1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 
27 /*
28  * EHCI Host Controller Driver (EHCI)
29  *
30  * The EHCI driver is a software driver which interfaces to the Universal
31  * Serial Bus layer (USBA) and the Host Controller (HC). The interface to
32  * the Host Controller is defined by the EHCI Host Controller Interface.
33  *
34  * This module contains the main EHCI driver code which handles all USB
35  * transfers, bandwidth allocations and other general functionalities.
36  */
37 
38 #include <sys/usb/hcd/ehci/ehcid.h>
39 #include <sys/usb/hcd/ehci/ehci_isoch.h>
40 #include <sys/usb/hcd/ehci/ehci_xfer.h>
41 
42 /*
43  * EHCI MSI tunable:
44  *
45  * By default MSI is enabled on all supported platforms except for the
46  * EHCI controller of ULI1575 South bridge.
47  */
48 boolean_t ehci_enable_msi = B_TRUE;
49 
50 /* Pointer to the state structure */
51 extern void *ehci_statep;
52 
53 extern void ehci_handle_endpoint_reclaimation(ehci_state_t *);
54 
55 extern uint_t ehci_vt62x2_workaround;
56 extern int force_ehci_off;
57 
58 /* Adjustable variables for the size of the pools */
59 int ehci_qh_pool_size = EHCI_QH_POOL_SIZE;
60 int ehci_qtd_pool_size = EHCI_QTD_POOL_SIZE;
61 
62 /*
63  * Initialize the values which the order of 32ms intr qh are executed
64  * by the host controller in the lattice tree.
65  */
66 static uchar_t ehci_index[EHCI_NUM_INTR_QH_LISTS] =
67 	{0x00, 0x10, 0x08, 0x18,
68 	0x04, 0x14, 0x0c, 0x1c,
69 	0x02, 0x12, 0x0a, 0x1a,
70 	0x06, 0x16, 0x0e, 0x1e,
71 	0x01, 0x11, 0x09, 0x19,
72 	0x05, 0x15, 0x0d, 0x1d,
73 	0x03, 0x13, 0x0b, 0x1b,
74 	0x07, 0x17, 0x0f, 0x1f};
75 
76 /*
77  * Initialize the values which are used to calculate start split mask
78  * for the low/full/high speed interrupt and isochronous endpoints.
79  */
80 static uint_t ehci_start_split_mask[15] = {
81 		/*
82 		 * For high/full/low speed usb devices. For high speed
83 		 * device with polling interval greater than or equal
84 		 * to 8us (125us).
85 		 */
86 		0x01,	/* 00000001 */
87 		0x02,	/* 00000010 */
88 		0x04,	/* 00000100 */
89 		0x08,	/* 00001000 */
90 		0x10,	/* 00010000 */
91 		0x20,	/* 00100000 */
92 		0x40,	/* 01000000 */
93 		0x80,	/* 10000000 */
94 
95 		/* Only for high speed devices with polling interval 4us */
96 		0x11,	/* 00010001 */
97 		0x22,	/* 00100010 */
98 		0x44,	/* 01000100 */
99 		0x88,	/* 10001000 */
100 
101 		/* Only for high speed devices with polling interval 2us */
102 		0x55,	/* 01010101 */
103 		0xaa,	/* 10101010 */
104 
105 		/* Only for high speed devices with polling interval 1us */
106 		0xff	/* 11111111 */
107 };
108 
109 /*
110  * Initialize the values which are used to calculate complete split mask
111  * for the low/full speed interrupt and isochronous endpoints.
112  */
113 static uint_t ehci_intr_complete_split_mask[7] = {
114 		/* Only full/low speed devices */
115 		0x1c,	/* 00011100 */
116 		0x38,	/* 00111000 */
117 		0x70,	/* 01110000 */
118 		0xe0,	/* 11100000 */
119 		0x00,	/* Need FSTN feature */
120 		0x00,	/* Need FSTN feature */
121 		0x00	/* Need FSTN feature */
122 };
123 
124 
125 /*
126  * EHCI Internal Function Prototypes
127  */
128 
129 /* Host Controller Driver (HCD) initialization functions */
130 void		ehci_set_dma_attributes(ehci_state_t	*ehcip);
131 int		ehci_allocate_pools(ehci_state_t	*ehcip);
132 void		ehci_decode_ddi_dma_addr_bind_handle_result(
133 				ehci_state_t		*ehcip,
134 				int			result);
135 int		ehci_map_regs(ehci_state_t		*ehcip);
136 int		ehci_register_intrs_and_init_mutex(
137 				ehci_state_t		*ehcip);
138 static int	ehci_add_intrs(ehci_state_t		*ehcip,
139 				int			intr_type);
140 int		ehci_init_ctlr(ehci_state_t		*ehcip,
141 				int			init_type);
142 static int	ehci_take_control(ehci_state_t		*ehcip);
143 static int	ehci_init_periodic_frame_lst_table(
144 				ehci_state_t		*ehcip);
145 static void	ehci_build_interrupt_lattice(
146 				ehci_state_t		*ehcip);
147 usba_hcdi_ops_t *ehci_alloc_hcdi_ops(ehci_state_t	*ehcip);
148 
149 /* Host Controller Driver (HCD) deinitialization functions */
150 int		ehci_cleanup(ehci_state_t		*ehcip);
151 static void	ehci_rem_intrs(ehci_state_t		*ehcip);
152 int		ehci_cpr_suspend(ehci_state_t		*ehcip);
153 int		ehci_cpr_resume(ehci_state_t		*ehcip);
154 
155 /* Bandwidth Allocation functions */
156 int		ehci_allocate_bandwidth(ehci_state_t	*ehcip,
157 				usba_pipe_handle_data_t	*ph,
158 				uint_t			*pnode,
159 				uchar_t			*smask,
160 				uchar_t			*cmask);
161 static int	ehci_allocate_high_speed_bandwidth(
162 				ehci_state_t		*ehcip,
163 				usba_pipe_handle_data_t	*ph,
164 				uint_t			*hnode,
165 				uchar_t			*smask,
166 				uchar_t			*cmask);
167 static int	ehci_allocate_classic_tt_bandwidth(
168 				ehci_state_t		*ehcip,
169 				usba_pipe_handle_data_t	*ph,
170 				uint_t			pnode);
171 void		ehci_deallocate_bandwidth(ehci_state_t	*ehcip,
172 				usba_pipe_handle_data_t	*ph,
173 				uint_t			pnode,
174 				uchar_t			smask,
175 				uchar_t			cmask);
176 static void	ehci_deallocate_high_speed_bandwidth(
177 				ehci_state_t		*ehcip,
178 				usba_pipe_handle_data_t	*ph,
179 				uint_t			hnode,
180 				uchar_t			smask,
181 				uchar_t			cmask);
182 static void	ehci_deallocate_classic_tt_bandwidth(
183 				ehci_state_t		*ehcip,
184 				usba_pipe_handle_data_t	*ph,
185 				uint_t			pnode);
186 static int	ehci_compute_high_speed_bandwidth(
187 				ehci_state_t		*ehcip,
188 				usb_ep_descr_t		*endpoint,
189 				usb_port_status_t	port_status,
190 				uint_t			*sbandwidth,
191 				uint_t			*cbandwidth);
192 static int	ehci_compute_classic_bandwidth(
193 				usb_ep_descr_t		*endpoint,
194 				usb_port_status_t	port_status,
195 				uint_t			*bandwidth);
196 int		ehci_adjust_polling_interval(
197 				ehci_state_t		*ehcip,
198 				usb_ep_descr_t		*endpoint,
199 				usb_port_status_t	port_status);
200 static int	ehci_adjust_high_speed_polling_interval(
201 				ehci_state_t		*ehcip,
202 				usb_ep_descr_t		*endpoint);
203 static uint_t	ehci_lattice_height(uint_t		interval);
204 static uint_t	ehci_lattice_parent(uint_t		node);
205 static uint_t	ehci_find_periodic_node(
206 				uint_t			leaf,
207 				int			interval);
208 static uint_t	ehci_leftmost_leaf(uint_t		node,
209 				uint_t			height);
210 static uint_t	ehci_pow_2(uint_t x);
211 static uint_t	ehci_log_2(uint_t x);
212 static int	ehci_find_bestfit_hs_mask(
213 				ehci_state_t		*ehcip,
214 				uchar_t			*smask,
215 				uint_t			*pnode,
216 				usb_ep_descr_t		*endpoint,
217 				uint_t			bandwidth,
218 				int			interval);
219 static int	ehci_find_bestfit_ls_intr_mask(
220 				ehci_state_t		*ehcip,
221 				uchar_t			*smask,
222 				uchar_t			*cmask,
223 				uint_t			*pnode,
224 				uint_t			sbandwidth,
225 				uint_t			cbandwidth,
226 				int			interval);
227 static int	ehci_find_bestfit_sitd_in_mask(
228 				ehci_state_t		*ehcip,
229 				uchar_t			*smask,
230 				uchar_t			*cmask,
231 				uint_t			*pnode,
232 				uint_t			sbandwidth,
233 				uint_t			cbandwidth,
234 				int			interval);
235 static int	ehci_find_bestfit_sitd_out_mask(
236 				ehci_state_t		*ehcip,
237 				uchar_t			*smask,
238 				uint_t			*pnode,
239 				uint_t			sbandwidth,
240 				int			interval);
241 static uint_t	ehci_calculate_bw_availability_mask(
242 				ehci_state_t		*ehcip,
243 				uint_t			bandwidth,
244 				int			leaf,
245 				int			leaf_count,
246 				uchar_t			*bw_mask);
247 static void	ehci_update_bw_availability(
248 				ehci_state_t		*ehcip,
249 				int			bandwidth,
250 				int			leftmost_leaf,
251 				int			leaf_count,
252 				uchar_t			mask);
253 
254 /* Miscellaneous functions */
255 ehci_state_t	*ehci_obtain_state(
256 				dev_info_t		*dip);
257 int		ehci_state_is_operational(
258 				ehci_state_t		*ehcip);
259 int		ehci_do_soft_reset(
260 				ehci_state_t		*ehcip);
261 usb_req_attrs_t ehci_get_xfer_attrs(ehci_state_t	*ehcip,
262 				ehci_pipe_private_t	*pp,
263 				ehci_trans_wrapper_t	*tw);
264 usb_frame_number_t ehci_get_current_frame_number(
265 				ehci_state_t		*ehcip);
266 static void	ehci_cpr_cleanup(
267 				ehci_state_t		*ehcip);
268 int		ehci_wait_for_sof(
269 				ehci_state_t		*ehcip);
270 void		ehci_toggle_scheduler(
271 				ehci_state_t		*ehcip);
272 void		ehci_print_caps(ehci_state_t		*ehcip);
273 void		ehci_print_regs(ehci_state_t		*ehcip);
274 void		ehci_print_qh(ehci_state_t		*ehcip,
275 				ehci_qh_t		*qh);
276 void		ehci_print_qtd(ehci_state_t		*ehcip,
277 				ehci_qtd_t		*qtd);
278 void		ehci_create_stats(ehci_state_t		*ehcip);
279 void		ehci_destroy_stats(ehci_state_t		*ehcip);
280 void		ehci_do_intrs_stats(ehci_state_t	*ehcip,
281 				int		val);
282 void		ehci_do_byte_stats(ehci_state_t		*ehcip,
283 				size_t		len,
284 				uint8_t		attr,
285 				uint8_t		addr);
286 
287 /*
288  * check if this ehci controller can support PM
289  */
290 int
291 ehci_hcdi_pm_support(dev_info_t *dip)
292 {
293 	ehci_state_t *ehcip = ddi_get_soft_state(ehci_statep,
294 	    ddi_get_instance(dip));
295 
296 	if (((ehcip->ehci_vendor_id == PCI_VENDOR_NEC_COMBO) &&
297 	    (ehcip->ehci_device_id == PCI_DEVICE_NEC_COMBO)) ||
298 
299 	    ((ehcip->ehci_vendor_id == PCI_VENDOR_ULi_M1575) &&
300 	    (ehcip->ehci_device_id == PCI_DEVICE_ULi_M1575)) ||
301 
302 	    (ehcip->ehci_vendor_id == PCI_VENDOR_VIA)) {
303 
304 		return (USB_SUCCESS);
305 	}
306 
307 	return (USB_FAILURE);
308 }
309 
310 void
311 ehci_dma_attr_workaround(ehci_state_t	*ehcip)
312 {
313 	/*
314 	 * Some Nvidia chips can not handle qh dma address above 2G.
315 	 * The bit 31 of the dma address might be omitted and it will
316 	 * cause system crash or other unpredicable result. So force
317 	 * the dma address allocated below 2G to make ehci work.
318 	 */
319 	if (PCI_VENDOR_NVIDIA == ehcip->ehci_vendor_id) {
320 		switch (ehcip->ehci_device_id) {
321 			case PCI_DEVICE_NVIDIA_CK804:
322 			case PCI_DEVICE_NVIDIA_MCP04:
323 				USB_DPRINTF_L2(PRINT_MASK_ATTA,
324 				    ehcip->ehci_log_hdl,
325 				    "ehci_dma_attr_workaround: NVIDIA dma "
326 				    "workaround enabled, force dma address "
327 				    "to be allocated below 2G");
328 				ehcip->ehci_dma_attr.dma_attr_addr_hi =
329 				    0x7fffffffull;
330 				break;
331 			default:
332 				break;
333 
334 		}
335 	}
336 }
337 
338 /*
339  * Host Controller Driver (HCD) initialization functions
340  */
341 
342 /*
343  * ehci_set_dma_attributes:
344  *
345  * Set the limits in the DMA attributes structure. Most of the values used
346  * in the  DMA limit structures are the default values as specified by	the
347  * Writing PCI device drivers document.
348  */
349 void
350 ehci_set_dma_attributes(ehci_state_t	*ehcip)
351 {
352 	USB_DPRINTF_L4(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
353 	    "ehci_set_dma_attributes:");
354 
355 	/* Initialize the DMA attributes */
356 	ehcip->ehci_dma_attr.dma_attr_version = DMA_ATTR_V0;
357 	ehcip->ehci_dma_attr.dma_attr_addr_lo = 0x00000000ull;
358 	ehcip->ehci_dma_attr.dma_attr_addr_hi = 0xfffffffeull;
359 
360 	/* 32 bit addressing */
361 	ehcip->ehci_dma_attr.dma_attr_count_max = EHCI_DMA_ATTR_COUNT_MAX;
362 
363 	/* Byte alignment */
364 	ehcip->ehci_dma_attr.dma_attr_align = EHCI_DMA_ATTR_ALIGNMENT;
365 
366 	/*
367 	 * Since PCI  specification is byte alignment, the
368 	 * burst size field should be set to 1 for PCI devices.
369 	 */
370 	ehcip->ehci_dma_attr.dma_attr_burstsizes = 0x1;
371 
372 	ehcip->ehci_dma_attr.dma_attr_minxfer = 0x1;
373 	ehcip->ehci_dma_attr.dma_attr_maxxfer = EHCI_DMA_ATTR_MAX_XFER;
374 	ehcip->ehci_dma_attr.dma_attr_seg = 0xffffffffull;
375 	ehcip->ehci_dma_attr.dma_attr_sgllen = 1;
376 	ehcip->ehci_dma_attr.dma_attr_granular = EHCI_DMA_ATTR_GRANULAR;
377 	ehcip->ehci_dma_attr.dma_attr_flags = 0;
378 	ehci_dma_attr_workaround(ehcip);
379 }
380 
381 
382 /*
383  * ehci_allocate_pools:
384  *
385  * Allocate the system memory for the Endpoint Descriptor (QH) and for the
386  * Transfer Descriptor (QTD) pools. Both QH and QTD structures must be aligned
387  * to a 16 byte boundary.
388  */
389 int
390 ehci_allocate_pools(ehci_state_t	*ehcip)
391 {
392 	ddi_device_acc_attr_t		dev_attr;
393 	size_t				real_length;
394 	int				result;
395 	uint_t				ccount;
396 	int				i;
397 
398 	USB_DPRINTF_L4(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
399 	    "ehci_allocate_pools:");
400 
401 	/* The host controller will be little endian */
402 	dev_attr.devacc_attr_version	= DDI_DEVICE_ATTR_V0;
403 	dev_attr.devacc_attr_endian_flags  = DDI_STRUCTURE_LE_ACC;
404 	dev_attr.devacc_attr_dataorder	= DDI_STRICTORDER_ACC;
405 
406 	/* Byte alignment */
407 	ehcip->ehci_dma_attr.dma_attr_align = EHCI_DMA_ATTR_TD_QH_ALIGNMENT;
408 
409 	/* Allocate the QTD pool DMA handle */
410 	if (ddi_dma_alloc_handle(ehcip->ehci_dip, &ehcip->ehci_dma_attr,
411 	    DDI_DMA_SLEEP, 0,
412 	    &ehcip->ehci_qtd_pool_dma_handle) != DDI_SUCCESS) {
413 
414 		goto failure;
415 	}
416 
417 	/* Allocate the memory for the QTD pool */
418 	if (ddi_dma_mem_alloc(ehcip->ehci_qtd_pool_dma_handle,
419 	    ehci_qtd_pool_size * sizeof (ehci_qtd_t),
420 	    &dev_attr,
421 	    DDI_DMA_CONSISTENT,
422 	    DDI_DMA_SLEEP,
423 	    0,
424 	    (caddr_t *)&ehcip->ehci_qtd_pool_addr,
425 	    &real_length,
426 	    &ehcip->ehci_qtd_pool_mem_handle)) {
427 
428 		goto failure;
429 	}
430 
431 	/* Map the QTD pool into the I/O address space */
432 	result = ddi_dma_addr_bind_handle(
433 	    ehcip->ehci_qtd_pool_dma_handle,
434 	    NULL,
435 	    (caddr_t)ehcip->ehci_qtd_pool_addr,
436 	    real_length,
437 	    DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
438 	    DDI_DMA_SLEEP,
439 	    NULL,
440 	    &ehcip->ehci_qtd_pool_cookie,
441 	    &ccount);
442 
443 	bzero((void *)ehcip->ehci_qtd_pool_addr,
444 	    ehci_qtd_pool_size * sizeof (ehci_qtd_t));
445 
446 	/* Process the result */
447 	if (result == DDI_DMA_MAPPED) {
448 		/* The cookie count should be 1 */
449 		if (ccount != 1) {
450 			USB_DPRINTF_L2(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
451 			    "ehci_allocate_pools: More than 1 cookie");
452 
453 		goto failure;
454 		}
455 	} else {
456 		USB_DPRINTF_L4(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
457 		    "ehci_allocate_pools: Result = %d", result);
458 
459 		ehci_decode_ddi_dma_addr_bind_handle_result(ehcip, result);
460 
461 		goto failure;
462 	}
463 
464 	/*
465 	 * DMA addresses for QTD pools are bound
466 	 */
467 	ehcip->ehci_dma_addr_bind_flag |= EHCI_QTD_POOL_BOUND;
468 
469 	/* Initialize the QTD pool */
470 	for (i = 0; i < ehci_qtd_pool_size; i ++) {
471 		Set_QTD(ehcip->ehci_qtd_pool_addr[i].
472 		    qtd_state, EHCI_QTD_FREE);
473 	}
474 
475 	/* Allocate the QTD pool DMA handle */
476 	if (ddi_dma_alloc_handle(ehcip->ehci_dip,
477 	    &ehcip->ehci_dma_attr,
478 	    DDI_DMA_SLEEP,
479 	    0,
480 	    &ehcip->ehci_qh_pool_dma_handle) != DDI_SUCCESS) {
481 		USB_DPRINTF_L2(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
482 		    "ehci_allocate_pools: ddi_dma_alloc_handle failed");
483 
484 		goto failure;
485 	}
486 
487 	/* Allocate the memory for the QH pool */
488 	if (ddi_dma_mem_alloc(ehcip->ehci_qh_pool_dma_handle,
489 	    ehci_qh_pool_size * sizeof (ehci_qh_t),
490 	    &dev_attr,
491 	    DDI_DMA_CONSISTENT,
492 	    DDI_DMA_SLEEP,
493 	    0,
494 	    (caddr_t *)&ehcip->ehci_qh_pool_addr,
495 	    &real_length,
496 	    &ehcip->ehci_qh_pool_mem_handle) != DDI_SUCCESS) {
497 		USB_DPRINTF_L2(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
498 		    "ehci_allocate_pools: ddi_dma_mem_alloc failed");
499 
500 		goto failure;
501 	}
502 
503 	result = ddi_dma_addr_bind_handle(ehcip->ehci_qh_pool_dma_handle,
504 	    NULL,
505 	    (caddr_t)ehcip->ehci_qh_pool_addr,
506 	    real_length,
507 	    DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
508 	    DDI_DMA_SLEEP,
509 	    NULL,
510 	    &ehcip->ehci_qh_pool_cookie,
511 	    &ccount);
512 
513 	bzero((void *)ehcip->ehci_qh_pool_addr,
514 	    ehci_qh_pool_size * sizeof (ehci_qh_t));
515 
516 	/* Process the result */
517 	if (result == DDI_DMA_MAPPED) {
518 		/* The cookie count should be 1 */
519 		if (ccount != 1) {
520 			USB_DPRINTF_L2(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
521 			    "ehci_allocate_pools: More than 1 cookie");
522 
523 			goto failure;
524 		}
525 	} else {
526 		ehci_decode_ddi_dma_addr_bind_handle_result(ehcip, result);
527 
528 		goto failure;
529 	}
530 
531 	/*
532 	 * DMA addresses for QH pools are bound
533 	 */
534 	ehcip->ehci_dma_addr_bind_flag |= EHCI_QH_POOL_BOUND;
535 
536 	/* Initialize the QH pool */
537 	for (i = 0; i < ehci_qh_pool_size; i ++) {
538 		Set_QH(ehcip->ehci_qh_pool_addr[i].qh_state, EHCI_QH_FREE);
539 	}
540 
541 	/* Byte alignment */
542 	ehcip->ehci_dma_attr.dma_attr_align = EHCI_DMA_ATTR_ALIGNMENT;
543 
544 	return (DDI_SUCCESS);
545 
546 failure:
547 	/* Byte alignment */
548 	ehcip->ehci_dma_attr.dma_attr_align = EHCI_DMA_ATTR_ALIGNMENT;
549 
550 	return (DDI_FAILURE);
551 }
552 
553 
554 /*
555  * ehci_decode_ddi_dma_addr_bind_handle_result:
556  *
557  * Process the return values of ddi_dma_addr_bind_handle()
558  */
559 void
560 ehci_decode_ddi_dma_addr_bind_handle_result(
561 	ehci_state_t	*ehcip,
562 	int		result)
563 {
564 	USB_DPRINTF_L2(PRINT_MASK_ALLOC, ehcip->ehci_log_hdl,
565 	    "ehci_decode_ddi_dma_addr_bind_handle_result:");
566 
567 	switch (result) {
568 	case DDI_DMA_PARTIAL_MAP:
569 		USB_DPRINTF_L2(PRINT_MASK_ALL, ehcip->ehci_log_hdl,
570 		    "Partial transfers not allowed");
571 		break;
572 	case DDI_DMA_INUSE:
573 		USB_DPRINTF_L2(PRINT_MASK_ALL,	ehcip->ehci_log_hdl,
574 		    "Handle is in use");
575 		break;
576 	case DDI_DMA_NORESOURCES:
577 		USB_DPRINTF_L2(PRINT_MASK_ALL,	ehcip->ehci_log_hdl,
578 		    "No resources");
579 		break;
580 	case DDI_DMA_NOMAPPING:
581 		USB_DPRINTF_L2(PRINT_MASK_ALL,	ehcip->ehci_log_hdl,
582 		    "No mapping");
583 		break;
584 	case DDI_DMA_TOOBIG:
585 		USB_DPRINTF_L2(PRINT_MASK_ALL,	ehcip->ehci_log_hdl,
586 		    "Object is too big");
587 		break;
588 	default:
589 		USB_DPRINTF_L2(PRINT_MASK_ALL,	ehcip->ehci_log_hdl,
590 		    "Unknown dma error");
591 	}
592 }
593 
594 
595 /*
596  * ehci_map_regs:
597  *
598  * The Host Controller (HC) contains a set of on-chip operational registers
599  * and which should be mapped into a non-cacheable portion of the  system
600  * addressable space.
601  */
602 int
603 ehci_map_regs(ehci_state_t	*ehcip)
604 {
605 	ddi_device_acc_attr_t	attr;
606 	uint16_t		cmd_reg;
607 	uint_t			length;
608 
609 	USB_DPRINTF_L4(PRINT_MASK_ATTA, ehcip->ehci_log_hdl, "ehci_map_regs:");
610 
611 	/* Check to make sure we have memory access */
612 	if (pci_config_setup(ehcip->ehci_dip,
613 	    &ehcip->ehci_config_handle) != DDI_SUCCESS) {
614 
615 		USB_DPRINTF_L2(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
616 		    "ehci_map_regs: Config error");
617 
618 		return (DDI_FAILURE);
619 	}
620 
621 	/* Make sure Memory Access Enable is set */
622 	cmd_reg = pci_config_get16(ehcip->ehci_config_handle, PCI_CONF_COMM);
623 
624 	if (!(cmd_reg & PCI_COMM_MAE)) {
625 
626 		USB_DPRINTF_L2(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
627 		    "ehci_map_regs: Memory base address access disabled");
628 
629 		return (DDI_FAILURE);
630 	}
631 
632 	/* The host controller will be little endian */
633 	attr.devacc_attr_version = DDI_DEVICE_ATTR_V0;
634 	attr.devacc_attr_endian_flags  = DDI_STRUCTURE_LE_ACC;
635 	attr.devacc_attr_dataorder = DDI_STRICTORDER_ACC;
636 
637 	/* Map in EHCI Capability registers */
638 	if (ddi_regs_map_setup(ehcip->ehci_dip, 1,
639 	    (caddr_t *)&ehcip->ehci_capsp, 0,
640 	    sizeof (ehci_caps_t), &attr,
641 	    &ehcip->ehci_caps_handle) != DDI_SUCCESS) {
642 
643 		USB_DPRINTF_L2(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
644 		    "ehci_map_regs: Map setup error");
645 
646 		return (DDI_FAILURE);
647 	}
648 
649 	length = ddi_get8(ehcip->ehci_caps_handle,
650 	    (uint8_t *)&ehcip->ehci_capsp->ehci_caps_length);
651 
652 	/* Free the original mapping */
653 	ddi_regs_map_free(&ehcip->ehci_caps_handle);
654 
655 	/* Re-map in EHCI Capability and Operational registers */
656 	if (ddi_regs_map_setup(ehcip->ehci_dip, 1,
657 	    (caddr_t *)&ehcip->ehci_capsp, 0,
658 	    length + sizeof (ehci_regs_t), &attr,
659 	    &ehcip->ehci_caps_handle) != DDI_SUCCESS) {
660 
661 		USB_DPRINTF_L2(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
662 		    "ehci_map_regs: Map setup error");
663 
664 		return (DDI_FAILURE);
665 	}
666 
667 	/* Get the pointer to EHCI Operational Register */
668 	ehcip->ehci_regsp = (ehci_regs_t *)
669 	    ((uintptr_t)ehcip->ehci_capsp + length);
670 
671 	USB_DPRINTF_L4(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
672 	    "ehci_map_regs: Capsp 0x%p Regsp 0x%p\n",
673 	    (void *)ehcip->ehci_capsp, (void *)ehcip->ehci_regsp);
674 
675 	return (DDI_SUCCESS);
676 }
677 
678 /*
679  * The following simulated polling is for debugging purposes only.
680  * It is activated on x86 by setting usb-polling=true in GRUB or ehci.conf.
681  */
682 static int
683 ehci_is_polled(dev_info_t *dip)
684 {
685 	int ret;
686 	char *propval;
687 
688 	if (ddi_prop_lookup_string(DDI_DEV_T_ANY, dip, 0,
689 	    "usb-polling", &propval) != DDI_SUCCESS)
690 
691 		return (0);
692 
693 	ret = (strcmp(propval, "true") == 0);
694 	ddi_prop_free(propval);
695 
696 	return (ret);
697 }
698 
699 static void
700 ehci_poll_intr(void *arg)
701 {
702 	/* poll every msec */
703 	for (;;) {
704 		(void) ehci_intr(arg, NULL);
705 		delay(drv_usectohz(1000));
706 	}
707 }
708 
709 /*
710  * ehci_register_intrs_and_init_mutex:
711  *
712  * Register interrupts and initialize each mutex and condition variables
713  */
714 int
715 ehci_register_intrs_and_init_mutex(ehci_state_t	*ehcip)
716 {
717 	int	intr_types;
718 
719 #if defined(__x86)
720 	uint8_t iline;
721 #endif
722 
723 	USB_DPRINTF_L4(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
724 	    "ehci_register_intrs_and_init_mutex:");
725 
726 	/*
727 	 * There is a known MSI hardware bug with the EHCI controller
728 	 * of ULI1575 southbridge. Hence MSI is disabled for this chip.
729 	 */
730 	if ((ehcip->ehci_vendor_id == PCI_VENDOR_ULi_M1575) &&
731 	    (ehcip->ehci_device_id == PCI_DEVICE_ULi_M1575)) {
732 		ehcip->ehci_msi_enabled = B_FALSE;
733 	} else {
734 		/* Set the MSI enable flag from the global EHCI MSI tunable */
735 		ehcip->ehci_msi_enabled = ehci_enable_msi;
736 	}
737 
738 	/* launch polling thread instead of enabling pci interrupt */
739 	if (ehci_is_polled(ehcip->ehci_dip)) {
740 		extern pri_t maxclsyspri;
741 
742 		USB_DPRINTF_L2(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
743 		    "ehci_register_intrs_and_init_mutex: "
744 		    "running in simulated polled mode");
745 
746 		(void) thread_create(NULL, 0, ehci_poll_intr, ehcip, 0, &p0,
747 		    TS_RUN, maxclsyspri);
748 
749 		goto skip_intr;
750 	}
751 
752 #if defined(__x86)
753 	/*
754 	 * Make sure that the interrupt pin is connected to the
755 	 * interrupt controller on x86.	 Interrupt line 255 means
756 	 * "unknown" or "not connected" (PCI spec 6.2.4, footnote 43).
757 	 * If we would return failure when interrupt line equals 255, then
758 	 * high speed devices will be routed to companion host controllers.
759 	 * However, it is not necessary to return failure here, and
760 	 * o/uhci codes don't check the interrupt line either.
761 	 * But it's good to log a message here for debug purposes.
762 	 */
763 	iline = pci_config_get8(ehcip->ehci_config_handle,
764 	    PCI_CONF_ILINE);
765 
766 	if (iline == 255) {
767 		USB_DPRINTF_L2(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
768 		    "ehci_register_intrs_and_init_mutex: "
769 		    "interrupt line value out of range (%d)",
770 		    iline);
771 	}
772 #endif	/* __x86 */
773 
774 	/* Get supported interrupt types */
775 	if (ddi_intr_get_supported_types(ehcip->ehci_dip,
776 	    &intr_types) != DDI_SUCCESS) {
777 		USB_DPRINTF_L2(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
778 		    "ehci_register_intrs_and_init_mutex: "
779 		    "ddi_intr_get_supported_types failed");
780 
781 		return (DDI_FAILURE);
782 	}
783 
784 	USB_DPRINTF_L3(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
785 	    "ehci_register_intrs_and_init_mutex: "
786 	    "supported interrupt types 0x%x", intr_types);
787 
788 	if ((intr_types & DDI_INTR_TYPE_MSI) && ehcip->ehci_msi_enabled) {
789 		if (ehci_add_intrs(ehcip, DDI_INTR_TYPE_MSI)
790 		    != DDI_SUCCESS) {
791 			USB_DPRINTF_L4(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
792 			    "ehci_register_intrs_and_init_mutex: MSI "
793 			    "registration failed, trying FIXED interrupt \n");
794 		} else {
795 			USB_DPRINTF_L4(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
796 			    "ehci_register_intrs_and_init_mutex: "
797 			    "Using MSI interrupt type\n");
798 
799 			ehcip->ehci_intr_type = DDI_INTR_TYPE_MSI;
800 			ehcip->ehci_flags |= EHCI_INTR;
801 		}
802 	}
803 
804 	if ((!(ehcip->ehci_flags & EHCI_INTR)) &&
805 	    (intr_types & DDI_INTR_TYPE_FIXED)) {
806 		if (ehci_add_intrs(ehcip, DDI_INTR_TYPE_FIXED)
807 		    != DDI_SUCCESS) {
808 			USB_DPRINTF_L2(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
809 			    "ehci_register_intrs_and_init_mutex: "
810 			    "FIXED interrupt registration failed\n");
811 
812 			return (DDI_FAILURE);
813 		}
814 
815 		USB_DPRINTF_L4(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
816 		    "ehci_register_intrs_and_init_mutex: "
817 		    "Using FIXED interrupt type\n");
818 
819 		ehcip->ehci_intr_type = DDI_INTR_TYPE_FIXED;
820 		ehcip->ehci_flags |= EHCI_INTR;
821 	}
822 
823 skip_intr:
824 	/* Create prototype for advance on async schedule */
825 	cv_init(&ehcip->ehci_async_schedule_advance_cv,
826 	    NULL, CV_DRIVER, NULL);
827 
828 	return (DDI_SUCCESS);
829 }
830 
831 
832 /*
833  * ehci_add_intrs:
834  *
835  * Register FIXED or MSI interrupts.
836  */
837 static int
838 ehci_add_intrs(ehci_state_t	*ehcip,
839 		int		intr_type)
840 {
841 	int	actual, avail, intr_size, count = 0;
842 	int	i, flag, ret;
843 
844 	USB_DPRINTF_L4(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
845 	    "ehci_add_intrs: interrupt type 0x%x", intr_type);
846 
847 	/* Get number of interrupts */
848 	ret = ddi_intr_get_nintrs(ehcip->ehci_dip, intr_type, &count);
849 	if ((ret != DDI_SUCCESS) || (count == 0)) {
850 		USB_DPRINTF_L2(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
851 		    "ehci_add_intrs: ddi_intr_get_nintrs() failure, "
852 		    "ret: %d, count: %d", ret, count);
853 
854 		return (DDI_FAILURE);
855 	}
856 
857 	/* Get number of available interrupts */
858 	ret = ddi_intr_get_navail(ehcip->ehci_dip, intr_type, &avail);
859 	if ((ret != DDI_SUCCESS) || (avail == 0)) {
860 		USB_DPRINTF_L2(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
861 		    "ehci_add_intrs: ddi_intr_get_navail() failure, "
862 		    "ret: %d, count: %d", ret, count);
863 
864 		return (DDI_FAILURE);
865 	}
866 
867 	if (avail < count) {
868 		USB_DPRINTF_L3(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
869 		    "ehci_add_intrs: ehci_add_intrs: nintrs () "
870 		    "returned %d, navail returned %d\n", count, avail);
871 	}
872 
873 	/* Allocate an array of interrupt handles */
874 	intr_size = count * sizeof (ddi_intr_handle_t);
875 	ehcip->ehci_htable = kmem_zalloc(intr_size, KM_SLEEP);
876 
877 	flag = (intr_type == DDI_INTR_TYPE_MSI) ?
878 	    DDI_INTR_ALLOC_STRICT:DDI_INTR_ALLOC_NORMAL;
879 
880 	/* call ddi_intr_alloc() */
881 	ret = ddi_intr_alloc(ehcip->ehci_dip, ehcip->ehci_htable,
882 	    intr_type, 0, count, &actual, flag);
883 
884 	if ((ret != DDI_SUCCESS) || (actual == 0)) {
885 		USB_DPRINTF_L2(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
886 		    "ehci_add_intrs: ddi_intr_alloc() failed %d", ret);
887 
888 		kmem_free(ehcip->ehci_htable, intr_size);
889 
890 		return (DDI_FAILURE);
891 	}
892 
893 	if (actual < count) {
894 		USB_DPRINTF_L3(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
895 		    "ehci_add_intrs: Requested: %d, Received: %d\n",
896 		    count, actual);
897 
898 		for (i = 0; i < actual; i++)
899 			(void) ddi_intr_free(ehcip->ehci_htable[i]);
900 
901 		kmem_free(ehcip->ehci_htable, intr_size);
902 
903 		return (DDI_FAILURE);
904 	}
905 
906 	ehcip->ehci_intr_cnt = actual;
907 
908 	if ((ret = ddi_intr_get_pri(ehcip->ehci_htable[0],
909 	    &ehcip->ehci_intr_pri)) != DDI_SUCCESS) {
910 		USB_DPRINTF_L2(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
911 		    "ehci_add_intrs: ddi_intr_get_pri() failed %d", ret);
912 
913 		for (i = 0; i < actual; i++)
914 			(void) ddi_intr_free(ehcip->ehci_htable[i]);
915 
916 		kmem_free(ehcip->ehci_htable, intr_size);
917 
918 		return (DDI_FAILURE);
919 	}
920 
921 	USB_DPRINTF_L3(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
922 	    "ehci_add_intrs: Supported Interrupt priority 0x%x",
923 	    ehcip->ehci_intr_pri);
924 
925 	/* Test for high level mutex */
926 	if (ehcip->ehci_intr_pri >= ddi_intr_get_hilevel_pri()) {
927 		USB_DPRINTF_L2(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
928 		    "ehci_add_intrs: Hi level interrupt not supported");
929 
930 		for (i = 0; i < actual; i++)
931 			(void) ddi_intr_free(ehcip->ehci_htable[i]);
932 
933 		kmem_free(ehcip->ehci_htable, intr_size);
934 
935 		return (DDI_FAILURE);
936 	}
937 
938 	/* Initialize the mutex */
939 	mutex_init(&ehcip->ehci_int_mutex, NULL, MUTEX_DRIVER,
940 	    DDI_INTR_PRI(ehcip->ehci_intr_pri));
941 
942 	/* Call ddi_intr_add_handler() */
943 	for (i = 0; i < actual; i++) {
944 		if ((ret = ddi_intr_add_handler(ehcip->ehci_htable[i],
945 		    ehci_intr, (caddr_t)ehcip,
946 		    (caddr_t)(uintptr_t)i)) != DDI_SUCCESS) {
947 			USB_DPRINTF_L2(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
948 			    "ehci_add_intrs:ddi_intr_add_handler() "
949 			    "failed %d", ret);
950 
951 			for (i = 0; i < actual; i++)
952 				(void) ddi_intr_free(ehcip->ehci_htable[i]);
953 
954 			mutex_destroy(&ehcip->ehci_int_mutex);
955 			kmem_free(ehcip->ehci_htable, intr_size);
956 
957 			return (DDI_FAILURE);
958 		}
959 	}
960 
961 	if ((ret = ddi_intr_get_cap(ehcip->ehci_htable[0],
962 	    &ehcip->ehci_intr_cap)) != DDI_SUCCESS) {
963 		USB_DPRINTF_L2(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
964 		    "ehci_add_intrs: ddi_intr_get_cap() failed %d", ret);
965 
966 		for (i = 0; i < actual; i++) {
967 			(void) ddi_intr_remove_handler(ehcip->ehci_htable[i]);
968 			(void) ddi_intr_free(ehcip->ehci_htable[i]);
969 		}
970 
971 		mutex_destroy(&ehcip->ehci_int_mutex);
972 		kmem_free(ehcip->ehci_htable, intr_size);
973 
974 		return (DDI_FAILURE);
975 	}
976 
977 	/* Enable all interrupts */
978 	if (ehcip->ehci_intr_cap & DDI_INTR_FLAG_BLOCK) {
979 		/* Call ddi_intr_block_enable() for MSI interrupts */
980 		(void) ddi_intr_block_enable(ehcip->ehci_htable,
981 		    ehcip->ehci_intr_cnt);
982 	} else {
983 		/* Call ddi_intr_enable for MSI or FIXED interrupts */
984 		for (i = 0; i < ehcip->ehci_intr_cnt; i++)
985 			(void) ddi_intr_enable(ehcip->ehci_htable[i]);
986 	}
987 
988 	return (DDI_SUCCESS);
989 }
990 
991 
992 /*
993  * ehci_init_hardware
994  *
995  * take control from BIOS, reset EHCI host controller, and check version, etc.
996  */
997 int
998 ehci_init_hardware(ehci_state_t	*ehcip)
999 {
1000 	int			revision;
1001 	uint16_t		cmd_reg;
1002 	int			abort_on_BIOS_take_over_failure;
1003 
1004 	/* Take control from the BIOS */
1005 	if (ehci_take_control(ehcip) != USB_SUCCESS) {
1006 
1007 		/* read .conf file properties */
1008 		abort_on_BIOS_take_over_failure =
1009 		    ddi_prop_get_int(DDI_DEV_T_ANY,
1010 		    ehcip->ehci_dip, DDI_PROP_DONTPASS,
1011 		    "abort-on-BIOS-take-over-failure", 0);
1012 
1013 		if (abort_on_BIOS_take_over_failure) {
1014 
1015 			USB_DPRINTF_L1(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
1016 			    "Unable to take control from BIOS.");
1017 
1018 			return (DDI_FAILURE);
1019 		}
1020 
1021 		USB_DPRINTF_L1(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
1022 		    "Unable to take control from BIOS. Failure is ignored.");
1023 	}
1024 
1025 	/* set Memory Master Enable */
1026 	cmd_reg = pci_config_get16(ehcip->ehci_config_handle, PCI_CONF_COMM);
1027 	cmd_reg |= (PCI_COMM_MAE | PCI_COMM_ME);
1028 	pci_config_put16(ehcip->ehci_config_handle, PCI_CONF_COMM, cmd_reg);
1029 
1030 	/* Reset the EHCI host controller */
1031 	Set_OpReg(ehci_command,
1032 	    Get_OpReg(ehci_command) | EHCI_CMD_HOST_CTRL_RESET);
1033 
1034 	/* Wait 10ms for reset to complete */
1035 	drv_usecwait(EHCI_RESET_TIMEWAIT);
1036 
1037 	ASSERT(Get_OpReg(ehci_status) & EHCI_STS_HOST_CTRL_HALTED);
1038 
1039 	/* Verify the version number */
1040 	revision = Get_16Cap(ehci_version);
1041 
1042 	USB_DPRINTF_L3(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
1043 	    "ehci_init_hardware: Revision 0x%x", revision);
1044 
1045 	/*
1046 	 * EHCI driver supports EHCI host controllers compliant to
1047 	 * 0.95 and higher revisions of EHCI specifications.
1048 	 */
1049 	if (revision < EHCI_REVISION_0_95) {
1050 
1051 		USB_DPRINTF_L0(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
1052 		    "Revision 0x%x is not supported", revision);
1053 
1054 		return (DDI_FAILURE);
1055 	}
1056 
1057 	if (ehcip->ehci_hc_soft_state == EHCI_CTLR_INIT_STATE) {
1058 
1059 		/* Initialize the Frame list base address area */
1060 		if (ehci_init_periodic_frame_lst_table(ehcip) != DDI_SUCCESS) {
1061 
1062 			return (DDI_FAILURE);
1063 		}
1064 
1065 		/*
1066 		 * For performance reasons, do not insert anything into the
1067 		 * asynchronous list or activate the asynch list schedule until
1068 		 * there is a valid QH.
1069 		 */
1070 		ehcip->ehci_head_of_async_sched_list = NULL;
1071 
1072 		if ((ehcip->ehci_vendor_id == PCI_VENDOR_VIA) &&
1073 		    (ehci_vt62x2_workaround & EHCI_VIA_ASYNC_SCHEDULE)) {
1074 			/*
1075 			 * The driver is unable to reliably stop the asynch
1076 			 * list schedule on VIA VT6202 controllers, so we
1077 			 * always keep a dummy QH on the list.
1078 			 */
1079 			ehci_qh_t *dummy_async_qh =
1080 			    ehci_alloc_qh(ehcip, NULL, NULL);
1081 
1082 			Set_QH(dummy_async_qh->qh_link_ptr,
1083 			    ((ehci_qh_cpu_to_iommu(ehcip, dummy_async_qh) &
1084 			    EHCI_QH_LINK_PTR) | EHCI_QH_LINK_REF_QH));
1085 
1086 			/* Set this QH to be the "head" of the circular list */
1087 			Set_QH(dummy_async_qh->qh_ctrl,
1088 			    Get_QH(dummy_async_qh->qh_ctrl) |
1089 			    EHCI_QH_CTRL_RECLAIM_HEAD);
1090 
1091 			Set_QH(dummy_async_qh->qh_next_qtd,
1092 			    EHCI_QH_NEXT_QTD_PTR_VALID);
1093 			Set_QH(dummy_async_qh->qh_alt_next_qtd,
1094 			    EHCI_QH_ALT_NEXT_QTD_PTR_VALID);
1095 
1096 			ehcip->ehci_head_of_async_sched_list = dummy_async_qh;
1097 			ehcip->ehci_open_async_count++;
1098 		}
1099 	}
1100 
1101 	return (DDI_SUCCESS);
1102 }
1103 
1104 
1105 /*
1106  * ehci_init_workaround
1107  *
1108  * some workarounds during initializing ehci
1109  */
1110 int
1111 ehci_init_workaround(ehci_state_t	*ehcip)
1112 {
1113 	/*
1114 	 * Acer Labs Inc. M5273 EHCI controller does not send
1115 	 * interrupts unless the Root hub ports are routed to the EHCI
1116 	 * host controller; so route the ports now, before we test for
1117 	 * the presence of SOFs interrupts.
1118 	 */
1119 	if (ehcip->ehci_vendor_id == PCI_VENDOR_ALI) {
1120 		/* Route all Root hub ports to EHCI host controller */
1121 		Set_OpReg(ehci_config_flag, EHCI_CONFIG_FLAG_EHCI);
1122 	}
1123 
1124 	/*
1125 	 * VIA chips have some issues and may not work reliably.
1126 	 * Revisions >= 0x80 are part of a southbridge and appear
1127 	 * to be reliable with the workaround.
1128 	 * For revisions < 0x80, if we	were bound using class
1129 	 * complain, else proceed. This will allow the user to
1130 	 * bind ehci specifically to this chip and not have the
1131 	 * warnings
1132 	 */
1133 	if (ehcip->ehci_vendor_id == PCI_VENDOR_VIA) {
1134 
1135 		if (ehcip->ehci_rev_id >= PCI_VIA_REVISION_6212) {
1136 
1137 			USB_DPRINTF_L2(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
1138 			    "ehci_init_workaround: Applying VIA workarounds "
1139 			    "for the 6212 chip.");
1140 
1141 		} else if (strcmp(DEVI(ehcip->ehci_dip)->devi_binding_name,
1142 		    "pciclass,0c0320") == 0) {
1143 
1144 			USB_DPRINTF_L1(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
1145 			    "Due to recently discovered incompatibilities");
1146 			USB_DPRINTF_L1(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
1147 			    "with this USB controller, USB2.x transfer");
1148 			USB_DPRINTF_L1(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
1149 			    "support has been disabled. This device will");
1150 			USB_DPRINTF_L1(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
1151 			    "continue to function as a USB1.x controller.");
1152 			USB_DPRINTF_L1(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
1153 			    "If you are interested in enabling USB2.x");
1154 			USB_DPRINTF_L1(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
1155 			    "support please, refer to the ehci(7D) man page.");
1156 			USB_DPRINTF_L1(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
1157 			    "Please also refer to www.sun.com/io for");
1158 			USB_DPRINTF_L1(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
1159 			    "Solaris Ready products and to");
1160 			USB_DPRINTF_L1(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
1161 			    "www.sun.com/bigadmin/hcl for additional");
1162 			USB_DPRINTF_L1(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
1163 			    "compatible USB products.");
1164 
1165 			return (DDI_FAILURE);
1166 
1167 			} else if (ehci_vt62x2_workaround) {
1168 
1169 			USB_DPRINTF_L1(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
1170 			    "Applying VIA workarounds");
1171 		}
1172 	}
1173 
1174 	return (DDI_SUCCESS);
1175 }
1176 
1177 
1178 /*
1179  * ehci_init_check_status
1180  *
1181  * Check if EHCI host controller is running
1182  */
1183 int
1184 ehci_init_check_status(ehci_state_t	*ehcip)
1185 {
1186 	clock_t			sof_time_wait;
1187 
1188 	/*
1189 	 * Get the number of clock ticks to wait.
1190 	 * This is based on the maximum time it takes for a frame list rollover
1191 	 * and maximum time wait for SOFs to begin.
1192 	 */
1193 	sof_time_wait = drv_usectohz((EHCI_NUM_PERIODIC_FRAME_LISTS * 1000) +
1194 	    EHCI_SOF_TIMEWAIT);
1195 
1196 	/* Tell the ISR to broadcast ehci_async_schedule_advance_cv */
1197 	ehcip->ehci_flags |= EHCI_CV_INTR;
1198 
1199 	/* We need to add a delay to allow the chip time to start running */
1200 	(void) cv_timedwait(&ehcip->ehci_async_schedule_advance_cv,
1201 	    &ehcip->ehci_int_mutex, ddi_get_lbolt() + sof_time_wait);
1202 
1203 	/*
1204 	 * Check EHCI host controller is running, otherwise return failure.
1205 	 */
1206 	if ((ehcip->ehci_flags & EHCI_CV_INTR) ||
1207 	    (Get_OpReg(ehci_status) & EHCI_STS_HOST_CTRL_HALTED)) {
1208 
1209 		USB_DPRINTF_L0(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
1210 		    "No SOF interrupts have been received, this USB EHCI host"
1211 		    "controller is unusable");
1212 
1213 		/*
1214 		 * Route all Root hub ports to Classic host
1215 		 * controller, in case this is an unusable ALI M5273
1216 		 * EHCI controller.
1217 		 */
1218 		if (ehcip->ehci_vendor_id == PCI_VENDOR_ALI) {
1219 			Set_OpReg(ehci_config_flag, EHCI_CONFIG_FLAG_CLASSIC);
1220 		}
1221 
1222 		return (DDI_FAILURE);
1223 	}
1224 
1225 	return (DDI_SUCCESS);
1226 }
1227 
1228 
1229 /*
1230  * ehci_init_ctlr:
1231  *
1232  * Initialize the Host Controller (HC).
1233  */
1234 int
1235 ehci_init_ctlr(ehci_state_t	*ehcip,
1236 		int		init_type)
1237 {
1238 	USB_DPRINTF_L4(PRINT_MASK_ATTA, ehcip->ehci_log_hdl, "ehci_init_ctlr:");
1239 
1240 	if (init_type == EHCI_NORMAL_INITIALIZATION) {
1241 
1242 		if (ehci_init_hardware(ehcip) != DDI_SUCCESS) {
1243 
1244 			return (DDI_FAILURE);
1245 		}
1246 	}
1247 
1248 	/*
1249 	 * Check for Asynchronous schedule park capability feature. If this
1250 	 * feature is supported, then, program ehci command register with
1251 	 * appropriate values..
1252 	 */
1253 	if (Get_Cap(ehci_hcc_params) & EHCI_HCC_ASYNC_SCHED_PARK_CAP) {
1254 
1255 		USB_DPRINTF_L3(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
1256 		    "ehci_init_ctlr: Async park mode is supported");
1257 
1258 		Set_OpReg(ehci_command, (Get_OpReg(ehci_command) |
1259 		    (EHCI_CMD_ASYNC_PARK_ENABLE |
1260 		    EHCI_CMD_ASYNC_PARK_COUNT_3)));
1261 	}
1262 
1263 	/*
1264 	 * Check for programmable periodic frame list feature. If this
1265 	 * feature is supported, then, program ehci command register with
1266 	 * 1024 frame list value.
1267 	 */
1268 	if (Get_Cap(ehci_hcc_params) & EHCI_HCC_PROG_FRAME_LIST_FLAG) {
1269 
1270 		USB_DPRINTF_L3(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
1271 		    "ehci_init_ctlr: Variable programmable periodic "
1272 		    "frame list is supported");
1273 
1274 		Set_OpReg(ehci_command, (Get_OpReg(ehci_command) |
1275 		    EHCI_CMD_FRAME_1024_SIZE));
1276 	}
1277 
1278 	/*
1279 	 * Currently EHCI driver doesn't support 64 bit addressing.
1280 	 *
1281 	 * If we are using 64 bit addressing capability, then, program
1282 	 * ehci_ctrl_segment register with 4 Gigabyte segment where all
1283 	 * of the interface data structures are allocated.
1284 	 */
1285 	if (Get_Cap(ehci_hcc_params) & EHCI_HCC_64BIT_ADDR_CAP) {
1286 
1287 		USB_DPRINTF_L3(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
1288 		    "ehci_init_ctlr: EHCI driver doesn't support "
1289 		    "64 bit addressing");
1290 	}
1291 
1292 	/* 64 bit addressing is not support */
1293 	Set_OpReg(ehci_ctrl_segment, 0x00000000);
1294 
1295 	/* Turn on/off the schedulers */
1296 	ehci_toggle_scheduler(ehcip);
1297 
1298 	/* Set host controller soft state to operational */
1299 	ehcip->ehci_hc_soft_state = EHCI_CTLR_OPERATIONAL_STATE;
1300 
1301 	/*
1302 	 * Set the Periodic Frame List Base Address register with the
1303 	 * starting physical address of the Periodic Frame List.
1304 	 */
1305 	Set_OpReg(ehci_periodic_list_base,
1306 	    (uint32_t)(ehcip->ehci_pflt_cookie.dmac_address &
1307 	    EHCI_PERIODIC_LIST_BASE));
1308 
1309 	/*
1310 	 * Set ehci_interrupt to enable all interrupts except Root
1311 	 * Hub Status change interrupt.
1312 	 */
1313 	Set_OpReg(ehci_interrupt, EHCI_INTR_HOST_SYSTEM_ERROR |
1314 	    EHCI_INTR_FRAME_LIST_ROLLOVER | EHCI_INTR_USB_ERROR |
1315 	    EHCI_INTR_USB);
1316 
1317 	/*
1318 	 * Set the desired interrupt threshold and turn on EHCI host controller.
1319 	 */
1320 	Set_OpReg(ehci_command,
1321 	    ((Get_OpReg(ehci_command) & ~EHCI_CMD_INTR_THRESHOLD) |
1322 	    (EHCI_CMD_01_INTR | EHCI_CMD_HOST_CTRL_RUN)));
1323 
1324 	ASSERT(Get_OpReg(ehci_command) & EHCI_CMD_HOST_CTRL_RUN);
1325 
1326 	if (init_type == EHCI_NORMAL_INITIALIZATION) {
1327 
1328 		if (ehci_init_workaround(ehcip) != DDI_SUCCESS) {
1329 
1330 			/* Set host controller soft state to error */
1331 			ehcip->ehci_hc_soft_state = EHCI_CTLR_ERROR_STATE;
1332 
1333 			return (DDI_FAILURE);
1334 		}
1335 
1336 		if (ehci_init_check_status(ehcip) != DDI_SUCCESS) {
1337 
1338 			/* Set host controller soft state to error */
1339 			ehcip->ehci_hc_soft_state = EHCI_CTLR_ERROR_STATE;
1340 
1341 			return (DDI_FAILURE);
1342 		}
1343 
1344 		USB_DPRINTF_L4(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
1345 		    "ehci_init_ctlr: SOF's have started");
1346 	}
1347 
1348 	/* Route all Root hub ports to EHCI host controller */
1349 	Set_OpReg(ehci_config_flag, EHCI_CONFIG_FLAG_EHCI);
1350 
1351 	return (DDI_SUCCESS);
1352 }
1353 
1354 /*
1355  * ehci_take_control:
1356  *
1357  * Handshake to take EHCI control from BIOS if necessary.  Its only valid for
1358  * x86 machines, because sparc doesn't have a BIOS.
1359  * On x86 machine, the take control process includes
1360  *    o get the base address of the extended capability list
1361  *    o find out the capability for handoff synchronization in the list.
1362  *    o check if BIOS has owned the host controller.
1363  *    o set the OS Owned semaphore bit, ask the BIOS to release the ownership.
1364  *    o wait for a constant time and check if BIOS has relinquished control.
1365  */
1366 /* ARGSUSED */
1367 static int
1368 ehci_take_control(ehci_state_t *ehcip)
1369 {
1370 #if defined(__x86)
1371 	uint32_t		extended_cap;
1372 	uint32_t		extended_cap_offset;
1373 	uint32_t		extended_cap_id;
1374 	uint_t			retry;
1375 
1376 	USB_DPRINTF_L4(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
1377 	    "ehci_take_control:");
1378 
1379 	/*
1380 	 * According EHCI Spec 2.2.4, get EECP base address from HCCPARAMS
1381 	 * register.
1382 	 */
1383 	extended_cap_offset = (Get_Cap(ehci_hcc_params) & EHCI_HCC_EECP) >>
1384 	    EHCI_HCC_EECP_SHIFT;
1385 
1386 	/*
1387 	 * According EHCI Spec 2.2.4, if the extended capability offset is
1388 	 * less than 40h then its not valid.  This means we don't need to
1389 	 * worry about BIOS handoff.
1390 	 */
1391 	if (extended_cap_offset < EHCI_HCC_EECP_MIN_OFFSET) {
1392 
1393 		USB_DPRINTF_L3(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
1394 		    "ehci_take_control: Hardware doesn't support legacy.");
1395 
1396 		goto success;
1397 	}
1398 
1399 	/*
1400 	 * According EHCI Spec 2.1.7, A zero offset indicates the
1401 	 * end of the extended capability list.
1402 	 */
1403 	while (extended_cap_offset) {
1404 
1405 		/* Get the extended capability value. */
1406 		extended_cap = pci_config_get32(ehcip->ehci_config_handle,
1407 		    extended_cap_offset);
1408 
1409 		/* Get the capability ID */
1410 		extended_cap_id = (extended_cap & EHCI_EX_CAP_ID) >>
1411 		    EHCI_EX_CAP_ID_SHIFT;
1412 
1413 		/* Check if the card support legacy */
1414 		if (extended_cap_id == EHCI_EX_CAP_ID_BIOS_HANDOFF) {
1415 			break;
1416 		}
1417 
1418 		/* Get the offset of the next capability */
1419 		extended_cap_offset = (extended_cap & EHCI_EX_CAP_NEXT_PTR) >>
1420 		    EHCI_EX_CAP_NEXT_PTR_SHIFT;
1421 	}
1422 
1423 	/*
1424 	 * Unable to find legacy support in hardware's extended capability list.
1425 	 * This means we don't need to worry about BIOS handoff.
1426 	 */
1427 	if (extended_cap_id != EHCI_EX_CAP_ID_BIOS_HANDOFF) {
1428 
1429 		USB_DPRINTF_L3(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
1430 		    "ehci_take_control: Hardware doesn't support legacy");
1431 
1432 		goto success;
1433 	}
1434 
1435 	/* Check if BIOS has owned it. */
1436 	if (!(extended_cap & EHCI_LEGSUP_BIOS_OWNED_SEM)) {
1437 
1438 		USB_DPRINTF_L3(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
1439 		    "ehci_take_control: BIOS does not own EHCI");
1440 
1441 		goto success;
1442 	}
1443 
1444 	/*
1445 	 * According EHCI Spec 5.1, The OS driver initiates an ownership
1446 	 * request by setting the OS Owned semaphore to a one. The OS
1447 	 * waits for the BIOS Owned bit to go to a zero before attempting
1448 	 * to use the EHCI controller. The time that OS must wait for BIOS
1449 	 * to respond to the request for ownership is beyond the scope of
1450 	 * this specification.
1451 	 * It waits up to EHCI_TAKEOVER_WAIT_COUNT*EHCI_TAKEOVER_DELAY ms
1452 	 * for BIOS to release the ownership.
1453 	 */
1454 	extended_cap |= EHCI_LEGSUP_OS_OWNED_SEM;
1455 	pci_config_put32(ehcip->ehci_config_handle, extended_cap_offset,
1456 	    extended_cap);
1457 
1458 	for (retry = 0; retry < EHCI_TAKEOVER_WAIT_COUNT; retry++) {
1459 
1460 		/* wait a special interval */
1461 #ifndef __lock_lint
1462 		delay(drv_usectohz(EHCI_TAKEOVER_DELAY));
1463 #endif
1464 		/* Check to see if the BIOS has released the ownership */
1465 		extended_cap = pci_config_get32(
1466 		    ehcip->ehci_config_handle, extended_cap_offset);
1467 
1468 		if (!(extended_cap & EHCI_LEGSUP_BIOS_OWNED_SEM)) {
1469 
1470 			USB_DPRINTF_L3(PRINT_MASK_ATTA,
1471 			    ehcip->ehci_log_hdl,
1472 			    "ehci_take_control: BIOS has released "
1473 			    "the ownership. retry = %d", retry);
1474 
1475 			goto success;
1476 		}
1477 
1478 	}
1479 
1480 	USB_DPRINTF_L2(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
1481 	    "ehci_take_control: take control from BIOS failed.");
1482 
1483 	return (USB_FAILURE);
1484 
1485 success:
1486 
1487 #endif	/* __x86 */
1488 	return (USB_SUCCESS);
1489 }
1490 
1491 
1492 /*
1493  * ehci_init_periodic_frame_list_table :
1494  *
1495  * Allocate the system memory and initialize Host Controller
1496  * Periodic Frame List table area. The starting of the Periodic
1497  * Frame List Table area must be 4096 byte aligned.
1498  */
1499 static int
1500 ehci_init_periodic_frame_lst_table(ehci_state_t *ehcip)
1501 {
1502 	ddi_device_acc_attr_t	dev_attr;
1503 	size_t			real_length;
1504 	uint_t			ccount;
1505 	int			result;
1506 
1507 	ASSERT(mutex_owned(&ehcip->ehci_int_mutex));
1508 
1509 	USB_DPRINTF_L4(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
1510 	    "ehci_init_periodic_frame_lst_table:");
1511 
1512 	/* The host controller will be little endian */
1513 	dev_attr.devacc_attr_version = DDI_DEVICE_ATTR_V0;
1514 	dev_attr.devacc_attr_endian_flags  = DDI_STRUCTURE_LE_ACC;
1515 	dev_attr.devacc_attr_dataorder = DDI_STRICTORDER_ACC;
1516 
1517 	/* Force the required 4K restrictive alignment */
1518 	ehcip->ehci_dma_attr.dma_attr_align = EHCI_DMA_ATTR_PFL_ALIGNMENT;
1519 
1520 	/* Create space for the Periodic Frame List */
1521 	if (ddi_dma_alloc_handle(ehcip->ehci_dip, &ehcip->ehci_dma_attr,
1522 	    DDI_DMA_SLEEP, 0, &ehcip->ehci_pflt_dma_handle) != DDI_SUCCESS) {
1523 
1524 		goto failure;
1525 	}
1526 
1527 	if (ddi_dma_mem_alloc(ehcip->ehci_pflt_dma_handle,
1528 	    sizeof (ehci_periodic_frame_list_t),
1529 	    &dev_attr, DDI_DMA_CONSISTENT, DDI_DMA_SLEEP,
1530 	    0, (caddr_t *)&ehcip->ehci_periodic_frame_list_tablep,
1531 	    &real_length, &ehcip->ehci_pflt_mem_handle)) {
1532 
1533 		goto failure;
1534 	}
1535 
1536 	USB_DPRINTF_L3(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
1537 	    "ehci_init_periodic_frame_lst_table: "
1538 	    "Real length %lu", real_length);
1539 
1540 	/* Map the whole Periodic Frame List into the I/O address space */
1541 	result = ddi_dma_addr_bind_handle(ehcip->ehci_pflt_dma_handle,
1542 	    NULL, (caddr_t)ehcip->ehci_periodic_frame_list_tablep,
1543 	    real_length, DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
1544 	    DDI_DMA_SLEEP, NULL, &ehcip->ehci_pflt_cookie, &ccount);
1545 
1546 	if (result == DDI_DMA_MAPPED) {
1547 		/* The cookie count should be 1 */
1548 		if (ccount != 1) {
1549 			USB_DPRINTF_L2(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
1550 			    "ehci_init_periodic_frame_lst_table: "
1551 			    "More than 1 cookie");
1552 
1553 			goto failure;
1554 		}
1555 	} else {
1556 		ehci_decode_ddi_dma_addr_bind_handle_result(ehcip, result);
1557 
1558 		goto failure;
1559 	}
1560 
1561 	USB_DPRINTF_L4(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
1562 	    "ehci_init_periodic_frame_lst_table: virtual 0x%p physical 0x%x",
1563 	    (void *)ehcip->ehci_periodic_frame_list_tablep,
1564 	    ehcip->ehci_pflt_cookie.dmac_address);
1565 
1566 	/*
1567 	 * DMA addresses for Periodic Frame List are bound.
1568 	 */
1569 	ehcip->ehci_dma_addr_bind_flag |= EHCI_PFLT_DMA_BOUND;
1570 
1571 	bzero((void *)ehcip->ehci_periodic_frame_list_tablep, real_length);
1572 
1573 	/* Initialize the Periodic Frame List */
1574 	ehci_build_interrupt_lattice(ehcip);
1575 
1576 	/* Reset Byte Alignment to Default */
1577 	ehcip->ehci_dma_attr.dma_attr_align = EHCI_DMA_ATTR_ALIGNMENT;
1578 
1579 	return (DDI_SUCCESS);
1580 failure:
1581 	/* Byte alignment */
1582 	ehcip->ehci_dma_attr.dma_attr_align = EHCI_DMA_ATTR_ALIGNMENT;
1583 
1584 	return (DDI_FAILURE);
1585 }
1586 
1587 
1588 /*
1589  * ehci_build_interrupt_lattice:
1590  *
1591  * Construct the interrupt lattice tree using static Endpoint Descriptors
1592  * (QH). This interrupt lattice tree will have total of 32 interrupt  QH
1593  * lists and the Host Controller (HC) processes one interrupt QH list in
1594  * every frame. The Host Controller traverses the periodic schedule by
1595  * constructing an array offset reference from the Periodic List Base Address
1596  * register and bits 12 to 3 of Frame Index register. It fetches the element
1597  * and begins traversing the graph of linked schedule data structures.
1598  */
1599 static void
1600 ehci_build_interrupt_lattice(ehci_state_t	*ehcip)
1601 {
1602 	ehci_qh_t	*list_array = ehcip->ehci_qh_pool_addr;
1603 	ushort_t	ehci_index[EHCI_NUM_PERIODIC_FRAME_LISTS];
1604 	ehci_periodic_frame_list_t *periodic_frame_list =
1605 	    ehcip->ehci_periodic_frame_list_tablep;
1606 	ushort_t	*temp, num_of_nodes;
1607 	uintptr_t	addr;
1608 	int		i, j, k;
1609 
1610 	USB_DPRINTF_L4(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
1611 	    "ehci_build_interrupt_lattice:");
1612 
1613 	/*
1614 	 * Reserve the first 63 Endpoint Descriptor (QH) structures
1615 	 * in the pool as static endpoints & these are required for
1616 	 * constructing interrupt lattice tree.
1617 	 */
1618 	for (i = 0; i < EHCI_NUM_STATIC_NODES; i++) {
1619 		Set_QH(list_array[i].qh_state, EHCI_QH_STATIC);
1620 		Set_QH(list_array[i].qh_status, EHCI_QH_STS_HALTED);
1621 		Set_QH(list_array[i].qh_next_qtd, EHCI_QH_NEXT_QTD_PTR_VALID);
1622 		Set_QH(list_array[i].qh_alt_next_qtd,
1623 		    EHCI_QH_ALT_NEXT_QTD_PTR_VALID);
1624 	}
1625 
1626 	/*
1627 	 * Make sure that last Endpoint on the periodic frame list terminates
1628 	 * periodic schedule.
1629 	 */
1630 	Set_QH(list_array[0].qh_link_ptr, EHCI_QH_LINK_PTR_VALID);
1631 
1632 	/* Build the interrupt lattice tree */
1633 	for (i = 0; i < (EHCI_NUM_STATIC_NODES / 2); i++) {
1634 		/*
1635 		 * The next  pointer in the host controller  endpoint
1636 		 * descriptor must contain an iommu address. Calculate
1637 		 * the offset into the cpu address and add this to the
1638 		 * starting iommu address.
1639 		 */
1640 		addr = ehci_qh_cpu_to_iommu(ehcip, (ehci_qh_t *)&list_array[i]);
1641 
1642 		Set_QH(list_array[2*i + 1].qh_link_ptr,
1643 		    addr | EHCI_QH_LINK_REF_QH);
1644 		Set_QH(list_array[2*i + 2].qh_link_ptr,
1645 		    addr | EHCI_QH_LINK_REF_QH);
1646 	}
1647 
1648 	/* Build the tree bottom */
1649 	temp = (unsigned short *)
1650 	    kmem_zalloc(EHCI_NUM_PERIODIC_FRAME_LISTS * 2, KM_SLEEP);
1651 
1652 	num_of_nodes = 1;
1653 
1654 	/*
1655 	 * Initialize the values which are used for setting up head pointers
1656 	 * for the 32ms scheduling lists which starts from the Periodic Frame
1657 	 * List.
1658 	 */
1659 	for (i = 0; i < ehci_log_2(EHCI_NUM_PERIODIC_FRAME_LISTS); i++) {
1660 		for (j = 0, k = 0; k < num_of_nodes; k++, j++) {
1661 			ehci_index[j++] = temp[k];
1662 			ehci_index[j]	= temp[k] + ehci_pow_2(i);
1663 		}
1664 
1665 		num_of_nodes *= 2;
1666 		for (k = 0; k < num_of_nodes; k++)
1667 			temp[k] = ehci_index[k];
1668 	}
1669 
1670 	kmem_free((void *)temp, (EHCI_NUM_PERIODIC_FRAME_LISTS * 2));
1671 
1672 	/*
1673 	 * Initialize the interrupt list in the Periodic Frame List Table
1674 	 * so that it points to the bottom of the tree.
1675 	 */
1676 	for (i = 0, j = 0; i < ehci_pow_2(TREE_HEIGHT); i++) {
1677 		addr = ehci_qh_cpu_to_iommu(ehcip, (ehci_qh_t *)
1678 		    (&list_array[((EHCI_NUM_STATIC_NODES + 1) / 2) + i - 1]));
1679 
1680 		ASSERT(addr);
1681 
1682 		for (k = 0; k < ehci_pow_2(TREE_HEIGHT); k++) {
1683 			Set_PFLT(periodic_frame_list->
1684 			    ehci_periodic_frame_list_table[ehci_index[j++]],
1685 			    (uint32_t)(addr | EHCI_QH_LINK_REF_QH));
1686 		}
1687 	}
1688 }
1689 
1690 
1691 /*
1692  * ehci_alloc_hcdi_ops:
1693  *
1694  * The HCDI interfaces or entry points are the software interfaces used by
1695  * the Universal Serial Bus Driver  (USBA) to  access the services of the
1696  * Host Controller Driver (HCD).  During HCD initialization, inform  USBA
1697  * about all available HCDI interfaces or entry points.
1698  */
1699 usba_hcdi_ops_t *
1700 ehci_alloc_hcdi_ops(ehci_state_t	*ehcip)
1701 {
1702 	usba_hcdi_ops_t			*usba_hcdi_ops;
1703 
1704 	USB_DPRINTF_L4(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
1705 	    "ehci_alloc_hcdi_ops:");
1706 
1707 	usba_hcdi_ops = usba_alloc_hcdi_ops();
1708 
1709 	usba_hcdi_ops->usba_hcdi_ops_version = HCDI_OPS_VERSION;
1710 
1711 	usba_hcdi_ops->usba_hcdi_pm_support = ehci_hcdi_pm_support;
1712 	usba_hcdi_ops->usba_hcdi_pipe_open = ehci_hcdi_pipe_open;
1713 	usba_hcdi_ops->usba_hcdi_pipe_close = ehci_hcdi_pipe_close;
1714 
1715 	usba_hcdi_ops->usba_hcdi_pipe_reset = ehci_hcdi_pipe_reset;
1716 	usba_hcdi_ops->usba_hcdi_pipe_reset_data_toggle =
1717 	    ehci_hcdi_pipe_reset_data_toggle;
1718 
1719 	usba_hcdi_ops->usba_hcdi_pipe_ctrl_xfer = ehci_hcdi_pipe_ctrl_xfer;
1720 	usba_hcdi_ops->usba_hcdi_pipe_bulk_xfer = ehci_hcdi_pipe_bulk_xfer;
1721 	usba_hcdi_ops->usba_hcdi_pipe_intr_xfer = ehci_hcdi_pipe_intr_xfer;
1722 	usba_hcdi_ops->usba_hcdi_pipe_isoc_xfer = ehci_hcdi_pipe_isoc_xfer;
1723 
1724 	usba_hcdi_ops->usba_hcdi_bulk_transfer_size =
1725 	    ehci_hcdi_bulk_transfer_size;
1726 
1727 	usba_hcdi_ops->usba_hcdi_pipe_stop_intr_polling =
1728 	    ehci_hcdi_pipe_stop_intr_polling;
1729 	usba_hcdi_ops->usba_hcdi_pipe_stop_isoc_polling =
1730 	    ehci_hcdi_pipe_stop_isoc_polling;
1731 
1732 	usba_hcdi_ops->usba_hcdi_get_current_frame_number =
1733 	    ehci_hcdi_get_current_frame_number;
1734 	usba_hcdi_ops->usba_hcdi_get_max_isoc_pkts =
1735 	    ehci_hcdi_get_max_isoc_pkts;
1736 
1737 	usba_hcdi_ops->usba_hcdi_console_input_init =
1738 	    ehci_hcdi_polled_input_init;
1739 	usba_hcdi_ops->usba_hcdi_console_input_enter =
1740 	    ehci_hcdi_polled_input_enter;
1741 	usba_hcdi_ops->usba_hcdi_console_read =
1742 	    ehci_hcdi_polled_read;
1743 	usba_hcdi_ops->usba_hcdi_console_input_exit =
1744 	    ehci_hcdi_polled_input_exit;
1745 	usba_hcdi_ops->usba_hcdi_console_input_fini =
1746 	    ehci_hcdi_polled_input_fini;
1747 
1748 	usba_hcdi_ops->usba_hcdi_console_output_init =
1749 	    ehci_hcdi_polled_output_init;
1750 	usba_hcdi_ops->usba_hcdi_console_output_enter =
1751 	    ehci_hcdi_polled_output_enter;
1752 	usba_hcdi_ops->usba_hcdi_console_write =
1753 	    ehci_hcdi_polled_write;
1754 	usba_hcdi_ops->usba_hcdi_console_output_exit =
1755 	    ehci_hcdi_polled_output_exit;
1756 	usba_hcdi_ops->usba_hcdi_console_output_fini =
1757 	    ehci_hcdi_polled_output_fini;
1758 	return (usba_hcdi_ops);
1759 }
1760 
1761 
1762 /*
1763  * Host Controller Driver (HCD) deinitialization functions
1764  */
1765 
1766 /*
1767  * ehci_cleanup:
1768  *
1769  * Cleanup on attach failure or detach
1770  */
1771 int
1772 ehci_cleanup(ehci_state_t	*ehcip)
1773 {
1774 	ehci_trans_wrapper_t	*tw;
1775 	ehci_pipe_private_t	*pp;
1776 	ehci_qtd_t		*qtd;
1777 	int			i, ctrl, rval;
1778 	int			flags = ehcip->ehci_flags;
1779 
1780 	USB_DPRINTF_L4(PRINT_MASK_ATTA, ehcip->ehci_log_hdl, "ehci_cleanup:");
1781 
1782 	if (flags & EHCI_RHREG) {
1783 		/* Unload the root hub driver */
1784 		if (ehci_unload_root_hub_driver(ehcip) != USB_SUCCESS) {
1785 
1786 			return (DDI_FAILURE);
1787 		}
1788 	}
1789 
1790 	if (flags & EHCI_USBAREG) {
1791 		/* Unregister this HCD instance with USBA */
1792 		usba_hcdi_unregister(ehcip->ehci_dip);
1793 	}
1794 
1795 	if (flags & EHCI_INTR) {
1796 
1797 		mutex_enter(&ehcip->ehci_int_mutex);
1798 
1799 		/* Disable all EHCI QH list processing */
1800 		Set_OpReg(ehci_command, (Get_OpReg(ehci_command) &
1801 		    ~(EHCI_CMD_ASYNC_SCHED_ENABLE |
1802 		    EHCI_CMD_PERIODIC_SCHED_ENABLE)));
1803 
1804 		/* Disable all EHCI interrupts */
1805 		Set_OpReg(ehci_interrupt, 0);
1806 
1807 		/* wait for the next SOF */
1808 		(void) ehci_wait_for_sof(ehcip);
1809 
1810 		/* Route all Root hub ports to Classic host controller */
1811 		Set_OpReg(ehci_config_flag, EHCI_CONFIG_FLAG_CLASSIC);
1812 
1813 		/* Stop the EHCI host controller */
1814 		Set_OpReg(ehci_command,
1815 		    Get_OpReg(ehci_command) & ~EHCI_CMD_HOST_CTRL_RUN);
1816 
1817 		mutex_exit(&ehcip->ehci_int_mutex);
1818 
1819 		/* Wait for sometime */
1820 		delay(drv_usectohz(EHCI_TIMEWAIT));
1821 
1822 		ehci_rem_intrs(ehcip);
1823 	}
1824 
1825 	/* Unmap the EHCI registers */
1826 	if (ehcip->ehci_caps_handle) {
1827 		ddi_regs_map_free(&ehcip->ehci_caps_handle);
1828 	}
1829 
1830 	if (ehcip->ehci_config_handle) {
1831 		pci_config_teardown(&ehcip->ehci_config_handle);
1832 	}
1833 
1834 	/* Free all the buffers */
1835 	if (ehcip->ehci_qtd_pool_addr && ehcip->ehci_qtd_pool_mem_handle) {
1836 		for (i = 0; i < ehci_qtd_pool_size; i ++) {
1837 			qtd = &ehcip->ehci_qtd_pool_addr[i];
1838 			ctrl = Get_QTD(ehcip->
1839 			    ehci_qtd_pool_addr[i].qtd_state);
1840 
1841 			if ((ctrl != EHCI_QTD_FREE) &&
1842 			    (ctrl != EHCI_QTD_DUMMY) &&
1843 			    (qtd->qtd_trans_wrapper)) {
1844 
1845 				mutex_enter(&ehcip->ehci_int_mutex);
1846 
1847 				tw = (ehci_trans_wrapper_t *)
1848 				    EHCI_LOOKUP_ID((uint32_t)
1849 				    Get_QTD(qtd->qtd_trans_wrapper));
1850 
1851 				/* Obtain the pipe private structure */
1852 				pp = tw->tw_pipe_private;
1853 
1854 				/* Stop the the transfer timer */
1855 				ehci_stop_xfer_timer(ehcip, tw,
1856 				    EHCI_REMOVE_XFER_ALWAYS);
1857 
1858 				ehci_deallocate_tw(ehcip, pp, tw);
1859 
1860 				mutex_exit(&ehcip->ehci_int_mutex);
1861 			}
1862 		}
1863 
1864 		/*
1865 		 * If EHCI_QTD_POOL_BOUND flag is set, then unbind
1866 		 * the handle for QTD pools.
1867 		 */
1868 		if ((ehcip->ehci_dma_addr_bind_flag &
1869 		    EHCI_QTD_POOL_BOUND) == EHCI_QTD_POOL_BOUND) {
1870 
1871 			rval = ddi_dma_unbind_handle(
1872 			    ehcip->ehci_qtd_pool_dma_handle);
1873 
1874 			ASSERT(rval == DDI_SUCCESS);
1875 		}
1876 		ddi_dma_mem_free(&ehcip->ehci_qtd_pool_mem_handle);
1877 	}
1878 
1879 	/* Free the QTD pool */
1880 	if (ehcip->ehci_qtd_pool_dma_handle) {
1881 		ddi_dma_free_handle(&ehcip->ehci_qtd_pool_dma_handle);
1882 	}
1883 
1884 	if (ehcip->ehci_qh_pool_addr && ehcip->ehci_qh_pool_mem_handle) {
1885 		/*
1886 		 * If EHCI_QH_POOL_BOUND flag is set, then unbind
1887 		 * the handle for QH pools.
1888 		 */
1889 		if ((ehcip->ehci_dma_addr_bind_flag &
1890 		    EHCI_QH_POOL_BOUND) == EHCI_QH_POOL_BOUND) {
1891 
1892 			rval = ddi_dma_unbind_handle(
1893 			    ehcip->ehci_qh_pool_dma_handle);
1894 
1895 			ASSERT(rval == DDI_SUCCESS);
1896 		}
1897 
1898 		ddi_dma_mem_free(&ehcip->ehci_qh_pool_mem_handle);
1899 	}
1900 
1901 	/* Free the QH pool */
1902 	if (ehcip->ehci_qh_pool_dma_handle) {
1903 		ddi_dma_free_handle(&ehcip->ehci_qh_pool_dma_handle);
1904 	}
1905 
1906 	/* Free the Periodic frame list table (PFLT) area */
1907 	if (ehcip->ehci_periodic_frame_list_tablep &&
1908 	    ehcip->ehci_pflt_mem_handle) {
1909 		/*
1910 		 * If EHCI_PFLT_DMA_BOUND flag is set, then unbind
1911 		 * the handle for PFLT.
1912 		 */
1913 		if ((ehcip->ehci_dma_addr_bind_flag &
1914 		    EHCI_PFLT_DMA_BOUND) == EHCI_PFLT_DMA_BOUND) {
1915 
1916 			rval = ddi_dma_unbind_handle(
1917 			    ehcip->ehci_pflt_dma_handle);
1918 
1919 			ASSERT(rval == DDI_SUCCESS);
1920 		}
1921 
1922 		ddi_dma_mem_free(&ehcip->ehci_pflt_mem_handle);
1923 	}
1924 
1925 	(void) ehci_isoc_cleanup(ehcip);
1926 
1927 	if (ehcip->ehci_pflt_dma_handle) {
1928 		ddi_dma_free_handle(&ehcip->ehci_pflt_dma_handle);
1929 	}
1930 
1931 	if (flags & EHCI_INTR) {
1932 		/* Destroy the mutex */
1933 		mutex_destroy(&ehcip->ehci_int_mutex);
1934 
1935 		/* Destroy the async schedule advance condition variable */
1936 		cv_destroy(&ehcip->ehci_async_schedule_advance_cv);
1937 	}
1938 
1939 	/* clean up kstat structs */
1940 	ehci_destroy_stats(ehcip);
1941 
1942 	/* Free ehci hcdi ops */
1943 	if (ehcip->ehci_hcdi_ops) {
1944 		usba_free_hcdi_ops(ehcip->ehci_hcdi_ops);
1945 	}
1946 
1947 	if (flags & EHCI_ZALLOC) {
1948 
1949 		usb_free_log_hdl(ehcip->ehci_log_hdl);
1950 
1951 		/* Remove all properties that might have been created */
1952 		ddi_prop_remove_all(ehcip->ehci_dip);
1953 
1954 		/* Free the soft state */
1955 		ddi_soft_state_free(ehci_statep,
1956 		    ddi_get_instance(ehcip->ehci_dip));
1957 	}
1958 
1959 	return (DDI_SUCCESS);
1960 }
1961 
1962 
1963 /*
1964  * ehci_rem_intrs:
1965  *
1966  * Unregister FIXED or MSI interrupts
1967  */
1968 static void
1969 ehci_rem_intrs(ehci_state_t	*ehcip)
1970 {
1971 	int	i;
1972 
1973 	USB_DPRINTF_L4(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
1974 	    "ehci_rem_intrs: interrupt type 0x%x", ehcip->ehci_intr_type);
1975 
1976 	/* Disable all interrupts */
1977 	if (ehcip->ehci_intr_cap & DDI_INTR_FLAG_BLOCK) {
1978 		(void) ddi_intr_block_disable(ehcip->ehci_htable,
1979 		    ehcip->ehci_intr_cnt);
1980 	} else {
1981 		for (i = 0; i < ehcip->ehci_intr_cnt; i++) {
1982 			(void) ddi_intr_disable(ehcip->ehci_htable[i]);
1983 		}
1984 	}
1985 
1986 	/* Call ddi_intr_remove_handler() */
1987 	for (i = 0; i < ehcip->ehci_intr_cnt; i++) {
1988 		(void) ddi_intr_remove_handler(ehcip->ehci_htable[i]);
1989 		(void) ddi_intr_free(ehcip->ehci_htable[i]);
1990 	}
1991 
1992 	kmem_free(ehcip->ehci_htable,
1993 	    ehcip->ehci_intr_cnt * sizeof (ddi_intr_handle_t));
1994 }
1995 
1996 
1997 /*
1998  * ehci_cpr_suspend
1999  */
2000 int
2001 ehci_cpr_suspend(ehci_state_t	*ehcip)
2002 {
2003 	int	i;
2004 
2005 	USB_DPRINTF_L4(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
2006 	    "ehci_cpr_suspend:");
2007 
2008 	/* Call into the root hub and suspend it */
2009 	if (usba_hubdi_detach(ehcip->ehci_dip, DDI_SUSPEND) != DDI_SUCCESS) {
2010 
2011 		USB_DPRINTF_L2(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
2012 		    "ehci_cpr_suspend: root hub fails to suspend");
2013 
2014 		return (DDI_FAILURE);
2015 	}
2016 
2017 	/* Only root hub's intr pipe should be open at this time */
2018 	mutex_enter(&ehcip->ehci_int_mutex);
2019 
2020 	ASSERT(ehcip->ehci_open_pipe_count == 0);
2021 
2022 	/* Just wait till all resources are reclaimed */
2023 	i = 0;
2024 	while ((ehcip->ehci_reclaim_list != NULL) && (i++ < 3)) {
2025 		ehci_handle_endpoint_reclaimation(ehcip);
2026 		(void) ehci_wait_for_sof(ehcip);
2027 	}
2028 	ASSERT(ehcip->ehci_reclaim_list == NULL);
2029 
2030 	USB_DPRINTF_L3(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
2031 	    "ehci_cpr_suspend: Disable HC QH list processing");
2032 
2033 	/* Disable all EHCI QH list processing */
2034 	Set_OpReg(ehci_command, (Get_OpReg(ehci_command) &
2035 	    ~(EHCI_CMD_ASYNC_SCHED_ENABLE | EHCI_CMD_PERIODIC_SCHED_ENABLE)));
2036 
2037 	USB_DPRINTF_L3(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
2038 	    "ehci_cpr_suspend: Disable HC interrupts");
2039 
2040 	/* Disable all EHCI interrupts */
2041 	Set_OpReg(ehci_interrupt, 0);
2042 
2043 	USB_DPRINTF_L3(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
2044 	    "ehci_cpr_suspend: Wait for the next SOF");
2045 
2046 	/* Wait for the next SOF */
2047 	if (ehci_wait_for_sof(ehcip) != USB_SUCCESS) {
2048 
2049 		USB_DPRINTF_L2(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
2050 		    "ehci_cpr_suspend: ehci host controller suspend failed");
2051 
2052 		mutex_exit(&ehcip->ehci_int_mutex);
2053 		return (DDI_FAILURE);
2054 	}
2055 
2056 	/*
2057 	 * Stop the ehci host controller
2058 	 * if usb keyboard is not connected.
2059 	 */
2060 	if (ehcip->ehci_polled_kbd_count == 0 || force_ehci_off != 0) {
2061 		Set_OpReg(ehci_command,
2062 		    Get_OpReg(ehci_command) & ~EHCI_CMD_HOST_CTRL_RUN);
2063 	}
2064 
2065 	/* Set host controller soft state to suspend */
2066 	ehcip->ehci_hc_soft_state = EHCI_CTLR_SUSPEND_STATE;
2067 
2068 	mutex_exit(&ehcip->ehci_int_mutex);
2069 
2070 	return (DDI_SUCCESS);
2071 }
2072 
2073 
2074 /*
2075  * ehci_cpr_resume
2076  */
2077 int
2078 ehci_cpr_resume(ehci_state_t	*ehcip)
2079 {
2080 	mutex_enter(&ehcip->ehci_int_mutex);
2081 
2082 	USB_DPRINTF_L4(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
2083 	    "ehci_cpr_resume: Restart the controller");
2084 
2085 	/* Cleanup ehci specific information across cpr */
2086 	ehci_cpr_cleanup(ehcip);
2087 
2088 	/* Restart the controller */
2089 	if (ehci_init_ctlr(ehcip, EHCI_NORMAL_INITIALIZATION) != DDI_SUCCESS) {
2090 
2091 		USB_DPRINTF_L2(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
2092 		    "ehci_cpr_resume: ehci host controller resume failed ");
2093 
2094 		mutex_exit(&ehcip->ehci_int_mutex);
2095 
2096 		return (DDI_FAILURE);
2097 	}
2098 
2099 	mutex_exit(&ehcip->ehci_int_mutex);
2100 
2101 	/* Now resume the root hub */
2102 	if (usba_hubdi_attach(ehcip->ehci_dip, DDI_RESUME) != DDI_SUCCESS) {
2103 
2104 		return (DDI_FAILURE);
2105 	}
2106 
2107 	return (DDI_SUCCESS);
2108 }
2109 
2110 
2111 /*
2112  * Bandwidth Allocation functions
2113  */
2114 
2115 /*
2116  * ehci_allocate_bandwidth:
2117  *
2118  * Figure out whether or not this interval may be supported. Return the index
2119  * into the  lattice if it can be supported.  Return allocation failure if it
2120  * can not be supported.
2121  */
2122 int
2123 ehci_allocate_bandwidth(
2124 	ehci_state_t		*ehcip,
2125 	usba_pipe_handle_data_t	*ph,
2126 	uint_t			*pnode,
2127 	uchar_t			*smask,
2128 	uchar_t			*cmask)
2129 {
2130 	int			error = USB_SUCCESS;
2131 
2132 	/* This routine is protected by the ehci_int_mutex */
2133 	ASSERT(mutex_owned(&ehcip->ehci_int_mutex));
2134 
2135 	/* Reset the pnode to the last checked pnode */
2136 	*pnode = 0;
2137 
2138 	/* Allocate high speed bandwidth */
2139 	if ((error = ehci_allocate_high_speed_bandwidth(ehcip,
2140 	    ph, pnode, smask, cmask)) != USB_SUCCESS) {
2141 
2142 		return (error);
2143 	}
2144 
2145 	/*
2146 	 * For low/full speed usb devices, allocate classic TT bandwidth
2147 	 * in additional to high speed bandwidth.
2148 	 */
2149 	if (ph->p_usba_device->usb_port_status != USBA_HIGH_SPEED_DEV) {
2150 
2151 		/* Allocate classic TT bandwidth */
2152 		if ((error = ehci_allocate_classic_tt_bandwidth(
2153 		    ehcip, ph, *pnode)) != USB_SUCCESS) {
2154 
2155 			/* Deallocate high speed bandwidth */
2156 			ehci_deallocate_high_speed_bandwidth(
2157 			    ehcip, ph, *pnode, *smask, *cmask);
2158 		}
2159 	}
2160 
2161 	return (error);
2162 }
2163 
2164 
2165 /*
2166  * ehci_allocate_high_speed_bandwidth:
2167  *
2168  * Allocate high speed bandwidth for the low/full/high speed interrupt and
2169  * isochronous endpoints.
2170  */
2171 static int
2172 ehci_allocate_high_speed_bandwidth(
2173 	ehci_state_t		*ehcip,
2174 	usba_pipe_handle_data_t	*ph,
2175 	uint_t			*pnode,
2176 	uchar_t			*smask,
2177 	uchar_t			*cmask)
2178 {
2179 	uint_t			sbandwidth, cbandwidth;
2180 	int			interval;
2181 	usb_ep_descr_t		*endpoint = &ph->p_ep;
2182 	usba_device_t		*child_ud;
2183 	usb_port_status_t	port_status;
2184 	int			error;
2185 
2186 	/* This routine is protected by the ehci_int_mutex */
2187 	ASSERT(mutex_owned(&ehcip->ehci_int_mutex));
2188 
2189 	/* Get child's usba device structure */
2190 	child_ud = ph->p_usba_device;
2191 
2192 	mutex_enter(&child_ud->usb_mutex);
2193 
2194 	/* Get the current usb device's port status */
2195 	port_status = ph->p_usba_device->usb_port_status;
2196 
2197 	mutex_exit(&child_ud->usb_mutex);
2198 
2199 	/*
2200 	 * Calculate the length in bytes of a transaction on this
2201 	 * periodic endpoint. Return failure if maximum packet is
2202 	 * zero.
2203 	 */
2204 	error = ehci_compute_high_speed_bandwidth(ehcip, endpoint,
2205 	    port_status, &sbandwidth, &cbandwidth);
2206 	if (error != USB_SUCCESS) {
2207 
2208 		return (error);
2209 	}
2210 
2211 	/*
2212 	 * Adjust polling interval to be a power of 2.
2213 	 * If this interval can't be supported, return
2214 	 * allocation failure.
2215 	 */
2216 	interval = ehci_adjust_polling_interval(ehcip, endpoint, port_status);
2217 	if (interval == USB_FAILURE) {
2218 
2219 		return (USB_FAILURE);
2220 	}
2221 
2222 	if (port_status == USBA_HIGH_SPEED_DEV) {
2223 		/* Allocate bandwidth for high speed devices */
2224 		if ((endpoint->bmAttributes & USB_EP_ATTR_MASK) ==
2225 		    USB_EP_ATTR_ISOCH) {
2226 			error = USB_SUCCESS;
2227 		} else {
2228 
2229 			error = ehci_find_bestfit_hs_mask(ehcip, smask, pnode,
2230 			    endpoint, sbandwidth, interval);
2231 		}
2232 
2233 		*cmask = 0x00;
2234 
2235 	} else {
2236 		if ((endpoint->bmAttributes & USB_EP_ATTR_MASK) ==
2237 		    USB_EP_ATTR_INTR) {
2238 
2239 			/* Allocate bandwidth for low speed interrupt */
2240 			error = ehci_find_bestfit_ls_intr_mask(ehcip,
2241 			    smask, cmask, pnode, sbandwidth, cbandwidth,
2242 			    interval);
2243 		} else {
2244 			if ((endpoint->bEndpointAddress &
2245 			    USB_EP_DIR_MASK) == USB_EP_DIR_IN) {
2246 
2247 				/* Allocate bandwidth for sitd in */
2248 				error = ehci_find_bestfit_sitd_in_mask(ehcip,
2249 				    smask, cmask, pnode, sbandwidth, cbandwidth,
2250 				    interval);
2251 			} else {
2252 
2253 				/* Allocate bandwidth for sitd out */
2254 				error = ehci_find_bestfit_sitd_out_mask(ehcip,
2255 				    smask, pnode, sbandwidth, interval);
2256 				*cmask = 0x00;
2257 			}
2258 		}
2259 	}
2260 
2261 	if (error != USB_SUCCESS) {
2262 		USB_DPRINTF_L2(PRINT_MASK_BW, ehcip->ehci_log_hdl,
2263 		    "ehci_allocate_high_speed_bandwidth: Reached maximum "
2264 		    "bandwidth value and cannot allocate bandwidth for a "
2265 		    "given high-speed periodic endpoint");
2266 
2267 		return (USB_NO_BANDWIDTH);
2268 	}
2269 
2270 	return (error);
2271 }
2272 
2273 
2274 /*
2275  * ehci_allocate_classic_tt_speed_bandwidth:
2276  *
2277  * Allocate classic TT bandwidth for the low/full speed interrupt and
2278  * isochronous endpoints.
2279  */
2280 static int
2281 ehci_allocate_classic_tt_bandwidth(
2282 	ehci_state_t		*ehcip,
2283 	usba_pipe_handle_data_t	*ph,
2284 	uint_t			pnode)
2285 {
2286 	uint_t			bandwidth, min;
2287 	uint_t			height, leftmost, list;
2288 	usb_ep_descr_t		*endpoint = &ph->p_ep;
2289 	usba_device_t		*child_ud, *parent_ud;
2290 	usb_port_status_t	port_status;
2291 	int			i, interval;
2292 
2293 	/* This routine is protected by the ehci_int_mutex */
2294 	ASSERT(mutex_owned(&ehcip->ehci_int_mutex));
2295 
2296 	/* Get child's usba device structure */
2297 	child_ud = ph->p_usba_device;
2298 
2299 	mutex_enter(&child_ud->usb_mutex);
2300 
2301 	/* Get the current usb device's port status */
2302 	port_status = child_ud->usb_port_status;
2303 
2304 	/* Get the parent high speed hub's usba device structure */
2305 	parent_ud = child_ud->usb_hs_hub_usba_dev;
2306 
2307 	mutex_exit(&child_ud->usb_mutex);
2308 
2309 	USB_DPRINTF_L3(PRINT_MASK_BW, ehcip->ehci_log_hdl,
2310 	    "ehci_allocate_classic_tt_bandwidth: "
2311 	    "child_ud 0x%p parent_ud 0x%p",
2312 	    (void *)child_ud, (void *)parent_ud);
2313 
2314 	/*
2315 	 * Calculate the length in bytes of a transaction on this
2316 	 * periodic endpoint. Return failure if maximum packet is
2317 	 * zero.
2318 	 */
2319 	if (ehci_compute_classic_bandwidth(endpoint,
2320 	    port_status, &bandwidth) != USB_SUCCESS) {
2321 
2322 		USB_DPRINTF_L2(PRINT_MASK_BW, ehcip->ehci_log_hdl,
2323 		    "ehci_allocate_classic_tt_bandwidth: Periodic endpoint "
2324 		    "with zero endpoint maximum packet size is not supported");
2325 
2326 		return (USB_NOT_SUPPORTED);
2327 	}
2328 
2329 	USB_DPRINTF_L3(PRINT_MASK_BW, ehcip->ehci_log_hdl,
2330 	    "ehci_allocate_classic_tt_bandwidth: bandwidth %d", bandwidth);
2331 
2332 	mutex_enter(&parent_ud->usb_mutex);
2333 
2334 	/*
2335 	 * If the length in bytes plus the allocated bandwidth exceeds
2336 	 * the maximum, return bandwidth allocation failure.
2337 	 */
2338 	if ((parent_ud->usb_hs_hub_min_bandwidth + bandwidth) >
2339 	    FS_PERIODIC_BANDWIDTH) {
2340 
2341 		mutex_exit(&parent_ud->usb_mutex);
2342 
2343 		USB_DPRINTF_L2(PRINT_MASK_BW, ehcip->ehci_log_hdl,
2344 		    "ehci_allocate_classic_tt_bandwidth: Reached maximum "
2345 		    "bandwidth value and cannot allocate bandwidth for a "
2346 		    "given low/full speed periodic endpoint");
2347 
2348 		return (USB_NO_BANDWIDTH);
2349 	}
2350 
2351 	mutex_exit(&parent_ud->usb_mutex);
2352 
2353 	/* Adjust polling interval to be a power of 2 */
2354 	interval = ehci_adjust_polling_interval(ehcip, endpoint, port_status);
2355 
2356 	/* Find the height in the tree */
2357 	height = ehci_lattice_height(interval);
2358 
2359 	/* Find the leftmost leaf in the subtree specified by the node. */
2360 	leftmost = ehci_leftmost_leaf(pnode, height);
2361 
2362 	mutex_enter(&parent_ud->usb_mutex);
2363 
2364 	for (i = 0; i < (EHCI_NUM_INTR_QH_LISTS/interval); i++) {
2365 		list = ehci_index[leftmost + i];
2366 
2367 		if ((parent_ud->usb_hs_hub_bandwidth[list] +
2368 		    bandwidth) > FS_PERIODIC_BANDWIDTH) {
2369 
2370 			mutex_exit(&parent_ud->usb_mutex);
2371 
2372 			USB_DPRINTF_L2(PRINT_MASK_BW, ehcip->ehci_log_hdl,
2373 			    "ehci_allocate_classic_tt_bandwidth: Reached "
2374 			    "maximum bandwidth value and cannot allocate "
2375 			    "bandwidth for low/full periodic endpoint");
2376 
2377 			return (USB_NO_BANDWIDTH);
2378 		}
2379 	}
2380 
2381 	/*
2382 	 * All the leaves for this node must be updated with the bandwidth.
2383 	 */
2384 	for (i = 0; i < (EHCI_NUM_INTR_QH_LISTS/interval); i++) {
2385 		list = ehci_index[leftmost + i];
2386 		parent_ud->usb_hs_hub_bandwidth[list] += bandwidth;
2387 	}
2388 
2389 	/* Find the leaf with the smallest allocated bandwidth */
2390 	min = parent_ud->usb_hs_hub_bandwidth[0];
2391 
2392 	for (i = 1; i < EHCI_NUM_INTR_QH_LISTS; i++) {
2393 		if (parent_ud->usb_hs_hub_bandwidth[i] < min) {
2394 			min = parent_ud->usb_hs_hub_bandwidth[i];
2395 		}
2396 	}
2397 
2398 	/* Save the minimum for later use */
2399 	parent_ud->usb_hs_hub_min_bandwidth = min;
2400 
2401 	mutex_exit(&parent_ud->usb_mutex);
2402 
2403 	return (USB_SUCCESS);
2404 }
2405 
2406 
2407 /*
2408  * ehci_deallocate_bandwidth:
2409  *
2410  * Deallocate bandwidth for the given node in the lattice and the length
2411  * of transfer.
2412  */
2413 void
2414 ehci_deallocate_bandwidth(
2415 	ehci_state_t		*ehcip,
2416 	usba_pipe_handle_data_t	*ph,
2417 	uint_t			pnode,
2418 	uchar_t			smask,
2419 	uchar_t			cmask)
2420 {
2421 	/* This routine is protected by the ehci_int_mutex */
2422 	ASSERT(mutex_owned(&ehcip->ehci_int_mutex));
2423 
2424 	ehci_deallocate_high_speed_bandwidth(ehcip, ph, pnode, smask, cmask);
2425 
2426 	/*
2427 	 * For low/full speed usb devices, deallocate classic TT bandwidth
2428 	 * in additional to high speed bandwidth.
2429 	 */
2430 	if (ph->p_usba_device->usb_port_status != USBA_HIGH_SPEED_DEV) {
2431 
2432 		/* Deallocate classic TT bandwidth */
2433 		ehci_deallocate_classic_tt_bandwidth(ehcip, ph, pnode);
2434 	}
2435 }
2436 
2437 
2438 /*
2439  * ehci_deallocate_high_speed_bandwidth:
2440  *
2441  * Deallocate high speed bandwidth of a interrupt or isochronous endpoint.
2442  */
2443 static void
2444 ehci_deallocate_high_speed_bandwidth(
2445 	ehci_state_t		*ehcip,
2446 	usba_pipe_handle_data_t	*ph,
2447 	uint_t			pnode,
2448 	uchar_t			smask,
2449 	uchar_t			cmask)
2450 {
2451 	uint_t			height, leftmost;
2452 	uint_t			list_count;
2453 	uint_t			sbandwidth, cbandwidth;
2454 	int			interval;
2455 	usb_ep_descr_t		*endpoint = &ph->p_ep;
2456 	usba_device_t		*child_ud;
2457 	usb_port_status_t	port_status;
2458 
2459 	/* This routine is protected by the ehci_int_mutex */
2460 	ASSERT(mutex_owned(&ehcip->ehci_int_mutex));
2461 
2462 	/* Get child's usba device structure */
2463 	child_ud = ph->p_usba_device;
2464 
2465 	mutex_enter(&child_ud->usb_mutex);
2466 
2467 	/* Get the current usb device's port status */
2468 	port_status = ph->p_usba_device->usb_port_status;
2469 
2470 	mutex_exit(&child_ud->usb_mutex);
2471 
2472 	(void) ehci_compute_high_speed_bandwidth(ehcip, endpoint,
2473 	    port_status, &sbandwidth, &cbandwidth);
2474 
2475 	/* Adjust polling interval to be a power of 2 */
2476 	interval = ehci_adjust_polling_interval(ehcip, endpoint, port_status);
2477 
2478 	/* Find the height in the tree */
2479 	height = ehci_lattice_height(interval);
2480 
2481 	/*
2482 	 * Find the leftmost leaf in the subtree specified by the node
2483 	 */
2484 	leftmost = ehci_leftmost_leaf(pnode, height);
2485 
2486 	list_count = EHCI_NUM_INTR_QH_LISTS/interval;
2487 
2488 	/* Delete the bandwidth from the appropriate lists */
2489 	if (port_status == USBA_HIGH_SPEED_DEV) {
2490 
2491 		ehci_update_bw_availability(ehcip, -sbandwidth,
2492 		    leftmost, list_count, smask);
2493 	} else {
2494 		if ((endpoint->bmAttributes & USB_EP_ATTR_MASK) ==
2495 		    USB_EP_ATTR_INTR) {
2496 
2497 			ehci_update_bw_availability(ehcip, -sbandwidth,
2498 			    leftmost, list_count, smask);
2499 			ehci_update_bw_availability(ehcip, -cbandwidth,
2500 			    leftmost, list_count, cmask);
2501 		} else {
2502 			if ((endpoint->bEndpointAddress &
2503 			    USB_EP_DIR_MASK) == USB_EP_DIR_IN) {
2504 
2505 				ehci_update_bw_availability(ehcip, -sbandwidth,
2506 				    leftmost, list_count, smask);
2507 				ehci_update_bw_availability(ehcip,
2508 				    -MAX_UFRAME_SITD_XFER, leftmost,
2509 				    list_count, cmask);
2510 			} else {
2511 
2512 				ehci_update_bw_availability(ehcip,
2513 				    -MAX_UFRAME_SITD_XFER, leftmost,
2514 				    list_count, smask);
2515 			}
2516 		}
2517 	}
2518 }
2519 
2520 /*
2521  * ehci_deallocate_classic_tt_bandwidth:
2522  *
2523  * Deallocate high speed bandwidth of a interrupt or isochronous endpoint.
2524  */
2525 static void
2526 ehci_deallocate_classic_tt_bandwidth(
2527 	ehci_state_t		*ehcip,
2528 	usba_pipe_handle_data_t	*ph,
2529 	uint_t			pnode)
2530 {
2531 	uint_t			bandwidth, height, leftmost, list, min;
2532 	int			i, interval;
2533 	usb_ep_descr_t		*endpoint = &ph->p_ep;
2534 	usba_device_t		*child_ud, *parent_ud;
2535 	usb_port_status_t	port_status;
2536 
2537 	/* This routine is protected by the ehci_int_mutex */
2538 	ASSERT(mutex_owned(&ehcip->ehci_int_mutex));
2539 
2540 	/* Get child's usba device structure */
2541 	child_ud = ph->p_usba_device;
2542 
2543 	mutex_enter(&child_ud->usb_mutex);
2544 
2545 	/* Get the current usb device's port status */
2546 	port_status = child_ud->usb_port_status;
2547 
2548 	/* Get the parent high speed hub's usba device structure */
2549 	parent_ud = child_ud->usb_hs_hub_usba_dev;
2550 
2551 	mutex_exit(&child_ud->usb_mutex);
2552 
2553 	/* Obtain the bandwidth */
2554 	(void) ehci_compute_classic_bandwidth(endpoint,
2555 	    port_status, &bandwidth);
2556 
2557 	/* Adjust polling interval to be a power of 2 */
2558 	interval = ehci_adjust_polling_interval(ehcip, endpoint, port_status);
2559 
2560 	/* Find the height in the tree */
2561 	height = ehci_lattice_height(interval);
2562 
2563 	/* Find the leftmost leaf in the subtree specified by the node */
2564 	leftmost = ehci_leftmost_leaf(pnode, height);
2565 
2566 	mutex_enter(&parent_ud->usb_mutex);
2567 
2568 	/* Delete the bandwidth from the appropriate lists */
2569 	for (i = 0; i < (EHCI_NUM_INTR_QH_LISTS/interval); i++) {
2570 		list = ehci_index[leftmost + i];
2571 		parent_ud->usb_hs_hub_bandwidth[list] -= bandwidth;
2572 	}
2573 
2574 	/* Find the leaf with the smallest allocated bandwidth */
2575 	min = parent_ud->usb_hs_hub_bandwidth[0];
2576 
2577 	for (i = 1; i < EHCI_NUM_INTR_QH_LISTS; i++) {
2578 		if (parent_ud->usb_hs_hub_bandwidth[i] < min) {
2579 			min = parent_ud->usb_hs_hub_bandwidth[i];
2580 		}
2581 	}
2582 
2583 	/* Save the minimum for later use */
2584 	parent_ud->usb_hs_hub_min_bandwidth = min;
2585 
2586 	mutex_exit(&parent_ud->usb_mutex);
2587 }
2588 
2589 
2590 /*
2591  * ehci_compute_high_speed_bandwidth:
2592  *
2593  * Given a periodic endpoint (interrupt or isochronous) determine the total
2594  * bandwidth for one transaction. The EHCI host controller traverses the
2595  * endpoint descriptor lists on a first-come-first-serve basis. When the HC
2596  * services an endpoint, only a single transaction attempt is made. The  HC
2597  * moves to the next Endpoint Descriptor after the first transaction attempt
2598  * rather than finishing the entire Transfer Descriptor. Therefore, when  a
2599  * Transfer Descriptor is inserted into the lattice, we will only count the
2600  * number of bytes for one transaction.
2601  *
2602  * The following are the formulas used for  calculating bandwidth in  terms
2603  * bytes and it is for the single USB high speed transaction.  The protocol
2604  * overheads will be different for each of type of USB transfer & all these
2605  * formulas & protocol overheads are derived from the 5.11.3 section of the
2606  * USB 2.0 Specification.
2607  *
2608  * High-Speed:
2609  *		Protocol overhead + ((MaxPktSz * 7)/6) + Host_Delay
2610  *
2611  * Split Transaction: (Low/Full speed devices connected behind usb2.0 hub)
2612  *
2613  *		Protocol overhead + Split transaction overhead +
2614  *			((MaxPktSz * 7)/6) + Host_Delay;
2615  */
2616 /* ARGSUSED */
2617 static int
2618 ehci_compute_high_speed_bandwidth(
2619 	ehci_state_t		*ehcip,
2620 	usb_ep_descr_t		*endpoint,
2621 	usb_port_status_t	port_status,
2622 	uint_t			*sbandwidth,
2623 	uint_t			*cbandwidth)
2624 {
2625 	ushort_t		maxpacketsize = endpoint->wMaxPacketSize;
2626 
2627 	/* Return failure if endpoint maximum packet is zero */
2628 	if (maxpacketsize == 0) {
2629 		USB_DPRINTF_L2(PRINT_MASK_BW, ehcip->ehci_log_hdl,
2630 		    "ehci_allocate_high_speed_bandwidth: Periodic endpoint "
2631 		    "with zero endpoint maximum packet size is not supported");
2632 
2633 		return (USB_NOT_SUPPORTED);
2634 	}
2635 
2636 	/* Add bit-stuffing overhead */
2637 	maxpacketsize = (ushort_t)((maxpacketsize * 7) / 6);
2638 
2639 	/* Add Host Controller specific delay to required bandwidth */
2640 	*sbandwidth = EHCI_HOST_CONTROLLER_DELAY;
2641 
2642 	/* Add xfer specific protocol overheads */
2643 	if ((endpoint->bmAttributes &
2644 	    USB_EP_ATTR_MASK) == USB_EP_ATTR_INTR) {
2645 		/* High speed interrupt transaction */
2646 		*sbandwidth += HS_NON_ISOC_PROTO_OVERHEAD;
2647 	} else {
2648 		/* Isochronous transaction */
2649 		*sbandwidth += HS_ISOC_PROTO_OVERHEAD;
2650 	}
2651 
2652 	/*
2653 	 * For low/full speed devices, add split transaction specific
2654 	 * overheads.
2655 	 */
2656 	if (port_status != USBA_HIGH_SPEED_DEV) {
2657 		/*
2658 		 * Add start and complete split transaction
2659 		 * tokens overheads.
2660 		 */
2661 		*cbandwidth = *sbandwidth + COMPLETE_SPLIT_OVERHEAD;
2662 		*sbandwidth += START_SPLIT_OVERHEAD;
2663 
2664 		/* Add data overhead depending on data direction */
2665 		if ((endpoint->bEndpointAddress &
2666 		    USB_EP_DIR_MASK) == USB_EP_DIR_IN) {
2667 			*cbandwidth += maxpacketsize;
2668 		} else {
2669 			if ((endpoint->bmAttributes &
2670 			    USB_EP_ATTR_MASK) == USB_EP_ATTR_ISOCH) {
2671 				/* There is no compete splits for out */
2672 				*cbandwidth = 0;
2673 			}
2674 			*sbandwidth += maxpacketsize;
2675 		}
2676 	} else {
2677 		uint_t		xactions;
2678 
2679 		/* Get the max transactions per microframe */
2680 		xactions = ((maxpacketsize & USB_EP_MAX_XACTS_MASK) >>
2681 		    USB_EP_MAX_XACTS_SHIFT) + 1;
2682 
2683 		/* High speed transaction */
2684 		*sbandwidth += maxpacketsize;
2685 
2686 		/* Calculate bandwidth per micro-frame */
2687 		*sbandwidth *= xactions;
2688 
2689 		*cbandwidth = 0;
2690 	}
2691 
2692 	USB_DPRINTF_L4(PRINT_MASK_BW, ehcip->ehci_log_hdl,
2693 	    "ehci_allocate_high_speed_bandwidth: "
2694 	    "Start split bandwidth %d Complete split bandwidth %d",
2695 	    *sbandwidth, *cbandwidth);
2696 
2697 	return (USB_SUCCESS);
2698 }
2699 
2700 
2701 /*
2702  * ehci_compute_classic_bandwidth:
2703  *
2704  * Given a periodic endpoint (interrupt or isochronous) determine the total
2705  * bandwidth for one transaction. The EHCI host controller traverses the
2706  * endpoint descriptor lists on a first-come-first-serve basis. When the HC
2707  * services an endpoint, only a single transaction attempt is made. The  HC
2708  * moves to the next Endpoint Descriptor after the first transaction attempt
2709  * rather than finishing the entire Transfer Descriptor. Therefore, when  a
2710  * Transfer Descriptor is inserted into the lattice, we will only count the
2711  * number of bytes for one transaction.
2712  *
2713  * The following are the formulas used for  calculating bandwidth in  terms
2714  * bytes and it is for the single USB high speed transaction.  The protocol
2715  * overheads will be different for each of type of USB transfer & all these
2716  * formulas & protocol overheads are derived from the 5.11.3 section of the
2717  * USB 2.0 Specification.
2718  *
2719  * Low-Speed:
2720  *		Protocol overhead + Hub LS overhead +
2721  *		(Low Speed clock * ((MaxPktSz * 7)/6)) + TT_Delay
2722  *
2723  * Full-Speed:
2724  *		Protocol overhead + ((MaxPktSz * 7)/6) + TT_Delay
2725  */
2726 /* ARGSUSED */
2727 static int
2728 ehci_compute_classic_bandwidth(
2729 	usb_ep_descr_t		*endpoint,
2730 	usb_port_status_t	port_status,
2731 	uint_t			*bandwidth)
2732 {
2733 	ushort_t		maxpacketsize = endpoint->wMaxPacketSize;
2734 
2735 	/*
2736 	 * If endpoint maximum packet is zero, then return immediately.
2737 	 */
2738 	if (maxpacketsize == 0) {
2739 
2740 		return (USB_NOT_SUPPORTED);
2741 	}
2742 
2743 	/* Add TT delay to required bandwidth */
2744 	*bandwidth = TT_DELAY;
2745 
2746 	/* Add bit-stuffing overhead */
2747 	maxpacketsize = (ushort_t)((maxpacketsize * 7) / 6);
2748 
2749 	switch (port_status) {
2750 	case USBA_LOW_SPEED_DEV:
2751 		/* Low speed interrupt transaction */
2752 		*bandwidth += (LOW_SPEED_PROTO_OVERHEAD +
2753 		    HUB_LOW_SPEED_PROTO_OVERHEAD +
2754 		    (LOW_SPEED_CLOCK * maxpacketsize));
2755 		break;
2756 	case USBA_FULL_SPEED_DEV:
2757 		/* Full speed transaction */
2758 		*bandwidth += maxpacketsize;
2759 
2760 		/* Add xfer specific protocol overheads */
2761 		if ((endpoint->bmAttributes &
2762 		    USB_EP_ATTR_MASK) == USB_EP_ATTR_INTR) {
2763 			/* Full speed interrupt transaction */
2764 			*bandwidth += FS_NON_ISOC_PROTO_OVERHEAD;
2765 		} else {
2766 			/* Isochronous and input transaction */
2767 			if ((endpoint->bEndpointAddress &
2768 			    USB_EP_DIR_MASK) == USB_EP_DIR_IN) {
2769 				*bandwidth += FS_ISOC_INPUT_PROTO_OVERHEAD;
2770 			} else {
2771 				/* Isochronous and output transaction */
2772 				*bandwidth += FS_ISOC_OUTPUT_PROTO_OVERHEAD;
2773 			}
2774 		}
2775 		break;
2776 	}
2777 
2778 	return (USB_SUCCESS);
2779 }
2780 
2781 
2782 /*
2783  * ehci_adjust_polling_interval:
2784  *
2785  * Adjust bandwidth according usb device speed.
2786  */
2787 /* ARGSUSED */
2788 int
2789 ehci_adjust_polling_interval(
2790 	ehci_state_t		*ehcip,
2791 	usb_ep_descr_t		*endpoint,
2792 	usb_port_status_t	port_status)
2793 {
2794 	uint_t			interval;
2795 	int			i = 0;
2796 
2797 	/* Get the polling interval */
2798 	interval = endpoint->bInterval;
2799 
2800 	USB_DPRINTF_L4(PRINT_MASK_BW, ehcip->ehci_log_hdl,
2801 	    "ehci_adjust_polling_interval: Polling interval 0x%x", interval);
2802 
2803 	/*
2804 	 * According USB 2.0 Specifications, a high-speed endpoint's
2805 	 * polling intervals are specified interms of 125us or micro
2806 	 * frame, where as full/low endpoint's polling intervals are
2807 	 * specified in milliseconds.
2808 	 *
2809 	 * A high speed interrupt/isochronous endpoints can specify
2810 	 * desired polling interval between 1 to 16 micro-frames,
2811 	 * where as full/low endpoints can specify between 1 to 255
2812 	 * milliseconds.
2813 	 */
2814 	switch (port_status) {
2815 	case USBA_LOW_SPEED_DEV:
2816 		/*
2817 		 * Low speed  endpoints are limited to	specifying
2818 		 * only 8ms to 255ms in this driver. If a device
2819 		 * reports a polling interval that is less than 8ms,
2820 		 * it will use 8 ms instead.
2821 		 */
2822 		if (interval < LS_MIN_POLL_INTERVAL) {
2823 
2824 			USB_DPRINTF_L1(PRINT_MASK_BW, ehcip->ehci_log_hdl,
2825 			    "Low speed endpoint's poll interval of %d ms "
2826 			    "is below threshold. Rounding up to %d ms",
2827 			    interval, LS_MIN_POLL_INTERVAL);
2828 
2829 			interval = LS_MIN_POLL_INTERVAL;
2830 		}
2831 
2832 		/*
2833 		 * Return an error if the polling interval is greater
2834 		 * than 255ms.
2835 		 */
2836 		if (interval > LS_MAX_POLL_INTERVAL) {
2837 
2838 			USB_DPRINTF_L1(PRINT_MASK_BW, ehcip->ehci_log_hdl,
2839 			    "Low speed endpoint's poll interval is "
2840 			    "greater than %d ms", LS_MAX_POLL_INTERVAL);
2841 
2842 			return (USB_FAILURE);
2843 		}
2844 		break;
2845 
2846 	case USBA_FULL_SPEED_DEV:
2847 		/*
2848 		 * Return an error if the polling interval is less
2849 		 * than 1ms and greater than 255ms.
2850 		 */
2851 		if ((interval < FS_MIN_POLL_INTERVAL) &&
2852 		    (interval > FS_MAX_POLL_INTERVAL)) {
2853 
2854 			USB_DPRINTF_L1(PRINT_MASK_BW, ehcip->ehci_log_hdl,
2855 			    "Full speed endpoint's poll interval must "
2856 			    "be between %d and %d ms", FS_MIN_POLL_INTERVAL,
2857 			    FS_MAX_POLL_INTERVAL);
2858 
2859 			return (USB_FAILURE);
2860 		}
2861 		break;
2862 	case USBA_HIGH_SPEED_DEV:
2863 		/*
2864 		 * Return an error if the polling interval is less 1
2865 		 * and greater than 16. Convert this value to 125us
2866 		 * units using 2^(bInterval -1). refer usb 2.0 spec
2867 		 * page 51 for details.
2868 		 */
2869 		if ((interval < HS_MIN_POLL_INTERVAL) &&
2870 		    (interval > HS_MAX_POLL_INTERVAL)) {
2871 
2872 			USB_DPRINTF_L1(PRINT_MASK_BW, ehcip->ehci_log_hdl,
2873 			    "High speed endpoint's poll interval "
2874 			    "must be between %d and %d units",
2875 			    HS_MIN_POLL_INTERVAL, HS_MAX_POLL_INTERVAL);
2876 
2877 			return (USB_FAILURE);
2878 		}
2879 
2880 		/* Adjust high speed device polling interval */
2881 		interval =
2882 		    ehci_adjust_high_speed_polling_interval(ehcip, endpoint);
2883 
2884 		break;
2885 	}
2886 
2887 	/*
2888 	 * If polling interval is greater than 32ms,
2889 	 * adjust polling interval equal to 32ms.
2890 	 */
2891 	if (interval > EHCI_NUM_INTR_QH_LISTS) {
2892 		interval = EHCI_NUM_INTR_QH_LISTS;
2893 	}
2894 
2895 	/*
2896 	 * Find the nearest power of 2 that's less
2897 	 * than interval.
2898 	 */
2899 	while ((ehci_pow_2(i)) <= interval) {
2900 		i++;
2901 	}
2902 
2903 	return (ehci_pow_2((i - 1)));
2904 }
2905 
2906 
2907 /*
2908  * ehci_adjust_high_speed_polling_interval:
2909  */
2910 /* ARGSUSED */
2911 static int
2912 ehci_adjust_high_speed_polling_interval(
2913 	ehci_state_t		*ehcip,
2914 	usb_ep_descr_t		*endpoint)
2915 {
2916 	uint_t			interval;
2917 
2918 	/* Get the polling interval */
2919 	interval = ehci_pow_2(endpoint->bInterval - 1);
2920 
2921 	/*
2922 	 * Convert polling interval from micro seconds
2923 	 * to milli seconds.
2924 	 */
2925 	if (interval <= EHCI_MAX_UFRAMES) {
2926 		interval = 1;
2927 	} else {
2928 		interval = interval/EHCI_MAX_UFRAMES;
2929 	}
2930 
2931 	USB_DPRINTF_L4(PRINT_MASK_BW, ehcip->ehci_log_hdl,
2932 	    "ehci_adjust_high_speed_polling_interval: "
2933 	    "High speed adjusted interval 0x%x", interval);
2934 
2935 	return (interval);
2936 }
2937 
2938 
2939 /*
2940  * ehci_lattice_height:
2941  *
2942  * Given the requested bandwidth, find the height in the tree at which the
2943  * nodes for this bandwidth fall.  The height is measured as the number of
2944  * nodes from the leaf to the level specified by bandwidth The root of the
2945  * tree is at height TREE_HEIGHT.
2946  */
2947 static uint_t
2948 ehci_lattice_height(uint_t interval)
2949 {
2950 	return (TREE_HEIGHT - (ehci_log_2(interval)));
2951 }
2952 
2953 
2954 /*
2955  * ehci_lattice_parent:
2956  *
2957  * Given a node in the lattice, find the index of the parent node
2958  */
2959 static uint_t
2960 ehci_lattice_parent(uint_t node)
2961 {
2962 	if ((node % 2) == 0) {
2963 
2964 		return ((node/2) - 1);
2965 	} else {
2966 
2967 		return ((node + 1)/2 - 1);
2968 	}
2969 }
2970 
2971 
2972 /*
2973  * ehci_find_periodic_node:
2974  *
2975  * Based on the "real" array leaf node and interval, get the periodic node.
2976  */
2977 static uint_t
2978 ehci_find_periodic_node(uint_t leaf, int interval) {
2979 	uint_t	lattice_leaf;
2980 	uint_t	height = ehci_lattice_height(interval);
2981 	uint_t	pnode;
2982 	int	i;
2983 
2984 	/* Get the leaf number in the lattice */
2985 	lattice_leaf = leaf + EHCI_NUM_INTR_QH_LISTS - 1;
2986 
2987 	/* Get the node in the lattice based on the height and leaf */
2988 	pnode = lattice_leaf;
2989 	for (i = 0; i < height; i++) {
2990 		pnode = ehci_lattice_parent(pnode);
2991 	}
2992 
2993 	return (pnode);
2994 }
2995 
2996 
2997 /*
2998  * ehci_leftmost_leaf:
2999  *
3000  * Find the leftmost leaf in the subtree specified by the node. Height refers
3001  * to number of nodes from the bottom of the tree to the node,	including the
3002  * node.
3003  *
3004  * The formula for a zero based tree is:
3005  *     2^H * Node + 2^H - 1
3006  * The leaf of the tree is an array, convert the number for the array.
3007  *     Subtract the size of nodes not in the array
3008  *     2^H * Node + 2^H - 1 - (EHCI_NUM_INTR_QH_LISTS - 1) =
3009  *     2^H * Node + 2^H - EHCI_NUM_INTR_QH_LISTS =
3010  *     2^H * (Node + 1) - EHCI_NUM_INTR_QH_LISTS
3011  *	   0
3012  *	 1   2
3013  *	0 1 2 3
3014  */
3015 static uint_t
3016 ehci_leftmost_leaf(
3017 	uint_t	node,
3018 	uint_t	height)
3019 {
3020 	return ((ehci_pow_2(height) * (node + 1)) - EHCI_NUM_INTR_QH_LISTS);
3021 }
3022 
3023 
3024 /*
3025  * ehci_pow_2:
3026  *
3027  * Compute 2 to the power
3028  */
3029 static uint_t
3030 ehci_pow_2(uint_t x)
3031 {
3032 	if (x == 0) {
3033 
3034 		return (1);
3035 	} else {
3036 
3037 		return (2 << (x - 1));
3038 	}
3039 }
3040 
3041 
3042 /*
3043  * ehci_log_2:
3044  *
3045  * Compute log base 2 of x
3046  */
3047 static uint_t
3048 ehci_log_2(uint_t x)
3049 {
3050 	int i = 0;
3051 
3052 	while (x != 1) {
3053 		x = x >> 1;
3054 		i++;
3055 	}
3056 
3057 	return (i);
3058 }
3059 
3060 
3061 /*
3062  * ehci_find_bestfit_hs_mask:
3063  *
3064  * Find the smask and cmask in the bandwidth allocation, and update the
3065  * bandwidth allocation.
3066  */
3067 static int
3068 ehci_find_bestfit_hs_mask(
3069 	ehci_state_t	*ehcip,
3070 	uchar_t		*smask,
3071 	uint_t		*pnode,
3072 	usb_ep_descr_t	*endpoint,
3073 	uint_t		bandwidth,
3074 	int		interval)
3075 {
3076 	int		i;
3077 	uint_t		elements, index;
3078 	int		array_leaf, best_array_leaf;
3079 	uint_t		node_bandwidth, best_node_bandwidth;
3080 	uint_t		leaf_count;
3081 	uchar_t		bw_mask;
3082 	uchar_t		best_smask;
3083 
3084 	USB_DPRINTF_L4(PRINT_MASK_BW, ehcip->ehci_log_hdl,
3085 	    "ehci_find_bestfit_hs_mask: ");
3086 
3087 	/* Get all the valid smasks */
3088 	switch (ehci_pow_2(endpoint->bInterval - 1)) {
3089 	case EHCI_INTR_1US_POLL:
3090 		index = EHCI_1US_MASK_INDEX;
3091 		elements = EHCI_INTR_1US_POLL;
3092 		break;
3093 	case EHCI_INTR_2US_POLL:
3094 		index = EHCI_2US_MASK_INDEX;
3095 		elements = EHCI_INTR_2US_POLL;
3096 		break;
3097 	case EHCI_INTR_4US_POLL:
3098 		index = EHCI_4US_MASK_INDEX;
3099 		elements = EHCI_INTR_4US_POLL;
3100 		break;
3101 	case EHCI_INTR_XUS_POLL:
3102 	default:
3103 		index = EHCI_XUS_MASK_INDEX;
3104 		elements = EHCI_INTR_XUS_POLL;
3105 		break;
3106 	}
3107 
3108 	leaf_count = EHCI_NUM_INTR_QH_LISTS/interval;
3109 
3110 	/*
3111 	 * Because of the way the leaves are setup, we will automatically
3112 	 * hit the leftmost leaf of every possible node with this interval.
3113 	 */
3114 	best_smask = 0x00;
3115 	best_node_bandwidth = 0;
3116 	for (array_leaf = 0; array_leaf < interval; array_leaf++) {
3117 		/* Find the bandwidth mask */
3118 		node_bandwidth = ehci_calculate_bw_availability_mask(ehcip,
3119 		    bandwidth, ehci_index[array_leaf], leaf_count, &bw_mask);
3120 
3121 		/*
3122 		 * If this node cannot support our requirements skip to the
3123 		 * next leaf.
3124 		 */
3125 		if (bw_mask == 0x00) {
3126 			continue;
3127 		}
3128 
3129 		/*
3130 		 * Now make sure our bandwidth requirements can be
3131 		 * satisfied with one of smasks in this node.
3132 		 */
3133 		*smask = 0x00;
3134 		for (i = index; i < (index + elements); i++) {
3135 			/* Check the start split mask value */
3136 			if (ehci_start_split_mask[index] & bw_mask) {
3137 				*smask = ehci_start_split_mask[index];
3138 				break;
3139 			}
3140 		}
3141 
3142 		/*
3143 		 * If an appropriate smask is found save the information if:
3144 		 * o best_smask has not been found yet.
3145 		 * - or -
3146 		 * o This is the node with the least amount of bandwidth
3147 		 */
3148 		if ((*smask != 0x00) &&
3149 		    ((best_smask == 0x00) ||
3150 		    (best_node_bandwidth > node_bandwidth))) {
3151 
3152 			best_node_bandwidth = node_bandwidth;
3153 			best_array_leaf = array_leaf;
3154 			best_smask = *smask;
3155 		}
3156 	}
3157 
3158 	/*
3159 	 * If we find node that can handle the bandwidth populate the
3160 	 * appropriate variables and return success.
3161 	 */
3162 	if (best_smask) {
3163 		*smask = best_smask;
3164 		*pnode = ehci_find_periodic_node(ehci_index[best_array_leaf],
3165 		    interval);
3166 		ehci_update_bw_availability(ehcip, bandwidth,
3167 		    ehci_index[best_array_leaf], leaf_count, best_smask);
3168 
3169 		return (USB_SUCCESS);
3170 	}
3171 
3172 	return (USB_FAILURE);
3173 }
3174 
3175 
3176 /*
3177  * ehci_find_bestfit_ls_intr_mask:
3178  *
3179  * Find the smask and cmask in the bandwidth allocation.
3180  */
3181 static int
3182 ehci_find_bestfit_ls_intr_mask(
3183 	ehci_state_t	*ehcip,
3184 	uchar_t		*smask,
3185 	uchar_t		*cmask,
3186 	uint_t		*pnode,
3187 	uint_t		sbandwidth,
3188 	uint_t		cbandwidth,
3189 	int		interval)
3190 {
3191 	int		i;
3192 	uint_t		elements, index;
3193 	int		array_leaf, best_array_leaf;
3194 	uint_t		node_sbandwidth, node_cbandwidth;
3195 	uint_t		best_node_bandwidth;
3196 	uint_t		leaf_count;
3197 	uchar_t		bw_smask, bw_cmask;
3198 	uchar_t		best_smask, best_cmask;
3199 
3200 	USB_DPRINTF_L4(PRINT_MASK_BW, ehcip->ehci_log_hdl,
3201 	    "ehci_find_bestfit_ls_intr_mask: ");
3202 
3203 	/* For low and full speed devices */
3204 	index = EHCI_XUS_MASK_INDEX;
3205 	elements = EHCI_INTR_4MS_POLL;
3206 
3207 	leaf_count = EHCI_NUM_INTR_QH_LISTS/interval;
3208 
3209 	/*
3210 	 * Because of the way the leaves are setup, we will automatically
3211 	 * hit the leftmost leaf of every possible node with this interval.
3212 	 */
3213 	best_smask = 0x00;
3214 	best_node_bandwidth = 0;
3215 	for (array_leaf = 0; array_leaf < interval; array_leaf++) {
3216 		/* Find the bandwidth mask */
3217 		node_sbandwidth = ehci_calculate_bw_availability_mask(ehcip,
3218 		    sbandwidth, ehci_index[array_leaf], leaf_count, &bw_smask);
3219 		node_cbandwidth = ehci_calculate_bw_availability_mask(ehcip,
3220 		    cbandwidth, ehci_index[array_leaf], leaf_count, &bw_cmask);
3221 
3222 		/*
3223 		 * If this node cannot support our requirements skip to the
3224 		 * next leaf.
3225 		 */
3226 		if ((bw_smask == 0x00) || (bw_cmask == 0x00)) {
3227 			continue;
3228 		}
3229 
3230 		/*
3231 		 * Now make sure our bandwidth requirements can be
3232 		 * satisfied with one of smasks in this node.
3233 		 */
3234 		*smask = 0x00;
3235 		*cmask = 0x00;
3236 		for (i = index; i < (index + elements); i++) {
3237 			/* Check the start split mask value */
3238 			if ((ehci_start_split_mask[index] & bw_smask) &&
3239 			    (ehci_intr_complete_split_mask[index] & bw_cmask)) {
3240 				*smask = ehci_start_split_mask[index];
3241 				*cmask = ehci_intr_complete_split_mask[index];
3242 				break;
3243 			}
3244 		}
3245 
3246 		/*
3247 		 * If an appropriate smask is found save the information if:
3248 		 * o best_smask has not been found yet.
3249 		 * - or -
3250 		 * o This is the node with the least amount of bandwidth
3251 		 */
3252 		if ((*smask != 0x00) &&
3253 		    ((best_smask == 0x00) ||
3254 		    (best_node_bandwidth >
3255 		    (node_sbandwidth + node_cbandwidth)))) {
3256 			best_node_bandwidth = node_sbandwidth + node_cbandwidth;
3257 			best_array_leaf = array_leaf;
3258 			best_smask = *smask;
3259 			best_cmask = *cmask;
3260 		}
3261 	}
3262 
3263 	/*
3264 	 * If we find node that can handle the bandwidth populate the
3265 	 * appropriate variables and return success.
3266 	 */
3267 	if (best_smask) {
3268 		*smask = best_smask;
3269 		*cmask = best_cmask;
3270 		*pnode = ehci_find_periodic_node(ehci_index[best_array_leaf],
3271 		    interval);
3272 		ehci_update_bw_availability(ehcip, sbandwidth,
3273 		    ehci_index[best_array_leaf], leaf_count, best_smask);
3274 		ehci_update_bw_availability(ehcip, cbandwidth,
3275 		    ehci_index[best_array_leaf], leaf_count, best_cmask);
3276 
3277 		return (USB_SUCCESS);
3278 	}
3279 
3280 	return (USB_FAILURE);
3281 }
3282 
3283 
3284 /*
3285  * ehci_find_bestfit_sitd_in_mask:
3286  *
3287  * Find the smask and cmask in the bandwidth allocation.
3288  */
3289 static int
3290 ehci_find_bestfit_sitd_in_mask(
3291 	ehci_state_t	*ehcip,
3292 	uchar_t		*smask,
3293 	uchar_t		*cmask,
3294 	uint_t		*pnode,
3295 	uint_t		sbandwidth,
3296 	uint_t		cbandwidth,
3297 	int		interval)
3298 {
3299 	int		i, uFrames, found;
3300 	int		array_leaf, best_array_leaf;
3301 	uint_t		node_sbandwidth, node_cbandwidth;
3302 	uint_t		best_node_bandwidth;
3303 	uint_t		leaf_count;
3304 	uchar_t		bw_smask, bw_cmask;
3305 	uchar_t		best_smask, best_cmask;
3306 
3307 	USB_DPRINTF_L4(PRINT_MASK_BW, ehcip->ehci_log_hdl,
3308 	    "ehci_find_bestfit_sitd_in_mask: ");
3309 
3310 	leaf_count = EHCI_NUM_INTR_QH_LISTS/interval;
3311 
3312 	/*
3313 	 * Because of the way the leaves are setup, we will automatically
3314 	 * hit the leftmost leaf of every possible node with this interval.
3315 	 * You may only send MAX_UFRAME_SITD_XFER raw bits per uFrame.
3316 	 */
3317 	/*
3318 	 * Need to add an additional 2 uFrames, if the "L"ast
3319 	 * complete split is before uFrame 6.  See section
3320 	 * 11.8.4 in USB 2.0 Spec.  Currently we do not support
3321 	 * the "Back Ptr" which means we support on IN of
3322 	 * ~4*MAX_UFRAME_SITD_XFER bandwidth/
3323 	 */
3324 	uFrames = (cbandwidth / MAX_UFRAME_SITD_XFER) + 2;
3325 	if (cbandwidth % MAX_UFRAME_SITD_XFER) {
3326 		uFrames++;
3327 	}
3328 	if (uFrames > 6) {
3329 
3330 		return (USB_FAILURE);
3331 	}
3332 	*smask = 0x1;
3333 	*cmask = 0x00;
3334 	for (i = 0; i < uFrames; i++) {
3335 		*cmask = *cmask << 1;
3336 		*cmask |= 0x1;
3337 	}
3338 	/* cmask must start 2 frames after the smask */
3339 	*cmask = *cmask << 2;
3340 
3341 	found = 0;
3342 	best_smask = 0x00;
3343 	best_node_bandwidth = 0;
3344 	for (array_leaf = 0; array_leaf < interval; array_leaf++) {
3345 		node_sbandwidth = ehci_calculate_bw_availability_mask(ehcip,
3346 		    sbandwidth, ehci_index[array_leaf], leaf_count, &bw_smask);
3347 		node_cbandwidth = ehci_calculate_bw_availability_mask(ehcip,
3348 		    MAX_UFRAME_SITD_XFER, ehci_index[array_leaf], leaf_count,
3349 		    &bw_cmask);
3350 
3351 		/*
3352 		 * If this node cannot support our requirements skip to the
3353 		 * next leaf.
3354 		 */
3355 		if ((bw_smask == 0x00) || (bw_cmask == 0x00)) {
3356 			continue;
3357 		}
3358 
3359 		for (i = 0; i < (EHCI_MAX_UFRAMES - uFrames - 2); i++) {
3360 			if ((*smask & bw_smask) && (*cmask & bw_cmask)) {
3361 				found = 1;
3362 				break;
3363 			}
3364 			*smask = *smask << 1;
3365 			*cmask = *cmask << 1;
3366 		}
3367 
3368 		/*
3369 		 * If an appropriate smask is found save the information if:
3370 		 * o best_smask has not been found yet.
3371 		 * - or -
3372 		 * o This is the node with the least amount of bandwidth
3373 		 */
3374 		if (found &&
3375 		    ((best_smask == 0x00) ||
3376 		    (best_node_bandwidth >
3377 		    (node_sbandwidth + node_cbandwidth)))) {
3378 			best_node_bandwidth = node_sbandwidth + node_cbandwidth;
3379 			best_array_leaf = array_leaf;
3380 			best_smask = *smask;
3381 			best_cmask = *cmask;
3382 		}
3383 	}
3384 
3385 	/*
3386 	 * If we find node that can handle the bandwidth populate the
3387 	 * appropriate variables and return success.
3388 	 */
3389 	if (best_smask) {
3390 		*smask = best_smask;
3391 		*cmask = best_cmask;
3392 		*pnode = ehci_find_periodic_node(ehci_index[best_array_leaf],
3393 		    interval);
3394 		ehci_update_bw_availability(ehcip, sbandwidth,
3395 		    ehci_index[best_array_leaf], leaf_count, best_smask);
3396 		ehci_update_bw_availability(ehcip, MAX_UFRAME_SITD_XFER,
3397 		    ehci_index[best_array_leaf], leaf_count, best_cmask);
3398 
3399 		return (USB_SUCCESS);
3400 	}
3401 
3402 	return (USB_FAILURE);
3403 }
3404 
3405 
3406 /*
3407  * ehci_find_bestfit_sitd_out_mask:
3408  *
3409  * Find the smask in the bandwidth allocation.
3410  */
3411 static int
3412 ehci_find_bestfit_sitd_out_mask(
3413 	ehci_state_t	*ehcip,
3414 	uchar_t		*smask,
3415 	uint_t		*pnode,
3416 	uint_t		sbandwidth,
3417 	int		interval)
3418 {
3419 	int		i, uFrames, found;
3420 	int		array_leaf, best_array_leaf;
3421 	uint_t		node_sbandwidth;
3422 	uint_t		best_node_bandwidth;
3423 	uint_t		leaf_count;
3424 	uchar_t		bw_smask;
3425 	uchar_t		best_smask;
3426 
3427 	USB_DPRINTF_L4(PRINT_MASK_BW, ehcip->ehci_log_hdl,
3428 	    "ehci_find_bestfit_sitd_out_mask: ");
3429 
3430 	leaf_count = EHCI_NUM_INTR_QH_LISTS/interval;
3431 
3432 	/*
3433 	 * Because of the way the leaves are setup, we will automatically
3434 	 * hit the leftmost leaf of every possible node with this interval.
3435 	 * You may only send MAX_UFRAME_SITD_XFER raw bits per uFrame.
3436 	 */
3437 	*smask = 0x00;
3438 	uFrames = sbandwidth / MAX_UFRAME_SITD_XFER;
3439 	if (sbandwidth % MAX_UFRAME_SITD_XFER) {
3440 		uFrames++;
3441 	}
3442 	for (i = 0; i < uFrames; i++) {
3443 		*smask = *smask << 1;
3444 		*smask |= 0x1;
3445 	}
3446 
3447 	found = 0;
3448 	best_smask = 0x00;
3449 	best_node_bandwidth = 0;
3450 	for (array_leaf = 0; array_leaf < interval; array_leaf++) {
3451 		node_sbandwidth = ehci_calculate_bw_availability_mask(ehcip,
3452 		    MAX_UFRAME_SITD_XFER, ehci_index[array_leaf], leaf_count,
3453 		    &bw_smask);
3454 
3455 		/*
3456 		 * If this node cannot support our requirements skip to the
3457 		 * next leaf.
3458 		 */
3459 		if (bw_smask == 0x00) {
3460 			continue;
3461 		}
3462 
3463 		/* You cannot have a start split on the 8th uFrame */
3464 		for (i = 0; (*smask & 0x80) == 0; i++) {
3465 			if (*smask & bw_smask) {
3466 				found = 1;
3467 				break;
3468 			}
3469 			*smask = *smask << 1;
3470 		}
3471 
3472 		/*
3473 		 * If an appropriate smask is found save the information if:
3474 		 * o best_smask has not been found yet.
3475 		 * - or -
3476 		 * o This is the node with the least amount of bandwidth
3477 		 */
3478 		if (found &&
3479 		    ((best_smask == 0x00) ||
3480 		    (best_node_bandwidth > node_sbandwidth))) {
3481 			best_node_bandwidth = node_sbandwidth;
3482 			best_array_leaf = array_leaf;
3483 			best_smask = *smask;
3484 		}
3485 	}
3486 
3487 	/*
3488 	 * If we find node that can handle the bandwidth populate the
3489 	 * appropriate variables and return success.
3490 	 */
3491 	if (best_smask) {
3492 		*smask = best_smask;
3493 		*pnode = ehci_find_periodic_node(ehci_index[best_array_leaf],
3494 		    interval);
3495 		ehci_update_bw_availability(ehcip, MAX_UFRAME_SITD_XFER,
3496 		    ehci_index[best_array_leaf], leaf_count, best_smask);
3497 
3498 		return (USB_SUCCESS);
3499 	}
3500 
3501 	return (USB_FAILURE);
3502 }
3503 
3504 
3505 /*
3506  * ehci_calculate_bw_availability_mask:
3507  *
3508  * Returns the "total bandwidth used" in this node.
3509  * Populates bw_mask with the uFrames that can support the bandwidth.
3510  *
3511  * If all the Frames cannot support this bandwidth, then bw_mask
3512  * will return 0x00 and the "total bandwidth used" will be invalid.
3513  */
3514 static uint_t
3515 ehci_calculate_bw_availability_mask(
3516 	ehci_state_t	*ehcip,
3517 	uint_t		bandwidth,
3518 	int		leaf,
3519 	int		leaf_count,
3520 	uchar_t		*bw_mask)
3521 {
3522 	int			i, j;
3523 	uchar_t			bw_uframe;
3524 	int			uframe_total;
3525 	ehci_frame_bandwidth_t	*fbp;
3526 	uint_t			total_bandwidth = 0;
3527 
3528 	USB_DPRINTF_L4(PRINT_MASK_BW, ehcip->ehci_log_hdl,
3529 	    "ehci_calculate_bw_availability_mask: leaf %d leaf count %d",
3530 	    leaf, leaf_count);
3531 
3532 	/* Start by saying all uFrames are available */
3533 	*bw_mask = 0xFF;
3534 
3535 	for (i = 0; (i < leaf_count) || (*bw_mask == 0x00); i++) {
3536 		fbp = &ehcip->ehci_frame_bandwidth[leaf + i];
3537 
3538 		total_bandwidth += fbp->ehci_allocated_frame_bandwidth;
3539 
3540 		for (j = 0; j < EHCI_MAX_UFRAMES; j++) {
3541 			/*
3542 			 * If the uFrame in bw_mask is available check to see if
3543 			 * it can support the additional bandwidth.
3544 			 */
3545 			bw_uframe = (*bw_mask & (0x1 << j));
3546 			uframe_total =
3547 			    fbp->ehci_micro_frame_bandwidth[j] +
3548 			    bandwidth;
3549 			if ((bw_uframe) &&
3550 			    (uframe_total > HS_PERIODIC_BANDWIDTH)) {
3551 				*bw_mask = *bw_mask & ~bw_uframe;
3552 			}
3553 		}
3554 	}
3555 
3556 	USB_DPRINTF_L4(PRINT_MASK_BW, ehcip->ehci_log_hdl,
3557 	    "ehci_calculate_bw_availability_mask: bandwidth mask 0x%x",
3558 	    *bw_mask);
3559 
3560 	return (total_bandwidth);
3561 }
3562 
3563 
3564 /*
3565  * ehci_update_bw_availability:
3566  *
3567  * The leftmost leaf needs to be in terms of array position and
3568  * not the actual lattice position.
3569  */
3570 static void
3571 ehci_update_bw_availability(
3572 	ehci_state_t	*ehcip,
3573 	int		bandwidth,
3574 	int		leftmost_leaf,
3575 	int		leaf_count,
3576 	uchar_t		mask)
3577 {
3578 	int			i, j;
3579 	ehci_frame_bandwidth_t	*fbp;
3580 	int			uFrame_bandwidth[8];
3581 
3582 	USB_DPRINTF_L4(PRINT_MASK_LISTS, ehcip->ehci_log_hdl,
3583 	    "ehci_update_bw_availability: "
3584 	    "leaf %d count %d bandwidth 0x%x mask 0x%x",
3585 	    leftmost_leaf, leaf_count, bandwidth, mask);
3586 
3587 	ASSERT(leftmost_leaf < 32);
3588 	ASSERT(leftmost_leaf >= 0);
3589 
3590 	for (j = 0; j < EHCI_MAX_UFRAMES; j++) {
3591 		if (mask & 0x1) {
3592 			uFrame_bandwidth[j] = bandwidth;
3593 		} else {
3594 			uFrame_bandwidth[j] = 0;
3595 		}
3596 
3597 		mask = mask >> 1;
3598 	}
3599 
3600 	/* Updated all the effected leafs with the bandwidth */
3601 	for (i = 0; i < leaf_count; i++) {
3602 		fbp = &ehcip->ehci_frame_bandwidth[leftmost_leaf + i];
3603 
3604 		for (j = 0; j < EHCI_MAX_UFRAMES; j++) {
3605 			fbp->ehci_micro_frame_bandwidth[j] +=
3606 			    uFrame_bandwidth[j];
3607 			fbp->ehci_allocated_frame_bandwidth +=
3608 			    uFrame_bandwidth[j];
3609 		}
3610 	}
3611 }
3612 
3613 /*
3614  * Miscellaneous functions
3615  */
3616 
3617 /*
3618  * ehci_obtain_state:
3619  *
3620  * NOTE: This function is also called from POLLED MODE.
3621  */
3622 ehci_state_t *
3623 ehci_obtain_state(dev_info_t	*dip)
3624 {
3625 	int			instance = ddi_get_instance(dip);
3626 
3627 	ehci_state_t *state = ddi_get_soft_state(ehci_statep, instance);
3628 
3629 	ASSERT(state != NULL);
3630 
3631 	return (state);
3632 }
3633 
3634 
3635 /*
3636  * ehci_state_is_operational:
3637  *
3638  * Check the Host controller state and return proper values.
3639  */
3640 int
3641 ehci_state_is_operational(ehci_state_t	*ehcip)
3642 {
3643 	int	val;
3644 
3645 	ASSERT(mutex_owned(&ehcip->ehci_int_mutex));
3646 
3647 	switch (ehcip->ehci_hc_soft_state) {
3648 	case EHCI_CTLR_INIT_STATE:
3649 	case EHCI_CTLR_SUSPEND_STATE:
3650 		val = USB_FAILURE;
3651 		break;
3652 	case EHCI_CTLR_OPERATIONAL_STATE:
3653 		val = USB_SUCCESS;
3654 		break;
3655 	case EHCI_CTLR_ERROR_STATE:
3656 		val = USB_HC_HARDWARE_ERROR;
3657 		break;
3658 	default:
3659 		val = USB_FAILURE;
3660 		break;
3661 	}
3662 
3663 	return (val);
3664 }
3665 
3666 
3667 /*
3668  * ehci_do_soft_reset
3669  *
3670  * Do soft reset of ehci host controller.
3671  */
3672 int
3673 ehci_do_soft_reset(ehci_state_t	*ehcip)
3674 {
3675 	usb_frame_number_t	before_frame_number, after_frame_number;
3676 	ehci_regs_t		*ehci_save_regs;
3677 
3678 	ASSERT(mutex_owned(&ehcip->ehci_int_mutex));
3679 
3680 	/* Increment host controller error count */
3681 	ehcip->ehci_hc_error++;
3682 
3683 	USB_DPRINTF_L3(PRINT_MASK_INTR, ehcip->ehci_log_hdl,
3684 	    "ehci_do_soft_reset:"
3685 	    "Reset ehci host controller 0x%x", ehcip->ehci_hc_error);
3686 
3687 	/*
3688 	 * Allocate space for saving current Host Controller
3689 	 * registers. Don't do any recovery if allocation
3690 	 * fails.
3691 	 */
3692 	ehci_save_regs = (ehci_regs_t *)
3693 	    kmem_zalloc(sizeof (ehci_regs_t), KM_NOSLEEP);
3694 
3695 	if (ehci_save_regs == NULL) {
3696 		USB_DPRINTF_L2(PRINT_MASK_INTR,  ehcip->ehci_log_hdl,
3697 		    "ehci_do_soft_reset: kmem_zalloc failed");
3698 
3699 		return (USB_FAILURE);
3700 	}
3701 
3702 	/* Save current ehci registers */
3703 	ehci_save_regs->ehci_command = Get_OpReg(ehci_command);
3704 	ehci_save_regs->ehci_interrupt = Get_OpReg(ehci_interrupt);
3705 	ehci_save_regs->ehci_ctrl_segment = Get_OpReg(ehci_ctrl_segment);
3706 	ehci_save_regs->ehci_async_list_addr = Get_OpReg(ehci_async_list_addr);
3707 	ehci_save_regs->ehci_config_flag = Get_OpReg(ehci_config_flag);
3708 	ehci_save_regs->ehci_periodic_list_base =
3709 	    Get_OpReg(ehci_periodic_list_base);
3710 
3711 	USB_DPRINTF_L3(PRINT_MASK_INTR, ehcip->ehci_log_hdl,
3712 	    "ehci_do_soft_reset: Save reg = 0x%p", (void *)ehci_save_regs);
3713 
3714 	/* Disable all list processing and interrupts */
3715 	Set_OpReg(ehci_command, Get_OpReg(ehci_command) &
3716 	    ~(EHCI_CMD_ASYNC_SCHED_ENABLE | EHCI_CMD_PERIODIC_SCHED_ENABLE));
3717 
3718 	/* Disable all EHCI interrupts */
3719 	Set_OpReg(ehci_interrupt, 0);
3720 
3721 	/* Wait for few milliseconds */
3722 	drv_usecwait(EHCI_SOF_TIMEWAIT);
3723 
3724 	/* Do light soft reset of ehci host controller */
3725 	Set_OpReg(ehci_command,
3726 	    Get_OpReg(ehci_command) | EHCI_CMD_LIGHT_HC_RESET);
3727 
3728 	USB_DPRINTF_L3(PRINT_MASK_INTR, ehcip->ehci_log_hdl,
3729 	    "ehci_do_soft_reset: Reset in progress");
3730 
3731 	/* Wait for reset to complete */
3732 	drv_usecwait(EHCI_RESET_TIMEWAIT);
3733 
3734 	/*
3735 	 * Restore previous saved EHCI register value
3736 	 * into the current EHCI registers.
3737 	 */
3738 	Set_OpReg(ehci_ctrl_segment, (uint32_t)
3739 	    ehci_save_regs->ehci_ctrl_segment);
3740 
3741 	Set_OpReg(ehci_periodic_list_base, (uint32_t)
3742 	    ehci_save_regs->ehci_periodic_list_base);
3743 
3744 	Set_OpReg(ehci_async_list_addr, (uint32_t)
3745 	    ehci_save_regs->ehci_async_list_addr);
3746 
3747 	/*
3748 	 * For some reason this register might get nulled out by
3749 	 * the Uli M1575 South Bridge. To workaround the hardware
3750 	 * problem, check the value after write and retry if the
3751 	 * last write fails.
3752 	 */
3753 	if ((ehcip->ehci_vendor_id == PCI_VENDOR_ULi_M1575) &&
3754 	    (ehcip->ehci_device_id == PCI_DEVICE_ULi_M1575) &&
3755 	    (ehci_save_regs->ehci_async_list_addr !=
3756 	    Get_OpReg(ehci_async_list_addr))) {
3757 		int retry = 0;
3758 
3759 		Set_OpRegRetry(ehci_async_list_addr, (uint32_t)
3760 		    ehci_save_regs->ehci_async_list_addr, retry);
3761 		if (retry >= EHCI_MAX_RETRY) {
3762 			USB_DPRINTF_L2(PRINT_MASK_ATTA,
3763 			    ehcip->ehci_log_hdl, "ehci_do_soft_reset:"
3764 			    " ASYNCLISTADDR write failed.");
3765 
3766 			return (USB_FAILURE);
3767 		}
3768 		USB_DPRINTF_L2(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
3769 		    "ehci_do_soft_reset: ASYNCLISTADDR "
3770 		    "write failed, retry=%d", retry);
3771 	}
3772 
3773 	Set_OpReg(ehci_config_flag, (uint32_t)
3774 	    ehci_save_regs->ehci_config_flag);
3775 
3776 	/* Enable both Asynchronous and Periodic Schedule if necessary */
3777 	ehci_toggle_scheduler(ehcip);
3778 
3779 	/*
3780 	 * Set ehci_interrupt to enable all interrupts except Root
3781 	 * Hub Status change and frame list rollover interrupts.
3782 	 */
3783 	Set_OpReg(ehci_interrupt, EHCI_INTR_HOST_SYSTEM_ERROR |
3784 	    EHCI_INTR_FRAME_LIST_ROLLOVER |
3785 	    EHCI_INTR_USB_ERROR |
3786 	    EHCI_INTR_USB);
3787 
3788 	/*
3789 	 * Deallocate the space that allocated for saving
3790 	 * HC registers.
3791 	 */
3792 	kmem_free((void *) ehci_save_regs, sizeof (ehci_regs_t));
3793 
3794 	/*
3795 	 * Set the desired interrupt threshold, frame list size (if
3796 	 * applicable) and turn EHCI host controller.
3797 	 */
3798 	Set_OpReg(ehci_command, ((Get_OpReg(ehci_command) &
3799 	    ~EHCI_CMD_INTR_THRESHOLD) |
3800 	    (EHCI_CMD_01_INTR | EHCI_CMD_HOST_CTRL_RUN)));
3801 
3802 	/* Wait 10ms for EHCI to start sending SOF */
3803 	drv_usecwait(EHCI_RESET_TIMEWAIT);
3804 
3805 	/*
3806 	 * Get the current usb frame number before waiting for
3807 	 * few milliseconds.
3808 	 */
3809 	before_frame_number = ehci_get_current_frame_number(ehcip);
3810 
3811 	/* Wait for few milliseconds */
3812 	drv_usecwait(EHCI_SOF_TIMEWAIT);
3813 
3814 	/*
3815 	 * Get the current usb frame number after waiting for
3816 	 * few milliseconds.
3817 	 */
3818 	after_frame_number = ehci_get_current_frame_number(ehcip);
3819 
3820 	USB_DPRINTF_L4(PRINT_MASK_INTR, ehcip->ehci_log_hdl,
3821 	    "ehci_do_soft_reset: Before Frame Number 0x%llx "
3822 	    "After Frame Number 0x%llx",
3823 	    (unsigned long long)before_frame_number,
3824 	    (unsigned long long)after_frame_number);
3825 
3826 	if ((after_frame_number <= before_frame_number) &&
3827 	    (Get_OpReg(ehci_status) & EHCI_STS_HOST_CTRL_HALTED)) {
3828 
3829 		USB_DPRINTF_L2(PRINT_MASK_INTR, ehcip->ehci_log_hdl,
3830 		    "ehci_do_soft_reset: Soft reset failed");
3831 
3832 		return (USB_FAILURE);
3833 	}
3834 
3835 	return (USB_SUCCESS);
3836 }
3837 
3838 
3839 /*
3840  * ehci_get_xfer_attrs:
3841  *
3842  * Get the attributes of a particular xfer.
3843  *
3844  * NOTE: This function is also called from POLLED MODE.
3845  */
3846 usb_req_attrs_t
3847 ehci_get_xfer_attrs(
3848 	ehci_state_t		*ehcip,
3849 	ehci_pipe_private_t	*pp,
3850 	ehci_trans_wrapper_t	*tw)
3851 {
3852 	usb_ep_descr_t		*eptd = &pp->pp_pipe_handle->p_ep;
3853 	usb_req_attrs_t		attrs = USB_ATTRS_NONE;
3854 
3855 	USB_DPRINTF_L4(PRINT_MASK_LISTS, ehcip->ehci_log_hdl,
3856 	    "ehci_get_xfer_attrs:");
3857 
3858 	switch (eptd->bmAttributes & USB_EP_ATTR_MASK) {
3859 	case USB_EP_ATTR_CONTROL:
3860 		attrs = ((usb_ctrl_req_t *)
3861 		    tw->tw_curr_xfer_reqp)->ctrl_attributes;
3862 		break;
3863 	case USB_EP_ATTR_BULK:
3864 		attrs = ((usb_bulk_req_t *)
3865 		    tw->tw_curr_xfer_reqp)->bulk_attributes;
3866 		break;
3867 	case USB_EP_ATTR_INTR:
3868 		attrs = ((usb_intr_req_t *)
3869 		    tw->tw_curr_xfer_reqp)->intr_attributes;
3870 		break;
3871 	}
3872 
3873 	return (attrs);
3874 }
3875 
3876 
3877 /*
3878  * ehci_get_current_frame_number:
3879  *
3880  * Get the current software based usb frame number.
3881  */
3882 usb_frame_number_t
3883 ehci_get_current_frame_number(ehci_state_t *ehcip)
3884 {
3885 	usb_frame_number_t	usb_frame_number;
3886 	usb_frame_number_t	ehci_fno, micro_frame_number;
3887 
3888 	ASSERT(mutex_owned(&ehcip->ehci_int_mutex));
3889 
3890 	ehci_fno = ehcip->ehci_fno;
3891 	micro_frame_number = Get_OpReg(ehci_frame_index) & 0x3FFF;
3892 
3893 	/*
3894 	 * Calculate current software based usb frame number.
3895 	 *
3896 	 * This code accounts for the fact that frame number is
3897 	 * updated by the Host Controller before the ehci driver
3898 	 * gets an FrameListRollover interrupt that will adjust
3899 	 * Frame higher part.
3900 	 *
3901 	 * Refer ehci specification 1.0, section 2.3.2, page 21.
3902 	 */
3903 	micro_frame_number = ((micro_frame_number & 0x1FFF) |
3904 	    ehci_fno) + (((micro_frame_number & 0x3FFF) ^
3905 	    ehci_fno) & 0x2000);
3906 
3907 	/*
3908 	 * Micro Frame number is equivalent to 125 usec. Eight
3909 	 * Micro Frame numbers are equivalent to one millsecond
3910 	 * or one usb frame number.
3911 	 */
3912 	usb_frame_number = micro_frame_number >>
3913 	    EHCI_uFRAMES_PER_USB_FRAME_SHIFT;
3914 
3915 	USB_DPRINTF_L4(PRINT_MASK_LISTS, ehcip->ehci_log_hdl,
3916 	    "ehci_get_current_frame_number: "
3917 	    "Current usb uframe number = 0x%llx "
3918 	    "Current usb frame number  = 0x%llx",
3919 	    (unsigned long long)micro_frame_number,
3920 	    (unsigned long long)usb_frame_number);
3921 
3922 	return (usb_frame_number);
3923 }
3924 
3925 
3926 /*
3927  * ehci_cpr_cleanup:
3928  *
3929  * Cleanup ehci state and other ehci specific informations across
3930  * Check Point Resume (CPR).
3931  */
3932 static	void
3933 ehci_cpr_cleanup(ehci_state_t *ehcip)
3934 {
3935 	ASSERT(mutex_owned(&ehcip->ehci_int_mutex));
3936 
3937 	/* Reset software part of usb frame number */
3938 	ehcip->ehci_fno = 0;
3939 }
3940 
3941 
3942 /*
3943  * ehci_wait_for_sof:
3944  *
3945  * Wait for couple of SOF interrupts
3946  */
3947 int
3948 ehci_wait_for_sof(ehci_state_t	*ehcip)
3949 {
3950 	usb_frame_number_t	before_frame_number, after_frame_number;
3951 	int			error = USB_SUCCESS;
3952 
3953 	USB_DPRINTF_L4(PRINT_MASK_LISTS,
3954 	    ehcip->ehci_log_hdl, "ehci_wait_for_sof");
3955 
3956 	ASSERT(mutex_owned(&ehcip->ehci_int_mutex));
3957 
3958 	error = ehci_state_is_operational(ehcip);
3959 
3960 	if (error != USB_SUCCESS) {
3961 
3962 		return (error);
3963 	}
3964 
3965 	/* Get the current usb frame number before waiting for two SOFs */
3966 	before_frame_number = ehci_get_current_frame_number(ehcip);
3967 
3968 	mutex_exit(&ehcip->ehci_int_mutex);
3969 
3970 	/* Wait for few milliseconds */
3971 	delay(drv_usectohz(EHCI_SOF_TIMEWAIT));
3972 
3973 	mutex_enter(&ehcip->ehci_int_mutex);
3974 
3975 	/* Get the current usb frame number after woken up */
3976 	after_frame_number = ehci_get_current_frame_number(ehcip);
3977 
3978 	USB_DPRINTF_L3(PRINT_MASK_LISTS, ehcip->ehci_log_hdl,
3979 	    "ehci_wait_for_sof: framenumber: before 0x%llx "
3980 	    "after 0x%llx",
3981 	    (unsigned long long)before_frame_number,
3982 	    (unsigned long long)after_frame_number);
3983 
3984 	/* Return failure, if usb frame number has not been changed */
3985 	if (after_frame_number <= before_frame_number) {
3986 
3987 		if ((ehci_do_soft_reset(ehcip)) != USB_SUCCESS) {
3988 
3989 			USB_DPRINTF_L0(PRINT_MASK_LISTS,
3990 			    ehcip->ehci_log_hdl, "No SOF interrupts");
3991 
3992 			/* Set host controller soft state to error */
3993 			ehcip->ehci_hc_soft_state = EHCI_CTLR_ERROR_STATE;
3994 
3995 			return (USB_FAILURE);
3996 		}
3997 
3998 	}
3999 
4000 	return (USB_SUCCESS);
4001 }
4002 
4003 
4004 /*
4005  * ehci_toggle_scheduler:
4006  *
4007  * Turn scheduler based on pipe open count.
4008  */
4009 void
4010 ehci_toggle_scheduler(ehci_state_t *ehcip) {
4011 	uint_t	temp_reg, cmd_reg;
4012 
4013 	cmd_reg = Get_OpReg(ehci_command);
4014 	temp_reg = cmd_reg;
4015 
4016 	/*
4017 	 * Enable/Disable asynchronous scheduler, and
4018 	 * turn on/off async list door bell
4019 	 */
4020 	if (ehcip->ehci_open_async_count) {
4021 		if (!(cmd_reg & EHCI_CMD_ASYNC_SCHED_ENABLE)) {
4022 			/*
4023 			 * For some reason this address might get nulled out by
4024 			 * the ehci chip. Set it here just in case it is null.
4025 			 */
4026 			Set_OpReg(ehci_async_list_addr,
4027 			    ehci_qh_cpu_to_iommu(ehcip,
4028 				ehcip->ehci_head_of_async_sched_list));
4029 
4030 			/*
4031 			 * For some reason this register might get nulled out by
4032 			 * the Uli M1575 Southbridge. To workaround the HW
4033 			 * problem, check the value after write and retry if the
4034 			 * last write fails.
4035 			 *
4036 			 * If the ASYNCLISTADDR remains "stuck" after
4037 			 * EHCI_MAX_RETRY retries, then the M1575 is broken
4038 			 * and is stuck in an inconsistent state and is about
4039 			 * to crash the machine with a trn_oor panic when it
4040 			 * does a DMA read from 0x0.  It is better to panic
4041 			 * now rather than wait for the trn_oor crash; this
4042 			 * way Customer Service will have a clean signature
4043 			 * that indicts the M1575 chip rather than a
4044 			 * mysterious and hard-to-diagnose trn_oor panic.
4045 			 */
4046 			if ((ehcip->ehci_vendor_id == PCI_VENDOR_ULi_M1575) &&
4047 			    (ehcip->ehci_device_id == PCI_DEVICE_ULi_M1575) &&
4048 			    (ehci_qh_cpu_to_iommu(ehcip,
4049 			    ehcip->ehci_head_of_async_sched_list) !=
4050 			    Get_OpReg(ehci_async_list_addr))) {
4051 				int retry = 0;
4052 
4053 				Set_OpRegRetry(ehci_async_list_addr,
4054 				    ehci_qh_cpu_to_iommu(ehcip,
4055 				    ehcip->ehci_head_of_async_sched_list),
4056 				    retry);
4057 				if (retry >= EHCI_MAX_RETRY)
4058 					cmn_err(CE_PANIC,
4059 					    "ehci_toggle_scheduler: "
4060 					    "ASYNCLISTADDR write failed.");
4061 
4062 				USB_DPRINTF_L2(PRINT_MASK_ATTA,
4063 				    ehcip->ehci_log_hdl,
4064 				    "ehci_toggle_scheduler: ASYNCLISTADDR "
4065 					"write failed, retry=%d", retry);
4066 			}
4067 		}
4068 		cmd_reg |= EHCI_CMD_ASYNC_SCHED_ENABLE;
4069 	} else {
4070 		cmd_reg &= ~EHCI_CMD_ASYNC_SCHED_ENABLE;
4071 	}
4072 
4073 	if (ehcip->ehci_open_periodic_count) {
4074 		if (!(cmd_reg & EHCI_CMD_PERIODIC_SCHED_ENABLE)) {
4075 			/*
4076 			 * For some reason this address get's nulled out by
4077 			 * the ehci chip. Set it here just in case it is null.
4078 			 */
4079 			Set_OpReg(ehci_periodic_list_base,
4080 			    (uint32_t)(ehcip->ehci_pflt_cookie.dmac_address &
4081 				0xFFFFF000));
4082 		}
4083 		cmd_reg |= EHCI_CMD_PERIODIC_SCHED_ENABLE;
4084 	} else {
4085 		cmd_reg &= ~EHCI_CMD_PERIODIC_SCHED_ENABLE;
4086 	}
4087 
4088 	/* Just an optimization */
4089 	if (temp_reg != cmd_reg) {
4090 		Set_OpReg(ehci_command, cmd_reg);
4091 	}
4092 }
4093 
4094 /*
4095  * ehci print functions
4096  */
4097 
4098 /*
4099  * ehci_print_caps:
4100  */
4101 void
4102 ehci_print_caps(ehci_state_t	*ehcip)
4103 {
4104 	uint_t			i;
4105 
4106 	USB_DPRINTF_L3(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
4107 	    "\n\tUSB 2.0 Host Controller Characteristics\n");
4108 
4109 	USB_DPRINTF_L3(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
4110 	    "Caps Length: 0x%x Version: 0x%x\n",
4111 	    Get_8Cap(ehci_caps_length), Get_16Cap(ehci_version));
4112 
4113 	USB_DPRINTF_L3(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
4114 	    "Structural Parameters\n");
4115 	USB_DPRINTF_L3(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
4116 	    "Port indicators: %s", (Get_Cap(ehci_hcs_params) &
4117 	    EHCI_HCS_PORT_INDICATOR) ? "Yes" : "No");
4118 	USB_DPRINTF_L3(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
4119 	    "No of Classic host controllers: 0x%x",
4120 	    (Get_Cap(ehci_hcs_params) & EHCI_HCS_NUM_COMP_CTRLS)
4121 	    >> EHCI_HCS_NUM_COMP_CTRL_SHIFT);
4122 	USB_DPRINTF_L3(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
4123 	    "No of ports per Classic host controller: 0x%x",
4124 	    (Get_Cap(ehci_hcs_params) & EHCI_HCS_NUM_PORTS_CC)
4125 	    >> EHCI_HCS_NUM_PORTS_CC_SHIFT);
4126 	USB_DPRINTF_L3(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
4127 	    "Port routing rules: %s", (Get_Cap(ehci_hcs_params) &
4128 	    EHCI_HCS_PORT_ROUTING_RULES) ? "Yes" : "No");
4129 	USB_DPRINTF_L3(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
4130 	    "Port power control: %s", (Get_Cap(ehci_hcs_params) &
4131 	    EHCI_HCS_PORT_POWER_CONTROL) ? "Yes" : "No");
4132 	USB_DPRINTF_L3(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
4133 	    "No of root hub ports: 0x%x\n",
4134 	    Get_Cap(ehci_hcs_params) & EHCI_HCS_NUM_PORTS);
4135 
4136 	USB_DPRINTF_L3(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
4137 	    "Capability Parameters\n");
4138 	USB_DPRINTF_L3(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
4139 	    "EHCI extended capability: %s", (Get_Cap(ehci_hcc_params) &
4140 	    EHCI_HCC_EECP) ? "Yes" : "No");
4141 	USB_DPRINTF_L3(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
4142 	    "Isoch schedule threshold: 0x%x",
4143 	    Get_Cap(ehci_hcc_params) & EHCI_HCC_ISOCH_SCHED_THRESHOLD);
4144 	USB_DPRINTF_L3(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
4145 	    "Async schedule park capability: %s", (Get_Cap(ehci_hcc_params) &
4146 	    EHCI_HCC_ASYNC_SCHED_PARK_CAP) ? "Yes" : "No");
4147 	USB_DPRINTF_L3(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
4148 	    "Programmable frame list flag: %s", (Get_Cap(ehci_hcc_params) &
4149 	    EHCI_HCC_PROG_FRAME_LIST_FLAG) ? "256/512/1024" : "1024");
4150 	USB_DPRINTF_L3(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
4151 	    "64bit addressing capability: %s\n", (Get_Cap(ehci_hcc_params) &
4152 	    EHCI_HCC_64BIT_ADDR_CAP) ? "Yes" : "No");
4153 
4154 	USB_DPRINTF_L3(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
4155 	    "Classic Port Route Description");
4156 
4157 	for (i = 0; i < (Get_Cap(ehci_hcs_params) & EHCI_HCS_NUM_PORTS); i++) {
4158 		USB_DPRINTF_L3(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
4159 		    "\tPort Route 0x%x: 0x%x", i, Get_8Cap(ehci_port_route[i]));
4160 	}
4161 }
4162 
4163 
4164 /*
4165  * ehci_print_regs:
4166  */
4167 void
4168 ehci_print_regs(ehci_state_t	*ehcip)
4169 {
4170 	uint_t			i;
4171 
4172 	USB_DPRINTF_L3(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
4173 	    "\n\tEHCI%d Operational Registers\n",
4174 	    ddi_get_instance(ehcip->ehci_dip));
4175 
4176 	USB_DPRINTF_L3(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
4177 	    "Command: 0x%x Status: 0x%x",
4178 	    Get_OpReg(ehci_command), Get_OpReg(ehci_status));
4179 	USB_DPRINTF_L3(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
4180 	    "Interrupt: 0x%x Frame Index: 0x%x",
4181 	    Get_OpReg(ehci_interrupt), Get_OpReg(ehci_frame_index));
4182 	USB_DPRINTF_L3(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
4183 	    "Control Segment: 0x%x Periodic List Base: 0x%x",
4184 	    Get_OpReg(ehci_ctrl_segment), Get_OpReg(ehci_periodic_list_base));
4185 	USB_DPRINTF_L3(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
4186 	    "Async List Addr: 0x%x Config Flag: 0x%x",
4187 	    Get_OpReg(ehci_async_list_addr), Get_OpReg(ehci_config_flag));
4188 
4189 	USB_DPRINTF_L3(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
4190 	    "Root Hub Port Status");
4191 
4192 	for (i = 0; i < (Get_Cap(ehci_hcs_params) & EHCI_HCS_NUM_PORTS); i++) {
4193 		USB_DPRINTF_L3(PRINT_MASK_ATTA, ehcip->ehci_log_hdl,
4194 		    "\tPort Status 0x%x: 0x%x ", i,
4195 		    Get_OpReg(ehci_rh_port_status[i]));
4196 	}
4197 }
4198 
4199 
4200 /*
4201  * ehci_print_qh:
4202  */
4203 void
4204 ehci_print_qh(
4205 	ehci_state_t	*ehcip,
4206 	ehci_qh_t	*qh)
4207 {
4208 	uint_t		i;
4209 
4210 	USB_DPRINTF_L3(PRINT_MASK_LISTS, ehcip->ehci_log_hdl,
4211 	    "ehci_print_qh: qh = 0x%p", (void *)qh);
4212 
4213 	USB_DPRINTF_L3(PRINT_MASK_LISTS, ehcip->ehci_log_hdl,
4214 	    "\tqh_link_ptr: 0x%x ", Get_QH(qh->qh_link_ptr));
4215 	USB_DPRINTF_L3(PRINT_MASK_LISTS, ehcip->ehci_log_hdl,
4216 	    "\tqh_ctrl: 0x%x ", Get_QH(qh->qh_ctrl));
4217 	USB_DPRINTF_L3(PRINT_MASK_LISTS, ehcip->ehci_log_hdl,
4218 	    "\tqh_split_ctrl: 0x%x ", Get_QH(qh->qh_split_ctrl));
4219 	USB_DPRINTF_L3(PRINT_MASK_LISTS, ehcip->ehci_log_hdl,
4220 	    "\tqh_curr_qtd: 0x%x ", Get_QH(qh->qh_curr_qtd));
4221 	USB_DPRINTF_L3(PRINT_MASK_LISTS, ehcip->ehci_log_hdl,
4222 	    "\tqh_next_qtd: 0x%x ", Get_QH(qh->qh_next_qtd));
4223 	USB_DPRINTF_L3(PRINT_MASK_LISTS, ehcip->ehci_log_hdl,
4224 	    "\tqh_alt_next_qtd: 0x%x ", Get_QH(qh->qh_alt_next_qtd));
4225 	USB_DPRINTF_L3(PRINT_MASK_LISTS, ehcip->ehci_log_hdl,
4226 	    "\tqh_status: 0x%x ", Get_QH(qh->qh_status));
4227 
4228 	for (i = 0; i < 5; i++) {
4229 		USB_DPRINTF_L3(PRINT_MASK_LISTS, ehcip->ehci_log_hdl,
4230 		    "\tqh_buf[%d]: 0x%x ", i, Get_QH(qh->qh_buf[i]));
4231 	}
4232 
4233 	for (i = 0; i < 5; i++) {
4234 		USB_DPRINTF_L3(PRINT_MASK_LISTS, ehcip->ehci_log_hdl,
4235 		    "\tqh_buf_high[%d]: 0x%x ",
4236 		    i, Get_QH(qh->qh_buf_high[i]));
4237 	}
4238 
4239 	USB_DPRINTF_L3(PRINT_MASK_LISTS, ehcip->ehci_log_hdl,
4240 	    "\tqh_dummy_qtd: 0x%x ", Get_QH(qh->qh_dummy_qtd));
4241 	USB_DPRINTF_L3(PRINT_MASK_LISTS, ehcip->ehci_log_hdl,
4242 	    "\tqh_prev: 0x%x ", Get_QH(qh->qh_prev));
4243 	USB_DPRINTF_L3(PRINT_MASK_LISTS, ehcip->ehci_log_hdl,
4244 	    "\tqh_state: 0x%x ", Get_QH(qh->qh_state));
4245 	USB_DPRINTF_L3(PRINT_MASK_LISTS, ehcip->ehci_log_hdl,
4246 	    "\tqh_reclaim_next: 0x%x ", Get_QH(qh->qh_reclaim_next));
4247 	USB_DPRINTF_L3(PRINT_MASK_LISTS, ehcip->ehci_log_hdl,
4248 	    "\tqh_reclaim_frame: 0x%x ", Get_QH(qh->qh_reclaim_frame));
4249 }
4250 
4251 
4252 /*
4253  * ehci_print_qtd:
4254  */
4255 void
4256 ehci_print_qtd(
4257 	ehci_state_t	*ehcip,
4258 	ehci_qtd_t	*qtd)
4259 {
4260 	uint_t		i;
4261 
4262 	USB_DPRINTF_L3(PRINT_MASK_LISTS, ehcip->ehci_log_hdl,
4263 	    "ehci_print_qtd: qtd = 0x%p", (void *)qtd);
4264 
4265 	USB_DPRINTF_L3(PRINT_MASK_LISTS, ehcip->ehci_log_hdl,
4266 	    "\tqtd_next_qtd: 0x%x ", Get_QTD(qtd->qtd_next_qtd));
4267 	USB_DPRINTF_L3(PRINT_MASK_LISTS, ehcip->ehci_log_hdl,
4268 	    "\tqtd_alt_next_qtd: 0x%x ", Get_QTD(qtd->qtd_alt_next_qtd));
4269 	USB_DPRINTF_L3(PRINT_MASK_LISTS, ehcip->ehci_log_hdl,
4270 	    "\tqtd_ctrl: 0x%x ", Get_QTD(qtd->qtd_ctrl));
4271 
4272 	for (i = 0; i < 5; i++) {
4273 		USB_DPRINTF_L3(PRINT_MASK_LISTS, ehcip->ehci_log_hdl,
4274 		    "\tqtd_buf[%d]: 0x%x ", i, Get_QTD(qtd->qtd_buf[i]));
4275 	}
4276 
4277 	for (i = 0; i < 5; i++) {
4278 		USB_DPRINTF_L3(PRINT_MASK_LISTS, ehcip->ehci_log_hdl,
4279 		    "\tqtd_buf_high[%d]: 0x%x ",
4280 		    i, Get_QTD(qtd->qtd_buf_high[i]));
4281 	}
4282 
4283 	USB_DPRINTF_L3(PRINT_MASK_LISTS, ehcip->ehci_log_hdl,
4284 	    "\tqtd_trans_wrapper: 0x%x ", Get_QTD(qtd->qtd_trans_wrapper));
4285 	USB_DPRINTF_L3(PRINT_MASK_LISTS, ehcip->ehci_log_hdl,
4286 	    "\tqtd_tw_next_qtd: 0x%x ", Get_QTD(qtd->qtd_tw_next_qtd));
4287 	USB_DPRINTF_L3(PRINT_MASK_LISTS, ehcip->ehci_log_hdl,
4288 	    "\tqtd_active_qtd_next: 0x%x ", Get_QTD(qtd->qtd_active_qtd_next));
4289 	USB_DPRINTF_L3(PRINT_MASK_LISTS, ehcip->ehci_log_hdl,
4290 	    "\tqtd_active_qtd_prev: 0x%x ", Get_QTD(qtd->qtd_active_qtd_prev));
4291 	USB_DPRINTF_L3(PRINT_MASK_LISTS, ehcip->ehci_log_hdl,
4292 	    "\tqtd_state: 0x%x ", Get_QTD(qtd->qtd_state));
4293 	USB_DPRINTF_L3(PRINT_MASK_LISTS, ehcip->ehci_log_hdl,
4294 	    "\tqtd_ctrl_phase: 0x%x ", Get_QTD(qtd->qtd_ctrl_phase));
4295 	USB_DPRINTF_L3(PRINT_MASK_LISTS, ehcip->ehci_log_hdl,
4296 	    "\tqtd_xfer_offs: 0x%x ", Get_QTD(qtd->qtd_xfer_offs));
4297 	USB_DPRINTF_L3(PRINT_MASK_LISTS, ehcip->ehci_log_hdl,
4298 	    "\tqtd_xfer_len: 0x%x ", Get_QTD(qtd->qtd_xfer_len));
4299 }
4300 
4301 /*
4302  * ehci kstat functions
4303  */
4304 
4305 /*
4306  * ehci_create_stats:
4307  *
4308  * Allocate and initialize the ehci kstat structures
4309  */
4310 void
4311 ehci_create_stats(ehci_state_t	*ehcip)
4312 {
4313 	char			kstatname[KSTAT_STRLEN];
4314 	const char		*dname = ddi_driver_name(ehcip->ehci_dip);
4315 	char			*usbtypes[USB_N_COUNT_KSTATS] =
4316 	    {"ctrl", "isoch", "bulk", "intr"};
4317 	uint_t			instance = ehcip->ehci_instance;
4318 	ehci_intrs_stats_t	*isp;
4319 	int			i;
4320 
4321 	if (EHCI_INTRS_STATS(ehcip) == NULL) {
4322 		(void) snprintf(kstatname, KSTAT_STRLEN, "%s%d,intrs",
4323 		    dname, instance);
4324 		EHCI_INTRS_STATS(ehcip) = kstat_create("usba", instance,
4325 		    kstatname, "usb_interrupts", KSTAT_TYPE_NAMED,
4326 		    sizeof (ehci_intrs_stats_t) / sizeof (kstat_named_t),
4327 		    KSTAT_FLAG_PERSISTENT);
4328 
4329 		if (EHCI_INTRS_STATS(ehcip)) {
4330 			isp = EHCI_INTRS_STATS_DATA(ehcip);
4331 			kstat_named_init(&isp->ehci_sts_total,
4332 			    "Interrupts Total", KSTAT_DATA_UINT64);
4333 			kstat_named_init(&isp->ehci_sts_not_claimed,
4334 			    "Not Claimed", KSTAT_DATA_UINT64);
4335 			kstat_named_init(&isp->ehci_sts_async_sched_status,
4336 			    "Async schedule status", KSTAT_DATA_UINT64);
4337 			kstat_named_init(&isp->ehci_sts_periodic_sched_status,
4338 			    "Periodic sched status", KSTAT_DATA_UINT64);
4339 			kstat_named_init(&isp->ehci_sts_empty_async_schedule,
4340 			    "Empty async schedule", KSTAT_DATA_UINT64);
4341 			kstat_named_init(&isp->ehci_sts_host_ctrl_halted,
4342 			    "Host controller Halted", KSTAT_DATA_UINT64);
4343 			kstat_named_init(&isp->ehci_sts_async_advance_intr,
4344 			    "Intr on async advance", KSTAT_DATA_UINT64);
4345 			kstat_named_init(&isp->ehci_sts_host_system_error_intr,
4346 			    "Host system error", KSTAT_DATA_UINT64);
4347 			kstat_named_init(&isp->ehci_sts_frm_list_rollover_intr,
4348 			    "Frame list rollover", KSTAT_DATA_UINT64);
4349 			kstat_named_init(&isp->ehci_sts_rh_port_change_intr,
4350 			    "Port change detect", KSTAT_DATA_UINT64);
4351 			kstat_named_init(&isp->ehci_sts_usb_error_intr,
4352 			    "USB error interrupt", KSTAT_DATA_UINT64);
4353 			kstat_named_init(&isp->ehci_sts_usb_intr,
4354 			    "USB interrupt", KSTAT_DATA_UINT64);
4355 
4356 			EHCI_INTRS_STATS(ehcip)->ks_private = ehcip;
4357 			EHCI_INTRS_STATS(ehcip)->ks_update = nulldev;
4358 			kstat_install(EHCI_INTRS_STATS(ehcip));
4359 		}
4360 	}
4361 
4362 	if (EHCI_TOTAL_STATS(ehcip) == NULL) {
4363 		(void) snprintf(kstatname, KSTAT_STRLEN, "%s%d,total",
4364 		    dname, instance);
4365 		EHCI_TOTAL_STATS(ehcip) = kstat_create("usba", instance,
4366 		    kstatname, "usb_byte_count", KSTAT_TYPE_IO, 1,
4367 		    KSTAT_FLAG_PERSISTENT);
4368 
4369 		if (EHCI_TOTAL_STATS(ehcip)) {
4370 			kstat_install(EHCI_TOTAL_STATS(ehcip));
4371 		}
4372 	}
4373 
4374 	for (i = 0; i < USB_N_COUNT_KSTATS; i++) {
4375 		if (ehcip->ehci_count_stats[i] == NULL) {
4376 			(void) snprintf(kstatname, KSTAT_STRLEN, "%s%d,%s",
4377 			    dname, instance, usbtypes[i]);
4378 			ehcip->ehci_count_stats[i] = kstat_create("usba",
4379 			    instance, kstatname, "usb_byte_count",
4380 			    KSTAT_TYPE_IO, 1, KSTAT_FLAG_PERSISTENT);
4381 
4382 			if (ehcip->ehci_count_stats[i]) {
4383 				kstat_install(ehcip->ehci_count_stats[i]);
4384 			}
4385 		}
4386 	}
4387 }
4388 
4389 
4390 /*
4391  * ehci_destroy_stats:
4392  *
4393  * Clean up ehci kstat structures
4394  */
4395 void
4396 ehci_destroy_stats(ehci_state_t	*ehcip)
4397 {
4398 	int	i;
4399 
4400 	if (EHCI_INTRS_STATS(ehcip)) {
4401 		kstat_delete(EHCI_INTRS_STATS(ehcip));
4402 		EHCI_INTRS_STATS(ehcip) = NULL;
4403 	}
4404 
4405 	if (EHCI_TOTAL_STATS(ehcip)) {
4406 		kstat_delete(EHCI_TOTAL_STATS(ehcip));
4407 		EHCI_TOTAL_STATS(ehcip) = NULL;
4408 	}
4409 
4410 	for (i = 0; i < USB_N_COUNT_KSTATS; i++) {
4411 		if (ehcip->ehci_count_stats[i]) {
4412 			kstat_delete(ehcip->ehci_count_stats[i]);
4413 			ehcip->ehci_count_stats[i] = NULL;
4414 		}
4415 	}
4416 }
4417 
4418 
4419 /*
4420  * ehci_do_intrs_stats:
4421  *
4422  * ehci status information
4423  */
4424 void
4425 ehci_do_intrs_stats(
4426 	ehci_state_t	*ehcip,
4427 	int		val)
4428 {
4429 	if (EHCI_INTRS_STATS(ehcip)) {
4430 		EHCI_INTRS_STATS_DATA(ehcip)->ehci_sts_total.value.ui64++;
4431 		switch (val) {
4432 		case EHCI_STS_ASYNC_SCHED_STATUS:
4433 			EHCI_INTRS_STATS_DATA(ehcip)->
4434 			    ehci_sts_async_sched_status.value.ui64++;
4435 			break;
4436 		case EHCI_STS_PERIODIC_SCHED_STATUS:
4437 			EHCI_INTRS_STATS_DATA(ehcip)->
4438 			    ehci_sts_periodic_sched_status.value.ui64++;
4439 			break;
4440 		case EHCI_STS_EMPTY_ASYNC_SCHEDULE:
4441 			EHCI_INTRS_STATS_DATA(ehcip)->
4442 			    ehci_sts_empty_async_schedule.value.ui64++;
4443 			break;
4444 		case EHCI_STS_HOST_CTRL_HALTED:
4445 			EHCI_INTRS_STATS_DATA(ehcip)->
4446 			    ehci_sts_host_ctrl_halted.value.ui64++;
4447 			break;
4448 		case EHCI_STS_ASYNC_ADVANCE_INTR:
4449 			EHCI_INTRS_STATS_DATA(ehcip)->
4450 			    ehci_sts_async_advance_intr.value.ui64++;
4451 			break;
4452 		case EHCI_STS_HOST_SYSTEM_ERROR_INTR:
4453 			EHCI_INTRS_STATS_DATA(ehcip)->
4454 			    ehci_sts_host_system_error_intr.value.ui64++;
4455 			break;
4456 		case EHCI_STS_FRM_LIST_ROLLOVER_INTR:
4457 			EHCI_INTRS_STATS_DATA(ehcip)->
4458 			    ehci_sts_frm_list_rollover_intr.value.ui64++;
4459 			break;
4460 		case EHCI_STS_RH_PORT_CHANGE_INTR:
4461 			EHCI_INTRS_STATS_DATA(ehcip)->
4462 			    ehci_sts_rh_port_change_intr.value.ui64++;
4463 			break;
4464 		case EHCI_STS_USB_ERROR_INTR:
4465 			EHCI_INTRS_STATS_DATA(ehcip)->
4466 			    ehci_sts_usb_error_intr.value.ui64++;
4467 			break;
4468 		case EHCI_STS_USB_INTR:
4469 			EHCI_INTRS_STATS_DATA(ehcip)->
4470 			    ehci_sts_usb_intr.value.ui64++;
4471 			break;
4472 		default:
4473 			EHCI_INTRS_STATS_DATA(ehcip)->
4474 			    ehci_sts_not_claimed.value.ui64++;
4475 			break;
4476 		}
4477 	}
4478 }
4479 
4480 
4481 /*
4482  * ehci_do_byte_stats:
4483  *
4484  * ehci data xfer information
4485  */
4486 void
4487 ehci_do_byte_stats(
4488 	ehci_state_t	*ehcip,
4489 	size_t		len,
4490 	uint8_t		attr,
4491 	uint8_t		addr)
4492 {
4493 	uint8_t 	type = attr & USB_EP_ATTR_MASK;
4494 	uint8_t 	dir = addr & USB_EP_DIR_MASK;
4495 
4496 	if (dir == USB_EP_DIR_IN) {
4497 		EHCI_TOTAL_STATS_DATA(ehcip)->reads++;
4498 		EHCI_TOTAL_STATS_DATA(ehcip)->nread += len;
4499 		switch (type) {
4500 			case USB_EP_ATTR_CONTROL:
4501 				EHCI_CTRL_STATS(ehcip)->reads++;
4502 				EHCI_CTRL_STATS(ehcip)->nread += len;
4503 				break;
4504 			case USB_EP_ATTR_BULK:
4505 				EHCI_BULK_STATS(ehcip)->reads++;
4506 				EHCI_BULK_STATS(ehcip)->nread += len;
4507 				break;
4508 			case USB_EP_ATTR_INTR:
4509 				EHCI_INTR_STATS(ehcip)->reads++;
4510 				EHCI_INTR_STATS(ehcip)->nread += len;
4511 				break;
4512 			case USB_EP_ATTR_ISOCH:
4513 				EHCI_ISOC_STATS(ehcip)->reads++;
4514 				EHCI_ISOC_STATS(ehcip)->nread += len;
4515 				break;
4516 		}
4517 	} else if (dir == USB_EP_DIR_OUT) {
4518 		EHCI_TOTAL_STATS_DATA(ehcip)->writes++;
4519 		EHCI_TOTAL_STATS_DATA(ehcip)->nwritten += len;
4520 		switch (type) {
4521 			case USB_EP_ATTR_CONTROL:
4522 				EHCI_CTRL_STATS(ehcip)->writes++;
4523 				EHCI_CTRL_STATS(ehcip)->nwritten += len;
4524 				break;
4525 			case USB_EP_ATTR_BULK:
4526 				EHCI_BULK_STATS(ehcip)->writes++;
4527 				EHCI_BULK_STATS(ehcip)->nwritten += len;
4528 				break;
4529 			case USB_EP_ATTR_INTR:
4530 				EHCI_INTR_STATS(ehcip)->writes++;
4531 				EHCI_INTR_STATS(ehcip)->nwritten += len;
4532 				break;
4533 			case USB_EP_ATTR_ISOCH:
4534 				EHCI_ISOC_STATS(ehcip)->writes++;
4535 				EHCI_ISOC_STATS(ehcip)->nwritten += len;
4536 				break;
4537 		}
4538 	}
4539 }
4540