1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 22 /* All Rights Reserved */ 23 24 /* 25 * Copyright (c) 1988, 2010, Oracle and/or its affiliates. All rights reserved. 26 * Copyright (c) 2013, Joyent, Inc. All rights reserved. 27 * Copyright (c) 2016 by Delphix. All rights reserved. 28 */ 29 30 #include <sys/param.h> 31 #include <sys/t_lock.h> 32 #include <sys/types.h> 33 #include <sys/tuneable.h> 34 #include <sys/sysmacros.h> 35 #include <sys/systm.h> 36 #include <sys/cpuvar.h> 37 #include <sys/lgrp.h> 38 #include <sys/user.h> 39 #include <sys/proc.h> 40 #include <sys/callo.h> 41 #include <sys/kmem.h> 42 #include <sys/var.h> 43 #include <sys/cmn_err.h> 44 #include <sys/swap.h> 45 #include <sys/vmsystm.h> 46 #include <sys/class.h> 47 #include <sys/time.h> 48 #include <sys/debug.h> 49 #include <sys/vtrace.h> 50 #include <sys/spl.h> 51 #include <sys/atomic.h> 52 #include <sys/dumphdr.h> 53 #include <sys/archsystm.h> 54 #include <sys/fs/swapnode.h> 55 #include <sys/panic.h> 56 #include <sys/disp.h> 57 #include <sys/msacct.h> 58 #include <sys/mem_cage.h> 59 60 #include <vm/page.h> 61 #include <vm/anon.h> 62 #include <vm/rm.h> 63 #include <sys/cyclic.h> 64 #include <sys/cpupart.h> 65 #include <sys/rctl.h> 66 #include <sys/task.h> 67 #include <sys/sdt.h> 68 #include <sys/ddi_periodic.h> 69 #include <sys/random.h> 70 #include <sys/modctl.h> 71 #include <sys/zone.h> 72 73 /* 74 * for NTP support 75 */ 76 #include <sys/timex.h> 77 #include <sys/inttypes.h> 78 79 #include <sys/sunddi.h> 80 #include <sys/clock_impl.h> 81 82 /* 83 * clock() is called straight from the clock cyclic; see clock_init(). 84 * 85 * Functions: 86 * reprime clock 87 * maintain date 88 * jab the scheduler 89 */ 90 91 extern kcondvar_t fsflush_cv; 92 extern sysinfo_t sysinfo; 93 extern vminfo_t vminfo; 94 extern int idleswtch; /* flag set while idle in pswtch() */ 95 extern hrtime_t volatile devinfo_freeze; 96 97 /* 98 * high-precision avenrun values. These are needed to make the 99 * regular avenrun values accurate. 100 */ 101 static uint64_t hp_avenrun[3]; 102 int avenrun[3]; /* FSCALED average run queue lengths */ 103 time_t time; /* time in seconds since 1970 - for compatibility only */ 104 105 static struct loadavg_s loadavg; 106 /* 107 * Phase/frequency-lock loop (PLL/FLL) definitions 108 * 109 * The following variables are read and set by the ntp_adjtime() system 110 * call. 111 * 112 * time_state shows the state of the system clock, with values defined 113 * in the timex.h header file. 114 * 115 * time_status shows the status of the system clock, with bits defined 116 * in the timex.h header file. 117 * 118 * time_offset is used by the PLL/FLL to adjust the system time in small 119 * increments. 120 * 121 * time_constant determines the bandwidth or "stiffness" of the PLL. 122 * 123 * time_tolerance determines maximum frequency error or tolerance of the 124 * CPU clock oscillator and is a property of the architecture; however, 125 * in principle it could change as result of the presence of external 126 * discipline signals, for instance. 127 * 128 * time_precision is usually equal to the kernel tick variable; however, 129 * in cases where a precision clock counter or external clock is 130 * available, the resolution can be much less than this and depend on 131 * whether the external clock is working or not. 132 * 133 * time_maxerror is initialized by a ntp_adjtime() call and increased by 134 * the kernel once each second to reflect the maximum error bound 135 * growth. 136 * 137 * time_esterror is set and read by the ntp_adjtime() call, but 138 * otherwise not used by the kernel. 139 */ 140 int32_t time_state = TIME_OK; /* clock state */ 141 int32_t time_status = STA_UNSYNC; /* clock status bits */ 142 int32_t time_offset = 0; /* time offset (us) */ 143 int32_t time_constant = 0; /* pll time constant */ 144 int32_t time_tolerance = MAXFREQ; /* frequency tolerance (scaled ppm) */ 145 int32_t time_precision = 1; /* clock precision (us) */ 146 int32_t time_maxerror = MAXPHASE; /* maximum error (us) */ 147 int32_t time_esterror = MAXPHASE; /* estimated error (us) */ 148 149 /* 150 * The following variables establish the state of the PLL/FLL and the 151 * residual time and frequency offset of the local clock. The scale 152 * factors are defined in the timex.h header file. 153 * 154 * time_phase and time_freq are the phase increment and the frequency 155 * increment, respectively, of the kernel time variable. 156 * 157 * time_freq is set via ntp_adjtime() from a value stored in a file when 158 * the synchronization daemon is first started. Its value is retrieved 159 * via ntp_adjtime() and written to the file about once per hour by the 160 * daemon. 161 * 162 * time_adj is the adjustment added to the value of tick at each timer 163 * interrupt and is recomputed from time_phase and time_freq at each 164 * seconds rollover. 165 * 166 * time_reftime is the second's portion of the system time at the last 167 * call to ntp_adjtime(). It is used to adjust the time_freq variable 168 * and to increase the time_maxerror as the time since last update 169 * increases. 170 */ 171 int32_t time_phase = 0; /* phase offset (scaled us) */ 172 int32_t time_freq = 0; /* frequency offset (scaled ppm) */ 173 int32_t time_adj = 0; /* tick adjust (scaled 1 / hz) */ 174 int32_t time_reftime = 0; /* time at last adjustment (s) */ 175 176 /* 177 * The scale factors of the following variables are defined in the 178 * timex.h header file. 179 * 180 * pps_time contains the time at each calibration interval, as read by 181 * microtime(). pps_count counts the seconds of the calibration 182 * interval, the duration of which is nominally pps_shift in powers of 183 * two. 184 * 185 * pps_offset is the time offset produced by the time median filter 186 * pps_tf[], while pps_jitter is the dispersion (jitter) measured by 187 * this filter. 188 * 189 * pps_freq is the frequency offset produced by the frequency median 190 * filter pps_ff[], while pps_stabil is the dispersion (wander) measured 191 * by this filter. 192 * 193 * pps_usec is latched from a high resolution counter or external clock 194 * at pps_time. Here we want the hardware counter contents only, not the 195 * contents plus the time_tv.usec as usual. 196 * 197 * pps_valid counts the number of seconds since the last PPS update. It 198 * is used as a watchdog timer to disable the PPS discipline should the 199 * PPS signal be lost. 200 * 201 * pps_glitch counts the number of seconds since the beginning of an 202 * offset burst more than tick/2 from current nominal offset. It is used 203 * mainly to suppress error bursts due to priority conflicts between the 204 * PPS interrupt and timer interrupt. 205 * 206 * pps_intcnt counts the calibration intervals for use in the interval- 207 * adaptation algorithm. It's just too complicated for words. 208 */ 209 struct timeval pps_time; /* kernel time at last interval */ 210 int32_t pps_tf[] = {0, 0, 0}; /* pps time offset median filter (us) */ 211 int32_t pps_offset = 0; /* pps time offset (us) */ 212 int32_t pps_jitter = MAXTIME; /* time dispersion (jitter) (us) */ 213 int32_t pps_ff[] = {0, 0, 0}; /* pps frequency offset median filter */ 214 int32_t pps_freq = 0; /* frequency offset (scaled ppm) */ 215 int32_t pps_stabil = MAXFREQ; /* frequency dispersion (scaled ppm) */ 216 int32_t pps_usec = 0; /* microsec counter at last interval */ 217 int32_t pps_valid = PPS_VALID; /* pps signal watchdog counter */ 218 int32_t pps_glitch = 0; /* pps signal glitch counter */ 219 int32_t pps_count = 0; /* calibration interval counter (s) */ 220 int32_t pps_shift = PPS_SHIFT; /* interval duration (s) (shift) */ 221 int32_t pps_intcnt = 0; /* intervals at current duration */ 222 223 /* 224 * PPS signal quality monitors 225 * 226 * pps_jitcnt counts the seconds that have been discarded because the 227 * jitter measured by the time median filter exceeds the limit MAXTIME 228 * (100 us). 229 * 230 * pps_calcnt counts the frequency calibration intervals, which are 231 * variable from 4 s to 256 s. 232 * 233 * pps_errcnt counts the calibration intervals which have been discarded 234 * because the wander exceeds the limit MAXFREQ (100 ppm) or where the 235 * calibration interval jitter exceeds two ticks. 236 * 237 * pps_stbcnt counts the calibration intervals that have been discarded 238 * because the frequency wander exceeds the limit MAXFREQ / 4 (25 us). 239 */ 240 int32_t pps_jitcnt = 0; /* jitter limit exceeded */ 241 int32_t pps_calcnt = 0; /* calibration intervals */ 242 int32_t pps_errcnt = 0; /* calibration errors */ 243 int32_t pps_stbcnt = 0; /* stability limit exceeded */ 244 245 kcondvar_t lbolt_cv; 246 247 /* 248 * Hybrid lbolt implementation: 249 * 250 * The service historically provided by the lbolt and lbolt64 variables has 251 * been replaced by the ddi_get_lbolt() and ddi_get_lbolt64() routines, and the 252 * original symbols removed from the system. The once clock driven variables are 253 * now implemented in an event driven fashion, backed by gethrtime() coarsed to 254 * the appropriate clock resolution. The default event driven implementation is 255 * complemented by a cyclic driven one, active only during periods of intense 256 * activity around the DDI lbolt routines, when a lbolt specific cyclic is 257 * reprogramed to fire at a clock tick interval to serve consumers of lbolt who 258 * rely on the original low cost of consulting a memory position. 259 * 260 * The implementation uses the number of calls to these routines and the 261 * frequency of these to determine when to transition from event to cyclic 262 * driven and vice-versa. These values are kept on a per CPU basis for 263 * scalability reasons and to prevent CPUs from constantly invalidating a single 264 * cache line when modifying a global variable. The transition from event to 265 * cyclic mode happens once the thresholds are crossed, and activity on any CPU 266 * can cause such transition. 267 * 268 * The lbolt_hybrid function pointer is called by ddi_get_lbolt() and 269 * ddi_get_lbolt64(), and will point to lbolt_event_driven() or 270 * lbolt_cyclic_driven() according to the current mode. When the thresholds 271 * are exceeded, lbolt_event_driven() will reprogram the lbolt cyclic to 272 * fire at a nsec_per_tick interval and increment an internal variable at 273 * each firing. lbolt_hybrid will then point to lbolt_cyclic_driven(), which 274 * will simply return the value of such variable. lbolt_cyclic() will attempt 275 * to shut itself off at each threshold interval (sampling period for calls 276 * to the DDI lbolt routines), and return to the event driven mode, but will 277 * be prevented from doing so if lbolt_cyclic_driven() is being heavily used. 278 * 279 * lbolt_bootstrap is used during boot to serve lbolt consumers who don't wait 280 * for the cyclic subsystem to be intialized. 281 * 282 */ 283 int64_t lbolt_bootstrap(void); 284 int64_t lbolt_event_driven(void); 285 int64_t lbolt_cyclic_driven(void); 286 int64_t (*lbolt_hybrid)(void) = lbolt_bootstrap; 287 uint_t lbolt_ev_to_cyclic(caddr_t, caddr_t); 288 289 /* 290 * lbolt's cyclic, installed by clock_init(). 291 */ 292 static void lbolt_cyclic(void); 293 294 /* 295 * Tunable to keep lbolt in cyclic driven mode. This will prevent the system 296 * from switching back to event driven, once it reaches cyclic mode. 297 */ 298 static boolean_t lbolt_cyc_only = B_FALSE; 299 300 /* 301 * Cache aligned, per CPU structure with lbolt usage statistics. 302 */ 303 static lbolt_cpu_t *lb_cpu; 304 305 /* 306 * Single, cache aligned, structure with all the information required by 307 * the lbolt implementation. 308 */ 309 lbolt_info_t *lb_info; 310 311 312 int one_sec = 1; /* turned on once every second */ 313 static int fsflushcnt; /* counter for t_fsflushr */ 314 int dosynctodr = 1; /* patchable; enable/disable sync to TOD chip */ 315 int tod_needsync = 0; /* need to sync tod chip with software time */ 316 static int tod_broken = 0; /* clock chip doesn't work */ 317 time_t boot_time = 0; /* Boot time in seconds since 1970 */ 318 cyclic_id_t clock_cyclic; /* clock()'s cyclic_id */ 319 cyclic_id_t deadman_cyclic; /* deadman()'s cyclic_id */ 320 321 extern void clock_tick_schedule(int); 322 extern void set_freemem(void); 323 extern void pageout_deadman(void); 324 325 static int lgrp_ticks; /* counter to schedule lgrp load calcs */ 326 327 /* 328 * for tod fault detection 329 */ 330 #define TOD_REF_FREQ ((longlong_t)(NANOSEC)) 331 #define TOD_STALL_THRESHOLD (TOD_REF_FREQ * 3 / 2) 332 #define TOD_JUMP_THRESHOLD (TOD_REF_FREQ / 2) 333 #define TOD_FILTER_N 4 334 #define TOD_FILTER_SETTLE (4 * TOD_FILTER_N) 335 static enum tod_fault_type tod_faulted = TOD_NOFAULT; 336 337 static int tod_status_flag = 0; /* used by tod_validate() */ 338 339 static hrtime_t prev_set_tick = 0; /* gethrtime() prior to tod_set() */ 340 static time_t prev_set_tod = 0; /* tv_sec value passed to tod_set() */ 341 342 /* patchable via /etc/system */ 343 int tod_validate_enable = 1; 344 345 /* Diagnose/Limit messages about delay(9F) called from interrupt context */ 346 int delay_from_interrupt_diagnose = 0; 347 volatile uint32_t delay_from_interrupt_msg = 20; 348 349 /* 350 * On non-SPARC systems, TOD validation must be deferred until gethrtime 351 * returns non-zero values (after mach_clkinit's execution). 352 * On SPARC systems, it must be deferred until after hrtime_base 353 * and hres_last_tick are set (in the first invocation of hres_tick). 354 * Since in both cases the prerequisites occur before the invocation of 355 * tod_get() in clock(), the deferment is lifted there. 356 */ 357 static boolean_t tod_validate_deferred = B_TRUE; 358 359 /* 360 * tod_fault_table[] must be aligned with 361 * enum tod_fault_type in systm.h 362 */ 363 static char *tod_fault_table[] = { 364 "Reversed", /* TOD_REVERSED */ 365 "Stalled", /* TOD_STALLED */ 366 "Jumped", /* TOD_JUMPED */ 367 "Changed in Clock Rate", /* TOD_RATECHANGED */ 368 "Is Read-Only" /* TOD_RDONLY */ 369 /* 370 * no strings needed for TOD_NOFAULT 371 */ 372 }; 373 374 /* 375 * test hook for tod broken detection in tod_validate 376 */ 377 int tod_unit_test = 0; 378 time_t tod_test_injector; 379 380 #define CLOCK_ADJ_HIST_SIZE 4 381 382 static int adj_hist_entry; 383 384 int64_t clock_adj_hist[CLOCK_ADJ_HIST_SIZE]; 385 386 static void calcloadavg(int, uint64_t *); 387 static int genloadavg(struct loadavg_s *); 388 static void loadavg_update(); 389 390 void (*cmm_clock_callout)() = NULL; 391 void (*cpucaps_clock_callout)() = NULL; 392 393 extern clock_t clock_tick_proc_max; 394 395 static int64_t deadman_counter = 0; 396 397 static void 398 clock(void) 399 { 400 kthread_t *t; 401 uint_t nrunnable; 402 uint_t w_io; 403 cpu_t *cp; 404 cpupart_t *cpupart; 405 void (*funcp)(); 406 int32_t ltemp; 407 int64_t lltemp; 408 int s; 409 int do_lgrp_load; 410 int i; 411 clock_t now = LBOLT_NO_ACCOUNT; /* current tick */ 412 413 if (panicstr) 414 return; 415 416 /* 417 * Make sure that 'freemem' do not drift too far from the truth 418 */ 419 set_freemem(); 420 421 422 /* 423 * Before the section which is repeated is executed, we do 424 * the time delta processing which occurs every clock tick 425 * 426 * There is additional processing which happens every time 427 * the nanosecond counter rolls over which is described 428 * below - see the section which begins with : if (one_sec) 429 * 430 * This section marks the beginning of the precision-kernel 431 * code fragment. 432 * 433 * First, compute the phase adjustment. If the low-order bits 434 * (time_phase) of the update overflow, bump the higher order 435 * bits (time_update). 436 */ 437 time_phase += time_adj; 438 if (time_phase <= -FINEUSEC) { 439 ltemp = -time_phase / SCALE_PHASE; 440 time_phase += ltemp * SCALE_PHASE; 441 s = hr_clock_lock(); 442 timedelta -= ltemp * (NANOSEC/MICROSEC); 443 hr_clock_unlock(s); 444 } else if (time_phase >= FINEUSEC) { 445 ltemp = time_phase / SCALE_PHASE; 446 time_phase -= ltemp * SCALE_PHASE; 447 s = hr_clock_lock(); 448 timedelta += ltemp * (NANOSEC/MICROSEC); 449 hr_clock_unlock(s); 450 } 451 452 /* 453 * End of precision-kernel code fragment which is processed 454 * every timer interrupt. 455 * 456 * Continue with the interrupt processing as scheduled. 457 */ 458 /* 459 * Count the number of runnable threads and the number waiting 460 * for some form of I/O to complete -- gets added to 461 * sysinfo.waiting. To know the state of the system, must add 462 * wait counts from all CPUs. Also add up the per-partition 463 * statistics. 464 */ 465 w_io = 0; 466 nrunnable = 0; 467 468 /* 469 * keep track of when to update lgrp/part loads 470 */ 471 472 do_lgrp_load = 0; 473 if (lgrp_ticks++ >= hz / 10) { 474 lgrp_ticks = 0; 475 do_lgrp_load = 1; 476 } 477 478 if (one_sec) { 479 loadavg_update(); 480 deadman_counter++; 481 pageout_deadman(); 482 } 483 484 /* 485 * First count the threads waiting on kpreempt queues in each 486 * CPU partition. 487 */ 488 489 cpupart = cp_list_head; 490 do { 491 uint_t cpupart_nrunnable = cpupart->cp_kp_queue.disp_nrunnable; 492 493 cpupart->cp_updates++; 494 nrunnable += cpupart_nrunnable; 495 cpupart->cp_nrunnable_cum += cpupart_nrunnable; 496 if (one_sec) { 497 cpupart->cp_nrunning = 0; 498 cpupart->cp_nrunnable = cpupart_nrunnable; 499 } 500 } while ((cpupart = cpupart->cp_next) != cp_list_head); 501 502 503 /* Now count the per-CPU statistics. */ 504 cp = cpu_list; 505 do { 506 uint_t cpu_nrunnable = cp->cpu_disp->disp_nrunnable; 507 508 nrunnable += cpu_nrunnable; 509 cpupart = cp->cpu_part; 510 cpupart->cp_nrunnable_cum += cpu_nrunnable; 511 if (one_sec) { 512 cpupart->cp_nrunnable += cpu_nrunnable; 513 /* 514 * Update user, system, and idle cpu times. 515 */ 516 cpupart->cp_nrunning++; 517 /* 518 * w_io is used to update sysinfo.waiting during 519 * one_second processing below. Only gather w_io 520 * information when we walk the list of cpus if we're 521 * going to perform one_second processing. 522 */ 523 w_io += CPU_STATS(cp, sys.iowait); 524 } 525 526 if (one_sec && (cp->cpu_flags & CPU_EXISTS)) { 527 int i, load, change; 528 hrtime_t intracct, intrused; 529 const hrtime_t maxnsec = 1000000000; 530 const int precision = 100; 531 532 /* 533 * Estimate interrupt load on this cpu each second. 534 * Computes cpu_intrload as %utilization (0-99). 535 */ 536 537 /* add up interrupt time from all micro states */ 538 for (intracct = 0, i = 0; i < NCMSTATES; i++) 539 intracct += cp->cpu_intracct[i]; 540 scalehrtime(&intracct); 541 542 /* compute nsec used in the past second */ 543 intrused = intracct - cp->cpu_intrlast; 544 cp->cpu_intrlast = intracct; 545 546 /* limit the value for safety (and the first pass) */ 547 if (intrused >= maxnsec) 548 intrused = maxnsec - 1; 549 550 /* calculate %time in interrupt */ 551 load = (precision * intrused) / maxnsec; 552 ASSERT(load >= 0 && load < precision); 553 change = cp->cpu_intrload - load; 554 555 /* jump to new max, or decay the old max */ 556 if (change < 0) 557 cp->cpu_intrload = load; 558 else if (change > 0) 559 cp->cpu_intrload -= (change + 3) / 4; 560 561 DTRACE_PROBE3(cpu_intrload, 562 cpu_t *, cp, 563 hrtime_t, intracct, 564 hrtime_t, intrused); 565 } 566 567 if (do_lgrp_load && 568 (cp->cpu_flags & CPU_EXISTS)) { 569 /* 570 * When updating the lgroup's load average, 571 * account for the thread running on the CPU. 572 * If the CPU is the current one, then we need 573 * to account for the underlying thread which 574 * got the clock interrupt not the thread that is 575 * handling the interrupt and caculating the load 576 * average 577 */ 578 t = cp->cpu_thread; 579 if (CPU == cp) 580 t = t->t_intr; 581 582 /* 583 * Account for the load average for this thread if 584 * it isn't the idle thread or it is on the interrupt 585 * stack and not the current CPU handling the clock 586 * interrupt 587 */ 588 if ((t && t != cp->cpu_idle_thread) || (CPU != cp && 589 CPU_ON_INTR(cp))) { 590 if (t->t_lpl == cp->cpu_lpl) { 591 /* local thread */ 592 cpu_nrunnable++; 593 } else { 594 /* 595 * This is a remote thread, charge it 596 * against its home lgroup. Note that 597 * we notice that a thread is remote 598 * only if it's currently executing. 599 * This is a reasonable approximation, 600 * since queued remote threads are rare. 601 * Note also that if we didn't charge 602 * it to its home lgroup, remote 603 * execution would often make a system 604 * appear balanced even though it was 605 * not, and thread placement/migration 606 * would often not be done correctly. 607 */ 608 lgrp_loadavg(t->t_lpl, 609 LGRP_LOADAVG_IN_THREAD_MAX, 0); 610 } 611 } 612 lgrp_loadavg(cp->cpu_lpl, 613 cpu_nrunnable * LGRP_LOADAVG_IN_THREAD_MAX, 1); 614 } 615 } while ((cp = cp->cpu_next) != cpu_list); 616 617 clock_tick_schedule(one_sec); 618 619 /* 620 * Check for a callout that needs be called from the clock 621 * thread to support the membership protocol in a clustered 622 * system. Copy the function pointer so that we can reset 623 * this to NULL if needed. 624 */ 625 if ((funcp = cmm_clock_callout) != NULL) 626 (*funcp)(); 627 628 if ((funcp = cpucaps_clock_callout) != NULL) 629 (*funcp)(); 630 631 /* 632 * Wakeup the cageout thread waiters once per second. 633 */ 634 if (one_sec) 635 kcage_tick(); 636 637 if (one_sec) { 638 639 int drift, absdrift; 640 timestruc_t tod; 641 int s; 642 643 /* 644 * Beginning of precision-kernel code fragment executed 645 * every second. 646 * 647 * On rollover of the second the phase adjustment to be 648 * used for the next second is calculated. Also, the 649 * maximum error is increased by the tolerance. If the 650 * PPS frequency discipline code is present, the phase is 651 * increased to compensate for the CPU clock oscillator 652 * frequency error. 653 * 654 * On a 32-bit machine and given parameters in the timex.h 655 * header file, the maximum phase adjustment is +-512 ms 656 * and maximum frequency offset is (a tad less than) 657 * +-512 ppm. On a 64-bit machine, you shouldn't need to ask. 658 */ 659 time_maxerror += time_tolerance / SCALE_USEC; 660 661 /* 662 * Leap second processing. If in leap-insert state at 663 * the end of the day, the system clock is set back one 664 * second; if in leap-delete state, the system clock is 665 * set ahead one second. The microtime() routine or 666 * external clock driver will insure that reported time 667 * is always monotonic. The ugly divides should be 668 * replaced. 669 */ 670 switch (time_state) { 671 672 case TIME_OK: 673 if (time_status & STA_INS) 674 time_state = TIME_INS; 675 else if (time_status & STA_DEL) 676 time_state = TIME_DEL; 677 break; 678 679 case TIME_INS: 680 if (hrestime.tv_sec % 86400 == 0) { 681 s = hr_clock_lock(); 682 hrestime.tv_sec--; 683 hr_clock_unlock(s); 684 time_state = TIME_OOP; 685 } 686 break; 687 688 case TIME_DEL: 689 if ((hrestime.tv_sec + 1) % 86400 == 0) { 690 s = hr_clock_lock(); 691 hrestime.tv_sec++; 692 hr_clock_unlock(s); 693 time_state = TIME_WAIT; 694 } 695 break; 696 697 case TIME_OOP: 698 time_state = TIME_WAIT; 699 break; 700 701 case TIME_WAIT: 702 if (!(time_status & (STA_INS | STA_DEL))) 703 time_state = TIME_OK; 704 default: 705 break; 706 } 707 708 /* 709 * Compute the phase adjustment for the next second. In 710 * PLL mode, the offset is reduced by a fixed factor 711 * times the time constant. In FLL mode the offset is 712 * used directly. In either mode, the maximum phase 713 * adjustment for each second is clamped so as to spread 714 * the adjustment over not more than the number of 715 * seconds between updates. 716 */ 717 if (time_offset == 0) 718 time_adj = 0; 719 else if (time_offset < 0) { 720 lltemp = -time_offset; 721 if (!(time_status & STA_FLL)) { 722 if ((1 << time_constant) >= SCALE_KG) 723 lltemp *= (1 << time_constant) / 724 SCALE_KG; 725 else 726 lltemp = (lltemp / SCALE_KG) >> 727 time_constant; 728 } 729 if (lltemp > (MAXPHASE / MINSEC) * SCALE_UPDATE) 730 lltemp = (MAXPHASE / MINSEC) * SCALE_UPDATE; 731 time_offset += lltemp; 732 time_adj = -(lltemp * SCALE_PHASE) / hz / SCALE_UPDATE; 733 } else { 734 lltemp = time_offset; 735 if (!(time_status & STA_FLL)) { 736 if ((1 << time_constant) >= SCALE_KG) 737 lltemp *= (1 << time_constant) / 738 SCALE_KG; 739 else 740 lltemp = (lltemp / SCALE_KG) >> 741 time_constant; 742 } 743 if (lltemp > (MAXPHASE / MINSEC) * SCALE_UPDATE) 744 lltemp = (MAXPHASE / MINSEC) * SCALE_UPDATE; 745 time_offset -= lltemp; 746 time_adj = (lltemp * SCALE_PHASE) / hz / SCALE_UPDATE; 747 } 748 749 /* 750 * Compute the frequency estimate and additional phase 751 * adjustment due to frequency error for the next 752 * second. When the PPS signal is engaged, gnaw on the 753 * watchdog counter and update the frequency computed by 754 * the pll and the PPS signal. 755 */ 756 pps_valid++; 757 if (pps_valid == PPS_VALID) { 758 pps_jitter = MAXTIME; 759 pps_stabil = MAXFREQ; 760 time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER | 761 STA_PPSWANDER | STA_PPSERROR); 762 } 763 lltemp = time_freq + pps_freq; 764 765 if (lltemp) 766 time_adj += (lltemp * SCALE_PHASE) / (SCALE_USEC * hz); 767 768 /* 769 * End of precision kernel-code fragment 770 * 771 * The section below should be modified if we are planning 772 * to use NTP for synchronization. 773 * 774 * Note: the clock synchronization code now assumes 775 * the following: 776 * - if dosynctodr is 1, then compute the drift between 777 * the tod chip and software time and adjust one or 778 * the other depending on the circumstances 779 * 780 * - if dosynctodr is 0, then the tod chip is independent 781 * of the software clock and should not be adjusted, 782 * but allowed to free run. this allows NTP to sync. 783 * hrestime without any interference from the tod chip. 784 */ 785 786 tod_validate_deferred = B_FALSE; 787 mutex_enter(&tod_lock); 788 tod = tod_get(); 789 drift = tod.tv_sec - hrestime.tv_sec; 790 absdrift = (drift >= 0) ? drift : -drift; 791 if (tod_needsync || absdrift > 1) { 792 int s; 793 if (absdrift > 2) { 794 if (!tod_broken && tod_faulted == TOD_NOFAULT) { 795 s = hr_clock_lock(); 796 hrestime = tod; 797 membar_enter(); /* hrestime visible */ 798 timedelta = 0; 799 timechanged++; 800 tod_needsync = 0; 801 hr_clock_unlock(s); 802 callout_hrestime(); 803 804 } 805 } else { 806 if (tod_needsync || !dosynctodr) { 807 gethrestime(&tod); 808 tod_set(tod); 809 s = hr_clock_lock(); 810 if (timedelta == 0) 811 tod_needsync = 0; 812 hr_clock_unlock(s); 813 } else { 814 /* 815 * If the drift is 2 seconds on the 816 * money, then the TOD is adjusting 817 * the clock; record that. 818 */ 819 clock_adj_hist[adj_hist_entry++ % 820 CLOCK_ADJ_HIST_SIZE] = now; 821 s = hr_clock_lock(); 822 timedelta = (int64_t)drift*NANOSEC; 823 hr_clock_unlock(s); 824 } 825 } 826 } 827 one_sec = 0; 828 time = gethrestime_sec(); /* for crusty old kmem readers */ 829 mutex_exit(&tod_lock); 830 831 /* 832 * Some drivers still depend on this... XXX 833 */ 834 cv_broadcast(&lbolt_cv); 835 836 vminfo.freemem += freemem; 837 { 838 pgcnt_t maxswap, resv, free; 839 pgcnt_t avail = 840 MAX((spgcnt_t)(availrmem - swapfs_minfree), 0); 841 842 maxswap = k_anoninfo.ani_mem_resv + 843 k_anoninfo.ani_max +avail; 844 /* Update ani_free */ 845 set_anoninfo(); 846 free = k_anoninfo.ani_free + avail; 847 resv = k_anoninfo.ani_phys_resv + 848 k_anoninfo.ani_mem_resv; 849 850 vminfo.swap_resv += resv; 851 /* number of reserved and allocated pages */ 852 #ifdef DEBUG 853 if (maxswap < free) 854 cmn_err(CE_WARN, "clock: maxswap < free"); 855 if (maxswap < resv) 856 cmn_err(CE_WARN, "clock: maxswap < resv"); 857 #endif 858 vminfo.swap_alloc += maxswap - free; 859 vminfo.swap_avail += maxswap - resv; 860 vminfo.swap_free += free; 861 } 862 vminfo.updates++; 863 if (nrunnable) { 864 sysinfo.runque += nrunnable; 865 sysinfo.runocc++; 866 } 867 if (nswapped) { 868 sysinfo.swpque += nswapped; 869 sysinfo.swpocc++; 870 } 871 sysinfo.waiting += w_io; 872 sysinfo.updates++; 873 874 /* 875 * Wake up fsflush to write out DELWRI 876 * buffers, dirty pages and other cached 877 * administrative data, e.g. inodes. 878 */ 879 if (--fsflushcnt <= 0) { 880 fsflushcnt = tune.t_fsflushr; 881 cv_signal(&fsflush_cv); 882 } 883 884 vmmeter(); 885 calcloadavg(genloadavg(&loadavg), hp_avenrun); 886 for (i = 0; i < 3; i++) 887 /* 888 * At the moment avenrun[] can only hold 31 889 * bits of load average as it is a signed 890 * int in the API. We need to ensure that 891 * hp_avenrun[i] >> (16 - FSHIFT) will not be 892 * too large. If it is, we put the largest value 893 * that we can use into avenrun[i]. This is 894 * kludgey, but about all we can do until we 895 * avenrun[] is declared as an array of uint64[] 896 */ 897 if (hp_avenrun[i] < ((uint64_t)1<<(31+16-FSHIFT))) 898 avenrun[i] = (int32_t)(hp_avenrun[i] >> 899 (16 - FSHIFT)); 900 else 901 avenrun[i] = 0x7fffffff; 902 903 cpupart = cp_list_head; 904 do { 905 calcloadavg(genloadavg(&cpupart->cp_loadavg), 906 cpupart->cp_hp_avenrun); 907 } while ((cpupart = cpupart->cp_next) != cp_list_head); 908 909 /* 910 * Wake up the swapper thread if necessary. 911 */ 912 if (runin || 913 (runout && (avefree < desfree || wake_sched_sec))) { 914 t = &t0; 915 thread_lock(t); 916 if (t->t_state == TS_STOPPED) { 917 runin = runout = 0; 918 wake_sched_sec = 0; 919 t->t_whystop = 0; 920 t->t_whatstop = 0; 921 t->t_schedflag &= ~TS_ALLSTART; 922 THREAD_TRANSITION(t); 923 setfrontdq(t); 924 } 925 thread_unlock(t); 926 } 927 } 928 929 /* 930 * Wake up the swapper if any high priority swapped-out threads 931 * became runable during the last tick. 932 */ 933 if (wake_sched) { 934 t = &t0; 935 thread_lock(t); 936 if (t->t_state == TS_STOPPED) { 937 runin = runout = 0; 938 wake_sched = 0; 939 t->t_whystop = 0; 940 t->t_whatstop = 0; 941 t->t_schedflag &= ~TS_ALLSTART; 942 THREAD_TRANSITION(t); 943 setfrontdq(t); 944 } 945 thread_unlock(t); 946 } 947 } 948 949 void 950 clock_init(void) 951 { 952 cyc_handler_t clk_hdlr, lbolt_hdlr; 953 cyc_time_t clk_when, lbolt_when; 954 int i, sz; 955 intptr_t buf; 956 957 /* 958 * Setup handler and timer for the clock cyclic. 959 */ 960 clk_hdlr.cyh_func = (cyc_func_t)clock; 961 clk_hdlr.cyh_level = CY_LOCK_LEVEL; 962 clk_hdlr.cyh_arg = NULL; 963 964 clk_when.cyt_when = 0; 965 clk_when.cyt_interval = nsec_per_tick; 966 967 /* 968 * The lbolt cyclic will be reprogramed to fire at a nsec_per_tick 969 * interval to satisfy performance needs of the DDI lbolt consumers. 970 * It is off by default. 971 */ 972 lbolt_hdlr.cyh_func = (cyc_func_t)lbolt_cyclic; 973 lbolt_hdlr.cyh_level = CY_LOCK_LEVEL; 974 lbolt_hdlr.cyh_arg = NULL; 975 976 lbolt_when.cyt_interval = nsec_per_tick; 977 978 /* 979 * Allocate cache line aligned space for the per CPU lbolt data and 980 * lbolt info structures, and initialize them with their default 981 * values. Note that these structures are also cache line sized. 982 */ 983 sz = sizeof (lbolt_info_t) + CPU_CACHE_COHERENCE_SIZE; 984 buf = (intptr_t)kmem_zalloc(sz, KM_SLEEP); 985 lb_info = (lbolt_info_t *)P2ROUNDUP(buf, CPU_CACHE_COHERENCE_SIZE); 986 987 if (hz != HZ_DEFAULT) 988 lb_info->lbi_thresh_interval = LBOLT_THRESH_INTERVAL * 989 hz/HZ_DEFAULT; 990 else 991 lb_info->lbi_thresh_interval = LBOLT_THRESH_INTERVAL; 992 993 lb_info->lbi_thresh_calls = LBOLT_THRESH_CALLS; 994 995 sz = (sizeof (lbolt_cpu_t) * max_ncpus) + CPU_CACHE_COHERENCE_SIZE; 996 buf = (intptr_t)kmem_zalloc(sz, KM_SLEEP); 997 lb_cpu = (lbolt_cpu_t *)P2ROUNDUP(buf, CPU_CACHE_COHERENCE_SIZE); 998 999 for (i = 0; i < max_ncpus; i++) 1000 lb_cpu[i].lbc_counter = lb_info->lbi_thresh_calls; 1001 1002 /* 1003 * Install the softint used to switch between event and cyclic driven 1004 * lbolt. We use a soft interrupt to make sure the context of the 1005 * cyclic reprogram call is safe. 1006 */ 1007 lbolt_softint_add(); 1008 1009 /* 1010 * Since the hybrid lbolt implementation is based on a hardware counter 1011 * that is reset at every hardware reboot and that we'd like to have 1012 * the lbolt value starting at zero after both a hardware and a fast 1013 * reboot, we calculate the number of clock ticks the system's been up 1014 * and store it in the lbi_debug_time field of the lbolt info structure. 1015 * The value of this field will be subtracted from lbolt before 1016 * returning it. 1017 */ 1018 lb_info->lbi_internal = lb_info->lbi_debug_time = 1019 (gethrtime()/nsec_per_tick); 1020 1021 /* 1022 * lbolt_hybrid points at lbolt_bootstrap until now. The LBOLT_* macros 1023 * and lbolt_debug_{enter,return} use this value as an indication that 1024 * the initializaion above hasn't been completed. Setting lbolt_hybrid 1025 * to either lbolt_{cyclic,event}_driven here signals those code paths 1026 * that the lbolt related structures can be used. 1027 */ 1028 if (lbolt_cyc_only) { 1029 lbolt_when.cyt_when = 0; 1030 lbolt_hybrid = lbolt_cyclic_driven; 1031 } else { 1032 lbolt_when.cyt_when = CY_INFINITY; 1033 lbolt_hybrid = lbolt_event_driven; 1034 } 1035 1036 /* 1037 * Grab cpu_lock and install all three cyclics. 1038 */ 1039 mutex_enter(&cpu_lock); 1040 1041 clock_cyclic = cyclic_add(&clk_hdlr, &clk_when); 1042 lb_info->id.lbi_cyclic_id = cyclic_add(&lbolt_hdlr, &lbolt_when); 1043 1044 mutex_exit(&cpu_lock); 1045 } 1046 1047 /* 1048 * Called before calcloadavg to get 10-sec moving loadavg together 1049 */ 1050 1051 static int 1052 genloadavg(struct loadavg_s *avgs) 1053 { 1054 int avg; 1055 int spos; /* starting position */ 1056 int cpos; /* moving current position */ 1057 int i; 1058 int slen; 1059 hrtime_t hr_avg; 1060 1061 /* 10-second snapshot, calculate first positon */ 1062 if (avgs->lg_len == 0) { 1063 return (0); 1064 } 1065 slen = avgs->lg_len < S_MOVAVG_SZ ? avgs->lg_len : S_MOVAVG_SZ; 1066 1067 spos = (avgs->lg_cur - 1) >= 0 ? avgs->lg_cur - 1 : 1068 S_LOADAVG_SZ + (avgs->lg_cur - 1); 1069 for (i = hr_avg = 0; i < slen; i++) { 1070 cpos = (spos - i) >= 0 ? spos - i : S_LOADAVG_SZ + (spos - i); 1071 hr_avg += avgs->lg_loads[cpos]; 1072 } 1073 1074 hr_avg = hr_avg / slen; 1075 avg = hr_avg / (NANOSEC / LGRP_LOADAVG_IN_THREAD_MAX); 1076 1077 return (avg); 1078 } 1079 1080 /* 1081 * Run every second from clock () to update the loadavg count available to the 1082 * system and cpu-partitions. 1083 * 1084 * This works by sampling the previous usr, sys, wait time elapsed, 1085 * computing a delta, and adding that delta to the elapsed usr, sys, 1086 * wait increase. 1087 */ 1088 1089 static void 1090 loadavg_update() 1091 { 1092 cpu_t *cp; 1093 cpupart_t *cpupart; 1094 hrtime_t cpu_total; 1095 int prev; 1096 1097 cp = cpu_list; 1098 loadavg.lg_total = 0; 1099 1100 /* 1101 * first pass totals up per-cpu statistics for system and cpu 1102 * partitions 1103 */ 1104 1105 do { 1106 struct loadavg_s *lavg; 1107 1108 lavg = &cp->cpu_loadavg; 1109 1110 cpu_total = cp->cpu_acct[CMS_USER] + 1111 cp->cpu_acct[CMS_SYSTEM] + cp->cpu_waitrq; 1112 /* compute delta against last total */ 1113 scalehrtime(&cpu_total); 1114 prev = (lavg->lg_cur - 1) >= 0 ? lavg->lg_cur - 1 : 1115 S_LOADAVG_SZ + (lavg->lg_cur - 1); 1116 if (lavg->lg_loads[prev] <= 0) { 1117 lavg->lg_loads[lavg->lg_cur] = cpu_total; 1118 cpu_total = 0; 1119 } else { 1120 lavg->lg_loads[lavg->lg_cur] = cpu_total; 1121 cpu_total = cpu_total - lavg->lg_loads[prev]; 1122 if (cpu_total < 0) 1123 cpu_total = 0; 1124 } 1125 1126 lavg->lg_cur = (lavg->lg_cur + 1) % S_LOADAVG_SZ; 1127 lavg->lg_len = (lavg->lg_len + 1) < S_LOADAVG_SZ ? 1128 lavg->lg_len + 1 : S_LOADAVG_SZ; 1129 1130 loadavg.lg_total += cpu_total; 1131 cp->cpu_part->cp_loadavg.lg_total += cpu_total; 1132 1133 } while ((cp = cp->cpu_next) != cpu_list); 1134 1135 loadavg.lg_loads[loadavg.lg_cur] = loadavg.lg_total; 1136 loadavg.lg_cur = (loadavg.lg_cur + 1) % S_LOADAVG_SZ; 1137 loadavg.lg_len = (loadavg.lg_len + 1) < S_LOADAVG_SZ ? 1138 loadavg.lg_len + 1 : S_LOADAVG_SZ; 1139 /* 1140 * Second pass updates counts 1141 */ 1142 cpupart = cp_list_head; 1143 1144 do { 1145 struct loadavg_s *lavg; 1146 1147 lavg = &cpupart->cp_loadavg; 1148 lavg->lg_loads[lavg->lg_cur] = lavg->lg_total; 1149 lavg->lg_total = 0; 1150 lavg->lg_cur = (lavg->lg_cur + 1) % S_LOADAVG_SZ; 1151 lavg->lg_len = (lavg->lg_len + 1) < S_LOADAVG_SZ ? 1152 lavg->lg_len + 1 : S_LOADAVG_SZ; 1153 1154 } while ((cpupart = cpupart->cp_next) != cp_list_head); 1155 1156 /* 1157 * Third pass totals up per-zone statistics. 1158 */ 1159 zone_loadavg_update(); 1160 } 1161 1162 /* 1163 * clock_update() - local clock update 1164 * 1165 * This routine is called by ntp_adjtime() to update the local clock 1166 * phase and frequency. The implementation is of an 1167 * adaptive-parameter, hybrid phase/frequency-lock loop (PLL/FLL). The 1168 * routine computes new time and frequency offset estimates for each 1169 * call. The PPS signal itself determines the new time offset, 1170 * instead of the calling argument. Presumably, calls to 1171 * ntp_adjtime() occur only when the caller believes the local clock 1172 * is valid within some bound (+-128 ms with NTP). If the caller's 1173 * time is far different than the PPS time, an argument will ensue, 1174 * and it's not clear who will lose. 1175 * 1176 * For uncompensated quartz crystal oscillatores and nominal update 1177 * intervals less than 1024 s, operation should be in phase-lock mode 1178 * (STA_FLL = 0), where the loop is disciplined to phase. For update 1179 * intervals greater than this, operation should be in frequency-lock 1180 * mode (STA_FLL = 1), where the loop is disciplined to frequency. 1181 * 1182 * Note: mutex(&tod_lock) is in effect. 1183 */ 1184 void 1185 clock_update(int offset) 1186 { 1187 int ltemp, mtemp, s; 1188 1189 ASSERT(MUTEX_HELD(&tod_lock)); 1190 1191 if (!(time_status & STA_PLL) && !(time_status & STA_PPSTIME)) 1192 return; 1193 ltemp = offset; 1194 if ((time_status & STA_PPSTIME) && (time_status & STA_PPSSIGNAL)) 1195 ltemp = pps_offset; 1196 1197 /* 1198 * Scale the phase adjustment and clamp to the operating range. 1199 */ 1200 if (ltemp > MAXPHASE) 1201 time_offset = MAXPHASE * SCALE_UPDATE; 1202 else if (ltemp < -MAXPHASE) 1203 time_offset = -(MAXPHASE * SCALE_UPDATE); 1204 else 1205 time_offset = ltemp * SCALE_UPDATE; 1206 1207 /* 1208 * Select whether the frequency is to be controlled and in which 1209 * mode (PLL or FLL). Clamp to the operating range. Ugly 1210 * multiply/divide should be replaced someday. 1211 */ 1212 if (time_status & STA_FREQHOLD || time_reftime == 0) 1213 time_reftime = hrestime.tv_sec; 1214 1215 mtemp = hrestime.tv_sec - time_reftime; 1216 time_reftime = hrestime.tv_sec; 1217 1218 if (time_status & STA_FLL) { 1219 if (mtemp >= MINSEC) { 1220 ltemp = ((time_offset / mtemp) * (SCALE_USEC / 1221 SCALE_UPDATE)); 1222 if (ltemp) 1223 time_freq += ltemp / SCALE_KH; 1224 } 1225 } else { 1226 if (mtemp < MAXSEC) { 1227 ltemp *= mtemp; 1228 if (ltemp) 1229 time_freq += (int)(((int64_t)ltemp * 1230 SCALE_USEC) / SCALE_KF) 1231 / (1 << (time_constant * 2)); 1232 } 1233 } 1234 if (time_freq > time_tolerance) 1235 time_freq = time_tolerance; 1236 else if (time_freq < -time_tolerance) 1237 time_freq = -time_tolerance; 1238 1239 s = hr_clock_lock(); 1240 tod_needsync = 1; 1241 hr_clock_unlock(s); 1242 } 1243 1244 /* 1245 * ddi_hardpps() - discipline CPU clock oscillator to external PPS signal 1246 * 1247 * This routine is called at each PPS interrupt in order to discipline 1248 * the CPU clock oscillator to the PPS signal. It measures the PPS phase 1249 * and leaves it in a handy spot for the clock() routine. It 1250 * integrates successive PPS phase differences and calculates the 1251 * frequency offset. This is used in clock() to discipline the CPU 1252 * clock oscillator so that intrinsic frequency error is cancelled out. 1253 * The code requires the caller to capture the time and hardware counter 1254 * value at the on-time PPS signal transition. 1255 * 1256 * Note that, on some Unix systems, this routine runs at an interrupt 1257 * priority level higher than the timer interrupt routine clock(). 1258 * Therefore, the variables used are distinct from the clock() 1259 * variables, except for certain exceptions: The PPS frequency pps_freq 1260 * and phase pps_offset variables are determined by this routine and 1261 * updated atomically. The time_tolerance variable can be considered a 1262 * constant, since it is infrequently changed, and then only when the 1263 * PPS signal is disabled. The watchdog counter pps_valid is updated 1264 * once per second by clock() and is atomically cleared in this 1265 * routine. 1266 * 1267 * tvp is the time of the last tick; usec is a microsecond count since the 1268 * last tick. 1269 * 1270 * Note: In Solaris systems, the tick value is actually given by 1271 * usec_per_tick. This is called from the serial driver cdintr(), 1272 * or equivalent, at a high PIL. Because the kernel keeps a 1273 * highresolution time, the following code can accept either 1274 * the traditional argument pair, or the current highres timestamp 1275 * in tvp and zero in usec. 1276 */ 1277 void 1278 ddi_hardpps(struct timeval *tvp, int usec) 1279 { 1280 int u_usec, v_usec, bigtick; 1281 time_t cal_sec; 1282 int cal_usec; 1283 1284 /* 1285 * An occasional glitch can be produced when the PPS interrupt 1286 * occurs in the clock() routine before the time variable is 1287 * updated. Here the offset is discarded when the difference 1288 * between it and the last one is greater than tick/2, but not 1289 * if the interval since the first discard exceeds 30 s. 1290 */ 1291 time_status |= STA_PPSSIGNAL; 1292 time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR); 1293 pps_valid = 0; 1294 u_usec = -tvp->tv_usec; 1295 if (u_usec < -(MICROSEC/2)) 1296 u_usec += MICROSEC; 1297 v_usec = pps_offset - u_usec; 1298 if (v_usec < 0) 1299 v_usec = -v_usec; 1300 if (v_usec > (usec_per_tick >> 1)) { 1301 if (pps_glitch > MAXGLITCH) { 1302 pps_glitch = 0; 1303 pps_tf[2] = u_usec; 1304 pps_tf[1] = u_usec; 1305 } else { 1306 pps_glitch++; 1307 u_usec = pps_offset; 1308 } 1309 } else 1310 pps_glitch = 0; 1311 1312 /* 1313 * A three-stage median filter is used to help deglitch the pps 1314 * time. The median sample becomes the time offset estimate; the 1315 * difference between the other two samples becomes the time 1316 * dispersion (jitter) estimate. 1317 */ 1318 pps_tf[2] = pps_tf[1]; 1319 pps_tf[1] = pps_tf[0]; 1320 pps_tf[0] = u_usec; 1321 if (pps_tf[0] > pps_tf[1]) { 1322 if (pps_tf[1] > pps_tf[2]) { 1323 pps_offset = pps_tf[1]; /* 0 1 2 */ 1324 v_usec = pps_tf[0] - pps_tf[2]; 1325 } else if (pps_tf[2] > pps_tf[0]) { 1326 pps_offset = pps_tf[0]; /* 2 0 1 */ 1327 v_usec = pps_tf[2] - pps_tf[1]; 1328 } else { 1329 pps_offset = pps_tf[2]; /* 0 2 1 */ 1330 v_usec = pps_tf[0] - pps_tf[1]; 1331 } 1332 } else { 1333 if (pps_tf[1] < pps_tf[2]) { 1334 pps_offset = pps_tf[1]; /* 2 1 0 */ 1335 v_usec = pps_tf[2] - pps_tf[0]; 1336 } else if (pps_tf[2] < pps_tf[0]) { 1337 pps_offset = pps_tf[0]; /* 1 0 2 */ 1338 v_usec = pps_tf[1] - pps_tf[2]; 1339 } else { 1340 pps_offset = pps_tf[2]; /* 1 2 0 */ 1341 v_usec = pps_tf[1] - pps_tf[0]; 1342 } 1343 } 1344 if (v_usec > MAXTIME) 1345 pps_jitcnt++; 1346 v_usec = (v_usec << PPS_AVG) - pps_jitter; 1347 pps_jitter += v_usec / (1 << PPS_AVG); 1348 if (pps_jitter > (MAXTIME >> 1)) 1349 time_status |= STA_PPSJITTER; 1350 1351 /* 1352 * During the calibration interval adjust the starting time when 1353 * the tick overflows. At the end of the interval compute the 1354 * duration of the interval and the difference of the hardware 1355 * counters at the beginning and end of the interval. This code 1356 * is deliciously complicated by the fact valid differences may 1357 * exceed the value of tick when using long calibration 1358 * intervals and small ticks. Note that the counter can be 1359 * greater than tick if caught at just the wrong instant, but 1360 * the values returned and used here are correct. 1361 */ 1362 bigtick = (int)usec_per_tick * SCALE_USEC; 1363 pps_usec -= pps_freq; 1364 if (pps_usec >= bigtick) 1365 pps_usec -= bigtick; 1366 if (pps_usec < 0) 1367 pps_usec += bigtick; 1368 pps_time.tv_sec++; 1369 pps_count++; 1370 if (pps_count < (1 << pps_shift)) 1371 return; 1372 pps_count = 0; 1373 pps_calcnt++; 1374 u_usec = usec * SCALE_USEC; 1375 v_usec = pps_usec - u_usec; 1376 if (v_usec >= bigtick >> 1) 1377 v_usec -= bigtick; 1378 if (v_usec < -(bigtick >> 1)) 1379 v_usec += bigtick; 1380 if (v_usec < 0) 1381 v_usec = -(-v_usec >> pps_shift); 1382 else 1383 v_usec = v_usec >> pps_shift; 1384 pps_usec = u_usec; 1385 cal_sec = tvp->tv_sec; 1386 cal_usec = tvp->tv_usec; 1387 cal_sec -= pps_time.tv_sec; 1388 cal_usec -= pps_time.tv_usec; 1389 if (cal_usec < 0) { 1390 cal_usec += MICROSEC; 1391 cal_sec--; 1392 } 1393 pps_time = *tvp; 1394 1395 /* 1396 * Check for lost interrupts, noise, excessive jitter and 1397 * excessive frequency error. The number of timer ticks during 1398 * the interval may vary +-1 tick. Add to this a margin of one 1399 * tick for the PPS signal jitter and maximum frequency 1400 * deviation. If the limits are exceeded, the calibration 1401 * interval is reset to the minimum and we start over. 1402 */ 1403 u_usec = (int)usec_per_tick << 1; 1404 if (!((cal_sec == -1 && cal_usec > (MICROSEC - u_usec)) || 1405 (cal_sec == 0 && cal_usec < u_usec)) || 1406 v_usec > time_tolerance || v_usec < -time_tolerance) { 1407 pps_errcnt++; 1408 pps_shift = PPS_SHIFT; 1409 pps_intcnt = 0; 1410 time_status |= STA_PPSERROR; 1411 return; 1412 } 1413 1414 /* 1415 * A three-stage median filter is used to help deglitch the pps 1416 * frequency. The median sample becomes the frequency offset 1417 * estimate; the difference between the other two samples 1418 * becomes the frequency dispersion (stability) estimate. 1419 */ 1420 pps_ff[2] = pps_ff[1]; 1421 pps_ff[1] = pps_ff[0]; 1422 pps_ff[0] = v_usec; 1423 if (pps_ff[0] > pps_ff[1]) { 1424 if (pps_ff[1] > pps_ff[2]) { 1425 u_usec = pps_ff[1]; /* 0 1 2 */ 1426 v_usec = pps_ff[0] - pps_ff[2]; 1427 } else if (pps_ff[2] > pps_ff[0]) { 1428 u_usec = pps_ff[0]; /* 2 0 1 */ 1429 v_usec = pps_ff[2] - pps_ff[1]; 1430 } else { 1431 u_usec = pps_ff[2]; /* 0 2 1 */ 1432 v_usec = pps_ff[0] - pps_ff[1]; 1433 } 1434 } else { 1435 if (pps_ff[1] < pps_ff[2]) { 1436 u_usec = pps_ff[1]; /* 2 1 0 */ 1437 v_usec = pps_ff[2] - pps_ff[0]; 1438 } else if (pps_ff[2] < pps_ff[0]) { 1439 u_usec = pps_ff[0]; /* 1 0 2 */ 1440 v_usec = pps_ff[1] - pps_ff[2]; 1441 } else { 1442 u_usec = pps_ff[2]; /* 1 2 0 */ 1443 v_usec = pps_ff[1] - pps_ff[0]; 1444 } 1445 } 1446 1447 /* 1448 * Here the frequency dispersion (stability) is updated. If it 1449 * is less than one-fourth the maximum (MAXFREQ), the frequency 1450 * offset is updated as well, but clamped to the tolerance. It 1451 * will be processed later by the clock() routine. 1452 */ 1453 v_usec = (v_usec >> 1) - pps_stabil; 1454 if (v_usec < 0) 1455 pps_stabil -= -v_usec >> PPS_AVG; 1456 else 1457 pps_stabil += v_usec >> PPS_AVG; 1458 if (pps_stabil > MAXFREQ >> 2) { 1459 pps_stbcnt++; 1460 time_status |= STA_PPSWANDER; 1461 return; 1462 } 1463 if (time_status & STA_PPSFREQ) { 1464 if (u_usec < 0) { 1465 pps_freq -= -u_usec >> PPS_AVG; 1466 if (pps_freq < -time_tolerance) 1467 pps_freq = -time_tolerance; 1468 u_usec = -u_usec; 1469 } else { 1470 pps_freq += u_usec >> PPS_AVG; 1471 if (pps_freq > time_tolerance) 1472 pps_freq = time_tolerance; 1473 } 1474 } 1475 1476 /* 1477 * Here the calibration interval is adjusted. If the maximum 1478 * time difference is greater than tick / 4, reduce the interval 1479 * by half. If this is not the case for four consecutive 1480 * intervals, double the interval. 1481 */ 1482 if (u_usec << pps_shift > bigtick >> 2) { 1483 pps_intcnt = 0; 1484 if (pps_shift > PPS_SHIFT) 1485 pps_shift--; 1486 } else if (pps_intcnt >= 4) { 1487 pps_intcnt = 0; 1488 if (pps_shift < PPS_SHIFTMAX) 1489 pps_shift++; 1490 } else 1491 pps_intcnt++; 1492 1493 /* 1494 * If recovering from kmdb, then make sure the tod chip gets resynced. 1495 * If we took an early exit above, then we don't yet have a stable 1496 * calibration signal to lock onto, so don't mark the tod for sync 1497 * until we get all the way here. 1498 */ 1499 { 1500 int s = hr_clock_lock(); 1501 1502 tod_needsync = 1; 1503 hr_clock_unlock(s); 1504 } 1505 } 1506 1507 /* 1508 * Handle clock tick processing for a thread. 1509 * Check for timer action, enforce CPU rlimit, do profiling etc. 1510 */ 1511 void 1512 clock_tick(kthread_t *t, int pending) 1513 { 1514 struct proc *pp; 1515 klwp_id_t lwp; 1516 struct as *as; 1517 clock_t ticks; 1518 int poke = 0; /* notify another CPU */ 1519 int user_mode; 1520 size_t rss; 1521 int i, total_usec, usec; 1522 rctl_qty_t secs; 1523 1524 ASSERT(pending > 0); 1525 1526 /* Must be operating on a lwp/thread */ 1527 if ((lwp = ttolwp(t)) == NULL) { 1528 panic("clock_tick: no lwp"); 1529 /*NOTREACHED*/ 1530 } 1531 1532 for (i = 0; i < pending; i++) { 1533 CL_TICK(t); /* Class specific tick processing */ 1534 DTRACE_SCHED1(tick, kthread_t *, t); 1535 } 1536 1537 pp = ttoproc(t); 1538 1539 /* pp->p_lock makes sure that the thread does not exit */ 1540 ASSERT(MUTEX_HELD(&pp->p_lock)); 1541 1542 user_mode = (lwp->lwp_state == LWP_USER); 1543 1544 ticks = (pp->p_utime + pp->p_stime) % hz; 1545 /* 1546 * Update process times. Should use high res clock and state 1547 * changes instead of statistical sampling method. XXX 1548 */ 1549 if (user_mode) { 1550 pp->p_utime += pending; 1551 } else { 1552 pp->p_stime += pending; 1553 } 1554 1555 pp->p_ttime += pending; 1556 as = pp->p_as; 1557 1558 /* 1559 * Update user profiling statistics. Get the pc from the 1560 * lwp when the AST happens. 1561 */ 1562 if (pp->p_prof.pr_scale) { 1563 atomic_add_32(&lwp->lwp_oweupc, (int32_t)pending); 1564 if (user_mode) { 1565 poke = 1; 1566 aston(t); 1567 } 1568 } 1569 1570 /* 1571 * If CPU was in user state, process lwp-virtual time 1572 * interval timer. The value passed to itimerdecr() has to be 1573 * in microseconds and has to be less than one second. Hence 1574 * this loop. 1575 */ 1576 total_usec = usec_per_tick * pending; 1577 while (total_usec > 0) { 1578 usec = MIN(total_usec, (MICROSEC - 1)); 1579 if (user_mode && 1580 timerisset(&lwp->lwp_timer[ITIMER_VIRTUAL].it_value) && 1581 itimerdecr(&lwp->lwp_timer[ITIMER_VIRTUAL], usec) == 0) { 1582 poke = 1; 1583 sigtoproc(pp, t, SIGVTALRM); 1584 } 1585 total_usec -= usec; 1586 } 1587 1588 /* 1589 * If CPU was in user state, process lwp-profile 1590 * interval timer. 1591 */ 1592 total_usec = usec_per_tick * pending; 1593 while (total_usec > 0) { 1594 usec = MIN(total_usec, (MICROSEC - 1)); 1595 if (timerisset(&lwp->lwp_timer[ITIMER_PROF].it_value) && 1596 itimerdecr(&lwp->lwp_timer[ITIMER_PROF], usec) == 0) { 1597 poke = 1; 1598 sigtoproc(pp, t, SIGPROF); 1599 } 1600 total_usec -= usec; 1601 } 1602 1603 /* 1604 * Enforce CPU resource controls: 1605 * (a) process.max-cpu-time resource control 1606 * 1607 * Perform the check only if we have accumulated more a second. 1608 */ 1609 if ((ticks + pending) >= hz) { 1610 (void) rctl_test(rctlproc_legacy[RLIMIT_CPU], pp->p_rctls, pp, 1611 (pp->p_utime + pp->p_stime)/hz, RCA_UNSAFE_SIGINFO); 1612 } 1613 1614 /* 1615 * (b) task.max-cpu-time resource control 1616 * 1617 * If we have accumulated enough ticks, increment the task CPU 1618 * time usage and test for the resource limit. This minimizes the 1619 * number of calls to the rct_test(). The task CPU time mutex 1620 * is highly contentious as many processes can be sharing a task. 1621 */ 1622 if (pp->p_ttime >= clock_tick_proc_max) { 1623 secs = task_cpu_time_incr(pp->p_task, pp->p_ttime); 1624 pp->p_ttime = 0; 1625 if (secs) { 1626 (void) rctl_test(rc_task_cpu_time, pp->p_task->tk_rctls, 1627 pp, secs, RCA_UNSAFE_SIGINFO); 1628 } 1629 } 1630 1631 /* 1632 * Update memory usage for the currently running process. 1633 */ 1634 rss = rm_asrss(as); 1635 PTOU(pp)->u_mem += rss; 1636 if (rss > PTOU(pp)->u_mem_max) 1637 PTOU(pp)->u_mem_max = rss; 1638 1639 /* 1640 * Notify the CPU the thread is running on. 1641 */ 1642 if (poke && t->t_cpu != CPU) 1643 poke_cpu(t->t_cpu->cpu_id); 1644 } 1645 1646 void 1647 profil_tick(uintptr_t upc) 1648 { 1649 int ticks; 1650 proc_t *p = ttoproc(curthread); 1651 klwp_t *lwp = ttolwp(curthread); 1652 struct prof *pr = &p->p_prof; 1653 1654 do { 1655 ticks = lwp->lwp_oweupc; 1656 } while (atomic_cas_32(&lwp->lwp_oweupc, ticks, 0) != ticks); 1657 1658 mutex_enter(&p->p_pflock); 1659 if (pr->pr_scale >= 2 && upc >= pr->pr_off) { 1660 /* 1661 * Old-style profiling 1662 */ 1663 uint16_t *slot = pr->pr_base; 1664 uint16_t old, new; 1665 if (pr->pr_scale != 2) { 1666 uintptr_t delta = upc - pr->pr_off; 1667 uintptr_t byteoff = ((delta >> 16) * pr->pr_scale) + 1668 (((delta & 0xffff) * pr->pr_scale) >> 16); 1669 if (byteoff >= (uintptr_t)pr->pr_size) { 1670 mutex_exit(&p->p_pflock); 1671 return; 1672 } 1673 slot += byteoff / sizeof (uint16_t); 1674 } 1675 if (fuword16(slot, &old) < 0 || 1676 (new = old + ticks) > SHRT_MAX || 1677 suword16(slot, new) < 0) { 1678 pr->pr_scale = 0; 1679 } 1680 } else if (pr->pr_scale == 1) { 1681 /* 1682 * PC Sampling 1683 */ 1684 model_t model = lwp_getdatamodel(lwp); 1685 int result; 1686 #ifdef __lint 1687 model = model; 1688 #endif 1689 while (ticks-- > 0) { 1690 if (pr->pr_samples == pr->pr_size) { 1691 /* buffer full, turn off sampling */ 1692 pr->pr_scale = 0; 1693 break; 1694 } 1695 switch (SIZEOF_PTR(model)) { 1696 case sizeof (uint32_t): 1697 result = suword32(pr->pr_base, (uint32_t)upc); 1698 break; 1699 #ifdef _LP64 1700 case sizeof (uint64_t): 1701 result = suword64(pr->pr_base, (uint64_t)upc); 1702 break; 1703 #endif 1704 default: 1705 cmn_err(CE_WARN, "profil_tick: unexpected " 1706 "data model"); 1707 result = -1; 1708 break; 1709 } 1710 if (result != 0) { 1711 pr->pr_scale = 0; 1712 break; 1713 } 1714 pr->pr_base = (caddr_t)pr->pr_base + SIZEOF_PTR(model); 1715 pr->pr_samples++; 1716 } 1717 } 1718 mutex_exit(&p->p_pflock); 1719 } 1720 1721 static void 1722 delay_wakeup(void *arg) 1723 { 1724 kthread_t *t = arg; 1725 1726 mutex_enter(&t->t_delay_lock); 1727 cv_signal(&t->t_delay_cv); 1728 mutex_exit(&t->t_delay_lock); 1729 } 1730 1731 /* 1732 * The delay(9F) man page indicates that it can only be called from user or 1733 * kernel context - detect and diagnose bad calls. The following macro will 1734 * produce a limited number of messages identifying bad callers. This is done 1735 * in a macro so that caller() is meaningful. When a bad caller is identified, 1736 * switching to 'drv_usecwait(TICK_TO_USEC(ticks));' may be appropriate. 1737 */ 1738 #define DELAY_CONTEXT_CHECK() { \ 1739 uint32_t m; \ 1740 char *f; \ 1741 ulong_t off; \ 1742 \ 1743 m = delay_from_interrupt_msg; \ 1744 if (delay_from_interrupt_diagnose && servicing_interrupt() && \ 1745 !panicstr && !devinfo_freeze && \ 1746 atomic_cas_32(&delay_from_interrupt_msg, m ? m : 1, m-1)) { \ 1747 f = modgetsymname((uintptr_t)caller(), &off); \ 1748 cmn_err(CE_WARN, "delay(9F) called from " \ 1749 "interrupt context: %s`%s", \ 1750 mod_containing_pc(caller()), f ? f : "..."); \ 1751 } \ 1752 } 1753 1754 /* 1755 * delay_common: common delay code. 1756 */ 1757 static void 1758 delay_common(clock_t ticks) 1759 { 1760 kthread_t *t = curthread; 1761 clock_t deadline; 1762 clock_t timeleft; 1763 callout_id_t id; 1764 1765 /* If timeouts aren't running all we can do is spin. */ 1766 if (panicstr || devinfo_freeze) { 1767 /* Convert delay(9F) call into drv_usecwait(9F) call. */ 1768 if (ticks > 0) 1769 drv_usecwait(TICK_TO_USEC(ticks)); 1770 return; 1771 } 1772 1773 deadline = ddi_get_lbolt() + ticks; 1774 while ((timeleft = deadline - ddi_get_lbolt()) > 0) { 1775 mutex_enter(&t->t_delay_lock); 1776 id = timeout_default(delay_wakeup, t, timeleft); 1777 cv_wait(&t->t_delay_cv, &t->t_delay_lock); 1778 mutex_exit(&t->t_delay_lock); 1779 (void) untimeout_default(id, 0); 1780 } 1781 } 1782 1783 /* 1784 * Delay specified number of clock ticks. 1785 */ 1786 void 1787 delay(clock_t ticks) 1788 { 1789 DELAY_CONTEXT_CHECK(); 1790 1791 delay_common(ticks); 1792 } 1793 1794 /* 1795 * Delay a random number of clock ticks between 1 and ticks. 1796 */ 1797 void 1798 delay_random(clock_t ticks) 1799 { 1800 int r; 1801 1802 DELAY_CONTEXT_CHECK(); 1803 1804 (void) random_get_pseudo_bytes((void *)&r, sizeof (r)); 1805 if (ticks == 0) 1806 ticks = 1; 1807 ticks = (r % ticks) + 1; 1808 delay_common(ticks); 1809 } 1810 1811 /* 1812 * Like delay, but interruptible by a signal. 1813 */ 1814 int 1815 delay_sig(clock_t ticks) 1816 { 1817 kthread_t *t = curthread; 1818 clock_t deadline; 1819 clock_t rc; 1820 1821 /* If timeouts aren't running all we can do is spin. */ 1822 if (panicstr || devinfo_freeze) { 1823 if (ticks > 0) 1824 drv_usecwait(TICK_TO_USEC(ticks)); 1825 return (0); 1826 } 1827 1828 deadline = ddi_get_lbolt() + ticks; 1829 mutex_enter(&t->t_delay_lock); 1830 do { 1831 rc = cv_timedwait_sig(&t->t_delay_cv, 1832 &t->t_delay_lock, deadline); 1833 /* loop until past deadline or signaled */ 1834 } while (rc > 0); 1835 mutex_exit(&t->t_delay_lock); 1836 if (rc == 0) 1837 return (EINTR); 1838 return (0); 1839 } 1840 1841 1842 #define SECONDS_PER_DAY 86400 1843 1844 /* 1845 * Initialize the system time based on the TOD chip. approx is used as 1846 * an approximation of time (e.g. from the filesystem) in the event that 1847 * the TOD chip has been cleared or is unresponsive. An approx of -1 1848 * means the filesystem doesn't keep time. 1849 */ 1850 void 1851 clkset(time_t approx) 1852 { 1853 timestruc_t ts; 1854 int spl; 1855 int set_clock = 0; 1856 1857 mutex_enter(&tod_lock); 1858 ts = tod_get(); 1859 1860 if (ts.tv_sec > 365 * SECONDS_PER_DAY) { 1861 /* 1862 * If the TOD chip is reporting some time after 1971, 1863 * then it probably didn't lose power or become otherwise 1864 * cleared in the recent past; check to assure that 1865 * the time coming from the filesystem isn't in the future 1866 * according to the TOD chip. 1867 */ 1868 if (approx != -1 && approx > ts.tv_sec) { 1869 cmn_err(CE_WARN, "Last shutdown is later " 1870 "than time on time-of-day chip; check date."); 1871 } 1872 } else { 1873 /* 1874 * If the TOD chip isn't giving correct time, set it to the 1875 * greater of i) approx and ii) 1987. That way if approx 1876 * is negative or is earlier than 1987, we set the clock 1877 * back to a time when Oliver North, ALF and Dire Straits 1878 * were all on the collective brain: 1987. 1879 */ 1880 timestruc_t tmp; 1881 time_t diagnose_date = (1987 - 1970) * 365 * SECONDS_PER_DAY; 1882 ts.tv_sec = (approx > diagnose_date ? approx : diagnose_date); 1883 ts.tv_nsec = 0; 1884 1885 /* 1886 * Attempt to write the new time to the TOD chip. Set spl high 1887 * to avoid getting preempted between the tod_set and tod_get. 1888 */ 1889 spl = splhi(); 1890 tod_set(ts); 1891 tmp = tod_get(); 1892 splx(spl); 1893 1894 if (tmp.tv_sec != ts.tv_sec && tmp.tv_sec != ts.tv_sec + 1) { 1895 tod_broken = 1; 1896 dosynctodr = 0; 1897 cmn_err(CE_WARN, "Time-of-day chip unresponsive."); 1898 } else { 1899 cmn_err(CE_WARN, "Time-of-day chip had " 1900 "incorrect date; check and reset."); 1901 } 1902 set_clock = 1; 1903 } 1904 1905 if (!boot_time) { 1906 boot_time = ts.tv_sec; 1907 set_clock = 1; 1908 } 1909 1910 if (set_clock) 1911 set_hrestime(&ts); 1912 1913 mutex_exit(&tod_lock); 1914 } 1915 1916 int timechanged; /* for testing if the system time has been reset */ 1917 1918 void 1919 set_hrestime(timestruc_t *ts) 1920 { 1921 int spl = hr_clock_lock(); 1922 hrestime = *ts; 1923 membar_enter(); /* hrestime must be visible before timechanged++ */ 1924 timedelta = 0; 1925 timechanged++; 1926 hr_clock_unlock(spl); 1927 callout_hrestime(); 1928 } 1929 1930 static uint_t deadman_seconds; 1931 static uint32_t deadman_panics; 1932 static int deadman_enabled = 0; 1933 static int deadman_panic_timers = 1; 1934 1935 static void 1936 deadman(void) 1937 { 1938 if (panicstr) { 1939 /* 1940 * During panic, other CPUs besides the panic 1941 * master continue to handle cyclics and some other 1942 * interrupts. The code below is intended to be 1943 * single threaded, so any CPU other than the master 1944 * must keep out. 1945 */ 1946 if (CPU->cpu_id != panic_cpu.cpu_id) 1947 return; 1948 1949 if (!deadman_panic_timers) 1950 return; /* allow all timers to be manually disabled */ 1951 1952 /* 1953 * If we are generating a crash dump or syncing filesystems and 1954 * the corresponding timer is set, decrement it and re-enter 1955 * the panic code to abort it and advance to the next state. 1956 * The panic states and triggers are explained in panic.c. 1957 */ 1958 if (panic_dump) { 1959 if (dump_timeleft && (--dump_timeleft == 0)) { 1960 panic("panic dump timeout"); 1961 /*NOTREACHED*/ 1962 } 1963 } 1964 return; 1965 } 1966 1967 if (deadman_counter != CPU->cpu_deadman_counter) { 1968 CPU->cpu_deadman_counter = deadman_counter; 1969 CPU->cpu_deadman_countdown = deadman_seconds; 1970 return; 1971 } 1972 1973 if (--CPU->cpu_deadman_countdown > 0) 1974 return; 1975 1976 /* 1977 * Regardless of whether or not we actually bring the system down, 1978 * bump the deadman_panics variable. 1979 * 1980 * N.B. deadman_panics is incremented once for each CPU that 1981 * passes through here. It's expected that all the CPUs will 1982 * detect this condition within one second of each other, so 1983 * when deadman_enabled is off, deadman_panics will 1984 * typically be a multiple of the total number of CPUs in 1985 * the system. 1986 */ 1987 atomic_inc_32(&deadman_panics); 1988 1989 if (!deadman_enabled) { 1990 CPU->cpu_deadman_countdown = deadman_seconds; 1991 return; 1992 } 1993 1994 /* 1995 * If we're here, we want to bring the system down. 1996 */ 1997 panic("deadman: timed out after %d seconds of clock " 1998 "inactivity", deadman_seconds); 1999 /*NOTREACHED*/ 2000 } 2001 2002 /*ARGSUSED*/ 2003 static void 2004 deadman_online(void *arg, cpu_t *cpu, cyc_handler_t *hdlr, cyc_time_t *when) 2005 { 2006 cpu->cpu_deadman_counter = 0; 2007 cpu->cpu_deadman_countdown = deadman_seconds; 2008 2009 hdlr->cyh_func = (cyc_func_t)deadman; 2010 hdlr->cyh_level = CY_HIGH_LEVEL; 2011 hdlr->cyh_arg = NULL; 2012 2013 /* 2014 * Stagger the CPUs so that they don't all run deadman() at 2015 * the same time. Simplest reason to do this is to make it 2016 * more likely that only one CPU will panic in case of a 2017 * timeout. This is (strictly speaking) an aesthetic, not a 2018 * technical consideration. 2019 */ 2020 when->cyt_when = cpu->cpu_id * (NANOSEC / NCPU); 2021 when->cyt_interval = NANOSEC; 2022 } 2023 2024 2025 void 2026 deadman_init(void) 2027 { 2028 cyc_omni_handler_t hdlr; 2029 2030 if (deadman_seconds == 0) 2031 deadman_seconds = snoop_interval / MICROSEC; 2032 2033 if (snooping) 2034 deadman_enabled = 1; 2035 2036 hdlr.cyo_online = deadman_online; 2037 hdlr.cyo_offline = NULL; 2038 hdlr.cyo_arg = NULL; 2039 2040 mutex_enter(&cpu_lock); 2041 deadman_cyclic = cyclic_add_omni(&hdlr); 2042 mutex_exit(&cpu_lock); 2043 } 2044 2045 /* 2046 * tod_fault() is for updating tod validate mechanism state: 2047 * (1) TOD_NOFAULT: for resetting the state to 'normal'. 2048 * currently used for debugging only 2049 * (2) The following four cases detected by tod validate mechanism: 2050 * TOD_REVERSED: current tod value is less than previous value. 2051 * TOD_STALLED: current tod value hasn't advanced. 2052 * TOD_JUMPED: current tod value advanced too far from previous value. 2053 * TOD_RATECHANGED: the ratio between average tod delta and 2054 * average tick delta has changed. 2055 * (3) TOD_RDONLY: when the TOD clock is not writeable e.g. because it is 2056 * a virtual TOD provided by a hypervisor. 2057 */ 2058 enum tod_fault_type 2059 tod_fault(enum tod_fault_type ftype, int off) 2060 { 2061 ASSERT(MUTEX_HELD(&tod_lock)); 2062 2063 if (tod_faulted != ftype) { 2064 switch (ftype) { 2065 case TOD_NOFAULT: 2066 plat_tod_fault(TOD_NOFAULT); 2067 cmn_err(CE_NOTE, "Restarted tracking " 2068 "Time of Day clock."); 2069 tod_faulted = ftype; 2070 break; 2071 case TOD_REVERSED: 2072 case TOD_JUMPED: 2073 if (tod_faulted == TOD_NOFAULT) { 2074 plat_tod_fault(ftype); 2075 cmn_err(CE_WARN, "Time of Day clock error: " 2076 "reason [%s by 0x%x]. -- " 2077 " Stopped tracking Time Of Day clock.", 2078 tod_fault_table[ftype], off); 2079 tod_faulted = ftype; 2080 } 2081 break; 2082 case TOD_STALLED: 2083 case TOD_RATECHANGED: 2084 if (tod_faulted == TOD_NOFAULT) { 2085 plat_tod_fault(ftype); 2086 cmn_err(CE_WARN, "Time of Day clock error: " 2087 "reason [%s]. -- " 2088 " Stopped tracking Time Of Day clock.", 2089 tod_fault_table[ftype]); 2090 tod_faulted = ftype; 2091 } 2092 break; 2093 case TOD_RDONLY: 2094 if (tod_faulted == TOD_NOFAULT) { 2095 plat_tod_fault(ftype); 2096 cmn_err(CE_NOTE, "!Time of Day clock is " 2097 "Read-Only; set of Date/Time will not " 2098 "persist across reboot."); 2099 tod_faulted = ftype; 2100 } 2101 break; 2102 default: 2103 break; 2104 } 2105 } 2106 return (tod_faulted); 2107 } 2108 2109 /* 2110 * Two functions that allow tod_status_flag to be manipulated by functions 2111 * external to this file. 2112 */ 2113 2114 void 2115 tod_status_set(int tod_flag) 2116 { 2117 tod_status_flag |= tod_flag; 2118 } 2119 2120 void 2121 tod_status_clear(int tod_flag) 2122 { 2123 tod_status_flag &= ~tod_flag; 2124 } 2125 2126 /* 2127 * Record a timestamp and the value passed to tod_set(). The next call to 2128 * tod_validate() can use these values, prev_set_tick and prev_set_tod, 2129 * when checking the timestruc_t returned by tod_get(). Ordinarily, 2130 * tod_validate() will use prev_tick and prev_tod for this task but these 2131 * become obsolete, and will be re-assigned with the prev_set_* values, 2132 * in the case when the TOD is re-written. 2133 */ 2134 void 2135 tod_set_prev(timestruc_t ts) 2136 { 2137 if ((tod_validate_enable == 0) || (tod_faulted != TOD_NOFAULT) || 2138 tod_validate_deferred) { 2139 return; 2140 } 2141 prev_set_tick = gethrtime(); 2142 /* 2143 * A negative value will be set to zero in utc_to_tod() so we fake 2144 * a zero here in such a case. This would need to change if the 2145 * behavior of utc_to_tod() changes. 2146 */ 2147 prev_set_tod = ts.tv_sec < 0 ? 0 : ts.tv_sec; 2148 } 2149 2150 /* 2151 * tod_validate() is used for checking values returned by tod_get(). 2152 * Four error cases can be detected by this routine: 2153 * TOD_REVERSED: current tod value is less than previous. 2154 * TOD_STALLED: current tod value hasn't advanced. 2155 * TOD_JUMPED: current tod value advanced too far from previous value. 2156 * TOD_RATECHANGED: the ratio between average tod delta and 2157 * average tick delta has changed. 2158 */ 2159 time_t 2160 tod_validate(time_t tod) 2161 { 2162 time_t diff_tod; 2163 hrtime_t diff_tick; 2164 2165 long dtick; 2166 int dtick_delta; 2167 2168 int off = 0; 2169 enum tod_fault_type tod_bad = TOD_NOFAULT; 2170 2171 static int firsttime = 1; 2172 2173 static time_t prev_tod = 0; 2174 static hrtime_t prev_tick = 0; 2175 static long dtick_avg = TOD_REF_FREQ; 2176 2177 int cpr_resume_done = 0; 2178 int dr_resume_done = 0; 2179 2180 hrtime_t tick = gethrtime(); 2181 2182 ASSERT(MUTEX_HELD(&tod_lock)); 2183 2184 /* 2185 * tod_validate_enable is patchable via /etc/system. 2186 * If TOD is already faulted, or if TOD validation is deferred, 2187 * there is nothing to do. 2188 */ 2189 if ((tod_validate_enable == 0) || (tod_faulted != TOD_NOFAULT) || 2190 tod_validate_deferred) { 2191 return (tod); 2192 } 2193 2194 /* 2195 * If this is the first time through, we just need to save the tod 2196 * we were called with and hrtime so we can use them next time to 2197 * validate tod_get(). 2198 */ 2199 if (firsttime) { 2200 firsttime = 0; 2201 prev_tod = tod; 2202 prev_tick = tick; 2203 return (tod); 2204 } 2205 2206 /* 2207 * Handle any flags that have been turned on by tod_status_set(). 2208 * In the case where a tod_set() is done and then a subsequent 2209 * tod_get() fails (ie, both TOD_SET_DONE and TOD_GET_FAILED are 2210 * true), we treat the TOD_GET_FAILED with precedence by switching 2211 * off the flag, returning tod and leaving TOD_SET_DONE asserted 2212 * until such time as tod_get() completes successfully. 2213 */ 2214 if (tod_status_flag & TOD_GET_FAILED) { 2215 /* 2216 * tod_get() has encountered an issue, possibly transitory, 2217 * when reading TOD. We'll just return the incoming tod 2218 * value (which is actually hrestime.tv_sec in this case) 2219 * and when we get a genuine tod, following a successful 2220 * tod_get(), we can validate using prev_tod and prev_tick. 2221 */ 2222 tod_status_flag &= ~TOD_GET_FAILED; 2223 return (tod); 2224 } else if (tod_status_flag & TOD_SET_DONE) { 2225 /* 2226 * TOD has been modified. Just before the TOD was written, 2227 * tod_set_prev() saved tod and hrtime; we can now use 2228 * those values, prev_set_tod and prev_set_tick, to validate 2229 * the incoming tod that's just been read. 2230 */ 2231 prev_tod = prev_set_tod; 2232 prev_tick = prev_set_tick; 2233 dtick_avg = TOD_REF_FREQ; 2234 tod_status_flag &= ~TOD_SET_DONE; 2235 /* 2236 * If a tod_set() preceded a cpr_suspend() without an 2237 * intervening tod_validate(), we need to ensure that a 2238 * TOD_JUMPED condition is ignored. 2239 * Note this isn't a concern in the case of DR as we've 2240 * just reassigned dtick_avg, above. 2241 */ 2242 if (tod_status_flag & TOD_CPR_RESUME_DONE) { 2243 cpr_resume_done = 1; 2244 tod_status_flag &= ~TOD_CPR_RESUME_DONE; 2245 } 2246 } else if (tod_status_flag & TOD_CPR_RESUME_DONE) { 2247 /* 2248 * The system's coming back from a checkpoint resume. 2249 */ 2250 cpr_resume_done = 1; 2251 tod_status_flag &= ~TOD_CPR_RESUME_DONE; 2252 /* 2253 * We need to handle the possibility of a CPR suspend 2254 * operation having been initiated whilst a DR event was 2255 * in-flight. 2256 */ 2257 if (tod_status_flag & TOD_DR_RESUME_DONE) { 2258 dr_resume_done = 1; 2259 tod_status_flag &= ~TOD_DR_RESUME_DONE; 2260 } 2261 } else if (tod_status_flag & TOD_DR_RESUME_DONE) { 2262 /* 2263 * A Dynamic Reconfiguration event has taken place. 2264 */ 2265 dr_resume_done = 1; 2266 tod_status_flag &= ~TOD_DR_RESUME_DONE; 2267 } 2268 2269 /* test hook */ 2270 switch (tod_unit_test) { 2271 case 1: /* for testing jumping tod */ 2272 tod += tod_test_injector; 2273 tod_unit_test = 0; 2274 break; 2275 case 2: /* for testing stuck tod bit */ 2276 tod |= 1 << tod_test_injector; 2277 tod_unit_test = 0; 2278 break; 2279 case 3: /* for testing stalled tod */ 2280 tod = prev_tod; 2281 tod_unit_test = 0; 2282 break; 2283 case 4: /* reset tod fault status */ 2284 (void) tod_fault(TOD_NOFAULT, 0); 2285 tod_unit_test = 0; 2286 break; 2287 default: 2288 break; 2289 } 2290 2291 diff_tod = tod - prev_tod; 2292 diff_tick = tick - prev_tick; 2293 2294 ASSERT(diff_tick >= 0); 2295 2296 if (diff_tod < 0) { 2297 /* ERROR - tod reversed */ 2298 tod_bad = TOD_REVERSED; 2299 off = (int)(prev_tod - tod); 2300 } else if (diff_tod == 0) { 2301 /* tod did not advance */ 2302 if (diff_tick > TOD_STALL_THRESHOLD) { 2303 /* ERROR - tod stalled */ 2304 tod_bad = TOD_STALLED; 2305 } else { 2306 /* 2307 * Make sure we don't update prev_tick 2308 * so that diff_tick is calculated since 2309 * the first diff_tod == 0 2310 */ 2311 return (tod); 2312 } 2313 } else { 2314 /* calculate dtick */ 2315 dtick = diff_tick / diff_tod; 2316 2317 /* update dtick averages */ 2318 dtick_avg += ((dtick - dtick_avg) / TOD_FILTER_N); 2319 2320 /* 2321 * Calculate dtick_delta as 2322 * variation from reference freq in quartiles 2323 */ 2324 dtick_delta = (dtick_avg - TOD_REF_FREQ) / 2325 (TOD_REF_FREQ >> 2); 2326 2327 /* 2328 * Even with a perfectly functioning TOD device, 2329 * when the number of elapsed seconds is low the 2330 * algorithm can calculate a rate that is beyond 2331 * tolerance, causing an error. The algorithm is 2332 * inaccurate when elapsed time is low (less than 2333 * 5 seconds). 2334 */ 2335 if (diff_tod > 4) { 2336 if (dtick < TOD_JUMP_THRESHOLD) { 2337 /* 2338 * If we've just done a CPR resume, we detect 2339 * a jump in the TOD but, actually, what's 2340 * happened is that the TOD has been increasing 2341 * whilst the system was suspended and the tick 2342 * count hasn't kept up. We consider the first 2343 * occurrence of this after a resume as normal 2344 * and ignore it; otherwise, in a non-resume 2345 * case, we regard it as a TOD problem. 2346 */ 2347 if (!cpr_resume_done) { 2348 /* ERROR - tod jumped */ 2349 tod_bad = TOD_JUMPED; 2350 off = (int)diff_tod; 2351 } 2352 } 2353 if (dtick_delta) { 2354 /* 2355 * If we've just done a DR resume, dtick_avg 2356 * can go a bit askew so we reset it and carry 2357 * on; otherwise, the TOD is in error. 2358 */ 2359 if (dr_resume_done) { 2360 dtick_avg = TOD_REF_FREQ; 2361 } else { 2362 /* ERROR - change in clock rate */ 2363 tod_bad = TOD_RATECHANGED; 2364 } 2365 } 2366 } 2367 } 2368 2369 if (tod_bad != TOD_NOFAULT) { 2370 (void) tod_fault(tod_bad, off); 2371 2372 /* 2373 * Disable dosynctodr since we are going to fault 2374 * the TOD chip anyway here 2375 */ 2376 dosynctodr = 0; 2377 2378 /* 2379 * Set tod to the correct value from hrestime 2380 */ 2381 tod = hrestime.tv_sec; 2382 } 2383 2384 prev_tod = tod; 2385 prev_tick = tick; 2386 return (tod); 2387 } 2388 2389 static void 2390 calcloadavg(int nrun, uint64_t *hp_ave) 2391 { 2392 static int64_t f[3] = { 135, 27, 9 }; 2393 uint_t i; 2394 int64_t q, r; 2395 2396 /* 2397 * Compute load average over the last 1, 5, and 15 minutes 2398 * (60, 300, and 900 seconds). The constants in f[3] are for 2399 * exponential decay: 2400 * (1 - exp(-1/60)) << 13 = 135, 2401 * (1 - exp(-1/300)) << 13 = 27, 2402 * (1 - exp(-1/900)) << 13 = 9. 2403 */ 2404 2405 /* 2406 * a little hoop-jumping to avoid integer overflow 2407 */ 2408 for (i = 0; i < 3; i++) { 2409 q = (hp_ave[i] >> 16) << 7; 2410 r = (hp_ave[i] & 0xffff) << 7; 2411 hp_ave[i] += ((nrun - q) * f[i] - ((r * f[i]) >> 16)) >> 4; 2412 } 2413 } 2414 2415 /* 2416 * lbolt_hybrid() is used by ddi_get_lbolt() and ddi_get_lbolt64() to 2417 * calculate the value of lbolt according to the current mode. In the event 2418 * driven mode (the default), lbolt is calculated by dividing the current hires 2419 * time by the number of nanoseconds per clock tick. In the cyclic driven mode 2420 * an internal variable is incremented at each firing of the lbolt cyclic 2421 * and returned by lbolt_cyclic_driven(). 2422 * 2423 * The system will transition from event to cyclic driven mode when the number 2424 * of calls to lbolt_event_driven() exceeds the (per CPU) threshold within a 2425 * window of time. It does so by reprograming lbolt_cyclic from CY_INFINITY to 2426 * nsec_per_tick. The lbolt cyclic will remain ON while at least one CPU is 2427 * causing enough activity to cross the thresholds. 2428 */ 2429 int64_t 2430 lbolt_bootstrap(void) 2431 { 2432 return (0); 2433 } 2434 2435 /* ARGSUSED */ 2436 uint_t 2437 lbolt_ev_to_cyclic(caddr_t arg1, caddr_t arg2) 2438 { 2439 hrtime_t ts, exp; 2440 int ret; 2441 2442 ASSERT(lbolt_hybrid != lbolt_cyclic_driven); 2443 2444 kpreempt_disable(); 2445 2446 ts = gethrtime(); 2447 lb_info->lbi_internal = (ts/nsec_per_tick); 2448 2449 /* 2450 * Align the next expiration to a clock tick boundary. 2451 */ 2452 exp = ts + nsec_per_tick - 1; 2453 exp = (exp/nsec_per_tick) * nsec_per_tick; 2454 2455 ret = cyclic_reprogram(lb_info->id.lbi_cyclic_id, exp); 2456 ASSERT(ret); 2457 2458 lbolt_hybrid = lbolt_cyclic_driven; 2459 lb_info->lbi_cyc_deactivate = B_FALSE; 2460 lb_info->lbi_cyc_deac_start = lb_info->lbi_internal; 2461 2462 kpreempt_enable(); 2463 2464 ret = atomic_dec_32_nv(&lb_info->lbi_token); 2465 ASSERT(ret == 0); 2466 2467 return (1); 2468 } 2469 2470 int64_t 2471 lbolt_event_driven(void) 2472 { 2473 hrtime_t ts; 2474 int64_t lb; 2475 int ret, cpu = CPU->cpu_seqid; 2476 2477 ts = gethrtime(); 2478 ASSERT(ts > 0); 2479 2480 ASSERT(nsec_per_tick > 0); 2481 lb = (ts/nsec_per_tick); 2482 2483 /* 2484 * Switch to cyclic mode if the number of calls to this routine 2485 * has reached the threshold within the interval. 2486 */ 2487 if ((lb - lb_cpu[cpu].lbc_cnt_start) < lb_info->lbi_thresh_interval) { 2488 2489 if (--lb_cpu[cpu].lbc_counter == 0) { 2490 /* 2491 * Reached the threshold within the interval, reset 2492 * the usage statistics. 2493 */ 2494 lb_cpu[cpu].lbc_counter = lb_info->lbi_thresh_calls; 2495 lb_cpu[cpu].lbc_cnt_start = lb; 2496 2497 /* 2498 * Make sure only one thread reprograms the 2499 * lbolt cyclic and changes the mode. 2500 */ 2501 if (panicstr == NULL && 2502 atomic_cas_32(&lb_info->lbi_token, 0, 1) == 0) { 2503 2504 if (lbolt_hybrid == lbolt_cyclic_driven) { 2505 ret = atomic_dec_32_nv( 2506 &lb_info->lbi_token); 2507 ASSERT(ret == 0); 2508 } else { 2509 lbolt_softint_post(); 2510 } 2511 } 2512 } 2513 } else { 2514 /* 2515 * Exceeded the interval, reset the usage statistics. 2516 */ 2517 lb_cpu[cpu].lbc_counter = lb_info->lbi_thresh_calls; 2518 lb_cpu[cpu].lbc_cnt_start = lb; 2519 } 2520 2521 ASSERT(lb >= lb_info->lbi_debug_time); 2522 2523 return (lb - lb_info->lbi_debug_time); 2524 } 2525 2526 int64_t 2527 lbolt_cyclic_driven(void) 2528 { 2529 int64_t lb = lb_info->lbi_internal; 2530 int cpu; 2531 2532 /* 2533 * If a CPU has already prevented the lbolt cyclic from deactivating 2534 * itself, don't bother tracking the usage. Otherwise check if we're 2535 * within the interval and how the per CPU counter is doing. 2536 */ 2537 if (lb_info->lbi_cyc_deactivate) { 2538 cpu = CPU->cpu_seqid; 2539 if ((lb - lb_cpu[cpu].lbc_cnt_start) < 2540 lb_info->lbi_thresh_interval) { 2541 2542 if (lb_cpu[cpu].lbc_counter == 0) 2543 /* 2544 * Reached the threshold within the interval, 2545 * prevent the lbolt cyclic from turning itself 2546 * off. 2547 */ 2548 lb_info->lbi_cyc_deactivate = B_FALSE; 2549 else 2550 lb_cpu[cpu].lbc_counter--; 2551 } else { 2552 /* 2553 * Only reset the usage statistics when we have 2554 * exceeded the interval. 2555 */ 2556 lb_cpu[cpu].lbc_counter = lb_info->lbi_thresh_calls; 2557 lb_cpu[cpu].lbc_cnt_start = lb; 2558 } 2559 } 2560 2561 ASSERT(lb >= lb_info->lbi_debug_time); 2562 2563 return (lb - lb_info->lbi_debug_time); 2564 } 2565 2566 /* 2567 * The lbolt_cyclic() routine will fire at a nsec_per_tick interval to satisfy 2568 * performance needs of ddi_get_lbolt() and ddi_get_lbolt64() consumers. 2569 * It is inactive by default, and will be activated when switching from event 2570 * to cyclic driven lbolt. The cyclic will turn itself off unless signaled 2571 * by lbolt_cyclic_driven(). 2572 */ 2573 static void 2574 lbolt_cyclic(void) 2575 { 2576 int ret; 2577 2578 lb_info->lbi_internal++; 2579 2580 if (!lbolt_cyc_only) { 2581 2582 if (lb_info->lbi_cyc_deactivate) { 2583 /* 2584 * Switching from cyclic to event driven mode. 2585 */ 2586 if (panicstr == NULL && 2587 atomic_cas_32(&lb_info->lbi_token, 0, 1) == 0) { 2588 2589 if (lbolt_hybrid == lbolt_event_driven) { 2590 ret = atomic_dec_32_nv( 2591 &lb_info->lbi_token); 2592 ASSERT(ret == 0); 2593 return; 2594 } 2595 2596 kpreempt_disable(); 2597 2598 lbolt_hybrid = lbolt_event_driven; 2599 ret = cyclic_reprogram( 2600 lb_info->id.lbi_cyclic_id, 2601 CY_INFINITY); 2602 ASSERT(ret); 2603 2604 kpreempt_enable(); 2605 2606 ret = atomic_dec_32_nv(&lb_info->lbi_token); 2607 ASSERT(ret == 0); 2608 } 2609 } 2610 2611 /* 2612 * The lbolt cyclic should not try to deactivate itself before 2613 * the sampling period has elapsed. 2614 */ 2615 if (lb_info->lbi_internal - lb_info->lbi_cyc_deac_start >= 2616 lb_info->lbi_thresh_interval) { 2617 lb_info->lbi_cyc_deactivate = B_TRUE; 2618 lb_info->lbi_cyc_deac_start = lb_info->lbi_internal; 2619 } 2620 } 2621 } 2622 2623 /* 2624 * Since the lbolt service was historically cyclic driven, it must be 'stopped' 2625 * when the system drops into the kernel debugger. lbolt_debug_entry() is 2626 * called by the KDI system claim callbacks to record a hires timestamp at 2627 * debug enter time. lbolt_debug_return() is called by the sistem release 2628 * callbacks to account for the time spent in the debugger. The value is then 2629 * accumulated in the lb_info structure and used by lbolt_event_driven() and 2630 * lbolt_cyclic_driven(), as well as the mdb_get_lbolt() routine. 2631 */ 2632 void 2633 lbolt_debug_entry(void) 2634 { 2635 if (lbolt_hybrid != lbolt_bootstrap) { 2636 ASSERT(lb_info != NULL); 2637 lb_info->lbi_debug_ts = gethrtime(); 2638 } 2639 } 2640 2641 /* 2642 * Calculate the time spent in the debugger and add it to the lbolt info 2643 * structure. We also update the internal lbolt value in case we were in 2644 * cyclic driven mode going in. 2645 */ 2646 void 2647 lbolt_debug_return(void) 2648 { 2649 hrtime_t ts; 2650 2651 if (lbolt_hybrid != lbolt_bootstrap) { 2652 ASSERT(lb_info != NULL); 2653 ASSERT(nsec_per_tick > 0); 2654 2655 ts = gethrtime(); 2656 lb_info->lbi_internal = (ts/nsec_per_tick); 2657 lb_info->lbi_debug_time += 2658 ((ts - lb_info->lbi_debug_ts)/nsec_per_tick); 2659 2660 lb_info->lbi_debug_ts = 0; 2661 } 2662 } 2663