1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 23 /* All Rights Reserved */ 24 25 /* 26 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 27 * Use is subject to license terms. 28 */ 29 30 #include <sys/types.h> 31 #include <sys/sysmacros.h> 32 #include <sys/param.h> 33 #include <sys/systm.h> 34 #include <sys/errno.h> 35 #include <sys/signal.h> 36 #include <sys/cred.h> 37 #include <sys/user.h> 38 #include <sys/conf.h> 39 #include <sys/vfs.h> 40 #include <sys/vnode.h> 41 #include <sys/pathname.h> 42 #include <sys/file.h> 43 #include <sys/proc.h> 44 #include <sys/var.h> 45 #include <sys/cpuvar.h> 46 #include <sys/open.h> 47 #include <sys/cmn_err.h> 48 #include <sys/priocntl.h> 49 #include <sys/procset.h> 50 #include <sys/prsystm.h> 51 #include <sys/debug.h> 52 #include <sys/kmem.h> 53 #include <sys/atomic.h> 54 #include <sys/fcntl.h> 55 #include <sys/poll.h> 56 #include <sys/rctl.h> 57 #include <sys/port_impl.h> 58 59 #include <c2/audit.h> 60 #include <sys/nbmlock.h> 61 62 #ifdef DEBUG 63 64 static uint32_t afd_maxfd; /* # of entries in maximum allocated array */ 65 static uint32_t afd_alloc; /* count of kmem_alloc()s */ 66 static uint32_t afd_free; /* count of kmem_free()s */ 67 static uint32_t afd_wait; /* count of waits on non-zero ref count */ 68 #define MAXFD(x) (afd_maxfd = ((afd_maxfd >= (x))? afd_maxfd : (x))) 69 #define COUNT(x) atomic_add_32(&x, 1) 70 71 #else /* DEBUG */ 72 73 #define MAXFD(x) 74 #define COUNT(x) 75 76 #endif /* DEBUG */ 77 78 kmem_cache_t *file_cache; 79 static int vpsetattr(vnode_t *, vattr_t *, int); 80 81 static void port_close_fd(portfd_t *); 82 83 /* 84 * File descriptor allocation. 85 * 86 * fd_find(fip, minfd) finds the first available descriptor >= minfd. 87 * The most common case is open(2), in which minfd = 0, but we must also 88 * support fcntl(fd, F_DUPFD, minfd). 89 * 90 * The algorithm is as follows: we keep all file descriptors in an infix 91 * binary tree in which each node records the number of descriptors 92 * allocated in its right subtree, including itself. Starting at minfd, 93 * we ascend the tree until we find a non-fully allocated right subtree. 94 * We then descend that subtree in a binary search for the smallest fd. 95 * Finally, we ascend the tree again to increment the allocation count 96 * of every subtree containing the newly-allocated fd. Freeing an fd 97 * requires only the last step: we ascend the tree to decrement allocation 98 * counts. Each of these three steps (ascent to find non-full subtree, 99 * descent to find lowest fd, ascent to update allocation counts) is 100 * O(log n), thus the algorithm as a whole is O(log n). 101 * 102 * We don't implement the fd tree using the customary left/right/parent 103 * pointers, but instead take advantage of the glorious mathematics of 104 * full infix binary trees. For reference, here's an illustration of the 105 * logical structure of such a tree, rooted at 4 (binary 100), covering 106 * the range 1-7 (binary 001-111). Our canonical trees do not include 107 * fd 0; we'll deal with that later. 108 * 109 * 100 110 * / \ 111 * / \ 112 * 010 110 113 * / \ / \ 114 * 001 011 101 111 115 * 116 * We make the following observations, all of which are easily proven by 117 * induction on the depth of the tree: 118 * 119 * (T1) The least-significant bit (LSB) of any node is equal to its level 120 * in the tree. In our example, nodes 001, 011, 101 and 111 are at 121 * level 0; nodes 010 and 110 are at level 1; and node 100 is at level 2. 122 * 123 * (T2) The child size (CSIZE) of node N -- that is, the total number of 124 * right-branch descendants in a child of node N, including itself -- is 125 * given by clearing all but the least significant bit of N. This 126 * follows immediately from (T1). Applying this rule to our example, we 127 * see that CSIZE(100) = 100, CSIZE(x10) = 10, and CSIZE(xx1) = 1. 128 * 129 * (T3) The nearest left ancestor (LPARENT) of node N -- that is, the nearest 130 * ancestor containing node N in its right child -- is given by clearing 131 * the LSB of N. For example, LPARENT(111) = 110 and LPARENT(110) = 100. 132 * Clearing the LSB of nodes 001, 010 or 100 yields zero, reflecting 133 * the fact that these are leftmost nodes. Note that this algorithm 134 * automatically skips generations as necessary. For example, the parent 135 * of node 101 is 110, which is a *right* ancestor (not what we want); 136 * but its grandparent is 100, which is a left ancestor. Clearing the LSB 137 * of 101 gets us to 100 directly, skipping right past the uninteresting 138 * generation (110). 139 * 140 * Note that since LPARENT clears the LSB, whereas CSIZE clears all *but* 141 * the LSB, we can express LPARENT() nicely in terms of CSIZE(): 142 * 143 * LPARENT(N) = N - CSIZE(N) 144 * 145 * (T4) The nearest right ancestor (RPARENT) of node N is given by: 146 * 147 * RPARENT(N) = N + CSIZE(N) 148 * 149 * (T5) For every interior node, the children differ from their parent by 150 * CSIZE(parent) / 2. In our example, CSIZE(100) / 2 = 2 = 10 binary, 151 * and indeed, the children of 100 are 100 +/- 10 = 010 and 110. 152 * 153 * Next, we'll need a few two's-complement math tricks. Suppose a number, 154 * N, has the following form: 155 * 156 * N = xxxx10...0 157 * 158 * That is, the binary representation of N consists of some string of bits, 159 * then a 1, then all zeroes. This amounts to nothing more than saying that 160 * N has a least-significant bit, which is true for any N != 0. If we look 161 * at N and N - 1 together, we see that we can combine them in useful ways: 162 * 163 * N = xxxx10...0 164 * N - 1 = xxxx01...1 165 * ------------------------ 166 * N & (N - 1) = xxxx000000 167 * N | (N - 1) = xxxx111111 168 * N ^ (N - 1) = 111111 169 * 170 * In particular, this suggests several easy ways to clear all but the LSB, 171 * which by (T2) is exactly what we need to determine CSIZE(N) = 10...0. 172 * We'll opt for this formulation: 173 * 174 * (C1) CSIZE(N) = (N - 1) ^ (N | (N - 1)) 175 * 176 * Similarly, we have an easy way to determine LPARENT(N), which requires 177 * that we clear the LSB of N: 178 * 179 * (L1) LPARENT(N) = N & (N - 1) 180 * 181 * We note in the above relations that (N | (N - 1)) - N = CSIZE(N) - 1. 182 * When combined with (T4), this yields an easy way to compute RPARENT(N): 183 * 184 * (R1) RPARENT(N) = (N | (N - 1)) + 1 185 * 186 * Finally, to accommodate fd 0 we must adjust all of our results by +/-1 to 187 * move the fd range from [1, 2^n) to [0, 2^n - 1). This is straightforward, 188 * so there's no need to belabor the algebra; the revised relations become: 189 * 190 * (C1a) CSIZE(N) = N ^ (N | (N + 1)) 191 * 192 * (L1a) LPARENT(N) = (N & (N + 1)) - 1 193 * 194 * (R1a) RPARENT(N) = N | (N + 1) 195 * 196 * This completes the mathematical framework. We now have all the tools 197 * we need to implement fd_find() and fd_reserve(). 198 * 199 * fd_find(fip, minfd) finds the smallest available file descriptor >= minfd. 200 * It does not actually allocate the descriptor; that's done by fd_reserve(). 201 * fd_find() proceeds in two steps: 202 * 203 * (1) Find the leftmost subtree that contains a descriptor >= minfd. 204 * We start at the right subtree rooted at minfd. If this subtree is 205 * not full -- if fip->fi_list[minfd].uf_alloc != CSIZE(minfd) -- then 206 * step 1 is done. Otherwise, we know that all fds in this subtree 207 * are taken, so we ascend to RPARENT(minfd) using (R1a). We repeat 208 * this process until we either find a candidate subtree or exceed 209 * fip->fi_nfiles. We use (C1a) to compute CSIZE(). 210 * 211 * (2) Find the smallest fd in the subtree discovered by step 1. 212 * Starting at the root of this subtree, we descend to find the 213 * smallest available fd. Since the left children have the smaller 214 * fds, we will descend rightward only when the left child is full. 215 * 216 * We begin by comparing the number of allocated fds in the root 217 * to the number of allocated fds in its right child; if they differ 218 * by exactly CSIZE(child), we know the left subtree is full, so we 219 * descend right; that is, the right child becomes the search root. 220 * Otherwise we leave the root alone and start following the right 221 * child's left children. As fortune would have it, this is very 222 * simple computationally: by (T5), the right child of fd is just 223 * fd + size, where size = CSIZE(fd) / 2. Applying (T5) again, 224 * we find that the right child's left child is fd + size - (size / 2) = 225 * fd + (size / 2); *its* left child is fd + (size / 2) - (size / 4) = 226 * fd + (size / 4), and so on. In general, fd's right child's 227 * leftmost nth descendant is fd + (size >> n). Thus, to follow 228 * the right child's left descendants, we just halve the size in 229 * each iteration of the search. 230 * 231 * When we descend leftward, we must keep track of the number of fds 232 * that were allocated in all the right subtrees we rejected, so we 233 * know how many of the root fd's allocations are in the remaining 234 * (as yet unexplored) leftmost part of its right subtree. When we 235 * encounter a fully-allocated left child -- that is, when we find 236 * that fip->fi_list[fd].uf_alloc == ralloc + size -- we descend right 237 * (as described earlier), resetting ralloc to zero. 238 * 239 * fd_reserve(fip, fd, incr) either allocates or frees fd, depending 240 * on whether incr is 1 or -1. Starting at fd, fd_reserve() ascends 241 * the leftmost ancestors (see (T3)) and updates the allocation counts. 242 * At each step we use (L1a) to compute LPARENT(), the next left ancestor. 243 * 244 * flist_minsize() finds the minimal tree that still covers all 245 * used fds; as long as the allocation count of a root node is zero, we 246 * don't need that node or its right subtree. 247 * 248 * flist_nalloc() counts the number of allocated fds in the tree, by starting 249 * at the top of the tree and summing the right-subtree allocation counts as 250 * it descends leftwards. 251 * 252 * Note: we assume that flist_grow() will keep fip->fi_nfiles of the form 253 * 2^n - 1. This ensures that the fd trees are always full, which saves 254 * quite a bit of boundary checking. 255 */ 256 static int 257 fd_find(uf_info_t *fip, int minfd) 258 { 259 int size, ralloc, fd; 260 261 ASSERT(MUTEX_HELD(&fip->fi_lock)); 262 ASSERT((fip->fi_nfiles & (fip->fi_nfiles + 1)) == 0); 263 264 for (fd = minfd; (uint_t)fd < fip->fi_nfiles; fd |= fd + 1) { 265 size = fd ^ (fd | (fd + 1)); 266 if (fip->fi_list[fd].uf_alloc == size) 267 continue; 268 for (ralloc = 0, size >>= 1; size != 0; size >>= 1) { 269 ralloc += fip->fi_list[fd + size].uf_alloc; 270 if (fip->fi_list[fd].uf_alloc == ralloc + size) { 271 fd += size; 272 ralloc = 0; 273 } 274 } 275 return (fd); 276 } 277 return (-1); 278 } 279 280 static void 281 fd_reserve(uf_info_t *fip, int fd, int incr) 282 { 283 int pfd; 284 uf_entry_t *ufp = &fip->fi_list[fd]; 285 286 ASSERT((uint_t)fd < fip->fi_nfiles); 287 ASSERT((ufp->uf_busy == 0 && incr == 1) || 288 (ufp->uf_busy == 1 && incr == -1)); 289 ASSERT(MUTEX_HELD(&ufp->uf_lock)); 290 ASSERT(MUTEX_HELD(&fip->fi_lock)); 291 292 for (pfd = fd; pfd >= 0; pfd = (pfd & (pfd + 1)) - 1) 293 fip->fi_list[pfd].uf_alloc += incr; 294 295 ufp->uf_busy += incr; 296 } 297 298 static int 299 flist_minsize(uf_info_t *fip) 300 { 301 int fd; 302 303 /* 304 * We'd like to ASSERT(MUTEX_HELD(&fip->fi_lock)), but we're called 305 * by flist_fork(), which relies on other mechanisms for mutual 306 * exclusion. 307 */ 308 ASSERT((fip->fi_nfiles & (fip->fi_nfiles + 1)) == 0); 309 310 for (fd = fip->fi_nfiles; fd != 0; fd >>= 1) 311 if (fip->fi_list[fd >> 1].uf_alloc != 0) 312 break; 313 314 return (fd); 315 } 316 317 static int 318 flist_nalloc(uf_info_t *fip) 319 { 320 int fd; 321 int nalloc = 0; 322 323 ASSERT(MUTEX_HELD(&fip->fi_lock)); 324 ASSERT((fip->fi_nfiles & (fip->fi_nfiles + 1)) == 0); 325 326 for (fd = fip->fi_nfiles; fd != 0; fd >>= 1) 327 nalloc += fip->fi_list[fd >> 1].uf_alloc; 328 329 return (nalloc); 330 } 331 332 /* 333 * Increase size of the fi_list array to accommodate at least maxfd. 334 * We keep the size of the form 2^n - 1 for benefit of fd_find(). 335 */ 336 static void 337 flist_grow(int maxfd) 338 { 339 uf_info_t *fip = P_FINFO(curproc); 340 int newcnt, oldcnt; 341 uf_entry_t *src, *dst, *newlist, *oldlist, *newend, *oldend; 342 uf_rlist_t *urp; 343 344 for (newcnt = 1; newcnt <= maxfd; newcnt = (newcnt << 1) | 1) 345 continue; 346 347 newlist = kmem_zalloc(newcnt * sizeof (uf_entry_t), KM_SLEEP); 348 349 mutex_enter(&fip->fi_lock); 350 oldcnt = fip->fi_nfiles; 351 if (newcnt <= oldcnt) { 352 mutex_exit(&fip->fi_lock); 353 kmem_free(newlist, newcnt * sizeof (uf_entry_t)); 354 return; 355 } 356 ASSERT((newcnt & (newcnt + 1)) == 0); 357 oldlist = fip->fi_list; 358 oldend = oldlist + oldcnt; 359 newend = newlist + oldcnt; /* no need to lock beyond old end */ 360 361 /* 362 * fi_list and fi_nfiles cannot change while any uf_lock is held, 363 * so we must grab all the old locks *and* the new locks up to oldcnt. 364 * (Locks beyond the end of oldcnt aren't visible until we store 365 * the new fi_nfiles, which is the last thing we do before dropping 366 * all the locks, so there's no need to acquire these locks). 367 * Holding the new locks is necessary because when fi_list changes 368 * to point to the new list, fi_nfiles won't have been stored yet. 369 * If we *didn't* hold the new locks, someone doing a UF_ENTER() 370 * could see the new fi_list, grab the new uf_lock, and then see 371 * fi_nfiles change while the lock is held -- in violation of 372 * UF_ENTER() semantics. 373 */ 374 for (src = oldlist; src < oldend; src++) 375 mutex_enter(&src->uf_lock); 376 377 for (dst = newlist; dst < newend; dst++) 378 mutex_enter(&dst->uf_lock); 379 380 for (src = oldlist, dst = newlist; src < oldend; src++, dst++) { 381 dst->uf_file = src->uf_file; 382 dst->uf_fpollinfo = src->uf_fpollinfo; 383 dst->uf_refcnt = src->uf_refcnt; 384 dst->uf_alloc = src->uf_alloc; 385 dst->uf_flag = src->uf_flag; 386 dst->uf_busy = src->uf_busy; 387 dst->uf_portfd = src->uf_portfd; 388 } 389 390 /* 391 * As soon as we store the new flist, future locking operations 392 * will use it. Therefore, we must ensure that all the state 393 * we've just established reaches global visibility before the 394 * new flist does. 395 */ 396 membar_producer(); 397 fip->fi_list = newlist; 398 399 /* 400 * Routines like getf() make an optimistic check on the validity 401 * of the supplied file descriptor: if it's less than the current 402 * value of fi_nfiles -- examined without any locks -- then it's 403 * safe to attempt a UF_ENTER() on that fd (which is a valid 404 * assumption because fi_nfiles only increases). Therefore, it 405 * is critical that the new value of fi_nfiles not reach global 406 * visibility until after the new fi_list: if it happened the 407 * other way around, getf() could see the new fi_nfiles and attempt 408 * a UF_ENTER() on the old fi_list, which would write beyond its 409 * end if the fd exceeded the old fi_nfiles. 410 */ 411 membar_producer(); 412 fip->fi_nfiles = newcnt; 413 414 /* 415 * The new state is consistent now, so we can drop all the locks. 416 */ 417 for (dst = newlist; dst < newend; dst++) 418 mutex_exit(&dst->uf_lock); 419 420 for (src = oldlist; src < oldend; src++) { 421 /* 422 * If any threads are blocked on the old cvs, wake them. 423 * This will force them to wake up, discover that fi_list 424 * has changed, and go back to sleep on the new cvs. 425 */ 426 cv_broadcast(&src->uf_wanted_cv); 427 cv_broadcast(&src->uf_closing_cv); 428 mutex_exit(&src->uf_lock); 429 } 430 431 mutex_exit(&fip->fi_lock); 432 433 /* 434 * Retire the old flist. We can't actually kmem_free() it now 435 * because someone may still have a pointer to it. Instead, 436 * we link it onto a list of retired flists. The new flist 437 * is at least double the size of the previous flist, so the 438 * total size of all retired flists will be less than the size 439 * of the current one (to prove, consider the sum of a geometric 440 * series in powers of 2). exit() frees the retired flists. 441 */ 442 urp = kmem_zalloc(sizeof (uf_rlist_t), KM_SLEEP); 443 urp->ur_list = oldlist; 444 urp->ur_nfiles = oldcnt; 445 446 mutex_enter(&fip->fi_lock); 447 urp->ur_next = fip->fi_rlist; 448 fip->fi_rlist = urp; 449 mutex_exit(&fip->fi_lock); 450 } 451 452 /* 453 * Utility functions for keeping track of the active file descriptors. 454 */ 455 void 456 clear_stale_fd() /* called from post_syscall() */ 457 { 458 afd_t *afd = &curthread->t_activefd; 459 int i; 460 461 /* uninitialized is ok here, a_nfd is then zero */ 462 for (i = 0; i < afd->a_nfd; i++) { 463 /* assert that this should not be necessary */ 464 ASSERT(afd->a_fd[i] == -1); 465 afd->a_fd[i] = -1; 466 } 467 afd->a_stale = 0; 468 } 469 470 void 471 free_afd(afd_t *afd) /* called below and from thread_free() */ 472 { 473 int i; 474 475 /* free the buffer if it was kmem_alloc()ed */ 476 if (afd->a_nfd > sizeof (afd->a_buf) / sizeof (afd->a_buf[0])) { 477 COUNT(afd_free); 478 kmem_free(afd->a_fd, afd->a_nfd * sizeof (afd->a_fd[0])); 479 } 480 481 /* (re)initialize the structure */ 482 afd->a_fd = &afd->a_buf[0]; 483 afd->a_nfd = sizeof (afd->a_buf) / sizeof (afd->a_buf[0]); 484 afd->a_stale = 0; 485 for (i = 0; i < afd->a_nfd; i++) 486 afd->a_fd[i] = -1; 487 } 488 489 static void 490 set_active_fd(int fd) 491 { 492 afd_t *afd = &curthread->t_activefd; 493 int i; 494 int *old_fd; 495 int old_nfd; 496 497 if (afd->a_nfd == 0) /* first time initialization */ 498 free_afd(afd); 499 500 /* insert fd into vacant slot, if any */ 501 for (i = 0; i < afd->a_nfd; i++) { 502 if (afd->a_fd[i] == -1) { 503 afd->a_fd[i] = fd; 504 return; 505 } 506 } 507 508 /* 509 * Reallocate the a_fd[] array to add one more slot. 510 */ 511 old_fd = afd->a_fd; 512 old_nfd = afd->a_nfd; 513 afd->a_nfd = old_nfd + 1; 514 MAXFD(afd->a_nfd); 515 COUNT(afd_alloc); 516 afd->a_fd = kmem_alloc(afd->a_nfd * sizeof (afd->a_fd[0]), KM_SLEEP); 517 for (i = 0; i < old_nfd; i++) 518 afd->a_fd[i] = old_fd[i]; 519 afd->a_fd[i] = fd; 520 521 if (old_nfd > sizeof (afd->a_buf) / sizeof (afd->a_buf[0])) { 522 COUNT(afd_free); 523 kmem_free(old_fd, old_nfd * sizeof (afd->a_fd[0])); 524 } 525 } 526 527 void 528 clear_active_fd(int fd) /* called below and from aio.c */ 529 { 530 afd_t *afd = &curthread->t_activefd; 531 int i; 532 533 for (i = 0; i < afd->a_nfd; i++) { 534 if (afd->a_fd[i] == fd) { 535 afd->a_fd[i] = -1; 536 break; 537 } 538 } 539 ASSERT(i < afd->a_nfd); /* not found is not ok */ 540 } 541 542 /* 543 * Does this thread have this fd active? 544 */ 545 static int 546 is_active_fd(kthread_t *t, int fd) 547 { 548 afd_t *afd = &t->t_activefd; 549 int i; 550 551 /* uninitialized is ok here, a_nfd is then zero */ 552 for (i = 0; i < afd->a_nfd; i++) { 553 if (afd->a_fd[i] == fd) 554 return (1); 555 } 556 return (0); 557 } 558 559 /* 560 * Convert a user supplied file descriptor into a pointer to a file 561 * structure. Only task is to check range of the descriptor (soft 562 * resource limit was enforced at open time and shouldn't be checked 563 * here). 564 */ 565 file_t * 566 getf(int fd) 567 { 568 uf_info_t *fip = P_FINFO(curproc); 569 uf_entry_t *ufp; 570 file_t *fp; 571 572 if ((uint_t)fd >= fip->fi_nfiles) 573 return (NULL); 574 575 UF_ENTER(ufp, fip, fd); 576 if ((fp = ufp->uf_file) == NULL) { 577 UF_EXIT(ufp); 578 579 if (fd == fip->fi_badfd && fip->fi_action > 0) 580 tsignal(curthread, fip->fi_action); 581 582 return (NULL); 583 } 584 ufp->uf_refcnt++; 585 586 /* 587 * archive per file audit data 588 */ 589 if (audit_active) 590 (void) audit_getf(fd); 591 UF_EXIT(ufp); 592 593 set_active_fd(fd); /* record the active file descriptor */ 594 595 return (fp); 596 } 597 598 /* 599 * Close whatever file currently occupies the file descriptor slot 600 * and install the new file, usually NULL, in the file descriptor slot. 601 * The close must complete before we release the file descriptor slot. 602 * If newfp != NULL we only return an error if we can't allocate the 603 * slot so the caller knows that it needs to free the filep; 604 * in the other cases we return the error number from closef(). 605 */ 606 int 607 closeandsetf(int fd, file_t *newfp) 608 { 609 proc_t *p = curproc; 610 uf_info_t *fip = P_FINFO(p); 611 uf_entry_t *ufp; 612 file_t *fp; 613 fpollinfo_t *fpip; 614 portfd_t *pfd; 615 int error; 616 617 if ((uint_t)fd >= fip->fi_nfiles) { 618 if (newfp == NULL) 619 return (EBADF); 620 flist_grow(fd); 621 } 622 623 if (newfp != NULL) { 624 /* 625 * If ufp is reserved but has no file pointer, it's in the 626 * transition between ufalloc() and setf(). We must wait 627 * for this transition to complete before assigning the 628 * new non-NULL file pointer. 629 */ 630 mutex_enter(&fip->fi_lock); 631 if (fd == fip->fi_badfd) { 632 mutex_exit(&fip->fi_lock); 633 if (fip->fi_action > 0) 634 tsignal(curthread, fip->fi_action); 635 return (EBADF); 636 } 637 UF_ENTER(ufp, fip, fd); 638 while (ufp->uf_busy && ufp->uf_file == NULL) { 639 mutex_exit(&fip->fi_lock); 640 cv_wait_stop(&ufp->uf_wanted_cv, &ufp->uf_lock, 250); 641 UF_EXIT(ufp); 642 mutex_enter(&fip->fi_lock); 643 UF_ENTER(ufp, fip, fd); 644 } 645 if ((fp = ufp->uf_file) == NULL) { 646 ASSERT(ufp->uf_fpollinfo == NULL); 647 ASSERT(ufp->uf_flag == 0); 648 fd_reserve(fip, fd, 1); 649 ufp->uf_file = newfp; 650 UF_EXIT(ufp); 651 mutex_exit(&fip->fi_lock); 652 return (0); 653 } 654 mutex_exit(&fip->fi_lock); 655 } else { 656 UF_ENTER(ufp, fip, fd); 657 if ((fp = ufp->uf_file) == NULL) { 658 UF_EXIT(ufp); 659 return (EBADF); 660 } 661 } 662 663 /* 664 * archive per file audit data 665 */ 666 if (audit_active) 667 (void) audit_getf(fd); 668 ASSERT(ufp->uf_busy); 669 ufp->uf_file = NULL; 670 ufp->uf_flag = 0; 671 672 /* 673 * If the file descriptor reference count is non-zero, then 674 * some other lwp in the process is performing system call 675 * activity on the file. To avoid blocking here for a long 676 * time (the other lwp might be in a long term sleep in its 677 * system call), we stop all other lwps in the process and 678 * scan them to find the ones with this fd as one of their 679 * active fds and set their a_stale flag so they will emerge 680 * from their system calls immediately. post_syscall() will 681 * test the a_stale flag and set errno to EBADF. 682 */ 683 ASSERT(ufp->uf_refcnt == 0 || p->p_lwpcnt > 1); 684 if (ufp->uf_refcnt > 0) { 685 UF_EXIT(ufp); 686 COUNT(afd_wait); 687 688 /* 689 * Make all other lwps hold in place, as if doing fork1(). 690 * holdlwps(SHOLDFORK1) fails only if another lwp wants to 691 * perform a forkall() or the process is exiting. In either 692 * case, all other lwps are either returning from their 693 * system calls (because of SHOLDFORK) or calling lwp_exit() 694 * (because of SEXITLWPS) so we don't need to scan them. 695 */ 696 if (holdlwps(SHOLDFORK1)) { 697 kthread_t *t; 698 699 mutex_enter(&p->p_lock); 700 for (t = curthread->t_forw; t != curthread; 701 t = t->t_forw) { 702 if (is_active_fd(t, fd)) { 703 t->t_activefd.a_stale = 1; 704 t->t_post_sys = 1; 705 } 706 } 707 continuelwps(p); 708 mutex_exit(&p->p_lock); 709 } 710 UF_ENTER(ufp, fip, fd); 711 ASSERT(ufp->uf_file == NULL); 712 } 713 714 /* 715 * Wait for other lwps to stop using this file descriptor. 716 */ 717 while (ufp->uf_refcnt > 0) { 718 cv_wait_stop(&ufp->uf_closing_cv, &ufp->uf_lock, 250); 719 /* 720 * cv_wait_stop() drops ufp->uf_lock, so the file list 721 * can change. Drop the lock on our (possibly) stale 722 * ufp and let UF_ENTER() find and lock the current ufp. 723 */ 724 UF_EXIT(ufp); 725 UF_ENTER(ufp, fip, fd); 726 } 727 728 #ifdef DEBUG 729 /* 730 * catch a watchfd on device's pollhead list but not on fpollinfo list 731 */ 732 if (ufp->uf_fpollinfo != NULL) 733 checkwfdlist(fp->f_vnode, ufp->uf_fpollinfo); 734 #endif /* DEBUG */ 735 736 /* 737 * We may need to cleanup some cached poll states in t_pollstate 738 * before the fd can be reused. It is important that we don't 739 * access a stale thread structure. We will do the cleanup in two 740 * phases to avoid deadlock and holding uf_lock for too long. 741 * In phase 1, hold the uf_lock and call pollblockexit() to set 742 * state in t_pollstate struct so that a thread does not exit on 743 * us. In phase 2, we drop the uf_lock and call pollcacheclean(). 744 */ 745 pfd = ufp->uf_portfd; 746 ufp->uf_portfd = NULL; 747 fpip = ufp->uf_fpollinfo; 748 ufp->uf_fpollinfo = NULL; 749 if (fpip != NULL) 750 pollblockexit(fpip); 751 UF_EXIT(ufp); 752 if (fpip != NULL) 753 pollcacheclean(fpip, fd); 754 if (pfd) 755 port_close_fd(pfd); 756 757 /* 758 * Keep the file descriptor entry reserved across the closef(). 759 */ 760 error = closef(fp); 761 762 setf(fd, newfp); 763 764 /* Only return closef() error when closing is all we do */ 765 return (newfp == NULL ? error : 0); 766 } 767 768 /* 769 * Decrement uf_refcnt; wakeup anyone waiting to close the file. 770 */ 771 void 772 releasef(int fd) 773 { 774 uf_info_t *fip = P_FINFO(curproc); 775 uf_entry_t *ufp; 776 777 clear_active_fd(fd); /* clear the active file descriptor */ 778 779 UF_ENTER(ufp, fip, fd); 780 ASSERT(ufp->uf_refcnt > 0); 781 if (--ufp->uf_refcnt == 0) 782 cv_broadcast(&ufp->uf_closing_cv); 783 UF_EXIT(ufp); 784 } 785 786 /* 787 * Identical to releasef() but can be called from another process. 788 */ 789 void 790 areleasef(int fd, uf_info_t *fip) 791 { 792 uf_entry_t *ufp; 793 794 UF_ENTER(ufp, fip, fd); 795 ASSERT(ufp->uf_refcnt > 0); 796 if (--ufp->uf_refcnt == 0) 797 cv_broadcast(&ufp->uf_closing_cv); 798 UF_EXIT(ufp); 799 } 800 801 /* 802 * Duplicate all file descriptors across a fork. 803 */ 804 void 805 flist_fork(uf_info_t *pfip, uf_info_t *cfip) 806 { 807 int fd, nfiles; 808 uf_entry_t *pufp, *cufp; 809 810 mutex_init(&cfip->fi_lock, NULL, MUTEX_DEFAULT, NULL); 811 cfip->fi_rlist = NULL; 812 813 /* 814 * We don't need to hold fi_lock because all other lwp's in the 815 * parent have been held. 816 */ 817 cfip->fi_nfiles = nfiles = flist_minsize(pfip); 818 819 cfip->fi_list = kmem_zalloc(nfiles * sizeof (uf_entry_t), KM_SLEEP); 820 821 for (fd = 0, pufp = pfip->fi_list, cufp = cfip->fi_list; fd < nfiles; 822 fd++, pufp++, cufp++) { 823 cufp->uf_file = pufp->uf_file; 824 cufp->uf_alloc = pufp->uf_alloc; 825 cufp->uf_flag = pufp->uf_flag; 826 cufp->uf_busy = pufp->uf_busy; 827 if (pufp->uf_file == NULL) { 828 ASSERT(pufp->uf_flag == 0); 829 if (pufp->uf_busy) { 830 /* 831 * Grab locks to appease ASSERTs in fd_reserve 832 */ 833 mutex_enter(&cfip->fi_lock); 834 mutex_enter(&cufp->uf_lock); 835 fd_reserve(cfip, fd, -1); 836 mutex_exit(&cufp->uf_lock); 837 mutex_exit(&cfip->fi_lock); 838 } 839 } 840 } 841 } 842 843 /* 844 * Close all open file descriptors for the current process. 845 * This is only called from exit(), which is single-threaded, 846 * so we don't need any locking. 847 */ 848 void 849 closeall(uf_info_t *fip) 850 { 851 int fd; 852 file_t *fp; 853 uf_entry_t *ufp; 854 855 ufp = fip->fi_list; 856 for (fd = 0; fd < fip->fi_nfiles; fd++, ufp++) { 857 if ((fp = ufp->uf_file) != NULL) { 858 ufp->uf_file = NULL; 859 if (ufp->uf_portfd != NULL) { 860 portfd_t *pfd; 861 /* remove event port association */ 862 pfd = ufp->uf_portfd; 863 ufp->uf_portfd = NULL; 864 port_close_fd(pfd); 865 } 866 ASSERT(ufp->uf_fpollinfo == NULL); 867 (void) closef(fp); 868 } 869 } 870 871 kmem_free(fip->fi_list, fip->fi_nfiles * sizeof (uf_entry_t)); 872 fip->fi_list = NULL; 873 fip->fi_nfiles = 0; 874 while (fip->fi_rlist != NULL) { 875 uf_rlist_t *urp = fip->fi_rlist; 876 fip->fi_rlist = urp->ur_next; 877 kmem_free(urp->ur_list, urp->ur_nfiles * sizeof (uf_entry_t)); 878 kmem_free(urp, sizeof (uf_rlist_t)); 879 } 880 } 881 882 /* 883 * Internal form of close. Decrement reference count on file 884 * structure. Decrement reference count on the vnode following 885 * removal of the referencing file structure. 886 */ 887 int 888 closef(file_t *fp) 889 { 890 vnode_t *vp; 891 int error; 892 int count; 893 int flag; 894 offset_t offset; 895 896 /* 897 * audit close of file (may be exit) 898 */ 899 if (audit_active) 900 audit_closef(fp); 901 ASSERT(MUTEX_NOT_HELD(&P_FINFO(curproc)->fi_lock)); 902 903 mutex_enter(&fp->f_tlock); 904 905 ASSERT(fp->f_count > 0); 906 907 count = fp->f_count--; 908 flag = fp->f_flag; 909 offset = fp->f_offset; 910 911 vp = fp->f_vnode; 912 913 error = VOP_CLOSE(vp, flag, count, offset, fp->f_cred, NULL); 914 915 if (count > 1) { 916 mutex_exit(&fp->f_tlock); 917 return (error); 918 } 919 ASSERT(fp->f_count == 0); 920 mutex_exit(&fp->f_tlock); 921 922 VN_RELE(vp); 923 /* 924 * deallocate resources to audit_data 925 */ 926 if (audit_active) 927 audit_unfalloc(fp); 928 crfree(fp->f_cred); 929 kmem_cache_free(file_cache, fp); 930 return (error); 931 } 932 933 /* 934 * This is a combination of ufalloc() and setf(). 935 */ 936 int 937 ufalloc_file(int start, file_t *fp) 938 { 939 proc_t *p = curproc; 940 uf_info_t *fip = P_FINFO(p); 941 int filelimit; 942 uf_entry_t *ufp; 943 int nfiles; 944 int fd; 945 946 /* 947 * Assertion is to convince the correctness of the following 948 * assignment for filelimit after casting to int. 949 */ 950 ASSERT(p->p_fno_ctl <= INT_MAX); 951 filelimit = (int)p->p_fno_ctl; 952 953 for (;;) { 954 mutex_enter(&fip->fi_lock); 955 fd = fd_find(fip, start); 956 if (fd >= 0 && fd == fip->fi_badfd) { 957 start = fd + 1; 958 mutex_exit(&fip->fi_lock); 959 continue; 960 } 961 if ((uint_t)fd < filelimit) 962 break; 963 if (fd >= filelimit) { 964 mutex_exit(&fip->fi_lock); 965 mutex_enter(&p->p_lock); 966 (void) rctl_action(rctlproc_legacy[RLIMIT_NOFILE], 967 p->p_rctls, p, RCA_SAFE); 968 mutex_exit(&p->p_lock); 969 return (-1); 970 } 971 /* fd_find() returned -1 */ 972 nfiles = fip->fi_nfiles; 973 mutex_exit(&fip->fi_lock); 974 flist_grow(MAX(start, nfiles)); 975 } 976 977 UF_ENTER(ufp, fip, fd); 978 fd_reserve(fip, fd, 1); 979 ASSERT(ufp->uf_file == NULL); 980 ufp->uf_file = fp; 981 UF_EXIT(ufp); 982 mutex_exit(&fip->fi_lock); 983 return (fd); 984 } 985 986 /* 987 * Allocate a user file descriptor greater than or equal to "start". 988 */ 989 int 990 ufalloc(int start) 991 { 992 return (ufalloc_file(start, NULL)); 993 } 994 995 /* 996 * Check that a future allocation of count fds on proc p has a good 997 * chance of succeeding. If not, do rctl processing as if we'd failed 998 * the allocation. 999 * 1000 * Our caller must guarantee that p cannot disappear underneath us. 1001 */ 1002 int 1003 ufcanalloc(proc_t *p, uint_t count) 1004 { 1005 uf_info_t *fip = P_FINFO(p); 1006 int filelimit; 1007 int current; 1008 1009 if (count == 0) 1010 return (1); 1011 1012 ASSERT(p->p_fno_ctl <= INT_MAX); 1013 filelimit = (int)p->p_fno_ctl; 1014 1015 mutex_enter(&fip->fi_lock); 1016 current = flist_nalloc(fip); /* # of in-use descriptors */ 1017 mutex_exit(&fip->fi_lock); 1018 1019 /* 1020 * If count is a positive integer, the worst that can happen is 1021 * an overflow to a negative value, which is caught by the >= 0 check. 1022 */ 1023 current += count; 1024 if (count <= INT_MAX && current >= 0 && current <= filelimit) 1025 return (1); 1026 1027 mutex_enter(&p->p_lock); 1028 (void) rctl_action(rctlproc_legacy[RLIMIT_NOFILE], 1029 p->p_rctls, p, RCA_SAFE); 1030 mutex_exit(&p->p_lock); 1031 return (0); 1032 } 1033 1034 /* 1035 * Allocate a user file descriptor and a file structure. 1036 * Initialize the descriptor to point at the file structure. 1037 * If fdp is NULL, the user file descriptor will not be allocated. 1038 */ 1039 int 1040 falloc(vnode_t *vp, int flag, file_t **fpp, int *fdp) 1041 { 1042 file_t *fp; 1043 int fd; 1044 1045 if (fdp) { 1046 if ((fd = ufalloc(0)) == -1) 1047 return (EMFILE); 1048 } 1049 fp = kmem_cache_alloc(file_cache, KM_SLEEP); 1050 /* 1051 * Note: falloc returns the fp locked 1052 */ 1053 mutex_enter(&fp->f_tlock); 1054 fp->f_count = 1; 1055 fp->f_flag = (ushort_t)flag; 1056 fp->f_vnode = vp; 1057 fp->f_offset = 0; 1058 fp->f_audit_data = 0; 1059 crhold(fp->f_cred = CRED()); 1060 /* 1061 * allocate resources to audit_data 1062 */ 1063 if (audit_active) 1064 audit_falloc(fp); 1065 *fpp = fp; 1066 if (fdp) 1067 *fdp = fd; 1068 return (0); 1069 } 1070 1071 /*ARGSUSED*/ 1072 static int 1073 file_cache_constructor(void *buf, void *cdrarg, int kmflags) 1074 { 1075 file_t *fp = buf; 1076 1077 mutex_init(&fp->f_tlock, NULL, MUTEX_DEFAULT, NULL); 1078 return (0); 1079 } 1080 1081 /*ARGSUSED*/ 1082 static void 1083 file_cache_destructor(void *buf, void *cdrarg) 1084 { 1085 file_t *fp = buf; 1086 1087 mutex_destroy(&fp->f_tlock); 1088 } 1089 1090 void 1091 finit() 1092 { 1093 file_cache = kmem_cache_create("file_cache", sizeof (file_t), 0, 1094 file_cache_constructor, file_cache_destructor, NULL, NULL, NULL, 0); 1095 } 1096 1097 void 1098 unfalloc(file_t *fp) 1099 { 1100 ASSERT(MUTEX_HELD(&fp->f_tlock)); 1101 if (--fp->f_count <= 0) { 1102 /* 1103 * deallocate resources to audit_data 1104 */ 1105 if (audit_active) 1106 audit_unfalloc(fp); 1107 crfree(fp->f_cred); 1108 mutex_exit(&fp->f_tlock); 1109 kmem_cache_free(file_cache, fp); 1110 } else 1111 mutex_exit(&fp->f_tlock); 1112 } 1113 1114 /* 1115 * Given a file descriptor, set the user's 1116 * file pointer to the given parameter. 1117 */ 1118 void 1119 setf(int fd, file_t *fp) 1120 { 1121 uf_info_t *fip = P_FINFO(curproc); 1122 uf_entry_t *ufp; 1123 1124 if (audit_active) 1125 audit_setf(fp, fd); 1126 1127 if (fp == NULL) { 1128 mutex_enter(&fip->fi_lock); 1129 UF_ENTER(ufp, fip, fd); 1130 fd_reserve(fip, fd, -1); 1131 mutex_exit(&fip->fi_lock); 1132 } else { 1133 UF_ENTER(ufp, fip, fd); 1134 ASSERT(ufp->uf_busy); 1135 } 1136 ASSERT(ufp->uf_fpollinfo == NULL); 1137 ASSERT(ufp->uf_flag == 0); 1138 ufp->uf_file = fp; 1139 cv_broadcast(&ufp->uf_wanted_cv); 1140 UF_EXIT(ufp); 1141 } 1142 1143 /* 1144 * Given a file descriptor, return the file table flags, plus, 1145 * if this is a socket in asynchronous mode, the FASYNC flag. 1146 * getf() may or may not have been called before calling f_getfl(). 1147 */ 1148 int 1149 f_getfl(int fd, int *flagp) 1150 { 1151 uf_info_t *fip = P_FINFO(curproc); 1152 uf_entry_t *ufp; 1153 file_t *fp; 1154 int error; 1155 1156 if ((uint_t)fd >= fip->fi_nfiles) 1157 error = EBADF; 1158 else { 1159 UF_ENTER(ufp, fip, fd); 1160 if ((fp = ufp->uf_file) == NULL) 1161 error = EBADF; 1162 else { 1163 vnode_t *vp = fp->f_vnode; 1164 int flag = fp->f_flag; 1165 1166 /* 1167 * BSD fcntl() FASYNC compatibility. 1168 */ 1169 if (vp->v_type == VSOCK) 1170 flag |= sock_getfasync(vp); 1171 *flagp = flag; 1172 error = 0; 1173 } 1174 UF_EXIT(ufp); 1175 } 1176 1177 return (error); 1178 } 1179 1180 /* 1181 * Given a file descriptor, return the user's file flags. 1182 * Force the FD_CLOEXEC flag for writable self-open /proc files. 1183 * getf() may or may not have been called before calling f_getfd_error(). 1184 */ 1185 int 1186 f_getfd_error(int fd, int *flagp) 1187 { 1188 uf_info_t *fip = P_FINFO(curproc); 1189 uf_entry_t *ufp; 1190 file_t *fp; 1191 int flag; 1192 int error; 1193 1194 if ((uint_t)fd >= fip->fi_nfiles) 1195 error = EBADF; 1196 else { 1197 UF_ENTER(ufp, fip, fd); 1198 if ((fp = ufp->uf_file) == NULL) 1199 error = EBADF; 1200 else { 1201 flag = ufp->uf_flag; 1202 if ((fp->f_flag & FWRITE) && pr_isself(fp->f_vnode)) 1203 flag |= FD_CLOEXEC; 1204 *flagp = flag; 1205 error = 0; 1206 } 1207 UF_EXIT(ufp); 1208 } 1209 1210 return (error); 1211 } 1212 1213 /* 1214 * getf() must have been called before calling f_getfd(). 1215 */ 1216 char 1217 f_getfd(int fd) 1218 { 1219 int flag = 0; 1220 (void) f_getfd_error(fd, &flag); 1221 return ((char)flag); 1222 } 1223 1224 /* 1225 * Given a file descriptor and file flags, set the user's file flags. 1226 * At present, the only valid flag is FD_CLOEXEC. 1227 * getf() may or may not have been called before calling f_setfd_error(). 1228 */ 1229 int 1230 f_setfd_error(int fd, int flags) 1231 { 1232 uf_info_t *fip = P_FINFO(curproc); 1233 uf_entry_t *ufp; 1234 int error; 1235 1236 if ((uint_t)fd >= fip->fi_nfiles) 1237 error = EBADF; 1238 else { 1239 UF_ENTER(ufp, fip, fd); 1240 if (ufp->uf_file == NULL) 1241 error = EBADF; 1242 else { 1243 ufp->uf_flag = flags & FD_CLOEXEC; 1244 error = 0; 1245 } 1246 UF_EXIT(ufp); 1247 } 1248 return (error); 1249 } 1250 1251 void 1252 f_setfd(int fd, char flags) 1253 { 1254 (void) f_setfd_error(fd, flags); 1255 } 1256 1257 #define BADFD_MIN 3 1258 #define BADFD_MAX 255 1259 1260 /* 1261 * Attempt to allocate a file descriptor which is bad and which 1262 * is "poison" to the application. It cannot be closed (except 1263 * on exec), allocated for a different use, etc. 1264 */ 1265 int 1266 f_badfd(int start, int *fdp, int action) 1267 { 1268 int fdr; 1269 int badfd; 1270 uf_info_t *fip = P_FINFO(curproc); 1271 1272 #ifdef _LP64 1273 /* No restrictions on 64 bit _file */ 1274 if (get_udatamodel() != DATAMODEL_ILP32) 1275 return (EINVAL); 1276 #endif 1277 1278 if (start > BADFD_MAX || start < BADFD_MIN) 1279 return (EINVAL); 1280 1281 if (action >= NSIG || action < 0) 1282 return (EINVAL); 1283 1284 mutex_enter(&fip->fi_lock); 1285 badfd = fip->fi_badfd; 1286 mutex_exit(&fip->fi_lock); 1287 1288 if (badfd != -1) 1289 return (EAGAIN); 1290 1291 fdr = ufalloc(start); 1292 1293 if (fdr > BADFD_MAX) { 1294 setf(fdr, NULL); 1295 return (EMFILE); 1296 } 1297 if (fdr < 0) 1298 return (EMFILE); 1299 1300 mutex_enter(&fip->fi_lock); 1301 if (fip->fi_badfd != -1) { 1302 /* Lost race */ 1303 mutex_exit(&fip->fi_lock); 1304 setf(fdr, NULL); 1305 return (EAGAIN); 1306 } 1307 fip->fi_action = action; 1308 fip->fi_badfd = fdr; 1309 mutex_exit(&fip->fi_lock); 1310 setf(fdr, NULL); 1311 1312 *fdp = fdr; 1313 1314 return (0); 1315 } 1316 1317 /* 1318 * Allocate a file descriptor and assign it to the vnode "*vpp", 1319 * performing the usual open protocol upon it and returning the 1320 * file descriptor allocated. It is the responsibility of the 1321 * caller to dispose of "*vpp" if any error occurs. 1322 */ 1323 int 1324 fassign(vnode_t **vpp, int mode, int *fdp) 1325 { 1326 file_t *fp; 1327 int error; 1328 int fd; 1329 1330 if (error = falloc((vnode_t *)NULL, mode, &fp, &fd)) 1331 return (error); 1332 if (error = VOP_OPEN(vpp, mode, fp->f_cred, NULL)) { 1333 setf(fd, NULL); 1334 unfalloc(fp); 1335 return (error); 1336 } 1337 fp->f_vnode = *vpp; 1338 mutex_exit(&fp->f_tlock); 1339 /* 1340 * Fill in the slot falloc reserved. 1341 */ 1342 setf(fd, fp); 1343 *fdp = fd; 1344 return (0); 1345 } 1346 1347 /* 1348 * When a process forks it must increment the f_count of all file pointers 1349 * since there is a new process pointing at them. fcnt_add(fip, 1) does this. 1350 * Since we are called when there is only 1 active lwp we don't need to 1351 * hold fi_lock or any uf_lock. If the fork fails, fork_fail() calls 1352 * fcnt_add(fip, -1) to restore the counts. 1353 */ 1354 void 1355 fcnt_add(uf_info_t *fip, int incr) 1356 { 1357 int i; 1358 uf_entry_t *ufp; 1359 file_t *fp; 1360 1361 ufp = fip->fi_list; 1362 for (i = 0; i < fip->fi_nfiles; i++, ufp++) { 1363 if ((fp = ufp->uf_file) != NULL) { 1364 mutex_enter(&fp->f_tlock); 1365 ASSERT((incr == 1 && fp->f_count >= 1) || 1366 (incr == -1 && fp->f_count >= 2)); 1367 fp->f_count += incr; 1368 mutex_exit(&fp->f_tlock); 1369 } 1370 } 1371 } 1372 1373 /* 1374 * This is called from exec to close all fd's that have the FD_CLOEXEC flag 1375 * set and also to close all self-open for write /proc file descriptors. 1376 */ 1377 void 1378 close_exec(uf_info_t *fip) 1379 { 1380 int fd; 1381 file_t *fp; 1382 fpollinfo_t *fpip; 1383 uf_entry_t *ufp; 1384 portfd_t *pfd; 1385 1386 ufp = fip->fi_list; 1387 for (fd = 0; fd < fip->fi_nfiles; fd++, ufp++) { 1388 if ((fp = ufp->uf_file) != NULL && 1389 ((ufp->uf_flag & FD_CLOEXEC) || 1390 ((fp->f_flag & FWRITE) && pr_isself(fp->f_vnode)))) { 1391 fpip = ufp->uf_fpollinfo; 1392 mutex_enter(&fip->fi_lock); 1393 mutex_enter(&ufp->uf_lock); 1394 fd_reserve(fip, fd, -1); 1395 mutex_exit(&fip->fi_lock); 1396 ufp->uf_file = NULL; 1397 ufp->uf_fpollinfo = NULL; 1398 ufp->uf_flag = 0; 1399 /* 1400 * We may need to cleanup some cached poll states 1401 * in t_pollstate before the fd can be reused. It 1402 * is important that we don't access a stale thread 1403 * structure. We will do the cleanup in two 1404 * phases to avoid deadlock and holding uf_lock for 1405 * too long. In phase 1, hold the uf_lock and call 1406 * pollblockexit() to set state in t_pollstate struct 1407 * so that a thread does not exit on us. In phase 2, 1408 * we drop the uf_lock and call pollcacheclean(). 1409 */ 1410 pfd = ufp->uf_portfd; 1411 ufp->uf_portfd = NULL; 1412 if (fpip != NULL) 1413 pollblockexit(fpip); 1414 mutex_exit(&ufp->uf_lock); 1415 if (fpip != NULL) 1416 pollcacheclean(fpip, fd); 1417 if (pfd) 1418 port_close_fd(pfd); 1419 (void) closef(fp); 1420 } 1421 } 1422 1423 /* Reset bad fd */ 1424 fip->fi_badfd = -1; 1425 fip->fi_action = -1; 1426 } 1427 1428 /* 1429 * Common routine for modifying attributes of named files. 1430 */ 1431 int 1432 namesetattr(char *fnamep, enum symfollow followlink, vattr_t *vap, int flags) 1433 { 1434 vnode_t *vp; 1435 int error = 0; 1436 1437 if (error = lookupname(fnamep, UIO_USERSPACE, followlink, NULLVPP, &vp)) 1438 return (set_errno(error)); 1439 if (error = vpsetattr(vp, vap, flags)) 1440 (void) set_errno(error); 1441 VN_RELE(vp); 1442 return (error); 1443 } 1444 1445 /* 1446 * Common routine for modifying attributes of files referenced 1447 * by descriptor. 1448 */ 1449 int 1450 fdsetattr(int fd, vattr_t *vap) 1451 { 1452 file_t *fp; 1453 vnode_t *vp; 1454 int error = 0; 1455 1456 if ((fp = getf(fd)) != NULL) { 1457 vp = fp->f_vnode; 1458 if (error = vpsetattr(vp, vap, 0)) { 1459 (void) set_errno(error); 1460 } 1461 releasef(fd); 1462 } else 1463 error = set_errno(EBADF); 1464 return (error); 1465 } 1466 1467 /* 1468 * Common routine to set the attributes for the given vnode. 1469 * If the vnode is a file and the filesize is being manipulated, 1470 * this makes sure that there are no conflicting non-blocking 1471 * mandatory locks in that region. 1472 */ 1473 static int 1474 vpsetattr(vnode_t *vp, vattr_t *vap, int flags) 1475 { 1476 int error = 0; 1477 int in_crit = 0; 1478 u_offset_t begin; 1479 vattr_t vattr; 1480 ssize_t length; 1481 1482 if (vn_is_readonly(vp)) { 1483 error = EROFS; 1484 } 1485 if (!error && (vap->va_mask & AT_SIZE) && 1486 nbl_need_check(vp)) { 1487 nbl_start_crit(vp, RW_READER); 1488 in_crit = 1; 1489 vattr.va_mask = AT_SIZE; 1490 if (!(error = VOP_GETATTR(vp, &vattr, 0, CRED(), NULL))) { 1491 begin = vap->va_size > vattr.va_size ? 1492 vattr.va_size : vap->va_size; 1493 length = vattr.va_size > vap->va_size ? 1494 vattr.va_size - vap->va_size : 1495 vap->va_size - vattr.va_size; 1496 1497 if (nbl_conflict(vp, NBL_WRITE, begin, length, 0, 1498 NULL)) { 1499 error = EACCES; 1500 } 1501 } 1502 } 1503 if (!error) 1504 error = VOP_SETATTR(vp, vap, flags, CRED(), NULL); 1505 1506 if (in_crit) 1507 nbl_end_crit(vp); 1508 1509 return (error); 1510 } 1511 1512 /* 1513 * Return true if the given vnode is referenced by any 1514 * entry in the current process's file descriptor table. 1515 */ 1516 int 1517 fisopen(vnode_t *vp) 1518 { 1519 int fd; 1520 file_t *fp; 1521 vnode_t *ovp; 1522 uf_info_t *fip = P_FINFO(curproc); 1523 uf_entry_t *ufp; 1524 1525 mutex_enter(&fip->fi_lock); 1526 for (fd = 0; fd < fip->fi_nfiles; fd++) { 1527 UF_ENTER(ufp, fip, fd); 1528 if ((fp = ufp->uf_file) != NULL && 1529 (ovp = fp->f_vnode) != NULL && VN_CMP(vp, ovp)) { 1530 UF_EXIT(ufp); 1531 mutex_exit(&fip->fi_lock); 1532 return (1); 1533 } 1534 UF_EXIT(ufp); 1535 } 1536 mutex_exit(&fip->fi_lock); 1537 return (0); 1538 } 1539 1540 /* 1541 * Return zero if at least one file currently open (by curproc) shouldn't be 1542 * allowed to change zones. 1543 */ 1544 int 1545 files_can_change_zones(void) 1546 { 1547 int fd; 1548 file_t *fp; 1549 uf_info_t *fip = P_FINFO(curproc); 1550 uf_entry_t *ufp; 1551 1552 mutex_enter(&fip->fi_lock); 1553 for (fd = 0; fd < fip->fi_nfiles; fd++) { 1554 UF_ENTER(ufp, fip, fd); 1555 if ((fp = ufp->uf_file) != NULL && 1556 !vn_can_change_zones(fp->f_vnode)) { 1557 UF_EXIT(ufp); 1558 mutex_exit(&fip->fi_lock); 1559 return (0); 1560 } 1561 UF_EXIT(ufp); 1562 } 1563 mutex_exit(&fip->fi_lock); 1564 return (1); 1565 } 1566 1567 #ifdef DEBUG 1568 1569 /* 1570 * The following functions are only used in ASSERT()s elsewhere. 1571 * They do not modify the state of the system. 1572 */ 1573 1574 /* 1575 * Return true (1) if the current thread is in the fpollinfo 1576 * list for this file descriptor, else false (0). 1577 */ 1578 static int 1579 curthread_in_plist(uf_entry_t *ufp) 1580 { 1581 fpollinfo_t *fpip; 1582 1583 ASSERT(MUTEX_HELD(&ufp->uf_lock)); 1584 for (fpip = ufp->uf_fpollinfo; fpip; fpip = fpip->fp_next) 1585 if (fpip->fp_thread == curthread) 1586 return (1); 1587 return (0); 1588 } 1589 1590 /* 1591 * Sanity check to make sure that after lwp_exit(), 1592 * curthread does not appear on any fd's fpollinfo list. 1593 */ 1594 void 1595 checkfpollinfo(void) 1596 { 1597 int fd; 1598 uf_info_t *fip = P_FINFO(curproc); 1599 uf_entry_t *ufp; 1600 1601 mutex_enter(&fip->fi_lock); 1602 for (fd = 0; fd < fip->fi_nfiles; fd++) { 1603 UF_ENTER(ufp, fip, fd); 1604 ASSERT(!curthread_in_plist(ufp)); 1605 UF_EXIT(ufp); 1606 } 1607 mutex_exit(&fip->fi_lock); 1608 } 1609 1610 /* 1611 * Return true (1) if the current thread is in the fpollinfo 1612 * list for this file descriptor, else false (0). 1613 * This is the same as curthread_in_plist(), 1614 * but is called w/o holding uf_lock. 1615 */ 1616 int 1617 infpollinfo(int fd) 1618 { 1619 uf_info_t *fip = P_FINFO(curproc); 1620 uf_entry_t *ufp; 1621 int rc; 1622 1623 UF_ENTER(ufp, fip, fd); 1624 rc = curthread_in_plist(ufp); 1625 UF_EXIT(ufp); 1626 return (rc); 1627 } 1628 1629 #endif /* DEBUG */ 1630 1631 /* 1632 * Add the curthread to fpollinfo list, meaning this fd is currently in the 1633 * thread's poll cache. Each lwp polling this file descriptor should call 1634 * this routine once. 1635 */ 1636 void 1637 addfpollinfo(int fd) 1638 { 1639 struct uf_entry *ufp; 1640 fpollinfo_t *fpip; 1641 uf_info_t *fip = P_FINFO(curproc); 1642 1643 fpip = kmem_zalloc(sizeof (fpollinfo_t), KM_SLEEP); 1644 fpip->fp_thread = curthread; 1645 UF_ENTER(ufp, fip, fd); 1646 /* 1647 * Assert we are not already on the list, that is, that 1648 * this lwp did not call addfpollinfo twice for the same fd. 1649 */ 1650 ASSERT(!curthread_in_plist(ufp)); 1651 /* 1652 * addfpollinfo is always done inside the getf/releasef pair. 1653 */ 1654 ASSERT(ufp->uf_refcnt >= 1); 1655 fpip->fp_next = ufp->uf_fpollinfo; 1656 ufp->uf_fpollinfo = fpip; 1657 UF_EXIT(ufp); 1658 } 1659 1660 /* 1661 * delete curthread from fpollinfo list. 1662 */ 1663 /*ARGSUSED*/ 1664 void 1665 delfpollinfo(int fd) 1666 { 1667 struct uf_entry *ufp; 1668 struct fpollinfo *fpip; 1669 struct fpollinfo **fpipp; 1670 uf_info_t *fip = P_FINFO(curproc); 1671 1672 UF_ENTER(ufp, fip, fd); 1673 if (ufp->uf_fpollinfo == NULL) { 1674 UF_EXIT(ufp); 1675 return; 1676 } 1677 ASSERT(ufp->uf_busy); 1678 /* 1679 * Find and delete curthread from the list. 1680 */ 1681 fpipp = &ufp->uf_fpollinfo; 1682 while ((fpip = *fpipp)->fp_thread != curthread) 1683 fpipp = &fpip->fp_next; 1684 *fpipp = fpip->fp_next; 1685 kmem_free(fpip, sizeof (fpollinfo_t)); 1686 /* 1687 * Assert that we are not still on the list, that is, that 1688 * this lwp did not call addfpollinfo twice for the same fd. 1689 */ 1690 ASSERT(!curthread_in_plist(ufp)); 1691 UF_EXIT(ufp); 1692 } 1693 1694 /* 1695 * fd is associated with a port. pfd is a pointer to the fd entry in the 1696 * cache of the port. 1697 */ 1698 1699 void 1700 addfd_port(int fd, portfd_t *pfd) 1701 { 1702 struct uf_entry *ufp; 1703 uf_info_t *fip = P_FINFO(curproc); 1704 1705 UF_ENTER(ufp, fip, fd); 1706 /* 1707 * addfd_port is always done inside the getf/releasef pair. 1708 */ 1709 ASSERT(ufp->uf_refcnt >= 1); 1710 if (ufp->uf_portfd == NULL) { 1711 /* first entry */ 1712 ufp->uf_portfd = pfd; 1713 pfd->pfd_next = NULL; 1714 } else { 1715 pfd->pfd_next = ufp->uf_portfd; 1716 ufp->uf_portfd = pfd; 1717 pfd->pfd_next->pfd_prev = pfd; 1718 } 1719 UF_EXIT(ufp); 1720 } 1721 1722 void 1723 delfd_port(int fd, portfd_t *pfd) 1724 { 1725 struct uf_entry *ufp; 1726 uf_info_t *fip = P_FINFO(curproc); 1727 1728 UF_ENTER(ufp, fip, fd); 1729 /* 1730 * delfd_port is always done inside the getf/releasef pair. 1731 */ 1732 ASSERT(ufp->uf_refcnt >= 1); 1733 if (ufp->uf_portfd == pfd) { 1734 /* remove first entry */ 1735 ufp->uf_portfd = pfd->pfd_next; 1736 } else { 1737 pfd->pfd_prev->pfd_next = pfd->pfd_next; 1738 if (pfd->pfd_next != NULL) 1739 pfd->pfd_next->pfd_prev = pfd->pfd_prev; 1740 } 1741 UF_EXIT(ufp); 1742 } 1743 1744 static void 1745 port_close_fd(portfd_t *pfd) 1746 { 1747 portfd_t *pfdn; 1748 1749 /* 1750 * At this point, no other thread should access 1751 * the portfd_t list for this fd. The uf_file, uf_portfd 1752 * pointers in the uf_entry_t struct for this fd would 1753 * be set to NULL. 1754 */ 1755 for (; pfd != NULL; pfd = pfdn) { 1756 pfdn = pfd->pfd_next; 1757 port_close_pfd(pfd); 1758 } 1759 } 1760