xref: /illumos-gate/usr/src/uts/common/io/igc/core/igc_mac.c (revision 1edba515)
1 /*-
2  * Copyright 2021 Intel Corp
3  * Copyright 2021 Rubicon Communications, LLC (Netgate)
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include "igc_api.h"
8 
9 static void igc_config_collision_dist_generic(struct igc_hw *hw);
10 
11 /**
12  *  igc_init_mac_ops_generic - Initialize MAC function pointers
13  *  @hw: pointer to the HW structure
14  *
15  *  Setups up the function pointers to no-op functions
16  **/
17 void igc_init_mac_ops_generic(struct igc_hw *hw)
18 {
19 	struct igc_mac_info *mac = &hw->mac;
20 	DEBUGFUNC("igc_init_mac_ops_generic");
21 
22 	/* General Setup */
23 	mac->ops.init_params = igc_null_ops_generic;
24 	mac->ops.config_collision_dist = igc_config_collision_dist_generic;
25 	mac->ops.rar_set = igc_rar_set_generic;
26 }
27 
28 /**
29  *  igc_null_ops_generic - No-op function, returns 0
30  *  @hw: pointer to the HW structure
31  **/
32 s32 igc_null_ops_generic(struct igc_hw IGC_UNUSEDARG *hw)
33 {
34 	DEBUGFUNC("igc_null_ops_generic");
35 	return IGC_SUCCESS;
36 }
37 
38 /**
39  *  igc_null_mac_generic - No-op function, return void
40  *  @hw: pointer to the HW structure
41  **/
42 void igc_null_mac_generic(struct igc_hw IGC_UNUSEDARG *hw)
43 {
44 	DEBUGFUNC("igc_null_mac_generic");
45 	return;
46 }
47 
48 /**
49  *  igc_null_link_info - No-op function, return 0
50  *  @hw: pointer to the HW structure
51  *  @s: dummy variable
52  *  @d: dummy variable
53  **/
54 s32 igc_null_link_info(struct igc_hw IGC_UNUSEDARG *hw,
55 			 u16 IGC_UNUSEDARG *s, u16 IGC_UNUSEDARG *d)
56 {
57 	DEBUGFUNC("igc_null_link_info");
58 	return IGC_SUCCESS;
59 }
60 
61 /**
62  *  igc_null_mng_mode - No-op function, return false
63  *  @hw: pointer to the HW structure
64  **/
65 bool igc_null_mng_mode(struct igc_hw IGC_UNUSEDARG *hw)
66 {
67 	DEBUGFUNC("igc_null_mng_mode");
68 	return false;
69 }
70 
71 /**
72  *  igc_null_update_mc - No-op function, return void
73  *  @hw: pointer to the HW structure
74  *  @h: dummy variable
75  *  @a: dummy variable
76  **/
77 void igc_null_update_mc(struct igc_hw IGC_UNUSEDARG *hw,
78 			  u8 IGC_UNUSEDARG *h, u32 IGC_UNUSEDARG a)
79 {
80 	DEBUGFUNC("igc_null_update_mc");
81 	return;
82 }
83 
84 /**
85  *  igc_null_write_vfta - No-op function, return void
86  *  @hw: pointer to the HW structure
87  *  @a: dummy variable
88  *  @b: dummy variable
89  **/
90 void igc_null_write_vfta(struct igc_hw IGC_UNUSEDARG *hw,
91 			   u32 IGC_UNUSEDARG a, u32 IGC_UNUSEDARG b)
92 {
93 	DEBUGFUNC("igc_null_write_vfta");
94 	return;
95 }
96 
97 /**
98  *  igc_null_rar_set - No-op function, return 0
99  *  @hw: pointer to the HW structure
100  *  @h: dummy variable
101  *  @a: dummy variable
102  **/
103 int igc_null_rar_set(struct igc_hw IGC_UNUSEDARG *hw,
104 			u8 IGC_UNUSEDARG *h, u32 IGC_UNUSEDARG a)
105 {
106 	DEBUGFUNC("igc_null_rar_set");
107 	return IGC_SUCCESS;
108 }
109 
110 /**
111  *  igc_set_lan_id_single_port - Set LAN id for a single port device
112  *  @hw: pointer to the HW structure
113  *
114  *  Sets the LAN function id to zero for a single port device.
115  **/
116 void igc_set_lan_id_single_port(struct igc_hw *hw)
117 {
118 	struct igc_bus_info *bus = &hw->bus;
119 
120 	bus->func = 0;
121 }
122 
123 /**
124  *  igc_clear_vfta_generic - Clear VLAN filter table
125  *  @hw: pointer to the HW structure
126  *
127  *  Clears the register array which contains the VLAN filter table by
128  *  setting all the values to 0.
129  **/
130 void igc_clear_vfta_generic(struct igc_hw *hw)
131 {
132 	u32 offset;
133 
134 	DEBUGFUNC("igc_clear_vfta_generic");
135 
136 	for (offset = 0; offset < IGC_VLAN_FILTER_TBL_SIZE; offset++) {
137 		IGC_WRITE_REG_ARRAY(hw, IGC_VFTA, offset, 0);
138 		IGC_WRITE_FLUSH(hw);
139 	}
140 }
141 
142 /**
143  *  igc_write_vfta_generic - Write value to VLAN filter table
144  *  @hw: pointer to the HW structure
145  *  @offset: register offset in VLAN filter table
146  *  @value: register value written to VLAN filter table
147  *
148  *  Writes value at the given offset in the register array which stores
149  *  the VLAN filter table.
150  **/
151 void igc_write_vfta_generic(struct igc_hw *hw, u32 offset, u32 value)
152 {
153 	DEBUGFUNC("igc_write_vfta_generic");
154 
155 	IGC_WRITE_REG_ARRAY(hw, IGC_VFTA, offset, value);
156 	IGC_WRITE_FLUSH(hw);
157 }
158 
159 /**
160  *  igc_init_rx_addrs_generic - Initialize receive address's
161  *  @hw: pointer to the HW structure
162  *  @rar_count: receive address registers
163  *
164  *  Setup the receive address registers by setting the base receive address
165  *  register to the devices MAC address and clearing all the other receive
166  *  address registers to 0.
167  **/
168 void igc_init_rx_addrs_generic(struct igc_hw *hw, u16 rar_count)
169 {
170 	u32 i;
171 	u8 mac_addr[ETH_ADDR_LEN] = {0};
172 
173 	DEBUGFUNC("igc_init_rx_addrs_generic");
174 
175 	/* Setup the receive address */
176 	DEBUGOUT("Programming MAC Address into RAR[0]\n");
177 
178 	hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
179 
180 	/* Zero out the other (rar_entry_count - 1) receive addresses */
181 	DEBUGOUT1("Clearing RAR[1-%u]\n", rar_count-1);
182 	for (i = 1; i < rar_count; i++)
183 		hw->mac.ops.rar_set(hw, mac_addr, i);
184 }
185 
186 /**
187  *  igc_check_alt_mac_addr_generic - Check for alternate MAC addr
188  *  @hw: pointer to the HW structure
189  *
190  *  Checks the nvm for an alternate MAC address.  An alternate MAC address
191  *  can be setup by pre-boot software and must be treated like a permanent
192  *  address and must override the actual permanent MAC address. If an
193  *  alternate MAC address is found it is programmed into RAR0, replacing
194  *  the permanent address that was installed into RAR0 by the Si on reset.
195  *  This function will return SUCCESS unless it encounters an error while
196  *  reading the EEPROM.
197  **/
198 s32 igc_check_alt_mac_addr_generic(struct igc_hw *hw)
199 {
200 	u32 i;
201 	s32 ret_val;
202 	u16 offset, nvm_alt_mac_addr_offset, nvm_data;
203 	u8 alt_mac_addr[ETH_ADDR_LEN];
204 
205 	DEBUGFUNC("igc_check_alt_mac_addr_generic");
206 
207 	ret_val = hw->nvm.ops.read(hw, NVM_COMPAT, 1, &nvm_data);
208 	if (ret_val)
209 		return ret_val;
210 
211 
212 	ret_val = hw->nvm.ops.read(hw, NVM_ALT_MAC_ADDR_PTR, 1,
213 				   &nvm_alt_mac_addr_offset);
214 	if (ret_val) {
215 		DEBUGOUT("NVM Read Error\n");
216 		return ret_val;
217 	}
218 
219 	if ((nvm_alt_mac_addr_offset == 0xFFFF) ||
220 	    (nvm_alt_mac_addr_offset == 0x0000))
221 		/* There is no Alternate MAC Address */
222 		return IGC_SUCCESS;
223 
224 	if (hw->bus.func == IGC_FUNC_1)
225 		nvm_alt_mac_addr_offset += IGC_ALT_MAC_ADDRESS_OFFSET_LAN1;
226 	for (i = 0; i < ETH_ADDR_LEN; i += 2) {
227 		offset = nvm_alt_mac_addr_offset + (i >> 1);
228 		ret_val = hw->nvm.ops.read(hw, offset, 1, &nvm_data);
229 		if (ret_val) {
230 			DEBUGOUT("NVM Read Error\n");
231 			return ret_val;
232 		}
233 
234 		alt_mac_addr[i] = (u8)(nvm_data & 0xFF);
235 		alt_mac_addr[i + 1] = (u8)(nvm_data >> 8);
236 	}
237 
238 	/* if multicast bit is set, the alternate address will not be used */
239 	if (alt_mac_addr[0] & 0x01) {
240 		DEBUGOUT("Ignoring Alternate Mac Address with MC bit set\n");
241 		return IGC_SUCCESS;
242 	}
243 
244 	/* We have a valid alternate MAC address, and we want to treat it the
245 	 * same as the normal permanent MAC address stored by the HW into the
246 	 * RAR. Do this by mapping this address into RAR0.
247 	 */
248 	hw->mac.ops.rar_set(hw, alt_mac_addr, 0);
249 
250 	return IGC_SUCCESS;
251 }
252 
253 /**
254  *  igc_rar_set_generic - Set receive address register
255  *  @hw: pointer to the HW structure
256  *  @addr: pointer to the receive address
257  *  @index: receive address array register
258  *
259  *  Sets the receive address array register at index to the address passed
260  *  in by addr.
261  **/
262 int igc_rar_set_generic(struct igc_hw *hw, u8 *addr, u32 index)
263 {
264 	u32 rar_low, rar_high;
265 
266 	DEBUGFUNC("igc_rar_set_generic");
267 
268 	/* HW expects these in little endian so we reverse the byte order
269 	 * from network order (big endian) to little endian
270 	 */
271 	rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
272 		   ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
273 
274 	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
275 
276 	/* If MAC address zero, no need to set the AV bit */
277 	if (rar_low || rar_high)
278 		rar_high |= IGC_RAH_AV;
279 
280 	/* Some bridges will combine consecutive 32-bit writes into
281 	 * a single burst write, which will malfunction on some parts.
282 	 * The flushes avoid this.
283 	 */
284 	IGC_WRITE_REG(hw, IGC_RAL(index), rar_low);
285 	IGC_WRITE_FLUSH(hw);
286 	IGC_WRITE_REG(hw, IGC_RAH(index), rar_high);
287 	IGC_WRITE_FLUSH(hw);
288 
289 	return IGC_SUCCESS;
290 }
291 
292 /**
293  *  igc_hash_mc_addr_generic - Generate a multicast hash value
294  *  @hw: pointer to the HW structure
295  *  @mc_addr: pointer to a multicast address
296  *
297  *  Generates a multicast address hash value which is used to determine
298  *  the multicast filter table array address and new table value.
299  **/
300 u32 igc_hash_mc_addr_generic(struct igc_hw *hw, u8 *mc_addr)
301 {
302 	u32 hash_value, hash_mask;
303 	u8 bit_shift = 0;
304 
305 	DEBUGFUNC("igc_hash_mc_addr_generic");
306 
307 	/* Register count multiplied by bits per register */
308 	hash_mask = (hw->mac.mta_reg_count * 32) - 1;
309 
310 	/* For a mc_filter_type of 0, bit_shift is the number of left-shifts
311 	 * where 0xFF would still fall within the hash mask.
312 	 */
313 	while (hash_mask >> bit_shift != 0xFF)
314 		bit_shift++;
315 
316 	/* The portion of the address that is used for the hash table
317 	 * is determined by the mc_filter_type setting.
318 	 * The algorithm is such that there is a total of 8 bits of shifting.
319 	 * The bit_shift for a mc_filter_type of 0 represents the number of
320 	 * left-shifts where the MSB of mc_addr[5] would still fall within
321 	 * the hash_mask.  Case 0 does this exactly.  Since there are a total
322 	 * of 8 bits of shifting, then mc_addr[4] will shift right the
323 	 * remaining number of bits. Thus 8 - bit_shift.  The rest of the
324 	 * cases are a variation of this algorithm...essentially raising the
325 	 * number of bits to shift mc_addr[5] left, while still keeping the
326 	 * 8-bit shifting total.
327 	 *
328 	 * For example, given the following Destination MAC Address and an
329 	 * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
330 	 * we can see that the bit_shift for case 0 is 4.  These are the hash
331 	 * values resulting from each mc_filter_type...
332 	 * [0] [1] [2] [3] [4] [5]
333 	 * 01  AA  00  12  34  56
334 	 * LSB		 MSB
335 	 *
336 	 * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
337 	 * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
338 	 * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
339 	 * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
340 	 */
341 	switch (hw->mac.mc_filter_type) {
342 	default:
343 	case 0:
344 		break;
345 	case 1:
346 		bit_shift += 1;
347 		break;
348 	case 2:
349 		bit_shift += 2;
350 		break;
351 	case 3:
352 		bit_shift += 4;
353 		break;
354 	}
355 
356 	hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
357 				  (((u16) mc_addr[5]) << bit_shift)));
358 
359 	return hash_value;
360 }
361 
362 /**
363  *  igc_update_mc_addr_list_generic - Update Multicast addresses
364  *  @hw: pointer to the HW structure
365  *  @mc_addr_list: array of multicast addresses to program
366  *  @mc_addr_count: number of multicast addresses to program
367  *
368  *  Updates entire Multicast Table Array.
369  *  The caller must have a packed mc_addr_list of multicast addresses.
370  **/
371 void igc_update_mc_addr_list_generic(struct igc_hw *hw,
372 				       u8 *mc_addr_list, u32 mc_addr_count)
373 {
374 	u32 hash_value, hash_bit, hash_reg;
375 	int i;
376 
377 	DEBUGFUNC("igc_update_mc_addr_list_generic");
378 
379 	/* clear mta_shadow */
380 	memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
381 
382 	/* update mta_shadow from mc_addr_list */
383 	for (i = 0; (u32) i < mc_addr_count; i++) {
384 		hash_value = igc_hash_mc_addr_generic(hw, mc_addr_list);
385 
386 		hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
387 		hash_bit = hash_value & 0x1F;
388 
389 		hw->mac.mta_shadow[hash_reg] |= (1 << hash_bit);
390 		mc_addr_list += (ETH_ADDR_LEN);
391 	}
392 
393 	/* replace the entire MTA table */
394 	for (i = hw->mac.mta_reg_count - 1; i >= 0; i--)
395 		IGC_WRITE_REG_ARRAY(hw, IGC_MTA, i, hw->mac.mta_shadow[i]);
396 	IGC_WRITE_FLUSH(hw);
397 }
398 
399 /**
400  *  igc_clear_hw_cntrs_base_generic - Clear base hardware counters
401  *  @hw: pointer to the HW structure
402  *
403  *  Clears the base hardware counters by reading the counter registers.
404  **/
405 void igc_clear_hw_cntrs_base_generic(struct igc_hw *hw)
406 {
407 	DEBUGFUNC("igc_clear_hw_cntrs_base_generic");
408 
409 	IGC_READ_REG(hw, IGC_CRCERRS);
410 	IGC_READ_REG(hw, IGC_MPC);
411 	IGC_READ_REG(hw, IGC_SCC);
412 	IGC_READ_REG(hw, IGC_ECOL);
413 	IGC_READ_REG(hw, IGC_MCC);
414 	IGC_READ_REG(hw, IGC_LATECOL);
415 	IGC_READ_REG(hw, IGC_COLC);
416 	IGC_READ_REG(hw, IGC_RERC);
417 	IGC_READ_REG(hw, IGC_DC);
418 	IGC_READ_REG(hw, IGC_RLEC);
419 	IGC_READ_REG(hw, IGC_XONRXC);
420 	IGC_READ_REG(hw, IGC_XONTXC);
421 	IGC_READ_REG(hw, IGC_XOFFRXC);
422 	IGC_READ_REG(hw, IGC_XOFFTXC);
423 	IGC_READ_REG(hw, IGC_FCRUC);
424 	IGC_READ_REG(hw, IGC_GPRC);
425 	IGC_READ_REG(hw, IGC_BPRC);
426 	IGC_READ_REG(hw, IGC_MPRC);
427 	IGC_READ_REG(hw, IGC_GPTC);
428 	IGC_READ_REG(hw, IGC_GORCL);
429 	IGC_READ_REG(hw, IGC_GORCH);
430 	IGC_READ_REG(hw, IGC_GOTCL);
431 	IGC_READ_REG(hw, IGC_GOTCH);
432 	IGC_READ_REG(hw, IGC_RNBC);
433 	IGC_READ_REG(hw, IGC_RUC);
434 	IGC_READ_REG(hw, IGC_RFC);
435 	IGC_READ_REG(hw, IGC_ROC);
436 	IGC_READ_REG(hw, IGC_RJC);
437 	IGC_READ_REG(hw, IGC_TORL);
438 	IGC_READ_REG(hw, IGC_TORH);
439 	IGC_READ_REG(hw, IGC_TOTL);
440 	IGC_READ_REG(hw, IGC_TOTH);
441 	IGC_READ_REG(hw, IGC_TPR);
442 	IGC_READ_REG(hw, IGC_TPT);
443 	IGC_READ_REG(hw, IGC_MPTC);
444 	IGC_READ_REG(hw, IGC_BPTC);
445 	IGC_READ_REG(hw, IGC_TLPIC);
446 	IGC_READ_REG(hw, IGC_RLPIC);
447 	IGC_READ_REG(hw, IGC_RXDMTC);
448 }
449 
450 /**
451  *  igc_check_for_copper_link_generic - Check for link (Copper)
452  *  @hw: pointer to the HW structure
453  *
454  *  Checks to see of the link status of the hardware has changed.  If a
455  *  change in link status has been detected, then we read the PHY registers
456  *  to get the current speed/duplex if link exists.
457  **/
458 s32 igc_check_for_copper_link_generic(struct igc_hw *hw)
459 {
460 	struct igc_mac_info *mac = &hw->mac;
461 	s32 ret_val;
462 	bool link = false;
463 
464 	DEBUGFUNC("igc_check_for_copper_link");
465 
466 	/* We only want to go out to the PHY registers to see if Auto-Neg
467 	 * has completed and/or if our link status has changed.  The
468 	 * get_link_status flag is set upon receiving a Link Status
469 	 * Change or Rx Sequence Error interrupt.
470 	 */
471 	if (!mac->get_link_status)
472 		return IGC_SUCCESS;
473 
474 	/* First we want to see if the MII Status Register reports
475 	 * link.  If so, then we want to get the current speed/duplex
476 	 * of the PHY.
477 	 */
478 	ret_val = igc_phy_has_link_generic(hw, 1, 0, &link);
479 	if (ret_val)
480 		return ret_val;
481 
482 	if (!link)
483 		return IGC_SUCCESS; /* No link detected */
484 
485 	mac->get_link_status = false;
486 
487 	/* Check if there was DownShift, must be checked
488 	 * immediately after link-up
489 	 */
490 	igc_check_downshift_generic(hw);
491 
492 	/* If we are forcing speed/duplex, then we simply return since
493 	 * we have already determined whether we have link or not.
494 	 */
495 	if (!mac->autoneg)
496 		return -IGC_ERR_CONFIG;
497 
498 	/* Auto-Neg is enabled.  Auto Speed Detection takes care
499 	 * of MAC speed/duplex configuration.  So we only need to
500 	 * configure Collision Distance in the MAC.
501 	 */
502 	mac->ops.config_collision_dist(hw);
503 
504 	/* Configure Flow Control now that Auto-Neg has completed.
505 	 * First, we need to restore the desired flow control
506 	 * settings because we may have had to re-autoneg with a
507 	 * different link partner.
508 	 */
509 	ret_val = igc_config_fc_after_link_up_generic(hw);
510 	if (ret_val)
511 		DEBUGOUT("Error configuring flow control\n");
512 
513 	return ret_val;
514 }
515 
516 /**
517  *  igc_setup_link_generic - Setup flow control and link settings
518  *  @hw: pointer to the HW structure
519  *
520  *  Determines which flow control settings to use, then configures flow
521  *  control.  Calls the appropriate media-specific link configuration
522  *  function.  Assuming the adapter has a valid link partner, a valid link
523  *  should be established.  Assumes the hardware has previously been reset
524  *  and the transmitter and receiver are not enabled.
525  **/
526 s32 igc_setup_link_generic(struct igc_hw *hw)
527 {
528 	s32 ret_val;
529 
530 	DEBUGFUNC("igc_setup_link_generic");
531 
532 	/* In the case of the phy reset being blocked, we already have a link.
533 	 * We do not need to set it up again.
534 	 */
535 	if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw))
536 		return IGC_SUCCESS;
537 
538 	/* If requested flow control is set to default, set flow control
539 	 * for both 'rx' and 'tx' pause frames.
540 	 */
541 	if (hw->fc.requested_mode == igc_fc_default) {
542 		hw->fc.requested_mode = igc_fc_full;
543 	}
544 
545 	/* Save off the requested flow control mode for use later.  Depending
546 	 * on the link partner's capabilities, we may or may not use this mode.
547 	 */
548 	hw->fc.current_mode = hw->fc.requested_mode;
549 
550 	DEBUGOUT1("After fix-ups FlowControl is now = %x\n",
551 		hw->fc.current_mode);
552 
553 	/* Call the necessary media_type subroutine to configure the link. */
554 	ret_val = hw->mac.ops.setup_physical_interface(hw);
555 	if (ret_val)
556 		return ret_val;
557 
558 	/* Initialize the flow control address, type, and PAUSE timer
559 	 * registers to their default values.  This is done even if flow
560 	 * control is disabled, because it does not hurt anything to
561 	 * initialize these registers.
562 	 */
563 	DEBUGOUT("Initializing the Flow Control address, type and timer regs\n");
564 	IGC_WRITE_REG(hw, IGC_FCT, FLOW_CONTROL_TYPE);
565 	IGC_WRITE_REG(hw, IGC_FCAH, FLOW_CONTROL_ADDRESS_HIGH);
566 	IGC_WRITE_REG(hw, IGC_FCAL, FLOW_CONTROL_ADDRESS_LOW);
567 
568 	IGC_WRITE_REG(hw, IGC_FCTTV, hw->fc.pause_time);
569 
570 	return igc_set_fc_watermarks_generic(hw);
571 }
572 
573 /**
574  *  igc_config_collision_dist_generic - Configure collision distance
575  *  @hw: pointer to the HW structure
576  *
577  *  Configures the collision distance to the default value and is used
578  *  during link setup.
579  **/
580 static void igc_config_collision_dist_generic(struct igc_hw *hw)
581 {
582 	u32 tctl;
583 
584 	DEBUGFUNC("igc_config_collision_dist_generic");
585 
586 	tctl = IGC_READ_REG(hw, IGC_TCTL);
587 
588 	tctl &= ~IGC_TCTL_COLD;
589 	tctl |= IGC_COLLISION_DISTANCE << IGC_COLD_SHIFT;
590 
591 	IGC_WRITE_REG(hw, IGC_TCTL, tctl);
592 	IGC_WRITE_FLUSH(hw);
593 }
594 
595 /**
596  *  igc_set_fc_watermarks_generic - Set flow control high/low watermarks
597  *  @hw: pointer to the HW structure
598  *
599  *  Sets the flow control high/low threshold (watermark) registers.  If
600  *  flow control XON frame transmission is enabled, then set XON frame
601  *  transmission as well.
602  **/
603 s32 igc_set_fc_watermarks_generic(struct igc_hw *hw)
604 {
605 	u32 fcrtl = 0, fcrth = 0;
606 
607 	DEBUGFUNC("igc_set_fc_watermarks_generic");
608 
609 	/* Set the flow control receive threshold registers.  Normally,
610 	 * these registers will be set to a default threshold that may be
611 	 * adjusted later by the driver's runtime code.  However, if the
612 	 * ability to transmit pause frames is not enabled, then these
613 	 * registers will be set to 0.
614 	 */
615 	if (hw->fc.current_mode & igc_fc_tx_pause) {
616 		/* We need to set up the Receive Threshold high and low water
617 		 * marks as well as (optionally) enabling the transmission of
618 		 * XON frames.
619 		 */
620 		fcrtl = hw->fc.low_water;
621 		if (hw->fc.send_xon)
622 			fcrtl |= IGC_FCRTL_XONE;
623 
624 		fcrth = hw->fc.high_water;
625 	}
626 	IGC_WRITE_REG(hw, IGC_FCRTL, fcrtl);
627 	IGC_WRITE_REG(hw, IGC_FCRTH, fcrth);
628 
629 	return IGC_SUCCESS;
630 }
631 
632 /**
633  *  igc_force_mac_fc_generic - Force the MAC's flow control settings
634  *  @hw: pointer to the HW structure
635  *
636  *  Force the MAC's flow control settings.  Sets the TFCE and RFCE bits in the
637  *  device control register to reflect the adapter settings.  TFCE and RFCE
638  *  need to be explicitly set by software when a copper PHY is used because
639  *  autonegotiation is managed by the PHY rather than the MAC.  Software must
640  *  also configure these bits when link is forced on a fiber connection.
641  **/
642 s32 igc_force_mac_fc_generic(struct igc_hw *hw)
643 {
644 	u32 ctrl;
645 
646 	DEBUGFUNC("igc_force_mac_fc_generic");
647 
648 	ctrl = IGC_READ_REG(hw, IGC_CTRL);
649 
650 	/* Because we didn't get link via the internal auto-negotiation
651 	 * mechanism (we either forced link or we got link via PHY
652 	 * auto-neg), we have to manually enable/disable transmit an
653 	 * receive flow control.
654 	 *
655 	 * The "Case" statement below enables/disable flow control
656 	 * according to the "hw->fc.current_mode" parameter.
657 	 *
658 	 * The possible values of the "fc" parameter are:
659 	 *      0:  Flow control is completely disabled
660 	 *      1:  Rx flow control is enabled (we can receive pause
661 	 *          frames but not send pause frames).
662 	 *      2:  Tx flow control is enabled (we can send pause frames
663 	 *          frames but we do not receive pause frames).
664 	 *      3:  Both Rx and Tx flow control (symmetric) is enabled.
665 	 *  other:  No other values should be possible at this point.
666 	 */
667 	DEBUGOUT1("hw->fc.current_mode = %u\n", hw->fc.current_mode);
668 
669 	switch (hw->fc.current_mode) {
670 	case igc_fc_none:
671 		ctrl &= (~(IGC_CTRL_TFCE | IGC_CTRL_RFCE));
672 		break;
673 	case igc_fc_rx_pause:
674 		ctrl &= (~IGC_CTRL_TFCE);
675 		ctrl |= IGC_CTRL_RFCE;
676 		break;
677 	case igc_fc_tx_pause:
678 		ctrl &= (~IGC_CTRL_RFCE);
679 		ctrl |= IGC_CTRL_TFCE;
680 		break;
681 	case igc_fc_full:
682 		ctrl |= (IGC_CTRL_TFCE | IGC_CTRL_RFCE);
683 		break;
684 	default:
685 		DEBUGOUT("Flow control param set incorrectly\n");
686 		return -IGC_ERR_CONFIG;
687 	}
688 
689 	IGC_WRITE_REG(hw, IGC_CTRL, ctrl);
690 
691 	return IGC_SUCCESS;
692 }
693 
694 /**
695  *  igc_config_fc_after_link_up_generic - Configures flow control after link
696  *  @hw: pointer to the HW structure
697  *
698  *  Checks the status of auto-negotiation after link up to ensure that the
699  *  speed and duplex were not forced.  If the link needed to be forced, then
700  *  flow control needs to be forced also.  If auto-negotiation is enabled
701  *  and did not fail, then we configure flow control based on our link
702  *  partner.
703  **/
704 s32 igc_config_fc_after_link_up_generic(struct igc_hw *hw)
705 {
706 	struct igc_mac_info *mac = &hw->mac;
707 	s32 ret_val = IGC_SUCCESS;
708 	u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg;
709 	u16 speed, duplex;
710 
711 	DEBUGFUNC("igc_config_fc_after_link_up_generic");
712 
713 	if (ret_val) {
714 		DEBUGOUT("Error forcing flow control settings\n");
715 		return ret_val;
716 	}
717 
718 	/* Check for the case where we have copper media and auto-neg is
719 	 * enabled.  In this case, we need to check and see if Auto-Neg
720 	 * has completed, and if so, how the PHY and link partner has
721 	 * flow control configured.
722 	 */
723 	if (mac->autoneg) {
724 		/* Read the MII Status Register and check to see if AutoNeg
725 		 * has completed.  We read this twice because this reg has
726 		 * some "sticky" (latched) bits.
727 		 */
728 		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &mii_status_reg);
729 		if (ret_val)
730 			return ret_val;
731 		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &mii_status_reg);
732 		if (ret_val)
733 			return ret_val;
734 
735 		if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) {
736 			DEBUGOUT("Copper PHY and Auto Neg has not completed.\n");
737 			return ret_val;
738 		}
739 
740 		/* The AutoNeg process has completed, so we now need to
741 		 * read both the Auto Negotiation Advertisement
742 		 * Register (Address 4) and the Auto_Negotiation Base
743 		 * Page Ability Register (Address 5) to determine how
744 		 * flow control was negotiated.
745 		 */
746 		ret_val = hw->phy.ops.read_reg(hw, PHY_AUTONEG_ADV,
747 					       &mii_nway_adv_reg);
748 		if (ret_val)
749 			return ret_val;
750 		ret_val = hw->phy.ops.read_reg(hw, PHY_LP_ABILITY,
751 					       &mii_nway_lp_ability_reg);
752 		if (ret_val)
753 			return ret_val;
754 
755 		/* Two bits in the Auto Negotiation Advertisement Register
756 		 * (Address 4) and two bits in the Auto Negotiation Base
757 		 * Page Ability Register (Address 5) determine flow control
758 		 * for both the PHY and the link partner.  The following
759 		 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
760 		 * 1999, describes these PAUSE resolution bits and how flow
761 		 * control is determined based upon these settings.
762 		 * NOTE:  DC = Don't Care
763 		 *
764 		 *   LOCAL DEVICE  |   LINK PARTNER
765 		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
766 		 *-------|---------|-------|---------|--------------------
767 		 *   0   |    0    |  DC   |   DC    | igc_fc_none
768 		 *   0   |    1    |   0   |   DC    | igc_fc_none
769 		 *   0   |    1    |   1   |    0    | igc_fc_none
770 		 *   0   |    1    |   1   |    1    | igc_fc_tx_pause
771 		 *   1   |    0    |   0   |   DC    | igc_fc_none
772 		 *   1   |   DC    |   1   |   DC    | igc_fc_full
773 		 *   1   |    1    |   0   |    0    | igc_fc_none
774 		 *   1   |    1    |   0   |    1    | igc_fc_rx_pause
775 		 *
776 		 * Are both PAUSE bits set to 1?  If so, this implies
777 		 * Symmetric Flow Control is enabled at both ends.  The
778 		 * ASM_DIR bits are irrelevant per the spec.
779 		 *
780 		 * For Symmetric Flow Control:
781 		 *
782 		 *   LOCAL DEVICE  |   LINK PARTNER
783 		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
784 		 *-------|---------|-------|---------|--------------------
785 		 *   1   |   DC    |   1   |   DC    | IGC_fc_full
786 		 *
787 		 */
788 		if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
789 		    (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
790 			/* Now we need to check if the user selected Rx ONLY
791 			 * of pause frames.  In this case, we had to advertise
792 			 * FULL flow control because we could not advertise Rx
793 			 * ONLY. Hence, we must now check to see if we need to
794 			 * turn OFF the TRANSMISSION of PAUSE frames.
795 			 */
796 			if (hw->fc.requested_mode == igc_fc_full) {
797 				hw->fc.current_mode = igc_fc_full;
798 				DEBUGOUT("Flow Control = FULL.\n");
799 			} else {
800 				hw->fc.current_mode = igc_fc_rx_pause;
801 				DEBUGOUT("Flow Control = Rx PAUSE frames only.\n");
802 			}
803 		}
804 		/* For receiving PAUSE frames ONLY.
805 		 *
806 		 *   LOCAL DEVICE  |   LINK PARTNER
807 		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
808 		 *-------|---------|-------|---------|--------------------
809 		 *   0   |    1    |   1   |    1    | igc_fc_tx_pause
810 		 */
811 		else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
812 			  (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
813 			  (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
814 			  (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
815 			hw->fc.current_mode = igc_fc_tx_pause;
816 			DEBUGOUT("Flow Control = Tx PAUSE frames only.\n");
817 		}
818 		/* For transmitting PAUSE frames ONLY.
819 		 *
820 		 *   LOCAL DEVICE  |   LINK PARTNER
821 		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
822 		 *-------|---------|-------|---------|--------------------
823 		 *   1   |    1    |   0   |    1    | igc_fc_rx_pause
824 		 */
825 		else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
826 			 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
827 			 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
828 			 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
829 			hw->fc.current_mode = igc_fc_rx_pause;
830 			DEBUGOUT("Flow Control = Rx PAUSE frames only.\n");
831 		} else {
832 			/* Per the IEEE spec, at this point flow control
833 			 * should be disabled.
834 			 */
835 			hw->fc.current_mode = igc_fc_none;
836 			DEBUGOUT("Flow Control = NONE.\n");
837 		}
838 
839 		/* Now we need to do one last check...  If we auto-
840 		 * negotiated to HALF DUPLEX, flow control should not be
841 		 * enabled per IEEE 802.3 spec.
842 		 */
843 		ret_val = mac->ops.get_link_up_info(hw, &speed, &duplex);
844 		if (ret_val) {
845 			DEBUGOUT("Error getting link speed and duplex\n");
846 			return ret_val;
847 		}
848 
849 		if (duplex == HALF_DUPLEX)
850 			hw->fc.current_mode = igc_fc_none;
851 
852 		/* Now we call a subroutine to actually force the MAC
853 		 * controller to use the correct flow control settings.
854 		 */
855 		ret_val = igc_force_mac_fc_generic(hw);
856 		if (ret_val) {
857 			DEBUGOUT("Error forcing flow control settings\n");
858 			return ret_val;
859 		}
860 	}
861 
862 	return IGC_SUCCESS;
863 }
864 
865 /**
866  *  igc_get_speed_and_duplex_copper_generic - Retrieve current speed/duplex
867  *  @hw: pointer to the HW structure
868  *  @speed: stores the current speed
869  *  @duplex: stores the current duplex
870  *
871  *  Read the status register for the current speed/duplex and store the current
872  *  speed and duplex for copper connections.
873  **/
874 s32 igc_get_speed_and_duplex_copper_generic(struct igc_hw *hw, u16 *speed,
875 					      u16 *duplex)
876 {
877 	u32 status;
878 
879 	DEBUGFUNC("igc_get_speed_and_duplex_copper_generic");
880 
881 	status = IGC_READ_REG(hw, IGC_STATUS);
882 	if (status & IGC_STATUS_SPEED_1000) {
883 		/* For I225, STATUS will indicate 1G speed in both 1 Gbps
884 		 * and 2.5 Gbps link modes. An additional bit is used
885 		 * to differentiate between 1 Gbps and 2.5 Gbps.
886 		 */
887 		if ((hw->mac.type == igc_i225) &&
888 		    (status & IGC_STATUS_SPEED_2500)) {
889 			*speed = SPEED_2500;
890 			DEBUGOUT("2500 Mbs, ");
891 		} else {
892 			*speed = SPEED_1000;
893 			DEBUGOUT("1000 Mbs, ");
894 		}
895 	} else if (status & IGC_STATUS_SPEED_100) {
896 		*speed = SPEED_100;
897 		DEBUGOUT("100 Mbs, ");
898 	} else {
899 		*speed = SPEED_10;
900 		DEBUGOUT("10 Mbs, ");
901 	}
902 
903 	if (status & IGC_STATUS_FD) {
904 		*duplex = FULL_DUPLEX;
905 		DEBUGOUT("Full Duplex\n");
906 	} else {
907 		*duplex = HALF_DUPLEX;
908 		DEBUGOUT("Half Duplex\n");
909 	}
910 
911 	return IGC_SUCCESS;
912 }
913 
914 /**
915  *  igc_get_hw_semaphore_generic - Acquire hardware semaphore
916  *  @hw: pointer to the HW structure
917  *
918  *  Acquire the HW semaphore to access the PHY or NVM
919  **/
920 s32 igc_get_hw_semaphore_generic(struct igc_hw *hw)
921 {
922 	u32 swsm;
923 	s32 timeout = hw->nvm.word_size + 1;
924 	s32 i = 0;
925 
926 	DEBUGFUNC("igc_get_hw_semaphore_generic");
927 
928 	/* Get the SW semaphore */
929 	while (i < timeout) {
930 		swsm = IGC_READ_REG(hw, IGC_SWSM);
931 		if (!(swsm & IGC_SWSM_SMBI))
932 			break;
933 
934 		usec_delay(50);
935 		i++;
936 	}
937 
938 	if (i == timeout) {
939 		DEBUGOUT("Driver can't access device - SMBI bit is set.\n");
940 		return -IGC_ERR_NVM;
941 	}
942 
943 	/* Get the FW semaphore. */
944 	for (i = 0; i < timeout; i++) {
945 		swsm = IGC_READ_REG(hw, IGC_SWSM);
946 		IGC_WRITE_REG(hw, IGC_SWSM, swsm | IGC_SWSM_SWESMBI);
947 
948 		/* Semaphore acquired if bit latched */
949 		if (IGC_READ_REG(hw, IGC_SWSM) & IGC_SWSM_SWESMBI)
950 			break;
951 
952 		usec_delay(50);
953 	}
954 
955 	if (i == timeout) {
956 		/* Release semaphores */
957 		igc_put_hw_semaphore_generic(hw);
958 		DEBUGOUT("Driver can't access the NVM\n");
959 		return -IGC_ERR_NVM;
960 	}
961 
962 	return IGC_SUCCESS;
963 }
964 
965 /**
966  *  igc_put_hw_semaphore_generic - Release hardware semaphore
967  *  @hw: pointer to the HW structure
968  *
969  *  Release hardware semaphore used to access the PHY or NVM
970  **/
971 void igc_put_hw_semaphore_generic(struct igc_hw *hw)
972 {
973 	u32 swsm;
974 
975 	DEBUGFUNC("igc_put_hw_semaphore_generic");
976 
977 	swsm = IGC_READ_REG(hw, IGC_SWSM);
978 
979 	swsm &= ~(IGC_SWSM_SMBI | IGC_SWSM_SWESMBI);
980 
981 	IGC_WRITE_REG(hw, IGC_SWSM, swsm);
982 }
983 
984 /**
985  *  igc_get_auto_rd_done_generic - Check for auto read completion
986  *  @hw: pointer to the HW structure
987  *
988  *  Check EEPROM for Auto Read done bit.
989  **/
990 s32 igc_get_auto_rd_done_generic(struct igc_hw *hw)
991 {
992 	s32 i = 0;
993 
994 	DEBUGFUNC("igc_get_auto_rd_done_generic");
995 
996 	while (i < AUTO_READ_DONE_TIMEOUT) {
997 		if (IGC_READ_REG(hw, IGC_EECD) & IGC_EECD_AUTO_RD)
998 			break;
999 		msec_delay(1);
1000 		i++;
1001 	}
1002 
1003 	if (i == AUTO_READ_DONE_TIMEOUT) {
1004 		DEBUGOUT("Auto read by HW from NVM has not completed.\n");
1005 		return -IGC_ERR_RESET;
1006 	}
1007 
1008 	return IGC_SUCCESS;
1009 }
1010 
1011 /**
1012  *  igc_disable_pcie_master_generic - Disables PCI-express master access
1013  *  @hw: pointer to the HW structure
1014  *
1015  *  Returns IGC_SUCCESS if successful, else returns -10
1016  *  (-IGC_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused
1017  *  the master requests to be disabled.
1018  *
1019  *  Disables PCI-Express master access and verifies there are no pending
1020  *  requests.
1021  **/
1022 s32 igc_disable_pcie_master_generic(struct igc_hw *hw)
1023 {
1024 	u32 ctrl;
1025 	s32 timeout = MASTER_DISABLE_TIMEOUT;
1026 
1027 	DEBUGFUNC("igc_disable_pcie_master_generic");
1028 
1029 	ctrl = IGC_READ_REG(hw, IGC_CTRL);
1030 	ctrl |= IGC_CTRL_GIO_MASTER_DISABLE;
1031 	IGC_WRITE_REG(hw, IGC_CTRL, ctrl);
1032 
1033 	while (timeout) {
1034 		if (!(IGC_READ_REG(hw, IGC_STATUS) &
1035 		      IGC_STATUS_GIO_MASTER_ENABLE))
1036 			break;
1037 		usec_delay(100);
1038 		timeout--;
1039 	}
1040 
1041 	if (!timeout) {
1042 		DEBUGOUT("Master requests are pending.\n");
1043 		return -IGC_ERR_MASTER_REQUESTS_PENDING;
1044 	}
1045 
1046 	return IGC_SUCCESS;
1047 }
1048