xref: /illumos-gate/usr/src/uts/common/io/nvme/nvme.c (revision 7d10cd4d)
1 /*
2  * This file and its contents are supplied under the terms of the
3  * Common Development and Distribution License ("CDDL"), version 1.0.
4  * You may only use this file in accordance with the terms of version
5  * 1.0 of the CDDL.
6  *
7  * A full copy of the text of the CDDL should have accompanied this
8  * source.  A copy of the CDDL is also available via the Internet at
9  * http://www.illumos.org/license/CDDL.
10  */
11 
12 /*
13  * Copyright (c) 2016 The MathWorks, Inc.  All rights reserved.
14  * Copyright 2019 Unix Software Ltd.
15  * Copyright 2020 Joyent, Inc.
16  * Copyright 2020 Racktop Systems.
17  * Copyright 2022 Oxide Computer Company.
18  * Copyright 2022 OmniOS Community Edition (OmniOSce) Association.
19  * Copyright 2022 Tintri by DDN, Inc. All rights reserved.
20  */
21 
22 /*
23  * blkdev driver for NVMe compliant storage devices
24  *
25  * This driver targets and is designed to support all NVMe 1.x devices.
26  * Features are added to the driver as we encounter devices that require them
27  * and our needs, so some commands or log pages may not take advantage of newer
28  * features that devices support at this time. When you encounter such a case,
29  * it is generally fine to add that support to the driver as long as you take
30  * care to ensure that the requisite device version is met before using it.
31  *
32  * The driver has only been tested on x86 systems and will not work on big-
33  * endian systems without changes to the code accessing registers and data
34  * structures used by the hardware.
35  *
36  *
37  * Interrupt Usage:
38  *
39  * The driver will use a single interrupt while configuring the device as the
40  * specification requires, but contrary to the specification it will try to use
41  * a single-message MSI(-X) or FIXED interrupt. Later in the attach process it
42  * will switch to multiple-message MSI(-X) if supported. The driver wants to
43  * have one interrupt vector per CPU, but it will work correctly if less are
44  * available. Interrupts can be shared by queues, the interrupt handler will
45  * iterate through the I/O queue array by steps of n_intr_cnt. Usually only
46  * the admin queue will share an interrupt with one I/O queue. The interrupt
47  * handler will retrieve completed commands from all queues sharing an interrupt
48  * vector and will post them to a taskq for completion processing.
49  *
50  *
51  * Command Processing:
52  *
53  * NVMe devices can have up to 65535 I/O queue pairs, with each queue holding up
54  * to 65536 I/O commands. The driver will configure one I/O queue pair per
55  * available interrupt vector, with the queue length usually much smaller than
56  * the maximum of 65536. If the hardware doesn't provide enough queues, fewer
57  * interrupt vectors will be used.
58  *
59  * Additionally the hardware provides a single special admin queue pair that can
60  * hold up to 4096 admin commands.
61  *
62  * From the hardware perspective both queues of a queue pair are independent,
63  * but they share some driver state: the command array (holding pointers to
64  * commands currently being processed by the hardware) and the active command
65  * counter. Access to a submission queue and the shared state is protected by
66  * nq_mutex; completion queue is protected by ncq_mutex.
67  *
68  * When a command is submitted to a queue pair the active command counter is
69  * incremented and a pointer to the command is stored in the command array. The
70  * array index is used as command identifier (CID) in the submission queue
71  * entry. Some commands may take a very long time to complete, and if the queue
72  * wraps around in that time a submission may find the next array slot to still
73  * be used by a long-running command. In this case the array is sequentially
74  * searched for the next free slot. The length of the command array is the same
75  * as the configured queue length. Queue overrun is prevented by the semaphore,
76  * so a command submission may block if the queue is full.
77  *
78  *
79  * Polled I/O Support:
80  *
81  * For kernel core dump support the driver can do polled I/O. As interrupts are
82  * turned off while dumping the driver will just submit a command in the regular
83  * way, and then repeatedly attempt a command retrieval until it gets the
84  * command back.
85  *
86  *
87  * Namespace Support:
88  *
89  * NVMe devices can have multiple namespaces, each being a independent data
90  * store. The driver supports multiple namespaces and creates a blkdev interface
91  * for each namespace found. Namespaces can have various attributes to support
92  * protection information. This driver does not support any of this and ignores
93  * namespaces that have these attributes.
94  *
95  * As of NVMe 1.1 namespaces can have an 64bit Extended Unique Identifier
96  * (EUI64). This driver uses the EUI64 if present to generate the devid and
97  * passes it to blkdev to use it in the device node names. As this is currently
98  * untested namespaces with EUI64 are ignored by default.
99  *
100  * We currently support only (2 << NVME_MINOR_INST_SHIFT) - 2 namespaces in a
101  * single controller. This is an artificial limit imposed by the driver to be
102  * able to address a reasonable number of controllers and namespaces using a
103  * 32bit minor node number.
104  *
105  *
106  * Minor nodes:
107  *
108  * For each NVMe device the driver exposes one minor node for the controller and
109  * one minor node for each namespace. The only operations supported by those
110  * minor nodes are open(9E), close(9E), and ioctl(9E). This serves as the
111  * interface for the nvmeadm(8) utility.
112  *
113  * Exclusive opens are required for certain ioctl(9E) operations that alter
114  * controller and/or namespace state. While different namespaces may be opened
115  * exclusively in parallel, an exclusive open of the controller minor node
116  * requires that no namespaces are currently open (exclusive or otherwise).
117  * Opening any namespace minor node (exclusive or otherwise) will fail while
118  * the controller minor node is opened exclusively by any other thread. Thus it
119  * is possible for one thread at a time to open the controller minor node
120  * exclusively, and keep it open while opening any namespace minor node of the
121  * same controller, exclusively or otherwise.
122  *
123  *
124  *
125  * Blkdev Interface:
126  *
127  * This driver uses blkdev to do all the heavy lifting involved with presenting
128  * a disk device to the system. As a result, the processing of I/O requests is
129  * relatively simple as blkdev takes care of partitioning, boundary checks, DMA
130  * setup, and splitting of transfers into manageable chunks.
131  *
132  * I/O requests coming in from blkdev are turned into NVM commands and posted to
133  * an I/O queue. The queue is selected by taking the CPU id modulo the number of
134  * queues. There is currently no timeout handling of I/O commands.
135  *
136  * Blkdev also supports querying device/media information and generating a
137  * devid. The driver reports the best block size as determined by the namespace
138  * format back to blkdev as physical block size to support partition and block
139  * alignment. The devid is either based on the namespace EUI64, if present, or
140  * composed using the device vendor ID, model number, serial number, and the
141  * namespace ID.
142  *
143  *
144  * Error Handling:
145  *
146  * Error handling is currently limited to detecting fatal hardware errors,
147  * either by asynchronous events, or synchronously through command status or
148  * admin command timeouts. In case of severe errors the device is fenced off,
149  * all further requests will return EIO. FMA is then called to fault the device.
150  *
151  * The hardware has a limit for outstanding asynchronous event requests. Before
152  * this limit is known the driver assumes it is at least 1 and posts a single
153  * asynchronous request. Later when the limit is known more asynchronous event
154  * requests are posted to allow quicker reception of error information. When an
155  * asynchronous event is posted by the hardware the driver will parse the error
156  * status fields and log information or fault the device, depending on the
157  * severity of the asynchronous event. The asynchronous event request is then
158  * reused and posted to the admin queue again.
159  *
160  * On command completion the command status is checked for errors. In case of
161  * errors indicating a driver bug the driver panics. Almost all other error
162  * status values just cause EIO to be returned.
163  *
164  * Command timeouts are currently detected for all admin commands except
165  * asynchronous event requests. If a command times out and the hardware appears
166  * to be healthy the driver attempts to abort the command. The original command
167  * timeout is also applied to the abort command. If the abort times out too the
168  * driver assumes the device to be dead, fences it off, and calls FMA to retire
169  * it. In all other cases the aborted command should return immediately with a
170  * status indicating it was aborted, and the driver will wait indefinitely for
171  * that to happen. No timeout handling of normal I/O commands is presently done.
172  *
173  * Any command that times out due to the controller dropping dead will be put on
174  * nvme_lost_cmds list if it references DMA memory. This will prevent the DMA
175  * memory being reused by the system and later be written to by a "dead" NVMe
176  * controller.
177  *
178  *
179  * Locking:
180  *
181  * Each queue pair has a nq_mutex and ncq_mutex. The nq_mutex must be held
182  * when accessing shared state and submission queue registers, ncq_mutex
183  * is held when accessing completion queue state and registers.
184  * Callers of nvme_unqueue_cmd() must make sure that nq_mutex is held, while
185  * nvme_submit_{admin,io}_cmd() and nvme_retrieve_cmd() take care of both
186  * mutexes themselves.
187  *
188  * Each command also has its own nc_mutex, which is associated with the
189  * condition variable nc_cv. It is only used on admin commands which are run
190  * synchronously. In that case it must be held across calls to
191  * nvme_submit_{admin,io}_cmd() and nvme_wait_cmd(), which is taken care of by
192  * nvme_admin_cmd(). It must also be held whenever the completion state of the
193  * command is changed or while a admin command timeout is handled.
194  *
195  * If both nc_mutex and nq_mutex must be held, nc_mutex must be acquired first.
196  * More than one nc_mutex may only be held when aborting commands. In this case,
197  * the nc_mutex of the command to be aborted must be held across the call to
198  * nvme_abort_cmd() to prevent the command from completing while the abort is in
199  * progress.
200  *
201  * If both nq_mutex and ncq_mutex need to be held, ncq_mutex must be
202  * acquired first. More than one nq_mutex is never held by a single thread.
203  * The ncq_mutex is only held by nvme_retrieve_cmd() and
204  * nvme_process_iocq(). nvme_process_iocq() is only called from the
205  * interrupt thread and nvme_retrieve_cmd() during polled I/O, so the
206  * mutex is non-contentious but is required for implementation completeness
207  * and safety.
208  *
209  * There is one mutex n_minor_mutex which protects all open flags nm_open and
210  * exclusive-open thread pointers nm_oexcl of each minor node associated with a
211  * controller and its namespaces.
212  *
213  * In addition, there is one mutex n_mgmt_mutex which must be held whenever the
214  * driver state for any namespace is changed, especially across calls to
215  * nvme_init_ns(), nvme_attach_ns() and nvme_detach_ns(). Except when detaching
216  * nvme, it should also be held across calls that modify the blkdev handle of a
217  * namespace. Command and queue mutexes may be acquired and released while
218  * n_mgmt_mutex is held, n_minor_mutex should not.
219  *
220  *
221  * Quiesce / Fast Reboot:
222  *
223  * The driver currently does not support fast reboot. A quiesce(9E) entry point
224  * is still provided which is used to send a shutdown notification to the
225  * device.
226  *
227  *
228  * NVMe Hotplug:
229  *
230  * The driver supports hot removal. The driver uses the NDI event framework
231  * to register a callback, nvme_remove_callback, to clean up when a disk is
232  * removed. In particular, the driver will unqueue outstanding I/O commands and
233  * set n_dead on the softstate to true so that other operations, such as ioctls
234  * and command submissions, fail as well.
235  *
236  * While the callback registration relies on the NDI event framework, the
237  * removal event itself is kicked off in the PCIe hotplug framework, when the
238  * PCIe bridge driver ("pcieb") gets a hotplug interrupt indicating that a
239  * device was removed from the slot.
240  *
241  * The NVMe driver instance itself will remain until the final close of the
242  * device.
243  *
244  *
245  * DDI UFM Support
246  *
247  * The driver supports the DDI UFM framework for reporting information about
248  * the device's firmware image and slot configuration. This data can be
249  * queried by userland software via ioctls to the ufm driver. For more
250  * information, see ddi_ufm(9E).
251  *
252  *
253  * Driver Configuration:
254  *
255  * The following driver properties can be changed to control some aspects of the
256  * drivers operation:
257  * - strict-version: can be set to 0 to allow devices conforming to newer
258  *   major versions to be used
259  * - ignore-unknown-vendor-status: can be set to 1 to not handle any vendor
260  *   specific command status as a fatal error leading device faulting
261  * - admin-queue-len: the maximum length of the admin queue (16-4096)
262  * - io-squeue-len: the maximum length of the I/O submission queues (16-65536)
263  * - io-cqueue-len: the maximum length of the I/O completion queues (16-65536)
264  * - async-event-limit: the maximum number of asynchronous event requests to be
265  *   posted by the driver
266  * - volatile-write-cache-enable: can be set to 0 to disable the volatile write
267  *   cache
268  * - min-phys-block-size: the minimum physical block size to report to blkdev,
269  *   which is among other things the basis for ZFS vdev ashift
270  * - max-submission-queues: the maximum number of I/O submission queues.
271  * - max-completion-queues: the maximum number of I/O completion queues,
272  *   can be less than max-submission-queues, in which case the completion
273  *   queues are shared.
274  *
275  * In addition to the above properties, some device-specific tunables can be
276  * configured using the nvme-config-list global property. The value of this
277  * property is a list of triplets. The formal syntax is:
278  *
279  *   nvme-config-list ::= <triplet> [, <triplet>]* ;
280  *   <triplet>        ::= "<model>" , "<rev-list>" , "<tuple-list>"
281  *   <rev-list>       ::= [ <fwrev> [, <fwrev>]*]
282  *   <tuple-list>     ::= <tunable> [, <tunable>]*
283  *   <tunable>        ::= <name> : <value>
284  *
285  * The <model> and <fwrev> are the strings in nvme_identify_ctrl_t`id_model and
286  * nvme_identify_ctrl_t`id_fwrev, respectively. The remainder of <tuple-list>
287  * contains one or more tunables to apply to all controllers that match the
288  * specified model number and optionally firmware revision. Each <tunable> is a
289  * <name> : <value> pair.  Supported tunables are:
290  *
291  * - ignore-unknown-vendor-status:  can be set to "on" to not handle any vendor
292  *   specific command status as a fatal error leading device faulting
293  *
294  * - min-phys-block-size: the minimum physical block size to report to blkdev,
295  *   which is among other things the basis for ZFS vdev ashift
296  *
297  * - volatile-write-cache: can be set to "on" or "off" to enable or disable the
298  *   volatile write cache, if present
299  *
300  *
301  * TODO:
302  * - figure out sane default for I/O queue depth reported to blkdev
303  * - FMA handling of media errors
304  * - support for devices supporting very large I/O requests using chained PRPs
305  * - support for configuring hardware parameters like interrupt coalescing
306  * - support for media formatting and hard partitioning into namespaces
307  * - support for big-endian systems
308  * - support for fast reboot
309  * - support for NVMe Subsystem Reset (1.1)
310  * - support for Scatter/Gather lists (1.1)
311  * - support for Reservations (1.1)
312  * - support for power management
313  */
314 
315 #include <sys/byteorder.h>
316 #ifdef _BIG_ENDIAN
317 #error nvme driver needs porting for big-endian platforms
318 #endif
319 
320 #include <sys/modctl.h>
321 #include <sys/conf.h>
322 #include <sys/devops.h>
323 #include <sys/ddi.h>
324 #include <sys/ddi_ufm.h>
325 #include <sys/sunddi.h>
326 #include <sys/sunndi.h>
327 #include <sys/bitmap.h>
328 #include <sys/sysmacros.h>
329 #include <sys/param.h>
330 #include <sys/varargs.h>
331 #include <sys/cpuvar.h>
332 #include <sys/disp.h>
333 #include <sys/blkdev.h>
334 #include <sys/atomic.h>
335 #include <sys/archsystm.h>
336 #include <sys/sata/sata_hba.h>
337 #include <sys/stat.h>
338 #include <sys/policy.h>
339 #include <sys/list.h>
340 #include <sys/dkio.h>
341 
342 #include <sys/nvme.h>
343 
344 #ifdef __x86
345 #include <sys/x86_archext.h>
346 #endif
347 
348 #include "nvme_reg.h"
349 #include "nvme_var.h"
350 
351 /*
352  * Assertions to make sure that we've properly captured various aspects of the
353  * packed structures and haven't broken them during updates.
354  */
355 CTASSERT(sizeof (nvme_identify_ctrl_t) == 0x1000);
356 CTASSERT(offsetof(nvme_identify_ctrl_t, id_oacs) == 256);
357 CTASSERT(offsetof(nvme_identify_ctrl_t, id_sqes) == 512);
358 CTASSERT(offsetof(nvme_identify_ctrl_t, id_oncs) == 520);
359 CTASSERT(offsetof(nvme_identify_ctrl_t, id_subnqn) == 768);
360 CTASSERT(offsetof(nvme_identify_ctrl_t, id_nvmof) == 1792);
361 CTASSERT(offsetof(nvme_identify_ctrl_t, id_psd) == 2048);
362 CTASSERT(offsetof(nvme_identify_ctrl_t, id_vs) == 3072);
363 
364 CTASSERT(sizeof (nvme_identify_nsid_t) == 0x1000);
365 CTASSERT(offsetof(nvme_identify_nsid_t, id_fpi) == 32);
366 CTASSERT(offsetof(nvme_identify_nsid_t, id_anagrpid) == 92);
367 CTASSERT(offsetof(nvme_identify_nsid_t, id_nguid) == 104);
368 CTASSERT(offsetof(nvme_identify_nsid_t, id_lbaf) == 128);
369 CTASSERT(offsetof(nvme_identify_nsid_t, id_vs) == 384);
370 
371 CTASSERT(sizeof (nvme_identify_primary_caps_t) == 0x1000);
372 CTASSERT(offsetof(nvme_identify_primary_caps_t, nipc_vqfrt) == 32);
373 CTASSERT(offsetof(nvme_identify_primary_caps_t, nipc_vifrt) == 64);
374 
375 
376 /* NVMe spec version supported */
377 static const int nvme_version_major = 1;
378 
379 /* tunable for admin command timeout in seconds, default is 1s */
380 int nvme_admin_cmd_timeout = 1;
381 
382 /* tunable for FORMAT NVM command timeout in seconds, default is 600s */
383 int nvme_format_cmd_timeout = 600;
384 
385 /* tunable for firmware commit with NVME_FWC_SAVE, default is 15s */
386 int nvme_commit_save_cmd_timeout = 15;
387 
388 /*
389  * tunable for the size of arbitrary vendor specific admin commands,
390  * default is 16MiB.
391  */
392 uint32_t nvme_vendor_specific_admin_cmd_size = 1 << 24;
393 
394 /*
395  * tunable for the max timeout of arbitary vendor specific admin commands,
396  * default is 60s.
397  */
398 uint_t nvme_vendor_specific_admin_cmd_max_timeout = 60;
399 
400 static int nvme_attach(dev_info_t *, ddi_attach_cmd_t);
401 static int nvme_detach(dev_info_t *, ddi_detach_cmd_t);
402 static int nvme_quiesce(dev_info_t *);
403 static int nvme_fm_errcb(dev_info_t *, ddi_fm_error_t *, const void *);
404 static int nvme_setup_interrupts(nvme_t *, int, int);
405 static void nvme_release_interrupts(nvme_t *);
406 static uint_t nvme_intr(caddr_t, caddr_t);
407 
408 static void nvme_shutdown(nvme_t *, int, boolean_t);
409 static boolean_t nvme_reset(nvme_t *, boolean_t);
410 static int nvme_init(nvme_t *);
411 static nvme_cmd_t *nvme_alloc_cmd(nvme_t *, int);
412 static void nvme_free_cmd(nvme_cmd_t *);
413 static nvme_cmd_t *nvme_create_nvm_cmd(nvme_namespace_t *, uint8_t,
414     bd_xfer_t *);
415 static void nvme_admin_cmd(nvme_cmd_t *, int);
416 static void nvme_submit_admin_cmd(nvme_qpair_t *, nvme_cmd_t *);
417 static int nvme_submit_io_cmd(nvme_qpair_t *, nvme_cmd_t *);
418 static void nvme_submit_cmd_common(nvme_qpair_t *, nvme_cmd_t *);
419 static nvme_cmd_t *nvme_unqueue_cmd(nvme_t *, nvme_qpair_t *, int);
420 static nvme_cmd_t *nvme_retrieve_cmd(nvme_t *, nvme_qpair_t *);
421 static void nvme_wait_cmd(nvme_cmd_t *, uint_t);
422 static void nvme_wakeup_cmd(void *);
423 static void nvme_async_event_task(void *);
424 
425 static int nvme_check_unknown_cmd_status(nvme_cmd_t *);
426 static int nvme_check_vendor_cmd_status(nvme_cmd_t *);
427 static int nvme_check_integrity_cmd_status(nvme_cmd_t *);
428 static int nvme_check_specific_cmd_status(nvme_cmd_t *);
429 static int nvme_check_generic_cmd_status(nvme_cmd_t *);
430 static inline int nvme_check_cmd_status(nvme_cmd_t *);
431 
432 static int nvme_abort_cmd(nvme_cmd_t *, uint_t);
433 static void nvme_async_event(nvme_t *);
434 static int nvme_format_nvm(nvme_t *, boolean_t, uint32_t, uint8_t, boolean_t,
435     uint8_t, boolean_t, uint8_t);
436 static int nvme_get_logpage(nvme_t *, boolean_t, void **, size_t *, uint8_t,
437     ...);
438 static int nvme_identify(nvme_t *, boolean_t, uint32_t, void **);
439 static int nvme_set_features(nvme_t *, boolean_t, uint32_t, uint8_t, uint32_t,
440     uint32_t *);
441 static int nvme_get_features(nvme_t *, boolean_t, uint32_t, uint8_t, uint32_t *,
442     void **, size_t *);
443 static int nvme_write_cache_set(nvme_t *, boolean_t);
444 static int nvme_set_nqueues(nvme_t *);
445 
446 static void nvme_free_dma(nvme_dma_t *);
447 static int nvme_zalloc_dma(nvme_t *, size_t, uint_t, ddi_dma_attr_t *,
448     nvme_dma_t **);
449 static int nvme_zalloc_queue_dma(nvme_t *, uint32_t, uint16_t, uint_t,
450     nvme_dma_t **);
451 static void nvme_free_qpair(nvme_qpair_t *);
452 static int nvme_alloc_qpair(nvme_t *, uint32_t, nvme_qpair_t **, uint_t);
453 static int nvme_create_io_qpair(nvme_t *, nvme_qpair_t *, uint16_t);
454 
455 static inline void nvme_put64(nvme_t *, uintptr_t, uint64_t);
456 static inline void nvme_put32(nvme_t *, uintptr_t, uint32_t);
457 static inline uint64_t nvme_get64(nvme_t *, uintptr_t);
458 static inline uint32_t nvme_get32(nvme_t *, uintptr_t);
459 
460 static boolean_t nvme_check_regs_hdl(nvme_t *);
461 static boolean_t nvme_check_dma_hdl(nvme_dma_t *);
462 
463 static int nvme_fill_prp(nvme_cmd_t *, ddi_dma_handle_t);
464 
465 static void nvme_bd_xfer_done(void *);
466 static void nvme_bd_driveinfo(void *, bd_drive_t *);
467 static int nvme_bd_mediainfo(void *, bd_media_t *);
468 static int nvme_bd_cmd(nvme_namespace_t *, bd_xfer_t *, uint8_t);
469 static int nvme_bd_read(void *, bd_xfer_t *);
470 static int nvme_bd_write(void *, bd_xfer_t *);
471 static int nvme_bd_sync(void *, bd_xfer_t *);
472 static int nvme_bd_devid(void *, dev_info_t *, ddi_devid_t *);
473 static int nvme_bd_free_space(void *, bd_xfer_t *);
474 
475 static int nvme_prp_dma_constructor(void *, void *, int);
476 static void nvme_prp_dma_destructor(void *, void *);
477 
478 static void nvme_prepare_devid(nvme_t *, uint32_t);
479 
480 /* DDI UFM callbacks */
481 static int nvme_ufm_fill_image(ddi_ufm_handle_t *, void *, uint_t,
482     ddi_ufm_image_t *);
483 static int nvme_ufm_fill_slot(ddi_ufm_handle_t *, void *, uint_t, uint_t,
484     ddi_ufm_slot_t *);
485 static int nvme_ufm_getcaps(ddi_ufm_handle_t *, void *, ddi_ufm_cap_t *);
486 
487 static int nvme_open(dev_t *, int, int, cred_t *);
488 static int nvme_close(dev_t, int, int, cred_t *);
489 static int nvme_ioctl(dev_t, int, intptr_t, int, cred_t *, int *);
490 
491 static int nvme_init_ns(nvme_t *, int);
492 static int nvme_attach_ns(nvme_t *, int);
493 static int nvme_detach_ns(nvme_t *, int);
494 
495 #define	NVME_NSID2NS(nvme, nsid)	(&((nvme)->n_ns[(nsid) - 1]))
496 
497 static ddi_ufm_ops_t nvme_ufm_ops = {
498 	NULL,
499 	nvme_ufm_fill_image,
500 	nvme_ufm_fill_slot,
501 	nvme_ufm_getcaps
502 };
503 
504 #define	NVME_MINOR_INST_SHIFT	9
505 #define	NVME_MINOR(inst, nsid)	(((inst) << NVME_MINOR_INST_SHIFT) | (nsid))
506 #define	NVME_MINOR_INST(minor)	((minor) >> NVME_MINOR_INST_SHIFT)
507 #define	NVME_MINOR_NSID(minor)	((minor) & ((1 << NVME_MINOR_INST_SHIFT) - 1))
508 #define	NVME_MINOR_MAX		(NVME_MINOR(1, 0) - 2)
509 #define	NVME_IS_VENDOR_SPECIFIC_CMD(x)	(((x) >= 0xC0) && ((x) <= 0xFF))
510 #define	NVME_VENDOR_SPECIFIC_LOGPAGE_MIN	0xC0
511 #define	NVME_VENDOR_SPECIFIC_LOGPAGE_MAX	0xFF
512 #define	NVME_IS_VENDOR_SPECIFIC_LOGPAGE(x)	\
513 		(((x) >= NVME_VENDOR_SPECIFIC_LOGPAGE_MIN) && \
514 		((x) <= NVME_VENDOR_SPECIFIC_LOGPAGE_MAX))
515 
516 /*
517  * NVMe versions 1.3 and later actually support log pages up to UINT32_MAX
518  * DWords in size. However, revision 1.3 also modified the layout of the Get Log
519  * Page command significantly relative to version 1.2, including changing
520  * reserved bits, adding new bitfields, and requiring the use of command DWord
521  * 11 to fully specify the size of the log page (the lower and upper 16 bits of
522  * the number of DWords in the page are split between DWord 10 and DWord 11,
523  * respectively).
524  *
525  * All of these impose significantly different layout requirements on the
526  * `nvme_getlogpage_t` type. This could be solved with two different types, or a
527  * complicated/nested union with the two versions as the overlying members. Both
528  * of these are reasonable, if a bit convoluted. However, these is no current
529  * need for such large pages, or a way to test them, as most log pages actually
530  * fit within the current size limit. So for simplicity, we retain the size cap
531  * from version 1.2.
532  *
533  * Note that the number of DWords is zero-based, so we add 1. It is subtracted
534  * to form a zero-based value in `nvme_get_logpage`.
535  */
536 #define	NVME_VENDOR_SPECIFIC_LOGPAGE_MAX_SIZE	\
537 		(((1 << 12) + 1) * sizeof (uint32_t))
538 
539 static void *nvme_state;
540 static kmem_cache_t *nvme_cmd_cache;
541 
542 /*
543  * DMA attributes for queue DMA memory
544  *
545  * Queue DMA memory must be page aligned. The maximum length of a queue is
546  * 65536 entries, and an entry can be 64 bytes long.
547  */
548 static ddi_dma_attr_t nvme_queue_dma_attr = {
549 	.dma_attr_version	= DMA_ATTR_V0,
550 	.dma_attr_addr_lo	= 0,
551 	.dma_attr_addr_hi	= 0xffffffffffffffffULL,
552 	.dma_attr_count_max	= (UINT16_MAX + 1) * sizeof (nvme_sqe_t) - 1,
553 	.dma_attr_align		= 0x1000,
554 	.dma_attr_burstsizes	= 0x7ff,
555 	.dma_attr_minxfer	= 0x1000,
556 	.dma_attr_maxxfer	= (UINT16_MAX + 1) * sizeof (nvme_sqe_t),
557 	.dma_attr_seg		= 0xffffffffffffffffULL,
558 	.dma_attr_sgllen	= 1,
559 	.dma_attr_granular	= 1,
560 	.dma_attr_flags		= 0,
561 };
562 
563 /*
564  * DMA attributes for transfers using Physical Region Page (PRP) entries
565  *
566  * A PRP entry describes one page of DMA memory using the page size specified
567  * in the controller configuration's memory page size register (CC.MPS). It uses
568  * a 64bit base address aligned to this page size. There is no limitation on
569  * chaining PRPs together for arbitrarily large DMA transfers.
570  */
571 static ddi_dma_attr_t nvme_prp_dma_attr = {
572 	.dma_attr_version	= DMA_ATTR_V0,
573 	.dma_attr_addr_lo	= 0,
574 	.dma_attr_addr_hi	= 0xffffffffffffffffULL,
575 	.dma_attr_count_max	= 0xfff,
576 	.dma_attr_align		= 0x1000,
577 	.dma_attr_burstsizes	= 0x7ff,
578 	.dma_attr_minxfer	= 0x1000,
579 	.dma_attr_maxxfer	= 0x1000,
580 	.dma_attr_seg		= 0xfff,
581 	.dma_attr_sgllen	= -1,
582 	.dma_attr_granular	= 1,
583 	.dma_attr_flags		= 0,
584 };
585 
586 /*
587  * DMA attributes for transfers using scatter/gather lists
588  *
589  * A SGL entry describes a chunk of DMA memory using a 64bit base address and a
590  * 32bit length field. SGL Segment and SGL Last Segment entries require the
591  * length to be a multiple of 16 bytes.
592  */
593 static ddi_dma_attr_t nvme_sgl_dma_attr = {
594 	.dma_attr_version	= DMA_ATTR_V0,
595 	.dma_attr_addr_lo	= 0,
596 	.dma_attr_addr_hi	= 0xffffffffffffffffULL,
597 	.dma_attr_count_max	= 0xffffffffUL,
598 	.dma_attr_align		= 1,
599 	.dma_attr_burstsizes	= 0x7ff,
600 	.dma_attr_minxfer	= 0x10,
601 	.dma_attr_maxxfer	= 0xfffffffffULL,
602 	.dma_attr_seg		= 0xffffffffffffffffULL,
603 	.dma_attr_sgllen	= -1,
604 	.dma_attr_granular	= 0x10,
605 	.dma_attr_flags		= 0
606 };
607 
608 static ddi_device_acc_attr_t nvme_reg_acc_attr = {
609 	.devacc_attr_version	= DDI_DEVICE_ATTR_V0,
610 	.devacc_attr_endian_flags = DDI_STRUCTURE_LE_ACC,
611 	.devacc_attr_dataorder	= DDI_STRICTORDER_ACC
612 };
613 
614 static struct cb_ops nvme_cb_ops = {
615 	.cb_open	= nvme_open,
616 	.cb_close	= nvme_close,
617 	.cb_strategy	= nodev,
618 	.cb_print	= nodev,
619 	.cb_dump	= nodev,
620 	.cb_read	= nodev,
621 	.cb_write	= nodev,
622 	.cb_ioctl	= nvme_ioctl,
623 	.cb_devmap	= nodev,
624 	.cb_mmap	= nodev,
625 	.cb_segmap	= nodev,
626 	.cb_chpoll	= nochpoll,
627 	.cb_prop_op	= ddi_prop_op,
628 	.cb_str		= 0,
629 	.cb_flag	= D_NEW | D_MP,
630 	.cb_rev		= CB_REV,
631 	.cb_aread	= nodev,
632 	.cb_awrite	= nodev
633 };
634 
635 static struct dev_ops nvme_dev_ops = {
636 	.devo_rev	= DEVO_REV,
637 	.devo_refcnt	= 0,
638 	.devo_getinfo	= ddi_no_info,
639 	.devo_identify	= nulldev,
640 	.devo_probe	= nulldev,
641 	.devo_attach	= nvme_attach,
642 	.devo_detach	= nvme_detach,
643 	.devo_reset	= nodev,
644 	.devo_cb_ops	= &nvme_cb_ops,
645 	.devo_bus_ops	= NULL,
646 	.devo_power	= NULL,
647 	.devo_quiesce	= nvme_quiesce,
648 };
649 
650 static struct modldrv nvme_modldrv = {
651 	.drv_modops	= &mod_driverops,
652 	.drv_linkinfo	= "NVMe v1.1b",
653 	.drv_dev_ops	= &nvme_dev_ops
654 };
655 
656 static struct modlinkage nvme_modlinkage = {
657 	.ml_rev		= MODREV_1,
658 	.ml_linkage	= { &nvme_modldrv, NULL }
659 };
660 
661 static bd_ops_t nvme_bd_ops = {
662 	.o_version	= BD_OPS_CURRENT_VERSION,
663 	.o_drive_info	= nvme_bd_driveinfo,
664 	.o_media_info	= nvme_bd_mediainfo,
665 	.o_devid_init	= nvme_bd_devid,
666 	.o_sync_cache	= nvme_bd_sync,
667 	.o_read		= nvme_bd_read,
668 	.o_write	= nvme_bd_write,
669 	.o_free_space	= nvme_bd_free_space,
670 };
671 
672 /*
673  * This list will hold commands that have timed out and couldn't be aborted.
674  * As we don't know what the hardware may still do with the DMA memory we can't
675  * free them, so we'll keep them forever on this list where we can easily look
676  * at them with mdb.
677  */
678 static struct list nvme_lost_cmds;
679 static kmutex_t nvme_lc_mutex;
680 
681 int
682 _init(void)
683 {
684 	int error;
685 
686 	error = ddi_soft_state_init(&nvme_state, sizeof (nvme_t), 1);
687 	if (error != DDI_SUCCESS)
688 		return (error);
689 
690 	nvme_cmd_cache = kmem_cache_create("nvme_cmd_cache",
691 	    sizeof (nvme_cmd_t), 64, NULL, NULL, NULL, NULL, NULL, 0);
692 
693 	mutex_init(&nvme_lc_mutex, NULL, MUTEX_DRIVER, NULL);
694 	list_create(&nvme_lost_cmds, sizeof (nvme_cmd_t),
695 	    offsetof(nvme_cmd_t, nc_list));
696 
697 	bd_mod_init(&nvme_dev_ops);
698 
699 	error = mod_install(&nvme_modlinkage);
700 	if (error != DDI_SUCCESS) {
701 		ddi_soft_state_fini(&nvme_state);
702 		mutex_destroy(&nvme_lc_mutex);
703 		list_destroy(&nvme_lost_cmds);
704 		bd_mod_fini(&nvme_dev_ops);
705 	}
706 
707 	return (error);
708 }
709 
710 int
711 _fini(void)
712 {
713 	int error;
714 
715 	if (!list_is_empty(&nvme_lost_cmds))
716 		return (DDI_FAILURE);
717 
718 	error = mod_remove(&nvme_modlinkage);
719 	if (error == DDI_SUCCESS) {
720 		ddi_soft_state_fini(&nvme_state);
721 		kmem_cache_destroy(nvme_cmd_cache);
722 		mutex_destroy(&nvme_lc_mutex);
723 		list_destroy(&nvme_lost_cmds);
724 		bd_mod_fini(&nvme_dev_ops);
725 	}
726 
727 	return (error);
728 }
729 
730 int
731 _info(struct modinfo *modinfop)
732 {
733 	return (mod_info(&nvme_modlinkage, modinfop));
734 }
735 
736 static inline void
737 nvme_put64(nvme_t *nvme, uintptr_t reg, uint64_t val)
738 {
739 	ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x7) == 0);
740 
741 	/*LINTED: E_BAD_PTR_CAST_ALIGN*/
742 	ddi_put64(nvme->n_regh, (uint64_t *)(nvme->n_regs + reg), val);
743 }
744 
745 static inline void
746 nvme_put32(nvme_t *nvme, uintptr_t reg, uint32_t val)
747 {
748 	ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x3) == 0);
749 
750 	/*LINTED: E_BAD_PTR_CAST_ALIGN*/
751 	ddi_put32(nvme->n_regh, (uint32_t *)(nvme->n_regs + reg), val);
752 }
753 
754 static inline uint64_t
755 nvme_get64(nvme_t *nvme, uintptr_t reg)
756 {
757 	uint64_t val;
758 
759 	ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x7) == 0);
760 
761 	/*LINTED: E_BAD_PTR_CAST_ALIGN*/
762 	val = ddi_get64(nvme->n_regh, (uint64_t *)(nvme->n_regs + reg));
763 
764 	return (val);
765 }
766 
767 static inline uint32_t
768 nvme_get32(nvme_t *nvme, uintptr_t reg)
769 {
770 	uint32_t val;
771 
772 	ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x3) == 0);
773 
774 	/*LINTED: E_BAD_PTR_CAST_ALIGN*/
775 	val = ddi_get32(nvme->n_regh, (uint32_t *)(nvme->n_regs + reg));
776 
777 	return (val);
778 }
779 
780 static boolean_t
781 nvme_check_regs_hdl(nvme_t *nvme)
782 {
783 	ddi_fm_error_t error;
784 
785 	ddi_fm_acc_err_get(nvme->n_regh, &error, DDI_FME_VERSION);
786 
787 	if (error.fme_status != DDI_FM_OK)
788 		return (B_TRUE);
789 
790 	return (B_FALSE);
791 }
792 
793 static boolean_t
794 nvme_check_dma_hdl(nvme_dma_t *dma)
795 {
796 	ddi_fm_error_t error;
797 
798 	if (dma == NULL)
799 		return (B_FALSE);
800 
801 	ddi_fm_dma_err_get(dma->nd_dmah, &error, DDI_FME_VERSION);
802 
803 	if (error.fme_status != DDI_FM_OK)
804 		return (B_TRUE);
805 
806 	return (B_FALSE);
807 }
808 
809 static void
810 nvme_free_dma_common(nvme_dma_t *dma)
811 {
812 	if (dma->nd_dmah != NULL)
813 		(void) ddi_dma_unbind_handle(dma->nd_dmah);
814 	if (dma->nd_acch != NULL)
815 		ddi_dma_mem_free(&dma->nd_acch);
816 	if (dma->nd_dmah != NULL)
817 		ddi_dma_free_handle(&dma->nd_dmah);
818 }
819 
820 static void
821 nvme_free_dma(nvme_dma_t *dma)
822 {
823 	nvme_free_dma_common(dma);
824 	kmem_free(dma, sizeof (*dma));
825 }
826 
827 /* ARGSUSED */
828 static void
829 nvme_prp_dma_destructor(void *buf, void *private)
830 {
831 	nvme_dma_t *dma = (nvme_dma_t *)buf;
832 
833 	nvme_free_dma_common(dma);
834 }
835 
836 static int
837 nvme_alloc_dma_common(nvme_t *nvme, nvme_dma_t *dma,
838     size_t len, uint_t flags, ddi_dma_attr_t *dma_attr)
839 {
840 	if (ddi_dma_alloc_handle(nvme->n_dip, dma_attr, DDI_DMA_SLEEP, NULL,
841 	    &dma->nd_dmah) != DDI_SUCCESS) {
842 		/*
843 		 * Due to DDI_DMA_SLEEP this can't be DDI_DMA_NORESOURCES, and
844 		 * the only other possible error is DDI_DMA_BADATTR which
845 		 * indicates a driver bug which should cause a panic.
846 		 */
847 		dev_err(nvme->n_dip, CE_PANIC,
848 		    "!failed to get DMA handle, check DMA attributes");
849 		return (DDI_FAILURE);
850 	}
851 
852 	/*
853 	 * ddi_dma_mem_alloc() can only fail when DDI_DMA_NOSLEEP is specified
854 	 * or the flags are conflicting, which isn't the case here.
855 	 */
856 	(void) ddi_dma_mem_alloc(dma->nd_dmah, len, &nvme->n_reg_acc_attr,
857 	    DDI_DMA_CONSISTENT, DDI_DMA_SLEEP, NULL, &dma->nd_memp,
858 	    &dma->nd_len, &dma->nd_acch);
859 
860 	if (ddi_dma_addr_bind_handle(dma->nd_dmah, NULL, dma->nd_memp,
861 	    dma->nd_len, flags | DDI_DMA_CONSISTENT, DDI_DMA_SLEEP, NULL,
862 	    &dma->nd_cookie, &dma->nd_ncookie) != DDI_DMA_MAPPED) {
863 		dev_err(nvme->n_dip, CE_WARN,
864 		    "!failed to bind DMA memory");
865 		atomic_inc_32(&nvme->n_dma_bind_err);
866 		nvme_free_dma_common(dma);
867 		return (DDI_FAILURE);
868 	}
869 
870 	return (DDI_SUCCESS);
871 }
872 
873 static int
874 nvme_zalloc_dma(nvme_t *nvme, size_t len, uint_t flags,
875     ddi_dma_attr_t *dma_attr, nvme_dma_t **ret)
876 {
877 	nvme_dma_t *dma = kmem_zalloc(sizeof (nvme_dma_t), KM_SLEEP);
878 
879 	if (nvme_alloc_dma_common(nvme, dma, len, flags, dma_attr) !=
880 	    DDI_SUCCESS) {
881 		*ret = NULL;
882 		kmem_free(dma, sizeof (nvme_dma_t));
883 		return (DDI_FAILURE);
884 	}
885 
886 	bzero(dma->nd_memp, dma->nd_len);
887 
888 	*ret = dma;
889 	return (DDI_SUCCESS);
890 }
891 
892 /* ARGSUSED */
893 static int
894 nvme_prp_dma_constructor(void *buf, void *private, int flags)
895 {
896 	nvme_dma_t *dma = (nvme_dma_t *)buf;
897 	nvme_t *nvme = (nvme_t *)private;
898 
899 	dma->nd_dmah = NULL;
900 	dma->nd_acch = NULL;
901 
902 	if (nvme_alloc_dma_common(nvme, dma, nvme->n_pagesize,
903 	    DDI_DMA_READ, &nvme->n_prp_dma_attr) != DDI_SUCCESS) {
904 		return (-1);
905 	}
906 
907 	ASSERT(dma->nd_ncookie == 1);
908 
909 	dma->nd_cached = B_TRUE;
910 
911 	return (0);
912 }
913 
914 static int
915 nvme_zalloc_queue_dma(nvme_t *nvme, uint32_t nentry, uint16_t qe_len,
916     uint_t flags, nvme_dma_t **dma)
917 {
918 	uint32_t len = nentry * qe_len;
919 	ddi_dma_attr_t q_dma_attr = nvme->n_queue_dma_attr;
920 
921 	len = roundup(len, nvme->n_pagesize);
922 
923 	if (nvme_zalloc_dma(nvme, len, flags, &q_dma_attr, dma)
924 	    != DDI_SUCCESS) {
925 		dev_err(nvme->n_dip, CE_WARN,
926 		    "!failed to get DMA memory for queue");
927 		goto fail;
928 	}
929 
930 	if ((*dma)->nd_ncookie != 1) {
931 		dev_err(nvme->n_dip, CE_WARN,
932 		    "!got too many cookies for queue DMA");
933 		goto fail;
934 	}
935 
936 	return (DDI_SUCCESS);
937 
938 fail:
939 	if (*dma) {
940 		nvme_free_dma(*dma);
941 		*dma = NULL;
942 	}
943 
944 	return (DDI_FAILURE);
945 }
946 
947 static void
948 nvme_free_cq(nvme_cq_t *cq)
949 {
950 	mutex_destroy(&cq->ncq_mutex);
951 
952 	if (cq->ncq_cmd_taskq != NULL)
953 		taskq_destroy(cq->ncq_cmd_taskq);
954 
955 	if (cq->ncq_dma != NULL)
956 		nvme_free_dma(cq->ncq_dma);
957 
958 	kmem_free(cq, sizeof (*cq));
959 }
960 
961 static void
962 nvme_free_qpair(nvme_qpair_t *qp)
963 {
964 	int i;
965 
966 	mutex_destroy(&qp->nq_mutex);
967 	sema_destroy(&qp->nq_sema);
968 
969 	if (qp->nq_sqdma != NULL)
970 		nvme_free_dma(qp->nq_sqdma);
971 
972 	if (qp->nq_active_cmds > 0)
973 		for (i = 0; i != qp->nq_nentry; i++)
974 			if (qp->nq_cmd[i] != NULL)
975 				nvme_free_cmd(qp->nq_cmd[i]);
976 
977 	if (qp->nq_cmd != NULL)
978 		kmem_free(qp->nq_cmd, sizeof (nvme_cmd_t *) * qp->nq_nentry);
979 
980 	kmem_free(qp, sizeof (nvme_qpair_t));
981 }
982 
983 /*
984  * Destroy the pre-allocated cq array, but only free individual completion
985  * queues from the given starting index.
986  */
987 static void
988 nvme_destroy_cq_array(nvme_t *nvme, uint_t start)
989 {
990 	uint_t i;
991 
992 	for (i = start; i < nvme->n_cq_count; i++)
993 		if (nvme->n_cq[i] != NULL)
994 			nvme_free_cq(nvme->n_cq[i]);
995 
996 	kmem_free(nvme->n_cq, sizeof (*nvme->n_cq) * nvme->n_cq_count);
997 }
998 
999 static int
1000 nvme_alloc_cq(nvme_t *nvme, uint32_t nentry, nvme_cq_t **cqp, uint16_t idx,
1001     uint_t nthr)
1002 {
1003 	nvme_cq_t *cq = kmem_zalloc(sizeof (*cq), KM_SLEEP);
1004 	char name[64];		/* large enough for the taskq name */
1005 
1006 	mutex_init(&cq->ncq_mutex, NULL, MUTEX_DRIVER,
1007 	    DDI_INTR_PRI(nvme->n_intr_pri));
1008 
1009 	if (nvme_zalloc_queue_dma(nvme, nentry, sizeof (nvme_cqe_t),
1010 	    DDI_DMA_READ, &cq->ncq_dma) != DDI_SUCCESS)
1011 		goto fail;
1012 
1013 	cq->ncq_cq = (nvme_cqe_t *)cq->ncq_dma->nd_memp;
1014 	cq->ncq_nentry = nentry;
1015 	cq->ncq_id = idx;
1016 	cq->ncq_hdbl = NVME_REG_CQHDBL(nvme, idx);
1017 
1018 	/*
1019 	 * Each completion queue has its own command taskq.
1020 	 */
1021 	(void) snprintf(name, sizeof (name), "%s%d_cmd_taskq%u",
1022 	    ddi_driver_name(nvme->n_dip), ddi_get_instance(nvme->n_dip), idx);
1023 
1024 	cq->ncq_cmd_taskq = taskq_create(name, nthr, minclsyspri, 64, INT_MAX,
1025 	    TASKQ_PREPOPULATE);
1026 
1027 	if (cq->ncq_cmd_taskq == NULL) {
1028 		dev_err(nvme->n_dip, CE_WARN, "!failed to create cmd "
1029 		    "taskq for cq %u", idx);
1030 		goto fail;
1031 	}
1032 
1033 	*cqp = cq;
1034 	return (DDI_SUCCESS);
1035 
1036 fail:
1037 	nvme_free_cq(cq);
1038 	*cqp = NULL;
1039 
1040 	return (DDI_FAILURE);
1041 }
1042 
1043 /*
1044  * Create the n_cq array big enough to hold "ncq" completion queues.
1045  * If the array already exists it will be re-sized (but only larger).
1046  * The admin queue is included in this array, which boosts the
1047  * max number of entries to UINT16_MAX + 1.
1048  */
1049 static int
1050 nvme_create_cq_array(nvme_t *nvme, uint_t ncq, uint32_t nentry, uint_t nthr)
1051 {
1052 	nvme_cq_t **cq;
1053 	uint_t i, cq_count;
1054 
1055 	ASSERT3U(ncq, >, nvme->n_cq_count);
1056 
1057 	cq = nvme->n_cq;
1058 	cq_count = nvme->n_cq_count;
1059 
1060 	nvme->n_cq = kmem_zalloc(sizeof (*nvme->n_cq) * ncq, KM_SLEEP);
1061 	nvme->n_cq_count = ncq;
1062 
1063 	for (i = 0; i < cq_count; i++)
1064 		nvme->n_cq[i] = cq[i];
1065 
1066 	for (; i < nvme->n_cq_count; i++)
1067 		if (nvme_alloc_cq(nvme, nentry, &nvme->n_cq[i], i, nthr) !=
1068 		    DDI_SUCCESS)
1069 			goto fail;
1070 
1071 	if (cq != NULL)
1072 		kmem_free(cq, sizeof (*cq) * cq_count);
1073 
1074 	return (DDI_SUCCESS);
1075 
1076 fail:
1077 	nvme_destroy_cq_array(nvme, cq_count);
1078 	/*
1079 	 * Restore the original array
1080 	 */
1081 	nvme->n_cq_count = cq_count;
1082 	nvme->n_cq = cq;
1083 
1084 	return (DDI_FAILURE);
1085 }
1086 
1087 static int
1088 nvme_alloc_qpair(nvme_t *nvme, uint32_t nentry, nvme_qpair_t **nqp,
1089     uint_t idx)
1090 {
1091 	nvme_qpair_t *qp = kmem_zalloc(sizeof (*qp), KM_SLEEP);
1092 	uint_t cq_idx;
1093 
1094 	mutex_init(&qp->nq_mutex, NULL, MUTEX_DRIVER,
1095 	    DDI_INTR_PRI(nvme->n_intr_pri));
1096 
1097 	/*
1098 	 * The NVMe spec defines that a full queue has one empty (unused) slot;
1099 	 * initialize the semaphore accordingly.
1100 	 */
1101 	sema_init(&qp->nq_sema, nentry - 1, NULL, SEMA_DRIVER, NULL);
1102 
1103 	if (nvme_zalloc_queue_dma(nvme, nentry, sizeof (nvme_sqe_t),
1104 	    DDI_DMA_WRITE, &qp->nq_sqdma) != DDI_SUCCESS)
1105 		goto fail;
1106 
1107 	/*
1108 	 * idx == 0 is adminq, those above 0 are shared io completion queues.
1109 	 */
1110 	cq_idx = idx == 0 ? 0 : 1 + (idx - 1) % (nvme->n_cq_count - 1);
1111 	qp->nq_cq = nvme->n_cq[cq_idx];
1112 	qp->nq_sq = (nvme_sqe_t *)qp->nq_sqdma->nd_memp;
1113 	qp->nq_nentry = nentry;
1114 
1115 	qp->nq_sqtdbl = NVME_REG_SQTDBL(nvme, idx);
1116 
1117 	qp->nq_cmd = kmem_zalloc(sizeof (nvme_cmd_t *) * nentry, KM_SLEEP);
1118 	qp->nq_next_cmd = 0;
1119 
1120 	*nqp = qp;
1121 	return (DDI_SUCCESS);
1122 
1123 fail:
1124 	nvme_free_qpair(qp);
1125 	*nqp = NULL;
1126 
1127 	return (DDI_FAILURE);
1128 }
1129 
1130 static nvme_cmd_t *
1131 nvme_alloc_cmd(nvme_t *nvme, int kmflag)
1132 {
1133 	nvme_cmd_t *cmd = kmem_cache_alloc(nvme_cmd_cache, kmflag);
1134 
1135 	if (cmd == NULL)
1136 		return (cmd);
1137 
1138 	bzero(cmd, sizeof (nvme_cmd_t));
1139 
1140 	cmd->nc_nvme = nvme;
1141 
1142 	mutex_init(&cmd->nc_mutex, NULL, MUTEX_DRIVER,
1143 	    DDI_INTR_PRI(nvme->n_intr_pri));
1144 	cv_init(&cmd->nc_cv, NULL, CV_DRIVER, NULL);
1145 
1146 	return (cmd);
1147 }
1148 
1149 static void
1150 nvme_free_cmd(nvme_cmd_t *cmd)
1151 {
1152 	/* Don't free commands on the lost commands list. */
1153 	if (list_link_active(&cmd->nc_list))
1154 		return;
1155 
1156 	if (cmd->nc_dma) {
1157 		nvme_free_dma(cmd->nc_dma);
1158 		cmd->nc_dma = NULL;
1159 	}
1160 
1161 	if (cmd->nc_prp) {
1162 		kmem_cache_free(cmd->nc_nvme->n_prp_cache, cmd->nc_prp);
1163 		cmd->nc_prp = NULL;
1164 	}
1165 
1166 	cv_destroy(&cmd->nc_cv);
1167 	mutex_destroy(&cmd->nc_mutex);
1168 
1169 	kmem_cache_free(nvme_cmd_cache, cmd);
1170 }
1171 
1172 static void
1173 nvme_submit_admin_cmd(nvme_qpair_t *qp, nvme_cmd_t *cmd)
1174 {
1175 	sema_p(&qp->nq_sema);
1176 	nvme_submit_cmd_common(qp, cmd);
1177 }
1178 
1179 static int
1180 nvme_submit_io_cmd(nvme_qpair_t *qp, nvme_cmd_t *cmd)
1181 {
1182 	if (cmd->nc_nvme->n_dead) {
1183 		return (EIO);
1184 	}
1185 
1186 	if (sema_tryp(&qp->nq_sema) == 0)
1187 		return (EAGAIN);
1188 
1189 	nvme_submit_cmd_common(qp, cmd);
1190 	return (0);
1191 }
1192 
1193 static void
1194 nvme_submit_cmd_common(nvme_qpair_t *qp, nvme_cmd_t *cmd)
1195 {
1196 	nvme_reg_sqtdbl_t tail = { 0 };
1197 
1198 	mutex_enter(&qp->nq_mutex);
1199 	cmd->nc_completed = B_FALSE;
1200 
1201 	/*
1202 	 * Now that we hold the queue pair lock, we must check whether or not
1203 	 * the controller has been listed as dead (e.g. was removed due to
1204 	 * hotplug). This is necessary as otherwise we could race with
1205 	 * nvme_remove_callback(). Because this has not been enqueued, we don't
1206 	 * call nvme_unqueue_cmd(), which is why we must manually decrement the
1207 	 * semaphore.
1208 	 */
1209 	if (cmd->nc_nvme->n_dead) {
1210 		taskq_dispatch_ent(qp->nq_cq->ncq_cmd_taskq, cmd->nc_callback,
1211 		    cmd, TQ_NOSLEEP, &cmd->nc_tqent);
1212 		sema_v(&qp->nq_sema);
1213 		mutex_exit(&qp->nq_mutex);
1214 		return;
1215 	}
1216 
1217 	/*
1218 	 * Try to insert the cmd into the active cmd array at the nq_next_cmd
1219 	 * slot. If the slot is already occupied advance to the next slot and
1220 	 * try again. This can happen for long running commands like async event
1221 	 * requests.
1222 	 */
1223 	while (qp->nq_cmd[qp->nq_next_cmd] != NULL)
1224 		qp->nq_next_cmd = (qp->nq_next_cmd + 1) % qp->nq_nentry;
1225 	qp->nq_cmd[qp->nq_next_cmd] = cmd;
1226 
1227 	qp->nq_active_cmds++;
1228 
1229 	cmd->nc_sqe.sqe_cid = qp->nq_next_cmd;
1230 	bcopy(&cmd->nc_sqe, &qp->nq_sq[qp->nq_sqtail], sizeof (nvme_sqe_t));
1231 	(void) ddi_dma_sync(qp->nq_sqdma->nd_dmah,
1232 	    sizeof (nvme_sqe_t) * qp->nq_sqtail,
1233 	    sizeof (nvme_sqe_t), DDI_DMA_SYNC_FORDEV);
1234 	qp->nq_next_cmd = (qp->nq_next_cmd + 1) % qp->nq_nentry;
1235 
1236 	tail.b.sqtdbl_sqt = qp->nq_sqtail = (qp->nq_sqtail + 1) % qp->nq_nentry;
1237 	nvme_put32(cmd->nc_nvme, qp->nq_sqtdbl, tail.r);
1238 
1239 	mutex_exit(&qp->nq_mutex);
1240 }
1241 
1242 static nvme_cmd_t *
1243 nvme_unqueue_cmd(nvme_t *nvme, nvme_qpair_t *qp, int cid)
1244 {
1245 	nvme_cmd_t *cmd;
1246 
1247 	ASSERT(mutex_owned(&qp->nq_mutex));
1248 	ASSERT3S(cid, <, qp->nq_nentry);
1249 
1250 	cmd = qp->nq_cmd[cid];
1251 	qp->nq_cmd[cid] = NULL;
1252 	ASSERT3U(qp->nq_active_cmds, >, 0);
1253 	qp->nq_active_cmds--;
1254 	sema_v(&qp->nq_sema);
1255 
1256 	ASSERT3P(cmd, !=, NULL);
1257 	ASSERT3P(cmd->nc_nvme, ==, nvme);
1258 	ASSERT3S(cmd->nc_sqe.sqe_cid, ==, cid);
1259 
1260 	return (cmd);
1261 }
1262 
1263 /*
1264  * Get the command tied to the next completed cqe and bump along completion
1265  * queue head counter.
1266  */
1267 static nvme_cmd_t *
1268 nvme_get_completed(nvme_t *nvme, nvme_cq_t *cq)
1269 {
1270 	nvme_qpair_t *qp;
1271 	nvme_cqe_t *cqe;
1272 	nvme_cmd_t *cmd;
1273 
1274 	ASSERT(mutex_owned(&cq->ncq_mutex));
1275 
1276 	cqe = &cq->ncq_cq[cq->ncq_head];
1277 
1278 	/* Check phase tag of CQE. Hardware inverts it for new entries. */
1279 	if (cqe->cqe_sf.sf_p == cq->ncq_phase)
1280 		return (NULL);
1281 
1282 	qp = nvme->n_ioq[cqe->cqe_sqid];
1283 
1284 	mutex_enter(&qp->nq_mutex);
1285 	cmd = nvme_unqueue_cmd(nvme, qp, cqe->cqe_cid);
1286 	mutex_exit(&qp->nq_mutex);
1287 
1288 	ASSERT(cmd->nc_sqid == cqe->cqe_sqid);
1289 	bcopy(cqe, &cmd->nc_cqe, sizeof (nvme_cqe_t));
1290 
1291 	qp->nq_sqhead = cqe->cqe_sqhd;
1292 
1293 	cq->ncq_head = (cq->ncq_head + 1) % cq->ncq_nentry;
1294 
1295 	/* Toggle phase on wrap-around. */
1296 	if (cq->ncq_head == 0)
1297 		cq->ncq_phase = cq->ncq_phase ? 0 : 1;
1298 
1299 	return (cmd);
1300 }
1301 
1302 /*
1303  * Process all completed commands on the io completion queue.
1304  */
1305 static uint_t
1306 nvme_process_iocq(nvme_t *nvme, nvme_cq_t *cq)
1307 {
1308 	nvme_reg_cqhdbl_t head = { 0 };
1309 	nvme_cmd_t *cmd;
1310 	uint_t completed = 0;
1311 
1312 	if (ddi_dma_sync(cq->ncq_dma->nd_dmah, 0, 0, DDI_DMA_SYNC_FORKERNEL) !=
1313 	    DDI_SUCCESS)
1314 		dev_err(nvme->n_dip, CE_WARN, "!ddi_dma_sync() failed in %s",
1315 		    __func__);
1316 
1317 	mutex_enter(&cq->ncq_mutex);
1318 
1319 	while ((cmd = nvme_get_completed(nvme, cq)) != NULL) {
1320 		taskq_dispatch_ent(cq->ncq_cmd_taskq, cmd->nc_callback, cmd,
1321 		    TQ_NOSLEEP, &cmd->nc_tqent);
1322 
1323 		completed++;
1324 	}
1325 
1326 	if (completed > 0) {
1327 		/*
1328 		 * Update the completion queue head doorbell.
1329 		 */
1330 		head.b.cqhdbl_cqh = cq->ncq_head;
1331 		nvme_put32(nvme, cq->ncq_hdbl, head.r);
1332 	}
1333 
1334 	mutex_exit(&cq->ncq_mutex);
1335 
1336 	return (completed);
1337 }
1338 
1339 static nvme_cmd_t *
1340 nvme_retrieve_cmd(nvme_t *nvme, nvme_qpair_t *qp)
1341 {
1342 	nvme_cq_t *cq = qp->nq_cq;
1343 	nvme_reg_cqhdbl_t head = { 0 };
1344 	nvme_cmd_t *cmd;
1345 
1346 	if (ddi_dma_sync(cq->ncq_dma->nd_dmah, 0, 0, DDI_DMA_SYNC_FORKERNEL) !=
1347 	    DDI_SUCCESS)
1348 		dev_err(nvme->n_dip, CE_WARN, "!ddi_dma_sync() failed in %s",
1349 		    __func__);
1350 
1351 	mutex_enter(&cq->ncq_mutex);
1352 
1353 	if ((cmd = nvme_get_completed(nvme, cq)) != NULL) {
1354 		head.b.cqhdbl_cqh = cq->ncq_head;
1355 		nvme_put32(nvme, cq->ncq_hdbl, head.r);
1356 	}
1357 
1358 	mutex_exit(&cq->ncq_mutex);
1359 
1360 	return (cmd);
1361 }
1362 
1363 static int
1364 nvme_check_unknown_cmd_status(nvme_cmd_t *cmd)
1365 {
1366 	nvme_cqe_t *cqe = &cmd->nc_cqe;
1367 
1368 	dev_err(cmd->nc_nvme->n_dip, CE_WARN,
1369 	    "!unknown command status received: opc = %x, sqid = %d, cid = %d, "
1370 	    "sc = %x, sct = %x, dnr = %d, m = %d", cmd->nc_sqe.sqe_opc,
1371 	    cqe->cqe_sqid, cqe->cqe_cid, cqe->cqe_sf.sf_sc, cqe->cqe_sf.sf_sct,
1372 	    cqe->cqe_sf.sf_dnr, cqe->cqe_sf.sf_m);
1373 
1374 	if (cmd->nc_xfer != NULL)
1375 		bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
1376 
1377 	if (cmd->nc_nvme->n_strict_version) {
1378 		cmd->nc_nvme->n_dead = B_TRUE;
1379 		ddi_fm_service_impact(cmd->nc_nvme->n_dip, DDI_SERVICE_LOST);
1380 	}
1381 
1382 	return (EIO);
1383 }
1384 
1385 static int
1386 nvme_check_vendor_cmd_status(nvme_cmd_t *cmd)
1387 {
1388 	nvme_cqe_t *cqe = &cmd->nc_cqe;
1389 
1390 	dev_err(cmd->nc_nvme->n_dip, CE_WARN,
1391 	    "!unknown command status received: opc = %x, sqid = %d, cid = %d, "
1392 	    "sc = %x, sct = %x, dnr = %d, m = %d", cmd->nc_sqe.sqe_opc,
1393 	    cqe->cqe_sqid, cqe->cqe_cid, cqe->cqe_sf.sf_sc, cqe->cqe_sf.sf_sct,
1394 	    cqe->cqe_sf.sf_dnr, cqe->cqe_sf.sf_m);
1395 	if (!cmd->nc_nvme->n_ignore_unknown_vendor_status) {
1396 		cmd->nc_nvme->n_dead = B_TRUE;
1397 		ddi_fm_service_impact(cmd->nc_nvme->n_dip, DDI_SERVICE_LOST);
1398 	}
1399 
1400 	return (EIO);
1401 }
1402 
1403 static int
1404 nvme_check_integrity_cmd_status(nvme_cmd_t *cmd)
1405 {
1406 	nvme_cqe_t *cqe = &cmd->nc_cqe;
1407 
1408 	switch (cqe->cqe_sf.sf_sc) {
1409 	case NVME_CQE_SC_INT_NVM_WRITE:
1410 		/* write fail */
1411 		/* TODO: post ereport */
1412 		if (cmd->nc_xfer != NULL)
1413 			bd_error(cmd->nc_xfer, BD_ERR_MEDIA);
1414 		return (EIO);
1415 
1416 	case NVME_CQE_SC_INT_NVM_READ:
1417 		/* read fail */
1418 		/* TODO: post ereport */
1419 		if (cmd->nc_xfer != NULL)
1420 			bd_error(cmd->nc_xfer, BD_ERR_MEDIA);
1421 		return (EIO);
1422 
1423 	default:
1424 		return (nvme_check_unknown_cmd_status(cmd));
1425 	}
1426 }
1427 
1428 static int
1429 nvme_check_generic_cmd_status(nvme_cmd_t *cmd)
1430 {
1431 	nvme_cqe_t *cqe = &cmd->nc_cqe;
1432 
1433 	switch (cqe->cqe_sf.sf_sc) {
1434 	case NVME_CQE_SC_GEN_SUCCESS:
1435 		return (0);
1436 
1437 	/*
1438 	 * Errors indicating a bug in the driver should cause a panic.
1439 	 */
1440 	case NVME_CQE_SC_GEN_INV_OPC:
1441 		/* Invalid Command Opcode */
1442 		if (!cmd->nc_dontpanic)
1443 			dev_err(cmd->nc_nvme->n_dip, CE_PANIC,
1444 			    "programming error: invalid opcode in cmd %p",
1445 			    (void *)cmd);
1446 		return (EINVAL);
1447 
1448 	case NVME_CQE_SC_GEN_INV_FLD:
1449 		/* Invalid Field in Command */
1450 		if (!cmd->nc_dontpanic)
1451 			dev_err(cmd->nc_nvme->n_dip, CE_PANIC,
1452 			    "programming error: invalid field in cmd %p",
1453 			    (void *)cmd);
1454 		return (EIO);
1455 
1456 	case NVME_CQE_SC_GEN_ID_CNFL:
1457 		/* Command ID Conflict */
1458 		dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
1459 		    "cmd ID conflict in cmd %p", (void *)cmd);
1460 		return (0);
1461 
1462 	case NVME_CQE_SC_GEN_INV_NS:
1463 		/* Invalid Namespace or Format */
1464 		if (!cmd->nc_dontpanic)
1465 			dev_err(cmd->nc_nvme->n_dip, CE_PANIC,
1466 			    "programming error: invalid NS/format in cmd %p",
1467 			    (void *)cmd);
1468 		return (EINVAL);
1469 
1470 	case NVME_CQE_SC_GEN_NVM_LBA_RANGE:
1471 		/* LBA Out Of Range */
1472 		dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
1473 		    "LBA out of range in cmd %p", (void *)cmd);
1474 		return (0);
1475 
1476 	/*
1477 	 * Non-fatal errors, handle gracefully.
1478 	 */
1479 	case NVME_CQE_SC_GEN_DATA_XFR_ERR:
1480 		/* Data Transfer Error (DMA) */
1481 		/* TODO: post ereport */
1482 		atomic_inc_32(&cmd->nc_nvme->n_data_xfr_err);
1483 		if (cmd->nc_xfer != NULL)
1484 			bd_error(cmd->nc_xfer, BD_ERR_NTRDY);
1485 		return (EIO);
1486 
1487 	case NVME_CQE_SC_GEN_INTERNAL_ERR:
1488 		/*
1489 		 * Internal Error. The spec (v1.0, section 4.5.1.2) says
1490 		 * detailed error information is returned as async event,
1491 		 * so we pretty much ignore the error here and handle it
1492 		 * in the async event handler.
1493 		 */
1494 		atomic_inc_32(&cmd->nc_nvme->n_internal_err);
1495 		if (cmd->nc_xfer != NULL)
1496 			bd_error(cmd->nc_xfer, BD_ERR_NTRDY);
1497 		return (EIO);
1498 
1499 	case NVME_CQE_SC_GEN_ABORT_REQUEST:
1500 		/*
1501 		 * Command Abort Requested. This normally happens only when a
1502 		 * command times out.
1503 		 */
1504 		/* TODO: post ereport or change blkdev to handle this? */
1505 		atomic_inc_32(&cmd->nc_nvme->n_abort_rq_err);
1506 		return (ECANCELED);
1507 
1508 	case NVME_CQE_SC_GEN_ABORT_PWRLOSS:
1509 		/* Command Aborted due to Power Loss Notification */
1510 		ddi_fm_service_impact(cmd->nc_nvme->n_dip, DDI_SERVICE_LOST);
1511 		cmd->nc_nvme->n_dead = B_TRUE;
1512 		return (EIO);
1513 
1514 	case NVME_CQE_SC_GEN_ABORT_SQ_DEL:
1515 		/* Command Aborted due to SQ Deletion */
1516 		atomic_inc_32(&cmd->nc_nvme->n_abort_sq_del);
1517 		return (EIO);
1518 
1519 	case NVME_CQE_SC_GEN_NVM_CAP_EXC:
1520 		/* Capacity Exceeded */
1521 		atomic_inc_32(&cmd->nc_nvme->n_nvm_cap_exc);
1522 		if (cmd->nc_xfer != NULL)
1523 			bd_error(cmd->nc_xfer, BD_ERR_MEDIA);
1524 		return (EIO);
1525 
1526 	case NVME_CQE_SC_GEN_NVM_NS_NOTRDY:
1527 		/* Namespace Not Ready */
1528 		atomic_inc_32(&cmd->nc_nvme->n_nvm_ns_notrdy);
1529 		if (cmd->nc_xfer != NULL)
1530 			bd_error(cmd->nc_xfer, BD_ERR_NTRDY);
1531 		return (EIO);
1532 
1533 	default:
1534 		return (nvme_check_unknown_cmd_status(cmd));
1535 	}
1536 }
1537 
1538 static int
1539 nvme_check_specific_cmd_status(nvme_cmd_t *cmd)
1540 {
1541 	nvme_cqe_t *cqe = &cmd->nc_cqe;
1542 
1543 	switch (cqe->cqe_sf.sf_sc) {
1544 	case NVME_CQE_SC_SPC_INV_CQ:
1545 		/* Completion Queue Invalid */
1546 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_SQUEUE);
1547 		atomic_inc_32(&cmd->nc_nvme->n_inv_cq_err);
1548 		return (EINVAL);
1549 
1550 	case NVME_CQE_SC_SPC_INV_QID:
1551 		/* Invalid Queue Identifier */
1552 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_SQUEUE ||
1553 		    cmd->nc_sqe.sqe_opc == NVME_OPC_DELETE_SQUEUE ||
1554 		    cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_CQUEUE ||
1555 		    cmd->nc_sqe.sqe_opc == NVME_OPC_DELETE_CQUEUE);
1556 		atomic_inc_32(&cmd->nc_nvme->n_inv_qid_err);
1557 		return (EINVAL);
1558 
1559 	case NVME_CQE_SC_SPC_MAX_QSZ_EXC:
1560 		/* Max Queue Size Exceeded */
1561 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_SQUEUE ||
1562 		    cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_CQUEUE);
1563 		atomic_inc_32(&cmd->nc_nvme->n_max_qsz_exc);
1564 		return (EINVAL);
1565 
1566 	case NVME_CQE_SC_SPC_ABRT_CMD_EXC:
1567 		/* Abort Command Limit Exceeded */
1568 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_ABORT);
1569 		dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
1570 		    "abort command limit exceeded in cmd %p", (void *)cmd);
1571 		return (0);
1572 
1573 	case NVME_CQE_SC_SPC_ASYNC_EVREQ_EXC:
1574 		/* Async Event Request Limit Exceeded */
1575 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_ASYNC_EVENT);
1576 		dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
1577 		    "async event request limit exceeded in cmd %p",
1578 		    (void *)cmd);
1579 		return (0);
1580 
1581 	case NVME_CQE_SC_SPC_INV_INT_VECT:
1582 		/* Invalid Interrupt Vector */
1583 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_CQUEUE);
1584 		atomic_inc_32(&cmd->nc_nvme->n_inv_int_vect);
1585 		return (EINVAL);
1586 
1587 	case NVME_CQE_SC_SPC_INV_LOG_PAGE:
1588 		/* Invalid Log Page */
1589 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_GET_LOG_PAGE);
1590 		atomic_inc_32(&cmd->nc_nvme->n_inv_log_page);
1591 		return (EINVAL);
1592 
1593 	case NVME_CQE_SC_SPC_INV_FORMAT:
1594 		/* Invalid Format */
1595 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_FORMAT);
1596 		atomic_inc_32(&cmd->nc_nvme->n_inv_format);
1597 		if (cmd->nc_xfer != NULL)
1598 			bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
1599 		return (EINVAL);
1600 
1601 	case NVME_CQE_SC_SPC_INV_Q_DEL:
1602 		/* Invalid Queue Deletion */
1603 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_DELETE_CQUEUE);
1604 		atomic_inc_32(&cmd->nc_nvme->n_inv_q_del);
1605 		return (EINVAL);
1606 
1607 	case NVME_CQE_SC_SPC_NVM_CNFL_ATTR:
1608 		/* Conflicting Attributes */
1609 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_DSET_MGMT ||
1610 		    cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_READ ||
1611 		    cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_WRITE);
1612 		atomic_inc_32(&cmd->nc_nvme->n_cnfl_attr);
1613 		if (cmd->nc_xfer != NULL)
1614 			bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
1615 		return (EINVAL);
1616 
1617 	case NVME_CQE_SC_SPC_NVM_INV_PROT:
1618 		/* Invalid Protection Information */
1619 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_COMPARE ||
1620 		    cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_READ ||
1621 		    cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_WRITE);
1622 		atomic_inc_32(&cmd->nc_nvme->n_inv_prot);
1623 		if (cmd->nc_xfer != NULL)
1624 			bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
1625 		return (EINVAL);
1626 
1627 	case NVME_CQE_SC_SPC_NVM_READONLY:
1628 		/* Write to Read Only Range */
1629 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_WRITE);
1630 		atomic_inc_32(&cmd->nc_nvme->n_readonly);
1631 		if (cmd->nc_xfer != NULL)
1632 			bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
1633 		return (EROFS);
1634 
1635 	case NVME_CQE_SC_SPC_INV_FW_SLOT:
1636 		/* Invalid Firmware Slot */
1637 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_FW_ACTIVATE);
1638 		return (EINVAL);
1639 
1640 	case NVME_CQE_SC_SPC_INV_FW_IMG:
1641 		/* Invalid Firmware Image */
1642 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_FW_ACTIVATE);
1643 		return (EINVAL);
1644 
1645 	case NVME_CQE_SC_SPC_FW_RESET:
1646 		/* Conventional Reset Required */
1647 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_FW_ACTIVATE);
1648 		return (0);
1649 
1650 	case NVME_CQE_SC_SPC_FW_NSSR:
1651 		/* NVMe Subsystem Reset Required */
1652 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_FW_ACTIVATE);
1653 		return (0);
1654 
1655 	case NVME_CQE_SC_SPC_FW_NEXT_RESET:
1656 		/* Activation Requires Reset */
1657 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_FW_ACTIVATE);
1658 		return (0);
1659 
1660 	case NVME_CQE_SC_SPC_FW_MTFA:
1661 		/* Activation Requires Maximum Time Violation */
1662 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_FW_ACTIVATE);
1663 		return (EAGAIN);
1664 
1665 	case NVME_CQE_SC_SPC_FW_PROHIBITED:
1666 		/* Activation Prohibited */
1667 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_FW_ACTIVATE);
1668 		return (EINVAL);
1669 
1670 	case NVME_CQE_SC_SPC_FW_OVERLAP:
1671 		/* Overlapping Firmware Ranges */
1672 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_FW_IMAGE_LOAD);
1673 		return (EINVAL);
1674 
1675 	default:
1676 		return (nvme_check_unknown_cmd_status(cmd));
1677 	}
1678 }
1679 
1680 static inline int
1681 nvme_check_cmd_status(nvme_cmd_t *cmd)
1682 {
1683 	nvme_cqe_t *cqe = &cmd->nc_cqe;
1684 
1685 	/*
1686 	 * Take a shortcut if the controller is dead, or if
1687 	 * command status indicates no error.
1688 	 */
1689 	if (cmd->nc_nvme->n_dead)
1690 		return (EIO);
1691 
1692 	if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC &&
1693 	    cqe->cqe_sf.sf_sc == NVME_CQE_SC_GEN_SUCCESS)
1694 		return (0);
1695 
1696 	if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC)
1697 		return (nvme_check_generic_cmd_status(cmd));
1698 	else if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_SPECIFIC)
1699 		return (nvme_check_specific_cmd_status(cmd));
1700 	else if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_INTEGRITY)
1701 		return (nvme_check_integrity_cmd_status(cmd));
1702 	else if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_VENDOR)
1703 		return (nvme_check_vendor_cmd_status(cmd));
1704 
1705 	return (nvme_check_unknown_cmd_status(cmd));
1706 }
1707 
1708 static int
1709 nvme_abort_cmd(nvme_cmd_t *abort_cmd, uint_t sec)
1710 {
1711 	nvme_t *nvme = abort_cmd->nc_nvme;
1712 	nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1713 	nvme_abort_cmd_t ac = { 0 };
1714 	int ret = 0;
1715 
1716 	sema_p(&nvme->n_abort_sema);
1717 
1718 	ac.b.ac_cid = abort_cmd->nc_sqe.sqe_cid;
1719 	ac.b.ac_sqid = abort_cmd->nc_sqid;
1720 
1721 	cmd->nc_sqid = 0;
1722 	cmd->nc_sqe.sqe_opc = NVME_OPC_ABORT;
1723 	cmd->nc_callback = nvme_wakeup_cmd;
1724 	cmd->nc_sqe.sqe_cdw10 = ac.r;
1725 
1726 	/*
1727 	 * Send the ABORT to the hardware. The ABORT command will return _after_
1728 	 * the aborted command has completed (aborted or otherwise), but since
1729 	 * we still hold the aborted command's mutex its callback hasn't been
1730 	 * processed yet.
1731 	 */
1732 	nvme_admin_cmd(cmd, sec);
1733 	sema_v(&nvme->n_abort_sema);
1734 
1735 	if ((ret = nvme_check_cmd_status(cmd)) != 0) {
1736 		dev_err(nvme->n_dip, CE_WARN,
1737 		    "!ABORT failed with sct = %x, sc = %x",
1738 		    cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
1739 		atomic_inc_32(&nvme->n_abort_failed);
1740 	} else {
1741 		dev_err(nvme->n_dip, CE_WARN,
1742 		    "!ABORT of command %d/%d %ssuccessful",
1743 		    abort_cmd->nc_sqe.sqe_cid, abort_cmd->nc_sqid,
1744 		    cmd->nc_cqe.cqe_dw0 & 1 ? "un" : "");
1745 		if ((cmd->nc_cqe.cqe_dw0 & 1) == 0)
1746 			atomic_inc_32(&nvme->n_cmd_aborted);
1747 	}
1748 
1749 	nvme_free_cmd(cmd);
1750 	return (ret);
1751 }
1752 
1753 /*
1754  * nvme_wait_cmd -- wait for command completion or timeout
1755  *
1756  * In case of a serious error or a timeout of the abort command the hardware
1757  * will be declared dead and FMA will be notified.
1758  */
1759 static void
1760 nvme_wait_cmd(nvme_cmd_t *cmd, uint_t sec)
1761 {
1762 	clock_t timeout = ddi_get_lbolt() + drv_usectohz(sec * MICROSEC);
1763 	nvme_t *nvme = cmd->nc_nvme;
1764 	nvme_reg_csts_t csts;
1765 	nvme_qpair_t *qp;
1766 
1767 	ASSERT(mutex_owned(&cmd->nc_mutex));
1768 
1769 	while (!cmd->nc_completed) {
1770 		if (cv_timedwait(&cmd->nc_cv, &cmd->nc_mutex, timeout) == -1)
1771 			break;
1772 	}
1773 
1774 	if (cmd->nc_completed)
1775 		return;
1776 
1777 	/*
1778 	 * The command timed out.
1779 	 *
1780 	 * Check controller for fatal status, any errors associated with the
1781 	 * register or DMA handle, or for a double timeout (abort command timed
1782 	 * out). If necessary log a warning and call FMA.
1783 	 */
1784 	csts.r = nvme_get32(nvme, NVME_REG_CSTS);
1785 	dev_err(nvme->n_dip, CE_WARN, "!command %d/%d timeout, "
1786 	    "OPC = %x, CFS = %d", cmd->nc_sqe.sqe_cid, cmd->nc_sqid,
1787 	    cmd->nc_sqe.sqe_opc, csts.b.csts_cfs);
1788 	atomic_inc_32(&nvme->n_cmd_timeout);
1789 
1790 	if (csts.b.csts_cfs ||
1791 	    nvme_check_regs_hdl(nvme) ||
1792 	    nvme_check_dma_hdl(cmd->nc_dma) ||
1793 	    cmd->nc_sqe.sqe_opc == NVME_OPC_ABORT) {
1794 		ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
1795 		nvme->n_dead = B_TRUE;
1796 	} else if (nvme_abort_cmd(cmd, sec) == 0) {
1797 		/*
1798 		 * If the abort succeeded the command should complete
1799 		 * immediately with an appropriate status.
1800 		 */
1801 		while (!cmd->nc_completed)
1802 			cv_wait(&cmd->nc_cv, &cmd->nc_mutex);
1803 
1804 		return;
1805 	}
1806 
1807 	qp = nvme->n_ioq[cmd->nc_sqid];
1808 
1809 	mutex_enter(&qp->nq_mutex);
1810 	(void) nvme_unqueue_cmd(nvme, qp, cmd->nc_sqe.sqe_cid);
1811 	mutex_exit(&qp->nq_mutex);
1812 
1813 	/*
1814 	 * As we don't know what the presumed dead hardware might still do with
1815 	 * the DMA memory, we'll put the command on the lost commands list if it
1816 	 * has any DMA memory.
1817 	 */
1818 	if (cmd->nc_dma != NULL) {
1819 		mutex_enter(&nvme_lc_mutex);
1820 		list_insert_head(&nvme_lost_cmds, cmd);
1821 		mutex_exit(&nvme_lc_mutex);
1822 	}
1823 }
1824 
1825 static void
1826 nvme_wakeup_cmd(void *arg)
1827 {
1828 	nvme_cmd_t *cmd = arg;
1829 
1830 	mutex_enter(&cmd->nc_mutex);
1831 	cmd->nc_completed = B_TRUE;
1832 	cv_signal(&cmd->nc_cv);
1833 	mutex_exit(&cmd->nc_mutex);
1834 }
1835 
1836 static void
1837 nvme_async_event_task(void *arg)
1838 {
1839 	nvme_cmd_t *cmd = arg;
1840 	nvme_t *nvme = cmd->nc_nvme;
1841 	nvme_error_log_entry_t *error_log = NULL;
1842 	nvme_health_log_t *health_log = NULL;
1843 	nvme_nschange_list_t *nslist = NULL;
1844 	size_t logsize = 0;
1845 	nvme_async_event_t event;
1846 
1847 	/*
1848 	 * Check for errors associated with the async request itself. The only
1849 	 * command-specific error is "async event limit exceeded", which
1850 	 * indicates a programming error in the driver and causes a panic in
1851 	 * nvme_check_cmd_status().
1852 	 *
1853 	 * Other possible errors are various scenarios where the async request
1854 	 * was aborted, or internal errors in the device. Internal errors are
1855 	 * reported to FMA, the command aborts need no special handling here.
1856 	 *
1857 	 * And finally, at least qemu nvme does not support async events,
1858 	 * and will return NVME_CQE_SC_GEN_INV_OPC | DNR. If so, we
1859 	 * will avoid posting async events.
1860 	 */
1861 
1862 	if (nvme_check_cmd_status(cmd) != 0) {
1863 		dev_err(cmd->nc_nvme->n_dip, CE_WARN,
1864 		    "!async event request returned failure, sct = %x, "
1865 		    "sc = %x, dnr = %d, m = %d", cmd->nc_cqe.cqe_sf.sf_sct,
1866 		    cmd->nc_cqe.cqe_sf.sf_sc, cmd->nc_cqe.cqe_sf.sf_dnr,
1867 		    cmd->nc_cqe.cqe_sf.sf_m);
1868 
1869 		if (cmd->nc_cqe.cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC &&
1870 		    cmd->nc_cqe.cqe_sf.sf_sc == NVME_CQE_SC_GEN_INTERNAL_ERR) {
1871 			cmd->nc_nvme->n_dead = B_TRUE;
1872 			ddi_fm_service_impact(cmd->nc_nvme->n_dip,
1873 			    DDI_SERVICE_LOST);
1874 		}
1875 
1876 		if (cmd->nc_cqe.cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC &&
1877 		    cmd->nc_cqe.cqe_sf.sf_sc == NVME_CQE_SC_GEN_INV_OPC &&
1878 		    cmd->nc_cqe.cqe_sf.sf_dnr == 1) {
1879 			nvme->n_async_event_supported = B_FALSE;
1880 		}
1881 
1882 		nvme_free_cmd(cmd);
1883 		return;
1884 	}
1885 
1886 	event.r = cmd->nc_cqe.cqe_dw0;
1887 
1888 	/* Clear CQE and re-submit the async request. */
1889 	bzero(&cmd->nc_cqe, sizeof (nvme_cqe_t));
1890 	nvme_submit_admin_cmd(nvme->n_adminq, cmd);
1891 
1892 	switch (event.b.ae_type) {
1893 	case NVME_ASYNC_TYPE_ERROR:
1894 		if (event.b.ae_logpage == NVME_LOGPAGE_ERROR) {
1895 			(void) nvme_get_logpage(nvme, B_FALSE,
1896 			    (void **)&error_log, &logsize, event.b.ae_logpage);
1897 		} else {
1898 			dev_err(nvme->n_dip, CE_WARN, "!wrong logpage in "
1899 			    "async event reply: %d", event.b.ae_logpage);
1900 			atomic_inc_32(&nvme->n_wrong_logpage);
1901 		}
1902 
1903 		switch (event.b.ae_info) {
1904 		case NVME_ASYNC_ERROR_INV_SQ:
1905 			dev_err(nvme->n_dip, CE_PANIC, "programming error: "
1906 			    "invalid submission queue");
1907 			return;
1908 
1909 		case NVME_ASYNC_ERROR_INV_DBL:
1910 			dev_err(nvme->n_dip, CE_PANIC, "programming error: "
1911 			    "invalid doorbell write value");
1912 			return;
1913 
1914 		case NVME_ASYNC_ERROR_DIAGFAIL:
1915 			dev_err(nvme->n_dip, CE_WARN, "!diagnostic failure");
1916 			ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
1917 			nvme->n_dead = B_TRUE;
1918 			atomic_inc_32(&nvme->n_diagfail_event);
1919 			break;
1920 
1921 		case NVME_ASYNC_ERROR_PERSISTENT:
1922 			dev_err(nvme->n_dip, CE_WARN, "!persistent internal "
1923 			    "device error");
1924 			ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
1925 			nvme->n_dead = B_TRUE;
1926 			atomic_inc_32(&nvme->n_persistent_event);
1927 			break;
1928 
1929 		case NVME_ASYNC_ERROR_TRANSIENT:
1930 			dev_err(nvme->n_dip, CE_WARN, "!transient internal "
1931 			    "device error");
1932 			/* TODO: send ereport */
1933 			atomic_inc_32(&nvme->n_transient_event);
1934 			break;
1935 
1936 		case NVME_ASYNC_ERROR_FW_LOAD:
1937 			dev_err(nvme->n_dip, CE_WARN,
1938 			    "!firmware image load error");
1939 			atomic_inc_32(&nvme->n_fw_load_event);
1940 			break;
1941 		}
1942 		break;
1943 
1944 	case NVME_ASYNC_TYPE_HEALTH:
1945 		if (event.b.ae_logpage == NVME_LOGPAGE_HEALTH) {
1946 			(void) nvme_get_logpage(nvme, B_FALSE,
1947 			    (void **)&health_log, &logsize, event.b.ae_logpage,
1948 			    -1);
1949 		} else {
1950 			dev_err(nvme->n_dip, CE_WARN, "!wrong logpage in "
1951 			    "async event reply: %d", event.b.ae_logpage);
1952 			atomic_inc_32(&nvme->n_wrong_logpage);
1953 		}
1954 
1955 		switch (event.b.ae_info) {
1956 		case NVME_ASYNC_HEALTH_RELIABILITY:
1957 			dev_err(nvme->n_dip, CE_WARN,
1958 			    "!device reliability compromised");
1959 			/* TODO: send ereport */
1960 			atomic_inc_32(&nvme->n_reliability_event);
1961 			break;
1962 
1963 		case NVME_ASYNC_HEALTH_TEMPERATURE:
1964 			dev_err(nvme->n_dip, CE_WARN,
1965 			    "!temperature above threshold");
1966 			/* TODO: send ereport */
1967 			atomic_inc_32(&nvme->n_temperature_event);
1968 			break;
1969 
1970 		case NVME_ASYNC_HEALTH_SPARE:
1971 			dev_err(nvme->n_dip, CE_WARN,
1972 			    "!spare space below threshold");
1973 			/* TODO: send ereport */
1974 			atomic_inc_32(&nvme->n_spare_event);
1975 			break;
1976 		}
1977 		break;
1978 
1979 	case NVME_ASYNC_TYPE_NOTICE:
1980 		switch (event.b.ae_info) {
1981 		case NVME_ASYNC_NOTICE_NS_CHANGE:
1982 			dev_err(nvme->n_dip, CE_NOTE,
1983 			    "namespace attribute change event, "
1984 			    "logpage = %x", event.b.ae_logpage);
1985 			atomic_inc_32(&nvme->n_notice_event);
1986 
1987 			if (event.b.ae_logpage != NVME_LOGPAGE_NSCHANGE)
1988 				break;
1989 
1990 			if (nvme_get_logpage(nvme, B_FALSE, (void **)&nslist,
1991 			    &logsize, event.b.ae_logpage, -1) != 0) {
1992 				break;
1993 			}
1994 
1995 			if (nslist->nscl_ns[0] == UINT32_MAX) {
1996 				dev_err(nvme->n_dip, CE_CONT,
1997 				    "more than %u namespaces have changed.\n",
1998 				    NVME_NSCHANGE_LIST_SIZE);
1999 				break;
2000 			}
2001 
2002 			mutex_enter(&nvme->n_mgmt_mutex);
2003 			for (uint_t i = 0; i < NVME_NSCHANGE_LIST_SIZE; i++) {
2004 				uint32_t nsid = nslist->nscl_ns[i];
2005 
2006 				if (nsid == 0)	/* end of list */
2007 					break;
2008 
2009 				dev_err(nvme->n_dip, CE_NOTE,
2010 				    "!namespace %u (%s) has changed.", nsid,
2011 				    NVME_NSID2NS(nvme, nsid)->ns_name);
2012 
2013 				if (nvme_init_ns(nvme, nsid) != DDI_SUCCESS)
2014 					continue;
2015 
2016 				bd_state_change(
2017 				    NVME_NSID2NS(nvme, nsid)->ns_bd_hdl);
2018 			}
2019 			mutex_exit(&nvme->n_mgmt_mutex);
2020 
2021 			break;
2022 
2023 		case NVME_ASYNC_NOTICE_FW_ACTIVATE:
2024 			dev_err(nvme->n_dip, CE_NOTE,
2025 			    "firmware activation starting, "
2026 			    "logpage = %x", event.b.ae_logpage);
2027 			atomic_inc_32(&nvme->n_notice_event);
2028 			break;
2029 
2030 		case NVME_ASYNC_NOTICE_TELEMETRY:
2031 			dev_err(nvme->n_dip, CE_NOTE,
2032 			    "telemetry log changed, "
2033 			    "logpage = %x", event.b.ae_logpage);
2034 			atomic_inc_32(&nvme->n_notice_event);
2035 			break;
2036 
2037 		case NVME_ASYNC_NOTICE_NS_ASYMM:
2038 			dev_err(nvme->n_dip, CE_NOTE,
2039 			    "asymmetric namespace access change, "
2040 			    "logpage = %x", event.b.ae_logpage);
2041 			atomic_inc_32(&nvme->n_notice_event);
2042 			break;
2043 
2044 		case NVME_ASYNC_NOTICE_LATENCYLOG:
2045 			dev_err(nvme->n_dip, CE_NOTE,
2046 			    "predictable latency event aggregate log change, "
2047 			    "logpage = %x", event.b.ae_logpage);
2048 			atomic_inc_32(&nvme->n_notice_event);
2049 			break;
2050 
2051 		case NVME_ASYNC_NOTICE_LBASTATUS:
2052 			dev_err(nvme->n_dip, CE_NOTE,
2053 			    "LBA status information alert, "
2054 			    "logpage = %x", event.b.ae_logpage);
2055 			atomic_inc_32(&nvme->n_notice_event);
2056 			break;
2057 
2058 		case NVME_ASYNC_NOTICE_ENDURANCELOG:
2059 			dev_err(nvme->n_dip, CE_NOTE,
2060 			    "endurance group event aggregate log page change, "
2061 			    "logpage = %x", event.b.ae_logpage);
2062 			atomic_inc_32(&nvme->n_notice_event);
2063 			break;
2064 
2065 		default:
2066 			dev_err(nvme->n_dip, CE_WARN,
2067 			    "!unknown notice async event received, "
2068 			    "info = %x, logpage = %x", event.b.ae_info,
2069 			    event.b.ae_logpage);
2070 			atomic_inc_32(&nvme->n_unknown_event);
2071 			break;
2072 		}
2073 		break;
2074 
2075 	case NVME_ASYNC_TYPE_VENDOR:
2076 		dev_err(nvme->n_dip, CE_WARN, "!vendor specific async event "
2077 		    "received, info = %x, logpage = %x", event.b.ae_info,
2078 		    event.b.ae_logpage);
2079 		atomic_inc_32(&nvme->n_vendor_event);
2080 		break;
2081 
2082 	default:
2083 		dev_err(nvme->n_dip, CE_WARN, "!unknown async event received, "
2084 		    "type = %x, info = %x, logpage = %x", event.b.ae_type,
2085 		    event.b.ae_info, event.b.ae_logpage);
2086 		atomic_inc_32(&nvme->n_unknown_event);
2087 		break;
2088 	}
2089 
2090 	if (error_log != NULL)
2091 		kmem_free(error_log, logsize);
2092 
2093 	if (health_log != NULL)
2094 		kmem_free(health_log, logsize);
2095 
2096 	if (nslist != NULL)
2097 		kmem_free(nslist, logsize);
2098 }
2099 
2100 static void
2101 nvme_admin_cmd(nvme_cmd_t *cmd, int sec)
2102 {
2103 	mutex_enter(&cmd->nc_mutex);
2104 	nvme_submit_admin_cmd(cmd->nc_nvme->n_adminq, cmd);
2105 	nvme_wait_cmd(cmd, sec);
2106 	mutex_exit(&cmd->nc_mutex);
2107 }
2108 
2109 static void
2110 nvme_async_event(nvme_t *nvme)
2111 {
2112 	nvme_cmd_t *cmd;
2113 
2114 	cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
2115 	cmd->nc_sqid = 0;
2116 	cmd->nc_sqe.sqe_opc = NVME_OPC_ASYNC_EVENT;
2117 	cmd->nc_callback = nvme_async_event_task;
2118 	cmd->nc_dontpanic = B_TRUE;
2119 
2120 	nvme_submit_admin_cmd(nvme->n_adminq, cmd);
2121 }
2122 
2123 static int
2124 nvme_format_nvm(nvme_t *nvme, boolean_t user, uint32_t nsid, uint8_t lbaf,
2125     boolean_t ms, uint8_t pi, boolean_t pil, uint8_t ses)
2126 {
2127 	nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
2128 	nvme_format_nvm_t format_nvm = { 0 };
2129 	int ret;
2130 
2131 	format_nvm.b.fm_lbaf = lbaf & 0xf;
2132 	format_nvm.b.fm_ms = ms ? 1 : 0;
2133 	format_nvm.b.fm_pi = pi & 0x7;
2134 	format_nvm.b.fm_pil = pil ? 1 : 0;
2135 	format_nvm.b.fm_ses = ses & 0x7;
2136 
2137 	cmd->nc_sqid = 0;
2138 	cmd->nc_callback = nvme_wakeup_cmd;
2139 	cmd->nc_sqe.sqe_nsid = nsid;
2140 	cmd->nc_sqe.sqe_opc = NVME_OPC_NVM_FORMAT;
2141 	cmd->nc_sqe.sqe_cdw10 = format_nvm.r;
2142 
2143 	/*
2144 	 * Some devices like Samsung SM951 don't allow formatting of all
2145 	 * namespaces in one command. Handle that gracefully.
2146 	 */
2147 	if (nsid == (uint32_t)-1)
2148 		cmd->nc_dontpanic = B_TRUE;
2149 	/*
2150 	 * If this format request was initiated by the user, then don't allow a
2151 	 * programmer error to panic the system.
2152 	 */
2153 	if (user)
2154 		cmd->nc_dontpanic = B_TRUE;
2155 
2156 	nvme_admin_cmd(cmd, nvme_format_cmd_timeout);
2157 
2158 	if ((ret = nvme_check_cmd_status(cmd)) != 0) {
2159 		dev_err(nvme->n_dip, CE_WARN,
2160 		    "!FORMAT failed with sct = %x, sc = %x",
2161 		    cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
2162 	}
2163 
2164 	nvme_free_cmd(cmd);
2165 	return (ret);
2166 }
2167 
2168 /*
2169  * The `bufsize` parameter is usually an output parameter, set by this routine
2170  * when filling in the supported types of logpages from the device. However, for
2171  * vendor-specific pages, it is an input parameter, and must be set
2172  * appropriately by callers.
2173  */
2174 static int
2175 nvme_get_logpage(nvme_t *nvme, boolean_t user, void **buf, size_t *bufsize,
2176     uint8_t logpage, ...)
2177 {
2178 	nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
2179 	nvme_getlogpage_t getlogpage = { 0 };
2180 	va_list ap;
2181 	int ret;
2182 
2183 	va_start(ap, logpage);
2184 
2185 	cmd->nc_sqid = 0;
2186 	cmd->nc_callback = nvme_wakeup_cmd;
2187 	cmd->nc_sqe.sqe_opc = NVME_OPC_GET_LOG_PAGE;
2188 
2189 	if (user)
2190 		cmd->nc_dontpanic = B_TRUE;
2191 
2192 	getlogpage.b.lp_lid = logpage;
2193 
2194 	switch (logpage) {
2195 	case NVME_LOGPAGE_ERROR:
2196 		cmd->nc_sqe.sqe_nsid = (uint32_t)-1;
2197 		*bufsize = MIN(NVME_VENDOR_SPECIFIC_LOGPAGE_MAX_SIZE,
2198 		    nvme->n_error_log_len * sizeof (nvme_error_log_entry_t));
2199 		break;
2200 
2201 	case NVME_LOGPAGE_HEALTH:
2202 		cmd->nc_sqe.sqe_nsid = va_arg(ap, uint32_t);
2203 		*bufsize = sizeof (nvme_health_log_t);
2204 		break;
2205 
2206 	case NVME_LOGPAGE_FWSLOT:
2207 		cmd->nc_sqe.sqe_nsid = (uint32_t)-1;
2208 		*bufsize = sizeof (nvme_fwslot_log_t);
2209 		break;
2210 
2211 	case NVME_LOGPAGE_NSCHANGE:
2212 		cmd->nc_sqe.sqe_nsid = (uint32_t)-1;
2213 		*bufsize = sizeof (nvme_nschange_list_t);
2214 		break;
2215 
2216 	default:
2217 		/*
2218 		 * This intentionally only checks against the minimum valid
2219 		 * log page ID. `logpage` is a uint8_t, and `0xFF` is a valid
2220 		 * page ID, so this one-sided check avoids a compiler error
2221 		 * about a check that's always true.
2222 		 */
2223 		if (logpage < NVME_VENDOR_SPECIFIC_LOGPAGE_MIN) {
2224 			dev_err(nvme->n_dip, CE_WARN,
2225 			    "!unknown log page requested: %d", logpage);
2226 			atomic_inc_32(&nvme->n_unknown_logpage);
2227 			ret = EINVAL;
2228 			goto fail;
2229 		}
2230 		cmd->nc_sqe.sqe_nsid = va_arg(ap, uint32_t);
2231 	}
2232 
2233 	va_end(ap);
2234 
2235 	getlogpage.b.lp_numd = *bufsize / sizeof (uint32_t) - 1;
2236 
2237 	cmd->nc_sqe.sqe_cdw10 = getlogpage.r;
2238 
2239 	if (nvme_zalloc_dma(nvme, *bufsize,
2240 	    DDI_DMA_READ, &nvme->n_prp_dma_attr, &cmd->nc_dma) != DDI_SUCCESS) {
2241 		dev_err(nvme->n_dip, CE_WARN,
2242 		    "!nvme_zalloc_dma failed for GET LOG PAGE");
2243 		ret = ENOMEM;
2244 		goto fail;
2245 	}
2246 
2247 	if ((ret = nvme_fill_prp(cmd, cmd->nc_dma->nd_dmah)) != 0)
2248 		goto fail;
2249 	nvme_admin_cmd(cmd, nvme_admin_cmd_timeout);
2250 
2251 	if ((ret = nvme_check_cmd_status(cmd)) != 0) {
2252 		dev_err(nvme->n_dip, CE_WARN,
2253 		    "!GET LOG PAGE failed with sct = %x, sc = %x",
2254 		    cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
2255 		goto fail;
2256 	}
2257 
2258 	*buf = kmem_alloc(*bufsize, KM_SLEEP);
2259 	bcopy(cmd->nc_dma->nd_memp, *buf, *bufsize);
2260 
2261 fail:
2262 	nvme_free_cmd(cmd);
2263 
2264 	return (ret);
2265 }
2266 
2267 static int
2268 nvme_identify(nvme_t *nvme, boolean_t user, uint32_t nsid, void **buf)
2269 {
2270 	nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
2271 	int ret;
2272 
2273 	if (buf == NULL)
2274 		return (EINVAL);
2275 
2276 	cmd->nc_sqid = 0;
2277 	cmd->nc_callback = nvme_wakeup_cmd;
2278 	cmd->nc_sqe.sqe_opc = NVME_OPC_IDENTIFY;
2279 	cmd->nc_sqe.sqe_nsid = nsid;
2280 	cmd->nc_sqe.sqe_cdw10 = nsid ? NVME_IDENTIFY_NSID : NVME_IDENTIFY_CTRL;
2281 
2282 	if (nvme_zalloc_dma(nvme, NVME_IDENTIFY_BUFSIZE, DDI_DMA_READ,
2283 	    &nvme->n_prp_dma_attr, &cmd->nc_dma) != DDI_SUCCESS) {
2284 		dev_err(nvme->n_dip, CE_WARN,
2285 		    "!nvme_zalloc_dma failed for IDENTIFY");
2286 		ret = ENOMEM;
2287 		goto fail;
2288 	}
2289 
2290 	if (cmd->nc_dma->nd_ncookie > 2) {
2291 		dev_err(nvme->n_dip, CE_WARN,
2292 		    "!too many DMA cookies for IDENTIFY");
2293 		atomic_inc_32(&nvme->n_too_many_cookies);
2294 		ret = ENOMEM;
2295 		goto fail;
2296 	}
2297 
2298 	cmd->nc_sqe.sqe_dptr.d_prp[0] = cmd->nc_dma->nd_cookie.dmac_laddress;
2299 	if (cmd->nc_dma->nd_ncookie > 1) {
2300 		ddi_dma_nextcookie(cmd->nc_dma->nd_dmah,
2301 		    &cmd->nc_dma->nd_cookie);
2302 		cmd->nc_sqe.sqe_dptr.d_prp[1] =
2303 		    cmd->nc_dma->nd_cookie.dmac_laddress;
2304 	}
2305 
2306 	if (user)
2307 		cmd->nc_dontpanic = B_TRUE;
2308 
2309 	nvme_admin_cmd(cmd, nvme_admin_cmd_timeout);
2310 
2311 	if ((ret = nvme_check_cmd_status(cmd)) != 0) {
2312 		dev_err(nvme->n_dip, CE_WARN,
2313 		    "!IDENTIFY failed with sct = %x, sc = %x",
2314 		    cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
2315 		goto fail;
2316 	}
2317 
2318 	*buf = kmem_alloc(NVME_IDENTIFY_BUFSIZE, KM_SLEEP);
2319 	bcopy(cmd->nc_dma->nd_memp, *buf, NVME_IDENTIFY_BUFSIZE);
2320 
2321 fail:
2322 	nvme_free_cmd(cmd);
2323 
2324 	return (ret);
2325 }
2326 
2327 static int
2328 nvme_set_features(nvme_t *nvme, boolean_t user, uint32_t nsid, uint8_t feature,
2329     uint32_t val, uint32_t *res)
2330 {
2331 	_NOTE(ARGUNUSED(nsid));
2332 	nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
2333 	int ret = EINVAL;
2334 
2335 	ASSERT(res != NULL);
2336 
2337 	cmd->nc_sqid = 0;
2338 	cmd->nc_callback = nvme_wakeup_cmd;
2339 	cmd->nc_sqe.sqe_opc = NVME_OPC_SET_FEATURES;
2340 	cmd->nc_sqe.sqe_cdw10 = feature;
2341 	cmd->nc_sqe.sqe_cdw11 = val;
2342 
2343 	if (user)
2344 		cmd->nc_dontpanic = B_TRUE;
2345 
2346 	switch (feature) {
2347 	case NVME_FEAT_WRITE_CACHE:
2348 		if (!nvme->n_write_cache_present)
2349 			goto fail;
2350 		break;
2351 
2352 	case NVME_FEAT_NQUEUES:
2353 		break;
2354 
2355 	default:
2356 		goto fail;
2357 	}
2358 
2359 	nvme_admin_cmd(cmd, nvme_admin_cmd_timeout);
2360 
2361 	if ((ret = nvme_check_cmd_status(cmd)) != 0) {
2362 		dev_err(nvme->n_dip, CE_WARN,
2363 		    "!SET FEATURES %d failed with sct = %x, sc = %x",
2364 		    feature, cmd->nc_cqe.cqe_sf.sf_sct,
2365 		    cmd->nc_cqe.cqe_sf.sf_sc);
2366 		goto fail;
2367 	}
2368 
2369 	*res = cmd->nc_cqe.cqe_dw0;
2370 
2371 fail:
2372 	nvme_free_cmd(cmd);
2373 	return (ret);
2374 }
2375 
2376 static int
2377 nvme_get_features(nvme_t *nvme, boolean_t user, uint32_t nsid, uint8_t feature,
2378     uint32_t *res, void **buf, size_t *bufsize)
2379 {
2380 	nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
2381 	int ret = EINVAL;
2382 
2383 	ASSERT(res != NULL);
2384 
2385 	if (bufsize != NULL)
2386 		*bufsize = 0;
2387 
2388 	cmd->nc_sqid = 0;
2389 	cmd->nc_callback = nvme_wakeup_cmd;
2390 	cmd->nc_sqe.sqe_opc = NVME_OPC_GET_FEATURES;
2391 	cmd->nc_sqe.sqe_cdw10 = feature;
2392 	cmd->nc_sqe.sqe_cdw11 = *res;
2393 
2394 	/*
2395 	 * For some of the optional features there doesn't seem to be a method
2396 	 * of detecting whether it is supported other than using it.  This will
2397 	 * cause "Invalid Field in Command" error, which is normally considered
2398 	 * a programming error.  Set the nc_dontpanic flag to override the panic
2399 	 * in nvme_check_generic_cmd_status().
2400 	 */
2401 	switch (feature) {
2402 	case NVME_FEAT_ARBITRATION:
2403 	case NVME_FEAT_POWER_MGMT:
2404 	case NVME_FEAT_TEMPERATURE:
2405 	case NVME_FEAT_ERROR:
2406 	case NVME_FEAT_NQUEUES:
2407 	case NVME_FEAT_INTR_COAL:
2408 	case NVME_FEAT_INTR_VECT:
2409 	case NVME_FEAT_WRITE_ATOM:
2410 	case NVME_FEAT_ASYNC_EVENT:
2411 		break;
2412 
2413 	case NVME_FEAT_WRITE_CACHE:
2414 		if (!nvme->n_write_cache_present)
2415 			goto fail;
2416 		break;
2417 
2418 	case NVME_FEAT_LBA_RANGE:
2419 		if (!nvme->n_lba_range_supported)
2420 			goto fail;
2421 
2422 		cmd->nc_dontpanic = B_TRUE;
2423 		cmd->nc_sqe.sqe_nsid = nsid;
2424 		ASSERT(bufsize != NULL);
2425 		*bufsize = NVME_LBA_RANGE_BUFSIZE;
2426 		break;
2427 
2428 	case NVME_FEAT_AUTO_PST:
2429 		if (!nvme->n_auto_pst_supported)
2430 			goto fail;
2431 
2432 		ASSERT(bufsize != NULL);
2433 		*bufsize = NVME_AUTO_PST_BUFSIZE;
2434 		break;
2435 
2436 	case NVME_FEAT_PROGRESS:
2437 		if (!nvme->n_progress_supported)
2438 			goto fail;
2439 
2440 		cmd->nc_dontpanic = B_TRUE;
2441 		break;
2442 
2443 	default:
2444 		goto fail;
2445 	}
2446 
2447 	if (user)
2448 		cmd->nc_dontpanic = B_TRUE;
2449 
2450 	if (bufsize != NULL && *bufsize != 0) {
2451 		if (nvme_zalloc_dma(nvme, *bufsize, DDI_DMA_READ,
2452 		    &nvme->n_prp_dma_attr, &cmd->nc_dma) != DDI_SUCCESS) {
2453 			dev_err(nvme->n_dip, CE_WARN,
2454 			    "!nvme_zalloc_dma failed for GET FEATURES");
2455 			ret = ENOMEM;
2456 			goto fail;
2457 		}
2458 
2459 		if (cmd->nc_dma->nd_ncookie > 2) {
2460 			dev_err(nvme->n_dip, CE_WARN,
2461 			    "!too many DMA cookies for GET FEATURES");
2462 			atomic_inc_32(&nvme->n_too_many_cookies);
2463 			ret = ENOMEM;
2464 			goto fail;
2465 		}
2466 
2467 		cmd->nc_sqe.sqe_dptr.d_prp[0] =
2468 		    cmd->nc_dma->nd_cookie.dmac_laddress;
2469 		if (cmd->nc_dma->nd_ncookie > 1) {
2470 			ddi_dma_nextcookie(cmd->nc_dma->nd_dmah,
2471 			    &cmd->nc_dma->nd_cookie);
2472 			cmd->nc_sqe.sqe_dptr.d_prp[1] =
2473 			    cmd->nc_dma->nd_cookie.dmac_laddress;
2474 		}
2475 	}
2476 
2477 	nvme_admin_cmd(cmd, nvme_admin_cmd_timeout);
2478 
2479 	if ((ret = nvme_check_cmd_status(cmd)) != 0) {
2480 		boolean_t known = B_TRUE;
2481 
2482 		/* Check if this is unsupported optional feature */
2483 		if (cmd->nc_cqe.cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC &&
2484 		    cmd->nc_cqe.cqe_sf.sf_sc == NVME_CQE_SC_GEN_INV_FLD) {
2485 			switch (feature) {
2486 			case NVME_FEAT_LBA_RANGE:
2487 				nvme->n_lba_range_supported = B_FALSE;
2488 				break;
2489 			case NVME_FEAT_PROGRESS:
2490 				nvme->n_progress_supported = B_FALSE;
2491 				break;
2492 			default:
2493 				known = B_FALSE;
2494 				break;
2495 			}
2496 		} else {
2497 			known = B_FALSE;
2498 		}
2499 
2500 		/* Report the error otherwise */
2501 		if (!known) {
2502 			dev_err(nvme->n_dip, CE_WARN,
2503 			    "!GET FEATURES %d failed with sct = %x, sc = %x",
2504 			    feature, cmd->nc_cqe.cqe_sf.sf_sct,
2505 			    cmd->nc_cqe.cqe_sf.sf_sc);
2506 		}
2507 
2508 		goto fail;
2509 	}
2510 
2511 	if (bufsize != NULL && *bufsize != 0) {
2512 		ASSERT(buf != NULL);
2513 		*buf = kmem_alloc(*bufsize, KM_SLEEP);
2514 		bcopy(cmd->nc_dma->nd_memp, *buf, *bufsize);
2515 	}
2516 
2517 	*res = cmd->nc_cqe.cqe_dw0;
2518 
2519 fail:
2520 	nvme_free_cmd(cmd);
2521 	return (ret);
2522 }
2523 
2524 static int
2525 nvme_write_cache_set(nvme_t *nvme, boolean_t enable)
2526 {
2527 	nvme_write_cache_t nwc = { 0 };
2528 
2529 	if (enable)
2530 		nwc.b.wc_wce = 1;
2531 
2532 	return (nvme_set_features(nvme, B_FALSE, 0, NVME_FEAT_WRITE_CACHE,
2533 	    nwc.r, &nwc.r));
2534 }
2535 
2536 static int
2537 nvme_set_nqueues(nvme_t *nvme)
2538 {
2539 	nvme_nqueues_t nq = { 0 };
2540 	int ret;
2541 
2542 	/*
2543 	 * The default is to allocate one completion queue per vector.
2544 	 */
2545 	if (nvme->n_completion_queues == -1)
2546 		nvme->n_completion_queues = nvme->n_intr_cnt;
2547 
2548 	/*
2549 	 * There is no point in having more completion queues than
2550 	 * interrupt vectors.
2551 	 */
2552 	nvme->n_completion_queues = MIN(nvme->n_completion_queues,
2553 	    nvme->n_intr_cnt);
2554 
2555 	/*
2556 	 * The default is to use one submission queue per completion queue.
2557 	 */
2558 	if (nvme->n_submission_queues == -1)
2559 		nvme->n_submission_queues = nvme->n_completion_queues;
2560 
2561 	/*
2562 	 * There is no point in having more compeletion queues than
2563 	 * submission queues.
2564 	 */
2565 	nvme->n_completion_queues = MIN(nvme->n_completion_queues,
2566 	    nvme->n_submission_queues);
2567 
2568 	ASSERT(nvme->n_submission_queues > 0);
2569 	ASSERT(nvme->n_completion_queues > 0);
2570 
2571 	nq.b.nq_nsq = nvme->n_submission_queues - 1;
2572 	nq.b.nq_ncq = nvme->n_completion_queues - 1;
2573 
2574 	ret = nvme_set_features(nvme, B_FALSE, 0, NVME_FEAT_NQUEUES, nq.r,
2575 	    &nq.r);
2576 
2577 	if (ret == 0) {
2578 		/*
2579 		 * Never use more than the requested number of queues.
2580 		 */
2581 		nvme->n_submission_queues = MIN(nvme->n_submission_queues,
2582 		    nq.b.nq_nsq + 1);
2583 		nvme->n_completion_queues = MIN(nvme->n_completion_queues,
2584 		    nq.b.nq_ncq + 1);
2585 	}
2586 
2587 	return (ret);
2588 }
2589 
2590 static int
2591 nvme_create_completion_queue(nvme_t *nvme, nvme_cq_t *cq)
2592 {
2593 	nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
2594 	nvme_create_queue_dw10_t dw10 = { 0 };
2595 	nvme_create_cq_dw11_t c_dw11 = { 0 };
2596 	int ret;
2597 
2598 	dw10.b.q_qid = cq->ncq_id;
2599 	dw10.b.q_qsize = cq->ncq_nentry - 1;
2600 
2601 	c_dw11.b.cq_pc = 1;
2602 	c_dw11.b.cq_ien = 1;
2603 	c_dw11.b.cq_iv = cq->ncq_id % nvme->n_intr_cnt;
2604 
2605 	cmd->nc_sqid = 0;
2606 	cmd->nc_callback = nvme_wakeup_cmd;
2607 	cmd->nc_sqe.sqe_opc = NVME_OPC_CREATE_CQUEUE;
2608 	cmd->nc_sqe.sqe_cdw10 = dw10.r;
2609 	cmd->nc_sqe.sqe_cdw11 = c_dw11.r;
2610 	cmd->nc_sqe.sqe_dptr.d_prp[0] = cq->ncq_dma->nd_cookie.dmac_laddress;
2611 
2612 	nvme_admin_cmd(cmd, nvme_admin_cmd_timeout);
2613 
2614 	if ((ret = nvme_check_cmd_status(cmd)) != 0) {
2615 		dev_err(nvme->n_dip, CE_WARN,
2616 		    "!CREATE CQUEUE failed with sct = %x, sc = %x",
2617 		    cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
2618 	}
2619 
2620 	nvme_free_cmd(cmd);
2621 
2622 	return (ret);
2623 }
2624 
2625 static int
2626 nvme_create_io_qpair(nvme_t *nvme, nvme_qpair_t *qp, uint16_t idx)
2627 {
2628 	nvme_cq_t *cq = qp->nq_cq;
2629 	nvme_cmd_t *cmd;
2630 	nvme_create_queue_dw10_t dw10 = { 0 };
2631 	nvme_create_sq_dw11_t s_dw11 = { 0 };
2632 	int ret;
2633 
2634 	/*
2635 	 * It is possible to have more qpairs than completion queues,
2636 	 * and when the idx > ncq_id, that completion queue is shared
2637 	 * and has already been created.
2638 	 */
2639 	if (idx <= cq->ncq_id &&
2640 	    nvme_create_completion_queue(nvme, cq) != DDI_SUCCESS)
2641 		return (DDI_FAILURE);
2642 
2643 	dw10.b.q_qid = idx;
2644 	dw10.b.q_qsize = qp->nq_nentry - 1;
2645 
2646 	s_dw11.b.sq_pc = 1;
2647 	s_dw11.b.sq_cqid = cq->ncq_id;
2648 
2649 	cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
2650 	cmd->nc_sqid = 0;
2651 	cmd->nc_callback = nvme_wakeup_cmd;
2652 	cmd->nc_sqe.sqe_opc = NVME_OPC_CREATE_SQUEUE;
2653 	cmd->nc_sqe.sqe_cdw10 = dw10.r;
2654 	cmd->nc_sqe.sqe_cdw11 = s_dw11.r;
2655 	cmd->nc_sqe.sqe_dptr.d_prp[0] = qp->nq_sqdma->nd_cookie.dmac_laddress;
2656 
2657 	nvme_admin_cmd(cmd, nvme_admin_cmd_timeout);
2658 
2659 	if ((ret = nvme_check_cmd_status(cmd)) != 0) {
2660 		dev_err(nvme->n_dip, CE_WARN,
2661 		    "!CREATE SQUEUE failed with sct = %x, sc = %x",
2662 		    cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
2663 	}
2664 
2665 	nvme_free_cmd(cmd);
2666 
2667 	return (ret);
2668 }
2669 
2670 static boolean_t
2671 nvme_reset(nvme_t *nvme, boolean_t quiesce)
2672 {
2673 	nvme_reg_csts_t csts;
2674 	int i;
2675 
2676 	nvme_put32(nvme, NVME_REG_CC, 0);
2677 
2678 	csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2679 	if (csts.b.csts_rdy == 1) {
2680 		nvme_put32(nvme, NVME_REG_CC, 0);
2681 		for (i = 0; i != nvme->n_timeout * 10; i++) {
2682 			csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2683 			if (csts.b.csts_rdy == 0)
2684 				break;
2685 
2686 			if (quiesce)
2687 				drv_usecwait(50000);
2688 			else
2689 				delay(drv_usectohz(50000));
2690 		}
2691 	}
2692 
2693 	nvme_put32(nvme, NVME_REG_AQA, 0);
2694 	nvme_put32(nvme, NVME_REG_ASQ, 0);
2695 	nvme_put32(nvme, NVME_REG_ACQ, 0);
2696 
2697 	csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2698 	return (csts.b.csts_rdy == 0 ? B_TRUE : B_FALSE);
2699 }
2700 
2701 static void
2702 nvme_shutdown(nvme_t *nvme, int mode, boolean_t quiesce)
2703 {
2704 	nvme_reg_cc_t cc;
2705 	nvme_reg_csts_t csts;
2706 	int i;
2707 
2708 	ASSERT(mode == NVME_CC_SHN_NORMAL || mode == NVME_CC_SHN_ABRUPT);
2709 
2710 	cc.r = nvme_get32(nvme, NVME_REG_CC);
2711 	cc.b.cc_shn = mode & 0x3;
2712 	nvme_put32(nvme, NVME_REG_CC, cc.r);
2713 
2714 	for (i = 0; i != 10; i++) {
2715 		csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2716 		if (csts.b.csts_shst == NVME_CSTS_SHN_COMPLETE)
2717 			break;
2718 
2719 		if (quiesce)
2720 			drv_usecwait(100000);
2721 		else
2722 			delay(drv_usectohz(100000));
2723 	}
2724 }
2725 
2726 /*
2727  * Return length of string without trailing spaces.
2728  */
2729 static int
2730 nvme_strlen(const char *str, int len)
2731 {
2732 	if (len <= 0)
2733 		return (0);
2734 
2735 	while (str[--len] == ' ')
2736 		;
2737 
2738 	return (++len);
2739 }
2740 
2741 static void
2742 nvme_config_min_block_size(nvme_t *nvme, char *model, char *val)
2743 {
2744 	ulong_t bsize = 0;
2745 	char *msg = "";
2746 
2747 	if (ddi_strtoul(val, NULL, 0, &bsize) != 0)
2748 		goto err;
2749 
2750 	if (!ISP2(bsize)) {
2751 		msg = ": not a power of 2";
2752 		goto err;
2753 	}
2754 
2755 	if (bsize < NVME_DEFAULT_MIN_BLOCK_SIZE) {
2756 		msg = ": too low";
2757 		goto err;
2758 	}
2759 
2760 	nvme->n_min_block_size = bsize;
2761 	return;
2762 
2763 err:
2764 	dev_err(nvme->n_dip, CE_WARN,
2765 	    "!nvme-config-list: ignoring invalid min-phys-block-size '%s' "
2766 	    "for model '%s'%s", val, model, msg);
2767 
2768 	nvme->n_min_block_size = NVME_DEFAULT_MIN_BLOCK_SIZE;
2769 }
2770 
2771 static void
2772 nvme_config_boolean(nvme_t *nvme, char *model, char *name, char *val,
2773     boolean_t *b)
2774 {
2775 	if (strcmp(val, "on") == 0 ||
2776 	    strcmp(val, "true") == 0)
2777 		*b = B_TRUE;
2778 	else if (strcmp(val, "off") == 0 ||
2779 	    strcmp(val, "false") == 0)
2780 		*b = B_FALSE;
2781 	else
2782 		dev_err(nvme->n_dip, CE_WARN,
2783 		    "!nvme-config-list: invalid value for %s '%s'"
2784 		    " for model '%s', ignoring", name, val, model);
2785 }
2786 
2787 static void
2788 nvme_config_list(nvme_t *nvme)
2789 {
2790 	char	**config_list;
2791 	uint_t	nelem;
2792 	int	rv, i;
2793 
2794 	/*
2795 	 * We're following the pattern of 'sd-config-list' here, but extend it.
2796 	 * Instead of two we have three separate strings for "model", "fwrev",
2797 	 * and "name-value-list".
2798 	 */
2799 	rv = ddi_prop_lookup_string_array(DDI_DEV_T_ANY, nvme->n_dip,
2800 	    DDI_PROP_DONTPASS, "nvme-config-list", &config_list, &nelem);
2801 
2802 	if (rv != DDI_PROP_SUCCESS) {
2803 		if (rv == DDI_PROP_CANNOT_DECODE) {
2804 			dev_err(nvme->n_dip, CE_WARN,
2805 			    "!nvme-config-list: cannot be decoded");
2806 		}
2807 
2808 		return;
2809 	}
2810 
2811 	if ((nelem % 3) != 0) {
2812 		dev_err(nvme->n_dip, CE_WARN, "!nvme-config-list: must be "
2813 		    "triplets of <model>/<fwrev>/<name-value-list> strings ");
2814 		goto out;
2815 	}
2816 
2817 	for (i = 0; i < nelem; i += 3) {
2818 		char	*model = config_list[i];
2819 		char	*fwrev = config_list[i + 1];
2820 		char	*nvp, *save_nv;
2821 		int	id_model_len, id_fwrev_len;
2822 
2823 		id_model_len = nvme_strlen(nvme->n_idctl->id_model,
2824 		    sizeof (nvme->n_idctl->id_model));
2825 
2826 		if (strlen(model) != id_model_len)
2827 			continue;
2828 
2829 		if (strncmp(model, nvme->n_idctl->id_model, id_model_len) != 0)
2830 			continue;
2831 
2832 		id_fwrev_len = nvme_strlen(nvme->n_idctl->id_fwrev,
2833 		    sizeof (nvme->n_idctl->id_fwrev));
2834 
2835 		if (strlen(fwrev) != 0) {
2836 			boolean_t match = B_FALSE;
2837 			char *fwr, *last_fw;
2838 
2839 			for (fwr = strtok_r(fwrev, ",", &last_fw);
2840 			    fwr != NULL;
2841 			    fwr = strtok_r(NULL, ",", &last_fw)) {
2842 				if (strlen(fwr) != id_fwrev_len)
2843 					continue;
2844 
2845 				if (strncmp(fwr, nvme->n_idctl->id_fwrev,
2846 				    id_fwrev_len) == 0)
2847 					match = B_TRUE;
2848 			}
2849 
2850 			if (!match)
2851 				continue;
2852 		}
2853 
2854 		/*
2855 		 * We should now have a comma-separated list of name:value
2856 		 * pairs.
2857 		 */
2858 		for (nvp = strtok_r(config_list[i + 2], ",", &save_nv);
2859 		    nvp != NULL; nvp = strtok_r(NULL, ",", &save_nv)) {
2860 			char	*name = nvp;
2861 			char	*val = strchr(nvp, ':');
2862 
2863 			if (val == NULL || name == val) {
2864 				dev_err(nvme->n_dip, CE_WARN,
2865 				    "!nvme-config-list: <name-value-list> "
2866 				    "for model '%s' is malformed", model);
2867 				goto out;
2868 			}
2869 
2870 			/*
2871 			 * Null-terminate 'name', move 'val' past ':' sep.
2872 			 */
2873 			*val++ = '\0';
2874 
2875 			/*
2876 			 * Process the name:val pairs that we know about.
2877 			 */
2878 			if (strcmp(name, "ignore-unknown-vendor-status") == 0) {
2879 				nvme_config_boolean(nvme, model, name, val,
2880 				    &nvme->n_ignore_unknown_vendor_status);
2881 			} else if (strcmp(name, "min-phys-block-size") == 0) {
2882 				nvme_config_min_block_size(nvme, model, val);
2883 			} else if (strcmp(name, "volatile-write-cache") == 0) {
2884 				nvme_config_boolean(nvme, model, name, val,
2885 				    &nvme->n_write_cache_enabled);
2886 			} else {
2887 				/*
2888 				 * Unknown 'name'.
2889 				 */
2890 				dev_err(nvme->n_dip, CE_WARN,
2891 				    "!nvme-config-list: unknown config '%s' "
2892 				    "for model '%s', ignoring", name, model);
2893 			}
2894 		}
2895 	}
2896 
2897 out:
2898 	ddi_prop_free(config_list);
2899 }
2900 
2901 static void
2902 nvme_prepare_devid(nvme_t *nvme, uint32_t nsid)
2903 {
2904 	/*
2905 	 * Section 7.7 of the spec describes how to get a unique ID for
2906 	 * the controller: the vendor ID, the model name and the serial
2907 	 * number shall be unique when combined.
2908 	 *
2909 	 * If a namespace has no EUI64 we use the above and add the hex
2910 	 * namespace ID to get a unique ID for the namespace.
2911 	 */
2912 	char model[sizeof (nvme->n_idctl->id_model) + 1];
2913 	char serial[sizeof (nvme->n_idctl->id_serial) + 1];
2914 
2915 	bcopy(nvme->n_idctl->id_model, model, sizeof (nvme->n_idctl->id_model));
2916 	bcopy(nvme->n_idctl->id_serial, serial,
2917 	    sizeof (nvme->n_idctl->id_serial));
2918 
2919 	model[sizeof (nvme->n_idctl->id_model)] = '\0';
2920 	serial[sizeof (nvme->n_idctl->id_serial)] = '\0';
2921 
2922 	NVME_NSID2NS(nvme, nsid)->ns_devid = kmem_asprintf("%4X-%s-%s-%X",
2923 	    nvme->n_idctl->id_vid, model, serial, nsid);
2924 }
2925 
2926 static boolean_t
2927 nvme_allocated_ns(nvme_namespace_t *ns)
2928 {
2929 	nvme_t *nvme = ns->ns_nvme;
2930 
2931 	ASSERT(MUTEX_HELD(&nvme->n_mgmt_mutex));
2932 
2933 	/*
2934 	 * Since we don't know any better, we assume all namespaces to be
2935 	 * allocated.
2936 	 */
2937 	return (B_TRUE);
2938 }
2939 
2940 static boolean_t
2941 nvme_active_ns(nvme_namespace_t *ns)
2942 {
2943 	nvme_t *nvme = ns->ns_nvme;
2944 	boolean_t ret = B_FALSE;
2945 	uint64_t *ptr;
2946 
2947 	ASSERT(MUTEX_HELD(&nvme->n_mgmt_mutex));
2948 
2949 	/*
2950 	 * Check whether the IDENTIFY NAMESPACE data is zero-filled.
2951 	 */
2952 	for (ptr = (uint64_t *)ns->ns_idns;
2953 	    ptr != (uint64_t *)(ns->ns_idns + 1);
2954 	    ptr++) {
2955 		if (*ptr != 0) {
2956 			ret = B_TRUE;
2957 			break;
2958 		}
2959 	}
2960 
2961 	return (ret);
2962 }
2963 
2964 static int
2965 nvme_init_ns(nvme_t *nvme, int nsid)
2966 {
2967 	nvme_namespace_t *ns = NVME_NSID2NS(nvme, nsid);
2968 	nvme_identify_nsid_t *idns;
2969 	boolean_t was_ignored;
2970 	int last_rp;
2971 
2972 	ns->ns_nvme = nvme;
2973 
2974 	ASSERT(MUTEX_HELD(&nvme->n_mgmt_mutex));
2975 
2976 	if (nvme_identify(nvme, B_FALSE, nsid, (void **)&idns) != 0) {
2977 		dev_err(nvme->n_dip, CE_WARN,
2978 		    "!failed to identify namespace %d", nsid);
2979 		return (DDI_FAILURE);
2980 	}
2981 
2982 	if (ns->ns_idns != NULL)
2983 		kmem_free(ns->ns_idns, sizeof (nvme_identify_nsid_t));
2984 
2985 	ns->ns_idns = idns;
2986 	ns->ns_id = nsid;
2987 
2988 	was_ignored = ns->ns_ignore;
2989 
2990 	ns->ns_allocated = nvme_allocated_ns(ns);
2991 	ns->ns_active = nvme_active_ns(ns);
2992 
2993 	ns->ns_block_count = idns->id_nsize;
2994 	ns->ns_block_size =
2995 	    1 << idns->id_lbaf[idns->id_flbas.lba_format].lbaf_lbads;
2996 	ns->ns_best_block_size = ns->ns_block_size;
2997 
2998 	/*
2999 	 * Get the EUI64 if present. Use it for devid and device node names.
3000 	 */
3001 	if (NVME_VERSION_ATLEAST(&nvme->n_version, 1, 1))
3002 		bcopy(idns->id_eui64, ns->ns_eui64, sizeof (ns->ns_eui64));
3003 
3004 	/*LINTED: E_BAD_PTR_CAST_ALIGN*/
3005 	if (*(uint64_t *)ns->ns_eui64 != 0) {
3006 		uint8_t *eui64 = ns->ns_eui64;
3007 
3008 		(void) snprintf(ns->ns_name, sizeof (ns->ns_name),
3009 		    "%02x%02x%02x%02x%02x%02x%02x%02x",
3010 		    eui64[0], eui64[1], eui64[2], eui64[3],
3011 		    eui64[4], eui64[5], eui64[6], eui64[7]);
3012 	} else {
3013 		(void) snprintf(ns->ns_name, sizeof (ns->ns_name), "%d",
3014 		    ns->ns_id);
3015 
3016 		nvme_prepare_devid(nvme, ns->ns_id);
3017 	}
3018 
3019 	/*
3020 	 * Find the LBA format with no metadata and the best relative
3021 	 * performance. A value of 3 means "degraded", 0 is best.
3022 	 */
3023 	last_rp = 3;
3024 	for (int j = 0; j <= idns->id_nlbaf; j++) {
3025 		if (idns->id_lbaf[j].lbaf_lbads == 0)
3026 			break;
3027 		if (idns->id_lbaf[j].lbaf_ms != 0)
3028 			continue;
3029 		if (idns->id_lbaf[j].lbaf_rp >= last_rp)
3030 			continue;
3031 		last_rp = idns->id_lbaf[j].lbaf_rp;
3032 		ns->ns_best_block_size =
3033 		    1 << idns->id_lbaf[j].lbaf_lbads;
3034 	}
3035 
3036 	if (ns->ns_best_block_size < nvme->n_min_block_size)
3037 		ns->ns_best_block_size = nvme->n_min_block_size;
3038 
3039 	was_ignored = ns->ns_ignore;
3040 
3041 	/*
3042 	 * We currently don't support namespaces that use either:
3043 	 * - protection information
3044 	 * - illegal block size (< 512)
3045 	 */
3046 	if (idns->id_dps.dp_pinfo) {
3047 		dev_err(nvme->n_dip, CE_WARN,
3048 		    "!ignoring namespace %d, unsupported feature: "
3049 		    "pinfo = %d", nsid, idns->id_dps.dp_pinfo);
3050 		ns->ns_ignore = B_TRUE;
3051 	} else if (ns->ns_block_size < 512) {
3052 		dev_err(nvme->n_dip, CE_WARN,
3053 		    "!ignoring namespace %d, unsupported block size %"PRIu64,
3054 		    nsid, (uint64_t)ns->ns_block_size);
3055 		ns->ns_ignore = B_TRUE;
3056 	} else {
3057 		ns->ns_ignore = B_FALSE;
3058 	}
3059 
3060 	/*
3061 	 * Keep a count of namespaces which are attachable.
3062 	 * See comments in nvme_bd_driveinfo() to understand its effect.
3063 	 */
3064 	if (was_ignored) {
3065 		/*
3066 		 * Previously ignored, but now not. Count it.
3067 		 */
3068 		if (!ns->ns_ignore)
3069 			nvme->n_namespaces_attachable++;
3070 	} else {
3071 		/*
3072 		 * Wasn't ignored previously, but now needs to be.
3073 		 * Discount it.
3074 		 */
3075 		if (ns->ns_ignore)
3076 			nvme->n_namespaces_attachable--;
3077 	}
3078 
3079 	return (DDI_SUCCESS);
3080 }
3081 
3082 static int
3083 nvme_attach_ns(nvme_t *nvme, int nsid)
3084 {
3085 	nvme_namespace_t *ns = NVME_NSID2NS(nvme, nsid);
3086 
3087 	ASSERT(MUTEX_HELD(&nvme->n_mgmt_mutex));
3088 
3089 	if (ns->ns_ignore)
3090 		return (ENOTSUP);
3091 
3092 	if (ns->ns_bd_hdl == NULL) {
3093 		bd_ops_t ops = nvme_bd_ops;
3094 
3095 		if (!nvme->n_idctl->id_oncs.on_dset_mgmt)
3096 			ops.o_free_space = NULL;
3097 
3098 		ns->ns_bd_hdl = bd_alloc_handle(ns, &ops, &nvme->n_prp_dma_attr,
3099 		    KM_SLEEP);
3100 
3101 		if (ns->ns_bd_hdl == NULL) {
3102 			dev_err(nvme->n_dip, CE_WARN, "!Failed to get blkdev "
3103 			    "handle for namespace id %d", nsid);
3104 			return (EINVAL);
3105 		}
3106 	}
3107 
3108 	if (bd_attach_handle(nvme->n_dip, ns->ns_bd_hdl) != DDI_SUCCESS)
3109 		return (EBUSY);
3110 
3111 	ns->ns_attached = B_TRUE;
3112 
3113 	return (0);
3114 }
3115 
3116 static int
3117 nvme_detach_ns(nvme_t *nvme, int nsid)
3118 {
3119 	nvme_namespace_t *ns = NVME_NSID2NS(nvme, nsid);
3120 	int rv;
3121 
3122 	ASSERT(MUTEX_HELD(&nvme->n_mgmt_mutex));
3123 
3124 	if (ns->ns_ignore || !ns->ns_attached)
3125 		return (0);
3126 
3127 	ASSERT(ns->ns_bd_hdl != NULL);
3128 	rv = bd_detach_handle(ns->ns_bd_hdl);
3129 	if (rv != DDI_SUCCESS)
3130 		return (EBUSY);
3131 	else
3132 		ns->ns_attached = B_FALSE;
3133 
3134 	return (0);
3135 }
3136 
3137 static int
3138 nvme_init(nvme_t *nvme)
3139 {
3140 	nvme_reg_cc_t cc = { 0 };
3141 	nvme_reg_aqa_t aqa = { 0 };
3142 	nvme_reg_asq_t asq = { 0 };
3143 	nvme_reg_acq_t acq = { 0 };
3144 	nvme_reg_cap_t cap;
3145 	nvme_reg_vs_t vs;
3146 	nvme_reg_csts_t csts;
3147 	int i = 0;
3148 	uint16_t nqueues;
3149 	uint_t tq_threads;
3150 	char model[sizeof (nvme->n_idctl->id_model) + 1];
3151 	char *vendor, *product;
3152 
3153 	/* Check controller version */
3154 	vs.r = nvme_get32(nvme, NVME_REG_VS);
3155 	nvme->n_version.v_major = vs.b.vs_mjr;
3156 	nvme->n_version.v_minor = vs.b.vs_mnr;
3157 	dev_err(nvme->n_dip, CE_CONT, "?NVMe spec version %d.%d",
3158 	    nvme->n_version.v_major, nvme->n_version.v_minor);
3159 
3160 	if (nvme->n_version.v_major > nvme_version_major) {
3161 		dev_err(nvme->n_dip, CE_WARN, "!no support for version > %d.x",
3162 		    nvme_version_major);
3163 		if (nvme->n_strict_version)
3164 			goto fail;
3165 	}
3166 
3167 	/* retrieve controller configuration */
3168 	cap.r = nvme_get64(nvme, NVME_REG_CAP);
3169 
3170 	if ((cap.b.cap_css & NVME_CAP_CSS_NVM) == 0) {
3171 		dev_err(nvme->n_dip, CE_WARN,
3172 		    "!NVM command set not supported by hardware");
3173 		goto fail;
3174 	}
3175 
3176 	nvme->n_nssr_supported = cap.b.cap_nssrs;
3177 	nvme->n_doorbell_stride = 4 << cap.b.cap_dstrd;
3178 	nvme->n_timeout = cap.b.cap_to;
3179 	nvme->n_arbitration_mechanisms = cap.b.cap_ams;
3180 	nvme->n_cont_queues_reqd = cap.b.cap_cqr;
3181 	nvme->n_max_queue_entries = cap.b.cap_mqes + 1;
3182 
3183 	/*
3184 	 * The MPSMIN and MPSMAX fields in the CAP register use 0 to specify
3185 	 * the base page size of 4k (1<<12), so add 12 here to get the real
3186 	 * page size value.
3187 	 */
3188 	nvme->n_pageshift = MIN(MAX(cap.b.cap_mpsmin + 12, PAGESHIFT),
3189 	    cap.b.cap_mpsmax + 12);
3190 	nvme->n_pagesize = 1UL << (nvme->n_pageshift);
3191 
3192 	/*
3193 	 * Set up Queue DMA to transfer at least 1 page-aligned page at a time.
3194 	 */
3195 	nvme->n_queue_dma_attr.dma_attr_align = nvme->n_pagesize;
3196 	nvme->n_queue_dma_attr.dma_attr_minxfer = nvme->n_pagesize;
3197 
3198 	/*
3199 	 * Set up PRP DMA to transfer 1 page-aligned page at a time.
3200 	 * Maxxfer may be increased after we identified the controller limits.
3201 	 */
3202 	nvme->n_prp_dma_attr.dma_attr_maxxfer = nvme->n_pagesize;
3203 	nvme->n_prp_dma_attr.dma_attr_minxfer = nvme->n_pagesize;
3204 	nvme->n_prp_dma_attr.dma_attr_align = nvme->n_pagesize;
3205 	nvme->n_prp_dma_attr.dma_attr_seg = nvme->n_pagesize - 1;
3206 
3207 	/*
3208 	 * Reset controller if it's still in ready state.
3209 	 */
3210 	if (nvme_reset(nvme, B_FALSE) == B_FALSE) {
3211 		dev_err(nvme->n_dip, CE_WARN, "!unable to reset controller");
3212 		ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
3213 		nvme->n_dead = B_TRUE;
3214 		goto fail;
3215 	}
3216 
3217 	/*
3218 	 * Create the cq array with one completion queue to be assigned
3219 	 * to the admin queue pair and a limited number of taskqs (4).
3220 	 */
3221 	if (nvme_create_cq_array(nvme, 1, nvme->n_admin_queue_len, 4) !=
3222 	    DDI_SUCCESS) {
3223 		dev_err(nvme->n_dip, CE_WARN,
3224 		    "!failed to pre-allocate admin completion queue");
3225 		goto fail;
3226 	}
3227 	/*
3228 	 * Create the admin queue pair.
3229 	 */
3230 	if (nvme_alloc_qpair(nvme, nvme->n_admin_queue_len, &nvme->n_adminq, 0)
3231 	    != DDI_SUCCESS) {
3232 		dev_err(nvme->n_dip, CE_WARN,
3233 		    "!unable to allocate admin qpair");
3234 		goto fail;
3235 	}
3236 	nvme->n_ioq = kmem_alloc(sizeof (nvme_qpair_t *), KM_SLEEP);
3237 	nvme->n_ioq[0] = nvme->n_adminq;
3238 
3239 	nvme->n_progress |= NVME_ADMIN_QUEUE;
3240 
3241 	(void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip,
3242 	    "admin-queue-len", nvme->n_admin_queue_len);
3243 
3244 	aqa.b.aqa_asqs = aqa.b.aqa_acqs = nvme->n_admin_queue_len - 1;
3245 	asq = nvme->n_adminq->nq_sqdma->nd_cookie.dmac_laddress;
3246 	acq = nvme->n_adminq->nq_cq->ncq_dma->nd_cookie.dmac_laddress;
3247 
3248 	ASSERT((asq & (nvme->n_pagesize - 1)) == 0);
3249 	ASSERT((acq & (nvme->n_pagesize - 1)) == 0);
3250 
3251 	nvme_put32(nvme, NVME_REG_AQA, aqa.r);
3252 	nvme_put64(nvme, NVME_REG_ASQ, asq);
3253 	nvme_put64(nvme, NVME_REG_ACQ, acq);
3254 
3255 	cc.b.cc_ams = 0;	/* use Round-Robin arbitration */
3256 	cc.b.cc_css = 0;	/* use NVM command set */
3257 	cc.b.cc_mps = nvme->n_pageshift - 12;
3258 	cc.b.cc_shn = 0;	/* no shutdown in progress */
3259 	cc.b.cc_en = 1;		/* enable controller */
3260 	cc.b.cc_iosqes = 6;	/* submission queue entry is 2^6 bytes long */
3261 	cc.b.cc_iocqes = 4;	/* completion queue entry is 2^4 bytes long */
3262 
3263 	nvme_put32(nvme, NVME_REG_CC, cc.r);
3264 
3265 	/*
3266 	 * Wait for the controller to become ready.
3267 	 */
3268 	csts.r = nvme_get32(nvme, NVME_REG_CSTS);
3269 	if (csts.b.csts_rdy == 0) {
3270 		for (i = 0; i != nvme->n_timeout * 10; i++) {
3271 			delay(drv_usectohz(50000));
3272 			csts.r = nvme_get32(nvme, NVME_REG_CSTS);
3273 
3274 			if (csts.b.csts_cfs == 1) {
3275 				dev_err(nvme->n_dip, CE_WARN,
3276 				    "!controller fatal status at init");
3277 				ddi_fm_service_impact(nvme->n_dip,
3278 				    DDI_SERVICE_LOST);
3279 				nvme->n_dead = B_TRUE;
3280 				goto fail;
3281 			}
3282 
3283 			if (csts.b.csts_rdy == 1)
3284 				break;
3285 		}
3286 	}
3287 
3288 	if (csts.b.csts_rdy == 0) {
3289 		dev_err(nvme->n_dip, CE_WARN, "!controller not ready");
3290 		ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
3291 		nvme->n_dead = B_TRUE;
3292 		goto fail;
3293 	}
3294 
3295 	/*
3296 	 * Assume an abort command limit of 1. We'll destroy and re-init
3297 	 * that later when we know the true abort command limit.
3298 	 */
3299 	sema_init(&nvme->n_abort_sema, 1, NULL, SEMA_DRIVER, NULL);
3300 
3301 	/*
3302 	 * Set up initial interrupt for admin queue.
3303 	 */
3304 	if ((nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSIX, 1)
3305 	    != DDI_SUCCESS) &&
3306 	    (nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSI, 1)
3307 	    != DDI_SUCCESS) &&
3308 	    (nvme_setup_interrupts(nvme, DDI_INTR_TYPE_FIXED, 1)
3309 	    != DDI_SUCCESS)) {
3310 		dev_err(nvme->n_dip, CE_WARN,
3311 		    "!failed to setup initial interrupt");
3312 		goto fail;
3313 	}
3314 
3315 	/*
3316 	 * Post an asynchronous event command to catch errors.
3317 	 * We assume the asynchronous events are supported as required by
3318 	 * specification (Figure 40 in section 5 of NVMe 1.2).
3319 	 * However, since at least qemu does not follow the specification,
3320 	 * we need a mechanism to protect ourselves.
3321 	 */
3322 	nvme->n_async_event_supported = B_TRUE;
3323 	nvme_async_event(nvme);
3324 
3325 	/*
3326 	 * Identify Controller
3327 	 */
3328 	if (nvme_identify(nvme, B_FALSE, 0, (void **)&nvme->n_idctl) != 0) {
3329 		dev_err(nvme->n_dip, CE_WARN,
3330 		    "!failed to identify controller");
3331 		goto fail;
3332 	}
3333 
3334 	/*
3335 	 * Process nvme-config-list (if present) in nvme.conf.
3336 	 */
3337 	nvme_config_list(nvme);
3338 
3339 	/*
3340 	 * Get Vendor & Product ID
3341 	 */
3342 	bcopy(nvme->n_idctl->id_model, model, sizeof (nvme->n_idctl->id_model));
3343 	model[sizeof (nvme->n_idctl->id_model)] = '\0';
3344 	sata_split_model(model, &vendor, &product);
3345 
3346 	if (vendor == NULL)
3347 		nvme->n_vendor = strdup("NVMe");
3348 	else
3349 		nvme->n_vendor = strdup(vendor);
3350 
3351 	nvme->n_product = strdup(product);
3352 
3353 	/*
3354 	 * Get controller limits.
3355 	 */
3356 	nvme->n_async_event_limit = MAX(NVME_MIN_ASYNC_EVENT_LIMIT,
3357 	    MIN(nvme->n_admin_queue_len / 10,
3358 	    MIN(nvme->n_idctl->id_aerl + 1, nvme->n_async_event_limit)));
3359 
3360 	(void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip,
3361 	    "async-event-limit", nvme->n_async_event_limit);
3362 
3363 	nvme->n_abort_command_limit = nvme->n_idctl->id_acl + 1;
3364 
3365 	/*
3366 	 * Reinitialize the semaphore with the true abort command limit
3367 	 * supported by the hardware. It's not necessary to disable interrupts
3368 	 * as only command aborts use the semaphore, and no commands are
3369 	 * executed or aborted while we're here.
3370 	 */
3371 	sema_destroy(&nvme->n_abort_sema);
3372 	sema_init(&nvme->n_abort_sema, nvme->n_abort_command_limit - 1, NULL,
3373 	    SEMA_DRIVER, NULL);
3374 
3375 	nvme->n_progress |= NVME_CTRL_LIMITS;
3376 
3377 	if (nvme->n_idctl->id_mdts == 0)
3378 		nvme->n_max_data_transfer_size = nvme->n_pagesize * 65536;
3379 	else
3380 		nvme->n_max_data_transfer_size =
3381 		    1ull << (nvme->n_pageshift + nvme->n_idctl->id_mdts);
3382 
3383 	nvme->n_error_log_len = nvme->n_idctl->id_elpe + 1;
3384 
3385 	/*
3386 	 * Limit n_max_data_transfer_size to what we can handle in one PRP.
3387 	 * Chained PRPs are currently unsupported.
3388 	 *
3389 	 * This is a no-op on hardware which doesn't support a transfer size
3390 	 * big enough to require chained PRPs.
3391 	 */
3392 	nvme->n_max_data_transfer_size = MIN(nvme->n_max_data_transfer_size,
3393 	    (nvme->n_pagesize / sizeof (uint64_t) * nvme->n_pagesize));
3394 
3395 	nvme->n_prp_dma_attr.dma_attr_maxxfer = nvme->n_max_data_transfer_size;
3396 
3397 	/*
3398 	 * Make sure the minimum/maximum queue entry sizes are not
3399 	 * larger/smaller than the default.
3400 	 */
3401 
3402 	if (((1 << nvme->n_idctl->id_sqes.qes_min) > sizeof (nvme_sqe_t)) ||
3403 	    ((1 << nvme->n_idctl->id_sqes.qes_max) < sizeof (nvme_sqe_t)) ||
3404 	    ((1 << nvme->n_idctl->id_cqes.qes_min) > sizeof (nvme_cqe_t)) ||
3405 	    ((1 << nvme->n_idctl->id_cqes.qes_max) < sizeof (nvme_cqe_t)))
3406 		goto fail;
3407 
3408 	/*
3409 	 * Check for the presence of a Volatile Write Cache. If present,
3410 	 * enable or disable based on the value of the property
3411 	 * volatile-write-cache-enable (default is enabled).
3412 	 */
3413 	nvme->n_write_cache_present =
3414 	    nvme->n_idctl->id_vwc.vwc_present == 0 ? B_FALSE : B_TRUE;
3415 
3416 	(void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip,
3417 	    "volatile-write-cache-present",
3418 	    nvme->n_write_cache_present ? 1 : 0);
3419 
3420 	if (!nvme->n_write_cache_present) {
3421 		nvme->n_write_cache_enabled = B_FALSE;
3422 	} else if (nvme_write_cache_set(nvme, nvme->n_write_cache_enabled)
3423 	    != 0) {
3424 		dev_err(nvme->n_dip, CE_WARN,
3425 		    "!failed to %sable volatile write cache",
3426 		    nvme->n_write_cache_enabled ? "en" : "dis");
3427 		/*
3428 		 * Assume the cache is (still) enabled.
3429 		 */
3430 		nvme->n_write_cache_enabled = B_TRUE;
3431 	}
3432 
3433 	(void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip,
3434 	    "volatile-write-cache-enable",
3435 	    nvme->n_write_cache_enabled ? 1 : 0);
3436 
3437 	/*
3438 	 * Assume LBA Range Type feature is supported. If it isn't this
3439 	 * will be set to B_FALSE by nvme_get_features().
3440 	 */
3441 	nvme->n_lba_range_supported = B_TRUE;
3442 
3443 	/*
3444 	 * Check support for Autonomous Power State Transition.
3445 	 */
3446 	if (NVME_VERSION_ATLEAST(&nvme->n_version, 1, 1))
3447 		nvme->n_auto_pst_supported =
3448 		    nvme->n_idctl->id_apsta.ap_sup == 0 ? B_FALSE : B_TRUE;
3449 
3450 	/*
3451 	 * Assume Software Progress Marker feature is supported.  If it isn't
3452 	 * this will be set to B_FALSE by nvme_get_features().
3453 	 */
3454 	nvme->n_progress_supported = B_TRUE;
3455 
3456 	/*
3457 	 * Get number of supported namespaces and allocate namespace array.
3458 	 */
3459 	nvme->n_namespace_count = nvme->n_idctl->id_nn;
3460 
3461 	if (nvme->n_namespace_count == 0) {
3462 		dev_err(nvme->n_dip, CE_WARN,
3463 		    "!controllers without namespaces are not supported");
3464 		goto fail;
3465 	}
3466 
3467 	if (nvme->n_namespace_count > NVME_MINOR_MAX) {
3468 		dev_err(nvme->n_dip, CE_WARN,
3469 		    "!too many namespaces: %d, limiting to %d\n",
3470 		    nvme->n_namespace_count, NVME_MINOR_MAX);
3471 		nvme->n_namespace_count = NVME_MINOR_MAX;
3472 	}
3473 
3474 	nvme->n_ns = kmem_zalloc(sizeof (nvme_namespace_t) *
3475 	    nvme->n_namespace_count, KM_SLEEP);
3476 
3477 	/*
3478 	 * Try to set up MSI/MSI-X interrupts.
3479 	 */
3480 	if ((nvme->n_intr_types & (DDI_INTR_TYPE_MSI | DDI_INTR_TYPE_MSIX))
3481 	    != 0) {
3482 		nvme_release_interrupts(nvme);
3483 
3484 		nqueues = MIN(UINT16_MAX, ncpus);
3485 
3486 		if ((nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSIX,
3487 		    nqueues) != DDI_SUCCESS) &&
3488 		    (nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSI,
3489 		    nqueues) != DDI_SUCCESS)) {
3490 			dev_err(nvme->n_dip, CE_WARN,
3491 			    "!failed to setup MSI/MSI-X interrupts");
3492 			goto fail;
3493 		}
3494 	}
3495 
3496 	/*
3497 	 * Create I/O queue pairs.
3498 	 */
3499 
3500 	if (nvme_set_nqueues(nvme) != 0) {
3501 		dev_err(nvme->n_dip, CE_WARN,
3502 		    "!failed to set number of I/O queues to %d",
3503 		    nvme->n_intr_cnt);
3504 		goto fail;
3505 	}
3506 
3507 	/*
3508 	 * Reallocate I/O queue array
3509 	 */
3510 	kmem_free(nvme->n_ioq, sizeof (nvme_qpair_t *));
3511 	nvme->n_ioq = kmem_zalloc(sizeof (nvme_qpair_t *) *
3512 	    (nvme->n_submission_queues + 1), KM_SLEEP);
3513 	nvme->n_ioq[0] = nvme->n_adminq;
3514 
3515 	/*
3516 	 * There should always be at least as many submission queues
3517 	 * as completion queues.
3518 	 */
3519 	ASSERT(nvme->n_submission_queues >= nvme->n_completion_queues);
3520 
3521 	nvme->n_ioq_count = nvme->n_submission_queues;
3522 
3523 	nvme->n_io_squeue_len =
3524 	    MIN(nvme->n_io_squeue_len, nvme->n_max_queue_entries);
3525 
3526 	(void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip, "io-squeue-len",
3527 	    nvme->n_io_squeue_len);
3528 
3529 	/*
3530 	 * Pre-allocate completion queues.
3531 	 * When there are the same number of submission and completion
3532 	 * queues there is no value in having a larger completion
3533 	 * queue length.
3534 	 */
3535 	if (nvme->n_submission_queues == nvme->n_completion_queues)
3536 		nvme->n_io_cqueue_len = MIN(nvme->n_io_cqueue_len,
3537 		    nvme->n_io_squeue_len);
3538 
3539 	nvme->n_io_cqueue_len = MIN(nvme->n_io_cqueue_len,
3540 	    nvme->n_max_queue_entries);
3541 
3542 	(void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip, "io-cqueue-len",
3543 	    nvme->n_io_cqueue_len);
3544 
3545 	/*
3546 	 * Assign the equal quantity of taskq threads to each completion
3547 	 * queue, capping the total number of threads to the number
3548 	 * of CPUs.
3549 	 */
3550 	tq_threads = MIN(UINT16_MAX, ncpus) / nvme->n_completion_queues;
3551 
3552 	/*
3553 	 * In case the calculation above is zero, we need at least one
3554 	 * thread per completion queue.
3555 	 */
3556 	tq_threads = MAX(1, tq_threads);
3557 
3558 	if (nvme_create_cq_array(nvme, nvme->n_completion_queues + 1,
3559 	    nvme->n_io_cqueue_len, tq_threads) != DDI_SUCCESS) {
3560 		dev_err(nvme->n_dip, CE_WARN,
3561 		    "!failed to pre-allocate completion queues");
3562 		goto fail;
3563 	}
3564 
3565 	/*
3566 	 * If we use less completion queues than interrupt vectors return
3567 	 * some of the interrupt vectors back to the system.
3568 	 */
3569 	if (nvme->n_completion_queues + 1 < nvme->n_intr_cnt) {
3570 		nvme_release_interrupts(nvme);
3571 
3572 		if (nvme_setup_interrupts(nvme, nvme->n_intr_type,
3573 		    nvme->n_completion_queues + 1) != DDI_SUCCESS) {
3574 			dev_err(nvme->n_dip, CE_WARN,
3575 			    "!failed to reduce number of interrupts");
3576 			goto fail;
3577 		}
3578 	}
3579 
3580 	/*
3581 	 * Alloc & register I/O queue pairs
3582 	 */
3583 
3584 	for (i = 1; i != nvme->n_ioq_count + 1; i++) {
3585 		if (nvme_alloc_qpair(nvme, nvme->n_io_squeue_len,
3586 		    &nvme->n_ioq[i], i) != DDI_SUCCESS) {
3587 			dev_err(nvme->n_dip, CE_WARN,
3588 			    "!unable to allocate I/O qpair %d", i);
3589 			goto fail;
3590 		}
3591 
3592 		if (nvme_create_io_qpair(nvme, nvme->n_ioq[i], i) != 0) {
3593 			dev_err(nvme->n_dip, CE_WARN,
3594 			    "!unable to create I/O qpair %d", i);
3595 			goto fail;
3596 		}
3597 	}
3598 
3599 	/*
3600 	 * Post more asynchronous events commands to reduce event reporting
3601 	 * latency as suggested by the spec.
3602 	 */
3603 	if (nvme->n_async_event_supported) {
3604 		for (i = 1; i != nvme->n_async_event_limit; i++)
3605 			nvme_async_event(nvme);
3606 	}
3607 
3608 	return (DDI_SUCCESS);
3609 
3610 fail:
3611 	(void) nvme_reset(nvme, B_FALSE);
3612 	return (DDI_FAILURE);
3613 }
3614 
3615 static uint_t
3616 nvme_intr(caddr_t arg1, caddr_t arg2)
3617 {
3618 	/*LINTED: E_PTR_BAD_CAST_ALIGN*/
3619 	nvme_t *nvme = (nvme_t *)arg1;
3620 	int inum = (int)(uintptr_t)arg2;
3621 	int ccnt = 0;
3622 	int qnum;
3623 
3624 	if (inum >= nvme->n_intr_cnt)
3625 		return (DDI_INTR_UNCLAIMED);
3626 
3627 	if (nvme->n_dead)
3628 		return (nvme->n_intr_type == DDI_INTR_TYPE_FIXED ?
3629 		    DDI_INTR_UNCLAIMED : DDI_INTR_CLAIMED);
3630 
3631 	/*
3632 	 * The interrupt vector a queue uses is calculated as queue_idx %
3633 	 * intr_cnt in nvme_create_io_qpair(). Iterate through the queue array
3634 	 * in steps of n_intr_cnt to process all queues using this vector.
3635 	 */
3636 	for (qnum = inum;
3637 	    qnum < nvme->n_cq_count && nvme->n_cq[qnum] != NULL;
3638 	    qnum += nvme->n_intr_cnt) {
3639 		ccnt += nvme_process_iocq(nvme, nvme->n_cq[qnum]);
3640 	}
3641 
3642 	return (ccnt > 0 ? DDI_INTR_CLAIMED : DDI_INTR_UNCLAIMED);
3643 }
3644 
3645 static void
3646 nvme_release_interrupts(nvme_t *nvme)
3647 {
3648 	int i;
3649 
3650 	for (i = 0; i < nvme->n_intr_cnt; i++) {
3651 		if (nvme->n_inth[i] == NULL)
3652 			break;
3653 
3654 		if (nvme->n_intr_cap & DDI_INTR_FLAG_BLOCK)
3655 			(void) ddi_intr_block_disable(&nvme->n_inth[i], 1);
3656 		else
3657 			(void) ddi_intr_disable(nvme->n_inth[i]);
3658 
3659 		(void) ddi_intr_remove_handler(nvme->n_inth[i]);
3660 		(void) ddi_intr_free(nvme->n_inth[i]);
3661 	}
3662 
3663 	kmem_free(nvme->n_inth, nvme->n_inth_sz);
3664 	nvme->n_inth = NULL;
3665 	nvme->n_inth_sz = 0;
3666 
3667 	nvme->n_progress &= ~NVME_INTERRUPTS;
3668 }
3669 
3670 static int
3671 nvme_setup_interrupts(nvme_t *nvme, int intr_type, int nqpairs)
3672 {
3673 	int nintrs, navail, count;
3674 	int ret;
3675 	int i;
3676 
3677 	if (nvme->n_intr_types == 0) {
3678 		ret = ddi_intr_get_supported_types(nvme->n_dip,
3679 		    &nvme->n_intr_types);
3680 		if (ret != DDI_SUCCESS) {
3681 			dev_err(nvme->n_dip, CE_WARN,
3682 			    "!%s: ddi_intr_get_supported types failed",
3683 			    __func__);
3684 			return (ret);
3685 		}
3686 #ifdef __x86
3687 		if (get_hwenv() == HW_VMWARE)
3688 			nvme->n_intr_types &= ~DDI_INTR_TYPE_MSIX;
3689 #endif
3690 	}
3691 
3692 	if ((nvme->n_intr_types & intr_type) == 0)
3693 		return (DDI_FAILURE);
3694 
3695 	ret = ddi_intr_get_nintrs(nvme->n_dip, intr_type, &nintrs);
3696 	if (ret != DDI_SUCCESS) {
3697 		dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_get_nintrs failed",
3698 		    __func__);
3699 		return (ret);
3700 	}
3701 
3702 	ret = ddi_intr_get_navail(nvme->n_dip, intr_type, &navail);
3703 	if (ret != DDI_SUCCESS) {
3704 		dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_get_navail failed",
3705 		    __func__);
3706 		return (ret);
3707 	}
3708 
3709 	/* We want at most one interrupt per queue pair. */
3710 	if (navail > nqpairs)
3711 		navail = nqpairs;
3712 
3713 	nvme->n_inth_sz = sizeof (ddi_intr_handle_t) * navail;
3714 	nvme->n_inth = kmem_zalloc(nvme->n_inth_sz, KM_SLEEP);
3715 
3716 	ret = ddi_intr_alloc(nvme->n_dip, nvme->n_inth, intr_type, 0, navail,
3717 	    &count, 0);
3718 	if (ret != DDI_SUCCESS) {
3719 		dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_alloc failed",
3720 		    __func__);
3721 		goto fail;
3722 	}
3723 
3724 	nvme->n_intr_cnt = count;
3725 
3726 	ret = ddi_intr_get_pri(nvme->n_inth[0], &nvme->n_intr_pri);
3727 	if (ret != DDI_SUCCESS) {
3728 		dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_get_pri failed",
3729 		    __func__);
3730 		goto fail;
3731 	}
3732 
3733 	for (i = 0; i < count; i++) {
3734 		ret = ddi_intr_add_handler(nvme->n_inth[i], nvme_intr,
3735 		    (void *)nvme, (void *)(uintptr_t)i);
3736 		if (ret != DDI_SUCCESS) {
3737 			dev_err(nvme->n_dip, CE_WARN,
3738 			    "!%s: ddi_intr_add_handler failed", __func__);
3739 			goto fail;
3740 		}
3741 	}
3742 
3743 	(void) ddi_intr_get_cap(nvme->n_inth[0], &nvme->n_intr_cap);
3744 
3745 	for (i = 0; i < count; i++) {
3746 		if (nvme->n_intr_cap & DDI_INTR_FLAG_BLOCK)
3747 			ret = ddi_intr_block_enable(&nvme->n_inth[i], 1);
3748 		else
3749 			ret = ddi_intr_enable(nvme->n_inth[i]);
3750 
3751 		if (ret != DDI_SUCCESS) {
3752 			dev_err(nvme->n_dip, CE_WARN,
3753 			    "!%s: enabling interrupt %d failed", __func__, i);
3754 			goto fail;
3755 		}
3756 	}
3757 
3758 	nvme->n_intr_type = intr_type;
3759 
3760 	nvme->n_progress |= NVME_INTERRUPTS;
3761 
3762 	return (DDI_SUCCESS);
3763 
3764 fail:
3765 	nvme_release_interrupts(nvme);
3766 
3767 	return (ret);
3768 }
3769 
3770 static int
3771 nvme_fm_errcb(dev_info_t *dip, ddi_fm_error_t *fm_error, const void *arg)
3772 {
3773 	_NOTE(ARGUNUSED(arg));
3774 
3775 	pci_ereport_post(dip, fm_error, NULL);
3776 	return (fm_error->fme_status);
3777 }
3778 
3779 static void
3780 nvme_remove_callback(dev_info_t *dip, ddi_eventcookie_t cookie, void *a,
3781     void *b)
3782 {
3783 	nvme_t *nvme = a;
3784 
3785 	nvme->n_dead = B_TRUE;
3786 
3787 	/*
3788 	 * Fail all outstanding commands, including those in the admin queue
3789 	 * (queue 0).
3790 	 */
3791 	for (uint_t i = 0; i < nvme->n_ioq_count + 1; i++) {
3792 		nvme_qpair_t *qp = nvme->n_ioq[i];
3793 
3794 		mutex_enter(&qp->nq_mutex);
3795 		for (size_t j = 0; j < qp->nq_nentry; j++) {
3796 			nvme_cmd_t *cmd = qp->nq_cmd[j];
3797 			nvme_cmd_t *u_cmd;
3798 
3799 			if (cmd == NULL) {
3800 				continue;
3801 			}
3802 
3803 			/*
3804 			 * Since we have the queue lock held the entire time we
3805 			 * iterate over it, it's not possible for the queue to
3806 			 * change underneath us. Thus, we don't need to check
3807 			 * that the return value of nvme_unqueue_cmd matches the
3808 			 * requested cmd to unqueue.
3809 			 */
3810 			u_cmd = nvme_unqueue_cmd(nvme, qp, cmd->nc_sqe.sqe_cid);
3811 			taskq_dispatch_ent(qp->nq_cq->ncq_cmd_taskq,
3812 			    cmd->nc_callback, cmd, TQ_NOSLEEP, &cmd->nc_tqent);
3813 
3814 			ASSERT3P(u_cmd, ==, cmd);
3815 		}
3816 		mutex_exit(&qp->nq_mutex);
3817 	}
3818 }
3819 
3820 static int
3821 nvme_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
3822 {
3823 	nvme_t *nvme;
3824 	int instance;
3825 	int nregs;
3826 	off_t regsize;
3827 	int i;
3828 	char name[32];
3829 
3830 	if (cmd != DDI_ATTACH)
3831 		return (DDI_FAILURE);
3832 
3833 	instance = ddi_get_instance(dip);
3834 
3835 	if (ddi_soft_state_zalloc(nvme_state, instance) != DDI_SUCCESS)
3836 		return (DDI_FAILURE);
3837 
3838 	nvme = ddi_get_soft_state(nvme_state, instance);
3839 	ddi_set_driver_private(dip, nvme);
3840 	nvme->n_dip = dip;
3841 
3842 	/* Set up event handlers for hot removal. */
3843 	if (ddi_get_eventcookie(nvme->n_dip, DDI_DEVI_REMOVE_EVENT,
3844 	    &nvme->n_rm_cookie) != DDI_SUCCESS) {
3845 		goto fail;
3846 	}
3847 	if (ddi_add_event_handler(nvme->n_dip, nvme->n_rm_cookie,
3848 	    nvme_remove_callback, nvme, &nvme->n_ev_rm_cb_id) !=
3849 	    DDI_SUCCESS) {
3850 		goto fail;
3851 	}
3852 
3853 	mutex_init(&nvme->n_minor_mutex, NULL, MUTEX_DRIVER, NULL);
3854 	nvme->n_progress |= NVME_MUTEX_INIT;
3855 
3856 	nvme->n_strict_version = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
3857 	    DDI_PROP_DONTPASS, "strict-version", 1) == 1 ? B_TRUE : B_FALSE;
3858 	nvme->n_ignore_unknown_vendor_status = ddi_prop_get_int(DDI_DEV_T_ANY,
3859 	    dip, DDI_PROP_DONTPASS, "ignore-unknown-vendor-status", 0) == 1 ?
3860 	    B_TRUE : B_FALSE;
3861 	nvme->n_admin_queue_len = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
3862 	    DDI_PROP_DONTPASS, "admin-queue-len", NVME_DEFAULT_ADMIN_QUEUE_LEN);
3863 	nvme->n_io_squeue_len = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
3864 	    DDI_PROP_DONTPASS, "io-squeue-len", NVME_DEFAULT_IO_QUEUE_LEN);
3865 	/*
3866 	 * Double up the default for completion queues in case of
3867 	 * queue sharing.
3868 	 */
3869 	nvme->n_io_cqueue_len = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
3870 	    DDI_PROP_DONTPASS, "io-cqueue-len", 2 * NVME_DEFAULT_IO_QUEUE_LEN);
3871 	nvme->n_async_event_limit = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
3872 	    DDI_PROP_DONTPASS, "async-event-limit",
3873 	    NVME_DEFAULT_ASYNC_EVENT_LIMIT);
3874 	nvme->n_write_cache_enabled = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
3875 	    DDI_PROP_DONTPASS, "volatile-write-cache-enable", 1) != 0 ?
3876 	    B_TRUE : B_FALSE;
3877 	nvme->n_min_block_size = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
3878 	    DDI_PROP_DONTPASS, "min-phys-block-size",
3879 	    NVME_DEFAULT_MIN_BLOCK_SIZE);
3880 	nvme->n_submission_queues = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
3881 	    DDI_PROP_DONTPASS, "max-submission-queues", -1);
3882 	nvme->n_completion_queues = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
3883 	    DDI_PROP_DONTPASS, "max-completion-queues", -1);
3884 
3885 	if (!ISP2(nvme->n_min_block_size) ||
3886 	    (nvme->n_min_block_size < NVME_DEFAULT_MIN_BLOCK_SIZE)) {
3887 		dev_err(dip, CE_WARN, "!min-phys-block-size %s, "
3888 		    "using default %d", ISP2(nvme->n_min_block_size) ?
3889 		    "too low" : "not a power of 2",
3890 		    NVME_DEFAULT_MIN_BLOCK_SIZE);
3891 		nvme->n_min_block_size = NVME_DEFAULT_MIN_BLOCK_SIZE;
3892 	}
3893 
3894 	if (nvme->n_submission_queues != -1 &&
3895 	    (nvme->n_submission_queues < 1 ||
3896 	    nvme->n_submission_queues > UINT16_MAX)) {
3897 		dev_err(dip, CE_WARN, "!\"submission-queues\"=%d is not "
3898 		    "valid. Must be [1..%d]", nvme->n_submission_queues,
3899 		    UINT16_MAX);
3900 		nvme->n_submission_queues = -1;
3901 	}
3902 
3903 	if (nvme->n_completion_queues != -1 &&
3904 	    (nvme->n_completion_queues < 1 ||
3905 	    nvme->n_completion_queues > UINT16_MAX)) {
3906 		dev_err(dip, CE_WARN, "!\"completion-queues\"=%d is not "
3907 		    "valid. Must be [1..%d]", nvme->n_completion_queues,
3908 		    UINT16_MAX);
3909 		nvme->n_completion_queues = -1;
3910 	}
3911 
3912 	if (nvme->n_admin_queue_len < NVME_MIN_ADMIN_QUEUE_LEN)
3913 		nvme->n_admin_queue_len = NVME_MIN_ADMIN_QUEUE_LEN;
3914 	else if (nvme->n_admin_queue_len > NVME_MAX_ADMIN_QUEUE_LEN)
3915 		nvme->n_admin_queue_len = NVME_MAX_ADMIN_QUEUE_LEN;
3916 
3917 	if (nvme->n_io_squeue_len < NVME_MIN_IO_QUEUE_LEN)
3918 		nvme->n_io_squeue_len = NVME_MIN_IO_QUEUE_LEN;
3919 	if (nvme->n_io_cqueue_len < NVME_MIN_IO_QUEUE_LEN)
3920 		nvme->n_io_cqueue_len = NVME_MIN_IO_QUEUE_LEN;
3921 
3922 	if (nvme->n_async_event_limit < 1)
3923 		nvme->n_async_event_limit = NVME_DEFAULT_ASYNC_EVENT_LIMIT;
3924 
3925 	nvme->n_reg_acc_attr = nvme_reg_acc_attr;
3926 	nvme->n_queue_dma_attr = nvme_queue_dma_attr;
3927 	nvme->n_prp_dma_attr = nvme_prp_dma_attr;
3928 	nvme->n_sgl_dma_attr = nvme_sgl_dma_attr;
3929 
3930 	/*
3931 	 * Set up FMA support.
3932 	 */
3933 	nvme->n_fm_cap = ddi_getprop(DDI_DEV_T_ANY, dip,
3934 	    DDI_PROP_CANSLEEP | DDI_PROP_DONTPASS, "fm-capable",
3935 	    DDI_FM_EREPORT_CAPABLE | DDI_FM_ACCCHK_CAPABLE |
3936 	    DDI_FM_DMACHK_CAPABLE | DDI_FM_ERRCB_CAPABLE);
3937 
3938 	ddi_fm_init(dip, &nvme->n_fm_cap, &nvme->n_fm_ibc);
3939 
3940 	if (nvme->n_fm_cap) {
3941 		if (nvme->n_fm_cap & DDI_FM_ACCCHK_CAPABLE)
3942 			nvme->n_reg_acc_attr.devacc_attr_access =
3943 			    DDI_FLAGERR_ACC;
3944 
3945 		if (nvme->n_fm_cap & DDI_FM_DMACHK_CAPABLE) {
3946 			nvme->n_prp_dma_attr.dma_attr_flags |= DDI_DMA_FLAGERR;
3947 			nvme->n_sgl_dma_attr.dma_attr_flags |= DDI_DMA_FLAGERR;
3948 		}
3949 
3950 		if (DDI_FM_EREPORT_CAP(nvme->n_fm_cap) ||
3951 		    DDI_FM_ERRCB_CAP(nvme->n_fm_cap))
3952 			pci_ereport_setup(dip);
3953 
3954 		if (DDI_FM_ERRCB_CAP(nvme->n_fm_cap))
3955 			ddi_fm_handler_register(dip, nvme_fm_errcb,
3956 			    (void *)nvme);
3957 	}
3958 
3959 	nvme->n_progress |= NVME_FMA_INIT;
3960 
3961 	/*
3962 	 * The spec defines several register sets. Only the controller
3963 	 * registers (set 1) are currently used.
3964 	 */
3965 	if (ddi_dev_nregs(dip, &nregs) == DDI_FAILURE ||
3966 	    nregs < 2 ||
3967 	    ddi_dev_regsize(dip, 1, &regsize) == DDI_FAILURE)
3968 		goto fail;
3969 
3970 	if (ddi_regs_map_setup(dip, 1, &nvme->n_regs, 0, regsize,
3971 	    &nvme->n_reg_acc_attr, &nvme->n_regh) != DDI_SUCCESS) {
3972 		dev_err(dip, CE_WARN, "!failed to map regset 1");
3973 		goto fail;
3974 	}
3975 
3976 	nvme->n_progress |= NVME_REGS_MAPPED;
3977 
3978 	/*
3979 	 * Create PRP DMA cache
3980 	 */
3981 	(void) snprintf(name, sizeof (name), "%s%d_prp_cache",
3982 	    ddi_driver_name(dip), ddi_get_instance(dip));
3983 	nvme->n_prp_cache = kmem_cache_create(name, sizeof (nvme_dma_t),
3984 	    0, nvme_prp_dma_constructor, nvme_prp_dma_destructor,
3985 	    NULL, (void *)nvme, NULL, 0);
3986 
3987 	if (nvme_init(nvme) != DDI_SUCCESS)
3988 		goto fail;
3989 
3990 	/*
3991 	 * Initialize the driver with the UFM subsystem
3992 	 */
3993 	if (ddi_ufm_init(dip, DDI_UFM_CURRENT_VERSION, &nvme_ufm_ops,
3994 	    &nvme->n_ufmh, nvme) != 0) {
3995 		dev_err(dip, CE_WARN, "!failed to initialize UFM subsystem");
3996 		goto fail;
3997 	}
3998 	mutex_init(&nvme->n_fwslot_mutex, NULL, MUTEX_DRIVER, NULL);
3999 	ddi_ufm_update(nvme->n_ufmh);
4000 	nvme->n_progress |= NVME_UFM_INIT;
4001 
4002 	mutex_init(&nvme->n_mgmt_mutex, NULL, MUTEX_DRIVER, NULL);
4003 	nvme->n_progress |= NVME_MGMT_INIT;
4004 
4005 	/*
4006 	 * Identify and attach namespaces.
4007 	 */
4008 	mutex_enter(&nvme->n_mgmt_mutex);
4009 
4010 	for (i = 1; i <= nvme->n_namespace_count; i++) {
4011 		nvme_namespace_t *ns = NVME_NSID2NS(nvme, i);
4012 		int rv;
4013 
4014 		/*
4015 		 * Namespaces start out ignored. When nvme_init_ns() checks
4016 		 * their properties and finds they can be used, it will set
4017 		 * ns_ignore to B_FALSE. It will also use this state change
4018 		 * to keep an accurate count of attachable namespaces.
4019 		 */
4020 		ns->ns_ignore = B_TRUE;
4021 		if (nvme_init_ns(nvme, i) != 0) {
4022 			mutex_exit(&nvme->n_mgmt_mutex);
4023 			goto fail;
4024 		}
4025 
4026 		rv = nvme_attach_ns(nvme, i);
4027 		if (rv != 0 && rv != ENOTSUP) {
4028 			mutex_exit(&nvme->n_mgmt_mutex);
4029 			goto fail;
4030 		}
4031 
4032 		if (ddi_create_minor_node(nvme->n_dip, ns->ns_name, S_IFCHR,
4033 		    NVME_MINOR(ddi_get_instance(nvme->n_dip), i),
4034 		    DDI_NT_NVME_ATTACHMENT_POINT, 0) != DDI_SUCCESS) {
4035 			mutex_exit(&nvme->n_mgmt_mutex);
4036 			dev_err(dip, CE_WARN,
4037 			    "!failed to create minor node for namespace %d", i);
4038 			goto fail;
4039 		}
4040 	}
4041 
4042 	mutex_exit(&nvme->n_mgmt_mutex);
4043 
4044 	if (ddi_create_minor_node(dip, "devctl", S_IFCHR,
4045 	    NVME_MINOR(ddi_get_instance(dip), 0), DDI_NT_NVME_NEXUS, 0)
4046 	    != DDI_SUCCESS) {
4047 		dev_err(dip, CE_WARN, "nvme_attach: "
4048 		    "cannot create devctl minor node");
4049 		goto fail;
4050 	}
4051 
4052 	return (DDI_SUCCESS);
4053 
4054 fail:
4055 	/* attach successful anyway so that FMA can retire the device */
4056 	if (nvme->n_dead)
4057 		return (DDI_SUCCESS);
4058 
4059 	(void) nvme_detach(dip, DDI_DETACH);
4060 
4061 	return (DDI_FAILURE);
4062 }
4063 
4064 static int
4065 nvme_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
4066 {
4067 	int instance, i;
4068 	nvme_t *nvme;
4069 
4070 	if (cmd != DDI_DETACH)
4071 		return (DDI_FAILURE);
4072 
4073 	instance = ddi_get_instance(dip);
4074 
4075 	nvme = ddi_get_soft_state(nvme_state, instance);
4076 
4077 	if (nvme == NULL)
4078 		return (DDI_FAILURE);
4079 
4080 	ddi_remove_minor_node(dip, "devctl");
4081 
4082 	if (nvme->n_ns) {
4083 		for (i = 1; i <= nvme->n_namespace_count; i++) {
4084 			nvme_namespace_t *ns = NVME_NSID2NS(nvme, i);
4085 
4086 			ddi_remove_minor_node(dip, ns->ns_name);
4087 
4088 			if (ns->ns_bd_hdl) {
4089 				(void) bd_detach_handle(ns->ns_bd_hdl);
4090 				bd_free_handle(ns->ns_bd_hdl);
4091 			}
4092 
4093 			if (ns->ns_idns)
4094 				kmem_free(ns->ns_idns,
4095 				    sizeof (nvme_identify_nsid_t));
4096 			if (ns->ns_devid)
4097 				strfree(ns->ns_devid);
4098 		}
4099 
4100 		kmem_free(nvme->n_ns, sizeof (nvme_namespace_t) *
4101 		    nvme->n_namespace_count);
4102 	}
4103 
4104 	if (nvme->n_progress & NVME_MGMT_INIT) {
4105 		mutex_destroy(&nvme->n_mgmt_mutex);
4106 	}
4107 
4108 	if (nvme->n_progress & NVME_UFM_INIT) {
4109 		ddi_ufm_fini(nvme->n_ufmh);
4110 		mutex_destroy(&nvme->n_fwslot_mutex);
4111 	}
4112 
4113 	if (nvme->n_progress & NVME_INTERRUPTS)
4114 		nvme_release_interrupts(nvme);
4115 
4116 	for (i = 0; i < nvme->n_cq_count; i++) {
4117 		if (nvme->n_cq[i]->ncq_cmd_taskq != NULL)
4118 			taskq_wait(nvme->n_cq[i]->ncq_cmd_taskq);
4119 	}
4120 
4121 	if (nvme->n_progress & NVME_MUTEX_INIT) {
4122 		mutex_destroy(&nvme->n_minor_mutex);
4123 	}
4124 
4125 	if (nvme->n_ioq_count > 0) {
4126 		for (i = 1; i != nvme->n_ioq_count + 1; i++) {
4127 			if (nvme->n_ioq[i] != NULL) {
4128 				/* TODO: send destroy queue commands */
4129 				nvme_free_qpair(nvme->n_ioq[i]);
4130 			}
4131 		}
4132 
4133 		kmem_free(nvme->n_ioq, sizeof (nvme_qpair_t *) *
4134 		    (nvme->n_ioq_count + 1));
4135 	}
4136 
4137 	if (nvme->n_prp_cache != NULL) {
4138 		kmem_cache_destroy(nvme->n_prp_cache);
4139 	}
4140 
4141 	if (nvme->n_progress & NVME_REGS_MAPPED) {
4142 		nvme_shutdown(nvme, NVME_CC_SHN_NORMAL, B_FALSE);
4143 		(void) nvme_reset(nvme, B_FALSE);
4144 	}
4145 
4146 	if (nvme->n_progress & NVME_CTRL_LIMITS)
4147 		sema_destroy(&nvme->n_abort_sema);
4148 
4149 	if (nvme->n_progress & NVME_ADMIN_QUEUE)
4150 		nvme_free_qpair(nvme->n_adminq);
4151 
4152 	if (nvme->n_cq_count > 0) {
4153 		nvme_destroy_cq_array(nvme, 0);
4154 		nvme->n_cq = NULL;
4155 		nvme->n_cq_count = 0;
4156 	}
4157 
4158 	if (nvme->n_idctl)
4159 		kmem_free(nvme->n_idctl, NVME_IDENTIFY_BUFSIZE);
4160 
4161 	if (nvme->n_progress & NVME_REGS_MAPPED)
4162 		ddi_regs_map_free(&nvme->n_regh);
4163 
4164 	if (nvme->n_progress & NVME_FMA_INIT) {
4165 		if (DDI_FM_ERRCB_CAP(nvme->n_fm_cap))
4166 			ddi_fm_handler_unregister(nvme->n_dip);
4167 
4168 		if (DDI_FM_EREPORT_CAP(nvme->n_fm_cap) ||
4169 		    DDI_FM_ERRCB_CAP(nvme->n_fm_cap))
4170 			pci_ereport_teardown(nvme->n_dip);
4171 
4172 		ddi_fm_fini(nvme->n_dip);
4173 	}
4174 
4175 	if (nvme->n_vendor != NULL)
4176 		strfree(nvme->n_vendor);
4177 
4178 	if (nvme->n_product != NULL)
4179 		strfree(nvme->n_product);
4180 
4181 	/* Clean up hot removal event handler. */
4182 	if (nvme->n_ev_rm_cb_id != NULL) {
4183 		(void) ddi_remove_event_handler(nvme->n_ev_rm_cb_id);
4184 	}
4185 	nvme->n_ev_rm_cb_id = NULL;
4186 
4187 	ddi_soft_state_free(nvme_state, instance);
4188 
4189 	return (DDI_SUCCESS);
4190 }
4191 
4192 static int
4193 nvme_quiesce(dev_info_t *dip)
4194 {
4195 	int instance;
4196 	nvme_t *nvme;
4197 
4198 	instance = ddi_get_instance(dip);
4199 
4200 	nvme = ddi_get_soft_state(nvme_state, instance);
4201 
4202 	if (nvme == NULL)
4203 		return (DDI_FAILURE);
4204 
4205 	nvme_shutdown(nvme, NVME_CC_SHN_ABRUPT, B_TRUE);
4206 
4207 	(void) nvme_reset(nvme, B_TRUE);
4208 
4209 	return (DDI_FAILURE);
4210 }
4211 
4212 static int
4213 nvme_fill_prp(nvme_cmd_t *cmd, ddi_dma_handle_t dma)
4214 {
4215 	nvme_t *nvme = cmd->nc_nvme;
4216 	uint_t nprp_per_page, nprp;
4217 	uint64_t *prp;
4218 	const ddi_dma_cookie_t *cookie;
4219 	uint_t idx;
4220 	uint_t ncookies = ddi_dma_ncookies(dma);
4221 
4222 	if (ncookies == 0)
4223 		return (DDI_FAILURE);
4224 
4225 	if ((cookie = ddi_dma_cookie_get(dma, 0)) == NULL)
4226 		return (DDI_FAILURE);
4227 	cmd->nc_sqe.sqe_dptr.d_prp[0] = cookie->dmac_laddress;
4228 
4229 	if (ncookies == 1) {
4230 		cmd->nc_sqe.sqe_dptr.d_prp[1] = 0;
4231 		return (DDI_SUCCESS);
4232 	} else if (ncookies == 2) {
4233 		if ((cookie = ddi_dma_cookie_get(dma, 1)) == NULL)
4234 			return (DDI_FAILURE);
4235 		cmd->nc_sqe.sqe_dptr.d_prp[1] = cookie->dmac_laddress;
4236 		return (DDI_SUCCESS);
4237 	}
4238 
4239 	/*
4240 	 * At this point, we're always operating on cookies at
4241 	 * index >= 1 and writing the addresses of those cookies
4242 	 * into a new page. The address of that page is stored
4243 	 * as the second PRP entry.
4244 	 */
4245 	nprp_per_page = nvme->n_pagesize / sizeof (uint64_t);
4246 	ASSERT(nprp_per_page > 0);
4247 
4248 	/*
4249 	 * We currently don't support chained PRPs and set up our DMA
4250 	 * attributes to reflect that. If we still get an I/O request
4251 	 * that needs a chained PRP something is very wrong. Account
4252 	 * for the first cookie here, which we've placed in d_prp[0].
4253 	 */
4254 	nprp = howmany(ncookies - 1, nprp_per_page);
4255 	VERIFY(nprp == 1);
4256 
4257 	/*
4258 	 * Allocate a page of pointers, in which we'll write the
4259 	 * addresses of cookies 1 to `ncookies`.
4260 	 */
4261 	cmd->nc_prp = kmem_cache_alloc(nvme->n_prp_cache, KM_SLEEP);
4262 	bzero(cmd->nc_prp->nd_memp, cmd->nc_prp->nd_len);
4263 	cmd->nc_sqe.sqe_dptr.d_prp[1] = cmd->nc_prp->nd_cookie.dmac_laddress;
4264 
4265 	prp = (uint64_t *)cmd->nc_prp->nd_memp;
4266 	for (idx = 1; idx < ncookies; idx++) {
4267 		if ((cookie = ddi_dma_cookie_get(dma, idx)) == NULL)
4268 			return (DDI_FAILURE);
4269 		*prp++ = cookie->dmac_laddress;
4270 	}
4271 
4272 	(void) ddi_dma_sync(cmd->nc_prp->nd_dmah, 0, cmd->nc_prp->nd_len,
4273 	    DDI_DMA_SYNC_FORDEV);
4274 	return (DDI_SUCCESS);
4275 }
4276 
4277 /*
4278  * The maximum number of requests supported for a deallocate request is
4279  * NVME_DSET_MGMT_MAX_RANGES (256) -- this is from the NVMe 1.1 spec (and
4280  * unchanged through at least 1.4a). The definition of nvme_range_t is also
4281  * from the NVMe 1.1 spec. Together, the result is that all of the ranges for
4282  * a deallocate request will fit into the smallest supported namespace page
4283  * (4k).
4284  */
4285 CTASSERT(sizeof (nvme_range_t) * NVME_DSET_MGMT_MAX_RANGES == 4096);
4286 
4287 static int
4288 nvme_fill_ranges(nvme_cmd_t *cmd, bd_xfer_t *xfer, uint64_t blocksize,
4289     int allocflag)
4290 {
4291 	const dkioc_free_list_t *dfl = xfer->x_dfl;
4292 	const dkioc_free_list_ext_t *exts = dfl->dfl_exts;
4293 	nvme_t *nvme = cmd->nc_nvme;
4294 	nvme_range_t *ranges = NULL;
4295 	uint_t i;
4296 
4297 	/*
4298 	 * The number of ranges in the request is 0s based (that is
4299 	 * word10 == 0 -> 1 range, word10 == 1 -> 2 ranges, ...,
4300 	 * word10 == 255 -> 256 ranges). Therefore the allowed values are
4301 	 * [1..NVME_DSET_MGMT_MAX_RANGES]. If blkdev gives us a bad request,
4302 	 * we either provided bad info in nvme_bd_driveinfo() or there is a bug
4303 	 * in blkdev.
4304 	 */
4305 	VERIFY3U(dfl->dfl_num_exts, >, 0);
4306 	VERIFY3U(dfl->dfl_num_exts, <=, NVME_DSET_MGMT_MAX_RANGES);
4307 	cmd->nc_sqe.sqe_cdw10 = (dfl->dfl_num_exts - 1) & 0xff;
4308 
4309 	cmd->nc_sqe.sqe_cdw11 = NVME_DSET_MGMT_ATTR_DEALLOCATE;
4310 
4311 	cmd->nc_prp = kmem_cache_alloc(nvme->n_prp_cache, allocflag);
4312 	if (cmd->nc_prp == NULL)
4313 		return (DDI_FAILURE);
4314 
4315 	bzero(cmd->nc_prp->nd_memp, cmd->nc_prp->nd_len);
4316 	ranges = (nvme_range_t *)cmd->nc_prp->nd_memp;
4317 
4318 	cmd->nc_sqe.sqe_dptr.d_prp[0] = cmd->nc_prp->nd_cookie.dmac_laddress;
4319 	cmd->nc_sqe.sqe_dptr.d_prp[1] = 0;
4320 
4321 	for (i = 0; i < dfl->dfl_num_exts; i++) {
4322 		uint64_t lba, len;
4323 
4324 		lba = (dfl->dfl_offset + exts[i].dfle_start) / blocksize;
4325 		len = exts[i].dfle_length / blocksize;
4326 
4327 		VERIFY3U(len, <=, UINT32_MAX);
4328 
4329 		/* No context attributes for a deallocate request */
4330 		ranges[i].nr_ctxattr = 0;
4331 		ranges[i].nr_len = len;
4332 		ranges[i].nr_lba = lba;
4333 	}
4334 
4335 	(void) ddi_dma_sync(cmd->nc_prp->nd_dmah, 0, cmd->nc_prp->nd_len,
4336 	    DDI_DMA_SYNC_FORDEV);
4337 
4338 	return (DDI_SUCCESS);
4339 }
4340 
4341 static nvme_cmd_t *
4342 nvme_create_nvm_cmd(nvme_namespace_t *ns, uint8_t opc, bd_xfer_t *xfer)
4343 {
4344 	nvme_t *nvme = ns->ns_nvme;
4345 	nvme_cmd_t *cmd;
4346 	int allocflag;
4347 
4348 	/*
4349 	 * Blkdev only sets BD_XFER_POLL when dumping, so don't sleep.
4350 	 */
4351 	allocflag = (xfer->x_flags & BD_XFER_POLL) ? KM_NOSLEEP : KM_SLEEP;
4352 	cmd = nvme_alloc_cmd(nvme, allocflag);
4353 
4354 	if (cmd == NULL)
4355 		return (NULL);
4356 
4357 	cmd->nc_sqe.sqe_opc = opc;
4358 	cmd->nc_callback = nvme_bd_xfer_done;
4359 	cmd->nc_xfer = xfer;
4360 
4361 	switch (opc) {
4362 	case NVME_OPC_NVM_WRITE:
4363 	case NVME_OPC_NVM_READ:
4364 		VERIFY(xfer->x_nblks <= 0x10000);
4365 
4366 		cmd->nc_sqe.sqe_nsid = ns->ns_id;
4367 
4368 		cmd->nc_sqe.sqe_cdw10 = xfer->x_blkno & 0xffffffffu;
4369 		cmd->nc_sqe.sqe_cdw11 = (xfer->x_blkno >> 32);
4370 		cmd->nc_sqe.sqe_cdw12 = (uint16_t)(xfer->x_nblks - 1);
4371 
4372 		if (nvme_fill_prp(cmd, xfer->x_dmah) != DDI_SUCCESS)
4373 			goto fail;
4374 		break;
4375 
4376 	case NVME_OPC_NVM_FLUSH:
4377 		cmd->nc_sqe.sqe_nsid = ns->ns_id;
4378 		break;
4379 
4380 	case NVME_OPC_NVM_DSET_MGMT:
4381 		cmd->nc_sqe.sqe_nsid = ns->ns_id;
4382 
4383 		if (nvme_fill_ranges(cmd, xfer,
4384 		    (uint64_t)ns->ns_block_size, allocflag) != DDI_SUCCESS)
4385 			goto fail;
4386 		break;
4387 
4388 	default:
4389 		goto fail;
4390 	}
4391 
4392 	return (cmd);
4393 
4394 fail:
4395 	nvme_free_cmd(cmd);
4396 	return (NULL);
4397 }
4398 
4399 static void
4400 nvme_bd_xfer_done(void *arg)
4401 {
4402 	nvme_cmd_t *cmd = arg;
4403 	bd_xfer_t *xfer = cmd->nc_xfer;
4404 	int error = 0;
4405 
4406 	error = nvme_check_cmd_status(cmd);
4407 	nvme_free_cmd(cmd);
4408 
4409 	bd_xfer_done(xfer, error);
4410 }
4411 
4412 static void
4413 nvme_bd_driveinfo(void *arg, bd_drive_t *drive)
4414 {
4415 	nvme_namespace_t *ns = arg;
4416 	nvme_t *nvme = ns->ns_nvme;
4417 	uint_t ns_count = MAX(1, nvme->n_namespaces_attachable);
4418 	boolean_t mutex_exit_needed = B_TRUE;
4419 
4420 	/*
4421 	 * nvme_bd_driveinfo is called by blkdev in two situations:
4422 	 * - during bd_attach_handle(), which we call with the mutex held
4423 	 * - during bd_attach(), which may be called with or without the
4424 	 *   mutex held
4425 	 */
4426 	if (mutex_owned(&nvme->n_mgmt_mutex))
4427 		mutex_exit_needed = B_FALSE;
4428 	else
4429 		mutex_enter(&nvme->n_mgmt_mutex);
4430 
4431 	/*
4432 	 * Set the blkdev qcount to the number of submission queues.
4433 	 * It will then create one waitq/runq pair for each submission
4434 	 * queue and spread I/O requests across the queues.
4435 	 */
4436 	drive->d_qcount = nvme->n_ioq_count;
4437 
4438 	/*
4439 	 * I/O activity to individual namespaces is distributed across
4440 	 * each of the d_qcount blkdev queues (which has been set to
4441 	 * the number of nvme submission queues). d_qsize is the number
4442 	 * of submitted and not completed I/Os within each queue that blkdev
4443 	 * will allow before it starts holding them in the waitq.
4444 	 *
4445 	 * Each namespace will create a child blkdev instance, for each one
4446 	 * we try and set the d_qsize so that each namespace gets an
4447 	 * equal portion of the submission queue.
4448 	 *
4449 	 * If post instantiation of the nvme drive, n_namespaces_attachable
4450 	 * changes and a namespace is attached it could calculate a
4451 	 * different d_qsize. It may even be that the sum of the d_qsizes is
4452 	 * now beyond the submission queue size. Should that be the case
4453 	 * and the I/O rate is such that blkdev attempts to submit more
4454 	 * I/Os than the size of the submission queue, the excess I/Os
4455 	 * will be held behind the semaphore nq_sema.
4456 	 */
4457 	drive->d_qsize = nvme->n_io_squeue_len / ns_count;
4458 
4459 	/*
4460 	 * Don't let the queue size drop below the minimum, though.
4461 	 */
4462 	drive->d_qsize = MAX(drive->d_qsize, NVME_MIN_IO_QUEUE_LEN);
4463 
4464 	/*
4465 	 * d_maxxfer is not set, which means the value is taken from the DMA
4466 	 * attributes specified to bd_alloc_handle.
4467 	 */
4468 
4469 	drive->d_removable = B_FALSE;
4470 	drive->d_hotpluggable = B_FALSE;
4471 
4472 	bcopy(ns->ns_eui64, drive->d_eui64, sizeof (drive->d_eui64));
4473 	drive->d_target = ns->ns_id;
4474 	drive->d_lun = 0;
4475 
4476 	drive->d_model = nvme->n_idctl->id_model;
4477 	drive->d_model_len = sizeof (nvme->n_idctl->id_model);
4478 	drive->d_vendor = nvme->n_vendor;
4479 	drive->d_vendor_len = strlen(nvme->n_vendor);
4480 	drive->d_product = nvme->n_product;
4481 	drive->d_product_len = strlen(nvme->n_product);
4482 	drive->d_serial = nvme->n_idctl->id_serial;
4483 	drive->d_serial_len = sizeof (nvme->n_idctl->id_serial);
4484 	drive->d_revision = nvme->n_idctl->id_fwrev;
4485 	drive->d_revision_len = sizeof (nvme->n_idctl->id_fwrev);
4486 
4487 	/*
4488 	 * If we support the dataset management command, the only restrictions
4489 	 * on a discard request are the maximum number of ranges (segments)
4490 	 * per single request.
4491 	 */
4492 	if (nvme->n_idctl->id_oncs.on_dset_mgmt)
4493 		drive->d_max_free_seg = NVME_DSET_MGMT_MAX_RANGES;
4494 
4495 	if (mutex_exit_needed)
4496 		mutex_exit(&nvme->n_mgmt_mutex);
4497 }
4498 
4499 static int
4500 nvme_bd_mediainfo(void *arg, bd_media_t *media)
4501 {
4502 	nvme_namespace_t *ns = arg;
4503 	nvme_t *nvme = ns->ns_nvme;
4504 	boolean_t mutex_exit_needed = B_TRUE;
4505 
4506 	if (nvme->n_dead) {
4507 		return (EIO);
4508 	}
4509 
4510 	/*
4511 	 * nvme_bd_mediainfo is called by blkdev in various situations,
4512 	 * most of them out of our control. There's one exception though:
4513 	 * When we call bd_state_change() in response to "namespace change"
4514 	 * notification, where the mutex is already being held by us.
4515 	 */
4516 	if (mutex_owned(&nvme->n_mgmt_mutex))
4517 		mutex_exit_needed = B_FALSE;
4518 	else
4519 		mutex_enter(&nvme->n_mgmt_mutex);
4520 
4521 	media->m_nblks = ns->ns_block_count;
4522 	media->m_blksize = ns->ns_block_size;
4523 	media->m_readonly = B_FALSE;
4524 	media->m_solidstate = B_TRUE;
4525 
4526 	media->m_pblksize = ns->ns_best_block_size;
4527 
4528 	if (mutex_exit_needed)
4529 		mutex_exit(&nvme->n_mgmt_mutex);
4530 
4531 	return (0);
4532 }
4533 
4534 static int
4535 nvme_bd_cmd(nvme_namespace_t *ns, bd_xfer_t *xfer, uint8_t opc)
4536 {
4537 	nvme_t *nvme = ns->ns_nvme;
4538 	nvme_cmd_t *cmd;
4539 	nvme_qpair_t *ioq;
4540 	boolean_t poll;
4541 	int ret;
4542 
4543 	if (nvme->n_dead) {
4544 		return (EIO);
4545 	}
4546 
4547 	cmd = nvme_create_nvm_cmd(ns, opc, xfer);
4548 	if (cmd == NULL)
4549 		return (ENOMEM);
4550 
4551 	cmd->nc_sqid = xfer->x_qnum + 1;
4552 	ASSERT(cmd->nc_sqid <= nvme->n_ioq_count);
4553 	ioq = nvme->n_ioq[cmd->nc_sqid];
4554 
4555 	/*
4556 	 * Get the polling flag before submitting the command. The command may
4557 	 * complete immediately after it was submitted, which means we must
4558 	 * treat both cmd and xfer as if they have been freed already.
4559 	 */
4560 	poll = (xfer->x_flags & BD_XFER_POLL) != 0;
4561 
4562 	ret = nvme_submit_io_cmd(ioq, cmd);
4563 
4564 	if (ret != 0)
4565 		return (ret);
4566 
4567 	if (!poll)
4568 		return (0);
4569 
4570 	do {
4571 		cmd = nvme_retrieve_cmd(nvme, ioq);
4572 		if (cmd != NULL)
4573 			cmd->nc_callback(cmd);
4574 		else
4575 			drv_usecwait(10);
4576 	} while (ioq->nq_active_cmds != 0);
4577 
4578 	return (0);
4579 }
4580 
4581 static int
4582 nvme_bd_read(void *arg, bd_xfer_t *xfer)
4583 {
4584 	nvme_namespace_t *ns = arg;
4585 
4586 	return (nvme_bd_cmd(ns, xfer, NVME_OPC_NVM_READ));
4587 }
4588 
4589 static int
4590 nvme_bd_write(void *arg, bd_xfer_t *xfer)
4591 {
4592 	nvme_namespace_t *ns = arg;
4593 
4594 	return (nvme_bd_cmd(ns, xfer, NVME_OPC_NVM_WRITE));
4595 }
4596 
4597 static int
4598 nvme_bd_sync(void *arg, bd_xfer_t *xfer)
4599 {
4600 	nvme_namespace_t *ns = arg;
4601 
4602 	if (ns->ns_nvme->n_dead)
4603 		return (EIO);
4604 
4605 	/*
4606 	 * If the volatile write cache is not present or not enabled the FLUSH
4607 	 * command is a no-op, so we can take a shortcut here.
4608 	 */
4609 	if (!ns->ns_nvme->n_write_cache_present) {
4610 		bd_xfer_done(xfer, ENOTSUP);
4611 		return (0);
4612 	}
4613 
4614 	if (!ns->ns_nvme->n_write_cache_enabled) {
4615 		bd_xfer_done(xfer, 0);
4616 		return (0);
4617 	}
4618 
4619 	return (nvme_bd_cmd(ns, xfer, NVME_OPC_NVM_FLUSH));
4620 }
4621 
4622 static int
4623 nvme_bd_devid(void *arg, dev_info_t *devinfo, ddi_devid_t *devid)
4624 {
4625 	nvme_namespace_t *ns = arg;
4626 	nvme_t *nvme = ns->ns_nvme;
4627 
4628 	if (nvme->n_dead) {
4629 		return (EIO);
4630 	}
4631 
4632 	/*LINTED: E_BAD_PTR_CAST_ALIGN*/
4633 	if (*(uint64_t *)ns->ns_eui64 != 0) {
4634 		return (ddi_devid_init(devinfo, DEVID_SCSI3_WWN,
4635 		    sizeof (ns->ns_eui64), ns->ns_eui64, devid));
4636 	} else {
4637 		return (ddi_devid_init(devinfo, DEVID_ENCAP,
4638 		    strlen(ns->ns_devid), ns->ns_devid, devid));
4639 	}
4640 }
4641 
4642 static int
4643 nvme_bd_free_space(void *arg, bd_xfer_t *xfer)
4644 {
4645 	nvme_namespace_t *ns = arg;
4646 
4647 	if (xfer->x_dfl == NULL)
4648 		return (EINVAL);
4649 
4650 	if (!ns->ns_nvme->n_idctl->id_oncs.on_dset_mgmt)
4651 		return (ENOTSUP);
4652 
4653 	return (nvme_bd_cmd(ns, xfer, NVME_OPC_NVM_DSET_MGMT));
4654 }
4655 
4656 static int
4657 nvme_open(dev_t *devp, int flag, int otyp, cred_t *cred_p)
4658 {
4659 #ifndef __lock_lint
4660 	_NOTE(ARGUNUSED(cred_p));
4661 #endif
4662 	minor_t minor = getminor(*devp);
4663 	nvme_t *nvme = ddi_get_soft_state(nvme_state, NVME_MINOR_INST(minor));
4664 	int nsid = NVME_MINOR_NSID(minor);
4665 	nvme_minor_state_t *nm;
4666 	int rv = 0;
4667 
4668 	if (otyp != OTYP_CHR)
4669 		return (EINVAL);
4670 
4671 	if (nvme == NULL)
4672 		return (ENXIO);
4673 
4674 	if (nsid > nvme->n_namespace_count)
4675 		return (ENXIO);
4676 
4677 	if (nvme->n_dead)
4678 		return (EIO);
4679 
4680 	mutex_enter(&nvme->n_minor_mutex);
4681 
4682 	/*
4683 	 * First check the devctl node and error out if it's been opened
4684 	 * exclusively already by any other thread.
4685 	 */
4686 	if (nvme->n_minor.nm_oexcl != NULL &&
4687 	    nvme->n_minor.nm_oexcl != curthread) {
4688 		rv = EBUSY;
4689 		goto out;
4690 	}
4691 
4692 	nm = nsid == 0 ? &nvme->n_minor : &(NVME_NSID2NS(nvme, nsid)->ns_minor);
4693 
4694 	if (flag & FEXCL) {
4695 		if (nm->nm_oexcl != NULL || nm->nm_open) {
4696 			rv = EBUSY;
4697 			goto out;
4698 		}
4699 
4700 		/*
4701 		 * If at least one namespace is already open, fail the
4702 		 * exclusive open of the devctl node.
4703 		 */
4704 		if (nsid == 0) {
4705 			for (int i = 1; i <= nvme->n_namespace_count; i++) {
4706 				if (NVME_NSID2NS(nvme, i)->ns_minor.nm_open) {
4707 					rv = EBUSY;
4708 					goto out;
4709 				}
4710 			}
4711 		}
4712 
4713 		nm->nm_oexcl = curthread;
4714 	}
4715 
4716 	nm->nm_open = B_TRUE;
4717 
4718 out:
4719 	mutex_exit(&nvme->n_minor_mutex);
4720 	return (rv);
4721 
4722 }
4723 
4724 static int
4725 nvme_close(dev_t dev, int flag, int otyp, cred_t *cred_p)
4726 {
4727 #ifndef __lock_lint
4728 	_NOTE(ARGUNUSED(cred_p));
4729 	_NOTE(ARGUNUSED(flag));
4730 #endif
4731 	minor_t minor = getminor(dev);
4732 	nvme_t *nvme = ddi_get_soft_state(nvme_state, NVME_MINOR_INST(minor));
4733 	int nsid = NVME_MINOR_NSID(minor);
4734 	nvme_minor_state_t *nm;
4735 
4736 	if (otyp != OTYP_CHR)
4737 		return (ENXIO);
4738 
4739 	if (nvme == NULL)
4740 		return (ENXIO);
4741 
4742 	if (nsid > nvme->n_namespace_count)
4743 		return (ENXIO);
4744 
4745 	nm = nsid == 0 ? &nvme->n_minor : &(NVME_NSID2NS(nvme, nsid)->ns_minor);
4746 
4747 	mutex_enter(&nvme->n_minor_mutex);
4748 	if (nm->nm_oexcl != NULL) {
4749 		ASSERT(nm->nm_oexcl == curthread);
4750 		nm->nm_oexcl = NULL;
4751 	}
4752 
4753 	ASSERT(nm->nm_open);
4754 	nm->nm_open = B_FALSE;
4755 	mutex_exit(&nvme->n_minor_mutex);
4756 
4757 	return (0);
4758 }
4759 
4760 static int
4761 nvme_ioctl_identify(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
4762     cred_t *cred_p)
4763 {
4764 	_NOTE(ARGUNUSED(cred_p));
4765 	int rv = 0;
4766 	void *idctl;
4767 
4768 	if ((mode & FREAD) == 0)
4769 		return (EPERM);
4770 
4771 	if (nioc->n_len < NVME_IDENTIFY_BUFSIZE)
4772 		return (EINVAL);
4773 
4774 	if ((rv = nvme_identify(nvme, B_TRUE, nsid, (void **)&idctl)) != 0)
4775 		return (rv);
4776 
4777 	if (ddi_copyout(idctl, (void *)nioc->n_buf, NVME_IDENTIFY_BUFSIZE, mode)
4778 	    != 0)
4779 		rv = EFAULT;
4780 
4781 	kmem_free(idctl, NVME_IDENTIFY_BUFSIZE);
4782 
4783 	return (rv);
4784 }
4785 
4786 /*
4787  * Execute commands on behalf of the various ioctls.
4788  */
4789 static int
4790 nvme_ioc_cmd(nvme_t *nvme, nvme_sqe_t *sqe, boolean_t is_admin, void *data_addr,
4791     uint32_t data_len, int rwk, nvme_cqe_t *cqe, uint_t timeout)
4792 {
4793 	nvme_cmd_t *cmd;
4794 	nvme_qpair_t *ioq;
4795 	int rv = 0;
4796 
4797 	cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
4798 	if (is_admin) {
4799 		cmd->nc_sqid = 0;
4800 		ioq = nvme->n_adminq;
4801 	} else {
4802 		cmd->nc_sqid = (CPU->cpu_id % nvme->n_ioq_count) + 1;
4803 		ASSERT(cmd->nc_sqid <= nvme->n_ioq_count);
4804 		ioq = nvme->n_ioq[cmd->nc_sqid];
4805 	}
4806 
4807 	/*
4808 	 * This function is used to facilitate requests from
4809 	 * userspace, so don't panic if the command fails. This
4810 	 * is especially true for admin passthru commands, where
4811 	 * the actual command data structure is entirely defined
4812 	 * by userspace.
4813 	 */
4814 	cmd->nc_dontpanic = B_TRUE;
4815 
4816 	cmd->nc_callback = nvme_wakeup_cmd;
4817 	cmd->nc_sqe = *sqe;
4818 
4819 	if ((rwk & (FREAD | FWRITE)) != 0) {
4820 		if (data_addr == NULL) {
4821 			rv = EINVAL;
4822 			goto free_cmd;
4823 		}
4824 
4825 		if (nvme_zalloc_dma(nvme, data_len, DDI_DMA_READ,
4826 		    &nvme->n_prp_dma_attr, &cmd->nc_dma) != DDI_SUCCESS) {
4827 			dev_err(nvme->n_dip, CE_WARN,
4828 			    "!nvme_zalloc_dma failed for nvme_ioc_cmd()");
4829 
4830 			rv = ENOMEM;
4831 			goto free_cmd;
4832 		}
4833 
4834 		if ((rv = nvme_fill_prp(cmd, cmd->nc_dma->nd_dmah)) != 0)
4835 			goto free_cmd;
4836 
4837 		if ((rwk & FWRITE) != 0) {
4838 			if (ddi_copyin(data_addr, cmd->nc_dma->nd_memp,
4839 			    data_len, rwk & FKIOCTL) != 0) {
4840 				rv = EFAULT;
4841 				goto free_cmd;
4842 			}
4843 		}
4844 	}
4845 
4846 	if (is_admin) {
4847 		nvme_admin_cmd(cmd, timeout);
4848 	} else {
4849 		mutex_enter(&cmd->nc_mutex);
4850 
4851 		rv = nvme_submit_io_cmd(ioq, cmd);
4852 
4853 		if (rv == EAGAIN) {
4854 			mutex_exit(&cmd->nc_mutex);
4855 			dev_err(cmd->nc_nvme->n_dip, CE_WARN,
4856 			    "!nvme_ioc_cmd() failed, I/O Q full");
4857 			goto free_cmd;
4858 		}
4859 
4860 		nvme_wait_cmd(cmd, timeout);
4861 
4862 		mutex_exit(&cmd->nc_mutex);
4863 	}
4864 
4865 	if (cqe != NULL)
4866 		*cqe = cmd->nc_cqe;
4867 
4868 	if ((rv = nvme_check_cmd_status(cmd)) != 0) {
4869 		dev_err(nvme->n_dip, CE_WARN,
4870 		    "!nvme_ioc_cmd() failed with sct = %x, sc = %x",
4871 		    cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
4872 
4873 		goto free_cmd;
4874 	}
4875 
4876 	if ((rwk & FREAD) != 0) {
4877 		if (ddi_copyout(cmd->nc_dma->nd_memp,
4878 		    data_addr, data_len, rwk & FKIOCTL) != 0)
4879 			rv = EFAULT;
4880 	}
4881 
4882 free_cmd:
4883 	nvme_free_cmd(cmd);
4884 
4885 	return (rv);
4886 }
4887 
4888 static int
4889 nvme_ioctl_capabilities(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc,
4890     int mode, cred_t *cred_p)
4891 {
4892 	_NOTE(ARGUNUSED(nsid, cred_p));
4893 	int rv = 0;
4894 	nvme_reg_cap_t cap = { 0 };
4895 	nvme_capabilities_t nc;
4896 
4897 	if ((mode & FREAD) == 0)
4898 		return (EPERM);
4899 
4900 	if (nioc->n_len < sizeof (nc))
4901 		return (EINVAL);
4902 
4903 	cap.r = nvme_get64(nvme, NVME_REG_CAP);
4904 
4905 	/*
4906 	 * The MPSMIN and MPSMAX fields in the CAP register use 0 to
4907 	 * specify the base page size of 4k (1<<12), so add 12 here to
4908 	 * get the real page size value.
4909 	 */
4910 	nc.mpsmax = 1 << (12 + cap.b.cap_mpsmax);
4911 	nc.mpsmin = 1 << (12 + cap.b.cap_mpsmin);
4912 
4913 	if (ddi_copyout(&nc, (void *)nioc->n_buf, sizeof (nc), mode) != 0)
4914 		rv = EFAULT;
4915 
4916 	return (rv);
4917 }
4918 
4919 static int
4920 nvme_ioctl_get_logpage(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc,
4921     int mode, cred_t *cred_p)
4922 {
4923 	_NOTE(ARGUNUSED(cred_p));
4924 	void *log = NULL;
4925 	size_t bufsize = 0;
4926 	int rv = 0;
4927 
4928 	if ((mode & FREAD) == 0)
4929 		return (EPERM);
4930 
4931 	if (nsid > 0 && !NVME_NSID2NS(nvme, nsid)->ns_active)
4932 		return (EINVAL);
4933 
4934 	switch (nioc->n_arg) {
4935 	case NVME_LOGPAGE_ERROR:
4936 		if (nsid != 0)
4937 			return (EINVAL);
4938 		break;
4939 	case NVME_LOGPAGE_HEALTH:
4940 		if (nsid != 0 && nvme->n_idctl->id_lpa.lp_smart == 0)
4941 			return (EINVAL);
4942 
4943 		if (nsid == 0)
4944 			nsid = (uint32_t)-1;
4945 
4946 		break;
4947 	case NVME_LOGPAGE_FWSLOT:
4948 		if (nsid != 0)
4949 			return (EINVAL);
4950 		break;
4951 	default:
4952 		if (!NVME_IS_VENDOR_SPECIFIC_LOGPAGE(nioc->n_arg))
4953 			return (EINVAL);
4954 		if (nioc->n_len > NVME_VENDOR_SPECIFIC_LOGPAGE_MAX_SIZE) {
4955 			dev_err(nvme->n_dip, CE_NOTE, "!Vendor-specific log "
4956 			    "page size exceeds device maximum supported size: "
4957 			    "%lu", NVME_VENDOR_SPECIFIC_LOGPAGE_MAX_SIZE);
4958 			return (EINVAL);
4959 		}
4960 		if (nioc->n_len == 0)
4961 			return (EINVAL);
4962 		bufsize = nioc->n_len;
4963 		if (nsid == 0)
4964 			nsid = (uint32_t)-1;
4965 	}
4966 
4967 	if (nvme_get_logpage(nvme, B_TRUE, &log, &bufsize, nioc->n_arg, nsid)
4968 	    != DDI_SUCCESS)
4969 		return (EIO);
4970 
4971 	if (nioc->n_len < bufsize) {
4972 		kmem_free(log, bufsize);
4973 		return (EINVAL);
4974 	}
4975 
4976 	if (ddi_copyout(log, (void *)nioc->n_buf, bufsize, mode) != 0)
4977 		rv = EFAULT;
4978 
4979 	nioc->n_len = bufsize;
4980 	kmem_free(log, bufsize);
4981 
4982 	return (rv);
4983 }
4984 
4985 static int
4986 nvme_ioctl_get_features(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc,
4987     int mode, cred_t *cred_p)
4988 {
4989 	_NOTE(ARGUNUSED(cred_p));
4990 	void *buf = NULL;
4991 	size_t bufsize = 0;
4992 	uint32_t res = 0;
4993 	uint8_t feature;
4994 	int rv = 0;
4995 
4996 	if ((mode & FREAD) == 0)
4997 		return (EPERM);
4998 
4999 	if (nsid > 0 && !NVME_NSID2NS(nvme, nsid)->ns_active)
5000 		return (EINVAL);
5001 
5002 	if ((nioc->n_arg >> 32) > 0xff)
5003 		return (EINVAL);
5004 
5005 	feature = (uint8_t)(nioc->n_arg >> 32);
5006 
5007 	switch (feature) {
5008 	case NVME_FEAT_ARBITRATION:
5009 	case NVME_FEAT_POWER_MGMT:
5010 	case NVME_FEAT_ERROR:
5011 	case NVME_FEAT_NQUEUES:
5012 	case NVME_FEAT_INTR_COAL:
5013 	case NVME_FEAT_WRITE_ATOM:
5014 	case NVME_FEAT_ASYNC_EVENT:
5015 	case NVME_FEAT_PROGRESS:
5016 		if (nsid != 0)
5017 			return (EINVAL);
5018 		break;
5019 
5020 	case NVME_FEAT_TEMPERATURE:
5021 		if (nsid != 0)
5022 			return (EINVAL);
5023 		res = nioc->n_arg & 0xffffffffUL;
5024 		if (NVME_VERSION_ATLEAST(&nvme->n_version, 1, 2)) {
5025 			nvme_temp_threshold_t tt;
5026 
5027 			tt.r = res;
5028 			if (tt.b.tt_thsel != NVME_TEMP_THRESH_OVER &&
5029 			    tt.b.tt_thsel != NVME_TEMP_THRESH_UNDER) {
5030 				return (EINVAL);
5031 			}
5032 
5033 			if (tt.b.tt_tmpsel > NVME_TEMP_THRESH_MAX_SENSOR) {
5034 				return (EINVAL);
5035 			}
5036 		} else if (res != 0) {
5037 			return (ENOTSUP);
5038 		}
5039 		break;
5040 
5041 	case NVME_FEAT_INTR_VECT:
5042 		if (nsid != 0)
5043 			return (EINVAL);
5044 
5045 		res = nioc->n_arg & 0xffffffffUL;
5046 		if (res >= nvme->n_intr_cnt)
5047 			return (EINVAL);
5048 		break;
5049 
5050 	case NVME_FEAT_LBA_RANGE:
5051 		if (nvme->n_lba_range_supported == B_FALSE)
5052 			return (EINVAL);
5053 
5054 		if (nsid == 0 ||
5055 		    nsid > nvme->n_namespace_count)
5056 			return (EINVAL);
5057 
5058 		break;
5059 
5060 	case NVME_FEAT_WRITE_CACHE:
5061 		if (nsid != 0)
5062 			return (EINVAL);
5063 
5064 		if (!nvme->n_write_cache_present)
5065 			return (EINVAL);
5066 
5067 		break;
5068 
5069 	case NVME_FEAT_AUTO_PST:
5070 		if (nsid != 0)
5071 			return (EINVAL);
5072 
5073 		if (!nvme->n_auto_pst_supported)
5074 			return (EINVAL);
5075 
5076 		break;
5077 
5078 	default:
5079 		return (EINVAL);
5080 	}
5081 
5082 	rv = nvme_get_features(nvme, B_TRUE, nsid, feature, &res, &buf,
5083 	    &bufsize);
5084 	if (rv != 0)
5085 		return (rv);
5086 
5087 	if (nioc->n_len < bufsize) {
5088 		kmem_free(buf, bufsize);
5089 		return (EINVAL);
5090 	}
5091 
5092 	if (buf && ddi_copyout(buf, (void*)nioc->n_buf, bufsize, mode) != 0)
5093 		rv = EFAULT;
5094 
5095 	kmem_free(buf, bufsize);
5096 	nioc->n_arg = res;
5097 	nioc->n_len = bufsize;
5098 
5099 	return (rv);
5100 }
5101 
5102 static int
5103 nvme_ioctl_intr_cnt(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
5104     cred_t *cred_p)
5105 {
5106 	_NOTE(ARGUNUSED(nsid, mode, cred_p));
5107 
5108 	if ((mode & FREAD) == 0)
5109 		return (EPERM);
5110 
5111 	nioc->n_arg = nvme->n_intr_cnt;
5112 	return (0);
5113 }
5114 
5115 static int
5116 nvme_ioctl_version(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
5117     cred_t *cred_p)
5118 {
5119 	_NOTE(ARGUNUSED(nsid, cred_p));
5120 	int rv = 0;
5121 
5122 	if ((mode & FREAD) == 0)
5123 		return (EPERM);
5124 
5125 	if (nioc->n_len < sizeof (nvme->n_version))
5126 		return (ENOMEM);
5127 
5128 	if (ddi_copyout(&nvme->n_version, (void *)nioc->n_buf,
5129 	    sizeof (nvme->n_version), mode) != 0)
5130 		rv = EFAULT;
5131 
5132 	return (rv);
5133 }
5134 
5135 static int
5136 nvme_ioctl_format(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
5137     cred_t *cred_p)
5138 {
5139 	_NOTE(ARGUNUSED(mode));
5140 	nvme_format_nvm_t frmt = { 0 };
5141 	int c_nsid = nsid != 0 ? nsid : 1;
5142 	nvme_identify_nsid_t *idns;
5143 	nvme_minor_state_t *nm;
5144 
5145 	if ((mode & FWRITE) == 0 || secpolicy_sys_config(cred_p, B_FALSE) != 0)
5146 		return (EPERM);
5147 
5148 	nm = nsid == 0 ? &nvme->n_minor : &(NVME_NSID2NS(nvme, nsid)->ns_minor);
5149 	if (nm->nm_oexcl != curthread)
5150 		return (EACCES);
5151 
5152 	if (nsid != 0) {
5153 		if (NVME_NSID2NS(nvme, nsid)->ns_attached)
5154 			return (EBUSY);
5155 		else if (!NVME_NSID2NS(nvme, nsid)->ns_active)
5156 			return (EINVAL);
5157 	}
5158 
5159 	frmt.r = nioc->n_arg & 0xffffffff;
5160 
5161 	/*
5162 	 * Check whether the FORMAT NVM command is supported.
5163 	 */
5164 	if (nvme->n_idctl->id_oacs.oa_format == 0)
5165 		return (ENOTSUP);
5166 
5167 	/*
5168 	 * Don't allow format or secure erase of individual namespace if that
5169 	 * would cause a format or secure erase of all namespaces.
5170 	 */
5171 	if (nsid != 0 && nvme->n_idctl->id_fna.fn_format != 0)
5172 		return (EINVAL);
5173 
5174 	if (nsid != 0 && frmt.b.fm_ses != NVME_FRMT_SES_NONE &&
5175 	    nvme->n_idctl->id_fna.fn_sec_erase != 0)
5176 		return (EINVAL);
5177 
5178 	/*
5179 	 * Don't allow formatting with Protection Information.
5180 	 */
5181 	if (frmt.b.fm_pi != 0 || frmt.b.fm_pil != 0 || frmt.b.fm_ms != 0)
5182 		return (EINVAL);
5183 
5184 	/*
5185 	 * Don't allow formatting using an illegal LBA format, or any LBA format
5186 	 * that uses metadata.
5187 	 */
5188 	idns = NVME_NSID2NS(nvme, c_nsid)->ns_idns;
5189 	if (frmt.b.fm_lbaf > idns->id_nlbaf ||
5190 	    idns->id_lbaf[frmt.b.fm_lbaf].lbaf_ms != 0)
5191 		return (EINVAL);
5192 
5193 	/*
5194 	 * Don't allow formatting using an illegal Secure Erase setting.
5195 	 */
5196 	if (frmt.b.fm_ses > NVME_FRMT_MAX_SES ||
5197 	    (frmt.b.fm_ses == NVME_FRMT_SES_CRYPTO &&
5198 	    nvme->n_idctl->id_fna.fn_crypt_erase == 0))
5199 		return (EINVAL);
5200 
5201 	if (nsid == 0)
5202 		nsid = (uint32_t)-1;
5203 
5204 	return (nvme_format_nvm(nvme, B_TRUE, nsid, frmt.b.fm_lbaf, B_FALSE, 0,
5205 	    B_FALSE, frmt.b.fm_ses));
5206 }
5207 
5208 static int
5209 nvme_ioctl_detach(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
5210     cred_t *cred_p)
5211 {
5212 	_NOTE(ARGUNUSED(nioc, mode));
5213 	int rv;
5214 
5215 	if ((mode & FWRITE) == 0 || secpolicy_sys_config(cred_p, B_FALSE) != 0)
5216 		return (EPERM);
5217 
5218 	if (nsid == 0)
5219 		return (EINVAL);
5220 
5221 	if (NVME_NSID2NS(nvme, nsid)->ns_minor.nm_oexcl != curthread)
5222 		return (EACCES);
5223 
5224 	mutex_enter(&nvme->n_mgmt_mutex);
5225 
5226 	rv = nvme_detach_ns(nvme, nsid);
5227 
5228 	mutex_exit(&nvme->n_mgmt_mutex);
5229 
5230 	return (rv);
5231 }
5232 
5233 static int
5234 nvme_ioctl_attach(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
5235     cred_t *cred_p)
5236 {
5237 	_NOTE(ARGUNUSED(nioc, mode));
5238 	int rv;
5239 
5240 	if ((mode & FWRITE) == 0 || secpolicy_sys_config(cred_p, B_FALSE) != 0)
5241 		return (EPERM);
5242 
5243 	if (nsid == 0)
5244 		return (EINVAL);
5245 
5246 	if (NVME_NSID2NS(nvme, nsid)->ns_minor.nm_oexcl != curthread)
5247 		return (EACCES);
5248 
5249 	mutex_enter(&nvme->n_mgmt_mutex);
5250 
5251 	if (nvme_init_ns(nvme, nsid) != DDI_SUCCESS) {
5252 		mutex_exit(&nvme->n_mgmt_mutex);
5253 		return (EIO);
5254 	}
5255 
5256 	rv = nvme_attach_ns(nvme, nsid);
5257 
5258 	mutex_exit(&nvme->n_mgmt_mutex);
5259 	return (rv);
5260 }
5261 
5262 static void
5263 nvme_ufm_update(nvme_t *nvme)
5264 {
5265 	mutex_enter(&nvme->n_fwslot_mutex);
5266 	ddi_ufm_update(nvme->n_ufmh);
5267 	if (nvme->n_fwslot != NULL) {
5268 		kmem_free(nvme->n_fwslot, sizeof (nvme_fwslot_log_t));
5269 		nvme->n_fwslot = NULL;
5270 	}
5271 	mutex_exit(&nvme->n_fwslot_mutex);
5272 }
5273 
5274 static int
5275 nvme_ioctl_firmware_download(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc,
5276     int mode, cred_t *cred_p)
5277 {
5278 	int rv = 0;
5279 	size_t len, copylen;
5280 	offset_t offset;
5281 	uintptr_t buf;
5282 	nvme_cqe_t cqe = { 0 };
5283 	nvme_sqe_t sqe = {
5284 	    .sqe_opc	= NVME_OPC_FW_IMAGE_LOAD
5285 	};
5286 
5287 	if ((mode & FWRITE) == 0 || secpolicy_sys_config(cred_p, B_FALSE) != 0)
5288 		return (EPERM);
5289 
5290 	if (nvme->n_idctl->id_oacs.oa_firmware == 0)
5291 		return (ENOTSUP);
5292 
5293 	if (nsid != 0)
5294 		return (EINVAL);
5295 
5296 	/*
5297 	 * The offset (in n_len) is restricted to the number of DWORDs in
5298 	 * 32 bits.
5299 	 */
5300 	if (nioc->n_len > NVME_FW_OFFSETB_MAX)
5301 		return (EINVAL);
5302 
5303 	/* Confirm that both offset and length are a multiple of DWORD bytes */
5304 	if ((nioc->n_len & NVME_DWORD_MASK) != 0 ||
5305 	    (nioc->n_arg & NVME_DWORD_MASK) != 0)
5306 		return (EINVAL);
5307 
5308 	len = nioc->n_len;
5309 	offset = nioc->n_arg;
5310 	buf = (uintptr_t)nioc->n_buf;
5311 
5312 	nioc->n_arg = 0;
5313 
5314 	while (len > 0 && rv == 0) {
5315 		/*
5316 		 * nvme_ioc_cmd() does not use SGLs or PRP lists.
5317 		 * It is limited to 2 PRPs per NVM command, so limit
5318 		 * the size of the data to 2 pages.
5319 		 */
5320 		copylen = MIN(2 * nvme->n_pagesize, len);
5321 
5322 		sqe.sqe_cdw10 = (uint32_t)(copylen >> NVME_DWORD_SHIFT) - 1;
5323 		sqe.sqe_cdw11 = (uint32_t)(offset >> NVME_DWORD_SHIFT);
5324 
5325 		rv = nvme_ioc_cmd(nvme, &sqe, B_TRUE, (void *)buf, copylen,
5326 		    FWRITE, &cqe, nvme_admin_cmd_timeout);
5327 
5328 		/*
5329 		 * Regardless of whether the command succeeded or not, whether
5330 		 * there's an errno in rv to be returned, we'll return any
5331 		 * command-specific status code in n_arg.
5332 		 *
5333 		 * As n_arg isn't cleared in all other possible code paths
5334 		 * returning an error, we return the status code as a negative
5335 		 * value so it can be distinguished easily from whatever value
5336 		 * was passed in n_arg originally. This of course only works as
5337 		 * long as arguments passed in n_arg are less than INT64_MAX,
5338 		 * which they currently are.
5339 		 */
5340 		if (cqe.cqe_sf.sf_sct == NVME_CQE_SCT_SPECIFIC)
5341 			nioc->n_arg = (uint64_t)-cqe.cqe_sf.sf_sc;
5342 
5343 		buf += copylen;
5344 		offset += copylen;
5345 		len -= copylen;
5346 	}
5347 
5348 	/*
5349 	 * Let the DDI UFM subsystem know that the firmware information for
5350 	 * this device has changed.
5351 	 */
5352 	nvme_ufm_update(nvme);
5353 
5354 	return (rv);
5355 }
5356 
5357 static int
5358 nvme_ioctl_firmware_commit(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc,
5359     int mode, cred_t *cred_p)
5360 {
5361 	nvme_firmware_commit_dw10_t fc_dw10 = { 0 };
5362 	uint32_t slot = nioc->n_arg & 0xffffffff;
5363 	uint32_t action = nioc->n_arg >> 32;
5364 	nvme_cqe_t cqe = { 0 };
5365 	nvme_sqe_t sqe = {
5366 	    .sqe_opc	= NVME_OPC_FW_ACTIVATE
5367 	};
5368 	int timeout;
5369 	int rv;
5370 
5371 	if ((mode & FWRITE) == 0 || secpolicy_sys_config(cred_p, B_FALSE) != 0)
5372 		return (EPERM);
5373 
5374 	if (nvme->n_idctl->id_oacs.oa_firmware == 0)
5375 		return (ENOTSUP);
5376 
5377 	if (nsid != 0)
5378 		return (EINVAL);
5379 
5380 	/* Validate slot is in range. */
5381 	if (slot < NVME_FW_SLOT_MIN || slot > NVME_FW_SLOT_MAX)
5382 		return (EINVAL);
5383 
5384 	switch (action) {
5385 	case NVME_FWC_SAVE:
5386 	case NVME_FWC_SAVE_ACTIVATE:
5387 		timeout = nvme_commit_save_cmd_timeout;
5388 		if (slot == 1 && nvme->n_idctl->id_frmw.fw_readonly)
5389 			return (EROFS);
5390 		break;
5391 	case NVME_FWC_ACTIVATE:
5392 	case NVME_FWC_ACTIVATE_IMMED:
5393 		timeout = nvme_admin_cmd_timeout;
5394 		break;
5395 	default:
5396 		return (EINVAL);
5397 	}
5398 
5399 	fc_dw10.b.fc_slot = slot;
5400 	fc_dw10.b.fc_action = action;
5401 	sqe.sqe_cdw10 = fc_dw10.r;
5402 
5403 	nioc->n_arg = 0;
5404 	rv = nvme_ioc_cmd(nvme, &sqe, B_TRUE, NULL, 0, 0, &cqe, timeout);
5405 
5406 	/*
5407 	 * Regardless of whether the command succeeded or not, whether
5408 	 * there's an errno in rv to be returned, we'll return any
5409 	 * command-specific status code in n_arg.
5410 	 *
5411 	 * As n_arg isn't cleared in all other possible code paths
5412 	 * returning an error, we return the status code as a negative
5413 	 * value so it can be distinguished easily from whatever value
5414 	 * was passed in n_arg originally. This of course only works as
5415 	 * long as arguments passed in n_arg are less than INT64_MAX,
5416 	 * which they currently are.
5417 	 */
5418 	if (cqe.cqe_sf.sf_sct == NVME_CQE_SCT_SPECIFIC)
5419 		nioc->n_arg = (uint64_t)-cqe.cqe_sf.sf_sc;
5420 
5421 	/*
5422 	 * Let the DDI UFM subsystem know that the firmware information for
5423 	 * this device has changed.
5424 	 */
5425 	nvme_ufm_update(nvme);
5426 
5427 	return (rv);
5428 }
5429 
5430 /*
5431  * Helper to copy in a passthru command from userspace, handling
5432  * different data models.
5433  */
5434 static int
5435 nvme_passthru_copy_cmd_in(const void *buf, nvme_passthru_cmd_t *cmd, int mode)
5436 {
5437 #ifdef _MULTI_DATAMODEL
5438 	switch (ddi_model_convert_from(mode & FMODELS)) {
5439 	case DDI_MODEL_ILP32: {
5440 		nvme_passthru_cmd32_t cmd32;
5441 		if (ddi_copyin(buf, (void*)&cmd32, sizeof (cmd32), mode) != 0)
5442 			return (-1);
5443 		cmd->npc_opcode = cmd32.npc_opcode;
5444 		cmd->npc_timeout = cmd32.npc_timeout;
5445 		cmd->npc_flags = cmd32.npc_flags;
5446 		cmd->npc_cdw12 = cmd32.npc_cdw12;
5447 		cmd->npc_cdw13 = cmd32.npc_cdw13;
5448 		cmd->npc_cdw14 = cmd32.npc_cdw14;
5449 		cmd->npc_cdw15 = cmd32.npc_cdw15;
5450 		cmd->npc_buflen = cmd32.npc_buflen;
5451 		cmd->npc_buf = cmd32.npc_buf;
5452 		break;
5453 	}
5454 	case DDI_MODEL_NONE:
5455 #endif
5456 	if (ddi_copyin(buf, (void*)cmd, sizeof (nvme_passthru_cmd_t),
5457 	    mode) != 0)
5458 		return (-1);
5459 #ifdef _MULTI_DATAMODEL
5460 		break;
5461 	}
5462 #endif
5463 	return (0);
5464 }
5465 
5466 /*
5467  * Helper to copy out a passthru command result to userspace, handling
5468  * different data models.
5469  */
5470 static int
5471 nvme_passthru_copy_cmd_out(const nvme_passthru_cmd_t *cmd, void *buf, int mode)
5472 {
5473 #ifdef _MULTI_DATAMODEL
5474 	switch (ddi_model_convert_from(mode & FMODELS)) {
5475 	case DDI_MODEL_ILP32: {
5476 		nvme_passthru_cmd32_t cmd32;
5477 		bzero(&cmd32, sizeof (cmd32));
5478 		cmd32.npc_opcode = cmd->npc_opcode;
5479 		cmd32.npc_status = cmd->npc_status;
5480 		cmd32.npc_err = cmd->npc_err;
5481 		cmd32.npc_timeout = cmd->npc_timeout;
5482 		cmd32.npc_flags = cmd->npc_flags;
5483 		cmd32.npc_cdw0 = cmd->npc_cdw0;
5484 		cmd32.npc_cdw12 = cmd->npc_cdw12;
5485 		cmd32.npc_cdw13 = cmd->npc_cdw13;
5486 		cmd32.npc_cdw14 = cmd->npc_cdw14;
5487 		cmd32.npc_cdw15 = cmd->npc_cdw15;
5488 		cmd32.npc_buflen = (size32_t)cmd->npc_buflen;
5489 		cmd32.npc_buf = (uintptr32_t)cmd->npc_buf;
5490 		if (ddi_copyout(&cmd32, buf, sizeof (cmd32), mode) != 0)
5491 			return (-1);
5492 		break;
5493 	}
5494 	case DDI_MODEL_NONE:
5495 #endif
5496 		if (ddi_copyout(cmd, buf, sizeof (nvme_passthru_cmd_t),
5497 		    mode) != 0)
5498 			return (-1);
5499 #ifdef _MULTI_DATAMODEL
5500 		break;
5501 	}
5502 #endif
5503 	return (0);
5504 }
5505 
5506 /*
5507  * Run an arbitrary vendor-specific admin command on the device.
5508  */
5509 static int
5510 nvme_ioctl_passthru(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
5511     cred_t *cred_p)
5512 {
5513 	int rv = 0;
5514 	uint_t timeout = 0;
5515 	int rwk = 0;
5516 	nvme_passthru_cmd_t cmd;
5517 	size_t expected_passthru_size = 0;
5518 	nvme_sqe_t sqe;
5519 	nvme_cqe_t cqe;
5520 
5521 	bzero(&cmd, sizeof (cmd));
5522 	bzero(&sqe, sizeof (sqe));
5523 	bzero(&cqe, sizeof (cqe));
5524 
5525 	/*
5526 	 * Basic checks: permissions, data model, argument size.
5527 	 */
5528 	if ((mode & FWRITE) == 0 || secpolicy_sys_config(cred_p, B_FALSE) != 0)
5529 		return (EPERM);
5530 
5531 	/*
5532 	 * Compute the expected size of the argument buffer
5533 	 */
5534 #ifdef _MULTI_DATAMODEL
5535 	switch (ddi_model_convert_from(mode & FMODELS)) {
5536 	case DDI_MODEL_ILP32:
5537 		expected_passthru_size = sizeof (nvme_passthru_cmd32_t);
5538 		break;
5539 	case DDI_MODEL_NONE:
5540 #endif
5541 		expected_passthru_size = sizeof (nvme_passthru_cmd_t);
5542 #ifdef _MULTI_DATAMODEL
5543 		break;
5544 	}
5545 #endif
5546 
5547 	if (nioc->n_len != expected_passthru_size) {
5548 		cmd.npc_err = NVME_PASSTHRU_ERR_CMD_SIZE;
5549 		rv = EINVAL;
5550 		goto out;
5551 	}
5552 
5553 	/*
5554 	 * Ensure the device supports the standard vendor specific
5555 	 * admin command format.
5556 	 */
5557 	if (!nvme->n_idctl->id_nvscc.nv_spec) {
5558 		cmd.npc_err = NVME_PASSTHRU_ERR_NOT_SUPPORTED;
5559 		rv = ENOTSUP;
5560 		goto out;
5561 	}
5562 
5563 	if (nvme_passthru_copy_cmd_in((const void*)nioc->n_buf, &cmd, mode))
5564 		return (EFAULT);
5565 
5566 	if (!NVME_IS_VENDOR_SPECIFIC_CMD(cmd.npc_opcode)) {
5567 		cmd.npc_err = NVME_PASSTHRU_ERR_INVALID_OPCODE;
5568 		rv = EINVAL;
5569 		goto out;
5570 	}
5571 
5572 	/*
5573 	 * This restriction is not mandated by the spec, so future work
5574 	 * could relax this if it's necessary to support commands that both
5575 	 * read and write.
5576 	 */
5577 	if ((cmd.npc_flags & NVME_PASSTHRU_READ) != 0 &&
5578 	    (cmd.npc_flags & NVME_PASSTHRU_WRITE) != 0) {
5579 		cmd.npc_err = NVME_PASSTHRU_ERR_READ_AND_WRITE;
5580 		rv = EINVAL;
5581 		goto out;
5582 	}
5583 	if (cmd.npc_timeout > nvme_vendor_specific_admin_cmd_max_timeout) {
5584 		cmd.npc_err = NVME_PASSTHRU_ERR_INVALID_TIMEOUT;
5585 		rv = EINVAL;
5586 		goto out;
5587 	}
5588 	timeout = cmd.npc_timeout;
5589 
5590 	/*
5591 	 * Passed-thru command buffer verification:
5592 	 *  - Size is multiple of DWords
5593 	 *  - Non-null iff the length is non-zero
5594 	 *  - Null if neither reading nor writing data.
5595 	 *  - Non-null if reading or writing.
5596 	 *  - Maximum buffer size.
5597 	 */
5598 	if ((cmd.npc_buflen % sizeof (uint32_t)) != 0) {
5599 		cmd.npc_err = NVME_PASSTHRU_ERR_INVALID_BUFFER;
5600 		rv = EINVAL;
5601 		goto out;
5602 	}
5603 	if (((void*)cmd.npc_buf != NULL && cmd.npc_buflen == 0) ||
5604 	    ((void*)cmd.npc_buf == NULL && cmd.npc_buflen != 0)) {
5605 		cmd.npc_err = NVME_PASSTHRU_ERR_INVALID_BUFFER;
5606 		rv = EINVAL;
5607 		goto out;
5608 	}
5609 	if (cmd.npc_flags == 0 && (void*)cmd.npc_buf != NULL) {
5610 		cmd.npc_err = NVME_PASSTHRU_ERR_INVALID_BUFFER;
5611 		rv = EINVAL;
5612 		goto out;
5613 	}
5614 	if ((cmd.npc_flags != 0) && ((void*)cmd.npc_buf == NULL)) {
5615 		cmd.npc_err = NVME_PASSTHRU_ERR_INVALID_BUFFER;
5616 		rv = EINVAL;
5617 		goto out;
5618 	}
5619 	if (cmd.npc_buflen > nvme_vendor_specific_admin_cmd_size) {
5620 		cmd.npc_err = NVME_PASSTHRU_ERR_INVALID_BUFFER;
5621 		rv = EINVAL;
5622 		goto out;
5623 	}
5624 	if ((cmd.npc_buflen >> NVME_DWORD_SHIFT) > UINT32_MAX) {
5625 		cmd.npc_err = NVME_PASSTHRU_ERR_INVALID_BUFFER;
5626 		rv = EINVAL;
5627 		goto out;
5628 	}
5629 
5630 	sqe.sqe_opc = cmd.npc_opcode;
5631 	sqe.sqe_nsid = nsid;
5632 	sqe.sqe_cdw10 = (uint32_t)(cmd.npc_buflen >> NVME_DWORD_SHIFT);
5633 	sqe.sqe_cdw12 = cmd.npc_cdw12;
5634 	sqe.sqe_cdw13 = cmd.npc_cdw13;
5635 	sqe.sqe_cdw14 = cmd.npc_cdw14;
5636 	sqe.sqe_cdw15 = cmd.npc_cdw15;
5637 	if ((cmd.npc_flags & NVME_PASSTHRU_READ) != 0)
5638 		rwk = FREAD;
5639 	else if ((cmd.npc_flags & NVME_PASSTHRU_WRITE) != 0)
5640 		rwk = FWRITE;
5641 
5642 	rv = nvme_ioc_cmd(nvme, &sqe, B_TRUE, (void*)cmd.npc_buf,
5643 	    cmd.npc_buflen, rwk, &cqe, timeout);
5644 	cmd.npc_status = cqe.cqe_sf.sf_sc;
5645 	cmd.npc_cdw0 = cqe.cqe_dw0;
5646 
5647 out:
5648 	if (nvme_passthru_copy_cmd_out(&cmd, (void*)nioc->n_buf, mode))
5649 		rv = EFAULT;
5650 	return (rv);
5651 }
5652 
5653 static int
5654 nvme_ioctl_ns_state(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
5655     cred_t *cred_p)
5656 {
5657 	_NOTE(ARGUNUSED(cred_p));
5658 	nvme_namespace_t *ns = NVME_NSID2NS(nvme, nsid);
5659 
5660 	if ((mode & FREAD) == 0)
5661 		return (EPERM);
5662 
5663 	if (nsid == 0)
5664 		return (EINVAL);
5665 
5666 	nioc->n_arg = 0;
5667 
5668 	mutex_enter(&nvme->n_mgmt_mutex);
5669 
5670 	if (ns->ns_allocated)
5671 		nioc->n_arg |= NVME_NS_STATE_ALLOCATED;
5672 
5673 	if (ns->ns_active)
5674 		nioc->n_arg |= NVME_NS_STATE_ACTIVE;
5675 
5676 	if (ns->ns_attached)
5677 		nioc->n_arg |= NVME_NS_STATE_ATTACHED;
5678 
5679 	if (ns->ns_ignore)
5680 		nioc->n_arg |= NVME_NS_STATE_IGNORED;
5681 
5682 	mutex_exit(&nvme->n_mgmt_mutex);
5683 
5684 	return (0);
5685 }
5686 
5687 static int
5688 nvme_ioctl(dev_t dev, int cmd, intptr_t arg, int mode, cred_t *cred_p,
5689     int *rval_p)
5690 {
5691 #ifndef __lock_lint
5692 	_NOTE(ARGUNUSED(rval_p));
5693 #endif
5694 	minor_t minor = getminor(dev);
5695 	nvme_t *nvme = ddi_get_soft_state(nvme_state, NVME_MINOR_INST(minor));
5696 	int nsid = NVME_MINOR_NSID(minor);
5697 	int rv = 0;
5698 	nvme_ioctl_t nioc;
5699 
5700 	int (*nvme_ioctl[])(nvme_t *, int, nvme_ioctl_t *, int, cred_t *) = {
5701 		NULL,
5702 		nvme_ioctl_identify,
5703 		nvme_ioctl_identify,
5704 		nvme_ioctl_capabilities,
5705 		nvme_ioctl_get_logpage,
5706 		nvme_ioctl_get_features,
5707 		nvme_ioctl_intr_cnt,
5708 		nvme_ioctl_version,
5709 		nvme_ioctl_format,
5710 		nvme_ioctl_detach,
5711 		nvme_ioctl_attach,
5712 		nvme_ioctl_firmware_download,
5713 		nvme_ioctl_firmware_commit,
5714 		nvme_ioctl_passthru,
5715 		nvme_ioctl_ns_state
5716 	};
5717 
5718 	if (nvme == NULL)
5719 		return (ENXIO);
5720 
5721 	if (nsid > nvme->n_namespace_count)
5722 		return (ENXIO);
5723 
5724 	if (IS_DEVCTL(cmd))
5725 		return (ndi_devctl_ioctl(nvme->n_dip, cmd, arg, mode, 0));
5726 
5727 #ifdef _MULTI_DATAMODEL
5728 	switch (ddi_model_convert_from(mode & FMODELS)) {
5729 	case DDI_MODEL_ILP32: {
5730 		nvme_ioctl32_t nioc32;
5731 		if (ddi_copyin((void*)arg, &nioc32, sizeof (nvme_ioctl32_t),
5732 		    mode) != 0)
5733 			return (EFAULT);
5734 		nioc.n_len = nioc32.n_len;
5735 		nioc.n_buf = nioc32.n_buf;
5736 		nioc.n_arg = nioc32.n_arg;
5737 		break;
5738 	}
5739 	case DDI_MODEL_NONE:
5740 #endif
5741 		if (ddi_copyin((void*)arg, &nioc, sizeof (nvme_ioctl_t), mode)
5742 		    != 0)
5743 			return (EFAULT);
5744 #ifdef _MULTI_DATAMODEL
5745 		break;
5746 	}
5747 #endif
5748 
5749 	if (nvme->n_dead && cmd != NVME_IOC_DETACH)
5750 		return (EIO);
5751 
5752 
5753 	if (cmd == NVME_IOC_IDENTIFY_CTRL) {
5754 		/*
5755 		 * This makes NVME_IOC_IDENTIFY_CTRL work the same on devctl and
5756 		 * attachment point nodes.
5757 		 */
5758 		nsid = 0;
5759 	} else if (cmd == NVME_IOC_IDENTIFY_NSID && nsid == 0) {
5760 		/*
5761 		 * This makes NVME_IOC_IDENTIFY_NSID work on a devctl node, it
5762 		 * will always return identify data for namespace 1.
5763 		 */
5764 		nsid = 1;
5765 	}
5766 
5767 	if (IS_NVME_IOC(cmd) && nvme_ioctl[NVME_IOC_CMD(cmd)] != NULL)
5768 		rv = nvme_ioctl[NVME_IOC_CMD(cmd)](nvme, nsid, &nioc, mode,
5769 		    cred_p);
5770 	else
5771 		rv = EINVAL;
5772 
5773 #ifdef _MULTI_DATAMODEL
5774 	switch (ddi_model_convert_from(mode & FMODELS)) {
5775 	case DDI_MODEL_ILP32: {
5776 		nvme_ioctl32_t nioc32;
5777 
5778 		nioc32.n_len = (size32_t)nioc.n_len;
5779 		nioc32.n_buf = (uintptr32_t)nioc.n_buf;
5780 		nioc32.n_arg = nioc.n_arg;
5781 
5782 		if (ddi_copyout(&nioc32, (void *)arg, sizeof (nvme_ioctl32_t),
5783 		    mode) != 0)
5784 			return (EFAULT);
5785 		break;
5786 	}
5787 	case DDI_MODEL_NONE:
5788 #endif
5789 		if (ddi_copyout(&nioc, (void *)arg, sizeof (nvme_ioctl_t), mode)
5790 		    != 0)
5791 			return (EFAULT);
5792 #ifdef _MULTI_DATAMODEL
5793 		break;
5794 	}
5795 #endif
5796 
5797 	return (rv);
5798 }
5799 
5800 /*
5801  * DDI UFM Callbacks
5802  */
5803 static int
5804 nvme_ufm_fill_image(ddi_ufm_handle_t *ufmh, void *arg, uint_t imgno,
5805     ddi_ufm_image_t *img)
5806 {
5807 	nvme_t *nvme = arg;
5808 
5809 	if (imgno != 0)
5810 		return (EINVAL);
5811 
5812 	ddi_ufm_image_set_desc(img, "Firmware");
5813 	ddi_ufm_image_set_nslots(img, nvme->n_idctl->id_frmw.fw_nslot);
5814 
5815 	return (0);
5816 }
5817 
5818 /*
5819  * Fill out firmware slot information for the requested slot.  The firmware
5820  * slot information is gathered by requesting the Firmware Slot Information log
5821  * page.  The format of the page is described in section 5.10.1.3.
5822  *
5823  * We lazily cache the log page on the first call and then invalidate the cache
5824  * data after a successful firmware download or firmware commit command.
5825  * The cached data is protected by a mutex as the state can change
5826  * asynchronous to this callback.
5827  */
5828 static int
5829 nvme_ufm_fill_slot(ddi_ufm_handle_t *ufmh, void *arg, uint_t imgno,
5830     uint_t slotno, ddi_ufm_slot_t *slot)
5831 {
5832 	nvme_t *nvme = arg;
5833 	void *log = NULL;
5834 	size_t bufsize;
5835 	ddi_ufm_attr_t attr = 0;
5836 	char fw_ver[NVME_FWVER_SZ + 1];
5837 	int ret;
5838 
5839 	if (imgno > 0 || slotno > (nvme->n_idctl->id_frmw.fw_nslot - 1))
5840 		return (EINVAL);
5841 
5842 	mutex_enter(&nvme->n_fwslot_mutex);
5843 	if (nvme->n_fwslot == NULL) {
5844 		ret = nvme_get_logpage(nvme, B_TRUE, &log, &bufsize,
5845 		    NVME_LOGPAGE_FWSLOT, 0);
5846 		if (ret != DDI_SUCCESS ||
5847 		    bufsize != sizeof (nvme_fwslot_log_t)) {
5848 			if (log != NULL)
5849 				kmem_free(log, bufsize);
5850 			mutex_exit(&nvme->n_fwslot_mutex);
5851 			return (EIO);
5852 		}
5853 		nvme->n_fwslot = (nvme_fwslot_log_t *)log;
5854 	}
5855 
5856 	/*
5857 	 * NVMe numbers firmware slots starting at 1
5858 	 */
5859 	if (slotno == (nvme->n_fwslot->fw_afi - 1))
5860 		attr |= DDI_UFM_ATTR_ACTIVE;
5861 
5862 	if (slotno != 0 || nvme->n_idctl->id_frmw.fw_readonly == 0)
5863 		attr |= DDI_UFM_ATTR_WRITEABLE;
5864 
5865 	if (nvme->n_fwslot->fw_frs[slotno][0] == '\0') {
5866 		attr |= DDI_UFM_ATTR_EMPTY;
5867 	} else {
5868 		(void) strncpy(fw_ver, nvme->n_fwslot->fw_frs[slotno],
5869 		    NVME_FWVER_SZ);
5870 		fw_ver[NVME_FWVER_SZ] = '\0';
5871 		ddi_ufm_slot_set_version(slot, fw_ver);
5872 	}
5873 	mutex_exit(&nvme->n_fwslot_mutex);
5874 
5875 	ddi_ufm_slot_set_attrs(slot, attr);
5876 
5877 	return (0);
5878 }
5879 
5880 static int
5881 nvme_ufm_getcaps(ddi_ufm_handle_t *ufmh, void *arg, ddi_ufm_cap_t *caps)
5882 {
5883 	*caps = DDI_UFM_CAP_REPORT;
5884 	return (0);
5885 }
5886