xref: /illumos-gate/usr/src/uts/common/io/rge/rge_chip.c (revision bba9e99c)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #include "rge.h"
27 
28 #define	REG32(rgep, reg)	((uint32_t *)(rgep->io_regs+(reg)))
29 #define	REG16(rgep, reg)	((uint16_t *)(rgep->io_regs+(reg)))
30 #define	REG8(rgep, reg)		((uint8_t *)(rgep->io_regs+(reg)))
31 #define	PIO_ADDR(rgep, offset)	((void *)(rgep->io_regs+(offset)))
32 
33 /*
34  * Patchable globals:
35  *
36  *	rge_autorecover
37  *		Enables/disables automatic recovery after fault detection
38  */
39 static uint32_t rge_autorecover = 1;
40 
41 /*
42  * globals:
43  */
44 #define	RGE_DBG		RGE_DBG_REGS	/* debug flag for this code	*/
45 static uint32_t rge_watchdog_count	= 1 << 5;
46 static uint32_t rge_rx_watchdog_count	= 1 << 3;
47 
48 /*
49  * Operating register get/set access routines
50  */
51 
52 static uint32_t rge_reg_get32(rge_t *rgep, uintptr_t regno);
53 #pragma	inline(rge_reg_get32)
54 
55 static uint32_t
56 rge_reg_get32(rge_t *rgep, uintptr_t regno)
57 {
58 	RGE_TRACE(("rge_reg_get32($%p, 0x%lx)",
59 	    (void *)rgep, regno));
60 
61 	return (ddi_get32(rgep->io_handle, REG32(rgep, regno)));
62 }
63 
64 static void rge_reg_put32(rge_t *rgep, uintptr_t regno, uint32_t data);
65 #pragma	inline(rge_reg_put32)
66 
67 static void
68 rge_reg_put32(rge_t *rgep, uintptr_t regno, uint32_t data)
69 {
70 	RGE_TRACE(("rge_reg_put32($%p, 0x%lx, 0x%x)",
71 	    (void *)rgep, regno, data));
72 
73 	ddi_put32(rgep->io_handle, REG32(rgep, regno), data);
74 }
75 
76 static void rge_reg_set32(rge_t *rgep, uintptr_t regno, uint32_t bits);
77 #pragma	inline(rge_reg_set32)
78 
79 static void
80 rge_reg_set32(rge_t *rgep, uintptr_t regno, uint32_t bits)
81 {
82 	uint32_t regval;
83 
84 	RGE_TRACE(("rge_reg_set32($%p, 0x%lx, 0x%x)",
85 	    (void *)rgep, regno, bits));
86 
87 	regval = rge_reg_get32(rgep, regno);
88 	regval |= bits;
89 	rge_reg_put32(rgep, regno, regval);
90 }
91 
92 static void rge_reg_clr32(rge_t *rgep, uintptr_t regno, uint32_t bits);
93 #pragma	inline(rge_reg_clr32)
94 
95 static void
96 rge_reg_clr32(rge_t *rgep, uintptr_t regno, uint32_t bits)
97 {
98 	uint32_t regval;
99 
100 	RGE_TRACE(("rge_reg_clr32($%p, 0x%lx, 0x%x)",
101 	    (void *)rgep, regno, bits));
102 
103 	regval = rge_reg_get32(rgep, regno);
104 	regval &= ~bits;
105 	rge_reg_put32(rgep, regno, regval);
106 }
107 
108 static uint16_t rge_reg_get16(rge_t *rgep, uintptr_t regno);
109 #pragma	inline(rge_reg_get16)
110 
111 static uint16_t
112 rge_reg_get16(rge_t *rgep, uintptr_t regno)
113 {
114 	RGE_TRACE(("rge_reg_get16($%p, 0x%lx)",
115 	    (void *)rgep, regno));
116 
117 	return (ddi_get16(rgep->io_handle, REG16(rgep, regno)));
118 }
119 
120 static void rge_reg_put16(rge_t *rgep, uintptr_t regno, uint16_t data);
121 #pragma	inline(rge_reg_put16)
122 
123 static void
124 rge_reg_put16(rge_t *rgep, uintptr_t regno, uint16_t data)
125 {
126 	RGE_TRACE(("rge_reg_put16($%p, 0x%lx, 0x%x)",
127 	    (void *)rgep, regno, data));
128 
129 	ddi_put16(rgep->io_handle, REG16(rgep, regno), data);
130 }
131 
132 static uint8_t rge_reg_get8(rge_t *rgep, uintptr_t regno);
133 #pragma	inline(rge_reg_get8)
134 
135 static uint8_t
136 rge_reg_get8(rge_t *rgep, uintptr_t regno)
137 {
138 	RGE_TRACE(("rge_reg_get8($%p, 0x%lx)",
139 	    (void *)rgep, regno));
140 
141 	return (ddi_get8(rgep->io_handle, REG8(rgep, regno)));
142 }
143 
144 static void rge_reg_put8(rge_t *rgep, uintptr_t regno, uint8_t data);
145 #pragma	inline(rge_reg_put8)
146 
147 static void
148 rge_reg_put8(rge_t *rgep, uintptr_t regno, uint8_t data)
149 {
150 	RGE_TRACE(("rge_reg_put8($%p, 0x%lx, 0x%x)",
151 	    (void *)rgep, regno, data));
152 
153 	ddi_put8(rgep->io_handle, REG8(rgep, regno), data);
154 }
155 
156 static void rge_reg_set8(rge_t *rgep, uintptr_t regno, uint8_t bits);
157 #pragma	inline(rge_reg_set8)
158 
159 static void
160 rge_reg_set8(rge_t *rgep, uintptr_t regno, uint8_t bits)
161 {
162 	uint8_t regval;
163 
164 	RGE_TRACE(("rge_reg_set8($%p, 0x%lx, 0x%x)",
165 	    (void *)rgep, regno, bits));
166 
167 	regval = rge_reg_get8(rgep, regno);
168 	regval |= bits;
169 	rge_reg_put8(rgep, regno, regval);
170 }
171 
172 static void rge_reg_clr8(rge_t *rgep, uintptr_t regno, uint8_t bits);
173 #pragma	inline(rge_reg_clr8)
174 
175 static void
176 rge_reg_clr8(rge_t *rgep, uintptr_t regno, uint8_t bits)
177 {
178 	uint8_t regval;
179 
180 	RGE_TRACE(("rge_reg_clr8($%p, 0x%lx, 0x%x)",
181 	    (void *)rgep, regno, bits));
182 
183 	regval = rge_reg_get8(rgep, regno);
184 	regval &= ~bits;
185 	rge_reg_put8(rgep, regno, regval);
186 }
187 
188 uint16_t rge_mii_get16(rge_t *rgep, uintptr_t mii);
189 #pragma	no_inline(rge_mii_get16)
190 
191 uint16_t
192 rge_mii_get16(rge_t *rgep, uintptr_t mii)
193 {
194 	uint32_t regval;
195 	uint32_t val32;
196 	uint32_t i;
197 
198 	regval = (mii & PHY_REG_MASK) << PHY_REG_SHIFT;
199 	rge_reg_put32(rgep, PHY_ACCESS_REG, regval);
200 
201 	/*
202 	 * Waiting for PHY reading OK
203 	 */
204 	for (i = 0; i < PHY_RESET_LOOP; i++) {
205 		drv_usecwait(1000);
206 		val32 = rge_reg_get32(rgep, PHY_ACCESS_REG);
207 		if (val32 & PHY_ACCESS_WR_FLAG)
208 			return ((uint16_t)(val32 & 0xffff));
209 	}
210 
211 	RGE_REPORT((rgep, "rge_mii_get16(0x%x) fail, val = %x", mii, val32));
212 	return ((uint16_t)~0u);
213 }
214 
215 void rge_mii_put16(rge_t *rgep, uintptr_t mii, uint16_t data);
216 #pragma	no_inline(rge_mii_put16)
217 
218 void
219 rge_mii_put16(rge_t *rgep, uintptr_t mii, uint16_t data)
220 {
221 	uint32_t regval;
222 	uint32_t val32;
223 	uint32_t i;
224 
225 	regval = (mii & PHY_REG_MASK) << PHY_REG_SHIFT;
226 	regval |= data & PHY_DATA_MASK;
227 	regval |= PHY_ACCESS_WR_FLAG;
228 	rge_reg_put32(rgep, PHY_ACCESS_REG, regval);
229 
230 	/*
231 	 * Waiting for PHY writing OK
232 	 */
233 	for (i = 0; i < PHY_RESET_LOOP; i++) {
234 		drv_usecwait(1000);
235 		val32 = rge_reg_get32(rgep, PHY_ACCESS_REG);
236 		if (!(val32 & PHY_ACCESS_WR_FLAG))
237 			return;
238 	}
239 	RGE_REPORT((rgep, "rge_mii_put16(0x%lx, 0x%x) fail",
240 	    mii, data));
241 }
242 
243 void rge_ephy_put16(rge_t *rgep, uintptr_t emii, uint16_t data);
244 #pragma	no_inline(rge_ephy_put16)
245 
246 void
247 rge_ephy_put16(rge_t *rgep, uintptr_t emii, uint16_t data)
248 {
249 	uint32_t regval;
250 	uint32_t val32;
251 	uint32_t i;
252 
253 	regval = (emii & EPHY_REG_MASK) << EPHY_REG_SHIFT;
254 	regval |= data & EPHY_DATA_MASK;
255 	regval |= EPHY_ACCESS_WR_FLAG;
256 	rge_reg_put32(rgep, EPHY_ACCESS_REG, regval);
257 
258 	/*
259 	 * Waiting for PHY writing OK
260 	 */
261 	for (i = 0; i < PHY_RESET_LOOP; i++) {
262 		drv_usecwait(1000);
263 		val32 = rge_reg_get32(rgep, EPHY_ACCESS_REG);
264 		if (!(val32 & EPHY_ACCESS_WR_FLAG))
265 			return;
266 	}
267 	RGE_REPORT((rgep, "rge_ephy_put16(0x%lx, 0x%x) fail",
268 	    emii, data));
269 }
270 
271 /*
272  * Atomically shift a 32-bit word left, returning
273  * the value it had *before* the shift was applied
274  */
275 static uint32_t rge_atomic_shl32(uint32_t *sp, uint_t count);
276 #pragma	inline(rge_mii_put16)
277 
278 static uint32_t
279 rge_atomic_shl32(uint32_t *sp, uint_t count)
280 {
281 	uint32_t oldval;
282 	uint32_t newval;
283 
284 	/* ATOMICALLY */
285 	do {
286 		oldval = *sp;
287 		newval = oldval << count;
288 	} while (cas32(sp, oldval, newval) != oldval);
289 
290 	return (oldval);
291 }
292 
293 /*
294  * PHY operation routines
295  */
296 #if	RGE_DEBUGGING
297 
298 void
299 rge_phydump(rge_t *rgep)
300 {
301 	uint16_t regs[32];
302 	int i;
303 
304 	ASSERT(mutex_owned(rgep->genlock));
305 
306 	for (i = 0; i < 32; ++i) {
307 		regs[i] = rge_mii_get16(rgep, i);
308 	}
309 
310 	for (i = 0; i < 32; i += 8)
311 		RGE_DEBUG(("rge_phydump: "
312 		    "0x%04x %04x %04x %04x %04x %04x %04x %04x",
313 		    regs[i+0], regs[i+1], regs[i+2], regs[i+3],
314 		    regs[i+4], regs[i+5], regs[i+6], regs[i+7]));
315 }
316 
317 #endif	/* RGE_DEBUGGING */
318 
319 static void
320 rge_phy_check(rge_t *rgep)
321 {
322 	uint16_t gig_ctl;
323 
324 	if (rgep->param_link_up  == LINK_STATE_DOWN) {
325 		/*
326 		 * RTL8169S/8110S PHY has the "PCS bug".  Need reset PHY
327 		 * every 15 seconds whin link down & advertise is 1000.
328 		 */
329 		if (rgep->chipid.phy_ver == PHY_VER_S) {
330 			gig_ctl = rge_mii_get16(rgep, MII_1000BASE_T_CONTROL);
331 			if (gig_ctl & MII_1000BT_CTL_ADV_FDX) {
332 				rgep->link_down_count++;
333 				if (rgep->link_down_count > 15) {
334 					(void) rge_phy_reset(rgep);
335 					rgep->stats.phy_reset++;
336 					rgep->link_down_count = 0;
337 				}
338 			}
339 		}
340 	} else {
341 		rgep->link_down_count = 0;
342 	}
343 }
344 
345 /*
346  * Basic low-level function to reset the PHY.
347  * Doesn't incorporate any special-case workarounds.
348  *
349  * Returns TRUE on success, FALSE if the RESET bit doesn't clear
350  */
351 boolean_t
352 rge_phy_reset(rge_t *rgep)
353 {
354 	uint16_t control;
355 	uint_t count;
356 
357 	/*
358 	 * Set the PHY RESET bit, then wait up to 5 ms for it to self-clear
359 	 */
360 	control = rge_mii_get16(rgep, MII_CONTROL);
361 	rge_mii_put16(rgep, MII_CONTROL, control | MII_CONTROL_RESET);
362 	for (count = 0; count < 5; count++) {
363 		drv_usecwait(100);
364 		control = rge_mii_get16(rgep, MII_CONTROL);
365 		if (BIC(control, MII_CONTROL_RESET))
366 			return (B_TRUE);
367 	}
368 
369 	RGE_REPORT((rgep, "rge_phy_reset: FAILED, control now 0x%x", control));
370 	return (B_FALSE);
371 }
372 
373 /*
374  * Synchronise the PHY's speed/duplex/autonegotiation capabilities
375  * and advertisements with the required settings as specified by the various
376  * param_* variables that can be poked via the NDD interface.
377  *
378  * We always reset the PHY and reprogram *all* the relevant registers,
379  * not just those changed.  This should cause the link to go down, and then
380  * back up again once the link is stable and autonegotiation (if enabled)
381  * is complete.  We should get a link state change interrupt somewhere along
382  * the way ...
383  *
384  * NOTE: <genlock> must already be held by the caller
385  */
386 void
387 rge_phy_update(rge_t *rgep)
388 {
389 	boolean_t adv_autoneg;
390 	boolean_t adv_pause;
391 	boolean_t adv_asym_pause;
392 	boolean_t adv_1000fdx;
393 	boolean_t adv_1000hdx;
394 	boolean_t adv_100fdx;
395 	boolean_t adv_100hdx;
396 	boolean_t adv_10fdx;
397 	boolean_t adv_10hdx;
398 
399 	uint16_t control;
400 	uint16_t gigctrl;
401 	uint16_t anar;
402 
403 	ASSERT(mutex_owned(rgep->genlock));
404 
405 	RGE_DEBUG(("rge_phy_update: autoneg %d "
406 	    "pause %d asym_pause %d "
407 	    "1000fdx %d 1000hdx %d "
408 	    "100fdx %d 100hdx %d "
409 	    "10fdx %d 10hdx %d ",
410 	    rgep->param_adv_autoneg,
411 	    rgep->param_adv_pause, rgep->param_adv_asym_pause,
412 	    rgep->param_adv_1000fdx, rgep->param_adv_1000hdx,
413 	    rgep->param_adv_100fdx, rgep->param_adv_100hdx,
414 	    rgep->param_adv_10fdx, rgep->param_adv_10hdx));
415 
416 	control = gigctrl = anar = 0;
417 
418 	/*
419 	 * PHY settings are normally based on the param_* variables,
420 	 * but if any loopback mode is in effect, that takes precedence.
421 	 *
422 	 * RGE supports MAC-internal loopback, PHY-internal loopback,
423 	 * and External loopback at a variety of speeds (with a special
424 	 * cable).  In all cases, autoneg is turned OFF, full-duplex
425 	 * is turned ON, and the speed/mastership is forced.
426 	 */
427 	switch (rgep->param_loop_mode) {
428 	case RGE_LOOP_NONE:
429 	default:
430 		adv_autoneg = rgep->param_adv_autoneg;
431 		adv_pause = rgep->param_adv_pause;
432 		adv_asym_pause = rgep->param_adv_asym_pause;
433 		adv_1000fdx = rgep->param_adv_1000fdx;
434 		adv_1000hdx = rgep->param_adv_1000hdx;
435 		adv_100fdx = rgep->param_adv_100fdx;
436 		adv_100hdx = rgep->param_adv_100hdx;
437 		adv_10fdx = rgep->param_adv_10fdx;
438 		adv_10hdx = rgep->param_adv_10hdx;
439 		break;
440 
441 	case RGE_LOOP_INTERNAL_PHY:
442 	case RGE_LOOP_INTERNAL_MAC:
443 		adv_autoneg = adv_pause = adv_asym_pause = B_FALSE;
444 		adv_1000fdx = adv_100fdx = adv_10fdx = B_FALSE;
445 		adv_1000hdx = adv_100hdx = adv_10hdx = B_FALSE;
446 		rgep->param_link_duplex = LINK_DUPLEX_FULL;
447 
448 		switch (rgep->param_loop_mode) {
449 		case RGE_LOOP_INTERNAL_PHY:
450 			if (rgep->chipid.mac_ver != MAC_VER_8101E) {
451 				rgep->param_link_speed = 1000;
452 				adv_1000fdx = B_TRUE;
453 			} else {
454 				rgep->param_link_speed = 100;
455 				adv_100fdx = B_TRUE;
456 			}
457 			control = MII_CONTROL_LOOPBACK;
458 			break;
459 
460 		case RGE_LOOP_INTERNAL_MAC:
461 			if (rgep->chipid.mac_ver != MAC_VER_8101E) {
462 				rgep->param_link_speed = 1000;
463 				adv_1000fdx = B_TRUE;
464 			} else {
465 				rgep->param_link_speed = 100;
466 				adv_100fdx = B_TRUE;
467 			break;
468 		}
469 	}
470 
471 	RGE_DEBUG(("rge_phy_update: autoneg %d "
472 	    "pause %d asym_pause %d "
473 	    "1000fdx %d 1000hdx %d "
474 	    "100fdx %d 100hdx %d "
475 	    "10fdx %d 10hdx %d ",
476 	    adv_autoneg,
477 	    adv_pause, adv_asym_pause,
478 	    adv_1000fdx, adv_1000hdx,
479 	    adv_100fdx, adv_100hdx,
480 	    adv_10fdx, adv_10hdx));
481 
482 	/*
483 	 * We should have at least one technology capability set;
484 	 * if not, we select a default of 1000Mb/s full-duplex
485 	 */
486 	if (!adv_1000fdx && !adv_100fdx && !adv_10fdx &&
487 	    !adv_1000hdx && !adv_100hdx && !adv_10hdx) {
488 		if (rgep->chipid.mac_ver != MAC_VER_8101E)
489 			adv_1000fdx = B_TRUE;
490 		} else {
491 			adv_1000fdx = B_FALSE;
492 			adv_100fdx = B_TRUE;
493 		}
494 	}
495 
496 	/*
497 	 * Now transform the adv_* variables into the proper settings
498 	 * of the PHY registers ...
499 	 *
500 	 * If autonegotiation is (now) enabled, we want to trigger
501 	 * a new autonegotiation cycle once the PHY has been
502 	 * programmed with the capabilities to be advertised.
503 	 *
504 	 * RTL8169/8110 doesn't support 1000Mb/s half-duplex.
505 	 */
506 	if (adv_autoneg)
507 		control |= MII_CONTROL_ANE|MII_CONTROL_RSAN;
508 
509 	if (adv_1000fdx)
510 		control |= MII_CONTROL_1GB|MII_CONTROL_FDUPLEX;
511 	else if (adv_1000hdx)
512 		control |= MII_CONTROL_1GB;
513 	else if (adv_100fdx)
514 		control |= MII_CONTROL_100MB|MII_CONTROL_FDUPLEX;
515 	else if (adv_100hdx)
516 		control |= MII_CONTROL_100MB;
517 	else if (adv_10fdx)
518 		control |= MII_CONTROL_FDUPLEX;
519 	else if (adv_10hdx)
520 		control |= 0;
521 	else
522 		{ _NOTE(EMPTY); }	/* Can't get here anyway ...	*/
523 
524 	if (adv_1000fdx) {
525 		gigctrl |= MII_1000BT_CTL_ADV_FDX;
526 		/*
527 		 * Chipset limitation: need set other capabilities to true
528 		 */
529 		if (rgep->chipid.is_pcie)
530 			adv_1000hdx = B_TRUE;
531 		adv_100fdx = B_TRUE;
532 		adv_100hdx  = B_TRUE;
533 		adv_10fdx = B_TRUE;
534 		adv_10hdx = B_TRUE;
535 	}
536 
537 	if (adv_1000hdx)
538 		gigctrl |= MII_1000BT_CTL_ADV_HDX;
539 
540 	if (adv_100fdx)
541 		anar |= MII_ABILITY_100BASE_TX_FD;
542 	if (adv_100hdx)
543 		anar |= MII_ABILITY_100BASE_TX;
544 	if (adv_10fdx)
545 		anar |= MII_ABILITY_10BASE_T_FD;
546 	if (adv_10hdx)
547 		anar |= MII_ABILITY_10BASE_T;
548 
549 	if (adv_pause)
550 		anar |= MII_ABILITY_PAUSE;
551 	if (adv_asym_pause)
552 		anar |= MII_ABILITY_ASMPAUSE;
553 
554 	/*
555 	 * Munge in any other fixed bits we require ...
556 	 */
557 	anar |= MII_AN_SELECTOR_8023;
558 
559 	/*
560 	 * Restart the PHY and write the new values.  Note the
561 	 * time, so that we can say whether subsequent link state
562 	 * changes can be attributed to our reprogramming the PHY
563 	 */
564 	rge_phy_init(rgep);
565 	if (rgep->chipid.mac_ver == MAC_VER_8168B_B ||
566 	    rgep->chipid.mac_ver == MAC_VER_8168B_C) {
567 		/* power up PHY for RTL8168B chipset */
568 		rge_mii_put16(rgep, PHY_1F_REG, 0x0000);
569 		rge_mii_put16(rgep, PHY_0E_REG, 0x0000);
570 		rge_mii_put16(rgep, PHY_1F_REG, 0x0000);
571 	}
572 	rge_mii_put16(rgep, MII_AN_ADVERT, anar);
573 	rge_mii_put16(rgep, MII_1000BASE_T_CONTROL, gigctrl);
574 	rge_mii_put16(rgep, MII_CONTROL, control);
575 
576 	RGE_DEBUG(("rge_phy_update: anar <- 0x%x", anar));
577 	RGE_DEBUG(("rge_phy_update: control <- 0x%x", control));
578 	RGE_DEBUG(("rge_phy_update: gigctrl <- 0x%x", gigctrl));
579 }
580 
581 void rge_phy_init(rge_t *rgep);
582 #pragma	no_inline(rge_phy_init)
583 
584 void
585 rge_phy_init(rge_t *rgep)
586 {
587 	rgep->phy_mii_addr = 1;
588 
589 	/*
590 	 * Below phy config steps are copied from the Programming Guide
591 	 * (there's no detail comments for these steps.)
592 	 */
593 	switch (rgep->chipid.mac_ver) {
594 	case MAC_VER_8169S_D:
595 	case MAC_VER_8169S_E :
596 		rge_mii_put16(rgep, PHY_1F_REG, 0x0001);
597 		rge_mii_put16(rgep, PHY_15_REG, 0x1000);
598 		rge_mii_put16(rgep, PHY_18_REG, 0x65c7);
599 		rge_mii_put16(rgep, PHY_ANAR_REG, 0x0000);
600 		rge_mii_put16(rgep, PHY_ID_REG_2, 0x00a1);
601 		rge_mii_put16(rgep, PHY_ID_REG_1, 0x0008);
602 		rge_mii_put16(rgep, PHY_BMSR_REG, 0x1020);
603 		rge_mii_put16(rgep, PHY_BMCR_REG, 0x1000);
604 		rge_mii_put16(rgep, PHY_ANAR_REG, 0x0800);
605 		rge_mii_put16(rgep, PHY_ANAR_REG, 0x0000);
606 		rge_mii_put16(rgep, PHY_ANAR_REG, 0x7000);
607 		rge_mii_put16(rgep, PHY_ID_REG_2, 0xff41);
608 		rge_mii_put16(rgep, PHY_ID_REG_1, 0xde60);
609 		rge_mii_put16(rgep, PHY_BMSR_REG, 0x0140);
610 		rge_mii_put16(rgep, PHY_BMCR_REG, 0x0077);
611 		rge_mii_put16(rgep, PHY_ANAR_REG, 0x7800);
612 		rge_mii_put16(rgep, PHY_ANAR_REG, 0x7000);
613 		rge_mii_put16(rgep, PHY_ANAR_REG, 0xa000);
614 		rge_mii_put16(rgep, PHY_ID_REG_2, 0xdf01);
615 		rge_mii_put16(rgep, PHY_ID_REG_1, 0xdf20);
616 		rge_mii_put16(rgep, PHY_BMSR_REG, 0xff95);
617 		rge_mii_put16(rgep, PHY_BMCR_REG, 0xfa00);
618 		rge_mii_put16(rgep, PHY_ANAR_REG, 0xa800);
619 		rge_mii_put16(rgep, PHY_ANAR_REG, 0xa000);
620 		rge_mii_put16(rgep, PHY_ANAR_REG, 0xb000);
621 		rge_mii_put16(rgep, PHY_ID_REG_2, 0xff41);
622 		rge_mii_put16(rgep, PHY_ID_REG_1, 0xde20);
623 		rge_mii_put16(rgep, PHY_BMSR_REG, 0x0140);
624 		rge_mii_put16(rgep, PHY_BMCR_REG, 0x00bb);
625 		rge_mii_put16(rgep, PHY_ANAR_REG, 0xb800);
626 		rge_mii_put16(rgep, PHY_ANAR_REG, 0xb000);
627 		rge_mii_put16(rgep, PHY_ANAR_REG, 0xf000);
628 		rge_mii_put16(rgep, PHY_ID_REG_2, 0xdf01);
629 		rge_mii_put16(rgep, PHY_ID_REG_1, 0xdf20);
630 		rge_mii_put16(rgep, PHY_BMSR_REG, 0xff95);
631 		rge_mii_put16(rgep, PHY_BMCR_REG, 0xbf00);
632 		rge_mii_put16(rgep, PHY_ANAR_REG, 0xf800);
633 		rge_mii_put16(rgep, PHY_ANAR_REG, 0xf000);
634 		rge_mii_put16(rgep, PHY_ANAR_REG, 0x0000);
635 		rge_mii_put16(rgep, PHY_1F_REG, 0x0000);
636 		rge_mii_put16(rgep, PHY_0B_REG, 0x0000);
637 		break;
638 
639 	case MAC_VER_8169SB:
640 		rge_mii_put16(rgep, PHY_1F_REG, 0x0001);
641 		rge_mii_put16(rgep, PHY_1B_REG, 0xD41E);
642 		rge_mii_put16(rgep, PHY_0E_REG, 0x7bff);
643 		rge_mii_put16(rgep, PHY_GBCR_REG, GBCR_DEFAULT);
644 		rge_mii_put16(rgep, PHY_1F_REG, 0x0002);
645 		rge_mii_put16(rgep, PHY_BMSR_REG, 0x90D0);
646 		rge_mii_put16(rgep, PHY_1F_REG, 0x0000);
647 		break;
648 
649 	case MAC_VER_8169SC:
650 		rge_mii_put16(rgep, PHY_1F_REG, 0x0001);
651 		rge_mii_put16(rgep, PHY_ANER_REG, 0x0078);
652 		rge_mii_put16(rgep, PHY_ANNPRR_REG, 0x05dc);
653 		rge_mii_put16(rgep, PHY_GBCR_REG, 0x2672);
654 		rge_mii_put16(rgep, PHY_GBSR_REG, 0x6a14);
655 		rge_mii_put16(rgep, PHY_0B_REG, 0x7cb0);
656 		rge_mii_put16(rgep, PHY_0C_REG, 0xdb80);
657 		rge_mii_put16(rgep, PHY_1B_REG, 0xc414);
658 		rge_mii_put16(rgep, PHY_1C_REG, 0xef03);
659 		rge_mii_put16(rgep, PHY_1D_REG, 0x3dc8);
660 		rge_mii_put16(rgep, PHY_1F_REG, 0x0003);
661 		rge_mii_put16(rgep, PHY_13_REG, 0x0600);
662 		rge_mii_put16(rgep, PHY_1F_REG, 0x0000);
663 		break;
664 
665 	case MAC_VER_8168:
666 		rge_mii_put16(rgep, PHY_1F_REG, 0x0001);
667 		rge_mii_put16(rgep, PHY_ANER_REG, 0x00aa);
668 		rge_mii_put16(rgep, PHY_ANNPTR_REG, 0x3173);
669 		rge_mii_put16(rgep, PHY_ANNPRR_REG, 0x08fc);
670 		rge_mii_put16(rgep, PHY_GBCR_REG, 0xe2d0);
671 		rge_mii_put16(rgep, PHY_0B_REG, 0x941a);
672 		rge_mii_put16(rgep, PHY_18_REG, 0x65fe);
673 		rge_mii_put16(rgep, PHY_1C_REG, 0x1e02);
674 		rge_mii_put16(rgep, PHY_1F_REG, 0x0002);
675 		rge_mii_put16(rgep, PHY_ANNPTR_REG, 0x103e);
676 		rge_mii_put16(rgep, PHY_1F_REG, 0x0000);
677 		break;
678 
679 	case MAC_VER_8168B_B:
680 	case MAC_VER_8168B_C:
681 		rge_mii_put16(rgep, PHY_1F_REG, 0x0001);
682 		rge_mii_put16(rgep, PHY_0B_REG, 0x94b0);
683 		rge_mii_put16(rgep, PHY_1B_REG, 0xc416);
684 		rge_mii_put16(rgep, PHY_1F_REG, 0x0003);
685 		rge_mii_put16(rgep, PHY_12_REG, 0x6096);
686 		rge_mii_put16(rgep, PHY_1F_REG, 0x0000);
687 		break;
688 	}
689 }
690 
691 void rge_chip_ident(rge_t *rgep);
692 #pragma	no_inline(rge_chip_ident)
693 
694 void
695 rge_chip_ident(rge_t *rgep)
696 {
697 	chip_id_t *chip = &rgep->chipid;
698 	uint32_t val32;
699 	uint16_t val16;
700 
701 	/*
702 	 * Read and record MAC version
703 	 */
704 	val32 = rge_reg_get32(rgep, TX_CONFIG_REG);
705 	val32 &= HW_VERSION_ID_0 | HW_VERSION_ID_1;
706 	chip->mac_ver = val32;
707 	chip->is_pcie = pci_lcap_locate(rgep->cfg_handle,
708 	    PCI_CAP_ID_PCI_E, &val16) == DDI_SUCCESS;
709 
710 	/*
711 	 * Read and record PHY version
712 	 */
713 	val16 = rge_mii_get16(rgep, PHY_ID_REG_2);
714 	val16 &= PHY_VER_MASK;
715 	chip->phy_ver = val16;
716 
717 	/* set pci latency timer */
718 	if (chip->mac_ver == MAC_VER_8169 ||
719 	    chip->mac_ver == MAC_VER_8169S_D ||
720 	    chip->mac_ver == MAC_VER_8169S_E ||
721 	    chip->mac_ver == MAC_VER_8169SC)
722 		pci_config_put8(rgep->cfg_handle, PCI_CONF_LATENCY_TIMER, 0x40);
723 
724 	if (chip->mac_ver == MAC_VER_8169SC) {
725 		val16 = rge_reg_get16(rgep, RT_CONFIG_1_REG);
726 		val16 &= 0x0300;
727 		if (val16 == 0x1)	/* 66Mhz PCI */
728 			rge_reg_put32(rgep, 0x7c, 0x000700ff);
729 		else if (val16 == 0x0) /* 33Mhz PCI */
730 			rge_reg_put32(rgep, 0x7c, 0x0007ff00);
731 	}
732 
733 	/*
734 	 * PCIE chipset require the Rx buffer start address must be
735 	 * 8-byte alignment and the Rx buffer size must be multiple of 8.
736 	 * We'll just use bcopy in receive procedure for the PCIE chipset.
737 	 */
738 	if (chip->is_pcie) {
739 		rgep->chip_flags |= CHIP_FLAG_FORCE_BCOPY;
740 		if (rgep->default_mtu > ETHERMTU) {
741 			rge_notice(rgep, "Jumbo packets not supported "
742 			    "for this PCIE chipset");
743 			rgep->default_mtu = ETHERMTU;
744 		}
745 	}
746 	if (rgep->chip_flags & CHIP_FLAG_FORCE_BCOPY)
747 		rgep->head_room = 0;
748 	else
749 		rgep->head_room = RGE_HEADROOM;
750 
751 	/*
752 	 * Initialize other variables.
753 	 */
754 	if (rgep->default_mtu < ETHERMTU || rgep->default_mtu > RGE_JUMBO_MTU)
755 		rgep->default_mtu = ETHERMTU;
756 	if (rgep->default_mtu > ETHERMTU) {
757 		rgep->rxbuf_size = RGE_BUFF_SIZE_JUMBO;
758 		rgep->txbuf_size = RGE_BUFF_SIZE_JUMBO;
759 		rgep->ethmax_size = RGE_JUMBO_SIZE;
760 	} else {
761 		rgep->rxbuf_size = RGE_BUFF_SIZE_STD;
762 		rgep->txbuf_size = RGE_BUFF_SIZE_STD;
763 		rgep->ethmax_size = ETHERMAX;
764 	}
765 	chip->rxconfig = RX_CONFIG_DEFAULT;
766 	chip->txconfig = TX_CONFIG_DEFAULT;
767 
768 	/* interval to update statistics for polling mode */
769 	rgep->tick_delta = drv_usectohz(1000*1000/CLK_TICK);
770 
771 	/* ensure we are not in polling mode */
772 	rgep->curr_tick = ddi_get_lbolt() - 2*rgep->tick_delta;
773 	RGE_TRACE(("%s: MAC version = %x, PHY version = %x",
774 	    rgep->ifname, chip->mac_ver, chip->phy_ver));
775 }
776 
777 /*
778  * Perform first-stage chip (re-)initialisation, using only config-space
779  * accesses:
780  *
781  * + Read the vendor/device/revision/subsystem/cache-line-size registers,
782  *   returning the data in the structure pointed to by <idp>.
783  * + Enable Memory Space accesses.
784  * + Enable Bus Mastering according.
785  */
786 void rge_chip_cfg_init(rge_t *rgep, chip_id_t *cidp);
787 #pragma	no_inline(rge_chip_cfg_init)
788 
789 void
790 rge_chip_cfg_init(rge_t *rgep, chip_id_t *cidp)
791 {
792 	ddi_acc_handle_t handle;
793 	uint16_t commd;
794 
795 	handle = rgep->cfg_handle;
796 
797 	/*
798 	 * Save PCI cache line size and subsystem vendor ID
799 	 */
800 	cidp->command = pci_config_get16(handle, PCI_CONF_COMM);
801 	cidp->vendor = pci_config_get16(handle, PCI_CONF_VENID);
802 	cidp->device = pci_config_get16(handle, PCI_CONF_DEVID);
803 	cidp->subven = pci_config_get16(handle, PCI_CONF_SUBVENID);
804 	cidp->subdev = pci_config_get16(handle, PCI_CONF_SUBSYSID);
805 	cidp->revision = pci_config_get8(handle, PCI_CONF_REVID);
806 	cidp->clsize = pci_config_get8(handle, PCI_CONF_CACHE_LINESZ);
807 	cidp->latency = pci_config_get8(handle, PCI_CONF_LATENCY_TIMER);
808 
809 	/*
810 	 * Turn on Master Enable (DMA) and IO Enable bits.
811 	 * Enable PCI Memory Space accesses
812 	 */
813 	commd = cidp->command;
814 	commd |= PCI_COMM_ME | PCI_COMM_MAE | PCI_COMM_IO;
815 	pci_config_put16(handle, PCI_CONF_COMM, commd);
816 
817 	RGE_DEBUG(("rge_chip_cfg_init: vendor 0x%x device 0x%x revision 0x%x",
818 	    cidp->vendor, cidp->device, cidp->revision));
819 	RGE_DEBUG(("rge_chip_cfg_init: subven 0x%x subdev 0x%x",
820 	    cidp->subven, cidp->subdev));
821 	RGE_DEBUG(("rge_chip_cfg_init: clsize %d latency %d command 0x%x",
822 	    cidp->clsize, cidp->latency, cidp->command));
823 }
824 
825 int rge_chip_reset(rge_t *rgep);
826 #pragma	no_inline(rge_chip_reset)
827 
828 int
829 rge_chip_reset(rge_t *rgep)
830 {
831 	int i;
832 	uint8_t val8;
833 
834 	/*
835 	 * Chip should be in STOP state
836 	 */
837 	rge_reg_clr8(rgep, RT_COMMAND_REG,
838 	    RT_COMMAND_RX_ENABLE | RT_COMMAND_TX_ENABLE);
839 
840 	/*
841 	 * Disable interrupt
842 	 */
843 	rgep->int_mask = INT_MASK_NONE;
844 	rge_reg_put16(rgep, INT_MASK_REG, rgep->int_mask);
845 
846 	/*
847 	 * Clear pended interrupt
848 	 */
849 	rge_reg_put16(rgep, INT_STATUS_REG, INT_MASK_ALL);
850 
851 	/*
852 	 * Reset chip
853 	 */
854 	rge_reg_set8(rgep, RT_COMMAND_REG, RT_COMMAND_RESET);
855 
856 	/*
857 	 * Wait for reset success
858 	 */
859 	for (i = 0; i < CHIP_RESET_LOOP; i++) {
860 		drv_usecwait(10);
861 		val8 = rge_reg_get8(rgep, RT_COMMAND_REG);
862 		if (!(val8 & RT_COMMAND_RESET)) {
863 			rgep->rge_chip_state = RGE_CHIP_RESET;
864 			return (0);
865 		}
866 	}
867 	RGE_REPORT((rgep, "rge_chip_reset fail."));
868 	return (-1);
869 }
870 
871 void rge_chip_init(rge_t *rgep);
872 #pragma	no_inline(rge_chip_init)
873 
874 void
875 rge_chip_init(rge_t *rgep)
876 {
877 	uint32_t val32;
878 	uint32_t val16;
879 	uint32_t *hashp;
880 	chip_id_t *chip = &rgep->chipid;
881 
882 	/*
883 	 * Increase the threshold voltage of RX sensitivity
884 	 */
885 	if (chip->mac_ver == MAC_VER_8168B_B ||
886 	    chip->mac_ver == MAC_VER_8168B_C ||
887 	    chip->mac_ver == MAC_VER_8101E ||
888 	    chip->mac_ver == MAC_VER_8101E_C) {
889 		rge_ephy_put16(rgep, 0x01, 0x1bd3);
890 	}
891 
892 	if (chip->mac_ver == MAC_VER_8168 ||
893 	    chip->mac_ver == MAC_VER_8168B_B) {
894 		val16 = rge_reg_get8(rgep, PHY_STATUS_REG);
895 		val16 = 0x12<<8 | val16;
896 		rge_reg_put16(rgep, PHY_STATUS_REG, val16);
897 		rge_reg_put32(rgep, RT_CSI_DATA_REG, 0x00021c01);
898 		rge_reg_put32(rgep, RT_CSI_ACCESS_REG, 0x8000f088);
899 		rge_reg_put32(rgep, RT_CSI_DATA_REG, 0x00004000);
900 		rge_reg_put32(rgep, RT_CSI_ACCESS_REG, 0x8000f0b0);
901 		rge_reg_put32(rgep, RT_CSI_ACCESS_REG, 0x0000f068);
902 		val32 = rge_reg_get32(rgep, RT_CSI_DATA_REG);
903 		val32 |= 0x7000;
904 		val32 &= 0xffff5fff;
905 		rge_reg_put32(rgep, RT_CSI_DATA_REG, val32);
906 		rge_reg_put32(rgep, RT_CSI_ACCESS_REG, 0x8000f068);
907 	}
908 
909 	/*
910 	 * Config MII register
911 	 */
912 	rgep->param_link_up = LINK_STATE_DOWN;
913 	rge_phy_update(rgep);
914 
915 	/*
916 	 * Enable Rx checksum offload.
917 	 *  Then for vlan support, we must enable receive vlan de-tagging.
918 	 *  Otherwise, there'll be checksum error.
919 	 */
920 	val16 = rge_reg_get16(rgep, CPLUS_COMMAND_REG);
921 	val16 |= RX_CKSM_OFFLOAD | RX_VLAN_DETAG;
922 	if (chip->mac_ver == MAC_VER_8169S_D) {
923 		val16 |= CPLUS_BIT14 | MUL_PCI_RW_ENABLE;
924 		rge_reg_put8(rgep, RESV_82_REG, 0x01);
925 	}
926 	if (chip->mac_ver == MAC_VER_8169S_E ||
927 	    chip->mac_ver == MAC_VER_8169SC) {
928 		val16 |= MUL_PCI_RW_ENABLE;
929 	}
930 	rge_reg_put16(rgep, CPLUS_COMMAND_REG, val16 & (~0x03));
931 
932 	/*
933 	 * Start transmit/receive before set tx/rx configuration register
934 	 */
935 	if (!chip->is_pcie)
936 		rge_reg_set8(rgep, RT_COMMAND_REG,
937 		    RT_COMMAND_RX_ENABLE | RT_COMMAND_TX_ENABLE);
938 
939 	/*
940 	 * Set dump tally counter register
941 	 */
942 	val32 = rgep->dma_area_stats.cookie.dmac_laddress >> 32;
943 	rge_reg_put32(rgep, DUMP_COUNTER_REG_1, val32);
944 	val32 = rge_reg_get32(rgep, DUMP_COUNTER_REG_0);
945 	val32 &= DUMP_COUNTER_REG_RESV;
946 	val32 |= rgep->dma_area_stats.cookie.dmac_laddress;
947 	rge_reg_put32(rgep, DUMP_COUNTER_REG_0, val32);
948 
949 	/*
950 	 * Change to config register write enable mode
951 	 */
952 	rge_reg_set8(rgep, RT_93c46_COMMOND_REG, RT_93c46_MODE_CONFIG);
953 
954 	/*
955 	 * Set Tx/Rx maximum packet size
956 	 */
957 	if (rgep->default_mtu > ETHERMTU) {
958 		rge_reg_put8(rgep, TX_MAX_PKTSIZE_REG, TX_PKTSIZE_JUMBO);
959 		rge_reg_put16(rgep, RX_MAX_PKTSIZE_REG, RX_PKTSIZE_JUMBO);
960 	} else if (rgep->chipid.mac_ver != MAC_VER_8101E) {
961 		rge_reg_put8(rgep, TX_MAX_PKTSIZE_REG, TX_PKTSIZE_STD);
962 		rge_reg_put16(rgep, RX_MAX_PKTSIZE_REG, RX_PKTSIZE_STD);
963 	} else {
964 		rge_reg_put8(rgep, TX_MAX_PKTSIZE_REG, TX_PKTSIZE_STD_8101E);
965 		rge_reg_put16(rgep, RX_MAX_PKTSIZE_REG, RX_PKTSIZE_STD_8101E);
966 	}
967 
968 	/*
969 	 * Set receive configuration register
970 	 */
971 	val32 = rge_reg_get32(rgep, RX_CONFIG_REG);
972 	val32 &= RX_CONFIG_REG_RESV;
973 	if (rgep->promisc)
974 		val32 |= RX_ACCEPT_ALL_PKT;
975 	rge_reg_put32(rgep, RX_CONFIG_REG, val32 | chip->rxconfig);
976 
977 	/*
978 	 * Set transmit configuration register
979 	 */
980 	val32 = rge_reg_get32(rgep, TX_CONFIG_REG);
981 	val32 &= TX_CONFIG_REG_RESV;
982 	rge_reg_put32(rgep, TX_CONFIG_REG, val32 | chip->txconfig);
983 
984 	/*
985 	 * Set Tx/Rx descriptor register
986 	 */
987 	val32 = rgep->tx_desc.cookie.dmac_laddress;
988 	rge_reg_put32(rgep, NORMAL_TX_RING_ADDR_LO_REG, val32);
989 	val32 = rgep->tx_desc.cookie.dmac_laddress >> 32;
990 	rge_reg_put32(rgep, NORMAL_TX_RING_ADDR_HI_REG, val32);
991 	rge_reg_put32(rgep, HIGH_TX_RING_ADDR_LO_REG, 0);
992 	rge_reg_put32(rgep, HIGH_TX_RING_ADDR_HI_REG, 0);
993 	val32 = rgep->rx_desc.cookie.dmac_laddress;
994 	rge_reg_put32(rgep, RX_RING_ADDR_LO_REG, val32);
995 	val32 = rgep->rx_desc.cookie.dmac_laddress >> 32;
996 	rge_reg_put32(rgep, RX_RING_ADDR_HI_REG, val32);
997 
998 	/*
999 	 * Suggested setting from Realtek
1000 	 */
1001 	if (rgep->chipid.mac_ver != MAC_VER_8101E)
1002 		rge_reg_put16(rgep, RESV_E2_REG, 0x282a);
1003 	else
1004 		rge_reg_put16(rgep, RESV_E2_REG, 0x0000);
1005 
1006 	/*
1007 	 * Set multicast register
1008 	 */
1009 	hashp = (uint32_t *)rgep->mcast_hash;
1010 	if (rgep->promisc) {
1011 		rge_reg_put32(rgep, MULTICAST_0_REG, ~0U);
1012 		rge_reg_put32(rgep, MULTICAST_4_REG, ~0U);
1013 	} else {
1014 		rge_reg_put32(rgep, MULTICAST_0_REG, RGE_BSWAP_32(hashp[0]));
1015 		rge_reg_put32(rgep, MULTICAST_4_REG, RGE_BSWAP_32(hashp[1]));
1016 	}
1017 
1018 	/*
1019 	 * Msic register setting:
1020 	 *   -- Missed packet counter: clear it
1021 	 *   -- TimerInt Register
1022 	 *   -- Timer count register
1023 	 */
1024 	rge_reg_put32(rgep, RX_PKT_MISS_COUNT_REG, 0);
1025 	rge_reg_put32(rgep, TIMER_INT_REG, TIMER_INT_NONE);
1026 	rge_reg_put32(rgep, TIMER_COUNT_REG, 0);
1027 
1028 	/*
1029 	 * disable the Unicast Wakeup Frame capability
1030 	 */
1031 	rge_reg_clr8(rgep, RT_CONFIG_5_REG, RT_UNI_WAKE_FRAME);
1032 
1033 	/*
1034 	 * Return to normal network/host communication mode
1035 	 */
1036 	rge_reg_clr8(rgep, RT_93c46_COMMOND_REG, RT_93c46_MODE_CONFIG);
1037 	drv_usecwait(20);
1038 }
1039 
1040 /*
1041  * rge_chip_start() -- start the chip transmitting and/or receiving,
1042  * including enabling interrupts
1043  */
1044 void rge_chip_start(rge_t *rgep);
1045 #pragma	no_inline(rge_chip_start)
1046 
1047 void
1048 rge_chip_start(rge_t *rgep)
1049 {
1050 	/*
1051 	 * Clear statistics
1052 	 */
1053 	bzero(&rgep->stats, sizeof (rge_stats_t));
1054 	DMA_ZERO(rgep->dma_area_stats);
1055 
1056 	/*
1057 	 * Start transmit/receive
1058 	 */
1059 	rge_reg_set8(rgep, RT_COMMAND_REG,
1060 	    RT_COMMAND_RX_ENABLE | RT_COMMAND_TX_ENABLE);
1061 
1062 	/*
1063 	 * Enable interrupt
1064 	 */
1065 	rgep->int_mask = RGE_INT_MASK;
1066 	if (rgep->chipid.is_pcie) {
1067 		rgep->int_mask |= NO_TXDESC_INT;
1068 	}
1069 	rgep->rx_fifo_ovf = 0;
1070 	rgep->int_mask |= RX_FIFO_OVERFLOW_INT;
1071 	rge_reg_put16(rgep, INT_MASK_REG, rgep->int_mask);
1072 
1073 	/*
1074 	 * All done!
1075 	 */
1076 	rgep->rge_chip_state = RGE_CHIP_RUNNING;
1077 }
1078 
1079 /*
1080  * rge_chip_stop() -- stop board receiving
1081  *
1082  * Since this function is also invoked by rge_quiesce(), it
1083  * must not block; also, no tracing or logging takes place
1084  * when invoked by rge_quiesce().
1085  */
1086 void rge_chip_stop(rge_t *rgep, boolean_t fault);
1087 #pragma	no_inline(rge_chip_stop)
1088 
1089 void
1090 rge_chip_stop(rge_t *rgep, boolean_t fault)
1091 {
1092 	/*
1093 	 * Disable interrupt
1094 	 */
1095 	rgep->int_mask = INT_MASK_NONE;
1096 	rge_reg_put16(rgep, INT_MASK_REG, rgep->int_mask);
1097 
1098 	/*
1099 	 * Clear pended interrupt
1100 	 */
1101 	if (!rgep->suspended) {
1102 		rge_reg_put16(rgep, INT_STATUS_REG, INT_MASK_ALL);
1103 	}
1104 
1105 	/*
1106 	 * Stop the board and disable transmit/receive
1107 	 */
1108 	rge_reg_clr8(rgep, RT_COMMAND_REG,
1109 	    RT_COMMAND_RX_ENABLE | RT_COMMAND_TX_ENABLE);
1110 
1111 	if (fault)
1112 		rgep->rge_chip_state = RGE_CHIP_FAULT;
1113 	else
1114 		rgep->rge_chip_state = RGE_CHIP_STOPPED;
1115 }
1116 
1117 /*
1118  * rge_get_mac_addr() -- get the MAC address on NIC
1119  */
1120 static void rge_get_mac_addr(rge_t *rgep);
1121 #pragma	inline(rge_get_mac_addr)
1122 
1123 static void
1124 rge_get_mac_addr(rge_t *rgep)
1125 {
1126 	uint8_t *macaddr = rgep->netaddr;
1127 	uint32_t val32;
1128 
1129 	/*
1130 	 * Read first 4-byte of mac address
1131 	 */
1132 	val32 = rge_reg_get32(rgep, ID_0_REG);
1133 	macaddr[0] = val32 & 0xff;
1134 	val32 = val32 >> 8;
1135 	macaddr[1] = val32 & 0xff;
1136 	val32 = val32 >> 8;
1137 	macaddr[2] = val32 & 0xff;
1138 	val32 = val32 >> 8;
1139 	macaddr[3] = val32 & 0xff;
1140 
1141 	/*
1142 	 * Read last 2-byte of mac address
1143 	 */
1144 	val32 = rge_reg_get32(rgep, ID_4_REG);
1145 	macaddr[4] = val32 & 0xff;
1146 	val32 = val32 >> 8;
1147 	macaddr[5] = val32 & 0xff;
1148 }
1149 
1150 static void rge_set_mac_addr(rge_t *rgep);
1151 #pragma	inline(rge_set_mac_addr)
1152 
1153 static void
1154 rge_set_mac_addr(rge_t *rgep)
1155 {
1156 	uint8_t *p = rgep->netaddr;
1157 	uint32_t val32;
1158 
1159 	/*
1160 	 * Change to config register write enable mode
1161 	 */
1162 	rge_reg_set8(rgep, RT_93c46_COMMOND_REG, RT_93c46_MODE_CONFIG);
1163 
1164 	/*
1165 	 * Get first 4 bytes of mac address
1166 	 */
1167 	val32 = p[3];
1168 	val32 = val32 << 8;
1169 	val32 |= p[2];
1170 	val32 = val32 << 8;
1171 	val32 |= p[1];
1172 	val32 = val32 << 8;
1173 	val32 |= p[0];
1174 
1175 	/*
1176 	 * Set first 4 bytes of mac address
1177 	 */
1178 	rge_reg_put32(rgep, ID_0_REG, val32);
1179 
1180 	/*
1181 	 * Get last 2 bytes of mac address
1182 	 */
1183 	val32 = p[5];
1184 	val32 = val32 << 8;
1185 	val32 |= p[4];
1186 
1187 	/*
1188 	 * Set last 2 bytes of mac address
1189 	 */
1190 	val32 |= rge_reg_get32(rgep, ID_4_REG) & ~0xffff;
1191 	rge_reg_put32(rgep, ID_4_REG, val32);
1192 
1193 	/*
1194 	 * Return to normal network/host communication mode
1195 	 */
1196 	rge_reg_clr8(rgep, RT_93c46_COMMOND_REG, RT_93c46_MODE_CONFIG);
1197 }
1198 
1199 static void rge_set_multi_addr(rge_t *rgep);
1200 #pragma	inline(rge_set_multi_addr)
1201 
1202 static void
1203 rge_set_multi_addr(rge_t *rgep)
1204 {
1205 	uint32_t *hashp;
1206 
1207 	hashp = (uint32_t *)rgep->mcast_hash;
1208 
1209 	/*
1210 	 * Change to config register write enable mode
1211 	 */
1212 	if (rgep->chipid.mac_ver == MAC_VER_8169SC) {
1213 		rge_reg_set8(rgep, RT_93c46_COMMOND_REG, RT_93c46_MODE_CONFIG);
1214 	}
1215 	if (rgep->promisc) {
1216 		rge_reg_put32(rgep, MULTICAST_0_REG, ~0U);
1217 		rge_reg_put32(rgep, MULTICAST_4_REG, ~0U);
1218 	} else {
1219 		rge_reg_put32(rgep, MULTICAST_0_REG, RGE_BSWAP_32(hashp[0]));
1220 		rge_reg_put32(rgep, MULTICAST_4_REG, RGE_BSWAP_32(hashp[1]));
1221 	}
1222 
1223 	/*
1224 	 * Return to normal network/host communication mode
1225 	 */
1226 	if (rgep->chipid.mac_ver == MAC_VER_8169SC) {
1227 		rge_reg_clr8(rgep, RT_93c46_COMMOND_REG, RT_93c46_MODE_CONFIG);
1228 	}
1229 }
1230 
1231 static void rge_set_promisc(rge_t *rgep);
1232 #pragma	inline(rge_set_promisc)
1233 
1234 static void
1235 rge_set_promisc(rge_t *rgep)
1236 {
1237 	if (rgep->promisc)
1238 		rge_reg_set32(rgep, RX_CONFIG_REG, RX_ACCEPT_ALL_PKT);
1239 	else
1240 		rge_reg_clr32(rgep, RX_CONFIG_REG, RX_ACCEPT_ALL_PKT);
1241 }
1242 
1243 /*
1244  * rge_chip_sync() -- program the chip with the unicast MAC address,
1245  * the multicast hash table, the required level of promiscuity, and
1246  * the current loopback mode ...
1247  */
1248 void rge_chip_sync(rge_t *rgep, enum rge_sync_op todo);
1249 #pragma	no_inline(rge_chip_sync)
1250 
1251 void
1252 rge_chip_sync(rge_t *rgep, enum rge_sync_op todo)
1253 {
1254 	switch (todo) {
1255 	case RGE_GET_MAC:
1256 		rge_get_mac_addr(rgep);
1257 		break;
1258 	case RGE_SET_MAC:
1259 		/* Reprogram the unicast MAC address(es) ... */
1260 		rge_set_mac_addr(rgep);
1261 		break;
1262 	case RGE_SET_MUL:
1263 		/* Reprogram the hashed multicast address table ... */
1264 		rge_set_multi_addr(rgep);
1265 		break;
1266 	case RGE_SET_PROMISC:
1267 		/* Set or clear the PROMISCUOUS mode bit */
1268 		rge_set_multi_addr(rgep);
1269 		rge_set_promisc(rgep);
1270 		break;
1271 	default:
1272 		break;
1273 	}
1274 }
1275 
1276 void rge_chip_blank(void *arg, time_t ticks, uint_t count, int flag);
1277 #pragma	no_inline(rge_chip_blank)
1278 
1279 /* ARGSUSED */
1280 void
1281 rge_chip_blank(void *arg, time_t ticks, uint_t count, int flag)
1282 {
1283 	_NOTE(ARGUNUSED(arg, ticks, count));
1284 }
1285 
1286 void rge_tx_trigger(rge_t *rgep);
1287 #pragma	no_inline(rge_tx_trigger)
1288 
1289 void
1290 rge_tx_trigger(rge_t *rgep)
1291 {
1292 	rge_reg_put8(rgep, TX_RINGS_POLL_REG, NORMAL_TX_RING_POLL);
1293 }
1294 
1295 void rge_hw_stats_dump(rge_t *rgep);
1296 #pragma	no_inline(rge_tx_trigger)
1297 
1298 void
1299 rge_hw_stats_dump(rge_t *rgep)
1300 {
1301 	int i = 0;
1302 	uint32_t regval = 0;
1303 
1304 	if (rgep->rge_mac_state == RGE_MAC_STOPPED)
1305 		return;
1306 
1307 	regval = rge_reg_get32(rgep, DUMP_COUNTER_REG_0);
1308 	while (regval & DUMP_START) {
1309 		drv_usecwait(100);
1310 		if (++i > STATS_DUMP_LOOP) {
1311 			RGE_DEBUG(("rge h/w statistics dump fail!"));
1312 			rgep->rge_chip_state = RGE_CHIP_ERROR;
1313 			return;
1314 		}
1315 		regval = rge_reg_get32(rgep, DUMP_COUNTER_REG_0);
1316 	}
1317 	DMA_SYNC(rgep->dma_area_stats, DDI_DMA_SYNC_FORKERNEL);
1318 
1319 	/*
1320 	 * Start H/W statistics dump for RTL8169 chip
1321 	 */
1322 	rge_reg_set32(rgep, DUMP_COUNTER_REG_0, DUMP_START);
1323 }
1324 
1325 /*
1326  * ========== Hardware interrupt handler ==========
1327  */
1328 
1329 #undef	RGE_DBG
1330 #define	RGE_DBG		RGE_DBG_INT	/* debug flag for this code	*/
1331 
1332 static void rge_wake_factotum(rge_t *rgep);
1333 #pragma	inline(rge_wake_factotum)
1334 
1335 static void
1336 rge_wake_factotum(rge_t *rgep)
1337 {
1338 	if (rgep->factotum_flag == 0) {
1339 		rgep->factotum_flag = 1;
1340 		(void) ddi_intr_trigger_softint(rgep->factotum_hdl, NULL);
1341 	}
1342 }
1343 
1344 /*
1345  *	rge_intr() -- handle chip interrupts
1346  */
1347 uint_t rge_intr(caddr_t arg1, caddr_t arg2);
1348 #pragma	no_inline(rge_intr)
1349 
1350 uint_t
1351 rge_intr(caddr_t arg1, caddr_t arg2)
1352 {
1353 	rge_t *rgep = (rge_t *)arg1;
1354 	uint16_t int_status;
1355 	clock_t	now;
1356 	uint32_t tx_pkts;
1357 	uint32_t rx_pkts;
1358 	uint32_t poll_rate;
1359 	uint32_t opt_pkts;
1360 	uint32_t opt_intrs;
1361 	boolean_t update_int_mask = B_FALSE;
1362 	uint32_t itimer;
1363 
1364 	_NOTE(ARGUNUSED(arg2))
1365 
1366 	mutex_enter(rgep->genlock);
1367 
1368 	if (rgep->suspended) {
1369 		mutex_exit(rgep->genlock);
1370 		return (DDI_INTR_UNCLAIMED);
1371 	}
1372 
1373 	/*
1374 	 * Was this interrupt caused by our device...
1375 	 */
1376 	int_status = rge_reg_get16(rgep, INT_STATUS_REG);
1377 	if (!(int_status & rgep->int_mask)) {
1378 		mutex_exit(rgep->genlock);
1379 		return (DDI_INTR_UNCLAIMED);
1380 				/* indicate it wasn't our interrupt */
1381 	}
1382 	rgep->stats.intr++;
1383 
1384 	/*
1385 	 * Clear interrupt
1386 	 *	For PCIE chipset, we need disable interrupt first.
1387 	 */
1388 	if (rgep->chipid.is_pcie) {
1389 		rge_reg_put16(rgep, INT_MASK_REG, INT_MASK_NONE);
1390 		update_int_mask = B_TRUE;
1391 	}
1392 	rge_reg_put16(rgep, INT_STATUS_REG, int_status);
1393 
1394 	/*
1395 	 * Calculate optimal polling interval
1396 	 */
1397 	now = ddi_get_lbolt();
1398 	if (now - rgep->curr_tick >= rgep->tick_delta &&
1399 	    (rgep->param_link_speed == RGE_SPEED_1000M ||
1400 	    rgep->param_link_speed == RGE_SPEED_100M)) {
1401 		/* number of rx and tx packets in the last tick */
1402 		tx_pkts = rgep->stats.opackets - rgep->last_opackets;
1403 		rx_pkts = rgep->stats.rpackets - rgep->last_rpackets;
1404 
1405 		rgep->last_opackets = rgep->stats.opackets;
1406 		rgep->last_rpackets = rgep->stats.rpackets;
1407 
1408 		/* restore interrupt mask */
1409 		rgep->int_mask |= TX_OK_INT | RX_OK_INT;
1410 		if (rgep->chipid.is_pcie) {
1411 			rgep->int_mask |= NO_TXDESC_INT;
1412 		}
1413 
1414 		/* optimal number of packets in a tick */
1415 		if (rgep->param_link_speed == RGE_SPEED_1000M) {
1416 			opt_pkts = (1000*1000*1000/8)/ETHERMTU/CLK_TICK;
1417 		} else {
1418 			opt_pkts = (100*1000*1000/8)/ETHERMTU/CLK_TICK;
1419 		}
1420 
1421 		/*
1422 		 * calculate polling interval based on rx and tx packets
1423 		 * in the last tick
1424 		 */
1425 		poll_rate = 0;
1426 		if (now - rgep->curr_tick < 2*rgep->tick_delta) {
1427 			opt_intrs = opt_pkts/TX_COALESC;
1428 			if (tx_pkts > opt_intrs) {
1429 				poll_rate = max(tx_pkts/TX_COALESC, opt_intrs);
1430 				rgep->int_mask &= ~(TX_OK_INT | NO_TXDESC_INT);
1431 			}
1432 
1433 			opt_intrs = opt_pkts/RX_COALESC;
1434 			if (rx_pkts > opt_intrs) {
1435 				opt_intrs = max(rx_pkts/RX_COALESC, opt_intrs);
1436 				poll_rate = max(opt_intrs, poll_rate);
1437 				rgep->int_mask &= ~RX_OK_INT;
1438 			}
1439 			/* ensure poll_rate reasonable */
1440 			poll_rate = min(poll_rate, opt_pkts*4);
1441 		}
1442 
1443 		if (poll_rate) {
1444 			/* move to polling mode */
1445 			if (rgep->chipid.is_pcie) {
1446 				itimer = (TIMER_CLK_PCIE/CLK_TICK)/poll_rate;
1447 			} else {
1448 				itimer = (TIMER_CLK_PCI/CLK_TICK)/poll_rate;
1449 			}
1450 		} else {
1451 			/* move to normal mode */
1452 			itimer = 0;
1453 		}
1454 		RGE_DEBUG(("%s: poll: itimer:%d int_mask:0x%x",
1455 		    __func__, itimer, rgep->int_mask));
1456 		rge_reg_put32(rgep, TIMER_INT_REG, itimer);
1457 
1458 		/* update timestamp for statistics */
1459 		rgep->curr_tick = now;
1460 
1461 		/* reset timer */
1462 		int_status |= TIME_OUT_INT;
1463 
1464 		update_int_mask = B_TRUE;
1465 	}
1466 
1467 	if (int_status & TIME_OUT_INT) {
1468 		rge_reg_put32(rgep, TIMER_COUNT_REG, 0);
1469 	}
1470 
1471 	/* flush post writes */
1472 	(void) rge_reg_get16(rgep, INT_STATUS_REG);
1473 
1474 	/*
1475 	 * Cable link change interrupt
1476 	 */
1477 	if (int_status & LINK_CHANGE_INT) {
1478 		rge_chip_cyclic(rgep);
1479 	}
1480 
1481 	if (int_status & RX_FIFO_OVERFLOW_INT) {
1482 		/* start rx watchdog timeout detection */
1483 		rgep->rx_fifo_ovf = 1;
1484 		if (rgep->int_mask & RX_FIFO_OVERFLOW_INT) {
1485 			rgep->int_mask &= ~RX_FIFO_OVERFLOW_INT;
1486 			update_int_mask = B_TRUE;
1487 		}
1488 	} else if (int_status & RGE_RX_INT) {
1489 		/* stop rx watchdog timeout detection */
1490 		rgep->rx_fifo_ovf = 0;
1491 		if ((rgep->int_mask & RX_FIFO_OVERFLOW_INT) == 0) {
1492 			rgep->int_mask |= RX_FIFO_OVERFLOW_INT;
1493 			update_int_mask = B_TRUE;
1494 		}
1495 	}
1496 
1497 	mutex_exit(rgep->genlock);
1498 
1499 	/*
1500 	 * Receive interrupt
1501 	 */
1502 	if (int_status & RGE_RX_INT)
1503 		rge_receive(rgep);
1504 
1505 	/*
1506 	 * Transmit interrupt
1507 	 */
1508 	if (int_status & TX_ERR_INT) {
1509 		RGE_REPORT((rgep, "tx error happened, resetting the chip "));
1510 		mutex_enter(rgep->genlock);
1511 		rgep->rge_chip_state = RGE_CHIP_ERROR;
1512 		mutex_exit(rgep->genlock);
1513 	} else if ((rgep->chipid.is_pcie && (int_status & NO_TXDESC_INT)) ||
1514 	    ((int_status & TX_OK_INT) && rgep->tx_free < RGE_SEND_SLOTS/8)) {
1515 		(void) ddi_intr_trigger_softint(rgep->resched_hdl, NULL);
1516 	}
1517 
1518 	/*
1519 	 * System error interrupt
1520 	 */
1521 	if (int_status & SYS_ERR_INT) {
1522 		RGE_REPORT((rgep, "sys error happened, resetting the chip "));
1523 		mutex_enter(rgep->genlock);
1524 		rgep->rge_chip_state = RGE_CHIP_ERROR;
1525 		mutex_exit(rgep->genlock);
1526 	}
1527 
1528 	/*
1529 	 * Re-enable interrupt for PCIE chipset or install new int_mask
1530 	 */
1531 	if (update_int_mask)
1532 		rge_reg_put16(rgep, INT_MASK_REG, rgep->int_mask);
1533 
1534 	return (DDI_INTR_CLAIMED);	/* indicate it was our interrupt */
1535 }
1536 
1537 /*
1538  * ========== Factotum, implemented as a softint handler ==========
1539  */
1540 
1541 #undef	RGE_DBG
1542 #define	RGE_DBG		RGE_DBG_FACT	/* debug flag for this code	*/
1543 
1544 static boolean_t rge_factotum_link_check(rge_t *rgep);
1545 #pragma	no_inline(rge_factotum_link_check)
1546 
1547 static boolean_t
1548 rge_factotum_link_check(rge_t *rgep)
1549 {
1550 	uint8_t media_status;
1551 	int32_t link;
1552 
1553 	media_status = rge_reg_get8(rgep, PHY_STATUS_REG);
1554 	link = (media_status & PHY_STATUS_LINK_UP) ?
1555 	    LINK_STATE_UP : LINK_STATE_DOWN;
1556 	if (rgep->param_link_up != link) {
1557 		/*
1558 		 * Link change.
1559 		 */
1560 		rgep->param_link_up = link;
1561 
1562 		if (link == LINK_STATE_UP) {
1563 			if (media_status & PHY_STATUS_1000MF) {
1564 				rgep->param_link_speed = RGE_SPEED_1000M;
1565 				rgep->param_link_duplex = LINK_DUPLEX_FULL;
1566 			} else {
1567 				rgep->param_link_speed =
1568 				    (media_status & PHY_STATUS_100M) ?
1569 				    RGE_SPEED_100M : RGE_SPEED_10M;
1570 				rgep->param_link_duplex =
1571 				    (media_status & PHY_STATUS_DUPLEX_FULL) ?
1572 				    LINK_DUPLEX_FULL : LINK_DUPLEX_HALF;
1573 			}
1574 		}
1575 		return (B_TRUE);
1576 	}
1577 	return (B_FALSE);
1578 }
1579 
1580 /*
1581  * Factotum routine to check for Tx stall, using the 'watchdog' counter
1582  */
1583 static boolean_t rge_factotum_stall_check(rge_t *rgep);
1584 #pragma	no_inline(rge_factotum_stall_check)
1585 
1586 static boolean_t
1587 rge_factotum_stall_check(rge_t *rgep)
1588 {
1589 	uint32_t dogval;
1590 
1591 	ASSERT(mutex_owned(rgep->genlock));
1592 
1593 	/*
1594 	 * Specific check for RX stall ...
1595 	 */
1596 	rgep->rx_fifo_ovf <<= 1;
1597 	if (rgep->rx_fifo_ovf > rge_rx_watchdog_count) {
1598 		RGE_REPORT((rgep, "rx_hang detected"));
1599 		return (B_TRUE);
1600 	}
1601 
1602 	/*
1603 	 * Specific check for Tx stall ...
1604 	 *
1605 	 * The 'watchdog' counter is incremented whenever a packet
1606 	 * is queued, reset to 1 when some (but not all) buffers
1607 	 * are reclaimed, reset to 0 (disabled) when all buffers
1608 	 * are reclaimed, and shifted left here.  If it exceeds the
1609 	 * threshold value, the chip is assumed to have stalled and
1610 	 * is put into the ERROR state.  The factotum will then reset
1611 	 * it on the next pass.
1612 	 *
1613 	 * All of which should ensure that we don't get into a state
1614 	 * where packets are left pending indefinitely!
1615 	 */
1616 	if (rgep->resched_needed)
1617 		(void) ddi_intr_trigger_softint(rgep->resched_hdl, NULL);
1618 	dogval = rge_atomic_shl32(&rgep->watchdog, 1);
1619 	if (dogval < rge_watchdog_count)
1620 		return (B_FALSE);
1621 
1622 	RGE_REPORT((rgep, "Tx stall detected, watchdog code 0x%x", dogval));
1623 	return (B_TRUE);
1624 
1625 }
1626 
1627 /*
1628  * The factotum is woken up when there's something to do that we'd rather
1629  * not do from inside a hardware interrupt handler or high-level cyclic.
1630  * Its two main tasks are:
1631  *	reset & restart the chip after an error
1632  *	check the link status whenever necessary
1633  */
1634 uint_t rge_chip_factotum(caddr_t arg1, caddr_t arg2);
1635 #pragma	no_inline(rge_chip_factotum)
1636 
1637 uint_t
1638 rge_chip_factotum(caddr_t arg1, caddr_t arg2)
1639 {
1640 	rge_t *rgep;
1641 	uint_t result;
1642 	boolean_t error;
1643 	boolean_t linkchg;
1644 
1645 	rgep = (rge_t *)arg1;
1646 	_NOTE(ARGUNUSED(arg2))
1647 
1648 	if (rgep->factotum_flag == 0)
1649 		return (DDI_INTR_UNCLAIMED);
1650 
1651 	rgep->factotum_flag = 0;
1652 	result = DDI_INTR_CLAIMED;
1653 	error = B_FALSE;
1654 	linkchg = B_FALSE;
1655 
1656 	mutex_enter(rgep->genlock);
1657 	switch (rgep->rge_chip_state) {
1658 	default:
1659 		break;
1660 
1661 	case RGE_CHIP_RUNNING:
1662 		linkchg = rge_factotum_link_check(rgep);
1663 		error = rge_factotum_stall_check(rgep);
1664 		break;
1665 
1666 	case RGE_CHIP_ERROR:
1667 		error = B_TRUE;
1668 		break;
1669 
1670 	case RGE_CHIP_FAULT:
1671 		/*
1672 		 * Fault detected, time to reset ...
1673 		 */
1674 		if (rge_autorecover) {
1675 			RGE_REPORT((rgep, "automatic recovery activated"));
1676 			rge_restart(rgep);
1677 		}
1678 		break;
1679 	}
1680 
1681 	/*
1682 	 * If an error is detected, stop the chip now, marking it as
1683 	 * faulty, so that it will be reset next time through ...
1684 	 */
1685 	if (error)
1686 		rge_chip_stop(rgep, B_TRUE);
1687 	mutex_exit(rgep->genlock);
1688 
1689 	/*
1690 	 * If the link state changed, tell the world about it.
1691 	 * Note: can't do this while still holding the mutex.
1692 	 */
1693 	if (linkchg)
1694 		mac_link_update(rgep->mh, rgep->param_link_up);
1695 
1696 	return (result);
1697 }
1698 
1699 /*
1700  * High-level cyclic handler
1701  *
1702  * This routine schedules a (low-level) softint callback to the
1703  * factotum, and prods the chip to update the status block (which
1704  * will cause a hardware interrupt when complete).
1705  */
1706 void rge_chip_cyclic(void *arg);
1707 #pragma	no_inline(rge_chip_cyclic)
1708 
1709 void
1710 rge_chip_cyclic(void *arg)
1711 {
1712 	rge_t *rgep;
1713 
1714 	rgep = arg;
1715 
1716 	switch (rgep->rge_chip_state) {
1717 	default:
1718 		return;
1719 
1720 	case RGE_CHIP_RUNNING:
1721 		rge_phy_check(rgep);
1722 		if (rgep->tx_free < RGE_SEND_SLOTS)
1723 			rge_send_recycle(rgep);
1724 		break;
1725 
1726 	case RGE_CHIP_FAULT:
1727 	case RGE_CHIP_ERROR:
1728 		break;
1729 	}
1730 
1731 	rge_wake_factotum(rgep);
1732 }
1733 
1734 
1735 /*
1736  * ========== Ioctl subfunctions ==========
1737  */
1738 
1739 #undef	RGE_DBG
1740 #define	RGE_DBG		RGE_DBG_PPIO	/* debug flag for this code	*/
1741 
1742 #if	RGE_DEBUGGING || RGE_DO_PPIO
1743 
1744 static void rge_chip_peek_cfg(rge_t *rgep, rge_peekpoke_t *ppd);
1745 #pragma	no_inline(rge_chip_peek_cfg)
1746 
1747 static void
1748 rge_chip_peek_cfg(rge_t *rgep, rge_peekpoke_t *ppd)
1749 {
1750 	uint64_t regval;
1751 	uint64_t regno;
1752 
1753 	RGE_TRACE(("rge_chip_peek_cfg($%p, $%p)",
1754 	    (void *)rgep, (void *)ppd));
1755 
1756 	regno = ppd->pp_acc_offset;
1757 
1758 	switch (ppd->pp_acc_size) {
1759 	case 1:
1760 		regval = pci_config_get8(rgep->cfg_handle, regno);
1761 		break;
1762 
1763 	case 2:
1764 		regval = pci_config_get16(rgep->cfg_handle, regno);
1765 		break;
1766 
1767 	case 4:
1768 		regval = pci_config_get32(rgep->cfg_handle, regno);
1769 		break;
1770 
1771 	case 8:
1772 		regval = pci_config_get64(rgep->cfg_handle, regno);
1773 		break;
1774 	}
1775 
1776 	ppd->pp_acc_data = regval;
1777 }
1778 
1779 static void rge_chip_poke_cfg(rge_t *rgep, rge_peekpoke_t *ppd);
1780 #pragma	no_inline(rge_chip_poke_cfg)
1781 
1782 static void
1783 rge_chip_poke_cfg(rge_t *rgep, rge_peekpoke_t *ppd)
1784 {
1785 	uint64_t regval;
1786 	uint64_t regno;
1787 
1788 	RGE_TRACE(("rge_chip_poke_cfg($%p, $%p)",
1789 	    (void *)rgep, (void *)ppd));
1790 
1791 	regno = ppd->pp_acc_offset;
1792 	regval = ppd->pp_acc_data;
1793 
1794 	switch (ppd->pp_acc_size) {
1795 	case 1:
1796 		pci_config_put8(rgep->cfg_handle, regno, regval);
1797 		break;
1798 
1799 	case 2:
1800 		pci_config_put16(rgep->cfg_handle, regno, regval);
1801 		break;
1802 
1803 	case 4:
1804 		pci_config_put32(rgep->cfg_handle, regno, regval);
1805 		break;
1806 
1807 	case 8:
1808 		pci_config_put64(rgep->cfg_handle, regno, regval);
1809 		break;
1810 	}
1811 }
1812 
1813 static void rge_chip_peek_reg(rge_t *rgep, rge_peekpoke_t *ppd);
1814 #pragma	no_inline(rge_chip_peek_reg)
1815 
1816 static void
1817 rge_chip_peek_reg(rge_t *rgep, rge_peekpoke_t *ppd)
1818 {
1819 	uint64_t regval;
1820 	void *regaddr;
1821 
1822 	RGE_TRACE(("rge_chip_peek_reg($%p, $%p)",
1823 	    (void *)rgep, (void *)ppd));
1824 
1825 	regaddr = PIO_ADDR(rgep, ppd->pp_acc_offset);
1826 
1827 	switch (ppd->pp_acc_size) {
1828 	case 1:
1829 		regval = ddi_get8(rgep->io_handle, regaddr);
1830 		break;
1831 
1832 	case 2:
1833 		regval = ddi_get16(rgep->io_handle, regaddr);
1834 		break;
1835 
1836 	case 4:
1837 		regval = ddi_get32(rgep->io_handle, regaddr);
1838 		break;
1839 
1840 	case 8:
1841 		regval = ddi_get64(rgep->io_handle, regaddr);
1842 		break;
1843 	}
1844 
1845 	ppd->pp_acc_data = regval;
1846 }
1847 
1848 static void rge_chip_poke_reg(rge_t *rgep, rge_peekpoke_t *ppd);
1849 #pragma	no_inline(rge_chip_peek_reg)
1850 
1851 static void
1852 rge_chip_poke_reg(rge_t *rgep, rge_peekpoke_t *ppd)
1853 {
1854 	uint64_t regval;
1855 	void *regaddr;
1856 
1857 	RGE_TRACE(("rge_chip_poke_reg($%p, $%p)",
1858 	    (void *)rgep, (void *)ppd));
1859 
1860 	regaddr = PIO_ADDR(rgep, ppd->pp_acc_offset);
1861 	regval = ppd->pp_acc_data;
1862 
1863 	switch (ppd->pp_acc_size) {
1864 	case 1:
1865 		ddi_put8(rgep->io_handle, regaddr, regval);
1866 		break;
1867 
1868 	case 2:
1869 		ddi_put16(rgep->io_handle, regaddr, regval);
1870 		break;
1871 
1872 	case 4:
1873 		ddi_put32(rgep->io_handle, regaddr, regval);
1874 		break;
1875 
1876 	case 8:
1877 		ddi_put64(rgep->io_handle, regaddr, regval);
1878 		break;
1879 	}
1880 }
1881 
1882 static void rge_chip_peek_mii(rge_t *rgep, rge_peekpoke_t *ppd);
1883 #pragma	no_inline(rge_chip_peek_mii)
1884 
1885 static void
1886 rge_chip_peek_mii(rge_t *rgep, rge_peekpoke_t *ppd)
1887 {
1888 	RGE_TRACE(("rge_chip_peek_mii($%p, $%p)",
1889 	    (void *)rgep, (void *)ppd));
1890 
1891 	ppd->pp_acc_data = rge_mii_get16(rgep, ppd->pp_acc_offset/2);
1892 }
1893 
1894 static void rge_chip_poke_mii(rge_t *rgep, rge_peekpoke_t *ppd);
1895 #pragma	no_inline(rge_chip_poke_mii)
1896 
1897 static void
1898 rge_chip_poke_mii(rge_t *rgep, rge_peekpoke_t *ppd)
1899 {
1900 	RGE_TRACE(("rge_chip_poke_mii($%p, $%p)",
1901 	    (void *)rgep, (void *)ppd));
1902 
1903 	rge_mii_put16(rgep, ppd->pp_acc_offset/2, ppd->pp_acc_data);
1904 }
1905 
1906 static void rge_chip_peek_mem(rge_t *rgep, rge_peekpoke_t *ppd);
1907 #pragma	no_inline(rge_chip_peek_mem)
1908 
1909 static void
1910 rge_chip_peek_mem(rge_t *rgep, rge_peekpoke_t *ppd)
1911 {
1912 	uint64_t regval;
1913 	void *vaddr;
1914 
1915 	RGE_TRACE(("rge_chip_peek_rge($%p, $%p)",
1916 	    (void *)rgep, (void *)ppd));
1917 
1918 	vaddr = (void *)(uintptr_t)ppd->pp_acc_offset;
1919 
1920 	switch (ppd->pp_acc_size) {
1921 	case 1:
1922 		regval = *(uint8_t *)vaddr;
1923 		break;
1924 
1925 	case 2:
1926 		regval = *(uint16_t *)vaddr;
1927 		break;
1928 
1929 	case 4:
1930 		regval = *(uint32_t *)vaddr;
1931 		break;
1932 
1933 	case 8:
1934 		regval = *(uint64_t *)vaddr;
1935 		break;
1936 	}
1937 
1938 	RGE_DEBUG(("rge_chip_peek_mem($%p, $%p) peeked 0x%llx from $%p",
1939 	    (void *)rgep, (void *)ppd, regval, vaddr));
1940 
1941 	ppd->pp_acc_data = regval;
1942 }
1943 
1944 static void rge_chip_poke_mem(rge_t *rgep, rge_peekpoke_t *ppd);
1945 #pragma	no_inline(rge_chip_poke_mem)
1946 
1947 static void
1948 rge_chip_poke_mem(rge_t *rgep, rge_peekpoke_t *ppd)
1949 {
1950 	uint64_t regval;
1951 	void *vaddr;
1952 
1953 	RGE_TRACE(("rge_chip_poke_mem($%p, $%p)",
1954 	    (void *)rgep, (void *)ppd));
1955 
1956 	vaddr = (void *)(uintptr_t)ppd->pp_acc_offset;
1957 	regval = ppd->pp_acc_data;
1958 
1959 	RGE_DEBUG(("rge_chip_poke_mem($%p, $%p) poking 0x%llx at $%p",
1960 	    (void *)rgep, (void *)ppd, regval, vaddr));
1961 
1962 	switch (ppd->pp_acc_size) {
1963 	case 1:
1964 		*(uint8_t *)vaddr = (uint8_t)regval;
1965 		break;
1966 
1967 	case 2:
1968 		*(uint16_t *)vaddr = (uint16_t)regval;
1969 		break;
1970 
1971 	case 4:
1972 		*(uint32_t *)vaddr = (uint32_t)regval;
1973 		break;
1974 
1975 	case 8:
1976 		*(uint64_t *)vaddr = (uint64_t)regval;
1977 		break;
1978 	}
1979 }
1980 
1981 static enum ioc_reply rge_pp_ioctl(rge_t *rgep, int cmd, mblk_t *mp,
1982 					struct iocblk *iocp);
1983 #pragma	no_inline(rge_pp_ioctl)
1984 
1985 static enum ioc_reply
1986 rge_pp_ioctl(rge_t *rgep, int cmd, mblk_t *mp, struct iocblk *iocp)
1987 {
1988 	void (*ppfn)(rge_t *rgep, rge_peekpoke_t *ppd);
1989 	rge_peekpoke_t *ppd;
1990 	dma_area_t *areap;
1991 	uint64_t sizemask;
1992 	uint64_t mem_va;
1993 	uint64_t maxoff;
1994 	boolean_t peek;
1995 
1996 	switch (cmd) {
1997 	default:
1998 		/* NOTREACHED */
1999 		rge_error(rgep, "rge_pp_ioctl: invalid cmd 0x%x", cmd);
2000 		return (IOC_INVAL);
2001 
2002 	case RGE_PEEK:
2003 		peek = B_TRUE;
2004 		break;
2005 
2006 	case RGE_POKE:
2007 		peek = B_FALSE;
2008 		break;
2009 	}
2010 
2011 	/*
2012 	 * Validate format of ioctl
2013 	 */
2014 	if (iocp->ioc_count != sizeof (rge_peekpoke_t))
2015 		return (IOC_INVAL);
2016 	if (mp->b_cont == NULL)
2017 		return (IOC_INVAL);
2018 	ppd = (rge_peekpoke_t *)mp->b_cont->b_rptr;
2019 
2020 	/*
2021 	 * Validate request parameters
2022 	 */
2023 	switch (ppd->pp_acc_space) {
2024 	default:
2025 		return (IOC_INVAL);
2026 
2027 	case RGE_PP_SPACE_CFG:
2028 		/*
2029 		 * Config space
2030 		 */
2031 		sizemask = 8|4|2|1;
2032 		mem_va = 0;
2033 		maxoff = PCI_CONF_HDR_SIZE;
2034 		ppfn = peek ? rge_chip_peek_cfg : rge_chip_poke_cfg;
2035 		break;
2036 
2037 	case RGE_PP_SPACE_REG:
2038 		/*
2039 		 * Memory-mapped I/O space
2040 		 */
2041 		sizemask = 8|4|2|1;
2042 		mem_va = 0;
2043 		maxoff = RGE_REGISTER_MAX;
2044 		ppfn = peek ? rge_chip_peek_reg : rge_chip_poke_reg;
2045 		break;
2046 
2047 	case RGE_PP_SPACE_MII:
2048 		/*
2049 		 * PHY's MII registers
2050 		 * NB: all PHY registers are two bytes, but the
2051 		 * addresses increment in ones (word addressing).
2052 		 * So we scale the address here, then undo the
2053 		 * transformation inside the peek/poke functions.
2054 		 */
2055 		ppd->pp_acc_offset *= 2;
2056 		sizemask = 2;
2057 		mem_va = 0;
2058 		maxoff = (MII_MAXREG+1)*2;
2059 		ppfn = peek ? rge_chip_peek_mii : rge_chip_poke_mii;
2060 		break;
2061 
2062 	case RGE_PP_SPACE_RGE:
2063 		/*
2064 		 * RGE data structure!
2065 		 */
2066 		sizemask = 8|4|2|1;
2067 		mem_va = (uintptr_t)rgep;
2068 		maxoff = sizeof (*rgep);
2069 		ppfn = peek ? rge_chip_peek_mem : rge_chip_poke_mem;
2070 		break;
2071 
2072 	case RGE_PP_SPACE_STATISTICS:
2073 	case RGE_PP_SPACE_TXDESC:
2074 	case RGE_PP_SPACE_TXBUFF:
2075 	case RGE_PP_SPACE_RXDESC:
2076 	case RGE_PP_SPACE_RXBUFF:
2077 		/*
2078 		 * Various DMA_AREAs
2079 		 */
2080 		switch (ppd->pp_acc_space) {
2081 		case RGE_PP_SPACE_TXDESC:
2082 			areap = &rgep->dma_area_txdesc;
2083 			break;
2084 		case RGE_PP_SPACE_RXDESC:
2085 			areap = &rgep->dma_area_rxdesc;
2086 			break;
2087 		case RGE_PP_SPACE_STATISTICS:
2088 			areap = &rgep->dma_area_stats;
2089 			break;
2090 		}
2091 
2092 		sizemask = 8|4|2|1;
2093 		mem_va = (uintptr_t)areap->mem_va;
2094 		maxoff = areap->alength;
2095 		ppfn = peek ? rge_chip_peek_mem : rge_chip_poke_mem;
2096 		break;
2097 	}
2098 
2099 	switch (ppd->pp_acc_size) {
2100 	default:
2101 		return (IOC_INVAL);
2102 
2103 	case 8:
2104 	case 4:
2105 	case 2:
2106 	case 1:
2107 		if ((ppd->pp_acc_size & sizemask) == 0)
2108 			return (IOC_INVAL);
2109 		break;
2110 	}
2111 
2112 	if ((ppd->pp_acc_offset % ppd->pp_acc_size) != 0)
2113 		return (IOC_INVAL);
2114 
2115 	if (ppd->pp_acc_offset >= maxoff)
2116 		return (IOC_INVAL);
2117 
2118 	if (ppd->pp_acc_offset+ppd->pp_acc_size > maxoff)
2119 		return (IOC_INVAL);
2120 
2121 	/*
2122 	 * All OK - go do it!
2123 	 */
2124 	ppd->pp_acc_offset += mem_va;
2125 	(*ppfn)(rgep, ppd);
2126 	return (peek ? IOC_REPLY : IOC_ACK);
2127 }
2128 
2129 static enum ioc_reply rge_diag_ioctl(rge_t *rgep, int cmd, mblk_t *mp,
2130 					struct iocblk *iocp);
2131 #pragma	no_inline(rge_diag_ioctl)
2132 
2133 static enum ioc_reply
2134 rge_diag_ioctl(rge_t *rgep, int cmd, mblk_t *mp, struct iocblk *iocp)
2135 {
2136 	ASSERT(mutex_owned(rgep->genlock));
2137 
2138 	switch (cmd) {
2139 	default:
2140 		/* NOTREACHED */
2141 		rge_error(rgep, "rge_diag_ioctl: invalid cmd 0x%x", cmd);
2142 		return (IOC_INVAL);
2143 
2144 	case RGE_DIAG:
2145 		/*
2146 		 * Currently a no-op
2147 		 */
2148 		return (IOC_ACK);
2149 
2150 	case RGE_PEEK:
2151 	case RGE_POKE:
2152 		return (rge_pp_ioctl(rgep, cmd, mp, iocp));
2153 
2154 	case RGE_PHY_RESET:
2155 		return (IOC_RESTART_ACK);
2156 
2157 	case RGE_SOFT_RESET:
2158 	case RGE_HARD_RESET:
2159 		/*
2160 		 * Reset and reinitialise the 570x hardware
2161 		 */
2162 		rge_restart(rgep);
2163 		return (IOC_ACK);
2164 	}
2165 
2166 	/* NOTREACHED */
2167 }
2168 
2169 #endif	/* RGE_DEBUGGING || RGE_DO_PPIO */
2170 
2171 static enum ioc_reply rge_mii_ioctl(rge_t *rgep, int cmd, mblk_t *mp,
2172 				    struct iocblk *iocp);
2173 #pragma	no_inline(rge_mii_ioctl)
2174 
2175 static enum ioc_reply
2176 rge_mii_ioctl(rge_t *rgep, int cmd, mblk_t *mp, struct iocblk *iocp)
2177 {
2178 	struct rge_mii_rw *miirwp;
2179 
2180 	/*
2181 	 * Validate format of ioctl
2182 	 */
2183 	if (iocp->ioc_count != sizeof (struct rge_mii_rw))
2184 		return (IOC_INVAL);
2185 	if (mp->b_cont == NULL)
2186 		return (IOC_INVAL);
2187 	miirwp = (struct rge_mii_rw *)mp->b_cont->b_rptr;
2188 
2189 	/*
2190 	 * Validate request parameters ...
2191 	 */
2192 	if (miirwp->mii_reg > MII_MAXREG)
2193 		return (IOC_INVAL);
2194 
2195 	switch (cmd) {
2196 	default:
2197 		/* NOTREACHED */
2198 		rge_error(rgep, "rge_mii_ioctl: invalid cmd 0x%x", cmd);
2199 		return (IOC_INVAL);
2200 
2201 	case RGE_MII_READ:
2202 		miirwp->mii_data = rge_mii_get16(rgep, miirwp->mii_reg);
2203 		return (IOC_REPLY);
2204 
2205 	case RGE_MII_WRITE:
2206 		rge_mii_put16(rgep, miirwp->mii_reg, miirwp->mii_data);
2207 		return (IOC_ACK);
2208 	}
2209 
2210 	/* NOTREACHED */
2211 }
2212 
2213 enum ioc_reply rge_chip_ioctl(rge_t *rgep, queue_t *wq, mblk_t *mp,
2214 				struct iocblk *iocp);
2215 #pragma	no_inline(rge_chip_ioctl)
2216 
2217 enum ioc_reply
2218 rge_chip_ioctl(rge_t *rgep, queue_t *wq, mblk_t *mp, struct iocblk *iocp)
2219 {
2220 	int cmd;
2221 
2222 	RGE_TRACE(("rge_chip_ioctl($%p, $%p, $%p, $%p)",
2223 	    (void *)rgep, (void *)wq, (void *)mp, (void *)iocp));
2224 
2225 	ASSERT(mutex_owned(rgep->genlock));
2226 
2227 	cmd = iocp->ioc_cmd;
2228 	switch (cmd) {
2229 	default:
2230 		/* NOTREACHED */
2231 		rge_error(rgep, "rge_chip_ioctl: invalid cmd 0x%x", cmd);
2232 		return (IOC_INVAL);
2233 
2234 	case RGE_DIAG:
2235 	case RGE_PEEK:
2236 	case RGE_POKE:
2237 	case RGE_PHY_RESET:
2238 	case RGE_SOFT_RESET:
2239 	case RGE_HARD_RESET:
2240 #if	RGE_DEBUGGING || RGE_DO_PPIO
2241 		return (rge_diag_ioctl(rgep, cmd, mp, iocp));
2242 #else
2243 		return (IOC_INVAL);
2244 #endif	/* RGE_DEBUGGING || RGE_DO_PPIO */
2245 
2246 	case RGE_MII_READ:
2247 	case RGE_MII_WRITE:
2248 		return (rge_mii_ioctl(rgep, cmd, mp, iocp));
2249 
2250 	}
2251 
2252 	/* NOTREACHED */
2253 }
2254