter, E1000G_INFO_LEVEL,
4617 		    "Tx stall detected. Activate automatic recovery.\n");
4618 		e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_STALL);
4619 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
4620 		Adapter->reset_count++;
4621 		if (e1000g_reset_adapter(Adapter)) {
4622 			ddi_fm_service_impact(Adapter->dip,
4623 			    DDI_SERVICE_RESTORED);
4624 			e1000g_timer_tx_resched(Adapter);
4625 		}
4626 		return;
4627 	}
4628 
4629 	link_changed = B_FALSE;
4630 	rw_enter(&Adapter->chip_lock, RW_READER);
4631 	if (Adapter->link_complete)
4632 		link_changed = e1000g_link_check(Adapter);
4633 	rw_exit(&Adapter->chip_lock);
4634 
4635 	if (link_changed) {
4636 		if (!Adapter->reset_flag &&
4637 		    (Adapter->e1000g_state & E1000G_STARTED) &&
4638 		    !(Adapter->e1000g_state & E1000G_SUSPENDED))
4639 			mac_link_update(Adapter->mh, Adapter->link_state);
4640 		if (Adapter->link_state == LINK_STATE_UP)
4641 			Adapter->reset_flag = B_FALSE;
4642 	}
4643 	/*
4644 	 * Workaround for esb2. Data stuck in fifo on a link
4645 	 * down event. Reset the adapter to recover it.
4646 	 */
4647 	if (Adapter->esb2_workaround) {
4648 		Adapter->esb2_workaround = B_FALSE;
4649 		(void) e1000g_reset_adapter(Adapter);
4650 		return;
4651 	}
4652 
4653 	/*
4654 	 * With 82571 controllers, any locally administered address will
4655 	 * be overwritten when there is a reset on the other port.
4656 	 * Detect this circumstance and correct it.
4657 	 */
4658 	if ((hw->mac.type == e1000_82571) &&
4659 	    (e1000_get_laa_state_82571(hw) == B_TRUE)) {
4660 		ether_addr.reg.low = E1000_READ_REG_ARRAY(hw, E1000_RA, 0);
4661 		ether_addr.reg.high = E1000_READ_REG_ARRAY(hw, E1000_RA, 1);
4662 
4663 		ether_addr.reg.low = ntohl(ether_addr.reg.low);
4664 		ether_addr.reg.high = ntohl(ether_addr.reg.high);
4665 
4666 		if ((ether_addr.mac.addr[5] != hw->mac.addr[0]) ||
4667 		    (ether_addr.mac.addr[4] != hw->mac.addr[1]) ||
4668 		    (ether_addr.mac.addr[3] != hw->mac.addr[2]) ||
4669 		    (ether_addr.mac.addr[2] != hw->mac.addr[3]) ||
4670 		    (ether_addr.mac.addr[1] != hw->mac.addr[4]) ||
4671 		    (ether_addr.mac.addr[0] != hw->mac.addr[5])) {
4672 			(void) e1000_rar_set(hw, hw->mac.addr, 0);
4673 		}
4674 	}
4675 
4676 	/*
4677 	 * Long TTL workaround for 82541/82547
4678 	 */
4679 	(void) e1000_igp_ttl_workaround_82547(hw);
4680 
4681 	/*
4682 	 * Check for Adaptive IFS settings If there are lots of collisions
4683 	 * change the value in steps...
4684 	 * These properties should only be set for 10/100
4685 	 */
4686 	if ((hw->phy.media_type == e1000_media_type_copper) &&
4687 	    ((Adapter->link_speed == SPEED_100) ||
4688 	    (Adapter->link_speed == SPEED_10))) {
4689 		e1000_update_adaptive(hw);
4690 	}
4691 	/*
4692 	 * Set Timer Interrupts
4693 	 */
4694 	E1000_WRITE_REG(hw, E1000_ICS, E1000_IMS_RXT0);
4695 
4696 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK)
4697 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
4698 	else
4699 		e1000g_timer_tx_resched(Adapter);
4700 
4701 	restart_watchdog_timer(Adapter);
4702 }
4703 
4704 /*
4705  * The function e1000g_link_timer() is called when the timer for link setup
4706  * is expired, which indicates the completion of the link setup. The link
4707  * state will not be updated until the link setup is completed. And the
4708  * link state will not be sent to the upper layer through mac_link_update()
4709  * in this function. It will be updated in the local timer routine or the
4710  * interrupt service routine after the interface is started (plumbed).
4711  */
4712 static void
4713 e1000g_link_timer(void *arg)
4714 {
4715 	struct e1000g *Adapter = (struct e1000g *)arg;
4716 
4717 	mutex_enter(&Adapter->link_lock);
4718 	Adapter->link_complete = B_TRUE;
4719 	Adapter->link_tid = 0;
4720 	mutex_exit(&Adapter->link_lock);
4721 }
4722 
4723 /*
4724  * e1000g_force_speed_duplex - read forced speed/duplex out of e1000g.conf
4725  *
4726  * This function read the forced speed and duplex for 10/100 Mbps speeds
4727  * and also for 1000 Mbps speeds from the e1000g.conf file
4728  */
4729 static void
4730 e1000g_force_speed_duplex(struct e1000g *Adapter)
4731 {
4732 	int forced;
4733 	int propval;
4734 	struct e1000_mac_info *mac = &Adapter->shared.mac;
4735 	struct e1000_phy_info *phy = &Adapter->shared.phy;
4736 
4737 	/*
4738 	 * get value out of config file
4739 	 */
4740 	(void) e1000g_get_prop(Adapter, "ForceSpeedDuplex",
4741 	    GDIAG_10_HALF, GDIAG_ANY, GDIAG_ANY, &forced);
4742 
4743 	switch (forced) {
4744 	case GDIAG_10_HALF:
4745 		/*
4746 		 * Disable Auto Negotiation
4747 		 */
4748 		mac->autoneg = B_FALSE;
4749 		mac->forced_speed_duplex = ADVERTISE_10_HALF;
4750 		break;
4751 	case GDIAG_10_FULL:
4752 		/*
4753 		 * Disable Auto Negotiation
4754 		 */
4755 		mac->autoneg = B_FALSE;
4756 		mac->forced_speed_duplex = ADVERTISE_10_FULL;
4757 		break;
4758 	case GDIAG_100_HALF:
4759 		/*
4760 		 * Disable Auto Negotiation
4761 		 */
4762 		mac->autoneg = B_FALSE;
4763 		mac->forced_speed_duplex = ADVERTISE_100_HALF;
4764 		break;
4765 	case GDIAG_100_FULL:
4766 		/*
4767 		 * Disable Auto Negotiation
4768 		 */
4769 		mac->autoneg = B_FALSE;
4770 		mac->forced_speed_duplex = ADVERTISE_100_FULL;
4771 		break;
4772 	case GDIAG_1000_FULL:
4773 		/*
4774 		 * The gigabit spec requires autonegotiation.  Therefore,
4775 		 * when the user wants to force the speed to 1000Mbps, we
4776 		 * enable AutoNeg, but only allow the harware to advertise
4777 		 * 1000Mbps.  This is different from 10/100 operation, where
4778 		 * we are allowed to link without any negotiation.
4779 		 */
4780 		mac->autoneg = B_TRUE;
4781 		phy->autoneg_advertised = ADVERTISE_1000_FULL;
4782 		break;
4783 	default:	/* obey the setting of AutoNegAdvertised */
4784 		mac->autoneg = B_TRUE;
4785 		(void) e1000g_get_prop(Adapter, "AutoNegAdvertised",
4786 		    0, AUTONEG_ADVERTISE_SPEED_DEFAULT,
4787 		    AUTONEG_ADVERTISE_SPEED_DEFAULT, &propval);
4788 		phy->autoneg_advertised = (uint16_t)propval;
4789 		break;
4790 	}	/* switch */
4791 }
4792 
4793 /*
4794  * e1000g_get_max_frame_size - get jumbo frame setting from e1000g.conf
4795  *
4796  * This function reads MaxFrameSize from e1000g.conf
4797  */
4798 static void
4799 e1000g_get_max_frame_size(struct e1000g *Adapter)
4800 {
4801 	int max_frame;
4802 
4803 	/*
4804 	 * get value out of config file
4805 	 */
4806 	(void) e1000g_get_prop(Adapter, "MaxFrameSize", 0, 3, 0,
4807 	    &max_frame);
4808 
4809 	switch (max_frame) {
4810 	case 0:
4811 		Adapter->default_mtu = ETHERMTU;
4812 		break;
4813 	case 1:
4814 		Adapter->default_mtu = FRAME_SIZE_UPTO_4K -
4815 		    sizeof (struct ether_vlan_header) - ETHERFCSL;
4816 		break;
4817 	case 2:
4818 		Adapter->default_mtu = FRAME_SIZE_UPTO_8K -
4819 		    sizeof (struct ether_vlan_header) - ETHERFCSL;
4820 		break;
4821 	case 3:
4822 		Adapter->default_mtu = FRAME_SIZE_UPTO_16K -
4823 		    sizeof (struct ether_vlan_header) - ETHERFCSL;
4824 		break;
4825 	default:
4826 		Adapter->default_mtu = ETHERMTU;
4827 		break;
4828 	}	/* switch */
4829 
4830 	/*
4831 	 * If the user configed MTU is larger than the deivce's maximum MTU,
4832 	 * the MTU is set to the deivce's maximum value.
4833 	 */
4834 	if (Adapter->default_mtu > Adapter->max_mtu)
4835 		Adapter->default_mtu = Adapter->max_mtu;
4836 
4837 	Adapter->max_frame_size = e1000g_mtu2maxframe(Adapter->default_mtu);
4838 }
4839 
4840 /*
4841  * e1000g_pch_limits - Apply limits of the PCH silicon type
4842  *
4843  * At any frame size larger than the ethernet default,
4844  * prevent linking at 10/100 speeds.
4845  */
4846 static void
4847 e1000g_pch_limits(struct e1000g *Adapter)
4848 {
4849 	struct e1000_hw *hw = &Adapter->shared;
4850 
4851 	/* only applies to PCH silicon type */
4852 	if (hw->mac.type != e1000_pchlan && hw->mac.type != e1000_pch2lan)
4853 		return;
4854 
4855 	/* only applies to frames larger than ethernet default */
4856 	if (Adapter->max_frame_size > DEFAULT_FRAME_SIZE) {
4857 		hw->mac.autoneg = B_TRUE;
4858 		hw->phy.autoneg_advertised = ADVERTISE_1000_FULL;
4859 
4860 		Adapter->param_adv_autoneg = 1;
4861 		Adapter->param_adv_1000fdx = 1;
4862 
4863 		Adapter->param_adv_100fdx = 0;
4864 		Adapter->param_adv_100hdx = 0;
4865 		Adapter->param_adv_10fdx = 0;
4866 		Adapter->param_adv_10hdx = 0;
4867 
4868 		e1000g_param_sync(Adapter);
4869 	}
4870 }
4871 
4872 /*
4873  * e1000g_mtu2maxframe - convert given MTU to maximum frame size
4874  */
4875 static uint32_t
4876 e1000g_mtu2maxframe(uint32_t mtu)
4877 {
4878 	uint32_t maxframe;
4879 
4880 	maxframe = mtu + sizeof (struct ether_vlan_header) + ETHERFCSL;
4881 
4882 	return (maxframe);
4883 }
4884 
4885 static void
4886 arm_watchdog_timer(struct e1000g *Adapter)
4887 {
4888 	Adapter->watchdog_tid =
4889 	    timeout(e1000g_local_timer,
4890 	    (void *)Adapter, 1 * drv_usectohz(1000000));
4891 }
4892 #pragma inline(arm_watchdog_timer)
4893 
4894 static void
4895 enable_watchdog_timer(struct e1000g *Adapter)
4896 {
4897 	mutex_enter(&Adapter->watchdog_lock);
4898 
4899 	if (!Adapter->watchdog_timer_enabled) {
4900 		Adapter->watchdog_timer_enabled = B_TRUE;
4901 		Adapter->watchdog_timer_started = B_TRUE;
4902 		arm_watchdog_timer(Adapter);
4903 	}
4904 
4905 	mutex_exit(&Adapter->watchdog_lock);
4906 }
4907 
4908 static void
4909 disable_watchdog_timer(struct e1000g *Adapter)
4910 {
4911 	timeout_id_t tid;
4912 
4913 	mutex_enter(&Adapter->watchdog_lock);
4914 
4915 	Adapter->watchdog_timer_enabled = B_FALSE;
4916 	Adapter->watchdog_timer_started = B_FALSE;
4917 	tid = Adapter->watchdog_tid;
4918 	Adapter->watchdog_tid = 0;
4919 
4920 	mutex_exit(&Adapter->watchdog_lock);
4921 
4922 	if (tid != 0)
4923 		(void) untimeout(tid);
4924 }
4925 
4926 static void
4927 start_watchdog_timer(struct e1000g *Adapter)
4928 {
4929 	mutex_enter(&Adapter->watchdog_lock);
4930 
4931 	if (Adapter->watchdog_timer_enabled) {
4932 		if (!Adapter->watchdog_timer_started) {
4933 			Adapter->watchdog_timer_started = B_TRUE;
4934 			arm_watchdog_timer(Adapter);
4935 		}
4936 	}
4937 
4938 	mutex_exit(&Adapter->watchdog_lock);
4939 }
4940 
4941 static void
4942 restart_watchdog_timer(struct e1000g *Adapter)
4943 {
4944 	mutex_enter(&Adapter->watchdog_lock);
4945 
4946 	if (Adapter->watchdog_timer_started)
4947 		arm_watchdog_timer(Adapter);
4948 
4949 	mutex_exit(&Adapter->watchdog_lock);
4950 }
4951 
4952 static void
4953 stop_watchdog_timer(struct e1000g *Adapter)
4954 {
4955 	timeout_id_t tid;
4956 
4957 	mutex_enter(&Adapter->watchdog_lock);
4958 
4959 	Adapter->watchdog_timer_started = B_FALSE;
4960 	tid = Adapter->watchdog_tid;
4961 	Adapter->watchdog_tid = 0;
4962 
4963 	mutex_exit(&Adapter->watchdog_lock);
4964 
4965 	if (tid != 0)
4966 		(void) untimeout(tid);
4967 }
4968 
4969 static void
4970 stop_link_timer(struct e1000g *Adapter)
4971 {
4972 	timeout_id_t tid;
4973 
4974 	/* Disable the link timer */
4975 	mutex_enter(&Adapter->link_lock);
4976 
4977 	tid = Adapter->link_tid;
4978 	Adapter->link_tid = 0;
4979 
4980 	mutex_exit(&Adapter->link_lock);
4981 
4982 	if (tid != 0)
4983 		(void) untimeout(tid);
4984 }
4985 
4986 static void
4987 stop_82547_timer(e1000g_tx_ring_t *tx_ring)
4988 {
4989 	timeout_id_t tid;
4990 
4991 	/* Disable the tx timer for 82547 chipset */
4992 	mutex_enter(&tx_ring->tx_lock);
4993 
4994 	tx_ring->timer_enable_82547 = B_FALSE;
4995 	tid = tx_ring->timer_id_82547;
4996 	tx_ring->timer_id_82547 = 0;
4997 
4998 	mutex_exit(&tx_ring->tx_lock);
4999 
5000 	if (tid != 0)
5001 		(void) untimeout(tid);
5002 }
5003 
5004 void
5005 e1000g_clear_interrupt(struct e1000g *Adapter)
5006 {
5007 	E1000_WRITE_REG(&Adapter->shared, E1000_IMC,
5008 	    0xffffffff & ~E1000_IMS_RXSEQ);
5009 }
5010 
5011 void
5012 e1000g_mask_interrupt(struct e1000g *Adapter)
5013 {
5014 	E1000_WRITE_REG(&Adapter->shared, E1000_IMS,
5015 	    IMS_ENABLE_MASK & ~E1000_IMS_TXDW);
5016 
5017 	if (Adapter->tx_intr_enable)
5018 		e1000g_mask_tx_interrupt(Adapter);
5019 }
5020 
5021 /*
5022  * This routine is called by e1000g_quiesce(), therefore must not block.
5023  */
5024 void
5025 e1000g_clear_all_interrupts(struct e1000g *Adapter)
5026 {
5027 	E1000_WRITE_REG(&Adapter->shared, E1000_IMC, 0xffffffff);
5028 }
5029 
5030 void
5031 e1000g_mask_tx_interrupt(struct e1000g *Adapter)
5032 {
5033 	E1000_WRITE_REG(&Adapter->shared, E1000_IMS, E1000_IMS_TXDW);
5034 }
5035 
5036 void
5037 e1000g_clear_tx_interrupt(struct e1000g *Adapter)
5038 {
5039 	E1000_WRITE_REG(&Adapter->shared, E1000_IMC, E1000_IMS_TXDW);
5040 }
5041 
5042 static void
5043 e1000g_smartspeed(struct e1000g *Adapter)
5044 {
5045 	struct e1000_hw *hw = &Adapter->shared;
5046 	uint16_t phy_status;
5047 	uint16_t phy_ctrl;
5048 
5049 	/*
5050 	 * If we're not T-or-T, or we're not autoneg'ing, or we're not
5051 	 * advertising 1000Full, we don't even use the workaround
5052 	 */
5053 	if ((hw->phy.type != e1000_phy_igp) ||
5054 	    !hw->mac.autoneg ||
5055 	    !(hw->phy.autoneg_advertised & ADVERTISE_1000_FULL))
5056 		return;
5057 
5058 	/*
5059 	 * True if this is the first call of this function or after every
5060 	 * 30 seconds of not having link
5061 	 */
5062 	if (Adapter->smartspeed == 0) {
5063 		/*
5064 		 * If Master/Slave config fault is asserted twice, we
5065 		 * assume back-to-back
5066 		 */
5067 		(void) e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
5068 		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
5069 			return;
5070 
5071 		(void) e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
5072 		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
5073 			return;
5074 		/*
5075 		 * We're assuming back-2-back because our status register
5076 		 * insists! there's a fault in the master/slave
5077 		 * relationship that was "negotiated"
5078 		 */
5079 		(void) e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
5080 		/*
5081 		 * Is the phy configured for manual configuration of
5082 		 * master/slave?
5083 		 */
5084 		if (phy_ctrl & CR_1000T_MS_ENABLE) {
5085 			/*
5086 			 * Yes.  Then disable manual configuration (enable
5087 			 * auto configuration) of master/slave
5088 			 */
5089 			phy_ctrl &= ~CR_1000T_MS_ENABLE;
5090 			(void) e1000_write_phy_reg(hw,
5091 			    PHY_1000T_CTRL, phy_ctrl);
5092 			/*
5093 			 * Effectively starting the clock
5094 			 */
5095 			Adapter->smartspeed++;
5096 			/*
5097 			 * Restart autonegotiation
5098 			 */
5099 			if (!e1000_phy_setup_autoneg(hw) &&
5100 			    !e1000_read_phy_reg(hw, PHY_CONTROL, &phy_ctrl)) {
5101 				phy_ctrl |= (MII_CR_AUTO_NEG_EN |
5102 				    MII_CR_RESTART_AUTO_NEG);
5103 				(void) e1000_write_phy_reg(hw,
5104 				    PHY_CONTROL, phy_ctrl);
5105 			}
5106 		}
5107 		return;
5108 		/*
5109 		 * Has 6 seconds transpired still without link? Remember,
5110 		 * you should reset the smartspeed counter once you obtain
5111 		 * link
5112 		 */
5113 	} else if (Adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
5114 		/*
5115 		 * Yes.  Remember, we did at the start determine that
5116 		 * there's a master/slave configuration fault, so we're
5117 		 * still assuming there's someone on the other end, but we
5118 		 * just haven't yet been able to talk to it. We then
5119 		 * re-enable auto configuration of master/slave to see if
5120 		 * we're running 2/3 pair cables.
5121 		 */
5122 		/*
5123 		 * If still no link, perhaps using 2/3 pair cable
5124 		 */
5125 		(void) e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
5126 		phy_ctrl |= CR_1000T_MS_ENABLE;
5127 		(void) e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
5128 		/*
5129 		 * Restart autoneg with phy enabled for manual
5130 		 * configuration of master/slave
5131 		 */
5132 		if (!e1000_phy_setup_autoneg(hw) &&
5133 		    !e1000_read_phy_reg(hw, PHY_CONTROL, &phy_ctrl)) {
5134 			phy_ctrl |=
5135 			    (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
5136 			(void) e1000_write_phy_reg(hw, PHY_CONTROL, phy_ctrl);
5137 		}
5138 		/*
5139 		 * Hopefully, there are no more faults and we've obtained
5140 		 * link as a result.
5141 		 */
5142 	}
5143 	/*
5144 	 * Restart process after E1000_SMARTSPEED_MAX iterations (30
5145 	 * seconds)
5146 	 */
5147 	if (Adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
5148 		Adapter->smartspeed = 0;
5149 }
5150 
5151 static boolean_t
5152 is_valid_mac_addr(uint8_t *mac_addr)
5153 {
5154 	const uint8_t addr_test1[6] = { 0, 0, 0, 0, 0, 0 };
5155 	const uint8_t addr_test2[6] =
5156 	    { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
5157 
5158 	if (!(bcmp(addr_test1, mac_addr, ETHERADDRL)) ||
5159 	    !(bcmp(addr_test2, mac_addr, ETHERADDRL)))
5160 		return (B_FALSE);
5161 
5162 	return (B_TRUE);
5163 }
5164 
5165 /*
5166  * e1000g_stall_check - check for tx stall
5167  *
5168  * This function checks if the adapter is stalled (in transmit).
5169  *
5170  * It is called each time the watchdog timeout is invoked.
5171  * If the transmit descriptor reclaim continuously fails,
5172  * the watchdog value will increment by 1. If the watchdog
5173  * value exceeds the threshold, the adapter is assumed to
5174  * have stalled and need to be reset.
5175  */
5176 static boolean_t
5177 e1000g_stall_check(struct e1000g *Adapter)
5178 {
5179 	e1000g_tx_ring_t *tx_ring;
5180 
5181 	tx_ring = Adapter->tx_ring;
5182 
5183 	if (Adapter->link_state != LINK_STATE_UP)
5184 		return (B_FALSE);
5185 
5186 	(void) e1000g_recycle(tx_ring);
5187 
5188 	if (Adapter->stall_flag)
5189 		return (B_TRUE);
5190 
5191 	return (B_FALSE);
5192 }
5193 
5194 #ifdef E1000G_DEBUG
5195 static enum ioc_reply
5196 e1000g_pp_ioctl(struct e1000g *e1000gp, struct iocblk *iocp, mblk_t *mp)
5197 {
5198 	void (*ppfn)(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd);
5199 	e1000g_peekpoke_t *ppd;
5200 	uint64_t mem_va;
5201 	uint64_t maxoff;
5202 	boolean_t peek;
5203 
5204 	switch (iocp->ioc_cmd) {
5205 
5206 	case E1000G_IOC_REG_PEEK:
5207 		peek = B_TRUE;
5208 		break;
5209 
5210 	case E1000G_IOC_REG_POKE:
5211 		peek = B_FALSE;
5212 		break;
5213 
5214 	deault:
5215 		E1000G_DEBUGLOG_1(e1000gp, E1000G_INFO_LEVEL,
5216 		    "e1000g_diag_ioctl: invalid ioctl command 0x%X\n",
5217 		    iocp->ioc_cmd);
5218 		return (IOC_INVAL);
5219 	}
5220 
5221 	/*
5222 	 * Validate format of ioctl
5223 	 */
5224 	if (iocp->ioc_count != sizeof (e1000g_peekpoke_t))
5225 		return (IOC_INVAL);
5226 	if (mp->b_cont == NULL)
5227 		return (IOC_INVAL);
5228 
5229 	ppd = (e1000g_peekpoke_t *)(uintptr_t)mp->b_cont->b_rptr;
5230 
5231 	/*
5232 	 * Validate request parameters
5233 	 */
5234 	switch (ppd->pp_acc_space) {
5235 
5236 	default:
5237 		E1000G_DEBUGLOG_1(e1000gp, E1000G_INFO_LEVEL,
5238 		    "e1000g_diag_ioctl: invalid access space 0x%X\n",
5239 		    ppd->pp_acc_space);
5240 		return (IOC_INVAL);
5241 
5242 	case E1000G_PP_SPACE_REG:
5243 		/*
5244 		 * Memory-mapped I/O space
5245 		 */
5246 		ASSERT(ppd->pp_acc_size == 4);
5247 		if (ppd->pp_acc_size != 4)
5248 			return (IOC_INVAL);
5249 
5250 		if ((ppd->pp_acc_offset % ppd->pp_acc_size) != 0)
5251 			return (IOC_INVAL);
5252 
5253 		mem_va = 0;
5254 		maxoff = 0x10000;
5255 		ppfn = peek ? e1000g_ioc_peek_reg : e1000g_ioc_poke_reg;
5256 		break;
5257 
5258 	case E1000G_PP_SPACE_E1000G:
5259 		/*
5260 		 * E1000g data structure!
5261 		 */
5262 		mem_va = (uintptr_t)e1000gp;
5263 		maxoff = sizeof (struct e1000g);
5264 		ppfn = peek ? e1000g_ioc_peek_mem : e1000g_ioc_poke_mem;
5265 		break;
5266 
5267 	}
5268 
5269 	if (ppd->pp_acc_offset >= maxoff)
5270 		return (IOC_INVAL);
5271 
5272 	if (ppd->pp_acc_offset + ppd->pp_acc_size > maxoff)
5273 		return (IOC_INVAL);
5274 
5275 	/*
5276 	 * All OK - go!
5277 	 */
5278 	ppd->pp_acc_offset += mem_va;
5279 	(*ppfn)(e1000gp, ppd);
5280 	return (peek ? IOC_REPLY : IOC_ACK);
5281 }
5282 
5283 static void
5284 e1000g_ioc_peek_reg(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd)
5285 {
5286 	ddi_acc_handle_t handle;
5287 	uint32_t *regaddr;
5288 
5289 	handle = e1000gp->osdep.reg_handle;
5290 	regaddr = (uint32_t *)((uintptr_t)e1000gp->shared.hw_addr +
5291 	    (uintptr_t)ppd->pp_acc_offset);
5292 
5293 	ppd->pp_acc_data = ddi_get32(handle, regaddr);
5294 }
5295 
5296 static void
5297 e1000g_ioc_poke_reg(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd)
5298 {
5299 	ddi_acc_handle_t handle;
5300 	uint32_t *regaddr;
5301 	uint32_t value;
5302 
5303 	handle = e1000gp->osdep.reg_handle;
5304 	regaddr = (uint32_t *)((uintptr_t)e1000gp->shared.hw_addr +
5305 	    (uintptr_t)ppd->pp_acc_offset);
5306 	value = (uint32_t)ppd->pp_acc_data;
5307 
5308 	ddi_put32(handle, regaddr, value);
5309 }
5310 
5311 static void
5312 e1000g_ioc_peek_mem(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd)
5313 {
5314 	uint64_t value;
5315 	void *vaddr;
5316 
5317 	vaddr = (void *)(uintptr_t)ppd->pp_acc_offset;
5318 
5319 	switch (ppd->pp_acc_size) {
5320 	case 1:
5321 		value = *(uint8_t *)vaddr;
5322 		break;
5323 
5324 	case 2:
5325 		value = *(uint16_t *)vaddr;
5326 		break;
5327 
5328 	case 4:
5329 		value = *(uint32_t *)vaddr;
5330 		break;
5331 
5332 	case 8:
5333 		value = *(uint64_t *)vaddr;
5334 		break;
5335 	}
5336 
5337 	E1000G_DEBUGLOG_4(e1000gp, E1000G_INFO_LEVEL,
5338 	    "e1000g_ioc_peek_mem($%p, $%p) peeked 0x%llx from $%p\n",
5339 	    (void *)e1000gp, (void *)ppd, value, vaddr);
5340 
5341 	ppd->pp_acc_data = value;
5342 }
5343 
5344 static void
5345 e1000g_ioc_poke_mem(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd)
5346 {
5347 	uint64_t value;
5348 	void *vaddr;
5349 
5350 	vaddr = (void *)(uintptr_t)ppd->pp_acc_offset;
5351 	value = ppd->pp_acc_data;
5352 
5353 	E1000G_DEBUGLOG_4(e1000gp, E1000G_INFO_LEVEL,
5354 	    "e1000g_ioc_poke_mem($%p, $%p) poking 0x%llx at $%p\n",
5355 	    (void *)e1000gp, (void *)ppd, value, vaddr);
5356 
5357 	switch (ppd->pp_acc_size) {
5358 	case 1:
5359 		*(uint8_t *)vaddr = (uint8_t)value;
5360 		break;
5361 
5362 	case 2:
5363 		*(uint16_t *)vaddr = (uint16_t)value;
5364 		break;
5365 
5366 	case 4:
5367 		*(uint32_t *)vaddr = (uint32_t)value;
5368 		break;
5369 
5370 	case 8:
5371 		*(uint64_t *)vaddr = (uint64_t)value;
5372 		break;
5373 	}
5374 }
5375 #endif
5376 
5377 /*
5378  * Loopback Support
5379  */
5380 static lb_property_t lb_normal =
5381 	{ normal,	"normal",	E1000G_LB_NONE		};
5382 static lb_property_t lb_external1000 =
5383 	{ external,	"1000Mbps",	E1000G_LB_EXTERNAL_1000	};
5384 static lb_property_t lb_external100 =
5385 	{ external,	"100Mbps",	E1000G_LB_EXTERNAL_100	};
5386 static lb_property_t lb_external10 =
5387 	{ external,	"10Mbps",	E1000G_LB_EXTERNAL_10	};
5388 static lb_property_t lb_phy =
5389 	{ internal,	"PHY",		E1000G_LB_INTERNAL_PHY	};
5390 
5391 static enum ioc_reply
5392 e1000g_loopback_ioctl(struct e1000g *Adapter, struct iocblk *iocp, mblk_t *mp)
5393 {
5394 	lb_info_sz_t *lbsp;
5395 	lb_property_t *lbpp;
5396 	struct e1000_hw *hw;
5397 	uint32_t *lbmp;
5398 	uint32_t size;
5399 	uint32_t value;
5400 
5401 	hw = &Adapter->shared;
5402 
5403 	if (mp->b_cont == NULL)
5404 		return (IOC_INVAL);
5405 
5406 	if (!e1000g_check_loopback_support(hw)) {
5407 		e1000g_log(NULL, CE_WARN,
5408 		    "Loopback is not supported on e1000g%d", Adapter->instance);
5409 		return (IOC_INVAL);
5410 	}
5411 
5412 	switch (iocp->ioc_cmd) {
5413 	default:
5414 		return (IOC_INVAL);
5415 
5416 	case LB_GET_INFO_SIZE:
5417 		size = sizeof (lb_info_sz_t);
5418 		if (iocp->ioc_count != size)
5419 			return (IOC_INVAL);
5420 
5421 		rw_enter(&Adapter->chip_lock, RW_WRITER);
5422 		e1000g_get_phy_state(Adapter);
5423 
5424 		/*
5425 		 * Workaround for hardware faults. In order to get a stable
5426 		 * state of phy, we will wait for a specific interval and
5427 		 * try again. The time delay is an experiential value based
5428 		 * on our testing.
5429 		 */
5430 		msec_delay(100);
5431 		e1000g_get_phy_state(Adapter);
5432 		rw_exit(&Adapter->chip_lock);
5433 
5434 		value = sizeof (lb_normal);
5435 		if ((Adapter->phy_ext_status & IEEE_ESR_1000T_FD_CAPS) ||
5436 		    (Adapter->phy_ext_status & IEEE_ESR_1000X_FD_CAPS) ||
5437 		    (hw->phy.media_type == e1000_media_type_fiber) ||
5438 		    (hw->phy.media_type == e1000_media_type_internal_serdes)) {
5439 			value += sizeof (lb_phy);
5440 			switch (hw->mac.type) {
5441 			case e1000_82571:
5442 			case e1000_82572:
5443 			case e1000_80003es2lan:
5444 				value += sizeof (lb_external1000);
5445 				break;
5446 			}
5447 		}
5448 		if ((Adapter->phy_status & MII_SR_100X_FD_CAPS) ||
5449 		    (Adapter->phy_status & MII_SR_100T2_FD_CAPS))
5450 			value += sizeof (lb_external100);
5451 		if (Adapter->phy_status & MII_SR_10T_FD_CAPS)
5452 			value += sizeof (lb_external10);
5453 
5454 		lbsp = (lb_info_sz_t *)(uintptr_t)mp->b_cont->b_rptr;
5455 		*lbsp = value;
5456 		break;
5457 
5458 	case LB_GET_INFO:
5459 		value = sizeof (lb_normal);
5460 		if ((Adapter->phy_ext_status & IEEE_ESR_1000T_FD_CAPS) ||
5461 		    (Adapter->phy_ext_status & IEEE_ESR_1000X_FD_CAPS) ||
5462 		    (hw->phy.media_type == e1000_media_type_fiber) ||
5463 		    (hw->phy.media_type == e1000_media_type_internal_serdes)) {
5464 			value += sizeof (lb_phy);
5465 			switch (hw->mac.type) {
5466 			case e1000_82571:
5467 			case e1000_82572:
5468 			case e1000_80003es2lan:
5469 				value += sizeof (lb_external1000);
5470 				break;
5471 			}
5472 		}
5473 		if ((Adapter->phy_status & MII_SR_100X_FD_CAPS) ||
5474 		    (Adapter->phy_status & MII_SR_100T2_FD_CAPS))
5475 			value += sizeof (lb_external100);
5476 		if (Adapter->phy_status & MII_SR_10T_FD_CAPS)
5477 			value += sizeof (lb_external10);
5478 
5479 		size = value;
5480 		if (iocp->ioc_count != size)
5481 			return (IOC_INVAL);
5482 
5483 		value = 0;
5484 		lbpp = (lb_property_t *)(uintptr_t)mp->b_cont->b_rptr;
5485 		lbpp[value++] = lb_normal;
5486 		if ((Adapter->phy_ext_status & IEEE_ESR_1000T_FD_CAPS) ||
5487 		    (Adapter->phy_ext_status & IEEE_ESR_1000X_FD_CAPS) ||
5488 		    (hw->phy.media_type == e1000_media_type_fiber) ||
5489 		    (hw->phy.media_type == e1000_media_type_internal_serdes)) {
5490 			lbpp[value++] = lb_phy;
5491 			switch (hw->mac.type) {
5492 			case e1000_82571:
5493 			case e1000_82572:
5494 			case e1000_80003es2lan:
5495 				lbpp[value++] = lb_external1000;
5496 				break;
5497 			}
5498 		}
5499 		if ((Adapter->phy_status & MII_SR_100X_FD_CAPS) ||
5500 		    (Adapter->phy_status & MII_SR_100T2_FD_CAPS))
5501 			lbpp[value++] = lb_external100;
5502 		if (Adapter->phy_status & MII_SR_10T_FD_CAPS)
5503 			lbpp[value++] = lb_external10;
5504 		break;
5505 
5506 	case LB_GET_MODE:
5507 		size = sizeof (uint32_t);
5508 		if (iocp->ioc_count != size)
5509 			return (IOC_INVAL);
5510 
5511 		lbmp = (uint32_t *)(uintptr_t)mp->b_cont->b_rptr;
5512 		*lbmp = Adapter->loopback_mode;
5513 		break;
5514 
5515 	case LB_SET_MODE:
5516 		size = 0;
5517 		if (iocp->ioc_count != sizeof (uint32_t))
5518 			return (IOC_INVAL);
5519 
5520 		lbmp = (uint32_t *)(uintptr_t)mp->b_cont->b_rptr;
5521 		if (!e1000g_set_loopback_mode(Adapter, *lbmp))
5522 			return (IOC_INVAL);
5523 		break;
5524 	}
5525 
5526 	iocp->ioc_count = size;
5527 	iocp->ioc_error = 0;
5528 
5529 	if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
5530 		ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
5531 		return (IOC_INVAL);
5532 	}
5533 
5534 	return (IOC_REPLY);
5535 }
5536 
5537 static boolean_t
5538 e1000g_check_loopback_support(struct e1000_hw *hw)
5539 {
5540 	switch (hw->mac.type) {
5541 	case e1000_82540:
5542 	case e1000_82545:
5543 	case e1000_82545_rev_3:
5544 	case e1000_82546:
5545 	case e1000_82546_rev_3:
5546 	case e1000_82541:
5547 	case e1000_82541_rev_2:
5548 	case e1000_82547:
5549 	case e1000_82547_rev_2:
5550 	case e1000_82571:
5551 	case e1000_82572:
5552 	case e1000_82573:
5553 	case e1000_82574:
5554 	case e1000_80003es2lan:
5555 	case e1000_ich9lan:
5556 	case e1000_ich10lan:
5557 		return (B_TRUE);
5558 	}
5559 	return (B_FALSE);
5560 }
5561 
5562 static boolean_t
5563 e1000g_set_loopback_mode(struct e1000g *Adapter, uint32_t mode)
5564 {
5565 	struct e1000_hw *hw;
5566 	int i, times;
5567 	boolean_t link_up;
5568 
5569 	if (mode == Adapter->loopback_mode)
5570 		return (B_TRUE);
5571 
5572 	hw = &Adapter->shared;
5573 	times = 0;
5574 
5575 	Adapter->loopback_mode = mode;
5576 
5577 	if (mode == E1000G_LB_NONE) {
5578 		/* Reset the chip */
5579 		hw->phy.autoneg_wait_to_complete = B_TRUE;
5580 		(void) e1000g_reset_adapter(Adapter);
5581 		hw->phy.autoneg_wait_to_complete = B_FALSE;
5582 		return (B_TRUE);
5583 	}
5584 
5585 again:
5586 
5587 	rw_enter(&Adapter->chip_lock, RW_WRITER);
5588 
5589 	switch (mode) {
5590 	default:
5591 		rw_exit(&Adapter->chip_lock);
5592 		return (B_FALSE);
5593 
5594 	case E1000G_LB_EXTERNAL_1000:
5595 		e1000g_set_external_loopback_1000(Adapter);
5596 		break;
5597 
5598 	case E1000G_LB_EXTERNAL_100:
5599 		e1000g_set_external_loopback_100(Adapter);
5600 		break;
5601 
5602 	case E1000G_LB_EXTERNAL_10:
5603 		e1000g_set_external_loopback_10(Adapter);
5604 		break;
5605 
5606 	case E1000G_LB_INTERNAL_PHY:
5607 		e1000g_set_internal_loopback(Adapter);
5608 		break;
5609 	}
5610 
5611 	times++;
5612 
5613 	rw_exit(&Adapter->chip_lock);
5614 
5615 	/* Wait for link up */
5616 	for (i = (PHY_FORCE_LIMIT * 2); i > 0; i--)
5617 		msec_delay(100);
5618 
5619 	rw_enter(&Adapter->chip_lock, RW_WRITER);
5620 
5621 	link_up = e1000g_link_up(Adapter);
5622 
5623 	rw_exit(&Adapter->chip_lock);
5624 
5625 	if (!link_up) {
5626 		E1000G_DEBUGLOG_0(Adapter, E1000G_INFO_LEVEL,
5627 		    "Failed to get the link up");
5628 		if (times < 2) {
5629 			/* Reset the link */
5630 			E1000G_DEBUGLOG_0(Adapter, E1000G_INFO_LEVEL,
5631 			    "Reset the link ...");
5632 			(void) e1000g_reset_adapter(Adapter);
5633 			goto again;
5634 		}
5635 
5636 		/*
5637 		 * Reset driver to loopback none when set loopback failed
5638 		 * for the second time.
5639 		 */
5640 		Adapter->loopback_mode = E1000G_LB_NONE;
5641 
5642 		/* Reset the chip */
5643 		hw->phy.autoneg_wait_to_complete = B_TRUE;
5644 		(void) e1000g_reset_adapter(Adapter);
5645 		hw->phy.autoneg_wait_to_complete = B_FALSE;
5646 
5647 		E1000G_DEBUGLOG_0(Adapter, E1000G_INFO_LEVEL,
5648 		    "Set loopback mode failed, reset to loopback none");
5649 
5650 		return (B_FALSE);
5651 	}
5652 
5653 	return (B_TRUE);
5654 }
5655 
5656 /*
5657  * The following loopback settings are from Intel's technical
5658  * document - "How To Loopback". All the register settings and
5659  * time delay values are directly inherited from the document
5660  * without more explanations available.
5661  */
5662 static void
5663 e1000g_set_internal_loopback(struct e1000g *Adapter)
5664 {
5665 	struct e1000_hw *hw;
5666 	uint32_t ctrl;
5667 	uint32_t status;
5668 	uint16_t phy_ctrl;
5669 	uint16_t phy_reg;
5670 	uint32_t txcw;
5671 
5672 	hw = &Adapter->shared;
5673 
5674 	/* Disable Smart Power Down */
5675 	phy_spd_state(hw, B_FALSE);
5676 
5677 	(void) e1000_read_phy_reg(hw, PHY_CONTROL, &phy_ctrl);
5678 	phy_ctrl &= ~(MII_CR_AUTO_NEG_EN | MII_CR_SPEED_100 | MII_CR_SPEED_10);
5679 	phy_ctrl |= MII_CR_FULL_DUPLEX | MII_CR_SPEED_1000;
5680 
5681 	switch (hw->mac.type) {
5682 	case e1000_82540:
5683 	case e1000_82545:
5684 	case e1000_82545_rev_3:
5685 	case e1000_82546:
5686 	case e1000_82546_rev_3:
5687 	case e1000_82573:
5688 		/* Auto-MDI/MDIX off */
5689 		(void) e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
5690 		/* Reset PHY to update Auto-MDI/MDIX */
5691 		(void) e1000_write_phy_reg(hw, PHY_CONTROL,
5692 		    phy_ctrl | MII_CR_RESET | MII_CR_AUTO_NEG_EN);
5693 		/* Reset PHY to auto-neg off and force 1000 */
5694 		(void) e1000_write_phy_reg(hw, PHY_CONTROL,
5695 		    phy_ctrl | MII_CR_RESET);
5696 		/*
5697 		 * Disable PHY receiver for 82540/545/546 and 82573 Family.
5698 		 * See comments above e1000g_set_internal_loopback() for the
5699 		 * background.
5700 		 */
5701 		(void) e1000_write_phy_reg(hw, 29, 0x001F);
5702 		(void) e1000_write_phy_reg(hw, 30, 0x8FFC);
5703 		(void) e1000_write_phy_reg(hw, 29, 0x001A);
5704 		(void) e1000_write_phy_reg(hw, 30, 0x8FF0);
5705 		break;
5706 	case e1000_80003es2lan:
5707 		/* Force Link Up */
5708 		(void) e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
5709 		    0x1CC);
5710 		/* Sets PCS loopback at 1Gbs */
5711 		(void) e1000_write_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL,
5712 		    0x1046);
5713 		break;
5714 	}
5715 
5716 	/*
5717 	 * The following registers should be set for e1000_phy_bm phy type.
5718 	 * e1000_82574, e1000_ich10lan and some e1000_ich9lan use this phy.
5719 	 * For others, we do not need to set these registers.
5720 	 */
5721 	if (hw->phy.type == e1000_phy_bm) {
5722 		/* Set Default MAC Interface speed to 1GB */
5723 		(void) e1000_read_phy_reg(hw, PHY_REG(2, 21), &phy_reg);
5724 		phy_reg &= ~0x0007;
5725 		phy_reg |= 0x006;
5726 		(void) e1000_write_phy_reg(hw, PHY_REG(2, 21), phy_reg);
5727 		/* Assert SW reset for above settings to take effect */
5728 		(void) e1000_phy_commit(hw);
5729 		msec_delay(1);
5730 		/* Force Full Duplex */
5731 		(void) e1000_read_phy_reg(hw, PHY_REG(769, 16), &phy_reg);
5732 		(void) e1000_write_phy_reg(hw, PHY_REG(769, 16),
5733 		    phy_reg | 0x000C);
5734 		/* Set Link Up (in force link) */
5735 		(void) e1000_read_phy_reg(hw, PHY_REG(776, 16), &phy_reg);
5736 		(void) e1000_write_phy_reg(hw, PHY_REG(776, 16),
5737 		    phy_reg | 0x0040);
5738 		/* Force Link */
5739 		(void) e1000_read_phy_reg(hw, PHY_REG(769, 16), &phy_reg);
5740 		(void) e1000_write_phy_reg(hw, PHY_REG(769, 16),
5741 		    phy_reg | 0x0040);
5742 		/* Set Early Link Enable */
5743 		(void) e1000_read_phy_reg(hw, PHY_REG(769, 20), &phy_reg);
5744 		(void) e1000_write_phy_reg(hw, PHY_REG(769, 20),
5745 		    phy_reg | 0x0400);
5746 	}
5747 
5748 	/* Set loopback */
5749 	(void) e1000_write_phy_reg(hw, PHY_CONTROL, phy_ctrl | MII_CR_LOOPBACK);
5750 
5751 	msec_delay(250);
5752 
5753 	/* Now set up the MAC to the same speed/duplex as the PHY. */
5754 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
5755 	ctrl &= ~E1000_CTRL_SPD_SEL;	/* Clear the speed sel bits */
5756 	ctrl |= (E1000_CTRL_FRCSPD |	/* Set the Force Speed Bit */
5757 	    E1000_CTRL_FRCDPX |		/* Set the Force Duplex Bit */
5758 	    E1000_CTRL_SPD_1000 |	/* Force Speed to 1000 */
5759 	    E1000_CTRL_FD);		/* Force Duplex to FULL */
5760 
5761 	switch (hw->mac.type) {
5762 	case e1000_82540:
5763 	case e1000_82545:
5764 	case e1000_82545_rev_3:
5765 	case e1000_82546:
5766 	case e1000_82546_rev_3:
5767 		/*
5768 		 * For some serdes we'll need to commit the writes now
5769 		 * so that the status is updated on link
5770 		 */
5771 		if (hw->phy.media_type == e1000_media_type_internal_serdes) {
5772 			E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
5773 			msec_delay(100);
5774 			ctrl = E1000_READ_REG(hw, E1000_CTRL);
5775 		}
5776 
5777 		if (hw->phy.media_type == e1000_media_type_copper) {
5778 			/* Invert Loss of Signal */
5779 			ctrl |= E1000_CTRL_ILOS;
5780 		} else {
5781 			/* Set ILOS on fiber nic if half duplex is detected */
5782 			status = E1000_READ_REG(hw, E1000_STATUS);
5783 			if ((status & E1000_STATUS_FD) == 0)
5784 				ctrl |= E1000_CTRL_ILOS | E1000_CTRL_SLU;
5785 		}
5786 		break;
5787 
5788 	case e1000_82571:
5789 	case e1000_82572:
5790 		/*
5791 		 * The fiber/SerDes versions of this adapter do not contain an
5792 		 * accessible PHY. Therefore, loopback beyond MAC must be done
5793 		 * using SerDes analog loopback.
5794 		 */
5795 		if (hw->phy.media_type != e1000_media_type_copper) {
5796 			/* Disable autoneg by setting bit 31 of TXCW to zero */
5797 			txcw = E1000_READ_REG(hw, E1000_TXCW);
5798 			txcw &= ~((uint32_t)1 << 31);
5799 			E1000_WRITE_REG(hw, E1000_TXCW, txcw);
5800 
5801 			/*
5802 			 * Write 0x410 to Serdes Control register
5803 			 * to enable Serdes analog loopback
5804 			 */
5805 			E1000_WRITE_REG(hw, E1000_SCTL, 0x0410);
5806 			msec_delay(10);
5807 		}
5808 
5809 		status = E1000_READ_REG(hw, E1000_STATUS);
5810 		/* Set ILOS on fiber nic if half duplex is detected */
5811 		if ((hw->phy.media_type == e1000_media_type_fiber) &&
5812 		    ((status & E1000_STATUS_FD) == 0 ||
5813 		    (status & E1000_STATUS_LU) == 0))
5814 			ctrl |= E1000_CTRL_ILOS | E1000_CTRL_SLU;
5815 		else if (hw->phy.media_type == e1000_media_type_internal_serdes)
5816 			ctrl |= E1000_CTRL_SLU;
5817 		break;
5818 
5819 	case e1000_82573:
5820 		ctrl |= E1000_CTRL_ILOS;
5821 		break;
5822 	case e1000_ich9lan:
5823 	case e1000_ich10lan:
5824 		ctrl |= E1000_CTRL_SLU;
5825 		break;
5826 	}
5827 	if (hw->phy.type == e1000_phy_bm)
5828 		ctrl |= E1000_CTRL_SLU | E1000_CTRL_ILOS;
5829 
5830 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
5831 }
5832 
5833 static void
5834 e1000g_set_external_loopback_1000(struct e1000g *Adapter)
5835 {
5836 	struct e1000_hw *hw;
5837 	uint32_t rctl;
5838 	uint32_t ctrl_ext;
5839 	uint32_t ctrl;
5840 	uint32_t status;
5841 	uint32_t txcw;
5842 	uint16_t phydata;
5843 
5844 	hw = &Adapter->shared;
5845 
5846 	/* Disable Smart Power Down */
5847 	phy_spd_state(hw, B_FALSE);
5848 
5849 	switch (hw->mac.type) {
5850 	case e1000_82571:
5851 	case e1000_82572:
5852 		switch (hw->phy.media_type) {
5853 		case e1000_media_type_copper:
5854 			/* Force link up (Must be done before the PHY writes) */
5855 			ctrl = E1000_READ_REG(hw, E1000_CTRL);
5856 			ctrl |= E1000_CTRL_SLU;	/* Force Link Up */
5857 			E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
5858 
5859 			rctl = E1000_READ_REG(hw, E1000_RCTL);
5860 			rctl |= (E1000_RCTL_EN |
5861 			    E1000_RCTL_SBP |
5862 			    E1000_RCTL_UPE |
5863 			    E1000_RCTL_MPE |
5864 			    E1000_RCTL_LPE |
5865 			    E1000_RCTL_BAM);		/* 0x803E */
5866 			E1000_WRITE_REG(hw, E1000_RCTL, rctl);
5867 
5868 			ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
5869 			ctrl_ext |= (E1000_CTRL_EXT_SDP4_DATA |
5870 			    E1000_CTRL_EXT_SDP6_DATA |
5871 			    E1000_CTRL_EXT_SDP3_DATA |
5872 			    E1000_CTRL_EXT_SDP4_DIR |
5873 			    E1000_CTRL_EXT_SDP6_DIR |
5874 			    E1000_CTRL_EXT_SDP3_DIR);	/* 0x0DD0 */
5875 			E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
5876 
5877 			/*
5878 			 * This sequence tunes the PHY's SDP and no customer
5879 			 * settable values. For background, see comments above
5880 			 * e1000g_set_internal_loopback().
5881 			 */
5882 			(void) e1000_write_phy_reg(hw, 0x0, 0x140);
5883 			msec_delay(10);
5884 			(void) e1000_write_phy_reg(hw, 0x9, 0x1A00);
5885 			(void) e1000_write_phy_reg(hw, 0x12, 0xC10);
5886 			(void) e1000_write_phy_reg(hw, 0x12, 0x1C10);
5887 			(void) e1000_write_phy_reg(hw, 0x1F37, 0x76);
5888 			(void) e1000_write_phy_reg(hw, 0x1F33, 0x1);
5889 			(void) e1000_write_phy_reg(hw, 0x1F33, 0x0);
5890 
5891 			(void) e1000_write_phy_reg(hw, 0x1F35, 0x65);
5892 			(void) e1000_write_phy_reg(hw, 0x1837, 0x3F7C);
5893 			(void) e1000_write_phy_reg(hw, 0x1437, 0x3FDC);
5894 			(void) e1000_write_phy_reg(hw, 0x1237, 0x3F7C);
5895 			(void) e1000_write_phy_reg(hw, 0x1137, 0x3FDC);
5896 
5897 			msec_delay(50);
5898 			break;
5899 		case e1000_media_type_fiber:
5900 		case e1000_media_type_internal_serdes:
5901 			status = E1000_READ_REG(hw, E1000_STATUS);
5902 			if (((status & E1000_STATUS_LU) == 0) ||
5903 			    (hw->phy.media_type ==
5904 			    e1000_media_type_internal_serdes)) {
5905 				ctrl = E1000_READ_REG(hw, E1000_CTRL);
5906 				ctrl |= E1000_CTRL_ILOS | E1000_CTRL_SLU;
5907 				E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
5908 			}
5909 
5910 			/* Disable autoneg by setting bit 31 of TXCW to zero */
5911 			txcw = E1000_READ_REG(hw, E1000_TXCW);
5912 			txcw &= ~((uint32_t)1 << 31);
5913 			E1000_WRITE_REG(hw, E1000_TXCW, txcw);
5914 
5915 			/*
5916 			 * Write 0x410 to Serdes Control register
5917 			 * to enable Serdes analog loopback
5918 			 */
5919 			E1000_WRITE_REG(hw, E1000_SCTL, 0x0410);
5920 			msec_delay(10);
5921 			break;
5922 		default:
5923 			break;
5924 		}
5925 		break;
5926 	case e1000_82574:
5927 	case e1000_80003es2lan:
5928 	case e1000_ich9lan:
5929 	case e1000_ich10lan:
5930 		(void) e1000_read_phy_reg(hw, GG82563_REG(6, 16), &phydata);
5931 		(void) e1000_write_phy_reg(hw, GG82563_REG(6, 16),
5932 		    phydata | (1 << 5));
5933 		Adapter->param_adv_autoneg = 1;
5934 		Adapter->param_adv_1000fdx = 1;
5935 		(void) e1000g_reset_link(Adapter);
5936 		break;
5937 	}
5938 }
5939 
5940 static void
5941 e1000g_set_external_loopback_100(struct e1000g *Adapter)
5942 {
5943 	struct e1000_hw *hw;
5944 	uint32_t ctrl;
5945 	uint16_t phy_ctrl;
5946 
5947 	hw = &Adapter->shared;
5948 
5949 	/* Disable Smart Power Down */
5950 	phy_spd_state(hw, B_FALSE);
5951 
5952 	phy_ctrl = (MII_CR_FULL_DUPLEX |
5953 	    MII_CR_SPEED_100);
5954 
5955 	/* Force 100/FD, reset PHY */
5956 	(void) e1000_write_phy_reg(hw, PHY_CONTROL,
5957 	    phy_ctrl | MII_CR_RESET);	/* 0xA100 */
5958 	msec_delay(10);
5959 
5960 	/* Force 100/FD */
5961 	(void) e1000_write_phy_reg(hw, PHY_CONTROL,
5962 	    phy_ctrl);			/* 0x2100 */
5963 	msec_delay(10);
5964 
5965 	/* Now setup the MAC to the same speed/duplex as the PHY. */
5966 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
5967 	ctrl &= ~E1000_CTRL_SPD_SEL;	/* Clear the speed sel bits */
5968 	ctrl |= (E1000_CTRL_SLU |	/* Force Link Up */
5969 	    E1000_CTRL_FRCSPD |		/* Set the Force Speed Bit */
5970 	    E1000_CTRL_FRCDPX |		/* Set the Force Duplex Bit */
5971 	    E1000_CTRL_SPD_100 |	/* Force Speed to 100 */
5972 	    E1000_CTRL_FD);		/* Force Duplex to FULL */
5973 
5974 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
5975 }
5976 
5977 static void
5978 e1000g_set_external_loopback_10(struct e1000g *Adapter)
5979 {
5980 	struct e1000_hw *hw;
5981 	uint32_t ctrl;
5982 	uint16_t phy_ctrl;
5983 
5984 	hw = &Adapter->shared;
5985 
5986 	/* Disable Smart Power Down */
5987 	phy_spd_state(hw, B_FALSE);
5988 
5989 	phy_ctrl = (MII_CR_FULL_DUPLEX |
5990 	    MII_CR_SPEED_10);
5991 
5992 	/* Force 10/FD, reset PHY */
5993 	(void) e1000_write_phy_reg(hw, PHY_CONTROL,
5994 	    phy_ctrl | MII_CR_RESET);	/* 0x8100 */
5995 	msec_delay(10);
5996 
5997 	/* Force 10/FD */
5998 	(void) e1000_write_phy_reg(hw, PHY_CONTROL,
5999 	    phy_ctrl);			/* 0x0100 */
6000 	msec_delay(10);
6001 
6002 	/* Now setup the MAC to the same speed/duplex as the PHY. */
6003 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
6004 	ctrl &= ~E1000_CTRL_SPD_SEL;	/* Clear the speed sel bits */
6005 	ctrl |= (E1000_CTRL_SLU |	/* Force Link Up */
6006 	    E1000_CTRL_FRCSPD |		/* Set the Force Speed Bit */
6007 	    E1000_CTRL_FRCDPX |		/* Set the Force Duplex Bit */
6008 	    E1000_CTRL_SPD_10 |		/* Force Speed to 10 */
6009 	    E1000_CTRL_FD);		/* Force Duplex to FULL */
6010 
6011 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
6012 }
6013 
6014 #ifdef __sparc
6015 static boolean_t
6016 e1000g_find_mac_address(struct e1000g *Adapter)
6017 {
6018 	struct e1000_hw *hw = &Adapter->shared;
6019 	uchar_t *bytes;
6020 	struct ether_addr sysaddr;
6021 	uint_t nelts;
6022 	int err;
6023 	boolean_t found = B_FALSE;
6024 
6025 	/*
6026 	 * The "vendor's factory-set address" may already have
6027 	 * been extracted from the chip, but if the property
6028 	 * "local-mac-address" is set we use that instead.
6029 	 *
6030 	 * We check whether it looks like an array of 6
6031 	 * bytes (which it should, if OBP set it).  If we can't
6032 	 * make sense of it this way, we'll ignore it.
6033 	 */
6034 	err = ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, Adapter->dip,
6035 	    DDI_PROP_DONTPASS, "local-mac-address", &bytes, &nelts);
6036 	if (err == DDI_PROP_SUCCESS) {
6037 		if (nelts == ETHERADDRL) {
6038 			while (nelts--)
6039 				hw->mac.addr[nelts] = bytes[nelts];
6040 			found = B_TRUE;
6041 		}
6042 		ddi_prop_free(bytes);
6043 	}
6044 
6045 	/*
6046 	 * Look up the OBP property "local-mac-address?". If the user has set
6047 	 * 'local-mac-address? = false', use "the system address" instead.
6048 	 */
6049 	if (ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, Adapter->dip, 0,
6050 	    "local-mac-address?", &bytes, &nelts) == DDI_PROP_SUCCESS) {
6051 		if (strncmp("false", (caddr_t)bytes, (size_t)nelts) == 0) {
6052 			if (localetheraddr(NULL, &sysaddr) != 0) {
6053 				bcopy(&sysaddr, hw->mac.addr, ETHERADDRL);
6054 				found = B_TRUE;
6055 			}
6056 		}
6057 		ddi_prop_free(bytes);
6058 	}
6059 
6060 	/*
6061 	 * Finally(!), if there's a valid "mac-address" property (created
6062 	 * if we netbooted from this interface), we must use this instead
6063 	 * of any of the above to ensure that the NFS/install server doesn't
6064 	 * get confused by the address changing as Solaris takes over!
6065 	 */
6066 	err = ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, Adapter->dip,
6067 	    DDI_PROP_DONTPASS, "mac-address", &bytes, &nelts);
6068 	if (err == DDI_PROP_SUCCESS) {
6069 		if (nelts == ETHERADDRL) {
6070 			while (nelts--)
6071 				hw->mac.addr[nelts] = bytes[nelts];
6072 			found = B_TRUE;
6073 		}
6074 		ddi_prop_free(bytes);
6075 	}
6076 
6077 	if (found) {
6078 		bcopy(hw->mac.addr, hw->mac.perm_addr,
6079 		    ETHERADDRL);
6080 	}
6081 
6082 	return (found);
6083 }
6084 #endif
6085 
6086 static int
6087 e1000g_add_intrs(struct e1000g *Adapter)
6088 {
6089 	dev_info_t *devinfo;
6090 	int intr_types;
6091 	int rc;
6092 
6093 	devinfo = Adapter->dip;
6094 
6095 	/* Get supported interrupt types */
6096 	rc = ddi_intr_get_supported_types(devinfo, &intr_types);
6097 
6098 	if (rc != DDI_SUCCESS) {
6099 		E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
6100 		    "Get supported interrupt types failed: %d\n", rc);
6101 		return (DDI_FAILURE);
6102 	}
6103 
6104 	/*
6105 	 * Based on Intel Technical Advisory document (TA-160), there are some
6106 	 * cases where some older Intel PCI-X NICs may "advertise" to the OS
6107 	 * that it supports MSI, but in fact has problems.
6108 	 * So we should only enable MSI for PCI-E NICs and disable MSI for old
6109 	 * PCI/PCI-X NICs.
6110 	 */
6111 	if (Adapter->shared.mac.type < e1000_82571)
6112 		Adapter->msi_enable = B_FALSE;
6113 
6114 	if ((intr_types & DDI_INTR_TYPE_MSI) && Adapter->msi_enable) {
6115 		rc = e1000g_intr_add(Adapter, DDI_INTR_TYPE_MSI);
6116 
6117 		if (rc != DDI_SUCCESS) {
6118 			/* EMPTY */
6119 			E1000G_DEBUGLOG_0(Adapter, E1000G_WARN_LEVEL,
6120 			    "Add MSI failed, trying Legacy interrupts\n");
6121 		} else {
6122 			Adapter->intr_type = DDI_INTR_TYPE_MSI;
6123 		}
6124 	}
6125 
6126 	if ((Adapter->intr_type == 0) &&
6127 	    (intr_types & DDI_INTR_TYPE_FIXED)) {
6128 		rc = e1000g_intr_add(Adapter, DDI_INTR_TYPE_FIXED);
6129 
6130 		if (rc != DDI_SUCCESS) {
6131 			E1000G_DEBUGLOG_0(Adapter, E1000G_WARN_LEVEL,
6132 			    "Add Legacy interrupts failed\n");
6133 			return (DDI_FAILURE);
6134 		}
6135 
6136 		Adapter->intr_type = DDI_INTR_TYPE_FIXED;
6137 	}
6138 
6139 	if (Adapter->intr_type == 0) {
6140 		E1000G_DEBUGLOG_0(Adapter, E1000G_WARN_LEVEL,
6141 		    "No interrupts registered\n");
6142 		return (DDI_FAILURE);
6143 	}
6144 
6145 	return (DDI_SUCCESS);
6146 }
6147 
6148 /*
6149  * e1000g_intr_add() handles MSI/Legacy interrupts
6150  */
6151 static int
6152 e1000g_intr_add(struct e1000g *Adapter, int intr_type)
6153 {
6154 	dev_info_t *devinfo;
6155 	int count, avail, actual;
6156 	int x, y, rc, inum = 0;
6157 	int flag;
6158 	ddi_intr_handler_t *intr_handler;
6159 
6160 	devinfo = Adapter->dip;
6161 
6162 	/* get number of interrupts */
6163 	rc = ddi_intr_get_nintrs(devinfo, intr_type, &count);
6164 	if ((rc != DDI_SUCCESS) || (count == 0)) {
6165 		E1000G_DEBUGLOG_2(Adapter, E1000G_WARN_LEVEL,
6166 		    "Get interrupt number failed. Return: %d, count: %d\n",
6167 		    rc, count);
6168 		return (DDI_FAILURE);
6169 	}
6170 
6171 	/* get number of available interrupts */
6172 	rc = ddi_intr_get_navail(devinfo, intr_type, &avail);
6173 	if ((rc != DDI_SUCCESS) || (avail == 0)) {
6174 		E1000G_DEBUGLOG_2(Adapter, E1000G_WARN_LEVEL,
6175 		    "Get interrupt available number failed. "
6176 		    "Return: %d, available: %d\n", rc, avail);
6177 		return (DDI_FAILURE);
6178 	}
6179 
6180 	if (avail < count) {
6181 		/* EMPTY */
6182 		E1000G_DEBUGLOG_2(Adapter, E1000G_WARN_LEVEL,
6183 		    "Interrupts count: %d, available: %d\n",
6184 		    count, avail);
6185 	}
6186 
6187 	/* Allocate an array of interrupt handles */
6188 	Adapter->intr_size = count * sizeof (ddi_intr_handle_t);
6189 	Adapter->htable = kmem_alloc(Adapter->intr_size, KM_SLEEP);
6190 
6191 	/* Set NORMAL behavior for both MSI and FIXED interrupt */
6192 	flag = DDI_INTR_ALLOC_NORMAL;
6193 
6194 	/* call ddi_intr_alloc() */
6195 	rc = ddi_intr_alloc(devinfo, Adapter->htable, intr_type, inum,
6196 	    count, &actual, flag);
6197 
6198 	if ((rc != DDI_SUCCESS) || (actual == 0)) {
6199 		E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
6200 		    "Allocate interrupts failed: %d\n", rc);
6201 
6202 		kmem_free(Adapter->htable, Adapter->intr_size);
6203 		return (DDI_FAILURE);
6204 	}
6205 
6206 	if (actual < count) {
6207 		/* EMPTY */
6208 		E1000G_DEBUGLOG_2(Adapter, E1000G_WARN_LEVEL,
6209 		    "Interrupts requested: %d, received: %d\n",
6210 		    count, actual);
6211 	}
6212 
6213 	Adapter->intr_cnt = actual;
6214 
6215 	/* Get priority for first msi, assume remaining are all the same */
6216 	rc = ddi_intr_get_pri(Adapter->htable[0], &Adapter->intr_pri);
6217 
6218 	if (rc != DDI_SUCCESS) {
6219 		E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
6220 		    "Get interrupt priority failed: %d\n", rc);
6221 
6222 		/* Free already allocated intr */
6223 		for (y = 0; y < actual; y++)
6224 			(void) ddi_intr_free(Adapter->htable[y]);
6225 
6226 		kmem_free(Adapter->htable, Adapter->intr_size);
6227 		return (DDI_FAILURE);
6228 	}
6229 
6230 	/*
6231 	 * In Legacy Interrupt mode, for PCI-Express adapters, we should
6232 	 * use the interrupt service routine e1000g_intr_pciexpress()
6233 	 * to avoid interrupt stealing when sharing interrupt with other
6234 	 * devices.
6235 	 */
6236 	if (Adapter->shared.mac.type < e1000_82571)
6237 		intr_handler = e1000g_intr;
6238 	else
6239 		intr_handler = e1000g_intr_pciexpress;
6240 
6241 	/* Call ddi_intr_add_handler() */
6242 	for (x = 0; x < actual; x++) {
6243 		rc = ddi_intr_add_handler(Adapter->htable[x],
6244 		    intr_handler, (caddr_t)Adapter, NULL);
6245 
6246 		if (rc != DDI_SUCCESS) {
6247 			E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
6248 			    "Add interrupt handler failed: %d\n", rc);
6249 
6250 			/* Remove already added handler */
6251 			for (y = 0; y < x; y++)
6252 				(void) ddi_intr_remove_handler(
6253 				    Adapter->htable[y]);
6254 
6255 			/* Free already allocated intr */
6256 			for (y = 0; y < actual; y++)
6257 				(void) ddi_intr_free(Adapter->htable[y]);
6258 
6259 			kmem_free(Adapter->htable, Adapter->intr_size);
6260 			return (DDI_FAILURE);
6261 		}
6262 	}
6263 
6264 	rc = ddi_intr_get_cap(Adapter->htable[0], &Adapter->intr_cap);
6265 
6266 	if (rc != DDI_SUCCESS) {
6267 		E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
6268 		    "Get interrupt cap failed: %d\n", rc);
6269 
6270 		/* Free already allocated intr */
6271 		for (y = 0; y < actual; y++) {
6272 			(void) ddi_intr_remove_handler(Adapter->htable[y]);
6273 			(void) ddi_intr_free(Adapter->htable[y]);
6274 		}
6275 
6276 		kmem_free(Adapter->htable, Adapter->intr_size);
6277 		return (DDI_FAILURE);
6278 	}
6279 
6280 	return (DDI_SUCCESS);
6281 }
6282 
6283 static int
6284 e1000g_rem_intrs(struct e1000g *Adapter)
6285 {
6286 	int x;
6287 	int rc;
6288 
6289 	for (x = 0; x < Adapter->intr_cnt; x++) {
6290 		rc = ddi_intr_remove_handler(Adapter->htable[x]);
6291 		if (rc != DDI_SUCCESS) {
6292 			E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
6293 			    "Remove intr handler failed: %d\n", rc);
6294 			return (DDI_FAILURE);
6295 		}
6296 
6297 		rc = ddi_intr_free(Adapter->htable[x]);
6298 		if (rc != DDI_SUCCESS) {
6299 			E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
6300 			    "Free intr failed: %d\n", rc);
6301 			return (DDI_FAILURE);
6302 		}
6303 	}
6304 
6305 	kmem_free(Adapter->htable, Adapter->intr_size);
6306 
6307 	return (DDI_SUCCESS);
6308 }
6309 
6310 static int
6311 e1000g_enable_intrs(struct e1000g *Adapter)
6312 {
6313 	int x;
6314 	int rc;
6315 
6316 	/* Enable interrupts */
6317 	if (Adapter->intr_cap & DDI_INTR_FLAG_BLOCK) {
6318 		/* Call ddi_intr_block_enable() for MSI */
6319 		rc = ddi_intr_block_enable(Adapter->htable,
6320 		    Adapter->intr_cnt);
6321 		if (rc != DDI_SUCCESS) {
6322 			E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
6323 			    "Enable block intr failed: %d\n", rc);
6324 			return (DDI_FAILURE);
6325 		}
6326 	} else {
6327 		/* Call ddi_intr_enable() for Legacy/MSI non block enable */
6328 		for (x = 0; x < Adapter->intr_cnt; x++) {
6329 			rc = ddi_intr_enable(Adapter->htable[x]);
6330 			if (rc != DDI_SUCCESS) {
6331 				E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
6332 				    "Enable intr failed: %d\n", rc);
6333 				return (DDI_FAILURE);
6334 			}
6335 		}
6336 	}
6337 
6338 	return (DDI_SUCCESS);
6339 }
6340 
6341 static int
6342 e1000g_disable_intrs(struct e1000g *Adapter)
6343 {
6344 	int x;
6345 	int rc;
6346 
6347 	/* Disable all interrupts */
6348 	if (Adapter->intr_cap & DDI_INTR_FLAG_BLOCK) {
6349 		rc = ddi_intr_block_disable(Adapter->htable,
6350 		    Adapter->intr_cnt);
6351 		if (rc != DDI_SUCCESS) {
6352 			E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
6353 			    "Disable block intr failed: %d\n", rc);
6354 			return (DDI_FAILURE);
6355 		}
6356 	} else {
6357 		for (x = 0; x < Adapter->intr_cnt; x++) {
6358 			rc = ddi_intr_disable(Adapter->htable[x]);
6359 			if (rc != DDI_SUCCESS) {
6360 				E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
6361 				    "Disable intr failed: %d\n", rc);
6362 				return (DDI_FAILURE);
6363 			}
6364 		}
6365 	}
6366 
6367 	return (DDI_SUCCESS);
6368 }
6369 
6370 /*
6371  * e1000g_get_phy_state - get the state of PHY registers, save in the adapter
6372  */
6373 static void
6374 e1000g_get_phy_state(struct e1000g *Adapter)
6375 {
6376 	struct e1000_hw *hw = &Adapter->shared;
6377 
6378 	if (hw->phy.media_type == e1000_media_type_copper) {
6379 		(void) e1000_read_phy_reg(hw, PHY_CONTROL, &Adapter->phy_ctrl);
6380 		(void) e1000_read_phy_reg(hw, PHY_STATUS, &Adapter->phy_status);
6381 		(void) e1000_read_phy_reg(hw, PHY_AUTONEG_ADV,
6382 		    &Adapter->phy_an_adv);
6383 		(void) e1000_read_phy_reg(hw, PHY_AUTONEG_EXP,
6384 		    &Adapter->phy_an_exp);
6385 		(void) e1000_read_phy_reg(hw, PHY_EXT_STATUS,
6386 		    &Adapter->phy_ext_status);
6387 		(void) e1000_read_phy_reg(hw, PHY_1000T_CTRL,
6388 		    &Adapter->phy_1000t_ctrl);
6389 		(void) e1000_read_phy_reg(hw, PHY_1000T_STATUS,
6390 		    &Adapter->phy_1000t_status);
6391 		(void) e1000_read_phy_reg(hw, PHY_LP_ABILITY,
6392 		    &Adapter->phy_lp_able);
6393 
6394 		Adapter->param_autoneg_cap =
6395 		    (Adapter->phy_status & MII_SR_AUTONEG_CAPS) ? 1 : 0;
6396 		Adapter->param_pause_cap =
6397 		    (Adapter->phy_an_adv & NWAY_AR_PAUSE) ? 1 : 0;
6398 		Adapter->param_asym_pause_cap =
6399 		    (Adapter->phy_an_adv & NWAY_AR_ASM_DIR) ? 1 : 0;
6400 		Adapter->param_1000fdx_cap =
6401 		    ((Adapter->phy_ext_status & IEEE_ESR_1000T_FD_CAPS) ||
6402 		    (Adapter->phy_ext_status & IEEE_ESR_1000X_FD_CAPS)) ? 1 : 0;
6403 		Adapter->param_1000hdx_cap =
6404 		    ((Adapter->phy_ext_status & IEEE_ESR_1000T_HD_CAPS) ||
6405 		    (Adapter->phy_ext_status & IEEE_ESR_1000X_HD_CAPS)) ? 1 : 0;
6406 		Adapter->param_100t4_cap =
6407 		    (Adapter->phy_status & MII_SR_100T4_CAPS) ? 1 : 0;
6408 		Adapter->param_100fdx_cap =
6409 		    ((Adapter->phy_status & MII_SR_100X_FD_CAPS) ||
6410 		    (Adapter->phy_status & MII_SR_100T2_FD_CAPS)) ? 1 : 0;
6411 		Adapter->param_100hdx_cap =
6412 		    ((Adapter->phy_status & MII_SR_100X_HD_CAPS) ||
6413 		    (Adapter->phy_status & MII_SR_100T2_HD_CAPS)) ? 1 : 0;
6414 		Adapter->param_10fdx_cap =
6415 		    (Adapter->phy_status & MII_SR_10T_FD_CAPS) ? 1 : 0;
6416 		Adapter->param_10hdx_cap =
6417 		    (Adapter->phy_status & MII_SR_10T_HD_CAPS) ? 1 : 0;
6418 
6419 		Adapter->param_adv_autoneg = hw->mac.autoneg;
6420 		Adapter->param_adv_pause =
6421 		    (Adapter->phy_an_adv & NWAY_AR_PAUSE) ? 1 : 0;
6422 		Adapter->param_adv_asym_pause =
6423 		    (Adapter->phy_an_adv & NWAY_AR_ASM_DIR) ? 1 : 0;
6424 		Adapter->param_adv_1000hdx =
6425 		    (Adapter->phy_1000t_ctrl & CR_1000T_HD_CAPS) ? 1 : 0;
6426 		Adapter->param_adv_100t4 =
6427 		    (Adapter->phy_an_adv & NWAY_AR_100T4_CAPS) ? 1 : 0;
6428 		if (Adapter->param_adv_autoneg == 1) {
6429 			Adapter->param_adv_1000fdx =
6430 			    (Adapter->phy_1000t_ctrl & CR_1000T_FD_CAPS)
6431 			    ? 1 : 0;
6432 			Adapter->param_adv_100fdx =
6433 			    (Adapter->phy_an_adv & NWAY_AR_100TX_FD_CAPS)
6434 			    ? 1 : 0;
6435 			Adapter->param_adv_100hdx =
6436 			    (Adapter->phy_an_adv & NWAY_AR_100TX_HD_CAPS)
6437 			    ? 1 : 0;
6438 			Adapter->param_adv_10fdx =
6439 			    (Adapter->phy_an_adv & NWAY_AR_10T_FD_CAPS) ? 1 : 0;
6440 			Adapter->param_adv_10hdx =
6441 			    (Adapter->phy_an_adv & NWAY_AR_10T_HD_CAPS) ? 1 : 0;
6442 		}
6443 
6444 		Adapter->param_lp_autoneg =
6445 		    (Adapter->phy_an_exp & NWAY_ER_LP_NWAY_CAPS) ? 1 : 0;
6446 		Adapter->param_lp_pause =
6447 		    (Adapter->phy_lp_able & NWAY_LPAR_PAUSE) ? 1 : 0;
6448 		Adapter->param_lp_asym_pause =
6449 		    (Adapter->phy_lp_able & NWAY_LPAR_ASM_DIR) ? 1 : 0;
6450 		Adapter->param_lp_1000fdx =
6451 		    (Adapter->phy_1000t_status & SR_1000T_LP_FD_CAPS) ? 1 : 0;
6452 		Adapter->param_lp_1000hdx =
6453 		    (Adapter->phy_1000t_status & SR_1000T_LP_HD_CAPS) ? 1 : 0;
6454 		Adapter->param_lp_100t4 =
6455 		    (Adapter->phy_lp_able & NWAY_LPAR_100T4_CAPS) ? 1 : 0;
6456 		Adapter->param_lp_100fdx =
6457 		    (Adapter->phy_lp_able & NWAY_LPAR_100TX_FD_CAPS) ? 1 : 0;
6458 		Adapter->param_lp_100hdx =
6459 		    (Adapter->phy_lp_able & NWAY_LPAR_100TX_HD_CAPS) ? 1 : 0;
6460 		Adapter->param_lp_10fdx =
6461 		    (Adapter->phy_lp_able & NWAY_LPAR_10T_FD_CAPS) ? 1 : 0;
6462 		Adapter->param_lp_10hdx =
6463 		    (Adapter->phy_lp_able & NWAY_LPAR_10T_HD_CAPS) ? 1 : 0;
6464 	} else {
6465 		/*
6466 		 * 1Gig Fiber adapter only offers 1Gig Full Duplex. Meaning,
6467 		 * it can only work with 1Gig Full Duplex Link Partner.
6468 		 */
6469 		Adapter->param_autoneg_cap = 0;
6470 		Adapter->param_pause_cap = 1;
6471 		Adapter->param_asym_pause_cap = 1;
6472 		Adapter->param_1000fdx_cap = 1;
6473 		Adapter->param_1000hdx_cap = 0;
6474 		Adapter->param_100t4_cap = 0;
6475 		Adapter->param_100fdx_cap = 0;
6476 		Adapter->param_100hdx_cap = 0;
6477 		Adapter->param_10fdx_cap = 0;
6478 		Adapter->param_10hdx_cap = 0;
6479 
6480 		Adapter->param_adv_autoneg = 0;
6481 		Adapter->param_adv_pause = 1;
6482 		Adapter->param_adv_asym_pause = 1;
6483 		Adapter->param_adv_1000fdx = 1;
6484 		Adapter->param_adv_1000hdx = 0;
6485 		Adapter->param_adv_100t4 = 0;
6486 		Adapter->param_adv_100fdx = 0;
6487 		Adapter->param_adv_100hdx = 0;
6488 		Adapter->param_adv_10fdx = 0;
6489 		Adapter->param_adv_10hdx = 0;
6490 
6491 		Adapter->param_lp_autoneg = 0;
6492 		Adapter->param_lp_pause = 0;
6493 		Adapter->param_lp_asym_pause = 0;
6494 		Adapter->param_lp_1000fdx = 0;
6495 		Adapter->param_lp_1000hdx = 0;
6496 		Adapter->param_lp_100t4 = 0;
6497 		Adapter->param_lp_100fdx = 0;
6498 		Adapter->param_lp_100hdx = 0;
6499 		Adapter->param_lp_10fdx = 0;
6500 		Adapter->param_lp_10hdx = 0;
6501 	}
6502 }
6503 
6504 /*
6505  * FMA support
6506  */
6507 
6508 int
6509 e1000g_check_acc_handle(ddi_acc_handle_t handle)
6510 {
6511 	ddi_fm_error_t de;
6512 
6513 	ddi_fm_acc_err_get(handle, &de, DDI_FME_VERSION);
6514 	ddi_fm_acc_err_clear(handle, DDI_FME_VERSION);
6515 	return (de.fme_status);
6516 }
6517 
6518 int
6519 e1000g_check_dma_handle(ddi_dma_handle_t handle)
6520 {
6521 	ddi_fm_error_t de;
6522 
6523 	ddi_fm_dma_err_get(handle, &de, DDI_FME_VERSION);
6524 	return (de.fme_status);
6525 }
6526 
6527 /*
6528  * The IO fault service error handling callback function
6529  */
6530 /* ARGSUSED2 */
6531 static int
6532 e1000g_fm_error_cb(dev_info_t *dip, ddi_fm_error_t *err, const void *impl_data)
6533 {
6534 	/*
6535 	 * as the driver can always deal with an error in any dma or
6536 	 * access handle, we can just return the fme_status value.
6537 	 */
6538 	pci_ereport_post(dip, err, NULL);
6539 	return (err->fme_status);
6540 }
6541 
6542 static void
6543 e1000g_fm_init(struct e1000g *Adapter)
6544 {
6545 	ddi_iblock_cookie_t iblk;
6546 	int fma_dma_flag;
6547 
6548 	/* Only register with IO Fault Services if we have some capability */
6549 	if (Adapter->fm_capabilities & DDI_FM_ACCCHK_CAPABLE) {
6550 		e1000g_regs_acc_attr.devacc_attr_access = DDI_FLAGERR_ACC;
6551 	} else {
6552 		e1000g_regs_acc_attr.devacc_attr_access = DDI_DEFAULT_ACC;
6553 	}
6554 
6555 	if (Adapter->fm_capabilities & DDI_FM_DMACHK_CAPABLE) {
6556 		fma_dma_flag = 1;
6557 	} else {
6558 		fma_dma_flag = 0;
6559 	}
6560 
6561 	(void) e1000g_set_fma_flags(fma_dma_flag);
6562 
6563 	if (Adapter->fm_capabilities) {
6564 
6565 		/* Register capabilities with IO Fault Services */
6566 		ddi_fm_init(Adapter->dip, &Adapter->fm_capabilities, &iblk);
6567 
6568 		/*
6569 		 * Initialize pci ereport capabilities if ereport capable
6570 		 */
6571 		if (DDI_FM_EREPORT_CAP(Adapter->fm_capabilities) ||
6572 		    DDI_FM_ERRCB_CAP(Adapter->fm_capabilities))
6573 			pci_ereport_setup(Adapter->dip);
6574 
6575 		/*
6576 		 * Register error callback if error callback capable
6577 		 */
6578 		if (DDI_FM_ERRCB_CAP(Adapter->fm_capabilities))
6579 			ddi_fm_handler_register(Adapter->dip,
6580 			    e1000g_fm_error_cb, (void*) Adapter);
6581 	}
6582 }
6583 
6584 static void
6585 e1000g_fm_fini(struct e1000g *Adapter)
6586 {
6587 	/* Only unregister FMA capabilities if we registered some */
6588 	if (Adapter->fm_capabilities) {
6589 
6590 		/*
6591 		 * Release any resources allocated by pci_ereport_setup()
6592 		 */
6593 		if (DDI_FM_EREPORT_CAP(Adapter->fm_capabilities) ||
6594 		    DDI_FM_ERRCB_CAP(Adapter->fm_capabilities))
6595 			pci_ereport_teardown(Adapter->dip);
6596 
6597 		/*
6598 		 * Un-register error callback if error callback capable
6599 		 */
6600 		if (DDI_FM_ERRCB_CAP(Adapter->fm_capabilities))
6601 			ddi_fm_handler_unregister(Adapter->dip);
6602 
6603 		/* Unregister from IO Fault Services */
6604 		mutex_enter(&e1000g_rx_detach_lock);
6605 		ddi_fm_fini(Adapter->dip);
6606 		if (Adapter->priv_dip != NULL) {
6607 			DEVI(Adapter->priv_dip)->devi_fmhdl = NULL;
6608 		}
6609 		mutex_exit(&e1000g_rx_detach_lock);
6610 	}
6611 }
6612 
6613 void
6614 e1000g_fm_ereport(struct e1000g *Adapter, char *detail)
6615 {
6616 	uint64_t ena;
6617 	char buf[FM_MAX_CLASS];
6618 
6619 	(void) snprintf(buf, FM_MAX_CLASS, "%s.%s", DDI_FM_DEVICE, detail);
6620 	ena = fm_ena_generate(0, FM_ENA_FMT1);
6621 	if (DDI_FM_EREPORT_CAP(Adapter->fm_capabilities)) {
6622 		ddi_fm_ereport_post(Adapter->dip, buf, ena, DDI_NOSLEEP,
6623 		    FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0, NULL);
6624 	}
6625 }
6626 
6627 /*
6628  * quiesce(9E) entry point.
6629  *
6630  * This function is called when the system is single-threaded at high
6631  * PIL with preemption disabled. Therefore, this function must not be
6632  * blocked.
6633  *
6634  * This function returns DDI_SUCCESS on success, or DDI_FAILURE on failure.
6635  * DDI_FAILURE indicates an error condition and should almost never happen.
6636  */
6637 static int
6638 e1000g_quiesce(dev_info_t *devinfo)
6639 {
6640 	struct e1000g *Adapter;
6641 
6642 	Adapter = (struct e1000g *)ddi_get_driver_private(devinfo);
6643 
6644 	if (Adapter == NULL)
6645 		return (DDI_FAILURE);
6646 
6647 	e1000g_clear_all_interrupts(Adapter);
6648 
6649 	(void) e1000_reset_hw(&Adapter->shared);
6650 
6651 	/* Setup our HW Tx Head & Tail descriptor pointers */
6652 	E1000_WRITE_REG(&Adapter->shared, E1000_TDH(0), 0);
6653 	E1000_WRITE_REG(&Adapter->shared, E1000_TDT(0), 0);
6654 
6655 	/* Setup our HW Rx Head & Tail descriptor pointers */
6656 	E1000_WRITE_REG(&Adapter->shared, E1000_RDH(0), 0);
6657 	E1000_WRITE_REG(&Adapter->shared, E1000_RDT(0), 0);
6658 
6659 	return (DDI_SUCCESS);
6660 }
6661 
6662 /*
6663  * synchronize the adv* and en* parameters.
6664  *
6665  * See comments in <sys/dld.h> for details of the *_en_*
6666  * parameters. The usage of ndd for setting adv parameters will
6667  * synchronize all the en parameters with the e1000g parameters,
6668  * implicitly disabling any settings made via dladm.
6669  */
6670 static void
6671 e1000g_param_sync(struct e1000g *Adapter)
6672 {
6673 	Adapter->param_en_1000fdx = Adapter->param_adv_1000fdx;
6674 	Adapter->param_en_1000hdx = Adapter->param_adv_1000hdx;
6675 	Adapter->param_en_100fdx = Adapter->param_adv_100fdx;
6676 	Adapter->param_en_100hdx = Adapter->param_adv_100hdx;
6677 	Adapter->param_en_10fdx = Adapter->param_adv_10fdx;
6678 	Adapter->param_en_10hdx = Adapter->param_adv_10hdx;
6679 }
6680 
6681 /*
6682  * e1000g_get_driver_control - tell manageability firmware that the driver
6683  * has control.
6684  */
6685 static void
6686 e1000g_get_driver_control(struct e1000_hw *hw)
6687 {
6688 	uint32_t ctrl_ext;
6689 	uint32_t swsm;
6690 
6691 	/* tell manageability firmware the driver has taken over */
6692 	switch (hw->mac.type) {
6693 	case e1000_82573:
6694 		swsm = E1000_READ_REG(hw, E1000_SWSM);
6695 		E1000_WRITE_REG(hw, E1000_SWSM, swsm | E1000_SWSM_DRV_LOAD);
6696 		break;
6697 	case e1000_82571:
6698 	case e1000_82572:
6699 	case e1000_82574:
6700 	case e1000_80003es2lan:
6701 	case e1000_ich8lan:
6702 	case e1000_ich9lan:
6703 	case e1000_ich10lan:
6704 	case e1000_pchlan:
6705 	case e1000_pch2lan:
6706 		ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
6707 		E1000_WRITE_REG(hw, E1000_CTRL_EXT,
6708 		    ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
6709 		break;
6710 	default:
6711 		/* no manageability firmware: do nothing */
6712 		break;
6713 	}
6714 }
6715 
6716 /*
6717  * e1000g_release_driver_control - tell manageability firmware that the driver
6718  * has released control.
6719  */
6720 static void
6721 e1000g_release_driver_control(struct e1000_hw *hw)
6722 {
6723 	uint32_t ctrl_ext;
6724 	uint32_t swsm;
6725 
6726 	/* tell manageability firmware the driver has released control */
6727 	switch (hw->mac.type) {
6728 	case e1000_82573:
6729 		swsm = E1000_READ_REG(hw, E1000_SWSM);
6730 		E1000_WRITE_REG(hw, E1000_SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
6731 		break;
6732 	case e1000_82571:
6733 	case e1000_82572:
6734 	case e1000_82574:
6735 	case e1000_80003es2lan:
6736 	case e1000_ich8lan:
6737 	case e1000_ich9lan:
6738 	case e1000_ich10lan:
6739 	case e1000_pchlan:
6740 	case e1000_pch2lan:
6741 		ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
6742 		E1000_WRITE_REG(hw, E1000_CTRL_EXT,
6743 		    ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
6744 		break;
6745 	default:
6746 		/* no manageability firmware: do nothing */
6747 		break;
6748 	}
6749 }
6750 
6751 /*
6752  * Restore e1000g promiscuous mode.
6753  */
6754 static void
6755 e1000g_restore_promisc(struct e1000g *Adapter)
6756 {
6757 	if (Adapter->e1000g_promisc) {
6758 		uint32_t rctl;
6759 
6760 		rctl = E1000_READ_REG(&Adapter->shared, E1000_RCTL);
6761 		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_BAM);
6762 		E1000_WRITE_REG(&Adapter->shared, E1000_RCTL, rctl);
6763 	}
6764 }
6765