xref: /illumos-gate/usr/src/uts/common/io/igb/igb_main.c (revision 7fdd916c)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2007-2012 Intel Corporation. All rights reserved.
24  */
25 
26 /*
27  * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved.
28  * Copyright 2013, Nexenta Systems, Inc. All rights reserved.
29  */
30 
31 #include "igb_sw.h"
32 
33 static char ident[] = "Intel 1Gb Ethernet";
34 static char igb_version[] = "igb 2.3.8-ish";
35 
36 /*
37  * Local function protoypes
38  */
39 static int igb_register_mac(igb_t *);
40 static int igb_identify_hardware(igb_t *);
41 static int igb_regs_map(igb_t *);
42 static void igb_init_properties(igb_t *);
43 static int igb_init_driver_settings(igb_t *);
44 static void igb_init_locks(igb_t *);
45 static void igb_destroy_locks(igb_t *);
46 static int igb_init_mac_address(igb_t *);
47 static int igb_init(igb_t *);
48 static int igb_init_adapter(igb_t *);
49 static void igb_stop_adapter(igb_t *);
50 static int igb_reset(igb_t *);
51 static void igb_tx_clean(igb_t *);
52 static boolean_t igb_tx_drain(igb_t *);
53 static boolean_t igb_rx_drain(igb_t *);
54 static int igb_alloc_rings(igb_t *);
55 static int igb_alloc_rx_data(igb_t *);
56 static void igb_free_rx_data(igb_t *);
57 static void igb_free_rings(igb_t *);
58 static void igb_setup_rings(igb_t *);
59 static void igb_setup_rx(igb_t *);
60 static void igb_setup_tx(igb_t *);
61 static void igb_setup_rx_ring(igb_rx_ring_t *);
62 static void igb_setup_tx_ring(igb_tx_ring_t *);
63 static void igb_setup_rss(igb_t *);
64 static void igb_setup_mac_rss_classify(igb_t *);
65 static void igb_setup_mac_classify(igb_t *);
66 static void igb_init_unicst(igb_t *);
67 static void igb_setup_multicst(igb_t *);
68 static void igb_get_phy_state(igb_t *);
69 static void igb_param_sync(igb_t *);
70 static void igb_get_conf(igb_t *);
71 static int igb_get_prop(igb_t *, char *, int, int, int);
72 static boolean_t igb_is_link_up(igb_t *);
73 static boolean_t igb_link_check(igb_t *);
74 static void igb_local_timer(void *);
75 static void igb_link_timer(void *);
76 static void igb_arm_watchdog_timer(igb_t *);
77 static void igb_start_watchdog_timer(igb_t *);
78 static void igb_restart_watchdog_timer(igb_t *);
79 static void igb_stop_watchdog_timer(igb_t *);
80 static void igb_start_link_timer(igb_t *);
81 static void igb_stop_link_timer(igb_t *);
82 static void igb_disable_adapter_interrupts(igb_t *);
83 static void igb_enable_adapter_interrupts_82575(igb_t *);
84 static void igb_enable_adapter_interrupts_82576(igb_t *);
85 static void igb_enable_adapter_interrupts_82580(igb_t *);
86 static boolean_t is_valid_mac_addr(uint8_t *);
87 static boolean_t igb_stall_check(igb_t *);
88 static boolean_t igb_set_loopback_mode(igb_t *, uint32_t);
89 static void igb_set_external_loopback(igb_t *);
90 static void igb_set_internal_phy_loopback(igb_t *);
91 static void igb_set_internal_serdes_loopback(igb_t *);
92 static boolean_t igb_find_mac_address(igb_t *);
93 static int igb_alloc_intrs(igb_t *);
94 static int igb_alloc_intr_handles(igb_t *, int);
95 static int igb_add_intr_handlers(igb_t *);
96 static void igb_rem_intr_handlers(igb_t *);
97 static void igb_rem_intrs(igb_t *);
98 static int igb_enable_intrs(igb_t *);
99 static int igb_disable_intrs(igb_t *);
100 static void igb_setup_msix_82575(igb_t *);
101 static void igb_setup_msix_82576(igb_t *);
102 static void igb_setup_msix_82580(igb_t *);
103 static uint_t igb_intr_legacy(void *, void *);
104 static uint_t igb_intr_msi(void *, void *);
105 static uint_t igb_intr_rx(void *, void *);
106 static uint_t igb_intr_tx(void *, void *);
107 static uint_t igb_intr_tx_other(void *, void *);
108 static void igb_intr_rx_work(igb_rx_ring_t *);
109 static void igb_intr_tx_work(igb_tx_ring_t *);
110 static void igb_intr_link_work(igb_t *);
111 static void igb_get_driver_control(struct e1000_hw *);
112 static void igb_release_driver_control(struct e1000_hw *);
113 
114 static int igb_attach(dev_info_t *, ddi_attach_cmd_t);
115 static int igb_detach(dev_info_t *, ddi_detach_cmd_t);
116 static int igb_resume(dev_info_t *);
117 static int igb_suspend(dev_info_t *);
118 static int igb_quiesce(dev_info_t *);
119 static void igb_unconfigure(dev_info_t *, igb_t *);
120 static int igb_fm_error_cb(dev_info_t *, ddi_fm_error_t *,
121     const void *);
122 static void igb_fm_init(igb_t *);
123 static void igb_fm_fini(igb_t *);
124 static void igb_release_multicast(igb_t *);
125 
126 char *igb_priv_props[] = {
127 	"_eee_support",
128 	"_tx_copy_thresh",
129 	"_tx_recycle_thresh",
130 	"_tx_overload_thresh",
131 	"_tx_resched_thresh",
132 	"_rx_copy_thresh",
133 	"_rx_limit_per_intr",
134 	"_intr_throttling",
135 	"_adv_pause_cap",
136 	"_adv_asym_pause_cap",
137 	NULL
138 };
139 
140 static struct cb_ops igb_cb_ops = {
141 	nulldev,		/* cb_open */
142 	nulldev,		/* cb_close */
143 	nodev,			/* cb_strategy */
144 	nodev,			/* cb_print */
145 	nodev,			/* cb_dump */
146 	nodev,			/* cb_read */
147 	nodev,			/* cb_write */
148 	nodev,			/* cb_ioctl */
149 	nodev,			/* cb_devmap */
150 	nodev,			/* cb_mmap */
151 	nodev,			/* cb_segmap */
152 	nochpoll,		/* cb_chpoll */
153 	ddi_prop_op,		/* cb_prop_op */
154 	NULL,			/* cb_stream */
155 	D_MP | D_HOTPLUG,	/* cb_flag */
156 	CB_REV,			/* cb_rev */
157 	nodev,			/* cb_aread */
158 	nodev			/* cb_awrite */
159 };
160 
161 static struct dev_ops igb_dev_ops = {
162 	DEVO_REV,		/* devo_rev */
163 	0,			/* devo_refcnt */
164 	NULL,			/* devo_getinfo */
165 	nulldev,		/* devo_identify */
166 	nulldev,		/* devo_probe */
167 	igb_attach,		/* devo_attach */
168 	igb_detach,		/* devo_detach */
169 	nodev,			/* devo_reset */
170 	&igb_cb_ops,		/* devo_cb_ops */
171 	NULL,			/* devo_bus_ops */
172 	ddi_power,		/* devo_power */
173 	igb_quiesce,	/* devo_quiesce */
174 };
175 
176 static struct modldrv igb_modldrv = {
177 	&mod_driverops,		/* Type of module.  This one is a driver */
178 	ident,			/* Discription string */
179 	&igb_dev_ops,		/* driver ops */
180 };
181 
182 static struct modlinkage igb_modlinkage = {
183 	MODREV_1, &igb_modldrv, NULL
184 };
185 
186 /* Access attributes for register mapping */
187 ddi_device_acc_attr_t igb_regs_acc_attr = {
188 	DDI_DEVICE_ATTR_V1,
189 	DDI_STRUCTURE_LE_ACC,
190 	DDI_STRICTORDER_ACC,
191 	DDI_FLAGERR_ACC
192 };
193 
194 #define	IGB_M_CALLBACK_FLAGS \
195 	(MC_IOCTL | MC_GETCAPAB | MC_SETPROP | MC_GETPROP | MC_PROPINFO)
196 
197 static mac_callbacks_t igb_m_callbacks = {
198 	IGB_M_CALLBACK_FLAGS,
199 	igb_m_stat,
200 	igb_m_start,
201 	igb_m_stop,
202 	igb_m_promisc,
203 	igb_m_multicst,
204 	NULL,
205 	NULL,
206 	NULL,
207 	igb_m_ioctl,
208 	igb_m_getcapab,
209 	NULL,
210 	NULL,
211 	igb_m_setprop,
212 	igb_m_getprop,
213 	igb_m_propinfo
214 };
215 
216 /*
217  * Initialize capabilities of each supported adapter type
218  */
219 static adapter_info_t igb_82575_cap = {
220 	/* limits */
221 	4,		/* maximum number of rx queues */
222 	1,		/* minimum number of rx queues */
223 	4,		/* default number of rx queues */
224 	4,		/* maximum number of tx queues */
225 	1,		/* minimum number of tx queues */
226 	4,		/* default number of tx queues */
227 	65535,		/* maximum interrupt throttle rate */
228 	0,		/* minimum interrupt throttle rate */
229 	200,		/* default interrupt throttle rate */
230 
231 	/* function pointers */
232 	igb_enable_adapter_interrupts_82575,
233 	igb_setup_msix_82575,
234 
235 	/* capabilities */
236 	(IGB_FLAG_HAS_DCA |	/* capability flags */
237 	IGB_FLAG_VMDQ_POOL),
238 
239 	0xffc00000		/* mask for RXDCTL register */
240 };
241 
242 static adapter_info_t igb_82576_cap = {
243 	/* limits */
244 	16,		/* maximum number of rx queues */
245 	1,		/* minimum number of rx queues */
246 	4,		/* default number of rx queues */
247 	16,		/* maximum number of tx queues */
248 	1,		/* minimum number of tx queues */
249 	4,		/* default number of tx queues */
250 	65535,		/* maximum interrupt throttle rate */
251 	0,		/* minimum interrupt throttle rate */
252 	200,		/* default interrupt throttle rate */
253 
254 	/* function pointers */
255 	igb_enable_adapter_interrupts_82576,
256 	igb_setup_msix_82576,
257 
258 	/* capabilities */
259 	(IGB_FLAG_HAS_DCA |	/* capability flags */
260 	IGB_FLAG_VMDQ_POOL |
261 	IGB_FLAG_NEED_CTX_IDX),
262 
263 	0xffe00000		/* mask for RXDCTL register */
264 };
265 
266 static adapter_info_t igb_82580_cap = {
267 	/* limits */
268 	8,		/* maximum number of rx queues */
269 	1,		/* minimum number of rx queues */
270 	4,		/* default number of rx queues */
271 	8,		/* maximum number of tx queues */
272 	1,		/* minimum number of tx queues */
273 	4,		/* default number of tx queues */
274 	65535,		/* maximum interrupt throttle rate */
275 	0,		/* minimum interrupt throttle rate */
276 	200,		/* default interrupt throttle rate */
277 
278 	/* function pointers */
279 	igb_enable_adapter_interrupts_82580,
280 	igb_setup_msix_82580,
281 
282 	/* capabilities */
283 	(IGB_FLAG_HAS_DCA |	/* capability flags */
284 	IGB_FLAG_VMDQ_POOL |
285 	IGB_FLAG_NEED_CTX_IDX),
286 
287 	0xffe00000		/* mask for RXDCTL register */
288 };
289 
290 static adapter_info_t igb_i350_cap = {
291 	/* limits */
292 	8,		/* maximum number of rx queues */
293 	1,		/* minimum number of rx queues */
294 	4,		/* default number of rx queues */
295 	8,		/* maximum number of tx queues */
296 	1,		/* minimum number of tx queues */
297 	4,		/* default number of tx queues */
298 	65535,		/* maximum interrupt throttle rate */
299 	0,		/* minimum interrupt throttle rate */
300 	200,		/* default interrupt throttle rate */
301 
302 	/* function pointers */
303 	igb_enable_adapter_interrupts_82580,
304 	igb_setup_msix_82580,
305 
306 	/* capabilities */
307 	(IGB_FLAG_HAS_DCA |	/* capability flags */
308 	IGB_FLAG_VMDQ_POOL |
309 	IGB_FLAG_NEED_CTX_IDX),
310 
311 	0xffe00000		/* mask for RXDCTL register */
312 };
313 
314 static adapter_info_t igb_i210_cap = {
315 	/* limits */
316 	4,		/* maximum number of rx queues */
317 	1,		/* minimum number of rx queues */
318 	4,		/* default number of rx queues */
319 	4,		/* maximum number of tx queues */
320 	1,		/* minimum number of tx queues */
321 	4,		/* default number of tx queues */
322 	65535,		/* maximum interrupt throttle rate */
323 	0,		/* minimum interrupt throttle rate */
324 	200,		/* default interrupt throttle rate */
325 
326 	/* function pointers */
327 	igb_enable_adapter_interrupts_82580,
328 	igb_setup_msix_82580,
329 
330 	/* capabilities */
331 	(IGB_FLAG_HAS_DCA |	/* capability flags */
332 	IGB_FLAG_VMDQ_POOL |
333 	IGB_FLAG_NEED_CTX_IDX),
334 
335 	0xfff00000		/* mask for RXDCTL register */
336 };
337 
338 /*
339  * Module Initialization Functions
340  */
341 
342 int
343 _init(void)
344 {
345 	int status;
346 
347 	mac_init_ops(&igb_dev_ops, MODULE_NAME);
348 
349 	status = mod_install(&igb_modlinkage);
350 
351 	if (status != DDI_SUCCESS) {
352 		mac_fini_ops(&igb_dev_ops);
353 	}
354 
355 	return (status);
356 }
357 
358 int
359 _fini(void)
360 {
361 	int status;
362 
363 	status = mod_remove(&igb_modlinkage);
364 
365 	if (status == DDI_SUCCESS) {
366 		mac_fini_ops(&igb_dev_ops);
367 	}
368 
369 	return (status);
370 
371 }
372 
373 int
374 _info(struct modinfo *modinfop)
375 {
376 	int status;
377 
378 	status = mod_info(&igb_modlinkage, modinfop);
379 
380 	return (status);
381 }
382 
383 /*
384  * igb_attach - driver attach
385  *
386  * This function is the device specific initialization entry
387  * point. This entry point is required and must be written.
388  * The DDI_ATTACH command must be provided in the attach entry
389  * point. When attach() is called with cmd set to DDI_ATTACH,
390  * all normal kernel services (such as kmem_alloc(9F)) are
391  * available for use by the driver.
392  *
393  * The attach() function will be called once for each instance
394  * of  the  device  on  the  system with cmd set to DDI_ATTACH.
395  * Until attach() succeeds, the only driver entry points which
396  * may be called are open(9E) and getinfo(9E).
397  */
398 static int
399 igb_attach(dev_info_t *devinfo, ddi_attach_cmd_t cmd)
400 {
401 	igb_t *igb;
402 	struct igb_osdep *osdep;
403 	struct e1000_hw *hw;
404 	int instance;
405 
406 	/*
407 	 * Check the command and perform corresponding operations
408 	 */
409 	switch (cmd) {
410 	default:
411 		return (DDI_FAILURE);
412 
413 	case DDI_RESUME:
414 		return (igb_resume(devinfo));
415 
416 	case DDI_ATTACH:
417 		break;
418 	}
419 
420 	/* Get the device instance */
421 	instance = ddi_get_instance(devinfo);
422 
423 	/* Allocate memory for the instance data structure */
424 	igb = kmem_zalloc(sizeof (igb_t), KM_SLEEP);
425 
426 	igb->dip = devinfo;
427 	igb->instance = instance;
428 
429 	hw = &igb->hw;
430 	osdep = &igb->osdep;
431 	hw->back = osdep;
432 	osdep->igb = igb;
433 
434 	/* Attach the instance pointer to the dev_info data structure */
435 	ddi_set_driver_private(devinfo, igb);
436 
437 
438 	/* Initialize for fma support */
439 	igb->fm_capabilities = igb_get_prop(igb, "fm-capable",
440 	    0, 0x0f,
441 	    DDI_FM_EREPORT_CAPABLE | DDI_FM_ACCCHK_CAPABLE |
442 	    DDI_FM_DMACHK_CAPABLE | DDI_FM_ERRCB_CAPABLE);
443 	igb_fm_init(igb);
444 	igb->attach_progress |= ATTACH_PROGRESS_FMINIT;
445 
446 	/*
447 	 * Map PCI config space registers
448 	 */
449 	if (pci_config_setup(devinfo, &osdep->cfg_handle) != DDI_SUCCESS) {
450 		igb_error(igb, "Failed to map PCI configurations");
451 		goto attach_fail;
452 	}
453 	igb->attach_progress |= ATTACH_PROGRESS_PCI_CONFIG;
454 
455 	/*
456 	 * Identify the chipset family
457 	 */
458 	if (igb_identify_hardware(igb) != IGB_SUCCESS) {
459 		igb_error(igb, "Failed to identify hardware");
460 		goto attach_fail;
461 	}
462 
463 	/*
464 	 * Map device registers
465 	 */
466 	if (igb_regs_map(igb) != IGB_SUCCESS) {
467 		igb_error(igb, "Failed to map device registers");
468 		goto attach_fail;
469 	}
470 	igb->attach_progress |= ATTACH_PROGRESS_REGS_MAP;
471 
472 	/*
473 	 * Initialize driver parameters
474 	 */
475 	igb_init_properties(igb);
476 	igb->attach_progress |= ATTACH_PROGRESS_PROPS;
477 
478 	/*
479 	 * Allocate interrupts
480 	 */
481 	if (igb_alloc_intrs(igb) != IGB_SUCCESS) {
482 		igb_error(igb, "Failed to allocate interrupts");
483 		goto attach_fail;
484 	}
485 	igb->attach_progress |= ATTACH_PROGRESS_ALLOC_INTR;
486 
487 	/*
488 	 * Allocate rx/tx rings based on the ring numbers.
489 	 * The actual numbers of rx/tx rings are decided by the number of
490 	 * allocated interrupt vectors, so we should allocate the rings after
491 	 * interrupts are allocated.
492 	 */
493 	if (igb_alloc_rings(igb) != IGB_SUCCESS) {
494 		igb_error(igb, "Failed to allocate rx/tx rings or groups");
495 		goto attach_fail;
496 	}
497 	igb->attach_progress |= ATTACH_PROGRESS_ALLOC_RINGS;
498 
499 	/*
500 	 * Add interrupt handlers
501 	 */
502 	if (igb_add_intr_handlers(igb) != IGB_SUCCESS) {
503 		igb_error(igb, "Failed to add interrupt handlers");
504 		goto attach_fail;
505 	}
506 	igb->attach_progress |= ATTACH_PROGRESS_ADD_INTR;
507 
508 	/*
509 	 * Initialize driver parameters
510 	 */
511 	if (igb_init_driver_settings(igb) != IGB_SUCCESS) {
512 		igb_error(igb, "Failed to initialize driver settings");
513 		goto attach_fail;
514 	}
515 
516 	if (igb_check_acc_handle(igb->osdep.cfg_handle) != DDI_FM_OK) {
517 		ddi_fm_service_impact(igb->dip, DDI_SERVICE_LOST);
518 		goto attach_fail;
519 	}
520 
521 	/*
522 	 * Initialize mutexes for this device.
523 	 * Do this before enabling the interrupt handler and
524 	 * register the softint to avoid the condition where
525 	 * interrupt handler can try using uninitialized mutex
526 	 */
527 	igb_init_locks(igb);
528 	igb->attach_progress |= ATTACH_PROGRESS_LOCKS;
529 
530 	/*
531 	 * Initialize the adapter
532 	 */
533 	if (igb_init(igb) != IGB_SUCCESS) {
534 		igb_error(igb, "Failed to initialize adapter");
535 		goto attach_fail;
536 	}
537 	igb->attach_progress |= ATTACH_PROGRESS_INIT_ADAPTER;
538 
539 	/*
540 	 * Initialize statistics
541 	 */
542 	if (igb_init_stats(igb) != IGB_SUCCESS) {
543 		igb_error(igb, "Failed to initialize statistics");
544 		goto attach_fail;
545 	}
546 	igb->attach_progress |= ATTACH_PROGRESS_STATS;
547 
548 	/*
549 	 * Register the driver to the MAC
550 	 */
551 	if (igb_register_mac(igb) != IGB_SUCCESS) {
552 		igb_error(igb, "Failed to register MAC");
553 		goto attach_fail;
554 	}
555 	igb->attach_progress |= ATTACH_PROGRESS_MAC;
556 
557 	/*
558 	 * Now that mutex locks are initialized, and the chip is also
559 	 * initialized, enable interrupts.
560 	 */
561 	if (igb_enable_intrs(igb) != IGB_SUCCESS) {
562 		igb_error(igb, "Failed to enable DDI interrupts");
563 		goto attach_fail;
564 	}
565 	igb->attach_progress |= ATTACH_PROGRESS_ENABLE_INTR;
566 
567 	igb_log(igb, "%s", igb_version);
568 	atomic_or_32(&igb->igb_state, IGB_INITIALIZED);
569 
570 	/*
571 	 * Newer models have Energy Efficient Ethernet, let's disable this by
572 	 * default.
573 	 */
574 	if (igb->hw.mac.type == e1000_i350)
575 		(void) e1000_set_eee_i350(&igb->hw);
576 
577 	return (DDI_SUCCESS);
578 
579 attach_fail:
580 	igb_unconfigure(devinfo, igb);
581 	return (DDI_FAILURE);
582 }
583 
584 /*
585  * igb_detach - driver detach
586  *
587  * The detach() function is the complement of the attach routine.
588  * If cmd is set to DDI_DETACH, detach() is used to remove  the
589  * state  associated  with  a  given  instance of a device node
590  * prior to the removal of that instance from the system.
591  *
592  * The detach() function will be called once for each  instance
593  * of the device for which there has been a successful attach()
594  * once there are no longer  any  opens  on  the  device.
595  *
596  * Interrupts routine are disabled, All memory allocated by this
597  * driver are freed.
598  */
599 static int
600 igb_detach(dev_info_t *devinfo, ddi_detach_cmd_t cmd)
601 {
602 	igb_t *igb;
603 
604 	/*
605 	 * Check detach command
606 	 */
607 	switch (cmd) {
608 	default:
609 		return (DDI_FAILURE);
610 
611 	case DDI_SUSPEND:
612 		return (igb_suspend(devinfo));
613 
614 	case DDI_DETACH:
615 		break;
616 	}
617 
618 
619 	/*
620 	 * Get the pointer to the driver private data structure
621 	 */
622 	igb = (igb_t *)ddi_get_driver_private(devinfo);
623 	if (igb == NULL)
624 		return (DDI_FAILURE);
625 
626 	/*
627 	 * Unregister MAC. If failed, we have to fail the detach
628 	 */
629 	if (mac_unregister(igb->mac_hdl) != 0) {
630 		igb_error(igb, "Failed to unregister MAC");
631 		return (DDI_FAILURE);
632 	}
633 	igb->attach_progress &= ~ATTACH_PROGRESS_MAC;
634 
635 	/*
636 	 * If the device is still running, it needs to be stopped first.
637 	 * This check is necessary because under some specific circumstances,
638 	 * the detach routine can be called without stopping the interface
639 	 * first.
640 	 */
641 	mutex_enter(&igb->gen_lock);
642 	if (igb->igb_state & IGB_STARTED) {
643 		atomic_and_32(&igb->igb_state, ~IGB_STARTED);
644 		igb_stop(igb, B_TRUE);
645 		mutex_exit(&igb->gen_lock);
646 		/* Disable and stop the watchdog timer */
647 		igb_disable_watchdog_timer(igb);
648 	} else
649 		mutex_exit(&igb->gen_lock);
650 
651 	/*
652 	 * Check if there are still rx buffers held by the upper layer.
653 	 * If so, fail the detach.
654 	 */
655 	if (!igb_rx_drain(igb))
656 		return (DDI_FAILURE);
657 
658 	/*
659 	 * Do the remaining unconfigure routines
660 	 */
661 	igb_unconfigure(devinfo, igb);
662 
663 	return (DDI_SUCCESS);
664 }
665 
666 /*
667  * quiesce(9E) entry point.
668  *
669  * This function is called when the system is single-threaded at high
670  * PIL with preemption disabled. Therefore, this function must not be
671  * blocked.
672  *
673  * This function returns DDI_SUCCESS on success, or DDI_FAILURE on failure.
674  * DDI_FAILURE indicates an error condition and should almost never happen.
675  */
676 static int
677 igb_quiesce(dev_info_t *devinfo)
678 {
679 	igb_t *igb;
680 	struct e1000_hw *hw;
681 
682 	igb = (igb_t *)ddi_get_driver_private(devinfo);
683 
684 	if (igb == NULL)
685 		return (DDI_FAILURE);
686 
687 	hw = &igb->hw;
688 
689 	/*
690 	 * Disable the adapter interrupts
691 	 */
692 	igb_disable_adapter_interrupts(igb);
693 
694 	/* Tell firmware driver is no longer in control */
695 	igb_release_driver_control(hw);
696 
697 	/*
698 	 * Reset the chipset
699 	 */
700 	(void) e1000_reset_hw(hw);
701 
702 	/*
703 	 * Reset PHY if possible
704 	 */
705 	if (e1000_check_reset_block(hw) == E1000_SUCCESS)
706 		(void) e1000_phy_hw_reset(hw);
707 
708 	return (DDI_SUCCESS);
709 }
710 
711 /*
712  * igb_unconfigure - release all resources held by this instance
713  */
714 static void
715 igb_unconfigure(dev_info_t *devinfo, igb_t *igb)
716 {
717 	/*
718 	 * Disable interrupt
719 	 */
720 	if (igb->attach_progress & ATTACH_PROGRESS_ENABLE_INTR) {
721 		(void) igb_disable_intrs(igb);
722 	}
723 
724 	/*
725 	 * Unregister MAC
726 	 */
727 	if (igb->attach_progress & ATTACH_PROGRESS_MAC) {
728 		(void) mac_unregister(igb->mac_hdl);
729 	}
730 
731 	/*
732 	 * Free statistics
733 	 */
734 	if (igb->attach_progress & ATTACH_PROGRESS_STATS) {
735 		kstat_delete((kstat_t *)igb->igb_ks);
736 	}
737 
738 	/*
739 	 * Remove interrupt handlers
740 	 */
741 	if (igb->attach_progress & ATTACH_PROGRESS_ADD_INTR) {
742 		igb_rem_intr_handlers(igb);
743 	}
744 
745 	/*
746 	 * Remove interrupts
747 	 */
748 	if (igb->attach_progress & ATTACH_PROGRESS_ALLOC_INTR) {
749 		igb_rem_intrs(igb);
750 	}
751 
752 	/*
753 	 * Remove driver properties
754 	 */
755 	if (igb->attach_progress & ATTACH_PROGRESS_PROPS) {
756 		(void) ddi_prop_remove_all(devinfo);
757 	}
758 
759 	/*
760 	 * Stop the adapter
761 	 */
762 	if (igb->attach_progress & ATTACH_PROGRESS_INIT_ADAPTER) {
763 		mutex_enter(&igb->gen_lock);
764 		igb_stop_adapter(igb);
765 		mutex_exit(&igb->gen_lock);
766 		if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK)
767 			ddi_fm_service_impact(igb->dip, DDI_SERVICE_UNAFFECTED);
768 	}
769 
770 	/*
771 	 * Free multicast table
772 	 */
773 	igb_release_multicast(igb);
774 
775 	/*
776 	 * Free register handle
777 	 */
778 	if (igb->attach_progress & ATTACH_PROGRESS_REGS_MAP) {
779 		if (igb->osdep.reg_handle != NULL)
780 			ddi_regs_map_free(&igb->osdep.reg_handle);
781 	}
782 
783 	/*
784 	 * Free PCI config handle
785 	 */
786 	if (igb->attach_progress & ATTACH_PROGRESS_PCI_CONFIG) {
787 		if (igb->osdep.cfg_handle != NULL)
788 			pci_config_teardown(&igb->osdep.cfg_handle);
789 	}
790 
791 	/*
792 	 * Free locks
793 	 */
794 	if (igb->attach_progress & ATTACH_PROGRESS_LOCKS) {
795 		igb_destroy_locks(igb);
796 	}
797 
798 	/*
799 	 * Free the rx/tx rings
800 	 */
801 	if (igb->attach_progress & ATTACH_PROGRESS_ALLOC_RINGS) {
802 		igb_free_rings(igb);
803 	}
804 
805 	/*
806 	 * Remove FMA
807 	 */
808 	if (igb->attach_progress & ATTACH_PROGRESS_FMINIT) {
809 		igb_fm_fini(igb);
810 	}
811 
812 	/*
813 	 * Free the driver data structure
814 	 */
815 	kmem_free(igb, sizeof (igb_t));
816 
817 	ddi_set_driver_private(devinfo, NULL);
818 }
819 
820 /*
821  * igb_register_mac - Register the driver and its function pointers with
822  * the GLD interface
823  */
824 static int
825 igb_register_mac(igb_t *igb)
826 {
827 	struct e1000_hw *hw = &igb->hw;
828 	mac_register_t *mac;
829 	int status;
830 
831 	if ((mac = mac_alloc(MAC_VERSION)) == NULL)
832 		return (IGB_FAILURE);
833 
834 	mac->m_type_ident = MAC_PLUGIN_IDENT_ETHER;
835 	mac->m_driver = igb;
836 	mac->m_dip = igb->dip;
837 	mac->m_src_addr = hw->mac.addr;
838 	mac->m_callbacks = &igb_m_callbacks;
839 	mac->m_min_sdu = 0;
840 	mac->m_max_sdu = igb->max_frame_size -
841 	    sizeof (struct ether_vlan_header) - ETHERFCSL;
842 	mac->m_margin = VLAN_TAGSZ;
843 	mac->m_priv_props = igb_priv_props;
844 	mac->m_v12n = MAC_VIRT_LEVEL1;
845 
846 	status = mac_register(mac, &igb->mac_hdl);
847 
848 	mac_free(mac);
849 
850 	return ((status == 0) ? IGB_SUCCESS : IGB_FAILURE);
851 }
852 
853 /*
854  * igb_identify_hardware - Identify the type of the chipset
855  */
856 static int
857 igb_identify_hardware(igb_t *igb)
858 {
859 	struct e1000_hw *hw = &igb->hw;
860 	struct igb_osdep *osdep = &igb->osdep;
861 
862 	/*
863 	 * Get the device id
864 	 */
865 	hw->vendor_id =
866 	    pci_config_get16(osdep->cfg_handle, PCI_CONF_VENID);
867 	hw->device_id =
868 	    pci_config_get16(osdep->cfg_handle, PCI_CONF_DEVID);
869 	hw->revision_id =
870 	    pci_config_get8(osdep->cfg_handle, PCI_CONF_REVID);
871 	hw->subsystem_device_id =
872 	    pci_config_get16(osdep->cfg_handle, PCI_CONF_SUBSYSID);
873 	hw->subsystem_vendor_id =
874 	    pci_config_get16(osdep->cfg_handle, PCI_CONF_SUBVENID);
875 
876 	/*
877 	 * Set the mac type of the adapter based on the device id
878 	 */
879 	if (e1000_set_mac_type(hw) != E1000_SUCCESS) {
880 		return (IGB_FAILURE);
881 	}
882 
883 	/*
884 	 * Install adapter capabilities based on mac type
885 	 */
886 	switch (hw->mac.type) {
887 	case e1000_82575:
888 		igb->capab = &igb_82575_cap;
889 		break;
890 	case e1000_82576:
891 		igb->capab = &igb_82576_cap;
892 		break;
893 	case e1000_82580:
894 		igb->capab = &igb_82580_cap;
895 		break;
896 	case e1000_i350:
897 		igb->capab = &igb_i350_cap;
898 		break;
899 	case e1000_i210:
900 	case e1000_i211:
901 		igb->capab = &igb_i210_cap;
902 		break;
903 	default:
904 		return (IGB_FAILURE);
905 	}
906 
907 	return (IGB_SUCCESS);
908 }
909 
910 /*
911  * igb_regs_map - Map the device registers
912  */
913 static int
914 igb_regs_map(igb_t *igb)
915 {
916 	dev_info_t *devinfo = igb->dip;
917 	struct e1000_hw *hw = &igb->hw;
918 	struct igb_osdep *osdep = &igb->osdep;
919 	off_t mem_size;
920 
921 	/*
922 	 * First get the size of device registers to be mapped.
923 	 */
924 	if (ddi_dev_regsize(devinfo, IGB_ADAPTER_REGSET, &mem_size) !=
925 	    DDI_SUCCESS) {
926 		return (IGB_FAILURE);
927 	}
928 
929 	/*
930 	 * Call ddi_regs_map_setup() to map registers
931 	 */
932 	if ((ddi_regs_map_setup(devinfo, IGB_ADAPTER_REGSET,
933 	    (caddr_t *)&hw->hw_addr, 0,
934 	    mem_size, &igb_regs_acc_attr,
935 	    &osdep->reg_handle)) != DDI_SUCCESS) {
936 		return (IGB_FAILURE);
937 	}
938 
939 	return (IGB_SUCCESS);
940 }
941 
942 /*
943  * igb_init_properties - Initialize driver properties
944  */
945 static void
946 igb_init_properties(igb_t *igb)
947 {
948 	/*
949 	 * Get conf file properties, including link settings
950 	 * jumbo frames, ring number, descriptor number, etc.
951 	 */
952 	igb_get_conf(igb);
953 }
954 
955 /*
956  * igb_init_driver_settings - Initialize driver settings
957  *
958  * The settings include hardware function pointers, bus information,
959  * rx/tx rings settings, link state, and any other parameters that
960  * need to be setup during driver initialization.
961  */
962 static int
963 igb_init_driver_settings(igb_t *igb)
964 {
965 	struct e1000_hw *hw = &igb->hw;
966 	igb_rx_ring_t *rx_ring;
967 	igb_tx_ring_t *tx_ring;
968 	uint32_t rx_size;
969 	uint32_t tx_size;
970 	int i;
971 
972 	/*
973 	 * Initialize chipset specific hardware function pointers
974 	 */
975 	if (e1000_setup_init_funcs(hw, B_TRUE) != E1000_SUCCESS) {
976 		return (IGB_FAILURE);
977 	}
978 
979 	/*
980 	 * Get bus information
981 	 */
982 	if (e1000_get_bus_info(hw) != E1000_SUCCESS) {
983 		return (IGB_FAILURE);
984 	}
985 
986 	/*
987 	 * Get the system page size
988 	 */
989 	igb->page_size = ddi_ptob(igb->dip, (ulong_t)1);
990 
991 	/*
992 	 * Set rx buffer size
993 	 * The IP header alignment room is counted in the calculation.
994 	 * The rx buffer size is in unit of 1K that is required by the
995 	 * chipset hardware.
996 	 */
997 	rx_size = igb->max_frame_size + IPHDR_ALIGN_ROOM;
998 	igb->rx_buf_size = ((rx_size >> 10) +
999 	    ((rx_size & (((uint32_t)1 << 10) - 1)) > 0 ? 1 : 0)) << 10;
1000 
1001 	/*
1002 	 * Set tx buffer size
1003 	 */
1004 	tx_size = igb->max_frame_size;
1005 	igb->tx_buf_size = ((tx_size >> 10) +
1006 	    ((tx_size & (((uint32_t)1 << 10) - 1)) > 0 ? 1 : 0)) << 10;
1007 
1008 	/*
1009 	 * Initialize rx/tx rings parameters
1010 	 */
1011 	for (i = 0; i < igb->num_rx_rings; i++) {
1012 		rx_ring = &igb->rx_rings[i];
1013 		rx_ring->index = i;
1014 		rx_ring->igb = igb;
1015 	}
1016 
1017 	for (i = 0; i < igb->num_tx_rings; i++) {
1018 		tx_ring = &igb->tx_rings[i];
1019 		tx_ring->index = i;
1020 		tx_ring->igb = igb;
1021 		if (igb->tx_head_wb_enable)
1022 			tx_ring->tx_recycle = igb_tx_recycle_head_wb;
1023 		else
1024 			tx_ring->tx_recycle = igb_tx_recycle_legacy;
1025 
1026 		tx_ring->ring_size = igb->tx_ring_size;
1027 		tx_ring->free_list_size = igb->tx_ring_size +
1028 		    (igb->tx_ring_size >> 1);
1029 	}
1030 
1031 	/*
1032 	 * Initialize values of interrupt throttling rates
1033 	 */
1034 	for (i = 1; i < MAX_NUM_EITR; i++)
1035 		igb->intr_throttling[i] = igb->intr_throttling[0];
1036 
1037 	/*
1038 	 * The initial link state should be "unknown"
1039 	 */
1040 	igb->link_state = LINK_STATE_UNKNOWN;
1041 
1042 	return (IGB_SUCCESS);
1043 }
1044 
1045 /*
1046  * igb_init_locks - Initialize locks
1047  */
1048 static void
1049 igb_init_locks(igb_t *igb)
1050 {
1051 	igb_rx_ring_t *rx_ring;
1052 	igb_tx_ring_t *tx_ring;
1053 	int i;
1054 
1055 	for (i = 0; i < igb->num_rx_rings; i++) {
1056 		rx_ring = &igb->rx_rings[i];
1057 		mutex_init(&rx_ring->rx_lock, NULL,
1058 		    MUTEX_DRIVER, DDI_INTR_PRI(igb->intr_pri));
1059 	}
1060 
1061 	for (i = 0; i < igb->num_tx_rings; i++) {
1062 		tx_ring = &igb->tx_rings[i];
1063 		mutex_init(&tx_ring->tx_lock, NULL,
1064 		    MUTEX_DRIVER, DDI_INTR_PRI(igb->intr_pri));
1065 		mutex_init(&tx_ring->recycle_lock, NULL,
1066 		    MUTEX_DRIVER, DDI_INTR_PRI(igb->intr_pri));
1067 		mutex_init(&tx_ring->tcb_head_lock, NULL,
1068 		    MUTEX_DRIVER, DDI_INTR_PRI(igb->intr_pri));
1069 		mutex_init(&tx_ring->tcb_tail_lock, NULL,
1070 		    MUTEX_DRIVER, DDI_INTR_PRI(igb->intr_pri));
1071 	}
1072 
1073 	mutex_init(&igb->gen_lock, NULL,
1074 	    MUTEX_DRIVER, DDI_INTR_PRI(igb->intr_pri));
1075 
1076 	mutex_init(&igb->watchdog_lock, NULL,
1077 	    MUTEX_DRIVER, DDI_INTR_PRI(igb->intr_pri));
1078 
1079 	mutex_init(&igb->link_lock, NULL,
1080 	    MUTEX_DRIVER, DDI_INTR_PRI(igb->intr_pri));
1081 }
1082 
1083 /*
1084  * igb_destroy_locks - Destroy locks
1085  */
1086 static void
1087 igb_destroy_locks(igb_t *igb)
1088 {
1089 	igb_rx_ring_t *rx_ring;
1090 	igb_tx_ring_t *tx_ring;
1091 	int i;
1092 
1093 	for (i = 0; i < igb->num_rx_rings; i++) {
1094 		rx_ring = &igb->rx_rings[i];
1095 		mutex_destroy(&rx_ring->rx_lock);
1096 	}
1097 
1098 	for (i = 0; i < igb->num_tx_rings; i++) {
1099 		tx_ring = &igb->tx_rings[i];
1100 		mutex_destroy(&tx_ring->tx_lock);
1101 		mutex_destroy(&tx_ring->recycle_lock);
1102 		mutex_destroy(&tx_ring->tcb_head_lock);
1103 		mutex_destroy(&tx_ring->tcb_tail_lock);
1104 	}
1105 
1106 	mutex_destroy(&igb->gen_lock);
1107 	mutex_destroy(&igb->watchdog_lock);
1108 	mutex_destroy(&igb->link_lock);
1109 }
1110 
1111 static int
1112 igb_resume(dev_info_t *devinfo)
1113 {
1114 	igb_t *igb;
1115 
1116 	igb = (igb_t *)ddi_get_driver_private(devinfo);
1117 	if (igb == NULL)
1118 		return (DDI_FAILURE);
1119 
1120 	mutex_enter(&igb->gen_lock);
1121 
1122 	/*
1123 	 * Enable interrupts
1124 	 */
1125 	if (igb->attach_progress & ATTACH_PROGRESS_ENABLE_INTR) {
1126 		if (igb_enable_intrs(igb) != IGB_SUCCESS) {
1127 			igb_error(igb, "Failed to enable DDI interrupts");
1128 			mutex_exit(&igb->gen_lock);
1129 			return (DDI_FAILURE);
1130 		}
1131 	}
1132 
1133 	if (igb->igb_state & IGB_STARTED) {
1134 		if (igb_start(igb, B_FALSE) != IGB_SUCCESS) {
1135 			mutex_exit(&igb->gen_lock);
1136 			return (DDI_FAILURE);
1137 		}
1138 
1139 		/*
1140 		 * Enable and start the watchdog timer
1141 		 */
1142 		igb_enable_watchdog_timer(igb);
1143 	}
1144 
1145 	atomic_and_32(&igb->igb_state, ~IGB_SUSPENDED);
1146 
1147 	mutex_exit(&igb->gen_lock);
1148 
1149 	return (DDI_SUCCESS);
1150 }
1151 
1152 static int
1153 igb_suspend(dev_info_t *devinfo)
1154 {
1155 	igb_t *igb;
1156 
1157 	igb = (igb_t *)ddi_get_driver_private(devinfo);
1158 	if (igb == NULL)
1159 		return (DDI_FAILURE);
1160 
1161 	mutex_enter(&igb->gen_lock);
1162 
1163 	atomic_or_32(&igb->igb_state, IGB_SUSPENDED);
1164 
1165 	/*
1166 	 * Disable interrupts
1167 	 */
1168 	if (igb->attach_progress & ATTACH_PROGRESS_ENABLE_INTR) {
1169 		(void) igb_disable_intrs(igb);
1170 	}
1171 
1172 	if (!(igb->igb_state & IGB_STARTED)) {
1173 		mutex_exit(&igb->gen_lock);
1174 		return (DDI_SUCCESS);
1175 	}
1176 
1177 	igb_stop(igb, B_FALSE);
1178 
1179 	mutex_exit(&igb->gen_lock);
1180 
1181 	/*
1182 	 * Disable and stop the watchdog timer
1183 	 */
1184 	igb_disable_watchdog_timer(igb);
1185 
1186 	return (DDI_SUCCESS);
1187 }
1188 
1189 static int
1190 igb_init(igb_t *igb)
1191 {
1192 	mutex_enter(&igb->gen_lock);
1193 
1194 	/*
1195 	 * Initilize the adapter
1196 	 */
1197 	if (igb_init_adapter(igb) != IGB_SUCCESS) {
1198 		mutex_exit(&igb->gen_lock);
1199 		igb_fm_ereport(igb, DDI_FM_DEVICE_INVAL_STATE);
1200 		ddi_fm_service_impact(igb->dip, DDI_SERVICE_LOST);
1201 		return (IGB_FAILURE);
1202 	}
1203 
1204 	mutex_exit(&igb->gen_lock);
1205 
1206 	return (IGB_SUCCESS);
1207 }
1208 
1209 /*
1210  * igb_init_mac_address - Initialize the default MAC address
1211  *
1212  * On success, the MAC address is entered in the igb->hw.mac.addr
1213  * and hw->mac.perm_addr fields and the adapter's RAR(0) receive
1214  * address register.
1215  *
1216  * Important side effects:
1217  * 1. adapter is reset - this is required to put it in a known state.
1218  * 2. all of non-volatile memory (NVM) is read & checksummed - NVM is where
1219  * MAC address and all default settings are stored, so a valid checksum
1220  * is required.
1221  */
1222 static int
1223 igb_init_mac_address(igb_t *igb)
1224 {
1225 	struct e1000_hw *hw = &igb->hw;
1226 
1227 	ASSERT(mutex_owned(&igb->gen_lock));
1228 
1229 	/*
1230 	 * Reset chipset to put the hardware in a known state
1231 	 * before we try to get MAC address from NVM.
1232 	 */
1233 	if (e1000_reset_hw(hw) != E1000_SUCCESS) {
1234 		igb_error(igb, "Adapter reset failed.");
1235 		goto init_mac_fail;
1236 	}
1237 
1238 	/*
1239 	 * NVM validation
1240 	 */
1241 	if (((igb->hw.mac.type != e1000_i210) &&
1242 	    (igb->hw.mac.type != e1000_i211)) &&
1243 	    (e1000_validate_nvm_checksum(hw) < 0)) {
1244 		/*
1245 		 * Some PCI-E parts fail the first check due to
1246 		 * the link being in sleep state.  Call it again,
1247 		 * if it fails a second time its a real issue.
1248 		 */
1249 		if (e1000_validate_nvm_checksum(hw) < 0) {
1250 			igb_error(igb,
1251 			    "Invalid NVM checksum. Please contact "
1252 			    "the vendor to update the NVM.");
1253 			goto init_mac_fail;
1254 		}
1255 	}
1256 
1257 	/*
1258 	 * Get the mac address
1259 	 * This function should handle SPARC case correctly.
1260 	 */
1261 	if (!igb_find_mac_address(igb)) {
1262 		igb_error(igb, "Failed to get the mac address");
1263 		goto init_mac_fail;
1264 	}
1265 
1266 	/* Validate mac address */
1267 	if (!is_valid_mac_addr(hw->mac.addr)) {
1268 		igb_error(igb, "Invalid mac address");
1269 		goto init_mac_fail;
1270 	}
1271 
1272 	return (IGB_SUCCESS);
1273 
1274 init_mac_fail:
1275 	return (IGB_FAILURE);
1276 }
1277 
1278 /*
1279  * igb_init_adapter - Initialize the adapter
1280  */
1281 static int
1282 igb_init_adapter(igb_t *igb)
1283 {
1284 	struct e1000_hw *hw = &igb->hw;
1285 	uint32_t pba;
1286 	int oemid[2];
1287 	uint16_t nvmword;
1288 	uint32_t hwm;
1289 	uint32_t default_mtu;
1290 	u8 pbanum[E1000_PBANUM_LENGTH];
1291 	char eepromver[5];	/* f.ff */
1292 	int i;
1293 
1294 	ASSERT(mutex_owned(&igb->gen_lock));
1295 
1296 	/*
1297 	 * In order to obtain the default MAC address, this will reset the
1298 	 * adapter and validate the NVM that the address and many other
1299 	 * default settings come from.
1300 	 */
1301 	if (igb_init_mac_address(igb) != IGB_SUCCESS) {
1302 		igb_error(igb, "Failed to initialize MAC address");
1303 		goto init_adapter_fail;
1304 	}
1305 
1306 	/*
1307 	 * Packet Buffer Allocation (PBA)
1308 	 * Writing PBA sets the receive portion of the buffer
1309 	 * the remainder is used for the transmit buffer.
1310 	 */
1311 	switch (hw->mac.type) {
1312 	case e1000_82575:
1313 		pba = E1000_PBA_32K;
1314 		break;
1315 	case e1000_82576:
1316 		pba = E1000_READ_REG(hw, E1000_RXPBS);
1317 		pba &= E1000_RXPBS_SIZE_MASK_82576;
1318 		break;
1319 	case e1000_82580:
1320 	case e1000_i350:
1321 		pba = E1000_READ_REG(hw, E1000_RXPBS);
1322 		pba = e1000_rxpbs_adjust_82580(pba);
1323 		break;
1324 	case e1000_i210:
1325 	case e1000_i211:
1326 		pba = E1000_PBA_34K;
1327 	default:
1328 		break;
1329 	}
1330 
1331 	/* Special needs in case of Jumbo frames */
1332 	default_mtu = igb_get_prop(igb, PROP_DEFAULT_MTU,
1333 	    MIN_MTU, MAX_MTU, DEFAULT_MTU);
1334 	if ((hw->mac.type == e1000_82575) && (default_mtu > ETHERMTU)) {
1335 		u32 tx_space, min_tx, min_rx;
1336 		pba = E1000_READ_REG(hw, E1000_PBA);
1337 		tx_space = pba >> 16;
1338 		pba &= 0xffff;
1339 		min_tx = (igb->max_frame_size +
1340 		    sizeof (struct e1000_tx_desc) - ETHERNET_FCS_SIZE) * 2;
1341 		min_tx = roundup(min_tx, 1024);
1342 		min_tx >>= 10;
1343 		min_rx = igb->max_frame_size;
1344 		min_rx = roundup(min_rx, 1024);
1345 		min_rx >>= 10;
1346 		if (tx_space < min_tx &&
1347 		    ((min_tx - tx_space) < pba)) {
1348 			pba = pba - (min_tx - tx_space);
1349 			/*
1350 			 * if short on rx space, rx wins
1351 			 * and must trump tx adjustment
1352 			 */
1353 			if (pba < min_rx)
1354 				pba = min_rx;
1355 		}
1356 		E1000_WRITE_REG(hw, E1000_PBA, pba);
1357 	}
1358 
1359 	DEBUGOUT1("igb_init: pba=%dK", pba);
1360 
1361 	/*
1362 	 * These parameters control the automatic generation (Tx) and
1363 	 * response (Rx) to Ethernet PAUSE frames.
1364 	 * - High water mark should allow for at least two frames to be
1365 	 *   received after sending an XOFF.
1366 	 * - Low water mark works best when it is very near the high water mark.
1367 	 *   This allows the receiver to restart by sending XON when it has
1368 	 *   drained a bit.
1369 	 */
1370 	hwm = min(((pba << 10) * 9 / 10),
1371 	    ((pba << 10) - 2 * igb->max_frame_size));
1372 
1373 	if (hw->mac.type < e1000_82576) {
1374 		hw->fc.high_water = hwm & 0xFFF8;  /* 8-byte granularity */
1375 		hw->fc.low_water = hw->fc.high_water - 8;
1376 	} else {
1377 		hw->fc.high_water = hwm & 0xFFF0;  /* 16-byte granularity */
1378 		hw->fc.low_water = hw->fc.high_water - 16;
1379 	}
1380 
1381 	hw->fc.pause_time = E1000_FC_PAUSE_TIME;
1382 	hw->fc.send_xon = B_TRUE;
1383 
1384 	(void) e1000_validate_mdi_setting(hw);
1385 
1386 	/*
1387 	 * Reset the chipset hardware the second time to put PBA settings
1388 	 * into effect.
1389 	 */
1390 	if (e1000_reset_hw(hw) != E1000_SUCCESS) {
1391 		igb_error(igb, "Second reset failed");
1392 		goto init_adapter_fail;
1393 	}
1394 
1395 	/*
1396 	 * Don't wait for auto-negotiation to complete
1397 	 */
1398 	hw->phy.autoneg_wait_to_complete = B_FALSE;
1399 
1400 	/*
1401 	 * Copper options
1402 	 */
1403 	if (hw->phy.media_type == e1000_media_type_copper) {
1404 		hw->phy.mdix = 0;	/* AUTO_ALL_MODES */
1405 		hw->phy.disable_polarity_correction = B_FALSE;
1406 		hw->phy.ms_type = e1000_ms_hw_default; /* E1000_MASTER_SLAVE */
1407 	}
1408 
1409 	/*
1410 	 * Initialize link settings
1411 	 */
1412 	(void) igb_setup_link(igb, B_FALSE);
1413 
1414 	/*
1415 	 * Configure/Initialize hardware
1416 	 */
1417 	if (e1000_init_hw(hw) != E1000_SUCCESS) {
1418 		igb_error(igb, "Failed to initialize hardware");
1419 		goto init_adapter_fail;
1420 	}
1421 
1422 	/*
1423 	 *  Start the link setup timer
1424 	 */
1425 	igb_start_link_timer(igb);
1426 
1427 	/*
1428 	 * Disable wakeup control by default
1429 	 */
1430 	E1000_WRITE_REG(hw, E1000_WUC, 0);
1431 
1432 	/*
1433 	 * Record phy info in hw struct
1434 	 */
1435 	(void) e1000_get_phy_info(hw);
1436 
1437 	/*
1438 	 * Make sure driver has control
1439 	 */
1440 	igb_get_driver_control(hw);
1441 
1442 	/*
1443 	 * Restore LED settings to the default from EEPROM
1444 	 * to meet the standard for Sun platforms.
1445 	 */
1446 	(void) e1000_cleanup_led(hw);
1447 
1448 	/*
1449 	 * Setup MSI-X interrupts
1450 	 */
1451 	if (igb->intr_type == DDI_INTR_TYPE_MSIX)
1452 		igb->capab->setup_msix(igb);
1453 
1454 	/*
1455 	 * Initialize unicast addresses.
1456 	 */
1457 	igb_init_unicst(igb);
1458 
1459 	/*
1460 	 * Setup and initialize the mctable structures.
1461 	 */
1462 	igb_setup_multicst(igb);
1463 
1464 	/*
1465 	 * Set interrupt throttling rate
1466 	 */
1467 	for (i = 0; i < igb->intr_cnt; i++)
1468 		E1000_WRITE_REG(hw, E1000_EITR(i), igb->intr_throttling[i]);
1469 
1470 	/*
1471 	 * Read identifying information and place in devinfo.
1472 	 */
1473 	nvmword = 0xffff;
1474 	(void) e1000_read_nvm(&igb->hw, NVM_OEM_OFFSET_0, 1, &nvmword);
1475 	oemid[0] = (int)nvmword;
1476 	(void) e1000_read_nvm(&igb->hw, NVM_OEM_OFFSET_1, 1, &nvmword);
1477 	oemid[1] = (int)nvmword;
1478 	(void) ddi_prop_update_int_array(DDI_DEV_T_NONE, igb->dip,
1479 	    "oem-identifier", oemid, 2);
1480 
1481 	pbanum[0] = '\0';
1482 	(void) e1000_read_pba_string(&igb->hw, pbanum, sizeof (pbanum));
1483 	if (*pbanum != '\0') {
1484 		(void) ddi_prop_update_string(DDI_DEV_T_NONE, igb->dip,
1485 		    "printed-board-assembly", (char *)pbanum);
1486 	}
1487 
1488 	nvmword = 0xffff;
1489 	(void) e1000_read_nvm(&igb->hw, NVM_VERSION, 1, &nvmword);
1490 	if ((nvmword & 0xf00) == 0) {
1491 		(void) snprintf(eepromver, sizeof (eepromver), "%x.%x",
1492 		    (nvmword & 0xf000) >> 12, (nvmword & 0xff));
1493 		(void) ddi_prop_update_string(DDI_DEV_T_NONE, igb->dip,
1494 		    "nvm-version", eepromver);
1495 	}
1496 
1497 	/*
1498 	 * Save the state of the phy
1499 	 */
1500 	igb_get_phy_state(igb);
1501 
1502 	igb_param_sync(igb);
1503 
1504 	return (IGB_SUCCESS);
1505 
1506 init_adapter_fail:
1507 	/*
1508 	 * Reset PHY if possible
1509 	 */
1510 	if (e1000_check_reset_block(hw) == E1000_SUCCESS)
1511 		(void) e1000_phy_hw_reset(hw);
1512 
1513 	return (IGB_FAILURE);
1514 }
1515 
1516 /*
1517  * igb_stop_adapter - Stop the adapter
1518  */
1519 static void
1520 igb_stop_adapter(igb_t *igb)
1521 {
1522 	struct e1000_hw *hw = &igb->hw;
1523 
1524 	ASSERT(mutex_owned(&igb->gen_lock));
1525 
1526 	/* Stop the link setup timer */
1527 	igb_stop_link_timer(igb);
1528 
1529 	/* Tell firmware driver is no longer in control */
1530 	igb_release_driver_control(hw);
1531 
1532 	/*
1533 	 * Reset the chipset
1534 	 */
1535 	if (e1000_reset_hw(hw) != E1000_SUCCESS) {
1536 		igb_fm_ereport(igb, DDI_FM_DEVICE_INVAL_STATE);
1537 		ddi_fm_service_impact(igb->dip, DDI_SERVICE_LOST);
1538 	}
1539 
1540 	/*
1541 	 * e1000_phy_hw_reset is not needed here, MAC reset above is sufficient
1542 	 */
1543 }
1544 
1545 /*
1546  * igb_reset - Reset the chipset and restart the driver.
1547  *
1548  * It involves stopping and re-starting the chipset,
1549  * and re-configuring the rx/tx rings.
1550  */
1551 static int
1552 igb_reset(igb_t *igb)
1553 {
1554 	int i;
1555 
1556 	mutex_enter(&igb->gen_lock);
1557 
1558 	ASSERT(igb->igb_state & IGB_STARTED);
1559 	atomic_and_32(&igb->igb_state, ~IGB_STARTED);
1560 
1561 	/*
1562 	 * Disable the adapter interrupts to stop any rx/tx activities
1563 	 * before draining pending data and resetting hardware.
1564 	 */
1565 	igb_disable_adapter_interrupts(igb);
1566 
1567 	/*
1568 	 * Drain the pending transmit packets
1569 	 */
1570 	(void) igb_tx_drain(igb);
1571 
1572 	for (i = 0; i < igb->num_rx_rings; i++)
1573 		mutex_enter(&igb->rx_rings[i].rx_lock);
1574 	for (i = 0; i < igb->num_tx_rings; i++)
1575 		mutex_enter(&igb->tx_rings[i].tx_lock);
1576 
1577 	/*
1578 	 * Stop the adapter
1579 	 */
1580 	igb_stop_adapter(igb);
1581 
1582 	/*
1583 	 * Clean the pending tx data/resources
1584 	 */
1585 	igb_tx_clean(igb);
1586 
1587 	/*
1588 	 * Start the adapter
1589 	 */
1590 	if (igb_init_adapter(igb) != IGB_SUCCESS) {
1591 		igb_fm_ereport(igb, DDI_FM_DEVICE_INVAL_STATE);
1592 		goto reset_failure;
1593 	}
1594 
1595 	/*
1596 	 * Setup the rx/tx rings
1597 	 */
1598 	igb->tx_ring_init = B_FALSE;
1599 	igb_setup_rings(igb);
1600 
1601 	atomic_and_32(&igb->igb_state, ~(IGB_ERROR | IGB_STALL));
1602 
1603 	/*
1604 	 * Enable adapter interrupts
1605 	 * The interrupts must be enabled after the driver state is START
1606 	 */
1607 	igb->capab->enable_intr(igb);
1608 
1609 	if (igb_check_acc_handle(igb->osdep.cfg_handle) != DDI_FM_OK)
1610 		goto reset_failure;
1611 
1612 	if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK)
1613 		goto reset_failure;
1614 
1615 	for (i = igb->num_tx_rings - 1; i >= 0; i--)
1616 		mutex_exit(&igb->tx_rings[i].tx_lock);
1617 	for (i = igb->num_rx_rings - 1; i >= 0; i--)
1618 		mutex_exit(&igb->rx_rings[i].rx_lock);
1619 
1620 	atomic_or_32(&igb->igb_state, IGB_STARTED);
1621 
1622 	mutex_exit(&igb->gen_lock);
1623 
1624 	return (IGB_SUCCESS);
1625 
1626 reset_failure:
1627 	for (i = igb->num_tx_rings - 1; i >= 0; i--)
1628 		mutex_exit(&igb->tx_rings[i].tx_lock);
1629 	for (i = igb->num_rx_rings - 1; i >= 0; i--)
1630 		mutex_exit(&igb->rx_rings[i].rx_lock);
1631 
1632 	mutex_exit(&igb->gen_lock);
1633 
1634 	ddi_fm_service_impact(igb->dip, DDI_SERVICE_LOST);
1635 
1636 	return (IGB_FAILURE);
1637 }
1638 
1639 /*
1640  * igb_tx_clean - Clean the pending transmit packets and DMA resources
1641  */
1642 static void
1643 igb_tx_clean(igb_t *igb)
1644 {
1645 	igb_tx_ring_t *tx_ring;
1646 	tx_control_block_t *tcb;
1647 	link_list_t pending_list;
1648 	uint32_t desc_num;
1649 	int i, j;
1650 
1651 	LINK_LIST_INIT(&pending_list);
1652 
1653 	for (i = 0; i < igb->num_tx_rings; i++) {
1654 		tx_ring = &igb->tx_rings[i];
1655 
1656 		mutex_enter(&tx_ring->recycle_lock);
1657 
1658 		/*
1659 		 * Clean the pending tx data - the pending packets in the
1660 		 * work_list that have no chances to be transmitted again.
1661 		 *
1662 		 * We must ensure the chipset is stopped or the link is down
1663 		 * before cleaning the transmit packets.
1664 		 */
1665 		desc_num = 0;
1666 		for (j = 0; j < tx_ring->ring_size; j++) {
1667 			tcb = tx_ring->work_list[j];
1668 			if (tcb != NULL) {
1669 				desc_num += tcb->desc_num;
1670 
1671 				tx_ring->work_list[j] = NULL;
1672 
1673 				igb_free_tcb(tcb);
1674 
1675 				LIST_PUSH_TAIL(&pending_list, &tcb->link);
1676 			}
1677 		}
1678 
1679 		if (desc_num > 0) {
1680 			atomic_add_32(&tx_ring->tbd_free, desc_num);
1681 			ASSERT(tx_ring->tbd_free == tx_ring->ring_size);
1682 
1683 			/*
1684 			 * Reset the head and tail pointers of the tbd ring;
1685 			 * Reset the head write-back if it is enabled.
1686 			 */
1687 			tx_ring->tbd_head = 0;
1688 			tx_ring->tbd_tail = 0;
1689 			if (igb->tx_head_wb_enable)
1690 				*tx_ring->tbd_head_wb = 0;
1691 
1692 			E1000_WRITE_REG(&igb->hw, E1000_TDH(tx_ring->index), 0);
1693 			E1000_WRITE_REG(&igb->hw, E1000_TDT(tx_ring->index), 0);
1694 		}
1695 
1696 		mutex_exit(&tx_ring->recycle_lock);
1697 
1698 		/*
1699 		 * Add the tx control blocks in the pending list to
1700 		 * the free list.
1701 		 */
1702 		igb_put_free_list(tx_ring, &pending_list);
1703 	}
1704 }
1705 
1706 /*
1707  * igb_tx_drain - Drain the tx rings to allow pending packets to be transmitted
1708  */
1709 static boolean_t
1710 igb_tx_drain(igb_t *igb)
1711 {
1712 	igb_tx_ring_t *tx_ring;
1713 	boolean_t done;
1714 	int i, j;
1715 
1716 	/*
1717 	 * Wait for a specific time to allow pending tx packets
1718 	 * to be transmitted.
1719 	 *
1720 	 * Check the counter tbd_free to see if transmission is done.
1721 	 * No lock protection is needed here.
1722 	 *
1723 	 * Return B_TRUE if all pending packets have been transmitted;
1724 	 * Otherwise return B_FALSE;
1725 	 */
1726 	for (i = 0; i < TX_DRAIN_TIME; i++) {
1727 
1728 		done = B_TRUE;
1729 		for (j = 0; j < igb->num_tx_rings; j++) {
1730 			tx_ring = &igb->tx_rings[j];
1731 			done = done &&
1732 			    (tx_ring->tbd_free == tx_ring->ring_size);
1733 		}
1734 
1735 		if (done)
1736 			break;
1737 
1738 		msec_delay(1);
1739 	}
1740 
1741 	return (done);
1742 }
1743 
1744 /*
1745  * igb_rx_drain - Wait for all rx buffers to be released by upper layer
1746  */
1747 static boolean_t
1748 igb_rx_drain(igb_t *igb)
1749 {
1750 	boolean_t done;
1751 	int i;
1752 
1753 	/*
1754 	 * Polling the rx free list to check if those rx buffers held by
1755 	 * the upper layer are released.
1756 	 *
1757 	 * Check the counter rcb_free to see if all pending buffers are
1758 	 * released. No lock protection is needed here.
1759 	 *
1760 	 * Return B_TRUE if all pending buffers have been released;
1761 	 * Otherwise return B_FALSE;
1762 	 */
1763 	for (i = 0; i < RX_DRAIN_TIME; i++) {
1764 		done = (igb->rcb_pending == 0);
1765 
1766 		if (done)
1767 			break;
1768 
1769 		msec_delay(1);
1770 	}
1771 
1772 	return (done);
1773 }
1774 
1775 /*
1776  * igb_start - Start the driver/chipset
1777  */
1778 int
1779 igb_start(igb_t *igb, boolean_t alloc_buffer)
1780 {
1781 	int i;
1782 
1783 	ASSERT(mutex_owned(&igb->gen_lock));
1784 
1785 	if (alloc_buffer) {
1786 		if (igb_alloc_rx_data(igb) != IGB_SUCCESS) {
1787 			igb_error(igb,
1788 			    "Failed to allocate software receive rings");
1789 			return (IGB_FAILURE);
1790 		}
1791 
1792 		/* Allocate buffers for all the rx/tx rings */
1793 		if (igb_alloc_dma(igb) != IGB_SUCCESS) {
1794 			igb_error(igb, "Failed to allocate DMA resource");
1795 			return (IGB_FAILURE);
1796 		}
1797 
1798 		igb->tx_ring_init = B_TRUE;
1799 	} else {
1800 		igb->tx_ring_init = B_FALSE;
1801 	}
1802 
1803 	for (i = 0; i < igb->num_rx_rings; i++)
1804 		mutex_enter(&igb->rx_rings[i].rx_lock);
1805 	for (i = 0; i < igb->num_tx_rings; i++)
1806 		mutex_enter(&igb->tx_rings[i].tx_lock);
1807 
1808 	/*
1809 	 * Start the adapter
1810 	 */
1811 	if ((igb->attach_progress & ATTACH_PROGRESS_INIT_ADAPTER) == 0) {
1812 		if (igb_init_adapter(igb) != IGB_SUCCESS) {
1813 			igb_fm_ereport(igb, DDI_FM_DEVICE_INVAL_STATE);
1814 			goto start_failure;
1815 		}
1816 		igb->attach_progress |= ATTACH_PROGRESS_INIT_ADAPTER;
1817 	}
1818 
1819 	/*
1820 	 * Setup the rx/tx rings
1821 	 */
1822 	igb_setup_rings(igb);
1823 
1824 	/*
1825 	 * Enable adapter interrupts
1826 	 * The interrupts must be enabled after the driver state is START
1827 	 */
1828 	igb->capab->enable_intr(igb);
1829 
1830 	if (igb_check_acc_handle(igb->osdep.cfg_handle) != DDI_FM_OK)
1831 		goto start_failure;
1832 
1833 	if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK)
1834 		goto start_failure;
1835 
1836 	if (igb->hw.mac.type == e1000_i350)
1837 		(void) e1000_set_eee_i350(&igb->hw);
1838 
1839 	for (i = igb->num_tx_rings - 1; i >= 0; i--)
1840 		mutex_exit(&igb->tx_rings[i].tx_lock);
1841 	for (i = igb->num_rx_rings - 1; i >= 0; i--)
1842 		mutex_exit(&igb->rx_rings[i].rx_lock);
1843 
1844 	return (IGB_SUCCESS);
1845 
1846 start_failure:
1847 	for (i = igb->num_tx_rings - 1; i >= 0; i--)
1848 		mutex_exit(&igb->tx_rings[i].tx_lock);
1849 	for (i = igb->num_rx_rings - 1; i >= 0; i--)
1850 		mutex_exit(&igb->rx_rings[i].rx_lock);
1851 
1852 	ddi_fm_service_impact(igb->dip, DDI_SERVICE_LOST);
1853 
1854 	return (IGB_FAILURE);
1855 }
1856 
1857 /*
1858  * igb_stop - Stop the driver/chipset
1859  */
1860 void
1861 igb_stop(igb_t *igb, boolean_t free_buffer)
1862 {
1863 	int i;
1864 
1865 	ASSERT(mutex_owned(&igb->gen_lock));
1866 
1867 	igb->attach_progress &= ~ATTACH_PROGRESS_INIT_ADAPTER;
1868 
1869 	/*
1870 	 * Disable the adapter interrupts
1871 	 */
1872 	igb_disable_adapter_interrupts(igb);
1873 
1874 	/*
1875 	 * Drain the pending tx packets
1876 	 */
1877 	(void) igb_tx_drain(igb);
1878 
1879 	for (i = 0; i < igb->num_rx_rings; i++)
1880 		mutex_enter(&igb->rx_rings[i].rx_lock);
1881 	for (i = 0; i < igb->num_tx_rings; i++)
1882 		mutex_enter(&igb->tx_rings[i].tx_lock);
1883 
1884 	/*
1885 	 * Stop the adapter
1886 	 */
1887 	igb_stop_adapter(igb);
1888 
1889 	/*
1890 	 * Clean the pending tx data/resources
1891 	 */
1892 	igb_tx_clean(igb);
1893 
1894 	for (i = igb->num_tx_rings - 1; i >= 0; i--)
1895 		mutex_exit(&igb->tx_rings[i].tx_lock);
1896 	for (i = igb->num_rx_rings - 1; i >= 0; i--)
1897 		mutex_exit(&igb->rx_rings[i].rx_lock);
1898 
1899 	if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK)
1900 		ddi_fm_service_impact(igb->dip, DDI_SERVICE_LOST);
1901 
1902 	if (igb->link_state == LINK_STATE_UP) {
1903 		igb->link_state = LINK_STATE_UNKNOWN;
1904 		mac_link_update(igb->mac_hdl, igb->link_state);
1905 	}
1906 
1907 	if (free_buffer) {
1908 		/*
1909 		 * Release the DMA/memory resources of rx/tx rings
1910 		 */
1911 		igb_free_dma(igb);
1912 		igb_free_rx_data(igb);
1913 	}
1914 }
1915 
1916 /*
1917  * igb_alloc_rings - Allocate memory space for rx/tx rings
1918  */
1919 static int
1920 igb_alloc_rings(igb_t *igb)
1921 {
1922 	/*
1923 	 * Allocate memory space for rx rings
1924 	 */
1925 	igb->rx_rings = kmem_zalloc(
1926 	    sizeof (igb_rx_ring_t) * igb->num_rx_rings,
1927 	    KM_NOSLEEP);
1928 
1929 	if (igb->rx_rings == NULL) {
1930 		return (IGB_FAILURE);
1931 	}
1932 
1933 	/*
1934 	 * Allocate memory space for tx rings
1935 	 */
1936 	igb->tx_rings = kmem_zalloc(
1937 	    sizeof (igb_tx_ring_t) * igb->num_tx_rings,
1938 	    KM_NOSLEEP);
1939 
1940 	if (igb->tx_rings == NULL) {
1941 		kmem_free(igb->rx_rings,
1942 		    sizeof (igb_rx_ring_t) * igb->num_rx_rings);
1943 		igb->rx_rings = NULL;
1944 		return (IGB_FAILURE);
1945 	}
1946 
1947 	/*
1948 	 * Allocate memory space for rx ring groups
1949 	 */
1950 	igb->rx_groups = kmem_zalloc(
1951 	    sizeof (igb_rx_group_t) * igb->num_rx_groups,
1952 	    KM_NOSLEEP);
1953 
1954 	if (igb->rx_groups == NULL) {
1955 		kmem_free(igb->rx_rings,
1956 		    sizeof (igb_rx_ring_t) * igb->num_rx_rings);
1957 		kmem_free(igb->tx_rings,
1958 		    sizeof (igb_tx_ring_t) * igb->num_tx_rings);
1959 		igb->rx_rings = NULL;
1960 		igb->tx_rings = NULL;
1961 		return (IGB_FAILURE);
1962 	}
1963 
1964 	return (IGB_SUCCESS);
1965 }
1966 
1967 /*
1968  * igb_free_rings - Free the memory space of rx/tx rings.
1969  */
1970 static void
1971 igb_free_rings(igb_t *igb)
1972 {
1973 	if (igb->rx_rings != NULL) {
1974 		kmem_free(igb->rx_rings,
1975 		    sizeof (igb_rx_ring_t) * igb->num_rx_rings);
1976 		igb->rx_rings = NULL;
1977 	}
1978 
1979 	if (igb->tx_rings != NULL) {
1980 		kmem_free(igb->tx_rings,
1981 		    sizeof (igb_tx_ring_t) * igb->num_tx_rings);
1982 		igb->tx_rings = NULL;
1983 	}
1984 
1985 	if (igb->rx_groups != NULL) {
1986 		kmem_free(igb->rx_groups,
1987 		    sizeof (igb_rx_group_t) * igb->num_rx_groups);
1988 		igb->rx_groups = NULL;
1989 	}
1990 }
1991 
1992 static int
1993 igb_alloc_rx_data(igb_t *igb)
1994 {
1995 	igb_rx_ring_t *rx_ring;
1996 	int i;
1997 
1998 	for (i = 0; i < igb->num_rx_rings; i++) {
1999 		rx_ring = &igb->rx_rings[i];
2000 		if (igb_alloc_rx_ring_data(rx_ring) != IGB_SUCCESS)
2001 			goto alloc_rx_rings_failure;
2002 	}
2003 	return (IGB_SUCCESS);
2004 
2005 alloc_rx_rings_failure:
2006 	igb_free_rx_data(igb);
2007 	return (IGB_FAILURE);
2008 }
2009 
2010 static void
2011 igb_free_rx_data(igb_t *igb)
2012 {
2013 	igb_rx_ring_t *rx_ring;
2014 	igb_rx_data_t *rx_data;
2015 	int i;
2016 
2017 	for (i = 0; i < igb->num_rx_rings; i++) {
2018 		rx_ring = &igb->rx_rings[i];
2019 
2020 		mutex_enter(&igb->rx_pending_lock);
2021 		rx_data = rx_ring->rx_data;
2022 
2023 		if (rx_data != NULL) {
2024 			rx_data->flag |= IGB_RX_STOPPED;
2025 
2026 			if (rx_data->rcb_pending == 0) {
2027 				igb_free_rx_ring_data(rx_data);
2028 				rx_ring->rx_data = NULL;
2029 			}
2030 		}
2031 
2032 		mutex_exit(&igb->rx_pending_lock);
2033 	}
2034 }
2035 
2036 /*
2037  * igb_setup_rings - Setup rx/tx rings
2038  */
2039 static void
2040 igb_setup_rings(igb_t *igb)
2041 {
2042 	/*
2043 	 * Setup the rx/tx rings, including the following:
2044 	 *
2045 	 * 1. Setup the descriptor ring and the control block buffers;
2046 	 * 2. Initialize necessary registers for receive/transmit;
2047 	 * 3. Initialize software pointers/parameters for receive/transmit;
2048 	 */
2049 	igb_setup_rx(igb);
2050 
2051 	igb_setup_tx(igb);
2052 }
2053 
2054 static void
2055 igb_setup_rx_ring(igb_rx_ring_t *rx_ring)
2056 {
2057 	igb_t *igb = rx_ring->igb;
2058 	igb_rx_data_t *rx_data = rx_ring->rx_data;
2059 	struct e1000_hw *hw = &igb->hw;
2060 	rx_control_block_t *rcb;
2061 	union e1000_adv_rx_desc	*rbd;
2062 	uint32_t size;
2063 	uint32_t buf_low;
2064 	uint32_t buf_high;
2065 	uint32_t rxdctl;
2066 	int i;
2067 
2068 	ASSERT(mutex_owned(&rx_ring->rx_lock));
2069 	ASSERT(mutex_owned(&igb->gen_lock));
2070 
2071 	/*
2072 	 * Initialize descriptor ring with buffer addresses
2073 	 */
2074 	for (i = 0; i < igb->rx_ring_size; i++) {
2075 		rcb = rx_data->work_list[i];
2076 		rbd = &rx_data->rbd_ring[i];
2077 
2078 		rbd->read.pkt_addr = rcb->rx_buf.dma_address;
2079 		rbd->read.hdr_addr = NULL;
2080 	}
2081 
2082 	/*
2083 	 * Initialize the base address registers
2084 	 */
2085 	buf_low = (uint32_t)rx_data->rbd_area.dma_address;
2086 	buf_high = (uint32_t)(rx_data->rbd_area.dma_address >> 32);
2087 	E1000_WRITE_REG(hw, E1000_RDBAH(rx_ring->index), buf_high);
2088 	E1000_WRITE_REG(hw, E1000_RDBAL(rx_ring->index), buf_low);
2089 
2090 	/*
2091 	 * Initialize the length register
2092 	 */
2093 	size = rx_data->ring_size * sizeof (union e1000_adv_rx_desc);
2094 	E1000_WRITE_REG(hw, E1000_RDLEN(rx_ring->index), size);
2095 
2096 	/*
2097 	 * Initialize buffer size & descriptor type
2098 	 */
2099 	E1000_WRITE_REG(hw, E1000_SRRCTL(rx_ring->index),
2100 	    ((igb->rx_buf_size >> E1000_SRRCTL_BSIZEPKT_SHIFT) |
2101 	    E1000_SRRCTL_DESCTYPE_ADV_ONEBUF));
2102 
2103 	/*
2104 	 * Setup the Receive Descriptor Control Register (RXDCTL)
2105 	 */
2106 	rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(rx_ring->index));
2107 	rxdctl &= igb->capab->rxdctl_mask;
2108 	rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
2109 	rxdctl |= 16;		/* pthresh */
2110 	rxdctl |= 8 << 8;	/* hthresh */
2111 	rxdctl |= 1 << 16;	/* wthresh */
2112 	E1000_WRITE_REG(hw, E1000_RXDCTL(rx_ring->index), rxdctl);
2113 
2114 	rx_data->rbd_next = 0;
2115 }
2116 
2117 static void
2118 igb_setup_rx(igb_t *igb)
2119 {
2120 	igb_rx_ring_t *rx_ring;
2121 	igb_rx_data_t *rx_data;
2122 	igb_rx_group_t *rx_group;
2123 	struct e1000_hw *hw = &igb->hw;
2124 	uint32_t rctl, rxcsum;
2125 	uint32_t ring_per_group;
2126 	int i;
2127 
2128 	/*
2129 	 * Setup the Receive Control Register (RCTL), and enable the
2130 	 * receiver. The initial configuration is to: enable the receiver,
2131 	 * accept broadcasts, discard bad packets, accept long packets,
2132 	 * disable VLAN filter checking, and set receive buffer size to
2133 	 * 2k.  For 82575, also set the receive descriptor minimum
2134 	 * threshold size to 1/2 the ring.
2135 	 */
2136 	rctl = E1000_READ_REG(hw, E1000_RCTL);
2137 
2138 	/*
2139 	 * Clear the field used for wakeup control.  This driver doesn't do
2140 	 * wakeup but leave this here for completeness.
2141 	 */
2142 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2143 	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
2144 
2145 	rctl |= (E1000_RCTL_EN |	/* Enable Receive Unit */
2146 	    E1000_RCTL_BAM |		/* Accept Broadcast Packets */
2147 	    E1000_RCTL_LPE |		/* Large Packet Enable */
2148 					/* Multicast filter offset */
2149 	    (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT) |
2150 	    E1000_RCTL_RDMTS_HALF |	/* rx descriptor threshold */
2151 	    E1000_RCTL_SECRC);		/* Strip Ethernet CRC */
2152 
2153 	for (i = 0; i < igb->num_rx_groups; i++) {
2154 		rx_group = &igb->rx_groups[i];
2155 		rx_group->index = i;
2156 		rx_group->igb = igb;
2157 	}
2158 
2159 	/*
2160 	 * Set up all rx descriptor rings - must be called before receive unit
2161 	 * enabled.
2162 	 */
2163 	ring_per_group = igb->num_rx_rings / igb->num_rx_groups;
2164 	for (i = 0; i < igb->num_rx_rings; i++) {
2165 		rx_ring = &igb->rx_rings[i];
2166 		igb_setup_rx_ring(rx_ring);
2167 
2168 		/*
2169 		 * Map a ring to a group by assigning a group index
2170 		 */
2171 		rx_ring->group_index = i / ring_per_group;
2172 	}
2173 
2174 	/*
2175 	 * Setup the Rx Long Packet Max Length register
2176 	 */
2177 	E1000_WRITE_REG(hw, E1000_RLPML, igb->max_frame_size);
2178 
2179 	/*
2180 	 * Hardware checksum settings
2181 	 */
2182 	if (igb->rx_hcksum_enable) {
2183 		rxcsum =
2184 		    E1000_RXCSUM_TUOFL |	/* TCP/UDP checksum */
2185 		    E1000_RXCSUM_IPOFL;		/* IP checksum */
2186 
2187 		E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum);
2188 	}
2189 
2190 	/*
2191 	 * Setup classify and RSS for multiple receive queues
2192 	 */
2193 	switch (igb->vmdq_mode) {
2194 	case E1000_VMDQ_OFF:
2195 		/*
2196 		 * One ring group, only RSS is needed when more than
2197 		 * one ring enabled.
2198 		 */
2199 		if (igb->num_rx_rings > 1)
2200 			igb_setup_rss(igb);
2201 		break;
2202 	case E1000_VMDQ_MAC:
2203 		/*
2204 		 * Multiple groups, each group has one ring,
2205 		 * only the MAC classification is needed.
2206 		 */
2207 		igb_setup_mac_classify(igb);
2208 		break;
2209 	case E1000_VMDQ_MAC_RSS:
2210 		/*
2211 		 * Multiple groups and multiple rings, both
2212 		 * MAC classification and RSS are needed.
2213 		 */
2214 		igb_setup_mac_rss_classify(igb);
2215 		break;
2216 	}
2217 
2218 	/*
2219 	 * Enable the receive unit - must be done after all
2220 	 * the rx setup above.
2221 	 */
2222 	E1000_WRITE_REG(hw, E1000_RCTL, rctl);
2223 
2224 	/*
2225 	 * Initialize all adapter ring head & tail pointers - must
2226 	 * be done after receive unit is enabled
2227 	 */
2228 	for (i = 0; i < igb->num_rx_rings; i++) {
2229 		rx_ring = &igb->rx_rings[i];
2230 		rx_data = rx_ring->rx_data;
2231 		E1000_WRITE_REG(hw, E1000_RDH(i), 0);
2232 		E1000_WRITE_REG(hw, E1000_RDT(i), rx_data->ring_size - 1);
2233 	}
2234 
2235 	/*
2236 	 * 82575 with manageability enabled needs a special flush to make
2237 	 * sure the fifos start clean.
2238 	 */
2239 	if ((hw->mac.type == e1000_82575) &&
2240 	    (E1000_READ_REG(hw, E1000_MANC) & E1000_MANC_RCV_TCO_EN)) {
2241 		e1000_rx_fifo_flush_82575(hw);
2242 	}
2243 }
2244 
2245 static void
2246 igb_setup_tx_ring(igb_tx_ring_t *tx_ring)
2247 {
2248 	igb_t *igb = tx_ring->igb;
2249 	struct e1000_hw *hw = &igb->hw;
2250 	uint32_t size;
2251 	uint32_t buf_low;
2252 	uint32_t buf_high;
2253 	uint32_t reg_val;
2254 
2255 	ASSERT(mutex_owned(&tx_ring->tx_lock));
2256 	ASSERT(mutex_owned(&igb->gen_lock));
2257 
2258 
2259 	/*
2260 	 * Initialize the length register
2261 	 */
2262 	size = tx_ring->ring_size * sizeof (union e1000_adv_tx_desc);
2263 	E1000_WRITE_REG(hw, E1000_TDLEN(tx_ring->index), size);
2264 
2265 	/*
2266 	 * Initialize the base address registers
2267 	 */
2268 	buf_low = (uint32_t)tx_ring->tbd_area.dma_address;
2269 	buf_high = (uint32_t)(tx_ring->tbd_area.dma_address >> 32);
2270 	E1000_WRITE_REG(hw, E1000_TDBAL(tx_ring->index), buf_low);
2271 	E1000_WRITE_REG(hw, E1000_TDBAH(tx_ring->index), buf_high);
2272 
2273 	/*
2274 	 * Setup head & tail pointers
2275 	 */
2276 	E1000_WRITE_REG(hw, E1000_TDH(tx_ring->index), 0);
2277 	E1000_WRITE_REG(hw, E1000_TDT(tx_ring->index), 0);
2278 
2279 	/*
2280 	 * Setup head write-back
2281 	 */
2282 	if (igb->tx_head_wb_enable) {
2283 		/*
2284 		 * The memory of the head write-back is allocated using
2285 		 * the extra tbd beyond the tail of the tbd ring.
2286 		 */
2287 		tx_ring->tbd_head_wb = (uint32_t *)
2288 		    ((uintptr_t)tx_ring->tbd_area.address + size);
2289 		*tx_ring->tbd_head_wb = 0;
2290 
2291 		buf_low = (uint32_t)
2292 		    (tx_ring->tbd_area.dma_address + size);
2293 		buf_high = (uint32_t)
2294 		    ((tx_ring->tbd_area.dma_address + size) >> 32);
2295 
2296 		/* Set the head write-back enable bit */
2297 		buf_low |= E1000_TX_HEAD_WB_ENABLE;
2298 
2299 		E1000_WRITE_REG(hw, E1000_TDWBAL(tx_ring->index), buf_low);
2300 		E1000_WRITE_REG(hw, E1000_TDWBAH(tx_ring->index), buf_high);
2301 
2302 		/*
2303 		 * Turn off relaxed ordering for head write back or it will
2304 		 * cause problems with the tx recycling
2305 		 */
2306 		reg_val = E1000_READ_REG(hw,
2307 		    E1000_DCA_TXCTRL(tx_ring->index));
2308 		reg_val &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
2309 		E1000_WRITE_REG(hw,
2310 		    E1000_DCA_TXCTRL(tx_ring->index), reg_val);
2311 	} else {
2312 		tx_ring->tbd_head_wb = NULL;
2313 	}
2314 
2315 	tx_ring->tbd_head = 0;
2316 	tx_ring->tbd_tail = 0;
2317 	tx_ring->tbd_free = tx_ring->ring_size;
2318 
2319 	if (igb->tx_ring_init == B_TRUE) {
2320 		tx_ring->tcb_head = 0;
2321 		tx_ring->tcb_tail = 0;
2322 		tx_ring->tcb_free = tx_ring->free_list_size;
2323 	}
2324 
2325 	/*
2326 	 * Enable TXDCTL per queue
2327 	 */
2328 	reg_val = E1000_READ_REG(hw, E1000_TXDCTL(tx_ring->index));
2329 	reg_val |= E1000_TXDCTL_QUEUE_ENABLE;
2330 	E1000_WRITE_REG(hw, E1000_TXDCTL(tx_ring->index), reg_val);
2331 
2332 	/*
2333 	 * Initialize hardware checksum offload settings
2334 	 */
2335 	bzero(&tx_ring->tx_context, sizeof (tx_context_t));
2336 }
2337 
2338 static void
2339 igb_setup_tx(igb_t *igb)
2340 {
2341 	igb_tx_ring_t *tx_ring;
2342 	struct e1000_hw *hw = &igb->hw;
2343 	uint32_t reg_val;
2344 	int i;
2345 
2346 	for (i = 0; i < igb->num_tx_rings; i++) {
2347 		tx_ring = &igb->tx_rings[i];
2348 		igb_setup_tx_ring(tx_ring);
2349 	}
2350 
2351 	/*
2352 	 * Setup the Transmit Control Register (TCTL)
2353 	 */
2354 	reg_val = E1000_READ_REG(hw, E1000_TCTL);
2355 	reg_val &= ~E1000_TCTL_CT;
2356 	reg_val |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2357 	    (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2358 
2359 	/* Enable transmits */
2360 	reg_val |= E1000_TCTL_EN;
2361 
2362 	E1000_WRITE_REG(hw, E1000_TCTL, reg_val);
2363 }
2364 
2365 /*
2366  * igb_setup_rss - Setup receive-side scaling feature
2367  */
2368 static void
2369 igb_setup_rss(igb_t *igb)
2370 {
2371 	struct e1000_hw *hw = &igb->hw;
2372 	uint32_t i, mrqc, rxcsum;
2373 	int shift = 0;
2374 	uint32_t random;
2375 	union e1000_reta {
2376 		uint32_t	dword;
2377 		uint8_t		bytes[4];
2378 	} reta;
2379 
2380 	/* Setup the Redirection Table */
2381 	if (hw->mac.type == e1000_82576) {
2382 		shift = 3;
2383 	} else if (hw->mac.type == e1000_82575) {
2384 		shift = 6;
2385 	}
2386 	for (i = 0; i < (32 * 4); i++) {
2387 		reta.bytes[i & 3] = (i % igb->num_rx_rings) << shift;
2388 		if ((i & 3) == 3) {
2389 			E1000_WRITE_REG(hw,
2390 			    (E1000_RETA(0) + (i & ~3)), reta.dword);
2391 		}
2392 	}
2393 
2394 	/* Fill out hash function seeds */
2395 	for (i = 0; i < 10; i++) {
2396 		(void) random_get_pseudo_bytes((uint8_t *)&random,
2397 		    sizeof (uint32_t));
2398 		E1000_WRITE_REG(hw, E1000_RSSRK(i), random);
2399 	}
2400 
2401 	/* Setup the Multiple Receive Queue Control register */
2402 	mrqc = E1000_MRQC_ENABLE_RSS_4Q;
2403 	mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
2404 	    E1000_MRQC_RSS_FIELD_IPV4_TCP |
2405 	    E1000_MRQC_RSS_FIELD_IPV6 |
2406 	    E1000_MRQC_RSS_FIELD_IPV6_TCP |
2407 	    E1000_MRQC_RSS_FIELD_IPV4_UDP |
2408 	    E1000_MRQC_RSS_FIELD_IPV6_UDP |
2409 	    E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
2410 	    E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
2411 
2412 	E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
2413 
2414 	/*
2415 	 * Disable Packet Checksum to enable RSS for multiple receive queues.
2416 	 *
2417 	 * The Packet Checksum is not ethernet CRC. It is another kind of
2418 	 * checksum offloading provided by the 82575 chipset besides the IP
2419 	 * header checksum offloading and the TCP/UDP checksum offloading.
2420 	 * The Packet Checksum is by default computed over the entire packet
2421 	 * from the first byte of the DA through the last byte of the CRC,
2422 	 * including the Ethernet and IP headers.
2423 	 *
2424 	 * It is a hardware limitation that Packet Checksum is mutually
2425 	 * exclusive with RSS.
2426 	 */
2427 	rxcsum = E1000_READ_REG(hw, E1000_RXCSUM);
2428 	rxcsum |= E1000_RXCSUM_PCSD;
2429 	E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum);
2430 }
2431 
2432 /*
2433  * igb_setup_mac_rss_classify - Setup MAC classification and rss
2434  */
2435 static void
2436 igb_setup_mac_rss_classify(igb_t *igb)
2437 {
2438 	struct e1000_hw *hw = &igb->hw;
2439 	uint32_t i, mrqc, vmdctl, rxcsum;
2440 	uint32_t ring_per_group;
2441 	int shift_group0, shift_group1;
2442 	uint32_t random;
2443 	union e1000_reta {
2444 		uint32_t	dword;
2445 		uint8_t		bytes[4];
2446 	} reta;
2447 
2448 	ring_per_group = igb->num_rx_rings / igb->num_rx_groups;
2449 
2450 	/* Setup the Redirection Table, it is shared between two groups */
2451 	shift_group0 = 2;
2452 	shift_group1 = 6;
2453 	for (i = 0; i < (32 * 4); i++) {
2454 		reta.bytes[i & 3] = ((i % ring_per_group) << shift_group0) |
2455 		    ((ring_per_group + (i % ring_per_group)) << shift_group1);
2456 		if ((i & 3) == 3) {
2457 			E1000_WRITE_REG(hw,
2458 			    (E1000_RETA(0) + (i & ~3)), reta.dword);
2459 		}
2460 	}
2461 
2462 	/* Fill out hash function seeds */
2463 	for (i = 0; i < 10; i++) {
2464 		(void) random_get_pseudo_bytes((uint8_t *)&random,
2465 		    sizeof (uint32_t));
2466 		E1000_WRITE_REG(hw, E1000_RSSRK(i), random);
2467 	}
2468 
2469 	/*
2470 	 * Setup the Multiple Receive Queue Control register,
2471 	 * enable VMDq based on packet destination MAC address and RSS.
2472 	 */
2473 	mrqc = E1000_MRQC_ENABLE_VMDQ_MAC_RSS_GROUP;
2474 	mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
2475 	    E1000_MRQC_RSS_FIELD_IPV4_TCP |
2476 	    E1000_MRQC_RSS_FIELD_IPV6 |
2477 	    E1000_MRQC_RSS_FIELD_IPV6_TCP |
2478 	    E1000_MRQC_RSS_FIELD_IPV4_UDP |
2479 	    E1000_MRQC_RSS_FIELD_IPV6_UDP |
2480 	    E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
2481 	    E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
2482 
2483 	E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
2484 
2485 
2486 	/* Define the default group and default queues */
2487 	vmdctl = E1000_VMDQ_MAC_GROUP_DEFAULT_QUEUE;
2488 	E1000_WRITE_REG(hw, E1000_VT_CTL, vmdctl);
2489 
2490 	/*
2491 	 * Disable Packet Checksum to enable RSS for multiple receive queues.
2492 	 *
2493 	 * The Packet Checksum is not ethernet CRC. It is another kind of
2494 	 * checksum offloading provided by the 82575 chipset besides the IP
2495 	 * header checksum offloading and the TCP/UDP checksum offloading.
2496 	 * The Packet Checksum is by default computed over the entire packet
2497 	 * from the first byte of the DA through the last byte of the CRC,
2498 	 * including the Ethernet and IP headers.
2499 	 *
2500 	 * It is a hardware limitation that Packet Checksum is mutually
2501 	 * exclusive with RSS.
2502 	 */
2503 	rxcsum = E1000_READ_REG(hw, E1000_RXCSUM);
2504 	rxcsum |= E1000_RXCSUM_PCSD;
2505 	E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum);
2506 }
2507 
2508 /*
2509  * igb_setup_mac_classify - Setup MAC classification feature
2510  */
2511 static void
2512 igb_setup_mac_classify(igb_t *igb)
2513 {
2514 	struct e1000_hw *hw = &igb->hw;
2515 	uint32_t mrqc, rxcsum;
2516 
2517 	/*
2518 	 * Setup the Multiple Receive Queue Control register,
2519 	 * enable VMDq based on packet destination MAC address.
2520 	 */
2521 	mrqc = E1000_MRQC_ENABLE_VMDQ_MAC_GROUP;
2522 	E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
2523 
2524 	/*
2525 	 * Disable Packet Checksum to enable RSS for multiple receive queues.
2526 	 *
2527 	 * The Packet Checksum is not ethernet CRC. It is another kind of
2528 	 * checksum offloading provided by the 82575 chipset besides the IP
2529 	 * header checksum offloading and the TCP/UDP checksum offloading.
2530 	 * The Packet Checksum is by default computed over the entire packet
2531 	 * from the first byte of the DA through the last byte of the CRC,
2532 	 * including the Ethernet and IP headers.
2533 	 *
2534 	 * It is a hardware limitation that Packet Checksum is mutually
2535 	 * exclusive with RSS.
2536 	 */
2537 	rxcsum = E1000_READ_REG(hw, E1000_RXCSUM);
2538 	rxcsum |= E1000_RXCSUM_PCSD;
2539 	E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum);
2540 
2541 }
2542 
2543 /*
2544  * igb_init_unicst - Initialize the unicast addresses
2545  */
2546 static void
2547 igb_init_unicst(igb_t *igb)
2548 {
2549 	struct e1000_hw *hw = &igb->hw;
2550 	int slot;
2551 
2552 	/*
2553 	 * Here we should consider two situations:
2554 	 *
2555 	 * 1. Chipset is initialized the first time
2556 	 *    Initialize the multiple unicast addresses, and
2557 	 *    save the default MAC address.
2558 	 *
2559 	 * 2. Chipset is reset
2560 	 *    Recover the multiple unicast addresses from the
2561 	 *    software data structure to the RAR registers.
2562 	 */
2563 
2564 	/*
2565 	 * Clear the default MAC address in the RAR0 rgister,
2566 	 * which is loaded from EEPROM when system boot or chipreset,
2567 	 * this will cause the conficts with add_mac/rem_mac entry
2568 	 * points when VMDq is enabled. For this reason, the RAR0
2569 	 * must be cleared for both cases mentioned above.
2570 	 */
2571 	e1000_rar_clear(hw, 0);
2572 
2573 	if (!igb->unicst_init) {
2574 
2575 		/* Initialize the multiple unicast addresses */
2576 		igb->unicst_total = MAX_NUM_UNICAST_ADDRESSES;
2577 		igb->unicst_avail = igb->unicst_total;
2578 
2579 		for (slot = 0; slot < igb->unicst_total; slot++)
2580 			igb->unicst_addr[slot].mac.set = 0;
2581 
2582 		igb->unicst_init = B_TRUE;
2583 	} else {
2584 		/* Re-configure the RAR registers */
2585 		for (slot = 0; slot < igb->unicst_total; slot++) {
2586 			e1000_rar_set_vmdq(hw, igb->unicst_addr[slot].mac.addr,
2587 			    slot, igb->vmdq_mode,
2588 			    igb->unicst_addr[slot].mac.group_index);
2589 		}
2590 	}
2591 }
2592 
2593 /*
2594  * igb_unicst_find - Find the slot for the specified unicast address
2595  */
2596 int
2597 igb_unicst_find(igb_t *igb, const uint8_t *mac_addr)
2598 {
2599 	int slot;
2600 
2601 	ASSERT(mutex_owned(&igb->gen_lock));
2602 
2603 	for (slot = 0; slot < igb->unicst_total; slot++) {
2604 		if (bcmp(igb->unicst_addr[slot].mac.addr,
2605 		    mac_addr, ETHERADDRL) == 0)
2606 			return (slot);
2607 	}
2608 
2609 	return (-1);
2610 }
2611 
2612 /*
2613  * igb_unicst_set - Set the unicast address to the specified slot
2614  */
2615 int
2616 igb_unicst_set(igb_t *igb, const uint8_t *mac_addr,
2617     int slot)
2618 {
2619 	struct e1000_hw *hw = &igb->hw;
2620 
2621 	ASSERT(mutex_owned(&igb->gen_lock));
2622 
2623 	/*
2624 	 * Save the unicast address in the software data structure
2625 	 */
2626 	bcopy(mac_addr, igb->unicst_addr[slot].mac.addr, ETHERADDRL);
2627 
2628 	/*
2629 	 * Set the unicast address to the RAR register
2630 	 */
2631 	e1000_rar_set(hw, (uint8_t *)mac_addr, slot);
2632 
2633 	if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK) {
2634 		ddi_fm_service_impact(igb->dip, DDI_SERVICE_DEGRADED);
2635 		return (EIO);
2636 	}
2637 
2638 	return (0);
2639 }
2640 
2641 /*
2642  * igb_multicst_add - Add a multicst address
2643  */
2644 int
2645 igb_multicst_add(igb_t *igb, const uint8_t *multiaddr)
2646 {
2647 	struct ether_addr *new_table;
2648 	size_t new_len;
2649 	size_t old_len;
2650 
2651 	ASSERT(mutex_owned(&igb->gen_lock));
2652 
2653 	if ((multiaddr[0] & 01) == 0) {
2654 		igb_error(igb, "Illegal multicast address");
2655 		return (EINVAL);
2656 	}
2657 
2658 	if (igb->mcast_count >= igb->mcast_max_num) {
2659 		igb_error(igb, "Adapter requested more than %d mcast addresses",
2660 		    igb->mcast_max_num);
2661 		return (ENOENT);
2662 	}
2663 
2664 	if (igb->mcast_count == igb->mcast_alloc_count) {
2665 		old_len = igb->mcast_alloc_count *
2666 		    sizeof (struct ether_addr);
2667 		new_len = (igb->mcast_alloc_count + MCAST_ALLOC_COUNT) *
2668 		    sizeof (struct ether_addr);
2669 
2670 		new_table = kmem_alloc(new_len, KM_NOSLEEP);
2671 		if (new_table == NULL) {
2672 			igb_error(igb,
2673 			    "Not enough memory to alloc mcast table");
2674 			return (ENOMEM);
2675 		}
2676 
2677 		if (igb->mcast_table != NULL) {
2678 			bcopy(igb->mcast_table, new_table, old_len);
2679 			kmem_free(igb->mcast_table, old_len);
2680 		}
2681 		igb->mcast_alloc_count += MCAST_ALLOC_COUNT;
2682 		igb->mcast_table = new_table;
2683 	}
2684 
2685 	bcopy(multiaddr,
2686 	    &igb->mcast_table[igb->mcast_count], ETHERADDRL);
2687 	igb->mcast_count++;
2688 
2689 	/*
2690 	 * Update the multicast table in the hardware
2691 	 */
2692 	igb_setup_multicst(igb);
2693 
2694 	if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK) {
2695 		ddi_fm_service_impact(igb->dip, DDI_SERVICE_DEGRADED);
2696 		return (EIO);
2697 	}
2698 
2699 	return (0);
2700 }
2701 
2702 /*
2703  * igb_multicst_remove - Remove a multicst address
2704  */
2705 int
2706 igb_multicst_remove(igb_t *igb, const uint8_t *multiaddr)
2707 {
2708 	struct ether_addr *new_table;
2709 	size_t new_len;
2710 	size_t old_len;
2711 	int i;
2712 
2713 	ASSERT(mutex_owned(&igb->gen_lock));
2714 
2715 	for (i = 0; i < igb->mcast_count; i++) {
2716 		if (bcmp(multiaddr, &igb->mcast_table[i],
2717 		    ETHERADDRL) == 0) {
2718 			for (i++; i < igb->mcast_count; i++) {
2719 				igb->mcast_table[i - 1] =
2720 				    igb->mcast_table[i];
2721 			}
2722 			igb->mcast_count--;
2723 			break;
2724 		}
2725 	}
2726 
2727 	if ((igb->mcast_alloc_count - igb->mcast_count) >
2728 	    MCAST_ALLOC_COUNT) {
2729 		old_len = igb->mcast_alloc_count *
2730 		    sizeof (struct ether_addr);
2731 		new_len = (igb->mcast_alloc_count - MCAST_ALLOC_COUNT) *
2732 		    sizeof (struct ether_addr);
2733 
2734 		new_table = kmem_alloc(new_len, KM_NOSLEEP);
2735 		if (new_table != NULL) {
2736 			bcopy(igb->mcast_table, new_table, new_len);
2737 			kmem_free(igb->mcast_table, old_len);
2738 			igb->mcast_alloc_count -= MCAST_ALLOC_COUNT;
2739 			igb->mcast_table = new_table;
2740 		}
2741 	}
2742 
2743 	/*
2744 	 * Update the multicast table in the hardware
2745 	 */
2746 	igb_setup_multicst(igb);
2747 
2748 	if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK) {
2749 		ddi_fm_service_impact(igb->dip, DDI_SERVICE_DEGRADED);
2750 		return (EIO);
2751 	}
2752 
2753 	return (0);
2754 }
2755 
2756 static void
2757 igb_release_multicast(igb_t *igb)
2758 {
2759 	if (igb->mcast_table != NULL) {
2760 		kmem_free(igb->mcast_table,
2761 		    igb->mcast_alloc_count * sizeof (struct ether_addr));
2762 		igb->mcast_table = NULL;
2763 	}
2764 }
2765 
2766 /*
2767  * igb_setup_multicast - setup multicast data structures
2768  *
2769  * This routine initializes all of the multicast related structures
2770  * and save them in the hardware registers.
2771  */
2772 static void
2773 igb_setup_multicst(igb_t *igb)
2774 {
2775 	uint8_t *mc_addr_list;
2776 	uint32_t mc_addr_count;
2777 	struct e1000_hw *hw = &igb->hw;
2778 
2779 	ASSERT(mutex_owned(&igb->gen_lock));
2780 	ASSERT(igb->mcast_count <= igb->mcast_max_num);
2781 
2782 	mc_addr_list = (uint8_t *)igb->mcast_table;
2783 	mc_addr_count = igb->mcast_count;
2784 
2785 	/*
2786 	 * Update the multicase addresses to the MTA registers
2787 	 */
2788 	e1000_update_mc_addr_list(hw, mc_addr_list, mc_addr_count);
2789 }
2790 
2791 /*
2792  * igb_get_conf - Get driver configurations set in driver.conf
2793  *
2794  * This routine gets user-configured values out of the configuration
2795  * file igb.conf.
2796  *
2797  * For each configurable value, there is a minimum, a maximum, and a
2798  * default.
2799  * If user does not configure a value, use the default.
2800  * If user configures below the minimum, use the minumum.
2801  * If user configures above the maximum, use the maxumum.
2802  */
2803 static void
2804 igb_get_conf(igb_t *igb)
2805 {
2806 	struct e1000_hw *hw = &igb->hw;
2807 	uint32_t default_mtu;
2808 	uint32_t flow_control;
2809 	uint32_t ring_per_group;
2810 	int i;
2811 
2812 	/*
2813 	 * igb driver supports the following user configurations:
2814 	 *
2815 	 * Link configurations:
2816 	 *    adv_autoneg_cap
2817 	 *    adv_1000fdx_cap
2818 	 *    adv_100fdx_cap
2819 	 *    adv_100hdx_cap
2820 	 *    adv_10fdx_cap
2821 	 *    adv_10hdx_cap
2822 	 * Note: 1000hdx is not supported.
2823 	 *
2824 	 * Jumbo frame configuration:
2825 	 *    default_mtu
2826 	 *
2827 	 * Ethernet flow control configuration:
2828 	 *    flow_control
2829 	 *
2830 	 * Multiple rings configurations:
2831 	 *    tx_queue_number
2832 	 *    tx_ring_size
2833 	 *    rx_queue_number
2834 	 *    rx_ring_size
2835 	 *
2836 	 * Call igb_get_prop() to get the value for a specific
2837 	 * configuration parameter.
2838 	 */
2839 
2840 	/*
2841 	 * Link configurations
2842 	 */
2843 	igb->param_adv_autoneg_cap = igb_get_prop(igb,
2844 	    PROP_ADV_AUTONEG_CAP, 0, 1, 1);
2845 	igb->param_adv_1000fdx_cap = igb_get_prop(igb,
2846 	    PROP_ADV_1000FDX_CAP, 0, 1, 1);
2847 	igb->param_adv_100fdx_cap = igb_get_prop(igb,
2848 	    PROP_ADV_100FDX_CAP, 0, 1, 1);
2849 	igb->param_adv_100hdx_cap = igb_get_prop(igb,
2850 	    PROP_ADV_100HDX_CAP, 0, 1, 1);
2851 	igb->param_adv_10fdx_cap = igb_get_prop(igb,
2852 	    PROP_ADV_10FDX_CAP, 0, 1, 1);
2853 	igb->param_adv_10hdx_cap = igb_get_prop(igb,
2854 	    PROP_ADV_10HDX_CAP, 0, 1, 1);
2855 
2856 	/*
2857 	 * Jumbo frame configurations
2858 	 */
2859 	default_mtu = igb_get_prop(igb, PROP_DEFAULT_MTU,
2860 	    MIN_MTU, MAX_MTU, DEFAULT_MTU);
2861 
2862 	igb->max_frame_size = default_mtu +
2863 	    sizeof (struct ether_vlan_header) + ETHERFCSL;
2864 
2865 	/*
2866 	 * Ethernet flow control configuration
2867 	 */
2868 	flow_control = igb_get_prop(igb, PROP_FLOW_CONTROL,
2869 	    e1000_fc_none, 4, e1000_fc_full);
2870 	if (flow_control == 4)
2871 		flow_control = e1000_fc_default;
2872 
2873 	hw->fc.requested_mode = flow_control;
2874 
2875 	/*
2876 	 * Multiple rings configurations
2877 	 */
2878 	igb->tx_ring_size = igb_get_prop(igb, PROP_TX_RING_SIZE,
2879 	    MIN_TX_RING_SIZE, MAX_TX_RING_SIZE, DEFAULT_TX_RING_SIZE);
2880 	igb->rx_ring_size = igb_get_prop(igb, PROP_RX_RING_SIZE,
2881 	    MIN_RX_RING_SIZE, MAX_RX_RING_SIZE, DEFAULT_RX_RING_SIZE);
2882 
2883 	igb->mr_enable = igb_get_prop(igb, PROP_MR_ENABLE, 0, 1, 0);
2884 	igb->num_rx_groups = igb_get_prop(igb, PROP_RX_GROUP_NUM,
2885 	    MIN_RX_GROUP_NUM, MAX_RX_GROUP_NUM, DEFAULT_RX_GROUP_NUM);
2886 	/*
2887 	 * Currently we do not support VMDq for 82576 and 82580.
2888 	 * If it is e1000_82576, set num_rx_groups to 1.
2889 	 */
2890 	if (hw->mac.type >= e1000_82576)
2891 		igb->num_rx_groups = 1;
2892 
2893 	if (igb->mr_enable) {
2894 		igb->num_tx_rings = igb->capab->def_tx_que_num;
2895 		igb->num_rx_rings = igb->capab->def_rx_que_num;
2896 	} else {
2897 		igb->num_tx_rings = 1;
2898 		igb->num_rx_rings = 1;
2899 
2900 		if (igb->num_rx_groups > 1) {
2901 			igb_error(igb,
2902 			    "Invalid rx groups number. Please enable multiple "
2903 			    "rings first");
2904 			igb->num_rx_groups = 1;
2905 		}
2906 	}
2907 
2908 	/*
2909 	 * Check the divisibility between rx rings and rx groups.
2910 	 */
2911 	for (i = igb->num_rx_groups; i > 0; i--) {
2912 		if ((igb->num_rx_rings % i) == 0)
2913 			break;
2914 	}
2915 	if (i != igb->num_rx_groups) {
2916 		igb_error(igb,
2917 		    "Invalid rx groups number. Downgrade the rx group "
2918 		    "number to %d.", i);
2919 		igb->num_rx_groups = i;
2920 	}
2921 
2922 	/*
2923 	 * Get the ring number per group.
2924 	 */
2925 	ring_per_group = igb->num_rx_rings / igb->num_rx_groups;
2926 
2927 	if (igb->num_rx_groups == 1) {
2928 		/*
2929 		 * One rx ring group, the rx ring number is num_rx_rings.
2930 		 */
2931 		igb->vmdq_mode = E1000_VMDQ_OFF;
2932 	} else if (ring_per_group == 1) {
2933 		/*
2934 		 * Multiple rx groups, each group has one rx ring.
2935 		 */
2936 		igb->vmdq_mode = E1000_VMDQ_MAC;
2937 	} else {
2938 		/*
2939 		 * Multiple groups and multiple rings.
2940 		 */
2941 		igb->vmdq_mode = E1000_VMDQ_MAC_RSS;
2942 	}
2943 
2944 	/*
2945 	 * Tunable used to force an interrupt type. The only use is
2946 	 * for testing of the lesser interrupt types.
2947 	 * 0 = don't force interrupt type
2948 	 * 1 = force interrupt type MSIX
2949 	 * 2 = force interrupt type MSI
2950 	 * 3 = force interrupt type Legacy
2951 	 */
2952 	igb->intr_force = igb_get_prop(igb, PROP_INTR_FORCE,
2953 	    IGB_INTR_NONE, IGB_INTR_LEGACY, IGB_INTR_NONE);
2954 
2955 	igb->tx_hcksum_enable = igb_get_prop(igb, PROP_TX_HCKSUM_ENABLE,
2956 	    0, 1, 1);
2957 	igb->rx_hcksum_enable = igb_get_prop(igb, PROP_RX_HCKSUM_ENABLE,
2958 	    0, 1, 1);
2959 	igb->lso_enable = igb_get_prop(igb, PROP_LSO_ENABLE,
2960 	    0, 1, 1);
2961 	igb->tx_head_wb_enable = igb_get_prop(igb, PROP_TX_HEAD_WB_ENABLE,
2962 	    0, 1, 1);
2963 
2964 	/*
2965 	 * igb LSO needs the tx h/w checksum support.
2966 	 * Here LSO will be disabled if tx h/w checksum has been disabled.
2967 	 */
2968 	if (igb->tx_hcksum_enable == B_FALSE)
2969 		igb->lso_enable = B_FALSE;
2970 
2971 	igb->tx_copy_thresh = igb_get_prop(igb, PROP_TX_COPY_THRESHOLD,
2972 	    MIN_TX_COPY_THRESHOLD, MAX_TX_COPY_THRESHOLD,
2973 	    DEFAULT_TX_COPY_THRESHOLD);
2974 	igb->tx_recycle_thresh = igb_get_prop(igb, PROP_TX_RECYCLE_THRESHOLD,
2975 	    MIN_TX_RECYCLE_THRESHOLD, MAX_TX_RECYCLE_THRESHOLD,
2976 	    DEFAULT_TX_RECYCLE_THRESHOLD);
2977 	igb->tx_overload_thresh = igb_get_prop(igb, PROP_TX_OVERLOAD_THRESHOLD,
2978 	    MIN_TX_OVERLOAD_THRESHOLD, MAX_TX_OVERLOAD_THRESHOLD,
2979 	    DEFAULT_TX_OVERLOAD_THRESHOLD);
2980 	igb->tx_resched_thresh = igb_get_prop(igb, PROP_TX_RESCHED_THRESHOLD,
2981 	    MIN_TX_RESCHED_THRESHOLD,
2982 	    MIN(igb->tx_ring_size, MAX_TX_RESCHED_THRESHOLD),
2983 	    igb->tx_ring_size > DEFAULT_TX_RESCHED_THRESHOLD ?
2984 	    DEFAULT_TX_RESCHED_THRESHOLD : DEFAULT_TX_RESCHED_THRESHOLD_LOW);
2985 
2986 	igb->rx_copy_thresh = igb_get_prop(igb, PROP_RX_COPY_THRESHOLD,
2987 	    MIN_RX_COPY_THRESHOLD, MAX_RX_COPY_THRESHOLD,
2988 	    DEFAULT_RX_COPY_THRESHOLD);
2989 	igb->rx_limit_per_intr = igb_get_prop(igb, PROP_RX_LIMIT_PER_INTR,
2990 	    MIN_RX_LIMIT_PER_INTR, MAX_RX_LIMIT_PER_INTR,
2991 	    DEFAULT_RX_LIMIT_PER_INTR);
2992 
2993 	igb->intr_throttling[0] = igb_get_prop(igb, PROP_INTR_THROTTLING,
2994 	    igb->capab->min_intr_throttle,
2995 	    igb->capab->max_intr_throttle,
2996 	    igb->capab->def_intr_throttle);
2997 
2998 	/*
2999 	 * Max number of multicast addresses
3000 	 */
3001 	igb->mcast_max_num =
3002 	    igb_get_prop(igb, PROP_MCAST_MAX_NUM,
3003 	    MIN_MCAST_NUM, MAX_MCAST_NUM, DEFAULT_MCAST_NUM);
3004 }
3005 
3006 /*
3007  * igb_get_prop - Get a property value out of the configuration file igb.conf
3008  *
3009  * Caller provides the name of the property, a default value, a minimum
3010  * value, and a maximum value.
3011  *
3012  * Return configured value of the property, with default, minimum and
3013  * maximum properly applied.
3014  */
3015 static int
3016 igb_get_prop(igb_t *igb,
3017     char *propname,	/* name of the property */
3018     int minval,		/* minimum acceptable value */
3019     int maxval,		/* maximim acceptable value */
3020     int defval)		/* default value */
3021 {
3022 	int value;
3023 
3024 	/*
3025 	 * Call ddi_prop_get_int() to read the conf settings
3026 	 */
3027 	value = ddi_prop_get_int(DDI_DEV_T_ANY, igb->dip,
3028 	    DDI_PROP_DONTPASS, propname, defval);
3029 
3030 	if (value > maxval)
3031 		value = maxval;
3032 
3033 	if (value < minval)
3034 		value = minval;
3035 
3036 	return (value);
3037 }
3038 
3039 /*
3040  * igb_setup_link - Using the link properties to setup the link
3041  */
3042 int
3043 igb_setup_link(igb_t *igb, boolean_t setup_hw)
3044 {
3045 	struct e1000_mac_info *mac;
3046 	struct e1000_phy_info *phy;
3047 	boolean_t invalid;
3048 
3049 	mac = &igb->hw.mac;
3050 	phy = &igb->hw.phy;
3051 	invalid = B_FALSE;
3052 
3053 	if (igb->param_adv_autoneg_cap == 1) {
3054 		mac->autoneg = B_TRUE;
3055 		phy->autoneg_advertised = 0;
3056 
3057 		/*
3058 		 * 1000hdx is not supported for autonegotiation
3059 		 */
3060 		if (igb->param_adv_1000fdx_cap == 1)
3061 			phy->autoneg_advertised |= ADVERTISE_1000_FULL;
3062 
3063 		if (igb->param_adv_100fdx_cap == 1)
3064 			phy->autoneg_advertised |= ADVERTISE_100_FULL;
3065 
3066 		if (igb->param_adv_100hdx_cap == 1)
3067 			phy->autoneg_advertised |= ADVERTISE_100_HALF;
3068 
3069 		if (igb->param_adv_10fdx_cap == 1)
3070 			phy->autoneg_advertised |= ADVERTISE_10_FULL;
3071 
3072 		if (igb->param_adv_10hdx_cap == 1)
3073 			phy->autoneg_advertised |= ADVERTISE_10_HALF;
3074 
3075 		if (phy->autoneg_advertised == 0)
3076 			invalid = B_TRUE;
3077 	} else {
3078 		mac->autoneg = B_FALSE;
3079 
3080 		/*
3081 		 * 1000fdx and 1000hdx are not supported for forced link
3082 		 */
3083 		if (igb->param_adv_100fdx_cap == 1)
3084 			mac->forced_speed_duplex = ADVERTISE_100_FULL;
3085 		else if (igb->param_adv_100hdx_cap == 1)
3086 			mac->forced_speed_duplex = ADVERTISE_100_HALF;
3087 		else if (igb->param_adv_10fdx_cap == 1)
3088 			mac->forced_speed_duplex = ADVERTISE_10_FULL;
3089 		else if (igb->param_adv_10hdx_cap == 1)
3090 			mac->forced_speed_duplex = ADVERTISE_10_HALF;
3091 		else
3092 			invalid = B_TRUE;
3093 	}
3094 
3095 	if (invalid) {
3096 		igb_notice(igb, "Invalid link settings. Setup link to "
3097 		    "autonegotiation with full link capabilities.");
3098 		mac->autoneg = B_TRUE;
3099 		phy->autoneg_advertised = ADVERTISE_1000_FULL |
3100 		    ADVERTISE_100_FULL | ADVERTISE_100_HALF |
3101 		    ADVERTISE_10_FULL | ADVERTISE_10_HALF;
3102 	}
3103 
3104 	if (setup_hw) {
3105 		if (e1000_setup_link(&igb->hw) != E1000_SUCCESS)
3106 			return (IGB_FAILURE);
3107 	}
3108 
3109 	return (IGB_SUCCESS);
3110 }
3111 
3112 
3113 /*
3114  * igb_is_link_up - Check if the link is up
3115  */
3116 static boolean_t
3117 igb_is_link_up(igb_t *igb)
3118 {
3119 	struct e1000_hw *hw = &igb->hw;
3120 	boolean_t link_up = B_FALSE;
3121 
3122 	ASSERT(mutex_owned(&igb->gen_lock));
3123 
3124 	/*
3125 	 * get_link_status is set in the interrupt handler on link-status-change
3126 	 * or rx sequence error interrupt.  get_link_status will stay
3127 	 * false until the e1000_check_for_link establishes link only
3128 	 * for copper adapters.
3129 	 */
3130 	switch (hw->phy.media_type) {
3131 	case e1000_media_type_copper:
3132 		if (hw->mac.get_link_status) {
3133 			(void) e1000_check_for_link(hw);
3134 			link_up = !hw->mac.get_link_status;
3135 		} else {
3136 			link_up = B_TRUE;
3137 		}
3138 		break;
3139 	case e1000_media_type_fiber:
3140 		(void) e1000_check_for_link(hw);
3141 		link_up = (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU);
3142 		break;
3143 	case e1000_media_type_internal_serdes:
3144 		(void) e1000_check_for_link(hw);
3145 		link_up = hw->mac.serdes_has_link;
3146 		break;
3147 	}
3148 
3149 	return (link_up);
3150 }
3151 
3152 /*
3153  * igb_link_check - Link status processing
3154  */
3155 static boolean_t
3156 igb_link_check(igb_t *igb)
3157 {
3158 	struct e1000_hw *hw = &igb->hw;
3159 	uint16_t speed = 0, duplex = 0;
3160 	boolean_t link_changed = B_FALSE;
3161 
3162 	ASSERT(mutex_owned(&igb->gen_lock));
3163 
3164 	if (igb_is_link_up(igb)) {
3165 		/*
3166 		 * The Link is up, check whether it was marked as down earlier
3167 		 */
3168 		if (igb->link_state != LINK_STATE_UP) {
3169 			(void) e1000_get_speed_and_duplex(hw, &speed, &duplex);
3170 			igb->link_speed = speed;
3171 			igb->link_duplex = duplex;
3172 			igb->link_state = LINK_STATE_UP;
3173 			link_changed = B_TRUE;
3174 			if (!igb->link_complete)
3175 				igb_stop_link_timer(igb);
3176 		}
3177 	} else if (igb->link_complete) {
3178 		if (igb->link_state != LINK_STATE_DOWN) {
3179 			igb->link_speed = 0;
3180 			igb->link_duplex = 0;
3181 			igb->link_state = LINK_STATE_DOWN;
3182 			link_changed = B_TRUE;
3183 		}
3184 	}
3185 
3186 	if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK) {
3187 		ddi_fm_service_impact(igb->dip, DDI_SERVICE_DEGRADED);
3188 		return (B_FALSE);
3189 	}
3190 
3191 	return (link_changed);
3192 }
3193 
3194 /*
3195  * igb_local_timer - driver watchdog function
3196  *
3197  * This function will handle the hardware stall check, link status
3198  * check and other routines.
3199  */
3200 static void
3201 igb_local_timer(void *arg)
3202 {
3203 	igb_t *igb = (igb_t *)arg;
3204 	boolean_t link_changed = B_FALSE;
3205 
3206 	if (igb->igb_state & IGB_ERROR) {
3207 		igb->reset_count++;
3208 		if (igb_reset(igb) == IGB_SUCCESS)
3209 			ddi_fm_service_impact(igb->dip, DDI_SERVICE_RESTORED);
3210 
3211 		igb_restart_watchdog_timer(igb);
3212 		return;
3213 	}
3214 
3215 	if (igb_stall_check(igb) || (igb->igb_state & IGB_STALL)) {
3216 		igb_fm_ereport(igb, DDI_FM_DEVICE_STALL);
3217 		ddi_fm_service_impact(igb->dip, DDI_SERVICE_LOST);
3218 		igb->reset_count++;
3219 		if (igb_reset(igb) == IGB_SUCCESS)
3220 			ddi_fm_service_impact(igb->dip, DDI_SERVICE_RESTORED);
3221 
3222 		igb_restart_watchdog_timer(igb);
3223 		return;
3224 	}
3225 
3226 	mutex_enter(&igb->gen_lock);
3227 	if (!(igb->igb_state & IGB_SUSPENDED) && (igb->igb_state & IGB_STARTED))
3228 		link_changed = igb_link_check(igb);
3229 	mutex_exit(&igb->gen_lock);
3230 
3231 	if (link_changed)
3232 		mac_link_update(igb->mac_hdl, igb->link_state);
3233 
3234 	igb_restart_watchdog_timer(igb);
3235 }
3236 
3237 /*
3238  * igb_link_timer - link setup timer function
3239  *
3240  * It is called when the timer for link setup is expired, which indicates
3241  * the completion of the link setup. The link state will not be updated
3242  * until the link setup is completed. And the link state will not be sent
3243  * to the upper layer through mac_link_update() in this function. It will
3244  * be updated in the local timer routine or the interrupts service routine
3245  * after the interface is started (plumbed).
3246  */
3247 static void
3248 igb_link_timer(void *arg)
3249 {
3250 	igb_t *igb = (igb_t *)arg;
3251 
3252 	mutex_enter(&igb->link_lock);
3253 	igb->link_complete = B_TRUE;
3254 	igb->link_tid = 0;
3255 	mutex_exit(&igb->link_lock);
3256 }
3257 /*
3258  * igb_stall_check - check for transmit stall
3259  *
3260  * This function checks if the adapter is stalled (in transmit).
3261  *
3262  * It is called each time the watchdog timeout is invoked.
3263  * If the transmit descriptor reclaim continuously fails,
3264  * the watchdog value will increment by 1. If the watchdog
3265  * value exceeds the threshold, the igb is assumed to
3266  * have stalled and need to be reset.
3267  */
3268 static boolean_t
3269 igb_stall_check(igb_t *igb)
3270 {
3271 	igb_tx_ring_t *tx_ring;
3272 	struct e1000_hw *hw = &igb->hw;
3273 	boolean_t result;
3274 	int i;
3275 
3276 	if (igb->link_state != LINK_STATE_UP)
3277 		return (B_FALSE);
3278 
3279 	/*
3280 	 * If any tx ring is stalled, we'll reset the chipset
3281 	 */
3282 	result = B_FALSE;
3283 	for (i = 0; i < igb->num_tx_rings; i++) {
3284 		tx_ring = &igb->tx_rings[i];
3285 
3286 		if (tx_ring->recycle_fail > 0)
3287 			tx_ring->stall_watchdog++;
3288 		else
3289 			tx_ring->stall_watchdog = 0;
3290 
3291 		if (tx_ring->stall_watchdog >= STALL_WATCHDOG_TIMEOUT) {
3292 			result = B_TRUE;
3293 			if (hw->mac.type == e1000_82580) {
3294 				hw->dev_spec._82575.global_device_reset
3295 				    = B_TRUE;
3296 			}
3297 			break;
3298 		}
3299 	}
3300 
3301 	if (result) {
3302 		tx_ring->stall_watchdog = 0;
3303 		tx_ring->recycle_fail = 0;
3304 	}
3305 
3306 	return (result);
3307 }
3308 
3309 
3310 /*
3311  * is_valid_mac_addr - Check if the mac address is valid
3312  */
3313 static boolean_t
3314 is_valid_mac_addr(uint8_t *mac_addr)
3315 {
3316 	const uint8_t addr_test1[6] = { 0, 0, 0, 0, 0, 0 };
3317 	const uint8_t addr_test2[6] =
3318 	    { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
3319 
3320 	if (!(bcmp(addr_test1, mac_addr, ETHERADDRL)) ||
3321 	    !(bcmp(addr_test2, mac_addr, ETHERADDRL)))
3322 		return (B_FALSE);
3323 
3324 	return (B_TRUE);
3325 }
3326 
3327 static boolean_t
3328 igb_find_mac_address(igb_t *igb)
3329 {
3330 	struct e1000_hw *hw = &igb->hw;
3331 #ifdef __sparc
3332 	uchar_t *bytes;
3333 	struct ether_addr sysaddr;
3334 	uint_t nelts;
3335 	int err;
3336 	boolean_t found = B_FALSE;
3337 
3338 	/*
3339 	 * The "vendor's factory-set address" may already have
3340 	 * been extracted from the chip, but if the property
3341 	 * "local-mac-address" is set we use that instead.
3342 	 *
3343 	 * We check whether it looks like an array of 6
3344 	 * bytes (which it should, if OBP set it).  If we can't
3345 	 * make sense of it this way, we'll ignore it.
3346 	 */
3347 	err = ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, igb->dip,
3348 	    DDI_PROP_DONTPASS, "local-mac-address", &bytes, &nelts);
3349 	if (err == DDI_PROP_SUCCESS) {
3350 		if (nelts == ETHERADDRL) {
3351 			while (nelts--)
3352 				hw->mac.addr[nelts] = bytes[nelts];
3353 			found = B_TRUE;
3354 		}
3355 		ddi_prop_free(bytes);
3356 	}
3357 
3358 	/*
3359 	 * Look up the OBP property "local-mac-address?". If the user has set
3360 	 * 'local-mac-address? = false', use "the system address" instead.
3361 	 */
3362 	if (ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, igb->dip, 0,
3363 	    "local-mac-address?", &bytes, &nelts) == DDI_PROP_SUCCESS) {
3364 		if (strncmp("false", (caddr_t)bytes, (size_t)nelts) == 0) {
3365 			if (localetheraddr(NULL, &sysaddr) != 0) {
3366 				bcopy(&sysaddr, hw->mac.addr, ETHERADDRL);
3367 				found = B_TRUE;
3368 			}
3369 		}
3370 		ddi_prop_free(bytes);
3371 	}
3372 
3373 	/*
3374 	 * Finally(!), if there's a valid "mac-address" property (created
3375 	 * if we netbooted from this interface), we must use this instead
3376 	 * of any of the above to ensure that the NFS/install server doesn't
3377 	 * get confused by the address changing as Solaris takes over!
3378 	 */
3379 	err = ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, igb->dip,
3380 	    DDI_PROP_DONTPASS, "mac-address", &bytes, &nelts);
3381 	if (err == DDI_PROP_SUCCESS) {
3382 		if (nelts == ETHERADDRL) {
3383 			while (nelts--)
3384 				hw->mac.addr[nelts] = bytes[nelts];
3385 			found = B_TRUE;
3386 		}
3387 		ddi_prop_free(bytes);
3388 	}
3389 
3390 	if (found) {
3391 		bcopy(hw->mac.addr, hw->mac.perm_addr, ETHERADDRL);
3392 		return (B_TRUE);
3393 	}
3394 #endif
3395 
3396 	/*
3397 	 * Read the device MAC address from the EEPROM
3398 	 */
3399 	if (e1000_read_mac_addr(hw) != E1000_SUCCESS)
3400 		return (B_FALSE);
3401 
3402 	return (B_TRUE);
3403 }
3404 
3405 #pragma inline(igb_arm_watchdog_timer)
3406 
3407 static void
3408 igb_arm_watchdog_timer(igb_t *igb)
3409 {
3410 	/*
3411 	 * Fire a watchdog timer
3412 	 */
3413 	igb->watchdog_tid =
3414 	    timeout(igb_local_timer,
3415 	    (void *)igb, 1 * drv_usectohz(1000000));
3416 
3417 }
3418 
3419 /*
3420  * igb_enable_watchdog_timer - Enable and start the driver watchdog timer
3421  */
3422 void
3423 igb_enable_watchdog_timer(igb_t *igb)
3424 {
3425 	mutex_enter(&igb->watchdog_lock);
3426 
3427 	if (!igb->watchdog_enable) {
3428 		igb->watchdog_enable = B_TRUE;
3429 		igb->watchdog_start = B_TRUE;
3430 		igb_arm_watchdog_timer(igb);
3431 	}
3432 
3433 	mutex_exit(&igb->watchdog_lock);
3434 
3435 }
3436 
3437 /*
3438  * igb_disable_watchdog_timer - Disable and stop the driver watchdog timer
3439  */
3440 void
3441 igb_disable_watchdog_timer(igb_t *igb)
3442 {
3443 	timeout_id_t tid;
3444 
3445 	mutex_enter(&igb->watchdog_lock);
3446 
3447 	igb->watchdog_enable = B_FALSE;
3448 	igb->watchdog_start = B_FALSE;
3449 	tid = igb->watchdog_tid;
3450 	igb->watchdog_tid = 0;
3451 
3452 	mutex_exit(&igb->watchdog_lock);
3453 
3454 	if (tid != 0)
3455 		(void) untimeout(tid);
3456 
3457 }
3458 
3459 /*
3460  * igb_start_watchdog_timer - Start the driver watchdog timer
3461  */
3462 static void
3463 igb_start_watchdog_timer(igb_t *igb)
3464 {
3465 	mutex_enter(&igb->watchdog_lock);
3466 
3467 	if (igb->watchdog_enable) {
3468 		if (!igb->watchdog_start) {
3469 			igb->watchdog_start = B_TRUE;
3470 			igb_arm_watchdog_timer(igb);
3471 		}
3472 	}
3473 
3474 	mutex_exit(&igb->watchdog_lock);
3475 }
3476 
3477 /*
3478  * igb_restart_watchdog_timer - Restart the driver watchdog timer
3479  */
3480 static void
3481 igb_restart_watchdog_timer(igb_t *igb)
3482 {
3483 	mutex_enter(&igb->watchdog_lock);
3484 
3485 	if (igb->watchdog_start)
3486 		igb_arm_watchdog_timer(igb);
3487 
3488 	mutex_exit(&igb->watchdog_lock);
3489 }
3490 
3491 /*
3492  * igb_stop_watchdog_timer - Stop the driver watchdog timer
3493  */
3494 static void
3495 igb_stop_watchdog_timer(igb_t *igb)
3496 {
3497 	timeout_id_t tid;
3498 
3499 	mutex_enter(&igb->watchdog_lock);
3500 
3501 	igb->watchdog_start = B_FALSE;
3502 	tid = igb->watchdog_tid;
3503 	igb->watchdog_tid = 0;
3504 
3505 	mutex_exit(&igb->watchdog_lock);
3506 
3507 	if (tid != 0)
3508 		(void) untimeout(tid);
3509 }
3510 
3511 /*
3512  * igb_start_link_timer - Start the link setup timer
3513  */
3514 static void
3515 igb_start_link_timer(struct igb *igb)
3516 {
3517 	struct e1000_hw *hw = &igb->hw;
3518 	clock_t link_timeout;
3519 
3520 	if (hw->mac.autoneg)
3521 		link_timeout = PHY_AUTO_NEG_LIMIT *
3522 		    drv_usectohz(100000);
3523 	else
3524 		link_timeout = PHY_FORCE_LIMIT * drv_usectohz(100000);
3525 
3526 	mutex_enter(&igb->link_lock);
3527 	if (hw->phy.autoneg_wait_to_complete) {
3528 		igb->link_complete = B_TRUE;
3529 	} else {
3530 		igb->link_complete = B_FALSE;
3531 		igb->link_tid = timeout(igb_link_timer, (void *)igb,
3532 		    link_timeout);
3533 	}
3534 	mutex_exit(&igb->link_lock);
3535 }
3536 
3537 /*
3538  * igb_stop_link_timer - Stop the link setup timer
3539  */
3540 static void
3541 igb_stop_link_timer(struct igb *igb)
3542 {
3543 	timeout_id_t tid;
3544 
3545 	mutex_enter(&igb->link_lock);
3546 	igb->link_complete = B_TRUE;
3547 	tid = igb->link_tid;
3548 	igb->link_tid = 0;
3549 	mutex_exit(&igb->link_lock);
3550 
3551 	if (tid != 0)
3552 		(void) untimeout(tid);
3553 }
3554 
3555 /*
3556  * igb_disable_adapter_interrupts - Clear/disable all hardware interrupts
3557  */
3558 static void
3559 igb_disable_adapter_interrupts(igb_t *igb)
3560 {
3561 	struct e1000_hw *hw = &igb->hw;
3562 
3563 	/*
3564 	 * Set the IMC register to mask all the interrupts,
3565 	 * including the tx interrupts.
3566 	 */
3567 	E1000_WRITE_REG(hw, E1000_IMC, ~0);
3568 	E1000_WRITE_REG(hw, E1000_IAM, 0);
3569 
3570 	/*
3571 	 * Additional disabling for MSI-X
3572 	 */
3573 	if (igb->intr_type == DDI_INTR_TYPE_MSIX) {
3574 		E1000_WRITE_REG(hw, E1000_EIMC, ~0);
3575 		E1000_WRITE_REG(hw, E1000_EIAC, 0);
3576 		E1000_WRITE_REG(hw, E1000_EIAM, 0);
3577 	}
3578 
3579 	E1000_WRITE_FLUSH(hw);
3580 }
3581 
3582 /*
3583  * igb_enable_adapter_interrupts_82580 - Enable NIC interrupts for 82580
3584  */
3585 static void
3586 igb_enable_adapter_interrupts_82580(igb_t *igb)
3587 {
3588 	struct e1000_hw *hw = &igb->hw;
3589 
3590 	/* Clear any pending interrupts */
3591 	(void) E1000_READ_REG(hw, E1000_ICR);
3592 	igb->ims_mask |= E1000_IMS_DRSTA;
3593 
3594 	if (igb->intr_type == DDI_INTR_TYPE_MSIX) {
3595 
3596 		/* Interrupt enabling for MSI-X */
3597 		E1000_WRITE_REG(hw, E1000_EIMS, igb->eims_mask);
3598 		E1000_WRITE_REG(hw, E1000_EIAC, igb->eims_mask);
3599 		igb->ims_mask = (E1000_IMS_LSC | E1000_IMS_DRSTA);
3600 		E1000_WRITE_REG(hw, E1000_IMS, igb->ims_mask);
3601 	} else { /* Interrupt enabling for MSI and legacy */
3602 		E1000_WRITE_REG(hw, E1000_IVAR0, E1000_IVAR_VALID);
3603 		igb->ims_mask = IMS_ENABLE_MASK | E1000_IMS_TXQE;
3604 		igb->ims_mask |= E1000_IMS_DRSTA;
3605 		E1000_WRITE_REG(hw, E1000_IMS, igb->ims_mask);
3606 	}
3607 
3608 	/* Disable auto-mask for ICR interrupt bits */
3609 	E1000_WRITE_REG(hw, E1000_IAM, 0);
3610 
3611 	E1000_WRITE_FLUSH(hw);
3612 }
3613 
3614 /*
3615  * igb_enable_adapter_interrupts_82576 - Enable NIC interrupts for 82576
3616  */
3617 static void
3618 igb_enable_adapter_interrupts_82576(igb_t *igb)
3619 {
3620 	struct e1000_hw *hw = &igb->hw;
3621 
3622 	/* Clear any pending interrupts */
3623 	(void) E1000_READ_REG(hw, E1000_ICR);
3624 
3625 	if (igb->intr_type == DDI_INTR_TYPE_MSIX) {
3626 
3627 		/* Interrupt enabling for MSI-X */
3628 		E1000_WRITE_REG(hw, E1000_EIMS, igb->eims_mask);
3629 		E1000_WRITE_REG(hw, E1000_EIAC, igb->eims_mask);
3630 		igb->ims_mask = E1000_IMS_LSC;
3631 		E1000_WRITE_REG(hw, E1000_IMS, E1000_IMS_LSC);
3632 	} else {
3633 		/* Interrupt enabling for MSI and legacy */
3634 		E1000_WRITE_REG(hw, E1000_IVAR0, E1000_IVAR_VALID);
3635 		igb->ims_mask = IMS_ENABLE_MASK | E1000_IMS_TXQE;
3636 		E1000_WRITE_REG(hw, E1000_IMS,
3637 		    (IMS_ENABLE_MASK | E1000_IMS_TXQE));
3638 	}
3639 
3640 	/* Disable auto-mask for ICR interrupt bits */
3641 	E1000_WRITE_REG(hw, E1000_IAM, 0);
3642 
3643 	E1000_WRITE_FLUSH(hw);
3644 }
3645 
3646 /*
3647  * igb_enable_adapter_interrupts_82575 - Enable NIC interrupts for 82575
3648  */
3649 static void
3650 igb_enable_adapter_interrupts_82575(igb_t *igb)
3651 {
3652 	struct e1000_hw *hw = &igb->hw;
3653 	uint32_t reg;
3654 
3655 	/* Clear any pending interrupts */
3656 	(void) E1000_READ_REG(hw, E1000_ICR);
3657 
3658 	if (igb->intr_type == DDI_INTR_TYPE_MSIX) {
3659 		/* Interrupt enabling for MSI-X */
3660 		E1000_WRITE_REG(hw, E1000_EIMS, igb->eims_mask);
3661 		E1000_WRITE_REG(hw, E1000_EIAC, igb->eims_mask);
3662 		igb->ims_mask = E1000_IMS_LSC;
3663 		E1000_WRITE_REG(hw, E1000_IMS, E1000_IMS_LSC);
3664 
3665 		/* Enable MSI-X PBA support */
3666 		reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
3667 		reg |= E1000_CTRL_EXT_PBA_CLR;
3668 
3669 		/* Non-selective interrupt clear-on-read */
3670 		reg |= E1000_CTRL_EXT_IRCA;	/* Called NSICR in the EAS */
3671 
3672 		E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
3673 	} else {
3674 		/* Interrupt enabling for MSI and legacy */
3675 		igb->ims_mask = IMS_ENABLE_MASK;
3676 		E1000_WRITE_REG(hw, E1000_IMS, IMS_ENABLE_MASK);
3677 	}
3678 
3679 	E1000_WRITE_FLUSH(hw);
3680 }
3681 
3682 /*
3683  * Loopback Support
3684  */
3685 static lb_property_t lb_normal =
3686 	{ normal,	"normal",	IGB_LB_NONE		};
3687 static lb_property_t lb_external =
3688 	{ external,	"External",	IGB_LB_EXTERNAL		};
3689 static lb_property_t lb_phy =
3690 	{ internal,	"PHY",		IGB_LB_INTERNAL_PHY	};
3691 static lb_property_t lb_serdes =
3692 	{ internal,	"SerDes",	IGB_LB_INTERNAL_SERDES	};
3693 
3694 enum ioc_reply
3695 igb_loopback_ioctl(igb_t *igb, struct iocblk *iocp, mblk_t *mp)
3696 {
3697 	lb_info_sz_t *lbsp;
3698 	lb_property_t *lbpp;
3699 	struct e1000_hw *hw;
3700 	uint32_t *lbmp;
3701 	uint32_t size;
3702 	uint32_t value;
3703 
3704 	hw = &igb->hw;
3705 
3706 	if (mp->b_cont == NULL)
3707 		return (IOC_INVAL);
3708 
3709 	switch (iocp->ioc_cmd) {
3710 	default:
3711 		return (IOC_INVAL);
3712 
3713 	case LB_GET_INFO_SIZE:
3714 		size = sizeof (lb_info_sz_t);
3715 		if (iocp->ioc_count != size)
3716 			return (IOC_INVAL);
3717 
3718 		value = sizeof (lb_normal);
3719 		if (hw->phy.media_type == e1000_media_type_copper)
3720 			value += sizeof (lb_phy);
3721 		else
3722 			value += sizeof (lb_serdes);
3723 		value += sizeof (lb_external);
3724 
3725 		lbsp = (lb_info_sz_t *)(uintptr_t)mp->b_cont->b_rptr;
3726 		*lbsp = value;
3727 		break;
3728 
3729 	case LB_GET_INFO:
3730 		value = sizeof (lb_normal);
3731 		if (hw->phy.media_type == e1000_media_type_copper)
3732 			value += sizeof (lb_phy);
3733 		else
3734 			value += sizeof (lb_serdes);
3735 		value += sizeof (lb_external);
3736 
3737 		size = value;
3738 		if (iocp->ioc_count != size)
3739 			return (IOC_INVAL);
3740 
3741 		value = 0;
3742 		lbpp = (lb_property_t *)(uintptr_t)mp->b_cont->b_rptr;
3743 
3744 		lbpp[value++] = lb_normal;
3745 		if (hw->phy.media_type == e1000_media_type_copper)
3746 			lbpp[value++] = lb_phy;
3747 		else
3748 			lbpp[value++] = lb_serdes;
3749 		lbpp[value++] = lb_external;
3750 		break;
3751 
3752 	case LB_GET_MODE:
3753 		size = sizeof (uint32_t);
3754 		if (iocp->ioc_count != size)
3755 			return (IOC_INVAL);
3756 
3757 		lbmp = (uint32_t *)(uintptr_t)mp->b_cont->b_rptr;
3758 		*lbmp = igb->loopback_mode;
3759 		break;
3760 
3761 	case LB_SET_MODE:
3762 		size = 0;
3763 		if (iocp->ioc_count != sizeof (uint32_t))
3764 			return (IOC_INVAL);
3765 
3766 		lbmp = (uint32_t *)(uintptr_t)mp->b_cont->b_rptr;
3767 		if (!igb_set_loopback_mode(igb, *lbmp))
3768 			return (IOC_INVAL);
3769 		break;
3770 	}
3771 
3772 	iocp->ioc_count = size;
3773 	iocp->ioc_error = 0;
3774 
3775 	if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK) {
3776 		ddi_fm_service_impact(igb->dip, DDI_SERVICE_DEGRADED);
3777 		return (IOC_INVAL);
3778 	}
3779 
3780 	return (IOC_REPLY);
3781 }
3782 
3783 /*
3784  * igb_set_loopback_mode - Setup loopback based on the loopback mode
3785  */
3786 static boolean_t
3787 igb_set_loopback_mode(igb_t *igb, uint32_t mode)
3788 {
3789 	struct e1000_hw *hw;
3790 	int i;
3791 
3792 	if (mode == igb->loopback_mode)
3793 		return (B_TRUE);
3794 
3795 	hw = &igb->hw;
3796 
3797 	igb->loopback_mode = mode;
3798 
3799 	if (mode == IGB_LB_NONE) {
3800 		/* Reset the chip */
3801 		hw->phy.autoneg_wait_to_complete = B_TRUE;
3802 		(void) igb_reset(igb);
3803 		hw->phy.autoneg_wait_to_complete = B_FALSE;
3804 		return (B_TRUE);
3805 	}
3806 
3807 	mutex_enter(&igb->gen_lock);
3808 
3809 	switch (mode) {
3810 	default:
3811 		mutex_exit(&igb->gen_lock);
3812 		return (B_FALSE);
3813 
3814 	case IGB_LB_EXTERNAL:
3815 		igb_set_external_loopback(igb);
3816 		break;
3817 
3818 	case IGB_LB_INTERNAL_PHY:
3819 		igb_set_internal_phy_loopback(igb);
3820 		break;
3821 
3822 	case IGB_LB_INTERNAL_SERDES:
3823 		igb_set_internal_serdes_loopback(igb);
3824 		break;
3825 	}
3826 
3827 	mutex_exit(&igb->gen_lock);
3828 
3829 	/*
3830 	 * When external loopback is set, wait up to 1000ms to get the link up.
3831 	 * According to test, 1000ms can work and it's an experimental value.
3832 	 */
3833 	if (mode == IGB_LB_EXTERNAL) {
3834 		for (i = 0; i <= 10; i++) {
3835 			mutex_enter(&igb->gen_lock);
3836 			(void) igb_link_check(igb);
3837 			mutex_exit(&igb->gen_lock);
3838 
3839 			if (igb->link_state == LINK_STATE_UP)
3840 				break;
3841 
3842 			msec_delay(100);
3843 		}
3844 
3845 		if (igb->link_state != LINK_STATE_UP) {
3846 			/*
3847 			 * Does not support external loopback.
3848 			 * Reset driver to loopback none.
3849 			 */
3850 			igb->loopback_mode = IGB_LB_NONE;
3851 
3852 			/* Reset the chip */
3853 			hw->phy.autoneg_wait_to_complete = B_TRUE;
3854 			(void) igb_reset(igb);
3855 			hw->phy.autoneg_wait_to_complete = B_FALSE;
3856 
3857 			IGB_DEBUGLOG_0(igb, "Set external loopback failed, "
3858 			    "reset to loopback none.");
3859 
3860 			return (B_FALSE);
3861 		}
3862 	}
3863 
3864 	return (B_TRUE);
3865 }
3866 
3867 /*
3868  * igb_set_external_loopback - Set the external loopback mode
3869  */
3870 static void
3871 igb_set_external_loopback(igb_t *igb)
3872 {
3873 	struct e1000_hw *hw;
3874 	uint32_t ctrl_ext;
3875 
3876 	hw = &igb->hw;
3877 
3878 	/* Set link mode to PHY (00b) in the Extended Control register */
3879 	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
3880 	ctrl_ext &= ~E1000_CTRL_EXT_LINK_MODE_MASK;
3881 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
3882 
3883 	(void) e1000_write_phy_reg(hw, 0x0, 0x0140);
3884 	(void) e1000_write_phy_reg(hw, 0x9, 0x1a00);
3885 	(void) e1000_write_phy_reg(hw, 0x12, 0x1610);
3886 	(void) e1000_write_phy_reg(hw, 0x1f37, 0x3f1c);
3887 }
3888 
3889 /*
3890  * igb_set_internal_phy_loopback - Set the internal PHY loopback mode
3891  */
3892 static void
3893 igb_set_internal_phy_loopback(igb_t *igb)
3894 {
3895 	struct e1000_hw *hw;
3896 	uint32_t ctrl_ext;
3897 	uint16_t phy_ctrl;
3898 	uint16_t phy_pconf;
3899 
3900 	hw = &igb->hw;
3901 
3902 	/* Set link mode to PHY (00b) in the Extended Control register */
3903 	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
3904 	ctrl_ext &= ~E1000_CTRL_EXT_LINK_MODE_MASK;
3905 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
3906 
3907 	/*
3908 	 * Set PHY control register (0x4140):
3909 	 *    Set full duplex mode
3910 	 *    Set loopback bit
3911 	 *    Clear auto-neg enable bit
3912 	 *    Set PHY speed
3913 	 */
3914 	phy_ctrl = MII_CR_FULL_DUPLEX | MII_CR_SPEED_1000 | MII_CR_LOOPBACK;
3915 	(void) e1000_write_phy_reg(hw, PHY_CONTROL, phy_ctrl);
3916 
3917 	/* Set the link disable bit in the Port Configuration register */
3918 	(void) e1000_read_phy_reg(hw, 0x10, &phy_pconf);
3919 	phy_pconf |= (uint16_t)1 << 14;
3920 	(void) e1000_write_phy_reg(hw, 0x10, phy_pconf);
3921 }
3922 
3923 /*
3924  * igb_set_internal_serdes_loopback - Set the internal SerDes loopback mode
3925  */
3926 static void
3927 igb_set_internal_serdes_loopback(igb_t *igb)
3928 {
3929 	struct e1000_hw *hw;
3930 	uint32_t ctrl_ext;
3931 	uint32_t ctrl;
3932 	uint32_t pcs_lctl;
3933 	uint32_t connsw;
3934 
3935 	hw = &igb->hw;
3936 
3937 	/* Set link mode to SerDes (11b) in the Extended Control register */
3938 	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
3939 	ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
3940 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
3941 
3942 	/* Configure the SerDes to loopback */
3943 	E1000_WRITE_REG(hw, E1000_SCTL, 0x410);
3944 
3945 	/* Set Device Control register */
3946 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
3947 	ctrl |= (E1000_CTRL_FD |	/* Force full duplex */
3948 	    E1000_CTRL_SLU);		/* Force link up */
3949 	ctrl &= ~(E1000_CTRL_RFCE |	/* Disable receive flow control */
3950 	    E1000_CTRL_TFCE |		/* Disable transmit flow control */
3951 	    E1000_CTRL_LRST);		/* Clear link reset */
3952 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
3953 
3954 	/* Set PCS Link Control register */
3955 	pcs_lctl = E1000_READ_REG(hw, E1000_PCS_LCTL);
3956 	pcs_lctl |= (E1000_PCS_LCTL_FORCE_LINK |
3957 	    E1000_PCS_LCTL_FSD |
3958 	    E1000_PCS_LCTL_FDV_FULL |
3959 	    E1000_PCS_LCTL_FLV_LINK_UP);
3960 	pcs_lctl &= ~E1000_PCS_LCTL_AN_ENABLE;
3961 	E1000_WRITE_REG(hw, E1000_PCS_LCTL, pcs_lctl);
3962 
3963 	/* Set the Copper/Fiber Switch Control - CONNSW register */
3964 	connsw = E1000_READ_REG(hw, E1000_CONNSW);
3965 	connsw &= ~E1000_CONNSW_ENRGSRC;
3966 	E1000_WRITE_REG(hw, E1000_CONNSW, connsw);
3967 }
3968 
3969 #pragma inline(igb_intr_rx_work)
3970 /*
3971  * igb_intr_rx_work - rx processing of ISR
3972  */
3973 static void
3974 igb_intr_rx_work(igb_rx_ring_t *rx_ring)
3975 {
3976 	mblk_t *mp;
3977 
3978 	mutex_enter(&rx_ring->rx_lock);
3979 	mp = igb_rx(rx_ring, IGB_NO_POLL);
3980 	mutex_exit(&rx_ring->rx_lock);
3981 
3982 	if (mp != NULL)
3983 		mac_rx_ring(rx_ring->igb->mac_hdl, rx_ring->ring_handle, mp,
3984 		    rx_ring->ring_gen_num);
3985 }
3986 
3987 #pragma inline(igb_intr_tx_work)
3988 /*
3989  * igb_intr_tx_work - tx processing of ISR
3990  */
3991 static void
3992 igb_intr_tx_work(igb_tx_ring_t *tx_ring)
3993 {
3994 	igb_t *igb = tx_ring->igb;
3995 
3996 	/* Recycle the tx descriptors */
3997 	tx_ring->tx_recycle(tx_ring);
3998 
3999 	/* Schedule the re-transmit */
4000 	if (tx_ring->reschedule &&
4001 	    (tx_ring->tbd_free >= igb->tx_resched_thresh)) {
4002 		tx_ring->reschedule = B_FALSE;
4003 		mac_tx_ring_update(tx_ring->igb->mac_hdl, tx_ring->ring_handle);
4004 		IGB_DEBUG_STAT(tx_ring->stat_reschedule);
4005 	}
4006 }
4007 
4008 #pragma inline(igb_intr_link_work)
4009 /*
4010  * igb_intr_link_work - link-status-change processing of ISR
4011  */
4012 static void
4013 igb_intr_link_work(igb_t *igb)
4014 {
4015 	boolean_t link_changed;
4016 
4017 	igb_stop_watchdog_timer(igb);
4018 
4019 	mutex_enter(&igb->gen_lock);
4020 
4021 	/*
4022 	 * Because we got a link-status-change interrupt, force
4023 	 * e1000_check_for_link() to look at phy
4024 	 */
4025 	igb->hw.mac.get_link_status = B_TRUE;
4026 
4027 	/* igb_link_check takes care of link status change */
4028 	link_changed = igb_link_check(igb);
4029 
4030 	/* Get new phy state */
4031 	igb_get_phy_state(igb);
4032 
4033 	mutex_exit(&igb->gen_lock);
4034 
4035 	if (link_changed)
4036 		mac_link_update(igb->mac_hdl, igb->link_state);
4037 
4038 	igb_start_watchdog_timer(igb);
4039 }
4040 
4041 /*
4042  * igb_intr_legacy - Interrupt handler for legacy interrupts
4043  */
4044 static uint_t
4045 igb_intr_legacy(void *arg1, void *arg2)
4046 {
4047 	igb_t *igb = (igb_t *)arg1;
4048 	igb_tx_ring_t *tx_ring;
4049 	uint32_t icr;
4050 	mblk_t *mp;
4051 	boolean_t tx_reschedule;
4052 	boolean_t link_changed;
4053 	uint_t result;
4054 
4055 	_NOTE(ARGUNUSED(arg2));
4056 
4057 	mutex_enter(&igb->gen_lock);
4058 
4059 	if (igb->igb_state & IGB_SUSPENDED) {
4060 		mutex_exit(&igb->gen_lock);
4061 		return (DDI_INTR_UNCLAIMED);
4062 	}
4063 
4064 	mp = NULL;
4065 	tx_reschedule = B_FALSE;
4066 	link_changed = B_FALSE;
4067 	icr = E1000_READ_REG(&igb->hw, E1000_ICR);
4068 
4069 	if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK) {
4070 		mutex_exit(&igb->gen_lock);
4071 		ddi_fm_service_impact(igb->dip, DDI_SERVICE_DEGRADED);
4072 		atomic_or_32(&igb->igb_state, IGB_ERROR);
4073 		return (DDI_INTR_UNCLAIMED);
4074 	}
4075 
4076 	if (icr & E1000_ICR_INT_ASSERTED) {
4077 		/*
4078 		 * E1000_ICR_INT_ASSERTED bit was set:
4079 		 * Read(Clear) the ICR, claim this interrupt,
4080 		 * look for work to do.
4081 		 */
4082 		ASSERT(igb->num_rx_rings == 1);
4083 		ASSERT(igb->num_tx_rings == 1);
4084 
4085 		/* Make sure all interrupt causes cleared */
4086 		(void) E1000_READ_REG(&igb->hw, E1000_EICR);
4087 
4088 		if (icr & E1000_ICR_RXT0) {
4089 			mp = igb_rx(&igb->rx_rings[0], IGB_NO_POLL);
4090 		}
4091 
4092 		if (icr & E1000_ICR_TXDW) {
4093 			tx_ring = &igb->tx_rings[0];
4094 
4095 			/* Recycle the tx descriptors */
4096 			tx_ring->tx_recycle(tx_ring);
4097 
4098 			/* Schedule the re-transmit */
4099 			tx_reschedule = (tx_ring->reschedule &&
4100 			    (tx_ring->tbd_free >= igb->tx_resched_thresh));
4101 		}
4102 
4103 		if (icr & E1000_ICR_LSC) {
4104 			/*
4105 			 * Because we got a link-status-change interrupt, force
4106 			 * e1000_check_for_link() to look at phy
4107 			 */
4108 			igb->hw.mac.get_link_status = B_TRUE;
4109 
4110 			/* igb_link_check takes care of link status change */
4111 			link_changed = igb_link_check(igb);
4112 
4113 			/* Get new phy state */
4114 			igb_get_phy_state(igb);
4115 		}
4116 
4117 		if (icr & E1000_ICR_DRSTA) {
4118 			/* 82580 Full Device Reset needed */
4119 			atomic_or_32(&igb->igb_state, IGB_STALL);
4120 		}
4121 
4122 		result = DDI_INTR_CLAIMED;
4123 	} else {
4124 		/*
4125 		 * E1000_ICR_INT_ASSERTED bit was not set:
4126 		 * Don't claim this interrupt.
4127 		 */
4128 		result = DDI_INTR_UNCLAIMED;
4129 	}
4130 
4131 	mutex_exit(&igb->gen_lock);
4132 
4133 	/*
4134 	 * Do the following work outside of the gen_lock
4135 	 */
4136 	if (mp != NULL)
4137 		mac_rx(igb->mac_hdl, NULL, mp);
4138 
4139 	if (tx_reschedule)  {
4140 		tx_ring->reschedule = B_FALSE;
4141 		mac_tx_ring_update(igb->mac_hdl, tx_ring->ring_handle);
4142 		IGB_DEBUG_STAT(tx_ring->stat_reschedule);
4143 	}
4144 
4145 	if (link_changed)
4146 		mac_link_update(igb->mac_hdl, igb->link_state);
4147 
4148 	return (result);
4149 }
4150 
4151 /*
4152  * igb_intr_msi - Interrupt handler for MSI
4153  */
4154 static uint_t
4155 igb_intr_msi(void *arg1, void *arg2)
4156 {
4157 	igb_t *igb = (igb_t *)arg1;
4158 	uint32_t icr;
4159 
4160 	_NOTE(ARGUNUSED(arg2));
4161 
4162 	icr = E1000_READ_REG(&igb->hw, E1000_ICR);
4163 
4164 	if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK) {
4165 		ddi_fm_service_impact(igb->dip, DDI_SERVICE_DEGRADED);
4166 		atomic_or_32(&igb->igb_state, IGB_ERROR);
4167 		return (DDI_INTR_CLAIMED);
4168 	}
4169 
4170 	/* Make sure all interrupt causes cleared */
4171 	(void) E1000_READ_REG(&igb->hw, E1000_EICR);
4172 
4173 	/*
4174 	 * For MSI interrupt, we have only one vector,
4175 	 * so we have only one rx ring and one tx ring enabled.
4176 	 */
4177 	ASSERT(igb->num_rx_rings == 1);
4178 	ASSERT(igb->num_tx_rings == 1);
4179 
4180 	if (icr & E1000_ICR_RXT0) {
4181 		igb_intr_rx_work(&igb->rx_rings[0]);
4182 	}
4183 
4184 	if (icr & E1000_ICR_TXDW) {
4185 		igb_intr_tx_work(&igb->tx_rings[0]);
4186 	}
4187 
4188 	if (icr & E1000_ICR_LSC) {
4189 		igb_intr_link_work(igb);
4190 	}
4191 
4192 	if (icr & E1000_ICR_DRSTA) {
4193 		/* 82580 Full Device Reset needed */
4194 		atomic_or_32(&igb->igb_state, IGB_STALL);
4195 	}
4196 
4197 	return (DDI_INTR_CLAIMED);
4198 }
4199 
4200 /*
4201  * igb_intr_rx - Interrupt handler for rx
4202  */
4203 static uint_t
4204 igb_intr_rx(void *arg1, void *arg2)
4205 {
4206 	igb_rx_ring_t *rx_ring = (igb_rx_ring_t *)arg1;
4207 
4208 	_NOTE(ARGUNUSED(arg2));
4209 
4210 	/*
4211 	 * Only used via MSI-X vector so don't check cause bits
4212 	 * and only clean the given ring.
4213 	 */
4214 	igb_intr_rx_work(rx_ring);
4215 
4216 	return (DDI_INTR_CLAIMED);
4217 }
4218 
4219 /*
4220  * igb_intr_tx - Interrupt handler for tx
4221  */
4222 static uint_t
4223 igb_intr_tx(void *arg1, void *arg2)
4224 {
4225 	igb_tx_ring_t *tx_ring = (igb_tx_ring_t *)arg1;
4226 
4227 	_NOTE(ARGUNUSED(arg2));
4228 
4229 	/*
4230 	 * Only used via MSI-X vector so don't check cause bits
4231 	 * and only clean the given ring.
4232 	 */
4233 	igb_intr_tx_work(tx_ring);
4234 
4235 	return (DDI_INTR_CLAIMED);
4236 }
4237 
4238 /*
4239  * igb_intr_tx_other - Interrupt handler for both tx and other
4240  *
4241  */
4242 static uint_t
4243 igb_intr_tx_other(void *arg1, void *arg2)
4244 {
4245 	igb_t *igb = (igb_t *)arg1;
4246 	uint32_t icr;
4247 
4248 	_NOTE(ARGUNUSED(arg2));
4249 
4250 	icr = E1000_READ_REG(&igb->hw, E1000_ICR);
4251 
4252 	if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK) {
4253 		ddi_fm_service_impact(igb->dip, DDI_SERVICE_DEGRADED);
4254 		atomic_or_32(&igb->igb_state, IGB_ERROR);
4255 		return (DDI_INTR_CLAIMED);
4256 	}
4257 
4258 	/*
4259 	 * Look for tx reclaiming work first. Remember, in the
4260 	 * case of only interrupt sharing, only one tx ring is
4261 	 * used
4262 	 */
4263 	igb_intr_tx_work(&igb->tx_rings[0]);
4264 
4265 	/*
4266 	 * Check for "other" causes.
4267 	 */
4268 	if (icr & E1000_ICR_LSC) {
4269 		igb_intr_link_work(igb);
4270 	}
4271 
4272 	/*
4273 	 * The DOUTSYNC bit indicates a tx packet dropped because
4274 	 * DMA engine gets "out of sync". There isn't a real fix
4275 	 * for this. The Intel recommendation is to count the number
4276 	 * of occurrences so user can detect when it is happening.
4277 	 * The issue is non-fatal and there's no recovery action
4278 	 * available.
4279 	 */
4280 	if (icr & E1000_ICR_DOUTSYNC) {
4281 		IGB_STAT(igb->dout_sync);
4282 	}
4283 
4284 	if (icr & E1000_ICR_DRSTA) {
4285 		/* 82580 Full Device Reset needed */
4286 		atomic_or_32(&igb->igb_state, IGB_STALL);
4287 	}
4288 
4289 	return (DDI_INTR_CLAIMED);
4290 }
4291 
4292 /*
4293  * igb_alloc_intrs - Allocate interrupts for the driver
4294  *
4295  * Normal sequence is to try MSI-X; if not sucessful, try MSI;
4296  * if not successful, try Legacy.
4297  * igb->intr_force can be used to force sequence to start with
4298  * any of the 3 types.
4299  * If MSI-X is not used, number of tx/rx rings is forced to 1.
4300  */
4301 static int
4302 igb_alloc_intrs(igb_t *igb)
4303 {
4304 	dev_info_t *devinfo;
4305 	int intr_types;
4306 	int rc;
4307 
4308 	devinfo = igb->dip;
4309 
4310 	/* Get supported interrupt types */
4311 	rc = ddi_intr_get_supported_types(devinfo, &intr_types);
4312 
4313 	if (rc != DDI_SUCCESS) {
4314 		igb_log(igb,
4315 		    "Get supported interrupt types failed: %d", rc);
4316 		return (IGB_FAILURE);
4317 	}
4318 	IGB_DEBUGLOG_1(igb, "Supported interrupt types: %x", intr_types);
4319 
4320 	igb->intr_type = 0;
4321 
4322 	/* Install MSI-X interrupts */
4323 	if ((intr_types & DDI_INTR_TYPE_MSIX) &&
4324 	    (igb->intr_force <= IGB_INTR_MSIX)) {
4325 		rc = igb_alloc_intr_handles(igb, DDI_INTR_TYPE_MSIX);
4326 
4327 		if (rc == IGB_SUCCESS)
4328 			return (IGB_SUCCESS);
4329 
4330 		igb_log(igb,
4331 		    "Allocate MSI-X failed, trying MSI interrupts...");
4332 	}
4333 
4334 	/* MSI-X not used, force rings to 1 */
4335 	igb->num_rx_rings = 1;
4336 	igb->num_tx_rings = 1;
4337 	igb_log(igb,
4338 	    "MSI-X not used, force rx and tx queue number to 1");
4339 
4340 	/* Install MSI interrupts */
4341 	if ((intr_types & DDI_INTR_TYPE_MSI) &&
4342 	    (igb->intr_force <= IGB_INTR_MSI)) {
4343 		rc = igb_alloc_intr_handles(igb, DDI_INTR_TYPE_MSI);
4344 
4345 		if (rc == IGB_SUCCESS)
4346 			return (IGB_SUCCESS);
4347 
4348 		igb_log(igb,
4349 		    "Allocate MSI failed, trying Legacy interrupts...");
4350 	}
4351 
4352 	/* Install legacy interrupts */
4353 	if (intr_types & DDI_INTR_TYPE_FIXED) {
4354 		rc = igb_alloc_intr_handles(igb, DDI_INTR_TYPE_FIXED);
4355 
4356 		if (rc == IGB_SUCCESS)
4357 			return (IGB_SUCCESS);
4358 
4359 		igb_log(igb,
4360 		    "Allocate Legacy interrupts failed");
4361 	}
4362 
4363 	/* If none of the 3 types succeeded, return failure */
4364 	return (IGB_FAILURE);
4365 }
4366 
4367 /*
4368  * igb_alloc_intr_handles - Allocate interrupt handles.
4369  *
4370  * For legacy and MSI, only 1 handle is needed.  For MSI-X,
4371  * if fewer than 2 handles are available, return failure.
4372  * Upon success, this sets the number of Rx rings to a number that
4373  * matches the handles available for Rx interrupts.
4374  */
4375 static int
4376 igb_alloc_intr_handles(igb_t *igb, int intr_type)
4377 {
4378 	dev_info_t *devinfo;
4379 	int orig, request, count, avail, actual;
4380 	int diff, minimum;
4381 	int rc;
4382 
4383 	devinfo = igb->dip;
4384 
4385 	switch (intr_type) {
4386 	case DDI_INTR_TYPE_FIXED:
4387 		request = 1;	/* Request 1 legacy interrupt handle */
4388 		minimum = 1;
4389 		IGB_DEBUGLOG_0(igb, "interrupt type: legacy");
4390 		break;
4391 
4392 	case DDI_INTR_TYPE_MSI:
4393 		request = 1;	/* Request 1 MSI interrupt handle */
4394 		minimum = 1;
4395 		IGB_DEBUGLOG_0(igb, "interrupt type: MSI");
4396 		break;
4397 
4398 	case DDI_INTR_TYPE_MSIX:
4399 		/*
4400 		 * Number of vectors for the adapter is
4401 		 * # rx rings + # tx rings
4402 		 * One of tx vectors is for tx & other
4403 		 */
4404 		request = igb->num_rx_rings + igb->num_tx_rings;
4405 		orig = request;
4406 		minimum = 2;
4407 		IGB_DEBUGLOG_0(igb, "interrupt type: MSI-X");
4408 		break;
4409 
4410 	default:
4411 		igb_log(igb,
4412 		    "invalid call to igb_alloc_intr_handles(): %d\n",
4413 		    intr_type);
4414 		return (IGB_FAILURE);
4415 	}
4416 	IGB_DEBUGLOG_2(igb, "interrupt handles requested: %d  minimum: %d",
4417 	    request, minimum);
4418 
4419 	/*
4420 	 * Get number of supported interrupts
4421 	 */
4422 	rc = ddi_intr_get_nintrs(devinfo, intr_type, &count);
4423 	if ((rc != DDI_SUCCESS) || (count < minimum)) {
4424 		igb_log(igb,
4425 		    "Get supported interrupt number failed. "
4426 		    "Return: %d, count: %d", rc, count);
4427 		return (IGB_FAILURE);
4428 	}
4429 	IGB_DEBUGLOG_1(igb, "interrupts supported: %d", count);
4430 
4431 	/*
4432 	 * Get number of available interrupts
4433 	 */
4434 	rc = ddi_intr_get_navail(devinfo, intr_type, &avail);
4435 	if ((rc != DDI_SUCCESS) || (avail < minimum)) {
4436 		igb_log(igb,
4437 		    "Get available interrupt number failed. "
4438 		    "Return: %d, available: %d", rc, avail);
4439 		return (IGB_FAILURE);
4440 	}
4441 	IGB_DEBUGLOG_1(igb, "interrupts available: %d", avail);
4442 
4443 	if (avail < request) {
4444 		igb_log(igb, "Request %d handles, %d available",
4445 		    request, avail);
4446 		request = avail;
4447 	}
4448 
4449 	actual = 0;
4450 	igb->intr_cnt = 0;
4451 
4452 	/*
4453 	 * Allocate an array of interrupt handles
4454 	 */
4455 	igb->intr_size = request * sizeof (ddi_intr_handle_t);
4456 	igb->htable = kmem_alloc(igb->intr_size, KM_SLEEP);
4457 
4458 	rc = ddi_intr_alloc(devinfo, igb->htable, intr_type, 0,
4459 	    request, &actual, DDI_INTR_ALLOC_NORMAL);
4460 	if (rc != DDI_SUCCESS) {
4461 		igb_log(igb, "Allocate interrupts failed. "
4462 		    "return: %d, request: %d, actual: %d",
4463 		    rc, request, actual);
4464 		goto alloc_handle_fail;
4465 	}
4466 	IGB_DEBUGLOG_1(igb, "interrupts actually allocated: %d", actual);
4467 
4468 	igb->intr_cnt = actual;
4469 
4470 	if (actual < minimum) {
4471 		igb_log(igb, "Insufficient interrupt handles allocated: %d",
4472 		    actual);
4473 		goto alloc_handle_fail;
4474 	}
4475 
4476 	/*
4477 	 * For MSI-X, actual might force us to reduce number of tx & rx rings
4478 	 */
4479 	if ((intr_type == DDI_INTR_TYPE_MSIX) && (orig > actual)) {
4480 		diff = orig - actual;
4481 		if (diff < igb->num_tx_rings) {
4482 			igb_log(igb,
4483 			    "MSI-X vectors force Tx queue number to %d",
4484 			    igb->num_tx_rings - diff);
4485 			igb->num_tx_rings -= diff;
4486 		} else {
4487 			igb_log(igb,
4488 			    "MSI-X vectors force Tx queue number to 1");
4489 			igb->num_tx_rings = 1;
4490 
4491 			igb_log(igb,
4492 			    "MSI-X vectors force Rx queue number to %d",
4493 			    actual - 1);
4494 			igb->num_rx_rings = actual - 1;
4495 		}
4496 	}
4497 
4498 	/*
4499 	 * Get priority for first vector, assume remaining are all the same
4500 	 */
4501 	rc = ddi_intr_get_pri(igb->htable[0], &igb->intr_pri);
4502 	if (rc != DDI_SUCCESS) {
4503 		igb_log(igb,
4504 		    "Get interrupt priority failed: %d", rc);
4505 		goto alloc_handle_fail;
4506 	}
4507 
4508 	rc = ddi_intr_get_cap(igb->htable[0], &igb->intr_cap);
4509 	if (rc != DDI_SUCCESS) {
4510 		igb_log(igb,
4511 		    "Get interrupt cap failed: %d", rc);
4512 		goto alloc_handle_fail;
4513 	}
4514 
4515 	igb->intr_type = intr_type;
4516 
4517 	return (IGB_SUCCESS);
4518 
4519 alloc_handle_fail:
4520 	igb_rem_intrs(igb);
4521 
4522 	return (IGB_FAILURE);
4523 }
4524 
4525 /*
4526  * igb_add_intr_handlers - Add interrupt handlers based on the interrupt type
4527  *
4528  * Before adding the interrupt handlers, the interrupt vectors have
4529  * been allocated, and the rx/tx rings have also been allocated.
4530  */
4531 static int
4532 igb_add_intr_handlers(igb_t *igb)
4533 {
4534 	igb_rx_ring_t *rx_ring;
4535 	igb_tx_ring_t *tx_ring;
4536 	int vector;
4537 	int rc;
4538 	int i;
4539 
4540 	vector = 0;
4541 
4542 	switch (igb->intr_type) {
4543 	case DDI_INTR_TYPE_MSIX:
4544 		/* Add interrupt handler for tx + other */
4545 		tx_ring = &igb->tx_rings[0];
4546 		rc = ddi_intr_add_handler(igb->htable[vector],
4547 		    (ddi_intr_handler_t *)igb_intr_tx_other,
4548 		    (void *)igb, NULL);
4549 
4550 		if (rc != DDI_SUCCESS) {
4551 			igb_log(igb,
4552 			    "Add tx/other interrupt handler failed: %d", rc);
4553 			return (IGB_FAILURE);
4554 		}
4555 		tx_ring->intr_vector = vector;
4556 		vector++;
4557 
4558 		/* Add interrupt handler for each rx ring */
4559 		for (i = 0; i < igb->num_rx_rings; i++) {
4560 			rx_ring = &igb->rx_rings[i];
4561 
4562 			rc = ddi_intr_add_handler(igb->htable[vector],
4563 			    (ddi_intr_handler_t *)igb_intr_rx,
4564 			    (void *)rx_ring, NULL);
4565 
4566 			if (rc != DDI_SUCCESS) {
4567 				igb_log(igb,
4568 				    "Add rx interrupt handler failed. "
4569 				    "return: %d, rx ring: %d", rc, i);
4570 				for (vector--; vector >= 0; vector--) {
4571 					(void) ddi_intr_remove_handler(
4572 					    igb->htable[vector]);
4573 				}
4574 				return (IGB_FAILURE);
4575 			}
4576 
4577 			rx_ring->intr_vector = vector;
4578 
4579 			vector++;
4580 		}
4581 
4582 		/* Add interrupt handler for each tx ring from 2nd ring */
4583 		for (i = 1; i < igb->num_tx_rings; i++) {
4584 			tx_ring = &igb->tx_rings[i];
4585 
4586 			rc = ddi_intr_add_handler(igb->htable[vector],
4587 			    (ddi_intr_handler_t *)igb_intr_tx,
4588 			    (void *)tx_ring, NULL);
4589 
4590 			if (rc != DDI_SUCCESS) {
4591 				igb_log(igb,
4592 				    "Add tx interrupt handler failed. "
4593 				    "return: %d, tx ring: %d", rc, i);
4594 				for (vector--; vector >= 0; vector--) {
4595 					(void) ddi_intr_remove_handler(
4596 					    igb->htable[vector]);
4597 				}
4598 				return (IGB_FAILURE);
4599 			}
4600 
4601 			tx_ring->intr_vector = vector;
4602 
4603 			vector++;
4604 		}
4605 
4606 		break;
4607 
4608 	case DDI_INTR_TYPE_MSI:
4609 		/* Add interrupt handlers for the only vector */
4610 		rc = ddi_intr_add_handler(igb->htable[vector],
4611 		    (ddi_intr_handler_t *)igb_intr_msi,
4612 		    (void *)igb, NULL);
4613 
4614 		if (rc != DDI_SUCCESS) {
4615 			igb_log(igb,
4616 			    "Add MSI interrupt handler failed: %d", rc);
4617 			return (IGB_FAILURE);
4618 		}
4619 
4620 		rx_ring = &igb->rx_rings[0];
4621 		rx_ring->intr_vector = vector;
4622 
4623 		vector++;
4624 		break;
4625 
4626 	case DDI_INTR_TYPE_FIXED:
4627 		/* Add interrupt handlers for the only vector */
4628 		rc = ddi_intr_add_handler(igb->htable[vector],
4629 		    (ddi_intr_handler_t *)igb_intr_legacy,
4630 		    (void *)igb, NULL);
4631 
4632 		if (rc != DDI_SUCCESS) {
4633 			igb_log(igb,
4634 			    "Add legacy interrupt handler failed: %d", rc);
4635 			return (IGB_FAILURE);
4636 		}
4637 
4638 		rx_ring = &igb->rx_rings[0];
4639 		rx_ring->intr_vector = vector;
4640 
4641 		vector++;
4642 		break;
4643 
4644 	default:
4645 		return (IGB_FAILURE);
4646 	}
4647 
4648 	ASSERT(vector == igb->intr_cnt);
4649 
4650 	return (IGB_SUCCESS);
4651 }
4652 
4653 /*
4654  * igb_setup_msix_82575 - setup 82575 adapter to use MSI-X interrupts
4655  *
4656  * For each vector enabled on the adapter, Set the MSIXBM register accordingly
4657  */
4658 static void
4659 igb_setup_msix_82575(igb_t *igb)
4660 {
4661 	uint32_t eims = 0;
4662 	int i, vector;
4663 	struct e1000_hw *hw = &igb->hw;
4664 
4665 	/*
4666 	 * Set vector for tx ring 0 and other causes.
4667 	 * NOTE assumption that it is vector 0.
4668 	 */
4669 	vector = 0;
4670 
4671 	igb->eims_mask = E1000_EICR_TX_QUEUE0 | E1000_EICR_OTHER;
4672 	E1000_WRITE_REG(hw, E1000_MSIXBM(vector), igb->eims_mask);
4673 	vector++;
4674 
4675 	for (i = 0; i < igb->num_rx_rings; i++) {
4676 		/*
4677 		 * Set vector for each rx ring
4678 		 */
4679 		eims = (E1000_EICR_RX_QUEUE0 << i);
4680 		E1000_WRITE_REG(hw, E1000_MSIXBM(vector), eims);
4681 
4682 		/*
4683 		 * Accumulate bits to enable in
4684 		 * igb_enable_adapter_interrupts_82575()
4685 		 */
4686 		igb->eims_mask |= eims;
4687 
4688 		vector++;
4689 	}
4690 
4691 	for (i = 1; i < igb->num_tx_rings; i++) {
4692 		/*
4693 		 * Set vector for each tx ring from 2nd tx ring
4694 		 */
4695 		eims = (E1000_EICR_TX_QUEUE0 << i);
4696 		E1000_WRITE_REG(hw, E1000_MSIXBM(vector), eims);
4697 
4698 		/*
4699 		 * Accumulate bits to enable in
4700 		 * igb_enable_adapter_interrupts_82575()
4701 		 */
4702 		igb->eims_mask |= eims;
4703 
4704 		vector++;
4705 	}
4706 
4707 	ASSERT(vector == igb->intr_cnt);
4708 
4709 	/*
4710 	 * Disable IAM for ICR interrupt bits
4711 	 */
4712 	E1000_WRITE_REG(hw, E1000_IAM, 0);
4713 	E1000_WRITE_FLUSH(hw);
4714 }
4715 
4716 /*
4717  * igb_setup_msix_82576 - setup 82576 adapter to use MSI-X interrupts
4718  *
4719  * 82576 uses a table based method for assigning vectors.  Each queue has a
4720  * single entry in the table to which we write a vector number along with a
4721  * "valid" bit.  The entry is a single byte in a 4-byte register.  Vectors
4722  * take a different position in the 4-byte register depending on whether
4723  * they are numbered above or below 8.
4724  */
4725 static void
4726 igb_setup_msix_82576(igb_t *igb)
4727 {
4728 	struct e1000_hw *hw = &igb->hw;
4729 	uint32_t ivar, index, vector;
4730 	int i;
4731 
4732 	/* must enable msi-x capability before IVAR settings */
4733 	E1000_WRITE_REG(hw, E1000_GPIE,
4734 	    (E1000_GPIE_MSIX_MODE | E1000_GPIE_PBA | E1000_GPIE_NSICR));
4735 
4736 	/*
4737 	 * Set vector for tx ring 0 and other causes.
4738 	 * NOTE assumption that it is vector 0.
4739 	 * This is also interdependent with installation of interrupt service
4740 	 * routines in igb_add_intr_handlers().
4741 	 */
4742 
4743 	/* assign "other" causes to vector 0 */
4744 	vector = 0;
4745 	ivar = ((vector | E1000_IVAR_VALID) << 8);
4746 	E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar);
4747 
4748 	/* assign tx ring 0 to vector 0 */
4749 	ivar = ((vector | E1000_IVAR_VALID) << 8);
4750 	E1000_WRITE_REG(hw, E1000_IVAR0, ivar);
4751 
4752 	/* prepare to enable tx & other interrupt causes */
4753 	igb->eims_mask = (1 << vector);
4754 
4755 	vector ++;
4756 	for (i = 0; i < igb->num_rx_rings; i++) {
4757 		/*
4758 		 * Set vector for each rx ring
4759 		 */
4760 		index = (i & 0x7);
4761 		ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
4762 
4763 		if (i < 8) {
4764 			/* vector goes into low byte of register */
4765 			ivar = ivar & 0xFFFFFF00;
4766 			ivar |= (vector | E1000_IVAR_VALID);
4767 		} else {
4768 			/* vector goes into third byte of register */
4769 			ivar = ivar & 0xFF00FFFF;
4770 			ivar |= ((vector | E1000_IVAR_VALID) << 16);
4771 		}
4772 		E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
4773 
4774 		/* Accumulate interrupt-cause bits to enable */
4775 		igb->eims_mask |= (1 << vector);
4776 
4777 		vector ++;
4778 	}
4779 
4780 	for (i = 1; i < igb->num_tx_rings; i++) {
4781 		/*
4782 		 * Set vector for each tx ring from 2nd tx ring.
4783 		 * Note assumption that tx vectors numericall follow rx vectors.
4784 		 */
4785 		index = (i & 0x7);
4786 		ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
4787 
4788 		if (i < 8) {
4789 			/* vector goes into second byte of register */
4790 			ivar = ivar & 0xFFFF00FF;
4791 			ivar |= ((vector | E1000_IVAR_VALID) << 8);
4792 		} else {
4793 			/* vector goes into fourth byte of register */
4794 			ivar = ivar & 0x00FFFFFF;
4795 			ivar |= (vector | E1000_IVAR_VALID) << 24;
4796 		}
4797 		E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
4798 
4799 		/* Accumulate interrupt-cause bits to enable */
4800 		igb->eims_mask |= (1 << vector);
4801 
4802 		vector ++;
4803 	}
4804 
4805 	ASSERT(vector == igb->intr_cnt);
4806 }
4807 
4808 /*
4809  * igb_setup_msix_82580 - setup 82580 adapter to use MSI-X interrupts
4810  *
4811  * 82580 uses same table approach at 82576 but has fewer entries.  Each
4812  * queue has a single entry in the table to which we write a vector number
4813  * along with a "valid" bit.  Vectors take a different position in the
4814  * register depending on * whether * they are numbered above or below 4.
4815  */
4816 static void
4817 igb_setup_msix_82580(igb_t *igb)
4818 {
4819 	struct e1000_hw *hw = &igb->hw;
4820 	uint32_t ivar, index, vector;
4821 	int i;
4822 
4823 	/* must enable msi-x capability before IVAR settings */
4824 	E1000_WRITE_REG(hw, E1000_GPIE, (E1000_GPIE_MSIX_MODE |
4825 	    E1000_GPIE_PBA | E1000_GPIE_NSICR | E1000_GPIE_EIAME));
4826 	/*
4827 	 * Set vector for tx ring 0 and other causes.
4828 	 * NOTE assumption that it is vector 0.
4829 	 * This is also interdependent with installation of interrupt service
4830 	 * routines in igb_add_intr_handlers().
4831 	 */
4832 
4833 	/* assign "other" causes to vector 0 */
4834 	vector = 0;
4835 	ivar = ((vector | E1000_IVAR_VALID) << 8);
4836 	E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar);
4837 
4838 	/* assign tx ring 0 to vector 0 */
4839 	ivar = ((vector | E1000_IVAR_VALID) << 8);
4840 	E1000_WRITE_REG(hw, E1000_IVAR0, ivar);
4841 
4842 	/* prepare to enable tx & other interrupt causes */
4843 	igb->eims_mask = (1 << vector);
4844 
4845 	vector ++;
4846 
4847 	for (i = 0; i < igb->num_rx_rings; i++) {
4848 		/*
4849 		 * Set vector for each rx ring
4850 		 */
4851 		index = (i >> 1);
4852 		ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
4853 
4854 		if (i & 1) {
4855 			/* vector goes into third byte of register */
4856 			ivar = ivar & 0xFF00FFFF;
4857 			ivar |= ((vector | E1000_IVAR_VALID) << 16);
4858 		} else {
4859 			/* vector goes into low byte of register */
4860 			ivar = ivar & 0xFFFFFF00;
4861 			ivar |= (vector | E1000_IVAR_VALID);
4862 		}
4863 		E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
4864 
4865 		/* Accumulate interrupt-cause bits to enable */
4866 		igb->eims_mask |= (1 << vector);
4867 
4868 		vector ++;
4869 	}
4870 
4871 	for (i = 1; i < igb->num_tx_rings; i++) {
4872 		/*
4873 		 * Set vector for each tx ring from 2nd tx ring.
4874 		 * Note assumption that tx vectors numericall follow rx vectors.
4875 		 */
4876 		index = (i >> 1);
4877 		ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
4878 
4879 		if (i & 1) {
4880 			/* vector goes into high byte of register */
4881 			ivar = ivar & 0x00FFFFFF;
4882 			ivar |= ((vector | E1000_IVAR_VALID) << 24);
4883 		} else {
4884 			/* vector goes into second byte of register */
4885 			ivar = ivar & 0xFFFF00FF;
4886 			ivar |= (vector | E1000_IVAR_VALID) << 8;
4887 		}
4888 		E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
4889 
4890 		/* Accumulate interrupt-cause bits to enable */
4891 		igb->eims_mask |= (1 << vector);
4892 
4893 		vector ++;
4894 	}
4895 	ASSERT(vector == igb->intr_cnt);
4896 }
4897 
4898 /*
4899  * igb_rem_intr_handlers - remove the interrupt handlers
4900  */
4901 static void
4902 igb_rem_intr_handlers(igb_t *igb)
4903 {
4904 	int i;
4905 	int rc;
4906 
4907 	for (i = 0; i < igb->intr_cnt; i++) {
4908 		rc = ddi_intr_remove_handler(igb->htable[i]);
4909 		if (rc != DDI_SUCCESS) {
4910 			IGB_DEBUGLOG_1(igb,
4911 			    "Remove intr handler failed: %d", rc);
4912 		}
4913 	}
4914 }
4915 
4916 /*
4917  * igb_rem_intrs - remove the allocated interrupts
4918  */
4919 static void
4920 igb_rem_intrs(igb_t *igb)
4921 {
4922 	int i;
4923 	int rc;
4924 
4925 	for (i = 0; i < igb->intr_cnt; i++) {
4926 		rc = ddi_intr_free(igb->htable[i]);
4927 		if (rc != DDI_SUCCESS) {
4928 			IGB_DEBUGLOG_1(igb,
4929 			    "Free intr failed: %d", rc);
4930 		}
4931 	}
4932 
4933 	kmem_free(igb->htable, igb->intr_size);
4934 	igb->htable = NULL;
4935 }
4936 
4937 /*
4938  * igb_enable_intrs - enable all the ddi interrupts
4939  */
4940 static int
4941 igb_enable_intrs(igb_t *igb)
4942 {
4943 	int i;
4944 	int rc;
4945 
4946 	/* Enable interrupts */
4947 	if (igb->intr_cap & DDI_INTR_FLAG_BLOCK) {
4948 		/* Call ddi_intr_block_enable() for MSI */
4949 		rc = ddi_intr_block_enable(igb->htable, igb->intr_cnt);
4950 		if (rc != DDI_SUCCESS) {
4951 			igb_log(igb,
4952 			    "Enable block intr failed: %d", rc);
4953 			return (IGB_FAILURE);
4954 		}
4955 	} else {
4956 		/* Call ddi_intr_enable() for Legacy/MSI non block enable */
4957 		for (i = 0; i < igb->intr_cnt; i++) {
4958 			rc = ddi_intr_enable(igb->htable[i]);
4959 			if (rc != DDI_SUCCESS) {
4960 				igb_log(igb,
4961 				    "Enable intr failed: %d", rc);
4962 				return (IGB_FAILURE);
4963 			}
4964 		}
4965 	}
4966 
4967 	return (IGB_SUCCESS);
4968 }
4969 
4970 /*
4971  * igb_disable_intrs - disable all the ddi interrupts
4972  */
4973 static int
4974 igb_disable_intrs(igb_t *igb)
4975 {
4976 	int i;
4977 	int rc;
4978 
4979 	/* Disable all interrupts */
4980 	if (igb->intr_cap & DDI_INTR_FLAG_BLOCK) {
4981 		rc = ddi_intr_block_disable(igb->htable, igb->intr_cnt);
4982 		if (rc != DDI_SUCCESS) {
4983 			igb_log(igb,
4984 			    "Disable block intr failed: %d", rc);
4985 			return (IGB_FAILURE);
4986 		}
4987 	} else {
4988 		for (i = 0; i < igb->intr_cnt; i++) {
4989 			rc = ddi_intr_disable(igb->htable[i]);
4990 			if (rc != DDI_SUCCESS) {
4991 				igb_log(igb,
4992 				    "Disable intr failed: %d", rc);
4993 				return (IGB_FAILURE);
4994 			}
4995 		}
4996 	}
4997 
4998 	return (IGB_SUCCESS);
4999 }
5000 
5001 /*
5002  * igb_get_phy_state - Get and save the parameters read from PHY registers
5003  */
5004 static void
5005 igb_get_phy_state(igb_t *igb)
5006 {
5007 	struct e1000_hw *hw = &igb->hw;
5008 	uint16_t phy_ctrl;
5009 	uint16_t phy_status;
5010 	uint16_t phy_an_adv;
5011 	uint16_t phy_an_exp;
5012 	uint16_t phy_ext_status;
5013 	uint16_t phy_1000t_ctrl;
5014 	uint16_t phy_1000t_status;
5015 	uint16_t phy_lp_able;
5016 
5017 	ASSERT(mutex_owned(&igb->gen_lock));
5018 
5019 	if (hw->phy.media_type == e1000_media_type_copper) {
5020 		(void) e1000_read_phy_reg(hw, PHY_CONTROL, &phy_ctrl);
5021 		(void) e1000_read_phy_reg(hw, PHY_STATUS, &phy_status);
5022 		(void) e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &phy_an_adv);
5023 		(void) e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_an_exp);
5024 		(void) e1000_read_phy_reg(hw, PHY_EXT_STATUS, &phy_ext_status);
5025 		(void) e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_1000t_ctrl);
5026 		(void) e1000_read_phy_reg(hw,
5027 		    PHY_1000T_STATUS, &phy_1000t_status);
5028 		(void) e1000_read_phy_reg(hw, PHY_LP_ABILITY, &phy_lp_able);
5029 
5030 		igb->param_autoneg_cap =
5031 		    (phy_status & MII_SR_AUTONEG_CAPS) ? 1 : 0;
5032 		igb->param_pause_cap =
5033 		    (phy_an_adv & NWAY_AR_PAUSE) ? 1 : 0;
5034 		igb->param_asym_pause_cap =
5035 		    (phy_an_adv & NWAY_AR_ASM_DIR) ? 1 : 0;
5036 		igb->param_1000fdx_cap =
5037 		    ((phy_ext_status & IEEE_ESR_1000T_FD_CAPS) ||
5038 		    (phy_ext_status & IEEE_ESR_1000X_FD_CAPS)) ? 1 : 0;
5039 		igb->param_1000hdx_cap =
5040 		    ((phy_ext_status & IEEE_ESR_1000T_HD_CAPS) ||
5041 		    (phy_ext_status & IEEE_ESR_1000X_HD_CAPS)) ? 1 : 0;
5042 		igb->param_100t4_cap =
5043 		    (phy_status & MII_SR_100T4_CAPS) ? 1 : 0;
5044 		igb->param_100fdx_cap = ((phy_status & MII_SR_100X_FD_CAPS) ||
5045 		    (phy_status & MII_SR_100T2_FD_CAPS)) ? 1 : 0;
5046 		igb->param_100hdx_cap = ((phy_status & MII_SR_100X_HD_CAPS) ||
5047 		    (phy_status & MII_SR_100T2_HD_CAPS)) ? 1 : 0;
5048 		igb->param_10fdx_cap =
5049 		    (phy_status & MII_SR_10T_FD_CAPS) ? 1 : 0;
5050 		igb->param_10hdx_cap =
5051 		    (phy_status & MII_SR_10T_HD_CAPS) ? 1 : 0;
5052 		igb->param_rem_fault =
5053 		    (phy_status & MII_SR_REMOTE_FAULT) ? 1 : 0;
5054 
5055 		igb->param_adv_autoneg_cap = hw->mac.autoneg;
5056 		igb->param_adv_pause_cap =
5057 		    (phy_an_adv & NWAY_AR_PAUSE) ? 1 : 0;
5058 		igb->param_adv_asym_pause_cap =
5059 		    (phy_an_adv & NWAY_AR_ASM_DIR) ? 1 : 0;
5060 		igb->param_adv_1000hdx_cap =
5061 		    (phy_1000t_ctrl & CR_1000T_HD_CAPS) ? 1 : 0;
5062 		igb->param_adv_100t4_cap =
5063 		    (phy_an_adv & NWAY_AR_100T4_CAPS) ? 1 : 0;
5064 		igb->param_adv_rem_fault =
5065 		    (phy_an_adv & NWAY_AR_REMOTE_FAULT) ? 1 : 0;
5066 		if (igb->param_adv_autoneg_cap == 1) {
5067 			igb->param_adv_1000fdx_cap =
5068 			    (phy_1000t_ctrl & CR_1000T_FD_CAPS) ? 1 : 0;
5069 			igb->param_adv_100fdx_cap =
5070 			    (phy_an_adv & NWAY_AR_100TX_FD_CAPS) ? 1 : 0;
5071 			igb->param_adv_100hdx_cap =
5072 			    (phy_an_adv & NWAY_AR_100TX_HD_CAPS) ? 1 : 0;
5073 			igb->param_adv_10fdx_cap =
5074 			    (phy_an_adv & NWAY_AR_10T_FD_CAPS) ? 1 : 0;
5075 			igb->param_adv_10hdx_cap =
5076 			    (phy_an_adv & NWAY_AR_10T_HD_CAPS) ? 1 : 0;
5077 		}
5078 
5079 		igb->param_lp_autoneg_cap =
5080 		    (phy_an_exp & NWAY_ER_LP_NWAY_CAPS) ? 1 : 0;
5081 		igb->param_lp_pause_cap =
5082 		    (phy_lp_able & NWAY_LPAR_PAUSE) ? 1 : 0;
5083 		igb->param_lp_asym_pause_cap =
5084 		    (phy_lp_able & NWAY_LPAR_ASM_DIR) ? 1 : 0;
5085 		igb->param_lp_1000fdx_cap =
5086 		    (phy_1000t_status & SR_1000T_LP_FD_CAPS) ? 1 : 0;
5087 		igb->param_lp_1000hdx_cap =
5088 		    (phy_1000t_status & SR_1000T_LP_HD_CAPS) ? 1 : 0;
5089 		igb->param_lp_100t4_cap =
5090 		    (phy_lp_able & NWAY_LPAR_100T4_CAPS) ? 1 : 0;
5091 		igb->param_lp_100fdx_cap =
5092 		    (phy_lp_able & NWAY_LPAR_100TX_FD_CAPS) ? 1 : 0;
5093 		igb->param_lp_100hdx_cap =
5094 		    (phy_lp_able & NWAY_LPAR_100TX_HD_CAPS) ? 1 : 0;
5095 		igb->param_lp_10fdx_cap =
5096 		    (phy_lp_able & NWAY_LPAR_10T_FD_CAPS) ? 1 : 0;
5097 		igb->param_lp_10hdx_cap =
5098 		    (phy_lp_able & NWAY_LPAR_10T_HD_CAPS) ? 1 : 0;
5099 		igb->param_lp_rem_fault =
5100 		    (phy_lp_able & NWAY_LPAR_REMOTE_FAULT) ? 1 : 0;
5101 	} else {
5102 		/*
5103 		 * 1Gig Fiber adapter only offers 1Gig Full Duplex.
5104 		 */
5105 		igb->param_autoneg_cap = 0;
5106 		igb->param_pause_cap = 1;
5107 		igb->param_asym_pause_cap = 1;
5108 		igb->param_1000fdx_cap = 1;
5109 		igb->param_1000hdx_cap = 0;
5110 		igb->param_100t4_cap = 0;
5111 		igb->param_100fdx_cap = 0;
5112 		igb->param_100hdx_cap = 0;
5113 		igb->param_10fdx_cap = 0;
5114 		igb->param_10hdx_cap = 0;
5115 
5116 		igb->param_adv_autoneg_cap = 0;
5117 		igb->param_adv_pause_cap = 1;
5118 		igb->param_adv_asym_pause_cap = 1;
5119 		igb->param_adv_1000fdx_cap = 1;
5120 		igb->param_adv_1000hdx_cap = 0;
5121 		igb->param_adv_100t4_cap = 0;
5122 		igb->param_adv_100fdx_cap = 0;
5123 		igb->param_adv_100hdx_cap = 0;
5124 		igb->param_adv_10fdx_cap = 0;
5125 		igb->param_adv_10hdx_cap = 0;
5126 
5127 		igb->param_lp_autoneg_cap = 0;
5128 		igb->param_lp_pause_cap = 0;
5129 		igb->param_lp_asym_pause_cap = 0;
5130 		igb->param_lp_1000fdx_cap = 0;
5131 		igb->param_lp_1000hdx_cap = 0;
5132 		igb->param_lp_100t4_cap = 0;
5133 		igb->param_lp_100fdx_cap = 0;
5134 		igb->param_lp_100hdx_cap = 0;
5135 		igb->param_lp_10fdx_cap = 0;
5136 		igb->param_lp_10hdx_cap = 0;
5137 		igb->param_lp_rem_fault = 0;
5138 	}
5139 }
5140 
5141 /*
5142  * synchronize the adv* and en* parameters.
5143  *
5144  * See comments in <sys/dld.h> for details of the *_en_*
5145  * parameters. The usage of ndd for setting adv parameters will
5146  * synchronize all the en parameters with the e1000g parameters,
5147  * implicitly disabling any settings made via dladm.
5148  */
5149 static void
5150 igb_param_sync(igb_t *igb)
5151 {
5152 	igb->param_en_1000fdx_cap = igb->param_adv_1000fdx_cap;
5153 	igb->param_en_1000hdx_cap = igb->param_adv_1000hdx_cap;
5154 	igb->param_en_100t4_cap = igb->param_adv_100t4_cap;
5155 	igb->param_en_100fdx_cap = igb->param_adv_100fdx_cap;
5156 	igb->param_en_100hdx_cap = igb->param_adv_100hdx_cap;
5157 	igb->param_en_10fdx_cap = igb->param_adv_10fdx_cap;
5158 	igb->param_en_10hdx_cap = igb->param_adv_10hdx_cap;
5159 }
5160 
5161 /*
5162  * igb_get_driver_control
5163  */
5164 static void
5165 igb_get_driver_control(struct e1000_hw *hw)
5166 {
5167 	uint32_t ctrl_ext;
5168 
5169 	/* Notify firmware that driver is in control of device */
5170 	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
5171 	ctrl_ext |= E1000_CTRL_EXT_DRV_LOAD;
5172 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
5173 }
5174 
5175 /*
5176  * igb_release_driver_control
5177  */
5178 static void
5179 igb_release_driver_control(struct e1000_hw *hw)
5180 {
5181 	uint32_t ctrl_ext;
5182 
5183 	/* Notify firmware that driver is no longer in control of device */
5184 	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
5185 	ctrl_ext &= ~E1000_CTRL_EXT_DRV_LOAD;
5186 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
5187 }
5188 
5189 /*
5190  * igb_atomic_reserve - Atomic decrease operation
5191  */
5192 int
5193 igb_atomic_reserve(uint32_t *count_p, uint32_t n)
5194 {
5195 	uint32_t oldval;
5196 	uint32_t newval;
5197 
5198 	/* ATOMICALLY */
5199 	do {
5200 		oldval = *count_p;
5201 		if (oldval < n)
5202 			return (-1);
5203 		newval = oldval - n;
5204 	} while (atomic_cas_32(count_p, oldval, newval) != oldval);
5205 
5206 	return (newval);
5207 }
5208 
5209 /*
5210  * FMA support
5211  */
5212 
5213 int
5214 igb_check_acc_handle(ddi_acc_handle_t handle)
5215 {
5216 	ddi_fm_error_t de;
5217 
5218 	ddi_fm_acc_err_get(handle, &de, DDI_FME_VERSION);
5219 	ddi_fm_acc_err_clear(handle, DDI_FME_VERSION);
5220 	return (de.fme_status);
5221 }
5222 
5223 int
5224 igb_check_dma_handle(ddi_dma_handle_t handle)
5225 {
5226 	ddi_fm_error_t de;
5227 
5228 	ddi_fm_dma_err_get(handle, &de, DDI_FME_VERSION);
5229 	return (de.fme_status);
5230 }
5231 
5232 /*
5233  * The IO fault service error handling callback function
5234  */
5235 /*ARGSUSED*/
5236 static int
5237 igb_fm_error_cb(dev_info_t *dip, ddi_fm_error_t *err, const void *impl_data)
5238 {
5239 	/*
5240 	 * as the driver can always deal with an error in any dma or
5241 	 * access handle, we can just return the fme_status value.
5242 	 */
5243 	pci_ereport_post(dip, err, NULL);
5244 	return (err->fme_status);
5245 }
5246 
5247 static void
5248 igb_fm_init(igb_t *igb)
5249 {
5250 	ddi_iblock_cookie_t iblk;
5251 	int fma_dma_flag;
5252 
5253 	/* Only register with IO Fault Services if we have some capability */
5254 	if (igb->fm_capabilities & DDI_FM_ACCCHK_CAPABLE) {
5255 		igb_regs_acc_attr.devacc_attr_access = DDI_FLAGERR_ACC;
5256 	} else {
5257 		igb_regs_acc_attr.devacc_attr_access = DDI_DEFAULT_ACC;
5258 	}
5259 
5260 	if (igb->fm_capabilities & DDI_FM_DMACHK_CAPABLE) {
5261 		fma_dma_flag = 1;
5262 	} else {
5263 		fma_dma_flag = 0;
5264 	}
5265 
5266 	(void) igb_set_fma_flags(fma_dma_flag);
5267 
5268 	if (igb->fm_capabilities) {
5269 
5270 		/* Register capabilities with IO Fault Services */
5271 		ddi_fm_init(igb->dip, &igb->fm_capabilities, &iblk);
5272 
5273 		/*
5274 		 * Initialize pci ereport capabilities if ereport capable
5275 		 */
5276 		if (DDI_FM_EREPORT_CAP(igb->fm_capabilities) ||
5277 		    DDI_FM_ERRCB_CAP(igb->fm_capabilities))
5278 			pci_ereport_setup(igb->dip);
5279 
5280 		/*
5281 		 * Register error callback if error callback capable
5282 		 */
5283 		if (DDI_FM_ERRCB_CAP(igb->fm_capabilities))
5284 			ddi_fm_handler_register(igb->dip,
5285 			    igb_fm_error_cb, (void*) igb);
5286 	}
5287 }
5288 
5289 static void
5290 igb_fm_fini(igb_t *igb)
5291 {
5292 	/* Only unregister FMA capabilities if we registered some */
5293 	if (igb->fm_capabilities) {
5294 
5295 		/*
5296 		 * Release any resources allocated by pci_ereport_setup()
5297 		 */
5298 		if (DDI_FM_EREPORT_CAP(igb->fm_capabilities) ||
5299 		    DDI_FM_ERRCB_CAP(igb->fm_capabilities))
5300 			pci_ereport_teardown(igb->dip);
5301 
5302 		/*
5303 		 * Un-register error callback if error callback capable
5304 		 */
5305 		if (DDI_FM_ERRCB_CAP(igb->fm_capabilities))
5306 			ddi_fm_handler_unregister(igb->dip);
5307 
5308 		/* Unregister from IO Fault Services */
5309 		ddi_fm_fini(igb->dip);
5310 	}
5311 }
5312 
5313 void
5314 igb_fm_ereport(igb_t *igb, char *detail)
5315 {
5316 	uint64_t ena;
5317 	char buf[FM_MAX_CLASS];
5318 
5319 	(void) snprintf(buf, FM_MAX_CLASS, "%s.%s", DDI_FM_DEVICE, detail);
5320 	ena = fm_ena_generate(0, FM_ENA_FMT1);
5321 	if (DDI_FM_EREPORT_CAP(igb->fm_capabilities)) {
5322 		ddi_fm_ereport_post(igb->dip, buf, ena, DDI_NOSLEEP,
5323 		    FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0, NULL);
5324 	}
5325 }
5326