xref: /illumos-gate/usr/src/uts/common/io/rge/rge_chip.c (revision cd3e9333)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #include "rge.h"
27 
28 #define	REG32(rgep, reg)	((uint32_t *)(rgep->io_regs+(reg)))
29 #define	REG16(rgep, reg)	((uint16_t *)(rgep->io_regs+(reg)))
30 #define	REG8(rgep, reg)		((uint8_t *)(rgep->io_regs+(reg)))
31 #define	PIO_ADDR(rgep, offset)	((void *)(rgep->io_regs+(offset)))
32 
33 /*
34  * Patchable globals:
35  *
36  *	rge_autorecover
37  *		Enables/disables automatic recovery after fault detection
38  */
39 static uint32_t rge_autorecover = 1;
40 
41 /*
42  * globals:
43  */
44 #define	RGE_DBG		RGE_DBG_REGS	/* debug flag for this code	*/
45 static uint32_t rge_watchdog_count	= 1 << 5;
46 static uint32_t rge_rx_watchdog_count	= 1 << 3;
47 
48 /*
49  * Operating register get/set access routines
50  */
51 
52 static uint32_t rge_reg_get32(rge_t *rgep, uintptr_t regno);
53 #pragma	inline(rge_reg_get32)
54 
55 static uint32_t
56 rge_reg_get32(rge_t *rgep, uintptr_t regno)
57 {
58 	RGE_TRACE(("rge_reg_get32($%p, 0x%lx)",
59 	    (void *)rgep, regno));
60 
61 	return (ddi_get32(rgep->io_handle, REG32(rgep, regno)));
62 }
63 
64 static void rge_reg_put32(rge_t *rgep, uintptr_t regno, uint32_t data);
65 #pragma	inline(rge_reg_put32)
66 
67 static void
68 rge_reg_put32(rge_t *rgep, uintptr_t regno, uint32_t data)
69 {
70 	RGE_TRACE(("rge_reg_put32($%p, 0x%lx, 0x%x)",
71 	    (void *)rgep, regno, data));
72 
73 	ddi_put32(rgep->io_handle, REG32(rgep, regno), data);
74 }
75 
76 static void rge_reg_set32(rge_t *rgep, uintptr_t regno, uint32_t bits);
77 #pragma	inline(rge_reg_set32)
78 
79 static void
80 rge_reg_set32(rge_t *rgep, uintptr_t regno, uint32_t bits)
81 {
82 	uint32_t regval;
83 
84 	RGE_TRACE(("rge_reg_set32($%p, 0x%lx, 0x%x)",
85 	    (void *)rgep, regno, bits));
86 
87 	regval = rge_reg_get32(rgep, regno);
88 	regval |= bits;
89 	rge_reg_put32(rgep, regno, regval);
90 }
91 
92 static void rge_reg_clr32(rge_t *rgep, uintptr_t regno, uint32_t bits);
93 #pragma	inline(rge_reg_clr32)
94 
95 static void
96 rge_reg_clr32(rge_t *rgep, uintptr_t regno, uint32_t bits)
97 {
98 	uint32_t regval;
99 
100 	RGE_TRACE(("rge_reg_clr32($%p, 0x%lx, 0x%x)",
101 	    (void *)rgep, regno, bits));
102 
103 	regval = rge_reg_get32(rgep, regno);
104 	regval &= ~bits;
105 	rge_reg_put32(rgep, regno, regval);
106 }
107 
108 static uint16_t rge_reg_get16(rge_t *rgep, uintptr_t regno);
109 #pragma	inline(rge_reg_get16)
110 
111 static uint16_t
112 rge_reg_get16(rge_t *rgep, uintptr_t regno)
113 {
114 	RGE_TRACE(("rge_reg_get16($%p, 0x%lx)",
115 	    (void *)rgep, regno));
116 
117 	return (ddi_get16(rgep->io_handle, REG16(rgep, regno)));
118 }
119 
120 static void rge_reg_put16(rge_t *rgep, uintptr_t regno, uint16_t data);
121 #pragma	inline(rge_reg_put16)
122 
123 static void
124 rge_reg_put16(rge_t *rgep, uintptr_t regno, uint16_t data)
125 {
126 	RGE_TRACE(("rge_reg_put16($%p, 0x%lx, 0x%x)",
127 	    (void *)rgep, regno, data));
128 
129 	ddi_put16(rgep->io_handle, REG16(rgep, regno), data);
130 }
131 
132 static uint8_t rge_reg_get8(rge_t *rgep, uintptr_t regno);
133 #pragma	inline(rge_reg_get8)
134 
135 static uint8_t
136 rge_reg_get8(rge_t *rgep, uintptr_t regno)
137 {
138 	RGE_TRACE(("rge_reg_get8($%p, 0x%lx)",
139 	    (void *)rgep, regno));
140 
141 	return (ddi_get8(rgep->io_handle, REG8(rgep, regno)));
142 }
143 
144 static void rge_reg_put8(rge_t *rgep, uintptr_t regno, uint8_t data);
145 #pragma	inline(rge_reg_put8)
146 
147 static void
148 rge_reg_put8(rge_t *rgep, uintptr_t regno, uint8_t data)
149 {
150 	RGE_TRACE(("rge_reg_put8($%p, 0x%lx, 0x%x)",
151 	    (void *)rgep, regno, data));
152 
153 	ddi_put8(rgep->io_handle, REG8(rgep, regno), data);
154 }
155 
156 static void rge_reg_set8(rge_t *rgep, uintptr_t regno, uint8_t bits);
157 #pragma	inline(rge_reg_set8)
158 
159 static void
160 rge_reg_set8(rge_t *rgep, uintptr_t regno, uint8_t bits)
161 {
162 	uint8_t regval;
163 
164 	RGE_TRACE(("rge_reg_set8($%p, 0x%lx, 0x%x)",
165 	    (void *)rgep, regno, bits));
166 
167 	regval = rge_reg_get8(rgep, regno);
168 	regval |= bits;
169 	rge_reg_put8(rgep, regno, regval);
170 }
171 
172 static void rge_reg_clr8(rge_t *rgep, uintptr_t regno, uint8_t bits);
173 #pragma	inline(rge_reg_clr8)
174 
175 static void
176 rge_reg_clr8(rge_t *rgep, uintptr_t regno, uint8_t bits)
177 {
178 	uint8_t regval;
179 
180 	RGE_TRACE(("rge_reg_clr8($%p, 0x%lx, 0x%x)",
181 	    (void *)rgep, regno, bits));
182 
183 	regval = rge_reg_get8(rgep, regno);
184 	regval &= ~bits;
185 	rge_reg_put8(rgep, regno, regval);
186 }
187 
188 uint16_t rge_mii_get16(rge_t *rgep, uintptr_t mii);
189 #pragma	no_inline(rge_mii_get16)
190 
191 uint16_t
192 rge_mii_get16(rge_t *rgep, uintptr_t mii)
193 {
194 	uint32_t regval;
195 	uint32_t val32;
196 	uint32_t i;
197 
198 	regval = (mii & PHY_REG_MASK) << PHY_REG_SHIFT;
199 	rge_reg_put32(rgep, PHY_ACCESS_REG, regval);
200 
201 	/*
202 	 * Waiting for PHY reading OK
203 	 */
204 	for (i = 0; i < PHY_RESET_LOOP; i++) {
205 		drv_usecwait(1000);
206 		val32 = rge_reg_get32(rgep, PHY_ACCESS_REG);
207 		if (val32 & PHY_ACCESS_WR_FLAG)
208 			return ((uint16_t)(val32 & 0xffff));
209 	}
210 
211 	RGE_REPORT((rgep, "rge_mii_get16(0x%x) fail, val = %x", mii, val32));
212 	return ((uint16_t)~0u);
213 }
214 
215 void rge_mii_put16(rge_t *rgep, uintptr_t mii, uint16_t data);
216 #pragma	no_inline(rge_mii_put16)
217 
218 void
219 rge_mii_put16(rge_t *rgep, uintptr_t mii, uint16_t data)
220 {
221 	uint32_t regval;
222 	uint32_t val32;
223 	uint32_t i;
224 
225 	regval = (mii & PHY_REG_MASK) << PHY_REG_SHIFT;
226 	regval |= data & PHY_DATA_MASK;
227 	regval |= PHY_ACCESS_WR_FLAG;
228 	rge_reg_put32(rgep, PHY_ACCESS_REG, regval);
229 
230 	/*
231 	 * Waiting for PHY writing OK
232 	 */
233 	for (i = 0; i < PHY_RESET_LOOP; i++) {
234 		drv_usecwait(1000);
235 		val32 = rge_reg_get32(rgep, PHY_ACCESS_REG);
236 		if (!(val32 & PHY_ACCESS_WR_FLAG))
237 			return;
238 	}
239 	RGE_REPORT((rgep, "rge_mii_put16(0x%lx, 0x%x) fail",
240 	    mii, data));
241 }
242 
243 void rge_ephy_put16(rge_t *rgep, uintptr_t emii, uint16_t data);
244 #pragma	no_inline(rge_ephy_put16)
245 
246 void
247 rge_ephy_put16(rge_t *rgep, uintptr_t emii, uint16_t data)
248 {
249 	uint32_t regval;
250 	uint32_t val32;
251 	uint32_t i;
252 
253 	regval = (emii & EPHY_REG_MASK) << EPHY_REG_SHIFT;
254 	regval |= data & EPHY_DATA_MASK;
255 	regval |= EPHY_ACCESS_WR_FLAG;
256 	rge_reg_put32(rgep, EPHY_ACCESS_REG, regval);
257 
258 	/*
259 	 * Waiting for PHY writing OK
260 	 */
261 	for (i = 0; i < PHY_RESET_LOOP; i++) {
262 		drv_usecwait(1000);
263 		val32 = rge_reg_get32(rgep, EPHY_ACCESS_REG);
264 		if (!(val32 & EPHY_ACCESS_WR_FLAG))
265 			return;
266 	}
267 	RGE_REPORT((rgep, "rge_ephy_put16(0x%lx, 0x%x) fail",
268 	    emii, data));
269 }
270 
271 /*
272  * Atomically shift a 32-bit word left, returning
273  * the value it had *before* the shift was applied
274  */
275 static uint32_t rge_atomic_shl32(uint32_t *sp, uint_t count);
276 #pragma	inline(rge_mii_put16)
277 
278 static uint32_t
279 rge_atomic_shl32(uint32_t *sp, uint_t count)
280 {
281 	uint32_t oldval;
282 	uint32_t newval;
283 
284 	/* ATOMICALLY */
285 	do {
286 		oldval = *sp;
287 		newval = oldval << count;
288 	} while (cas32(sp, oldval, newval) != oldval);
289 
290 	return (oldval);
291 }
292 
293 /*
294  * PHY operation routines
295  */
296 #if	RGE_DEBUGGING
297 
298 void
299 rge_phydump(rge_t *rgep)
300 {
301 	uint16_t regs[32];
302 	int i;
303 
304 	ASSERT(mutex_owned(rgep->genlock));
305 
306 	for (i = 0; i < 32; ++i) {
307 		regs[i] = rge_mii_get16(rgep, i);
308 	}
309 
310 	for (i = 0; i < 32; i += 8)
311 		RGE_DEBUG(("rge_phydump: "
312 		    "0x%04x %04x %04x %04x %04x %04x %04x %04x",
313 		    regs[i+0], regs[i+1], regs[i+2], regs[i+3],
314 		    regs[i+4], regs[i+5], regs[i+6], regs[i+7]));
315 }
316 
317 #endif	/* RGE_DEBUGGING */
318 
319 static void
320 rge_phy_check(rge_t *rgep)
321 {
322 	uint16_t gig_ctl;
323 
324 	if (rgep->param_link_up  == LINK_STATE_DOWN) {
325 		/*
326 		 * RTL8169S/8110S PHY has the "PCS bug".  Need reset PHY
327 		 * every 15 seconds whin link down & advertise is 1000.
328 		 */
329 		if (rgep->chipid.phy_ver == PHY_VER_S) {
330 			gig_ctl = rge_mii_get16(rgep, MII_1000BASE_T_CONTROL);
331 			if (gig_ctl & MII_1000BT_CTL_ADV_FDX) {
332 				rgep->link_down_count++;
333 				if (rgep->link_down_count > 15) {
334 					(void) rge_phy_reset(rgep);
335 					rgep->stats.phy_reset++;
336 					rgep->link_down_count = 0;
337 				}
338 			}
339 		}
340 	} else {
341 		rgep->link_down_count = 0;
342 	}
343 }
344 
345 /*
346  * Basic low-level function to reset the PHY.
347  * Doesn't incorporate any special-case workarounds.
348  *
349  * Returns TRUE on success, FALSE if the RESET bit doesn't clear
350  */
351 boolean_t
352 rge_phy_reset(rge_t *rgep)
353 {
354 	uint16_t control;
355 	uint_t count;
356 
357 	/*
358 	 * Set the PHY RESET bit, then wait up to 5 ms for it to self-clear
359 	 */
360 	control = rge_mii_get16(rgep, MII_CONTROL);
361 	rge_mii_put16(rgep, MII_CONTROL, control | MII_CONTROL_RESET);
362 	for (count = 0; count < 5; count++) {
363 		drv_usecwait(100);
364 		control = rge_mii_get16(rgep, MII_CONTROL);
365 		if (BIC(control, MII_CONTROL_RESET))
366 			return (B_TRUE);
367 	}
368 
369 	RGE_REPORT((rgep, "rge_phy_reset: FAILED, control now 0x%x", control));
370 	return (B_FALSE);
371 }
372 
373 /*
374  * Synchronise the PHY's speed/duplex/autonegotiation capabilities
375  * and advertisements with the required settings as specified by the various
376  * param_* variables that can be poked via the NDD interface.
377  *
378  * We always reset the PHY and reprogram *all* the relevant registers,
379  * not just those changed.  This should cause the link to go down, and then
380  * back up again once the link is stable and autonegotiation (if enabled)
381  * is complete.  We should get a link state change interrupt somewhere along
382  * the way ...
383  *
384  * NOTE: <genlock> must already be held by the caller
385  */
386 void
387 rge_phy_update(rge_t *rgep)
388 {
389 	boolean_t adv_autoneg;
390 	boolean_t adv_pause;
391 	boolean_t adv_asym_pause;
392 	boolean_t adv_1000fdx;
393 	boolean_t adv_1000hdx;
394 	boolean_t adv_100fdx;
395 	boolean_t adv_100hdx;
396 	boolean_t adv_10fdx;
397 	boolean_t adv_10hdx;
398 
399 	uint16_t control;
400 	uint16_t gigctrl;
401 	uint16_t anar;
402 
403 	ASSERT(mutex_owned(rgep->genlock));
404 
405 	RGE_DEBUG(("rge_phy_update: autoneg %d "
406 	    "pause %d asym_pause %d "
407 	    "1000fdx %d 1000hdx %d "
408 	    "100fdx %d 100hdx %d "
409 	    "10fdx %d 10hdx %d ",
410 	    rgep->param_adv_autoneg,
411 	    rgep->param_adv_pause, rgep->param_adv_asym_pause,
412 	    rgep->param_adv_1000fdx, rgep->param_adv_1000hdx,
413 	    rgep->param_adv_100fdx, rgep->param_adv_100hdx,
414 	    rgep->param_adv_10fdx, rgep->param_adv_10hdx));
415 
416 	control = gigctrl = anar = 0;
417 
418 	/*
419 	 * PHY settings are normally based on the param_* variables,
420 	 * but if any loopback mode is in effect, that takes precedence.
421 	 *
422 	 * RGE supports MAC-internal loopback, PHY-internal loopback,
423 	 * and External loopback at a variety of speeds (with a special
424 	 * cable).  In all cases, autoneg is turned OFF, full-duplex
425 	 * is turned ON, and the speed/mastership is forced.
426 	 */
427 	switch (rgep->param_loop_mode) {
428 	case RGE_LOOP_NONE:
429 	default:
430 		adv_autoneg = rgep->param_adv_autoneg;
431 		adv_pause = rgep->param_adv_pause;
432 		adv_asym_pause = rgep->param_adv_asym_pause;
433 		adv_1000fdx = rgep->param_adv_1000fdx;
434 		adv_1000hdx = rgep->param_adv_1000hdx;
435 		adv_100fdx = rgep->param_adv_100fdx;
436 		adv_100hdx = rgep->param_adv_100hdx;
437 		adv_10fdx = rgep->param_adv_10fdx;
438 		adv_10hdx = rgep->param_adv_10hdx;
439 		break;
440 
441 	case RGE_LOOP_INTERNAL_PHY:
442 	case RGE_LOOP_INTERNAL_MAC:
443 		adv_autoneg = adv_pause = adv_asym_pause = B_FALSE;
444 		adv_1000fdx = adv_100fdx = adv_10fdx = B_FALSE;
445 		adv_1000hdx = adv_100hdx = adv_10hdx = B_FALSE;
446 		rgep->param_link_duplex = LINK_DUPLEX_FULL;
447 
448 		switch (rgep->param_loop_mode) {
449 		case RGE_LOOP_INTERNAL_PHY:
450 			if (rgep->chipid.mac_ver != MAC_VER_8101E) {
451 				rgep->param_link_speed = 1000;
452 				adv_1000fdx = B_TRUE;
453 			} else {
454 				rgep->param_link_speed = 100;
455 				adv_100fdx = B_TRUE;
456 			}
457 			control = MII_CONTROL_LOOPBACK;
458 			break;
459 
460 		case RGE_LOOP_INTERNAL_MAC:
461 			if (rgep->chipid.mac_ver != MAC_VER_8101E) {
462 				rgep->param_link_speed = 1000;
463 				adv_1000fdx = B_TRUE;
464 			} else {
465 				rgep->param_link_speed = 100;
466 				adv_100fdx = B_TRUE;
467 			break;
468 		}
469 	}
470 
471 	RGE_DEBUG(("rge_phy_update: autoneg %d "
472 	    "pause %d asym_pause %d "
473 	    "1000fdx %d 1000hdx %d "
474 	    "100fdx %d 100hdx %d "
475 	    "10fdx %d 10hdx %d ",
476 	    adv_autoneg,
477 	    adv_pause, adv_asym_pause,
478 	    adv_1000fdx, adv_1000hdx,
479 	    adv_100fdx, adv_100hdx,
480 	    adv_10fdx, adv_10hdx));
481 
482 	/*
483 	 * We should have at least one technology capability set;
484 	 * if not, we select a default of 1000Mb/s full-duplex
485 	 */
486 	if (!adv_1000fdx && !adv_100fdx && !adv_10fdx &&
487 	    !adv_1000hdx && !adv_100hdx && !adv_10hdx) {
488 		if (rgep->chipid.mac_ver != MAC_VER_8101E)
489 			adv_1000fdx = B_TRUE;
490 		} else {
491 			adv_1000fdx = B_FALSE;
492 			adv_100fdx = B_TRUE;
493 		}
494 	}
495 
496 	/*
497 	 * Now transform the adv_* variables into the proper settings
498 	 * of the PHY registers ...
499 	 *
500 	 * If autonegotiation is (now) enabled, we want to trigger
501 	 * a new autonegotiation cycle once the PHY has been
502 	 * programmed with the capabilities to be advertised.
503 	 *
504 	 * RTL8169/8110 doesn't support 1000Mb/s half-duplex.
505 	 */
506 	if (adv_autoneg)
507 		control |= MII_CONTROL_ANE|MII_CONTROL_RSAN;
508 
509 	if (adv_1000fdx)
510 		control |= MII_CONTROL_1GB|MII_CONTROL_FDUPLEX;
511 	else if (adv_1000hdx)
512 		control |= MII_CONTROL_1GB;
513 	else if (adv_100fdx)
514 		control |= MII_CONTROL_100MB|MII_CONTROL_FDUPLEX;
515 	else if (adv_100hdx)
516 		control |= MII_CONTROL_100MB;
517 	else if (adv_10fdx)
518 		control |= MII_CONTROL_FDUPLEX;
519 	else if (adv_10hdx)
520 		control |= 0;
521 	else
522 		{ _NOTE(EMPTY); }	/* Can't get here anyway ...	*/
523 
524 	if (adv_1000fdx) {
525 		gigctrl |= MII_1000BT_CTL_ADV_FDX;
526 		/*
527 		 * Chipset limitation: need set other capabilities to true
528 		 */
529 		if (rgep->chipid.is_pcie)
530 			adv_1000hdx = B_TRUE;
531 		adv_100fdx = B_TRUE;
532 		adv_100hdx  = B_TRUE;
533 		adv_10fdx = B_TRUE;
534 		adv_10hdx = B_TRUE;
535 	}
536 
537 	if (adv_1000hdx)
538 		gigctrl |= MII_1000BT_CTL_ADV_HDX;
539 
540 	if (adv_100fdx)
541 		anar |= MII_ABILITY_100BASE_TX_FD;
542 	if (adv_100hdx)
543 		anar |= MII_ABILITY_100BASE_TX;
544 	if (adv_10fdx)
545 		anar |= MII_ABILITY_10BASE_T_FD;
546 	if (adv_10hdx)
547 		anar |= MII_ABILITY_10BASE_T;
548 
549 	if (adv_pause)
550 		anar |= MII_ABILITY_PAUSE;
551 	if (adv_asym_pause)
552 		anar |= MII_ABILITY_ASMPAUSE;
553 
554 	/*
555 	 * Munge in any other fixed bits we require ...
556 	 */
557 	anar |= MII_AN_SELECTOR_8023;
558 
559 	/*
560 	 * Restart the PHY and write the new values.  Note the
561 	 * time, so that we can say whether subsequent link state
562 	 * changes can be attributed to our reprogramming the PHY
563 	 */
564 	rge_phy_init(rgep);
565 	if (rgep->chipid.mac_ver == MAC_VER_8168B_B ||
566 	    rgep->chipid.mac_ver == MAC_VER_8168B_C) {
567 		/* power up PHY for RTL8168B chipset */
568 		rge_mii_put16(rgep, PHY_1F_REG, 0x0000);
569 		rge_mii_put16(rgep, PHY_0E_REG, 0x0000);
570 		rge_mii_put16(rgep, PHY_1F_REG, 0x0000);
571 	}
572 	rge_mii_put16(rgep, MII_AN_ADVERT, anar);
573 	rge_mii_put16(rgep, MII_1000BASE_T_CONTROL, gigctrl);
574 	rge_mii_put16(rgep, MII_CONTROL, control);
575 
576 	RGE_DEBUG(("rge_phy_update: anar <- 0x%x", anar));
577 	RGE_DEBUG(("rge_phy_update: control <- 0x%x", control));
578 	RGE_DEBUG(("rge_phy_update: gigctrl <- 0x%x", gigctrl));
579 }
580 
581 void rge_phy_init(rge_t *rgep);
582 #pragma	no_inline(rge_phy_init)
583 
584 void
585 rge_phy_init(rge_t *rgep)
586 {
587 	rgep->phy_mii_addr = 1;
588 
589 	/*
590 	 * Below phy config steps are copied from the Programming Guide
591 	 * (there's no detail comments for these steps.)
592 	 */
593 	switch (rgep->chipid.mac_ver) {
594 	case MAC_VER_8169S_D:
595 	case MAC_VER_8169S_E :
596 		rge_mii_put16(rgep, PHY_1F_REG, 0x0001);
597 		rge_mii_put16(rgep, PHY_15_REG, 0x1000);
598 		rge_mii_put16(rgep, PHY_18_REG, 0x65c7);
599 		rge_mii_put16(rgep, PHY_ANAR_REG, 0x0000);
600 		rge_mii_put16(rgep, PHY_ID_REG_2, 0x00a1);
601 		rge_mii_put16(rgep, PHY_ID_REG_1, 0x0008);
602 		rge_mii_put16(rgep, PHY_BMSR_REG, 0x1020);
603 		rge_mii_put16(rgep, PHY_BMCR_REG, 0x1000);
604 		rge_mii_put16(rgep, PHY_ANAR_REG, 0x0800);
605 		rge_mii_put16(rgep, PHY_ANAR_REG, 0x0000);
606 		rge_mii_put16(rgep, PHY_ANAR_REG, 0x7000);
607 		rge_mii_put16(rgep, PHY_ID_REG_2, 0xff41);
608 		rge_mii_put16(rgep, PHY_ID_REG_1, 0xde60);
609 		rge_mii_put16(rgep, PHY_BMSR_REG, 0x0140);
610 		rge_mii_put16(rgep, PHY_BMCR_REG, 0x0077);
611 		rge_mii_put16(rgep, PHY_ANAR_REG, 0x7800);
612 		rge_mii_put16(rgep, PHY_ANAR_REG, 0x7000);
613 		rge_mii_put16(rgep, PHY_ANAR_REG, 0xa000);
614 		rge_mii_put16(rgep, PHY_ID_REG_2, 0xdf01);
615 		rge_mii_put16(rgep, PHY_ID_REG_1, 0xdf20);
616 		rge_mii_put16(rgep, PHY_BMSR_REG, 0xff95);
617 		rge_mii_put16(rgep, PHY_BMCR_REG, 0xfa00);
618 		rge_mii_put16(rgep, PHY_ANAR_REG, 0xa800);
619 		rge_mii_put16(rgep, PHY_ANAR_REG, 0xa000);
620 		rge_mii_put16(rgep, PHY_ANAR_REG, 0xb000);
621 		rge_mii_put16(rgep, PHY_ID_REG_2, 0xff41);
622 		rge_mii_put16(rgep, PHY_ID_REG_1, 0xde20);
623 		rge_mii_put16(rgep, PHY_BMSR_REG, 0x0140);
624 		rge_mii_put16(rgep, PHY_BMCR_REG, 0x00bb);
625 		rge_mii_put16(rgep, PHY_ANAR_REG, 0xb800);
626 		rge_mii_put16(rgep, PHY_ANAR_REG, 0xb000);
627 		rge_mii_put16(rgep, PHY_ANAR_REG, 0xf000);
628 		rge_mii_put16(rgep, PHY_ID_REG_2, 0xdf01);
629 		rge_mii_put16(rgep, PHY_ID_REG_1, 0xdf20);
630 		rge_mii_put16(rgep, PHY_BMSR_REG, 0xff95);
631 		rge_mii_put16(rgep, PHY_BMCR_REG, 0xbf00);
632 		rge_mii_put16(rgep, PHY_ANAR_REG, 0xf800);
633 		rge_mii_put16(rgep, PHY_ANAR_REG, 0xf000);
634 		rge_mii_put16(rgep, PHY_ANAR_REG, 0x0000);
635 		rge_mii_put16(rgep, PHY_1F_REG, 0x0000);
636 		rge_mii_put16(rgep, PHY_0B_REG, 0x0000);
637 		break;
638 
639 	case MAC_VER_8169SB:
640 		rge_mii_put16(rgep, PHY_1F_REG, 0x0001);
641 		rge_mii_put16(rgep, PHY_1B_REG, 0xD41E);
642 		rge_mii_put16(rgep, PHY_0E_REG, 0x7bff);
643 		rge_mii_put16(rgep, PHY_GBCR_REG, GBCR_DEFAULT);
644 		rge_mii_put16(rgep, PHY_1F_REG, 0x0002);
645 		rge_mii_put16(rgep, PHY_BMSR_REG, 0x90D0);
646 		rge_mii_put16(rgep, PHY_1F_REG, 0x0000);
647 		break;
648 
649 	case MAC_VER_8169SC:
650 		rge_mii_put16(rgep, PHY_1F_REG, 0x0001);
651 		rge_mii_put16(rgep, PHY_ANER_REG, 0x0078);
652 		rge_mii_put16(rgep, PHY_ANNPRR_REG, 0x05dc);
653 		rge_mii_put16(rgep, PHY_GBCR_REG, 0x2672);
654 		rge_mii_put16(rgep, PHY_GBSR_REG, 0x6a14);
655 		rge_mii_put16(rgep, PHY_0B_REG, 0x7cb0);
656 		rge_mii_put16(rgep, PHY_0C_REG, 0xdb80);
657 		rge_mii_put16(rgep, PHY_1B_REG, 0xc414);
658 		rge_mii_put16(rgep, PHY_1C_REG, 0xef03);
659 		rge_mii_put16(rgep, PHY_1D_REG, 0x3dc8);
660 		rge_mii_put16(rgep, PHY_1F_REG, 0x0003);
661 		rge_mii_put16(rgep, PHY_13_REG, 0x0600);
662 		rge_mii_put16(rgep, PHY_1F_REG, 0x0000);
663 		break;
664 
665 	case MAC_VER_8168:
666 		rge_mii_put16(rgep, PHY_1F_REG, 0x0001);
667 		rge_mii_put16(rgep, PHY_ANER_REG, 0x00aa);
668 		rge_mii_put16(rgep, PHY_ANNPTR_REG, 0x3173);
669 		rge_mii_put16(rgep, PHY_ANNPRR_REG, 0x08fc);
670 		rge_mii_put16(rgep, PHY_GBCR_REG, 0xe2d0);
671 		rge_mii_put16(rgep, PHY_0B_REG, 0x941a);
672 		rge_mii_put16(rgep, PHY_18_REG, 0x65fe);
673 		rge_mii_put16(rgep, PHY_1C_REG, 0x1e02);
674 		rge_mii_put16(rgep, PHY_1F_REG, 0x0002);
675 		rge_mii_put16(rgep, PHY_ANNPTR_REG, 0x103e);
676 		rge_mii_put16(rgep, PHY_1F_REG, 0x0000);
677 		break;
678 
679 	case MAC_VER_8168B_B:
680 	case MAC_VER_8168B_C:
681 		rge_mii_put16(rgep, PHY_1F_REG, 0x0001);
682 		rge_mii_put16(rgep, PHY_0B_REG, 0x94b0);
683 		rge_mii_put16(rgep, PHY_1B_REG, 0xc416);
684 		rge_mii_put16(rgep, PHY_1F_REG, 0x0003);
685 		rge_mii_put16(rgep, PHY_12_REG, 0x6096);
686 		rge_mii_put16(rgep, PHY_1F_REG, 0x0000);
687 		break;
688 	}
689 }
690 
691 void rge_chip_ident(rge_t *rgep);
692 #pragma	no_inline(rge_chip_ident)
693 
694 void
695 rge_chip_ident(rge_t *rgep)
696 {
697 	chip_id_t *chip = &rgep->chipid;
698 	uint32_t val32;
699 	uint16_t val16;
700 
701 	/*
702 	 * Read and record MAC version
703 	 */
704 	val32 = rge_reg_get32(rgep, TX_CONFIG_REG);
705 	val32 &= HW_VERSION_ID_0 | HW_VERSION_ID_1;
706 	chip->mac_ver = val32;
707 	chip->is_pcie = pci_lcap_locate(rgep->cfg_handle,
708 	    PCI_CAP_ID_PCI_E, &val16) == DDI_SUCCESS;
709 
710 	/*
711 	 * Workaround for 8101E_C
712 	 */
713 	if (chip->mac_ver == MAC_VER_8101E_C) {
714 		chip->is_pcie = B_FALSE;
715 	}
716 
717 	/*
718 	 * Read and record PHY version
719 	 */
720 	val16 = rge_mii_get16(rgep, PHY_ID_REG_2);
721 	val16 &= PHY_VER_MASK;
722 	chip->phy_ver = val16;
723 
724 	/* set pci latency timer */
725 	if (chip->mac_ver == MAC_VER_8169 ||
726 	    chip->mac_ver == MAC_VER_8169S_D ||
727 	    chip->mac_ver == MAC_VER_8169S_E ||
728 	    chip->mac_ver == MAC_VER_8169SC)
729 		pci_config_put8(rgep->cfg_handle, PCI_CONF_LATENCY_TIMER, 0x40);
730 
731 	if (chip->mac_ver == MAC_VER_8169SC) {
732 		val16 = rge_reg_get16(rgep, RT_CONFIG_1_REG);
733 		val16 &= 0x0300;
734 		if (val16 == 0x1)	/* 66Mhz PCI */
735 			rge_reg_put32(rgep, 0x7c, 0x000700ff);
736 		else if (val16 == 0x0) /* 33Mhz PCI */
737 			rge_reg_put32(rgep, 0x7c, 0x0007ff00);
738 	}
739 
740 	/*
741 	 * PCIE chipset require the Rx buffer start address must be
742 	 * 8-byte alignment and the Rx buffer size must be multiple of 8.
743 	 * We'll just use bcopy in receive procedure for the PCIE chipset.
744 	 */
745 	if (chip->is_pcie) {
746 		rgep->chip_flags |= CHIP_FLAG_FORCE_BCOPY;
747 		if (rgep->default_mtu > ETHERMTU) {
748 			rge_notice(rgep, "Jumbo packets not supported "
749 			    "for this PCIE chipset");
750 			rgep->default_mtu = ETHERMTU;
751 		}
752 	}
753 	if (rgep->chip_flags & CHIP_FLAG_FORCE_BCOPY)
754 		rgep->head_room = 0;
755 	else
756 		rgep->head_room = RGE_HEADROOM;
757 
758 	/*
759 	 * Initialize other variables.
760 	 */
761 	if (rgep->default_mtu < ETHERMTU || rgep->default_mtu > RGE_JUMBO_MTU)
762 		rgep->default_mtu = ETHERMTU;
763 	if (rgep->default_mtu > ETHERMTU) {
764 		rgep->rxbuf_size = RGE_BUFF_SIZE_JUMBO;
765 		rgep->txbuf_size = RGE_BUFF_SIZE_JUMBO;
766 		rgep->ethmax_size = RGE_JUMBO_SIZE;
767 	} else {
768 		rgep->rxbuf_size = RGE_BUFF_SIZE_STD;
769 		rgep->txbuf_size = RGE_BUFF_SIZE_STD;
770 		rgep->ethmax_size = ETHERMAX;
771 	}
772 	chip->rxconfig = RX_CONFIG_DEFAULT;
773 	chip->txconfig = TX_CONFIG_DEFAULT;
774 
775 	/* interval to update statistics for polling mode */
776 	rgep->tick_delta = drv_usectohz(1000*1000/CLK_TICK);
777 
778 	/* ensure we are not in polling mode */
779 	rgep->curr_tick = ddi_get_lbolt() - 2*rgep->tick_delta;
780 	RGE_TRACE(("%s: MAC version = %x, PHY version = %x",
781 	    rgep->ifname, chip->mac_ver, chip->phy_ver));
782 }
783 
784 /*
785  * Perform first-stage chip (re-)initialisation, using only config-space
786  * accesses:
787  *
788  * + Read the vendor/device/revision/subsystem/cache-line-size registers,
789  *   returning the data in the structure pointed to by <idp>.
790  * + Enable Memory Space accesses.
791  * + Enable Bus Mastering according.
792  */
793 void rge_chip_cfg_init(rge_t *rgep, chip_id_t *cidp);
794 #pragma	no_inline(rge_chip_cfg_init)
795 
796 void
797 rge_chip_cfg_init(rge_t *rgep, chip_id_t *cidp)
798 {
799 	ddi_acc_handle_t handle;
800 	uint16_t commd;
801 
802 	handle = rgep->cfg_handle;
803 
804 	/*
805 	 * Save PCI cache line size and subsystem vendor ID
806 	 */
807 	cidp->command = pci_config_get16(handle, PCI_CONF_COMM);
808 	cidp->vendor = pci_config_get16(handle, PCI_CONF_VENID);
809 	cidp->device = pci_config_get16(handle, PCI_CONF_DEVID);
810 	cidp->subven = pci_config_get16(handle, PCI_CONF_SUBVENID);
811 	cidp->subdev = pci_config_get16(handle, PCI_CONF_SUBSYSID);
812 	cidp->revision = pci_config_get8(handle, PCI_CONF_REVID);
813 	cidp->clsize = pci_config_get8(handle, PCI_CONF_CACHE_LINESZ);
814 	cidp->latency = pci_config_get8(handle, PCI_CONF_LATENCY_TIMER);
815 
816 	/*
817 	 * Turn on Master Enable (DMA) and IO Enable bits.
818 	 * Enable PCI Memory Space accesses
819 	 */
820 	commd = cidp->command;
821 	commd |= PCI_COMM_ME | PCI_COMM_MAE | PCI_COMM_IO;
822 	pci_config_put16(handle, PCI_CONF_COMM, commd);
823 
824 	RGE_DEBUG(("rge_chip_cfg_init: vendor 0x%x device 0x%x revision 0x%x",
825 	    cidp->vendor, cidp->device, cidp->revision));
826 	RGE_DEBUG(("rge_chip_cfg_init: subven 0x%x subdev 0x%x",
827 	    cidp->subven, cidp->subdev));
828 	RGE_DEBUG(("rge_chip_cfg_init: clsize %d latency %d command 0x%x",
829 	    cidp->clsize, cidp->latency, cidp->command));
830 }
831 
832 int rge_chip_reset(rge_t *rgep);
833 #pragma	no_inline(rge_chip_reset)
834 
835 int
836 rge_chip_reset(rge_t *rgep)
837 {
838 	int i;
839 	uint8_t val8;
840 
841 	/*
842 	 * Chip should be in STOP state
843 	 */
844 	rge_reg_clr8(rgep, RT_COMMAND_REG,
845 	    RT_COMMAND_RX_ENABLE | RT_COMMAND_TX_ENABLE);
846 
847 	/*
848 	 * Disable interrupt
849 	 */
850 	rgep->int_mask = INT_MASK_NONE;
851 	rge_reg_put16(rgep, INT_MASK_REG, rgep->int_mask);
852 
853 	/*
854 	 * Clear pended interrupt
855 	 */
856 	rge_reg_put16(rgep, INT_STATUS_REG, INT_MASK_ALL);
857 
858 	/*
859 	 * Reset chip
860 	 */
861 	rge_reg_set8(rgep, RT_COMMAND_REG, RT_COMMAND_RESET);
862 
863 	/*
864 	 * Wait for reset success
865 	 */
866 	for (i = 0; i < CHIP_RESET_LOOP; i++) {
867 		drv_usecwait(10);
868 		val8 = rge_reg_get8(rgep, RT_COMMAND_REG);
869 		if (!(val8 & RT_COMMAND_RESET)) {
870 			rgep->rge_chip_state = RGE_CHIP_RESET;
871 			return (0);
872 		}
873 	}
874 	RGE_REPORT((rgep, "rge_chip_reset fail."));
875 	return (-1);
876 }
877 
878 void rge_chip_init(rge_t *rgep);
879 #pragma	no_inline(rge_chip_init)
880 
881 void
882 rge_chip_init(rge_t *rgep)
883 {
884 	uint32_t val32;
885 	uint32_t val16;
886 	uint32_t *hashp;
887 	chip_id_t *chip = &rgep->chipid;
888 
889 	/*
890 	 * Increase the threshold voltage of RX sensitivity
891 	 */
892 	if (chip->mac_ver == MAC_VER_8168B_B ||
893 	    chip->mac_ver == MAC_VER_8168B_C ||
894 	    chip->mac_ver == MAC_VER_8101E) {
895 		rge_ephy_put16(rgep, 0x01, 0x1bd3);
896 	}
897 
898 	if (chip->mac_ver == MAC_VER_8168 ||
899 	    chip->mac_ver == MAC_VER_8168B_B) {
900 		val16 = rge_reg_get8(rgep, PHY_STATUS_REG);
901 		val16 = 0x12<<8 | val16;
902 		rge_reg_put16(rgep, PHY_STATUS_REG, val16);
903 		rge_reg_put32(rgep, RT_CSI_DATA_REG, 0x00021c01);
904 		rge_reg_put32(rgep, RT_CSI_ACCESS_REG, 0x8000f088);
905 		rge_reg_put32(rgep, RT_CSI_DATA_REG, 0x00004000);
906 		rge_reg_put32(rgep, RT_CSI_ACCESS_REG, 0x8000f0b0);
907 		rge_reg_put32(rgep, RT_CSI_ACCESS_REG, 0x0000f068);
908 		val32 = rge_reg_get32(rgep, RT_CSI_DATA_REG);
909 		val32 |= 0x7000;
910 		val32 &= 0xffff5fff;
911 		rge_reg_put32(rgep, RT_CSI_DATA_REG, val32);
912 		rge_reg_put32(rgep, RT_CSI_ACCESS_REG, 0x8000f068);
913 	}
914 
915 	/*
916 	 * Config MII register
917 	 */
918 	rgep->param_link_up = LINK_STATE_DOWN;
919 	rge_phy_update(rgep);
920 
921 	/*
922 	 * Enable Rx checksum offload.
923 	 *  Then for vlan support, we must enable receive vlan de-tagging.
924 	 *  Otherwise, there'll be checksum error.
925 	 */
926 	val16 = rge_reg_get16(rgep, CPLUS_COMMAND_REG);
927 	val16 |= RX_CKSM_OFFLOAD | RX_VLAN_DETAG;
928 	if (chip->mac_ver == MAC_VER_8169S_D) {
929 		val16 |= CPLUS_BIT14 | MUL_PCI_RW_ENABLE;
930 		rge_reg_put8(rgep, RESV_82_REG, 0x01);
931 	}
932 	if (chip->mac_ver == MAC_VER_8169S_E ||
933 	    chip->mac_ver == MAC_VER_8169SC) {
934 		val16 |= MUL_PCI_RW_ENABLE;
935 	}
936 	rge_reg_put16(rgep, CPLUS_COMMAND_REG, val16 & (~0x03));
937 
938 	/*
939 	 * Start transmit/receive before set tx/rx configuration register
940 	 */
941 	if (!chip->is_pcie)
942 		rge_reg_set8(rgep, RT_COMMAND_REG,
943 		    RT_COMMAND_RX_ENABLE | RT_COMMAND_TX_ENABLE);
944 
945 	/*
946 	 * Set dump tally counter register
947 	 */
948 	val32 = rgep->dma_area_stats.cookie.dmac_laddress >> 32;
949 	rge_reg_put32(rgep, DUMP_COUNTER_REG_1, val32);
950 	val32 = rge_reg_get32(rgep, DUMP_COUNTER_REG_0);
951 	val32 &= DUMP_COUNTER_REG_RESV;
952 	val32 |= rgep->dma_area_stats.cookie.dmac_laddress;
953 	rge_reg_put32(rgep, DUMP_COUNTER_REG_0, val32);
954 
955 	/*
956 	 * Change to config register write enable mode
957 	 */
958 	rge_reg_set8(rgep, RT_93c46_COMMOND_REG, RT_93c46_MODE_CONFIG);
959 
960 	/*
961 	 * Set Tx/Rx maximum packet size
962 	 */
963 	if (rgep->default_mtu > ETHERMTU) {
964 		rge_reg_put8(rgep, TX_MAX_PKTSIZE_REG, TX_PKTSIZE_JUMBO);
965 		rge_reg_put16(rgep, RX_MAX_PKTSIZE_REG, RX_PKTSIZE_JUMBO);
966 	} else if (rgep->chipid.mac_ver != MAC_VER_8101E) {
967 		rge_reg_put8(rgep, TX_MAX_PKTSIZE_REG, TX_PKTSIZE_STD);
968 		rge_reg_put16(rgep, RX_MAX_PKTSIZE_REG, RX_PKTSIZE_STD);
969 	} else {
970 		rge_reg_put8(rgep, TX_MAX_PKTSIZE_REG, TX_PKTSIZE_STD_8101E);
971 		rge_reg_put16(rgep, RX_MAX_PKTSIZE_REG, RX_PKTSIZE_STD_8101E);
972 	}
973 
974 	/*
975 	 * Set receive configuration register
976 	 */
977 	val32 = rge_reg_get32(rgep, RX_CONFIG_REG);
978 	val32 &= RX_CONFIG_REG_RESV;
979 	if (rgep->promisc)
980 		val32 |= RX_ACCEPT_ALL_PKT;
981 	rge_reg_put32(rgep, RX_CONFIG_REG, val32 | chip->rxconfig);
982 
983 	/*
984 	 * Set transmit configuration register
985 	 */
986 	val32 = rge_reg_get32(rgep, TX_CONFIG_REG);
987 	val32 &= TX_CONFIG_REG_RESV;
988 	rge_reg_put32(rgep, TX_CONFIG_REG, val32 | chip->txconfig);
989 
990 	/*
991 	 * Set Tx/Rx descriptor register
992 	 */
993 	val32 = rgep->tx_desc.cookie.dmac_laddress;
994 	rge_reg_put32(rgep, NORMAL_TX_RING_ADDR_LO_REG, val32);
995 	val32 = rgep->tx_desc.cookie.dmac_laddress >> 32;
996 	rge_reg_put32(rgep, NORMAL_TX_RING_ADDR_HI_REG, val32);
997 	rge_reg_put32(rgep, HIGH_TX_RING_ADDR_LO_REG, 0);
998 	rge_reg_put32(rgep, HIGH_TX_RING_ADDR_HI_REG, 0);
999 	val32 = rgep->rx_desc.cookie.dmac_laddress;
1000 	rge_reg_put32(rgep, RX_RING_ADDR_LO_REG, val32);
1001 	val32 = rgep->rx_desc.cookie.dmac_laddress >> 32;
1002 	rge_reg_put32(rgep, RX_RING_ADDR_HI_REG, val32);
1003 
1004 	/*
1005 	 * Suggested setting from Realtek
1006 	 */
1007 	if (rgep->chipid.mac_ver != MAC_VER_8101E)
1008 		rge_reg_put16(rgep, RESV_E2_REG, 0x282a);
1009 	else
1010 		rge_reg_put16(rgep, RESV_E2_REG, 0x0000);
1011 
1012 	/*
1013 	 * Set multicast register
1014 	 */
1015 	hashp = (uint32_t *)rgep->mcast_hash;
1016 	if (rgep->promisc) {
1017 		rge_reg_put32(rgep, MULTICAST_0_REG, ~0U);
1018 		rge_reg_put32(rgep, MULTICAST_4_REG, ~0U);
1019 	} else {
1020 		rge_reg_put32(rgep, MULTICAST_0_REG, RGE_BSWAP_32(hashp[0]));
1021 		rge_reg_put32(rgep, MULTICAST_4_REG, RGE_BSWAP_32(hashp[1]));
1022 	}
1023 
1024 	/*
1025 	 * Msic register setting:
1026 	 *   -- Missed packet counter: clear it
1027 	 *   -- TimerInt Register
1028 	 *   -- Timer count register
1029 	 */
1030 	rge_reg_put32(rgep, RX_PKT_MISS_COUNT_REG, 0);
1031 	rge_reg_put32(rgep, TIMER_INT_REG, TIMER_INT_NONE);
1032 	rge_reg_put32(rgep, TIMER_COUNT_REG, 0);
1033 
1034 	/*
1035 	 * disable the Unicast Wakeup Frame capability
1036 	 */
1037 	rge_reg_clr8(rgep, RT_CONFIG_5_REG, RT_UNI_WAKE_FRAME);
1038 
1039 	/*
1040 	 * Return to normal network/host communication mode
1041 	 */
1042 	rge_reg_clr8(rgep, RT_93c46_COMMOND_REG, RT_93c46_MODE_CONFIG);
1043 	drv_usecwait(20);
1044 }
1045 
1046 /*
1047  * rge_chip_start() -- start the chip transmitting and/or receiving,
1048  * including enabling interrupts
1049  */
1050 void rge_chip_start(rge_t *rgep);
1051 #pragma	no_inline(rge_chip_start)
1052 
1053 void
1054 rge_chip_start(rge_t *rgep)
1055 {
1056 	/*
1057 	 * Clear statistics
1058 	 */
1059 	bzero(&rgep->stats, sizeof (rge_stats_t));
1060 	DMA_ZERO(rgep->dma_area_stats);
1061 
1062 	/*
1063 	 * Start transmit/receive
1064 	 */
1065 	rge_reg_set8(rgep, RT_COMMAND_REG,
1066 	    RT_COMMAND_RX_ENABLE | RT_COMMAND_TX_ENABLE);
1067 
1068 	/*
1069 	 * Enable interrupt
1070 	 */
1071 	rgep->int_mask = RGE_INT_MASK;
1072 	if (rgep->chipid.is_pcie) {
1073 		rgep->int_mask |= NO_TXDESC_INT;
1074 	}
1075 	rgep->rx_fifo_ovf = 0;
1076 	rgep->int_mask |= RX_FIFO_OVERFLOW_INT;
1077 	rge_reg_put16(rgep, INT_MASK_REG, rgep->int_mask);
1078 
1079 	/*
1080 	 * All done!
1081 	 */
1082 	rgep->rge_chip_state = RGE_CHIP_RUNNING;
1083 }
1084 
1085 /*
1086  * rge_chip_stop() -- stop board receiving
1087  *
1088  * Since this function is also invoked by rge_quiesce(), it
1089  * must not block; also, no tracing or logging takes place
1090  * when invoked by rge_quiesce().
1091  */
1092 void rge_chip_stop(rge_t *rgep, boolean_t fault);
1093 #pragma	no_inline(rge_chip_stop)
1094 
1095 void
1096 rge_chip_stop(rge_t *rgep, boolean_t fault)
1097 {
1098 	/*
1099 	 * Disable interrupt
1100 	 */
1101 	rgep->int_mask = INT_MASK_NONE;
1102 	rge_reg_put16(rgep, INT_MASK_REG, rgep->int_mask);
1103 
1104 	/*
1105 	 * Clear pended interrupt
1106 	 */
1107 	if (!rgep->suspended) {
1108 		rge_reg_put16(rgep, INT_STATUS_REG, INT_MASK_ALL);
1109 	}
1110 
1111 	/*
1112 	 * Stop the board and disable transmit/receive
1113 	 */
1114 	rge_reg_clr8(rgep, RT_COMMAND_REG,
1115 	    RT_COMMAND_RX_ENABLE | RT_COMMAND_TX_ENABLE);
1116 
1117 	if (fault)
1118 		rgep->rge_chip_state = RGE_CHIP_FAULT;
1119 	else
1120 		rgep->rge_chip_state = RGE_CHIP_STOPPED;
1121 }
1122 
1123 /*
1124  * rge_get_mac_addr() -- get the MAC address on NIC
1125  */
1126 static void rge_get_mac_addr(rge_t *rgep);
1127 #pragma	inline(rge_get_mac_addr)
1128 
1129 static void
1130 rge_get_mac_addr(rge_t *rgep)
1131 {
1132 	uint8_t *macaddr = rgep->netaddr;
1133 	uint32_t val32;
1134 
1135 	/*
1136 	 * Read first 4-byte of mac address
1137 	 */
1138 	val32 = rge_reg_get32(rgep, ID_0_REG);
1139 	macaddr[0] = val32 & 0xff;
1140 	val32 = val32 >> 8;
1141 	macaddr[1] = val32 & 0xff;
1142 	val32 = val32 >> 8;
1143 	macaddr[2] = val32 & 0xff;
1144 	val32 = val32 >> 8;
1145 	macaddr[3] = val32 & 0xff;
1146 
1147 	/*
1148 	 * Read last 2-byte of mac address
1149 	 */
1150 	val32 = rge_reg_get32(rgep, ID_4_REG);
1151 	macaddr[4] = val32 & 0xff;
1152 	val32 = val32 >> 8;
1153 	macaddr[5] = val32 & 0xff;
1154 }
1155 
1156 static void rge_set_mac_addr(rge_t *rgep);
1157 #pragma	inline(rge_set_mac_addr)
1158 
1159 static void
1160 rge_set_mac_addr(rge_t *rgep)
1161 {
1162 	uint8_t *p = rgep->netaddr;
1163 	uint32_t val32;
1164 
1165 	/*
1166 	 * Change to config register write enable mode
1167 	 */
1168 	rge_reg_set8(rgep, RT_93c46_COMMOND_REG, RT_93c46_MODE_CONFIG);
1169 
1170 	/*
1171 	 * Get first 4 bytes of mac address
1172 	 */
1173 	val32 = p[3];
1174 	val32 = val32 << 8;
1175 	val32 |= p[2];
1176 	val32 = val32 << 8;
1177 	val32 |= p[1];
1178 	val32 = val32 << 8;
1179 	val32 |= p[0];
1180 
1181 	/*
1182 	 * Set first 4 bytes of mac address
1183 	 */
1184 	rge_reg_put32(rgep, ID_0_REG, val32);
1185 
1186 	/*
1187 	 * Get last 2 bytes of mac address
1188 	 */
1189 	val32 = p[5];
1190 	val32 = val32 << 8;
1191 	val32 |= p[4];
1192 
1193 	/*
1194 	 * Set last 2 bytes of mac address
1195 	 */
1196 	val32 |= rge_reg_get32(rgep, ID_4_REG) & ~0xffff;
1197 	rge_reg_put32(rgep, ID_4_REG, val32);
1198 
1199 	/*
1200 	 * Return to normal network/host communication mode
1201 	 */
1202 	rge_reg_clr8(rgep, RT_93c46_COMMOND_REG, RT_93c46_MODE_CONFIG);
1203 }
1204 
1205 static void rge_set_multi_addr(rge_t *rgep);
1206 #pragma	inline(rge_set_multi_addr)
1207 
1208 static void
1209 rge_set_multi_addr(rge_t *rgep)
1210 {
1211 	uint32_t *hashp;
1212 
1213 	hashp = (uint32_t *)rgep->mcast_hash;
1214 
1215 	/*
1216 	 * Change to config register write enable mode
1217 	 */
1218 	if (rgep->chipid.mac_ver == MAC_VER_8169SC) {
1219 		rge_reg_set8(rgep, RT_93c46_COMMOND_REG, RT_93c46_MODE_CONFIG);
1220 	}
1221 	if (rgep->promisc) {
1222 		rge_reg_put32(rgep, MULTICAST_0_REG, ~0U);
1223 		rge_reg_put32(rgep, MULTICAST_4_REG, ~0U);
1224 	} else {
1225 		rge_reg_put32(rgep, MULTICAST_0_REG, RGE_BSWAP_32(hashp[0]));
1226 		rge_reg_put32(rgep, MULTICAST_4_REG, RGE_BSWAP_32(hashp[1]));
1227 	}
1228 
1229 	/*
1230 	 * Return to normal network/host communication mode
1231 	 */
1232 	if (rgep->chipid.mac_ver == MAC_VER_8169SC) {
1233 		rge_reg_clr8(rgep, RT_93c46_COMMOND_REG, RT_93c46_MODE_CONFIG);
1234 	}
1235 }
1236 
1237 static void rge_set_promisc(rge_t *rgep);
1238 #pragma	inline(rge_set_promisc)
1239 
1240 static void
1241 rge_set_promisc(rge_t *rgep)
1242 {
1243 	if (rgep->promisc)
1244 		rge_reg_set32(rgep, RX_CONFIG_REG, RX_ACCEPT_ALL_PKT);
1245 	else
1246 		rge_reg_clr32(rgep, RX_CONFIG_REG, RX_ACCEPT_ALL_PKT);
1247 }
1248 
1249 /*
1250  * rge_chip_sync() -- program the chip with the unicast MAC address,
1251  * the multicast hash table, the required level of promiscuity, and
1252  * the current loopback mode ...
1253  */
1254 void rge_chip_sync(rge_t *rgep, enum rge_sync_op todo);
1255 #pragma	no_inline(rge_chip_sync)
1256 
1257 void
1258 rge_chip_sync(rge_t *rgep, enum rge_sync_op todo)
1259 {
1260 	switch (todo) {
1261 	case RGE_GET_MAC:
1262 		rge_get_mac_addr(rgep);
1263 		break;
1264 	case RGE_SET_MAC:
1265 		/* Reprogram the unicast MAC address(es) ... */
1266 		rge_set_mac_addr(rgep);
1267 		break;
1268 	case RGE_SET_MUL:
1269 		/* Reprogram the hashed multicast address table ... */
1270 		rge_set_multi_addr(rgep);
1271 		break;
1272 	case RGE_SET_PROMISC:
1273 		/* Set or clear the PROMISCUOUS mode bit */
1274 		rge_set_multi_addr(rgep);
1275 		rge_set_promisc(rgep);
1276 		break;
1277 	default:
1278 		break;
1279 	}
1280 }
1281 
1282 void rge_chip_blank(void *arg, time_t ticks, uint_t count, int flag);
1283 #pragma	no_inline(rge_chip_blank)
1284 
1285 /* ARGSUSED */
1286 void
1287 rge_chip_blank(void *arg, time_t ticks, uint_t count, int flag)
1288 {
1289 	_NOTE(ARGUNUSED(arg, ticks, count));
1290 }
1291 
1292 void rge_tx_trigger(rge_t *rgep);
1293 #pragma	no_inline(rge_tx_trigger)
1294 
1295 void
1296 rge_tx_trigger(rge_t *rgep)
1297 {
1298 	rge_reg_put8(rgep, TX_RINGS_POLL_REG, NORMAL_TX_RING_POLL);
1299 }
1300 
1301 void rge_hw_stats_dump(rge_t *rgep);
1302 #pragma	no_inline(rge_tx_trigger)
1303 
1304 void
1305 rge_hw_stats_dump(rge_t *rgep)
1306 {
1307 	int i = 0;
1308 	uint32_t regval = 0;
1309 
1310 	if (rgep->rge_mac_state == RGE_MAC_STOPPED)
1311 		return;
1312 
1313 	regval = rge_reg_get32(rgep, DUMP_COUNTER_REG_0);
1314 	while (regval & DUMP_START) {
1315 		drv_usecwait(100);
1316 		if (++i > STATS_DUMP_LOOP) {
1317 			RGE_DEBUG(("rge h/w statistics dump fail!"));
1318 			rgep->rge_chip_state = RGE_CHIP_ERROR;
1319 			return;
1320 		}
1321 		regval = rge_reg_get32(rgep, DUMP_COUNTER_REG_0);
1322 	}
1323 	DMA_SYNC(rgep->dma_area_stats, DDI_DMA_SYNC_FORKERNEL);
1324 
1325 	/*
1326 	 * Start H/W statistics dump for RTL8169 chip
1327 	 */
1328 	rge_reg_set32(rgep, DUMP_COUNTER_REG_0, DUMP_START);
1329 }
1330 
1331 /*
1332  * ========== Hardware interrupt handler ==========
1333  */
1334 
1335 #undef	RGE_DBG
1336 #define	RGE_DBG		RGE_DBG_INT	/* debug flag for this code	*/
1337 
1338 static void rge_wake_factotum(rge_t *rgep);
1339 #pragma	inline(rge_wake_factotum)
1340 
1341 static void
1342 rge_wake_factotum(rge_t *rgep)
1343 {
1344 	if (rgep->factotum_flag == 0) {
1345 		rgep->factotum_flag = 1;
1346 		(void) ddi_intr_trigger_softint(rgep->factotum_hdl, NULL);
1347 	}
1348 }
1349 
1350 /*
1351  *	rge_intr() -- handle chip interrupts
1352  */
1353 uint_t rge_intr(caddr_t arg1, caddr_t arg2);
1354 #pragma	no_inline(rge_intr)
1355 
1356 uint_t
1357 rge_intr(caddr_t arg1, caddr_t arg2)
1358 {
1359 	rge_t *rgep = (rge_t *)arg1;
1360 	uint16_t int_status;
1361 	clock_t	now;
1362 	uint32_t tx_pkts;
1363 	uint32_t rx_pkts;
1364 	uint32_t poll_rate;
1365 	uint32_t opt_pkts;
1366 	uint32_t opt_intrs;
1367 	boolean_t update_int_mask = B_FALSE;
1368 	uint32_t itimer;
1369 
1370 	_NOTE(ARGUNUSED(arg2))
1371 
1372 	mutex_enter(rgep->genlock);
1373 
1374 	if (rgep->suspended) {
1375 		mutex_exit(rgep->genlock);
1376 		return (DDI_INTR_UNCLAIMED);
1377 	}
1378 
1379 	/*
1380 	 * Was this interrupt caused by our device...
1381 	 */
1382 	int_status = rge_reg_get16(rgep, INT_STATUS_REG);
1383 	if (!(int_status & rgep->int_mask)) {
1384 		mutex_exit(rgep->genlock);
1385 		return (DDI_INTR_UNCLAIMED);
1386 				/* indicate it wasn't our interrupt */
1387 	}
1388 	rgep->stats.intr++;
1389 
1390 	/*
1391 	 * Clear interrupt
1392 	 *	For PCIE chipset, we need disable interrupt first.
1393 	 */
1394 	if (rgep->chipid.is_pcie) {
1395 		rge_reg_put16(rgep, INT_MASK_REG, INT_MASK_NONE);
1396 		update_int_mask = B_TRUE;
1397 	}
1398 	rge_reg_put16(rgep, INT_STATUS_REG, int_status);
1399 
1400 	/*
1401 	 * Calculate optimal polling interval
1402 	 */
1403 	now = ddi_get_lbolt();
1404 	if (now - rgep->curr_tick >= rgep->tick_delta &&
1405 	    (rgep->param_link_speed == RGE_SPEED_1000M ||
1406 	    rgep->param_link_speed == RGE_SPEED_100M)) {
1407 		/* number of rx and tx packets in the last tick */
1408 		tx_pkts = rgep->stats.opackets - rgep->last_opackets;
1409 		rx_pkts = rgep->stats.rpackets - rgep->last_rpackets;
1410 
1411 		rgep->last_opackets = rgep->stats.opackets;
1412 		rgep->last_rpackets = rgep->stats.rpackets;
1413 
1414 		/* restore interrupt mask */
1415 		rgep->int_mask |= TX_OK_INT | RX_OK_INT;
1416 		if (rgep->chipid.is_pcie) {
1417 			rgep->int_mask |= NO_TXDESC_INT;
1418 		}
1419 
1420 		/* optimal number of packets in a tick */
1421 		if (rgep->param_link_speed == RGE_SPEED_1000M) {
1422 			opt_pkts = (1000*1000*1000/8)/ETHERMTU/CLK_TICK;
1423 		} else {
1424 			opt_pkts = (100*1000*1000/8)/ETHERMTU/CLK_TICK;
1425 		}
1426 
1427 		/*
1428 		 * calculate polling interval based on rx and tx packets
1429 		 * in the last tick
1430 		 */
1431 		poll_rate = 0;
1432 		if (now - rgep->curr_tick < 2*rgep->tick_delta) {
1433 			opt_intrs = opt_pkts/TX_COALESC;
1434 			if (tx_pkts > opt_intrs) {
1435 				poll_rate = max(tx_pkts/TX_COALESC, opt_intrs);
1436 				rgep->int_mask &= ~(TX_OK_INT | NO_TXDESC_INT);
1437 			}
1438 
1439 			opt_intrs = opt_pkts/RX_COALESC;
1440 			if (rx_pkts > opt_intrs) {
1441 				opt_intrs = max(rx_pkts/RX_COALESC, opt_intrs);
1442 				poll_rate = max(opt_intrs, poll_rate);
1443 				rgep->int_mask &= ~RX_OK_INT;
1444 			}
1445 			/* ensure poll_rate reasonable */
1446 			poll_rate = min(poll_rate, opt_pkts*4);
1447 		}
1448 
1449 		if (poll_rate) {
1450 			/* move to polling mode */
1451 			if (rgep->chipid.is_pcie) {
1452 				itimer = (TIMER_CLK_PCIE/CLK_TICK)/poll_rate;
1453 			} else {
1454 				itimer = (TIMER_CLK_PCI/CLK_TICK)/poll_rate;
1455 			}
1456 		} else {
1457 			/* move to normal mode */
1458 			itimer = 0;
1459 		}
1460 		RGE_DEBUG(("%s: poll: itimer:%d int_mask:0x%x",
1461 		    __func__, itimer, rgep->int_mask));
1462 		rge_reg_put32(rgep, TIMER_INT_REG, itimer);
1463 
1464 		/* update timestamp for statistics */
1465 		rgep->curr_tick = now;
1466 
1467 		/* reset timer */
1468 		int_status |= TIME_OUT_INT;
1469 
1470 		update_int_mask = B_TRUE;
1471 	}
1472 
1473 	if (int_status & TIME_OUT_INT) {
1474 		rge_reg_put32(rgep, TIMER_COUNT_REG, 0);
1475 	}
1476 
1477 	/* flush post writes */
1478 	(void) rge_reg_get16(rgep, INT_STATUS_REG);
1479 
1480 	/*
1481 	 * Cable link change interrupt
1482 	 */
1483 	if (int_status & LINK_CHANGE_INT) {
1484 		rge_chip_cyclic(rgep);
1485 	}
1486 
1487 	if (int_status & RX_FIFO_OVERFLOW_INT) {
1488 		/* start rx watchdog timeout detection */
1489 		rgep->rx_fifo_ovf = 1;
1490 		if (rgep->int_mask & RX_FIFO_OVERFLOW_INT) {
1491 			rgep->int_mask &= ~RX_FIFO_OVERFLOW_INT;
1492 			update_int_mask = B_TRUE;
1493 		}
1494 	} else if (int_status & RGE_RX_INT) {
1495 		/* stop rx watchdog timeout detection */
1496 		rgep->rx_fifo_ovf = 0;
1497 		if ((rgep->int_mask & RX_FIFO_OVERFLOW_INT) == 0) {
1498 			rgep->int_mask |= RX_FIFO_OVERFLOW_INT;
1499 			update_int_mask = B_TRUE;
1500 		}
1501 	}
1502 
1503 	mutex_exit(rgep->genlock);
1504 
1505 	/*
1506 	 * Receive interrupt
1507 	 */
1508 	if (int_status & RGE_RX_INT)
1509 		rge_receive(rgep);
1510 
1511 	/*
1512 	 * Transmit interrupt
1513 	 */
1514 	if (int_status & TX_ERR_INT) {
1515 		RGE_REPORT((rgep, "tx error happened, resetting the chip "));
1516 		mutex_enter(rgep->genlock);
1517 		rgep->rge_chip_state = RGE_CHIP_ERROR;
1518 		mutex_exit(rgep->genlock);
1519 	} else if ((rgep->chipid.is_pcie && (int_status & NO_TXDESC_INT)) ||
1520 	    ((int_status & TX_OK_INT) && rgep->tx_free < RGE_SEND_SLOTS/8)) {
1521 		(void) ddi_intr_trigger_softint(rgep->resched_hdl, NULL);
1522 	}
1523 
1524 	/*
1525 	 * System error interrupt
1526 	 */
1527 	if (int_status & SYS_ERR_INT) {
1528 		RGE_REPORT((rgep, "sys error happened, resetting the chip "));
1529 		mutex_enter(rgep->genlock);
1530 		rgep->rge_chip_state = RGE_CHIP_ERROR;
1531 		mutex_exit(rgep->genlock);
1532 	}
1533 
1534 	/*
1535 	 * Re-enable interrupt for PCIE chipset or install new int_mask
1536 	 */
1537 	if (update_int_mask)
1538 		rge_reg_put16(rgep, INT_MASK_REG, rgep->int_mask);
1539 
1540 	return (DDI_INTR_CLAIMED);	/* indicate it was our interrupt */
1541 }
1542 
1543 /*
1544  * ========== Factotum, implemented as a softint handler ==========
1545  */
1546 
1547 #undef	RGE_DBG
1548 #define	RGE_DBG		RGE_DBG_FACT	/* debug flag for this code	*/
1549 
1550 static boolean_t rge_factotum_link_check(rge_t *rgep);
1551 #pragma	no_inline(rge_factotum_link_check)
1552 
1553 static boolean_t
1554 rge_factotum_link_check(rge_t *rgep)
1555 {
1556 	uint8_t media_status;
1557 	int32_t link;
1558 
1559 	media_status = rge_reg_get8(rgep, PHY_STATUS_REG);
1560 	link = (media_status & PHY_STATUS_LINK_UP) ?
1561 	    LINK_STATE_UP : LINK_STATE_DOWN;
1562 	if (rgep->param_link_up != link) {
1563 		/*
1564 		 * Link change.
1565 		 */
1566 		rgep->param_link_up = link;
1567 
1568 		if (link == LINK_STATE_UP) {
1569 			if (media_status & PHY_STATUS_1000MF) {
1570 				rgep->param_link_speed = RGE_SPEED_1000M;
1571 				rgep->param_link_duplex = LINK_DUPLEX_FULL;
1572 			} else {
1573 				rgep->param_link_speed =
1574 				    (media_status & PHY_STATUS_100M) ?
1575 				    RGE_SPEED_100M : RGE_SPEED_10M;
1576 				rgep->param_link_duplex =
1577 				    (media_status & PHY_STATUS_DUPLEX_FULL) ?
1578 				    LINK_DUPLEX_FULL : LINK_DUPLEX_HALF;
1579 			}
1580 		}
1581 		return (B_TRUE);
1582 	}
1583 	return (B_FALSE);
1584 }
1585 
1586 /*
1587  * Factotum routine to check for Tx stall, using the 'watchdog' counter
1588  */
1589 static boolean_t rge_factotum_stall_check(rge_t *rgep);
1590 #pragma	no_inline(rge_factotum_stall_check)
1591 
1592 static boolean_t
1593 rge_factotum_stall_check(rge_t *rgep)
1594 {
1595 	uint32_t dogval;
1596 
1597 	ASSERT(mutex_owned(rgep->genlock));
1598 
1599 	/*
1600 	 * Specific check for RX stall ...
1601 	 */
1602 	rgep->rx_fifo_ovf <<= 1;
1603 	if (rgep->rx_fifo_ovf > rge_rx_watchdog_count) {
1604 		RGE_REPORT((rgep, "rx_hang detected"));
1605 		return (B_TRUE);
1606 	}
1607 
1608 	/*
1609 	 * Specific check for Tx stall ...
1610 	 *
1611 	 * The 'watchdog' counter is incremented whenever a packet
1612 	 * is queued, reset to 1 when some (but not all) buffers
1613 	 * are reclaimed, reset to 0 (disabled) when all buffers
1614 	 * are reclaimed, and shifted left here.  If it exceeds the
1615 	 * threshold value, the chip is assumed to have stalled and
1616 	 * is put into the ERROR state.  The factotum will then reset
1617 	 * it on the next pass.
1618 	 *
1619 	 * All of which should ensure that we don't get into a state
1620 	 * where packets are left pending indefinitely!
1621 	 */
1622 	if (rgep->resched_needed)
1623 		(void) ddi_intr_trigger_softint(rgep->resched_hdl, NULL);
1624 	dogval = rge_atomic_shl32(&rgep->watchdog, 1);
1625 	if (dogval < rge_watchdog_count)
1626 		return (B_FALSE);
1627 
1628 	RGE_REPORT((rgep, "Tx stall detected, watchdog code 0x%x", dogval));
1629 	return (B_TRUE);
1630 
1631 }
1632 
1633 /*
1634  * The factotum is woken up when there's something to do that we'd rather
1635  * not do from inside a hardware interrupt handler or high-level cyclic.
1636  * Its two main tasks are:
1637  *	reset & restart the chip after an error
1638  *	check the link status whenever necessary
1639  */
1640 uint_t rge_chip_factotum(caddr_t arg1, caddr_t arg2);
1641 #pragma	no_inline(rge_chip_factotum)
1642 
1643 uint_t
1644 rge_chip_factotum(caddr_t arg1, caddr_t arg2)
1645 {
1646 	rge_t *rgep;
1647 	uint_t result;
1648 	boolean_t error;
1649 	boolean_t linkchg;
1650 
1651 	rgep = (rge_t *)arg1;
1652 	_NOTE(ARGUNUSED(arg2))
1653 
1654 	if (rgep->factotum_flag == 0)
1655 		return (DDI_INTR_UNCLAIMED);
1656 
1657 	rgep->factotum_flag = 0;
1658 	result = DDI_INTR_CLAIMED;
1659 	error = B_FALSE;
1660 	linkchg = B_FALSE;
1661 
1662 	mutex_enter(rgep->genlock);
1663 	switch (rgep->rge_chip_state) {
1664 	default:
1665 		break;
1666 
1667 	case RGE_CHIP_RUNNING:
1668 		linkchg = rge_factotum_link_check(rgep);
1669 		error = rge_factotum_stall_check(rgep);
1670 		break;
1671 
1672 	case RGE_CHIP_ERROR:
1673 		error = B_TRUE;
1674 		break;
1675 
1676 	case RGE_CHIP_FAULT:
1677 		/*
1678 		 * Fault detected, time to reset ...
1679 		 */
1680 		if (rge_autorecover) {
1681 			RGE_REPORT((rgep, "automatic recovery activated"));
1682 			rge_restart(rgep);
1683 		}
1684 		break;
1685 	}
1686 
1687 	/*
1688 	 * If an error is detected, stop the chip now, marking it as
1689 	 * faulty, so that it will be reset next time through ...
1690 	 */
1691 	if (error)
1692 		rge_chip_stop(rgep, B_TRUE);
1693 	mutex_exit(rgep->genlock);
1694 
1695 	/*
1696 	 * If the link state changed, tell the world about it.
1697 	 * Note: can't do this while still holding the mutex.
1698 	 */
1699 	if (linkchg)
1700 		mac_link_update(rgep->mh, rgep->param_link_up);
1701 
1702 	return (result);
1703 }
1704 
1705 /*
1706  * High-level cyclic handler
1707  *
1708  * This routine schedules a (low-level) softint callback to the
1709  * factotum, and prods the chip to update the status block (which
1710  * will cause a hardware interrupt when complete).
1711  */
1712 void rge_chip_cyclic(void *arg);
1713 #pragma	no_inline(rge_chip_cyclic)
1714 
1715 void
1716 rge_chip_cyclic(void *arg)
1717 {
1718 	rge_t *rgep;
1719 
1720 	rgep = arg;
1721 
1722 	switch (rgep->rge_chip_state) {
1723 	default:
1724 		return;
1725 
1726 	case RGE_CHIP_RUNNING:
1727 		rge_phy_check(rgep);
1728 		if (rgep->tx_free < RGE_SEND_SLOTS)
1729 			rge_send_recycle(rgep);
1730 		break;
1731 
1732 	case RGE_CHIP_FAULT:
1733 	case RGE_CHIP_ERROR:
1734 		break;
1735 	}
1736 
1737 	rge_wake_factotum(rgep);
1738 }
1739 
1740 
1741 /*
1742  * ========== Ioctl subfunctions ==========
1743  */
1744 
1745 #undef	RGE_DBG
1746 #define	RGE_DBG		RGE_DBG_PPIO	/* debug flag for this code	*/
1747 
1748 #if	RGE_DEBUGGING || RGE_DO_PPIO
1749 
1750 static void rge_chip_peek_cfg(rge_t *rgep, rge_peekpoke_t *ppd);
1751 #pragma	no_inline(rge_chip_peek_cfg)
1752 
1753 static void
1754 rge_chip_peek_cfg(rge_t *rgep, rge_peekpoke_t *ppd)
1755 {
1756 	uint64_t regval;
1757 	uint64_t regno;
1758 
1759 	RGE_TRACE(("rge_chip_peek_cfg($%p, $%p)",
1760 	    (void *)rgep, (void *)ppd));
1761 
1762 	regno = ppd->pp_acc_offset;
1763 
1764 	switch (ppd->pp_acc_size) {
1765 	case 1:
1766 		regval = pci_config_get8(rgep->cfg_handle, regno);
1767 		break;
1768 
1769 	case 2:
1770 		regval = pci_config_get16(rgep->cfg_handle, regno);
1771 		break;
1772 
1773 	case 4:
1774 		regval = pci_config_get32(rgep->cfg_handle, regno);
1775 		break;
1776 
1777 	case 8:
1778 		regval = pci_config_get64(rgep->cfg_handle, regno);
1779 		break;
1780 	}
1781 
1782 	ppd->pp_acc_data = regval;
1783 }
1784 
1785 static void rge_chip_poke_cfg(rge_t *rgep, rge_peekpoke_t *ppd);
1786 #pragma	no_inline(rge_chip_poke_cfg)
1787 
1788 static void
1789 rge_chip_poke_cfg(rge_t *rgep, rge_peekpoke_t *ppd)
1790 {
1791 	uint64_t regval;
1792 	uint64_t regno;
1793 
1794 	RGE_TRACE(("rge_chip_poke_cfg($%p, $%p)",
1795 	    (void *)rgep, (void *)ppd));
1796 
1797 	regno = ppd->pp_acc_offset;
1798 	regval = ppd->pp_acc_data;
1799 
1800 	switch (ppd->pp_acc_size) {
1801 	case 1:
1802 		pci_config_put8(rgep->cfg_handle, regno, regval);
1803 		break;
1804 
1805 	case 2:
1806 		pci_config_put16(rgep->cfg_handle, regno, regval);
1807 		break;
1808 
1809 	case 4:
1810 		pci_config_put32(rgep->cfg_handle, regno, regval);
1811 		break;
1812 
1813 	case 8:
1814 		pci_config_put64(rgep->cfg_handle, regno, regval);
1815 		break;
1816 	}
1817 }
1818 
1819 static void rge_chip_peek_reg(rge_t *rgep, rge_peekpoke_t *ppd);
1820 #pragma	no_inline(rge_chip_peek_reg)
1821 
1822 static void
1823 rge_chip_peek_reg(rge_t *rgep, rge_peekpoke_t *ppd)
1824 {
1825 	uint64_t regval;
1826 	void *regaddr;
1827 
1828 	RGE_TRACE(("rge_chip_peek_reg($%p, $%p)",
1829 	    (void *)rgep, (void *)ppd));
1830 
1831 	regaddr = PIO_ADDR(rgep, ppd->pp_acc_offset);
1832 
1833 	switch (ppd->pp_acc_size) {
1834 	case 1:
1835 		regval = ddi_get8(rgep->io_handle, regaddr);
1836 		break;
1837 
1838 	case 2:
1839 		regval = ddi_get16(rgep->io_handle, regaddr);
1840 		break;
1841 
1842 	case 4:
1843 		regval = ddi_get32(rgep->io_handle, regaddr);
1844 		break;
1845 
1846 	case 8:
1847 		regval = ddi_get64(rgep->io_handle, regaddr);
1848 		break;
1849 	}
1850 
1851 	ppd->pp_acc_data = regval;
1852 }
1853 
1854 static void rge_chip_poke_reg(rge_t *rgep, rge_peekpoke_t *ppd);
1855 #pragma	no_inline(rge_chip_peek_reg)
1856 
1857 static void
1858 rge_chip_poke_reg(rge_t *rgep, rge_peekpoke_t *ppd)
1859 {
1860 	uint64_t regval;
1861 	void *regaddr;
1862 
1863 	RGE_TRACE(("rge_chip_poke_reg($%p, $%p)",
1864 	    (void *)rgep, (void *)ppd));
1865 
1866 	regaddr = PIO_ADDR(rgep, ppd->pp_acc_offset);
1867 	regval = ppd->pp_acc_data;
1868 
1869 	switch (ppd->pp_acc_size) {
1870 	case 1:
1871 		ddi_put8(rgep->io_handle, regaddr, regval);
1872 		break;
1873 
1874 	case 2:
1875 		ddi_put16(rgep->io_handle, regaddr, regval);
1876 		break;
1877 
1878 	case 4:
1879 		ddi_put32(rgep->io_handle, regaddr, regval);
1880 		break;
1881 
1882 	case 8:
1883 		ddi_put64(rgep->io_handle, regaddr, regval);
1884 		break;
1885 	}
1886 }
1887 
1888 static void rge_chip_peek_mii(rge_t *rgep, rge_peekpoke_t *ppd);
1889 #pragma	no_inline(rge_chip_peek_mii)
1890 
1891 static void
1892 rge_chip_peek_mii(rge_t *rgep, rge_peekpoke_t *ppd)
1893 {
1894 	RGE_TRACE(("rge_chip_peek_mii($%p, $%p)",
1895 	    (void *)rgep, (void *)ppd));
1896 
1897 	ppd->pp_acc_data = rge_mii_get16(rgep, ppd->pp_acc_offset/2);
1898 }
1899 
1900 static void rge_chip_poke_mii(rge_t *rgep, rge_peekpoke_t *ppd);
1901 #pragma	no_inline(rge_chip_poke_mii)
1902 
1903 static void
1904 rge_chip_poke_mii(rge_t *rgep, rge_peekpoke_t *ppd)
1905 {
1906 	RGE_TRACE(("rge_chip_poke_mii($%p, $%p)",
1907 	    (void *)rgep, (void *)ppd));
1908 
1909 	rge_mii_put16(rgep, ppd->pp_acc_offset/2, ppd->pp_acc_data);
1910 }
1911 
1912 static void rge_chip_peek_mem(rge_t *rgep, rge_peekpoke_t *ppd);
1913 #pragma	no_inline(rge_chip_peek_mem)
1914 
1915 static void
1916 rge_chip_peek_mem(rge_t *rgep, rge_peekpoke_t *ppd)
1917 {
1918 	uint64_t regval;
1919 	void *vaddr;
1920 
1921 	RGE_TRACE(("rge_chip_peek_rge($%p, $%p)",
1922 	    (void *)rgep, (void *)ppd));
1923 
1924 	vaddr = (void *)(uintptr_t)ppd->pp_acc_offset;
1925 
1926 	switch (ppd->pp_acc_size) {
1927 	case 1:
1928 		regval = *(uint8_t *)vaddr;
1929 		break;
1930 
1931 	case 2:
1932 		regval = *(uint16_t *)vaddr;
1933 		break;
1934 
1935 	case 4:
1936 		regval = *(uint32_t *)vaddr;
1937 		break;
1938 
1939 	case 8:
1940 		regval = *(uint64_t *)vaddr;
1941 		break;
1942 	}
1943 
1944 	RGE_DEBUG(("rge_chip_peek_mem($%p, $%p) peeked 0x%llx from $%p",
1945 	    (void *)rgep, (void *)ppd, regval, vaddr));
1946 
1947 	ppd->pp_acc_data = regval;
1948 }
1949 
1950 static void rge_chip_poke_mem(rge_t *rgep, rge_peekpoke_t *ppd);
1951 #pragma	no_inline(rge_chip_poke_mem)
1952 
1953 static void
1954 rge_chip_poke_mem(rge_t *rgep, rge_peekpoke_t *ppd)
1955 {
1956 	uint64_t regval;
1957 	void *vaddr;
1958 
1959 	RGE_TRACE(("rge_chip_poke_mem($%p, $%p)",
1960 	    (void *)rgep, (void *)ppd));
1961 
1962 	vaddr = (void *)(uintptr_t)ppd->pp_acc_offset;
1963 	regval = ppd->pp_acc_data;
1964 
1965 	RGE_DEBUG(("rge_chip_poke_mem($%p, $%p) poking 0x%llx at $%p",
1966 	    (void *)rgep, (void *)ppd, regval, vaddr));
1967 
1968 	switch (ppd->pp_acc_size) {
1969 	case 1:
1970 		*(uint8_t *)vaddr = (uint8_t)regval;
1971 		break;
1972 
1973 	case 2:
1974 		*(uint16_t *)vaddr = (uint16_t)regval;
1975 		break;
1976 
1977 	case 4:
1978 		*(uint32_t *)vaddr = (uint32_t)regval;
1979 		break;
1980 
1981 	case 8:
1982 		*(uint64_t *)vaddr = (uint64_t)regval;
1983 		break;
1984 	}
1985 }
1986 
1987 static enum ioc_reply rge_pp_ioctl(rge_t *rgep, int cmd, mblk_t *mp,
1988 					struct iocblk *iocp);
1989 #pragma	no_inline(rge_pp_ioctl)
1990 
1991 static enum ioc_reply
1992 rge_pp_ioctl(rge_t *rgep, int cmd, mblk_t *mp, struct iocblk *iocp)
1993 {
1994 	void (*ppfn)(rge_t *rgep, rge_peekpoke_t *ppd);
1995 	rge_peekpoke_t *ppd;
1996 	dma_area_t *areap;
1997 	uint64_t sizemask;
1998 	uint64_t mem_va;
1999 	uint64_t maxoff;
2000 	boolean_t peek;
2001 
2002 	switch (cmd) {
2003 	default:
2004 		/* NOTREACHED */
2005 		rge_error(rgep, "rge_pp_ioctl: invalid cmd 0x%x", cmd);
2006 		return (IOC_INVAL);
2007 
2008 	case RGE_PEEK:
2009 		peek = B_TRUE;
2010 		break;
2011 
2012 	case RGE_POKE:
2013 		peek = B_FALSE;
2014 		break;
2015 	}
2016 
2017 	/*
2018 	 * Validate format of ioctl
2019 	 */
2020 	if (iocp->ioc_count != sizeof (rge_peekpoke_t))
2021 		return (IOC_INVAL);
2022 	if (mp->b_cont == NULL)
2023 		return (IOC_INVAL);
2024 	ppd = (rge_peekpoke_t *)mp->b_cont->b_rptr;
2025 
2026 	/*
2027 	 * Validate request parameters
2028 	 */
2029 	switch (ppd->pp_acc_space) {
2030 	default:
2031 		return (IOC_INVAL);
2032 
2033 	case RGE_PP_SPACE_CFG:
2034 		/*
2035 		 * Config space
2036 		 */
2037 		sizemask = 8|4|2|1;
2038 		mem_va = 0;
2039 		maxoff = PCI_CONF_HDR_SIZE;
2040 		ppfn = peek ? rge_chip_peek_cfg : rge_chip_poke_cfg;
2041 		break;
2042 
2043 	case RGE_PP_SPACE_REG:
2044 		/*
2045 		 * Memory-mapped I/O space
2046 		 */
2047 		sizemask = 8|4|2|1;
2048 		mem_va = 0;
2049 		maxoff = RGE_REGISTER_MAX;
2050 		ppfn = peek ? rge_chip_peek_reg : rge_chip_poke_reg;
2051 		break;
2052 
2053 	case RGE_PP_SPACE_MII:
2054 		/*
2055 		 * PHY's MII registers
2056 		 * NB: all PHY registers are two bytes, but the
2057 		 * addresses increment in ones (word addressing).
2058 		 * So we scale the address here, then undo the
2059 		 * transformation inside the peek/poke functions.
2060 		 */
2061 		ppd->pp_acc_offset *= 2;
2062 		sizemask = 2;
2063 		mem_va = 0;
2064 		maxoff = (MII_MAXREG+1)*2;
2065 		ppfn = peek ? rge_chip_peek_mii : rge_chip_poke_mii;
2066 		break;
2067 
2068 	case RGE_PP_SPACE_RGE:
2069 		/*
2070 		 * RGE data structure!
2071 		 */
2072 		sizemask = 8|4|2|1;
2073 		mem_va = (uintptr_t)rgep;
2074 		maxoff = sizeof (*rgep);
2075 		ppfn = peek ? rge_chip_peek_mem : rge_chip_poke_mem;
2076 		break;
2077 
2078 	case RGE_PP_SPACE_STATISTICS:
2079 	case RGE_PP_SPACE_TXDESC:
2080 	case RGE_PP_SPACE_TXBUFF:
2081 	case RGE_PP_SPACE_RXDESC:
2082 	case RGE_PP_SPACE_RXBUFF:
2083 		/*
2084 		 * Various DMA_AREAs
2085 		 */
2086 		switch (ppd->pp_acc_space) {
2087 		case RGE_PP_SPACE_TXDESC:
2088 			areap = &rgep->dma_area_txdesc;
2089 			break;
2090 		case RGE_PP_SPACE_RXDESC:
2091 			areap = &rgep->dma_area_rxdesc;
2092 			break;
2093 		case RGE_PP_SPACE_STATISTICS:
2094 			areap = &rgep->dma_area_stats;
2095 			break;
2096 		}
2097 
2098 		sizemask = 8|4|2|1;
2099 		mem_va = (uintptr_t)areap->mem_va;
2100 		maxoff = areap->alength;
2101 		ppfn = peek ? rge_chip_peek_mem : rge_chip_poke_mem;
2102 		break;
2103 	}
2104 
2105 	switch (ppd->pp_acc_size) {
2106 	default:
2107 		return (IOC_INVAL);
2108 
2109 	case 8:
2110 	case 4:
2111 	case 2:
2112 	case 1:
2113 		if ((ppd->pp_acc_size & sizemask) == 0)
2114 			return (IOC_INVAL);
2115 		break;
2116 	}
2117 
2118 	if ((ppd->pp_acc_offset % ppd->pp_acc_size) != 0)
2119 		return (IOC_INVAL);
2120 
2121 	if (ppd->pp_acc_offset >= maxoff)
2122 		return (IOC_INVAL);
2123 
2124 	if (ppd->pp_acc_offset+ppd->pp_acc_size > maxoff)
2125 		return (IOC_INVAL);
2126 
2127 	/*
2128 	 * All OK - go do it!
2129 	 */
2130 	ppd->pp_acc_offset += mem_va;
2131 	(*ppfn)(rgep, ppd);
2132 	return (peek ? IOC_REPLY : IOC_ACK);
2133 }
2134 
2135 static enum ioc_reply rge_diag_ioctl(rge_t *rgep, int cmd, mblk_t *mp,
2136 					struct iocblk *iocp);
2137 #pragma	no_inline(rge_diag_ioctl)
2138 
2139 static enum ioc_reply
2140 rge_diag_ioctl(rge_t *rgep, int cmd, mblk_t *mp, struct iocblk *iocp)
2141 {
2142 	ASSERT(mutex_owned(rgep->genlock));
2143 
2144 	switch (cmd) {
2145 	default:
2146 		/* NOTREACHED */
2147 		rge_error(rgep, "rge_diag_ioctl: invalid cmd 0x%x", cmd);
2148 		return (IOC_INVAL);
2149 
2150 	case RGE_DIAG:
2151 		/*
2152 		 * Currently a no-op
2153 		 */
2154 		return (IOC_ACK);
2155 
2156 	case RGE_PEEK:
2157 	case RGE_POKE:
2158 		return (rge_pp_ioctl(rgep, cmd, mp, iocp));
2159 
2160 	case RGE_PHY_RESET:
2161 		return (IOC_RESTART_ACK);
2162 
2163 	case RGE_SOFT_RESET:
2164 	case RGE_HARD_RESET:
2165 		/*
2166 		 * Reset and reinitialise the 570x hardware
2167 		 */
2168 		rge_restart(rgep);
2169 		return (IOC_ACK);
2170 	}
2171 
2172 	/* NOTREACHED */
2173 }
2174 
2175 #endif	/* RGE_DEBUGGING || RGE_DO_PPIO */
2176 
2177 static enum ioc_reply rge_mii_ioctl(rge_t *rgep, int cmd, mblk_t *mp,
2178 				    struct iocblk *iocp);
2179 #pragma	no_inline(rge_mii_ioctl)
2180 
2181 static enum ioc_reply
2182 rge_mii_ioctl(rge_t *rgep, int cmd, mblk_t *mp, struct iocblk *iocp)
2183 {
2184 	struct rge_mii_rw *miirwp;
2185 
2186 	/*
2187 	 * Validate format of ioctl
2188 	 */
2189 	if (iocp->ioc_count != sizeof (struct rge_mii_rw))
2190 		return (IOC_INVAL);
2191 	if (mp->b_cont == NULL)
2192 		return (IOC_INVAL);
2193 	miirwp = (struct rge_mii_rw *)mp->b_cont->b_rptr;
2194 
2195 	/*
2196 	 * Validate request parameters ...
2197 	 */
2198 	if (miirwp->mii_reg > MII_MAXREG)
2199 		return (IOC_INVAL);
2200 
2201 	switch (cmd) {
2202 	default:
2203 		/* NOTREACHED */
2204 		rge_error(rgep, "rge_mii_ioctl: invalid cmd 0x%x", cmd);
2205 		return (IOC_INVAL);
2206 
2207 	case RGE_MII_READ:
2208 		miirwp->mii_data = rge_mii_get16(rgep, miirwp->mii_reg);
2209 		return (IOC_REPLY);
2210 
2211 	case RGE_MII_WRITE:
2212 		rge_mii_put16(rgep, miirwp->mii_reg, miirwp->mii_data);
2213 		return (IOC_ACK);
2214 	}
2215 
2216 	/* NOTREACHED */
2217 }
2218 
2219 enum ioc_reply rge_chip_ioctl(rge_t *rgep, queue_t *wq, mblk_t *mp,
2220 				struct iocblk *iocp);
2221 #pragma	no_inline(rge_chip_ioctl)
2222 
2223 enum ioc_reply
2224 rge_chip_ioctl(rge_t *rgep, queue_t *wq, mblk_t *mp, struct iocblk *iocp)
2225 {
2226 	int cmd;
2227 
2228 	RGE_TRACE(("rge_chip_ioctl($%p, $%p, $%p, $%p)",
2229 	    (void *)rgep, (void *)wq, (void *)mp, (void *)iocp));
2230 
2231 	ASSERT(mutex_owned(rgep->genlock));
2232 
2233 	cmd = iocp->ioc_cmd;
2234 	switch (cmd) {
2235 	default:
2236 		/* NOTREACHED */
2237 		rge_error(rgep, "rge_chip_ioctl: invalid cmd 0x%x", cmd);
2238 		return (IOC_INVAL);
2239 
2240 	case RGE_DIAG:
2241 	case RGE_PEEK:
2242 	case RGE_POKE:
2243 	case RGE_PHY_RESET:
2244 	case RGE_SOFT_RESET:
2245 	case RGE_HARD_RESET:
2246 #if	RGE_DEBUGGING || RGE_DO_PPIO
2247 		return (rge_diag_ioctl(rgep, cmd, mp, iocp));
2248 #else
2249 		return (IOC_INVAL);
2250 #endif	/* RGE_DEBUGGING || RGE_DO_PPIO */
2251 
2252 	case RGE_MII_READ:
2253 	case RGE_MII_WRITE:
2254 		return (rge_mii_ioctl(rgep, cmd, mp, iocp));
2255 
2256 	}
2257 
2258 	/* NOTREACHED */
2259 }
2260