1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 
28 
29 
30 /*
31  * SiliconImage 3124/3132 sata controller driver
32  */
33 
34 /*
35  *
36  *
37  * 			Few Design notes
38  *
39  *
40  * I. General notes
41  *
42  * Even though the driver is named as si3124, it is actually meant to
43  * work with both 3124 and 3132 controllers.
44  *
45  * The current file si3124.c is the main driver code. The si3124reg.h
46  * holds the register definitions from SiI 3124/3132 data sheets. The
47  * si3124var.h holds the driver specific definitions which are not
48  * directly derived from data sheets.
49  *
50  *
51  * II. Data structures
52  *
53  * si_ctl_state_t: This holds the driver private information for each
54  * 	controller instance. Each of the sata ports within a single
55  *	controller are represented by si_port_state_t. The
56  *	sictl_global_acc_handle and sictl_global_address map the
57  *	controller-wide global register space and are derived from pci
58  *	BAR 0. The sictl_port_acc_handle and sictl_port_addr map the
59  *	per-port register space and are derived from pci BAR 1.
60  *
61  * si_port_state_t: This holds the per port information. The siport_mutex
62  *	holds the per port mutex. The siport_pending_tags is the bit mask of
63  * 	commands posted to controller. The siport_slot_pkts[] holds the
64  * 	pending sata packets. The siport_port_type holds the device type
65  *	connected directly to the port while the siport_portmult_state
66  * 	holds the similar information for the devices behind a port
67  *	multiplier.
68  *
69  * si_prb_t: This contains the PRB being posted to the controller.
70  *	The two SGE entries contained within si_prb_t itself are not
71  *	really used to hold any scatter gather entries. The scatter gather
72  *	list is maintained external to PRB and is linked from one
73  * 	of the contained SGEs inside the PRB. For atapi devices, the
74  *	first contained SGE holds the PACKET and second contained
75  *	SGE holds the link to an external SGT. For non-atapi devices,
76  *	the first contained SGE works as link to external SGT while
77  *	second SGE is blank.
78  *
79  * external SGT tables: The external SGT tables pointed to from
80  *	within si_prb_t are actually abstracted as si_sgblock_t. Each
81  *	si_sgblock_t contains SI_MAX_SGT_TABLES_PER_PRB number of
82  *	SGT tables linked in a chain. Currently this max value of
83  *	SGT tables per block is hard coded as 10 which translates
84  *	to a maximum of 31 dma cookies per single dma transfer.
85  *
86  *
87  * III. Driver operation
88  *
89  * Command Issuing: We use the "indirect method of command issuance". The
90  *	PRB contains the command [and atapi PACKET] and a link to the
91  *	external SGT chain. We write the physical address of the PRB into
92  *	command activation register. There are 31 command slots for
93  *	each port. After posting a command, we remember the posted slot &
94  *	the sata packet in siport_pending_tags & siport_slot_pkts[]
95  *	respectively.
96  *
97  * Command completion: On a successful completion, intr_command_complete()
98  * 	receives the control. The slot_status register holds the outstanding
99  *	commands. Any reading of slot_status register automatically clears
100  *	the interrupt. By comparing the slot_status register contents with
101  *	per port siport_pending_tags, we determine which of the previously
102  *	posted commands have finished.
103  *
104  * Timeout handling: Every 5 seconds, the watchdog handler scans thru the
105  * 	pending packets. The satapkt->satapkt_hba_driver_private field is
106  * 	overloaded with the count of watchdog cycles a packet has survived.
107  *	If a packet has not completed within satapkt->satapkt_time, it is
108  *	failed with error code of SATA_PKT_TIMEOUT. There is one watchdog
109  *	handler running for each instance of controller.
110  *
111  * Error handling: For 3124, whenever any single command has encountered
112  *	an error, the whole port execution completely stalls; there is no
113  *	way of canceling or aborting the particular failed command. If
114  * 	the port is connected to a port multiplier, we can however RESUME
115  *	other non-error devices connected to the port multiplier.
116  *	The only way to recover the failed commands is to either initialize
117  *	the port or reset the port/device. Both port initialize and reset
118  *	operations result in discarding any of pending commands on the port.
119  *	All such discarded commands are sent up to framework with PKT_RESET
120  *	satapkt_reason. The assumption is that framework [and sd] would
121  *	retry these commands again. The failed command itself however is
122  *	sent up with PKT_DEV_ERROR.
123  *
124  *	Here is the implementation strategy based on SiliconImage email
125  *	regarding how they handle the errors for their Windows driver:
126  *
127  *	  a) for DEVICEERROR:
128  *		If the port is connected to port multiplier, then
129  *		 1) Resume the port
130  *		 2) Wait for all the non-failed commands to complete
131  *		 3) Perform a Port Initialize
132  *
133  *		If the port is not connected to port multiplier, issue
134  *		a Port Initialize.
135  *
136  *	  b) for SDBERROR: [SDBERROR means failed command is an NCQ command]
137  * 		Handle exactly like DEVICEERROR handling.
138  *		After the Port Initialize done, do a Read Log Extended.
139  *
140  *	  c) for SENDFISERROR:
141  *		If the port is connected to port multiplier, then
142  *		 1) Resume the port
143  *		 2) Wait for all the non-failed commands to complete
144  *		 3) Perform a Port Initialize
145  *
146  *		If the port is not connected to port multiplier, issue
147  * 		a Device Reset.
148  *
149  *	  d) for DATAFISERROR:
150  *		If the port was executing an NCQ command, issue a Device
151  *		Reset.
152  *
153  *		Otherwise, follow the same error recovery as DEVICEERROR.
154  *
155  *	  e) for any other error, simply issue a Device Reset.
156  *
157  * 	To synchronize the interactions between various control flows (e.g.
158  *	error recovery, timeout handling, si_poll_timeout, incoming flow
159  *	from framework etc.), the following precautions are taken care of:
160  *		a) During mopping_in_progress, no more commands are
161  *		accepted from the framework.
162  *
163  *		b) While draining the port multiplier commands, we should
164  *		handle the possibility of any of the other waited commands
165  *		failing (possibly with a different error code)
166  *
167  * Atapi handling: For atapi devices, we use the first SGE within the PRB
168  * 	to fill the scsi cdb while the second SGE points to external SGT.
169  *
170  * Queuing: Queue management is achieved external to the driver inside sd.
171  *	Based on sata_hba_tran->qdepth and IDENTIFY data, the framework
172  *	enables or disables the queuing. The qdepth for si3124 is 31
173  *	commands.
174  *
175  * Port Multiplier: Enumeration of port multiplier is handled during the
176  *	controller initialization and also during the a hotplug operation.
177  *	Current logic takes care of situation where a port multiplier
178  *	is hotplugged into a port which had a cdisk connected previously
179  *	and vice versa.
180  *
181  * Register poll timeouts: Currently most of poll timeouts on register
182  *	reads is set to 0.5 seconds except for a value of 10 seconds
183  *	while reading the device signature. [Such a big timeout values
184  *	for device signature were found needed during cold reboots
185  *	for devices behind port multiplier].
186  *
187  *
188  * IV. Known Issues
189  *
190  * 1) Currently the atapi packet length is hard coded to 12 bytes
191  *	This is wrong. The framework should determine it just like they
192  * 	determine ad_cdb_len in legacy atapi.c. It should even reject
193  *	init_pkt() for greater CDB lengths. See atapi.c. Revisit this
194  *	in 2nd phase of framework project.
195  *
196  * 2) Do real REQUEST SENSE command instead of faking for ATAPI case.
197  *
198  */
199 
200 
201 #include <sys/note.h>
202 #include <sys/scsi/scsi.h>
203 #include <sys/pci.h>
204 #include <sys/sata/sata_hba.h>
205 #include <sys/sata/adapters/si3124/si3124reg.h>
206 #include <sys/sata/adapters/si3124/si3124var.h>
207 
208 /*
209  * Function prototypes for driver entry points
210  */
211 static	int si_attach(dev_info_t *, ddi_attach_cmd_t);
212 static	int si_detach(dev_info_t *, ddi_detach_cmd_t);
213 static	int si_getinfo(dev_info_t *, ddi_info_cmd_t, void *, void **);
214 static int si_power(dev_info_t *, int, int);
215 
216 /*
217  * Function prototypes for SATA Framework interfaces
218  */
219 static	int si_register_sata_hba_tran(si_ctl_state_t *);
220 static	int si_unregister_sata_hba_tran(si_ctl_state_t *);
221 
222 static	int si_tran_probe_port(dev_info_t *, sata_device_t *);
223 static	int si_tran_start(dev_info_t *, sata_pkt_t *spkt);
224 static	int si_tran_abort(dev_info_t *, sata_pkt_t *, int);
225 static	int si_tran_reset_dport(dev_info_t *, sata_device_t *);
226 static	int si_tran_hotplug_port_activate(dev_info_t *, sata_device_t *);
227 static	int si_tran_hotplug_port_deactivate(dev_info_t *, sata_device_t *);
228 
229 /*
230  * Local function prototypes
231  */
232 
233 static	int si_alloc_port_state(si_ctl_state_t *, int);
234 static	void si_dealloc_port_state(si_ctl_state_t *, int);
235 static	int si_alloc_sgbpool(si_ctl_state_t *, int);
236 static	void si_dealloc_sgbpool(si_ctl_state_t *, int);
237 static	int si_alloc_prbpool(si_ctl_state_t *, int);
238 static	void si_dealloc_prbpool(si_ctl_state_t *, int);
239 
240 static void si_find_dev_signature(si_ctl_state_t *, si_port_state_t *,
241 						int, int);
242 static void si_poll_cmd(si_ctl_state_t *, si_port_state_t *, int, int,
243 						sata_pkt_t *);
244 static	int si_claim_free_slot(si_ctl_state_t *, si_port_state_t *, int);
245 static	int si_deliver_satapkt(si_ctl_state_t *, si_port_state_t *, int,
246 						sata_pkt_t *);
247 
248 static	int si_initialize_controller(si_ctl_state_t *);
249 static	void si_deinititalize_controller(si_ctl_state_t *);
250 static void si_init_port(si_ctl_state_t *, int);
251 static	int si_enumerate_port_multiplier(si_ctl_state_t *,
252 						si_port_state_t *, int);
253 static int si_read_portmult_reg(si_ctl_state_t *, si_port_state_t *,
254 						int, int, int, uint32_t *);
255 static int si_write_portmult_reg(si_ctl_state_t *, si_port_state_t *,
256 						int, int, int, uint32_t);
257 static void si_set_sense_data(sata_pkt_t *, int);
258 
259 static uint_t si_intr(caddr_t, caddr_t);
260 static int si_intr_command_complete(si_ctl_state_t *,
261 					si_port_state_t *, int);
262 static int si_intr_command_error(si_ctl_state_t *,
263 					si_port_state_t *, int);
264 static void si_error_recovery_DEVICEERROR(si_ctl_state_t *,
265 					si_port_state_t *, int);
266 static void si_error_recovery_SDBERROR(si_ctl_state_t *,
267 					si_port_state_t *, int);
268 static void si_error_recovery_DATAFISERROR(si_ctl_state_t *,
269 					si_port_state_t *, int);
270 static void si_error_recovery_SENDFISERROR(si_ctl_state_t *,
271 					si_port_state_t *, int);
272 static void si_error_recovery_default(si_ctl_state_t *,
273 					si_port_state_t *, int);
274 static uint8_t si_read_log_ext(si_ctl_state_t *,
275 					si_port_state_t *si_portp, int);
276 static void si_log_error_message(si_ctl_state_t *, int, uint32_t);
277 static int si_intr_port_ready(si_ctl_state_t *, si_port_state_t *, int);
278 static int si_intr_pwr_change(si_ctl_state_t *, si_port_state_t *, int);
279 static int si_intr_phy_ready_change(si_ctl_state_t *, si_port_state_t *, int);
280 static int si_intr_comwake_rcvd(si_ctl_state_t *, si_port_state_t *, int);
281 static int si_intr_unrecognised_fis(si_ctl_state_t *, si_port_state_t *, int);
282 static int si_intr_dev_xchanged(si_ctl_state_t *, si_port_state_t *, int);
283 static int si_intr_decode_err_threshold(si_ctl_state_t *,
284 					si_port_state_t *, int);
285 static int si_intr_crc_err_threshold(si_ctl_state_t *, si_port_state_t *, int);
286 static int si_intr_handshake_err_threshold(si_ctl_state_t *,
287 					si_port_state_t *, int);
288 static int si_intr_set_devbits_notify(si_ctl_state_t *, si_port_state_t *, int);
289 static	void si_handle_attention_raised(si_ctl_state_t *,
290 					si_port_state_t *, int);
291 
292 static	void si_enable_port_interrupts(si_ctl_state_t *, int);
293 static	void si_enable_all_interrupts(si_ctl_state_t *);
294 static	void si_disable_port_interrupts(si_ctl_state_t *, int);
295 static	void si_disable_all_interrupts(si_ctl_state_t *);
296 static 	void fill_dev_sregisters(si_ctl_state_t *, int, sata_device_t *);
297 static 	int si_add_legacy_intrs(si_ctl_state_t *);
298 static 	int si_add_msi_intrs(si_ctl_state_t *);
299 static 	void si_rem_intrs(si_ctl_state_t *);
300 
301 static	int si_reset_dport_wait_till_ready(si_ctl_state_t *,
302 				si_port_state_t *, int, int);
303 static	int si_initialize_port_wait_till_ready(si_ctl_state_t *, int);
304 
305 static void si_timeout_pkts(si_ctl_state_t *, si_port_state_t *, int, uint32_t);
306 static	void si_watchdog_handler(si_ctl_state_t *);
307 
308 static	void si_log(si_ctl_state_t *, uint_t, char *, ...);
309 
310 static	void si_copy_out_regs(sata_cmd_t *, fis_reg_h2d_t *);
311 
312 /*
313  * DMA attributes for the data buffer
314  */
315 
316 static ddi_dma_attr_t buffer_dma_attr = {
317 	DMA_ATTR_V0,		/* dma_attr_version */
318 	0,			/* dma_attr_addr_lo: lowest bus address */
319 	0xffffffffffffffffull,	/* dma_attr_addr_hi: highest bus address */
320 	0xffffffffull,		/* dma_attr_count_max i.e. for one cookie */
321 	1,			/* dma_attr_align: single byte aligned */
322 	1,			/* dma_attr_burstsizes */
323 	1,			/* dma_attr_minxfer */
324 	0xffffffffull,		/* dma_attr_maxxfer i.e. includes all cookies */
325 	0xffffffffull,		/* dma_attr_seg */
326 	SI_MAX_SGL_LENGTH,	/* dma_attr_sgllen */
327 	512,			/* dma_attr_granular */
328 	0,			/* dma_attr_flags */
329 };
330 
331 /*
332  * DMA attributes for incore RPB and SGT pool
333  */
334 static ddi_dma_attr_t prb_sgt_dma_attr = {
335 	DMA_ATTR_V0,		/* dma_attr_version */
336 	0,			/* dma_attr_addr_lo: lowest bus address */
337 	0xffffffffffffffffull,	/* dma_attr_addr_hi: highest bus address */
338 	0xffffffffull,		/* dma_attr_count_max i.e. for one cookie */
339 	8,			/* dma_attr_align: quad word aligned */
340 	1,			/* dma_attr_burstsizes */
341 	1,			/* dma_attr_minxfer */
342 	0xffffffffull,		/* dma_attr_maxxfer i.e. includes all cookies */
343 	0xffffffffull,		/* dma_attr_seg */
344 	1,			/* dma_attr_sgllen */
345 	1,			/* dma_attr_granular */
346 	0,			/* dma_attr_flags */
347 };
348 
349 /* Device access attributes */
350 static ddi_device_acc_attr_t accattr = {
351     DDI_DEVICE_ATTR_V0,
352     DDI_STRUCTURE_LE_ACC,
353     DDI_STRICTORDER_ACC
354 };
355 
356 
357 static struct dev_ops sictl_dev_ops = {
358 	DEVO_REV,		/* devo_rev */
359 	0,			/* refcnt  */
360 	si_getinfo,		/* info */
361 	nulldev,		/* identify */
362 	nulldev,		/* probe */
363 	si_attach,		/* attach */
364 	si_detach,		/* detach */
365 	nodev,			/* no reset */
366 	(struct cb_ops *)0,	/* driver operations */
367 	NULL,			/* bus operations */
368 	si_power,		/* power */
369 	ddi_quiesce_not_supported,	/* devo_quiesce */
370 };
371 
372 static sata_tran_hotplug_ops_t si_tran_hotplug_ops = {
373 	SATA_TRAN_HOTPLUG_OPS_REV_1,
374 	si_tran_hotplug_port_activate,
375 	si_tran_hotplug_port_deactivate
376 };
377 
378 
379 static int si_watchdog_timeout = 5; /* 5 seconds */
380 static int si_watchdog_tick;
381 
382 extern struct mod_ops mod_driverops;
383 
384 static  struct modldrv modldrv = {
385 	&mod_driverops,	/* driverops */
386 	"si3124 driver",
387 	&sictl_dev_ops,	/* driver ops */
388 };
389 
390 static  struct modlinkage modlinkage = {
391 	MODREV_1,
392 	&modldrv,
393 	NULL
394 };
395 
396 
397 /* The following are needed for si_log() */
398 static kmutex_t si_log_mutex;
399 static char si_log_buf[512];
400 uint32_t si_debug_flags = 0x0;
401 static int is_msi_supported = 0;
402 
403 /* Opaque state pointer to be initialized by ddi_soft_state_init() */
404 static void *si_statep	= NULL;
405 
406 /*
407  *  si3124 module initialization.
408  *
409  */
410 int
411 _init(void)
412 {
413 	int	error;
414 
415 	error = ddi_soft_state_init(&si_statep, sizeof (si_ctl_state_t), 0);
416 	if (error != 0) {
417 		return (error);
418 	}
419 
420 	mutex_init(&si_log_mutex, NULL, MUTEX_DRIVER, NULL);
421 
422 	if ((error = sata_hba_init(&modlinkage)) != 0) {
423 		mutex_destroy(&si_log_mutex);
424 		ddi_soft_state_fini(&si_statep);
425 		return (error);
426 	}
427 
428 	error = mod_install(&modlinkage);
429 	if (error != 0) {
430 		sata_hba_fini(&modlinkage);
431 		mutex_destroy(&si_log_mutex);
432 		ddi_soft_state_fini(&si_statep);
433 		return (error);
434 	}
435 
436 	si_watchdog_tick = drv_usectohz((clock_t)si_watchdog_timeout * 1000000);
437 
438 	return (error);
439 }
440 
441 /*
442  * si3124 module uninitialize.
443  *
444  */
445 int
446 _fini(void)
447 {
448 	int	error;
449 
450 	error = mod_remove(&modlinkage);
451 	if (error != 0) {
452 		return (error);
453 	}
454 
455 	/* Remove the resources allocated in _init(). */
456 	sata_hba_fini(&modlinkage);
457 	mutex_destroy(&si_log_mutex);
458 	ddi_soft_state_fini(&si_statep);
459 
460 	return (error);
461 }
462 
463 /*
464  * _info entry point
465  *
466  */
467 int
468 _info(struct modinfo *modinfop)
469 {
470 	return (mod_info(&modlinkage, modinfop));
471 }
472 
473 
474 /*
475  * The attach entry point for dev_ops.
476  *
477  * We initialize the controller, initialize the soft state, register
478  * the interrupt handlers and then register ourselves with sata framework.
479  */
480 static int
481 si_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
482 {
483 	si_ctl_state_t *si_ctlp;
484 	int instance;
485 	int status;
486 	int attach_state;
487 	int intr_types;
488 	sata_device_t sdevice;
489 
490 	SIDBG0(SIDBG_INIT|SIDBG_ENTRY, NULL, "si_attach enter");
491 	instance = ddi_get_instance(dip);
492 	attach_state = ATTACH_PROGRESS_NONE;
493 
494 	switch (cmd) {
495 
496 	case DDI_ATTACH:
497 
498 		/* Allocate si_softc. */
499 		status = ddi_soft_state_zalloc(si_statep, instance);
500 		if (status != DDI_SUCCESS) {
501 			goto err_out;
502 		}
503 
504 		si_ctlp = ddi_get_soft_state(si_statep, instance);
505 		si_ctlp->sictl_devinfop = dip;
506 
507 		attach_state |= ATTACH_PROGRESS_STATEP_ALLOC;
508 
509 		/* Configure pci config space handle. */
510 		status = pci_config_setup(dip, &si_ctlp->sictl_pci_conf_handle);
511 		if (status != DDI_SUCCESS) {
512 			goto err_out;
513 		}
514 
515 		si_ctlp->sictl_devid =
516 		    pci_config_get16(si_ctlp->sictl_pci_conf_handle,
517 		    PCI_CONF_DEVID);
518 		if (si_ctlp->sictl_devid == SI3132_DEV_ID) {
519 			si_ctlp->sictl_num_ports = SI3132_MAX_PORTS;
520 		} else {
521 			si_ctlp->sictl_num_ports = SI3124_MAX_PORTS;
522 		}
523 
524 		attach_state |= ATTACH_PROGRESS_CONF_HANDLE;
525 
526 		/* Now map the bar0; the bar0 contains the global registers. */
527 		status = ddi_regs_map_setup(dip,
528 		    PCI_BAR0,
529 		    (caddr_t *)&si_ctlp->sictl_global_addr,
530 		    0,
531 		    0,
532 		    &accattr,
533 		    &si_ctlp->sictl_global_acc_handle);
534 		if (status != DDI_SUCCESS) {
535 			goto err_out;
536 		}
537 
538 		attach_state |= ATTACH_PROGRESS_BAR0_MAP;
539 
540 		/* Now map bar1; the bar1 contains the port registers. */
541 		status = ddi_regs_map_setup(dip,
542 		    PCI_BAR1,
543 		    (caddr_t *)&si_ctlp->sictl_port_addr,
544 		    0,
545 		    0,
546 		    &accattr,
547 		    &si_ctlp->sictl_port_acc_handle);
548 		if (status != DDI_SUCCESS) {
549 			goto err_out;
550 		}
551 
552 		attach_state |= ATTACH_PROGRESS_BAR1_MAP;
553 
554 		/*
555 		 * Disable all the interrupts before adding interrupt
556 		 * handler(s). The interrupts shall be re-enabled selectively
557 		 * out of si_init_port().
558 		 */
559 		si_disable_all_interrupts(si_ctlp);
560 
561 		/* Get supported interrupt types. */
562 		if (ddi_intr_get_supported_types(dip, &intr_types)
563 		    != DDI_SUCCESS) {
564 			SIDBG0(SIDBG_INIT, NULL,
565 			    "ddi_intr_get_supported_types failed");
566 			goto err_out;
567 		}
568 
569 		SIDBG1(SIDBG_INIT, NULL,
570 		    "ddi_intr_get_supported_types() returned: 0x%x",
571 		    intr_types);
572 
573 		if (is_msi_supported && (intr_types & DDI_INTR_TYPE_MSI)) {
574 			SIDBG0(SIDBG_INIT, NULL, "Using MSI interrupt type");
575 
576 			/*
577 			 * Try MSI first, but fall back to legacy if MSI
578 			 * attach fails.
579 			 */
580 			if (si_add_msi_intrs(si_ctlp) == DDI_SUCCESS) {
581 				si_ctlp->sictl_intr_type = DDI_INTR_TYPE_MSI;
582 				attach_state |= ATTACH_PROGRESS_INTR_ADDED;
583 				SIDBG0(SIDBG_INIT, NULL,
584 				    "MSI interrupt setup done");
585 			} else {
586 				SIDBG0(SIDBG_INIT, NULL,
587 				    "MSI registration failed "
588 				    "will try Legacy interrupts");
589 			}
590 		}
591 
592 		if (!(attach_state & ATTACH_PROGRESS_INTR_ADDED) &&
593 		    (intr_types & DDI_INTR_TYPE_FIXED)) {
594 			/*
595 			 * Either the MSI interrupt setup has failed or only
596 			 * fixed interrupts are available on the system.
597 			 */
598 			SIDBG0(SIDBG_INIT, NULL, "Using Legacy interrupt type");
599 
600 			if (si_add_legacy_intrs(si_ctlp) == DDI_SUCCESS) {
601 				si_ctlp->sictl_intr_type = DDI_INTR_TYPE_FIXED;
602 				attach_state |= ATTACH_PROGRESS_INTR_ADDED;
603 				SIDBG0(SIDBG_INIT, NULL,
604 				    "Legacy interrupt setup done");
605 			} else {
606 				SIDBG0(SIDBG_INIT, NULL,
607 				    "legacy interrupt setup failed");
608 				goto err_out;
609 			}
610 		}
611 
612 		if (!(attach_state & ATTACH_PROGRESS_INTR_ADDED)) {
613 			SIDBG0(SIDBG_INIT, NULL,
614 			    "si3124: No interrupts registered");
615 			goto err_out;
616 		}
617 
618 
619 		/* Initialize the mutex. */
620 		mutex_init(&si_ctlp->sictl_mutex, NULL, MUTEX_DRIVER,
621 		    (void *)(uintptr_t)si_ctlp->sictl_intr_pri);
622 
623 		attach_state |= ATTACH_PROGRESS_MUTEX_INIT;
624 
625 		/*
626 		 * Initialize the controller and driver core.
627 		 */
628 		si_ctlp->sictl_flags |= SI_ATTACH;
629 		status = si_initialize_controller(si_ctlp);
630 		si_ctlp->sictl_flags &= ~SI_ATTACH;
631 		if (status) {
632 			goto err_out;
633 		}
634 
635 		attach_state |= ATTACH_PROGRESS_HW_INIT;
636 
637 		if (si_register_sata_hba_tran(si_ctlp)) {
638 			SIDBG0(SIDBG_INIT, NULL,
639 			    "si3124: setting sata hba tran failed");
640 			goto err_out;
641 		}
642 
643 		si_ctlp->sictl_timeout_id = timeout(
644 		    (void (*)(void *))si_watchdog_handler,
645 		    (caddr_t)si_ctlp, si_watchdog_tick);
646 
647 		si_ctlp->sictl_power_level = PM_LEVEL_D0;
648 
649 		return (DDI_SUCCESS);
650 
651 	case DDI_RESUME:
652 		si_ctlp = ddi_get_soft_state(si_statep, instance);
653 
654 		status = si_initialize_controller(si_ctlp);
655 		if (status) {
656 			return (DDI_FAILURE);
657 		}
658 
659 		si_ctlp->sictl_timeout_id = timeout(
660 		    (void (*)(void *))si_watchdog_handler,
661 		    (caddr_t)si_ctlp, si_watchdog_tick);
662 
663 		(void) pm_power_has_changed(dip, 0, PM_LEVEL_D0);
664 
665 		/* Notify SATA framework about RESUME. */
666 		if (sata_hba_attach(si_ctlp->sictl_devinfop,
667 		    si_ctlp->sictl_sata_hba_tran,
668 		    DDI_RESUME) != DDI_SUCCESS) {
669 			return (DDI_FAILURE);
670 		}
671 
672 		/*
673 		 * Notify the "framework" that it should reprobe ports to see
674 		 * if any device got changed while suspended.
675 		 */
676 		bzero((void *)&sdevice, sizeof (sata_device_t));
677 		sata_hba_event_notify(dip, &sdevice,
678 		    SATA_EVNT_PWR_LEVEL_CHANGED);
679 		SIDBG0(SIDBG_INIT|SIDBG_EVENT, si_ctlp,
680 		    "sending event up: SATA_EVNT_PWR_LEVEL_CHANGED");
681 
682 		(void) pm_idle_component(si_ctlp->sictl_devinfop, 0);
683 
684 		si_ctlp->sictl_power_level = PM_LEVEL_D0;
685 
686 		return (DDI_SUCCESS);
687 
688 	default:
689 		return (DDI_FAILURE);
690 
691 	}
692 
693 err_out:
694 	if (attach_state & ATTACH_PROGRESS_HW_INIT) {
695 		si_ctlp->sictl_flags |= SI_DETACH;
696 		/* We want to set SI_DETACH to deallocate all memory */
697 		si_deinititalize_controller(si_ctlp);
698 		si_ctlp->sictl_flags &= ~SI_DETACH;
699 	}
700 
701 	if (attach_state & ATTACH_PROGRESS_MUTEX_INIT) {
702 		mutex_destroy(&si_ctlp->sictl_mutex);
703 	}
704 
705 	if (attach_state & ATTACH_PROGRESS_INTR_ADDED) {
706 		si_rem_intrs(si_ctlp);
707 	}
708 
709 	if (attach_state & ATTACH_PROGRESS_BAR1_MAP) {
710 		ddi_regs_map_free(&si_ctlp->sictl_port_acc_handle);
711 	}
712 
713 	if (attach_state & ATTACH_PROGRESS_BAR0_MAP) {
714 		ddi_regs_map_free(&si_ctlp->sictl_global_acc_handle);
715 	}
716 
717 	if (attach_state & ATTACH_PROGRESS_CONF_HANDLE) {
718 		pci_config_teardown(&si_ctlp->sictl_pci_conf_handle);
719 	}
720 
721 	if (attach_state & ATTACH_PROGRESS_STATEP_ALLOC) {
722 		ddi_soft_state_free(si_statep, instance);
723 	}
724 
725 	return (DDI_FAILURE);
726 }
727 
728 
729 /*
730  * The detach entry point for dev_ops.
731  *
732  * We undo the things we did in si_attach().
733  */
734 static int
735 si_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
736 {
737 	si_ctl_state_t *si_ctlp;
738 	int instance;
739 
740 	SIDBG0(SIDBG_INIT|SIDBG_ENTRY, NULL, "si_detach enter");
741 	instance = ddi_get_instance(dip);
742 	si_ctlp = ddi_get_soft_state(si_statep, instance);
743 
744 	switch (cmd) {
745 
746 	case DDI_DETACH:
747 
748 		mutex_enter(&si_ctlp->sictl_mutex);
749 
750 		/* disable the interrupts for an uninterrupted detach */
751 		si_disable_all_interrupts(si_ctlp);
752 
753 		mutex_exit(&si_ctlp->sictl_mutex);
754 		/* unregister from the sata framework. */
755 		if (si_unregister_sata_hba_tran(si_ctlp) != SI_SUCCESS) {
756 			si_enable_all_interrupts(si_ctlp);
757 			return (DDI_FAILURE);
758 		}
759 		mutex_enter(&si_ctlp->sictl_mutex);
760 
761 		/* now cancel the timeout handler. */
762 		si_ctlp->sictl_flags |= SI_NO_TIMEOUTS;
763 		(void) untimeout(si_ctlp->sictl_timeout_id);
764 		si_ctlp->sictl_flags &= ~SI_NO_TIMEOUTS;
765 
766 		/* deinitialize the controller. */
767 		si_ctlp->sictl_flags |= SI_DETACH;
768 		si_deinititalize_controller(si_ctlp);
769 		si_ctlp->sictl_flags &= ~SI_DETACH;
770 
771 		/* destroy any mutexes */
772 		mutex_exit(&si_ctlp->sictl_mutex);
773 		mutex_destroy(&si_ctlp->sictl_mutex);
774 
775 		/* remove the interrupts */
776 		si_rem_intrs(si_ctlp);
777 
778 		/* remove the reg maps. */
779 		ddi_regs_map_free(&si_ctlp->sictl_port_acc_handle);
780 		ddi_regs_map_free(&si_ctlp->sictl_global_acc_handle);
781 		pci_config_teardown(&si_ctlp->sictl_pci_conf_handle);
782 
783 		/* free the soft state. */
784 		ddi_soft_state_free(si_statep, instance);
785 
786 		return (DDI_SUCCESS);
787 
788 	case DDI_SUSPEND:
789 		/* Inform SATA framework */
790 		if (sata_hba_detach(dip, cmd) != DDI_SUCCESS) {
791 			return (DDI_FAILURE);
792 		}
793 
794 		mutex_enter(&si_ctlp->sictl_mutex);
795 
796 		/*
797 		 * Device needs to be at full power in case it is needed to
798 		 * handle dump(9e) to save CPR state after DDI_SUSPEND
799 		 * completes.  This is OK since presumably power will be
800 		 * removed anyways.  No outstanding transactions should be
801 		 * on the controller since the children are already quiesed.
802 		 *
803 		 * If any ioctls/cfgadm support is added that touches
804 		 * hardware, those entry points will need to check for
805 		 * suspend and then block or return errors until resume.
806 		 *
807 		 */
808 		if (pm_busy_component(si_ctlp->sictl_devinfop, 0) ==
809 		    DDI_SUCCESS) {
810 			mutex_exit(&si_ctlp->sictl_mutex);
811 			(void) pm_raise_power(si_ctlp->sictl_devinfop, 0,
812 			    PM_LEVEL_D0);
813 			mutex_enter(&si_ctlp->sictl_mutex);
814 		}
815 
816 		si_deinititalize_controller(si_ctlp);
817 
818 		si_ctlp->sictl_flags |= SI_NO_TIMEOUTS;
819 		(void) untimeout(si_ctlp->sictl_timeout_id);
820 		si_ctlp->sictl_flags &= ~SI_NO_TIMEOUTS;
821 
822 		SIDBG1(SIDBG_POWER, NULL, "si3124%d: DDI_SUSPEND", instance);
823 
824 		mutex_exit(&si_ctlp->sictl_mutex);
825 
826 		return (DDI_SUCCESS);
827 
828 	default:
829 		return (DDI_FAILURE);
830 
831 	}
832 
833 }
834 
835 static int
836 si_power(dev_info_t *dip, int component, int level)
837 {
838 #ifndef __lock_lint
839 	_NOTE(ARGUNUSED(component))
840 #endif /* __lock_lint */
841 
842 	si_ctl_state_t *si_ctlp;
843 	int instance = ddi_get_instance(dip);
844 	int rval = DDI_SUCCESS;
845 	int old_level;
846 	sata_device_t sdevice;
847 
848 	si_ctlp = ddi_get_soft_state(si_statep, instance);
849 
850 	if (si_ctlp == NULL) {
851 		return (DDI_FAILURE);
852 	}
853 
854 	SIDBG0(SIDBG_ENTRY, NULL, "si_power enter");
855 
856 	mutex_enter(&si_ctlp->sictl_mutex);
857 	old_level = si_ctlp->sictl_power_level;
858 
859 	switch (level) {
860 	case PM_LEVEL_D0: /* fully on */
861 		pci_config_put16(si_ctlp->sictl_pci_conf_handle,
862 		    PM_CSR(si_ctlp->sictl_devid), PCI_PMCSR_D0);
863 #ifndef __lock_lint
864 		delay(drv_usectohz(10000));
865 #endif /* __lock_lint */
866 		si_ctlp->sictl_power_level = PM_LEVEL_D0;
867 		(void) pci_restore_config_regs(si_ctlp->sictl_devinfop);
868 
869 		SIDBG2(SIDBG_POWER, si_ctlp,
870 		    "si3124%d: turning power ON. old level %d",
871 		    instance, old_level);
872 		/*
873 		 * If called from attach, just raise device power,
874 		 * restore config registers (if they were saved
875 		 * from a previous detach that lowered power),
876 		 * and exit.
877 		 */
878 		if (si_ctlp->sictl_flags & SI_ATTACH)
879 			break;
880 
881 		mutex_exit(&si_ctlp->sictl_mutex);
882 		(void) si_initialize_controller(si_ctlp);
883 		mutex_enter(&si_ctlp->sictl_mutex);
884 
885 		si_ctlp->sictl_timeout_id = timeout(
886 		    (void (*)(void *))si_watchdog_handler,
887 		    (caddr_t)si_ctlp, si_watchdog_tick);
888 
889 		bzero((void *)&sdevice, sizeof (sata_device_t));
890 		sata_hba_event_notify(
891 		    si_ctlp->sictl_sata_hba_tran->sata_tran_hba_dip,
892 		    &sdevice, SATA_EVNT_PWR_LEVEL_CHANGED);
893 		SIDBG0(SIDBG_EVENT|SIDBG_POWER, si_ctlp,
894 		    "sending event up: PWR_LEVEL_CHANGED");
895 
896 		break;
897 
898 	case PM_LEVEL_D3: /* fully off */
899 		if (!(si_ctlp->sictl_flags & SI_DETACH)) {
900 			si_ctlp->sictl_flags |= SI_NO_TIMEOUTS;
901 			(void) untimeout(si_ctlp->sictl_timeout_id);
902 			si_ctlp->sictl_flags &= ~SI_NO_TIMEOUTS;
903 
904 			si_deinititalize_controller(si_ctlp);
905 
906 			si_ctlp->sictl_power_level = PM_LEVEL_D3;
907 		}
908 
909 		(void) pci_save_config_regs(si_ctlp->sictl_devinfop);
910 
911 		pci_config_put16(si_ctlp->sictl_pci_conf_handle,
912 		    PM_CSR(si_ctlp->sictl_devid), PCI_PMCSR_D3HOT);
913 
914 		SIDBG2(SIDBG_POWER, NULL, "si3124%d: turning power OFF. "
915 		    "old level %d", instance, old_level);
916 
917 		break;
918 
919 	default:
920 		SIDBG2(SIDBG_POWER, NULL, "si3124%d: turning power OFF. "
921 		    "old level %d", instance, old_level);
922 		rval = DDI_FAILURE;
923 		break;
924 	}
925 
926 	mutex_exit(&si_ctlp->sictl_mutex);
927 
928 	return (rval);
929 }
930 
931 
932 /*
933  * The info entry point for dev_ops.
934  *
935  */
936 static int
937 si_getinfo(dev_info_t *dip, ddi_info_cmd_t infocmd,
938 		void *arg,
939 		void **result)
940 {
941 #ifndef __lock_lint
942 	_NOTE(ARGUNUSED(dip))
943 #endif /* __lock_lint */
944 	si_ctl_state_t *si_ctlp;
945 	int instance;
946 	dev_t dev;
947 
948 	dev = (dev_t)arg;
949 	instance = getminor(dev);
950 
951 	switch (infocmd) {
952 		case DDI_INFO_DEVT2DEVINFO:
953 			si_ctlp = ddi_get_soft_state(si_statep,  instance);
954 			if (si_ctlp != NULL) {
955 				*result = si_ctlp->sictl_devinfop;
956 				return (DDI_SUCCESS);
957 			} else {
958 				*result = NULL;
959 				return (DDI_FAILURE);
960 			}
961 		case DDI_INFO_DEVT2INSTANCE:
962 			*(int *)result = instance;
963 			break;
964 		default:
965 			break;
966 	}
967 	return (DDI_SUCCESS);
968 }
969 
970 
971 
972 /*
973  * Registers the si3124 with sata framework.
974  */
975 static int
976 si_register_sata_hba_tran(si_ctl_state_t *si_ctlp)
977 {
978 	struct 	sata_hba_tran	*sata_hba_tran;
979 
980 	SIDBG0(SIDBG_INIT|SIDBG_ENTRY, si_ctlp,
981 	    "si_register_sata_hba_tran entry");
982 
983 	mutex_enter(&si_ctlp->sictl_mutex);
984 
985 	/* Allocate memory for the sata_hba_tran  */
986 	sata_hba_tran = kmem_zalloc(sizeof (sata_hba_tran_t), KM_SLEEP);
987 
988 	sata_hba_tran->sata_tran_hba_rev = SATA_TRAN_HBA_REV;
989 	sata_hba_tran->sata_tran_hba_dip = si_ctlp->sictl_devinfop;
990 	sata_hba_tran->sata_tran_hba_dma_attr = &buffer_dma_attr;
991 
992 	sata_hba_tran->sata_tran_hba_num_cports = si_ctlp->sictl_num_ports;
993 	sata_hba_tran->sata_tran_hba_features_support = 0;
994 	sata_hba_tran->sata_tran_hba_qdepth = SI_NUM_SLOTS;
995 
996 	sata_hba_tran->sata_tran_probe_port = si_tran_probe_port;
997 	sata_hba_tran->sata_tran_start = si_tran_start;
998 	sata_hba_tran->sata_tran_abort = si_tran_abort;
999 	sata_hba_tran->sata_tran_reset_dport = si_tran_reset_dport;
1000 	sata_hba_tran->sata_tran_selftest = NULL;
1001 	sata_hba_tran->sata_tran_hotplug_ops = &si_tran_hotplug_ops;
1002 	sata_hba_tran->sata_tran_pwrmgt_ops = NULL;
1003 	sata_hba_tran->sata_tran_ioctl = NULL;
1004 	mutex_exit(&si_ctlp->sictl_mutex);
1005 
1006 	/* Attach it to SATA framework */
1007 	if (sata_hba_attach(si_ctlp->sictl_devinfop, sata_hba_tran, DDI_ATTACH)
1008 	    != DDI_SUCCESS) {
1009 		kmem_free((void *)sata_hba_tran, sizeof (sata_hba_tran_t));
1010 		return (SI_FAILURE);
1011 	}
1012 
1013 	mutex_enter(&si_ctlp->sictl_mutex);
1014 	si_ctlp->sictl_sata_hba_tran = sata_hba_tran;
1015 	mutex_exit(&si_ctlp->sictl_mutex);
1016 
1017 	return (SI_SUCCESS);
1018 }
1019 
1020 
1021 /*
1022  * Unregisters the si3124 with sata framework.
1023  */
1024 static int
1025 si_unregister_sata_hba_tran(si_ctl_state_t *si_ctlp)
1026 {
1027 
1028 	/* Detach from the SATA framework. */
1029 	if (sata_hba_detach(si_ctlp->sictl_devinfop, DDI_DETACH) !=
1030 	    DDI_SUCCESS) {
1031 		return (SI_FAILURE);
1032 	}
1033 
1034 	/* Deallocate sata_hba_tran. */
1035 	kmem_free((void *)si_ctlp->sictl_sata_hba_tran,
1036 	    sizeof (sata_hba_tran_t));
1037 
1038 	si_ctlp->sictl_sata_hba_tran = NULL;
1039 
1040 	return (SI_SUCCESS);
1041 }
1042 
1043 /*
1044  * Called by sata framework to probe a port. We return the
1045  * cached information from a previous hardware probe.
1046  *
1047  * The actual hardware probing itself was done either from within
1048  * si_initialize_controller() during the driver attach or
1049  * from a phy ready change interrupt handler.
1050  */
1051 static int
1052 si_tran_probe_port(dev_info_t *dip, sata_device_t *sd)
1053 {
1054 
1055 	si_ctl_state_t	*si_ctlp;
1056 	uint8_t cport = sd->satadev_addr.cport;
1057 	uint8_t pmport = sd->satadev_addr.pmport;
1058 	uint8_t qual = sd->satadev_addr.qual;
1059 	uint8_t port_type;
1060 	si_port_state_t *si_portp;
1061 	si_portmult_state_t *si_portmultp;
1062 
1063 	si_ctlp = ddi_get_soft_state(si_statep, ddi_get_instance(dip));
1064 
1065 	SIDBG3(SIDBG_ENTRY, si_ctlp,
1066 	    "si_tran_probe_port: cport: 0x%x, pmport: 0x%x, qual: 0x%x",
1067 	    cport, pmport, qual);
1068 
1069 	if (cport >= SI_MAX_PORTS) {
1070 		sd->satadev_type = SATA_DTYPE_NONE;
1071 		sd->satadev_state = SATA_STATE_UNKNOWN; /* invalid port */
1072 		return (SATA_FAILURE);
1073 	}
1074 
1075 	mutex_enter(&si_ctlp->sictl_mutex);
1076 	si_portp = si_ctlp->sictl_ports[cport];
1077 	mutex_exit(&si_ctlp->sictl_mutex);
1078 	if (si_portp == NULL) {
1079 		sd->satadev_type = SATA_DTYPE_NONE;
1080 		sd->satadev_state = SATA_STATE_UNKNOWN;
1081 		return (SATA_FAILURE);
1082 	}
1083 
1084 	mutex_enter(&si_portp->siport_mutex);
1085 
1086 	if (qual == SATA_ADDR_PMPORT) {
1087 		if (pmport >= si_portp->siport_portmult_state.sipm_num_ports) {
1088 			sd->satadev_type = SATA_DTYPE_NONE;
1089 			sd->satadev_state = SATA_STATE_UNKNOWN;
1090 			mutex_exit(&si_portp->siport_mutex);
1091 			return (SATA_FAILURE);
1092 		} else {
1093 			si_portmultp = 	&si_portp->siport_portmult_state;
1094 			port_type = si_portmultp->sipm_port_type[pmport];
1095 		}
1096 	} else {
1097 		port_type = si_portp->siport_port_type;
1098 	}
1099 
1100 	switch (port_type) {
1101 
1102 	case PORT_TYPE_DISK:
1103 		sd->satadev_type = SATA_DTYPE_ATADISK;
1104 		break;
1105 
1106 	case PORT_TYPE_ATAPI:
1107 		sd->satadev_type = SATA_DTYPE_ATAPICD;
1108 		break;
1109 
1110 	case PORT_TYPE_MULTIPLIER:
1111 		sd->satadev_type = SATA_DTYPE_PMULT;
1112 		sd->satadev_add_info =
1113 		    si_portp->siport_portmult_state.sipm_num_ports;
1114 		break;
1115 
1116 	case PORT_TYPE_UNKNOWN:
1117 		sd->satadev_type = SATA_DTYPE_UNKNOWN;
1118 		break;
1119 
1120 	default:
1121 		/* we don't support any other device types. */
1122 		sd->satadev_type = SATA_DTYPE_NONE;
1123 		break;
1124 	}
1125 	sd->satadev_state = SATA_STATE_READY;
1126 
1127 	if (qual == SATA_ADDR_PMPORT) {
1128 		(void) si_read_portmult_reg(si_ctlp, si_portp, cport,
1129 		    pmport, PSCR_REG0, &sd->satadev_scr.sstatus);
1130 		(void) si_read_portmult_reg(si_ctlp, si_portp, cport,
1131 		    pmport, PSCR_REG1, &sd->satadev_scr.serror);
1132 		(void) si_read_portmult_reg(si_ctlp, si_portp, cport,
1133 		    pmport, PSCR_REG2, &sd->satadev_scr.scontrol);
1134 		(void) si_read_portmult_reg(si_ctlp, si_portp, cport,
1135 		    pmport, PSCR_REG3, &sd->satadev_scr.sactive);
1136 	} else {
1137 		fill_dev_sregisters(si_ctlp, cport, sd);
1138 		if (!(si_portp->siport_active)) {
1139 			/*
1140 			 * Since we are implementing the port deactivation
1141 			 * in software only, we need to fake a valid value
1142 			 * for sstatus when the device is in deactivated state.
1143 			 */
1144 			SSTATUS_SET_DET(sd->satadev_scr.sstatus,
1145 			    SSTATUS_DET_PHYOFFLINE);
1146 			SSTATUS_SET_IPM(sd->satadev_scr.sstatus,
1147 			    SSTATUS_IPM_NODEV_NOPHY);
1148 			sd->satadev_state = SATA_PSTATE_SHUTDOWN;
1149 		}
1150 	}
1151 
1152 	mutex_exit(&si_portp->siport_mutex);
1153 	return (SATA_SUCCESS);
1154 }
1155 
1156 /*
1157  * Called by sata framework to transport a sata packet down stream.
1158  *
1159  * The actual work of building the FIS & transporting it to the hardware
1160  * is done out of the subroutine si_deliver_satapkt().
1161  */
1162 static int
1163 si_tran_start(dev_info_t *dip, sata_pkt_t *spkt)
1164 {
1165 	si_ctl_state_t *si_ctlp;
1166 	uint8_t	cport;
1167 	si_port_state_t *si_portp;
1168 	int slot;
1169 
1170 	cport = spkt->satapkt_device.satadev_addr.cport;
1171 	si_ctlp = ddi_get_soft_state(si_statep, ddi_get_instance(dip));
1172 	mutex_enter(&si_ctlp->sictl_mutex);
1173 	si_portp = si_ctlp->sictl_ports[cport];
1174 	mutex_exit(&si_ctlp->sictl_mutex);
1175 
1176 	SIDBG1(SIDBG_ENTRY, si_ctlp,
1177 	    "si_tran_start entry: port: 0x%x", cport);
1178 
1179 	mutex_enter(&si_portp->siport_mutex);
1180 
1181 	if ((si_portp->siport_port_type == PORT_TYPE_NODEV) ||
1182 	    !si_portp->siport_active) {
1183 		/*
1184 		 * si_intr_phy_ready_change() may have rendered it to
1185 		 * PORT_TYPE_NODEV. cfgadm operation may have rendered
1186 		 * it inactive.
1187 		 */
1188 		spkt->satapkt_reason = SATA_PKT_PORT_ERROR;
1189 		fill_dev_sregisters(si_ctlp, cport, &spkt->satapkt_device);
1190 		mutex_exit(&si_portp->siport_mutex);
1191 		return (SATA_TRAN_PORT_ERROR);
1192 	}
1193 
1194 	if (spkt->satapkt_cmd.satacmd_flags.sata_clear_dev_reset) {
1195 		si_portp->siport_reset_in_progress = 0;
1196 		SIDBG1(SIDBG_ENTRY, si_ctlp,
1197 		    "si_tran_start clearing the "
1198 		    "reset_in_progress for port: 0x%x", cport);
1199 	}
1200 
1201 	if (si_portp->siport_reset_in_progress &&
1202 	    ! spkt->satapkt_cmd.satacmd_flags.sata_ignore_dev_reset &&
1203 	    ! ddi_in_panic()) {
1204 
1205 		spkt->satapkt_reason = SATA_PKT_BUSY;
1206 		SIDBG1(SIDBG_ERRS, si_ctlp,
1207 		    "si_tran_start returning BUSY while "
1208 		    "reset in progress: port: 0x%x", cport);
1209 		mutex_exit(&si_portp->siport_mutex);
1210 		return (SATA_TRAN_BUSY);
1211 	}
1212 
1213 	if (si_portp->mopping_in_progress) {
1214 		spkt->satapkt_reason = SATA_PKT_BUSY;
1215 		SIDBG1(SIDBG_ERRS, si_ctlp,
1216 		    "si_tran_start returning BUSY while "
1217 		    "mopping in progress: port: 0x%x", cport);
1218 		mutex_exit(&si_portp->siport_mutex);
1219 		return (SATA_TRAN_BUSY);
1220 	}
1221 
1222 	if ((slot = si_deliver_satapkt(si_ctlp, si_portp, cport, spkt))
1223 	    == SI_FAILURE) {
1224 		spkt->satapkt_reason = SATA_PKT_QUEUE_FULL;
1225 		SIDBG1(SIDBG_ERRS, si_ctlp,
1226 		    "si_tran_start returning QUEUE_FULL: port: 0x%x",
1227 		    cport);
1228 		mutex_exit(&si_portp->siport_mutex);
1229 		return (SATA_TRAN_QUEUE_FULL);
1230 	}
1231 
1232 	if (spkt->satapkt_op_mode & (SATA_OPMODE_POLLING|SATA_OPMODE_SYNCH)) {
1233 		/* we need to poll now */
1234 		mutex_exit(&si_portp->siport_mutex);
1235 		si_poll_cmd(si_ctlp, si_portp, cport, slot, spkt);
1236 		mutex_enter(&si_portp->siport_mutex);
1237 	}
1238 
1239 	mutex_exit(&si_portp->siport_mutex);
1240 	return (SATA_TRAN_ACCEPTED);
1241 }
1242 
1243 #define	SENDUP_PACKET(si_portp, satapkt, reason)			\
1244 	if ((satapkt->satapkt_cmd.satacmd_cmd_reg ==			\
1245 					SATAC_WRITE_FPDMA_QUEUED) ||	\
1246 	    (satapkt->satapkt_cmd.satacmd_cmd_reg ==			\
1247 					SATAC_READ_FPDMA_QUEUED)) {	\
1248 		si_portp->siport_pending_ncq_count--;			\
1249 	}								\
1250 	if (satapkt) {							\
1251 		satapkt->satapkt_reason = reason;			\
1252 		/*							\
1253 		 * We set the satapkt_reason in both synch and		\
1254 		 * non-synch cases.					\
1255 		 */							\
1256 	}								\
1257 	if (satapkt &&							\
1258 		!(satapkt->satapkt_op_mode & SATA_OPMODE_SYNCH) &&	\
1259 		satapkt->satapkt_comp) {				\
1260 		mutex_exit(&si_portp->siport_mutex);			\
1261 		(*satapkt->satapkt_comp)(satapkt);			\
1262 		mutex_enter(&si_portp->siport_mutex);			\
1263 	}
1264 
1265 /*
1266  * Mopping is necessitated because of the si3124 hardware limitation.
1267  * The only way to recover from errors or to abort a command is to
1268  * reset the port/device but such a reset also results in throwing
1269  * away all the unfinished pending commands.
1270  *
1271  * A port or device is reset in four scenarios:
1272  *	a) some commands failed with errors
1273  *	b) or we need to timeout some commands
1274  *	c) or we need to abort some commands
1275  *	d) or we need reset the port at the request of sata framework
1276  *
1277  * In all these scenarios, we need to send any pending unfinished
1278  * commands up to sata framework.
1279  *
1280  * Only one mopping process at a time is allowed; this is achieved
1281  * by using siport_mop_mutex.
1282  */
1283 static void
1284 si_mop_commands(si_ctl_state_t *si_ctlp,
1285 		si_port_state_t *si_portp,
1286 		uint8_t	port,
1287 
1288 		uint32_t slot_status,
1289 		uint32_t failed_tags,
1290 		uint32_t timedout_tags,
1291 		uint32_t aborting_tags,
1292 		uint32_t reset_tags)
1293 {
1294 	uint32_t finished_tags, unfinished_tags;
1295 	int tmpslot;
1296 	sata_pkt_t *satapkt;
1297 	si_prb_t *prb;
1298 	uint32_t *prb_word_ptr;
1299 	int i;
1300 
1301 	SIDBG1(SIDBG_ERRS|SIDBG_ENTRY, si_ctlp,
1302 	    "si_mop_commands entered: slot_status: 0x%x",
1303 	    slot_status);
1304 
1305 	SIDBG4(SIDBG_ERRS|SIDBG_ENTRY, si_ctlp,
1306 	    "si_mop_commands: failed_tags: 0x%x, timedout_tags: 0x%x"
1307 	    "aborting_tags: 0x%x, reset_tags: 0x%x",
1308 	    failed_tags,
1309 	    timedout_tags,
1310 	    aborting_tags,
1311 	    reset_tags);
1312 	/*
1313 	 * We could be here for four reasons: abort, reset,
1314 	 * timeout or error handling. Only one such mopping
1315 	 * is allowed at a time.
1316 	 *
1317 	 * Note that we are already holding the main per port
1318 	 * mutex; all we need now is siport_mop_mutex.
1319 	 */
1320 	mutex_enter(&si_portp->siport_mop_mutex);
1321 	mutex_enter(&si_portp->siport_mutex);
1322 
1323 	si_portp->mopping_in_progress = 1;
1324 
1325 	finished_tags =  si_portp->siport_pending_tags &
1326 	    ~slot_status & SI_SLOT_MASK;
1327 
1328 	unfinished_tags = slot_status & SI_SLOT_MASK &
1329 	    ~failed_tags &
1330 	    ~aborting_tags &
1331 	    ~reset_tags &
1332 	    ~timedout_tags;
1333 
1334 	/* Send up the finished_tags with SATA_PKT_COMPLETED. */
1335 	while (finished_tags) {
1336 		tmpslot = ddi_ffs(finished_tags) - 1;
1337 		if (tmpslot == -1) {
1338 			break;
1339 		}
1340 
1341 		satapkt = si_portp->siport_slot_pkts[tmpslot];
1342 		ASSERT(satapkt != NULL);
1343 		prb =  &si_portp->siport_prbpool[tmpslot];
1344 		ASSERT(prb != NULL);
1345 		satapkt->satapkt_cmd.satacmd_status_reg =
1346 		    GET_FIS_COMMAND(prb->prb_fis);
1347 		if (satapkt->satapkt_cmd.satacmd_flags.sata_special_regs)
1348 			si_copy_out_regs(&satapkt->satapkt_cmd, &prb->prb_fis);
1349 
1350 		SIDBG1(SIDBG_ERRS, si_ctlp,
1351 		    "si_mop_commands sending up completed satapkt: %x",
1352 		    satapkt);
1353 
1354 		CLEAR_BIT(si_portp->siport_pending_tags, tmpslot);
1355 		CLEAR_BIT(finished_tags, tmpslot);
1356 		SENDUP_PACKET(si_portp, satapkt, SATA_PKT_COMPLETED);
1357 	}
1358 
1359 	ASSERT(finished_tags == 0);
1360 
1361 	/* Send up failed_tags with SATA_PKT_DEV_ERROR. */
1362 	while (failed_tags) {
1363 		tmpslot = ddi_ffs(failed_tags) - 1;
1364 		if (tmpslot == -1) {
1365 			break;
1366 		}
1367 		SIDBG1(SIDBG_ERRS, si_ctlp, "si3124: si_mop_commands: "
1368 		    "handling failed slot: 0x%x", tmpslot);
1369 
1370 		satapkt = si_portp->siport_slot_pkts[tmpslot];
1371 		ASSERT(satapkt != NULL);
1372 		if (satapkt->satapkt_device.satadev_type ==
1373 		    SATA_DTYPE_ATAPICD) {
1374 			si_set_sense_data(satapkt, SATA_PKT_DEV_ERROR);
1375 		}
1376 
1377 		/*
1378 		 * The LRAM contains the the modified FIS.
1379 		 * Read the modified FIS to obtain the Error & Status.
1380 		 */
1381 		prb =  &(si_portp->siport_prbpool[tmpslot]);
1382 		prb_word_ptr = (uint32_t *)prb;
1383 		for (i = 0; i < (sizeof (si_prb_t)/4); i++) {
1384 			prb_word_ptr[i] = ddi_get32(
1385 			    si_ctlp->sictl_port_acc_handle,
1386 			    (uint32_t *)(PORT_LRAM(si_ctlp, port,
1387 			    tmpslot)+i*4));
1388 		}
1389 
1390 		satapkt->satapkt_cmd.satacmd_status_reg =
1391 		    GET_FIS_COMMAND(prb->prb_fis);
1392 		satapkt->satapkt_cmd.satacmd_error_reg =
1393 		    GET_FIS_FEATURES(prb->prb_fis);
1394 		satapkt->satapkt_cmd.satacmd_sec_count_lsb =
1395 		    GET_FIS_SECTOR_COUNT(prb->prb_fis);
1396 		satapkt->satapkt_cmd.satacmd_lba_low_lsb =
1397 		    GET_FIS_SECTOR(prb->prb_fis);
1398 		satapkt->satapkt_cmd.satacmd_lba_mid_lsb =
1399 		    GET_FIS_CYL_LOW(prb->prb_fis);
1400 		satapkt->satapkt_cmd.satacmd_lba_high_lsb =
1401 		    GET_FIS_CYL_HI(prb->prb_fis);
1402 		satapkt->satapkt_cmd.satacmd_device_reg =
1403 		    GET_FIS_DEV_HEAD(prb->prb_fis);
1404 
1405 		if (satapkt->satapkt_cmd.satacmd_addr_type == ATA_ADDR_LBA48) {
1406 			satapkt->satapkt_cmd.satacmd_sec_count_msb =
1407 			    GET_FIS_SECTOR_COUNT_EXP(prb->prb_fis);
1408 			satapkt->satapkt_cmd.satacmd_lba_low_msb =
1409 			    GET_FIS_SECTOR_EXP(prb->prb_fis);
1410 			satapkt->satapkt_cmd.satacmd_lba_mid_msb =
1411 			    GET_FIS_CYL_LOW_EXP(prb->prb_fis);
1412 			satapkt->satapkt_cmd.satacmd_lba_high_msb =
1413 			    GET_FIS_CYL_HI_EXP(prb->prb_fis);
1414 		}
1415 
1416 		if (satapkt->satapkt_cmd.satacmd_flags.sata_special_regs)
1417 			si_copy_out_regs(&satapkt->satapkt_cmd, &prb->prb_fis);
1418 
1419 		/*
1420 		 * In the case of NCQ command failures, the error is
1421 		 * overwritten by the one obtained from issuing of a
1422 		 * READ LOG EXTENDED command.
1423 		 */
1424 		if (si_portp->siport_err_tags_SDBERROR & (1 << tmpslot)) {
1425 			satapkt->satapkt_cmd.satacmd_error_reg =
1426 			    si_read_log_ext(si_ctlp, si_portp, port);
1427 		}
1428 
1429 		CLEAR_BIT(failed_tags, tmpslot);
1430 		CLEAR_BIT(si_portp->siport_pending_tags, tmpslot);
1431 		SENDUP_PACKET(si_portp, satapkt, SATA_PKT_DEV_ERROR);
1432 	}
1433 
1434 	ASSERT(failed_tags == 0);
1435 
1436 	/* Send up timedout_tags with SATA_PKT_TIMEOUT. */
1437 	while (timedout_tags) {
1438 		tmpslot = ddi_ffs(timedout_tags) - 1;
1439 		if (tmpslot == -1) {
1440 			break;
1441 		}
1442 
1443 		satapkt = si_portp->siport_slot_pkts[tmpslot];
1444 		ASSERT(satapkt != NULL);
1445 		SIDBG1(SIDBG_ERRS, si_ctlp,
1446 		    "si_mop_commands sending "
1447 		    "spkt up with PKT_TIMEOUT: %x",
1448 		    satapkt);
1449 
1450 		CLEAR_BIT(si_portp->siport_pending_tags, tmpslot);
1451 		CLEAR_BIT(timedout_tags, tmpslot);
1452 		SENDUP_PACKET(si_portp, satapkt, SATA_PKT_TIMEOUT);
1453 	}
1454 
1455 	ASSERT(timedout_tags == 0);
1456 
1457 	/* Send up aborting packets with SATA_PKT_ABORTED. */
1458 	while (aborting_tags) {
1459 		tmpslot = ddi_ffs(unfinished_tags) - 1;
1460 		if (tmpslot == -1) {
1461 			break;
1462 		}
1463 
1464 		satapkt = si_portp->siport_slot_pkts[tmpslot];
1465 		ASSERT(satapkt != NULL);
1466 		SIDBG1(SIDBG_ERRS, si_ctlp,
1467 		    "si_mop_commands aborting spkt: %x",
1468 		    satapkt);
1469 		if (satapkt->satapkt_device.satadev_type ==
1470 		    SATA_DTYPE_ATAPICD) {
1471 			si_set_sense_data(satapkt, SATA_PKT_ABORTED);
1472 		}
1473 
1474 		CLEAR_BIT(si_portp->siport_pending_tags, tmpslot);
1475 		CLEAR_BIT(aborting_tags, tmpslot);
1476 		SENDUP_PACKET(si_portp, satapkt, SATA_PKT_ABORTED);
1477 
1478 	}
1479 
1480 	ASSERT(aborting_tags == 0);
1481 
1482 	/* Reset tags are sent up to framework with SATA_PKT_RESET. */
1483 	while (reset_tags) {
1484 		tmpslot = ddi_ffs(reset_tags) - 1;
1485 		if (tmpslot == -1) {
1486 			break;
1487 		}
1488 		satapkt = si_portp->siport_slot_pkts[tmpslot];
1489 		ASSERT(satapkt != NULL);
1490 		SIDBG1(SIDBG_ERRS, si_ctlp,
1491 		    "si_mop_commands sending PKT_RESET for "
1492 		    "reset spkt: %x",
1493 		    satapkt);
1494 
1495 		CLEAR_BIT(reset_tags, tmpslot);
1496 		CLEAR_BIT(si_portp->siport_pending_tags, tmpslot);
1497 		SENDUP_PACKET(si_portp, satapkt, SATA_PKT_RESET);
1498 	}
1499 
1500 	ASSERT(reset_tags == 0);
1501 
1502 	/* Send up the unfinished_tags with SATA_PKT_BUSY. */
1503 	while (unfinished_tags) {
1504 		tmpslot = ddi_ffs(unfinished_tags) - 1;
1505 		if (tmpslot == -1) {
1506 			break;
1507 		}
1508 		satapkt = si_portp->siport_slot_pkts[tmpslot];
1509 		ASSERT(satapkt != NULL);
1510 		SIDBG1(SIDBG_ERRS, si_ctlp,
1511 		    "si_mop_commands sending PKT_BUSY for "
1512 		    "retry spkt: %x",
1513 		    satapkt);
1514 
1515 		CLEAR_BIT(unfinished_tags, tmpslot);
1516 		CLEAR_BIT(si_portp->siport_pending_tags, tmpslot);
1517 		SENDUP_PACKET(si_portp, satapkt, SATA_PKT_BUSY);
1518 	}
1519 
1520 	ASSERT(unfinished_tags == 0);
1521 
1522 	si_portp->mopping_in_progress = 0;
1523 
1524 	mutex_exit(&si_portp->siport_mutex);
1525 	mutex_exit(&si_portp->siport_mop_mutex);
1526 
1527 }
1528 
1529 /*
1530  * Called by the sata framework to abort the previously sent packet(s).
1531  *
1532  * We reset the device and mop the commands on the port.
1533  */
1534 static int
1535 si_tran_abort(dev_info_t *dip, sata_pkt_t *spkt, int flag)
1536 {
1537 	uint32_t slot_status;
1538 	uint8_t	port;
1539 	int tmpslot;
1540 	uint32_t aborting_tags;
1541 	uint32_t finished_tags;
1542 	si_port_state_t *si_portp;
1543 	si_ctl_state_t *si_ctlp;
1544 
1545 	port = spkt->satapkt_device.satadev_addr.cport;
1546 	si_ctlp = ddi_get_soft_state(si_statep, ddi_get_instance(dip));
1547 	mutex_enter(&si_ctlp->sictl_mutex);
1548 	si_portp = si_ctlp->sictl_ports[port];
1549 	mutex_exit(&si_ctlp->sictl_mutex);
1550 
1551 	SIDBG1(SIDBG_ENTRY, si_ctlp, "si_tran_abort on port: %x", port);
1552 
1553 	mutex_enter(&si_portp->siport_mutex);
1554 
1555 	if ((si_portp->siport_port_type == PORT_TYPE_NODEV) ||
1556 	    !si_portp->siport_active) {
1557 		/*
1558 		 * si_intr_phy_ready_change() may have rendered it to
1559 		 * PORT_TYPE_NODEV. cfgadm operation may have rendered
1560 		 * it inactive.
1561 		 */
1562 		spkt->satapkt_reason = SATA_PKT_PORT_ERROR;
1563 		fill_dev_sregisters(si_ctlp, port, &spkt->satapkt_device);
1564 		mutex_exit(&si_portp->siport_mutex);
1565 		return (SATA_FAILURE);
1566 	}
1567 
1568 	if (flag == SATA_ABORT_ALL_PACKETS) {
1569 		aborting_tags = si_portp->siport_pending_tags;
1570 	} else {
1571 		/*
1572 		 * Need to abort a single packet.
1573 		 * Search our siport_slot_pkts[] list for matching spkt.
1574 		 */
1575 		aborting_tags = 0xffffffff; /* 0xffffffff is impossible tag */
1576 		for (tmpslot = 0; tmpslot < SI_NUM_SLOTS; tmpslot++) {
1577 			if (si_portp->siport_slot_pkts[tmpslot] == spkt) {
1578 				aborting_tags = (0x1 << tmpslot);
1579 				break;
1580 			}
1581 		}
1582 
1583 		if (aborting_tags == 0xffffffff) {
1584 			/* requested packet is not on pending list. */
1585 			fill_dev_sregisters(si_ctlp, port,
1586 			    &spkt->satapkt_device);
1587 			mutex_exit(&si_portp->siport_mutex);
1588 			return (SATA_FAILURE);
1589 		}
1590 	}
1591 
1592 
1593 	slot_status = ddi_get32(si_ctlp->sictl_port_acc_handle,
1594 	    (uint32_t *)(PORT_SLOT_STATUS(si_ctlp, port)));
1595 	(void) si_reset_dport_wait_till_ready(si_ctlp, si_portp,
1596 	    port, SI_DEVICE_RESET);
1597 
1598 	/*
1599 	 * Compute which have finished and which need to be retried.
1600 	 *
1601 	 * The finished tags are siport_pending_tags minus the slot_status.
1602 	 * The aborting_tags have to be reduced by finished_tags since we
1603 	 * can't possibly abort a tag which had finished already.
1604 	 */
1605 	finished_tags =  si_portp->siport_pending_tags &
1606 	    ~slot_status & SI_SLOT_MASK;
1607 	aborting_tags &= ~finished_tags;
1608 
1609 	mutex_exit(&si_portp->siport_mutex);
1610 	si_mop_commands(si_ctlp,
1611 	    si_portp,
1612 	    port,
1613 	    slot_status,
1614 	    0, /* failed_tags */
1615 	    0, /* timedout_tags */
1616 	    aborting_tags,
1617 	    0); /* reset_tags */
1618 	mutex_enter(&si_portp->siport_mutex);
1619 
1620 	fill_dev_sregisters(si_ctlp, port, &spkt->satapkt_device);
1621 	mutex_exit(&si_portp->siport_mutex);
1622 	return (SATA_SUCCESS);
1623 }
1624 
1625 
1626 /*
1627  * Used to reject all the pending packets on a port during a reset
1628  * operation.
1629  *
1630  * WARNING, WARNING: The caller is expected to obtain the siport_mutex
1631  * before calling us.
1632  */
1633 static void
1634 si_reject_all_reset_pkts(
1635 	si_ctl_state_t *si_ctlp,
1636 	si_port_state_t *si_portp,
1637 	int port)
1638 {
1639 	uint32_t slot_status;
1640 	uint32_t reset_tags;
1641 
1642 	_NOTE(ASSUMING_PROTECTED(si_portp))
1643 
1644 	SIDBG1(SIDBG_ENTRY, si_ctlp,
1645 	    "si_reject_all_reset_pkts on port: %x",
1646 	    port);
1647 
1648 	slot_status = ddi_get32(si_ctlp->sictl_port_acc_handle,
1649 	    (uint32_t *)(PORT_SLOT_STATUS(si_ctlp, port)));
1650 
1651 	/* Compute which tags need to be sent up. */
1652 	reset_tags = slot_status & SI_SLOT_MASK;
1653 
1654 	mutex_exit(&si_portp->siport_mutex);
1655 	si_mop_commands(si_ctlp,
1656 	    si_portp,
1657 	    port,
1658 	    slot_status,
1659 	    0, /* failed_tags */
1660 	    0, /* timedout_tags */
1661 	    0, /* aborting_tags */
1662 	    reset_tags);
1663 	mutex_enter(&si_portp->siport_mutex);
1664 
1665 }
1666 
1667 
1668 /*
1669  * Called by sata framework to reset a port(s) or device.
1670  *
1671  */
1672 static int
1673 si_tran_reset_dport(dev_info_t *dip, sata_device_t *sd)
1674 {
1675 	si_ctl_state_t	*si_ctlp;
1676 	uint8_t port = sd->satadev_addr.cport;
1677 	int i;
1678 	si_port_state_t *si_portp;
1679 	int retval = SI_SUCCESS;
1680 
1681 	si_ctlp = ddi_get_soft_state(si_statep, ddi_get_instance(dip));
1682 	SIDBG1(SIDBG_ENTRY, si_ctlp,
1683 	    "si_tran_reset_port entry: port: 0x%x",
1684 	    port);
1685 
1686 	switch (sd->satadev_addr.qual) {
1687 	case SATA_ADDR_CPORT:
1688 		mutex_enter(&si_ctlp->sictl_mutex);
1689 		si_portp = si_ctlp->sictl_ports[port];
1690 		mutex_exit(&si_ctlp->sictl_mutex);
1691 
1692 		mutex_enter(&si_portp->siport_mutex);
1693 		retval = si_reset_dport_wait_till_ready(si_ctlp, si_portp, port,
1694 		    SI_PORT_RESET);
1695 		si_reject_all_reset_pkts(si_ctlp,  si_portp, port);
1696 		mutex_exit(&si_portp->siport_mutex);
1697 
1698 		break;
1699 
1700 	case SATA_ADDR_DCPORT:
1701 		mutex_enter(&si_ctlp->sictl_mutex);
1702 		si_portp = si_ctlp->sictl_ports[port];
1703 		mutex_exit(&si_ctlp->sictl_mutex);
1704 
1705 		mutex_enter(&si_portp->siport_mutex);
1706 
1707 		if ((si_portp->siport_port_type == PORT_TYPE_NODEV) ||
1708 		    !si_portp->siport_active) {
1709 			mutex_exit(&si_portp->siport_mutex);
1710 			retval = SI_FAILURE;
1711 			break;
1712 		}
1713 
1714 		retval = si_reset_dport_wait_till_ready(si_ctlp, si_portp, port,
1715 		    SI_DEVICE_RESET);
1716 		si_reject_all_reset_pkts(si_ctlp,  si_portp, port);
1717 		mutex_exit(&si_portp->siport_mutex);
1718 
1719 		break;
1720 
1721 	case SATA_ADDR_CNTRL:
1722 		for (i = 0; i < si_ctlp->sictl_num_ports; i++) {
1723 			mutex_enter(&si_ctlp->sictl_mutex);
1724 			si_portp = si_ctlp->sictl_ports[port];
1725 			mutex_exit(&si_ctlp->sictl_mutex);
1726 
1727 			mutex_enter(&si_portp->siport_mutex);
1728 			retval = si_reset_dport_wait_till_ready(si_ctlp,
1729 			    si_portp, i, SI_PORT_RESET);
1730 			if (retval) {
1731 				mutex_exit(&si_portp->siport_mutex);
1732 				break;
1733 			}
1734 			si_reject_all_reset_pkts(si_ctlp,  si_portp, port);
1735 			mutex_exit(&si_portp->siport_mutex);
1736 		}
1737 		break;
1738 
1739 	case SATA_ADDR_PMPORT:
1740 	case SATA_ADDR_DPMPORT:
1741 		SIDBG0(SIDBG_VERBOSE, si_ctlp,
1742 		    "port mult reset not implemented yet");
1743 		/* FALLSTHROUGH */
1744 
1745 	default:
1746 		retval = SI_FAILURE;
1747 
1748 	}
1749 
1750 	return (retval);
1751 }
1752 
1753 
1754 /*
1755  * Called by sata framework to activate a port as part of hotplug.
1756  *
1757  * Note: Not port-mult aware.
1758  */
1759 static int
1760 si_tran_hotplug_port_activate(dev_info_t *dip, sata_device_t *satadev)
1761 {
1762 	si_ctl_state_t *si_ctlp;
1763 	si_port_state_t *si_portp;
1764 	uint8_t	port;
1765 
1766 	si_ctlp = ddi_get_soft_state(si_statep, ddi_get_instance(dip));
1767 	port = satadev->satadev_addr.cport;
1768 	mutex_enter(&si_ctlp->sictl_mutex);
1769 	si_portp = si_ctlp->sictl_ports[port];
1770 	mutex_exit(&si_ctlp->sictl_mutex);
1771 
1772 	SIDBG0(SIDBG_ENTRY, si_ctlp, "si_tran_hotplug_port_activate entry");
1773 
1774 	mutex_enter(&si_portp->siport_mutex);
1775 	si_enable_port_interrupts(si_ctlp, port);
1776 
1777 	/*
1778 	 * Reset the device so that a si_find_dev_signature() would trigger.
1779 	 * But this reset is an internal operation; the sata framework does
1780 	 * not need to know about it.
1781 	 */
1782 	(void) si_reset_dport_wait_till_ready(si_ctlp, si_portp, port,
1783 	    SI_DEVICE_RESET|SI_RESET_NO_EVENTS_UP);
1784 
1785 	satadev->satadev_state = SATA_STATE_READY;
1786 
1787 	si_portp->siport_active = PORT_ACTIVE;
1788 
1789 	fill_dev_sregisters(si_ctlp, port, satadev);
1790 
1791 	mutex_exit(&si_portp->siport_mutex);
1792 	return (SATA_SUCCESS);
1793 }
1794 
1795 /*
1796  * Called by sata framework to deactivate a port as part of hotplug.
1797  *
1798  * Note: Not port-mult aware.
1799  */
1800 static int
1801 si_tran_hotplug_port_deactivate(dev_info_t *dip, sata_device_t *satadev)
1802 {
1803 	si_ctl_state_t *si_ctlp;
1804 	si_port_state_t *si_portp;
1805 	uint8_t	port;
1806 
1807 	si_ctlp = ddi_get_soft_state(si_statep, ddi_get_instance(dip));
1808 	port = satadev->satadev_addr.cport;
1809 	mutex_enter(&si_ctlp->sictl_mutex);
1810 	si_portp = si_ctlp->sictl_ports[port];
1811 	mutex_exit(&si_ctlp->sictl_mutex);
1812 
1813 	SIDBG0(SIDBG_ENTRY, NULL, "si_tran_hotplug_port_deactivate entry");
1814 
1815 	mutex_enter(&si_portp->siport_mutex);
1816 	if (si_portp->siport_pending_tags & SI_SLOT_MASK) {
1817 		/*
1818 		 * There are pending commands on this port.
1819 		 * Fail the deactivate request.
1820 		 */
1821 		satadev->satadev_state = SATA_STATE_READY;
1822 		mutex_exit(&si_portp->siport_mutex);
1823 		return (SATA_FAILURE);
1824 	}
1825 
1826 	/* mark the device as not accessible any more. */
1827 	si_portp->siport_active = PORT_INACTIVE;
1828 
1829 	/* disable the interrupts on the port. */
1830 	si_disable_port_interrupts(si_ctlp, port);
1831 
1832 	satadev->satadev_state = SATA_PSTATE_SHUTDOWN;
1833 
1834 	fill_dev_sregisters(si_ctlp, port, satadev);
1835 	/*
1836 	 * Since we are implementing the port deactivation in software only,
1837 	 * we need to fake a valid value for sstatus.
1838 	 */
1839 	SSTATUS_SET_DET(satadev->satadev_scr.sstatus, SSTATUS_DET_PHYOFFLINE);
1840 	SSTATUS_SET_IPM(satadev->satadev_scr.sstatus, SSTATUS_IPM_NODEV_NOPHY);
1841 
1842 	mutex_exit(&si_portp->siport_mutex);
1843 	return (SATA_SUCCESS);
1844 }
1845 
1846 
1847 /*
1848  * Allocates the si_port_state_t.
1849  */
1850 static int
1851 si_alloc_port_state(si_ctl_state_t *si_ctlp, int port)
1852 {
1853 	si_port_state_t *si_portp;
1854 
1855 	si_ctlp->sictl_ports[port] = (si_port_state_t *)kmem_zalloc(
1856 	    sizeof (si_port_state_t), KM_SLEEP);
1857 
1858 	si_portp = si_ctlp->sictl_ports[port];
1859 	mutex_init(&si_portp->siport_mutex, NULL, MUTEX_DRIVER,
1860 	    (void *)(uintptr_t)si_ctlp->sictl_intr_pri);
1861 	mutex_init(&si_portp->siport_mop_mutex, NULL, MUTEX_DRIVER,
1862 	    (void *)(uintptr_t)si_ctlp->sictl_intr_pri);
1863 	mutex_enter(&si_portp->siport_mutex);
1864 
1865 	/* allocate prb & sgt pkts for this port. */
1866 	if (si_alloc_prbpool(si_ctlp, port)) {
1867 		mutex_exit(&si_portp->siport_mutex);
1868 		kmem_free(si_ctlp->sictl_ports[port], sizeof (si_port_state_t));
1869 		return (SI_FAILURE);
1870 	}
1871 	if (si_alloc_sgbpool(si_ctlp, port)) {
1872 		si_dealloc_prbpool(si_ctlp, port);
1873 		mutex_exit(&si_portp->siport_mutex);
1874 		kmem_free(si_ctlp->sictl_ports[port], sizeof (si_port_state_t));
1875 		return (SI_FAILURE);
1876 	}
1877 
1878 	si_portp->siport_active = PORT_ACTIVE;
1879 	mutex_exit(&si_portp->siport_mutex);
1880 
1881 	return (SI_SUCCESS);
1882 
1883 }
1884 
1885 /*
1886  * Deallocates the si_port_state_t.
1887  */
1888 static void
1889 si_dealloc_port_state(si_ctl_state_t *si_ctlp, int port)
1890 {
1891 	si_port_state_t *si_portp;
1892 	si_portp = si_ctlp->sictl_ports[port];
1893 
1894 	mutex_enter(&si_portp->siport_mutex);
1895 	si_dealloc_sgbpool(si_ctlp, port);
1896 	si_dealloc_prbpool(si_ctlp, port);
1897 	mutex_exit(&si_portp->siport_mutex);
1898 
1899 	mutex_destroy(&si_portp->siport_mutex);
1900 	mutex_destroy(&si_portp->siport_mop_mutex);
1901 
1902 	kmem_free(si_ctlp->sictl_ports[port], sizeof (si_port_state_t));
1903 
1904 }
1905 
1906 /*
1907  * Allocates the SGB (Scatter Gather Block) incore buffer.
1908  */
1909 static int
1910 si_alloc_sgbpool(si_ctl_state_t *si_ctlp, int port)
1911 {
1912 	si_port_state_t *si_portp;
1913 	uint_t cookie_count;
1914 	size_t incore_sgbpool_size = SI_NUM_SLOTS * sizeof (si_sgblock_t);
1915 	size_t ret_len;
1916 	ddi_dma_cookie_t sgbpool_dma_cookie;
1917 
1918 	si_portp = si_ctlp->sictl_ports[port];
1919 
1920 	/* allocate sgbpool dma handle. */
1921 	if (ddi_dma_alloc_handle(si_ctlp->sictl_devinfop,
1922 	    &prb_sgt_dma_attr,
1923 	    DDI_DMA_SLEEP,
1924 	    NULL,
1925 	    &si_portp->siport_sgbpool_dma_handle) !=
1926 	    DDI_SUCCESS) {
1927 
1928 		return (SI_FAILURE);
1929 	}
1930 
1931 	/* allocate the memory for sgbpool. */
1932 	if (ddi_dma_mem_alloc(si_portp->siport_sgbpool_dma_handle,
1933 	    incore_sgbpool_size,
1934 	    &accattr,
1935 	    DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
1936 	    DDI_DMA_SLEEP,
1937 	    NULL,
1938 	    (caddr_t *)&si_portp->siport_sgbpool,
1939 	    &ret_len,
1940 	    &si_portp->siport_sgbpool_acc_handle) != NULL) {
1941 
1942 		/*  error.. free the dma handle. */
1943 		ddi_dma_free_handle(&si_portp->siport_sgbpool_dma_handle);
1944 		return (SI_FAILURE);
1945 	}
1946 
1947 	/* now bind it */
1948 	if (ddi_dma_addr_bind_handle(si_portp->siport_sgbpool_dma_handle,
1949 	    NULL,
1950 	    (caddr_t)si_portp->siport_sgbpool,
1951 	    incore_sgbpool_size,
1952 	    DDI_DMA_CONSISTENT,
1953 	    DDI_DMA_SLEEP,
1954 	    NULL,
1955 	    &sgbpool_dma_cookie,
1956 	    &cookie_count) !=  DDI_DMA_MAPPED) {
1957 		/*  error.. free the dma handle & free the memory. */
1958 		ddi_dma_mem_free(&si_portp->siport_sgbpool_acc_handle);
1959 		ddi_dma_free_handle(&si_portp->siport_sgbpool_dma_handle);
1960 		return (SI_FAILURE);
1961 	}
1962 
1963 	si_portp->siport_sgbpool_physaddr = sgbpool_dma_cookie.dmac_laddress;
1964 	return (SI_SUCCESS);
1965 }
1966 
1967 /*
1968  * Deallocates the SGB (Scatter Gather Block) incore buffer.
1969  */
1970 static void
1971 si_dealloc_sgbpool(si_ctl_state_t *si_ctlp, int port)
1972 {
1973 	si_port_state_t *si_portp = si_ctlp->sictl_ports[port];
1974 
1975 	/* Unbind the dma handle first. */
1976 	(void) ddi_dma_unbind_handle(si_portp->siport_sgbpool_dma_handle);
1977 
1978 	/* Then free the underlying memory. */
1979 	ddi_dma_mem_free(&si_portp->siport_sgbpool_acc_handle);
1980 
1981 	/* Now free the handle itself. */
1982 	ddi_dma_free_handle(&si_portp->siport_sgbpool_dma_handle);
1983 
1984 }
1985 
1986 /*
1987  * Allocates the PRB (Port Request Block) incore packets.
1988  */
1989 static int
1990 si_alloc_prbpool(si_ctl_state_t *si_ctlp, int port)
1991 {
1992 	si_port_state_t *si_portp;
1993 	uint_t cookie_count;
1994 	size_t incore_pkt_size = SI_NUM_SLOTS * sizeof (si_prb_t);
1995 	size_t ret_len;
1996 	ddi_dma_cookie_t prbpool_dma_cookie;
1997 
1998 	si_portp = si_ctlp->sictl_ports[port];
1999 
2000 	/* allocate prb pkts. */
2001 	if (ddi_dma_alloc_handle(si_ctlp->sictl_devinfop,
2002 	    &prb_sgt_dma_attr,
2003 	    DDI_DMA_SLEEP,
2004 	    NULL,
2005 	    &si_portp->siport_prbpool_dma_handle) !=
2006 	    DDI_SUCCESS) {
2007 
2008 		return (SI_FAILURE);
2009 	}
2010 
2011 	if (ddi_dma_mem_alloc(si_portp->siport_prbpool_dma_handle,
2012 	    incore_pkt_size,
2013 	    &accattr,
2014 	    DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
2015 	    DDI_DMA_SLEEP,
2016 	    NULL,
2017 	    (caddr_t *)&si_portp->siport_prbpool,
2018 	    &ret_len,
2019 	    &si_portp->siport_prbpool_acc_handle) != NULL) {
2020 
2021 		/* error.. free the dma handle. */
2022 		ddi_dma_free_handle(&si_portp->siport_prbpool_dma_handle);
2023 		return (SI_FAILURE);
2024 	}
2025 
2026 	if (ddi_dma_addr_bind_handle(si_portp->siport_prbpool_dma_handle,
2027 	    NULL,
2028 	    (caddr_t)si_portp->siport_prbpool,
2029 	    incore_pkt_size,
2030 	    DDI_DMA_CONSISTENT,
2031 	    DDI_DMA_SLEEP,
2032 	    NULL,
2033 	    &prbpool_dma_cookie,
2034 	    &cookie_count) !=  DDI_DMA_MAPPED) {
2035 		/*  error.. free the dma handle & free the memory. */
2036 		ddi_dma_mem_free(&si_portp->siport_prbpool_acc_handle);
2037 		ddi_dma_free_handle(&si_portp->siport_prbpool_dma_handle);
2038 		return (SI_FAILURE);
2039 	}
2040 
2041 	si_portp->siport_prbpool_physaddr =
2042 	    prbpool_dma_cookie.dmac_laddress;
2043 	return (SI_SUCCESS);
2044 }
2045 
2046 /*
2047  * Deallocates the PRB (Port Request Block) incore packets.
2048  */
2049 static void
2050 si_dealloc_prbpool(si_ctl_state_t *si_ctlp, int port)
2051 {
2052 	si_port_state_t *si_portp = si_ctlp->sictl_ports[port];
2053 
2054 	/* Unbind the prb dma handle first. */
2055 	(void) ddi_dma_unbind_handle(si_portp->siport_prbpool_dma_handle);
2056 
2057 	/* Then free the underlying memory. */
2058 	ddi_dma_mem_free(&si_portp->siport_prbpool_acc_handle);
2059 
2060 	/* Now free the handle itself. */
2061 	ddi_dma_free_handle(&si_portp->siport_prbpool_dma_handle);
2062 
2063 }
2064 
2065 
2066 
2067 /*
2068  * Soft-reset the port to find the signature of the device connected to
2069  * the port.
2070  */
2071 static void
2072 si_find_dev_signature(
2073 	si_ctl_state_t *si_ctlp,
2074 	si_port_state_t *si_portp,
2075 	int port,
2076 	int pmp)
2077 {
2078 	si_prb_t *prb;
2079 	uint32_t slot_status, signature;
2080 	int slot, loop_count;
2081 
2082 	SIDBG2(SIDBG_ENTRY|SIDBG_INIT, si_ctlp,
2083 	    "si_find_dev_signature enter: port: %x, pmp: %x",
2084 	    port, pmp);
2085 
2086 	/* Build a Soft Reset PRB in host memory. */
2087 	mutex_enter(&si_portp->siport_mutex);
2088 
2089 	slot = si_claim_free_slot(si_ctlp, si_portp, port);
2090 	if (slot == -1) {
2091 		/* Empty slot could not be found. */
2092 		if (pmp != PORTMULT_CONTROL_PORT) {
2093 			/* We are behind port multiplier. */
2094 			si_portp->siport_portmult_state.sipm_port_type[pmp] =
2095 			    PORT_TYPE_NODEV;
2096 		} else {
2097 			si_portp->siport_port_type = PORT_TYPE_NODEV;
2098 		}
2099 
2100 		mutex_exit(&si_portp->siport_mutex);
2101 		return;
2102 	}
2103 	prb = &si_portp->siport_prbpool[slot];
2104 	bzero((void *)prb, sizeof (si_prb_t));
2105 
2106 	SET_FIS_PMP(prb->prb_fis, pmp);
2107 	SET_PRB_CONTROL_SOFT_RESET(prb);
2108 
2109 #if SI_DEBUG
2110 	if (si_debug_flags & SIDBG_DUMP_PRB) {
2111 		char *ptr;
2112 		int j;
2113 
2114 		ptr = (char *)prb;
2115 		cmn_err(CE_WARN, "si_find_dev_signature, prb: ");
2116 		for (j = 0; j < (sizeof (si_prb_t)); j++) {
2117 			if (j%4 == 0) {
2118 				cmn_err(CE_WARN, "----");
2119 			}
2120 			cmn_err(CE_WARN, "%x ", ptr[j]);
2121 		}
2122 
2123 	}
2124 #endif /* SI_DEBUG */
2125 
2126 	/* deliver soft reset prb to empty slot. */
2127 	POST_PRB_ADDR(si_ctlp, si_portp, port, slot);
2128 
2129 	loop_count = 0;
2130 	/* Loop till the soft reset is finished. */
2131 	do {
2132 		slot_status = ddi_get32(si_ctlp->sictl_port_acc_handle,
2133 		    (uint32_t *)(PORT_SLOT_STATUS(si_ctlp, port)));
2134 
2135 		if (loop_count++ > SI_POLLRATE_SOFT_RESET) {
2136 			/* We are effectively timing out after 10 sec. */
2137 			break;
2138 		}
2139 
2140 		/* Wait for 10 millisec */
2141 #ifndef __lock_lint
2142 		delay(SI_10MS_TICKS);
2143 #endif /* __lock_lint */
2144 
2145 	} while (slot_status & SI_SLOT_MASK & (0x1 << slot));
2146 
2147 	SIDBG2(SIDBG_POLL_LOOP, si_ctlp,
2148 	    "si_find_dev_signature: loop count: %d, slot_status: 0x%x",
2149 	    loop_count, slot_status);
2150 
2151 	CLEAR_BIT(si_portp->siport_pending_tags, slot);
2152 
2153 	/* Read device signature from command slot. */
2154 	signature = ddi_get32(si_ctlp->sictl_port_acc_handle,
2155 	    (uint32_t *)(PORT_SIGNATURE_MSB(si_ctlp, port, slot)));
2156 	signature <<= 8;
2157 	signature |= (0xff & ddi_get32(si_ctlp->sictl_port_acc_handle,
2158 	    (uint32_t *)(PORT_SIGNATURE_LSB(si_ctlp,
2159 	    port, slot))));
2160 
2161 	SIDBG1(SIDBG_INIT, si_ctlp, "Device signature: 0x%x", signature);
2162 
2163 	if (signature == SI_SIGNATURE_PORT_MULTIPLIER) {
2164 
2165 		SIDBG2(SIDBG_INIT, si_ctlp,
2166 		    "Found multiplier at cport: 0x%d, pmport: 0x%x",
2167 		    port, pmp);
2168 
2169 		if (pmp != PORTMULT_CONTROL_PORT) {
2170 			/*
2171 			 * It is wrong to chain a port multiplier behind
2172 			 * another port multiplier.
2173 			 */
2174 			si_portp->siport_portmult_state.sipm_port_type[pmp] =
2175 			    PORT_TYPE_NODEV;
2176 		} else {
2177 			si_portp->siport_port_type = PORT_TYPE_MULTIPLIER;
2178 			mutex_exit(&si_portp->siport_mutex);
2179 			(void) si_enumerate_port_multiplier(si_ctlp,
2180 			    si_portp, port);
2181 			mutex_enter(&si_portp->siport_mutex);
2182 		}
2183 		si_init_port(si_ctlp, port);
2184 
2185 	} else if (signature == SI_SIGNATURE_ATAPI) {
2186 		if (pmp != PORTMULT_CONTROL_PORT) {
2187 			/* We are behind port multiplier. */
2188 			si_portp->siport_portmult_state.sipm_port_type[pmp] =
2189 			    PORT_TYPE_ATAPI;
2190 		} else {
2191 			si_portp->siport_port_type = PORT_TYPE_ATAPI;
2192 			si_init_port(si_ctlp, port);
2193 		}
2194 		SIDBG2(SIDBG_INIT, si_ctlp,
2195 		    "Found atapi at : cport: %x, pmport: %x",
2196 		    port, pmp);
2197 
2198 	} else if (signature == SI_SIGNATURE_DISK) {
2199 
2200 		if (pmp != PORTMULT_CONTROL_PORT) {
2201 			/* We are behind port multiplier. */
2202 			si_portp->siport_portmult_state.sipm_port_type[pmp] =
2203 			    PORT_TYPE_DISK;
2204 		} else {
2205 			si_portp->siport_port_type = PORT_TYPE_DISK;
2206 			si_init_port(si_ctlp, port);
2207 		}
2208 		SIDBG2(SIDBG_INIT, si_ctlp,
2209 		    "found disk at : cport: %x, pmport: %x",
2210 		    port, pmp);
2211 
2212 	} else {
2213 		if (pmp != PORTMULT_CONTROL_PORT) {
2214 			/* We are behind port multiplier. */
2215 			si_portp->siport_portmult_state.sipm_port_type[pmp] =
2216 			    PORT_TYPE_UNKNOWN;
2217 		} else {
2218 			si_portp->siport_port_type = PORT_TYPE_UNKNOWN;
2219 		}
2220 		SIDBG3(SIDBG_INIT, si_ctlp,
2221 		    "Found unknown signature 0x%x at: port: %x, pmp: %x",
2222 		    signature, port, pmp);
2223 	}
2224 
2225 	mutex_exit(&si_portp->siport_mutex);
2226 }
2227 
2228 
2229 /*
2230  * Polls for the completion of the command. This is safe with both
2231  * interrupts enabled or disabled.
2232  */
2233 static void
2234 si_poll_cmd(
2235 	si_ctl_state_t *si_ctlp,
2236 	si_port_state_t *si_portp,
2237 	int port,
2238 	int slot,
2239 	sata_pkt_t *satapkt)
2240 {
2241 	uint32_t slot_status;
2242 	int pkt_timeout_ticks;
2243 	uint32_t port_intr_status;
2244 	int in_panic = ddi_in_panic();
2245 
2246 	SIDBG1(SIDBG_ENTRY, si_ctlp, "si_poll_cmd entered: port: 0x%x", port);
2247 
2248 	pkt_timeout_ticks = drv_usectohz((clock_t)satapkt->satapkt_time *
2249 	    1000000);
2250 
2251 	mutex_enter(&si_portp->siport_mutex);
2252 
2253 	/* we start out with SATA_PKT_COMPLETED as the satapkt_reason */
2254 	satapkt->satapkt_reason = SATA_PKT_COMPLETED;
2255 
2256 	do {
2257 		slot_status = ddi_get32(si_ctlp->sictl_port_acc_handle,
2258 		    (uint32_t *)(PORT_SLOT_STATUS(si_ctlp, port)));
2259 
2260 		if (slot_status & SI_SLOT_MASK & (0x1 << slot)) {
2261 			if (in_panic) {
2262 				/*
2263 				 * If we are in panic, we can't rely on
2264 				 * timers; so, busy wait instead of delay().
2265 				 */
2266 				mutex_exit(&si_portp->siport_mutex);
2267 				drv_usecwait(SI_1MS_USECS);
2268 				mutex_enter(&si_portp->siport_mutex);
2269 			} else {
2270 				mutex_exit(&si_portp->siport_mutex);
2271 #ifndef __lock_lint
2272 				delay(SI_1MS_TICKS);
2273 #endif /* __lock_lint */
2274 				mutex_enter(&si_portp->siport_mutex);
2275 			}
2276 		} else {
2277 			break;
2278 		}
2279 
2280 		pkt_timeout_ticks -= SI_1MS_TICKS;
2281 
2282 	} while (pkt_timeout_ticks > 0);
2283 
2284 	if (satapkt->satapkt_reason != SATA_PKT_COMPLETED) {
2285 		/* The si_mop_command() got to our packet before us */
2286 		goto poll_done;
2287 	}
2288 
2289 	/*
2290 	 * Interrupts and timers may not be working properly in a crash dump
2291 	 * situation; we may need to handle all the three conditions here:
2292 	 * successful completion, packet failure and packet timeout.
2293 	 */
2294 	if (IS_ATTENTION_RAISED(slot_status)) { /* error seen on port */
2295 
2296 		port_intr_status = ddi_get32(si_ctlp->sictl_global_acc_handle,
2297 		    (uint32_t *)PORT_INTERRUPT_STATUS(si_ctlp, port));
2298 
2299 		SIDBG2(SIDBG_VERBOSE, si_ctlp,
2300 		    "si_poll_cmd: port_intr_status: 0x%x, port: %x",
2301 		    port_intr_status, port);
2302 
2303 		if (port_intr_status & INTR_COMMAND_ERROR) {
2304 			mutex_exit(&si_portp->siport_mutex);
2305 			(void) si_intr_command_error(si_ctlp, si_portp, port);
2306 			mutex_enter(&si_portp->siport_mutex);
2307 
2308 			goto poll_done;
2309 
2310 			/*
2311 			 * Why do we need to call si_intr_command_error() ?
2312 			 *
2313 			 * Answer: Even if the current packet is not the
2314 			 * offending command, we need to restart the stalled
2315 			 * port; (may be, the interrupts are not working well
2316 			 * in panic condition). The call to routine
2317 			 * si_intr_command_error() will achieve that.
2318 			 *
2319 			 * What if the interrupts are working fine and the
2320 			 * si_intr_command_error() gets called once more from
2321 			 * interrupt context ?
2322 			 *
2323 			 * Answer: The second instance of routine
2324 			 * si_intr_command_error() will not mop anything
2325 			 * since the first error handler has already blown
2326 			 * away the hardware pending queues through reset.
2327 			 *
2328 			 * Will the si_intr_command_error() hurt current
2329 			 * packet ?
2330 			 *
2331 			 * Answer: No.
2332 			 */
2333 		} else {
2334 			/* Ignore any non-error interrupts at this stage */
2335 			ddi_put32(si_ctlp->sictl_port_acc_handle,
2336 			    (uint32_t *)(PORT_INTERRUPT_STATUS(si_ctlp,
2337 			    port)),
2338 			    port_intr_status & INTR_MASK);
2339 		}
2340 
2341 
2342 	} else if (slot_status & SI_SLOT_MASK & (0x1 << slot)) {
2343 		satapkt->satapkt_reason = SATA_PKT_TIMEOUT;
2344 	} /* else: the command completed successfully */
2345 
2346 	if ((satapkt->satapkt_cmd.satacmd_cmd_reg ==
2347 	    SATAC_WRITE_FPDMA_QUEUED) ||
2348 	    (satapkt->satapkt_cmd.satacmd_cmd_reg ==
2349 	    SATAC_READ_FPDMA_QUEUED)) {
2350 		si_portp->siport_pending_ncq_count--;
2351 	}
2352 
2353 	CLEAR_BIT(si_portp->siport_pending_tags, slot);
2354 
2355 poll_done:
2356 	mutex_exit(&si_portp->siport_mutex);
2357 
2358 	/*
2359 	 * tidbit: What is the interaction of abort with polling ?
2360 	 * What happens if the current polled pkt is aborted in parallel ?
2361 	 *
2362 	 * Answer: Assuming that the si_mop_commands() completes ahead
2363 	 * of polling, all it does is to set the satapkt_reason to
2364 	 * SPKT_PKT_ABORTED. That would be fine with us.
2365 	 *
2366 	 * The same logic applies to reset interacting with polling.
2367 	 */
2368 }
2369 
2370 
2371 /*
2372  * Searches for and claims a free slot.
2373  *
2374  * Returns: 	SI_FAILURE if no slots found
2375  *		claimed slot number if successful
2376  *
2377  * WARNING, WARNING: The caller is expected to obtain the siport_mutex
2378  * before calling us.
2379  */
2380 /*ARGSUSED*/
2381 static int
2382 si_claim_free_slot(si_ctl_state_t *si_ctlp, si_port_state_t *si_portp, int port)
2383 {
2384 	uint32_t free_slots;
2385 	int slot;
2386 
2387 	_NOTE(ASSUMING_PROTECTED(si_portp))
2388 
2389 	SIDBG1(SIDBG_ENTRY, si_ctlp,
2390 	    "si_claim_free_slot entry: siport_pending_tags: %x",
2391 	    si_portp->siport_pending_tags);
2392 
2393 	free_slots = (~si_portp->siport_pending_tags) & SI_SLOT_MASK;
2394 	slot = ddi_ffs(free_slots) - 1;
2395 	if (slot == -1) {
2396 		SIDBG0(SIDBG_VERBOSE, si_ctlp,
2397 		    "si_claim_free_slot: no empty slots");
2398 		return (SI_FAILURE);
2399 	}
2400 
2401 	si_portp->siport_pending_tags |= (0x1 << slot);
2402 	SIDBG1(SIDBG_VERBOSE, si_ctlp, "si_claim_free_slot: found slot: 0x%x",
2403 	    slot);
2404 	return (slot);
2405 }
2406 
2407 /*
2408  * Builds the PRB for the sata packet and delivers it to controller.
2409  *
2410  * Returns:
2411  *	slot number if we can obtain a slot successfully
2412  *	otherwise, return SI_FAILURE
2413  *
2414  * WARNING, WARNING: The caller is expected to obtain the siport_mutex
2415  * before calling us.
2416  */
2417 static int
2418 si_deliver_satapkt(
2419 	si_ctl_state_t *si_ctlp,
2420 	si_port_state_t *si_portp,
2421 	int port,
2422 	sata_pkt_t *spkt)
2423 {
2424 	int slot;
2425 	si_prb_t *prb;
2426 	sata_cmd_t *cmd;
2427 	si_sge_t *sgep; /* scatter gather entry pointer */
2428 	si_sgt_t *sgtp; /* scatter gather table pointer */
2429 	si_sgblock_t *sgbp; /* scatter gather block pointer */
2430 	int i, j, cookie_index;
2431 	int ncookies;
2432 	int is_atapi = 0;
2433 	ddi_dma_cookie_t cookie;
2434 
2435 	_NOTE(ASSUMING_PROTECTED(si_portp))
2436 
2437 	slot = si_claim_free_slot(si_ctlp, si_portp, port);
2438 	if (slot == -1) {
2439 		return (SI_FAILURE);
2440 	}
2441 
2442 	if (spkt->satapkt_device.satadev_type == SATA_DTYPE_ATAPICD) {
2443 		is_atapi = 1;
2444 	}
2445 
2446 	if ((si_portp->siport_port_type == PORT_TYPE_NODEV) ||
2447 	    !si_portp->siport_active) {
2448 		/*
2449 		 * si_intr_phy_ready_change() may have rendered it to
2450 		 * PORT_TYPE_NODEV. cfgadm operation may have rendered
2451 		 * it inactive.
2452 		 */
2453 		spkt->satapkt_reason = SATA_PKT_PORT_ERROR;
2454 		fill_dev_sregisters(si_ctlp, port, &spkt->satapkt_device);
2455 
2456 		return (SI_FAILURE);
2457 	}
2458 
2459 
2460 	prb =  &(si_portp->siport_prbpool[slot]);
2461 	bzero((void *)prb, sizeof (si_prb_t));
2462 
2463 	cmd = &spkt->satapkt_cmd;
2464 
2465 	SIDBG4(SIDBG_ENTRY, si_ctlp,
2466 	    "si_deliver_satpkt entry: cmd_reg: 0x%x, slot: 0x%x, \
2467 		port: %x, satapkt: %x",
2468 	    cmd->satacmd_cmd_reg, slot, port, (uint32_t)(intptr_t)spkt);
2469 
2470 	/* Now fill the prb. */
2471 	if (is_atapi) {
2472 		if (spkt->satapkt_cmd.satacmd_flags.sata_data_direction ==
2473 		    SATA_DIR_READ) {
2474 			SET_PRB_CONTROL_PKT_READ(prb);
2475 		} else if (spkt->satapkt_cmd.satacmd_flags.sata_data_direction
2476 		    == SATA_DIR_WRITE) {
2477 			SET_PRB_CONTROL_PKT_WRITE(prb);
2478 		}
2479 	}
2480 
2481 	SET_FIS_TYPE(prb->prb_fis, REGISTER_FIS_H2D);
2482 	if ((spkt->satapkt_device.satadev_addr.qual == SATA_ADDR_PMPORT) ||
2483 	    (spkt->satapkt_device.satadev_addr.qual == SATA_ADDR_DPMPORT)) {
2484 		SET_FIS_PMP(prb->prb_fis,
2485 		    spkt->satapkt_device.satadev_addr.pmport);
2486 	}
2487 	SET_FIS_CDMDEVCTL(prb->prb_fis, 1);
2488 	SET_FIS_COMMAND(prb->prb_fis, cmd->satacmd_cmd_reg);
2489 	SET_FIS_FEATURES(prb->prb_fis, cmd->satacmd_features_reg);
2490 	SET_FIS_SECTOR_COUNT(prb->prb_fis, cmd->satacmd_sec_count_lsb);
2491 
2492 	switch (cmd->satacmd_addr_type) {
2493 
2494 	case ATA_ADDR_LBA:
2495 		/* fallthru */
2496 
2497 	case ATA_ADDR_LBA28:
2498 		/* LBA[7:0] */
2499 		SET_FIS_SECTOR(prb->prb_fis, cmd->satacmd_lba_low_lsb);
2500 
2501 		/* LBA[15:8] */
2502 		SET_FIS_CYL_LOW(prb->prb_fis, cmd->satacmd_lba_mid_lsb);
2503 
2504 		/* LBA[23:16] */
2505 		SET_FIS_CYL_HI(prb->prb_fis, cmd->satacmd_lba_high_lsb);
2506 
2507 		/* LBA [27:24] (also called dev_head) */
2508 		SET_FIS_DEV_HEAD(prb->prb_fis, cmd->satacmd_device_reg);
2509 
2510 		break;
2511 
2512 	case ATA_ADDR_LBA48:
2513 		/* LBA[7:0] */
2514 		SET_FIS_SECTOR(prb->prb_fis, cmd->satacmd_lba_low_lsb);
2515 
2516 		/* LBA[15:8] */
2517 		SET_FIS_CYL_LOW(prb->prb_fis, cmd->satacmd_lba_mid_lsb);
2518 
2519 		/* LBA[23:16] */
2520 		SET_FIS_CYL_HI(prb->prb_fis, cmd->satacmd_lba_high_lsb);
2521 
2522 		/* LBA [31:24] */
2523 		SET_FIS_SECTOR_EXP(prb->prb_fis, cmd->satacmd_lba_low_msb);
2524 
2525 		/* LBA [39:32] */
2526 		SET_FIS_CYL_LOW_EXP(prb->prb_fis, cmd->satacmd_lba_mid_msb);
2527 
2528 		/* LBA [47:40] */
2529 		SET_FIS_CYL_HI_EXP(prb->prb_fis, cmd->satacmd_lba_high_msb);
2530 
2531 		/* Set dev_head */
2532 		SET_FIS_DEV_HEAD(prb->prb_fis, cmd->satacmd_device_reg);
2533 
2534 		/* Set the extended sector count and features */
2535 		SET_FIS_SECTOR_COUNT_EXP(prb->prb_fis,
2536 		    cmd->satacmd_sec_count_msb);
2537 		SET_FIS_FEATURES_EXP(prb->prb_fis,
2538 		    cmd->satacmd_features_reg_ext);
2539 
2540 		break;
2541 
2542 	}
2543 
2544 	if (cmd->satacmd_flags.sata_queued) {
2545 		/*
2546 		 * For queued commands, the TAG for the sector count lsb is
2547 		 * generated from current slot number.
2548 		 */
2549 		SET_FIS_SECTOR_COUNT(prb->prb_fis, slot << 3);
2550 	}
2551 
2552 	if ((cmd->satacmd_cmd_reg == SATAC_WRITE_FPDMA_QUEUED) ||
2553 	    (cmd->satacmd_cmd_reg == SATAC_READ_FPDMA_QUEUED)) {
2554 		si_portp->siport_pending_ncq_count++;
2555 	}
2556 
2557 	/* *** now fill the scatter gather list ******* */
2558 
2559 	if (is_atapi) { /* It is an ATAPI drive */
2560 		/* atapi command goes into sge0 */
2561 		bcopy(cmd->satacmd_acdb, &prb->prb_sge0, sizeof (si_sge_t));
2562 
2563 		/* Now fill sge1 with pointer to external SGT. */
2564 		if (spkt->satapkt_cmd.satacmd_num_dma_cookies) {
2565 			prb->prb_sge1.sge_addr =
2566 			    si_portp->siport_sgbpool_physaddr +
2567 			    slot*sizeof (si_sgblock_t);
2568 			SET_SGE_LNK(prb->prb_sge1);
2569 		} else {
2570 			SET_SGE_TRM(prb->prb_sge1);
2571 		}
2572 	} else {
2573 		/* Fill the sge0 */
2574 		if (spkt->satapkt_cmd.satacmd_num_dma_cookies) {
2575 			prb->prb_sge0.sge_addr =
2576 			    si_portp->siport_sgbpool_physaddr +
2577 			    slot*sizeof (si_sgblock_t);
2578 			SET_SGE_LNK(prb->prb_sge0);
2579 
2580 		} else {
2581 			SET_SGE_TRM(prb->prb_sge0);
2582 		}
2583 
2584 		/* sge1 is left empty in non-ATAPI case */
2585 	}
2586 
2587 	bzero(&si_portp->siport_sgbpool[slot], sizeof (si_sgblock_t));
2588 
2589 	ncookies = spkt->satapkt_cmd.satacmd_num_dma_cookies;
2590 	ASSERT(ncookies <= SI_MAX_SGL_LENGTH);
2591 
2592 	SIDBG1(SIDBG_COOKIES, si_ctlp, "total ncookies: %d", ncookies);
2593 	if (ncookies == 0) {
2594 		sgbp = &si_portp->siport_sgbpool[slot];
2595 		sgtp = &sgbp->sgb_sgt[0];
2596 		sgep = &sgtp->sgt_sge[0];
2597 
2598 		/* No cookies. Terminate the chain. */
2599 		SIDBG0(SIDBG_COOKIES, si_ctlp, "empty cookies: terminating.");
2600 
2601 		sgep->sge_addr_low = 0;
2602 		sgep->sge_addr_high = 0;
2603 		sgep->sge_data_count = 0;
2604 		SET_SGE_TRM((*sgep));
2605 
2606 		goto sgl_fill_done;
2607 	}
2608 
2609 	for (i = 0, cookie_index = 0, sgbp = &si_portp->siport_sgbpool[slot];
2610 	    i < SI_MAX_SGT_TABLES_PER_PRB; i++) {
2611 
2612 		sgtp = &sgbp->sgb_sgt[i];
2613 
2614 		/* Now fill the first 3 entries of SGT in the loop below. */
2615 		for (j = 0, sgep = &sgtp->sgt_sge[0];
2616 		    ((j < 3) && (cookie_index < ncookies-1));
2617 		    j++, cookie_index++, sgep++)  {
2618 			ASSERT(cookie_index < ncookies);
2619 			SIDBG2(SIDBG_COOKIES, si_ctlp,
2620 			    "inner loop: cookie_index: %d, ncookies: %d",
2621 			    cookie_index,
2622 			    ncookies);
2623 			cookie = spkt->satapkt_cmd.
2624 			    satacmd_dma_cookie_list[cookie_index];
2625 
2626 			sgep->sge_addr_low = cookie._dmu._dmac_la[0];
2627 			sgep->sge_addr_high = cookie._dmu._dmac_la[1];
2628 			sgep->sge_data_count = cookie.dmac_size;
2629 		}
2630 
2631 		/*
2632 		 * If this happens to be the last cookie, we terminate it here.
2633 		 * Otherwise, we link to next SGT.
2634 		 */
2635 
2636 		if (cookie_index == ncookies-1) {
2637 			/* This is the last cookie. Terminate the chain. */
2638 			SIDBG2(SIDBG_COOKIES, si_ctlp,
2639 			    "filling the last: cookie_index: %d, "
2640 			    "ncookies: %d",
2641 			    cookie_index,
2642 			    ncookies);
2643 			cookie = spkt->satapkt_cmd.
2644 			    satacmd_dma_cookie_list[cookie_index];
2645 
2646 			sgep->sge_addr_low = cookie._dmu._dmac_la[0];
2647 			sgep->sge_addr_high = cookie._dmu._dmac_la[1];
2648 			sgep->sge_data_count = cookie.dmac_size;
2649 			SET_SGE_TRM((*sgep));
2650 
2651 			break; /* we break the loop */
2652 
2653 		} else {
2654 			/* This is not the last one. So link it. */
2655 			SIDBG2(SIDBG_COOKIES, si_ctlp,
2656 			    "linking SGT: cookie_index: %d, ncookies: %d",
2657 			    cookie_index,
2658 			    ncookies);
2659 			sgep->sge_addr = si_portp->siport_sgbpool_physaddr +
2660 			    slot * sizeof (si_sgblock_t) +
2661 			    (i+1) * sizeof (si_sgt_t);
2662 
2663 			SET_SGE_LNK((*sgep));
2664 		}
2665 
2666 	}
2667 
2668 	/* *** finished filling the scatter gather list ******* */
2669 
2670 sgl_fill_done:
2671 	/* Now remember the sata packet in siport_slot_pkts[]. */
2672 	si_portp->siport_slot_pkts[slot] = spkt;
2673 
2674 	/*
2675 	 * We are overloading satapkt_hba_driver_private with
2676 	 * watched_cycle count.
2677 	 */
2678 	spkt->satapkt_hba_driver_private = (void *)(intptr_t)0;
2679 
2680 	if (is_atapi) {
2681 		/* program the packet_lenth if it is atapi device. */
2682 
2683 
2684 #ifdef ATAPI_2nd_PHASE
2685 		/*
2686 		 * Framework needs to calculate the acdb_len based on
2687 		 * identify packet data. This needs to be accomplished
2688 		 * in second phase of the project.
2689 		 */
2690 		ASSERT((cmd->satacmd_acdb_len == 12) ||
2691 		    (cmd->satacmd_acdb_len == 16));
2692 		SIDBG1(SIDBG_VERBOSE, si_ctlp, "deliver: acdb_len: %d",
2693 		    cmd->satacmd_acdb_len);
2694 
2695 		if (cmd->satacmd_acdb_len == 16) {
2696 			ddi_put32(si_ctlp->sictl_port_acc_handle,
2697 			    (uint32_t *)PORT_CONTROL_SET(si_ctlp, port),
2698 			    PORT_CONTROL_SET_BITS_PACKET_LEN);
2699 		} else {
2700 			ddi_put32(si_ctlp->sictl_port_acc_handle,
2701 			    (uint32_t *)PORT_CONTROL_CLEAR(si_ctlp, port),
2702 			    PORT_CONTROL_CLEAR_BITS_PACKET_LEN);
2703 		}
2704 
2705 #else /* ATAPI_2nd_PHASE */
2706 		/* hard coding for now to 12 bytes */
2707 		ddi_put32(si_ctlp->sictl_port_acc_handle,
2708 		    (uint32_t *)PORT_CONTROL_CLEAR(si_ctlp, port),
2709 		    PORT_CONTROL_CLEAR_BITS_PACKET_LEN);
2710 #endif /* ATAPI_2nd_PHASE */
2711 	}
2712 
2713 
2714 #if SI_DEBUG
2715 	if (si_debug_flags & SIDBG_DUMP_PRB) {
2716 		if (!(is_atapi && (prb->prb_sge0.sge_addr_low == 0))) {
2717 			/*
2718 			 * Do not dump the atapi Test-Unit-Ready commands.
2719 			 * The sd_media_watch spews too many of these.
2720 			 */
2721 			int *ptr;
2722 			si_sge_t *tmpsgep;
2723 			int j;
2724 
2725 			ptr = (int *)prb;
2726 			cmn_err(CE_WARN, "si_deliver_satpkt prb: ");
2727 			for (j = 0; j < (sizeof (si_prb_t)/4); j++) {
2728 				cmn_err(CE_WARN, "%x ", ptr[j]);
2729 			}
2730 
2731 			cmn_err(CE_WARN,
2732 			    "si_deliver_satpkt sgt: low, high, count link");
2733 			for (j = 0,
2734 			    tmpsgep = (si_sge_t *)
2735 			    &si_portp->siport_sgbpool[slot];
2736 			    j < (sizeof (si_sgblock_t)/ sizeof (si_sge_t));
2737 			    j++, tmpsgep++) {
2738 				ptr = (int *)tmpsgep;
2739 				cmn_err(CE_WARN, "%x %x %x %x",
2740 				    ptr[0],
2741 				    ptr[1],
2742 				    ptr[2],
2743 				    ptr[3]);
2744 				if (IS_SGE_TRM_SET((*tmpsgep))) {
2745 					break;
2746 				}
2747 
2748 			}
2749 		}
2750 
2751 	}
2752 #endif  /* SI_DEBUG */
2753 
2754 	/* Deliver PRB */
2755 	POST_PRB_ADDR(si_ctlp, si_portp, port, slot);
2756 
2757 	return (slot);
2758 }
2759 
2760 /*
2761  * Initialize the controller and set up driver data structures.
2762  *
2763  * This routine can be called from three separate cases: DDI_ATTACH, PM_LEVEL_D0
2764  * and DDI_RESUME. The DDI_ATTACH case is different from other two cases; the
2765  * memory allocation & device signature probing are attempted only during
2766  * DDI_ATTACH case. In the case of PM_LEVEL_D0 & DDI_RESUME, we are starting
2767  * from a previously initialized state; so there is no need to allocate memory
2768  * or to attempt probing the device signatures.
2769  */
2770 static int
2771 si_initialize_controller(si_ctl_state_t *si_ctlp)
2772 {
2773 	uint32_t port_status;
2774 	uint32_t SStatus;
2775 	uint32_t SControl;
2776 	int port;
2777 	int loop_count = 0;
2778 	si_port_state_t *si_portp;
2779 
2780 	SIDBG0(SIDBG_INIT|SIDBG_ENTRY, si_ctlp,
2781 	    "si3124: si_initialize_controller entered");
2782 
2783 	mutex_enter(&si_ctlp->sictl_mutex);
2784 
2785 	/* Remove the Global Reset. */
2786 	ddi_put32(si_ctlp->sictl_global_acc_handle,
2787 	    (uint32_t *)GLOBAL_CONTROL_REG(si_ctlp),
2788 	    GLOBAL_CONTROL_REG_BITS_CLEAR);
2789 
2790 	for (port = 0; port < si_ctlp->sictl_num_ports; port++) {
2791 
2792 		if (si_ctlp->sictl_flags & SI_ATTACH) {
2793 			/*
2794 			 * We allocate the port state only during attach
2795 			 * sequence. We don't want to do it during
2796 			 * suspend/resume sequence.
2797 			 */
2798 			if (si_alloc_port_state(si_ctlp, port)) {
2799 				mutex_exit(&si_ctlp->sictl_mutex);
2800 				return (SI_FAILURE);
2801 			}
2802 		}
2803 
2804 		si_portp = si_ctlp->sictl_ports[port];
2805 		mutex_enter(&si_portp->siport_mutex);
2806 
2807 		/* Clear Port Reset. */
2808 		ddi_put32(si_ctlp->sictl_port_acc_handle,
2809 		    (uint32_t *)PORT_CONTROL_SET(si_ctlp, port),
2810 		    PORT_CONTROL_SET_BITS_PORT_RESET);
2811 		ddi_put32(si_ctlp->sictl_port_acc_handle,
2812 		    (uint32_t *)PORT_CONTROL_CLEAR(si_ctlp, port),
2813 		    PORT_CONTROL_CLEAR_BITS_PORT_RESET);
2814 
2815 		/*
2816 		 * Arm the interrupts for: Cmd completion, Cmd error,
2817 		 * Port Ready, PM Change, PhyRdyChange, Commwake,
2818 		 * UnrecFIS, Devxchanged, SDBNotify.
2819 		 */
2820 		ddi_put32(si_ctlp->sictl_port_acc_handle,
2821 		    (uint32_t *)PORT_INTERRUPT_ENABLE_SET(si_ctlp, port),
2822 		    (INTR_COMMAND_COMPLETE |
2823 		    INTR_COMMAND_ERROR |
2824 		    INTR_PORT_READY |
2825 		    INTR_POWER_CHANGE |
2826 		    INTR_PHYRDY_CHANGE |
2827 		    INTR_COMWAKE_RECEIVED |
2828 		    INTR_UNRECOG_FIS |
2829 		    INTR_DEV_XCHANGED |
2830 		    INTR_SETDEVBITS_NOTIFY));
2831 
2832 		/* Now enable the interrupts. */
2833 		si_enable_port_interrupts(si_ctlp, port);
2834 
2835 		/*
2836 		 * The following PHY initialization is redundant in
2837 		 * in x86 since the BIOS anyway does this as part of
2838 		 * device enumeration during the power up. But this
2839 		 * is a required step in sparc since there is no BIOS.
2840 		 *
2841 		 * The way to initialize the PHY is to write a 1 and then
2842 		 * a 0 to DET field of SControl register.
2843 		 */
2844 
2845 		/*
2846 		 * Fetch the current SControl before writing the
2847 		 * DET part with 1
2848 		 */
2849 		SControl = ddi_get32(si_ctlp->sictl_port_acc_handle,
2850 		    (uint32_t *)PORT_SCONTROL(si_ctlp, port));
2851 		SCONTROL_SET_DET(SControl, SCONTROL_DET_COMRESET);
2852 		ddi_put32(si_ctlp->sictl_port_acc_handle,
2853 		    (uint32_t *)(PORT_SCONTROL(si_ctlp, port)),
2854 		    SControl);
2855 #ifndef __lock_lint
2856 		delay(SI_10MS_TICKS); /* give time for COMRESET to percolate */
2857 #endif /* __lock_lint */
2858 
2859 		/*
2860 		 * Now fetch the SControl again and rewrite the
2861 		 * DET part with 0
2862 		 */
2863 		SControl = ddi_get32(si_ctlp->sictl_port_acc_handle,
2864 		    (uint32_t *)PORT_SCONTROL(si_ctlp, port));
2865 		SCONTROL_SET_DET(SControl, SCONTROL_DET_NOACTION);
2866 		ddi_put32(si_ctlp->sictl_port_acc_handle,
2867 		    (uint32_t *)(PORT_SCONTROL(si_ctlp, port)),
2868 		    SControl);
2869 
2870 		/*
2871 		 * PHY may be initialized by now. Check the DET field of
2872 		 * SStatus to determine if there is a device present.
2873 		 *
2874 		 * The DET field is valid only if IPM field indicates that
2875 		 * the interface is in active state.
2876 		 */
2877 
2878 		loop_count = 0;
2879 		do {
2880 			SStatus = ddi_get32(si_ctlp->sictl_port_acc_handle,
2881 			    (uint32_t *)PORT_SSTATUS(si_ctlp, port));
2882 
2883 			if (SSTATUS_GET_IPM(SStatus) !=
2884 			    SSTATUS_IPM_INTERFACE_ACTIVE) {
2885 				/*
2886 				 * If the interface is not active, the DET field
2887 				 * is considered not accurate. So we want to
2888 				 * continue looping.
2889 				 */
2890 				SSTATUS_SET_DET(SStatus,
2891 				    SSTATUS_DET_NODEV_NOPHY);
2892 			}
2893 
2894 			if (loop_count++ > SI_POLLRATE_SSTATUS) {
2895 				/*
2896 				 * We are effectively timing out after 0.1 sec.
2897 				 */
2898 				break;
2899 			}
2900 
2901 			/* Wait for 10 millisec */
2902 #ifndef __lock_lint
2903 			delay(SI_10MS_TICKS);
2904 #endif /* __lock_lint */
2905 
2906 		} while (SSTATUS_GET_DET(SStatus) !=
2907 		    SSTATUS_DET_DEVPRESENT_PHYONLINE);
2908 
2909 		SIDBG2(SIDBG_POLL_LOOP|SIDBG_INIT, si_ctlp,
2910 		    "si_initialize_controller: 1st loop count: %d, "
2911 		    "SStatus: 0x%x",
2912 		    loop_count,
2913 		    SStatus);
2914 
2915 		if ((SSTATUS_GET_IPM(SStatus) !=
2916 		    SSTATUS_IPM_INTERFACE_ACTIVE) ||
2917 		    (SSTATUS_GET_DET(SStatus) !=
2918 		    SSTATUS_DET_DEVPRESENT_PHYONLINE)) {
2919 			/*
2920 			 * Either the port is not active or there
2921 			 * is no device present.
2922 			 */
2923 			si_ctlp->sictl_ports[port]->siport_port_type =
2924 			    PORT_TYPE_NODEV;
2925 			mutex_exit(&si_portp->siport_mutex);
2926 			continue;
2927 		}
2928 
2929 		/* Wait until Port Ready */
2930 		loop_count = 0;
2931 		do {
2932 			port_status = ddi_get32(si_ctlp->sictl_port_acc_handle,
2933 			    (uint32_t *)PORT_STATUS(si_ctlp, port));
2934 
2935 			if (loop_count++ > SI_POLLRATE_PORTREADY) {
2936 				/*
2937 				 * We are effectively timing out after 0.5 sec.
2938 				 */
2939 				break;
2940 			}
2941 
2942 			/* Wait for 10 millisec */
2943 #ifndef __lock_lint
2944 			delay(SI_10MS_TICKS);
2945 #endif /* __lock_lint */
2946 
2947 		} while (!(port_status & PORT_STATUS_BITS_PORT_READY));
2948 
2949 		SIDBG1(SIDBG_POLL_LOOP|SIDBG_INIT, si_ctlp,
2950 		    "si_initialize_controller: 2nd loop count: %d",
2951 		    loop_count);
2952 
2953 		if (si_ctlp->sictl_flags & SI_ATTACH) {
2954 			/*
2955 			 * We want to probe for dev signature only during attach
2956 			 * case. Don't do it during suspend/resume sequence.
2957 			 */
2958 			if (port_status & PORT_STATUS_BITS_PORT_READY) {
2959 				mutex_exit(&si_portp->siport_mutex);
2960 				si_find_dev_signature(si_ctlp, si_portp, port,
2961 				    PORTMULT_CONTROL_PORT);
2962 				mutex_enter(&si_portp->siport_mutex);
2963 			} else {
2964 				si_ctlp->sictl_ports[port]->siport_port_type =
2965 				    PORT_TYPE_NODEV;
2966 			}
2967 		}
2968 
2969 		mutex_exit(&si_portp->siport_mutex);
2970 	}
2971 
2972 	mutex_exit(&si_ctlp->sictl_mutex);
2973 	return (SI_SUCCESS);
2974 }
2975 
2976 /*
2977  * Reverse of si_initialize_controller().
2978  *
2979  * WARNING, WARNING: The caller is expected to obtain the sictl_mutex
2980  * before calling us.
2981  */
2982 static void
2983 si_deinititalize_controller(si_ctl_state_t *si_ctlp)
2984 {
2985 	int port;
2986 
2987 	_NOTE(ASSUMING_PROTECTED(si_ctlp))
2988 
2989 	SIDBG0(SIDBG_INIT|SIDBG_ENTRY, si_ctlp,
2990 	    "si3124: si_deinititalize_controller entered");
2991 
2992 	/* disable all the interrupts. */
2993 	si_disable_all_interrupts(si_ctlp);
2994 
2995 	if (si_ctlp->sictl_flags & SI_DETACH) {
2996 		/*
2997 		 * We want to dealloc all the memory in detach case.
2998 		 */
2999 		for (port = 0; port < si_ctlp->sictl_num_ports; port++) {
3000 			si_dealloc_port_state(si_ctlp, port);
3001 		}
3002 	}
3003 
3004 }
3005 
3006 /*
3007  * Prepare the port ready for usage.
3008  *
3009  * WARNING, WARNING: The caller is expected to obtain the siport_mutex
3010  * before calling us.
3011  */
3012 static void
3013 si_init_port(si_ctl_state_t *si_ctlp, int port)
3014 {
3015 
3016 	SIDBG1(SIDBG_ENTRY|SIDBG_INIT, si_ctlp,
3017 	    "si_init_port entered: port: 0x%x",
3018 	    port);
3019 
3020 	/* Initialize the port. */
3021 	ddi_put32(si_ctlp->sictl_port_acc_handle,
3022 	    (uint32_t *)PORT_CONTROL_SET(si_ctlp, port),
3023 	    PORT_CONTROL_SET_BITS_PORT_INITIALIZE);
3024 
3025 	/*
3026 	 * Clear the InterruptNCOR (Interupt No Clear on Read).
3027 	 * This step ensures that a mere reading of slot_status will clear
3028 	 * the interrupt; no explicit clearing of interrupt condition
3029 	 * will be needed for successful completion of commands.
3030 	 */
3031 	ddi_put32(si_ctlp->sictl_port_acc_handle,
3032 	    (uint32_t *)PORT_CONTROL_CLEAR(si_ctlp, port),
3033 	    PORT_CONTROL_CLEAR_BITS_INTR_NCoR);
3034 
3035 	/* clear any pending interrupts at this point */
3036 	ddi_put32(si_ctlp->sictl_port_acc_handle,
3037 	    (uint32_t *)(PORT_INTERRUPT_STATUS(si_ctlp, port)),
3038 	    INTR_MASK);
3039 
3040 }
3041 
3042 
3043 /*
3044  * Enumerate the devices connected to the port multiplier.
3045  * Once a device is detected, we call si_find_dev_signature()
3046  * to find the type of device connected. Even though we are
3047  * called from within si_find_dev_signature(), there is no
3048  * recursion possible.
3049  */
3050 static int
3051 si_enumerate_port_multiplier(
3052 	si_ctl_state_t *si_ctlp,
3053 	si_port_state_t *si_portp,
3054 	int port)
3055 {
3056 	uint32_t num_dev_ports = 0;
3057 	int pmport;
3058 	uint32_t SControl = 0;
3059 	uint32_t SStatus = 0;
3060 	uint32_t SError = 0;
3061 	int loop_count = 0;
3062 
3063 	SIDBG1(SIDBG_ENTRY|SIDBG_INIT, si_ctlp,
3064 	    "si_enumerate_port_multiplier entered: port: %d",
3065 	    port);
3066 
3067 	mutex_enter(&si_portp->siport_mutex);
3068 
3069 	/* Enable Port Multiplier context switching. */
3070 	ddi_put32(si_ctlp->sictl_port_acc_handle,
3071 	    (uint32_t *)PORT_CONTROL_SET(si_ctlp, port),
3072 	    PORT_CONTROL_SET_BITS_PM_ENABLE);
3073 
3074 	/*
3075 	 * Read the num dev ports connected.
3076 	 * GSCR[2] contains the number of device ports.
3077 	 */
3078 	if (si_read_portmult_reg(si_ctlp, si_portp, port, PORTMULT_CONTROL_PORT,
3079 	    PSCR_REG2, &num_dev_ports)) {
3080 		mutex_exit(&si_portp->siport_mutex);
3081 		return (SI_FAILURE);
3082 	}
3083 	si_portp->siport_portmult_state.sipm_num_ports = num_dev_ports;
3084 
3085 	SIDBG1(SIDBG_INIT, si_ctlp,
3086 	    "si_enumerate_port_multiplier: ports found: %d",
3087 	    num_dev_ports);
3088 
3089 	for (pmport = 0; pmport < num_dev_ports-1; pmport++) {
3090 		/*
3091 		 * Enable PHY by writing a 1, then a 0 to SControl
3092 		 * (i.e. PSCR[2]) DET field.
3093 		 */
3094 		if (si_read_portmult_reg(si_ctlp, si_portp, port, pmport,
3095 		    PSCR_REG2, &SControl)) {
3096 			continue;
3097 		}
3098 
3099 		/* First write a 1 to DET field of SControl. */
3100 		SCONTROL_SET_DET(SControl, SCONTROL_DET_COMRESET);
3101 		if (si_write_portmult_reg(si_ctlp, si_portp, port, pmport,
3102 		    PSCR_REG2, SControl)) {
3103 			continue;
3104 		}
3105 #ifndef __lock_lint
3106 		delay(SI_10MS_TICKS); /* give time for COMRESET to percolate */
3107 #endif /* __lock_lint */
3108 
3109 		/* Then write a 0 to the DET field of SControl. */
3110 		SCONTROL_SET_DET(SControl, SCONTROL_DET_NOACTION);
3111 		if (si_write_portmult_reg(si_ctlp, si_portp, port, pmport,
3112 		    PSCR_REG2, SControl)) {
3113 			continue;
3114 		}
3115 
3116 		/* Wait for PHYRDY by polling SStatus (i.e. PSCR[0]). */
3117 		loop_count = 0;
3118 		do {
3119 			if (si_read_portmult_reg(si_ctlp, si_portp, port,
3120 			    pmport, PSCR_REG0, &SStatus)) {
3121 				break;
3122 			}
3123 			SIDBG1(SIDBG_POLL_LOOP, si_ctlp,
3124 			    "looping for PHYRDY: SStatus: %x",
3125 			    SStatus);
3126 
3127 			if (SSTATUS_GET_IPM(SStatus) !=
3128 			    SSTATUS_IPM_INTERFACE_ACTIVE) {
3129 				/*
3130 				 * If the interface is not active, the DET field
3131 				 * is considered not accurate. So we want to
3132 				 * continue looping.
3133 				 */
3134 				SSTATUS_SET_DET(SStatus,
3135 				    SSTATUS_DET_NODEV_NOPHY);
3136 			}
3137 
3138 			if (loop_count++ > SI_POLLRATE_SSTATUS) {
3139 				/*
3140 				 * We are effectively timing out after 0.1 sec.
3141 				 */
3142 				break;
3143 			}
3144 
3145 			/* Wait for 10 millisec */
3146 #ifndef __lock_lint
3147 			delay(SI_10MS_TICKS);
3148 #endif /* __lock_lint */
3149 
3150 		} while (SSTATUS_GET_DET(SStatus) !=
3151 		    SSTATUS_DET_DEVPRESENT_PHYONLINE);
3152 
3153 		SIDBG2(SIDBG_POLL_LOOP, si_ctlp,
3154 		    "si_enumerate_port_multiplier: "
3155 		    "loop count: %d, SStatus: 0x%x",
3156 		    loop_count,
3157 		    SStatus);
3158 
3159 		if ((SSTATUS_GET_IPM(SStatus) ==
3160 		    SSTATUS_IPM_INTERFACE_ACTIVE) &&
3161 		    (SSTATUS_GET_DET(SStatus) ==
3162 		    SSTATUS_DET_DEVPRESENT_PHYONLINE)) {
3163 			/* The interface is active and the device is present */
3164 			SIDBG1(SIDBG_INIT, si_ctlp,
3165 			    "Status: %x, device exists",
3166 			    SStatus);
3167 			/*
3168 			 * Clear error bits in SError register (i.e. PSCR[1]
3169 			 * by writing back error bits.
3170 			 */
3171 			if (si_read_portmult_reg(si_ctlp, si_portp, port,
3172 			    pmport, PSCR_REG1, &SError)) {
3173 				continue;
3174 			}
3175 			SIDBG1(SIDBG_INIT, si_ctlp,
3176 			    "SError bits are: %x", SError);
3177 			if (si_write_portmult_reg(si_ctlp, si_portp, port,
3178 			    pmport, PSCR_REG1, SError)) {
3179 				continue;
3180 			}
3181 
3182 			/* There exists a device. */
3183 			mutex_exit(&si_portp->siport_mutex);
3184 			si_find_dev_signature(si_ctlp, si_portp, port, pmport);
3185 			mutex_enter(&si_portp->siport_mutex);
3186 		}
3187 	}
3188 
3189 	mutex_exit(&si_portp->siport_mutex);
3190 
3191 	return (SI_SUCCESS);
3192 }
3193 
3194 
3195 /*
3196  * Read a port multiplier register.
3197  *
3198  * WARNING, WARNING: The caller is expected to obtain the siport_mutex
3199  * before calling us.
3200  */
3201 static int
3202 si_read_portmult_reg(
3203 	si_ctl_state_t *si_ctlp,
3204 	si_port_state_t *si_portp,
3205 	int port,
3206 	int pmport,
3207 	int regnum,
3208 	uint32_t *regval)
3209 {
3210 	int slot;
3211 	si_prb_t *prb;
3212 	uint32_t *prb_word_ptr;
3213 	int i;
3214 	uint32_t slot_status;
3215 	int loop_count = 0;
3216 
3217 	_NOTE(ASSUMING_PROTECTED(si_portp))
3218 
3219 	SIDBG3(SIDBG_ENTRY, si_ctlp, "si_read_portmult_reg: port: %x,"
3220 	    "pmport: %x, regnum: %x",
3221 	    port, pmport, regnum);
3222 
3223 	slot = si_claim_free_slot(si_ctlp, si_portp, port);
3224 	if (slot == -1) {
3225 		return (SI_FAILURE);
3226 	}
3227 
3228 	prb =  &(si_portp->siport_prbpool[slot]);
3229 	bzero((void *)prb, sizeof (si_prb_t));
3230 
3231 	/* Now fill the prb. */
3232 	SET_FIS_TYPE(prb->prb_fis, REGISTER_FIS_H2D);
3233 	SET_FIS_PMP(prb->prb_fis, PORTMULT_CONTROL_PORT);
3234 	SET_FIS_CDMDEVCTL(prb->prb_fis, 1);
3235 	SET_FIS_COMMAND(prb->prb_fis, SATAC_READ_PM_REG);
3236 
3237 	SET_FIS_DEV_HEAD(prb->prb_fis, pmport);
3238 	SET_FIS_FEATURES(prb->prb_fis, regnum);
3239 
3240 	/* no real data transfer is involved. */
3241 	SET_SGE_TRM(prb->prb_sge0);
3242 
3243 #if SI_DEBUG
3244 	if (si_debug_flags & SIDBG_DUMP_PRB) {
3245 		int *ptr;
3246 		int j;
3247 
3248 		ptr = (int *)prb;
3249 		cmn_err(CE_WARN, "read_port_mult_reg, prb: ");
3250 		for (j = 0; j < (sizeof (si_prb_t)/4); j++) {
3251 			cmn_err(CE_WARN, "%x ", ptr[j]);
3252 		}
3253 
3254 	}
3255 #endif /* SI_DEBUG */
3256 
3257 	/* Deliver PRB */
3258 	POST_PRB_ADDR(si_ctlp, si_portp, port, slot);
3259 
3260 	/* Loop till the command is finished. */
3261 	do {
3262 		slot_status = ddi_get32(si_ctlp->sictl_port_acc_handle,
3263 		    (uint32_t *)(PORT_SLOT_STATUS(si_ctlp, port)));
3264 
3265 		SIDBG1(SIDBG_POLL_LOOP, si_ctlp,
3266 		    "looping read_pm slot_status: 0x%x",
3267 		    slot_status);
3268 
3269 		if (loop_count++ > SI_POLLRATE_SLOTSTATUS) {
3270 			/* We are effectively timing out after 0.5 sec. */
3271 			break;
3272 		}
3273 
3274 		/* Wait for 10 millisec */
3275 #ifndef __lock_lint
3276 		delay(SI_10MS_TICKS);
3277 #endif /* __lock_lint */
3278 
3279 	} while (slot_status & SI_SLOT_MASK & (0x1 << slot));
3280 
3281 	SIDBG1(SIDBG_POLL_LOOP, si_ctlp,
3282 	    "read_portmult_reg: loop count: %d",
3283 	    loop_count);
3284 
3285 	CLEAR_BIT(si_portp->siport_pending_tags, slot);
3286 
3287 	/* Now inspect the port LRAM for the modified FIS. */
3288 	prb_word_ptr = (uint32_t *)prb;
3289 	for (i = 0; i < (sizeof (si_prb_t)/4); i++) {
3290 		prb_word_ptr[i] = ddi_get32(si_ctlp->sictl_port_acc_handle,
3291 		    (uint32_t *)(PORT_LRAM(si_ctlp, port, slot)+i*4));
3292 	}
3293 
3294 	if (((GET_FIS_COMMAND(prb->prb_fis) & 0x1) != 0) ||
3295 	    (GET_FIS_FEATURES(prb->prb_fis) != 0)) {
3296 		/* command failed. */
3297 		return (SI_FAILURE);
3298 	}
3299 
3300 	/* command succeeded. */
3301 	*regval = (GET_FIS_SECTOR_COUNT(prb->prb_fis) & 0xff) |
3302 	    ((GET_FIS_SECTOR(prb->prb_fis) << 8)  & 0xff00) |
3303 	    ((GET_FIS_CYL_LOW(prb->prb_fis) << 16)  & 0xff0000) |
3304 	    ((GET_FIS_CYL_HI(prb->prb_fis) << 24)  & 0xff000000);
3305 
3306 	return (SI_SUCCESS);
3307 }
3308 
3309 /*
3310  * Write a port multiplier register.
3311  *
3312  * WARNING, WARNING: The caller is expected to obtain the siport_mutex
3313  * before calling us.
3314  */
3315 static int
3316 si_write_portmult_reg(
3317 	si_ctl_state_t *si_ctlp,
3318 	si_port_state_t *si_portp,
3319 	int port,
3320 	int pmport,
3321 	int regnum,
3322 	uint32_t regval)
3323 {
3324 	int slot;
3325 	si_prb_t *prb;
3326 	uint32_t *prb_word_ptr;
3327 	uint32_t slot_status;
3328 	int i;
3329 	int loop_count = 0;
3330 
3331 	_NOTE(ASSUMING_PROTECTED(si_portp))
3332 
3333 	SIDBG4(SIDBG_ENTRY, si_ctlp,
3334 	    "si_write_portmult_reg: port: %x, pmport: %x,"
3335 	    "regnum: %x, regval: %x",
3336 	    port, pmport, regnum, regval);
3337 
3338 	slot = si_claim_free_slot(si_ctlp, si_portp, port);
3339 	if (slot == -1) {
3340 		return (SI_FAILURE);
3341 	}
3342 
3343 	prb =  &(si_portp->siport_prbpool[slot]);
3344 	bzero((void *)prb, sizeof (si_prb_t));
3345 
3346 	/* Now fill the prb. */
3347 	SET_FIS_TYPE(prb->prb_fis, REGISTER_FIS_H2D);
3348 	SET_FIS_PMP(prb->prb_fis, PORTMULT_CONTROL_PORT);
3349 	SET_FIS_CDMDEVCTL(prb->prb_fis, 1);
3350 
3351 	SET_FIS_COMMAND(prb->prb_fis, SATAC_WRITE_PM_REG);
3352 	SET_FIS_DEV_HEAD(prb->prb_fis, pmport);
3353 	SET_FIS_FEATURES(prb->prb_fis, regnum);
3354 
3355 	SET_FIS_SECTOR_COUNT(prb->prb_fis, regval & 0xff);
3356 	SET_FIS_SECTOR(prb->prb_fis, (regval >> 8) & 0xff);
3357 	SET_FIS_CYL_LOW(prb->prb_fis, (regval >> 16) & 0xff);
3358 	SET_FIS_CYL_HI(prb->prb_fis, (regval >> 24)  & 0xff);
3359 
3360 	/* no real data transfer is involved. */
3361 	SET_SGE_TRM(prb->prb_sge0);
3362 
3363 #if SI_DEBUG
3364 	if (si_debug_flags & SIDBG_DUMP_PRB) {
3365 		int *ptr;
3366 		int j;
3367 
3368 		ptr = (int *)prb;
3369 		cmn_err(CE_WARN, "read_port_mult_reg, prb: ");
3370 		for (j = 0; j < (sizeof (si_prb_t)/4); j++) {
3371 			cmn_err(CE_WARN, "%x ", ptr[j]);
3372 		}
3373 
3374 	}
3375 #endif /* SI_DEBUG */
3376 
3377 	/* Deliver PRB */
3378 	POST_PRB_ADDR(si_ctlp, si_portp, port, slot);
3379 
3380 	/* Loop till the command is finished. */
3381 	do {
3382 		slot_status = ddi_get32(si_ctlp->sictl_port_acc_handle,
3383 		    (uint32_t *)(PORT_SLOT_STATUS(si_ctlp, port)));
3384 
3385 		SIDBG1(SIDBG_POLL_LOOP, si_ctlp,
3386 		    "looping write_pmp slot_status: 0x%x",
3387 		    slot_status);
3388 
3389 		if (loop_count++ > SI_POLLRATE_SLOTSTATUS) {
3390 			/* We are effectively timing out after 0.5 sec. */
3391 			break;
3392 		}
3393 
3394 		/* Wait for 10 millisec */
3395 #ifndef __lock_lint
3396 		delay(SI_10MS_TICKS);
3397 #endif /* __lock_lint */
3398 
3399 	} while (slot_status & SI_SLOT_MASK & (0x1 << slot));
3400 
3401 	SIDBG1(SIDBG_POLL_LOOP, si_ctlp,
3402 	    "write_portmult_reg: loop count: %d",
3403 	    loop_count);
3404 
3405 	CLEAR_BIT(si_portp->siport_pending_tags, slot);
3406 
3407 	/* Now inspect the port LRAM for the modified FIS. */
3408 	prb_word_ptr = (uint32_t *)prb;
3409 	for (i = 0; i < (sizeof (si_prb_t)/4); i++) {
3410 		prb_word_ptr[i] = ddi_get32(si_ctlp->sictl_port_acc_handle,
3411 		    (uint32_t *)(PORT_LRAM(si_ctlp, port, slot)+i*4));
3412 	}
3413 
3414 	if (((GET_FIS_COMMAND(prb->prb_fis) & 0x1) != 0) ||
3415 	    (GET_FIS_FEATURES(prb->prb_fis) != 0)) {
3416 		/* command failed */
3417 		return (SI_FAILURE);
3418 	}
3419 
3420 	/* command succeeded */
3421 	return (SI_SUCCESS);
3422 }
3423 
3424 
3425 /*
3426  * Set the auto sense data for ATAPI devices.
3427  *
3428  * Note: Currently the sense data is simulated; this code will be enhanced
3429  * in second phase to fetch the real sense data from the atapi device.
3430  */
3431 static void
3432 si_set_sense_data(sata_pkt_t *satapkt, int reason)
3433 {
3434 	struct scsi_extended_sense *sense;
3435 
3436 	sense = (struct scsi_extended_sense *)
3437 	    satapkt->satapkt_cmd.satacmd_rqsense;
3438 	bzero(sense, sizeof (struct scsi_extended_sense));
3439 	sense->es_valid = 1;		/* Valid sense */
3440 	sense->es_class = 7;		/* Response code 0x70 - current err */
3441 	sense->es_key = 0;
3442 	sense->es_info_1 = 0;
3443 	sense->es_info_2 = 0;
3444 	sense->es_info_3 = 0;
3445 	sense->es_info_4 = 0;
3446 	sense->es_add_len = 6;		/* Additional length */
3447 	sense->es_cmd_info[0] = 0;
3448 	sense->es_cmd_info[1] = 0;
3449 	sense->es_cmd_info[2] = 0;
3450 	sense->es_cmd_info[3] = 0;
3451 	sense->es_add_code = 0;
3452 	sense->es_qual_code = 0;
3453 
3454 	if ((reason == SATA_PKT_DEV_ERROR) || (reason == SATA_PKT_TIMEOUT)) {
3455 		sense->es_key = KEY_HARDWARE_ERROR;
3456 	}
3457 }
3458 
3459 
3460 /*
3461  * Interrupt service handler. We loop through each of the ports to find
3462  * if the interrupt belongs to any of them.
3463  *
3464  * Bulk of the interrupt handling is actually done out of subroutines
3465  * like si_intr_command_complete() etc.
3466  */
3467 /*ARGSUSED*/
3468 static uint_t
3469 si_intr(caddr_t arg1, caddr_t arg2)
3470 {
3471 
3472 	si_ctl_state_t *si_ctlp = (si_ctl_state_t *)arg1;
3473 	si_port_state_t *si_portp;
3474 	uint32_t global_intr_status;
3475 	uint32_t mask, port_intr_status;
3476 	int port;
3477 
3478 	global_intr_status = ddi_get32(si_ctlp->sictl_global_acc_handle,
3479 	    (uint32_t *)GLOBAL_INTERRUPT_STATUS(si_ctlp));
3480 
3481 	SIDBG1(SIDBG_INTR|SIDBG_ENTRY, si_ctlp,
3482 	    "si_intr: global_int_status: 0x%x",
3483 	    global_intr_status);
3484 
3485 	if (!(global_intr_status & SI31xx_INTR_PORT_MASK)) {
3486 		/* Sorry, the interrupt is not ours. */
3487 		return (DDI_INTR_UNCLAIMED);
3488 	}
3489 
3490 	/* Loop for all the ports. */
3491 	for (port = 0; port < si_ctlp->sictl_num_ports; port++) {
3492 
3493 		mask = 0x1 << port;
3494 		if (!(global_intr_status & mask)) {
3495 			continue;
3496 		}
3497 
3498 		mutex_enter(&si_ctlp->sictl_mutex);
3499 		si_portp = si_ctlp->sictl_ports[port];
3500 		mutex_exit(&si_ctlp->sictl_mutex);
3501 
3502 		port_intr_status = ddi_get32(si_ctlp->sictl_global_acc_handle,
3503 		    (uint32_t *)PORT_INTERRUPT_STATUS(si_ctlp, port));
3504 
3505 		SIDBG2(SIDBG_VERBOSE, si_ctlp,
3506 		    "s_intr: port_intr_status: 0x%x, port: %x",
3507 		    port_intr_status,
3508 		    port);
3509 
3510 		if (port_intr_status & INTR_COMMAND_COMPLETE) {
3511 			(void) si_intr_command_complete(si_ctlp, si_portp,
3512 			    port);
3513 		} else {
3514 			/* Clear the interrupts */
3515 			ddi_put32(si_ctlp->sictl_port_acc_handle,
3516 			    (uint32_t *)(PORT_INTERRUPT_STATUS(si_ctlp, port)),
3517 			    port_intr_status & INTR_MASK);
3518 		}
3519 
3520 		/*
3521 		 * Note that we did not clear the interrupt for command
3522 		 * completion interrupt. Reading of slot_status takes care
3523 		 * of clearing the interrupt for command completion case.
3524 		 */
3525 
3526 		if (port_intr_status & INTR_COMMAND_ERROR) {
3527 			(void) si_intr_command_error(si_ctlp, si_portp, port);
3528 		}
3529 
3530 		if (port_intr_status & INTR_PORT_READY) {
3531 			(void) si_intr_port_ready(si_ctlp, si_portp, port);
3532 		}
3533 
3534 		if (port_intr_status & INTR_POWER_CHANGE) {
3535 			(void) si_intr_pwr_change(si_ctlp, si_portp, port);
3536 		}
3537 
3538 		if (port_intr_status & INTR_PHYRDY_CHANGE) {
3539 			(void) si_intr_phy_ready_change(si_ctlp, si_portp,
3540 			    port);
3541 		}
3542 
3543 		if (port_intr_status & INTR_COMWAKE_RECEIVED) {
3544 			(void) si_intr_comwake_rcvd(si_ctlp, si_portp,
3545 			    port);
3546 		}
3547 
3548 		if (port_intr_status & INTR_UNRECOG_FIS) {
3549 			(void) si_intr_unrecognised_fis(si_ctlp, si_portp,
3550 			    port);
3551 		}
3552 
3553 		if (port_intr_status & INTR_DEV_XCHANGED) {
3554 			(void) si_intr_dev_xchanged(si_ctlp, si_portp, port);
3555 		}
3556 
3557 		if (port_intr_status & INTR_8B10B_DECODE_ERROR) {
3558 			(void) si_intr_decode_err_threshold(si_ctlp, si_portp,
3559 			    port);
3560 		}
3561 
3562 		if (port_intr_status & INTR_CRC_ERROR) {
3563 			(void) si_intr_crc_err_threshold(si_ctlp, si_portp,
3564 			    port);
3565 		}
3566 
3567 		if (port_intr_status & INTR_HANDSHAKE_ERROR) {
3568 			(void) si_intr_handshake_err_threshold(si_ctlp,
3569 			    si_portp, port);
3570 		}
3571 
3572 		if (port_intr_status & INTR_SETDEVBITS_NOTIFY) {
3573 			(void) si_intr_set_devbits_notify(si_ctlp, si_portp,
3574 			    port);
3575 		}
3576 	}
3577 
3578 	return (DDI_INTR_CLAIMED);
3579 }
3580 
3581 /*
3582  * Interrupt which indicates that one or more commands have successfully
3583  * completed.
3584  *
3585  * Since we disabled W1C (write-one-to-clear) previously, mere reading
3586  * of slot_status register clears the interrupt. There is no need to
3587  * explicitly clear the interrupt.
3588  */
3589 static int
3590 si_intr_command_complete(
3591 	si_ctl_state_t *si_ctlp,
3592 	si_port_state_t *si_portp,
3593 	int port)
3594 {
3595 
3596 	uint32_t slot_status;
3597 	uint32_t finished_tags;
3598 	int finished_slot;
3599 	sata_pkt_t *satapkt;
3600 
3601 	SIDBG0(SIDBG_ENTRY|SIDBG_INTR, si_ctlp,
3602 	    "si_intr_command_complete enter");
3603 
3604 	mutex_enter(&si_portp->siport_mutex);
3605 
3606 	slot_status = ddi_get32(si_ctlp->sictl_port_acc_handle,
3607 	    (uint32_t *)(PORT_SLOT_STATUS(si_ctlp, port)));
3608 
3609 	if (!si_portp->siport_pending_tags) {
3610 		/*
3611 		 * Spurious interrupt. Nothing to be done.
3612 		 * The interrupt was cleared when slot_status was read.
3613 		 */
3614 		mutex_exit(&si_portp->siport_mutex);
3615 		return (SI_SUCCESS);
3616 	}
3617 
3618 	SIDBG2(SIDBG_VERBOSE, si_ctlp, "si3124: si_intr_command_complete: "
3619 	    "pending_tags: %x, slot_status: %x",
3620 	    si_portp->siport_pending_tags,
3621 	    slot_status);
3622 
3623 	finished_tags =  si_portp->siport_pending_tags &
3624 	    ~slot_status & SI_SLOT_MASK;
3625 	while (finished_tags) {
3626 		si_prb_t *prb;
3627 
3628 		finished_slot = ddi_ffs(finished_tags) - 1;
3629 		if (finished_slot == -1) {
3630 			break;
3631 		}
3632 		prb =  &si_portp->siport_prbpool[finished_slot];
3633 
3634 		satapkt = si_portp->siport_slot_pkts[finished_slot];
3635 		satapkt->satapkt_cmd.satacmd_status_reg =
3636 		    GET_FIS_COMMAND(prb->prb_fis);
3637 
3638 		if (satapkt->satapkt_cmd.satacmd_flags.sata_special_regs)
3639 			si_copy_out_regs(&satapkt->satapkt_cmd, &prb->prb_fis);
3640 
3641 		CLEAR_BIT(si_portp->siport_pending_tags, finished_slot);
3642 		CLEAR_BIT(finished_tags, finished_slot);
3643 		SENDUP_PACKET(si_portp, satapkt, SATA_PKT_COMPLETED);
3644 	}
3645 
3646 	SIDBG2(SIDBG_PKTCOMP, si_ctlp,
3647 	    "command_complete done: pend_tags: 0x%x, slot_status: 0x%x",
3648 	    si_portp->siport_pending_tags,
3649 	    slot_status);
3650 
3651 	/*
3652 	 * tidbit: no need to clear the interrupt since reading of
3653 	 * slot_status automatically clears the interrupt in the case
3654 	 * of a successful command completion.
3655 	 */
3656 
3657 	mutex_exit(&si_portp->siport_mutex);
3658 
3659 	return (SI_SUCCESS);
3660 }
3661 
3662 /*
3663  * Interrupt which indicates that a command did not complete successfully.
3664  *
3665  * The port halts whenever a command error interrupt is received.
3666  * The only way to restart it is to reset or reinitialize the port
3667  * but such an operation throws away all the pending commands on
3668  * the port.
3669  *
3670  * We reset the device and mop the commands on the port.
3671  */
3672 static int
3673 si_intr_command_error(
3674 	si_ctl_state_t *si_ctlp,
3675 	si_port_state_t *si_portp,
3676 	int port)
3677 {
3678 	uint32_t command_error, slot_status;
3679 	uint32_t failed_tags;
3680 
3681 	command_error = ddi_get32(si_ctlp->sictl_port_acc_handle,
3682 	    (uint32_t *)(PORT_COMMAND_ERROR(si_ctlp, port)));
3683 
3684 	SIDBG1(SIDBG_INTR|SIDBG_ENTRY, si_ctlp,
3685 	    "si_intr_command_error: command_error: 0x%x",
3686 	    command_error);
3687 
3688 	mutex_enter(&si_portp->siport_mutex);
3689 
3690 	/*
3691 	 * Remember the slot_status since any of the recovery handler
3692 	 * can blow it away with reset operation.
3693 	 */
3694 	slot_status = ddi_get32(si_ctlp->sictl_port_acc_handle,
3695 	    (uint32_t *)(PORT_SLOT_STATUS(si_ctlp, port)));
3696 
3697 	si_log_error_message(si_ctlp, port, command_error);
3698 
3699 	switch (command_error) {
3700 
3701 	case CMD_ERR_DEVICEERRROR:
3702 		si_error_recovery_DEVICEERROR(si_ctlp, si_portp, port);
3703 		break;
3704 
3705 	case CMD_ERR_SDBERROR:
3706 		si_error_recovery_SDBERROR(si_ctlp, si_portp, port);
3707 		break;
3708 
3709 	case CMD_ERR_DATAFISERROR:
3710 		si_error_recovery_DATAFISERROR(si_ctlp, si_portp, port);
3711 		break;
3712 
3713 	case CMD_ERR_SENDFISERROR:
3714 		si_error_recovery_SENDFISERROR(si_ctlp, si_portp, port);
3715 		break;
3716 
3717 	default:
3718 		si_error_recovery_default(si_ctlp, si_portp, port);
3719 		break;
3720 
3721 	}
3722 
3723 	/*
3724 	 * Compute the failed_tags by adding up the error tags.
3725 	 *
3726 	 * The siport_err_tags_SDBERROR and siport_err_tags_nonSDBERROR
3727 	 * were filled in by the si_error_recovery_* routines.
3728 	 */
3729 	failed_tags = si_portp->siport_pending_tags &
3730 	    (si_portp->siport_err_tags_SDBERROR |
3731 	    si_portp->siport_err_tags_nonSDBERROR);
3732 
3733 	SIDBG3(SIDBG_ERRS|SIDBG_INTR, si_ctlp, "si_intr_command_error: "
3734 	    "err_tags_SDBERROR: 0x%x, "
3735 	    "err_tags_nonSDBERRROR: 0x%x, "
3736 	    "failed_tags: 0x%x",
3737 	    si_portp->siport_err_tags_SDBERROR,
3738 	    si_portp->siport_err_tags_nonSDBERROR,
3739 	    failed_tags);
3740 
3741 	SIDBG2(SIDBG_ERRS|SIDBG_INTR, si_ctlp, "si3124: si_intr_command_error: "
3742 	    "slot_status:0x%x, pending_tags: 0x%x",
3743 	    slot_status,
3744 	    si_portp->siport_pending_tags);
3745 
3746 	mutex_exit(&si_portp->siport_mutex);
3747 	si_mop_commands(si_ctlp,
3748 	    si_portp,
3749 	    port,
3750 	    slot_status,
3751 	    failed_tags,
3752 	    0, 	/* timedout_tags */
3753 	    0, 	/* aborting_tags */
3754 	    0); 	/* reset_tags */
3755 	mutex_enter(&si_portp->siport_mutex);
3756 
3757 	ASSERT(si_portp->siport_pending_tags == 0);
3758 
3759 	si_portp->siport_err_tags_SDBERROR = 0;
3760 	si_portp->siport_err_tags_nonSDBERROR = 0;
3761 
3762 	mutex_exit(&si_portp->siport_mutex);
3763 
3764 	return (SI_SUCCESS);
3765 }
3766 
3767 /*
3768  * There is a subtle difference between errors on a normal port and
3769  * a port-mult port. When an error happens on a normal port, the port
3770  * is halted effectively until the port is reset or initialized.
3771  * However, in port-mult port errors, port does not get halted since
3772  * other non-error devices behind the port multiplier can still
3773  * continue to operate. So we wait till all the commands are drained
3774  * instead of resetting it right away.
3775  *
3776  * WARNING, WARNING: The caller is expected to obtain the siport_mutex
3777  * before calling us.
3778  */
3779 static void
3780 si_recover_portmult_errors(
3781 	si_ctl_state_t *si_ctlp,
3782 	si_port_state_t *si_portp,
3783 	int port)
3784 {
3785 	uint32_t command_error, slot_status, port_status;
3786 	int failed_slot;
3787 	int loop_count = 0;
3788 
3789 	_NOTE(ASSUMING_PROTECTED(si_portp))
3790 
3791 	SIDBG1(SIDBG_ERRS|SIDBG_ENTRY, si_ctlp,
3792 	    "si_recover_portmult_errors: port: 0x%x",
3793 	    port);
3794 
3795 	/* Resume the port */
3796 	ddi_put32(si_ctlp->sictl_port_acc_handle,
3797 	    (uint32_t *)PORT_CONTROL_SET(si_ctlp, port),
3798 	    PORT_CONTROL_SET_BITS_RESUME);
3799 
3800 	port_status = ddi_get32(si_ctlp->sictl_port_acc_handle,
3801 	    (uint32_t *)PORT_STATUS(si_ctlp, port));
3802 
3803 	failed_slot = (port_status >> 16) & SI_NUM_SLOTS;
3804 	command_error = ddi_get32(si_ctlp->sictl_port_acc_handle,
3805 	    (uint32_t *)(PORT_COMMAND_ERROR(si_ctlp, port)));
3806 
3807 	if (command_error ==  CMD_ERR_SDBERROR) {
3808 		si_portp->siport_err_tags_SDBERROR |= (0x1 << failed_slot);
3809 	} else {
3810 		si_portp->siport_err_tags_nonSDBERROR |= (0x1 << failed_slot);
3811 	}
3812 
3813 	/* Now we drain the pending commands. */
3814 	do {
3815 		slot_status = ddi_get32(si_ctlp->sictl_port_acc_handle,
3816 		    (uint32_t *)(PORT_SLOT_STATUS(si_ctlp, port)));
3817 
3818 		/*
3819 		 * Since we have not yet returned DDI_INTR_CLAIMED,
3820 		 * our interrupt handler is guaranteed not to be called again.
3821 		 * So we need to check IS_ATTENTION_RAISED() for further
3822 		 * decisions.
3823 		 *
3824 		 * This is a too big a delay for an interrupt context.
3825 		 * But this is supposed to be a rare condition.
3826 		 */
3827 
3828 		if (IS_ATTENTION_RAISED(slot_status)) {
3829 			/* Resume again */
3830 			ddi_put32(si_ctlp->sictl_port_acc_handle,
3831 			    (uint32_t *)PORT_CONTROL_SET(si_ctlp, port),
3832 			    PORT_CONTROL_SET_BITS_RESUME);
3833 
3834 			port_status = ddi_get32(si_ctlp->sictl_port_acc_handle,
3835 			    (uint32_t *)PORT_STATUS(si_ctlp, port));
3836 			failed_slot = (port_status >> 16) & SI_NUM_SLOTS;
3837 			command_error = ddi_get32(
3838 			    si_ctlp->sictl_port_acc_handle,
3839 			    (uint32_t *)(PORT_COMMAND_ERROR(si_ctlp,
3840 			    port)));
3841 			if (command_error ==  CMD_ERR_SDBERROR) {
3842 				si_portp->siport_err_tags_SDBERROR |=
3843 				    (0x1 << failed_slot);
3844 			} else {
3845 				si_portp->siport_err_tags_nonSDBERROR |=
3846 				    (0x1 << failed_slot);
3847 			}
3848 		}
3849 
3850 		if (loop_count++ > SI_POLLRATE_RECOVERPORTMULT) {
3851 			/* We are effectively timing out after 10 sec. */
3852 			break;
3853 		}
3854 
3855 		/* Wait for 10 millisec */
3856 #ifndef __lock_lint
3857 		delay(SI_10MS_TICKS);
3858 #endif /* __lock_lint */
3859 
3860 	} while (slot_status & SI_SLOT_MASK);
3861 
3862 	/*
3863 	 * The above loop can be improved for 3132 since we could obtain the
3864 	 * Port Multiplier Context of the device in error. Then we could
3865 	 * do a better job in filtering out commands for the device in error.
3866 	 * The loop could finish much earlier with such a logic.
3867 	 */
3868 
3869 	/* Clear the RESUME bit. */
3870 	ddi_put32(si_ctlp->sictl_port_acc_handle,
3871 	    (uint32_t *)PORT_CONTROL_CLEAR(si_ctlp, port),
3872 	    PORT_CONTROL_CLEAR_BITS_RESUME);
3873 
3874 }
3875 
3876 /*
3877  * If we are connected to port multiplier, drain the non-failed devices.
3878  * Otherwise, we initialize the port (which effectively fails all the
3879  * pending commands in the hope that sd would retry them later).
3880  *
3881  * WARNING, WARNING: The caller is expected to obtain the siport_mutex
3882  * before calling us.
3883  */
3884 static void
3885 si_error_recovery_DEVICEERROR(
3886 	si_ctl_state_t *si_ctlp,
3887 	si_port_state_t *si_portp,
3888 	int port)
3889 {
3890 	uint32_t port_status;
3891 	int failed_slot;
3892 
3893 	_NOTE(ASSUMING_PROTECTED(si_portp))
3894 
3895 	SIDBG1(SIDBG_ERRS|SIDBG_ENTRY, si_ctlp,
3896 	    "si_error_recovery_DEVICEERROR: port: 0x%x",
3897 	    port);
3898 
3899 	if (si_portp->siport_port_type == PORT_TYPE_MULTIPLIER) {
3900 		si_recover_portmult_errors(si_ctlp, si_portp, port);
3901 	} else {
3902 		port_status = ddi_get32(si_ctlp->sictl_port_acc_handle,
3903 		    (uint32_t *)PORT_STATUS(si_ctlp, port));
3904 		failed_slot = (port_status >> 16) & SI_NUM_SLOTS;
3905 		si_portp->siport_err_tags_nonSDBERROR |= (0x1 << failed_slot);
3906 	}
3907 
3908 	/* In either case (port-mult or not), we reinitialize the port. */
3909 	(void) si_initialize_port_wait_till_ready(si_ctlp, port);
3910 }
3911 
3912 /*
3913  * Handle exactly like DEVICEERROR. Remember the tags with SDBERROR
3914  * to perform read_log_ext on them later. SDBERROR means that the
3915  * error was for an NCQ command.
3916  *
3917  * WARNING, WARNING: The caller is expected to obtain the siport_mutex
3918  * before calling us.
3919  */
3920 static void
3921 si_error_recovery_SDBERROR(
3922 	si_ctl_state_t *si_ctlp,
3923 	si_port_state_t *si_portp,
3924 	int port)
3925 {
3926 	uint32_t port_status;
3927 	int failed_slot;
3928 
3929 	_NOTE(ASSUMING_PROTECTED(si_portp))
3930 
3931 	SIDBG1(SIDBG_ERRS|SIDBG_ENTRY, si_ctlp,
3932 	    "si3124: si_error_recovery_SDBERROR: port: 0x%x",
3933 	    port);
3934 
3935 	if (si_portp->siport_port_type == PORT_TYPE_MULTIPLIER) {
3936 		si_recover_portmult_errors(si_ctlp, si_portp, port);
3937 	} else {
3938 		port_status = ddi_get32(si_ctlp->sictl_port_acc_handle,
3939 		    (uint32_t *)PORT_STATUS(si_ctlp, port));
3940 		failed_slot = (port_status >> 16) & SI_NUM_SLOTS;
3941 		si_portp->siport_err_tags_SDBERROR |= (0x1 << failed_slot);
3942 	}
3943 
3944 	/* In either case (port-mult or not), we reinitialize the port. */
3945 	(void) si_initialize_port_wait_till_ready(si_ctlp, port);
3946 }
3947 
3948 /*
3949  * Handle exactly like DEVICEERROR except resetting the port if there was
3950  * an NCQ command on the port.
3951  *
3952  * WARNING, WARNING: The caller is expected to obtain the siport_mutex
3953  * before calling us.
3954  */
3955 static void
3956 si_error_recovery_DATAFISERROR(
3957 	si_ctl_state_t *si_ctlp,
3958 	si_port_state_t *si_portp,
3959 	int port)
3960 {
3961 	uint32_t port_status;
3962 	int failed_slot;
3963 
3964 	_NOTE(ASSUMING_PROTECTED(si_portp))
3965 
3966 	SIDBG1(SIDBG_ERRS|SIDBG_ENTRY, si_ctlp,
3967 	    "si3124: si_error_recovery_DATAFISERROR: port: 0x%x",
3968 	    port);
3969 
3970 	/* reset device if we were waiting for any ncq commands. */
3971 	if (si_portp->siport_pending_ncq_count) {
3972 		port_status = ddi_get32(si_ctlp->sictl_port_acc_handle,
3973 		    (uint32_t *)PORT_STATUS(si_ctlp, port));
3974 		failed_slot = (port_status >> 16) & SI_NUM_SLOTS;
3975 		si_portp->siport_err_tags_nonSDBERROR |= (0x1 << failed_slot);
3976 		(void) si_reset_dport_wait_till_ready(si_ctlp, si_portp, port,
3977 		    SI_DEVICE_RESET);
3978 		return;
3979 	}
3980 
3981 	/*
3982 	 * If we don't have any ncq commands pending, the rest of
3983 	 * the process is similar to the one for DEVICEERROR.
3984 	 */
3985 	si_error_recovery_DEVICEERROR(si_ctlp, si_portp, port);
3986 }
3987 
3988 /*
3989  * We handle just like DEVICERROR except that we reset the device instead
3990  * of initializing the port.
3991  *
3992  * WARNING, WARNING: The caller is expected to obtain the siport_mutex
3993  * before calling us.
3994  */
3995 static void
3996 si_error_recovery_SENDFISERROR(
3997 	si_ctl_state_t *si_ctlp,
3998 	si_port_state_t *si_portp,
3999 	int port)
4000 {
4001 	uint32_t port_status;
4002 	int failed_slot;
4003 
4004 	_NOTE(ASSUMING_PROTECTED(si_portp))
4005 
4006 	SIDBG1(SIDBG_ERRS|SIDBG_ENTRY, si_ctlp,
4007 	    "si3124: si_error_recovery_SENDFISERROR: port: 0x%x",
4008 	    port);
4009 
4010 	if (si_portp->siport_port_type == PORT_TYPE_MULTIPLIER) {
4011 		si_recover_portmult_errors(si_ctlp, si_portp, port);
4012 	} else {
4013 		port_status = ddi_get32(si_ctlp->sictl_port_acc_handle,
4014 		    (uint32_t *)PORT_STATUS(si_ctlp, port));
4015 		failed_slot = (port_status >> 16) & SI_NUM_SLOTS;
4016 		si_portp->siport_err_tags_nonSDBERROR |= (0x1 << failed_slot);
4017 		(void) si_reset_dport_wait_till_ready(si_ctlp, si_portp, port,
4018 		    SI_DEVICE_RESET);
4019 	}
4020 }
4021 
4022 /*
4023  * The default behavior for all other errors is to reset the device.
4024  *
4025  * WARNING, WARNING: The caller is expected to obtain the siport_mutex
4026  * before calling us.
4027  */
4028 static void
4029 si_error_recovery_default(
4030 	si_ctl_state_t *si_ctlp,
4031 	si_port_state_t *si_portp,
4032 	int port)
4033 {
4034 	uint32_t port_status;
4035 	int failed_slot;
4036 
4037 	_NOTE(ASSUMING_PROTECTED(si_portp))
4038 
4039 	SIDBG1(SIDBG_ERRS|SIDBG_ENTRY, si_ctlp,
4040 	    "si3124: si_error_recovery_default: port: 0x%x",
4041 	    port);
4042 
4043 	port_status = ddi_get32(si_ctlp->sictl_port_acc_handle,
4044 	    (uint32_t *)PORT_STATUS(si_ctlp, port));
4045 	failed_slot = (port_status >> 16) & SI_NUM_SLOTS;
4046 	si_portp->siport_err_tags_nonSDBERROR |= (0x1 << failed_slot);
4047 
4048 	(void) si_reset_dport_wait_till_ready(si_ctlp, si_portp, port,
4049 	    SI_DEVICE_RESET);
4050 }
4051 
4052 /*
4053  * Read Log Ext with PAGE 10 to retrieve the error for an NCQ command.
4054  *
4055  * WARNING, WARNING: The caller is expected to obtain the siport_mutex
4056  * before calling us.
4057  */
4058 static uint8_t
4059 si_read_log_ext(si_ctl_state_t *si_ctlp, si_port_state_t *si_portp, int port)
4060 {
4061 	int slot;
4062 	si_prb_t *prb;
4063 	int i;
4064 	uint32_t slot_status;
4065 	int loop_count = 0;
4066 	uint32_t *prb_word_ptr;
4067 	uint8_t error;
4068 
4069 	_NOTE(ASSUMING_PROTECTED(si_portp))
4070 
4071 	SIDBG1(SIDBG_ENTRY|SIDBG_ERRS, si_ctlp,
4072 	    "si_read_log_ext: port: %x", port);
4073 
4074 	slot = si_claim_free_slot(si_ctlp, si_portp, port);
4075 	if (slot == -1) {
4076 		return (0);
4077 	}
4078 
4079 	prb =  &(si_portp->siport_prbpool[slot]);
4080 	bzero((void *)prb, sizeof (si_prb_t));
4081 
4082 	/* Now fill the prb */
4083 	SET_FIS_TYPE(prb->prb_fis, REGISTER_FIS_H2D);
4084 	SET_FIS_PMP(prb->prb_fis, PORTMULT_CONTROL_PORT);
4085 	SET_FIS_CDMDEVCTL(prb->prb_fis, 1);
4086 	SET_FIS_COMMAND(prb->prb_fis, SATAC_READ_LOG_EXT);
4087 	SET_FIS_SECTOR(prb->prb_fis, SATA_LOG_PAGE_10);
4088 
4089 	/* no real data transfer is involved */
4090 	SET_SGE_TRM(prb->prb_sge0);
4091 
4092 #if SI_DEBUG
4093 	if (si_debug_flags & SIDBG_DUMP_PRB) {
4094 		int *ptr;
4095 		int j;
4096 
4097 		ptr = (int *)prb;
4098 		cmn_err(CE_WARN, "read_port_mult_reg, prb: ");
4099 		for (j = 0; j < (sizeof (si_prb_t)/4); j++) {
4100 			cmn_err(CE_WARN, "%x ", ptr[j]);
4101 		}
4102 
4103 	}
4104 #endif /* SI_DEBUG */
4105 
4106 	/* Deliver PRB */
4107 	POST_PRB_ADDR(si_ctlp, si_portp, port, slot);
4108 
4109 	/* Loop till the command is finished. */
4110 	do {
4111 		slot_status = ddi_get32(si_ctlp->sictl_port_acc_handle,
4112 		    (uint32_t *)(PORT_SLOT_STATUS(si_ctlp, port)));
4113 
4114 		SIDBG1(SIDBG_POLL_LOOP, si_ctlp,
4115 		    "looping read_log_ext slot_status: 0x%x",
4116 		    slot_status);
4117 
4118 		if (loop_count++ > SI_POLLRATE_SLOTSTATUS) {
4119 			/* We are effectively timing out after 0.5 sec. */
4120 			break;
4121 		}
4122 
4123 		/* Wait for 10 millisec */
4124 #ifndef __lock_lint
4125 		delay(SI_10MS_TICKS);
4126 #endif /* __lock_lint */
4127 
4128 	} while (slot_status & SI_SLOT_MASK & (0x1 << slot));
4129 
4130 	if (slot_status & SI_SLOT_MASK & (0x1 << slot)) {
4131 		/*
4132 		 * If we fail with the READ LOG EXT command, we need to
4133 		 * initialize the port to clear the slot_status register.
4134 		 * We don't need to worry about any other valid commands
4135 		 * being thrown away because we are already in recovery
4136 		 * mode and READ LOG EXT is the only pending command.
4137 		 */
4138 		(void) si_initialize_port_wait_till_ready(si_ctlp, port);
4139 	}
4140 
4141 	SIDBG1(SIDBG_POLL_LOOP, si_ctlp,
4142 	    "read_portmult_reg: loop count: %d",
4143 	    loop_count);
4144 
4145 	/*
4146 	 * The LRAM contains the the modified FIS.
4147 	 * Read the modified FIS to obtain the Error.
4148 	 */
4149 	prb_word_ptr = (uint32_t *)prb;
4150 	for (i = 0; i < (sizeof (si_prb_t)/4); i++) {
4151 		prb_word_ptr[i] = ddi_get32(si_ctlp->sictl_port_acc_handle,
4152 		    (uint32_t *)(PORT_LRAM(si_ctlp, port, slot)+i*4));
4153 	}
4154 	error = GET_FIS_FEATURES(prb->prb_fis);
4155 
4156 	CLEAR_BIT(si_portp->siport_pending_tags, slot);
4157 
4158 	return (error);
4159 
4160 }
4161 
4162 /*
4163  * Dump the error message to the log.
4164  */
4165 static void
4166 si_log_error_message(si_ctl_state_t *si_ctlp, int port, uint32_t command_error)
4167 {
4168 	char *errstr;
4169 
4170 	switch (command_error) {
4171 
4172 	case CMD_ERR_DEVICEERRROR:
4173 		errstr = "Standard Error: Error bit set in register - device"
4174 		    " to host FIS";
4175 		break;
4176 
4177 	case CMD_ERR_SDBERROR:
4178 		errstr = "NCQ Error: Error bit set in register - device"
4179 		    " to host FIS";
4180 		break;
4181 
4182 	case CMD_ERR_DATAFISERROR:
4183 		errstr = "Error in data FIS not detected by device";
4184 		break;
4185 
4186 	case CMD_ERR_SENDFISERROR:
4187 		errstr = "Initial command FIS transmission failed";
4188 		break;
4189 
4190 	case CMD_ERR_INCONSISTENTSTATE:
4191 		errstr = "Inconsistency in protocol";
4192 		break;
4193 
4194 	case CMD_ERR_DIRECTIONERROR:
4195 		errstr = "DMA direction flag does not match the command";
4196 		break;
4197 
4198 	case CMD_ERR_UNDERRUNERROR:
4199 		errstr = "Run out of scatter gather entries while writing data";
4200 		break;
4201 
4202 	case CMD_ERR_OVERRUNERROR:
4203 		errstr = "Run out of scatter gather entries while reading data";
4204 		break;
4205 
4206 	case CMD_ERR_PACKETPROTOCOLERROR:
4207 		errstr = "Packet protocol error";
4208 		break;
4209 
4210 	case CMD_ERR_PLDSGTERRORBOUNDARY:
4211 		errstr = "Scatter/gather table not on quadword boundary";
4212 		break;
4213 
4214 	case CMD_ERR_PLDSGTERRORTARETABORT:
4215 		errstr = "PCI(X) Target abort while fetching scatter/gather"
4216 		    " table";
4217 		break;
4218 
4219 	case CMD_ERR_PLDSGTERRORMASTERABORT:
4220 		errstr = "PCI(X) Master abort while fetching scatter/gather"
4221 		    " table";
4222 		break;
4223 
4224 	case CMD_ERR_PLDSGTERRORPCIERR:
4225 		errstr = "PCI(X) parity error while fetching scatter/gather"
4226 		    " table";
4227 		break;
4228 
4229 	case CMD_ERR_PLDCMDERRORBOUNDARY:
4230 		errstr = "PRB not on quadword boundary";
4231 		break;
4232 
4233 	case CMD_ERR_PLDCMDERRORTARGETABORT:
4234 		errstr = "PCI(X) Target abort while fetching PRB";
4235 		break;
4236 
4237 	case CMD_ERR_PLDCMDERRORMASTERABORT:
4238 		errstr = "PCI(X) Master abort while fetching PRB";
4239 		break;
4240 
4241 	case CMD_ERR_PLDCMDERORPCIERR:
4242 		errstr = "PCI(X) parity error while fetching PRB";
4243 		break;
4244 
4245 	case CMD_ERR_PSDERRORTARGETABORT:
4246 		errstr = "PCI(X) Target abort during data transfer";
4247 		break;
4248 
4249 	case CMD_ERR_PSDERRORMASTERABORT:
4250 		errstr = "PCI(X) Master abort during data transfer";
4251 		break;
4252 
4253 	case CMD_ERR_PSDERRORPCIERR:
4254 		errstr = "PCI(X) parity error during data transfer";
4255 		break;
4256 
4257 	case CMD_ERR_SENDSERVICEERROR:
4258 		errstr = "FIS received while sending service FIS in"
4259 		    " legacy queuing operation";
4260 		break;
4261 
4262 	default:
4263 		errstr = "Unknown Error";
4264 		break;
4265 
4266 	}
4267 
4268 	SIDBG2(SIDBG_ERRS, si_ctlp,
4269 	    "command error: port: 0x%x, error: %s",
4270 	    port,
4271 	    errstr);
4272 
4273 }
4274 
4275 
4276 /*
4277  * Interrupt which indicates that the Port Ready state has changed
4278  * from zero to one.
4279  *
4280  * We are not interested in this interrupt; we just log a debug message.
4281  */
4282 /*ARGSUSED*/
4283 static int
4284 si_intr_port_ready(
4285 	si_ctl_state_t *si_ctlp,
4286 	si_port_state_t *si_portp,
4287 	int port)
4288 {
4289 	SIDBG0(SIDBG_INTR|SIDBG_ENTRY, si_ctlp, "si_intr_ready");
4290 	return (SI_SUCCESS);
4291 }
4292 
4293 /*
4294  * Interrupt which indicates that the port power management state
4295  * has been modified.
4296  *
4297  * We are not interested in this interrupt; we just log a debug message.
4298  */
4299 /*ARGSUSED*/
4300 static int
4301 si_intr_pwr_change(
4302 	si_ctl_state_t *si_ctlp,
4303 	si_port_state_t *si_portp,
4304 	int port)
4305 {
4306 	SIDBG0(SIDBG_INTR|SIDBG_ENTRY, si_ctlp, "si_intr_pwr_change");
4307 	return (SI_SUCCESS);
4308 }
4309 
4310 /*
4311  * Interrupt which indicates that the PHY sate has changed either from
4312  * Not-Ready to Ready or from Ready to Not-Ready.
4313  */
4314 static int
4315 si_intr_phy_ready_change(
4316 	si_ctl_state_t *si_ctlp,
4317 	si_port_state_t *si_portp,
4318 	int port)
4319 {
4320 	sata_device_t sdevice;
4321 	uint32_t SStatus = 0; /* No dev present & PHY not established. */
4322 	int dev_exists_now = 0;
4323 	int dev_existed_previously = 0;
4324 
4325 	SIDBG0(SIDBG_INTR|SIDBG_ENTRY, si_ctlp, "si_intr_phy_rdy_change");
4326 
4327 	mutex_enter(&si_ctlp->sictl_mutex);
4328 	if ((si_ctlp->sictl_sata_hba_tran == NULL) || (si_portp == NULL)) {
4329 		/* the whole controller setup is not yet done. */
4330 		mutex_exit(&si_ctlp->sictl_mutex);
4331 		return (SI_SUCCESS);
4332 	}
4333 
4334 	mutex_exit(&si_ctlp->sictl_mutex);
4335 
4336 	mutex_enter(&si_portp->siport_mutex);
4337 
4338 	/* SStatus tells the presence of device. */
4339 	SStatus = ddi_get32(si_ctlp->sictl_port_acc_handle,
4340 	    (uint32_t *)PORT_SSTATUS(si_ctlp, port));
4341 	dev_exists_now =
4342 	    (SSTATUS_GET_DET(SStatus) == SSTATUS_DET_DEVPRESENT_PHYONLINE);
4343 
4344 	if (si_portp->siport_port_type != PORT_TYPE_NODEV) {
4345 		dev_existed_previously = 1;
4346 	}
4347 
4348 	bzero((void *)&sdevice, sizeof (sata_device_t));
4349 	sdevice.satadev_addr.cport = port;
4350 	sdevice.satadev_addr.pmport = PORTMULT_CONTROL_PORT;
4351 
4352 	/* we don't have a way of determining the exact port-mult port. */
4353 	if (si_portp->siport_port_type == PORT_TYPE_MULTIPLIER) {
4354 		sdevice.satadev_addr.qual = SATA_ADDR_PMPORT;
4355 	} else {
4356 		sdevice.satadev_addr.qual = SATA_ADDR_CPORT;
4357 	}
4358 
4359 	sdevice.satadev_state = SATA_STATE_READY; /* port state */
4360 
4361 	if (dev_exists_now) {
4362 		if (dev_existed_previously) {
4363 
4364 			/* Things are fine now. The loss was temporary. */
4365 			SIDBG0(SIDBG_INTR, NULL,
4366 			    "phyrdy: doing BOTH EVENTS TOGETHER");
4367 			if (si_portp->siport_active) {
4368 				SIDBG0(SIDBG_EVENT, si_ctlp,
4369 				    "sending event: LINK_LOST & "
4370 				    "LINK_ESTABLISHED");
4371 
4372 				sata_hba_event_notify(
4373 				    si_ctlp->sictl_sata_hba_tran->\
4374 				    sata_tran_hba_dip,
4375 				    &sdevice,
4376 				    SATA_EVNT_LINK_LOST|
4377 				    SATA_EVNT_LINK_ESTABLISHED);
4378 			}
4379 
4380 		} else {
4381 
4382 			/* A new device has been detected. */
4383 			mutex_exit(&si_portp->siport_mutex);
4384 			si_find_dev_signature(si_ctlp, si_portp, port,
4385 			    PORTMULT_CONTROL_PORT);
4386 			mutex_enter(&si_portp->siport_mutex);
4387 			SIDBG0(SIDBG_INTR, NULL, "phyrdy: doing ATTACH event");
4388 			if (si_portp->siport_active) {
4389 				SIDBG0(SIDBG_EVENT, si_ctlp,
4390 				    "sending event up: LINK_ESTABLISHED");
4391 
4392 				sata_hba_event_notify(
4393 				    si_ctlp->sictl_sata_hba_tran->\
4394 				    sata_tran_hba_dip,
4395 				    &sdevice,
4396 				    SATA_EVNT_LINK_ESTABLISHED);
4397 			}
4398 
4399 		}
4400 	} else { /* No device exists now */
4401 
4402 		if (dev_existed_previously) {
4403 
4404 			/* An existing device is lost. */
4405 			if (si_portp->siport_active) {
4406 				SIDBG0(SIDBG_EVENT, si_ctlp,
4407 				    "sending event up: LINK_LOST");
4408 
4409 				sata_hba_event_notify(
4410 				    si_ctlp->sictl_sata_hba_tran->
4411 				    sata_tran_hba_dip,
4412 				    &sdevice,
4413 				    SATA_EVNT_LINK_LOST);
4414 			}
4415 			si_portp->siport_port_type = PORT_TYPE_NODEV;
4416 
4417 		} else {
4418 
4419 			/* spurious interrupt */
4420 			SIDBG0(SIDBG_INTR, NULL,
4421 			    "spurious phy ready interrupt");
4422 		}
4423 	}
4424 
4425 	mutex_exit(&si_portp->siport_mutex);
4426 	return (SI_SUCCESS);
4427 }
4428 
4429 
4430 /*
4431  * Interrupt which indicates that a COMWAKE OOB signal has been decoded
4432  * on the receiver.
4433  *
4434  * We are not interested in this interrupt; we just log a debug message.
4435  */
4436 /*ARGSUSED*/
4437 static int
4438 si_intr_comwake_rcvd(
4439 	si_ctl_state_t *si_ctlp,
4440 	si_port_state_t *si_portp,
4441 	int port)
4442 {
4443 	SIDBG0(SIDBG_INTR|SIDBG_ENTRY, si_ctlp, "si_intr_commwake_rcvd");
4444 	return (SI_SUCCESS);
4445 }
4446 
4447 /*
4448  * Interrupt which indicates that the F-bit has been set in SError
4449  * Diag field.
4450  *
4451  * We are not interested in this interrupt; we just log a debug message.
4452  */
4453 /*ARGSUSED*/
4454 static int
4455 si_intr_unrecognised_fis(
4456 	si_ctl_state_t *si_ctlp,
4457 	si_port_state_t *si_portp,
4458 	int port)
4459 {
4460 	SIDBG0(SIDBG_INTR|SIDBG_ENTRY, si_ctlp, "si_intr_unrecognised_fis");
4461 	return (SI_SUCCESS);
4462 }
4463 
4464 /*
4465  * Interrupt which indicates that the X-bit has been set in SError
4466  * Diag field.
4467  *
4468  * We are not interested in this interrupt; we just log a debug message.
4469  */
4470 /*ARGSUSED*/
4471 static int
4472 si_intr_dev_xchanged(
4473 	si_ctl_state_t *si_ctlp,
4474 	si_port_state_t *si_portp,
4475 	int port)
4476 {
4477 
4478 	SIDBG0(SIDBG_INTR|SIDBG_ENTRY, si_ctlp, "si_intr_dev_xchanged");
4479 	return (SI_SUCCESS);
4480 }
4481 
4482 /*
4483  * Interrupt which indicates that the 8b/10 Decode Error counter has
4484  * exceeded the programmed non-zero threshold value.
4485  *
4486  * We are not interested in this interrupt; we just log a debug message.
4487  */
4488 /*ARGSUSED*/
4489 static int
4490 si_intr_decode_err_threshold(
4491 	si_ctl_state_t *si_ctlp,
4492 	si_port_state_t *si_portp,
4493 	int port)
4494 {
4495 	SIDBG0(SIDBG_INTR|SIDBG_ENTRY, si_ctlp, "si_intr_err_threshold");
4496 	return (SI_SUCCESS);
4497 }
4498 
4499 /*
4500  * Interrupt which indicates that the CRC Error counter has exceeded the
4501  * programmed non-zero threshold value.
4502  *
4503  * We are not interested in this interrupt; we just log a debug message.
4504  */
4505 /*ARGSUSED*/
4506 static int
4507 si_intr_crc_err_threshold(
4508 	si_ctl_state_t *si_ctlp,
4509 	si_port_state_t *si_portp,
4510 	int port)
4511 {
4512 	SIDBG0(SIDBG_INTR|SIDBG_ENTRY, si_ctlp, "si_intr_crc_threshold");
4513 	return (SI_SUCCESS);
4514 }
4515 
4516 /*
4517  * Interrupt which indicates that the Handshake Error counter has
4518  * exceeded the programmed non-zero threshold value.
4519  *
4520  * We are not interested in this interrupt; we just log a debug message.
4521  */
4522 /*ARGSUSED*/
4523 static int
4524 si_intr_handshake_err_threshold(
4525 	si_ctl_state_t *si_ctlp,
4526 	si_port_state_t *si_portp,
4527 	int port)
4528 {
4529 	SIDBG0(SIDBG_INTR|SIDBG_ENTRY, si_ctlp,
4530 	    "si_intr_handshake_err_threshold");
4531 	return (SI_SUCCESS);
4532 }
4533 
4534 /*
4535  * Interrupt which indicates that a "Set Device Bits" FIS has been
4536  * received with N-bit set in the control field.
4537  *
4538  * We are not interested in this interrupt; we just log a debug message.
4539  */
4540 /*ARGSUSED*/
4541 static int
4542 si_intr_set_devbits_notify(
4543 	si_ctl_state_t *si_ctlp,
4544 	si_port_state_t *si_portp,
4545 	int port)
4546 {
4547 	SIDBG0(SIDBG_INTR|SIDBG_ENTRY, si_ctlp, "si_intr_set_devbits_notify");
4548 	return (SI_SUCCESS);
4549 }
4550 
4551 
4552 /*
4553  * Enable the interrupts for a particular port.
4554  *
4555  * WARNING, WARNING: The caller is expected to obtain the siport_mutex
4556  * before calling us.
4557  */
4558 static void
4559 si_enable_port_interrupts(si_ctl_state_t *si_ctlp, int port)
4560 {
4561 	uint32_t mask;
4562 
4563 	/* get the current settings first. */
4564 	mask = ddi_get32(si_ctlp->sictl_global_acc_handle,
4565 	    (uint32_t *)GLOBAL_CONTROL_REG(si_ctlp));
4566 
4567 	SIDBG1(SIDBG_INIT|SIDBG_ENTRY, si_ctlp,
4568 	    "si_enable_port_interrupts: current mask: 0x%x",
4569 	    mask);
4570 
4571 	/* enable the bit for current port. */
4572 	SET_BIT(mask, port);
4573 
4574 	/* now use this mask to enable the interrupt. */
4575 	ddi_put32(si_ctlp->sictl_global_acc_handle,
4576 	    (uint32_t *)GLOBAL_CONTROL_REG(si_ctlp),
4577 	    mask);
4578 }
4579 
4580 /*
4581  * Enable interrupts for all the ports.
4582  */
4583 static void
4584 si_enable_all_interrupts(si_ctl_state_t *si_ctlp)
4585 {
4586 	int port;
4587 
4588 	for (port = 0; port < si_ctlp->sictl_num_ports; port++) {
4589 		si_enable_port_interrupts(si_ctlp, port);
4590 	}
4591 }
4592 
4593 /*
4594  * Disable interrupts for a particular port.
4595  *
4596  * WARNING, WARNING: The caller is expected to obtain the siport_mutex
4597  * before calling us.
4598  */
4599 static void
4600 si_disable_port_interrupts(si_ctl_state_t *si_ctlp, int port)
4601 {
4602 	uint32_t mask;
4603 
4604 	/* get the current settings first. */
4605 	mask = ddi_get32(si_ctlp->sictl_global_acc_handle,
4606 	    (uint32_t *)GLOBAL_CONTROL_REG(si_ctlp));
4607 
4608 	/* clear the bit for current port. */
4609 	CLEAR_BIT(mask, port);
4610 
4611 	/* now use this mask to disable the interrupt. */
4612 	ddi_put32(si_ctlp->sictl_global_acc_handle,
4613 	    (uint32_t *)GLOBAL_CONTROL_REG(si_ctlp),
4614 	    mask);
4615 
4616 }
4617 
4618 /*
4619  * Disable interrupts for all the ports.
4620  */
4621 static void
4622 si_disable_all_interrupts(si_ctl_state_t *si_ctlp)
4623 {
4624 	int port;
4625 
4626 	for (port = 0; port < si_ctlp->sictl_num_ports; port++) {
4627 		si_disable_port_interrupts(si_ctlp, port);
4628 	}
4629 }
4630 
4631 /*
4632  * Fetches the latest sstatus, scontrol, serror, sactive registers
4633  * and stuffs them into sata_device_t structure.
4634  */
4635 static void
4636 fill_dev_sregisters(si_ctl_state_t *si_ctlp, int port, sata_device_t *satadev)
4637 {
4638 	satadev->satadev_scr.sstatus = ddi_get32(si_ctlp->sictl_port_acc_handle,
4639 	    (uint32_t *)(PORT_SSTATUS(si_ctlp, port)));
4640 	satadev->satadev_scr.serror = ddi_get32(si_ctlp->sictl_port_acc_handle,
4641 	    (uint32_t *)(PORT_SERROR(si_ctlp, port)));
4642 	satadev->satadev_scr.sactive = ddi_get32(si_ctlp->sictl_port_acc_handle,
4643 	    (uint32_t *)(PORT_SACTIVE(si_ctlp, port)));
4644 	satadev->satadev_scr.scontrol =
4645 	    ddi_get32(si_ctlp->sictl_port_acc_handle,
4646 	    (uint32_t *)(PORT_SCONTROL(si_ctlp, port)));
4647 
4648 }
4649 
4650 /*
4651  * si_add_legacy_intrs() handles INTx and legacy interrupts.
4652  */
4653 static int
4654 si_add_legacy_intrs(si_ctl_state_t *si_ctlp)
4655 {
4656 	dev_info_t	*devinfo = si_ctlp->sictl_devinfop;
4657 	int		actual, count = 0;
4658 	int		x, y, rc, inum = 0;
4659 
4660 	SIDBG0(SIDBG_ENTRY, si_ctlp, "si_add_legacy_intrs");
4661 
4662 	/* get number of interrupts. */
4663 	rc = ddi_intr_get_nintrs(devinfo, DDI_INTR_TYPE_FIXED, &count);
4664 	if ((rc != DDI_SUCCESS) || (count == 0)) {
4665 		SIDBG2(SIDBG_INTR|SIDBG_INIT, si_ctlp,
4666 		    "ddi_intr_get_nintrs() failed, "
4667 		    "rc %d count %d\n", rc, count);
4668 		return (DDI_FAILURE);
4669 	}
4670 
4671 	/* Allocate an array of interrupt handles. */
4672 	si_ctlp->sictl_intr_size = count * sizeof (ddi_intr_handle_t);
4673 	si_ctlp->sictl_htable = kmem_zalloc(si_ctlp->sictl_intr_size, KM_SLEEP);
4674 
4675 	/* call ddi_intr_alloc(). */
4676 	rc = ddi_intr_alloc(devinfo, si_ctlp->sictl_htable, DDI_INTR_TYPE_FIXED,
4677 	    inum, count, &actual, DDI_INTR_ALLOC_STRICT);
4678 
4679 	if ((rc != DDI_SUCCESS) || (actual == 0)) {
4680 		SIDBG1(SIDBG_INTR|SIDBG_INIT, si_ctlp,
4681 		    "ddi_intr_alloc() failed, rc %d\n", rc);
4682 		kmem_free(si_ctlp->sictl_htable, si_ctlp->sictl_intr_size);
4683 		return (DDI_FAILURE);
4684 	}
4685 
4686 	if (actual < count) {
4687 		SIDBG2(SIDBG_INTR|SIDBG_INIT, si_ctlp,
4688 		    "Requested: %d, Received: %d", count, actual);
4689 
4690 		for (x = 0; x < actual; x++) {
4691 			(void) ddi_intr_free(si_ctlp->sictl_htable[x]);
4692 		}
4693 
4694 		kmem_free(si_ctlp->sictl_htable, si_ctlp->sictl_intr_size);
4695 		return (DDI_FAILURE);
4696 	}
4697 
4698 	si_ctlp->sictl_intr_cnt = actual;
4699 
4700 	/* Get intr priority. */
4701 	if (ddi_intr_get_pri(si_ctlp->sictl_htable[0],
4702 	    &si_ctlp->sictl_intr_pri) != DDI_SUCCESS) {
4703 		SIDBG0(SIDBG_INTR|SIDBG_INIT, si_ctlp,
4704 		    "ddi_intr_get_pri() failed");
4705 
4706 		for (x = 0; x < actual; x++) {
4707 			(void) ddi_intr_free(si_ctlp->sictl_htable[x]);
4708 		}
4709 
4710 		kmem_free(si_ctlp->sictl_htable, si_ctlp->sictl_intr_size);
4711 		return (DDI_FAILURE);
4712 	}
4713 
4714 	/* Test for high level mutex. */
4715 	if (si_ctlp->sictl_intr_pri >= ddi_intr_get_hilevel_pri()) {
4716 		SIDBG0(SIDBG_INTR|SIDBG_INIT, si_ctlp,
4717 		    "si_add_legacy_intrs: Hi level intr not supported");
4718 
4719 		for (x = 0; x < actual; x++) {
4720 			(void) ddi_intr_free(si_ctlp->sictl_htable[x]);
4721 		}
4722 
4723 		kmem_free(si_ctlp->sictl_htable, sizeof (ddi_intr_handle_t));
4724 
4725 		return (DDI_FAILURE);
4726 	}
4727 
4728 	/* Call ddi_intr_add_handler(). */
4729 	for (x = 0; x < actual; x++) {
4730 		if (ddi_intr_add_handler(si_ctlp->sictl_htable[x], si_intr,
4731 		    (caddr_t)si_ctlp, NULL) != DDI_SUCCESS) {
4732 			SIDBG0(SIDBG_INTR|SIDBG_INIT, si_ctlp,
4733 			    "ddi_intr_add_handler() failed");
4734 
4735 			for (y = 0; y < actual; y++) {
4736 				(void) ddi_intr_free(si_ctlp->sictl_htable[y]);
4737 			}
4738 
4739 			kmem_free(si_ctlp->sictl_htable,
4740 			    si_ctlp->sictl_intr_size);
4741 			return (DDI_FAILURE);
4742 		}
4743 	}
4744 
4745 	/* Call ddi_intr_enable() for legacy interrupts. */
4746 	for (x = 0; x < si_ctlp->sictl_intr_cnt; x++) {
4747 		(void) ddi_intr_enable(si_ctlp->sictl_htable[x]);
4748 	}
4749 
4750 	return (DDI_SUCCESS);
4751 }
4752 
4753 /*
4754  * si_add_msictl_intrs() handles MSI interrupts.
4755  */
4756 static int
4757 si_add_msi_intrs(si_ctl_state_t *si_ctlp)
4758 {
4759 	dev_info_t	*devinfo = si_ctlp->sictl_devinfop;
4760 	int		count, avail, actual;
4761 	int		x, y, rc, inum = 0;
4762 
4763 	SIDBG0(SIDBG_ENTRY|SIDBG_INIT, si_ctlp, "si_add_msi_intrs");
4764 
4765 	/* get number of interrupts. */
4766 	rc = ddi_intr_get_nintrs(devinfo, DDI_INTR_TYPE_MSI, &count);
4767 	if ((rc != DDI_SUCCESS) || (count == 0)) {
4768 		SIDBG2(SIDBG_INIT, si_ctlp,
4769 		    "ddi_intr_get_nintrs() failed, "
4770 		    "rc %d count %d\n", rc, count);
4771 		return (DDI_FAILURE);
4772 	}
4773 
4774 	/* get number of available interrupts. */
4775 	rc = ddi_intr_get_navail(devinfo, DDI_INTR_TYPE_MSI, &avail);
4776 	if ((rc != DDI_SUCCESS) || (avail == 0)) {
4777 		SIDBG2(SIDBG_INIT, si_ctlp,
4778 		    "ddi_intr_get_navail() failed, "
4779 		    "rc %d avail %d\n", rc, avail);
4780 		return (DDI_FAILURE);
4781 	}
4782 
4783 	if (avail < count) {
4784 		SIDBG2(SIDBG_INIT, si_ctlp,
4785 		    "ddi_intr_get_nvail returned %d, navail() returned %d",
4786 		    count, avail);
4787 	}
4788 
4789 	/* Allocate an array of interrupt handles. */
4790 	si_ctlp->sictl_intr_size = count * sizeof (ddi_intr_handle_t);
4791 	si_ctlp->sictl_htable = kmem_alloc(si_ctlp->sictl_intr_size, KM_SLEEP);
4792 
4793 	/* call ddi_intr_alloc(). */
4794 	rc = ddi_intr_alloc(devinfo, si_ctlp->sictl_htable, DDI_INTR_TYPE_MSI,
4795 	    inum, count, &actual, DDI_INTR_ALLOC_NORMAL);
4796 
4797 	if ((rc != DDI_SUCCESS) || (actual == 0)) {
4798 		SIDBG1(SIDBG_INIT, si_ctlp,
4799 		    "ddi_intr_alloc() failed, rc %d\n", rc);
4800 		kmem_free(si_ctlp->sictl_htable, si_ctlp->sictl_intr_size);
4801 		return (DDI_FAILURE);
4802 	}
4803 
4804 	/* use interrupt count returned */
4805 	if (actual < count) {
4806 		SIDBG2(SIDBG_INIT, si_ctlp,
4807 		    "Requested: %d, Received: %d", count, actual);
4808 	}
4809 
4810 	si_ctlp->sictl_intr_cnt = actual;
4811 
4812 	/*
4813 	 * Get priority for first msi, assume remaining are all the same.
4814 	 */
4815 	if (ddi_intr_get_pri(si_ctlp->sictl_htable[0],
4816 	    &si_ctlp->sictl_intr_pri) != DDI_SUCCESS) {
4817 		SIDBG0(SIDBG_INIT, si_ctlp, "ddi_intr_get_pri() failed");
4818 
4819 		/* Free already allocated intr. */
4820 		for (y = 0; y < actual; y++) {
4821 			(void) ddi_intr_free(si_ctlp->sictl_htable[y]);
4822 		}
4823 
4824 		kmem_free(si_ctlp->sictl_htable, si_ctlp->sictl_intr_size);
4825 		return (DDI_FAILURE);
4826 	}
4827 
4828 	/* Test for high level mutex. */
4829 	if (si_ctlp->sictl_intr_pri >= ddi_intr_get_hilevel_pri()) {
4830 		SIDBG0(SIDBG_INIT, si_ctlp,
4831 		    "si_add_msi_intrs: Hi level intr not supported");
4832 
4833 		/* Free already allocated intr. */
4834 		for (y = 0; y < actual; y++) {
4835 			(void) ddi_intr_free(si_ctlp->sictl_htable[y]);
4836 		}
4837 
4838 		kmem_free(si_ctlp->sictl_htable, sizeof (ddi_intr_handle_t));
4839 
4840 		return (DDI_FAILURE);
4841 	}
4842 
4843 	/* Call ddi_intr_add_handler(). */
4844 	for (x = 0; x < actual; x++) {
4845 		if (ddi_intr_add_handler(si_ctlp->sictl_htable[x], si_intr,
4846 		    (caddr_t)si_ctlp, NULL) != DDI_SUCCESS) {
4847 			SIDBG0(SIDBG_INIT, si_ctlp,
4848 			    "ddi_intr_add_handler() failed");
4849 
4850 			/* Free already allocated intr. */
4851 			for (y = 0; y < actual; y++) {
4852 				(void) ddi_intr_free(si_ctlp->sictl_htable[y]);
4853 			}
4854 
4855 			kmem_free(si_ctlp->sictl_htable,
4856 			    si_ctlp->sictl_intr_size);
4857 			return (DDI_FAILURE);
4858 		}
4859 	}
4860 
4861 	(void) ddi_intr_get_cap(si_ctlp->sictl_htable[0],
4862 	    &si_ctlp->sictl_intr_cap);
4863 
4864 	if (si_ctlp->sictl_intr_cap & DDI_INTR_FLAG_BLOCK) {
4865 		/* Call ddi_intr_block_enable() for MSI. */
4866 		(void) ddi_intr_block_enable(si_ctlp->sictl_htable,
4867 		    si_ctlp->sictl_intr_cnt);
4868 	} else {
4869 		/* Call ddi_intr_enable() for MSI non block enable. */
4870 		for (x = 0; x < si_ctlp->sictl_intr_cnt; x++) {
4871 			(void) ddi_intr_enable(si_ctlp->sictl_htable[x]);
4872 		}
4873 	}
4874 
4875 	return (DDI_SUCCESS);
4876 }
4877 
4878 /*
4879  * Removes the registered interrupts irrespective of whether they
4880  * were legacy or MSI.
4881  */
4882 static void
4883 si_rem_intrs(si_ctl_state_t *si_ctlp)
4884 {
4885 	int x;
4886 
4887 	SIDBG0(SIDBG_ENTRY, si_ctlp, "si_rem_intrs entered");
4888 
4889 	/* Disable all interrupts. */
4890 	if ((si_ctlp->sictl_intr_type == DDI_INTR_TYPE_MSI) &&
4891 	    (si_ctlp->sictl_intr_cap & DDI_INTR_FLAG_BLOCK)) {
4892 		/* Call ddi_intr_block_disable(). */
4893 		(void) ddi_intr_block_disable(si_ctlp->sictl_htable,
4894 		    si_ctlp->sictl_intr_cnt);
4895 	} else {
4896 		for (x = 0; x < si_ctlp->sictl_intr_cnt; x++) {
4897 			(void) ddi_intr_disable(si_ctlp->sictl_htable[x]);
4898 		}
4899 	}
4900 
4901 	/* Call ddi_intr_remove_handler(). */
4902 	for (x = 0; x < si_ctlp->sictl_intr_cnt; x++) {
4903 		(void) ddi_intr_remove_handler(si_ctlp->sictl_htable[x]);
4904 		(void) ddi_intr_free(si_ctlp->sictl_htable[x]);
4905 	}
4906 
4907 	kmem_free(si_ctlp->sictl_htable, si_ctlp->sictl_intr_size);
4908 }
4909 
4910 /*
4911  * Resets either the port or the device connected to the port based on
4912  * the flag variable.
4913  *
4914  * The reset effectively throws away all the pending commands. So, the caller
4915  * has to make provision to handle the pending commands.
4916  *
4917  * After the reset, we wait till the port is ready again.
4918  *
4919  * WARNING, WARNING: The caller is expected to obtain the siport_mutex
4920  * before calling us.
4921  *
4922  * Note: Not port-mult aware.
4923  */
4924 static int
4925 si_reset_dport_wait_till_ready(
4926 	si_ctl_state_t *si_ctlp,
4927 	si_port_state_t *si_portp,
4928 	int port,
4929 	int flag)
4930 {
4931 	uint32_t port_status;
4932 	int loop_count = 0;
4933 	sata_device_t sdevice;
4934 	uint32_t SStatus;
4935 	uint32_t SControl;
4936 
4937 	_NOTE(ASSUMING_PROTECTED(si_portp))
4938 
4939 	if (flag == SI_PORT_RESET) {
4940 		ddi_put32(si_ctlp->sictl_port_acc_handle,
4941 		    (uint32_t *)PORT_CONTROL_SET(si_ctlp, port),
4942 		    PORT_CONTROL_SET_BITS_PORT_RESET);
4943 
4944 		/* Port reset is not self clearing. So clear it now. */
4945 		ddi_put32(si_ctlp->sictl_port_acc_handle,
4946 		    (uint32_t *)PORT_CONTROL_CLEAR(si_ctlp, port),
4947 		    PORT_CONTROL_CLEAR_BITS_PORT_RESET);
4948 	} else {
4949 		/* Reset the device. */
4950 		ddi_put32(si_ctlp->sictl_port_acc_handle,
4951 		    (uint32_t *)PORT_CONTROL_SET(si_ctlp, port),
4952 		    PORT_CONTROL_SET_BITS_DEV_RESET);
4953 
4954 		/*
4955 		 * tidbit: this bit is self clearing; so there is no need
4956 		 * for manual clear as we did for port reset.
4957 		 */
4958 	}
4959 
4960 	/* Set the reset in progress flag */
4961 	if (!(flag & SI_RESET_NO_EVENTS_UP)) {
4962 		si_portp->siport_reset_in_progress = 1;
4963 	}
4964 
4965 	/*
4966 	 * For some reason, we are losing the interrupt enablement after
4967 	 * any reset condition. So restore them back now.
4968 	 */
4969 	SIDBG1(SIDBG_INIT, si_ctlp,
4970 	    "current interrupt enable set: 0x%x",
4971 	    ddi_get32(si_ctlp->sictl_port_acc_handle,
4972 	    (uint32_t *)PORT_INTERRUPT_ENABLE_SET(si_ctlp, port)));
4973 
4974 	ddi_put32(si_ctlp->sictl_port_acc_handle,
4975 	    (uint32_t *)PORT_INTERRUPT_ENABLE_SET(si_ctlp, port),
4976 	    (INTR_COMMAND_COMPLETE |
4977 	    INTR_COMMAND_ERROR |
4978 	    INTR_PORT_READY |
4979 	    INTR_POWER_CHANGE |
4980 	    INTR_PHYRDY_CHANGE |
4981 	    INTR_COMWAKE_RECEIVED |
4982 	    INTR_UNRECOG_FIS |
4983 	    INTR_DEV_XCHANGED |
4984 	    INTR_SETDEVBITS_NOTIFY));
4985 
4986 	si_enable_port_interrupts(si_ctlp, port);
4987 
4988 	/*
4989 	 * Every reset needs a PHY initialization.
4990 	 *
4991 	 * The way to initialize the PHY is to write a 1 and then
4992 	 * a 0 to DET field of SControl register.
4993 	 */
4994 
4995 	/* Fetch the current SControl before writing the DET part with 1. */
4996 	SControl = ddi_get32(si_ctlp->sictl_port_acc_handle,
4997 	    (uint32_t *)PORT_SCONTROL(si_ctlp, port));
4998 	SCONTROL_SET_DET(SControl, SCONTROL_DET_COMRESET);
4999 	ddi_put32(si_ctlp->sictl_port_acc_handle,
5000 	    (uint32_t *)(PORT_SCONTROL(si_ctlp, port)),
5001 	    SControl);
5002 #ifndef __lock_lint
5003 	delay(SI_10MS_TICKS); /* give time for COMRESET to percolate */
5004 #endif /* __lock_lint */
5005 
5006 	/* Now fetch the SControl again and rewrite the DET part with 0 */
5007 	SControl = ddi_get32(si_ctlp->sictl_port_acc_handle,
5008 	    (uint32_t *)PORT_SCONTROL(si_ctlp, port));
5009 	SCONTROL_SET_DET(SControl, SCONTROL_DET_NOACTION);
5010 	ddi_put32(si_ctlp->sictl_port_acc_handle,
5011 	    (uint32_t *)(PORT_SCONTROL(si_ctlp, port)),
5012 	    SControl);
5013 
5014 	/*
5015 	 * PHY may be initialized by now. Check the DET field of SStatus
5016 	 * to determine if there is a device present.
5017 	 *
5018 	 * The DET field is valid only if IPM field indicates that
5019 	 * the interface is in active state.
5020 	 */
5021 
5022 	loop_count = 0;
5023 	do {
5024 		SStatus = ddi_get32(si_ctlp->sictl_port_acc_handle,
5025 		    (uint32_t *)PORT_SSTATUS(si_ctlp, port));
5026 
5027 		if (SSTATUS_GET_IPM(SStatus) !=
5028 		    SSTATUS_IPM_INTERFACE_ACTIVE) {
5029 			/*
5030 			 * If the interface is not active, the DET field
5031 			 * is considered not accurate. So we want to
5032 			 * continue looping.
5033 			 */
5034 			SSTATUS_SET_DET(SStatus, SSTATUS_DET_NODEV_NOPHY);
5035 		}
5036 
5037 		if (loop_count++ > SI_POLLRATE_SSTATUS) {
5038 			/* We are effectively timing out after 0.1 sec. */
5039 			break;
5040 		}
5041 
5042 		/* Wait for 10 millisec */
5043 #ifndef __lock_lint
5044 		delay(SI_10MS_TICKS);
5045 #endif /* __lock_lint */
5046 
5047 	} while (SSTATUS_GET_DET(SStatus) != SSTATUS_DET_DEVPRESENT_PHYONLINE);
5048 
5049 	SIDBG2(SIDBG_POLL_LOOP, si_ctlp,
5050 	    "si_reset_dport_wait_till_ready: loop count: %d, \
5051 		SStatus: 0x%x",
5052 	    loop_count,
5053 	    SStatus);
5054 
5055 	/* Now check for port readiness. */
5056 	loop_count = 0;
5057 	do {
5058 		port_status = ddi_get32(si_ctlp->sictl_port_acc_handle,
5059 		    (uint32_t *)PORT_STATUS(si_ctlp, port));
5060 
5061 		if (loop_count++ > SI_POLLRATE_PORTREADY) {
5062 			/* We are effectively timing out after 0.5 sec. */
5063 			break;
5064 		}
5065 
5066 		/* Wait for 10 millisec */
5067 #ifndef __lock_lint
5068 		delay(SI_10MS_TICKS);
5069 #endif /* __lock_lint */
5070 
5071 	} while (!(port_status & PORT_STATUS_BITS_PORT_READY));
5072 
5073 	SIDBG3(SIDBG_POLL_LOOP, si_ctlp,
5074 	    "si_reset_dport_wait_till_ready: loop count: %d, \
5075 		port_status: 0x%x, SStatus: 0x%x",
5076 	    loop_count,
5077 	    port_status,
5078 	    SStatus);
5079 
5080 	/* Indicate to the framework that a reset has happened. */
5081 	if (!(flag & SI_RESET_NO_EVENTS_UP)) {
5082 
5083 		bzero((void *)&sdevice, sizeof (sata_device_t));
5084 		sdevice.satadev_addr.cport = port;
5085 		sdevice.satadev_addr.pmport = PORTMULT_CONTROL_PORT;
5086 
5087 		if (si_portp->siport_port_type == PORT_TYPE_MULTIPLIER) {
5088 			sdevice.satadev_addr.qual = SATA_ADDR_DPMPORT;
5089 		} else {
5090 			sdevice.satadev_addr.qual = SATA_ADDR_DCPORT;
5091 		}
5092 		sdevice.satadev_state = SATA_DSTATE_RESET |
5093 		    SATA_DSTATE_PWR_ACTIVE;
5094 		if (si_ctlp->sictl_sata_hba_tran) {
5095 			sata_hba_event_notify(
5096 			    si_ctlp->sictl_sata_hba_tran->sata_tran_hba_dip,
5097 			    &sdevice,
5098 			    SATA_EVNT_DEVICE_RESET);
5099 		}
5100 
5101 		SIDBG0(SIDBG_EVENT, si_ctlp,
5102 		    "sending event up: SATA_EVNT_RESET");
5103 	}
5104 
5105 	if ((SSTATUS_GET_IPM(SStatus) == SSTATUS_IPM_INTERFACE_ACTIVE) &&
5106 	    (SSTATUS_GET_DET(SStatus) ==
5107 	    SSTATUS_DET_DEVPRESENT_PHYONLINE)) {
5108 		/* The interface is active and the device is present */
5109 		if (!(port_status & PORT_STATUS_BITS_PORT_READY)) {
5110 			/* But the port is is not ready for some reason */
5111 			SIDBG0(SIDBG_POLL_LOOP, si_ctlp,
5112 			    "si_reset_dport_wait_till_ready failed");
5113 			return (SI_FAILURE);
5114 		}
5115 	}
5116 
5117 	SIDBG0(SIDBG_POLL_LOOP, si_ctlp,
5118 	    "si_reset_dport_wait_till_ready returning success");
5119 
5120 	return (SI_SUCCESS);
5121 }
5122 
5123 /*
5124  * Initializes the port.
5125  *
5126  * Initialization effectively throws away all the pending commands on
5127  * the port. So, the caller  has to make provision to handle the pending
5128  * commands.
5129  *
5130  * After the port initialization, we wait till the port is ready again.
5131  *
5132  * WARNING, WARNING: The caller is expected to obtain the siport_mutex
5133  * before calling us.
5134  */
5135 static int
5136 si_initialize_port_wait_till_ready(si_ctl_state_t *si_ctlp, int port)
5137 {
5138 	uint32_t port_status;
5139 	int loop_count = 0;
5140 	uint32_t SStatus;
5141 
5142 	/* Initialize the port. */
5143 	ddi_put32(si_ctlp->sictl_port_acc_handle,
5144 	    (uint32_t *)PORT_CONTROL_SET(si_ctlp, port),
5145 	    PORT_CONTROL_SET_BITS_PORT_INITIALIZE);
5146 
5147 	/* Wait until Port Ready */
5148 	loop_count = 0;
5149 	do {
5150 		port_status = ddi_get32(si_ctlp->sictl_port_acc_handle,
5151 		    (uint32_t *)PORT_STATUS(si_ctlp, port));
5152 
5153 		if (loop_count++ > SI_POLLRATE_PORTREADY) {
5154 			SIDBG1(SIDBG_INTR, si_ctlp,
5155 			    "si_initialize_port_wait is timing out: "
5156 			    "port_status: %x",
5157 			    port_status);
5158 			/* We are effectively timing out after 0.5 sec. */
5159 			break;
5160 		}
5161 
5162 		/* Wait for 10 millisec */
5163 #ifndef __lock_lint
5164 		delay(SI_10MS_TICKS);
5165 #endif /* __lock_lint */
5166 
5167 	} while (!(port_status & PORT_STATUS_BITS_PORT_READY));
5168 
5169 	SIDBG1(SIDBG_POLL_LOOP, si_ctlp,
5170 	    "si_initialize_port_wait_till_ready: loop count: %d",
5171 	    loop_count);
5172 
5173 	SStatus = ddi_get32(si_ctlp->sictl_port_acc_handle,
5174 	    (uint32_t *)PORT_SSTATUS(si_ctlp, port));
5175 
5176 	if ((SSTATUS_GET_IPM(SStatus) == SSTATUS_IPM_INTERFACE_ACTIVE) &&
5177 	    (SSTATUS_GET_DET(SStatus) ==
5178 	    SSTATUS_DET_DEVPRESENT_PHYONLINE)) {
5179 		/* The interface is active and the device is present */
5180 		if (!(port_status & PORT_STATUS_BITS_PORT_READY)) {
5181 			/* But the port is is not ready for some reason */
5182 			return (SI_FAILURE);
5183 		}
5184 	}
5185 
5186 	return (SI_SUCCESS);
5187 }
5188 
5189 
5190 /*
5191  * si_watchdog_handler() calls us if it detects that there are some
5192  * commands which timed out. We recalculate the timed out commands once
5193  * again since some of them may have finished recently.
5194  */
5195 static void
5196 si_timeout_pkts(
5197 	si_ctl_state_t *si_ctlp,
5198 	si_port_state_t *si_portp,
5199 	int port,
5200 	uint32_t timedout_tags)
5201 {
5202 	uint32_t slot_status;
5203 	uint32_t finished_tags;
5204 
5205 	SIDBG0(SIDBG_TIMEOUT|SIDBG_ENTRY, si_ctlp, "si_timeout_pkts entry");
5206 
5207 	mutex_enter(&si_portp->siport_mutex);
5208 	slot_status = ddi_get32(si_ctlp->sictl_port_acc_handle,
5209 	    (uint32_t *)(PORT_SLOT_STATUS(si_ctlp, port)));
5210 
5211 	/*
5212 	 * Initialize the controller. The only way to timeout the commands
5213 	 * is to reset or initialize the controller. We mop commands after
5214 	 * the initialization.
5215 	 */
5216 	(void) si_initialize_port_wait_till_ready(si_ctlp, port);
5217 
5218 	/*
5219 	 * Recompute the timedout tags since some of them may have finished
5220 	 * meanwhile.
5221 	 */
5222 	finished_tags =  si_portp->siport_pending_tags &
5223 	    ~slot_status & SI_SLOT_MASK;
5224 	timedout_tags &= ~finished_tags;
5225 
5226 	SIDBG2(SIDBG_TIMEOUT, si_ctlp,
5227 	    "si_timeout_pkts: finished: %x, timeout: %x",
5228 	    finished_tags,
5229 	    timedout_tags);
5230 
5231 	mutex_exit(&si_portp->siport_mutex);
5232 	si_mop_commands(si_ctlp,
5233 	    si_portp,
5234 	    port,
5235 	    slot_status,
5236 	    0, /* failed_tags */
5237 	    timedout_tags,
5238 	    0, /* aborting_tags */
5239 	    0);  /* reset_tags */
5240 
5241 }
5242 
5243 
5244 
5245 /*
5246  * Watchdog handler kicks in every 5 seconds to timeout any commands pending
5247  * for long time.
5248  */
5249 static void
5250 si_watchdog_handler(si_ctl_state_t *si_ctlp)
5251 {
5252 	uint32_t pending_tags = 0;
5253 	uint32_t timedout_tags = 0;
5254 	si_port_state_t *si_portp;
5255 	int port;
5256 	int tmpslot;
5257 	sata_pkt_t *satapkt;
5258 
5259 	/* max number of cycles this packet should survive */
5260 	int max_life_cycles;
5261 
5262 	/* how many cycles this packet survived so far */
5263 	int watched_cycles;
5264 
5265 	mutex_enter(&si_ctlp->sictl_mutex);
5266 	SIDBG0(SIDBG_TIMEOUT|SIDBG_ENTRY, si_ctlp,
5267 	    "si_watchdog_handler entered");
5268 
5269 	for (port = 0; port < si_ctlp->sictl_num_ports; port++) {
5270 
5271 		si_portp = si_ctlp->sictl_ports[port];
5272 		if (si_portp == NULL) {
5273 			continue;
5274 		}
5275 
5276 		mutex_enter(&si_portp->siport_mutex);
5277 
5278 		if (si_portp->siport_port_type == PORT_TYPE_NODEV) {
5279 			mutex_exit(&si_portp->siport_mutex);
5280 			continue;
5281 		}
5282 
5283 		pending_tags =  si_portp->siport_pending_tags;
5284 		timedout_tags = 0;
5285 		while (pending_tags) {
5286 			tmpslot = ddi_ffs(pending_tags) - 1;
5287 			if (tmpslot == -1) {
5288 				break;
5289 			}
5290 			satapkt = si_portp->siport_slot_pkts[tmpslot];
5291 
5292 			if ((satapkt != NULL) && satapkt->satapkt_time) {
5293 
5294 				/*
5295 				 * We are overloading satapkt_hba_driver_private
5296 				 * with watched_cycle count.
5297 				 *
5298 				 * If a packet has survived for more than it's
5299 				 * max life cycles, it is a candidate for time
5300 				 * out.
5301 				 */
5302 				watched_cycles = (int)(intptr_t)
5303 				    satapkt->satapkt_hba_driver_private;
5304 				watched_cycles++;
5305 				max_life_cycles = (satapkt->satapkt_time +
5306 				    si_watchdog_timeout - 1) /
5307 				    si_watchdog_timeout;
5308 				if (watched_cycles > max_life_cycles) {
5309 					timedout_tags |= (0x1 << tmpslot);
5310 					SIDBG1(SIDBG_TIMEOUT|SIDBG_VERBOSE,
5311 					    si_ctlp,
5312 					    "watchdog: timedout_tags: 0x%x",
5313 					    timedout_tags);
5314 				}
5315 				satapkt->satapkt_hba_driver_private =
5316 				    (void *)(intptr_t)watched_cycles;
5317 			}
5318 
5319 			CLEAR_BIT(pending_tags, tmpslot);
5320 		}
5321 
5322 		if (timedout_tags) {
5323 			mutex_exit(&si_portp->siport_mutex);
5324 			mutex_exit(&si_ctlp->sictl_mutex);
5325 			si_timeout_pkts(si_ctlp, si_portp, port, timedout_tags);
5326 			mutex_enter(&si_ctlp->sictl_mutex);
5327 			mutex_enter(&si_portp->siport_mutex);
5328 		}
5329 
5330 		mutex_exit(&si_portp->siport_mutex);
5331 	}
5332 
5333 	/* Reinstall the watchdog timeout handler. */
5334 	if (!(si_ctlp->sictl_flags & SI_NO_TIMEOUTS)) {
5335 		si_ctlp->sictl_timeout_id =
5336 		    timeout((void (*)(void *))si_watchdog_handler,
5337 		    (caddr_t)si_ctlp, si_watchdog_tick);
5338 	}
5339 	mutex_exit(&si_ctlp->sictl_mutex);
5340 }
5341 
5342 
5343 /*
5344  * Logs the message.
5345  */
5346 static void
5347 si_log(si_ctl_state_t *si_ctlp, uint_t level, char *fmt, ...)
5348 {
5349 	va_list ap;
5350 
5351 	mutex_enter(&si_log_mutex);
5352 
5353 	va_start(ap, fmt);
5354 	if (si_ctlp) {
5355 		(void) sprintf(si_log_buf, "%s-[%d]:",
5356 		    ddi_get_name(si_ctlp->sictl_devinfop),
5357 		    ddi_get_instance(si_ctlp->sictl_devinfop));
5358 	} else {
5359 		(void) sprintf(si_log_buf, "si3124:");
5360 	}
5361 	(void) vsprintf(si_log_buf, fmt, ap);
5362 	va_end(ap);
5363 
5364 	cmn_err(level, "%s", si_log_buf);
5365 
5366 	mutex_exit(&si_log_mutex);
5367 
5368 }
5369 
5370 static void
5371 si_copy_out_regs(sata_cmd_t *scmd, fis_reg_h2d_t *fisp)
5372 {
5373 	fis_reg_h2d_t	fis = *fisp;
5374 
5375 	if (scmd->satacmd_flags.sata_copy_out_sec_count_msb)
5376 		scmd->satacmd_sec_count_msb = GET_FIS_SECTOR_COUNT_EXP(fis);
5377 	if (scmd->satacmd_flags.sata_copy_out_lba_low_msb)
5378 		scmd->satacmd_lba_low_msb = GET_FIS_SECTOR_EXP(fis);
5379 	if (scmd->satacmd_flags.sata_copy_out_lba_mid_msb)
5380 		scmd->satacmd_lba_mid_msb = GET_FIS_CYL_LOW_EXP(fis);
5381 	if (scmd->satacmd_flags.sata_copy_out_lba_high_msb)
5382 		scmd->satacmd_lba_high_msb = GET_FIS_CYL_HI_EXP(fis);
5383 	if (scmd->satacmd_flags.sata_copy_out_sec_count_lsb)
5384 		scmd->satacmd_sec_count_lsb = GET_FIS_SECTOR_COUNT(fis);
5385 	if (scmd->satacmd_flags.sata_copy_out_lba_low_lsb)
5386 		scmd->satacmd_lba_low_lsb = GET_FIS_SECTOR(fis);
5387 	if (scmd->satacmd_flags.sata_copy_out_lba_mid_lsb)
5388 		scmd->satacmd_lba_mid_lsb = GET_FIS_CYL_LOW(fis);
5389 	if (scmd->satacmd_flags.sata_copy_out_lba_high_lsb)
5390 		scmd->satacmd_lba_high_lsb = GET_FIS_CYL_HI(fis);
5391 	if (scmd->satacmd_flags.sata_copy_out_device_reg)
5392 		scmd->satacmd_device_reg = GET_FIS_DEV_HEAD(fis);
5393 	if (scmd->satacmd_flags.sata_copy_out_error_reg)
5394 		scmd->satacmd_error_reg = GET_FIS_FEATURES(fis);
5395 }
5396