1 /*
2  * megaraid_sas.c: source for mega_sas driver
3  *
4  * MegaRAID device driver for SAS controllers
5  * Copyright (c) 2005-2008, LSI Logic Corporation.
6  * All rights reserved.
7  *
8  * Version:
9  * Author:
10  *        	Rajesh Prabhakaran<Rajesh.Prabhakaran@lsil.com>
11  *        	Seokmann Ju
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions are met:
15  *
16  * 1. Redistributions of source code must retain the above copyright notice,
17  *    this list of conditions and the following disclaimer.
18  *
19  * 2. Redistributions in binary form must reproduce the above copyright notice,
20  *    this list of conditions and the following disclaimer in the documentation
21  *    and/or other materials provided with the distribution.
22  *
23  * 3. Neither the name of the author nor the names of its contributors may be
24  *    used to endorse or promote products derived from this software without
25  *    specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
28  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
29  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
30  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
31  * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
32  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
33  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
34  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
35  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
36  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
37  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
38  * DAMAGE.
39  */
40 
41 /*
42  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
43  * Use is subject to license terms.
44  */
45 
46 #include <sys/types.h>
47 #include <sys/param.h>
48 #include <sys/file.h>
49 #include <sys/errno.h>
50 #include <sys/open.h>
51 #include <sys/cred.h>
52 #include <sys/modctl.h>
53 #include <sys/conf.h>
54 #include <sys/devops.h>
55 #include <sys/cmn_err.h>
56 #include <sys/kmem.h>
57 #include <sys/stat.h>
58 #include <sys/mkdev.h>
59 #include <sys/pci.h>
60 #include <sys/scsi/scsi.h>
61 #include <sys/ddi.h>
62 #include <sys/sunddi.h>
63 #include <sys/atomic.h>
64 #include <sys/signal.h>
65 
66 #include "megaraid_sas.h"
67 
68 /*
69  * FMA header files
70  */
71 #include <sys/ddifm.h>
72 #include <sys/fm/protocol.h>
73 #include <sys/fm/util.h>
74 #include <sys/fm/io/ddi.h>
75 
76 /*
77  * Local static data
78  */
79 static void	*megasas_state = NULL;
80 static int 	debug_level_g = CL_ANN;
81 
82 #pragma weak scsi_hba_open
83 #pragma weak scsi_hba_close
84 #pragma weak scsi_hba_ioctl
85 
86 static ddi_dma_attr_t megasas_generic_dma_attr = {
87 	DMA_ATTR_V0,		/* dma_attr_version */
88 	0,			/* low DMA address range */
89 	0xFFFFFFFFU,		/* high DMA address range */
90 	0xFFFFFFFFU,		/* DMA counter register  */
91 	8,			/* DMA address alignment */
92 	0x07,			/* DMA burstsizes  */
93 	1,			/* min DMA size */
94 	0xFFFFFFFFU,		/* max DMA size */
95 	0xFFFFFFFFU,		/* segment boundary */
96 	MEGASAS_MAX_SGE_CNT,	/* dma_attr_sglen */
97 	512,			/* granularity of device */
98 	0			/* bus specific DMA flags */
99 };
100 
101 int32_t megasas_max_cap_maxxfer = 0x1000000;
102 
103 /*
104  * cb_ops contains base level routines
105  */
106 static struct cb_ops megasas_cb_ops = {
107 	megasas_open,		/* open */
108 	megasas_close,		/* close */
109 	nodev,			/* strategy */
110 	nodev,			/* print */
111 	nodev,			/* dump */
112 	nodev,			/* read */
113 	nodev,			/* write */
114 	megasas_ioctl,		/* ioctl */
115 	nodev,			/* devmap */
116 	nodev,			/* mmap */
117 	nodev,			/* segmap */
118 	nochpoll,		/* poll */
119 	nodev,			/* cb_prop_op */
120 	0,			/* streamtab  */
121 	D_NEW | D_HOTPLUG,	/* cb_flag */
122 	CB_REV,			/* cb_rev */
123 	nodev,			/* cb_aread */
124 	nodev			/* cb_awrite */
125 };
126 
127 /*
128  * dev_ops contains configuration routines
129  */
130 static struct dev_ops megasas_ops = {
131 	DEVO_REV,		/* rev, */
132 	0,			/* refcnt */
133 	megasas_getinfo,	/* getinfo */
134 	nulldev,		/* identify */
135 	nulldev,		/* probe */
136 	megasas_attach,		/* attach */
137 	megasas_detach,		/* detach */
138 	megasas_reset,		/* reset */
139 	&megasas_cb_ops,	/* char/block ops */
140 	NULL,			/* bus ops */
141 	NULL,			/* power */
142 	ddi_quiesce_not_supported,	/* devo_quiesce */
143 };
144 
145 char _depends_on[] = "misc/scsi";
146 
147 static struct modldrv modldrv = {
148 	&mod_driverops,		/* module type - driver */
149 	MEGASAS_VERSION,
150 	&megasas_ops,		/* driver ops */
151 };
152 
153 static struct modlinkage modlinkage = {
154 	MODREV_1,	/* ml_rev - must be MODREV_1 */
155 	&modldrv,	/* ml_linkage */
156 	NULL		/* end of driver linkage */
157 };
158 
159 static struct ddi_device_acc_attr endian_attr = {
160 	DDI_DEVICE_ATTR_V1,
161 	DDI_STRUCTURE_LE_ACC,
162 	DDI_STRICTORDER_ACC,
163 	DDI_DEFAULT_ACC
164 };
165 
166 
167 /*
168  * ************************************************************************** *
169  *                                                                            *
170  *         common entry points - for loadable kernel modules                  *
171  *                                                                            *
172  * ************************************************************************** *
173  */
174 
175 /*
176  * _init - initialize a loadable module
177  * @void
178  *
179  * The driver should perform any one-time resource allocation or data
180  * initialization during driver loading in _init(). For example, the driver
181  * should initialize any mutexes global to the driver in this routine.
182  * The driver should not, however, use _init() to allocate or initialize
183  * anything that has to do with a particular instance of the device.
184  * Per-instance initialization must be done in attach().
185  */
186 int
187 _init(void)
188 {
189 	int ret;
190 
191 	con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__));
192 
193 	ret = ddi_soft_state_init(&megasas_state,
194 	    sizeof (struct megasas_instance), 0);
195 
196 	if (ret != 0) {
197 		con_log(CL_ANN, (CE_WARN, "megaraid: could not init state"));
198 		return (ret);
199 	}
200 
201 	if ((ret = scsi_hba_init(&modlinkage)) != 0) {
202 		con_log(CL_ANN, (CE_WARN, "megaraid: could not init scsi hba"));
203 		ddi_soft_state_fini(&megasas_state);
204 		return (ret);
205 	}
206 
207 	ret = mod_install(&modlinkage);
208 
209 	if (ret != 0) {
210 		con_log(CL_ANN, (CE_WARN, "megaraid: mod_install failed"));
211 		scsi_hba_fini(&modlinkage);
212 		ddi_soft_state_fini(&megasas_state);
213 	}
214 
215 	return (ret);
216 }
217 
218 /*
219  * _info - returns information about a loadable module.
220  * @void
221  *
222  * _info() is called to return module information. This is a typical entry
223  * point that does predefined role. It simply calls mod_info().
224  */
225 int
226 _info(struct modinfo *modinfop)
227 {
228 	con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__));
229 
230 	return (mod_info(&modlinkage, modinfop));
231 }
232 
233 /*
234  * _fini - prepare a loadable module for unloading
235  * @void
236  *
237  * In _fini(), the driver should release any resources that were allocated in
238  * _init(). The driver must remove itself from the system module list.
239  */
240 int
241 _fini(void)
242 {
243 	int ret;
244 
245 	con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__));
246 
247 	if ((ret = mod_remove(&modlinkage)) != 0)
248 		return (ret);
249 
250 	scsi_hba_fini(&modlinkage);
251 
252 	ddi_soft_state_fini(&megasas_state);
253 
254 	return (ret);
255 }
256 
257 
258 /*
259  * ************************************************************************** *
260  *                                                                            *
261  *               common entry points - for autoconfiguration                  *
262  *                                                                            *
263  * ************************************************************************** *
264  */
265 /*
266  * attach - adds a device to the system as part of initialization
267  * @dip:
268  * @cmd:
269  *
270  * The kernel calls a driver's attach() entry point to attach an instance of
271  * a device (for MegaRAID, it is instance of a controller) or to resume
272  * operation for an instance of a device that has been suspended or has been
273  * shut down by the power management framework
274  * The attach() entry point typically includes the following types of
275  * processing:
276  * - allocate a soft-state structure for the device instance (for MegaRAID,
277  *   controller instance)
278  * - initialize per-instance mutexes
279  * - initialize condition variables
280  * - register the device's interrupts (for MegaRAID, controller's interrupts)
281  * - map the registers and memory of the device instance (for MegaRAID,
282  *   controller instance)
283  * - create minor device nodes for the device instance (for MegaRAID,
284  *   controller instance)
285  * - report that the device instance (for MegaRAID, controller instance) has
286  *   attached
287  */
288 static int
289 megasas_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
290 {
291 	int		instance_no;
292 	int		nregs;
293 	uint8_t		added_isr_f = 0;
294 	uint8_t		added_soft_isr_f = 0;
295 	uint8_t		create_devctl_node_f = 0;
296 	uint8_t		create_scsi_node_f = 0;
297 	uint8_t		create_ioc_node_f = 0;
298 	uint8_t		tran_alloc_f = 0;
299 	uint8_t 	irq;
300 	uint16_t	vendor_id;
301 	uint16_t	device_id;
302 	uint16_t	subsysvid;
303 	uint16_t	subsysid;
304 	uint16_t	command;
305 
306 	scsi_hba_tran_t		*tran;
307 	ddi_dma_attr_t  tran_dma_attr;
308 	struct megasas_instance	*instance;
309 
310 	con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__));
311 
312 	/* CONSTCOND */
313 	ASSERT(NO_COMPETING_THREADS);
314 
315 	instance_no = ddi_get_instance(dip);
316 
317 	/*
318 	 * Since we know that some instantiations of this device can be
319 	 * plugged into slave-only SBus slots, check to see whether this is
320 	 * one such.
321 	 */
322 	if (ddi_slaveonly(dip) == DDI_SUCCESS) {
323 		con_log(CL_ANN, (CE_WARN,
324 		    "mega%d: Device in slave-only slot, unused", instance_no));
325 		return (DDI_FAILURE);
326 	}
327 
328 	switch (cmd) {
329 		case DDI_ATTACH:
330 			con_log(CL_DLEVEL1, (CE_NOTE, "megasas: DDI_ATTACH"));
331 			/* allocate the soft state for the instance */
332 			if (ddi_soft_state_zalloc(megasas_state, instance_no)
333 			    != DDI_SUCCESS) {
334 				con_log(CL_ANN, (CE_WARN,
335 				    "mega%d: Failed to allocate soft state",
336 				    instance_no));
337 
338 				return (DDI_FAILURE);
339 			}
340 
341 			instance = (struct megasas_instance *)ddi_get_soft_state
342 			    (megasas_state, instance_no);
343 
344 			if (instance == NULL) {
345 				con_log(CL_ANN, (CE_WARN,
346 				    "mega%d: Bad soft state", instance_no));
347 
348 				ddi_soft_state_free(megasas_state, instance_no);
349 
350 				return (DDI_FAILURE);
351 			}
352 
353 			bzero((caddr_t)instance,
354 			    sizeof (struct megasas_instance));
355 
356 			instance->func_ptr = kmem_zalloc(
357 			    sizeof (struct megasas_func_ptr), KM_SLEEP);
358 			ASSERT(instance->func_ptr);
359 
360 			/* Setup the PCI configuration space handles */
361 			if (pci_config_setup(dip, &instance->pci_handle) !=
362 			    DDI_SUCCESS) {
363 				con_log(CL_ANN, (CE_WARN,
364 				    "mega%d: pci config setup failed ",
365 				    instance_no));
366 
367 				kmem_free(instance->func_ptr,
368 				    sizeof (struct megasas_func_ptr));
369 				ddi_soft_state_free(megasas_state, instance_no);
370 
371 				return (DDI_FAILURE);
372 			}
373 
374 			if (ddi_dev_nregs(dip, &nregs) != DDI_SUCCESS) {
375 				con_log(CL_ANN, (CE_WARN,
376 				    "megaraid: failed to get registers."));
377 
378 				pci_config_teardown(&instance->pci_handle);
379 				kmem_free(instance->func_ptr,
380 				    sizeof (struct megasas_func_ptr));
381 				ddi_soft_state_free(megasas_state, instance_no);
382 
383 				return (DDI_FAILURE);
384 			}
385 
386 			vendor_id = pci_config_get16(instance->pci_handle,
387 			    PCI_CONF_VENID);
388 			device_id = pci_config_get16(instance->pci_handle,
389 			    PCI_CONF_DEVID);
390 
391 			subsysvid = pci_config_get16(instance->pci_handle,
392 			    PCI_CONF_SUBVENID);
393 			subsysid = pci_config_get16(instance->pci_handle,
394 			    PCI_CONF_SUBSYSID);
395 
396 			pci_config_put16(instance->pci_handle, PCI_CONF_COMM,
397 			    (pci_config_get16(instance->pci_handle,
398 			    PCI_CONF_COMM) | PCI_COMM_ME));
399 			irq = pci_config_get8(instance->pci_handle,
400 			    PCI_CONF_ILINE);
401 
402 			con_log(CL_DLEVEL1, (CE_CONT, "megasas%d: "
403 			    "0x%x:0x%x 0x%x:0x%x, irq:%d drv-ver:%s\n",
404 			    instance_no, vendor_id, device_id, subsysvid,
405 			    subsysid, irq, MEGASAS_VERSION));
406 
407 			/* enable bus-mastering */
408 			command = pci_config_get16(instance->pci_handle,
409 			    PCI_CONF_COMM);
410 
411 			if (!(command & PCI_COMM_ME)) {
412 				command |= PCI_COMM_ME;
413 
414 				pci_config_put16(instance->pci_handle,
415 				    PCI_CONF_COMM, command);
416 
417 				con_log(CL_ANN, (CE_CONT, "megaraid%d: "
418 				    "enable bus-mastering\n", instance_no));
419 			} else {
420 				con_log(CL_DLEVEL1, (CE_CONT, "megaraid%d: "
421 				"bus-mastering already set\n", instance_no));
422 			}
423 
424 			/* initialize function pointers */
425 			if ((device_id == PCI_DEVICE_ID_LSI_1078) ||
426 			    (device_id == PCI_DEVICE_ID_LSI_1078DE)) {
427 				con_log(CL_DLEVEL1, (CE_CONT, "megasas%d: "
428 				    "1078R/DE detected\n", instance_no));
429 				instance->func_ptr->read_fw_status_reg =
430 				    read_fw_status_reg_ppc;
431 				instance->func_ptr->issue_cmd = issue_cmd_ppc;
432 				instance->func_ptr->issue_cmd_in_sync_mode =
433 				    issue_cmd_in_sync_mode_ppc;
434 				instance->func_ptr->issue_cmd_in_poll_mode =
435 				    issue_cmd_in_poll_mode_ppc;
436 				instance->func_ptr->enable_intr =
437 				    enable_intr_ppc;
438 				instance->func_ptr->disable_intr =
439 				    disable_intr_ppc;
440 				instance->func_ptr->intr_ack = intr_ack_ppc;
441 			} else {
442 				con_log(CL_DLEVEL1, (CE_CONT, "megasas%d: "
443 				    "1064/8R detected\n", instance_no));
444 				instance->func_ptr->read_fw_status_reg =
445 				    read_fw_status_reg_xscale;
446 				instance->func_ptr->issue_cmd =
447 				    issue_cmd_xscale;
448 				instance->func_ptr->issue_cmd_in_sync_mode =
449 				    issue_cmd_in_sync_mode_xscale;
450 				instance->func_ptr->issue_cmd_in_poll_mode =
451 				    issue_cmd_in_poll_mode_xscale;
452 				instance->func_ptr->enable_intr =
453 				    enable_intr_xscale;
454 				instance->func_ptr->disable_intr =
455 				    disable_intr_xscale;
456 				instance->func_ptr->intr_ack =
457 				    intr_ack_xscale;
458 			}
459 
460 			instance->baseaddress = pci_config_get32(
461 			    instance->pci_handle, PCI_CONF_BASE0);
462 			instance->baseaddress &= 0x0fffc;
463 
464 			instance->dip		= dip;
465 			instance->vendor_id	= vendor_id;
466 			instance->device_id	= device_id;
467 			instance->subsysvid	= subsysvid;
468 			instance->subsysid	= subsysid;
469 
470 			/* Initialize FMA */
471 			instance->fm_capabilities = ddi_prop_get_int(
472 			    DDI_DEV_T_ANY, instance->dip, DDI_PROP_DONTPASS,
473 			    "fm-capable", DDI_FM_EREPORT_CAPABLE |
474 			    DDI_FM_ACCCHK_CAPABLE | DDI_FM_DMACHK_CAPABLE
475 			    | DDI_FM_ERRCB_CAPABLE);
476 
477 			megasas_fm_init(instance);
478 
479 			/* setup the mfi based low level driver */
480 			if (init_mfi(instance) != DDI_SUCCESS) {
481 				con_log(CL_ANN, (CE_WARN, "megaraid: "
482 				"could not initialize the low level driver"));
483 
484 				goto fail_attach;
485 			}
486 
487 			/*
488 			 * Allocate the interrupt blocking cookie.
489 			 * It represents the information the framework
490 			 * needs to block interrupts. This cookie will
491 			 * be used by the locks shared accross our ISR.
492 			 * These locks must be initialized before we
493 			 * register our ISR.
494 			 * ddi_add_intr(9F)
495 			 */
496 			if (ddi_get_iblock_cookie(dip, 0,
497 			    &instance->iblock_cookie) != DDI_SUCCESS) {
498 
499 				goto fail_attach;
500 			}
501 
502 			if (ddi_get_soft_iblock_cookie(dip, DDI_SOFTINT_HIGH,
503 			    &instance->soft_iblock_cookie) != DDI_SUCCESS) {
504 
505 				goto fail_attach;
506 			}
507 
508 			/*
509 			 * Initialize the driver mutexes common to
510 			 * normal/high level isr
511 			 */
512 			if (ddi_intr_hilevel(dip, 0)) {
513 				instance->isr_level = HIGH_LEVEL_INTR;
514 				mutex_init(&instance->cmd_pool_mtx,
515 				    "cmd_pool_mtx", MUTEX_DRIVER,
516 				    instance->soft_iblock_cookie);
517 				mutex_init(&instance->cmd_pend_mtx,
518 				    "cmd_pend_mtx", MUTEX_DRIVER,
519 				    instance->soft_iblock_cookie);
520 			} else {
521 				/*
522 				 * Initialize the driver mutexes
523 				 * specific to soft-isr
524 				 */
525 				instance->isr_level = NORMAL_LEVEL_INTR;
526 				mutex_init(&instance->cmd_pool_mtx,
527 				    "cmd_pool_mtx", MUTEX_DRIVER,
528 				    instance->iblock_cookie);
529 				mutex_init(&instance->cmd_pend_mtx,
530 				    "cmd_pend_mtx", MUTEX_DRIVER,
531 				    instance->iblock_cookie);
532 			}
533 
534 			mutex_init(&instance->completed_pool_mtx,
535 			    "completed_pool_mtx", MUTEX_DRIVER,
536 			    instance->iblock_cookie);
537 			mutex_init(&instance->int_cmd_mtx, "int_cmd_mtx",
538 			    MUTEX_DRIVER, instance->iblock_cookie);
539 			mutex_init(&instance->aen_cmd_mtx, "aen_cmd_mtx",
540 			    MUTEX_DRIVER, instance->iblock_cookie);
541 			mutex_init(&instance->abort_cmd_mtx, "abort_cmd_mtx",
542 			    MUTEX_DRIVER, instance->iblock_cookie);
543 
544 			cv_init(&instance->int_cmd_cv, NULL, CV_DRIVER, NULL);
545 			cv_init(&instance->abort_cmd_cv, NULL, CV_DRIVER, NULL);
546 
547 			INIT_LIST_HEAD(&instance->completed_pool_list);
548 
549 			/* Register our isr. */
550 			if (ddi_add_intr(dip, 0, NULL, NULL, megasas_isr,
551 			    (caddr_t)instance) != DDI_SUCCESS) {
552 				con_log(CL_ANN, (CE_WARN,
553 				    " ISR did not register"));
554 
555 				goto fail_attach;
556 			}
557 
558 			added_isr_f = 1;
559 
560 			/* Register our soft-isr for highlevel interrupts. */
561 			if (instance->isr_level == HIGH_LEVEL_INTR) {
562 				if (ddi_add_softintr(dip, DDI_SOFTINT_HIGH,
563 				    &instance->soft_intr_id, NULL, NULL,
564 				    megasas_softintr, (caddr_t)instance) !=
565 				    DDI_SUCCESS) {
566 					con_log(CL_ANN, (CE_WARN,
567 					    " Software ISR did not register"));
568 
569 					goto fail_attach;
570 				}
571 
572 				added_soft_isr_f = 1;
573 			}
574 
575 			/* Allocate a transport structure */
576 			tran = scsi_hba_tran_alloc(dip, SCSI_HBA_CANSLEEP);
577 
578 			if (tran == NULL) {
579 				con_log(CL_ANN, (CE_WARN,
580 				    "scsi_hba_tran_alloc failed"));
581 				goto fail_attach;
582 			}
583 
584 			tran_alloc_f = 1;
585 
586 			instance->tran = tran;
587 
588 			tran->tran_hba_private	= instance;
589 			tran->tran_tgt_private 	= NULL;
590 			tran->tran_tgt_init	= megasas_tran_tgt_init;
591 			tran->tran_tgt_probe	= scsi_hba_probe;
592 			tran->tran_tgt_free	= (void (*)())NULL;
593 			tran->tran_init_pkt	= megasas_tran_init_pkt;
594 			tran->tran_start	= megasas_tran_start;
595 			tran->tran_abort	= megasas_tran_abort;
596 			tran->tran_reset	= megasas_tran_reset;
597 			tran->tran_bus_reset	= megasas_tran_bus_reset;
598 			tran->tran_getcap	= megasas_tran_getcap;
599 			tran->tran_setcap	= megasas_tran_setcap;
600 			tran->tran_destroy_pkt	= megasas_tran_destroy_pkt;
601 			tran->tran_dmafree	= megasas_tran_dmafree;
602 			tran->tran_sync_pkt	= megasas_tran_sync_pkt;
603 			tran->tran_reset_notify	= NULL;
604 			tran->tran_quiesce	= megasas_tran_quiesce;
605 			tran->tran_unquiesce	= megasas_tran_unquiesce;
606 
607 			tran_dma_attr = megasas_generic_dma_attr;
608 			tran_dma_attr.dma_attr_sgllen = instance->max_num_sge;
609 
610 			/* Attach this instance of the hba */
611 			if (scsi_hba_attach_setup(dip, &tran_dma_attr, tran, 0)
612 			    != DDI_SUCCESS) {
613 				con_log(CL_ANN, (CE_WARN,
614 				    "scsi_hba_attach failed\n"));
615 
616 				goto fail_attach;
617 			}
618 
619 			/* create devctl node for cfgadm command */
620 			if (ddi_create_minor_node(dip, "devctl",
621 			    S_IFCHR, INST2DEVCTL(instance_no),
622 			    DDI_NT_SCSI_NEXUS, 0) == DDI_FAILURE) {
623 				con_log(CL_ANN, (CE_WARN,
624 				    "megaraid: failed to create devctl node."));
625 
626 				goto fail_attach;
627 			}
628 
629 			create_devctl_node_f = 1;
630 
631 			/* create scsi node for cfgadm command */
632 			if (ddi_create_minor_node(dip, "scsi", S_IFCHR,
633 			    INST2SCSI(instance_no),
634 			    DDI_NT_SCSI_ATTACHMENT_POINT, 0) ==
635 			    DDI_FAILURE) {
636 				con_log(CL_ANN, (CE_WARN,
637 				    "megaraid: failed to create scsi node."));
638 
639 				goto fail_attach;
640 			}
641 
642 			create_scsi_node_f = 1;
643 
644 			(void) sprintf(instance->iocnode, "%d:lsirdctl",
645 			    instance_no);
646 
647 			/*
648 			 * Create a node for applications
649 			 * for issuing ioctl to the driver.
650 			 */
651 			if (ddi_create_minor_node(dip, instance->iocnode,
652 			    S_IFCHR, INST2LSIRDCTL(instance_no),
653 			    DDI_PSEUDO, 0) == DDI_FAILURE) {
654 				con_log(CL_ANN, (CE_WARN,
655 				    "megaraid: failed to create ioctl node."));
656 
657 				goto fail_attach;
658 			}
659 
660 			create_ioc_node_f = 1;
661 
662 			/* enable interrupt */
663 			instance->func_ptr->enable_intr(instance);
664 
665 			/* initiate AEN */
666 			if (start_mfi_aen(instance)) {
667 				con_log(CL_ANN, (CE_WARN,
668 				    "megaraid: failed to initiate AEN."));
669 				goto fail_initiate_aen;
670 			}
671 
672 			con_log(CL_DLEVEL1, (CE_NOTE,
673 			    "AEN started for instance %d.", instance_no));
674 
675 			/* Finally! We are on the air.  */
676 			ddi_report_dev(dip);
677 
678 			if (megasas_check_acc_handle(instance->regmap_handle) !=
679 			    DDI_SUCCESS) {
680 				goto fail_attach;
681 			}
682 			if (megasas_check_acc_handle(instance->pci_handle) !=
683 			    DDI_SUCCESS) {
684 				goto fail_attach;
685 			}
686 			break;
687 		case DDI_PM_RESUME:
688 			con_log(CL_ANN, (CE_NOTE,
689 			    "megasas: DDI_PM_RESUME"));
690 			break;
691 		case DDI_RESUME:
692 			con_log(CL_ANN, (CE_NOTE,
693 			    "megasas: DDI_RESUME"));
694 			break;
695 		default:
696 			con_log(CL_ANN, (CE_WARN,
697 			    "megasas: invalid attach cmd=%x", cmd));
698 			return (DDI_FAILURE);
699 	}
700 
701 	return (DDI_SUCCESS);
702 
703 fail_initiate_aen:
704 fail_attach:
705 	if (create_devctl_node_f) {
706 		ddi_remove_minor_node(dip, "devctl");
707 	}
708 
709 	if (create_scsi_node_f) {
710 		ddi_remove_minor_node(dip, "scsi");
711 	}
712 
713 	if (create_ioc_node_f) {
714 		ddi_remove_minor_node(dip, instance->iocnode);
715 	}
716 
717 	if (tran_alloc_f) {
718 		scsi_hba_tran_free(tran);
719 	}
720 
721 
722 	if (added_soft_isr_f) {
723 		ddi_remove_softintr(instance->soft_intr_id);
724 	}
725 
726 	if (added_isr_f) {
727 		ddi_remove_intr(dip, 0, instance->iblock_cookie);
728 	}
729 
730 	megasas_fm_ereport(instance, DDI_FM_DEVICE_NO_RESPONSE);
731 	ddi_fm_service_impact(instance->dip, DDI_SERVICE_LOST);
732 
733 	megasas_fm_fini(instance);
734 
735 	pci_config_teardown(&instance->pci_handle);
736 
737 	ddi_soft_state_free(megasas_state, instance_no);
738 
739 	con_log(CL_ANN, (CE_NOTE,
740 	    "megasas: return failure from mega_attach\n"));
741 
742 	return (DDI_FAILURE);
743 }
744 
745 /*
746  * getinfo - gets device information
747  * @dip:
748  * @cmd:
749  * @arg:
750  * @resultp:
751  *
752  * The system calls getinfo() to obtain configuration information that only
753  * the driver knows. The mapping of minor numbers to device instance is
754  * entirely under the control of the driver. The system sometimes needs to ask
755  * the driver which device a particular dev_t represents.
756  * Given the device number return the devinfo pointer from the scsi_device
757  * structure.
758  */
759 /*ARGSUSED*/
760 static int
761 megasas_getinfo(dev_info_t *dip, ddi_info_cmd_t cmd,  void *arg, void **resultp)
762 {
763 	int	rval;
764 	int	megasas_minor = getminor((dev_t)arg);
765 
766 	struct megasas_instance	*instance;
767 
768 	con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__));
769 
770 	switch (cmd) {
771 		case DDI_INFO_DEVT2DEVINFO:
772 			instance = (struct megasas_instance *)
773 			    ddi_get_soft_state(megasas_state,
774 			    MINOR2INST(megasas_minor));
775 
776 			if (instance == NULL) {
777 				*resultp = NULL;
778 				rval = DDI_FAILURE;
779 			} else {
780 				*resultp = instance->dip;
781 				rval = DDI_SUCCESS;
782 			}
783 			break;
784 		case DDI_INFO_DEVT2INSTANCE:
785 			*resultp = (void *)instance;
786 			rval = DDI_SUCCESS;
787 			break;
788 		default:
789 			*resultp = NULL;
790 			rval = DDI_FAILURE;
791 	}
792 
793 	return (rval);
794 }
795 
796 /*
797  * detach - detaches a device from the system
798  * @dip: pointer to the device's dev_info structure
799  * @cmd: type of detach
800  *
801  * A driver's detach() entry point is called to detach an instance of a device
802  * that is bound to the driver. The entry point is called with the instance of
803  * the device node to be detached and with DDI_DETACH, which is specified as
804  * the cmd argument to the entry point.
805  * This routine is called during driver unload. We free all the allocated
806  * resources and call the corresponding LLD so that it can also release all
807  * its resources.
808  */
809 static int
810 megasas_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
811 {
812 	int	instance_no;
813 
814 	struct megasas_instance	*instance;
815 
816 	con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__));
817 
818 	/* CONSTCOND */
819 	ASSERT(NO_COMPETING_THREADS);
820 
821 	instance_no = ddi_get_instance(dip);
822 
823 	instance = (struct megasas_instance *)ddi_get_soft_state(megasas_state,
824 	    instance_no);
825 
826 	if (!instance) {
827 		con_log(CL_ANN, (CE_WARN,
828 		    "megasas:%d could not get instance in detach",
829 		    instance_no));
830 
831 		return (DDI_FAILURE);
832 	}
833 
834 	con_log(CL_ANN, (CE_NOTE,
835 	    "megasas%d: detaching device 0x%4x:0x%4x:0x%4x:0x%4x\n",
836 	    instance_no, instance->vendor_id, instance->device_id,
837 	    instance->subsysvid, instance->subsysid));
838 
839 	switch (cmd) {
840 		case DDI_DETACH:
841 			con_log(CL_ANN, (CE_NOTE,
842 			    "megasas_detach: DDI_DETACH\n"));
843 
844 			if (scsi_hba_detach(dip) != DDI_SUCCESS) {
845 				con_log(CL_ANN, (CE_WARN,
846 				    "megasas:%d failed to detach",
847 				    instance_no));
848 
849 				return (DDI_FAILURE);
850 			}
851 
852 			scsi_hba_tran_free(instance->tran);
853 
854 			if (abort_aen_cmd(instance, instance->aen_cmd)) {
855 				con_log(CL_ANN, (CE_WARN, "megasas_detach: "
856 				    "failed to abort prevous AEN command\n"));
857 
858 				return (DDI_FAILURE);
859 			}
860 
861 			instance->func_ptr->disable_intr(instance);
862 
863 			if (instance->isr_level == HIGH_LEVEL_INTR) {
864 				ddi_remove_softintr(instance->soft_intr_id);
865 			}
866 
867 			ddi_remove_intr(dip, 0, instance->iblock_cookie);
868 
869 			free_space_for_mfi(instance);
870 
871 			megasas_fm_fini(instance);
872 
873 			pci_config_teardown(&instance->pci_handle);
874 
875 			kmem_free(instance->func_ptr,
876 			    sizeof (struct megasas_func_ptr));
877 
878 			ddi_soft_state_free(megasas_state, instance_no);
879 			break;
880 		case DDI_PM_SUSPEND:
881 			con_log(CL_ANN, (CE_NOTE,
882 			    "megasas_detach: DDI_PM_SUSPEND\n"));
883 
884 			break;
885 		case DDI_SUSPEND:
886 			con_log(CL_ANN, (CE_NOTE,
887 			    "megasas_detach: DDI_SUSPEND\n"));
888 
889 			break;
890 		default:
891 			con_log(CL_ANN, (CE_WARN,
892 			    "invalid detach command:0x%x", cmd));
893 			return (DDI_FAILURE);
894 	}
895 
896 	return (DDI_SUCCESS);
897 }
898 
899 /*
900  * ************************************************************************** *
901  *                                                                            *
902  *             common entry points - for character driver types               *
903  *                                                                            *
904  * ************************************************************************** *
905  */
906 /*
907  * open - gets access to a device
908  * @dev:
909  * @openflags:
910  * @otyp:
911  * @credp:
912  *
913  * Access to a device by one or more application programs is controlled
914  * through the open() and close() entry points. The primary function of
915  * open() is to verify that the open request is allowed.
916  */
917 static  int
918 megasas_open(dev_t *dev, int openflags, int otyp, cred_t *credp)
919 {
920 	int	rval = 0;
921 
922 	con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__));
923 
924 	/* Check root permissions */
925 	if (drv_priv(credp) != 0) {
926 		con_log(CL_ANN, (CE_WARN,
927 		    "megaraid: Non-root ioctl access tried!"));
928 		return (EPERM);
929 	}
930 
931 	/* Verify we are being opened as a character device */
932 	if (otyp != OTYP_CHR) {
933 		con_log(CL_ANN, (CE_WARN,
934 		    "megaraid: ioctl node must be a char node\n"));
935 		return (EINVAL);
936 	}
937 
938 	if (ddi_get_soft_state(megasas_state, MINOR2INST(getminor(*dev)))
939 	    == NULL) {
940 		return (ENXIO);
941 	}
942 
943 	if (scsi_hba_open) {
944 		rval = scsi_hba_open(dev, openflags, otyp, credp);
945 	}
946 
947 	return (rval);
948 }
949 
950 /*
951  * close - gives up access to a device
952  * @dev:
953  * @openflags:
954  * @otyp:
955  * @credp:
956  *
957  * close() should perform any cleanup necessary to finish using the minor
958  * device, and prepare the device (and driver) to be opened again.
959  */
960 static  int
961 megasas_close(dev_t dev, int openflags, int otyp, cred_t *credp)
962 {
963 	int	rval = 0;
964 
965 	con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__));
966 
967 	/* no need for locks! */
968 
969 	if (scsi_hba_close) {
970 		rval = scsi_hba_close(dev, openflags, otyp, credp);
971 	}
972 
973 	return (rval);
974 }
975 
976 /*
977  * ioctl - performs a range of I/O commands for character drivers
978  * @dev:
979  * @cmd:
980  * @arg:
981  * @mode:
982  * @credp:
983  * @rvalp:
984  *
985  * ioctl() routine must make sure that user data is copied into or out of the
986  * kernel address space explicitly using copyin(), copyout(), ddi_copyin(),
987  * and ddi_copyout(), as appropriate.
988  * This is a wrapper routine to serialize access to the actual ioctl routine.
989  * ioctl() should return 0 on success, or the appropriate error number. The
990  * driver may also set the value returned to the calling process through rvalp.
991  */
992 static int
993 megasas_ioctl(dev_t dev, int cmd, intptr_t arg, int mode, cred_t *credp,
994     int *rvalp)
995 {
996 	int	rval = 0;
997 
998 	struct megasas_instance	*instance;
999 	struct megasas_ioctl	ioctl;
1000 	struct megasas_aen	aen;
1001 
1002 	con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__));
1003 
1004 	instance = ddi_get_soft_state(megasas_state, MINOR2INST(getminor(dev)));
1005 
1006 	if (instance == NULL) {
1007 		/* invalid minor number */
1008 		con_log(CL_ANN, (CE_WARN, "megaraid: adapter not found."));
1009 		return (ENXIO);
1010 	}
1011 
1012 	switch ((uint_t)cmd) {
1013 		case MEGASAS_IOCTL_FIRMWARE:
1014 			if (ddi_copyin((void *) arg, &ioctl,
1015 			    sizeof (struct megasas_ioctl), mode)) {
1016 				con_log(CL_ANN, (CE_WARN, "megasas_ioctl: "
1017 				    "ERROR IOCTL copyin"));
1018 				return (EFAULT);
1019 			}
1020 
1021 			if (ioctl.control_code == MR_DRIVER_IOCTL_COMMON) {
1022 				rval = handle_drv_ioctl(instance, &ioctl, mode);
1023 			} else {
1024 				rval = handle_mfi_ioctl(instance, &ioctl, mode);
1025 			}
1026 
1027 			if (ddi_copyout((void *) &ioctl, (void *)arg,
1028 			    (sizeof (struct megasas_ioctl) - 1), mode)) {
1029 				con_log(CL_ANN, (CE_WARN,
1030 				    "megasas_ioctl: copy_to_user failed\n"));
1031 				rval = 1;
1032 			}
1033 
1034 			break;
1035 		case MEGASAS_IOCTL_AEN:
1036 			if (ddi_copyin((void *) arg, &aen,
1037 			    sizeof (struct megasas_aen), mode)) {
1038 				con_log(CL_ANN, (CE_WARN,
1039 				    "megasas_ioctl: ERROR AEN copyin"));
1040 				return (EFAULT);
1041 			}
1042 
1043 			rval = handle_mfi_aen(instance, &aen);
1044 
1045 			if (ddi_copyout((void *) &aen, (void *)arg,
1046 			    sizeof (struct megasas_aen), mode)) {
1047 				con_log(CL_ANN, (CE_WARN,
1048 				    "megasas_ioctl: copy_to_user failed\n"));
1049 				rval = 1;
1050 			}
1051 
1052 			break;
1053 		default:
1054 			rval = scsi_hba_ioctl(dev, cmd, arg,
1055 			    mode, credp, rvalp);
1056 
1057 			con_log(CL_DLEVEL1, (CE_NOTE, "megasas_ioctl: "
1058 			    "scsi_hba_ioctl called, ret = %x.", rval));
1059 	}
1060 
1061 	return (rval);
1062 }
1063 
1064 /*
1065  * ************************************************************************** *
1066  *                                                                            *
1067  *               common entry points - for block driver types                 *
1068  *                                                                            *
1069  * ************************************************************************** *
1070  */
1071 /*
1072  * reset - TBD
1073  * @dip:
1074  * @cmd:
1075  *
1076  * TBD
1077  */
1078 /*ARGSUSED*/
1079 static int
1080 megasas_reset(dev_info_t *dip, ddi_reset_cmd_t cmd)
1081 {
1082 	int	instance_no;
1083 
1084 	struct megasas_instance	*instance;
1085 
1086 	instance_no = ddi_get_instance(dip);
1087 	instance = (struct megasas_instance *)ddi_get_soft_state
1088 	    (megasas_state, instance_no);
1089 
1090 	con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__));
1091 
1092 	if (!instance) {
1093 		con_log(CL_ANN, (CE_WARN,
1094 		    "megaraid:%d could not get adapter in reset",
1095 		    instance_no));
1096 		return (DDI_FAILURE);
1097 	}
1098 
1099 	con_log(CL_ANN, (CE_NOTE, "flushing cache for instance %d ..",
1100 	    instance_no));
1101 
1102 	flush_cache(instance);
1103 
1104 	return (DDI_SUCCESS);
1105 }
1106 
1107 
1108 /*
1109  * ************************************************************************** *
1110  *                                                                            *
1111  *                          entry points (SCSI HBA)                           *
1112  *                                                                            *
1113  * ************************************************************************** *
1114  */
1115 /*
1116  * tran_tgt_init - initialize a target device instance
1117  * @hba_dip:
1118  * @tgt_dip:
1119  * @tran:
1120  * @sd:
1121  *
1122  * The tran_tgt_init() entry point enables the HBA to allocate and initialize
1123  * any per-target resources. tran_tgt_init() also enables the HBA to qualify
1124  * the device's address as valid and supportable for that particular HBA.
1125  * By returning DDI_FAILURE, the instance of the target driver for that device
1126  * is not probed or attached.
1127  */
1128 /*ARGSUSED*/
1129 static int
1130 megasas_tran_tgt_init(dev_info_t *hba_dip, dev_info_t *tgt_dip,
1131 		scsi_hba_tran_t *tran, struct scsi_device *sd)
1132 {
1133 	con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__));
1134 
1135 	return (DDI_SUCCESS);
1136 }
1137 
1138 /*
1139  * tran_init_pkt - allocate & initialize a scsi_pkt structure
1140  * @ap:
1141  * @pkt:
1142  * @bp:
1143  * @cmdlen:
1144  * @statuslen:
1145  * @tgtlen:
1146  * @flags:
1147  * @callback:
1148  *
1149  * The tran_init_pkt() entry point allocates and initializes a scsi_pkt
1150  * structure and DMA resources for a target driver request. The
1151  * tran_init_pkt() entry point is called when the target driver calls the
1152  * SCSA function scsi_init_pkt(). Each call of the tran_init_pkt() entry point
1153  * is a request to perform one or more of three possible services:
1154  *  - allocation and initialization of a scsi_pkt structure
1155  *  - allocation of DMA resources for data transfer
1156  *  - reallocation of DMA resources for the next portion of the data transfer
1157  */
1158 static struct scsi_pkt *
1159 megasas_tran_init_pkt(struct scsi_address *ap, register struct scsi_pkt *pkt,
1160 	struct buf *bp, int cmdlen, int statuslen, int tgtlen,
1161 	int flags, int (*callback)(), caddr_t arg)
1162 {
1163 	struct scsa_cmd	*acmd;
1164 	struct megasas_instance	*instance;
1165 	struct scsi_pkt	*new_pkt;
1166 
1167 	con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__));
1168 
1169 	instance = ADDR2MEGA(ap);
1170 
1171 	/* step #1 : pkt allocation */
1172 	if (pkt == NULL) {
1173 		pkt = scsi_hba_pkt_alloc(instance->dip, ap, cmdlen, statuslen,
1174 		    tgtlen, sizeof (struct scsa_cmd), callback, arg);
1175 		if (pkt == NULL) {
1176 			return (NULL);
1177 		}
1178 
1179 		acmd = PKT2CMD(pkt);
1180 
1181 		/*
1182 		 * Initialize the new pkt - we redundantly initialize
1183 		 * all the fields for illustrative purposes.
1184 		 */
1185 		acmd->cmd_pkt		= pkt;
1186 		acmd->cmd_flags		= 0;
1187 		acmd->cmd_scblen	= statuslen;
1188 		acmd->cmd_cdblen	= cmdlen;
1189 		acmd->cmd_dmahandle	= NULL;
1190 		acmd->cmd_ncookies	= 0;
1191 		acmd->cmd_cookie	= 0;
1192 		acmd->cmd_cookiecnt	= 0;
1193 		acmd->cmd_nwin		= 0;
1194 
1195 		pkt->pkt_address	= *ap;
1196 		pkt->pkt_comp		= (void (*)())NULL;
1197 		pkt->pkt_flags		= 0;
1198 		pkt->pkt_time		= 0;
1199 		pkt->pkt_resid		= 0;
1200 		pkt->pkt_state		= 0;
1201 		pkt->pkt_statistics	= 0;
1202 		pkt->pkt_reason		= 0;
1203 		new_pkt			= pkt;
1204 	} else {
1205 		acmd = PKT2CMD(pkt);
1206 		new_pkt = NULL;
1207 	}
1208 
1209 	/* step #2 : dma allocation/move */
1210 	if (bp && bp->b_bcount != 0) {
1211 		if (acmd->cmd_dmahandle == NULL) {
1212 			if (megasas_dma_alloc(instance, pkt, bp, flags,
1213 			    callback) == -1) {
1214 				if (new_pkt) {
1215 					scsi_hba_pkt_free(ap, new_pkt);
1216 				}
1217 
1218 				return ((struct scsi_pkt *)NULL);
1219 			}
1220 		} else {
1221 			if (megasas_dma_move(instance, pkt, bp) == -1) {
1222 				return ((struct scsi_pkt *)NULL);
1223 			}
1224 		}
1225 	}
1226 
1227 	return (pkt);
1228 }
1229 
1230 /*
1231  * tran_start - transport a SCSI command to the addressed target
1232  * @ap:
1233  * @pkt:
1234  *
1235  * The tran_start() entry point for a SCSI HBA driver is called to transport a
1236  * SCSI command to the addressed target. The SCSI command is described
1237  * entirely within the scsi_pkt structure, which the target driver allocated
1238  * through the HBA driver's tran_init_pkt() entry point. If the command
1239  * involves a data transfer, DMA resources must also have been allocated for
1240  * the scsi_pkt structure.
1241  *
1242  * Return Values :
1243  *	TRAN_BUSY - request queue is full, no more free scbs
1244  *	TRAN_ACCEPT - pkt has been submitted to the instance
1245  */
1246 static int
1247 megasas_tran_start(struct scsi_address *ap, register struct scsi_pkt *pkt)
1248 {
1249 	uchar_t 	cmd_done = 0;
1250 
1251 	struct megasas_instance	*instance = ADDR2MEGA(ap);
1252 	struct megasas_cmd	*cmd;
1253 
1254 	con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d:SCSI CDB[0]=0x%x",
1255 	    __func__, __LINE__, pkt->pkt_cdbp[0]));
1256 
1257 	pkt->pkt_reason	= CMD_CMPLT;
1258 	*pkt->pkt_scbp = STATUS_GOOD; /* clear arq scsi_status */
1259 
1260 	cmd = build_cmd(instance, ap, pkt, &cmd_done);
1261 
1262 	/*
1263 	 * Check if the command is already completed by the mega_build_cmd()
1264 	 * routine. In which case the busy_flag would be clear and scb will be
1265 	 * NULL and appropriate reason provided in pkt_reason field
1266 	 */
1267 	if (cmd_done) {
1268 		if ((pkt->pkt_flags & FLAG_NOINTR) == 0) {
1269 			scsi_hba_pkt_comp(pkt);
1270 		}
1271 		pkt->pkt_reason = CMD_CMPLT;
1272 		pkt->pkt_scbp[0] = STATUS_GOOD;
1273 		pkt->pkt_state |= STATE_GOT_BUS | STATE_GOT_TARGET
1274 		    | STATE_SENT_CMD;
1275 		return (TRAN_ACCEPT);
1276 	}
1277 
1278 	if (cmd == NULL) {
1279 		return (TRAN_BUSY);
1280 	}
1281 
1282 	if ((pkt->pkt_flags & FLAG_NOINTR) == 0) {
1283 		if (instance->fw_outstanding > instance->max_fw_cmds) {
1284 			con_log(CL_ANN, (CE_CONT, "megasas:Firmware busy"));
1285 			return_mfi_pkt(instance, cmd);
1286 			return (TRAN_BUSY);
1287 		}
1288 
1289 		/* Syncronize the Cmd frame for the controller */
1290 		(void) ddi_dma_sync(cmd->frame_dma_obj.dma_handle, 0, 0,
1291 		    DDI_DMA_SYNC_FORDEV);
1292 
1293 		instance->func_ptr->issue_cmd(cmd, instance);
1294 
1295 	} else {
1296 		struct megasas_header *hdr = &cmd->frame->hdr;
1297 
1298 		cmd->sync_cmd = MEGASAS_TRUE;
1299 
1300 		instance->func_ptr-> issue_cmd_in_poll_mode(instance, cmd);
1301 
1302 		pkt->pkt_reason		= CMD_CMPLT;
1303 		pkt->pkt_statistics	= 0;
1304 		pkt->pkt_state |= STATE_XFERRED_DATA | STATE_GOT_STATUS;
1305 
1306 		switch (hdr->cmd_status) {
1307 		case MFI_STAT_OK:
1308 			pkt->pkt_scbp[0] = STATUS_GOOD;
1309 			break;
1310 
1311 		case MFI_STAT_SCSI_DONE_WITH_ERROR:
1312 
1313 			pkt->pkt_reason	= CMD_CMPLT;
1314 			pkt->pkt_statistics = 0;
1315 
1316 			((struct scsi_status *)pkt->pkt_scbp)->sts_chk = 1;
1317 			break;
1318 
1319 		case MFI_STAT_DEVICE_NOT_FOUND:
1320 			pkt->pkt_reason		= CMD_DEV_GONE;
1321 			pkt->pkt_statistics	= STAT_DISCON;
1322 			break;
1323 
1324 		default:
1325 			((struct scsi_status *)pkt->pkt_scbp)->sts_busy = 1;
1326 		}
1327 
1328 		return_mfi_pkt(instance, cmd);
1329 		(void) megasas_common_check(instance, cmd);
1330 
1331 		scsi_hba_pkt_comp(pkt);
1332 
1333 	}
1334 
1335 	return (TRAN_ACCEPT);
1336 }
1337 
1338 /*
1339  * tran_abort - Abort any commands that are currently in transport
1340  * @ap:
1341  * @pkt:
1342  *
1343  * The tran_abort() entry point for a SCSI HBA driver is called to abort any
1344  * commands that are currently in transport for a particular target. This entry
1345  * point is called when a target driver calls scsi_abort(). The tran_abort()
1346  * entry point should attempt to abort the command denoted by the pkt
1347  * parameter. If the pkt parameter is NULL, tran_abort() should attempt to
1348  * abort all outstanding commands in the transport layer for the particular
1349  * target or logical unit.
1350  */
1351 /*ARGSUSED*/
1352 static int
1353 megasas_tran_abort(struct scsi_address *ap, struct scsi_pkt *pkt)
1354 {
1355 	con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__));
1356 
1357 	/* aborting command not supported by H/W */
1358 
1359 	return (DDI_FAILURE);
1360 }
1361 
1362 /*
1363  * tran_reset - reset either the SCSI bus or target
1364  * @ap:
1365  * @level:
1366  *
1367  * The tran_reset() entry point for a SCSI HBA driver is called to reset either
1368  * the SCSI bus or a particular SCSI target device. This entry point is called
1369  * when a target driver calls scsi_reset(). The tran_reset() entry point must
1370  * reset the SCSI bus if level is RESET_ALL. If level is RESET_TARGET, just the
1371  * particular target or logical unit must be reset.
1372  */
1373 /*ARGSUSED*/
1374 static int
1375 megasas_tran_reset(struct scsi_address *ap, int level)
1376 {
1377 	struct megasas_instance *instance = ADDR2MEGA(ap);
1378 
1379 	con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__));
1380 
1381 	if (wait_for_outstanding(instance)) {
1382 		return (DDI_FAILURE);
1383 	} else {
1384 		return (DDI_SUCCESS);
1385 	}
1386 }
1387 
1388 /*
1389  * tran_bus_reset - reset the SCSI bus
1390  * @dip:
1391  * @level:
1392  *
1393  * The tran_bus_reset() vector in the scsi_hba_tran structure should be
1394  * initialized during the HBA driver's attach(). The vector should point to
1395  * an HBA entry point that is to be called when a user initiates a bus reset.
1396  * Implementation is hardware specific. If the HBA driver cannot reset the
1397  * SCSI bus without affecting the targets, the driver should fail RESET_BUS
1398  * or not initialize this vector.
1399  */
1400 /*ARGSUSED*/
1401 static int
1402 megasas_tran_bus_reset(dev_info_t *dip, int level)
1403 {
1404 	int	instance_no = ddi_get_instance(dip);
1405 
1406 	struct megasas_instance	*instance = ddi_get_soft_state(megasas_state,
1407 	    instance_no);
1408 
1409 	con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__));
1410 
1411 	if (wait_for_outstanding(instance)) {
1412 		return (DDI_FAILURE);
1413 	} else {
1414 		return (DDI_SUCCESS);
1415 	}
1416 }
1417 
1418 /*
1419  * tran_getcap - get one of a set of SCSA-defined capabilities
1420  * @ap:
1421  * @cap:
1422  * @whom:
1423  *
1424  * The target driver can request the current setting of the capability for a
1425  * particular target by setting the whom parameter to nonzero. A whom value of
1426  * zero indicates a request for the current setting of the general capability
1427  * for the SCSI bus or for adapter hardware. The tran_getcap() should return -1
1428  * for undefined capabilities or the current value of the requested capability.
1429  */
1430 /*ARGSUSED*/
1431 static int
1432 megasas_tran_getcap(struct scsi_address *ap, char *cap, int whom)
1433 {
1434 	int	rval = 0;
1435 
1436 	struct megasas_instance	*instance = ADDR2MEGA(ap);
1437 
1438 	con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__));
1439 
1440 	/* we do allow inquiring about capabilities for other targets */
1441 	if (cap == NULL) {
1442 		return (-1);
1443 	}
1444 
1445 	switch (scsi_hba_lookup_capstr(cap)) {
1446 		case SCSI_CAP_DMA_MAX:
1447 			/* Limit to 16MB max transfer */
1448 			rval = megasas_max_cap_maxxfer;
1449 			break;
1450 		case SCSI_CAP_MSG_OUT:
1451 			rval = 1;
1452 			break;
1453 		case SCSI_CAP_DISCONNECT:
1454 			rval = 0;
1455 			break;
1456 		case SCSI_CAP_SYNCHRONOUS:
1457 			rval = 0;
1458 			break;
1459 		case SCSI_CAP_WIDE_XFER:
1460 			rval = 1;
1461 			break;
1462 		case SCSI_CAP_TAGGED_QING:
1463 			rval = 1;
1464 			break;
1465 		case SCSI_CAP_UNTAGGED_QING:
1466 			rval = 1;
1467 			break;
1468 		case SCSI_CAP_PARITY:
1469 			rval = 1;
1470 			break;
1471 		case SCSI_CAP_INITIATOR_ID:
1472 			rval = instance->init_id;
1473 			break;
1474 		case SCSI_CAP_ARQ:
1475 			rval = 1;
1476 			break;
1477 		case SCSI_CAP_LINKED_CMDS:
1478 			rval = 0;
1479 			break;
1480 		case SCSI_CAP_RESET_NOTIFICATION:
1481 			rval = 1;
1482 			break;
1483 		case SCSI_CAP_GEOMETRY:
1484 			rval = -1;
1485 
1486 			break;
1487 		default:
1488 			con_log(CL_DLEVEL2, (CE_NOTE, "Default cap coming 0x%x",
1489 			    scsi_hba_lookup_capstr(cap)));
1490 			rval = -1;
1491 			break;
1492 	}
1493 
1494 	return (rval);
1495 }
1496 
1497 /*
1498  * tran_setcap - set one of a set of SCSA-defined capabilities
1499  * @ap:
1500  * @cap:
1501  * @value:
1502  * @whom:
1503  *
1504  * The target driver might request that the new value be set for a particular
1505  * target by setting the whom parameter to nonzero. A whom value of zero
1506  * means that request is to set the new value for the SCSI bus or for adapter
1507  * hardware in general.
1508  * The tran_setcap() should return the following values as appropriate:
1509  * - -1 for undefined capabilities
1510  * - 0 if the HBA driver cannot set the capability to the requested value
1511  * - 1 if the HBA driver is able to set the capability to the requested value
1512  */
1513 /*ARGSUSED*/
1514 static int
1515 megasas_tran_setcap(struct scsi_address *ap, char *cap, int value, int whom)
1516 {
1517 	int		rval = 1;
1518 
1519 	con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__));
1520 
1521 	/* We don't allow setting capabilities for other targets */
1522 	if (cap == NULL || whom == 0) {
1523 		return (-1);
1524 	}
1525 
1526 	switch (scsi_hba_lookup_capstr(cap)) {
1527 		case SCSI_CAP_DMA_MAX:
1528 		case SCSI_CAP_MSG_OUT:
1529 		case SCSI_CAP_PARITY:
1530 		case SCSI_CAP_LINKED_CMDS:
1531 		case SCSI_CAP_RESET_NOTIFICATION:
1532 		case SCSI_CAP_DISCONNECT:
1533 		case SCSI_CAP_SYNCHRONOUS:
1534 		case SCSI_CAP_UNTAGGED_QING:
1535 		case SCSI_CAP_WIDE_XFER:
1536 		case SCSI_CAP_INITIATOR_ID:
1537 		case SCSI_CAP_ARQ:
1538 			/*
1539 			 * None of these are settable via
1540 			 * the capability interface.
1541 			 */
1542 			break;
1543 		case SCSI_CAP_TAGGED_QING:
1544 			rval = 1;
1545 			break;
1546 		case SCSI_CAP_SECTOR_SIZE:
1547 			rval = 1;
1548 			break;
1549 
1550 		case SCSI_CAP_TOTAL_SECTORS:
1551 			rval = 1;
1552 			break;
1553 		default:
1554 			rval = -1;
1555 			break;
1556 	}
1557 
1558 	return (rval);
1559 }
1560 
1561 /*
1562  * tran_destroy_pkt - deallocate scsi_pkt structure
1563  * @ap:
1564  * @pkt:
1565  *
1566  * The tran_destroy_pkt() entry point is the HBA driver function that
1567  * deallocates scsi_pkt structures. The tran_destroy_pkt() entry point is
1568  * called when the target driver calls scsi_destroy_pkt(). The
1569  * tran_destroy_pkt() entry point must free any DMA resources that have been
1570  * allocated for the packet. An implicit DMA synchronization occurs if the
1571  * DMA resources are freed and any cached data remains after the completion
1572  * of the transfer.
1573  */
1574 static void
1575 megasas_tran_destroy_pkt(struct scsi_address *ap, struct scsi_pkt *pkt)
1576 {
1577 	struct scsa_cmd *acmd = PKT2CMD(pkt);
1578 
1579 	con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__));
1580 
1581 	if (acmd->cmd_flags & CFLAG_DMAVALID) {
1582 		acmd->cmd_flags &= ~CFLAG_DMAVALID;
1583 
1584 		(void) ddi_dma_unbind_handle(acmd->cmd_dmahandle);
1585 
1586 		ddi_dma_free_handle(&acmd->cmd_dmahandle);
1587 
1588 		acmd->cmd_dmahandle = NULL;
1589 	}
1590 
1591 	/* free the pkt */
1592 	scsi_hba_pkt_free(ap, pkt);
1593 }
1594 
1595 /*
1596  * tran_dmafree - deallocates DMA resources
1597  * @ap:
1598  * @pkt:
1599  *
1600  * The tran_dmafree() entry point deallocates DMAQ resources that have been
1601  * allocated for a scsi_pkt structure. The tran_dmafree() entry point is
1602  * called when the target driver calls scsi_dmafree(). The tran_dmafree() must
1603  * free only DMA resources allocated for a scsi_pkt structure, not the
1604  * scsi_pkt itself. When DMA resources are freed, a DMA synchronization is
1605  * implicitly performed.
1606  */
1607 /*ARGSUSED*/
1608 static void
1609 megasas_tran_dmafree(struct scsi_address *ap, struct scsi_pkt *pkt)
1610 {
1611 	register struct scsa_cmd *acmd = PKT2CMD(pkt);
1612 
1613 	con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__));
1614 
1615 	if (acmd->cmd_flags & CFLAG_DMAVALID) {
1616 		acmd->cmd_flags &= ~CFLAG_DMAVALID;
1617 
1618 		(void) ddi_dma_unbind_handle(acmd->cmd_dmahandle);
1619 
1620 		ddi_dma_free_handle(&acmd->cmd_dmahandle);
1621 
1622 		acmd->cmd_dmahandle = NULL;
1623 	}
1624 }
1625 
1626 /*
1627  * tran_sync_pkt - synchronize the DMA object allocated
1628  * @ap:
1629  * @pkt:
1630  *
1631  * The tran_sync_pkt() entry point synchronizes the DMA object allocated for
1632  * the scsi_pkt structure before or after a DMA transfer. The tran_sync_pkt()
1633  * entry point is called when the target driver calls scsi_sync_pkt(). If the
1634  * data transfer direction is a DMA read from device to memory, tran_sync_pkt()
1635  * must synchronize the CPU's view of the data. If the data transfer direction
1636  * is a DMA write from memory to device, tran_sync_pkt() must synchronize the
1637  * device's view of the data.
1638  */
1639 /*ARGSUSED*/
1640 static void
1641 megasas_tran_sync_pkt(struct scsi_address *ap, struct scsi_pkt *pkt)
1642 {
1643 	con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__));
1644 
1645 	/*
1646 	 * following 'ddi_dma_sync()' API call
1647 	 * already called for each I/O in the ISR
1648 	 */
1649 #if 0
1650 	int	i;
1651 
1652 	register struct scsa_cmd	*acmd = PKT2CMD(pkt);
1653 
1654 	if (acmd->cmd_flags & CFLAG_DMAVALID) {
1655 		(void) ddi_dma_sync(acmd->cmd_dmahandle, acmd->cmd_dma_offset,
1656 		    acmd->cmd_dma_len, (acmd->cmd_flags & CFLAG_DMASEND) ?
1657 		    DDI_DMA_SYNC_FORDEV : DDI_DMA_SYNC_FORCPU);
1658 	}
1659 #endif
1660 }
1661 
1662 /*ARGSUSED*/
1663 static int
1664 megasas_tran_quiesce(dev_info_t *dip)
1665 {
1666 	con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__));
1667 
1668 	return (1);
1669 }
1670 
1671 /*ARGSUSED*/
1672 static int
1673 megasas_tran_unquiesce(dev_info_t *dip)
1674 {
1675 	con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__));
1676 
1677 	return (1);
1678 }
1679 
1680 /*
1681  * megasas_isr(caddr_t)
1682  *
1683  * The Interrupt Service Routine
1684  *
1685  * Collect status for all completed commands and do callback
1686  *
1687  */
1688 static uint_t
1689 megasas_isr(struct megasas_instance *instance)
1690 {
1691 	int		need_softintr;
1692 	uint32_t	producer;
1693 	uint32_t	consumer;
1694 	uint32_t	context;
1695 
1696 	struct megasas_cmd	*cmd;
1697 
1698 	con_log(CL_ANN1, (CE_NOTE, "chkpnt:%s:%d", __func__, __LINE__));
1699 
1700 	ASSERT(instance);
1701 	if (!instance->func_ptr->intr_ack(instance)) {
1702 		return (DDI_INTR_UNCLAIMED);
1703 	}
1704 
1705 	(void) ddi_dma_sync(instance->mfi_internal_dma_obj.dma_handle,
1706 	    0, 0, DDI_DMA_SYNC_FORCPU);
1707 
1708 	if (megasas_check_dma_handle(instance->mfi_internal_dma_obj.dma_handle)
1709 	    != DDI_SUCCESS) {
1710 		megasas_fm_ereport(instance, DDI_FM_DEVICE_NO_RESPONSE);
1711 		ddi_fm_service_impact(instance->dip, DDI_SERVICE_LOST);
1712 		return (DDI_INTR_UNCLAIMED);
1713 	}
1714 
1715 	producer = *instance->producer;
1716 	consumer = *instance->consumer;
1717 
1718 	con_log(CL_ANN1, (CE_CONT, " producer %x consumer %x ",
1719 	    producer, consumer));
1720 
1721 	mutex_enter(&instance->completed_pool_mtx);
1722 
1723 	while (consumer != producer) {
1724 		context = instance->reply_queue[consumer];
1725 		cmd = instance->cmd_list[context];
1726 		mlist_add_tail(&cmd->list, &instance->completed_pool_list);
1727 
1728 		consumer++;
1729 		if (consumer == (instance->max_fw_cmds + 1)) {
1730 			consumer = 0;
1731 		}
1732 	}
1733 
1734 	mutex_exit(&instance->completed_pool_mtx);
1735 
1736 	*instance->consumer = consumer;
1737 	(void) ddi_dma_sync(instance->mfi_internal_dma_obj.dma_handle,
1738 	    0, 0, DDI_DMA_SYNC_FORDEV);
1739 
1740 	if (instance->softint_running) {
1741 		need_softintr = 0;
1742 	} else {
1743 		need_softintr = 1;
1744 	}
1745 
1746 	if (instance->isr_level == HIGH_LEVEL_INTR) {
1747 		if (need_softintr) {
1748 			ddi_trigger_softintr(instance->soft_intr_id);
1749 		}
1750 	} else {
1751 		/*
1752 		 * Not a high-level interrupt, therefore call the soft level
1753 		 * interrupt explicitly
1754 		 */
1755 		(void) megasas_softintr(instance);
1756 	}
1757 
1758 	return (DDI_INTR_CLAIMED);
1759 }
1760 
1761 
1762 /*
1763  * ************************************************************************** *
1764  *                                                                            *
1765  *                                  libraries                                 *
1766  *                                                                            *
1767  * ************************************************************************** *
1768  */
1769 /*
1770  * get_mfi_pkt : Get a command from the free pool
1771  */
1772 static struct megasas_cmd *
1773 get_mfi_pkt(struct megasas_instance *instance)
1774 {
1775 	mlist_t 		*head = &instance->cmd_pool_list;
1776 	struct megasas_cmd	*cmd = NULL;
1777 
1778 	mutex_enter(&instance->cmd_pool_mtx);
1779 	ASSERT(mutex_owned(&instance->cmd_pool_mtx));
1780 
1781 	if (!mlist_empty(head)) {
1782 		cmd = mlist_entry(head->next, struct megasas_cmd, list);
1783 		mlist_del_init(head->next);
1784 	}
1785 	if (cmd != NULL)
1786 		cmd->pkt = NULL;
1787 	mutex_exit(&instance->cmd_pool_mtx);
1788 
1789 	return (cmd);
1790 }
1791 
1792 /*
1793  * return_mfi_pkt : Return a cmd to free command pool
1794  */
1795 static void
1796 return_mfi_pkt(struct megasas_instance *instance, struct megasas_cmd *cmd)
1797 {
1798 	mutex_enter(&instance->cmd_pool_mtx);
1799 	ASSERT(mutex_owned(&instance->cmd_pool_mtx));
1800 
1801 	mlist_add(&cmd->list, &instance->cmd_pool_list);
1802 
1803 	mutex_exit(&instance->cmd_pool_mtx);
1804 }
1805 
1806 /*
1807  * destroy_mfi_frame_pool
1808  */
1809 static void
1810 destroy_mfi_frame_pool(struct megasas_instance *instance)
1811 {
1812 	int		i;
1813 	uint32_t	max_cmd = instance->max_fw_cmds;
1814 
1815 	struct megasas_cmd	*cmd;
1816 
1817 	/* return all frames to pool */
1818 	for (i = 0; i < max_cmd; i++) {
1819 
1820 		cmd = instance->cmd_list[i];
1821 
1822 		if (cmd->frame_dma_obj_status == DMA_OBJ_ALLOCATED)
1823 			(void) mega_free_dma_obj(instance, cmd->frame_dma_obj);
1824 
1825 		cmd->frame_dma_obj_status  = DMA_OBJ_FREED;
1826 	}
1827 
1828 }
1829 
1830 /*
1831  * create_mfi_frame_pool
1832  */
1833 static int
1834 create_mfi_frame_pool(struct megasas_instance *instance)
1835 {
1836 	int		i = 0;
1837 	int		cookie_cnt;
1838 	uint16_t	max_cmd;
1839 	uint16_t	sge_sz;
1840 	uint32_t	sgl_sz;
1841 	uint32_t	tot_frame_size;
1842 
1843 	struct megasas_cmd	*cmd;
1844 
1845 	max_cmd = instance->max_fw_cmds;
1846 
1847 	sge_sz	= sizeof (struct megasas_sge64);
1848 
1849 	/* calculated the number of 64byte frames required for SGL */
1850 	sgl_sz		= sge_sz * instance->max_num_sge;
1851 	tot_frame_size	= sgl_sz + MEGAMFI_FRAME_SIZE + SENSE_LENGTH;
1852 
1853 	con_log(CL_DLEVEL3, (CE_NOTE, "create_mfi_frame_pool: "
1854 	    "sgl_sz %x tot_frame_size %x", sgl_sz, tot_frame_size));
1855 
1856 	while (i < max_cmd) {
1857 		cmd = instance->cmd_list[i];
1858 
1859 		cmd->frame_dma_obj.size	= tot_frame_size;
1860 		cmd->frame_dma_obj.dma_attr = megasas_generic_dma_attr;
1861 		cmd->frame_dma_obj.dma_attr.dma_attr_addr_hi = 0xFFFFFFFFU;
1862 		cmd->frame_dma_obj.dma_attr.dma_attr_count_max = 0xFFFFFFFFU;
1863 		cmd->frame_dma_obj.dma_attr.dma_attr_sgllen = 1;
1864 		cmd->frame_dma_obj.dma_attr.dma_attr_align = 64;
1865 
1866 
1867 		cookie_cnt = mega_alloc_dma_obj(instance, &cmd->frame_dma_obj);
1868 
1869 		if (cookie_cnt == -1 || cookie_cnt > 1) {
1870 			con_log(CL_ANN, (CE_WARN,
1871 			    "create_mfi_frame_pool: could not alloc."));
1872 			return (DDI_FAILURE);
1873 		}
1874 
1875 		bzero(cmd->frame_dma_obj.buffer, tot_frame_size);
1876 
1877 		cmd->frame_dma_obj_status = DMA_OBJ_ALLOCATED;
1878 		cmd->frame = (union megasas_frame *)cmd->frame_dma_obj.buffer;
1879 		cmd->frame_phys_addr =
1880 		    cmd->frame_dma_obj.dma_cookie[0].dmac_address;
1881 
1882 		cmd->sense = (uint8_t *)(((unsigned long)
1883 		    cmd->frame_dma_obj.buffer) +
1884 		    tot_frame_size - SENSE_LENGTH);
1885 		cmd->sense_phys_addr =
1886 		    cmd->frame_dma_obj.dma_cookie[0].dmac_address +
1887 		    tot_frame_size - SENSE_LENGTH;
1888 
1889 		if (!cmd->frame || !cmd->sense) {
1890 			con_log(CL_ANN, (CE_NOTE,
1891 			    "megasas: pci_pool_alloc failed \n"));
1892 
1893 			return (-ENOMEM);
1894 		}
1895 
1896 		cmd->frame->io.context = cmd->index;
1897 		i++;
1898 
1899 		con_log(CL_DLEVEL3, (CE_NOTE, "[%x]-%x",
1900 		    cmd->frame->io.context, cmd->frame_phys_addr));
1901 	}
1902 
1903 	return (DDI_SUCCESS);
1904 }
1905 
1906 /*
1907  * free_additional_dma_buffer
1908  */
1909 static void
1910 free_additional_dma_buffer(struct megasas_instance *instance)
1911 {
1912 	if (instance->mfi_internal_dma_obj.status == DMA_OBJ_ALLOCATED) {
1913 		(void) mega_free_dma_obj(instance,
1914 		    instance->mfi_internal_dma_obj);
1915 		instance->mfi_internal_dma_obj.status = DMA_OBJ_FREED;
1916 	}
1917 
1918 	if (instance->mfi_evt_detail_obj.status == DMA_OBJ_ALLOCATED) {
1919 		(void) mega_free_dma_obj(instance,
1920 		    instance->mfi_evt_detail_obj);
1921 		instance->mfi_evt_detail_obj.status = DMA_OBJ_FREED;
1922 	}
1923 }
1924 
1925 /*
1926  * alloc_additional_dma_buffer
1927  */
1928 static int
1929 alloc_additional_dma_buffer(struct megasas_instance *instance)
1930 {
1931 	uint32_t	reply_q_sz;
1932 	uint32_t	internal_buf_size = PAGESIZE*2;
1933 
1934 	/* max cmds plus 1 + producer & consumer */
1935 	reply_q_sz = sizeof (uint32_t) * (instance->max_fw_cmds + 1 + 2);
1936 
1937 	instance->mfi_internal_dma_obj.size = internal_buf_size;
1938 	instance->mfi_internal_dma_obj.dma_attr	= megasas_generic_dma_attr;
1939 	instance->mfi_internal_dma_obj.dma_attr.dma_attr_addr_hi = 0xFFFFFFFFU;
1940 	instance->mfi_internal_dma_obj.dma_attr.dma_attr_count_max =
1941 	    0xFFFFFFFFU;
1942 	instance->mfi_internal_dma_obj.dma_attr.dma_attr_sgllen	= 1;
1943 
1944 	if (mega_alloc_dma_obj(instance, &instance->mfi_internal_dma_obj)
1945 	    != 1) {
1946 		con_log(CL_ANN, (CE_WARN, "megaraid: could not alloc reply Q"));
1947 		return (DDI_FAILURE);
1948 	}
1949 
1950 	bzero(instance->mfi_internal_dma_obj.buffer, internal_buf_size);
1951 
1952 	instance->mfi_internal_dma_obj.status |= DMA_OBJ_ALLOCATED;
1953 
1954 	instance->producer = (uint32_t *)((unsigned long)
1955 	    instance->mfi_internal_dma_obj.buffer);
1956 	instance->consumer = (uint32_t *)((unsigned long)
1957 	    instance->mfi_internal_dma_obj.buffer + 4);
1958 	instance->reply_queue = (uint32_t *)((unsigned long)
1959 	    instance->mfi_internal_dma_obj.buffer + 8);
1960 	instance->internal_buf = (caddr_t)(((unsigned long)
1961 	    instance->mfi_internal_dma_obj.buffer) + reply_q_sz + 8);
1962 	instance->internal_buf_dmac_add =
1963 	    instance->mfi_internal_dma_obj.dma_cookie[0].dmac_address +
1964 	    reply_q_sz;
1965 	instance->internal_buf_size = internal_buf_size -
1966 	    (reply_q_sz + 8);
1967 
1968 	/* allocate evt_detail */
1969 	instance->mfi_evt_detail_obj.size = sizeof (struct megasas_evt_detail);
1970 	instance->mfi_evt_detail_obj.dma_attr = megasas_generic_dma_attr;
1971 	instance->mfi_evt_detail_obj.dma_attr.dma_attr_addr_hi = 0xFFFFFFFFU;
1972 	instance->mfi_evt_detail_obj.dma_attr.dma_attr_count_max = 0xFFFFFFFFU;
1973 	instance->mfi_evt_detail_obj.dma_attr.dma_attr_sgllen = 1;
1974 	instance->mfi_evt_detail_obj.dma_attr.dma_attr_align = 1;
1975 
1976 	if (mega_alloc_dma_obj(instance, &instance->mfi_evt_detail_obj) != 1) {
1977 		con_log(CL_ANN, (CE_WARN, "alloc_additional_dma_buffer: "
1978 		    "could not data transfer buffer alloc."));
1979 		return (DDI_FAILURE);
1980 	}
1981 
1982 	bzero(instance->mfi_evt_detail_obj.buffer,
1983 	    sizeof (struct megasas_evt_detail));
1984 
1985 	instance->mfi_evt_detail_obj.status |= DMA_OBJ_ALLOCATED;
1986 
1987 	return (DDI_SUCCESS);
1988 }
1989 
1990 /*
1991  * free_space_for_mfi
1992  */
1993 static void
1994 free_space_for_mfi(struct megasas_instance *instance)
1995 {
1996 	int		i;
1997 	uint32_t	max_cmd = instance->max_fw_cmds;
1998 
1999 	/* already freed */
2000 	if (instance->cmd_list == NULL) {
2001 		return;
2002 	}
2003 
2004 	free_additional_dma_buffer(instance);
2005 
2006 	/* first free the MFI frame pool */
2007 	destroy_mfi_frame_pool(instance);
2008 
2009 	/* free all the commands in the cmd_list */
2010 	for (i = 0; i < instance->max_fw_cmds; i++) {
2011 		kmem_free(instance->cmd_list[i],
2012 		    sizeof (struct megasas_cmd));
2013 
2014 		instance->cmd_list[i] = NULL;
2015 	}
2016 
2017 	/* free the cmd_list buffer itself */
2018 	kmem_free(instance->cmd_list,
2019 	    sizeof (struct megasas_cmd *) * max_cmd);
2020 
2021 	instance->cmd_list = NULL;
2022 
2023 	INIT_LIST_HEAD(&instance->cmd_pool_list);
2024 }
2025 
2026 /*
2027  * alloc_space_for_mfi
2028  */
2029 static int
2030 alloc_space_for_mfi(struct megasas_instance *instance)
2031 {
2032 	int		i;
2033 	uint32_t	max_cmd;
2034 	size_t		sz;
2035 
2036 	struct megasas_cmd	*cmd;
2037 
2038 	max_cmd = instance->max_fw_cmds;
2039 	sz = sizeof (struct megasas_cmd *) * max_cmd;
2040 
2041 	/*
2042 	 * instance->cmd_list is an array of struct megasas_cmd pointers.
2043 	 * Allocate the dynamic array first and then allocate individual
2044 	 * commands.
2045 	 */
2046 	instance->cmd_list = kmem_zalloc(sz, KM_SLEEP);
2047 	ASSERT(instance->cmd_list);
2048 
2049 	for (i = 0; i < max_cmd; i++) {
2050 		instance->cmd_list[i] = kmem_zalloc(sizeof (struct megasas_cmd),
2051 		    KM_SLEEP);
2052 		ASSERT(instance->cmd_list[i]);
2053 	}
2054 
2055 	INIT_LIST_HEAD(&instance->cmd_pool_list);
2056 
2057 	/* add all the commands to command pool (instance->cmd_pool) */
2058 	for (i = 0; i < max_cmd; i++) {
2059 		cmd		= instance->cmd_list[i];
2060 		cmd->index	= i;
2061 
2062 		mlist_add_tail(&cmd->list, &instance->cmd_pool_list);
2063 	}
2064 
2065 	/* create a frame pool and assign one frame to each cmd */
2066 	if (create_mfi_frame_pool(instance)) {
2067 		con_log(CL_ANN, (CE_NOTE, "error creating frame DMA pool\n"));
2068 		return (DDI_FAILURE);
2069 	}
2070 
2071 	/* create a frame pool and assign one frame to each cmd */
2072 	if (alloc_additional_dma_buffer(instance)) {
2073 		con_log(CL_ANN, (CE_NOTE, "error creating frame DMA pool\n"));
2074 		return (DDI_FAILURE);
2075 	}
2076 
2077 	return (DDI_SUCCESS);
2078 }
2079 
2080 /*
2081  * get_ctrl_info
2082  */
2083 static int
2084 get_ctrl_info(struct megasas_instance *instance,
2085     struct megasas_ctrl_info *ctrl_info)
2086 {
2087 	int	ret = 0;
2088 
2089 	struct megasas_cmd		*cmd;
2090 	struct megasas_dcmd_frame	*dcmd;
2091 	struct megasas_ctrl_info	*ci;
2092 
2093 	cmd = get_mfi_pkt(instance);
2094 
2095 	if (!cmd) {
2096 		con_log(CL_ANN, (CE_WARN,
2097 		    "Failed to get a cmd for ctrl info\n"));
2098 		return (DDI_FAILURE);
2099 	}
2100 
2101 	dcmd = &cmd->frame->dcmd;
2102 
2103 	ci = (struct megasas_ctrl_info *)instance->internal_buf;
2104 
2105 	if (!ci) {
2106 		con_log(CL_ANN, (CE_WARN,
2107 		    "Failed to alloc mem for ctrl info\n"));
2108 		return_mfi_pkt(instance, cmd);
2109 		return (DDI_FAILURE);
2110 	}
2111 
2112 	(void) memset(ci, 0, sizeof (struct megasas_ctrl_info));
2113 
2114 	/* for( i = 0; i < DCMD_MBOX_SZ; i++ ) dcmd->mbox.b[i] = 0; */
2115 	(void) memset(dcmd->mbox.b, 0, DCMD_MBOX_SZ);
2116 
2117 	dcmd->cmd			= MFI_CMD_OP_DCMD;
2118 	dcmd->cmd_status		= MFI_CMD_STATUS_POLL_MODE;
2119 	dcmd->sge_count			= 1;
2120 	dcmd->flags			= MFI_FRAME_DIR_READ;
2121 	dcmd->timeout			= 0;
2122 	dcmd->data_xfer_len		= sizeof (struct megasas_ctrl_info);
2123 	dcmd->opcode			= MR_DCMD_CTRL_GET_INFO;
2124 	dcmd->sgl.sge32[0].phys_addr	= instance->internal_buf_dmac_add;
2125 	dcmd->sgl.sge32[0].length	= sizeof (struct megasas_ctrl_info);
2126 
2127 	cmd->frame_count = 1;
2128 
2129 	if (!instance->func_ptr->issue_cmd_in_poll_mode(instance, cmd)) {
2130 		ret = 0;
2131 		(void) memcpy(ctrl_info, ci, sizeof (struct megasas_ctrl_info));
2132 	} else {
2133 		con_log(CL_ANN, (CE_WARN, "get_ctrl_info: Ctrl info failed\n"));
2134 		ret = -1;
2135 	}
2136 
2137 	return_mfi_pkt(instance, cmd);
2138 	if (megasas_common_check(instance, cmd) != DDI_SUCCESS) {
2139 		ret = -1;
2140 	}
2141 
2142 	return (ret);
2143 }
2144 
2145 /*
2146  * abort_aen_cmd
2147  */
2148 static int
2149 abort_aen_cmd(struct megasas_instance *instance,
2150     struct megasas_cmd *cmd_to_abort)
2151 {
2152 	int	ret = 0;
2153 
2154 	struct megasas_cmd		*cmd;
2155 	struct megasas_abort_frame	*abort_fr;
2156 
2157 	cmd = get_mfi_pkt(instance);
2158 
2159 	if (!cmd) {
2160 		con_log(CL_ANN, (CE_WARN,
2161 		    "Failed to get a cmd for ctrl info\n"));
2162 		return (DDI_FAILURE);
2163 	}
2164 
2165 	abort_fr = &cmd->frame->abort;
2166 
2167 	/* prepare and issue the abort frame */
2168 	abort_fr->cmd = MFI_CMD_OP_ABORT;
2169 	abort_fr->cmd_status = MFI_CMD_STATUS_SYNC_MODE;
2170 	abort_fr->flags = 0;
2171 	abort_fr->abort_context = cmd_to_abort->index;
2172 	abort_fr->abort_mfi_phys_addr_lo = cmd_to_abort->frame_phys_addr;
2173 	abort_fr->abort_mfi_phys_addr_hi = 0;
2174 
2175 	instance->aen_cmd->abort_aen = 1;
2176 
2177 	cmd->sync_cmd = MEGASAS_TRUE;
2178 	cmd->frame_count = 1;
2179 
2180 	if (instance->func_ptr->issue_cmd_in_sync_mode(instance, cmd)) {
2181 		con_log(CL_ANN, (CE_WARN,
2182 		    "abort_aen_cmd: issue_cmd_in_sync_mode failed\n"));
2183 		ret = -1;
2184 	} else {
2185 		ret = 0;
2186 	}
2187 
2188 	instance->aen_cmd->abort_aen = 1;
2189 	instance->aen_cmd = 0;
2190 
2191 	return_mfi_pkt(instance, cmd);
2192 	(void) megasas_common_check(instance, cmd);
2193 
2194 	return (ret);
2195 }
2196 
2197 /*
2198  * init_mfi
2199  */
2200 static int
2201 init_mfi(struct megasas_instance *instance)
2202 {
2203 	off_t				reglength;
2204 	struct megasas_cmd		*cmd;
2205 	struct megasas_ctrl_info	ctrl_info;
2206 	struct megasas_init_frame	*init_frame;
2207 	struct megasas_init_queue_info	*initq_info;
2208 
2209 	if ((ddi_dev_regsize(instance->dip, REGISTER_SET_IO, &reglength)
2210 	    != DDI_SUCCESS) || reglength < MINIMUM_MFI_MEM_SZ) {
2211 		return (DDI_FAILURE);
2212 	}
2213 
2214 	if (reglength > DEFAULT_MFI_MEM_SZ) {
2215 		reglength = DEFAULT_MFI_MEM_SZ;
2216 		con_log(CL_DLEVEL1, (CE_NOTE,
2217 		    "mega: register length to map is 0x%lx bytes", reglength));
2218 	}
2219 
2220 	if (ddi_regs_map_setup(instance->dip, REGISTER_SET_IO,
2221 	    &instance->regmap, 0, reglength, &endian_attr,
2222 	    &instance->regmap_handle) != DDI_SUCCESS) {
2223 		con_log(CL_ANN, (CE_NOTE,
2224 		    "megaraid: couldn't map control registers"));
2225 
2226 		goto fail_mfi_reg_setup;
2227 	}
2228 
2229 	/* we expect the FW state to be READY */
2230 	if (mfi_state_transition_to_ready(instance)) {
2231 		con_log(CL_ANN, (CE_WARN, "megaraid: F/W is not ready"));
2232 		goto fail_ready_state;
2233 	}
2234 
2235 	/* get various operational parameters from status register */
2236 	instance->max_num_sge =
2237 	    (instance->func_ptr->read_fw_status_reg(instance) &
2238 	    0xFF0000) >> 0x10;
2239 	/*
2240 	 * Reduce the max supported cmds by 1. This is to ensure that the
2241 	 * reply_q_sz (1 more than the max cmd that driver may send)
2242 	 * does not exceed max cmds that the FW can support
2243 	 */
2244 	instance->max_fw_cmds =
2245 	    instance->func_ptr->read_fw_status_reg(instance) & 0xFFFF;
2246 	instance->max_fw_cmds = instance->max_fw_cmds - 1;
2247 
2248 	instance->max_num_sge =
2249 	    (instance->max_num_sge > MEGASAS_MAX_SGE_CNT) ?
2250 	    MEGASAS_MAX_SGE_CNT : instance->max_num_sge;
2251 
2252 	/* create a pool of commands */
2253 	if (alloc_space_for_mfi(instance))
2254 		goto fail_alloc_fw_space;
2255 
2256 	/* disable interrupt for initial preparation */
2257 	instance->func_ptr->disable_intr(instance);
2258 
2259 	/*
2260 	 * Prepare a init frame. Note the init frame points to queue info
2261 	 * structure. Each frame has SGL allocated after first 64 bytes. For
2262 	 * this frame - since we don't need any SGL - we use SGL's space as
2263 	 * queue info structure
2264 	 */
2265 	cmd = get_mfi_pkt(instance);
2266 
2267 	init_frame = (struct megasas_init_frame *)cmd->frame;
2268 	initq_info = (struct megasas_init_queue_info *)
2269 	    ((unsigned long)init_frame + 64);
2270 
2271 	(void) memset(init_frame, 0, MEGAMFI_FRAME_SIZE);
2272 	(void) memset(initq_info, 0, sizeof (struct megasas_init_queue_info));
2273 
2274 	initq_info->init_flags = 0;
2275 
2276 	initq_info->reply_queue_entries	= instance->max_fw_cmds + 1;
2277 
2278 	initq_info->producer_index_phys_addr_hi	= 0;
2279 	initq_info->producer_index_phys_addr_lo =
2280 	    instance->mfi_internal_dma_obj.dma_cookie[0].dmac_address;
2281 
2282 	initq_info->consumer_index_phys_addr_hi = 0;
2283 	initq_info->consumer_index_phys_addr_lo =
2284 	    instance->mfi_internal_dma_obj.dma_cookie[0].dmac_address + 4;
2285 
2286 	initq_info->reply_queue_start_phys_addr_hi = 0;
2287 	initq_info->reply_queue_start_phys_addr_lo =
2288 	    instance->mfi_internal_dma_obj.dma_cookie[0].dmac_address + 8;
2289 
2290 	init_frame->cmd				= MFI_CMD_OP_INIT;
2291 	init_frame->cmd_status			= MFI_CMD_STATUS_POLL_MODE;
2292 	init_frame->flags			= 0;
2293 	init_frame->queue_info_new_phys_addr_lo	=
2294 	    cmd->frame_phys_addr + 64;
2295 	init_frame->queue_info_new_phys_addr_hi	= 0;
2296 
2297 	init_frame->data_xfer_len = sizeof (struct megasas_init_queue_info);
2298 
2299 	cmd->frame_count = 1;
2300 
2301 	/* issue the init frame in polled mode */
2302 	if (instance->func_ptr->issue_cmd_in_poll_mode(instance, cmd)) {
2303 		con_log(CL_ANN, (CE_WARN, "failed to init firmware"));
2304 		goto fail_fw_init;
2305 	}
2306 
2307 	return_mfi_pkt(instance, cmd);
2308 	if (megasas_common_check(instance, cmd) != DDI_SUCCESS) {
2309 		goto fail_fw_init;
2310 	}
2311 
2312 	/* gather misc FW related information */
2313 	if (!get_ctrl_info(instance, &ctrl_info)) {
2314 		instance->max_sectors_per_req = ctrl_info.max_request_size;
2315 		con_log(CL_ANN1, (CE_NOTE, "product name %s ld present %d",
2316 		    ctrl_info.product_name, ctrl_info.ld_present_count));
2317 	} else {
2318 		instance->max_sectors_per_req = instance->max_num_sge *
2319 		    PAGESIZE / 512;
2320 	}
2321 
2322 	if (megasas_check_acc_handle(instance->regmap_handle) != DDI_SUCCESS) {
2323 		goto fail_fw_init;
2324 	}
2325 
2326 	return (0);
2327 
2328 fail_fw_init:
2329 fail_alloc_fw_space:
2330 
2331 	free_space_for_mfi(instance);
2332 
2333 fail_ready_state:
2334 	ddi_regs_map_free(&instance->regmap_handle);
2335 
2336 fail_mfi_reg_setup:
2337 	return (DDI_FAILURE);
2338 }
2339 
2340 /*
2341  * mfi_state_transition_to_ready	: Move the FW to READY state
2342  *
2343  * @reg_set			: MFI register set
2344  */
2345 static int
2346 mfi_state_transition_to_ready(struct megasas_instance *instance)
2347 {
2348 	int		i;
2349 	uint8_t		max_wait;
2350 	uint32_t	fw_ctrl;
2351 	uint32_t	fw_state;
2352 	uint32_t	cur_state;
2353 
2354 	fw_state =
2355 	    instance->func_ptr->read_fw_status_reg(instance) & MFI_STATE_MASK;
2356 	con_log(CL_ANN1, (CE_NOTE,
2357 	    "mfi_state_transition_to_ready:FW state = 0x%x", fw_state));
2358 
2359 	while (fw_state != MFI_STATE_READY) {
2360 		con_log(CL_ANN, (CE_NOTE,
2361 		    "mfi_state_transition_to_ready:FW state%x", fw_state));
2362 
2363 		switch (fw_state) {
2364 		case MFI_STATE_FAULT:
2365 			con_log(CL_ANN, (CE_NOTE,
2366 			    "megasas: FW in FAULT state!!"));
2367 
2368 			return (-ENODEV);
2369 		case MFI_STATE_WAIT_HANDSHAKE:
2370 			/* set the CLR bit in IMR0 */
2371 			con_log(CL_ANN, (CE_NOTE,
2372 			    "megasas: FW waiting for HANDSHAKE"));
2373 			/*
2374 			 * PCI_Hot Plug: MFI F/W requires
2375 			 * (MFI_INIT_CLEAR_HANDSHAKE|MFI_INIT_HOTPLUG)
2376 			 * to be set
2377 			 */
2378 			/* WR_IB_MSG_0(MFI_INIT_CLEAR_HANDSHAKE, instance); */
2379 			WR_IB_DOORBELL(MFI_INIT_CLEAR_HANDSHAKE |
2380 			    MFI_INIT_HOTPLUG, instance);
2381 
2382 			max_wait	= 2;
2383 			cur_state	= MFI_STATE_WAIT_HANDSHAKE;
2384 			break;
2385 		case MFI_STATE_BOOT_MESSAGE_PENDING:
2386 			/* set the CLR bit in IMR0 */
2387 			con_log(CL_ANN, (CE_NOTE,
2388 			    "megasas: FW state boot message pending"));
2389 			/*
2390 			 * PCI_Hot Plug: MFI F/W requires
2391 			 * (MFI_INIT_CLEAR_HANDSHAKE|MFI_INIT_HOTPLUG)
2392 			 * to be set
2393 			 */
2394 			WR_IB_DOORBELL(MFI_INIT_HOTPLUG, instance);
2395 
2396 			max_wait	= 10;
2397 			cur_state	= MFI_STATE_BOOT_MESSAGE_PENDING;
2398 			break;
2399 		case MFI_STATE_OPERATIONAL:
2400 			/* bring it to READY state; assuming max wait 2 secs */
2401 			instance->func_ptr->disable_intr(instance);
2402 			con_log(CL_ANN1, (CE_NOTE,
2403 			    "megasas: FW in OPERATIONAL state"));
2404 			/*
2405 			 * PCI_Hot Plug: MFI F/W requires
2406 			 * (MFI_INIT_READY | MFI_INIT_MFIMODE | MFI_INIT_ABORT)
2407 			 * to be set
2408 			 */
2409 			/* WR_IB_DOORBELL(MFI_INIT_READY, instance); */
2410 			WR_IB_DOORBELL(MFI_RESET_FLAGS, instance);
2411 
2412 			max_wait	= 10;
2413 			cur_state	= MFI_STATE_OPERATIONAL;
2414 			break;
2415 		case MFI_STATE_UNDEFINED:
2416 			/* this state should not last for more than 2 seconds */
2417 			con_log(CL_ANN, (CE_NOTE, "FW state undefined\n"));
2418 
2419 			max_wait	= 2;
2420 			cur_state	= MFI_STATE_UNDEFINED;
2421 			break;
2422 		case MFI_STATE_BB_INIT:
2423 			max_wait	= 2;
2424 			cur_state	= MFI_STATE_BB_INIT;
2425 			break;
2426 		case MFI_STATE_FW_INIT:
2427 			max_wait	= 2;
2428 			cur_state	= MFI_STATE_FW_INIT;
2429 			break;
2430 		case MFI_STATE_DEVICE_SCAN:
2431 			max_wait	= 10;
2432 			cur_state	= MFI_STATE_DEVICE_SCAN;
2433 			break;
2434 		default:
2435 			con_log(CL_ANN, (CE_NOTE,
2436 			    "megasas: Unknown state 0x%x\n", fw_state));
2437 			return (-ENODEV);
2438 		}
2439 
2440 		/* the cur_state should not last for more than max_wait secs */
2441 		for (i = 0; i < (max_wait * MILLISEC); i++) {
2442 			/* fw_state = RD_OB_MSG_0(instance) & MFI_STATE_MASK; */
2443 			fw_state =
2444 			    instance->func_ptr->read_fw_status_reg(instance) &
2445 			    MFI_STATE_MASK;
2446 
2447 			if (fw_state == cur_state) {
2448 				delay(1 * drv_usectohz(MILLISEC));
2449 			} else {
2450 				break;
2451 			}
2452 		}
2453 
2454 		/* return error if fw_state hasn't changed after max_wait */
2455 		if (fw_state == cur_state) {
2456 			con_log(CL_ANN, (CE_NOTE,
2457 			    "FW state hasn't changed in %d secs\n", max_wait));
2458 			return (-ENODEV);
2459 		}
2460 	};
2461 
2462 	fw_ctrl = RD_IB_DOORBELL(instance);
2463 
2464 	con_log(CL_ANN1, (CE_NOTE,
2465 	    "mfi_state_transition_to_ready:FW ctrl = 0x%x", fw_ctrl));
2466 
2467 	/*
2468 	 * Write 0xF to the doorbell register to do the following.
2469 	 * - Abort all outstanding commands (bit 0).
2470 	 * - Transition from OPERATIONAL to READY state (bit 1).
2471 	 * - Discard (possible) low MFA posted in 64-bit mode (bit-2).
2472 	 * - Set to release FW to continue running (i.e. BIOS handshake
2473 	 *   (bit 3).
2474 	 */
2475 	WR_IB_DOORBELL(0xF, instance);
2476 
2477 	if (megasas_check_acc_handle(instance->regmap_handle) != DDI_SUCCESS) {
2478 		return (-ENODEV);
2479 	}
2480 	return (0);
2481 }
2482 
2483 /*
2484  * get_seq_num
2485  */
2486 static int
2487 get_seq_num(struct megasas_instance *instance,
2488     struct megasas_evt_log_info *eli)
2489 {
2490 	int	ret = 0;
2491 
2492 	dma_obj_t			dcmd_dma_obj;
2493 	struct megasas_cmd		*cmd;
2494 	struct megasas_dcmd_frame	*dcmd;
2495 
2496 	cmd = get_mfi_pkt(instance);
2497 
2498 	if (!cmd) {
2499 		cmn_err(CE_WARN, "megasas: failed to get a cmd\n");
2500 		return (-ENOMEM);
2501 	}
2502 
2503 	dcmd	= &cmd->frame->dcmd;
2504 
2505 	/* allocate the data transfer buffer */
2506 	dcmd_dma_obj.size = sizeof (struct megasas_evt_log_info);
2507 	dcmd_dma_obj.dma_attr = megasas_generic_dma_attr;
2508 	dcmd_dma_obj.dma_attr.dma_attr_addr_hi = 0xFFFFFFFFU;
2509 	dcmd_dma_obj.dma_attr.dma_attr_count_max = 0xFFFFFFFFU;
2510 	dcmd_dma_obj.dma_attr.dma_attr_sgllen = 1;
2511 	dcmd_dma_obj.dma_attr.dma_attr_align = 1;
2512 
2513 	if (mega_alloc_dma_obj(instance, &dcmd_dma_obj) != 1) {
2514 		con_log(CL_ANN, (CE_WARN,
2515 		    "get_seq_num: could not data transfer buffer alloc."));
2516 		return (DDI_FAILURE);
2517 	}
2518 
2519 	(void) memset(dcmd_dma_obj.buffer, 0,
2520 	    sizeof (struct megasas_evt_log_info));
2521 
2522 	(void) memset(dcmd->mbox.b, 0, DCMD_MBOX_SZ);
2523 
2524 	dcmd->cmd = MFI_CMD_OP_DCMD;
2525 	dcmd->cmd_status = 0;
2526 	dcmd->sge_count	= 1;
2527 	dcmd->flags = MFI_FRAME_DIR_READ;
2528 	dcmd->timeout = 0;
2529 	dcmd->data_xfer_len = sizeof (struct megasas_evt_log_info);
2530 	dcmd->opcode = MR_DCMD_CTRL_EVENT_GET_INFO;
2531 	dcmd->sgl.sge32[0].length = sizeof (struct megasas_evt_log_info);
2532 	dcmd->sgl.sge32[0].phys_addr = dcmd_dma_obj.dma_cookie[0].dmac_address;
2533 
2534 	cmd->sync_cmd = MEGASAS_TRUE;
2535 	cmd->frame_count = 1;
2536 
2537 	if (instance->func_ptr->issue_cmd_in_sync_mode(instance, cmd)) {
2538 		cmn_err(CE_WARN, "get_seq_num: "
2539 		    "failed to issue MR_DCMD_CTRL_EVENT_GET_INFO\n");
2540 		ret = -1;
2541 	} else {
2542 		/* copy the data back into callers buffer */
2543 		bcopy(dcmd_dma_obj.buffer, eli,
2544 		    sizeof (struct megasas_evt_log_info));
2545 		ret = 0;
2546 	}
2547 
2548 	if (mega_free_dma_obj(instance, dcmd_dma_obj) != DDI_SUCCESS)
2549 		ret = -1;
2550 
2551 	return_mfi_pkt(instance, cmd);
2552 	if (megasas_common_check(instance, cmd) != DDI_SUCCESS) {
2553 		ret = -1;
2554 	}
2555 	return (ret);
2556 }
2557 
2558 /*
2559  * start_mfi_aen
2560  */
2561 static int
2562 start_mfi_aen(struct megasas_instance *instance)
2563 {
2564 	int	ret = 0;
2565 
2566 	struct megasas_evt_log_info	eli;
2567 	union megasas_evt_class_locale	class_locale;
2568 
2569 	/* get the latest sequence number from FW */
2570 	(void) memset(&eli, 0, sizeof (struct megasas_evt_log_info));
2571 
2572 	if (get_seq_num(instance, &eli)) {
2573 		cmn_err(CE_WARN, "start_mfi_aen: failed to get seq num\n");
2574 		return (-1);
2575 	}
2576 
2577 	/* register AEN with FW for latest sequence number plus 1 */
2578 	class_locale.members.reserved	= 0;
2579 	class_locale.members.locale	= MR_EVT_LOCALE_ALL;
2580 	class_locale.members.class	= MR_EVT_CLASS_CRITICAL;
2581 
2582 	ret = register_mfi_aen(instance, eli.newest_seq_num + 1,
2583 	    class_locale.word);
2584 
2585 	if (ret) {
2586 		cmn_err(CE_WARN, "start_mfi_aen: aen registration failed\n");
2587 		return (-1);
2588 	}
2589 
2590 	return (ret);
2591 }
2592 
2593 /*
2594  * flush_cache
2595  */
2596 static void
2597 flush_cache(struct megasas_instance *instance)
2598 {
2599 	struct megasas_cmd		*cmd;
2600 	struct megasas_dcmd_frame	*dcmd;
2601 
2602 	if (!(cmd = get_mfi_pkt(instance)))
2603 		return;
2604 
2605 	dcmd = &cmd->frame->dcmd;
2606 
2607 	(void) memset(dcmd->mbox.b, 0, DCMD_MBOX_SZ);
2608 
2609 	dcmd->cmd		= MFI_CMD_OP_DCMD;
2610 	dcmd->cmd_status	= 0x0;
2611 	dcmd->sge_count		= 0;
2612 	dcmd->flags		= MFI_FRAME_DIR_NONE;
2613 	dcmd->timeout		= 0;
2614 	dcmd->data_xfer_len	= 0;
2615 	dcmd->opcode		= MR_DCMD_CTRL_CACHE_FLUSH;
2616 	dcmd->mbox.b[0]		= MR_FLUSH_CTRL_CACHE | MR_FLUSH_DISK_CACHE;
2617 
2618 	cmd->frame_count = 1;
2619 
2620 	if (instance->func_ptr->issue_cmd_in_poll_mode(instance, cmd)) {
2621 		cmn_err(CE_WARN,
2622 		    "flush_cache: failed to issue MFI_DCMD_CTRL_CACHE_FLUSH\n");
2623 	}
2624 	con_log(CL_DLEVEL1, (CE_NOTE, "done"));
2625 	return_mfi_pkt(instance, cmd);
2626 	(void) megasas_common_check(instance, cmd);
2627 }
2628 
2629 /*
2630  * service_mfi_aen-	Completes an AEN command
2631  * @instance:			Adapter soft state
2632  * @cmd:			Command to be completed
2633  *
2634  */
2635 static void
2636 service_mfi_aen(struct megasas_instance *instance, struct megasas_cmd *cmd)
2637 {
2638 	uint32_t	seq_num;
2639 	struct megasas_evt_detail *evt_detail =
2640 	    (struct megasas_evt_detail *)instance->mfi_evt_detail_obj.buffer;
2641 
2642 	cmd->cmd_status = cmd->frame->io.cmd_status;
2643 
2644 	if (cmd->cmd_status == ENODATA) {
2645 		cmd->cmd_status = 0;
2646 	}
2647 
2648 	/*
2649 	 * log the MFI AEN event to the sysevent queue so that
2650 	 * application will get noticed
2651 	 */
2652 	if (ddi_log_sysevent(instance->dip, DDI_VENDOR_LSI, "LSIMEGA", "SAS",
2653 	    NULL, NULL, DDI_NOSLEEP) != DDI_SUCCESS) {
2654 		int	instance_no = ddi_get_instance(instance->dip);
2655 		con_log(CL_ANN, (CE_WARN,
2656 		    "mega%d: Failed to log AEN event", instance_no));
2657 	}
2658 
2659 	/* get copy of seq_num and class/locale for re-registration */
2660 	seq_num = evt_detail->seq_num;
2661 	seq_num++;
2662 	(void) memset(instance->mfi_evt_detail_obj.buffer, 0,
2663 	    sizeof (struct megasas_evt_detail));
2664 
2665 	cmd->frame->dcmd.cmd_status = 0x0;
2666 	cmd->frame->dcmd.mbox.w[0] = seq_num;
2667 
2668 	instance->aen_seq_num = seq_num;
2669 
2670 	cmd->frame_count = 1;
2671 
2672 	/* Issue the aen registration frame */
2673 	instance->func_ptr->issue_cmd(cmd, instance);
2674 }
2675 
2676 /*
2677  * complete_cmd_in_sync_mode -	Completes an internal command
2678  * @instance:			Adapter soft state
2679  * @cmd:			Command to be completed
2680  *
2681  * The issue_cmd_in_sync_mode() function waits for a command to complete
2682  * after it issues a command. This function wakes up that waiting routine by
2683  * calling wake_up() on the wait queue.
2684  */
2685 static void
2686 complete_cmd_in_sync_mode(struct megasas_instance *instance,
2687     struct megasas_cmd *cmd)
2688 {
2689 	cmd->cmd_status = cmd->frame->io.cmd_status;
2690 
2691 	cmd->sync_cmd = MEGASAS_FALSE;
2692 
2693 	if (cmd->cmd_status == ENODATA) {
2694 		cmd->cmd_status = 0;
2695 	}
2696 
2697 	cv_broadcast(&instance->int_cmd_cv);
2698 }
2699 
2700 /*
2701  * megasas_softintr - The Software ISR
2702  * @param arg	: HBA soft state
2703  *
2704  * called from high-level interrupt if hi-level interrupt are not there,
2705  * otherwise triggered as a soft interrupt
2706  */
2707 static uint_t
2708 megasas_softintr(struct megasas_instance *instance)
2709 {
2710 	struct scsi_pkt		*pkt;
2711 	struct scsa_cmd		*acmd;
2712 	struct megasas_cmd	*cmd;
2713 	struct mlist_head	*pos, *next;
2714 	mlist_t			process_list;
2715 	struct megasas_header	*hdr;
2716 	struct scsi_arq_status	*arqstat;
2717 
2718 	con_log(CL_ANN1, (CE_CONT, "megasas_softintr called"));
2719 
2720 	ASSERT(instance);
2721 	mutex_enter(&instance->completed_pool_mtx);
2722 
2723 	if (mlist_empty(&instance->completed_pool_list)) {
2724 		mutex_exit(&instance->completed_pool_mtx);
2725 		return (DDI_INTR_UNCLAIMED);
2726 	}
2727 
2728 	instance->softint_running = 1;
2729 
2730 	INIT_LIST_HEAD(&process_list);
2731 	mlist_splice(&instance->completed_pool_list, &process_list);
2732 	INIT_LIST_HEAD(&instance->completed_pool_list);
2733 
2734 	mutex_exit(&instance->completed_pool_mtx);
2735 
2736 	/* perform all callbacks first, before releasing the SCBs */
2737 	mlist_for_each_safe(pos, next, &process_list) {
2738 		cmd = mlist_entry(pos, struct megasas_cmd, list);
2739 
2740 		/* syncronize the Cmd frame for the controller */
2741 		(void) ddi_dma_sync(cmd->frame_dma_obj.dma_handle,
2742 		    0, 0, DDI_DMA_SYNC_FORCPU);
2743 
2744 		if (megasas_check_dma_handle(cmd->frame_dma_obj.dma_handle) !=
2745 		    DDI_SUCCESS) {
2746 			megasas_fm_ereport(instance, DDI_FM_DEVICE_NO_RESPONSE);
2747 			ddi_fm_service_impact(instance->dip, DDI_SERVICE_LOST);
2748 			return (DDI_INTR_UNCLAIMED);
2749 		}
2750 
2751 		hdr = &cmd->frame->hdr;
2752 
2753 		/* remove the internal command from the process list */
2754 		mlist_del_init(&cmd->list);
2755 
2756 		switch (hdr->cmd) {
2757 		case MFI_CMD_OP_PD_SCSI:
2758 		case MFI_CMD_OP_LD_SCSI:
2759 		case MFI_CMD_OP_LD_READ:
2760 		case MFI_CMD_OP_LD_WRITE:
2761 			/*
2762 			 * MFI_CMD_OP_PD_SCSI and MFI_CMD_OP_LD_SCSI
2763 			 * could have been issued either through an
2764 			 * IO path or an IOCTL path. If it was via IOCTL,
2765 			 * we will send it to internal completion.
2766 			 */
2767 			if (cmd->sync_cmd == MEGASAS_TRUE) {
2768 				complete_cmd_in_sync_mode(instance, cmd);
2769 				break;
2770 			}
2771 
2772 			/* regular commands */
2773 			acmd =	cmd->cmd;
2774 			pkt =	CMD2PKT(acmd);
2775 
2776 			if (acmd->cmd_flags & CFLAG_DMAVALID) {
2777 				if (acmd->cmd_flags & CFLAG_CONSISTENT) {
2778 					(void) ddi_dma_sync(acmd->cmd_dmahandle,
2779 					    acmd->cmd_dma_offset,
2780 					    acmd->cmd_dma_len,
2781 					    DDI_DMA_SYNC_FORCPU);
2782 				}
2783 			}
2784 
2785 			pkt->pkt_reason		= CMD_CMPLT;
2786 			pkt->pkt_statistics	= 0;
2787 			pkt->pkt_state = STATE_GOT_BUS
2788 			    | STATE_GOT_TARGET | STATE_SENT_CMD
2789 			    | STATE_XFERRED_DATA | STATE_GOT_STATUS;
2790 
2791 			con_log(CL_ANN1, (CE_CONT,
2792 			    "CDB[0] = %x completed for %s: size %lx context %x",
2793 			    pkt->pkt_cdbp[0], ((acmd->islogical) ? "LD" : "PD"),
2794 			    acmd->cmd_dmacount, hdr->context));
2795 
2796 			if (pkt->pkt_cdbp[0] == SCMD_INQUIRY) {
2797 				struct scsi_inquiry	*inq;
2798 
2799 				if (acmd->cmd_dmacount != 0) {
2800 					bp_mapin(acmd->cmd_buf);
2801 					inq = (struct scsi_inquiry *)
2802 					    acmd->cmd_buf->b_un.b_addr;
2803 
2804 					/* don't expose physical drives to OS */
2805 					if (acmd->islogical &&
2806 					    (hdr->cmd_status == MFI_STAT_OK)) {
2807 						display_scsi_inquiry(
2808 						    (caddr_t)inq);
2809 					} else if ((hdr->cmd_status ==
2810 					    MFI_STAT_OK) && inq->inq_dtype ==
2811 					    DTYPE_DIRECT) {
2812 
2813 						display_scsi_inquiry(
2814 						    (caddr_t)inq);
2815 
2816 						/* for physical disk */
2817 						hdr->cmd_status =
2818 						    MFI_STAT_DEVICE_NOT_FOUND;
2819 					}
2820 				}
2821 			}
2822 
2823 			switch (hdr->cmd_status) {
2824 			case MFI_STAT_OK:
2825 				pkt->pkt_scbp[0] = STATUS_GOOD;
2826 				break;
2827 			case MFI_STAT_LD_CC_IN_PROGRESS:
2828 			case MFI_STAT_LD_RECON_IN_PROGRESS:
2829 			    /* SJ - these are not correct way */
2830 				pkt->pkt_scbp[0] = STATUS_GOOD;
2831 				break;
2832 			case MFI_STAT_LD_INIT_IN_PROGRESS:
2833 				con_log(CL_ANN,
2834 				    (CE_WARN, "Initialization in Progress"));
2835 				pkt->pkt_reason	= CMD_TRAN_ERR;
2836 
2837 				break;
2838 			case MFI_STAT_SCSI_DONE_WITH_ERROR:
2839 				con_log(CL_ANN1, (CE_CONT, "scsi_done error"));
2840 
2841 				pkt->pkt_reason	= CMD_CMPLT;
2842 				((struct scsi_status *)
2843 				    pkt->pkt_scbp)->sts_chk = 1;
2844 
2845 				if (pkt->pkt_cdbp[0] == SCMD_TEST_UNIT_READY) {
2846 
2847 					con_log(CL_ANN,
2848 					    (CE_WARN, "TEST_UNIT_READY fail"));
2849 
2850 				} else {
2851 					pkt->pkt_state |= STATE_ARQ_DONE;
2852 					arqstat = (void *)(pkt->pkt_scbp);
2853 					arqstat->sts_rqpkt_reason = CMD_CMPLT;
2854 					arqstat->sts_rqpkt_resid = 0;
2855 					arqstat->sts_rqpkt_state |=
2856 					    STATE_GOT_BUS | STATE_GOT_TARGET
2857 					    | STATE_SENT_CMD
2858 					    | STATE_XFERRED_DATA;
2859 					*(uint8_t *)&arqstat->sts_rqpkt_status =
2860 					    STATUS_GOOD;
2861 
2862 					bcopy(cmd->sense,
2863 					    &(arqstat->sts_sensedata),
2864 					    acmd->cmd_scblen -
2865 					    offsetof(struct scsi_arq_status,
2866 					    sts_sensedata));
2867 				}
2868 				break;
2869 			case MFI_STAT_LD_OFFLINE:
2870 			case MFI_STAT_DEVICE_NOT_FOUND:
2871 				con_log(CL_ANN1, (CE_CONT,
2872 				    "device not found error"));
2873 				pkt->pkt_reason	= CMD_DEV_GONE;
2874 				pkt->pkt_statistics  = STAT_DISCON;
2875 				break;
2876 			case MFI_STAT_LD_LBA_OUT_OF_RANGE:
2877 				pkt->pkt_state |= STATE_ARQ_DONE;
2878 				pkt->pkt_reason	= CMD_CMPLT;
2879 				((struct scsi_status *)
2880 				    pkt->pkt_scbp)->sts_chk = 1;
2881 
2882 				arqstat = (void *)(pkt->pkt_scbp);
2883 				arqstat->sts_rqpkt_reason = CMD_CMPLT;
2884 				arqstat->sts_rqpkt_resid = 0;
2885 				arqstat->sts_rqpkt_state |= STATE_GOT_BUS
2886 				    | STATE_GOT_TARGET | STATE_SENT_CMD
2887 				    | STATE_XFERRED_DATA;
2888 				*(uint8_t *)&arqstat->sts_rqpkt_status =
2889 				    STATUS_GOOD;
2890 
2891 				arqstat->sts_sensedata.es_valid = 1;
2892 				arqstat->sts_sensedata.es_key =
2893 				    KEY_ILLEGAL_REQUEST;
2894 				arqstat->sts_sensedata.es_class =
2895 				    CLASS_EXTENDED_SENSE;
2896 
2897 				/*
2898 				 * LOGICAL BLOCK ADDRESS OUT OF RANGE:
2899 				 * ASC: 0x21h; ASCQ: 0x00h;
2900 				 */
2901 				arqstat->sts_sensedata.es_add_code = 0x21;
2902 				arqstat->sts_sensedata.es_qual_code = 0x00;
2903 
2904 				break;
2905 
2906 			default:
2907 				con_log(CL_ANN, (CE_CONT, "Unknown status!"));
2908 				pkt->pkt_reason	= CMD_TRAN_ERR;
2909 
2910 				break;
2911 			}
2912 
2913 			atomic_add_16(&instance->fw_outstanding, (-1));
2914 
2915 			return_mfi_pkt(instance, cmd);
2916 
2917 			(void) megasas_common_check(instance, cmd);
2918 
2919 			if (acmd->cmd_dmahandle) {
2920 				if (megasas_check_dma_handle(
2921 				    acmd->cmd_dmahandle) != DDI_SUCCESS) {
2922 					ddi_fm_service_impact(instance->dip,
2923 					    DDI_SERVICE_UNAFFECTED);
2924 					pkt->pkt_reason = CMD_TRAN_ERR;
2925 					pkt->pkt_statistics = 0;
2926 				}
2927 			}
2928 
2929 			/* Call the callback routine */
2930 			if ((pkt->pkt_flags & FLAG_NOINTR) == 0) {
2931 				scsi_hba_pkt_comp(pkt);
2932 			}
2933 
2934 			break;
2935 		case MFI_CMD_OP_SMP:
2936 		case MFI_CMD_OP_STP:
2937 			complete_cmd_in_sync_mode(instance, cmd);
2938 			break;
2939 		case MFI_CMD_OP_DCMD:
2940 			/* see if got an event notification */
2941 			if (cmd->frame->dcmd.opcode ==
2942 			    MR_DCMD_CTRL_EVENT_WAIT) {
2943 				if ((instance->aen_cmd == cmd) &&
2944 				    (instance->aen_cmd->abort_aen)) {
2945 					con_log(CL_ANN, (CE_WARN,
2946 					    "megasas_softintr: "
2947 					    "aborted_aen returned"));
2948 				} else {
2949 					service_mfi_aen(instance, cmd);
2950 
2951 					atomic_add_16(&instance->fw_outstanding,
2952 					    (-1));
2953 				}
2954 			} else {
2955 				complete_cmd_in_sync_mode(instance, cmd);
2956 			}
2957 
2958 			break;
2959 		case MFI_CMD_OP_ABORT:
2960 			con_log(CL_ANN, (CE_WARN, "MFI_CMD_OP_ABORT complete"));
2961 			/*
2962 			 * MFI_CMD_OP_ABORT successfully completed
2963 			 * in the synchronous mode
2964 			 */
2965 			complete_cmd_in_sync_mode(instance, cmd);
2966 			break;
2967 		default:
2968 			megasas_fm_ereport(instance, DDI_FM_DEVICE_NO_RESPONSE);
2969 			ddi_fm_service_impact(instance->dip, DDI_SERVICE_LOST);
2970 
2971 			if (cmd->pkt != NULL) {
2972 				pkt = cmd->pkt;
2973 				if ((pkt->pkt_flags & FLAG_NOINTR) == 0) {
2974 					scsi_hba_pkt_comp(pkt);
2975 				}
2976 			}
2977 			con_log(CL_ANN, (CE_WARN, "Cmd type unknown !!"));
2978 			break;
2979 		}
2980 	}
2981 
2982 	instance->softint_running = 0;
2983 
2984 	return (DDI_INTR_CLAIMED);
2985 }
2986 
2987 /*
2988  * mega_alloc_dma_obj
2989  *
2990  * Allocate the memory and other resources for an dma object.
2991  */
2992 static int
2993 mega_alloc_dma_obj(struct megasas_instance *instance, dma_obj_t *obj)
2994 {
2995 	int	i;
2996 	size_t	alen = 0;
2997 	uint_t	cookie_cnt;
2998 	struct ddi_device_acc_attr	tmp_endian_attr;
2999 
3000 	tmp_endian_attr = endian_attr;
3001 	tmp_endian_attr.devacc_attr_access = DDI_DEFAULT_ACC;
3002 	i = ddi_dma_alloc_handle(instance->dip, &obj->dma_attr,
3003 	    DDI_DMA_SLEEP, NULL, &obj->dma_handle);
3004 	if (i != DDI_SUCCESS) {
3005 
3006 		switch (i) {
3007 			case DDI_DMA_BADATTR :
3008 				con_log(CL_ANN, (CE_WARN,
3009 				"Failed ddi_dma_alloc_handle- Bad atrib"));
3010 				break;
3011 			case DDI_DMA_NORESOURCES :
3012 				con_log(CL_ANN, (CE_WARN,
3013 				"Failed ddi_dma_alloc_handle- No Resources"));
3014 				break;
3015 			default :
3016 				con_log(CL_ANN, (CE_WARN,
3017 				"Failed ddi_dma_alloc_handle :unknown %d", i));
3018 				break;
3019 		}
3020 
3021 		return (-1);
3022 	}
3023 
3024 	if ((ddi_dma_mem_alloc(obj->dma_handle, obj->size, &tmp_endian_attr,
3025 	    DDI_DMA_RDWR | DDI_DMA_STREAMING, DDI_DMA_SLEEP, NULL,
3026 	    &obj->buffer, &alen, &obj->acc_handle) != DDI_SUCCESS) ||
3027 	    alen < obj->size) {
3028 
3029 		ddi_dma_free_handle(&obj->dma_handle);
3030 
3031 		con_log(CL_ANN, (CE_WARN, "Failed : ddi_dma_mem_alloc"));
3032 
3033 		return (-1);
3034 	}
3035 
3036 	if (ddi_dma_addr_bind_handle(obj->dma_handle, NULL, obj->buffer,
3037 	    obj->size, DDI_DMA_RDWR | DDI_DMA_STREAMING, DDI_DMA_SLEEP,
3038 	    NULL, &obj->dma_cookie[0], &cookie_cnt) != DDI_SUCCESS) {
3039 
3040 		ddi_dma_mem_free(&obj->acc_handle);
3041 		ddi_dma_free_handle(&obj->dma_handle);
3042 
3043 		con_log(CL_ANN, (CE_WARN, "Failed : ddi_dma_addr_bind_handle"));
3044 
3045 		return (-1);
3046 	}
3047 
3048 	if (megasas_check_dma_handle(obj->dma_handle) != DDI_SUCCESS) {
3049 		ddi_fm_service_impact(instance->dip, DDI_SERVICE_LOST);
3050 		return (-1);
3051 	}
3052 
3053 	if (megasas_check_acc_handle(obj->acc_handle) != DDI_SUCCESS) {
3054 		ddi_fm_service_impact(instance->dip, DDI_SERVICE_LOST);
3055 		return (-1);
3056 	}
3057 
3058 	return (cookie_cnt);
3059 }
3060 
3061 /*
3062  * mega_free_dma_obj(struct megasas_instance *, dma_obj_t)
3063  *
3064  * De-allocate the memory and other resources for an dma object, which must
3065  * have been alloated by a previous call to mega_alloc_dma_obj()
3066  */
3067 static int
3068 mega_free_dma_obj(struct megasas_instance *instance, dma_obj_t obj)
3069 {
3070 
3071 	if (megasas_check_dma_handle(obj.dma_handle) != DDI_SUCCESS) {
3072 		ddi_fm_service_impact(instance->dip, DDI_SERVICE_UNAFFECTED);
3073 		return (DDI_FAILURE);
3074 	}
3075 
3076 	if (megasas_check_acc_handle(obj.acc_handle) != DDI_SUCCESS) {
3077 		ddi_fm_service_impact(instance->dip, DDI_SERVICE_UNAFFECTED);
3078 		return (DDI_FAILURE);
3079 	}
3080 
3081 	(void) ddi_dma_unbind_handle(obj.dma_handle);
3082 	ddi_dma_mem_free(&obj.acc_handle);
3083 	ddi_dma_free_handle(&obj.dma_handle);
3084 
3085 	return (DDI_SUCCESS);
3086 }
3087 
3088 /*
3089  * megasas_dma_alloc(instance_t *, struct scsi_pkt *, struct buf *,
3090  * int, int (*)())
3091  *
3092  * Allocate dma resources for a new scsi command
3093  */
3094 static int
3095 megasas_dma_alloc(struct megasas_instance *instance, struct scsi_pkt *pkt,
3096     struct buf *bp, int flags, int (*callback)())
3097 {
3098 	int	dma_flags;
3099 	int	(*cb)(caddr_t);
3100 	int	i;
3101 
3102 	ddi_dma_attr_t	tmp_dma_attr = megasas_generic_dma_attr;
3103 	struct scsa_cmd	*acmd = PKT2CMD(pkt);
3104 
3105 	acmd->cmd_buf = bp;
3106 
3107 	if (bp->b_flags & B_READ) {
3108 		acmd->cmd_flags &= ~CFLAG_DMASEND;
3109 		dma_flags = DDI_DMA_READ;
3110 	} else {
3111 		acmd->cmd_flags |= CFLAG_DMASEND;
3112 		dma_flags = DDI_DMA_WRITE;
3113 	}
3114 
3115 	if (flags & PKT_CONSISTENT) {
3116 		acmd->cmd_flags |= CFLAG_CONSISTENT;
3117 		dma_flags |= DDI_DMA_CONSISTENT;
3118 	}
3119 
3120 	if (flags & PKT_DMA_PARTIAL) {
3121 		dma_flags |= DDI_DMA_PARTIAL;
3122 	}
3123 
3124 	dma_flags |= DDI_DMA_REDZONE;
3125 
3126 	cb = (callback == NULL_FUNC) ? DDI_DMA_DONTWAIT : DDI_DMA_SLEEP;
3127 
3128 	tmp_dma_attr.dma_attr_sgllen = instance->max_num_sge;
3129 	tmp_dma_attr.dma_attr_addr_hi = 0xffffffffffffffffull;
3130 
3131 	if ((i = ddi_dma_alloc_handle(instance->dip, &tmp_dma_attr,
3132 	    cb, 0, &acmd->cmd_dmahandle)) != DDI_SUCCESS) {
3133 		switch (i) {
3134 		case DDI_DMA_BADATTR:
3135 			bioerror(bp, EFAULT);
3136 			return (-1);
3137 
3138 		case DDI_DMA_NORESOURCES:
3139 			bioerror(bp, 0);
3140 			return (-1);
3141 
3142 		default:
3143 			con_log(CL_ANN, (CE_PANIC, "ddi_dma_alloc_handle: "
3144 			    "0x%x impossible\n", i));
3145 			bioerror(bp, EFAULT);
3146 			return (-1);
3147 		}
3148 	}
3149 
3150 	i = ddi_dma_buf_bind_handle(acmd->cmd_dmahandle, bp, dma_flags,
3151 	    cb, 0, &acmd->cmd_dmacookies[0], &acmd->cmd_ncookies);
3152 
3153 	switch (i) {
3154 	case DDI_DMA_PARTIAL_MAP:
3155 		if ((dma_flags & DDI_DMA_PARTIAL) == 0) {
3156 			con_log(CL_ANN, (CE_PANIC, "ddi_dma_buf_bind_handle: "
3157 			    "DDI_DMA_PARTIAL_MAP impossible\n"));
3158 			goto no_dma_cookies;
3159 		}
3160 
3161 		if (ddi_dma_numwin(acmd->cmd_dmahandle, &acmd->cmd_nwin) ==
3162 		    DDI_FAILURE) {
3163 			con_log(CL_ANN, (CE_PANIC, "ddi_dma_numwin failed\n"));
3164 			goto no_dma_cookies;
3165 		}
3166 
3167 		if (ddi_dma_getwin(acmd->cmd_dmahandle, acmd->cmd_curwin,
3168 		    &acmd->cmd_dma_offset, &acmd->cmd_dma_len,
3169 		    &acmd->cmd_dmacookies[0], &acmd->cmd_ncookies) ==
3170 		    DDI_FAILURE) {
3171 
3172 			con_log(CL_ANN, (CE_PANIC, "ddi_dma_getwin failed\n"));
3173 			goto no_dma_cookies;
3174 		}
3175 
3176 		goto get_dma_cookies;
3177 	case DDI_DMA_MAPPED:
3178 		acmd->cmd_nwin = 1;
3179 		acmd->cmd_dma_len = 0;
3180 		acmd->cmd_dma_offset = 0;
3181 
3182 get_dma_cookies:
3183 		i = 0;
3184 		acmd->cmd_dmacount = 0;
3185 		for (;;) {
3186 			acmd->cmd_dmacount +=
3187 			    acmd->cmd_dmacookies[i++].dmac_size;
3188 
3189 			if (i == instance->max_num_sge ||
3190 			    i == acmd->cmd_ncookies)
3191 				break;
3192 
3193 			ddi_dma_nextcookie(acmd->cmd_dmahandle,
3194 			    &acmd->cmd_dmacookies[i]);
3195 		}
3196 
3197 		acmd->cmd_cookie = i;
3198 		acmd->cmd_cookiecnt = i;
3199 
3200 		acmd->cmd_flags |= CFLAG_DMAVALID;
3201 
3202 		if (bp->b_bcount >= acmd->cmd_dmacount) {
3203 			pkt->pkt_resid = bp->b_bcount - acmd->cmd_dmacount;
3204 		} else {
3205 			pkt->pkt_resid = 0;
3206 		}
3207 
3208 		return (0);
3209 	case DDI_DMA_NORESOURCES:
3210 		bioerror(bp, 0);
3211 		break;
3212 	case DDI_DMA_NOMAPPING:
3213 		bioerror(bp, EFAULT);
3214 		break;
3215 	case DDI_DMA_TOOBIG:
3216 		bioerror(bp, EINVAL);
3217 		break;
3218 	case DDI_DMA_INUSE:
3219 		con_log(CL_ANN, (CE_PANIC, "ddi_dma_buf_bind_handle:"
3220 		    " DDI_DMA_INUSE impossible\n"));
3221 		break;
3222 	default:
3223 		con_log(CL_ANN, (CE_PANIC, "ddi_dma_buf_bind_handle: "
3224 		    "0x%x impossible\n", i));
3225 		break;
3226 	}
3227 
3228 no_dma_cookies:
3229 	ddi_dma_free_handle(&acmd->cmd_dmahandle);
3230 	acmd->cmd_dmahandle = NULL;
3231 	acmd->cmd_flags &= ~CFLAG_DMAVALID;
3232 	return (-1);
3233 }
3234 
3235 /*
3236  * megasas_dma_move(struct megasas_instance *, struct scsi_pkt *, struct buf *)
3237  *
3238  * move dma resources to next dma window
3239  *
3240  */
3241 static int
3242 megasas_dma_move(struct megasas_instance *instance, struct scsi_pkt *pkt,
3243     struct buf *bp)
3244 {
3245 	int	i = 0;
3246 
3247 	struct scsa_cmd	*acmd = PKT2CMD(pkt);
3248 
3249 	/*
3250 	 * If there are no more cookies remaining in this window,
3251 	 * must move to the next window first.
3252 	 */
3253 	if (acmd->cmd_cookie == acmd->cmd_ncookies) {
3254 		if (acmd->cmd_curwin == acmd->cmd_nwin && acmd->cmd_nwin == 1) {
3255 			return (0);
3256 		}
3257 
3258 		/* at last window, cannot move */
3259 		if (++acmd->cmd_curwin >= acmd->cmd_nwin) {
3260 			return (-1);
3261 		}
3262 
3263 		if (ddi_dma_getwin(acmd->cmd_dmahandle, acmd->cmd_curwin,
3264 		    &acmd->cmd_dma_offset, &acmd->cmd_dma_len,
3265 		    &acmd->cmd_dmacookies[0], &acmd->cmd_ncookies) ==
3266 		    DDI_FAILURE) {
3267 			return (-1);
3268 		}
3269 
3270 		acmd->cmd_cookie = 0;
3271 	} else {
3272 		/* still more cookies in this window - get the next one */
3273 		ddi_dma_nextcookie(acmd->cmd_dmahandle,
3274 		    &acmd->cmd_dmacookies[0]);
3275 	}
3276 
3277 	/* get remaining cookies in this window, up to our maximum */
3278 	for (;;) {
3279 		acmd->cmd_dmacount += acmd->cmd_dmacookies[i++].dmac_size;
3280 		acmd->cmd_cookie++;
3281 
3282 		if (i == instance->max_num_sge ||
3283 		    acmd->cmd_cookie == acmd->cmd_ncookies) {
3284 			break;
3285 		}
3286 
3287 		ddi_dma_nextcookie(acmd->cmd_dmahandle,
3288 		    &acmd->cmd_dmacookies[i]);
3289 	}
3290 
3291 	acmd->cmd_cookiecnt = i;
3292 
3293 	if (bp->b_bcount >= acmd->cmd_dmacount) {
3294 		pkt->pkt_resid = bp->b_bcount - acmd->cmd_dmacount;
3295 	} else {
3296 		pkt->pkt_resid = 0;
3297 	}
3298 
3299 	return (0);
3300 }
3301 
3302 /*
3303  * build_cmd
3304  */
3305 static struct megasas_cmd *
3306 build_cmd(struct megasas_instance *instance, struct scsi_address *ap,
3307     struct scsi_pkt *pkt, uchar_t *cmd_done)
3308 {
3309 	uint16_t	flags = 0;
3310 	uint32_t	i;
3311 	uint32_t 	context;
3312 	uint32_t	sge_bytes;
3313 
3314 	struct megasas_cmd		*cmd;
3315 	struct megasas_sge64		*mfi_sgl;
3316 	struct scsa_cmd			*acmd = PKT2CMD(pkt);
3317 	struct megasas_pthru_frame 	*pthru;
3318 	struct megasas_io_frame		*ldio;
3319 
3320 	/* find out if this is logical or physical drive command.  */
3321 	acmd->islogical = MEGADRV_IS_LOGICAL(ap);
3322 	acmd->device_id = MAP_DEVICE_ID(instance, ap);
3323 	*cmd_done = 0;
3324 
3325 	/* get the command packet */
3326 	if (!(cmd = get_mfi_pkt(instance))) {
3327 		return (NULL);
3328 	}
3329 
3330 	cmd->pkt = pkt;
3331 	cmd->cmd = acmd;
3332 
3333 	/* lets get the command directions */
3334 	if (acmd->cmd_flags & CFLAG_DMASEND) {
3335 		flags = MFI_FRAME_DIR_WRITE;
3336 
3337 		if (acmd->cmd_flags & CFLAG_CONSISTENT) {
3338 			(void) ddi_dma_sync(acmd->cmd_dmahandle,
3339 			    acmd->cmd_dma_offset, acmd->cmd_dma_len,
3340 			    DDI_DMA_SYNC_FORDEV);
3341 		}
3342 	} else if (acmd->cmd_flags & ~CFLAG_DMASEND) {
3343 		flags = MFI_FRAME_DIR_READ;
3344 
3345 		if (acmd->cmd_flags & CFLAG_CONSISTENT) {
3346 			(void) ddi_dma_sync(acmd->cmd_dmahandle,
3347 			    acmd->cmd_dma_offset, acmd->cmd_dma_len,
3348 			    DDI_DMA_SYNC_FORCPU);
3349 		}
3350 	} else {
3351 		flags = MFI_FRAME_DIR_NONE;
3352 	}
3353 
3354 	flags |= MFI_FRAME_SGL64;
3355 
3356 	switch (pkt->pkt_cdbp[0]) {
3357 
3358 	/*
3359 	 * case SCMD_SYNCHRONIZE_CACHE:
3360 	 * 	flush_cache(instance);
3361 	 *	return_mfi_pkt(instance, cmd);
3362 	 *	*cmd_done = 1;
3363 	 *
3364 	 *	return (NULL);
3365 	 */
3366 
3367 	case SCMD_READ:
3368 	case SCMD_WRITE:
3369 	case SCMD_READ_G1:
3370 	case SCMD_WRITE_G1:
3371 		if (acmd->islogical) {
3372 			ldio = (struct megasas_io_frame *)cmd->frame;
3373 
3374 			/*
3375 			 * preare the Logical IO frame:
3376 			 * 2nd bit is zero for all read cmds
3377 			 */
3378 			ldio->cmd = (pkt->pkt_cdbp[0] & 0x02) ?
3379 			    MFI_CMD_OP_LD_WRITE : MFI_CMD_OP_LD_READ;
3380 			ldio->cmd_status = 0x0;
3381 			ldio->scsi_status = 0x0;
3382 			ldio->target_id	 = acmd->device_id;
3383 			ldio->timeout = 0;
3384 			ldio->reserved_0 = 0;
3385 			ldio->pad_0 = 0;
3386 			ldio->flags = flags;
3387 
3388 			/* Initialize sense Information */
3389 			bzero(cmd->sense, SENSE_LENGTH);
3390 			ldio->sense_len = SENSE_LENGTH;
3391 			ldio->sense_buf_phys_addr_hi = 0;
3392 			ldio->sense_buf_phys_addr_lo = cmd->sense_phys_addr;
3393 
3394 			ldio->start_lba_hi = 0;
3395 			ldio->access_byte = (acmd->cmd_cdblen != 6) ?
3396 			    pkt->pkt_cdbp[1] : 0;
3397 			ldio->sge_count = acmd->cmd_cookiecnt;
3398 			mfi_sgl = (struct megasas_sge64	*)&ldio->sgl;
3399 
3400 			context = ldio->context;
3401 
3402 			if (acmd->cmd_cdblen == CDB_GROUP0) {
3403 				ldio->lba_count	= host_to_le16(
3404 				    (uint16_t)(pkt->pkt_cdbp[4]));
3405 
3406 				ldio->start_lba_lo = host_to_le32(
3407 				    ((uint32_t)(pkt->pkt_cdbp[3])) |
3408 				    ((uint32_t)(pkt->pkt_cdbp[2]) << 8) |
3409 				    ((uint32_t)((pkt->pkt_cdbp[1]) & 0x1F)
3410 				    << 16));
3411 			} else if (acmd->cmd_cdblen == CDB_GROUP1) {
3412 				ldio->lba_count = host_to_le16(
3413 				    ((uint16_t)(pkt->pkt_cdbp[8])) |
3414 				    ((uint16_t)(pkt->pkt_cdbp[7]) << 8));
3415 
3416 				ldio->start_lba_lo = host_to_le32(
3417 				    ((uint32_t)(pkt->pkt_cdbp[5])) |
3418 				    ((uint32_t)(pkt->pkt_cdbp[4]) << 8) |
3419 				    ((uint32_t)(pkt->pkt_cdbp[3]) << 16) |
3420 				    ((uint32_t)(pkt->pkt_cdbp[2]) << 24));
3421 			} else if (acmd->cmd_cdblen == CDB_GROUP2) {
3422 				ldio->lba_count	 = host_to_le16(
3423 				    ((uint16_t)(pkt->pkt_cdbp[9])) |
3424 				    ((uint16_t)(pkt->pkt_cdbp[8]) << 8) |
3425 				    ((uint16_t)(pkt->pkt_cdbp[7]) << 16) |
3426 				    ((uint16_t)(pkt->pkt_cdbp[6]) << 24));
3427 
3428 				ldio->start_lba_lo = host_to_le32(
3429 				    ((uint32_t)(pkt->pkt_cdbp[5])) |
3430 				    ((uint32_t)(pkt->pkt_cdbp[4]) << 8) |
3431 				    ((uint32_t)(pkt->pkt_cdbp[3]) << 16) |
3432 				    ((uint32_t)(pkt->pkt_cdbp[2]) << 24));
3433 			} else if (acmd->cmd_cdblen == CDB_GROUP3) {
3434 				ldio->lba_count = host_to_le16(
3435 				    ((uint16_t)(pkt->pkt_cdbp[13])) |
3436 				    ((uint16_t)(pkt->pkt_cdbp[12]) << 8) |
3437 				    ((uint16_t)(pkt->pkt_cdbp[11]) << 16) |
3438 				    ((uint16_t)(pkt->pkt_cdbp[10]) << 24));
3439 
3440 				ldio->start_lba_lo = host_to_le32(
3441 				    ((uint32_t)(pkt->pkt_cdbp[9])) |
3442 				    ((uint32_t)(pkt->pkt_cdbp[8]) << 8) |
3443 				    ((uint32_t)(pkt->pkt_cdbp[7]) << 16) |
3444 				    ((uint32_t)(pkt->pkt_cdbp[6]) << 24));
3445 
3446 				ldio->start_lba_lo = host_to_le32(
3447 				    ((uint32_t)(pkt->pkt_cdbp[5])) |
3448 				    ((uint32_t)(pkt->pkt_cdbp[4]) << 8) |
3449 				    ((uint32_t)(pkt->pkt_cdbp[3]) << 16) |
3450 				    ((uint32_t)(pkt->pkt_cdbp[2]) << 24));
3451 			}
3452 
3453 			break;
3454 		}
3455 		/* fall through For all non-rd/wr cmds */
3456 	default:
3457 		pthru	= (struct megasas_pthru_frame *)cmd->frame;
3458 
3459 		/* prepare the DCDB frame */
3460 		pthru->cmd = (acmd->islogical) ?
3461 		    MFI_CMD_OP_LD_SCSI : MFI_CMD_OP_PD_SCSI;
3462 		pthru->cmd_status	= 0x0;
3463 		pthru->scsi_status	= 0x0;
3464 		pthru->target_id	= acmd->device_id;
3465 		pthru->lun		= 0;
3466 		pthru->cdb_len		= acmd->cmd_cdblen;
3467 		pthru->timeout		= 0;
3468 		pthru->flags		= flags;
3469 		pthru->data_xfer_len	= acmd->cmd_dmacount;
3470 		pthru->sge_count	= acmd->cmd_cookiecnt;
3471 		mfi_sgl			= (struct megasas_sge64 *)&pthru->sgl;
3472 
3473 		bzero(cmd->sense, SENSE_LENGTH);
3474 		pthru->sense_len	= SENSE_LENGTH;
3475 		pthru->sense_buf_phys_addr_hi = 0;
3476 		pthru->sense_buf_phys_addr_lo = cmd->sense_phys_addr;
3477 
3478 		context = pthru->context;
3479 
3480 		bcopy(pkt->pkt_cdbp, pthru->cdb, acmd->cmd_cdblen);
3481 
3482 		break;
3483 	}
3484 #ifdef lint
3485 	context = context;
3486 #endif
3487 	/* bzero(mfi_sgl, sizeof (struct megasas_sge64) * MAX_SGL); */
3488 
3489 	/* prepare the scatter-gather list for the firmware */
3490 	for (i = 0; i < acmd->cmd_cookiecnt; i++, mfi_sgl++) {
3491 		mfi_sgl->phys_addr = acmd->cmd_dmacookies[i].dmac_laddress;
3492 		mfi_sgl->length    = acmd->cmd_dmacookies[i].dmac_size;
3493 	}
3494 
3495 	sge_bytes = sizeof (struct megasas_sge64)*acmd->cmd_cookiecnt;
3496 
3497 	cmd->frame_count = (sge_bytes / MEGAMFI_FRAME_SIZE) +
3498 	    ((sge_bytes % MEGAMFI_FRAME_SIZE) ? 1 : 0) + 1;
3499 
3500 	if (cmd->frame_count >= 8) {
3501 		cmd->frame_count = 8;
3502 	}
3503 
3504 	return (cmd);
3505 }
3506 
3507 /*
3508  * wait_for_outstanding -	Wait for all outstanding cmds
3509  * @instance:				Adapter soft state
3510  *
3511  * This function waits for upto MEGASAS_RESET_WAIT_TIME seconds for FW to
3512  * complete all its outstanding commands. Returns error if one or more IOs
3513  * are pending after this time period.
3514  */
3515 static int
3516 wait_for_outstanding(struct megasas_instance *instance)
3517 {
3518 	int		i;
3519 	uint32_t	wait_time = 90;
3520 
3521 	for (i = 0; i < wait_time; i++) {
3522 		if (!instance->fw_outstanding) {
3523 			break;
3524 		}
3525 
3526 		drv_usecwait(MILLISEC); /* wait for 1000 usecs */;
3527 	}
3528 
3529 	if (instance->fw_outstanding) {
3530 		return (1);
3531 	}
3532 
3533 	ddi_fm_acc_err_clear(instance->regmap_handle, DDI_FME_VERSION);
3534 
3535 	return (0);
3536 }
3537 
3538 /*
3539  * issue_mfi_pthru
3540  */
3541 static int
3542 issue_mfi_pthru(struct megasas_instance *instance, struct megasas_ioctl *ioctl,
3543     struct megasas_cmd *cmd, int mode)
3544 {
3545 	void		*ubuf;
3546 	uint32_t	kphys_addr = 0;
3547 	uint32_t	xferlen = 0;
3548 	uint_t		model;
3549 
3550 	dma_obj_t			pthru_dma_obj;
3551 	struct megasas_pthru_frame	*kpthru;
3552 	struct megasas_pthru_frame	*pthru;
3553 
3554 	pthru = &cmd->frame->pthru;
3555 	kpthru = (struct megasas_pthru_frame *)&ioctl->frame[0];
3556 
3557 	model = ddi_model_convert_from(mode & FMODELS);
3558 	if (model == DDI_MODEL_ILP32) {
3559 		con_log(CL_ANN1, (CE_NOTE, "issue_mfi_pthru: DDI_MODEL_LP32"));
3560 
3561 		xferlen	= kpthru->sgl.sge32[0].length;
3562 
3563 		/* SJ! - ubuf needs to be virtual address. */
3564 		ubuf	= (void *)(ulong_t)kpthru->sgl.sge32[0].phys_addr;
3565 	} else {
3566 #ifdef _ILP32
3567 		con_log(CL_ANN1, (CE_NOTE, "issue_mfi_pthru: DDI_MODEL_LP32"));
3568 		xferlen	= kpthru->sgl.sge32[0].length;
3569 		/* SJ! - ubuf needs to be virtual address. */
3570 		ubuf	= (void *)(ulong_t)kpthru->sgl.sge32[0].phys_addr;
3571 #else
3572 		con_log(CL_ANN1, (CE_NOTE, "issue_mfi_pthru: DDI_MODEL_LP64"));
3573 		xferlen	= kpthru->sgl.sge64[0].length;
3574 		/* SJ! - ubuf needs to be virtual address. */
3575 		ubuf	= (void *)(ulong_t)kpthru->sgl.sge64[0].phys_addr;
3576 #endif
3577 	}
3578 
3579 	if (xferlen) {
3580 		/* means IOCTL requires DMA */
3581 		/* allocate the data transfer buffer */
3582 		pthru_dma_obj.size = xferlen;
3583 		pthru_dma_obj.dma_attr = megasas_generic_dma_attr;
3584 		pthru_dma_obj.dma_attr.dma_attr_addr_hi = 0xFFFFFFFFU;
3585 		pthru_dma_obj.dma_attr.dma_attr_count_max = 0xFFFFFFFFU;
3586 		pthru_dma_obj.dma_attr.dma_attr_sgllen = 1;
3587 		pthru_dma_obj.dma_attr.dma_attr_align = 1;
3588 
3589 		/* allocate kernel buffer for DMA */
3590 		if (mega_alloc_dma_obj(instance, &pthru_dma_obj) != 1) {
3591 			con_log(CL_ANN, (CE_WARN, "issue_mfi_pthru: "
3592 			    "could not data transfer buffer alloc."));
3593 			return (DDI_FAILURE);
3594 		}
3595 
3596 		/* If IOCTL requires DMA WRITE, do ddi_copyin IOCTL data copy */
3597 		if (kpthru->flags & MFI_FRAME_DIR_WRITE) {
3598 			if (ddi_copyin(ubuf, (void *)pthru_dma_obj.buffer,
3599 			    xferlen, mode)) {
3600 				con_log(CL_ANN, (CE_WARN, "issue_mfi_pthru: "
3601 				    "copy from user space failed\n"));
3602 				return (1);
3603 			}
3604 		}
3605 
3606 		kphys_addr = pthru_dma_obj.dma_cookie[0].dmac_address;
3607 	}
3608 
3609 	pthru->cmd		= kpthru->cmd;
3610 	pthru->sense_len	= kpthru->sense_len;
3611 	pthru->cmd_status	= kpthru->cmd_status;
3612 	pthru->scsi_status	= kpthru->scsi_status;
3613 	pthru->target_id	= kpthru->target_id;
3614 	pthru->lun		= kpthru->lun;
3615 	pthru->cdb_len		= kpthru->cdb_len;
3616 	pthru->sge_count	= kpthru->sge_count;
3617 	pthru->timeout		= kpthru->timeout;
3618 	pthru->data_xfer_len	= kpthru->data_xfer_len;
3619 
3620 	pthru->sense_buf_phys_addr_hi	= 0;
3621 	/* pthru->sense_buf_phys_addr_lo = cmd->sense_phys_addr; */
3622 	pthru->sense_buf_phys_addr_lo	= 0;
3623 
3624 	bcopy((void *)kpthru->cdb, (void *)pthru->cdb, pthru->cdb_len);
3625 
3626 	pthru->flags			= kpthru->flags & ~MFI_FRAME_SGL64;
3627 	pthru->sgl.sge32[0].length	= xferlen;
3628 	pthru->sgl.sge32[0].phys_addr	= kphys_addr;
3629 
3630 	cmd->sync_cmd = MEGASAS_TRUE;
3631 	cmd->frame_count = 1;
3632 
3633 	if (instance->func_ptr->issue_cmd_in_sync_mode(instance, cmd)) {
3634 		con_log(CL_ANN, (CE_WARN,
3635 		    "issue_mfi_pthru: fw_ioctl failed\n"));
3636 	} else {
3637 		if (xferlen && (kpthru->flags & MFI_FRAME_DIR_READ)) {
3638 
3639 			if (ddi_copyout(pthru_dma_obj.buffer, ubuf,
3640 			    xferlen, mode)) {
3641 				con_log(CL_ANN, (CE_WARN, "issue_mfi_pthru: "
3642 				    "copy to user space failed\n"));
3643 				return (1);
3644 			}
3645 		}
3646 	}
3647 
3648 	kpthru->cmd_status = pthru->cmd_status;
3649 	kpthru->scsi_status = pthru->scsi_status;
3650 
3651 	con_log(CL_ANN, (CE_NOTE, "issue_mfi_pthru: cmd_status %x, "
3652 	    "scsi_status %x\n", pthru->cmd_status, pthru->scsi_status));
3653 
3654 	if (xferlen) {
3655 		/* free kernel buffer */
3656 		if (mega_free_dma_obj(instance, pthru_dma_obj) != DDI_SUCCESS)
3657 			return (1);
3658 	}
3659 
3660 	return (0);
3661 }
3662 
3663 /*
3664  * issue_mfi_dcmd
3665  */
3666 static int
3667 issue_mfi_dcmd(struct megasas_instance *instance, struct megasas_ioctl *ioctl,
3668     struct megasas_cmd *cmd, int mode)
3669 {
3670 	void		*ubuf;
3671 	uint32_t	kphys_addr = 0;
3672 	uint32_t	xferlen = 0;
3673 	uint32_t	model;
3674 	dma_obj_t			dcmd_dma_obj;
3675 	struct megasas_dcmd_frame	*kdcmd;
3676 	struct megasas_dcmd_frame	*dcmd;
3677 
3678 	dcmd = &cmd->frame->dcmd;
3679 	kdcmd = (struct megasas_dcmd_frame *)&ioctl->frame[0];
3680 
3681 	model = ddi_model_convert_from(mode & FMODELS);
3682 	if (model == DDI_MODEL_ILP32) {
3683 		con_log(CL_ANN1, (CE_NOTE, "issue_mfi_dcmd: DDI_MODEL_ILP32"));
3684 
3685 		xferlen	= kdcmd->sgl.sge32[0].length;
3686 
3687 		/* SJ! - ubuf needs to be virtual address. */
3688 		ubuf	= (void *)(ulong_t)kdcmd->sgl.sge32[0].phys_addr;
3689 	}
3690 	else
3691 	{
3692 #ifdef _ILP32
3693 		con_log(CL_ANN1, (CE_NOTE, "issue_mfi_dcmd: DDI_MODEL_ILP32"));
3694 		xferlen	= kdcmd->sgl.sge32[0].length;
3695 		/* SJ! - ubuf needs to be virtual address. */
3696 		ubuf	= (void *)(ulong_t)kdcmd->sgl.sge32[0].phys_addr;
3697 #else
3698 		con_log(CL_ANN1, (CE_NOTE, "issue_mfi_dcmd: DDI_MODEL_LP64"));
3699 		xferlen	= kdcmd->sgl.sge64[0].length;
3700 		/* SJ! - ubuf needs to be virtual address. */
3701 		ubuf	= (void *)(ulong_t)dcmd->sgl.sge64[0].phys_addr;
3702 #endif
3703 	}
3704 	if (xferlen) {
3705 		/* means IOCTL requires DMA */
3706 		/* allocate the data transfer buffer */
3707 		dcmd_dma_obj.size = xferlen;
3708 		dcmd_dma_obj.dma_attr = megasas_generic_dma_attr;
3709 		dcmd_dma_obj.dma_attr.dma_attr_addr_hi = 0xFFFFFFFFU;
3710 		dcmd_dma_obj.dma_attr.dma_attr_count_max = 0xFFFFFFFFU;
3711 		dcmd_dma_obj.dma_attr.dma_attr_sgllen = 1;
3712 		dcmd_dma_obj.dma_attr.dma_attr_align = 1;
3713 
3714 		/* allocate kernel buffer for DMA */
3715 		if (mega_alloc_dma_obj(instance, &dcmd_dma_obj) != 1) {
3716 			con_log(CL_ANN, (CE_WARN, "issue_mfi_dcmd: "
3717 			    "could not data transfer buffer alloc."));
3718 			return (DDI_FAILURE);
3719 		}
3720 
3721 		/* If IOCTL requires DMA WRITE, do ddi_copyin IOCTL data copy */
3722 		if (kdcmd->flags & MFI_FRAME_DIR_WRITE) {
3723 			if (ddi_copyin(ubuf, (void *)dcmd_dma_obj.buffer,
3724 			    xferlen, mode)) {
3725 				con_log(CL_ANN, (CE_WARN, "issue_mfi_dcmd: "
3726 				    "copy from user space failed\n"));
3727 				return (1);
3728 			}
3729 		}
3730 
3731 		kphys_addr = dcmd_dma_obj.dma_cookie[0].dmac_address;
3732 	}
3733 
3734 	dcmd->cmd		= kdcmd->cmd;
3735 	dcmd->cmd_status	= kdcmd->cmd_status;
3736 	dcmd->sge_count		= kdcmd->sge_count;
3737 	dcmd->timeout		= kdcmd->timeout;
3738 	dcmd->data_xfer_len	= kdcmd->data_xfer_len;
3739 	dcmd->opcode		= kdcmd->opcode;
3740 
3741 	bcopy((void *)kdcmd->mbox.b, (void *)dcmd->mbox.b, DCMD_MBOX_SZ);
3742 
3743 	dcmd->flags			= kdcmd->flags & ~MFI_FRAME_SGL64;
3744 	dcmd->sgl.sge32[0].length	= xferlen;
3745 	dcmd->sgl.sge32[0].phys_addr	= kphys_addr;
3746 
3747 	cmd->sync_cmd = MEGASAS_TRUE;
3748 	cmd->frame_count = 1;
3749 
3750 	if (instance->func_ptr->issue_cmd_in_sync_mode(instance, cmd)) {
3751 		con_log(CL_ANN, (CE_WARN, "issue_mfi_dcmd: fw_ioctl failed\n"));
3752 	} else {
3753 		if (xferlen && (kdcmd->flags & MFI_FRAME_DIR_READ)) {
3754 
3755 			if (ddi_copyout(dcmd_dma_obj.buffer, ubuf,
3756 			    xferlen, mode)) {
3757 				con_log(CL_ANN, (CE_WARN, "issue_mfi_dcmd: "
3758 				    "copy to user space failed\n"));
3759 				return (1);
3760 			}
3761 		}
3762 	}
3763 
3764 	kdcmd->cmd_status = dcmd->cmd_status;
3765 
3766 	if (xferlen) {
3767 		/* free kernel buffer */
3768 		if (mega_free_dma_obj(instance, dcmd_dma_obj) != DDI_SUCCESS)
3769 			return (1);
3770 	}
3771 
3772 	return (0);
3773 }
3774 
3775 /*
3776  * issue_mfi_smp
3777  */
3778 static int
3779 issue_mfi_smp(struct megasas_instance *instance, struct megasas_ioctl *ioctl,
3780     struct megasas_cmd *cmd, int mode)
3781 {
3782 	void		*request_ubuf;
3783 	void		*response_ubuf;
3784 	uint32_t	request_xferlen = 0;
3785 	uint32_t	response_xferlen = 0;
3786 	uint_t		model;
3787 	dma_obj_t			request_dma_obj;
3788 	dma_obj_t			response_dma_obj;
3789 	struct megasas_smp_frame	*ksmp;
3790 	struct megasas_smp_frame	*smp;
3791 	struct megasas_sge32		*sge32;
3792 #ifndef _ILP32
3793 	struct megasas_sge64		*sge64;
3794 #endif
3795 
3796 	smp = &cmd->frame->smp;
3797 	ksmp = (struct megasas_smp_frame *)&ioctl->frame[0];
3798 
3799 	model = ddi_model_convert_from(mode & FMODELS);
3800 	if (model == DDI_MODEL_ILP32) {
3801 		con_log(CL_ANN1, (CE_NOTE, "issue_mfi_smp: DDI_MODEL_ILP32"));
3802 
3803 		sge32			= &ksmp->sgl[0].sge32[0];
3804 		response_xferlen	= sge32[0].length;
3805 		request_xferlen		= sge32[1].length;
3806 		con_log(CL_ANN, (CE_NOTE, "issue_mfi_smp: "
3807 		    "response_xferlen = %x, request_xferlen = %x",
3808 		    response_xferlen, request_xferlen));
3809 
3810 		/* SJ! - ubuf needs to be virtual address. */
3811 
3812 		response_ubuf	= (void *)(ulong_t)sge32[0].phys_addr;
3813 		request_ubuf	= (void *)(ulong_t)sge32[1].phys_addr;
3814 		con_log(CL_ANN1, (CE_NOTE, "issue_mfi_smp: "
3815 		    "response_ubuf = %p, request_ubuf = %p",
3816 		    response_ubuf, request_ubuf));
3817 	} else {
3818 #ifdef _ILP32
3819 		con_log(CL_ANN1, (CE_NOTE, "issue_mfi_smp: DDI_MODEL_ILP32"));
3820 
3821 		sge32			= &ksmp->sgl[0].sge32[0];
3822 		response_xferlen	= sge32[0].length;
3823 		request_xferlen		= sge32[1].length;
3824 		con_log(CL_ANN, (CE_NOTE, "issue_mfi_smp: "
3825 		    "response_xferlen = %x, request_xferlen = %x",
3826 		    response_xferlen, request_xferlen));
3827 
3828 		/* SJ! - ubuf needs to be virtual address. */
3829 
3830 		response_ubuf	= (void *)(ulong_t)sge32[0].phys_addr;
3831 		request_ubuf	= (void *)(ulong_t)sge32[1].phys_addr;
3832 		con_log(CL_ANN1, (CE_NOTE, "issue_mfi_smp: "
3833 		    "response_ubuf = %p, request_ubuf = %p",
3834 		    response_ubuf, request_ubuf));
3835 #else
3836 		con_log(CL_ANN1, (CE_NOTE, "issue_mfi_smp: DDI_MODEL_LP64"));
3837 
3838 		sge64			= &ksmp->sgl[0].sge64[0];
3839 		response_xferlen	= sge64[0].length;
3840 		request_xferlen		= sge64[1].length;
3841 
3842 		/* SJ! - ubuf needs to be virtual address. */
3843 		response_ubuf	= (void *)(ulong_t)sge64[0].phys_addr;
3844 		request_ubuf	= (void *)(ulong_t)sge64[1].phys_addr;
3845 #endif
3846 	}
3847 	if (request_xferlen) {
3848 		/* means IOCTL requires DMA */
3849 		/* allocate the data transfer buffer */
3850 		request_dma_obj.size = request_xferlen;
3851 		request_dma_obj.dma_attr = megasas_generic_dma_attr;
3852 		request_dma_obj.dma_attr.dma_attr_addr_hi = 0xFFFFFFFFU;
3853 		request_dma_obj.dma_attr.dma_attr_count_max = 0xFFFFFFFFU;
3854 		request_dma_obj.dma_attr.dma_attr_sgllen = 1;
3855 		request_dma_obj.dma_attr.dma_attr_align = 1;
3856 
3857 		/* allocate kernel buffer for DMA */
3858 		if (mega_alloc_dma_obj(instance, &request_dma_obj) != 1) {
3859 			con_log(CL_ANN, (CE_WARN, "issue_mfi_smp: "
3860 			    "could not data transfer buffer alloc."));
3861 			return (DDI_FAILURE);
3862 		}
3863 
3864 		/* If IOCTL requires DMA WRITE, do ddi_copyin IOCTL data copy */
3865 		if (ddi_copyin(request_ubuf, (void *) request_dma_obj.buffer,
3866 		    request_xferlen, mode)) {
3867 			con_log(CL_ANN, (CE_WARN, "issue_mfi_smp: "
3868 			    "copy from user space failed\n"));
3869 			return (1);
3870 		}
3871 	}
3872 
3873 	if (response_xferlen) {
3874 		/* means IOCTL requires DMA */
3875 		/* allocate the data transfer buffer */
3876 		response_dma_obj.size = response_xferlen;
3877 		response_dma_obj.dma_attr = megasas_generic_dma_attr;
3878 		response_dma_obj.dma_attr.dma_attr_addr_hi = 0xFFFFFFFFU;
3879 		response_dma_obj.dma_attr.dma_attr_count_max = 0xFFFFFFFFU;
3880 		response_dma_obj.dma_attr.dma_attr_sgllen = 1;
3881 		response_dma_obj.dma_attr.dma_attr_align = 1;
3882 
3883 		/* allocate kernel buffer for DMA */
3884 		if (mega_alloc_dma_obj(instance, &response_dma_obj) != 1) {
3885 			con_log(CL_ANN, (CE_WARN, "issue_mfi_smp: "
3886 			    "could not data transfer buffer alloc."));
3887 			return (DDI_FAILURE);
3888 		}
3889 
3890 		/* If IOCTL requires DMA WRITE, do ddi_copyin IOCTL data copy */
3891 		if (ddi_copyin(response_ubuf, (void *) response_dma_obj.buffer,
3892 		    response_xferlen, mode)) {
3893 			con_log(CL_ANN, (CE_WARN, "issue_mfi_smp: "
3894 			    "copy from user space failed\n"));
3895 			return (1);
3896 		}
3897 	}
3898 
3899 	smp->cmd		= ksmp->cmd;
3900 	smp->cmd_status		= ksmp->cmd_status;
3901 	smp->connection_status	= ksmp->connection_status;
3902 	smp->sge_count		= ksmp->sge_count;
3903 	/* smp->context		= ksmp->context; */
3904 	smp->timeout		= ksmp->timeout;
3905 	smp->data_xfer_len	= ksmp->data_xfer_len;
3906 
3907 	bcopy((void *)&ksmp->sas_addr, (void *)&smp->sas_addr,
3908 	    sizeof (uint64_t));
3909 
3910 	smp->flags		= ksmp->flags & ~MFI_FRAME_SGL64;
3911 
3912 	model = ddi_model_convert_from(mode & FMODELS);
3913 	if (model == DDI_MODEL_ILP32) {
3914 		con_log(CL_ANN1, (CE_NOTE,
3915 		    "handle_drv_ioctl: DDI_MODEL_ILP32"));
3916 
3917 		sge32 = &smp->sgl[0].sge32[0];
3918 		sge32[0].length	= response_xferlen;
3919 		sge32[0].phys_addr =
3920 		    response_dma_obj.dma_cookie[0].dmac_address;
3921 		sge32[1].length	= request_xferlen;
3922 		sge32[1].phys_addr =
3923 		    request_dma_obj.dma_cookie[0].dmac_address;
3924 	} else {
3925 #ifdef _ILP32
3926 		con_log(CL_ANN1, (CE_NOTE,
3927 		    "handle_drv_ioctl: DDI_MODEL_ILP32"));
3928 		sge32 = &smp->sgl[0].sge32[0];
3929 		sge32[0].length	 = response_xferlen;
3930 		sge32[0].phys_addr =
3931 		    response_dma_obj.dma_cookie[0].dmac_address;
3932 		sge32[1].length	= request_xferlen;
3933 		sge32[1].phys_addr =
3934 		    request_dma_obj.dma_cookie[0].dmac_address;
3935 #else
3936 		con_log(CL_ANN1, (CE_NOTE,
3937 		    "issue_mfi_smp: DDI_MODEL_LP64"));
3938 		sge64 = &smp->sgl[0].sge64[0];
3939 		sge64[0].length	= response_xferlen;
3940 		sge64[0].phys_addr =
3941 		    response_dma_obj.dma_cookie[0].dmac_address;
3942 		sge64[1].length	= request_xferlen;
3943 		sge64[1].phys_addr =
3944 		    request_dma_obj.dma_cookie[0].dmac_address;
3945 #endif
3946 	}
3947 	con_log(CL_ANN1, (CE_NOTE, "issue_mfi_smp: "
3948 	    "smp->response_xferlen = %d, smp->request_xferlen = %d "
3949 	    "smp->data_xfer_len = %d", sge32[0].length, sge32[1].length,
3950 	    smp->data_xfer_len));
3951 
3952 	cmd->sync_cmd = MEGASAS_TRUE;
3953 	cmd->frame_count = 1;
3954 
3955 	if (instance->func_ptr->issue_cmd_in_sync_mode(instance, cmd)) {
3956 		con_log(CL_ANN, (CE_WARN,
3957 		    "issue_mfi_smp: fw_ioctl failed\n"));
3958 	} else {
3959 		con_log(CL_ANN1, (CE_NOTE,
3960 		    "issue_mfi_smp: copy to user space\n"));
3961 
3962 		if (request_xferlen) {
3963 			if (ddi_copyout(request_dma_obj.buffer, request_ubuf,
3964 			    request_xferlen, mode)) {
3965 				con_log(CL_ANN, (CE_WARN, "issue_mfi_smp: "
3966 				    "copy to user space failed\n"));
3967 				return (1);
3968 			}
3969 		}
3970 
3971 		if (response_xferlen) {
3972 			if (ddi_copyout(response_dma_obj.buffer, response_ubuf,
3973 			    response_xferlen, mode)) {
3974 				con_log(CL_ANN, (CE_WARN, "issue_mfi_smp: "
3975 				    "copy to user space failed\n"));
3976 				return (1);
3977 			}
3978 		}
3979 	}
3980 
3981 	ksmp->cmd_status = smp->cmd_status;
3982 	con_log(CL_ANN1, (CE_NOTE, "issue_mfi_smp: smp->cmd_status = %d",
3983 	    smp->cmd_status));
3984 
3985 
3986 	if (request_xferlen) {
3987 		/* free kernel buffer */
3988 		if (mega_free_dma_obj(instance, request_dma_obj) != DDI_SUCCESS)
3989 			return (1);
3990 	}
3991 
3992 	if (response_xferlen) {
3993 		/* free kernel buffer */
3994 		if (mega_free_dma_obj(instance, response_dma_obj) !=
3995 		    DDI_SUCCESS)
3996 			return (1);
3997 	}
3998 
3999 	return (0);
4000 }
4001 
4002 /*
4003  * issue_mfi_stp
4004  */
4005 static int
4006 issue_mfi_stp(struct megasas_instance *instance, struct megasas_ioctl *ioctl,
4007     struct megasas_cmd *cmd, int mode)
4008 {
4009 	void		*fis_ubuf;
4010 	void		*data_ubuf;
4011 	uint32_t	fis_xferlen = 0;
4012 	uint32_t	data_xferlen = 0;
4013 	uint_t		model;
4014 	dma_obj_t			fis_dma_obj;
4015 	dma_obj_t			data_dma_obj;
4016 	struct megasas_stp_frame	*kstp;
4017 	struct megasas_stp_frame	*stp;
4018 
4019 	stp = &cmd->frame->stp;
4020 	kstp = (struct megasas_stp_frame *)&ioctl->frame[0];
4021 
4022 	model = ddi_model_convert_from(mode & FMODELS);
4023 	if (model == DDI_MODEL_ILP32) {
4024 		con_log(CL_ANN1, (CE_NOTE, "issue_mfi_stp: DDI_MODEL_ILP32"));
4025 
4026 		fis_xferlen	= kstp->sgl.sge32[0].length;
4027 		data_xferlen	= kstp->sgl.sge32[1].length;
4028 
4029 		/* SJ! - ubuf needs to be virtual address. */
4030 		fis_ubuf	= (void *)(ulong_t)kstp->sgl.sge32[0].phys_addr;
4031 		data_ubuf	= (void *)(ulong_t)kstp->sgl.sge32[1].phys_addr;
4032 	}
4033 	else
4034 	{
4035 #ifdef _ILP32
4036 		con_log(CL_ANN1, (CE_NOTE, "issue_mfi_stp: DDI_MODEL_ILP32"));
4037 
4038 		fis_xferlen	= kstp->sgl.sge32[0].length;
4039 		data_xferlen	= kstp->sgl.sge32[1].length;
4040 
4041 		/* SJ! - ubuf needs to be virtual address. */
4042 		fis_ubuf	= (void *)(ulong_t)kstp->sgl.sge32[0].phys_addr;
4043 		data_ubuf	= (void *)(ulong_t)kstp->sgl.sge32[1].phys_addr;
4044 #else
4045 		con_log(CL_ANN1, (CE_NOTE, "issue_mfi_stp: DDI_MODEL_LP64"));
4046 
4047 		fis_xferlen	= kstp->sgl.sge64[0].length;
4048 		data_xferlen	= kstp->sgl.sge64[1].length;
4049 
4050 		/* SJ! - ubuf needs to be virtual address. */
4051 		fis_ubuf	= (void *)(ulong_t)kstp->sgl.sge64[0].phys_addr;
4052 		data_ubuf	= (void *)(ulong_t)kstp->sgl.sge64[1].phys_addr;
4053 #endif
4054 	}
4055 
4056 
4057 	if (fis_xferlen) {
4058 		con_log(CL_ANN, (CE_NOTE, "issue_mfi_stp: "
4059 		    "fis_ubuf = %p fis_xferlen = %x", fis_ubuf, fis_xferlen));
4060 
4061 		/* means IOCTL requires DMA */
4062 		/* allocate the data transfer buffer */
4063 		fis_dma_obj.size = fis_xferlen;
4064 		fis_dma_obj.dma_attr = megasas_generic_dma_attr;
4065 		fis_dma_obj.dma_attr.dma_attr_addr_hi = 0xFFFFFFFFU;
4066 		fis_dma_obj.dma_attr.dma_attr_count_max	= 0xFFFFFFFFU;
4067 		fis_dma_obj.dma_attr.dma_attr_sgllen = 1;
4068 		fis_dma_obj.dma_attr.dma_attr_align = 1;
4069 
4070 		/* allocate kernel buffer for DMA */
4071 		if (mega_alloc_dma_obj(instance, &fis_dma_obj) != 1) {
4072 			con_log(CL_ANN, (CE_WARN, "issue_mfi_stp: "
4073 			    "could not data transfer buffer alloc."));
4074 			return (DDI_FAILURE);
4075 		}
4076 
4077 		/* If IOCTL requires DMA WRITE, do ddi_copyin IOCTL data copy */
4078 		if (ddi_copyin(fis_ubuf, (void *)fis_dma_obj.buffer,
4079 		    fis_xferlen, mode)) {
4080 			con_log(CL_ANN, (CE_WARN, "issue_mfi_stp: "
4081 			    "copy from user space failed\n"));
4082 			return (1);
4083 		}
4084 	}
4085 
4086 	if (data_xferlen) {
4087 		con_log(CL_ANN, (CE_NOTE, "issue_mfi_stp: data_ubuf = %p "
4088 		    "data_xferlen = %x", data_ubuf, data_xferlen));
4089 
4090 		/* means IOCTL requires DMA */
4091 		/* allocate the data transfer buffer */
4092 		data_dma_obj.size = data_xferlen;
4093 		data_dma_obj.dma_attr = megasas_generic_dma_attr;
4094 		data_dma_obj.dma_attr.dma_attr_addr_hi = 0xFFFFFFFFU;
4095 		data_dma_obj.dma_attr.dma_attr_count_max = 0xFFFFFFFFU;
4096 		data_dma_obj.dma_attr.dma_attr_sgllen = 1;
4097 		data_dma_obj.dma_attr.dma_attr_align = 1;
4098 
4099 		/* allocate kernel buffer for DMA */
4100 		if (mega_alloc_dma_obj(instance, &data_dma_obj) != 1) {
4101 			con_log(CL_ANN, (CE_WARN, "issue_mfi_stp: "
4102 			    "could not data transfer buffer alloc."));
4103 			return (DDI_FAILURE);
4104 		}
4105 
4106 		/* If IOCTL requires DMA WRITE, do ddi_copyin IOCTL data copy */
4107 		if (ddi_copyin(data_ubuf, (void *) data_dma_obj.buffer,
4108 		    data_xferlen, mode)) {
4109 			con_log(CL_ANN, (CE_WARN, "issue_mfi_stp: "
4110 			    "copy from user space failed\n"));
4111 			return (1);
4112 		}
4113 	}
4114 
4115 	stp->cmd = kstp->cmd;
4116 	stp->cmd_status	= kstp->cmd_status;
4117 	stp->connection_status = kstp->connection_status;
4118 	stp->target_id = kstp->target_id;
4119 	stp->sge_count = kstp->sge_count;
4120 	/* stp->context = kstp->context; */
4121 	stp->timeout = kstp->timeout;
4122 	stp->data_xfer_len = kstp->data_xfer_len;
4123 
4124 	bcopy((void *)kstp->fis, (void *)stp->fis, 10);
4125 
4126 	stp->flags = kstp->flags & ~MFI_FRAME_SGL64;
4127 	stp->stp_flags = kstp->stp_flags;
4128 	stp->sgl.sge32[0].length = fis_xferlen;
4129 	stp->sgl.sge32[0].phys_addr = fis_dma_obj.dma_cookie[0].dmac_address;
4130 	stp->sgl.sge32[1].length = data_xferlen;
4131 	stp->sgl.sge32[1].phys_addr = data_dma_obj.dma_cookie[0].dmac_address;
4132 
4133 	cmd->sync_cmd = MEGASAS_TRUE;
4134 	cmd->frame_count = 1;
4135 
4136 	if (instance->func_ptr->issue_cmd_in_sync_mode(instance, cmd)) {
4137 		con_log(CL_ANN, (CE_WARN, "issue_mfi_stp: fw_ioctl failed\n"));
4138 	} else {
4139 
4140 		if (fis_xferlen) {
4141 			if (ddi_copyout(fis_dma_obj.buffer, fis_ubuf,
4142 			    fis_xferlen, mode)) {
4143 				con_log(CL_ANN, (CE_WARN, "issue_mfi_stp: "
4144 				    "copy to user space failed\n"));
4145 				return (1);
4146 			}
4147 		}
4148 
4149 		if (data_xferlen) {
4150 			if (ddi_copyout(data_dma_obj.buffer, data_ubuf,
4151 			    data_xferlen, mode)) {
4152 				con_log(CL_ANN, (CE_WARN, "issue_mfi_stp: "
4153 				    "copy to user space failed\n"));
4154 				return (1);
4155 			}
4156 		}
4157 	}
4158 
4159 	kstp->cmd_status = stp->cmd_status;
4160 
4161 	if (fis_xferlen) {
4162 		/* free kernel buffer */
4163 		if (mega_free_dma_obj(instance, fis_dma_obj) != DDI_SUCCESS)
4164 			return (1);
4165 	}
4166 
4167 	if (data_xferlen) {
4168 		/* free kernel buffer */
4169 		if (mega_free_dma_obj(instance, data_dma_obj) != DDI_SUCCESS)
4170 			return (1);
4171 	}
4172 
4173 	return (0);
4174 }
4175 
4176 /*
4177  * fill_up_drv_ver
4178  */
4179 static void
4180 fill_up_drv_ver(struct megasas_drv_ver *dv)
4181 {
4182 	(void) memset(dv, 0, sizeof (struct megasas_drv_ver));
4183 
4184 	(void) memcpy(dv->signature, "$LSI LOGIC$", strlen("$LSI LOGIC$"));
4185 	(void) memcpy(dv->os_name, "Solaris", strlen("Solaris"));
4186 	(void) memcpy(dv->drv_name, "megaraid_sas", strlen("megaraid_sas"));
4187 	(void) memcpy(dv->drv_ver, MEGASAS_VERSION, strlen(MEGASAS_VERSION));
4188 	(void) memcpy(dv->drv_rel_date, MEGASAS_RELDATE,
4189 	    strlen(MEGASAS_RELDATE));
4190 }
4191 
4192 /*
4193  * handle_drv_ioctl
4194  */
4195 static int
4196 handle_drv_ioctl(struct megasas_instance *instance, struct megasas_ioctl *ioctl,
4197     int mode)
4198 {
4199 	int	i;
4200 	int	rval = 0;
4201 	int	*props = NULL;
4202 	void	*ubuf;
4203 
4204 	uint8_t		*pci_conf_buf;
4205 	uint32_t	xferlen;
4206 	uint32_t	num_props;
4207 	uint_t		model;
4208 	struct megasas_dcmd_frame	*kdcmd;
4209 	struct megasas_drv_ver		dv;
4210 	struct megasas_pci_information	pi;
4211 
4212 	kdcmd = (struct megasas_dcmd_frame *)&ioctl->frame[0];
4213 
4214 	model = ddi_model_convert_from(mode & FMODELS);
4215 	if (model == DDI_MODEL_ILP32) {
4216 		con_log(CL_ANN1, (CE_NOTE,
4217 		    "handle_drv_ioctl: DDI_MODEL_ILP32"));
4218 
4219 		xferlen	= kdcmd->sgl.sge32[0].length;
4220 
4221 		/* SJ! - ubuf needs to be virtual address. */
4222 		ubuf = (void *)(ulong_t)kdcmd->sgl.sge32[0].phys_addr;
4223 	} else {
4224 #ifdef _ILP32
4225 		con_log(CL_ANN1, (CE_NOTE,
4226 		    "handle_drv_ioctl: DDI_MODEL_ILP32"));
4227 		xferlen	= kdcmd->sgl.sge32[0].length;
4228 		/* SJ! - ubuf needs to be virtual address. */
4229 		ubuf = (void *)(ulong_t)kdcmd->sgl.sge32[0].phys_addr;
4230 #else
4231 		con_log(CL_ANN1, (CE_NOTE,
4232 		    "handle_drv_ioctl: DDI_MODEL_LP64"));
4233 		xferlen	= kdcmd->sgl.sge64[0].length;
4234 		/* SJ! - ubuf needs to be virtual address. */
4235 		ubuf = (void *)(ulong_t)kdcmd->sgl.sge64[0].phys_addr;
4236 #endif
4237 	}
4238 	con_log(CL_ANN1, (CE_NOTE, "handle_drv_ioctl: "
4239 	    "dataBuf=%p size=%d bytes", ubuf, xferlen));
4240 
4241 	switch (kdcmd->opcode) {
4242 	case MR_DRIVER_IOCTL_DRIVER_VERSION:
4243 		con_log(CL_ANN1, (CE_NOTE, "handle_drv_ioctl: "
4244 		    "MR_DRIVER_IOCTL_DRIVER_VERSION"));
4245 
4246 		fill_up_drv_ver(&dv);
4247 
4248 		if (ddi_copyout(&dv, ubuf, xferlen, mode)) {
4249 			con_log(CL_ANN, (CE_WARN, "handle_drv_ioctl: "
4250 			    "MR_DRIVER_IOCTL_DRIVER_VERSION : "
4251 			    "copy to user space failed\n"));
4252 			kdcmd->cmd_status = 1;
4253 			rval = 1;
4254 		} else {
4255 			kdcmd->cmd_status = 0;
4256 		}
4257 		break;
4258 	case MR_DRIVER_IOCTL_PCI_INFORMATION:
4259 		con_log(CL_ANN1, (CE_NOTE, "handle_drv_ioctl: "
4260 		    "MR_DRIVER_IOCTL_PCI_INFORMAITON"));
4261 
4262 		if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, instance->dip,
4263 		    0, "reg", &props, &num_props)) {
4264 			con_log(CL_ANN, (CE_WARN, "handle_drv_ioctl: "
4265 			    "MR_DRIVER_IOCTL_PCI_INFORMATION : "
4266 			    "ddi_prop_look_int_array failed\n"));
4267 			rval = 1;
4268 		} else {
4269 
4270 			pi.busNumber = (props[0] >> 16) & 0xFF;
4271 			pi.deviceNumber = (props[0] >> 11) & 0x1f;
4272 			pi.functionNumber = (props[0] >> 8) & 0x7;
4273 			ddi_prop_free((void *)props);
4274 		}
4275 
4276 		pci_conf_buf = (uint8_t *)&pi.pciHeaderInfo;
4277 
4278 		for (i = 0; i < (sizeof (struct megasas_pci_information) -
4279 		    offsetof(struct megasas_pci_information, pciHeaderInfo));
4280 		    i++) {
4281 			pci_conf_buf[i] =
4282 			    pci_config_get8(instance->pci_handle, i);
4283 		}
4284 
4285 		if (ddi_copyout(&pi, ubuf, xferlen, mode)) {
4286 			con_log(CL_ANN, (CE_WARN, "handle_drv_ioctl: "
4287 			    "MR_DRIVER_IOCTL_PCI_INFORMATION : "
4288 			    "copy to user space failed\n"));
4289 			kdcmd->cmd_status = 1;
4290 			rval = 1;
4291 		} else {
4292 			kdcmd->cmd_status = 0;
4293 		}
4294 		break;
4295 	default:
4296 		con_log(CL_ANN, (CE_WARN, "handle_drv_ioctl: "
4297 		    "invalid driver specific IOCTL opcode = 0x%x",
4298 		    kdcmd->opcode));
4299 		kdcmd->cmd_status = 1;
4300 		rval = 1;
4301 		break;
4302 	}
4303 
4304 	return (rval);
4305 }
4306 
4307 /*
4308  * handle_mfi_ioctl
4309  */
4310 static int
4311 handle_mfi_ioctl(struct megasas_instance *instance, struct megasas_ioctl *ioctl,
4312     int mode)
4313 {
4314 	int	rval = 0;
4315 
4316 	struct megasas_header	*hdr;
4317 	struct megasas_cmd	*cmd;
4318 
4319 	cmd = get_mfi_pkt(instance);
4320 
4321 	if (!cmd) {
4322 		con_log(CL_ANN, (CE_WARN, "megasas: "
4323 		    "failed to get a cmd packet\n"));
4324 		return (1);
4325 	}
4326 
4327 	hdr = (struct megasas_header *)&ioctl->frame[0];
4328 
4329 	switch (hdr->cmd) {
4330 	case MFI_CMD_OP_DCMD:
4331 		rval = issue_mfi_dcmd(instance, ioctl, cmd, mode);
4332 		break;
4333 	case MFI_CMD_OP_SMP:
4334 		rval = issue_mfi_smp(instance, ioctl, cmd, mode);
4335 		break;
4336 	case MFI_CMD_OP_STP:
4337 		rval = issue_mfi_stp(instance, ioctl, cmd, mode);
4338 		break;
4339 	case MFI_CMD_OP_LD_SCSI:
4340 	case MFI_CMD_OP_PD_SCSI:
4341 		rval = issue_mfi_pthru(instance, ioctl, cmd, mode);
4342 		break;
4343 	default:
4344 		con_log(CL_ANN, (CE_WARN, "handle_mfi_ioctl: "
4345 		    "invalid mfi ioctl hdr->cmd = %d\n", hdr->cmd));
4346 		rval = 1;
4347 		break;
4348 	}
4349 
4350 
4351 	return_mfi_pkt(instance, cmd);
4352 	if (megasas_common_check(instance, cmd) != DDI_SUCCESS)
4353 		rval = 1;
4354 	return (rval);
4355 }
4356 
4357 /*
4358  * AEN
4359  */
4360 static int
4361 handle_mfi_aen(struct megasas_instance *instance, struct megasas_aen *aen)
4362 {
4363 	int	rval = 0;
4364 
4365 	rval = register_mfi_aen(instance, instance->aen_seq_num,
4366 	    aen->class_locale_word);
4367 
4368 	aen->cmd_status = (uint8_t)rval;
4369 
4370 	return (rval);
4371 }
4372 
4373 static int
4374 register_mfi_aen(struct megasas_instance *instance, uint32_t seq_num,
4375     uint32_t class_locale_word)
4376 {
4377 	int	ret_val;
4378 
4379 	struct megasas_cmd		*cmd;
4380 	struct megasas_dcmd_frame	*dcmd;
4381 	union megasas_evt_class_locale	curr_aen;
4382 	union megasas_evt_class_locale	prev_aen;
4383 
4384 	/*
4385 	 * If there an AEN pending already (aen_cmd), check if the
4386 	 * class_locale of that pending AEN is inclusive of the new
4387 	 * AEN request we currently have. If it is, then we don't have
4388 	 * to do anything. In other words, whichever events the current
4389 	 * AEN request is subscribing to, have already been subscribed
4390 	 * to.
4391 	 *
4392 	 * If the old_cmd is _not_ inclusive, then we have to abort
4393 	 * that command, form a class_locale that is superset of both
4394 	 * old and current and re-issue to the FW
4395 	 */
4396 
4397 	curr_aen.word = class_locale_word;
4398 
4399 	if (instance->aen_cmd) {
4400 		prev_aen.word = instance->aen_cmd->frame->dcmd.mbox.w[1];
4401 
4402 		/*
4403 		 * A class whose enum value is smaller is inclusive of all
4404 		 * higher values. If a PROGRESS (= -1) was previously
4405 		 * registered, then a new registration requests for higher
4406 		 * classes need not be sent to FW. They are automatically
4407 		 * included.
4408 		 *
4409 		 * Locale numbers don't have such hierarchy. They are bitmap
4410 		 * values
4411 		 */
4412 		if ((prev_aen.members.class <= curr_aen.members.class) &&
4413 		    !((prev_aen.members.locale & curr_aen.members.locale) ^
4414 		    curr_aen.members.locale)) {
4415 			/*
4416 			 * Previously issued event registration includes
4417 			 * current request. Nothing to do.
4418 			 */
4419 
4420 			return (0);
4421 		} else {
4422 			curr_aen.members.locale |= prev_aen.members.locale;
4423 
4424 			if (prev_aen.members.class < curr_aen.members.class)
4425 				curr_aen.members.class = prev_aen.members.class;
4426 
4427 			ret_val = abort_aen_cmd(instance, instance->aen_cmd);
4428 
4429 			if (ret_val) {
4430 				con_log(CL_ANN, (CE_WARN, "register_mfi_aen: "
4431 				    "failed to abort prevous AEN command\n"));
4432 
4433 				return (ret_val);
4434 			}
4435 		}
4436 	} else {
4437 		curr_aen.word = class_locale_word;
4438 	}
4439 
4440 	cmd = get_mfi_pkt(instance);
4441 
4442 	if (!cmd)
4443 		return (-ENOMEM);
4444 
4445 	dcmd = &cmd->frame->dcmd;
4446 
4447 	/* for(i = 0; i < DCMD_MBOX_SZ; i++) dcmd->mbox.b[i] = 0; */
4448 	(void) memset(dcmd->mbox.b, 0, DCMD_MBOX_SZ);
4449 
4450 	(void) memset(instance->mfi_evt_detail_obj.buffer, 0,
4451 	    sizeof (struct megasas_evt_detail));
4452 
4453 	/* Prepare DCMD for aen registration */
4454 	dcmd->cmd = MFI_CMD_OP_DCMD;
4455 	dcmd->cmd_status = 0x0;
4456 	dcmd->sge_count = 1;
4457 	dcmd->flags = MFI_FRAME_DIR_READ;
4458 	dcmd->timeout = 0;
4459 	dcmd->data_xfer_len = sizeof (struct megasas_evt_detail);
4460 	dcmd->opcode = MR_DCMD_CTRL_EVENT_WAIT;
4461 	dcmd->mbox.w[0] = seq_num;
4462 	dcmd->mbox.w[1] = curr_aen.word;
4463 	dcmd->sgl.sge32[0].phys_addr =
4464 	    instance->mfi_evt_detail_obj.dma_cookie[0].dmac_address;
4465 	dcmd->sgl.sge32[0].length = sizeof (struct megasas_evt_detail);
4466 
4467 	instance->aen_seq_num = seq_num;
4468 
4469 	/*
4470 	 * Store reference to the cmd used to register for AEN. When an
4471 	 * application wants us to register for AEN, we have to abort this
4472 	 * cmd and re-register with a new EVENT LOCALE supplied by that app
4473 	 */
4474 	instance->aen_cmd = cmd;
4475 
4476 	cmd->frame_count = 1;
4477 
4478 	/* Issue the aen registration frame */
4479 	/* atomic_add_16 (&instance->fw_outstanding, 1); */
4480 	instance->func_ptr->issue_cmd(cmd, instance);
4481 
4482 	return (0);
4483 }
4484 
4485 static void
4486 display_scsi_inquiry(caddr_t scsi_inq)
4487 {
4488 #define	MAX_SCSI_DEVICE_CODE	14
4489 	int		i;
4490 	char		inquiry_buf[256] = {0};
4491 	int		len;
4492 	const char	*const scsi_device_types[] = {
4493 		"Direct-Access    ",
4494 		"Sequential-Access",
4495 		"Printer          ",
4496 		"Processor        ",
4497 		"WORM             ",
4498 		"CD-ROM           ",
4499 		"Scanner          ",
4500 		"Optical Device   ",
4501 		"Medium Changer   ",
4502 		"Communications   ",
4503 		"Unknown          ",
4504 		"Unknown          ",
4505 		"Unknown          ",
4506 		"Enclosure        ",
4507 	};
4508 
4509 	len = 0;
4510 
4511 	len += snprintf(inquiry_buf + len, 265 - len, "  Vendor: ");
4512 	for (i = 8; i < 16; i++) {
4513 		len += snprintf(inquiry_buf + len, 265 - len, "%c",
4514 		    scsi_inq[i]);
4515 	}
4516 
4517 	len += snprintf(inquiry_buf + len, 265 - len, "  Model: ");
4518 
4519 	for (i = 16; i < 32; i++) {
4520 		len += snprintf(inquiry_buf + len, 265 - len, "%c",
4521 		    scsi_inq[i]);
4522 	}
4523 
4524 	len += snprintf(inquiry_buf + len, 265 - len, "  Rev: ");
4525 
4526 	for (i = 32; i < 36; i++) {
4527 		len += snprintf(inquiry_buf + len, 265 - len, "%c",
4528 		    scsi_inq[i]);
4529 	}
4530 
4531 	len += snprintf(inquiry_buf + len, 265 - len, "\n");
4532 
4533 
4534 	i = scsi_inq[0] & 0x1f;
4535 
4536 
4537 	len += snprintf(inquiry_buf + len, 265 - len, "  Type:   %s ",
4538 	    i < MAX_SCSI_DEVICE_CODE ? scsi_device_types[i] :
4539 	    "Unknown          ");
4540 
4541 
4542 	len += snprintf(inquiry_buf + len, 265 - len,
4543 	    "                 ANSI SCSI revision: %02x", scsi_inq[2] & 0x07);
4544 
4545 	if ((scsi_inq[2] & 0x07) == 1 && (scsi_inq[3] & 0x0f) == 1) {
4546 		len += snprintf(inquiry_buf + len, 265 - len, " CCS\n");
4547 	} else {
4548 		len += snprintf(inquiry_buf + len, 265 - len, "\n");
4549 	}
4550 
4551 	con_log(CL_ANN1, (CE_CONT, inquiry_buf));
4552 }
4553 
4554 static int
4555 read_fw_status_reg_xscale(struct megasas_instance *instance)
4556 {
4557 	return ((int)RD_OB_MSG_0(instance));
4558 }
4559 
4560 static int
4561 read_fw_status_reg_ppc(struct megasas_instance *instance)
4562 {
4563 	return ((int)RD_OB_SCRATCH_PAD_0(instance));
4564 }
4565 
4566 static void
4567 issue_cmd_xscale(struct megasas_cmd *cmd, struct megasas_instance *instance)
4568 {
4569 	atomic_add_16(&instance->fw_outstanding, 1);
4570 
4571 	/* Issue the command to the FW */
4572 	WR_IB_QPORT((host_to_le32(cmd->frame_phys_addr) >> 3) |
4573 	    (cmd->frame_count - 1), instance);
4574 }
4575 
4576 static void
4577 issue_cmd_ppc(struct megasas_cmd *cmd, struct megasas_instance *instance)
4578 {
4579 	atomic_add_16(&instance->fw_outstanding, 1);
4580 
4581 	/* Issue the command to the FW */
4582 	WR_IB_QPORT((host_to_le32(cmd->frame_phys_addr)) |
4583 	    (((cmd->frame_count - 1) << 1) | 1), instance);
4584 }
4585 
4586 /*
4587  * issue_cmd_in_sync_mode
4588  */
4589 static int
4590 issue_cmd_in_sync_mode_xscale(struct megasas_instance *instance,
4591     struct megasas_cmd *cmd)
4592 {
4593 	int		i;
4594 	uint32_t	msecs = MFI_POLL_TIMEOUT_SECS * (10 * MILLISEC);
4595 
4596 	cmd->cmd_status	= ENODATA;
4597 
4598 	WR_IB_QPORT((host_to_le32(cmd->frame_phys_addr) >> 3) |
4599 	    (cmd->frame_count - 1), instance);
4600 
4601 	mutex_enter(&instance->int_cmd_mtx);
4602 
4603 	for (i = 0; i < msecs && (cmd->cmd_status == ENODATA); i++) {
4604 		cv_wait(&instance->int_cmd_cv, &instance->int_cmd_mtx);
4605 	}
4606 
4607 	mutex_exit(&instance->int_cmd_mtx);
4608 
4609 	if (i < (msecs -1)) {
4610 		return (0);
4611 	} else {
4612 		return (1);
4613 	}
4614 }
4615 
4616 static int
4617 issue_cmd_in_sync_mode_ppc(struct megasas_instance *instance,
4618     struct megasas_cmd *cmd)
4619 {
4620 	int		i;
4621 	uint32_t	msecs = MFI_POLL_TIMEOUT_SECS * (10 * MILLISEC);
4622 
4623 	con_log(CL_ANN1, (CE_NOTE, "issue_cmd_in_sync_mode_ppc: called\n"));
4624 
4625 	cmd->cmd_status	= ENODATA;
4626 
4627 	WR_IB_QPORT((host_to_le32(cmd->frame_phys_addr)) |
4628 	    (((cmd->frame_count - 1) << 1) | 1), instance);
4629 
4630 	mutex_enter(&instance->int_cmd_mtx);
4631 
4632 	for (i = 0; i < msecs && (cmd->cmd_status == ENODATA); i++) {
4633 		cv_wait(&instance->int_cmd_cv, &instance->int_cmd_mtx);
4634 	}
4635 
4636 	mutex_exit(&instance->int_cmd_mtx);
4637 
4638 	con_log(CL_ANN1, (CE_NOTE, "issue_cmd_in_sync_mode_ppc: done\n"));
4639 
4640 	if (i < (msecs -1)) {
4641 		return (0);
4642 	} else {
4643 		return (1);
4644 	}
4645 }
4646 
4647 /*
4648  * issue_cmd_in_poll_mode
4649  */
4650 static int
4651 issue_cmd_in_poll_mode_xscale(struct megasas_instance *instance,
4652     struct megasas_cmd *cmd)
4653 {
4654 	int		i;
4655 	uint32_t	msecs = MFI_POLL_TIMEOUT_SECS * MILLISEC;
4656 	struct megasas_header *frame_hdr;
4657 
4658 	frame_hdr = (struct megasas_header *)cmd->frame;
4659 	frame_hdr->cmd_status	= MFI_CMD_STATUS_POLL_MODE;
4660 	frame_hdr->flags 	|= MFI_FRAME_DONT_POST_IN_REPLY_QUEUE;
4661 
4662 	/* issue the frame using inbound queue port */
4663 	WR_IB_QPORT((host_to_le32(cmd->frame_phys_addr) >> 3) |
4664 	    (cmd->frame_count - 1), instance);
4665 
4666 	/* wait for cmd_status to change from 0xFF */
4667 	for (i = 0; i < msecs && (frame_hdr->cmd_status ==
4668 	    MFI_CMD_STATUS_POLL_MODE); i++) {
4669 		drv_usecwait(MILLISEC); /* wait for 1000 usecs */
4670 	}
4671 
4672 	if (frame_hdr->cmd_status == MFI_CMD_STATUS_POLL_MODE) {
4673 		con_log(CL_ANN, (CE_NOTE, "issue_cmd_in_poll_mode: "
4674 		    "cmd polling timed out"));
4675 		return (DDI_FAILURE);
4676 	}
4677 
4678 	return (DDI_SUCCESS);
4679 }
4680 
4681 static int
4682 issue_cmd_in_poll_mode_ppc(struct megasas_instance *instance,
4683     struct megasas_cmd *cmd)
4684 {
4685 	int		i;
4686 	uint32_t	msecs = MFI_POLL_TIMEOUT_SECS * MILLISEC;
4687 	struct megasas_header *frame_hdr;
4688 
4689 	con_log(CL_ANN1, (CE_NOTE, "issue_cmd_in_poll_mode_ppc: called\n"));
4690 
4691 	frame_hdr = (struct megasas_header *)cmd->frame;
4692 	frame_hdr->cmd_status	= MFI_CMD_STATUS_POLL_MODE;
4693 	frame_hdr->flags 	|= MFI_FRAME_DONT_POST_IN_REPLY_QUEUE;
4694 
4695 	/* issue the frame using inbound queue port */
4696 	WR_IB_QPORT((host_to_le32(cmd->frame_phys_addr)) |
4697 	    (((cmd->frame_count - 1) << 1) | 1), instance);
4698 
4699 	/* wait for cmd_status to change from 0xFF */
4700 	for (i = 0; i < msecs && (frame_hdr->cmd_status ==
4701 	    MFI_CMD_STATUS_POLL_MODE); i++) {
4702 		drv_usecwait(MILLISEC); /* wait for 1000 usecs */
4703 	}
4704 
4705 	if (frame_hdr->cmd_status == MFI_CMD_STATUS_POLL_MODE) {
4706 		con_log(CL_ANN, (CE_NOTE, "issue_cmd_in_poll_mode: "
4707 		    "cmd polling timed out"));
4708 		return (DDI_FAILURE);
4709 	}
4710 
4711 	return (DDI_SUCCESS);
4712 }
4713 
4714 static void
4715 enable_intr_xscale(struct megasas_instance *instance)
4716 {
4717 	MFI_ENABLE_INTR(instance);
4718 }
4719 
4720 static void
4721 enable_intr_ppc(struct megasas_instance *instance)
4722 {
4723 	uint32_t	mask;
4724 
4725 	con_log(CL_ANN1, (CE_NOTE, "enable_intr_ppc: called\n"));
4726 
4727 	/* WR_OB_DOORBELL_CLEAR(0xFFFFFFFF, instance); */
4728 	WR_OB_DOORBELL_CLEAR(OB_DOORBELL_CLEAR_MASK, instance);
4729 
4730 	/*
4731 	 * As 1078DE is same as 1078 chip, the interrupt mask
4732 	 * remains the same.
4733 	 */
4734 	/* WR_OB_INTR_MASK(~0x80000000, instance); */
4735 	WR_OB_INTR_MASK(~(MFI_REPLY_1078_MESSAGE_INTR), instance);
4736 
4737 	/* dummy read to force PCI flush */
4738 	mask = RD_OB_INTR_MASK(instance);
4739 
4740 	con_log(CL_ANN1, (CE_NOTE, "enable_intr_ppc: "
4741 	    "outbound_intr_mask = 0x%x\n", mask));
4742 }
4743 
4744 static void
4745 disable_intr_xscale(struct megasas_instance *instance)
4746 {
4747 	MFI_DISABLE_INTR(instance);
4748 }
4749 
4750 static void
4751 disable_intr_ppc(struct megasas_instance *instance)
4752 {
4753 	uint32_t	mask;
4754 
4755 	con_log(CL_ANN1, (CE_NOTE, "disable_intr_ppc: called\n"));
4756 
4757 	con_log(CL_ANN1, (CE_NOTE, "disable_intr_ppc: before : "
4758 	    "outbound_intr_mask = 0x%x\n", RD_OB_INTR_MASK(instance)));
4759 
4760 	/* WR_OB_INTR_MASK(0xFFFFFFFF, instance); */
4761 	WR_OB_INTR_MASK(OB_INTR_MASK, instance);
4762 
4763 	con_log(CL_ANN1, (CE_NOTE, "disable_intr_ppc: after : "
4764 	    "outbound_intr_mask = 0x%x\n", RD_OB_INTR_MASK(instance)));
4765 
4766 	/* dummy read to force PCI flush */
4767 	mask = RD_OB_INTR_MASK(instance);
4768 #ifdef lint
4769 	mask = mask;
4770 #endif
4771 }
4772 
4773 static int
4774 intr_ack_xscale(struct megasas_instance *instance)
4775 {
4776 	uint32_t	status;
4777 
4778 	/* check if it is our interrupt */
4779 	status = RD_OB_INTR_STATUS(instance);
4780 
4781 	if (!(status & MFI_OB_INTR_STATUS_MASK)) {
4782 		return (DDI_INTR_UNCLAIMED);
4783 	}
4784 
4785 	/* clear the interrupt by writing back the same value */
4786 	WR_OB_INTR_STATUS(status, instance);
4787 
4788 	return (DDI_INTR_CLAIMED);
4789 }
4790 
4791 static int
4792 intr_ack_ppc(struct megasas_instance *instance)
4793 {
4794 	uint32_t	status;
4795 
4796 	con_log(CL_ANN1, (CE_NOTE, "intr_ack_ppc: called\n"));
4797 
4798 	/* check if it is our interrupt */
4799 	status = RD_OB_INTR_STATUS(instance);
4800 
4801 	con_log(CL_ANN1, (CE_NOTE, "intr_ack_ppc: status = 0x%x\n", status));
4802 
4803 	/*
4804 	 * As 1078DE is same as 1078 chip, the status field
4805 	 * remains the same.
4806 	 */
4807 	if (!(status & MFI_REPLY_1078_MESSAGE_INTR)) {
4808 		return (DDI_INTR_UNCLAIMED);
4809 	}
4810 
4811 	/* clear the interrupt by writing back the same value */
4812 	WR_OB_DOORBELL_CLEAR(status, instance);
4813 
4814 	/* dummy READ */
4815 	status = RD_OB_INTR_STATUS(instance);
4816 
4817 	con_log(CL_ANN1, (CE_NOTE, "intr_ack_ppc: interrupt cleared\n"));
4818 
4819 	return (DDI_INTR_CLAIMED);
4820 }
4821 
4822 static int
4823 megasas_common_check(struct megasas_instance *instance,
4824     struct  megasas_cmd *cmd)
4825 {
4826 	int ret = DDI_SUCCESS;
4827 
4828 	if (megasas_check_dma_handle(cmd->frame_dma_obj.dma_handle) !=
4829 	    DDI_SUCCESS) {
4830 		ddi_fm_service_impact(instance->dip, DDI_SERVICE_UNAFFECTED);
4831 		if (cmd->pkt != NULL) {
4832 			cmd->pkt->pkt_reason = CMD_TRAN_ERR;
4833 			cmd->pkt->pkt_statistics = 0;
4834 		}
4835 		ret = DDI_FAILURE;
4836 	}
4837 	if (megasas_check_dma_handle(instance->mfi_internal_dma_obj.dma_handle)
4838 	    != DDI_SUCCESS) {
4839 		ddi_fm_service_impact(instance->dip, DDI_SERVICE_UNAFFECTED);
4840 		if (cmd->pkt != NULL) {
4841 			cmd->pkt->pkt_reason = CMD_TRAN_ERR;
4842 			cmd->pkt->pkt_statistics = 0;
4843 		}
4844 		ret = DDI_FAILURE;
4845 	}
4846 	if (megasas_check_dma_handle(instance->mfi_evt_detail_obj.dma_handle) !=
4847 	    DDI_SUCCESS) {
4848 		ddi_fm_service_impact(instance->dip, DDI_SERVICE_UNAFFECTED);
4849 		if (cmd->pkt != NULL) {
4850 			cmd->pkt->pkt_reason = CMD_TRAN_ERR;
4851 			cmd->pkt->pkt_statistics = 0;
4852 		}
4853 		ret = DDI_FAILURE;
4854 	}
4855 	if (megasas_check_acc_handle(instance->regmap_handle) != DDI_SUCCESS) {
4856 		ddi_fm_service_impact(instance->dip, DDI_SERVICE_UNAFFECTED);
4857 		ddi_fm_acc_err_clear(instance->regmap_handle, DDI_FME_VER0);
4858 		if (cmd->pkt != NULL) {
4859 			cmd->pkt->pkt_reason = CMD_TRAN_ERR;
4860 			cmd->pkt->pkt_statistics = 0;
4861 		}
4862 		ret = DDI_FAILURE;
4863 	}
4864 
4865 	return (ret);
4866 }
4867 
4868 /*ARGSUSED*/
4869 static int
4870 megasas_fm_error_cb(dev_info_t *dip, ddi_fm_error_t *err, const void *impl_data)
4871 {
4872 	/*
4873 	 * as the driver can always deal with an error in any dma or
4874 	 * access handle, we can just return the fme_status value.
4875 	 */
4876 	pci_ereport_post(dip, err, NULL);
4877 	return (err->fme_status);
4878 }
4879 
4880 static void
4881 megasas_fm_init(struct megasas_instance *instance)
4882 {
4883 	/* Need to change iblock to priority for new MSI intr */
4884 	ddi_iblock_cookie_t fm_ibc;
4885 
4886 	/* Only register with IO Fault Services if we have some capability */
4887 	if (instance->fm_capabilities) {
4888 		/* Adjust access and dma attributes for FMA */
4889 		endian_attr.devacc_attr_access = DDI_FLAGERR_ACC;
4890 		megasas_generic_dma_attr.dma_attr_flags = DDI_DMA_FLAGERR;
4891 
4892 		/*
4893 		 * Register capabilities with IO Fault Services.
4894 		 * fm_capabilities will be updated to indicate
4895 		 * capabilities actually supported (not requested.)
4896 		 */
4897 
4898 		ddi_fm_init(instance->dip, &instance->fm_capabilities, &fm_ibc);
4899 
4900 		/*
4901 		 * Initialize pci ereport capabilities if ereport
4902 		 * capable (should always be.)
4903 		 */
4904 
4905 		if (DDI_FM_EREPORT_CAP(instance->fm_capabilities) ||
4906 		    DDI_FM_ERRCB_CAP(instance->fm_capabilities)) {
4907 			pci_ereport_setup(instance->dip);
4908 		}
4909 
4910 		/*
4911 		 * Register error callback if error callback capable.
4912 		 */
4913 		if (DDI_FM_ERRCB_CAP(instance->fm_capabilities)) {
4914 			ddi_fm_handler_register(instance->dip,
4915 			    megasas_fm_error_cb, (void*) instance);
4916 		}
4917 	} else {
4918 		endian_attr.devacc_attr_access = DDI_DEFAULT_ACC;
4919 		megasas_generic_dma_attr.dma_attr_flags = 0;
4920 	}
4921 }
4922 
4923 static void
4924 megasas_fm_fini(struct megasas_instance *instance)
4925 {
4926 	/* Only unregister FMA capabilities if registered */
4927 	if (instance->fm_capabilities) {
4928 		/*
4929 		 * Un-register error callback if error callback capable.
4930 		 */
4931 		if (DDI_FM_ERRCB_CAP(instance->fm_capabilities)) {
4932 			ddi_fm_handler_unregister(instance->dip);
4933 		}
4934 
4935 		/*
4936 		 * Release any resources allocated by pci_ereport_setup()
4937 		 */
4938 		if (DDI_FM_EREPORT_CAP(instance->fm_capabilities) ||
4939 		    DDI_FM_ERRCB_CAP(instance->fm_capabilities)) {
4940 			pci_ereport_teardown(instance->dip);
4941 		}
4942 
4943 		/* Unregister from IO Fault Services */
4944 		ddi_fm_fini(instance->dip);
4945 
4946 		/* Adjust access and dma attributes for FMA */
4947 		endian_attr.devacc_attr_access = DDI_DEFAULT_ACC;
4948 		megasas_generic_dma_attr.dma_attr_flags = 0;
4949 	}
4950 }
4951 
4952 int
4953 megasas_check_acc_handle(ddi_acc_handle_t handle)
4954 {
4955 	ddi_fm_error_t de;
4956 
4957 	if (handle == NULL) {
4958 		return (DDI_FAILURE);
4959 	}
4960 
4961 	ddi_fm_acc_err_get(handle, &de, DDI_FME_VERSION);
4962 
4963 	return (de.fme_status);
4964 }
4965 
4966 int
4967 megasas_check_dma_handle(ddi_dma_handle_t handle)
4968 {
4969 	ddi_fm_error_t de;
4970 
4971 	if (handle == NULL) {
4972 		return (DDI_FAILURE);
4973 	}
4974 
4975 	ddi_fm_dma_err_get(handle, &de, DDI_FME_VERSION);
4976 
4977 	return (de.fme_status);
4978 }
4979 
4980 void
4981 megasas_fm_ereport(struct megasas_instance *instance, char *detail)
4982 {
4983 	uint64_t ena;
4984 	char buf[FM_MAX_CLASS];
4985 
4986 	(void) snprintf(buf, FM_MAX_CLASS, "%s.%s", DDI_FM_DEVICE, detail);
4987 	ena = fm_ena_generate(0, FM_ENA_FMT1);
4988 	if (DDI_FM_EREPORT_CAP(instance->fm_capabilities)) {
4989 		ddi_fm_ereport_post(instance->dip, buf, ena, DDI_NOSLEEP,
4990 		    FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERSION, NULL);
4991 	}
4992 }
4993