xref: /illumos-gate/usr/src/uts/common/io/scsi/targets/sd.c (revision 06e1a714)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 /*
29  * SCSI disk target driver.
30  */
31 #include <sys/scsi/scsi.h>
32 #include <sys/dkbad.h>
33 #include <sys/dklabel.h>
34 #include <sys/dkio.h>
35 #include <sys/fdio.h>
36 #include <sys/cdio.h>
37 #include <sys/mhd.h>
38 #include <sys/vtoc.h>
39 #include <sys/dktp/fdisk.h>
40 #include <sys/file.h>
41 #include <sys/stat.h>
42 #include <sys/kstat.h>
43 #include <sys/vtrace.h>
44 #include <sys/note.h>
45 #include <sys/thread.h>
46 #include <sys/proc.h>
47 #include <sys/efi_partition.h>
48 #include <sys/var.h>
49 #include <sys/aio_req.h>
50 
51 #ifdef __lock_lint
52 #define	_LP64
53 #define	__amd64
54 #endif
55 
56 #if (defined(__fibre))
57 /* Note: is there a leadville version of the following? */
58 #include <sys/fc4/fcal_linkapp.h>
59 #endif
60 #include <sys/taskq.h>
61 #include <sys/uuid.h>
62 #include <sys/byteorder.h>
63 #include <sys/sdt.h>
64 
65 #include "sd_xbuf.h"
66 
67 #include <sys/scsi/targets/sddef.h>
68 
69 
70 /*
71  * Loadable module info.
72  */
73 #if (defined(__fibre))
74 #define	SD_MODULE_NAME	"SCSI SSA/FCAL Disk Driver %I%"
75 char _depends_on[]	= "misc/scsi drv/fcp";
76 #else
77 #define	SD_MODULE_NAME	"SCSI Disk Driver %I%"
78 char _depends_on[]	= "misc/scsi";
79 #endif
80 
81 /*
82  * Define the interconnect type, to allow the driver to distinguish
83  * between parallel SCSI (sd) and fibre channel (ssd) behaviors.
84  *
85  * This is really for backward compatability. In the future, the driver
86  * should actually check the "interconnect-type" property as reported by
87  * the HBA; however at present this property is not defined by all HBAs,
88  * so we will use this #define (1) to permit the driver to run in
89  * backward-compatability mode; and (2) to print a notification message
90  * if an FC HBA does not support the "interconnect-type" property.  The
91  * behavior of the driver will be to assume parallel SCSI behaviors unless
92  * the "interconnect-type" property is defined by the HBA **AND** has a
93  * value of either INTERCONNECT_FIBRE, INTERCONNECT_SSA, or
94  * INTERCONNECT_FABRIC, in which case the driver will assume Fibre
95  * Channel behaviors (as per the old ssd).  (Note that the
96  * INTERCONNECT_1394 and INTERCONNECT_USB types are not supported and
97  * will result in the driver assuming parallel SCSI behaviors.)
98  *
99  * (see common/sys/scsi/impl/services.h)
100  *
101  * Note: For ssd semantics, don't use INTERCONNECT_FABRIC as the default
102  * since some FC HBAs may already support that, and there is some code in
103  * the driver that already looks for it.  Using INTERCONNECT_FABRIC as the
104  * default would confuse that code, and besides things should work fine
105  * anyways if the FC HBA already reports INTERCONNECT_FABRIC for the
106  * "interconnect_type" property.
107  *
108  * Notes for off-by-1 workaround:
109  * -----------------------------
110  *
111  *    SCSI READ_CAPACITY command returns the LBA number of the
112  *    last logical block, but sd once treated this number as
113  *    disks' capacity on x86 platform. And LBAs are addressed
114  *    based 0. So the last block was lost on x86 platform.
115  *
116  *    Now, we remove this workaround. In order for present sd
117  *    driver to work with disks which are labeled/partitioned
118  *    via previous sd, we add workaround as follows:
119  *
120  *    1) Locate backup EFI label: sd searchs the next to last
121  *       block for backup EFI label if it can't find it on the
122  *       last block;
123  *    2) Calculate geometry: refer to sd_convert_geometry(), If
124  *       capacity increasing by 1 causes disks' capacity to cross
125  *       over the limits in table CHS_values, geometry info will
126  *       change. This will raise an issue: In case that primary
127  *       VTOC label is destroyed, format commandline can restore
128  *       it via backup VTOC labels. And format locates backup VTOC
129  *       labels by use of geometry from sd driver. So changing
130  *       geometry will prevent format from finding backup VTOC
131  *       labels. To eliminate this side effect for compatibility,
132  *       sd uses (capacity -1) to calculate geometry;
133  *    3) 1TB disks: VTOC uses 32-bit signed int, thus sd doesn't
134  *       support VTOC for a disk which has more than DK_MAX_BLOCKS
135  *       LBAs. However, for exactly 1TB disk, it was treated as
136  *       (1T - 512)B in the past, and could have VTOC. To overcome
137  *       this, if an exactly 1TB disk has solaris fdisk partition,
138  *       it will be allowed to work with sd.
139  */
140 #if (defined(__fibre))
141 #define	SD_DEFAULT_INTERCONNECT_TYPE	SD_INTERCONNECT_FIBRE
142 #else
143 #define	SD_DEFAULT_INTERCONNECT_TYPE	SD_INTERCONNECT_PARALLEL
144 #endif
145 
146 /*
147  * The name of the driver, established from the module name in _init.
148  */
149 static	char *sd_label			= NULL;
150 
151 /*
152  * Driver name is unfortunately prefixed on some driver.conf properties.
153  */
154 #if (defined(__fibre))
155 #define	sd_max_xfer_size		ssd_max_xfer_size
156 #define	sd_config_list			ssd_config_list
157 static	char *sd_max_xfer_size		= "ssd_max_xfer_size";
158 static	char *sd_config_list		= "ssd-config-list";
159 #else
160 static	char *sd_max_xfer_size		= "sd_max_xfer_size";
161 static	char *sd_config_list		= "sd-config-list";
162 #endif
163 
164 /*
165  * Driver global variables
166  */
167 
168 #if (defined(__fibre))
169 /*
170  * These #defines are to avoid namespace collisions that occur because this
171  * code is currently used to compile two seperate driver modules: sd and ssd.
172  * All global variables need to be treated this way (even if declared static)
173  * in order to allow the debugger to resolve the names properly.
174  * It is anticipated that in the near future the ssd module will be obsoleted,
175  * at which time this namespace issue should go away.
176  */
177 #define	sd_state			ssd_state
178 #define	sd_io_time			ssd_io_time
179 #define	sd_failfast_enable		ssd_failfast_enable
180 #define	sd_ua_retry_count		ssd_ua_retry_count
181 #define	sd_report_pfa			ssd_report_pfa
182 #define	sd_max_throttle			ssd_max_throttle
183 #define	sd_min_throttle			ssd_min_throttle
184 #define	sd_rot_delay			ssd_rot_delay
185 
186 #define	sd_retry_on_reservation_conflict	\
187 					ssd_retry_on_reservation_conflict
188 #define	sd_reinstate_resv_delay		ssd_reinstate_resv_delay
189 #define	sd_resv_conflict_name		ssd_resv_conflict_name
190 
191 #define	sd_component_mask		ssd_component_mask
192 #define	sd_level_mask			ssd_level_mask
193 #define	sd_debug_un			ssd_debug_un
194 #define	sd_error_level			ssd_error_level
195 
196 #define	sd_xbuf_active_limit		ssd_xbuf_active_limit
197 #define	sd_xbuf_reserve_limit		ssd_xbuf_reserve_limit
198 
199 #define	sd_tr				ssd_tr
200 #define	sd_reset_throttle_timeout	ssd_reset_throttle_timeout
201 #define	sd_qfull_throttle_timeout	ssd_qfull_throttle_timeout
202 #define	sd_qfull_throttle_enable	ssd_qfull_throttle_enable
203 #define	sd_check_media_time		ssd_check_media_time
204 #define	sd_wait_cmds_complete		ssd_wait_cmds_complete
205 #define	sd_label_mutex			ssd_label_mutex
206 #define	sd_detach_mutex			ssd_detach_mutex
207 #define	sd_log_buf			ssd_log_buf
208 #define	sd_log_mutex			ssd_log_mutex
209 
210 #define	sd_disk_table			ssd_disk_table
211 #define	sd_disk_table_size		ssd_disk_table_size
212 #define	sd_sense_mutex			ssd_sense_mutex
213 #define	sd_cdbtab			ssd_cdbtab
214 
215 #define	sd_cb_ops			ssd_cb_ops
216 #define	sd_ops				ssd_ops
217 #define	sd_additional_codes		ssd_additional_codes
218 
219 #define	sd_minor_data			ssd_minor_data
220 #define	sd_minor_data_efi		ssd_minor_data_efi
221 
222 #define	sd_tq				ssd_tq
223 #define	sd_wmr_tq			ssd_wmr_tq
224 #define	sd_taskq_name			ssd_taskq_name
225 #define	sd_wmr_taskq_name		ssd_wmr_taskq_name
226 #define	sd_taskq_minalloc		ssd_taskq_minalloc
227 #define	sd_taskq_maxalloc		ssd_taskq_maxalloc
228 
229 #define	sd_dump_format_string		ssd_dump_format_string
230 
231 #define	sd_iostart_chain		ssd_iostart_chain
232 #define	sd_iodone_chain			ssd_iodone_chain
233 
234 #define	sd_pm_idletime			ssd_pm_idletime
235 
236 #define	sd_force_pm_supported		ssd_force_pm_supported
237 
238 #define	sd_dtype_optical_bind		ssd_dtype_optical_bind
239 
240 #endif
241 
242 
243 #ifdef	SDDEBUG
244 int	sd_force_pm_supported		= 0;
245 #endif	/* SDDEBUG */
246 
247 void *sd_state				= NULL;
248 int sd_io_time				= SD_IO_TIME;
249 int sd_failfast_enable			= 1;
250 int sd_ua_retry_count			= SD_UA_RETRY_COUNT;
251 int sd_report_pfa			= 1;
252 int sd_max_throttle			= SD_MAX_THROTTLE;
253 int sd_min_throttle			= SD_MIN_THROTTLE;
254 int sd_rot_delay			= 4; /* Default 4ms Rotation delay */
255 int sd_qfull_throttle_enable		= TRUE;
256 
257 int sd_retry_on_reservation_conflict	= 1;
258 int sd_reinstate_resv_delay		= SD_REINSTATE_RESV_DELAY;
259 _NOTE(SCHEME_PROTECTS_DATA("safe sharing", sd_reinstate_resv_delay))
260 
261 static int sd_dtype_optical_bind	= -1;
262 
263 /* Note: the following is not a bug, it really is "sd_" and not "ssd_" */
264 static	char *sd_resv_conflict_name	= "sd_retry_on_reservation_conflict";
265 
266 /*
267  * Global data for debug logging. To enable debug printing, sd_component_mask
268  * and sd_level_mask should be set to the desired bit patterns as outlined in
269  * sddef.h.
270  */
271 uint_t	sd_component_mask		= 0x0;
272 uint_t	sd_level_mask			= 0x0;
273 struct	sd_lun *sd_debug_un		= NULL;
274 uint_t	sd_error_level			= SCSI_ERR_RETRYABLE;
275 
276 /* Note: these may go away in the future... */
277 static uint32_t	sd_xbuf_active_limit	= 512;
278 static uint32_t sd_xbuf_reserve_limit	= 16;
279 
280 static struct sd_resv_reclaim_request	sd_tr = { NULL, NULL, NULL, 0, 0, 0 };
281 
282 /*
283  * Timer value used to reset the throttle after it has been reduced
284  * (typically in response to TRAN_BUSY or STATUS_QFULL)
285  */
286 static int sd_reset_throttle_timeout	= SD_RESET_THROTTLE_TIMEOUT;
287 static int sd_qfull_throttle_timeout	= SD_QFULL_THROTTLE_TIMEOUT;
288 
289 /*
290  * Interval value associated with the media change scsi watch.
291  */
292 static int sd_check_media_time		= 3000000;
293 
294 /*
295  * Wait value used for in progress operations during a DDI_SUSPEND
296  */
297 static int sd_wait_cmds_complete	= SD_WAIT_CMDS_COMPLETE;
298 
299 /*
300  * sd_label_mutex protects a static buffer used in the disk label
301  * component of the driver
302  */
303 static kmutex_t sd_label_mutex;
304 
305 /*
306  * sd_detach_mutex protects un_layer_count, un_detach_count, and
307  * un_opens_in_progress in the sd_lun structure.
308  */
309 static kmutex_t sd_detach_mutex;
310 
311 _NOTE(MUTEX_PROTECTS_DATA(sd_detach_mutex,
312 	sd_lun::{un_layer_count un_detach_count un_opens_in_progress}))
313 
314 /*
315  * Global buffer and mutex for debug logging
316  */
317 static char	sd_log_buf[1024];
318 static kmutex_t	sd_log_mutex;
319 
320 /*
321  * Structs and globals for recording attached lun information.
322  * This maintains a chain. Each node in the chain represents a SCSI controller.
323  * The structure records the number of luns attached to each target connected
324  * with the controller.
325  * For parallel scsi device only.
326  */
327 struct sd_scsi_hba_tgt_lun {
328 	struct sd_scsi_hba_tgt_lun	*next;
329 	dev_info_t			*pdip;
330 	int				nlun[NTARGETS_WIDE];
331 };
332 
333 /*
334  * Flag to indicate the lun is attached or detached
335  */
336 #define	SD_SCSI_LUN_ATTACH	0
337 #define	SD_SCSI_LUN_DETACH	1
338 
339 static kmutex_t	sd_scsi_target_lun_mutex;
340 static struct sd_scsi_hba_tgt_lun	*sd_scsi_target_lun_head = NULL;
341 
342 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_target_lun_mutex,
343     sd_scsi_hba_tgt_lun::next sd_scsi_hba_tgt_lun::pdip))
344 
345 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_target_lun_mutex,
346     sd_scsi_target_lun_head))
347 
348 /*
349  * "Smart" Probe Caching structs, globals, #defines, etc.
350  * For parallel scsi and non-self-identify device only.
351  */
352 
353 /*
354  * The following resources and routines are implemented to support
355  * "smart" probing, which caches the scsi_probe() results in an array,
356  * in order to help avoid long probe times.
357  */
358 struct sd_scsi_probe_cache {
359 	struct	sd_scsi_probe_cache	*next;
360 	dev_info_t	*pdip;
361 	int		cache[NTARGETS_WIDE];
362 };
363 
364 static kmutex_t	sd_scsi_probe_cache_mutex;
365 static struct	sd_scsi_probe_cache *sd_scsi_probe_cache_head = NULL;
366 
367 /*
368  * Really we only need protection on the head of the linked list, but
369  * better safe than sorry.
370  */
371 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_probe_cache_mutex,
372     sd_scsi_probe_cache::next sd_scsi_probe_cache::pdip))
373 
374 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_probe_cache_mutex,
375     sd_scsi_probe_cache_head))
376 
377 
378 /*
379  * Vendor specific data name property declarations
380  */
381 
382 #if defined(__fibre) || defined(__i386) ||defined(__amd64)
383 
384 static sd_tunables seagate_properties = {
385 	SEAGATE_THROTTLE_VALUE,
386 	0,
387 	0,
388 	0,
389 	0,
390 	0,
391 	0,
392 	0,
393 	0
394 };
395 
396 
397 static sd_tunables fujitsu_properties = {
398 	FUJITSU_THROTTLE_VALUE,
399 	0,
400 	0,
401 	0,
402 	0,
403 	0,
404 	0,
405 	0,
406 	0
407 };
408 
409 static sd_tunables ibm_properties = {
410 	IBM_THROTTLE_VALUE,
411 	0,
412 	0,
413 	0,
414 	0,
415 	0,
416 	0,
417 	0,
418 	0
419 };
420 
421 static sd_tunables purple_properties = {
422 	PURPLE_THROTTLE_VALUE,
423 	0,
424 	0,
425 	PURPLE_BUSY_RETRIES,
426 	PURPLE_RESET_RETRY_COUNT,
427 	PURPLE_RESERVE_RELEASE_TIME,
428 	0,
429 	0,
430 	0
431 };
432 
433 static sd_tunables sve_properties = {
434 	SVE_THROTTLE_VALUE,
435 	0,
436 	0,
437 	SVE_BUSY_RETRIES,
438 	SVE_RESET_RETRY_COUNT,
439 	SVE_RESERVE_RELEASE_TIME,
440 	SVE_MIN_THROTTLE_VALUE,
441 	SVE_DISKSORT_DISABLED_FLAG,
442 	0
443 };
444 
445 static sd_tunables maserati_properties = {
446 	0,
447 	0,
448 	0,
449 	0,
450 	0,
451 	0,
452 	0,
453 	MASERATI_DISKSORT_DISABLED_FLAG,
454 	MASERATI_LUN_RESET_ENABLED_FLAG
455 };
456 
457 static sd_tunables pirus_properties = {
458 	PIRUS_THROTTLE_VALUE,
459 	0,
460 	PIRUS_NRR_COUNT,
461 	PIRUS_BUSY_RETRIES,
462 	PIRUS_RESET_RETRY_COUNT,
463 	0,
464 	PIRUS_MIN_THROTTLE_VALUE,
465 	PIRUS_DISKSORT_DISABLED_FLAG,
466 	PIRUS_LUN_RESET_ENABLED_FLAG
467 };
468 
469 #endif
470 
471 #if (defined(__sparc) && !defined(__fibre)) || \
472 	(defined(__i386) || defined(__amd64))
473 
474 
475 static sd_tunables elite_properties = {
476 	ELITE_THROTTLE_VALUE,
477 	0,
478 	0,
479 	0,
480 	0,
481 	0,
482 	0,
483 	0,
484 	0
485 };
486 
487 static sd_tunables st31200n_properties = {
488 	ST31200N_THROTTLE_VALUE,
489 	0,
490 	0,
491 	0,
492 	0,
493 	0,
494 	0,
495 	0,
496 	0
497 };
498 
499 #endif /* Fibre or not */
500 
501 static sd_tunables lsi_properties_scsi = {
502 	LSI_THROTTLE_VALUE,
503 	0,
504 	LSI_NOTREADY_RETRIES,
505 	0,
506 	0,
507 	0,
508 	0,
509 	0,
510 	0
511 };
512 
513 static sd_tunables symbios_properties = {
514 	SYMBIOS_THROTTLE_VALUE,
515 	0,
516 	SYMBIOS_NOTREADY_RETRIES,
517 	0,
518 	0,
519 	0,
520 	0,
521 	0,
522 	0
523 };
524 
525 static sd_tunables lsi_properties = {
526 	0,
527 	0,
528 	LSI_NOTREADY_RETRIES,
529 	0,
530 	0,
531 	0,
532 	0,
533 	0,
534 	0
535 };
536 
537 static sd_tunables lsi_oem_properties = {
538 	0,
539 	0,
540 	LSI_OEM_NOTREADY_RETRIES,
541 	0,
542 	0,
543 	0,
544 	0,
545 	0,
546 	0
547 };
548 
549 
550 
551 #if (defined(SD_PROP_TST))
552 
553 #define	SD_TST_CTYPE_VAL	CTYPE_CDROM
554 #define	SD_TST_THROTTLE_VAL	16
555 #define	SD_TST_NOTREADY_VAL	12
556 #define	SD_TST_BUSY_VAL		60
557 #define	SD_TST_RST_RETRY_VAL	36
558 #define	SD_TST_RSV_REL_TIME	60
559 
560 static sd_tunables tst_properties = {
561 	SD_TST_THROTTLE_VAL,
562 	SD_TST_CTYPE_VAL,
563 	SD_TST_NOTREADY_VAL,
564 	SD_TST_BUSY_VAL,
565 	SD_TST_RST_RETRY_VAL,
566 	SD_TST_RSV_REL_TIME,
567 	0,
568 	0,
569 	0
570 };
571 #endif
572 
573 /* This is similiar to the ANSI toupper implementation */
574 #define	SD_TOUPPER(C)	(((C) >= 'a' && (C) <= 'z') ? (C) - 'a' + 'A' : (C))
575 
576 /*
577  * Static Driver Configuration Table
578  *
579  * This is the table of disks which need throttle adjustment (or, perhaps
580  * something else as defined by the flags at a future time.)  device_id
581  * is a string consisting of concatenated vid (vendor), pid (product/model)
582  * and revision strings as defined in the scsi_inquiry structure.  Offsets of
583  * the parts of the string are as defined by the sizes in the scsi_inquiry
584  * structure.  Device type is searched as far as the device_id string is
585  * defined.  Flags defines which values are to be set in the driver from the
586  * properties list.
587  *
588  * Entries below which begin and end with a "*" are a special case.
589  * These do not have a specific vendor, and the string which follows
590  * can appear anywhere in the 16 byte PID portion of the inquiry data.
591  *
592  * Entries below which begin and end with a " " (blank) are a special
593  * case. The comparison function will treat multiple consecutive blanks
594  * as equivalent to a single blank. For example, this causes a
595  * sd_disk_table entry of " NEC CDROM " to match a device's id string
596  * of  "NEC       CDROM".
597  *
598  * Note: The MD21 controller type has been obsoleted.
599  *	 ST318202F is a Legacy device
600  *	 MAM3182FC, MAM3364FC, MAM3738FC do not appear to have ever been
601  *	 made with an FC connection. The entries here are a legacy.
602  */
603 static sd_disk_config_t sd_disk_table[] = {
604 #if defined(__fibre) || defined(__i386) || defined(__amd64)
605 	{ "SEAGATE ST34371FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
606 	{ "SEAGATE ST19171FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
607 	{ "SEAGATE ST39102FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
608 	{ "SEAGATE ST39103FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
609 	{ "SEAGATE ST118273F", SD_CONF_BSET_THROTTLE, &seagate_properties },
610 	{ "SEAGATE ST318202F", SD_CONF_BSET_THROTTLE, &seagate_properties },
611 	{ "SEAGATE ST318203F", SD_CONF_BSET_THROTTLE, &seagate_properties },
612 	{ "SEAGATE ST136403F", SD_CONF_BSET_THROTTLE, &seagate_properties },
613 	{ "SEAGATE ST318304F", SD_CONF_BSET_THROTTLE, &seagate_properties },
614 	{ "SEAGATE ST336704F", SD_CONF_BSET_THROTTLE, &seagate_properties },
615 	{ "SEAGATE ST373405F", SD_CONF_BSET_THROTTLE, &seagate_properties },
616 	{ "SEAGATE ST336605F", SD_CONF_BSET_THROTTLE, &seagate_properties },
617 	{ "SEAGATE ST336752F", SD_CONF_BSET_THROTTLE, &seagate_properties },
618 	{ "SEAGATE ST318452F", SD_CONF_BSET_THROTTLE, &seagate_properties },
619 	{ "FUJITSU MAG3091F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
620 	{ "FUJITSU MAG3182F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
621 	{ "FUJITSU MAA3182F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
622 	{ "FUJITSU MAF3364F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
623 	{ "FUJITSU MAL3364F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
624 	{ "FUJITSU MAL3738F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
625 	{ "FUJITSU MAM3182FC",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
626 	{ "FUJITSU MAM3364FC",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
627 	{ "FUJITSU MAM3738FC",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
628 	{ "IBM     DDYFT1835",  SD_CONF_BSET_THROTTLE, &ibm_properties },
629 	{ "IBM     DDYFT3695",  SD_CONF_BSET_THROTTLE, &ibm_properties },
630 	{ "IBM     IC35LF2D2",  SD_CONF_BSET_THROTTLE, &ibm_properties },
631 	{ "IBM     IC35LF2PR",  SD_CONF_BSET_THROTTLE, &ibm_properties },
632 	{ "IBM     3526",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
633 	{ "IBM     3542",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
634 	{ "IBM     3552",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
635 	{ "IBM     1722",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
636 	{ "IBM     1742",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
637 	{ "IBM     1815",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
638 	{ "IBM     FAStT",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
639 	{ "IBM     1814",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
640 	{ "IBM     1814-200",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
641 	{ "LSI     INF",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
642 	{ "ENGENIO INF",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
643 	{ "SGI     TP",		SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
644 	{ "SGI     IS",		SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
645 	{ "*CSM100_*",		SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
646 	{ "*CSM200_*",		SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
647 	{ "Fujitsu SX300",	SD_CONF_BSET_THROTTLE,  &lsi_oem_properties },
648 	{ "LSI",		SD_CONF_BSET_NRR_COUNT, &lsi_properties },
649 	{ "SUN     T3", SD_CONF_BSET_THROTTLE |
650 			SD_CONF_BSET_BSY_RETRY_COUNT|
651 			SD_CONF_BSET_RST_RETRIES|
652 			SD_CONF_BSET_RSV_REL_TIME,
653 		&purple_properties },
654 	{ "SUN     SESS01", SD_CONF_BSET_THROTTLE |
655 		SD_CONF_BSET_BSY_RETRY_COUNT|
656 		SD_CONF_BSET_RST_RETRIES|
657 		SD_CONF_BSET_RSV_REL_TIME|
658 		SD_CONF_BSET_MIN_THROTTLE|
659 		SD_CONF_BSET_DISKSORT_DISABLED,
660 		&sve_properties },
661 	{ "SUN     T4", SD_CONF_BSET_THROTTLE |
662 			SD_CONF_BSET_BSY_RETRY_COUNT|
663 			SD_CONF_BSET_RST_RETRIES|
664 			SD_CONF_BSET_RSV_REL_TIME,
665 		&purple_properties },
666 	{ "SUN     SVE01", SD_CONF_BSET_DISKSORT_DISABLED |
667 		SD_CONF_BSET_LUN_RESET_ENABLED,
668 		&maserati_properties },
669 	{ "SUN     SE6920", SD_CONF_BSET_THROTTLE |
670 		SD_CONF_BSET_NRR_COUNT|
671 		SD_CONF_BSET_BSY_RETRY_COUNT|
672 		SD_CONF_BSET_RST_RETRIES|
673 		SD_CONF_BSET_MIN_THROTTLE|
674 		SD_CONF_BSET_DISKSORT_DISABLED|
675 		SD_CONF_BSET_LUN_RESET_ENABLED,
676 		&pirus_properties },
677 	{ "SUN     SE6940", SD_CONF_BSET_THROTTLE |
678 		SD_CONF_BSET_NRR_COUNT|
679 		SD_CONF_BSET_BSY_RETRY_COUNT|
680 		SD_CONF_BSET_RST_RETRIES|
681 		SD_CONF_BSET_MIN_THROTTLE|
682 		SD_CONF_BSET_DISKSORT_DISABLED|
683 		SD_CONF_BSET_LUN_RESET_ENABLED,
684 		&pirus_properties },
685 	{ "SUN     StorageTek 6920", SD_CONF_BSET_THROTTLE |
686 		SD_CONF_BSET_NRR_COUNT|
687 		SD_CONF_BSET_BSY_RETRY_COUNT|
688 		SD_CONF_BSET_RST_RETRIES|
689 		SD_CONF_BSET_MIN_THROTTLE|
690 		SD_CONF_BSET_DISKSORT_DISABLED|
691 		SD_CONF_BSET_LUN_RESET_ENABLED,
692 		&pirus_properties },
693 	{ "SUN     StorageTek 6940", SD_CONF_BSET_THROTTLE |
694 		SD_CONF_BSET_NRR_COUNT|
695 		SD_CONF_BSET_BSY_RETRY_COUNT|
696 		SD_CONF_BSET_RST_RETRIES|
697 		SD_CONF_BSET_MIN_THROTTLE|
698 		SD_CONF_BSET_DISKSORT_DISABLED|
699 		SD_CONF_BSET_LUN_RESET_ENABLED,
700 		&pirus_properties },
701 	{ "SUN     PSX1000", SD_CONF_BSET_THROTTLE |
702 		SD_CONF_BSET_NRR_COUNT|
703 		SD_CONF_BSET_BSY_RETRY_COUNT|
704 		SD_CONF_BSET_RST_RETRIES|
705 		SD_CONF_BSET_MIN_THROTTLE|
706 		SD_CONF_BSET_DISKSORT_DISABLED|
707 		SD_CONF_BSET_LUN_RESET_ENABLED,
708 		&pirus_properties },
709 	{ "SUN     SE6330", SD_CONF_BSET_THROTTLE |
710 		SD_CONF_BSET_NRR_COUNT|
711 		SD_CONF_BSET_BSY_RETRY_COUNT|
712 		SD_CONF_BSET_RST_RETRIES|
713 		SD_CONF_BSET_MIN_THROTTLE|
714 		SD_CONF_BSET_DISKSORT_DISABLED|
715 		SD_CONF_BSET_LUN_RESET_ENABLED,
716 		&pirus_properties },
717 	{ "STK     OPENstorage", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
718 	{ "STK     OpenStorage", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
719 	{ "STK     BladeCtlr",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
720 	{ "STK     FLEXLINE",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
721 	{ "SYMBIOS", SD_CONF_BSET_NRR_COUNT, &symbios_properties },
722 #endif /* fibre or NON-sparc platforms */
723 #if ((defined(__sparc) && !defined(__fibre)) ||\
724 	(defined(__i386) || defined(__amd64)))
725 	{ "SEAGATE ST42400N", SD_CONF_BSET_THROTTLE, &elite_properties },
726 	{ "SEAGATE ST31200N", SD_CONF_BSET_THROTTLE, &st31200n_properties },
727 	{ "SEAGATE ST41600N", SD_CONF_BSET_TUR_CHECK, NULL },
728 	{ "CONNER  CP30540",  SD_CONF_BSET_NOCACHE,  NULL },
729 	{ "*SUN0104*", SD_CONF_BSET_FAB_DEVID, NULL },
730 	{ "*SUN0207*", SD_CONF_BSET_FAB_DEVID, NULL },
731 	{ "*SUN0327*", SD_CONF_BSET_FAB_DEVID, NULL },
732 	{ "*SUN0340*", SD_CONF_BSET_FAB_DEVID, NULL },
733 	{ "*SUN0424*", SD_CONF_BSET_FAB_DEVID, NULL },
734 	{ "*SUN0669*", SD_CONF_BSET_FAB_DEVID, NULL },
735 	{ "*SUN1.0G*", SD_CONF_BSET_FAB_DEVID, NULL },
736 	{ "SYMBIOS INF-01-00       ", SD_CONF_BSET_FAB_DEVID, NULL },
737 	{ "SYMBIOS", SD_CONF_BSET_THROTTLE|SD_CONF_BSET_NRR_COUNT,
738 	    &symbios_properties },
739 	{ "LSI", SD_CONF_BSET_THROTTLE | SD_CONF_BSET_NRR_COUNT,
740 	    &lsi_properties_scsi },
741 #if defined(__i386) || defined(__amd64)
742 	{ " NEC CD-ROM DRIVE:260 ", (SD_CONF_BSET_PLAYMSF_BCD
743 				    | SD_CONF_BSET_READSUB_BCD
744 				    | SD_CONF_BSET_READ_TOC_ADDR_BCD
745 				    | SD_CONF_BSET_NO_READ_HEADER
746 				    | SD_CONF_BSET_READ_CD_XD4), NULL },
747 
748 	{ " NEC CD-ROM DRIVE:270 ", (SD_CONF_BSET_PLAYMSF_BCD
749 				    | SD_CONF_BSET_READSUB_BCD
750 				    | SD_CONF_BSET_READ_TOC_ADDR_BCD
751 				    | SD_CONF_BSET_NO_READ_HEADER
752 				    | SD_CONF_BSET_READ_CD_XD4), NULL },
753 #endif /* __i386 || __amd64 */
754 #endif /* sparc NON-fibre or NON-sparc platforms */
755 
756 #if (defined(SD_PROP_TST))
757 	{ "VENDOR  PRODUCT ", (SD_CONF_BSET_THROTTLE
758 				| SD_CONF_BSET_CTYPE
759 				| SD_CONF_BSET_NRR_COUNT
760 				| SD_CONF_BSET_FAB_DEVID
761 				| SD_CONF_BSET_NOCACHE
762 				| SD_CONF_BSET_BSY_RETRY_COUNT
763 				| SD_CONF_BSET_PLAYMSF_BCD
764 				| SD_CONF_BSET_READSUB_BCD
765 				| SD_CONF_BSET_READ_TOC_TRK_BCD
766 				| SD_CONF_BSET_READ_TOC_ADDR_BCD
767 				| SD_CONF_BSET_NO_READ_HEADER
768 				| SD_CONF_BSET_READ_CD_XD4
769 				| SD_CONF_BSET_RST_RETRIES
770 				| SD_CONF_BSET_RSV_REL_TIME
771 				| SD_CONF_BSET_TUR_CHECK), &tst_properties},
772 #endif
773 };
774 
775 static const int sd_disk_table_size =
776 	sizeof (sd_disk_table)/ sizeof (sd_disk_config_t);
777 
778 
779 /*
780  * Return codes of sd_uselabel().
781  */
782 #define	SD_LABEL_IS_VALID		0
783 #define	SD_LABEL_IS_INVALID		1
784 
785 #define	SD_INTERCONNECT_PARALLEL	0
786 #define	SD_INTERCONNECT_FABRIC		1
787 #define	SD_INTERCONNECT_FIBRE		2
788 #define	SD_INTERCONNECT_SSA		3
789 #define	SD_INTERCONNECT_SATA		4
790 #define	SD_IS_PARALLEL_SCSI(un)		\
791 	((un)->un_interconnect_type == SD_INTERCONNECT_PARALLEL)
792 #define	SD_IS_SERIAL(un)		\
793 	((un)->un_interconnect_type == SD_INTERCONNECT_SATA)
794 
795 /*
796  * Definitions used by device id registration routines
797  */
798 #define	VPD_HEAD_OFFSET		3	/* size of head for vpd page */
799 #define	VPD_PAGE_LENGTH		3	/* offset for pge length data */
800 #define	VPD_MODE_PAGE		1	/* offset into vpd pg for "page code" */
801 #define	WD_NODE			7	/* the whole disk minor */
802 
803 static kmutex_t sd_sense_mutex = {0};
804 
805 /*
806  * Macros for updates of the driver state
807  */
808 #define	New_state(un, s)        \
809 	(un)->un_last_state = (un)->un_state, (un)->un_state = (s)
810 #define	Restore_state(un)	\
811 	{ uchar_t tmp = (un)->un_last_state; New_state((un), tmp); }
812 
813 static struct sd_cdbinfo sd_cdbtab[] = {
814 	{ CDB_GROUP0, 0x00,	   0x1FFFFF,   0xFF,	    },
815 	{ CDB_GROUP1, SCMD_GROUP1, 0xFFFFFFFF, 0xFFFF,	    },
816 	{ CDB_GROUP5, SCMD_GROUP5, 0xFFFFFFFF, 0xFFFFFFFF,  },
817 	{ CDB_GROUP4, SCMD_GROUP4, 0xFFFFFFFFFFFFFFFF, 0xFFFFFFFF, },
818 };
819 
820 /*
821  * Specifies the number of seconds that must have elapsed since the last
822  * cmd. has completed for a device to be declared idle to the PM framework.
823  */
824 static int sd_pm_idletime = 1;
825 
826 /*
827  * Internal function prototypes
828  */
829 
830 #if (defined(__fibre))
831 /*
832  * These #defines are to avoid namespace collisions that occur because this
833  * code is currently used to compile two seperate driver modules: sd and ssd.
834  * All function names need to be treated this way (even if declared static)
835  * in order to allow the debugger to resolve the names properly.
836  * It is anticipated that in the near future the ssd module will be obsoleted,
837  * at which time this ugliness should go away.
838  */
839 #define	sd_log_trace			ssd_log_trace
840 #define	sd_log_info			ssd_log_info
841 #define	sd_log_err			ssd_log_err
842 #define	sdprobe				ssdprobe
843 #define	sdinfo				ssdinfo
844 #define	sd_prop_op			ssd_prop_op
845 #define	sd_scsi_probe_cache_init	ssd_scsi_probe_cache_init
846 #define	sd_scsi_probe_cache_fini	ssd_scsi_probe_cache_fini
847 #define	sd_scsi_clear_probe_cache	ssd_scsi_clear_probe_cache
848 #define	sd_scsi_probe_with_cache	ssd_scsi_probe_with_cache
849 #define	sd_scsi_target_lun_init		ssd_scsi_target_lun_init
850 #define	sd_scsi_target_lun_fini		ssd_scsi_target_lun_fini
851 #define	sd_scsi_get_target_lun_count	ssd_scsi_get_target_lun_count
852 #define	sd_scsi_update_lun_on_target	ssd_scsi_update_lun_on_target
853 #define	sd_spin_up_unit			ssd_spin_up_unit
854 #define	sd_enable_descr_sense		ssd_enable_descr_sense
855 #define	sd_reenable_dsense_task		ssd_reenable_dsense_task
856 #define	sd_set_mmc_caps			ssd_set_mmc_caps
857 #define	sd_read_unit_properties		ssd_read_unit_properties
858 #define	sd_process_sdconf_file		ssd_process_sdconf_file
859 #define	sd_process_sdconf_table		ssd_process_sdconf_table
860 #define	sd_sdconf_id_match		ssd_sdconf_id_match
861 #define	sd_blank_cmp			ssd_blank_cmp
862 #define	sd_chk_vers1_data		ssd_chk_vers1_data
863 #define	sd_set_vers1_properties		ssd_set_vers1_properties
864 #define	sd_validate_geometry		ssd_validate_geometry
865 
866 #if defined(_SUNOS_VTOC_16)
867 #define	sd_convert_geometry		ssd_convert_geometry
868 #endif
869 
870 #define	sd_resync_geom_caches		ssd_resync_geom_caches
871 #define	sd_read_fdisk			ssd_read_fdisk
872 #define	sd_get_physical_geometry	ssd_get_physical_geometry
873 #define	sd_get_virtual_geometry		ssd_get_virtual_geometry
874 #define	sd_update_block_info		ssd_update_block_info
875 #define	sd_swap_efi_gpt			ssd_swap_efi_gpt
876 #define	sd_swap_efi_gpe			ssd_swap_efi_gpe
877 #define	sd_validate_efi			ssd_validate_efi
878 #define	sd_use_efi			ssd_use_efi
879 #define	sd_uselabel			ssd_uselabel
880 #define	sd_build_default_label		ssd_build_default_label
881 #define	sd_has_max_chs_vals		ssd_has_max_chs_vals
882 #define	sd_inq_fill			ssd_inq_fill
883 #define	sd_register_devid		ssd_register_devid
884 #define	sd_get_devid_block		ssd_get_devid_block
885 #define	sd_get_devid			ssd_get_devid
886 #define	sd_create_devid			ssd_create_devid
887 #define	sd_write_deviceid		ssd_write_deviceid
888 #define	sd_check_vpd_page_support	ssd_check_vpd_page_support
889 #define	sd_setup_pm			ssd_setup_pm
890 #define	sd_create_pm_components		ssd_create_pm_components
891 #define	sd_ddi_suspend			ssd_ddi_suspend
892 #define	sd_ddi_pm_suspend		ssd_ddi_pm_suspend
893 #define	sd_ddi_resume			ssd_ddi_resume
894 #define	sd_ddi_pm_resume		ssd_ddi_pm_resume
895 #define	sdpower				ssdpower
896 #define	sdattach			ssdattach
897 #define	sddetach			ssddetach
898 #define	sd_unit_attach			ssd_unit_attach
899 #define	sd_unit_detach			ssd_unit_detach
900 #define	sd_set_unit_attributes		ssd_set_unit_attributes
901 #define	sd_create_minor_nodes		ssd_create_minor_nodes
902 #define	sd_create_errstats		ssd_create_errstats
903 #define	sd_set_errstats			ssd_set_errstats
904 #define	sd_set_pstats			ssd_set_pstats
905 #define	sddump				ssddump
906 #define	sd_scsi_poll			ssd_scsi_poll
907 #define	sd_send_polled_RQS		ssd_send_polled_RQS
908 #define	sd_ddi_scsi_poll		ssd_ddi_scsi_poll
909 #define	sd_init_event_callbacks		ssd_init_event_callbacks
910 #define	sd_event_callback		ssd_event_callback
911 #define	sd_cache_control		ssd_cache_control
912 #define	sd_get_write_cache_enabled	ssd_get_write_cache_enabled
913 #define	sd_make_device			ssd_make_device
914 #define	sdopen				ssdopen
915 #define	sdclose				ssdclose
916 #define	sd_ready_and_valid		ssd_ready_and_valid
917 #define	sdmin				ssdmin
918 #define	sdread				ssdread
919 #define	sdwrite				ssdwrite
920 #define	sdaread				ssdaread
921 #define	sdawrite			ssdawrite
922 #define	sdstrategy			ssdstrategy
923 #define	sdioctl				ssdioctl
924 #define	sd_mapblockaddr_iostart		ssd_mapblockaddr_iostart
925 #define	sd_mapblocksize_iostart		ssd_mapblocksize_iostart
926 #define	sd_checksum_iostart		ssd_checksum_iostart
927 #define	sd_checksum_uscsi_iostart	ssd_checksum_uscsi_iostart
928 #define	sd_pm_iostart			ssd_pm_iostart
929 #define	sd_core_iostart			ssd_core_iostart
930 #define	sd_mapblockaddr_iodone		ssd_mapblockaddr_iodone
931 #define	sd_mapblocksize_iodone		ssd_mapblocksize_iodone
932 #define	sd_checksum_iodone		ssd_checksum_iodone
933 #define	sd_checksum_uscsi_iodone	ssd_checksum_uscsi_iodone
934 #define	sd_pm_iodone			ssd_pm_iodone
935 #define	sd_initpkt_for_buf		ssd_initpkt_for_buf
936 #define	sd_destroypkt_for_buf		ssd_destroypkt_for_buf
937 #define	sd_setup_rw_pkt			ssd_setup_rw_pkt
938 #define	sd_setup_next_rw_pkt		ssd_setup_next_rw_pkt
939 #define	sd_buf_iodone			ssd_buf_iodone
940 #define	sd_uscsi_strategy		ssd_uscsi_strategy
941 #define	sd_initpkt_for_uscsi		ssd_initpkt_for_uscsi
942 #define	sd_destroypkt_for_uscsi		ssd_destroypkt_for_uscsi
943 #define	sd_uscsi_iodone			ssd_uscsi_iodone
944 #define	sd_xbuf_strategy		ssd_xbuf_strategy
945 #define	sd_xbuf_init			ssd_xbuf_init
946 #define	sd_pm_entry			ssd_pm_entry
947 #define	sd_pm_exit			ssd_pm_exit
948 
949 #define	sd_pm_idletimeout_handler	ssd_pm_idletimeout_handler
950 #define	sd_pm_timeout_handler		ssd_pm_timeout_handler
951 
952 #define	sd_add_buf_to_waitq		ssd_add_buf_to_waitq
953 #define	sdintr				ssdintr
954 #define	sd_start_cmds			ssd_start_cmds
955 #define	sd_send_scsi_cmd		ssd_send_scsi_cmd
956 #define	sd_bioclone_alloc		ssd_bioclone_alloc
957 #define	sd_bioclone_free		ssd_bioclone_free
958 #define	sd_shadow_buf_alloc		ssd_shadow_buf_alloc
959 #define	sd_shadow_buf_free		ssd_shadow_buf_free
960 #define	sd_print_transport_rejected_message	\
961 					ssd_print_transport_rejected_message
962 #define	sd_retry_command		ssd_retry_command
963 #define	sd_set_retry_bp			ssd_set_retry_bp
964 #define	sd_send_request_sense_command	ssd_send_request_sense_command
965 #define	sd_start_retry_command		ssd_start_retry_command
966 #define	sd_start_direct_priority_command	\
967 					ssd_start_direct_priority_command
968 #define	sd_return_failed_command	ssd_return_failed_command
969 #define	sd_return_failed_command_no_restart	\
970 					ssd_return_failed_command_no_restart
971 #define	sd_return_command		ssd_return_command
972 #define	sd_sync_with_callback		ssd_sync_with_callback
973 #define	sdrunout			ssdrunout
974 #define	sd_mark_rqs_busy		ssd_mark_rqs_busy
975 #define	sd_mark_rqs_idle		ssd_mark_rqs_idle
976 #define	sd_reduce_throttle		ssd_reduce_throttle
977 #define	sd_restore_throttle		ssd_restore_throttle
978 #define	sd_print_incomplete_msg		ssd_print_incomplete_msg
979 #define	sd_init_cdb_limits		ssd_init_cdb_limits
980 #define	sd_pkt_status_good		ssd_pkt_status_good
981 #define	sd_pkt_status_check_condition	ssd_pkt_status_check_condition
982 #define	sd_pkt_status_busy		ssd_pkt_status_busy
983 #define	sd_pkt_status_reservation_conflict	\
984 					ssd_pkt_status_reservation_conflict
985 #define	sd_pkt_status_qfull		ssd_pkt_status_qfull
986 #define	sd_handle_request_sense		ssd_handle_request_sense
987 #define	sd_handle_auto_request_sense	ssd_handle_auto_request_sense
988 #define	sd_print_sense_failed_msg	ssd_print_sense_failed_msg
989 #define	sd_validate_sense_data		ssd_validate_sense_data
990 #define	sd_decode_sense			ssd_decode_sense
991 #define	sd_print_sense_msg		ssd_print_sense_msg
992 #define	sd_sense_key_no_sense		ssd_sense_key_no_sense
993 #define	sd_sense_key_recoverable_error	ssd_sense_key_recoverable_error
994 #define	sd_sense_key_not_ready		ssd_sense_key_not_ready
995 #define	sd_sense_key_medium_or_hardware_error	\
996 					ssd_sense_key_medium_or_hardware_error
997 #define	sd_sense_key_illegal_request	ssd_sense_key_illegal_request
998 #define	sd_sense_key_unit_attention	ssd_sense_key_unit_attention
999 #define	sd_sense_key_fail_command	ssd_sense_key_fail_command
1000 #define	sd_sense_key_blank_check	ssd_sense_key_blank_check
1001 #define	sd_sense_key_aborted_command	ssd_sense_key_aborted_command
1002 #define	sd_sense_key_default		ssd_sense_key_default
1003 #define	sd_print_retry_msg		ssd_print_retry_msg
1004 #define	sd_print_cmd_incomplete_msg	ssd_print_cmd_incomplete_msg
1005 #define	sd_pkt_reason_cmd_incomplete	ssd_pkt_reason_cmd_incomplete
1006 #define	sd_pkt_reason_cmd_tran_err	ssd_pkt_reason_cmd_tran_err
1007 #define	sd_pkt_reason_cmd_reset		ssd_pkt_reason_cmd_reset
1008 #define	sd_pkt_reason_cmd_aborted	ssd_pkt_reason_cmd_aborted
1009 #define	sd_pkt_reason_cmd_timeout	ssd_pkt_reason_cmd_timeout
1010 #define	sd_pkt_reason_cmd_unx_bus_free	ssd_pkt_reason_cmd_unx_bus_free
1011 #define	sd_pkt_reason_cmd_tag_reject	ssd_pkt_reason_cmd_tag_reject
1012 #define	sd_pkt_reason_default		ssd_pkt_reason_default
1013 #define	sd_reset_target			ssd_reset_target
1014 #define	sd_start_stop_unit_callback	ssd_start_stop_unit_callback
1015 #define	sd_start_stop_unit_task		ssd_start_stop_unit_task
1016 #define	sd_taskq_create			ssd_taskq_create
1017 #define	sd_taskq_delete			ssd_taskq_delete
1018 #define	sd_media_change_task		ssd_media_change_task
1019 #define	sd_handle_mchange		ssd_handle_mchange
1020 #define	sd_send_scsi_DOORLOCK		ssd_send_scsi_DOORLOCK
1021 #define	sd_send_scsi_READ_CAPACITY	ssd_send_scsi_READ_CAPACITY
1022 #define	sd_send_scsi_READ_CAPACITY_16	ssd_send_scsi_READ_CAPACITY_16
1023 #define	sd_send_scsi_GET_CONFIGURATION	ssd_send_scsi_GET_CONFIGURATION
1024 #define	sd_send_scsi_feature_GET_CONFIGURATION	\
1025 					sd_send_scsi_feature_GET_CONFIGURATION
1026 #define	sd_send_scsi_START_STOP_UNIT	ssd_send_scsi_START_STOP_UNIT
1027 #define	sd_send_scsi_INQUIRY		ssd_send_scsi_INQUIRY
1028 #define	sd_send_scsi_TEST_UNIT_READY	ssd_send_scsi_TEST_UNIT_READY
1029 #define	sd_send_scsi_PERSISTENT_RESERVE_IN	\
1030 					ssd_send_scsi_PERSISTENT_RESERVE_IN
1031 #define	sd_send_scsi_PERSISTENT_RESERVE_OUT	\
1032 					ssd_send_scsi_PERSISTENT_RESERVE_OUT
1033 #define	sd_send_scsi_SYNCHRONIZE_CACHE	ssd_send_scsi_SYNCHRONIZE_CACHE
1034 #define	sd_send_scsi_SYNCHRONIZE_CACHE_biodone	\
1035 					ssd_send_scsi_SYNCHRONIZE_CACHE_biodone
1036 #define	sd_send_scsi_MODE_SENSE		ssd_send_scsi_MODE_SENSE
1037 #define	sd_send_scsi_MODE_SELECT	ssd_send_scsi_MODE_SELECT
1038 #define	sd_send_scsi_RDWR		ssd_send_scsi_RDWR
1039 #define	sd_send_scsi_LOG_SENSE		ssd_send_scsi_LOG_SENSE
1040 #define	sd_alloc_rqs			ssd_alloc_rqs
1041 #define	sd_free_rqs			ssd_free_rqs
1042 #define	sd_dump_memory			ssd_dump_memory
1043 #define	sd_uscsi_ioctl			ssd_uscsi_ioctl
1044 #define	sd_get_media_info		ssd_get_media_info
1045 #define	sd_dkio_ctrl_info		ssd_dkio_ctrl_info
1046 #define	sd_dkio_get_geometry		ssd_dkio_get_geometry
1047 #define	sd_dkio_set_geometry		ssd_dkio_set_geometry
1048 #define	sd_dkio_get_partition		ssd_dkio_get_partition
1049 #define	sd_dkio_set_partition		ssd_dkio_set_partition
1050 #define	sd_dkio_partition		ssd_dkio_partition
1051 #define	sd_dkio_get_vtoc		ssd_dkio_get_vtoc
1052 #define	sd_dkio_get_efi			ssd_dkio_get_efi
1053 #define	sd_build_user_vtoc		ssd_build_user_vtoc
1054 #define	sd_dkio_set_vtoc		ssd_dkio_set_vtoc
1055 #define	sd_dkio_set_efi			ssd_dkio_set_efi
1056 #define	sd_build_label_vtoc		ssd_build_label_vtoc
1057 #define	sd_write_label			ssd_write_label
1058 #define	sd_clear_vtoc			ssd_clear_vtoc
1059 #define	sd_clear_efi			ssd_clear_efi
1060 #define	sd_get_tunables_from_conf	ssd_get_tunables_from_conf
1061 #define	sd_setup_next_xfer		ssd_setup_next_xfer
1062 #define	sd_dkio_get_temp		ssd_dkio_get_temp
1063 #define	sd_dkio_get_mboot		ssd_dkio_get_mboot
1064 #define	sd_dkio_set_mboot		ssd_dkio_set_mboot
1065 #define	sd_setup_default_geometry	ssd_setup_default_geometry
1066 #define	sd_update_fdisk_and_vtoc	ssd_update_fdisk_and_vtoc
1067 #define	sd_check_mhd			ssd_check_mhd
1068 #define	sd_mhd_watch_cb			ssd_mhd_watch_cb
1069 #define	sd_mhd_watch_incomplete		ssd_mhd_watch_incomplete
1070 #define	sd_sname			ssd_sname
1071 #define	sd_mhd_resvd_recover		ssd_mhd_resvd_recover
1072 #define	sd_resv_reclaim_thread		ssd_resv_reclaim_thread
1073 #define	sd_take_ownership		ssd_take_ownership
1074 #define	sd_reserve_release		ssd_reserve_release
1075 #define	sd_rmv_resv_reclaim_req		ssd_rmv_resv_reclaim_req
1076 #define	sd_mhd_reset_notify_cb		ssd_mhd_reset_notify_cb
1077 #define	sd_persistent_reservation_in_read_keys	\
1078 					ssd_persistent_reservation_in_read_keys
1079 #define	sd_persistent_reservation_in_read_resv	\
1080 					ssd_persistent_reservation_in_read_resv
1081 #define	sd_mhdioc_takeown		ssd_mhdioc_takeown
1082 #define	sd_mhdioc_failfast		ssd_mhdioc_failfast
1083 #define	sd_mhdioc_release		ssd_mhdioc_release
1084 #define	sd_mhdioc_register_devid	ssd_mhdioc_register_devid
1085 #define	sd_mhdioc_inkeys		ssd_mhdioc_inkeys
1086 #define	sd_mhdioc_inresv		ssd_mhdioc_inresv
1087 #define	sr_change_blkmode		ssr_change_blkmode
1088 #define	sr_change_speed			ssr_change_speed
1089 #define	sr_atapi_change_speed		ssr_atapi_change_speed
1090 #define	sr_pause_resume			ssr_pause_resume
1091 #define	sr_play_msf			ssr_play_msf
1092 #define	sr_play_trkind			ssr_play_trkind
1093 #define	sr_read_all_subcodes		ssr_read_all_subcodes
1094 #define	sr_read_subchannel		ssr_read_subchannel
1095 #define	sr_read_tocentry		ssr_read_tocentry
1096 #define	sr_read_tochdr			ssr_read_tochdr
1097 #define	sr_read_cdda			ssr_read_cdda
1098 #define	sr_read_cdxa			ssr_read_cdxa
1099 #define	sr_read_mode1			ssr_read_mode1
1100 #define	sr_read_mode2			ssr_read_mode2
1101 #define	sr_read_cd_mode2		ssr_read_cd_mode2
1102 #define	sr_sector_mode			ssr_sector_mode
1103 #define	sr_eject			ssr_eject
1104 #define	sr_ejected			ssr_ejected
1105 #define	sr_check_wp			ssr_check_wp
1106 #define	sd_check_media			ssd_check_media
1107 #define	sd_media_watch_cb		ssd_media_watch_cb
1108 #define	sd_delayed_cv_broadcast		ssd_delayed_cv_broadcast
1109 #define	sr_volume_ctrl			ssr_volume_ctrl
1110 #define	sr_read_sony_session_offset	ssr_read_sony_session_offset
1111 #define	sd_log_page_supported		ssd_log_page_supported
1112 #define	sd_check_for_writable_cd	ssd_check_for_writable_cd
1113 #define	sd_wm_cache_constructor		ssd_wm_cache_constructor
1114 #define	sd_wm_cache_destructor		ssd_wm_cache_destructor
1115 #define	sd_range_lock			ssd_range_lock
1116 #define	sd_get_range			ssd_get_range
1117 #define	sd_free_inlist_wmap		ssd_free_inlist_wmap
1118 #define	sd_range_unlock			ssd_range_unlock
1119 #define	sd_read_modify_write_task	ssd_read_modify_write_task
1120 #define	sddump_do_read_of_rmw		ssddump_do_read_of_rmw
1121 
1122 #define	sd_iostart_chain		ssd_iostart_chain
1123 #define	sd_iodone_chain			ssd_iodone_chain
1124 #define	sd_initpkt_map			ssd_initpkt_map
1125 #define	sd_destroypkt_map		ssd_destroypkt_map
1126 #define	sd_chain_type_map		ssd_chain_type_map
1127 #define	sd_chain_index_map		ssd_chain_index_map
1128 
1129 #define	sd_failfast_flushctl		ssd_failfast_flushctl
1130 #define	sd_failfast_flushq		ssd_failfast_flushq
1131 #define	sd_failfast_flushq_callback	ssd_failfast_flushq_callback
1132 
1133 #define	sd_is_lsi			ssd_is_lsi
1134 
1135 #endif	/* #if (defined(__fibre)) */
1136 
1137 
1138 int _init(void);
1139 int _fini(void);
1140 int _info(struct modinfo *modinfop);
1141 
1142 /*PRINTFLIKE3*/
1143 static void sd_log_trace(uint_t comp, struct sd_lun *un, const char *fmt, ...);
1144 /*PRINTFLIKE3*/
1145 static void sd_log_info(uint_t comp, struct sd_lun *un, const char *fmt, ...);
1146 /*PRINTFLIKE3*/
1147 static void sd_log_err(uint_t comp, struct sd_lun *un, const char *fmt, ...);
1148 
1149 static int sdprobe(dev_info_t *devi);
1150 static int sdinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg,
1151     void **result);
1152 static int sd_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op,
1153     int mod_flags, char *name, caddr_t valuep, int *lengthp);
1154 
1155 /*
1156  * Smart probe for parallel scsi
1157  */
1158 static void sd_scsi_probe_cache_init(void);
1159 static void sd_scsi_probe_cache_fini(void);
1160 static void sd_scsi_clear_probe_cache(void);
1161 static int  sd_scsi_probe_with_cache(struct scsi_device *devp, int (*fn)());
1162 
1163 /*
1164  * Attached luns on target for parallel scsi
1165  */
1166 static void sd_scsi_target_lun_init(void);
1167 static void sd_scsi_target_lun_fini(void);
1168 static int  sd_scsi_get_target_lun_count(dev_info_t *dip, int target);
1169 static void sd_scsi_update_lun_on_target(dev_info_t *dip, int target, int flag);
1170 
1171 static int	sd_spin_up_unit(struct sd_lun *un);
1172 #ifdef _LP64
1173 static void	sd_enable_descr_sense(struct sd_lun *un);
1174 static void	sd_reenable_dsense_task(void *arg);
1175 #endif /* _LP64 */
1176 
1177 static void	sd_set_mmc_caps(struct sd_lun *un);
1178 
1179 static void sd_read_unit_properties(struct sd_lun *un);
1180 static int  sd_process_sdconf_file(struct sd_lun *un);
1181 static void sd_get_tunables_from_conf(struct sd_lun *un, int flags,
1182     int *data_list, sd_tunables *values);
1183 static void sd_process_sdconf_table(struct sd_lun *un);
1184 static int  sd_sdconf_id_match(struct sd_lun *un, char *id, int idlen);
1185 static int  sd_blank_cmp(struct sd_lun *un, char *id, int idlen);
1186 static int  sd_chk_vers1_data(struct sd_lun *un, int flags, int *prop_list,
1187 	int list_len, char *dataname_ptr);
1188 static void sd_set_vers1_properties(struct sd_lun *un, int flags,
1189     sd_tunables *prop_list);
1190 static int  sd_validate_geometry(struct sd_lun *un, int path_flag);
1191 
1192 #if defined(_SUNOS_VTOC_16)
1193 static void sd_convert_geometry(uint64_t capacity, struct dk_geom *un_g);
1194 #endif
1195 
1196 static void sd_resync_geom_caches(struct sd_lun *un, int capacity, int lbasize,
1197 	int path_flag);
1198 static int  sd_read_fdisk(struct sd_lun *un, uint_t capacity, int lbasize,
1199 	int path_flag);
1200 static void sd_get_physical_geometry(struct sd_lun *un,
1201 	struct geom_cache *pgeom_p, int capacity, int lbasize, int path_flag);
1202 static void sd_get_virtual_geometry(struct sd_lun *un, int capacity,
1203 	int lbasize);
1204 static int  sd_uselabel(struct sd_lun *un, struct dk_label *l, int path_flag);
1205 static void sd_swap_efi_gpt(efi_gpt_t *);
1206 static void sd_swap_efi_gpe(int nparts, efi_gpe_t *);
1207 static int sd_validate_efi(efi_gpt_t *);
1208 static int sd_use_efi(struct sd_lun *, int);
1209 static void sd_build_default_label(struct sd_lun *un);
1210 
1211 #if defined(_FIRMWARE_NEEDS_FDISK)
1212 static int  sd_has_max_chs_vals(struct ipart *fdp);
1213 #endif
1214 static void sd_inq_fill(char *p, int l, char *s);
1215 
1216 
1217 static void sd_register_devid(struct sd_lun *un, dev_info_t *devi,
1218     int reservation_flag);
1219 static daddr_t  sd_get_devid_block(struct sd_lun *un);
1220 static int  sd_get_devid(struct sd_lun *un);
1221 static int  sd_get_serialnum(struct sd_lun *un, uchar_t *wwn, int *len);
1222 static ddi_devid_t sd_create_devid(struct sd_lun *un);
1223 static int  sd_write_deviceid(struct sd_lun *un);
1224 static int  sd_get_devid_page(struct sd_lun *un, uchar_t *wwn, int *len);
1225 static int  sd_check_vpd_page_support(struct sd_lun *un);
1226 
1227 static void sd_setup_pm(struct sd_lun *un, dev_info_t *devi);
1228 static void sd_create_pm_components(dev_info_t *devi, struct sd_lun *un);
1229 
1230 static int  sd_ddi_suspend(dev_info_t *devi);
1231 static int  sd_ddi_pm_suspend(struct sd_lun *un);
1232 static int  sd_ddi_resume(dev_info_t *devi);
1233 static int  sd_ddi_pm_resume(struct sd_lun *un);
1234 static int  sdpower(dev_info_t *devi, int component, int level);
1235 
1236 static int  sdattach(dev_info_t *devi, ddi_attach_cmd_t cmd);
1237 static int  sddetach(dev_info_t *devi, ddi_detach_cmd_t cmd);
1238 static int  sd_unit_attach(dev_info_t *devi);
1239 static int  sd_unit_detach(dev_info_t *devi);
1240 
1241 static void sd_set_unit_attributes(struct sd_lun *un, dev_info_t *devi);
1242 static int  sd_create_minor_nodes(struct sd_lun *un, dev_info_t *devi);
1243 static void sd_create_errstats(struct sd_lun *un, int instance);
1244 static void sd_set_errstats(struct sd_lun *un);
1245 static void sd_set_pstats(struct sd_lun *un);
1246 
1247 static int  sddump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk);
1248 static int  sd_scsi_poll(struct sd_lun *un, struct scsi_pkt *pkt);
1249 static int  sd_send_polled_RQS(struct sd_lun *un);
1250 static int  sd_ddi_scsi_poll(struct scsi_pkt *pkt);
1251 
1252 #if (defined(__fibre))
1253 /*
1254  * Event callbacks (photon)
1255  */
1256 static void sd_init_event_callbacks(struct sd_lun *un);
1257 static void  sd_event_callback(dev_info_t *, ddi_eventcookie_t, void *, void *);
1258 #endif
1259 
1260 /*
1261  * Defines for sd_cache_control
1262  */
1263 
1264 #define	SD_CACHE_ENABLE		1
1265 #define	SD_CACHE_DISABLE	0
1266 #define	SD_CACHE_NOCHANGE	-1
1267 
1268 static int   sd_cache_control(struct sd_lun *un, int rcd_flag, int wce_flag);
1269 static int   sd_get_write_cache_enabled(struct sd_lun *un, int *is_enabled);
1270 static dev_t sd_make_device(dev_info_t *devi);
1271 
1272 static void  sd_update_block_info(struct sd_lun *un, uint32_t lbasize,
1273 	uint64_t capacity);
1274 
1275 /*
1276  * Driver entry point functions.
1277  */
1278 static int  sdopen(dev_t *dev_p, int flag, int otyp, cred_t *cred_p);
1279 static int  sdclose(dev_t dev, int flag, int otyp, cred_t *cred_p);
1280 static int  sd_ready_and_valid(struct sd_lun *un);
1281 
1282 static void sdmin(struct buf *bp);
1283 static int sdread(dev_t dev, struct uio *uio, cred_t *cred_p);
1284 static int sdwrite(dev_t dev, struct uio *uio, cred_t *cred_p);
1285 static int sdaread(dev_t dev, struct aio_req *aio, cred_t *cred_p);
1286 static int sdawrite(dev_t dev, struct aio_req *aio, cred_t *cred_p);
1287 
1288 static int sdstrategy(struct buf *bp);
1289 static int sdioctl(dev_t, int, intptr_t, int, cred_t *, int *);
1290 
1291 /*
1292  * Function prototypes for layering functions in the iostart chain.
1293  */
1294 static void sd_mapblockaddr_iostart(int index, struct sd_lun *un,
1295 	struct buf *bp);
1296 static void sd_mapblocksize_iostart(int index, struct sd_lun *un,
1297 	struct buf *bp);
1298 static void sd_checksum_iostart(int index, struct sd_lun *un, struct buf *bp);
1299 static void sd_checksum_uscsi_iostart(int index, struct sd_lun *un,
1300 	struct buf *bp);
1301 static void sd_pm_iostart(int index, struct sd_lun *un, struct buf *bp);
1302 static void sd_core_iostart(int index, struct sd_lun *un, struct buf *bp);
1303 
1304 /*
1305  * Function prototypes for layering functions in the iodone chain.
1306  */
1307 static void sd_buf_iodone(int index, struct sd_lun *un, struct buf *bp);
1308 static void sd_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp);
1309 static void sd_mapblockaddr_iodone(int index, struct sd_lun *un,
1310 	struct buf *bp);
1311 static void sd_mapblocksize_iodone(int index, struct sd_lun *un,
1312 	struct buf *bp);
1313 static void sd_checksum_iodone(int index, struct sd_lun *un, struct buf *bp);
1314 static void sd_checksum_uscsi_iodone(int index, struct sd_lun *un,
1315 	struct buf *bp);
1316 static void sd_pm_iodone(int index, struct sd_lun *un, struct buf *bp);
1317 
1318 /*
1319  * Prototypes for functions to support buf(9S) based IO.
1320  */
1321 static void sd_xbuf_strategy(struct buf *bp, ddi_xbuf_t xp, void *arg);
1322 static int sd_initpkt_for_buf(struct buf *, struct scsi_pkt **);
1323 static void sd_destroypkt_for_buf(struct buf *);
1324 static int sd_setup_rw_pkt(struct sd_lun *un, struct scsi_pkt **pktpp,
1325 	struct buf *bp, int flags,
1326 	int (*callback)(caddr_t), caddr_t callback_arg,
1327 	diskaddr_t lba, uint32_t blockcount);
1328 #if defined(__i386) || defined(__amd64)
1329 static int sd_setup_next_rw_pkt(struct sd_lun *un, struct scsi_pkt *pktp,
1330 	struct buf *bp, diskaddr_t lba, uint32_t blockcount);
1331 #endif /* defined(__i386) || defined(__amd64) */
1332 
1333 /*
1334  * Prototypes for functions to support USCSI IO.
1335  */
1336 static int sd_uscsi_strategy(struct buf *bp);
1337 static int sd_initpkt_for_uscsi(struct buf *, struct scsi_pkt **);
1338 static void sd_destroypkt_for_uscsi(struct buf *);
1339 
1340 static void sd_xbuf_init(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
1341 	uchar_t chain_type, void *pktinfop);
1342 
1343 static int  sd_pm_entry(struct sd_lun *un);
1344 static void sd_pm_exit(struct sd_lun *un);
1345 
1346 static void sd_pm_idletimeout_handler(void *arg);
1347 
1348 /*
1349  * sd_core internal functions (used at the sd_core_io layer).
1350  */
1351 static void sd_add_buf_to_waitq(struct sd_lun *un, struct buf *bp);
1352 static void sdintr(struct scsi_pkt *pktp);
1353 static void sd_start_cmds(struct sd_lun *un, struct buf *immed_bp);
1354 
1355 static int sd_send_scsi_cmd(dev_t dev, struct uscsi_cmd *incmd,
1356 	enum uio_seg cdbspace, enum uio_seg dataspace, enum uio_seg rqbufspace,
1357 	int path_flag);
1358 
1359 static struct buf *sd_bioclone_alloc(struct buf *bp, size_t datalen,
1360 	daddr_t blkno, int (*func)(struct buf *));
1361 static struct buf *sd_shadow_buf_alloc(struct buf *bp, size_t datalen,
1362 	uint_t bflags, daddr_t blkno, int (*func)(struct buf *));
1363 static void sd_bioclone_free(struct buf *bp);
1364 static void sd_shadow_buf_free(struct buf *bp);
1365 
1366 static void sd_print_transport_rejected_message(struct sd_lun *un,
1367 	struct sd_xbuf *xp, int code);
1368 static void sd_print_incomplete_msg(struct sd_lun *un, struct buf *bp,
1369     void *arg, int code);
1370 static void sd_print_sense_failed_msg(struct sd_lun *un, struct buf *bp,
1371     void *arg, int code);
1372 static void sd_print_cmd_incomplete_msg(struct sd_lun *un, struct buf *bp,
1373     void *arg, int code);
1374 
1375 static void sd_retry_command(struct sd_lun *un, struct buf *bp,
1376 	int retry_check_flag,
1377 	void (*user_funcp)(struct sd_lun *un, struct buf *bp, void *argp,
1378 		int c),
1379 	void *user_arg, int failure_code,  clock_t retry_delay,
1380 	void (*statp)(kstat_io_t *));
1381 
1382 static void sd_set_retry_bp(struct sd_lun *un, struct buf *bp,
1383 	clock_t retry_delay, void (*statp)(kstat_io_t *));
1384 
1385 static void sd_send_request_sense_command(struct sd_lun *un, struct buf *bp,
1386 	struct scsi_pkt *pktp);
1387 static void sd_start_retry_command(void *arg);
1388 static void sd_start_direct_priority_command(void *arg);
1389 static void sd_return_failed_command(struct sd_lun *un, struct buf *bp,
1390 	int errcode);
1391 static void sd_return_failed_command_no_restart(struct sd_lun *un,
1392 	struct buf *bp, int errcode);
1393 static void sd_return_command(struct sd_lun *un, struct buf *bp);
1394 static void sd_sync_with_callback(struct sd_lun *un);
1395 static int sdrunout(caddr_t arg);
1396 
1397 static void sd_mark_rqs_busy(struct sd_lun *un, struct buf *bp);
1398 static struct buf *sd_mark_rqs_idle(struct sd_lun *un, struct sd_xbuf *xp);
1399 
1400 static void sd_reduce_throttle(struct sd_lun *un, int throttle_type);
1401 static void sd_restore_throttle(void *arg);
1402 
1403 static void sd_init_cdb_limits(struct sd_lun *un);
1404 
1405 static void sd_pkt_status_good(struct sd_lun *un, struct buf *bp,
1406 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1407 
1408 /*
1409  * Error handling functions
1410  */
1411 static void sd_pkt_status_check_condition(struct sd_lun *un, struct buf *bp,
1412 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1413 static void sd_pkt_status_busy(struct sd_lun *un, struct buf *bp,
1414 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1415 static void sd_pkt_status_reservation_conflict(struct sd_lun *un,
1416 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1417 static void sd_pkt_status_qfull(struct sd_lun *un, struct buf *bp,
1418 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1419 
1420 static void sd_handle_request_sense(struct sd_lun *un, struct buf *bp,
1421 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1422 static void sd_handle_auto_request_sense(struct sd_lun *un, struct buf *bp,
1423 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1424 static int sd_validate_sense_data(struct sd_lun *un, struct buf *bp,
1425 	struct sd_xbuf *xp);
1426 static void sd_decode_sense(struct sd_lun *un, struct buf *bp,
1427 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1428 
1429 static void sd_print_sense_msg(struct sd_lun *un, struct buf *bp,
1430 	void *arg, int code);
1431 
1432 static void sd_sense_key_no_sense(struct sd_lun *un, struct buf *bp,
1433 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1434 static void sd_sense_key_recoverable_error(struct sd_lun *un,
1435 	uint8_t *sense_datap,
1436 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1437 static void sd_sense_key_not_ready(struct sd_lun *un,
1438 	uint8_t *sense_datap,
1439 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1440 static void sd_sense_key_medium_or_hardware_error(struct sd_lun *un,
1441 	uint8_t *sense_datap,
1442 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1443 static void sd_sense_key_illegal_request(struct sd_lun *un, struct buf *bp,
1444 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1445 static void sd_sense_key_unit_attention(struct sd_lun *un,
1446 	uint8_t *sense_datap,
1447 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1448 static void sd_sense_key_fail_command(struct sd_lun *un, struct buf *bp,
1449 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1450 static void sd_sense_key_blank_check(struct sd_lun *un, struct buf *bp,
1451 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1452 static void sd_sense_key_aborted_command(struct sd_lun *un, struct buf *bp,
1453 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1454 static void sd_sense_key_default(struct sd_lun *un,
1455 	uint8_t *sense_datap,
1456 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1457 
1458 static void sd_print_retry_msg(struct sd_lun *un, struct buf *bp,
1459 	void *arg, int flag);
1460 
1461 static void sd_pkt_reason_cmd_incomplete(struct sd_lun *un, struct buf *bp,
1462 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1463 static void sd_pkt_reason_cmd_tran_err(struct sd_lun *un, struct buf *bp,
1464 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1465 static void sd_pkt_reason_cmd_reset(struct sd_lun *un, struct buf *bp,
1466 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1467 static void sd_pkt_reason_cmd_aborted(struct sd_lun *un, struct buf *bp,
1468 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1469 static void sd_pkt_reason_cmd_timeout(struct sd_lun *un, struct buf *bp,
1470 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1471 static void sd_pkt_reason_cmd_unx_bus_free(struct sd_lun *un, struct buf *bp,
1472 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1473 static void sd_pkt_reason_cmd_tag_reject(struct sd_lun *un, struct buf *bp,
1474 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1475 static void sd_pkt_reason_default(struct sd_lun *un, struct buf *bp,
1476 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1477 
1478 static void sd_reset_target(struct sd_lun *un, struct scsi_pkt *pktp);
1479 
1480 static void sd_start_stop_unit_callback(void *arg);
1481 static void sd_start_stop_unit_task(void *arg);
1482 
1483 static void sd_taskq_create(void);
1484 static void sd_taskq_delete(void);
1485 static void sd_media_change_task(void *arg);
1486 
1487 static int sd_handle_mchange(struct sd_lun *un);
1488 static int sd_send_scsi_DOORLOCK(struct sd_lun *un, int flag, int path_flag);
1489 static int sd_send_scsi_READ_CAPACITY(struct sd_lun *un, uint64_t *capp,
1490 	uint32_t *lbap, int path_flag);
1491 static int sd_send_scsi_READ_CAPACITY_16(struct sd_lun *un, uint64_t *capp,
1492 	uint32_t *lbap, int path_flag);
1493 static int sd_send_scsi_START_STOP_UNIT(struct sd_lun *un, int flag,
1494 	int path_flag);
1495 static int sd_send_scsi_INQUIRY(struct sd_lun *un, uchar_t *bufaddr,
1496 	size_t buflen, uchar_t evpd, uchar_t page_code, size_t *residp);
1497 static int sd_send_scsi_TEST_UNIT_READY(struct sd_lun *un, int flag);
1498 static int sd_send_scsi_PERSISTENT_RESERVE_IN(struct sd_lun *un,
1499 	uchar_t usr_cmd, uint16_t data_len, uchar_t *data_bufp);
1500 static int sd_send_scsi_PERSISTENT_RESERVE_OUT(struct sd_lun *un,
1501 	uchar_t usr_cmd, uchar_t *usr_bufp);
1502 static int sd_send_scsi_SYNCHRONIZE_CACHE(struct sd_lun *un,
1503 	struct dk_callback *dkc);
1504 static int sd_send_scsi_SYNCHRONIZE_CACHE_biodone(struct buf *bp);
1505 static int sd_send_scsi_GET_CONFIGURATION(struct sd_lun *un,
1506 	struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen,
1507 	uchar_t *bufaddr, uint_t buflen);
1508 static int sd_send_scsi_feature_GET_CONFIGURATION(struct sd_lun *un,
1509 	struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen,
1510 	uchar_t *bufaddr, uint_t buflen, char feature);
1511 static int sd_send_scsi_MODE_SENSE(struct sd_lun *un, int cdbsize,
1512 	uchar_t *bufaddr, size_t buflen, uchar_t page_code, int path_flag);
1513 static int sd_send_scsi_MODE_SELECT(struct sd_lun *un, int cdbsize,
1514 	uchar_t *bufaddr, size_t buflen, uchar_t save_page, int path_flag);
1515 static int sd_send_scsi_RDWR(struct sd_lun *un, uchar_t cmd, void *bufaddr,
1516 	size_t buflen, daddr_t start_block, int path_flag);
1517 #define	sd_send_scsi_READ(un, bufaddr, buflen, start_block, path_flag)	\
1518 	sd_send_scsi_RDWR(un, SCMD_READ, bufaddr, buflen, start_block, \
1519 	path_flag)
1520 #define	sd_send_scsi_WRITE(un, bufaddr, buflen, start_block, path_flag)	\
1521 	sd_send_scsi_RDWR(un, SCMD_WRITE, bufaddr, buflen, start_block,\
1522 	path_flag)
1523 
1524 static int sd_send_scsi_LOG_SENSE(struct sd_lun *un, uchar_t *bufaddr,
1525 	uint16_t buflen, uchar_t page_code, uchar_t page_control,
1526 	uint16_t param_ptr, int path_flag);
1527 
1528 static int  sd_alloc_rqs(struct scsi_device *devp, struct sd_lun *un);
1529 static void sd_free_rqs(struct sd_lun *un);
1530 
1531 static void sd_dump_memory(struct sd_lun *un, uint_t comp, char *title,
1532 	uchar_t *data, int len, int fmt);
1533 static void sd_panic_for_res_conflict(struct sd_lun *un);
1534 
1535 /*
1536  * Disk Ioctl Function Prototypes
1537  */
1538 static int sd_uscsi_ioctl(dev_t dev, caddr_t arg, int flag);
1539 static int sd_get_media_info(dev_t dev, caddr_t arg, int flag);
1540 static int sd_dkio_ctrl_info(dev_t dev, caddr_t arg, int flag);
1541 static int sd_dkio_get_geometry(dev_t dev, caddr_t arg, int flag,
1542 	int geom_validated);
1543 static int sd_dkio_set_geometry(dev_t dev, caddr_t arg, int flag);
1544 static int sd_dkio_get_partition(dev_t dev, caddr_t arg, int flag,
1545 	int geom_validated);
1546 static int sd_dkio_set_partition(dev_t dev, caddr_t arg, int flag);
1547 static int sd_dkio_get_vtoc(dev_t dev, caddr_t arg, int flag,
1548 	int geom_validated);
1549 static int sd_dkio_get_efi(dev_t dev, caddr_t arg, int flag);
1550 static int sd_dkio_partition(dev_t dev, caddr_t arg, int flag);
1551 static void sd_build_user_vtoc(struct sd_lun *un, struct vtoc *user_vtoc);
1552 static int sd_dkio_set_vtoc(dev_t dev, caddr_t arg, int flag);
1553 static int sd_dkio_set_efi(dev_t dev, caddr_t arg, int flag);
1554 static int sd_build_label_vtoc(struct sd_lun *un, struct vtoc *user_vtoc);
1555 static int sd_write_label(dev_t dev);
1556 static int sd_set_vtoc(struct sd_lun *un, struct dk_label *dkl);
1557 static void sd_clear_vtoc(struct sd_lun *un);
1558 static void sd_clear_efi(struct sd_lun *un);
1559 static int sd_dkio_get_temp(dev_t dev, caddr_t arg, int flag);
1560 static int sd_dkio_get_mboot(dev_t dev, caddr_t arg, int flag);
1561 static int sd_dkio_set_mboot(dev_t dev, caddr_t arg, int flag);
1562 static void sd_setup_default_geometry(struct sd_lun *un);
1563 #if defined(__i386) || defined(__amd64)
1564 static int sd_update_fdisk_and_vtoc(struct sd_lun *un);
1565 #endif
1566 
1567 /*
1568  * Multi-host Ioctl Prototypes
1569  */
1570 static int sd_check_mhd(dev_t dev, int interval);
1571 static int sd_mhd_watch_cb(caddr_t arg, struct scsi_watch_result *resultp);
1572 static void sd_mhd_watch_incomplete(struct sd_lun *un, struct scsi_pkt *pkt);
1573 static char *sd_sname(uchar_t status);
1574 static void sd_mhd_resvd_recover(void *arg);
1575 static void sd_resv_reclaim_thread();
1576 static int sd_take_ownership(dev_t dev, struct mhioctkown *p);
1577 static int sd_reserve_release(dev_t dev, int cmd);
1578 static void sd_rmv_resv_reclaim_req(dev_t dev);
1579 static void sd_mhd_reset_notify_cb(caddr_t arg);
1580 static int sd_persistent_reservation_in_read_keys(struct sd_lun *un,
1581 	mhioc_inkeys_t *usrp, int flag);
1582 static int sd_persistent_reservation_in_read_resv(struct sd_lun *un,
1583 	mhioc_inresvs_t *usrp, int flag);
1584 static int sd_mhdioc_takeown(dev_t dev, caddr_t arg, int flag);
1585 static int sd_mhdioc_failfast(dev_t dev, caddr_t arg, int flag);
1586 static int sd_mhdioc_release(dev_t dev);
1587 static int sd_mhdioc_register_devid(dev_t dev);
1588 static int sd_mhdioc_inkeys(dev_t dev, caddr_t arg, int flag);
1589 static int sd_mhdioc_inresv(dev_t dev, caddr_t arg, int flag);
1590 
1591 /*
1592  * SCSI removable prototypes
1593  */
1594 static int sr_change_blkmode(dev_t dev, int cmd, intptr_t data, int flag);
1595 static int sr_change_speed(dev_t dev, int cmd, intptr_t data, int flag);
1596 static int sr_atapi_change_speed(dev_t dev, int cmd, intptr_t data, int flag);
1597 static int sr_pause_resume(dev_t dev, int mode);
1598 static int sr_play_msf(dev_t dev, caddr_t data, int flag);
1599 static int sr_play_trkind(dev_t dev, caddr_t data, int flag);
1600 static int sr_read_all_subcodes(dev_t dev, caddr_t data, int flag);
1601 static int sr_read_subchannel(dev_t dev, caddr_t data, int flag);
1602 static int sr_read_tocentry(dev_t dev, caddr_t data, int flag);
1603 static int sr_read_tochdr(dev_t dev, caddr_t data, int flag);
1604 static int sr_read_cdda(dev_t dev, caddr_t data, int flag);
1605 static int sr_read_cdxa(dev_t dev, caddr_t data, int flag);
1606 static int sr_read_mode1(dev_t dev, caddr_t data, int flag);
1607 static int sr_read_mode2(dev_t dev, caddr_t data, int flag);
1608 static int sr_read_cd_mode2(dev_t dev, caddr_t data, int flag);
1609 static int sr_sector_mode(dev_t dev, uint32_t blksize);
1610 static int sr_eject(dev_t dev);
1611 static void sr_ejected(register struct sd_lun *un);
1612 static int sr_check_wp(dev_t dev);
1613 static int sd_check_media(dev_t dev, enum dkio_state state);
1614 static int sd_media_watch_cb(caddr_t arg, struct scsi_watch_result *resultp);
1615 static void sd_delayed_cv_broadcast(void *arg);
1616 static int sr_volume_ctrl(dev_t dev, caddr_t data, int flag);
1617 static int sr_read_sony_session_offset(dev_t dev, caddr_t data, int flag);
1618 
1619 static int sd_log_page_supported(struct sd_lun *un, int log_page);
1620 
1621 /*
1622  * Function Prototype for the non-512 support (DVDRAM, MO etc.) functions.
1623  */
1624 static void sd_check_for_writable_cd(struct sd_lun *un);
1625 static int sd_wm_cache_constructor(void *wm, void *un, int flags);
1626 static void sd_wm_cache_destructor(void *wm, void *un);
1627 static struct sd_w_map *sd_range_lock(struct sd_lun *un, daddr_t startb,
1628 	daddr_t endb, ushort_t typ);
1629 static struct sd_w_map *sd_get_range(struct sd_lun *un, daddr_t startb,
1630 	daddr_t endb);
1631 static void sd_free_inlist_wmap(struct sd_lun *un, struct sd_w_map *wmp);
1632 static void sd_range_unlock(struct sd_lun *un, struct sd_w_map *wm);
1633 static void sd_read_modify_write_task(void * arg);
1634 static int
1635 sddump_do_read_of_rmw(struct sd_lun *un, uint64_t blkno, uint64_t nblk,
1636 	struct buf **bpp);
1637 
1638 
1639 /*
1640  * Function prototypes for failfast support.
1641  */
1642 static void sd_failfast_flushq(struct sd_lun *un);
1643 static int sd_failfast_flushq_callback(struct buf *bp);
1644 
1645 /*
1646  * Function prototypes to check for lsi devices
1647  */
1648 static void sd_is_lsi(struct sd_lun *un);
1649 
1650 /*
1651  * Function prototypes for x86 support
1652  */
1653 #if defined(__i386) || defined(__amd64)
1654 static int sd_setup_next_xfer(struct sd_lun *un, struct buf *bp,
1655 		struct scsi_pkt *pkt, struct sd_xbuf *xp);
1656 #endif
1657 
1658 /*
1659  * Constants for failfast support:
1660  *
1661  * SD_FAILFAST_INACTIVE: Instance is currently in a normal state, with NO
1662  * failfast processing being performed.
1663  *
1664  * SD_FAILFAST_ACTIVE: Instance is in the failfast state and is performing
1665  * failfast processing on all bufs with B_FAILFAST set.
1666  */
1667 
1668 #define	SD_FAILFAST_INACTIVE		0
1669 #define	SD_FAILFAST_ACTIVE		1
1670 
1671 /*
1672  * Bitmask to control behavior of buf(9S) flushes when a transition to
1673  * the failfast state occurs. Optional bits include:
1674  *
1675  * SD_FAILFAST_FLUSH_ALL_BUFS: When set, flush ALL bufs including those that
1676  * do NOT have B_FAILFAST set. When clear, only bufs with B_FAILFAST will
1677  * be flushed.
1678  *
1679  * SD_FAILFAST_FLUSH_ALL_QUEUES: When set, flush any/all other queues in the
1680  * driver, in addition to the regular wait queue. This includes the xbuf
1681  * queues. When clear, only the driver's wait queue will be flushed.
1682  */
1683 #define	SD_FAILFAST_FLUSH_ALL_BUFS	0x01
1684 #define	SD_FAILFAST_FLUSH_ALL_QUEUES	0x02
1685 
1686 /*
1687  * The default behavior is to only flush bufs that have B_FAILFAST set, but
1688  * to flush all queues within the driver.
1689  */
1690 static int sd_failfast_flushctl = SD_FAILFAST_FLUSH_ALL_QUEUES;
1691 
1692 
1693 /*
1694  * SD Testing Fault Injection
1695  */
1696 #ifdef SD_FAULT_INJECTION
1697 static void sd_faultinjection_ioctl(int cmd, intptr_t arg, struct sd_lun *un);
1698 static void sd_faultinjection(struct scsi_pkt *pktp);
1699 static void sd_injection_log(char *buf, struct sd_lun *un);
1700 #endif
1701 
1702 /*
1703  * Device driver ops vector
1704  */
1705 static struct cb_ops sd_cb_ops = {
1706 	sdopen,			/* open */
1707 	sdclose,		/* close */
1708 	sdstrategy,		/* strategy */
1709 	nodev,			/* print */
1710 	sddump,			/* dump */
1711 	sdread,			/* read */
1712 	sdwrite,		/* write */
1713 	sdioctl,		/* ioctl */
1714 	nodev,			/* devmap */
1715 	nodev,			/* mmap */
1716 	nodev,			/* segmap */
1717 	nochpoll,		/* poll */
1718 	sd_prop_op,		/* cb_prop_op */
1719 	0,			/* streamtab  */
1720 	D_64BIT | D_MP | D_NEW | D_HOTPLUG, /* Driver compatibility flags */
1721 	CB_REV,			/* cb_rev */
1722 	sdaread, 		/* async I/O read entry point */
1723 	sdawrite		/* async I/O write entry point */
1724 };
1725 
1726 static struct dev_ops sd_ops = {
1727 	DEVO_REV,		/* devo_rev, */
1728 	0,			/* refcnt  */
1729 	sdinfo,			/* info */
1730 	nulldev,		/* identify */
1731 	sdprobe,		/* probe */
1732 	sdattach,		/* attach */
1733 	sddetach,		/* detach */
1734 	nodev,			/* reset */
1735 	&sd_cb_ops,		/* driver operations */
1736 	NULL,			/* bus operations */
1737 	sdpower			/* power */
1738 };
1739 
1740 
1741 /*
1742  * This is the loadable module wrapper.
1743  */
1744 #include <sys/modctl.h>
1745 
1746 static struct modldrv modldrv = {
1747 	&mod_driverops,		/* Type of module. This one is a driver */
1748 	SD_MODULE_NAME,		/* Module name. */
1749 	&sd_ops			/* driver ops */
1750 };
1751 
1752 
1753 static struct modlinkage modlinkage = {
1754 	MODREV_1,
1755 	&modldrv,
1756 	NULL
1757 };
1758 
1759 
1760 static struct scsi_asq_key_strings sd_additional_codes[] = {
1761 	0x81, 0, "Logical Unit is Reserved",
1762 	0x85, 0, "Audio Address Not Valid",
1763 	0xb6, 0, "Media Load Mechanism Failed",
1764 	0xB9, 0, "Audio Play Operation Aborted",
1765 	0xbf, 0, "Buffer Overflow for Read All Subcodes Command",
1766 	0x53, 2, "Medium removal prevented",
1767 	0x6f, 0, "Authentication failed during key exchange",
1768 	0x6f, 1, "Key not present",
1769 	0x6f, 2, "Key not established",
1770 	0x6f, 3, "Read without proper authentication",
1771 	0x6f, 4, "Mismatched region to this logical unit",
1772 	0x6f, 5, "Region reset count error",
1773 	0xffff, 0x0, NULL
1774 };
1775 
1776 
1777 /*
1778  * Struct for passing printing information for sense data messages
1779  */
1780 struct sd_sense_info {
1781 	int	ssi_severity;
1782 	int	ssi_pfa_flag;
1783 };
1784 
1785 /*
1786  * Table of function pointers for iostart-side routines. Seperate "chains"
1787  * of layered function calls are formed by placing the function pointers
1788  * sequentially in the desired order. Functions are called according to an
1789  * incrementing table index ordering. The last function in each chain must
1790  * be sd_core_iostart(). The corresponding iodone-side routines are expected
1791  * in the sd_iodone_chain[] array.
1792  *
1793  * Note: It may seem more natural to organize both the iostart and iodone
1794  * functions together, into an array of structures (or some similar
1795  * organization) with a common index, rather than two seperate arrays which
1796  * must be maintained in synchronization. The purpose of this division is
1797  * to achiece improved performance: individual arrays allows for more
1798  * effective cache line utilization on certain platforms.
1799  */
1800 
1801 typedef void (*sd_chain_t)(int index, struct sd_lun *un, struct buf *bp);
1802 
1803 
1804 static sd_chain_t sd_iostart_chain[] = {
1805 
1806 	/* Chain for buf IO for disk drive targets (PM enabled) */
1807 	sd_mapblockaddr_iostart,	/* Index: 0 */
1808 	sd_pm_iostart,			/* Index: 1 */
1809 	sd_core_iostart,		/* Index: 2 */
1810 
1811 	/* Chain for buf IO for disk drive targets (PM disabled) */
1812 	sd_mapblockaddr_iostart,	/* Index: 3 */
1813 	sd_core_iostart,		/* Index: 4 */
1814 
1815 	/* Chain for buf IO for removable-media targets (PM enabled) */
1816 	sd_mapblockaddr_iostart,	/* Index: 5 */
1817 	sd_mapblocksize_iostart,	/* Index: 6 */
1818 	sd_pm_iostart,			/* Index: 7 */
1819 	sd_core_iostart,		/* Index: 8 */
1820 
1821 	/* Chain for buf IO for removable-media targets (PM disabled) */
1822 	sd_mapblockaddr_iostart,	/* Index: 9 */
1823 	sd_mapblocksize_iostart,	/* Index: 10 */
1824 	sd_core_iostart,		/* Index: 11 */
1825 
1826 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
1827 	sd_mapblockaddr_iostart,	/* Index: 12 */
1828 	sd_checksum_iostart,		/* Index: 13 */
1829 	sd_pm_iostart,			/* Index: 14 */
1830 	sd_core_iostart,		/* Index: 15 */
1831 
1832 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
1833 	sd_mapblockaddr_iostart,	/* Index: 16 */
1834 	sd_checksum_iostart,		/* Index: 17 */
1835 	sd_core_iostart,		/* Index: 18 */
1836 
1837 	/* Chain for USCSI commands (all targets) */
1838 	sd_pm_iostart,			/* Index: 19 */
1839 	sd_core_iostart,		/* Index: 20 */
1840 
1841 	/* Chain for checksumming USCSI commands (all targets) */
1842 	sd_checksum_uscsi_iostart,	/* Index: 21 */
1843 	sd_pm_iostart,			/* Index: 22 */
1844 	sd_core_iostart,		/* Index: 23 */
1845 
1846 	/* Chain for "direct" USCSI commands (all targets) */
1847 	sd_core_iostart,		/* Index: 24 */
1848 
1849 	/* Chain for "direct priority" USCSI commands (all targets) */
1850 	sd_core_iostart,		/* Index: 25 */
1851 };
1852 
1853 /*
1854  * Macros to locate the first function of each iostart chain in the
1855  * sd_iostart_chain[] array. These are located by the index in the array.
1856  */
1857 #define	SD_CHAIN_DISK_IOSTART			0
1858 #define	SD_CHAIN_DISK_IOSTART_NO_PM		3
1859 #define	SD_CHAIN_RMMEDIA_IOSTART		5
1860 #define	SD_CHAIN_RMMEDIA_IOSTART_NO_PM		9
1861 #define	SD_CHAIN_CHKSUM_IOSTART			12
1862 #define	SD_CHAIN_CHKSUM_IOSTART_NO_PM		16
1863 #define	SD_CHAIN_USCSI_CMD_IOSTART		19
1864 #define	SD_CHAIN_USCSI_CHKSUM_IOSTART		21
1865 #define	SD_CHAIN_DIRECT_CMD_IOSTART		24
1866 #define	SD_CHAIN_PRIORITY_CMD_IOSTART		25
1867 
1868 
1869 /*
1870  * Table of function pointers for the iodone-side routines for the driver-
1871  * internal layering mechanism.  The calling sequence for iodone routines
1872  * uses a decrementing table index, so the last routine called in a chain
1873  * must be at the lowest array index location for that chain.  The last
1874  * routine for each chain must be either sd_buf_iodone() (for buf(9S) IOs)
1875  * or sd_uscsi_iodone() (for uscsi IOs).  Other than this, the ordering
1876  * of the functions in an iodone side chain must correspond to the ordering
1877  * of the iostart routines for that chain.  Note that there is no iodone
1878  * side routine that corresponds to sd_core_iostart(), so there is no
1879  * entry in the table for this.
1880  */
1881 
1882 static sd_chain_t sd_iodone_chain[] = {
1883 
1884 	/* Chain for buf IO for disk drive targets (PM enabled) */
1885 	sd_buf_iodone,			/* Index: 0 */
1886 	sd_mapblockaddr_iodone,		/* Index: 1 */
1887 	sd_pm_iodone,			/* Index: 2 */
1888 
1889 	/* Chain for buf IO for disk drive targets (PM disabled) */
1890 	sd_buf_iodone,			/* Index: 3 */
1891 	sd_mapblockaddr_iodone,		/* Index: 4 */
1892 
1893 	/* Chain for buf IO for removable-media targets (PM enabled) */
1894 	sd_buf_iodone,			/* Index: 5 */
1895 	sd_mapblockaddr_iodone,		/* Index: 6 */
1896 	sd_mapblocksize_iodone,		/* Index: 7 */
1897 	sd_pm_iodone,			/* Index: 8 */
1898 
1899 	/* Chain for buf IO for removable-media targets (PM disabled) */
1900 	sd_buf_iodone,			/* Index: 9 */
1901 	sd_mapblockaddr_iodone,		/* Index: 10 */
1902 	sd_mapblocksize_iodone,		/* Index: 11 */
1903 
1904 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
1905 	sd_buf_iodone,			/* Index: 12 */
1906 	sd_mapblockaddr_iodone,		/* Index: 13 */
1907 	sd_checksum_iodone,		/* Index: 14 */
1908 	sd_pm_iodone,			/* Index: 15 */
1909 
1910 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
1911 	sd_buf_iodone,			/* Index: 16 */
1912 	sd_mapblockaddr_iodone,		/* Index: 17 */
1913 	sd_checksum_iodone,		/* Index: 18 */
1914 
1915 	/* Chain for USCSI commands (non-checksum targets) */
1916 	sd_uscsi_iodone,		/* Index: 19 */
1917 	sd_pm_iodone,			/* Index: 20 */
1918 
1919 	/* Chain for USCSI commands (checksum targets) */
1920 	sd_uscsi_iodone,		/* Index: 21 */
1921 	sd_checksum_uscsi_iodone,	/* Index: 22 */
1922 	sd_pm_iodone,			/* Index: 22 */
1923 
1924 	/* Chain for "direct" USCSI commands (all targets) */
1925 	sd_uscsi_iodone,		/* Index: 24 */
1926 
1927 	/* Chain for "direct priority" USCSI commands (all targets) */
1928 	sd_uscsi_iodone,		/* Index: 25 */
1929 };
1930 
1931 
1932 /*
1933  * Macros to locate the "first" function in the sd_iodone_chain[] array for
1934  * each iodone-side chain. These are located by the array index, but as the
1935  * iodone side functions are called in a decrementing-index order, the
1936  * highest index number in each chain must be specified (as these correspond
1937  * to the first function in the iodone chain that will be called by the core
1938  * at IO completion time).
1939  */
1940 
1941 #define	SD_CHAIN_DISK_IODONE			2
1942 #define	SD_CHAIN_DISK_IODONE_NO_PM		4
1943 #define	SD_CHAIN_RMMEDIA_IODONE			8
1944 #define	SD_CHAIN_RMMEDIA_IODONE_NO_PM		11
1945 #define	SD_CHAIN_CHKSUM_IODONE			15
1946 #define	SD_CHAIN_CHKSUM_IODONE_NO_PM		18
1947 #define	SD_CHAIN_USCSI_CMD_IODONE		20
1948 #define	SD_CHAIN_USCSI_CHKSUM_IODONE		22
1949 #define	SD_CHAIN_DIRECT_CMD_IODONE		24
1950 #define	SD_CHAIN_PRIORITY_CMD_IODONE		25
1951 
1952 
1953 
1954 
1955 /*
1956  * Array to map a layering chain index to the appropriate initpkt routine.
1957  * The redundant entries are present so that the index used for accessing
1958  * the above sd_iostart_chain and sd_iodone_chain tables can be used directly
1959  * with this table as well.
1960  */
1961 typedef int (*sd_initpkt_t)(struct buf *, struct scsi_pkt **);
1962 
1963 static sd_initpkt_t	sd_initpkt_map[] = {
1964 
1965 	/* Chain for buf IO for disk drive targets (PM enabled) */
1966 	sd_initpkt_for_buf,		/* Index: 0 */
1967 	sd_initpkt_for_buf,		/* Index: 1 */
1968 	sd_initpkt_for_buf,		/* Index: 2 */
1969 
1970 	/* Chain for buf IO for disk drive targets (PM disabled) */
1971 	sd_initpkt_for_buf,		/* Index: 3 */
1972 	sd_initpkt_for_buf,		/* Index: 4 */
1973 
1974 	/* Chain for buf IO for removable-media targets (PM enabled) */
1975 	sd_initpkt_for_buf,		/* Index: 5 */
1976 	sd_initpkt_for_buf,		/* Index: 6 */
1977 	sd_initpkt_for_buf,		/* Index: 7 */
1978 	sd_initpkt_for_buf,		/* Index: 8 */
1979 
1980 	/* Chain for buf IO for removable-media targets (PM disabled) */
1981 	sd_initpkt_for_buf,		/* Index: 9 */
1982 	sd_initpkt_for_buf,		/* Index: 10 */
1983 	sd_initpkt_for_buf,		/* Index: 11 */
1984 
1985 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
1986 	sd_initpkt_for_buf,		/* Index: 12 */
1987 	sd_initpkt_for_buf,		/* Index: 13 */
1988 	sd_initpkt_for_buf,		/* Index: 14 */
1989 	sd_initpkt_for_buf,		/* Index: 15 */
1990 
1991 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
1992 	sd_initpkt_for_buf,		/* Index: 16 */
1993 	sd_initpkt_for_buf,		/* Index: 17 */
1994 	sd_initpkt_for_buf,		/* Index: 18 */
1995 
1996 	/* Chain for USCSI commands (non-checksum targets) */
1997 	sd_initpkt_for_uscsi,		/* Index: 19 */
1998 	sd_initpkt_for_uscsi,		/* Index: 20 */
1999 
2000 	/* Chain for USCSI commands (checksum targets) */
2001 	sd_initpkt_for_uscsi,		/* Index: 21 */
2002 	sd_initpkt_for_uscsi,		/* Index: 22 */
2003 	sd_initpkt_for_uscsi,		/* Index: 22 */
2004 
2005 	/* Chain for "direct" USCSI commands (all targets) */
2006 	sd_initpkt_for_uscsi,		/* Index: 24 */
2007 
2008 	/* Chain for "direct priority" USCSI commands (all targets) */
2009 	sd_initpkt_for_uscsi,		/* Index: 25 */
2010 
2011 };
2012 
2013 
2014 /*
2015  * Array to map a layering chain index to the appropriate destroypktpkt routine.
2016  * The redundant entries are present so that the index used for accessing
2017  * the above sd_iostart_chain and sd_iodone_chain tables can be used directly
2018  * with this table as well.
2019  */
2020 typedef void (*sd_destroypkt_t)(struct buf *);
2021 
2022 static sd_destroypkt_t	sd_destroypkt_map[] = {
2023 
2024 	/* Chain for buf IO for disk drive targets (PM enabled) */
2025 	sd_destroypkt_for_buf,		/* Index: 0 */
2026 	sd_destroypkt_for_buf,		/* Index: 1 */
2027 	sd_destroypkt_for_buf,		/* Index: 2 */
2028 
2029 	/* Chain for buf IO for disk drive targets (PM disabled) */
2030 	sd_destroypkt_for_buf,		/* Index: 3 */
2031 	sd_destroypkt_for_buf,		/* Index: 4 */
2032 
2033 	/* Chain for buf IO for removable-media targets (PM enabled) */
2034 	sd_destroypkt_for_buf,		/* Index: 5 */
2035 	sd_destroypkt_for_buf,		/* Index: 6 */
2036 	sd_destroypkt_for_buf,		/* Index: 7 */
2037 	sd_destroypkt_for_buf,		/* Index: 8 */
2038 
2039 	/* Chain for buf IO for removable-media targets (PM disabled) */
2040 	sd_destroypkt_for_buf,		/* Index: 9 */
2041 	sd_destroypkt_for_buf,		/* Index: 10 */
2042 	sd_destroypkt_for_buf,		/* Index: 11 */
2043 
2044 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
2045 	sd_destroypkt_for_buf,		/* Index: 12 */
2046 	sd_destroypkt_for_buf,		/* Index: 13 */
2047 	sd_destroypkt_for_buf,		/* Index: 14 */
2048 	sd_destroypkt_for_buf,		/* Index: 15 */
2049 
2050 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
2051 	sd_destroypkt_for_buf,		/* Index: 16 */
2052 	sd_destroypkt_for_buf,		/* Index: 17 */
2053 	sd_destroypkt_for_buf,		/* Index: 18 */
2054 
2055 	/* Chain for USCSI commands (non-checksum targets) */
2056 	sd_destroypkt_for_uscsi,	/* Index: 19 */
2057 	sd_destroypkt_for_uscsi,	/* Index: 20 */
2058 
2059 	/* Chain for USCSI commands (checksum targets) */
2060 	sd_destroypkt_for_uscsi,	/* Index: 21 */
2061 	sd_destroypkt_for_uscsi,	/* Index: 22 */
2062 	sd_destroypkt_for_uscsi,	/* Index: 22 */
2063 
2064 	/* Chain for "direct" USCSI commands (all targets) */
2065 	sd_destroypkt_for_uscsi,	/* Index: 24 */
2066 
2067 	/* Chain for "direct priority" USCSI commands (all targets) */
2068 	sd_destroypkt_for_uscsi,	/* Index: 25 */
2069 
2070 };
2071 
2072 
2073 
2074 /*
2075  * Array to map a layering chain index to the appropriate chain "type".
2076  * The chain type indicates a specific property/usage of the chain.
2077  * The redundant entries are present so that the index used for accessing
2078  * the above sd_iostart_chain and sd_iodone_chain tables can be used directly
2079  * with this table as well.
2080  */
2081 
2082 #define	SD_CHAIN_NULL			0	/* for the special RQS cmd */
2083 #define	SD_CHAIN_BUFIO			1	/* regular buf IO */
2084 #define	SD_CHAIN_USCSI			2	/* regular USCSI commands */
2085 #define	SD_CHAIN_DIRECT			3	/* uscsi, w/ bypass power mgt */
2086 #define	SD_CHAIN_DIRECT_PRIORITY	4	/* uscsi, w/ bypass power mgt */
2087 						/* (for error recovery) */
2088 
2089 static int sd_chain_type_map[] = {
2090 
2091 	/* Chain for buf IO for disk drive targets (PM enabled) */
2092 	SD_CHAIN_BUFIO,			/* Index: 0 */
2093 	SD_CHAIN_BUFIO,			/* Index: 1 */
2094 	SD_CHAIN_BUFIO,			/* Index: 2 */
2095 
2096 	/* Chain for buf IO for disk drive targets (PM disabled) */
2097 	SD_CHAIN_BUFIO,			/* Index: 3 */
2098 	SD_CHAIN_BUFIO,			/* Index: 4 */
2099 
2100 	/* Chain for buf IO for removable-media targets (PM enabled) */
2101 	SD_CHAIN_BUFIO,			/* Index: 5 */
2102 	SD_CHAIN_BUFIO,			/* Index: 6 */
2103 	SD_CHAIN_BUFIO,			/* Index: 7 */
2104 	SD_CHAIN_BUFIO,			/* Index: 8 */
2105 
2106 	/* Chain for buf IO for removable-media targets (PM disabled) */
2107 	SD_CHAIN_BUFIO,			/* Index: 9 */
2108 	SD_CHAIN_BUFIO,			/* Index: 10 */
2109 	SD_CHAIN_BUFIO,			/* Index: 11 */
2110 
2111 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
2112 	SD_CHAIN_BUFIO,			/* Index: 12 */
2113 	SD_CHAIN_BUFIO,			/* Index: 13 */
2114 	SD_CHAIN_BUFIO,			/* Index: 14 */
2115 	SD_CHAIN_BUFIO,			/* Index: 15 */
2116 
2117 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
2118 	SD_CHAIN_BUFIO,			/* Index: 16 */
2119 	SD_CHAIN_BUFIO,			/* Index: 17 */
2120 	SD_CHAIN_BUFIO,			/* Index: 18 */
2121 
2122 	/* Chain for USCSI commands (non-checksum targets) */
2123 	SD_CHAIN_USCSI,			/* Index: 19 */
2124 	SD_CHAIN_USCSI,			/* Index: 20 */
2125 
2126 	/* Chain for USCSI commands (checksum targets) */
2127 	SD_CHAIN_USCSI,			/* Index: 21 */
2128 	SD_CHAIN_USCSI,			/* Index: 22 */
2129 	SD_CHAIN_USCSI,			/* Index: 22 */
2130 
2131 	/* Chain for "direct" USCSI commands (all targets) */
2132 	SD_CHAIN_DIRECT,		/* Index: 24 */
2133 
2134 	/* Chain for "direct priority" USCSI commands (all targets) */
2135 	SD_CHAIN_DIRECT_PRIORITY,	/* Index: 25 */
2136 };
2137 
2138 
2139 /* Macro to return TRUE if the IO has come from the sd_buf_iostart() chain. */
2140 #define	SD_IS_BUFIO(xp)			\
2141 	(sd_chain_type_map[(xp)->xb_chain_iostart] == SD_CHAIN_BUFIO)
2142 
2143 /* Macro to return TRUE if the IO has come from the "direct priority" chain. */
2144 #define	SD_IS_DIRECT_PRIORITY(xp)	\
2145 	(sd_chain_type_map[(xp)->xb_chain_iostart] == SD_CHAIN_DIRECT_PRIORITY)
2146 
2147 
2148 
2149 /*
2150  * Struct, array, and macros to map a specific chain to the appropriate
2151  * layering indexes in the sd_iostart_chain[] and sd_iodone_chain[] arrays.
2152  *
2153  * The sd_chain_index_map[] array is used at attach time to set the various
2154  * un_xxx_chain type members of the sd_lun softstate to the specific layering
2155  * chain to be used with the instance. This allows different instances to use
2156  * different chain for buf IO, uscsi IO, etc.. Also, since the xb_chain_iostart
2157  * and xb_chain_iodone index values in the sd_xbuf are initialized to these
2158  * values at sd_xbuf init time, this allows (1) layering chains may be changed
2159  * dynamically & without the use of locking; and (2) a layer may update the
2160  * xb_chain_io[start|done] member in a given xbuf with its current index value,
2161  * to allow for deferred processing of an IO within the same chain from a
2162  * different execution context.
2163  */
2164 
2165 struct sd_chain_index {
2166 	int	sci_iostart_index;
2167 	int	sci_iodone_index;
2168 };
2169 
2170 static struct sd_chain_index	sd_chain_index_map[] = {
2171 	{ SD_CHAIN_DISK_IOSTART,		SD_CHAIN_DISK_IODONE },
2172 	{ SD_CHAIN_DISK_IOSTART_NO_PM,		SD_CHAIN_DISK_IODONE_NO_PM },
2173 	{ SD_CHAIN_RMMEDIA_IOSTART,		SD_CHAIN_RMMEDIA_IODONE },
2174 	{ SD_CHAIN_RMMEDIA_IOSTART_NO_PM,	SD_CHAIN_RMMEDIA_IODONE_NO_PM },
2175 	{ SD_CHAIN_CHKSUM_IOSTART,		SD_CHAIN_CHKSUM_IODONE },
2176 	{ SD_CHAIN_CHKSUM_IOSTART_NO_PM,	SD_CHAIN_CHKSUM_IODONE_NO_PM },
2177 	{ SD_CHAIN_USCSI_CMD_IOSTART,		SD_CHAIN_USCSI_CMD_IODONE },
2178 	{ SD_CHAIN_USCSI_CHKSUM_IOSTART,	SD_CHAIN_USCSI_CHKSUM_IODONE },
2179 	{ SD_CHAIN_DIRECT_CMD_IOSTART,		SD_CHAIN_DIRECT_CMD_IODONE },
2180 	{ SD_CHAIN_PRIORITY_CMD_IOSTART,	SD_CHAIN_PRIORITY_CMD_IODONE },
2181 };
2182 
2183 
2184 /*
2185  * The following are indexes into the sd_chain_index_map[] array.
2186  */
2187 
2188 /* un->un_buf_chain_type must be set to one of these */
2189 #define	SD_CHAIN_INFO_DISK		0
2190 #define	SD_CHAIN_INFO_DISK_NO_PM	1
2191 #define	SD_CHAIN_INFO_RMMEDIA		2
2192 #define	SD_CHAIN_INFO_RMMEDIA_NO_PM	3
2193 #define	SD_CHAIN_INFO_CHKSUM		4
2194 #define	SD_CHAIN_INFO_CHKSUM_NO_PM	5
2195 
2196 /* un->un_uscsi_chain_type must be set to one of these */
2197 #define	SD_CHAIN_INFO_USCSI_CMD		6
2198 /* USCSI with PM disabled is the same as DIRECT */
2199 #define	SD_CHAIN_INFO_USCSI_CMD_NO_PM	8
2200 #define	SD_CHAIN_INFO_USCSI_CHKSUM	7
2201 
2202 /* un->un_direct_chain_type must be set to one of these */
2203 #define	SD_CHAIN_INFO_DIRECT_CMD	8
2204 
2205 /* un->un_priority_chain_type must be set to one of these */
2206 #define	SD_CHAIN_INFO_PRIORITY_CMD	9
2207 
2208 /* size for devid inquiries */
2209 #define	MAX_INQUIRY_SIZE		0xF0
2210 
2211 /*
2212  * Macros used by functions to pass a given buf(9S) struct along to the
2213  * next function in the layering chain for further processing.
2214  *
2215  * In the following macros, passing more than three arguments to the called
2216  * routines causes the optimizer for the SPARC compiler to stop doing tail
2217  * call elimination which results in significant performance degradation.
2218  */
2219 #define	SD_BEGIN_IOSTART(index, un, bp)	\
2220 	((*(sd_iostart_chain[index]))(index, un, bp))
2221 
2222 #define	SD_BEGIN_IODONE(index, un, bp)	\
2223 	((*(sd_iodone_chain[index]))(index, un, bp))
2224 
2225 #define	SD_NEXT_IOSTART(index, un, bp)				\
2226 	((*(sd_iostart_chain[(index) + 1]))((index) + 1, un, bp))
2227 
2228 #define	SD_NEXT_IODONE(index, un, bp)				\
2229 	((*(sd_iodone_chain[(index) - 1]))((index) - 1, un, bp))
2230 
2231 /*
2232  *    Function: _init
2233  *
2234  * Description: This is the driver _init(9E) entry point.
2235  *
2236  * Return Code: Returns the value from mod_install(9F) or
2237  *		ddi_soft_state_init(9F) as appropriate.
2238  *
2239  *     Context: Called when driver module loaded.
2240  */
2241 
2242 int
2243 _init(void)
2244 {
2245 	int	err;
2246 
2247 	/* establish driver name from module name */
2248 	sd_label = mod_modname(&modlinkage);
2249 
2250 	err = ddi_soft_state_init(&sd_state, sizeof (struct sd_lun),
2251 		SD_MAXUNIT);
2252 
2253 	if (err != 0) {
2254 		return (err);
2255 	}
2256 
2257 	mutex_init(&sd_detach_mutex, NULL, MUTEX_DRIVER, NULL);
2258 	mutex_init(&sd_log_mutex,    NULL, MUTEX_DRIVER, NULL);
2259 	mutex_init(&sd_label_mutex,  NULL, MUTEX_DRIVER, NULL);
2260 
2261 	mutex_init(&sd_tr.srq_resv_reclaim_mutex, NULL, MUTEX_DRIVER, NULL);
2262 	cv_init(&sd_tr.srq_resv_reclaim_cv, NULL, CV_DRIVER, NULL);
2263 	cv_init(&sd_tr.srq_inprocess_cv, NULL, CV_DRIVER, NULL);
2264 
2265 	/*
2266 	 * it's ok to init here even for fibre device
2267 	 */
2268 	sd_scsi_probe_cache_init();
2269 
2270 	sd_scsi_target_lun_init();
2271 
2272 	/*
2273 	 * Creating taskq before mod_install ensures that all callers (threads)
2274 	 * that enter the module after a successfull mod_install encounter
2275 	 * a valid taskq.
2276 	 */
2277 	sd_taskq_create();
2278 
2279 	err = mod_install(&modlinkage);
2280 	if (err != 0) {
2281 		/* delete taskq if install fails */
2282 		sd_taskq_delete();
2283 
2284 		mutex_destroy(&sd_detach_mutex);
2285 		mutex_destroy(&sd_log_mutex);
2286 		mutex_destroy(&sd_label_mutex);
2287 
2288 		mutex_destroy(&sd_tr.srq_resv_reclaim_mutex);
2289 		cv_destroy(&sd_tr.srq_resv_reclaim_cv);
2290 		cv_destroy(&sd_tr.srq_inprocess_cv);
2291 
2292 		sd_scsi_probe_cache_fini();
2293 
2294 		sd_scsi_target_lun_fini();
2295 
2296 		ddi_soft_state_fini(&sd_state);
2297 		return (err);
2298 	}
2299 
2300 	return (err);
2301 }
2302 
2303 
2304 /*
2305  *    Function: _fini
2306  *
2307  * Description: This is the driver _fini(9E) entry point.
2308  *
2309  * Return Code: Returns the value from mod_remove(9F)
2310  *
2311  *     Context: Called when driver module is unloaded.
2312  */
2313 
2314 int
2315 _fini(void)
2316 {
2317 	int err;
2318 
2319 	if ((err = mod_remove(&modlinkage)) != 0) {
2320 		return (err);
2321 	}
2322 
2323 	sd_taskq_delete();
2324 
2325 	mutex_destroy(&sd_detach_mutex);
2326 	mutex_destroy(&sd_log_mutex);
2327 	mutex_destroy(&sd_label_mutex);
2328 	mutex_destroy(&sd_tr.srq_resv_reclaim_mutex);
2329 
2330 	sd_scsi_probe_cache_fini();
2331 
2332 	sd_scsi_target_lun_fini();
2333 
2334 	cv_destroy(&sd_tr.srq_resv_reclaim_cv);
2335 	cv_destroy(&sd_tr.srq_inprocess_cv);
2336 
2337 	ddi_soft_state_fini(&sd_state);
2338 
2339 	return (err);
2340 }
2341 
2342 
2343 /*
2344  *    Function: _info
2345  *
2346  * Description: This is the driver _info(9E) entry point.
2347  *
2348  *   Arguments: modinfop - pointer to the driver modinfo structure
2349  *
2350  * Return Code: Returns the value from mod_info(9F).
2351  *
2352  *     Context: Kernel thread context
2353  */
2354 
2355 int
2356 _info(struct modinfo *modinfop)
2357 {
2358 	return (mod_info(&modlinkage, modinfop));
2359 }
2360 
2361 
2362 /*
2363  * The following routines implement the driver message logging facility.
2364  * They provide component- and level- based debug output filtering.
2365  * Output may also be restricted to messages for a single instance by
2366  * specifying a soft state pointer in sd_debug_un. If sd_debug_un is set
2367  * to NULL, then messages for all instances are printed.
2368  *
2369  * These routines have been cloned from each other due to the language
2370  * constraints of macros and variable argument list processing.
2371  */
2372 
2373 
2374 /*
2375  *    Function: sd_log_err
2376  *
2377  * Description: This routine is called by the SD_ERROR macro for debug
2378  *		logging of error conditions.
2379  *
2380  *   Arguments: comp - driver component being logged
2381  *		dev  - pointer to driver info structure
2382  *		fmt  - error string and format to be logged
2383  */
2384 
2385 static void
2386 sd_log_err(uint_t comp, struct sd_lun *un, const char *fmt, ...)
2387 {
2388 	va_list		ap;
2389 	dev_info_t	*dev;
2390 
2391 	ASSERT(un != NULL);
2392 	dev = SD_DEVINFO(un);
2393 	ASSERT(dev != NULL);
2394 
2395 	/*
2396 	 * Filter messages based on the global component and level masks.
2397 	 * Also print if un matches the value of sd_debug_un, or if
2398 	 * sd_debug_un is set to NULL.
2399 	 */
2400 	if ((sd_component_mask & comp) && (sd_level_mask & SD_LOGMASK_ERROR) &&
2401 	    ((sd_debug_un == NULL) || (sd_debug_un == un))) {
2402 		mutex_enter(&sd_log_mutex);
2403 		va_start(ap, fmt);
2404 		(void) vsprintf(sd_log_buf, fmt, ap);
2405 		va_end(ap);
2406 		scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf);
2407 		mutex_exit(&sd_log_mutex);
2408 	}
2409 #ifdef SD_FAULT_INJECTION
2410 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask));
2411 	if (un->sd_injection_mask & comp) {
2412 		mutex_enter(&sd_log_mutex);
2413 		va_start(ap, fmt);
2414 		(void) vsprintf(sd_log_buf, fmt, ap);
2415 		va_end(ap);
2416 		sd_injection_log(sd_log_buf, un);
2417 		mutex_exit(&sd_log_mutex);
2418 	}
2419 #endif
2420 }
2421 
2422 
2423 /*
2424  *    Function: sd_log_info
2425  *
2426  * Description: This routine is called by the SD_INFO macro for debug
2427  *		logging of general purpose informational conditions.
2428  *
2429  *   Arguments: comp - driver component being logged
2430  *		dev  - pointer to driver info structure
2431  *		fmt  - info string and format to be logged
2432  */
2433 
2434 static void
2435 sd_log_info(uint_t component, struct sd_lun *un, const char *fmt, ...)
2436 {
2437 	va_list		ap;
2438 	dev_info_t	*dev;
2439 
2440 	ASSERT(un != NULL);
2441 	dev = SD_DEVINFO(un);
2442 	ASSERT(dev != NULL);
2443 
2444 	/*
2445 	 * Filter messages based on the global component and level masks.
2446 	 * Also print if un matches the value of sd_debug_un, or if
2447 	 * sd_debug_un is set to NULL.
2448 	 */
2449 	if ((sd_component_mask & component) &&
2450 	    (sd_level_mask & SD_LOGMASK_INFO) &&
2451 	    ((sd_debug_un == NULL) || (sd_debug_un == un))) {
2452 		mutex_enter(&sd_log_mutex);
2453 		va_start(ap, fmt);
2454 		(void) vsprintf(sd_log_buf, fmt, ap);
2455 		va_end(ap);
2456 		scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf);
2457 		mutex_exit(&sd_log_mutex);
2458 	}
2459 #ifdef SD_FAULT_INJECTION
2460 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask));
2461 	if (un->sd_injection_mask & component) {
2462 		mutex_enter(&sd_log_mutex);
2463 		va_start(ap, fmt);
2464 		(void) vsprintf(sd_log_buf, fmt, ap);
2465 		va_end(ap);
2466 		sd_injection_log(sd_log_buf, un);
2467 		mutex_exit(&sd_log_mutex);
2468 	}
2469 #endif
2470 }
2471 
2472 
2473 /*
2474  *    Function: sd_log_trace
2475  *
2476  * Description: This routine is called by the SD_TRACE macro for debug
2477  *		logging of trace conditions (i.e. function entry/exit).
2478  *
2479  *   Arguments: comp - driver component being logged
2480  *		dev  - pointer to driver info structure
2481  *		fmt  - trace string and format to be logged
2482  */
2483 
2484 static void
2485 sd_log_trace(uint_t component, struct sd_lun *un, const char *fmt, ...)
2486 {
2487 	va_list		ap;
2488 	dev_info_t	*dev;
2489 
2490 	ASSERT(un != NULL);
2491 	dev = SD_DEVINFO(un);
2492 	ASSERT(dev != NULL);
2493 
2494 	/*
2495 	 * Filter messages based on the global component and level masks.
2496 	 * Also print if un matches the value of sd_debug_un, or if
2497 	 * sd_debug_un is set to NULL.
2498 	 */
2499 	if ((sd_component_mask & component) &&
2500 	    (sd_level_mask & SD_LOGMASK_TRACE) &&
2501 	    ((sd_debug_un == NULL) || (sd_debug_un == un))) {
2502 		mutex_enter(&sd_log_mutex);
2503 		va_start(ap, fmt);
2504 		(void) vsprintf(sd_log_buf, fmt, ap);
2505 		va_end(ap);
2506 		scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf);
2507 		mutex_exit(&sd_log_mutex);
2508 	}
2509 #ifdef SD_FAULT_INJECTION
2510 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask));
2511 	if (un->sd_injection_mask & component) {
2512 		mutex_enter(&sd_log_mutex);
2513 		va_start(ap, fmt);
2514 		(void) vsprintf(sd_log_buf, fmt, ap);
2515 		va_end(ap);
2516 		sd_injection_log(sd_log_buf, un);
2517 		mutex_exit(&sd_log_mutex);
2518 	}
2519 #endif
2520 }
2521 
2522 
2523 /*
2524  *    Function: sdprobe
2525  *
2526  * Description: This is the driver probe(9e) entry point function.
2527  *
2528  *   Arguments: devi - opaque device info handle
2529  *
2530  * Return Code: DDI_PROBE_SUCCESS: If the probe was successful.
2531  *              DDI_PROBE_FAILURE: If the probe failed.
2532  *              DDI_PROBE_PARTIAL: If the instance is not present now,
2533  *				   but may be present in the future.
2534  */
2535 
2536 static int
2537 sdprobe(dev_info_t *devi)
2538 {
2539 	struct scsi_device	*devp;
2540 	int			rval;
2541 	int			instance;
2542 
2543 	/*
2544 	 * if it wasn't for pln, sdprobe could actually be nulldev
2545 	 * in the "__fibre" case.
2546 	 */
2547 	if (ddi_dev_is_sid(devi) == DDI_SUCCESS) {
2548 		return (DDI_PROBE_DONTCARE);
2549 	}
2550 
2551 	devp = ddi_get_driver_private(devi);
2552 
2553 	if (devp == NULL) {
2554 		/* Ooops... nexus driver is mis-configured... */
2555 		return (DDI_PROBE_FAILURE);
2556 	}
2557 
2558 	instance = ddi_get_instance(devi);
2559 
2560 	if (ddi_get_soft_state(sd_state, instance) != NULL) {
2561 		return (DDI_PROBE_PARTIAL);
2562 	}
2563 
2564 	/*
2565 	 * Call the SCSA utility probe routine to see if we actually
2566 	 * have a target at this SCSI nexus.
2567 	 */
2568 	switch (sd_scsi_probe_with_cache(devp, NULL_FUNC)) {
2569 	case SCSIPROBE_EXISTS:
2570 		switch (devp->sd_inq->inq_dtype) {
2571 		case DTYPE_DIRECT:
2572 			rval = DDI_PROBE_SUCCESS;
2573 			break;
2574 		case DTYPE_RODIRECT:
2575 			/* CDs etc. Can be removable media */
2576 			rval = DDI_PROBE_SUCCESS;
2577 			break;
2578 		case DTYPE_OPTICAL:
2579 			/*
2580 			 * Rewritable optical driver HP115AA
2581 			 * Can also be removable media
2582 			 */
2583 
2584 			/*
2585 			 * Do not attempt to bind to  DTYPE_OPTICAL if
2586 			 * pre solaris 9 sparc sd behavior is required
2587 			 *
2588 			 * If first time through and sd_dtype_optical_bind
2589 			 * has not been set in /etc/system check properties
2590 			 */
2591 
2592 			if (sd_dtype_optical_bind  < 0) {
2593 			    sd_dtype_optical_bind = ddi_prop_get_int
2594 				(DDI_DEV_T_ANY,	devi,	0,
2595 				"optical-device-bind",	1);
2596 			}
2597 
2598 			if (sd_dtype_optical_bind == 0) {
2599 				rval = DDI_PROBE_FAILURE;
2600 			} else {
2601 				rval = DDI_PROBE_SUCCESS;
2602 			}
2603 			break;
2604 
2605 		case DTYPE_NOTPRESENT:
2606 		default:
2607 			rval = DDI_PROBE_FAILURE;
2608 			break;
2609 		}
2610 		break;
2611 	default:
2612 		rval = DDI_PROBE_PARTIAL;
2613 		break;
2614 	}
2615 
2616 	/*
2617 	 * This routine checks for resource allocation prior to freeing,
2618 	 * so it will take care of the "smart probing" case where a
2619 	 * scsi_probe() may or may not have been issued and will *not*
2620 	 * free previously-freed resources.
2621 	 */
2622 	scsi_unprobe(devp);
2623 	return (rval);
2624 }
2625 
2626 
2627 /*
2628  *    Function: sdinfo
2629  *
2630  * Description: This is the driver getinfo(9e) entry point function.
2631  * 		Given the device number, return the devinfo pointer from
2632  *		the scsi_device structure or the instance number
2633  *		associated with the dev_t.
2634  *
2635  *   Arguments: dip     - pointer to device info structure
2636  *		infocmd - command argument (DDI_INFO_DEVT2DEVINFO,
2637  *			  DDI_INFO_DEVT2INSTANCE)
2638  *		arg     - driver dev_t
2639  *		resultp - user buffer for request response
2640  *
2641  * Return Code: DDI_SUCCESS
2642  *              DDI_FAILURE
2643  */
2644 /* ARGSUSED */
2645 static int
2646 sdinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
2647 {
2648 	struct sd_lun	*un;
2649 	dev_t		dev;
2650 	int		instance;
2651 	int		error;
2652 
2653 	switch (infocmd) {
2654 	case DDI_INFO_DEVT2DEVINFO:
2655 		dev = (dev_t)arg;
2656 		instance = SDUNIT(dev);
2657 		if ((un = ddi_get_soft_state(sd_state, instance)) == NULL) {
2658 			return (DDI_FAILURE);
2659 		}
2660 		*result = (void *) SD_DEVINFO(un);
2661 		error = DDI_SUCCESS;
2662 		break;
2663 	case DDI_INFO_DEVT2INSTANCE:
2664 		dev = (dev_t)arg;
2665 		instance = SDUNIT(dev);
2666 		*result = (void *)(uintptr_t)instance;
2667 		error = DDI_SUCCESS;
2668 		break;
2669 	default:
2670 		error = DDI_FAILURE;
2671 	}
2672 	return (error);
2673 }
2674 
2675 /*
2676  *    Function: sd_prop_op
2677  *
2678  * Description: This is the driver prop_op(9e) entry point function.
2679  *		Return the number of blocks for the partition in question
2680  *		or forward the request to the property facilities.
2681  *
2682  *   Arguments: dev       - device number
2683  *		dip       - pointer to device info structure
2684  *		prop_op   - property operator
2685  *		mod_flags - DDI_PROP_DONTPASS, don't pass to parent
2686  *		name      - pointer to property name
2687  *		valuep    - pointer or address of the user buffer
2688  *		lengthp   - property length
2689  *
2690  * Return Code: DDI_PROP_SUCCESS
2691  *              DDI_PROP_NOT_FOUND
2692  *              DDI_PROP_UNDEFINED
2693  *              DDI_PROP_NO_MEMORY
2694  *              DDI_PROP_BUF_TOO_SMALL
2695  */
2696 
2697 static int
2698 sd_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, int mod_flags,
2699 	char *name, caddr_t valuep, int *lengthp)
2700 {
2701 	int		instance = ddi_get_instance(dip);
2702 	struct sd_lun	*un;
2703 	uint64_t	nblocks64;
2704 
2705 	/*
2706 	 * Our dynamic properties are all device specific and size oriented.
2707 	 * Requests issued under conditions where size is valid are passed
2708 	 * to ddi_prop_op_nblocks with the size information, otherwise the
2709 	 * request is passed to ddi_prop_op. Size depends on valid geometry.
2710 	 */
2711 	un = ddi_get_soft_state(sd_state, instance);
2712 	if ((dev == DDI_DEV_T_ANY) || (un == NULL) ||
2713 	    (un->un_f_geometry_is_valid == FALSE)) {
2714 		return (ddi_prop_op(dev, dip, prop_op, mod_flags,
2715 		    name, valuep, lengthp));
2716 	} else {
2717 		/* get nblocks value */
2718 		ASSERT(!mutex_owned(SD_MUTEX(un)));
2719 		mutex_enter(SD_MUTEX(un));
2720 		nblocks64 = (ulong_t)un->un_map[SDPART(dev)].dkl_nblk;
2721 		mutex_exit(SD_MUTEX(un));
2722 
2723 		return (ddi_prop_op_nblocks(dev, dip, prop_op, mod_flags,
2724 		    name, valuep, lengthp, nblocks64));
2725 	}
2726 }
2727 
2728 /*
2729  * The following functions are for smart probing:
2730  * sd_scsi_probe_cache_init()
2731  * sd_scsi_probe_cache_fini()
2732  * sd_scsi_clear_probe_cache()
2733  * sd_scsi_probe_with_cache()
2734  */
2735 
2736 /*
2737  *    Function: sd_scsi_probe_cache_init
2738  *
2739  * Description: Initializes the probe response cache mutex and head pointer.
2740  *
2741  *     Context: Kernel thread context
2742  */
2743 
2744 static void
2745 sd_scsi_probe_cache_init(void)
2746 {
2747 	mutex_init(&sd_scsi_probe_cache_mutex, NULL, MUTEX_DRIVER, NULL);
2748 	sd_scsi_probe_cache_head = NULL;
2749 }
2750 
2751 
2752 /*
2753  *    Function: sd_scsi_probe_cache_fini
2754  *
2755  * Description: Frees all resources associated with the probe response cache.
2756  *
2757  *     Context: Kernel thread context
2758  */
2759 
2760 static void
2761 sd_scsi_probe_cache_fini(void)
2762 {
2763 	struct sd_scsi_probe_cache *cp;
2764 	struct sd_scsi_probe_cache *ncp;
2765 
2766 	/* Clean up our smart probing linked list */
2767 	for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = ncp) {
2768 		ncp = cp->next;
2769 		kmem_free(cp, sizeof (struct sd_scsi_probe_cache));
2770 	}
2771 	sd_scsi_probe_cache_head = NULL;
2772 	mutex_destroy(&sd_scsi_probe_cache_mutex);
2773 }
2774 
2775 
2776 /*
2777  *    Function: sd_scsi_clear_probe_cache
2778  *
2779  * Description: This routine clears the probe response cache. This is
2780  *		done when open() returns ENXIO so that when deferred
2781  *		attach is attempted (possibly after a device has been
2782  *		turned on) we will retry the probe. Since we don't know
2783  *		which target we failed to open, we just clear the
2784  *		entire cache.
2785  *
2786  *     Context: Kernel thread context
2787  */
2788 
2789 static void
2790 sd_scsi_clear_probe_cache(void)
2791 {
2792 	struct sd_scsi_probe_cache	*cp;
2793 	int				i;
2794 
2795 	mutex_enter(&sd_scsi_probe_cache_mutex);
2796 	for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = cp->next) {
2797 		/*
2798 		 * Reset all entries to SCSIPROBE_EXISTS.  This will
2799 		 * force probing to be performed the next time
2800 		 * sd_scsi_probe_with_cache is called.
2801 		 */
2802 		for (i = 0; i < NTARGETS_WIDE; i++) {
2803 			cp->cache[i] = SCSIPROBE_EXISTS;
2804 		}
2805 	}
2806 	mutex_exit(&sd_scsi_probe_cache_mutex);
2807 }
2808 
2809 
2810 /*
2811  *    Function: sd_scsi_probe_with_cache
2812  *
2813  * Description: This routine implements support for a scsi device probe
2814  *		with cache. The driver maintains a cache of the target
2815  *		responses to scsi probes. If we get no response from a
2816  *		target during a probe inquiry, we remember that, and we
2817  *		avoid additional calls to scsi_probe on non-zero LUNs
2818  *		on the same target until the cache is cleared. By doing
2819  *		so we avoid the 1/4 sec selection timeout for nonzero
2820  *		LUNs. lun0 of a target is always probed.
2821  *
2822  *   Arguments: devp     - Pointer to a scsi_device(9S) structure
2823  *              waitfunc - indicates what the allocator routines should
2824  *			   do when resources are not available. This value
2825  *			   is passed on to scsi_probe() when that routine
2826  *			   is called.
2827  *
2828  * Return Code: SCSIPROBE_NORESP if a NORESP in probe response cache;
2829  *		otherwise the value returned by scsi_probe(9F).
2830  *
2831  *     Context: Kernel thread context
2832  */
2833 
2834 static int
2835 sd_scsi_probe_with_cache(struct scsi_device *devp, int (*waitfn)())
2836 {
2837 	struct sd_scsi_probe_cache	*cp;
2838 	dev_info_t	*pdip = ddi_get_parent(devp->sd_dev);
2839 	int		lun, tgt;
2840 
2841 	lun = ddi_prop_get_int(DDI_DEV_T_ANY, devp->sd_dev, DDI_PROP_DONTPASS,
2842 	    SCSI_ADDR_PROP_LUN, 0);
2843 	tgt = ddi_prop_get_int(DDI_DEV_T_ANY, devp->sd_dev, DDI_PROP_DONTPASS,
2844 	    SCSI_ADDR_PROP_TARGET, -1);
2845 
2846 	/* Make sure caching enabled and target in range */
2847 	if ((tgt < 0) || (tgt >= NTARGETS_WIDE)) {
2848 		/* do it the old way (no cache) */
2849 		return (scsi_probe(devp, waitfn));
2850 	}
2851 
2852 	mutex_enter(&sd_scsi_probe_cache_mutex);
2853 
2854 	/* Find the cache for this scsi bus instance */
2855 	for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = cp->next) {
2856 		if (cp->pdip == pdip) {
2857 			break;
2858 		}
2859 	}
2860 
2861 	/* If we can't find a cache for this pdip, create one */
2862 	if (cp == NULL) {
2863 		int i;
2864 
2865 		cp = kmem_zalloc(sizeof (struct sd_scsi_probe_cache),
2866 		    KM_SLEEP);
2867 		cp->pdip = pdip;
2868 		cp->next = sd_scsi_probe_cache_head;
2869 		sd_scsi_probe_cache_head = cp;
2870 		for (i = 0; i < NTARGETS_WIDE; i++) {
2871 			cp->cache[i] = SCSIPROBE_EXISTS;
2872 		}
2873 	}
2874 
2875 	mutex_exit(&sd_scsi_probe_cache_mutex);
2876 
2877 	/* Recompute the cache for this target if LUN zero */
2878 	if (lun == 0) {
2879 		cp->cache[tgt] = SCSIPROBE_EXISTS;
2880 	}
2881 
2882 	/* Don't probe if cache remembers a NORESP from a previous LUN. */
2883 	if (cp->cache[tgt] != SCSIPROBE_EXISTS) {
2884 		return (SCSIPROBE_NORESP);
2885 	}
2886 
2887 	/* Do the actual probe; save & return the result */
2888 	return (cp->cache[tgt] = scsi_probe(devp, waitfn));
2889 }
2890 
2891 
2892 /*
2893  *    Function: sd_scsi_target_lun_init
2894  *
2895  * Description: Initializes the attached lun chain mutex and head pointer.
2896  *
2897  *     Context: Kernel thread context
2898  */
2899 
2900 static void
2901 sd_scsi_target_lun_init(void)
2902 {
2903 	mutex_init(&sd_scsi_target_lun_mutex, NULL, MUTEX_DRIVER, NULL);
2904 	sd_scsi_target_lun_head = NULL;
2905 }
2906 
2907 
2908 /*
2909  *    Function: sd_scsi_target_lun_fini
2910  *
2911  * Description: Frees all resources associated with the attached lun
2912  *              chain
2913  *
2914  *     Context: Kernel thread context
2915  */
2916 
2917 static void
2918 sd_scsi_target_lun_fini(void)
2919 {
2920 	struct sd_scsi_hba_tgt_lun	*cp;
2921 	struct sd_scsi_hba_tgt_lun	*ncp;
2922 
2923 	for (cp = sd_scsi_target_lun_head; cp != NULL; cp = ncp) {
2924 		ncp = cp->next;
2925 		kmem_free(cp, sizeof (struct sd_scsi_hba_tgt_lun));
2926 	}
2927 	sd_scsi_target_lun_head = NULL;
2928 	mutex_destroy(&sd_scsi_target_lun_mutex);
2929 }
2930 
2931 
2932 /*
2933  *    Function: sd_scsi_get_target_lun_count
2934  *
2935  * Description: This routine will check in the attached lun chain to see
2936  * 		how many luns are attached on the required SCSI controller
2937  * 		and target. Currently, some capabilities like tagged queue
2938  *		are supported per target based by HBA. So all luns in a
2939  *		target have the same capabilities. Based on this assumption,
2940  * 		sd should only set these capabilities once per target. This
2941  *		function is called when sd needs to decide how many luns
2942  *		already attached on a target.
2943  *
2944  *   Arguments: dip	- Pointer to the system's dev_info_t for the SCSI
2945  *			  controller device.
2946  *              target	- The target ID on the controller's SCSI bus.
2947  *
2948  * Return Code: The number of luns attached on the required target and
2949  *		controller.
2950  *		-1 if target ID is not in parallel SCSI scope or the given
2951  * 		dip is not in the chain.
2952  *
2953  *     Context: Kernel thread context
2954  */
2955 
2956 static int
2957 sd_scsi_get_target_lun_count(dev_info_t *dip, int target)
2958 {
2959 	struct sd_scsi_hba_tgt_lun	*cp;
2960 
2961 	if ((target < 0) || (target >= NTARGETS_WIDE)) {
2962 		return (-1);
2963 	}
2964 
2965 	mutex_enter(&sd_scsi_target_lun_mutex);
2966 
2967 	for (cp = sd_scsi_target_lun_head; cp != NULL; cp = cp->next) {
2968 		if (cp->pdip == dip) {
2969 			break;
2970 		}
2971 	}
2972 
2973 	mutex_exit(&sd_scsi_target_lun_mutex);
2974 
2975 	if (cp == NULL) {
2976 		return (-1);
2977 	}
2978 
2979 	return (cp->nlun[target]);
2980 }
2981 
2982 
2983 /*
2984  *    Function: sd_scsi_update_lun_on_target
2985  *
2986  * Description: This routine is used to update the attached lun chain when a
2987  *		lun is attached or detached on a target.
2988  *
2989  *   Arguments: dip     - Pointer to the system's dev_info_t for the SCSI
2990  *                        controller device.
2991  *              target  - The target ID on the controller's SCSI bus.
2992  *		flag	- Indicate the lun is attached or detached.
2993  *
2994  *     Context: Kernel thread context
2995  */
2996 
2997 static void
2998 sd_scsi_update_lun_on_target(dev_info_t *dip, int target, int flag)
2999 {
3000 	struct sd_scsi_hba_tgt_lun	*cp;
3001 
3002 	mutex_enter(&sd_scsi_target_lun_mutex);
3003 
3004 	for (cp = sd_scsi_target_lun_head; cp != NULL; cp = cp->next) {
3005 		if (cp->pdip == dip) {
3006 			break;
3007 		}
3008 	}
3009 
3010 	if ((cp == NULL) && (flag == SD_SCSI_LUN_ATTACH)) {
3011 		cp = kmem_zalloc(sizeof (struct sd_scsi_hba_tgt_lun),
3012 		    KM_SLEEP);
3013 		cp->pdip = dip;
3014 		cp->next = sd_scsi_target_lun_head;
3015 		sd_scsi_target_lun_head = cp;
3016 	}
3017 
3018 	mutex_exit(&sd_scsi_target_lun_mutex);
3019 
3020 	if (cp != NULL) {
3021 		if (flag == SD_SCSI_LUN_ATTACH) {
3022 			cp->nlun[target] ++;
3023 		} else {
3024 			cp->nlun[target] --;
3025 		}
3026 	}
3027 }
3028 
3029 
3030 /*
3031  *    Function: sd_spin_up_unit
3032  *
3033  * Description: Issues the following commands to spin-up the device:
3034  *		START STOP UNIT, and INQUIRY.
3035  *
3036  *   Arguments: un - driver soft state (unit) structure
3037  *
3038  * Return Code: 0 - success
3039  *		EIO - failure
3040  *		EACCES - reservation conflict
3041  *
3042  *     Context: Kernel thread context
3043  */
3044 
3045 static int
3046 sd_spin_up_unit(struct sd_lun *un)
3047 {
3048 	size_t	resid		= 0;
3049 	int	has_conflict	= FALSE;
3050 	uchar_t *bufaddr;
3051 
3052 	ASSERT(un != NULL);
3053 
3054 	/*
3055 	 * Send a throwaway START UNIT command.
3056 	 *
3057 	 * If we fail on this, we don't care presently what precisely
3058 	 * is wrong.  EMC's arrays will also fail this with a check
3059 	 * condition (0x2/0x4/0x3) if the device is "inactive," but
3060 	 * we don't want to fail the attach because it may become
3061 	 * "active" later.
3062 	 */
3063 	if (sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_START, SD_PATH_DIRECT)
3064 	    == EACCES)
3065 		has_conflict = TRUE;
3066 
3067 	/*
3068 	 * Send another INQUIRY command to the target. This is necessary for
3069 	 * non-removable media direct access devices because their INQUIRY data
3070 	 * may not be fully qualified until they are spun up (perhaps via the
3071 	 * START command above).  Note: This seems to be needed for some
3072 	 * legacy devices only.) The INQUIRY command should succeed even if a
3073 	 * Reservation Conflict is present.
3074 	 */
3075 	bufaddr = kmem_zalloc(SUN_INQSIZE, KM_SLEEP);
3076 	if (sd_send_scsi_INQUIRY(un, bufaddr, SUN_INQSIZE, 0, 0, &resid) != 0) {
3077 		kmem_free(bufaddr, SUN_INQSIZE);
3078 		return (EIO);
3079 	}
3080 
3081 	/*
3082 	 * If we got enough INQUIRY data, copy it over the old INQUIRY data.
3083 	 * Note that this routine does not return a failure here even if the
3084 	 * INQUIRY command did not return any data.  This is a legacy behavior.
3085 	 */
3086 	if ((SUN_INQSIZE - resid) >= SUN_MIN_INQLEN) {
3087 		bcopy(bufaddr, SD_INQUIRY(un), SUN_INQSIZE);
3088 	}
3089 
3090 	kmem_free(bufaddr, SUN_INQSIZE);
3091 
3092 	/* If we hit a reservation conflict above, tell the caller. */
3093 	if (has_conflict == TRUE) {
3094 		return (EACCES);
3095 	}
3096 
3097 	return (0);
3098 }
3099 
3100 #ifdef _LP64
3101 /*
3102  *    Function: sd_enable_descr_sense
3103  *
3104  * Description: This routine attempts to select descriptor sense format
3105  *		using the Control mode page.  Devices that support 64 bit
3106  *		LBAs (for >2TB luns) should also implement descriptor
3107  *		sense data so we will call this function whenever we see
3108  *		a lun larger than 2TB.  If for some reason the device
3109  *		supports 64 bit LBAs but doesn't support descriptor sense
3110  *		presumably the mode select will fail.  Everything will
3111  *		continue to work normally except that we will not get
3112  *		complete sense data for commands that fail with an LBA
3113  *		larger than 32 bits.
3114  *
3115  *   Arguments: un - driver soft state (unit) structure
3116  *
3117  *     Context: Kernel thread context only
3118  */
3119 
3120 static void
3121 sd_enable_descr_sense(struct sd_lun *un)
3122 {
3123 	uchar_t			*header;
3124 	struct mode_control_scsi3 *ctrl_bufp;
3125 	size_t			buflen;
3126 	size_t			bd_len;
3127 
3128 	/*
3129 	 * Read MODE SENSE page 0xA, Control Mode Page
3130 	 */
3131 	buflen = MODE_HEADER_LENGTH + MODE_BLK_DESC_LENGTH +
3132 	    sizeof (struct mode_control_scsi3);
3133 	header = kmem_zalloc(buflen, KM_SLEEP);
3134 	if (sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, header, buflen,
3135 	    MODEPAGE_CTRL_MODE, SD_PATH_DIRECT) != 0) {
3136 		SD_ERROR(SD_LOG_COMMON, un,
3137 		    "sd_enable_descr_sense: mode sense ctrl page failed\n");
3138 		goto eds_exit;
3139 	}
3140 
3141 	/*
3142 	 * Determine size of Block Descriptors in order to locate
3143 	 * the mode page data. ATAPI devices return 0, SCSI devices
3144 	 * should return MODE_BLK_DESC_LENGTH.
3145 	 */
3146 	bd_len  = ((struct mode_header *)header)->bdesc_length;
3147 
3148 	ctrl_bufp = (struct mode_control_scsi3 *)
3149 	    (header + MODE_HEADER_LENGTH + bd_len);
3150 
3151 	/*
3152 	 * Clear PS bit for MODE SELECT
3153 	 */
3154 	ctrl_bufp->mode_page.ps = 0;
3155 
3156 	/*
3157 	 * Set D_SENSE to enable descriptor sense format.
3158 	 */
3159 	ctrl_bufp->d_sense = 1;
3160 
3161 	/*
3162 	 * Use MODE SELECT to commit the change to the D_SENSE bit
3163 	 */
3164 	if (sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, header,
3165 	    buflen, SD_DONTSAVE_PAGE, SD_PATH_DIRECT) != 0) {
3166 		SD_INFO(SD_LOG_COMMON, un,
3167 		    "sd_enable_descr_sense: mode select ctrl page failed\n");
3168 		goto eds_exit;
3169 	}
3170 
3171 eds_exit:
3172 	kmem_free(header, buflen);
3173 }
3174 
3175 /*
3176  *    Function: sd_reenable_dsense_task
3177  *
3178  * Description: Re-enable descriptor sense after device or bus reset
3179  *
3180  *     Context: Executes in a taskq() thread context
3181  */
3182 static void
3183 sd_reenable_dsense_task(void *arg)
3184 {
3185 	struct	sd_lun	*un = arg;
3186 
3187 	ASSERT(un != NULL);
3188 	sd_enable_descr_sense(un);
3189 }
3190 #endif /* _LP64 */
3191 
3192 /*
3193  *    Function: sd_set_mmc_caps
3194  *
3195  * Description: This routine determines if the device is MMC compliant and if
3196  *		the device supports CDDA via a mode sense of the CDVD
3197  *		capabilities mode page. Also checks if the device is a
3198  *		dvdram writable device.
3199  *
3200  *   Arguments: un - driver soft state (unit) structure
3201  *
3202  *     Context: Kernel thread context only
3203  */
3204 
3205 static void
3206 sd_set_mmc_caps(struct sd_lun *un)
3207 {
3208 	struct mode_header_grp2		*sense_mhp;
3209 	uchar_t				*sense_page;
3210 	caddr_t				buf;
3211 	int				bd_len;
3212 	int				status;
3213 	struct uscsi_cmd		com;
3214 	int				rtn;
3215 	uchar_t				*out_data_rw, *out_data_hd;
3216 	uchar_t				*rqbuf_rw, *rqbuf_hd;
3217 
3218 	ASSERT(un != NULL);
3219 
3220 	/*
3221 	 * The flags which will be set in this function are - mmc compliant,
3222 	 * dvdram writable device, cdda support. Initialize them to FALSE
3223 	 * and if a capability is detected - it will be set to TRUE.
3224 	 */
3225 	un->un_f_mmc_cap = FALSE;
3226 	un->un_f_dvdram_writable_device = FALSE;
3227 	un->un_f_cfg_cdda = FALSE;
3228 
3229 	buf = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP);
3230 	status = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, (uchar_t *)buf,
3231 	    BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP, SD_PATH_DIRECT);
3232 
3233 	if (status != 0) {
3234 		/* command failed; just return */
3235 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3236 		return;
3237 	}
3238 	/*
3239 	 * If the mode sense request for the CDROM CAPABILITIES
3240 	 * page (0x2A) succeeds the device is assumed to be MMC.
3241 	 */
3242 	un->un_f_mmc_cap = TRUE;
3243 
3244 	/* Get to the page data */
3245 	sense_mhp = (struct mode_header_grp2 *)buf;
3246 	bd_len = (sense_mhp->bdesc_length_hi << 8) |
3247 	    sense_mhp->bdesc_length_lo;
3248 	if (bd_len > MODE_BLK_DESC_LENGTH) {
3249 		/*
3250 		 * We did not get back the expected block descriptor
3251 		 * length so we cannot determine if the device supports
3252 		 * CDDA. However, we still indicate the device is MMC
3253 		 * according to the successful response to the page
3254 		 * 0x2A mode sense request.
3255 		 */
3256 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3257 		    "sd_set_mmc_caps: Mode Sense returned "
3258 		    "invalid block descriptor length\n");
3259 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3260 		return;
3261 	}
3262 
3263 	/* See if read CDDA is supported */
3264 	sense_page = (uchar_t *)(buf + MODE_HEADER_LENGTH_GRP2 +
3265 	    bd_len);
3266 	un->un_f_cfg_cdda = (sense_page[5] & 0x01) ? TRUE : FALSE;
3267 
3268 	/* See if writing DVD RAM is supported. */
3269 	un->un_f_dvdram_writable_device = (sense_page[3] & 0x20) ? TRUE : FALSE;
3270 	if (un->un_f_dvdram_writable_device == TRUE) {
3271 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3272 		return;
3273 	}
3274 
3275 	/*
3276 	 * If the device presents DVD or CD capabilities in the mode
3277 	 * page, we can return here since a RRD will not have
3278 	 * these capabilities.
3279 	 */
3280 	if ((sense_page[2] & 0x3f) || (sense_page[3] & 0x3f)) {
3281 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3282 		return;
3283 	}
3284 	kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3285 
3286 	/*
3287 	 * If un->un_f_dvdram_writable_device is still FALSE,
3288 	 * check for a Removable Rigid Disk (RRD).  A RRD
3289 	 * device is identified by the features RANDOM_WRITABLE and
3290 	 * HARDWARE_DEFECT_MANAGEMENT.
3291 	 */
3292 	out_data_rw = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3293 	rqbuf_rw = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3294 
3295 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(un, &com, rqbuf_rw,
3296 	    SENSE_LENGTH, out_data_rw, SD_CURRENT_FEATURE_LEN,
3297 	    RANDOM_WRITABLE);
3298 	if (rtn != 0) {
3299 		kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3300 		kmem_free(rqbuf_rw, SENSE_LENGTH);
3301 		return;
3302 	}
3303 
3304 	out_data_hd = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3305 	rqbuf_hd = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3306 
3307 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(un, &com, rqbuf_hd,
3308 	    SENSE_LENGTH, out_data_hd, SD_CURRENT_FEATURE_LEN,
3309 	    HARDWARE_DEFECT_MANAGEMENT);
3310 	if (rtn == 0) {
3311 		/*
3312 		 * We have good information, check for random writable
3313 		 * and hardware defect features.
3314 		 */
3315 		if ((out_data_rw[9] & RANDOM_WRITABLE) &&
3316 		    (out_data_hd[9] & HARDWARE_DEFECT_MANAGEMENT)) {
3317 			un->un_f_dvdram_writable_device = TRUE;
3318 		}
3319 	}
3320 
3321 	kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3322 	kmem_free(rqbuf_rw, SENSE_LENGTH);
3323 	kmem_free(out_data_hd, SD_CURRENT_FEATURE_LEN);
3324 	kmem_free(rqbuf_hd, SENSE_LENGTH);
3325 }
3326 
3327 /*
3328  *    Function: sd_check_for_writable_cd
3329  *
3330  * Description: This routine determines if the media in the device is
3331  *		writable or not. It uses the get configuration command (0x46)
3332  *		to determine if the media is writable
3333  *
3334  *   Arguments: un - driver soft state (unit) structure
3335  *
3336  *     Context: Never called at interrupt context.
3337  */
3338 
3339 static void
3340 sd_check_for_writable_cd(struct sd_lun *un)
3341 {
3342 	struct uscsi_cmd		com;
3343 	uchar_t				*out_data;
3344 	uchar_t				*rqbuf;
3345 	int				rtn;
3346 	uchar_t				*out_data_rw, *out_data_hd;
3347 	uchar_t				*rqbuf_rw, *rqbuf_hd;
3348 	struct mode_header_grp2		*sense_mhp;
3349 	uchar_t				*sense_page;
3350 	caddr_t				buf;
3351 	int				bd_len;
3352 	int				status;
3353 
3354 	ASSERT(un != NULL);
3355 	ASSERT(mutex_owned(SD_MUTEX(un)));
3356 
3357 	/*
3358 	 * Initialize the writable media to false, if configuration info.
3359 	 * tells us otherwise then only we will set it.
3360 	 */
3361 	un->un_f_mmc_writable_media = FALSE;
3362 	mutex_exit(SD_MUTEX(un));
3363 
3364 	out_data = kmem_zalloc(SD_PROFILE_HEADER_LEN, KM_SLEEP);
3365 	rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3366 
3367 	rtn = sd_send_scsi_GET_CONFIGURATION(un, &com, rqbuf, SENSE_LENGTH,
3368 	    out_data, SD_PROFILE_HEADER_LEN);
3369 
3370 	mutex_enter(SD_MUTEX(un));
3371 	if (rtn == 0) {
3372 		/*
3373 		 * We have good information, check for writable DVD.
3374 		 */
3375 		if ((out_data[6] == 0) && (out_data[7] == 0x12)) {
3376 			un->un_f_mmc_writable_media = TRUE;
3377 			kmem_free(out_data, SD_PROFILE_HEADER_LEN);
3378 			kmem_free(rqbuf, SENSE_LENGTH);
3379 			return;
3380 		}
3381 	}
3382 
3383 	kmem_free(out_data, SD_PROFILE_HEADER_LEN);
3384 	kmem_free(rqbuf, SENSE_LENGTH);
3385 
3386 	/*
3387 	 * Determine if this is a RRD type device.
3388 	 */
3389 	mutex_exit(SD_MUTEX(un));
3390 	buf = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP);
3391 	status = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, (uchar_t *)buf,
3392 	    BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP, SD_PATH_DIRECT);
3393 	mutex_enter(SD_MUTEX(un));
3394 	if (status != 0) {
3395 		/* command failed; just return */
3396 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3397 		return;
3398 	}
3399 
3400 	/* Get to the page data */
3401 	sense_mhp = (struct mode_header_grp2 *)buf;
3402 	bd_len = (sense_mhp->bdesc_length_hi << 8) | sense_mhp->bdesc_length_lo;
3403 	if (bd_len > MODE_BLK_DESC_LENGTH) {
3404 		/*
3405 		 * We did not get back the expected block descriptor length so
3406 		 * we cannot check the mode page.
3407 		 */
3408 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3409 		    "sd_check_for_writable_cd: Mode Sense returned "
3410 		    "invalid block descriptor length\n");
3411 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3412 		return;
3413 	}
3414 
3415 	/*
3416 	 * If the device presents DVD or CD capabilities in the mode
3417 	 * page, we can return here since a RRD device will not have
3418 	 * these capabilities.
3419 	 */
3420 	sense_page = (uchar_t *)(buf + MODE_HEADER_LENGTH_GRP2 + bd_len);
3421 	if ((sense_page[2] & 0x3f) || (sense_page[3] & 0x3f)) {
3422 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3423 		return;
3424 	}
3425 	kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3426 
3427 	/*
3428 	 * If un->un_f_mmc_writable_media is still FALSE,
3429 	 * check for RRD type media.  A RRD device is identified
3430 	 * by the features RANDOM_WRITABLE and HARDWARE_DEFECT_MANAGEMENT.
3431 	 */
3432 	mutex_exit(SD_MUTEX(un));
3433 	out_data_rw = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3434 	rqbuf_rw = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3435 
3436 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(un, &com, rqbuf_rw,
3437 	    SENSE_LENGTH, out_data_rw, SD_CURRENT_FEATURE_LEN,
3438 	    RANDOM_WRITABLE);
3439 	if (rtn != 0) {
3440 		kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3441 		kmem_free(rqbuf_rw, SENSE_LENGTH);
3442 		mutex_enter(SD_MUTEX(un));
3443 		return;
3444 	}
3445 
3446 	out_data_hd = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3447 	rqbuf_hd = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3448 
3449 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(un, &com, rqbuf_hd,
3450 	    SENSE_LENGTH, out_data_hd, SD_CURRENT_FEATURE_LEN,
3451 	    HARDWARE_DEFECT_MANAGEMENT);
3452 	mutex_enter(SD_MUTEX(un));
3453 	if (rtn == 0) {
3454 		/*
3455 		 * We have good information, check for random writable
3456 		 * and hardware defect features as current.
3457 		 */
3458 		if ((out_data_rw[9] & RANDOM_WRITABLE) &&
3459 		    (out_data_rw[10] & 0x1) &&
3460 		    (out_data_hd[9] & HARDWARE_DEFECT_MANAGEMENT) &&
3461 		    (out_data_hd[10] & 0x1)) {
3462 			un->un_f_mmc_writable_media = TRUE;
3463 		}
3464 	}
3465 
3466 	kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3467 	kmem_free(rqbuf_rw, SENSE_LENGTH);
3468 	kmem_free(out_data_hd, SD_CURRENT_FEATURE_LEN);
3469 	kmem_free(rqbuf_hd, SENSE_LENGTH);
3470 }
3471 
3472 /*
3473  *    Function: sd_read_unit_properties
3474  *
3475  * Description: The following implements a property lookup mechanism.
3476  *		Properties for particular disks (keyed on vendor, model
3477  *		and rev numbers) are sought in the sd.conf file via
3478  *		sd_process_sdconf_file(), and if not found there, are
3479  *		looked for in a list hardcoded in this driver via
3480  *		sd_process_sdconf_table() Once located the properties
3481  *		are used to update the driver unit structure.
3482  *
3483  *   Arguments: un - driver soft state (unit) structure
3484  */
3485 
3486 static void
3487 sd_read_unit_properties(struct sd_lun *un)
3488 {
3489 	/*
3490 	 * sd_process_sdconf_file returns SD_FAILURE if it cannot find
3491 	 * the "sd-config-list" property (from the sd.conf file) or if
3492 	 * there was not a match for the inquiry vid/pid. If this event
3493 	 * occurs the static driver configuration table is searched for
3494 	 * a match.
3495 	 */
3496 	ASSERT(un != NULL);
3497 	if (sd_process_sdconf_file(un) == SD_FAILURE) {
3498 		sd_process_sdconf_table(un);
3499 	}
3500 
3501 	/* check for LSI device */
3502 	sd_is_lsi(un);
3503 
3504 
3505 }
3506 
3507 
3508 /*
3509  *    Function: sd_process_sdconf_file
3510  *
3511  * Description: Use ddi_getlongprop to obtain the properties from the
3512  *		driver's config file (ie, sd.conf) and update the driver
3513  *		soft state structure accordingly.
3514  *
3515  *   Arguments: un - driver soft state (unit) structure
3516  *
3517  * Return Code: SD_SUCCESS - The properties were successfully set according
3518  *			     to the driver configuration file.
3519  *		SD_FAILURE - The driver config list was not obtained or
3520  *			     there was no vid/pid match. This indicates that
3521  *			     the static config table should be used.
3522  *
3523  * The config file has a property, "sd-config-list", which consists of
3524  * one or more duplets as follows:
3525  *
3526  *  sd-config-list=
3527  *	<duplet>,
3528  *	[<duplet>,]
3529  *	[<duplet>];
3530  *
3531  * The structure of each duplet is as follows:
3532  *
3533  *  <duplet>:= <vid+pid>,<data-property-name_list>
3534  *
3535  * The first entry of the duplet is the device ID string (the concatenated
3536  * vid & pid; not to be confused with a device_id).  This is defined in
3537  * the same way as in the sd_disk_table.
3538  *
3539  * The second part of the duplet is a string that identifies a
3540  * data-property-name-list. The data-property-name-list is defined as
3541  * follows:
3542  *
3543  *  <data-property-name-list>:=<data-property-name> [<data-property-name>]
3544  *
3545  * The syntax of <data-property-name> depends on the <version> field.
3546  *
3547  * If version = SD_CONF_VERSION_1 we have the following syntax:
3548  *
3549  * 	<data-property-name>:=<version>,<flags>,<prop0>,<prop1>,.....<propN>
3550  *
3551  * where the prop0 value will be used to set prop0 if bit0 set in the
3552  * flags, prop1 if bit1 set, etc. and N = SD_CONF_MAX_ITEMS -1
3553  *
3554  */
3555 
3556 static int
3557 sd_process_sdconf_file(struct sd_lun *un)
3558 {
3559 	char	*config_list = NULL;
3560 	int	config_list_len;
3561 	int	len;
3562 	int	dupletlen = 0;
3563 	char	*vidptr;
3564 	int	vidlen;
3565 	char	*dnlist_ptr;
3566 	char	*dataname_ptr;
3567 	int	dnlist_len;
3568 	int	dataname_len;
3569 	int	*data_list;
3570 	int	data_list_len;
3571 	int	rval = SD_FAILURE;
3572 	int	i;
3573 
3574 	ASSERT(un != NULL);
3575 
3576 	/* Obtain the configuration list associated with the .conf file */
3577 	if (ddi_getlongprop(DDI_DEV_T_ANY, SD_DEVINFO(un), DDI_PROP_DONTPASS,
3578 	    sd_config_list, (caddr_t)&config_list, &config_list_len)
3579 	    != DDI_PROP_SUCCESS) {
3580 		return (SD_FAILURE);
3581 	}
3582 
3583 	/*
3584 	 * Compare vids in each duplet to the inquiry vid - if a match is
3585 	 * made, get the data value and update the soft state structure
3586 	 * accordingly.
3587 	 *
3588 	 * Note: This algorithm is complex and difficult to maintain. It should
3589 	 * be replaced with a more robust implementation.
3590 	 */
3591 	for (len = config_list_len, vidptr = config_list; len > 0;
3592 	    vidptr += dupletlen, len -= dupletlen) {
3593 		/*
3594 		 * Note: The assumption here is that each vid entry is on
3595 		 * a unique line from its associated duplet.
3596 		 */
3597 		vidlen = dupletlen = (int)strlen(vidptr);
3598 		if ((vidlen == 0) ||
3599 		    (sd_sdconf_id_match(un, vidptr, vidlen) != SD_SUCCESS)) {
3600 			dupletlen++;
3601 			continue;
3602 		}
3603 
3604 		/*
3605 		 * dnlist contains 1 or more blank separated
3606 		 * data-property-name entries
3607 		 */
3608 		dnlist_ptr = vidptr + vidlen + 1;
3609 		dnlist_len = (int)strlen(dnlist_ptr);
3610 		dupletlen += dnlist_len + 2;
3611 
3612 		/*
3613 		 * Set a pointer for the first data-property-name
3614 		 * entry in the list
3615 		 */
3616 		dataname_ptr = dnlist_ptr;
3617 		dataname_len = 0;
3618 
3619 		/*
3620 		 * Loop through all data-property-name entries in the
3621 		 * data-property-name-list setting the properties for each.
3622 		 */
3623 		while (dataname_len < dnlist_len) {
3624 			int version;
3625 
3626 			/*
3627 			 * Determine the length of the current
3628 			 * data-property-name entry by indexing until a
3629 			 * blank or NULL is encountered. When the space is
3630 			 * encountered reset it to a NULL for compliance
3631 			 * with ddi_getlongprop().
3632 			 */
3633 			for (i = 0; ((dataname_ptr[i] != ' ') &&
3634 			    (dataname_ptr[i] != '\0')); i++) {
3635 				;
3636 			}
3637 
3638 			dataname_len += i;
3639 			/* If not null terminated, Make it so */
3640 			if (dataname_ptr[i] == ' ') {
3641 				dataname_ptr[i] = '\0';
3642 			}
3643 			dataname_len++;
3644 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3645 			    "sd_process_sdconf_file: disk:%s, data:%s\n",
3646 			    vidptr, dataname_ptr);
3647 
3648 			/* Get the data list */
3649 			if (ddi_getlongprop(DDI_DEV_T_ANY, SD_DEVINFO(un), 0,
3650 			    dataname_ptr, (caddr_t)&data_list, &data_list_len)
3651 			    != DDI_PROP_SUCCESS) {
3652 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
3653 				    "sd_process_sdconf_file: data property (%s)"
3654 				    " has no value\n", dataname_ptr);
3655 				dataname_ptr = dnlist_ptr + dataname_len;
3656 				continue;
3657 			}
3658 
3659 			version = data_list[0];
3660 
3661 			if (version == SD_CONF_VERSION_1) {
3662 				sd_tunables values;
3663 
3664 				/* Set the properties */
3665 				if (sd_chk_vers1_data(un, data_list[1],
3666 				    &data_list[2], data_list_len, dataname_ptr)
3667 				    == SD_SUCCESS) {
3668 					sd_get_tunables_from_conf(un,
3669 					    data_list[1], &data_list[2],
3670 					    &values);
3671 					sd_set_vers1_properties(un,
3672 					    data_list[1], &values);
3673 					rval = SD_SUCCESS;
3674 				} else {
3675 					rval = SD_FAILURE;
3676 				}
3677 			} else {
3678 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3679 				    "data property %s version 0x%x is invalid.",
3680 				    dataname_ptr, version);
3681 				rval = SD_FAILURE;
3682 			}
3683 			kmem_free(data_list, data_list_len);
3684 			dataname_ptr = dnlist_ptr + dataname_len;
3685 		}
3686 	}
3687 
3688 	/* free up the memory allocated by ddi_getlongprop */
3689 	if (config_list) {
3690 		kmem_free(config_list, config_list_len);
3691 	}
3692 
3693 	return (rval);
3694 }
3695 
3696 /*
3697  *    Function: sd_get_tunables_from_conf()
3698  *
3699  *
3700  *    This function reads the data list from the sd.conf file and pulls
3701  *    the values that can have numeric values as arguments and places
3702  *    the values in the apropriate sd_tunables member.
3703  *    Since the order of the data list members varies across platforms
3704  *    This function reads them from the data list in a platform specific
3705  *    order and places them into the correct sd_tunable member that is
3706  *    a consistant across all platforms.
3707  */
3708 static void
3709 sd_get_tunables_from_conf(struct sd_lun *un, int flags, int *data_list,
3710     sd_tunables *values)
3711 {
3712 	int i;
3713 	int mask;
3714 
3715 	bzero(values, sizeof (sd_tunables));
3716 
3717 	for (i = 0; i < SD_CONF_MAX_ITEMS; i++) {
3718 
3719 		mask = 1 << i;
3720 		if (mask > flags) {
3721 			break;
3722 		}
3723 
3724 		switch (mask & flags) {
3725 		case 0:	/* This mask bit not set in flags */
3726 			continue;
3727 		case SD_CONF_BSET_THROTTLE:
3728 			values->sdt_throttle = data_list[i];
3729 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3730 			    "sd_get_tunables_from_conf: throttle = %d\n",
3731 			    values->sdt_throttle);
3732 			break;
3733 		case SD_CONF_BSET_CTYPE:
3734 			values->sdt_ctype = data_list[i];
3735 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3736 			    "sd_get_tunables_from_conf: ctype = %d\n",
3737 			    values->sdt_ctype);
3738 			break;
3739 		case SD_CONF_BSET_NRR_COUNT:
3740 			values->sdt_not_rdy_retries = data_list[i];
3741 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3742 			    "sd_get_tunables_from_conf: not_rdy_retries = %d\n",
3743 			    values->sdt_not_rdy_retries);
3744 			break;
3745 		case SD_CONF_BSET_BSY_RETRY_COUNT:
3746 			values->sdt_busy_retries = data_list[i];
3747 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3748 			    "sd_get_tunables_from_conf: busy_retries = %d\n",
3749 			    values->sdt_busy_retries);
3750 			break;
3751 		case SD_CONF_BSET_RST_RETRIES:
3752 			values->sdt_reset_retries = data_list[i];
3753 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3754 			    "sd_get_tunables_from_conf: reset_retries = %d\n",
3755 			    values->sdt_reset_retries);
3756 			break;
3757 		case SD_CONF_BSET_RSV_REL_TIME:
3758 			values->sdt_reserv_rel_time = data_list[i];
3759 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3760 			    "sd_get_tunables_from_conf: reserv_rel_time = %d\n",
3761 			    values->sdt_reserv_rel_time);
3762 			break;
3763 		case SD_CONF_BSET_MIN_THROTTLE:
3764 			values->sdt_min_throttle = data_list[i];
3765 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3766 			    "sd_get_tunables_from_conf: min_throttle = %d\n",
3767 			    values->sdt_min_throttle);
3768 			break;
3769 		case SD_CONF_BSET_DISKSORT_DISABLED:
3770 			values->sdt_disk_sort_dis = data_list[i];
3771 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3772 			    "sd_get_tunables_from_conf: disk_sort_dis = %d\n",
3773 			    values->sdt_disk_sort_dis);
3774 			break;
3775 		case SD_CONF_BSET_LUN_RESET_ENABLED:
3776 			values->sdt_lun_reset_enable = data_list[i];
3777 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3778 			    "sd_get_tunables_from_conf: lun_reset_enable = %d"
3779 			    "\n", values->sdt_lun_reset_enable);
3780 			break;
3781 		}
3782 	}
3783 }
3784 
3785 /*
3786  *    Function: sd_process_sdconf_table
3787  *
3788  * Description: Search the static configuration table for a match on the
3789  *		inquiry vid/pid and update the driver soft state structure
3790  *		according to the table property values for the device.
3791  *
3792  *		The form of a configuration table entry is:
3793  *		  <vid+pid>,<flags>,<property-data>
3794  *		  "SEAGATE ST42400N",1,63,0,0			(Fibre)
3795  *		  "SEAGATE ST42400N",1,63,0,0,0,0		(Sparc)
3796  *		  "SEAGATE ST42400N",1,63,0,0,0,0,0,0,0,0,0,0	(Intel)
3797  *
3798  *   Arguments: un - driver soft state (unit) structure
3799  */
3800 
3801 static void
3802 sd_process_sdconf_table(struct sd_lun *un)
3803 {
3804 	char	*id = NULL;
3805 	int	table_index;
3806 	int	idlen;
3807 
3808 	ASSERT(un != NULL);
3809 	for (table_index = 0; table_index < sd_disk_table_size;
3810 	    table_index++) {
3811 		id = sd_disk_table[table_index].device_id;
3812 		idlen = strlen(id);
3813 		if (idlen == 0) {
3814 			continue;
3815 		}
3816 
3817 		/*
3818 		 * The static configuration table currently does not
3819 		 * implement version 10 properties. Additionally,
3820 		 * multiple data-property-name entries are not
3821 		 * implemented in the static configuration table.
3822 		 */
3823 		if (sd_sdconf_id_match(un, id, idlen) == SD_SUCCESS) {
3824 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3825 			    "sd_process_sdconf_table: disk %s\n", id);
3826 			sd_set_vers1_properties(un,
3827 			    sd_disk_table[table_index].flags,
3828 			    sd_disk_table[table_index].properties);
3829 			break;
3830 		}
3831 	}
3832 }
3833 
3834 
3835 /*
3836  *    Function: sd_sdconf_id_match
3837  *
3838  * Description: This local function implements a case sensitive vid/pid
3839  *		comparison as well as the boundary cases of wild card and
3840  *		multiple blanks.
3841  *
3842  *		Note: An implicit assumption made here is that the scsi
3843  *		inquiry structure will always keep the vid, pid and
3844  *		revision strings in consecutive sequence, so they can be
3845  *		read as a single string. If this assumption is not the
3846  *		case, a separate string, to be used for the check, needs
3847  *		to be built with these strings concatenated.
3848  *
3849  *   Arguments: un - driver soft state (unit) structure
3850  *		id - table or config file vid/pid
3851  *		idlen  - length of the vid/pid (bytes)
3852  *
3853  * Return Code: SD_SUCCESS - Indicates a match with the inquiry vid/pid
3854  *		SD_FAILURE - Indicates no match with the inquiry vid/pid
3855  */
3856 
3857 static int
3858 sd_sdconf_id_match(struct sd_lun *un, char *id, int idlen)
3859 {
3860 	struct scsi_inquiry	*sd_inq;
3861 	int 			rval = SD_SUCCESS;
3862 
3863 	ASSERT(un != NULL);
3864 	sd_inq = un->un_sd->sd_inq;
3865 	ASSERT(id != NULL);
3866 
3867 	/*
3868 	 * We use the inq_vid as a pointer to a buffer containing the
3869 	 * vid and pid and use the entire vid/pid length of the table
3870 	 * entry for the comparison. This works because the inq_pid
3871 	 * data member follows inq_vid in the scsi_inquiry structure.
3872 	 */
3873 	if (strncasecmp(sd_inq->inq_vid, id, idlen) != 0) {
3874 		/*
3875 		 * The user id string is compared to the inquiry vid/pid
3876 		 * using a case insensitive comparison and ignoring
3877 		 * multiple spaces.
3878 		 */
3879 		rval = sd_blank_cmp(un, id, idlen);
3880 		if (rval != SD_SUCCESS) {
3881 			/*
3882 			 * User id strings that start and end with a "*"
3883 			 * are a special case. These do not have a
3884 			 * specific vendor, and the product string can
3885 			 * appear anywhere in the 16 byte PID portion of
3886 			 * the inquiry data. This is a simple strstr()
3887 			 * type search for the user id in the inquiry data.
3888 			 */
3889 			if ((id[0] == '*') && (id[idlen - 1] == '*')) {
3890 				char	*pidptr = &id[1];
3891 				int	i;
3892 				int	j;
3893 				int	pidstrlen = idlen - 2;
3894 				j = sizeof (SD_INQUIRY(un)->inq_pid) -
3895 				    pidstrlen;
3896 
3897 				if (j < 0) {
3898 					return (SD_FAILURE);
3899 				}
3900 				for (i = 0; i < j; i++) {
3901 					if (bcmp(&SD_INQUIRY(un)->inq_pid[i],
3902 					    pidptr, pidstrlen) == 0) {
3903 						rval = SD_SUCCESS;
3904 						break;
3905 					}
3906 				}
3907 			}
3908 		}
3909 	}
3910 	return (rval);
3911 }
3912 
3913 
3914 /*
3915  *    Function: sd_blank_cmp
3916  *
3917  * Description: If the id string starts and ends with a space, treat
3918  *		multiple consecutive spaces as equivalent to a single
3919  *		space. For example, this causes a sd_disk_table entry
3920  *		of " NEC CDROM " to match a device's id string of
3921  *		"NEC       CDROM".
3922  *
3923  *		Note: The success exit condition for this routine is if
3924  *		the pointer to the table entry is '\0' and the cnt of
3925  *		the inquiry length is zero. This will happen if the inquiry
3926  *		string returned by the device is padded with spaces to be
3927  *		exactly 24 bytes in length (8 byte vid + 16 byte pid). The
3928  *		SCSI spec states that the inquiry string is to be padded with
3929  *		spaces.
3930  *
3931  *   Arguments: un - driver soft state (unit) structure
3932  *		id - table or config file vid/pid
3933  *		idlen  - length of the vid/pid (bytes)
3934  *
3935  * Return Code: SD_SUCCESS - Indicates a match with the inquiry vid/pid
3936  *		SD_FAILURE - Indicates no match with the inquiry vid/pid
3937  */
3938 
3939 static int
3940 sd_blank_cmp(struct sd_lun *un, char *id, int idlen)
3941 {
3942 	char		*p1;
3943 	char		*p2;
3944 	int		cnt;
3945 	cnt = sizeof (SD_INQUIRY(un)->inq_vid) +
3946 	    sizeof (SD_INQUIRY(un)->inq_pid);
3947 
3948 	ASSERT(un != NULL);
3949 	p2 = un->un_sd->sd_inq->inq_vid;
3950 	ASSERT(id != NULL);
3951 	p1 = id;
3952 
3953 	if ((id[0] == ' ') && (id[idlen - 1] == ' ')) {
3954 		/*
3955 		 * Note: string p1 is terminated by a NUL but string p2
3956 		 * isn't.  The end of p2 is determined by cnt.
3957 		 */
3958 		for (;;) {
3959 			/* skip over any extra blanks in both strings */
3960 			while ((*p1 != '\0') && (*p1 == ' ')) {
3961 				p1++;
3962 			}
3963 			while ((cnt != 0) && (*p2 == ' ')) {
3964 				p2++;
3965 				cnt--;
3966 			}
3967 
3968 			/* compare the two strings */
3969 			if ((cnt == 0) ||
3970 			    (SD_TOUPPER(*p1) != SD_TOUPPER(*p2))) {
3971 				break;
3972 			}
3973 			while ((cnt > 0) &&
3974 			    (SD_TOUPPER(*p1) == SD_TOUPPER(*p2))) {
3975 				p1++;
3976 				p2++;
3977 				cnt--;
3978 			}
3979 		}
3980 	}
3981 
3982 	/* return SD_SUCCESS if both strings match */
3983 	return (((*p1 == '\0') && (cnt == 0)) ? SD_SUCCESS : SD_FAILURE);
3984 }
3985 
3986 
3987 /*
3988  *    Function: sd_chk_vers1_data
3989  *
3990  * Description: Verify the version 1 device properties provided by the
3991  *		user via the configuration file
3992  *
3993  *   Arguments: un	     - driver soft state (unit) structure
3994  *		flags	     - integer mask indicating properties to be set
3995  *		prop_list    - integer list of property values
3996  *		list_len     - length of user provided data
3997  *
3998  * Return Code: SD_SUCCESS - Indicates the user provided data is valid
3999  *		SD_FAILURE - Indicates the user provided data is invalid
4000  */
4001 
4002 static int
4003 sd_chk_vers1_data(struct sd_lun *un, int flags, int *prop_list,
4004     int list_len, char *dataname_ptr)
4005 {
4006 	int i;
4007 	int mask = 1;
4008 	int index = 0;
4009 
4010 	ASSERT(un != NULL);
4011 
4012 	/* Check for a NULL property name and list */
4013 	if (dataname_ptr == NULL) {
4014 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
4015 		    "sd_chk_vers1_data: NULL data property name.");
4016 		return (SD_FAILURE);
4017 	}
4018 	if (prop_list == NULL) {
4019 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
4020 		    "sd_chk_vers1_data: %s NULL data property list.",
4021 		    dataname_ptr);
4022 		return (SD_FAILURE);
4023 	}
4024 
4025 	/* Display a warning if undefined bits are set in the flags */
4026 	if (flags & ~SD_CONF_BIT_MASK) {
4027 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
4028 		    "sd_chk_vers1_data: invalid bits 0x%x in data list %s. "
4029 		    "Properties not set.",
4030 		    (flags & ~SD_CONF_BIT_MASK), dataname_ptr);
4031 		return (SD_FAILURE);
4032 	}
4033 
4034 	/*
4035 	 * Verify the length of the list by identifying the highest bit set
4036 	 * in the flags and validating that the property list has a length
4037 	 * up to the index of this bit.
4038 	 */
4039 	for (i = 0; i < SD_CONF_MAX_ITEMS; i++) {
4040 		if (flags & mask) {
4041 			index++;
4042 		}
4043 		mask = 1 << i;
4044 	}
4045 	if ((list_len / sizeof (int)) < (index + 2)) {
4046 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
4047 		    "sd_chk_vers1_data: "
4048 		    "Data property list %s size is incorrect. "
4049 		    "Properties not set.", dataname_ptr);
4050 		scsi_log(SD_DEVINFO(un), sd_label, CE_CONT, "Size expected: "
4051 		    "version + 1 flagword + %d properties", SD_CONF_MAX_ITEMS);
4052 		return (SD_FAILURE);
4053 	}
4054 	return (SD_SUCCESS);
4055 }
4056 
4057 
4058 /*
4059  *    Function: sd_set_vers1_properties
4060  *
4061  * Description: Set version 1 device properties based on a property list
4062  *		retrieved from the driver configuration file or static
4063  *		configuration table. Version 1 properties have the format:
4064  *
4065  * 	<data-property-name>:=<version>,<flags>,<prop0>,<prop1>,.....<propN>
4066  *
4067  *		where the prop0 value will be used to set prop0 if bit0
4068  *		is set in the flags
4069  *
4070  *   Arguments: un	     - driver soft state (unit) structure
4071  *		flags	     - integer mask indicating properties to be set
4072  *		prop_list    - integer list of property values
4073  */
4074 
4075 static void
4076 sd_set_vers1_properties(struct sd_lun *un, int flags, sd_tunables *prop_list)
4077 {
4078 	ASSERT(un != NULL);
4079 
4080 	/*
4081 	 * Set the flag to indicate cache is to be disabled. An attempt
4082 	 * to disable the cache via sd_cache_control() will be made
4083 	 * later during attach once the basic initialization is complete.
4084 	 */
4085 	if (flags & SD_CONF_BSET_NOCACHE) {
4086 		un->un_f_opt_disable_cache = TRUE;
4087 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4088 		    "sd_set_vers1_properties: caching disabled flag set\n");
4089 	}
4090 
4091 	/* CD-specific configuration parameters */
4092 	if (flags & SD_CONF_BSET_PLAYMSF_BCD) {
4093 		un->un_f_cfg_playmsf_bcd = TRUE;
4094 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4095 		    "sd_set_vers1_properties: playmsf_bcd set\n");
4096 	}
4097 	if (flags & SD_CONF_BSET_READSUB_BCD) {
4098 		un->un_f_cfg_readsub_bcd = TRUE;
4099 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4100 		    "sd_set_vers1_properties: readsub_bcd set\n");
4101 	}
4102 	if (flags & SD_CONF_BSET_READ_TOC_TRK_BCD) {
4103 		un->un_f_cfg_read_toc_trk_bcd = TRUE;
4104 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4105 		    "sd_set_vers1_properties: read_toc_trk_bcd set\n");
4106 	}
4107 	if (flags & SD_CONF_BSET_READ_TOC_ADDR_BCD) {
4108 		un->un_f_cfg_read_toc_addr_bcd = TRUE;
4109 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4110 		    "sd_set_vers1_properties: read_toc_addr_bcd set\n");
4111 	}
4112 	if (flags & SD_CONF_BSET_NO_READ_HEADER) {
4113 		un->un_f_cfg_no_read_header = TRUE;
4114 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4115 			    "sd_set_vers1_properties: no_read_header set\n");
4116 	}
4117 	if (flags & SD_CONF_BSET_READ_CD_XD4) {
4118 		un->un_f_cfg_read_cd_xd4 = TRUE;
4119 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4120 		    "sd_set_vers1_properties: read_cd_xd4 set\n");
4121 	}
4122 
4123 	/* Support for devices which do not have valid/unique serial numbers */
4124 	if (flags & SD_CONF_BSET_FAB_DEVID) {
4125 		un->un_f_opt_fab_devid = TRUE;
4126 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4127 		    "sd_set_vers1_properties: fab_devid bit set\n");
4128 	}
4129 
4130 	/* Support for user throttle configuration */
4131 	if (flags & SD_CONF_BSET_THROTTLE) {
4132 		ASSERT(prop_list != NULL);
4133 		un->un_saved_throttle = un->un_throttle =
4134 		    prop_list->sdt_throttle;
4135 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4136 		    "sd_set_vers1_properties: throttle set to %d\n",
4137 		    prop_list->sdt_throttle);
4138 	}
4139 
4140 	/* Set the per disk retry count according to the conf file or table. */
4141 	if (flags & SD_CONF_BSET_NRR_COUNT) {
4142 		ASSERT(prop_list != NULL);
4143 		if (prop_list->sdt_not_rdy_retries) {
4144 			un->un_notready_retry_count =
4145 				prop_list->sdt_not_rdy_retries;
4146 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4147 			    "sd_set_vers1_properties: not ready retry count"
4148 			    " set to %d\n", un->un_notready_retry_count);
4149 		}
4150 	}
4151 
4152 	/* The controller type is reported for generic disk driver ioctls */
4153 	if (flags & SD_CONF_BSET_CTYPE) {
4154 		ASSERT(prop_list != NULL);
4155 		switch (prop_list->sdt_ctype) {
4156 		case CTYPE_CDROM:
4157 			un->un_ctype = prop_list->sdt_ctype;
4158 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4159 			    "sd_set_vers1_properties: ctype set to "
4160 			    "CTYPE_CDROM\n");
4161 			break;
4162 		case CTYPE_CCS:
4163 			un->un_ctype = prop_list->sdt_ctype;
4164 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4165 				"sd_set_vers1_properties: ctype set to "
4166 				"CTYPE_CCS\n");
4167 			break;
4168 		case CTYPE_ROD:		/* RW optical */
4169 			un->un_ctype = prop_list->sdt_ctype;
4170 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4171 			    "sd_set_vers1_properties: ctype set to "
4172 			    "CTYPE_ROD\n");
4173 			break;
4174 		default:
4175 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
4176 			    "sd_set_vers1_properties: Could not set "
4177 			    "invalid ctype value (%d)",
4178 			    prop_list->sdt_ctype);
4179 		}
4180 	}
4181 
4182 	/* Purple failover timeout */
4183 	if (flags & SD_CONF_BSET_BSY_RETRY_COUNT) {
4184 		ASSERT(prop_list != NULL);
4185 		un->un_busy_retry_count =
4186 			prop_list->sdt_busy_retries;
4187 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4188 		    "sd_set_vers1_properties: "
4189 		    "busy retry count set to %d\n",
4190 		    un->un_busy_retry_count);
4191 	}
4192 
4193 	/* Purple reset retry count */
4194 	if (flags & SD_CONF_BSET_RST_RETRIES) {
4195 		ASSERT(prop_list != NULL);
4196 		un->un_reset_retry_count =
4197 			prop_list->sdt_reset_retries;
4198 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4199 		    "sd_set_vers1_properties: "
4200 		    "reset retry count set to %d\n",
4201 		    un->un_reset_retry_count);
4202 	}
4203 
4204 	/* Purple reservation release timeout */
4205 	if (flags & SD_CONF_BSET_RSV_REL_TIME) {
4206 		ASSERT(prop_list != NULL);
4207 		un->un_reserve_release_time =
4208 			prop_list->sdt_reserv_rel_time;
4209 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4210 		    "sd_set_vers1_properties: "
4211 		    "reservation release timeout set to %d\n",
4212 		    un->un_reserve_release_time);
4213 	}
4214 
4215 	/*
4216 	 * Driver flag telling the driver to verify that no commands are pending
4217 	 * for a device before issuing a Test Unit Ready. This is a workaround
4218 	 * for a firmware bug in some Seagate eliteI drives.
4219 	 */
4220 	if (flags & SD_CONF_BSET_TUR_CHECK) {
4221 		un->un_f_cfg_tur_check = TRUE;
4222 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4223 		    "sd_set_vers1_properties: tur queue check set\n");
4224 	}
4225 
4226 	if (flags & SD_CONF_BSET_MIN_THROTTLE) {
4227 		un->un_min_throttle = prop_list->sdt_min_throttle;
4228 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4229 		    "sd_set_vers1_properties: min throttle set to %d\n",
4230 		    un->un_min_throttle);
4231 	}
4232 
4233 	if (flags & SD_CONF_BSET_DISKSORT_DISABLED) {
4234 		un->un_f_disksort_disabled =
4235 		    (prop_list->sdt_disk_sort_dis != 0) ?
4236 		    TRUE : FALSE;
4237 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4238 		    "sd_set_vers1_properties: disksort disabled "
4239 		    "flag set to %d\n",
4240 		    prop_list->sdt_disk_sort_dis);
4241 	}
4242 
4243 	if (flags & SD_CONF_BSET_LUN_RESET_ENABLED) {
4244 		un->un_f_lun_reset_enabled =
4245 		    (prop_list->sdt_lun_reset_enable != 0) ?
4246 		    TRUE : FALSE;
4247 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4248 		    "sd_set_vers1_properties: lun reset enabled "
4249 		    "flag set to %d\n",
4250 		    prop_list->sdt_lun_reset_enable);
4251 	}
4252 
4253 	/*
4254 	 * Validate the throttle values.
4255 	 * If any of the numbers are invalid, set everything to defaults.
4256 	 */
4257 	if ((un->un_throttle < SD_LOWEST_VALID_THROTTLE) ||
4258 	    (un->un_min_throttle < SD_LOWEST_VALID_THROTTLE) ||
4259 	    (un->un_min_throttle > un->un_throttle)) {
4260 		un->un_saved_throttle = un->un_throttle = sd_max_throttle;
4261 		un->un_min_throttle = sd_min_throttle;
4262 	}
4263 }
4264 
4265 /*
4266  *   Function: sd_is_lsi()
4267  *
4268  *   Description: Check for lsi devices, step throught the static device
4269  *	table to match vid/pid.
4270  *
4271  *   Args: un - ptr to sd_lun
4272  *
4273  *   Notes:  When creating new LSI property, need to add the new LSI property
4274  *		to this function.
4275  */
4276 static void
4277 sd_is_lsi(struct sd_lun *un)
4278 {
4279 	char	*id = NULL;
4280 	int	table_index;
4281 	int	idlen;
4282 	void	*prop;
4283 
4284 	ASSERT(un != NULL);
4285 	for (table_index = 0; table_index < sd_disk_table_size;
4286 	    table_index++) {
4287 		id = sd_disk_table[table_index].device_id;
4288 		idlen = strlen(id);
4289 		if (idlen == 0) {
4290 			continue;
4291 		}
4292 
4293 		if (sd_sdconf_id_match(un, id, idlen) == SD_SUCCESS) {
4294 			prop = sd_disk_table[table_index].properties;
4295 			if (prop == &lsi_properties ||
4296 			    prop == &lsi_oem_properties ||
4297 			    prop == &lsi_properties_scsi ||
4298 			    prop == &symbios_properties) {
4299 				un->un_f_cfg_is_lsi = TRUE;
4300 			}
4301 			break;
4302 		}
4303 	}
4304 }
4305 
4306 
4307 /*
4308  * The following routines support reading and interpretation of disk labels,
4309  * including Solaris BE (8-slice) vtoc's, Solaris LE (16-slice) vtoc's, and
4310  * fdisk tables.
4311  */
4312 
4313 /*
4314  *    Function: sd_validate_geometry
4315  *
4316  * Description: Read the label from the disk (if present). Update the unit's
4317  *		geometry and vtoc information from the data in the label.
4318  *		Verify that the label is valid.
4319  *
4320  *   Arguments: un - driver soft state (unit) structure
4321  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
4322  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
4323  *			to use the USCSI "direct" chain and bypass the normal
4324  *			command waitq.
4325  *
4326  * Return Code: 0 - Successful completion
4327  *		EINVAL  - Invalid value in un->un_tgt_blocksize or
4328  *			  un->un_blockcount; or label on disk is corrupted
4329  *			  or unreadable.
4330  *		EACCES  - Reservation conflict at the device.
4331  *		ENOMEM  - Resource allocation error
4332  *		ENOTSUP - geometry not applicable
4333  *
4334  *     Context: Kernel thread only (can sleep).
4335  */
4336 
4337 static int
4338 sd_validate_geometry(struct sd_lun *un, int path_flag)
4339 {
4340 	static	char		labelstring[128];
4341 	static	char		buf[256];
4342 	char	*label		= NULL;
4343 	int	label_error = 0;
4344 	int	gvalid		= un->un_f_geometry_is_valid;
4345 	int	lbasize;
4346 	uint_t	capacity;
4347 	int	count;
4348 
4349 	ASSERT(un != NULL);
4350 	ASSERT(mutex_owned(SD_MUTEX(un)));
4351 
4352 	/*
4353 	 * If the required values are not valid, then try getting them
4354 	 * once via read capacity. If that fails, then fail this call.
4355 	 * This is necessary with the new mpxio failover behavior in
4356 	 * the T300 where we can get an attach for the inactive path
4357 	 * before the active path. The inactive path fails commands with
4358 	 * sense data of 02,04,88 which happens to the read capacity
4359 	 * before mpxio has had sufficient knowledge to know if it should
4360 	 * force a fail over or not. (Which it won't do at attach anyhow).
4361 	 * If the read capacity at attach time fails, un_tgt_blocksize and
4362 	 * un_blockcount won't be valid.
4363 	 */
4364 	if ((un->un_f_tgt_blocksize_is_valid != TRUE) ||
4365 	    (un->un_f_blockcount_is_valid != TRUE)) {
4366 		uint64_t	cap;
4367 		uint32_t	lbasz;
4368 		int		rval;
4369 
4370 		mutex_exit(SD_MUTEX(un));
4371 		rval = sd_send_scsi_READ_CAPACITY(un, &cap,
4372 		    &lbasz, SD_PATH_DIRECT);
4373 		mutex_enter(SD_MUTEX(un));
4374 		if (rval == 0) {
4375 			/*
4376 			 * The following relies on
4377 			 * sd_send_scsi_READ_CAPACITY never
4378 			 * returning 0 for capacity and/or lbasize.
4379 			 */
4380 			sd_update_block_info(un, lbasz, cap);
4381 		}
4382 
4383 		if ((un->un_f_tgt_blocksize_is_valid != TRUE) ||
4384 		    (un->un_f_blockcount_is_valid != TRUE)) {
4385 			return (EINVAL);
4386 		}
4387 	}
4388 
4389 	/*
4390 	 * Copy the lbasize and capacity so that if they're reset while we're
4391 	 * not holding the SD_MUTEX, we will continue to use valid values
4392 	 * after the SD_MUTEX is reacquired. (4119659)
4393 	 */
4394 	lbasize  = un->un_tgt_blocksize;
4395 	capacity = un->un_blockcount;
4396 
4397 #if defined(_SUNOS_VTOC_16)
4398 	/*
4399 	 * Set up the "whole disk" fdisk partition; this should always
4400 	 * exist, regardless of whether the disk contains an fdisk table
4401 	 * or vtoc.
4402 	 */
4403 	un->un_map[P0_RAW_DISK].dkl_cylno = 0;
4404 	un->un_map[P0_RAW_DISK].dkl_nblk  = capacity;
4405 #endif
4406 
4407 	/*
4408 	 * Refresh the logical and physical geometry caches.
4409 	 * (data from MODE SENSE format/rigid disk geometry pages,
4410 	 * and scsi_ifgetcap("geometry").
4411 	 */
4412 	sd_resync_geom_caches(un, capacity, lbasize, path_flag);
4413 
4414 	label_error = sd_use_efi(un, path_flag);
4415 	if (label_error == 0) {
4416 		/* found a valid EFI label */
4417 		SD_TRACE(SD_LOG_IO_PARTITION, un,
4418 			"sd_validate_geometry: found EFI label\n");
4419 		un->un_solaris_offset = 0;
4420 		un->un_solaris_size = capacity;
4421 		return (ENOTSUP);
4422 	}
4423 	if (un->un_blockcount > DK_MAX_BLOCKS) {
4424 		if (label_error == ESRCH) {
4425 			/*
4426 			 * they've configured a LUN over 1TB, but used
4427 			 * format.dat to restrict format's view of the
4428 			 * capacity to be under 1TB
4429 			 */
4430 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
4431 "is >1TB and has a VTOC label: use format(1M) to either decrease the");
4432 			scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
4433 "size to be < 1TB or relabel the disk with an EFI label");
4434 		} else {
4435 			/* unlabeled disk over 1TB */
4436 #if defined(__i386) || defined(__amd64)
4437 			/*
4438 			 * Refer to comments on off-by-1 at the head of the file
4439 			 * A 1TB disk was treated as (1T - 512)B in the past,
4440 			 * thus, it might have valid solaris partition. We
4441 			 * will return ENOTSUP later only if this disk has no
4442 			 * valid solaris partition.
4443 			 */
4444 			if ((un->un_tgt_blocksize != un->un_sys_blocksize) ||
4445 			    (un->un_blockcount - 1 > DK_MAX_BLOCKS) ||
4446 			    un->un_f_has_removable_media ||
4447 			    un->un_f_is_hotpluggable)
4448 #endif
4449 				return (ENOTSUP);
4450 		}
4451 	}
4452 	label_error = 0;
4453 
4454 	/*
4455 	 * at this point it is either labeled with a VTOC or it is
4456 	 * under 1TB (<= 1TB actually for off-by-1)
4457 	 */
4458 	if (un->un_f_vtoc_label_supported) {
4459 		struct	dk_label *dkl;
4460 		offset_t dkl1;
4461 		offset_t label_addr, real_addr;
4462 		int	rval;
4463 		size_t	buffer_size;
4464 
4465 		/*
4466 		 * Note: This will set up un->un_solaris_size and
4467 		 * un->un_solaris_offset.
4468 		 */
4469 		switch (sd_read_fdisk(un, capacity, lbasize, path_flag)) {
4470 		case SD_CMD_RESERVATION_CONFLICT:
4471 			ASSERT(mutex_owned(SD_MUTEX(un)));
4472 			return (EACCES);
4473 		case SD_CMD_FAILURE:
4474 			ASSERT(mutex_owned(SD_MUTEX(un)));
4475 			return (ENOMEM);
4476 		}
4477 
4478 		if (un->un_solaris_size <= DK_LABEL_LOC) {
4479 
4480 #if defined(__i386) || defined(__amd64)
4481 			/*
4482 			 * Refer to comments on off-by-1 at the head of the file
4483 			 * This is for 1TB disk only. Since that there is no
4484 			 * solaris partitions, return ENOTSUP as we do for
4485 			 * >1TB disk.
4486 			 */
4487 			if (un->un_blockcount > DK_MAX_BLOCKS)
4488 				return (ENOTSUP);
4489 #endif
4490 			/*
4491 			 * Found fdisk table but no Solaris partition entry,
4492 			 * so don't call sd_uselabel() and don't create
4493 			 * a default label.
4494 			 */
4495 			label_error = 0;
4496 			un->un_f_geometry_is_valid = TRUE;
4497 			goto no_solaris_partition;
4498 		}
4499 		label_addr = (daddr_t)(un->un_solaris_offset + DK_LABEL_LOC);
4500 
4501 #if defined(__i386) || defined(__amd64)
4502 		/*
4503 		 * Refer to comments on off-by-1 at the head of the file
4504 		 * Now, this 1TB disk has valid solaris partition. It
4505 		 * must be created by previous sd driver, we have to
4506 		 * treat it as (1T-512)B.
4507 		 */
4508 		if (un->un_blockcount > DK_MAX_BLOCKS) {
4509 			un->un_f_capacity_adjusted = 1;
4510 			un->un_blockcount = DK_MAX_BLOCKS;
4511 			un->un_map[P0_RAW_DISK].dkl_nblk  = DK_MAX_BLOCKS;
4512 
4513 			/*
4514 			 * Refer to sd_read_fdisk, when there is no
4515 			 * fdisk partition table, un_solaris_size is
4516 			 * set to disk's capacity. In this case, we
4517 			 * need to adjust it
4518 			 */
4519 			if (un->un_solaris_size > DK_MAX_BLOCKS)
4520 				un->un_solaris_size = DK_MAX_BLOCKS;
4521 			sd_resync_geom_caches(un, DK_MAX_BLOCKS,
4522 			    lbasize, path_flag);
4523 		}
4524 #endif
4525 
4526 		/*
4527 		 * sys_blocksize != tgt_blocksize, need to re-adjust
4528 		 * blkno and save the index to beginning of dk_label
4529 		 */
4530 		real_addr = SD_SYS2TGTBLOCK(un, label_addr);
4531 		buffer_size = SD_REQBYTES2TGTBYTES(un,
4532 		    sizeof (struct dk_label));
4533 
4534 		SD_TRACE(SD_LOG_IO_PARTITION, un, "sd_validate_geometry: "
4535 		    "label_addr: 0x%x allocation size: 0x%x\n",
4536 		    label_addr, buffer_size);
4537 		dkl = kmem_zalloc(buffer_size, KM_NOSLEEP);
4538 		if (dkl == NULL) {
4539 			return (ENOMEM);
4540 		}
4541 
4542 		mutex_exit(SD_MUTEX(un));
4543 		rval = sd_send_scsi_READ(un, dkl, buffer_size, real_addr,
4544 		    path_flag);
4545 		mutex_enter(SD_MUTEX(un));
4546 
4547 		switch (rval) {
4548 		case 0:
4549 			/*
4550 			 * sd_uselabel will establish that the geometry
4551 			 * is valid.
4552 			 * For sys_blocksize != tgt_blocksize, need
4553 			 * to index into the beginning of dk_label
4554 			 */
4555 			dkl1 = (daddr_t)dkl
4556 				+ SD_TGTBYTEOFFSET(un, label_addr, real_addr);
4557 			if (sd_uselabel(un, (struct dk_label *)(uintptr_t)dkl1,
4558 			    path_flag) != SD_LABEL_IS_VALID) {
4559 				label_error = EINVAL;
4560 			}
4561 			break;
4562 		case EACCES:
4563 			label_error = EACCES;
4564 			break;
4565 		default:
4566 			label_error = EINVAL;
4567 			break;
4568 		}
4569 
4570 		kmem_free(dkl, buffer_size);
4571 
4572 #if defined(_SUNOS_VTOC_8)
4573 		label = (char *)un->un_asciilabel;
4574 #elif defined(_SUNOS_VTOC_16)
4575 		label = (char *)un->un_vtoc.v_asciilabel;
4576 #else
4577 #error "No VTOC format defined."
4578 #endif
4579 	}
4580 
4581 	/*
4582 	 * If a valid label was not found, AND if no reservation conflict
4583 	 * was detected, then go ahead and create a default label (4069506).
4584 	 */
4585 	if (un->un_f_default_vtoc_supported && (label_error != EACCES)) {
4586 		if (un->un_f_geometry_is_valid == FALSE) {
4587 			sd_build_default_label(un);
4588 		}
4589 		label_error = 0;
4590 	}
4591 
4592 no_solaris_partition:
4593 	if ((!un->un_f_has_removable_media ||
4594 	    (un->un_f_has_removable_media &&
4595 		un->un_mediastate == DKIO_EJECTED)) &&
4596 		(un->un_state == SD_STATE_NORMAL && !gvalid)) {
4597 		/*
4598 		 * Print out a message indicating who and what we are.
4599 		 * We do this only when we happen to really validate the
4600 		 * geometry. We may call sd_validate_geometry() at other
4601 		 * times, e.g., ioctl()'s like Get VTOC in which case we
4602 		 * don't want to print the label.
4603 		 * If the geometry is valid, print the label string,
4604 		 * else print vendor and product info, if available
4605 		 */
4606 		if ((un->un_f_geometry_is_valid == TRUE) && (label != NULL)) {
4607 			SD_INFO(SD_LOG_ATTACH_DETACH, un, "?<%s>\n", label);
4608 		} else {
4609 			mutex_enter(&sd_label_mutex);
4610 			sd_inq_fill(SD_INQUIRY(un)->inq_vid, VIDMAX,
4611 			    labelstring);
4612 			sd_inq_fill(SD_INQUIRY(un)->inq_pid, PIDMAX,
4613 			    &labelstring[64]);
4614 			(void) sprintf(buf, "?Vendor '%s', product '%s'",
4615 			    labelstring, &labelstring[64]);
4616 			if (un->un_f_blockcount_is_valid == TRUE) {
4617 				(void) sprintf(&buf[strlen(buf)],
4618 				    ", %llu %u byte blocks\n",
4619 				    (longlong_t)un->un_blockcount,
4620 				    un->un_tgt_blocksize);
4621 			} else {
4622 				(void) sprintf(&buf[strlen(buf)],
4623 				    ", (unknown capacity)\n");
4624 			}
4625 			SD_INFO(SD_LOG_ATTACH_DETACH, un, buf);
4626 			mutex_exit(&sd_label_mutex);
4627 		}
4628 	}
4629 
4630 #if defined(_SUNOS_VTOC_16)
4631 	/*
4632 	 * If we have valid geometry, set up the remaining fdisk partitions.
4633 	 * Note that dkl_cylno is not used for the fdisk map entries, so
4634 	 * we set it to an entirely bogus value.
4635 	 */
4636 	for (count = 0; count < FD_NUMPART; count++) {
4637 		un->un_map[FDISK_P1 + count].dkl_cylno = -1;
4638 		un->un_map[FDISK_P1 + count].dkl_nblk =
4639 		    un->un_fmap[count].fmap_nblk;
4640 
4641 		un->un_offset[FDISK_P1 + count] =
4642 		    un->un_fmap[count].fmap_start;
4643 	}
4644 #endif
4645 
4646 	for (count = 0; count < NDKMAP; count++) {
4647 #if defined(_SUNOS_VTOC_8)
4648 		struct dk_map *lp  = &un->un_map[count];
4649 		un->un_offset[count] =
4650 		    un->un_g.dkg_nhead * un->un_g.dkg_nsect * lp->dkl_cylno;
4651 #elif defined(_SUNOS_VTOC_16)
4652 		struct dkl_partition *vp = &un->un_vtoc.v_part[count];
4653 
4654 		un->un_offset[count] = vp->p_start + un->un_solaris_offset;
4655 #else
4656 #error "No VTOC format defined."
4657 #endif
4658 	}
4659 
4660 	/*
4661 	 * For VTOC labeled disk, create and set the partition stats
4662 	 * at attach time, update the stats according to dynamic
4663 	 * partition changes during running time.
4664 	 */
4665 	if (label_error == 0 && un->un_f_pkstats_enabled) {
4666 		sd_set_pstats(un);
4667 		SD_TRACE(SD_LOG_IO_PARTITION, un, "sd_validate_geometry: "
4668 		    "un:0x%p pstats created and set, or updated\n", un);
4669 	}
4670 
4671 	return (label_error);
4672 }
4673 
4674 
4675 #if defined(_SUNOS_VTOC_16)
4676 /*
4677  * Macro: MAX_BLKS
4678  *
4679  *	This macro is used for table entries where we need to have the largest
4680  *	possible sector value for that head & SPT (sectors per track)
4681  *	combination.  Other entries for some smaller disk sizes are set by
4682  *	convention to match those used by X86 BIOS usage.
4683  */
4684 #define	MAX_BLKS(heads, spt)	UINT16_MAX * heads * spt, heads, spt
4685 
4686 /*
4687  *    Function: sd_convert_geometry
4688  *
4689  * Description: Convert physical geometry into a dk_geom structure. In
4690  *		other words, make sure we don't wrap 16-bit values.
4691  *		e.g. converting from geom_cache to dk_geom
4692  *
4693  *     Context: Kernel thread only
4694  */
4695 static void
4696 sd_convert_geometry(uint64_t capacity, struct dk_geom *un_g)
4697 {
4698 	int i;
4699 	static const struct chs_values {
4700 		uint_t max_cap;		/* Max Capacity for this HS. */
4701 		uint_t nhead;		/* Heads to use. */
4702 		uint_t nsect;		/* SPT to use. */
4703 	} CHS_values[] = {
4704 		{0x00200000,  64, 32},		/* 1GB or smaller disk. */
4705 		{0x01000000, 128, 32},		/* 8GB or smaller disk. */
4706 		{MAX_BLKS(255,  63)},		/* 502.02GB or smaller disk. */
4707 		{MAX_BLKS(255, 126)},		/* .98TB or smaller disk. */
4708 		{DK_MAX_BLOCKS, 255, 189}	/* Max size is just under 1TB */
4709 	};
4710 
4711 	/* Unlabeled SCSI floppy device */
4712 	if (capacity <= 0x1000) {
4713 		un_g->dkg_nhead = 2;
4714 		un_g->dkg_ncyl = 80;
4715 		un_g->dkg_nsect = capacity / (un_g->dkg_nhead * un_g->dkg_ncyl);
4716 		return;
4717 	}
4718 
4719 	/*
4720 	 * For all devices we calculate cylinders using the
4721 	 * heads and sectors we assign based on capacity of the
4722 	 * device.  The table is designed to be compatible with the
4723 	 * way other operating systems lay out fdisk tables for X86
4724 	 * and to insure that the cylinders never exceed 65535 to
4725 	 * prevent problems with X86 ioctls that report geometry.
4726 	 * We use SPT that are multiples of 63, since other OSes that
4727 	 * are not limited to 16-bits for cylinders stop at 63 SPT
4728 	 * we make do by using multiples of 63 SPT.
4729 	 *
4730 	 * Note than capacities greater than or equal to 1TB will simply
4731 	 * get the largest geometry from the table. This should be okay
4732 	 * since disks this large shouldn't be using CHS values anyway.
4733 	 */
4734 	for (i = 0; CHS_values[i].max_cap < capacity &&
4735 	    CHS_values[i].max_cap != DK_MAX_BLOCKS; i++)
4736 		;
4737 
4738 	un_g->dkg_nhead = CHS_values[i].nhead;
4739 	un_g->dkg_nsect = CHS_values[i].nsect;
4740 }
4741 #endif
4742 
4743 
4744 /*
4745  *    Function: sd_resync_geom_caches
4746  *
4747  * Description: (Re)initialize both geometry caches: the virtual geometry
4748  *		information is extracted from the HBA (the "geometry"
4749  *		capability), and the physical geometry cache data is
4750  *		generated by issuing MODE SENSE commands.
4751  *
4752  *   Arguments: un - driver soft state (unit) structure
4753  *		capacity - disk capacity in #blocks
4754  *		lbasize - disk block size in bytes
4755  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
4756  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
4757  *			to use the USCSI "direct" chain and bypass the normal
4758  *			command waitq.
4759  *
4760  *     Context: Kernel thread only (can sleep).
4761  */
4762 
4763 static void
4764 sd_resync_geom_caches(struct sd_lun *un, int capacity, int lbasize,
4765 	int path_flag)
4766 {
4767 	struct 	geom_cache 	pgeom;
4768 	struct 	geom_cache	*pgeom_p = &pgeom;
4769 	int 	spc;
4770 	unsigned short nhead;
4771 	unsigned short nsect;
4772 
4773 	ASSERT(un != NULL);
4774 	ASSERT(mutex_owned(SD_MUTEX(un)));
4775 
4776 	/*
4777 	 * Ask the controller for its logical geometry.
4778 	 * Note: if the HBA does not support scsi_ifgetcap("geometry"),
4779 	 * then the lgeom cache will be invalid.
4780 	 */
4781 	sd_get_virtual_geometry(un, capacity, lbasize);
4782 
4783 	/*
4784 	 * Initialize the pgeom cache from lgeom, so that if MODE SENSE
4785 	 * doesn't work, DKIOCG_PHYSGEOM can return reasonable values.
4786 	 */
4787 	if (un->un_lgeom.g_nsect == 0 || un->un_lgeom.g_nhead == 0) {
4788 		/*
4789 		 * Note: Perhaps this needs to be more adaptive? The rationale
4790 		 * is that, if there's no HBA geometry from the HBA driver, any
4791 		 * guess is good, since this is the physical geometry. If MODE
4792 		 * SENSE fails this gives a max cylinder size for non-LBA access
4793 		 */
4794 		nhead = 255;
4795 		nsect = 63;
4796 	} else {
4797 		nhead = un->un_lgeom.g_nhead;
4798 		nsect = un->un_lgeom.g_nsect;
4799 	}
4800 
4801 	if (ISCD(un)) {
4802 		pgeom_p->g_nhead = 1;
4803 		pgeom_p->g_nsect = nsect * nhead;
4804 	} else {
4805 		pgeom_p->g_nhead = nhead;
4806 		pgeom_p->g_nsect = nsect;
4807 	}
4808 
4809 	spc = pgeom_p->g_nhead * pgeom_p->g_nsect;
4810 	pgeom_p->g_capacity = capacity;
4811 	pgeom_p->g_ncyl = pgeom_p->g_capacity / spc;
4812 	pgeom_p->g_acyl = 0;
4813 
4814 	/*
4815 	 * Retrieve fresh geometry data from the hardware, stash it
4816 	 * here temporarily before we rebuild the incore label.
4817 	 *
4818 	 * We want to use the MODE SENSE commands to derive the
4819 	 * physical geometry of the device, but if either command
4820 	 * fails, the logical geometry is used as the fallback for
4821 	 * disk label geometry.
4822 	 */
4823 	mutex_exit(SD_MUTEX(un));
4824 	sd_get_physical_geometry(un, pgeom_p, capacity, lbasize, path_flag);
4825 	mutex_enter(SD_MUTEX(un));
4826 
4827 	/*
4828 	 * Now update the real copy while holding the mutex. This
4829 	 * way the global copy is never in an inconsistent state.
4830 	 */
4831 	bcopy(pgeom_p, &un->un_pgeom,  sizeof (un->un_pgeom));
4832 
4833 	SD_INFO(SD_LOG_COMMON, un, "sd_resync_geom_caches: "
4834 	    "(cached from lgeom)\n");
4835 	SD_INFO(SD_LOG_COMMON, un,
4836 	    "   ncyl: %ld; acyl: %d; nhead: %d; nsect: %d\n",
4837 	    un->un_pgeom.g_ncyl, un->un_pgeom.g_acyl,
4838 	    un->un_pgeom.g_nhead, un->un_pgeom.g_nsect);
4839 	SD_INFO(SD_LOG_COMMON, un, "   lbasize: %d; capacity: %ld; "
4840 	    "intrlv: %d; rpm: %d\n", un->un_pgeom.g_secsize,
4841 	    un->un_pgeom.g_capacity, un->un_pgeom.g_intrlv,
4842 	    un->un_pgeom.g_rpm);
4843 }
4844 
4845 
4846 /*
4847  *    Function: sd_read_fdisk
4848  *
4849  * Description: utility routine to read the fdisk table.
4850  *
4851  *   Arguments: un - driver soft state (unit) structure
4852  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
4853  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
4854  *			to use the USCSI "direct" chain and bypass the normal
4855  *			command waitq.
4856  *
4857  * Return Code: SD_CMD_SUCCESS
4858  *		SD_CMD_FAILURE
4859  *
4860  *     Context: Kernel thread only (can sleep).
4861  */
4862 /* ARGSUSED */
4863 static int
4864 sd_read_fdisk(struct sd_lun *un, uint_t capacity, int lbasize, int path_flag)
4865 {
4866 #if defined(_NO_FDISK_PRESENT)
4867 
4868 	un->un_solaris_offset = 0;
4869 	un->un_solaris_size = capacity;
4870 	bzero(un->un_fmap, sizeof (struct fmap) * FD_NUMPART);
4871 	return (SD_CMD_SUCCESS);
4872 
4873 #elif defined(_FIRMWARE_NEEDS_FDISK)
4874 
4875 	struct ipart	*fdp;
4876 	struct mboot	*mbp;
4877 	struct ipart	fdisk[FD_NUMPART];
4878 	int		i;
4879 	char		sigbuf[2];
4880 	caddr_t		bufp;
4881 	int		uidx;
4882 	int		rval;
4883 	int		lba = 0;
4884 	uint_t		solaris_offset;	/* offset to solaris part. */
4885 	daddr_t		solaris_size;	/* size of solaris partition */
4886 	uint32_t	blocksize;
4887 
4888 	ASSERT(un != NULL);
4889 	ASSERT(mutex_owned(SD_MUTEX(un)));
4890 	ASSERT(un->un_f_tgt_blocksize_is_valid == TRUE);
4891 
4892 	blocksize = un->un_tgt_blocksize;
4893 
4894 	/*
4895 	 * Start off assuming no fdisk table
4896 	 */
4897 	solaris_offset = 0;
4898 	solaris_size   = capacity;
4899 
4900 	mutex_exit(SD_MUTEX(un));
4901 	bufp = kmem_zalloc(blocksize, KM_SLEEP);
4902 	rval = sd_send_scsi_READ(un, bufp, blocksize, 0, path_flag);
4903 	mutex_enter(SD_MUTEX(un));
4904 
4905 	if (rval != 0) {
4906 		SD_ERROR(SD_LOG_ATTACH_DETACH, un,
4907 		    "sd_read_fdisk: fdisk read err\n");
4908 		kmem_free(bufp, blocksize);
4909 		return (SD_CMD_FAILURE);
4910 	}
4911 
4912 	mbp = (struct mboot *)bufp;
4913 
4914 	/*
4915 	 * The fdisk table does not begin on a 4-byte boundary within the
4916 	 * master boot record, so we copy it to an aligned structure to avoid
4917 	 * alignment exceptions on some processors.
4918 	 */
4919 	bcopy(&mbp->parts[0], fdisk, sizeof (fdisk));
4920 
4921 	/*
4922 	 * Check for lba support before verifying sig; sig might not be
4923 	 * there, say on a blank disk, but the max_chs mark may still
4924 	 * be present.
4925 	 *
4926 	 * Note: LBA support and BEFs are an x86-only concept but this
4927 	 * code should work OK on SPARC as well.
4928 	 */
4929 
4930 	/*
4931 	 * First, check for lba-access-ok on root node (or prom root node)
4932 	 * if present there, don't need to search fdisk table.
4933 	 */
4934 	if (ddi_getprop(DDI_DEV_T_ANY, ddi_root_node(), 0,
4935 	    "lba-access-ok", 0) != 0) {
4936 		/* All drives do LBA; don't search fdisk table */
4937 		lba = 1;
4938 	} else {
4939 		/* Okay, look for mark in fdisk table */
4940 		for (fdp = fdisk, i = 0; i < FD_NUMPART; i++, fdp++) {
4941 			/* accumulate "lba" value from all partitions */
4942 			lba = (lba || sd_has_max_chs_vals(fdp));
4943 		}
4944 	}
4945 
4946 	if (lba != 0) {
4947 		dev_t dev = sd_make_device(SD_DEVINFO(un));
4948 
4949 		if (ddi_getprop(dev, SD_DEVINFO(un), DDI_PROP_DONTPASS,
4950 		    "lba-access-ok", 0) == 0) {
4951 			/* not found; create it */
4952 			if (ddi_prop_create(dev, SD_DEVINFO(un), 0,
4953 			    "lba-access-ok", (caddr_t)NULL, 0) !=
4954 			    DDI_PROP_SUCCESS) {
4955 				SD_ERROR(SD_LOG_ATTACH_DETACH, un,
4956 				    "sd_read_fdisk: Can't create lba property "
4957 				    "for instance %d\n",
4958 				    ddi_get_instance(SD_DEVINFO(un)));
4959 			}
4960 		}
4961 	}
4962 
4963 	bcopy(&mbp->signature, sigbuf, sizeof (sigbuf));
4964 
4965 	/*
4966 	 * Endian-independent signature check
4967 	 */
4968 	if (((sigbuf[1] & 0xFF) != ((MBB_MAGIC >> 8) & 0xFF)) ||
4969 	    (sigbuf[0] != (MBB_MAGIC & 0xFF))) {
4970 		SD_ERROR(SD_LOG_ATTACH_DETACH, un,
4971 		    "sd_read_fdisk: no fdisk\n");
4972 		bzero(un->un_fmap, sizeof (struct fmap) * FD_NUMPART);
4973 		rval = SD_CMD_SUCCESS;
4974 		goto done;
4975 	}
4976 
4977 #ifdef SDDEBUG
4978 	if (sd_level_mask & SD_LOGMASK_INFO) {
4979 		fdp = fdisk;
4980 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_read_fdisk:\n");
4981 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "         relsect    "
4982 		    "numsect         sysid       bootid\n");
4983 		for (i = 0; i < FD_NUMPART; i++, fdp++) {
4984 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4985 			    "    %d:  %8d   %8d     0x%08x     0x%08x\n",
4986 			    i, fdp->relsect, fdp->numsect,
4987 			    fdp->systid, fdp->bootid);
4988 		}
4989 	}
4990 #endif
4991 
4992 	/*
4993 	 * Try to find the unix partition
4994 	 */
4995 	uidx = -1;
4996 	solaris_offset = 0;
4997 	solaris_size   = 0;
4998 
4999 	for (fdp = fdisk, i = 0; i < FD_NUMPART; i++, fdp++) {
5000 		int	relsect;
5001 		int	numsect;
5002 
5003 		if (fdp->numsect == 0) {
5004 			un->un_fmap[i].fmap_start = 0;
5005 			un->un_fmap[i].fmap_nblk  = 0;
5006 			continue;
5007 		}
5008 
5009 		/*
5010 		 * Data in the fdisk table is little-endian.
5011 		 */
5012 		relsect = LE_32(fdp->relsect);
5013 		numsect = LE_32(fdp->numsect);
5014 
5015 		un->un_fmap[i].fmap_start = relsect;
5016 		un->un_fmap[i].fmap_nblk  = numsect;
5017 
5018 		if (fdp->systid != SUNIXOS &&
5019 		    fdp->systid != SUNIXOS2 &&
5020 		    fdp->systid != EFI_PMBR) {
5021 			continue;
5022 		}
5023 
5024 		/*
5025 		 * use the last active solaris partition id found
5026 		 * (there should only be 1 active partition id)
5027 		 *
5028 		 * if there are no active solaris partition id
5029 		 * then use the first inactive solaris partition id
5030 		 */
5031 		if ((uidx == -1) || (fdp->bootid == ACTIVE)) {
5032 			uidx = i;
5033 			solaris_offset = relsect;
5034 			solaris_size   = numsect;
5035 		}
5036 	}
5037 
5038 	SD_INFO(SD_LOG_ATTACH_DETACH, un, "fdisk 0x%x 0x%lx",
5039 	    un->un_solaris_offset, un->un_solaris_size);
5040 
5041 	rval = SD_CMD_SUCCESS;
5042 
5043 done:
5044 
5045 	/*
5046 	 * Clear the VTOC info, only if the Solaris partition entry
5047 	 * has moved, changed size, been deleted, or if the size of
5048 	 * the partition is too small to even fit the label sector.
5049 	 */
5050 	if ((un->un_solaris_offset != solaris_offset) ||
5051 	    (un->un_solaris_size != solaris_size) ||
5052 	    solaris_size <= DK_LABEL_LOC) {
5053 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "fdisk moved 0x%x 0x%lx",
5054 			solaris_offset, solaris_size);
5055 		bzero(&un->un_g, sizeof (struct dk_geom));
5056 		bzero(&un->un_vtoc, sizeof (struct dk_vtoc));
5057 		bzero(&un->un_map, NDKMAP * (sizeof (struct dk_map)));
5058 		un->un_f_geometry_is_valid = FALSE;
5059 	}
5060 	un->un_solaris_offset = solaris_offset;
5061 	un->un_solaris_size = solaris_size;
5062 	kmem_free(bufp, blocksize);
5063 	return (rval);
5064 
5065 #else	/* #elif defined(_FIRMWARE_NEEDS_FDISK) */
5066 #error "fdisk table presence undetermined for this platform."
5067 #endif	/* #if defined(_NO_FDISK_PRESENT) */
5068 }
5069 
5070 
5071 /*
5072  *    Function: sd_get_physical_geometry
5073  *
5074  * Description: Retrieve the MODE SENSE page 3 (Format Device Page) and
5075  *		MODE SENSE page 4 (Rigid Disk Drive Geometry Page) from the
5076  *		target, and use this information to initialize the physical
5077  *		geometry cache specified by pgeom_p.
5078  *
5079  *		MODE SENSE is an optional command, so failure in this case
5080  *		does not necessarily denote an error. We want to use the
5081  *		MODE SENSE commands to derive the physical geometry of the
5082  *		device, but if either command fails, the logical geometry is
5083  *		used as the fallback for disk label geometry.
5084  *
5085  *		This requires that un->un_blockcount and un->un_tgt_blocksize
5086  *		have already been initialized for the current target and
5087  *		that the current values be passed as args so that we don't
5088  *		end up ever trying to use -1 as a valid value. This could
5089  *		happen if either value is reset while we're not holding
5090  *		the mutex.
5091  *
5092  *   Arguments: un - driver soft state (unit) structure
5093  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
5094  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
5095  *			to use the USCSI "direct" chain and bypass the normal
5096  *			command waitq.
5097  *
5098  *     Context: Kernel thread only (can sleep).
5099  */
5100 
5101 static void
5102 sd_get_physical_geometry(struct sd_lun *un, struct geom_cache *pgeom_p,
5103 	int capacity, int lbasize, int path_flag)
5104 {
5105 	struct	mode_format	*page3p;
5106 	struct	mode_geometry	*page4p;
5107 	struct	mode_header	*headerp;
5108 	int	sector_size;
5109 	int	nsect;
5110 	int	nhead;
5111 	int	ncyl;
5112 	int	intrlv;
5113 	int	spc;
5114 	int	modesense_capacity;
5115 	int	rpm;
5116 	int	bd_len;
5117 	int	mode_header_length;
5118 	uchar_t	*p3bufp;
5119 	uchar_t	*p4bufp;
5120 	int	cdbsize;
5121 
5122 	ASSERT(un != NULL);
5123 	ASSERT(!(mutex_owned(SD_MUTEX(un))));
5124 
5125 	if (un->un_f_blockcount_is_valid != TRUE) {
5126 		return;
5127 	}
5128 
5129 	if (un->un_f_tgt_blocksize_is_valid != TRUE) {
5130 		return;
5131 	}
5132 
5133 	if (lbasize == 0) {
5134 		if (ISCD(un)) {
5135 			lbasize = 2048;
5136 		} else {
5137 			lbasize = un->un_sys_blocksize;
5138 		}
5139 	}
5140 	pgeom_p->g_secsize = (unsigned short)lbasize;
5141 
5142 	cdbsize = (un->un_f_cfg_is_atapi == TRUE) ? CDB_GROUP2 : CDB_GROUP0;
5143 
5144 	/*
5145 	 * Retrieve MODE SENSE page 3 - Format Device Page
5146 	 */
5147 	p3bufp = kmem_zalloc(SD_MODE_SENSE_PAGE3_LENGTH, KM_SLEEP);
5148 	if (sd_send_scsi_MODE_SENSE(un, cdbsize, p3bufp,
5149 	    SD_MODE_SENSE_PAGE3_LENGTH, SD_MODE_SENSE_PAGE3_CODE, path_flag)
5150 	    != 0) {
5151 		SD_ERROR(SD_LOG_COMMON, un,
5152 		    "sd_get_physical_geometry: mode sense page 3 failed\n");
5153 		goto page3_exit;
5154 	}
5155 
5156 	/*
5157 	 * Determine size of Block Descriptors in order to locate the mode
5158 	 * page data.  ATAPI devices return 0, SCSI devices should return
5159 	 * MODE_BLK_DESC_LENGTH.
5160 	 */
5161 	headerp = (struct mode_header *)p3bufp;
5162 	if (un->un_f_cfg_is_atapi == TRUE) {
5163 		struct mode_header_grp2 *mhp =
5164 		    (struct mode_header_grp2 *)headerp;
5165 		mode_header_length = MODE_HEADER_LENGTH_GRP2;
5166 		bd_len = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
5167 	} else {
5168 		mode_header_length = MODE_HEADER_LENGTH;
5169 		bd_len = ((struct mode_header *)headerp)->bdesc_length;
5170 	}
5171 
5172 	if (bd_len > MODE_BLK_DESC_LENGTH) {
5173 		SD_ERROR(SD_LOG_COMMON, un, "sd_get_physical_geometry: "
5174 		    "received unexpected bd_len of %d, page3\n", bd_len);
5175 		goto page3_exit;
5176 	}
5177 
5178 	page3p = (struct mode_format *)
5179 	    ((caddr_t)headerp + mode_header_length + bd_len);
5180 
5181 	if (page3p->mode_page.code != SD_MODE_SENSE_PAGE3_CODE) {
5182 		SD_ERROR(SD_LOG_COMMON, un, "sd_get_physical_geometry: "
5183 		    "mode sense pg3 code mismatch %d\n",
5184 		    page3p->mode_page.code);
5185 		goto page3_exit;
5186 	}
5187 
5188 	/*
5189 	 * Use this physical geometry data only if BOTH MODE SENSE commands
5190 	 * complete successfully; otherwise, revert to the logical geometry.
5191 	 * So, we need to save everything in temporary variables.
5192 	 */
5193 	sector_size = BE_16(page3p->data_bytes_sect);
5194 
5195 	/*
5196 	 * 1243403: The NEC D38x7 drives do not support MODE SENSE sector size
5197 	 */
5198 	if (sector_size == 0) {
5199 		sector_size = (ISCD(un)) ? 2048 : un->un_sys_blocksize;
5200 	} else {
5201 		sector_size &= ~(un->un_sys_blocksize - 1);
5202 	}
5203 
5204 	nsect  = BE_16(page3p->sect_track);
5205 	intrlv = BE_16(page3p->interleave);
5206 
5207 	SD_INFO(SD_LOG_COMMON, un,
5208 	    "sd_get_physical_geometry: Format Parameters (page 3)\n");
5209 	SD_INFO(SD_LOG_COMMON, un,
5210 	    "   mode page: %d; nsect: %d; sector size: %d;\n",
5211 	    page3p->mode_page.code, nsect, sector_size);
5212 	SD_INFO(SD_LOG_COMMON, un,
5213 	    "   interleave: %d; track skew: %d; cylinder skew: %d;\n", intrlv,
5214 	    BE_16(page3p->track_skew),
5215 	    BE_16(page3p->cylinder_skew));
5216 
5217 
5218 	/*
5219 	 * Retrieve MODE SENSE page 4 - Rigid Disk Drive Geometry Page
5220 	 */
5221 	p4bufp = kmem_zalloc(SD_MODE_SENSE_PAGE4_LENGTH, KM_SLEEP);
5222 	if (sd_send_scsi_MODE_SENSE(un, cdbsize, p4bufp,
5223 	    SD_MODE_SENSE_PAGE4_LENGTH, SD_MODE_SENSE_PAGE4_CODE, path_flag)
5224 	    != 0) {
5225 		SD_ERROR(SD_LOG_COMMON, un,
5226 		    "sd_get_physical_geometry: mode sense page 4 failed\n");
5227 		goto page4_exit;
5228 	}
5229 
5230 	/*
5231 	 * Determine size of Block Descriptors in order to locate the mode
5232 	 * page data.  ATAPI devices return 0, SCSI devices should return
5233 	 * MODE_BLK_DESC_LENGTH.
5234 	 */
5235 	headerp = (struct mode_header *)p4bufp;
5236 	if (un->un_f_cfg_is_atapi == TRUE) {
5237 		struct mode_header_grp2 *mhp =
5238 		    (struct mode_header_grp2 *)headerp;
5239 		bd_len = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
5240 	} else {
5241 		bd_len = ((struct mode_header *)headerp)->bdesc_length;
5242 	}
5243 
5244 	if (bd_len > MODE_BLK_DESC_LENGTH) {
5245 		SD_ERROR(SD_LOG_COMMON, un, "sd_get_physical_geometry: "
5246 		    "received unexpected bd_len of %d, page4\n", bd_len);
5247 		goto page4_exit;
5248 	}
5249 
5250 	page4p = (struct mode_geometry *)
5251 	    ((caddr_t)headerp + mode_header_length + bd_len);
5252 
5253 	if (page4p->mode_page.code != SD_MODE_SENSE_PAGE4_CODE) {
5254 		SD_ERROR(SD_LOG_COMMON, un, "sd_get_physical_geometry: "
5255 		    "mode sense pg4 code mismatch %d\n",
5256 		    page4p->mode_page.code);
5257 		goto page4_exit;
5258 	}
5259 
5260 	/*
5261 	 * Stash the data now, after we know that both commands completed.
5262 	 */
5263 
5264 	mutex_enter(SD_MUTEX(un));
5265 
5266 	nhead = (int)page4p->heads;	/* uchar, so no conversion needed */
5267 	spc   = nhead * nsect;
5268 	ncyl  = (page4p->cyl_ub << 16) + (page4p->cyl_mb << 8) + page4p->cyl_lb;
5269 	rpm   = BE_16(page4p->rpm);
5270 
5271 	modesense_capacity = spc * ncyl;
5272 
5273 	SD_INFO(SD_LOG_COMMON, un,
5274 	    "sd_get_physical_geometry: Geometry Parameters (page 4)\n");
5275 	SD_INFO(SD_LOG_COMMON, un,
5276 	    "   cylinders: %d; heads: %d; rpm: %d;\n", ncyl, nhead, rpm);
5277 	SD_INFO(SD_LOG_COMMON, un,
5278 	    "   computed capacity(h*s*c): %d;\n", modesense_capacity);
5279 	SD_INFO(SD_LOG_COMMON, un, "   pgeom_p: %p; read cap: %d\n",
5280 	    (void *)pgeom_p, capacity);
5281 
5282 	/*
5283 	 * Compensate if the drive's geometry is not rectangular, i.e.,
5284 	 * the product of C * H * S returned by MODE SENSE >= that returned
5285 	 * by read capacity. This is an idiosyncrasy of the original x86
5286 	 * disk subsystem.
5287 	 */
5288 	if (modesense_capacity >= capacity) {
5289 		SD_INFO(SD_LOG_COMMON, un,
5290 		    "sd_get_physical_geometry: adjusting acyl; "
5291 		    "old: %d; new: %d\n", pgeom_p->g_acyl,
5292 		    (modesense_capacity - capacity + spc - 1) / spc);
5293 		if (sector_size != 0) {
5294 			/* 1243403: NEC D38x7 drives don't support sec size */
5295 			pgeom_p->g_secsize = (unsigned short)sector_size;
5296 		}
5297 		pgeom_p->g_nsect    = (unsigned short)nsect;
5298 		pgeom_p->g_nhead    = (unsigned short)nhead;
5299 		pgeom_p->g_capacity = capacity;
5300 		pgeom_p->g_acyl	    =
5301 		    (modesense_capacity - pgeom_p->g_capacity + spc - 1) / spc;
5302 		pgeom_p->g_ncyl	    = ncyl - pgeom_p->g_acyl;
5303 	}
5304 
5305 	pgeom_p->g_rpm    = (unsigned short)rpm;
5306 	pgeom_p->g_intrlv = (unsigned short)intrlv;
5307 
5308 	SD_INFO(SD_LOG_COMMON, un,
5309 	    "sd_get_physical_geometry: mode sense geometry:\n");
5310 	SD_INFO(SD_LOG_COMMON, un,
5311 	    "   nsect: %d; sector size: %d; interlv: %d\n",
5312 	    nsect, sector_size, intrlv);
5313 	SD_INFO(SD_LOG_COMMON, un,
5314 	    "   nhead: %d; ncyl: %d; rpm: %d; capacity(ms): %d\n",
5315 	    nhead, ncyl, rpm, modesense_capacity);
5316 	SD_INFO(SD_LOG_COMMON, un,
5317 	    "sd_get_physical_geometry: (cached)\n");
5318 	SD_INFO(SD_LOG_COMMON, un,
5319 	    "   ncyl: %ld; acyl: %d; nhead: %d; nsect: %d\n",
5320 	    un->un_pgeom.g_ncyl,  un->un_pgeom.g_acyl,
5321 	    un->un_pgeom.g_nhead, un->un_pgeom.g_nsect);
5322 	SD_INFO(SD_LOG_COMMON, un,
5323 	    "   lbasize: %d; capacity: %ld; intrlv: %d; rpm: %d\n",
5324 	    un->un_pgeom.g_secsize, un->un_pgeom.g_capacity,
5325 	    un->un_pgeom.g_intrlv, un->un_pgeom.g_rpm);
5326 
5327 	mutex_exit(SD_MUTEX(un));
5328 
5329 page4_exit:
5330 	kmem_free(p4bufp, SD_MODE_SENSE_PAGE4_LENGTH);
5331 page3_exit:
5332 	kmem_free(p3bufp, SD_MODE_SENSE_PAGE3_LENGTH);
5333 }
5334 
5335 
5336 /*
5337  *    Function: sd_get_virtual_geometry
5338  *
5339  * Description: Ask the controller to tell us about the target device.
5340  *
5341  *   Arguments: un - pointer to softstate
5342  *		capacity - disk capacity in #blocks
5343  *		lbasize - disk block size in bytes
5344  *
5345  *     Context: Kernel thread only
5346  */
5347 
5348 static void
5349 sd_get_virtual_geometry(struct sd_lun *un, int capacity, int lbasize)
5350 {
5351 	struct	geom_cache 	*lgeom_p = &un->un_lgeom;
5352 	uint_t	geombuf;
5353 	int	spc;
5354 
5355 	ASSERT(un != NULL);
5356 	ASSERT(mutex_owned(SD_MUTEX(un)));
5357 
5358 	mutex_exit(SD_MUTEX(un));
5359 
5360 	/* Set sector size, and total number of sectors */
5361 	(void) scsi_ifsetcap(SD_ADDRESS(un), "sector-size",   lbasize,  1);
5362 	(void) scsi_ifsetcap(SD_ADDRESS(un), "total-sectors", capacity, 1);
5363 
5364 	/* Let the HBA tell us its geometry */
5365 	geombuf = (uint_t)scsi_ifgetcap(SD_ADDRESS(un), "geometry", 1);
5366 
5367 	mutex_enter(SD_MUTEX(un));
5368 
5369 	/* A value of -1 indicates an undefined "geometry" property */
5370 	if (geombuf == (-1)) {
5371 		return;
5372 	}
5373 
5374 	/* Initialize the logical geometry cache. */
5375 	lgeom_p->g_nhead   = (geombuf >> 16) & 0xffff;
5376 	lgeom_p->g_nsect   = geombuf & 0xffff;
5377 	lgeom_p->g_secsize = un->un_sys_blocksize;
5378 
5379 	spc = lgeom_p->g_nhead * lgeom_p->g_nsect;
5380 
5381 	/*
5382 	 * Note: The driver originally converted the capacity value from
5383 	 * target blocks to system blocks. However, the capacity value passed
5384 	 * to this routine is already in terms of system blocks (this scaling
5385 	 * is done when the READ CAPACITY command is issued and processed).
5386 	 * This 'error' may have gone undetected because the usage of g_ncyl
5387 	 * (which is based upon g_capacity) is very limited within the driver
5388 	 */
5389 	lgeom_p->g_capacity = capacity;
5390 
5391 	/*
5392 	 * Set ncyl to zero if the hba returned a zero nhead or nsect value. The
5393 	 * hba may return zero values if the device has been removed.
5394 	 */
5395 	if (spc == 0) {
5396 		lgeom_p->g_ncyl = 0;
5397 	} else {
5398 		lgeom_p->g_ncyl = lgeom_p->g_capacity / spc;
5399 	}
5400 	lgeom_p->g_acyl = 0;
5401 
5402 	SD_INFO(SD_LOG_COMMON, un, "sd_get_virtual_geometry: (cached)\n");
5403 	SD_INFO(SD_LOG_COMMON, un,
5404 	    "   ncyl: %ld; acyl: %d; nhead: %d; nsect: %d\n",
5405 	    un->un_lgeom.g_ncyl,  un->un_lgeom.g_acyl,
5406 	    un->un_lgeom.g_nhead, un->un_lgeom.g_nsect);
5407 	SD_INFO(SD_LOG_COMMON, un, "   lbasize: %d; capacity: %ld; "
5408 	    "intrlv: %d; rpm: %d\n", un->un_lgeom.g_secsize,
5409 	    un->un_lgeom.g_capacity, un->un_lgeom.g_intrlv, un->un_lgeom.g_rpm);
5410 }
5411 
5412 
5413 /*
5414  *    Function: sd_update_block_info
5415  *
5416  * Description: Calculate a byte count to sector count bitshift value
5417  *		from sector size.
5418  *
5419  *   Arguments: un: unit struct.
5420  *		lbasize: new target sector size
5421  *		capacity: new target capacity, ie. block count
5422  *
5423  *     Context: Kernel thread context
5424  */
5425 
5426 static void
5427 sd_update_block_info(struct sd_lun *un, uint32_t lbasize, uint64_t capacity)
5428 {
5429 	if (lbasize != 0) {
5430 		un->un_tgt_blocksize = lbasize;
5431 		un->un_f_tgt_blocksize_is_valid	= TRUE;
5432 	}
5433 
5434 	if (capacity != 0) {
5435 		un->un_blockcount		= capacity;
5436 		un->un_f_blockcount_is_valid	= TRUE;
5437 	}
5438 }
5439 
5440 
5441 static void
5442 sd_swap_efi_gpt(efi_gpt_t *e)
5443 {
5444 	_NOTE(ASSUMING_PROTECTED(*e))
5445 	e->efi_gpt_Signature = LE_64(e->efi_gpt_Signature);
5446 	e->efi_gpt_Revision = LE_32(e->efi_gpt_Revision);
5447 	e->efi_gpt_HeaderSize = LE_32(e->efi_gpt_HeaderSize);
5448 	e->efi_gpt_HeaderCRC32 = LE_32(e->efi_gpt_HeaderCRC32);
5449 	e->efi_gpt_MyLBA = LE_64(e->efi_gpt_MyLBA);
5450 	e->efi_gpt_AlternateLBA = LE_64(e->efi_gpt_AlternateLBA);
5451 	e->efi_gpt_FirstUsableLBA = LE_64(e->efi_gpt_FirstUsableLBA);
5452 	e->efi_gpt_LastUsableLBA = LE_64(e->efi_gpt_LastUsableLBA);
5453 	UUID_LE_CONVERT(e->efi_gpt_DiskGUID, e->efi_gpt_DiskGUID);
5454 	e->efi_gpt_PartitionEntryLBA = LE_64(e->efi_gpt_PartitionEntryLBA);
5455 	e->efi_gpt_NumberOfPartitionEntries =
5456 	    LE_32(e->efi_gpt_NumberOfPartitionEntries);
5457 	e->efi_gpt_SizeOfPartitionEntry =
5458 	    LE_32(e->efi_gpt_SizeOfPartitionEntry);
5459 	e->efi_gpt_PartitionEntryArrayCRC32 =
5460 	    LE_32(e->efi_gpt_PartitionEntryArrayCRC32);
5461 }
5462 
5463 static void
5464 sd_swap_efi_gpe(int nparts, efi_gpe_t *p)
5465 {
5466 	int i;
5467 
5468 	_NOTE(ASSUMING_PROTECTED(*p))
5469 	for (i = 0; i < nparts; i++) {
5470 		UUID_LE_CONVERT(p[i].efi_gpe_PartitionTypeGUID,
5471 		    p[i].efi_gpe_PartitionTypeGUID);
5472 		p[i].efi_gpe_StartingLBA = LE_64(p[i].efi_gpe_StartingLBA);
5473 		p[i].efi_gpe_EndingLBA = LE_64(p[i].efi_gpe_EndingLBA);
5474 		/* PartitionAttrs */
5475 	}
5476 }
5477 
5478 static int
5479 sd_validate_efi(efi_gpt_t *labp)
5480 {
5481 	if (labp->efi_gpt_Signature != EFI_SIGNATURE)
5482 		return (EINVAL);
5483 	/* at least 96 bytes in this version of the spec. */
5484 	if (sizeof (efi_gpt_t) - sizeof (labp->efi_gpt_Reserved2) >
5485 	    labp->efi_gpt_HeaderSize)
5486 		return (EINVAL);
5487 	/* this should be 128 bytes */
5488 	if (labp->efi_gpt_SizeOfPartitionEntry != sizeof (efi_gpe_t))
5489 		return (EINVAL);
5490 	return (0);
5491 }
5492 
5493 static int
5494 sd_use_efi(struct sd_lun *un, int path_flag)
5495 {
5496 	int		i;
5497 	int		rval = 0;
5498 	efi_gpe_t	*partitions;
5499 	uchar_t		*buf;
5500 	uint_t		lbasize;
5501 	uint64_t	cap = 0;
5502 	uint_t		nparts;
5503 	diskaddr_t	gpe_lba;
5504 	struct uuid	uuid_type_reserved = EFI_RESERVED;
5505 
5506 	ASSERT(mutex_owned(SD_MUTEX(un)));
5507 	lbasize = un->un_tgt_blocksize;
5508 	un->un_reserved = -1;
5509 
5510 	mutex_exit(SD_MUTEX(un));
5511 
5512 	buf = kmem_zalloc(EFI_MIN_ARRAY_SIZE, KM_SLEEP);
5513 
5514 	if (un->un_tgt_blocksize != un->un_sys_blocksize) {
5515 		rval = EINVAL;
5516 		goto done_err;
5517 	}
5518 
5519 	rval = sd_send_scsi_READ(un, buf, lbasize, 0, path_flag);
5520 	if (rval) {
5521 		goto done_err;
5522 	}
5523 	if (((struct dk_label *)buf)->dkl_magic == DKL_MAGIC) {
5524 		/* not ours */
5525 		rval = ESRCH;
5526 		goto done_err;
5527 	}
5528 
5529 	rval = sd_send_scsi_READ(un, buf, lbasize, 1, path_flag);
5530 	if (rval) {
5531 		goto done_err;
5532 	}
5533 	sd_swap_efi_gpt((efi_gpt_t *)buf);
5534 
5535 	if ((rval = sd_validate_efi((efi_gpt_t *)buf)) != 0) {
5536 		/*
5537 		 * Couldn't read the primary, try the backup.  Our
5538 		 * capacity at this point could be based on CHS, so
5539 		 * check what the device reports.
5540 		 */
5541 		rval = sd_send_scsi_READ_CAPACITY(un, &cap, &lbasize,
5542 		    path_flag);
5543 		if (rval) {
5544 			goto done_err;
5545 		}
5546 
5547 		/*
5548 		 * The MMC standard allows READ CAPACITY to be
5549 		 * inaccurate by a bounded amount (in the interest of
5550 		 * response latency).  As a result, failed READs are
5551 		 * commonplace (due to the reading of metadata and not
5552 		 * data). Depending on the per-Vendor/drive Sense data,
5553 		 * the failed READ can cause many (unnecessary) retries.
5554 		 */
5555 		if ((rval = sd_send_scsi_READ(un, buf, lbasize,
5556 		    cap - 1, (ISCD(un)) ? SD_PATH_DIRECT_PRIORITY :
5557 			path_flag)) != 0) {
5558 				goto done_err;
5559 		}
5560 
5561 		sd_swap_efi_gpt((efi_gpt_t *)buf);
5562 		if ((rval = sd_validate_efi((efi_gpt_t *)buf)) != 0) {
5563 
5564 			/*
5565 			 * Refer to comments related to off-by-1 at the
5566 			 * header of this file. Search the next to last
5567 			 * block for backup EFI label.
5568 			 */
5569 			if ((rval = sd_send_scsi_READ(un, buf, lbasize,
5570 			    cap - 2, (ISCD(un)) ? SD_PATH_DIRECT_PRIORITY :
5571 				path_flag)) != 0) {
5572 					goto done_err;
5573 			}
5574 			sd_swap_efi_gpt((efi_gpt_t *)buf);
5575 			if ((rval = sd_validate_efi((efi_gpt_t *)buf)) != 0)
5576 				goto done_err;
5577 		}
5578 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
5579 		    "primary label corrupt; using backup\n");
5580 	}
5581 
5582 	if (cap == 0)
5583 		rval = sd_send_scsi_READ_CAPACITY(un, &cap, &lbasize,
5584 		    path_flag);
5585 
5586 	nparts = ((efi_gpt_t *)buf)->efi_gpt_NumberOfPartitionEntries;
5587 	gpe_lba = ((efi_gpt_t *)buf)->efi_gpt_PartitionEntryLBA;
5588 
5589 	rval = sd_send_scsi_READ(un, buf, EFI_MIN_ARRAY_SIZE, gpe_lba,
5590 	    path_flag);
5591 	if (rval) {
5592 		goto done_err;
5593 	}
5594 	partitions = (efi_gpe_t *)buf;
5595 
5596 	if (nparts > MAXPART) {
5597 		nparts = MAXPART;
5598 	}
5599 	sd_swap_efi_gpe(nparts, partitions);
5600 
5601 	mutex_enter(SD_MUTEX(un));
5602 
5603 	/* Fill in partition table. */
5604 	for (i = 0; i < nparts; i++) {
5605 		if (partitions->efi_gpe_StartingLBA != 0 ||
5606 		    partitions->efi_gpe_EndingLBA != 0) {
5607 			un->un_map[i].dkl_cylno =
5608 			    partitions->efi_gpe_StartingLBA;
5609 			un->un_map[i].dkl_nblk =
5610 			    partitions->efi_gpe_EndingLBA -
5611 			    partitions->efi_gpe_StartingLBA + 1;
5612 			un->un_offset[i] =
5613 			    partitions->efi_gpe_StartingLBA;
5614 		}
5615 		if (un->un_reserved == -1) {
5616 			if (bcmp(&partitions->efi_gpe_PartitionTypeGUID,
5617 			    &uuid_type_reserved, sizeof (struct uuid)) == 0) {
5618 				un->un_reserved = i;
5619 			}
5620 		}
5621 		if (i == WD_NODE) {
5622 			/*
5623 			 * minor number 7 corresponds to the whole disk
5624 			 */
5625 			un->un_map[i].dkl_cylno = 0;
5626 			un->un_map[i].dkl_nblk = un->un_blockcount;
5627 			un->un_offset[i] = 0;
5628 		}
5629 		partitions++;
5630 	}
5631 	un->un_solaris_offset = 0;
5632 	un->un_solaris_size = cap;
5633 	un->un_f_geometry_is_valid = TRUE;
5634 
5635 	/* clear the vtoc label */
5636 	bzero(&un->un_vtoc, sizeof (struct dk_vtoc));
5637 
5638 	kmem_free(buf, EFI_MIN_ARRAY_SIZE);
5639 
5640 	/*
5641 	 * For EFI labeled disk, create and set the partition stats
5642 	 * at attach time, update the stats according to dynamic
5643 	 * partition changes during running time.
5644 	 */
5645 	if (un->un_f_pkstats_enabled) {
5646 		sd_set_pstats(un);
5647 		SD_TRACE(SD_LOG_IO_PARTITION, un, "sd_use_efi: "
5648 		    "un:0x%p pstats created and set, or updated\n", un);
5649 	}
5650 	return (0);
5651 
5652 done_err:
5653 	kmem_free(buf, EFI_MIN_ARRAY_SIZE);
5654 	mutex_enter(SD_MUTEX(un));
5655 	/*
5656 	 * if we didn't find something that could look like a VTOC
5657 	 * and the disk is over 1TB, we know there isn't a valid label.
5658 	 * Otherwise let sd_uselabel decide what to do.  We only
5659 	 * want to invalidate this if we're certain the label isn't
5660 	 * valid because sd_prop_op will now fail, which in turn
5661 	 * causes things like opens and stats on the partition to fail.
5662 	 */
5663 	if ((un->un_blockcount > DK_MAX_BLOCKS) && (rval != ESRCH)) {
5664 		un->un_f_geometry_is_valid = FALSE;
5665 	}
5666 	return (rval);
5667 }
5668 
5669 
5670 /*
5671  *    Function: sd_uselabel
5672  *
5673  * Description: Validate the disk label and update the relevant data (geometry,
5674  *		partition, vtoc, and capacity data) in the sd_lun struct.
5675  *		Marks the geometry of the unit as being valid.
5676  *
5677  *   Arguments: un: unit struct.
5678  *		dk_label: disk label
5679  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
5680  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
5681  *			to use the USCSI "direct" chain and bypass the normal
5682  *			command waitq.
5683  *
5684  * Return Code: SD_LABEL_IS_VALID: Label read from disk is OK; geometry,
5685  *		partition, vtoc, and capacity data are good.
5686  *
5687  *		SD_LABEL_IS_INVALID: Magic number or checksum error in the
5688  *		label; or computed capacity does not jibe with capacity
5689  *		reported from the READ CAPACITY command.
5690  *
5691  *     Context: Kernel thread only (can sleep).
5692  */
5693 
5694 static int
5695 sd_uselabel(struct sd_lun *un, struct dk_label *labp, int path_flag)
5696 {
5697 	short	*sp;
5698 	short	sum;
5699 	short	count;
5700 	int	label_error = SD_LABEL_IS_VALID;
5701 	int	i;
5702 	int	capacity;
5703 	int	part_end;
5704 	int	track_capacity;
5705 	int	err;
5706 #if defined(_SUNOS_VTOC_16)
5707 	struct	dkl_partition	*vpartp;
5708 #endif
5709 	ASSERT(un != NULL);
5710 	ASSERT(mutex_owned(SD_MUTEX(un)));
5711 
5712 	/* Validate the magic number of the label. */
5713 	if (labp->dkl_magic != DKL_MAGIC) {
5714 #if defined(__sparc)
5715 		if ((un->un_state == SD_STATE_NORMAL) &&
5716 			un->un_f_vtoc_errlog_supported) {
5717 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
5718 			    "Corrupt label; wrong magic number\n");
5719 		}
5720 #endif
5721 		return (SD_LABEL_IS_INVALID);
5722 	}
5723 
5724 	/* Validate the checksum of the label. */
5725 	sp  = (short *)labp;
5726 	sum = 0;
5727 	count = sizeof (struct dk_label) / sizeof (short);
5728 	while (count--)	 {
5729 		sum ^= *sp++;
5730 	}
5731 
5732 	if (sum != 0) {
5733 #if	defined(_SUNOS_VTOC_16)
5734 		if ((un->un_state == SD_STATE_NORMAL) && !ISCD(un)) {
5735 #elif defined(_SUNOS_VTOC_8)
5736 		if ((un->un_state == SD_STATE_NORMAL) &&
5737 		    un->un_f_vtoc_errlog_supported) {
5738 #endif
5739 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
5740 			    "Corrupt label - label checksum failed\n");
5741 		}
5742 		return (SD_LABEL_IS_INVALID);
5743 	}
5744 
5745 
5746 	/*
5747 	 * Fill in geometry structure with data from label.
5748 	 */
5749 	bzero(&un->un_g, sizeof (struct dk_geom));
5750 	un->un_g.dkg_ncyl   = labp->dkl_ncyl;
5751 	un->un_g.dkg_acyl   = labp->dkl_acyl;
5752 	un->un_g.dkg_bcyl   = 0;
5753 	un->un_g.dkg_nhead  = labp->dkl_nhead;
5754 	un->un_g.dkg_nsect  = labp->dkl_nsect;
5755 	un->un_g.dkg_intrlv = labp->dkl_intrlv;
5756 
5757 #if defined(_SUNOS_VTOC_8)
5758 	un->un_g.dkg_gap1   = labp->dkl_gap1;
5759 	un->un_g.dkg_gap2   = labp->dkl_gap2;
5760 	un->un_g.dkg_bhead  = labp->dkl_bhead;
5761 #endif
5762 #if defined(_SUNOS_VTOC_16)
5763 	un->un_dkg_skew = labp->dkl_skew;
5764 #endif
5765 
5766 #if defined(__i386) || defined(__amd64)
5767 	un->un_g.dkg_apc = labp->dkl_apc;
5768 #endif
5769 
5770 	/*
5771 	 * Currently we rely on the values in the label being accurate. If
5772 	 * dlk_rpm or dlk_pcly are zero in the label, use a default value.
5773 	 *
5774 	 * Note: In the future a MODE SENSE may be used to retrieve this data,
5775 	 * although this command is optional in SCSI-2.
5776 	 */
5777 	un->un_g.dkg_rpm  = (labp->dkl_rpm  != 0) ? labp->dkl_rpm  : 3600;
5778 	un->un_g.dkg_pcyl = (labp->dkl_pcyl != 0) ? labp->dkl_pcyl :
5779 	    (un->un_g.dkg_ncyl + un->un_g.dkg_acyl);
5780 
5781 	/*
5782 	 * The Read and Write reinstruct values may not be valid
5783 	 * for older disks.
5784 	 */
5785 	un->un_g.dkg_read_reinstruct  = labp->dkl_read_reinstruct;
5786 	un->un_g.dkg_write_reinstruct = labp->dkl_write_reinstruct;
5787 
5788 	/* Fill in partition table. */
5789 #if defined(_SUNOS_VTOC_8)
5790 	for (i = 0; i < NDKMAP; i++) {
5791 		un->un_map[i].dkl_cylno = labp->dkl_map[i].dkl_cylno;
5792 		un->un_map[i].dkl_nblk  = labp->dkl_map[i].dkl_nblk;
5793 	}
5794 #endif
5795 #if  defined(_SUNOS_VTOC_16)
5796 	vpartp		= labp->dkl_vtoc.v_part;
5797 	track_capacity	= labp->dkl_nhead * labp->dkl_nsect;
5798 
5799 	/* Prevent divide by zero */
5800 	if (track_capacity == 0) {
5801 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
5802 		    "Corrupt label - zero nhead or nsect value\n");
5803 
5804 		return (SD_LABEL_IS_INVALID);
5805 	}
5806 
5807 	for (i = 0; i < NDKMAP; i++, vpartp++) {
5808 		un->un_map[i].dkl_cylno = vpartp->p_start / track_capacity;
5809 		un->un_map[i].dkl_nblk  = vpartp->p_size;
5810 	}
5811 #endif
5812 
5813 	/* Fill in VTOC Structure. */
5814 	bcopy(&labp->dkl_vtoc, &un->un_vtoc, sizeof (struct dk_vtoc));
5815 #if defined(_SUNOS_VTOC_8)
5816 	/*
5817 	 * The 8-slice vtoc does not include the ascii label; save it into
5818 	 * the device's soft state structure here.
5819 	 */
5820 	bcopy(labp->dkl_asciilabel, un->un_asciilabel, LEN_DKL_ASCII);
5821 #endif
5822 
5823 	/* Now look for a valid capacity. */
5824 	track_capacity	= (un->un_g.dkg_nhead * un->un_g.dkg_nsect);
5825 	capacity	= (un->un_g.dkg_ncyl  * track_capacity);
5826 
5827 	if (un->un_g.dkg_acyl) {
5828 #if defined(__i386) || defined(__amd64)
5829 		/* we may have > 1 alts cylinder */
5830 		capacity += (track_capacity * un->un_g.dkg_acyl);
5831 #else
5832 		capacity += track_capacity;
5833 #endif
5834 	}
5835 
5836 	/*
5837 	 * Force check here to ensure the computed capacity is valid.
5838 	 * If capacity is zero, it indicates an invalid label and
5839 	 * we should abort updating the relevant data then.
5840 	 */
5841 	if (capacity == 0) {
5842 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
5843 		    "Corrupt label - no valid capacity could be retrieved\n");
5844 
5845 		return (SD_LABEL_IS_INVALID);
5846 	}
5847 
5848 	/* Mark the geometry as valid. */
5849 	un->un_f_geometry_is_valid = TRUE;
5850 
5851 	/*
5852 	 * At this point, un->un_blockcount should contain valid data from
5853 	 * the READ CAPACITY command.
5854 	 */
5855 	if (un->un_f_blockcount_is_valid != TRUE) {
5856 		/*
5857 		 * We have a situation where the target didn't give us a good
5858 		 * READ CAPACITY value, yet there appears to be a valid label.
5859 		 * In this case, we'll fake the capacity.
5860 		 */
5861 		un->un_blockcount = capacity;
5862 		un->un_f_blockcount_is_valid = TRUE;
5863 		goto done;
5864 	}
5865 
5866 
5867 	if ((capacity <= un->un_blockcount) ||
5868 	    (un->un_state != SD_STATE_NORMAL)) {
5869 #if defined(_SUNOS_VTOC_8)
5870 		/*
5871 		 * We can't let this happen on drives that are subdivided
5872 		 * into logical disks (i.e., that have an fdisk table).
5873 		 * The un_blockcount field should always hold the full media
5874 		 * size in sectors, period.  This code would overwrite
5875 		 * un_blockcount with the size of the Solaris fdisk partition.
5876 		 */
5877 		SD_ERROR(SD_LOG_COMMON, un,
5878 		    "sd_uselabel: Label %d blocks; Drive %d blocks\n",
5879 		    capacity, un->un_blockcount);
5880 		un->un_blockcount = capacity;
5881 		un->un_f_blockcount_is_valid = TRUE;
5882 #endif	/* defined(_SUNOS_VTOC_8) */
5883 		goto done;
5884 	}
5885 
5886 	if (ISCD(un)) {
5887 		/* For CDROMs, we trust that the data in the label is OK. */
5888 #if defined(_SUNOS_VTOC_8)
5889 		for (i = 0; i < NDKMAP; i++) {
5890 			part_end = labp->dkl_nhead * labp->dkl_nsect *
5891 			    labp->dkl_map[i].dkl_cylno +
5892 			    labp->dkl_map[i].dkl_nblk  - 1;
5893 
5894 			if ((labp->dkl_map[i].dkl_nblk) &&
5895 			    (part_end > un->un_blockcount)) {
5896 				un->un_f_geometry_is_valid = FALSE;
5897 				break;
5898 			}
5899 		}
5900 #endif
5901 #if defined(_SUNOS_VTOC_16)
5902 		vpartp = &(labp->dkl_vtoc.v_part[0]);
5903 		for (i = 0; i < NDKMAP; i++, vpartp++) {
5904 			part_end = vpartp->p_start + vpartp->p_size;
5905 			if ((vpartp->p_size > 0) &&
5906 			    (part_end > un->un_blockcount)) {
5907 				un->un_f_geometry_is_valid = FALSE;
5908 				break;
5909 			}
5910 		}
5911 #endif
5912 	} else {
5913 		uint64_t t_capacity;
5914 		uint32_t t_lbasize;
5915 
5916 		mutex_exit(SD_MUTEX(un));
5917 		err = sd_send_scsi_READ_CAPACITY(un, &t_capacity, &t_lbasize,
5918 		    path_flag);
5919 		ASSERT(t_capacity <= DK_MAX_BLOCKS);
5920 		mutex_enter(SD_MUTEX(un));
5921 
5922 		if (err == 0) {
5923 			sd_update_block_info(un, t_lbasize, t_capacity);
5924 		}
5925 
5926 		if (capacity > un->un_blockcount) {
5927 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
5928 			    "Corrupt label - bad geometry\n");
5929 			scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
5930 			    "Label says %u blocks; Drive says %llu blocks\n",
5931 			    capacity, (unsigned long long)un->un_blockcount);
5932 			un->un_f_geometry_is_valid = FALSE;
5933 			label_error = SD_LABEL_IS_INVALID;
5934 		}
5935 	}
5936 
5937 done:
5938 
5939 	SD_INFO(SD_LOG_COMMON, un, "sd_uselabel: (label geometry)\n");
5940 	SD_INFO(SD_LOG_COMMON, un,
5941 	    "   ncyl: %d; acyl: %d; nhead: %d; nsect: %d\n",
5942 	    un->un_g.dkg_ncyl,  un->un_g.dkg_acyl,
5943 	    un->un_g.dkg_nhead, un->un_g.dkg_nsect);
5944 	SD_INFO(SD_LOG_COMMON, un,
5945 	    "   lbasize: %d; capacity: %d; intrlv: %d; rpm: %d\n",
5946 	    un->un_tgt_blocksize, un->un_blockcount,
5947 	    un->un_g.dkg_intrlv, un->un_g.dkg_rpm);
5948 	SD_INFO(SD_LOG_COMMON, un, "   wrt_reinstr: %d; rd_reinstr: %d\n",
5949 	    un->un_g.dkg_write_reinstruct, un->un_g.dkg_read_reinstruct);
5950 
5951 	ASSERT(mutex_owned(SD_MUTEX(un)));
5952 
5953 	return (label_error);
5954 }
5955 
5956 
5957 /*
5958  *    Function: sd_build_default_label
5959  *
5960  * Description: Generate a default label for those devices that do not have
5961  *		one, e.g., new media, removable cartridges, etc..
5962  *
5963  *     Context: Kernel thread only
5964  */
5965 
5966 static void
5967 sd_build_default_label(struct sd_lun *un)
5968 {
5969 #if defined(_SUNOS_VTOC_16)
5970 	uint_t	phys_spc;
5971 	uint_t	disksize;
5972 	struct	dk_geom un_g;
5973 	uint64_t capacity;
5974 #endif
5975 
5976 	ASSERT(un != NULL);
5977 	ASSERT(mutex_owned(SD_MUTEX(un)));
5978 
5979 #if defined(_SUNOS_VTOC_8)
5980 	/*
5981 	 * Note: This is a legacy check for non-removable devices on VTOC_8
5982 	 * only. This may be a valid check for VTOC_16 as well.
5983 	 * Once we understand why there is this difference between SPARC and
5984 	 * x86 platform, we could remove this legacy check.
5985 	 */
5986 	ASSERT(un->un_f_default_vtoc_supported);
5987 #endif
5988 
5989 	bzero(&un->un_g, sizeof (struct dk_geom));
5990 	bzero(&un->un_vtoc, sizeof (struct dk_vtoc));
5991 	bzero(&un->un_map, NDKMAP * (sizeof (struct dk_map)));
5992 
5993 #if defined(_SUNOS_VTOC_8)
5994 
5995 	/*
5996 	 * It's a REMOVABLE media, therefore no label (on sparc, anyway).
5997 	 * But it is still necessary to set up various geometry information,
5998 	 * and we are doing this here.
5999 	 */
6000 
6001 	/*
6002 	 * For the rpm, we use the minimum for the disk.  For the head, cyl,
6003 	 * and number of sector per track, if the capacity <= 1GB, head = 64,
6004 	 * sect = 32.  else head = 255, sect 63 Note: the capacity should be
6005 	 * equal to C*H*S values.  This will cause some truncation of size due
6006 	 * to round off errors. For CD-ROMs, this truncation can have adverse
6007 	 * side effects, so returning ncyl and nhead as 1. The nsect will
6008 	 * overflow for most of CD-ROMs as nsect is of type ushort. (4190569)
6009 	 */
6010 	if (ISCD(un)) {
6011 		/*
6012 		 * Preserve the old behavior for non-writable
6013 		 * medias. Since dkg_nsect is a ushort, it
6014 		 * will lose bits as cdroms have more than
6015 		 * 65536 sectors. So if we recalculate
6016 		 * capacity, it will become much shorter.
6017 		 * But the dkg_* information is not
6018 		 * used for CDROMs so it is OK. But for
6019 		 * Writable CDs we need this information
6020 		 * to be valid (for newfs say). So we
6021 		 * make nsect and nhead > 1 that way
6022 		 * nsect can still stay within ushort limit
6023 		 * without losing any bits.
6024 		 */
6025 		if (un->un_f_mmc_writable_media == TRUE) {
6026 			un->un_g.dkg_nhead = 64;
6027 			un->un_g.dkg_nsect = 32;
6028 			un->un_g.dkg_ncyl = un->un_blockcount / (64 * 32);
6029 			un->un_blockcount = un->un_g.dkg_ncyl *
6030 			    un->un_g.dkg_nhead * un->un_g.dkg_nsect;
6031 		} else {
6032 			un->un_g.dkg_ncyl  = 1;
6033 			un->un_g.dkg_nhead = 1;
6034 			un->un_g.dkg_nsect = un->un_blockcount;
6035 		}
6036 	} else {
6037 		if (un->un_blockcount <= 0x1000) {
6038 			/* unlabeled SCSI floppy device */
6039 			un->un_g.dkg_nhead = 2;
6040 			un->un_g.dkg_ncyl = 80;
6041 			un->un_g.dkg_nsect = un->un_blockcount / (2 * 80);
6042 		} else if (un->un_blockcount <= 0x200000) {
6043 			un->un_g.dkg_nhead = 64;
6044 			un->un_g.dkg_nsect = 32;
6045 			un->un_g.dkg_ncyl  = un->un_blockcount / (64 * 32);
6046 		} else {
6047 			un->un_g.dkg_nhead = 255;
6048 			un->un_g.dkg_nsect = 63;
6049 			un->un_g.dkg_ncyl  = un->un_blockcount / (255 * 63);
6050 		}
6051 		un->un_blockcount =
6052 		    un->un_g.dkg_ncyl * un->un_g.dkg_nhead * un->un_g.dkg_nsect;
6053 	}
6054 
6055 	un->un_g.dkg_acyl	= 0;
6056 	un->un_g.dkg_bcyl	= 0;
6057 	un->un_g.dkg_rpm	= 200;
6058 	un->un_asciilabel[0]	= '\0';
6059 	un->un_g.dkg_pcyl	= un->un_g.dkg_ncyl;
6060 
6061 	un->un_map[0].dkl_cylno = 0;
6062 	un->un_map[0].dkl_nblk  = un->un_blockcount;
6063 	un->un_map[2].dkl_cylno = 0;
6064 	un->un_map[2].dkl_nblk  = un->un_blockcount;
6065 
6066 #elif defined(_SUNOS_VTOC_16)
6067 
6068 	if (un->un_solaris_size == 0) {
6069 		/*
6070 		 * Got fdisk table but no solaris entry therefore
6071 		 * don't create a default label
6072 		 */
6073 		un->un_f_geometry_is_valid = TRUE;
6074 		return;
6075 	}
6076 
6077 	/*
6078 	 * For CDs we continue to use the physical geometry to calculate
6079 	 * number of cylinders. All other devices must convert the
6080 	 * physical geometry (geom_cache) to values that will fit
6081 	 * in a dk_geom structure.
6082 	 */
6083 	if (ISCD(un)) {
6084 		phys_spc = un->un_pgeom.g_nhead * un->un_pgeom.g_nsect;
6085 	} else {
6086 		/* Convert physical geometry to disk geometry */
6087 		bzero(&un_g, sizeof (struct dk_geom));
6088 
6089 		/*
6090 		 * Refer to comments related to off-by-1 at the
6091 		 * header of this file.
6092 		 * Before caculating geometry, capacity should be
6093 		 * decreased by 1. That un_f_capacity_adjusted is
6094 		 * TRUE means that we are treating a 1TB disk as
6095 		 * (1T - 512)B. And the capacity of disks is already
6096 		 * decreased by 1.
6097 		 */
6098 		if (!un->un_f_capacity_adjusted &&
6099 		    !un->un_f_has_removable_media &&
6100 		    !un->un_f_is_hotpluggable &&
6101 			un->un_tgt_blocksize == un->un_sys_blocksize)
6102 			capacity = un->un_blockcount - 1;
6103 		else
6104 			capacity = un->un_blockcount;
6105 
6106 		sd_convert_geometry(capacity, &un_g);
6107 		bcopy(&un_g, &un->un_g, sizeof (un->un_g));
6108 		phys_spc = un->un_g.dkg_nhead * un->un_g.dkg_nsect;
6109 	}
6110 
6111 	ASSERT(phys_spc != 0);
6112 	un->un_g.dkg_pcyl = un->un_solaris_size / phys_spc;
6113 	un->un_g.dkg_acyl = DK_ACYL;
6114 	un->un_g.dkg_ncyl = un->un_g.dkg_pcyl - DK_ACYL;
6115 	disksize = un->un_g.dkg_ncyl * phys_spc;
6116 
6117 	if (ISCD(un)) {
6118 		/*
6119 		 * CD's don't use the "heads * sectors * cyls"-type of
6120 		 * geometry, but instead use the entire capacity of the media.
6121 		 */
6122 		disksize = un->un_solaris_size;
6123 		un->un_g.dkg_nhead = 1;
6124 		un->un_g.dkg_nsect = 1;
6125 		un->un_g.dkg_rpm =
6126 		    (un->un_pgeom.g_rpm == 0) ? 200 : un->un_pgeom.g_rpm;
6127 
6128 		un->un_vtoc.v_part[0].p_start = 0;
6129 		un->un_vtoc.v_part[0].p_size  = disksize;
6130 		un->un_vtoc.v_part[0].p_tag   = V_BACKUP;
6131 		un->un_vtoc.v_part[0].p_flag  = V_UNMNT;
6132 
6133 		un->un_map[0].dkl_cylno = 0;
6134 		un->un_map[0].dkl_nblk  = disksize;
6135 		un->un_offset[0] = 0;
6136 
6137 	} else {
6138 		/*
6139 		 * Hard disks and removable media cartridges
6140 		 */
6141 		un->un_g.dkg_rpm =
6142 		    (un->un_pgeom.g_rpm == 0) ? 3600: un->un_pgeom.g_rpm;
6143 		un->un_vtoc.v_sectorsz = un->un_sys_blocksize;
6144 
6145 		/* Add boot slice */
6146 		un->un_vtoc.v_part[8].p_start = 0;
6147 		un->un_vtoc.v_part[8].p_size  = phys_spc;
6148 		un->un_vtoc.v_part[8].p_tag   = V_BOOT;
6149 		un->un_vtoc.v_part[8].p_flag  = V_UNMNT;
6150 
6151 		un->un_map[8].dkl_cylno = 0;
6152 		un->un_map[8].dkl_nblk  = phys_spc;
6153 		un->un_offset[8] = 0;
6154 	}
6155 
6156 	un->un_g.dkg_apc = 0;
6157 	un->un_vtoc.v_nparts = V_NUMPAR;
6158 	un->un_vtoc.v_version = V_VERSION;
6159 
6160 	/* Add backup slice */
6161 	un->un_vtoc.v_part[2].p_start = 0;
6162 	un->un_vtoc.v_part[2].p_size  = disksize;
6163 	un->un_vtoc.v_part[2].p_tag   = V_BACKUP;
6164 	un->un_vtoc.v_part[2].p_flag  = V_UNMNT;
6165 
6166 	un->un_map[2].dkl_cylno = 0;
6167 	un->un_map[2].dkl_nblk  = disksize;
6168 	un->un_offset[2] = 0;
6169 
6170 	(void) sprintf(un->un_vtoc.v_asciilabel, "DEFAULT cyl %d alt %d"
6171 	    " hd %d sec %d", un->un_g.dkg_ncyl, un->un_g.dkg_acyl,
6172 	    un->un_g.dkg_nhead, un->un_g.dkg_nsect);
6173 
6174 #else
6175 #error "No VTOC format defined."
6176 #endif
6177 
6178 	un->un_g.dkg_read_reinstruct  = 0;
6179 	un->un_g.dkg_write_reinstruct = 0;
6180 
6181 	un->un_g.dkg_intrlv = 1;
6182 
6183 	un->un_vtoc.v_sanity  = VTOC_SANE;
6184 
6185 	un->un_f_geometry_is_valid = TRUE;
6186 
6187 	SD_INFO(SD_LOG_COMMON, un,
6188 	    "sd_build_default_label: Default label created: "
6189 	    "cyl: %d\tacyl: %d\tnhead: %d\tnsect: %d\tcap: %d\n",
6190 	    un->un_g.dkg_ncyl, un->un_g.dkg_acyl, un->un_g.dkg_nhead,
6191 	    un->un_g.dkg_nsect, un->un_blockcount);
6192 }
6193 
6194 
6195 #if defined(_FIRMWARE_NEEDS_FDISK)
6196 /*
6197  * Max CHS values, as they are encoded into bytes, for 1022/254/63
6198  */
6199 #define	LBA_MAX_SECT	(63 | ((1022 & 0x300) >> 2))
6200 #define	LBA_MAX_CYL	(1022 & 0xFF)
6201 #define	LBA_MAX_HEAD	(254)
6202 
6203 
6204 /*
6205  *    Function: sd_has_max_chs_vals
6206  *
6207  * Description: Return TRUE if Cylinder-Head-Sector values are all at maximum.
6208  *
6209  *   Arguments: fdp - ptr to CHS info
6210  *
6211  * Return Code: True or false
6212  *
6213  *     Context: Any.
6214  */
6215 
6216 static int
6217 sd_has_max_chs_vals(struct ipart *fdp)
6218 {
6219 	return ((fdp->begcyl  == LBA_MAX_CYL)	&&
6220 	    (fdp->beghead == LBA_MAX_HEAD)	&&
6221 	    (fdp->begsect == LBA_MAX_SECT)	&&
6222 	    (fdp->endcyl  == LBA_MAX_CYL)	&&
6223 	    (fdp->endhead == LBA_MAX_HEAD)	&&
6224 	    (fdp->endsect == LBA_MAX_SECT));
6225 }
6226 #endif
6227 
6228 
6229 /*
6230  *    Function: sd_inq_fill
6231  *
6232  * Description: Print a piece of inquiry data, cleaned up for non-printable
6233  *		characters and stopping at the first space character after
6234  *		the beginning of the passed string;
6235  *
6236  *   Arguments: p - source string
6237  *		l - maximum length to copy
6238  *		s - destination string
6239  *
6240  *     Context: Any.
6241  */
6242 
6243 static void
6244 sd_inq_fill(char *p, int l, char *s)
6245 {
6246 	unsigned i = 0;
6247 	char c;
6248 
6249 	while (i++ < l) {
6250 		if ((c = *p++) < ' ' || c >= 0x7F) {
6251 			c = '*';
6252 		} else if (i != 1 && c == ' ') {
6253 			break;
6254 		}
6255 		*s++ = c;
6256 	}
6257 	*s++ = 0;
6258 }
6259 
6260 
6261 /*
6262  *    Function: sd_register_devid
6263  *
6264  * Description: This routine will obtain the device id information from the
6265  *		target, obtain the serial number, and register the device
6266  *		id with the ddi framework.
6267  *
6268  *   Arguments: devi - the system's dev_info_t for the device.
6269  *		un - driver soft state (unit) structure
6270  *		reservation_flag - indicates if a reservation conflict
6271  *		occurred during attach
6272  *
6273  *     Context: Kernel Thread
6274  */
6275 static void
6276 sd_register_devid(struct sd_lun *un, dev_info_t *devi, int reservation_flag)
6277 {
6278 	int		rval		= 0;
6279 	uchar_t		*inq80		= NULL;
6280 	size_t		inq80_len	= MAX_INQUIRY_SIZE;
6281 	size_t		inq80_resid	= 0;
6282 	uchar_t		*inq83		= NULL;
6283 	size_t		inq83_len	= MAX_INQUIRY_SIZE;
6284 	size_t		inq83_resid	= 0;
6285 
6286 	ASSERT(un != NULL);
6287 	ASSERT(mutex_owned(SD_MUTEX(un)));
6288 	ASSERT((SD_DEVINFO(un)) == devi);
6289 
6290 	/*
6291 	 * This is the case of antiquated Sun disk drives that have the
6292 	 * FAB_DEVID property set in the disk_table.  These drives
6293 	 * manage the devid's by storing them in last 2 available sectors
6294 	 * on the drive and have them fabricated by the ddi layer by calling
6295 	 * ddi_devid_init and passing the DEVID_FAB flag.
6296 	 */
6297 	if (un->un_f_opt_fab_devid == TRUE) {
6298 		/*
6299 		 * Depending on EINVAL isn't reliable, since a reserved disk
6300 		 * may result in invalid geometry, so check to make sure a
6301 		 * reservation conflict did not occur during attach.
6302 		 */
6303 		if ((sd_get_devid(un) == EINVAL) &&
6304 		    (reservation_flag != SD_TARGET_IS_RESERVED)) {
6305 			/*
6306 			 * The devid is invalid AND there is no reservation
6307 			 * conflict.  Fabricate a new devid.
6308 			 */
6309 			(void) sd_create_devid(un);
6310 		}
6311 
6312 		/* Register the devid if it exists */
6313 		if (un->un_devid != NULL) {
6314 			(void) ddi_devid_register(SD_DEVINFO(un),
6315 			    un->un_devid);
6316 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
6317 			    "sd_register_devid: Devid Fabricated\n");
6318 		}
6319 		return;
6320 	}
6321 
6322 	/*
6323 	 * We check the availibility of the World Wide Name (0x83) and Unit
6324 	 * Serial Number (0x80) pages in sd_check_vpd_page_support(), and using
6325 	 * un_vpd_page_mask from them, we decide which way to get the WWN.  If
6326 	 * 0x83 is availible, that is the best choice.  Our next choice is
6327 	 * 0x80.  If neither are availible, we munge the devid from the device
6328 	 * vid/pid/serial # for Sun qualified disks, or use the ddi framework
6329 	 * to fabricate a devid for non-Sun qualified disks.
6330 	 */
6331 	if (sd_check_vpd_page_support(un) == 0) {
6332 		/* collect page 80 data if available */
6333 		if (un->un_vpd_page_mask & SD_VPD_UNIT_SERIAL_PG) {
6334 
6335 			mutex_exit(SD_MUTEX(un));
6336 			inq80 = kmem_zalloc(inq80_len, KM_SLEEP);
6337 			rval = sd_send_scsi_INQUIRY(un, inq80, inq80_len,
6338 			    0x01, 0x80, &inq80_resid);
6339 
6340 			if (rval != 0) {
6341 				kmem_free(inq80, inq80_len);
6342 				inq80 = NULL;
6343 				inq80_len = 0;
6344 			}
6345 			mutex_enter(SD_MUTEX(un));
6346 		}
6347 
6348 		/* collect page 83 data if available */
6349 		if (un->un_vpd_page_mask & SD_VPD_DEVID_WWN_PG) {
6350 			mutex_exit(SD_MUTEX(un));
6351 			inq83 = kmem_zalloc(inq83_len, KM_SLEEP);
6352 			rval = sd_send_scsi_INQUIRY(un, inq83, inq83_len,
6353 			    0x01, 0x83, &inq83_resid);
6354 
6355 			if (rval != 0) {
6356 				kmem_free(inq83, inq83_len);
6357 				inq83 = NULL;
6358 				inq83_len = 0;
6359 			}
6360 			mutex_enter(SD_MUTEX(un));
6361 		}
6362 	}
6363 
6364 	/* encode best devid possible based on data available */
6365 	if (ddi_devid_scsi_encode(DEVID_SCSI_ENCODE_VERSION_LATEST,
6366 	    (char *)ddi_driver_name(SD_DEVINFO(un)),
6367 	    (uchar_t *)SD_INQUIRY(un), sizeof (*SD_INQUIRY(un)),
6368 	    inq80, inq80_len - inq80_resid, inq83, inq83_len -
6369 	    inq83_resid, &un->un_devid) == DDI_SUCCESS) {
6370 
6371 		/* devid successfully encoded, register devid */
6372 		(void) ddi_devid_register(SD_DEVINFO(un), un->un_devid);
6373 
6374 	} else {
6375 		/*
6376 		 * Unable to encode a devid based on data available.
6377 		 * This is not a Sun qualified disk.  Older Sun disk
6378 		 * drives that have the SD_FAB_DEVID property
6379 		 * set in the disk_table and non Sun qualified
6380 		 * disks are treated in the same manner.  These
6381 		 * drives manage the devid's by storing them in
6382 		 * last 2 available sectors on the drive and
6383 		 * have them fabricated by the ddi layer by
6384 		 * calling ddi_devid_init and passing the
6385 		 * DEVID_FAB flag.
6386 		 * Create a fabricate devid only if there's no
6387 		 * fabricate devid existed.
6388 		 */
6389 		if (sd_get_devid(un) == EINVAL) {
6390 			(void) sd_create_devid(un);
6391 		}
6392 		un->un_f_opt_fab_devid = TRUE;
6393 
6394 		/* Register the devid if it exists */
6395 		if (un->un_devid != NULL) {
6396 			(void) ddi_devid_register(SD_DEVINFO(un),
6397 			    un->un_devid);
6398 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
6399 			    "sd_register_devid: devid fabricated using "
6400 			    "ddi framework\n");
6401 		}
6402 	}
6403 
6404 	/* clean up resources */
6405 	if (inq80 != NULL) {
6406 		kmem_free(inq80, inq80_len);
6407 	}
6408 	if (inq83 != NULL) {
6409 		kmem_free(inq83, inq83_len);
6410 	}
6411 }
6412 
6413 static daddr_t
6414 sd_get_devid_block(struct sd_lun *un)
6415 {
6416 	daddr_t			spc, blk, head, cyl;
6417 
6418 	if ((un->un_f_geometry_is_valid == FALSE) ||
6419 	    (un->un_solaris_size < DK_LABEL_LOC))
6420 		return (-1);
6421 
6422 	if (un->un_vtoc.v_sanity != VTOC_SANE) {
6423 		/* EFI labeled */
6424 		if (un->un_reserved != -1) {
6425 			blk = un->un_map[un->un_reserved].dkl_cylno;
6426 		} else {
6427 			return (-1);
6428 		}
6429 	} else {
6430 		/* SMI labeled */
6431 		/* this geometry doesn't allow us to write a devid */
6432 		if (un->un_g.dkg_acyl < 2) {
6433 			return (-1);
6434 		}
6435 
6436 		/*
6437 		 * Subtract 2 guarantees that the next to last cylinder
6438 		 * is used
6439 		 */
6440 		cyl  = un->un_g.dkg_ncyl  + un->un_g.dkg_acyl - 2;
6441 		spc  = un->un_g.dkg_nhead * un->un_g.dkg_nsect;
6442 		head = un->un_g.dkg_nhead - 1;
6443 		blk  = (cyl * (spc - un->un_g.dkg_apc)) +
6444 		    (head * un->un_g.dkg_nsect) + 1;
6445 	}
6446 	return (blk);
6447 }
6448 
6449 /*
6450  *    Function: sd_get_devid
6451  *
6452  * Description: This routine will return 0 if a valid device id has been
6453  *		obtained from the target and stored in the soft state. If a
6454  *		valid device id has not been previously read and stored, a
6455  *		read attempt will be made.
6456  *
6457  *   Arguments: un - driver soft state (unit) structure
6458  *
6459  * Return Code: 0 if we successfully get the device id
6460  *
6461  *     Context: Kernel Thread
6462  */
6463 
6464 static int
6465 sd_get_devid(struct sd_lun *un)
6466 {
6467 	struct dk_devid		*dkdevid;
6468 	ddi_devid_t		tmpid;
6469 	uint_t			*ip;
6470 	size_t			sz;
6471 	daddr_t			blk;
6472 	int			status;
6473 	int			chksum;
6474 	int			i;
6475 	size_t			buffer_size;
6476 
6477 	ASSERT(un != NULL);
6478 	ASSERT(mutex_owned(SD_MUTEX(un)));
6479 
6480 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_get_devid: entry: un: 0x%p\n",
6481 	    un);
6482 
6483 	if (un->un_devid != NULL) {
6484 		return (0);
6485 	}
6486 
6487 	blk = sd_get_devid_block(un);
6488 	if (blk < 0)
6489 		return (EINVAL);
6490 
6491 	/*
6492 	 * Read and verify device id, stored in the reserved cylinders at the
6493 	 * end of the disk. Backup label is on the odd sectors of the last
6494 	 * track of the last cylinder. Device id will be on track of the next
6495 	 * to last cylinder.
6496 	 */
6497 	buffer_size = SD_REQBYTES2TGTBYTES(un, sizeof (struct dk_devid));
6498 	mutex_exit(SD_MUTEX(un));
6499 	dkdevid = kmem_alloc(buffer_size, KM_SLEEP);
6500 	status = sd_send_scsi_READ(un, dkdevid, buffer_size, blk,
6501 	    SD_PATH_DIRECT);
6502 	if (status != 0) {
6503 		goto error;
6504 	}
6505 
6506 	/* Validate the revision */
6507 	if ((dkdevid->dkd_rev_hi != DK_DEVID_REV_MSB) ||
6508 	    (dkdevid->dkd_rev_lo != DK_DEVID_REV_LSB)) {
6509 		status = EINVAL;
6510 		goto error;
6511 	}
6512 
6513 	/* Calculate the checksum */
6514 	chksum = 0;
6515 	ip = (uint_t *)dkdevid;
6516 	for (i = 0; i < ((un->un_sys_blocksize - sizeof (int))/sizeof (int));
6517 	    i++) {
6518 		chksum ^= ip[i];
6519 	}
6520 
6521 	/* Compare the checksums */
6522 	if (DKD_GETCHKSUM(dkdevid) != chksum) {
6523 		status = EINVAL;
6524 		goto error;
6525 	}
6526 
6527 	/* Validate the device id */
6528 	if (ddi_devid_valid((ddi_devid_t)&dkdevid->dkd_devid) != DDI_SUCCESS) {
6529 		status = EINVAL;
6530 		goto error;
6531 	}
6532 
6533 	/*
6534 	 * Store the device id in the driver soft state
6535 	 */
6536 	sz = ddi_devid_sizeof((ddi_devid_t)&dkdevid->dkd_devid);
6537 	tmpid = kmem_alloc(sz, KM_SLEEP);
6538 
6539 	mutex_enter(SD_MUTEX(un));
6540 
6541 	un->un_devid = tmpid;
6542 	bcopy(&dkdevid->dkd_devid, un->un_devid, sz);
6543 
6544 	kmem_free(dkdevid, buffer_size);
6545 
6546 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_get_devid: exit: un:0x%p\n", un);
6547 
6548 	return (status);
6549 error:
6550 	mutex_enter(SD_MUTEX(un));
6551 	kmem_free(dkdevid, buffer_size);
6552 	return (status);
6553 }
6554 
6555 
6556 /*
6557  *    Function: sd_create_devid
6558  *
6559  * Description: This routine will fabricate the device id and write it
6560  *		to the disk.
6561  *
6562  *   Arguments: un - driver soft state (unit) structure
6563  *
6564  * Return Code: value of the fabricated device id
6565  *
6566  *     Context: Kernel Thread
6567  */
6568 
6569 static ddi_devid_t
6570 sd_create_devid(struct sd_lun *un)
6571 {
6572 	ASSERT(un != NULL);
6573 
6574 	/* Fabricate the devid */
6575 	if (ddi_devid_init(SD_DEVINFO(un), DEVID_FAB, 0, NULL, &un->un_devid)
6576 	    == DDI_FAILURE) {
6577 		return (NULL);
6578 	}
6579 
6580 	/* Write the devid to disk */
6581 	if (sd_write_deviceid(un) != 0) {
6582 		ddi_devid_free(un->un_devid);
6583 		un->un_devid = NULL;
6584 	}
6585 
6586 	return (un->un_devid);
6587 }
6588 
6589 
6590 /*
6591  *    Function: sd_write_deviceid
6592  *
6593  * Description: This routine will write the device id to the disk
6594  *		reserved sector.
6595  *
6596  *   Arguments: un - driver soft state (unit) structure
6597  *
6598  * Return Code: EINVAL
6599  *		value returned by sd_send_scsi_cmd
6600  *
6601  *     Context: Kernel Thread
6602  */
6603 
6604 static int
6605 sd_write_deviceid(struct sd_lun *un)
6606 {
6607 	struct dk_devid		*dkdevid;
6608 	daddr_t			blk;
6609 	uint_t			*ip, chksum;
6610 	int			status;
6611 	int			i;
6612 
6613 	ASSERT(mutex_owned(SD_MUTEX(un)));
6614 
6615 	blk = sd_get_devid_block(un);
6616 	if (blk < 0)
6617 		return (-1);
6618 	mutex_exit(SD_MUTEX(un));
6619 
6620 	/* Allocate the buffer */
6621 	dkdevid = kmem_zalloc(un->un_sys_blocksize, KM_SLEEP);
6622 
6623 	/* Fill in the revision */
6624 	dkdevid->dkd_rev_hi = DK_DEVID_REV_MSB;
6625 	dkdevid->dkd_rev_lo = DK_DEVID_REV_LSB;
6626 
6627 	/* Copy in the device id */
6628 	mutex_enter(SD_MUTEX(un));
6629 	bcopy(un->un_devid, &dkdevid->dkd_devid,
6630 	    ddi_devid_sizeof(un->un_devid));
6631 	mutex_exit(SD_MUTEX(un));
6632 
6633 	/* Calculate the checksum */
6634 	chksum = 0;
6635 	ip = (uint_t *)dkdevid;
6636 	for (i = 0; i < ((un->un_sys_blocksize - sizeof (int))/sizeof (int));
6637 	    i++) {
6638 		chksum ^= ip[i];
6639 	}
6640 
6641 	/* Fill-in checksum */
6642 	DKD_FORMCHKSUM(chksum, dkdevid);
6643 
6644 	/* Write the reserved sector */
6645 	status = sd_send_scsi_WRITE(un, dkdevid, un->un_sys_blocksize, blk,
6646 	    SD_PATH_DIRECT);
6647 
6648 	kmem_free(dkdevid, un->un_sys_blocksize);
6649 
6650 	mutex_enter(SD_MUTEX(un));
6651 	return (status);
6652 }
6653 
6654 
6655 /*
6656  *    Function: sd_check_vpd_page_support
6657  *
6658  * Description: This routine sends an inquiry command with the EVPD bit set and
6659  *		a page code of 0x00 to the device. It is used to determine which
6660  *		vital product pages are availible to find the devid. We are
6661  *		looking for pages 0x83 or 0x80.  If we return a negative 1, the
6662  *		device does not support that command.
6663  *
6664  *   Arguments: un  - driver soft state (unit) structure
6665  *
6666  * Return Code: 0 - success
6667  *		1 - check condition
6668  *
6669  *     Context: This routine can sleep.
6670  */
6671 
6672 static int
6673 sd_check_vpd_page_support(struct sd_lun *un)
6674 {
6675 	uchar_t	*page_list	= NULL;
6676 	uchar_t	page_length	= 0xff;	/* Use max possible length */
6677 	uchar_t	evpd		= 0x01;	/* Set the EVPD bit */
6678 	uchar_t	page_code	= 0x00;	/* Supported VPD Pages */
6679 	int    	rval		= 0;
6680 	int	counter;
6681 
6682 	ASSERT(un != NULL);
6683 	ASSERT(mutex_owned(SD_MUTEX(un)));
6684 
6685 	mutex_exit(SD_MUTEX(un));
6686 
6687 	/*
6688 	 * We'll set the page length to the maximum to save figuring it out
6689 	 * with an additional call.
6690 	 */
6691 	page_list =  kmem_zalloc(page_length, KM_SLEEP);
6692 
6693 	rval = sd_send_scsi_INQUIRY(un, page_list, page_length, evpd,
6694 	    page_code, NULL);
6695 
6696 	mutex_enter(SD_MUTEX(un));
6697 
6698 	/*
6699 	 * Now we must validate that the device accepted the command, as some
6700 	 * drives do not support it.  If the drive does support it, we will
6701 	 * return 0, and the supported pages will be in un_vpd_page_mask.  If
6702 	 * not, we return -1.
6703 	 */
6704 	if ((rval == 0) && (page_list[VPD_MODE_PAGE] == 0x00)) {
6705 		/* Loop to find one of the 2 pages we need */
6706 		counter = 4;  /* Supported pages start at byte 4, with 0x00 */
6707 
6708 		/*
6709 		 * Pages are returned in ascending order, and 0x83 is what we
6710 		 * are hoping for.
6711 		 */
6712 		while ((page_list[counter] <= 0x83) &&
6713 		    (counter <= (page_list[VPD_PAGE_LENGTH] +
6714 		    VPD_HEAD_OFFSET))) {
6715 			/*
6716 			 * Add 3 because page_list[3] is the number of
6717 			 * pages minus 3
6718 			 */
6719 
6720 			switch (page_list[counter]) {
6721 			case 0x00:
6722 				un->un_vpd_page_mask |= SD_VPD_SUPPORTED_PG;
6723 				break;
6724 			case 0x80:
6725 				un->un_vpd_page_mask |= SD_VPD_UNIT_SERIAL_PG;
6726 				break;
6727 			case 0x81:
6728 				un->un_vpd_page_mask |= SD_VPD_OPERATING_PG;
6729 				break;
6730 			case 0x82:
6731 				un->un_vpd_page_mask |= SD_VPD_ASCII_OP_PG;
6732 				break;
6733 			case 0x83:
6734 				un->un_vpd_page_mask |= SD_VPD_DEVID_WWN_PG;
6735 				break;
6736 			}
6737 			counter++;
6738 		}
6739 
6740 	} else {
6741 		rval = -1;
6742 
6743 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
6744 		    "sd_check_vpd_page_support: This drive does not implement "
6745 		    "VPD pages.\n");
6746 	}
6747 
6748 	kmem_free(page_list, page_length);
6749 
6750 	return (rval);
6751 }
6752 
6753 
6754 /*
6755  *    Function: sd_setup_pm
6756  *
6757  * Description: Initialize Power Management on the device
6758  *
6759  *     Context: Kernel Thread
6760  */
6761 
6762 static void
6763 sd_setup_pm(struct sd_lun *un, dev_info_t *devi)
6764 {
6765 	uint_t	log_page_size;
6766 	uchar_t	*log_page_data;
6767 	int	rval;
6768 
6769 	/*
6770 	 * Since we are called from attach, holding a mutex for
6771 	 * un is unnecessary. Because some of the routines called
6772 	 * from here require SD_MUTEX to not be held, assert this
6773 	 * right up front.
6774 	 */
6775 	ASSERT(!mutex_owned(SD_MUTEX(un)));
6776 	/*
6777 	 * Since the sd device does not have the 'reg' property,
6778 	 * cpr will not call its DDI_SUSPEND/DDI_RESUME entries.
6779 	 * The following code is to tell cpr that this device
6780 	 * DOES need to be suspended and resumed.
6781 	 */
6782 	(void) ddi_prop_update_string(DDI_DEV_T_NONE, devi,
6783 	    "pm-hardware-state", "needs-suspend-resume");
6784 
6785 	/*
6786 	 * This complies with the new power management framework
6787 	 * for certain desktop machines. Create the pm_components
6788 	 * property as a string array property.
6789 	 */
6790 	if (un->un_f_pm_supported) {
6791 		/*
6792 		 * not all devices have a motor, try it first.
6793 		 * some devices may return ILLEGAL REQUEST, some
6794 		 * will hang
6795 		 * The following START_STOP_UNIT is used to check if target
6796 		 * device has a motor.
6797 		 */
6798 		un->un_f_start_stop_supported = TRUE;
6799 		if (sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_START,
6800 		    SD_PATH_DIRECT) != 0) {
6801 			un->un_f_start_stop_supported = FALSE;
6802 		}
6803 
6804 		/*
6805 		 * create pm properties anyways otherwise the parent can't
6806 		 * go to sleep
6807 		 */
6808 		(void) sd_create_pm_components(devi, un);
6809 		un->un_f_pm_is_enabled = TRUE;
6810 		return;
6811 	}
6812 
6813 	if (!un->un_f_log_sense_supported) {
6814 		un->un_power_level = SD_SPINDLE_ON;
6815 		un->un_f_pm_is_enabled = FALSE;
6816 		return;
6817 	}
6818 
6819 	rval = sd_log_page_supported(un, START_STOP_CYCLE_PAGE);
6820 
6821 #ifdef	SDDEBUG
6822 	if (sd_force_pm_supported) {
6823 		/* Force a successful result */
6824 		rval = 1;
6825 	}
6826 #endif
6827 
6828 	/*
6829 	 * If the start-stop cycle counter log page is not supported
6830 	 * or if the pm-capable property is SD_PM_CAPABLE_FALSE (0)
6831 	 * then we should not create the pm_components property.
6832 	 */
6833 	if (rval == -1) {
6834 		/*
6835 		 * Error.
6836 		 * Reading log sense failed, most likely this is
6837 		 * an older drive that does not support log sense.
6838 		 * If this fails auto-pm is not supported.
6839 		 */
6840 		un->un_power_level = SD_SPINDLE_ON;
6841 		un->un_f_pm_is_enabled = FALSE;
6842 
6843 	} else if (rval == 0) {
6844 		/*
6845 		 * Page not found.
6846 		 * The start stop cycle counter is implemented as page
6847 		 * START_STOP_CYCLE_PAGE_VU_PAGE (0x31) in older disks. For
6848 		 * newer disks it is implemented as START_STOP_CYCLE_PAGE (0xE).
6849 		 */
6850 		if (sd_log_page_supported(un, START_STOP_CYCLE_VU_PAGE) == 1) {
6851 			/*
6852 			 * Page found, use this one.
6853 			 */
6854 			un->un_start_stop_cycle_page = START_STOP_CYCLE_VU_PAGE;
6855 			un->un_f_pm_is_enabled = TRUE;
6856 		} else {
6857 			/*
6858 			 * Error or page not found.
6859 			 * auto-pm is not supported for this device.
6860 			 */
6861 			un->un_power_level = SD_SPINDLE_ON;
6862 			un->un_f_pm_is_enabled = FALSE;
6863 		}
6864 	} else {
6865 		/*
6866 		 * Page found, use it.
6867 		 */
6868 		un->un_start_stop_cycle_page = START_STOP_CYCLE_PAGE;
6869 		un->un_f_pm_is_enabled = TRUE;
6870 	}
6871 
6872 
6873 	if (un->un_f_pm_is_enabled == TRUE) {
6874 		log_page_size = START_STOP_CYCLE_COUNTER_PAGE_SIZE;
6875 		log_page_data = kmem_zalloc(log_page_size, KM_SLEEP);
6876 
6877 		rval = sd_send_scsi_LOG_SENSE(un, log_page_data,
6878 		    log_page_size, un->un_start_stop_cycle_page,
6879 		    0x01, 0, SD_PATH_DIRECT);
6880 #ifdef	SDDEBUG
6881 		if (sd_force_pm_supported) {
6882 			/* Force a successful result */
6883 			rval = 0;
6884 		}
6885 #endif
6886 
6887 		/*
6888 		 * If the Log sense for Page( Start/stop cycle counter page)
6889 		 * succeeds, then power managment is supported and we can
6890 		 * enable auto-pm.
6891 		 */
6892 		if (rval == 0)  {
6893 			(void) sd_create_pm_components(devi, un);
6894 		} else {
6895 			un->un_power_level = SD_SPINDLE_ON;
6896 			un->un_f_pm_is_enabled = FALSE;
6897 		}
6898 
6899 		kmem_free(log_page_data, log_page_size);
6900 	}
6901 }
6902 
6903 
6904 /*
6905  *    Function: sd_create_pm_components
6906  *
6907  * Description: Initialize PM property.
6908  *
6909  *     Context: Kernel thread context
6910  */
6911 
6912 static void
6913 sd_create_pm_components(dev_info_t *devi, struct sd_lun *un)
6914 {
6915 	char *pm_comp[] = { "NAME=spindle-motor", "0=off", "1=on", NULL };
6916 
6917 	ASSERT(!mutex_owned(SD_MUTEX(un)));
6918 
6919 	if (ddi_prop_update_string_array(DDI_DEV_T_NONE, devi,
6920 	    "pm-components", pm_comp, 3) == DDI_PROP_SUCCESS) {
6921 		/*
6922 		 * When components are initially created they are idle,
6923 		 * power up any non-removables.
6924 		 * Note: the return value of pm_raise_power can't be used
6925 		 * for determining if PM should be enabled for this device.
6926 		 * Even if you check the return values and remove this
6927 		 * property created above, the PM framework will not honor the
6928 		 * change after the first call to pm_raise_power. Hence,
6929 		 * removal of that property does not help if pm_raise_power
6930 		 * fails. In the case of removable media, the start/stop
6931 		 * will fail if the media is not present.
6932 		 */
6933 		if (un->un_f_attach_spinup && (pm_raise_power(SD_DEVINFO(un), 0,
6934 		    SD_SPINDLE_ON) == DDI_SUCCESS)) {
6935 			mutex_enter(SD_MUTEX(un));
6936 			un->un_power_level = SD_SPINDLE_ON;
6937 			mutex_enter(&un->un_pm_mutex);
6938 			/* Set to on and not busy. */
6939 			un->un_pm_count = 0;
6940 		} else {
6941 			mutex_enter(SD_MUTEX(un));
6942 			un->un_power_level = SD_SPINDLE_OFF;
6943 			mutex_enter(&un->un_pm_mutex);
6944 			/* Set to off. */
6945 			un->un_pm_count = -1;
6946 		}
6947 		mutex_exit(&un->un_pm_mutex);
6948 		mutex_exit(SD_MUTEX(un));
6949 	} else {
6950 		un->un_power_level = SD_SPINDLE_ON;
6951 		un->un_f_pm_is_enabled = FALSE;
6952 	}
6953 }
6954 
6955 
6956 /*
6957  *    Function: sd_ddi_suspend
6958  *
6959  * Description: Performs system power-down operations. This includes
6960  *		setting the drive state to indicate its suspended so
6961  *		that no new commands will be accepted. Also, wait for
6962  *		all commands that are in transport or queued to a timer
6963  *		for retry to complete. All timeout threads are cancelled.
6964  *
6965  * Return Code: DDI_FAILURE or DDI_SUCCESS
6966  *
6967  *     Context: Kernel thread context
6968  */
6969 
6970 static int
6971 sd_ddi_suspend(dev_info_t *devi)
6972 {
6973 	struct	sd_lun	*un;
6974 	clock_t		wait_cmds_complete;
6975 
6976 	un = ddi_get_soft_state(sd_state, ddi_get_instance(devi));
6977 	if (un == NULL) {
6978 		return (DDI_FAILURE);
6979 	}
6980 
6981 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: entry\n");
6982 
6983 	mutex_enter(SD_MUTEX(un));
6984 
6985 	/* Return success if the device is already suspended. */
6986 	if (un->un_state == SD_STATE_SUSPENDED) {
6987 		mutex_exit(SD_MUTEX(un));
6988 		SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: "
6989 		    "device already suspended, exiting\n");
6990 		return (DDI_SUCCESS);
6991 	}
6992 
6993 	/* Return failure if the device is being used by HA */
6994 	if (un->un_resvd_status &
6995 	    (SD_RESERVE | SD_WANT_RESERVE | SD_LOST_RESERVE)) {
6996 		mutex_exit(SD_MUTEX(un));
6997 		SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: "
6998 		    "device in use by HA, exiting\n");
6999 		return (DDI_FAILURE);
7000 	}
7001 
7002 	/*
7003 	 * Return failure if the device is in a resource wait
7004 	 * or power changing state.
7005 	 */
7006 	if ((un->un_state == SD_STATE_RWAIT) ||
7007 	    (un->un_state == SD_STATE_PM_CHANGING)) {
7008 		mutex_exit(SD_MUTEX(un));
7009 		SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: "
7010 		    "device in resource wait state, exiting\n");
7011 		return (DDI_FAILURE);
7012 	}
7013 
7014 
7015 	un->un_save_state = un->un_last_state;
7016 	New_state(un, SD_STATE_SUSPENDED);
7017 
7018 	/*
7019 	 * Wait for all commands that are in transport or queued to a timer
7020 	 * for retry to complete.
7021 	 *
7022 	 * While waiting, no new commands will be accepted or sent because of
7023 	 * the new state we set above.
7024 	 *
7025 	 * Wait till current operation has completed. If we are in the resource
7026 	 * wait state (with an intr outstanding) then we need to wait till the
7027 	 * intr completes and starts the next cmd. We want to wait for
7028 	 * SD_WAIT_CMDS_COMPLETE seconds before failing the DDI_SUSPEND.
7029 	 */
7030 	wait_cmds_complete = ddi_get_lbolt() +
7031 	    (sd_wait_cmds_complete * drv_usectohz(1000000));
7032 
7033 	while (un->un_ncmds_in_transport != 0) {
7034 		/*
7035 		 * Fail if commands do not finish in the specified time.
7036 		 */
7037 		if (cv_timedwait(&un->un_disk_busy_cv, SD_MUTEX(un),
7038 		    wait_cmds_complete) == -1) {
7039 			/*
7040 			 * Undo the state changes made above. Everything
7041 			 * must go back to it's original value.
7042 			 */
7043 			Restore_state(un);
7044 			un->un_last_state = un->un_save_state;
7045 			/* Wake up any threads that might be waiting. */
7046 			cv_broadcast(&un->un_suspend_cv);
7047 			mutex_exit(SD_MUTEX(un));
7048 			SD_ERROR(SD_LOG_IO_PM, un,
7049 			    "sd_ddi_suspend: failed due to outstanding cmds\n");
7050 			SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: exiting\n");
7051 			return (DDI_FAILURE);
7052 		}
7053 	}
7054 
7055 	/*
7056 	 * Cancel SCSI watch thread and timeouts, if any are active
7057 	 */
7058 
7059 	if (SD_OK_TO_SUSPEND_SCSI_WATCHER(un)) {
7060 		opaque_t temp_token = un->un_swr_token;
7061 		mutex_exit(SD_MUTEX(un));
7062 		scsi_watch_suspend(temp_token);
7063 		mutex_enter(SD_MUTEX(un));
7064 	}
7065 
7066 	if (un->un_reset_throttle_timeid != NULL) {
7067 		timeout_id_t temp_id = un->un_reset_throttle_timeid;
7068 		un->un_reset_throttle_timeid = NULL;
7069 		mutex_exit(SD_MUTEX(un));
7070 		(void) untimeout(temp_id);
7071 		mutex_enter(SD_MUTEX(un));
7072 	}
7073 
7074 	if (un->un_dcvb_timeid != NULL) {
7075 		timeout_id_t temp_id = un->un_dcvb_timeid;
7076 		un->un_dcvb_timeid = NULL;
7077 		mutex_exit(SD_MUTEX(un));
7078 		(void) untimeout(temp_id);
7079 		mutex_enter(SD_MUTEX(un));
7080 	}
7081 
7082 	mutex_enter(&un->un_pm_mutex);
7083 	if (un->un_pm_timeid != NULL) {
7084 		timeout_id_t temp_id = un->un_pm_timeid;
7085 		un->un_pm_timeid = NULL;
7086 		mutex_exit(&un->un_pm_mutex);
7087 		mutex_exit(SD_MUTEX(un));
7088 		(void) untimeout(temp_id);
7089 		mutex_enter(SD_MUTEX(un));
7090 	} else {
7091 		mutex_exit(&un->un_pm_mutex);
7092 	}
7093 
7094 	if (un->un_retry_timeid != NULL) {
7095 		timeout_id_t temp_id = un->un_retry_timeid;
7096 		un->un_retry_timeid = NULL;
7097 		mutex_exit(SD_MUTEX(un));
7098 		(void) untimeout(temp_id);
7099 		mutex_enter(SD_MUTEX(un));
7100 	}
7101 
7102 	if (un->un_direct_priority_timeid != NULL) {
7103 		timeout_id_t temp_id = un->un_direct_priority_timeid;
7104 		un->un_direct_priority_timeid = NULL;
7105 		mutex_exit(SD_MUTEX(un));
7106 		(void) untimeout(temp_id);
7107 		mutex_enter(SD_MUTEX(un));
7108 	}
7109 
7110 	if (un->un_f_is_fibre == TRUE) {
7111 		/*
7112 		 * Remove callbacks for insert and remove events
7113 		 */
7114 		if (un->un_insert_event != NULL) {
7115 			mutex_exit(SD_MUTEX(un));
7116 			(void) ddi_remove_event_handler(un->un_insert_cb_id);
7117 			mutex_enter(SD_MUTEX(un));
7118 			un->un_insert_event = NULL;
7119 		}
7120 
7121 		if (un->un_remove_event != NULL) {
7122 			mutex_exit(SD_MUTEX(un));
7123 			(void) ddi_remove_event_handler(un->un_remove_cb_id);
7124 			mutex_enter(SD_MUTEX(un));
7125 			un->un_remove_event = NULL;
7126 		}
7127 	}
7128 
7129 	mutex_exit(SD_MUTEX(un));
7130 
7131 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: exit\n");
7132 
7133 	return (DDI_SUCCESS);
7134 }
7135 
7136 
7137 /*
7138  *    Function: sd_ddi_pm_suspend
7139  *
7140  * Description: Set the drive state to low power.
7141  *		Someone else is required to actually change the drive
7142  *		power level.
7143  *
7144  *   Arguments: un - driver soft state (unit) structure
7145  *
7146  * Return Code: DDI_FAILURE or DDI_SUCCESS
7147  *
7148  *     Context: Kernel thread context
7149  */
7150 
7151 static int
7152 sd_ddi_pm_suspend(struct sd_lun *un)
7153 {
7154 	ASSERT(un != NULL);
7155 	SD_TRACE(SD_LOG_POWER, un, "sd_ddi_pm_suspend: entry\n");
7156 
7157 	ASSERT(!mutex_owned(SD_MUTEX(un)));
7158 	mutex_enter(SD_MUTEX(un));
7159 
7160 	/*
7161 	 * Exit if power management is not enabled for this device, or if
7162 	 * the device is being used by HA.
7163 	 */
7164 	if ((un->un_f_pm_is_enabled == FALSE) || (un->un_resvd_status &
7165 	    (SD_RESERVE | SD_WANT_RESERVE | SD_LOST_RESERVE))) {
7166 		mutex_exit(SD_MUTEX(un));
7167 		SD_TRACE(SD_LOG_POWER, un, "sd_ddi_pm_suspend: exiting\n");
7168 		return (DDI_SUCCESS);
7169 	}
7170 
7171 	SD_INFO(SD_LOG_POWER, un, "sd_ddi_pm_suspend: un_ncmds_in_driver=%ld\n",
7172 	    un->un_ncmds_in_driver);
7173 
7174 	/*
7175 	 * See if the device is not busy, ie.:
7176 	 *    - we have no commands in the driver for this device
7177 	 *    - not waiting for resources
7178 	 */
7179 	if ((un->un_ncmds_in_driver == 0) &&
7180 	    (un->un_state != SD_STATE_RWAIT)) {
7181 		/*
7182 		 * The device is not busy, so it is OK to go to low power state.
7183 		 * Indicate low power, but rely on someone else to actually
7184 		 * change it.
7185 		 */
7186 		mutex_enter(&un->un_pm_mutex);
7187 		un->un_pm_count = -1;
7188 		mutex_exit(&un->un_pm_mutex);
7189 		un->un_power_level = SD_SPINDLE_OFF;
7190 	}
7191 
7192 	mutex_exit(SD_MUTEX(un));
7193 
7194 	SD_TRACE(SD_LOG_POWER, un, "sd_ddi_pm_suspend: exit\n");
7195 
7196 	return (DDI_SUCCESS);
7197 }
7198 
7199 
7200 /*
7201  *    Function: sd_ddi_resume
7202  *
7203  * Description: Performs system power-up operations..
7204  *
7205  * Return Code: DDI_SUCCESS
7206  *		DDI_FAILURE
7207  *
7208  *     Context: Kernel thread context
7209  */
7210 
7211 static int
7212 sd_ddi_resume(dev_info_t *devi)
7213 {
7214 	struct	sd_lun	*un;
7215 
7216 	un = ddi_get_soft_state(sd_state, ddi_get_instance(devi));
7217 	if (un == NULL) {
7218 		return (DDI_FAILURE);
7219 	}
7220 
7221 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_resume: entry\n");
7222 
7223 	mutex_enter(SD_MUTEX(un));
7224 	Restore_state(un);
7225 
7226 	/*
7227 	 * Restore the state which was saved to give the
7228 	 * the right state in un_last_state
7229 	 */
7230 	un->un_last_state = un->un_save_state;
7231 	/*
7232 	 * Note: throttle comes back at full.
7233 	 * Also note: this MUST be done before calling pm_raise_power
7234 	 * otherwise the system can get hung in biowait. The scenario where
7235 	 * this'll happen is under cpr suspend. Writing of the system
7236 	 * state goes through sddump, which writes 0 to un_throttle. If
7237 	 * writing the system state then fails, example if the partition is
7238 	 * too small, then cpr attempts a resume. If throttle isn't restored
7239 	 * from the saved value until after calling pm_raise_power then
7240 	 * cmds sent in sdpower are not transported and sd_send_scsi_cmd hangs
7241 	 * in biowait.
7242 	 */
7243 	un->un_throttle = un->un_saved_throttle;
7244 
7245 	/*
7246 	 * The chance of failure is very rare as the only command done in power
7247 	 * entry point is START command when you transition from 0->1 or
7248 	 * unknown->1. Put it to SPINDLE ON state irrespective of the state at
7249 	 * which suspend was done. Ignore the return value as the resume should
7250 	 * not be failed. In the case of removable media the media need not be
7251 	 * inserted and hence there is a chance that raise power will fail with
7252 	 * media not present.
7253 	 */
7254 	if (un->un_f_attach_spinup) {
7255 		mutex_exit(SD_MUTEX(un));
7256 		(void) pm_raise_power(SD_DEVINFO(un), 0, SD_SPINDLE_ON);
7257 		mutex_enter(SD_MUTEX(un));
7258 	}
7259 
7260 	/*
7261 	 * Don't broadcast to the suspend cv and therefore possibly
7262 	 * start I/O until after power has been restored.
7263 	 */
7264 	cv_broadcast(&un->un_suspend_cv);
7265 	cv_broadcast(&un->un_state_cv);
7266 
7267 	/* restart thread */
7268 	if (SD_OK_TO_RESUME_SCSI_WATCHER(un)) {
7269 		scsi_watch_resume(un->un_swr_token);
7270 	}
7271 
7272 #if (defined(__fibre))
7273 	if (un->un_f_is_fibre == TRUE) {
7274 		/*
7275 		 * Add callbacks for insert and remove events
7276 		 */
7277 		if (strcmp(un->un_node_type, DDI_NT_BLOCK_CHAN)) {
7278 			sd_init_event_callbacks(un);
7279 		}
7280 	}
7281 #endif
7282 
7283 	/*
7284 	 * Transport any pending commands to the target.
7285 	 *
7286 	 * If this is a low-activity device commands in queue will have to wait
7287 	 * until new commands come in, which may take awhile. Also, we
7288 	 * specifically don't check un_ncmds_in_transport because we know that
7289 	 * there really are no commands in progress after the unit was
7290 	 * suspended and we could have reached the throttle level, been
7291 	 * suspended, and have no new commands coming in for awhile. Highly
7292 	 * unlikely, but so is the low-activity disk scenario.
7293 	 */
7294 	ddi_xbuf_dispatch(un->un_xbuf_attr);
7295 
7296 	sd_start_cmds(un, NULL);
7297 	mutex_exit(SD_MUTEX(un));
7298 
7299 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_resume: exit\n");
7300 
7301 	return (DDI_SUCCESS);
7302 }
7303 
7304 
7305 /*
7306  *    Function: sd_ddi_pm_resume
7307  *
7308  * Description: Set the drive state to powered on.
7309  *		Someone else is required to actually change the drive
7310  *		power level.
7311  *
7312  *   Arguments: un - driver soft state (unit) structure
7313  *
7314  * Return Code: DDI_SUCCESS
7315  *
7316  *     Context: Kernel thread context
7317  */
7318 
7319 static int
7320 sd_ddi_pm_resume(struct sd_lun *un)
7321 {
7322 	ASSERT(un != NULL);
7323 
7324 	ASSERT(!mutex_owned(SD_MUTEX(un)));
7325 	mutex_enter(SD_MUTEX(un));
7326 	un->un_power_level = SD_SPINDLE_ON;
7327 
7328 	ASSERT(!mutex_owned(&un->un_pm_mutex));
7329 	mutex_enter(&un->un_pm_mutex);
7330 	if (SD_DEVICE_IS_IN_LOW_POWER(un)) {
7331 		un->un_pm_count++;
7332 		ASSERT(un->un_pm_count == 0);
7333 		/*
7334 		 * Note: no longer do the cv_broadcast on un_suspend_cv. The
7335 		 * un_suspend_cv is for a system resume, not a power management
7336 		 * device resume. (4297749)
7337 		 *	 cv_broadcast(&un->un_suspend_cv);
7338 		 */
7339 	}
7340 	mutex_exit(&un->un_pm_mutex);
7341 	mutex_exit(SD_MUTEX(un));
7342 
7343 	return (DDI_SUCCESS);
7344 }
7345 
7346 
7347 /*
7348  *    Function: sd_pm_idletimeout_handler
7349  *
7350  * Description: A timer routine that's active only while a device is busy.
7351  *		The purpose is to extend slightly the pm framework's busy
7352  *		view of the device to prevent busy/idle thrashing for
7353  *		back-to-back commands. Do this by comparing the current time
7354  *		to the time at which the last command completed and when the
7355  *		difference is greater than sd_pm_idletime, call
7356  *		pm_idle_component. In addition to indicating idle to the pm
7357  *		framework, update the chain type to again use the internal pm
7358  *		layers of the driver.
7359  *
7360  *   Arguments: arg - driver soft state (unit) structure
7361  *
7362  *     Context: Executes in a timeout(9F) thread context
7363  */
7364 
7365 static void
7366 sd_pm_idletimeout_handler(void *arg)
7367 {
7368 	struct sd_lun *un = arg;
7369 
7370 	time_t	now;
7371 
7372 	mutex_enter(&sd_detach_mutex);
7373 	if (un->un_detach_count != 0) {
7374 		/* Abort if the instance is detaching */
7375 		mutex_exit(&sd_detach_mutex);
7376 		return;
7377 	}
7378 	mutex_exit(&sd_detach_mutex);
7379 
7380 	now = ddi_get_time();
7381 	/*
7382 	 * Grab both mutexes, in the proper order, since we're accessing
7383 	 * both PM and softstate variables.
7384 	 */
7385 	mutex_enter(SD_MUTEX(un));
7386 	mutex_enter(&un->un_pm_mutex);
7387 	if (((now - un->un_pm_idle_time) > sd_pm_idletime) &&
7388 	    (un->un_ncmds_in_driver == 0) && (un->un_pm_count == 0)) {
7389 		/*
7390 		 * Update the chain types.
7391 		 * This takes affect on the next new command received.
7392 		 */
7393 		if (un->un_f_non_devbsize_supported) {
7394 			un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA;
7395 		} else {
7396 			un->un_buf_chain_type = SD_CHAIN_INFO_DISK;
7397 		}
7398 		un->un_uscsi_chain_type  = SD_CHAIN_INFO_USCSI_CMD;
7399 
7400 		SD_TRACE(SD_LOG_IO_PM, un,
7401 		    "sd_pm_idletimeout_handler: idling device\n");
7402 		(void) pm_idle_component(SD_DEVINFO(un), 0);
7403 		un->un_pm_idle_timeid = NULL;
7404 	} else {
7405 		un->un_pm_idle_timeid =
7406 			timeout(sd_pm_idletimeout_handler, un,
7407 			(drv_usectohz((clock_t)300000))); /* 300 ms. */
7408 	}
7409 	mutex_exit(&un->un_pm_mutex);
7410 	mutex_exit(SD_MUTEX(un));
7411 }
7412 
7413 
7414 /*
7415  *    Function: sd_pm_timeout_handler
7416  *
7417  * Description: Callback to tell framework we are idle.
7418  *
7419  *     Context: timeout(9f) thread context.
7420  */
7421 
7422 static void
7423 sd_pm_timeout_handler(void *arg)
7424 {
7425 	struct sd_lun *un = arg;
7426 
7427 	(void) pm_idle_component(SD_DEVINFO(un), 0);
7428 	mutex_enter(&un->un_pm_mutex);
7429 	un->un_pm_timeid = NULL;
7430 	mutex_exit(&un->un_pm_mutex);
7431 }
7432 
7433 
7434 /*
7435  *    Function: sdpower
7436  *
7437  * Description: PM entry point.
7438  *
7439  * Return Code: DDI_SUCCESS
7440  *		DDI_FAILURE
7441  *
7442  *     Context: Kernel thread context
7443  */
7444 
7445 static int
7446 sdpower(dev_info_t *devi, int component, int level)
7447 {
7448 	struct sd_lun	*un;
7449 	int		instance;
7450 	int		rval = DDI_SUCCESS;
7451 	uint_t		i, log_page_size, maxcycles, ncycles;
7452 	uchar_t		*log_page_data;
7453 	int		log_sense_page;
7454 	int		medium_present;
7455 	time_t		intvlp;
7456 	dev_t		dev;
7457 	struct pm_trans_data	sd_pm_tran_data;
7458 	uchar_t		save_state;
7459 	int		sval;
7460 	uchar_t		state_before_pm;
7461 	int		got_semaphore_here;
7462 
7463 	instance = ddi_get_instance(devi);
7464 
7465 	if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) ||
7466 	    (SD_SPINDLE_OFF > level) || (level > SD_SPINDLE_ON) ||
7467 	    component != 0) {
7468 		return (DDI_FAILURE);
7469 	}
7470 
7471 	dev = sd_make_device(SD_DEVINFO(un));
7472 
7473 	SD_TRACE(SD_LOG_IO_PM, un, "sdpower: entry, level = %d\n", level);
7474 
7475 	/*
7476 	 * Must synchronize power down with close.
7477 	 * Attempt to decrement/acquire the open/close semaphore,
7478 	 * but do NOT wait on it. If it's not greater than zero,
7479 	 * ie. it can't be decremented without waiting, then
7480 	 * someone else, either open or close, already has it
7481 	 * and the try returns 0. Use that knowledge here to determine
7482 	 * if it's OK to change the device power level.
7483 	 * Also, only increment it on exit if it was decremented, ie. gotten,
7484 	 * here.
7485 	 */
7486 	got_semaphore_here = sema_tryp(&un->un_semoclose);
7487 
7488 	mutex_enter(SD_MUTEX(un));
7489 
7490 	SD_INFO(SD_LOG_POWER, un, "sdpower: un_ncmds_in_driver = %ld\n",
7491 	    un->un_ncmds_in_driver);
7492 
7493 	/*
7494 	 * If un_ncmds_in_driver is non-zero it indicates commands are
7495 	 * already being processed in the driver, or if the semaphore was
7496 	 * not gotten here it indicates an open or close is being processed.
7497 	 * At the same time somebody is requesting to go low power which
7498 	 * can't happen, therefore we need to return failure.
7499 	 */
7500 	if ((level == SD_SPINDLE_OFF) &&
7501 	    ((un->un_ncmds_in_driver != 0) || (got_semaphore_here == 0))) {
7502 		mutex_exit(SD_MUTEX(un));
7503 
7504 		if (got_semaphore_here != 0) {
7505 			sema_v(&un->un_semoclose);
7506 		}
7507 		SD_TRACE(SD_LOG_IO_PM, un,
7508 		    "sdpower: exit, device has queued cmds.\n");
7509 		return (DDI_FAILURE);
7510 	}
7511 
7512 	/*
7513 	 * if it is OFFLINE that means the disk is completely dead
7514 	 * in our case we have to put the disk in on or off by sending commands
7515 	 * Of course that will fail anyway so return back here.
7516 	 *
7517 	 * Power changes to a device that's OFFLINE or SUSPENDED
7518 	 * are not allowed.
7519 	 */
7520 	if ((un->un_state == SD_STATE_OFFLINE) ||
7521 	    (un->un_state == SD_STATE_SUSPENDED)) {
7522 		mutex_exit(SD_MUTEX(un));
7523 
7524 		if (got_semaphore_here != 0) {
7525 			sema_v(&un->un_semoclose);
7526 		}
7527 		SD_TRACE(SD_LOG_IO_PM, un,
7528 		    "sdpower: exit, device is off-line.\n");
7529 		return (DDI_FAILURE);
7530 	}
7531 
7532 	/*
7533 	 * Change the device's state to indicate it's power level
7534 	 * is being changed. Do this to prevent a power off in the
7535 	 * middle of commands, which is especially bad on devices
7536 	 * that are really powered off instead of just spun down.
7537 	 */
7538 	state_before_pm = un->un_state;
7539 	un->un_state = SD_STATE_PM_CHANGING;
7540 
7541 	mutex_exit(SD_MUTEX(un));
7542 
7543 	/*
7544 	 * If "pm-capable" property is set to TRUE by HBA drivers,
7545 	 * bypass the following checking, otherwise, check the log
7546 	 * sense information for this device
7547 	 */
7548 	if ((level == SD_SPINDLE_OFF) && un->un_f_log_sense_supported) {
7549 		/*
7550 		 * Get the log sense information to understand whether the
7551 		 * the powercycle counts have gone beyond the threshhold.
7552 		 */
7553 		log_page_size = START_STOP_CYCLE_COUNTER_PAGE_SIZE;
7554 		log_page_data = kmem_zalloc(log_page_size, KM_SLEEP);
7555 
7556 		mutex_enter(SD_MUTEX(un));
7557 		log_sense_page = un->un_start_stop_cycle_page;
7558 		mutex_exit(SD_MUTEX(un));
7559 
7560 		rval = sd_send_scsi_LOG_SENSE(un, log_page_data,
7561 		    log_page_size, log_sense_page, 0x01, 0, SD_PATH_DIRECT);
7562 #ifdef	SDDEBUG
7563 		if (sd_force_pm_supported) {
7564 			/* Force a successful result */
7565 			rval = 0;
7566 		}
7567 #endif
7568 		if (rval != 0) {
7569 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
7570 			    "Log Sense Failed\n");
7571 			kmem_free(log_page_data, log_page_size);
7572 			/* Cannot support power management on those drives */
7573 
7574 			if (got_semaphore_here != 0) {
7575 				sema_v(&un->un_semoclose);
7576 			}
7577 			/*
7578 			 * On exit put the state back to it's original value
7579 			 * and broadcast to anyone waiting for the power
7580 			 * change completion.
7581 			 */
7582 			mutex_enter(SD_MUTEX(un));
7583 			un->un_state = state_before_pm;
7584 			cv_broadcast(&un->un_suspend_cv);
7585 			mutex_exit(SD_MUTEX(un));
7586 			SD_TRACE(SD_LOG_IO_PM, un,
7587 			    "sdpower: exit, Log Sense Failed.\n");
7588 			return (DDI_FAILURE);
7589 		}
7590 
7591 		/*
7592 		 * From the page data - Convert the essential information to
7593 		 * pm_trans_data
7594 		 */
7595 		maxcycles =
7596 		    (log_page_data[0x1c] << 24) | (log_page_data[0x1d] << 16) |
7597 		    (log_page_data[0x1E] << 8)  | log_page_data[0x1F];
7598 
7599 		sd_pm_tran_data.un.scsi_cycles.lifemax = maxcycles;
7600 
7601 		ncycles =
7602 		    (log_page_data[0x24] << 24) | (log_page_data[0x25] << 16) |
7603 		    (log_page_data[0x26] << 8)  | log_page_data[0x27];
7604 
7605 		sd_pm_tran_data.un.scsi_cycles.ncycles = ncycles;
7606 
7607 		for (i = 0; i < DC_SCSI_MFR_LEN; i++) {
7608 			sd_pm_tran_data.un.scsi_cycles.svc_date[i] =
7609 			    log_page_data[8+i];
7610 		}
7611 
7612 		kmem_free(log_page_data, log_page_size);
7613 
7614 		/*
7615 		 * Call pm_trans_check routine to get the Ok from
7616 		 * the global policy
7617 		 */
7618 
7619 		sd_pm_tran_data.format = DC_SCSI_FORMAT;
7620 		sd_pm_tran_data.un.scsi_cycles.flag = 0;
7621 
7622 		rval = pm_trans_check(&sd_pm_tran_data, &intvlp);
7623 #ifdef	SDDEBUG
7624 		if (sd_force_pm_supported) {
7625 			/* Force a successful result */
7626 			rval = 1;
7627 		}
7628 #endif
7629 		switch (rval) {
7630 		case 0:
7631 			/*
7632 			 * Not Ok to Power cycle or error in parameters passed
7633 			 * Would have given the advised time to consider power
7634 			 * cycle. Based on the new intvlp parameter we are
7635 			 * supposed to pretend we are busy so that pm framework
7636 			 * will never call our power entry point. Because of
7637 			 * that install a timeout handler and wait for the
7638 			 * recommended time to elapse so that power management
7639 			 * can be effective again.
7640 			 *
7641 			 * To effect this behavior, call pm_busy_component to
7642 			 * indicate to the framework this device is busy.
7643 			 * By not adjusting un_pm_count the rest of PM in
7644 			 * the driver will function normally, and independant
7645 			 * of this but because the framework is told the device
7646 			 * is busy it won't attempt powering down until it gets
7647 			 * a matching idle. The timeout handler sends this.
7648 			 * Note: sd_pm_entry can't be called here to do this
7649 			 * because sdpower may have been called as a result
7650 			 * of a call to pm_raise_power from within sd_pm_entry.
7651 			 *
7652 			 * If a timeout handler is already active then
7653 			 * don't install another.
7654 			 */
7655 			mutex_enter(&un->un_pm_mutex);
7656 			if (un->un_pm_timeid == NULL) {
7657 				un->un_pm_timeid =
7658 				    timeout(sd_pm_timeout_handler,
7659 				    un, intvlp * drv_usectohz(1000000));
7660 				mutex_exit(&un->un_pm_mutex);
7661 				(void) pm_busy_component(SD_DEVINFO(un), 0);
7662 			} else {
7663 				mutex_exit(&un->un_pm_mutex);
7664 			}
7665 			if (got_semaphore_here != 0) {
7666 				sema_v(&un->un_semoclose);
7667 			}
7668 			/*
7669 			 * On exit put the state back to it's original value
7670 			 * and broadcast to anyone waiting for the power
7671 			 * change completion.
7672 			 */
7673 			mutex_enter(SD_MUTEX(un));
7674 			un->un_state = state_before_pm;
7675 			cv_broadcast(&un->un_suspend_cv);
7676 			mutex_exit(SD_MUTEX(un));
7677 
7678 			SD_TRACE(SD_LOG_IO_PM, un, "sdpower: exit, "
7679 			    "trans check Failed, not ok to power cycle.\n");
7680 			return (DDI_FAILURE);
7681 
7682 		case -1:
7683 			if (got_semaphore_here != 0) {
7684 				sema_v(&un->un_semoclose);
7685 			}
7686 			/*
7687 			 * On exit put the state back to it's original value
7688 			 * and broadcast to anyone waiting for the power
7689 			 * change completion.
7690 			 */
7691 			mutex_enter(SD_MUTEX(un));
7692 			un->un_state = state_before_pm;
7693 			cv_broadcast(&un->un_suspend_cv);
7694 			mutex_exit(SD_MUTEX(un));
7695 			SD_TRACE(SD_LOG_IO_PM, un,
7696 			    "sdpower: exit, trans check command Failed.\n");
7697 			return (DDI_FAILURE);
7698 		}
7699 	}
7700 
7701 	if (level == SD_SPINDLE_OFF) {
7702 		/*
7703 		 * Save the last state... if the STOP FAILS we need it
7704 		 * for restoring
7705 		 */
7706 		mutex_enter(SD_MUTEX(un));
7707 		save_state = un->un_last_state;
7708 		/*
7709 		 * There must not be any cmds. getting processed
7710 		 * in the driver when we get here. Power to the
7711 		 * device is potentially going off.
7712 		 */
7713 		ASSERT(un->un_ncmds_in_driver == 0);
7714 		mutex_exit(SD_MUTEX(un));
7715 
7716 		/*
7717 		 * For now suspend the device completely before spindle is
7718 		 * turned off
7719 		 */
7720 		if ((rval = sd_ddi_pm_suspend(un)) == DDI_FAILURE) {
7721 			if (got_semaphore_here != 0) {
7722 				sema_v(&un->un_semoclose);
7723 			}
7724 			/*
7725 			 * On exit put the state back to it's original value
7726 			 * and broadcast to anyone waiting for the power
7727 			 * change completion.
7728 			 */
7729 			mutex_enter(SD_MUTEX(un));
7730 			un->un_state = state_before_pm;
7731 			cv_broadcast(&un->un_suspend_cv);
7732 			mutex_exit(SD_MUTEX(un));
7733 			SD_TRACE(SD_LOG_IO_PM, un,
7734 			    "sdpower: exit, PM suspend Failed.\n");
7735 			return (DDI_FAILURE);
7736 		}
7737 	}
7738 
7739 	/*
7740 	 * The transition from SPINDLE_OFF to SPINDLE_ON can happen in open,
7741 	 * close, or strategy. Dump no long uses this routine, it uses it's
7742 	 * own code so it can be done in polled mode.
7743 	 */
7744 
7745 	medium_present = TRUE;
7746 
7747 	/*
7748 	 * When powering up, issue a TUR in case the device is at unit
7749 	 * attention.  Don't do retries. Bypass the PM layer, otherwise
7750 	 * a deadlock on un_pm_busy_cv will occur.
7751 	 */
7752 	if (level == SD_SPINDLE_ON) {
7753 		(void) sd_send_scsi_TEST_UNIT_READY(un,
7754 		    SD_DONT_RETRY_TUR | SD_BYPASS_PM);
7755 	}
7756 
7757 	SD_TRACE(SD_LOG_IO_PM, un, "sdpower: sending \'%s\' unit\n",
7758 	    ((level == SD_SPINDLE_ON) ? "START" : "STOP"));
7759 
7760 	sval = sd_send_scsi_START_STOP_UNIT(un,
7761 	    ((level == SD_SPINDLE_ON) ? SD_TARGET_START : SD_TARGET_STOP),
7762 	    SD_PATH_DIRECT);
7763 	/* Command failed, check for media present. */
7764 	if ((sval == ENXIO) && un->un_f_has_removable_media) {
7765 		medium_present = FALSE;
7766 	}
7767 
7768 	/*
7769 	 * The conditions of interest here are:
7770 	 *   if a spindle off with media present fails,
7771 	 *	then restore the state and return an error.
7772 	 *   else if a spindle on fails,
7773 	 *	then return an error (there's no state to restore).
7774 	 * In all other cases we setup for the new state
7775 	 * and return success.
7776 	 */
7777 	switch (level) {
7778 	case SD_SPINDLE_OFF:
7779 		if ((medium_present == TRUE) && (sval != 0)) {
7780 			/* The stop command from above failed */
7781 			rval = DDI_FAILURE;
7782 			/*
7783 			 * The stop command failed, and we have media
7784 			 * present. Put the level back by calling the
7785 			 * sd_pm_resume() and set the state back to
7786 			 * it's previous value.
7787 			 */
7788 			(void) sd_ddi_pm_resume(un);
7789 			mutex_enter(SD_MUTEX(un));
7790 			un->un_last_state = save_state;
7791 			mutex_exit(SD_MUTEX(un));
7792 			break;
7793 		}
7794 		/*
7795 		 * The stop command from above succeeded.
7796 		 */
7797 		if (un->un_f_monitor_media_state) {
7798 			/*
7799 			 * Terminate watch thread in case of removable media
7800 			 * devices going into low power state. This is as per
7801 			 * the requirements of pm framework, otherwise commands
7802 			 * will be generated for the device (through watch
7803 			 * thread), even when the device is in low power state.
7804 			 */
7805 			mutex_enter(SD_MUTEX(un));
7806 			un->un_f_watcht_stopped = FALSE;
7807 			if (un->un_swr_token != NULL) {
7808 				opaque_t temp_token = un->un_swr_token;
7809 				un->un_f_watcht_stopped = TRUE;
7810 				un->un_swr_token = NULL;
7811 				mutex_exit(SD_MUTEX(un));
7812 				(void) scsi_watch_request_terminate(temp_token,
7813 				    SCSI_WATCH_TERMINATE_WAIT);
7814 			} else {
7815 				mutex_exit(SD_MUTEX(un));
7816 			}
7817 		}
7818 		break;
7819 
7820 	default:	/* The level requested is spindle on... */
7821 		/*
7822 		 * Legacy behavior: return success on a failed spinup
7823 		 * if there is no media in the drive.
7824 		 * Do this by looking at medium_present here.
7825 		 */
7826 		if ((sval != 0) && medium_present) {
7827 			/* The start command from above failed */
7828 			rval = DDI_FAILURE;
7829 			break;
7830 		}
7831 		/*
7832 		 * The start command from above succeeded
7833 		 * Resume the devices now that we have
7834 		 * started the disks
7835 		 */
7836 		(void) sd_ddi_pm_resume(un);
7837 
7838 		/*
7839 		 * Resume the watch thread since it was suspended
7840 		 * when the device went into low power mode.
7841 		 */
7842 		if (un->un_f_monitor_media_state) {
7843 			mutex_enter(SD_MUTEX(un));
7844 			if (un->un_f_watcht_stopped == TRUE) {
7845 				opaque_t temp_token;
7846 
7847 				un->un_f_watcht_stopped = FALSE;
7848 				mutex_exit(SD_MUTEX(un));
7849 				temp_token = scsi_watch_request_submit(
7850 				    SD_SCSI_DEVP(un),
7851 				    sd_check_media_time,
7852 				    SENSE_LENGTH, sd_media_watch_cb,
7853 				    (caddr_t)dev);
7854 				mutex_enter(SD_MUTEX(un));
7855 				un->un_swr_token = temp_token;
7856 			}
7857 			mutex_exit(SD_MUTEX(un));
7858 		}
7859 	}
7860 	if (got_semaphore_here != 0) {
7861 		sema_v(&un->un_semoclose);
7862 	}
7863 	/*
7864 	 * On exit put the state back to it's original value
7865 	 * and broadcast to anyone waiting for the power
7866 	 * change completion.
7867 	 */
7868 	mutex_enter(SD_MUTEX(un));
7869 	un->un_state = state_before_pm;
7870 	cv_broadcast(&un->un_suspend_cv);
7871 	mutex_exit(SD_MUTEX(un));
7872 
7873 	SD_TRACE(SD_LOG_IO_PM, un, "sdpower: exit, status = 0x%x\n", rval);
7874 
7875 	return (rval);
7876 }
7877 
7878 
7879 
7880 /*
7881  *    Function: sdattach
7882  *
7883  * Description: Driver's attach(9e) entry point function.
7884  *
7885  *   Arguments: devi - opaque device info handle
7886  *		cmd  - attach  type
7887  *
7888  * Return Code: DDI_SUCCESS
7889  *		DDI_FAILURE
7890  *
7891  *     Context: Kernel thread context
7892  */
7893 
7894 static int
7895 sdattach(dev_info_t *devi, ddi_attach_cmd_t cmd)
7896 {
7897 	switch (cmd) {
7898 	case DDI_ATTACH:
7899 		return (sd_unit_attach(devi));
7900 	case DDI_RESUME:
7901 		return (sd_ddi_resume(devi));
7902 	default:
7903 		break;
7904 	}
7905 	return (DDI_FAILURE);
7906 }
7907 
7908 
7909 /*
7910  *    Function: sddetach
7911  *
7912  * Description: Driver's detach(9E) entry point function.
7913  *
7914  *   Arguments: devi - opaque device info handle
7915  *		cmd  - detach  type
7916  *
7917  * Return Code: DDI_SUCCESS
7918  *		DDI_FAILURE
7919  *
7920  *     Context: Kernel thread context
7921  */
7922 
7923 static int
7924 sddetach(dev_info_t *devi, ddi_detach_cmd_t cmd)
7925 {
7926 	switch (cmd) {
7927 	case DDI_DETACH:
7928 		return (sd_unit_detach(devi));
7929 	case DDI_SUSPEND:
7930 		return (sd_ddi_suspend(devi));
7931 	default:
7932 		break;
7933 	}
7934 	return (DDI_FAILURE);
7935 }
7936 
7937 
7938 /*
7939  *     Function: sd_sync_with_callback
7940  *
7941  *  Description: Prevents sd_unit_attach or sd_unit_detach from freeing the soft
7942  *		 state while the callback routine is active.
7943  *
7944  *    Arguments: un: softstate structure for the instance
7945  *
7946  *	Context: Kernel thread context
7947  */
7948 
7949 static void
7950 sd_sync_with_callback(struct sd_lun *un)
7951 {
7952 	ASSERT(un != NULL);
7953 
7954 	mutex_enter(SD_MUTEX(un));
7955 
7956 	ASSERT(un->un_in_callback >= 0);
7957 
7958 	while (un->un_in_callback > 0) {
7959 		mutex_exit(SD_MUTEX(un));
7960 		delay(2);
7961 		mutex_enter(SD_MUTEX(un));
7962 	}
7963 
7964 	mutex_exit(SD_MUTEX(un));
7965 }
7966 
7967 /*
7968  *    Function: sd_unit_attach
7969  *
7970  * Description: Performs DDI_ATTACH processing for sdattach(). Allocates
7971  *		the soft state structure for the device and performs
7972  *		all necessary structure and device initializations.
7973  *
7974  *   Arguments: devi: the system's dev_info_t for the device.
7975  *
7976  * Return Code: DDI_SUCCESS if attach is successful.
7977  *		DDI_FAILURE if any part of the attach fails.
7978  *
7979  *     Context: Called at attach(9e) time for the DDI_ATTACH flag.
7980  *		Kernel thread context only.  Can sleep.
7981  */
7982 
7983 static int
7984 sd_unit_attach(dev_info_t *devi)
7985 {
7986 	struct	scsi_device	*devp;
7987 	struct	sd_lun		*un;
7988 	char			*variantp;
7989 	int	reservation_flag = SD_TARGET_IS_UNRESERVED;
7990 	int	instance;
7991 	int	rval;
7992 	int	wc_enabled;
7993 	int	tgt;
7994 	uint64_t	capacity;
7995 	uint_t		lbasize;
7996 	dev_info_t	*pdip = ddi_get_parent(devi);
7997 
7998 	/*
7999 	 * Retrieve the target driver's private data area. This was set
8000 	 * up by the HBA.
8001 	 */
8002 	devp = ddi_get_driver_private(devi);
8003 
8004 	/*
8005 	 * Retrieve the target ID of the device.
8006 	 */
8007 	tgt = ddi_prop_get_int(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
8008 	    SCSI_ADDR_PROP_TARGET, -1);
8009 
8010 	/*
8011 	 * Since we have no idea what state things were left in by the last
8012 	 * user of the device, set up some 'default' settings, ie. turn 'em
8013 	 * off. The scsi_ifsetcap calls force re-negotiations with the drive.
8014 	 * Do this before the scsi_probe, which sends an inquiry.
8015 	 * This is a fix for bug (4430280).
8016 	 * Of special importance is wide-xfer. The drive could have been left
8017 	 * in wide transfer mode by the last driver to communicate with it,
8018 	 * this includes us. If that's the case, and if the following is not
8019 	 * setup properly or we don't re-negotiate with the drive prior to
8020 	 * transferring data to/from the drive, it causes bus parity errors,
8021 	 * data overruns, and unexpected interrupts. This first occurred when
8022 	 * the fix for bug (4378686) was made.
8023 	 */
8024 	(void) scsi_ifsetcap(&devp->sd_address, "lun-reset", 0, 1);
8025 	(void) scsi_ifsetcap(&devp->sd_address, "wide-xfer", 0, 1);
8026 	(void) scsi_ifsetcap(&devp->sd_address, "auto-rqsense", 0, 1);
8027 
8028 	/*
8029 	 * Currently, scsi_ifsetcap sets tagged-qing capability for all LUNs
8030 	 * on a target. Setting it per lun instance actually sets the
8031 	 * capability of this target, which affects those luns already
8032 	 * attached on the same target. So during attach, we can only disable
8033 	 * this capability only when no other lun has been attached on this
8034 	 * target. By doing this, we assume a target has the same tagged-qing
8035 	 * capability for every lun. The condition can be removed when HBA
8036 	 * is changed to support per lun based tagged-qing capability.
8037 	 */
8038 	if (sd_scsi_get_target_lun_count(pdip, tgt) < 1) {
8039 		(void) scsi_ifsetcap(&devp->sd_address, "tagged-qing", 0, 1);
8040 	}
8041 
8042 	/*
8043 	 * Use scsi_probe() to issue an INQUIRY command to the device.
8044 	 * This call will allocate and fill in the scsi_inquiry structure
8045 	 * and point the sd_inq member of the scsi_device structure to it.
8046 	 * If the attach succeeds, then this memory will not be de-allocated
8047 	 * (via scsi_unprobe()) until the instance is detached.
8048 	 */
8049 	if (scsi_probe(devp, SLEEP_FUNC) != SCSIPROBE_EXISTS) {
8050 		goto probe_failed;
8051 	}
8052 
8053 	/*
8054 	 * Check the device type as specified in the inquiry data and
8055 	 * claim it if it is of a type that we support.
8056 	 */
8057 	switch (devp->sd_inq->inq_dtype) {
8058 	case DTYPE_DIRECT:
8059 		break;
8060 	case DTYPE_RODIRECT:
8061 		break;
8062 	case DTYPE_OPTICAL:
8063 		break;
8064 	case DTYPE_NOTPRESENT:
8065 	default:
8066 		/* Unsupported device type; fail the attach. */
8067 		goto probe_failed;
8068 	}
8069 
8070 	/*
8071 	 * Allocate the soft state structure for this unit.
8072 	 *
8073 	 * We rely upon this memory being set to all zeroes by
8074 	 * ddi_soft_state_zalloc().  We assume that any member of the
8075 	 * soft state structure that is not explicitly initialized by
8076 	 * this routine will have a value of zero.
8077 	 */
8078 	instance = ddi_get_instance(devp->sd_dev);
8079 	if (ddi_soft_state_zalloc(sd_state, instance) != DDI_SUCCESS) {
8080 		goto probe_failed;
8081 	}
8082 
8083 	/*
8084 	 * Retrieve a pointer to the newly-allocated soft state.
8085 	 *
8086 	 * This should NEVER fail if the ddi_soft_state_zalloc() call above
8087 	 * was successful, unless something has gone horribly wrong and the
8088 	 * ddi's soft state internals are corrupt (in which case it is
8089 	 * probably better to halt here than just fail the attach....)
8090 	 */
8091 	if ((un = ddi_get_soft_state(sd_state, instance)) == NULL) {
8092 		panic("sd_unit_attach: NULL soft state on instance:0x%x",
8093 		    instance);
8094 		/*NOTREACHED*/
8095 	}
8096 
8097 	/*
8098 	 * Link the back ptr of the driver soft state to the scsi_device
8099 	 * struct for this lun.
8100 	 * Save a pointer to the softstate in the driver-private area of
8101 	 * the scsi_device struct.
8102 	 * Note: We cannot call SD_INFO, SD_TRACE, SD_ERROR, or SD_DIAG until
8103 	 * we first set un->un_sd below.
8104 	 */
8105 	un->un_sd = devp;
8106 	devp->sd_private = (opaque_t)un;
8107 
8108 	/*
8109 	 * The following must be after devp is stored in the soft state struct.
8110 	 */
8111 #ifdef SDDEBUG
8112 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8113 	    "%s_unit_attach: un:0x%p instance:%d\n",
8114 	    ddi_driver_name(devi), un, instance);
8115 #endif
8116 
8117 	/*
8118 	 * Set up the device type and node type (for the minor nodes).
8119 	 * By default we assume that the device can at least support the
8120 	 * Common Command Set. Call it a CD-ROM if it reports itself
8121 	 * as a RODIRECT device.
8122 	 */
8123 	switch (devp->sd_inq->inq_dtype) {
8124 	case DTYPE_RODIRECT:
8125 		un->un_node_type = DDI_NT_CD_CHAN;
8126 		un->un_ctype	 = CTYPE_CDROM;
8127 		break;
8128 	case DTYPE_OPTICAL:
8129 		un->un_node_type = DDI_NT_BLOCK_CHAN;
8130 		un->un_ctype	 = CTYPE_ROD;
8131 		break;
8132 	default:
8133 		un->un_node_type = DDI_NT_BLOCK_CHAN;
8134 		un->un_ctype	 = CTYPE_CCS;
8135 		break;
8136 	}
8137 
8138 	/*
8139 	 * Try to read the interconnect type from the HBA.
8140 	 *
8141 	 * Note: This driver is currently compiled as two binaries, a parallel
8142 	 * scsi version (sd) and a fibre channel version (ssd). All functional
8143 	 * differences are determined at compile time. In the future a single
8144 	 * binary will be provided and the inteconnect type will be used to
8145 	 * differentiate between fibre and parallel scsi behaviors. At that time
8146 	 * it will be necessary for all fibre channel HBAs to support this
8147 	 * property.
8148 	 *
8149 	 * set un_f_is_fiber to TRUE ( default fiber )
8150 	 */
8151 	un->un_f_is_fibre = TRUE;
8152 	switch (scsi_ifgetcap(SD_ADDRESS(un), "interconnect-type", -1)) {
8153 	case INTERCONNECT_SSA:
8154 		un->un_interconnect_type = SD_INTERCONNECT_SSA;
8155 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
8156 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_SSA\n", un);
8157 		break;
8158 	case INTERCONNECT_PARALLEL:
8159 		un->un_f_is_fibre = FALSE;
8160 		un->un_interconnect_type = SD_INTERCONNECT_PARALLEL;
8161 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
8162 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_PARALLEL\n", un);
8163 		break;
8164 	case INTERCONNECT_SATA:
8165 		un->un_f_is_fibre = FALSE;
8166 		un->un_interconnect_type = SD_INTERCONNECT_SATA;
8167 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
8168 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_SATA\n", un);
8169 		break;
8170 	case INTERCONNECT_FIBRE:
8171 		un->un_interconnect_type = SD_INTERCONNECT_FIBRE;
8172 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
8173 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_FIBRE\n", un);
8174 		break;
8175 	case INTERCONNECT_FABRIC:
8176 		un->un_interconnect_type = SD_INTERCONNECT_FABRIC;
8177 		un->un_node_type = DDI_NT_BLOCK_FABRIC;
8178 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
8179 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_FABRIC\n", un);
8180 		break;
8181 	default:
8182 #ifdef SD_DEFAULT_INTERCONNECT_TYPE
8183 		/*
8184 		 * The HBA does not support the "interconnect-type" property
8185 		 * (or did not provide a recognized type).
8186 		 *
8187 		 * Note: This will be obsoleted when a single fibre channel
8188 		 * and parallel scsi driver is delivered. In the meantime the
8189 		 * interconnect type will be set to the platform default.If that
8190 		 * type is not parallel SCSI, it means that we should be
8191 		 * assuming "ssd" semantics. However, here this also means that
8192 		 * the FC HBA is not supporting the "interconnect-type" property
8193 		 * like we expect it to, so log this occurrence.
8194 		 */
8195 		un->un_interconnect_type = SD_DEFAULT_INTERCONNECT_TYPE;
8196 		if (!SD_IS_PARALLEL_SCSI(un)) {
8197 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
8198 			    "sd_unit_attach: un:0x%p Assuming "
8199 			    "INTERCONNECT_FIBRE\n", un);
8200 		} else {
8201 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
8202 			    "sd_unit_attach: un:0x%p Assuming "
8203 			    "INTERCONNECT_PARALLEL\n", un);
8204 			un->un_f_is_fibre = FALSE;
8205 		}
8206 #else
8207 		/*
8208 		 * Note: This source will be implemented when a single fibre
8209 		 * channel and parallel scsi driver is delivered. The default
8210 		 * will be to assume that if a device does not support the
8211 		 * "interconnect-type" property it is a parallel SCSI HBA and
8212 		 * we will set the interconnect type for parallel scsi.
8213 		 */
8214 		un->un_interconnect_type = SD_INTERCONNECT_PARALLEL;
8215 		un->un_f_is_fibre = FALSE;
8216 #endif
8217 		break;
8218 	}
8219 
8220 	if (un->un_f_is_fibre == TRUE) {
8221 		if (scsi_ifgetcap(SD_ADDRESS(un), "scsi-version", 1) ==
8222 			SCSI_VERSION_3) {
8223 			switch (un->un_interconnect_type) {
8224 			case SD_INTERCONNECT_FIBRE:
8225 			case SD_INTERCONNECT_SSA:
8226 				un->un_node_type = DDI_NT_BLOCK_WWN;
8227 				break;
8228 			default:
8229 				break;
8230 			}
8231 		}
8232 	}
8233 
8234 	/*
8235 	 * Initialize the Request Sense command for the target
8236 	 */
8237 	if (sd_alloc_rqs(devp, un) != DDI_SUCCESS) {
8238 		goto alloc_rqs_failed;
8239 	}
8240 
8241 	/*
8242 	 * Set un_retry_count with SD_RETRY_COUNT, this is ok for Sparc
8243 	 * with seperate binary for sd and ssd.
8244 	 *
8245 	 * x86 has 1 binary, un_retry_count is set base on connection type.
8246 	 * The hardcoded values will go away when Sparc uses 1 binary
8247 	 * for sd and ssd.  This hardcoded values need to match
8248 	 * SD_RETRY_COUNT in sddef.h
8249 	 * The value used is base on interconnect type.
8250 	 * fibre = 3, parallel = 5
8251 	 */
8252 #if defined(__i386) || defined(__amd64)
8253 	un->un_retry_count = un->un_f_is_fibre ? 3 : 5;
8254 #else
8255 	un->un_retry_count = SD_RETRY_COUNT;
8256 #endif
8257 
8258 	/*
8259 	 * Set the per disk retry count to the default number of retries
8260 	 * for disks and CDROMs. This value can be overridden by the
8261 	 * disk property list or an entry in sd.conf.
8262 	 */
8263 	un->un_notready_retry_count =
8264 	    ISCD(un) ? CD_NOT_READY_RETRY_COUNT(un)
8265 			: DISK_NOT_READY_RETRY_COUNT(un);
8266 
8267 	/*
8268 	 * Set the busy retry count to the default value of un_retry_count.
8269 	 * This can be overridden by entries in sd.conf or the device
8270 	 * config table.
8271 	 */
8272 	un->un_busy_retry_count = un->un_retry_count;
8273 
8274 	/*
8275 	 * Init the reset threshold for retries.  This number determines
8276 	 * how many retries must be performed before a reset can be issued
8277 	 * (for certain error conditions). This can be overridden by entries
8278 	 * in sd.conf or the device config table.
8279 	 */
8280 	un->un_reset_retry_count = (un->un_retry_count / 2);
8281 
8282 	/*
8283 	 * Set the victim_retry_count to the default un_retry_count
8284 	 */
8285 	un->un_victim_retry_count = (2 * un->un_retry_count);
8286 
8287 	/*
8288 	 * Set the reservation release timeout to the default value of
8289 	 * 5 seconds. This can be overridden by entries in ssd.conf or the
8290 	 * device config table.
8291 	 */
8292 	un->un_reserve_release_time = 5;
8293 
8294 	/*
8295 	 * Set up the default maximum transfer size. Note that this may
8296 	 * get updated later in the attach, when setting up default wide
8297 	 * operations for disks.
8298 	 */
8299 #if defined(__i386) || defined(__amd64)
8300 	un->un_max_xfer_size = (uint_t)SD_DEFAULT_MAX_XFER_SIZE;
8301 #else
8302 	un->un_max_xfer_size = (uint_t)maxphys;
8303 #endif
8304 
8305 	/*
8306 	 * Get "allow bus device reset" property (defaults to "enabled" if
8307 	 * the property was not defined). This is to disable bus resets for
8308 	 * certain kinds of error recovery. Note: In the future when a run-time
8309 	 * fibre check is available the soft state flag should default to
8310 	 * enabled.
8311 	 */
8312 	if (un->un_f_is_fibre == TRUE) {
8313 		un->un_f_allow_bus_device_reset = TRUE;
8314 	} else {
8315 		if (ddi_getprop(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
8316 			"allow-bus-device-reset", 1) != 0) {
8317 			un->un_f_allow_bus_device_reset = TRUE;
8318 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
8319 			"sd_unit_attach: un:0x%p Bus device reset enabled\n",
8320 				un);
8321 		} else {
8322 			un->un_f_allow_bus_device_reset = FALSE;
8323 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
8324 			"sd_unit_attach: un:0x%p Bus device reset disabled\n",
8325 				un);
8326 		}
8327 	}
8328 
8329 	/*
8330 	 * Check if this is an ATAPI device. ATAPI devices use Group 1
8331 	 * Read/Write commands and Group 2 Mode Sense/Select commands.
8332 	 *
8333 	 * Note: The "obsolete" way of doing this is to check for the "atapi"
8334 	 * property. The new "variant" property with a value of "atapi" has been
8335 	 * introduced so that future 'variants' of standard SCSI behavior (like
8336 	 * atapi) could be specified by the underlying HBA drivers by supplying
8337 	 * a new value for the "variant" property, instead of having to define a
8338 	 * new property.
8339 	 */
8340 	if (ddi_prop_get_int(DDI_DEV_T_ANY, devi, 0, "atapi", -1) != -1) {
8341 		un->un_f_cfg_is_atapi = TRUE;
8342 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
8343 		    "sd_unit_attach: un:0x%p Atapi device\n", un);
8344 	}
8345 	if (ddi_prop_lookup_string(DDI_DEV_T_ANY, devi, 0, "variant",
8346 	    &variantp) == DDI_PROP_SUCCESS) {
8347 		if (strcmp(variantp, "atapi") == 0) {
8348 			un->un_f_cfg_is_atapi = TRUE;
8349 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
8350 			    "sd_unit_attach: un:0x%p Atapi device\n", un);
8351 		}
8352 		ddi_prop_free(variantp);
8353 	}
8354 
8355 	un->un_cmd_timeout	= SD_IO_TIME;
8356 
8357 	/* Info on current states, statuses, etc. (Updated frequently) */
8358 	un->un_state		= SD_STATE_NORMAL;
8359 	un->un_last_state	= SD_STATE_NORMAL;
8360 
8361 	/* Control & status info for command throttling */
8362 	un->un_throttle		= sd_max_throttle;
8363 	un->un_saved_throttle	= sd_max_throttle;
8364 	un->un_min_throttle	= sd_min_throttle;
8365 
8366 	if (un->un_f_is_fibre == TRUE) {
8367 		un->un_f_use_adaptive_throttle = TRUE;
8368 	} else {
8369 		un->un_f_use_adaptive_throttle = FALSE;
8370 	}
8371 
8372 	/* Removable media support. */
8373 	cv_init(&un->un_state_cv, NULL, CV_DRIVER, NULL);
8374 	un->un_mediastate		= DKIO_NONE;
8375 	un->un_specified_mediastate	= DKIO_NONE;
8376 
8377 	/* CVs for suspend/resume (PM or DR) */
8378 	cv_init(&un->un_suspend_cv,   NULL, CV_DRIVER, NULL);
8379 	cv_init(&un->un_disk_busy_cv, NULL, CV_DRIVER, NULL);
8380 
8381 	/* Power management support. */
8382 	un->un_power_level = SD_SPINDLE_UNINIT;
8383 
8384 	cv_init(&un->un_wcc_cv,   NULL, CV_DRIVER, NULL);
8385 	un->un_f_wcc_inprog = 0;
8386 
8387 	/*
8388 	 * The open/close semaphore is used to serialize threads executing
8389 	 * in the driver's open & close entry point routines for a given
8390 	 * instance.
8391 	 */
8392 	(void) sema_init(&un->un_semoclose, 1, NULL, SEMA_DRIVER, NULL);
8393 
8394 	/*
8395 	 * The conf file entry and softstate variable is a forceful override,
8396 	 * meaning a non-zero value must be entered to change the default.
8397 	 */
8398 	un->un_f_disksort_disabled = FALSE;
8399 
8400 	/*
8401 	 * Retrieve the properties from the static driver table or the driver
8402 	 * configuration file (.conf) for this unit and update the soft state
8403 	 * for the device as needed for the indicated properties.
8404 	 * Note: the property configuration needs to occur here as some of the
8405 	 * following routines may have dependancies on soft state flags set
8406 	 * as part of the driver property configuration.
8407 	 */
8408 	sd_read_unit_properties(un);
8409 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8410 	    "sd_unit_attach: un:0x%p property configuration complete.\n", un);
8411 
8412 	/*
8413 	 * Only if a device has "hotpluggable" property, it is
8414 	 * treated as hotpluggable device. Otherwise, it is
8415 	 * regarded as non-hotpluggable one.
8416 	 */
8417 	if (ddi_prop_get_int(DDI_DEV_T_ANY, devi, 0, "hotpluggable",
8418 	    -1) != -1) {
8419 		un->un_f_is_hotpluggable = TRUE;
8420 	}
8421 
8422 	/*
8423 	 * set unit's attributes(flags) according to "hotpluggable" and
8424 	 * RMB bit in INQUIRY data.
8425 	 */
8426 	sd_set_unit_attributes(un, devi);
8427 
8428 	/*
8429 	 * By default, we mark the capacity, lbasize, and geometry
8430 	 * as invalid. Only if we successfully read a valid capacity
8431 	 * will we update the un_blockcount and un_tgt_blocksize with the
8432 	 * valid values (the geometry will be validated later).
8433 	 */
8434 	un->un_f_blockcount_is_valid	= FALSE;
8435 	un->un_f_tgt_blocksize_is_valid	= FALSE;
8436 	un->un_f_geometry_is_valid	= FALSE;
8437 
8438 	/*
8439 	 * Use DEV_BSIZE and DEV_BSHIFT as defaults, until we can determine
8440 	 * otherwise.
8441 	 */
8442 	un->un_tgt_blocksize  = un->un_sys_blocksize  = DEV_BSIZE;
8443 	un->un_blockcount = 0;
8444 
8445 	/*
8446 	 * Set up the per-instance info needed to determine the correct
8447 	 * CDBs and other info for issuing commands to the target.
8448 	 */
8449 	sd_init_cdb_limits(un);
8450 
8451 	/*
8452 	 * Set up the IO chains to use, based upon the target type.
8453 	 */
8454 	if (un->un_f_non_devbsize_supported) {
8455 		un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA;
8456 	} else {
8457 		un->un_buf_chain_type = SD_CHAIN_INFO_DISK;
8458 	}
8459 	un->un_uscsi_chain_type  = SD_CHAIN_INFO_USCSI_CMD;
8460 	un->un_direct_chain_type = SD_CHAIN_INFO_DIRECT_CMD;
8461 	un->un_priority_chain_type = SD_CHAIN_INFO_PRIORITY_CMD;
8462 
8463 	un->un_xbuf_attr = ddi_xbuf_attr_create(sizeof (struct sd_xbuf),
8464 	    sd_xbuf_strategy, un, sd_xbuf_active_limit,  sd_xbuf_reserve_limit,
8465 	    ddi_driver_major(devi), DDI_XBUF_QTHREAD_DRIVER);
8466 	ddi_xbuf_attr_register_devinfo(un->un_xbuf_attr, devi);
8467 
8468 
8469 	if (ISCD(un)) {
8470 		un->un_additional_codes = sd_additional_codes;
8471 	} else {
8472 		un->un_additional_codes = NULL;
8473 	}
8474 
8475 	/*
8476 	 * Create the kstats here so they can be available for attach-time
8477 	 * routines that send commands to the unit (either polled or via
8478 	 * sd_send_scsi_cmd).
8479 	 *
8480 	 * Note: This is a critical sequence that needs to be maintained:
8481 	 *	1) Instantiate the kstats here, before any routines using the
8482 	 *	   iopath (i.e. sd_send_scsi_cmd).
8483 	 *	2) Instantiate and initialize the partition stats
8484 	 *	   (sd_set_pstats) in sd_use_efi() and sd_validate_geometry(),
8485 	 *	   see detailed comments there.
8486 	 *	3) Initialize the error stats (sd_set_errstats), following
8487 	 *	   sd_validate_geometry(),sd_register_devid(),
8488 	 *	   and sd_cache_control().
8489 	 */
8490 
8491 	un->un_stats = kstat_create(sd_label, instance,
8492 	    NULL, "disk", KSTAT_TYPE_IO, 1, KSTAT_FLAG_PERSISTENT);
8493 	if (un->un_stats != NULL) {
8494 		un->un_stats->ks_lock = SD_MUTEX(un);
8495 		kstat_install(un->un_stats);
8496 	}
8497 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8498 	    "sd_unit_attach: un:0x%p un_stats created\n", un);
8499 
8500 	sd_create_errstats(un, instance);
8501 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8502 	    "sd_unit_attach: un:0x%p errstats created\n", un);
8503 
8504 	/*
8505 	 * The following if/else code was relocated here from below as part
8506 	 * of the fix for bug (4430280). However with the default setup added
8507 	 * on entry to this routine, it's no longer absolutely necessary for
8508 	 * this to be before the call to sd_spin_up_unit.
8509 	 */
8510 	if (SD_IS_PARALLEL_SCSI(un) || SD_IS_SERIAL(un)) {
8511 		/*
8512 		 * If SCSI-2 tagged queueing is supported by the target
8513 		 * and by the host adapter then we will enable it.
8514 		 */
8515 		un->un_tagflags = 0;
8516 		if ((devp->sd_inq->inq_rdf == RDF_SCSI2) &&
8517 		    (devp->sd_inq->inq_cmdque) &&
8518 		    (un->un_f_arq_enabled == TRUE)) {
8519 			if (scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing",
8520 			    1, 1) == 1) {
8521 				un->un_tagflags = FLAG_STAG;
8522 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
8523 				    "sd_unit_attach: un:0x%p tag queueing "
8524 				    "enabled\n", un);
8525 			} else if (scsi_ifgetcap(SD_ADDRESS(un),
8526 			    "untagged-qing", 0) == 1) {
8527 				un->un_f_opt_queueing = TRUE;
8528 				un->un_saved_throttle = un->un_throttle =
8529 				    min(un->un_throttle, 3);
8530 			} else {
8531 				un->un_f_opt_queueing = FALSE;
8532 				un->un_saved_throttle = un->un_throttle = 1;
8533 			}
8534 		} else if ((scsi_ifgetcap(SD_ADDRESS(un), "untagged-qing", 0)
8535 		    == 1) && (un->un_f_arq_enabled == TRUE)) {
8536 			/* The Host Adapter supports internal queueing. */
8537 			un->un_f_opt_queueing = TRUE;
8538 			un->un_saved_throttle = un->un_throttle =
8539 			    min(un->un_throttle, 3);
8540 		} else {
8541 			un->un_f_opt_queueing = FALSE;
8542 			un->un_saved_throttle = un->un_throttle = 1;
8543 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
8544 			    "sd_unit_attach: un:0x%p no tag queueing\n", un);
8545 		}
8546 
8547 		/*
8548 		 * Enable large transfers for SATA/SAS drives
8549 		 */
8550 		if (SD_IS_SERIAL(un)) {
8551 			un->un_max_xfer_size =
8552 			    ddi_getprop(DDI_DEV_T_ANY, devi, 0,
8553 			    sd_max_xfer_size, SD_MAX_XFER_SIZE);
8554 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
8555 			    "sd_unit_attach: un:0x%p max transfer "
8556 			    "size=0x%x\n", un, un->un_max_xfer_size);
8557 
8558 		}
8559 
8560 		/* Setup or tear down default wide operations for disks */
8561 
8562 		/*
8563 		 * Note: Legacy: it may be possible for both "sd_max_xfer_size"
8564 		 * and "ssd_max_xfer_size" to exist simultaneously on the same
8565 		 * system and be set to different values. In the future this
8566 		 * code may need to be updated when the ssd module is
8567 		 * obsoleted and removed from the system. (4299588)
8568 		 */
8569 		if (SD_IS_PARALLEL_SCSI(un) &&
8570 		    (devp->sd_inq->inq_rdf == RDF_SCSI2) &&
8571 		    (devp->sd_inq->inq_wbus16 || devp->sd_inq->inq_wbus32)) {
8572 			if (scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer",
8573 			    1, 1) == 1) {
8574 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
8575 				    "sd_unit_attach: un:0x%p Wide Transfer "
8576 				    "enabled\n", un);
8577 			}
8578 
8579 			/*
8580 			 * If tagged queuing has also been enabled, then
8581 			 * enable large xfers
8582 			 */
8583 			if (un->un_saved_throttle == sd_max_throttle) {
8584 				un->un_max_xfer_size =
8585 				    ddi_getprop(DDI_DEV_T_ANY, devi, 0,
8586 				    sd_max_xfer_size, SD_MAX_XFER_SIZE);
8587 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
8588 				    "sd_unit_attach: un:0x%p max transfer "
8589 				    "size=0x%x\n", un, un->un_max_xfer_size);
8590 			}
8591 		} else {
8592 			if (scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer",
8593 			    0, 1) == 1) {
8594 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
8595 				    "sd_unit_attach: un:0x%p "
8596 				    "Wide Transfer disabled\n", un);
8597 			}
8598 		}
8599 	} else {
8600 		un->un_tagflags = FLAG_STAG;
8601 		un->un_max_xfer_size = ddi_getprop(DDI_DEV_T_ANY,
8602 		    devi, 0, sd_max_xfer_size, SD_MAX_XFER_SIZE);
8603 	}
8604 
8605 	/*
8606 	 * If this target supports LUN reset, try to enable it.
8607 	 */
8608 	if (un->un_f_lun_reset_enabled) {
8609 		if (scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 1, 1) == 1) {
8610 			SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_unit_attach: "
8611 			    "un:0x%p lun_reset capability set\n", un);
8612 		} else {
8613 			SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_unit_attach: "
8614 			    "un:0x%p lun-reset capability not set\n", un);
8615 		}
8616 	}
8617 
8618 	/*
8619 	 * At this point in the attach, we have enough info in the
8620 	 * soft state to be able to issue commands to the target.
8621 	 *
8622 	 * All command paths used below MUST issue their commands as
8623 	 * SD_PATH_DIRECT. This is important as intermediate layers
8624 	 * are not all initialized yet (such as PM).
8625 	 */
8626 
8627 	/*
8628 	 * Send a TEST UNIT READY command to the device. This should clear
8629 	 * any outstanding UNIT ATTENTION that may be present.
8630 	 *
8631 	 * Note: Don't check for success, just track if there is a reservation,
8632 	 * this is a throw away command to clear any unit attentions.
8633 	 *
8634 	 * Note: This MUST be the first command issued to the target during
8635 	 * attach to ensure power on UNIT ATTENTIONS are cleared.
8636 	 * Pass in flag SD_DONT_RETRY_TUR to prevent the long delays associated
8637 	 * with attempts at spinning up a device with no media.
8638 	 */
8639 	if (sd_send_scsi_TEST_UNIT_READY(un, SD_DONT_RETRY_TUR) == EACCES) {
8640 		reservation_flag = SD_TARGET_IS_RESERVED;
8641 	}
8642 
8643 	/*
8644 	 * If the device is NOT a removable media device, attempt to spin
8645 	 * it up (using the START_STOP_UNIT command) and read its capacity
8646 	 * (using the READ CAPACITY command).  Note, however, that either
8647 	 * of these could fail and in some cases we would continue with
8648 	 * the attach despite the failure (see below).
8649 	 */
8650 	if (un->un_f_descr_format_supported) {
8651 		switch (sd_spin_up_unit(un)) {
8652 		case 0:
8653 			/*
8654 			 * Spin-up was successful; now try to read the
8655 			 * capacity.  If successful then save the results
8656 			 * and mark the capacity & lbasize as valid.
8657 			 */
8658 			SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8659 			    "sd_unit_attach: un:0x%p spin-up successful\n", un);
8660 
8661 			switch (sd_send_scsi_READ_CAPACITY(un, &capacity,
8662 			    &lbasize, SD_PATH_DIRECT)) {
8663 			case 0: {
8664 				if (capacity > DK_MAX_BLOCKS) {
8665 #ifdef _LP64
8666 					if (capacity + 1 >
8667 					    SD_GROUP1_MAX_ADDRESS) {
8668 						/*
8669 						 * Enable descriptor format
8670 						 * sense data so that we can
8671 						 * get 64 bit sense data
8672 						 * fields.
8673 						 */
8674 						sd_enable_descr_sense(un);
8675 					}
8676 #else
8677 					/* 32-bit kernels can't handle this */
8678 					scsi_log(SD_DEVINFO(un),
8679 					    sd_label, CE_WARN,
8680 					    "disk has %llu blocks, which "
8681 					    "is too large for a 32-bit "
8682 					    "kernel", capacity);
8683 
8684 #if defined(__i386) || defined(__amd64)
8685 					/*
8686 					 * Refer to comments related to off-by-1
8687 					 * at the header of this file.
8688 					 * 1TB disk was treated as (1T - 512)B
8689 					 * in the past, so that it might has
8690 					 * valid VTOC and solaris partitions,
8691 					 * we have to allow it to continue to
8692 					 * work.
8693 					 */
8694 					if (capacity -1 > DK_MAX_BLOCKS)
8695 #endif
8696 					goto spinup_failed;
8697 #endif
8698 				}
8699 
8700 				/*
8701 				 * Here it's not necessary to check the case:
8702 				 * the capacity of the device is bigger than
8703 				 * what the max hba cdb can support. Because
8704 				 * sd_send_scsi_READ_CAPACITY will retrieve
8705 				 * the capacity by sending USCSI command, which
8706 				 * is constrained by the max hba cdb. Actually,
8707 				 * sd_send_scsi_READ_CAPACITY will return
8708 				 * EINVAL when using bigger cdb than required
8709 				 * cdb length. Will handle this case in
8710 				 * "case EINVAL".
8711 				 */
8712 
8713 				/*
8714 				 * The following relies on
8715 				 * sd_send_scsi_READ_CAPACITY never
8716 				 * returning 0 for capacity and/or lbasize.
8717 				 */
8718 				sd_update_block_info(un, lbasize, capacity);
8719 
8720 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
8721 				    "sd_unit_attach: un:0x%p capacity = %ld "
8722 				    "blocks; lbasize= %ld.\n", un,
8723 				    un->un_blockcount, un->un_tgt_blocksize);
8724 
8725 				break;
8726 			}
8727 			case EINVAL:
8728 				/*
8729 				 * In the case where the max-cdb-length property
8730 				 * is smaller than the required CDB length for
8731 				 * a SCSI device, a target driver can fail to
8732 				 * attach to that device.
8733 				 */
8734 				scsi_log(SD_DEVINFO(un),
8735 				    sd_label, CE_WARN,
8736 				    "disk capacity is too large "
8737 				    "for current cdb length");
8738 				goto spinup_failed;
8739 			case EACCES:
8740 				/*
8741 				 * Should never get here if the spin-up
8742 				 * succeeded, but code it in anyway.
8743 				 * From here, just continue with the attach...
8744 				 */
8745 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
8746 				    "sd_unit_attach: un:0x%p "
8747 				    "sd_send_scsi_READ_CAPACITY "
8748 				    "returned reservation conflict\n", un);
8749 				reservation_flag = SD_TARGET_IS_RESERVED;
8750 				break;
8751 			default:
8752 				/*
8753 				 * Likewise, should never get here if the
8754 				 * spin-up succeeded. Just continue with
8755 				 * the attach...
8756 				 */
8757 				break;
8758 			}
8759 			break;
8760 		case EACCES:
8761 			/*
8762 			 * Device is reserved by another host.  In this case
8763 			 * we could not spin it up or read the capacity, but
8764 			 * we continue with the attach anyway.
8765 			 */
8766 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
8767 			    "sd_unit_attach: un:0x%p spin-up reservation "
8768 			    "conflict.\n", un);
8769 			reservation_flag = SD_TARGET_IS_RESERVED;
8770 			break;
8771 		default:
8772 			/* Fail the attach if the spin-up failed. */
8773 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
8774 			    "sd_unit_attach: un:0x%p spin-up failed.", un);
8775 			goto spinup_failed;
8776 		}
8777 	}
8778 
8779 	/*
8780 	 * Check to see if this is a MMC drive
8781 	 */
8782 	if (ISCD(un)) {
8783 		sd_set_mmc_caps(un);
8784 	}
8785 
8786 	/*
8787 	 * Create the minor nodes for the device.
8788 	 * Note: If we want to support fdisk on both sparc and intel, this will
8789 	 * have to separate out the notion that VTOC8 is always sparc, and
8790 	 * VTOC16 is always intel (tho these can be the defaults).  The vtoc
8791 	 * type will have to be determined at run-time, and the fdisk
8792 	 * partitioning will have to have been read & set up before we
8793 	 * create the minor nodes. (any other inits (such as kstats) that
8794 	 * also ought to be done before creating the minor nodes?) (Doesn't
8795 	 * setting up the minor nodes kind of imply that we're ready to
8796 	 * handle an open from userland?)
8797 	 */
8798 	if (sd_create_minor_nodes(un, devi) != DDI_SUCCESS) {
8799 		goto create_minor_nodes_failed;
8800 	}
8801 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8802 	    "sd_unit_attach: un:0x%p minor nodes created\n", un);
8803 
8804 	/*
8805 	 * Add a zero-length attribute to tell the world we support
8806 	 * kernel ioctls (for layered drivers)
8807 	 */
8808 	(void) ddi_prop_create(DDI_DEV_T_NONE, devi, DDI_PROP_CANSLEEP,
8809 	    DDI_KERNEL_IOCTL, NULL, 0);
8810 
8811 	/*
8812 	 * Add a boolean property to tell the world we support
8813 	 * the B_FAILFAST flag (for layered drivers)
8814 	 */
8815 	(void) ddi_prop_create(DDI_DEV_T_NONE, devi, DDI_PROP_CANSLEEP,
8816 	    "ddi-failfast-supported", NULL, 0);
8817 
8818 	/*
8819 	 * Initialize power management
8820 	 */
8821 	mutex_init(&un->un_pm_mutex, NULL, MUTEX_DRIVER, NULL);
8822 	cv_init(&un->un_pm_busy_cv, NULL, CV_DRIVER, NULL);
8823 	sd_setup_pm(un, devi);
8824 	if (un->un_f_pm_is_enabled == FALSE) {
8825 		/*
8826 		 * For performance, point to a jump table that does
8827 		 * not include pm.
8828 		 * The direct and priority chains don't change with PM.
8829 		 *
8830 		 * Note: this is currently done based on individual device
8831 		 * capabilities. When an interface for determining system
8832 		 * power enabled state becomes available, or when additional
8833 		 * layers are added to the command chain, these values will
8834 		 * have to be re-evaluated for correctness.
8835 		 */
8836 		if (un->un_f_non_devbsize_supported) {
8837 			un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA_NO_PM;
8838 		} else {
8839 			un->un_buf_chain_type = SD_CHAIN_INFO_DISK_NO_PM;
8840 		}
8841 		un->un_uscsi_chain_type  = SD_CHAIN_INFO_USCSI_CMD_NO_PM;
8842 	}
8843 
8844 	/*
8845 	 * This property is set to 0 by HA software to avoid retries
8846 	 * on a reserved disk. (The preferred property name is
8847 	 * "retry-on-reservation-conflict") (1189689)
8848 	 *
8849 	 * Note: The use of a global here can have unintended consequences. A
8850 	 * per instance variable is preferrable to match the capabilities of
8851 	 * different underlying hba's (4402600)
8852 	 */
8853 	sd_retry_on_reservation_conflict = ddi_getprop(DDI_DEV_T_ANY, devi,
8854 	    DDI_PROP_DONTPASS, "retry-on-reservation-conflict",
8855 	    sd_retry_on_reservation_conflict);
8856 	if (sd_retry_on_reservation_conflict != 0) {
8857 		sd_retry_on_reservation_conflict = ddi_getprop(DDI_DEV_T_ANY,
8858 		    devi, DDI_PROP_DONTPASS, sd_resv_conflict_name,
8859 		    sd_retry_on_reservation_conflict);
8860 	}
8861 
8862 	/* Set up options for QFULL handling. */
8863 	if ((rval = ddi_getprop(DDI_DEV_T_ANY, devi, 0,
8864 	    "qfull-retries", -1)) != -1) {
8865 		(void) scsi_ifsetcap(SD_ADDRESS(un), "qfull-retries",
8866 		    rval, 1);
8867 	}
8868 	if ((rval = ddi_getprop(DDI_DEV_T_ANY, devi, 0,
8869 	    "qfull-retry-interval", -1)) != -1) {
8870 		(void) scsi_ifsetcap(SD_ADDRESS(un), "qfull-retry-interval",
8871 		    rval, 1);
8872 	}
8873 
8874 	/*
8875 	 * This just prints a message that announces the existence of the
8876 	 * device. The message is always printed in the system logfile, but
8877 	 * only appears on the console if the system is booted with the
8878 	 * -v (verbose) argument.
8879 	 */
8880 	ddi_report_dev(devi);
8881 
8882 	/*
8883 	 * The framework calls driver attach routines single-threaded
8884 	 * for a given instance.  However we still acquire SD_MUTEX here
8885 	 * because this required for calling the sd_validate_geometry()
8886 	 * and sd_register_devid() functions.
8887 	 */
8888 	mutex_enter(SD_MUTEX(un));
8889 	un->un_f_geometry_is_valid = FALSE;
8890 	un->un_mediastate = DKIO_NONE;
8891 	un->un_reserved = -1;
8892 
8893 	/*
8894 	 * Read and validate the device's geometry (ie, disk label)
8895 	 * A new unformatted drive will not have a valid geometry, but
8896 	 * the driver needs to successfully attach to this device so
8897 	 * the drive can be formatted via ioctls.
8898 	 */
8899 	if (((sd_validate_geometry(un, SD_PATH_DIRECT) ==
8900 	    ENOTSUP)) &&
8901 	    (un->un_blockcount < DK_MAX_BLOCKS)) {
8902 		/*
8903 		 * We found a small disk with an EFI label on it;
8904 		 * we need to fix up the minor nodes accordingly.
8905 		 */
8906 		ddi_remove_minor_node(devi, "h");
8907 		ddi_remove_minor_node(devi, "h,raw");
8908 		(void) ddi_create_minor_node(devi, "wd",
8909 		    S_IFBLK,
8910 		    (instance << SDUNIT_SHIFT) | WD_NODE,
8911 		    un->un_node_type, NULL);
8912 		(void) ddi_create_minor_node(devi, "wd,raw",
8913 		    S_IFCHR,
8914 		    (instance << SDUNIT_SHIFT) | WD_NODE,
8915 		    un->un_node_type, NULL);
8916 	}
8917 #if defined(__i386) || defined(__amd64)
8918 	else if (un->un_f_capacity_adjusted == 1) {
8919 		/*
8920 		 * Refer to comments related to off-by-1 at the
8921 		 * header of this file.
8922 		 * Adjust minor node for 1TB disk.
8923 		 */
8924 		ddi_remove_minor_node(devi, "wd");
8925 		ddi_remove_minor_node(devi, "wd,raw");
8926 		(void) ddi_create_minor_node(devi, "h",
8927 		    S_IFBLK,
8928 		    (instance << SDUNIT_SHIFT) | WD_NODE,
8929 		    un->un_node_type, NULL);
8930 		(void) ddi_create_minor_node(devi, "h,raw",
8931 		    S_IFCHR,
8932 		    (instance << SDUNIT_SHIFT) | WD_NODE,
8933 		    un->un_node_type, NULL);
8934 	}
8935 #endif
8936 	/*
8937 	 * Read and initialize the devid for the unit.
8938 	 */
8939 	ASSERT(un->un_errstats != NULL);
8940 	if (un->un_f_devid_supported) {
8941 		sd_register_devid(un, devi, reservation_flag);
8942 	}
8943 	mutex_exit(SD_MUTEX(un));
8944 
8945 #if (defined(__fibre))
8946 	/*
8947 	 * Register callbacks for fibre only.  You can't do this soley
8948 	 * on the basis of the devid_type because this is hba specific.
8949 	 * We need to query our hba capabilities to find out whether to
8950 	 * register or not.
8951 	 */
8952 	if (un->un_f_is_fibre) {
8953 	    if (strcmp(un->un_node_type, DDI_NT_BLOCK_CHAN)) {
8954 		sd_init_event_callbacks(un);
8955 		SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8956 		    "sd_unit_attach: un:0x%p event callbacks inserted", un);
8957 	    }
8958 	}
8959 #endif
8960 
8961 	if (un->un_f_opt_disable_cache == TRUE) {
8962 		/*
8963 		 * Disable both read cache and write cache.  This is
8964 		 * the historic behavior of the keywords in the config file.
8965 		 */
8966 		if (sd_cache_control(un, SD_CACHE_DISABLE, SD_CACHE_DISABLE) !=
8967 		    0) {
8968 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8969 			    "sd_unit_attach: un:0x%p Could not disable "
8970 			    "caching", un);
8971 			goto devid_failed;
8972 		}
8973 	}
8974 
8975 	/*
8976 	 * Check the value of the WCE bit now and
8977 	 * set un_f_write_cache_enabled accordingly.
8978 	 */
8979 	(void) sd_get_write_cache_enabled(un, &wc_enabled);
8980 	mutex_enter(SD_MUTEX(un));
8981 	un->un_f_write_cache_enabled = (wc_enabled != 0);
8982 	mutex_exit(SD_MUTEX(un));
8983 
8984 	/*
8985 	 * Set the pstat and error stat values here, so data obtained during the
8986 	 * previous attach-time routines is available.
8987 	 *
8988 	 * Note: This is a critical sequence that needs to be maintained:
8989 	 *	1) Instantiate the kstats before any routines using the iopath
8990 	 *	   (i.e. sd_send_scsi_cmd).
8991 	 *	2) Instantiate and initialize the partition stats
8992 	 *	   (sd_set_pstats) in sd_use_efi() and sd_validate_geometry(),
8993 	 *	   see detailed comments there.
8994 	 *	3) Initialize the error stats (sd_set_errstats), following
8995 	 *	   sd_validate_geometry(),sd_register_devid(),
8996 	 *	   and sd_cache_control().
8997 	 */
8998 	sd_set_errstats(un);
8999 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
9000 	    "sd_unit_attach: un:0x%p errstats set\n", un);
9001 
9002 	/*
9003 	 * Find out what type of reservation this disk supports.
9004 	 */
9005 	switch (sd_send_scsi_PERSISTENT_RESERVE_IN(un, SD_READ_KEYS, 0, NULL)) {
9006 	case 0:
9007 		/*
9008 		 * SCSI-3 reservations are supported.
9009 		 */
9010 		un->un_reservation_type = SD_SCSI3_RESERVATION;
9011 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
9012 		    "sd_unit_attach: un:0x%p SCSI-3 reservations\n", un);
9013 		break;
9014 	case ENOTSUP:
9015 		/*
9016 		 * The PERSISTENT RESERVE IN command would not be recognized by
9017 		 * a SCSI-2 device, so assume the reservation type is SCSI-2.
9018 		 */
9019 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
9020 		    "sd_unit_attach: un:0x%p SCSI-2 reservations\n", un);
9021 		un->un_reservation_type = SD_SCSI2_RESERVATION;
9022 		break;
9023 	default:
9024 		/*
9025 		 * default to SCSI-3 reservations
9026 		 */
9027 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
9028 		    "sd_unit_attach: un:0x%p default SCSI3 reservations\n", un);
9029 		un->un_reservation_type = SD_SCSI3_RESERVATION;
9030 		break;
9031 	}
9032 
9033 	/*
9034 	 * After successfully attaching an instance, we record the information
9035 	 * of how many luns have been attached on the relative target and
9036 	 * controller for parallel SCSI. This information is used when sd tries
9037 	 * to set the tagged queuing capability in HBA.
9038 	 */
9039 	if (SD_IS_PARALLEL_SCSI(un) && (tgt >= 0) && (tgt < NTARGETS_WIDE)) {
9040 		sd_scsi_update_lun_on_target(pdip, tgt, SD_SCSI_LUN_ATTACH);
9041 	}
9042 
9043 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
9044 	    "sd_unit_attach: un:0x%p exit success\n", un);
9045 
9046 	return (DDI_SUCCESS);
9047 
9048 	/*
9049 	 * An error occurred during the attach; clean up & return failure.
9050 	 */
9051 
9052 devid_failed:
9053 
9054 setup_pm_failed:
9055 	ddi_remove_minor_node(devi, NULL);
9056 
9057 create_minor_nodes_failed:
9058 	/*
9059 	 * Cleanup from the scsi_ifsetcap() calls (437868)
9060 	 */
9061 	(void) scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 0, 1);
9062 	(void) scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer", 0, 1);
9063 
9064 	/*
9065 	 * Refer to the comments of setting tagged-qing in the beginning of
9066 	 * sd_unit_attach. We can only disable tagged queuing when there is
9067 	 * no lun attached on the target.
9068 	 */
9069 	if (sd_scsi_get_target_lun_count(pdip, tgt) < 1) {
9070 		(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
9071 	}
9072 
9073 	if (un->un_f_is_fibre == FALSE) {
9074 	    (void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 0, 1);
9075 	}
9076 
9077 spinup_failed:
9078 
9079 	mutex_enter(SD_MUTEX(un));
9080 
9081 	/* Cancel callback for SD_PATH_DIRECT_PRIORITY cmd. restart */
9082 	if (un->un_direct_priority_timeid != NULL) {
9083 		timeout_id_t temp_id = un->un_direct_priority_timeid;
9084 		un->un_direct_priority_timeid = NULL;
9085 		mutex_exit(SD_MUTEX(un));
9086 		(void) untimeout(temp_id);
9087 		mutex_enter(SD_MUTEX(un));
9088 	}
9089 
9090 	/* Cancel any pending start/stop timeouts */
9091 	if (un->un_startstop_timeid != NULL) {
9092 		timeout_id_t temp_id = un->un_startstop_timeid;
9093 		un->un_startstop_timeid = NULL;
9094 		mutex_exit(SD_MUTEX(un));
9095 		(void) untimeout(temp_id);
9096 		mutex_enter(SD_MUTEX(un));
9097 	}
9098 
9099 	/* Cancel any pending reset-throttle timeouts */
9100 	if (un->un_reset_throttle_timeid != NULL) {
9101 		timeout_id_t temp_id = un->un_reset_throttle_timeid;
9102 		un->un_reset_throttle_timeid = NULL;
9103 		mutex_exit(SD_MUTEX(un));
9104 		(void) untimeout(temp_id);
9105 		mutex_enter(SD_MUTEX(un));
9106 	}
9107 
9108 	/* Cancel any pending retry timeouts */
9109 	if (un->un_retry_timeid != NULL) {
9110 		timeout_id_t temp_id = un->un_retry_timeid;
9111 		un->un_retry_timeid = NULL;
9112 		mutex_exit(SD_MUTEX(un));
9113 		(void) untimeout(temp_id);
9114 		mutex_enter(SD_MUTEX(un));
9115 	}
9116 
9117 	/* Cancel any pending delayed cv broadcast timeouts */
9118 	if (un->un_dcvb_timeid != NULL) {
9119 		timeout_id_t temp_id = un->un_dcvb_timeid;
9120 		un->un_dcvb_timeid = NULL;
9121 		mutex_exit(SD_MUTEX(un));
9122 		(void) untimeout(temp_id);
9123 		mutex_enter(SD_MUTEX(un));
9124 	}
9125 
9126 	mutex_exit(SD_MUTEX(un));
9127 
9128 	/* There should not be any in-progress I/O so ASSERT this check */
9129 	ASSERT(un->un_ncmds_in_transport == 0);
9130 	ASSERT(un->un_ncmds_in_driver == 0);
9131 
9132 	/* Do not free the softstate if the callback routine is active */
9133 	sd_sync_with_callback(un);
9134 
9135 	/*
9136 	 * Partition stats apparently are not used with removables. These would
9137 	 * not have been created during attach, so no need to clean them up...
9138 	 */
9139 	if (un->un_stats != NULL) {
9140 		kstat_delete(un->un_stats);
9141 		un->un_stats = NULL;
9142 	}
9143 	if (un->un_errstats != NULL) {
9144 		kstat_delete(un->un_errstats);
9145 		un->un_errstats = NULL;
9146 	}
9147 
9148 	ddi_xbuf_attr_unregister_devinfo(un->un_xbuf_attr, devi);
9149 	ddi_xbuf_attr_destroy(un->un_xbuf_attr);
9150 
9151 	ddi_prop_remove_all(devi);
9152 	sema_destroy(&un->un_semoclose);
9153 	cv_destroy(&un->un_state_cv);
9154 
9155 getrbuf_failed:
9156 
9157 	sd_free_rqs(un);
9158 
9159 alloc_rqs_failed:
9160 
9161 	devp->sd_private = NULL;
9162 	bzero(un, sizeof (struct sd_lun));	/* Clear any stale data! */
9163 
9164 get_softstate_failed:
9165 	/*
9166 	 * Note: the man pages are unclear as to whether or not doing a
9167 	 * ddi_soft_state_free(sd_state, instance) is the right way to
9168 	 * clean up after the ddi_soft_state_zalloc() if the subsequent
9169 	 * ddi_get_soft_state() fails.  The implication seems to be
9170 	 * that the get_soft_state cannot fail if the zalloc succeeds.
9171 	 */
9172 	ddi_soft_state_free(sd_state, instance);
9173 
9174 probe_failed:
9175 	scsi_unprobe(devp);
9176 #ifdef SDDEBUG
9177 	if ((sd_component_mask & SD_LOG_ATTACH_DETACH) &&
9178 	    (sd_level_mask & SD_LOGMASK_TRACE)) {
9179 		cmn_err(CE_CONT, "sd_unit_attach: un:0x%p exit failure\n",
9180 		    (void *)un);
9181 	}
9182 #endif
9183 	return (DDI_FAILURE);
9184 }
9185 
9186 
9187 /*
9188  *    Function: sd_unit_detach
9189  *
9190  * Description: Performs DDI_DETACH processing for sddetach().
9191  *
9192  * Return Code: DDI_SUCCESS
9193  *		DDI_FAILURE
9194  *
9195  *     Context: Kernel thread context
9196  */
9197 
9198 static int
9199 sd_unit_detach(dev_info_t *devi)
9200 {
9201 	struct scsi_device	*devp;
9202 	struct sd_lun		*un;
9203 	int			i;
9204 	int			tgt;
9205 	dev_t			dev;
9206 	dev_info_t		*pdip = ddi_get_parent(devi);
9207 	int			instance = ddi_get_instance(devi);
9208 
9209 	mutex_enter(&sd_detach_mutex);
9210 
9211 	/*
9212 	 * Fail the detach for any of the following:
9213 	 *  - Unable to get the sd_lun struct for the instance
9214 	 *  - A layered driver has an outstanding open on the instance
9215 	 *  - Another thread is already detaching this instance
9216 	 *  - Another thread is currently performing an open
9217 	 */
9218 	devp = ddi_get_driver_private(devi);
9219 	if ((devp == NULL) ||
9220 	    ((un = (struct sd_lun *)devp->sd_private) == NULL) ||
9221 	    (un->un_ncmds_in_driver != 0) || (un->un_layer_count != 0) ||
9222 	    (un->un_detach_count != 0) || (un->un_opens_in_progress != 0)) {
9223 		mutex_exit(&sd_detach_mutex);
9224 		return (DDI_FAILURE);
9225 	}
9226 
9227 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_unit_detach: entry 0x%p\n", un);
9228 
9229 	/*
9230 	 * Mark this instance as currently in a detach, to inhibit any
9231 	 * opens from a layered driver.
9232 	 */
9233 	un->un_detach_count++;
9234 	mutex_exit(&sd_detach_mutex);
9235 
9236 	tgt = ddi_prop_get_int(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
9237 	    SCSI_ADDR_PROP_TARGET, -1);
9238 
9239 	dev = sd_make_device(SD_DEVINFO(un));
9240 
9241 #ifndef lint
9242 	_NOTE(COMPETING_THREADS_NOW);
9243 #endif
9244 
9245 	mutex_enter(SD_MUTEX(un));
9246 
9247 	/*
9248 	 * Fail the detach if there are any outstanding layered
9249 	 * opens on this device.
9250 	 */
9251 	for (i = 0; i < NDKMAP; i++) {
9252 		if (un->un_ocmap.lyropen[i] != 0) {
9253 			goto err_notclosed;
9254 		}
9255 	}
9256 
9257 	/*
9258 	 * Verify there are NO outstanding commands issued to this device.
9259 	 * ie, un_ncmds_in_transport == 0.
9260 	 * It's possible to have outstanding commands through the physio
9261 	 * code path, even though everything's closed.
9262 	 */
9263 	if ((un->un_ncmds_in_transport != 0) || (un->un_retry_timeid != NULL) ||
9264 	    (un->un_direct_priority_timeid != NULL) ||
9265 	    (un->un_state == SD_STATE_RWAIT)) {
9266 		mutex_exit(SD_MUTEX(un));
9267 		SD_ERROR(SD_LOG_ATTACH_DETACH, un,
9268 		    "sd_dr_detach: Detach failure due to outstanding cmds\n");
9269 		goto err_stillbusy;
9270 	}
9271 
9272 	/*
9273 	 * If we have the device reserved, release the reservation.
9274 	 */
9275 	if ((un->un_resvd_status & SD_RESERVE) &&
9276 	    !(un->un_resvd_status & SD_LOST_RESERVE)) {
9277 		mutex_exit(SD_MUTEX(un));
9278 		/*
9279 		 * Note: sd_reserve_release sends a command to the device
9280 		 * via the sd_ioctlcmd() path, and can sleep.
9281 		 */
9282 		if (sd_reserve_release(dev, SD_RELEASE) != 0) {
9283 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
9284 			    "sd_dr_detach: Cannot release reservation \n");
9285 		}
9286 	} else {
9287 		mutex_exit(SD_MUTEX(un));
9288 	}
9289 
9290 	/*
9291 	 * Untimeout any reserve recover, throttle reset, restart unit
9292 	 * and delayed broadcast timeout threads. Protect the timeout pointer
9293 	 * from getting nulled by their callback functions.
9294 	 */
9295 	mutex_enter(SD_MUTEX(un));
9296 	if (un->un_resvd_timeid != NULL) {
9297 		timeout_id_t temp_id = un->un_resvd_timeid;
9298 		un->un_resvd_timeid = NULL;
9299 		mutex_exit(SD_MUTEX(un));
9300 		(void) untimeout(temp_id);
9301 		mutex_enter(SD_MUTEX(un));
9302 	}
9303 
9304 	if (un->un_reset_throttle_timeid != NULL) {
9305 		timeout_id_t temp_id = un->un_reset_throttle_timeid;
9306 		un->un_reset_throttle_timeid = NULL;
9307 		mutex_exit(SD_MUTEX(un));
9308 		(void) untimeout(temp_id);
9309 		mutex_enter(SD_MUTEX(un));
9310 	}
9311 
9312 	if (un->un_startstop_timeid != NULL) {
9313 		timeout_id_t temp_id = un->un_startstop_timeid;
9314 		un->un_startstop_timeid = NULL;
9315 		mutex_exit(SD_MUTEX(un));
9316 		(void) untimeout(temp_id);
9317 		mutex_enter(SD_MUTEX(un));
9318 	}
9319 
9320 	if (un->un_dcvb_timeid != NULL) {
9321 		timeout_id_t temp_id = un->un_dcvb_timeid;
9322 		un->un_dcvb_timeid = NULL;
9323 		mutex_exit(SD_MUTEX(un));
9324 		(void) untimeout(temp_id);
9325 	} else {
9326 		mutex_exit(SD_MUTEX(un));
9327 	}
9328 
9329 	/* Remove any pending reservation reclaim requests for this device */
9330 	sd_rmv_resv_reclaim_req(dev);
9331 
9332 	mutex_enter(SD_MUTEX(un));
9333 
9334 	/* Cancel any pending callbacks for SD_PATH_DIRECT_PRIORITY cmd. */
9335 	if (un->un_direct_priority_timeid != NULL) {
9336 		timeout_id_t temp_id = un->un_direct_priority_timeid;
9337 		un->un_direct_priority_timeid = NULL;
9338 		mutex_exit(SD_MUTEX(un));
9339 		(void) untimeout(temp_id);
9340 		mutex_enter(SD_MUTEX(un));
9341 	}
9342 
9343 	/* Cancel any active multi-host disk watch thread requests */
9344 	if (un->un_mhd_token != NULL) {
9345 		mutex_exit(SD_MUTEX(un));
9346 		 _NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_mhd_token));
9347 		if (scsi_watch_request_terminate(un->un_mhd_token,
9348 		    SCSI_WATCH_TERMINATE_NOWAIT)) {
9349 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
9350 			    "sd_dr_detach: Cannot cancel mhd watch request\n");
9351 			/*
9352 			 * Note: We are returning here after having removed
9353 			 * some driver timeouts above. This is consistent with
9354 			 * the legacy implementation but perhaps the watch
9355 			 * terminate call should be made with the wait flag set.
9356 			 */
9357 			goto err_stillbusy;
9358 		}
9359 		mutex_enter(SD_MUTEX(un));
9360 		un->un_mhd_token = NULL;
9361 	}
9362 
9363 	if (un->un_swr_token != NULL) {
9364 		mutex_exit(SD_MUTEX(un));
9365 		_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_swr_token));
9366 		if (scsi_watch_request_terminate(un->un_swr_token,
9367 		    SCSI_WATCH_TERMINATE_NOWAIT)) {
9368 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
9369 			    "sd_dr_detach: Cannot cancel swr watch request\n");
9370 			/*
9371 			 * Note: We are returning here after having removed
9372 			 * some driver timeouts above. This is consistent with
9373 			 * the legacy implementation but perhaps the watch
9374 			 * terminate call should be made with the wait flag set.
9375 			 */
9376 			goto err_stillbusy;
9377 		}
9378 		mutex_enter(SD_MUTEX(un));
9379 		un->un_swr_token = NULL;
9380 	}
9381 
9382 	mutex_exit(SD_MUTEX(un));
9383 
9384 	/*
9385 	 * Clear any scsi_reset_notifies. We clear the reset notifies
9386 	 * if we have not registered one.
9387 	 * Note: The sd_mhd_reset_notify_cb() fn tries to acquire SD_MUTEX!
9388 	 */
9389 	(void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_CANCEL,
9390 	    sd_mhd_reset_notify_cb, (caddr_t)un);
9391 
9392 	/*
9393 	 * protect the timeout pointers from getting nulled by
9394 	 * their callback functions during the cancellation process.
9395 	 * In such a scenario untimeout can be invoked with a null value.
9396 	 */
9397 	_NOTE(NO_COMPETING_THREADS_NOW);
9398 
9399 	mutex_enter(&un->un_pm_mutex);
9400 	if (un->un_pm_idle_timeid != NULL) {
9401 		timeout_id_t temp_id = un->un_pm_idle_timeid;
9402 		un->un_pm_idle_timeid = NULL;
9403 		mutex_exit(&un->un_pm_mutex);
9404 
9405 		/*
9406 		 * Timeout is active; cancel it.
9407 		 * Note that it'll never be active on a device
9408 		 * that does not support PM therefore we don't
9409 		 * have to check before calling pm_idle_component.
9410 		 */
9411 		(void) untimeout(temp_id);
9412 		(void) pm_idle_component(SD_DEVINFO(un), 0);
9413 		mutex_enter(&un->un_pm_mutex);
9414 	}
9415 
9416 	/*
9417 	 * Check whether there is already a timeout scheduled for power
9418 	 * management. If yes then don't lower the power here, that's.
9419 	 * the timeout handler's job.
9420 	 */
9421 	if (un->un_pm_timeid != NULL) {
9422 		timeout_id_t temp_id = un->un_pm_timeid;
9423 		un->un_pm_timeid = NULL;
9424 		mutex_exit(&un->un_pm_mutex);
9425 		/*
9426 		 * Timeout is active; cancel it.
9427 		 * Note that it'll never be active on a device
9428 		 * that does not support PM therefore we don't
9429 		 * have to check before calling pm_idle_component.
9430 		 */
9431 		(void) untimeout(temp_id);
9432 		(void) pm_idle_component(SD_DEVINFO(un), 0);
9433 
9434 	} else {
9435 		mutex_exit(&un->un_pm_mutex);
9436 		if ((un->un_f_pm_is_enabled == TRUE) &&
9437 		    (pm_lower_power(SD_DEVINFO(un), 0, SD_SPINDLE_OFF) !=
9438 		    DDI_SUCCESS)) {
9439 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
9440 		    "sd_dr_detach: Lower power request failed, ignoring.\n");
9441 			/*
9442 			 * Fix for bug: 4297749, item # 13
9443 			 * The above test now includes a check to see if PM is
9444 			 * supported by this device before call
9445 			 * pm_lower_power().
9446 			 * Note, the following is not dead code. The call to
9447 			 * pm_lower_power above will generate a call back into
9448 			 * our sdpower routine which might result in a timeout
9449 			 * handler getting activated. Therefore the following
9450 			 * code is valid and necessary.
9451 			 */
9452 			mutex_enter(&un->un_pm_mutex);
9453 			if (un->un_pm_timeid != NULL) {
9454 				timeout_id_t temp_id = un->un_pm_timeid;
9455 				un->un_pm_timeid = NULL;
9456 				mutex_exit(&un->un_pm_mutex);
9457 				(void) untimeout(temp_id);
9458 				(void) pm_idle_component(SD_DEVINFO(un), 0);
9459 			} else {
9460 				mutex_exit(&un->un_pm_mutex);
9461 			}
9462 		}
9463 	}
9464 
9465 	/*
9466 	 * Cleanup from the scsi_ifsetcap() calls (437868)
9467 	 * Relocated here from above to be after the call to
9468 	 * pm_lower_power, which was getting errors.
9469 	 */
9470 	(void) scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 0, 1);
9471 	(void) scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer", 0, 1);
9472 
9473 	/*
9474 	 * Currently, tagged queuing is supported per target based by HBA.
9475 	 * Setting this per lun instance actually sets the capability of this
9476 	 * target in HBA, which affects those luns already attached on the
9477 	 * same target. So during detach, we can only disable this capability
9478 	 * only when this is the only lun left on this target. By doing
9479 	 * this, we assume a target has the same tagged queuing capability
9480 	 * for every lun. The condition can be removed when HBA is changed to
9481 	 * support per lun based tagged queuing capability.
9482 	 */
9483 	if (sd_scsi_get_target_lun_count(pdip, tgt) <= 1) {
9484 		(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
9485 	}
9486 
9487 	if (un->un_f_is_fibre == FALSE) {
9488 		(void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 0, 1);
9489 	}
9490 
9491 	/*
9492 	 * Remove any event callbacks, fibre only
9493 	 */
9494 	if (un->un_f_is_fibre == TRUE) {
9495 		if ((un->un_insert_event != NULL) &&
9496 			(ddi_remove_event_handler(un->un_insert_cb_id) !=
9497 				DDI_SUCCESS)) {
9498 			/*
9499 			 * Note: We are returning here after having done
9500 			 * substantial cleanup above. This is consistent
9501 			 * with the legacy implementation but this may not
9502 			 * be the right thing to do.
9503 			 */
9504 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
9505 				"sd_dr_detach: Cannot cancel insert event\n");
9506 			goto err_remove_event;
9507 		}
9508 		un->un_insert_event = NULL;
9509 
9510 		if ((un->un_remove_event != NULL) &&
9511 			(ddi_remove_event_handler(un->un_remove_cb_id) !=
9512 				DDI_SUCCESS)) {
9513 			/*
9514 			 * Note: We are returning here after having done
9515 			 * substantial cleanup above. This is consistent
9516 			 * with the legacy implementation but this may not
9517 			 * be the right thing to do.
9518 			 */
9519 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
9520 				"sd_dr_detach: Cannot cancel remove event\n");
9521 			goto err_remove_event;
9522 		}
9523 		un->un_remove_event = NULL;
9524 	}
9525 
9526 	/* Do not free the softstate if the callback routine is active */
9527 	sd_sync_with_callback(un);
9528 
9529 	/*
9530 	 * Hold the detach mutex here, to make sure that no other threads ever
9531 	 * can access a (partially) freed soft state structure.
9532 	 */
9533 	mutex_enter(&sd_detach_mutex);
9534 
9535 	/*
9536 	 * Clean up the soft state struct.
9537 	 * Cleanup is done in reverse order of allocs/inits.
9538 	 * At this point there should be no competing threads anymore.
9539 	 */
9540 
9541 	/* Unregister and free device id. */
9542 	ddi_devid_unregister(devi);
9543 	if (un->un_devid) {
9544 		ddi_devid_free(un->un_devid);
9545 		un->un_devid = NULL;
9546 	}
9547 
9548 	/*
9549 	 * Destroy wmap cache if it exists.
9550 	 */
9551 	if (un->un_wm_cache != NULL) {
9552 		kmem_cache_destroy(un->un_wm_cache);
9553 		un->un_wm_cache = NULL;
9554 	}
9555 
9556 	/* Remove minor nodes */
9557 	ddi_remove_minor_node(devi, NULL);
9558 
9559 	/*
9560 	 * kstat cleanup is done in detach for all device types (4363169).
9561 	 * We do not want to fail detach if the device kstats are not deleted
9562 	 * since there is a confusion about the devo_refcnt for the device.
9563 	 * We just delete the kstats and let detach complete successfully.
9564 	 */
9565 	if (un->un_stats != NULL) {
9566 		kstat_delete(un->un_stats);
9567 		un->un_stats = NULL;
9568 	}
9569 	if (un->un_errstats != NULL) {
9570 		kstat_delete(un->un_errstats);
9571 		un->un_errstats = NULL;
9572 	}
9573 
9574 	/* Remove partition stats */
9575 	if (un->un_f_pkstats_enabled) {
9576 		for (i = 0; i < NSDMAP; i++) {
9577 			if (un->un_pstats[i] != NULL) {
9578 				kstat_delete(un->un_pstats[i]);
9579 				un->un_pstats[i] = NULL;
9580 			}
9581 		}
9582 	}
9583 
9584 	/* Remove xbuf registration */
9585 	ddi_xbuf_attr_unregister_devinfo(un->un_xbuf_attr, devi);
9586 	ddi_xbuf_attr_destroy(un->un_xbuf_attr);
9587 
9588 	/* Remove driver properties */
9589 	ddi_prop_remove_all(devi);
9590 
9591 	mutex_destroy(&un->un_pm_mutex);
9592 	cv_destroy(&un->un_pm_busy_cv);
9593 
9594 	cv_destroy(&un->un_wcc_cv);
9595 
9596 	/* Open/close semaphore */
9597 	sema_destroy(&un->un_semoclose);
9598 
9599 	/* Removable media condvar. */
9600 	cv_destroy(&un->un_state_cv);
9601 
9602 	/* Suspend/resume condvar. */
9603 	cv_destroy(&un->un_suspend_cv);
9604 	cv_destroy(&un->un_disk_busy_cv);
9605 
9606 	sd_free_rqs(un);
9607 
9608 	/* Free up soft state */
9609 	devp->sd_private = NULL;
9610 	bzero(un, sizeof (struct sd_lun));
9611 	ddi_soft_state_free(sd_state, instance);
9612 
9613 	mutex_exit(&sd_detach_mutex);
9614 
9615 	/* This frees up the INQUIRY data associated with the device. */
9616 	scsi_unprobe(devp);
9617 
9618 	/*
9619 	 * After successfully detaching an instance, we update the information
9620 	 * of how many luns have been attached in the relative target and
9621 	 * controller for parallel SCSI. This information is used when sd tries
9622 	 * to set the tagged queuing capability in HBA.
9623 	 * Since un has been released, we can't use SD_IS_PARALLEL_SCSI(un) to
9624 	 * check if the device is parallel SCSI. However, we don't need to
9625 	 * check here because we've already checked during attach. No device
9626 	 * that is not parallel SCSI is in the chain.
9627 	 */
9628 	if ((tgt >= 0) && (tgt < NTARGETS_WIDE)) {
9629 		sd_scsi_update_lun_on_target(pdip, tgt, SD_SCSI_LUN_DETACH);
9630 	}
9631 
9632 	return (DDI_SUCCESS);
9633 
9634 err_notclosed:
9635 	mutex_exit(SD_MUTEX(un));
9636 
9637 err_stillbusy:
9638 	_NOTE(NO_COMPETING_THREADS_NOW);
9639 
9640 err_remove_event:
9641 	mutex_enter(&sd_detach_mutex);
9642 	un->un_detach_count--;
9643 	mutex_exit(&sd_detach_mutex);
9644 
9645 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_unit_detach: exit failure\n");
9646 	return (DDI_FAILURE);
9647 }
9648 
9649 
9650 /*
9651  * Driver minor node structure and data table
9652  */
9653 struct driver_minor_data {
9654 	char	*name;
9655 	minor_t	minor;
9656 	int	type;
9657 };
9658 
9659 static struct driver_minor_data sd_minor_data[] = {
9660 	{"a", 0, S_IFBLK},
9661 	{"b", 1, S_IFBLK},
9662 	{"c", 2, S_IFBLK},
9663 	{"d", 3, S_IFBLK},
9664 	{"e", 4, S_IFBLK},
9665 	{"f", 5, S_IFBLK},
9666 	{"g", 6, S_IFBLK},
9667 	{"h", 7, S_IFBLK},
9668 #if defined(_SUNOS_VTOC_16)
9669 	{"i", 8, S_IFBLK},
9670 	{"j", 9, S_IFBLK},
9671 	{"k", 10, S_IFBLK},
9672 	{"l", 11, S_IFBLK},
9673 	{"m", 12, S_IFBLK},
9674 	{"n", 13, S_IFBLK},
9675 	{"o", 14, S_IFBLK},
9676 	{"p", 15, S_IFBLK},
9677 #endif			/* defined(_SUNOS_VTOC_16) */
9678 #if defined(_FIRMWARE_NEEDS_FDISK)
9679 	{"q", 16, S_IFBLK},
9680 	{"r", 17, S_IFBLK},
9681 	{"s", 18, S_IFBLK},
9682 	{"t", 19, S_IFBLK},
9683 	{"u", 20, S_IFBLK},
9684 #endif			/* defined(_FIRMWARE_NEEDS_FDISK) */
9685 	{"a,raw", 0, S_IFCHR},
9686 	{"b,raw", 1, S_IFCHR},
9687 	{"c,raw", 2, S_IFCHR},
9688 	{"d,raw", 3, S_IFCHR},
9689 	{"e,raw", 4, S_IFCHR},
9690 	{"f,raw", 5, S_IFCHR},
9691 	{"g,raw", 6, S_IFCHR},
9692 	{"h,raw", 7, S_IFCHR},
9693 #if defined(_SUNOS_VTOC_16)
9694 	{"i,raw", 8, S_IFCHR},
9695 	{"j,raw", 9, S_IFCHR},
9696 	{"k,raw", 10, S_IFCHR},
9697 	{"l,raw", 11, S_IFCHR},
9698 	{"m,raw", 12, S_IFCHR},
9699 	{"n,raw", 13, S_IFCHR},
9700 	{"o,raw", 14, S_IFCHR},
9701 	{"p,raw", 15, S_IFCHR},
9702 #endif			/* defined(_SUNOS_VTOC_16) */
9703 #if defined(_FIRMWARE_NEEDS_FDISK)
9704 	{"q,raw", 16, S_IFCHR},
9705 	{"r,raw", 17, S_IFCHR},
9706 	{"s,raw", 18, S_IFCHR},
9707 	{"t,raw", 19, S_IFCHR},
9708 	{"u,raw", 20, S_IFCHR},
9709 #endif			/* defined(_FIRMWARE_NEEDS_FDISK) */
9710 	{0}
9711 };
9712 
9713 static struct driver_minor_data sd_minor_data_efi[] = {
9714 	{"a", 0, S_IFBLK},
9715 	{"b", 1, S_IFBLK},
9716 	{"c", 2, S_IFBLK},
9717 	{"d", 3, S_IFBLK},
9718 	{"e", 4, S_IFBLK},
9719 	{"f", 5, S_IFBLK},
9720 	{"g", 6, S_IFBLK},
9721 	{"wd", 7, S_IFBLK},
9722 #if defined(_FIRMWARE_NEEDS_FDISK)
9723 	{"q", 16, S_IFBLK},
9724 	{"r", 17, S_IFBLK},
9725 	{"s", 18, S_IFBLK},
9726 	{"t", 19, S_IFBLK},
9727 	{"u", 20, S_IFBLK},
9728 #endif			/* defined(_FIRMWARE_NEEDS_FDISK) */
9729 	{"a,raw", 0, S_IFCHR},
9730 	{"b,raw", 1, S_IFCHR},
9731 	{"c,raw", 2, S_IFCHR},
9732 	{"d,raw", 3, S_IFCHR},
9733 	{"e,raw", 4, S_IFCHR},
9734 	{"f,raw", 5, S_IFCHR},
9735 	{"g,raw", 6, S_IFCHR},
9736 	{"wd,raw", 7, S_IFCHR},
9737 #if defined(_FIRMWARE_NEEDS_FDISK)
9738 	{"q,raw", 16, S_IFCHR},
9739 	{"r,raw", 17, S_IFCHR},
9740 	{"s,raw", 18, S_IFCHR},
9741 	{"t,raw", 19, S_IFCHR},
9742 	{"u,raw", 20, S_IFCHR},
9743 #endif			/* defined(_FIRMWARE_NEEDS_FDISK) */
9744 	{0}
9745 };
9746 
9747 
9748 /*
9749  *    Function: sd_create_minor_nodes
9750  *
9751  * Description: Create the minor device nodes for the instance.
9752  *
9753  *   Arguments: un - driver soft state (unit) structure
9754  *		devi - pointer to device info structure
9755  *
9756  * Return Code: DDI_SUCCESS
9757  *		DDI_FAILURE
9758  *
9759  *     Context: Kernel thread context
9760  */
9761 
9762 static int
9763 sd_create_minor_nodes(struct sd_lun *un, dev_info_t *devi)
9764 {
9765 	struct driver_minor_data	*dmdp;
9766 	struct scsi_device		*devp;
9767 	int				instance;
9768 	char				name[48];
9769 
9770 	ASSERT(un != NULL);
9771 	devp = ddi_get_driver_private(devi);
9772 	instance = ddi_get_instance(devp->sd_dev);
9773 
9774 	/*
9775 	 * Create all the minor nodes for this target.
9776 	 */
9777 	if (un->un_blockcount > DK_MAX_BLOCKS)
9778 		dmdp = sd_minor_data_efi;
9779 	else
9780 		dmdp = sd_minor_data;
9781 	while (dmdp->name != NULL) {
9782 
9783 		(void) sprintf(name, "%s", dmdp->name);
9784 
9785 		if (ddi_create_minor_node(devi, name, dmdp->type,
9786 		    (instance << SDUNIT_SHIFT) | dmdp->minor,
9787 		    un->un_node_type, NULL) == DDI_FAILURE) {
9788 			/*
9789 			 * Clean up any nodes that may have been created, in
9790 			 * case this fails in the middle of the loop.
9791 			 */
9792 			ddi_remove_minor_node(devi, NULL);
9793 			return (DDI_FAILURE);
9794 		}
9795 		dmdp++;
9796 	}
9797 
9798 	return (DDI_SUCCESS);
9799 }
9800 
9801 
9802 /*
9803  *    Function: sd_create_errstats
9804  *
9805  * Description: This routine instantiates the device error stats.
9806  *
9807  *		Note: During attach the stats are instantiated first so they are
9808  *		available for attach-time routines that utilize the driver
9809  *		iopath to send commands to the device. The stats are initialized
9810  *		separately so data obtained during some attach-time routines is
9811  *		available. (4362483)
9812  *
9813  *   Arguments: un - driver soft state (unit) structure
9814  *		instance - driver instance
9815  *
9816  *     Context: Kernel thread context
9817  */
9818 
9819 static void
9820 sd_create_errstats(struct sd_lun *un, int instance)
9821 {
9822 	struct	sd_errstats	*stp;
9823 	char	kstatmodule_err[KSTAT_STRLEN];
9824 	char	kstatname[KSTAT_STRLEN];
9825 	int	ndata = (sizeof (struct sd_errstats) / sizeof (kstat_named_t));
9826 
9827 	ASSERT(un != NULL);
9828 
9829 	if (un->un_errstats != NULL) {
9830 		return;
9831 	}
9832 
9833 	(void) snprintf(kstatmodule_err, sizeof (kstatmodule_err),
9834 	    "%serr", sd_label);
9835 	(void) snprintf(kstatname, sizeof (kstatname),
9836 	    "%s%d,err", sd_label, instance);
9837 
9838 	un->un_errstats = kstat_create(kstatmodule_err, instance, kstatname,
9839 	    "device_error", KSTAT_TYPE_NAMED, ndata, KSTAT_FLAG_PERSISTENT);
9840 
9841 	if (un->un_errstats == NULL) {
9842 		SD_ERROR(SD_LOG_ATTACH_DETACH, un,
9843 		    "sd_create_errstats: Failed kstat_create\n");
9844 		return;
9845 	}
9846 
9847 	stp = (struct sd_errstats *)un->un_errstats->ks_data;
9848 	kstat_named_init(&stp->sd_softerrs,	"Soft Errors",
9849 	    KSTAT_DATA_UINT32);
9850 	kstat_named_init(&stp->sd_harderrs,	"Hard Errors",
9851 	    KSTAT_DATA_UINT32);
9852 	kstat_named_init(&stp->sd_transerrs,	"Transport Errors",
9853 	    KSTAT_DATA_UINT32);
9854 	kstat_named_init(&stp->sd_vid,		"Vendor",
9855 	    KSTAT_DATA_CHAR);
9856 	kstat_named_init(&stp->sd_pid,		"Product",
9857 	    KSTAT_DATA_CHAR);
9858 	kstat_named_init(&stp->sd_revision,	"Revision",
9859 	    KSTAT_DATA_CHAR);
9860 	kstat_named_init(&stp->sd_serial,	"Serial No",
9861 	    KSTAT_DATA_CHAR);
9862 	kstat_named_init(&stp->sd_capacity,	"Size",
9863 	    KSTAT_DATA_ULONGLONG);
9864 	kstat_named_init(&stp->sd_rq_media_err,	"Media Error",
9865 	    KSTAT_DATA_UINT32);
9866 	kstat_named_init(&stp->sd_rq_ntrdy_err,	"Device Not Ready",
9867 	    KSTAT_DATA_UINT32);
9868 	kstat_named_init(&stp->sd_rq_nodev_err,	"No Device",
9869 	    KSTAT_DATA_UINT32);
9870 	kstat_named_init(&stp->sd_rq_recov_err,	"Recoverable",
9871 	    KSTAT_DATA_UINT32);
9872 	kstat_named_init(&stp->sd_rq_illrq_err,	"Illegal Request",
9873 	    KSTAT_DATA_UINT32);
9874 	kstat_named_init(&stp->sd_rq_pfa_err,	"Predictive Failure Analysis",
9875 	    KSTAT_DATA_UINT32);
9876 
9877 	un->un_errstats->ks_private = un;
9878 	un->un_errstats->ks_update  = nulldev;
9879 
9880 	kstat_install(un->un_errstats);
9881 }
9882 
9883 
9884 /*
9885  *    Function: sd_set_errstats
9886  *
9887  * Description: This routine sets the value of the vendor id, product id,
9888  *		revision, serial number, and capacity device error stats.
9889  *
9890  *		Note: During attach the stats are instantiated first so they are
9891  *		available for attach-time routines that utilize the driver
9892  *		iopath to send commands to the device. The stats are initialized
9893  *		separately so data obtained during some attach-time routines is
9894  *		available. (4362483)
9895  *
9896  *   Arguments: un - driver soft state (unit) structure
9897  *
9898  *     Context: Kernel thread context
9899  */
9900 
9901 static void
9902 sd_set_errstats(struct sd_lun *un)
9903 {
9904 	struct	sd_errstats	*stp;
9905 
9906 	ASSERT(un != NULL);
9907 	ASSERT(un->un_errstats != NULL);
9908 	stp = (struct sd_errstats *)un->un_errstats->ks_data;
9909 	ASSERT(stp != NULL);
9910 	(void) strncpy(stp->sd_vid.value.c, un->un_sd->sd_inq->inq_vid, 8);
9911 	(void) strncpy(stp->sd_pid.value.c, un->un_sd->sd_inq->inq_pid, 16);
9912 	(void) strncpy(stp->sd_revision.value.c,
9913 	    un->un_sd->sd_inq->inq_revision, 4);
9914 
9915 	/*
9916 	 * All the errstats are persistent across detach/attach,
9917 	 * so reset all the errstats here in case of the hot
9918 	 * replacement of disk drives, except for not changed
9919 	 * Sun qualified drives.
9920 	 */
9921 	if ((bcmp(&SD_INQUIRY(un)->inq_pid[9], "SUN", 3) != 0) ||
9922 	    (bcmp(&SD_INQUIRY(un)->inq_serial, stp->sd_serial.value.c,
9923 	    sizeof (SD_INQUIRY(un)->inq_serial)) != 0)) {
9924 		stp->sd_softerrs.value.ui32 = 0;
9925 		stp->sd_harderrs.value.ui32 = 0;
9926 		stp->sd_transerrs.value.ui32 = 0;
9927 		stp->sd_rq_media_err.value.ui32 = 0;
9928 		stp->sd_rq_ntrdy_err.value.ui32 = 0;
9929 		stp->sd_rq_nodev_err.value.ui32 = 0;
9930 		stp->sd_rq_recov_err.value.ui32 = 0;
9931 		stp->sd_rq_illrq_err.value.ui32 = 0;
9932 		stp->sd_rq_pfa_err.value.ui32 = 0;
9933 	}
9934 
9935 	/*
9936 	 * Set the "Serial No" kstat for Sun qualified drives (indicated by
9937 	 * "SUN" in bytes 25-27 of the inquiry data (bytes 9-11 of the pid)
9938 	 * (4376302))
9939 	 */
9940 	if (bcmp(&SD_INQUIRY(un)->inq_pid[9], "SUN", 3) == 0) {
9941 		bcopy(&SD_INQUIRY(un)->inq_serial, stp->sd_serial.value.c,
9942 		    sizeof (SD_INQUIRY(un)->inq_serial));
9943 	}
9944 
9945 	if (un->un_f_blockcount_is_valid != TRUE) {
9946 		/*
9947 		 * Set capacity error stat to 0 for no media. This ensures
9948 		 * a valid capacity is displayed in response to 'iostat -E'
9949 		 * when no media is present in the device.
9950 		 */
9951 		stp->sd_capacity.value.ui64 = 0;
9952 	} else {
9953 		/*
9954 		 * Multiply un_blockcount by un->un_sys_blocksize to get
9955 		 * capacity.
9956 		 *
9957 		 * Note: for non-512 blocksize devices "un_blockcount" has been
9958 		 * "scaled" in sd_send_scsi_READ_CAPACITY by multiplying by
9959 		 * (un_tgt_blocksize / un->un_sys_blocksize).
9960 		 */
9961 		stp->sd_capacity.value.ui64 = (uint64_t)
9962 		    ((uint64_t)un->un_blockcount * un->un_sys_blocksize);
9963 	}
9964 }
9965 
9966 
9967 /*
9968  *    Function: sd_set_pstats
9969  *
9970  * Description: This routine instantiates and initializes the partition
9971  *              stats for each partition with more than zero blocks.
9972  *		(4363169)
9973  *
9974  *   Arguments: un - driver soft state (unit) structure
9975  *
9976  *     Context: Kernel thread context
9977  */
9978 
9979 static void
9980 sd_set_pstats(struct sd_lun *un)
9981 {
9982 	char	kstatname[KSTAT_STRLEN];
9983 	int	instance;
9984 	int	i;
9985 
9986 	ASSERT(un != NULL);
9987 
9988 	instance = ddi_get_instance(SD_DEVINFO(un));
9989 
9990 	/* Note:x86: is this a VTOC8/VTOC16 difference? */
9991 	for (i = 0; i < NSDMAP; i++) {
9992 		if ((un->un_pstats[i] == NULL) &&
9993 		    (un->un_map[i].dkl_nblk != 0)) {
9994 			(void) snprintf(kstatname, sizeof (kstatname),
9995 			    "%s%d,%s", sd_label, instance,
9996 			    sd_minor_data[i].name);
9997 			un->un_pstats[i] = kstat_create(sd_label,
9998 			    instance, kstatname, "partition", KSTAT_TYPE_IO,
9999 			    1, KSTAT_FLAG_PERSISTENT);
10000 			if (un->un_pstats[i] != NULL) {
10001 				un->un_pstats[i]->ks_lock = SD_MUTEX(un);
10002 				kstat_install(un->un_pstats[i]);
10003 			}
10004 		}
10005 	}
10006 }
10007 
10008 
10009 #if (defined(__fibre))
10010 /*
10011  *    Function: sd_init_event_callbacks
10012  *
10013  * Description: This routine initializes the insertion and removal event
10014  *		callbacks. (fibre only)
10015  *
10016  *   Arguments: un - driver soft state (unit) structure
10017  *
10018  *     Context: Kernel thread context
10019  */
10020 
10021 static void
10022 sd_init_event_callbacks(struct sd_lun *un)
10023 {
10024 	ASSERT(un != NULL);
10025 
10026 	if ((un->un_insert_event == NULL) &&
10027 	    (ddi_get_eventcookie(SD_DEVINFO(un), FCAL_INSERT_EVENT,
10028 	    &un->un_insert_event) == DDI_SUCCESS)) {
10029 		/*
10030 		 * Add the callback for an insertion event
10031 		 */
10032 		(void) ddi_add_event_handler(SD_DEVINFO(un),
10033 		    un->un_insert_event, sd_event_callback, (void *)un,
10034 		    &(un->un_insert_cb_id));
10035 	}
10036 
10037 	if ((un->un_remove_event == NULL) &&
10038 	    (ddi_get_eventcookie(SD_DEVINFO(un), FCAL_REMOVE_EVENT,
10039 	    &un->un_remove_event) == DDI_SUCCESS)) {
10040 		/*
10041 		 * Add the callback for a removal event
10042 		 */
10043 		(void) ddi_add_event_handler(SD_DEVINFO(un),
10044 		    un->un_remove_event, sd_event_callback, (void *)un,
10045 		    &(un->un_remove_cb_id));
10046 	}
10047 }
10048 
10049 
10050 /*
10051  *    Function: sd_event_callback
10052  *
10053  * Description: This routine handles insert/remove events (photon). The
10054  *		state is changed to OFFLINE which can be used to supress
10055  *		error msgs. (fibre only)
10056  *
10057  *   Arguments: un - driver soft state (unit) structure
10058  *
10059  *     Context: Callout thread context
10060  */
10061 /* ARGSUSED */
10062 static void
10063 sd_event_callback(dev_info_t *dip, ddi_eventcookie_t event, void *arg,
10064     void *bus_impldata)
10065 {
10066 	struct sd_lun *un = (struct sd_lun *)arg;
10067 
10068 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_insert_event));
10069 	if (event == un->un_insert_event) {
10070 		SD_TRACE(SD_LOG_COMMON, un, "sd_event_callback: insert event");
10071 		mutex_enter(SD_MUTEX(un));
10072 		if (un->un_state == SD_STATE_OFFLINE) {
10073 			if (un->un_last_state != SD_STATE_SUSPENDED) {
10074 				un->un_state = un->un_last_state;
10075 			} else {
10076 				/*
10077 				 * We have gone through SUSPEND/RESUME while
10078 				 * we were offline. Restore the last state
10079 				 */
10080 				un->un_state = un->un_save_state;
10081 			}
10082 		}
10083 		mutex_exit(SD_MUTEX(un));
10084 
10085 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_remove_event));
10086 	} else if (event == un->un_remove_event) {
10087 		SD_TRACE(SD_LOG_COMMON, un, "sd_event_callback: remove event");
10088 		mutex_enter(SD_MUTEX(un));
10089 		/*
10090 		 * We need to handle an event callback that occurs during
10091 		 * the suspend operation, since we don't prevent it.
10092 		 */
10093 		if (un->un_state != SD_STATE_OFFLINE) {
10094 			if (un->un_state != SD_STATE_SUSPENDED) {
10095 				New_state(un, SD_STATE_OFFLINE);
10096 			} else {
10097 				un->un_last_state = SD_STATE_OFFLINE;
10098 			}
10099 		}
10100 		mutex_exit(SD_MUTEX(un));
10101 	} else {
10102 		scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE,
10103 		    "!Unknown event\n");
10104 	}
10105 
10106 }
10107 #endif
10108 
10109 /*
10110  *    Function: sd_cache_control()
10111  *
10112  * Description: This routine is the driver entry point for setting
10113  *		read and write caching by modifying the WCE (write cache
10114  *		enable) and RCD (read cache disable) bits of mode
10115  *		page 8 (MODEPAGE_CACHING).
10116  *
10117  *   Arguments: un - driver soft state (unit) structure
10118  *		rcd_flag - flag for controlling the read cache
10119  *		wce_flag - flag for controlling the write cache
10120  *
10121  * Return Code: EIO
10122  *		code returned by sd_send_scsi_MODE_SENSE and
10123  *		sd_send_scsi_MODE_SELECT
10124  *
10125  *     Context: Kernel Thread
10126  */
10127 
10128 static int
10129 sd_cache_control(struct sd_lun *un, int rcd_flag, int wce_flag)
10130 {
10131 	struct mode_caching	*mode_caching_page;
10132 	uchar_t			*header;
10133 	size_t			buflen;
10134 	int			hdrlen;
10135 	int			bd_len;
10136 	int			rval = 0;
10137 	struct mode_header_grp2	*mhp;
10138 
10139 	ASSERT(un != NULL);
10140 
10141 	/*
10142 	 * Do a test unit ready, otherwise a mode sense may not work if this
10143 	 * is the first command sent to the device after boot.
10144 	 */
10145 	(void) sd_send_scsi_TEST_UNIT_READY(un, 0);
10146 
10147 	if (un->un_f_cfg_is_atapi == TRUE) {
10148 		hdrlen = MODE_HEADER_LENGTH_GRP2;
10149 	} else {
10150 		hdrlen = MODE_HEADER_LENGTH;
10151 	}
10152 
10153 	/*
10154 	 * Allocate memory for the retrieved mode page and its headers.  Set
10155 	 * a pointer to the page itself.  Use mode_cache_scsi3 to insure
10156 	 * we get all of the mode sense data otherwise, the mode select
10157 	 * will fail.  mode_cache_scsi3 is a superset of mode_caching.
10158 	 */
10159 	buflen = hdrlen + MODE_BLK_DESC_LENGTH +
10160 		sizeof (struct mode_cache_scsi3);
10161 
10162 	header = kmem_zalloc(buflen, KM_SLEEP);
10163 
10164 	/* Get the information from the device. */
10165 	if (un->un_f_cfg_is_atapi == TRUE) {
10166 		rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, header, buflen,
10167 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
10168 	} else {
10169 		rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, header, buflen,
10170 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
10171 	}
10172 	if (rval != 0) {
10173 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
10174 		    "sd_cache_control: Mode Sense Failed\n");
10175 		kmem_free(header, buflen);
10176 		return (rval);
10177 	}
10178 
10179 	/*
10180 	 * Determine size of Block Descriptors in order to locate
10181 	 * the mode page data. ATAPI devices return 0, SCSI devices
10182 	 * should return MODE_BLK_DESC_LENGTH.
10183 	 */
10184 	if (un->un_f_cfg_is_atapi == TRUE) {
10185 		mhp	= (struct mode_header_grp2 *)header;
10186 		bd_len  = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
10187 	} else {
10188 		bd_len  = ((struct mode_header *)header)->bdesc_length;
10189 	}
10190 
10191 	if (bd_len > MODE_BLK_DESC_LENGTH) {
10192 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
10193 		    "sd_cache_control: Mode Sense returned invalid "
10194 		    "block descriptor length\n");
10195 		kmem_free(header, buflen);
10196 		return (EIO);
10197 	}
10198 
10199 	mode_caching_page = (struct mode_caching *)(header + hdrlen + bd_len);
10200 	if (mode_caching_page->mode_page.code != MODEPAGE_CACHING) {
10201 		SD_ERROR(SD_LOG_COMMON, un, "sd_cache_control: Mode Sense"
10202 		    " caching page code mismatch %d\n",
10203 		    mode_caching_page->mode_page.code);
10204 		kmem_free(header, buflen);
10205 		return (EIO);
10206 	}
10207 
10208 	/* Check the relevant bits on successful mode sense. */
10209 	if ((mode_caching_page->rcd && rcd_flag == SD_CACHE_ENABLE) ||
10210 	    (!mode_caching_page->rcd && rcd_flag == SD_CACHE_DISABLE) ||
10211 	    (mode_caching_page->wce && wce_flag == SD_CACHE_DISABLE) ||
10212 	    (!mode_caching_page->wce && wce_flag == SD_CACHE_ENABLE)) {
10213 
10214 		size_t sbuflen;
10215 		uchar_t save_pg;
10216 
10217 		/*
10218 		 * Construct select buffer length based on the
10219 		 * length of the sense data returned.
10220 		 */
10221 		sbuflen =  hdrlen + MODE_BLK_DESC_LENGTH +
10222 				sizeof (struct mode_page) +
10223 				(int)mode_caching_page->mode_page.length;
10224 
10225 		/*
10226 		 * Set the caching bits as requested.
10227 		 */
10228 		if (rcd_flag == SD_CACHE_ENABLE)
10229 			mode_caching_page->rcd = 0;
10230 		else if (rcd_flag == SD_CACHE_DISABLE)
10231 			mode_caching_page->rcd = 1;
10232 
10233 		if (wce_flag == SD_CACHE_ENABLE)
10234 			mode_caching_page->wce = 1;
10235 		else if (wce_flag == SD_CACHE_DISABLE)
10236 			mode_caching_page->wce = 0;
10237 
10238 		/*
10239 		 * Save the page if the mode sense says the
10240 		 * drive supports it.
10241 		 */
10242 		save_pg = mode_caching_page->mode_page.ps ?
10243 				SD_SAVE_PAGE : SD_DONTSAVE_PAGE;
10244 
10245 		/* Clear reserved bits before mode select. */
10246 		mode_caching_page->mode_page.ps = 0;
10247 
10248 		/*
10249 		 * Clear out mode header for mode select.
10250 		 * The rest of the retrieved page will be reused.
10251 		 */
10252 		bzero(header, hdrlen);
10253 
10254 		if (un->un_f_cfg_is_atapi == TRUE) {
10255 			mhp = (struct mode_header_grp2 *)header;
10256 			mhp->bdesc_length_hi = bd_len >> 8;
10257 			mhp->bdesc_length_lo = (uchar_t)bd_len & 0xff;
10258 		} else {
10259 			((struct mode_header *)header)->bdesc_length = bd_len;
10260 		}
10261 
10262 		/* Issue mode select to change the cache settings */
10263 		if (un->un_f_cfg_is_atapi == TRUE) {
10264 			rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP1, header,
10265 			    sbuflen, save_pg, SD_PATH_DIRECT);
10266 		} else {
10267 			rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, header,
10268 			    sbuflen, save_pg, SD_PATH_DIRECT);
10269 		}
10270 	}
10271 
10272 	kmem_free(header, buflen);
10273 	return (rval);
10274 }
10275 
10276 
10277 /*
10278  *    Function: sd_get_write_cache_enabled()
10279  *
10280  * Description: This routine is the driver entry point for determining if
10281  *		write caching is enabled.  It examines the WCE (write cache
10282  *		enable) bits of mode page 8 (MODEPAGE_CACHING).
10283  *
10284  *   Arguments: un - driver soft state (unit) structure
10285  *   		is_enabled - pointer to int where write cache enabled state
10286  *   			is returned (non-zero -> write cache enabled)
10287  *
10288  *
10289  * Return Code: EIO
10290  *		code returned by sd_send_scsi_MODE_SENSE
10291  *
10292  *     Context: Kernel Thread
10293  *
10294  * NOTE: If ioctl is added to disable write cache, this sequence should
10295  * be followed so that no locking is required for accesses to
10296  * un->un_f_write_cache_enabled:
10297  * 	do mode select to clear wce
10298  * 	do synchronize cache to flush cache
10299  * 	set un->un_f_write_cache_enabled = FALSE
10300  *
10301  * Conversely, an ioctl to enable the write cache should be done
10302  * in this order:
10303  * 	set un->un_f_write_cache_enabled = TRUE
10304  * 	do mode select to set wce
10305  */
10306 
10307 static int
10308 sd_get_write_cache_enabled(struct sd_lun *un, int *is_enabled)
10309 {
10310 	struct mode_caching	*mode_caching_page;
10311 	uchar_t			*header;
10312 	size_t			buflen;
10313 	int			hdrlen;
10314 	int			bd_len;
10315 	int			rval = 0;
10316 
10317 	ASSERT(un != NULL);
10318 	ASSERT(is_enabled != NULL);
10319 
10320 	/* in case of error, flag as enabled */
10321 	*is_enabled = TRUE;
10322 
10323 	/*
10324 	 * Do a test unit ready, otherwise a mode sense may not work if this
10325 	 * is the first command sent to the device after boot.
10326 	 */
10327 	(void) sd_send_scsi_TEST_UNIT_READY(un, 0);
10328 
10329 	if (un->un_f_cfg_is_atapi == TRUE) {
10330 		hdrlen = MODE_HEADER_LENGTH_GRP2;
10331 	} else {
10332 		hdrlen = MODE_HEADER_LENGTH;
10333 	}
10334 
10335 	/*
10336 	 * Allocate memory for the retrieved mode page and its headers.  Set
10337 	 * a pointer to the page itself.
10338 	 */
10339 	buflen = hdrlen + MODE_BLK_DESC_LENGTH + sizeof (struct mode_caching);
10340 	header = kmem_zalloc(buflen, KM_SLEEP);
10341 
10342 	/* Get the information from the device. */
10343 	if (un->un_f_cfg_is_atapi == TRUE) {
10344 		rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, header, buflen,
10345 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
10346 	} else {
10347 		rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, header, buflen,
10348 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
10349 	}
10350 	if (rval != 0) {
10351 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
10352 		    "sd_get_write_cache_enabled: Mode Sense Failed\n");
10353 		kmem_free(header, buflen);
10354 		return (rval);
10355 	}
10356 
10357 	/*
10358 	 * Determine size of Block Descriptors in order to locate
10359 	 * the mode page data. ATAPI devices return 0, SCSI devices
10360 	 * should return MODE_BLK_DESC_LENGTH.
10361 	 */
10362 	if (un->un_f_cfg_is_atapi == TRUE) {
10363 		struct mode_header_grp2	*mhp;
10364 		mhp	= (struct mode_header_grp2 *)header;
10365 		bd_len  = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
10366 	} else {
10367 		bd_len  = ((struct mode_header *)header)->bdesc_length;
10368 	}
10369 
10370 	if (bd_len > MODE_BLK_DESC_LENGTH) {
10371 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
10372 		    "sd_get_write_cache_enabled: Mode Sense returned invalid "
10373 		    "block descriptor length\n");
10374 		kmem_free(header, buflen);
10375 		return (EIO);
10376 	}
10377 
10378 	mode_caching_page = (struct mode_caching *)(header + hdrlen + bd_len);
10379 	if (mode_caching_page->mode_page.code != MODEPAGE_CACHING) {
10380 		SD_ERROR(SD_LOG_COMMON, un, "sd_cache_control: Mode Sense"
10381 		    " caching page code mismatch %d\n",
10382 		    mode_caching_page->mode_page.code);
10383 		kmem_free(header, buflen);
10384 		return (EIO);
10385 	}
10386 	*is_enabled = mode_caching_page->wce;
10387 
10388 	kmem_free(header, buflen);
10389 	return (0);
10390 }
10391 
10392 
10393 /*
10394  *    Function: sd_make_device
10395  *
10396  * Description: Utility routine to return the Solaris device number from
10397  *		the data in the device's dev_info structure.
10398  *
10399  * Return Code: The Solaris device number
10400  *
10401  *     Context: Any
10402  */
10403 
10404 static dev_t
10405 sd_make_device(dev_info_t *devi)
10406 {
10407 	return (makedevice(ddi_name_to_major(ddi_get_name(devi)),
10408 	    ddi_get_instance(devi) << SDUNIT_SHIFT));
10409 }
10410 
10411 
10412 /*
10413  *    Function: sd_pm_entry
10414  *
10415  * Description: Called at the start of a new command to manage power
10416  *		and busy status of a device. This includes determining whether
10417  *		the current power state of the device is sufficient for
10418  *		performing the command or whether it must be changed.
10419  *		The PM framework is notified appropriately.
10420  *		Only with a return status of DDI_SUCCESS will the
10421  *		component be busy to the framework.
10422  *
10423  *		All callers of sd_pm_entry must check the return status
10424  *		and only call sd_pm_exit it it was DDI_SUCCESS. A status
10425  *		of DDI_FAILURE indicates the device failed to power up.
10426  *		In this case un_pm_count has been adjusted so the result
10427  *		on exit is still powered down, ie. count is less than 0.
10428  *		Calling sd_pm_exit with this count value hits an ASSERT.
10429  *
10430  * Return Code: DDI_SUCCESS or DDI_FAILURE
10431  *
10432  *     Context: Kernel thread context.
10433  */
10434 
10435 static int
10436 sd_pm_entry(struct sd_lun *un)
10437 {
10438 	int return_status = DDI_SUCCESS;
10439 
10440 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10441 	ASSERT(!mutex_owned(&un->un_pm_mutex));
10442 
10443 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_entry: entry\n");
10444 
10445 	if (un->un_f_pm_is_enabled == FALSE) {
10446 		SD_TRACE(SD_LOG_IO_PM, un,
10447 		    "sd_pm_entry: exiting, PM not enabled\n");
10448 		return (return_status);
10449 	}
10450 
10451 	/*
10452 	 * Just increment a counter if PM is enabled. On the transition from
10453 	 * 0 ==> 1, mark the device as busy.  The iodone side will decrement
10454 	 * the count with each IO and mark the device as idle when the count
10455 	 * hits 0.
10456 	 *
10457 	 * If the count is less than 0 the device is powered down. If a powered
10458 	 * down device is successfully powered up then the count must be
10459 	 * incremented to reflect the power up. Note that it'll get incremented
10460 	 * a second time to become busy.
10461 	 *
10462 	 * Because the following has the potential to change the device state
10463 	 * and must release the un_pm_mutex to do so, only one thread can be
10464 	 * allowed through at a time.
10465 	 */
10466 
10467 	mutex_enter(&un->un_pm_mutex);
10468 	while (un->un_pm_busy == TRUE) {
10469 		cv_wait(&un->un_pm_busy_cv, &un->un_pm_mutex);
10470 	}
10471 	un->un_pm_busy = TRUE;
10472 
10473 	if (un->un_pm_count < 1) {
10474 
10475 		SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_entry: busy component\n");
10476 
10477 		/*
10478 		 * Indicate we are now busy so the framework won't attempt to
10479 		 * power down the device. This call will only fail if either
10480 		 * we passed a bad component number or the device has no
10481 		 * components. Neither of these should ever happen.
10482 		 */
10483 		mutex_exit(&un->un_pm_mutex);
10484 		return_status = pm_busy_component(SD_DEVINFO(un), 0);
10485 		ASSERT(return_status == DDI_SUCCESS);
10486 
10487 		mutex_enter(&un->un_pm_mutex);
10488 
10489 		if (un->un_pm_count < 0) {
10490 			mutex_exit(&un->un_pm_mutex);
10491 
10492 			SD_TRACE(SD_LOG_IO_PM, un,
10493 			    "sd_pm_entry: power up component\n");
10494 
10495 			/*
10496 			 * pm_raise_power will cause sdpower to be called
10497 			 * which brings the device power level to the
10498 			 * desired state, ON in this case. If successful,
10499 			 * un_pm_count and un_power_level will be updated
10500 			 * appropriately.
10501 			 */
10502 			return_status = pm_raise_power(SD_DEVINFO(un), 0,
10503 			    SD_SPINDLE_ON);
10504 
10505 			mutex_enter(&un->un_pm_mutex);
10506 
10507 			if (return_status != DDI_SUCCESS) {
10508 				/*
10509 				 * Power up failed.
10510 				 * Idle the device and adjust the count
10511 				 * so the result on exit is that we're
10512 				 * still powered down, ie. count is less than 0.
10513 				 */
10514 				SD_TRACE(SD_LOG_IO_PM, un,
10515 				    "sd_pm_entry: power up failed,"
10516 				    " idle the component\n");
10517 
10518 				(void) pm_idle_component(SD_DEVINFO(un), 0);
10519 				un->un_pm_count--;
10520 			} else {
10521 				/*
10522 				 * Device is powered up, verify the
10523 				 * count is non-negative.
10524 				 * This is debug only.
10525 				 */
10526 				ASSERT(un->un_pm_count == 0);
10527 			}
10528 		}
10529 
10530 		if (return_status == DDI_SUCCESS) {
10531 			/*
10532 			 * For performance, now that the device has been tagged
10533 			 * as busy, and it's known to be powered up, update the
10534 			 * chain types to use jump tables that do not include
10535 			 * pm. This significantly lowers the overhead and
10536 			 * therefore improves performance.
10537 			 */
10538 
10539 			mutex_exit(&un->un_pm_mutex);
10540 			mutex_enter(SD_MUTEX(un));
10541 			SD_TRACE(SD_LOG_IO_PM, un,
10542 			    "sd_pm_entry: changing uscsi_chain_type from %d\n",
10543 			    un->un_uscsi_chain_type);
10544 
10545 			if (un->un_f_non_devbsize_supported) {
10546 				un->un_buf_chain_type =
10547 				    SD_CHAIN_INFO_RMMEDIA_NO_PM;
10548 			} else {
10549 				un->un_buf_chain_type =
10550 				    SD_CHAIN_INFO_DISK_NO_PM;
10551 			}
10552 			un->un_uscsi_chain_type = SD_CHAIN_INFO_USCSI_CMD_NO_PM;
10553 
10554 			SD_TRACE(SD_LOG_IO_PM, un,
10555 			    "             changed  uscsi_chain_type to   %d\n",
10556 			    un->un_uscsi_chain_type);
10557 			mutex_exit(SD_MUTEX(un));
10558 			mutex_enter(&un->un_pm_mutex);
10559 
10560 			if (un->un_pm_idle_timeid == NULL) {
10561 				/* 300 ms. */
10562 				un->un_pm_idle_timeid =
10563 				    timeout(sd_pm_idletimeout_handler, un,
10564 				    (drv_usectohz((clock_t)300000)));
10565 				/*
10566 				 * Include an extra call to busy which keeps the
10567 				 * device busy with-respect-to the PM layer
10568 				 * until the timer fires, at which time it'll
10569 				 * get the extra idle call.
10570 				 */
10571 				(void) pm_busy_component(SD_DEVINFO(un), 0);
10572 			}
10573 		}
10574 	}
10575 	un->un_pm_busy = FALSE;
10576 	/* Next... */
10577 	cv_signal(&un->un_pm_busy_cv);
10578 
10579 	un->un_pm_count++;
10580 
10581 	SD_TRACE(SD_LOG_IO_PM, un,
10582 	    "sd_pm_entry: exiting, un_pm_count = %d\n", un->un_pm_count);
10583 
10584 	mutex_exit(&un->un_pm_mutex);
10585 
10586 	return (return_status);
10587 }
10588 
10589 
10590 /*
10591  *    Function: sd_pm_exit
10592  *
10593  * Description: Called at the completion of a command to manage busy
10594  *		status for the device. If the device becomes idle the
10595  *		PM framework is notified.
10596  *
10597  *     Context: Kernel thread context
10598  */
10599 
10600 static void
10601 sd_pm_exit(struct sd_lun *un)
10602 {
10603 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10604 	ASSERT(!mutex_owned(&un->un_pm_mutex));
10605 
10606 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_exit: entry\n");
10607 
10608 	/*
10609 	 * After attach the following flag is only read, so don't
10610 	 * take the penalty of acquiring a mutex for it.
10611 	 */
10612 	if (un->un_f_pm_is_enabled == TRUE) {
10613 
10614 		mutex_enter(&un->un_pm_mutex);
10615 		un->un_pm_count--;
10616 
10617 		SD_TRACE(SD_LOG_IO_PM, un,
10618 		    "sd_pm_exit: un_pm_count = %d\n", un->un_pm_count);
10619 
10620 		ASSERT(un->un_pm_count >= 0);
10621 		if (un->un_pm_count == 0) {
10622 			mutex_exit(&un->un_pm_mutex);
10623 
10624 			SD_TRACE(SD_LOG_IO_PM, un,
10625 			    "sd_pm_exit: idle component\n");
10626 
10627 			(void) pm_idle_component(SD_DEVINFO(un), 0);
10628 
10629 		} else {
10630 			mutex_exit(&un->un_pm_mutex);
10631 		}
10632 	}
10633 
10634 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_exit: exiting\n");
10635 }
10636 
10637 
10638 /*
10639  *    Function: sdopen
10640  *
10641  * Description: Driver's open(9e) entry point function.
10642  *
10643  *   Arguments: dev_i   - pointer to device number
10644  *		flag    - how to open file (FEXCL, FNDELAY, FREAD, FWRITE)
10645  *		otyp    - open type (OTYP_BLK, OTYP_CHR, OTYP_LYR)
10646  *		cred_p  - user credential pointer
10647  *
10648  * Return Code: EINVAL
10649  *		ENXIO
10650  *		EIO
10651  *		EROFS
10652  *		EBUSY
10653  *
10654  *     Context: Kernel thread context
10655  */
10656 /* ARGSUSED */
10657 static int
10658 sdopen(dev_t *dev_p, int flag, int otyp, cred_t *cred_p)
10659 {
10660 	struct sd_lun	*un;
10661 	int		nodelay;
10662 	int		part;
10663 	uint64_t	partmask;
10664 	int		instance;
10665 	dev_t		dev;
10666 	int		rval = EIO;
10667 
10668 	/* Validate the open type */
10669 	if (otyp >= OTYPCNT) {
10670 		return (EINVAL);
10671 	}
10672 
10673 	dev = *dev_p;
10674 	instance = SDUNIT(dev);
10675 	mutex_enter(&sd_detach_mutex);
10676 
10677 	/*
10678 	 * Fail the open if there is no softstate for the instance, or
10679 	 * if another thread somewhere is trying to detach the instance.
10680 	 */
10681 	if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) ||
10682 	    (un->un_detach_count != 0)) {
10683 		mutex_exit(&sd_detach_mutex);
10684 		/*
10685 		 * The probe cache only needs to be cleared when open (9e) fails
10686 		 * with ENXIO (4238046).
10687 		 */
10688 		/*
10689 		 * un-conditionally clearing probe cache is ok with
10690 		 * separate sd/ssd binaries
10691 		 * x86 platform can be an issue with both parallel
10692 		 * and fibre in 1 binary
10693 		 */
10694 		sd_scsi_clear_probe_cache();
10695 		return (ENXIO);
10696 	}
10697 
10698 	/*
10699 	 * The un_layer_count is to prevent another thread in specfs from
10700 	 * trying to detach the instance, which can happen when we are
10701 	 * called from a higher-layer driver instead of thru specfs.
10702 	 * This will not be needed when DDI provides a layered driver
10703 	 * interface that allows specfs to know that an instance is in
10704 	 * use by a layered driver & should not be detached.
10705 	 *
10706 	 * Note: the semantics for layered driver opens are exactly one
10707 	 * close for every open.
10708 	 */
10709 	if (otyp == OTYP_LYR) {
10710 		un->un_layer_count++;
10711 	}
10712 
10713 	/*
10714 	 * Keep a count of the current # of opens in progress. This is because
10715 	 * some layered drivers try to call us as a regular open. This can
10716 	 * cause problems that we cannot prevent, however by keeping this count
10717 	 * we can at least keep our open and detach routines from racing against
10718 	 * each other under such conditions.
10719 	 */
10720 	un->un_opens_in_progress++;
10721 	mutex_exit(&sd_detach_mutex);
10722 
10723 	nodelay  = (flag & (FNDELAY | FNONBLOCK));
10724 	part	 = SDPART(dev);
10725 	partmask = 1 << part;
10726 
10727 	/*
10728 	 * We use a semaphore here in order to serialize
10729 	 * open and close requests on the device.
10730 	 */
10731 	sema_p(&un->un_semoclose);
10732 
10733 	mutex_enter(SD_MUTEX(un));
10734 
10735 	/*
10736 	 * All device accesses go thru sdstrategy() where we check
10737 	 * on suspend status but there could be a scsi_poll command,
10738 	 * which bypasses sdstrategy(), so we need to check pm
10739 	 * status.
10740 	 */
10741 
10742 	if (!nodelay) {
10743 		while ((un->un_state == SD_STATE_SUSPENDED) ||
10744 		    (un->un_state == SD_STATE_PM_CHANGING)) {
10745 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
10746 		}
10747 
10748 		mutex_exit(SD_MUTEX(un));
10749 		if (sd_pm_entry(un) != DDI_SUCCESS) {
10750 			rval = EIO;
10751 			SD_ERROR(SD_LOG_OPEN_CLOSE, un,
10752 			    "sdopen: sd_pm_entry failed\n");
10753 			goto open_failed_with_pm;
10754 		}
10755 		mutex_enter(SD_MUTEX(un));
10756 	}
10757 
10758 	/* check for previous exclusive open */
10759 	SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: un=%p\n", (void *)un);
10760 	SD_TRACE(SD_LOG_OPEN_CLOSE, un,
10761 	    "sdopen: exclopen=%x, flag=%x, regopen=%x\n",
10762 	    un->un_exclopen, flag, un->un_ocmap.regopen[otyp]);
10763 
10764 	if (un->un_exclopen & (partmask)) {
10765 		goto excl_open_fail;
10766 	}
10767 
10768 	if (flag & FEXCL) {
10769 		int i;
10770 		if (un->un_ocmap.lyropen[part]) {
10771 			goto excl_open_fail;
10772 		}
10773 		for (i = 0; i < (OTYPCNT - 1); i++) {
10774 			if (un->un_ocmap.regopen[i] & (partmask)) {
10775 				goto excl_open_fail;
10776 			}
10777 		}
10778 	}
10779 
10780 	/*
10781 	 * Check the write permission if this is a removable media device,
10782 	 * NDELAY has not been set, and writable permission is requested.
10783 	 *
10784 	 * Note: If NDELAY was set and this is write-protected media the WRITE
10785 	 * attempt will fail with EIO as part of the I/O processing. This is a
10786 	 * more permissive implementation that allows the open to succeed and
10787 	 * WRITE attempts to fail when appropriate.
10788 	 */
10789 	if (un->un_f_chk_wp_open) {
10790 		if ((flag & FWRITE) && (!nodelay)) {
10791 			mutex_exit(SD_MUTEX(un));
10792 			/*
10793 			 * Defer the check for write permission on writable
10794 			 * DVD drive till sdstrategy and will not fail open even
10795 			 * if FWRITE is set as the device can be writable
10796 			 * depending upon the media and the media can change
10797 			 * after the call to open().
10798 			 */
10799 			if (un->un_f_dvdram_writable_device == FALSE) {
10800 				if (ISCD(un) || sr_check_wp(dev)) {
10801 				rval = EROFS;
10802 				mutex_enter(SD_MUTEX(un));
10803 				SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: "
10804 				    "write to cd or write protected media\n");
10805 				goto open_fail;
10806 				}
10807 			}
10808 			mutex_enter(SD_MUTEX(un));
10809 		}
10810 	}
10811 
10812 	/*
10813 	 * If opening in NDELAY/NONBLOCK mode, just return.
10814 	 * Check if disk is ready and has a valid geometry later.
10815 	 */
10816 	if (!nodelay) {
10817 		mutex_exit(SD_MUTEX(un));
10818 		rval = sd_ready_and_valid(un);
10819 		mutex_enter(SD_MUTEX(un));
10820 		/*
10821 		 * Fail if device is not ready or if the number of disk
10822 		 * blocks is zero or negative for non CD devices.
10823 		 */
10824 		if ((rval != SD_READY_VALID) ||
10825 		    (!ISCD(un) && un->un_map[part].dkl_nblk <= 0)) {
10826 			rval = un->un_f_has_removable_media ? ENXIO : EIO;
10827 			SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: "
10828 			    "device not ready or invalid disk block value\n");
10829 			goto open_fail;
10830 		}
10831 #if defined(__i386) || defined(__amd64)
10832 	} else {
10833 		uchar_t *cp;
10834 		/*
10835 		 * x86 requires special nodelay handling, so that p0 is
10836 		 * always defined and accessible.
10837 		 * Invalidate geometry only if device is not already open.
10838 		 */
10839 		cp = &un->un_ocmap.chkd[0];
10840 		while (cp < &un->un_ocmap.chkd[OCSIZE]) {
10841 			if (*cp != (uchar_t)0) {
10842 			    break;
10843 			}
10844 			cp++;
10845 		}
10846 		if (cp == &un->un_ocmap.chkd[OCSIZE]) {
10847 			un->un_f_geometry_is_valid = FALSE;
10848 		}
10849 
10850 #endif
10851 	}
10852 
10853 	if (otyp == OTYP_LYR) {
10854 		un->un_ocmap.lyropen[part]++;
10855 	} else {
10856 		un->un_ocmap.regopen[otyp] |= partmask;
10857 	}
10858 
10859 	/* Set up open and exclusive open flags */
10860 	if (flag & FEXCL) {
10861 		un->un_exclopen |= (partmask);
10862 	}
10863 
10864 	SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: "
10865 	    "open of part %d type %d\n", part, otyp);
10866 
10867 	mutex_exit(SD_MUTEX(un));
10868 	if (!nodelay) {
10869 		sd_pm_exit(un);
10870 	}
10871 
10872 	sema_v(&un->un_semoclose);
10873 
10874 	mutex_enter(&sd_detach_mutex);
10875 	un->un_opens_in_progress--;
10876 	mutex_exit(&sd_detach_mutex);
10877 
10878 	SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: exit success\n");
10879 	return (DDI_SUCCESS);
10880 
10881 excl_open_fail:
10882 	SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: fail exclusive open\n");
10883 	rval = EBUSY;
10884 
10885 open_fail:
10886 	mutex_exit(SD_MUTEX(un));
10887 
10888 	/*
10889 	 * On a failed open we must exit the pm management.
10890 	 */
10891 	if (!nodelay) {
10892 		sd_pm_exit(un);
10893 	}
10894 open_failed_with_pm:
10895 	sema_v(&un->un_semoclose);
10896 
10897 	mutex_enter(&sd_detach_mutex);
10898 	un->un_opens_in_progress--;
10899 	if (otyp == OTYP_LYR) {
10900 		un->un_layer_count--;
10901 	}
10902 	mutex_exit(&sd_detach_mutex);
10903 
10904 	return (rval);
10905 }
10906 
10907 
10908 /*
10909  *    Function: sdclose
10910  *
10911  * Description: Driver's close(9e) entry point function.
10912  *
10913  *   Arguments: dev    - device number
10914  *		flag   - file status flag, informational only
10915  *		otyp   - close type (OTYP_BLK, OTYP_CHR, OTYP_LYR)
10916  *		cred_p - user credential pointer
10917  *
10918  * Return Code: ENXIO
10919  *
10920  *     Context: Kernel thread context
10921  */
10922 /* ARGSUSED */
10923 static int
10924 sdclose(dev_t dev, int flag, int otyp, cred_t *cred_p)
10925 {
10926 	struct sd_lun	*un;
10927 	uchar_t		*cp;
10928 	int		part;
10929 	int		nodelay;
10930 	int		rval = 0;
10931 
10932 	/* Validate the open type */
10933 	if (otyp >= OTYPCNT) {
10934 		return (ENXIO);
10935 	}
10936 
10937 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
10938 		return (ENXIO);
10939 	}
10940 
10941 	part = SDPART(dev);
10942 	nodelay = flag & (FNDELAY | FNONBLOCK);
10943 
10944 	SD_TRACE(SD_LOG_OPEN_CLOSE, un,
10945 	    "sdclose: close of part %d type %d\n", part, otyp);
10946 
10947 	/*
10948 	 * We use a semaphore here in order to serialize
10949 	 * open and close requests on the device.
10950 	 */
10951 	sema_p(&un->un_semoclose);
10952 
10953 	mutex_enter(SD_MUTEX(un));
10954 
10955 	/* Don't proceed if power is being changed. */
10956 	while (un->un_state == SD_STATE_PM_CHANGING) {
10957 		cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
10958 	}
10959 
10960 	if (un->un_exclopen & (1 << part)) {
10961 		un->un_exclopen &= ~(1 << part);
10962 	}
10963 
10964 	/* Update the open partition map */
10965 	if (otyp == OTYP_LYR) {
10966 		un->un_ocmap.lyropen[part] -= 1;
10967 	} else {
10968 		un->un_ocmap.regopen[otyp] &= ~(1 << part);
10969 	}
10970 
10971 	cp = &un->un_ocmap.chkd[0];
10972 	while (cp < &un->un_ocmap.chkd[OCSIZE]) {
10973 		if (*cp != NULL) {
10974 			break;
10975 		}
10976 		cp++;
10977 	}
10978 
10979 	if (cp == &un->un_ocmap.chkd[OCSIZE]) {
10980 		SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdclose: last close\n");
10981 
10982 		/*
10983 		 * We avoid persistance upon the last close, and set
10984 		 * the throttle back to the maximum.
10985 		 */
10986 		un->un_throttle = un->un_saved_throttle;
10987 
10988 		if (un->un_state == SD_STATE_OFFLINE) {
10989 			if (un->un_f_is_fibre == FALSE) {
10990 				scsi_log(SD_DEVINFO(un), sd_label,
10991 					CE_WARN, "offline\n");
10992 			}
10993 			un->un_f_geometry_is_valid = FALSE;
10994 
10995 		} else {
10996 			/*
10997 			 * Flush any outstanding writes in NVRAM cache.
10998 			 * Note: SYNCHRONIZE CACHE is an optional SCSI-2
10999 			 * cmd, it may not work for non-Pluto devices.
11000 			 * SYNCHRONIZE CACHE is not required for removables,
11001 			 * except DVD-RAM drives.
11002 			 *
11003 			 * Also note: because SYNCHRONIZE CACHE is currently
11004 			 * the only command issued here that requires the
11005 			 * drive be powered up, only do the power up before
11006 			 * sending the Sync Cache command. If additional
11007 			 * commands are added which require a powered up
11008 			 * drive, the following sequence may have to change.
11009 			 *
11010 			 * And finally, note that parallel SCSI on SPARC
11011 			 * only issues a Sync Cache to DVD-RAM, a newly
11012 			 * supported device.
11013 			 */
11014 #if defined(__i386) || defined(__amd64)
11015 			if (un->un_f_sync_cache_supported ||
11016 			    un->un_f_dvdram_writable_device == TRUE) {
11017 #else
11018 			if (un->un_f_dvdram_writable_device == TRUE) {
11019 #endif
11020 				mutex_exit(SD_MUTEX(un));
11021 				if (sd_pm_entry(un) == DDI_SUCCESS) {
11022 					rval =
11023 					    sd_send_scsi_SYNCHRONIZE_CACHE(un,
11024 					    NULL);
11025 					/* ignore error if not supported */
11026 					if (rval == ENOTSUP) {
11027 						rval = 0;
11028 					} else if (rval != 0) {
11029 						rval = EIO;
11030 					}
11031 					sd_pm_exit(un);
11032 				} else {
11033 					rval = EIO;
11034 				}
11035 				mutex_enter(SD_MUTEX(un));
11036 			}
11037 
11038 			/*
11039 			 * For devices which supports DOOR_LOCK, send an ALLOW
11040 			 * MEDIA REMOVAL command, but don't get upset if it
11041 			 * fails. We need to raise the power of the drive before
11042 			 * we can call sd_send_scsi_DOORLOCK()
11043 			 */
11044 			if (un->un_f_doorlock_supported) {
11045 				mutex_exit(SD_MUTEX(un));
11046 				if (sd_pm_entry(un) == DDI_SUCCESS) {
11047 					rval = sd_send_scsi_DOORLOCK(un,
11048 					    SD_REMOVAL_ALLOW, SD_PATH_DIRECT);
11049 
11050 					sd_pm_exit(un);
11051 					if (ISCD(un) && (rval != 0) &&
11052 					    (nodelay != 0)) {
11053 						rval = ENXIO;
11054 					}
11055 				} else {
11056 					rval = EIO;
11057 				}
11058 				mutex_enter(SD_MUTEX(un));
11059 			}
11060 
11061 			/*
11062 			 * If a device has removable media, invalidate all
11063 			 * parameters related to media, such as geometry,
11064 			 * blocksize, and blockcount.
11065 			 */
11066 			if (un->un_f_has_removable_media) {
11067 				sr_ejected(un);
11068 			}
11069 
11070 			/*
11071 			 * Destroy the cache (if it exists) which was
11072 			 * allocated for the write maps since this is
11073 			 * the last close for this media.
11074 			 */
11075 			if (un->un_wm_cache) {
11076 				/*
11077 				 * Check if there are pending commands.
11078 				 * and if there are give a warning and
11079 				 * do not destroy the cache.
11080 				 */
11081 				if (un->un_ncmds_in_driver > 0) {
11082 					scsi_log(SD_DEVINFO(un),
11083 					    sd_label, CE_WARN,
11084 					    "Unable to clean up memory "
11085 					    "because of pending I/O\n");
11086 				} else {
11087 					kmem_cache_destroy(
11088 					    un->un_wm_cache);
11089 					un->un_wm_cache = NULL;
11090 				}
11091 			}
11092 		}
11093 	}
11094 
11095 	mutex_exit(SD_MUTEX(un));
11096 	sema_v(&un->un_semoclose);
11097 
11098 	if (otyp == OTYP_LYR) {
11099 		mutex_enter(&sd_detach_mutex);
11100 		/*
11101 		 * The detach routine may run when the layer count
11102 		 * drops to zero.
11103 		 */
11104 		un->un_layer_count--;
11105 		mutex_exit(&sd_detach_mutex);
11106 	}
11107 
11108 	return (rval);
11109 }
11110 
11111 
11112 /*
11113  *    Function: sd_ready_and_valid
11114  *
11115  * Description: Test if device is ready and has a valid geometry.
11116  *
11117  *   Arguments: dev - device number
11118  *		un  - driver soft state (unit) structure
11119  *
11120  * Return Code: SD_READY_VALID		ready and valid label
11121  *		SD_READY_NOT_VALID	ready, geom ops never applicable
11122  *		SD_NOT_READY_VALID	not ready, no label
11123  *		SD_RESERVED_BY_OTHERS	reservation conflict
11124  *
11125  *     Context: Never called at interrupt context.
11126  */
11127 
11128 static int
11129 sd_ready_and_valid(struct sd_lun *un)
11130 {
11131 	struct sd_errstats	*stp;
11132 	uint64_t		capacity;
11133 	uint_t			lbasize;
11134 	int			rval = SD_READY_VALID;
11135 	char			name_str[48];
11136 
11137 	ASSERT(un != NULL);
11138 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11139 
11140 	mutex_enter(SD_MUTEX(un));
11141 	/*
11142 	 * If a device has removable media, we must check if media is
11143 	 * ready when checking if this device is ready and valid.
11144 	 */
11145 	if (un->un_f_has_removable_media) {
11146 		mutex_exit(SD_MUTEX(un));
11147 		if (sd_send_scsi_TEST_UNIT_READY(un, 0) != 0) {
11148 			rval = SD_NOT_READY_VALID;
11149 			mutex_enter(SD_MUTEX(un));
11150 			goto done;
11151 		}
11152 
11153 		mutex_enter(SD_MUTEX(un));
11154 		if ((un->un_f_geometry_is_valid == FALSE) ||
11155 		    (un->un_f_blockcount_is_valid == FALSE) ||
11156 		    (un->un_f_tgt_blocksize_is_valid == FALSE)) {
11157 
11158 			/* capacity has to be read every open. */
11159 			mutex_exit(SD_MUTEX(un));
11160 			if (sd_send_scsi_READ_CAPACITY(un, &capacity,
11161 			    &lbasize, SD_PATH_DIRECT) != 0) {
11162 				mutex_enter(SD_MUTEX(un));
11163 				un->un_f_geometry_is_valid = FALSE;
11164 				rval = SD_NOT_READY_VALID;
11165 				goto done;
11166 			} else {
11167 				mutex_enter(SD_MUTEX(un));
11168 				sd_update_block_info(un, lbasize, capacity);
11169 			}
11170 		}
11171 
11172 		/*
11173 		 * Check if the media in the device is writable or not.
11174 		 */
11175 		if ((un->un_f_geometry_is_valid == FALSE) && ISCD(un)) {
11176 			sd_check_for_writable_cd(un);
11177 		}
11178 
11179 	} else {
11180 		/*
11181 		 * Do a test unit ready to clear any unit attention from non-cd
11182 		 * devices.
11183 		 */
11184 		mutex_exit(SD_MUTEX(un));
11185 		(void) sd_send_scsi_TEST_UNIT_READY(un, 0);
11186 		mutex_enter(SD_MUTEX(un));
11187 	}
11188 
11189 
11190 	/*
11191 	 * If this is a non 512 block device, allocate space for
11192 	 * the wmap cache. This is being done here since every time
11193 	 * a media is changed this routine will be called and the
11194 	 * block size is a function of media rather than device.
11195 	 */
11196 	if (un->un_f_non_devbsize_supported && NOT_DEVBSIZE(un)) {
11197 		if (!(un->un_wm_cache)) {
11198 			(void) snprintf(name_str, sizeof (name_str),
11199 			    "%s%d_cache",
11200 			    ddi_driver_name(SD_DEVINFO(un)),
11201 			    ddi_get_instance(SD_DEVINFO(un)));
11202 			un->un_wm_cache = kmem_cache_create(
11203 			    name_str, sizeof (struct sd_w_map),
11204 			    8, sd_wm_cache_constructor,
11205 			    sd_wm_cache_destructor, NULL,
11206 			    (void *)un, NULL, 0);
11207 			if (!(un->un_wm_cache)) {
11208 					rval = ENOMEM;
11209 					goto done;
11210 			}
11211 		}
11212 	}
11213 
11214 	if (un->un_state == SD_STATE_NORMAL) {
11215 		/*
11216 		 * If the target is not yet ready here (defined by a TUR
11217 		 * failure), invalidate the geometry and print an 'offline'
11218 		 * message. This is a legacy message, as the state of the
11219 		 * target is not actually changed to SD_STATE_OFFLINE.
11220 		 *
11221 		 * If the TUR fails for EACCES (Reservation Conflict),
11222 		 * SD_RESERVED_BY_OTHERS will be returned to indicate
11223 		 * reservation conflict. If the TUR fails for other
11224 		 * reasons, SD_NOT_READY_VALID will be returned.
11225 		 */
11226 		int err;
11227 
11228 		mutex_exit(SD_MUTEX(un));
11229 		err = sd_send_scsi_TEST_UNIT_READY(un, 0);
11230 		mutex_enter(SD_MUTEX(un));
11231 
11232 		if (err != 0) {
11233 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
11234 			    "offline or reservation conflict\n");
11235 			un->un_f_geometry_is_valid = FALSE;
11236 			if (err == EACCES) {
11237 				rval = SD_RESERVED_BY_OTHERS;
11238 			} else {
11239 				rval = SD_NOT_READY_VALID;
11240 			}
11241 			goto done;
11242 		}
11243 	}
11244 
11245 	if (un->un_f_format_in_progress == FALSE) {
11246 		/*
11247 		 * Note: sd_validate_geometry may return TRUE, but that does
11248 		 * not necessarily mean un_f_geometry_is_valid == TRUE!
11249 		 */
11250 		rval = sd_validate_geometry(un, SD_PATH_DIRECT);
11251 		if (rval == ENOTSUP) {
11252 			if (un->un_f_geometry_is_valid == TRUE)
11253 				rval = 0;
11254 			else {
11255 				rval = SD_READY_NOT_VALID;
11256 				goto done;
11257 			}
11258 		}
11259 		if (rval != 0) {
11260 			/*
11261 			 * We don't check the validity of geometry for
11262 			 * CDROMs. Also we assume we have a good label
11263 			 * even if sd_validate_geometry returned ENOMEM.
11264 			 */
11265 			if (!ISCD(un) && rval != ENOMEM) {
11266 				rval = SD_NOT_READY_VALID;
11267 				goto done;
11268 			}
11269 		}
11270 	}
11271 
11272 	/*
11273 	 * If this device supports DOOR_LOCK command, try and send
11274 	 * this command to PREVENT MEDIA REMOVAL, but don't get upset
11275 	 * if it fails. For a CD, however, it is an error
11276 	 */
11277 	if (un->un_f_doorlock_supported) {
11278 		mutex_exit(SD_MUTEX(un));
11279 		if ((sd_send_scsi_DOORLOCK(un, SD_REMOVAL_PREVENT,
11280 		    SD_PATH_DIRECT) != 0) && ISCD(un)) {
11281 			rval = SD_NOT_READY_VALID;
11282 			mutex_enter(SD_MUTEX(un));
11283 			goto done;
11284 		}
11285 		mutex_enter(SD_MUTEX(un));
11286 	}
11287 
11288 	/* The state has changed, inform the media watch routines */
11289 	un->un_mediastate = DKIO_INSERTED;
11290 	cv_broadcast(&un->un_state_cv);
11291 	rval = SD_READY_VALID;
11292 
11293 done:
11294 
11295 	/*
11296 	 * Initialize the capacity kstat value, if no media previously
11297 	 * (capacity kstat is 0) and a media has been inserted
11298 	 * (un_blockcount > 0).
11299 	 */
11300 	if (un->un_errstats != NULL) {
11301 		stp = (struct sd_errstats *)un->un_errstats->ks_data;
11302 		if ((stp->sd_capacity.value.ui64 == 0) &&
11303 		    (un->un_f_blockcount_is_valid == TRUE)) {
11304 			stp->sd_capacity.value.ui64 =
11305 			    (uint64_t)((uint64_t)un->un_blockcount *
11306 			    un->un_sys_blocksize);
11307 		}
11308 	}
11309 
11310 	mutex_exit(SD_MUTEX(un));
11311 	return (rval);
11312 }
11313 
11314 
11315 /*
11316  *    Function: sdmin
11317  *
11318  * Description: Routine to limit the size of a data transfer. Used in
11319  *		conjunction with physio(9F).
11320  *
11321  *   Arguments: bp - pointer to the indicated buf(9S) struct.
11322  *
11323  *     Context: Kernel thread context.
11324  */
11325 
11326 static void
11327 sdmin(struct buf *bp)
11328 {
11329 	struct sd_lun	*un;
11330 	int		instance;
11331 
11332 	instance = SDUNIT(bp->b_edev);
11333 
11334 	un = ddi_get_soft_state(sd_state, instance);
11335 	ASSERT(un != NULL);
11336 
11337 	if (bp->b_bcount > un->un_max_xfer_size) {
11338 		bp->b_bcount = un->un_max_xfer_size;
11339 	}
11340 }
11341 
11342 
11343 /*
11344  *    Function: sdread
11345  *
11346  * Description: Driver's read(9e) entry point function.
11347  *
11348  *   Arguments: dev   - device number
11349  *		uio   - structure pointer describing where data is to be stored
11350  *			in user's space
11351  *		cred_p  - user credential pointer
11352  *
11353  * Return Code: ENXIO
11354  *		EIO
11355  *		EINVAL
11356  *		value returned by physio
11357  *
11358  *     Context: Kernel thread context.
11359  */
11360 /* ARGSUSED */
11361 static int
11362 sdread(dev_t dev, struct uio *uio, cred_t *cred_p)
11363 {
11364 	struct sd_lun	*un = NULL;
11365 	int		secmask;
11366 	int		err;
11367 
11368 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
11369 		return (ENXIO);
11370 	}
11371 
11372 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11373 
11374 	if ((un->un_f_geometry_is_valid == FALSE) && !ISCD(un)) {
11375 		mutex_enter(SD_MUTEX(un));
11376 		/*
11377 		 * Because the call to sd_ready_and_valid will issue I/O we
11378 		 * must wait here if either the device is suspended or
11379 		 * if it's power level is changing.
11380 		 */
11381 		while ((un->un_state == SD_STATE_SUSPENDED) ||
11382 		    (un->un_state == SD_STATE_PM_CHANGING)) {
11383 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
11384 		}
11385 		un->un_ncmds_in_driver++;
11386 		mutex_exit(SD_MUTEX(un));
11387 		if ((sd_ready_and_valid(un)) != SD_READY_VALID) {
11388 			mutex_enter(SD_MUTEX(un));
11389 			un->un_ncmds_in_driver--;
11390 			ASSERT(un->un_ncmds_in_driver >= 0);
11391 			mutex_exit(SD_MUTEX(un));
11392 			return (EIO);
11393 		}
11394 		mutex_enter(SD_MUTEX(un));
11395 		un->un_ncmds_in_driver--;
11396 		ASSERT(un->un_ncmds_in_driver >= 0);
11397 		mutex_exit(SD_MUTEX(un));
11398 	}
11399 
11400 	/*
11401 	 * Read requests are restricted to multiples of the system block size.
11402 	 */
11403 	secmask = un->un_sys_blocksize - 1;
11404 
11405 	if (uio->uio_loffset & ((offset_t)(secmask))) {
11406 		SD_ERROR(SD_LOG_READ_WRITE, un,
11407 		    "sdread: file offset not modulo %d\n",
11408 		    un->un_sys_blocksize);
11409 		err = EINVAL;
11410 	} else if (uio->uio_iov->iov_len & (secmask)) {
11411 		SD_ERROR(SD_LOG_READ_WRITE, un,
11412 		    "sdread: transfer length not modulo %d\n",
11413 		    un->un_sys_blocksize);
11414 		err = EINVAL;
11415 	} else {
11416 		err = physio(sdstrategy, NULL, dev, B_READ, sdmin, uio);
11417 	}
11418 	return (err);
11419 }
11420 
11421 
11422 /*
11423  *    Function: sdwrite
11424  *
11425  * Description: Driver's write(9e) entry point function.
11426  *
11427  *   Arguments: dev   - device number
11428  *		uio   - structure pointer describing where data is stored in
11429  *			user's space
11430  *		cred_p  - user credential pointer
11431  *
11432  * Return Code: ENXIO
11433  *		EIO
11434  *		EINVAL
11435  *		value returned by physio
11436  *
11437  *     Context: Kernel thread context.
11438  */
11439 /* ARGSUSED */
11440 static int
11441 sdwrite(dev_t dev, struct uio *uio, cred_t *cred_p)
11442 {
11443 	struct sd_lun	*un = NULL;
11444 	int		secmask;
11445 	int		err;
11446 
11447 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
11448 		return (ENXIO);
11449 	}
11450 
11451 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11452 
11453 	if ((un->un_f_geometry_is_valid == FALSE) && !ISCD(un)) {
11454 		mutex_enter(SD_MUTEX(un));
11455 		/*
11456 		 * Because the call to sd_ready_and_valid will issue I/O we
11457 		 * must wait here if either the device is suspended or
11458 		 * if it's power level is changing.
11459 		 */
11460 		while ((un->un_state == SD_STATE_SUSPENDED) ||
11461 		    (un->un_state == SD_STATE_PM_CHANGING)) {
11462 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
11463 		}
11464 		un->un_ncmds_in_driver++;
11465 		mutex_exit(SD_MUTEX(un));
11466 		if ((sd_ready_and_valid(un)) != SD_READY_VALID) {
11467 			mutex_enter(SD_MUTEX(un));
11468 			un->un_ncmds_in_driver--;
11469 			ASSERT(un->un_ncmds_in_driver >= 0);
11470 			mutex_exit(SD_MUTEX(un));
11471 			return (EIO);
11472 		}
11473 		mutex_enter(SD_MUTEX(un));
11474 		un->un_ncmds_in_driver--;
11475 		ASSERT(un->un_ncmds_in_driver >= 0);
11476 		mutex_exit(SD_MUTEX(un));
11477 	}
11478 
11479 	/*
11480 	 * Write requests are restricted to multiples of the system block size.
11481 	 */
11482 	secmask = un->un_sys_blocksize - 1;
11483 
11484 	if (uio->uio_loffset & ((offset_t)(secmask))) {
11485 		SD_ERROR(SD_LOG_READ_WRITE, un,
11486 		    "sdwrite: file offset not modulo %d\n",
11487 		    un->un_sys_blocksize);
11488 		err = EINVAL;
11489 	} else if (uio->uio_iov->iov_len & (secmask)) {
11490 		SD_ERROR(SD_LOG_READ_WRITE, un,
11491 		    "sdwrite: transfer length not modulo %d\n",
11492 		    un->un_sys_blocksize);
11493 		err = EINVAL;
11494 	} else {
11495 		err = physio(sdstrategy, NULL, dev, B_WRITE, sdmin, uio);
11496 	}
11497 	return (err);
11498 }
11499 
11500 
11501 /*
11502  *    Function: sdaread
11503  *
11504  * Description: Driver's aread(9e) entry point function.
11505  *
11506  *   Arguments: dev   - device number
11507  *		aio   - structure pointer describing where data is to be stored
11508  *		cred_p  - user credential pointer
11509  *
11510  * Return Code: ENXIO
11511  *		EIO
11512  *		EINVAL
11513  *		value returned by aphysio
11514  *
11515  *     Context: Kernel thread context.
11516  */
11517 /* ARGSUSED */
11518 static int
11519 sdaread(dev_t dev, struct aio_req *aio, cred_t *cred_p)
11520 {
11521 	struct sd_lun	*un = NULL;
11522 	struct uio	*uio = aio->aio_uio;
11523 	int		secmask;
11524 	int		err;
11525 
11526 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
11527 		return (ENXIO);
11528 	}
11529 
11530 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11531 
11532 	if ((un->un_f_geometry_is_valid == FALSE) && !ISCD(un)) {
11533 		mutex_enter(SD_MUTEX(un));
11534 		/*
11535 		 * Because the call to sd_ready_and_valid will issue I/O we
11536 		 * must wait here if either the device is suspended or
11537 		 * if it's power level is changing.
11538 		 */
11539 		while ((un->un_state == SD_STATE_SUSPENDED) ||
11540 		    (un->un_state == SD_STATE_PM_CHANGING)) {
11541 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
11542 		}
11543 		un->un_ncmds_in_driver++;
11544 		mutex_exit(SD_MUTEX(un));
11545 		if ((sd_ready_and_valid(un)) != SD_READY_VALID) {
11546 			mutex_enter(SD_MUTEX(un));
11547 			un->un_ncmds_in_driver--;
11548 			ASSERT(un->un_ncmds_in_driver >= 0);
11549 			mutex_exit(SD_MUTEX(un));
11550 			return (EIO);
11551 		}
11552 		mutex_enter(SD_MUTEX(un));
11553 		un->un_ncmds_in_driver--;
11554 		ASSERT(un->un_ncmds_in_driver >= 0);
11555 		mutex_exit(SD_MUTEX(un));
11556 	}
11557 
11558 	/*
11559 	 * Read requests are restricted to multiples of the system block size.
11560 	 */
11561 	secmask = un->un_sys_blocksize - 1;
11562 
11563 	if (uio->uio_loffset & ((offset_t)(secmask))) {
11564 		SD_ERROR(SD_LOG_READ_WRITE, un,
11565 		    "sdaread: file offset not modulo %d\n",
11566 		    un->un_sys_blocksize);
11567 		err = EINVAL;
11568 	} else if (uio->uio_iov->iov_len & (secmask)) {
11569 		SD_ERROR(SD_LOG_READ_WRITE, un,
11570 		    "sdaread: transfer length not modulo %d\n",
11571 		    un->un_sys_blocksize);
11572 		err = EINVAL;
11573 	} else {
11574 		err = aphysio(sdstrategy, anocancel, dev, B_READ, sdmin, aio);
11575 	}
11576 	return (err);
11577 }
11578 
11579 
11580 /*
11581  *    Function: sdawrite
11582  *
11583  * Description: Driver's awrite(9e) entry point function.
11584  *
11585  *   Arguments: dev   - device number
11586  *		aio   - structure pointer describing where data is stored
11587  *		cred_p  - user credential pointer
11588  *
11589  * Return Code: ENXIO
11590  *		EIO
11591  *		EINVAL
11592  *		value returned by aphysio
11593  *
11594  *     Context: Kernel thread context.
11595  */
11596 /* ARGSUSED */
11597 static int
11598 sdawrite(dev_t dev, struct aio_req *aio, cred_t *cred_p)
11599 {
11600 	struct sd_lun	*un = NULL;
11601 	struct uio	*uio = aio->aio_uio;
11602 	int		secmask;
11603 	int		err;
11604 
11605 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
11606 		return (ENXIO);
11607 	}
11608 
11609 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11610 
11611 	if ((un->un_f_geometry_is_valid == FALSE) && !ISCD(un)) {
11612 		mutex_enter(SD_MUTEX(un));
11613 		/*
11614 		 * Because the call to sd_ready_and_valid will issue I/O we
11615 		 * must wait here if either the device is suspended or
11616 		 * if it's power level is changing.
11617 		 */
11618 		while ((un->un_state == SD_STATE_SUSPENDED) ||
11619 		    (un->un_state == SD_STATE_PM_CHANGING)) {
11620 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
11621 		}
11622 		un->un_ncmds_in_driver++;
11623 		mutex_exit(SD_MUTEX(un));
11624 		if ((sd_ready_and_valid(un)) != SD_READY_VALID) {
11625 			mutex_enter(SD_MUTEX(un));
11626 			un->un_ncmds_in_driver--;
11627 			ASSERT(un->un_ncmds_in_driver >= 0);
11628 			mutex_exit(SD_MUTEX(un));
11629 			return (EIO);
11630 		}
11631 		mutex_enter(SD_MUTEX(un));
11632 		un->un_ncmds_in_driver--;
11633 		ASSERT(un->un_ncmds_in_driver >= 0);
11634 		mutex_exit(SD_MUTEX(un));
11635 	}
11636 
11637 	/*
11638 	 * Write requests are restricted to multiples of the system block size.
11639 	 */
11640 	secmask = un->un_sys_blocksize - 1;
11641 
11642 	if (uio->uio_loffset & ((offset_t)(secmask))) {
11643 		SD_ERROR(SD_LOG_READ_WRITE, un,
11644 		    "sdawrite: file offset not modulo %d\n",
11645 		    un->un_sys_blocksize);
11646 		err = EINVAL;
11647 	} else if (uio->uio_iov->iov_len & (secmask)) {
11648 		SD_ERROR(SD_LOG_READ_WRITE, un,
11649 		    "sdawrite: transfer length not modulo %d\n",
11650 		    un->un_sys_blocksize);
11651 		err = EINVAL;
11652 	} else {
11653 		err = aphysio(sdstrategy, anocancel, dev, B_WRITE, sdmin, aio);
11654 	}
11655 	return (err);
11656 }
11657 
11658 
11659 
11660 
11661 
11662 /*
11663  * Driver IO processing follows the following sequence:
11664  *
11665  *     sdioctl(9E)     sdstrategy(9E)         biodone(9F)
11666  *         |                |                     ^
11667  *         v                v                     |
11668  * sd_send_scsi_cmd()  ddi_xbuf_qstrategy()       +-------------------+
11669  *         |                |                     |                   |
11670  *         v                |                     |                   |
11671  * sd_uscsi_strategy() sd_xbuf_strategy()   sd_buf_iodone()   sd_uscsi_iodone()
11672  *         |                |                     ^                   ^
11673  *         v                v                     |                   |
11674  * SD_BEGIN_IOSTART()  SD_BEGIN_IOSTART()         |                   |
11675  *         |                |                     |                   |
11676  *     +---+                |                     +------------+      +-------+
11677  *     |                    |                                  |              |
11678  *     |   SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()|              |
11679  *     |                    v                                  |              |
11680  *     |         sd_mapblockaddr_iostart()           sd_mapblockaddr_iodone() |
11681  *     |                    |                                  ^              |
11682  *     |   SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()|              |
11683  *     |                    v                                  |              |
11684  *     |         sd_mapblocksize_iostart()           sd_mapblocksize_iodone() |
11685  *     |                    |                                  ^              |
11686  *     |   SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()|              |
11687  *     |                    v                                  |              |
11688  *     |           sd_checksum_iostart()               sd_checksum_iodone()   |
11689  *     |                    |                                  ^              |
11690  *     +-> SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()+------------->+
11691  *     |                    v                                  |              |
11692  *     |              sd_pm_iostart()                     sd_pm_iodone()      |
11693  *     |                    |                                  ^              |
11694  *     |                    |                                  |              |
11695  *     +-> SD_NEXT_IOSTART()|               SD_BEGIN_IODONE()--+--------------+
11696  *                          |                           ^
11697  *                          v                           |
11698  *                   sd_core_iostart()                  |
11699  *                          |                           |
11700  *                          |                           +------>(*destroypkt)()
11701  *                          +-> sd_start_cmds() <-+     |           |
11702  *                          |                     |     |           v
11703  *                          |                     |     |  scsi_destroy_pkt(9F)
11704  *                          |                     |     |
11705  *                          +->(*initpkt)()       +- sdintr()
11706  *                          |  |                        |  |
11707  *                          |  +-> scsi_init_pkt(9F)    |  +-> sd_handle_xxx()
11708  *                          |  +-> scsi_setup_cdb(9F)   |
11709  *                          |                           |
11710  *                          +--> scsi_transport(9F)     |
11711  *                                     |                |
11712  *                                     +----> SCSA ---->+
11713  *
11714  *
11715  * This code is based upon the following presumtions:
11716  *
11717  *   - iostart and iodone functions operate on buf(9S) structures. These
11718  *     functions perform the necessary operations on the buf(9S) and pass
11719  *     them along to the next function in the chain by using the macros
11720  *     SD_NEXT_IOSTART() (for iostart side functions) and SD_NEXT_IODONE()
11721  *     (for iodone side functions).
11722  *
11723  *   - The iostart side functions may sleep. The iodone side functions
11724  *     are called under interrupt context and may NOT sleep. Therefore
11725  *     iodone side functions also may not call iostart side functions.
11726  *     (NOTE: iostart side functions should NOT sleep for memory, as
11727  *     this could result in deadlock.)
11728  *
11729  *   - An iostart side function may call its corresponding iodone side
11730  *     function directly (if necessary).
11731  *
11732  *   - In the event of an error, an iostart side function can return a buf(9S)
11733  *     to its caller by calling SD_BEGIN_IODONE() (after setting B_ERROR and
11734  *     b_error in the usual way of course).
11735  *
11736  *   - The taskq mechanism may be used by the iodone side functions to dispatch
11737  *     requests to the iostart side functions.  The iostart side functions in
11738  *     this case would be called under the context of a taskq thread, so it's
11739  *     OK for them to block/sleep/spin in this case.
11740  *
11741  *   - iostart side functions may allocate "shadow" buf(9S) structs and
11742  *     pass them along to the next function in the chain.  The corresponding
11743  *     iodone side functions must coalesce the "shadow" bufs and return
11744  *     the "original" buf to the next higher layer.
11745  *
11746  *   - The b_private field of the buf(9S) struct holds a pointer to
11747  *     an sd_xbuf struct, which contains information needed to
11748  *     construct the scsi_pkt for the command.
11749  *
11750  *   - The SD_MUTEX(un) is NOT held across calls to the next layer. Each
11751  *     layer must acquire & release the SD_MUTEX(un) as needed.
11752  */
11753 
11754 
11755 /*
11756  * Create taskq for all targets in the system. This is created at
11757  * _init(9E) and destroyed at _fini(9E).
11758  *
11759  * Note: here we set the minalloc to a reasonably high number to ensure that
11760  * we will have an adequate supply of task entries available at interrupt time.
11761  * This is used in conjunction with the TASKQ_PREPOPULATE flag in
11762  * sd_create_taskq().  Since we do not want to sleep for allocations at
11763  * interrupt time, set maxalloc equal to minalloc. That way we will just fail
11764  * the command if we ever try to dispatch more than SD_TASKQ_MAXALLOC taskq
11765  * requests any one instant in time.
11766  */
11767 #define	SD_TASKQ_NUMTHREADS	8
11768 #define	SD_TASKQ_MINALLOC	256
11769 #define	SD_TASKQ_MAXALLOC	256
11770 
11771 static taskq_t	*sd_tq = NULL;
11772 _NOTE(SCHEME_PROTECTS_DATA("stable data", sd_tq))
11773 
11774 static int	sd_taskq_minalloc = SD_TASKQ_MINALLOC;
11775 static int	sd_taskq_maxalloc = SD_TASKQ_MAXALLOC;
11776 
11777 /*
11778  * The following task queue is being created for the write part of
11779  * read-modify-write of non-512 block size devices.
11780  * Limit the number of threads to 1 for now. This number has been choosen
11781  * considering the fact that it applies only to dvd ram drives/MO drives
11782  * currently. Performance for which is not main criteria at this stage.
11783  * Note: It needs to be explored if we can use a single taskq in future
11784  */
11785 #define	SD_WMR_TASKQ_NUMTHREADS	1
11786 static taskq_t	*sd_wmr_tq = NULL;
11787 _NOTE(SCHEME_PROTECTS_DATA("stable data", sd_wmr_tq))
11788 
11789 /*
11790  *    Function: sd_taskq_create
11791  *
11792  * Description: Create taskq thread(s) and preallocate task entries
11793  *
11794  * Return Code: Returns a pointer to the allocated taskq_t.
11795  *
11796  *     Context: Can sleep. Requires blockable context.
11797  *
11798  *       Notes: - The taskq() facility currently is NOT part of the DDI.
11799  *		  (definitely NOT recommeded for 3rd-party drivers!) :-)
11800  *		- taskq_create() will block for memory, also it will panic
11801  *		  if it cannot create the requested number of threads.
11802  *		- Currently taskq_create() creates threads that cannot be
11803  *		  swapped.
11804  *		- We use TASKQ_PREPOPULATE to ensure we have an adequate
11805  *		  supply of taskq entries at interrupt time (ie, so that we
11806  *		  do not have to sleep for memory)
11807  */
11808 
11809 static void
11810 sd_taskq_create(void)
11811 {
11812 	char	taskq_name[TASKQ_NAMELEN];
11813 
11814 	ASSERT(sd_tq == NULL);
11815 	ASSERT(sd_wmr_tq == NULL);
11816 
11817 	(void) snprintf(taskq_name, sizeof (taskq_name),
11818 	    "%s_drv_taskq", sd_label);
11819 	sd_tq = (taskq_create(taskq_name, SD_TASKQ_NUMTHREADS,
11820 	    (v.v_maxsyspri - 2), sd_taskq_minalloc, sd_taskq_maxalloc,
11821 	    TASKQ_PREPOPULATE));
11822 
11823 	(void) snprintf(taskq_name, sizeof (taskq_name),
11824 	    "%s_rmw_taskq", sd_label);
11825 	sd_wmr_tq = (taskq_create(taskq_name, SD_WMR_TASKQ_NUMTHREADS,
11826 	    (v.v_maxsyspri - 2), sd_taskq_minalloc, sd_taskq_maxalloc,
11827 	    TASKQ_PREPOPULATE));
11828 }
11829 
11830 
11831 /*
11832  *    Function: sd_taskq_delete
11833  *
11834  * Description: Complementary cleanup routine for sd_taskq_create().
11835  *
11836  *     Context: Kernel thread context.
11837  */
11838 
11839 static void
11840 sd_taskq_delete(void)
11841 {
11842 	ASSERT(sd_tq != NULL);
11843 	ASSERT(sd_wmr_tq != NULL);
11844 	taskq_destroy(sd_tq);
11845 	taskq_destroy(sd_wmr_tq);
11846 	sd_tq = NULL;
11847 	sd_wmr_tq = NULL;
11848 }
11849 
11850 
11851 /*
11852  *    Function: sdstrategy
11853  *
11854  * Description: Driver's strategy (9E) entry point function.
11855  *
11856  *   Arguments: bp - pointer to buf(9S)
11857  *
11858  * Return Code: Always returns zero
11859  *
11860  *     Context: Kernel thread context.
11861  */
11862 
11863 static int
11864 sdstrategy(struct buf *bp)
11865 {
11866 	struct sd_lun *un;
11867 
11868 	un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp));
11869 	if (un == NULL) {
11870 		bioerror(bp, EIO);
11871 		bp->b_resid = bp->b_bcount;
11872 		biodone(bp);
11873 		return (0);
11874 	}
11875 	/* As was done in the past, fail new cmds. if state is dumping. */
11876 	if (un->un_state == SD_STATE_DUMPING) {
11877 		bioerror(bp, ENXIO);
11878 		bp->b_resid = bp->b_bcount;
11879 		biodone(bp);
11880 		return (0);
11881 	}
11882 
11883 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11884 
11885 	/*
11886 	 * Commands may sneak in while we released the mutex in
11887 	 * DDI_SUSPEND, we should block new commands. However, old
11888 	 * commands that are still in the driver at this point should
11889 	 * still be allowed to drain.
11890 	 */
11891 	mutex_enter(SD_MUTEX(un));
11892 	/*
11893 	 * Must wait here if either the device is suspended or
11894 	 * if it's power level is changing.
11895 	 */
11896 	while ((un->un_state == SD_STATE_SUSPENDED) ||
11897 	    (un->un_state == SD_STATE_PM_CHANGING)) {
11898 		cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
11899 	}
11900 
11901 	un->un_ncmds_in_driver++;
11902 
11903 	/*
11904 	 * atapi: Since we are running the CD for now in PIO mode we need to
11905 	 * call bp_mapin here to avoid bp_mapin called interrupt context under
11906 	 * the HBA's init_pkt routine.
11907 	 */
11908 	if (un->un_f_cfg_is_atapi == TRUE) {
11909 		mutex_exit(SD_MUTEX(un));
11910 		bp_mapin(bp);
11911 		mutex_enter(SD_MUTEX(un));
11912 	}
11913 	SD_INFO(SD_LOG_IO, un, "sdstrategy: un_ncmds_in_driver = %ld\n",
11914 	    un->un_ncmds_in_driver);
11915 
11916 	mutex_exit(SD_MUTEX(un));
11917 
11918 	/*
11919 	 * This will (eventually) allocate the sd_xbuf area and
11920 	 * call sd_xbuf_strategy().  We just want to return the
11921 	 * result of ddi_xbuf_qstrategy so that we have an opt-
11922 	 * imized tail call which saves us a stack frame.
11923 	 */
11924 	return (ddi_xbuf_qstrategy(bp, un->un_xbuf_attr));
11925 }
11926 
11927 
11928 /*
11929  *    Function: sd_xbuf_strategy
11930  *
11931  * Description: Function for initiating IO operations via the
11932  *		ddi_xbuf_qstrategy() mechanism.
11933  *
11934  *     Context: Kernel thread context.
11935  */
11936 
11937 static void
11938 sd_xbuf_strategy(struct buf *bp, ddi_xbuf_t xp, void *arg)
11939 {
11940 	struct sd_lun *un = arg;
11941 
11942 	ASSERT(bp != NULL);
11943 	ASSERT(xp != NULL);
11944 	ASSERT(un != NULL);
11945 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11946 
11947 	/*
11948 	 * Initialize the fields in the xbuf and save a pointer to the
11949 	 * xbuf in bp->b_private.
11950 	 */
11951 	sd_xbuf_init(un, bp, xp, SD_CHAIN_BUFIO, NULL);
11952 
11953 	/* Send the buf down the iostart chain */
11954 	SD_BEGIN_IOSTART(((struct sd_xbuf *)xp)->xb_chain_iostart, un, bp);
11955 }
11956 
11957 
11958 /*
11959  *    Function: sd_xbuf_init
11960  *
11961  * Description: Prepare the given sd_xbuf struct for use.
11962  *
11963  *   Arguments: un - ptr to softstate
11964  *		bp - ptr to associated buf(9S)
11965  *		xp - ptr to associated sd_xbuf
11966  *		chain_type - IO chain type to use:
11967  *			SD_CHAIN_NULL
11968  *			SD_CHAIN_BUFIO
11969  *			SD_CHAIN_USCSI
11970  *			SD_CHAIN_DIRECT
11971  *			SD_CHAIN_DIRECT_PRIORITY
11972  *		pktinfop - ptr to private data struct for scsi_pkt(9S)
11973  *			initialization; may be NULL if none.
11974  *
11975  *     Context: Kernel thread context
11976  */
11977 
11978 static void
11979 sd_xbuf_init(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
11980 	uchar_t chain_type, void *pktinfop)
11981 {
11982 	int index;
11983 
11984 	ASSERT(un != NULL);
11985 	ASSERT(bp != NULL);
11986 	ASSERT(xp != NULL);
11987 
11988 	SD_INFO(SD_LOG_IO, un, "sd_xbuf_init: buf:0x%p chain type:0x%x\n",
11989 	    bp, chain_type);
11990 
11991 	xp->xb_un	= un;
11992 	xp->xb_pktp	= NULL;
11993 	xp->xb_pktinfo	= pktinfop;
11994 	xp->xb_private	= bp->b_private;
11995 	xp->xb_blkno	= (daddr_t)bp->b_blkno;
11996 
11997 	/*
11998 	 * Set up the iostart and iodone chain indexes in the xbuf, based
11999 	 * upon the specified chain type to use.
12000 	 */
12001 	switch (chain_type) {
12002 	case SD_CHAIN_NULL:
12003 		/*
12004 		 * Fall thru to just use the values for the buf type, even
12005 		 * tho for the NULL chain these values will never be used.
12006 		 */
12007 		/* FALLTHRU */
12008 	case SD_CHAIN_BUFIO:
12009 		index = un->un_buf_chain_type;
12010 		break;
12011 	case SD_CHAIN_USCSI:
12012 		index = un->un_uscsi_chain_type;
12013 		break;
12014 	case SD_CHAIN_DIRECT:
12015 		index = un->un_direct_chain_type;
12016 		break;
12017 	case SD_CHAIN_DIRECT_PRIORITY:
12018 		index = un->un_priority_chain_type;
12019 		break;
12020 	default:
12021 		/* We're really broken if we ever get here... */
12022 		panic("sd_xbuf_init: illegal chain type!");
12023 		/*NOTREACHED*/
12024 	}
12025 
12026 	xp->xb_chain_iostart = sd_chain_index_map[index].sci_iostart_index;
12027 	xp->xb_chain_iodone = sd_chain_index_map[index].sci_iodone_index;
12028 
12029 	/*
12030 	 * It might be a bit easier to simply bzero the entire xbuf above,
12031 	 * but it turns out that since we init a fair number of members anyway,
12032 	 * we save a fair number cycles by doing explicit assignment of zero.
12033 	 */
12034 	xp->xb_pkt_flags	= 0;
12035 	xp->xb_dma_resid	= 0;
12036 	xp->xb_retry_count	= 0;
12037 	xp->xb_victim_retry_count = 0;
12038 	xp->xb_ua_retry_count	= 0;
12039 	xp->xb_sense_bp		= NULL;
12040 	xp->xb_sense_status	= 0;
12041 	xp->xb_sense_state	= 0;
12042 	xp->xb_sense_resid	= 0;
12043 
12044 	bp->b_private	= xp;
12045 	bp->b_flags	&= ~(B_DONE | B_ERROR);
12046 	bp->b_resid	= 0;
12047 	bp->av_forw	= NULL;
12048 	bp->av_back	= NULL;
12049 	bioerror(bp, 0);
12050 
12051 	SD_INFO(SD_LOG_IO, un, "sd_xbuf_init: done.\n");
12052 }
12053 
12054 
12055 /*
12056  *    Function: sd_uscsi_strategy
12057  *
12058  * Description: Wrapper for calling into the USCSI chain via physio(9F)
12059  *
12060  *   Arguments: bp - buf struct ptr
12061  *
12062  * Return Code: Always returns 0
12063  *
12064  *     Context: Kernel thread context
12065  */
12066 
12067 static int
12068 sd_uscsi_strategy(struct buf *bp)
12069 {
12070 	struct sd_lun		*un;
12071 	struct sd_uscsi_info	*uip;
12072 	struct sd_xbuf		*xp;
12073 	uchar_t			chain_type;
12074 
12075 	ASSERT(bp != NULL);
12076 
12077 	un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp));
12078 	if (un == NULL) {
12079 		bioerror(bp, EIO);
12080 		bp->b_resid = bp->b_bcount;
12081 		biodone(bp);
12082 		return (0);
12083 	}
12084 
12085 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12086 
12087 	SD_TRACE(SD_LOG_IO, un, "sd_uscsi_strategy: entry: buf:0x%p\n", bp);
12088 
12089 	mutex_enter(SD_MUTEX(un));
12090 	/*
12091 	 * atapi: Since we are running the CD for now in PIO mode we need to
12092 	 * call bp_mapin here to avoid bp_mapin called interrupt context under
12093 	 * the HBA's init_pkt routine.
12094 	 */
12095 	if (un->un_f_cfg_is_atapi == TRUE) {
12096 		mutex_exit(SD_MUTEX(un));
12097 		bp_mapin(bp);
12098 		mutex_enter(SD_MUTEX(un));
12099 	}
12100 	un->un_ncmds_in_driver++;
12101 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_strategy: un_ncmds_in_driver = %ld\n",
12102 	    un->un_ncmds_in_driver);
12103 	mutex_exit(SD_MUTEX(un));
12104 
12105 	/*
12106 	 * A pointer to a struct sd_uscsi_info is expected in bp->b_private
12107 	 */
12108 	ASSERT(bp->b_private != NULL);
12109 	uip = (struct sd_uscsi_info *)bp->b_private;
12110 
12111 	switch (uip->ui_flags) {
12112 	case SD_PATH_DIRECT:
12113 		chain_type = SD_CHAIN_DIRECT;
12114 		break;
12115 	case SD_PATH_DIRECT_PRIORITY:
12116 		chain_type = SD_CHAIN_DIRECT_PRIORITY;
12117 		break;
12118 	default:
12119 		chain_type = SD_CHAIN_USCSI;
12120 		break;
12121 	}
12122 
12123 	xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
12124 	sd_xbuf_init(un, bp, xp, chain_type, uip->ui_cmdp);
12125 
12126 	/* Use the index obtained within xbuf_init */
12127 	SD_BEGIN_IOSTART(xp->xb_chain_iostart, un, bp);
12128 
12129 	SD_TRACE(SD_LOG_IO, un, "sd_uscsi_strategy: exit: buf:0x%p\n", bp);
12130 
12131 	return (0);
12132 }
12133 
12134 
12135 /*
12136  * These routines perform raw i/o operations.
12137  */
12138 /*ARGSUSED*/
12139 static void
12140 sduscsimin(struct buf *bp)
12141 {
12142 	/*
12143 	 * do not break up because the CDB count would then
12144 	 * be incorrect and data underruns would result (incomplete
12145 	 * read/writes which would be retried and then failed, see
12146 	 * sdintr().
12147 	 */
12148 }
12149 
12150 
12151 
12152 /*
12153  *    Function: sd_send_scsi_cmd
12154  *
12155  * Description: Runs a USCSI command for user (when called thru sdioctl),
12156  *		or for the driver
12157  *
12158  *   Arguments: dev - the dev_t for the device
12159  *		incmd - ptr to a valid uscsi_cmd struct
12160  *		cdbspace - UIO_USERSPACE or UIO_SYSSPACE
12161  *		dataspace - UIO_USERSPACE or UIO_SYSSPACE
12162  *		rqbufspace - UIO_USERSPACE or UIO_SYSSPACE
12163  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
12164  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
12165  *			to use the USCSI "direct" chain and bypass the normal
12166  *			command waitq.
12167  *
12168  * Return Code: 0 -  successful completion of the given command
12169  *		EIO - scsi_reset() failed, or see biowait()/physio() codes.
12170  *		ENXIO  - soft state not found for specified dev
12171  *		EINVAL
12172  *		EFAULT - copyin/copyout error
12173  *		return code of biowait(9F) or physio(9F):
12174  *			EIO - IO error, caller may check incmd->uscsi_status
12175  *			ENXIO
12176  *			EACCES - reservation conflict
12177  *
12178  *     Context: Waits for command to complete. Can sleep.
12179  */
12180 
12181 static int
12182 sd_send_scsi_cmd(dev_t dev, struct uscsi_cmd *incmd,
12183 	enum uio_seg cdbspace, enum uio_seg dataspace, enum uio_seg rqbufspace,
12184 	int path_flag)
12185 {
12186 	struct sd_uscsi_info	*uip;
12187 	struct uscsi_cmd	*uscmd;
12188 	struct sd_lun	*un;
12189 	struct buf	*bp;
12190 	int	rval;
12191 	int	flags;
12192 
12193 	un = ddi_get_soft_state(sd_state, SDUNIT(dev));
12194 	if (un == NULL) {
12195 		return (ENXIO);
12196 	}
12197 
12198 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12199 
12200 #ifdef SDDEBUG
12201 	switch (dataspace) {
12202 	case UIO_USERSPACE:
12203 		SD_TRACE(SD_LOG_IO, un,
12204 		    "sd_send_scsi_cmd: entry: un:0x%p UIO_USERSPACE\n", un);
12205 		break;
12206 	case UIO_SYSSPACE:
12207 		SD_TRACE(SD_LOG_IO, un,
12208 		    "sd_send_scsi_cmd: entry: un:0x%p UIO_SYSSPACE\n", un);
12209 		break;
12210 	default:
12211 		SD_TRACE(SD_LOG_IO, un,
12212 		    "sd_send_scsi_cmd: entry: un:0x%p UNEXPECTED SPACE\n", un);
12213 		break;
12214 	}
12215 #endif
12216 
12217 	/*
12218 	 * Perform resets directly; no need to generate a command to do it.
12219 	 */
12220 	if (incmd->uscsi_flags & (USCSI_RESET | USCSI_RESET_ALL)) {
12221 		flags = ((incmd->uscsi_flags & USCSI_RESET_ALL) != 0) ?
12222 		    RESET_ALL : RESET_TARGET;
12223 		SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_cmd: Issuing reset\n");
12224 		if (scsi_reset(SD_ADDRESS(un), flags) == 0) {
12225 			/* Reset attempt was unsuccessful */
12226 			SD_TRACE(SD_LOG_IO, un,
12227 			    "sd_send_scsi_cmd: reset: failure\n");
12228 			return (EIO);
12229 		}
12230 		SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_cmd: reset: success\n");
12231 		return (0);
12232 	}
12233 
12234 	/* Perfunctory sanity check... */
12235 	if (incmd->uscsi_cdblen <= 0) {
12236 		SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_cmd: "
12237 		    "invalid uscsi_cdblen, returning EINVAL\n");
12238 		return (EINVAL);
12239 	} else if (incmd->uscsi_cdblen > un->un_max_hba_cdb) {
12240 		SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_cmd: "
12241 		    "unsupported uscsi_cdblen, returning EINVAL\n");
12242 		return (EINVAL);
12243 	}
12244 
12245 	/*
12246 	 * In order to not worry about where the uscsi structure came from
12247 	 * (or where the cdb it points to came from) we're going to make
12248 	 * kmem_alloc'd copies of them here. This will also allow reference
12249 	 * to the data they contain long after this process has gone to
12250 	 * sleep and its kernel stack has been unmapped, etc.
12251 	 *
12252 	 * First get some memory for the uscsi_cmd struct and copy the
12253 	 * contents of the given uscsi_cmd struct into it.
12254 	 */
12255 	uscmd = kmem_zalloc(sizeof (struct uscsi_cmd), KM_SLEEP);
12256 	bcopy(incmd, uscmd, sizeof (struct uscsi_cmd));
12257 
12258 	SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_cmd: uscsi_cmd",
12259 	    (uchar_t *)uscmd, sizeof (struct uscsi_cmd), SD_LOG_HEX);
12260 
12261 	/*
12262 	 * Now get some space for the CDB, and copy the given CDB into
12263 	 * it. Use ddi_copyin() in case the data is in user space.
12264 	 */
12265 	uscmd->uscsi_cdb = kmem_zalloc((size_t)incmd->uscsi_cdblen, KM_SLEEP);
12266 	flags = (cdbspace == UIO_SYSSPACE) ? FKIOCTL : 0;
12267 	if (ddi_copyin(incmd->uscsi_cdb, uscmd->uscsi_cdb,
12268 	    (uint_t)incmd->uscsi_cdblen, flags) != 0) {
12269 		kmem_free(uscmd->uscsi_cdb, (size_t)incmd->uscsi_cdblen);
12270 		kmem_free(uscmd, sizeof (struct uscsi_cmd));
12271 		return (EFAULT);
12272 	}
12273 
12274 	SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_cmd: CDB",
12275 	    (uchar_t *)uscmd->uscsi_cdb, incmd->uscsi_cdblen, SD_LOG_HEX);
12276 
12277 	bp = getrbuf(KM_SLEEP);
12278 
12279 	/*
12280 	 * Allocate an sd_uscsi_info struct and fill it with the info
12281 	 * needed by sd_initpkt_for_uscsi().  Then put the pointer into
12282 	 * b_private in the buf for sd_initpkt_for_uscsi().  Note that
12283 	 * since we allocate the buf here in this function, we do not
12284 	 * need to preserve the prior contents of b_private.
12285 	 * The sd_uscsi_info struct is also used by sd_uscsi_strategy()
12286 	 */
12287 	uip = kmem_zalloc(sizeof (struct sd_uscsi_info), KM_SLEEP);
12288 	uip->ui_flags = path_flag;
12289 	uip->ui_cmdp  = uscmd;
12290 	bp->b_private = uip;
12291 
12292 	/*
12293 	 * Initialize Request Sense buffering, if requested.
12294 	 */
12295 	if (((uscmd->uscsi_flags & USCSI_RQENABLE) != 0) &&
12296 	    (uscmd->uscsi_rqlen != 0) && (uscmd->uscsi_rqbuf != NULL)) {
12297 		/*
12298 		 * Here uscmd->uscsi_rqbuf currently points to the caller's
12299 		 * buffer, but we replace this with a kernel buffer that
12300 		 * we allocate to use with the sense data. The sense data
12301 		 * (if present) gets copied into this new buffer before the
12302 		 * command is completed.  Then we copy the sense data from
12303 		 * our allocated buf into the caller's buffer below. Note
12304 		 * that incmd->uscsi_rqbuf and incmd->uscsi_rqlen are used
12305 		 * below to perform the copy back to the caller's buf.
12306 		 */
12307 		uscmd->uscsi_rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
12308 		if (rqbufspace == UIO_USERSPACE) {
12309 			uscmd->uscsi_rqlen   = SENSE_LENGTH;
12310 			uscmd->uscsi_rqresid = SENSE_LENGTH;
12311 		} else {
12312 			uchar_t rlen = min(SENSE_LENGTH, uscmd->uscsi_rqlen);
12313 			uscmd->uscsi_rqlen   = rlen;
12314 			uscmd->uscsi_rqresid = rlen;
12315 		}
12316 	} else {
12317 		uscmd->uscsi_rqbuf = NULL;
12318 		uscmd->uscsi_rqlen   = 0;
12319 		uscmd->uscsi_rqresid = 0;
12320 	}
12321 
12322 	SD_INFO(SD_LOG_IO, un, "sd_send_scsi_cmd: rqbuf:0x%p  rqlen:%d\n",
12323 	    uscmd->uscsi_rqbuf, uscmd->uscsi_rqlen);
12324 
12325 	if (un->un_f_is_fibre == FALSE) {
12326 		/*
12327 		 * Force asynchronous mode, if necessary.  Doing this here
12328 		 * has the unfortunate effect of running other queued
12329 		 * commands async also, but since the main purpose of this
12330 		 * capability is downloading new drive firmware, we can
12331 		 * probably live with it.
12332 		 */
12333 		if ((uscmd->uscsi_flags & USCSI_ASYNC) != 0) {
12334 			if (scsi_ifgetcap(SD_ADDRESS(un), "synchronous", 1)
12335 				== 1) {
12336 				if (scsi_ifsetcap(SD_ADDRESS(un),
12337 					    "synchronous", 0, 1) == 1) {
12338 					SD_TRACE(SD_LOG_IO, un,
12339 					"sd_send_scsi_cmd: forced async ok\n");
12340 				} else {
12341 					SD_TRACE(SD_LOG_IO, un,
12342 					"sd_send_scsi_cmd:\
12343 					forced async failed\n");
12344 					rval = EINVAL;
12345 					goto done;
12346 				}
12347 			}
12348 		}
12349 
12350 		/*
12351 		 * Re-enable synchronous mode, if requested
12352 		 */
12353 		if (uscmd->uscsi_flags & USCSI_SYNC) {
12354 			if (scsi_ifgetcap(SD_ADDRESS(un), "synchronous", 1)
12355 				== 0) {
12356 				int i = scsi_ifsetcap(SD_ADDRESS(un),
12357 						"synchronous", 1, 1);
12358 				SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_cmd: "
12359 					"re-enabled sync %s\n",
12360 					(i == 1) ? "ok" : "failed");
12361 			}
12362 		}
12363 	}
12364 
12365 	/*
12366 	 * Commands sent with priority are intended for error recovery
12367 	 * situations, and do not have retries performed.
12368 	 */
12369 	if (path_flag == SD_PATH_DIRECT_PRIORITY) {
12370 		uscmd->uscsi_flags |= USCSI_DIAGNOSE;
12371 	}
12372 
12373 	/*
12374 	 * If we're going to do actual I/O, let physio do all the right things
12375 	 */
12376 	if (uscmd->uscsi_buflen != 0) {
12377 		struct iovec	aiov;
12378 		struct uio	auio;
12379 		struct uio	*uio = &auio;
12380 
12381 		bzero(&auio, sizeof (struct uio));
12382 		bzero(&aiov, sizeof (struct iovec));
12383 		aiov.iov_base = uscmd->uscsi_bufaddr;
12384 		aiov.iov_len  = uscmd->uscsi_buflen;
12385 		uio->uio_iov  = &aiov;
12386 
12387 		uio->uio_iovcnt  = 1;
12388 		uio->uio_resid   = uscmd->uscsi_buflen;
12389 		uio->uio_segflg  = dataspace;
12390 
12391 		/*
12392 		 * physio() will block here until the command completes....
12393 		 */
12394 		SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_cmd: calling physio.\n");
12395 
12396 		rval = physio(sd_uscsi_strategy, bp, dev,
12397 		    ((uscmd->uscsi_flags & USCSI_READ) ? B_READ : B_WRITE),
12398 		    sduscsimin, uio);
12399 
12400 		SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_cmd: "
12401 		    "returned from physio with 0x%x\n", rval);
12402 
12403 	} else {
12404 		/*
12405 		 * We have to mimic what physio would do here! Argh!
12406 		 */
12407 		bp->b_flags  = B_BUSY |
12408 		    ((uscmd->uscsi_flags & USCSI_READ) ? B_READ : B_WRITE);
12409 		bp->b_edev   = dev;
12410 		bp->b_dev    = cmpdev(dev);	/* maybe unnecessary? */
12411 		bp->b_bcount = 0;
12412 		bp->b_blkno  = 0;
12413 
12414 		SD_TRACE(SD_LOG_IO, un,
12415 		    "sd_send_scsi_cmd: calling sd_uscsi_strategy...\n");
12416 
12417 		(void) sd_uscsi_strategy(bp);
12418 
12419 		SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_cmd: calling biowait\n");
12420 
12421 		rval = biowait(bp);
12422 
12423 		SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_cmd: "
12424 		    "returned from  biowait with 0x%x\n", rval);
12425 	}
12426 
12427 done:
12428 
12429 #ifdef SDDEBUG
12430 	SD_INFO(SD_LOG_IO, un, "sd_send_scsi_cmd: "
12431 	    "uscsi_status: 0x%02x  uscsi_resid:0x%x\n",
12432 	    uscmd->uscsi_status, uscmd->uscsi_resid);
12433 	if (uscmd->uscsi_bufaddr != NULL) {
12434 		SD_INFO(SD_LOG_IO, un, "sd_send_scsi_cmd: "
12435 		    "uscmd->uscsi_bufaddr: 0x%p  uscmd->uscsi_buflen:%d\n",
12436 		    uscmd->uscsi_bufaddr, uscmd->uscsi_buflen);
12437 		if (dataspace == UIO_SYSSPACE) {
12438 			SD_DUMP_MEMORY(un, SD_LOG_IO,
12439 			    "data", (uchar_t *)uscmd->uscsi_bufaddr,
12440 			    uscmd->uscsi_buflen, SD_LOG_HEX);
12441 		}
12442 	}
12443 #endif
12444 
12445 	/*
12446 	 * Get the status and residual to return to the caller.
12447 	 */
12448 	incmd->uscsi_status = uscmd->uscsi_status;
12449 	incmd->uscsi_resid  = uscmd->uscsi_resid;
12450 
12451 	/*
12452 	 * If the caller wants sense data, copy back whatever sense data
12453 	 * we may have gotten, and update the relevant rqsense info.
12454 	 */
12455 	if (((uscmd->uscsi_flags & USCSI_RQENABLE) != 0) &&
12456 	    (uscmd->uscsi_rqlen != 0) && (uscmd->uscsi_rqbuf != NULL)) {
12457 
12458 		int rqlen = uscmd->uscsi_rqlen - uscmd->uscsi_rqresid;
12459 		rqlen = min(((int)incmd->uscsi_rqlen), rqlen);
12460 
12461 		/* Update the Request Sense status and resid */
12462 		incmd->uscsi_rqresid  = incmd->uscsi_rqlen - rqlen;
12463 		incmd->uscsi_rqstatus = uscmd->uscsi_rqstatus;
12464 
12465 		SD_INFO(SD_LOG_IO, un, "sd_send_scsi_cmd: "
12466 		    "uscsi_rqstatus: 0x%02x  uscsi_rqresid:0x%x\n",
12467 		    incmd->uscsi_rqstatus, incmd->uscsi_rqresid);
12468 
12469 		/* Copy out the sense data for user processes */
12470 		if ((incmd->uscsi_rqbuf != NULL) && (rqlen != 0)) {
12471 			int flags =
12472 			    (rqbufspace == UIO_USERSPACE) ? 0 : FKIOCTL;
12473 			if (ddi_copyout(uscmd->uscsi_rqbuf, incmd->uscsi_rqbuf,
12474 			    rqlen, flags) != 0) {
12475 				rval = EFAULT;
12476 			}
12477 			/*
12478 			 * Note: Can't touch incmd->uscsi_rqbuf so use
12479 			 * uscmd->uscsi_rqbuf instead. They're the same.
12480 			 */
12481 			SD_INFO(SD_LOG_IO, un, "sd_send_scsi_cmd: "
12482 			    "incmd->uscsi_rqbuf: 0x%p  rqlen:%d\n",
12483 			    incmd->uscsi_rqbuf, rqlen);
12484 			SD_DUMP_MEMORY(un, SD_LOG_IO, "rq",
12485 			    (uchar_t *)uscmd->uscsi_rqbuf, rqlen, SD_LOG_HEX);
12486 		}
12487 	}
12488 
12489 	/*
12490 	 * Free allocated resources and return; mapout the buf in case it was
12491 	 * mapped in by a lower layer.
12492 	 */
12493 	bp_mapout(bp);
12494 	freerbuf(bp);
12495 	kmem_free(uip, sizeof (struct sd_uscsi_info));
12496 	if (uscmd->uscsi_rqbuf != NULL) {
12497 		kmem_free(uscmd->uscsi_rqbuf, SENSE_LENGTH);
12498 	}
12499 	kmem_free(uscmd->uscsi_cdb, (size_t)uscmd->uscsi_cdblen);
12500 	kmem_free(uscmd, sizeof (struct uscsi_cmd));
12501 
12502 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_cmd: exit\n");
12503 
12504 	return (rval);
12505 }
12506 
12507 
12508 /*
12509  *    Function: sd_buf_iodone
12510  *
12511  * Description: Frees the sd_xbuf & returns the buf to its originator.
12512  *
12513  *     Context: May be called from interrupt context.
12514  */
12515 /* ARGSUSED */
12516 static void
12517 sd_buf_iodone(int index, struct sd_lun *un, struct buf *bp)
12518 {
12519 	struct sd_xbuf *xp;
12520 
12521 	ASSERT(un != NULL);
12522 	ASSERT(bp != NULL);
12523 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12524 
12525 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_buf_iodone: entry.\n");
12526 
12527 	xp = SD_GET_XBUF(bp);
12528 	ASSERT(xp != NULL);
12529 
12530 	mutex_enter(SD_MUTEX(un));
12531 
12532 	/*
12533 	 * Grab time when the cmd completed.
12534 	 * This is used for determining if the system has been
12535 	 * idle long enough to make it idle to the PM framework.
12536 	 * This is for lowering the overhead, and therefore improving
12537 	 * performance per I/O operation.
12538 	 */
12539 	un->un_pm_idle_time = ddi_get_time();
12540 
12541 	un->un_ncmds_in_driver--;
12542 	ASSERT(un->un_ncmds_in_driver >= 0);
12543 	SD_INFO(SD_LOG_IO, un, "sd_buf_iodone: un_ncmds_in_driver = %ld\n",
12544 	    un->un_ncmds_in_driver);
12545 
12546 	mutex_exit(SD_MUTEX(un));
12547 
12548 	ddi_xbuf_done(bp, un->un_xbuf_attr);	/* xbuf is gone after this */
12549 	biodone(bp);				/* bp is gone after this */
12550 
12551 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_buf_iodone: exit.\n");
12552 }
12553 
12554 
12555 /*
12556  *    Function: sd_uscsi_iodone
12557  *
12558  * Description: Frees the sd_xbuf & returns the buf to its originator.
12559  *
12560  *     Context: May be called from interrupt context.
12561  */
12562 /* ARGSUSED */
12563 static void
12564 sd_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp)
12565 {
12566 	struct sd_xbuf *xp;
12567 
12568 	ASSERT(un != NULL);
12569 	ASSERT(bp != NULL);
12570 
12571 	xp = SD_GET_XBUF(bp);
12572 	ASSERT(xp != NULL);
12573 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12574 
12575 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: entry.\n");
12576 
12577 	bp->b_private = xp->xb_private;
12578 
12579 	mutex_enter(SD_MUTEX(un));
12580 
12581 	/*
12582 	 * Grab time when the cmd completed.
12583 	 * This is used for determining if the system has been
12584 	 * idle long enough to make it idle to the PM framework.
12585 	 * This is for lowering the overhead, and therefore improving
12586 	 * performance per I/O operation.
12587 	 */
12588 	un->un_pm_idle_time = ddi_get_time();
12589 
12590 	un->un_ncmds_in_driver--;
12591 	ASSERT(un->un_ncmds_in_driver >= 0);
12592 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: un_ncmds_in_driver = %ld\n",
12593 	    un->un_ncmds_in_driver);
12594 
12595 	mutex_exit(SD_MUTEX(un));
12596 
12597 	kmem_free(xp, sizeof (struct sd_xbuf));
12598 	biodone(bp);
12599 
12600 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: exit.\n");
12601 }
12602 
12603 
12604 /*
12605  *    Function: sd_mapblockaddr_iostart
12606  *
12607  * Description: Verify request lies withing the partition limits for
12608  *		the indicated minor device.  Issue "overrun" buf if
12609  *		request would exceed partition range.  Converts
12610  *		partition-relative block address to absolute.
12611  *
12612  *     Context: Can sleep
12613  *
12614  *      Issues: This follows what the old code did, in terms of accessing
12615  *		some of the partition info in the unit struct without holding
12616  *		the mutext.  This is a general issue, if the partition info
12617  *		can be altered while IO is in progress... as soon as we send
12618  *		a buf, its partitioning can be invalid before it gets to the
12619  *		device.  Probably the right fix is to move partitioning out
12620  *		of the driver entirely.
12621  */
12622 
12623 static void
12624 sd_mapblockaddr_iostart(int index, struct sd_lun *un, struct buf *bp)
12625 {
12626 	daddr_t	nblocks;	/* #blocks in the given partition */
12627 	daddr_t	blocknum;	/* Block number specified by the buf */
12628 	size_t	requested_nblocks;
12629 	size_t	available_nblocks;
12630 	int	partition;
12631 	diskaddr_t	partition_offset;
12632 	struct sd_xbuf *xp;
12633 
12634 
12635 	ASSERT(un != NULL);
12636 	ASSERT(bp != NULL);
12637 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12638 
12639 	SD_TRACE(SD_LOG_IO_PARTITION, un,
12640 	    "sd_mapblockaddr_iostart: entry: buf:0x%p\n", bp);
12641 
12642 	xp = SD_GET_XBUF(bp);
12643 	ASSERT(xp != NULL);
12644 
12645 	/*
12646 	 * If the geometry is not indicated as valid, attempt to access
12647 	 * the unit & verify the geometry/label. This can be the case for
12648 	 * removable-media devices, of if the device was opened in
12649 	 * NDELAY/NONBLOCK mode.
12650 	 */
12651 	if ((un->un_f_geometry_is_valid != TRUE) &&
12652 	    (sd_ready_and_valid(un) != SD_READY_VALID)) {
12653 		/*
12654 		 * For removable devices it is possible to start an I/O
12655 		 * without a media by opening the device in nodelay mode.
12656 		 * Also for writable CDs there can be many scenarios where
12657 		 * there is no geometry yet but volume manager is trying to
12658 		 * issue a read() just because it can see TOC on the CD. So
12659 		 * do not print a message for removables.
12660 		 */
12661 		if (!un->un_f_has_removable_media) {
12662 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
12663 			    "i/o to invalid geometry\n");
12664 		}
12665 		bioerror(bp, EIO);
12666 		bp->b_resid = bp->b_bcount;
12667 		SD_BEGIN_IODONE(index, un, bp);
12668 		return;
12669 	}
12670 
12671 	partition = SDPART(bp->b_edev);
12672 
12673 	/* #blocks in partition */
12674 	nblocks = un->un_map[partition].dkl_nblk;    /* #blocks in partition */
12675 
12676 	/* Use of a local variable potentially improves performance slightly */
12677 	partition_offset = un->un_offset[partition];
12678 
12679 	/*
12680 	 * blocknum is the starting block number of the request. At this
12681 	 * point it is still relative to the start of the minor device.
12682 	 */
12683 	blocknum = xp->xb_blkno;
12684 
12685 	/*
12686 	 * Legacy: If the starting block number is one past the last block
12687 	 * in the partition, do not set B_ERROR in the buf.
12688 	 */
12689 	if (blocknum == nblocks)  {
12690 		goto error_exit;
12691 	}
12692 
12693 	/*
12694 	 * Confirm that the first block of the request lies within the
12695 	 * partition limits. Also the requested number of bytes must be
12696 	 * a multiple of the system block size.
12697 	 */
12698 	if ((blocknum < 0) || (blocknum >= nblocks) ||
12699 	    ((bp->b_bcount & (un->un_sys_blocksize - 1)) != 0)) {
12700 		bp->b_flags |= B_ERROR;
12701 		goto error_exit;
12702 	}
12703 
12704 	/*
12705 	 * If the requsted # blocks exceeds the available # blocks, that
12706 	 * is an overrun of the partition.
12707 	 */
12708 	requested_nblocks = SD_BYTES2SYSBLOCKS(un, bp->b_bcount);
12709 	available_nblocks = (size_t)(nblocks - blocknum);
12710 	ASSERT(nblocks >= blocknum);
12711 
12712 	if (requested_nblocks > available_nblocks) {
12713 		/*
12714 		 * Allocate an "overrun" buf to allow the request to proceed
12715 		 * for the amount of space available in the partition. The
12716 		 * amount not transferred will be added into the b_resid
12717 		 * when the operation is complete. The overrun buf
12718 		 * replaces the original buf here, and the original buf
12719 		 * is saved inside the overrun buf, for later use.
12720 		 */
12721 		size_t resid = SD_SYSBLOCKS2BYTES(un,
12722 		    (offset_t)(requested_nblocks - available_nblocks));
12723 		size_t count = bp->b_bcount - resid;
12724 		/*
12725 		 * Note: count is an unsigned entity thus it'll NEVER
12726 		 * be less than 0 so ASSERT the original values are
12727 		 * correct.
12728 		 */
12729 		ASSERT(bp->b_bcount >= resid);
12730 
12731 		bp = sd_bioclone_alloc(bp, count, blocknum,
12732 			(int (*)(struct buf *)) sd_mapblockaddr_iodone);
12733 		xp = SD_GET_XBUF(bp); /* Update for 'new' bp! */
12734 		ASSERT(xp != NULL);
12735 	}
12736 
12737 	/* At this point there should be no residual for this buf. */
12738 	ASSERT(bp->b_resid == 0);
12739 
12740 	/* Convert the block number to an absolute address. */
12741 	xp->xb_blkno += partition_offset;
12742 
12743 	SD_NEXT_IOSTART(index, un, bp);
12744 
12745 	SD_TRACE(SD_LOG_IO_PARTITION, un,
12746 	    "sd_mapblockaddr_iostart: exit 0: buf:0x%p\n", bp);
12747 
12748 	return;
12749 
12750 error_exit:
12751 	bp->b_resid = bp->b_bcount;
12752 	SD_BEGIN_IODONE(index, un, bp);
12753 	SD_TRACE(SD_LOG_IO_PARTITION, un,
12754 	    "sd_mapblockaddr_iostart: exit 1: buf:0x%p\n", bp);
12755 }
12756 
12757 
12758 /*
12759  *    Function: sd_mapblockaddr_iodone
12760  *
12761  * Description: Completion-side processing for partition management.
12762  *
12763  *     Context: May be called under interrupt context
12764  */
12765 
12766 static void
12767 sd_mapblockaddr_iodone(int index, struct sd_lun *un, struct buf *bp)
12768 {
12769 	/* int	partition; */	/* Not used, see below. */
12770 	ASSERT(un != NULL);
12771 	ASSERT(bp != NULL);
12772 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12773 
12774 	SD_TRACE(SD_LOG_IO_PARTITION, un,
12775 	    "sd_mapblockaddr_iodone: entry: buf:0x%p\n", bp);
12776 
12777 	if (bp->b_iodone == (int (*)(struct buf *)) sd_mapblockaddr_iodone) {
12778 		/*
12779 		 * We have an "overrun" buf to deal with...
12780 		 */
12781 		struct sd_xbuf	*xp;
12782 		struct buf	*obp;	/* ptr to the original buf */
12783 
12784 		xp = SD_GET_XBUF(bp);
12785 		ASSERT(xp != NULL);
12786 
12787 		/* Retrieve the pointer to the original buf */
12788 		obp = (struct buf *)xp->xb_private;
12789 		ASSERT(obp != NULL);
12790 
12791 		obp->b_resid = obp->b_bcount - (bp->b_bcount - bp->b_resid);
12792 		bioerror(obp, bp->b_error);
12793 
12794 		sd_bioclone_free(bp);
12795 
12796 		/*
12797 		 * Get back the original buf.
12798 		 * Note that since the restoration of xb_blkno below
12799 		 * was removed, the sd_xbuf is not needed.
12800 		 */
12801 		bp = obp;
12802 		/*
12803 		 * xp = SD_GET_XBUF(bp);
12804 		 * ASSERT(xp != NULL);
12805 		 */
12806 	}
12807 
12808 	/*
12809 	 * Convert sd->xb_blkno back to a minor-device relative value.
12810 	 * Note: this has been commented out, as it is not needed in the
12811 	 * current implementation of the driver (ie, since this function
12812 	 * is at the top of the layering chains, so the info will be
12813 	 * discarded) and it is in the "hot" IO path.
12814 	 *
12815 	 * partition = getminor(bp->b_edev) & SDPART_MASK;
12816 	 * xp->xb_blkno -= un->un_offset[partition];
12817 	 */
12818 
12819 	SD_NEXT_IODONE(index, un, bp);
12820 
12821 	SD_TRACE(SD_LOG_IO_PARTITION, un,
12822 	    "sd_mapblockaddr_iodone: exit: buf:0x%p\n", bp);
12823 }
12824 
12825 
12826 /*
12827  *    Function: sd_mapblocksize_iostart
12828  *
12829  * Description: Convert between system block size (un->un_sys_blocksize)
12830  *		and target block size (un->un_tgt_blocksize).
12831  *
12832  *     Context: Can sleep to allocate resources.
12833  *
12834  * Assumptions: A higher layer has already performed any partition validation,
12835  *		and converted the xp->xb_blkno to an absolute value relative
12836  *		to the start of the device.
12837  *
12838  *		It is also assumed that the higher layer has implemented
12839  *		an "overrun" mechanism for the case where the request would
12840  *		read/write beyond the end of a partition.  In this case we
12841  *		assume (and ASSERT) that bp->b_resid == 0.
12842  *
12843  *		Note: The implementation for this routine assumes the target
12844  *		block size remains constant between allocation and transport.
12845  */
12846 
12847 static void
12848 sd_mapblocksize_iostart(int index, struct sd_lun *un, struct buf *bp)
12849 {
12850 	struct sd_mapblocksize_info	*bsp;
12851 	struct sd_xbuf			*xp;
12852 	offset_t first_byte;
12853 	daddr_t	start_block, end_block;
12854 	daddr_t	request_bytes;
12855 	ushort_t is_aligned = FALSE;
12856 
12857 	ASSERT(un != NULL);
12858 	ASSERT(bp != NULL);
12859 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12860 	ASSERT(bp->b_resid == 0);
12861 
12862 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
12863 	    "sd_mapblocksize_iostart: entry: buf:0x%p\n", bp);
12864 
12865 	/*
12866 	 * For a non-writable CD, a write request is an error
12867 	 */
12868 	if (ISCD(un) && ((bp->b_flags & B_READ) == 0) &&
12869 	    (un->un_f_mmc_writable_media == FALSE)) {
12870 		bioerror(bp, EIO);
12871 		bp->b_resid = bp->b_bcount;
12872 		SD_BEGIN_IODONE(index, un, bp);
12873 		return;
12874 	}
12875 
12876 	/*
12877 	 * We do not need a shadow buf if the device is using
12878 	 * un->un_sys_blocksize as its block size or if bcount == 0.
12879 	 * In this case there is no layer-private data block allocated.
12880 	 */
12881 	if ((un->un_tgt_blocksize == un->un_sys_blocksize) ||
12882 	    (bp->b_bcount == 0)) {
12883 		goto done;
12884 	}
12885 
12886 #if defined(__i386) || defined(__amd64)
12887 	/* We do not support non-block-aligned transfers for ROD devices */
12888 	ASSERT(!ISROD(un));
12889 #endif
12890 
12891 	xp = SD_GET_XBUF(bp);
12892 	ASSERT(xp != NULL);
12893 
12894 	SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: "
12895 	    "tgt_blocksize:0x%x sys_blocksize: 0x%x\n",
12896 	    un->un_tgt_blocksize, un->un_sys_blocksize);
12897 	SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: "
12898 	    "request start block:0x%x\n", xp->xb_blkno);
12899 	SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: "
12900 	    "request len:0x%x\n", bp->b_bcount);
12901 
12902 	/*
12903 	 * Allocate the layer-private data area for the mapblocksize layer.
12904 	 * Layers are allowed to use the xp_private member of the sd_xbuf
12905 	 * struct to store the pointer to their layer-private data block, but
12906 	 * each layer also has the responsibility of restoring the prior
12907 	 * contents of xb_private before returning the buf/xbuf to the
12908 	 * higher layer that sent it.
12909 	 *
12910 	 * Here we save the prior contents of xp->xb_private into the
12911 	 * bsp->mbs_oprivate field of our layer-private data area. This value
12912 	 * is restored by sd_mapblocksize_iodone() just prior to freeing up
12913 	 * the layer-private area and returning the buf/xbuf to the layer
12914 	 * that sent it.
12915 	 *
12916 	 * Note that here we use kmem_zalloc for the allocation as there are
12917 	 * parts of the mapblocksize code that expect certain fields to be
12918 	 * zero unless explicitly set to a required value.
12919 	 */
12920 	bsp = kmem_zalloc(sizeof (struct sd_mapblocksize_info), KM_SLEEP);
12921 	bsp->mbs_oprivate = xp->xb_private;
12922 	xp->xb_private = bsp;
12923 
12924 	/*
12925 	 * This treats the data on the disk (target) as an array of bytes.
12926 	 * first_byte is the byte offset, from the beginning of the device,
12927 	 * to the location of the request. This is converted from a
12928 	 * un->un_sys_blocksize block address to a byte offset, and then back
12929 	 * to a block address based upon a un->un_tgt_blocksize block size.
12930 	 *
12931 	 * xp->xb_blkno should be absolute upon entry into this function,
12932 	 * but, but it is based upon partitions that use the "system"
12933 	 * block size. It must be adjusted to reflect the block size of
12934 	 * the target.
12935 	 *
12936 	 * Note that end_block is actually the block that follows the last
12937 	 * block of the request, but that's what is needed for the computation.
12938 	 */
12939 	first_byte  = SD_SYSBLOCKS2BYTES(un, (offset_t)xp->xb_blkno);
12940 	start_block = xp->xb_blkno = first_byte / un->un_tgt_blocksize;
12941 	end_block   = (first_byte + bp->b_bcount + un->un_tgt_blocksize - 1) /
12942 	    un->un_tgt_blocksize;
12943 
12944 	/* request_bytes is rounded up to a multiple of the target block size */
12945 	request_bytes = (end_block - start_block) * un->un_tgt_blocksize;
12946 
12947 	/*
12948 	 * See if the starting address of the request and the request
12949 	 * length are aligned on a un->un_tgt_blocksize boundary. If aligned
12950 	 * then we do not need to allocate a shadow buf to handle the request.
12951 	 */
12952 	if (((first_byte   % un->un_tgt_blocksize) == 0) &&
12953 	    ((bp->b_bcount % un->un_tgt_blocksize) == 0)) {
12954 		is_aligned = TRUE;
12955 	}
12956 
12957 	if ((bp->b_flags & B_READ) == 0) {
12958 		/*
12959 		 * Lock the range for a write operation. An aligned request is
12960 		 * considered a simple write; otherwise the request must be a
12961 		 * read-modify-write.
12962 		 */
12963 		bsp->mbs_wmp = sd_range_lock(un, start_block, end_block - 1,
12964 		    (is_aligned == TRUE) ? SD_WTYPE_SIMPLE : SD_WTYPE_RMW);
12965 	}
12966 
12967 	/*
12968 	 * Alloc a shadow buf if the request is not aligned. Also, this is
12969 	 * where the READ command is generated for a read-modify-write. (The
12970 	 * write phase is deferred until after the read completes.)
12971 	 */
12972 	if (is_aligned == FALSE) {
12973 
12974 		struct sd_mapblocksize_info	*shadow_bsp;
12975 		struct sd_xbuf	*shadow_xp;
12976 		struct buf	*shadow_bp;
12977 
12978 		/*
12979 		 * Allocate the shadow buf and it associated xbuf. Note that
12980 		 * after this call the xb_blkno value in both the original
12981 		 * buf's sd_xbuf _and_ the shadow buf's sd_xbuf will be the
12982 		 * same: absolute relative to the start of the device, and
12983 		 * adjusted for the target block size. The b_blkno in the
12984 		 * shadow buf will also be set to this value. We should never
12985 		 * change b_blkno in the original bp however.
12986 		 *
12987 		 * Note also that the shadow buf will always need to be a
12988 		 * READ command, regardless of whether the incoming command
12989 		 * is a READ or a WRITE.
12990 		 */
12991 		shadow_bp = sd_shadow_buf_alloc(bp, request_bytes, B_READ,
12992 		    xp->xb_blkno,
12993 		    (int (*)(struct buf *)) sd_mapblocksize_iodone);
12994 
12995 		shadow_xp = SD_GET_XBUF(shadow_bp);
12996 
12997 		/*
12998 		 * Allocate the layer-private data for the shadow buf.
12999 		 * (No need to preserve xb_private in the shadow xbuf.)
13000 		 */
13001 		shadow_xp->xb_private = shadow_bsp =
13002 		    kmem_zalloc(sizeof (struct sd_mapblocksize_info), KM_SLEEP);
13003 
13004 		/*
13005 		 * bsp->mbs_copy_offset is used later by sd_mapblocksize_iodone
13006 		 * to figure out where the start of the user data is (based upon
13007 		 * the system block size) in the data returned by the READ
13008 		 * command (which will be based upon the target blocksize). Note
13009 		 * that this is only really used if the request is unaligned.
13010 		 */
13011 		bsp->mbs_copy_offset = (ssize_t)(first_byte -
13012 		    ((offset_t)xp->xb_blkno * un->un_tgt_blocksize));
13013 		ASSERT((bsp->mbs_copy_offset >= 0) &&
13014 		    (bsp->mbs_copy_offset < un->un_tgt_blocksize));
13015 
13016 		shadow_bsp->mbs_copy_offset = bsp->mbs_copy_offset;
13017 
13018 		shadow_bsp->mbs_layer_index = bsp->mbs_layer_index = index;
13019 
13020 		/* Transfer the wmap (if any) to the shadow buf */
13021 		shadow_bsp->mbs_wmp = bsp->mbs_wmp;
13022 		bsp->mbs_wmp = NULL;
13023 
13024 		/*
13025 		 * The shadow buf goes on from here in place of the
13026 		 * original buf.
13027 		 */
13028 		shadow_bsp->mbs_orig_bp = bp;
13029 		bp = shadow_bp;
13030 	}
13031 
13032 	SD_INFO(SD_LOG_IO_RMMEDIA, un,
13033 	    "sd_mapblocksize_iostart: tgt start block:0x%x\n", xp->xb_blkno);
13034 	SD_INFO(SD_LOG_IO_RMMEDIA, un,
13035 	    "sd_mapblocksize_iostart: tgt request len:0x%x\n",
13036 	    request_bytes);
13037 	SD_INFO(SD_LOG_IO_RMMEDIA, un,
13038 	    "sd_mapblocksize_iostart: shadow buf:0x%x\n", bp);
13039 
13040 done:
13041 	SD_NEXT_IOSTART(index, un, bp);
13042 
13043 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
13044 	    "sd_mapblocksize_iostart: exit: buf:0x%p\n", bp);
13045 }
13046 
13047 
13048 /*
13049  *    Function: sd_mapblocksize_iodone
13050  *
13051  * Description: Completion side processing for block-size mapping.
13052  *
13053  *     Context: May be called under interrupt context
13054  */
13055 
13056 static void
13057 sd_mapblocksize_iodone(int index, struct sd_lun *un, struct buf *bp)
13058 {
13059 	struct sd_mapblocksize_info	*bsp;
13060 	struct sd_xbuf	*xp;
13061 	struct sd_xbuf	*orig_xp;	/* sd_xbuf for the original buf */
13062 	struct buf	*orig_bp;	/* ptr to the original buf */
13063 	offset_t	shadow_end;
13064 	offset_t	request_end;
13065 	offset_t	shadow_start;
13066 	ssize_t		copy_offset;
13067 	size_t		copy_length;
13068 	size_t		shortfall;
13069 	uint_t		is_write;	/* TRUE if this bp is a WRITE */
13070 	uint_t		has_wmap;	/* TRUE is this bp has a wmap */
13071 
13072 	ASSERT(un != NULL);
13073 	ASSERT(bp != NULL);
13074 
13075 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
13076 	    "sd_mapblocksize_iodone: entry: buf:0x%p\n", bp);
13077 
13078 	/*
13079 	 * There is no shadow buf or layer-private data if the target is
13080 	 * using un->un_sys_blocksize as its block size or if bcount == 0.
13081 	 */
13082 	if ((un->un_tgt_blocksize == un->un_sys_blocksize) ||
13083 	    (bp->b_bcount == 0)) {
13084 		goto exit;
13085 	}
13086 
13087 	xp = SD_GET_XBUF(bp);
13088 	ASSERT(xp != NULL);
13089 
13090 	/* Retrieve the pointer to the layer-private data area from the xbuf. */
13091 	bsp = xp->xb_private;
13092 
13093 	is_write = ((bp->b_flags & B_READ) == 0) ? TRUE : FALSE;
13094 	has_wmap = (bsp->mbs_wmp != NULL) ? TRUE : FALSE;
13095 
13096 	if (is_write) {
13097 		/*
13098 		 * For a WRITE request we must free up the block range that
13099 		 * we have locked up.  This holds regardless of whether this is
13100 		 * an aligned write request or a read-modify-write request.
13101 		 */
13102 		sd_range_unlock(un, bsp->mbs_wmp);
13103 		bsp->mbs_wmp = NULL;
13104 	}
13105 
13106 	if ((bp->b_iodone != (int(*)(struct buf *))sd_mapblocksize_iodone)) {
13107 		/*
13108 		 * An aligned read or write command will have no shadow buf;
13109 		 * there is not much else to do with it.
13110 		 */
13111 		goto done;
13112 	}
13113 
13114 	orig_bp = bsp->mbs_orig_bp;
13115 	ASSERT(orig_bp != NULL);
13116 	orig_xp = SD_GET_XBUF(orig_bp);
13117 	ASSERT(orig_xp != NULL);
13118 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13119 
13120 	if (!is_write && has_wmap) {
13121 		/*
13122 		 * A READ with a wmap means this is the READ phase of a
13123 		 * read-modify-write. If an error occurred on the READ then
13124 		 * we do not proceed with the WRITE phase or copy any data.
13125 		 * Just release the write maps and return with an error.
13126 		 */
13127 		if ((bp->b_resid != 0) || (bp->b_error != 0)) {
13128 			orig_bp->b_resid = orig_bp->b_bcount;
13129 			bioerror(orig_bp, bp->b_error);
13130 			sd_range_unlock(un, bsp->mbs_wmp);
13131 			goto freebuf_done;
13132 		}
13133 	}
13134 
13135 	/*
13136 	 * Here is where we set up to copy the data from the shadow buf
13137 	 * into the space associated with the original buf.
13138 	 *
13139 	 * To deal with the conversion between block sizes, these
13140 	 * computations treat the data as an array of bytes, with the
13141 	 * first byte (byte 0) corresponding to the first byte in the
13142 	 * first block on the disk.
13143 	 */
13144 
13145 	/*
13146 	 * shadow_start and shadow_len indicate the location and size of
13147 	 * the data returned with the shadow IO request.
13148 	 */
13149 	shadow_start  = SD_TGTBLOCKS2BYTES(un, (offset_t)xp->xb_blkno);
13150 	shadow_end    = shadow_start + bp->b_bcount - bp->b_resid;
13151 
13152 	/*
13153 	 * copy_offset gives the offset (in bytes) from the start of the first
13154 	 * block of the READ request to the beginning of the data.  We retrieve
13155 	 * this value from xb_pktp in the ORIGINAL xbuf, as it has been saved
13156 	 * there by sd_mapblockize_iostart(). copy_length gives the amount of
13157 	 * data to be copied (in bytes).
13158 	 */
13159 	copy_offset  = bsp->mbs_copy_offset;
13160 	ASSERT((copy_offset >= 0) && (copy_offset < un->un_tgt_blocksize));
13161 	copy_length  = orig_bp->b_bcount;
13162 	request_end  = shadow_start + copy_offset + orig_bp->b_bcount;
13163 
13164 	/*
13165 	 * Set up the resid and error fields of orig_bp as appropriate.
13166 	 */
13167 	if (shadow_end >= request_end) {
13168 		/* We got all the requested data; set resid to zero */
13169 		orig_bp->b_resid = 0;
13170 	} else {
13171 		/*
13172 		 * We failed to get enough data to fully satisfy the original
13173 		 * request. Just copy back whatever data we got and set
13174 		 * up the residual and error code as required.
13175 		 *
13176 		 * 'shortfall' is the amount by which the data received with the
13177 		 * shadow buf has "fallen short" of the requested amount.
13178 		 */
13179 		shortfall = (size_t)(request_end - shadow_end);
13180 
13181 		if (shortfall > orig_bp->b_bcount) {
13182 			/*
13183 			 * We did not get enough data to even partially
13184 			 * fulfill the original request.  The residual is
13185 			 * equal to the amount requested.
13186 			 */
13187 			orig_bp->b_resid = orig_bp->b_bcount;
13188 		} else {
13189 			/*
13190 			 * We did not get all the data that we requested
13191 			 * from the device, but we will try to return what
13192 			 * portion we did get.
13193 			 */
13194 			orig_bp->b_resid = shortfall;
13195 		}
13196 		ASSERT(copy_length >= orig_bp->b_resid);
13197 		copy_length  -= orig_bp->b_resid;
13198 	}
13199 
13200 	/* Propagate the error code from the shadow buf to the original buf */
13201 	bioerror(orig_bp, bp->b_error);
13202 
13203 	if (is_write) {
13204 		goto freebuf_done;	/* No data copying for a WRITE */
13205 	}
13206 
13207 	if (has_wmap) {
13208 		/*
13209 		 * This is a READ command from the READ phase of a
13210 		 * read-modify-write request. We have to copy the data given
13211 		 * by the user OVER the data returned by the READ command,
13212 		 * then convert the command from a READ to a WRITE and send
13213 		 * it back to the target.
13214 		 */
13215 		bcopy(orig_bp->b_un.b_addr, bp->b_un.b_addr + copy_offset,
13216 		    copy_length);
13217 
13218 		bp->b_flags &= ~((int)B_READ);	/* Convert to a WRITE */
13219 
13220 		/*
13221 		 * Dispatch the WRITE command to the taskq thread, which
13222 		 * will in turn send the command to the target. When the
13223 		 * WRITE command completes, we (sd_mapblocksize_iodone())
13224 		 * will get called again as part of the iodone chain
13225 		 * processing for it. Note that we will still be dealing
13226 		 * with the shadow buf at that point.
13227 		 */
13228 		if (taskq_dispatch(sd_wmr_tq, sd_read_modify_write_task, bp,
13229 		    KM_NOSLEEP) != 0) {
13230 			/*
13231 			 * Dispatch was successful so we are done. Return
13232 			 * without going any higher up the iodone chain. Do
13233 			 * not free up any layer-private data until after the
13234 			 * WRITE completes.
13235 			 */
13236 			return;
13237 		}
13238 
13239 		/*
13240 		 * Dispatch of the WRITE command failed; set up the error
13241 		 * condition and send this IO back up the iodone chain.
13242 		 */
13243 		bioerror(orig_bp, EIO);
13244 		orig_bp->b_resid = orig_bp->b_bcount;
13245 
13246 	} else {
13247 		/*
13248 		 * This is a regular READ request (ie, not a RMW). Copy the
13249 		 * data from the shadow buf into the original buf. The
13250 		 * copy_offset compensates for any "misalignment" between the
13251 		 * shadow buf (with its un->un_tgt_blocksize blocks) and the
13252 		 * original buf (with its un->un_sys_blocksize blocks).
13253 		 */
13254 		bcopy(bp->b_un.b_addr + copy_offset, orig_bp->b_un.b_addr,
13255 		    copy_length);
13256 	}
13257 
13258 freebuf_done:
13259 
13260 	/*
13261 	 * At this point we still have both the shadow buf AND the original
13262 	 * buf to deal with, as well as the layer-private data area in each.
13263 	 * Local variables are as follows:
13264 	 *
13265 	 * bp -- points to shadow buf
13266 	 * xp -- points to xbuf of shadow buf
13267 	 * bsp -- points to layer-private data area of shadow buf
13268 	 * orig_bp -- points to original buf
13269 	 *
13270 	 * First free the shadow buf and its associated xbuf, then free the
13271 	 * layer-private data area from the shadow buf. There is no need to
13272 	 * restore xb_private in the shadow xbuf.
13273 	 */
13274 	sd_shadow_buf_free(bp);
13275 	kmem_free(bsp, sizeof (struct sd_mapblocksize_info));
13276 
13277 	/*
13278 	 * Now update the local variables to point to the original buf, xbuf,
13279 	 * and layer-private area.
13280 	 */
13281 	bp = orig_bp;
13282 	xp = SD_GET_XBUF(bp);
13283 	ASSERT(xp != NULL);
13284 	ASSERT(xp == orig_xp);
13285 	bsp = xp->xb_private;
13286 	ASSERT(bsp != NULL);
13287 
13288 done:
13289 	/*
13290 	 * Restore xb_private to whatever it was set to by the next higher
13291 	 * layer in the chain, then free the layer-private data area.
13292 	 */
13293 	xp->xb_private = bsp->mbs_oprivate;
13294 	kmem_free(bsp, sizeof (struct sd_mapblocksize_info));
13295 
13296 exit:
13297 	SD_TRACE(SD_LOG_IO_RMMEDIA, SD_GET_UN(bp),
13298 	    "sd_mapblocksize_iodone: calling SD_NEXT_IODONE: buf:0x%p\n", bp);
13299 
13300 	SD_NEXT_IODONE(index, un, bp);
13301 }
13302 
13303 
13304 /*
13305  *    Function: sd_checksum_iostart
13306  *
13307  * Description: A stub function for a layer that's currently not used.
13308  *		For now just a placeholder.
13309  *
13310  *     Context: Kernel thread context
13311  */
13312 
13313 static void
13314 sd_checksum_iostart(int index, struct sd_lun *un, struct buf *bp)
13315 {
13316 	ASSERT(un != NULL);
13317 	ASSERT(bp != NULL);
13318 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13319 	SD_NEXT_IOSTART(index, un, bp);
13320 }
13321 
13322 
13323 /*
13324  *    Function: sd_checksum_iodone
13325  *
13326  * Description: A stub function for a layer that's currently not used.
13327  *		For now just a placeholder.
13328  *
13329  *     Context: May be called under interrupt context
13330  */
13331 
13332 static void
13333 sd_checksum_iodone(int index, struct sd_lun *un, struct buf *bp)
13334 {
13335 	ASSERT(un != NULL);
13336 	ASSERT(bp != NULL);
13337 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13338 	SD_NEXT_IODONE(index, un, bp);
13339 }
13340 
13341 
13342 /*
13343  *    Function: sd_checksum_uscsi_iostart
13344  *
13345  * Description: A stub function for a layer that's currently not used.
13346  *		For now just a placeholder.
13347  *
13348  *     Context: Kernel thread context
13349  */
13350 
13351 static void
13352 sd_checksum_uscsi_iostart(int index, struct sd_lun *un, struct buf *bp)
13353 {
13354 	ASSERT(un != NULL);
13355 	ASSERT(bp != NULL);
13356 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13357 	SD_NEXT_IOSTART(index, un, bp);
13358 }
13359 
13360 
13361 /*
13362  *    Function: sd_checksum_uscsi_iodone
13363  *
13364  * Description: A stub function for a layer that's currently not used.
13365  *		For now just a placeholder.
13366  *
13367  *     Context: May be called under interrupt context
13368  */
13369 
13370 static void
13371 sd_checksum_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp)
13372 {
13373 	ASSERT(un != NULL);
13374 	ASSERT(bp != NULL);
13375 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13376 	SD_NEXT_IODONE(index, un, bp);
13377 }
13378 
13379 
13380 /*
13381  *    Function: sd_pm_iostart
13382  *
13383  * Description: iostart-side routine for Power mangement.
13384  *
13385  *     Context: Kernel thread context
13386  */
13387 
13388 static void
13389 sd_pm_iostart(int index, struct sd_lun *un, struct buf *bp)
13390 {
13391 	ASSERT(un != NULL);
13392 	ASSERT(bp != NULL);
13393 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13394 	ASSERT(!mutex_owned(&un->un_pm_mutex));
13395 
13396 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: entry\n");
13397 
13398 	if (sd_pm_entry(un) != DDI_SUCCESS) {
13399 		/*
13400 		 * Set up to return the failed buf back up the 'iodone'
13401 		 * side of the calling chain.
13402 		 */
13403 		bioerror(bp, EIO);
13404 		bp->b_resid = bp->b_bcount;
13405 
13406 		SD_BEGIN_IODONE(index, un, bp);
13407 
13408 		SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: exit\n");
13409 		return;
13410 	}
13411 
13412 	SD_NEXT_IOSTART(index, un, bp);
13413 
13414 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: exit\n");
13415 }
13416 
13417 
13418 /*
13419  *    Function: sd_pm_iodone
13420  *
13421  * Description: iodone-side routine for power mangement.
13422  *
13423  *     Context: may be called from interrupt context
13424  */
13425 
13426 static void
13427 sd_pm_iodone(int index, struct sd_lun *un, struct buf *bp)
13428 {
13429 	ASSERT(un != NULL);
13430 	ASSERT(bp != NULL);
13431 	ASSERT(!mutex_owned(&un->un_pm_mutex));
13432 
13433 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iodone: entry\n");
13434 
13435 	/*
13436 	 * After attach the following flag is only read, so don't
13437 	 * take the penalty of acquiring a mutex for it.
13438 	 */
13439 	if (un->un_f_pm_is_enabled == TRUE) {
13440 		sd_pm_exit(un);
13441 	}
13442 
13443 	SD_NEXT_IODONE(index, un, bp);
13444 
13445 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iodone: exit\n");
13446 }
13447 
13448 
13449 /*
13450  *    Function: sd_core_iostart
13451  *
13452  * Description: Primary driver function for enqueuing buf(9S) structs from
13453  *		the system and initiating IO to the target device
13454  *
13455  *     Context: Kernel thread context. Can sleep.
13456  *
13457  * Assumptions:  - The given xp->xb_blkno is absolute
13458  *		   (ie, relative to the start of the device).
13459  *		 - The IO is to be done using the native blocksize of
13460  *		   the device, as specified in un->un_tgt_blocksize.
13461  */
13462 /* ARGSUSED */
13463 static void
13464 sd_core_iostart(int index, struct sd_lun *un, struct buf *bp)
13465 {
13466 	struct sd_xbuf *xp;
13467 
13468 	ASSERT(un != NULL);
13469 	ASSERT(bp != NULL);
13470 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13471 	ASSERT(bp->b_resid == 0);
13472 
13473 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_core_iostart: entry: bp:0x%p\n", bp);
13474 
13475 	xp = SD_GET_XBUF(bp);
13476 	ASSERT(xp != NULL);
13477 
13478 	mutex_enter(SD_MUTEX(un));
13479 
13480 	/*
13481 	 * If we are currently in the failfast state, fail any new IO
13482 	 * that has B_FAILFAST set, then return.
13483 	 */
13484 	if ((bp->b_flags & B_FAILFAST) &&
13485 	    (un->un_failfast_state == SD_FAILFAST_ACTIVE)) {
13486 		mutex_exit(SD_MUTEX(un));
13487 		bioerror(bp, EIO);
13488 		bp->b_resid = bp->b_bcount;
13489 		SD_BEGIN_IODONE(index, un, bp);
13490 		return;
13491 	}
13492 
13493 	if (SD_IS_DIRECT_PRIORITY(xp)) {
13494 		/*
13495 		 * Priority command -- transport it immediately.
13496 		 *
13497 		 * Note: We may want to assert that USCSI_DIAGNOSE is set,
13498 		 * because all direct priority commands should be associated
13499 		 * with error recovery actions which we don't want to retry.
13500 		 */
13501 		sd_start_cmds(un, bp);
13502 	} else {
13503 		/*
13504 		 * Normal command -- add it to the wait queue, then start
13505 		 * transporting commands from the wait queue.
13506 		 */
13507 		sd_add_buf_to_waitq(un, bp);
13508 		SD_UPDATE_KSTATS(un, kstat_waitq_enter, bp);
13509 		sd_start_cmds(un, NULL);
13510 	}
13511 
13512 	mutex_exit(SD_MUTEX(un));
13513 
13514 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_core_iostart: exit: bp:0x%p\n", bp);
13515 }
13516 
13517 
13518 /*
13519  *    Function: sd_init_cdb_limits
13520  *
13521  * Description: This is to handle scsi_pkt initialization differences
13522  *		between the driver platforms.
13523  *
13524  *		Legacy behaviors:
13525  *
13526  *		If the block number or the sector count exceeds the
13527  *		capabilities of a Group 0 command, shift over to a
13528  *		Group 1 command. We don't blindly use Group 1
13529  *		commands because a) some drives (CDC Wren IVs) get a
13530  *		bit confused, and b) there is probably a fair amount
13531  *		of speed difference for a target to receive and decode
13532  *		a 10 byte command instead of a 6 byte command.
13533  *
13534  *		The xfer time difference of 6 vs 10 byte CDBs is
13535  *		still significant so this code is still worthwhile.
13536  *		10 byte CDBs are very inefficient with the fas HBA driver
13537  *		and older disks. Each CDB byte took 1 usec with some
13538  *		popular disks.
13539  *
13540  *     Context: Must be called at attach time
13541  */
13542 
13543 static void
13544 sd_init_cdb_limits(struct sd_lun *un)
13545 {
13546 	int hba_cdb_limit;
13547 
13548 	/*
13549 	 * Use CDB_GROUP1 commands for most devices except for
13550 	 * parallel SCSI fixed drives in which case we get better
13551 	 * performance using CDB_GROUP0 commands (where applicable).
13552 	 */
13553 	un->un_mincdb = SD_CDB_GROUP1;
13554 #if !defined(__fibre)
13555 	if (!un->un_f_is_fibre && !un->un_f_cfg_is_atapi && !ISROD(un) &&
13556 	    !un->un_f_has_removable_media) {
13557 		un->un_mincdb = SD_CDB_GROUP0;
13558 	}
13559 #endif
13560 
13561 	/*
13562 	 * Try to read the max-cdb-length supported by HBA.
13563 	 */
13564 	un->un_max_hba_cdb = scsi_ifgetcap(SD_ADDRESS(un), "max-cdb-length", 1);
13565 	if (0 >= un->un_max_hba_cdb) {
13566 		un->un_max_hba_cdb = CDB_GROUP4;
13567 		hba_cdb_limit = SD_CDB_GROUP4;
13568 	} else if (0 < un->un_max_hba_cdb &&
13569 	    un->un_max_hba_cdb < CDB_GROUP1) {
13570 		hba_cdb_limit = SD_CDB_GROUP0;
13571 	} else if (CDB_GROUP1 <= un->un_max_hba_cdb &&
13572 	    un->un_max_hba_cdb < CDB_GROUP5) {
13573 		hba_cdb_limit = SD_CDB_GROUP1;
13574 	} else if (CDB_GROUP5 <= un->un_max_hba_cdb &&
13575 	    un->un_max_hba_cdb < CDB_GROUP4) {
13576 		hba_cdb_limit = SD_CDB_GROUP5;
13577 	} else {
13578 		hba_cdb_limit = SD_CDB_GROUP4;
13579 	}
13580 
13581 	/*
13582 	 * Use CDB_GROUP5 commands for removable devices.  Use CDB_GROUP4
13583 	 * commands for fixed disks unless we are building for a 32 bit
13584 	 * kernel.
13585 	 */
13586 #ifdef _LP64
13587 	un->un_maxcdb = (un->un_f_has_removable_media) ? SD_CDB_GROUP5 :
13588 	    min(hba_cdb_limit, SD_CDB_GROUP4);
13589 #else
13590 	un->un_maxcdb = (un->un_f_has_removable_media) ? SD_CDB_GROUP5 :
13591 	    min(hba_cdb_limit, SD_CDB_GROUP1);
13592 #endif
13593 
13594 	/*
13595 	 * x86 systems require the PKT_DMA_PARTIAL flag
13596 	 */
13597 #if defined(__x86)
13598 	un->un_pkt_flags = PKT_DMA_PARTIAL;
13599 #else
13600 	un->un_pkt_flags = 0;
13601 #endif
13602 
13603 	un->un_status_len = (int)((un->un_f_arq_enabled == TRUE)
13604 	    ? sizeof (struct scsi_arq_status) : 1);
13605 	un->un_cmd_timeout = (ushort_t)sd_io_time;
13606 	un->un_uscsi_timeout = ((ISCD(un)) ? 2 : 1) * un->un_cmd_timeout;
13607 }
13608 
13609 
13610 /*
13611  *    Function: sd_initpkt_for_buf
13612  *
13613  * Description: Allocate and initialize for transport a scsi_pkt struct,
13614  *		based upon the info specified in the given buf struct.
13615  *
13616  *		Assumes the xb_blkno in the request is absolute (ie,
13617  *		relative to the start of the device (NOT partition!).
13618  *		Also assumes that the request is using the native block
13619  *		size of the device (as returned by the READ CAPACITY
13620  *		command).
13621  *
13622  * Return Code: SD_PKT_ALLOC_SUCCESS
13623  *		SD_PKT_ALLOC_FAILURE
13624  *		SD_PKT_ALLOC_FAILURE_NO_DMA
13625  *		SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL
13626  *
13627  *     Context: Kernel thread and may be called from software interrupt context
13628  *		as part of a sdrunout callback. This function may not block or
13629  *		call routines that block
13630  */
13631 
13632 static int
13633 sd_initpkt_for_buf(struct buf *bp, struct scsi_pkt **pktpp)
13634 {
13635 	struct sd_xbuf	*xp;
13636 	struct scsi_pkt *pktp = NULL;
13637 	struct sd_lun	*un;
13638 	size_t		blockcount;
13639 	daddr_t		startblock;
13640 	int		rval;
13641 	int		cmd_flags;
13642 
13643 	ASSERT(bp != NULL);
13644 	ASSERT(pktpp != NULL);
13645 	xp = SD_GET_XBUF(bp);
13646 	ASSERT(xp != NULL);
13647 	un = SD_GET_UN(bp);
13648 	ASSERT(un != NULL);
13649 	ASSERT(mutex_owned(SD_MUTEX(un)));
13650 	ASSERT(bp->b_resid == 0);
13651 
13652 	SD_TRACE(SD_LOG_IO_CORE, un,
13653 	    "sd_initpkt_for_buf: entry: buf:0x%p\n", bp);
13654 
13655 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
13656 	if (xp->xb_pkt_flags & SD_XB_DMA_FREED) {
13657 		/*
13658 		 * Already have a scsi_pkt -- just need DMA resources.
13659 		 * We must recompute the CDB in case the mapping returns
13660 		 * a nonzero pkt_resid.
13661 		 * Note: if this is a portion of a PKT_DMA_PARTIAL transfer
13662 		 * that is being retried, the unmap/remap of the DMA resouces
13663 		 * will result in the entire transfer starting over again
13664 		 * from the very first block.
13665 		 */
13666 		ASSERT(xp->xb_pktp != NULL);
13667 		pktp = xp->xb_pktp;
13668 	} else {
13669 		pktp = NULL;
13670 	}
13671 #endif /* __i386 || __amd64 */
13672 
13673 	startblock = xp->xb_blkno;	/* Absolute block num. */
13674 	blockcount = SD_BYTES2TGTBLOCKS(un, bp->b_bcount);
13675 
13676 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
13677 
13678 	cmd_flags = un->un_pkt_flags | (xp->xb_pkt_flags & SD_XB_INITPKT_MASK);
13679 
13680 #else
13681 
13682 	cmd_flags = un->un_pkt_flags | xp->xb_pkt_flags;
13683 
13684 #endif
13685 
13686 	/*
13687 	 * sd_setup_rw_pkt will determine the appropriate CDB group to use,
13688 	 * call scsi_init_pkt, and build the CDB.
13689 	 */
13690 	rval = sd_setup_rw_pkt(un, &pktp, bp,
13691 	    cmd_flags, sdrunout, (caddr_t)un,
13692 	    startblock, blockcount);
13693 
13694 	if (rval == 0) {
13695 		/*
13696 		 * Success.
13697 		 *
13698 		 * If partial DMA is being used and required for this transfer.
13699 		 * set it up here.
13700 		 */
13701 		if ((un->un_pkt_flags & PKT_DMA_PARTIAL) != 0 &&
13702 		    (pktp->pkt_resid != 0)) {
13703 
13704 			/*
13705 			 * Save the CDB length and pkt_resid for the
13706 			 * next xfer
13707 			 */
13708 			xp->xb_dma_resid = pktp->pkt_resid;
13709 
13710 			/* rezero resid */
13711 			pktp->pkt_resid = 0;
13712 
13713 		} else {
13714 			xp->xb_dma_resid = 0;
13715 		}
13716 
13717 		pktp->pkt_flags = un->un_tagflags;
13718 		pktp->pkt_time  = un->un_cmd_timeout;
13719 		pktp->pkt_comp  = sdintr;
13720 
13721 		pktp->pkt_private = bp;
13722 		*pktpp = pktp;
13723 
13724 		SD_TRACE(SD_LOG_IO_CORE, un,
13725 		    "sd_initpkt_for_buf: exit: buf:0x%p\n", bp);
13726 
13727 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
13728 		xp->xb_pkt_flags &= ~SD_XB_DMA_FREED;
13729 #endif
13730 
13731 		return (SD_PKT_ALLOC_SUCCESS);
13732 
13733 	}
13734 
13735 	/*
13736 	 * SD_PKT_ALLOC_FAILURE is the only expected failure code
13737 	 * from sd_setup_rw_pkt.
13738 	 */
13739 	ASSERT(rval == SD_PKT_ALLOC_FAILURE);
13740 
13741 	if (rval == SD_PKT_ALLOC_FAILURE) {
13742 		*pktpp = NULL;
13743 		/*
13744 		 * Set the driver state to RWAIT to indicate the driver
13745 		 * is waiting on resource allocations. The driver will not
13746 		 * suspend, pm_suspend, or detatch while the state is RWAIT.
13747 		 */
13748 		New_state(un, SD_STATE_RWAIT);
13749 
13750 		SD_ERROR(SD_LOG_IO_CORE, un,
13751 		    "sd_initpkt_for_buf: No pktp. exit bp:0x%p\n", bp);
13752 
13753 		if ((bp->b_flags & B_ERROR) != 0) {
13754 			return (SD_PKT_ALLOC_FAILURE_NO_DMA);
13755 		}
13756 		return (SD_PKT_ALLOC_FAILURE);
13757 	} else {
13758 		/*
13759 		 * PKT_ALLOC_FAILURE_CDB_TOO_SMALL
13760 		 *
13761 		 * This should never happen.  Maybe someone messed with the
13762 		 * kernel's minphys?
13763 		 */
13764 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
13765 		    "Request rejected: too large for CDB: "
13766 		    "lba:0x%08lx  len:0x%08lx\n", startblock, blockcount);
13767 		SD_ERROR(SD_LOG_IO_CORE, un,
13768 		    "sd_initpkt_for_buf: No cp. exit bp:0x%p\n", bp);
13769 		return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
13770 
13771 	}
13772 }
13773 
13774 
13775 /*
13776  *    Function: sd_destroypkt_for_buf
13777  *
13778  * Description: Free the scsi_pkt(9S) for the given bp (buf IO processing).
13779  *
13780  *     Context: Kernel thread or interrupt context
13781  */
13782 
13783 static void
13784 sd_destroypkt_for_buf(struct buf *bp)
13785 {
13786 	ASSERT(bp != NULL);
13787 	ASSERT(SD_GET_UN(bp) != NULL);
13788 
13789 	SD_TRACE(SD_LOG_IO_CORE, SD_GET_UN(bp),
13790 	    "sd_destroypkt_for_buf: entry: buf:0x%p\n", bp);
13791 
13792 	ASSERT(SD_GET_PKTP(bp) != NULL);
13793 	scsi_destroy_pkt(SD_GET_PKTP(bp));
13794 
13795 	SD_TRACE(SD_LOG_IO_CORE, SD_GET_UN(bp),
13796 	    "sd_destroypkt_for_buf: exit: buf:0x%p\n", bp);
13797 }
13798 
13799 /*
13800  *    Function: sd_setup_rw_pkt
13801  *
13802  * Description: Determines appropriate CDB group for the requested LBA
13803  *		and transfer length, calls scsi_init_pkt, and builds
13804  *		the CDB.  Do not use for partial DMA transfers except
13805  *		for the initial transfer since the CDB size must
13806  *		remain constant.
13807  *
13808  *     Context: Kernel thread and may be called from software interrupt
13809  *		context as part of a sdrunout callback. This function may not
13810  *		block or call routines that block
13811  */
13812 
13813 
13814 int
13815 sd_setup_rw_pkt(struct sd_lun *un,
13816     struct scsi_pkt **pktpp, struct buf *bp, int flags,
13817     int (*callback)(caddr_t), caddr_t callback_arg,
13818     diskaddr_t lba, uint32_t blockcount)
13819 {
13820 	struct scsi_pkt *return_pktp;
13821 	union scsi_cdb *cdbp;
13822 	struct sd_cdbinfo *cp = NULL;
13823 	int i;
13824 
13825 	/*
13826 	 * See which size CDB to use, based upon the request.
13827 	 */
13828 	for (i = un->un_mincdb; i <= un->un_maxcdb; i++) {
13829 
13830 		/*
13831 		 * Check lba and block count against sd_cdbtab limits.
13832 		 * In the partial DMA case, we have to use the same size
13833 		 * CDB for all the transfers.  Check lba + blockcount
13834 		 * against the max LBA so we know that segment of the
13835 		 * transfer can use the CDB we select.
13836 		 */
13837 		if ((lba + blockcount - 1 <= sd_cdbtab[i].sc_maxlba) &&
13838 		    (blockcount <= sd_cdbtab[i].sc_maxlen)) {
13839 
13840 			/*
13841 			 * The command will fit into the CDB type
13842 			 * specified by sd_cdbtab[i].
13843 			 */
13844 			cp = sd_cdbtab + i;
13845 
13846 			/*
13847 			 * Call scsi_init_pkt so we can fill in the
13848 			 * CDB.
13849 			 */
13850 			return_pktp = scsi_init_pkt(SD_ADDRESS(un), *pktpp,
13851 			    bp, cp->sc_grpcode, un->un_status_len, 0,
13852 			    flags, callback, callback_arg);
13853 
13854 			if (return_pktp != NULL) {
13855 
13856 				/*
13857 				 * Return new value of pkt
13858 				 */
13859 				*pktpp = return_pktp;
13860 
13861 				/*
13862 				 * To be safe, zero the CDB insuring there is
13863 				 * no leftover data from a previous command.
13864 				 */
13865 				bzero(return_pktp->pkt_cdbp, cp->sc_grpcode);
13866 
13867 				/*
13868 				 * Handle partial DMA mapping
13869 				 */
13870 				if (return_pktp->pkt_resid != 0) {
13871 
13872 					/*
13873 					 * Not going to xfer as many blocks as
13874 					 * originally expected
13875 					 */
13876 					blockcount -=
13877 					    SD_BYTES2TGTBLOCKS(un,
13878 						return_pktp->pkt_resid);
13879 				}
13880 
13881 				cdbp = (union scsi_cdb *)return_pktp->pkt_cdbp;
13882 
13883 				/*
13884 				 * Set command byte based on the CDB
13885 				 * type we matched.
13886 				 */
13887 				cdbp->scc_cmd = cp->sc_grpmask |
13888 				    ((bp->b_flags & B_READ) ?
13889 					SCMD_READ : SCMD_WRITE);
13890 
13891 				SD_FILL_SCSI1_LUN(un, return_pktp);
13892 
13893 				/*
13894 				 * Fill in LBA and length
13895 				 */
13896 				ASSERT((cp->sc_grpcode == CDB_GROUP1) ||
13897 				    (cp->sc_grpcode == CDB_GROUP4) ||
13898 				    (cp->sc_grpcode == CDB_GROUP0) ||
13899 				    (cp->sc_grpcode == CDB_GROUP5));
13900 
13901 				if (cp->sc_grpcode == CDB_GROUP1) {
13902 					FORMG1ADDR(cdbp, lba);
13903 					FORMG1COUNT(cdbp, blockcount);
13904 					return (0);
13905 				} else if (cp->sc_grpcode == CDB_GROUP4) {
13906 					FORMG4LONGADDR(cdbp, lba);
13907 					FORMG4COUNT(cdbp, blockcount);
13908 					return (0);
13909 				} else if (cp->sc_grpcode == CDB_GROUP0) {
13910 					FORMG0ADDR(cdbp, lba);
13911 					FORMG0COUNT(cdbp, blockcount);
13912 					return (0);
13913 				} else if (cp->sc_grpcode == CDB_GROUP5) {
13914 					FORMG5ADDR(cdbp, lba);
13915 					FORMG5COUNT(cdbp, blockcount);
13916 					return (0);
13917 				}
13918 
13919 				/*
13920 				 * It should be impossible to not match one
13921 				 * of the CDB types above, so we should never
13922 				 * reach this point.  Set the CDB command byte
13923 				 * to test-unit-ready to avoid writing
13924 				 * to somewhere we don't intend.
13925 				 */
13926 				cdbp->scc_cmd = SCMD_TEST_UNIT_READY;
13927 				return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
13928 			} else {
13929 				/*
13930 				 * Couldn't get scsi_pkt
13931 				 */
13932 				return (SD_PKT_ALLOC_FAILURE);
13933 			}
13934 		}
13935 	}
13936 
13937 	/*
13938 	 * None of the available CDB types were suitable.  This really
13939 	 * should never happen:  on a 64 bit system we support
13940 	 * READ16/WRITE16 which will hold an entire 64 bit disk address
13941 	 * and on a 32 bit system we will refuse to bind to a device
13942 	 * larger than 2TB so addresses will never be larger than 32 bits.
13943 	 */
13944 	return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
13945 }
13946 
13947 #if defined(__i386) || defined(__amd64)
13948 /*
13949  *    Function: sd_setup_next_rw_pkt
13950  *
13951  * Description: Setup packet for partial DMA transfers, except for the
13952  * 		initial transfer.  sd_setup_rw_pkt should be used for
13953  *		the initial transfer.
13954  *
13955  *     Context: Kernel thread and may be called from interrupt context.
13956  */
13957 
13958 int
13959 sd_setup_next_rw_pkt(struct sd_lun *un,
13960     struct scsi_pkt *pktp, struct buf *bp,
13961     diskaddr_t lba, uint32_t blockcount)
13962 {
13963 	uchar_t com;
13964 	union scsi_cdb *cdbp;
13965 	uchar_t cdb_group_id;
13966 
13967 	ASSERT(pktp != NULL);
13968 	ASSERT(pktp->pkt_cdbp != NULL);
13969 
13970 	cdbp = (union scsi_cdb *)pktp->pkt_cdbp;
13971 	com = cdbp->scc_cmd;
13972 	cdb_group_id = CDB_GROUPID(com);
13973 
13974 	ASSERT((cdb_group_id == CDB_GROUPID_0) ||
13975 	    (cdb_group_id == CDB_GROUPID_1) ||
13976 	    (cdb_group_id == CDB_GROUPID_4) ||
13977 	    (cdb_group_id == CDB_GROUPID_5));
13978 
13979 	/*
13980 	 * Move pkt to the next portion of the xfer.
13981 	 * func is NULL_FUNC so we do not have to release
13982 	 * the disk mutex here.
13983 	 */
13984 	if (scsi_init_pkt(SD_ADDRESS(un), pktp, bp, 0, 0, 0, 0,
13985 	    NULL_FUNC, NULL) == pktp) {
13986 		/* Success.  Handle partial DMA */
13987 		if (pktp->pkt_resid != 0) {
13988 			blockcount -=
13989 			    SD_BYTES2TGTBLOCKS(un, pktp->pkt_resid);
13990 		}
13991 
13992 		cdbp->scc_cmd = com;
13993 		SD_FILL_SCSI1_LUN(un, pktp);
13994 		if (cdb_group_id == CDB_GROUPID_1) {
13995 			FORMG1ADDR(cdbp, lba);
13996 			FORMG1COUNT(cdbp, blockcount);
13997 			return (0);
13998 		} else if (cdb_group_id == CDB_GROUPID_4) {
13999 			FORMG4LONGADDR(cdbp, lba);
14000 			FORMG4COUNT(cdbp, blockcount);
14001 			return (0);
14002 		} else if (cdb_group_id == CDB_GROUPID_0) {
14003 			FORMG0ADDR(cdbp, lba);
14004 			FORMG0COUNT(cdbp, blockcount);
14005 			return (0);
14006 		} else if (cdb_group_id == CDB_GROUPID_5) {
14007 			FORMG5ADDR(cdbp, lba);
14008 			FORMG5COUNT(cdbp, blockcount);
14009 			return (0);
14010 		}
14011 
14012 		/* Unreachable */
14013 		return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
14014 	}
14015 
14016 	/*
14017 	 * Error setting up next portion of cmd transfer.
14018 	 * Something is definitely very wrong and this
14019 	 * should not happen.
14020 	 */
14021 	return (SD_PKT_ALLOC_FAILURE);
14022 }
14023 #endif /* defined(__i386) || defined(__amd64) */
14024 
14025 /*
14026  *    Function: sd_initpkt_for_uscsi
14027  *
14028  * Description: Allocate and initialize for transport a scsi_pkt struct,
14029  *		based upon the info specified in the given uscsi_cmd struct.
14030  *
14031  * Return Code: SD_PKT_ALLOC_SUCCESS
14032  *		SD_PKT_ALLOC_FAILURE
14033  *		SD_PKT_ALLOC_FAILURE_NO_DMA
14034  *		SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL
14035  *
14036  *     Context: Kernel thread and may be called from software interrupt context
14037  *		as part of a sdrunout callback. This function may not block or
14038  *		call routines that block
14039  */
14040 
14041 static int
14042 sd_initpkt_for_uscsi(struct buf *bp, struct scsi_pkt **pktpp)
14043 {
14044 	struct uscsi_cmd *uscmd;
14045 	struct sd_xbuf	*xp;
14046 	struct scsi_pkt	*pktp;
14047 	struct sd_lun	*un;
14048 	uint32_t	flags = 0;
14049 
14050 	ASSERT(bp != NULL);
14051 	ASSERT(pktpp != NULL);
14052 	xp = SD_GET_XBUF(bp);
14053 	ASSERT(xp != NULL);
14054 	un = SD_GET_UN(bp);
14055 	ASSERT(un != NULL);
14056 	ASSERT(mutex_owned(SD_MUTEX(un)));
14057 
14058 	/* The pointer to the uscsi_cmd struct is expected in xb_pktinfo */
14059 	uscmd = (struct uscsi_cmd *)xp->xb_pktinfo;
14060 	ASSERT(uscmd != NULL);
14061 
14062 	SD_TRACE(SD_LOG_IO_CORE, un,
14063 	    "sd_initpkt_for_uscsi: entry: buf:0x%p\n", bp);
14064 
14065 	/*
14066 	 * Allocate the scsi_pkt for the command.
14067 	 * Note: If PKT_DMA_PARTIAL flag is set, scsi_vhci binds a path
14068 	 *	 during scsi_init_pkt time and will continue to use the
14069 	 *	 same path as long as the same scsi_pkt is used without
14070 	 *	 intervening scsi_dma_free(). Since uscsi command does
14071 	 *	 not call scsi_dmafree() before retry failed command, it
14072 	 *	 is necessary to make sure PKT_DMA_PARTIAL flag is NOT
14073 	 *	 set such that scsi_vhci can use other available path for
14074 	 *	 retry. Besides, ucsci command does not allow DMA breakup,
14075 	 *	 so there is no need to set PKT_DMA_PARTIAL flag.
14076 	 */
14077 	pktp = scsi_init_pkt(SD_ADDRESS(un), NULL,
14078 	    ((bp->b_bcount != 0) ? bp : NULL), uscmd->uscsi_cdblen,
14079 	    sizeof (struct scsi_arq_status), 0,
14080 	    (un->un_pkt_flags & ~PKT_DMA_PARTIAL),
14081 	    sdrunout, (caddr_t)un);
14082 
14083 	if (pktp == NULL) {
14084 		*pktpp = NULL;
14085 		/*
14086 		 * Set the driver state to RWAIT to indicate the driver
14087 		 * is waiting on resource allocations. The driver will not
14088 		 * suspend, pm_suspend, or detatch while the state is RWAIT.
14089 		 */
14090 		New_state(un, SD_STATE_RWAIT);
14091 
14092 		SD_ERROR(SD_LOG_IO_CORE, un,
14093 		    "sd_initpkt_for_uscsi: No pktp. exit bp:0x%p\n", bp);
14094 
14095 		if ((bp->b_flags & B_ERROR) != 0) {
14096 			return (SD_PKT_ALLOC_FAILURE_NO_DMA);
14097 		}
14098 		return (SD_PKT_ALLOC_FAILURE);
14099 	}
14100 
14101 	/*
14102 	 * We do not do DMA breakup for USCSI commands, so return failure
14103 	 * here if all the needed DMA resources were not allocated.
14104 	 */
14105 	if ((un->un_pkt_flags & PKT_DMA_PARTIAL) &&
14106 	    (bp->b_bcount != 0) && (pktp->pkt_resid != 0)) {
14107 		scsi_destroy_pkt(pktp);
14108 		SD_ERROR(SD_LOG_IO_CORE, un, "sd_initpkt_for_uscsi: "
14109 		    "No partial DMA for USCSI. exit: buf:0x%p\n", bp);
14110 		return (SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL);
14111 	}
14112 
14113 	/* Init the cdb from the given uscsi struct */
14114 	(void) scsi_setup_cdb((union scsi_cdb *)pktp->pkt_cdbp,
14115 	    uscmd->uscsi_cdb[0], 0, 0, 0);
14116 
14117 	SD_FILL_SCSI1_LUN(un, pktp);
14118 
14119 	/*
14120 	 * Set up the optional USCSI flags. See the uscsi (7I) man page
14121 	 * for listing of the supported flags.
14122 	 */
14123 
14124 	if (uscmd->uscsi_flags & USCSI_SILENT) {
14125 		flags |= FLAG_SILENT;
14126 	}
14127 
14128 	if (uscmd->uscsi_flags & USCSI_DIAGNOSE) {
14129 		flags |= FLAG_DIAGNOSE;
14130 	}
14131 
14132 	if (uscmd->uscsi_flags & USCSI_ISOLATE) {
14133 		flags |= FLAG_ISOLATE;
14134 	}
14135 
14136 	if (un->un_f_is_fibre == FALSE) {
14137 		if (uscmd->uscsi_flags & USCSI_RENEGOT) {
14138 			flags |= FLAG_RENEGOTIATE_WIDE_SYNC;
14139 		}
14140 	}
14141 
14142 	/*
14143 	 * Set the pkt flags here so we save time later.
14144 	 * Note: These flags are NOT in the uscsi man page!!!
14145 	 */
14146 	if (uscmd->uscsi_flags & USCSI_HEAD) {
14147 		flags |= FLAG_HEAD;
14148 	}
14149 
14150 	if (uscmd->uscsi_flags & USCSI_NOINTR) {
14151 		flags |= FLAG_NOINTR;
14152 	}
14153 
14154 	/*
14155 	 * For tagged queueing, things get a bit complicated.
14156 	 * Check first for head of queue and last for ordered queue.
14157 	 * If neither head nor order, use the default driver tag flags.
14158 	 */
14159 	if ((uscmd->uscsi_flags & USCSI_NOTAG) == 0) {
14160 		if (uscmd->uscsi_flags & USCSI_HTAG) {
14161 			flags |= FLAG_HTAG;
14162 		} else if (uscmd->uscsi_flags & USCSI_OTAG) {
14163 			flags |= FLAG_OTAG;
14164 		} else {
14165 			flags |= un->un_tagflags & FLAG_TAGMASK;
14166 		}
14167 	}
14168 
14169 	if (uscmd->uscsi_flags & USCSI_NODISCON) {
14170 		flags = (flags & ~FLAG_TAGMASK) | FLAG_NODISCON;
14171 	}
14172 
14173 	pktp->pkt_flags = flags;
14174 
14175 	/* Copy the caller's CDB into the pkt... */
14176 	bcopy(uscmd->uscsi_cdb, pktp->pkt_cdbp, uscmd->uscsi_cdblen);
14177 
14178 	if (uscmd->uscsi_timeout == 0) {
14179 		pktp->pkt_time = un->un_uscsi_timeout;
14180 	} else {
14181 		pktp->pkt_time = uscmd->uscsi_timeout;
14182 	}
14183 
14184 	/* need it later to identify USCSI request in sdintr */
14185 	xp->xb_pkt_flags |= SD_XB_USCSICMD;
14186 
14187 	xp->xb_sense_resid = uscmd->uscsi_rqresid;
14188 
14189 	pktp->pkt_private = bp;
14190 	pktp->pkt_comp = sdintr;
14191 	*pktpp = pktp;
14192 
14193 	SD_TRACE(SD_LOG_IO_CORE, un,
14194 	    "sd_initpkt_for_uscsi: exit: buf:0x%p\n", bp);
14195 
14196 	return (SD_PKT_ALLOC_SUCCESS);
14197 }
14198 
14199 
14200 /*
14201  *    Function: sd_destroypkt_for_uscsi
14202  *
14203  * Description: Free the scsi_pkt(9S) struct for the given bp, for uscsi
14204  *		IOs.. Also saves relevant info into the associated uscsi_cmd
14205  *		struct.
14206  *
14207  *     Context: May be called under interrupt context
14208  */
14209 
14210 static void
14211 sd_destroypkt_for_uscsi(struct buf *bp)
14212 {
14213 	struct uscsi_cmd *uscmd;
14214 	struct sd_xbuf	*xp;
14215 	struct scsi_pkt	*pktp;
14216 	struct sd_lun	*un;
14217 
14218 	ASSERT(bp != NULL);
14219 	xp = SD_GET_XBUF(bp);
14220 	ASSERT(xp != NULL);
14221 	un = SD_GET_UN(bp);
14222 	ASSERT(un != NULL);
14223 	ASSERT(!mutex_owned(SD_MUTEX(un)));
14224 	pktp = SD_GET_PKTP(bp);
14225 	ASSERT(pktp != NULL);
14226 
14227 	SD_TRACE(SD_LOG_IO_CORE, un,
14228 	    "sd_destroypkt_for_uscsi: entry: buf:0x%p\n", bp);
14229 
14230 	/* The pointer to the uscsi_cmd struct is expected in xb_pktinfo */
14231 	uscmd = (struct uscsi_cmd *)xp->xb_pktinfo;
14232 	ASSERT(uscmd != NULL);
14233 
14234 	/* Save the status and the residual into the uscsi_cmd struct */
14235 	uscmd->uscsi_status = ((*(pktp)->pkt_scbp) & STATUS_MASK);
14236 	uscmd->uscsi_resid  = bp->b_resid;
14237 
14238 	/*
14239 	 * If enabled, copy any saved sense data into the area specified
14240 	 * by the uscsi command.
14241 	 */
14242 	if (((uscmd->uscsi_flags & USCSI_RQENABLE) != 0) &&
14243 	    (uscmd->uscsi_rqlen != 0) && (uscmd->uscsi_rqbuf != NULL)) {
14244 		/*
14245 		 * Note: uscmd->uscsi_rqbuf should always point to a buffer
14246 		 * at least SENSE_LENGTH bytes in size (see sd_send_scsi_cmd())
14247 		 */
14248 		uscmd->uscsi_rqstatus = xp->xb_sense_status;
14249 		uscmd->uscsi_rqresid  = xp->xb_sense_resid;
14250 		bcopy(xp->xb_sense_data, uscmd->uscsi_rqbuf, SENSE_LENGTH);
14251 	}
14252 
14253 	/* We are done with the scsi_pkt; free it now */
14254 	ASSERT(SD_GET_PKTP(bp) != NULL);
14255 	scsi_destroy_pkt(SD_GET_PKTP(bp));
14256 
14257 	SD_TRACE(SD_LOG_IO_CORE, un,
14258 	    "sd_destroypkt_for_uscsi: exit: buf:0x%p\n", bp);
14259 }
14260 
14261 
14262 /*
14263  *    Function: sd_bioclone_alloc
14264  *
14265  * Description: Allocate a buf(9S) and init it as per the given buf
14266  *		and the various arguments.  The associated sd_xbuf
14267  *		struct is (nearly) duplicated.  The struct buf *bp
14268  *		argument is saved in new_xp->xb_private.
14269  *
14270  *   Arguments: bp - ptr the the buf(9S) to be "shadowed"
14271  *		datalen - size of data area for the shadow bp
14272  *		blkno - starting LBA
14273  *		func - function pointer for b_iodone in the shadow buf. (May
14274  *			be NULL if none.)
14275  *
14276  * Return Code: Pointer to allocates buf(9S) struct
14277  *
14278  *     Context: Can sleep.
14279  */
14280 
14281 static struct buf *
14282 sd_bioclone_alloc(struct buf *bp, size_t datalen,
14283 	daddr_t blkno, int (*func)(struct buf *))
14284 {
14285 	struct	sd_lun	*un;
14286 	struct	sd_xbuf	*xp;
14287 	struct	sd_xbuf	*new_xp;
14288 	struct	buf	*new_bp;
14289 
14290 	ASSERT(bp != NULL);
14291 	xp = SD_GET_XBUF(bp);
14292 	ASSERT(xp != NULL);
14293 	un = SD_GET_UN(bp);
14294 	ASSERT(un != NULL);
14295 	ASSERT(!mutex_owned(SD_MUTEX(un)));
14296 
14297 	new_bp = bioclone(bp, 0, datalen, SD_GET_DEV(un), blkno, func,
14298 	    NULL, KM_SLEEP);
14299 
14300 	new_bp->b_lblkno	= blkno;
14301 
14302 	/*
14303 	 * Allocate an xbuf for the shadow bp and copy the contents of the
14304 	 * original xbuf into it.
14305 	 */
14306 	new_xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
14307 	bcopy(xp, new_xp, sizeof (struct sd_xbuf));
14308 
14309 	/*
14310 	 * The given bp is automatically saved in the xb_private member
14311 	 * of the new xbuf.  Callers are allowed to depend on this.
14312 	 */
14313 	new_xp->xb_private = bp;
14314 
14315 	new_bp->b_private  = new_xp;
14316 
14317 	return (new_bp);
14318 }
14319 
14320 /*
14321  *    Function: sd_shadow_buf_alloc
14322  *
14323  * Description: Allocate a buf(9S) and init it as per the given buf
14324  *		and the various arguments.  The associated sd_xbuf
14325  *		struct is (nearly) duplicated.  The struct buf *bp
14326  *		argument is saved in new_xp->xb_private.
14327  *
14328  *   Arguments: bp - ptr the the buf(9S) to be "shadowed"
14329  *		datalen - size of data area for the shadow bp
14330  *		bflags - B_READ or B_WRITE (pseudo flag)
14331  *		blkno - starting LBA
14332  *		func - function pointer for b_iodone in the shadow buf. (May
14333  *			be NULL if none.)
14334  *
14335  * Return Code: Pointer to allocates buf(9S) struct
14336  *
14337  *     Context: Can sleep.
14338  */
14339 
14340 static struct buf *
14341 sd_shadow_buf_alloc(struct buf *bp, size_t datalen, uint_t bflags,
14342 	daddr_t blkno, int (*func)(struct buf *))
14343 {
14344 	struct	sd_lun	*un;
14345 	struct	sd_xbuf	*xp;
14346 	struct	sd_xbuf	*new_xp;
14347 	struct	buf	*new_bp;
14348 
14349 	ASSERT(bp != NULL);
14350 	xp = SD_GET_XBUF(bp);
14351 	ASSERT(xp != NULL);
14352 	un = SD_GET_UN(bp);
14353 	ASSERT(un != NULL);
14354 	ASSERT(!mutex_owned(SD_MUTEX(un)));
14355 
14356 	if (bp->b_flags & (B_PAGEIO | B_PHYS)) {
14357 		bp_mapin(bp);
14358 	}
14359 
14360 	bflags &= (B_READ | B_WRITE);
14361 #if defined(__i386) || defined(__amd64)
14362 	new_bp = getrbuf(KM_SLEEP);
14363 	new_bp->b_un.b_addr = kmem_zalloc(datalen, KM_SLEEP);
14364 	new_bp->b_bcount = datalen;
14365 	new_bp->b_flags = bflags |
14366 	    (bp->b_flags & ~(B_PAGEIO | B_PHYS | B_REMAPPED | B_SHADOW));
14367 #else
14368 	new_bp = scsi_alloc_consistent_buf(SD_ADDRESS(un), NULL,
14369 	    datalen, bflags, SLEEP_FUNC, NULL);
14370 #endif
14371 	new_bp->av_forw	= NULL;
14372 	new_bp->av_back	= NULL;
14373 	new_bp->b_dev	= bp->b_dev;
14374 	new_bp->b_blkno	= blkno;
14375 	new_bp->b_iodone = func;
14376 	new_bp->b_edev	= bp->b_edev;
14377 	new_bp->b_resid	= 0;
14378 
14379 	/* We need to preserve the B_FAILFAST flag */
14380 	if (bp->b_flags & B_FAILFAST) {
14381 		new_bp->b_flags |= B_FAILFAST;
14382 	}
14383 
14384 	/*
14385 	 * Allocate an xbuf for the shadow bp and copy the contents of the
14386 	 * original xbuf into it.
14387 	 */
14388 	new_xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
14389 	bcopy(xp, new_xp, sizeof (struct sd_xbuf));
14390 
14391 	/* Need later to copy data between the shadow buf & original buf! */
14392 	new_xp->xb_pkt_flags |= PKT_CONSISTENT;
14393 
14394 	/*
14395 	 * The given bp is automatically saved in the xb_private member
14396 	 * of the new xbuf.  Callers are allowed to depend on this.
14397 	 */
14398 	new_xp->xb_private = bp;
14399 
14400 	new_bp->b_private  = new_xp;
14401 
14402 	return (new_bp);
14403 }
14404 
14405 /*
14406  *    Function: sd_bioclone_free
14407  *
14408  * Description: Deallocate a buf(9S) that was used for 'shadow' IO operations
14409  *		in the larger than partition operation.
14410  *
14411  *     Context: May be called under interrupt context
14412  */
14413 
14414 static void
14415 sd_bioclone_free(struct buf *bp)
14416 {
14417 	struct sd_xbuf	*xp;
14418 
14419 	ASSERT(bp != NULL);
14420 	xp = SD_GET_XBUF(bp);
14421 	ASSERT(xp != NULL);
14422 
14423 	/*
14424 	 * Call bp_mapout() before freeing the buf,  in case a lower
14425 	 * layer or HBA  had done a bp_mapin().  we must do this here
14426 	 * as we are the "originator" of the shadow buf.
14427 	 */
14428 	bp_mapout(bp);
14429 
14430 	/*
14431 	 * Null out b_iodone before freeing the bp, to ensure that the driver
14432 	 * never gets confused by a stale value in this field. (Just a little
14433 	 * extra defensiveness here.)
14434 	 */
14435 	bp->b_iodone = NULL;
14436 
14437 	freerbuf(bp);
14438 
14439 	kmem_free(xp, sizeof (struct sd_xbuf));
14440 }
14441 
14442 /*
14443  *    Function: sd_shadow_buf_free
14444  *
14445  * Description: Deallocate a buf(9S) that was used for 'shadow' IO operations.
14446  *
14447  *     Context: May be called under interrupt context
14448  */
14449 
14450 static void
14451 sd_shadow_buf_free(struct buf *bp)
14452 {
14453 	struct sd_xbuf	*xp;
14454 
14455 	ASSERT(bp != NULL);
14456 	xp = SD_GET_XBUF(bp);
14457 	ASSERT(xp != NULL);
14458 
14459 #if defined(__sparc)
14460 	/*
14461 	 * Call bp_mapout() before freeing the buf,  in case a lower
14462 	 * layer or HBA  had done a bp_mapin().  we must do this here
14463 	 * as we are the "originator" of the shadow buf.
14464 	 */
14465 	bp_mapout(bp);
14466 #endif
14467 
14468 	/*
14469 	 * Null out b_iodone before freeing the bp, to ensure that the driver
14470 	 * never gets confused by a stale value in this field. (Just a little
14471 	 * extra defensiveness here.)
14472 	 */
14473 	bp->b_iodone = NULL;
14474 
14475 #if defined(__i386) || defined(__amd64)
14476 	kmem_free(bp->b_un.b_addr, bp->b_bcount);
14477 	freerbuf(bp);
14478 #else
14479 	scsi_free_consistent_buf(bp);
14480 #endif
14481 
14482 	kmem_free(xp, sizeof (struct sd_xbuf));
14483 }
14484 
14485 
14486 /*
14487  *    Function: sd_print_transport_rejected_message
14488  *
14489  * Description: This implements the ludicrously complex rules for printing
14490  *		a "transport rejected" message.  This is to address the
14491  *		specific problem of having a flood of this error message
14492  *		produced when a failover occurs.
14493  *
14494  *     Context: Any.
14495  */
14496 
14497 static void
14498 sd_print_transport_rejected_message(struct sd_lun *un, struct sd_xbuf *xp,
14499 	int code)
14500 {
14501 	ASSERT(un != NULL);
14502 	ASSERT(mutex_owned(SD_MUTEX(un)));
14503 	ASSERT(xp != NULL);
14504 
14505 	/*
14506 	 * Print the "transport rejected" message under the following
14507 	 * conditions:
14508 	 *
14509 	 * - Whenever the SD_LOGMASK_DIAG bit of sd_level_mask is set
14510 	 * - The error code from scsi_transport() is NOT a TRAN_FATAL_ERROR.
14511 	 * - If the error code IS a TRAN_FATAL_ERROR, then the message is
14512 	 *   printed the FIRST time a TRAN_FATAL_ERROR is returned from
14513 	 *   scsi_transport(9F) (which indicates that the target might have
14514 	 *   gone off-line).  This uses the un->un_tran_fatal_count
14515 	 *   count, which is incremented whenever a TRAN_FATAL_ERROR is
14516 	 *   received, and reset to zero whenver a TRAN_ACCEPT is returned
14517 	 *   from scsi_transport().
14518 	 *
14519 	 * The FLAG_SILENT in the scsi_pkt must be CLEARED in ALL of
14520 	 * the preceeding cases in order for the message to be printed.
14521 	 */
14522 	if ((xp->xb_pktp->pkt_flags & FLAG_SILENT) == 0) {
14523 		if ((sd_level_mask & SD_LOGMASK_DIAG) ||
14524 		    (code != TRAN_FATAL_ERROR) ||
14525 		    (un->un_tran_fatal_count == 1)) {
14526 			switch (code) {
14527 			case TRAN_BADPKT:
14528 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
14529 				    "transport rejected bad packet\n");
14530 				break;
14531 			case TRAN_FATAL_ERROR:
14532 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
14533 				    "transport rejected fatal error\n");
14534 				break;
14535 			default:
14536 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
14537 				    "transport rejected (%d)\n", code);
14538 				break;
14539 			}
14540 		}
14541 	}
14542 }
14543 
14544 
14545 /*
14546  *    Function: sd_add_buf_to_waitq
14547  *
14548  * Description: Add the given buf(9S) struct to the wait queue for the
14549  *		instance.  If sorting is enabled, then the buf is added
14550  *		to the queue via an elevator sort algorithm (a la
14551  *		disksort(9F)).  The SD_GET_BLKNO(bp) is used as the sort key.
14552  *		If sorting is not enabled, then the buf is just added
14553  *		to the end of the wait queue.
14554  *
14555  * Return Code: void
14556  *
14557  *     Context: Does not sleep/block, therefore technically can be called
14558  *		from any context.  However if sorting is enabled then the
14559  *		execution time is indeterminate, and may take long if
14560  *		the wait queue grows large.
14561  */
14562 
14563 static void
14564 sd_add_buf_to_waitq(struct sd_lun *un, struct buf *bp)
14565 {
14566 	struct buf *ap;
14567 
14568 	ASSERT(bp != NULL);
14569 	ASSERT(un != NULL);
14570 	ASSERT(mutex_owned(SD_MUTEX(un)));
14571 
14572 	/* If the queue is empty, add the buf as the only entry & return. */
14573 	if (un->un_waitq_headp == NULL) {
14574 		ASSERT(un->un_waitq_tailp == NULL);
14575 		un->un_waitq_headp = un->un_waitq_tailp = bp;
14576 		bp->av_forw = NULL;
14577 		return;
14578 	}
14579 
14580 	ASSERT(un->un_waitq_tailp != NULL);
14581 
14582 	/*
14583 	 * If sorting is disabled, just add the buf to the tail end of
14584 	 * the wait queue and return.
14585 	 */
14586 	if (un->un_f_disksort_disabled) {
14587 		un->un_waitq_tailp->av_forw = bp;
14588 		un->un_waitq_tailp = bp;
14589 		bp->av_forw = NULL;
14590 		return;
14591 	}
14592 
14593 	/*
14594 	 * Sort thru the list of requests currently on the wait queue
14595 	 * and add the new buf request at the appropriate position.
14596 	 *
14597 	 * The un->un_waitq_headp is an activity chain pointer on which
14598 	 * we keep two queues, sorted in ascending SD_GET_BLKNO() order. The
14599 	 * first queue holds those requests which are positioned after
14600 	 * the current SD_GET_BLKNO() (in the first request); the second holds
14601 	 * requests which came in after their SD_GET_BLKNO() number was passed.
14602 	 * Thus we implement a one way scan, retracting after reaching
14603 	 * the end of the drive to the first request on the second
14604 	 * queue, at which time it becomes the first queue.
14605 	 * A one-way scan is natural because of the way UNIX read-ahead
14606 	 * blocks are allocated.
14607 	 *
14608 	 * If we lie after the first request, then we must locate the
14609 	 * second request list and add ourselves to it.
14610 	 */
14611 	ap = un->un_waitq_headp;
14612 	if (SD_GET_BLKNO(bp) < SD_GET_BLKNO(ap)) {
14613 		while (ap->av_forw != NULL) {
14614 			/*
14615 			 * Look for an "inversion" in the (normally
14616 			 * ascending) block numbers. This indicates
14617 			 * the start of the second request list.
14618 			 */
14619 			if (SD_GET_BLKNO(ap->av_forw) < SD_GET_BLKNO(ap)) {
14620 				/*
14621 				 * Search the second request list for the
14622 				 * first request at a larger block number.
14623 				 * We go before that; however if there is
14624 				 * no such request, we go at the end.
14625 				 */
14626 				do {
14627 					if (SD_GET_BLKNO(bp) <
14628 					    SD_GET_BLKNO(ap->av_forw)) {
14629 						goto insert;
14630 					}
14631 					ap = ap->av_forw;
14632 				} while (ap->av_forw != NULL);
14633 				goto insert;		/* after last */
14634 			}
14635 			ap = ap->av_forw;
14636 		}
14637 
14638 		/*
14639 		 * No inversions... we will go after the last, and
14640 		 * be the first request in the second request list.
14641 		 */
14642 		goto insert;
14643 	}
14644 
14645 	/*
14646 	 * Request is at/after the current request...
14647 	 * sort in the first request list.
14648 	 */
14649 	while (ap->av_forw != NULL) {
14650 		/*
14651 		 * We want to go after the current request (1) if
14652 		 * there is an inversion after it (i.e. it is the end
14653 		 * of the first request list), or (2) if the next
14654 		 * request is a larger block no. than our request.
14655 		 */
14656 		if ((SD_GET_BLKNO(ap->av_forw) < SD_GET_BLKNO(ap)) ||
14657 		    (SD_GET_BLKNO(bp) < SD_GET_BLKNO(ap->av_forw))) {
14658 			goto insert;
14659 		}
14660 		ap = ap->av_forw;
14661 	}
14662 
14663 	/*
14664 	 * Neither a second list nor a larger request, therefore
14665 	 * we go at the end of the first list (which is the same
14666 	 * as the end of the whole schebang).
14667 	 */
14668 insert:
14669 	bp->av_forw = ap->av_forw;
14670 	ap->av_forw = bp;
14671 
14672 	/*
14673 	 * If we inserted onto the tail end of the waitq, make sure the
14674 	 * tail pointer is updated.
14675 	 */
14676 	if (ap == un->un_waitq_tailp) {
14677 		un->un_waitq_tailp = bp;
14678 	}
14679 }
14680 
14681 
14682 /*
14683  *    Function: sd_start_cmds
14684  *
14685  * Description: Remove and transport cmds from the driver queues.
14686  *
14687  *   Arguments: un - pointer to the unit (soft state) struct for the target.
14688  *
14689  *		immed_bp - ptr to a buf to be transported immediately. Only
14690  *		the immed_bp is transported; bufs on the waitq are not
14691  *		processed and the un_retry_bp is not checked.  If immed_bp is
14692  *		NULL, then normal queue processing is performed.
14693  *
14694  *     Context: May be called from kernel thread context, interrupt context,
14695  *		or runout callback context. This function may not block or
14696  *		call routines that block.
14697  */
14698 
14699 static void
14700 sd_start_cmds(struct sd_lun *un, struct buf *immed_bp)
14701 {
14702 	struct	sd_xbuf	*xp;
14703 	struct	buf	*bp;
14704 	void	(*statp)(kstat_io_t *);
14705 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
14706 	void	(*saved_statp)(kstat_io_t *);
14707 #endif
14708 	int	rval;
14709 
14710 	ASSERT(un != NULL);
14711 	ASSERT(mutex_owned(SD_MUTEX(un)));
14712 	ASSERT(un->un_ncmds_in_transport >= 0);
14713 	ASSERT(un->un_throttle >= 0);
14714 
14715 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_start_cmds: entry\n");
14716 
14717 	do {
14718 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
14719 		saved_statp = NULL;
14720 #endif
14721 
14722 		/*
14723 		 * If we are syncing or dumping, fail the command to
14724 		 * avoid recursively calling back into scsi_transport().
14725 		 * The dump I/O itself uses a separate code path so this
14726 		 * only prevents non-dump I/O from being sent while dumping.
14727 		 * File system sync takes place before dumping begins.
14728 		 * During panic, filesystem I/O is allowed provided
14729 		 * un_in_callback is <= 1.  This is to prevent recursion
14730 		 * such as sd_start_cmds -> scsi_transport -> sdintr ->
14731 		 * sd_start_cmds and so on.  See panic.c for more information
14732 		 * about the states the system can be in during panic.
14733 		 */
14734 		if ((un->un_state == SD_STATE_DUMPING) ||
14735 		    (ddi_in_panic() && (un->un_in_callback > 1))) {
14736 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14737 			    "sd_start_cmds: panicking\n");
14738 			goto exit;
14739 		}
14740 
14741 		if ((bp = immed_bp) != NULL) {
14742 			/*
14743 			 * We have a bp that must be transported immediately.
14744 			 * It's OK to transport the immed_bp here without doing
14745 			 * the throttle limit check because the immed_bp is
14746 			 * always used in a retry/recovery case. This means
14747 			 * that we know we are not at the throttle limit by
14748 			 * virtue of the fact that to get here we must have
14749 			 * already gotten a command back via sdintr(). This also
14750 			 * relies on (1) the command on un_retry_bp preventing
14751 			 * further commands from the waitq from being issued;
14752 			 * and (2) the code in sd_retry_command checking the
14753 			 * throttle limit before issuing a delayed or immediate
14754 			 * retry. This holds even if the throttle limit is
14755 			 * currently ratcheted down from its maximum value.
14756 			 */
14757 			statp = kstat_runq_enter;
14758 			if (bp == un->un_retry_bp) {
14759 				ASSERT((un->un_retry_statp == NULL) ||
14760 				    (un->un_retry_statp == kstat_waitq_enter) ||
14761 				    (un->un_retry_statp ==
14762 				    kstat_runq_back_to_waitq));
14763 				/*
14764 				 * If the waitq kstat was incremented when
14765 				 * sd_set_retry_bp() queued this bp for a retry,
14766 				 * then we must set up statp so that the waitq
14767 				 * count will get decremented correctly below.
14768 				 * Also we must clear un->un_retry_statp to
14769 				 * ensure that we do not act on a stale value
14770 				 * in this field.
14771 				 */
14772 				if ((un->un_retry_statp == kstat_waitq_enter) ||
14773 				    (un->un_retry_statp ==
14774 				    kstat_runq_back_to_waitq)) {
14775 					statp = kstat_waitq_to_runq;
14776 				}
14777 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
14778 				saved_statp = un->un_retry_statp;
14779 #endif
14780 				un->un_retry_statp = NULL;
14781 
14782 				SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
14783 				    "sd_start_cmds: un:0x%p: GOT retry_bp:0x%p "
14784 				    "un_throttle:%d un_ncmds_in_transport:%d\n",
14785 				    un, un->un_retry_bp, un->un_throttle,
14786 				    un->un_ncmds_in_transport);
14787 			} else {
14788 				SD_TRACE(SD_LOG_IO_CORE, un, "sd_start_cmds: "
14789 				    "processing priority bp:0x%p\n", bp);
14790 			}
14791 
14792 		} else if ((bp = un->un_waitq_headp) != NULL) {
14793 			/*
14794 			 * A command on the waitq is ready to go, but do not
14795 			 * send it if:
14796 			 *
14797 			 * (1) the throttle limit has been reached, or
14798 			 * (2) a retry is pending, or
14799 			 * (3) a START_STOP_UNIT callback pending, or
14800 			 * (4) a callback for a SD_PATH_DIRECT_PRIORITY
14801 			 *	command is pending.
14802 			 *
14803 			 * For all of these conditions, IO processing will
14804 			 * restart after the condition is cleared.
14805 			 */
14806 			if (un->un_ncmds_in_transport >= un->un_throttle) {
14807 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14808 				    "sd_start_cmds: exiting, "
14809 				    "throttle limit reached!\n");
14810 				goto exit;
14811 			}
14812 			if (un->un_retry_bp != NULL) {
14813 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14814 				    "sd_start_cmds: exiting, retry pending!\n");
14815 				goto exit;
14816 			}
14817 			if (un->un_startstop_timeid != NULL) {
14818 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14819 				    "sd_start_cmds: exiting, "
14820 				    "START_STOP pending!\n");
14821 				goto exit;
14822 			}
14823 			if (un->un_direct_priority_timeid != NULL) {
14824 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14825 				    "sd_start_cmds: exiting, "
14826 				    "SD_PATH_DIRECT_PRIORITY cmd. pending!\n");
14827 				goto exit;
14828 			}
14829 
14830 			/* Dequeue the command */
14831 			un->un_waitq_headp = bp->av_forw;
14832 			if (un->un_waitq_headp == NULL) {
14833 				un->un_waitq_tailp = NULL;
14834 			}
14835 			bp->av_forw = NULL;
14836 			statp = kstat_waitq_to_runq;
14837 			SD_TRACE(SD_LOG_IO_CORE, un,
14838 			    "sd_start_cmds: processing waitq bp:0x%p\n", bp);
14839 
14840 		} else {
14841 			/* No work to do so bail out now */
14842 			SD_TRACE(SD_LOG_IO_CORE, un,
14843 			    "sd_start_cmds: no more work, exiting!\n");
14844 			goto exit;
14845 		}
14846 
14847 		/*
14848 		 * Reset the state to normal. This is the mechanism by which
14849 		 * the state transitions from either SD_STATE_RWAIT or
14850 		 * SD_STATE_OFFLINE to SD_STATE_NORMAL.
14851 		 * If state is SD_STATE_PM_CHANGING then this command is
14852 		 * part of the device power control and the state must
14853 		 * not be put back to normal. Doing so would would
14854 		 * allow new commands to proceed when they shouldn't,
14855 		 * the device may be going off.
14856 		 */
14857 		if ((un->un_state != SD_STATE_SUSPENDED) &&
14858 		    (un->un_state != SD_STATE_PM_CHANGING)) {
14859 			New_state(un, SD_STATE_NORMAL);
14860 		    }
14861 
14862 		xp = SD_GET_XBUF(bp);
14863 		ASSERT(xp != NULL);
14864 
14865 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
14866 		/*
14867 		 * Allocate the scsi_pkt if we need one, or attach DMA
14868 		 * resources if we have a scsi_pkt that needs them. The
14869 		 * latter should only occur for commands that are being
14870 		 * retried.
14871 		 */
14872 		if ((xp->xb_pktp == NULL) ||
14873 		    ((xp->xb_pkt_flags & SD_XB_DMA_FREED) != 0)) {
14874 #else
14875 		if (xp->xb_pktp == NULL) {
14876 #endif
14877 			/*
14878 			 * There is no scsi_pkt allocated for this buf. Call
14879 			 * the initpkt function to allocate & init one.
14880 			 *
14881 			 * The scsi_init_pkt runout callback functionality is
14882 			 * implemented as follows:
14883 			 *
14884 			 * 1) The initpkt function always calls
14885 			 *    scsi_init_pkt(9F) with sdrunout specified as the
14886 			 *    callback routine.
14887 			 * 2) A successful packet allocation is initialized and
14888 			 *    the I/O is transported.
14889 			 * 3) The I/O associated with an allocation resource
14890 			 *    failure is left on its queue to be retried via
14891 			 *    runout or the next I/O.
14892 			 * 4) The I/O associated with a DMA error is removed
14893 			 *    from the queue and failed with EIO. Processing of
14894 			 *    the transport queues is also halted to be
14895 			 *    restarted via runout or the next I/O.
14896 			 * 5) The I/O associated with a CDB size or packet
14897 			 *    size error is removed from the queue and failed
14898 			 *    with EIO. Processing of the transport queues is
14899 			 *    continued.
14900 			 *
14901 			 * Note: there is no interface for canceling a runout
14902 			 * callback. To prevent the driver from detaching or
14903 			 * suspending while a runout is pending the driver
14904 			 * state is set to SD_STATE_RWAIT
14905 			 *
14906 			 * Note: using the scsi_init_pkt callback facility can
14907 			 * result in an I/O request persisting at the head of
14908 			 * the list which cannot be satisfied even after
14909 			 * multiple retries. In the future the driver may
14910 			 * implement some kind of maximum runout count before
14911 			 * failing an I/O.
14912 			 *
14913 			 * Note: the use of funcp below may seem superfluous,
14914 			 * but it helps warlock figure out the correct
14915 			 * initpkt function calls (see [s]sd.wlcmd).
14916 			 */
14917 			struct scsi_pkt	*pktp;
14918 			int (*funcp)(struct buf *bp, struct scsi_pkt **pktp);
14919 
14920 			ASSERT(bp != un->un_rqs_bp);
14921 
14922 			funcp = sd_initpkt_map[xp->xb_chain_iostart];
14923 			switch ((*funcp)(bp, &pktp)) {
14924 			case  SD_PKT_ALLOC_SUCCESS:
14925 				xp->xb_pktp = pktp;
14926 				SD_TRACE(SD_LOG_IO_CORE, un,
14927 				    "sd_start_cmd: SD_PKT_ALLOC_SUCCESS 0x%p\n",
14928 				    pktp);
14929 				goto got_pkt;
14930 
14931 			case SD_PKT_ALLOC_FAILURE:
14932 				/*
14933 				 * Temporary (hopefully) resource depletion.
14934 				 * Since retries and RQS commands always have a
14935 				 * scsi_pkt allocated, these cases should never
14936 				 * get here. So the only cases this needs to
14937 				 * handle is a bp from the waitq (which we put
14938 				 * back onto the waitq for sdrunout), or a bp
14939 				 * sent as an immed_bp (which we just fail).
14940 				 */
14941 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14942 				    "sd_start_cmds: SD_PKT_ALLOC_FAILURE\n");
14943 
14944 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
14945 
14946 				if (bp == immed_bp) {
14947 					/*
14948 					 * If SD_XB_DMA_FREED is clear, then
14949 					 * this is a failure to allocate a
14950 					 * scsi_pkt, and we must fail the
14951 					 * command.
14952 					 */
14953 					if ((xp->xb_pkt_flags &
14954 					    SD_XB_DMA_FREED) == 0) {
14955 						break;
14956 					}
14957 
14958 					/*
14959 					 * If this immediate command is NOT our
14960 					 * un_retry_bp, then we must fail it.
14961 					 */
14962 					if (bp != un->un_retry_bp) {
14963 						break;
14964 					}
14965 
14966 					/*
14967 					 * We get here if this cmd is our
14968 					 * un_retry_bp that was DMAFREED, but
14969 					 * scsi_init_pkt() failed to reallocate
14970 					 * DMA resources when we attempted to
14971 					 * retry it. This can happen when an
14972 					 * mpxio failover is in progress, but
14973 					 * we don't want to just fail the
14974 					 * command in this case.
14975 					 *
14976 					 * Use timeout(9F) to restart it after
14977 					 * a 100ms delay.  We don't want to
14978 					 * let sdrunout() restart it, because
14979 					 * sdrunout() is just supposed to start
14980 					 * commands that are sitting on the
14981 					 * wait queue.  The un_retry_bp stays
14982 					 * set until the command completes, but
14983 					 * sdrunout can be called many times
14984 					 * before that happens.  Since sdrunout
14985 					 * cannot tell if the un_retry_bp is
14986 					 * already in the transport, it could
14987 					 * end up calling scsi_transport() for
14988 					 * the un_retry_bp multiple times.
14989 					 *
14990 					 * Also: don't schedule the callback
14991 					 * if some other callback is already
14992 					 * pending.
14993 					 */
14994 					if (un->un_retry_statp == NULL) {
14995 						/*
14996 						 * restore the kstat pointer to
14997 						 * keep kstat counts coherent
14998 						 * when we do retry the command.
14999 						 */
15000 						un->un_retry_statp =
15001 						    saved_statp;
15002 					}
15003 
15004 					if ((un->un_startstop_timeid == NULL) &&
15005 					    (un->un_retry_timeid == NULL) &&
15006 					    (un->un_direct_priority_timeid ==
15007 					    NULL)) {
15008 
15009 						un->un_retry_timeid =
15010 						    timeout(
15011 						    sd_start_retry_command,
15012 						    un, SD_RESTART_TIMEOUT);
15013 					}
15014 					goto exit;
15015 				}
15016 
15017 #else
15018 				if (bp == immed_bp) {
15019 					break;	/* Just fail the command */
15020 				}
15021 #endif
15022 
15023 				/* Add the buf back to the head of the waitq */
15024 				bp->av_forw = un->un_waitq_headp;
15025 				un->un_waitq_headp = bp;
15026 				if (un->un_waitq_tailp == NULL) {
15027 					un->un_waitq_tailp = bp;
15028 				}
15029 				goto exit;
15030 
15031 			case SD_PKT_ALLOC_FAILURE_NO_DMA:
15032 				/*
15033 				 * HBA DMA resource failure. Fail the command
15034 				 * and continue processing of the queues.
15035 				 */
15036 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15037 				    "sd_start_cmds: "
15038 				    "SD_PKT_ALLOC_FAILURE_NO_DMA\n");
15039 				break;
15040 
15041 			case SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL:
15042 				/*
15043 				 * Note:x86: Partial DMA mapping not supported
15044 				 * for USCSI commands, and all the needed DMA
15045 				 * resources were not allocated.
15046 				 */
15047 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15048 				    "sd_start_cmds: "
15049 				    "SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL\n");
15050 				break;
15051 
15052 			case SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL:
15053 				/*
15054 				 * Note:x86: Request cannot fit into CDB based
15055 				 * on lba and len.
15056 				 */
15057 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15058 				    "sd_start_cmds: "
15059 				    "SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL\n");
15060 				break;
15061 
15062 			default:
15063 				/* Should NEVER get here! */
15064 				panic("scsi_initpkt error");
15065 				/*NOTREACHED*/
15066 			}
15067 
15068 			/*
15069 			 * Fatal error in allocating a scsi_pkt for this buf.
15070 			 * Update kstats & return the buf with an error code.
15071 			 * We must use sd_return_failed_command_no_restart() to
15072 			 * avoid a recursive call back into sd_start_cmds().
15073 			 * However this also means that we must keep processing
15074 			 * the waitq here in order to avoid stalling.
15075 			 */
15076 			if (statp == kstat_waitq_to_runq) {
15077 				SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp);
15078 			}
15079 			sd_return_failed_command_no_restart(un, bp, EIO);
15080 			if (bp == immed_bp) {
15081 				/* immed_bp is gone by now, so clear this */
15082 				immed_bp = NULL;
15083 			}
15084 			continue;
15085 		}
15086 got_pkt:
15087 		if (bp == immed_bp) {
15088 			/* goto the head of the class.... */
15089 			xp->xb_pktp->pkt_flags |= FLAG_HEAD;
15090 		}
15091 
15092 		un->un_ncmds_in_transport++;
15093 		SD_UPDATE_KSTATS(un, statp, bp);
15094 
15095 		/*
15096 		 * Call scsi_transport() to send the command to the target.
15097 		 * According to SCSA architecture, we must drop the mutex here
15098 		 * before calling scsi_transport() in order to avoid deadlock.
15099 		 * Note that the scsi_pkt's completion routine can be executed
15100 		 * (from interrupt context) even before the call to
15101 		 * scsi_transport() returns.
15102 		 */
15103 		SD_TRACE(SD_LOG_IO_CORE, un,
15104 		    "sd_start_cmds: calling scsi_transport()\n");
15105 		DTRACE_PROBE1(scsi__transport__dispatch, struct buf *, bp);
15106 
15107 		mutex_exit(SD_MUTEX(un));
15108 		rval = scsi_transport(xp->xb_pktp);
15109 		mutex_enter(SD_MUTEX(un));
15110 
15111 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15112 		    "sd_start_cmds: scsi_transport() returned %d\n", rval);
15113 
15114 		switch (rval) {
15115 		case TRAN_ACCEPT:
15116 			/* Clear this with every pkt accepted by the HBA */
15117 			un->un_tran_fatal_count = 0;
15118 			break;	/* Success; try the next cmd (if any) */
15119 
15120 		case TRAN_BUSY:
15121 			un->un_ncmds_in_transport--;
15122 			ASSERT(un->un_ncmds_in_transport >= 0);
15123 
15124 			/*
15125 			 * Don't retry request sense, the sense data
15126 			 * is lost when another request is sent.
15127 			 * Free up the rqs buf and retry
15128 			 * the original failed cmd.  Update kstat.
15129 			 */
15130 			if (bp == un->un_rqs_bp) {
15131 				SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
15132 				bp = sd_mark_rqs_idle(un, xp);
15133 				sd_retry_command(un, bp, SD_RETRIES_STANDARD,
15134 					NULL, NULL, EIO, SD_BSY_TIMEOUT / 500,
15135 					kstat_waitq_enter);
15136 				goto exit;
15137 			}
15138 
15139 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
15140 			/*
15141 			 * Free the DMA resources for the  scsi_pkt. This will
15142 			 * allow mpxio to select another path the next time
15143 			 * we call scsi_transport() with this scsi_pkt.
15144 			 * See sdintr() for the rationalization behind this.
15145 			 */
15146 			if ((un->un_f_is_fibre == TRUE) &&
15147 			    ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) &&
15148 			    ((xp->xb_pktp->pkt_flags & FLAG_SENSING) == 0)) {
15149 				scsi_dmafree(xp->xb_pktp);
15150 				xp->xb_pkt_flags |= SD_XB_DMA_FREED;
15151 			}
15152 #endif
15153 
15154 			if (SD_IS_DIRECT_PRIORITY(SD_GET_XBUF(bp))) {
15155 				/*
15156 				 * Commands that are SD_PATH_DIRECT_PRIORITY
15157 				 * are for error recovery situations. These do
15158 				 * not use the normal command waitq, so if they
15159 				 * get a TRAN_BUSY we cannot put them back onto
15160 				 * the waitq for later retry. One possible
15161 				 * problem is that there could already be some
15162 				 * other command on un_retry_bp that is waiting
15163 				 * for this one to complete, so we would be
15164 				 * deadlocked if we put this command back onto
15165 				 * the waitq for later retry (since un_retry_bp
15166 				 * must complete before the driver gets back to
15167 				 * commands on the waitq).
15168 				 *
15169 				 * To avoid deadlock we must schedule a callback
15170 				 * that will restart this command after a set
15171 				 * interval.  This should keep retrying for as
15172 				 * long as the underlying transport keeps
15173 				 * returning TRAN_BUSY (just like for other
15174 				 * commands).  Use the same timeout interval as
15175 				 * for the ordinary TRAN_BUSY retry.
15176 				 */
15177 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15178 				    "sd_start_cmds: scsi_transport() returned "
15179 				    "TRAN_BUSY for DIRECT_PRIORITY cmd!\n");
15180 
15181 				SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
15182 				un->un_direct_priority_timeid =
15183 				    timeout(sd_start_direct_priority_command,
15184 				    bp, SD_BSY_TIMEOUT / 500);
15185 
15186 				goto exit;
15187 			}
15188 
15189 			/*
15190 			 * For TRAN_BUSY, we want to reduce the throttle value,
15191 			 * unless we are retrying a command.
15192 			 */
15193 			if (bp != un->un_retry_bp) {
15194 				sd_reduce_throttle(un, SD_THROTTLE_TRAN_BUSY);
15195 			}
15196 
15197 			/*
15198 			 * Set up the bp to be tried again 10 ms later.
15199 			 * Note:x86: Is there a timeout value in the sd_lun
15200 			 * for this condition?
15201 			 */
15202 			sd_set_retry_bp(un, bp, SD_BSY_TIMEOUT / 500,
15203 				kstat_runq_back_to_waitq);
15204 			goto exit;
15205 
15206 		case TRAN_FATAL_ERROR:
15207 			un->un_tran_fatal_count++;
15208 			/* FALLTHRU */
15209 
15210 		case TRAN_BADPKT:
15211 		default:
15212 			un->un_ncmds_in_transport--;
15213 			ASSERT(un->un_ncmds_in_transport >= 0);
15214 
15215 			/*
15216 			 * If this is our REQUEST SENSE command with a
15217 			 * transport error, we must get back the pointers
15218 			 * to the original buf, and mark the REQUEST
15219 			 * SENSE command as "available".
15220 			 */
15221 			if (bp == un->un_rqs_bp) {
15222 				bp = sd_mark_rqs_idle(un, xp);
15223 				xp = SD_GET_XBUF(bp);
15224 			} else {
15225 				/*
15226 				 * Legacy behavior: do not update transport
15227 				 * error count for request sense commands.
15228 				 */
15229 				SD_UPDATE_ERRSTATS(un, sd_transerrs);
15230 			}
15231 
15232 			SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
15233 			sd_print_transport_rejected_message(un, xp, rval);
15234 
15235 			/*
15236 			 * We must use sd_return_failed_command_no_restart() to
15237 			 * avoid a recursive call back into sd_start_cmds().
15238 			 * However this also means that we must keep processing
15239 			 * the waitq here in order to avoid stalling.
15240 			 */
15241 			sd_return_failed_command_no_restart(un, bp, EIO);
15242 
15243 			/*
15244 			 * Notify any threads waiting in sd_ddi_suspend() that
15245 			 * a command completion has occurred.
15246 			 */
15247 			if (un->un_state == SD_STATE_SUSPENDED) {
15248 				cv_broadcast(&un->un_disk_busy_cv);
15249 			}
15250 
15251 			if (bp == immed_bp) {
15252 				/* immed_bp is gone by now, so clear this */
15253 				immed_bp = NULL;
15254 			}
15255 			break;
15256 		}
15257 
15258 	} while (immed_bp == NULL);
15259 
15260 exit:
15261 	ASSERT(mutex_owned(SD_MUTEX(un)));
15262 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_start_cmds: exit\n");
15263 }
15264 
15265 
15266 /*
15267  *    Function: sd_return_command
15268  *
15269  * Description: Returns a command to its originator (with or without an
15270  *		error).  Also starts commands waiting to be transported
15271  *		to the target.
15272  *
15273  *     Context: May be called from interrupt, kernel, or timeout context
15274  */
15275 
15276 static void
15277 sd_return_command(struct sd_lun *un, struct buf *bp)
15278 {
15279 	struct sd_xbuf *xp;
15280 #if defined(__i386) || defined(__amd64)
15281 	struct scsi_pkt *pktp;
15282 #endif
15283 
15284 	ASSERT(bp != NULL);
15285 	ASSERT(un != NULL);
15286 	ASSERT(mutex_owned(SD_MUTEX(un)));
15287 	ASSERT(bp != un->un_rqs_bp);
15288 	xp = SD_GET_XBUF(bp);
15289 	ASSERT(xp != NULL);
15290 
15291 #if defined(__i386) || defined(__amd64)
15292 	pktp = SD_GET_PKTP(bp);
15293 #endif
15294 
15295 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_return_command: entry\n");
15296 
15297 #if defined(__i386) || defined(__amd64)
15298 	/*
15299 	 * Note:x86: check for the "sdrestart failed" case.
15300 	 */
15301 	if (((xp->xb_pkt_flags & SD_XB_USCSICMD) != SD_XB_USCSICMD) &&
15302 		(geterror(bp) == 0) && (xp->xb_dma_resid != 0) &&
15303 		(xp->xb_pktp->pkt_resid == 0)) {
15304 
15305 		if (sd_setup_next_xfer(un, bp, pktp, xp) != 0) {
15306 			/*
15307 			 * Successfully set up next portion of cmd
15308 			 * transfer, try sending it
15309 			 */
15310 			sd_retry_command(un, bp, SD_RETRIES_NOCHECK,
15311 			    NULL, NULL, 0, (clock_t)0, NULL);
15312 			sd_start_cmds(un, NULL);
15313 			return;	/* Note:x86: need a return here? */
15314 		}
15315 	}
15316 #endif
15317 
15318 	/*
15319 	 * If this is the failfast bp, clear it from un_failfast_bp. This
15320 	 * can happen if upon being re-tried the failfast bp either
15321 	 * succeeded or encountered another error (possibly even a different
15322 	 * error than the one that precipitated the failfast state, but in
15323 	 * that case it would have had to exhaust retries as well). Regardless,
15324 	 * this should not occur whenever the instance is in the active
15325 	 * failfast state.
15326 	 */
15327 	if (bp == un->un_failfast_bp) {
15328 		ASSERT(un->un_failfast_state == SD_FAILFAST_INACTIVE);
15329 		un->un_failfast_bp = NULL;
15330 	}
15331 
15332 	/*
15333 	 * Clear the failfast state upon successful completion of ANY cmd.
15334 	 */
15335 	if (bp->b_error == 0) {
15336 		un->un_failfast_state = SD_FAILFAST_INACTIVE;
15337 	}
15338 
15339 	/*
15340 	 * This is used if the command was retried one or more times. Show that
15341 	 * we are done with it, and allow processing of the waitq to resume.
15342 	 */
15343 	if (bp == un->un_retry_bp) {
15344 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15345 		    "sd_return_command: un:0x%p: "
15346 		    "RETURNING retry_bp:0x%p\n", un, un->un_retry_bp);
15347 		un->un_retry_bp = NULL;
15348 		un->un_retry_statp = NULL;
15349 	}
15350 
15351 	SD_UPDATE_RDWR_STATS(un, bp);
15352 	SD_UPDATE_PARTITION_STATS(un, bp);
15353 
15354 	switch (un->un_state) {
15355 	case SD_STATE_SUSPENDED:
15356 		/*
15357 		 * Notify any threads waiting in sd_ddi_suspend() that
15358 		 * a command completion has occurred.
15359 		 */
15360 		cv_broadcast(&un->un_disk_busy_cv);
15361 		break;
15362 	default:
15363 		sd_start_cmds(un, NULL);
15364 		break;
15365 	}
15366 
15367 	/* Return this command up the iodone chain to its originator. */
15368 	mutex_exit(SD_MUTEX(un));
15369 
15370 	(*(sd_destroypkt_map[xp->xb_chain_iodone]))(bp);
15371 	xp->xb_pktp = NULL;
15372 
15373 	SD_BEGIN_IODONE(xp->xb_chain_iodone, un, bp);
15374 
15375 	ASSERT(!mutex_owned(SD_MUTEX(un)));
15376 	mutex_enter(SD_MUTEX(un));
15377 
15378 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_return_command: exit\n");
15379 }
15380 
15381 
15382 /*
15383  *    Function: sd_return_failed_command
15384  *
15385  * Description: Command completion when an error occurred.
15386  *
15387  *     Context: May be called from interrupt context
15388  */
15389 
15390 static void
15391 sd_return_failed_command(struct sd_lun *un, struct buf *bp, int errcode)
15392 {
15393 	ASSERT(bp != NULL);
15394 	ASSERT(un != NULL);
15395 	ASSERT(mutex_owned(SD_MUTEX(un)));
15396 
15397 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15398 	    "sd_return_failed_command: entry\n");
15399 
15400 	/*
15401 	 * b_resid could already be nonzero due to a partial data
15402 	 * transfer, so do not change it here.
15403 	 */
15404 	SD_BIOERROR(bp, errcode);
15405 
15406 	sd_return_command(un, bp);
15407 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15408 	    "sd_return_failed_command: exit\n");
15409 }
15410 
15411 
15412 /*
15413  *    Function: sd_return_failed_command_no_restart
15414  *
15415  * Description: Same as sd_return_failed_command, but ensures that no
15416  *		call back into sd_start_cmds will be issued.
15417  *
15418  *     Context: May be called from interrupt context
15419  */
15420 
15421 static void
15422 sd_return_failed_command_no_restart(struct sd_lun *un, struct buf *bp,
15423 	int errcode)
15424 {
15425 	struct sd_xbuf *xp;
15426 
15427 	ASSERT(bp != NULL);
15428 	ASSERT(un != NULL);
15429 	ASSERT(mutex_owned(SD_MUTEX(un)));
15430 	xp = SD_GET_XBUF(bp);
15431 	ASSERT(xp != NULL);
15432 	ASSERT(errcode != 0);
15433 
15434 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15435 	    "sd_return_failed_command_no_restart: entry\n");
15436 
15437 	/*
15438 	 * b_resid could already be nonzero due to a partial data
15439 	 * transfer, so do not change it here.
15440 	 */
15441 	SD_BIOERROR(bp, errcode);
15442 
15443 	/*
15444 	 * If this is the failfast bp, clear it. This can happen if the
15445 	 * failfast bp encounterd a fatal error when we attempted to
15446 	 * re-try it (such as a scsi_transport(9F) failure).  However
15447 	 * we should NOT be in an active failfast state if the failfast
15448 	 * bp is not NULL.
15449 	 */
15450 	if (bp == un->un_failfast_bp) {
15451 		ASSERT(un->un_failfast_state == SD_FAILFAST_INACTIVE);
15452 		un->un_failfast_bp = NULL;
15453 	}
15454 
15455 	if (bp == un->un_retry_bp) {
15456 		/*
15457 		 * This command was retried one or more times. Show that we are
15458 		 * done with it, and allow processing of the waitq to resume.
15459 		 */
15460 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15461 		    "sd_return_failed_command_no_restart: "
15462 		    " un:0x%p: RETURNING retry_bp:0x%p\n", un, un->un_retry_bp);
15463 		un->un_retry_bp = NULL;
15464 		un->un_retry_statp = NULL;
15465 	}
15466 
15467 	SD_UPDATE_RDWR_STATS(un, bp);
15468 	SD_UPDATE_PARTITION_STATS(un, bp);
15469 
15470 	mutex_exit(SD_MUTEX(un));
15471 
15472 	if (xp->xb_pktp != NULL) {
15473 		(*(sd_destroypkt_map[xp->xb_chain_iodone]))(bp);
15474 		xp->xb_pktp = NULL;
15475 	}
15476 
15477 	SD_BEGIN_IODONE(xp->xb_chain_iodone, un, bp);
15478 
15479 	mutex_enter(SD_MUTEX(un));
15480 
15481 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15482 	    "sd_return_failed_command_no_restart: exit\n");
15483 }
15484 
15485 
15486 /*
15487  *    Function: sd_retry_command
15488  *
15489  * Description: queue up a command for retry, or (optionally) fail it
15490  *		if retry counts are exhausted.
15491  *
15492  *   Arguments: un - Pointer to the sd_lun struct for the target.
15493  *
15494  *		bp - Pointer to the buf for the command to be retried.
15495  *
15496  *		retry_check_flag - Flag to see which (if any) of the retry
15497  *		   counts should be decremented/checked. If the indicated
15498  *		   retry count is exhausted, then the command will not be
15499  *		   retried; it will be failed instead. This should use a
15500  *		   value equal to one of the following:
15501  *
15502  *			SD_RETRIES_NOCHECK
15503  *			SD_RESD_RETRIES_STANDARD
15504  *			SD_RETRIES_VICTIM
15505  *
15506  *		   Optionally may be bitwise-OR'ed with SD_RETRIES_ISOLATE
15507  *		   if the check should be made to see of FLAG_ISOLATE is set
15508  *		   in the pkt. If FLAG_ISOLATE is set, then the command is
15509  *		   not retried, it is simply failed.
15510  *
15511  *		user_funcp - Ptr to function to call before dispatching the
15512  *		   command. May be NULL if no action needs to be performed.
15513  *		   (Primarily intended for printing messages.)
15514  *
15515  *		user_arg - Optional argument to be passed along to
15516  *		   the user_funcp call.
15517  *
15518  *		failure_code - errno return code to set in the bp if the
15519  *		   command is going to be failed.
15520  *
15521  *		retry_delay - Retry delay interval in (clock_t) units. May
15522  *		   be zero which indicates that the retry should be retried
15523  *		   immediately (ie, without an intervening delay).
15524  *
15525  *		statp - Ptr to kstat function to be updated if the command
15526  *		   is queued for a delayed retry. May be NULL if no kstat
15527  *		   update is desired.
15528  *
15529  *     Context: May be called from interupt context.
15530  */
15531 
15532 static void
15533 sd_retry_command(struct sd_lun *un, struct buf *bp, int retry_check_flag,
15534 	void (*user_funcp)(struct sd_lun *un, struct buf *bp, void *argp, int
15535 	code), void *user_arg, int failure_code,  clock_t retry_delay,
15536 	void (*statp)(kstat_io_t *))
15537 {
15538 	struct sd_xbuf	*xp;
15539 	struct scsi_pkt	*pktp;
15540 
15541 	ASSERT(un != NULL);
15542 	ASSERT(mutex_owned(SD_MUTEX(un)));
15543 	ASSERT(bp != NULL);
15544 	xp = SD_GET_XBUF(bp);
15545 	ASSERT(xp != NULL);
15546 	pktp = SD_GET_PKTP(bp);
15547 	ASSERT(pktp != NULL);
15548 
15549 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
15550 	    "sd_retry_command: entry: bp:0x%p xp:0x%p\n", bp, xp);
15551 
15552 	/*
15553 	 * If we are syncing or dumping, fail the command to avoid
15554 	 * recursively calling back into scsi_transport().
15555 	 */
15556 	if (ddi_in_panic()) {
15557 		goto fail_command_no_log;
15558 	}
15559 
15560 	/*
15561 	 * We should never be be retrying a command with FLAG_DIAGNOSE set, so
15562 	 * log an error and fail the command.
15563 	 */
15564 	if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) {
15565 		scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE,
15566 		    "ERROR, retrying FLAG_DIAGNOSE command.\n");
15567 		sd_dump_memory(un, SD_LOG_IO, "CDB",
15568 		    (uchar_t *)pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX);
15569 		sd_dump_memory(un, SD_LOG_IO, "Sense Data",
15570 		    (uchar_t *)xp->xb_sense_data, SENSE_LENGTH, SD_LOG_HEX);
15571 		goto fail_command;
15572 	}
15573 
15574 	/*
15575 	 * If we are suspended, then put the command onto head of the
15576 	 * wait queue since we don't want to start more commands.
15577 	 */
15578 	switch (un->un_state) {
15579 	case SD_STATE_SUSPENDED:
15580 	case SD_STATE_DUMPING:
15581 		bp->av_forw = un->un_waitq_headp;
15582 		un->un_waitq_headp = bp;
15583 		if (un->un_waitq_tailp == NULL) {
15584 			un->un_waitq_tailp = bp;
15585 		}
15586 		SD_UPDATE_KSTATS(un, kstat_waitq_enter, bp);
15587 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: "
15588 		    "exiting; cmd bp:0x%p requeued for SUSPEND/DUMP\n", bp);
15589 		return;
15590 	default:
15591 		break;
15592 	}
15593 
15594 	/*
15595 	 * If the caller wants us to check FLAG_ISOLATE, then see if that
15596 	 * is set; if it is then we do not want to retry the command.
15597 	 * Normally, FLAG_ISOLATE is only used with USCSI cmds.
15598 	 */
15599 	if ((retry_check_flag & SD_RETRIES_ISOLATE) != 0) {
15600 		if ((pktp->pkt_flags & FLAG_ISOLATE) != 0) {
15601 			goto fail_command;
15602 		}
15603 	}
15604 
15605 
15606 	/*
15607 	 * If SD_RETRIES_FAILFAST is set, it indicates that either a
15608 	 * command timeout or a selection timeout has occurred. This means
15609 	 * that we were unable to establish an kind of communication with
15610 	 * the target, and subsequent retries and/or commands are likely
15611 	 * to encounter similar results and take a long time to complete.
15612 	 *
15613 	 * If this is a failfast error condition, we need to update the
15614 	 * failfast state, even if this bp does not have B_FAILFAST set.
15615 	 */
15616 	if (retry_check_flag & SD_RETRIES_FAILFAST) {
15617 		if (un->un_failfast_state == SD_FAILFAST_ACTIVE) {
15618 			ASSERT(un->un_failfast_bp == NULL);
15619 			/*
15620 			 * If we are already in the active failfast state, and
15621 			 * another failfast error condition has been detected,
15622 			 * then fail this command if it has B_FAILFAST set.
15623 			 * If B_FAILFAST is clear, then maintain the legacy
15624 			 * behavior of retrying heroically, even tho this will
15625 			 * take a lot more time to fail the command.
15626 			 */
15627 			if (bp->b_flags & B_FAILFAST) {
15628 				goto fail_command;
15629 			}
15630 		} else {
15631 			/*
15632 			 * We're not in the active failfast state, but we
15633 			 * have a failfast error condition, so we must begin
15634 			 * transition to the next state. We do this regardless
15635 			 * of whether or not this bp has B_FAILFAST set.
15636 			 */
15637 			if (un->un_failfast_bp == NULL) {
15638 				/*
15639 				 * This is the first bp to meet a failfast
15640 				 * condition so save it on un_failfast_bp &
15641 				 * do normal retry processing. Do not enter
15642 				 * active failfast state yet. This marks
15643 				 * entry into the "failfast pending" state.
15644 				 */
15645 				un->un_failfast_bp = bp;
15646 
15647 			} else if (un->un_failfast_bp == bp) {
15648 				/*
15649 				 * This is the second time *this* bp has
15650 				 * encountered a failfast error condition,
15651 				 * so enter active failfast state & flush
15652 				 * queues as appropriate.
15653 				 */
15654 				un->un_failfast_state = SD_FAILFAST_ACTIVE;
15655 				un->un_failfast_bp = NULL;
15656 				sd_failfast_flushq(un);
15657 
15658 				/*
15659 				 * Fail this bp now if B_FAILFAST set;
15660 				 * otherwise continue with retries. (It would
15661 				 * be pretty ironic if this bp succeeded on a
15662 				 * subsequent retry after we just flushed all
15663 				 * the queues).
15664 				 */
15665 				if (bp->b_flags & B_FAILFAST) {
15666 					goto fail_command;
15667 				}
15668 
15669 #if !defined(lint) && !defined(__lint)
15670 			} else {
15671 				/*
15672 				 * If neither of the preceeding conditionals
15673 				 * was true, it means that there is some
15674 				 * *other* bp that has met an inital failfast
15675 				 * condition and is currently either being
15676 				 * retried or is waiting to be retried. In
15677 				 * that case we should perform normal retry
15678 				 * processing on *this* bp, since there is a
15679 				 * chance that the current failfast condition
15680 				 * is transient and recoverable. If that does
15681 				 * not turn out to be the case, then retries
15682 				 * will be cleared when the wait queue is
15683 				 * flushed anyway.
15684 				 */
15685 #endif
15686 			}
15687 		}
15688 	} else {
15689 		/*
15690 		 * SD_RETRIES_FAILFAST is clear, which indicates that we
15691 		 * likely were able to at least establish some level of
15692 		 * communication with the target and subsequent commands
15693 		 * and/or retries are likely to get through to the target,
15694 		 * In this case we want to be aggressive about clearing
15695 		 * the failfast state. Note that this does not affect
15696 		 * the "failfast pending" condition.
15697 		 */
15698 		un->un_failfast_state = SD_FAILFAST_INACTIVE;
15699 	}
15700 
15701 
15702 	/*
15703 	 * Check the specified retry count to see if we can still do
15704 	 * any retries with this pkt before we should fail it.
15705 	 */
15706 	switch (retry_check_flag & SD_RETRIES_MASK) {
15707 	case SD_RETRIES_VICTIM:
15708 		/*
15709 		 * Check the victim retry count. If exhausted, then fall
15710 		 * thru & check against the standard retry count.
15711 		 */
15712 		if (xp->xb_victim_retry_count < un->un_victim_retry_count) {
15713 			/* Increment count & proceed with the retry */
15714 			xp->xb_victim_retry_count++;
15715 			break;
15716 		}
15717 		/* Victim retries exhausted, fall back to std. retries... */
15718 		/* FALLTHRU */
15719 
15720 	case SD_RETRIES_STANDARD:
15721 		if (xp->xb_retry_count >= un->un_retry_count) {
15722 			/* Retries exhausted, fail the command */
15723 			SD_TRACE(SD_LOG_IO_CORE, un,
15724 			    "sd_retry_command: retries exhausted!\n");
15725 			/*
15726 			 * update b_resid for failed SCMD_READ & SCMD_WRITE
15727 			 * commands with nonzero pkt_resid.
15728 			 */
15729 			if ((pktp->pkt_reason == CMD_CMPLT) &&
15730 			    (SD_GET_PKT_STATUS(pktp) == STATUS_GOOD) &&
15731 			    (pktp->pkt_resid != 0)) {
15732 				uchar_t op = SD_GET_PKT_OPCODE(pktp) & 0x1F;
15733 				if ((op == SCMD_READ) || (op == SCMD_WRITE)) {
15734 					SD_UPDATE_B_RESID(bp, pktp);
15735 				}
15736 			}
15737 			goto fail_command;
15738 		}
15739 		xp->xb_retry_count++;
15740 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15741 		    "sd_retry_command: retry count:%d\n", xp->xb_retry_count);
15742 		break;
15743 
15744 	case SD_RETRIES_UA:
15745 		if (xp->xb_ua_retry_count >= sd_ua_retry_count) {
15746 			/* Retries exhausted, fail the command */
15747 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
15748 			    "Unit Attention retries exhausted. "
15749 			    "Check the target.\n");
15750 			goto fail_command;
15751 		}
15752 		xp->xb_ua_retry_count++;
15753 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15754 		    "sd_retry_command: retry count:%d\n",
15755 			xp->xb_ua_retry_count);
15756 		break;
15757 
15758 	case SD_RETRIES_BUSY:
15759 		if (xp->xb_retry_count >= un->un_busy_retry_count) {
15760 			/* Retries exhausted, fail the command */
15761 			SD_TRACE(SD_LOG_IO_CORE, un,
15762 			    "sd_retry_command: retries exhausted!\n");
15763 			goto fail_command;
15764 		}
15765 		xp->xb_retry_count++;
15766 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15767 		    "sd_retry_command: retry count:%d\n", xp->xb_retry_count);
15768 		break;
15769 
15770 	case SD_RETRIES_NOCHECK:
15771 	default:
15772 		/* No retry count to check. Just proceed with the retry */
15773 		break;
15774 	}
15775 
15776 	xp->xb_pktp->pkt_flags |= FLAG_HEAD;
15777 
15778 	/*
15779 	 * If we were given a zero timeout, we must attempt to retry the
15780 	 * command immediately (ie, without a delay).
15781 	 */
15782 	if (retry_delay == 0) {
15783 		/*
15784 		 * Check some limiting conditions to see if we can actually
15785 		 * do the immediate retry.  If we cannot, then we must
15786 		 * fall back to queueing up a delayed retry.
15787 		 */
15788 		if (un->un_ncmds_in_transport >= un->un_throttle) {
15789 			/*
15790 			 * We are at the throttle limit for the target,
15791 			 * fall back to delayed retry.
15792 			 */
15793 			retry_delay = SD_BSY_TIMEOUT;
15794 			statp = kstat_waitq_enter;
15795 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15796 			    "sd_retry_command: immed. retry hit "
15797 			    "throttle!\n");
15798 		} else {
15799 			/*
15800 			 * We're clear to proceed with the immediate retry.
15801 			 * First call the user-provided function (if any)
15802 			 */
15803 			if (user_funcp != NULL) {
15804 				(*user_funcp)(un, bp, user_arg,
15805 				    SD_IMMEDIATE_RETRY_ISSUED);
15806 #ifdef __lock_lint
15807 				sd_print_incomplete_msg(un, bp, user_arg,
15808 				    SD_IMMEDIATE_RETRY_ISSUED);
15809 				sd_print_cmd_incomplete_msg(un, bp, user_arg,
15810 				    SD_IMMEDIATE_RETRY_ISSUED);
15811 				sd_print_sense_failed_msg(un, bp, user_arg,
15812 				    SD_IMMEDIATE_RETRY_ISSUED);
15813 #endif
15814 			}
15815 
15816 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15817 			    "sd_retry_command: issuing immediate retry\n");
15818 
15819 			/*
15820 			 * Call sd_start_cmds() to transport the command to
15821 			 * the target.
15822 			 */
15823 			sd_start_cmds(un, bp);
15824 
15825 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15826 			    "sd_retry_command exit\n");
15827 			return;
15828 		}
15829 	}
15830 
15831 	/*
15832 	 * Set up to retry the command after a delay.
15833 	 * First call the user-provided function (if any)
15834 	 */
15835 	if (user_funcp != NULL) {
15836 		(*user_funcp)(un, bp, user_arg, SD_DELAYED_RETRY_ISSUED);
15837 	}
15838 
15839 	sd_set_retry_bp(un, bp, retry_delay, statp);
15840 
15841 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: exit\n");
15842 	return;
15843 
15844 fail_command:
15845 
15846 	if (user_funcp != NULL) {
15847 		(*user_funcp)(un, bp, user_arg, SD_NO_RETRY_ISSUED);
15848 	}
15849 
15850 fail_command_no_log:
15851 
15852 	SD_INFO(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15853 	    "sd_retry_command: returning failed command\n");
15854 
15855 	sd_return_failed_command(un, bp, failure_code);
15856 
15857 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: exit\n");
15858 }
15859 
15860 
15861 /*
15862  *    Function: sd_set_retry_bp
15863  *
15864  * Description: Set up the given bp for retry.
15865  *
15866  *   Arguments: un - ptr to associated softstate
15867  *		bp - ptr to buf(9S) for the command
15868  *		retry_delay - time interval before issuing retry (may be 0)
15869  *		statp - optional pointer to kstat function
15870  *
15871  *     Context: May be called under interrupt context
15872  */
15873 
15874 static void
15875 sd_set_retry_bp(struct sd_lun *un, struct buf *bp, clock_t retry_delay,
15876 	void (*statp)(kstat_io_t *))
15877 {
15878 	ASSERT(un != NULL);
15879 	ASSERT(mutex_owned(SD_MUTEX(un)));
15880 	ASSERT(bp != NULL);
15881 
15882 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
15883 	    "sd_set_retry_bp: entry: un:0x%p bp:0x%p\n", un, bp);
15884 
15885 	/*
15886 	 * Indicate that the command is being retried. This will not allow any
15887 	 * other commands on the wait queue to be transported to the target
15888 	 * until this command has been completed (success or failure). The
15889 	 * "retry command" is not transported to the target until the given
15890 	 * time delay expires, unless the user specified a 0 retry_delay.
15891 	 *
15892 	 * Note: the timeout(9F) callback routine is what actually calls
15893 	 * sd_start_cmds() to transport the command, with the exception of a
15894 	 * zero retry_delay. The only current implementor of a zero retry delay
15895 	 * is the case where a START_STOP_UNIT is sent to spin-up a device.
15896 	 */
15897 	if (un->un_retry_bp == NULL) {
15898 		ASSERT(un->un_retry_statp == NULL);
15899 		un->un_retry_bp = bp;
15900 
15901 		/*
15902 		 * If the user has not specified a delay the command should
15903 		 * be queued and no timeout should be scheduled.
15904 		 */
15905 		if (retry_delay == 0) {
15906 			/*
15907 			 * Save the kstat pointer that will be used in the
15908 			 * call to SD_UPDATE_KSTATS() below, so that
15909 			 * sd_start_cmds() can correctly decrement the waitq
15910 			 * count when it is time to transport this command.
15911 			 */
15912 			un->un_retry_statp = statp;
15913 			goto done;
15914 		}
15915 	}
15916 
15917 	if (un->un_retry_bp == bp) {
15918 		/*
15919 		 * Save the kstat pointer that will be used in the call to
15920 		 * SD_UPDATE_KSTATS() below, so that sd_start_cmds() can
15921 		 * correctly decrement the waitq count when it is time to
15922 		 * transport this command.
15923 		 */
15924 		un->un_retry_statp = statp;
15925 
15926 		/*
15927 		 * Schedule a timeout if:
15928 		 *   1) The user has specified a delay.
15929 		 *   2) There is not a START_STOP_UNIT callback pending.
15930 		 *
15931 		 * If no delay has been specified, then it is up to the caller
15932 		 * to ensure that IO processing continues without stalling.
15933 		 * Effectively, this means that the caller will issue the
15934 		 * required call to sd_start_cmds(). The START_STOP_UNIT
15935 		 * callback does this after the START STOP UNIT command has
15936 		 * completed. In either of these cases we should not schedule
15937 		 * a timeout callback here.  Also don't schedule the timeout if
15938 		 * an SD_PATH_DIRECT_PRIORITY command is waiting to restart.
15939 		 */
15940 		if ((retry_delay != 0) && (un->un_startstop_timeid == NULL) &&
15941 		    (un->un_direct_priority_timeid == NULL)) {
15942 			un->un_retry_timeid =
15943 			    timeout(sd_start_retry_command, un, retry_delay);
15944 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15945 			    "sd_set_retry_bp: setting timeout: un: 0x%p"
15946 			    " bp:0x%p un_retry_timeid:0x%p\n",
15947 			    un, bp, un->un_retry_timeid);
15948 		}
15949 	} else {
15950 		/*
15951 		 * We only get in here if there is already another command
15952 		 * waiting to be retried.  In this case, we just put the
15953 		 * given command onto the wait queue, so it can be transported
15954 		 * after the current retry command has completed.
15955 		 *
15956 		 * Also we have to make sure that if the command at the head
15957 		 * of the wait queue is the un_failfast_bp, that we do not
15958 		 * put ahead of it any other commands that are to be retried.
15959 		 */
15960 		if ((un->un_failfast_bp != NULL) &&
15961 		    (un->un_failfast_bp == un->un_waitq_headp)) {
15962 			/*
15963 			 * Enqueue this command AFTER the first command on
15964 			 * the wait queue (which is also un_failfast_bp).
15965 			 */
15966 			bp->av_forw = un->un_waitq_headp->av_forw;
15967 			un->un_waitq_headp->av_forw = bp;
15968 			if (un->un_waitq_headp == un->un_waitq_tailp) {
15969 				un->un_waitq_tailp = bp;
15970 			}
15971 		} else {
15972 			/* Enqueue this command at the head of the waitq. */
15973 			bp->av_forw = un->un_waitq_headp;
15974 			un->un_waitq_headp = bp;
15975 			if (un->un_waitq_tailp == NULL) {
15976 				un->un_waitq_tailp = bp;
15977 			}
15978 		}
15979 
15980 		if (statp == NULL) {
15981 			statp = kstat_waitq_enter;
15982 		}
15983 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15984 		    "sd_set_retry_bp: un:0x%p already delayed retry\n", un);
15985 	}
15986 
15987 done:
15988 	if (statp != NULL) {
15989 		SD_UPDATE_KSTATS(un, statp, bp);
15990 	}
15991 
15992 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15993 	    "sd_set_retry_bp: exit un:0x%p\n", un);
15994 }
15995 
15996 
15997 /*
15998  *    Function: sd_start_retry_command
15999  *
16000  * Description: Start the command that has been waiting on the target's
16001  *		retry queue.  Called from timeout(9F) context after the
16002  *		retry delay interval has expired.
16003  *
16004  *   Arguments: arg - pointer to associated softstate for the device.
16005  *
16006  *     Context: timeout(9F) thread context.  May not sleep.
16007  */
16008 
16009 static void
16010 sd_start_retry_command(void *arg)
16011 {
16012 	struct sd_lun *un = arg;
16013 
16014 	ASSERT(un != NULL);
16015 	ASSERT(!mutex_owned(SD_MUTEX(un)));
16016 
16017 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16018 	    "sd_start_retry_command: entry\n");
16019 
16020 	mutex_enter(SD_MUTEX(un));
16021 
16022 	un->un_retry_timeid = NULL;
16023 
16024 	if (un->un_retry_bp != NULL) {
16025 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16026 		    "sd_start_retry_command: un:0x%p STARTING bp:0x%p\n",
16027 		    un, un->un_retry_bp);
16028 		sd_start_cmds(un, un->un_retry_bp);
16029 	}
16030 
16031 	mutex_exit(SD_MUTEX(un));
16032 
16033 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16034 	    "sd_start_retry_command: exit\n");
16035 }
16036 
16037 
16038 /*
16039  *    Function: sd_start_direct_priority_command
16040  *
16041  * Description: Used to re-start an SD_PATH_DIRECT_PRIORITY command that had
16042  *		received TRAN_BUSY when we called scsi_transport() to send it
16043  *		to the underlying HBA. This function is called from timeout(9F)
16044  *		context after the delay interval has expired.
16045  *
16046  *   Arguments: arg - pointer to associated buf(9S) to be restarted.
16047  *
16048  *     Context: timeout(9F) thread context.  May not sleep.
16049  */
16050 
16051 static void
16052 sd_start_direct_priority_command(void *arg)
16053 {
16054 	struct buf	*priority_bp = arg;
16055 	struct sd_lun	*un;
16056 
16057 	ASSERT(priority_bp != NULL);
16058 	un = SD_GET_UN(priority_bp);
16059 	ASSERT(un != NULL);
16060 	ASSERT(!mutex_owned(SD_MUTEX(un)));
16061 
16062 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16063 	    "sd_start_direct_priority_command: entry\n");
16064 
16065 	mutex_enter(SD_MUTEX(un));
16066 	un->un_direct_priority_timeid = NULL;
16067 	sd_start_cmds(un, priority_bp);
16068 	mutex_exit(SD_MUTEX(un));
16069 
16070 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16071 	    "sd_start_direct_priority_command: exit\n");
16072 }
16073 
16074 
16075 /*
16076  *    Function: sd_send_request_sense_command
16077  *
16078  * Description: Sends a REQUEST SENSE command to the target
16079  *
16080  *     Context: May be called from interrupt context.
16081  */
16082 
16083 static void
16084 sd_send_request_sense_command(struct sd_lun *un, struct buf *bp,
16085 	struct scsi_pkt *pktp)
16086 {
16087 	ASSERT(bp != NULL);
16088 	ASSERT(un != NULL);
16089 	ASSERT(mutex_owned(SD_MUTEX(un)));
16090 
16091 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_send_request_sense_command: "
16092 	    "entry: buf:0x%p\n", bp);
16093 
16094 	/*
16095 	 * If we are syncing or dumping, then fail the command to avoid a
16096 	 * recursive callback into scsi_transport(). Also fail the command
16097 	 * if we are suspended (legacy behavior).
16098 	 */
16099 	if (ddi_in_panic() || (un->un_state == SD_STATE_SUSPENDED) ||
16100 	    (un->un_state == SD_STATE_DUMPING)) {
16101 		sd_return_failed_command(un, bp, EIO);
16102 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16103 		    "sd_send_request_sense_command: syncing/dumping, exit\n");
16104 		return;
16105 	}
16106 
16107 	/*
16108 	 * Retry the failed command and don't issue the request sense if:
16109 	 *    1) the sense buf is busy
16110 	 *    2) we have 1 or more outstanding commands on the target
16111 	 *    (the sense data will be cleared or invalidated any way)
16112 	 *
16113 	 * Note: There could be an issue with not checking a retry limit here,
16114 	 * the problem is determining which retry limit to check.
16115 	 */
16116 	if ((un->un_sense_isbusy != 0) || (un->un_ncmds_in_transport > 0)) {
16117 		/* Don't retry if the command is flagged as non-retryable */
16118 		if ((pktp->pkt_flags & FLAG_DIAGNOSE) == 0) {
16119 			sd_retry_command(un, bp, SD_RETRIES_NOCHECK,
16120 			    NULL, NULL, 0, SD_BSY_TIMEOUT, kstat_waitq_enter);
16121 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16122 			    "sd_send_request_sense_command: "
16123 			    "at full throttle, retrying exit\n");
16124 		} else {
16125 			sd_return_failed_command(un, bp, EIO);
16126 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16127 			    "sd_send_request_sense_command: "
16128 			    "at full throttle, non-retryable exit\n");
16129 		}
16130 		return;
16131 	}
16132 
16133 	sd_mark_rqs_busy(un, bp);
16134 	sd_start_cmds(un, un->un_rqs_bp);
16135 
16136 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16137 	    "sd_send_request_sense_command: exit\n");
16138 }
16139 
16140 
16141 /*
16142  *    Function: sd_mark_rqs_busy
16143  *
16144  * Description: Indicate that the request sense bp for this instance is
16145  *		in use.
16146  *
16147  *     Context: May be called under interrupt context
16148  */
16149 
16150 static void
16151 sd_mark_rqs_busy(struct sd_lun *un, struct buf *bp)
16152 {
16153 	struct sd_xbuf	*sense_xp;
16154 
16155 	ASSERT(un != NULL);
16156 	ASSERT(bp != NULL);
16157 	ASSERT(mutex_owned(SD_MUTEX(un)));
16158 	ASSERT(un->un_sense_isbusy == 0);
16159 
16160 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_mark_rqs_busy: entry: "
16161 	    "buf:0x%p xp:0x%p un:0x%p\n", bp, SD_GET_XBUF(bp), un);
16162 
16163 	sense_xp = SD_GET_XBUF(un->un_rqs_bp);
16164 	ASSERT(sense_xp != NULL);
16165 
16166 	SD_INFO(SD_LOG_IO, un,
16167 	    "sd_mark_rqs_busy: entry: sense_xp:0x%p\n", sense_xp);
16168 
16169 	ASSERT(sense_xp->xb_pktp != NULL);
16170 	ASSERT((sense_xp->xb_pktp->pkt_flags & (FLAG_SENSING | FLAG_HEAD))
16171 	    == (FLAG_SENSING | FLAG_HEAD));
16172 
16173 	un->un_sense_isbusy = 1;
16174 	un->un_rqs_bp->b_resid = 0;
16175 	sense_xp->xb_pktp->pkt_resid  = 0;
16176 	sense_xp->xb_pktp->pkt_reason = 0;
16177 
16178 	/* So we can get back the bp at interrupt time! */
16179 	sense_xp->xb_sense_bp = bp;
16180 
16181 	bzero(un->un_rqs_bp->b_un.b_addr, SENSE_LENGTH);
16182 
16183 	/*
16184 	 * Mark this buf as awaiting sense data. (This is already set in
16185 	 * the pkt_flags for the RQS packet.)
16186 	 */
16187 	((SD_GET_XBUF(bp))->xb_pktp)->pkt_flags |= FLAG_SENSING;
16188 
16189 	sense_xp->xb_retry_count	= 0;
16190 	sense_xp->xb_victim_retry_count = 0;
16191 	sense_xp->xb_ua_retry_count	= 0;
16192 	sense_xp->xb_dma_resid  = 0;
16193 
16194 	/* Clean up the fields for auto-request sense */
16195 	sense_xp->xb_sense_status = 0;
16196 	sense_xp->xb_sense_state  = 0;
16197 	sense_xp->xb_sense_resid  = 0;
16198 	bzero(sense_xp->xb_sense_data, sizeof (sense_xp->xb_sense_data));
16199 
16200 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_mark_rqs_busy: exit\n");
16201 }
16202 
16203 
16204 /*
16205  *    Function: sd_mark_rqs_idle
16206  *
16207  * Description: SD_MUTEX must be held continuously through this routine
16208  *		to prevent reuse of the rqs struct before the caller can
16209  *		complete it's processing.
16210  *
16211  * Return Code: Pointer to the RQS buf
16212  *
16213  *     Context: May be called under interrupt context
16214  */
16215 
16216 static struct buf *
16217 sd_mark_rqs_idle(struct sd_lun *un, struct sd_xbuf *sense_xp)
16218 {
16219 	struct buf *bp;
16220 	ASSERT(un != NULL);
16221 	ASSERT(sense_xp != NULL);
16222 	ASSERT(mutex_owned(SD_MUTEX(un)));
16223 	ASSERT(un->un_sense_isbusy != 0);
16224 
16225 	un->un_sense_isbusy = 0;
16226 	bp = sense_xp->xb_sense_bp;
16227 	sense_xp->xb_sense_bp = NULL;
16228 
16229 	/* This pkt is no longer interested in getting sense data */
16230 	((SD_GET_XBUF(bp))->xb_pktp)->pkt_flags &= ~FLAG_SENSING;
16231 
16232 	return (bp);
16233 }
16234 
16235 
16236 
16237 /*
16238  *    Function: sd_alloc_rqs
16239  *
16240  * Description: Set up the unit to receive auto request sense data
16241  *
16242  * Return Code: DDI_SUCCESS or DDI_FAILURE
16243  *
16244  *     Context: Called under attach(9E) context
16245  */
16246 
16247 static int
16248 sd_alloc_rqs(struct scsi_device *devp, struct sd_lun *un)
16249 {
16250 	struct sd_xbuf *xp;
16251 
16252 	ASSERT(un != NULL);
16253 	ASSERT(!mutex_owned(SD_MUTEX(un)));
16254 	ASSERT(un->un_rqs_bp == NULL);
16255 	ASSERT(un->un_rqs_pktp == NULL);
16256 
16257 	/*
16258 	 * First allocate the required buf and scsi_pkt structs, then set up
16259 	 * the CDB in the scsi_pkt for a REQUEST SENSE command.
16260 	 */
16261 	un->un_rqs_bp = scsi_alloc_consistent_buf(&devp->sd_address, NULL,
16262 	    SENSE_LENGTH, B_READ, SLEEP_FUNC, NULL);
16263 	if (un->un_rqs_bp == NULL) {
16264 		return (DDI_FAILURE);
16265 	}
16266 
16267 	un->un_rqs_pktp = scsi_init_pkt(&devp->sd_address, NULL, un->un_rqs_bp,
16268 	    CDB_GROUP0, 1, 0, PKT_CONSISTENT, SLEEP_FUNC, NULL);
16269 
16270 	if (un->un_rqs_pktp == NULL) {
16271 		sd_free_rqs(un);
16272 		return (DDI_FAILURE);
16273 	}
16274 
16275 	/* Set up the CDB in the scsi_pkt for a REQUEST SENSE command. */
16276 	(void) scsi_setup_cdb((union scsi_cdb *)un->un_rqs_pktp->pkt_cdbp,
16277 	    SCMD_REQUEST_SENSE, 0, SENSE_LENGTH, 0);
16278 
16279 	SD_FILL_SCSI1_LUN(un, un->un_rqs_pktp);
16280 
16281 	/* Set up the other needed members in the ARQ scsi_pkt. */
16282 	un->un_rqs_pktp->pkt_comp   = sdintr;
16283 	un->un_rqs_pktp->pkt_time   = sd_io_time;
16284 	un->un_rqs_pktp->pkt_flags |=
16285 	    (FLAG_SENSING | FLAG_HEAD);	/* (1222170) */
16286 
16287 	/*
16288 	 * Allocate  & init the sd_xbuf struct for the RQS command. Do not
16289 	 * provide any intpkt, destroypkt routines as we take care of
16290 	 * scsi_pkt allocation/freeing here and in sd_free_rqs().
16291 	 */
16292 	xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
16293 	sd_xbuf_init(un, un->un_rqs_bp, xp, SD_CHAIN_NULL, NULL);
16294 	xp->xb_pktp = un->un_rqs_pktp;
16295 	SD_INFO(SD_LOG_ATTACH_DETACH, un,
16296 	    "sd_alloc_rqs: un 0x%p, rqs  xp 0x%p,  pkt 0x%p,  buf 0x%p\n",
16297 	    un, xp, un->un_rqs_pktp, un->un_rqs_bp);
16298 
16299 	/*
16300 	 * Save the pointer to the request sense private bp so it can
16301 	 * be retrieved in sdintr.
16302 	 */
16303 	un->un_rqs_pktp->pkt_private = un->un_rqs_bp;
16304 	ASSERT(un->un_rqs_bp->b_private == xp);
16305 
16306 	/*
16307 	 * See if the HBA supports auto-request sense for the specified
16308 	 * target/lun. If it does, then try to enable it (if not already
16309 	 * enabled).
16310 	 *
16311 	 * Note: For some HBAs (ifp & sf), scsi_ifsetcap will always return
16312 	 * failure, while for other HBAs (pln) scsi_ifsetcap will always
16313 	 * return success.  However, in both of these cases ARQ is always
16314 	 * enabled and scsi_ifgetcap will always return true. The best approach
16315 	 * is to issue the scsi_ifgetcap() first, then try the scsi_ifsetcap().
16316 	 *
16317 	 * The 3rd case is the HBA (adp) always return enabled on
16318 	 * scsi_ifgetgetcap even when it's not enable, the best approach
16319 	 * is issue a scsi_ifsetcap then a scsi_ifgetcap
16320 	 * Note: this case is to circumvent the Adaptec bug. (x86 only)
16321 	 */
16322 
16323 	if (un->un_f_is_fibre == TRUE) {
16324 		un->un_f_arq_enabled = TRUE;
16325 	} else {
16326 #if defined(__i386) || defined(__amd64)
16327 		/*
16328 		 * Circumvent the Adaptec bug, remove this code when
16329 		 * the bug is fixed
16330 		 */
16331 		(void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 1, 1);
16332 #endif
16333 		switch (scsi_ifgetcap(SD_ADDRESS(un), "auto-rqsense", 1)) {
16334 		case 0:
16335 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
16336 				"sd_alloc_rqs: HBA supports ARQ\n");
16337 			/*
16338 			 * ARQ is supported by this HBA but currently is not
16339 			 * enabled. Attempt to enable it and if successful then
16340 			 * mark this instance as ARQ enabled.
16341 			 */
16342 			if (scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 1, 1)
16343 				== 1) {
16344 				/* Successfully enabled ARQ in the HBA */
16345 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
16346 					"sd_alloc_rqs: ARQ enabled\n");
16347 				un->un_f_arq_enabled = TRUE;
16348 			} else {
16349 				/* Could not enable ARQ in the HBA */
16350 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
16351 				"sd_alloc_rqs: failed ARQ enable\n");
16352 				un->un_f_arq_enabled = FALSE;
16353 			}
16354 			break;
16355 		case 1:
16356 			/*
16357 			 * ARQ is supported by this HBA and is already enabled.
16358 			 * Just mark ARQ as enabled for this instance.
16359 			 */
16360 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
16361 				"sd_alloc_rqs: ARQ already enabled\n");
16362 			un->un_f_arq_enabled = TRUE;
16363 			break;
16364 		default:
16365 			/*
16366 			 * ARQ is not supported by this HBA; disable it for this
16367 			 * instance.
16368 			 */
16369 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
16370 				"sd_alloc_rqs: HBA does not support ARQ\n");
16371 			un->un_f_arq_enabled = FALSE;
16372 			break;
16373 		}
16374 	}
16375 
16376 	return (DDI_SUCCESS);
16377 }
16378 
16379 
16380 /*
16381  *    Function: sd_free_rqs
16382  *
16383  * Description: Cleanup for the pre-instance RQS command.
16384  *
16385  *     Context: Kernel thread context
16386  */
16387 
16388 static void
16389 sd_free_rqs(struct sd_lun *un)
16390 {
16391 	ASSERT(un != NULL);
16392 
16393 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_free_rqs: entry\n");
16394 
16395 	/*
16396 	 * If consistent memory is bound to a scsi_pkt, the pkt
16397 	 * has to be destroyed *before* freeing the consistent memory.
16398 	 * Don't change the sequence of this operations.
16399 	 * scsi_destroy_pkt() might access memory, which isn't allowed,
16400 	 * after it was freed in scsi_free_consistent_buf().
16401 	 */
16402 	if (un->un_rqs_pktp != NULL) {
16403 		scsi_destroy_pkt(un->un_rqs_pktp);
16404 		un->un_rqs_pktp = NULL;
16405 	}
16406 
16407 	if (un->un_rqs_bp != NULL) {
16408 		kmem_free(SD_GET_XBUF(un->un_rqs_bp), sizeof (struct sd_xbuf));
16409 		scsi_free_consistent_buf(un->un_rqs_bp);
16410 		un->un_rqs_bp = NULL;
16411 	}
16412 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_free_rqs: exit\n");
16413 }
16414 
16415 
16416 
16417 /*
16418  *    Function: sd_reduce_throttle
16419  *
16420  * Description: Reduces the maximun # of outstanding commands on a
16421  *		target to the current number of outstanding commands.
16422  *		Queues a tiemout(9F) callback to restore the limit
16423  *		after a specified interval has elapsed.
16424  *		Typically used when we get a TRAN_BUSY return code
16425  *		back from scsi_transport().
16426  *
16427  *   Arguments: un - ptr to the sd_lun softstate struct
16428  *		throttle_type: SD_THROTTLE_TRAN_BUSY or SD_THROTTLE_QFULL
16429  *
16430  *     Context: May be called from interrupt context
16431  */
16432 
16433 static void
16434 sd_reduce_throttle(struct sd_lun *un, int throttle_type)
16435 {
16436 	ASSERT(un != NULL);
16437 	ASSERT(mutex_owned(SD_MUTEX(un)));
16438 	ASSERT(un->un_ncmds_in_transport >= 0);
16439 
16440 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reduce_throttle: "
16441 	    "entry: un:0x%p un_throttle:%d un_ncmds_in_transport:%d\n",
16442 	    un, un->un_throttle, un->un_ncmds_in_transport);
16443 
16444 	if (un->un_throttle > 1) {
16445 		if (un->un_f_use_adaptive_throttle == TRUE) {
16446 			switch (throttle_type) {
16447 			case SD_THROTTLE_TRAN_BUSY:
16448 				if (un->un_busy_throttle == 0) {
16449 					un->un_busy_throttle = un->un_throttle;
16450 				}
16451 				break;
16452 			case SD_THROTTLE_QFULL:
16453 				un->un_busy_throttle = 0;
16454 				break;
16455 			default:
16456 				ASSERT(FALSE);
16457 			}
16458 
16459 			if (un->un_ncmds_in_transport > 0) {
16460 			    un->un_throttle = un->un_ncmds_in_transport;
16461 			}
16462 
16463 		} else {
16464 			if (un->un_ncmds_in_transport == 0) {
16465 				un->un_throttle = 1;
16466 			} else {
16467 				un->un_throttle = un->un_ncmds_in_transport;
16468 			}
16469 		}
16470 	}
16471 
16472 	/* Reschedule the timeout if none is currently active */
16473 	if (un->un_reset_throttle_timeid == NULL) {
16474 		un->un_reset_throttle_timeid = timeout(sd_restore_throttle,
16475 		    un, SD_THROTTLE_RESET_INTERVAL);
16476 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16477 		    "sd_reduce_throttle: timeout scheduled!\n");
16478 	}
16479 
16480 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reduce_throttle: "
16481 	    "exit: un:0x%p un_throttle:%d\n", un, un->un_throttle);
16482 }
16483 
16484 
16485 
16486 /*
16487  *    Function: sd_restore_throttle
16488  *
16489  * Description: Callback function for timeout(9F).  Resets the current
16490  *		value of un->un_throttle to its default.
16491  *
16492  *   Arguments: arg - pointer to associated softstate for the device.
16493  *
16494  *     Context: May be called from interrupt context
16495  */
16496 
16497 static void
16498 sd_restore_throttle(void *arg)
16499 {
16500 	struct sd_lun	*un = arg;
16501 
16502 	ASSERT(un != NULL);
16503 	ASSERT(!mutex_owned(SD_MUTEX(un)));
16504 
16505 	mutex_enter(SD_MUTEX(un));
16506 
16507 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: "
16508 	    "entry: un:0x%p un_throttle:%d\n", un, un->un_throttle);
16509 
16510 	un->un_reset_throttle_timeid = NULL;
16511 
16512 	if (un->un_f_use_adaptive_throttle == TRUE) {
16513 		/*
16514 		 * If un_busy_throttle is nonzero, then it contains the
16515 		 * value that un_throttle was when we got a TRAN_BUSY back
16516 		 * from scsi_transport(). We want to revert back to this
16517 		 * value.
16518 		 *
16519 		 * In the QFULL case, the throttle limit will incrementally
16520 		 * increase until it reaches max throttle.
16521 		 */
16522 		if (un->un_busy_throttle > 0) {
16523 			un->un_throttle = un->un_busy_throttle;
16524 			un->un_busy_throttle = 0;
16525 		} else {
16526 			/*
16527 			 * increase throttle by 10% open gate slowly, schedule
16528 			 * another restore if saved throttle has not been
16529 			 * reached
16530 			 */
16531 			short throttle;
16532 			if (sd_qfull_throttle_enable) {
16533 				throttle = un->un_throttle +
16534 				    max((un->un_throttle / 10), 1);
16535 				un->un_throttle =
16536 				    (throttle < un->un_saved_throttle) ?
16537 				    throttle : un->un_saved_throttle;
16538 				if (un->un_throttle < un->un_saved_throttle) {
16539 				    un->un_reset_throttle_timeid =
16540 					timeout(sd_restore_throttle,
16541 					un, SD_QFULL_THROTTLE_RESET_INTERVAL);
16542 				}
16543 			}
16544 		}
16545 
16546 		/*
16547 		 * If un_throttle has fallen below the low-water mark, we
16548 		 * restore the maximum value here (and allow it to ratchet
16549 		 * down again if necessary).
16550 		 */
16551 		if (un->un_throttle < un->un_min_throttle) {
16552 			un->un_throttle = un->un_saved_throttle;
16553 		}
16554 	} else {
16555 		SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: "
16556 		    "restoring limit from 0x%x to 0x%x\n",
16557 		    un->un_throttle, un->un_saved_throttle);
16558 		un->un_throttle = un->un_saved_throttle;
16559 	}
16560 
16561 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
16562 	    "sd_restore_throttle: calling sd_start_cmds!\n");
16563 
16564 	sd_start_cmds(un, NULL);
16565 
16566 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
16567 	    "sd_restore_throttle: exit: un:0x%p un_throttle:%d\n",
16568 	    un, un->un_throttle);
16569 
16570 	mutex_exit(SD_MUTEX(un));
16571 
16572 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: exit\n");
16573 }
16574 
16575 /*
16576  *    Function: sdrunout
16577  *
16578  * Description: Callback routine for scsi_init_pkt when a resource allocation
16579  *		fails.
16580  *
16581  *   Arguments: arg - a pointer to the sd_lun unit struct for the particular
16582  *		soft state instance.
16583  *
16584  * Return Code: The scsi_init_pkt routine allows for the callback function to
16585  *		return a 0 indicating the callback should be rescheduled or a 1
16586  *		indicating not to reschedule. This routine always returns 1
16587  *		because the driver always provides a callback function to
16588  *		scsi_init_pkt. This results in a callback always being scheduled
16589  *		(via the scsi_init_pkt callback implementation) if a resource
16590  *		failure occurs.
16591  *
16592  *     Context: This callback function may not block or call routines that block
16593  *
16594  *        Note: Using the scsi_init_pkt callback facility can result in an I/O
16595  *		request persisting at the head of the list which cannot be
16596  *		satisfied even after multiple retries. In the future the driver
16597  *		may implement some time of maximum runout count before failing
16598  *		an I/O.
16599  */
16600 
16601 static int
16602 sdrunout(caddr_t arg)
16603 {
16604 	struct sd_lun	*un = (struct sd_lun *)arg;
16605 
16606 	ASSERT(un != NULL);
16607 	ASSERT(!mutex_owned(SD_MUTEX(un)));
16608 
16609 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdrunout: entry\n");
16610 
16611 	mutex_enter(SD_MUTEX(un));
16612 	sd_start_cmds(un, NULL);
16613 	mutex_exit(SD_MUTEX(un));
16614 	/*
16615 	 * This callback routine always returns 1 (i.e. do not reschedule)
16616 	 * because we always specify sdrunout as the callback handler for
16617 	 * scsi_init_pkt inside the call to sd_start_cmds.
16618 	 */
16619 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdrunout: exit\n");
16620 	return (1);
16621 }
16622 
16623 
16624 /*
16625  *    Function: sdintr
16626  *
16627  * Description: Completion callback routine for scsi_pkt(9S) structs
16628  *		sent to the HBA driver via scsi_transport(9F).
16629  *
16630  *     Context: Interrupt context
16631  */
16632 
16633 static void
16634 sdintr(struct scsi_pkt *pktp)
16635 {
16636 	struct buf	*bp;
16637 	struct sd_xbuf	*xp;
16638 	struct sd_lun	*un;
16639 
16640 	ASSERT(pktp != NULL);
16641 	bp = (struct buf *)pktp->pkt_private;
16642 	ASSERT(bp != NULL);
16643 	xp = SD_GET_XBUF(bp);
16644 	ASSERT(xp != NULL);
16645 	ASSERT(xp->xb_pktp != NULL);
16646 	un = SD_GET_UN(bp);
16647 	ASSERT(un != NULL);
16648 	ASSERT(!mutex_owned(SD_MUTEX(un)));
16649 
16650 #ifdef SD_FAULT_INJECTION
16651 
16652 	SD_INFO(SD_LOG_IOERR, un, "sdintr: sdintr calling Fault injection\n");
16653 	/* SD FaultInjection */
16654 	sd_faultinjection(pktp);
16655 
16656 #endif /* SD_FAULT_INJECTION */
16657 
16658 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdintr: entry: buf:0x%p,"
16659 	    " xp:0x%p, un:0x%p\n", bp, xp, un);
16660 
16661 	mutex_enter(SD_MUTEX(un));
16662 
16663 	/* Reduce the count of the #commands currently in transport */
16664 	un->un_ncmds_in_transport--;
16665 	ASSERT(un->un_ncmds_in_transport >= 0);
16666 
16667 	/* Increment counter to indicate that the callback routine is active */
16668 	un->un_in_callback++;
16669 
16670 	SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
16671 
16672 #ifdef	SDDEBUG
16673 	if (bp == un->un_retry_bp) {
16674 		SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sdintr: "
16675 		    "un:0x%p: GOT retry_bp:0x%p un_ncmds_in_transport:%d\n",
16676 		    un, un->un_retry_bp, un->un_ncmds_in_transport);
16677 	}
16678 #endif
16679 
16680 	/*
16681 	 * If pkt_reason is CMD_DEV_GONE, just fail the command
16682 	 */
16683 	if (pktp->pkt_reason == CMD_DEV_GONE) {
16684 		scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
16685 			    "Device is gone\n");
16686 		sd_return_failed_command(un, bp, EIO);
16687 		goto exit;
16688 	}
16689 
16690 	/*
16691 	 * First see if the pkt has auto-request sense data with it....
16692 	 * Look at the packet state first so we don't take a performance
16693 	 * hit looking at the arq enabled flag unless absolutely necessary.
16694 	 */
16695 	if ((pktp->pkt_state & STATE_ARQ_DONE) &&
16696 	    (un->un_f_arq_enabled == TRUE)) {
16697 		/*
16698 		 * The HBA did an auto request sense for this command so check
16699 		 * for FLAG_DIAGNOSE. If set this indicates a uscsi or internal
16700 		 * driver command that should not be retried.
16701 		 */
16702 		if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) {
16703 			/*
16704 			 * Save the relevant sense info into the xp for the
16705 			 * original cmd.
16706 			 */
16707 			struct scsi_arq_status *asp;
16708 			asp = (struct scsi_arq_status *)(pktp->pkt_scbp);
16709 			xp->xb_sense_status =
16710 			    *((uchar_t *)(&(asp->sts_rqpkt_status)));
16711 			xp->xb_sense_state  = asp->sts_rqpkt_state;
16712 			xp->xb_sense_resid  = asp->sts_rqpkt_resid;
16713 			bcopy(&asp->sts_sensedata, xp->xb_sense_data,
16714 			    min(sizeof (struct scsi_extended_sense),
16715 			    SENSE_LENGTH));
16716 
16717 			/* fail the command */
16718 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16719 			    "sdintr: arq done and FLAG_DIAGNOSE set\n");
16720 			sd_return_failed_command(un, bp, EIO);
16721 			goto exit;
16722 		}
16723 
16724 #if (defined(__i386) || defined(__amd64))	/* DMAFREE for x86 only */
16725 		/*
16726 		 * We want to either retry or fail this command, so free
16727 		 * the DMA resources here.  If we retry the command then
16728 		 * the DMA resources will be reallocated in sd_start_cmds().
16729 		 * Note that when PKT_DMA_PARTIAL is used, this reallocation
16730 		 * causes the *entire* transfer to start over again from the
16731 		 * beginning of the request, even for PARTIAL chunks that
16732 		 * have already transferred successfully.
16733 		 */
16734 		if ((un->un_f_is_fibre == TRUE) &&
16735 		    ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) &&
16736 		    ((pktp->pkt_flags & FLAG_SENSING) == 0))  {
16737 			scsi_dmafree(pktp);
16738 			xp->xb_pkt_flags |= SD_XB_DMA_FREED;
16739 		}
16740 #endif
16741 
16742 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16743 		    "sdintr: arq done, sd_handle_auto_request_sense\n");
16744 
16745 		sd_handle_auto_request_sense(un, bp, xp, pktp);
16746 		goto exit;
16747 	}
16748 
16749 	/* Next see if this is the REQUEST SENSE pkt for the instance */
16750 	if (pktp->pkt_flags & FLAG_SENSING)  {
16751 		/* This pktp is from the unit's REQUEST_SENSE command */
16752 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16753 		    "sdintr: sd_handle_request_sense\n");
16754 		sd_handle_request_sense(un, bp, xp, pktp);
16755 		goto exit;
16756 	}
16757 
16758 	/*
16759 	 * Check to see if the command successfully completed as requested;
16760 	 * this is the most common case (and also the hot performance path).
16761 	 *
16762 	 * Requirements for successful completion are:
16763 	 * pkt_reason is CMD_CMPLT and packet status is status good.
16764 	 * In addition:
16765 	 * - A residual of zero indicates successful completion no matter what
16766 	 *   the command is.
16767 	 * - If the residual is not zero and the command is not a read or
16768 	 *   write, then it's still defined as successful completion. In other
16769 	 *   words, if the command is a read or write the residual must be
16770 	 *   zero for successful completion.
16771 	 * - If the residual is not zero and the command is a read or
16772 	 *   write, and it's a USCSICMD, then it's still defined as
16773 	 *   successful completion.
16774 	 */
16775 	if ((pktp->pkt_reason == CMD_CMPLT) &&
16776 	    (SD_GET_PKT_STATUS(pktp) == STATUS_GOOD)) {
16777 
16778 		/*
16779 		 * Since this command is returned with a good status, we
16780 		 * can reset the count for Sonoma failover.
16781 		 */
16782 		un->un_sonoma_failure_count = 0;
16783 
16784 		/*
16785 		 * Return all USCSI commands on good status
16786 		 */
16787 		if (pktp->pkt_resid == 0) {
16788 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16789 			    "sdintr: returning command for resid == 0\n");
16790 		} else if (((SD_GET_PKT_OPCODE(pktp) & 0x1F) != SCMD_READ) &&
16791 		    ((SD_GET_PKT_OPCODE(pktp) & 0x1F) != SCMD_WRITE)) {
16792 			SD_UPDATE_B_RESID(bp, pktp);
16793 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16794 			    "sdintr: returning command for resid != 0\n");
16795 		} else if (xp->xb_pkt_flags & SD_XB_USCSICMD) {
16796 			SD_UPDATE_B_RESID(bp, pktp);
16797 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16798 				"sdintr: returning uscsi command\n");
16799 		} else {
16800 			goto not_successful;
16801 		}
16802 		sd_return_command(un, bp);
16803 
16804 		/*
16805 		 * Decrement counter to indicate that the callback routine
16806 		 * is done.
16807 		 */
16808 		un->un_in_callback--;
16809 		ASSERT(un->un_in_callback >= 0);
16810 		mutex_exit(SD_MUTEX(un));
16811 
16812 		return;
16813 	}
16814 
16815 not_successful:
16816 
16817 #if (defined(__i386) || defined(__amd64))	/* DMAFREE for x86 only */
16818 	/*
16819 	 * The following is based upon knowledge of the underlying transport
16820 	 * and its use of DMA resources.  This code should be removed when
16821 	 * PKT_DMA_PARTIAL support is taken out of the disk driver in favor
16822 	 * of the new PKT_CMD_BREAKUP protocol. See also sd_initpkt_for_buf()
16823 	 * and sd_start_cmds().
16824 	 *
16825 	 * Free any DMA resources associated with this command if there
16826 	 * is a chance it could be retried or enqueued for later retry.
16827 	 * If we keep the DMA binding then mpxio cannot reissue the
16828 	 * command on another path whenever a path failure occurs.
16829 	 *
16830 	 * Note that when PKT_DMA_PARTIAL is used, free/reallocation
16831 	 * causes the *entire* transfer to start over again from the
16832 	 * beginning of the request, even for PARTIAL chunks that
16833 	 * have already transferred successfully.
16834 	 *
16835 	 * This is only done for non-uscsi commands (and also skipped for the
16836 	 * driver's internal RQS command). Also just do this for Fibre Channel
16837 	 * devices as these are the only ones that support mpxio.
16838 	 */
16839 	if ((un->un_f_is_fibre == TRUE) &&
16840 	    ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) &&
16841 	    ((pktp->pkt_flags & FLAG_SENSING) == 0))  {
16842 		scsi_dmafree(pktp);
16843 		xp->xb_pkt_flags |= SD_XB_DMA_FREED;
16844 	}
16845 #endif
16846 
16847 	/*
16848 	 * The command did not successfully complete as requested so check
16849 	 * for FLAG_DIAGNOSE. If set this indicates a uscsi or internal
16850 	 * driver command that should not be retried so just return. If
16851 	 * FLAG_DIAGNOSE is not set the error will be processed below.
16852 	 */
16853 	if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) {
16854 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16855 		    "sdintr: FLAG_DIAGNOSE: sd_return_failed_command\n");
16856 		/*
16857 		 * Issue a request sense if a check condition caused the error
16858 		 * (we handle the auto request sense case above), otherwise
16859 		 * just fail the command.
16860 		 */
16861 		if ((pktp->pkt_reason == CMD_CMPLT) &&
16862 		    (SD_GET_PKT_STATUS(pktp) == STATUS_CHECK)) {
16863 			sd_send_request_sense_command(un, bp, pktp);
16864 		} else {
16865 			sd_return_failed_command(un, bp, EIO);
16866 		}
16867 		goto exit;
16868 	}
16869 
16870 	/*
16871 	 * The command did not successfully complete as requested so process
16872 	 * the error, retry, and/or attempt recovery.
16873 	 */
16874 	switch (pktp->pkt_reason) {
16875 	case CMD_CMPLT:
16876 		switch (SD_GET_PKT_STATUS(pktp)) {
16877 		case STATUS_GOOD:
16878 			/*
16879 			 * The command completed successfully with a non-zero
16880 			 * residual
16881 			 */
16882 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16883 			    "sdintr: STATUS_GOOD \n");
16884 			sd_pkt_status_good(un, bp, xp, pktp);
16885 			break;
16886 
16887 		case STATUS_CHECK:
16888 		case STATUS_TERMINATED:
16889 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16890 			    "sdintr: STATUS_TERMINATED | STATUS_CHECK\n");
16891 			sd_pkt_status_check_condition(un, bp, xp, pktp);
16892 			break;
16893 
16894 		case STATUS_BUSY:
16895 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16896 			    "sdintr: STATUS_BUSY\n");
16897 			sd_pkt_status_busy(un, bp, xp, pktp);
16898 			break;
16899 
16900 		case STATUS_RESERVATION_CONFLICT:
16901 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16902 			    "sdintr: STATUS_RESERVATION_CONFLICT\n");
16903 			sd_pkt_status_reservation_conflict(un, bp, xp, pktp);
16904 			break;
16905 
16906 		case STATUS_QFULL:
16907 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16908 			    "sdintr: STATUS_QFULL\n");
16909 			sd_pkt_status_qfull(un, bp, xp, pktp);
16910 			break;
16911 
16912 		case STATUS_MET:
16913 		case STATUS_INTERMEDIATE:
16914 		case STATUS_SCSI2:
16915 		case STATUS_INTERMEDIATE_MET:
16916 		case STATUS_ACA_ACTIVE:
16917 			scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
16918 			    "Unexpected SCSI status received: 0x%x\n",
16919 			    SD_GET_PKT_STATUS(pktp));
16920 			sd_return_failed_command(un, bp, EIO);
16921 			break;
16922 
16923 		default:
16924 			scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
16925 			    "Invalid SCSI status received: 0x%x\n",
16926 			    SD_GET_PKT_STATUS(pktp));
16927 			sd_return_failed_command(un, bp, EIO);
16928 			break;
16929 
16930 		}
16931 		break;
16932 
16933 	case CMD_INCOMPLETE:
16934 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16935 		    "sdintr:  CMD_INCOMPLETE\n");
16936 		sd_pkt_reason_cmd_incomplete(un, bp, xp, pktp);
16937 		break;
16938 	case CMD_TRAN_ERR:
16939 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16940 		    "sdintr: CMD_TRAN_ERR\n");
16941 		sd_pkt_reason_cmd_tran_err(un, bp, xp, pktp);
16942 		break;
16943 	case CMD_RESET:
16944 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16945 		    "sdintr: CMD_RESET \n");
16946 		sd_pkt_reason_cmd_reset(un, bp, xp, pktp);
16947 		break;
16948 	case CMD_ABORTED:
16949 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16950 		    "sdintr: CMD_ABORTED \n");
16951 		sd_pkt_reason_cmd_aborted(un, bp, xp, pktp);
16952 		break;
16953 	case CMD_TIMEOUT:
16954 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16955 		    "sdintr: CMD_TIMEOUT\n");
16956 		sd_pkt_reason_cmd_timeout(un, bp, xp, pktp);
16957 		break;
16958 	case CMD_UNX_BUS_FREE:
16959 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16960 		    "sdintr: CMD_UNX_BUS_FREE \n");
16961 		sd_pkt_reason_cmd_unx_bus_free(un, bp, xp, pktp);
16962 		break;
16963 	case CMD_TAG_REJECT:
16964 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16965 		    "sdintr: CMD_TAG_REJECT\n");
16966 		sd_pkt_reason_cmd_tag_reject(un, bp, xp, pktp);
16967 		break;
16968 	default:
16969 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16970 		    "sdintr: default\n");
16971 		sd_pkt_reason_default(un, bp, xp, pktp);
16972 		break;
16973 	}
16974 
16975 exit:
16976 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdintr: exit\n");
16977 
16978 	/* Decrement counter to indicate that the callback routine is done. */
16979 	un->un_in_callback--;
16980 	ASSERT(un->un_in_callback >= 0);
16981 
16982 	/*
16983 	 * At this point, the pkt has been dispatched, ie, it is either
16984 	 * being re-tried or has been returned to its caller and should
16985 	 * not be referenced.
16986 	 */
16987 
16988 	mutex_exit(SD_MUTEX(un));
16989 }
16990 
16991 
16992 /*
16993  *    Function: sd_print_incomplete_msg
16994  *
16995  * Description: Prints the error message for a CMD_INCOMPLETE error.
16996  *
16997  *   Arguments: un - ptr to associated softstate for the device.
16998  *		bp - ptr to the buf(9S) for the command.
16999  *		arg - message string ptr
17000  *		code - SD_DELAYED_RETRY_ISSUED, SD_IMMEDIATE_RETRY_ISSUED,
17001  *			or SD_NO_RETRY_ISSUED.
17002  *
17003  *     Context: May be called under interrupt context
17004  */
17005 
17006 static void
17007 sd_print_incomplete_msg(struct sd_lun *un, struct buf *bp, void *arg, int code)
17008 {
17009 	struct scsi_pkt	*pktp;
17010 	char	*msgp;
17011 	char	*cmdp = arg;
17012 
17013 	ASSERT(un != NULL);
17014 	ASSERT(mutex_owned(SD_MUTEX(un)));
17015 	ASSERT(bp != NULL);
17016 	ASSERT(arg != NULL);
17017 	pktp = SD_GET_PKTP(bp);
17018 	ASSERT(pktp != NULL);
17019 
17020 	switch (code) {
17021 	case SD_DELAYED_RETRY_ISSUED:
17022 	case SD_IMMEDIATE_RETRY_ISSUED:
17023 		msgp = "retrying";
17024 		break;
17025 	case SD_NO_RETRY_ISSUED:
17026 	default:
17027 		msgp = "giving up";
17028 		break;
17029 	}
17030 
17031 	if ((pktp->pkt_flags & FLAG_SILENT) == 0) {
17032 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17033 		    "incomplete %s- %s\n", cmdp, msgp);
17034 	}
17035 }
17036 
17037 
17038 
17039 /*
17040  *    Function: sd_pkt_status_good
17041  *
17042  * Description: Processing for a STATUS_GOOD code in pkt_status.
17043  *
17044  *     Context: May be called under interrupt context
17045  */
17046 
17047 static void
17048 sd_pkt_status_good(struct sd_lun *un, struct buf *bp,
17049 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17050 {
17051 	char	*cmdp;
17052 
17053 	ASSERT(un != NULL);
17054 	ASSERT(mutex_owned(SD_MUTEX(un)));
17055 	ASSERT(bp != NULL);
17056 	ASSERT(xp != NULL);
17057 	ASSERT(pktp != NULL);
17058 	ASSERT(pktp->pkt_reason == CMD_CMPLT);
17059 	ASSERT(SD_GET_PKT_STATUS(pktp) == STATUS_GOOD);
17060 	ASSERT(pktp->pkt_resid != 0);
17061 
17062 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: entry\n");
17063 
17064 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
17065 	switch (SD_GET_PKT_OPCODE(pktp) & 0x1F) {
17066 	case SCMD_READ:
17067 		cmdp = "read";
17068 		break;
17069 	case SCMD_WRITE:
17070 		cmdp = "write";
17071 		break;
17072 	default:
17073 		SD_UPDATE_B_RESID(bp, pktp);
17074 		sd_return_command(un, bp);
17075 		SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: exit\n");
17076 		return;
17077 	}
17078 
17079 	/*
17080 	 * See if we can retry the read/write, preferrably immediately.
17081 	 * If retries are exhaused, then sd_retry_command() will update
17082 	 * the b_resid count.
17083 	 */
17084 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_incomplete_msg,
17085 	    cmdp, EIO, (clock_t)0, NULL);
17086 
17087 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: exit\n");
17088 }
17089 
17090 
17091 
17092 
17093 
17094 /*
17095  *    Function: sd_handle_request_sense
17096  *
17097  * Description: Processing for non-auto Request Sense command.
17098  *
17099  *   Arguments: un - ptr to associated softstate
17100  *		sense_bp - ptr to buf(9S) for the RQS command
17101  *		sense_xp - ptr to the sd_xbuf for the RQS command
17102  *		sense_pktp - ptr to the scsi_pkt(9S) for the RQS command
17103  *
17104  *     Context: May be called under interrupt context
17105  */
17106 
17107 static void
17108 sd_handle_request_sense(struct sd_lun *un, struct buf *sense_bp,
17109 	struct sd_xbuf *sense_xp, struct scsi_pkt *sense_pktp)
17110 {
17111 	struct buf	*cmd_bp;	/* buf for the original command */
17112 	struct sd_xbuf	*cmd_xp;	/* sd_xbuf for the original command */
17113 	struct scsi_pkt *cmd_pktp;	/* pkt for the original command */
17114 
17115 	ASSERT(un != NULL);
17116 	ASSERT(mutex_owned(SD_MUTEX(un)));
17117 	ASSERT(sense_bp != NULL);
17118 	ASSERT(sense_xp != NULL);
17119 	ASSERT(sense_pktp != NULL);
17120 
17121 	/*
17122 	 * Note the sense_bp, sense_xp, and sense_pktp here are for the
17123 	 * RQS command and not the original command.
17124 	 */
17125 	ASSERT(sense_pktp == un->un_rqs_pktp);
17126 	ASSERT(sense_bp   == un->un_rqs_bp);
17127 	ASSERT((sense_pktp->pkt_flags & (FLAG_SENSING | FLAG_HEAD)) ==
17128 	    (FLAG_SENSING | FLAG_HEAD));
17129 	ASSERT((((SD_GET_XBUF(sense_xp->xb_sense_bp))->xb_pktp->pkt_flags) &
17130 	    FLAG_SENSING) == FLAG_SENSING);
17131 
17132 	/* These are the bp, xp, and pktp for the original command */
17133 	cmd_bp = sense_xp->xb_sense_bp;
17134 	cmd_xp = SD_GET_XBUF(cmd_bp);
17135 	cmd_pktp = SD_GET_PKTP(cmd_bp);
17136 
17137 	if (sense_pktp->pkt_reason != CMD_CMPLT) {
17138 		/*
17139 		 * The REQUEST SENSE command failed.  Release the REQUEST
17140 		 * SENSE command for re-use, get back the bp for the original
17141 		 * command, and attempt to re-try the original command if
17142 		 * FLAG_DIAGNOSE is not set in the original packet.
17143 		 */
17144 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
17145 		if ((cmd_pktp->pkt_flags & FLAG_DIAGNOSE) == 0) {
17146 			cmd_bp = sd_mark_rqs_idle(un, sense_xp);
17147 			sd_retry_command(un, cmd_bp, SD_RETRIES_STANDARD,
17148 			    NULL, NULL, EIO, (clock_t)0, NULL);
17149 			return;
17150 		}
17151 	}
17152 
17153 	/*
17154 	 * Save the relevant sense info into the xp for the original cmd.
17155 	 *
17156 	 * Note: if the request sense failed the state info will be zero
17157 	 * as set in sd_mark_rqs_busy()
17158 	 */
17159 	cmd_xp->xb_sense_status = *(sense_pktp->pkt_scbp);
17160 	cmd_xp->xb_sense_state  = sense_pktp->pkt_state;
17161 	cmd_xp->xb_sense_resid  = sense_pktp->pkt_resid;
17162 	bcopy(sense_bp->b_un.b_addr, cmd_xp->xb_sense_data, SENSE_LENGTH);
17163 
17164 	/*
17165 	 *  Free up the RQS command....
17166 	 *  NOTE:
17167 	 *	Must do this BEFORE calling sd_validate_sense_data!
17168 	 *	sd_validate_sense_data may return the original command in
17169 	 *	which case the pkt will be freed and the flags can no
17170 	 *	longer be touched.
17171 	 *	SD_MUTEX is held through this process until the command
17172 	 *	is dispatched based upon the sense data, so there are
17173 	 *	no race conditions.
17174 	 */
17175 	(void) sd_mark_rqs_idle(un, sense_xp);
17176 
17177 	/*
17178 	 * For a retryable command see if we have valid sense data, if so then
17179 	 * turn it over to sd_decode_sense() to figure out the right course of
17180 	 * action. Just fail a non-retryable command.
17181 	 */
17182 	if ((cmd_pktp->pkt_flags & FLAG_DIAGNOSE) == 0) {
17183 		if (sd_validate_sense_data(un, cmd_bp, cmd_xp) ==
17184 		    SD_SENSE_DATA_IS_VALID) {
17185 			sd_decode_sense(un, cmd_bp, cmd_xp, cmd_pktp);
17186 		}
17187 	} else {
17188 		SD_DUMP_MEMORY(un, SD_LOG_IO_CORE, "Failed CDB",
17189 		    (uchar_t *)cmd_pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX);
17190 		SD_DUMP_MEMORY(un, SD_LOG_IO_CORE, "Sense Data",
17191 		    (uchar_t *)cmd_xp->xb_sense_data, SENSE_LENGTH, SD_LOG_HEX);
17192 		sd_return_failed_command(un, cmd_bp, EIO);
17193 	}
17194 }
17195 
17196 
17197 
17198 
17199 /*
17200  *    Function: sd_handle_auto_request_sense
17201  *
17202  * Description: Processing for auto-request sense information.
17203  *
17204  *   Arguments: un - ptr to associated softstate
17205  *		bp - ptr to buf(9S) for the command
17206  *		xp - ptr to the sd_xbuf for the command
17207  *		pktp - ptr to the scsi_pkt(9S) for the command
17208  *
17209  *     Context: May be called under interrupt context
17210  */
17211 
17212 static void
17213 sd_handle_auto_request_sense(struct sd_lun *un, struct buf *bp,
17214 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17215 {
17216 	struct scsi_arq_status *asp;
17217 
17218 	ASSERT(un != NULL);
17219 	ASSERT(mutex_owned(SD_MUTEX(un)));
17220 	ASSERT(bp != NULL);
17221 	ASSERT(xp != NULL);
17222 	ASSERT(pktp != NULL);
17223 	ASSERT(pktp != un->un_rqs_pktp);
17224 	ASSERT(bp   != un->un_rqs_bp);
17225 
17226 	/*
17227 	 * For auto-request sense, we get a scsi_arq_status back from
17228 	 * the HBA, with the sense data in the sts_sensedata member.
17229 	 * The pkt_scbp of the packet points to this scsi_arq_status.
17230 	 */
17231 	asp = (struct scsi_arq_status *)(pktp->pkt_scbp);
17232 
17233 	if (asp->sts_rqpkt_reason != CMD_CMPLT) {
17234 		/*
17235 		 * The auto REQUEST SENSE failed; see if we can re-try
17236 		 * the original command.
17237 		 */
17238 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17239 		    "auto request sense failed (reason=%s)\n",
17240 		    scsi_rname(asp->sts_rqpkt_reason));
17241 
17242 		sd_reset_target(un, pktp);
17243 
17244 		sd_retry_command(un, bp, SD_RETRIES_STANDARD,
17245 		    NULL, NULL, EIO, (clock_t)0, NULL);
17246 		return;
17247 	}
17248 
17249 	/* Save the relevant sense info into the xp for the original cmd. */
17250 	xp->xb_sense_status = *((uchar_t *)(&(asp->sts_rqpkt_status)));
17251 	xp->xb_sense_state  = asp->sts_rqpkt_state;
17252 	xp->xb_sense_resid  = asp->sts_rqpkt_resid;
17253 	bcopy(&asp->sts_sensedata, xp->xb_sense_data,
17254 	    min(sizeof (struct scsi_extended_sense), SENSE_LENGTH));
17255 
17256 	/*
17257 	 * See if we have valid sense data, if so then turn it over to
17258 	 * sd_decode_sense() to figure out the right course of action.
17259 	 */
17260 	if (sd_validate_sense_data(un, bp, xp) == SD_SENSE_DATA_IS_VALID) {
17261 		sd_decode_sense(un, bp, xp, pktp);
17262 	}
17263 }
17264 
17265 
17266 /*
17267  *    Function: sd_print_sense_failed_msg
17268  *
17269  * Description: Print log message when RQS has failed.
17270  *
17271  *   Arguments: un - ptr to associated softstate
17272  *		bp - ptr to buf(9S) for the command
17273  *		arg - generic message string ptr
17274  *		code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
17275  *			or SD_NO_RETRY_ISSUED
17276  *
17277  *     Context: May be called from interrupt context
17278  */
17279 
17280 static void
17281 sd_print_sense_failed_msg(struct sd_lun *un, struct buf *bp, void *arg,
17282 	int code)
17283 {
17284 	char	*msgp = arg;
17285 
17286 	ASSERT(un != NULL);
17287 	ASSERT(mutex_owned(SD_MUTEX(un)));
17288 	ASSERT(bp != NULL);
17289 
17290 	if ((code == SD_NO_RETRY_ISSUED) && (msgp != NULL)) {
17291 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, msgp);
17292 	}
17293 }
17294 
17295 
17296 /*
17297  *    Function: sd_validate_sense_data
17298  *
17299  * Description: Check the given sense data for validity.
17300  *		If the sense data is not valid, the command will
17301  *		be either failed or retried!
17302  *
17303  * Return Code: SD_SENSE_DATA_IS_INVALID
17304  *		SD_SENSE_DATA_IS_VALID
17305  *
17306  *     Context: May be called from interrupt context
17307  */
17308 
17309 static int
17310 sd_validate_sense_data(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp)
17311 {
17312 	struct scsi_extended_sense *esp;
17313 	struct	scsi_pkt *pktp;
17314 	size_t	actual_len;
17315 	char	*msgp = NULL;
17316 
17317 	ASSERT(un != NULL);
17318 	ASSERT(mutex_owned(SD_MUTEX(un)));
17319 	ASSERT(bp != NULL);
17320 	ASSERT(bp != un->un_rqs_bp);
17321 	ASSERT(xp != NULL);
17322 
17323 	pktp = SD_GET_PKTP(bp);
17324 	ASSERT(pktp != NULL);
17325 
17326 	/*
17327 	 * Check the status of the RQS command (auto or manual).
17328 	 */
17329 	switch (xp->xb_sense_status & STATUS_MASK) {
17330 	case STATUS_GOOD:
17331 		break;
17332 
17333 	case STATUS_RESERVATION_CONFLICT:
17334 		sd_pkt_status_reservation_conflict(un, bp, xp, pktp);
17335 		return (SD_SENSE_DATA_IS_INVALID);
17336 
17337 	case STATUS_BUSY:
17338 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17339 		    "Busy Status on REQUEST SENSE\n");
17340 		sd_retry_command(un, bp, SD_RETRIES_BUSY, NULL,
17341 		    NULL, EIO, SD_BSY_TIMEOUT / 500, kstat_waitq_enter);
17342 		return (SD_SENSE_DATA_IS_INVALID);
17343 
17344 	case STATUS_QFULL:
17345 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17346 		    "QFULL Status on REQUEST SENSE\n");
17347 		sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL,
17348 		    NULL, EIO, SD_BSY_TIMEOUT / 500, kstat_waitq_enter);
17349 		return (SD_SENSE_DATA_IS_INVALID);
17350 
17351 	case STATUS_CHECK:
17352 	case STATUS_TERMINATED:
17353 		msgp = "Check Condition on REQUEST SENSE\n";
17354 		goto sense_failed;
17355 
17356 	default:
17357 		msgp = "Not STATUS_GOOD on REQUEST_SENSE\n";
17358 		goto sense_failed;
17359 	}
17360 
17361 	/*
17362 	 * See if we got the minimum required amount of sense data.
17363 	 * Note: We are assuming the returned sense data is SENSE_LENGTH bytes
17364 	 * or less.
17365 	 */
17366 	actual_len = (int)(SENSE_LENGTH - xp->xb_sense_resid);
17367 	if (((xp->xb_sense_state & STATE_XFERRED_DATA) == 0) ||
17368 	    (actual_len == 0)) {
17369 		msgp = "Request Sense couldn't get sense data\n";
17370 		goto sense_failed;
17371 	}
17372 
17373 	if (actual_len < SUN_MIN_SENSE_LENGTH) {
17374 		msgp = "Not enough sense information\n";
17375 		goto sense_failed;
17376 	}
17377 
17378 	/*
17379 	 * We require the extended sense data
17380 	 */
17381 	esp = (struct scsi_extended_sense *)xp->xb_sense_data;
17382 	if (esp->es_class != CLASS_EXTENDED_SENSE) {
17383 		if ((pktp->pkt_flags & FLAG_SILENT) == 0) {
17384 			static char tmp[8];
17385 			static char buf[148];
17386 			char *p = (char *)(xp->xb_sense_data);
17387 			int i;
17388 
17389 			mutex_enter(&sd_sense_mutex);
17390 			(void) strcpy(buf, "undecodable sense information:");
17391 			for (i = 0; i < actual_len; i++) {
17392 				(void) sprintf(tmp, " 0x%x", *(p++)&0xff);
17393 				(void) strcpy(&buf[strlen(buf)], tmp);
17394 			}
17395 			i = strlen(buf);
17396 			(void) strcpy(&buf[i], "-(assumed fatal)\n");
17397 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, buf);
17398 			mutex_exit(&sd_sense_mutex);
17399 		}
17400 		/* Note: Legacy behavior, fail the command with no retry */
17401 		sd_return_failed_command(un, bp, EIO);
17402 		return (SD_SENSE_DATA_IS_INVALID);
17403 	}
17404 
17405 	/*
17406 	 * Check that es_code is valid (es_class concatenated with es_code
17407 	 * make up the "response code" field.  es_class will always be 7, so
17408 	 * make sure es_code is 0, 1, 2, 3 or 0xf.  es_code will indicate the
17409 	 * format.
17410 	 */
17411 	if ((esp->es_code != CODE_FMT_FIXED_CURRENT) &&
17412 	    (esp->es_code != CODE_FMT_FIXED_DEFERRED) &&
17413 	    (esp->es_code != CODE_FMT_DESCR_CURRENT) &&
17414 	    (esp->es_code != CODE_FMT_DESCR_DEFERRED) &&
17415 	    (esp->es_code != CODE_FMT_VENDOR_SPECIFIC)) {
17416 		goto sense_failed;
17417 	}
17418 
17419 	return (SD_SENSE_DATA_IS_VALID);
17420 
17421 sense_failed:
17422 	/*
17423 	 * If the request sense failed (for whatever reason), attempt
17424 	 * to retry the original command.
17425 	 */
17426 #if defined(__i386) || defined(__amd64)
17427 	/*
17428 	 * SD_RETRY_DELAY is conditionally compile (#if fibre) in
17429 	 * sddef.h for Sparc platform, and x86 uses 1 binary
17430 	 * for both SCSI/FC.
17431 	 * The SD_RETRY_DELAY value need to be adjusted here
17432 	 * when SD_RETRY_DELAY change in sddef.h
17433 	 */
17434 	sd_retry_command(un, bp, SD_RETRIES_STANDARD,
17435 	    sd_print_sense_failed_msg, msgp, EIO,
17436 		un->un_f_is_fibre?drv_usectohz(100000):(clock_t)0, NULL);
17437 #else
17438 	sd_retry_command(un, bp, SD_RETRIES_STANDARD,
17439 	    sd_print_sense_failed_msg, msgp, EIO, SD_RETRY_DELAY, NULL);
17440 #endif
17441 
17442 	return (SD_SENSE_DATA_IS_INVALID);
17443 }
17444 
17445 
17446 
17447 /*
17448  *    Function: sd_decode_sense
17449  *
17450  * Description: Take recovery action(s) when SCSI Sense Data is received.
17451  *
17452  *     Context: Interrupt context.
17453  */
17454 
17455 static void
17456 sd_decode_sense(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
17457 	struct scsi_pkt *pktp)
17458 {
17459 	uint8_t sense_key;
17460 
17461 	ASSERT(un != NULL);
17462 	ASSERT(mutex_owned(SD_MUTEX(un)));
17463 	ASSERT(bp != NULL);
17464 	ASSERT(bp != un->un_rqs_bp);
17465 	ASSERT(xp != NULL);
17466 	ASSERT(pktp != NULL);
17467 
17468 	sense_key = scsi_sense_key(xp->xb_sense_data);
17469 
17470 	switch (sense_key) {
17471 	case KEY_NO_SENSE:
17472 		sd_sense_key_no_sense(un, bp, xp, pktp);
17473 		break;
17474 	case KEY_RECOVERABLE_ERROR:
17475 		sd_sense_key_recoverable_error(un, xp->xb_sense_data,
17476 		    bp, xp, pktp);
17477 		break;
17478 	case KEY_NOT_READY:
17479 		sd_sense_key_not_ready(un, xp->xb_sense_data,
17480 		    bp, xp, pktp);
17481 		break;
17482 	case KEY_MEDIUM_ERROR:
17483 	case KEY_HARDWARE_ERROR:
17484 		sd_sense_key_medium_or_hardware_error(un,
17485 		    xp->xb_sense_data, bp, xp, pktp);
17486 		break;
17487 	case KEY_ILLEGAL_REQUEST:
17488 		sd_sense_key_illegal_request(un, bp, xp, pktp);
17489 		break;
17490 	case KEY_UNIT_ATTENTION:
17491 		sd_sense_key_unit_attention(un, xp->xb_sense_data,
17492 		    bp, xp, pktp);
17493 		break;
17494 	case KEY_WRITE_PROTECT:
17495 	case KEY_VOLUME_OVERFLOW:
17496 	case KEY_MISCOMPARE:
17497 		sd_sense_key_fail_command(un, bp, xp, pktp);
17498 		break;
17499 	case KEY_BLANK_CHECK:
17500 		sd_sense_key_blank_check(un, bp, xp, pktp);
17501 		break;
17502 	case KEY_ABORTED_COMMAND:
17503 		sd_sense_key_aborted_command(un, bp, xp, pktp);
17504 		break;
17505 	case KEY_VENDOR_UNIQUE:
17506 	case KEY_COPY_ABORTED:
17507 	case KEY_EQUAL:
17508 	case KEY_RESERVED:
17509 	default:
17510 		sd_sense_key_default(un, xp->xb_sense_data,
17511 		    bp, xp, pktp);
17512 		break;
17513 	}
17514 }
17515 
17516 
17517 /*
17518  *    Function: sd_dump_memory
17519  *
17520  * Description: Debug logging routine to print the contents of a user provided
17521  *		buffer. The output of the buffer is broken up into 256 byte
17522  *		segments due to a size constraint of the scsi_log.
17523  *		implementation.
17524  *
17525  *   Arguments: un - ptr to softstate
17526  *		comp - component mask
17527  *		title - "title" string to preceed data when printed
17528  *		data - ptr to data block to be printed
17529  *		len - size of data block to be printed
17530  *		fmt - SD_LOG_HEX (use 0x%02x format) or SD_LOG_CHAR (use %c)
17531  *
17532  *     Context: May be called from interrupt context
17533  */
17534 
17535 #define	SD_DUMP_MEMORY_BUF_SIZE	256
17536 
17537 static char *sd_dump_format_string[] = {
17538 		" 0x%02x",
17539 		" %c"
17540 };
17541 
17542 static void
17543 sd_dump_memory(struct sd_lun *un, uint_t comp, char *title, uchar_t *data,
17544     int len, int fmt)
17545 {
17546 	int	i, j;
17547 	int	avail_count;
17548 	int	start_offset;
17549 	int	end_offset;
17550 	size_t	entry_len;
17551 	char	*bufp;
17552 	char	*local_buf;
17553 	char	*format_string;
17554 
17555 	ASSERT((fmt == SD_LOG_HEX) || (fmt == SD_LOG_CHAR));
17556 
17557 	/*
17558 	 * In the debug version of the driver, this function is called from a
17559 	 * number of places which are NOPs in the release driver.
17560 	 * The debug driver therefore has additional methods of filtering
17561 	 * debug output.
17562 	 */
17563 #ifdef SDDEBUG
17564 	/*
17565 	 * In the debug version of the driver we can reduce the amount of debug
17566 	 * messages by setting sd_error_level to something other than
17567 	 * SCSI_ERR_ALL and clearing bits in sd_level_mask and
17568 	 * sd_component_mask.
17569 	 */
17570 	if (((sd_level_mask & (SD_LOGMASK_DUMP_MEM | SD_LOGMASK_DIAG)) == 0) ||
17571 	    (sd_error_level != SCSI_ERR_ALL)) {
17572 		return;
17573 	}
17574 	if (((sd_component_mask & comp) == 0) ||
17575 	    (sd_error_level != SCSI_ERR_ALL)) {
17576 		return;
17577 	}
17578 #else
17579 	if (sd_error_level != SCSI_ERR_ALL) {
17580 		return;
17581 	}
17582 #endif
17583 
17584 	local_buf = kmem_zalloc(SD_DUMP_MEMORY_BUF_SIZE, KM_SLEEP);
17585 	bufp = local_buf;
17586 	/*
17587 	 * Available length is the length of local_buf[], minus the
17588 	 * length of the title string, minus one for the ":", minus
17589 	 * one for the newline, minus one for the NULL terminator.
17590 	 * This gives the #bytes available for holding the printed
17591 	 * values from the given data buffer.
17592 	 */
17593 	if (fmt == SD_LOG_HEX) {
17594 		format_string = sd_dump_format_string[0];
17595 	} else /* SD_LOG_CHAR */ {
17596 		format_string = sd_dump_format_string[1];
17597 	}
17598 	/*
17599 	 * Available count is the number of elements from the given
17600 	 * data buffer that we can fit into the available length.
17601 	 * This is based upon the size of the format string used.
17602 	 * Make one entry and find it's size.
17603 	 */
17604 	(void) sprintf(bufp, format_string, data[0]);
17605 	entry_len = strlen(bufp);
17606 	avail_count = (SD_DUMP_MEMORY_BUF_SIZE - strlen(title) - 3) / entry_len;
17607 
17608 	j = 0;
17609 	while (j < len) {
17610 		bufp = local_buf;
17611 		bzero(bufp, SD_DUMP_MEMORY_BUF_SIZE);
17612 		start_offset = j;
17613 
17614 		end_offset = start_offset + avail_count;
17615 
17616 		(void) sprintf(bufp, "%s:", title);
17617 		bufp += strlen(bufp);
17618 		for (i = start_offset; ((i < end_offset) && (j < len));
17619 		    i++, j++) {
17620 			(void) sprintf(bufp, format_string, data[i]);
17621 			bufp += entry_len;
17622 		}
17623 		(void) sprintf(bufp, "\n");
17624 
17625 		scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE, "%s", local_buf);
17626 	}
17627 	kmem_free(local_buf, SD_DUMP_MEMORY_BUF_SIZE);
17628 }
17629 
17630 /*
17631  *    Function: sd_print_sense_msg
17632  *
17633  * Description: Log a message based upon the given sense data.
17634  *
17635  *   Arguments: un - ptr to associated softstate
17636  *		bp - ptr to buf(9S) for the command
17637  *		arg - ptr to associate sd_sense_info struct
17638  *		code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
17639  *			or SD_NO_RETRY_ISSUED
17640  *
17641  *     Context: May be called from interrupt context
17642  */
17643 
17644 static void
17645 sd_print_sense_msg(struct sd_lun *un, struct buf *bp, void *arg, int code)
17646 {
17647 	struct sd_xbuf	*xp;
17648 	struct scsi_pkt	*pktp;
17649 	uint8_t *sensep;
17650 	daddr_t request_blkno;
17651 	diskaddr_t err_blkno;
17652 	int severity;
17653 	int pfa_flag;
17654 	extern struct scsi_key_strings scsi_cmds[];
17655 
17656 	ASSERT(un != NULL);
17657 	ASSERT(mutex_owned(SD_MUTEX(un)));
17658 	ASSERT(bp != NULL);
17659 	xp = SD_GET_XBUF(bp);
17660 	ASSERT(xp != NULL);
17661 	pktp = SD_GET_PKTP(bp);
17662 	ASSERT(pktp != NULL);
17663 	ASSERT(arg != NULL);
17664 
17665 	severity = ((struct sd_sense_info *)(arg))->ssi_severity;
17666 	pfa_flag = ((struct sd_sense_info *)(arg))->ssi_pfa_flag;
17667 
17668 	if ((code == SD_DELAYED_RETRY_ISSUED) ||
17669 	    (code == SD_IMMEDIATE_RETRY_ISSUED)) {
17670 		severity = SCSI_ERR_RETRYABLE;
17671 	}
17672 
17673 	/* Use absolute block number for the request block number */
17674 	request_blkno = xp->xb_blkno;
17675 
17676 	/*
17677 	 * Now try to get the error block number from the sense data
17678 	 */
17679 	sensep = xp->xb_sense_data;
17680 
17681 	if (scsi_sense_info_uint64(sensep, SENSE_LENGTH,
17682 		(uint64_t *)&err_blkno)) {
17683 		/*
17684 		 * We retrieved the error block number from the information
17685 		 * portion of the sense data.
17686 		 *
17687 		 * For USCSI commands we are better off using the error
17688 		 * block no. as the requested block no. (This is the best
17689 		 * we can estimate.)
17690 		 */
17691 		if ((SD_IS_BUFIO(xp) == FALSE) &&
17692 		    ((pktp->pkt_flags & FLAG_SILENT) == 0)) {
17693 			request_blkno = err_blkno;
17694 		}
17695 	} else {
17696 		/*
17697 		 * Without the es_valid bit set (for fixed format) or an
17698 		 * information descriptor (for descriptor format) we cannot
17699 		 * be certain of the error blkno, so just use the
17700 		 * request_blkno.
17701 		 */
17702 		err_blkno = (diskaddr_t)request_blkno;
17703 	}
17704 
17705 	/*
17706 	 * The following will log the buffer contents for the release driver
17707 	 * if the SD_LOGMASK_DIAG bit of sd_level_mask is set, or the error
17708 	 * level is set to verbose.
17709 	 */
17710 	sd_dump_memory(un, SD_LOG_IO, "Failed CDB",
17711 	    (uchar_t *)pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX);
17712 	sd_dump_memory(un, SD_LOG_IO, "Sense Data",
17713 	    (uchar_t *)sensep, SENSE_LENGTH, SD_LOG_HEX);
17714 
17715 	if (pfa_flag == FALSE) {
17716 		/* This is normally only set for USCSI */
17717 		if ((pktp->pkt_flags & FLAG_SILENT) != 0) {
17718 			return;
17719 		}
17720 
17721 		if ((SD_IS_BUFIO(xp) == TRUE) &&
17722 		    (((sd_level_mask & SD_LOGMASK_DIAG) == 0) &&
17723 		    (severity < sd_error_level))) {
17724 			return;
17725 		}
17726 	}
17727 
17728 	/*
17729 	 * Check for Sonoma Failover and keep a count of how many failed I/O's
17730 	 */
17731 	if ((SD_IS_LSI(un)) &&
17732 	    (scsi_sense_key(sensep) == KEY_ILLEGAL_REQUEST) &&
17733 	    (scsi_sense_asc(sensep) == 0x94) &&
17734 	    (scsi_sense_ascq(sensep) == 0x01)) {
17735 		un->un_sonoma_failure_count++;
17736 		if (un->un_sonoma_failure_count > 1) {
17737 			return;
17738 		}
17739 	}
17740 
17741 	scsi_vu_errmsg(SD_SCSI_DEVP(un), pktp, sd_label, severity,
17742 	    request_blkno, err_blkno, scsi_cmds,
17743 	    (struct scsi_extended_sense *)sensep,
17744 	    un->un_additional_codes, NULL);
17745 }
17746 
17747 /*
17748  *    Function: sd_sense_key_no_sense
17749  *
17750  * Description: Recovery action when sense data was not received.
17751  *
17752  *     Context: May be called from interrupt context
17753  */
17754 
17755 static void
17756 sd_sense_key_no_sense(struct sd_lun *un, struct buf *bp,
17757 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17758 {
17759 	struct sd_sense_info	si;
17760 
17761 	ASSERT(un != NULL);
17762 	ASSERT(mutex_owned(SD_MUTEX(un)));
17763 	ASSERT(bp != NULL);
17764 	ASSERT(xp != NULL);
17765 	ASSERT(pktp != NULL);
17766 
17767 	si.ssi_severity = SCSI_ERR_FATAL;
17768 	si.ssi_pfa_flag = FALSE;
17769 
17770 	SD_UPDATE_ERRSTATS(un, sd_softerrs);
17771 
17772 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
17773 		&si, EIO, (clock_t)0, NULL);
17774 }
17775 
17776 
17777 /*
17778  *    Function: sd_sense_key_recoverable_error
17779  *
17780  * Description: Recovery actions for a SCSI "Recovered Error" sense key.
17781  *
17782  *     Context: May be called from interrupt context
17783  */
17784 
17785 static void
17786 sd_sense_key_recoverable_error(struct sd_lun *un,
17787 	uint8_t *sense_datap,
17788 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
17789 {
17790 	struct sd_sense_info	si;
17791 	uint8_t asc = scsi_sense_asc(sense_datap);
17792 
17793 	ASSERT(un != NULL);
17794 	ASSERT(mutex_owned(SD_MUTEX(un)));
17795 	ASSERT(bp != NULL);
17796 	ASSERT(xp != NULL);
17797 	ASSERT(pktp != NULL);
17798 
17799 	/*
17800 	 * 0x5D: FAILURE PREDICTION THRESHOLD EXCEEDED
17801 	 */
17802 	if ((asc == 0x5D) && (sd_report_pfa != 0)) {
17803 		SD_UPDATE_ERRSTATS(un, sd_rq_pfa_err);
17804 		si.ssi_severity = SCSI_ERR_INFO;
17805 		si.ssi_pfa_flag = TRUE;
17806 	} else {
17807 		SD_UPDATE_ERRSTATS(un, sd_softerrs);
17808 		SD_UPDATE_ERRSTATS(un, sd_rq_recov_err);
17809 		si.ssi_severity = SCSI_ERR_RECOVERED;
17810 		si.ssi_pfa_flag = FALSE;
17811 	}
17812 
17813 	if (pktp->pkt_resid == 0) {
17814 		sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
17815 		sd_return_command(un, bp);
17816 		return;
17817 	}
17818 
17819 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
17820 	    &si, EIO, (clock_t)0, NULL);
17821 }
17822 
17823 
17824 
17825 
17826 /*
17827  *    Function: sd_sense_key_not_ready
17828  *
17829  * Description: Recovery actions for a SCSI "Not Ready" sense key.
17830  *
17831  *     Context: May be called from interrupt context
17832  */
17833 
17834 static void
17835 sd_sense_key_not_ready(struct sd_lun *un,
17836 	uint8_t *sense_datap,
17837 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
17838 {
17839 	struct sd_sense_info	si;
17840 	uint8_t asc = scsi_sense_asc(sense_datap);
17841 	uint8_t ascq = scsi_sense_ascq(sense_datap);
17842 
17843 	ASSERT(un != NULL);
17844 	ASSERT(mutex_owned(SD_MUTEX(un)));
17845 	ASSERT(bp != NULL);
17846 	ASSERT(xp != NULL);
17847 	ASSERT(pktp != NULL);
17848 
17849 	si.ssi_severity = SCSI_ERR_FATAL;
17850 	si.ssi_pfa_flag = FALSE;
17851 
17852 	/*
17853 	 * Update error stats after first NOT READY error. Disks may have
17854 	 * been powered down and may need to be restarted.  For CDROMs,
17855 	 * report NOT READY errors only if media is present.
17856 	 */
17857 	if ((ISCD(un) && (un->un_f_geometry_is_valid == TRUE)) ||
17858 	    (xp->xb_retry_count > 0)) {
17859 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
17860 		SD_UPDATE_ERRSTATS(un, sd_rq_ntrdy_err);
17861 	}
17862 
17863 	/*
17864 	 * Just fail if the "not ready" retry limit has been reached.
17865 	 */
17866 	if (xp->xb_retry_count >= un->un_notready_retry_count) {
17867 		/* Special check for error message printing for removables. */
17868 		if (un->un_f_has_removable_media && (asc == 0x04) &&
17869 		    (ascq >= 0x04)) {
17870 			si.ssi_severity = SCSI_ERR_ALL;
17871 		}
17872 		goto fail_command;
17873 	}
17874 
17875 	/*
17876 	 * Check the ASC and ASCQ in the sense data as needed, to determine
17877 	 * what to do.
17878 	 */
17879 	switch (asc) {
17880 	case 0x04:	/* LOGICAL UNIT NOT READY */
17881 		/*
17882 		 * disk drives that don't spin up result in a very long delay
17883 		 * in format without warning messages. We will log a message
17884 		 * if the error level is set to verbose.
17885 		 */
17886 		if (sd_error_level < SCSI_ERR_RETRYABLE) {
17887 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17888 			    "logical unit not ready, resetting disk\n");
17889 		}
17890 
17891 		/*
17892 		 * There are different requirements for CDROMs and disks for
17893 		 * the number of retries.  If a CD-ROM is giving this, it is
17894 		 * probably reading TOC and is in the process of getting
17895 		 * ready, so we should keep on trying for a long time to make
17896 		 * sure that all types of media are taken in account (for
17897 		 * some media the drive takes a long time to read TOC).  For
17898 		 * disks we do not want to retry this too many times as this
17899 		 * can cause a long hang in format when the drive refuses to
17900 		 * spin up (a very common failure).
17901 		 */
17902 		switch (ascq) {
17903 		case 0x00:  /* LUN NOT READY, CAUSE NOT REPORTABLE */
17904 			/*
17905 			 * Disk drives frequently refuse to spin up which
17906 			 * results in a very long hang in format without
17907 			 * warning messages.
17908 			 *
17909 			 * Note: This code preserves the legacy behavior of
17910 			 * comparing xb_retry_count against zero for fibre
17911 			 * channel targets instead of comparing against the
17912 			 * un_reset_retry_count value.  The reason for this
17913 			 * discrepancy has been so utterly lost beneath the
17914 			 * Sands of Time that even Indiana Jones could not
17915 			 * find it.
17916 			 */
17917 			if (un->un_f_is_fibre == TRUE) {
17918 				if (((sd_level_mask & SD_LOGMASK_DIAG) ||
17919 					(xp->xb_retry_count > 0)) &&
17920 					(un->un_startstop_timeid == NULL)) {
17921 					scsi_log(SD_DEVINFO(un), sd_label,
17922 					CE_WARN, "logical unit not ready, "
17923 					"resetting disk\n");
17924 					sd_reset_target(un, pktp);
17925 				}
17926 			} else {
17927 				if (((sd_level_mask & SD_LOGMASK_DIAG) ||
17928 					(xp->xb_retry_count >
17929 					un->un_reset_retry_count)) &&
17930 					(un->un_startstop_timeid == NULL)) {
17931 					scsi_log(SD_DEVINFO(un), sd_label,
17932 					CE_WARN, "logical unit not ready, "
17933 					"resetting disk\n");
17934 					sd_reset_target(un, pktp);
17935 				}
17936 			}
17937 			break;
17938 
17939 		case 0x01:  /* LUN IS IN PROCESS OF BECOMING READY */
17940 			/*
17941 			 * If the target is in the process of becoming
17942 			 * ready, just proceed with the retry. This can
17943 			 * happen with CD-ROMs that take a long time to
17944 			 * read TOC after a power cycle or reset.
17945 			 */
17946 			goto do_retry;
17947 
17948 		case 0x02:  /* LUN NOT READY, INITITIALIZING CMD REQUIRED */
17949 			break;
17950 
17951 		case 0x03:  /* LUN NOT READY, MANUAL INTERVENTION REQUIRED */
17952 			/*
17953 			 * Retries cannot help here so just fail right away.
17954 			 */
17955 			goto fail_command;
17956 
17957 		case 0x88:
17958 			/*
17959 			 * Vendor-unique code for T3/T4: it indicates a
17960 			 * path problem in a mutipathed config, but as far as
17961 			 * the target driver is concerned it equates to a fatal
17962 			 * error, so we should just fail the command right away
17963 			 * (without printing anything to the console). If this
17964 			 * is not a T3/T4, fall thru to the default recovery
17965 			 * action.
17966 			 * T3/T4 is FC only, don't need to check is_fibre
17967 			 */
17968 			if (SD_IS_T3(un) || SD_IS_T4(un)) {
17969 				sd_return_failed_command(un, bp, EIO);
17970 				return;
17971 			}
17972 			/* FALLTHRU */
17973 
17974 		case 0x04:  /* LUN NOT READY, FORMAT IN PROGRESS */
17975 		case 0x05:  /* LUN NOT READY, REBUILD IN PROGRESS */
17976 		case 0x06:  /* LUN NOT READY, RECALCULATION IN PROGRESS */
17977 		case 0x07:  /* LUN NOT READY, OPERATION IN PROGRESS */
17978 		case 0x08:  /* LUN NOT READY, LONG WRITE IN PROGRESS */
17979 		default:    /* Possible future codes in SCSI spec? */
17980 			/*
17981 			 * For removable-media devices, do not retry if
17982 			 * ASCQ > 2 as these result mostly from USCSI commands
17983 			 * on MMC devices issued to check status of an
17984 			 * operation initiated in immediate mode.  Also for
17985 			 * ASCQ >= 4 do not print console messages as these
17986 			 * mainly represent a user-initiated operation
17987 			 * instead of a system failure.
17988 			 */
17989 			if (un->un_f_has_removable_media) {
17990 				si.ssi_severity = SCSI_ERR_ALL;
17991 				goto fail_command;
17992 			}
17993 			break;
17994 		}
17995 
17996 		/*
17997 		 * As part of our recovery attempt for the NOT READY
17998 		 * condition, we issue a START STOP UNIT command. However
17999 		 * we want to wait for a short delay before attempting this
18000 		 * as there may still be more commands coming back from the
18001 		 * target with the check condition. To do this we use
18002 		 * timeout(9F) to call sd_start_stop_unit_callback() after
18003 		 * the delay interval expires. (sd_start_stop_unit_callback()
18004 		 * dispatches sd_start_stop_unit_task(), which will issue
18005 		 * the actual START STOP UNIT command. The delay interval
18006 		 * is one-half of the delay that we will use to retry the
18007 		 * command that generated the NOT READY condition.
18008 		 *
18009 		 * Note that we could just dispatch sd_start_stop_unit_task()
18010 		 * from here and allow it to sleep for the delay interval,
18011 		 * but then we would be tying up the taskq thread
18012 		 * uncesessarily for the duration of the delay.
18013 		 *
18014 		 * Do not issue the START STOP UNIT if the current command
18015 		 * is already a START STOP UNIT.
18016 		 */
18017 		if (pktp->pkt_cdbp[0] == SCMD_START_STOP) {
18018 			break;
18019 		}
18020 
18021 		/*
18022 		 * Do not schedule the timeout if one is already pending.
18023 		 */
18024 		if (un->un_startstop_timeid != NULL) {
18025 			SD_INFO(SD_LOG_ERROR, un,
18026 			    "sd_sense_key_not_ready: restart already issued to"
18027 			    " %s%d\n", ddi_driver_name(SD_DEVINFO(un)),
18028 			    ddi_get_instance(SD_DEVINFO(un)));
18029 			break;
18030 		}
18031 
18032 		/*
18033 		 * Schedule the START STOP UNIT command, then queue the command
18034 		 * for a retry.
18035 		 *
18036 		 * Note: A timeout is not scheduled for this retry because we
18037 		 * want the retry to be serial with the START_STOP_UNIT. The
18038 		 * retry will be started when the START_STOP_UNIT is completed
18039 		 * in sd_start_stop_unit_task.
18040 		 */
18041 		un->un_startstop_timeid = timeout(sd_start_stop_unit_callback,
18042 		    un, SD_BSY_TIMEOUT / 2);
18043 		xp->xb_retry_count++;
18044 		sd_set_retry_bp(un, bp, 0, kstat_waitq_enter);
18045 		return;
18046 
18047 	case 0x05:	/* LOGICAL UNIT DOES NOT RESPOND TO SELECTION */
18048 		if (sd_error_level < SCSI_ERR_RETRYABLE) {
18049 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
18050 			    "unit does not respond to selection\n");
18051 		}
18052 		break;
18053 
18054 	case 0x3A:	/* MEDIUM NOT PRESENT */
18055 		if (sd_error_level >= SCSI_ERR_FATAL) {
18056 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
18057 			    "Caddy not inserted in drive\n");
18058 		}
18059 
18060 		sr_ejected(un);
18061 		un->un_mediastate = DKIO_EJECTED;
18062 		/* The state has changed, inform the media watch routines */
18063 		cv_broadcast(&un->un_state_cv);
18064 		/* Just fail if no media is present in the drive. */
18065 		goto fail_command;
18066 
18067 	default:
18068 		if (sd_error_level < SCSI_ERR_RETRYABLE) {
18069 			scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE,
18070 			    "Unit not Ready. Additional sense code 0x%x\n",
18071 			    asc);
18072 		}
18073 		break;
18074 	}
18075 
18076 do_retry:
18077 
18078 	/*
18079 	 * Retry the command, as some targets may report NOT READY for
18080 	 * several seconds after being reset.
18081 	 */
18082 	xp->xb_retry_count++;
18083 	si.ssi_severity = SCSI_ERR_RETRYABLE;
18084 	sd_retry_command(un, bp, SD_RETRIES_NOCHECK, sd_print_sense_msg,
18085 	    &si, EIO, SD_BSY_TIMEOUT, NULL);
18086 
18087 	return;
18088 
18089 fail_command:
18090 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
18091 	sd_return_failed_command(un, bp, EIO);
18092 }
18093 
18094 
18095 
18096 /*
18097  *    Function: sd_sense_key_medium_or_hardware_error
18098  *
18099  * Description: Recovery actions for a SCSI "Medium Error" or "Hardware Error"
18100  *		sense key.
18101  *
18102  *     Context: May be called from interrupt context
18103  */
18104 
18105 static void
18106 sd_sense_key_medium_or_hardware_error(struct sd_lun *un,
18107 	uint8_t *sense_datap,
18108 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
18109 {
18110 	struct sd_sense_info	si;
18111 	uint8_t sense_key = scsi_sense_key(sense_datap);
18112 	uint8_t asc = scsi_sense_asc(sense_datap);
18113 
18114 	ASSERT(un != NULL);
18115 	ASSERT(mutex_owned(SD_MUTEX(un)));
18116 	ASSERT(bp != NULL);
18117 	ASSERT(xp != NULL);
18118 	ASSERT(pktp != NULL);
18119 
18120 	si.ssi_severity = SCSI_ERR_FATAL;
18121 	si.ssi_pfa_flag = FALSE;
18122 
18123 	if (sense_key == KEY_MEDIUM_ERROR) {
18124 		SD_UPDATE_ERRSTATS(un, sd_rq_media_err);
18125 	}
18126 
18127 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
18128 
18129 	if ((un->un_reset_retry_count != 0) &&
18130 	    (xp->xb_retry_count == un->un_reset_retry_count)) {
18131 		mutex_exit(SD_MUTEX(un));
18132 		/* Do NOT do a RESET_ALL here: too intrusive. (4112858) */
18133 		if (un->un_f_allow_bus_device_reset == TRUE) {
18134 
18135 			boolean_t try_resetting_target = B_TRUE;
18136 
18137 			/*
18138 			 * We need to be able to handle specific ASC when we are
18139 			 * handling a KEY_HARDWARE_ERROR. In particular
18140 			 * taking the default action of resetting the target may
18141 			 * not be the appropriate way to attempt recovery.
18142 			 * Resetting a target because of a single LUN failure
18143 			 * victimizes all LUNs on that target.
18144 			 *
18145 			 * This is true for the LSI arrays, if an LSI
18146 			 * array controller returns an ASC of 0x84 (LUN Dead) we
18147 			 * should trust it.
18148 			 */
18149 
18150 			if (sense_key == KEY_HARDWARE_ERROR) {
18151 				switch (asc) {
18152 				case 0x84:
18153 					if (SD_IS_LSI(un)) {
18154 						try_resetting_target = B_FALSE;
18155 					}
18156 					break;
18157 				default:
18158 					break;
18159 				}
18160 			}
18161 
18162 			if (try_resetting_target == B_TRUE) {
18163 				int reset_retval = 0;
18164 				if (un->un_f_lun_reset_enabled == TRUE) {
18165 					SD_TRACE(SD_LOG_IO_CORE, un,
18166 					    "sd_sense_key_medium_or_hardware_"
18167 					    "error: issuing RESET_LUN\n");
18168 					reset_retval =
18169 					    scsi_reset(SD_ADDRESS(un),
18170 					    RESET_LUN);
18171 				}
18172 				if (reset_retval == 0) {
18173 					SD_TRACE(SD_LOG_IO_CORE, un,
18174 					    "sd_sense_key_medium_or_hardware_"
18175 					    "error: issuing RESET_TARGET\n");
18176 					(void) scsi_reset(SD_ADDRESS(un),
18177 					    RESET_TARGET);
18178 				}
18179 			}
18180 		}
18181 		mutex_enter(SD_MUTEX(un));
18182 	}
18183 
18184 	/*
18185 	 * This really ought to be a fatal error, but we will retry anyway
18186 	 * as some drives report this as a spurious error.
18187 	 */
18188 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
18189 	    &si, EIO, (clock_t)0, NULL);
18190 }
18191 
18192 
18193 
18194 /*
18195  *    Function: sd_sense_key_illegal_request
18196  *
18197  * Description: Recovery actions for a SCSI "Illegal Request" sense key.
18198  *
18199  *     Context: May be called from interrupt context
18200  */
18201 
18202 static void
18203 sd_sense_key_illegal_request(struct sd_lun *un, struct buf *bp,
18204 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18205 {
18206 	struct sd_sense_info	si;
18207 
18208 	ASSERT(un != NULL);
18209 	ASSERT(mutex_owned(SD_MUTEX(un)));
18210 	ASSERT(bp != NULL);
18211 	ASSERT(xp != NULL);
18212 	ASSERT(pktp != NULL);
18213 
18214 	SD_UPDATE_ERRSTATS(un, sd_softerrs);
18215 	SD_UPDATE_ERRSTATS(un, sd_rq_illrq_err);
18216 
18217 	si.ssi_severity = SCSI_ERR_INFO;
18218 	si.ssi_pfa_flag = FALSE;
18219 
18220 	/* Pointless to retry if the target thinks it's an illegal request */
18221 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
18222 	sd_return_failed_command(un, bp, EIO);
18223 }
18224 
18225 
18226 
18227 
18228 /*
18229  *    Function: sd_sense_key_unit_attention
18230  *
18231  * Description: Recovery actions for a SCSI "Unit Attention" sense key.
18232  *
18233  *     Context: May be called from interrupt context
18234  */
18235 
18236 static void
18237 sd_sense_key_unit_attention(struct sd_lun *un,
18238 	uint8_t *sense_datap,
18239 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
18240 {
18241 	/*
18242 	 * For UNIT ATTENTION we allow retries for one minute. Devices
18243 	 * like Sonoma can return UNIT ATTENTION close to a minute
18244 	 * under certain conditions.
18245 	 */
18246 	int	retry_check_flag = SD_RETRIES_UA;
18247 	boolean_t	kstat_updated = B_FALSE;
18248 	struct	sd_sense_info		si;
18249 	uint8_t asc = scsi_sense_asc(sense_datap);
18250 
18251 	ASSERT(un != NULL);
18252 	ASSERT(mutex_owned(SD_MUTEX(un)));
18253 	ASSERT(bp != NULL);
18254 	ASSERT(xp != NULL);
18255 	ASSERT(pktp != NULL);
18256 
18257 	si.ssi_severity = SCSI_ERR_INFO;
18258 	si.ssi_pfa_flag = FALSE;
18259 
18260 
18261 	switch (asc) {
18262 	case 0x5D:  /* FAILURE PREDICTION THRESHOLD EXCEEDED */
18263 		if (sd_report_pfa != 0) {
18264 			SD_UPDATE_ERRSTATS(un, sd_rq_pfa_err);
18265 			si.ssi_pfa_flag = TRUE;
18266 			retry_check_flag = SD_RETRIES_STANDARD;
18267 			goto do_retry;
18268 		}
18269 
18270 		break;
18271 
18272 	case 0x29:  /* POWER ON, RESET, OR BUS DEVICE RESET OCCURRED */
18273 		if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
18274 			un->un_resvd_status |=
18275 			    (SD_LOST_RESERVE | SD_WANT_RESERVE);
18276 		}
18277 #ifdef _LP64
18278 		if (un->un_blockcount + 1 > SD_GROUP1_MAX_ADDRESS) {
18279 			if (taskq_dispatch(sd_tq, sd_reenable_dsense_task,
18280 			    un, KM_NOSLEEP) == 0) {
18281 				/*
18282 				 * If we can't dispatch the task we'll just
18283 				 * live without descriptor sense.  We can
18284 				 * try again on the next "unit attention"
18285 				 */
18286 				SD_ERROR(SD_LOG_ERROR, un,
18287 				    "sd_sense_key_unit_attention: "
18288 				    "Could not dispatch "
18289 				    "sd_reenable_dsense_task\n");
18290 			}
18291 		}
18292 #endif /* _LP64 */
18293 		/* FALLTHRU */
18294 
18295 	case 0x28: /* NOT READY TO READY CHANGE, MEDIUM MAY HAVE CHANGED */
18296 		if (!un->un_f_has_removable_media) {
18297 			break;
18298 		}
18299 
18300 		/*
18301 		 * When we get a unit attention from a removable-media device,
18302 		 * it may be in a state that will take a long time to recover
18303 		 * (e.g., from a reset).  Since we are executing in interrupt
18304 		 * context here, we cannot wait around for the device to come
18305 		 * back. So hand this command off to sd_media_change_task()
18306 		 * for deferred processing under taskq thread context. (Note
18307 		 * that the command still may be failed if a problem is
18308 		 * encountered at a later time.)
18309 		 */
18310 		if (taskq_dispatch(sd_tq, sd_media_change_task, pktp,
18311 		    KM_NOSLEEP) == 0) {
18312 			/*
18313 			 * Cannot dispatch the request so fail the command.
18314 			 */
18315 			SD_UPDATE_ERRSTATS(un, sd_harderrs);
18316 			SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err);
18317 			si.ssi_severity = SCSI_ERR_FATAL;
18318 			sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
18319 			sd_return_failed_command(un, bp, EIO);
18320 		}
18321 
18322 		/*
18323 		 * If failed to dispatch sd_media_change_task(), we already
18324 		 * updated kstat. If succeed to dispatch sd_media_change_task(),
18325 		 * we should update kstat later if it encounters an error. So,
18326 		 * we update kstat_updated flag here.
18327 		 */
18328 		kstat_updated = B_TRUE;
18329 
18330 		/*
18331 		 * Either the command has been successfully dispatched to a
18332 		 * task Q for retrying, or the dispatch failed. In either case
18333 		 * do NOT retry again by calling sd_retry_command. This sets up
18334 		 * two retries of the same command and when one completes and
18335 		 * frees the resources the other will access freed memory,
18336 		 * a bad thing.
18337 		 */
18338 		return;
18339 
18340 	default:
18341 		break;
18342 	}
18343 
18344 	/*
18345 	 * Update kstat if we haven't done that.
18346 	 */
18347 	if (!kstat_updated) {
18348 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
18349 		SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err);
18350 	}
18351 
18352 do_retry:
18353 	sd_retry_command(un, bp, retry_check_flag, sd_print_sense_msg, &si,
18354 	    EIO, SD_UA_RETRY_DELAY, NULL);
18355 }
18356 
18357 
18358 
18359 /*
18360  *    Function: sd_sense_key_fail_command
18361  *
18362  * Description: Use to fail a command when we don't like the sense key that
18363  *		was returned.
18364  *
18365  *     Context: May be called from interrupt context
18366  */
18367 
18368 static void
18369 sd_sense_key_fail_command(struct sd_lun *un, struct buf *bp,
18370 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18371 {
18372 	struct sd_sense_info	si;
18373 
18374 	ASSERT(un != NULL);
18375 	ASSERT(mutex_owned(SD_MUTEX(un)));
18376 	ASSERT(bp != NULL);
18377 	ASSERT(xp != NULL);
18378 	ASSERT(pktp != NULL);
18379 
18380 	si.ssi_severity = SCSI_ERR_FATAL;
18381 	si.ssi_pfa_flag = FALSE;
18382 
18383 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
18384 	sd_return_failed_command(un, bp, EIO);
18385 }
18386 
18387 
18388 
18389 /*
18390  *    Function: sd_sense_key_blank_check
18391  *
18392  * Description: Recovery actions for a SCSI "Blank Check" sense key.
18393  *		Has no monetary connotation.
18394  *
18395  *     Context: May be called from interrupt context
18396  */
18397 
18398 static void
18399 sd_sense_key_blank_check(struct sd_lun *un, struct buf *bp,
18400 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18401 {
18402 	struct sd_sense_info	si;
18403 
18404 	ASSERT(un != NULL);
18405 	ASSERT(mutex_owned(SD_MUTEX(un)));
18406 	ASSERT(bp != NULL);
18407 	ASSERT(xp != NULL);
18408 	ASSERT(pktp != NULL);
18409 
18410 	/*
18411 	 * Blank check is not fatal for removable devices, therefore
18412 	 * it does not require a console message.
18413 	 */
18414 	si.ssi_severity = (un->un_f_has_removable_media) ? SCSI_ERR_ALL :
18415 	    SCSI_ERR_FATAL;
18416 	si.ssi_pfa_flag = FALSE;
18417 
18418 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
18419 	sd_return_failed_command(un, bp, EIO);
18420 }
18421 
18422 
18423 
18424 
18425 /*
18426  *    Function: sd_sense_key_aborted_command
18427  *
18428  * Description: Recovery actions for a SCSI "Aborted Command" sense key.
18429  *
18430  *     Context: May be called from interrupt context
18431  */
18432 
18433 static void
18434 sd_sense_key_aborted_command(struct sd_lun *un, struct buf *bp,
18435 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18436 {
18437 	struct sd_sense_info	si;
18438 
18439 	ASSERT(un != NULL);
18440 	ASSERT(mutex_owned(SD_MUTEX(un)));
18441 	ASSERT(bp != NULL);
18442 	ASSERT(xp != NULL);
18443 	ASSERT(pktp != NULL);
18444 
18445 	si.ssi_severity = SCSI_ERR_FATAL;
18446 	si.ssi_pfa_flag = FALSE;
18447 
18448 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
18449 
18450 	/*
18451 	 * This really ought to be a fatal error, but we will retry anyway
18452 	 * as some drives report this as a spurious error.
18453 	 */
18454 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
18455 	    &si, EIO, (clock_t)0, NULL);
18456 }
18457 
18458 
18459 
18460 /*
18461  *    Function: sd_sense_key_default
18462  *
18463  * Description: Default recovery action for several SCSI sense keys (basically
18464  *		attempts a retry).
18465  *
18466  *     Context: May be called from interrupt context
18467  */
18468 
18469 static void
18470 sd_sense_key_default(struct sd_lun *un,
18471 	uint8_t *sense_datap,
18472 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
18473 {
18474 	struct sd_sense_info	si;
18475 	uint8_t sense_key = scsi_sense_key(sense_datap);
18476 
18477 	ASSERT(un != NULL);
18478 	ASSERT(mutex_owned(SD_MUTEX(un)));
18479 	ASSERT(bp != NULL);
18480 	ASSERT(xp != NULL);
18481 	ASSERT(pktp != NULL);
18482 
18483 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
18484 
18485 	/*
18486 	 * Undecoded sense key.	Attempt retries and hope that will fix
18487 	 * the problem.  Otherwise, we're dead.
18488 	 */
18489 	if ((pktp->pkt_flags & FLAG_SILENT) == 0) {
18490 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
18491 		    "Unhandled Sense Key '%s'\n", sense_keys[sense_key]);
18492 	}
18493 
18494 	si.ssi_severity = SCSI_ERR_FATAL;
18495 	si.ssi_pfa_flag = FALSE;
18496 
18497 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
18498 	    &si, EIO, (clock_t)0, NULL);
18499 }
18500 
18501 
18502 
18503 /*
18504  *    Function: sd_print_retry_msg
18505  *
18506  * Description: Print a message indicating the retry action being taken.
18507  *
18508  *   Arguments: un - ptr to associated softstate
18509  *		bp - ptr to buf(9S) for the command
18510  *		arg - not used.
18511  *		flag - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
18512  *			or SD_NO_RETRY_ISSUED
18513  *
18514  *     Context: May be called from interrupt context
18515  */
18516 /* ARGSUSED */
18517 static void
18518 sd_print_retry_msg(struct sd_lun *un, struct buf *bp, void *arg, int flag)
18519 {
18520 	struct sd_xbuf	*xp;
18521 	struct scsi_pkt *pktp;
18522 	char *reasonp;
18523 	char *msgp;
18524 
18525 	ASSERT(un != NULL);
18526 	ASSERT(mutex_owned(SD_MUTEX(un)));
18527 	ASSERT(bp != NULL);
18528 	pktp = SD_GET_PKTP(bp);
18529 	ASSERT(pktp != NULL);
18530 	xp = SD_GET_XBUF(bp);
18531 	ASSERT(xp != NULL);
18532 
18533 	ASSERT(!mutex_owned(&un->un_pm_mutex));
18534 	mutex_enter(&un->un_pm_mutex);
18535 	if ((un->un_state == SD_STATE_SUSPENDED) ||
18536 	    (SD_DEVICE_IS_IN_LOW_POWER(un)) ||
18537 	    (pktp->pkt_flags & FLAG_SILENT)) {
18538 		mutex_exit(&un->un_pm_mutex);
18539 		goto update_pkt_reason;
18540 	}
18541 	mutex_exit(&un->un_pm_mutex);
18542 
18543 	/*
18544 	 * Suppress messages if they are all the same pkt_reason; with
18545 	 * TQ, many (up to 256) are returned with the same pkt_reason.
18546 	 * If we are in panic, then suppress the retry messages.
18547 	 */
18548 	switch (flag) {
18549 	case SD_NO_RETRY_ISSUED:
18550 		msgp = "giving up";
18551 		break;
18552 	case SD_IMMEDIATE_RETRY_ISSUED:
18553 	case SD_DELAYED_RETRY_ISSUED:
18554 		if (ddi_in_panic() || (un->un_state == SD_STATE_OFFLINE) ||
18555 		    ((pktp->pkt_reason == un->un_last_pkt_reason) &&
18556 		    (sd_error_level != SCSI_ERR_ALL))) {
18557 			return;
18558 		}
18559 		msgp = "retrying command";
18560 		break;
18561 	default:
18562 		goto update_pkt_reason;
18563 	}
18564 
18565 	reasonp = (((pktp->pkt_statistics & STAT_PERR) != 0) ? "parity error" :
18566 	    scsi_rname(pktp->pkt_reason));
18567 
18568 	scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
18569 	    "SCSI transport failed: reason '%s': %s\n", reasonp, msgp);
18570 
18571 update_pkt_reason:
18572 	/*
18573 	 * Update un->un_last_pkt_reason with the value in pktp->pkt_reason.
18574 	 * This is to prevent multiple console messages for the same failure
18575 	 * condition.  Note that un->un_last_pkt_reason is NOT restored if &
18576 	 * when the command is retried successfully because there still may be
18577 	 * more commands coming back with the same value of pktp->pkt_reason.
18578 	 */
18579 	if ((pktp->pkt_reason != CMD_CMPLT) || (xp->xb_retry_count == 0)) {
18580 		un->un_last_pkt_reason = pktp->pkt_reason;
18581 	}
18582 }
18583 
18584 
18585 /*
18586  *    Function: sd_print_cmd_incomplete_msg
18587  *
18588  * Description: Message logging fn. for a SCSA "CMD_INCOMPLETE" pkt_reason.
18589  *
18590  *   Arguments: un - ptr to associated softstate
18591  *		bp - ptr to buf(9S) for the command
18592  *		arg - passed to sd_print_retry_msg()
18593  *		code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
18594  *			or SD_NO_RETRY_ISSUED
18595  *
18596  *     Context: May be called from interrupt context
18597  */
18598 
18599 static void
18600 sd_print_cmd_incomplete_msg(struct sd_lun *un, struct buf *bp, void *arg,
18601 	int code)
18602 {
18603 	dev_info_t	*dip;
18604 
18605 	ASSERT(un != NULL);
18606 	ASSERT(mutex_owned(SD_MUTEX(un)));
18607 	ASSERT(bp != NULL);
18608 
18609 	switch (code) {
18610 	case SD_NO_RETRY_ISSUED:
18611 		/* Command was failed. Someone turned off this target? */
18612 		if (un->un_state != SD_STATE_OFFLINE) {
18613 			/*
18614 			 * Suppress message if we are detaching and
18615 			 * device has been disconnected
18616 			 * Note that DEVI_IS_DEVICE_REMOVED is a consolidation
18617 			 * private interface and not part of the DDI
18618 			 */
18619 			dip = un->un_sd->sd_dev;
18620 			if (!(DEVI_IS_DETACHING(dip) &&
18621 			    DEVI_IS_DEVICE_REMOVED(dip))) {
18622 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
18623 				"disk not responding to selection\n");
18624 			}
18625 			New_state(un, SD_STATE_OFFLINE);
18626 		}
18627 		break;
18628 
18629 	case SD_DELAYED_RETRY_ISSUED:
18630 	case SD_IMMEDIATE_RETRY_ISSUED:
18631 	default:
18632 		/* Command was successfully queued for retry */
18633 		sd_print_retry_msg(un, bp, arg, code);
18634 		break;
18635 	}
18636 }
18637 
18638 
18639 /*
18640  *    Function: sd_pkt_reason_cmd_incomplete
18641  *
18642  * Description: Recovery actions for a SCSA "CMD_INCOMPLETE" pkt_reason.
18643  *
18644  *     Context: May be called from interrupt context
18645  */
18646 
18647 static void
18648 sd_pkt_reason_cmd_incomplete(struct sd_lun *un, struct buf *bp,
18649 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18650 {
18651 	int flag = SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE;
18652 
18653 	ASSERT(un != NULL);
18654 	ASSERT(mutex_owned(SD_MUTEX(un)));
18655 	ASSERT(bp != NULL);
18656 	ASSERT(xp != NULL);
18657 	ASSERT(pktp != NULL);
18658 
18659 	/* Do not do a reset if selection did not complete */
18660 	/* Note: Should this not just check the bit? */
18661 	if (pktp->pkt_state != STATE_GOT_BUS) {
18662 		SD_UPDATE_ERRSTATS(un, sd_transerrs);
18663 		sd_reset_target(un, pktp);
18664 	}
18665 
18666 	/*
18667 	 * If the target was not successfully selected, then set
18668 	 * SD_RETRIES_FAILFAST to indicate that we lost communication
18669 	 * with the target, and further retries and/or commands are
18670 	 * likely to take a long time.
18671 	 */
18672 	if ((pktp->pkt_state & STATE_GOT_TARGET) == 0) {
18673 		flag |= SD_RETRIES_FAILFAST;
18674 	}
18675 
18676 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18677 
18678 	sd_retry_command(un, bp, flag,
18679 	    sd_print_cmd_incomplete_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18680 }
18681 
18682 
18683 
18684 /*
18685  *    Function: sd_pkt_reason_cmd_tran_err
18686  *
18687  * Description: Recovery actions for a SCSA "CMD_TRAN_ERR" pkt_reason.
18688  *
18689  *     Context: May be called from interrupt context
18690  */
18691 
18692 static void
18693 sd_pkt_reason_cmd_tran_err(struct sd_lun *un, struct buf *bp,
18694 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18695 {
18696 	ASSERT(un != NULL);
18697 	ASSERT(mutex_owned(SD_MUTEX(un)));
18698 	ASSERT(bp != NULL);
18699 	ASSERT(xp != NULL);
18700 	ASSERT(pktp != NULL);
18701 
18702 	/*
18703 	 * Do not reset if we got a parity error, or if
18704 	 * selection did not complete.
18705 	 */
18706 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
18707 	/* Note: Should this not just check the bit for pkt_state? */
18708 	if (((pktp->pkt_statistics & STAT_PERR) == 0) &&
18709 	    (pktp->pkt_state != STATE_GOT_BUS)) {
18710 		SD_UPDATE_ERRSTATS(un, sd_transerrs);
18711 		sd_reset_target(un, pktp);
18712 	}
18713 
18714 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18715 
18716 	sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE),
18717 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18718 }
18719 
18720 
18721 
18722 /*
18723  *    Function: sd_pkt_reason_cmd_reset
18724  *
18725  * Description: Recovery actions for a SCSA "CMD_RESET" pkt_reason.
18726  *
18727  *     Context: May be called from interrupt context
18728  */
18729 
18730 static void
18731 sd_pkt_reason_cmd_reset(struct sd_lun *un, struct buf *bp,
18732 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18733 {
18734 	ASSERT(un != NULL);
18735 	ASSERT(mutex_owned(SD_MUTEX(un)));
18736 	ASSERT(bp != NULL);
18737 	ASSERT(xp != NULL);
18738 	ASSERT(pktp != NULL);
18739 
18740 	/* The target may still be running the command, so try to reset. */
18741 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
18742 	sd_reset_target(un, pktp);
18743 
18744 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18745 
18746 	/*
18747 	 * If pkt_reason is CMD_RESET chances are that this pkt got
18748 	 * reset because another target on this bus caused it. The target
18749 	 * that caused it should get CMD_TIMEOUT with pkt_statistics
18750 	 * of STAT_TIMEOUT/STAT_DEV_RESET.
18751 	 */
18752 
18753 	sd_retry_command(un, bp, (SD_RETRIES_VICTIM | SD_RETRIES_ISOLATE),
18754 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18755 }
18756 
18757 
18758 
18759 
18760 /*
18761  *    Function: sd_pkt_reason_cmd_aborted
18762  *
18763  * Description: Recovery actions for a SCSA "CMD_ABORTED" pkt_reason.
18764  *
18765  *     Context: May be called from interrupt context
18766  */
18767 
18768 static void
18769 sd_pkt_reason_cmd_aborted(struct sd_lun *un, struct buf *bp,
18770 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18771 {
18772 	ASSERT(un != NULL);
18773 	ASSERT(mutex_owned(SD_MUTEX(un)));
18774 	ASSERT(bp != NULL);
18775 	ASSERT(xp != NULL);
18776 	ASSERT(pktp != NULL);
18777 
18778 	/* The target may still be running the command, so try to reset. */
18779 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
18780 	sd_reset_target(un, pktp);
18781 
18782 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18783 
18784 	/*
18785 	 * If pkt_reason is CMD_ABORTED chances are that this pkt got
18786 	 * aborted because another target on this bus caused it. The target
18787 	 * that caused it should get CMD_TIMEOUT with pkt_statistics
18788 	 * of STAT_TIMEOUT/STAT_DEV_RESET.
18789 	 */
18790 
18791 	sd_retry_command(un, bp, (SD_RETRIES_VICTIM | SD_RETRIES_ISOLATE),
18792 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18793 }
18794 
18795 
18796 
18797 /*
18798  *    Function: sd_pkt_reason_cmd_timeout
18799  *
18800  * Description: Recovery actions for a SCSA "CMD_TIMEOUT" pkt_reason.
18801  *
18802  *     Context: May be called from interrupt context
18803  */
18804 
18805 static void
18806 sd_pkt_reason_cmd_timeout(struct sd_lun *un, struct buf *bp,
18807 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18808 {
18809 	ASSERT(un != NULL);
18810 	ASSERT(mutex_owned(SD_MUTEX(un)));
18811 	ASSERT(bp != NULL);
18812 	ASSERT(xp != NULL);
18813 	ASSERT(pktp != NULL);
18814 
18815 
18816 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
18817 	sd_reset_target(un, pktp);
18818 
18819 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18820 
18821 	/*
18822 	 * A command timeout indicates that we could not establish
18823 	 * communication with the target, so set SD_RETRIES_FAILFAST
18824 	 * as further retries/commands are likely to take a long time.
18825 	 */
18826 	sd_retry_command(un, bp,
18827 	    (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE | SD_RETRIES_FAILFAST),
18828 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18829 }
18830 
18831 
18832 
18833 /*
18834  *    Function: sd_pkt_reason_cmd_unx_bus_free
18835  *
18836  * Description: Recovery actions for a SCSA "CMD_UNX_BUS_FREE" pkt_reason.
18837  *
18838  *     Context: May be called from interrupt context
18839  */
18840 
18841 static void
18842 sd_pkt_reason_cmd_unx_bus_free(struct sd_lun *un, struct buf *bp,
18843 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18844 {
18845 	void (*funcp)(struct sd_lun *un, struct buf *bp, void *arg, int code);
18846 
18847 	ASSERT(un != NULL);
18848 	ASSERT(mutex_owned(SD_MUTEX(un)));
18849 	ASSERT(bp != NULL);
18850 	ASSERT(xp != NULL);
18851 	ASSERT(pktp != NULL);
18852 
18853 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
18854 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18855 
18856 	funcp = ((pktp->pkt_statistics & STAT_PERR) == 0) ?
18857 	    sd_print_retry_msg : NULL;
18858 
18859 	sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE),
18860 	    funcp, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18861 }
18862 
18863 
18864 /*
18865  *    Function: sd_pkt_reason_cmd_tag_reject
18866  *
18867  * Description: Recovery actions for a SCSA "CMD_TAG_REJECT" pkt_reason.
18868  *
18869  *     Context: May be called from interrupt context
18870  */
18871 
18872 static void
18873 sd_pkt_reason_cmd_tag_reject(struct sd_lun *un, struct buf *bp,
18874 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18875 {
18876 	ASSERT(un != NULL);
18877 	ASSERT(mutex_owned(SD_MUTEX(un)));
18878 	ASSERT(bp != NULL);
18879 	ASSERT(xp != NULL);
18880 	ASSERT(pktp != NULL);
18881 
18882 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
18883 	pktp->pkt_flags = 0;
18884 	un->un_tagflags = 0;
18885 	if (un->un_f_opt_queueing == TRUE) {
18886 		un->un_throttle = min(un->un_throttle, 3);
18887 	} else {
18888 		un->un_throttle = 1;
18889 	}
18890 	mutex_exit(SD_MUTEX(un));
18891 	(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
18892 	mutex_enter(SD_MUTEX(un));
18893 
18894 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18895 
18896 	/* Legacy behavior not to check retry counts here. */
18897 	sd_retry_command(un, bp, (SD_RETRIES_NOCHECK | SD_RETRIES_ISOLATE),
18898 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18899 }
18900 
18901 
18902 /*
18903  *    Function: sd_pkt_reason_default
18904  *
18905  * Description: Default recovery actions for SCSA pkt_reason values that
18906  *		do not have more explicit recovery actions.
18907  *
18908  *     Context: May be called from interrupt context
18909  */
18910 
18911 static void
18912 sd_pkt_reason_default(struct sd_lun *un, struct buf *bp,
18913 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18914 {
18915 	ASSERT(un != NULL);
18916 	ASSERT(mutex_owned(SD_MUTEX(un)));
18917 	ASSERT(bp != NULL);
18918 	ASSERT(xp != NULL);
18919 	ASSERT(pktp != NULL);
18920 
18921 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
18922 	sd_reset_target(un, pktp);
18923 
18924 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
18925 
18926 	sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE),
18927 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
18928 }
18929 
18930 
18931 
18932 /*
18933  *    Function: sd_pkt_status_check_condition
18934  *
18935  * Description: Recovery actions for a "STATUS_CHECK" SCSI command status.
18936  *
18937  *     Context: May be called from interrupt context
18938  */
18939 
18940 static void
18941 sd_pkt_status_check_condition(struct sd_lun *un, struct buf *bp,
18942 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18943 {
18944 	ASSERT(un != NULL);
18945 	ASSERT(mutex_owned(SD_MUTEX(un)));
18946 	ASSERT(bp != NULL);
18947 	ASSERT(xp != NULL);
18948 	ASSERT(pktp != NULL);
18949 
18950 	SD_TRACE(SD_LOG_IO, un, "sd_pkt_status_check_condition: "
18951 	    "entry: buf:0x%p xp:0x%p\n", bp, xp);
18952 
18953 	/*
18954 	 * If ARQ is NOT enabled, then issue a REQUEST SENSE command (the
18955 	 * command will be retried after the request sense). Otherwise, retry
18956 	 * the command. Note: we are issuing the request sense even though the
18957 	 * retry limit may have been reached for the failed command.
18958 	 */
18959 	if (un->un_f_arq_enabled == FALSE) {
18960 		SD_INFO(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: "
18961 		    "no ARQ, sending request sense command\n");
18962 		sd_send_request_sense_command(un, bp, pktp);
18963 	} else {
18964 		SD_INFO(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: "
18965 		    "ARQ,retrying request sense command\n");
18966 #if defined(__i386) || defined(__amd64)
18967 		/*
18968 		 * The SD_RETRY_DELAY value need to be adjusted here
18969 		 * when SD_RETRY_DELAY change in sddef.h
18970 		 */
18971 		sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL, EIO,
18972 			un->un_f_is_fibre?drv_usectohz(100000):(clock_t)0,
18973 			NULL);
18974 #else
18975 		sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL,
18976 		    EIO, SD_RETRY_DELAY, NULL);
18977 #endif
18978 	}
18979 
18980 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: exit\n");
18981 }
18982 
18983 
18984 /*
18985  *    Function: sd_pkt_status_busy
18986  *
18987  * Description: Recovery actions for a "STATUS_BUSY" SCSI command status.
18988  *
18989  *     Context: May be called from interrupt context
18990  */
18991 
18992 static void
18993 sd_pkt_status_busy(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
18994 	struct scsi_pkt *pktp)
18995 {
18996 	ASSERT(un != NULL);
18997 	ASSERT(mutex_owned(SD_MUTEX(un)));
18998 	ASSERT(bp != NULL);
18999 	ASSERT(xp != NULL);
19000 	ASSERT(pktp != NULL);
19001 
19002 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19003 	    "sd_pkt_status_busy: entry\n");
19004 
19005 	/* If retries are exhausted, just fail the command. */
19006 	if (xp->xb_retry_count >= un->un_busy_retry_count) {
19007 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
19008 		    "device busy too long\n");
19009 		sd_return_failed_command(un, bp, EIO);
19010 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19011 		    "sd_pkt_status_busy: exit\n");
19012 		return;
19013 	}
19014 	xp->xb_retry_count++;
19015 
19016 	/*
19017 	 * Try to reset the target. However, we do not want to perform
19018 	 * more than one reset if the device continues to fail. The reset
19019 	 * will be performed when the retry count reaches the reset
19020 	 * threshold.  This threshold should be set such that at least
19021 	 * one retry is issued before the reset is performed.
19022 	 */
19023 	if (xp->xb_retry_count ==
19024 	    ((un->un_reset_retry_count < 2) ? 2 : un->un_reset_retry_count)) {
19025 		int rval = 0;
19026 		mutex_exit(SD_MUTEX(un));
19027 		if (un->un_f_allow_bus_device_reset == TRUE) {
19028 			/*
19029 			 * First try to reset the LUN; if we cannot then
19030 			 * try to reset the target.
19031 			 */
19032 			if (un->un_f_lun_reset_enabled == TRUE) {
19033 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19034 				    "sd_pkt_status_busy: RESET_LUN\n");
19035 				rval = scsi_reset(SD_ADDRESS(un), RESET_LUN);
19036 			}
19037 			if (rval == 0) {
19038 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19039 				    "sd_pkt_status_busy: RESET_TARGET\n");
19040 				rval = scsi_reset(SD_ADDRESS(un), RESET_TARGET);
19041 			}
19042 		}
19043 		if (rval == 0) {
19044 			/*
19045 			 * If the RESET_LUN and/or RESET_TARGET failed,
19046 			 * try RESET_ALL
19047 			 */
19048 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19049 			    "sd_pkt_status_busy: RESET_ALL\n");
19050 			rval = scsi_reset(SD_ADDRESS(un), RESET_ALL);
19051 		}
19052 		mutex_enter(SD_MUTEX(un));
19053 		if (rval == 0) {
19054 			/*
19055 			 * The RESET_LUN, RESET_TARGET, and/or RESET_ALL failed.
19056 			 * At this point we give up & fail the command.
19057 			 */
19058 			sd_return_failed_command(un, bp, EIO);
19059 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19060 			    "sd_pkt_status_busy: exit (failed cmd)\n");
19061 			return;
19062 		}
19063 	}
19064 
19065 	/*
19066 	 * Retry the command. Be sure to specify SD_RETRIES_NOCHECK as
19067 	 * we have already checked the retry counts above.
19068 	 */
19069 	sd_retry_command(un, bp, SD_RETRIES_NOCHECK, NULL, NULL,
19070 	    EIO, SD_BSY_TIMEOUT, NULL);
19071 
19072 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19073 	    "sd_pkt_status_busy: exit\n");
19074 }
19075 
19076 
19077 /*
19078  *    Function: sd_pkt_status_reservation_conflict
19079  *
19080  * Description: Recovery actions for a "STATUS_RESERVATION_CONFLICT" SCSI
19081  *		command status.
19082  *
19083  *     Context: May be called from interrupt context
19084  */
19085 
19086 static void
19087 sd_pkt_status_reservation_conflict(struct sd_lun *un, struct buf *bp,
19088 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
19089 {
19090 	ASSERT(un != NULL);
19091 	ASSERT(mutex_owned(SD_MUTEX(un)));
19092 	ASSERT(bp != NULL);
19093 	ASSERT(xp != NULL);
19094 	ASSERT(pktp != NULL);
19095 
19096 	/*
19097 	 * If the command was PERSISTENT_RESERVATION_[IN|OUT] then reservation
19098 	 * conflict could be due to various reasons like incorrect keys, not
19099 	 * registered or not reserved etc. So, we return EACCES to the caller.
19100 	 */
19101 	if (un->un_reservation_type == SD_SCSI3_RESERVATION) {
19102 		int cmd = SD_GET_PKT_OPCODE(pktp);
19103 		if ((cmd == SCMD_PERSISTENT_RESERVE_IN) ||
19104 		    (cmd == SCMD_PERSISTENT_RESERVE_OUT)) {
19105 			sd_return_failed_command(un, bp, EACCES);
19106 			return;
19107 		}
19108 	}
19109 
19110 	un->un_resvd_status |= SD_RESERVATION_CONFLICT;
19111 
19112 	if ((un->un_resvd_status & SD_FAILFAST) != 0) {
19113 		if (sd_failfast_enable != 0) {
19114 			/* By definition, we must panic here.... */
19115 			sd_panic_for_res_conflict(un);
19116 			/*NOTREACHED*/
19117 		}
19118 		SD_ERROR(SD_LOG_IO, un,
19119 		    "sd_handle_resv_conflict: Disk Reserved\n");
19120 		sd_return_failed_command(un, bp, EACCES);
19121 		return;
19122 	}
19123 
19124 	/*
19125 	 * 1147670: retry only if sd_retry_on_reservation_conflict
19126 	 * property is set (default is 1). Retries will not succeed
19127 	 * on a disk reserved by another initiator. HA systems
19128 	 * may reset this via sd.conf to avoid these retries.
19129 	 *
19130 	 * Note: The legacy return code for this failure is EIO, however EACCES
19131 	 * seems more appropriate for a reservation conflict.
19132 	 */
19133 	if (sd_retry_on_reservation_conflict == 0) {
19134 		SD_ERROR(SD_LOG_IO, un,
19135 		    "sd_handle_resv_conflict: Device Reserved\n");
19136 		sd_return_failed_command(un, bp, EIO);
19137 		return;
19138 	}
19139 
19140 	/*
19141 	 * Retry the command if we can.
19142 	 *
19143 	 * Note: The legacy return code for this failure is EIO, however EACCES
19144 	 * seems more appropriate for a reservation conflict.
19145 	 */
19146 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL, EIO,
19147 	    (clock_t)2, NULL);
19148 }
19149 
19150 
19151 
19152 /*
19153  *    Function: sd_pkt_status_qfull
19154  *
19155  * Description: Handle a QUEUE FULL condition from the target.  This can
19156  *		occur if the HBA does not handle the queue full condition.
19157  *		(Basically this means third-party HBAs as Sun HBAs will
19158  *		handle the queue full condition.)  Note that if there are
19159  *		some commands already in the transport, then the queue full
19160  *		has occurred because the queue for this nexus is actually
19161  *		full. If there are no commands in the transport, then the
19162  *		queue full is resulting from some other initiator or lun
19163  *		consuming all the resources at the target.
19164  *
19165  *     Context: May be called from interrupt context
19166  */
19167 
19168 static void
19169 sd_pkt_status_qfull(struct sd_lun *un, struct buf *bp,
19170 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
19171 {
19172 	ASSERT(un != NULL);
19173 	ASSERT(mutex_owned(SD_MUTEX(un)));
19174 	ASSERT(bp != NULL);
19175 	ASSERT(xp != NULL);
19176 	ASSERT(pktp != NULL);
19177 
19178 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19179 	    "sd_pkt_status_qfull: entry\n");
19180 
19181 	/*
19182 	 * Just lower the QFULL throttle and retry the command.  Note that
19183 	 * we do not limit the number of retries here.
19184 	 */
19185 	sd_reduce_throttle(un, SD_THROTTLE_QFULL);
19186 	sd_retry_command(un, bp, SD_RETRIES_NOCHECK, NULL, NULL, 0,
19187 	    SD_RESTART_TIMEOUT, NULL);
19188 
19189 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19190 	    "sd_pkt_status_qfull: exit\n");
19191 }
19192 
19193 
19194 /*
19195  *    Function: sd_reset_target
19196  *
19197  * Description: Issue a scsi_reset(9F), with either RESET_LUN,
19198  *		RESET_TARGET, or RESET_ALL.
19199  *
19200  *     Context: May be called under interrupt context.
19201  */
19202 
19203 static void
19204 sd_reset_target(struct sd_lun *un, struct scsi_pkt *pktp)
19205 {
19206 	int rval = 0;
19207 
19208 	ASSERT(un != NULL);
19209 	ASSERT(mutex_owned(SD_MUTEX(un)));
19210 	ASSERT(pktp != NULL);
19211 
19212 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reset_target: entry\n");
19213 
19214 	/*
19215 	 * No need to reset if the transport layer has already done so.
19216 	 */
19217 	if ((pktp->pkt_statistics &
19218 	    (STAT_BUS_RESET | STAT_DEV_RESET | STAT_ABORTED)) != 0) {
19219 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19220 		    "sd_reset_target: no reset\n");
19221 		return;
19222 	}
19223 
19224 	mutex_exit(SD_MUTEX(un));
19225 
19226 	if (un->un_f_allow_bus_device_reset == TRUE) {
19227 		if (un->un_f_lun_reset_enabled == TRUE) {
19228 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19229 			    "sd_reset_target: RESET_LUN\n");
19230 			rval = scsi_reset(SD_ADDRESS(un), RESET_LUN);
19231 		}
19232 		if (rval == 0) {
19233 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19234 			    "sd_reset_target: RESET_TARGET\n");
19235 			rval = scsi_reset(SD_ADDRESS(un), RESET_TARGET);
19236 		}
19237 	}
19238 
19239 	if (rval == 0) {
19240 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19241 		    "sd_reset_target: RESET_ALL\n");
19242 		(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
19243 	}
19244 
19245 	mutex_enter(SD_MUTEX(un));
19246 
19247 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reset_target: exit\n");
19248 }
19249 
19250 
19251 /*
19252  *    Function: sd_media_change_task
19253  *
19254  * Description: Recovery action for CDROM to become available.
19255  *
19256  *     Context: Executes in a taskq() thread context
19257  */
19258 
19259 static void
19260 sd_media_change_task(void *arg)
19261 {
19262 	struct	scsi_pkt	*pktp = arg;
19263 	struct	sd_lun		*un;
19264 	struct	buf		*bp;
19265 	struct	sd_xbuf		*xp;
19266 	int	err		= 0;
19267 	int	retry_count	= 0;
19268 	int	retry_limit	= SD_UNIT_ATTENTION_RETRY/10;
19269 	struct	sd_sense_info	si;
19270 
19271 	ASSERT(pktp != NULL);
19272 	bp = (struct buf *)pktp->pkt_private;
19273 	ASSERT(bp != NULL);
19274 	xp = SD_GET_XBUF(bp);
19275 	ASSERT(xp != NULL);
19276 	un = SD_GET_UN(bp);
19277 	ASSERT(un != NULL);
19278 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19279 	ASSERT(un->un_f_monitor_media_state);
19280 
19281 	si.ssi_severity = SCSI_ERR_INFO;
19282 	si.ssi_pfa_flag = FALSE;
19283 
19284 	/*
19285 	 * When a reset is issued on a CDROM, it takes a long time to
19286 	 * recover. First few attempts to read capacity and other things
19287 	 * related to handling unit attention fail (with a ASC 0x4 and
19288 	 * ASCQ 0x1). In that case we want to do enough retries and we want
19289 	 * to limit the retries in other cases of genuine failures like
19290 	 * no media in drive.
19291 	 */
19292 	while (retry_count++ < retry_limit) {
19293 		if ((err = sd_handle_mchange(un)) == 0) {
19294 			break;
19295 		}
19296 		if (err == EAGAIN) {
19297 			retry_limit = SD_UNIT_ATTENTION_RETRY;
19298 		}
19299 		/* Sleep for 0.5 sec. & try again */
19300 		delay(drv_usectohz(500000));
19301 	}
19302 
19303 	/*
19304 	 * Dispatch (retry or fail) the original command here,
19305 	 * along with appropriate console messages....
19306 	 *
19307 	 * Must grab the mutex before calling sd_retry_command,
19308 	 * sd_print_sense_msg and sd_return_failed_command.
19309 	 */
19310 	mutex_enter(SD_MUTEX(un));
19311 	if (err != SD_CMD_SUCCESS) {
19312 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
19313 		SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err);
19314 		si.ssi_severity = SCSI_ERR_FATAL;
19315 		sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
19316 		sd_return_failed_command(un, bp, EIO);
19317 	} else {
19318 		sd_retry_command(un, bp, SD_RETRIES_NOCHECK, sd_print_sense_msg,
19319 		    &si, EIO, (clock_t)0, NULL);
19320 	}
19321 	mutex_exit(SD_MUTEX(un));
19322 }
19323 
19324 
19325 
19326 /*
19327  *    Function: sd_handle_mchange
19328  *
19329  * Description: Perform geometry validation & other recovery when CDROM
19330  *		has been removed from drive.
19331  *
19332  * Return Code: 0 for success
19333  *		errno-type return code of either sd_send_scsi_DOORLOCK() or
19334  *		sd_send_scsi_READ_CAPACITY()
19335  *
19336  *     Context: Executes in a taskq() thread context
19337  */
19338 
19339 static int
19340 sd_handle_mchange(struct sd_lun *un)
19341 {
19342 	uint64_t	capacity;
19343 	uint32_t	lbasize;
19344 	int		rval;
19345 
19346 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19347 	ASSERT(un->un_f_monitor_media_state);
19348 
19349 	if ((rval = sd_send_scsi_READ_CAPACITY(un, &capacity, &lbasize,
19350 	    SD_PATH_DIRECT_PRIORITY)) != 0) {
19351 		return (rval);
19352 	}
19353 
19354 	mutex_enter(SD_MUTEX(un));
19355 	sd_update_block_info(un, lbasize, capacity);
19356 
19357 	if (un->un_errstats != NULL) {
19358 		struct	sd_errstats *stp =
19359 		    (struct sd_errstats *)un->un_errstats->ks_data;
19360 		stp->sd_capacity.value.ui64 = (uint64_t)
19361 		    ((uint64_t)un->un_blockcount *
19362 		    (uint64_t)un->un_tgt_blocksize);
19363 	}
19364 
19365 	/*
19366 	 * Note: Maybe let the strategy/partitioning chain worry about getting
19367 	 * valid geometry.
19368 	 */
19369 	un->un_f_geometry_is_valid = FALSE;
19370 	(void) sd_validate_geometry(un, SD_PATH_DIRECT_PRIORITY);
19371 	if (un->un_f_geometry_is_valid == FALSE) {
19372 		mutex_exit(SD_MUTEX(un));
19373 		return (EIO);
19374 	}
19375 
19376 	mutex_exit(SD_MUTEX(un));
19377 
19378 	/*
19379 	 * Try to lock the door
19380 	 */
19381 	return (sd_send_scsi_DOORLOCK(un, SD_REMOVAL_PREVENT,
19382 	    SD_PATH_DIRECT_PRIORITY));
19383 }
19384 
19385 
19386 /*
19387  *    Function: sd_send_scsi_DOORLOCK
19388  *
19389  * Description: Issue the scsi DOOR LOCK command
19390  *
19391  *   Arguments: un    - pointer to driver soft state (unit) structure for
19392  *			this target.
19393  *		flag  - SD_REMOVAL_ALLOW
19394  *			SD_REMOVAL_PREVENT
19395  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
19396  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
19397  *			to use the USCSI "direct" chain and bypass the normal
19398  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when this
19399  *			command is issued as part of an error recovery action.
19400  *
19401  * Return Code: 0   - Success
19402  *		errno return code from sd_send_scsi_cmd()
19403  *
19404  *     Context: Can sleep.
19405  */
19406 
19407 static int
19408 sd_send_scsi_DOORLOCK(struct sd_lun *un, int flag, int path_flag)
19409 {
19410 	union scsi_cdb		cdb;
19411 	struct uscsi_cmd	ucmd_buf;
19412 	struct scsi_extended_sense	sense_buf;
19413 	int			status;
19414 
19415 	ASSERT(un != NULL);
19416 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19417 
19418 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_DOORLOCK: entry: un:0x%p\n", un);
19419 
19420 	/* already determined doorlock is not supported, fake success */
19421 	if (un->un_f_doorlock_supported == FALSE) {
19422 		return (0);
19423 	}
19424 
19425 	bzero(&cdb, sizeof (cdb));
19426 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19427 
19428 	cdb.scc_cmd = SCMD_DOORLOCK;
19429 	cdb.cdb_opaque[4] = (uchar_t)flag;
19430 
19431 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19432 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
19433 	ucmd_buf.uscsi_bufaddr	= NULL;
19434 	ucmd_buf.uscsi_buflen	= 0;
19435 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19436 	ucmd_buf.uscsi_rqlen	= sizeof (sense_buf);
19437 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_SILENT;
19438 	ucmd_buf.uscsi_timeout	= 15;
19439 
19440 	SD_TRACE(SD_LOG_IO, un,
19441 	    "sd_send_scsi_DOORLOCK: returning sd_send_scsi_cmd()\n");
19442 
19443 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
19444 	    UIO_SYSSPACE, UIO_SYSSPACE, path_flag);
19445 
19446 	if ((status == EIO) && (ucmd_buf.uscsi_status == STATUS_CHECK) &&
19447 	    (ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
19448 	    (scsi_sense_key((uint8_t *)&sense_buf) == KEY_ILLEGAL_REQUEST)) {
19449 		/* fake success and skip subsequent doorlock commands */
19450 		un->un_f_doorlock_supported = FALSE;
19451 		return (0);
19452 	}
19453 
19454 	return (status);
19455 }
19456 
19457 /*
19458  *    Function: sd_send_scsi_READ_CAPACITY
19459  *
19460  * Description: This routine uses the scsi READ CAPACITY command to determine
19461  *		the device capacity in number of blocks and the device native
19462  *		block size. If this function returns a failure, then the
19463  *		values in *capp and *lbap are undefined.  If the capacity
19464  *		returned is 0xffffffff then the lun is too large for a
19465  *		normal READ CAPACITY command and the results of a
19466  *		READ CAPACITY 16 will be used instead.
19467  *
19468  *   Arguments: un   - ptr to soft state struct for the target
19469  *		capp - ptr to unsigned 64-bit variable to receive the
19470  *			capacity value from the command.
19471  *		lbap - ptr to unsigned 32-bit varaible to receive the
19472  *			block size value from the command
19473  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
19474  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
19475  *			to use the USCSI "direct" chain and bypass the normal
19476  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when this
19477  *			command is issued as part of an error recovery action.
19478  *
19479  * Return Code: 0   - Success
19480  *		EIO - IO error
19481  *		EACCES - Reservation conflict detected
19482  *		EAGAIN - Device is becoming ready
19483  *		errno return code from sd_send_scsi_cmd()
19484  *
19485  *     Context: Can sleep.  Blocks until command completes.
19486  */
19487 
19488 #define	SD_CAPACITY_SIZE	sizeof (struct scsi_capacity)
19489 
19490 static int
19491 sd_send_scsi_READ_CAPACITY(struct sd_lun *un, uint64_t *capp, uint32_t *lbap,
19492 	int path_flag)
19493 {
19494 	struct	scsi_extended_sense	sense_buf;
19495 	struct	uscsi_cmd	ucmd_buf;
19496 	union	scsi_cdb	cdb;
19497 	uint32_t		*capacity_buf;
19498 	uint64_t		capacity;
19499 	uint32_t		lbasize;
19500 	int			status;
19501 
19502 	ASSERT(un != NULL);
19503 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19504 	ASSERT(capp != NULL);
19505 	ASSERT(lbap != NULL);
19506 
19507 	SD_TRACE(SD_LOG_IO, un,
19508 	    "sd_send_scsi_READ_CAPACITY: entry: un:0x%p\n", un);
19509 
19510 	/*
19511 	 * First send a READ_CAPACITY command to the target.
19512 	 * (This command is mandatory under SCSI-2.)
19513 	 *
19514 	 * Set up the CDB for the READ_CAPACITY command.  The Partial
19515 	 * Medium Indicator bit is cleared.  The address field must be
19516 	 * zero if the PMI bit is zero.
19517 	 */
19518 	bzero(&cdb, sizeof (cdb));
19519 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19520 
19521 	capacity_buf = kmem_zalloc(SD_CAPACITY_SIZE, KM_SLEEP);
19522 
19523 	cdb.scc_cmd = SCMD_READ_CAPACITY;
19524 
19525 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19526 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
19527 	ucmd_buf.uscsi_bufaddr	= (caddr_t)capacity_buf;
19528 	ucmd_buf.uscsi_buflen	= SD_CAPACITY_SIZE;
19529 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19530 	ucmd_buf.uscsi_rqlen	= sizeof (sense_buf);
19531 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
19532 	ucmd_buf.uscsi_timeout	= 60;
19533 
19534 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
19535 	    UIO_SYSSPACE, UIO_SYSSPACE, path_flag);
19536 
19537 	switch (status) {
19538 	case 0:
19539 		/* Return failure if we did not get valid capacity data. */
19540 		if (ucmd_buf.uscsi_resid != 0) {
19541 			kmem_free(capacity_buf, SD_CAPACITY_SIZE);
19542 			return (EIO);
19543 		}
19544 
19545 		/*
19546 		 * Read capacity and block size from the READ CAPACITY 10 data.
19547 		 * This data may be adjusted later due to device specific
19548 		 * issues.
19549 		 *
19550 		 * According to the SCSI spec, the READ CAPACITY 10
19551 		 * command returns the following:
19552 		 *
19553 		 *  bytes 0-3: Maximum logical block address available.
19554 		 *		(MSB in byte:0 & LSB in byte:3)
19555 		 *
19556 		 *  bytes 4-7: Block length in bytes
19557 		 *		(MSB in byte:4 & LSB in byte:7)
19558 		 *
19559 		 */
19560 		capacity = BE_32(capacity_buf[0]);
19561 		lbasize = BE_32(capacity_buf[1]);
19562 
19563 		/*
19564 		 * Done with capacity_buf
19565 		 */
19566 		kmem_free(capacity_buf, SD_CAPACITY_SIZE);
19567 
19568 		/*
19569 		 * if the reported capacity is set to all 0xf's, then
19570 		 * this disk is too large and requires SBC-2 commands.
19571 		 * Reissue the request using READ CAPACITY 16.
19572 		 */
19573 		if (capacity == 0xffffffff) {
19574 			status = sd_send_scsi_READ_CAPACITY_16(un, &capacity,
19575 			    &lbasize, path_flag);
19576 			if (status != 0) {
19577 				return (status);
19578 			}
19579 		}
19580 		break;	/* Success! */
19581 	case EIO:
19582 		switch (ucmd_buf.uscsi_status) {
19583 		case STATUS_RESERVATION_CONFLICT:
19584 			status = EACCES;
19585 			break;
19586 		case STATUS_CHECK:
19587 			/*
19588 			 * Check condition; look for ASC/ASCQ of 0x04/0x01
19589 			 * (LOGICAL UNIT IS IN PROCESS OF BECOMING READY)
19590 			 */
19591 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
19592 			    (scsi_sense_asc((uint8_t *)&sense_buf) == 0x04) &&
19593 			    (scsi_sense_ascq((uint8_t *)&sense_buf) == 0x01)) {
19594 				kmem_free(capacity_buf, SD_CAPACITY_SIZE);
19595 				return (EAGAIN);
19596 			}
19597 			break;
19598 		default:
19599 			break;
19600 		}
19601 		/* FALLTHRU */
19602 	default:
19603 		kmem_free(capacity_buf, SD_CAPACITY_SIZE);
19604 		return (status);
19605 	}
19606 
19607 	/*
19608 	 * Some ATAPI CD-ROM drives report inaccurate LBA size values
19609 	 * (2352 and 0 are common) so for these devices always force the value
19610 	 * to 2048 as required by the ATAPI specs.
19611 	 */
19612 	if ((un->un_f_cfg_is_atapi == TRUE) && (ISCD(un))) {
19613 		lbasize = 2048;
19614 	}
19615 
19616 	/*
19617 	 * Get the maximum LBA value from the READ CAPACITY data.
19618 	 * Here we assume that the Partial Medium Indicator (PMI) bit
19619 	 * was cleared when issuing the command. This means that the LBA
19620 	 * returned from the device is the LBA of the last logical block
19621 	 * on the logical unit.  The actual logical block count will be
19622 	 * this value plus one.
19623 	 *
19624 	 * Currently the capacity is saved in terms of un->un_sys_blocksize,
19625 	 * so scale the capacity value to reflect this.
19626 	 */
19627 	capacity = (capacity + 1) * (lbasize / un->un_sys_blocksize);
19628 
19629 #if defined(__i386) || defined(__amd64)
19630 	/*
19631 	 * Refer to comments related to off-by-1 at the
19632 	 * header of this file.
19633 	 * Treat 1TB disk as (1T - 512)B.
19634 	 */
19635 	if (un->un_f_capacity_adjusted == 1)
19636 	    capacity = DK_MAX_BLOCKS;
19637 #endif
19638 
19639 	/*
19640 	 * Copy the values from the READ CAPACITY command into the space
19641 	 * provided by the caller.
19642 	 */
19643 	*capp = capacity;
19644 	*lbap = lbasize;
19645 
19646 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_READ_CAPACITY: "
19647 	    "capacity:0x%llx  lbasize:0x%x\n", capacity, lbasize);
19648 
19649 	/*
19650 	 * Both the lbasize and capacity from the device must be nonzero,
19651 	 * otherwise we assume that the values are not valid and return
19652 	 * failure to the caller. (4203735)
19653 	 */
19654 	if ((capacity == 0) || (lbasize == 0)) {
19655 		return (EIO);
19656 	}
19657 
19658 	return (0);
19659 }
19660 
19661 /*
19662  *    Function: sd_send_scsi_READ_CAPACITY_16
19663  *
19664  * Description: This routine uses the scsi READ CAPACITY 16 command to
19665  *		determine the device capacity in number of blocks and the
19666  *		device native block size.  If this function returns a failure,
19667  *		then the values in *capp and *lbap are undefined.
19668  *		This routine should always be called by
19669  *		sd_send_scsi_READ_CAPACITY which will appy any device
19670  *		specific adjustments to capacity and lbasize.
19671  *
19672  *   Arguments: un   - ptr to soft state struct for the target
19673  *		capp - ptr to unsigned 64-bit variable to receive the
19674  *			capacity value from the command.
19675  *		lbap - ptr to unsigned 32-bit varaible to receive the
19676  *			block size value from the command
19677  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
19678  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
19679  *			to use the USCSI "direct" chain and bypass the normal
19680  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when
19681  *			this command is issued as part of an error recovery
19682  *			action.
19683  *
19684  * Return Code: 0   - Success
19685  *		EIO - IO error
19686  *		EACCES - Reservation conflict detected
19687  *		EAGAIN - Device is becoming ready
19688  *		errno return code from sd_send_scsi_cmd()
19689  *
19690  *     Context: Can sleep.  Blocks until command completes.
19691  */
19692 
19693 #define	SD_CAPACITY_16_SIZE	sizeof (struct scsi_capacity_16)
19694 
19695 static int
19696 sd_send_scsi_READ_CAPACITY_16(struct sd_lun *un, uint64_t *capp,
19697 	uint32_t *lbap, int path_flag)
19698 {
19699 	struct	scsi_extended_sense	sense_buf;
19700 	struct	uscsi_cmd	ucmd_buf;
19701 	union	scsi_cdb	cdb;
19702 	uint64_t		*capacity16_buf;
19703 	uint64_t		capacity;
19704 	uint32_t		lbasize;
19705 	int			status;
19706 
19707 	ASSERT(un != NULL);
19708 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19709 	ASSERT(capp != NULL);
19710 	ASSERT(lbap != NULL);
19711 
19712 	SD_TRACE(SD_LOG_IO, un,
19713 	    "sd_send_scsi_READ_CAPACITY: entry: un:0x%p\n", un);
19714 
19715 	/*
19716 	 * First send a READ_CAPACITY_16 command to the target.
19717 	 *
19718 	 * Set up the CDB for the READ_CAPACITY_16 command.  The Partial
19719 	 * Medium Indicator bit is cleared.  The address field must be
19720 	 * zero if the PMI bit is zero.
19721 	 */
19722 	bzero(&cdb, sizeof (cdb));
19723 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19724 
19725 	capacity16_buf = kmem_zalloc(SD_CAPACITY_16_SIZE, KM_SLEEP);
19726 
19727 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19728 	ucmd_buf.uscsi_cdblen	= CDB_GROUP4;
19729 	ucmd_buf.uscsi_bufaddr	= (caddr_t)capacity16_buf;
19730 	ucmd_buf.uscsi_buflen	= SD_CAPACITY_16_SIZE;
19731 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19732 	ucmd_buf.uscsi_rqlen	= sizeof (sense_buf);
19733 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
19734 	ucmd_buf.uscsi_timeout	= 60;
19735 
19736 	/*
19737 	 * Read Capacity (16) is a Service Action In command.  One
19738 	 * command byte (0x9E) is overloaded for multiple operations,
19739 	 * with the second CDB byte specifying the desired operation
19740 	 */
19741 	cdb.scc_cmd = SCMD_SVC_ACTION_IN_G4;
19742 	cdb.cdb_opaque[1] = SSVC_ACTION_READ_CAPACITY_G4;
19743 
19744 	/*
19745 	 * Fill in allocation length field
19746 	 */
19747 	FORMG4COUNT(&cdb, ucmd_buf.uscsi_buflen);
19748 
19749 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
19750 	    UIO_SYSSPACE, UIO_SYSSPACE, path_flag);
19751 
19752 	switch (status) {
19753 	case 0:
19754 		/* Return failure if we did not get valid capacity data. */
19755 		if (ucmd_buf.uscsi_resid > 20) {
19756 			kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
19757 			return (EIO);
19758 		}
19759 
19760 		/*
19761 		 * Read capacity and block size from the READ CAPACITY 10 data.
19762 		 * This data may be adjusted later due to device specific
19763 		 * issues.
19764 		 *
19765 		 * According to the SCSI spec, the READ CAPACITY 10
19766 		 * command returns the following:
19767 		 *
19768 		 *  bytes 0-7: Maximum logical block address available.
19769 		 *		(MSB in byte:0 & LSB in byte:7)
19770 		 *
19771 		 *  bytes 8-11: Block length in bytes
19772 		 *		(MSB in byte:8 & LSB in byte:11)
19773 		 *
19774 		 */
19775 		capacity = BE_64(capacity16_buf[0]);
19776 		lbasize = BE_32(*(uint32_t *)&capacity16_buf[1]);
19777 
19778 		/*
19779 		 * Done with capacity16_buf
19780 		 */
19781 		kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
19782 
19783 		/*
19784 		 * if the reported capacity is set to all 0xf's, then
19785 		 * this disk is too large.  This could only happen with
19786 		 * a device that supports LBAs larger than 64 bits which
19787 		 * are not defined by any current T10 standards.
19788 		 */
19789 		if (capacity == 0xffffffffffffffff) {
19790 			return (EIO);
19791 		}
19792 		break;	/* Success! */
19793 	case EIO:
19794 		switch (ucmd_buf.uscsi_status) {
19795 		case STATUS_RESERVATION_CONFLICT:
19796 			status = EACCES;
19797 			break;
19798 		case STATUS_CHECK:
19799 			/*
19800 			 * Check condition; look for ASC/ASCQ of 0x04/0x01
19801 			 * (LOGICAL UNIT IS IN PROCESS OF BECOMING READY)
19802 			 */
19803 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
19804 			    (scsi_sense_asc((uint8_t *)&sense_buf) == 0x04) &&
19805 			    (scsi_sense_ascq((uint8_t *)&sense_buf) == 0x01)) {
19806 				kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
19807 				return (EAGAIN);
19808 			}
19809 			break;
19810 		default:
19811 			break;
19812 		}
19813 		/* FALLTHRU */
19814 	default:
19815 		kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
19816 		return (status);
19817 	}
19818 
19819 	*capp = capacity;
19820 	*lbap = lbasize;
19821 
19822 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_READ_CAPACITY_16: "
19823 	    "capacity:0x%llx  lbasize:0x%x\n", capacity, lbasize);
19824 
19825 	return (0);
19826 }
19827 
19828 
19829 /*
19830  *    Function: sd_send_scsi_START_STOP_UNIT
19831  *
19832  * Description: Issue a scsi START STOP UNIT command to the target.
19833  *
19834  *   Arguments: un    - pointer to driver soft state (unit) structure for
19835  *			this target.
19836  *		flag  - SD_TARGET_START
19837  *			SD_TARGET_STOP
19838  *			SD_TARGET_EJECT
19839  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
19840  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
19841  *			to use the USCSI "direct" chain and bypass the normal
19842  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when this
19843  *			command is issued as part of an error recovery action.
19844  *
19845  * Return Code: 0   - Success
19846  *		EIO - IO error
19847  *		EACCES - Reservation conflict detected
19848  *		ENXIO  - Not Ready, medium not present
19849  *		errno return code from sd_send_scsi_cmd()
19850  *
19851  *     Context: Can sleep.
19852  */
19853 
19854 static int
19855 sd_send_scsi_START_STOP_UNIT(struct sd_lun *un, int flag, int path_flag)
19856 {
19857 	struct	scsi_extended_sense	sense_buf;
19858 	union scsi_cdb		cdb;
19859 	struct uscsi_cmd	ucmd_buf;
19860 	int			status;
19861 
19862 	ASSERT(un != NULL);
19863 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19864 
19865 	SD_TRACE(SD_LOG_IO, un,
19866 	    "sd_send_scsi_START_STOP_UNIT: entry: un:0x%p\n", un);
19867 
19868 	if (un->un_f_check_start_stop &&
19869 	    ((flag == SD_TARGET_START) || (flag == SD_TARGET_STOP)) &&
19870 	    (un->un_f_start_stop_supported != TRUE)) {
19871 		return (0);
19872 	}
19873 
19874 	bzero(&cdb, sizeof (cdb));
19875 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19876 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
19877 
19878 	cdb.scc_cmd = SCMD_START_STOP;
19879 	cdb.cdb_opaque[4] = (uchar_t)flag;
19880 
19881 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19882 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
19883 	ucmd_buf.uscsi_bufaddr	= NULL;
19884 	ucmd_buf.uscsi_buflen	= 0;
19885 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19886 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
19887 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_SILENT;
19888 	ucmd_buf.uscsi_timeout	= 200;
19889 
19890 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
19891 	    UIO_SYSSPACE, UIO_SYSSPACE, path_flag);
19892 
19893 	switch (status) {
19894 	case 0:
19895 		break;	/* Success! */
19896 	case EIO:
19897 		switch (ucmd_buf.uscsi_status) {
19898 		case STATUS_RESERVATION_CONFLICT:
19899 			status = EACCES;
19900 			break;
19901 		case STATUS_CHECK:
19902 			if (ucmd_buf.uscsi_rqstatus == STATUS_GOOD) {
19903 				switch (scsi_sense_key(
19904 						(uint8_t *)&sense_buf)) {
19905 				case KEY_ILLEGAL_REQUEST:
19906 					status = ENOTSUP;
19907 					break;
19908 				case KEY_NOT_READY:
19909 					if (scsi_sense_asc(
19910 						    (uint8_t *)&sense_buf)
19911 					    == 0x3A) {
19912 						status = ENXIO;
19913 					}
19914 					break;
19915 				default:
19916 					break;
19917 				}
19918 			}
19919 			break;
19920 		default:
19921 			break;
19922 		}
19923 		break;
19924 	default:
19925 		break;
19926 	}
19927 
19928 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_START_STOP_UNIT: exit\n");
19929 
19930 	return (status);
19931 }
19932 
19933 
19934 /*
19935  *    Function: sd_start_stop_unit_callback
19936  *
19937  * Description: timeout(9F) callback to begin recovery process for a
19938  *		device that has spun down.
19939  *
19940  *   Arguments: arg - pointer to associated softstate struct.
19941  *
19942  *     Context: Executes in a timeout(9F) thread context
19943  */
19944 
19945 static void
19946 sd_start_stop_unit_callback(void *arg)
19947 {
19948 	struct sd_lun	*un = arg;
19949 	ASSERT(un != NULL);
19950 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19951 
19952 	SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_callback: entry\n");
19953 
19954 	(void) taskq_dispatch(sd_tq, sd_start_stop_unit_task, un, KM_NOSLEEP);
19955 }
19956 
19957 
19958 /*
19959  *    Function: sd_start_stop_unit_task
19960  *
19961  * Description: Recovery procedure when a drive is spun down.
19962  *
19963  *   Arguments: arg - pointer to associated softstate struct.
19964  *
19965  *     Context: Executes in a taskq() thread context
19966  */
19967 
19968 static void
19969 sd_start_stop_unit_task(void *arg)
19970 {
19971 	struct sd_lun	*un = arg;
19972 
19973 	ASSERT(un != NULL);
19974 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19975 
19976 	SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_task: entry\n");
19977 
19978 	/*
19979 	 * Some unformatted drives report not ready error, no need to
19980 	 * restart if format has been initiated.
19981 	 */
19982 	mutex_enter(SD_MUTEX(un));
19983 	if (un->un_f_format_in_progress == TRUE) {
19984 		mutex_exit(SD_MUTEX(un));
19985 		return;
19986 	}
19987 	mutex_exit(SD_MUTEX(un));
19988 
19989 	/*
19990 	 * When a START STOP command is issued from here, it is part of a
19991 	 * failure recovery operation and must be issued before any other
19992 	 * commands, including any pending retries. Thus it must be sent
19993 	 * using SD_PATH_DIRECT_PRIORITY. It doesn't matter if the spin up
19994 	 * succeeds or not, we will start I/O after the attempt.
19995 	 */
19996 	(void) sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_START,
19997 	    SD_PATH_DIRECT_PRIORITY);
19998 
19999 	/*
20000 	 * The above call blocks until the START_STOP_UNIT command completes.
20001 	 * Now that it has completed, we must re-try the original IO that
20002 	 * received the NOT READY condition in the first place. There are
20003 	 * three possible conditions here:
20004 	 *
20005 	 *  (1) The original IO is on un_retry_bp.
20006 	 *  (2) The original IO is on the regular wait queue, and un_retry_bp
20007 	 *	is NULL.
20008 	 *  (3) The original IO is on the regular wait queue, and un_retry_bp
20009 	 *	points to some other, unrelated bp.
20010 	 *
20011 	 * For each case, we must call sd_start_cmds() with un_retry_bp
20012 	 * as the argument. If un_retry_bp is NULL, this will initiate
20013 	 * processing of the regular wait queue.  If un_retry_bp is not NULL,
20014 	 * then this will process the bp on un_retry_bp. That may or may not
20015 	 * be the original IO, but that does not matter: the important thing
20016 	 * is to keep the IO processing going at this point.
20017 	 *
20018 	 * Note: This is a very specific error recovery sequence associated
20019 	 * with a drive that is not spun up. We attempt a START_STOP_UNIT and
20020 	 * serialize the I/O with completion of the spin-up.
20021 	 */
20022 	mutex_enter(SD_MUTEX(un));
20023 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
20024 	    "sd_start_stop_unit_task: un:0x%p starting bp:0x%p\n",
20025 	    un, un->un_retry_bp);
20026 	un->un_startstop_timeid = NULL;	/* Timeout is no longer pending */
20027 	sd_start_cmds(un, un->un_retry_bp);
20028 	mutex_exit(SD_MUTEX(un));
20029 
20030 	SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_task: exit\n");
20031 }
20032 
20033 
20034 /*
20035  *    Function: sd_send_scsi_INQUIRY
20036  *
20037  * Description: Issue the scsi INQUIRY command.
20038  *
20039  *   Arguments: un
20040  *		bufaddr
20041  *		buflen
20042  *		evpd
20043  *		page_code
20044  *		page_length
20045  *
20046  * Return Code: 0   - Success
20047  *		errno return code from sd_send_scsi_cmd()
20048  *
20049  *     Context: Can sleep. Does not return until command is completed.
20050  */
20051 
20052 static int
20053 sd_send_scsi_INQUIRY(struct sd_lun *un, uchar_t *bufaddr, size_t buflen,
20054 	uchar_t evpd, uchar_t page_code, size_t *residp)
20055 {
20056 	union scsi_cdb		cdb;
20057 	struct uscsi_cmd	ucmd_buf;
20058 	int			status;
20059 
20060 	ASSERT(un != NULL);
20061 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20062 	ASSERT(bufaddr != NULL);
20063 
20064 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_INQUIRY: entry: un:0x%p\n", un);
20065 
20066 	bzero(&cdb, sizeof (cdb));
20067 	bzero(&ucmd_buf, sizeof (ucmd_buf));
20068 	bzero(bufaddr, buflen);
20069 
20070 	cdb.scc_cmd = SCMD_INQUIRY;
20071 	cdb.cdb_opaque[1] = evpd;
20072 	cdb.cdb_opaque[2] = page_code;
20073 	FORMG0COUNT(&cdb, buflen);
20074 
20075 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
20076 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
20077 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
20078 	ucmd_buf.uscsi_buflen	= buflen;
20079 	ucmd_buf.uscsi_rqbuf	= NULL;
20080 	ucmd_buf.uscsi_rqlen	= 0;
20081 	ucmd_buf.uscsi_flags	= USCSI_READ | USCSI_SILENT;
20082 	ucmd_buf.uscsi_timeout	= 200;	/* Excessive legacy value */
20083 
20084 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
20085 	    UIO_SYSSPACE, UIO_SYSSPACE, SD_PATH_DIRECT);
20086 
20087 	if ((status == 0) && (residp != NULL)) {
20088 		*residp = ucmd_buf.uscsi_resid;
20089 	}
20090 
20091 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_INQUIRY: exit\n");
20092 
20093 	return (status);
20094 }
20095 
20096 
20097 /*
20098  *    Function: sd_send_scsi_TEST_UNIT_READY
20099  *
20100  * Description: Issue the scsi TEST UNIT READY command.
20101  *		This routine can be told to set the flag USCSI_DIAGNOSE to
20102  *		prevent retrying failed commands. Use this when the intent
20103  *		is either to check for device readiness, to clear a Unit
20104  *		Attention, or to clear any outstanding sense data.
20105  *		However under specific conditions the expected behavior
20106  *		is for retries to bring a device ready, so use the flag
20107  *		with caution.
20108  *
20109  *   Arguments: un
20110  *		flag:   SD_CHECK_FOR_MEDIA: return ENXIO if no media present
20111  *			SD_DONT_RETRY_TUR: include uscsi flag USCSI_DIAGNOSE.
20112  *			0: dont check for media present, do retries on cmd.
20113  *
20114  * Return Code: 0   - Success
20115  *		EIO - IO error
20116  *		EACCES - Reservation conflict detected
20117  *		ENXIO  - Not Ready, medium not present
20118  *		errno return code from sd_send_scsi_cmd()
20119  *
20120  *     Context: Can sleep. Does not return until command is completed.
20121  */
20122 
20123 static int
20124 sd_send_scsi_TEST_UNIT_READY(struct sd_lun *un, int flag)
20125 {
20126 	struct	scsi_extended_sense	sense_buf;
20127 	union scsi_cdb		cdb;
20128 	struct uscsi_cmd	ucmd_buf;
20129 	int			status;
20130 
20131 	ASSERT(un != NULL);
20132 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20133 
20134 	SD_TRACE(SD_LOG_IO, un,
20135 	    "sd_send_scsi_TEST_UNIT_READY: entry: un:0x%p\n", un);
20136 
20137 	/*
20138 	 * Some Seagate elite1 TQ devices get hung with disconnect/reconnect
20139 	 * timeouts when they receive a TUR and the queue is not empty. Check
20140 	 * the configuration flag set during attach (indicating the drive has
20141 	 * this firmware bug) and un_ncmds_in_transport before issuing the
20142 	 * TUR. If there are
20143 	 * pending commands return success, this is a bit arbitrary but is ok
20144 	 * for non-removables (i.e. the eliteI disks) and non-clustering
20145 	 * configurations.
20146 	 */
20147 	if (un->un_f_cfg_tur_check == TRUE) {
20148 		mutex_enter(SD_MUTEX(un));
20149 		if (un->un_ncmds_in_transport != 0) {
20150 			mutex_exit(SD_MUTEX(un));
20151 			return (0);
20152 		}
20153 		mutex_exit(SD_MUTEX(un));
20154 	}
20155 
20156 	bzero(&cdb, sizeof (cdb));
20157 	bzero(&ucmd_buf, sizeof (ucmd_buf));
20158 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
20159 
20160 	cdb.scc_cmd = SCMD_TEST_UNIT_READY;
20161 
20162 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
20163 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
20164 	ucmd_buf.uscsi_bufaddr	= NULL;
20165 	ucmd_buf.uscsi_buflen	= 0;
20166 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
20167 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
20168 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_SILENT;
20169 
20170 	/* Use flag USCSI_DIAGNOSE to prevent retries if it fails. */
20171 	if ((flag & SD_DONT_RETRY_TUR) != 0) {
20172 		ucmd_buf.uscsi_flags |= USCSI_DIAGNOSE;
20173 	}
20174 	ucmd_buf.uscsi_timeout	= 60;
20175 
20176 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
20177 	    UIO_SYSSPACE, UIO_SYSSPACE,
20178 	    ((flag & SD_BYPASS_PM) ? SD_PATH_DIRECT : SD_PATH_STANDARD));
20179 
20180 	switch (status) {
20181 	case 0:
20182 		break;	/* Success! */
20183 	case EIO:
20184 		switch (ucmd_buf.uscsi_status) {
20185 		case STATUS_RESERVATION_CONFLICT:
20186 			status = EACCES;
20187 			break;
20188 		case STATUS_CHECK:
20189 			if ((flag & SD_CHECK_FOR_MEDIA) == 0) {
20190 				break;
20191 			}
20192 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
20193 			    (scsi_sense_key((uint8_t *)&sense_buf) ==
20194 				KEY_NOT_READY) &&
20195 			    (scsi_sense_asc((uint8_t *)&sense_buf) == 0x3A)) {
20196 				status = ENXIO;
20197 			}
20198 			break;
20199 		default:
20200 			break;
20201 		}
20202 		break;
20203 	default:
20204 		break;
20205 	}
20206 
20207 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_TEST_UNIT_READY: exit\n");
20208 
20209 	return (status);
20210 }
20211 
20212 
20213 /*
20214  *    Function: sd_send_scsi_PERSISTENT_RESERVE_IN
20215  *
20216  * Description: Issue the scsi PERSISTENT RESERVE IN command.
20217  *
20218  *   Arguments: un
20219  *
20220  * Return Code: 0   - Success
20221  *		EACCES
20222  *		ENOTSUP
20223  *		errno return code from sd_send_scsi_cmd()
20224  *
20225  *     Context: Can sleep. Does not return until command is completed.
20226  */
20227 
20228 static int
20229 sd_send_scsi_PERSISTENT_RESERVE_IN(struct sd_lun *un, uchar_t  usr_cmd,
20230 	uint16_t data_len, uchar_t *data_bufp)
20231 {
20232 	struct scsi_extended_sense	sense_buf;
20233 	union scsi_cdb		cdb;
20234 	struct uscsi_cmd	ucmd_buf;
20235 	int			status;
20236 	int			no_caller_buf = FALSE;
20237 
20238 	ASSERT(un != NULL);
20239 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20240 	ASSERT((usr_cmd == SD_READ_KEYS) || (usr_cmd == SD_READ_RESV));
20241 
20242 	SD_TRACE(SD_LOG_IO, un,
20243 	    "sd_send_scsi_PERSISTENT_RESERVE_IN: entry: un:0x%p\n", un);
20244 
20245 	bzero(&cdb, sizeof (cdb));
20246 	bzero(&ucmd_buf, sizeof (ucmd_buf));
20247 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
20248 	if (data_bufp == NULL) {
20249 		/* Allocate a default buf if the caller did not give one */
20250 		ASSERT(data_len == 0);
20251 		data_len  = MHIOC_RESV_KEY_SIZE;
20252 		data_bufp = kmem_zalloc(MHIOC_RESV_KEY_SIZE, KM_SLEEP);
20253 		no_caller_buf = TRUE;
20254 	}
20255 
20256 	cdb.scc_cmd = SCMD_PERSISTENT_RESERVE_IN;
20257 	cdb.cdb_opaque[1] = usr_cmd;
20258 	FORMG1COUNT(&cdb, data_len);
20259 
20260 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
20261 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
20262 	ucmd_buf.uscsi_bufaddr	= (caddr_t)data_bufp;
20263 	ucmd_buf.uscsi_buflen	= data_len;
20264 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
20265 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
20266 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
20267 	ucmd_buf.uscsi_timeout	= 60;
20268 
20269 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
20270 	    UIO_SYSSPACE, UIO_SYSSPACE, SD_PATH_STANDARD);
20271 
20272 	switch (status) {
20273 	case 0:
20274 		break;	/* Success! */
20275 	case EIO:
20276 		switch (ucmd_buf.uscsi_status) {
20277 		case STATUS_RESERVATION_CONFLICT:
20278 			status = EACCES;
20279 			break;
20280 		case STATUS_CHECK:
20281 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
20282 			    (scsi_sense_key((uint8_t *)&sense_buf) ==
20283 				KEY_ILLEGAL_REQUEST)) {
20284 				status = ENOTSUP;
20285 			}
20286 			break;
20287 		default:
20288 			break;
20289 		}
20290 		break;
20291 	default:
20292 		break;
20293 	}
20294 
20295 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_PERSISTENT_RESERVE_IN: exit\n");
20296 
20297 	if (no_caller_buf == TRUE) {
20298 		kmem_free(data_bufp, data_len);
20299 	}
20300 
20301 	return (status);
20302 }
20303 
20304 
20305 /*
20306  *    Function: sd_send_scsi_PERSISTENT_RESERVE_OUT
20307  *
20308  * Description: This routine is the driver entry point for handling CD-ROM
20309  *		multi-host persistent reservation requests (MHIOCGRP_INKEYS,
20310  *		MHIOCGRP_INRESV) by sending the SCSI-3 PROUT commands to the
20311  *		device.
20312  *
20313  *   Arguments: un  -   Pointer to soft state struct for the target.
20314  *		usr_cmd SCSI-3 reservation facility command (one of
20315  *			SD_SCSI3_REGISTER, SD_SCSI3_RESERVE, SD_SCSI3_RELEASE,
20316  *			SD_SCSI3_PREEMPTANDABORT)
20317  *		usr_bufp - user provided pointer register, reserve descriptor or
20318  *			preempt and abort structure (mhioc_register_t,
20319  *                      mhioc_resv_desc_t, mhioc_preemptandabort_t)
20320  *
20321  * Return Code: 0   - Success
20322  *		EACCES
20323  *		ENOTSUP
20324  *		errno return code from sd_send_scsi_cmd()
20325  *
20326  *     Context: Can sleep. Does not return until command is completed.
20327  */
20328 
20329 static int
20330 sd_send_scsi_PERSISTENT_RESERVE_OUT(struct sd_lun *un, uchar_t usr_cmd,
20331 	uchar_t	*usr_bufp)
20332 {
20333 	struct scsi_extended_sense	sense_buf;
20334 	union scsi_cdb		cdb;
20335 	struct uscsi_cmd	ucmd_buf;
20336 	int			status;
20337 	uchar_t			data_len = sizeof (sd_prout_t);
20338 	sd_prout_t		*prp;
20339 
20340 	ASSERT(un != NULL);
20341 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20342 	ASSERT(data_len == 24);	/* required by scsi spec */
20343 
20344 	SD_TRACE(SD_LOG_IO, un,
20345 	    "sd_send_scsi_PERSISTENT_RESERVE_OUT: entry: un:0x%p\n", un);
20346 
20347 	if (usr_bufp == NULL) {
20348 		return (EINVAL);
20349 	}
20350 
20351 	bzero(&cdb, sizeof (cdb));
20352 	bzero(&ucmd_buf, sizeof (ucmd_buf));
20353 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
20354 	prp = kmem_zalloc(data_len, KM_SLEEP);
20355 
20356 	cdb.scc_cmd = SCMD_PERSISTENT_RESERVE_OUT;
20357 	cdb.cdb_opaque[1] = usr_cmd;
20358 	FORMG1COUNT(&cdb, data_len);
20359 
20360 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
20361 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
20362 	ucmd_buf.uscsi_bufaddr	= (caddr_t)prp;
20363 	ucmd_buf.uscsi_buflen	= data_len;
20364 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
20365 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
20366 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_WRITE | USCSI_SILENT;
20367 	ucmd_buf.uscsi_timeout	= 60;
20368 
20369 	switch (usr_cmd) {
20370 	case SD_SCSI3_REGISTER: {
20371 		mhioc_register_t *ptr = (mhioc_register_t *)usr_bufp;
20372 
20373 		bcopy(ptr->oldkey.key, prp->res_key, MHIOC_RESV_KEY_SIZE);
20374 		bcopy(ptr->newkey.key, prp->service_key,
20375 		    MHIOC_RESV_KEY_SIZE);
20376 		prp->aptpl = ptr->aptpl;
20377 		break;
20378 	}
20379 	case SD_SCSI3_RESERVE:
20380 	case SD_SCSI3_RELEASE: {
20381 		mhioc_resv_desc_t *ptr = (mhioc_resv_desc_t *)usr_bufp;
20382 
20383 		bcopy(ptr->key.key, prp->res_key, MHIOC_RESV_KEY_SIZE);
20384 		prp->scope_address = BE_32(ptr->scope_specific_addr);
20385 		cdb.cdb_opaque[2] = ptr->type;
20386 		break;
20387 	}
20388 	case SD_SCSI3_PREEMPTANDABORT: {
20389 		mhioc_preemptandabort_t *ptr =
20390 		    (mhioc_preemptandabort_t *)usr_bufp;
20391 
20392 		bcopy(ptr->resvdesc.key.key, prp->res_key, MHIOC_RESV_KEY_SIZE);
20393 		bcopy(ptr->victim_key.key, prp->service_key,
20394 		    MHIOC_RESV_KEY_SIZE);
20395 		prp->scope_address = BE_32(ptr->resvdesc.scope_specific_addr);
20396 		cdb.cdb_opaque[2] = ptr->resvdesc.type;
20397 		ucmd_buf.uscsi_flags |= USCSI_HEAD;
20398 		break;
20399 	}
20400 	case SD_SCSI3_REGISTERANDIGNOREKEY:
20401 	{
20402 		mhioc_registerandignorekey_t *ptr;
20403 		ptr = (mhioc_registerandignorekey_t *)usr_bufp;
20404 		bcopy(ptr->newkey.key,
20405 		    prp->service_key, MHIOC_RESV_KEY_SIZE);
20406 		prp->aptpl = ptr->aptpl;
20407 		break;
20408 	}
20409 	default:
20410 		ASSERT(FALSE);
20411 		break;
20412 	}
20413 
20414 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
20415 	    UIO_SYSSPACE, UIO_SYSSPACE, SD_PATH_STANDARD);
20416 
20417 	switch (status) {
20418 	case 0:
20419 		break;	/* Success! */
20420 	case EIO:
20421 		switch (ucmd_buf.uscsi_status) {
20422 		case STATUS_RESERVATION_CONFLICT:
20423 			status = EACCES;
20424 			break;
20425 		case STATUS_CHECK:
20426 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
20427 			    (scsi_sense_key((uint8_t *)&sense_buf) ==
20428 				KEY_ILLEGAL_REQUEST)) {
20429 				status = ENOTSUP;
20430 			}
20431 			break;
20432 		default:
20433 			break;
20434 		}
20435 		break;
20436 	default:
20437 		break;
20438 	}
20439 
20440 	kmem_free(prp, data_len);
20441 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_PERSISTENT_RESERVE_OUT: exit\n");
20442 	return (status);
20443 }
20444 
20445 
20446 /*
20447  *    Function: sd_send_scsi_SYNCHRONIZE_CACHE
20448  *
20449  * Description: Issues a scsi SYNCHRONIZE CACHE command to the target
20450  *
20451  *   Arguments: un - pointer to the target's soft state struct
20452  *
20453  * Return Code: 0 - success
20454  *		errno-type error code
20455  *
20456  *     Context: kernel thread context only.
20457  */
20458 
20459 static int
20460 sd_send_scsi_SYNCHRONIZE_CACHE(struct sd_lun *un, struct dk_callback *dkc)
20461 {
20462 	struct sd_uscsi_info	*uip;
20463 	struct uscsi_cmd	*uscmd;
20464 	union scsi_cdb		*cdb;
20465 	struct buf		*bp;
20466 	int			rval = 0;
20467 
20468 	SD_TRACE(SD_LOG_IO, un,
20469 	    "sd_send_scsi_SYNCHRONIZE_CACHE: entry: un:0x%p\n", un);
20470 
20471 	ASSERT(un != NULL);
20472 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20473 
20474 	cdb = kmem_zalloc(CDB_GROUP1, KM_SLEEP);
20475 	cdb->scc_cmd = SCMD_SYNCHRONIZE_CACHE;
20476 
20477 	/*
20478 	 * First get some memory for the uscsi_cmd struct and cdb
20479 	 * and initialize for SYNCHRONIZE_CACHE cmd.
20480 	 */
20481 	uscmd = kmem_zalloc(sizeof (struct uscsi_cmd), KM_SLEEP);
20482 	uscmd->uscsi_cdblen = CDB_GROUP1;
20483 	uscmd->uscsi_cdb = (caddr_t)cdb;
20484 	uscmd->uscsi_bufaddr = NULL;
20485 	uscmd->uscsi_buflen = 0;
20486 	uscmd->uscsi_rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
20487 	uscmd->uscsi_rqlen = SENSE_LENGTH;
20488 	uscmd->uscsi_rqresid = SENSE_LENGTH;
20489 	uscmd->uscsi_flags = USCSI_RQENABLE | USCSI_SILENT;
20490 	uscmd->uscsi_timeout = sd_io_time;
20491 
20492 	/*
20493 	 * Allocate an sd_uscsi_info struct and fill it with the info
20494 	 * needed by sd_initpkt_for_uscsi().  Then put the pointer into
20495 	 * b_private in the buf for sd_initpkt_for_uscsi().  Note that
20496 	 * since we allocate the buf here in this function, we do not
20497 	 * need to preserve the prior contents of b_private.
20498 	 * The sd_uscsi_info struct is also used by sd_uscsi_strategy()
20499 	 */
20500 	uip = kmem_zalloc(sizeof (struct sd_uscsi_info), KM_SLEEP);
20501 	uip->ui_flags = SD_PATH_DIRECT;
20502 	uip->ui_cmdp  = uscmd;
20503 
20504 	bp = getrbuf(KM_SLEEP);
20505 	bp->b_private = uip;
20506 
20507 	/*
20508 	 * Setup buffer to carry uscsi request.
20509 	 */
20510 	bp->b_flags  = B_BUSY;
20511 	bp->b_bcount = 0;
20512 	bp->b_blkno  = 0;
20513 
20514 	if (dkc != NULL) {
20515 		bp->b_iodone = sd_send_scsi_SYNCHRONIZE_CACHE_biodone;
20516 		uip->ui_dkc = *dkc;
20517 	}
20518 
20519 	bp->b_edev = SD_GET_DEV(un);
20520 	bp->b_dev = cmpdev(bp->b_edev);	/* maybe unnecessary? */
20521 
20522 	(void) sd_uscsi_strategy(bp);
20523 
20524 	/*
20525 	 * If synchronous request, wait for completion
20526 	 * If async just return and let b_iodone callback
20527 	 * cleanup.
20528 	 * NOTE: On return, u_ncmds_in_driver will be decremented,
20529 	 * but it was also incremented in sd_uscsi_strategy(), so
20530 	 * we should be ok.
20531 	 */
20532 	if (dkc == NULL) {
20533 		(void) biowait(bp);
20534 		rval = sd_send_scsi_SYNCHRONIZE_CACHE_biodone(bp);
20535 	}
20536 
20537 	return (rval);
20538 }
20539 
20540 
20541 static int
20542 sd_send_scsi_SYNCHRONIZE_CACHE_biodone(struct buf *bp)
20543 {
20544 	struct sd_uscsi_info *uip;
20545 	struct uscsi_cmd *uscmd;
20546 	uint8_t *sense_buf;
20547 	struct sd_lun *un;
20548 	int status;
20549 
20550 	uip = (struct sd_uscsi_info *)(bp->b_private);
20551 	ASSERT(uip != NULL);
20552 
20553 	uscmd = uip->ui_cmdp;
20554 	ASSERT(uscmd != NULL);
20555 
20556 	sense_buf = (uint8_t *)uscmd->uscsi_rqbuf;
20557 	ASSERT(sense_buf != NULL);
20558 
20559 	un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp));
20560 	ASSERT(un != NULL);
20561 
20562 	status = geterror(bp);
20563 	switch (status) {
20564 	case 0:
20565 		break;	/* Success! */
20566 	case EIO:
20567 		switch (uscmd->uscsi_status) {
20568 		case STATUS_RESERVATION_CONFLICT:
20569 			/* Ignore reservation conflict */
20570 			status = 0;
20571 			goto done;
20572 
20573 		case STATUS_CHECK:
20574 			if ((uscmd->uscsi_rqstatus == STATUS_GOOD) &&
20575 			    (scsi_sense_key(sense_buf) ==
20576 				KEY_ILLEGAL_REQUEST)) {
20577 				/* Ignore Illegal Request error */
20578 				mutex_enter(SD_MUTEX(un));
20579 				un->un_f_sync_cache_supported = FALSE;
20580 				mutex_exit(SD_MUTEX(un));
20581 				status = ENOTSUP;
20582 				goto done;
20583 			}
20584 			break;
20585 		default:
20586 			break;
20587 		}
20588 		/* FALLTHRU */
20589 	default:
20590 		/*
20591 		 * Don't log an error message if this device
20592 		 * has removable media.
20593 		 */
20594 		if (!un->un_f_has_removable_media) {
20595 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
20596 			    "SYNCHRONIZE CACHE command failed (%d)\n", status);
20597 		}
20598 		break;
20599 	}
20600 
20601 done:
20602 	if (uip->ui_dkc.dkc_callback != NULL) {
20603 		(*uip->ui_dkc.dkc_callback)(uip->ui_dkc.dkc_cookie, status);
20604 	}
20605 
20606 	ASSERT((bp->b_flags & B_REMAPPED) == 0);
20607 	freerbuf(bp);
20608 	kmem_free(uip, sizeof (struct sd_uscsi_info));
20609 	kmem_free(uscmd->uscsi_rqbuf, SENSE_LENGTH);
20610 	kmem_free(uscmd->uscsi_cdb, (size_t)uscmd->uscsi_cdblen);
20611 	kmem_free(uscmd, sizeof (struct uscsi_cmd));
20612 
20613 	return (status);
20614 }
20615 
20616 
20617 /*
20618  *    Function: sd_send_scsi_GET_CONFIGURATION
20619  *
20620  * Description: Issues the get configuration command to the device.
20621  *		Called from sd_check_for_writable_cd & sd_get_media_info
20622  *		caller needs to ensure that buflen = SD_PROFILE_HEADER_LEN
20623  *   Arguments: un
20624  *		ucmdbuf
20625  *		rqbuf
20626  *		rqbuflen
20627  *		bufaddr
20628  *		buflen
20629  *
20630  * Return Code: 0   - Success
20631  *		errno return code from sd_send_scsi_cmd()
20632  *
20633  *     Context: Can sleep. Does not return until command is completed.
20634  *
20635  */
20636 
20637 static int
20638 sd_send_scsi_GET_CONFIGURATION(struct sd_lun *un, struct uscsi_cmd *ucmdbuf,
20639 	uchar_t *rqbuf, uint_t rqbuflen, uchar_t *bufaddr, uint_t buflen)
20640 {
20641 	char	cdb[CDB_GROUP1];
20642 	int	status;
20643 
20644 	ASSERT(un != NULL);
20645 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20646 	ASSERT(bufaddr != NULL);
20647 	ASSERT(ucmdbuf != NULL);
20648 	ASSERT(rqbuf != NULL);
20649 
20650 	SD_TRACE(SD_LOG_IO, un,
20651 	    "sd_send_scsi_GET_CONFIGURATION: entry: un:0x%p\n", un);
20652 
20653 	bzero(cdb, sizeof (cdb));
20654 	bzero(ucmdbuf, sizeof (struct uscsi_cmd));
20655 	bzero(rqbuf, rqbuflen);
20656 	bzero(bufaddr, buflen);
20657 
20658 	/*
20659 	 * Set up cdb field for the get configuration command.
20660 	 */
20661 	cdb[0] = SCMD_GET_CONFIGURATION;
20662 	cdb[1] = 0x02;  /* Requested Type */
20663 	cdb[8] = SD_PROFILE_HEADER_LEN;
20664 	ucmdbuf->uscsi_cdb = cdb;
20665 	ucmdbuf->uscsi_cdblen = CDB_GROUP1;
20666 	ucmdbuf->uscsi_bufaddr = (caddr_t)bufaddr;
20667 	ucmdbuf->uscsi_buflen = buflen;
20668 	ucmdbuf->uscsi_timeout = sd_io_time;
20669 	ucmdbuf->uscsi_rqbuf = (caddr_t)rqbuf;
20670 	ucmdbuf->uscsi_rqlen = rqbuflen;
20671 	ucmdbuf->uscsi_flags = USCSI_RQENABLE|USCSI_SILENT|USCSI_READ;
20672 
20673 	status = sd_send_scsi_cmd(SD_GET_DEV(un), ucmdbuf, UIO_SYSSPACE,
20674 	    UIO_SYSSPACE, UIO_SYSSPACE, SD_PATH_STANDARD);
20675 
20676 	switch (status) {
20677 	case 0:
20678 		break;  /* Success! */
20679 	case EIO:
20680 		switch (ucmdbuf->uscsi_status) {
20681 		case STATUS_RESERVATION_CONFLICT:
20682 			status = EACCES;
20683 			break;
20684 		default:
20685 			break;
20686 		}
20687 		break;
20688 	default:
20689 		break;
20690 	}
20691 
20692 	if (status == 0) {
20693 		SD_DUMP_MEMORY(un, SD_LOG_IO,
20694 		    "sd_send_scsi_GET_CONFIGURATION: data",
20695 		    (uchar_t *)bufaddr, SD_PROFILE_HEADER_LEN, SD_LOG_HEX);
20696 	}
20697 
20698 	SD_TRACE(SD_LOG_IO, un,
20699 	    "sd_send_scsi_GET_CONFIGURATION: exit\n");
20700 
20701 	return (status);
20702 }
20703 
20704 /*
20705  *    Function: sd_send_scsi_feature_GET_CONFIGURATION
20706  *
20707  * Description: Issues the get configuration command to the device to
20708  *              retrieve a specfic feature. Called from
20709  *		sd_check_for_writable_cd & sd_set_mmc_caps.
20710  *   Arguments: un
20711  *              ucmdbuf
20712  *              rqbuf
20713  *              rqbuflen
20714  *              bufaddr
20715  *              buflen
20716  *		feature
20717  *
20718  * Return Code: 0   - Success
20719  *              errno return code from sd_send_scsi_cmd()
20720  *
20721  *     Context: Can sleep. Does not return until command is completed.
20722  *
20723  */
20724 static int
20725 sd_send_scsi_feature_GET_CONFIGURATION(struct sd_lun *un,
20726 	struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen,
20727 	uchar_t *bufaddr, uint_t buflen, char feature)
20728 {
20729 	char    cdb[CDB_GROUP1];
20730 	int	status;
20731 
20732 	ASSERT(un != NULL);
20733 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20734 	ASSERT(bufaddr != NULL);
20735 	ASSERT(ucmdbuf != NULL);
20736 	ASSERT(rqbuf != NULL);
20737 
20738 	SD_TRACE(SD_LOG_IO, un,
20739 	    "sd_send_scsi_feature_GET_CONFIGURATION: entry: un:0x%p\n", un);
20740 
20741 	bzero(cdb, sizeof (cdb));
20742 	bzero(ucmdbuf, sizeof (struct uscsi_cmd));
20743 	bzero(rqbuf, rqbuflen);
20744 	bzero(bufaddr, buflen);
20745 
20746 	/*
20747 	 * Set up cdb field for the get configuration command.
20748 	 */
20749 	cdb[0] = SCMD_GET_CONFIGURATION;
20750 	cdb[1] = 0x02;  /* Requested Type */
20751 	cdb[3] = feature;
20752 	cdb[8] = buflen;
20753 	ucmdbuf->uscsi_cdb = cdb;
20754 	ucmdbuf->uscsi_cdblen = CDB_GROUP1;
20755 	ucmdbuf->uscsi_bufaddr = (caddr_t)bufaddr;
20756 	ucmdbuf->uscsi_buflen = buflen;
20757 	ucmdbuf->uscsi_timeout = sd_io_time;
20758 	ucmdbuf->uscsi_rqbuf = (caddr_t)rqbuf;
20759 	ucmdbuf->uscsi_rqlen = rqbuflen;
20760 	ucmdbuf->uscsi_flags = USCSI_RQENABLE|USCSI_SILENT|USCSI_READ;
20761 
20762 	status = sd_send_scsi_cmd(SD_GET_DEV(un), ucmdbuf, UIO_SYSSPACE,
20763 	    UIO_SYSSPACE, UIO_SYSSPACE, SD_PATH_STANDARD);
20764 
20765 	switch (status) {
20766 	case 0:
20767 		break;  /* Success! */
20768 	case EIO:
20769 		switch (ucmdbuf->uscsi_status) {
20770 		case STATUS_RESERVATION_CONFLICT:
20771 			status = EACCES;
20772 			break;
20773 		default:
20774 			break;
20775 		}
20776 		break;
20777 	default:
20778 		break;
20779 	}
20780 
20781 	if (status == 0) {
20782 		SD_DUMP_MEMORY(un, SD_LOG_IO,
20783 		    "sd_send_scsi_feature_GET_CONFIGURATION: data",
20784 		    (uchar_t *)bufaddr, SD_PROFILE_HEADER_LEN, SD_LOG_HEX);
20785 	}
20786 
20787 	SD_TRACE(SD_LOG_IO, un,
20788 	    "sd_send_scsi_feature_GET_CONFIGURATION: exit\n");
20789 
20790 	return (status);
20791 }
20792 
20793 
20794 /*
20795  *    Function: sd_send_scsi_MODE_SENSE
20796  *
20797  * Description: Utility function for issuing a scsi MODE SENSE command.
20798  *		Note: This routine uses a consistent implementation for Group0,
20799  *		Group1, and Group2 commands across all platforms. ATAPI devices
20800  *		use Group 1 Read/Write commands and Group 2 Mode Sense/Select
20801  *
20802  *   Arguments: un - pointer to the softstate struct for the target.
20803  *		cdbsize - size CDB to be used (CDB_GROUP0 (6 byte), or
20804  *			  CDB_GROUP[1|2] (10 byte).
20805  *		bufaddr - buffer for page data retrieved from the target.
20806  *		buflen - size of page to be retrieved.
20807  *		page_code - page code of data to be retrieved from the target.
20808  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
20809  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
20810  *			to use the USCSI "direct" chain and bypass the normal
20811  *			command waitq.
20812  *
20813  * Return Code: 0   - Success
20814  *		errno return code from sd_send_scsi_cmd()
20815  *
20816  *     Context: Can sleep. Does not return until command is completed.
20817  */
20818 
20819 static int
20820 sd_send_scsi_MODE_SENSE(struct sd_lun *un, int cdbsize, uchar_t *bufaddr,
20821 	size_t buflen,  uchar_t page_code, int path_flag)
20822 {
20823 	struct	scsi_extended_sense	sense_buf;
20824 	union scsi_cdb		cdb;
20825 	struct uscsi_cmd	ucmd_buf;
20826 	int			status;
20827 	int			headlen;
20828 
20829 	ASSERT(un != NULL);
20830 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20831 	ASSERT(bufaddr != NULL);
20832 	ASSERT((cdbsize == CDB_GROUP0) || (cdbsize == CDB_GROUP1) ||
20833 	    (cdbsize == CDB_GROUP2));
20834 
20835 	SD_TRACE(SD_LOG_IO, un,
20836 	    "sd_send_scsi_MODE_SENSE: entry: un:0x%p\n", un);
20837 
20838 	bzero(&cdb, sizeof (cdb));
20839 	bzero(&ucmd_buf, sizeof (ucmd_buf));
20840 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
20841 	bzero(bufaddr, buflen);
20842 
20843 	if (cdbsize == CDB_GROUP0) {
20844 		cdb.scc_cmd = SCMD_MODE_SENSE;
20845 		cdb.cdb_opaque[2] = page_code;
20846 		FORMG0COUNT(&cdb, buflen);
20847 		headlen = MODE_HEADER_LENGTH;
20848 	} else {
20849 		cdb.scc_cmd = SCMD_MODE_SENSE_G1;
20850 		cdb.cdb_opaque[2] = page_code;
20851 		FORMG1COUNT(&cdb, buflen);
20852 		headlen = MODE_HEADER_LENGTH_GRP2;
20853 	}
20854 
20855 	ASSERT(headlen <= buflen);
20856 	SD_FILL_SCSI1_LUN_CDB(un, &cdb);
20857 
20858 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
20859 	ucmd_buf.uscsi_cdblen	= (uchar_t)cdbsize;
20860 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
20861 	ucmd_buf.uscsi_buflen	= buflen;
20862 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
20863 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
20864 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
20865 	ucmd_buf.uscsi_timeout	= 60;
20866 
20867 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
20868 	    UIO_SYSSPACE, UIO_SYSSPACE, path_flag);
20869 
20870 	switch (status) {
20871 	case 0:
20872 		/*
20873 		 * sr_check_wp() uses 0x3f page code and check the header of
20874 		 * mode page to determine if target device is write-protected.
20875 		 * But some USB devices return 0 bytes for 0x3f page code. For
20876 		 * this case, make sure that mode page header is returned at
20877 		 * least.
20878 		 */
20879 		if (buflen - ucmd_buf.uscsi_resid <  headlen)
20880 			status = EIO;
20881 		break;	/* Success! */
20882 	case EIO:
20883 		switch (ucmd_buf.uscsi_status) {
20884 		case STATUS_RESERVATION_CONFLICT:
20885 			status = EACCES;
20886 			break;
20887 		default:
20888 			break;
20889 		}
20890 		break;
20891 	default:
20892 		break;
20893 	}
20894 
20895 	if (status == 0) {
20896 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_MODE_SENSE: data",
20897 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
20898 	}
20899 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_MODE_SENSE: exit\n");
20900 
20901 	return (status);
20902 }
20903 
20904 
20905 /*
20906  *    Function: sd_send_scsi_MODE_SELECT
20907  *
20908  * Description: Utility function for issuing a scsi MODE SELECT command.
20909  *		Note: This routine uses a consistent implementation for Group0,
20910  *		Group1, and Group2 commands across all platforms. ATAPI devices
20911  *		use Group 1 Read/Write commands and Group 2 Mode Sense/Select
20912  *
20913  *   Arguments: un - pointer to the softstate struct for the target.
20914  *		cdbsize - size CDB to be used (CDB_GROUP0 (6 byte), or
20915  *			  CDB_GROUP[1|2] (10 byte).
20916  *		bufaddr - buffer for page data retrieved from the target.
20917  *		buflen - size of page to be retrieved.
20918  *		save_page - boolean to determin if SP bit should be set.
20919  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
20920  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
20921  *			to use the USCSI "direct" chain and bypass the normal
20922  *			command waitq.
20923  *
20924  * Return Code: 0   - Success
20925  *		errno return code from sd_send_scsi_cmd()
20926  *
20927  *     Context: Can sleep. Does not return until command is completed.
20928  */
20929 
20930 static int
20931 sd_send_scsi_MODE_SELECT(struct sd_lun *un, int cdbsize, uchar_t *bufaddr,
20932 	size_t buflen,  uchar_t save_page, int path_flag)
20933 {
20934 	struct	scsi_extended_sense	sense_buf;
20935 	union scsi_cdb		cdb;
20936 	struct uscsi_cmd	ucmd_buf;
20937 	int			status;
20938 
20939 	ASSERT(un != NULL);
20940 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20941 	ASSERT(bufaddr != NULL);
20942 	ASSERT((cdbsize == CDB_GROUP0) || (cdbsize == CDB_GROUP1) ||
20943 	    (cdbsize == CDB_GROUP2));
20944 
20945 	SD_TRACE(SD_LOG_IO, un,
20946 	    "sd_send_scsi_MODE_SELECT: entry: un:0x%p\n", un);
20947 
20948 	bzero(&cdb, sizeof (cdb));
20949 	bzero(&ucmd_buf, sizeof (ucmd_buf));
20950 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
20951 
20952 	/* Set the PF bit for many third party drives */
20953 	cdb.cdb_opaque[1] = 0x10;
20954 
20955 	/* Set the savepage(SP) bit if given */
20956 	if (save_page == SD_SAVE_PAGE) {
20957 		cdb.cdb_opaque[1] |= 0x01;
20958 	}
20959 
20960 	if (cdbsize == CDB_GROUP0) {
20961 		cdb.scc_cmd = SCMD_MODE_SELECT;
20962 		FORMG0COUNT(&cdb, buflen);
20963 	} else {
20964 		cdb.scc_cmd = SCMD_MODE_SELECT_G1;
20965 		FORMG1COUNT(&cdb, buflen);
20966 	}
20967 
20968 	SD_FILL_SCSI1_LUN_CDB(un, &cdb);
20969 
20970 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
20971 	ucmd_buf.uscsi_cdblen	= (uchar_t)cdbsize;
20972 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
20973 	ucmd_buf.uscsi_buflen	= buflen;
20974 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
20975 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
20976 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_WRITE | USCSI_SILENT;
20977 	ucmd_buf.uscsi_timeout	= 60;
20978 
20979 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
20980 	    UIO_SYSSPACE, UIO_SYSSPACE, path_flag);
20981 
20982 	switch (status) {
20983 	case 0:
20984 		break;	/* Success! */
20985 	case EIO:
20986 		switch (ucmd_buf.uscsi_status) {
20987 		case STATUS_RESERVATION_CONFLICT:
20988 			status = EACCES;
20989 			break;
20990 		default:
20991 			break;
20992 		}
20993 		break;
20994 	default:
20995 		break;
20996 	}
20997 
20998 	if (status == 0) {
20999 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_MODE_SELECT: data",
21000 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
21001 	}
21002 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_MODE_SELECT: exit\n");
21003 
21004 	return (status);
21005 }
21006 
21007 
21008 /*
21009  *    Function: sd_send_scsi_RDWR
21010  *
21011  * Description: Issue a scsi READ or WRITE command with the given parameters.
21012  *
21013  *   Arguments: un:      Pointer to the sd_lun struct for the target.
21014  *		cmd:	 SCMD_READ or SCMD_WRITE
21015  *		bufaddr: Address of caller's buffer to receive the RDWR data
21016  *		buflen:  Length of caller's buffer receive the RDWR data.
21017  *		start_block: Block number for the start of the RDWR operation.
21018  *			 (Assumes target-native block size.)
21019  *		residp:  Pointer to variable to receive the redisual of the
21020  *			 RDWR operation (may be NULL of no residual requested).
21021  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
21022  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
21023  *			to use the USCSI "direct" chain and bypass the normal
21024  *			command waitq.
21025  *
21026  * Return Code: 0   - Success
21027  *		errno return code from sd_send_scsi_cmd()
21028  *
21029  *     Context: Can sleep. Does not return until command is completed.
21030  */
21031 
21032 static int
21033 sd_send_scsi_RDWR(struct sd_lun *un, uchar_t cmd, void *bufaddr,
21034 	size_t buflen, daddr_t start_block, int path_flag)
21035 {
21036 	struct	scsi_extended_sense	sense_buf;
21037 	union scsi_cdb		cdb;
21038 	struct uscsi_cmd	ucmd_buf;
21039 	uint32_t		block_count;
21040 	int			status;
21041 	int			cdbsize;
21042 	uchar_t			flag;
21043 
21044 	ASSERT(un != NULL);
21045 	ASSERT(!mutex_owned(SD_MUTEX(un)));
21046 	ASSERT(bufaddr != NULL);
21047 	ASSERT((cmd == SCMD_READ) || (cmd == SCMD_WRITE));
21048 
21049 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_RDWR: entry: un:0x%p\n", un);
21050 
21051 	if (un->un_f_tgt_blocksize_is_valid != TRUE) {
21052 		return (EINVAL);
21053 	}
21054 
21055 	mutex_enter(SD_MUTEX(un));
21056 	block_count = SD_BYTES2TGTBLOCKS(un, buflen);
21057 	mutex_exit(SD_MUTEX(un));
21058 
21059 	flag = (cmd == SCMD_READ) ? USCSI_READ : USCSI_WRITE;
21060 
21061 	SD_INFO(SD_LOG_IO, un, "sd_send_scsi_RDWR: "
21062 	    "bufaddr:0x%p buflen:0x%x start_block:0x%p block_count:0x%x\n",
21063 	    bufaddr, buflen, start_block, block_count);
21064 
21065 	bzero(&cdb, sizeof (cdb));
21066 	bzero(&ucmd_buf, sizeof (ucmd_buf));
21067 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
21068 
21069 	/* Compute CDB size to use */
21070 	if (start_block > 0xffffffff)
21071 		cdbsize = CDB_GROUP4;
21072 	else if ((start_block & 0xFFE00000) ||
21073 	    (un->un_f_cfg_is_atapi == TRUE))
21074 		cdbsize = CDB_GROUP1;
21075 	else
21076 		cdbsize = CDB_GROUP0;
21077 
21078 	switch (cdbsize) {
21079 	case CDB_GROUP0:	/* 6-byte CDBs */
21080 		cdb.scc_cmd = cmd;
21081 		FORMG0ADDR(&cdb, start_block);
21082 		FORMG0COUNT(&cdb, block_count);
21083 		break;
21084 	case CDB_GROUP1:	/* 10-byte CDBs */
21085 		cdb.scc_cmd = cmd | SCMD_GROUP1;
21086 		FORMG1ADDR(&cdb, start_block);
21087 		FORMG1COUNT(&cdb, block_count);
21088 		break;
21089 	case CDB_GROUP4:	/* 16-byte CDBs */
21090 		cdb.scc_cmd = cmd | SCMD_GROUP4;
21091 		FORMG4LONGADDR(&cdb, (uint64_t)start_block);
21092 		FORMG4COUNT(&cdb, block_count);
21093 		break;
21094 	case CDB_GROUP5:	/* 12-byte CDBs (currently unsupported) */
21095 	default:
21096 		/* All others reserved */
21097 		return (EINVAL);
21098 	}
21099 
21100 	/* Set LUN bit(s) in CDB if this is a SCSI-1 device */
21101 	SD_FILL_SCSI1_LUN_CDB(un, &cdb);
21102 
21103 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
21104 	ucmd_buf.uscsi_cdblen	= (uchar_t)cdbsize;
21105 	ucmd_buf.uscsi_bufaddr	= bufaddr;
21106 	ucmd_buf.uscsi_buflen	= buflen;
21107 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
21108 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
21109 	ucmd_buf.uscsi_flags	= flag | USCSI_RQENABLE | USCSI_SILENT;
21110 	ucmd_buf.uscsi_timeout	= 60;
21111 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
21112 				UIO_SYSSPACE, UIO_SYSSPACE, path_flag);
21113 	switch (status) {
21114 	case 0:
21115 		break;	/* Success! */
21116 	case EIO:
21117 		switch (ucmd_buf.uscsi_status) {
21118 		case STATUS_RESERVATION_CONFLICT:
21119 			status = EACCES;
21120 			break;
21121 		default:
21122 			break;
21123 		}
21124 		break;
21125 	default:
21126 		break;
21127 	}
21128 
21129 	if (status == 0) {
21130 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_RDWR: data",
21131 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
21132 	}
21133 
21134 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_RDWR: exit\n");
21135 
21136 	return (status);
21137 }
21138 
21139 
21140 /*
21141  *    Function: sd_send_scsi_LOG_SENSE
21142  *
21143  * Description: Issue a scsi LOG_SENSE command with the given parameters.
21144  *
21145  *   Arguments: un:      Pointer to the sd_lun struct for the target.
21146  *
21147  * Return Code: 0   - Success
21148  *		errno return code from sd_send_scsi_cmd()
21149  *
21150  *     Context: Can sleep. Does not return until command is completed.
21151  */
21152 
21153 static int
21154 sd_send_scsi_LOG_SENSE(struct sd_lun *un, uchar_t *bufaddr, uint16_t buflen,
21155 	uchar_t page_code, uchar_t page_control, uint16_t param_ptr,
21156 	int path_flag)
21157 
21158 {
21159 	struct	scsi_extended_sense	sense_buf;
21160 	union scsi_cdb		cdb;
21161 	struct uscsi_cmd	ucmd_buf;
21162 	int			status;
21163 
21164 	ASSERT(un != NULL);
21165 	ASSERT(!mutex_owned(SD_MUTEX(un)));
21166 
21167 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_LOG_SENSE: entry: un:0x%p\n", un);
21168 
21169 	bzero(&cdb, sizeof (cdb));
21170 	bzero(&ucmd_buf, sizeof (ucmd_buf));
21171 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
21172 
21173 	cdb.scc_cmd = SCMD_LOG_SENSE_G1;
21174 	cdb.cdb_opaque[2] = (page_control << 6) | page_code;
21175 	cdb.cdb_opaque[5] = (uchar_t)((param_ptr & 0xFF00) >> 8);
21176 	cdb.cdb_opaque[6] = (uchar_t)(param_ptr  & 0x00FF);
21177 	FORMG1COUNT(&cdb, buflen);
21178 
21179 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
21180 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
21181 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
21182 	ucmd_buf.uscsi_buflen	= buflen;
21183 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
21184 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
21185 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
21186 	ucmd_buf.uscsi_timeout	= 60;
21187 
21188 	status = sd_send_scsi_cmd(SD_GET_DEV(un), &ucmd_buf, UIO_SYSSPACE,
21189 	    UIO_SYSSPACE, UIO_SYSSPACE, path_flag);
21190 
21191 	switch (status) {
21192 	case 0:
21193 		break;
21194 	case EIO:
21195 		switch (ucmd_buf.uscsi_status) {
21196 		case STATUS_RESERVATION_CONFLICT:
21197 			status = EACCES;
21198 			break;
21199 		case STATUS_CHECK:
21200 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
21201 			    (scsi_sense_key((uint8_t *)&sense_buf) ==
21202 				KEY_ILLEGAL_REQUEST) &&
21203 			    (scsi_sense_asc((uint8_t *)&sense_buf) == 0x24)) {
21204 				/*
21205 				 * ASC 0x24: INVALID FIELD IN CDB
21206 				 */
21207 				switch (page_code) {
21208 				case START_STOP_CYCLE_PAGE:
21209 					/*
21210 					 * The start stop cycle counter is
21211 					 * implemented as page 0x31 in earlier
21212 					 * generation disks. In new generation
21213 					 * disks the start stop cycle counter is
21214 					 * implemented as page 0xE. To properly
21215 					 * handle this case if an attempt for
21216 					 * log page 0xE is made and fails we
21217 					 * will try again using page 0x31.
21218 					 *
21219 					 * Network storage BU committed to
21220 					 * maintain the page 0x31 for this
21221 					 * purpose and will not have any other
21222 					 * page implemented with page code 0x31
21223 					 * until all disks transition to the
21224 					 * standard page.
21225 					 */
21226 					mutex_enter(SD_MUTEX(un));
21227 					un->un_start_stop_cycle_page =
21228 					    START_STOP_CYCLE_VU_PAGE;
21229 					cdb.cdb_opaque[2] =
21230 					    (char)(page_control << 6) |
21231 					    un->un_start_stop_cycle_page;
21232 					mutex_exit(SD_MUTEX(un));
21233 					status = sd_send_scsi_cmd(
21234 					    SD_GET_DEV(un), &ucmd_buf,
21235 					    UIO_SYSSPACE, UIO_SYSSPACE,
21236 					    UIO_SYSSPACE, path_flag);
21237 
21238 					break;
21239 				case TEMPERATURE_PAGE:
21240 					status = ENOTTY;
21241 					break;
21242 				default:
21243 					break;
21244 				}
21245 			}
21246 			break;
21247 		default:
21248 			break;
21249 		}
21250 		break;
21251 	default:
21252 		break;
21253 	}
21254 
21255 	if (status == 0) {
21256 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_LOG_SENSE: data",
21257 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
21258 	}
21259 
21260 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_LOG_SENSE: exit\n");
21261 
21262 	return (status);
21263 }
21264 
21265 
21266 /*
21267  *    Function: sdioctl
21268  *
21269  * Description: Driver's ioctl(9e) entry point function.
21270  *
21271  *   Arguments: dev     - device number
21272  *		cmd     - ioctl operation to be performed
21273  *		arg     - user argument, contains data to be set or reference
21274  *			  parameter for get
21275  *		flag    - bit flag, indicating open settings, 32/64 bit type
21276  *		cred_p  - user credential pointer
21277  *		rval_p  - calling process return value (OPT)
21278  *
21279  * Return Code: EINVAL
21280  *		ENOTTY
21281  *		ENXIO
21282  *		EIO
21283  *		EFAULT
21284  *		ENOTSUP
21285  *		EPERM
21286  *
21287  *     Context: Called from the device switch at normal priority.
21288  */
21289 
21290 static int
21291 sdioctl(dev_t dev, int cmd, intptr_t arg, int flag, cred_t *cred_p, int *rval_p)
21292 {
21293 	struct sd_lun	*un = NULL;
21294 	int		geom_validated = FALSE;
21295 	int		err = 0;
21296 	int		i = 0;
21297 	cred_t		*cr;
21298 
21299 	/*
21300 	 * All device accesses go thru sdstrategy where we check on suspend
21301 	 * status
21302 	 */
21303 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
21304 		return (ENXIO);
21305 	}
21306 
21307 	ASSERT(!mutex_owned(SD_MUTEX(un)));
21308 
21309 	/*
21310 	 * Moved this wait from sd_uscsi_strategy to here for
21311 	 * reasons of deadlock prevention. Internal driver commands,
21312 	 * specifically those to change a devices power level, result
21313 	 * in a call to sd_uscsi_strategy.
21314 	 */
21315 	mutex_enter(SD_MUTEX(un));
21316 	while ((un->un_state == SD_STATE_SUSPENDED) ||
21317 	    (un->un_state == SD_STATE_PM_CHANGING)) {
21318 		cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
21319 	}
21320 	/*
21321 	 * Twiddling the counter here protects commands from now
21322 	 * through to the top of sd_uscsi_strategy. Without the
21323 	 * counter inc. a power down, for example, could get in
21324 	 * after the above check for state is made and before
21325 	 * execution gets to the top of sd_uscsi_strategy.
21326 	 * That would cause problems.
21327 	 */
21328 	un->un_ncmds_in_driver++;
21329 
21330 	if ((un->un_f_geometry_is_valid == FALSE) &&
21331 	    (flag & (FNDELAY | FNONBLOCK))) {
21332 		switch (cmd) {
21333 		case CDROMPAUSE:
21334 		case CDROMRESUME:
21335 		case CDROMPLAYMSF:
21336 		case CDROMPLAYTRKIND:
21337 		case CDROMREADTOCHDR:
21338 		case CDROMREADTOCENTRY:
21339 		case CDROMSTOP:
21340 		case CDROMSTART:
21341 		case CDROMVOLCTRL:
21342 		case CDROMSUBCHNL:
21343 		case CDROMREADMODE2:
21344 		case CDROMREADMODE1:
21345 		case CDROMREADOFFSET:
21346 		case CDROMSBLKMODE:
21347 		case CDROMGBLKMODE:
21348 		case CDROMGDRVSPEED:
21349 		case CDROMSDRVSPEED:
21350 		case CDROMCDDA:
21351 		case CDROMCDXA:
21352 		case CDROMSUBCODE:
21353 			if (!ISCD(un)) {
21354 				un->un_ncmds_in_driver--;
21355 				ASSERT(un->un_ncmds_in_driver >= 0);
21356 				mutex_exit(SD_MUTEX(un));
21357 				return (ENOTTY);
21358 			}
21359 			break;
21360 		case FDEJECT:
21361 		case DKIOCEJECT:
21362 		case CDROMEJECT:
21363 			if (!un->un_f_eject_media_supported) {
21364 				un->un_ncmds_in_driver--;
21365 				ASSERT(un->un_ncmds_in_driver >= 0);
21366 				mutex_exit(SD_MUTEX(un));
21367 				return (ENOTTY);
21368 			}
21369 			break;
21370 		case DKIOCSVTOC:
21371 		case DKIOCSETEFI:
21372 		case DKIOCSMBOOT:
21373 		case DKIOCFLUSHWRITECACHE:
21374 			mutex_exit(SD_MUTEX(un));
21375 			err = sd_send_scsi_TEST_UNIT_READY(un, 0);
21376 			if (err != 0) {
21377 				mutex_enter(SD_MUTEX(un));
21378 				un->un_ncmds_in_driver--;
21379 				ASSERT(un->un_ncmds_in_driver >= 0);
21380 				mutex_exit(SD_MUTEX(un));
21381 				return (EIO);
21382 			}
21383 			mutex_enter(SD_MUTEX(un));
21384 			/* FALLTHROUGH */
21385 		case DKIOCREMOVABLE:
21386 		case DKIOCHOTPLUGGABLE:
21387 		case DKIOCINFO:
21388 		case DKIOCGMEDIAINFO:
21389 		case MHIOCENFAILFAST:
21390 		case MHIOCSTATUS:
21391 		case MHIOCTKOWN:
21392 		case MHIOCRELEASE:
21393 		case MHIOCGRP_INKEYS:
21394 		case MHIOCGRP_INRESV:
21395 		case MHIOCGRP_REGISTER:
21396 		case MHIOCGRP_RESERVE:
21397 		case MHIOCGRP_PREEMPTANDABORT:
21398 		case MHIOCGRP_REGISTERANDIGNOREKEY:
21399 		case CDROMCLOSETRAY:
21400 		case USCSICMD:
21401 			goto skip_ready_valid;
21402 		default:
21403 			break;
21404 		}
21405 
21406 		mutex_exit(SD_MUTEX(un));
21407 		err = sd_ready_and_valid(un);
21408 		mutex_enter(SD_MUTEX(un));
21409 		if (err == SD_READY_NOT_VALID) {
21410 			switch (cmd) {
21411 			case DKIOCGAPART:
21412 			case DKIOCGGEOM:
21413 			case DKIOCSGEOM:
21414 			case DKIOCGVTOC:
21415 			case DKIOCSVTOC:
21416 			case DKIOCSAPART:
21417 			case DKIOCG_PHYGEOM:
21418 			case DKIOCG_VIRTGEOM:
21419 				err = ENOTSUP;
21420 				un->un_ncmds_in_driver--;
21421 				ASSERT(un->un_ncmds_in_driver >= 0);
21422 				mutex_exit(SD_MUTEX(un));
21423 				return (err);
21424 			}
21425 		}
21426 		if (err != SD_READY_VALID) {
21427 			switch (cmd) {
21428 			case DKIOCSTATE:
21429 			case CDROMGDRVSPEED:
21430 			case CDROMSDRVSPEED:
21431 			case FDEJECT:	/* for eject command */
21432 			case DKIOCEJECT:
21433 			case CDROMEJECT:
21434 			case DKIOCGETEFI:
21435 			case DKIOCSGEOM:
21436 			case DKIOCREMOVABLE:
21437 			case DKIOCHOTPLUGGABLE:
21438 			case DKIOCSAPART:
21439 			case DKIOCSETEFI:
21440 				break;
21441 			default:
21442 				if (un->un_f_has_removable_media) {
21443 					err = ENXIO;
21444 				} else {
21445 				/* Do not map SD_RESERVED_BY_OTHERS to EIO */
21446 					if (err == SD_RESERVED_BY_OTHERS) {
21447 						err = EACCES;
21448 					} else {
21449 						err = EIO;
21450 					}
21451 				}
21452 				un->un_ncmds_in_driver--;
21453 				ASSERT(un->un_ncmds_in_driver >= 0);
21454 				mutex_exit(SD_MUTEX(un));
21455 				return (err);
21456 			}
21457 		}
21458 		geom_validated = TRUE;
21459 	}
21460 	if ((un->un_f_geometry_is_valid == TRUE) &&
21461 	    (un->un_solaris_size > 0)) {
21462 		/*
21463 		 * the "geometry_is_valid" flag could be true if we
21464 		 * have an fdisk table but no Solaris partition
21465 		 */
21466 		if (un->un_vtoc.v_sanity != VTOC_SANE) {
21467 			/* it is EFI, so return ENOTSUP for these */
21468 			switch (cmd) {
21469 			case DKIOCGAPART:
21470 			case DKIOCGGEOM:
21471 			case DKIOCGVTOC:
21472 			case DKIOCSVTOC:
21473 			case DKIOCSAPART:
21474 				err = ENOTSUP;
21475 				un->un_ncmds_in_driver--;
21476 				ASSERT(un->un_ncmds_in_driver >= 0);
21477 				mutex_exit(SD_MUTEX(un));
21478 				return (err);
21479 			}
21480 		}
21481 	}
21482 
21483 skip_ready_valid:
21484 	mutex_exit(SD_MUTEX(un));
21485 
21486 	switch (cmd) {
21487 	case DKIOCINFO:
21488 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCINFO\n");
21489 		err = sd_dkio_ctrl_info(dev, (caddr_t)arg, flag);
21490 		break;
21491 
21492 	case DKIOCGMEDIAINFO:
21493 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGMEDIAINFO\n");
21494 		err = sd_get_media_info(dev, (caddr_t)arg, flag);
21495 		break;
21496 
21497 	case DKIOCGGEOM:
21498 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGGEOM\n");
21499 		err = sd_dkio_get_geometry(dev, (caddr_t)arg, flag,
21500 		    geom_validated);
21501 		break;
21502 
21503 	case DKIOCSGEOM:
21504 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCSGEOM\n");
21505 		err = sd_dkio_set_geometry(dev, (caddr_t)arg, flag);
21506 		break;
21507 
21508 	case DKIOCGAPART:
21509 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGAPART\n");
21510 		err = sd_dkio_get_partition(dev, (caddr_t)arg, flag,
21511 		    geom_validated);
21512 		break;
21513 
21514 	case DKIOCSAPART:
21515 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCSAPART\n");
21516 		err = sd_dkio_set_partition(dev, (caddr_t)arg, flag);
21517 		break;
21518 
21519 	case DKIOCGVTOC:
21520 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGVTOC\n");
21521 		err = sd_dkio_get_vtoc(dev, (caddr_t)arg, flag,
21522 		    geom_validated);
21523 		break;
21524 
21525 	case DKIOCGETEFI:
21526 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGETEFI\n");
21527 		err = sd_dkio_get_efi(dev, (caddr_t)arg, flag);
21528 		break;
21529 
21530 	case DKIOCPARTITION:
21531 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCPARTITION\n");
21532 		err = sd_dkio_partition(dev, (caddr_t)arg, flag);
21533 		break;
21534 
21535 	case DKIOCSVTOC:
21536 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCSVTOC\n");
21537 		err = sd_dkio_set_vtoc(dev, (caddr_t)arg, flag);
21538 		break;
21539 
21540 	case DKIOCSETEFI:
21541 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCSETEFI\n");
21542 		err = sd_dkio_set_efi(dev, (caddr_t)arg, flag);
21543 		break;
21544 
21545 	case DKIOCGMBOOT:
21546 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGMBOOT\n");
21547 		err = sd_dkio_get_mboot(dev, (caddr_t)arg, flag);
21548 		break;
21549 
21550 	case DKIOCSMBOOT:
21551 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCSMBOOT\n");
21552 		err = sd_dkio_set_mboot(dev, (caddr_t)arg, flag);
21553 		break;
21554 
21555 	case DKIOCLOCK:
21556 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCLOCK\n");
21557 		err = sd_send_scsi_DOORLOCK(un, SD_REMOVAL_PREVENT,
21558 		    SD_PATH_STANDARD);
21559 		break;
21560 
21561 	case DKIOCUNLOCK:
21562 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCUNLOCK\n");
21563 		err = sd_send_scsi_DOORLOCK(un, SD_REMOVAL_ALLOW,
21564 		    SD_PATH_STANDARD);
21565 		break;
21566 
21567 	case DKIOCSTATE: {
21568 		enum dkio_state		state;
21569 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCSTATE\n");
21570 
21571 		if (ddi_copyin((void *)arg, &state, sizeof (int), flag) != 0) {
21572 			err = EFAULT;
21573 		} else {
21574 			err = sd_check_media(dev, state);
21575 			if (err == 0) {
21576 				if (ddi_copyout(&un->un_mediastate, (void *)arg,
21577 				    sizeof (int), flag) != 0)
21578 					err = EFAULT;
21579 			}
21580 		}
21581 		break;
21582 	}
21583 
21584 	case DKIOCREMOVABLE:
21585 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCREMOVABLE\n");
21586 		i = un->un_f_has_removable_media ? 1 : 0;
21587 		if (ddi_copyout(&i, (void *)arg, sizeof (int), flag) != 0) {
21588 			err = EFAULT;
21589 		} else {
21590 			err = 0;
21591 		}
21592 		break;
21593 
21594 	case DKIOCHOTPLUGGABLE:
21595 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCHOTPLUGGABLE\n");
21596 		i = un->un_f_is_hotpluggable ? 1 : 0;
21597 		if (ddi_copyout(&i, (void *)arg, sizeof (int), flag) != 0) {
21598 			err = EFAULT;
21599 		} else {
21600 			err = 0;
21601 		}
21602 		break;
21603 
21604 	case DKIOCGTEMPERATURE:
21605 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGTEMPERATURE\n");
21606 		err = sd_dkio_get_temp(dev, (caddr_t)arg, flag);
21607 		break;
21608 
21609 	case MHIOCENFAILFAST:
21610 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCENFAILFAST\n");
21611 		if ((err = drv_priv(cred_p)) == 0) {
21612 			err = sd_mhdioc_failfast(dev, (caddr_t)arg, flag);
21613 		}
21614 		break;
21615 
21616 	case MHIOCTKOWN:
21617 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCTKOWN\n");
21618 		if ((err = drv_priv(cred_p)) == 0) {
21619 			err = sd_mhdioc_takeown(dev, (caddr_t)arg, flag);
21620 		}
21621 		break;
21622 
21623 	case MHIOCRELEASE:
21624 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCRELEASE\n");
21625 		if ((err = drv_priv(cred_p)) == 0) {
21626 			err = sd_mhdioc_release(dev);
21627 		}
21628 		break;
21629 
21630 	case MHIOCSTATUS:
21631 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCSTATUS\n");
21632 		if ((err = drv_priv(cred_p)) == 0) {
21633 			switch (sd_send_scsi_TEST_UNIT_READY(un, 0)) {
21634 			case 0:
21635 				err = 0;
21636 				break;
21637 			case EACCES:
21638 				*rval_p = 1;
21639 				err = 0;
21640 				break;
21641 			default:
21642 				err = EIO;
21643 				break;
21644 			}
21645 		}
21646 		break;
21647 
21648 	case MHIOCQRESERVE:
21649 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCQRESERVE\n");
21650 		if ((err = drv_priv(cred_p)) == 0) {
21651 			err = sd_reserve_release(dev, SD_RESERVE);
21652 		}
21653 		break;
21654 
21655 	case MHIOCREREGISTERDEVID:
21656 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCREREGISTERDEVID\n");
21657 		if (drv_priv(cred_p) == EPERM) {
21658 			err = EPERM;
21659 		} else if (!un->un_f_devid_supported) {
21660 			err = ENOTTY;
21661 		} else {
21662 			err = sd_mhdioc_register_devid(dev);
21663 		}
21664 		break;
21665 
21666 	case MHIOCGRP_INKEYS:
21667 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_INKEYS\n");
21668 		if (((err = drv_priv(cred_p)) != EPERM) && arg != NULL) {
21669 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
21670 				err = ENOTSUP;
21671 			} else {
21672 				err = sd_mhdioc_inkeys(dev, (caddr_t)arg,
21673 				    flag);
21674 			}
21675 		}
21676 		break;
21677 
21678 	case MHIOCGRP_INRESV:
21679 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_INRESV\n");
21680 		if (((err = drv_priv(cred_p)) != EPERM) && arg != NULL) {
21681 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
21682 				err = ENOTSUP;
21683 			} else {
21684 				err = sd_mhdioc_inresv(dev, (caddr_t)arg, flag);
21685 			}
21686 		}
21687 		break;
21688 
21689 	case MHIOCGRP_REGISTER:
21690 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_REGISTER\n");
21691 		if ((err = drv_priv(cred_p)) != EPERM) {
21692 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
21693 				err = ENOTSUP;
21694 			} else if (arg != NULL) {
21695 				mhioc_register_t reg;
21696 				if (ddi_copyin((void *)arg, &reg,
21697 				    sizeof (mhioc_register_t), flag) != 0) {
21698 					err = EFAULT;
21699 				} else {
21700 					err =
21701 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
21702 					    un, SD_SCSI3_REGISTER,
21703 					    (uchar_t *)&reg);
21704 				}
21705 			}
21706 		}
21707 		break;
21708 
21709 	case MHIOCGRP_RESERVE:
21710 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_RESERVE\n");
21711 		if ((err = drv_priv(cred_p)) != EPERM) {
21712 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
21713 				err = ENOTSUP;
21714 			} else if (arg != NULL) {
21715 				mhioc_resv_desc_t resv_desc;
21716 				if (ddi_copyin((void *)arg, &resv_desc,
21717 				    sizeof (mhioc_resv_desc_t), flag) != 0) {
21718 					err = EFAULT;
21719 				} else {
21720 					err =
21721 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
21722 					    un, SD_SCSI3_RESERVE,
21723 					    (uchar_t *)&resv_desc);
21724 				}
21725 			}
21726 		}
21727 		break;
21728 
21729 	case MHIOCGRP_PREEMPTANDABORT:
21730 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_PREEMPTANDABORT\n");
21731 		if ((err = drv_priv(cred_p)) != EPERM) {
21732 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
21733 				err = ENOTSUP;
21734 			} else if (arg != NULL) {
21735 				mhioc_preemptandabort_t preempt_abort;
21736 				if (ddi_copyin((void *)arg, &preempt_abort,
21737 				    sizeof (mhioc_preemptandabort_t),
21738 				    flag) != 0) {
21739 					err = EFAULT;
21740 				} else {
21741 					err =
21742 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
21743 					    un, SD_SCSI3_PREEMPTANDABORT,
21744 					    (uchar_t *)&preempt_abort);
21745 				}
21746 			}
21747 		}
21748 		break;
21749 
21750 	case MHIOCGRP_REGISTERANDIGNOREKEY:
21751 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_PREEMPTANDABORT\n");
21752 		if ((err = drv_priv(cred_p)) != EPERM) {
21753 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
21754 				err = ENOTSUP;
21755 			} else if (arg != NULL) {
21756 				mhioc_registerandignorekey_t r_and_i;
21757 				if (ddi_copyin((void *)arg, (void *)&r_and_i,
21758 				    sizeof (mhioc_registerandignorekey_t),
21759 				    flag) != 0) {
21760 					err = EFAULT;
21761 				} else {
21762 					err =
21763 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
21764 					    un, SD_SCSI3_REGISTERANDIGNOREKEY,
21765 					    (uchar_t *)&r_and_i);
21766 				}
21767 			}
21768 		}
21769 		break;
21770 
21771 	case USCSICMD:
21772 		SD_TRACE(SD_LOG_IOCTL, un, "USCSICMD\n");
21773 		cr = ddi_get_cred();
21774 		if ((drv_priv(cred_p) != 0) && (drv_priv(cr) != 0)) {
21775 			err = EPERM;
21776 		} else {
21777 			err = sd_uscsi_ioctl(dev, (caddr_t)arg, flag);
21778 		}
21779 		break;
21780 
21781 	case CDROMPAUSE:
21782 	case CDROMRESUME:
21783 		SD_TRACE(SD_LOG_IOCTL, un, "PAUSE-RESUME\n");
21784 		if (!ISCD(un)) {
21785 			err = ENOTTY;
21786 		} else {
21787 			err = sr_pause_resume(dev, cmd);
21788 		}
21789 		break;
21790 
21791 	case CDROMPLAYMSF:
21792 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMPLAYMSF\n");
21793 		if (!ISCD(un)) {
21794 			err = ENOTTY;
21795 		} else {
21796 			err = sr_play_msf(dev, (caddr_t)arg, flag);
21797 		}
21798 		break;
21799 
21800 	case CDROMPLAYTRKIND:
21801 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMPLAYTRKIND\n");
21802 #if defined(__i386) || defined(__amd64)
21803 		/*
21804 		 * not supported on ATAPI CD drives, use CDROMPLAYMSF instead
21805 		 */
21806 		if (!ISCD(un) || (un->un_f_cfg_is_atapi == TRUE)) {
21807 #else
21808 		if (!ISCD(un)) {
21809 #endif
21810 			err = ENOTTY;
21811 		} else {
21812 			err = sr_play_trkind(dev, (caddr_t)arg, flag);
21813 		}
21814 		break;
21815 
21816 	case CDROMREADTOCHDR:
21817 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADTOCHDR\n");
21818 		if (!ISCD(un)) {
21819 			err = ENOTTY;
21820 		} else {
21821 			err = sr_read_tochdr(dev, (caddr_t)arg, flag);
21822 		}
21823 		break;
21824 
21825 	case CDROMREADTOCENTRY:
21826 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADTOCENTRY\n");
21827 		if (!ISCD(un)) {
21828 			err = ENOTTY;
21829 		} else {
21830 			err = sr_read_tocentry(dev, (caddr_t)arg, flag);
21831 		}
21832 		break;
21833 
21834 	case CDROMSTOP:
21835 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSTOP\n");
21836 		if (!ISCD(un)) {
21837 			err = ENOTTY;
21838 		} else {
21839 			err = sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_STOP,
21840 			    SD_PATH_STANDARD);
21841 		}
21842 		break;
21843 
21844 	case CDROMSTART:
21845 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSTART\n");
21846 		if (!ISCD(un)) {
21847 			err = ENOTTY;
21848 		} else {
21849 			err = sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_START,
21850 			    SD_PATH_STANDARD);
21851 		}
21852 		break;
21853 
21854 	case CDROMCLOSETRAY:
21855 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMCLOSETRAY\n");
21856 		if (!ISCD(un)) {
21857 			err = ENOTTY;
21858 		} else {
21859 			err = sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_CLOSE,
21860 			    SD_PATH_STANDARD);
21861 		}
21862 		break;
21863 
21864 	case FDEJECT:	/* for eject command */
21865 	case DKIOCEJECT:
21866 	case CDROMEJECT:
21867 		SD_TRACE(SD_LOG_IOCTL, un, "EJECT\n");
21868 		if (!un->un_f_eject_media_supported) {
21869 			err = ENOTTY;
21870 		} else {
21871 			err = sr_eject(dev);
21872 		}
21873 		break;
21874 
21875 	case CDROMVOLCTRL:
21876 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMVOLCTRL\n");
21877 		if (!ISCD(un)) {
21878 			err = ENOTTY;
21879 		} else {
21880 			err = sr_volume_ctrl(dev, (caddr_t)arg, flag);
21881 		}
21882 		break;
21883 
21884 	case CDROMSUBCHNL:
21885 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSUBCHNL\n");
21886 		if (!ISCD(un)) {
21887 			err = ENOTTY;
21888 		} else {
21889 			err = sr_read_subchannel(dev, (caddr_t)arg, flag);
21890 		}
21891 		break;
21892 
21893 	case CDROMREADMODE2:
21894 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADMODE2\n");
21895 		if (!ISCD(un)) {
21896 			err = ENOTTY;
21897 		} else if (un->un_f_cfg_is_atapi == TRUE) {
21898 			/*
21899 			 * If the drive supports READ CD, use that instead of
21900 			 * switching the LBA size via a MODE SELECT
21901 			 * Block Descriptor
21902 			 */
21903 			err = sr_read_cd_mode2(dev, (caddr_t)arg, flag);
21904 		} else {
21905 			err = sr_read_mode2(dev, (caddr_t)arg, flag);
21906 		}
21907 		break;
21908 
21909 	case CDROMREADMODE1:
21910 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADMODE1\n");
21911 		if (!ISCD(un)) {
21912 			err = ENOTTY;
21913 		} else {
21914 			err = sr_read_mode1(dev, (caddr_t)arg, flag);
21915 		}
21916 		break;
21917 
21918 	case CDROMREADOFFSET:
21919 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADOFFSET\n");
21920 		if (!ISCD(un)) {
21921 			err = ENOTTY;
21922 		} else {
21923 			err = sr_read_sony_session_offset(dev, (caddr_t)arg,
21924 			    flag);
21925 		}
21926 		break;
21927 
21928 	case CDROMSBLKMODE:
21929 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSBLKMODE\n");
21930 		/*
21931 		 * There is no means of changing block size in case of atapi
21932 		 * drives, thus return ENOTTY if drive type is atapi
21933 		 */
21934 		if (!ISCD(un) || (un->un_f_cfg_is_atapi == TRUE)) {
21935 			err = ENOTTY;
21936 		} else if (un->un_f_mmc_cap == TRUE) {
21937 
21938 			/*
21939 			 * MMC Devices do not support changing the
21940 			 * logical block size
21941 			 *
21942 			 * Note: EINVAL is being returned instead of ENOTTY to
21943 			 * maintain consistancy with the original mmc
21944 			 * driver update.
21945 			 */
21946 			err = EINVAL;
21947 		} else {
21948 			mutex_enter(SD_MUTEX(un));
21949 			if ((!(un->un_exclopen & (1<<SDPART(dev)))) ||
21950 			    (un->un_ncmds_in_transport > 0)) {
21951 				mutex_exit(SD_MUTEX(un));
21952 				err = EINVAL;
21953 			} else {
21954 				mutex_exit(SD_MUTEX(un));
21955 				err = sr_change_blkmode(dev, cmd, arg, flag);
21956 			}
21957 		}
21958 		break;
21959 
21960 	case CDROMGBLKMODE:
21961 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMGBLKMODE\n");
21962 		if (!ISCD(un)) {
21963 			err = ENOTTY;
21964 		} else if ((un->un_f_cfg_is_atapi != FALSE) &&
21965 		    (un->un_f_blockcount_is_valid != FALSE)) {
21966 			/*
21967 			 * Drive is an ATAPI drive so return target block
21968 			 * size for ATAPI drives since we cannot change the
21969 			 * blocksize on ATAPI drives. Used primarily to detect
21970 			 * if an ATAPI cdrom is present.
21971 			 */
21972 			if (ddi_copyout(&un->un_tgt_blocksize, (void *)arg,
21973 			    sizeof (int), flag) != 0) {
21974 				err = EFAULT;
21975 			} else {
21976 				err = 0;
21977 			}
21978 
21979 		} else {
21980 			/*
21981 			 * Drive supports changing block sizes via a Mode
21982 			 * Select.
21983 			 */
21984 			err = sr_change_blkmode(dev, cmd, arg, flag);
21985 		}
21986 		break;
21987 
21988 	case CDROMGDRVSPEED:
21989 	case CDROMSDRVSPEED:
21990 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMXDRVSPEED\n");
21991 		if (!ISCD(un)) {
21992 			err = ENOTTY;
21993 		} else if (un->un_f_mmc_cap == TRUE) {
21994 			/*
21995 			 * Note: In the future the driver implementation
21996 			 * for getting and
21997 			 * setting cd speed should entail:
21998 			 * 1) If non-mmc try the Toshiba mode page
21999 			 *    (sr_change_speed)
22000 			 * 2) If mmc but no support for Real Time Streaming try
22001 			 *    the SET CD SPEED (0xBB) command
22002 			 *   (sr_atapi_change_speed)
22003 			 * 3) If mmc and support for Real Time Streaming
22004 			 *    try the GET PERFORMANCE and SET STREAMING
22005 			 *    commands (not yet implemented, 4380808)
22006 			 */
22007 			/*
22008 			 * As per recent MMC spec, CD-ROM speed is variable
22009 			 * and changes with LBA. Since there is no such
22010 			 * things as drive speed now, fail this ioctl.
22011 			 *
22012 			 * Note: EINVAL is returned for consistancy of original
22013 			 * implementation which included support for getting
22014 			 * the drive speed of mmc devices but not setting
22015 			 * the drive speed. Thus EINVAL would be returned
22016 			 * if a set request was made for an mmc device.
22017 			 * We no longer support get or set speed for
22018 			 * mmc but need to remain consistant with regard
22019 			 * to the error code returned.
22020 			 */
22021 			err = EINVAL;
22022 		} else if (un->un_f_cfg_is_atapi == TRUE) {
22023 			err = sr_atapi_change_speed(dev, cmd, arg, flag);
22024 		} else {
22025 			err = sr_change_speed(dev, cmd, arg, flag);
22026 		}
22027 		break;
22028 
22029 	case CDROMCDDA:
22030 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMCDDA\n");
22031 		if (!ISCD(un)) {
22032 			err = ENOTTY;
22033 		} else {
22034 			err = sr_read_cdda(dev, (void *)arg, flag);
22035 		}
22036 		break;
22037 
22038 	case CDROMCDXA:
22039 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMCDXA\n");
22040 		if (!ISCD(un)) {
22041 			err = ENOTTY;
22042 		} else {
22043 			err = sr_read_cdxa(dev, (caddr_t)arg, flag);
22044 		}
22045 		break;
22046 
22047 	case CDROMSUBCODE:
22048 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSUBCODE\n");
22049 		if (!ISCD(un)) {
22050 			err = ENOTTY;
22051 		} else {
22052 			err = sr_read_all_subcodes(dev, (caddr_t)arg, flag);
22053 		}
22054 		break;
22055 
22056 	case DKIOCPARTINFO: {
22057 		/*
22058 		 * Return parameters describing the selected disk slice.
22059 		 * Note: this ioctl is for the intel platform only
22060 		 */
22061 #if defined(__i386) || defined(__amd64)
22062 		int part;
22063 
22064 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCPARTINFO\n");
22065 		part = SDPART(dev);
22066 
22067 		/* don't check un_solaris_size for pN */
22068 		if (part < P0_RAW_DISK && un->un_solaris_size == 0) {
22069 			err = EIO;
22070 		} else {
22071 			struct part_info p;
22072 
22073 			p.p_start = (daddr_t)un->un_offset[part];
22074 			p.p_length = (int)un->un_map[part].dkl_nblk;
22075 #ifdef _MULTI_DATAMODEL
22076 			switch (ddi_model_convert_from(flag & FMODELS)) {
22077 			case DDI_MODEL_ILP32:
22078 			{
22079 				struct part_info32 p32;
22080 
22081 				p32.p_start = (daddr32_t)p.p_start;
22082 				p32.p_length = p.p_length;
22083 				if (ddi_copyout(&p32, (void *)arg,
22084 				    sizeof (p32), flag))
22085 					err = EFAULT;
22086 				break;
22087 			}
22088 
22089 			case DDI_MODEL_NONE:
22090 			{
22091 				if (ddi_copyout(&p, (void *)arg, sizeof (p),
22092 				    flag))
22093 					err = EFAULT;
22094 				break;
22095 			}
22096 			}
22097 #else /* ! _MULTI_DATAMODEL */
22098 			if (ddi_copyout(&p, (void *)arg, sizeof (p), flag))
22099 				err = EFAULT;
22100 #endif /* _MULTI_DATAMODEL */
22101 		}
22102 #else
22103 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCPARTINFO\n");
22104 		err = ENOTTY;
22105 #endif
22106 		break;
22107 	}
22108 
22109 	case DKIOCG_PHYGEOM: {
22110 		/* Return the driver's notion of the media physical geometry */
22111 #if defined(__i386) || defined(__amd64)
22112 		uint64_t	capacity;
22113 		struct dk_geom	disk_geom;
22114 		struct dk_geom	*dkgp = &disk_geom;
22115 
22116 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCG_PHYGEOM\n");
22117 		mutex_enter(SD_MUTEX(un));
22118 
22119 		if (un->un_g.dkg_nhead != 0 &&
22120 		    un->un_g.dkg_nsect != 0) {
22121 			/*
22122 			 * We succeeded in getting a geometry, but
22123 			 * right now it is being reported as just the
22124 			 * Solaris fdisk partition, just like for
22125 			 * DKIOCGGEOM. We need to change that to be
22126 			 * correct for the entire disk now.
22127 			 */
22128 			bcopy(&un->un_g, dkgp, sizeof (*dkgp));
22129 			dkgp->dkg_acyl = 0;
22130 			dkgp->dkg_ncyl = un->un_blockcount /
22131 			    (dkgp->dkg_nhead * dkgp->dkg_nsect);
22132 		} else {
22133 			bzero(dkgp, sizeof (struct dk_geom));
22134 			/*
22135 			 * This disk does not have a Solaris VTOC
22136 			 * so we must present a physical geometry
22137 			 * that will remain consistent regardless
22138 			 * of how the disk is used. This will ensure
22139 			 * that the geometry does not change regardless
22140 			 * of the fdisk partition type (ie. EFI, FAT32,
22141 			 * Solaris, etc).
22142 			 */
22143 			if (ISCD(un)) {
22144 				dkgp->dkg_nhead = un->un_pgeom.g_nhead;
22145 				dkgp->dkg_nsect = un->un_pgeom.g_nsect;
22146 				dkgp->dkg_ncyl = un->un_pgeom.g_ncyl;
22147 				dkgp->dkg_acyl = un->un_pgeom.g_acyl;
22148 			} else {
22149 				/*
22150 				 * Invalid un_blockcount can generate invalid
22151 				 * dk_geom and may result in division by zero
22152 				 * system failure. Should make sure blockcount
22153 				 * is valid before using it here.
22154 				 */
22155 				if (un->un_f_blockcount_is_valid == FALSE) {
22156 					mutex_exit(SD_MUTEX(un));
22157 					err = EIO;
22158 
22159 					break;
22160 				}
22161 
22162 				/*
22163 				 * Refer to comments related to off-by-1 at the
22164 				 * header of this file
22165 				 */
22166 				if (!un->un_f_capacity_adjusted &&
22167 					!un->un_f_has_removable_media &&
22168 				    !un->un_f_is_hotpluggable &&
22169 					(un->un_tgt_blocksize ==
22170 					un->un_sys_blocksize))
22171 					capacity = un->un_blockcount - 1;
22172 				else
22173 					capacity = un->un_blockcount;
22174 
22175 				sd_convert_geometry(capacity, dkgp);
22176 				dkgp->dkg_acyl = 0;
22177 				dkgp->dkg_ncyl = capacity /
22178 				    (dkgp->dkg_nhead * dkgp->dkg_nsect);
22179 			}
22180 		}
22181 		dkgp->dkg_pcyl = dkgp->dkg_ncyl + dkgp->dkg_acyl;
22182 
22183 		if (ddi_copyout(dkgp, (void *)arg,
22184 		    sizeof (struct dk_geom), flag)) {
22185 			mutex_exit(SD_MUTEX(un));
22186 			err = EFAULT;
22187 		} else {
22188 			mutex_exit(SD_MUTEX(un));
22189 			err = 0;
22190 		}
22191 #else
22192 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCG_PHYGEOM\n");
22193 		err = ENOTTY;
22194 #endif
22195 		break;
22196 	}
22197 
22198 	case DKIOCG_VIRTGEOM: {
22199 		/* Return the driver's notion of the media's logical geometry */
22200 #if defined(__i386) || defined(__amd64)
22201 		struct dk_geom	disk_geom;
22202 		struct dk_geom	*dkgp = &disk_geom;
22203 
22204 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCG_VIRTGEOM\n");
22205 		mutex_enter(SD_MUTEX(un));
22206 		/*
22207 		 * If there is no HBA geometry available, or
22208 		 * if the HBA returned us something that doesn't
22209 		 * really fit into an Int 13/function 8 geometry
22210 		 * result, just fail the ioctl.  See PSARC 1998/313.
22211 		 */
22212 		if (un->un_lgeom.g_nhead == 0 ||
22213 		    un->un_lgeom.g_nsect == 0 ||
22214 		    un->un_lgeom.g_ncyl > 1024) {
22215 			mutex_exit(SD_MUTEX(un));
22216 			err = EINVAL;
22217 		} else {
22218 			dkgp->dkg_ncyl	= un->un_lgeom.g_ncyl;
22219 			dkgp->dkg_acyl	= un->un_lgeom.g_acyl;
22220 			dkgp->dkg_pcyl	= dkgp->dkg_ncyl + dkgp->dkg_acyl;
22221 			dkgp->dkg_nhead	= un->un_lgeom.g_nhead;
22222 			dkgp->dkg_nsect	= un->un_lgeom.g_nsect;
22223 
22224 			if (ddi_copyout(dkgp, (void *)arg,
22225 			    sizeof (struct dk_geom), flag)) {
22226 				mutex_exit(SD_MUTEX(un));
22227 				err = EFAULT;
22228 			} else {
22229 				mutex_exit(SD_MUTEX(un));
22230 				err = 0;
22231 			}
22232 		}
22233 #else
22234 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCG_VIRTGEOM\n");
22235 		err = ENOTTY;
22236 #endif
22237 		break;
22238 	}
22239 #ifdef SDDEBUG
22240 /* RESET/ABORTS testing ioctls */
22241 	case DKIOCRESET: {
22242 		int	reset_level;
22243 
22244 		if (ddi_copyin((void *)arg, &reset_level, sizeof (int), flag)) {
22245 			err = EFAULT;
22246 		} else {
22247 			SD_INFO(SD_LOG_IOCTL, un, "sdioctl: DKIOCRESET: "
22248 			    "reset_level = 0x%lx\n", reset_level);
22249 			if (scsi_reset(SD_ADDRESS(un), reset_level)) {
22250 				err = 0;
22251 			} else {
22252 				err = EIO;
22253 			}
22254 		}
22255 		break;
22256 	}
22257 
22258 	case DKIOCABORT:
22259 		SD_INFO(SD_LOG_IOCTL, un, "sdioctl: DKIOCABORT:\n");
22260 		if (scsi_abort(SD_ADDRESS(un), NULL)) {
22261 			err = 0;
22262 		} else {
22263 			err = EIO;
22264 		}
22265 		break;
22266 #endif
22267 
22268 #ifdef SD_FAULT_INJECTION
22269 /* SDIOC FaultInjection testing ioctls */
22270 	case SDIOCSTART:
22271 	case SDIOCSTOP:
22272 	case SDIOCINSERTPKT:
22273 	case SDIOCINSERTXB:
22274 	case SDIOCINSERTUN:
22275 	case SDIOCINSERTARQ:
22276 	case SDIOCPUSH:
22277 	case SDIOCRETRIEVE:
22278 	case SDIOCRUN:
22279 		SD_INFO(SD_LOG_SDTEST, un, "sdioctl:"
22280 		    "SDIOC detected cmd:0x%X:\n", cmd);
22281 		/* call error generator */
22282 		sd_faultinjection_ioctl(cmd, arg, un);
22283 		err = 0;
22284 		break;
22285 
22286 #endif /* SD_FAULT_INJECTION */
22287 
22288 	case DKIOCFLUSHWRITECACHE:
22289 		{
22290 			struct dk_callback *dkc = (struct dk_callback *)arg;
22291 
22292 			mutex_enter(SD_MUTEX(un));
22293 			if (!un->un_f_sync_cache_supported ||
22294 			    !un->un_f_write_cache_enabled) {
22295 				err = un->un_f_sync_cache_supported ?
22296 					0 : ENOTSUP;
22297 				mutex_exit(SD_MUTEX(un));
22298 				if ((flag & FKIOCTL) && dkc != NULL &&
22299 				    dkc->dkc_callback != NULL) {
22300 					(*dkc->dkc_callback)(dkc->dkc_cookie,
22301 					    err);
22302 					/*
22303 					 * Did callback and reported error.
22304 					 * Since we did a callback, ioctl
22305 					 * should return 0.
22306 					 */
22307 					err = 0;
22308 				}
22309 				break;
22310 			}
22311 			mutex_exit(SD_MUTEX(un));
22312 
22313 			if ((flag & FKIOCTL) && dkc != NULL &&
22314 			    dkc->dkc_callback != NULL) {
22315 				/* async SYNC CACHE request */
22316 				err = sd_send_scsi_SYNCHRONIZE_CACHE(un, dkc);
22317 			} else {
22318 				/* synchronous SYNC CACHE request */
22319 				err = sd_send_scsi_SYNCHRONIZE_CACHE(un, NULL);
22320 			}
22321 		}
22322 		break;
22323 
22324 	case DKIOCGETWCE: {
22325 
22326 		int wce;
22327 
22328 		if ((err = sd_get_write_cache_enabled(un, &wce)) != 0) {
22329 			break;
22330 		}
22331 
22332 		if (ddi_copyout(&wce, (void *)arg, sizeof (wce), flag)) {
22333 			err = EFAULT;
22334 		}
22335 		break;
22336 	}
22337 
22338 	case DKIOCSETWCE: {
22339 
22340 		int wce, sync_supported;
22341 
22342 		if (ddi_copyin((void *)arg, &wce, sizeof (wce), flag)) {
22343 			err = EFAULT;
22344 			break;
22345 		}
22346 
22347 		/*
22348 		 * Synchronize multiple threads trying to enable
22349 		 * or disable the cache via the un_f_wcc_cv
22350 		 * condition variable.
22351 		 */
22352 		mutex_enter(SD_MUTEX(un));
22353 
22354 		/*
22355 		 * Don't allow the cache to be enabled if the
22356 		 * config file has it disabled.
22357 		 */
22358 		if (un->un_f_opt_disable_cache && wce) {
22359 			mutex_exit(SD_MUTEX(un));
22360 			err = EINVAL;
22361 			break;
22362 		}
22363 
22364 		/*
22365 		 * Wait for write cache change in progress
22366 		 * bit to be clear before proceeding.
22367 		 */
22368 		while (un->un_f_wcc_inprog)
22369 			cv_wait(&un->un_wcc_cv, SD_MUTEX(un));
22370 
22371 		un->un_f_wcc_inprog = 1;
22372 
22373 		if (un->un_f_write_cache_enabled && wce == 0) {
22374 			/*
22375 			 * Disable the write cache.  Don't clear
22376 			 * un_f_write_cache_enabled until after
22377 			 * the mode select and flush are complete.
22378 			 */
22379 			sync_supported = un->un_f_sync_cache_supported;
22380 			mutex_exit(SD_MUTEX(un));
22381 			if ((err = sd_cache_control(un, SD_CACHE_NOCHANGE,
22382 			    SD_CACHE_DISABLE)) == 0 && sync_supported) {
22383 				err = sd_send_scsi_SYNCHRONIZE_CACHE(un, NULL);
22384 			}
22385 
22386 			mutex_enter(SD_MUTEX(un));
22387 			if (err == 0) {
22388 				un->un_f_write_cache_enabled = 0;
22389 			}
22390 
22391 		} else if (!un->un_f_write_cache_enabled && wce != 0) {
22392 			/*
22393 			 * Set un_f_write_cache_enabled first, so there is
22394 			 * no window where the cache is enabled, but the
22395 			 * bit says it isn't.
22396 			 */
22397 			un->un_f_write_cache_enabled = 1;
22398 			mutex_exit(SD_MUTEX(un));
22399 
22400 			err = sd_cache_control(un, SD_CACHE_NOCHANGE,
22401 				SD_CACHE_ENABLE);
22402 
22403 			mutex_enter(SD_MUTEX(un));
22404 
22405 			if (err) {
22406 				un->un_f_write_cache_enabled = 0;
22407 			}
22408 		}
22409 
22410 		un->un_f_wcc_inprog = 0;
22411 		cv_broadcast(&un->un_wcc_cv);
22412 		mutex_exit(SD_MUTEX(un));
22413 		break;
22414 	}
22415 
22416 	default:
22417 		err = ENOTTY;
22418 		break;
22419 	}
22420 	mutex_enter(SD_MUTEX(un));
22421 	un->un_ncmds_in_driver--;
22422 	ASSERT(un->un_ncmds_in_driver >= 0);
22423 	mutex_exit(SD_MUTEX(un));
22424 
22425 	SD_TRACE(SD_LOG_IOCTL, un, "sdioctl: exit: %d\n", err);
22426 	return (err);
22427 }
22428 
22429 
22430 /*
22431  *    Function: sd_uscsi_ioctl
22432  *
22433  * Description: This routine is the driver entry point for handling USCSI ioctl
22434  *		requests (USCSICMD).
22435  *
22436  *   Arguments: dev	- the device number
22437  *		arg	- user provided scsi command
22438  *		flag	- this argument is a pass through to ddi_copyxxx()
22439  *			  directly from the mode argument of ioctl().
22440  *
22441  * Return Code: code returned by sd_send_scsi_cmd
22442  *		ENXIO
22443  *		EFAULT
22444  *		EAGAIN
22445  */
22446 
22447 static int
22448 sd_uscsi_ioctl(dev_t dev, caddr_t arg, int flag)
22449 {
22450 #ifdef _MULTI_DATAMODEL
22451 	/*
22452 	 * For use when a 32 bit app makes a call into a
22453 	 * 64 bit ioctl
22454 	 */
22455 	struct uscsi_cmd32	uscsi_cmd_32_for_64;
22456 	struct uscsi_cmd32	*ucmd32 = &uscsi_cmd_32_for_64;
22457 	model_t			model;
22458 #endif /* _MULTI_DATAMODEL */
22459 	struct uscsi_cmd	*scmd = NULL;
22460 	struct sd_lun		*un = NULL;
22461 	enum uio_seg		uioseg;
22462 	char			cdb[CDB_GROUP0];
22463 	int			rval = 0;
22464 
22465 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22466 		return (ENXIO);
22467 	}
22468 
22469 	SD_TRACE(SD_LOG_IOCTL, un, "sd_uscsi_ioctl: entry: un:0x%p\n", un);
22470 
22471 	scmd = (struct uscsi_cmd *)
22472 	    kmem_zalloc(sizeof (struct uscsi_cmd), KM_SLEEP);
22473 
22474 #ifdef _MULTI_DATAMODEL
22475 	switch (model = ddi_model_convert_from(flag & FMODELS)) {
22476 	case DDI_MODEL_ILP32:
22477 	{
22478 		if (ddi_copyin((void *)arg, ucmd32, sizeof (*ucmd32), flag)) {
22479 			rval = EFAULT;
22480 			goto done;
22481 		}
22482 		/*
22483 		 * Convert the ILP32 uscsi data from the
22484 		 * application to LP64 for internal use.
22485 		 */
22486 		uscsi_cmd32touscsi_cmd(ucmd32, scmd);
22487 		break;
22488 	}
22489 	case DDI_MODEL_NONE:
22490 		if (ddi_copyin((void *)arg, scmd, sizeof (*scmd), flag)) {
22491 			rval = EFAULT;
22492 			goto done;
22493 		}
22494 		break;
22495 	}
22496 #else /* ! _MULTI_DATAMODEL */
22497 	if (ddi_copyin((void *)arg, scmd, sizeof (*scmd), flag)) {
22498 		rval = EFAULT;
22499 		goto done;
22500 	}
22501 #endif /* _MULTI_DATAMODEL */
22502 
22503 	scmd->uscsi_flags &= ~USCSI_NOINTR;
22504 	uioseg = (flag & FKIOCTL) ? UIO_SYSSPACE : UIO_USERSPACE;
22505 	if (un->un_f_format_in_progress == TRUE) {
22506 		rval = EAGAIN;
22507 		goto done;
22508 	}
22509 
22510 	/*
22511 	 * Gotta do the ddi_copyin() here on the uscsi_cdb so that
22512 	 * we will have a valid cdb[0] to test.
22513 	 */
22514 	if ((ddi_copyin(scmd->uscsi_cdb, cdb, CDB_GROUP0, flag) == 0) &&
22515 	    (cdb[0] == SCMD_FORMAT)) {
22516 		SD_TRACE(SD_LOG_IOCTL, un,
22517 		    "sd_uscsi_ioctl: scmd->uscsi_cdb 0x%x\n", cdb[0]);
22518 		mutex_enter(SD_MUTEX(un));
22519 		un->un_f_format_in_progress = TRUE;
22520 		mutex_exit(SD_MUTEX(un));
22521 		rval = sd_send_scsi_cmd(dev, scmd, uioseg, uioseg, uioseg,
22522 		    SD_PATH_STANDARD);
22523 		mutex_enter(SD_MUTEX(un));
22524 		un->un_f_format_in_progress = FALSE;
22525 		mutex_exit(SD_MUTEX(un));
22526 	} else {
22527 		SD_TRACE(SD_LOG_IOCTL, un,
22528 		    "sd_uscsi_ioctl: scmd->uscsi_cdb 0x%x\n", cdb[0]);
22529 		/*
22530 		 * It's OK to fall into here even if the ddi_copyin()
22531 		 * on the uscsi_cdb above fails, because sd_send_scsi_cmd()
22532 		 * does this same copyin and will return the EFAULT
22533 		 * if it fails.
22534 		 */
22535 		rval = sd_send_scsi_cmd(dev, scmd, uioseg, uioseg, uioseg,
22536 		    SD_PATH_STANDARD);
22537 	}
22538 #ifdef _MULTI_DATAMODEL
22539 	switch (model) {
22540 	case DDI_MODEL_ILP32:
22541 		/*
22542 		 * Convert back to ILP32 before copyout to the
22543 		 * application
22544 		 */
22545 		uscsi_cmdtouscsi_cmd32(scmd, ucmd32);
22546 		if (ddi_copyout(ucmd32, (void *)arg, sizeof (*ucmd32), flag)) {
22547 			if (rval != 0) {
22548 				rval = EFAULT;
22549 			}
22550 		}
22551 		break;
22552 	case DDI_MODEL_NONE:
22553 		if (ddi_copyout(scmd, (void *)arg, sizeof (*scmd), flag)) {
22554 			if (rval != 0) {
22555 				rval = EFAULT;
22556 			}
22557 		}
22558 		break;
22559 	}
22560 #else /* ! _MULTI_DATAMODE */
22561 	if (ddi_copyout(scmd, (void *)arg, sizeof (*scmd), flag)) {
22562 		if (rval != 0) {
22563 			rval = EFAULT;
22564 		}
22565 	}
22566 #endif /* _MULTI_DATAMODE */
22567 done:
22568 	kmem_free(scmd, sizeof (struct uscsi_cmd));
22569 
22570 	SD_TRACE(SD_LOG_IOCTL, un, "sd_uscsi_ioctl: exit: un:0x%p\n", un);
22571 
22572 	return (rval);
22573 }
22574 
22575 
22576 /*
22577  *    Function: sd_dkio_ctrl_info
22578  *
22579  * Description: This routine is the driver entry point for handling controller
22580  *		information ioctl requests (DKIOCINFO).
22581  *
22582  *   Arguments: dev  - the device number
22583  *		arg  - pointer to user provided dk_cinfo structure
22584  *		       specifying the controller type and attributes.
22585  *		flag - this argument is a pass through to ddi_copyxxx()
22586  *		       directly from the mode argument of ioctl().
22587  *
22588  * Return Code: 0
22589  *		EFAULT
22590  *		ENXIO
22591  */
22592 
22593 static int
22594 sd_dkio_ctrl_info(dev_t dev, caddr_t arg, int flag)
22595 {
22596 	struct sd_lun	*un = NULL;
22597 	struct dk_cinfo	*info;
22598 	dev_info_t	*pdip;
22599 	int		lun, tgt;
22600 
22601 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22602 		return (ENXIO);
22603 	}
22604 
22605 	info = (struct dk_cinfo *)
22606 		kmem_zalloc(sizeof (struct dk_cinfo), KM_SLEEP);
22607 
22608 	switch (un->un_ctype) {
22609 	case CTYPE_CDROM:
22610 		info->dki_ctype = DKC_CDROM;
22611 		break;
22612 	default:
22613 		info->dki_ctype = DKC_SCSI_CCS;
22614 		break;
22615 	}
22616 	pdip = ddi_get_parent(SD_DEVINFO(un));
22617 	info->dki_cnum = ddi_get_instance(pdip);
22618 	if (strlen(ddi_get_name(pdip)) < DK_DEVLEN) {
22619 		(void) strcpy(info->dki_cname, ddi_get_name(pdip));
22620 	} else {
22621 		(void) strncpy(info->dki_cname, ddi_node_name(pdip),
22622 		    DK_DEVLEN - 1);
22623 	}
22624 
22625 	lun = ddi_prop_get_int(DDI_DEV_T_ANY, SD_DEVINFO(un),
22626 	    DDI_PROP_DONTPASS, SCSI_ADDR_PROP_LUN, 0);
22627 	tgt = ddi_prop_get_int(DDI_DEV_T_ANY, SD_DEVINFO(un),
22628 	    DDI_PROP_DONTPASS, SCSI_ADDR_PROP_TARGET, 0);
22629 
22630 	/* Unit Information */
22631 	info->dki_unit = ddi_get_instance(SD_DEVINFO(un));
22632 	info->dki_slave = ((tgt << 3) | lun);
22633 	(void) strncpy(info->dki_dname, ddi_driver_name(SD_DEVINFO(un)),
22634 	    DK_DEVLEN - 1);
22635 	info->dki_flags = DKI_FMTVOL;
22636 	info->dki_partition = SDPART(dev);
22637 
22638 	/* Max Transfer size of this device in blocks */
22639 	info->dki_maxtransfer = un->un_max_xfer_size / un->un_sys_blocksize;
22640 	info->dki_addr = 0;
22641 	info->dki_space = 0;
22642 	info->dki_prio = 0;
22643 	info->dki_vec = 0;
22644 
22645 	if (ddi_copyout(info, arg, sizeof (struct dk_cinfo), flag) != 0) {
22646 		kmem_free(info, sizeof (struct dk_cinfo));
22647 		return (EFAULT);
22648 	} else {
22649 		kmem_free(info, sizeof (struct dk_cinfo));
22650 		return (0);
22651 	}
22652 }
22653 
22654 
22655 /*
22656  *    Function: sd_get_media_info
22657  *
22658  * Description: This routine is the driver entry point for handling ioctl
22659  *		requests for the media type or command set profile used by the
22660  *		drive to operate on the media (DKIOCGMEDIAINFO).
22661  *
22662  *   Arguments: dev	- the device number
22663  *		arg	- pointer to user provided dk_minfo structure
22664  *			  specifying the media type, logical block size and
22665  *			  drive capacity.
22666  *		flag	- this argument is a pass through to ddi_copyxxx()
22667  *			  directly from the mode argument of ioctl().
22668  *
22669  * Return Code: 0
22670  *		EACCESS
22671  *		EFAULT
22672  *		ENXIO
22673  *		EIO
22674  */
22675 
22676 static int
22677 sd_get_media_info(dev_t dev, caddr_t arg, int flag)
22678 {
22679 	struct sd_lun		*un = NULL;
22680 	struct uscsi_cmd	com;
22681 	struct scsi_inquiry	*sinq;
22682 	struct dk_minfo		media_info;
22683 	u_longlong_t		media_capacity;
22684 	uint64_t		capacity;
22685 	uint_t			lbasize;
22686 	uchar_t			*out_data;
22687 	uchar_t			*rqbuf;
22688 	int			rval = 0;
22689 	int			rtn;
22690 
22691 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
22692 	    (un->un_state == SD_STATE_OFFLINE)) {
22693 		return (ENXIO);
22694 	}
22695 
22696 	SD_TRACE(SD_LOG_IOCTL_DKIO, un, "sd_get_media_info: entry\n");
22697 
22698 	out_data = kmem_zalloc(SD_PROFILE_HEADER_LEN, KM_SLEEP);
22699 	rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
22700 
22701 	/* Issue a TUR to determine if the drive is ready with media present */
22702 	rval = sd_send_scsi_TEST_UNIT_READY(un, SD_CHECK_FOR_MEDIA);
22703 	if (rval == ENXIO) {
22704 		goto done;
22705 	}
22706 
22707 	/* Now get configuration data */
22708 	if (ISCD(un)) {
22709 		media_info.dki_media_type = DK_CDROM;
22710 
22711 		/* Allow SCMD_GET_CONFIGURATION to MMC devices only */
22712 		if (un->un_f_mmc_cap == TRUE) {
22713 			rtn = sd_send_scsi_GET_CONFIGURATION(un, &com, rqbuf,
22714 				SENSE_LENGTH, out_data, SD_PROFILE_HEADER_LEN);
22715 
22716 			if (rtn) {
22717 				/*
22718 				 * Failed for other than an illegal request
22719 				 * or command not supported
22720 				 */
22721 				if ((com.uscsi_status == STATUS_CHECK) &&
22722 				    (com.uscsi_rqstatus == STATUS_GOOD)) {
22723 					if ((rqbuf[2] != KEY_ILLEGAL_REQUEST) ||
22724 					    (rqbuf[12] != 0x20)) {
22725 						rval = EIO;
22726 						goto done;
22727 					}
22728 				}
22729 			} else {
22730 				/*
22731 				 * The GET CONFIGURATION command succeeded
22732 				 * so set the media type according to the
22733 				 * returned data
22734 				 */
22735 				media_info.dki_media_type = out_data[6];
22736 				media_info.dki_media_type <<= 8;
22737 				media_info.dki_media_type |= out_data[7];
22738 			}
22739 		}
22740 	} else {
22741 		/*
22742 		 * The profile list is not available, so we attempt to identify
22743 		 * the media type based on the inquiry data
22744 		 */
22745 		sinq = un->un_sd->sd_inq;
22746 		if (sinq->inq_qual == 0) {
22747 			/* This is a direct access device */
22748 			media_info.dki_media_type = DK_FIXED_DISK;
22749 
22750 			if ((bcmp(sinq->inq_vid, "IOMEGA", 6) == 0) ||
22751 			    (bcmp(sinq->inq_vid, "iomega", 6) == 0)) {
22752 				if ((bcmp(sinq->inq_pid, "ZIP", 3) == 0)) {
22753 					media_info.dki_media_type = DK_ZIP;
22754 				} else if (
22755 				    (bcmp(sinq->inq_pid, "jaz", 3) == 0)) {
22756 					media_info.dki_media_type = DK_JAZ;
22757 				}
22758 			}
22759 		} else {
22760 			/* Not a CD or direct access so return unknown media */
22761 			media_info.dki_media_type = DK_UNKNOWN;
22762 		}
22763 	}
22764 
22765 	/* Now read the capacity so we can provide the lbasize and capacity */
22766 	switch (sd_send_scsi_READ_CAPACITY(un, &capacity, &lbasize,
22767 	    SD_PATH_DIRECT)) {
22768 	case 0:
22769 		break;
22770 	case EACCES:
22771 		rval = EACCES;
22772 		goto done;
22773 	default:
22774 		rval = EIO;
22775 		goto done;
22776 	}
22777 
22778 	media_info.dki_lbsize = lbasize;
22779 	media_capacity = capacity;
22780 
22781 	/*
22782 	 * sd_send_scsi_READ_CAPACITY() reports capacity in
22783 	 * un->un_sys_blocksize chunks. So we need to convert it into
22784 	 * cap.lbasize chunks.
22785 	 */
22786 	media_capacity *= un->un_sys_blocksize;
22787 	media_capacity /= lbasize;
22788 	media_info.dki_capacity = media_capacity;
22789 
22790 	if (ddi_copyout(&media_info, arg, sizeof (struct dk_minfo), flag)) {
22791 		rval = EFAULT;
22792 		/* Put goto. Anybody might add some code below in future */
22793 		goto done;
22794 	}
22795 done:
22796 	kmem_free(out_data, SD_PROFILE_HEADER_LEN);
22797 	kmem_free(rqbuf, SENSE_LENGTH);
22798 	return (rval);
22799 }
22800 
22801 
22802 /*
22803  *    Function: sd_dkio_get_geometry
22804  *
22805  * Description: This routine is the driver entry point for handling user
22806  *		requests to get the device geometry (DKIOCGGEOM).
22807  *
22808  *   Arguments: dev  - the device number
22809  *		arg  - pointer to user provided dk_geom structure specifying
22810  *			the controller's notion of the current geometry.
22811  *		flag - this argument is a pass through to ddi_copyxxx()
22812  *		       directly from the mode argument of ioctl().
22813  *		geom_validated - flag indicating if the device geometry has been
22814  *				 previously validated in the sdioctl routine.
22815  *
22816  * Return Code: 0
22817  *		EFAULT
22818  *		ENXIO
22819  *		EIO
22820  */
22821 
22822 static int
22823 sd_dkio_get_geometry(dev_t dev, caddr_t arg, int flag, int geom_validated)
22824 {
22825 	struct sd_lun	*un = NULL;
22826 	struct dk_geom	*tmp_geom = NULL;
22827 	int		rval = 0;
22828 
22829 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22830 		return (ENXIO);
22831 	}
22832 
22833 	if (geom_validated == FALSE) {
22834 		/*
22835 		 * sd_validate_geometry does not spin a disk up
22836 		 * if it was spun down. We need to make sure it
22837 		 * is ready.
22838 		 */
22839 		if ((rval = sd_send_scsi_TEST_UNIT_READY(un, 0)) != 0) {
22840 			return (rval);
22841 		}
22842 		mutex_enter(SD_MUTEX(un));
22843 		rval = sd_validate_geometry(un, SD_PATH_DIRECT);
22844 		mutex_exit(SD_MUTEX(un));
22845 	}
22846 	if (rval)
22847 		return (rval);
22848 
22849 	/*
22850 	 * It is possible that un_solaris_size is 0(uninitialized)
22851 	 * after sd_unit_attach. Reservation conflict may cause the
22852 	 * above situation. Thus, the zero check of un_solaris_size
22853 	 * should occur after the sd_validate_geometry() call.
22854 	 */
22855 #if defined(__i386) || defined(__amd64)
22856 	if (un->un_solaris_size == 0) {
22857 		return (EIO);
22858 	}
22859 #endif
22860 
22861 	/*
22862 	 * Make a local copy of the soft state geometry to avoid some potential
22863 	 * race conditions associated with holding the mutex and updating the
22864 	 * write_reinstruct value
22865 	 */
22866 	tmp_geom = kmem_zalloc(sizeof (struct dk_geom), KM_SLEEP);
22867 	mutex_enter(SD_MUTEX(un));
22868 	bcopy(&un->un_g, tmp_geom, sizeof (struct dk_geom));
22869 	mutex_exit(SD_MUTEX(un));
22870 
22871 	if (tmp_geom->dkg_write_reinstruct == 0) {
22872 		tmp_geom->dkg_write_reinstruct =
22873 		    (int)((int)(tmp_geom->dkg_nsect * tmp_geom->dkg_rpm *
22874 		    sd_rot_delay) / (int)60000);
22875 	}
22876 
22877 	rval = ddi_copyout(tmp_geom, (void *)arg, sizeof (struct dk_geom),
22878 	    flag);
22879 	if (rval != 0) {
22880 		rval = EFAULT;
22881 	}
22882 
22883 	kmem_free(tmp_geom, sizeof (struct dk_geom));
22884 	return (rval);
22885 
22886 }
22887 
22888 
22889 /*
22890  *    Function: sd_dkio_set_geometry
22891  *
22892  * Description: This routine is the driver entry point for handling user
22893  *		requests to set the device geometry (DKIOCSGEOM). The actual
22894  *		device geometry is not updated, just the driver "notion" of it.
22895  *
22896  *   Arguments: dev  - the device number
22897  *		arg  - pointer to user provided dk_geom structure used to set
22898  *			the controller's notion of the current geometry.
22899  *		flag - this argument is a pass through to ddi_copyxxx()
22900  *		       directly from the mode argument of ioctl().
22901  *
22902  * Return Code: 0
22903  *		EFAULT
22904  *		ENXIO
22905  *		EIO
22906  */
22907 
22908 static int
22909 sd_dkio_set_geometry(dev_t dev, caddr_t arg, int flag)
22910 {
22911 	struct sd_lun	*un = NULL;
22912 	struct dk_geom	*tmp_geom;
22913 	struct dk_map	*lp;
22914 	int		rval = 0;
22915 	int		i;
22916 
22917 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22918 		return (ENXIO);
22919 	}
22920 
22921 	/*
22922 	 * Make sure there is no reservation conflict on the lun.
22923 	 */
22924 	if (sd_send_scsi_TEST_UNIT_READY(un, 0) == EACCES) {
22925 		return (EACCES);
22926 	}
22927 
22928 #if defined(__i386) || defined(__amd64)
22929 	if (un->un_solaris_size == 0) {
22930 		return (EIO);
22931 	}
22932 #endif
22933 
22934 	/*
22935 	 * We need to copy the user specified geometry into local
22936 	 * storage and then update the softstate. We don't want to hold
22937 	 * the mutex and copyin directly from the user to the soft state
22938 	 */
22939 	tmp_geom = (struct dk_geom *)
22940 	    kmem_zalloc(sizeof (struct dk_geom), KM_SLEEP);
22941 	rval = ddi_copyin(arg, tmp_geom, sizeof (struct dk_geom), flag);
22942 	if (rval != 0) {
22943 		kmem_free(tmp_geom, sizeof (struct dk_geom));
22944 		return (EFAULT);
22945 	}
22946 
22947 	mutex_enter(SD_MUTEX(un));
22948 	bcopy(tmp_geom, &un->un_g, sizeof (struct dk_geom));
22949 	for (i = 0; i < NDKMAP; i++) {
22950 		lp  = &un->un_map[i];
22951 		un->un_offset[i] =
22952 		    un->un_g.dkg_nhead * un->un_g.dkg_nsect * lp->dkl_cylno;
22953 #if defined(__i386) || defined(__amd64)
22954 		un->un_offset[i] += un->un_solaris_offset;
22955 #endif
22956 	}
22957 	un->un_f_geometry_is_valid = FALSE;
22958 	mutex_exit(SD_MUTEX(un));
22959 	kmem_free(tmp_geom, sizeof (struct dk_geom));
22960 
22961 	return (rval);
22962 }
22963 
22964 
22965 /*
22966  *    Function: sd_dkio_get_partition
22967  *
22968  * Description: This routine is the driver entry point for handling user
22969  *		requests to get the partition table (DKIOCGAPART).
22970  *
22971  *   Arguments: dev  - the device number
22972  *		arg  - pointer to user provided dk_allmap structure specifying
22973  *			the controller's notion of the current partition table.
22974  *		flag - this argument is a pass through to ddi_copyxxx()
22975  *		       directly from the mode argument of ioctl().
22976  *		geom_validated - flag indicating if the device geometry has been
22977  *				 previously validated in the sdioctl routine.
22978  *
22979  * Return Code: 0
22980  *		EFAULT
22981  *		ENXIO
22982  *		EIO
22983  */
22984 
22985 static int
22986 sd_dkio_get_partition(dev_t dev, caddr_t arg, int flag, int geom_validated)
22987 {
22988 	struct sd_lun	*un = NULL;
22989 	int		rval = 0;
22990 	int		size;
22991 
22992 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22993 		return (ENXIO);
22994 	}
22995 
22996 	/*
22997 	 * Make sure the geometry is valid before getting the partition
22998 	 * information.
22999 	 */
23000 	mutex_enter(SD_MUTEX(un));
23001 	if (geom_validated == FALSE) {
23002 		/*
23003 		 * sd_validate_geometry does not spin a disk up
23004 		 * if it was spun down. We need to make sure it
23005 		 * is ready before validating the geometry.
23006 		 */
23007 		mutex_exit(SD_MUTEX(un));
23008 		if ((rval = sd_send_scsi_TEST_UNIT_READY(un, 0)) != 0) {
23009 			return (rval);
23010 		}
23011 		mutex_enter(SD_MUTEX(un));
23012 
23013 		if ((rval = sd_validate_geometry(un, SD_PATH_DIRECT)) != 0) {
23014 			mutex_exit(SD_MUTEX(un));
23015 			return (rval);
23016 		}
23017 	}
23018 	mutex_exit(SD_MUTEX(un));
23019 
23020 	/*
23021 	 * It is possible that un_solaris_size is 0(uninitialized)
23022 	 * after sd_unit_attach. Reservation conflict may cause the
23023 	 * above situation. Thus, the zero check of un_solaris_size
23024 	 * should occur after the sd_validate_geometry() call.
23025 	 */
23026 #if defined(__i386) || defined(__amd64)
23027 	if (un->un_solaris_size == 0) {
23028 		return (EIO);
23029 	}
23030 #endif
23031 
23032 #ifdef _MULTI_DATAMODEL
23033 	switch (ddi_model_convert_from(flag & FMODELS)) {
23034 	case DDI_MODEL_ILP32: {
23035 		struct dk_map32 dk_map32[NDKMAP];
23036 		int		i;
23037 
23038 		for (i = 0; i < NDKMAP; i++) {
23039 			dk_map32[i].dkl_cylno = un->un_map[i].dkl_cylno;
23040 			dk_map32[i].dkl_nblk  = un->un_map[i].dkl_nblk;
23041 		}
23042 		size = NDKMAP * sizeof (struct dk_map32);
23043 		rval = ddi_copyout(dk_map32, (void *)arg, size, flag);
23044 		if (rval != 0) {
23045 			rval = EFAULT;
23046 		}
23047 		break;
23048 	}
23049 	case DDI_MODEL_NONE:
23050 		size = NDKMAP * sizeof (struct dk_map);
23051 		rval = ddi_copyout(un->un_map, (void *)arg, size, flag);
23052 		if (rval != 0) {
23053 			rval = EFAULT;
23054 		}
23055 		break;
23056 	}
23057 #else /* ! _MULTI_DATAMODEL */
23058 	size = NDKMAP * sizeof (struct dk_map);
23059 	rval = ddi_copyout(un->un_map, (void *)arg, size, flag);
23060 	if (rval != 0) {
23061 		rval = EFAULT;
23062 	}
23063 #endif /* _MULTI_DATAMODEL */
23064 	return (rval);
23065 }
23066 
23067 
23068 /*
23069  *    Function: sd_dkio_set_partition
23070  *
23071  * Description: This routine is the driver entry point for handling user
23072  *		requests to set the partition table (DKIOCSAPART). The actual
23073  *		device partition is not updated.
23074  *
23075  *   Arguments: dev  - the device number
23076  *		arg  - pointer to user provided dk_allmap structure used to set
23077  *			the controller's notion of the partition table.
23078  *		flag - this argument is a pass through to ddi_copyxxx()
23079  *		       directly from the mode argument of ioctl().
23080  *
23081  * Return Code: 0
23082  *		EINVAL
23083  *		EFAULT
23084  *		ENXIO
23085  *		EIO
23086  */
23087 
23088 static int
23089 sd_dkio_set_partition(dev_t dev, caddr_t arg, int flag)
23090 {
23091 	struct sd_lun	*un = NULL;
23092 	struct dk_map	dk_map[NDKMAP];
23093 	struct dk_map	*lp;
23094 	int		rval = 0;
23095 	int		size;
23096 	int		i;
23097 #if defined(_SUNOS_VTOC_16)
23098 	struct dkl_partition	*vp;
23099 #endif
23100 
23101 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23102 		return (ENXIO);
23103 	}
23104 
23105 	/*
23106 	 * Set the map for all logical partitions.  We lock
23107 	 * the priority just to make sure an interrupt doesn't
23108 	 * come in while the map is half updated.
23109 	 */
23110 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_solaris_size))
23111 	mutex_enter(SD_MUTEX(un));
23112 	if (un->un_blockcount > DK_MAX_BLOCKS) {
23113 		mutex_exit(SD_MUTEX(un));
23114 		return (ENOTSUP);
23115 	}
23116 	mutex_exit(SD_MUTEX(un));
23117 
23118 	/*
23119 	 * Make sure there is no reservation conflict on the lun.
23120 	 */
23121 	if (sd_send_scsi_TEST_UNIT_READY(un, 0) == EACCES) {
23122 		return (EACCES);
23123 	}
23124 
23125 #if defined(__i386) || defined(__amd64)
23126 	if (un->un_solaris_size == 0) {
23127 		return (EIO);
23128 	}
23129 #endif
23130 
23131 #ifdef _MULTI_DATAMODEL
23132 	switch (ddi_model_convert_from(flag & FMODELS)) {
23133 	case DDI_MODEL_ILP32: {
23134 		struct dk_map32 dk_map32[NDKMAP];
23135 
23136 		size = NDKMAP * sizeof (struct dk_map32);
23137 		rval = ddi_copyin((void *)arg, dk_map32, size, flag);
23138 		if (rval != 0) {
23139 			return (EFAULT);
23140 		}
23141 		for (i = 0; i < NDKMAP; i++) {
23142 			dk_map[i].dkl_cylno = dk_map32[i].dkl_cylno;
23143 			dk_map[i].dkl_nblk  = dk_map32[i].dkl_nblk;
23144 		}
23145 		break;
23146 	}
23147 	case DDI_MODEL_NONE:
23148 		size = NDKMAP * sizeof (struct dk_map);
23149 		rval = ddi_copyin((void *)arg, dk_map, size, flag);
23150 		if (rval != 0) {
23151 			return (EFAULT);
23152 		}
23153 		break;
23154 	}
23155 #else /* ! _MULTI_DATAMODEL */
23156 	size = NDKMAP * sizeof (struct dk_map);
23157 	rval = ddi_copyin((void *)arg, dk_map, size, flag);
23158 	if (rval != 0) {
23159 		return (EFAULT);
23160 	}
23161 #endif /* _MULTI_DATAMODEL */
23162 
23163 	mutex_enter(SD_MUTEX(un));
23164 	/* Note: The size used in this bcopy is set based upon the data model */
23165 	bcopy(dk_map, un->un_map, size);
23166 #if defined(_SUNOS_VTOC_16)
23167 	vp = (struct dkl_partition *)&(un->un_vtoc);
23168 #endif	/* defined(_SUNOS_VTOC_16) */
23169 	for (i = 0; i < NDKMAP; i++) {
23170 		lp  = &un->un_map[i];
23171 		un->un_offset[i] =
23172 		    un->un_g.dkg_nhead * un->un_g.dkg_nsect * lp->dkl_cylno;
23173 #if defined(_SUNOS_VTOC_16)
23174 		vp->p_start = un->un_offset[i];
23175 		vp->p_size = lp->dkl_nblk;
23176 		vp++;
23177 #endif	/* defined(_SUNOS_VTOC_16) */
23178 #if defined(__i386) || defined(__amd64)
23179 		un->un_offset[i] += un->un_solaris_offset;
23180 #endif
23181 	}
23182 	mutex_exit(SD_MUTEX(un));
23183 	return (rval);
23184 }
23185 
23186 
23187 /*
23188  *    Function: sd_dkio_get_vtoc
23189  *
23190  * Description: This routine is the driver entry point for handling user
23191  *		requests to get the current volume table of contents
23192  *		(DKIOCGVTOC).
23193  *
23194  *   Arguments: dev  - the device number
23195  *		arg  - pointer to user provided vtoc structure specifying
23196  *			the current vtoc.
23197  *		flag - this argument is a pass through to ddi_copyxxx()
23198  *		       directly from the mode argument of ioctl().
23199  *		geom_validated - flag indicating if the device geometry has been
23200  *				 previously validated in the sdioctl routine.
23201  *
23202  * Return Code: 0
23203  *		EFAULT
23204  *		ENXIO
23205  *		EIO
23206  */
23207 
23208 static int
23209 sd_dkio_get_vtoc(dev_t dev, caddr_t arg, int flag, int geom_validated)
23210 {
23211 	struct sd_lun	*un = NULL;
23212 #if defined(_SUNOS_VTOC_8)
23213 	struct vtoc	user_vtoc;
23214 #endif	/* defined(_SUNOS_VTOC_8) */
23215 	int		rval = 0;
23216 
23217 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23218 		return (ENXIO);
23219 	}
23220 
23221 	mutex_enter(SD_MUTEX(un));
23222 	if (geom_validated == FALSE) {
23223 		/*
23224 		 * sd_validate_geometry does not spin a disk up
23225 		 * if it was spun down. We need to make sure it
23226 		 * is ready.
23227 		 */
23228 		mutex_exit(SD_MUTEX(un));
23229 		if ((rval = sd_send_scsi_TEST_UNIT_READY(un, 0)) != 0) {
23230 			return (rval);
23231 		}
23232 		mutex_enter(SD_MUTEX(un));
23233 		if ((rval = sd_validate_geometry(un, SD_PATH_DIRECT)) != 0) {
23234 			mutex_exit(SD_MUTEX(un));
23235 			return (rval);
23236 		}
23237 	}
23238 
23239 #if defined(_SUNOS_VTOC_8)
23240 	sd_build_user_vtoc(un, &user_vtoc);
23241 	mutex_exit(SD_MUTEX(un));
23242 
23243 #ifdef _MULTI_DATAMODEL
23244 	switch (ddi_model_convert_from(flag & FMODELS)) {
23245 	case DDI_MODEL_ILP32: {
23246 		struct vtoc32 user_vtoc32;
23247 
23248 		vtoctovtoc32(user_vtoc, user_vtoc32);
23249 		if (ddi_copyout(&user_vtoc32, (void *)arg,
23250 		    sizeof (struct vtoc32), flag)) {
23251 			return (EFAULT);
23252 		}
23253 		break;
23254 	}
23255 
23256 	case DDI_MODEL_NONE:
23257 		if (ddi_copyout(&user_vtoc, (void *)arg,
23258 		    sizeof (struct vtoc), flag)) {
23259 			return (EFAULT);
23260 		}
23261 		break;
23262 	}
23263 #else /* ! _MULTI_DATAMODEL */
23264 	if (ddi_copyout(&user_vtoc, (void *)arg, sizeof (struct vtoc), flag)) {
23265 		return (EFAULT);
23266 	}
23267 #endif /* _MULTI_DATAMODEL */
23268 
23269 #elif defined(_SUNOS_VTOC_16)
23270 	mutex_exit(SD_MUTEX(un));
23271 
23272 #ifdef _MULTI_DATAMODEL
23273 	/*
23274 	 * The un_vtoc structure is a "struct dk_vtoc"  which is always
23275 	 * 32-bit to maintain compatibility with existing on-disk
23276 	 * structures.  Thus, we need to convert the structure when copying
23277 	 * it out to a datamodel-dependent "struct vtoc" in a 64-bit
23278 	 * program.  If the target is a 32-bit program, then no conversion
23279 	 * is necessary.
23280 	 */
23281 	/* LINTED: logical expression always true: op "||" */
23282 	ASSERT(sizeof (un->un_vtoc) == sizeof (struct vtoc32));
23283 	switch (ddi_model_convert_from(flag & FMODELS)) {
23284 	case DDI_MODEL_ILP32:
23285 		if (ddi_copyout(&(un->un_vtoc), (void *)arg,
23286 		    sizeof (un->un_vtoc), flag)) {
23287 			return (EFAULT);
23288 		}
23289 		break;
23290 
23291 	case DDI_MODEL_NONE: {
23292 		struct vtoc user_vtoc;
23293 
23294 		vtoc32tovtoc(un->un_vtoc, user_vtoc);
23295 		if (ddi_copyout(&user_vtoc, (void *)arg,
23296 		    sizeof (struct vtoc), flag)) {
23297 			return (EFAULT);
23298 		}
23299 		break;
23300 	}
23301 	}
23302 #else /* ! _MULTI_DATAMODEL */
23303 	if (ddi_copyout(&(un->un_vtoc), (void *)arg, sizeof (un->un_vtoc),
23304 	    flag)) {
23305 		return (EFAULT);
23306 	}
23307 #endif /* _MULTI_DATAMODEL */
23308 #else
23309 #error "No VTOC format defined."
23310 #endif
23311 
23312 	return (rval);
23313 }
23314 
23315 static int
23316 sd_dkio_get_efi(dev_t dev, caddr_t arg, int flag)
23317 {
23318 	struct sd_lun	*un = NULL;
23319 	dk_efi_t	user_efi;
23320 	int		rval = 0;
23321 	void		*buffer;
23322 
23323 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL)
23324 		return (ENXIO);
23325 
23326 	if (ddi_copyin(arg, &user_efi, sizeof (dk_efi_t), flag))
23327 		return (EFAULT);
23328 
23329 	user_efi.dki_data = (void *)(uintptr_t)user_efi.dki_data_64;
23330 
23331 	if ((user_efi.dki_length % un->un_tgt_blocksize) ||
23332 	    (user_efi.dki_length > un->un_max_xfer_size))
23333 		return (EINVAL);
23334 
23335 	buffer = kmem_alloc(user_efi.dki_length, KM_SLEEP);
23336 	rval = sd_send_scsi_READ(un, buffer, user_efi.dki_length,
23337 	    user_efi.dki_lba, SD_PATH_DIRECT);
23338 	if (rval == 0 && ddi_copyout(buffer, user_efi.dki_data,
23339 	    user_efi.dki_length, flag) != 0)
23340 		rval = EFAULT;
23341 
23342 	kmem_free(buffer, user_efi.dki_length);
23343 	return (rval);
23344 }
23345 
23346 /*
23347  *    Function: sd_build_user_vtoc
23348  *
23349  * Description: This routine populates a pass by reference variable with the
23350  *		current volume table of contents.
23351  *
23352  *   Arguments: un - driver soft state (unit) structure
23353  *		user_vtoc - pointer to vtoc structure to be populated
23354  */
23355 
23356 static void
23357 sd_build_user_vtoc(struct sd_lun *un, struct vtoc *user_vtoc)
23358 {
23359 	struct dk_map2		*lpart;
23360 	struct dk_map		*lmap;
23361 	struct partition	*vpart;
23362 	int			nblks;
23363 	int			i;
23364 
23365 	ASSERT(mutex_owned(SD_MUTEX(un)));
23366 
23367 	/*
23368 	 * Return vtoc structure fields in the provided VTOC area, addressed
23369 	 * by *vtoc.
23370 	 */
23371 	bzero(user_vtoc, sizeof (struct vtoc));
23372 	user_vtoc->v_bootinfo[0] = un->un_vtoc.v_bootinfo[0];
23373 	user_vtoc->v_bootinfo[1] = un->un_vtoc.v_bootinfo[1];
23374 	user_vtoc->v_bootinfo[2] = un->un_vtoc.v_bootinfo[2];
23375 	user_vtoc->v_sanity	= VTOC_SANE;
23376 	user_vtoc->v_version	= un->un_vtoc.v_version;
23377 	bcopy(un->un_vtoc.v_volume, user_vtoc->v_volume, LEN_DKL_VVOL);
23378 	user_vtoc->v_sectorsz = un->un_sys_blocksize;
23379 	user_vtoc->v_nparts = un->un_vtoc.v_nparts;
23380 	bcopy(un->un_vtoc.v_reserved, user_vtoc->v_reserved,
23381 	    sizeof (un->un_vtoc.v_reserved));
23382 	/*
23383 	 * Convert partitioning information.
23384 	 *
23385 	 * Note the conversion from starting cylinder number
23386 	 * to starting sector number.
23387 	 */
23388 	lmap = un->un_map;
23389 	lpart = (struct dk_map2 *)un->un_vtoc.v_part;
23390 	vpart = user_vtoc->v_part;
23391 
23392 	nblks = un->un_g.dkg_nsect * un->un_g.dkg_nhead;
23393 
23394 	for (i = 0; i < V_NUMPAR; i++) {
23395 		vpart->p_tag	= lpart->p_tag;
23396 		vpart->p_flag	= lpart->p_flag;
23397 		vpart->p_start	= lmap->dkl_cylno * nblks;
23398 		vpart->p_size	= lmap->dkl_nblk;
23399 		lmap++;
23400 		lpart++;
23401 		vpart++;
23402 
23403 		/* (4364927) */
23404 		user_vtoc->timestamp[i] = (time_t)un->un_vtoc.v_timestamp[i];
23405 	}
23406 
23407 	bcopy(un->un_asciilabel, user_vtoc->v_asciilabel, LEN_DKL_ASCII);
23408 }
23409 
23410 static int
23411 sd_dkio_partition(dev_t dev, caddr_t arg, int flag)
23412 {
23413 	struct sd_lun		*un = NULL;
23414 	struct partition64	p64;
23415 	int			rval = 0;
23416 	uint_t			nparts;
23417 	efi_gpe_t		*partitions;
23418 	efi_gpt_t		*buffer;
23419 	diskaddr_t		gpe_lba;
23420 
23421 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23422 		return (ENXIO);
23423 	}
23424 
23425 	if (ddi_copyin((const void *)arg, &p64,
23426 	    sizeof (struct partition64), flag)) {
23427 		return (EFAULT);
23428 	}
23429 
23430 	buffer = kmem_alloc(EFI_MIN_ARRAY_SIZE, KM_SLEEP);
23431 	rval = sd_send_scsi_READ(un, buffer, DEV_BSIZE,
23432 		1, SD_PATH_DIRECT);
23433 	if (rval != 0)
23434 		goto done_error;
23435 
23436 	sd_swap_efi_gpt(buffer);
23437 
23438 	if ((rval = sd_validate_efi(buffer)) != 0)
23439 		goto done_error;
23440 
23441 	nparts = buffer->efi_gpt_NumberOfPartitionEntries;
23442 	gpe_lba = buffer->efi_gpt_PartitionEntryLBA;
23443 	if (p64.p_partno > nparts) {
23444 		/* couldn't find it */
23445 		rval = ESRCH;
23446 		goto done_error;
23447 	}
23448 	/*
23449 	 * if we're dealing with a partition that's out of the normal
23450 	 * 16K block, adjust accordingly
23451 	 */
23452 	gpe_lba += p64.p_partno / sizeof (efi_gpe_t);
23453 	rval = sd_send_scsi_READ(un, buffer, EFI_MIN_ARRAY_SIZE,
23454 			gpe_lba, SD_PATH_DIRECT);
23455 	if (rval) {
23456 		goto done_error;
23457 	}
23458 	partitions = (efi_gpe_t *)buffer;
23459 
23460 	sd_swap_efi_gpe(nparts, partitions);
23461 
23462 	partitions += p64.p_partno;
23463 	bcopy(&partitions->efi_gpe_PartitionTypeGUID, &p64.p_type,
23464 	    sizeof (struct uuid));
23465 	p64.p_start = partitions->efi_gpe_StartingLBA;
23466 	p64.p_size = partitions->efi_gpe_EndingLBA -
23467 			p64.p_start + 1;
23468 
23469 	if (ddi_copyout(&p64, (void *)arg, sizeof (struct partition64), flag))
23470 		rval = EFAULT;
23471 
23472 done_error:
23473 	kmem_free(buffer, EFI_MIN_ARRAY_SIZE);
23474 	return (rval);
23475 }
23476 
23477 
23478 /*
23479  *    Function: sd_dkio_set_vtoc
23480  *
23481  * Description: This routine is the driver entry point for handling user
23482  *		requests to set the current volume table of contents
23483  *		(DKIOCSVTOC).
23484  *
23485  *   Arguments: dev  - the device number
23486  *		arg  - pointer to user provided vtoc structure used to set the
23487  *			current vtoc.
23488  *		flag - this argument is a pass through to ddi_copyxxx()
23489  *		       directly from the mode argument of ioctl().
23490  *
23491  * Return Code: 0
23492  *		EFAULT
23493  *		ENXIO
23494  *		EINVAL
23495  *		ENOTSUP
23496  */
23497 
23498 static int
23499 sd_dkio_set_vtoc(dev_t dev, caddr_t arg, int flag)
23500 {
23501 	struct sd_lun	*un = NULL;
23502 	struct vtoc	user_vtoc;
23503 	int		rval = 0;
23504 
23505 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23506 		return (ENXIO);
23507 	}
23508 
23509 #if defined(__i386) || defined(__amd64)
23510 	if (un->un_tgt_blocksize != un->un_sys_blocksize) {
23511 		return (EINVAL);
23512 	}
23513 #endif
23514 
23515 #ifdef _MULTI_DATAMODEL
23516 	switch (ddi_model_convert_from(flag & FMODELS)) {
23517 	case DDI_MODEL_ILP32: {
23518 		struct vtoc32 user_vtoc32;
23519 
23520 		if (ddi_copyin((const void *)arg, &user_vtoc32,
23521 		    sizeof (struct vtoc32), flag)) {
23522 			return (EFAULT);
23523 		}
23524 		vtoc32tovtoc(user_vtoc32, user_vtoc);
23525 		break;
23526 	}
23527 
23528 	case DDI_MODEL_NONE:
23529 		if (ddi_copyin((const void *)arg, &user_vtoc,
23530 		    sizeof (struct vtoc), flag)) {
23531 			return (EFAULT);
23532 		}
23533 		break;
23534 	}
23535 #else /* ! _MULTI_DATAMODEL */
23536 	if (ddi_copyin((const void *)arg, &user_vtoc,
23537 	    sizeof (struct vtoc), flag)) {
23538 		return (EFAULT);
23539 	}
23540 #endif /* _MULTI_DATAMODEL */
23541 
23542 	mutex_enter(SD_MUTEX(un));
23543 	if (un->un_blockcount > DK_MAX_BLOCKS) {
23544 		mutex_exit(SD_MUTEX(un));
23545 		return (ENOTSUP);
23546 	}
23547 	if (un->un_g.dkg_ncyl == 0) {
23548 		mutex_exit(SD_MUTEX(un));
23549 		return (EINVAL);
23550 	}
23551 
23552 	mutex_exit(SD_MUTEX(un));
23553 	sd_clear_efi(un);
23554 	ddi_remove_minor_node(SD_DEVINFO(un), "wd");
23555 	ddi_remove_minor_node(SD_DEVINFO(un), "wd,raw");
23556 	(void) ddi_create_minor_node(SD_DEVINFO(un), "h",
23557 	    S_IFBLK, (SDUNIT(dev) << SDUNIT_SHIFT) | WD_NODE,
23558 	    un->un_node_type, NULL);
23559 	(void) ddi_create_minor_node(SD_DEVINFO(un), "h,raw",
23560 	    S_IFCHR, (SDUNIT(dev) << SDUNIT_SHIFT) | WD_NODE,
23561 	    un->un_node_type, NULL);
23562 	mutex_enter(SD_MUTEX(un));
23563 
23564 	if ((rval = sd_build_label_vtoc(un, &user_vtoc)) == 0) {
23565 		if ((rval = sd_write_label(dev)) == 0) {
23566 			if ((rval = sd_validate_geometry(un, SD_PATH_DIRECT))
23567 			    != 0) {
23568 				SD_ERROR(SD_LOG_IOCTL_DKIO, un,
23569 				    "sd_dkio_set_vtoc: "
23570 				    "Failed validate geometry\n");
23571 			}
23572 		}
23573 	}
23574 
23575 	/*
23576 	 * If sd_build_label_vtoc, or sd_write_label failed above write the
23577 	 * devid anyway, what can it hurt? Also preserve the device id by
23578 	 * writing to the disk acyl for the case where a devid has been
23579 	 * fabricated.
23580 	 */
23581 	if (un->un_f_devid_supported &&
23582 	    (un->un_f_opt_fab_devid == TRUE)) {
23583 		if (un->un_devid == NULL) {
23584 			sd_register_devid(un, SD_DEVINFO(un),
23585 			    SD_TARGET_IS_UNRESERVED);
23586 		} else {
23587 			/*
23588 			 * The device id for this disk has been
23589 			 * fabricated. Fabricated device id's are
23590 			 * managed by storing them in the last 2
23591 			 * available sectors on the drive. The device
23592 			 * id must be preserved by writing it back out
23593 			 * to this location.
23594 			 */
23595 			if (sd_write_deviceid(un) != 0) {
23596 				ddi_devid_free(un->un_devid);
23597 				un->un_devid = NULL;
23598 			}
23599 		}
23600 	}
23601 	mutex_exit(SD_MUTEX(un));
23602 	return (rval);
23603 }
23604 
23605 
23606 /*
23607  *    Function: sd_build_label_vtoc
23608  *
23609  * Description: This routine updates the driver soft state current volume table
23610  *		of contents based on a user specified vtoc.
23611  *
23612  *   Arguments: un - driver soft state (unit) structure
23613  *		user_vtoc - pointer to vtoc structure specifying vtoc to be used
23614  *			    to update the driver soft state.
23615  *
23616  * Return Code: 0
23617  *		EINVAL
23618  */
23619 
23620 static int
23621 sd_build_label_vtoc(struct sd_lun *un, struct vtoc *user_vtoc)
23622 {
23623 	struct dk_map		*lmap;
23624 	struct partition	*vpart;
23625 	int			nblks;
23626 #if defined(_SUNOS_VTOC_8)
23627 	int			ncyl;
23628 	struct dk_map2		*lpart;
23629 #endif	/* defined(_SUNOS_VTOC_8) */
23630 	int			i;
23631 
23632 	ASSERT(mutex_owned(SD_MUTEX(un)));
23633 
23634 	/* Sanity-check the vtoc */
23635 	if (user_vtoc->v_sanity != VTOC_SANE ||
23636 	    user_vtoc->v_sectorsz != un->un_sys_blocksize ||
23637 	    user_vtoc->v_nparts != V_NUMPAR) {
23638 		return (EINVAL);
23639 	}
23640 
23641 	nblks = un->un_g.dkg_nsect * un->un_g.dkg_nhead;
23642 	if (nblks == 0) {
23643 		return (EINVAL);
23644 	}
23645 
23646 #if defined(_SUNOS_VTOC_8)
23647 	vpart = user_vtoc->v_part;
23648 	for (i = 0; i < V_NUMPAR; i++) {
23649 		if ((vpart->p_start % nblks) != 0) {
23650 			return (EINVAL);
23651 		}
23652 		ncyl = vpart->p_start / nblks;
23653 		ncyl += vpart->p_size / nblks;
23654 		if ((vpart->p_size % nblks) != 0) {
23655 			ncyl++;
23656 		}
23657 		if (ncyl > (int)un->un_g.dkg_ncyl) {
23658 			return (EINVAL);
23659 		}
23660 		vpart++;
23661 	}
23662 #endif	/* defined(_SUNOS_VTOC_8) */
23663 
23664 	/* Put appropriate vtoc structure fields into the disk label */
23665 #if defined(_SUNOS_VTOC_16)
23666 	/*
23667 	 * The vtoc is always a 32bit data structure to maintain the
23668 	 * on-disk format. Convert "in place" instead of bcopying it.
23669 	 */
23670 	vtoctovtoc32((*user_vtoc), (*((struct vtoc32 *)&(un->un_vtoc))));
23671 
23672 	/*
23673 	 * in the 16-slice vtoc, starting sectors are expressed in
23674 	 * numbers *relative* to the start of the Solaris fdisk partition.
23675 	 */
23676 	lmap = un->un_map;
23677 	vpart = user_vtoc->v_part;
23678 
23679 	for (i = 0; i < (int)user_vtoc->v_nparts; i++, lmap++, vpart++) {
23680 		lmap->dkl_cylno = vpart->p_start / nblks;
23681 		lmap->dkl_nblk = vpart->p_size;
23682 	}
23683 
23684 #elif defined(_SUNOS_VTOC_8)
23685 
23686 	un->un_vtoc.v_bootinfo[0] = (uint32_t)user_vtoc->v_bootinfo[0];
23687 	un->un_vtoc.v_bootinfo[1] = (uint32_t)user_vtoc->v_bootinfo[1];
23688 	un->un_vtoc.v_bootinfo[2] = (uint32_t)user_vtoc->v_bootinfo[2];
23689 
23690 	un->un_vtoc.v_sanity = (uint32_t)user_vtoc->v_sanity;
23691 	un->un_vtoc.v_version = (uint32_t)user_vtoc->v_version;
23692 
23693 	bcopy(user_vtoc->v_volume, un->un_vtoc.v_volume, LEN_DKL_VVOL);
23694 
23695 	un->un_vtoc.v_nparts = user_vtoc->v_nparts;
23696 
23697 	bcopy(user_vtoc->v_reserved, un->un_vtoc.v_reserved,
23698 	    sizeof (un->un_vtoc.v_reserved));
23699 
23700 	/*
23701 	 * Note the conversion from starting sector number
23702 	 * to starting cylinder number.
23703 	 * Return error if division results in a remainder.
23704 	 */
23705 	lmap = un->un_map;
23706 	lpart = un->un_vtoc.v_part;
23707 	vpart = user_vtoc->v_part;
23708 
23709 	for (i = 0; i < (int)user_vtoc->v_nparts; i++) {
23710 		lpart->p_tag  = vpart->p_tag;
23711 		lpart->p_flag = vpart->p_flag;
23712 		lmap->dkl_cylno = vpart->p_start / nblks;
23713 		lmap->dkl_nblk = vpart->p_size;
23714 
23715 		lmap++;
23716 		lpart++;
23717 		vpart++;
23718 
23719 		/* (4387723) */
23720 #ifdef _LP64
23721 		if (user_vtoc->timestamp[i] > TIME32_MAX) {
23722 			un->un_vtoc.v_timestamp[i] = TIME32_MAX;
23723 		} else {
23724 			un->un_vtoc.v_timestamp[i] = user_vtoc->timestamp[i];
23725 		}
23726 #else
23727 		un->un_vtoc.v_timestamp[i] = user_vtoc->timestamp[i];
23728 #endif
23729 	}
23730 
23731 	bcopy(user_vtoc->v_asciilabel, un->un_asciilabel, LEN_DKL_ASCII);
23732 #else
23733 #error "No VTOC format defined."
23734 #endif
23735 	return (0);
23736 }
23737 
23738 /*
23739  *    Function: sd_clear_efi
23740  *
23741  * Description: This routine clears all EFI labels.
23742  *
23743  *   Arguments: un - driver soft state (unit) structure
23744  *
23745  * Return Code: void
23746  */
23747 
23748 static void
23749 sd_clear_efi(struct sd_lun *un)
23750 {
23751 	efi_gpt_t	*gpt;
23752 	uint_t		lbasize;
23753 	uint64_t	cap;
23754 	int rval;
23755 
23756 	ASSERT(!mutex_owned(SD_MUTEX(un)));
23757 
23758 	mutex_enter(SD_MUTEX(un));
23759 	un->un_reserved = -1;
23760 	mutex_exit(SD_MUTEX(un));
23761 	gpt = kmem_alloc(sizeof (efi_gpt_t), KM_SLEEP);
23762 
23763 	if (sd_send_scsi_READ(un, gpt, DEV_BSIZE, 1, SD_PATH_DIRECT) != 0) {
23764 		goto done;
23765 	}
23766 
23767 	sd_swap_efi_gpt(gpt);
23768 	rval = sd_validate_efi(gpt);
23769 	if (rval == 0) {
23770 		/* clear primary */
23771 		bzero(gpt, sizeof (efi_gpt_t));
23772 		if ((rval = sd_send_scsi_WRITE(un, gpt, EFI_LABEL_SIZE, 1,
23773 			SD_PATH_DIRECT))) {
23774 			SD_INFO(SD_LOG_IO_PARTITION, un,
23775 				"sd_clear_efi: clear primary label failed\n");
23776 		}
23777 	}
23778 	/* the backup */
23779 	rval = sd_send_scsi_READ_CAPACITY(un, &cap, &lbasize,
23780 	    SD_PATH_DIRECT);
23781 	if (rval) {
23782 		goto done;
23783 	}
23784 	/*
23785 	 * The MMC standard allows READ CAPACITY to be
23786 	 * inaccurate by a bounded amount (in the interest of
23787 	 * response latency).  As a result, failed READs are
23788 	 * commonplace (due to the reading of metadata and not
23789 	 * data). Depending on the per-Vendor/drive Sense data,
23790 	 * the failed READ can cause many (unnecessary) retries.
23791 	 */
23792 	if ((rval = sd_send_scsi_READ(un, gpt, lbasize,
23793 	    cap - 1, ISCD(un) ? SD_PATH_DIRECT_PRIORITY :
23794 		SD_PATH_DIRECT)) != 0) {
23795 		goto done;
23796 	}
23797 	sd_swap_efi_gpt(gpt);
23798 	rval = sd_validate_efi(gpt);
23799 	if (rval == 0) {
23800 		/* clear backup */
23801 		SD_TRACE(SD_LOG_IOCTL, un, "sd_clear_efi clear backup@%lu\n",
23802 			cap-1);
23803 		bzero(gpt, sizeof (efi_gpt_t));
23804 		if ((rval = sd_send_scsi_WRITE(un, gpt, EFI_LABEL_SIZE,
23805 		    cap-1, SD_PATH_DIRECT))) {
23806 			SD_INFO(SD_LOG_IO_PARTITION, un,
23807 				"sd_clear_efi: clear backup label failed\n");
23808 		}
23809 	} else {
23810 		/*
23811 		 * Refer to comments related to off-by-1 at the
23812 		 * header of this file
23813 		 */
23814 		if ((rval = sd_send_scsi_READ(un, gpt, lbasize,
23815 		    cap - 2, ISCD(un) ? SD_PATH_DIRECT_PRIORITY :
23816 			SD_PATH_DIRECT)) != 0) {
23817 			goto done;
23818 		}
23819 		sd_swap_efi_gpt(gpt);
23820 		rval = sd_validate_efi(gpt);
23821 		if (rval == 0) {
23822 			/* clear legacy backup EFI label */
23823 			SD_TRACE(SD_LOG_IOCTL, un,
23824 			    "sd_clear_efi clear backup@%lu\n", cap-2);
23825 			bzero(gpt, sizeof (efi_gpt_t));
23826 			if ((rval = sd_send_scsi_WRITE(un, gpt, EFI_LABEL_SIZE,
23827 			    cap-2, SD_PATH_DIRECT))) {
23828 				SD_INFO(SD_LOG_IO_PARTITION,
23829 				    un, "sd_clear_efi: "
23830 				    " clear legacy backup label failed\n");
23831 			}
23832 		}
23833 	}
23834 
23835 done:
23836 	kmem_free(gpt, sizeof (efi_gpt_t));
23837 }
23838 
23839 /*
23840  *    Function: sd_set_vtoc
23841  *
23842  * Description: This routine writes data to the appropriate positions
23843  *
23844  *   Arguments: un - driver soft state (unit) structure
23845  *              dkl  - the data to be written
23846  *
23847  * Return: void
23848  */
23849 
23850 static int
23851 sd_set_vtoc(struct sd_lun *un, struct dk_label *dkl)
23852 {
23853 	void			*shadow_buf;
23854 	uint_t			label_addr;
23855 	int			sec;
23856 	int			blk;
23857 	int			head;
23858 	int			cyl;
23859 	int			rval;
23860 
23861 #if defined(__i386) || defined(__amd64)
23862 	label_addr = un->un_solaris_offset + DK_LABEL_LOC;
23863 #else
23864 	/* Write the primary label at block 0 of the solaris partition. */
23865 	label_addr = 0;
23866 #endif
23867 
23868 	if (NOT_DEVBSIZE(un)) {
23869 		shadow_buf = kmem_zalloc(un->un_tgt_blocksize, KM_SLEEP);
23870 		/*
23871 		 * Read the target's first block.
23872 		 */
23873 		if ((rval = sd_send_scsi_READ(un, shadow_buf,
23874 		    un->un_tgt_blocksize, label_addr,
23875 		    SD_PATH_STANDARD)) != 0) {
23876 			goto exit;
23877 		}
23878 		/*
23879 		 * Copy the contents of the label into the shadow buffer
23880 		 * which is of the size of target block size.
23881 		 */
23882 		bcopy(dkl, shadow_buf, sizeof (struct dk_label));
23883 	}
23884 
23885 	/* Write the primary label */
23886 	if (NOT_DEVBSIZE(un)) {
23887 		rval = sd_send_scsi_WRITE(un, shadow_buf, un->un_tgt_blocksize,
23888 		    label_addr, SD_PATH_STANDARD);
23889 	} else {
23890 		rval = sd_send_scsi_WRITE(un, dkl, un->un_sys_blocksize,
23891 		    label_addr, SD_PATH_STANDARD);
23892 	}
23893 	if (rval != 0) {
23894 		return (rval);
23895 	}
23896 
23897 	/*
23898 	 * Calculate where the backup labels go.  They are always on
23899 	 * the last alternate cylinder, but some older drives put them
23900 	 * on head 2 instead of the last head.	They are always on the
23901 	 * first 5 odd sectors of the appropriate track.
23902 	 *
23903 	 * We have no choice at this point, but to believe that the
23904 	 * disk label is valid.	 Use the geometry of the disk
23905 	 * as described in the label.
23906 	 */
23907 	cyl  = dkl->dkl_ncyl  + dkl->dkl_acyl - 1;
23908 	head = dkl->dkl_nhead - 1;
23909 
23910 	/*
23911 	 * Write and verify the backup labels. Make sure we don't try to
23912 	 * write past the last cylinder.
23913 	 */
23914 	for (sec = 1; ((sec < 5 * 2 + 1) && (sec < dkl->dkl_nsect)); sec += 2) {
23915 		blk = (daddr_t)(
23916 		    (cyl * ((dkl->dkl_nhead * dkl->dkl_nsect) - dkl->dkl_apc)) +
23917 		    (head * dkl->dkl_nsect) + sec);
23918 #if defined(__i386) || defined(__amd64)
23919 		blk += un->un_solaris_offset;
23920 #endif
23921 		if (NOT_DEVBSIZE(un)) {
23922 			uint64_t	tblk;
23923 			/*
23924 			 * Need to read the block first for read modify write.
23925 			 */
23926 			tblk = (uint64_t)blk;
23927 			blk = (int)((tblk * un->un_sys_blocksize) /
23928 			    un->un_tgt_blocksize);
23929 			if ((rval = sd_send_scsi_READ(un, shadow_buf,
23930 			    un->un_tgt_blocksize, blk,
23931 			    SD_PATH_STANDARD)) != 0) {
23932 				goto exit;
23933 			}
23934 			/*
23935 			 * Modify the shadow buffer with the label.
23936 			 */
23937 			bcopy(dkl, shadow_buf, sizeof (struct dk_label));
23938 			rval = sd_send_scsi_WRITE(un, shadow_buf,
23939 			    un->un_tgt_blocksize, blk, SD_PATH_STANDARD);
23940 		} else {
23941 			rval = sd_send_scsi_WRITE(un, dkl, un->un_sys_blocksize,
23942 			    blk, SD_PATH_STANDARD);
23943 			SD_INFO(SD_LOG_IO_PARTITION, un,
23944 			"sd_set_vtoc: wrote backup label %d\n", blk);
23945 		}
23946 		if (rval != 0) {
23947 			goto exit;
23948 		}
23949 	}
23950 exit:
23951 	if (NOT_DEVBSIZE(un)) {
23952 		kmem_free(shadow_buf, un->un_tgt_blocksize);
23953 	}
23954 	return (rval);
23955 }
23956 
23957 /*
23958  *    Function: sd_clear_vtoc
23959  *
23960  * Description: This routine clears out the VTOC labels.
23961  *
23962  *   Arguments: un - driver soft state (unit) structure
23963  *
23964  * Return: void
23965  */
23966 
23967 static void
23968 sd_clear_vtoc(struct sd_lun *un)
23969 {
23970 	struct dk_label		*dkl;
23971 
23972 	mutex_exit(SD_MUTEX(un));
23973 	dkl = kmem_zalloc(sizeof (struct dk_label), KM_SLEEP);
23974 	mutex_enter(SD_MUTEX(un));
23975 	/*
23976 	 * sd_set_vtoc uses these fields in order to figure out
23977 	 * where to overwrite the backup labels
23978 	 */
23979 	dkl->dkl_apc    = un->un_g.dkg_apc;
23980 	dkl->dkl_ncyl   = un->un_g.dkg_ncyl;
23981 	dkl->dkl_acyl   = un->un_g.dkg_acyl;
23982 	dkl->dkl_nhead  = un->un_g.dkg_nhead;
23983 	dkl->dkl_nsect  = un->un_g.dkg_nsect;
23984 	mutex_exit(SD_MUTEX(un));
23985 	(void) sd_set_vtoc(un, dkl);
23986 	kmem_free(dkl, sizeof (struct dk_label));
23987 
23988 	mutex_enter(SD_MUTEX(un));
23989 }
23990 
23991 /*
23992  *    Function: sd_write_label
23993  *
23994  * Description: This routine will validate and write the driver soft state vtoc
23995  *		contents to the device.
23996  *
23997  *   Arguments: dev - the device number
23998  *
23999  * Return Code: the code returned by sd_send_scsi_cmd()
24000  *		0
24001  *		EINVAL
24002  *		ENXIO
24003  *		ENOMEM
24004  */
24005 
24006 static int
24007 sd_write_label(dev_t dev)
24008 {
24009 	struct sd_lun		*un;
24010 	struct dk_label		*dkl;
24011 	short			sum;
24012 	short			*sp;
24013 	int			i;
24014 	int			rval;
24015 
24016 	if (((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) ||
24017 	    (un->un_state == SD_STATE_OFFLINE)) {
24018 		return (ENXIO);
24019 	}
24020 	ASSERT(mutex_owned(SD_MUTEX(un)));
24021 	mutex_exit(SD_MUTEX(un));
24022 	dkl = kmem_zalloc(sizeof (struct dk_label), KM_SLEEP);
24023 	mutex_enter(SD_MUTEX(un));
24024 
24025 	bcopy(&un->un_vtoc, &dkl->dkl_vtoc, sizeof (struct dk_vtoc));
24026 	dkl->dkl_rpm	= un->un_g.dkg_rpm;
24027 	dkl->dkl_pcyl	= un->un_g.dkg_pcyl;
24028 	dkl->dkl_apc	= un->un_g.dkg_apc;
24029 	dkl->dkl_intrlv = un->un_g.dkg_intrlv;
24030 	dkl->dkl_ncyl	= un->un_g.dkg_ncyl;
24031 	dkl->dkl_acyl	= un->un_g.dkg_acyl;
24032 	dkl->dkl_nhead	= un->un_g.dkg_nhead;
24033 	dkl->dkl_nsect	= un->un_g.dkg_nsect;
24034 
24035 #if defined(_SUNOS_VTOC_8)
24036 	dkl->dkl_obs1	= un->un_g.dkg_obs1;
24037 	dkl->dkl_obs2	= un->un_g.dkg_obs2;
24038 	dkl->dkl_obs3	= un->un_g.dkg_obs3;
24039 	for (i = 0; i < NDKMAP; i++) {
24040 		dkl->dkl_map[i].dkl_cylno = un->un_map[i].dkl_cylno;
24041 		dkl->dkl_map[i].dkl_nblk  = un->un_map[i].dkl_nblk;
24042 	}
24043 	bcopy(un->un_asciilabel, dkl->dkl_asciilabel, LEN_DKL_ASCII);
24044 #elif defined(_SUNOS_VTOC_16)
24045 	dkl->dkl_skew	= un->un_dkg_skew;
24046 #else
24047 #error "No VTOC format defined."
24048 #endif
24049 
24050 	dkl->dkl_magic			= DKL_MAGIC;
24051 	dkl->dkl_write_reinstruct	= un->un_g.dkg_write_reinstruct;
24052 	dkl->dkl_read_reinstruct	= un->un_g.dkg_read_reinstruct;
24053 
24054 	/* Construct checksum for the new disk label */
24055 	sum = 0;
24056 	sp = (short *)dkl;
24057 	i = sizeof (struct dk_label) / sizeof (short);
24058 	while (i--) {
24059 		sum ^= *sp++;
24060 	}
24061 	dkl->dkl_cksum = sum;
24062 
24063 	mutex_exit(SD_MUTEX(un));
24064 
24065 	rval = sd_set_vtoc(un, dkl);
24066 exit:
24067 	kmem_free(dkl, sizeof (struct dk_label));
24068 	mutex_enter(SD_MUTEX(un));
24069 	return (rval);
24070 }
24071 
24072 static int
24073 sd_dkio_set_efi(dev_t dev, caddr_t arg, int flag)
24074 {
24075 	struct sd_lun	*un = NULL;
24076 	dk_efi_t	user_efi;
24077 	int		rval = 0;
24078 	void		*buffer;
24079 	int		valid_efi;
24080 
24081 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL)
24082 		return (ENXIO);
24083 
24084 	if (ddi_copyin(arg, &user_efi, sizeof (dk_efi_t), flag))
24085 		return (EFAULT);
24086 
24087 	user_efi.dki_data = (void *)(uintptr_t)user_efi.dki_data_64;
24088 
24089 	if ((user_efi.dki_length % un->un_tgt_blocksize) ||
24090 	    (user_efi.dki_length > un->un_max_xfer_size))
24091 		return (EINVAL);
24092 
24093 	buffer = kmem_alloc(user_efi.dki_length, KM_SLEEP);
24094 	if (ddi_copyin(user_efi.dki_data, buffer, user_efi.dki_length, flag)) {
24095 		rval = EFAULT;
24096 	} else {
24097 		/*
24098 		 * let's clear the vtoc labels and clear the softstate
24099 		 * vtoc.
24100 		 */
24101 		mutex_enter(SD_MUTEX(un));
24102 		if (un->un_vtoc.v_sanity == VTOC_SANE) {
24103 			SD_TRACE(SD_LOG_IO_PARTITION, un,
24104 				"sd_dkio_set_efi: CLEAR VTOC\n");
24105 			sd_clear_vtoc(un);
24106 			bzero(&un->un_vtoc, sizeof (struct dk_vtoc));
24107 			mutex_exit(SD_MUTEX(un));
24108 			ddi_remove_minor_node(SD_DEVINFO(un), "h");
24109 			ddi_remove_minor_node(SD_DEVINFO(un), "h,raw");
24110 			(void) ddi_create_minor_node(SD_DEVINFO(un), "wd",
24111 			    S_IFBLK,
24112 			    (SDUNIT(dev) << SDUNIT_SHIFT) | WD_NODE,
24113 			    un->un_node_type, NULL);
24114 			(void) ddi_create_minor_node(SD_DEVINFO(un), "wd,raw",
24115 			    S_IFCHR,
24116 			    (SDUNIT(dev) << SDUNIT_SHIFT) | WD_NODE,
24117 			    un->un_node_type, NULL);
24118 		} else
24119 			mutex_exit(SD_MUTEX(un));
24120 		rval = sd_send_scsi_WRITE(un, buffer, user_efi.dki_length,
24121 		    user_efi.dki_lba, SD_PATH_DIRECT);
24122 		if (rval == 0) {
24123 			mutex_enter(SD_MUTEX(un));
24124 
24125 			/*
24126 			 * Set the un_reserved for valid efi label.
24127 			 * Function clear_efi in fdisk and efi_write in
24128 			 * libefi both change efi label on disk in 3 steps
24129 			 * 1. Change primary gpt and gpe
24130 			 * 2. Change backup gpe
24131 			 * 3. Change backup gpt, which is one block
24132 			 * We only reread the efi label after the 3rd step,
24133 			 * or there will be warning "primary label corrupt".
24134 			 */
24135 			if (user_efi.dki_length == un->un_tgt_blocksize) {
24136 				un->un_f_geometry_is_valid = FALSE;
24137 				valid_efi = sd_use_efi(un, SD_PATH_DIRECT);
24138 				if ((valid_efi == 0) &&
24139 				    un->un_f_devid_supported &&
24140 				    (un->un_f_opt_fab_devid == TRUE)) {
24141 					if (un->un_devid == NULL) {
24142 						sd_register_devid(un,
24143 						    SD_DEVINFO(un),
24144 						    SD_TARGET_IS_UNRESERVED);
24145 					} else {
24146 						/*
24147 						 * The device id for this disk
24148 						 * has been fabricated. The
24149 						 * device id must be preserved
24150 						 * by writing it back out to
24151 						 * disk.
24152 						 */
24153 						if (sd_write_deviceid(un)
24154 						    != 0) {
24155 							ddi_devid_free(
24156 							    un->un_devid);
24157 							un->un_devid = NULL;
24158 						}
24159 					}
24160 				}
24161 			}
24162 
24163 			mutex_exit(SD_MUTEX(un));
24164 		}
24165 	}
24166 	kmem_free(buffer, user_efi.dki_length);
24167 	return (rval);
24168 }
24169 
24170 /*
24171  *    Function: sd_dkio_get_mboot
24172  *
24173  * Description: This routine is the driver entry point for handling user
24174  *		requests to get the current device mboot (DKIOCGMBOOT)
24175  *
24176  *   Arguments: dev  - the device number
24177  *		arg  - pointer to user provided mboot structure specifying
24178  *			the current mboot.
24179  *		flag - this argument is a pass through to ddi_copyxxx()
24180  *		       directly from the mode argument of ioctl().
24181  *
24182  * Return Code: 0
24183  *		EINVAL
24184  *		EFAULT
24185  *		ENXIO
24186  */
24187 
24188 static int
24189 sd_dkio_get_mboot(dev_t dev, caddr_t arg, int flag)
24190 {
24191 	struct sd_lun	*un;
24192 	struct mboot	*mboot;
24193 	int		rval;
24194 	size_t		buffer_size;
24195 
24196 	if (((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) ||
24197 	    (un->un_state == SD_STATE_OFFLINE)) {
24198 		return (ENXIO);
24199 	}
24200 
24201 	if (!un->un_f_mboot_supported || arg == NULL) {
24202 		return (EINVAL);
24203 	}
24204 
24205 	/*
24206 	 * Read the mboot block, located at absolute block 0 on the target.
24207 	 */
24208 	buffer_size = SD_REQBYTES2TGTBYTES(un, sizeof (struct mboot));
24209 
24210 	SD_TRACE(SD_LOG_IO_PARTITION, un,
24211 	    "sd_dkio_get_mboot: allocation size: 0x%x\n", buffer_size);
24212 
24213 	mboot = kmem_zalloc(buffer_size, KM_SLEEP);
24214 	if ((rval = sd_send_scsi_READ(un, mboot, buffer_size, 0,
24215 	    SD_PATH_STANDARD)) == 0) {
24216 		if (ddi_copyout(mboot, (void *)arg,
24217 		    sizeof (struct mboot), flag) != 0) {
24218 			rval = EFAULT;
24219 		}
24220 	}
24221 	kmem_free(mboot, buffer_size);
24222 	return (rval);
24223 }
24224 
24225 
24226 /*
24227  *    Function: sd_dkio_set_mboot
24228  *
24229  * Description: This routine is the driver entry point for handling user
24230  *		requests to validate and set the device master boot
24231  *		(DKIOCSMBOOT).
24232  *
24233  *   Arguments: dev  - the device number
24234  *		arg  - pointer to user provided mboot structure used to set the
24235  *			master boot.
24236  *		flag - this argument is a pass through to ddi_copyxxx()
24237  *		       directly from the mode argument of ioctl().
24238  *
24239  * Return Code: 0
24240  *		EINVAL
24241  *		EFAULT
24242  *		ENXIO
24243  */
24244 
24245 static int
24246 sd_dkio_set_mboot(dev_t dev, caddr_t arg, int flag)
24247 {
24248 	struct sd_lun	*un = NULL;
24249 	struct mboot	*mboot = NULL;
24250 	int		rval;
24251 	ushort_t	magic;
24252 
24253 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24254 		return (ENXIO);
24255 	}
24256 
24257 	ASSERT(!mutex_owned(SD_MUTEX(un)));
24258 
24259 	if (!un->un_f_mboot_supported) {
24260 		return (EINVAL);
24261 	}
24262 
24263 	if (arg == NULL) {
24264 		return (EINVAL);
24265 	}
24266 
24267 	mboot = kmem_zalloc(sizeof (struct mboot), KM_SLEEP);
24268 
24269 	if (ddi_copyin((const void *)arg, mboot,
24270 	    sizeof (struct mboot), flag) != 0) {
24271 		kmem_free(mboot, (size_t)(sizeof (struct mboot)));
24272 		return (EFAULT);
24273 	}
24274 
24275 	/* Is this really a master boot record? */
24276 	magic = LE_16(mboot->signature);
24277 	if (magic != MBB_MAGIC) {
24278 		kmem_free(mboot, (size_t)(sizeof (struct mboot)));
24279 		return (EINVAL);
24280 	}
24281 
24282 	rval = sd_send_scsi_WRITE(un, mboot, un->un_sys_blocksize, 0,
24283 	    SD_PATH_STANDARD);
24284 
24285 	mutex_enter(SD_MUTEX(un));
24286 #if defined(__i386) || defined(__amd64)
24287 	if (rval == 0) {
24288 		/*
24289 		 * mboot has been written successfully.
24290 		 * update the fdisk and vtoc tables in memory
24291 		 */
24292 		rval = sd_update_fdisk_and_vtoc(un);
24293 		if ((un->un_f_geometry_is_valid == FALSE) || (rval != 0)) {
24294 			mutex_exit(SD_MUTEX(un));
24295 			kmem_free(mboot, (size_t)(sizeof (struct mboot)));
24296 			return (rval);
24297 		}
24298 	}
24299 
24300 #ifdef __lock_lint
24301 	sd_setup_default_geometry(un);
24302 #endif
24303 
24304 #else
24305 	if (rval == 0) {
24306 		/*
24307 		 * mboot has been written successfully.
24308 		 * set up the default geometry and VTOC
24309 		 */
24310 		if (un->un_blockcount <= DK_MAX_BLOCKS)
24311 			sd_setup_default_geometry(un);
24312 	}
24313 #endif
24314 	mutex_exit(SD_MUTEX(un));
24315 	kmem_free(mboot, (size_t)(sizeof (struct mboot)));
24316 	return (rval);
24317 }
24318 
24319 
24320 /*
24321  *    Function: sd_setup_default_geometry
24322  *
24323  * Description: This local utility routine sets the default geometry as part of
24324  *		setting the device mboot.
24325  *
24326  *   Arguments: un - driver soft state (unit) structure
24327  *
24328  * Note: This may be redundant with sd_build_default_label.
24329  */
24330 
24331 static void
24332 sd_setup_default_geometry(struct sd_lun *un)
24333 {
24334 	/* zero out the soft state geometry and partition table. */
24335 	bzero(&un->un_g, sizeof (struct dk_geom));
24336 	bzero(&un->un_vtoc, sizeof (struct dk_vtoc));
24337 	bzero(un->un_map, NDKMAP * (sizeof (struct dk_map)));
24338 	un->un_asciilabel[0] = '\0';
24339 
24340 	/*
24341 	 * For the rpm, we use the minimum for the disk.
24342 	 * For the head, cyl and number of sector per track,
24343 	 * if the capacity <= 1GB, head = 64, sect = 32.
24344 	 * else head = 255, sect 63
24345 	 * Note: the capacity should be equal to C*H*S values.
24346 	 * This will cause some truncation of size due to
24347 	 * round off errors. For CD-ROMs, this truncation can
24348 	 * have adverse side effects, so returning ncyl and
24349 	 * nhead as 1. The nsect will overflow for most of
24350 	 * CD-ROMs as nsect is of type ushort.
24351 	 */
24352 	if (ISCD(un)) {
24353 		un->un_g.dkg_ncyl = 1;
24354 		un->un_g.dkg_nhead = 1;
24355 		un->un_g.dkg_nsect = un->un_blockcount;
24356 	} else {
24357 		if (un->un_blockcount <= 0x1000) {
24358 			/* Needed for unlabeled SCSI floppies. */
24359 			un->un_g.dkg_nhead = 2;
24360 			un->un_g.dkg_ncyl = 80;
24361 			un->un_g.dkg_pcyl = 80;
24362 			un->un_g.dkg_nsect = un->un_blockcount / (2 * 80);
24363 		} else if (un->un_blockcount <= 0x200000) {
24364 			un->un_g.dkg_nhead = 64;
24365 			un->un_g.dkg_nsect = 32;
24366 			un->un_g.dkg_ncyl = un->un_blockcount / (64 * 32);
24367 		} else {
24368 			un->un_g.dkg_nhead = 255;
24369 			un->un_g.dkg_nsect = 63;
24370 			un->un_g.dkg_ncyl = un->un_blockcount / (255 * 63);
24371 		}
24372 		un->un_blockcount = un->un_g.dkg_ncyl *
24373 		    un->un_g.dkg_nhead * un->un_g.dkg_nsect;
24374 	}
24375 	un->un_g.dkg_acyl = 0;
24376 	un->un_g.dkg_bcyl = 0;
24377 	un->un_g.dkg_intrlv = 1;
24378 	un->un_g.dkg_rpm = 200;
24379 	un->un_g.dkg_read_reinstruct = 0;
24380 	un->un_g.dkg_write_reinstruct = 0;
24381 	if (un->un_g.dkg_pcyl == 0) {
24382 		un->un_g.dkg_pcyl = un->un_g.dkg_ncyl + un->un_g.dkg_acyl;
24383 	}
24384 
24385 	un->un_map['a'-'a'].dkl_cylno = 0;
24386 	un->un_map['a'-'a'].dkl_nblk = un->un_blockcount;
24387 	un->un_map['c'-'a'].dkl_cylno = 0;
24388 	un->un_map['c'-'a'].dkl_nblk = un->un_blockcount;
24389 	un->un_f_geometry_is_valid = FALSE;
24390 }
24391 
24392 
24393 #if defined(__i386) || defined(__amd64)
24394 /*
24395  *    Function: sd_update_fdisk_and_vtoc
24396  *
24397  * Description: This local utility routine updates the device fdisk and vtoc
24398  *		as part of setting the device mboot.
24399  *
24400  *   Arguments: un - driver soft state (unit) structure
24401  *
24402  * Return Code: 0 for success or errno-type return code.
24403  *
24404  *    Note:x86: This looks like a duplicate of sd_validate_geometry(), but
24405  *		these did exist seperately in x86 sd.c!!!
24406  */
24407 
24408 static int
24409 sd_update_fdisk_and_vtoc(struct sd_lun *un)
24410 {
24411 	static char	labelstring[128];
24412 	static char	buf[256];
24413 	char		*label = 0;
24414 	int		count;
24415 	int		label_rc = 0;
24416 	int		gvalid = un->un_f_geometry_is_valid;
24417 	int		fdisk_rval;
24418 	int		lbasize;
24419 	int		capacity;
24420 
24421 	ASSERT(mutex_owned(SD_MUTEX(un)));
24422 
24423 	if (un->un_f_tgt_blocksize_is_valid == FALSE) {
24424 		return (EINVAL);
24425 	}
24426 
24427 	if (un->un_f_blockcount_is_valid == FALSE) {
24428 		return (EINVAL);
24429 	}
24430 
24431 #if defined(_SUNOS_VTOC_16)
24432 	/*
24433 	 * Set up the "whole disk" fdisk partition; this should always
24434 	 * exist, regardless of whether the disk contains an fdisk table
24435 	 * or vtoc.
24436 	 */
24437 	un->un_map[P0_RAW_DISK].dkl_cylno = 0;
24438 	un->un_map[P0_RAW_DISK].dkl_nblk = un->un_blockcount;
24439 #endif	/* defined(_SUNOS_VTOC_16) */
24440 
24441 	/*
24442 	 * copy the lbasize and capacity so that if they're
24443 	 * reset while we're not holding the SD_MUTEX(un), we will
24444 	 * continue to use valid values after the SD_MUTEX(un) is
24445 	 * reacquired.
24446 	 */
24447 	lbasize  = un->un_tgt_blocksize;
24448 	capacity = un->un_blockcount;
24449 
24450 	/*
24451 	 * refresh the logical and physical geometry caches.
24452 	 * (data from mode sense format/rigid disk geometry pages,
24453 	 * and scsi_ifgetcap("geometry").
24454 	 */
24455 	sd_resync_geom_caches(un, capacity, lbasize, SD_PATH_DIRECT);
24456 
24457 	/*
24458 	 * Only DIRECT ACCESS devices will have Sun labels.
24459 	 * CD's supposedly have a Sun label, too
24460 	 */
24461 	if (un->un_f_vtoc_label_supported) {
24462 		fdisk_rval = sd_read_fdisk(un, capacity, lbasize,
24463 		    SD_PATH_DIRECT);
24464 		if (fdisk_rval == SD_CMD_FAILURE) {
24465 			ASSERT(mutex_owned(SD_MUTEX(un)));
24466 			return (EIO);
24467 		}
24468 
24469 		if (fdisk_rval == SD_CMD_RESERVATION_CONFLICT) {
24470 			ASSERT(mutex_owned(SD_MUTEX(un)));
24471 			return (EACCES);
24472 		}
24473 
24474 		if (un->un_solaris_size <= DK_LABEL_LOC) {
24475 			/*
24476 			 * Found fdisk table but no Solaris partition entry,
24477 			 * so don't call sd_uselabel() and don't create
24478 			 * a default label.
24479 			 */
24480 			label_rc = 0;
24481 			un->un_f_geometry_is_valid = TRUE;
24482 			goto no_solaris_partition;
24483 		}
24484 
24485 #if defined(_SUNOS_VTOC_8)
24486 		label = (char *)un->un_asciilabel;
24487 #elif defined(_SUNOS_VTOC_16)
24488 		label = (char *)un->un_vtoc.v_asciilabel;
24489 #else
24490 #error "No VTOC format defined."
24491 #endif
24492 	} else if (capacity < 0) {
24493 		ASSERT(mutex_owned(SD_MUTEX(un)));
24494 		return (EINVAL);
24495 	}
24496 
24497 	/*
24498 	 * For Removable media We reach here if we have found a
24499 	 * SOLARIS PARTITION.
24500 	 * If un_f_geometry_is_valid is FALSE it indicates that the SOLARIS
24501 	 * PARTITION has changed from the previous one, hence we will setup a
24502 	 * default VTOC in this case.
24503 	 */
24504 	if (un->un_f_geometry_is_valid == FALSE) {
24505 		sd_build_default_label(un);
24506 		label_rc = 0;
24507 	}
24508 
24509 no_solaris_partition:
24510 	if ((!un->un_f_has_removable_media ||
24511 	    (un->un_f_has_removable_media &&
24512 	    un->un_mediastate == DKIO_EJECTED)) &&
24513 		(un->un_state == SD_STATE_NORMAL && !gvalid)) {
24514 		/*
24515 		 * Print out a message indicating who and what we are.
24516 		 * We do this only when we happen to really validate the
24517 		 * geometry. We may call sd_validate_geometry() at other
24518 		 * times, ioctl()'s like Get VTOC in which case we
24519 		 * don't want to print the label.
24520 		 * If the geometry is valid, print the label string,
24521 		 * else print vendor and product info, if available
24522 		 */
24523 		if ((un->un_f_geometry_is_valid == TRUE) && (label != NULL)) {
24524 			SD_INFO(SD_LOG_IOCTL_DKIO, un, "?<%s>\n", label);
24525 		} else {
24526 			mutex_enter(&sd_label_mutex);
24527 			sd_inq_fill(SD_INQUIRY(un)->inq_vid, VIDMAX,
24528 			    labelstring);
24529 			sd_inq_fill(SD_INQUIRY(un)->inq_pid, PIDMAX,
24530 			    &labelstring[64]);
24531 			(void) sprintf(buf, "?Vendor '%s', product '%s'",
24532 			    labelstring, &labelstring[64]);
24533 			if (un->un_f_blockcount_is_valid == TRUE) {
24534 				(void) sprintf(&buf[strlen(buf)],
24535 				    ", %" PRIu64 " %u byte blocks\n",
24536 				    un->un_blockcount,
24537 				    un->un_tgt_blocksize);
24538 			} else {
24539 				(void) sprintf(&buf[strlen(buf)],
24540 				    ", (unknown capacity)\n");
24541 			}
24542 			SD_INFO(SD_LOG_IOCTL_DKIO, un, buf);
24543 			mutex_exit(&sd_label_mutex);
24544 		}
24545 	}
24546 
24547 #if defined(_SUNOS_VTOC_16)
24548 	/*
24549 	 * If we have valid geometry, set up the remaining fdisk partitions.
24550 	 * Note that dkl_cylno is not used for the fdisk map entries, so
24551 	 * we set it to an entirely bogus value.
24552 	 */
24553 	for (count = 0; count < FD_NUMPART; count++) {
24554 		un->un_map[FDISK_P1 + count].dkl_cylno = -1;
24555 		un->un_map[FDISK_P1 + count].dkl_nblk =
24556 		    un->un_fmap[count].fmap_nblk;
24557 		un->un_offset[FDISK_P1 + count] =
24558 		    un->un_fmap[count].fmap_start;
24559 	}
24560 #endif
24561 
24562 	for (count = 0; count < NDKMAP; count++) {
24563 #if defined(_SUNOS_VTOC_8)
24564 		struct dk_map *lp  = &un->un_map[count];
24565 		un->un_offset[count] =
24566 		    un->un_g.dkg_nhead * un->un_g.dkg_nsect * lp->dkl_cylno;
24567 #elif defined(_SUNOS_VTOC_16)
24568 		struct dkl_partition *vp = &un->un_vtoc.v_part[count];
24569 		un->un_offset[count] = vp->p_start + un->un_solaris_offset;
24570 #else
24571 #error "No VTOC format defined."
24572 #endif
24573 	}
24574 
24575 	ASSERT(mutex_owned(SD_MUTEX(un)));
24576 	return (label_rc);
24577 }
24578 #endif
24579 
24580 
24581 /*
24582  *    Function: sd_check_media
24583  *
24584  * Description: This utility routine implements the functionality for the
24585  *		DKIOCSTATE ioctl. This ioctl blocks the user thread until the
24586  *		driver state changes from that specified by the user
24587  *		(inserted or ejected). For example, if the user specifies
24588  *		DKIO_EJECTED and the current media state is inserted this
24589  *		routine will immediately return DKIO_INSERTED. However, if the
24590  *		current media state is not inserted the user thread will be
24591  *		blocked until the drive state changes. If DKIO_NONE is specified
24592  *		the user thread will block until a drive state change occurs.
24593  *
24594  *   Arguments: dev  - the device number
24595  *		state  - user pointer to a dkio_state, updated with the current
24596  *			drive state at return.
24597  *
24598  * Return Code: ENXIO
24599  *		EIO
24600  *		EAGAIN
24601  *		EINTR
24602  */
24603 
24604 static int
24605 sd_check_media(dev_t dev, enum dkio_state state)
24606 {
24607 	struct sd_lun		*un = NULL;
24608 	enum dkio_state		prev_state;
24609 	opaque_t		token = NULL;
24610 	int			rval = 0;
24611 
24612 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24613 		return (ENXIO);
24614 	}
24615 
24616 	SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: entry\n");
24617 
24618 	mutex_enter(SD_MUTEX(un));
24619 
24620 	SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: "
24621 	    "state=%x, mediastate=%x\n", state, un->un_mediastate);
24622 
24623 	prev_state = un->un_mediastate;
24624 
24625 	/* is there anything to do? */
24626 	if (state == un->un_mediastate || un->un_mediastate == DKIO_NONE) {
24627 		/*
24628 		 * submit the request to the scsi_watch service;
24629 		 * scsi_media_watch_cb() does the real work
24630 		 */
24631 		mutex_exit(SD_MUTEX(un));
24632 
24633 		/*
24634 		 * This change handles the case where a scsi watch request is
24635 		 * added to a device that is powered down. To accomplish this
24636 		 * we power up the device before adding the scsi watch request,
24637 		 * since the scsi watch sends a TUR directly to the device
24638 		 * which the device cannot handle if it is powered down.
24639 		 */
24640 		if (sd_pm_entry(un) != DDI_SUCCESS) {
24641 			mutex_enter(SD_MUTEX(un));
24642 			goto done;
24643 		}
24644 
24645 		token = scsi_watch_request_submit(SD_SCSI_DEVP(un),
24646 		    sd_check_media_time, SENSE_LENGTH, sd_media_watch_cb,
24647 		    (caddr_t)dev);
24648 
24649 		sd_pm_exit(un);
24650 
24651 		mutex_enter(SD_MUTEX(un));
24652 		if (token == NULL) {
24653 			rval = EAGAIN;
24654 			goto done;
24655 		}
24656 
24657 		/*
24658 		 * This is a special case IOCTL that doesn't return
24659 		 * until the media state changes. Routine sdpower
24660 		 * knows about and handles this so don't count it
24661 		 * as an active cmd in the driver, which would
24662 		 * keep the device busy to the pm framework.
24663 		 * If the count isn't decremented the device can't
24664 		 * be powered down.
24665 		 */
24666 		un->un_ncmds_in_driver--;
24667 		ASSERT(un->un_ncmds_in_driver >= 0);
24668 
24669 		/*
24670 		 * if a prior request had been made, this will be the same
24671 		 * token, as scsi_watch was designed that way.
24672 		 */
24673 		un->un_swr_token = token;
24674 		un->un_specified_mediastate = state;
24675 
24676 		/*
24677 		 * now wait for media change
24678 		 * we will not be signalled unless mediastate == state but it is
24679 		 * still better to test for this condition, since there is a
24680 		 * 2 sec cv_broadcast delay when mediastate == DKIO_INSERTED
24681 		 */
24682 		SD_TRACE(SD_LOG_COMMON, un,
24683 		    "sd_check_media: waiting for media state change\n");
24684 		while (un->un_mediastate == state) {
24685 			if (cv_wait_sig(&un->un_state_cv, SD_MUTEX(un)) == 0) {
24686 				SD_TRACE(SD_LOG_COMMON, un,
24687 				    "sd_check_media: waiting for media state "
24688 				    "was interrupted\n");
24689 				un->un_ncmds_in_driver++;
24690 				rval = EINTR;
24691 				goto done;
24692 			}
24693 			SD_TRACE(SD_LOG_COMMON, un,
24694 			    "sd_check_media: received signal, state=%x\n",
24695 			    un->un_mediastate);
24696 		}
24697 		/*
24698 		 * Inc the counter to indicate the device once again
24699 		 * has an active outstanding cmd.
24700 		 */
24701 		un->un_ncmds_in_driver++;
24702 	}
24703 
24704 	/* invalidate geometry */
24705 	if (prev_state == DKIO_INSERTED && un->un_mediastate == DKIO_EJECTED) {
24706 		sr_ejected(un);
24707 	}
24708 
24709 	if (un->un_mediastate == DKIO_INSERTED && prev_state != DKIO_INSERTED) {
24710 		uint64_t	capacity;
24711 		uint_t		lbasize;
24712 
24713 		SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: media inserted\n");
24714 		mutex_exit(SD_MUTEX(un));
24715 		/*
24716 		 * Since the following routines use SD_PATH_DIRECT, we must
24717 		 * call PM directly before the upcoming disk accesses. This
24718 		 * may cause the disk to be power/spin up.
24719 		 */
24720 
24721 		if (sd_pm_entry(un) == DDI_SUCCESS) {
24722 			rval = sd_send_scsi_READ_CAPACITY(un,
24723 			    &capacity,
24724 			    &lbasize, SD_PATH_DIRECT);
24725 			if (rval != 0) {
24726 				sd_pm_exit(un);
24727 				mutex_enter(SD_MUTEX(un));
24728 				goto done;
24729 			}
24730 		} else {
24731 			rval = EIO;
24732 			mutex_enter(SD_MUTEX(un));
24733 			goto done;
24734 		}
24735 		mutex_enter(SD_MUTEX(un));
24736 
24737 		sd_update_block_info(un, lbasize, capacity);
24738 
24739 		un->un_f_geometry_is_valid	= FALSE;
24740 		(void) sd_validate_geometry(un, SD_PATH_DIRECT);
24741 
24742 		mutex_exit(SD_MUTEX(un));
24743 		rval = sd_send_scsi_DOORLOCK(un, SD_REMOVAL_PREVENT,
24744 		    SD_PATH_DIRECT);
24745 		sd_pm_exit(un);
24746 
24747 		mutex_enter(SD_MUTEX(un));
24748 	}
24749 done:
24750 	un->un_f_watcht_stopped = FALSE;
24751 	if (un->un_swr_token) {
24752 		/*
24753 		 * Use of this local token and the mutex ensures that we avoid
24754 		 * some race conditions associated with terminating the
24755 		 * scsi watch.
24756 		 */
24757 		token = un->un_swr_token;
24758 		un->un_swr_token = (opaque_t)NULL;
24759 		mutex_exit(SD_MUTEX(un));
24760 		(void) scsi_watch_request_terminate(token,
24761 		    SCSI_WATCH_TERMINATE_WAIT);
24762 		mutex_enter(SD_MUTEX(un));
24763 	}
24764 
24765 	/*
24766 	 * Update the capacity kstat value, if no media previously
24767 	 * (capacity kstat is 0) and a media has been inserted
24768 	 * (un_f_blockcount_is_valid == TRUE)
24769 	 */
24770 	if (un->un_errstats) {
24771 		struct sd_errstats	*stp = NULL;
24772 
24773 		stp = (struct sd_errstats *)un->un_errstats->ks_data;
24774 		if ((stp->sd_capacity.value.ui64 == 0) &&
24775 		    (un->un_f_blockcount_is_valid == TRUE)) {
24776 			stp->sd_capacity.value.ui64 =
24777 			    (uint64_t)((uint64_t)un->un_blockcount *
24778 			    un->un_sys_blocksize);
24779 		}
24780 	}
24781 	mutex_exit(SD_MUTEX(un));
24782 	SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: done\n");
24783 	return (rval);
24784 }
24785 
24786 
24787 /*
24788  *    Function: sd_delayed_cv_broadcast
24789  *
24790  * Description: Delayed cv_broadcast to allow for target to recover from media
24791  *		insertion.
24792  *
24793  *   Arguments: arg - driver soft state (unit) structure
24794  */
24795 
24796 static void
24797 sd_delayed_cv_broadcast(void *arg)
24798 {
24799 	struct sd_lun *un = arg;
24800 
24801 	SD_TRACE(SD_LOG_COMMON, un, "sd_delayed_cv_broadcast\n");
24802 
24803 	mutex_enter(SD_MUTEX(un));
24804 	un->un_dcvb_timeid = NULL;
24805 	cv_broadcast(&un->un_state_cv);
24806 	mutex_exit(SD_MUTEX(un));
24807 }
24808 
24809 
24810 /*
24811  *    Function: sd_media_watch_cb
24812  *
24813  * Description: Callback routine used for support of the DKIOCSTATE ioctl. This
24814  *		routine processes the TUR sense data and updates the driver
24815  *		state if a transition has occurred. The user thread
24816  *		(sd_check_media) is then signalled.
24817  *
24818  *   Arguments: arg -   the device 'dev_t' is used for context to discriminate
24819  *			among multiple watches that share this callback function
24820  *		resultp - scsi watch facility result packet containing scsi
24821  *			  packet, status byte and sense data
24822  *
24823  * Return Code: 0 for success, -1 for failure
24824  */
24825 
24826 static int
24827 sd_media_watch_cb(caddr_t arg, struct scsi_watch_result *resultp)
24828 {
24829 	struct sd_lun			*un;
24830 	struct scsi_status		*statusp = resultp->statusp;
24831 	uint8_t				*sensep = (uint8_t *)resultp->sensep;
24832 	enum dkio_state			state = DKIO_NONE;
24833 	dev_t				dev = (dev_t)arg;
24834 	uchar_t				actual_sense_length;
24835 	uint8_t				skey, asc, ascq;
24836 
24837 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24838 		return (-1);
24839 	}
24840 	actual_sense_length = resultp->actual_sense_length;
24841 
24842 	mutex_enter(SD_MUTEX(un));
24843 	SD_TRACE(SD_LOG_COMMON, un,
24844 	    "sd_media_watch_cb: status=%x, sensep=%p, len=%x\n",
24845 	    *((char *)statusp), (void *)sensep, actual_sense_length);
24846 
24847 	if (resultp->pkt->pkt_reason == CMD_DEV_GONE) {
24848 		un->un_mediastate = DKIO_DEV_GONE;
24849 		cv_broadcast(&un->un_state_cv);
24850 		mutex_exit(SD_MUTEX(un));
24851 
24852 		return (0);
24853 	}
24854 
24855 	/*
24856 	 * If there was a check condition then sensep points to valid sense data
24857 	 * If status was not a check condition but a reservation or busy status
24858 	 * then the new state is DKIO_NONE
24859 	 */
24860 	if (sensep != NULL) {
24861 		skey = scsi_sense_key(sensep);
24862 		asc = scsi_sense_asc(sensep);
24863 		ascq = scsi_sense_ascq(sensep);
24864 
24865 		SD_INFO(SD_LOG_COMMON, un,
24866 		    "sd_media_watch_cb: sense KEY=%x, ASC=%x, ASCQ=%x\n",
24867 		    skey, asc, ascq);
24868 		/* This routine only uses up to 13 bytes of sense data. */
24869 		if (actual_sense_length >= 13) {
24870 			if (skey == KEY_UNIT_ATTENTION) {
24871 				if (asc == 0x28) {
24872 					state = DKIO_INSERTED;
24873 				}
24874 			} else {
24875 				/*
24876 				 * if 02/04/02  means that the host
24877 				 * should send start command. Explicitly
24878 				 * leave the media state as is
24879 				 * (inserted) as the media is inserted
24880 				 * and host has stopped device for PM
24881 				 * reasons. Upon next true read/write
24882 				 * to this media will bring the
24883 				 * device to the right state good for
24884 				 * media access.
24885 				 */
24886 				if ((skey == KEY_NOT_READY) &&
24887 				    (asc == 0x3a)) {
24888 					state = DKIO_EJECTED;
24889 				}
24890 
24891 				/*
24892 				 * If the drivge is busy with an operation
24893 				 * or long write, keep the media in an
24894 				 * inserted state.
24895 				 */
24896 
24897 				if ((skey == KEY_NOT_READY) &&
24898 				    (asc == 0x04) &&
24899 				    ((ascq == 0x02) ||
24900 				    (ascq == 0x07) ||
24901 				    (ascq == 0x08))) {
24902 					state = DKIO_INSERTED;
24903 				}
24904 			}
24905 		}
24906 	} else if ((*((char *)statusp) == STATUS_GOOD) &&
24907 	    (resultp->pkt->pkt_reason == CMD_CMPLT)) {
24908 		state = DKIO_INSERTED;
24909 	}
24910 
24911 	SD_TRACE(SD_LOG_COMMON, un,
24912 	    "sd_media_watch_cb: state=%x, specified=%x\n",
24913 	    state, un->un_specified_mediastate);
24914 
24915 	/*
24916 	 * now signal the waiting thread if this is *not* the specified state;
24917 	 * delay the signal if the state is DKIO_INSERTED to allow the target
24918 	 * to recover
24919 	 */
24920 	if (state != un->un_specified_mediastate) {
24921 		un->un_mediastate = state;
24922 		if (state == DKIO_INSERTED) {
24923 			/*
24924 			 * delay the signal to give the drive a chance
24925 			 * to do what it apparently needs to do
24926 			 */
24927 			SD_TRACE(SD_LOG_COMMON, un,
24928 			    "sd_media_watch_cb: delayed cv_broadcast\n");
24929 			if (un->un_dcvb_timeid == NULL) {
24930 				un->un_dcvb_timeid =
24931 				    timeout(sd_delayed_cv_broadcast, un,
24932 				    drv_usectohz((clock_t)MEDIA_ACCESS_DELAY));
24933 			}
24934 		} else {
24935 			SD_TRACE(SD_LOG_COMMON, un,
24936 			    "sd_media_watch_cb: immediate cv_broadcast\n");
24937 			cv_broadcast(&un->un_state_cv);
24938 		}
24939 	}
24940 	mutex_exit(SD_MUTEX(un));
24941 	return (0);
24942 }
24943 
24944 
24945 /*
24946  *    Function: sd_dkio_get_temp
24947  *
24948  * Description: This routine is the driver entry point for handling ioctl
24949  *		requests to get the disk temperature.
24950  *
24951  *   Arguments: dev  - the device number
24952  *		arg  - pointer to user provided dk_temperature structure.
24953  *		flag - this argument is a pass through to ddi_copyxxx()
24954  *		       directly from the mode argument of ioctl().
24955  *
24956  * Return Code: 0
24957  *		EFAULT
24958  *		ENXIO
24959  *		EAGAIN
24960  */
24961 
24962 static int
24963 sd_dkio_get_temp(dev_t dev, caddr_t arg, int flag)
24964 {
24965 	struct sd_lun		*un = NULL;
24966 	struct dk_temperature	*dktemp = NULL;
24967 	uchar_t			*temperature_page;
24968 	int			rval = 0;
24969 	int			path_flag = SD_PATH_STANDARD;
24970 
24971 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24972 		return (ENXIO);
24973 	}
24974 
24975 	dktemp = kmem_zalloc(sizeof (struct dk_temperature), KM_SLEEP);
24976 
24977 	/* copyin the disk temp argument to get the user flags */
24978 	if (ddi_copyin((void *)arg, dktemp,
24979 	    sizeof (struct dk_temperature), flag) != 0) {
24980 		rval = EFAULT;
24981 		goto done;
24982 	}
24983 
24984 	/* Initialize the temperature to invalid. */
24985 	dktemp->dkt_cur_temp = (short)DKT_INVALID_TEMP;
24986 	dktemp->dkt_ref_temp = (short)DKT_INVALID_TEMP;
24987 
24988 	/*
24989 	 * Note: Investigate removing the "bypass pm" semantic.
24990 	 * Can we just bypass PM always?
24991 	 */
24992 	if (dktemp->dkt_flags & DKT_BYPASS_PM) {
24993 		path_flag = SD_PATH_DIRECT;
24994 		ASSERT(!mutex_owned(&un->un_pm_mutex));
24995 		mutex_enter(&un->un_pm_mutex);
24996 		if (SD_DEVICE_IS_IN_LOW_POWER(un)) {
24997 			/*
24998 			 * If DKT_BYPASS_PM is set, and the drive happens to be
24999 			 * in low power mode, we can not wake it up, Need to
25000 			 * return EAGAIN.
25001 			 */
25002 			mutex_exit(&un->un_pm_mutex);
25003 			rval = EAGAIN;
25004 			goto done;
25005 		} else {
25006 			/*
25007 			 * Indicate to PM the device is busy. This is required
25008 			 * to avoid a race - i.e. the ioctl is issuing a
25009 			 * command and the pm framework brings down the device
25010 			 * to low power mode (possible power cut-off on some
25011 			 * platforms).
25012 			 */
25013 			mutex_exit(&un->un_pm_mutex);
25014 			if (sd_pm_entry(un) != DDI_SUCCESS) {
25015 				rval = EAGAIN;
25016 				goto done;
25017 			}
25018 		}
25019 	}
25020 
25021 	temperature_page = kmem_zalloc(TEMPERATURE_PAGE_SIZE, KM_SLEEP);
25022 
25023 	if ((rval = sd_send_scsi_LOG_SENSE(un, temperature_page,
25024 	    TEMPERATURE_PAGE_SIZE, TEMPERATURE_PAGE, 1, 0, path_flag)) != 0) {
25025 		goto done2;
25026 	}
25027 
25028 	/*
25029 	 * For the current temperature verify that the parameter length is 0x02
25030 	 * and the parameter code is 0x00
25031 	 */
25032 	if ((temperature_page[7] == 0x02) && (temperature_page[4] == 0x00) &&
25033 	    (temperature_page[5] == 0x00)) {
25034 		if (temperature_page[9] == 0xFF) {
25035 			dktemp->dkt_cur_temp = (short)DKT_INVALID_TEMP;
25036 		} else {
25037 			dktemp->dkt_cur_temp = (short)(temperature_page[9]);
25038 		}
25039 	}
25040 
25041 	/*
25042 	 * For the reference temperature verify that the parameter
25043 	 * length is 0x02 and the parameter code is 0x01
25044 	 */
25045 	if ((temperature_page[13] == 0x02) && (temperature_page[10] == 0x00) &&
25046 	    (temperature_page[11] == 0x01)) {
25047 		if (temperature_page[15] == 0xFF) {
25048 			dktemp->dkt_ref_temp = (short)DKT_INVALID_TEMP;
25049 		} else {
25050 			dktemp->dkt_ref_temp = (short)(temperature_page[15]);
25051 		}
25052 	}
25053 
25054 	/* Do the copyout regardless of the temperature commands status. */
25055 	if (ddi_copyout(dktemp, (void *)arg, sizeof (struct dk_temperature),
25056 	    flag) != 0) {
25057 		rval = EFAULT;
25058 	}
25059 
25060 done2:
25061 	if (path_flag == SD_PATH_DIRECT) {
25062 		sd_pm_exit(un);
25063 	}
25064 
25065 	kmem_free(temperature_page, TEMPERATURE_PAGE_SIZE);
25066 done:
25067 	if (dktemp != NULL) {
25068 		kmem_free(dktemp, sizeof (struct dk_temperature));
25069 	}
25070 
25071 	return (rval);
25072 }
25073 
25074 
25075 /*
25076  *    Function: sd_log_page_supported
25077  *
25078  * Description: This routine uses sd_send_scsi_LOG_SENSE to find the list of
25079  *		supported log pages.
25080  *
25081  *   Arguments: un -
25082  *		log_page -
25083  *
25084  * Return Code: -1 - on error (log sense is optional and may not be supported).
25085  *		0  - log page not found.
25086  *  		1  - log page found.
25087  */
25088 
25089 static int
25090 sd_log_page_supported(struct sd_lun *un, int log_page)
25091 {
25092 	uchar_t *log_page_data;
25093 	int	i;
25094 	int	match = 0;
25095 	int	log_size;
25096 
25097 	log_page_data = kmem_zalloc(0xFF, KM_SLEEP);
25098 
25099 	if (sd_send_scsi_LOG_SENSE(un, log_page_data, 0xFF, 0, 0x01, 0,
25100 	    SD_PATH_DIRECT) != 0) {
25101 		SD_ERROR(SD_LOG_COMMON, un,
25102 		    "sd_log_page_supported: failed log page retrieval\n");
25103 		kmem_free(log_page_data, 0xFF);
25104 		return (-1);
25105 	}
25106 	log_size = log_page_data[3];
25107 
25108 	/*
25109 	 * The list of supported log pages start from the fourth byte. Check
25110 	 * until we run out of log pages or a match is found.
25111 	 */
25112 	for (i = 4; (i < (log_size + 4)) && !match; i++) {
25113 		if (log_page_data[i] == log_page) {
25114 			match++;
25115 		}
25116 	}
25117 	kmem_free(log_page_data, 0xFF);
25118 	return (match);
25119 }
25120 
25121 
25122 /*
25123  *    Function: sd_mhdioc_failfast
25124  *
25125  * Description: This routine is the driver entry point for handling ioctl
25126  *		requests to enable/disable the multihost failfast option.
25127  *		(MHIOCENFAILFAST)
25128  *
25129  *   Arguments: dev	- the device number
25130  *		arg	- user specified probing interval.
25131  *		flag	- this argument is a pass through to ddi_copyxxx()
25132  *			  directly from the mode argument of ioctl().
25133  *
25134  * Return Code: 0
25135  *		EFAULT
25136  *		ENXIO
25137  */
25138 
25139 static int
25140 sd_mhdioc_failfast(dev_t dev, caddr_t arg, int flag)
25141 {
25142 	struct sd_lun	*un = NULL;
25143 	int		mh_time;
25144 	int		rval = 0;
25145 
25146 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25147 		return (ENXIO);
25148 	}
25149 
25150 	if (ddi_copyin((void *)arg, &mh_time, sizeof (int), flag))
25151 		return (EFAULT);
25152 
25153 	if (mh_time) {
25154 		mutex_enter(SD_MUTEX(un));
25155 		un->un_resvd_status |= SD_FAILFAST;
25156 		mutex_exit(SD_MUTEX(un));
25157 		/*
25158 		 * If mh_time is INT_MAX, then this ioctl is being used for
25159 		 * SCSI-3 PGR purposes, and we don't need to spawn watch thread.
25160 		 */
25161 		if (mh_time != INT_MAX) {
25162 			rval = sd_check_mhd(dev, mh_time);
25163 		}
25164 	} else {
25165 		(void) sd_check_mhd(dev, 0);
25166 		mutex_enter(SD_MUTEX(un));
25167 		un->un_resvd_status &= ~SD_FAILFAST;
25168 		mutex_exit(SD_MUTEX(un));
25169 	}
25170 	return (rval);
25171 }
25172 
25173 
25174 /*
25175  *    Function: sd_mhdioc_takeown
25176  *
25177  * Description: This routine is the driver entry point for handling ioctl
25178  *		requests to forcefully acquire exclusive access rights to the
25179  *		multihost disk (MHIOCTKOWN).
25180  *
25181  *   Arguments: dev	- the device number
25182  *		arg	- user provided structure specifying the delay
25183  *			  parameters in milliseconds
25184  *		flag	- this argument is a pass through to ddi_copyxxx()
25185  *			  directly from the mode argument of ioctl().
25186  *
25187  * Return Code: 0
25188  *		EFAULT
25189  *		ENXIO
25190  */
25191 
25192 static int
25193 sd_mhdioc_takeown(dev_t dev, caddr_t arg, int flag)
25194 {
25195 	struct sd_lun		*un = NULL;
25196 	struct mhioctkown	*tkown = NULL;
25197 	int			rval = 0;
25198 
25199 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25200 		return (ENXIO);
25201 	}
25202 
25203 	if (arg != NULL) {
25204 		tkown = (struct mhioctkown *)
25205 		    kmem_zalloc(sizeof (struct mhioctkown), KM_SLEEP);
25206 		rval = ddi_copyin(arg, tkown, sizeof (struct mhioctkown), flag);
25207 		if (rval != 0) {
25208 			rval = EFAULT;
25209 			goto error;
25210 		}
25211 	}
25212 
25213 	rval = sd_take_ownership(dev, tkown);
25214 	mutex_enter(SD_MUTEX(un));
25215 	if (rval == 0) {
25216 		un->un_resvd_status |= SD_RESERVE;
25217 		if (tkown != NULL && tkown->reinstate_resv_delay != 0) {
25218 			sd_reinstate_resv_delay =
25219 			    tkown->reinstate_resv_delay * 1000;
25220 		} else {
25221 			sd_reinstate_resv_delay = SD_REINSTATE_RESV_DELAY;
25222 		}
25223 		/*
25224 		 * Give the scsi_watch routine interval set by
25225 		 * the MHIOCENFAILFAST ioctl precedence here.
25226 		 */
25227 		if ((un->un_resvd_status & SD_FAILFAST) == 0) {
25228 			mutex_exit(SD_MUTEX(un));
25229 			(void) sd_check_mhd(dev, sd_reinstate_resv_delay/1000);
25230 			SD_TRACE(SD_LOG_IOCTL_MHD, un,
25231 			    "sd_mhdioc_takeown : %d\n",
25232 			    sd_reinstate_resv_delay);
25233 		} else {
25234 			mutex_exit(SD_MUTEX(un));
25235 		}
25236 		(void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_NOTIFY,
25237 		    sd_mhd_reset_notify_cb, (caddr_t)un);
25238 	} else {
25239 		un->un_resvd_status &= ~SD_RESERVE;
25240 		mutex_exit(SD_MUTEX(un));
25241 	}
25242 
25243 error:
25244 	if (tkown != NULL) {
25245 		kmem_free(tkown, sizeof (struct mhioctkown));
25246 	}
25247 	return (rval);
25248 }
25249 
25250 
25251 /*
25252  *    Function: sd_mhdioc_release
25253  *
25254  * Description: This routine is the driver entry point for handling ioctl
25255  *		requests to release exclusive access rights to the multihost
25256  *		disk (MHIOCRELEASE).
25257  *
25258  *   Arguments: dev	- the device number
25259  *
25260  * Return Code: 0
25261  *		ENXIO
25262  */
25263 
25264 static int
25265 sd_mhdioc_release(dev_t dev)
25266 {
25267 	struct sd_lun		*un = NULL;
25268 	timeout_id_t		resvd_timeid_save;
25269 	int			resvd_status_save;
25270 	int			rval = 0;
25271 
25272 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25273 		return (ENXIO);
25274 	}
25275 
25276 	mutex_enter(SD_MUTEX(un));
25277 	resvd_status_save = un->un_resvd_status;
25278 	un->un_resvd_status &=
25279 	    ~(SD_RESERVE | SD_LOST_RESERVE | SD_WANT_RESERVE);
25280 	if (un->un_resvd_timeid) {
25281 		resvd_timeid_save = un->un_resvd_timeid;
25282 		un->un_resvd_timeid = NULL;
25283 		mutex_exit(SD_MUTEX(un));
25284 		(void) untimeout(resvd_timeid_save);
25285 	} else {
25286 		mutex_exit(SD_MUTEX(un));
25287 	}
25288 
25289 	/*
25290 	 * destroy any pending timeout thread that may be attempting to
25291 	 * reinstate reservation on this device.
25292 	 */
25293 	sd_rmv_resv_reclaim_req(dev);
25294 
25295 	if ((rval = sd_reserve_release(dev, SD_RELEASE)) == 0) {
25296 		mutex_enter(SD_MUTEX(un));
25297 		if ((un->un_mhd_token) &&
25298 		    ((un->un_resvd_status & SD_FAILFAST) == 0)) {
25299 			mutex_exit(SD_MUTEX(un));
25300 			(void) sd_check_mhd(dev, 0);
25301 		} else {
25302 			mutex_exit(SD_MUTEX(un));
25303 		}
25304 		(void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_CANCEL,
25305 		    sd_mhd_reset_notify_cb, (caddr_t)un);
25306 	} else {
25307 		/*
25308 		 * sd_mhd_watch_cb will restart the resvd recover timeout thread
25309 		 */
25310 		mutex_enter(SD_MUTEX(un));
25311 		un->un_resvd_status = resvd_status_save;
25312 		mutex_exit(SD_MUTEX(un));
25313 	}
25314 	return (rval);
25315 }
25316 
25317 
25318 /*
25319  *    Function: sd_mhdioc_register_devid
25320  *
25321  * Description: This routine is the driver entry point for handling ioctl
25322  *		requests to register the device id (MHIOCREREGISTERDEVID).
25323  *
25324  *		Note: The implementation for this ioctl has been updated to
25325  *		be consistent with the original PSARC case (1999/357)
25326  *		(4375899, 4241671, 4220005)
25327  *
25328  *   Arguments: dev	- the device number
25329  *
25330  * Return Code: 0
25331  *		ENXIO
25332  */
25333 
25334 static int
25335 sd_mhdioc_register_devid(dev_t dev)
25336 {
25337 	struct sd_lun	*un = NULL;
25338 	int		rval = 0;
25339 
25340 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25341 		return (ENXIO);
25342 	}
25343 
25344 	ASSERT(!mutex_owned(SD_MUTEX(un)));
25345 
25346 	mutex_enter(SD_MUTEX(un));
25347 
25348 	/* If a devid already exists, de-register it */
25349 	if (un->un_devid != NULL) {
25350 		ddi_devid_unregister(SD_DEVINFO(un));
25351 		/*
25352 		 * After unregister devid, needs to free devid memory
25353 		 */
25354 		ddi_devid_free(un->un_devid);
25355 		un->un_devid = NULL;
25356 	}
25357 
25358 	/* Check for reservation conflict */
25359 	mutex_exit(SD_MUTEX(un));
25360 	rval = sd_send_scsi_TEST_UNIT_READY(un, 0);
25361 	mutex_enter(SD_MUTEX(un));
25362 
25363 	switch (rval) {
25364 	case 0:
25365 		sd_register_devid(un, SD_DEVINFO(un), SD_TARGET_IS_UNRESERVED);
25366 		break;
25367 	case EACCES:
25368 		break;
25369 	default:
25370 		rval = EIO;
25371 	}
25372 
25373 	mutex_exit(SD_MUTEX(un));
25374 	return (rval);
25375 }
25376 
25377 
25378 /*
25379  *    Function: sd_mhdioc_inkeys
25380  *
25381  * Description: This routine is the driver entry point for handling ioctl
25382  *		requests to issue the SCSI-3 Persistent In Read Keys command
25383  *		to the device (MHIOCGRP_INKEYS).
25384  *
25385  *   Arguments: dev	- the device number
25386  *		arg	- user provided in_keys structure
25387  *		flag	- this argument is a pass through to ddi_copyxxx()
25388  *			  directly from the mode argument of ioctl().
25389  *
25390  * Return Code: code returned by sd_persistent_reservation_in_read_keys()
25391  *		ENXIO
25392  *		EFAULT
25393  */
25394 
25395 static int
25396 sd_mhdioc_inkeys(dev_t dev, caddr_t arg, int flag)
25397 {
25398 	struct sd_lun		*un;
25399 	mhioc_inkeys_t		inkeys;
25400 	int			rval = 0;
25401 
25402 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25403 		return (ENXIO);
25404 	}
25405 
25406 #ifdef _MULTI_DATAMODEL
25407 	switch (ddi_model_convert_from(flag & FMODELS)) {
25408 	case DDI_MODEL_ILP32: {
25409 		struct mhioc_inkeys32	inkeys32;
25410 
25411 		if (ddi_copyin(arg, &inkeys32,
25412 		    sizeof (struct mhioc_inkeys32), flag) != 0) {
25413 			return (EFAULT);
25414 		}
25415 		inkeys.li = (mhioc_key_list_t *)(uintptr_t)inkeys32.li;
25416 		if ((rval = sd_persistent_reservation_in_read_keys(un,
25417 		    &inkeys, flag)) != 0) {
25418 			return (rval);
25419 		}
25420 		inkeys32.generation = inkeys.generation;
25421 		if (ddi_copyout(&inkeys32, arg, sizeof (struct mhioc_inkeys32),
25422 		    flag) != 0) {
25423 			return (EFAULT);
25424 		}
25425 		break;
25426 	}
25427 	case DDI_MODEL_NONE:
25428 		if (ddi_copyin(arg, &inkeys, sizeof (mhioc_inkeys_t),
25429 		    flag) != 0) {
25430 			return (EFAULT);
25431 		}
25432 		if ((rval = sd_persistent_reservation_in_read_keys(un,
25433 		    &inkeys, flag)) != 0) {
25434 			return (rval);
25435 		}
25436 		if (ddi_copyout(&inkeys, arg, sizeof (mhioc_inkeys_t),
25437 		    flag) != 0) {
25438 			return (EFAULT);
25439 		}
25440 		break;
25441 	}
25442 
25443 #else /* ! _MULTI_DATAMODEL */
25444 
25445 	if (ddi_copyin(arg, &inkeys, sizeof (mhioc_inkeys_t), flag) != 0) {
25446 		return (EFAULT);
25447 	}
25448 	rval = sd_persistent_reservation_in_read_keys(un, &inkeys, flag);
25449 	if (rval != 0) {
25450 		return (rval);
25451 	}
25452 	if (ddi_copyout(&inkeys, arg, sizeof (mhioc_inkeys_t), flag) != 0) {
25453 		return (EFAULT);
25454 	}
25455 
25456 #endif /* _MULTI_DATAMODEL */
25457 
25458 	return (rval);
25459 }
25460 
25461 
25462 /*
25463  *    Function: sd_mhdioc_inresv
25464  *
25465  * Description: This routine is the driver entry point for handling ioctl
25466  *		requests to issue the SCSI-3 Persistent In Read Reservations
25467  *		command to the device (MHIOCGRP_INKEYS).
25468  *
25469  *   Arguments: dev	- the device number
25470  *		arg	- user provided in_resv structure
25471  *		flag	- this argument is a pass through to ddi_copyxxx()
25472  *			  directly from the mode argument of ioctl().
25473  *
25474  * Return Code: code returned by sd_persistent_reservation_in_read_resv()
25475  *		ENXIO
25476  *		EFAULT
25477  */
25478 
25479 static int
25480 sd_mhdioc_inresv(dev_t dev, caddr_t arg, int flag)
25481 {
25482 	struct sd_lun		*un;
25483 	mhioc_inresvs_t		inresvs;
25484 	int			rval = 0;
25485 
25486 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25487 		return (ENXIO);
25488 	}
25489 
25490 #ifdef _MULTI_DATAMODEL
25491 
25492 	switch (ddi_model_convert_from(flag & FMODELS)) {
25493 	case DDI_MODEL_ILP32: {
25494 		struct mhioc_inresvs32	inresvs32;
25495 
25496 		if (ddi_copyin(arg, &inresvs32,
25497 		    sizeof (struct mhioc_inresvs32), flag) != 0) {
25498 			return (EFAULT);
25499 		}
25500 		inresvs.li = (mhioc_resv_desc_list_t *)(uintptr_t)inresvs32.li;
25501 		if ((rval = sd_persistent_reservation_in_read_resv(un,
25502 		    &inresvs, flag)) != 0) {
25503 			return (rval);
25504 		}
25505 		inresvs32.generation = inresvs.generation;
25506 		if (ddi_copyout(&inresvs32, arg,
25507 		    sizeof (struct mhioc_inresvs32), flag) != 0) {
25508 			return (EFAULT);
25509 		}
25510 		break;
25511 	}
25512 	case DDI_MODEL_NONE:
25513 		if (ddi_copyin(arg, &inresvs,
25514 		    sizeof (mhioc_inresvs_t), flag) != 0) {
25515 			return (EFAULT);
25516 		}
25517 		if ((rval = sd_persistent_reservation_in_read_resv(un,
25518 		    &inresvs, flag)) != 0) {
25519 			return (rval);
25520 		}
25521 		if (ddi_copyout(&inresvs, arg,
25522 		    sizeof (mhioc_inresvs_t), flag) != 0) {
25523 			return (EFAULT);
25524 		}
25525 		break;
25526 	}
25527 
25528 #else /* ! _MULTI_DATAMODEL */
25529 
25530 	if (ddi_copyin(arg, &inresvs, sizeof (mhioc_inresvs_t), flag) != 0) {
25531 		return (EFAULT);
25532 	}
25533 	rval = sd_persistent_reservation_in_read_resv(un, &inresvs, flag);
25534 	if (rval != 0) {
25535 		return (rval);
25536 	}
25537 	if (ddi_copyout(&inresvs, arg, sizeof (mhioc_inresvs_t), flag)) {
25538 		return (EFAULT);
25539 	}
25540 
25541 #endif /* ! _MULTI_DATAMODEL */
25542 
25543 	return (rval);
25544 }
25545 
25546 
25547 /*
25548  * The following routines support the clustering functionality described below
25549  * and implement lost reservation reclaim functionality.
25550  *
25551  * Clustering
25552  * ----------
25553  * The clustering code uses two different, independent forms of SCSI
25554  * reservation. Traditional SCSI-2 Reserve/Release and the newer SCSI-3
25555  * Persistent Group Reservations. For any particular disk, it will use either
25556  * SCSI-2 or SCSI-3 PGR but never both at the same time for the same disk.
25557  *
25558  * SCSI-2
25559  * The cluster software takes ownership of a multi-hosted disk by issuing the
25560  * MHIOCTKOWN ioctl to the disk driver. It releases ownership by issuing the
25561  * MHIOCRELEASE ioctl.Closely related is the MHIOCENFAILFAST ioctl -- a cluster,
25562  * just after taking ownership of the disk with the MHIOCTKOWN ioctl then issues
25563  * the MHIOCENFAILFAST ioctl.  This ioctl "enables failfast" in the driver. The
25564  * meaning of failfast is that if the driver (on this host) ever encounters the
25565  * scsi error return code RESERVATION_CONFLICT from the device, it should
25566  * immediately panic the host. The motivation for this ioctl is that if this
25567  * host does encounter reservation conflict, the underlying cause is that some
25568  * other host of the cluster has decided that this host is no longer in the
25569  * cluster and has seized control of the disks for itself. Since this host is no
25570  * longer in the cluster, it ought to panic itself. The MHIOCENFAILFAST ioctl
25571  * does two things:
25572  *	(a) it sets a flag that will cause any returned RESERVATION_CONFLICT
25573  *      error to panic the host
25574  *      (b) it sets up a periodic timer to test whether this host still has
25575  *      "access" (in that no other host has reserved the device):  if the
25576  *      periodic timer gets RESERVATION_CONFLICT, the host is panicked. The
25577  *      purpose of that periodic timer is to handle scenarios where the host is
25578  *      otherwise temporarily quiescent, temporarily doing no real i/o.
25579  * The MHIOCTKOWN ioctl will "break" a reservation that is held by another host,
25580  * by issuing a SCSI Bus Device Reset.  It will then issue a SCSI Reserve for
25581  * the device itself.
25582  *
25583  * SCSI-3 PGR
25584  * A direct semantic implementation of the SCSI-3 Persistent Reservation
25585  * facility is supported through the shared multihost disk ioctls
25586  * (MHIOCGRP_INKEYS, MHIOCGRP_INRESV, MHIOCGRP_REGISTER, MHIOCGRP_RESERVE,
25587  * MHIOCGRP_PREEMPTANDABORT)
25588  *
25589  * Reservation Reclaim:
25590  * --------------------
25591  * To support the lost reservation reclaim operations this driver creates a
25592  * single thread to handle reinstating reservations on all devices that have
25593  * lost reservations sd_resv_reclaim_requests are logged for all devices that
25594  * have LOST RESERVATIONS when the scsi watch facility callsback sd_mhd_watch_cb
25595  * and the reservation reclaim thread loops through the requests to regain the
25596  * lost reservations.
25597  */
25598 
25599 /*
25600  *    Function: sd_check_mhd()
25601  *
25602  * Description: This function sets up and submits a scsi watch request or
25603  *		terminates an existing watch request. This routine is used in
25604  *		support of reservation reclaim.
25605  *
25606  *   Arguments: dev    - the device 'dev_t' is used for context to discriminate
25607  *			 among multiple watches that share the callback function
25608  *		interval - the number of microseconds specifying the watch
25609  *			   interval for issuing TEST UNIT READY commands. If
25610  *			   set to 0 the watch should be terminated. If the
25611  *			   interval is set to 0 and if the device is required
25612  *			   to hold reservation while disabling failfast, the
25613  *			   watch is restarted with an interval of
25614  *			   reinstate_resv_delay.
25615  *
25616  * Return Code: 0	   - Successful submit/terminate of scsi watch request
25617  *		ENXIO      - Indicates an invalid device was specified
25618  *		EAGAIN     - Unable to submit the scsi watch request
25619  */
25620 
25621 static int
25622 sd_check_mhd(dev_t dev, int interval)
25623 {
25624 	struct sd_lun	*un;
25625 	opaque_t	token;
25626 
25627 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25628 		return (ENXIO);
25629 	}
25630 
25631 	/* is this a watch termination request? */
25632 	if (interval == 0) {
25633 		mutex_enter(SD_MUTEX(un));
25634 		/* if there is an existing watch task then terminate it */
25635 		if (un->un_mhd_token) {
25636 			token = un->un_mhd_token;
25637 			un->un_mhd_token = NULL;
25638 			mutex_exit(SD_MUTEX(un));
25639 			(void) scsi_watch_request_terminate(token,
25640 			    SCSI_WATCH_TERMINATE_WAIT);
25641 			mutex_enter(SD_MUTEX(un));
25642 		} else {
25643 			mutex_exit(SD_MUTEX(un));
25644 			/*
25645 			 * Note: If we return here we don't check for the
25646 			 * failfast case. This is the original legacy
25647 			 * implementation but perhaps we should be checking
25648 			 * the failfast case.
25649 			 */
25650 			return (0);
25651 		}
25652 		/*
25653 		 * If the device is required to hold reservation while
25654 		 * disabling failfast, we need to restart the scsi_watch
25655 		 * routine with an interval of reinstate_resv_delay.
25656 		 */
25657 		if (un->un_resvd_status & SD_RESERVE) {
25658 			interval = sd_reinstate_resv_delay/1000;
25659 		} else {
25660 			/* no failfast so bail */
25661 			mutex_exit(SD_MUTEX(un));
25662 			return (0);
25663 		}
25664 		mutex_exit(SD_MUTEX(un));
25665 	}
25666 
25667 	/*
25668 	 * adjust minimum time interval to 1 second,
25669 	 * and convert from msecs to usecs
25670 	 */
25671 	if (interval > 0 && interval < 1000) {
25672 		interval = 1000;
25673 	}
25674 	interval *= 1000;
25675 
25676 	/*
25677 	 * submit the request to the scsi_watch service
25678 	 */
25679 	token = scsi_watch_request_submit(SD_SCSI_DEVP(un), interval,
25680 	    SENSE_LENGTH, sd_mhd_watch_cb, (caddr_t)dev);
25681 	if (token == NULL) {
25682 		return (EAGAIN);
25683 	}
25684 
25685 	/*
25686 	 * save token for termination later on
25687 	 */
25688 	mutex_enter(SD_MUTEX(un));
25689 	un->un_mhd_token = token;
25690 	mutex_exit(SD_MUTEX(un));
25691 	return (0);
25692 }
25693 
25694 
25695 /*
25696  *    Function: sd_mhd_watch_cb()
25697  *
25698  * Description: This function is the call back function used by the scsi watch
25699  *		facility. The scsi watch facility sends the "Test Unit Ready"
25700  *		and processes the status. If applicable (i.e. a "Unit Attention"
25701  *		status and automatic "Request Sense" not used) the scsi watch
25702  *		facility will send a "Request Sense" and retrieve the sense data
25703  *		to be passed to this callback function. In either case the
25704  *		automatic "Request Sense" or the facility submitting one, this
25705  *		callback is passed the status and sense data.
25706  *
25707  *   Arguments: arg -   the device 'dev_t' is used for context to discriminate
25708  *			among multiple watches that share this callback function
25709  *		resultp - scsi watch facility result packet containing scsi
25710  *			  packet, status byte and sense data
25711  *
25712  * Return Code: 0 - continue the watch task
25713  *		non-zero - terminate the watch task
25714  */
25715 
25716 static int
25717 sd_mhd_watch_cb(caddr_t arg, struct scsi_watch_result *resultp)
25718 {
25719 	struct sd_lun			*un;
25720 	struct scsi_status		*statusp;
25721 	uint8_t				*sensep;
25722 	struct scsi_pkt			*pkt;
25723 	uchar_t				actual_sense_length;
25724 	dev_t  				dev = (dev_t)arg;
25725 
25726 	ASSERT(resultp != NULL);
25727 	statusp			= resultp->statusp;
25728 	sensep			= (uint8_t *)resultp->sensep;
25729 	pkt			= resultp->pkt;
25730 	actual_sense_length	= resultp->actual_sense_length;
25731 
25732 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25733 		return (ENXIO);
25734 	}
25735 
25736 	SD_TRACE(SD_LOG_IOCTL_MHD, un,
25737 	    "sd_mhd_watch_cb: reason '%s', status '%s'\n",
25738 	    scsi_rname(pkt->pkt_reason), sd_sname(*((unsigned char *)statusp)));
25739 
25740 	/* Begin processing of the status and/or sense data */
25741 	if (pkt->pkt_reason != CMD_CMPLT) {
25742 		/* Handle the incomplete packet */
25743 		sd_mhd_watch_incomplete(un, pkt);
25744 		return (0);
25745 	} else if (*((unsigned char *)statusp) != STATUS_GOOD) {
25746 		if (*((unsigned char *)statusp)
25747 		    == STATUS_RESERVATION_CONFLICT) {
25748 			/*
25749 			 * Handle a reservation conflict by panicking if
25750 			 * configured for failfast or by logging the conflict
25751 			 * and updating the reservation status
25752 			 */
25753 			mutex_enter(SD_MUTEX(un));
25754 			if ((un->un_resvd_status & SD_FAILFAST) &&
25755 			    (sd_failfast_enable)) {
25756 				sd_panic_for_res_conflict(un);
25757 				/*NOTREACHED*/
25758 			}
25759 			SD_INFO(SD_LOG_IOCTL_MHD, un,
25760 			    "sd_mhd_watch_cb: Reservation Conflict\n");
25761 			un->un_resvd_status |= SD_RESERVATION_CONFLICT;
25762 			mutex_exit(SD_MUTEX(un));
25763 		}
25764 	}
25765 
25766 	if (sensep != NULL) {
25767 		if (actual_sense_length >= (SENSE_LENGTH - 2)) {
25768 			mutex_enter(SD_MUTEX(un));
25769 			if ((scsi_sense_asc(sensep) ==
25770 			    SD_SCSI_RESET_SENSE_CODE) &&
25771 			    (un->un_resvd_status & SD_RESERVE)) {
25772 				/*
25773 				 * The additional sense code indicates a power
25774 				 * on or bus device reset has occurred; update
25775 				 * the reservation status.
25776 				 */
25777 				un->un_resvd_status |=
25778 				    (SD_LOST_RESERVE | SD_WANT_RESERVE);
25779 				SD_INFO(SD_LOG_IOCTL_MHD, un,
25780 				    "sd_mhd_watch_cb: Lost Reservation\n");
25781 			}
25782 		} else {
25783 			return (0);
25784 		}
25785 	} else {
25786 		mutex_enter(SD_MUTEX(un));
25787 	}
25788 
25789 	if ((un->un_resvd_status & SD_RESERVE) &&
25790 	    (un->un_resvd_status & SD_LOST_RESERVE)) {
25791 		if (un->un_resvd_status & SD_WANT_RESERVE) {
25792 			/*
25793 			 * A reset occurred in between the last probe and this
25794 			 * one so if a timeout is pending cancel it.
25795 			 */
25796 			if (un->un_resvd_timeid) {
25797 				timeout_id_t temp_id = un->un_resvd_timeid;
25798 				un->un_resvd_timeid = NULL;
25799 				mutex_exit(SD_MUTEX(un));
25800 				(void) untimeout(temp_id);
25801 				mutex_enter(SD_MUTEX(un));
25802 			}
25803 			un->un_resvd_status &= ~SD_WANT_RESERVE;
25804 		}
25805 		if (un->un_resvd_timeid == 0) {
25806 			/* Schedule a timeout to handle the lost reservation */
25807 			un->un_resvd_timeid = timeout(sd_mhd_resvd_recover,
25808 			    (void *)dev,
25809 			    drv_usectohz(sd_reinstate_resv_delay));
25810 		}
25811 	}
25812 	mutex_exit(SD_MUTEX(un));
25813 	return (0);
25814 }
25815 
25816 
25817 /*
25818  *    Function: sd_mhd_watch_incomplete()
25819  *
25820  * Description: This function is used to find out why a scsi pkt sent by the
25821  *		scsi watch facility was not completed. Under some scenarios this
25822  *		routine will return. Otherwise it will send a bus reset to see
25823  *		if the drive is still online.
25824  *
25825  *   Arguments: un  - driver soft state (unit) structure
25826  *		pkt - incomplete scsi pkt
25827  */
25828 
25829 static void
25830 sd_mhd_watch_incomplete(struct sd_lun *un, struct scsi_pkt *pkt)
25831 {
25832 	int	be_chatty;
25833 	int	perr;
25834 
25835 	ASSERT(pkt != NULL);
25836 	ASSERT(un != NULL);
25837 	be_chatty	= (!(pkt->pkt_flags & FLAG_SILENT));
25838 	perr		= (pkt->pkt_statistics & STAT_PERR);
25839 
25840 	mutex_enter(SD_MUTEX(un));
25841 	if (un->un_state == SD_STATE_DUMPING) {
25842 		mutex_exit(SD_MUTEX(un));
25843 		return;
25844 	}
25845 
25846 	switch (pkt->pkt_reason) {
25847 	case CMD_UNX_BUS_FREE:
25848 		/*
25849 		 * If we had a parity error that caused the target to drop BSY*,
25850 		 * don't be chatty about it.
25851 		 */
25852 		if (perr && be_chatty) {
25853 			be_chatty = 0;
25854 		}
25855 		break;
25856 	case CMD_TAG_REJECT:
25857 		/*
25858 		 * The SCSI-2 spec states that a tag reject will be sent by the
25859 		 * target if tagged queuing is not supported. A tag reject may
25860 		 * also be sent during certain initialization periods or to
25861 		 * control internal resources. For the latter case the target
25862 		 * may also return Queue Full.
25863 		 *
25864 		 * If this driver receives a tag reject from a target that is
25865 		 * going through an init period or controlling internal
25866 		 * resources tagged queuing will be disabled. This is a less
25867 		 * than optimal behavior but the driver is unable to determine
25868 		 * the target state and assumes tagged queueing is not supported
25869 		 */
25870 		pkt->pkt_flags = 0;
25871 		un->un_tagflags = 0;
25872 
25873 		if (un->un_f_opt_queueing == TRUE) {
25874 			un->un_throttle = min(un->un_throttle, 3);
25875 		} else {
25876 			un->un_throttle = 1;
25877 		}
25878 		mutex_exit(SD_MUTEX(un));
25879 		(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
25880 		mutex_enter(SD_MUTEX(un));
25881 		break;
25882 	case CMD_INCOMPLETE:
25883 		/*
25884 		 * The transport stopped with an abnormal state, fallthrough and
25885 		 * reset the target and/or bus unless selection did not complete
25886 		 * (indicated by STATE_GOT_BUS) in which case we don't want to
25887 		 * go through a target/bus reset
25888 		 */
25889 		if (pkt->pkt_state == STATE_GOT_BUS) {
25890 			break;
25891 		}
25892 		/*FALLTHROUGH*/
25893 
25894 	case CMD_TIMEOUT:
25895 	default:
25896 		/*
25897 		 * The lun may still be running the command, so a lun reset
25898 		 * should be attempted. If the lun reset fails or cannot be
25899 		 * issued, than try a target reset. Lastly try a bus reset.
25900 		 */
25901 		if ((pkt->pkt_statistics &
25902 		    (STAT_BUS_RESET|STAT_DEV_RESET|STAT_ABORTED)) == 0) {
25903 			int reset_retval = 0;
25904 			mutex_exit(SD_MUTEX(un));
25905 			if (un->un_f_allow_bus_device_reset == TRUE) {
25906 				if (un->un_f_lun_reset_enabled == TRUE) {
25907 					reset_retval =
25908 					    scsi_reset(SD_ADDRESS(un),
25909 					    RESET_LUN);
25910 				}
25911 				if (reset_retval == 0) {
25912 					reset_retval =
25913 					    scsi_reset(SD_ADDRESS(un),
25914 					    RESET_TARGET);
25915 				}
25916 			}
25917 			if (reset_retval == 0) {
25918 				(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
25919 			}
25920 			mutex_enter(SD_MUTEX(un));
25921 		}
25922 		break;
25923 	}
25924 
25925 	/* A device/bus reset has occurred; update the reservation status. */
25926 	if ((pkt->pkt_reason == CMD_RESET) || (pkt->pkt_statistics &
25927 	    (STAT_BUS_RESET | STAT_DEV_RESET))) {
25928 		if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
25929 			un->un_resvd_status |=
25930 			    (SD_LOST_RESERVE | SD_WANT_RESERVE);
25931 			SD_INFO(SD_LOG_IOCTL_MHD, un,
25932 			    "sd_mhd_watch_incomplete: Lost Reservation\n");
25933 		}
25934 	}
25935 
25936 	/*
25937 	 * The disk has been turned off; Update the device state.
25938 	 *
25939 	 * Note: Should we be offlining the disk here?
25940 	 */
25941 	if (pkt->pkt_state == STATE_GOT_BUS) {
25942 		SD_INFO(SD_LOG_IOCTL_MHD, un, "sd_mhd_watch_incomplete: "
25943 		    "Disk not responding to selection\n");
25944 		if (un->un_state != SD_STATE_OFFLINE) {
25945 			New_state(un, SD_STATE_OFFLINE);
25946 		}
25947 	} else if (be_chatty) {
25948 		/*
25949 		 * suppress messages if they are all the same pkt reason;
25950 		 * with TQ, many (up to 256) are returned with the same
25951 		 * pkt_reason
25952 		 */
25953 		if (pkt->pkt_reason != un->un_last_pkt_reason) {
25954 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
25955 			    "sd_mhd_watch_incomplete: "
25956 			    "SCSI transport failed: reason '%s'\n",
25957 			    scsi_rname(pkt->pkt_reason));
25958 		}
25959 	}
25960 	un->un_last_pkt_reason = pkt->pkt_reason;
25961 	mutex_exit(SD_MUTEX(un));
25962 }
25963 
25964 
25965 /*
25966  *    Function: sd_sname()
25967  *
25968  * Description: This is a simple little routine to return a string containing
25969  *		a printable description of command status byte for use in
25970  *		logging.
25971  *
25972  *   Arguments: status - pointer to a status byte
25973  *
25974  * Return Code: char * - string containing status description.
25975  */
25976 
25977 static char *
25978 sd_sname(uchar_t status)
25979 {
25980 	switch (status & STATUS_MASK) {
25981 	case STATUS_GOOD:
25982 		return ("good status");
25983 	case STATUS_CHECK:
25984 		return ("check condition");
25985 	case STATUS_MET:
25986 		return ("condition met");
25987 	case STATUS_BUSY:
25988 		return ("busy");
25989 	case STATUS_INTERMEDIATE:
25990 		return ("intermediate");
25991 	case STATUS_INTERMEDIATE_MET:
25992 		return ("intermediate - condition met");
25993 	case STATUS_RESERVATION_CONFLICT:
25994 		return ("reservation_conflict");
25995 	case STATUS_TERMINATED:
25996 		return ("command terminated");
25997 	case STATUS_QFULL:
25998 		return ("queue full");
25999 	default:
26000 		return ("<unknown status>");
26001 	}
26002 }
26003 
26004 
26005 /*
26006  *    Function: sd_mhd_resvd_recover()
26007  *
26008  * Description: This function adds a reservation entry to the
26009  *		sd_resv_reclaim_request list and signals the reservation
26010  *		reclaim thread that there is work pending. If the reservation
26011  *		reclaim thread has not been previously created this function
26012  *		will kick it off.
26013  *
26014  *   Arguments: arg -   the device 'dev_t' is used for context to discriminate
26015  *			among multiple watches that share this callback function
26016  *
26017  *     Context: This routine is called by timeout() and is run in interrupt
26018  *		context. It must not sleep or call other functions which may
26019  *		sleep.
26020  */
26021 
26022 static void
26023 sd_mhd_resvd_recover(void *arg)
26024 {
26025 	dev_t			dev = (dev_t)arg;
26026 	struct sd_lun		*un;
26027 	struct sd_thr_request	*sd_treq = NULL;
26028 	struct sd_thr_request	*sd_cur = NULL;
26029 	struct sd_thr_request	*sd_prev = NULL;
26030 	int			already_there = 0;
26031 
26032 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
26033 		return;
26034 	}
26035 
26036 	mutex_enter(SD_MUTEX(un));
26037 	un->un_resvd_timeid = NULL;
26038 	if (un->un_resvd_status & SD_WANT_RESERVE) {
26039 		/*
26040 		 * There was a reset so don't issue the reserve, allow the
26041 		 * sd_mhd_watch_cb callback function to notice this and
26042 		 * reschedule the timeout for reservation.
26043 		 */
26044 		mutex_exit(SD_MUTEX(un));
26045 		return;
26046 	}
26047 	mutex_exit(SD_MUTEX(un));
26048 
26049 	/*
26050 	 * Add this device to the sd_resv_reclaim_request list and the
26051 	 * sd_resv_reclaim_thread should take care of the rest.
26052 	 *
26053 	 * Note: We can't sleep in this context so if the memory allocation
26054 	 * fails allow the sd_mhd_watch_cb callback function to notice this and
26055 	 * reschedule the timeout for reservation.  (4378460)
26056 	 */
26057 	sd_treq = (struct sd_thr_request *)
26058 	    kmem_zalloc(sizeof (struct sd_thr_request), KM_NOSLEEP);
26059 	if (sd_treq == NULL) {
26060 		return;
26061 	}
26062 
26063 	sd_treq->sd_thr_req_next = NULL;
26064 	sd_treq->dev = dev;
26065 	mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
26066 	if (sd_tr.srq_thr_req_head == NULL) {
26067 		sd_tr.srq_thr_req_head = sd_treq;
26068 	} else {
26069 		sd_cur = sd_prev = sd_tr.srq_thr_req_head;
26070 		for (; sd_cur != NULL; sd_cur = sd_cur->sd_thr_req_next) {
26071 			if (sd_cur->dev == dev) {
26072 				/*
26073 				 * already in Queue so don't log
26074 				 * another request for the device
26075 				 */
26076 				already_there = 1;
26077 				break;
26078 			}
26079 			sd_prev = sd_cur;
26080 		}
26081 		if (!already_there) {
26082 			SD_INFO(SD_LOG_IOCTL_MHD, un, "sd_mhd_resvd_recover: "
26083 			    "logging request for %lx\n", dev);
26084 			sd_prev->sd_thr_req_next = sd_treq;
26085 		} else {
26086 			kmem_free(sd_treq, sizeof (struct sd_thr_request));
26087 		}
26088 	}
26089 
26090 	/*
26091 	 * Create a kernel thread to do the reservation reclaim and free up this
26092 	 * thread. We cannot block this thread while we go away to do the
26093 	 * reservation reclaim
26094 	 */
26095 	if (sd_tr.srq_resv_reclaim_thread == NULL)
26096 		sd_tr.srq_resv_reclaim_thread = thread_create(NULL, 0,
26097 		    sd_resv_reclaim_thread, NULL,
26098 		    0, &p0, TS_RUN, v.v_maxsyspri - 2);
26099 
26100 	/* Tell the reservation reclaim thread that it has work to do */
26101 	cv_signal(&sd_tr.srq_resv_reclaim_cv);
26102 	mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
26103 }
26104 
26105 /*
26106  *    Function: sd_resv_reclaim_thread()
26107  *
26108  * Description: This function implements the reservation reclaim operations
26109  *
26110  *   Arguments: arg - the device 'dev_t' is used for context to discriminate
26111  *		      among multiple watches that share this callback function
26112  */
26113 
26114 static void
26115 sd_resv_reclaim_thread()
26116 {
26117 	struct sd_lun		*un;
26118 	struct sd_thr_request	*sd_mhreq;
26119 
26120 	/* Wait for work */
26121 	mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
26122 	if (sd_tr.srq_thr_req_head == NULL) {
26123 		cv_wait(&sd_tr.srq_resv_reclaim_cv,
26124 		    &sd_tr.srq_resv_reclaim_mutex);
26125 	}
26126 
26127 	/* Loop while we have work */
26128 	while ((sd_tr.srq_thr_cur_req = sd_tr.srq_thr_req_head) != NULL) {
26129 		un = ddi_get_soft_state(sd_state,
26130 		    SDUNIT(sd_tr.srq_thr_cur_req->dev));
26131 		if (un == NULL) {
26132 			/*
26133 			 * softstate structure is NULL so just
26134 			 * dequeue the request and continue
26135 			 */
26136 			sd_tr.srq_thr_req_head =
26137 			    sd_tr.srq_thr_cur_req->sd_thr_req_next;
26138 			kmem_free(sd_tr.srq_thr_cur_req,
26139 			    sizeof (struct sd_thr_request));
26140 			continue;
26141 		}
26142 
26143 		/* dequeue the request */
26144 		sd_mhreq = sd_tr.srq_thr_cur_req;
26145 		sd_tr.srq_thr_req_head =
26146 		    sd_tr.srq_thr_cur_req->sd_thr_req_next;
26147 		mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
26148 
26149 		/*
26150 		 * Reclaim reservation only if SD_RESERVE is still set. There
26151 		 * may have been a call to MHIOCRELEASE before we got here.
26152 		 */
26153 		mutex_enter(SD_MUTEX(un));
26154 		if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
26155 			/*
26156 			 * Note: The SD_LOST_RESERVE flag is cleared before
26157 			 * reclaiming the reservation. If this is done after the
26158 			 * call to sd_reserve_release a reservation loss in the
26159 			 * window between pkt completion of reserve cmd and
26160 			 * mutex_enter below may not be recognized
26161 			 */
26162 			un->un_resvd_status &= ~SD_LOST_RESERVE;
26163 			mutex_exit(SD_MUTEX(un));
26164 
26165 			if (sd_reserve_release(sd_mhreq->dev,
26166 			    SD_RESERVE) == 0) {
26167 				mutex_enter(SD_MUTEX(un));
26168 				un->un_resvd_status |= SD_RESERVE;
26169 				mutex_exit(SD_MUTEX(un));
26170 				SD_INFO(SD_LOG_IOCTL_MHD, un,
26171 				    "sd_resv_reclaim_thread: "
26172 				    "Reservation Recovered\n");
26173 			} else {
26174 				mutex_enter(SD_MUTEX(un));
26175 				un->un_resvd_status |= SD_LOST_RESERVE;
26176 				mutex_exit(SD_MUTEX(un));
26177 				SD_INFO(SD_LOG_IOCTL_MHD, un,
26178 				    "sd_resv_reclaim_thread: Failed "
26179 				    "Reservation Recovery\n");
26180 			}
26181 		} else {
26182 			mutex_exit(SD_MUTEX(un));
26183 		}
26184 		mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
26185 		ASSERT(sd_mhreq == sd_tr.srq_thr_cur_req);
26186 		kmem_free(sd_mhreq, sizeof (struct sd_thr_request));
26187 		sd_mhreq = sd_tr.srq_thr_cur_req = NULL;
26188 		/*
26189 		 * wakeup the destroy thread if anyone is waiting on
26190 		 * us to complete.
26191 		 */
26192 		cv_signal(&sd_tr.srq_inprocess_cv);
26193 		SD_TRACE(SD_LOG_IOCTL_MHD, un,
26194 		    "sd_resv_reclaim_thread: cv_signalling current request \n");
26195 	}
26196 
26197 	/*
26198 	 * cleanup the sd_tr structure now that this thread will not exist
26199 	 */
26200 	ASSERT(sd_tr.srq_thr_req_head == NULL);
26201 	ASSERT(sd_tr.srq_thr_cur_req == NULL);
26202 	sd_tr.srq_resv_reclaim_thread = NULL;
26203 	mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
26204 	thread_exit();
26205 }
26206 
26207 
26208 /*
26209  *    Function: sd_rmv_resv_reclaim_req()
26210  *
26211  * Description: This function removes any pending reservation reclaim requests
26212  *		for the specified device.
26213  *
26214  *   Arguments: dev - the device 'dev_t'
26215  */
26216 
26217 static void
26218 sd_rmv_resv_reclaim_req(dev_t dev)
26219 {
26220 	struct sd_thr_request *sd_mhreq;
26221 	struct sd_thr_request *sd_prev;
26222 
26223 	/* Remove a reservation reclaim request from the list */
26224 	mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
26225 	if (sd_tr.srq_thr_cur_req && sd_tr.srq_thr_cur_req->dev == dev) {
26226 		/*
26227 		 * We are attempting to reinstate reservation for
26228 		 * this device. We wait for sd_reserve_release()
26229 		 * to return before we return.
26230 		 */
26231 		cv_wait(&sd_tr.srq_inprocess_cv,
26232 		    &sd_tr.srq_resv_reclaim_mutex);
26233 	} else {
26234 		sd_prev = sd_mhreq = sd_tr.srq_thr_req_head;
26235 		if (sd_mhreq && sd_mhreq->dev == dev) {
26236 			sd_tr.srq_thr_req_head = sd_mhreq->sd_thr_req_next;
26237 			kmem_free(sd_mhreq, sizeof (struct sd_thr_request));
26238 			mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
26239 			return;
26240 		}
26241 		for (; sd_mhreq != NULL; sd_mhreq = sd_mhreq->sd_thr_req_next) {
26242 			if (sd_mhreq && sd_mhreq->dev == dev) {
26243 				break;
26244 			}
26245 			sd_prev = sd_mhreq;
26246 		}
26247 		if (sd_mhreq != NULL) {
26248 			sd_prev->sd_thr_req_next = sd_mhreq->sd_thr_req_next;
26249 			kmem_free(sd_mhreq, sizeof (struct sd_thr_request));
26250 		}
26251 	}
26252 	mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
26253 }
26254 
26255 
26256 /*
26257  *    Function: sd_mhd_reset_notify_cb()
26258  *
26259  * Description: This is a call back function for scsi_reset_notify. This
26260  *		function updates the softstate reserved status and logs the
26261  *		reset. The driver scsi watch facility callback function
26262  *		(sd_mhd_watch_cb) and reservation reclaim thread functionality
26263  *		will reclaim the reservation.
26264  *
26265  *   Arguments: arg  - driver soft state (unit) structure
26266  */
26267 
26268 static void
26269 sd_mhd_reset_notify_cb(caddr_t arg)
26270 {
26271 	struct sd_lun *un = (struct sd_lun *)arg;
26272 
26273 	mutex_enter(SD_MUTEX(un));
26274 	if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
26275 		un->un_resvd_status |= (SD_LOST_RESERVE | SD_WANT_RESERVE);
26276 		SD_INFO(SD_LOG_IOCTL_MHD, un,
26277 		    "sd_mhd_reset_notify_cb: Lost Reservation\n");
26278 	}
26279 	mutex_exit(SD_MUTEX(un));
26280 }
26281 
26282 
26283 /*
26284  *    Function: sd_take_ownership()
26285  *
26286  * Description: This routine implements an algorithm to achieve a stable
26287  *		reservation on disks which don't implement priority reserve,
26288  *		and makes sure that other host lose re-reservation attempts.
26289  *		This algorithm contains of a loop that keeps issuing the RESERVE
26290  *		for some period of time (min_ownership_delay, default 6 seconds)
26291  *		During that loop, it looks to see if there has been a bus device
26292  *		reset or bus reset (both of which cause an existing reservation
26293  *		to be lost). If the reservation is lost issue RESERVE until a
26294  *		period of min_ownership_delay with no resets has gone by, or
26295  *		until max_ownership_delay has expired. This loop ensures that
26296  *		the host really did manage to reserve the device, in spite of
26297  *		resets. The looping for min_ownership_delay (default six
26298  *		seconds) is important to early generation clustering products,
26299  *		Solstice HA 1.x and Sun Cluster 2.x. Those products use an
26300  *		MHIOCENFAILFAST periodic timer of two seconds. By having
26301  *		MHIOCTKOWN issue Reserves in a loop for six seconds, and having
26302  *		MHIOCENFAILFAST poll every two seconds, the idea is that by the
26303  *		time the MHIOCTKOWN ioctl returns, the other host (if any) will
26304  *		have already noticed, via the MHIOCENFAILFAST polling, that it
26305  *		no longer "owns" the disk and will have panicked itself.  Thus,
26306  *		the host issuing the MHIOCTKOWN is assured (with timing
26307  *		dependencies) that by the time it actually starts to use the
26308  *		disk for real work, the old owner is no longer accessing it.
26309  *
26310  *		min_ownership_delay is the minimum amount of time for which the
26311  *		disk must be reserved continuously devoid of resets before the
26312  *		MHIOCTKOWN ioctl will return success.
26313  *
26314  *		max_ownership_delay indicates the amount of time by which the
26315  *		take ownership should succeed or timeout with an error.
26316  *
26317  *   Arguments: dev - the device 'dev_t'
26318  *		*p  - struct containing timing info.
26319  *
26320  * Return Code: 0 for success or error code
26321  */
26322 
26323 static int
26324 sd_take_ownership(dev_t dev, struct mhioctkown *p)
26325 {
26326 	struct sd_lun	*un;
26327 	int		rval;
26328 	int		err;
26329 	int		reservation_count   = 0;
26330 	int		min_ownership_delay =  6000000; /* in usec */
26331 	int		max_ownership_delay = 30000000; /* in usec */
26332 	clock_t		start_time;	/* starting time of this algorithm */
26333 	clock_t		end_time;	/* time limit for giving up */
26334 	clock_t		ownership_time;	/* time limit for stable ownership */
26335 	clock_t		current_time;
26336 	clock_t		previous_current_time;
26337 
26338 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
26339 		return (ENXIO);
26340 	}
26341 
26342 	/*
26343 	 * Attempt a device reservation. A priority reservation is requested.
26344 	 */
26345 	if ((rval = sd_reserve_release(dev, SD_PRIORITY_RESERVE))
26346 	    != SD_SUCCESS) {
26347 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
26348 		    "sd_take_ownership: return(1)=%d\n", rval);
26349 		return (rval);
26350 	}
26351 
26352 	/* Update the softstate reserved status to indicate the reservation */
26353 	mutex_enter(SD_MUTEX(un));
26354 	un->un_resvd_status |= SD_RESERVE;
26355 	un->un_resvd_status &=
26356 	    ~(SD_LOST_RESERVE | SD_WANT_RESERVE | SD_RESERVATION_CONFLICT);
26357 	mutex_exit(SD_MUTEX(un));
26358 
26359 	if (p != NULL) {
26360 		if (p->min_ownership_delay != 0) {
26361 			min_ownership_delay = p->min_ownership_delay * 1000;
26362 		}
26363 		if (p->max_ownership_delay != 0) {
26364 			max_ownership_delay = p->max_ownership_delay * 1000;
26365 		}
26366 	}
26367 	SD_INFO(SD_LOG_IOCTL_MHD, un,
26368 	    "sd_take_ownership: min, max delays: %d, %d\n",
26369 	    min_ownership_delay, max_ownership_delay);
26370 
26371 	start_time = ddi_get_lbolt();
26372 	current_time	= start_time;
26373 	ownership_time	= current_time + drv_usectohz(min_ownership_delay);
26374 	end_time	= start_time + drv_usectohz(max_ownership_delay);
26375 
26376 	while (current_time - end_time < 0) {
26377 		delay(drv_usectohz(500000));
26378 
26379 		if ((err = sd_reserve_release(dev, SD_RESERVE)) != 0) {
26380 			if ((sd_reserve_release(dev, SD_RESERVE)) != 0) {
26381 				mutex_enter(SD_MUTEX(un));
26382 				rval = (un->un_resvd_status &
26383 				    SD_RESERVATION_CONFLICT) ? EACCES : EIO;
26384 				mutex_exit(SD_MUTEX(un));
26385 				break;
26386 			}
26387 		}
26388 		previous_current_time = current_time;
26389 		current_time = ddi_get_lbolt();
26390 		mutex_enter(SD_MUTEX(un));
26391 		if (err || (un->un_resvd_status & SD_LOST_RESERVE)) {
26392 			ownership_time = ddi_get_lbolt() +
26393 			    drv_usectohz(min_ownership_delay);
26394 			reservation_count = 0;
26395 		} else {
26396 			reservation_count++;
26397 		}
26398 		un->un_resvd_status |= SD_RESERVE;
26399 		un->un_resvd_status &= ~(SD_LOST_RESERVE | SD_WANT_RESERVE);
26400 		mutex_exit(SD_MUTEX(un));
26401 
26402 		SD_INFO(SD_LOG_IOCTL_MHD, un,
26403 		    "sd_take_ownership: ticks for loop iteration=%ld, "
26404 		    "reservation=%s\n", (current_time - previous_current_time),
26405 		    reservation_count ? "ok" : "reclaimed");
26406 
26407 		if (current_time - ownership_time >= 0 &&
26408 		    reservation_count >= 4) {
26409 			rval = 0; /* Achieved a stable ownership */
26410 			break;
26411 		}
26412 		if (current_time - end_time >= 0) {
26413 			rval = EACCES; /* No ownership in max possible time */
26414 			break;
26415 		}
26416 	}
26417 	SD_TRACE(SD_LOG_IOCTL_MHD, un,
26418 	    "sd_take_ownership: return(2)=%d\n", rval);
26419 	return (rval);
26420 }
26421 
26422 
26423 /*
26424  *    Function: sd_reserve_release()
26425  *
26426  * Description: This function builds and sends scsi RESERVE, RELEASE, and
26427  *		PRIORITY RESERVE commands based on a user specified command type
26428  *
26429  *   Arguments: dev - the device 'dev_t'
26430  *		cmd - user specified command type; one of SD_PRIORITY_RESERVE,
26431  *		      SD_RESERVE, SD_RELEASE
26432  *
26433  * Return Code: 0 or Error Code
26434  */
26435 
26436 static int
26437 sd_reserve_release(dev_t dev, int cmd)
26438 {
26439 	struct uscsi_cmd	*com = NULL;
26440 	struct sd_lun		*un = NULL;
26441 	char			cdb[CDB_GROUP0];
26442 	int			rval;
26443 
26444 	ASSERT((cmd == SD_RELEASE) || (cmd == SD_RESERVE) ||
26445 	    (cmd == SD_PRIORITY_RESERVE));
26446 
26447 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
26448 		return (ENXIO);
26449 	}
26450 
26451 	/* instantiate and initialize the command and cdb */
26452 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
26453 	bzero(cdb, CDB_GROUP0);
26454 	com->uscsi_flags   = USCSI_SILENT;
26455 	com->uscsi_timeout = un->un_reserve_release_time;
26456 	com->uscsi_cdblen  = CDB_GROUP0;
26457 	com->uscsi_cdb	   = cdb;
26458 	if (cmd == SD_RELEASE) {
26459 		cdb[0] = SCMD_RELEASE;
26460 	} else {
26461 		cdb[0] = SCMD_RESERVE;
26462 	}
26463 
26464 	/* Send the command. */
26465 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
26466 	    UIO_SYSSPACE, SD_PATH_STANDARD);
26467 
26468 	/*
26469 	 * "break" a reservation that is held by another host, by issuing a
26470 	 * reset if priority reserve is desired, and we could not get the
26471 	 * device.
26472 	 */
26473 	if ((cmd == SD_PRIORITY_RESERVE) &&
26474 	    (rval != 0) && (com->uscsi_status == STATUS_RESERVATION_CONFLICT)) {
26475 		/*
26476 		 * First try to reset the LUN. If we cannot, then try a target
26477 		 * reset, followed by a bus reset if the target reset fails.
26478 		 */
26479 		int reset_retval = 0;
26480 		if (un->un_f_lun_reset_enabled == TRUE) {
26481 			reset_retval = scsi_reset(SD_ADDRESS(un), RESET_LUN);
26482 		}
26483 		if (reset_retval == 0) {
26484 			/* The LUN reset either failed or was not issued */
26485 			reset_retval = scsi_reset(SD_ADDRESS(un), RESET_TARGET);
26486 		}
26487 		if ((reset_retval == 0) &&
26488 		    (scsi_reset(SD_ADDRESS(un), RESET_ALL) == 0)) {
26489 			rval = EIO;
26490 			kmem_free(com, sizeof (*com));
26491 			return (rval);
26492 		}
26493 
26494 		bzero(com, sizeof (struct uscsi_cmd));
26495 		com->uscsi_flags   = USCSI_SILENT;
26496 		com->uscsi_cdb	   = cdb;
26497 		com->uscsi_cdblen  = CDB_GROUP0;
26498 		com->uscsi_timeout = 5;
26499 
26500 		/*
26501 		 * Reissue the last reserve command, this time without request
26502 		 * sense.  Assume that it is just a regular reserve command.
26503 		 */
26504 		rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
26505 		    UIO_SYSSPACE, SD_PATH_STANDARD);
26506 	}
26507 
26508 	/* Return an error if still getting a reservation conflict. */
26509 	if ((rval != 0) && (com->uscsi_status == STATUS_RESERVATION_CONFLICT)) {
26510 		rval = EACCES;
26511 	}
26512 
26513 	kmem_free(com, sizeof (*com));
26514 	return (rval);
26515 }
26516 
26517 
26518 #define	SD_NDUMP_RETRIES	12
26519 /*
26520  *	System Crash Dump routine
26521  */
26522 
26523 static int
26524 sddump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk)
26525 {
26526 	int		instance;
26527 	int		partition;
26528 	int		i;
26529 	int		err;
26530 	struct sd_lun	*un;
26531 	struct dk_map	*lp;
26532 	struct scsi_pkt *wr_pktp;
26533 	struct buf	*wr_bp;
26534 	struct buf	wr_buf;
26535 	daddr_t		tgt_byte_offset; /* rmw - byte offset for target */
26536 	daddr_t		tgt_blkno;	/* rmw - blkno for target */
26537 	size_t		tgt_byte_count; /* rmw -  # of bytes to xfer */
26538 	size_t		tgt_nblk; /* rmw -  # of tgt blks to xfer */
26539 	size_t		io_start_offset;
26540 	int		doing_rmw = FALSE;
26541 	int		rval;
26542 #if defined(__i386) || defined(__amd64)
26543 	ssize_t dma_resid;
26544 	daddr_t oblkno;
26545 #endif
26546 
26547 	instance = SDUNIT(dev);
26548 	if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) ||
26549 	    (!un->un_f_geometry_is_valid) || ISCD(un)) {
26550 		return (ENXIO);
26551 	}
26552 
26553 	_NOTE(NOW_INVISIBLE_TO_OTHER_THREADS(*un))
26554 
26555 	SD_TRACE(SD_LOG_DUMP, un, "sddump: entry\n");
26556 
26557 	partition = SDPART(dev);
26558 	SD_INFO(SD_LOG_DUMP, un, "sddump: partition = %d\n", partition);
26559 
26560 	/* Validate blocks to dump at against partition size. */
26561 	lp = &un->un_map[partition];
26562 	if ((blkno + nblk) > lp->dkl_nblk) {
26563 		SD_TRACE(SD_LOG_DUMP, un,
26564 		    "sddump: dump range larger than partition: "
26565 		    "blkno = 0x%x, nblk = 0x%x, dkl_nblk = 0x%x\n",
26566 		    blkno, nblk, lp->dkl_nblk);
26567 		return (EINVAL);
26568 	}
26569 
26570 	mutex_enter(&un->un_pm_mutex);
26571 	if (SD_DEVICE_IS_IN_LOW_POWER(un)) {
26572 		struct scsi_pkt *start_pktp;
26573 
26574 		mutex_exit(&un->un_pm_mutex);
26575 
26576 		/*
26577 		 * use pm framework to power on HBA 1st
26578 		 */
26579 		(void) pm_raise_power(SD_DEVINFO(un), 0, SD_SPINDLE_ON);
26580 
26581 		/*
26582 		 * Dump no long uses sdpower to power on a device, it's
26583 		 * in-line here so it can be done in polled mode.
26584 		 */
26585 
26586 		SD_INFO(SD_LOG_DUMP, un, "sddump: starting device\n");
26587 
26588 		start_pktp = scsi_init_pkt(SD_ADDRESS(un), NULL, NULL,
26589 		    CDB_GROUP0, un->un_status_len, 0, 0, NULL_FUNC, NULL);
26590 
26591 		if (start_pktp == NULL) {
26592 			/* We were not given a SCSI packet, fail. */
26593 			return (EIO);
26594 		}
26595 		bzero(start_pktp->pkt_cdbp, CDB_GROUP0);
26596 		start_pktp->pkt_cdbp[0] = SCMD_START_STOP;
26597 		start_pktp->pkt_cdbp[4] = SD_TARGET_START;
26598 		start_pktp->pkt_flags = FLAG_NOINTR;
26599 
26600 		mutex_enter(SD_MUTEX(un));
26601 		SD_FILL_SCSI1_LUN(un, start_pktp);
26602 		mutex_exit(SD_MUTEX(un));
26603 		/*
26604 		 * Scsi_poll returns 0 (success) if the command completes and
26605 		 * the status block is STATUS_GOOD.
26606 		 */
26607 		if (sd_scsi_poll(un, start_pktp) != 0) {
26608 			scsi_destroy_pkt(start_pktp);
26609 			return (EIO);
26610 		}
26611 		scsi_destroy_pkt(start_pktp);
26612 		(void) sd_ddi_pm_resume(un);
26613 	} else {
26614 		mutex_exit(&un->un_pm_mutex);
26615 	}
26616 
26617 	mutex_enter(SD_MUTEX(un));
26618 	un->un_throttle = 0;
26619 
26620 	/*
26621 	 * The first time through, reset the specific target device.
26622 	 * However, when cpr calls sddump we know that sd is in a
26623 	 * a good state so no bus reset is required.
26624 	 * Clear sense data via Request Sense cmd.
26625 	 * In sddump we don't care about allow_bus_device_reset anymore
26626 	 */
26627 
26628 	if ((un->un_state != SD_STATE_SUSPENDED) &&
26629 	    (un->un_state != SD_STATE_DUMPING)) {
26630 
26631 		New_state(un, SD_STATE_DUMPING);
26632 
26633 		if (un->un_f_is_fibre == FALSE) {
26634 			mutex_exit(SD_MUTEX(un));
26635 			/*
26636 			 * Attempt a bus reset for parallel scsi.
26637 			 *
26638 			 * Note: A bus reset is required because on some host
26639 			 * systems (i.e. E420R) a bus device reset is
26640 			 * insufficient to reset the state of the target.
26641 			 *
26642 			 * Note: Don't issue the reset for fibre-channel,
26643 			 * because this tends to hang the bus (loop) for
26644 			 * too long while everyone is logging out and in
26645 			 * and the deadman timer for dumping will fire
26646 			 * before the dump is complete.
26647 			 */
26648 			if (scsi_reset(SD_ADDRESS(un), RESET_ALL) == 0) {
26649 				mutex_enter(SD_MUTEX(un));
26650 				Restore_state(un);
26651 				mutex_exit(SD_MUTEX(un));
26652 				return (EIO);
26653 			}
26654 
26655 			/* Delay to give the device some recovery time. */
26656 			drv_usecwait(10000);
26657 
26658 			if (sd_send_polled_RQS(un) == SD_FAILURE) {
26659 				SD_INFO(SD_LOG_DUMP, un,
26660 					"sddump: sd_send_polled_RQS failed\n");
26661 			}
26662 			mutex_enter(SD_MUTEX(un));
26663 		}
26664 	}
26665 
26666 	/*
26667 	 * Convert the partition-relative block number to a
26668 	 * disk physical block number.
26669 	 */
26670 	blkno += un->un_offset[partition];
26671 	SD_INFO(SD_LOG_DUMP, un, "sddump: disk blkno = 0x%x\n", blkno);
26672 
26673 
26674 	/*
26675 	 * Check if the device has a non-512 block size.
26676 	 */
26677 	wr_bp = NULL;
26678 	if (NOT_DEVBSIZE(un)) {
26679 		tgt_byte_offset = blkno * un->un_sys_blocksize;
26680 		tgt_byte_count = nblk * un->un_sys_blocksize;
26681 		if ((tgt_byte_offset % un->un_tgt_blocksize) ||
26682 		    (tgt_byte_count % un->un_tgt_blocksize)) {
26683 			doing_rmw = TRUE;
26684 			/*
26685 			 * Calculate the block number and number of block
26686 			 * in terms of the media block size.
26687 			 */
26688 			tgt_blkno = tgt_byte_offset / un->un_tgt_blocksize;
26689 			tgt_nblk =
26690 			    ((tgt_byte_offset + tgt_byte_count +
26691 				(un->un_tgt_blocksize - 1)) /
26692 				un->un_tgt_blocksize) - tgt_blkno;
26693 
26694 			/*
26695 			 * Invoke the routine which is going to do read part
26696 			 * of read-modify-write.
26697 			 * Note that this routine returns a pointer to
26698 			 * a valid bp in wr_bp.
26699 			 */
26700 			err = sddump_do_read_of_rmw(un, tgt_blkno, tgt_nblk,
26701 			    &wr_bp);
26702 			if (err) {
26703 				mutex_exit(SD_MUTEX(un));
26704 				return (err);
26705 			}
26706 			/*
26707 			 * Offset is being calculated as -
26708 			 * (original block # * system block size) -
26709 			 * (new block # * target block size)
26710 			 */
26711 			io_start_offset =
26712 			    ((uint64_t)(blkno * un->un_sys_blocksize)) -
26713 			    ((uint64_t)(tgt_blkno * un->un_tgt_blocksize));
26714 
26715 			ASSERT((io_start_offset >= 0) &&
26716 			    (io_start_offset < un->un_tgt_blocksize));
26717 			/*
26718 			 * Do the modify portion of read modify write.
26719 			 */
26720 			bcopy(addr, &wr_bp->b_un.b_addr[io_start_offset],
26721 			    (size_t)nblk * un->un_sys_blocksize);
26722 		} else {
26723 			doing_rmw = FALSE;
26724 			tgt_blkno = tgt_byte_offset / un->un_tgt_blocksize;
26725 			tgt_nblk = tgt_byte_count / un->un_tgt_blocksize;
26726 		}
26727 
26728 		/* Convert blkno and nblk to target blocks */
26729 		blkno = tgt_blkno;
26730 		nblk = tgt_nblk;
26731 	} else {
26732 		wr_bp = &wr_buf;
26733 		bzero(wr_bp, sizeof (struct buf));
26734 		wr_bp->b_flags		= B_BUSY;
26735 		wr_bp->b_un.b_addr	= addr;
26736 		wr_bp->b_bcount		= nblk << DEV_BSHIFT;
26737 		wr_bp->b_resid		= 0;
26738 	}
26739 
26740 	mutex_exit(SD_MUTEX(un));
26741 
26742 	/*
26743 	 * Obtain a SCSI packet for the write command.
26744 	 * It should be safe to call the allocator here without
26745 	 * worrying about being locked for DVMA mapping because
26746 	 * the address we're passed is already a DVMA mapping
26747 	 *
26748 	 * We are also not going to worry about semaphore ownership
26749 	 * in the dump buffer. Dumping is single threaded at present.
26750 	 */
26751 
26752 	wr_pktp = NULL;
26753 
26754 #if defined(__i386) || defined(__amd64)
26755 	dma_resid = wr_bp->b_bcount;
26756 	oblkno = blkno;
26757 	while (dma_resid != 0) {
26758 #endif
26759 
26760 	for (i = 0; i < SD_NDUMP_RETRIES; i++) {
26761 		wr_bp->b_flags &= ~B_ERROR;
26762 
26763 #if defined(__i386) || defined(__amd64)
26764 		blkno = oblkno +
26765 			((wr_bp->b_bcount - dma_resid) /
26766 			    un->un_tgt_blocksize);
26767 		nblk = dma_resid / un->un_tgt_blocksize;
26768 
26769 		if (wr_pktp) {
26770 			/* Partial DMA transfers after initial transfer */
26771 			rval = sd_setup_next_rw_pkt(un, wr_pktp, wr_bp,
26772 			    blkno, nblk);
26773 		} else {
26774 			/* Initial transfer */
26775 			rval = sd_setup_rw_pkt(un, &wr_pktp, wr_bp,
26776 			    un->un_pkt_flags, NULL_FUNC, NULL,
26777 			    blkno, nblk);
26778 		}
26779 #else
26780 		rval = sd_setup_rw_pkt(un, &wr_pktp, wr_bp,
26781 		    0, NULL_FUNC, NULL, blkno, nblk);
26782 #endif
26783 
26784 		if (rval == 0) {
26785 			/* We were given a SCSI packet, continue. */
26786 			break;
26787 		}
26788 
26789 		if (i == 0) {
26790 			if (wr_bp->b_flags & B_ERROR) {
26791 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26792 				    "no resources for dumping; "
26793 				    "error code: 0x%x, retrying",
26794 				    geterror(wr_bp));
26795 			} else {
26796 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26797 				    "no resources for dumping; retrying");
26798 			}
26799 		} else if (i != (SD_NDUMP_RETRIES - 1)) {
26800 			if (wr_bp->b_flags & B_ERROR) {
26801 				scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
26802 				    "no resources for dumping; error code: "
26803 				    "0x%x, retrying\n", geterror(wr_bp));
26804 			}
26805 		} else {
26806 			if (wr_bp->b_flags & B_ERROR) {
26807 				scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
26808 				    "no resources for dumping; "
26809 				    "error code: 0x%x, retries failed, "
26810 				    "giving up.\n", geterror(wr_bp));
26811 			} else {
26812 				scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
26813 				    "no resources for dumping; "
26814 				    "retries failed, giving up.\n");
26815 			}
26816 			mutex_enter(SD_MUTEX(un));
26817 			Restore_state(un);
26818 			if (NOT_DEVBSIZE(un) && (doing_rmw == TRUE)) {
26819 				mutex_exit(SD_MUTEX(un));
26820 				scsi_free_consistent_buf(wr_bp);
26821 			} else {
26822 				mutex_exit(SD_MUTEX(un));
26823 			}
26824 			return (EIO);
26825 		}
26826 		drv_usecwait(10000);
26827 	}
26828 
26829 #if defined(__i386) || defined(__amd64)
26830 	/*
26831 	 * save the resid from PARTIAL_DMA
26832 	 */
26833 	dma_resid = wr_pktp->pkt_resid;
26834 	if (dma_resid != 0)
26835 		nblk -= SD_BYTES2TGTBLOCKS(un, dma_resid);
26836 	wr_pktp->pkt_resid = 0;
26837 #endif
26838 
26839 	/* SunBug 1222170 */
26840 	wr_pktp->pkt_flags = FLAG_NOINTR;
26841 
26842 	err = EIO;
26843 	for (i = 0; i < SD_NDUMP_RETRIES; i++) {
26844 
26845 		/*
26846 		 * Scsi_poll returns 0 (success) if the command completes and
26847 		 * the status block is STATUS_GOOD.  We should only check
26848 		 * errors if this condition is not true.  Even then we should
26849 		 * send our own request sense packet only if we have a check
26850 		 * condition and auto request sense has not been performed by
26851 		 * the hba.
26852 		 */
26853 		SD_TRACE(SD_LOG_DUMP, un, "sddump: sending write\n");
26854 
26855 		if ((sd_scsi_poll(un, wr_pktp) == 0) &&
26856 		    (wr_pktp->pkt_resid == 0)) {
26857 			err = SD_SUCCESS;
26858 			break;
26859 		}
26860 
26861 		/*
26862 		 * Check CMD_DEV_GONE 1st, give up if device is gone.
26863 		 */
26864 		if (wr_pktp->pkt_reason == CMD_DEV_GONE) {
26865 			scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
26866 			    "Device is gone\n");
26867 			break;
26868 		}
26869 
26870 		if (SD_GET_PKT_STATUS(wr_pktp) == STATUS_CHECK) {
26871 			SD_INFO(SD_LOG_DUMP, un,
26872 			    "sddump: write failed with CHECK, try # %d\n", i);
26873 			if (((wr_pktp->pkt_state & STATE_ARQ_DONE) == 0)) {
26874 				(void) sd_send_polled_RQS(un);
26875 			}
26876 
26877 			continue;
26878 		}
26879 
26880 		if (SD_GET_PKT_STATUS(wr_pktp) == STATUS_BUSY) {
26881 			int reset_retval = 0;
26882 
26883 			SD_INFO(SD_LOG_DUMP, un,
26884 			    "sddump: write failed with BUSY, try # %d\n", i);
26885 
26886 			if (un->un_f_lun_reset_enabled == TRUE) {
26887 				reset_retval = scsi_reset(SD_ADDRESS(un),
26888 				    RESET_LUN);
26889 			}
26890 			if (reset_retval == 0) {
26891 				(void) scsi_reset(SD_ADDRESS(un), RESET_TARGET);
26892 			}
26893 			(void) sd_send_polled_RQS(un);
26894 
26895 		} else {
26896 			SD_INFO(SD_LOG_DUMP, un,
26897 			    "sddump: write failed with 0x%x, try # %d\n",
26898 			    SD_GET_PKT_STATUS(wr_pktp), i);
26899 			mutex_enter(SD_MUTEX(un));
26900 			sd_reset_target(un, wr_pktp);
26901 			mutex_exit(SD_MUTEX(un));
26902 		}
26903 
26904 		/*
26905 		 * If we are not getting anywhere with lun/target resets,
26906 		 * let's reset the bus.
26907 		 */
26908 		if (i == SD_NDUMP_RETRIES/2) {
26909 			(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
26910 			(void) sd_send_polled_RQS(un);
26911 		}
26912 
26913 	}
26914 #if defined(__i386) || defined(__amd64)
26915 	}	/* dma_resid */
26916 #endif
26917 
26918 	scsi_destroy_pkt(wr_pktp);
26919 	mutex_enter(SD_MUTEX(un));
26920 	if ((NOT_DEVBSIZE(un)) && (doing_rmw == TRUE)) {
26921 		mutex_exit(SD_MUTEX(un));
26922 		scsi_free_consistent_buf(wr_bp);
26923 	} else {
26924 		mutex_exit(SD_MUTEX(un));
26925 	}
26926 	SD_TRACE(SD_LOG_DUMP, un, "sddump: exit: err = %d\n", err);
26927 	return (err);
26928 }
26929 
26930 /*
26931  *    Function: sd_scsi_poll()
26932  *
26933  * Description: This is a wrapper for the scsi_poll call.
26934  *
26935  *   Arguments: sd_lun - The unit structure
26936  *              scsi_pkt - The scsi packet being sent to the device.
26937  *
26938  * Return Code: 0 - Command completed successfully with good status
26939  *             -1 - Command failed.  This could indicate a check condition
26940  *                  or other status value requiring recovery action.
26941  *
26942  */
26943 
26944 static int
26945 sd_scsi_poll(struct sd_lun *un, struct scsi_pkt *pktp)
26946 {
26947 	int status;
26948 
26949 	ASSERT(un != NULL);
26950 	ASSERT(!mutex_owned(SD_MUTEX(un)));
26951 	ASSERT(pktp != NULL);
26952 
26953 	status = SD_SUCCESS;
26954 
26955 	if (scsi_ifgetcap(&pktp->pkt_address, "tagged-qing", 1) == 1) {
26956 		pktp->pkt_flags |= un->un_tagflags;
26957 		pktp->pkt_flags &= ~FLAG_NODISCON;
26958 	}
26959 
26960 	status = sd_ddi_scsi_poll(pktp);
26961 	/*
26962 	 * Scsi_poll returns 0 (success) if the command completes and the
26963 	 * status block is STATUS_GOOD.  We should only check errors if this
26964 	 * condition is not true.  Even then we should send our own request
26965 	 * sense packet only if we have a check condition and auto
26966 	 * request sense has not been performed by the hba.
26967 	 * Don't get RQS data if pkt_reason is CMD_DEV_GONE.
26968 	 */
26969 	if ((status != SD_SUCCESS) &&
26970 	    (SD_GET_PKT_STATUS(pktp) == STATUS_CHECK) &&
26971 	    (pktp->pkt_state & STATE_ARQ_DONE) == 0 &&
26972 	    (pktp->pkt_reason != CMD_DEV_GONE))
26973 		(void) sd_send_polled_RQS(un);
26974 
26975 	return (status);
26976 }
26977 
26978 /*
26979  *    Function: sd_send_polled_RQS()
26980  *
26981  * Description: This sends the request sense command to a device.
26982  *
26983  *   Arguments: sd_lun - The unit structure
26984  *
26985  * Return Code: 0 - Command completed successfully with good status
26986  *             -1 - Command failed.
26987  *
26988  */
26989 
26990 static int
26991 sd_send_polled_RQS(struct sd_lun *un)
26992 {
26993 	int	ret_val;
26994 	struct	scsi_pkt	*rqs_pktp;
26995 	struct	buf		*rqs_bp;
26996 
26997 	ASSERT(un != NULL);
26998 	ASSERT(!mutex_owned(SD_MUTEX(un)));
26999 
27000 	ret_val = SD_SUCCESS;
27001 
27002 	rqs_pktp = un->un_rqs_pktp;
27003 	rqs_bp	 = un->un_rqs_bp;
27004 
27005 	mutex_enter(SD_MUTEX(un));
27006 
27007 	if (un->un_sense_isbusy) {
27008 		ret_val = SD_FAILURE;
27009 		mutex_exit(SD_MUTEX(un));
27010 		return (ret_val);
27011 	}
27012 
27013 	/*
27014 	 * If the request sense buffer (and packet) is not in use,
27015 	 * let's set the un_sense_isbusy and send our packet
27016 	 */
27017 	un->un_sense_isbusy 	= 1;
27018 	rqs_pktp->pkt_resid  	= 0;
27019 	rqs_pktp->pkt_reason 	= 0;
27020 	rqs_pktp->pkt_flags |= FLAG_NOINTR;
27021 	bzero(rqs_bp->b_un.b_addr, SENSE_LENGTH);
27022 
27023 	mutex_exit(SD_MUTEX(un));
27024 
27025 	SD_INFO(SD_LOG_COMMON, un, "sd_send_polled_RQS: req sense buf at"
27026 	    " 0x%p\n", rqs_bp->b_un.b_addr);
27027 
27028 	/*
27029 	 * Can't send this to sd_scsi_poll, we wrap ourselves around the
27030 	 * axle - it has a call into us!
27031 	 */
27032 	if ((ret_val = sd_ddi_scsi_poll(rqs_pktp)) != 0) {
27033 		SD_INFO(SD_LOG_COMMON, un,
27034 		    "sd_send_polled_RQS: RQS failed\n");
27035 	}
27036 
27037 	SD_DUMP_MEMORY(un, SD_LOG_COMMON, "sd_send_polled_RQS:",
27038 	    (uchar_t *)rqs_bp->b_un.b_addr, SENSE_LENGTH, SD_LOG_HEX);
27039 
27040 	mutex_enter(SD_MUTEX(un));
27041 	un->un_sense_isbusy = 0;
27042 	mutex_exit(SD_MUTEX(un));
27043 
27044 	return (ret_val);
27045 }
27046 
27047 /*
27048  * Defines needed for localized version of the scsi_poll routine.
27049  */
27050 #define	SD_CSEC		10000			/* usecs */
27051 #define	SD_SEC_TO_CSEC	(1000000/SD_CSEC)
27052 
27053 
27054 /*
27055  *    Function: sd_ddi_scsi_poll()
27056  *
27057  * Description: Localized version of the scsi_poll routine.  The purpose is to
27058  *		send a scsi_pkt to a device as a polled command.  This version
27059  *		is to ensure more robust handling of transport errors.
27060  *		Specifically this routine cures not ready, coming ready
27061  *		transition for power up and reset of sonoma's.  This can take
27062  *		up to 45 seconds for power-on and 20 seconds for reset of a
27063  * 		sonoma lun.
27064  *
27065  *   Arguments: scsi_pkt - The scsi_pkt being sent to a device
27066  *
27067  * Return Code: 0 - Command completed successfully with good status
27068  *             -1 - Command failed.
27069  *
27070  */
27071 
27072 static int
27073 sd_ddi_scsi_poll(struct scsi_pkt *pkt)
27074 {
27075 	int busy_count;
27076 	int timeout;
27077 	int rval = SD_FAILURE;
27078 	int savef;
27079 	uint8_t *sensep;
27080 	long savet;
27081 	void (*savec)();
27082 	/*
27083 	 * The following is defined in machdep.c and is used in determining if
27084 	 * the scsi transport system will do polled I/O instead of interrupt
27085 	 * I/O when called from xx_dump().
27086 	 */
27087 	extern int do_polled_io;
27088 
27089 	/*
27090 	 * save old flags in pkt, to restore at end
27091 	 */
27092 	savef = pkt->pkt_flags;
27093 	savec = pkt->pkt_comp;
27094 	savet = pkt->pkt_time;
27095 
27096 	pkt->pkt_flags |= FLAG_NOINTR;
27097 
27098 	/*
27099 	 * XXX there is nothing in the SCSA spec that states that we should not
27100 	 * do a callback for polled cmds; however, removing this will break sd
27101 	 * and probably other target drivers
27102 	 */
27103 	pkt->pkt_comp = NULL;
27104 
27105 	/*
27106 	 * we don't like a polled command without timeout.
27107 	 * 60 seconds seems long enough.
27108 	 */
27109 	if (pkt->pkt_time == 0) {
27110 		pkt->pkt_time = SCSI_POLL_TIMEOUT;
27111 	}
27112 
27113 	/*
27114 	 * Send polled cmd.
27115 	 *
27116 	 * We do some error recovery for various errors.  Tran_busy,
27117 	 * queue full, and non-dispatched commands are retried every 10 msec.
27118 	 * as they are typically transient failures.  Busy status and Not
27119 	 * Ready are retried every second as this status takes a while to
27120 	 * change.  Unit attention is retried for pkt_time (60) times
27121 	 * with no delay.
27122 	 */
27123 	timeout = pkt->pkt_time * SD_SEC_TO_CSEC;
27124 
27125 	for (busy_count = 0; busy_count < timeout; busy_count++) {
27126 		int rc;
27127 		int poll_delay;
27128 
27129 		/*
27130 		 * Initialize pkt status variables.
27131 		 */
27132 		*pkt->pkt_scbp = pkt->pkt_reason = pkt->pkt_state = 0;
27133 
27134 		if ((rc = scsi_transport(pkt)) != TRAN_ACCEPT) {
27135 			if (rc != TRAN_BUSY) {
27136 				/* Transport failed - give up. */
27137 				break;
27138 			} else {
27139 				/* Transport busy - try again. */
27140 				poll_delay = 1 * SD_CSEC; /* 10 msec */
27141 			}
27142 		} else {
27143 			/*
27144 			 * Transport accepted - check pkt status.
27145 			 */
27146 			rc = (*pkt->pkt_scbp) & STATUS_MASK;
27147 			if (pkt->pkt_reason == CMD_CMPLT &&
27148 			    rc == STATUS_CHECK &&
27149 			    pkt->pkt_state & STATE_ARQ_DONE) {
27150 				struct scsi_arq_status *arqstat =
27151 				    (struct scsi_arq_status *)(pkt->pkt_scbp);
27152 
27153 				sensep = (uint8_t *)&arqstat->sts_sensedata;
27154 			} else {
27155 				sensep = NULL;
27156 			}
27157 
27158 			if ((pkt->pkt_reason == CMD_CMPLT) &&
27159 			    (rc == STATUS_GOOD)) {
27160 				/* No error - we're done */
27161 				rval = SD_SUCCESS;
27162 				break;
27163 
27164 			} else if (pkt->pkt_reason == CMD_DEV_GONE) {
27165 				/* Lost connection - give up */
27166 				break;
27167 
27168 			} else if ((pkt->pkt_reason == CMD_INCOMPLETE) &&
27169 			    (pkt->pkt_state == 0)) {
27170 				/* Pkt not dispatched - try again. */
27171 				poll_delay = 1 * SD_CSEC; /* 10 msec. */
27172 
27173 			} else if ((pkt->pkt_reason == CMD_CMPLT) &&
27174 			    (rc == STATUS_QFULL)) {
27175 				/* Queue full - try again. */
27176 				poll_delay = 1 * SD_CSEC; /* 10 msec. */
27177 
27178 			} else if ((pkt->pkt_reason == CMD_CMPLT) &&
27179 			    (rc == STATUS_BUSY)) {
27180 				/* Busy - try again. */
27181 				poll_delay = 100 * SD_CSEC; /* 1 sec. */
27182 				busy_count += (SD_SEC_TO_CSEC - 1);
27183 
27184 			} else if ((sensep != NULL) &&
27185 			    (scsi_sense_key(sensep) ==
27186 				KEY_UNIT_ATTENTION)) {
27187 				/* Unit Attention - try again */
27188 				busy_count += (SD_SEC_TO_CSEC - 1); /* 1 */
27189 				continue;
27190 
27191 			} else if ((sensep != NULL) &&
27192 			    (scsi_sense_key(sensep) == KEY_NOT_READY) &&
27193 			    (scsi_sense_asc(sensep) == 0x04) &&
27194 			    (scsi_sense_ascq(sensep) == 0x01)) {
27195 				/* Not ready -> ready - try again. */
27196 				poll_delay = 100 * SD_CSEC; /* 1 sec. */
27197 				busy_count += (SD_SEC_TO_CSEC - 1);
27198 
27199 			} else {
27200 				/* BAD status - give up. */
27201 				break;
27202 			}
27203 		}
27204 
27205 		if ((curthread->t_flag & T_INTR_THREAD) == 0 &&
27206 		    !do_polled_io) {
27207 			delay(drv_usectohz(poll_delay));
27208 		} else {
27209 			/* we busy wait during cpr_dump or interrupt threads */
27210 			drv_usecwait(poll_delay);
27211 		}
27212 	}
27213 
27214 	pkt->pkt_flags = savef;
27215 	pkt->pkt_comp = savec;
27216 	pkt->pkt_time = savet;
27217 	return (rval);
27218 }
27219 
27220 
27221 /*
27222  *    Function: sd_persistent_reservation_in_read_keys
27223  *
27224  * Description: This routine is the driver entry point for handling CD-ROM
27225  *		multi-host persistent reservation requests (MHIOCGRP_INKEYS)
27226  *		by sending the SCSI-3 PRIN commands to the device.
27227  *		Processes the read keys command response by copying the
27228  *		reservation key information into the user provided buffer.
27229  *		Support for the 32/64 bit _MULTI_DATAMODEL is implemented.
27230  *
27231  *   Arguments: un   -  Pointer to soft state struct for the target.
27232  *		usrp -	user provided pointer to multihost Persistent In Read
27233  *			Keys structure (mhioc_inkeys_t)
27234  *		flag -	this argument is a pass through to ddi_copyxxx()
27235  *			directly from the mode argument of ioctl().
27236  *
27237  * Return Code: 0   - Success
27238  *		EACCES
27239  *		ENOTSUP
27240  *		errno return code from sd_send_scsi_cmd()
27241  *
27242  *     Context: Can sleep. Does not return until command is completed.
27243  */
27244 
27245 static int
27246 sd_persistent_reservation_in_read_keys(struct sd_lun *un,
27247     mhioc_inkeys_t *usrp, int flag)
27248 {
27249 #ifdef _MULTI_DATAMODEL
27250 	struct mhioc_key_list32	li32;
27251 #endif
27252 	sd_prin_readkeys_t	*in;
27253 	mhioc_inkeys_t		*ptr;
27254 	mhioc_key_list_t	li;
27255 	uchar_t			*data_bufp;
27256 	int 			data_len;
27257 	int			rval;
27258 	size_t			copysz;
27259 
27260 	if ((ptr = (mhioc_inkeys_t *)usrp) == NULL) {
27261 		return (EINVAL);
27262 	}
27263 	bzero(&li, sizeof (mhioc_key_list_t));
27264 
27265 	/*
27266 	 * Get the listsize from user
27267 	 */
27268 #ifdef _MULTI_DATAMODEL
27269 
27270 	switch (ddi_model_convert_from(flag & FMODELS)) {
27271 	case DDI_MODEL_ILP32:
27272 		copysz = sizeof (struct mhioc_key_list32);
27273 		if (ddi_copyin(ptr->li, &li32, copysz, flag)) {
27274 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
27275 			    "sd_persistent_reservation_in_read_keys: "
27276 			    "failed ddi_copyin: mhioc_key_list32_t\n");
27277 			rval = EFAULT;
27278 			goto done;
27279 		}
27280 		li.listsize = li32.listsize;
27281 		li.list = (mhioc_resv_key_t *)(uintptr_t)li32.list;
27282 		break;
27283 
27284 	case DDI_MODEL_NONE:
27285 		copysz = sizeof (mhioc_key_list_t);
27286 		if (ddi_copyin(ptr->li, &li, copysz, flag)) {
27287 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
27288 			    "sd_persistent_reservation_in_read_keys: "
27289 			    "failed ddi_copyin: mhioc_key_list_t\n");
27290 			rval = EFAULT;
27291 			goto done;
27292 		}
27293 		break;
27294 	}
27295 
27296 #else /* ! _MULTI_DATAMODEL */
27297 	copysz = sizeof (mhioc_key_list_t);
27298 	if (ddi_copyin(ptr->li, &li, copysz, flag)) {
27299 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
27300 		    "sd_persistent_reservation_in_read_keys: "
27301 		    "failed ddi_copyin: mhioc_key_list_t\n");
27302 		rval = EFAULT;
27303 		goto done;
27304 	}
27305 #endif
27306 
27307 	data_len  = li.listsize * MHIOC_RESV_KEY_SIZE;
27308 	data_len += (sizeof (sd_prin_readkeys_t) - sizeof (caddr_t));
27309 	data_bufp = kmem_zalloc(data_len, KM_SLEEP);
27310 
27311 	if ((rval = sd_send_scsi_PERSISTENT_RESERVE_IN(un, SD_READ_KEYS,
27312 	    data_len, data_bufp)) != 0) {
27313 		goto done;
27314 	}
27315 	in = (sd_prin_readkeys_t *)data_bufp;
27316 	ptr->generation = BE_32(in->generation);
27317 	li.listlen = BE_32(in->len) / MHIOC_RESV_KEY_SIZE;
27318 
27319 	/*
27320 	 * Return the min(listsize, listlen) keys
27321 	 */
27322 #ifdef _MULTI_DATAMODEL
27323 
27324 	switch (ddi_model_convert_from(flag & FMODELS)) {
27325 	case DDI_MODEL_ILP32:
27326 		li32.listlen = li.listlen;
27327 		if (ddi_copyout(&li32, ptr->li, copysz, flag)) {
27328 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
27329 			    "sd_persistent_reservation_in_read_keys: "
27330 			    "failed ddi_copyout: mhioc_key_list32_t\n");
27331 			rval = EFAULT;
27332 			goto done;
27333 		}
27334 		break;
27335 
27336 	case DDI_MODEL_NONE:
27337 		if (ddi_copyout(&li, ptr->li, copysz, flag)) {
27338 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
27339 			    "sd_persistent_reservation_in_read_keys: "
27340 			    "failed ddi_copyout: mhioc_key_list_t\n");
27341 			rval = EFAULT;
27342 			goto done;
27343 		}
27344 		break;
27345 	}
27346 
27347 #else /* ! _MULTI_DATAMODEL */
27348 
27349 	if (ddi_copyout(&li, ptr->li, copysz, flag)) {
27350 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
27351 		    "sd_persistent_reservation_in_read_keys: "
27352 		    "failed ddi_copyout: mhioc_key_list_t\n");
27353 		rval = EFAULT;
27354 		goto done;
27355 	}
27356 
27357 #endif /* _MULTI_DATAMODEL */
27358 
27359 	copysz = min(li.listlen * MHIOC_RESV_KEY_SIZE,
27360 	    li.listsize * MHIOC_RESV_KEY_SIZE);
27361 	if (ddi_copyout(&in->keylist, li.list, copysz, flag)) {
27362 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
27363 		    "sd_persistent_reservation_in_read_keys: "
27364 		    "failed ddi_copyout: keylist\n");
27365 		rval = EFAULT;
27366 	}
27367 done:
27368 	kmem_free(data_bufp, data_len);
27369 	return (rval);
27370 }
27371 
27372 
27373 /*
27374  *    Function: sd_persistent_reservation_in_read_resv
27375  *
27376  * Description: This routine is the driver entry point for handling CD-ROM
27377  *		multi-host persistent reservation requests (MHIOCGRP_INRESV)
27378  *		by sending the SCSI-3 PRIN commands to the device.
27379  *		Process the read persistent reservations command response by
27380  *		copying the reservation information into the user provided
27381  *		buffer. Support for the 32/64 _MULTI_DATAMODEL is implemented.
27382  *
27383  *   Arguments: un   -  Pointer to soft state struct for the target.
27384  *		usrp -	user provided pointer to multihost Persistent In Read
27385  *			Keys structure (mhioc_inkeys_t)
27386  *		flag -	this argument is a pass through to ddi_copyxxx()
27387  *			directly from the mode argument of ioctl().
27388  *
27389  * Return Code: 0   - Success
27390  *		EACCES
27391  *		ENOTSUP
27392  *		errno return code from sd_send_scsi_cmd()
27393  *
27394  *     Context: Can sleep. Does not return until command is completed.
27395  */
27396 
27397 static int
27398 sd_persistent_reservation_in_read_resv(struct sd_lun *un,
27399     mhioc_inresvs_t *usrp, int flag)
27400 {
27401 #ifdef _MULTI_DATAMODEL
27402 	struct mhioc_resv_desc_list32 resvlist32;
27403 #endif
27404 	sd_prin_readresv_t	*in;
27405 	mhioc_inresvs_t		*ptr;
27406 	sd_readresv_desc_t	*readresv_ptr;
27407 	mhioc_resv_desc_list_t	resvlist;
27408 	mhioc_resv_desc_t 	resvdesc;
27409 	uchar_t			*data_bufp;
27410 	int 			data_len;
27411 	int			rval;
27412 	int			i;
27413 	size_t			copysz;
27414 	mhioc_resv_desc_t	*bufp;
27415 
27416 	if ((ptr = usrp) == NULL) {
27417 		return (EINVAL);
27418 	}
27419 
27420 	/*
27421 	 * Get the listsize from user
27422 	 */
27423 #ifdef _MULTI_DATAMODEL
27424 	switch (ddi_model_convert_from(flag & FMODELS)) {
27425 	case DDI_MODEL_ILP32:
27426 		copysz = sizeof (struct mhioc_resv_desc_list32);
27427 		if (ddi_copyin(ptr->li, &resvlist32, copysz, flag)) {
27428 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
27429 			    "sd_persistent_reservation_in_read_resv: "
27430 			    "failed ddi_copyin: mhioc_resv_desc_list_t\n");
27431 			rval = EFAULT;
27432 			goto done;
27433 		}
27434 		resvlist.listsize = resvlist32.listsize;
27435 		resvlist.list = (mhioc_resv_desc_t *)(uintptr_t)resvlist32.list;
27436 		break;
27437 
27438 	case DDI_MODEL_NONE:
27439 		copysz = sizeof (mhioc_resv_desc_list_t);
27440 		if (ddi_copyin(ptr->li, &resvlist, copysz, flag)) {
27441 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
27442 			    "sd_persistent_reservation_in_read_resv: "
27443 			    "failed ddi_copyin: mhioc_resv_desc_list_t\n");
27444 			rval = EFAULT;
27445 			goto done;
27446 		}
27447 		break;
27448 	}
27449 #else /* ! _MULTI_DATAMODEL */
27450 	copysz = sizeof (mhioc_resv_desc_list_t);
27451 	if (ddi_copyin(ptr->li, &resvlist, copysz, flag)) {
27452 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
27453 		    "sd_persistent_reservation_in_read_resv: "
27454 		    "failed ddi_copyin: mhioc_resv_desc_list_t\n");
27455 		rval = EFAULT;
27456 		goto done;
27457 	}
27458 #endif /* ! _MULTI_DATAMODEL */
27459 
27460 	data_len  = resvlist.listsize * SCSI3_RESV_DESC_LEN;
27461 	data_len += (sizeof (sd_prin_readresv_t) - sizeof (caddr_t));
27462 	data_bufp = kmem_zalloc(data_len, KM_SLEEP);
27463 
27464 	if ((rval = sd_send_scsi_PERSISTENT_RESERVE_IN(un, SD_READ_RESV,
27465 	    data_len, data_bufp)) != 0) {
27466 		goto done;
27467 	}
27468 	in = (sd_prin_readresv_t *)data_bufp;
27469 	ptr->generation = BE_32(in->generation);
27470 	resvlist.listlen = BE_32(in->len) / SCSI3_RESV_DESC_LEN;
27471 
27472 	/*
27473 	 * Return the min(listsize, listlen( keys
27474 	 */
27475 #ifdef _MULTI_DATAMODEL
27476 
27477 	switch (ddi_model_convert_from(flag & FMODELS)) {
27478 	case DDI_MODEL_ILP32:
27479 		resvlist32.listlen = resvlist.listlen;
27480 		if (ddi_copyout(&resvlist32, ptr->li, copysz, flag)) {
27481 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
27482 			    "sd_persistent_reservation_in_read_resv: "
27483 			    "failed ddi_copyout: mhioc_resv_desc_list_t\n");
27484 			rval = EFAULT;
27485 			goto done;
27486 		}
27487 		break;
27488 
27489 	case DDI_MODEL_NONE:
27490 		if (ddi_copyout(&resvlist, ptr->li, copysz, flag)) {
27491 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
27492 			    "sd_persistent_reservation_in_read_resv: "
27493 			    "failed ddi_copyout: mhioc_resv_desc_list_t\n");
27494 			rval = EFAULT;
27495 			goto done;
27496 		}
27497 		break;
27498 	}
27499 
27500 #else /* ! _MULTI_DATAMODEL */
27501 
27502 	if (ddi_copyout(&resvlist, ptr->li, copysz, flag)) {
27503 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
27504 		    "sd_persistent_reservation_in_read_resv: "
27505 		    "failed ddi_copyout: mhioc_resv_desc_list_t\n");
27506 		rval = EFAULT;
27507 		goto done;
27508 	}
27509 
27510 #endif /* ! _MULTI_DATAMODEL */
27511 
27512 	readresv_ptr = (sd_readresv_desc_t *)&in->readresv_desc;
27513 	bufp = resvlist.list;
27514 	copysz = sizeof (mhioc_resv_desc_t);
27515 	for (i = 0; i < min(resvlist.listlen, resvlist.listsize);
27516 	    i++, readresv_ptr++, bufp++) {
27517 
27518 		bcopy(&readresv_ptr->resvkey, &resvdesc.key,
27519 		    MHIOC_RESV_KEY_SIZE);
27520 		resvdesc.type  = readresv_ptr->type;
27521 		resvdesc.scope = readresv_ptr->scope;
27522 		resvdesc.scope_specific_addr =
27523 		    BE_32(readresv_ptr->scope_specific_addr);
27524 
27525 		if (ddi_copyout(&resvdesc, bufp, copysz, flag)) {
27526 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
27527 			    "sd_persistent_reservation_in_read_resv: "
27528 			    "failed ddi_copyout: resvlist\n");
27529 			rval = EFAULT;
27530 			goto done;
27531 		}
27532 	}
27533 done:
27534 	kmem_free(data_bufp, data_len);
27535 	return (rval);
27536 }
27537 
27538 
27539 /*
27540  *    Function: sr_change_blkmode()
27541  *
27542  * Description: This routine is the driver entry point for handling CD-ROM
27543  *		block mode ioctl requests. Support for returning and changing
27544  *		the current block size in use by the device is implemented. The
27545  *		LBA size is changed via a MODE SELECT Block Descriptor.
27546  *
27547  *		This routine issues a mode sense with an allocation length of
27548  *		12 bytes for the mode page header and a single block descriptor.
27549  *
27550  *   Arguments: dev - the device 'dev_t'
27551  *		cmd - the request type; one of CDROMGBLKMODE (get) or
27552  *		      CDROMSBLKMODE (set)
27553  *		data - current block size or requested block size
27554  *		flag - this argument is a pass through to ddi_copyxxx() directly
27555  *		       from the mode argument of ioctl().
27556  *
27557  * Return Code: the code returned by sd_send_scsi_cmd()
27558  *		EINVAL if invalid arguments are provided
27559  *		EFAULT if ddi_copyxxx() fails
27560  *		ENXIO if fail ddi_get_soft_state
27561  *		EIO if invalid mode sense block descriptor length
27562  *
27563  */
27564 
27565 static int
27566 sr_change_blkmode(dev_t dev, int cmd, intptr_t data, int flag)
27567 {
27568 	struct sd_lun			*un = NULL;
27569 	struct mode_header		*sense_mhp, *select_mhp;
27570 	struct block_descriptor		*sense_desc, *select_desc;
27571 	int				current_bsize;
27572 	int				rval = EINVAL;
27573 	uchar_t				*sense = NULL;
27574 	uchar_t				*select = NULL;
27575 
27576 	ASSERT((cmd == CDROMGBLKMODE) || (cmd == CDROMSBLKMODE));
27577 
27578 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
27579 		return (ENXIO);
27580 	}
27581 
27582 	/*
27583 	 * The block length is changed via the Mode Select block descriptor, the
27584 	 * "Read/Write Error Recovery" mode page (0x1) contents are not actually
27585 	 * required as part of this routine. Therefore the mode sense allocation
27586 	 * length is specified to be the length of a mode page header and a
27587 	 * block descriptor.
27588 	 */
27589 	sense = kmem_zalloc(BUFLEN_CHG_BLK_MODE, KM_SLEEP);
27590 
27591 	if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense,
27592 	    BUFLEN_CHG_BLK_MODE, MODEPAGE_ERR_RECOV, SD_PATH_STANDARD)) != 0) {
27593 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27594 		    "sr_change_blkmode: Mode Sense Failed\n");
27595 		kmem_free(sense, BUFLEN_CHG_BLK_MODE);
27596 		return (rval);
27597 	}
27598 
27599 	/* Check the block descriptor len to handle only 1 block descriptor */
27600 	sense_mhp = (struct mode_header *)sense;
27601 	if ((sense_mhp->bdesc_length == 0) ||
27602 	    (sense_mhp->bdesc_length > MODE_BLK_DESC_LENGTH)) {
27603 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27604 		    "sr_change_blkmode: Mode Sense returned invalid block"
27605 		    " descriptor length\n");
27606 		kmem_free(sense, BUFLEN_CHG_BLK_MODE);
27607 		return (EIO);
27608 	}
27609 	sense_desc = (struct block_descriptor *)(sense + MODE_HEADER_LENGTH);
27610 	current_bsize = ((sense_desc->blksize_hi << 16) |
27611 	    (sense_desc->blksize_mid << 8) | sense_desc->blksize_lo);
27612 
27613 	/* Process command */
27614 	switch (cmd) {
27615 	case CDROMGBLKMODE:
27616 		/* Return the block size obtained during the mode sense */
27617 		if (ddi_copyout(&current_bsize, (void *)data,
27618 		    sizeof (int), flag) != 0)
27619 			rval = EFAULT;
27620 		break;
27621 	case CDROMSBLKMODE:
27622 		/* Validate the requested block size */
27623 		switch (data) {
27624 		case CDROM_BLK_512:
27625 		case CDROM_BLK_1024:
27626 		case CDROM_BLK_2048:
27627 		case CDROM_BLK_2056:
27628 		case CDROM_BLK_2336:
27629 		case CDROM_BLK_2340:
27630 		case CDROM_BLK_2352:
27631 		case CDROM_BLK_2368:
27632 		case CDROM_BLK_2448:
27633 		case CDROM_BLK_2646:
27634 		case CDROM_BLK_2647:
27635 			break;
27636 		default:
27637 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27638 			    "sr_change_blkmode: "
27639 			    "Block Size '%ld' Not Supported\n", data);
27640 			kmem_free(sense, BUFLEN_CHG_BLK_MODE);
27641 			return (EINVAL);
27642 		}
27643 
27644 		/*
27645 		 * The current block size matches the requested block size so
27646 		 * there is no need to send the mode select to change the size
27647 		 */
27648 		if (current_bsize == data) {
27649 			break;
27650 		}
27651 
27652 		/* Build the select data for the requested block size */
27653 		select = kmem_zalloc(BUFLEN_CHG_BLK_MODE, KM_SLEEP);
27654 		select_mhp = (struct mode_header *)select;
27655 		select_desc =
27656 		    (struct block_descriptor *)(select + MODE_HEADER_LENGTH);
27657 		/*
27658 		 * The LBA size is changed via the block descriptor, so the
27659 		 * descriptor is built according to the user data
27660 		 */
27661 		select_mhp->bdesc_length = MODE_BLK_DESC_LENGTH;
27662 		select_desc->blksize_hi  = (char)(((data) & 0x00ff0000) >> 16);
27663 		select_desc->blksize_mid = (char)(((data) & 0x0000ff00) >> 8);
27664 		select_desc->blksize_lo  = (char)((data) & 0x000000ff);
27665 
27666 		/* Send the mode select for the requested block size */
27667 		if ((rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0,
27668 		    select, BUFLEN_CHG_BLK_MODE, SD_DONTSAVE_PAGE,
27669 		    SD_PATH_STANDARD)) != 0) {
27670 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27671 			    "sr_change_blkmode: Mode Select Failed\n");
27672 			/*
27673 			 * The mode select failed for the requested block size,
27674 			 * so reset the data for the original block size and
27675 			 * send it to the target. The error is indicated by the
27676 			 * return value for the failed mode select.
27677 			 */
27678 			select_desc->blksize_hi  = sense_desc->blksize_hi;
27679 			select_desc->blksize_mid = sense_desc->blksize_mid;
27680 			select_desc->blksize_lo  = sense_desc->blksize_lo;
27681 			(void) sd_send_scsi_MODE_SELECT(un, CDB_GROUP0,
27682 			    select, BUFLEN_CHG_BLK_MODE, SD_DONTSAVE_PAGE,
27683 			    SD_PATH_STANDARD);
27684 		} else {
27685 			ASSERT(!mutex_owned(SD_MUTEX(un)));
27686 			mutex_enter(SD_MUTEX(un));
27687 			sd_update_block_info(un, (uint32_t)data, 0);
27688 
27689 			mutex_exit(SD_MUTEX(un));
27690 		}
27691 		break;
27692 	default:
27693 		/* should not reach here, but check anyway */
27694 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27695 		    "sr_change_blkmode: Command '%x' Not Supported\n", cmd);
27696 		rval = EINVAL;
27697 		break;
27698 	}
27699 
27700 	if (select) {
27701 		kmem_free(select, BUFLEN_CHG_BLK_MODE);
27702 	}
27703 	if (sense) {
27704 		kmem_free(sense, BUFLEN_CHG_BLK_MODE);
27705 	}
27706 	return (rval);
27707 }
27708 
27709 
27710 /*
27711  * Note: The following sr_change_speed() and sr_atapi_change_speed() routines
27712  * implement driver support for getting and setting the CD speed. The command
27713  * set used will be based on the device type. If the device has not been
27714  * identified as MMC the Toshiba vendor specific mode page will be used. If
27715  * the device is MMC but does not support the Real Time Streaming feature
27716  * the SET CD SPEED command will be used to set speed and mode page 0x2A will
27717  * be used to read the speed.
27718  */
27719 
27720 /*
27721  *    Function: sr_change_speed()
27722  *
27723  * Description: This routine is the driver entry point for handling CD-ROM
27724  *		drive speed ioctl requests for devices supporting the Toshiba
27725  *		vendor specific drive speed mode page. Support for returning
27726  *		and changing the current drive speed in use by the device is
27727  *		implemented.
27728  *
27729  *   Arguments: dev - the device 'dev_t'
27730  *		cmd - the request type; one of CDROMGDRVSPEED (get) or
27731  *		      CDROMSDRVSPEED (set)
27732  *		data - current drive speed or requested drive speed
27733  *		flag - this argument is a pass through to ddi_copyxxx() directly
27734  *		       from the mode argument of ioctl().
27735  *
27736  * Return Code: the code returned by sd_send_scsi_cmd()
27737  *		EINVAL if invalid arguments are provided
27738  *		EFAULT if ddi_copyxxx() fails
27739  *		ENXIO if fail ddi_get_soft_state
27740  *		EIO if invalid mode sense block descriptor length
27741  */
27742 
27743 static int
27744 sr_change_speed(dev_t dev, int cmd, intptr_t data, int flag)
27745 {
27746 	struct sd_lun			*un = NULL;
27747 	struct mode_header		*sense_mhp, *select_mhp;
27748 	struct mode_speed		*sense_page, *select_page;
27749 	int				current_speed;
27750 	int				rval = EINVAL;
27751 	int				bd_len;
27752 	uchar_t				*sense = NULL;
27753 	uchar_t				*select = NULL;
27754 
27755 	ASSERT((cmd == CDROMGDRVSPEED) || (cmd == CDROMSDRVSPEED));
27756 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
27757 		return (ENXIO);
27758 	}
27759 
27760 	/*
27761 	 * Note: The drive speed is being modified here according to a Toshiba
27762 	 * vendor specific mode page (0x31).
27763 	 */
27764 	sense = kmem_zalloc(BUFLEN_MODE_CDROM_SPEED, KM_SLEEP);
27765 
27766 	if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense,
27767 	    BUFLEN_MODE_CDROM_SPEED, CDROM_MODE_SPEED,
27768 		SD_PATH_STANDARD)) != 0) {
27769 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27770 		    "sr_change_speed: Mode Sense Failed\n");
27771 		kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
27772 		return (rval);
27773 	}
27774 	sense_mhp  = (struct mode_header *)sense;
27775 
27776 	/* Check the block descriptor len to handle only 1 block descriptor */
27777 	bd_len = sense_mhp->bdesc_length;
27778 	if (bd_len > MODE_BLK_DESC_LENGTH) {
27779 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27780 		    "sr_change_speed: Mode Sense returned invalid block "
27781 		    "descriptor length\n");
27782 		kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
27783 		return (EIO);
27784 	}
27785 
27786 	sense_page = (struct mode_speed *)
27787 	    (sense + MODE_HEADER_LENGTH + sense_mhp->bdesc_length);
27788 	current_speed = sense_page->speed;
27789 
27790 	/* Process command */
27791 	switch (cmd) {
27792 	case CDROMGDRVSPEED:
27793 		/* Return the drive speed obtained during the mode sense */
27794 		if (current_speed == 0x2) {
27795 			current_speed = CDROM_TWELVE_SPEED;
27796 		}
27797 		if (ddi_copyout(&current_speed, (void *)data,
27798 		    sizeof (int), flag) != 0) {
27799 			rval = EFAULT;
27800 		}
27801 		break;
27802 	case CDROMSDRVSPEED:
27803 		/* Validate the requested drive speed */
27804 		switch ((uchar_t)data) {
27805 		case CDROM_TWELVE_SPEED:
27806 			data = 0x2;
27807 			/*FALLTHROUGH*/
27808 		case CDROM_NORMAL_SPEED:
27809 		case CDROM_DOUBLE_SPEED:
27810 		case CDROM_QUAD_SPEED:
27811 		case CDROM_MAXIMUM_SPEED:
27812 			break;
27813 		default:
27814 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27815 			    "sr_change_speed: "
27816 			    "Drive Speed '%d' Not Supported\n", (uchar_t)data);
27817 			kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
27818 			return (EINVAL);
27819 		}
27820 
27821 		/*
27822 		 * The current drive speed matches the requested drive speed so
27823 		 * there is no need to send the mode select to change the speed
27824 		 */
27825 		if (current_speed == data) {
27826 			break;
27827 		}
27828 
27829 		/* Build the select data for the requested drive speed */
27830 		select = kmem_zalloc(BUFLEN_MODE_CDROM_SPEED, KM_SLEEP);
27831 		select_mhp = (struct mode_header *)select;
27832 		select_mhp->bdesc_length = 0;
27833 		select_page =
27834 		    (struct mode_speed *)(select + MODE_HEADER_LENGTH);
27835 		select_page =
27836 		    (struct mode_speed *)(select + MODE_HEADER_LENGTH);
27837 		select_page->mode_page.code = CDROM_MODE_SPEED;
27838 		select_page->mode_page.length = 2;
27839 		select_page->speed = (uchar_t)data;
27840 
27841 		/* Send the mode select for the requested block size */
27842 		if ((rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, select,
27843 		    MODEPAGE_CDROM_SPEED_LEN + MODE_HEADER_LENGTH,
27844 		    SD_DONTSAVE_PAGE, SD_PATH_STANDARD)) != 0) {
27845 			/*
27846 			 * The mode select failed for the requested drive speed,
27847 			 * so reset the data for the original drive speed and
27848 			 * send it to the target. The error is indicated by the
27849 			 * return value for the failed mode select.
27850 			 */
27851 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27852 			    "sr_drive_speed: Mode Select Failed\n");
27853 			select_page->speed = sense_page->speed;
27854 			(void) sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, select,
27855 			    MODEPAGE_CDROM_SPEED_LEN + MODE_HEADER_LENGTH,
27856 			    SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
27857 		}
27858 		break;
27859 	default:
27860 		/* should not reach here, but check anyway */
27861 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27862 		    "sr_change_speed: Command '%x' Not Supported\n", cmd);
27863 		rval = EINVAL;
27864 		break;
27865 	}
27866 
27867 	if (select) {
27868 		kmem_free(select, BUFLEN_MODE_CDROM_SPEED);
27869 	}
27870 	if (sense) {
27871 		kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
27872 	}
27873 
27874 	return (rval);
27875 }
27876 
27877 
27878 /*
27879  *    Function: sr_atapi_change_speed()
27880  *
27881  * Description: This routine is the driver entry point for handling CD-ROM
27882  *		drive speed ioctl requests for MMC devices that do not support
27883  *		the Real Time Streaming feature (0x107).
27884  *
27885  *		Note: This routine will use the SET SPEED command which may not
27886  *		be supported by all devices.
27887  *
27888  *   Arguments: dev- the device 'dev_t'
27889  *		cmd- the request type; one of CDROMGDRVSPEED (get) or
27890  *		     CDROMSDRVSPEED (set)
27891  *		data- current drive speed or requested drive speed
27892  *		flag- this argument is a pass through to ddi_copyxxx() directly
27893  *		      from the mode argument of ioctl().
27894  *
27895  * Return Code: the code returned by sd_send_scsi_cmd()
27896  *		EINVAL if invalid arguments are provided
27897  *		EFAULT if ddi_copyxxx() fails
27898  *		ENXIO if fail ddi_get_soft_state
27899  *		EIO if invalid mode sense block descriptor length
27900  */
27901 
27902 static int
27903 sr_atapi_change_speed(dev_t dev, int cmd, intptr_t data, int flag)
27904 {
27905 	struct sd_lun			*un;
27906 	struct uscsi_cmd		*com = NULL;
27907 	struct mode_header_grp2		*sense_mhp;
27908 	uchar_t				*sense_page;
27909 	uchar_t				*sense = NULL;
27910 	char				cdb[CDB_GROUP5];
27911 	int				bd_len;
27912 	int				current_speed = 0;
27913 	int				max_speed = 0;
27914 	int				rval;
27915 
27916 	ASSERT((cmd == CDROMGDRVSPEED) || (cmd == CDROMSDRVSPEED));
27917 
27918 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
27919 		return (ENXIO);
27920 	}
27921 
27922 	sense = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP);
27923 
27924 	if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, sense,
27925 	    BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP,
27926 	    SD_PATH_STANDARD)) != 0) {
27927 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27928 		    "sr_atapi_change_speed: Mode Sense Failed\n");
27929 		kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
27930 		return (rval);
27931 	}
27932 
27933 	/* Check the block descriptor len to handle only 1 block descriptor */
27934 	sense_mhp = (struct mode_header_grp2 *)sense;
27935 	bd_len = (sense_mhp->bdesc_length_hi << 8) | sense_mhp->bdesc_length_lo;
27936 	if (bd_len > MODE_BLK_DESC_LENGTH) {
27937 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27938 		    "sr_atapi_change_speed: Mode Sense returned invalid "
27939 		    "block descriptor length\n");
27940 		kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
27941 		return (EIO);
27942 	}
27943 
27944 	/* Calculate the current and maximum drive speeds */
27945 	sense_page = (uchar_t *)(sense + MODE_HEADER_LENGTH_GRP2 + bd_len);
27946 	current_speed = (sense_page[14] << 8) | sense_page[15];
27947 	max_speed = (sense_page[8] << 8) | sense_page[9];
27948 
27949 	/* Process the command */
27950 	switch (cmd) {
27951 	case CDROMGDRVSPEED:
27952 		current_speed /= SD_SPEED_1X;
27953 		if (ddi_copyout(&current_speed, (void *)data,
27954 		    sizeof (int), flag) != 0)
27955 			rval = EFAULT;
27956 		break;
27957 	case CDROMSDRVSPEED:
27958 		/* Convert the speed code to KB/sec */
27959 		switch ((uchar_t)data) {
27960 		case CDROM_NORMAL_SPEED:
27961 			current_speed = SD_SPEED_1X;
27962 			break;
27963 		case CDROM_DOUBLE_SPEED:
27964 			current_speed = 2 * SD_SPEED_1X;
27965 			break;
27966 		case CDROM_QUAD_SPEED:
27967 			current_speed = 4 * SD_SPEED_1X;
27968 			break;
27969 		case CDROM_TWELVE_SPEED:
27970 			current_speed = 12 * SD_SPEED_1X;
27971 			break;
27972 		case CDROM_MAXIMUM_SPEED:
27973 			current_speed = 0xffff;
27974 			break;
27975 		default:
27976 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27977 			    "sr_atapi_change_speed: invalid drive speed %d\n",
27978 			    (uchar_t)data);
27979 			kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
27980 			return (EINVAL);
27981 		}
27982 
27983 		/* Check the request against the drive's max speed. */
27984 		if (current_speed != 0xffff) {
27985 			if (current_speed > max_speed) {
27986 				kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
27987 				return (EINVAL);
27988 			}
27989 		}
27990 
27991 		/*
27992 		 * Build and send the SET SPEED command
27993 		 *
27994 		 * Note: The SET SPEED (0xBB) command used in this routine is
27995 		 * obsolete per the SCSI MMC spec but still supported in the
27996 		 * MT FUJI vendor spec. Most equipment is adhereing to MT FUJI
27997 		 * therefore the command is still implemented in this routine.
27998 		 */
27999 		bzero(cdb, sizeof (cdb));
28000 		cdb[0] = (char)SCMD_SET_CDROM_SPEED;
28001 		cdb[2] = (uchar_t)(current_speed >> 8);
28002 		cdb[3] = (uchar_t)current_speed;
28003 		com = kmem_zalloc(sizeof (*com), KM_SLEEP);
28004 		com->uscsi_cdb	   = (caddr_t)cdb;
28005 		com->uscsi_cdblen  = CDB_GROUP5;
28006 		com->uscsi_bufaddr = NULL;
28007 		com->uscsi_buflen  = 0;
28008 		com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT;
28009 		rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, 0,
28010 		    UIO_SYSSPACE, SD_PATH_STANDARD);
28011 		break;
28012 	default:
28013 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28014 		    "sr_atapi_change_speed: Command '%x' Not Supported\n", cmd);
28015 		rval = EINVAL;
28016 	}
28017 
28018 	if (sense) {
28019 		kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
28020 	}
28021 	if (com) {
28022 		kmem_free(com, sizeof (*com));
28023 	}
28024 	return (rval);
28025 }
28026 
28027 
28028 /*
28029  *    Function: sr_pause_resume()
28030  *
28031  * Description: This routine is the driver entry point for handling CD-ROM
28032  *		pause/resume ioctl requests. This only affects the audio play
28033  *		operation.
28034  *
28035  *   Arguments: dev - the device 'dev_t'
28036  *		cmd - the request type; one of CDROMPAUSE or CDROMRESUME, used
28037  *		      for setting the resume bit of the cdb.
28038  *
28039  * Return Code: the code returned by sd_send_scsi_cmd()
28040  *		EINVAL if invalid mode specified
28041  *
28042  */
28043 
28044 static int
28045 sr_pause_resume(dev_t dev, int cmd)
28046 {
28047 	struct sd_lun		*un;
28048 	struct uscsi_cmd	*com;
28049 	char			cdb[CDB_GROUP1];
28050 	int			rval;
28051 
28052 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
28053 		return (ENXIO);
28054 	}
28055 
28056 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
28057 	bzero(cdb, CDB_GROUP1);
28058 	cdb[0] = SCMD_PAUSE_RESUME;
28059 	switch (cmd) {
28060 	case CDROMRESUME:
28061 		cdb[8] = 1;
28062 		break;
28063 	case CDROMPAUSE:
28064 		cdb[8] = 0;
28065 		break;
28066 	default:
28067 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_pause_resume:"
28068 		    " Command '%x' Not Supported\n", cmd);
28069 		rval = EINVAL;
28070 		goto done;
28071 	}
28072 
28073 	com->uscsi_cdb    = cdb;
28074 	com->uscsi_cdblen = CDB_GROUP1;
28075 	com->uscsi_flags  = USCSI_DIAGNOSE|USCSI_SILENT;
28076 
28077 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
28078 	    UIO_SYSSPACE, SD_PATH_STANDARD);
28079 
28080 done:
28081 	kmem_free(com, sizeof (*com));
28082 	return (rval);
28083 }
28084 
28085 
28086 /*
28087  *    Function: sr_play_msf()
28088  *
28089  * Description: This routine is the driver entry point for handling CD-ROM
28090  *		ioctl requests to output the audio signals at the specified
28091  *		starting address and continue the audio play until the specified
28092  *		ending address (CDROMPLAYMSF) The address is in Minute Second
28093  *		Frame (MSF) format.
28094  *
28095  *   Arguments: dev	- the device 'dev_t'
28096  *		data	- pointer to user provided audio msf structure,
28097  *		          specifying start/end addresses.
28098  *		flag	- this argument is a pass through to ddi_copyxxx()
28099  *		          directly from the mode argument of ioctl().
28100  *
28101  * Return Code: the code returned by sd_send_scsi_cmd()
28102  *		EFAULT if ddi_copyxxx() fails
28103  *		ENXIO if fail ddi_get_soft_state
28104  *		EINVAL if data pointer is NULL
28105  */
28106 
28107 static int
28108 sr_play_msf(dev_t dev, caddr_t data, int flag)
28109 {
28110 	struct sd_lun		*un;
28111 	struct uscsi_cmd	*com;
28112 	struct cdrom_msf	msf_struct;
28113 	struct cdrom_msf	*msf = &msf_struct;
28114 	char			cdb[CDB_GROUP1];
28115 	int			rval;
28116 
28117 	if (data == NULL) {
28118 		return (EINVAL);
28119 	}
28120 
28121 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
28122 		return (ENXIO);
28123 	}
28124 
28125 	if (ddi_copyin(data, msf, sizeof (struct cdrom_msf), flag)) {
28126 		return (EFAULT);
28127 	}
28128 
28129 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
28130 	bzero(cdb, CDB_GROUP1);
28131 	cdb[0] = SCMD_PLAYAUDIO_MSF;
28132 	if (un->un_f_cfg_playmsf_bcd == TRUE) {
28133 		cdb[3] = BYTE_TO_BCD(msf->cdmsf_min0);
28134 		cdb[4] = BYTE_TO_BCD(msf->cdmsf_sec0);
28135 		cdb[5] = BYTE_TO_BCD(msf->cdmsf_frame0);
28136 		cdb[6] = BYTE_TO_BCD(msf->cdmsf_min1);
28137 		cdb[7] = BYTE_TO_BCD(msf->cdmsf_sec1);
28138 		cdb[8] = BYTE_TO_BCD(msf->cdmsf_frame1);
28139 	} else {
28140 		cdb[3] = msf->cdmsf_min0;
28141 		cdb[4] = msf->cdmsf_sec0;
28142 		cdb[5] = msf->cdmsf_frame0;
28143 		cdb[6] = msf->cdmsf_min1;
28144 		cdb[7] = msf->cdmsf_sec1;
28145 		cdb[8] = msf->cdmsf_frame1;
28146 	}
28147 	com->uscsi_cdb    = cdb;
28148 	com->uscsi_cdblen = CDB_GROUP1;
28149 	com->uscsi_flags  = USCSI_DIAGNOSE|USCSI_SILENT;
28150 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
28151 	    UIO_SYSSPACE, SD_PATH_STANDARD);
28152 	kmem_free(com, sizeof (*com));
28153 	return (rval);
28154 }
28155 
28156 
28157 /*
28158  *    Function: sr_play_trkind()
28159  *
28160  * Description: This routine is the driver entry point for handling CD-ROM
28161  *		ioctl requests to output the audio signals at the specified
28162  *		starting address and continue the audio play until the specified
28163  *		ending address (CDROMPLAYTRKIND). The address is in Track Index
28164  *		format.
28165  *
28166  *   Arguments: dev	- the device 'dev_t'
28167  *		data	- pointer to user provided audio track/index structure,
28168  *		          specifying start/end addresses.
28169  *		flag	- this argument is a pass through to ddi_copyxxx()
28170  *		          directly from the mode argument of ioctl().
28171  *
28172  * Return Code: the code returned by sd_send_scsi_cmd()
28173  *		EFAULT if ddi_copyxxx() fails
28174  *		ENXIO if fail ddi_get_soft_state
28175  *		EINVAL if data pointer is NULL
28176  */
28177 
28178 static int
28179 sr_play_trkind(dev_t dev, caddr_t data, int flag)
28180 {
28181 	struct cdrom_ti		ti_struct;
28182 	struct cdrom_ti		*ti = &ti_struct;
28183 	struct uscsi_cmd	*com = NULL;
28184 	char			cdb[CDB_GROUP1];
28185 	int			rval;
28186 
28187 	if (data == NULL) {
28188 		return (EINVAL);
28189 	}
28190 
28191 	if (ddi_copyin(data, ti, sizeof (struct cdrom_ti), flag)) {
28192 		return (EFAULT);
28193 	}
28194 
28195 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
28196 	bzero(cdb, CDB_GROUP1);
28197 	cdb[0] = SCMD_PLAYAUDIO_TI;
28198 	cdb[4] = ti->cdti_trk0;
28199 	cdb[5] = ti->cdti_ind0;
28200 	cdb[7] = ti->cdti_trk1;
28201 	cdb[8] = ti->cdti_ind1;
28202 	com->uscsi_cdb    = cdb;
28203 	com->uscsi_cdblen = CDB_GROUP1;
28204 	com->uscsi_flags  = USCSI_DIAGNOSE|USCSI_SILENT;
28205 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
28206 	    UIO_SYSSPACE, SD_PATH_STANDARD);
28207 	kmem_free(com, sizeof (*com));
28208 	return (rval);
28209 }
28210 
28211 
28212 /*
28213  *    Function: sr_read_all_subcodes()
28214  *
28215  * Description: This routine is the driver entry point for handling CD-ROM
28216  *		ioctl requests to return raw subcode data while the target is
28217  *		playing audio (CDROMSUBCODE).
28218  *
28219  *   Arguments: dev	- the device 'dev_t'
28220  *		data	- pointer to user provided cdrom subcode structure,
28221  *		          specifying the transfer length and address.
28222  *		flag	- this argument is a pass through to ddi_copyxxx()
28223  *		          directly from the mode argument of ioctl().
28224  *
28225  * Return Code: the code returned by sd_send_scsi_cmd()
28226  *		EFAULT if ddi_copyxxx() fails
28227  *		ENXIO if fail ddi_get_soft_state
28228  *		EINVAL if data pointer is NULL
28229  */
28230 
28231 static int
28232 sr_read_all_subcodes(dev_t dev, caddr_t data, int flag)
28233 {
28234 	struct sd_lun		*un = NULL;
28235 	struct uscsi_cmd	*com = NULL;
28236 	struct cdrom_subcode	*subcode = NULL;
28237 	int			rval;
28238 	size_t			buflen;
28239 	char			cdb[CDB_GROUP5];
28240 
28241 #ifdef _MULTI_DATAMODEL
28242 	/* To support ILP32 applications in an LP64 world */
28243 	struct cdrom_subcode32		cdrom_subcode32;
28244 	struct cdrom_subcode32		*cdsc32 = &cdrom_subcode32;
28245 #endif
28246 	if (data == NULL) {
28247 		return (EINVAL);
28248 	}
28249 
28250 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
28251 		return (ENXIO);
28252 	}
28253 
28254 	subcode = kmem_zalloc(sizeof (struct cdrom_subcode), KM_SLEEP);
28255 
28256 #ifdef _MULTI_DATAMODEL
28257 	switch (ddi_model_convert_from(flag & FMODELS)) {
28258 	case DDI_MODEL_ILP32:
28259 		if (ddi_copyin(data, cdsc32, sizeof (*cdsc32), flag)) {
28260 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28261 			    "sr_read_all_subcodes: ddi_copyin Failed\n");
28262 			kmem_free(subcode, sizeof (struct cdrom_subcode));
28263 			return (EFAULT);
28264 		}
28265 		/* Convert the ILP32 uscsi data from the application to LP64 */
28266 		cdrom_subcode32tocdrom_subcode(cdsc32, subcode);
28267 		break;
28268 	case DDI_MODEL_NONE:
28269 		if (ddi_copyin(data, subcode,
28270 		    sizeof (struct cdrom_subcode), flag)) {
28271 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28272 			    "sr_read_all_subcodes: ddi_copyin Failed\n");
28273 			kmem_free(subcode, sizeof (struct cdrom_subcode));
28274 			return (EFAULT);
28275 		}
28276 		break;
28277 	}
28278 #else /* ! _MULTI_DATAMODEL */
28279 	if (ddi_copyin(data, subcode, sizeof (struct cdrom_subcode), flag)) {
28280 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28281 		    "sr_read_all_subcodes: ddi_copyin Failed\n");
28282 		kmem_free(subcode, sizeof (struct cdrom_subcode));
28283 		return (EFAULT);
28284 	}
28285 #endif /* _MULTI_DATAMODEL */
28286 
28287 	/*
28288 	 * Since MMC-2 expects max 3 bytes for length, check if the
28289 	 * length input is greater than 3 bytes
28290 	 */
28291 	if ((subcode->cdsc_length & 0xFF000000) != 0) {
28292 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28293 		    "sr_read_all_subcodes: "
28294 		    "cdrom transfer length too large: %d (limit %d)\n",
28295 		    subcode->cdsc_length, 0xFFFFFF);
28296 		kmem_free(subcode, sizeof (struct cdrom_subcode));
28297 		return (EINVAL);
28298 	}
28299 
28300 	buflen = CDROM_BLK_SUBCODE * subcode->cdsc_length;
28301 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
28302 	bzero(cdb, CDB_GROUP5);
28303 
28304 	if (un->un_f_mmc_cap == TRUE) {
28305 		cdb[0] = (char)SCMD_READ_CD;
28306 		cdb[2] = (char)0xff;
28307 		cdb[3] = (char)0xff;
28308 		cdb[4] = (char)0xff;
28309 		cdb[5] = (char)0xff;
28310 		cdb[6] = (((subcode->cdsc_length) & 0x00ff0000) >> 16);
28311 		cdb[7] = (((subcode->cdsc_length) & 0x0000ff00) >> 8);
28312 		cdb[8] = ((subcode->cdsc_length) & 0x000000ff);
28313 		cdb[10] = 1;
28314 	} else {
28315 		/*
28316 		 * Note: A vendor specific command (0xDF) is being used her to
28317 		 * request a read of all subcodes.
28318 		 */
28319 		cdb[0] = (char)SCMD_READ_ALL_SUBCODES;
28320 		cdb[6] = (((subcode->cdsc_length) & 0xff000000) >> 24);
28321 		cdb[7] = (((subcode->cdsc_length) & 0x00ff0000) >> 16);
28322 		cdb[8] = (((subcode->cdsc_length) & 0x0000ff00) >> 8);
28323 		cdb[9] = ((subcode->cdsc_length) & 0x000000ff);
28324 	}
28325 	com->uscsi_cdb	   = cdb;
28326 	com->uscsi_cdblen  = CDB_GROUP5;
28327 	com->uscsi_bufaddr = (caddr_t)subcode->cdsc_addr;
28328 	com->uscsi_buflen  = buflen;
28329 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
28330 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_USERSPACE,
28331 	    UIO_SYSSPACE, SD_PATH_STANDARD);
28332 	kmem_free(subcode, sizeof (struct cdrom_subcode));
28333 	kmem_free(com, sizeof (*com));
28334 	return (rval);
28335 }
28336 
28337 
28338 /*
28339  *    Function: sr_read_subchannel()
28340  *
28341  * Description: This routine is the driver entry point for handling CD-ROM
28342  *		ioctl requests to return the Q sub-channel data of the CD
28343  *		current position block. (CDROMSUBCHNL) The data includes the
28344  *		track number, index number, absolute CD-ROM address (LBA or MSF
28345  *		format per the user) , track relative CD-ROM address (LBA or MSF
28346  *		format per the user), control data and audio status.
28347  *
28348  *   Arguments: dev	- the device 'dev_t'
28349  *		data	- pointer to user provided cdrom sub-channel structure
28350  *		flag	- this argument is a pass through to ddi_copyxxx()
28351  *		          directly from the mode argument of ioctl().
28352  *
28353  * Return Code: the code returned by sd_send_scsi_cmd()
28354  *		EFAULT if ddi_copyxxx() fails
28355  *		ENXIO if fail ddi_get_soft_state
28356  *		EINVAL if data pointer is NULL
28357  */
28358 
28359 static int
28360 sr_read_subchannel(dev_t dev, caddr_t data, int flag)
28361 {
28362 	struct sd_lun		*un;
28363 	struct uscsi_cmd	*com;
28364 	struct cdrom_subchnl	subchanel;
28365 	struct cdrom_subchnl	*subchnl = &subchanel;
28366 	char			cdb[CDB_GROUP1];
28367 	caddr_t			buffer;
28368 	int			rval;
28369 
28370 	if (data == NULL) {
28371 		return (EINVAL);
28372 	}
28373 
28374 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
28375 	    (un->un_state == SD_STATE_OFFLINE)) {
28376 		return (ENXIO);
28377 	}
28378 
28379 	if (ddi_copyin(data, subchnl, sizeof (struct cdrom_subchnl), flag)) {
28380 		return (EFAULT);
28381 	}
28382 
28383 	buffer = kmem_zalloc((size_t)16, KM_SLEEP);
28384 	bzero(cdb, CDB_GROUP1);
28385 	cdb[0] = SCMD_READ_SUBCHANNEL;
28386 	/* Set the MSF bit based on the user requested address format */
28387 	cdb[1] = (subchnl->cdsc_format & CDROM_LBA) ? 0 : 0x02;
28388 	/*
28389 	 * Set the Q bit in byte 2 to indicate that Q sub-channel data be
28390 	 * returned
28391 	 */
28392 	cdb[2] = 0x40;
28393 	/*
28394 	 * Set byte 3 to specify the return data format. A value of 0x01
28395 	 * indicates that the CD-ROM current position should be returned.
28396 	 */
28397 	cdb[3] = 0x01;
28398 	cdb[8] = 0x10;
28399 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
28400 	com->uscsi_cdb	   = cdb;
28401 	com->uscsi_cdblen  = CDB_GROUP1;
28402 	com->uscsi_bufaddr = buffer;
28403 	com->uscsi_buflen  = 16;
28404 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
28405 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
28406 	    UIO_SYSSPACE, SD_PATH_STANDARD);
28407 	if (rval != 0) {
28408 		kmem_free(buffer, 16);
28409 		kmem_free(com, sizeof (*com));
28410 		return (rval);
28411 	}
28412 
28413 	/* Process the returned Q sub-channel data */
28414 	subchnl->cdsc_audiostatus = buffer[1];
28415 	subchnl->cdsc_adr	= (buffer[5] & 0xF0);
28416 	subchnl->cdsc_ctrl	= (buffer[5] & 0x0F);
28417 	subchnl->cdsc_trk	= buffer[6];
28418 	subchnl->cdsc_ind	= buffer[7];
28419 	if (subchnl->cdsc_format & CDROM_LBA) {
28420 		subchnl->cdsc_absaddr.lba =
28421 		    ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) +
28422 		    ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]);
28423 		subchnl->cdsc_reladdr.lba =
28424 		    ((uchar_t)buffer[12] << 24) + ((uchar_t)buffer[13] << 16) +
28425 		    ((uchar_t)buffer[14] << 8) + ((uchar_t)buffer[15]);
28426 	} else if (un->un_f_cfg_readsub_bcd == TRUE) {
28427 		subchnl->cdsc_absaddr.msf.minute = BCD_TO_BYTE(buffer[9]);
28428 		subchnl->cdsc_absaddr.msf.second = BCD_TO_BYTE(buffer[10]);
28429 		subchnl->cdsc_absaddr.msf.frame  = BCD_TO_BYTE(buffer[11]);
28430 		subchnl->cdsc_reladdr.msf.minute = BCD_TO_BYTE(buffer[13]);
28431 		subchnl->cdsc_reladdr.msf.second = BCD_TO_BYTE(buffer[14]);
28432 		subchnl->cdsc_reladdr.msf.frame  = BCD_TO_BYTE(buffer[15]);
28433 	} else {
28434 		subchnl->cdsc_absaddr.msf.minute = buffer[9];
28435 		subchnl->cdsc_absaddr.msf.second = buffer[10];
28436 		subchnl->cdsc_absaddr.msf.frame  = buffer[11];
28437 		subchnl->cdsc_reladdr.msf.minute = buffer[13];
28438 		subchnl->cdsc_reladdr.msf.second = buffer[14];
28439 		subchnl->cdsc_reladdr.msf.frame  = buffer[15];
28440 	}
28441 	kmem_free(buffer, 16);
28442 	kmem_free(com, sizeof (*com));
28443 	if (ddi_copyout(subchnl, data, sizeof (struct cdrom_subchnl), flag)
28444 	    != 0) {
28445 		return (EFAULT);
28446 	}
28447 	return (rval);
28448 }
28449 
28450 
28451 /*
28452  *    Function: sr_read_tocentry()
28453  *
28454  * Description: This routine is the driver entry point for handling CD-ROM
28455  *		ioctl requests to read from the Table of Contents (TOC)
28456  *		(CDROMREADTOCENTRY). This routine provides the ADR and CTRL
28457  *		fields, the starting address (LBA or MSF format per the user)
28458  *		and the data mode if the user specified track is a data track.
28459  *
28460  *		Note: The READ HEADER (0x44) command used in this routine is
28461  *		obsolete per the SCSI MMC spec but still supported in the
28462  *		MT FUJI vendor spec. Most equipment is adhereing to MT FUJI
28463  *		therefore the command is still implemented in this routine.
28464  *
28465  *   Arguments: dev	- the device 'dev_t'
28466  *		data	- pointer to user provided toc entry structure,
28467  *			  specifying the track # and the address format
28468  *			  (LBA or MSF).
28469  *		flag	- this argument is a pass through to ddi_copyxxx()
28470  *		          directly from the mode argument of ioctl().
28471  *
28472  * Return Code: the code returned by sd_send_scsi_cmd()
28473  *		EFAULT if ddi_copyxxx() fails
28474  *		ENXIO if fail ddi_get_soft_state
28475  *		EINVAL if data pointer is NULL
28476  */
28477 
28478 static int
28479 sr_read_tocentry(dev_t dev, caddr_t data, int flag)
28480 {
28481 	struct sd_lun		*un = NULL;
28482 	struct uscsi_cmd	*com;
28483 	struct cdrom_tocentry	toc_entry;
28484 	struct cdrom_tocentry	*entry = &toc_entry;
28485 	caddr_t			buffer;
28486 	int			rval;
28487 	char			cdb[CDB_GROUP1];
28488 
28489 	if (data == NULL) {
28490 		return (EINVAL);
28491 	}
28492 
28493 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
28494 	    (un->un_state == SD_STATE_OFFLINE)) {
28495 		return (ENXIO);
28496 	}
28497 
28498 	if (ddi_copyin(data, entry, sizeof (struct cdrom_tocentry), flag)) {
28499 		return (EFAULT);
28500 	}
28501 
28502 	/* Validate the requested track and address format */
28503 	if (!(entry->cdte_format & (CDROM_LBA | CDROM_MSF))) {
28504 		return (EINVAL);
28505 	}
28506 
28507 	if (entry->cdte_track == 0) {
28508 		return (EINVAL);
28509 	}
28510 
28511 	buffer = kmem_zalloc((size_t)12, KM_SLEEP);
28512 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
28513 	bzero(cdb, CDB_GROUP1);
28514 
28515 	cdb[0] = SCMD_READ_TOC;
28516 	/* Set the MSF bit based on the user requested address format  */
28517 	cdb[1] = ((entry->cdte_format & CDROM_LBA) ? 0 : 2);
28518 	if (un->un_f_cfg_read_toc_trk_bcd == TRUE) {
28519 		cdb[6] = BYTE_TO_BCD(entry->cdte_track);
28520 	} else {
28521 		cdb[6] = entry->cdte_track;
28522 	}
28523 
28524 	/*
28525 	 * Bytes 7 & 8 are the 12 byte allocation length for a single entry.
28526 	 * (4 byte TOC response header + 8 byte track descriptor)
28527 	 */
28528 	cdb[8] = 12;
28529 	com->uscsi_cdb	   = cdb;
28530 	com->uscsi_cdblen  = CDB_GROUP1;
28531 	com->uscsi_bufaddr = buffer;
28532 	com->uscsi_buflen  = 0x0C;
28533 	com->uscsi_flags   = (USCSI_DIAGNOSE | USCSI_SILENT | USCSI_READ);
28534 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
28535 	    UIO_SYSSPACE, SD_PATH_STANDARD);
28536 	if (rval != 0) {
28537 		kmem_free(buffer, 12);
28538 		kmem_free(com, sizeof (*com));
28539 		return (rval);
28540 	}
28541 
28542 	/* Process the toc entry */
28543 	entry->cdte_adr		= (buffer[5] & 0xF0) >> 4;
28544 	entry->cdte_ctrl	= (buffer[5] & 0x0F);
28545 	if (entry->cdte_format & CDROM_LBA) {
28546 		entry->cdte_addr.lba =
28547 		    ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) +
28548 		    ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]);
28549 	} else if (un->un_f_cfg_read_toc_addr_bcd == TRUE) {
28550 		entry->cdte_addr.msf.minute	= BCD_TO_BYTE(buffer[9]);
28551 		entry->cdte_addr.msf.second	= BCD_TO_BYTE(buffer[10]);
28552 		entry->cdte_addr.msf.frame	= BCD_TO_BYTE(buffer[11]);
28553 		/*
28554 		 * Send a READ TOC command using the LBA address format to get
28555 		 * the LBA for the track requested so it can be used in the
28556 		 * READ HEADER request
28557 		 *
28558 		 * Note: The MSF bit of the READ HEADER command specifies the
28559 		 * output format. The block address specified in that command
28560 		 * must be in LBA format.
28561 		 */
28562 		cdb[1] = 0;
28563 		rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
28564 		    UIO_SYSSPACE, SD_PATH_STANDARD);
28565 		if (rval != 0) {
28566 			kmem_free(buffer, 12);
28567 			kmem_free(com, sizeof (*com));
28568 			return (rval);
28569 		}
28570 	} else {
28571 		entry->cdte_addr.msf.minute	= buffer[9];
28572 		entry->cdte_addr.msf.second	= buffer[10];
28573 		entry->cdte_addr.msf.frame	= buffer[11];
28574 		/*
28575 		 * Send a READ TOC command using the LBA address format to get
28576 		 * the LBA for the track requested so it can be used in the
28577 		 * READ HEADER request
28578 		 *
28579 		 * Note: The MSF bit of the READ HEADER command specifies the
28580 		 * output format. The block address specified in that command
28581 		 * must be in LBA format.
28582 		 */
28583 		cdb[1] = 0;
28584 		rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
28585 		    UIO_SYSSPACE, SD_PATH_STANDARD);
28586 		if (rval != 0) {
28587 			kmem_free(buffer, 12);
28588 			kmem_free(com, sizeof (*com));
28589 			return (rval);
28590 		}
28591 	}
28592 
28593 	/*
28594 	 * Build and send the READ HEADER command to determine the data mode of
28595 	 * the user specified track.
28596 	 */
28597 	if ((entry->cdte_ctrl & CDROM_DATA_TRACK) &&
28598 	    (entry->cdte_track != CDROM_LEADOUT)) {
28599 		bzero(cdb, CDB_GROUP1);
28600 		cdb[0] = SCMD_READ_HEADER;
28601 		cdb[2] = buffer[8];
28602 		cdb[3] = buffer[9];
28603 		cdb[4] = buffer[10];
28604 		cdb[5] = buffer[11];
28605 		cdb[8] = 0x08;
28606 		com->uscsi_buflen = 0x08;
28607 		rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
28608 		    UIO_SYSSPACE, SD_PATH_STANDARD);
28609 		if (rval == 0) {
28610 			entry->cdte_datamode = buffer[0];
28611 		} else {
28612 			/*
28613 			 * READ HEADER command failed, since this is
28614 			 * obsoleted in one spec, its better to return
28615 			 * -1 for an invlid track so that we can still
28616 			 * recieve the rest of the TOC data.
28617 			 */
28618 			entry->cdte_datamode = (uchar_t)-1;
28619 		}
28620 	} else {
28621 		entry->cdte_datamode = (uchar_t)-1;
28622 	}
28623 
28624 	kmem_free(buffer, 12);
28625 	kmem_free(com, sizeof (*com));
28626 	if (ddi_copyout(entry, data, sizeof (struct cdrom_tocentry), flag) != 0)
28627 		return (EFAULT);
28628 
28629 	return (rval);
28630 }
28631 
28632 
28633 /*
28634  *    Function: sr_read_tochdr()
28635  *
28636  * Description: This routine is the driver entry point for handling CD-ROM
28637  * 		ioctl requests to read the Table of Contents (TOC) header
28638  *		(CDROMREADTOHDR). The TOC header consists of the disk starting
28639  *		and ending track numbers
28640  *
28641  *   Arguments: dev	- the device 'dev_t'
28642  *		data	- pointer to user provided toc header structure,
28643  *			  specifying the starting and ending track numbers.
28644  *		flag	- this argument is a pass through to ddi_copyxxx()
28645  *			  directly from the mode argument of ioctl().
28646  *
28647  * Return Code: the code returned by sd_send_scsi_cmd()
28648  *		EFAULT if ddi_copyxxx() fails
28649  *		ENXIO if fail ddi_get_soft_state
28650  *		EINVAL if data pointer is NULL
28651  */
28652 
28653 static int
28654 sr_read_tochdr(dev_t dev, caddr_t data, int flag)
28655 {
28656 	struct sd_lun		*un;
28657 	struct uscsi_cmd	*com;
28658 	struct cdrom_tochdr	toc_header;
28659 	struct cdrom_tochdr	*hdr = &toc_header;
28660 	char			cdb[CDB_GROUP1];
28661 	int			rval;
28662 	caddr_t			buffer;
28663 
28664 	if (data == NULL) {
28665 		return (EINVAL);
28666 	}
28667 
28668 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
28669 	    (un->un_state == SD_STATE_OFFLINE)) {
28670 		return (ENXIO);
28671 	}
28672 
28673 	buffer = kmem_zalloc(4, KM_SLEEP);
28674 	bzero(cdb, CDB_GROUP1);
28675 	cdb[0] = SCMD_READ_TOC;
28676 	/*
28677 	 * Specifying a track number of 0x00 in the READ TOC command indicates
28678 	 * that the TOC header should be returned
28679 	 */
28680 	cdb[6] = 0x00;
28681 	/*
28682 	 * Bytes 7 & 8 are the 4 byte allocation length for TOC header.
28683 	 * (2 byte data len + 1 byte starting track # + 1 byte ending track #)
28684 	 */
28685 	cdb[8] = 0x04;
28686 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
28687 	com->uscsi_cdb	   = cdb;
28688 	com->uscsi_cdblen  = CDB_GROUP1;
28689 	com->uscsi_bufaddr = buffer;
28690 	com->uscsi_buflen  = 0x04;
28691 	com->uscsi_timeout = 300;
28692 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
28693 
28694 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
28695 	    UIO_SYSSPACE, SD_PATH_STANDARD);
28696 	if (un->un_f_cfg_read_toc_trk_bcd == TRUE) {
28697 		hdr->cdth_trk0 = BCD_TO_BYTE(buffer[2]);
28698 		hdr->cdth_trk1 = BCD_TO_BYTE(buffer[3]);
28699 	} else {
28700 		hdr->cdth_trk0 = buffer[2];
28701 		hdr->cdth_trk1 = buffer[3];
28702 	}
28703 	kmem_free(buffer, 4);
28704 	kmem_free(com, sizeof (*com));
28705 	if (ddi_copyout(hdr, data, sizeof (struct cdrom_tochdr), flag) != 0) {
28706 		return (EFAULT);
28707 	}
28708 	return (rval);
28709 }
28710 
28711 
28712 /*
28713  * Note: The following sr_read_mode1(), sr_read_cd_mode2(), sr_read_mode2(),
28714  * sr_read_cdda(), sr_read_cdxa(), routines implement driver support for
28715  * handling CDROMREAD ioctl requests for mode 1 user data, mode 2 user data,
28716  * digital audio and extended architecture digital audio. These modes are
28717  * defined in the IEC908 (Red Book), ISO10149 (Yellow Book), and the SCSI3
28718  * MMC specs.
28719  *
28720  * In addition to support for the various data formats these routines also
28721  * include support for devices that implement only the direct access READ
28722  * commands (0x08, 0x28), devices that implement the READ_CD commands
28723  * (0xBE, 0xD4), and devices that implement the vendor unique READ CDDA and
28724  * READ CDXA commands (0xD8, 0xDB)
28725  */
28726 
28727 /*
28728  *    Function: sr_read_mode1()
28729  *
28730  * Description: This routine is the driver entry point for handling CD-ROM
28731  *		ioctl read mode1 requests (CDROMREADMODE1).
28732  *
28733  *   Arguments: dev	- the device 'dev_t'
28734  *		data	- pointer to user provided cd read structure specifying
28735  *			  the lba buffer address and length.
28736  *		flag	- this argument is a pass through to ddi_copyxxx()
28737  *			  directly from the mode argument of ioctl().
28738  *
28739  * Return Code: the code returned by sd_send_scsi_cmd()
28740  *		EFAULT if ddi_copyxxx() fails
28741  *		ENXIO if fail ddi_get_soft_state
28742  *		EINVAL if data pointer is NULL
28743  */
28744 
28745 static int
28746 sr_read_mode1(dev_t dev, caddr_t data, int flag)
28747 {
28748 	struct sd_lun		*un;
28749 	struct cdrom_read	mode1_struct;
28750 	struct cdrom_read	*mode1 = &mode1_struct;
28751 	int			rval;
28752 #ifdef _MULTI_DATAMODEL
28753 	/* To support ILP32 applications in an LP64 world */
28754 	struct cdrom_read32	cdrom_read32;
28755 	struct cdrom_read32	*cdrd32 = &cdrom_read32;
28756 #endif /* _MULTI_DATAMODEL */
28757 
28758 	if (data == NULL) {
28759 		return (EINVAL);
28760 	}
28761 
28762 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
28763 	    (un->un_state == SD_STATE_OFFLINE)) {
28764 		return (ENXIO);
28765 	}
28766 
28767 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
28768 	    "sd_read_mode1: entry: un:0x%p\n", un);
28769 
28770 #ifdef _MULTI_DATAMODEL
28771 	switch (ddi_model_convert_from(flag & FMODELS)) {
28772 	case DDI_MODEL_ILP32:
28773 		if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) {
28774 			return (EFAULT);
28775 		}
28776 		/* Convert the ILP32 uscsi data from the application to LP64 */
28777 		cdrom_read32tocdrom_read(cdrd32, mode1);
28778 		break;
28779 	case DDI_MODEL_NONE:
28780 		if (ddi_copyin(data, mode1, sizeof (struct cdrom_read), flag)) {
28781 			return (EFAULT);
28782 		}
28783 	}
28784 #else /* ! _MULTI_DATAMODEL */
28785 	if (ddi_copyin(data, mode1, sizeof (struct cdrom_read), flag)) {
28786 		return (EFAULT);
28787 	}
28788 #endif /* _MULTI_DATAMODEL */
28789 
28790 	rval = sd_send_scsi_READ(un, mode1->cdread_bufaddr,
28791 	    mode1->cdread_buflen, mode1->cdread_lba, SD_PATH_STANDARD);
28792 
28793 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
28794 	    "sd_read_mode1: exit: un:0x%p\n", un);
28795 
28796 	return (rval);
28797 }
28798 
28799 
28800 /*
28801  *    Function: sr_read_cd_mode2()
28802  *
28803  * Description: This routine is the driver entry point for handling CD-ROM
28804  *		ioctl read mode2 requests (CDROMREADMODE2) for devices that
28805  *		support the READ CD (0xBE) command or the 1st generation
28806  *		READ CD (0xD4) command.
28807  *
28808  *   Arguments: dev	- the device 'dev_t'
28809  *		data	- pointer to user provided cd read structure specifying
28810  *			  the lba buffer address and length.
28811  *		flag	- this argument is a pass through to ddi_copyxxx()
28812  *			  directly from the mode argument of ioctl().
28813  *
28814  * Return Code: the code returned by sd_send_scsi_cmd()
28815  *		EFAULT if ddi_copyxxx() fails
28816  *		ENXIO if fail ddi_get_soft_state
28817  *		EINVAL if data pointer is NULL
28818  */
28819 
28820 static int
28821 sr_read_cd_mode2(dev_t dev, caddr_t data, int flag)
28822 {
28823 	struct sd_lun		*un;
28824 	struct uscsi_cmd	*com;
28825 	struct cdrom_read	mode2_struct;
28826 	struct cdrom_read	*mode2 = &mode2_struct;
28827 	uchar_t			cdb[CDB_GROUP5];
28828 	int			nblocks;
28829 	int			rval;
28830 #ifdef _MULTI_DATAMODEL
28831 	/*  To support ILP32 applications in an LP64 world */
28832 	struct cdrom_read32	cdrom_read32;
28833 	struct cdrom_read32	*cdrd32 = &cdrom_read32;
28834 #endif /* _MULTI_DATAMODEL */
28835 
28836 	if (data == NULL) {
28837 		return (EINVAL);
28838 	}
28839 
28840 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
28841 	    (un->un_state == SD_STATE_OFFLINE)) {
28842 		return (ENXIO);
28843 	}
28844 
28845 #ifdef _MULTI_DATAMODEL
28846 	switch (ddi_model_convert_from(flag & FMODELS)) {
28847 	case DDI_MODEL_ILP32:
28848 		if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) {
28849 			return (EFAULT);
28850 		}
28851 		/* Convert the ILP32 uscsi data from the application to LP64 */
28852 		cdrom_read32tocdrom_read(cdrd32, mode2);
28853 		break;
28854 	case DDI_MODEL_NONE:
28855 		if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) {
28856 			return (EFAULT);
28857 		}
28858 		break;
28859 	}
28860 
28861 #else /* ! _MULTI_DATAMODEL */
28862 	if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) {
28863 		return (EFAULT);
28864 	}
28865 #endif /* _MULTI_DATAMODEL */
28866 
28867 	bzero(cdb, sizeof (cdb));
28868 	if (un->un_f_cfg_read_cd_xd4 == TRUE) {
28869 		/* Read command supported by 1st generation atapi drives */
28870 		cdb[0] = SCMD_READ_CDD4;
28871 	} else {
28872 		/* Universal CD Access Command */
28873 		cdb[0] = SCMD_READ_CD;
28874 	}
28875 
28876 	/*
28877 	 * Set expected sector type to: 2336s byte, Mode 2 Yellow Book
28878 	 */
28879 	cdb[1] = CDROM_SECTOR_TYPE_MODE2;
28880 
28881 	/* set the start address */
28882 	cdb[2] = (uchar_t)((mode2->cdread_lba >> 24) & 0XFF);
28883 	cdb[3] = (uchar_t)((mode2->cdread_lba >> 16) & 0XFF);
28884 	cdb[4] = (uchar_t)((mode2->cdread_lba >> 8) & 0xFF);
28885 	cdb[5] = (uchar_t)(mode2->cdread_lba & 0xFF);
28886 
28887 	/* set the transfer length */
28888 	nblocks = mode2->cdread_buflen / 2336;
28889 	cdb[6] = (uchar_t)(nblocks >> 16);
28890 	cdb[7] = (uchar_t)(nblocks >> 8);
28891 	cdb[8] = (uchar_t)nblocks;
28892 
28893 	/* set the filter bits */
28894 	cdb[9] = CDROM_READ_CD_USERDATA;
28895 
28896 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
28897 	com->uscsi_cdb = (caddr_t)cdb;
28898 	com->uscsi_cdblen = sizeof (cdb);
28899 	com->uscsi_bufaddr = mode2->cdread_bufaddr;
28900 	com->uscsi_buflen = mode2->cdread_buflen;
28901 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
28902 
28903 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_USERSPACE,
28904 	    UIO_SYSSPACE, SD_PATH_STANDARD);
28905 	kmem_free(com, sizeof (*com));
28906 	return (rval);
28907 }
28908 
28909 
28910 /*
28911  *    Function: sr_read_mode2()
28912  *
28913  * Description: This routine is the driver entry point for handling CD-ROM
28914  *		ioctl read mode2 requests (CDROMREADMODE2) for devices that
28915  *		do not support the READ CD (0xBE) command.
28916  *
28917  *   Arguments: dev	- the device 'dev_t'
28918  *		data	- pointer to user provided cd read structure specifying
28919  *			  the lba buffer address and length.
28920  *		flag	- this argument is a pass through to ddi_copyxxx()
28921  *			  directly from the mode argument of ioctl().
28922  *
28923  * Return Code: the code returned by sd_send_scsi_cmd()
28924  *		EFAULT if ddi_copyxxx() fails
28925  *		ENXIO if fail ddi_get_soft_state
28926  *		EINVAL if data pointer is NULL
28927  *		EIO if fail to reset block size
28928  *		EAGAIN if commands are in progress in the driver
28929  */
28930 
28931 static int
28932 sr_read_mode2(dev_t dev, caddr_t data, int flag)
28933 {
28934 	struct sd_lun		*un;
28935 	struct cdrom_read	mode2_struct;
28936 	struct cdrom_read	*mode2 = &mode2_struct;
28937 	int			rval;
28938 	uint32_t		restore_blksize;
28939 	struct uscsi_cmd	*com;
28940 	uchar_t			cdb[CDB_GROUP0];
28941 	int			nblocks;
28942 
28943 #ifdef _MULTI_DATAMODEL
28944 	/* To support ILP32 applications in an LP64 world */
28945 	struct cdrom_read32	cdrom_read32;
28946 	struct cdrom_read32	*cdrd32 = &cdrom_read32;
28947 #endif /* _MULTI_DATAMODEL */
28948 
28949 	if (data == NULL) {
28950 		return (EINVAL);
28951 	}
28952 
28953 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
28954 	    (un->un_state == SD_STATE_OFFLINE)) {
28955 		return (ENXIO);
28956 	}
28957 
28958 	/*
28959 	 * Because this routine will update the device and driver block size
28960 	 * being used we want to make sure there are no commands in progress.
28961 	 * If commands are in progress the user will have to try again.
28962 	 *
28963 	 * We check for 1 instead of 0 because we increment un_ncmds_in_driver
28964 	 * in sdioctl to protect commands from sdioctl through to the top of
28965 	 * sd_uscsi_strategy. See sdioctl for details.
28966 	 */
28967 	mutex_enter(SD_MUTEX(un));
28968 	if (un->un_ncmds_in_driver != 1) {
28969 		mutex_exit(SD_MUTEX(un));
28970 		return (EAGAIN);
28971 	}
28972 	mutex_exit(SD_MUTEX(un));
28973 
28974 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
28975 	    "sd_read_mode2: entry: un:0x%p\n", un);
28976 
28977 #ifdef _MULTI_DATAMODEL
28978 	switch (ddi_model_convert_from(flag & FMODELS)) {
28979 	case DDI_MODEL_ILP32:
28980 		if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) {
28981 			return (EFAULT);
28982 		}
28983 		/* Convert the ILP32 uscsi data from the application to LP64 */
28984 		cdrom_read32tocdrom_read(cdrd32, mode2);
28985 		break;
28986 	case DDI_MODEL_NONE:
28987 		if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) {
28988 			return (EFAULT);
28989 		}
28990 		break;
28991 	}
28992 #else /* ! _MULTI_DATAMODEL */
28993 	if (ddi_copyin(data, mode2, sizeof (*mode2), flag)) {
28994 		return (EFAULT);
28995 	}
28996 #endif /* _MULTI_DATAMODEL */
28997 
28998 	/* Store the current target block size for restoration later */
28999 	restore_blksize = un->un_tgt_blocksize;
29000 
29001 	/* Change the device and soft state target block size to 2336 */
29002 	if (sr_sector_mode(dev, SD_MODE2_BLKSIZE) != 0) {
29003 		rval = EIO;
29004 		goto done;
29005 	}
29006 
29007 
29008 	bzero(cdb, sizeof (cdb));
29009 
29010 	/* set READ operation */
29011 	cdb[0] = SCMD_READ;
29012 
29013 	/* adjust lba for 2kbyte blocks from 512 byte blocks */
29014 	mode2->cdread_lba >>= 2;
29015 
29016 	/* set the start address */
29017 	cdb[1] = (uchar_t)((mode2->cdread_lba >> 16) & 0X1F);
29018 	cdb[2] = (uchar_t)((mode2->cdread_lba >> 8) & 0xFF);
29019 	cdb[3] = (uchar_t)(mode2->cdread_lba & 0xFF);
29020 
29021 	/* set the transfer length */
29022 	nblocks = mode2->cdread_buflen / 2336;
29023 	cdb[4] = (uchar_t)nblocks & 0xFF;
29024 
29025 	/* build command */
29026 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
29027 	com->uscsi_cdb = (caddr_t)cdb;
29028 	com->uscsi_cdblen = sizeof (cdb);
29029 	com->uscsi_bufaddr = mode2->cdread_bufaddr;
29030 	com->uscsi_buflen = mode2->cdread_buflen;
29031 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
29032 
29033 	/*
29034 	 * Issue SCSI command with user space address for read buffer.
29035 	 *
29036 	 * This sends the command through main channel in the driver.
29037 	 *
29038 	 * Since this is accessed via an IOCTL call, we go through the
29039 	 * standard path, so that if the device was powered down, then
29040 	 * it would be 'awakened' to handle the command.
29041 	 */
29042 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_USERSPACE,
29043 	    UIO_SYSSPACE, SD_PATH_STANDARD);
29044 
29045 	kmem_free(com, sizeof (*com));
29046 
29047 	/* Restore the device and soft state target block size */
29048 	if (sr_sector_mode(dev, restore_blksize) != 0) {
29049 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
29050 		    "can't do switch back to mode 1\n");
29051 		/*
29052 		 * If sd_send_scsi_READ succeeded we still need to report
29053 		 * an error because we failed to reset the block size
29054 		 */
29055 		if (rval == 0) {
29056 			rval = EIO;
29057 		}
29058 	}
29059 
29060 done:
29061 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
29062 	    "sd_read_mode2: exit: un:0x%p\n", un);
29063 
29064 	return (rval);
29065 }
29066 
29067 
29068 /*
29069  *    Function: sr_sector_mode()
29070  *
29071  * Description: This utility function is used by sr_read_mode2 to set the target
29072  *		block size based on the user specified size. This is a legacy
29073  *		implementation based upon a vendor specific mode page
29074  *
29075  *   Arguments: dev	- the device 'dev_t'
29076  *		data	- flag indicating if block size is being set to 2336 or
29077  *			  512.
29078  *
29079  * Return Code: the code returned by sd_send_scsi_cmd()
29080  *		EFAULT if ddi_copyxxx() fails
29081  *		ENXIO if fail ddi_get_soft_state
29082  *		EINVAL if data pointer is NULL
29083  */
29084 
29085 static int
29086 sr_sector_mode(dev_t dev, uint32_t blksize)
29087 {
29088 	struct sd_lun	*un;
29089 	uchar_t		*sense;
29090 	uchar_t		*select;
29091 	int		rval;
29092 
29093 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
29094 	    (un->un_state == SD_STATE_OFFLINE)) {
29095 		return (ENXIO);
29096 	}
29097 
29098 	sense = kmem_zalloc(20, KM_SLEEP);
29099 
29100 	/* Note: This is a vendor specific mode page (0x81) */
29101 	if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense, 20, 0x81,
29102 	    SD_PATH_STANDARD)) != 0) {
29103 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
29104 		    "sr_sector_mode: Mode Sense failed\n");
29105 		kmem_free(sense, 20);
29106 		return (rval);
29107 	}
29108 	select = kmem_zalloc(20, KM_SLEEP);
29109 	select[3] = 0x08;
29110 	select[10] = ((blksize >> 8) & 0xff);
29111 	select[11] = (blksize & 0xff);
29112 	select[12] = 0x01;
29113 	select[13] = 0x06;
29114 	select[14] = sense[14];
29115 	select[15] = sense[15];
29116 	if (blksize == SD_MODE2_BLKSIZE) {
29117 		select[14] |= 0x01;
29118 	}
29119 
29120 	if ((rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, select, 20,
29121 	    SD_DONTSAVE_PAGE, SD_PATH_STANDARD)) != 0) {
29122 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
29123 		    "sr_sector_mode: Mode Select failed\n");
29124 	} else {
29125 		/*
29126 		 * Only update the softstate block size if we successfully
29127 		 * changed the device block mode.
29128 		 */
29129 		mutex_enter(SD_MUTEX(un));
29130 		sd_update_block_info(un, blksize, 0);
29131 		mutex_exit(SD_MUTEX(un));
29132 	}
29133 	kmem_free(sense, 20);
29134 	kmem_free(select, 20);
29135 	return (rval);
29136 }
29137 
29138 
29139 /*
29140  *    Function: sr_read_cdda()
29141  *
29142  * Description: This routine is the driver entry point for handling CD-ROM
29143  *		ioctl requests to return CD-DA or subcode data. (CDROMCDDA) If
29144  *		the target supports CDDA these requests are handled via a vendor
29145  *		specific command (0xD8) If the target does not support CDDA
29146  *		these requests are handled via the READ CD command (0xBE).
29147  *
29148  *   Arguments: dev	- the device 'dev_t'
29149  *		data	- pointer to user provided CD-DA structure specifying
29150  *			  the track starting address, transfer length, and
29151  *			  subcode options.
29152  *		flag	- this argument is a pass through to ddi_copyxxx()
29153  *			  directly from the mode argument of ioctl().
29154  *
29155  * Return Code: the code returned by sd_send_scsi_cmd()
29156  *		EFAULT if ddi_copyxxx() fails
29157  *		ENXIO if fail ddi_get_soft_state
29158  *		EINVAL if invalid arguments are provided
29159  *		ENOTTY
29160  */
29161 
29162 static int
29163 sr_read_cdda(dev_t dev, caddr_t data, int flag)
29164 {
29165 	struct sd_lun			*un;
29166 	struct uscsi_cmd		*com;
29167 	struct cdrom_cdda		*cdda;
29168 	int				rval;
29169 	size_t				buflen;
29170 	char				cdb[CDB_GROUP5];
29171 
29172 #ifdef _MULTI_DATAMODEL
29173 	/* To support ILP32 applications in an LP64 world */
29174 	struct cdrom_cdda32	cdrom_cdda32;
29175 	struct cdrom_cdda32	*cdda32 = &cdrom_cdda32;
29176 #endif /* _MULTI_DATAMODEL */
29177 
29178 	if (data == NULL) {
29179 		return (EINVAL);
29180 	}
29181 
29182 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
29183 		return (ENXIO);
29184 	}
29185 
29186 	cdda = kmem_zalloc(sizeof (struct cdrom_cdda), KM_SLEEP);
29187 
29188 #ifdef _MULTI_DATAMODEL
29189 	switch (ddi_model_convert_from(flag & FMODELS)) {
29190 	case DDI_MODEL_ILP32:
29191 		if (ddi_copyin(data, cdda32, sizeof (*cdda32), flag)) {
29192 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
29193 			    "sr_read_cdda: ddi_copyin Failed\n");
29194 			kmem_free(cdda, sizeof (struct cdrom_cdda));
29195 			return (EFAULT);
29196 		}
29197 		/* Convert the ILP32 uscsi data from the application to LP64 */
29198 		cdrom_cdda32tocdrom_cdda(cdda32, cdda);
29199 		break;
29200 	case DDI_MODEL_NONE:
29201 		if (ddi_copyin(data, cdda, sizeof (struct cdrom_cdda), flag)) {
29202 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
29203 			    "sr_read_cdda: ddi_copyin Failed\n");
29204 			kmem_free(cdda, sizeof (struct cdrom_cdda));
29205 			return (EFAULT);
29206 		}
29207 		break;
29208 	}
29209 #else /* ! _MULTI_DATAMODEL */
29210 	if (ddi_copyin(data, cdda, sizeof (struct cdrom_cdda), flag)) {
29211 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
29212 		    "sr_read_cdda: ddi_copyin Failed\n");
29213 		kmem_free(cdda, sizeof (struct cdrom_cdda));
29214 		return (EFAULT);
29215 	}
29216 #endif /* _MULTI_DATAMODEL */
29217 
29218 	/*
29219 	 * Since MMC-2 expects max 3 bytes for length, check if the
29220 	 * length input is greater than 3 bytes
29221 	 */
29222 	if ((cdda->cdda_length & 0xFF000000) != 0) {
29223 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_read_cdda: "
29224 		    "cdrom transfer length too large: %d (limit %d)\n",
29225 		    cdda->cdda_length, 0xFFFFFF);
29226 		kmem_free(cdda, sizeof (struct cdrom_cdda));
29227 		return (EINVAL);
29228 	}
29229 
29230 	switch (cdda->cdda_subcode) {
29231 	case CDROM_DA_NO_SUBCODE:
29232 		buflen = CDROM_BLK_2352 * cdda->cdda_length;
29233 		break;
29234 	case CDROM_DA_SUBQ:
29235 		buflen = CDROM_BLK_2368 * cdda->cdda_length;
29236 		break;
29237 	case CDROM_DA_ALL_SUBCODE:
29238 		buflen = CDROM_BLK_2448 * cdda->cdda_length;
29239 		break;
29240 	case CDROM_DA_SUBCODE_ONLY:
29241 		buflen = CDROM_BLK_SUBCODE * cdda->cdda_length;
29242 		break;
29243 	default:
29244 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
29245 		    "sr_read_cdda: Subcode '0x%x' Not Supported\n",
29246 		    cdda->cdda_subcode);
29247 		kmem_free(cdda, sizeof (struct cdrom_cdda));
29248 		return (EINVAL);
29249 	}
29250 
29251 	/* Build and send the command */
29252 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
29253 	bzero(cdb, CDB_GROUP5);
29254 
29255 	if (un->un_f_cfg_cdda == TRUE) {
29256 		cdb[0] = (char)SCMD_READ_CD;
29257 		cdb[1] = 0x04;
29258 		cdb[2] = (((cdda->cdda_addr) & 0xff000000) >> 24);
29259 		cdb[3] = (((cdda->cdda_addr) & 0x00ff0000) >> 16);
29260 		cdb[4] = (((cdda->cdda_addr) & 0x0000ff00) >> 8);
29261 		cdb[5] = ((cdda->cdda_addr) & 0x000000ff);
29262 		cdb[6] = (((cdda->cdda_length) & 0x00ff0000) >> 16);
29263 		cdb[7] = (((cdda->cdda_length) & 0x0000ff00) >> 8);
29264 		cdb[8] = ((cdda->cdda_length) & 0x000000ff);
29265 		cdb[9] = 0x10;
29266 		switch (cdda->cdda_subcode) {
29267 		case CDROM_DA_NO_SUBCODE :
29268 			cdb[10] = 0x0;
29269 			break;
29270 		case CDROM_DA_SUBQ :
29271 			cdb[10] = 0x2;
29272 			break;
29273 		case CDROM_DA_ALL_SUBCODE :
29274 			cdb[10] = 0x1;
29275 			break;
29276 		case CDROM_DA_SUBCODE_ONLY :
29277 			/* FALLTHROUGH */
29278 		default :
29279 			kmem_free(cdda, sizeof (struct cdrom_cdda));
29280 			kmem_free(com, sizeof (*com));
29281 			return (ENOTTY);
29282 		}
29283 	} else {
29284 		cdb[0] = (char)SCMD_READ_CDDA;
29285 		cdb[2] = (((cdda->cdda_addr) & 0xff000000) >> 24);
29286 		cdb[3] = (((cdda->cdda_addr) & 0x00ff0000) >> 16);
29287 		cdb[4] = (((cdda->cdda_addr) & 0x0000ff00) >> 8);
29288 		cdb[5] = ((cdda->cdda_addr) & 0x000000ff);
29289 		cdb[6] = (((cdda->cdda_length) & 0xff000000) >> 24);
29290 		cdb[7] = (((cdda->cdda_length) & 0x00ff0000) >> 16);
29291 		cdb[8] = (((cdda->cdda_length) & 0x0000ff00) >> 8);
29292 		cdb[9] = ((cdda->cdda_length) & 0x000000ff);
29293 		cdb[10] = cdda->cdda_subcode;
29294 	}
29295 
29296 	com->uscsi_cdb = cdb;
29297 	com->uscsi_cdblen = CDB_GROUP5;
29298 	com->uscsi_bufaddr = (caddr_t)cdda->cdda_data;
29299 	com->uscsi_buflen = buflen;
29300 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
29301 
29302 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_USERSPACE,
29303 	    UIO_SYSSPACE, SD_PATH_STANDARD);
29304 
29305 	kmem_free(cdda, sizeof (struct cdrom_cdda));
29306 	kmem_free(com, sizeof (*com));
29307 	return (rval);
29308 }
29309 
29310 
29311 /*
29312  *    Function: sr_read_cdxa()
29313  *
29314  * Description: This routine is the driver entry point for handling CD-ROM
29315  *		ioctl requests to return CD-XA (Extended Architecture) data.
29316  *		(CDROMCDXA).
29317  *
29318  *   Arguments: dev	- the device 'dev_t'
29319  *		data	- pointer to user provided CD-XA structure specifying
29320  *			  the data starting address, transfer length, and format
29321  *		flag	- this argument is a pass through to ddi_copyxxx()
29322  *			  directly from the mode argument of ioctl().
29323  *
29324  * Return Code: the code returned by sd_send_scsi_cmd()
29325  *		EFAULT if ddi_copyxxx() fails
29326  *		ENXIO if fail ddi_get_soft_state
29327  *		EINVAL if data pointer is NULL
29328  */
29329 
29330 static int
29331 sr_read_cdxa(dev_t dev, caddr_t data, int flag)
29332 {
29333 	struct sd_lun		*un;
29334 	struct uscsi_cmd	*com;
29335 	struct cdrom_cdxa	*cdxa;
29336 	int			rval;
29337 	size_t			buflen;
29338 	char			cdb[CDB_GROUP5];
29339 	uchar_t			read_flags;
29340 
29341 #ifdef _MULTI_DATAMODEL
29342 	/* To support ILP32 applications in an LP64 world */
29343 	struct cdrom_cdxa32		cdrom_cdxa32;
29344 	struct cdrom_cdxa32		*cdxa32 = &cdrom_cdxa32;
29345 #endif /* _MULTI_DATAMODEL */
29346 
29347 	if (data == NULL) {
29348 		return (EINVAL);
29349 	}
29350 
29351 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
29352 		return (ENXIO);
29353 	}
29354 
29355 	cdxa = kmem_zalloc(sizeof (struct cdrom_cdxa), KM_SLEEP);
29356 
29357 #ifdef _MULTI_DATAMODEL
29358 	switch (ddi_model_convert_from(flag & FMODELS)) {
29359 	case DDI_MODEL_ILP32:
29360 		if (ddi_copyin(data, cdxa32, sizeof (*cdxa32), flag)) {
29361 			kmem_free(cdxa, sizeof (struct cdrom_cdxa));
29362 			return (EFAULT);
29363 		}
29364 		/*
29365 		 * Convert the ILP32 uscsi data from the
29366 		 * application to LP64 for internal use.
29367 		 */
29368 		cdrom_cdxa32tocdrom_cdxa(cdxa32, cdxa);
29369 		break;
29370 	case DDI_MODEL_NONE:
29371 		if (ddi_copyin(data, cdxa, sizeof (struct cdrom_cdxa), flag)) {
29372 			kmem_free(cdxa, sizeof (struct cdrom_cdxa));
29373 			return (EFAULT);
29374 		}
29375 		break;
29376 	}
29377 #else /* ! _MULTI_DATAMODEL */
29378 	if (ddi_copyin(data, cdxa, sizeof (struct cdrom_cdxa), flag)) {
29379 		kmem_free(cdxa, sizeof (struct cdrom_cdxa));
29380 		return (EFAULT);
29381 	}
29382 #endif /* _MULTI_DATAMODEL */
29383 
29384 	/*
29385 	 * Since MMC-2 expects max 3 bytes for length, check if the
29386 	 * length input is greater than 3 bytes
29387 	 */
29388 	if ((cdxa->cdxa_length & 0xFF000000) != 0) {
29389 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_read_cdxa: "
29390 		    "cdrom transfer length too large: %d (limit %d)\n",
29391 		    cdxa->cdxa_length, 0xFFFFFF);
29392 		kmem_free(cdxa, sizeof (struct cdrom_cdxa));
29393 		return (EINVAL);
29394 	}
29395 
29396 	switch (cdxa->cdxa_format) {
29397 	case CDROM_XA_DATA:
29398 		buflen = CDROM_BLK_2048 * cdxa->cdxa_length;
29399 		read_flags = 0x10;
29400 		break;
29401 	case CDROM_XA_SECTOR_DATA:
29402 		buflen = CDROM_BLK_2352 * cdxa->cdxa_length;
29403 		read_flags = 0xf8;
29404 		break;
29405 	case CDROM_XA_DATA_W_ERROR:
29406 		buflen = CDROM_BLK_2646 * cdxa->cdxa_length;
29407 		read_flags = 0xfc;
29408 		break;
29409 	default:
29410 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
29411 		    "sr_read_cdxa: Format '0x%x' Not Supported\n",
29412 		    cdxa->cdxa_format);
29413 		kmem_free(cdxa, sizeof (struct cdrom_cdxa));
29414 		return (EINVAL);
29415 	}
29416 
29417 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
29418 	bzero(cdb, CDB_GROUP5);
29419 	if (un->un_f_mmc_cap == TRUE) {
29420 		cdb[0] = (char)SCMD_READ_CD;
29421 		cdb[2] = (((cdxa->cdxa_addr) & 0xff000000) >> 24);
29422 		cdb[3] = (((cdxa->cdxa_addr) & 0x00ff0000) >> 16);
29423 		cdb[4] = (((cdxa->cdxa_addr) & 0x0000ff00) >> 8);
29424 		cdb[5] = ((cdxa->cdxa_addr) & 0x000000ff);
29425 		cdb[6] = (((cdxa->cdxa_length) & 0x00ff0000) >> 16);
29426 		cdb[7] = (((cdxa->cdxa_length) & 0x0000ff00) >> 8);
29427 		cdb[8] = ((cdxa->cdxa_length) & 0x000000ff);
29428 		cdb[9] = (char)read_flags;
29429 	} else {
29430 		/*
29431 		 * Note: A vendor specific command (0xDB) is being used her to
29432 		 * request a read of all subcodes.
29433 		 */
29434 		cdb[0] = (char)SCMD_READ_CDXA;
29435 		cdb[2] = (((cdxa->cdxa_addr) & 0xff000000) >> 24);
29436 		cdb[3] = (((cdxa->cdxa_addr) & 0x00ff0000) >> 16);
29437 		cdb[4] = (((cdxa->cdxa_addr) & 0x0000ff00) >> 8);
29438 		cdb[5] = ((cdxa->cdxa_addr) & 0x000000ff);
29439 		cdb[6] = (((cdxa->cdxa_length) & 0xff000000) >> 24);
29440 		cdb[7] = (((cdxa->cdxa_length) & 0x00ff0000) >> 16);
29441 		cdb[8] = (((cdxa->cdxa_length) & 0x0000ff00) >> 8);
29442 		cdb[9] = ((cdxa->cdxa_length) & 0x000000ff);
29443 		cdb[10] = cdxa->cdxa_format;
29444 	}
29445 	com->uscsi_cdb	   = cdb;
29446 	com->uscsi_cdblen  = CDB_GROUP5;
29447 	com->uscsi_bufaddr = (caddr_t)cdxa->cdxa_data;
29448 	com->uscsi_buflen  = buflen;
29449 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
29450 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_USERSPACE,
29451 	    UIO_SYSSPACE, SD_PATH_STANDARD);
29452 	kmem_free(cdxa, sizeof (struct cdrom_cdxa));
29453 	kmem_free(com, sizeof (*com));
29454 	return (rval);
29455 }
29456 
29457 
29458 /*
29459  *    Function: sr_eject()
29460  *
29461  * Description: This routine is the driver entry point for handling CD-ROM
29462  *		eject ioctl requests (FDEJECT, DKIOCEJECT, CDROMEJECT)
29463  *
29464  *   Arguments: dev	- the device 'dev_t'
29465  *
29466  * Return Code: the code returned by sd_send_scsi_cmd()
29467  */
29468 
29469 static int
29470 sr_eject(dev_t dev)
29471 {
29472 	struct sd_lun	*un;
29473 	int		rval;
29474 
29475 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
29476 	    (un->un_state == SD_STATE_OFFLINE)) {
29477 		return (ENXIO);
29478 	}
29479 	if ((rval = sd_send_scsi_DOORLOCK(un, SD_REMOVAL_ALLOW,
29480 	    SD_PATH_STANDARD)) != 0) {
29481 		return (rval);
29482 	}
29483 
29484 	rval = sd_send_scsi_START_STOP_UNIT(un, SD_TARGET_EJECT,
29485 	    SD_PATH_STANDARD);
29486 
29487 	if (rval == 0) {
29488 		mutex_enter(SD_MUTEX(un));
29489 		sr_ejected(un);
29490 		un->un_mediastate = DKIO_EJECTED;
29491 		cv_broadcast(&un->un_state_cv);
29492 		mutex_exit(SD_MUTEX(un));
29493 	}
29494 	return (rval);
29495 }
29496 
29497 
29498 /*
29499  *    Function: sr_ejected()
29500  *
29501  * Description: This routine updates the soft state structure to invalidate the
29502  *		geometry information after the media has been ejected or a
29503  *		media eject has been detected.
29504  *
29505  *   Arguments: un - driver soft state (unit) structure
29506  */
29507 
29508 static void
29509 sr_ejected(struct sd_lun *un)
29510 {
29511 	struct sd_errstats *stp;
29512 
29513 	ASSERT(un != NULL);
29514 	ASSERT(mutex_owned(SD_MUTEX(un)));
29515 
29516 	un->un_f_blockcount_is_valid	= FALSE;
29517 	un->un_f_tgt_blocksize_is_valid	= FALSE;
29518 	un->un_f_geometry_is_valid	= FALSE;
29519 
29520 	if (un->un_errstats != NULL) {
29521 		stp = (struct sd_errstats *)un->un_errstats->ks_data;
29522 		stp->sd_capacity.value.ui64 = 0;
29523 	}
29524 }
29525 
29526 
29527 /*
29528  *    Function: sr_check_wp()
29529  *
29530  * Description: This routine checks the write protection of a removable
29531  *      media disk and hotpluggable devices via the write protect bit of
29532  *      the Mode Page Header device specific field. Some devices choke
29533  *      on unsupported mode page. In order to workaround this issue,
29534  *      this routine has been implemented to use 0x3f mode page(request
29535  *      for all pages) for all device types.
29536  *
29537  *   Arguments: dev		- the device 'dev_t'
29538  *
29539  * Return Code: int indicating if the device is write protected (1) or not (0)
29540  *
29541  *     Context: Kernel thread.
29542  *
29543  */
29544 
29545 static int
29546 sr_check_wp(dev_t dev)
29547 {
29548 	struct sd_lun	*un;
29549 	uchar_t		device_specific;
29550 	uchar_t		*sense;
29551 	int		hdrlen;
29552 	int		rval = FALSE;
29553 
29554 	/*
29555 	 * Note: The return codes for this routine should be reworked to
29556 	 * properly handle the case of a NULL softstate.
29557 	 */
29558 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
29559 		return (FALSE);
29560 	}
29561 
29562 	if (un->un_f_cfg_is_atapi == TRUE) {
29563 		/*
29564 		 * The mode page contents are not required; set the allocation
29565 		 * length for the mode page header only
29566 		 */
29567 		hdrlen = MODE_HEADER_LENGTH_GRP2;
29568 		sense = kmem_zalloc(hdrlen, KM_SLEEP);
29569 		if (sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, sense, hdrlen,
29570 		    MODEPAGE_ALLPAGES, SD_PATH_STANDARD) != 0)
29571 			goto err_exit;
29572 		device_specific =
29573 		    ((struct mode_header_grp2 *)sense)->device_specific;
29574 	} else {
29575 		hdrlen = MODE_HEADER_LENGTH;
29576 		sense = kmem_zalloc(hdrlen, KM_SLEEP);
29577 		if (sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense, hdrlen,
29578 		    MODEPAGE_ALLPAGES, SD_PATH_STANDARD) != 0)
29579 			goto err_exit;
29580 		device_specific =
29581 		    ((struct mode_header *)sense)->device_specific;
29582 	}
29583 
29584 	/*
29585 	 * Write protect mode sense failed; not all disks
29586 	 * understand this query. Return FALSE assuming that
29587 	 * these devices are not writable.
29588 	 */
29589 	if (device_specific & WRITE_PROTECT) {
29590 		rval = TRUE;
29591 	}
29592 
29593 err_exit:
29594 	kmem_free(sense, hdrlen);
29595 	return (rval);
29596 }
29597 
29598 /*
29599  *    Function: sr_volume_ctrl()
29600  *
29601  * Description: This routine is the driver entry point for handling CD-ROM
29602  *		audio output volume ioctl requests. (CDROMVOLCTRL)
29603  *
29604  *   Arguments: dev	- the device 'dev_t'
29605  *		data	- pointer to user audio volume control structure
29606  *		flag	- this argument is a pass through to ddi_copyxxx()
29607  *			  directly from the mode argument of ioctl().
29608  *
29609  * Return Code: the code returned by sd_send_scsi_cmd()
29610  *		EFAULT if ddi_copyxxx() fails
29611  *		ENXIO if fail ddi_get_soft_state
29612  *		EINVAL if data pointer is NULL
29613  *
29614  */
29615 
29616 static int
29617 sr_volume_ctrl(dev_t dev, caddr_t data, int flag)
29618 {
29619 	struct sd_lun		*un;
29620 	struct cdrom_volctrl    volume;
29621 	struct cdrom_volctrl    *vol = &volume;
29622 	uchar_t			*sense_page;
29623 	uchar_t			*select_page;
29624 	uchar_t			*sense;
29625 	uchar_t			*select;
29626 	int			sense_buflen;
29627 	int			select_buflen;
29628 	int			rval;
29629 
29630 	if (data == NULL) {
29631 		return (EINVAL);
29632 	}
29633 
29634 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
29635 	    (un->un_state == SD_STATE_OFFLINE)) {
29636 		return (ENXIO);
29637 	}
29638 
29639 	if (ddi_copyin(data, vol, sizeof (struct cdrom_volctrl), flag)) {
29640 		return (EFAULT);
29641 	}
29642 
29643 	if ((un->un_f_cfg_is_atapi == TRUE) || (un->un_f_mmc_cap == TRUE)) {
29644 		struct mode_header_grp2		*sense_mhp;
29645 		struct mode_header_grp2		*select_mhp;
29646 		int				bd_len;
29647 
29648 		sense_buflen = MODE_PARAM_LENGTH_GRP2 + MODEPAGE_AUDIO_CTRL_LEN;
29649 		select_buflen = MODE_HEADER_LENGTH_GRP2 +
29650 		    MODEPAGE_AUDIO_CTRL_LEN;
29651 		sense  = kmem_zalloc(sense_buflen, KM_SLEEP);
29652 		select = kmem_zalloc(select_buflen, KM_SLEEP);
29653 		if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP1, sense,
29654 		    sense_buflen, MODEPAGE_AUDIO_CTRL,
29655 		    SD_PATH_STANDARD)) != 0) {
29656 			SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
29657 			    "sr_volume_ctrl: Mode Sense Failed\n");
29658 			kmem_free(sense, sense_buflen);
29659 			kmem_free(select, select_buflen);
29660 			return (rval);
29661 		}
29662 		sense_mhp = (struct mode_header_grp2 *)sense;
29663 		select_mhp = (struct mode_header_grp2 *)select;
29664 		bd_len = (sense_mhp->bdesc_length_hi << 8) |
29665 		    sense_mhp->bdesc_length_lo;
29666 		if (bd_len > MODE_BLK_DESC_LENGTH) {
29667 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
29668 			    "sr_volume_ctrl: Mode Sense returned invalid "
29669 			    "block descriptor length\n");
29670 			kmem_free(sense, sense_buflen);
29671 			kmem_free(select, select_buflen);
29672 			return (EIO);
29673 		}
29674 		sense_page = (uchar_t *)
29675 		    (sense + MODE_HEADER_LENGTH_GRP2 + bd_len);
29676 		select_page = (uchar_t *)(select + MODE_HEADER_LENGTH_GRP2);
29677 		select_mhp->length_msb = 0;
29678 		select_mhp->length_lsb = 0;
29679 		select_mhp->bdesc_length_hi = 0;
29680 		select_mhp->bdesc_length_lo = 0;
29681 	} else {
29682 		struct mode_header		*sense_mhp, *select_mhp;
29683 
29684 		sense_buflen = MODE_PARAM_LENGTH + MODEPAGE_AUDIO_CTRL_LEN;
29685 		select_buflen = MODE_HEADER_LENGTH + MODEPAGE_AUDIO_CTRL_LEN;
29686 		sense  = kmem_zalloc(sense_buflen, KM_SLEEP);
29687 		select = kmem_zalloc(select_buflen, KM_SLEEP);
29688 		if ((rval = sd_send_scsi_MODE_SENSE(un, CDB_GROUP0, sense,
29689 		    sense_buflen, MODEPAGE_AUDIO_CTRL,
29690 		    SD_PATH_STANDARD)) != 0) {
29691 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
29692 			    "sr_volume_ctrl: Mode Sense Failed\n");
29693 			kmem_free(sense, sense_buflen);
29694 			kmem_free(select, select_buflen);
29695 			return (rval);
29696 		}
29697 		sense_mhp  = (struct mode_header *)sense;
29698 		select_mhp = (struct mode_header *)select;
29699 		if (sense_mhp->bdesc_length > MODE_BLK_DESC_LENGTH) {
29700 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
29701 			    "sr_volume_ctrl: Mode Sense returned invalid "
29702 			    "block descriptor length\n");
29703 			kmem_free(sense, sense_buflen);
29704 			kmem_free(select, select_buflen);
29705 			return (EIO);
29706 		}
29707 		sense_page = (uchar_t *)
29708 		    (sense + MODE_HEADER_LENGTH + sense_mhp->bdesc_length);
29709 		select_page = (uchar_t *)(select + MODE_HEADER_LENGTH);
29710 		select_mhp->length = 0;
29711 		select_mhp->bdesc_length = 0;
29712 	}
29713 	/*
29714 	 * Note: An audio control data structure could be created and overlayed
29715 	 * on the following in place of the array indexing method implemented.
29716 	 */
29717 
29718 	/* Build the select data for the user volume data */
29719 	select_page[0] = MODEPAGE_AUDIO_CTRL;
29720 	select_page[1] = 0xE;
29721 	/* Set the immediate bit */
29722 	select_page[2] = 0x04;
29723 	/* Zero out reserved fields */
29724 	select_page[3] = 0x00;
29725 	select_page[4] = 0x00;
29726 	/* Return sense data for fields not to be modified */
29727 	select_page[5] = sense_page[5];
29728 	select_page[6] = sense_page[6];
29729 	select_page[7] = sense_page[7];
29730 	/* Set the user specified volume levels for channel 0 and 1 */
29731 	select_page[8] = 0x01;
29732 	select_page[9] = vol->channel0;
29733 	select_page[10] = 0x02;
29734 	select_page[11] = vol->channel1;
29735 	/* Channel 2 and 3 are currently unsupported so return the sense data */
29736 	select_page[12] = sense_page[12];
29737 	select_page[13] = sense_page[13];
29738 	select_page[14] = sense_page[14];
29739 	select_page[15] = sense_page[15];
29740 
29741 	if ((un->un_f_cfg_is_atapi == TRUE) || (un->un_f_mmc_cap == TRUE)) {
29742 		rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP1, select,
29743 		    select_buflen, SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
29744 	} else {
29745 		rval = sd_send_scsi_MODE_SELECT(un, CDB_GROUP0, select,
29746 		    select_buflen, SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
29747 	}
29748 
29749 	kmem_free(sense, sense_buflen);
29750 	kmem_free(select, select_buflen);
29751 	return (rval);
29752 }
29753 
29754 
29755 /*
29756  *    Function: sr_read_sony_session_offset()
29757  *
29758  * Description: This routine is the driver entry point for handling CD-ROM
29759  *		ioctl requests for session offset information. (CDROMREADOFFSET)
29760  *		The address of the first track in the last session of a
29761  *		multi-session CD-ROM is returned
29762  *
29763  *		Note: This routine uses a vendor specific key value in the
29764  *		command control field without implementing any vendor check here
29765  *		or in the ioctl routine.
29766  *
29767  *   Arguments: dev	- the device 'dev_t'
29768  *		data	- pointer to an int to hold the requested address
29769  *		flag	- this argument is a pass through to ddi_copyxxx()
29770  *			  directly from the mode argument of ioctl().
29771  *
29772  * Return Code: the code returned by sd_send_scsi_cmd()
29773  *		EFAULT if ddi_copyxxx() fails
29774  *		ENXIO if fail ddi_get_soft_state
29775  *		EINVAL if data pointer is NULL
29776  */
29777 
29778 static int
29779 sr_read_sony_session_offset(dev_t dev, caddr_t data, int flag)
29780 {
29781 	struct sd_lun		*un;
29782 	struct uscsi_cmd	*com;
29783 	caddr_t			buffer;
29784 	char			cdb[CDB_GROUP1];
29785 	int			session_offset = 0;
29786 	int			rval;
29787 
29788 	if (data == NULL) {
29789 		return (EINVAL);
29790 	}
29791 
29792 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
29793 	    (un->un_state == SD_STATE_OFFLINE)) {
29794 		return (ENXIO);
29795 	}
29796 
29797 	buffer = kmem_zalloc((size_t)SONY_SESSION_OFFSET_LEN, KM_SLEEP);
29798 	bzero(cdb, CDB_GROUP1);
29799 	cdb[0] = SCMD_READ_TOC;
29800 	/*
29801 	 * Bytes 7 & 8 are the 12 byte allocation length for a single entry.
29802 	 * (4 byte TOC response header + 8 byte response data)
29803 	 */
29804 	cdb[8] = SONY_SESSION_OFFSET_LEN;
29805 	/* Byte 9 is the control byte. A vendor specific value is used */
29806 	cdb[9] = SONY_SESSION_OFFSET_KEY;
29807 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
29808 	com->uscsi_cdb = cdb;
29809 	com->uscsi_cdblen = CDB_GROUP1;
29810 	com->uscsi_bufaddr = buffer;
29811 	com->uscsi_buflen = SONY_SESSION_OFFSET_LEN;
29812 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
29813 
29814 	rval = sd_send_scsi_cmd(dev, com, UIO_SYSSPACE, UIO_SYSSPACE,
29815 	    UIO_SYSSPACE, SD_PATH_STANDARD);
29816 	if (rval != 0) {
29817 		kmem_free(buffer, SONY_SESSION_OFFSET_LEN);
29818 		kmem_free(com, sizeof (*com));
29819 		return (rval);
29820 	}
29821 	if (buffer[1] == SONY_SESSION_OFFSET_VALID) {
29822 		session_offset =
29823 		    ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) +
29824 		    ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]);
29825 		/*
29826 		 * Offset returned offset in current lbasize block's. Convert to
29827 		 * 2k block's to return to the user
29828 		 */
29829 		if (un->un_tgt_blocksize == CDROM_BLK_512) {
29830 			session_offset >>= 2;
29831 		} else if (un->un_tgt_blocksize == CDROM_BLK_1024) {
29832 			session_offset >>= 1;
29833 		}
29834 	}
29835 
29836 	if (ddi_copyout(&session_offset, data, sizeof (int), flag) != 0) {
29837 		rval = EFAULT;
29838 	}
29839 
29840 	kmem_free(buffer, SONY_SESSION_OFFSET_LEN);
29841 	kmem_free(com, sizeof (*com));
29842 	return (rval);
29843 }
29844 
29845 
29846 /*
29847  *    Function: sd_wm_cache_constructor()
29848  *
29849  * Description: Cache Constructor for the wmap cache for the read/modify/write
29850  * 		devices.
29851  *
29852  *   Arguments: wm      - A pointer to the sd_w_map to be initialized.
29853  *		un	- sd_lun structure for the device.
29854  *		flag	- the km flags passed to constructor
29855  *
29856  * Return Code: 0 on success.
29857  *		-1 on failure.
29858  */
29859 
29860 /*ARGSUSED*/
29861 static int
29862 sd_wm_cache_constructor(void *wm, void *un, int flags)
29863 {
29864 	bzero(wm, sizeof (struct sd_w_map));
29865 	cv_init(&((struct sd_w_map *)wm)->wm_avail, NULL, CV_DRIVER, NULL);
29866 	return (0);
29867 }
29868 
29869 
29870 /*
29871  *    Function: sd_wm_cache_destructor()
29872  *
29873  * Description: Cache destructor for the wmap cache for the read/modify/write
29874  * 		devices.
29875  *
29876  *   Arguments: wm      - A pointer to the sd_w_map to be initialized.
29877  *		un	- sd_lun structure for the device.
29878  */
29879 /*ARGSUSED*/
29880 static void
29881 sd_wm_cache_destructor(void *wm, void *un)
29882 {
29883 	cv_destroy(&((struct sd_w_map *)wm)->wm_avail);
29884 }
29885 
29886 
29887 /*
29888  *    Function: sd_range_lock()
29889  *
29890  * Description: Lock the range of blocks specified as parameter to ensure
29891  *		that read, modify write is atomic and no other i/o writes
29892  *		to the same location. The range is specified in terms
29893  *		of start and end blocks. Block numbers are the actual
29894  *		media block numbers and not system.
29895  *
29896  *   Arguments: un	- sd_lun structure for the device.
29897  *		startb - The starting block number
29898  *		endb - The end block number
29899  *		typ - type of i/o - simple/read_modify_write
29900  *
29901  * Return Code: wm  - pointer to the wmap structure.
29902  *
29903  *     Context: This routine can sleep.
29904  */
29905 
29906 static struct sd_w_map *
29907 sd_range_lock(struct sd_lun *un, daddr_t startb, daddr_t endb, ushort_t typ)
29908 {
29909 	struct sd_w_map *wmp = NULL;
29910 	struct sd_w_map *sl_wmp = NULL;
29911 	struct sd_w_map *tmp_wmp;
29912 	wm_state state = SD_WM_CHK_LIST;
29913 
29914 
29915 	ASSERT(un != NULL);
29916 	ASSERT(!mutex_owned(SD_MUTEX(un)));
29917 
29918 	mutex_enter(SD_MUTEX(un));
29919 
29920 	while (state != SD_WM_DONE) {
29921 
29922 		switch (state) {
29923 		case SD_WM_CHK_LIST:
29924 			/*
29925 			 * This is the starting state. Check the wmap list
29926 			 * to see if the range is currently available.
29927 			 */
29928 			if (!(typ & SD_WTYPE_RMW) && !(un->un_rmw_count)) {
29929 				/*
29930 				 * If this is a simple write and no rmw
29931 				 * i/o is pending then try to lock the
29932 				 * range as the range should be available.
29933 				 */
29934 				state = SD_WM_LOCK_RANGE;
29935 			} else {
29936 				tmp_wmp = sd_get_range(un, startb, endb);
29937 				if (tmp_wmp != NULL) {
29938 					if ((wmp != NULL) && ONLIST(un, wmp)) {
29939 						/*
29940 						 * Should not keep onlist wmps
29941 						 * while waiting this macro
29942 						 * will also do wmp = NULL;
29943 						 */
29944 						FREE_ONLIST_WMAP(un, wmp);
29945 					}
29946 					/*
29947 					 * sl_wmp is the wmap on which wait
29948 					 * is done, since the tmp_wmp points
29949 					 * to the inuse wmap, set sl_wmp to
29950 					 * tmp_wmp and change the state to sleep
29951 					 */
29952 					sl_wmp = tmp_wmp;
29953 					state = SD_WM_WAIT_MAP;
29954 				} else {
29955 					state = SD_WM_LOCK_RANGE;
29956 				}
29957 
29958 			}
29959 			break;
29960 
29961 		case SD_WM_LOCK_RANGE:
29962 			ASSERT(un->un_wm_cache);
29963 			/*
29964 			 * The range need to be locked, try to get a wmap.
29965 			 * First attempt it with NO_SLEEP, want to avoid a sleep
29966 			 * if possible as we will have to release the sd mutex
29967 			 * if we have to sleep.
29968 			 */
29969 			if (wmp == NULL)
29970 				wmp = kmem_cache_alloc(un->un_wm_cache,
29971 				    KM_NOSLEEP);
29972 			if (wmp == NULL) {
29973 				mutex_exit(SD_MUTEX(un));
29974 				_NOTE(DATA_READABLE_WITHOUT_LOCK
29975 				    (sd_lun::un_wm_cache))
29976 				wmp = kmem_cache_alloc(un->un_wm_cache,
29977 				    KM_SLEEP);
29978 				mutex_enter(SD_MUTEX(un));
29979 				/*
29980 				 * we released the mutex so recheck and go to
29981 				 * check list state.
29982 				 */
29983 				state = SD_WM_CHK_LIST;
29984 			} else {
29985 				/*
29986 				 * We exit out of state machine since we
29987 				 * have the wmap. Do the housekeeping first.
29988 				 * place the wmap on the wmap list if it is not
29989 				 * on it already and then set the state to done.
29990 				 */
29991 				wmp->wm_start = startb;
29992 				wmp->wm_end = endb;
29993 				wmp->wm_flags = typ | SD_WM_BUSY;
29994 				if (typ & SD_WTYPE_RMW) {
29995 					un->un_rmw_count++;
29996 				}
29997 				/*
29998 				 * If not already on the list then link
29999 				 */
30000 				if (!ONLIST(un, wmp)) {
30001 					wmp->wm_next = un->un_wm;
30002 					wmp->wm_prev = NULL;
30003 					if (wmp->wm_next)
30004 						wmp->wm_next->wm_prev = wmp;
30005 					un->un_wm = wmp;
30006 				}
30007 				state = SD_WM_DONE;
30008 			}
30009 			break;
30010 
30011 		case SD_WM_WAIT_MAP:
30012 			ASSERT(sl_wmp->wm_flags & SD_WM_BUSY);
30013 			/*
30014 			 * Wait is done on sl_wmp, which is set in the
30015 			 * check_list state.
30016 			 */
30017 			sl_wmp->wm_wanted_count++;
30018 			cv_wait(&sl_wmp->wm_avail, SD_MUTEX(un));
30019 			sl_wmp->wm_wanted_count--;
30020 			/*
30021 			 * We can reuse the memory from the completed sl_wmp
30022 			 * lock range for our new lock, but only if noone is
30023 			 * waiting for it.
30024 			 */
30025 			ASSERT(!(sl_wmp->wm_flags & SD_WM_BUSY));
30026 			if (sl_wmp->wm_wanted_count == 0) {
30027 				if (wmp != NULL)
30028 					CHK_N_FREEWMP(un, wmp);
30029 				wmp = sl_wmp;
30030 			}
30031 			sl_wmp = NULL;
30032 			/*
30033 			 * After waking up, need to recheck for availability of
30034 			 * range.
30035 			 */
30036 			state = SD_WM_CHK_LIST;
30037 			break;
30038 
30039 		default:
30040 			panic("sd_range_lock: "
30041 			    "Unknown state %d in sd_range_lock", state);
30042 			/*NOTREACHED*/
30043 		} /* switch(state) */
30044 
30045 	} /* while(state != SD_WM_DONE) */
30046 
30047 	mutex_exit(SD_MUTEX(un));
30048 
30049 	ASSERT(wmp != NULL);
30050 
30051 	return (wmp);
30052 }
30053 
30054 
30055 /*
30056  *    Function: sd_get_range()
30057  *
30058  * Description: Find if there any overlapping I/O to this one
30059  *		Returns the write-map of 1st such I/O, NULL otherwise.
30060  *
30061  *   Arguments: un	- sd_lun structure for the device.
30062  *		startb - The starting block number
30063  *		endb - The end block number
30064  *
30065  * Return Code: wm  - pointer to the wmap structure.
30066  */
30067 
30068 static struct sd_w_map *
30069 sd_get_range(struct sd_lun *un, daddr_t startb, daddr_t endb)
30070 {
30071 	struct sd_w_map *wmp;
30072 
30073 	ASSERT(un != NULL);
30074 
30075 	for (wmp = un->un_wm; wmp != NULL; wmp = wmp->wm_next) {
30076 		if (!(wmp->wm_flags & SD_WM_BUSY)) {
30077 			continue;
30078 		}
30079 		if ((startb >= wmp->wm_start) && (startb <= wmp->wm_end)) {
30080 			break;
30081 		}
30082 		if ((endb >= wmp->wm_start) && (endb <= wmp->wm_end)) {
30083 			break;
30084 		}
30085 	}
30086 
30087 	return (wmp);
30088 }
30089 
30090 
30091 /*
30092  *    Function: sd_free_inlist_wmap()
30093  *
30094  * Description: Unlink and free a write map struct.
30095  *
30096  *   Arguments: un      - sd_lun structure for the device.
30097  *		wmp	- sd_w_map which needs to be unlinked.
30098  */
30099 
30100 static void
30101 sd_free_inlist_wmap(struct sd_lun *un, struct sd_w_map *wmp)
30102 {
30103 	ASSERT(un != NULL);
30104 
30105 	if (un->un_wm == wmp) {
30106 		un->un_wm = wmp->wm_next;
30107 	} else {
30108 		wmp->wm_prev->wm_next = wmp->wm_next;
30109 	}
30110 
30111 	if (wmp->wm_next) {
30112 		wmp->wm_next->wm_prev = wmp->wm_prev;
30113 	}
30114 
30115 	wmp->wm_next = wmp->wm_prev = NULL;
30116 
30117 	kmem_cache_free(un->un_wm_cache, wmp);
30118 }
30119 
30120 
30121 /*
30122  *    Function: sd_range_unlock()
30123  *
30124  * Description: Unlock the range locked by wm.
30125  *		Free write map if nobody else is waiting on it.
30126  *
30127  *   Arguments: un      - sd_lun structure for the device.
30128  *              wmp     - sd_w_map which needs to be unlinked.
30129  */
30130 
30131 static void
30132 sd_range_unlock(struct sd_lun *un, struct sd_w_map *wm)
30133 {
30134 	ASSERT(un != NULL);
30135 	ASSERT(wm != NULL);
30136 	ASSERT(!mutex_owned(SD_MUTEX(un)));
30137 
30138 	mutex_enter(SD_MUTEX(un));
30139 
30140 	if (wm->wm_flags & SD_WTYPE_RMW) {
30141 		un->un_rmw_count--;
30142 	}
30143 
30144 	if (wm->wm_wanted_count) {
30145 		wm->wm_flags = 0;
30146 		/*
30147 		 * Broadcast that the wmap is available now.
30148 		 */
30149 		cv_broadcast(&wm->wm_avail);
30150 	} else {
30151 		/*
30152 		 * If no one is waiting on the map, it should be free'ed.
30153 		 */
30154 		sd_free_inlist_wmap(un, wm);
30155 	}
30156 
30157 	mutex_exit(SD_MUTEX(un));
30158 }
30159 
30160 
30161 /*
30162  *    Function: sd_read_modify_write_task
30163  *
30164  * Description: Called from a taskq thread to initiate the write phase of
30165  *		a read-modify-write request.  This is used for targets where
30166  *		un->un_sys_blocksize != un->un_tgt_blocksize.
30167  *
30168  *   Arguments: arg - a pointer to the buf(9S) struct for the write command.
30169  *
30170  *     Context: Called under taskq thread context.
30171  */
30172 
30173 static void
30174 sd_read_modify_write_task(void *arg)
30175 {
30176 	struct sd_mapblocksize_info	*bsp;
30177 	struct buf	*bp;
30178 	struct sd_xbuf	*xp;
30179 	struct sd_lun	*un;
30180 
30181 	bp = arg;	/* The bp is given in arg */
30182 	ASSERT(bp != NULL);
30183 
30184 	/* Get the pointer to the layer-private data struct */
30185 	xp = SD_GET_XBUF(bp);
30186 	ASSERT(xp != NULL);
30187 	bsp = xp->xb_private;
30188 	ASSERT(bsp != NULL);
30189 
30190 	un = SD_GET_UN(bp);
30191 	ASSERT(un != NULL);
30192 	ASSERT(!mutex_owned(SD_MUTEX(un)));
30193 
30194 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
30195 	    "sd_read_modify_write_task: entry: buf:0x%p\n", bp);
30196 
30197 	/*
30198 	 * This is the write phase of a read-modify-write request, called
30199 	 * under the context of a taskq thread in response to the completion
30200 	 * of the read portion of the rmw request completing under interrupt
30201 	 * context. The write request must be sent from here down the iostart
30202 	 * chain as if it were being sent from sd_mapblocksize_iostart(), so
30203 	 * we use the layer index saved in the layer-private data area.
30204 	 */
30205 	SD_NEXT_IOSTART(bsp->mbs_layer_index, un, bp);
30206 
30207 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
30208 	    "sd_read_modify_write_task: exit: buf:0x%p\n", bp);
30209 }
30210 
30211 
30212 /*
30213  *    Function: sddump_do_read_of_rmw()
30214  *
30215  * Description: This routine will be called from sddump, If sddump is called
30216  *		with an I/O which not aligned on device blocksize boundary
30217  *		then the write has to be converted to read-modify-write.
30218  *		Do the read part here in order to keep sddump simple.
30219  *		Note - That the sd_mutex is held across the call to this
30220  *		routine.
30221  *
30222  *   Arguments: un	- sd_lun
30223  *		blkno	- block number in terms of media block size.
30224  *		nblk	- number of blocks.
30225  *		bpp	- pointer to pointer to the buf structure. On return
30226  *			from this function, *bpp points to the valid buffer
30227  *			to which the write has to be done.
30228  *
30229  * Return Code: 0 for success or errno-type return code
30230  */
30231 
30232 static int
30233 sddump_do_read_of_rmw(struct sd_lun *un, uint64_t blkno, uint64_t nblk,
30234 	struct buf **bpp)
30235 {
30236 	int err;
30237 	int i;
30238 	int rval;
30239 	struct buf *bp;
30240 	struct scsi_pkt *pkt = NULL;
30241 	uint32_t target_blocksize;
30242 
30243 	ASSERT(un != NULL);
30244 	ASSERT(mutex_owned(SD_MUTEX(un)));
30245 
30246 	target_blocksize = un->un_tgt_blocksize;
30247 
30248 	mutex_exit(SD_MUTEX(un));
30249 
30250 	bp = scsi_alloc_consistent_buf(SD_ADDRESS(un), (struct buf *)NULL,
30251 	    (size_t)(nblk * target_blocksize), B_READ, NULL_FUNC, NULL);
30252 	if (bp == NULL) {
30253 		scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
30254 		    "no resources for dumping; giving up");
30255 		err = ENOMEM;
30256 		goto done;
30257 	}
30258 
30259 	rval = sd_setup_rw_pkt(un, &pkt, bp, 0, NULL_FUNC, NULL,
30260 	    blkno, nblk);
30261 	if (rval != 0) {
30262 		scsi_free_consistent_buf(bp);
30263 		scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
30264 		    "no resources for dumping; giving up");
30265 		err = ENOMEM;
30266 		goto done;
30267 	}
30268 
30269 	pkt->pkt_flags |= FLAG_NOINTR;
30270 
30271 	err = EIO;
30272 	for (i = 0; i < SD_NDUMP_RETRIES; i++) {
30273 
30274 		/*
30275 		 * Scsi_poll returns 0 (success) if the command completes and
30276 		 * the status block is STATUS_GOOD.  We should only check
30277 		 * errors if this condition is not true.  Even then we should
30278 		 * send our own request sense packet only if we have a check
30279 		 * condition and auto request sense has not been performed by
30280 		 * the hba.
30281 		 */
30282 		SD_TRACE(SD_LOG_DUMP, un, "sddump: sending read\n");
30283 
30284 		if ((sd_scsi_poll(un, pkt) == 0) && (pkt->pkt_resid == 0)) {
30285 			err = 0;
30286 			break;
30287 		}
30288 
30289 		/*
30290 		 * Check CMD_DEV_GONE 1st, give up if device is gone,
30291 		 * no need to read RQS data.
30292 		 */
30293 		if (pkt->pkt_reason == CMD_DEV_GONE) {
30294 			scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
30295 			    "Device is gone\n");
30296 			break;
30297 		}
30298 
30299 		if (SD_GET_PKT_STATUS(pkt) == STATUS_CHECK) {
30300 			SD_INFO(SD_LOG_DUMP, un,
30301 			    "sddump: read failed with CHECK, try # %d\n", i);
30302 			if (((pkt->pkt_state & STATE_ARQ_DONE) == 0)) {
30303 				(void) sd_send_polled_RQS(un);
30304 			}
30305 
30306 			continue;
30307 		}
30308 
30309 		if (SD_GET_PKT_STATUS(pkt) == STATUS_BUSY) {
30310 			int reset_retval = 0;
30311 
30312 			SD_INFO(SD_LOG_DUMP, un,
30313 			    "sddump: read failed with BUSY, try # %d\n", i);
30314 
30315 			if (un->un_f_lun_reset_enabled == TRUE) {
30316 				reset_retval = scsi_reset(SD_ADDRESS(un),
30317 				    RESET_LUN);
30318 			}
30319 			if (reset_retval == 0) {
30320 				(void) scsi_reset(SD_ADDRESS(un), RESET_TARGET);
30321 			}
30322 			(void) sd_send_polled_RQS(un);
30323 
30324 		} else {
30325 			SD_INFO(SD_LOG_DUMP, un,
30326 			    "sddump: read failed with 0x%x, try # %d\n",
30327 			    SD_GET_PKT_STATUS(pkt), i);
30328 			mutex_enter(SD_MUTEX(un));
30329 			sd_reset_target(un, pkt);
30330 			mutex_exit(SD_MUTEX(un));
30331 		}
30332 
30333 		/*
30334 		 * If we are not getting anywhere with lun/target resets,
30335 		 * let's reset the bus.
30336 		 */
30337 		if (i > SD_NDUMP_RETRIES/2) {
30338 			(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
30339 			(void) sd_send_polled_RQS(un);
30340 		}
30341 
30342 	}
30343 	scsi_destroy_pkt(pkt);
30344 
30345 	if (err != 0) {
30346 		scsi_free_consistent_buf(bp);
30347 		*bpp = NULL;
30348 	} else {
30349 		*bpp = bp;
30350 	}
30351 
30352 done:
30353 	mutex_enter(SD_MUTEX(un));
30354 	return (err);
30355 }
30356 
30357 
30358 /*
30359  *    Function: sd_failfast_flushq
30360  *
30361  * Description: Take all bp's on the wait queue that have B_FAILFAST set
30362  *		in b_flags and move them onto the failfast queue, then kick
30363  *		off a thread to return all bp's on the failfast queue to
30364  *		their owners with an error set.
30365  *
30366  *   Arguments: un - pointer to the soft state struct for the instance.
30367  *
30368  *     Context: may execute in interrupt context.
30369  */
30370 
30371 static void
30372 sd_failfast_flushq(struct sd_lun *un)
30373 {
30374 	struct buf *bp;
30375 	struct buf *next_waitq_bp;
30376 	struct buf *prev_waitq_bp = NULL;
30377 
30378 	ASSERT(un != NULL);
30379 	ASSERT(mutex_owned(SD_MUTEX(un)));
30380 	ASSERT(un->un_failfast_state == SD_FAILFAST_ACTIVE);
30381 	ASSERT(un->un_failfast_bp == NULL);
30382 
30383 	SD_TRACE(SD_LOG_IO_FAILFAST, un,
30384 	    "sd_failfast_flushq: entry: un:0x%p\n", un);
30385 
30386 	/*
30387 	 * Check if we should flush all bufs when entering failfast state, or
30388 	 * just those with B_FAILFAST set.
30389 	 */
30390 	if (sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_BUFS) {
30391 		/*
30392 		 * Move *all* bp's on the wait queue to the failfast flush
30393 		 * queue, including those that do NOT have B_FAILFAST set.
30394 		 */
30395 		if (un->un_failfast_headp == NULL) {
30396 			ASSERT(un->un_failfast_tailp == NULL);
30397 			un->un_failfast_headp = un->un_waitq_headp;
30398 		} else {
30399 			ASSERT(un->un_failfast_tailp != NULL);
30400 			un->un_failfast_tailp->av_forw = un->un_waitq_headp;
30401 		}
30402 
30403 		un->un_failfast_tailp = un->un_waitq_tailp;
30404 
30405 		/* update kstat for each bp moved out of the waitq */
30406 		for (bp = un->un_waitq_headp; bp != NULL; bp = bp->av_forw) {
30407 			SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp);
30408 		}
30409 
30410 		/* empty the waitq */
30411 		un->un_waitq_headp = un->un_waitq_tailp = NULL;
30412 
30413 	} else {
30414 		/*
30415 		 * Go thru the wait queue, pick off all entries with
30416 		 * B_FAILFAST set, and move these onto the failfast queue.
30417 		 */
30418 		for (bp = un->un_waitq_headp; bp != NULL; bp = next_waitq_bp) {
30419 			/*
30420 			 * Save the pointer to the next bp on the wait queue,
30421 			 * so we get to it on the next iteration of this loop.
30422 			 */
30423 			next_waitq_bp = bp->av_forw;
30424 
30425 			/*
30426 			 * If this bp from the wait queue does NOT have
30427 			 * B_FAILFAST set, just move on to the next element
30428 			 * in the wait queue. Note, this is the only place
30429 			 * where it is correct to set prev_waitq_bp.
30430 			 */
30431 			if ((bp->b_flags & B_FAILFAST) == 0) {
30432 				prev_waitq_bp = bp;
30433 				continue;
30434 			}
30435 
30436 			/*
30437 			 * Remove the bp from the wait queue.
30438 			 */
30439 			if (bp == un->un_waitq_headp) {
30440 				/* The bp is the first element of the waitq. */
30441 				un->un_waitq_headp = next_waitq_bp;
30442 				if (un->un_waitq_headp == NULL) {
30443 					/* The wait queue is now empty */
30444 					un->un_waitq_tailp = NULL;
30445 				}
30446 			} else {
30447 				/*
30448 				 * The bp is either somewhere in the middle
30449 				 * or at the end of the wait queue.
30450 				 */
30451 				ASSERT(un->un_waitq_headp != NULL);
30452 				ASSERT(prev_waitq_bp != NULL);
30453 				ASSERT((prev_waitq_bp->b_flags & B_FAILFAST)
30454 				    == 0);
30455 				if (bp == un->un_waitq_tailp) {
30456 					/* bp is the last entry on the waitq. */
30457 					ASSERT(next_waitq_bp == NULL);
30458 					un->un_waitq_tailp = prev_waitq_bp;
30459 				}
30460 				prev_waitq_bp->av_forw = next_waitq_bp;
30461 			}
30462 			bp->av_forw = NULL;
30463 
30464 			/*
30465 			 * update kstat since the bp is moved out of
30466 			 * the waitq
30467 			 */
30468 			SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp);
30469 
30470 			/*
30471 			 * Now put the bp onto the failfast queue.
30472 			 */
30473 			if (un->un_failfast_headp == NULL) {
30474 				/* failfast queue is currently empty */
30475 				ASSERT(un->un_failfast_tailp == NULL);
30476 				un->un_failfast_headp =
30477 				    un->un_failfast_tailp = bp;
30478 			} else {
30479 				/* Add the bp to the end of the failfast q */
30480 				ASSERT(un->un_failfast_tailp != NULL);
30481 				ASSERT(un->un_failfast_tailp->b_flags &
30482 				    B_FAILFAST);
30483 				un->un_failfast_tailp->av_forw = bp;
30484 				un->un_failfast_tailp = bp;
30485 			}
30486 		}
30487 	}
30488 
30489 	/*
30490 	 * Now return all bp's on the failfast queue to their owners.
30491 	 */
30492 	while ((bp = un->un_failfast_headp) != NULL) {
30493 
30494 		un->un_failfast_headp = bp->av_forw;
30495 		if (un->un_failfast_headp == NULL) {
30496 			un->un_failfast_tailp = NULL;
30497 		}
30498 
30499 		/*
30500 		 * We want to return the bp with a failure error code, but
30501 		 * we do not want a call to sd_start_cmds() to occur here,
30502 		 * so use sd_return_failed_command_no_restart() instead of
30503 		 * sd_return_failed_command().
30504 		 */
30505 		sd_return_failed_command_no_restart(un, bp, EIO);
30506 	}
30507 
30508 	/* Flush the xbuf queues if required. */
30509 	if (sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_QUEUES) {
30510 		ddi_xbuf_flushq(un->un_xbuf_attr, sd_failfast_flushq_callback);
30511 	}
30512 
30513 	SD_TRACE(SD_LOG_IO_FAILFAST, un,
30514 	    "sd_failfast_flushq: exit: un:0x%p\n", un);
30515 }
30516 
30517 
30518 /*
30519  *    Function: sd_failfast_flushq_callback
30520  *
30521  * Description: Return TRUE if the given bp meets the criteria for failfast
30522  *		flushing. Used with ddi_xbuf_flushq(9F).
30523  *
30524  *   Arguments: bp - ptr to buf struct to be examined.
30525  *
30526  *     Context: Any
30527  */
30528 
30529 static int
30530 sd_failfast_flushq_callback(struct buf *bp)
30531 {
30532 	/*
30533 	 * Return TRUE if (1) we want to flush ALL bufs when the failfast
30534 	 * state is entered; OR (2) the given bp has B_FAILFAST set.
30535 	 */
30536 	return (((sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_BUFS) ||
30537 	    (bp->b_flags & B_FAILFAST)) ? TRUE : FALSE);
30538 }
30539 
30540 
30541 
30542 #if defined(__i386) || defined(__amd64)
30543 /*
30544  * Function: sd_setup_next_xfer
30545  *
30546  * Description: Prepare next I/O operation using DMA_PARTIAL
30547  *
30548  */
30549 
30550 static int
30551 sd_setup_next_xfer(struct sd_lun *un, struct buf *bp,
30552     struct scsi_pkt *pkt, struct sd_xbuf *xp)
30553 {
30554 	ssize_t	num_blks_not_xfered;
30555 	daddr_t	strt_blk_num;
30556 	ssize_t	bytes_not_xfered;
30557 	int	rval;
30558 
30559 	ASSERT(pkt->pkt_resid == 0);
30560 
30561 	/*
30562 	 * Calculate next block number and amount to be transferred.
30563 	 *
30564 	 * How much data NOT transfered to the HBA yet.
30565 	 */
30566 	bytes_not_xfered = xp->xb_dma_resid;
30567 
30568 	/*
30569 	 * figure how many blocks NOT transfered to the HBA yet.
30570 	 */
30571 	num_blks_not_xfered = SD_BYTES2TGTBLOCKS(un, bytes_not_xfered);
30572 
30573 	/*
30574 	 * set starting block number to the end of what WAS transfered.
30575 	 */
30576 	strt_blk_num = xp->xb_blkno +
30577 	    SD_BYTES2TGTBLOCKS(un, bp->b_bcount - bytes_not_xfered);
30578 
30579 	/*
30580 	 * Move pkt to the next portion of the xfer.  sd_setup_next_rw_pkt
30581 	 * will call scsi_initpkt with NULL_FUNC so we do not have to release
30582 	 * the disk mutex here.
30583 	 */
30584 	rval = sd_setup_next_rw_pkt(un, pkt, bp,
30585 	    strt_blk_num, num_blks_not_xfered);
30586 
30587 	if (rval == 0) {
30588 
30589 		/*
30590 		 * Success.
30591 		 *
30592 		 * Adjust things if there are still more blocks to be
30593 		 * transfered.
30594 		 */
30595 		xp->xb_dma_resid = pkt->pkt_resid;
30596 		pkt->pkt_resid = 0;
30597 
30598 		return (1);
30599 	}
30600 
30601 	/*
30602 	 * There's really only one possible return value from
30603 	 * sd_setup_next_rw_pkt which occurs when scsi_init_pkt
30604 	 * returns NULL.
30605 	 */
30606 	ASSERT(rval == SD_PKT_ALLOC_FAILURE);
30607 
30608 	bp->b_resid = bp->b_bcount;
30609 	bp->b_flags |= B_ERROR;
30610 
30611 	scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
30612 	    "Error setting up next portion of DMA transfer\n");
30613 
30614 	return (0);
30615 }
30616 #endif
30617 
30618 /*
30619  *    Function: sd_panic_for_res_conflict
30620  *
30621  * Description: Call panic with a string formated with "Reservation Conflict"
30622  *		and a human readable identifier indicating the SD instance
30623  *		that experienced the reservation conflict.
30624  *
30625  *   Arguments: un - pointer to the soft state struct for the instance.
30626  *
30627  *     Context: may execute in interrupt context.
30628  */
30629 
30630 #define	SD_RESV_CONFLICT_FMT_LEN 40
30631 void
30632 sd_panic_for_res_conflict(struct sd_lun *un)
30633 {
30634 	char panic_str[SD_RESV_CONFLICT_FMT_LEN+MAXPATHLEN];
30635 	char path_str[MAXPATHLEN];
30636 
30637 	(void) snprintf(panic_str, sizeof (panic_str),
30638 	    "Reservation Conflict\nDisk: %s",
30639 	    ddi_pathname(SD_DEVINFO(un), path_str));
30640 
30641 	panic(panic_str);
30642 }
30643 
30644 /*
30645  * Note: The following sd_faultinjection_ioctl( ) routines implement
30646  * driver support for handling fault injection for error analysis
30647  * causing faults in multiple layers of the driver.
30648  *
30649  */
30650 
30651 #ifdef SD_FAULT_INJECTION
30652 static uint_t   sd_fault_injection_on = 0;
30653 
30654 /*
30655  *    Function: sd_faultinjection_ioctl()
30656  *
30657  * Description: This routine is the driver entry point for handling
30658  *              faultinjection ioctls to inject errors into the
30659  *              layer model
30660  *
30661  *   Arguments: cmd	- the ioctl cmd recieved
30662  *		arg	- the arguments from user and returns
30663  */
30664 
30665 static void
30666 sd_faultinjection_ioctl(int cmd, intptr_t arg,  struct sd_lun *un) {
30667 
30668 	uint_t i;
30669 	uint_t rval;
30670 
30671 	SD_TRACE(SD_LOG_IOERR, un, "sd_faultinjection_ioctl: entry\n");
30672 
30673 	mutex_enter(SD_MUTEX(un));
30674 
30675 	switch (cmd) {
30676 	case SDIOCRUN:
30677 		/* Allow pushed faults to be injected */
30678 		SD_INFO(SD_LOG_SDTEST, un,
30679 		    "sd_faultinjection_ioctl: Injecting Fault Run\n");
30680 
30681 		sd_fault_injection_on = 1;
30682 
30683 		SD_INFO(SD_LOG_IOERR, un,
30684 		    "sd_faultinjection_ioctl: run finished\n");
30685 		break;
30686 
30687 	case SDIOCSTART:
30688 		/* Start Injection Session */
30689 		SD_INFO(SD_LOG_SDTEST, un,
30690 		    "sd_faultinjection_ioctl: Injecting Fault Start\n");
30691 
30692 		sd_fault_injection_on = 0;
30693 		un->sd_injection_mask = 0xFFFFFFFF;
30694 		for (i = 0; i < SD_FI_MAX_ERROR; i++) {
30695 			un->sd_fi_fifo_pkt[i] = NULL;
30696 			un->sd_fi_fifo_xb[i] = NULL;
30697 			un->sd_fi_fifo_un[i] = NULL;
30698 			un->sd_fi_fifo_arq[i] = NULL;
30699 		}
30700 		un->sd_fi_fifo_start = 0;
30701 		un->sd_fi_fifo_end = 0;
30702 
30703 		mutex_enter(&(un->un_fi_mutex));
30704 		un->sd_fi_log[0] = '\0';
30705 		un->sd_fi_buf_len = 0;
30706 		mutex_exit(&(un->un_fi_mutex));
30707 
30708 		SD_INFO(SD_LOG_IOERR, un,
30709 		    "sd_faultinjection_ioctl: start finished\n");
30710 		break;
30711 
30712 	case SDIOCSTOP:
30713 		/* Stop Injection Session */
30714 		SD_INFO(SD_LOG_SDTEST, un,
30715 		    "sd_faultinjection_ioctl: Injecting Fault Stop\n");
30716 		sd_fault_injection_on = 0;
30717 		un->sd_injection_mask = 0x0;
30718 
30719 		/* Empty stray or unuseds structs from fifo */
30720 		for (i = 0; i < SD_FI_MAX_ERROR; i++) {
30721 			if (un->sd_fi_fifo_pkt[i] != NULL) {
30722 				kmem_free(un->sd_fi_fifo_pkt[i],
30723 				    sizeof (struct sd_fi_pkt));
30724 			}
30725 			if (un->sd_fi_fifo_xb[i] != NULL) {
30726 				kmem_free(un->sd_fi_fifo_xb[i],
30727 				    sizeof (struct sd_fi_xb));
30728 			}
30729 			if (un->sd_fi_fifo_un[i] != NULL) {
30730 				kmem_free(un->sd_fi_fifo_un[i],
30731 				    sizeof (struct sd_fi_un));
30732 			}
30733 			if (un->sd_fi_fifo_arq[i] != NULL) {
30734 				kmem_free(un->sd_fi_fifo_arq[i],
30735 				    sizeof (struct sd_fi_arq));
30736 			}
30737 			un->sd_fi_fifo_pkt[i] = NULL;
30738 			un->sd_fi_fifo_un[i] = NULL;
30739 			un->sd_fi_fifo_xb[i] = NULL;
30740 			un->sd_fi_fifo_arq[i] = NULL;
30741 		}
30742 		un->sd_fi_fifo_start = 0;
30743 		un->sd_fi_fifo_end = 0;
30744 
30745 		SD_INFO(SD_LOG_IOERR, un,
30746 		    "sd_faultinjection_ioctl: stop finished\n");
30747 		break;
30748 
30749 	case SDIOCINSERTPKT:
30750 		/* Store a packet struct to be pushed onto fifo */
30751 		SD_INFO(SD_LOG_SDTEST, un,
30752 		    "sd_faultinjection_ioctl: Injecting Fault Insert Pkt\n");
30753 
30754 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
30755 
30756 		sd_fault_injection_on = 0;
30757 
30758 		/* No more that SD_FI_MAX_ERROR allowed in Queue */
30759 		if (un->sd_fi_fifo_pkt[i] != NULL) {
30760 			kmem_free(un->sd_fi_fifo_pkt[i],
30761 			    sizeof (struct sd_fi_pkt));
30762 		}
30763 		if (arg != NULL) {
30764 			un->sd_fi_fifo_pkt[i] =
30765 			    kmem_alloc(sizeof (struct sd_fi_pkt), KM_NOSLEEP);
30766 			if (un->sd_fi_fifo_pkt[i] == NULL) {
30767 				/* Alloc failed don't store anything */
30768 				break;
30769 			}
30770 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_pkt[i],
30771 			    sizeof (struct sd_fi_pkt), 0);
30772 			if (rval == -1) {
30773 				kmem_free(un->sd_fi_fifo_pkt[i],
30774 				    sizeof (struct sd_fi_pkt));
30775 				un->sd_fi_fifo_pkt[i] = NULL;
30776 			}
30777 		} else {
30778 			SD_INFO(SD_LOG_IOERR, un,
30779 			    "sd_faultinjection_ioctl: pkt null\n");
30780 		}
30781 		break;
30782 
30783 	case SDIOCINSERTXB:
30784 		/* Store a xb struct to be pushed onto fifo */
30785 		SD_INFO(SD_LOG_SDTEST, un,
30786 		    "sd_faultinjection_ioctl: Injecting Fault Insert XB\n");
30787 
30788 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
30789 
30790 		sd_fault_injection_on = 0;
30791 
30792 		if (un->sd_fi_fifo_xb[i] != NULL) {
30793 			kmem_free(un->sd_fi_fifo_xb[i],
30794 			    sizeof (struct sd_fi_xb));
30795 			un->sd_fi_fifo_xb[i] = NULL;
30796 		}
30797 		if (arg != NULL) {
30798 			un->sd_fi_fifo_xb[i] =
30799 			    kmem_alloc(sizeof (struct sd_fi_xb), KM_NOSLEEP);
30800 			if (un->sd_fi_fifo_xb[i] == NULL) {
30801 				/* Alloc failed don't store anything */
30802 				break;
30803 			}
30804 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_xb[i],
30805 			    sizeof (struct sd_fi_xb), 0);
30806 
30807 			if (rval == -1) {
30808 				kmem_free(un->sd_fi_fifo_xb[i],
30809 				    sizeof (struct sd_fi_xb));
30810 				un->sd_fi_fifo_xb[i] = NULL;
30811 			}
30812 		} else {
30813 			SD_INFO(SD_LOG_IOERR, un,
30814 			    "sd_faultinjection_ioctl: xb null\n");
30815 		}
30816 		break;
30817 
30818 	case SDIOCINSERTUN:
30819 		/* Store a un struct to be pushed onto fifo */
30820 		SD_INFO(SD_LOG_SDTEST, un,
30821 		    "sd_faultinjection_ioctl: Injecting Fault Insert UN\n");
30822 
30823 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
30824 
30825 		sd_fault_injection_on = 0;
30826 
30827 		if (un->sd_fi_fifo_un[i] != NULL) {
30828 			kmem_free(un->sd_fi_fifo_un[i],
30829 			    sizeof (struct sd_fi_un));
30830 			un->sd_fi_fifo_un[i] = NULL;
30831 		}
30832 		if (arg != NULL) {
30833 			un->sd_fi_fifo_un[i] =
30834 			    kmem_alloc(sizeof (struct sd_fi_un), KM_NOSLEEP);
30835 			if (un->sd_fi_fifo_un[i] == NULL) {
30836 				/* Alloc failed don't store anything */
30837 				break;
30838 			}
30839 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_un[i],
30840 			    sizeof (struct sd_fi_un), 0);
30841 			if (rval == -1) {
30842 				kmem_free(un->sd_fi_fifo_un[i],
30843 				    sizeof (struct sd_fi_un));
30844 				un->sd_fi_fifo_un[i] = NULL;
30845 			}
30846 
30847 		} else {
30848 			SD_INFO(SD_LOG_IOERR, un,
30849 			    "sd_faultinjection_ioctl: un null\n");
30850 		}
30851 
30852 		break;
30853 
30854 	case SDIOCINSERTARQ:
30855 		/* Store a arq struct to be pushed onto fifo */
30856 		SD_INFO(SD_LOG_SDTEST, un,
30857 		    "sd_faultinjection_ioctl: Injecting Fault Insert ARQ\n");
30858 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
30859 
30860 		sd_fault_injection_on = 0;
30861 
30862 		if (un->sd_fi_fifo_arq[i] != NULL) {
30863 			kmem_free(un->sd_fi_fifo_arq[i],
30864 			    sizeof (struct sd_fi_arq));
30865 			un->sd_fi_fifo_arq[i] = NULL;
30866 		}
30867 		if (arg != NULL) {
30868 			un->sd_fi_fifo_arq[i] =
30869 			    kmem_alloc(sizeof (struct sd_fi_arq), KM_NOSLEEP);
30870 			if (un->sd_fi_fifo_arq[i] == NULL) {
30871 				/* Alloc failed don't store anything */
30872 				break;
30873 			}
30874 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_arq[i],
30875 			    sizeof (struct sd_fi_arq), 0);
30876 			if (rval == -1) {
30877 				kmem_free(un->sd_fi_fifo_arq[i],
30878 				    sizeof (struct sd_fi_arq));
30879 				un->sd_fi_fifo_arq[i] = NULL;
30880 			}
30881 
30882 		} else {
30883 			SD_INFO(SD_LOG_IOERR, un,
30884 			    "sd_faultinjection_ioctl: arq null\n");
30885 		}
30886 
30887 		break;
30888 
30889 	case SDIOCPUSH:
30890 		/* Push stored xb, pkt, un, and arq onto fifo */
30891 		sd_fault_injection_on = 0;
30892 
30893 		if (arg != NULL) {
30894 			rval = ddi_copyin((void *)arg, &i, sizeof (uint_t), 0);
30895 			if (rval != -1 &&
30896 			    un->sd_fi_fifo_end + i < SD_FI_MAX_ERROR) {
30897 				un->sd_fi_fifo_end += i;
30898 			}
30899 		} else {
30900 			SD_INFO(SD_LOG_IOERR, un,
30901 			    "sd_faultinjection_ioctl: push arg null\n");
30902 			if (un->sd_fi_fifo_end + i < SD_FI_MAX_ERROR) {
30903 				un->sd_fi_fifo_end++;
30904 			}
30905 		}
30906 		SD_INFO(SD_LOG_IOERR, un,
30907 		    "sd_faultinjection_ioctl: push to end=%d\n",
30908 		    un->sd_fi_fifo_end);
30909 		break;
30910 
30911 	case SDIOCRETRIEVE:
30912 		/* Return buffer of log from Injection session */
30913 		SD_INFO(SD_LOG_SDTEST, un,
30914 		    "sd_faultinjection_ioctl: Injecting Fault Retreive");
30915 
30916 		sd_fault_injection_on = 0;
30917 
30918 		mutex_enter(&(un->un_fi_mutex));
30919 		rval = ddi_copyout(un->sd_fi_log, (void *)arg,
30920 		    un->sd_fi_buf_len+1, 0);
30921 		mutex_exit(&(un->un_fi_mutex));
30922 
30923 		if (rval == -1) {
30924 			/*
30925 			 * arg is possibly invalid setting
30926 			 * it to NULL for return
30927 			 */
30928 			arg = NULL;
30929 		}
30930 		break;
30931 	}
30932 
30933 	mutex_exit(SD_MUTEX(un));
30934 	SD_TRACE(SD_LOG_IOERR, un, "sd_faultinjection_ioctl:"
30935 			    " exit\n");
30936 }
30937 
30938 
30939 /*
30940  *    Function: sd_injection_log()
30941  *
30942  * Description: This routine adds buff to the already existing injection log
30943  *              for retrieval via faultinjection_ioctl for use in fault
30944  *              detection and recovery
30945  *
30946  *   Arguments: buf - the string to add to the log
30947  */
30948 
30949 static void
30950 sd_injection_log(char *buf, struct sd_lun *un)
30951 {
30952 	uint_t len;
30953 
30954 	ASSERT(un != NULL);
30955 	ASSERT(buf != NULL);
30956 
30957 	mutex_enter(&(un->un_fi_mutex));
30958 
30959 	len = min(strlen(buf), 255);
30960 	/* Add logged value to Injection log to be returned later */
30961 	if (len + un->sd_fi_buf_len < SD_FI_MAX_BUF) {
30962 		uint_t	offset = strlen((char *)un->sd_fi_log);
30963 		char *destp = (char *)un->sd_fi_log + offset;
30964 		int i;
30965 		for (i = 0; i < len; i++) {
30966 			*destp++ = *buf++;
30967 		}
30968 		un->sd_fi_buf_len += len;
30969 		un->sd_fi_log[un->sd_fi_buf_len] = '\0';
30970 	}
30971 
30972 	mutex_exit(&(un->un_fi_mutex));
30973 }
30974 
30975 
30976 /*
30977  *    Function: sd_faultinjection()
30978  *
30979  * Description: This routine takes the pkt and changes its
30980  *		content based on error injection scenerio.
30981  *
30982  *   Arguments: pktp	- packet to be changed
30983  */
30984 
30985 static void
30986 sd_faultinjection(struct scsi_pkt *pktp)
30987 {
30988 	uint_t i;
30989 	struct sd_fi_pkt *fi_pkt;
30990 	struct sd_fi_xb *fi_xb;
30991 	struct sd_fi_un *fi_un;
30992 	struct sd_fi_arq *fi_arq;
30993 	struct buf *bp;
30994 	struct sd_xbuf *xb;
30995 	struct sd_lun *un;
30996 
30997 	ASSERT(pktp != NULL);
30998 
30999 	/* pull bp xb and un from pktp */
31000 	bp = (struct buf *)pktp->pkt_private;
31001 	xb = SD_GET_XBUF(bp);
31002 	un = SD_GET_UN(bp);
31003 
31004 	ASSERT(un != NULL);
31005 
31006 	mutex_enter(SD_MUTEX(un));
31007 
31008 	SD_TRACE(SD_LOG_SDTEST, un,
31009 	    "sd_faultinjection: entry Injection from sdintr\n");
31010 
31011 	/* if injection is off return */
31012 	if (sd_fault_injection_on == 0 ||
31013 		un->sd_fi_fifo_start == un->sd_fi_fifo_end) {
31014 		mutex_exit(SD_MUTEX(un));
31015 		return;
31016 	}
31017 
31018 
31019 	/* take next set off fifo */
31020 	i = un->sd_fi_fifo_start % SD_FI_MAX_ERROR;
31021 
31022 	fi_pkt = un->sd_fi_fifo_pkt[i];
31023 	fi_xb = un->sd_fi_fifo_xb[i];
31024 	fi_un = un->sd_fi_fifo_un[i];
31025 	fi_arq = un->sd_fi_fifo_arq[i];
31026 
31027 
31028 	/* set variables accordingly */
31029 	/* set pkt if it was on fifo */
31030 	if (fi_pkt != NULL) {
31031 		SD_CONDSET(pktp, pkt, pkt_flags, "pkt_flags");
31032 		SD_CONDSET(*pktp, pkt, pkt_scbp, "pkt_scbp");
31033 		SD_CONDSET(*pktp, pkt, pkt_cdbp, "pkt_cdbp");
31034 		SD_CONDSET(pktp, pkt, pkt_state, "pkt_state");
31035 		SD_CONDSET(pktp, pkt, pkt_statistics, "pkt_statistics");
31036 		SD_CONDSET(pktp, pkt, pkt_reason, "pkt_reason");
31037 
31038 	}
31039 
31040 	/* set xb if it was on fifo */
31041 	if (fi_xb != NULL) {
31042 		SD_CONDSET(xb, xb, xb_blkno, "xb_blkno");
31043 		SD_CONDSET(xb, xb, xb_dma_resid, "xb_dma_resid");
31044 		SD_CONDSET(xb, xb, xb_retry_count, "xb_retry_count");
31045 		SD_CONDSET(xb, xb, xb_victim_retry_count,
31046 		    "xb_victim_retry_count");
31047 		SD_CONDSET(xb, xb, xb_sense_status, "xb_sense_status");
31048 		SD_CONDSET(xb, xb, xb_sense_state, "xb_sense_state");
31049 		SD_CONDSET(xb, xb, xb_sense_resid, "xb_sense_resid");
31050 
31051 		/* copy in block data from sense */
31052 		if (fi_xb->xb_sense_data[0] != -1) {
31053 			bcopy(fi_xb->xb_sense_data, xb->xb_sense_data,
31054 			    SENSE_LENGTH);
31055 		}
31056 
31057 		/* copy in extended sense codes */
31058 		SD_CONDSET(((struct scsi_extended_sense *)xb), xb, es_code,
31059 		    "es_code");
31060 		SD_CONDSET(((struct scsi_extended_sense *)xb), xb, es_key,
31061 		    "es_key");
31062 		SD_CONDSET(((struct scsi_extended_sense *)xb), xb, es_add_code,
31063 		    "es_add_code");
31064 		SD_CONDSET(((struct scsi_extended_sense *)xb), xb,
31065 		    es_qual_code, "es_qual_code");
31066 	}
31067 
31068 	/* set un if it was on fifo */
31069 	if (fi_un != NULL) {
31070 		SD_CONDSET(un->un_sd->sd_inq, un, inq_rmb, "inq_rmb");
31071 		SD_CONDSET(un, un, un_ctype, "un_ctype");
31072 		SD_CONDSET(un, un, un_reset_retry_count,
31073 		    "un_reset_retry_count");
31074 		SD_CONDSET(un, un, un_reservation_type, "un_reservation_type");
31075 		SD_CONDSET(un, un, un_resvd_status, "un_resvd_status");
31076 		SD_CONDSET(un, un, un_f_arq_enabled, "un_f_arq_enabled");
31077 		SD_CONDSET(un, un, un_f_geometry_is_valid,
31078 		    "un_f_geometry_is_valid");
31079 		SD_CONDSET(un, un, un_f_allow_bus_device_reset,
31080 		    "un_f_allow_bus_device_reset");
31081 		SD_CONDSET(un, un, un_f_opt_queueing, "un_f_opt_queueing");
31082 
31083 	}
31084 
31085 	/* copy in auto request sense if it was on fifo */
31086 	if (fi_arq != NULL) {
31087 		bcopy(fi_arq, pktp->pkt_scbp, sizeof (struct sd_fi_arq));
31088 	}
31089 
31090 	/* free structs */
31091 	if (un->sd_fi_fifo_pkt[i] != NULL) {
31092 		kmem_free(un->sd_fi_fifo_pkt[i], sizeof (struct sd_fi_pkt));
31093 	}
31094 	if (un->sd_fi_fifo_xb[i] != NULL) {
31095 		kmem_free(un->sd_fi_fifo_xb[i], sizeof (struct sd_fi_xb));
31096 	}
31097 	if (un->sd_fi_fifo_un[i] != NULL) {
31098 		kmem_free(un->sd_fi_fifo_un[i], sizeof (struct sd_fi_un));
31099 	}
31100 	if (un->sd_fi_fifo_arq[i] != NULL) {
31101 		kmem_free(un->sd_fi_fifo_arq[i], sizeof (struct sd_fi_arq));
31102 	}
31103 
31104 	/*
31105 	 * kmem_free does not gurantee to set to NULL
31106 	 * since we uses these to determine if we set
31107 	 * values or not lets confirm they are always
31108 	 * NULL after free
31109 	 */
31110 	un->sd_fi_fifo_pkt[i] = NULL;
31111 	un->sd_fi_fifo_un[i] = NULL;
31112 	un->sd_fi_fifo_xb[i] = NULL;
31113 	un->sd_fi_fifo_arq[i] = NULL;
31114 
31115 	un->sd_fi_fifo_start++;
31116 
31117 	mutex_exit(SD_MUTEX(un));
31118 
31119 	SD_TRACE(SD_LOG_SDTEST, un, "sd_faultinjection: exit\n");
31120 }
31121 
31122 #endif /* SD_FAULT_INJECTION */
31123 
31124 /*
31125  * This routine is invoked in sd_unit_attach(). Before calling it, the
31126  * properties in conf file should be processed already, and "hotpluggable"
31127  * property was processed also.
31128  *
31129  * The sd driver distinguishes 3 different type of devices: removable media,
31130  * non-removable media, and hotpluggable. Below the differences are defined:
31131  *
31132  * 1. Device ID
31133  *
31134  *     The device ID of a device is used to identify this device. Refer to
31135  *     ddi_devid_register(9F).
31136  *
31137  *     For a non-removable media disk device which can provide 0x80 or 0x83
31138  *     VPD page (refer to INQUIRY command of SCSI SPC specification), a unique
31139  *     device ID is created to identify this device. For other non-removable
31140  *     media devices, a default device ID is created only if this device has
31141  *     at least 2 alter cylinders. Otherwise, this device has no devid.
31142  *
31143  *     -------------------------------------------------------
31144  *     removable media   hotpluggable  | Can Have Device ID
31145  *     -------------------------------------------------------
31146  *         false             false     |     Yes
31147  *         false             true      |     Yes
31148  *         true                x       |     No
31149  *     ------------------------------------------------------
31150  *
31151  *
31152  * 2. SCSI group 4 commands
31153  *
31154  *     In SCSI specs, only some commands in group 4 command set can use
31155  *     8-byte addresses that can be used to access >2TB storage spaces.
31156  *     Other commands have no such capability. Without supporting group4,
31157  *     it is impossible to make full use of storage spaces of a disk with
31158  *     capacity larger than 2TB.
31159  *
31160  *     -----------------------------------------------
31161  *     removable media   hotpluggable   LP64  |  Group
31162  *     -----------------------------------------------
31163  *           false          false       false |   1
31164  *           false          false       true  |   4
31165  *           false          true        false |   1
31166  *           false          true        true  |   4
31167  *           true             x           x   |   5
31168  *     -----------------------------------------------
31169  *
31170  *
31171  * 3. Check for VTOC Label
31172  *
31173  *     If a direct-access disk has no EFI label, sd will check if it has a
31174  *     valid VTOC label. Now, sd also does that check for removable media
31175  *     and hotpluggable devices.
31176  *
31177  *     --------------------------------------------------------------
31178  *     Direct-Access   removable media    hotpluggable |  Check Label
31179  *     -------------------------------------------------------------
31180  *         false          false           false        |   No
31181  *         false          false           true         |   No
31182  *         false          true            false        |   Yes
31183  *         false          true            true         |   Yes
31184  *         true            x                x          |   Yes
31185  *     --------------------------------------------------------------
31186  *
31187  *
31188  * 4. Building default VTOC label
31189  *
31190  *     As section 3 says, sd checks if some kinds of devices have VTOC label.
31191  *     If those devices have no valid VTOC label, sd(7d) will attempt to
31192  *     create default VTOC for them. Currently sd creates default VTOC label
31193  *     for all devices on x86 platform (VTOC_16), but only for removable
31194  *     media devices on SPARC (VTOC_8).
31195  *
31196  *     -----------------------------------------------------------
31197  *       removable media hotpluggable platform   |   Default Label
31198  *     -----------------------------------------------------------
31199  *             false          false    sparc     |     No
31200  *             false          true      x86      |     Yes
31201  *             false          true     sparc     |     Yes
31202  *             true             x        x       |     Yes
31203  *     ----------------------------------------------------------
31204  *
31205  *
31206  * 5. Supported blocksizes of target devices
31207  *
31208  *     Sd supports non-512-byte blocksize for removable media devices only.
31209  *     For other devices, only 512-byte blocksize is supported. This may be
31210  *     changed in near future because some RAID devices require non-512-byte
31211  *     blocksize
31212  *
31213  *     -----------------------------------------------------------
31214  *     removable media    hotpluggable    | non-512-byte blocksize
31215  *     -----------------------------------------------------------
31216  *           false          false         |   No
31217  *           false          true          |   No
31218  *           true             x           |   Yes
31219  *     -----------------------------------------------------------
31220  *
31221  *
31222  * 6. Automatic mount & unmount
31223  *
31224  *     Sd(7d) driver provides DKIOCREMOVABLE ioctl. This ioctl is used to query
31225  *     if a device is removable media device. It return 1 for removable media
31226  *     devices, and 0 for others.
31227  *
31228  *     The automatic mounting subsystem should distinguish between the types
31229  *     of devices and apply automounting policies to each.
31230  *
31231  *
31232  * 7. fdisk partition management
31233  *
31234  *     Fdisk is traditional partition method on x86 platform. Sd(7d) driver
31235  *     just supports fdisk partitions on x86 platform. On sparc platform, sd
31236  *     doesn't support fdisk partitions at all. Note: pcfs(7fs) can recognize
31237  *     fdisk partitions on both x86 and SPARC platform.
31238  *
31239  *     -----------------------------------------------------------
31240  *       platform   removable media  USB/1394  |  fdisk supported
31241  *     -----------------------------------------------------------
31242  *        x86         X               X        |       true
31243  *     ------------------------------------------------------------
31244  *        sparc       X               X        |       false
31245  *     ------------------------------------------------------------
31246  *
31247  *
31248  * 8. MBOOT/MBR
31249  *
31250  *     Although sd(7d) doesn't support fdisk on SPARC platform, it does support
31251  *     read/write mboot for removable media devices on sparc platform.
31252  *
31253  *     -----------------------------------------------------------
31254  *       platform   removable media  USB/1394  |  mboot supported
31255  *     -----------------------------------------------------------
31256  *        x86         X               X        |       true
31257  *     ------------------------------------------------------------
31258  *        sparc      false           false     |       false
31259  *        sparc      false           true      |       true
31260  *        sparc      true            false     |       true
31261  *        sparc      true            true      |       true
31262  *     ------------------------------------------------------------
31263  *
31264  *
31265  * 9.  error handling during opening device
31266  *
31267  *     If failed to open a disk device, an errno is returned. For some kinds
31268  *     of errors, different errno is returned depending on if this device is
31269  *     a removable media device. This brings USB/1394 hard disks in line with
31270  *     expected hard disk behavior. It is not expected that this breaks any
31271  *     application.
31272  *
31273  *     ------------------------------------------------------
31274  *       removable media    hotpluggable   |  errno
31275  *     ------------------------------------------------------
31276  *             false          false        |   EIO
31277  *             false          true         |   EIO
31278  *             true             x          |   ENXIO
31279  *     ------------------------------------------------------
31280  *
31281  *
31282  * 11. ioctls: DKIOCEJECT, CDROMEJECT
31283  *
31284  *     These IOCTLs are applicable only to removable media devices.
31285  *
31286  *     -----------------------------------------------------------
31287  *       removable media    hotpluggable   |DKIOCEJECT, CDROMEJECT
31288  *     -----------------------------------------------------------
31289  *             false          false        |     No
31290  *             false          true         |     No
31291  *             true            x           |     Yes
31292  *     -----------------------------------------------------------
31293  *
31294  *
31295  * 12. Kstats for partitions
31296  *
31297  *     sd creates partition kstat for non-removable media devices. USB and
31298  *     Firewire hard disks now have partition kstats
31299  *
31300  *      ------------------------------------------------------
31301  *       removable media    hotplugable    |   kstat
31302  *      ------------------------------------------------------
31303  *             false          false        |    Yes
31304  *             false          true         |    Yes
31305  *             true             x          |    No
31306  *       ------------------------------------------------------
31307  *
31308  *
31309  * 13. Removable media & hotpluggable properties
31310  *
31311  *     Sd driver creates a "removable-media" property for removable media
31312  *     devices. Parent nexus drivers create a "hotpluggable" property if
31313  *     it supports hotplugging.
31314  *
31315  *     ---------------------------------------------------------------------
31316  *     removable media   hotpluggable |  "removable-media"   " hotpluggable"
31317  *     ---------------------------------------------------------------------
31318  *       false            false       |    No                   No
31319  *       false            true        |    No                   Yes
31320  *       true             false       |    Yes                  No
31321  *       true             true        |    Yes                  Yes
31322  *     ---------------------------------------------------------------------
31323  *
31324  *
31325  * 14. Power Management
31326  *
31327  *     sd only power manages removable media devices or devices that support
31328  *     LOG_SENSE or have a "pm-capable" property  (PSARC/2002/250)
31329  *
31330  *     A parent nexus that supports hotplugging can also set "pm-capable"
31331  *     if the disk can be power managed.
31332  *
31333  *     ------------------------------------------------------------
31334  *       removable media hotpluggable pm-capable  |   power manage
31335  *     ------------------------------------------------------------
31336  *             false          false     false     |     No
31337  *             false          false     true      |     Yes
31338  *             false          true      false     |     No
31339  *             false          true      true      |     Yes
31340  *             true             x        x        |     Yes
31341  *     ------------------------------------------------------------
31342  *
31343  *      USB and firewire hard disks can now be power managed independently
31344  *      of the framebuffer
31345  *
31346  *
31347  * 15. Support for USB disks with capacity larger than 1TB
31348  *
31349  *     Currently, sd doesn't permit a fixed disk device with capacity
31350  *     larger than 1TB to be used in a 32-bit operating system environment.
31351  *     However, sd doesn't do that for removable media devices. Instead, it
31352  *     assumes that removable media devices cannot have a capacity larger
31353  *     than 1TB. Therefore, using those devices on 32-bit system is partially
31354  *     supported, which can cause some unexpected results.
31355  *
31356  *     ---------------------------------------------------------------------
31357  *       removable media    USB/1394 | Capacity > 1TB |   Used in 32-bit env
31358  *     ---------------------------------------------------------------------
31359  *             false          false  |   true         |     no
31360  *             false          true   |   true         |     no
31361  *             true           false  |   true         |     Yes
31362  *             true           true   |   true         |     Yes
31363  *     ---------------------------------------------------------------------
31364  *
31365  *
31366  * 16. Check write-protection at open time
31367  *
31368  *     When a removable media device is being opened for writing without NDELAY
31369  *     flag, sd will check if this device is writable. If attempting to open
31370  *     without NDELAY flag a write-protected device, this operation will abort.
31371  *
31372  *     ------------------------------------------------------------
31373  *       removable media    USB/1394   |   WP Check
31374  *     ------------------------------------------------------------
31375  *             false          false    |     No
31376  *             false          true     |     No
31377  *             true           false    |     Yes
31378  *             true           true     |     Yes
31379  *     ------------------------------------------------------------
31380  *
31381  *
31382  * 17. syslog when corrupted VTOC is encountered
31383  *
31384  *      Currently, if an invalid VTOC is encountered, sd only print syslog
31385  *      for fixed SCSI disks.
31386  *     ------------------------------------------------------------
31387  *       removable media    USB/1394   |   print syslog
31388  *     ------------------------------------------------------------
31389  *             false          false    |     Yes
31390  *             false          true     |     No
31391  *             true           false    |     No
31392  *             true           true     |     No
31393  *     ------------------------------------------------------------
31394  */
31395 static void
31396 sd_set_unit_attributes(struct sd_lun *un, dev_info_t *devi)
31397 {
31398 	int	pm_capable_prop;
31399 
31400 	ASSERT(un->un_sd);
31401 	ASSERT(un->un_sd->sd_inq);
31402 
31403 #if defined(_SUNOS_VTOC_16)
31404 	/*
31405 	 * For VTOC_16 devices, the default label will be created for all
31406 	 * devices. (see sd_build_default_label)
31407 	 */
31408 	un->un_f_default_vtoc_supported = TRUE;
31409 #endif
31410 
31411 	if (un->un_sd->sd_inq->inq_rmb) {
31412 		/*
31413 		 * The media of this device is removable. And for this kind
31414 		 * of devices, it is possible to change medium after opening
31415 		 * devices. Thus we should support this operation.
31416 		 */
31417 		un->un_f_has_removable_media = TRUE;
31418 
31419 #if defined(_SUNOS_VTOC_8)
31420 		/*
31421 		 * Note: currently, for VTOC_8 devices, default label is
31422 		 * created for removable and hotpluggable devices only.
31423 		 */
31424 		un->un_f_default_vtoc_supported = TRUE;
31425 #endif
31426 		/*
31427 		 * support non-512-byte blocksize of removable media devices
31428 		 */
31429 		un->un_f_non_devbsize_supported = TRUE;
31430 
31431 		/*
31432 		 * Assume that all removable media devices support DOOR_LOCK
31433 		 */
31434 		un->un_f_doorlock_supported = TRUE;
31435 
31436 		/*
31437 		 * For a removable media device, it is possible to be opened
31438 		 * with NDELAY flag when there is no media in drive, in this
31439 		 * case we don't care if device is writable. But if without
31440 		 * NDELAY flag, we need to check if media is write-protected.
31441 		 */
31442 		un->un_f_chk_wp_open = TRUE;
31443 
31444 		/*
31445 		 * need to start a SCSI watch thread to monitor media state,
31446 		 * when media is being inserted or ejected, notify syseventd.
31447 		 */
31448 		un->un_f_monitor_media_state = TRUE;
31449 
31450 		/*
31451 		 * Some devices don't support START_STOP_UNIT command.
31452 		 * Therefore, we'd better check if a device supports it
31453 		 * before sending it.
31454 		 */
31455 		un->un_f_check_start_stop = TRUE;
31456 
31457 		/*
31458 		 * support eject media ioctl:
31459 		 *		FDEJECT, DKIOCEJECT, CDROMEJECT
31460 		 */
31461 		un->un_f_eject_media_supported = TRUE;
31462 
31463 		/*
31464 		 * Because many removable-media devices don't support
31465 		 * LOG_SENSE, we couldn't use this command to check if
31466 		 * a removable media device support power-management.
31467 		 * We assume that they support power-management via
31468 		 * START_STOP_UNIT command and can be spun up and down
31469 		 * without limitations.
31470 		 */
31471 		un->un_f_pm_supported = TRUE;
31472 
31473 		/*
31474 		 * Need to create a zero length (Boolean) property
31475 		 * removable-media for the removable media devices.
31476 		 * Note that the return value of the property is not being
31477 		 * checked, since if unable to create the property
31478 		 * then do not want the attach to fail altogether. Consistent
31479 		 * with other property creation in attach.
31480 		 */
31481 		(void) ddi_prop_create(DDI_DEV_T_NONE, devi,
31482 		    DDI_PROP_CANSLEEP, "removable-media", NULL, 0);
31483 
31484 	} else {
31485 		/*
31486 		 * create device ID for device
31487 		 */
31488 		un->un_f_devid_supported = TRUE;
31489 
31490 		/*
31491 		 * Spin up non-removable-media devices once it is attached
31492 		 */
31493 		un->un_f_attach_spinup = TRUE;
31494 
31495 		/*
31496 		 * According to SCSI specification, Sense data has two kinds of
31497 		 * format: fixed format, and descriptor format. At present, we
31498 		 * don't support descriptor format sense data for removable
31499 		 * media.
31500 		 */
31501 		if (SD_INQUIRY(un)->inq_dtype == DTYPE_DIRECT) {
31502 			un->un_f_descr_format_supported = TRUE;
31503 		}
31504 
31505 		/*
31506 		 * kstats are created only for non-removable media devices.
31507 		 *
31508 		 * Set this in sd.conf to 0 in order to disable kstats.  The
31509 		 * default is 1, so they are enabled by default.
31510 		 */
31511 		un->un_f_pkstats_enabled = (ddi_prop_get_int(DDI_DEV_T_ANY,
31512 		    SD_DEVINFO(un), DDI_PROP_DONTPASS,
31513 			"enable-partition-kstats", 1));
31514 
31515 		/*
31516 		 * Check if HBA has set the "pm-capable" property.
31517 		 * If "pm-capable" exists and is non-zero then we can
31518 		 * power manage the device without checking the start/stop
31519 		 * cycle count log sense page.
31520 		 *
31521 		 * If "pm-capable" exists and is SD_PM_CAPABLE_FALSE (0)
31522 		 * then we should not power manage the device.
31523 		 *
31524 		 * If "pm-capable" doesn't exist then pm_capable_prop will
31525 		 * be set to SD_PM_CAPABLE_UNDEFINED (-1).  In this case,
31526 		 * sd will check the start/stop cycle count log sense page
31527 		 * and power manage the device if the cycle count limit has
31528 		 * not been exceeded.
31529 		 */
31530 		pm_capable_prop = ddi_prop_get_int(DDI_DEV_T_ANY, devi,
31531 		    DDI_PROP_DONTPASS, "pm-capable", SD_PM_CAPABLE_UNDEFINED);
31532 		if (pm_capable_prop == SD_PM_CAPABLE_UNDEFINED) {
31533 			un->un_f_log_sense_supported = TRUE;
31534 		} else {
31535 			/*
31536 			 * pm-capable property exists.
31537 			 *
31538 			 * Convert "TRUE" values for pm_capable_prop to
31539 			 * SD_PM_CAPABLE_TRUE (1) to make it easier to check
31540 			 * later. "TRUE" values are any values except
31541 			 * SD_PM_CAPABLE_FALSE (0) and
31542 			 * SD_PM_CAPABLE_UNDEFINED (-1)
31543 			 */
31544 			if (pm_capable_prop == SD_PM_CAPABLE_FALSE) {
31545 				un->un_f_log_sense_supported = FALSE;
31546 			} else {
31547 				un->un_f_pm_supported = TRUE;
31548 			}
31549 
31550 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
31551 			    "sd_unit_attach: un:0x%p pm-capable "
31552 			    "property set to %d.\n", un, un->un_f_pm_supported);
31553 		}
31554 	}
31555 
31556 	if (un->un_f_is_hotpluggable) {
31557 #if defined(_SUNOS_VTOC_8)
31558 		/*
31559 		 * Note: currently, for VTOC_8 devices, default label is
31560 		 * created for removable and hotpluggable devices only.
31561 		 */
31562 		un->un_f_default_vtoc_supported = TRUE;
31563 #endif
31564 
31565 		/*
31566 		 * Have to watch hotpluggable devices as well, since
31567 		 * that's the only way for userland applications to
31568 		 * detect hot removal while device is busy/mounted.
31569 		 */
31570 		un->un_f_monitor_media_state = TRUE;
31571 
31572 		un->un_f_check_start_stop = TRUE;
31573 
31574 	}
31575 
31576 	/*
31577 	 * By default, only DIRECT ACCESS devices and CDs will have Sun
31578 	 * labels.
31579 	 */
31580 	if ((SD_INQUIRY(un)->inq_dtype == DTYPE_DIRECT) ||
31581 	    (un->un_sd->sd_inq->inq_rmb)) {
31582 		/*
31583 		 * Direct access devices have disk label
31584 		 */
31585 		un->un_f_vtoc_label_supported = TRUE;
31586 	}
31587 
31588 	/*
31589 	 * Fdisk partitions are supported for all direct access devices on
31590 	 * x86 platform, and just for removable media and hotpluggable
31591 	 * devices on SPARC platform. Later, we will set the following flag
31592 	 * to FALSE if current device is not removable media or hotpluggable
31593 	 * device and if sd works on SAPRC platform.
31594 	 */
31595 	if (SD_INQUIRY(un)->inq_dtype == DTYPE_DIRECT) {
31596 		un->un_f_mboot_supported = TRUE;
31597 	}
31598 
31599 	if (!un->un_f_is_hotpluggable &&
31600 	    !un->un_sd->sd_inq->inq_rmb) {
31601 
31602 #if defined(_SUNOS_VTOC_8)
31603 		/*
31604 		 * Don't support fdisk on fixed disk
31605 		 */
31606 		un->un_f_mboot_supported = FALSE;
31607 #endif
31608 
31609 		/*
31610 		 * Fixed disk support SYNC CACHE
31611 		 */
31612 		un->un_f_sync_cache_supported = TRUE;
31613 
31614 		/*
31615 		 * For fixed disk, if its VTOC is not valid, we will write
31616 		 * errlog into system log
31617 		 */
31618 		if (un->un_f_vtoc_label_supported)
31619 			un->un_f_vtoc_errlog_supported = TRUE;
31620 	}
31621 }
31622