xref: /illumos-gate/usr/src/uts/common/os/strsubr.c (revision c545f712)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
22 /*	  All Rights Reserved  	*/
23 
24 
25 /*
26  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
27  * Use is subject to license terms.
28  */
29 
30 #include <sys/types.h>
31 #include <sys/sysmacros.h>
32 #include <sys/param.h>
33 #include <sys/errno.h>
34 #include <sys/signal.h>
35 #include <sys/proc.h>
36 #include <sys/conf.h>
37 #include <sys/cred.h>
38 #include <sys/user.h>
39 #include <sys/vnode.h>
40 #include <sys/file.h>
41 #include <sys/session.h>
42 #include <sys/stream.h>
43 #include <sys/strsubr.h>
44 #include <sys/stropts.h>
45 #include <sys/poll.h>
46 #include <sys/systm.h>
47 #include <sys/cpuvar.h>
48 #include <sys/uio.h>
49 #include <sys/cmn_err.h>
50 #include <sys/priocntl.h>
51 #include <sys/procset.h>
52 #include <sys/vmem.h>
53 #include <sys/bitmap.h>
54 #include <sys/kmem.h>
55 #include <sys/siginfo.h>
56 #include <sys/vtrace.h>
57 #include <sys/callb.h>
58 #include <sys/debug.h>
59 #include <sys/modctl.h>
60 #include <sys/vmsystm.h>
61 #include <vm/page.h>
62 #include <sys/atomic.h>
63 #include <sys/suntpi.h>
64 #include <sys/strlog.h>
65 #include <sys/promif.h>
66 #include <sys/project.h>
67 #include <sys/vm.h>
68 #include <sys/taskq.h>
69 #include <sys/sunddi.h>
70 #include <sys/sunldi_impl.h>
71 #include <sys/strsun.h>
72 #include <sys/isa_defs.h>
73 #include <sys/multidata.h>
74 #include <sys/pattr.h>
75 #include <sys/strft.h>
76 #include <sys/fs/snode.h>
77 #include <sys/zone.h>
78 #include <sys/open.h>
79 #include <sys/sunldi.h>
80 #include <sys/sad.h>
81 #include <sys/netstack.h>
82 
83 #define	O_SAMESTR(q)	(((q)->q_next) && \
84 	(((q)->q_flag & QREADR) == ((q)->q_next->q_flag & QREADR)))
85 
86 /*
87  * WARNING:
88  * The variables and routines in this file are private, belonging
89  * to the STREAMS subsystem. These should not be used by modules
90  * or drivers. Compatibility will not be guaranteed.
91  */
92 
93 /*
94  * Id value used to distinguish between different multiplexor links.
95  */
96 static int32_t lnk_id = 0;
97 
98 #define	STREAMS_LOPRI MINCLSYSPRI
99 static pri_t streams_lopri = STREAMS_LOPRI;
100 
101 #define	STRSTAT(x)	(str_statistics.x.value.ui64++)
102 typedef struct str_stat {
103 	kstat_named_t	sqenables;
104 	kstat_named_t	stenables;
105 	kstat_named_t	syncqservice;
106 	kstat_named_t	freebs;
107 	kstat_named_t	qwr_outer;
108 	kstat_named_t	rservice;
109 	kstat_named_t	strwaits;
110 	kstat_named_t	taskqfails;
111 	kstat_named_t	bufcalls;
112 	kstat_named_t	qhelps;
113 	kstat_named_t	qremoved;
114 	kstat_named_t	sqremoved;
115 	kstat_named_t	bcwaits;
116 	kstat_named_t	sqtoomany;
117 } str_stat_t;
118 
119 static str_stat_t str_statistics = {
120 	{ "sqenables",		KSTAT_DATA_UINT64 },
121 	{ "stenables",		KSTAT_DATA_UINT64 },
122 	{ "syncqservice",	KSTAT_DATA_UINT64 },
123 	{ "freebs",		KSTAT_DATA_UINT64 },
124 	{ "qwr_outer",		KSTAT_DATA_UINT64 },
125 	{ "rservice",		KSTAT_DATA_UINT64 },
126 	{ "strwaits",		KSTAT_DATA_UINT64 },
127 	{ "taskqfails",		KSTAT_DATA_UINT64 },
128 	{ "bufcalls",		KSTAT_DATA_UINT64 },
129 	{ "qhelps",		KSTAT_DATA_UINT64 },
130 	{ "qremoved",		KSTAT_DATA_UINT64 },
131 	{ "sqremoved",		KSTAT_DATA_UINT64 },
132 	{ "bcwaits",		KSTAT_DATA_UINT64 },
133 	{ "sqtoomany",		KSTAT_DATA_UINT64 },
134 };
135 
136 static kstat_t *str_kstat;
137 
138 /*
139  * qrunflag was used previously to control background scheduling of queues. It
140  * is not used anymore, but kept here in case some module still wants to access
141  * it via qready() and setqsched macros.
142  */
143 char qrunflag;			/*  Unused */
144 
145 /*
146  * Most of the streams scheduling is done via task queues. Task queues may fail
147  * for non-sleep dispatches, so there are two backup threads servicing failed
148  * requests for queues and syncqs. Both of these threads also service failed
149  * dispatches freebs requests. Queues are put in the list specified by `qhead'
150  * and `qtail' pointers, syncqs use `sqhead' and `sqtail' pointers and freebs
151  * requests are put into `freebs_list' which has no tail pointer. All three
152  * lists are protected by a single `service_queue' lock and use
153  * `services_to_run' condition variable for signaling background threads. Use of
154  * a single lock should not be a problem because it is only used under heavy
155  * loads when task queues start to fail and at that time it may be a good idea
156  * to throttle scheduling requests.
157  *
158  * NOTE: queues and syncqs should be scheduled by two separate threads because
159  * queue servicing may be blocked waiting for a syncq which may be also
160  * scheduled for background execution. This may create a deadlock when only one
161  * thread is used for both.
162  */
163 
164 static taskq_t *streams_taskq;		/* Used for most STREAMS scheduling */
165 
166 static kmutex_t service_queue;		/* protects all of servicing vars */
167 static kcondvar_t services_to_run;	/* wake up background service thread */
168 static kcondvar_t syncqs_to_run;	/* wake up background service thread */
169 
170 /*
171  * List of queues scheduled for background processing dueue to lack of resources
172  * in the task queues. Protected by service_queue lock;
173  */
174 static struct queue *qhead;
175 static struct queue *qtail;
176 
177 /*
178  * Same list for syncqs
179  */
180 static syncq_t *sqhead;
181 static syncq_t *sqtail;
182 
183 static mblk_t *freebs_list;	/* list of buffers to free */
184 
185 /*
186  * Backup threads for servicing queues and syncqs
187  */
188 kthread_t *streams_qbkgrnd_thread;
189 kthread_t *streams_sqbkgrnd_thread;
190 
191 /*
192  * Bufcalls related variables.
193  */
194 struct bclist	strbcalls;	/* list of waiting bufcalls */
195 kmutex_t	strbcall_lock;	/* protects bufcall list (strbcalls) */
196 kcondvar_t	strbcall_cv;	/* Signaling when a bufcall is added */
197 kmutex_t	bcall_monitor;	/* sleep/wakeup style monitor */
198 kcondvar_t	bcall_cv;	/* wait 'till executing bufcall completes */
199 kthread_t	*bc_bkgrnd_thread; /* Thread to service bufcall requests */
200 
201 kmutex_t	strresources;	/* protects global resources */
202 kmutex_t	muxifier;	/* single-threads multiplexor creation */
203 
204 static void	*str_stack_init(netstackid_t stackid, netstack_t *ns);
205 static void	str_stack_shutdown(netstackid_t stackid, void *arg);
206 static void	str_stack_fini(netstackid_t stackid, void *arg);
207 
208 extern void	time_to_wait(clock_t *, clock_t);
209 
210 /*
211  * run_queues is no longer used, but is kept in case some 3-d party
212  * module/driver decides to use it.
213  */
214 int run_queues = 0;
215 
216 /*
217  * sq_max_size is the depth of the syncq (in number of messages) before
218  * qfill_syncq() starts QFULL'ing destination queues. As its primary
219  * consumer - IP is no longer D_MTPERMOD, but there may be other
220  * modules/drivers depend on this syncq flow control, we prefer to
221  * choose a large number as the default value. For potential
222  * performance gain, this value is tunable in /etc/system.
223  */
224 int sq_max_size = 10000;
225 
226 /*
227  * the number of ciputctrl structures per syncq and stream we create when
228  * needed.
229  */
230 int n_ciputctrl;
231 int max_n_ciputctrl = 16;
232 /*
233  * if n_ciputctrl is < min_n_ciputctrl don't even create ciputctrl_cache.
234  */
235 int min_n_ciputctrl = 2;
236 
237 /*
238  * Per-driver/module syncqs
239  * ========================
240  *
241  * For drivers/modules that use PERMOD or outer syncqs we keep a list of
242  * perdm structures, new entries being added (and new syncqs allocated) when
243  * setq() encounters a module/driver with a streamtab that it hasn't seen
244  * before.
245  * The reason for this mechanism is that some modules and drivers share a
246  * common streamtab and it is necessary for those modules and drivers to also
247  * share a common PERMOD syncq.
248  *
249  * perdm_list --> dm_str == streamtab_1
250  *                dm_sq == syncq_1
251  *                dm_ref
252  *                dm_next --> dm_str == streamtab_2
253  *                            dm_sq == syncq_2
254  *                            dm_ref
255  *                            dm_next --> ... NULL
256  *
257  * The dm_ref field is incremented for each new driver/module that takes
258  * a reference to the perdm structure and hence shares the syncq.
259  * References are held in the fmodsw_impl_t structure for each STREAMS module
260  * or the dev_impl array (indexed by device major number) for each driver.
261  *
262  * perdm_list -> [dm_ref == 1] -> [dm_ref == 2] -> [dm_ref == 1] -> NULL
263  *		     ^                 ^ ^               ^
264  *                   |  ______________/  |               |
265  *                   | /                 |               |
266  * dev_impl:     ...|x|y|...          module A	      module B
267  *
268  * When a module/driver is unloaded the reference count is decremented and,
269  * when it falls to zero, the perdm structure is removed from the list and
270  * the syncq is freed (see rele_dm()).
271  */
272 perdm_t *perdm_list = NULL;
273 static krwlock_t perdm_rwlock;
274 cdevsw_impl_t *devimpl;
275 
276 extern struct qinit strdata;
277 extern struct qinit stwdata;
278 
279 static void runservice(queue_t *);
280 static void streams_bufcall_service(void);
281 static void streams_qbkgrnd_service(void);
282 static void streams_sqbkgrnd_service(void);
283 static syncq_t *new_syncq(void);
284 static void free_syncq(syncq_t *);
285 static void outer_insert(syncq_t *, syncq_t *);
286 static void outer_remove(syncq_t *, syncq_t *);
287 static void write_now(syncq_t *);
288 static void clr_qfull(queue_t *);
289 static void runbufcalls(void);
290 static void sqenable(syncq_t *);
291 static void sqfill_events(syncq_t *, queue_t *, mblk_t *, void (*)());
292 static void wait_q_syncq(queue_t *);
293 static void backenable_insertedq(queue_t *);
294 
295 static void queue_service(queue_t *);
296 static void stream_service(stdata_t *);
297 static void syncq_service(syncq_t *);
298 static void qwriter_outer_service(syncq_t *);
299 static void mblk_free(mblk_t *);
300 #ifdef DEBUG
301 static int qprocsareon(queue_t *);
302 #endif
303 
304 static void set_nfsrv_ptr(queue_t *, queue_t *, queue_t *, queue_t *);
305 static void reset_nfsrv_ptr(queue_t *, queue_t *);
306 void set_qfull(queue_t *);
307 
308 static void sq_run_events(syncq_t *);
309 static int propagate_syncq(queue_t *);
310 
311 static void	blocksq(syncq_t *, ushort_t, int);
312 static void	unblocksq(syncq_t *, ushort_t, int);
313 static int	dropsq(syncq_t *, uint16_t);
314 static void	emptysq(syncq_t *);
315 static sqlist_t *sqlist_alloc(struct stdata *, int);
316 static void	sqlist_free(sqlist_t *);
317 static sqlist_t	*sqlist_build(queue_t *, struct stdata *, boolean_t);
318 static void	sqlist_insert(sqlist_t *, syncq_t *);
319 static void	sqlist_insertall(sqlist_t *, queue_t *);
320 
321 static void	strsetuio(stdata_t *);
322 
323 struct kmem_cache *stream_head_cache;
324 struct kmem_cache *queue_cache;
325 struct kmem_cache *syncq_cache;
326 struct kmem_cache *qband_cache;
327 struct kmem_cache *linkinfo_cache;
328 struct kmem_cache *ciputctrl_cache = NULL;
329 
330 static linkinfo_t *linkinfo_list;
331 
332 /* global esballoc throttling queue */
333 static esb_queue_t	system_esbq;
334 
335 /*
336  * esballoc tunable parameters.
337  */
338 int		esbq_max_qlen = 0x16;	/* throttled queue length */
339 clock_t		esbq_timeout = 0x8;	/* timeout to process esb queue */
340 
341 /*
342  * routines to handle esballoc queuing.
343  */
344 static void esballoc_process_queue(esb_queue_t *);
345 static void esballoc_enqueue_mblk(mblk_t *);
346 static void esballoc_timer(void *);
347 static void esballoc_set_timer(esb_queue_t *, clock_t);
348 static void esballoc_mblk_free(mblk_t *);
349 
350 /*
351  *  Qinit structure and Module_info structures
352  *	for passthru read and write queues
353  */
354 
355 static void pass_wput(queue_t *, mblk_t *);
356 static queue_t *link_addpassthru(stdata_t *);
357 static void link_rempassthru(queue_t *);
358 
359 struct  module_info passthru_info = {
360 	0,
361 	"passthru",
362 	0,
363 	INFPSZ,
364 	STRHIGH,
365 	STRLOW
366 };
367 
368 struct  qinit passthru_rinit = {
369 	(int (*)())putnext,
370 	NULL,
371 	NULL,
372 	NULL,
373 	NULL,
374 	&passthru_info,
375 	NULL
376 };
377 
378 struct  qinit passthru_winit = {
379 	(int (*)()) pass_wput,
380 	NULL,
381 	NULL,
382 	NULL,
383 	NULL,
384 	&passthru_info,
385 	NULL
386 };
387 
388 /*
389  * Special form of assertion: verify that X implies Y i.e. when X is true Y
390  * should also be true.
391  */
392 #define	IMPLY(X, Y)	ASSERT(!(X) || (Y))
393 
394 /*
395  * Logical equivalence. Verify that both X and Y are either TRUE or FALSE.
396  */
397 #define	EQUIV(X, Y)	{ IMPLY(X, Y); IMPLY(Y, X); }
398 
399 /*
400  * Verify correctness of list head/tail pointers.
401  */
402 #define	LISTCHECK(head, tail, link) {				\
403 	EQUIV(head, tail);					\
404 	IMPLY(tail != NULL, tail->link == NULL);		\
405 }
406 
407 /*
408  * Enqueue a list element `el' in the end of a list denoted by `head' and `tail'
409  * using a `link' field.
410  */
411 #define	ENQUEUE(el, head, tail, link) {				\
412 	ASSERT(el->link == NULL);				\
413 	LISTCHECK(head, tail, link);				\
414 	if (head == NULL)					\
415 		head = el;					\
416 	else							\
417 		tail->link = el;				\
418 	tail = el;						\
419 }
420 
421 /*
422  * Dequeue the first element of the list denoted by `head' and `tail' pointers
423  * using a `link' field and put result into `el'.
424  */
425 #define	DQ(el, head, tail, link) {				\
426 	LISTCHECK(head, tail, link);				\
427 	el = head;						\
428 	if (head != NULL) {					\
429 		head = head->link;				\
430 		if (head == NULL)				\
431 			tail = NULL;				\
432 		el->link = NULL;				\
433 	}							\
434 }
435 
436 /*
437  * Remove `el' from the list using `chase' and `curr' pointers and return result
438  * in `succeed'.
439  */
440 #define	RMQ(el, head, tail, link, chase, curr, succeed) {	\
441 	LISTCHECK(head, tail, link);				\
442 	chase = NULL;						\
443 	succeed = 0;						\
444 	for (curr = head; (curr != el) && (curr != NULL); curr = curr->link) \
445 		chase = curr;					\
446 	if (curr != NULL) {					\
447 		succeed = 1;					\
448 		ASSERT(curr == el);				\
449 		if (chase != NULL)				\
450 			chase->link = curr->link;		\
451 		else						\
452 			head = curr->link;			\
453 		curr->link = NULL;				\
454 		if (curr == tail)				\
455 			tail = chase;				\
456 	}							\
457 	LISTCHECK(head, tail, link);				\
458 }
459 
460 /* Handling of delayed messages on the inner syncq. */
461 
462 /*
463  * DEBUG versions should use function versions (to simplify tracing) and
464  * non-DEBUG kernels should use macro versions.
465  */
466 
467 /*
468  * Put a queue on the syncq list of queues.
469  * Assumes SQLOCK held.
470  */
471 #define	SQPUT_Q(sq, qp)							\
472 {									\
473 	ASSERT(MUTEX_HELD(SQLOCK(sq)));					\
474 	if (!(qp->q_sqflags & Q_SQQUEUED)) {				\
475 		/* The queue should not be linked anywhere */		\
476 		ASSERT((qp->q_sqprev == NULL) && (qp->q_sqnext == NULL)); \
477 		/* Head and tail may only be NULL simultaneously */	\
478 		EQUIV(sq->sq_head, sq->sq_tail);			\
479 		/* Queue may be only enqueyed on its syncq */		\
480 		ASSERT(sq == qp->q_syncq);				\
481 		/* Check the correctness of SQ_MESSAGES flag */		\
482 		EQUIV(sq->sq_head, (sq->sq_flags & SQ_MESSAGES));	\
483 		/* Sanity check first/last elements of the list */	\
484 		IMPLY(sq->sq_head != NULL, sq->sq_head->q_sqprev == NULL);\
485 		IMPLY(sq->sq_tail != NULL, sq->sq_tail->q_sqnext == NULL);\
486 		/*							\
487 		 * Sanity check of priority field: empty queue should	\
488 		 * have zero priority					\
489 		 * and nqueues equal to zero.				\
490 		 */							\
491 		IMPLY(sq->sq_head == NULL, sq->sq_pri == 0);		\
492 		/* Sanity check of sq_nqueues field */			\
493 		EQUIV(sq->sq_head, sq->sq_nqueues);			\
494 		if (sq->sq_head == NULL) {				\
495 			sq->sq_head = sq->sq_tail = qp;			\
496 			sq->sq_flags |= SQ_MESSAGES;			\
497 		} else if (qp->q_spri == 0) {				\
498 			qp->q_sqprev = sq->sq_tail;			\
499 			sq->sq_tail->q_sqnext = qp;			\
500 			sq->sq_tail = qp;				\
501 		} else {						\
502 			/*						\
503 			 * Put this queue in priority order: higher	\
504 			 * priority gets closer to the head.		\
505 			 */						\
506 			queue_t **qpp = &sq->sq_tail;			\
507 			queue_t *qnext = NULL;				\
508 									\
509 			while (*qpp != NULL && qp->q_spri > (*qpp)->q_spri) { \
510 				qnext = *qpp;				\
511 				qpp = &(*qpp)->q_sqprev;		\
512 			}						\
513 			qp->q_sqnext = qnext;				\
514 			qp->q_sqprev = *qpp;				\
515 			if (*qpp != NULL) {				\
516 				(*qpp)->q_sqnext = qp;			\
517 			} else {					\
518 				sq->sq_head = qp;			\
519 				sq->sq_pri = sq->sq_head->q_spri;	\
520 			}						\
521 			*qpp = qp;					\
522 		}							\
523 		qp->q_sqflags |= Q_SQQUEUED;				\
524 		qp->q_sqtstamp = lbolt;					\
525 		sq->sq_nqueues++;					\
526 	}								\
527 }
528 
529 /*
530  * Remove a queue from the syncq list
531  * Assumes SQLOCK held.
532  */
533 #define	SQRM_Q(sq, qp)							\
534 	{								\
535 		ASSERT(MUTEX_HELD(SQLOCK(sq)));				\
536 		ASSERT(qp->q_sqflags & Q_SQQUEUED);			\
537 		ASSERT(sq->sq_head != NULL && sq->sq_tail != NULL);	\
538 		ASSERT((sq->sq_flags & SQ_MESSAGES) != 0);		\
539 		/* Check that the queue is actually in the list */	\
540 		ASSERT(qp->q_sqnext != NULL || sq->sq_tail == qp);	\
541 		ASSERT(qp->q_sqprev != NULL || sq->sq_head == qp);	\
542 		ASSERT(sq->sq_nqueues != 0);				\
543 		if (qp->q_sqprev == NULL) {				\
544 			/* First queue on list, make head q_sqnext */	\
545 			sq->sq_head = qp->q_sqnext;			\
546 		} else {						\
547 			/* Make prev->next == next */			\
548 			qp->q_sqprev->q_sqnext = qp->q_sqnext;		\
549 		}							\
550 		if (qp->q_sqnext == NULL) {				\
551 			/* Last queue on list, make tail sqprev */	\
552 			sq->sq_tail = qp->q_sqprev;			\
553 		} else {						\
554 			/* Make next->prev == prev */			\
555 			qp->q_sqnext->q_sqprev = qp->q_sqprev;		\
556 		}							\
557 		/* clear out references on this queue */		\
558 		qp->q_sqprev = qp->q_sqnext = NULL;			\
559 		qp->q_sqflags &= ~Q_SQQUEUED;				\
560 		/* If there is nothing queued, clear SQ_MESSAGES */	\
561 		if (sq->sq_head != NULL) {				\
562 			sq->sq_pri = sq->sq_head->q_spri;		\
563 		} else	{						\
564 			sq->sq_flags &= ~SQ_MESSAGES;			\
565 			sq->sq_pri = 0;					\
566 		}							\
567 		sq->sq_nqueues--;					\
568 		ASSERT(sq->sq_head != NULL || sq->sq_evhead != NULL ||	\
569 		    (sq->sq_flags & SQ_QUEUED) == 0);			\
570 	}
571 
572 /* Hide the definition from the header file. */
573 #ifdef SQPUT_MP
574 #undef SQPUT_MP
575 #endif
576 
577 /*
578  * Put a message on the queue syncq.
579  * Assumes QLOCK held.
580  */
581 #define	SQPUT_MP(qp, mp)						\
582 	{								\
583 		ASSERT(MUTEX_HELD(QLOCK(qp)));				\
584 		ASSERT(qp->q_sqhead == NULL ||				\
585 		    (qp->q_sqtail != NULL &&				\
586 		    qp->q_sqtail->b_next == NULL));			\
587 		qp->q_syncqmsgs++;					\
588 		ASSERT(qp->q_syncqmsgs != 0);	/* Wraparound */	\
589 		if (qp->q_sqhead == NULL) {				\
590 			qp->q_sqhead = qp->q_sqtail = mp;		\
591 		} else {						\
592 			qp->q_sqtail->b_next = mp;			\
593 			qp->q_sqtail = mp;				\
594 		}							\
595 		ASSERT(qp->q_syncqmsgs > 0);				\
596 		set_qfull(qp);						\
597 	}
598 
599 #define	SQ_PUTCOUNT_SETFAST_LOCKED(sq) {				\
600 		ASSERT(MUTEX_HELD(SQLOCK(sq)));				\
601 		if ((sq)->sq_ciputctrl != NULL) {			\
602 			int i;						\
603 			int nlocks = (sq)->sq_nciputctrl;		\
604 			ciputctrl_t *cip = (sq)->sq_ciputctrl;		\
605 			ASSERT((sq)->sq_type & SQ_CIPUT);		\
606 			for (i = 0; i <= nlocks; i++) {			\
607 				ASSERT(MUTEX_HELD(&cip[i].ciputctrl_lock)); \
608 				cip[i].ciputctrl_count |= SQ_FASTPUT;	\
609 			}						\
610 		}							\
611 	}
612 
613 
614 #define	SQ_PUTCOUNT_CLRFAST_LOCKED(sq) {				\
615 		ASSERT(MUTEX_HELD(SQLOCK(sq)));				\
616 		if ((sq)->sq_ciputctrl != NULL) {			\
617 			int i;						\
618 			int nlocks = (sq)->sq_nciputctrl;		\
619 			ciputctrl_t *cip = (sq)->sq_ciputctrl;		\
620 			ASSERT((sq)->sq_type & SQ_CIPUT);		\
621 			for (i = 0; i <= nlocks; i++) {			\
622 				ASSERT(MUTEX_HELD(&cip[i].ciputctrl_lock)); \
623 				cip[i].ciputctrl_count &= ~SQ_FASTPUT;	\
624 			}						\
625 		}							\
626 	}
627 
628 /*
629  * Run service procedures for all queues in the stream head.
630  */
631 #define	STR_SERVICE(stp, q) {						\
632 	ASSERT(MUTEX_HELD(&stp->sd_qlock));				\
633 	while (stp->sd_qhead != NULL) {					\
634 		DQ(q, stp->sd_qhead, stp->sd_qtail, q_link);		\
635 		ASSERT(stp->sd_nqueues > 0);				\
636 		stp->sd_nqueues--;					\
637 		ASSERT(!(q->q_flag & QINSERVICE));			\
638 		mutex_exit(&stp->sd_qlock);				\
639 		queue_service(q);					\
640 		mutex_enter(&stp->sd_qlock);				\
641 	}								\
642 	ASSERT(stp->sd_nqueues == 0);					\
643 	ASSERT((stp->sd_qhead == NULL) && (stp->sd_qtail == NULL));	\
644 }
645 
646 /*
647  * constructor/destructor routines for the stream head cache
648  */
649 /* ARGSUSED */
650 static int
651 stream_head_constructor(void *buf, void *cdrarg, int kmflags)
652 {
653 	stdata_t *stp = buf;
654 
655 	mutex_init(&stp->sd_lock, NULL, MUTEX_DEFAULT, NULL);
656 	mutex_init(&stp->sd_reflock, NULL, MUTEX_DEFAULT, NULL);
657 	mutex_init(&stp->sd_qlock, NULL, MUTEX_DEFAULT, NULL);
658 	cv_init(&stp->sd_monitor, NULL, CV_DEFAULT, NULL);
659 	cv_init(&stp->sd_iocmonitor, NULL, CV_DEFAULT, NULL);
660 	cv_init(&stp->sd_refmonitor, NULL, CV_DEFAULT, NULL);
661 	cv_init(&stp->sd_qcv, NULL, CV_DEFAULT, NULL);
662 	cv_init(&stp->sd_zcopy_wait, NULL, CV_DEFAULT, NULL);
663 	stp->sd_wrq = NULL;
664 
665 	return (0);
666 }
667 
668 /* ARGSUSED */
669 static void
670 stream_head_destructor(void *buf, void *cdrarg)
671 {
672 	stdata_t *stp = buf;
673 
674 	mutex_destroy(&stp->sd_lock);
675 	mutex_destroy(&stp->sd_reflock);
676 	mutex_destroy(&stp->sd_qlock);
677 	cv_destroy(&stp->sd_monitor);
678 	cv_destroy(&stp->sd_iocmonitor);
679 	cv_destroy(&stp->sd_refmonitor);
680 	cv_destroy(&stp->sd_qcv);
681 	cv_destroy(&stp->sd_zcopy_wait);
682 }
683 
684 /*
685  * constructor/destructor routines for the queue cache
686  */
687 /* ARGSUSED */
688 static int
689 queue_constructor(void *buf, void *cdrarg, int kmflags)
690 {
691 	queinfo_t *qip = buf;
692 	queue_t *qp = &qip->qu_rqueue;
693 	queue_t *wqp = &qip->qu_wqueue;
694 	syncq_t	*sq = &qip->qu_syncq;
695 
696 	qp->q_first = NULL;
697 	qp->q_link = NULL;
698 	qp->q_count = 0;
699 	qp->q_mblkcnt = 0;
700 	qp->q_sqhead = NULL;
701 	qp->q_sqtail = NULL;
702 	qp->q_sqnext = NULL;
703 	qp->q_sqprev = NULL;
704 	qp->q_sqflags = 0;
705 	qp->q_rwcnt = 0;
706 	qp->q_spri = 0;
707 
708 	mutex_init(QLOCK(qp), NULL, MUTEX_DEFAULT, NULL);
709 	cv_init(&qp->q_wait, NULL, CV_DEFAULT, NULL);
710 
711 	wqp->q_first = NULL;
712 	wqp->q_link = NULL;
713 	wqp->q_count = 0;
714 	wqp->q_mblkcnt = 0;
715 	wqp->q_sqhead = NULL;
716 	wqp->q_sqtail = NULL;
717 	wqp->q_sqnext = NULL;
718 	wqp->q_sqprev = NULL;
719 	wqp->q_sqflags = 0;
720 	wqp->q_rwcnt = 0;
721 	wqp->q_spri = 0;
722 
723 	mutex_init(QLOCK(wqp), NULL, MUTEX_DEFAULT, NULL);
724 	cv_init(&wqp->q_wait, NULL, CV_DEFAULT, NULL);
725 
726 	sq->sq_head = NULL;
727 	sq->sq_tail = NULL;
728 	sq->sq_evhead = NULL;
729 	sq->sq_evtail = NULL;
730 	sq->sq_callbpend = NULL;
731 	sq->sq_outer = NULL;
732 	sq->sq_onext = NULL;
733 	sq->sq_oprev = NULL;
734 	sq->sq_next = NULL;
735 	sq->sq_svcflags = 0;
736 	sq->sq_servcount = 0;
737 	sq->sq_needexcl = 0;
738 	sq->sq_nqueues = 0;
739 	sq->sq_pri = 0;
740 
741 	mutex_init(&sq->sq_lock, NULL, MUTEX_DEFAULT, NULL);
742 	cv_init(&sq->sq_wait, NULL, CV_DEFAULT, NULL);
743 	cv_init(&sq->sq_exitwait, NULL, CV_DEFAULT, NULL);
744 
745 	return (0);
746 }
747 
748 /* ARGSUSED */
749 static void
750 queue_destructor(void *buf, void *cdrarg)
751 {
752 	queinfo_t *qip = buf;
753 	queue_t *qp = &qip->qu_rqueue;
754 	queue_t *wqp = &qip->qu_wqueue;
755 	syncq_t	*sq = &qip->qu_syncq;
756 
757 	ASSERT(qp->q_sqhead == NULL);
758 	ASSERT(wqp->q_sqhead == NULL);
759 	ASSERT(qp->q_sqnext == NULL);
760 	ASSERT(wqp->q_sqnext == NULL);
761 	ASSERT(qp->q_rwcnt == 0);
762 	ASSERT(wqp->q_rwcnt == 0);
763 
764 	mutex_destroy(&qp->q_lock);
765 	cv_destroy(&qp->q_wait);
766 
767 	mutex_destroy(&wqp->q_lock);
768 	cv_destroy(&wqp->q_wait);
769 
770 	mutex_destroy(&sq->sq_lock);
771 	cv_destroy(&sq->sq_wait);
772 	cv_destroy(&sq->sq_exitwait);
773 }
774 
775 /*
776  * constructor/destructor routines for the syncq cache
777  */
778 /* ARGSUSED */
779 static int
780 syncq_constructor(void *buf, void *cdrarg, int kmflags)
781 {
782 	syncq_t	*sq = buf;
783 
784 	bzero(buf, sizeof (syncq_t));
785 
786 	mutex_init(&sq->sq_lock, NULL, MUTEX_DEFAULT, NULL);
787 	cv_init(&sq->sq_wait, NULL, CV_DEFAULT, NULL);
788 	cv_init(&sq->sq_exitwait, NULL, CV_DEFAULT, NULL);
789 
790 	return (0);
791 }
792 
793 /* ARGSUSED */
794 static void
795 syncq_destructor(void *buf, void *cdrarg)
796 {
797 	syncq_t	*sq = buf;
798 
799 	ASSERT(sq->sq_head == NULL);
800 	ASSERT(sq->sq_tail == NULL);
801 	ASSERT(sq->sq_evhead == NULL);
802 	ASSERT(sq->sq_evtail == NULL);
803 	ASSERT(sq->sq_callbpend == NULL);
804 	ASSERT(sq->sq_callbflags == 0);
805 	ASSERT(sq->sq_outer == NULL);
806 	ASSERT(sq->sq_onext == NULL);
807 	ASSERT(sq->sq_oprev == NULL);
808 	ASSERT(sq->sq_next == NULL);
809 	ASSERT(sq->sq_needexcl == 0);
810 	ASSERT(sq->sq_svcflags == 0);
811 	ASSERT(sq->sq_servcount == 0);
812 	ASSERT(sq->sq_nqueues == 0);
813 	ASSERT(sq->sq_pri == 0);
814 	ASSERT(sq->sq_count == 0);
815 	ASSERT(sq->sq_rmqcount == 0);
816 	ASSERT(sq->sq_cancelid == 0);
817 	ASSERT(sq->sq_ciputctrl == NULL);
818 	ASSERT(sq->sq_nciputctrl == 0);
819 	ASSERT(sq->sq_type == 0);
820 	ASSERT(sq->sq_flags == 0);
821 
822 	mutex_destroy(&sq->sq_lock);
823 	cv_destroy(&sq->sq_wait);
824 	cv_destroy(&sq->sq_exitwait);
825 }
826 
827 /* ARGSUSED */
828 static int
829 ciputctrl_constructor(void *buf, void *cdrarg, int kmflags)
830 {
831 	ciputctrl_t *cip = buf;
832 	int i;
833 
834 	for (i = 0; i < n_ciputctrl; i++) {
835 		cip[i].ciputctrl_count = SQ_FASTPUT;
836 		mutex_init(&cip[i].ciputctrl_lock, NULL, MUTEX_DEFAULT, NULL);
837 	}
838 
839 	return (0);
840 }
841 
842 /* ARGSUSED */
843 static void
844 ciputctrl_destructor(void *buf, void *cdrarg)
845 {
846 	ciputctrl_t *cip = buf;
847 	int i;
848 
849 	for (i = 0; i < n_ciputctrl; i++) {
850 		ASSERT(cip[i].ciputctrl_count & SQ_FASTPUT);
851 		mutex_destroy(&cip[i].ciputctrl_lock);
852 	}
853 }
854 
855 /*
856  * Init routine run from main at boot time.
857  */
858 void
859 strinit(void)
860 {
861 	int ncpus = ((boot_max_ncpus == -1) ? max_ncpus : boot_max_ncpus);
862 
863 	stream_head_cache = kmem_cache_create("stream_head_cache",
864 	    sizeof (stdata_t), 0,
865 	    stream_head_constructor, stream_head_destructor, NULL,
866 	    NULL, NULL, 0);
867 
868 	queue_cache = kmem_cache_create("queue_cache", sizeof (queinfo_t), 0,
869 	    queue_constructor, queue_destructor, NULL, NULL, NULL, 0);
870 
871 	syncq_cache = kmem_cache_create("syncq_cache", sizeof (syncq_t), 0,
872 	    syncq_constructor, syncq_destructor, NULL, NULL, NULL, 0);
873 
874 	qband_cache = kmem_cache_create("qband_cache",
875 	    sizeof (qband_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
876 
877 	linkinfo_cache = kmem_cache_create("linkinfo_cache",
878 	    sizeof (linkinfo_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
879 
880 	n_ciputctrl = ncpus;
881 	n_ciputctrl = 1 << highbit(n_ciputctrl - 1);
882 	ASSERT(n_ciputctrl >= 1);
883 	n_ciputctrl = MIN(n_ciputctrl, max_n_ciputctrl);
884 	if (n_ciputctrl >= min_n_ciputctrl) {
885 		ciputctrl_cache = kmem_cache_create("ciputctrl_cache",
886 		    sizeof (ciputctrl_t) * n_ciputctrl,
887 		    sizeof (ciputctrl_t), ciputctrl_constructor,
888 		    ciputctrl_destructor, NULL, NULL, NULL, 0);
889 	}
890 
891 	streams_taskq = system_taskq;
892 
893 	if (streams_taskq == NULL)
894 		panic("strinit: no memory for streams taskq!");
895 
896 	bc_bkgrnd_thread = thread_create(NULL, 0,
897 	    streams_bufcall_service, NULL, 0, &p0, TS_RUN, streams_lopri);
898 
899 	streams_qbkgrnd_thread = thread_create(NULL, 0,
900 	    streams_qbkgrnd_service, NULL, 0, &p0, TS_RUN, streams_lopri);
901 
902 	streams_sqbkgrnd_thread = thread_create(NULL, 0,
903 	    streams_sqbkgrnd_service, NULL, 0, &p0, TS_RUN, streams_lopri);
904 
905 	/*
906 	 * Create STREAMS kstats.
907 	 */
908 	str_kstat = kstat_create("streams", 0, "strstat",
909 	    "net", KSTAT_TYPE_NAMED,
910 	    sizeof (str_statistics) / sizeof (kstat_named_t),
911 	    KSTAT_FLAG_VIRTUAL);
912 
913 	if (str_kstat != NULL) {
914 		str_kstat->ks_data = &str_statistics;
915 		kstat_install(str_kstat);
916 	}
917 
918 	/*
919 	 * TPI support routine initialisation.
920 	 */
921 	tpi_init();
922 
923 	/*
924 	 * Handle to have autopush and persistent link information per
925 	 * zone.
926 	 * Note: uses shutdown hook instead of destroy hook so that the
927 	 * persistent links can be torn down before the destroy hooks
928 	 * in the TCP/IP stack are called.
929 	 */
930 	netstack_register(NS_STR, str_stack_init, str_stack_shutdown,
931 	    str_stack_fini);
932 }
933 
934 void
935 str_sendsig(vnode_t *vp, int event, uchar_t band, int error)
936 {
937 	struct stdata *stp;
938 
939 	ASSERT(vp->v_stream);
940 	stp = vp->v_stream;
941 	/* Have to hold sd_lock to prevent siglist from changing */
942 	mutex_enter(&stp->sd_lock);
943 	if (stp->sd_sigflags & event)
944 		strsendsig(stp->sd_siglist, event, band, error);
945 	mutex_exit(&stp->sd_lock);
946 }
947 
948 /*
949  * Send the "sevent" set of signals to a process.
950  * This might send more than one signal if the process is registered
951  * for multiple events. The caller should pass in an sevent that only
952  * includes the events for which the process has registered.
953  */
954 static void
955 dosendsig(proc_t *proc, int events, int sevent, k_siginfo_t *info,
956 	uchar_t band, int error)
957 {
958 	ASSERT(MUTEX_HELD(&proc->p_lock));
959 
960 	info->si_band = 0;
961 	info->si_errno = 0;
962 
963 	if (sevent & S_ERROR) {
964 		sevent &= ~S_ERROR;
965 		info->si_code = POLL_ERR;
966 		info->si_errno = error;
967 		TRACE_2(TR_FAC_STREAMS_FR, TR_STRSENDSIG,
968 		    "strsendsig:proc %p info %p", proc, info);
969 		sigaddq(proc, NULL, info, KM_NOSLEEP);
970 		info->si_errno = 0;
971 	}
972 	if (sevent & S_HANGUP) {
973 		sevent &= ~S_HANGUP;
974 		info->si_code = POLL_HUP;
975 		TRACE_2(TR_FAC_STREAMS_FR, TR_STRSENDSIG,
976 		    "strsendsig:proc %p info %p", proc, info);
977 		sigaddq(proc, NULL, info, KM_NOSLEEP);
978 	}
979 	if (sevent & S_HIPRI) {
980 		sevent &= ~S_HIPRI;
981 		info->si_code = POLL_PRI;
982 		TRACE_2(TR_FAC_STREAMS_FR, TR_STRSENDSIG,
983 		    "strsendsig:proc %p info %p", proc, info);
984 		sigaddq(proc, NULL, info, KM_NOSLEEP);
985 	}
986 	if (sevent & S_RDBAND) {
987 		sevent &= ~S_RDBAND;
988 		if (events & S_BANDURG)
989 			sigtoproc(proc, NULL, SIGURG);
990 		else
991 			sigtoproc(proc, NULL, SIGPOLL);
992 	}
993 	if (sevent & S_WRBAND) {
994 		sevent &= ~S_WRBAND;
995 		sigtoproc(proc, NULL, SIGPOLL);
996 	}
997 	if (sevent & S_INPUT) {
998 		sevent &= ~S_INPUT;
999 		info->si_code = POLL_IN;
1000 		info->si_band = band;
1001 		TRACE_2(TR_FAC_STREAMS_FR, TR_STRSENDSIG,
1002 		    "strsendsig:proc %p info %p", proc, info);
1003 		sigaddq(proc, NULL, info, KM_NOSLEEP);
1004 		info->si_band = 0;
1005 	}
1006 	if (sevent & S_OUTPUT) {
1007 		sevent &= ~S_OUTPUT;
1008 		info->si_code = POLL_OUT;
1009 		info->si_band = band;
1010 		TRACE_2(TR_FAC_STREAMS_FR, TR_STRSENDSIG,
1011 		    "strsendsig:proc %p info %p", proc, info);
1012 		sigaddq(proc, NULL, info, KM_NOSLEEP);
1013 		info->si_band = 0;
1014 	}
1015 	if (sevent & S_MSG) {
1016 		sevent &= ~S_MSG;
1017 		info->si_code = POLL_MSG;
1018 		info->si_band = band;
1019 		TRACE_2(TR_FAC_STREAMS_FR, TR_STRSENDSIG,
1020 		    "strsendsig:proc %p info %p", proc, info);
1021 		sigaddq(proc, NULL, info, KM_NOSLEEP);
1022 		info->si_band = 0;
1023 	}
1024 	if (sevent & S_RDNORM) {
1025 		sevent &= ~S_RDNORM;
1026 		sigtoproc(proc, NULL, SIGPOLL);
1027 	}
1028 	if (sevent != 0) {
1029 		panic("strsendsig: unknown event(s) %x", sevent);
1030 	}
1031 }
1032 
1033 /*
1034  * Send SIGPOLL/SIGURG signal to all processes and process groups
1035  * registered on the given signal list that want a signal for at
1036  * least one of the specified events.
1037  *
1038  * Must be called with exclusive access to siglist (caller holding sd_lock).
1039  *
1040  * strioctl(I_SETSIG/I_ESETSIG) will only change siglist when holding
1041  * sd_lock and the ioctl code maintains a PID_HOLD on the pid structure
1042  * while it is in the siglist.
1043  *
1044  * For performance reasons (MP scalability) the code drops pidlock
1045  * when sending signals to a single process.
1046  * When sending to a process group the code holds
1047  * pidlock to prevent the membership in the process group from changing
1048  * while walking the p_pglink list.
1049  */
1050 void
1051 strsendsig(strsig_t *siglist, int event, uchar_t band, int error)
1052 {
1053 	strsig_t *ssp;
1054 	k_siginfo_t info;
1055 	struct pid *pidp;
1056 	proc_t  *proc;
1057 
1058 	info.si_signo = SIGPOLL;
1059 	info.si_errno = 0;
1060 	for (ssp = siglist; ssp; ssp = ssp->ss_next) {
1061 		int sevent;
1062 
1063 		sevent = ssp->ss_events & event;
1064 		if (sevent == 0)
1065 			continue;
1066 
1067 		if ((pidp = ssp->ss_pidp) == NULL) {
1068 			/* pid was released but still on event list */
1069 			continue;
1070 		}
1071 
1072 
1073 		if (ssp->ss_pid > 0) {
1074 			/*
1075 			 * XXX This unfortunately still generates
1076 			 * a signal when a fd is closed but
1077 			 * the proc is active.
1078 			 */
1079 			ASSERT(ssp->ss_pid == pidp->pid_id);
1080 
1081 			mutex_enter(&pidlock);
1082 			proc = prfind_zone(pidp->pid_id, ALL_ZONES);
1083 			if (proc == NULL) {
1084 				mutex_exit(&pidlock);
1085 				continue;
1086 			}
1087 			mutex_enter(&proc->p_lock);
1088 			mutex_exit(&pidlock);
1089 			dosendsig(proc, ssp->ss_events, sevent, &info,
1090 			    band, error);
1091 			mutex_exit(&proc->p_lock);
1092 		} else {
1093 			/*
1094 			 * Send to process group. Hold pidlock across
1095 			 * calls to dosendsig().
1096 			 */
1097 			pid_t pgrp = -ssp->ss_pid;
1098 
1099 			mutex_enter(&pidlock);
1100 			proc = pgfind_zone(pgrp, ALL_ZONES);
1101 			while (proc != NULL) {
1102 				mutex_enter(&proc->p_lock);
1103 				dosendsig(proc, ssp->ss_events, sevent,
1104 				    &info, band, error);
1105 				mutex_exit(&proc->p_lock);
1106 				proc = proc->p_pglink;
1107 			}
1108 			mutex_exit(&pidlock);
1109 		}
1110 	}
1111 }
1112 
1113 /*
1114  * Attach a stream device or module.
1115  * qp is a read queue; the new queue goes in so its next
1116  * read ptr is the argument, and the write queue corresponding
1117  * to the argument points to this queue. Return 0 on success,
1118  * or a non-zero errno on failure.
1119  */
1120 int
1121 qattach(queue_t *qp, dev_t *devp, int oflag, cred_t *crp, fmodsw_impl_t *fp,
1122     boolean_t is_insert)
1123 {
1124 	major_t			major;
1125 	cdevsw_impl_t		*dp;
1126 	struct streamtab	*str;
1127 	queue_t			*rq;
1128 	queue_t			*wrq;
1129 	uint32_t		qflag;
1130 	uint32_t		sqtype;
1131 	perdm_t			*dmp;
1132 	int			error;
1133 	int			sflag;
1134 
1135 	rq = allocq();
1136 	wrq = _WR(rq);
1137 	STREAM(rq) = STREAM(wrq) = STREAM(qp);
1138 
1139 	if (fp != NULL) {
1140 		str = fp->f_str;
1141 		qflag = fp->f_qflag;
1142 		sqtype = fp->f_sqtype;
1143 		dmp = fp->f_dmp;
1144 		IMPLY((qflag & (QPERMOD | QMTOUTPERIM)), dmp != NULL);
1145 		sflag = MODOPEN;
1146 
1147 		/*
1148 		 * stash away a pointer to the module structure so we can
1149 		 * unref it in qdetach.
1150 		 */
1151 		rq->q_fp = fp;
1152 	} else {
1153 		ASSERT(!is_insert);
1154 
1155 		major = getmajor(*devp);
1156 		dp = &devimpl[major];
1157 
1158 		str = dp->d_str;
1159 		ASSERT(str == STREAMSTAB(major));
1160 
1161 		qflag = dp->d_qflag;
1162 		ASSERT(qflag & QISDRV);
1163 		sqtype = dp->d_sqtype;
1164 
1165 		/* create perdm_t if needed */
1166 		if (NEED_DM(dp->d_dmp, qflag))
1167 			dp->d_dmp = hold_dm(str, qflag, sqtype);
1168 
1169 		dmp = dp->d_dmp;
1170 		sflag = 0;
1171 	}
1172 
1173 	TRACE_2(TR_FAC_STREAMS_FR, TR_QATTACH_FLAGS,
1174 	    "qattach:qflag == %X(%X)", qflag, *devp);
1175 
1176 	/* setq might sleep in allocator - avoid holding locks. */
1177 	setq(rq, str->st_rdinit, str->st_wrinit, dmp, qflag, sqtype, B_FALSE);
1178 
1179 	/*
1180 	 * Before calling the module's open routine, set up the q_next
1181 	 * pointer for inserting a module in the middle of a stream.
1182 	 *
1183 	 * Note that we can always set _QINSERTING and set up q_next
1184 	 * pointer for both inserting and pushing a module.  Then there
1185 	 * is no need for the is_insert parameter.  In insertq(), called
1186 	 * by qprocson(), assume that q_next of the new module always points
1187 	 * to the correct queue and use it for insertion.  Everything should
1188 	 * work out fine.  But in the first release of _I_INSERT, we
1189 	 * distinguish between inserting and pushing to make sure that
1190 	 * pushing a module follows the same code path as before.
1191 	 */
1192 	if (is_insert) {
1193 		rq->q_flag |= _QINSERTING;
1194 		rq->q_next = qp;
1195 	}
1196 
1197 	/*
1198 	 * If there is an outer perimeter get exclusive access during
1199 	 * the open procedure.  Bump up the reference count on the queue.
1200 	 */
1201 	entersq(rq->q_syncq, SQ_OPENCLOSE);
1202 	error = (*rq->q_qinfo->qi_qopen)(rq, devp, oflag, sflag, crp);
1203 	if (error != 0)
1204 		goto failed;
1205 	leavesq(rq->q_syncq, SQ_OPENCLOSE);
1206 	ASSERT(qprocsareon(rq));
1207 	return (0);
1208 
1209 failed:
1210 	rq->q_flag &= ~_QINSERTING;
1211 	if (backq(wrq) != NULL && backq(wrq)->q_next == wrq)
1212 		qprocsoff(rq);
1213 	leavesq(rq->q_syncq, SQ_OPENCLOSE);
1214 	rq->q_next = wrq->q_next = NULL;
1215 	qdetach(rq, 0, 0, crp, B_FALSE);
1216 	return (error);
1217 }
1218 
1219 /*
1220  * Handle second open of stream. For modules, set the
1221  * last argument to MODOPEN and do not pass any open flags.
1222  * Ignore dummydev since this is not the first open.
1223  */
1224 int
1225 qreopen(queue_t *qp, dev_t *devp, int flag, cred_t *crp)
1226 {
1227 	int	error;
1228 	dev_t dummydev;
1229 	queue_t *wqp = _WR(qp);
1230 
1231 	ASSERT(qp->q_flag & QREADR);
1232 	entersq(qp->q_syncq, SQ_OPENCLOSE);
1233 
1234 	dummydev = *devp;
1235 	if (error = ((*qp->q_qinfo->qi_qopen)(qp, &dummydev,
1236 	    (wqp->q_next ? 0 : flag), (wqp->q_next ? MODOPEN : 0), crp))) {
1237 		leavesq(qp->q_syncq, SQ_OPENCLOSE);
1238 		mutex_enter(&STREAM(qp)->sd_lock);
1239 		qp->q_stream->sd_flag |= STREOPENFAIL;
1240 		mutex_exit(&STREAM(qp)->sd_lock);
1241 		return (error);
1242 	}
1243 	leavesq(qp->q_syncq, SQ_OPENCLOSE);
1244 
1245 	/*
1246 	 * successful open should have done qprocson()
1247 	 */
1248 	ASSERT(qprocsareon(_RD(qp)));
1249 	return (0);
1250 }
1251 
1252 /*
1253  * Detach a stream module or device.
1254  * If clmode == 1 then the module or driver was opened and its
1255  * close routine must be called. If clmode == 0, the module
1256  * or driver was never opened or the open failed, and so its close
1257  * should not be called.
1258  */
1259 void
1260 qdetach(queue_t *qp, int clmode, int flag, cred_t *crp, boolean_t is_remove)
1261 {
1262 	queue_t *wqp = _WR(qp);
1263 	ASSERT(STREAM(qp)->sd_flag & (STRCLOSE|STWOPEN|STRPLUMB));
1264 
1265 	if (STREAM_NEEDSERVICE(STREAM(qp)))
1266 		stream_runservice(STREAM(qp));
1267 
1268 	if (clmode) {
1269 		/*
1270 		 * Make sure that all the messages on the write side syncq are
1271 		 * processed and nothing is left. Since we are closing, no new
1272 		 * messages may appear there.
1273 		 */
1274 		wait_q_syncq(wqp);
1275 
1276 		entersq(qp->q_syncq, SQ_OPENCLOSE);
1277 		if (is_remove) {
1278 			mutex_enter(QLOCK(qp));
1279 			qp->q_flag |= _QREMOVING;
1280 			mutex_exit(QLOCK(qp));
1281 		}
1282 		(*qp->q_qinfo->qi_qclose)(qp, flag, crp);
1283 		/*
1284 		 * Check that qprocsoff() was actually called.
1285 		 */
1286 		ASSERT((qp->q_flag & QWCLOSE) && (wqp->q_flag & QWCLOSE));
1287 
1288 		leavesq(qp->q_syncq, SQ_OPENCLOSE);
1289 	} else {
1290 		disable_svc(qp);
1291 	}
1292 
1293 	/*
1294 	 * Allow any threads blocked in entersq to proceed and discover
1295 	 * the QWCLOSE is set.
1296 	 * Note: This assumes that all users of entersq check QWCLOSE.
1297 	 * Currently runservice is the only entersq that can happen
1298 	 * after removeq has finished.
1299 	 * Removeq will have discarded all messages destined to the closing
1300 	 * pair of queues from the syncq.
1301 	 * NOTE: Calling a function inside an assert is unconventional.
1302 	 * However, it does not cause any problem since flush_syncq() does
1303 	 * not change any state except when it returns non-zero i.e.
1304 	 * when the assert will trigger.
1305 	 */
1306 	ASSERT(flush_syncq(qp->q_syncq, qp) == 0);
1307 	ASSERT(flush_syncq(wqp->q_syncq, wqp) == 0);
1308 	ASSERT((qp->q_flag & QPERMOD) ||
1309 	    ((qp->q_syncq->sq_head == NULL) &&
1310 	    (wqp->q_syncq->sq_head == NULL)));
1311 
1312 	/* release any fmodsw_impl_t structure held on behalf of the queue */
1313 	ASSERT(qp->q_fp != NULL || qp->q_flag & QISDRV);
1314 	if (qp->q_fp != NULL)
1315 		fmodsw_rele(qp->q_fp);
1316 
1317 	/* freeq removes us from the outer perimeter if any */
1318 	freeq(qp);
1319 }
1320 
1321 /* Prevent service procedures from being called */
1322 void
1323 disable_svc(queue_t *qp)
1324 {
1325 	queue_t *wqp = _WR(qp);
1326 
1327 	ASSERT(qp->q_flag & QREADR);
1328 	mutex_enter(QLOCK(qp));
1329 	qp->q_flag |= QWCLOSE;
1330 	mutex_exit(QLOCK(qp));
1331 	mutex_enter(QLOCK(wqp));
1332 	wqp->q_flag |= QWCLOSE;
1333 	mutex_exit(QLOCK(wqp));
1334 }
1335 
1336 /* allow service procedures to be called again */
1337 void
1338 enable_svc(queue_t *qp)
1339 {
1340 	queue_t *wqp = _WR(qp);
1341 
1342 	ASSERT(qp->q_flag & QREADR);
1343 	mutex_enter(QLOCK(qp));
1344 	qp->q_flag &= ~QWCLOSE;
1345 	mutex_exit(QLOCK(qp));
1346 	mutex_enter(QLOCK(wqp));
1347 	wqp->q_flag &= ~QWCLOSE;
1348 	mutex_exit(QLOCK(wqp));
1349 }
1350 
1351 /*
1352  * Remove queue from qhead/qtail if it is enabled.
1353  * Only reset QENAB if the queue was removed from the runlist.
1354  * A queue goes through 3 stages:
1355  *	It is on the service list and QENAB is set.
1356  *	It is removed from the service list but QENAB is still set.
1357  *	QENAB gets changed to QINSERVICE.
1358  *	QINSERVICE is reset (when the service procedure is done)
1359  * Thus we can not reset QENAB unless we actually removed it from the service
1360  * queue.
1361  */
1362 void
1363 remove_runlist(queue_t *qp)
1364 {
1365 	if (qp->q_flag & QENAB && qhead != NULL) {
1366 		queue_t *q_chase;
1367 		queue_t *q_curr;
1368 		int removed;
1369 
1370 		mutex_enter(&service_queue);
1371 		RMQ(qp, qhead, qtail, q_link, q_chase, q_curr, removed);
1372 		mutex_exit(&service_queue);
1373 		if (removed) {
1374 			STRSTAT(qremoved);
1375 			qp->q_flag &= ~QENAB;
1376 		}
1377 	}
1378 }
1379 
1380 
1381 /*
1382  * wait for any pending service processing to complete.
1383  * The removal of queues from the runlist is not atomic with the
1384  * clearing of the QENABLED flag and setting the INSERVICE flag.
1385  * consequently it is possible for remove_runlist in strclose
1386  * to not find the queue on the runlist but for it to be QENABLED
1387  * and not yet INSERVICE -> hence wait_svc needs to check QENABLED
1388  * as well as INSERVICE.
1389  */
1390 void
1391 wait_svc(queue_t *qp)
1392 {
1393 	queue_t *wqp = _WR(qp);
1394 
1395 	ASSERT(qp->q_flag & QREADR);
1396 
1397 	/*
1398 	 * Try to remove queues from qhead/qtail list.
1399 	 */
1400 	if (qhead != NULL) {
1401 		remove_runlist(qp);
1402 		remove_runlist(wqp);
1403 	}
1404 	/*
1405 	 * Wait till the syncqs associated with the queue
1406 	 * will dissapear from background processing list.
1407 	 * This only needs to be done for non-PERMOD perimeters since
1408 	 * for PERMOD perimeters the syncq may be shared and will only be freed
1409 	 * when the last module/driver is unloaded.
1410 	 * If for PERMOD perimeters queue was on the syncq list, removeq()
1411 	 * should call propagate_syncq() or drain_syncq() for it. Both of these
1412 	 * function remove the queue from its syncq list, so sqthread will not
1413 	 * try to access the queue.
1414 	 */
1415 	if (!(qp->q_flag & QPERMOD)) {
1416 		syncq_t *rsq = qp->q_syncq;
1417 		syncq_t *wsq = wqp->q_syncq;
1418 
1419 		/*
1420 		 * Disable rsq and wsq and wait for any background processing of
1421 		 * syncq to complete.
1422 		 */
1423 		wait_sq_svc(rsq);
1424 		if (wsq != rsq)
1425 			wait_sq_svc(wsq);
1426 	}
1427 
1428 	mutex_enter(QLOCK(qp));
1429 	while (qp->q_flag & (QINSERVICE|QENAB))
1430 		cv_wait(&qp->q_wait, QLOCK(qp));
1431 	mutex_exit(QLOCK(qp));
1432 	mutex_enter(QLOCK(wqp));
1433 	while (wqp->q_flag & (QINSERVICE|QENAB))
1434 		cv_wait(&wqp->q_wait, QLOCK(wqp));
1435 	mutex_exit(QLOCK(wqp));
1436 }
1437 
1438 /*
1439  * Put ioctl data from userland buffer `arg' into the mblk chain `bp'.
1440  * `flag' must always contain either K_TO_K or U_TO_K; STR_NOSIG may
1441  * also be set, and is passed through to allocb_cred_wait().
1442  *
1443  * Returns errno on failure, zero on success.
1444  */
1445 int
1446 putiocd(mblk_t *bp, char *arg, int flag, cred_t *cr)
1447 {
1448 	mblk_t *tmp;
1449 	ssize_t  count;
1450 	int error = 0;
1451 
1452 	ASSERT((flag & (U_TO_K | K_TO_K)) == U_TO_K ||
1453 	    (flag & (U_TO_K | K_TO_K)) == K_TO_K);
1454 
1455 	if (bp->b_datap->db_type == M_IOCTL) {
1456 		count = ((struct iocblk *)bp->b_rptr)->ioc_count;
1457 	} else {
1458 		ASSERT(bp->b_datap->db_type == M_COPYIN);
1459 		count = ((struct copyreq *)bp->b_rptr)->cq_size;
1460 	}
1461 	/*
1462 	 * strdoioctl validates ioc_count, so if this assert fails it
1463 	 * cannot be due to user error.
1464 	 */
1465 	ASSERT(count >= 0);
1466 
1467 	if ((tmp = allocb_cred_wait(count, (flag & STR_NOSIG), &error, cr)) ==
1468 	    NULL) {
1469 		return (error);
1470 	}
1471 	error = strcopyin(arg, tmp->b_wptr, count, flag & (U_TO_K|K_TO_K));
1472 	if (error != 0) {
1473 		freeb(tmp);
1474 		return (error);
1475 	}
1476 	DB_CPID(tmp) = curproc->p_pid;
1477 	tmp->b_wptr += count;
1478 	bp->b_cont = tmp;
1479 
1480 	return (0);
1481 }
1482 
1483 /*
1484  * Copy ioctl data to user-land. Return non-zero errno on failure,
1485  * 0 for success.
1486  */
1487 int
1488 getiocd(mblk_t *bp, char *arg, int copymode)
1489 {
1490 	ssize_t count;
1491 	size_t  n;
1492 	int	error;
1493 
1494 	if (bp->b_datap->db_type == M_IOCACK)
1495 		count = ((struct iocblk *)bp->b_rptr)->ioc_count;
1496 	else {
1497 		ASSERT(bp->b_datap->db_type == M_COPYOUT);
1498 		count = ((struct copyreq *)bp->b_rptr)->cq_size;
1499 	}
1500 	ASSERT(count >= 0);
1501 
1502 	for (bp = bp->b_cont; bp && count;
1503 	    count -= n, bp = bp->b_cont, arg += n) {
1504 		n = MIN(count, bp->b_wptr - bp->b_rptr);
1505 		error = strcopyout(bp->b_rptr, arg, n, copymode);
1506 		if (error)
1507 			return (error);
1508 	}
1509 	ASSERT(count == 0);
1510 	return (0);
1511 }
1512 
1513 /*
1514  * Allocate a linkinfo entry given the write queue of the
1515  * bottom module of the top stream and the write queue of the
1516  * stream head of the bottom stream.
1517  */
1518 linkinfo_t *
1519 alloclink(queue_t *qup, queue_t *qdown, file_t *fpdown)
1520 {
1521 	linkinfo_t *linkp;
1522 
1523 	linkp = kmem_cache_alloc(linkinfo_cache, KM_SLEEP);
1524 
1525 	linkp->li_lblk.l_qtop = qup;
1526 	linkp->li_lblk.l_qbot = qdown;
1527 	linkp->li_fpdown = fpdown;
1528 
1529 	mutex_enter(&strresources);
1530 	linkp->li_next = linkinfo_list;
1531 	linkp->li_prev = NULL;
1532 	if (linkp->li_next)
1533 		linkp->li_next->li_prev = linkp;
1534 	linkinfo_list = linkp;
1535 	linkp->li_lblk.l_index = ++lnk_id;
1536 	ASSERT(lnk_id != 0);	/* this should never wrap in practice */
1537 	mutex_exit(&strresources);
1538 
1539 	return (linkp);
1540 }
1541 
1542 /*
1543  * Free a linkinfo entry.
1544  */
1545 void
1546 lbfree(linkinfo_t *linkp)
1547 {
1548 	mutex_enter(&strresources);
1549 	if (linkp->li_next)
1550 		linkp->li_next->li_prev = linkp->li_prev;
1551 	if (linkp->li_prev)
1552 		linkp->li_prev->li_next = linkp->li_next;
1553 	else
1554 		linkinfo_list = linkp->li_next;
1555 	mutex_exit(&strresources);
1556 
1557 	kmem_cache_free(linkinfo_cache, linkp);
1558 }
1559 
1560 /*
1561  * Check for a potential linking cycle.
1562  * Return 1 if a link will result in a cycle,
1563  * and 0 otherwise.
1564  */
1565 int
1566 linkcycle(stdata_t *upstp, stdata_t *lostp, str_stack_t *ss)
1567 {
1568 	struct mux_node *np;
1569 	struct mux_edge *ep;
1570 	int i;
1571 	major_t lomaj;
1572 	major_t upmaj;
1573 	/*
1574 	 * if the lower stream is a pipe/FIFO, return, since link
1575 	 * cycles can not happen on pipes/FIFOs
1576 	 */
1577 	if (lostp->sd_vnode->v_type == VFIFO)
1578 		return (0);
1579 
1580 	for (i = 0; i < ss->ss_devcnt; i++) {
1581 		np = &ss->ss_mux_nodes[i];
1582 		MUX_CLEAR(np);
1583 	}
1584 	lomaj = getmajor(lostp->sd_vnode->v_rdev);
1585 	upmaj = getmajor(upstp->sd_vnode->v_rdev);
1586 	np = &ss->ss_mux_nodes[lomaj];
1587 	for (;;) {
1588 		if (!MUX_DIDVISIT(np)) {
1589 			if (np->mn_imaj == upmaj)
1590 				return (1);
1591 			if (np->mn_outp == NULL) {
1592 				MUX_VISIT(np);
1593 				if (np->mn_originp == NULL)
1594 					return (0);
1595 				np = np->mn_originp;
1596 				continue;
1597 			}
1598 			MUX_VISIT(np);
1599 			np->mn_startp = np->mn_outp;
1600 		} else {
1601 			if (np->mn_startp == NULL) {
1602 				if (np->mn_originp == NULL)
1603 					return (0);
1604 				else {
1605 					np = np->mn_originp;
1606 					continue;
1607 				}
1608 			}
1609 			/*
1610 			 * If ep->me_nodep is a FIFO (me_nodep == NULL),
1611 			 * ignore the edge and move on. ep->me_nodep gets
1612 			 * set to NULL in mux_addedge() if it is a FIFO.
1613 			 *
1614 			 */
1615 			ep = np->mn_startp;
1616 			np->mn_startp = ep->me_nextp;
1617 			if (ep->me_nodep == NULL)
1618 				continue;
1619 			ep->me_nodep->mn_originp = np;
1620 			np = ep->me_nodep;
1621 		}
1622 	}
1623 }
1624 
1625 /*
1626  * Find linkinfo entry corresponding to the parameters.
1627  */
1628 linkinfo_t *
1629 findlinks(stdata_t *stp, int index, int type, str_stack_t *ss)
1630 {
1631 	linkinfo_t *linkp;
1632 	struct mux_edge *mep;
1633 	struct mux_node *mnp;
1634 	queue_t *qup;
1635 
1636 	mutex_enter(&strresources);
1637 	if ((type & LINKTYPEMASK) == LINKNORMAL) {
1638 		qup = getendq(stp->sd_wrq);
1639 		for (linkp = linkinfo_list; linkp; linkp = linkp->li_next) {
1640 			if ((qup == linkp->li_lblk.l_qtop) &&
1641 			    (!index || (index == linkp->li_lblk.l_index))) {
1642 				mutex_exit(&strresources);
1643 				return (linkp);
1644 			}
1645 		}
1646 	} else {
1647 		ASSERT((type & LINKTYPEMASK) == LINKPERSIST);
1648 		mnp = &ss->ss_mux_nodes[getmajor(stp->sd_vnode->v_rdev)];
1649 		mep = mnp->mn_outp;
1650 		while (mep) {
1651 			if ((index == 0) || (index == mep->me_muxid))
1652 				break;
1653 			mep = mep->me_nextp;
1654 		}
1655 		if (!mep) {
1656 			mutex_exit(&strresources);
1657 			return (NULL);
1658 		}
1659 		for (linkp = linkinfo_list; linkp; linkp = linkp->li_next) {
1660 			if ((!linkp->li_lblk.l_qtop) &&
1661 			    (mep->me_muxid == linkp->li_lblk.l_index)) {
1662 				mutex_exit(&strresources);
1663 				return (linkp);
1664 			}
1665 		}
1666 	}
1667 	mutex_exit(&strresources);
1668 	return (NULL);
1669 }
1670 
1671 /*
1672  * Given a queue ptr, follow the chain of q_next pointers until you reach the
1673  * last queue on the chain and return it.
1674  */
1675 queue_t *
1676 getendq(queue_t *q)
1677 {
1678 	ASSERT(q != NULL);
1679 	while (_SAMESTR(q))
1680 		q = q->q_next;
1681 	return (q);
1682 }
1683 
1684 /*
1685  * wait for the syncq count to drop to zero.
1686  * sq could be either outer or inner.
1687  */
1688 
1689 static void
1690 wait_syncq(syncq_t *sq)
1691 {
1692 	uint16_t count;
1693 
1694 	mutex_enter(SQLOCK(sq));
1695 	count = sq->sq_count;
1696 	SQ_PUTLOCKS_ENTER(sq);
1697 	SUM_SQ_PUTCOUNTS(sq, count);
1698 	while (count != 0) {
1699 		sq->sq_flags |= SQ_WANTWAKEUP;
1700 		SQ_PUTLOCKS_EXIT(sq);
1701 		cv_wait(&sq->sq_wait, SQLOCK(sq));
1702 		count = sq->sq_count;
1703 		SQ_PUTLOCKS_ENTER(sq);
1704 		SUM_SQ_PUTCOUNTS(sq, count);
1705 	}
1706 	SQ_PUTLOCKS_EXIT(sq);
1707 	mutex_exit(SQLOCK(sq));
1708 }
1709 
1710 /*
1711  * Wait while there are any messages for the queue in its syncq.
1712  */
1713 static void
1714 wait_q_syncq(queue_t *q)
1715 {
1716 	if ((q->q_sqflags & Q_SQQUEUED) || (q->q_syncqmsgs > 0)) {
1717 		syncq_t *sq = q->q_syncq;
1718 
1719 		mutex_enter(SQLOCK(sq));
1720 		while ((q->q_sqflags & Q_SQQUEUED) || (q->q_syncqmsgs > 0)) {
1721 			sq->sq_flags |= SQ_WANTWAKEUP;
1722 			cv_wait(&sq->sq_wait, SQLOCK(sq));
1723 		}
1724 		mutex_exit(SQLOCK(sq));
1725 	}
1726 }
1727 
1728 
1729 int
1730 mlink_file(vnode_t *vp, int cmd, struct file *fpdown, cred_t *crp, int *rvalp,
1731     int lhlink)
1732 {
1733 	struct stdata *stp;
1734 	struct strioctl strioc;
1735 	struct linkinfo *linkp;
1736 	struct stdata *stpdown;
1737 	struct streamtab *str;
1738 	queue_t *passq;
1739 	syncq_t *passyncq;
1740 	queue_t *rq;
1741 	cdevsw_impl_t *dp;
1742 	uint32_t qflag;
1743 	uint32_t sqtype;
1744 	perdm_t *dmp;
1745 	int error = 0;
1746 	netstack_t *ns;
1747 	str_stack_t *ss;
1748 
1749 	stp = vp->v_stream;
1750 	TRACE_1(TR_FAC_STREAMS_FR,
1751 	    TR_I_LINK, "I_LINK/I_PLINK:stp %p", stp);
1752 	/*
1753 	 * Test for invalid upper stream
1754 	 */
1755 	if (stp->sd_flag & STRHUP) {
1756 		return (ENXIO);
1757 	}
1758 	if (vp->v_type == VFIFO) {
1759 		return (EINVAL);
1760 	}
1761 	if (stp->sd_strtab == NULL) {
1762 		return (EINVAL);
1763 	}
1764 	if (!stp->sd_strtab->st_muxwinit) {
1765 		return (EINVAL);
1766 	}
1767 	if (fpdown == NULL) {
1768 		return (EBADF);
1769 	}
1770 	ns = netstack_find_by_cred(crp);
1771 	ASSERT(ns != NULL);
1772 	ss = ns->netstack_str;
1773 	ASSERT(ss != NULL);
1774 
1775 	if (getmajor(stp->sd_vnode->v_rdev) >= ss->ss_devcnt) {
1776 		netstack_rele(ss->ss_netstack);
1777 		return (EINVAL);
1778 	}
1779 	mutex_enter(&muxifier);
1780 	if (stp->sd_flag & STPLEX) {
1781 		mutex_exit(&muxifier);
1782 		netstack_rele(ss->ss_netstack);
1783 		return (ENXIO);
1784 	}
1785 
1786 	/*
1787 	 * Test for invalid lower stream.
1788 	 * The check for the v_type != VFIFO and having a major
1789 	 * number not >= devcnt is done to avoid problems with
1790 	 * adding mux_node entry past the end of mux_nodes[].
1791 	 * For FIFO's we don't add an entry so this isn't a
1792 	 * problem.
1793 	 */
1794 	if (((stpdown = fpdown->f_vnode->v_stream) == NULL) ||
1795 	    (stpdown == stp) || (stpdown->sd_flag &
1796 	    (STPLEX|STRHUP|STRDERR|STWRERR|IOCWAIT|STRPLUMB)) ||
1797 	    ((stpdown->sd_vnode->v_type != VFIFO) &&
1798 	    (getmajor(stpdown->sd_vnode->v_rdev) >= ss->ss_devcnt)) ||
1799 	    linkcycle(stp, stpdown, ss)) {
1800 		mutex_exit(&muxifier);
1801 		netstack_rele(ss->ss_netstack);
1802 		return (EINVAL);
1803 	}
1804 	TRACE_1(TR_FAC_STREAMS_FR,
1805 	    TR_STPDOWN, "stpdown:%p", stpdown);
1806 	rq = getendq(stp->sd_wrq);
1807 	if (cmd == I_PLINK)
1808 		rq = NULL;
1809 
1810 	linkp = alloclink(rq, stpdown->sd_wrq, fpdown);
1811 
1812 	strioc.ic_cmd = cmd;
1813 	strioc.ic_timout = INFTIM;
1814 	strioc.ic_len = sizeof (struct linkblk);
1815 	strioc.ic_dp = (char *)&linkp->li_lblk;
1816 
1817 	/*
1818 	 * STRPLUMB protects plumbing changes and should be set before
1819 	 * link_addpassthru()/link_rempassthru() are called, so it is set here
1820 	 * and cleared in the end of mlink when passthru queue is removed.
1821 	 * Setting of STRPLUMB prevents reopens of the stream while passthru
1822 	 * queue is in-place (it is not a proper module and doesn't have open
1823 	 * entry point).
1824 	 *
1825 	 * STPLEX prevents any threads from entering the stream from above. It
1826 	 * can't be set before the call to link_addpassthru() because putnext
1827 	 * from below may cause stream head I/O routines to be called and these
1828 	 * routines assert that STPLEX is not set. After link_addpassthru()
1829 	 * nothing may come from below since the pass queue syncq is blocked.
1830 	 * Note also that STPLEX should be cleared before the call to
1831 	 * link_remmpassthru() since when messages start flowing to the stream
1832 	 * head (e.g. because of message propagation from the pass queue) stream
1833 	 * head I/O routines may be called with STPLEX flag set.
1834 	 *
1835 	 * When STPLEX is set, nothing may come into the stream from above and
1836 	 * it is safe to do a setq which will change stream head. So, the
1837 	 * correct sequence of actions is:
1838 	 *
1839 	 * 1) Set STRPLUMB
1840 	 * 2) Call link_addpassthru()
1841 	 * 3) Set STPLEX
1842 	 * 4) Call setq and update the stream state
1843 	 * 5) Clear STPLEX
1844 	 * 6) Call link_rempassthru()
1845 	 * 7) Clear STRPLUMB
1846 	 *
1847 	 * The same sequence applies to munlink() code.
1848 	 */
1849 	mutex_enter(&stpdown->sd_lock);
1850 	stpdown->sd_flag |= STRPLUMB;
1851 	mutex_exit(&stpdown->sd_lock);
1852 	/*
1853 	 * Add passthru queue below lower mux. This will block
1854 	 * syncqs of lower muxs read queue during I_LINK/I_UNLINK.
1855 	 */
1856 	passq = link_addpassthru(stpdown);
1857 
1858 	mutex_enter(&stpdown->sd_lock);
1859 	stpdown->sd_flag |= STPLEX;
1860 	mutex_exit(&stpdown->sd_lock);
1861 
1862 	rq = _RD(stpdown->sd_wrq);
1863 	/*
1864 	 * There may be messages in the streamhead's syncq due to messages
1865 	 * that arrived before link_addpassthru() was done. To avoid
1866 	 * background processing of the syncq happening simultaneous with
1867 	 * setq processing, we disable the streamhead syncq and wait until
1868 	 * existing background thread finishes working on it.
1869 	 */
1870 	wait_sq_svc(rq->q_syncq);
1871 	passyncq = passq->q_syncq;
1872 	if (!(passyncq->sq_flags & SQ_BLOCKED))
1873 		blocksq(passyncq, SQ_BLOCKED, 0);
1874 
1875 	ASSERT((rq->q_flag & QMT_TYPEMASK) == QMTSAFE);
1876 	ASSERT(rq->q_syncq == SQ(rq) && _WR(rq)->q_syncq == SQ(rq));
1877 	rq->q_ptr = _WR(rq)->q_ptr = NULL;
1878 
1879 	/* setq might sleep in allocator - avoid holding locks. */
1880 	/* Note: we are holding muxifier here. */
1881 
1882 	str = stp->sd_strtab;
1883 	dp = &devimpl[getmajor(vp->v_rdev)];
1884 	ASSERT(dp->d_str == str);
1885 
1886 	qflag = dp->d_qflag;
1887 	sqtype = dp->d_sqtype;
1888 
1889 	/* create perdm_t if needed */
1890 	if (NEED_DM(dp->d_dmp, qflag))
1891 		dp->d_dmp = hold_dm(str, qflag, sqtype);
1892 
1893 	dmp = dp->d_dmp;
1894 
1895 	setq(rq, str->st_muxrinit, str->st_muxwinit, dmp, qflag, sqtype,
1896 	    B_TRUE);
1897 
1898 	/*
1899 	 * XXX Remove any "odd" messages from the queue.
1900 	 * Keep only M_DATA, M_PROTO, M_PCPROTO.
1901 	 */
1902 	error = strdoioctl(stp, &strioc, FNATIVE,
1903 	    K_TO_K | STR_NOERROR | STR_NOSIG, crp, rvalp);
1904 	if (error != 0) {
1905 		lbfree(linkp);
1906 
1907 		if (!(passyncq->sq_flags & SQ_BLOCKED))
1908 			blocksq(passyncq, SQ_BLOCKED, 0);
1909 		/*
1910 		 * Restore the stream head queue and then remove
1911 		 * the passq. Turn off STPLEX before we turn on
1912 		 * the stream by removing the passq.
1913 		 */
1914 		rq->q_ptr = _WR(rq)->q_ptr = stpdown;
1915 		setq(rq, &strdata, &stwdata, NULL, QMTSAFE, SQ_CI|SQ_CO,
1916 		    B_TRUE);
1917 
1918 		mutex_enter(&stpdown->sd_lock);
1919 		stpdown->sd_flag &= ~STPLEX;
1920 		mutex_exit(&stpdown->sd_lock);
1921 
1922 		link_rempassthru(passq);
1923 
1924 		mutex_enter(&stpdown->sd_lock);
1925 		stpdown->sd_flag &= ~STRPLUMB;
1926 		/* Wakeup anyone waiting for STRPLUMB to clear. */
1927 		cv_broadcast(&stpdown->sd_monitor);
1928 		mutex_exit(&stpdown->sd_lock);
1929 
1930 		mutex_exit(&muxifier);
1931 		netstack_rele(ss->ss_netstack);
1932 		return (error);
1933 	}
1934 	mutex_enter(&fpdown->f_tlock);
1935 	fpdown->f_count++;
1936 	mutex_exit(&fpdown->f_tlock);
1937 
1938 	/*
1939 	 * if we've made it here the linkage is all set up so we should also
1940 	 * set up the layered driver linkages
1941 	 */
1942 
1943 	ASSERT((cmd == I_LINK) || (cmd == I_PLINK));
1944 	if (cmd == I_LINK) {
1945 		ldi_mlink_fp(stp, fpdown, lhlink, LINKNORMAL);
1946 	} else {
1947 		ldi_mlink_fp(stp, fpdown, lhlink, LINKPERSIST);
1948 	}
1949 
1950 	link_rempassthru(passq);
1951 
1952 	mux_addedge(stp, stpdown, linkp->li_lblk.l_index, ss);
1953 
1954 	/*
1955 	 * Mark the upper stream as having dependent links
1956 	 * so that strclose can clean it up.
1957 	 */
1958 	if (cmd == I_LINK) {
1959 		mutex_enter(&stp->sd_lock);
1960 		stp->sd_flag |= STRHASLINKS;
1961 		mutex_exit(&stp->sd_lock);
1962 	}
1963 	/*
1964 	 * Wake up any other processes that may have been
1965 	 * waiting on the lower stream. These will all
1966 	 * error out.
1967 	 */
1968 	mutex_enter(&stpdown->sd_lock);
1969 	/* The passthru module is removed so we may release STRPLUMB */
1970 	stpdown->sd_flag &= ~STRPLUMB;
1971 	cv_broadcast(&rq->q_wait);
1972 	cv_broadcast(&_WR(rq)->q_wait);
1973 	cv_broadcast(&stpdown->sd_monitor);
1974 	mutex_exit(&stpdown->sd_lock);
1975 	mutex_exit(&muxifier);
1976 	*rvalp = linkp->li_lblk.l_index;
1977 	netstack_rele(ss->ss_netstack);
1978 	return (0);
1979 }
1980 
1981 int
1982 mlink(vnode_t *vp, int cmd, int arg, cred_t *crp, int *rvalp, int lhlink)
1983 {
1984 	int		ret;
1985 	struct file	*fpdown;
1986 
1987 	fpdown = getf(arg);
1988 	ret = mlink_file(vp, cmd, fpdown, crp, rvalp, lhlink);
1989 	if (fpdown != NULL)
1990 		releasef(arg);
1991 	return (ret);
1992 }
1993 
1994 /*
1995  * Unlink a multiplexor link. Stp is the controlling stream for the
1996  * link, and linkp points to the link's entry in the linkinfo list.
1997  * The muxifier lock must be held on entry and is dropped on exit.
1998  *
1999  * NOTE : Currently it is assumed that mux would process all the messages
2000  * sitting on it's queue before ACKing the UNLINK. It is the responsibility
2001  * of the mux to handle all the messages that arrive before UNLINK.
2002  * If the mux has to send down messages on its lower stream before
2003  * ACKing I_UNLINK, then it *should* know to handle messages even
2004  * after the UNLINK is acked (actually it should be able to handle till we
2005  * re-block the read side of the pass queue here). If the mux does not
2006  * open up the lower stream, any messages that arrive during UNLINK
2007  * will be put in the stream head. In the case of lower stream opening
2008  * up, some messages might land in the stream head depending on when
2009  * the message arrived and when the read side of the pass queue was
2010  * re-blocked.
2011  */
2012 int
2013 munlink(stdata_t *stp, linkinfo_t *linkp, int flag, cred_t *crp, int *rvalp,
2014     str_stack_t *ss)
2015 {
2016 	struct strioctl strioc;
2017 	struct stdata *stpdown;
2018 	queue_t *rq, *wrq;
2019 	queue_t	*passq;
2020 	syncq_t *passyncq;
2021 	int error = 0;
2022 	file_t *fpdown;
2023 
2024 	ASSERT(MUTEX_HELD(&muxifier));
2025 
2026 	stpdown = linkp->li_fpdown->f_vnode->v_stream;
2027 
2028 	/*
2029 	 * See the comment in mlink() concerning STRPLUMB/STPLEX flags.
2030 	 */
2031 	mutex_enter(&stpdown->sd_lock);
2032 	stpdown->sd_flag |= STRPLUMB;
2033 	mutex_exit(&stpdown->sd_lock);
2034 
2035 	/*
2036 	 * Add passthru queue below lower mux. This will block
2037 	 * syncqs of lower muxs read queue during I_LINK/I_UNLINK.
2038 	 */
2039 	passq = link_addpassthru(stpdown);
2040 
2041 	if ((flag & LINKTYPEMASK) == LINKNORMAL)
2042 		strioc.ic_cmd = I_UNLINK;
2043 	else
2044 		strioc.ic_cmd = I_PUNLINK;
2045 	strioc.ic_timout = INFTIM;
2046 	strioc.ic_len = sizeof (struct linkblk);
2047 	strioc.ic_dp = (char *)&linkp->li_lblk;
2048 
2049 	error = strdoioctl(stp, &strioc, FNATIVE,
2050 	    K_TO_K | STR_NOERROR | STR_NOSIG, crp, rvalp);
2051 
2052 	/*
2053 	 * If there was an error and this is not called via strclose,
2054 	 * return to the user. Otherwise, pretend there was no error
2055 	 * and close the link.
2056 	 */
2057 	if (error) {
2058 		if (flag & LINKCLOSE) {
2059 			cmn_err(CE_WARN, "KERNEL: munlink: could not perform "
2060 			    "unlink ioctl, closing anyway (%d)\n", error);
2061 		} else {
2062 			link_rempassthru(passq);
2063 			mutex_enter(&stpdown->sd_lock);
2064 			stpdown->sd_flag &= ~STRPLUMB;
2065 			cv_broadcast(&stpdown->sd_monitor);
2066 			mutex_exit(&stpdown->sd_lock);
2067 			mutex_exit(&muxifier);
2068 			return (error);
2069 		}
2070 	}
2071 
2072 	mux_rmvedge(stp, linkp->li_lblk.l_index, ss);
2073 	fpdown = linkp->li_fpdown;
2074 	lbfree(linkp);
2075 
2076 	/*
2077 	 * We go ahead and drop muxifier here--it's a nasty global lock that
2078 	 * can slow others down. It's okay to since attempts to mlink() this
2079 	 * stream will be stopped because STPLEX is still set in the stdata
2080 	 * structure, and munlink() is stopped because mux_rmvedge() and
2081 	 * lbfree() have removed it from mux_nodes[] and linkinfo_list,
2082 	 * respectively.  Note that we defer the closef() of fpdown until
2083 	 * after we drop muxifier since strclose() can call munlinkall().
2084 	 */
2085 	mutex_exit(&muxifier);
2086 
2087 	wrq = stpdown->sd_wrq;
2088 	rq = _RD(wrq);
2089 
2090 	/*
2091 	 * Get rid of outstanding service procedure runs, before we make
2092 	 * it a stream head, since a stream head doesn't have any service
2093 	 * procedure.
2094 	 */
2095 	disable_svc(rq);
2096 	wait_svc(rq);
2097 
2098 	/*
2099 	 * Since we don't disable the syncq for QPERMOD, we wait for whatever
2100 	 * is queued up to be finished. mux should take care that nothing is
2101 	 * send down to this queue. We should do it now as we're going to block
2102 	 * passyncq if it was unblocked.
2103 	 */
2104 	if (wrq->q_flag & QPERMOD) {
2105 		syncq_t	*sq = wrq->q_syncq;
2106 
2107 		mutex_enter(SQLOCK(sq));
2108 		while (wrq->q_sqflags & Q_SQQUEUED) {
2109 			sq->sq_flags |= SQ_WANTWAKEUP;
2110 			cv_wait(&sq->sq_wait, SQLOCK(sq));
2111 		}
2112 		mutex_exit(SQLOCK(sq));
2113 	}
2114 	passyncq = passq->q_syncq;
2115 	if (!(passyncq->sq_flags & SQ_BLOCKED)) {
2116 
2117 		syncq_t *sq, *outer;
2118 
2119 		/*
2120 		 * Messages could be flowing from underneath. We will
2121 		 * block the read side of the passq. This would be
2122 		 * sufficient for QPAIR and QPERQ muxes to ensure
2123 		 * that no data is flowing up into this queue
2124 		 * and hence no thread active in this instance of
2125 		 * lower mux. But for QPERMOD and QMTOUTPERIM there
2126 		 * could be messages on the inner and outer/inner
2127 		 * syncqs respectively. We will wait for them to drain.
2128 		 * Because passq is blocked messages end up in the syncq
2129 		 * And qfill_syncq could possibly end up setting QFULL
2130 		 * which will access the rq->q_flag. Hence, we have to
2131 		 * acquire the QLOCK in setq.
2132 		 *
2133 		 * XXX Messages can also flow from top into this
2134 		 * queue though the unlink is over (Ex. some instance
2135 		 * in putnext() called from top that has still not
2136 		 * accessed this queue. And also putq(lowerq) ?).
2137 		 * Solution : How about blocking the l_qtop queue ?
2138 		 * Do we really care about such pure D_MP muxes ?
2139 		 */
2140 
2141 		blocksq(passyncq, SQ_BLOCKED, 0);
2142 
2143 		sq = rq->q_syncq;
2144 		if ((outer = sq->sq_outer) != NULL) {
2145 
2146 			/*
2147 			 * We have to just wait for the outer sq_count
2148 			 * drop to zero. As this does not prevent new
2149 			 * messages to enter the outer perimeter, this
2150 			 * is subject to starvation.
2151 			 *
2152 			 * NOTE :Because of blocksq above, messages could
2153 			 * be in the inner syncq only because of some
2154 			 * thread holding the outer perimeter exclusively.
2155 			 * Hence it would be sufficient to wait for the
2156 			 * exclusive holder of the outer perimeter to drain
2157 			 * the inner and outer syncqs. But we will not depend
2158 			 * on this feature and hence check the inner syncqs
2159 			 * separately.
2160 			 */
2161 			wait_syncq(outer);
2162 		}
2163 
2164 
2165 		/*
2166 		 * There could be messages destined for
2167 		 * this queue. Let the exclusive holder
2168 		 * drain it.
2169 		 */
2170 
2171 		wait_syncq(sq);
2172 		ASSERT((rq->q_flag & QPERMOD) ||
2173 		    ((rq->q_syncq->sq_head == NULL) &&
2174 		    (_WR(rq)->q_syncq->sq_head == NULL)));
2175 	}
2176 
2177 	/*
2178 	 * We haven't taken care of QPERMOD case yet. QPERMOD is a special
2179 	 * case as we don't disable its syncq or remove it off the syncq
2180 	 * service list.
2181 	 */
2182 	if (rq->q_flag & QPERMOD) {
2183 		syncq_t	*sq = rq->q_syncq;
2184 
2185 		mutex_enter(SQLOCK(sq));
2186 		while (rq->q_sqflags & Q_SQQUEUED) {
2187 			sq->sq_flags |= SQ_WANTWAKEUP;
2188 			cv_wait(&sq->sq_wait, SQLOCK(sq));
2189 		}
2190 		mutex_exit(SQLOCK(sq));
2191 	}
2192 
2193 	/*
2194 	 * flush_syncq changes states only when there is some messages to
2195 	 * free. ie when it returns non-zero value to return.
2196 	 */
2197 	ASSERT(flush_syncq(rq->q_syncq, rq) == 0);
2198 	ASSERT(flush_syncq(wrq->q_syncq, wrq) == 0);
2199 
2200 	/*
2201 	 * No body else should know about this queue now.
2202 	 * If the mux did not process the messages before
2203 	 * acking the I_UNLINK, free them now.
2204 	 */
2205 
2206 	flushq(rq, FLUSHALL);
2207 	flushq(_WR(rq), FLUSHALL);
2208 
2209 	/*
2210 	 * Convert the mux lower queue into a stream head queue.
2211 	 * Turn off STPLEX before we turn on the stream by removing the passq.
2212 	 */
2213 	rq->q_ptr = wrq->q_ptr = stpdown;
2214 	setq(rq, &strdata, &stwdata, NULL, QMTSAFE, SQ_CI|SQ_CO, B_TRUE);
2215 
2216 	ASSERT((rq->q_flag & QMT_TYPEMASK) == QMTSAFE);
2217 	ASSERT(rq->q_syncq == SQ(rq) && _WR(rq)->q_syncq == SQ(rq));
2218 
2219 	enable_svc(rq);
2220 
2221 	/*
2222 	 * Now it is a proper stream, so STPLEX is cleared. But STRPLUMB still
2223 	 * needs to be set to prevent reopen() of the stream - such reopen may
2224 	 * try to call non-existent pass queue open routine and panic.
2225 	 */
2226 	mutex_enter(&stpdown->sd_lock);
2227 	stpdown->sd_flag &= ~STPLEX;
2228 	mutex_exit(&stpdown->sd_lock);
2229 
2230 	ASSERT(((flag & LINKTYPEMASK) == LINKNORMAL) ||
2231 	    ((flag & LINKTYPEMASK) == LINKPERSIST));
2232 
2233 	/* clean up the layered driver linkages */
2234 	if ((flag & LINKTYPEMASK) == LINKNORMAL) {
2235 		ldi_munlink_fp(stp, fpdown, LINKNORMAL);
2236 	} else {
2237 		ldi_munlink_fp(stp, fpdown, LINKPERSIST);
2238 	}
2239 
2240 	link_rempassthru(passq);
2241 
2242 	/*
2243 	 * Now all plumbing changes are finished and STRPLUMB is no
2244 	 * longer needed.
2245 	 */
2246 	mutex_enter(&stpdown->sd_lock);
2247 	stpdown->sd_flag &= ~STRPLUMB;
2248 	cv_broadcast(&stpdown->sd_monitor);
2249 	mutex_exit(&stpdown->sd_lock);
2250 
2251 	(void) closef(fpdown);
2252 	return (0);
2253 }
2254 
2255 /*
2256  * Unlink all multiplexor links for which stp is the controlling stream.
2257  * Return 0, or a non-zero errno on failure.
2258  */
2259 int
2260 munlinkall(stdata_t *stp, int flag, cred_t *crp, int *rvalp, str_stack_t *ss)
2261 {
2262 	linkinfo_t *linkp;
2263 	int error = 0;
2264 
2265 	mutex_enter(&muxifier);
2266 	while (linkp = findlinks(stp, 0, flag, ss)) {
2267 		/*
2268 		 * munlink() releases the muxifier lock.
2269 		 */
2270 		if (error = munlink(stp, linkp, flag, crp, rvalp, ss))
2271 			return (error);
2272 		mutex_enter(&muxifier);
2273 	}
2274 	mutex_exit(&muxifier);
2275 	return (0);
2276 }
2277 
2278 /*
2279  * A multiplexor link has been made. Add an
2280  * edge to the directed graph.
2281  */
2282 void
2283 mux_addedge(stdata_t *upstp, stdata_t *lostp, int muxid, str_stack_t *ss)
2284 {
2285 	struct mux_node *np;
2286 	struct mux_edge *ep;
2287 	major_t upmaj;
2288 	major_t lomaj;
2289 
2290 	upmaj = getmajor(upstp->sd_vnode->v_rdev);
2291 	lomaj = getmajor(lostp->sd_vnode->v_rdev);
2292 	np = &ss->ss_mux_nodes[upmaj];
2293 	if (np->mn_outp) {
2294 		ep = np->mn_outp;
2295 		while (ep->me_nextp)
2296 			ep = ep->me_nextp;
2297 		ep->me_nextp = kmem_alloc(sizeof (struct mux_edge), KM_SLEEP);
2298 		ep = ep->me_nextp;
2299 	} else {
2300 		np->mn_outp = kmem_alloc(sizeof (struct mux_edge), KM_SLEEP);
2301 		ep = np->mn_outp;
2302 	}
2303 	ep->me_nextp = NULL;
2304 	ep->me_muxid = muxid;
2305 	/*
2306 	 * Save the dev_t for the purposes of str_stack_shutdown.
2307 	 * str_stack_shutdown assumes that the device allows reopen, since
2308 	 * this dev_t is the one after any cloning by xx_open().
2309 	 * Would prefer finding the dev_t from before any cloning,
2310 	 * but specfs doesn't retain that.
2311 	 */
2312 	ep->me_dev = upstp->sd_vnode->v_rdev;
2313 	if (lostp->sd_vnode->v_type == VFIFO)
2314 		ep->me_nodep = NULL;
2315 	else
2316 		ep->me_nodep = &ss->ss_mux_nodes[lomaj];
2317 }
2318 
2319 /*
2320  * A multiplexor link has been removed. Remove the
2321  * edge in the directed graph.
2322  */
2323 void
2324 mux_rmvedge(stdata_t *upstp, int muxid, str_stack_t *ss)
2325 {
2326 	struct mux_node *np;
2327 	struct mux_edge *ep;
2328 	struct mux_edge *pep = NULL;
2329 	major_t upmaj;
2330 
2331 	upmaj = getmajor(upstp->sd_vnode->v_rdev);
2332 	np = &ss->ss_mux_nodes[upmaj];
2333 	ASSERT(np->mn_outp != NULL);
2334 	ep = np->mn_outp;
2335 	while (ep) {
2336 		if (ep->me_muxid == muxid) {
2337 			if (pep)
2338 				pep->me_nextp = ep->me_nextp;
2339 			else
2340 				np->mn_outp = ep->me_nextp;
2341 			kmem_free(ep, sizeof (struct mux_edge));
2342 			return;
2343 		}
2344 		pep = ep;
2345 		ep = ep->me_nextp;
2346 	}
2347 	ASSERT(0);	/* should not reach here */
2348 }
2349 
2350 /*
2351  * Translate the device flags (from conf.h) to the corresponding
2352  * qflag and sq_flag (type) values.
2353  */
2354 int
2355 devflg_to_qflag(struct streamtab *stp, uint32_t devflag, uint32_t *qflagp,
2356 	uint32_t *sqtypep)
2357 {
2358 	uint32_t qflag = 0;
2359 	uint32_t sqtype = 0;
2360 
2361 	if (devflag & _D_OLD)
2362 		goto bad;
2363 
2364 	/* Inner perimeter presence and scope */
2365 	switch (devflag & D_MTINNER_MASK) {
2366 	case D_MP:
2367 		qflag |= QMTSAFE;
2368 		sqtype |= SQ_CI;
2369 		break;
2370 	case D_MTPERQ|D_MP:
2371 		qflag |= QPERQ;
2372 		break;
2373 	case D_MTQPAIR|D_MP:
2374 		qflag |= QPAIR;
2375 		break;
2376 	case D_MTPERMOD|D_MP:
2377 		qflag |= QPERMOD;
2378 		break;
2379 	default:
2380 		goto bad;
2381 	}
2382 
2383 	/* Outer perimeter */
2384 	if (devflag & D_MTOUTPERIM) {
2385 		switch (devflag & D_MTINNER_MASK) {
2386 		case D_MP:
2387 		case D_MTPERQ|D_MP:
2388 		case D_MTQPAIR|D_MP:
2389 			break;
2390 		default:
2391 			goto bad;
2392 		}
2393 		qflag |= QMTOUTPERIM;
2394 	}
2395 
2396 	/* Inner perimeter modifiers */
2397 	if (devflag & D_MTINNER_MOD) {
2398 		switch (devflag & D_MTINNER_MASK) {
2399 		case D_MP:
2400 			goto bad;
2401 		default:
2402 			break;
2403 		}
2404 		if (devflag & D_MTPUTSHARED)
2405 			sqtype |= SQ_CIPUT;
2406 		if (devflag & _D_MTOCSHARED) {
2407 			/*
2408 			 * The code in putnext assumes that it has the
2409 			 * highest concurrency by not checking sq_count.
2410 			 * Thus _D_MTOCSHARED can only be supported when
2411 			 * D_MTPUTSHARED is set.
2412 			 */
2413 			if (!(devflag & D_MTPUTSHARED))
2414 				goto bad;
2415 			sqtype |= SQ_CIOC;
2416 		}
2417 		if (devflag & _D_MTCBSHARED) {
2418 			/*
2419 			 * The code in putnext assumes that it has the
2420 			 * highest concurrency by not checking sq_count.
2421 			 * Thus _D_MTCBSHARED can only be supported when
2422 			 * D_MTPUTSHARED is set.
2423 			 */
2424 			if (!(devflag & D_MTPUTSHARED))
2425 				goto bad;
2426 			sqtype |= SQ_CICB;
2427 		}
2428 		if (devflag & _D_MTSVCSHARED) {
2429 			/*
2430 			 * The code in putnext assumes that it has the
2431 			 * highest concurrency by not checking sq_count.
2432 			 * Thus _D_MTSVCSHARED can only be supported when
2433 			 * D_MTPUTSHARED is set. Also _D_MTSVCSHARED is
2434 			 * supported only for QPERMOD.
2435 			 */
2436 			if (!(devflag & D_MTPUTSHARED) || !(qflag & QPERMOD))
2437 				goto bad;
2438 			sqtype |= SQ_CISVC;
2439 		}
2440 	}
2441 
2442 	/* Default outer perimeter concurrency */
2443 	sqtype |= SQ_CO;
2444 
2445 	/* Outer perimeter modifiers */
2446 	if (devflag & D_MTOCEXCL) {
2447 		if (!(devflag & D_MTOUTPERIM)) {
2448 			/* No outer perimeter */
2449 			goto bad;
2450 		}
2451 		sqtype &= ~SQ_COOC;
2452 	}
2453 
2454 	/* Synchronous Streams extended qinit structure */
2455 	if (devflag & D_SYNCSTR)
2456 		qflag |= QSYNCSTR;
2457 
2458 	/*
2459 	 * Private flag used by a transport module to indicate
2460 	 * to sockfs that it supports direct-access mode without
2461 	 * having to go through STREAMS or the transport can use
2462 	 * sodirect_t sharing to bypass STREAMS for receive-side
2463 	 * M_DATA processing.
2464 	 */
2465 	if (devflag & (_D_DIRECT|_D_SODIRECT)) {
2466 		/* Reject unless the module is fully-MT (no perimeter) */
2467 		if ((qflag & QMT_TYPEMASK) != QMTSAFE)
2468 			goto bad;
2469 		if (devflag & _D_DIRECT)
2470 			qflag |= _QDIRECT;
2471 		if (devflag & _D_SODIRECT)
2472 			qflag |= _QSODIRECT;
2473 	}
2474 
2475 	*qflagp = qflag;
2476 	*sqtypep = sqtype;
2477 	return (0);
2478 
2479 bad:
2480 	cmn_err(CE_WARN,
2481 	    "stropen: bad MT flags (0x%x) in driver '%s'",
2482 	    (int)(qflag & D_MTSAFETY_MASK),
2483 	    stp->st_rdinit->qi_minfo->mi_idname);
2484 
2485 	return (EINVAL);
2486 }
2487 
2488 /*
2489  * Set the interface values for a pair of queues (qinit structure,
2490  * packet sizes, water marks).
2491  * setq assumes that the caller does not have a claim (entersq or claimq)
2492  * on the queue.
2493  */
2494 void
2495 setq(queue_t *rq, struct qinit *rinit, struct qinit *winit,
2496     perdm_t *dmp, uint32_t qflag, uint32_t sqtype, boolean_t lock_needed)
2497 {
2498 	queue_t *wq;
2499 	syncq_t	*sq, *outer;
2500 
2501 	ASSERT(rq->q_flag & QREADR);
2502 	ASSERT((qflag & QMT_TYPEMASK) != 0);
2503 	IMPLY((qflag & (QPERMOD | QMTOUTPERIM)), dmp != NULL);
2504 
2505 	wq = _WR(rq);
2506 	rq->q_qinfo = rinit;
2507 	rq->q_hiwat = rinit->qi_minfo->mi_hiwat;
2508 	rq->q_lowat = rinit->qi_minfo->mi_lowat;
2509 	rq->q_minpsz = rinit->qi_minfo->mi_minpsz;
2510 	rq->q_maxpsz = rinit->qi_minfo->mi_maxpsz;
2511 	wq->q_qinfo = winit;
2512 	wq->q_hiwat = winit->qi_minfo->mi_hiwat;
2513 	wq->q_lowat = winit->qi_minfo->mi_lowat;
2514 	wq->q_minpsz = winit->qi_minfo->mi_minpsz;
2515 	wq->q_maxpsz = winit->qi_minfo->mi_maxpsz;
2516 
2517 	/* Remove old syncqs */
2518 	sq = rq->q_syncq;
2519 	outer = sq->sq_outer;
2520 	if (outer != NULL) {
2521 		ASSERT(wq->q_syncq->sq_outer == outer);
2522 		outer_remove(outer, rq->q_syncq);
2523 		if (wq->q_syncq != rq->q_syncq)
2524 			outer_remove(outer, wq->q_syncq);
2525 	}
2526 	ASSERT(sq->sq_outer == NULL);
2527 	ASSERT(sq->sq_onext == NULL && sq->sq_oprev == NULL);
2528 
2529 	if (sq != SQ(rq)) {
2530 		if (!(rq->q_flag & QPERMOD))
2531 			free_syncq(sq);
2532 		if (wq->q_syncq == rq->q_syncq)
2533 			wq->q_syncq = NULL;
2534 		rq->q_syncq = NULL;
2535 	}
2536 	if (wq->q_syncq != NULL && wq->q_syncq != sq &&
2537 	    wq->q_syncq != SQ(rq)) {
2538 		free_syncq(wq->q_syncq);
2539 		wq->q_syncq = NULL;
2540 	}
2541 	ASSERT(rq->q_syncq == NULL || (rq->q_syncq->sq_head == NULL &&
2542 	    rq->q_syncq->sq_tail == NULL));
2543 	ASSERT(wq->q_syncq == NULL || (wq->q_syncq->sq_head == NULL &&
2544 	    wq->q_syncq->sq_tail == NULL));
2545 
2546 	if (!(rq->q_flag & QPERMOD) &&
2547 	    rq->q_syncq != NULL && rq->q_syncq->sq_ciputctrl != NULL) {
2548 		ASSERT(rq->q_syncq->sq_nciputctrl == n_ciputctrl - 1);
2549 		SUMCHECK_CIPUTCTRL_COUNTS(rq->q_syncq->sq_ciputctrl,
2550 		    rq->q_syncq->sq_nciputctrl, 0);
2551 		ASSERT(ciputctrl_cache != NULL);
2552 		kmem_cache_free(ciputctrl_cache, rq->q_syncq->sq_ciputctrl);
2553 		rq->q_syncq->sq_ciputctrl = NULL;
2554 		rq->q_syncq->sq_nciputctrl = 0;
2555 	}
2556 
2557 	if (!(wq->q_flag & QPERMOD) &&
2558 	    wq->q_syncq != NULL && wq->q_syncq->sq_ciputctrl != NULL) {
2559 		ASSERT(wq->q_syncq->sq_nciputctrl == n_ciputctrl - 1);
2560 		SUMCHECK_CIPUTCTRL_COUNTS(wq->q_syncq->sq_ciputctrl,
2561 		    wq->q_syncq->sq_nciputctrl, 0);
2562 		ASSERT(ciputctrl_cache != NULL);
2563 		kmem_cache_free(ciputctrl_cache, wq->q_syncq->sq_ciputctrl);
2564 		wq->q_syncq->sq_ciputctrl = NULL;
2565 		wq->q_syncq->sq_nciputctrl = 0;
2566 	}
2567 
2568 	sq = SQ(rq);
2569 	ASSERT(sq->sq_head == NULL && sq->sq_tail == NULL);
2570 	ASSERT(sq->sq_outer == NULL);
2571 	ASSERT(sq->sq_onext == NULL && sq->sq_oprev == NULL);
2572 
2573 	/*
2574 	 * Create syncqs based on qflag and sqtype. Set the SQ_TYPES_IN_FLAGS
2575 	 * bits in sq_flag based on the sqtype.
2576 	 */
2577 	ASSERT((sq->sq_flags & ~SQ_TYPES_IN_FLAGS) == 0);
2578 
2579 	rq->q_syncq = wq->q_syncq = sq;
2580 	sq->sq_type = sqtype;
2581 	sq->sq_flags = (sqtype & SQ_TYPES_IN_FLAGS);
2582 
2583 	/*
2584 	 *  We are making sq_svcflags zero,
2585 	 *  resetting SQ_DISABLED in case it was set by
2586 	 *  wait_svc() in the munlink path.
2587 	 *
2588 	 */
2589 	ASSERT((sq->sq_svcflags & SQ_SERVICE) == 0);
2590 	sq->sq_svcflags = 0;
2591 
2592 	/*
2593 	 * We need to acquire the lock here for the mlink and munlink case,
2594 	 * where canputnext, backenable, etc can access the q_flag.
2595 	 */
2596 	if (lock_needed) {
2597 		mutex_enter(QLOCK(rq));
2598 		rq->q_flag = (rq->q_flag & ~QMT_TYPEMASK) | QWANTR | qflag;
2599 		mutex_exit(QLOCK(rq));
2600 		mutex_enter(QLOCK(wq));
2601 		wq->q_flag = (wq->q_flag & ~QMT_TYPEMASK) | QWANTR | qflag;
2602 		mutex_exit(QLOCK(wq));
2603 	} else {
2604 		rq->q_flag = (rq->q_flag & ~QMT_TYPEMASK) | QWANTR | qflag;
2605 		wq->q_flag = (wq->q_flag & ~QMT_TYPEMASK) | QWANTR | qflag;
2606 	}
2607 
2608 	if (qflag & QPERQ) {
2609 		/* Allocate a separate syncq for the write side */
2610 		sq = new_syncq();
2611 		sq->sq_type = rq->q_syncq->sq_type;
2612 		sq->sq_flags = rq->q_syncq->sq_flags;
2613 		ASSERT(sq->sq_outer == NULL && sq->sq_onext == NULL &&
2614 		    sq->sq_oprev == NULL);
2615 		wq->q_syncq = sq;
2616 	}
2617 	if (qflag & QPERMOD) {
2618 		sq = dmp->dm_sq;
2619 
2620 		/*
2621 		 * Assert that we do have an inner perimeter syncq and that it
2622 		 * does not have an outer perimeter associated with it.
2623 		 */
2624 		ASSERT(sq->sq_outer == NULL && sq->sq_onext == NULL &&
2625 		    sq->sq_oprev == NULL);
2626 		rq->q_syncq = wq->q_syncq = sq;
2627 	}
2628 	if (qflag & QMTOUTPERIM) {
2629 		outer = dmp->dm_sq;
2630 
2631 		ASSERT(outer->sq_outer == NULL);
2632 		outer_insert(outer, rq->q_syncq);
2633 		if (wq->q_syncq != rq->q_syncq)
2634 			outer_insert(outer, wq->q_syncq);
2635 	}
2636 	ASSERT((rq->q_syncq->sq_flags & SQ_TYPES_IN_FLAGS) ==
2637 	    (rq->q_syncq->sq_type & SQ_TYPES_IN_FLAGS));
2638 	ASSERT((wq->q_syncq->sq_flags & SQ_TYPES_IN_FLAGS) ==
2639 	    (wq->q_syncq->sq_type & SQ_TYPES_IN_FLAGS));
2640 	ASSERT((rq->q_flag & QMT_TYPEMASK) == (qflag & QMT_TYPEMASK));
2641 
2642 	/*
2643 	 * Initialize struio() types.
2644 	 */
2645 	rq->q_struiot =
2646 	    (rq->q_flag & QSYNCSTR) ? rinit->qi_struiot : STRUIOT_NONE;
2647 	wq->q_struiot =
2648 	    (wq->q_flag & QSYNCSTR) ? winit->qi_struiot : STRUIOT_NONE;
2649 }
2650 
2651 perdm_t *
2652 hold_dm(struct streamtab *str, uint32_t qflag, uint32_t sqtype)
2653 {
2654 	syncq_t	*sq;
2655 	perdm_t	**pp;
2656 	perdm_t	*p;
2657 	perdm_t	*dmp;
2658 
2659 	ASSERT(str != NULL);
2660 	ASSERT(qflag & (QPERMOD | QMTOUTPERIM));
2661 
2662 	rw_enter(&perdm_rwlock, RW_READER);
2663 	for (p = perdm_list; p != NULL; p = p->dm_next) {
2664 		if (p->dm_str == str) {	/* found one */
2665 			atomic_add_32(&(p->dm_ref), 1);
2666 			rw_exit(&perdm_rwlock);
2667 			return (p);
2668 		}
2669 	}
2670 	rw_exit(&perdm_rwlock);
2671 
2672 	sq = new_syncq();
2673 	if (qflag & QPERMOD) {
2674 		sq->sq_type = sqtype | SQ_PERMOD;
2675 		sq->sq_flags = sqtype & SQ_TYPES_IN_FLAGS;
2676 	} else {
2677 		ASSERT(qflag & QMTOUTPERIM);
2678 		sq->sq_onext = sq->sq_oprev = sq;
2679 	}
2680 
2681 	dmp = kmem_alloc(sizeof (perdm_t), KM_SLEEP);
2682 	dmp->dm_sq = sq;
2683 	dmp->dm_str = str;
2684 	dmp->dm_ref = 1;
2685 	dmp->dm_next = NULL;
2686 
2687 	rw_enter(&perdm_rwlock, RW_WRITER);
2688 	for (pp = &perdm_list; (p = *pp) != NULL; pp = &(p->dm_next)) {
2689 		if (p->dm_str == str) {	/* already present */
2690 			p->dm_ref++;
2691 			rw_exit(&perdm_rwlock);
2692 			free_syncq(sq);
2693 			kmem_free(dmp, sizeof (perdm_t));
2694 			return (p);
2695 		}
2696 	}
2697 
2698 	*pp = dmp;
2699 	rw_exit(&perdm_rwlock);
2700 	return (dmp);
2701 }
2702 
2703 void
2704 rele_dm(perdm_t *dmp)
2705 {
2706 	perdm_t **pp;
2707 	perdm_t *p;
2708 
2709 	rw_enter(&perdm_rwlock, RW_WRITER);
2710 	ASSERT(dmp->dm_ref > 0);
2711 
2712 	if (--dmp->dm_ref > 0) {
2713 		rw_exit(&perdm_rwlock);
2714 		return;
2715 	}
2716 
2717 	for (pp = &perdm_list; (p = *pp) != NULL; pp = &(p->dm_next))
2718 		if (p == dmp)
2719 			break;
2720 	ASSERT(p == dmp);
2721 	*pp = p->dm_next;
2722 	rw_exit(&perdm_rwlock);
2723 
2724 	/*
2725 	 * Wait for any background processing that relies on the
2726 	 * syncq to complete before it is freed.
2727 	 */
2728 	wait_sq_svc(p->dm_sq);
2729 	free_syncq(p->dm_sq);
2730 	kmem_free(p, sizeof (perdm_t));
2731 }
2732 
2733 /*
2734  * Make a protocol message given control and data buffers.
2735  * n.b., this can block; be careful of what locks you hold when calling it.
2736  *
2737  * If sd_maxblk is less than *iosize this routine can fail part way through
2738  * (due to an allocation failure). In this case on return *iosize will contain
2739  * the amount that was consumed. Otherwise *iosize will not be modified
2740  * i.e. it will contain the amount that was consumed.
2741  */
2742 int
2743 strmakemsg(
2744 	struct strbuf *mctl,
2745 	ssize_t *iosize,
2746 	struct uio *uiop,
2747 	stdata_t *stp,
2748 	int32_t flag,
2749 	mblk_t **mpp)
2750 {
2751 	mblk_t *mpctl = NULL;
2752 	mblk_t *mpdata = NULL;
2753 	int error;
2754 
2755 	ASSERT(uiop != NULL);
2756 
2757 	*mpp = NULL;
2758 	/* Create control part, if any */
2759 	if ((mctl != NULL) && (mctl->len >= 0)) {
2760 		error = strmakectl(mctl, flag, uiop->uio_fmode, &mpctl);
2761 		if (error)
2762 			return (error);
2763 	}
2764 	/* Create data part, if any */
2765 	if (*iosize >= 0) {
2766 		error = strmakedata(iosize, uiop, stp, flag, &mpdata);
2767 		if (error) {
2768 			freemsg(mpctl);
2769 			return (error);
2770 		}
2771 	}
2772 	if (mpctl != NULL) {
2773 		if (mpdata != NULL)
2774 			linkb(mpctl, mpdata);
2775 		*mpp = mpctl;
2776 	} else {
2777 		*mpp = mpdata;
2778 	}
2779 	return (0);
2780 }
2781 
2782 /*
2783  * Make the control part of a protocol message given a control buffer.
2784  * n.b., this can block; be careful of what locks you hold when calling it.
2785  */
2786 int
2787 strmakectl(
2788 	struct strbuf *mctl,
2789 	int32_t flag,
2790 	int32_t fflag,
2791 	mblk_t **mpp)
2792 {
2793 	mblk_t *bp = NULL;
2794 	unsigned char msgtype;
2795 	int error = 0;
2796 
2797 	*mpp = NULL;
2798 	/*
2799 	 * Create control part of message, if any.
2800 	 */
2801 	if ((mctl != NULL) && (mctl->len >= 0)) {
2802 		caddr_t base;
2803 		int ctlcount;
2804 		int allocsz;
2805 
2806 		if (flag & RS_HIPRI)
2807 			msgtype = M_PCPROTO;
2808 		else
2809 			msgtype = M_PROTO;
2810 
2811 		ctlcount = mctl->len;
2812 		base = mctl->buf;
2813 
2814 		/*
2815 		 * Give modules a better chance to reuse M_PROTO/M_PCPROTO
2816 		 * blocks by increasing the size to something more usable.
2817 		 */
2818 		allocsz = MAX(ctlcount, 64);
2819 
2820 		/*
2821 		 * Range checking has already been done; simply try
2822 		 * to allocate a message block for the ctl part.
2823 		 */
2824 		while (!(bp = allocb(allocsz, BPRI_MED))) {
2825 			if (fflag & (FNDELAY|FNONBLOCK))
2826 				return (EAGAIN);
2827 			if (error = strwaitbuf(allocsz, BPRI_MED))
2828 				return (error);
2829 		}
2830 
2831 		bp->b_datap->db_type = msgtype;
2832 		if (copyin(base, bp->b_wptr, ctlcount)) {
2833 			freeb(bp);
2834 			return (EFAULT);
2835 		}
2836 		bp->b_wptr += ctlcount;
2837 	}
2838 	*mpp = bp;
2839 	return (0);
2840 }
2841 
2842 /*
2843  * Make a protocol message given data buffers.
2844  * n.b., this can block; be careful of what locks you hold when calling it.
2845  *
2846  * If sd_maxblk is less than *iosize this routine can fail part way through
2847  * (due to an allocation failure). In this case on return *iosize will contain
2848  * the amount that was consumed. Otherwise *iosize will not be modified
2849  * i.e. it will contain the amount that was consumed.
2850  */
2851 int
2852 strmakedata(
2853 	ssize_t   *iosize,
2854 	struct uio *uiop,
2855 	stdata_t *stp,
2856 	int32_t flag,
2857 	mblk_t **mpp)
2858 {
2859 	mblk_t *mp = NULL;
2860 	mblk_t *bp;
2861 	int wroff = (int)stp->sd_wroff;
2862 	int tail_len = (int)stp->sd_tail;
2863 	int extra = wroff + tail_len;
2864 	int error = 0;
2865 	ssize_t maxblk;
2866 	ssize_t count = *iosize;
2867 	cred_t *cr = CRED();
2868 
2869 	*mpp = NULL;
2870 	if (count < 0)
2871 		return (0);
2872 
2873 	maxblk = stp->sd_maxblk;
2874 	if (maxblk == INFPSZ)
2875 		maxblk = count;
2876 
2877 	/*
2878 	 * Create data part of message, if any.
2879 	 */
2880 	do {
2881 		ssize_t size;
2882 		dblk_t  *dp;
2883 
2884 		ASSERT(uiop);
2885 
2886 		size = MIN(count, maxblk);
2887 
2888 		while ((bp = allocb_cred(size + extra, cr)) == NULL) {
2889 			error = EAGAIN;
2890 			if ((uiop->uio_fmode & (FNDELAY|FNONBLOCK)) ||
2891 			    (error = strwaitbuf(size + extra, BPRI_MED)) != 0) {
2892 				if (count == *iosize) {
2893 					freemsg(mp);
2894 					return (error);
2895 				} else {
2896 					*iosize -= count;
2897 					*mpp = mp;
2898 					return (0);
2899 				}
2900 			}
2901 		}
2902 		dp = bp->b_datap;
2903 		dp->db_cpid = curproc->p_pid;
2904 		ASSERT(wroff <= dp->db_lim - bp->b_wptr);
2905 		bp->b_wptr = bp->b_rptr = bp->b_rptr + wroff;
2906 
2907 		if (flag & STRUIO_POSTPONE) {
2908 			/*
2909 			 * Setup the stream uio portion of the
2910 			 * dblk for subsequent use by struioget().
2911 			 */
2912 			dp->db_struioflag = STRUIO_SPEC;
2913 			dp->db_cksumstart = 0;
2914 			dp->db_cksumstuff = 0;
2915 			dp->db_cksumend = size;
2916 			*(long long *)dp->db_struioun.data = 0ll;
2917 			bp->b_wptr += size;
2918 		} else {
2919 			if (stp->sd_copyflag & STRCOPYCACHED)
2920 				uiop->uio_extflg |= UIO_COPY_CACHED;
2921 
2922 			if (size != 0) {
2923 				error = uiomove(bp->b_wptr, size, UIO_WRITE,
2924 				    uiop);
2925 				if (error != 0) {
2926 					freeb(bp);
2927 					freemsg(mp);
2928 					return (error);
2929 				}
2930 			}
2931 			bp->b_wptr += size;
2932 
2933 			if (stp->sd_wputdatafunc != NULL) {
2934 				mblk_t *newbp;
2935 
2936 				newbp = (stp->sd_wputdatafunc)(stp->sd_vnode,
2937 				    bp, NULL, NULL, NULL, NULL);
2938 				if (newbp == NULL) {
2939 					freeb(bp);
2940 					freemsg(mp);
2941 					return (ECOMM);
2942 				}
2943 				bp = newbp;
2944 			}
2945 		}
2946 
2947 		count -= size;
2948 
2949 		if (mp == NULL)
2950 			mp = bp;
2951 		else
2952 			linkb(mp, bp);
2953 	} while (count > 0);
2954 
2955 	*mpp = mp;
2956 	return (0);
2957 }
2958 
2959 /*
2960  * Wait for a buffer to become available. Return non-zero errno
2961  * if not able to wait, 0 if buffer is probably there.
2962  */
2963 int
2964 strwaitbuf(size_t size, int pri)
2965 {
2966 	bufcall_id_t id;
2967 
2968 	mutex_enter(&bcall_monitor);
2969 	if ((id = bufcall(size, pri, (void (*)(void *))cv_broadcast,
2970 	    &ttoproc(curthread)->p_flag_cv)) == 0) {
2971 		mutex_exit(&bcall_monitor);
2972 		return (ENOSR);
2973 	}
2974 	if (!cv_wait_sig(&(ttoproc(curthread)->p_flag_cv), &bcall_monitor)) {
2975 		unbufcall(id);
2976 		mutex_exit(&bcall_monitor);
2977 		return (EINTR);
2978 	}
2979 	unbufcall(id);
2980 	mutex_exit(&bcall_monitor);
2981 	return (0);
2982 }
2983 
2984 /*
2985  * This function waits for a read or write event to happen on a stream.
2986  * fmode can specify FNDELAY and/or FNONBLOCK.
2987  * The timeout is in ms with -1 meaning infinite.
2988  * The flag values work as follows:
2989  *	READWAIT	Check for read side errors, send M_READ
2990  *	GETWAIT		Check for read side errors, no M_READ
2991  *	WRITEWAIT	Check for write side errors.
2992  *	NOINTR		Do not return error if nonblocking or timeout.
2993  * 	STR_NOERROR	Ignore all errors except STPLEX.
2994  *	STR_NOSIG	Ignore/hold signals during the duration of the call.
2995  *	STR_PEEK	Pass through the strgeterr().
2996  */
2997 int
2998 strwaitq(stdata_t *stp, int flag, ssize_t count, int fmode, clock_t timout,
2999     int *done)
3000 {
3001 	int slpflg, errs;
3002 	int error;
3003 	kcondvar_t *sleepon;
3004 	mblk_t *mp;
3005 	ssize_t *rd_count;
3006 	clock_t rval;
3007 
3008 	ASSERT(MUTEX_HELD(&stp->sd_lock));
3009 	if ((flag & READWAIT) || (flag & GETWAIT)) {
3010 		slpflg = RSLEEP;
3011 		sleepon = &_RD(stp->sd_wrq)->q_wait;
3012 		errs = STRDERR|STPLEX;
3013 	} else {
3014 		slpflg = WSLEEP;
3015 		sleepon = &stp->sd_wrq->q_wait;
3016 		errs = STWRERR|STRHUP|STPLEX;
3017 	}
3018 	if (flag & STR_NOERROR)
3019 		errs = STPLEX;
3020 
3021 	if (stp->sd_wakeq & slpflg) {
3022 		/*
3023 		 * A strwakeq() is pending, no need to sleep.
3024 		 */
3025 		stp->sd_wakeq &= ~slpflg;
3026 		*done = 0;
3027 		return (0);
3028 	}
3029 
3030 	if (fmode & (FNDELAY|FNONBLOCK)) {
3031 		if (!(flag & NOINTR))
3032 			error = EAGAIN;
3033 		else
3034 			error = 0;
3035 		*done = 1;
3036 		return (error);
3037 	}
3038 
3039 	if (stp->sd_flag & errs) {
3040 		/*
3041 		 * Check for errors before going to sleep since the
3042 		 * caller might not have checked this while holding
3043 		 * sd_lock.
3044 		 */
3045 		error = strgeterr(stp, errs, (flag & STR_PEEK));
3046 		if (error != 0) {
3047 			*done = 1;
3048 			return (error);
3049 		}
3050 	}
3051 
3052 	/*
3053 	 * If any module downstream has requested read notification
3054 	 * by setting SNDMREAD flag using M_SETOPTS, send a message
3055 	 * down stream.
3056 	 */
3057 	if ((flag & READWAIT) && (stp->sd_flag & SNDMREAD)) {
3058 		mutex_exit(&stp->sd_lock);
3059 		if (!(mp = allocb_wait(sizeof (ssize_t), BPRI_MED,
3060 		    (flag & STR_NOSIG), &error))) {
3061 			mutex_enter(&stp->sd_lock);
3062 			*done = 1;
3063 			return (error);
3064 		}
3065 		mp->b_datap->db_type = M_READ;
3066 		rd_count = (ssize_t *)mp->b_wptr;
3067 		*rd_count = count;
3068 		mp->b_wptr += sizeof (ssize_t);
3069 		/*
3070 		 * Send the number of bytes requested by the
3071 		 * read as the argument to M_READ.
3072 		 */
3073 		stream_willservice(stp);
3074 		putnext(stp->sd_wrq, mp);
3075 		stream_runservice(stp);
3076 		mutex_enter(&stp->sd_lock);
3077 
3078 		/*
3079 		 * If any data arrived due to inline processing
3080 		 * of putnext(), don't sleep.
3081 		 */
3082 		if (_RD(stp->sd_wrq)->q_first != NULL) {
3083 			*done = 0;
3084 			return (0);
3085 		}
3086 	}
3087 
3088 	stp->sd_flag |= slpflg;
3089 	TRACE_5(TR_FAC_STREAMS_FR, TR_STRWAITQ_WAIT2,
3090 	    "strwaitq sleeps (2):%p, %X, %lX, %X, %p",
3091 	    stp, flag, count, fmode, done);
3092 
3093 	rval = str_cv_wait(sleepon, &stp->sd_lock, timout, flag & STR_NOSIG);
3094 	if (rval > 0) {
3095 		/* EMPTY */
3096 		TRACE_5(TR_FAC_STREAMS_FR, TR_STRWAITQ_WAKE2,
3097 		    "strwaitq awakes(2):%X, %X, %X, %X, %X",
3098 		    stp, flag, count, fmode, done);
3099 	} else if (rval == 0) {
3100 		TRACE_5(TR_FAC_STREAMS_FR, TR_STRWAITQ_INTR2,
3101 		    "strwaitq interrupt #2:%p, %X, %lX, %X, %p",
3102 		    stp, flag, count, fmode, done);
3103 		stp->sd_flag &= ~slpflg;
3104 		cv_broadcast(sleepon);
3105 		if (!(flag & NOINTR))
3106 			error = EINTR;
3107 		else
3108 			error = 0;
3109 		*done = 1;
3110 		return (error);
3111 	} else {
3112 		/* timeout */
3113 		TRACE_5(TR_FAC_STREAMS_FR, TR_STRWAITQ_TIME,
3114 		    "strwaitq timeout:%p, %X, %lX, %X, %p",
3115 		    stp, flag, count, fmode, done);
3116 		*done = 1;
3117 		if (!(flag & NOINTR))
3118 			return (ETIME);
3119 		else
3120 			return (0);
3121 	}
3122 	/*
3123 	 * If the caller implements delayed errors (i.e. queued after data)
3124 	 * we can not check for errors here since data as well as an
3125 	 * error might have arrived at the stream head. We return to
3126 	 * have the caller check the read queue before checking for errors.
3127 	 */
3128 	if ((stp->sd_flag & errs) && !(flag & STR_DELAYERR)) {
3129 		error = strgeterr(stp, errs, (flag & STR_PEEK));
3130 		if (error != 0) {
3131 			*done = 1;
3132 			return (error);
3133 		}
3134 	}
3135 	*done = 0;
3136 	return (0);
3137 }
3138 
3139 /*
3140  * Perform job control discipline access checks.
3141  * Return 0 for success and the errno for failure.
3142  */
3143 
3144 #define	cantsend(p, t, sig) \
3145 	(sigismember(&(p)->p_ignore, sig) || signal_is_blocked((t), sig))
3146 
3147 int
3148 straccess(struct stdata *stp, enum jcaccess mode)
3149 {
3150 	extern kcondvar_t lbolt_cv;	/* XXX: should be in a header file */
3151 	kthread_t *t = curthread;
3152 	proc_t *p = ttoproc(t);
3153 	sess_t *sp;
3154 
3155 	ASSERT(mutex_owned(&stp->sd_lock));
3156 
3157 	if (stp->sd_sidp == NULL || stp->sd_vnode->v_type == VFIFO)
3158 		return (0);
3159 
3160 	mutex_enter(&p->p_lock);		/* protects p_pgidp */
3161 
3162 	for (;;) {
3163 		mutex_enter(&p->p_splock);	/* protects p->p_sessp */
3164 		sp = p->p_sessp;
3165 		mutex_enter(&sp->s_lock);	/* protects sp->* */
3166 
3167 		/*
3168 		 * If this is not the calling process's controlling terminal
3169 		 * or if the calling process is already in the foreground
3170 		 * then allow access.
3171 		 */
3172 		if (sp->s_dev != stp->sd_vnode->v_rdev ||
3173 		    p->p_pgidp == stp->sd_pgidp) {
3174 			mutex_exit(&sp->s_lock);
3175 			mutex_exit(&p->p_splock);
3176 			mutex_exit(&p->p_lock);
3177 			return (0);
3178 		}
3179 
3180 		/*
3181 		 * Check to see if controlling terminal has been deallocated.
3182 		 */
3183 		if (sp->s_vp == NULL) {
3184 			if (!cantsend(p, t, SIGHUP))
3185 				sigtoproc(p, t, SIGHUP);
3186 			mutex_exit(&sp->s_lock);
3187 			mutex_exit(&p->p_splock);
3188 			mutex_exit(&p->p_lock);
3189 			return (EIO);
3190 		}
3191 
3192 		mutex_exit(&sp->s_lock);
3193 		mutex_exit(&p->p_splock);
3194 
3195 		if (mode == JCGETP) {
3196 			mutex_exit(&p->p_lock);
3197 			return (0);
3198 		}
3199 
3200 		if (mode == JCREAD) {
3201 			if (p->p_detached || cantsend(p, t, SIGTTIN)) {
3202 				mutex_exit(&p->p_lock);
3203 				return (EIO);
3204 			}
3205 			mutex_exit(&p->p_lock);
3206 			mutex_exit(&stp->sd_lock);
3207 			pgsignal(p->p_pgidp, SIGTTIN);
3208 			mutex_enter(&stp->sd_lock);
3209 			mutex_enter(&p->p_lock);
3210 		} else {  /* mode == JCWRITE or JCSETP */
3211 			if ((mode == JCWRITE && !(stp->sd_flag & STRTOSTOP)) ||
3212 			    cantsend(p, t, SIGTTOU)) {
3213 				mutex_exit(&p->p_lock);
3214 				return (0);
3215 			}
3216 			if (p->p_detached) {
3217 				mutex_exit(&p->p_lock);
3218 				return (EIO);
3219 			}
3220 			mutex_exit(&p->p_lock);
3221 			mutex_exit(&stp->sd_lock);
3222 			pgsignal(p->p_pgidp, SIGTTOU);
3223 			mutex_enter(&stp->sd_lock);
3224 			mutex_enter(&p->p_lock);
3225 		}
3226 
3227 		/*
3228 		 * We call cv_wait_sig_swap() to cause the appropriate
3229 		 * action for the jobcontrol signal to take place.
3230 		 * If the signal is being caught, we will take the
3231 		 * EINTR error return.  Otherwise, the default action
3232 		 * of causing the process to stop will take place.
3233 		 * In this case, we rely on the periodic cv_broadcast() on
3234 		 * &lbolt_cv to wake us up to loop around and test again.
3235 		 * We can't get here if the signal is ignored or
3236 		 * if the current thread is blocking the signal.
3237 		 */
3238 		mutex_exit(&stp->sd_lock);
3239 		if (!cv_wait_sig_swap(&lbolt_cv, &p->p_lock)) {
3240 			mutex_exit(&p->p_lock);
3241 			mutex_enter(&stp->sd_lock);
3242 			return (EINTR);
3243 		}
3244 		mutex_exit(&p->p_lock);
3245 		mutex_enter(&stp->sd_lock);
3246 		mutex_enter(&p->p_lock);
3247 	}
3248 }
3249 
3250 /*
3251  * Return size of message of block type (bp->b_datap->db_type)
3252  */
3253 size_t
3254 xmsgsize(mblk_t *bp)
3255 {
3256 	unsigned char type;
3257 	size_t count = 0;
3258 
3259 	type = bp->b_datap->db_type;
3260 
3261 	for (; bp; bp = bp->b_cont) {
3262 		if (type != bp->b_datap->db_type)
3263 			break;
3264 		ASSERT(bp->b_wptr >= bp->b_rptr);
3265 		count += bp->b_wptr - bp->b_rptr;
3266 	}
3267 	return (count);
3268 }
3269 
3270 /*
3271  * Allocate a stream head.
3272  */
3273 struct stdata *
3274 shalloc(queue_t *qp)
3275 {
3276 	stdata_t *stp;
3277 
3278 	stp = kmem_cache_alloc(stream_head_cache, KM_SLEEP);
3279 
3280 	stp->sd_wrq = _WR(qp);
3281 	stp->sd_strtab = NULL;
3282 	stp->sd_iocid = 0;
3283 	stp->sd_mate = NULL;
3284 	stp->sd_freezer = NULL;
3285 	stp->sd_refcnt = 0;
3286 	stp->sd_wakeq = 0;
3287 	stp->sd_anchor = 0;
3288 	stp->sd_struiowrq = NULL;
3289 	stp->sd_struiordq = NULL;
3290 	stp->sd_struiodnak = 0;
3291 	stp->sd_struionak = NULL;
3292 	stp->sd_t_audit_data = NULL;
3293 	stp->sd_rput_opt = 0;
3294 	stp->sd_wput_opt = 0;
3295 	stp->sd_read_opt = 0;
3296 	stp->sd_rprotofunc = strrput_proto;
3297 	stp->sd_rmiscfunc = strrput_misc;
3298 	stp->sd_rderrfunc = stp->sd_wrerrfunc = NULL;
3299 	stp->sd_rputdatafunc = stp->sd_wputdatafunc = NULL;
3300 	stp->sd_ciputctrl = NULL;
3301 	stp->sd_nciputctrl = 0;
3302 	stp->sd_qhead = NULL;
3303 	stp->sd_qtail = NULL;
3304 	stp->sd_servid = NULL;
3305 	stp->sd_nqueues = 0;
3306 	stp->sd_svcflags = 0;
3307 	stp->sd_copyflag = 0;
3308 
3309 	return (stp);
3310 }
3311 
3312 /*
3313  * Free a stream head.
3314  */
3315 void
3316 shfree(stdata_t *stp)
3317 {
3318 	ASSERT(MUTEX_NOT_HELD(&stp->sd_lock));
3319 
3320 	stp->sd_wrq = NULL;
3321 
3322 	mutex_enter(&stp->sd_qlock);
3323 	while (stp->sd_svcflags & STRS_SCHEDULED) {
3324 		STRSTAT(strwaits);
3325 		cv_wait(&stp->sd_qcv, &stp->sd_qlock);
3326 	}
3327 	mutex_exit(&stp->sd_qlock);
3328 
3329 	if (stp->sd_ciputctrl != NULL) {
3330 		ASSERT(stp->sd_nciputctrl == n_ciputctrl - 1);
3331 		SUMCHECK_CIPUTCTRL_COUNTS(stp->sd_ciputctrl,
3332 		    stp->sd_nciputctrl, 0);
3333 		ASSERT(ciputctrl_cache != NULL);
3334 		kmem_cache_free(ciputctrl_cache, stp->sd_ciputctrl);
3335 		stp->sd_ciputctrl = NULL;
3336 		stp->sd_nciputctrl = 0;
3337 	}
3338 	ASSERT(stp->sd_qhead == NULL);
3339 	ASSERT(stp->sd_qtail == NULL);
3340 	ASSERT(stp->sd_nqueues == 0);
3341 	kmem_cache_free(stream_head_cache, stp);
3342 }
3343 
3344 /*
3345  * Allocate a pair of queues and a syncq for the pair
3346  */
3347 queue_t *
3348 allocq(void)
3349 {
3350 	queinfo_t *qip;
3351 	queue_t *qp, *wqp;
3352 	syncq_t	*sq;
3353 
3354 	qip = kmem_cache_alloc(queue_cache, KM_SLEEP);
3355 
3356 	qp = &qip->qu_rqueue;
3357 	wqp = &qip->qu_wqueue;
3358 	sq = &qip->qu_syncq;
3359 
3360 	qp->q_last	= NULL;
3361 	qp->q_next	= NULL;
3362 	qp->q_ptr	= NULL;
3363 	qp->q_flag	= QUSE | QREADR;
3364 	qp->q_bandp	= NULL;
3365 	qp->q_stream	= NULL;
3366 	qp->q_syncq	= sq;
3367 	qp->q_nband	= 0;
3368 	qp->q_nfsrv	= NULL;
3369 	qp->q_draining	= 0;
3370 	qp->q_syncqmsgs	= 0;
3371 	qp->q_spri	= 0;
3372 	qp->q_qtstamp	= 0;
3373 	qp->q_sqtstamp	= 0;
3374 	qp->q_fp	= NULL;
3375 
3376 	wqp->q_last	= NULL;
3377 	wqp->q_next	= NULL;
3378 	wqp->q_ptr	= NULL;
3379 	wqp->q_flag	= QUSE;
3380 	wqp->q_bandp	= NULL;
3381 	wqp->q_stream	= NULL;
3382 	wqp->q_syncq	= sq;
3383 	wqp->q_nband	= 0;
3384 	wqp->q_nfsrv	= NULL;
3385 	wqp->q_draining	= 0;
3386 	wqp->q_syncqmsgs = 0;
3387 	wqp->q_qtstamp	= 0;
3388 	wqp->q_sqtstamp	= 0;
3389 	wqp->q_spri	= 0;
3390 
3391 	sq->sq_count	= 0;
3392 	sq->sq_rmqcount	= 0;
3393 	sq->sq_flags	= 0;
3394 	sq->sq_type	= 0;
3395 	sq->sq_callbflags = 0;
3396 	sq->sq_cancelid	= 0;
3397 	sq->sq_ciputctrl = NULL;
3398 	sq->sq_nciputctrl = 0;
3399 	sq->sq_needexcl = 0;
3400 	sq->sq_svcflags = 0;
3401 
3402 	return (qp);
3403 }
3404 
3405 /*
3406  * Free a pair of queues and the "attached" syncq.
3407  * Discard any messages left on the syncq(s), remove the syncq(s) from the
3408  * outer perimeter, and free the syncq(s) if they are not the "attached" syncq.
3409  */
3410 void
3411 freeq(queue_t *qp)
3412 {
3413 	qband_t *qbp, *nqbp;
3414 	syncq_t *sq, *outer;
3415 	queue_t *wqp = _WR(qp);
3416 
3417 	ASSERT(qp->q_flag & QREADR);
3418 
3419 	/*
3420 	 * If a previously dispatched taskq job is scheduled to run
3421 	 * sync_service() or a service routine is scheduled for the
3422 	 * queues about to be freed, wait here until all service is
3423 	 * done on the queue and all associated queues and syncqs.
3424 	 */
3425 	wait_svc(qp);
3426 
3427 	(void) flush_syncq(qp->q_syncq, qp);
3428 	(void) flush_syncq(wqp->q_syncq, wqp);
3429 	ASSERT(qp->q_syncqmsgs == 0 && wqp->q_syncqmsgs == 0);
3430 
3431 	/*
3432 	 * Flush the queues before q_next is set to NULL This is needed
3433 	 * in order to backenable any downstream queue before we go away.
3434 	 * Note: we are already removed from the stream so that the
3435 	 * backenabling will not cause any messages to be delivered to our
3436 	 * put procedures.
3437 	 */
3438 	flushq(qp, FLUSHALL);
3439 	flushq(wqp, FLUSHALL);
3440 
3441 	/* Tidy up - removeq only does a half-remove from stream */
3442 	qp->q_next = wqp->q_next = NULL;
3443 	ASSERT(!(qp->q_flag & QENAB));
3444 	ASSERT(!(wqp->q_flag & QENAB));
3445 
3446 	outer = qp->q_syncq->sq_outer;
3447 	if (outer != NULL) {
3448 		outer_remove(outer, qp->q_syncq);
3449 		if (wqp->q_syncq != qp->q_syncq)
3450 			outer_remove(outer, wqp->q_syncq);
3451 	}
3452 	/*
3453 	 * Free any syncqs that are outside what allocq returned.
3454 	 */
3455 	if (qp->q_syncq != SQ(qp) && !(qp->q_flag & QPERMOD))
3456 		free_syncq(qp->q_syncq);
3457 	if (qp->q_syncq != wqp->q_syncq && wqp->q_syncq != SQ(qp))
3458 		free_syncq(wqp->q_syncq);
3459 
3460 	ASSERT((qp->q_sqflags & (Q_SQQUEUED | Q_SQDRAINING)) == 0);
3461 	ASSERT((wqp->q_sqflags & (Q_SQQUEUED | Q_SQDRAINING)) == 0);
3462 	ASSERT(MUTEX_NOT_HELD(QLOCK(qp)));
3463 	ASSERT(MUTEX_NOT_HELD(QLOCK(wqp)));
3464 	sq = SQ(qp);
3465 	ASSERT(MUTEX_NOT_HELD(SQLOCK(sq)));
3466 	ASSERT(sq->sq_head == NULL && sq->sq_tail == NULL);
3467 	ASSERT(sq->sq_outer == NULL);
3468 	ASSERT(sq->sq_onext == NULL && sq->sq_oprev == NULL);
3469 	ASSERT(sq->sq_callbpend == NULL);
3470 	ASSERT(sq->sq_needexcl == 0);
3471 
3472 	if (sq->sq_ciputctrl != NULL) {
3473 		ASSERT(sq->sq_nciputctrl == n_ciputctrl - 1);
3474 		SUMCHECK_CIPUTCTRL_COUNTS(sq->sq_ciputctrl,
3475 		    sq->sq_nciputctrl, 0);
3476 		ASSERT(ciputctrl_cache != NULL);
3477 		kmem_cache_free(ciputctrl_cache, sq->sq_ciputctrl);
3478 		sq->sq_ciputctrl = NULL;
3479 		sq->sq_nciputctrl = 0;
3480 	}
3481 
3482 	ASSERT(qp->q_first == NULL && wqp->q_first == NULL);
3483 	ASSERT(qp->q_count == 0 && wqp->q_count == 0);
3484 	ASSERT(qp->q_mblkcnt == 0 && wqp->q_mblkcnt == 0);
3485 
3486 	qp->q_flag &= ~QUSE;
3487 	wqp->q_flag &= ~QUSE;
3488 
3489 	/* NOTE: Uncomment the assert below once bugid 1159635 is fixed. */
3490 	/* ASSERT((qp->q_flag & QWANTW) == 0 && (wqp->q_flag & QWANTW) == 0); */
3491 
3492 	qbp = qp->q_bandp;
3493 	while (qbp) {
3494 		nqbp = qbp->qb_next;
3495 		freeband(qbp);
3496 		qbp = nqbp;
3497 	}
3498 	qbp = wqp->q_bandp;
3499 	while (qbp) {
3500 		nqbp = qbp->qb_next;
3501 		freeband(qbp);
3502 		qbp = nqbp;
3503 	}
3504 	kmem_cache_free(queue_cache, qp);
3505 }
3506 
3507 /*
3508  * Allocate a qband structure.
3509  */
3510 qband_t *
3511 allocband(void)
3512 {
3513 	qband_t *qbp;
3514 
3515 	qbp = kmem_cache_alloc(qband_cache, KM_NOSLEEP);
3516 	if (qbp == NULL)
3517 		return (NULL);
3518 
3519 	qbp->qb_next	= NULL;
3520 	qbp->qb_count	= 0;
3521 	qbp->qb_mblkcnt	= 0;
3522 	qbp->qb_first	= NULL;
3523 	qbp->qb_last	= NULL;
3524 	qbp->qb_flag	= 0;
3525 
3526 	return (qbp);
3527 }
3528 
3529 /*
3530  * Free a qband structure.
3531  */
3532 void
3533 freeband(qband_t *qbp)
3534 {
3535 	kmem_cache_free(qband_cache, qbp);
3536 }
3537 
3538 /*
3539  * Just like putnextctl(9F), except that allocb_wait() is used.
3540  *
3541  * Consolidation Private, and of course only callable from the stream head or
3542  * routines that may block.
3543  */
3544 int
3545 putnextctl_wait(queue_t *q, int type)
3546 {
3547 	mblk_t *bp;
3548 	int error;
3549 
3550 	if ((datamsg(type) && (type != M_DELAY)) ||
3551 	    (bp = allocb_wait(0, BPRI_HI, 0, &error)) == NULL)
3552 		return (0);
3553 
3554 	bp->b_datap->db_type = (unsigned char)type;
3555 	putnext(q, bp);
3556 	return (1);
3557 }
3558 
3559 /*
3560  * run any possible bufcalls.
3561  */
3562 void
3563 runbufcalls(void)
3564 {
3565 	strbufcall_t *bcp;
3566 
3567 	mutex_enter(&bcall_monitor);
3568 	mutex_enter(&strbcall_lock);
3569 
3570 	if (strbcalls.bc_head) {
3571 		size_t count;
3572 		int nevent;
3573 
3574 		/*
3575 		 * count how many events are on the list
3576 		 * now so we can check to avoid looping
3577 		 * in low memory situations
3578 		 */
3579 		nevent = 0;
3580 		for (bcp = strbcalls.bc_head; bcp; bcp = bcp->bc_next)
3581 			nevent++;
3582 
3583 		/*
3584 		 * get estimate of available memory from kmem_avail().
3585 		 * awake all bufcall functions waiting for
3586 		 * memory whose request could be satisfied
3587 		 * by 'count' memory and let 'em fight for it.
3588 		 */
3589 		count = kmem_avail();
3590 		while ((bcp = strbcalls.bc_head) != NULL && nevent) {
3591 			STRSTAT(bufcalls);
3592 			--nevent;
3593 			if (bcp->bc_size <= count) {
3594 				bcp->bc_executor = curthread;
3595 				mutex_exit(&strbcall_lock);
3596 				(*bcp->bc_func)(bcp->bc_arg);
3597 				mutex_enter(&strbcall_lock);
3598 				bcp->bc_executor = NULL;
3599 				cv_broadcast(&bcall_cv);
3600 				strbcalls.bc_head = bcp->bc_next;
3601 				kmem_free(bcp, sizeof (strbufcall_t));
3602 			} else {
3603 				/*
3604 				 * too big, try again later - note
3605 				 * that nevent was decremented above
3606 				 * so we won't retry this one on this
3607 				 * iteration of the loop
3608 				 */
3609 				if (bcp->bc_next != NULL) {
3610 					strbcalls.bc_head = bcp->bc_next;
3611 					bcp->bc_next = NULL;
3612 					strbcalls.bc_tail->bc_next = bcp;
3613 					strbcalls.bc_tail = bcp;
3614 				}
3615 			}
3616 		}
3617 		if (strbcalls.bc_head == NULL)
3618 			strbcalls.bc_tail = NULL;
3619 	}
3620 
3621 	mutex_exit(&strbcall_lock);
3622 	mutex_exit(&bcall_monitor);
3623 }
3624 
3625 
3626 /*
3627  * actually run queue's service routine.
3628  */
3629 static void
3630 runservice(queue_t *q)
3631 {
3632 	qband_t *qbp;
3633 
3634 	ASSERT(q->q_qinfo->qi_srvp);
3635 again:
3636 	entersq(q->q_syncq, SQ_SVC);
3637 	TRACE_1(TR_FAC_STREAMS_FR, TR_QRUNSERVICE_START,
3638 	    "runservice starts:%p", q);
3639 
3640 	if (!(q->q_flag & QWCLOSE))
3641 		(*q->q_qinfo->qi_srvp)(q);
3642 
3643 	TRACE_1(TR_FAC_STREAMS_FR, TR_QRUNSERVICE_END,
3644 	    "runservice ends:(%p)", q);
3645 
3646 	leavesq(q->q_syncq, SQ_SVC);
3647 
3648 	mutex_enter(QLOCK(q));
3649 	if (q->q_flag & QENAB) {
3650 		q->q_flag &= ~QENAB;
3651 		mutex_exit(QLOCK(q));
3652 		goto again;
3653 	}
3654 	q->q_flag &= ~QINSERVICE;
3655 	q->q_flag &= ~QBACK;
3656 	for (qbp = q->q_bandp; qbp; qbp = qbp->qb_next)
3657 		qbp->qb_flag &= ~QB_BACK;
3658 	/*
3659 	 * Wakeup thread waiting for the service procedure
3660 	 * to be run (strclose and qdetach).
3661 	 */
3662 	cv_broadcast(&q->q_wait);
3663 
3664 	mutex_exit(QLOCK(q));
3665 }
3666 
3667 /*
3668  * Background processing of bufcalls.
3669  */
3670 void
3671 streams_bufcall_service(void)
3672 {
3673 	callb_cpr_t	cprinfo;
3674 
3675 	CALLB_CPR_INIT(&cprinfo, &strbcall_lock, callb_generic_cpr,
3676 	    "streams_bufcall_service");
3677 
3678 	mutex_enter(&strbcall_lock);
3679 
3680 	for (;;) {
3681 		if (strbcalls.bc_head != NULL && kmem_avail() > 0) {
3682 			mutex_exit(&strbcall_lock);
3683 			runbufcalls();
3684 			mutex_enter(&strbcall_lock);
3685 		}
3686 		if (strbcalls.bc_head != NULL) {
3687 			clock_t wt, tick;
3688 
3689 			STRSTAT(bcwaits);
3690 			/* Wait for memory to become available */
3691 			CALLB_CPR_SAFE_BEGIN(&cprinfo);
3692 			tick = SEC_TO_TICK(60);
3693 			time_to_wait(&wt, tick);
3694 			(void) cv_timedwait(&memavail_cv, &strbcall_lock, wt);
3695 			CALLB_CPR_SAFE_END(&cprinfo, &strbcall_lock);
3696 		}
3697 
3698 		/* Wait for new work to arrive */
3699 		if (strbcalls.bc_head == NULL) {
3700 			CALLB_CPR_SAFE_BEGIN(&cprinfo);
3701 			cv_wait(&strbcall_cv, &strbcall_lock);
3702 			CALLB_CPR_SAFE_END(&cprinfo, &strbcall_lock);
3703 		}
3704 	}
3705 }
3706 
3707 /*
3708  * Background processing of streams background tasks which failed
3709  * taskq_dispatch.
3710  */
3711 static void
3712 streams_qbkgrnd_service(void)
3713 {
3714 	callb_cpr_t cprinfo;
3715 	queue_t *q;
3716 
3717 	CALLB_CPR_INIT(&cprinfo, &service_queue, callb_generic_cpr,
3718 	    "streams_bkgrnd_service");
3719 
3720 	mutex_enter(&service_queue);
3721 
3722 	for (;;) {
3723 		/*
3724 		 * Wait for work to arrive.
3725 		 */
3726 		while ((freebs_list == NULL) && (qhead == NULL)) {
3727 			CALLB_CPR_SAFE_BEGIN(&cprinfo);
3728 			cv_wait(&services_to_run, &service_queue);
3729 			CALLB_CPR_SAFE_END(&cprinfo, &service_queue);
3730 		}
3731 		/*
3732 		 * Handle all pending freebs requests to free memory.
3733 		 */
3734 		while (freebs_list != NULL) {
3735 			mblk_t *mp = freebs_list;
3736 			freebs_list = mp->b_next;
3737 			mutex_exit(&service_queue);
3738 			mblk_free(mp);
3739 			mutex_enter(&service_queue);
3740 		}
3741 		/*
3742 		 * Run pending queues.
3743 		 */
3744 		while (qhead != NULL) {
3745 			DQ(q, qhead, qtail, q_link);
3746 			ASSERT(q != NULL);
3747 			mutex_exit(&service_queue);
3748 			queue_service(q);
3749 			mutex_enter(&service_queue);
3750 		}
3751 		ASSERT(qhead == NULL && qtail == NULL);
3752 	}
3753 }
3754 
3755 /*
3756  * Background processing of streams background tasks which failed
3757  * taskq_dispatch.
3758  */
3759 static void
3760 streams_sqbkgrnd_service(void)
3761 {
3762 	callb_cpr_t cprinfo;
3763 	syncq_t *sq;
3764 
3765 	CALLB_CPR_INIT(&cprinfo, &service_queue, callb_generic_cpr,
3766 	    "streams_sqbkgrnd_service");
3767 
3768 	mutex_enter(&service_queue);
3769 
3770 	for (;;) {
3771 		/*
3772 		 * Wait for work to arrive.
3773 		 */
3774 		while (sqhead == NULL) {
3775 			CALLB_CPR_SAFE_BEGIN(&cprinfo);
3776 			cv_wait(&syncqs_to_run, &service_queue);
3777 			CALLB_CPR_SAFE_END(&cprinfo, &service_queue);
3778 		}
3779 
3780 		/*
3781 		 * Run pending syncqs.
3782 		 */
3783 		while (sqhead != NULL) {
3784 			DQ(sq, sqhead, sqtail, sq_next);
3785 			ASSERT(sq != NULL);
3786 			ASSERT(sq->sq_svcflags & SQ_BGTHREAD);
3787 			mutex_exit(&service_queue);
3788 			syncq_service(sq);
3789 			mutex_enter(&service_queue);
3790 		}
3791 	}
3792 }
3793 
3794 /*
3795  * Disable the syncq and wait for background syncq processing to complete.
3796  * If the syncq is placed on the sqhead/sqtail queue, try to remove it from the
3797  * list.
3798  */
3799 void
3800 wait_sq_svc(syncq_t *sq)
3801 {
3802 	mutex_enter(SQLOCK(sq));
3803 	sq->sq_svcflags |= SQ_DISABLED;
3804 	if (sq->sq_svcflags & SQ_BGTHREAD) {
3805 		syncq_t *sq_chase;
3806 		syncq_t *sq_curr;
3807 		int removed;
3808 
3809 		ASSERT(sq->sq_servcount == 1);
3810 		mutex_enter(&service_queue);
3811 		RMQ(sq, sqhead, sqtail, sq_next, sq_chase, sq_curr, removed);
3812 		mutex_exit(&service_queue);
3813 		if (removed) {
3814 			sq->sq_svcflags &= ~SQ_BGTHREAD;
3815 			sq->sq_servcount = 0;
3816 			STRSTAT(sqremoved);
3817 			goto done;
3818 		}
3819 	}
3820 	while (sq->sq_servcount != 0) {
3821 		sq->sq_flags |= SQ_WANTWAKEUP;
3822 		cv_wait(&sq->sq_wait, SQLOCK(sq));
3823 	}
3824 done:
3825 	mutex_exit(SQLOCK(sq));
3826 }
3827 
3828 /*
3829  * Put a syncq on the list of syncq's to be serviced by the sqthread.
3830  * Add the argument to the end of the sqhead list and set the flag
3831  * indicating this syncq has been enabled.  If it has already been
3832  * enabled, don't do anything.
3833  * This routine assumes that SQLOCK is held.
3834  * NOTE that the lock order is to have the SQLOCK first,
3835  * so if the service_syncq lock is held, we need to release it
3836  * before aquiring the SQLOCK (mostly relevant for the background
3837  * thread, and this seems to be common among the STREAMS global locks).
3838  * Note the the sq_svcflags are protected by the SQLOCK.
3839  */
3840 void
3841 sqenable(syncq_t *sq)
3842 {
3843 	/*
3844 	 * This is probably not important except for where I believe it
3845 	 * is being called.  At that point, it should be held (and it
3846 	 * is a pain to release it just for this routine, so don't do
3847 	 * it).
3848 	 */
3849 	ASSERT(MUTEX_HELD(SQLOCK(sq)));
3850 
3851 	IMPLY(sq->sq_servcount == 0, sq->sq_next == NULL);
3852 	IMPLY(sq->sq_next != NULL, sq->sq_svcflags & SQ_BGTHREAD);
3853 
3854 	/*
3855 	 * Do not put on list if background thread is scheduled or
3856 	 * syncq is disabled.
3857 	 */
3858 	if (sq->sq_svcflags & (SQ_DISABLED | SQ_BGTHREAD))
3859 		return;
3860 
3861 	/*
3862 	 * Check whether we should enable sq at all.
3863 	 * Non PERMOD syncqs may be drained by at most one thread.
3864 	 * PERMOD syncqs may be drained by several threads but we limit the
3865 	 * total amount to the lesser of
3866 	 *	Number of queues on the squeue and
3867 	 *	Number of CPUs.
3868 	 */
3869 	if (sq->sq_servcount != 0) {
3870 		if (((sq->sq_type & SQ_PERMOD) == 0) ||
3871 		    (sq->sq_servcount >= MIN(sq->sq_nqueues, ncpus_online))) {
3872 			STRSTAT(sqtoomany);
3873 			return;
3874 		}
3875 	}
3876 
3877 	sq->sq_tstamp = lbolt;
3878 	STRSTAT(sqenables);
3879 
3880 	/* Attempt a taskq dispatch */
3881 	sq->sq_servid = (void *)taskq_dispatch(streams_taskq,
3882 	    (task_func_t *)syncq_service, sq, TQ_NOSLEEP | TQ_NOQUEUE);
3883 	if (sq->sq_servid != NULL) {
3884 		sq->sq_servcount++;
3885 		return;
3886 	}
3887 
3888 	/*
3889 	 * This taskq dispatch failed, but a previous one may have succeeded.
3890 	 * Don't try to schedule on the background thread whilst there is
3891 	 * outstanding taskq processing.
3892 	 */
3893 	if (sq->sq_servcount != 0)
3894 		return;
3895 
3896 	/*
3897 	 * System is low on resources and can't perform a non-sleeping
3898 	 * dispatch. Schedule the syncq for a background thread and mark the
3899 	 * syncq to avoid any further taskq dispatch attempts.
3900 	 */
3901 	mutex_enter(&service_queue);
3902 	STRSTAT(taskqfails);
3903 	ENQUEUE(sq, sqhead, sqtail, sq_next);
3904 	sq->sq_svcflags |= SQ_BGTHREAD;
3905 	sq->sq_servcount = 1;
3906 	cv_signal(&syncqs_to_run);
3907 	mutex_exit(&service_queue);
3908 }
3909 
3910 /*
3911  * Note: fifo_close() depends on the mblk_t on the queue being freed
3912  * asynchronously. The asynchronous freeing of messages breaks the
3913  * recursive call chain of fifo_close() while there are I_SENDFD type of
3914  * messages refering other file pointers on the queue. Then when
3915  * closing pipes it can avoid stack overflow in case of daisy-chained
3916  * pipes, and also avoid deadlock in case of fifonode_t pairs (which
3917  * share the same fifolock_t).
3918  */
3919 
3920 void
3921 freebs_enqueue(mblk_t *mp, dblk_t *dbp)
3922 {
3923 	esb_queue_t *eqp = &system_esbq;
3924 
3925 	ASSERT(dbp->db_mblk == mp);
3926 
3927 	/*
3928 	 * Check data sanity. The dblock should have non-empty free function.
3929 	 * It is better to panic here then later when the dblock is freed
3930 	 * asynchronously when the context is lost.
3931 	 */
3932 	if (dbp->db_frtnp->free_func == NULL) {
3933 		panic("freebs_enqueue: dblock %p has a NULL free callback",
3934 		    (void *)dbp);
3935 	}
3936 
3937 	mutex_enter(&eqp->eq_lock);
3938 	/* queue the new mblk on the esballoc queue */
3939 	if (eqp->eq_head == NULL) {
3940 		eqp->eq_head = eqp->eq_tail = mp;
3941 	} else {
3942 		eqp->eq_tail->b_next = mp;
3943 		eqp->eq_tail = mp;
3944 	}
3945 	eqp->eq_len++;
3946 
3947 	/* If we're the first thread to reach the threshold, process */
3948 	if (eqp->eq_len >= esbq_max_qlen &&
3949 	    !(eqp->eq_flags & ESBQ_PROCESSING))
3950 		esballoc_process_queue(eqp);
3951 
3952 	esballoc_set_timer(eqp, esbq_timeout);
3953 	mutex_exit(&eqp->eq_lock);
3954 }
3955 
3956 static void
3957 esballoc_process_queue(esb_queue_t *eqp)
3958 {
3959 	mblk_t	*mp;
3960 
3961 	ASSERT(MUTEX_HELD(&eqp->eq_lock));
3962 
3963 	eqp->eq_flags |= ESBQ_PROCESSING;
3964 
3965 	do {
3966 		/*
3967 		 * Detach the message chain for processing.
3968 		 */
3969 		mp = eqp->eq_head;
3970 		eqp->eq_tail->b_next = NULL;
3971 		eqp->eq_head = eqp->eq_tail = NULL;
3972 		eqp->eq_len = 0;
3973 		mutex_exit(&eqp->eq_lock);
3974 
3975 		/*
3976 		 * Process the message chain.
3977 		 */
3978 		esballoc_enqueue_mblk(mp);
3979 		mutex_enter(&eqp->eq_lock);
3980 	} while ((eqp->eq_len >= esbq_max_qlen) && (eqp->eq_len > 0));
3981 
3982 	eqp->eq_flags &= ~ESBQ_PROCESSING;
3983 }
3984 
3985 /*
3986  * taskq callback routine to free esballoced mblk's
3987  */
3988 static void
3989 esballoc_mblk_free(mblk_t *mp)
3990 {
3991 	mblk_t	*nextmp;
3992 
3993 	for (; mp != NULL; mp = nextmp) {
3994 		nextmp = mp->b_next;
3995 		mp->b_next = NULL;
3996 		mblk_free(mp);
3997 	}
3998 }
3999 
4000 static void
4001 esballoc_enqueue_mblk(mblk_t *mp)
4002 {
4003 
4004 	if (taskq_dispatch(system_taskq, (task_func_t *)esballoc_mblk_free, mp,
4005 	    TQ_NOSLEEP) == NULL) {
4006 		mblk_t *first_mp = mp;
4007 		/*
4008 		 * System is low on resources and can't perform a non-sleeping
4009 		 * dispatch. Schedule for a background thread.
4010 		 */
4011 		mutex_enter(&service_queue);
4012 		STRSTAT(taskqfails);
4013 
4014 		while (mp->b_next != NULL)
4015 			mp = mp->b_next;
4016 
4017 		mp->b_next = freebs_list;
4018 		freebs_list = first_mp;
4019 		cv_signal(&services_to_run);
4020 		mutex_exit(&service_queue);
4021 	}
4022 }
4023 
4024 static void
4025 esballoc_timer(void *arg)
4026 {
4027 	esb_queue_t *eqp = arg;
4028 
4029 	mutex_enter(&eqp->eq_lock);
4030 	eqp->eq_flags &= ~ESBQ_TIMER;
4031 
4032 	if (!(eqp->eq_flags & ESBQ_PROCESSING) &&
4033 	    eqp->eq_len > 0)
4034 		esballoc_process_queue(eqp);
4035 
4036 	esballoc_set_timer(eqp, esbq_timeout);
4037 	mutex_exit(&eqp->eq_lock);
4038 }
4039 
4040 static void
4041 esballoc_set_timer(esb_queue_t *eqp, clock_t eq_timeout)
4042 {
4043 	ASSERT(MUTEX_HELD(&eqp->eq_lock));
4044 
4045 	if (eqp->eq_len > 0 && !(eqp->eq_flags & ESBQ_TIMER)) {
4046 		(void) timeout(esballoc_timer, eqp, eq_timeout);
4047 		eqp->eq_flags |= ESBQ_TIMER;
4048 	}
4049 }
4050 
4051 void
4052 esballoc_queue_init(void)
4053 {
4054 	system_esbq.eq_len = 0;
4055 	system_esbq.eq_head = system_esbq.eq_tail = NULL;
4056 	system_esbq.eq_flags = 0;
4057 }
4058 
4059 /*
4060  * Set the QBACK or QB_BACK flag in the given queue for
4061  * the given priority band.
4062  */
4063 void
4064 setqback(queue_t *q, unsigned char pri)
4065 {
4066 	int i;
4067 	qband_t *qbp;
4068 	qband_t **qbpp;
4069 
4070 	ASSERT(MUTEX_HELD(QLOCK(q)));
4071 	if (pri != 0) {
4072 		if (pri > q->q_nband) {
4073 			qbpp = &q->q_bandp;
4074 			while (*qbpp)
4075 				qbpp = &(*qbpp)->qb_next;
4076 			while (pri > q->q_nband) {
4077 				if ((*qbpp = allocband()) == NULL) {
4078 					cmn_err(CE_WARN,
4079 					    "setqback: can't allocate qband\n");
4080 					return;
4081 				}
4082 				(*qbpp)->qb_hiwat = q->q_hiwat;
4083 				(*qbpp)->qb_lowat = q->q_lowat;
4084 				q->q_nband++;
4085 				qbpp = &(*qbpp)->qb_next;
4086 			}
4087 		}
4088 		qbp = q->q_bandp;
4089 		i = pri;
4090 		while (--i)
4091 			qbp = qbp->qb_next;
4092 		qbp->qb_flag |= QB_BACK;
4093 	} else {
4094 		q->q_flag |= QBACK;
4095 	}
4096 }
4097 
4098 int
4099 strcopyin(void *from, void *to, size_t len, int copyflag)
4100 {
4101 	if (copyflag & U_TO_K) {
4102 		ASSERT((copyflag & K_TO_K) == 0);
4103 		if (copyin(from, to, len))
4104 			return (EFAULT);
4105 	} else {
4106 		ASSERT(copyflag & K_TO_K);
4107 		bcopy(from, to, len);
4108 	}
4109 	return (0);
4110 }
4111 
4112 int
4113 strcopyout(void *from, void *to, size_t len, int copyflag)
4114 {
4115 	if (copyflag & U_TO_K) {
4116 		if (copyout(from, to, len))
4117 			return (EFAULT);
4118 	} else {
4119 		ASSERT(copyflag & K_TO_K);
4120 		bcopy(from, to, len);
4121 	}
4122 	return (0);
4123 }
4124 
4125 /*
4126  * strsignal_nolock() posts a signal to the process(es) at the stream head.
4127  * It assumes that the stream head lock is already held, whereas strsignal()
4128  * acquires the lock first.  This routine was created because a few callers
4129  * release the stream head lock before calling only to re-acquire it after
4130  * it returns.
4131  */
4132 void
4133 strsignal_nolock(stdata_t *stp, int sig, int32_t band)
4134 {
4135 	ASSERT(MUTEX_HELD(&stp->sd_lock));
4136 	switch (sig) {
4137 	case SIGPOLL:
4138 		if (stp->sd_sigflags & S_MSG)
4139 			strsendsig(stp->sd_siglist, S_MSG, (uchar_t)band, 0);
4140 		break;
4141 
4142 	default:
4143 		if (stp->sd_pgidp) {
4144 			pgsignal(stp->sd_pgidp, sig);
4145 		}
4146 		break;
4147 	}
4148 }
4149 
4150 void
4151 strsignal(stdata_t *stp, int sig, int32_t band)
4152 {
4153 	TRACE_3(TR_FAC_STREAMS_FR, TR_SENDSIG,
4154 	    "strsignal:%p, %X, %X", stp, sig, band);
4155 
4156 	mutex_enter(&stp->sd_lock);
4157 	switch (sig) {
4158 	case SIGPOLL:
4159 		if (stp->sd_sigflags & S_MSG)
4160 			strsendsig(stp->sd_siglist, S_MSG, (uchar_t)band, 0);
4161 		break;
4162 
4163 	default:
4164 		if (stp->sd_pgidp) {
4165 			pgsignal(stp->sd_pgidp, sig);
4166 		}
4167 		break;
4168 	}
4169 	mutex_exit(&stp->sd_lock);
4170 }
4171 
4172 void
4173 strhup(stdata_t *stp)
4174 {
4175 	ASSERT(mutex_owned(&stp->sd_lock));
4176 	pollwakeup(&stp->sd_pollist, POLLHUP);
4177 	if (stp->sd_sigflags & S_HANGUP)
4178 		strsendsig(stp->sd_siglist, S_HANGUP, 0, 0);
4179 }
4180 
4181 /*
4182  * Backenable the first queue upstream from `q' with a service procedure.
4183  */
4184 void
4185 backenable(queue_t *q, uchar_t pri)
4186 {
4187 	queue_t	*nq;
4188 
4189 	/*
4190 	 * our presence might not prevent other modules in our own
4191 	 * stream from popping/pushing since the caller of getq might not
4192 	 * have a claim on the queue (some drivers do a getq on somebody
4193 	 * else's queue - they know that the queue itself is not going away
4194 	 * but the framework has to guarantee q_next in that stream.)
4195 	 */
4196 	claimstr(q);
4197 
4198 	/* find nearest back queue with service proc */
4199 	for (nq = backq(q); nq && !nq->q_qinfo->qi_srvp; nq = backq(nq)) {
4200 		ASSERT(STRMATED(q->q_stream) || STREAM(q) == STREAM(nq));
4201 	}
4202 
4203 	if (nq) {
4204 		kthread_t *freezer;
4205 		/*
4206 		 * backenable can be called either with no locks held
4207 		 * or with the stream frozen (the latter occurs when a module
4208 		 * calls rmvq with the stream frozen.) If the stream is frozen
4209 		 * by the caller the caller will hold all qlocks in the stream.
4210 		 * Note that a frozen stream doesn't freeze a mated stream,
4211 		 * so we explicitly check for that.
4212 		 */
4213 		freezer = STREAM(q)->sd_freezer;
4214 		if (freezer != curthread || STREAM(q) != STREAM(nq)) {
4215 			mutex_enter(QLOCK(nq));
4216 		}
4217 #ifdef DEBUG
4218 		else {
4219 			ASSERT(frozenstr(q));
4220 			ASSERT(MUTEX_HELD(QLOCK(q)));
4221 			ASSERT(MUTEX_HELD(QLOCK(nq)));
4222 		}
4223 #endif
4224 		setqback(nq, pri);
4225 		qenable_locked(nq);
4226 		if (freezer != curthread || STREAM(q) != STREAM(nq))
4227 			mutex_exit(QLOCK(nq));
4228 	}
4229 	releasestr(q);
4230 }
4231 
4232 /*
4233  * Return the appropriate errno when one of flags_to_check is set
4234  * in sd_flags. Uses the exported error routines if they are set.
4235  * Will return 0 if non error is set (or if the exported error routines
4236  * do not return an error).
4237  *
4238  * If there is both a read and write error to check we prefer the read error.
4239  * Also, give preference to recorded errno's over the error functions.
4240  * The flags that are handled are:
4241  *	STPLEX		return EINVAL
4242  *	STRDERR		return sd_rerror (and clear if STRDERRNONPERSIST)
4243  *	STWRERR		return sd_werror (and clear if STWRERRNONPERSIST)
4244  *	STRHUP		return sd_werror
4245  *
4246  * If the caller indicates that the operation is a peek a nonpersistent error
4247  * is not cleared.
4248  */
4249 int
4250 strgeterr(stdata_t *stp, int32_t flags_to_check, int ispeek)
4251 {
4252 	int32_t sd_flag = stp->sd_flag & flags_to_check;
4253 	int error = 0;
4254 
4255 	ASSERT(MUTEX_HELD(&stp->sd_lock));
4256 	ASSERT((flags_to_check & ~(STRDERR|STWRERR|STRHUP|STPLEX)) == 0);
4257 	if (sd_flag & STPLEX)
4258 		error = EINVAL;
4259 	else if (sd_flag & STRDERR) {
4260 		error = stp->sd_rerror;
4261 		if ((stp->sd_flag & STRDERRNONPERSIST) && !ispeek) {
4262 			/*
4263 			 * Read errors are non-persistent i.e. discarded once
4264 			 * returned to a non-peeking caller,
4265 			 */
4266 			stp->sd_rerror = 0;
4267 			stp->sd_flag &= ~STRDERR;
4268 		}
4269 		if (error == 0 && stp->sd_rderrfunc != NULL) {
4270 			int clearerr = 0;
4271 
4272 			error = (*stp->sd_rderrfunc)(stp->sd_vnode, ispeek,
4273 			    &clearerr);
4274 			if (clearerr) {
4275 				stp->sd_flag &= ~STRDERR;
4276 				stp->sd_rderrfunc = NULL;
4277 			}
4278 		}
4279 	} else if (sd_flag & STWRERR) {
4280 		error = stp->sd_werror;
4281 		if ((stp->sd_flag & STWRERRNONPERSIST) && !ispeek) {
4282 			/*
4283 			 * Write errors are non-persistent i.e. discarded once
4284 			 * returned to a non-peeking caller,
4285 			 */
4286 			stp->sd_werror = 0;
4287 			stp->sd_flag &= ~STWRERR;
4288 		}
4289 		if (error == 0 && stp->sd_wrerrfunc != NULL) {
4290 			int clearerr = 0;
4291 
4292 			error = (*stp->sd_wrerrfunc)(stp->sd_vnode, ispeek,
4293 			    &clearerr);
4294 			if (clearerr) {
4295 				stp->sd_flag &= ~STWRERR;
4296 				stp->sd_wrerrfunc = NULL;
4297 			}
4298 		}
4299 	} else if (sd_flag & STRHUP) {
4300 		/* sd_werror set when STRHUP */
4301 		error = stp->sd_werror;
4302 	}
4303 	return (error);
4304 }
4305 
4306 
4307 /*
4308  * single-thread open/close/push/pop
4309  * for twisted streams also
4310  */
4311 int
4312 strstartplumb(stdata_t *stp, int flag, int cmd)
4313 {
4314 	int waited = 1;
4315 	int error = 0;
4316 
4317 	if (STRMATED(stp)) {
4318 		struct stdata *stmatep = stp->sd_mate;
4319 
4320 		STRLOCKMATES(stp);
4321 		while (waited) {
4322 			waited = 0;
4323 			while (stmatep->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) {
4324 				if ((cmd == I_POP) &&
4325 				    (flag & (FNDELAY|FNONBLOCK))) {
4326 					STRUNLOCKMATES(stp);
4327 					return (EAGAIN);
4328 				}
4329 				waited = 1;
4330 				mutex_exit(&stp->sd_lock);
4331 				if (!cv_wait_sig(&stmatep->sd_monitor,
4332 				    &stmatep->sd_lock)) {
4333 					mutex_exit(&stmatep->sd_lock);
4334 					return (EINTR);
4335 				}
4336 				mutex_exit(&stmatep->sd_lock);
4337 				STRLOCKMATES(stp);
4338 			}
4339 			while (stp->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) {
4340 				if ((cmd == I_POP) &&
4341 				    (flag & (FNDELAY|FNONBLOCK))) {
4342 					STRUNLOCKMATES(stp);
4343 					return (EAGAIN);
4344 				}
4345 				waited = 1;
4346 				mutex_exit(&stmatep->sd_lock);
4347 				if (!cv_wait_sig(&stp->sd_monitor,
4348 				    &stp->sd_lock)) {
4349 					mutex_exit(&stp->sd_lock);
4350 					return (EINTR);
4351 				}
4352 				mutex_exit(&stp->sd_lock);
4353 				STRLOCKMATES(stp);
4354 			}
4355 			if (stp->sd_flag & (STRDERR|STWRERR|STRHUP|STPLEX)) {
4356 				error = strgeterr(stp,
4357 				    STRDERR|STWRERR|STRHUP|STPLEX, 0);
4358 				if (error != 0) {
4359 					STRUNLOCKMATES(stp);
4360 					return (error);
4361 				}
4362 			}
4363 		}
4364 		stp->sd_flag |= STRPLUMB;
4365 		STRUNLOCKMATES(stp);
4366 	} else {
4367 		mutex_enter(&stp->sd_lock);
4368 		while (stp->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) {
4369 			if (((cmd == I_POP) || (cmd == _I_REMOVE)) &&
4370 			    (flag & (FNDELAY|FNONBLOCK))) {
4371 				mutex_exit(&stp->sd_lock);
4372 				return (EAGAIN);
4373 			}
4374 			if (!cv_wait_sig(&stp->sd_monitor, &stp->sd_lock)) {
4375 				mutex_exit(&stp->sd_lock);
4376 				return (EINTR);
4377 			}
4378 			if (stp->sd_flag & (STRDERR|STWRERR|STRHUP|STPLEX)) {
4379 				error = strgeterr(stp,
4380 				    STRDERR|STWRERR|STRHUP|STPLEX, 0);
4381 				if (error != 0) {
4382 					mutex_exit(&stp->sd_lock);
4383 					return (error);
4384 				}
4385 			}
4386 		}
4387 		stp->sd_flag |= STRPLUMB;
4388 		mutex_exit(&stp->sd_lock);
4389 	}
4390 	return (0);
4391 }
4392 
4393 /*
4394  * Complete the plumbing operation associated with stream `stp'.
4395  */
4396 void
4397 strendplumb(stdata_t *stp)
4398 {
4399 	ASSERT(MUTEX_HELD(&stp->sd_lock));
4400 	ASSERT(stp->sd_flag & STRPLUMB);
4401 	stp->sd_flag &= ~STRPLUMB;
4402 	cv_broadcast(&stp->sd_monitor);
4403 }
4404 
4405 /*
4406  * This describes how the STREAMS framework handles synchronization
4407  * during open/push and close/pop.
4408  * The key interfaces for open and close are qprocson and qprocsoff,
4409  * respectively. While the close case in general is harder both open
4410  * have close have significant similarities.
4411  *
4412  * During close the STREAMS framework has to both ensure that there
4413  * are no stale references to the queue pair (and syncq) that
4414  * are being closed and also provide the guarantees that are documented
4415  * in qprocsoff(9F).
4416  * If there are stale references to the queue that is closing it can
4417  * result in kernel memory corruption or kernel panics.
4418  *
4419  * Note that is it up to the module/driver to ensure that it itself
4420  * does not have any stale references to the closing queues once its close
4421  * routine returns. This includes:
4422  *  - Cancelling any timeout/bufcall/qtimeout/qbufcall callback routines
4423  *    associated with the queues. For timeout and bufcall callbacks the
4424  *    module/driver also has to ensure (or wait for) any callbacks that
4425  *    are in progress.
4426  *  - If the module/driver is using esballoc it has to ensure that any
4427  *    esballoc free functions do not refer to a queue that has closed.
4428  *    (Note that in general the close routine can not wait for the esballoc'ed
4429  *    messages to be freed since that can cause a deadlock.)
4430  *  - Cancelling any interrupts that refer to the closing queues and
4431  *    also ensuring that there are no interrupts in progress that will
4432  *    refer to the closing queues once the close routine returns.
4433  *  - For multiplexors removing any driver global state that refers to
4434  *    the closing queue and also ensuring that there are no threads in
4435  *    the multiplexor that has picked up a queue pointer but not yet
4436  *    finished using it.
4437  *
4438  * In addition, a driver/module can only reference the q_next pointer
4439  * in its open, close, put, or service procedures or in a
4440  * qtimeout/qbufcall callback procedure executing "on" the correct
4441  * stream. Thus it can not reference the q_next pointer in an interrupt
4442  * routine or a timeout, bufcall or esballoc callback routine. Likewise
4443  * it can not reference q_next of a different queue e.g. in a mux that
4444  * passes messages from one queues put/service procedure to another queue.
4445  * In all the cases when the driver/module can not access the q_next
4446  * field it must use the *next* versions e.g. canputnext instead of
4447  * canput(q->q_next) and putnextctl instead of putctl(q->q_next, ...).
4448  *
4449  *
4450  * Assuming that the driver/module conforms to the above constraints
4451  * the STREAMS framework has to avoid stale references to q_next for all
4452  * the framework internal cases which include (but are not limited to):
4453  *  - Threads in canput/canputnext/backenable and elsewhere that are
4454  *    walking q_next.
4455  *  - Messages on a syncq that have a reference to the queue through b_queue.
4456  *  - Messages on an outer perimeter (syncq) that have a reference to the
4457  *    queue through b_queue.
4458  *  - Threads that use q_nfsrv (e.g. canput) to find a queue.
4459  *    Note that only canput and bcanput use q_nfsrv without any locking.
4460  *
4461  * The STREAMS framework providing the qprocsoff(9F) guarantees means that
4462  * after qprocsoff returns, the framework has to ensure that no threads can
4463  * enter the put or service routines for the closing read or write-side queue.
4464  * In addition to preventing "direct" entry into the put procedures
4465  * the framework also has to prevent messages being drained from
4466  * the syncq or the outer perimeter.
4467  * XXX Note that currently qdetach does relies on D_MTOCEXCL as the only
4468  * mechanism to prevent qwriter(PERIM_OUTER) from running after
4469  * qprocsoff has returned.
4470  * Note that if a module/driver uses put(9F) on one of its own queues
4471  * it is up to the module/driver to ensure that the put() doesn't
4472  * get called when the queue is closing.
4473  *
4474  *
4475  * The framework aspects of the above "contract" is implemented by
4476  * qprocsoff, removeq, and strlock:
4477  *  - qprocsoff (disable_svc) sets QWCLOSE to prevent runservice from
4478  *    entering the service procedures.
4479  *  - strlock acquires the sd_lock and sd_reflock to prevent putnext,
4480  *    canputnext, backenable etc from dereferencing the q_next that will
4481  *    soon change.
4482  *  - strlock waits for sd_refcnt to be zero to wait for e.g. any canputnext
4483  *    or other q_next walker that uses claimstr/releasestr to finish.
4484  *  - optionally for every syncq in the stream strlock acquires all the
4485  *    sq_lock's and waits for all sq_counts to drop to a value that indicates
4486  *    that no thread executes in the put or service procedures and that no
4487  *    thread is draining into the module/driver. This ensures that no
4488  *    open, close, put, service, or qtimeout/qbufcall callback procedure is
4489  *    currently executing hence no such thread can end up with the old stale
4490  *    q_next value and no canput/backenable can have the old stale
4491  *    q_nfsrv/q_next.
4492  *  - qdetach (wait_svc) makes sure that any scheduled or running threads
4493  *    have either finished or observed the QWCLOSE flag and gone away.
4494  */
4495 
4496 
4497 /*
4498  * Get all the locks necessary to change q_next.
4499  *
4500  * Wait for sd_refcnt to reach 0 and, if sqlist is present, wait for  the
4501  * sq_count of each syncq in the list to drop to sq_rmqcount, indicating that
4502  * the only threads inside the sqncq are threads currently calling removeq().
4503  * Since threads calling removeq() are in the process of removing their queues
4504  * from the stream, we do not need to worry about them accessing a stale q_next
4505  * pointer and thus we do not need to wait for them to exit (in fact, waiting
4506  * for them can cause deadlock).
4507  *
4508  * This routine is subject to starvation since it does not set any flag to
4509  * prevent threads from entering a module in the stream(i.e. sq_count can
4510  * increase on some syncq while it is waiting on some other syncq.)
4511  *
4512  * Assumes that only one thread attempts to call strlock for a given
4513  * stream. If this is not the case the two threads would deadlock.
4514  * This assumption is guaranteed since strlock is only called by insertq
4515  * and removeq and streams plumbing changes are single-threaded for
4516  * a given stream using the STWOPEN, STRCLOSE, and STRPLUMB flags.
4517  *
4518  * For pipes, it is not difficult to atomically designate a pair of streams
4519  * to be mated. Once mated atomically by the framework the twisted pair remain
4520  * configured that way until dismantled atomically by the framework.
4521  * When plumbing takes place on a twisted stream it is necessary to ensure that
4522  * this operation is done exclusively on the twisted stream since two such
4523  * operations, each initiated on different ends of the pipe will deadlock
4524  * waiting for each other to complete.
4525  *
4526  * On entry, no locks should be held.
4527  * The locks acquired and held by strlock depends on a few factors.
4528  * - If sqlist is non-NULL all the syncq locks in the sqlist will be acquired
4529  *   and held on exit and all sq_count are at an acceptable level.
4530  * - In all cases, sd_lock and sd_reflock are acquired and held on exit with
4531  *   sd_refcnt being zero.
4532  */
4533 
4534 static void
4535 strlock(struct stdata *stp, sqlist_t *sqlist)
4536 {
4537 	syncql_t *sql, *sql2;
4538 retry:
4539 	/*
4540 	 * Wait for any claimstr to go away.
4541 	 */
4542 	if (STRMATED(stp)) {
4543 		struct stdata *stp1, *stp2;
4544 
4545 		STRLOCKMATES(stp);
4546 		/*
4547 		 * Note that the selection of locking order is not
4548 		 * important, just that they are always aquired in
4549 		 * the same order.  To assure this, we choose this
4550 		 * order based on the value of the pointer, and since
4551 		 * the pointer will not change for the life of this
4552 		 * pair, we will always grab the locks in the same
4553 		 * order (and hence, prevent deadlocks).
4554 		 */
4555 		if (&(stp->sd_lock) > &((stp->sd_mate)->sd_lock)) {
4556 			stp1 = stp;
4557 			stp2 = stp->sd_mate;
4558 		} else {
4559 			stp2 = stp;
4560 			stp1 = stp->sd_mate;
4561 		}
4562 		mutex_enter(&stp1->sd_reflock);
4563 		if (stp1->sd_refcnt > 0) {
4564 			STRUNLOCKMATES(stp);
4565 			cv_wait(&stp1->sd_refmonitor, &stp1->sd_reflock);
4566 			mutex_exit(&stp1->sd_reflock);
4567 			goto retry;
4568 		}
4569 		mutex_enter(&stp2->sd_reflock);
4570 		if (stp2->sd_refcnt > 0) {
4571 			STRUNLOCKMATES(stp);
4572 			mutex_exit(&stp1->sd_reflock);
4573 			cv_wait(&stp2->sd_refmonitor, &stp2->sd_reflock);
4574 			mutex_exit(&stp2->sd_reflock);
4575 			goto retry;
4576 		}
4577 		STREAM_PUTLOCKS_ENTER(stp1);
4578 		STREAM_PUTLOCKS_ENTER(stp2);
4579 	} else {
4580 		mutex_enter(&stp->sd_lock);
4581 		mutex_enter(&stp->sd_reflock);
4582 		while (stp->sd_refcnt > 0) {
4583 			mutex_exit(&stp->sd_lock);
4584 			cv_wait(&stp->sd_refmonitor, &stp->sd_reflock);
4585 			if (mutex_tryenter(&stp->sd_lock) == 0) {
4586 				mutex_exit(&stp->sd_reflock);
4587 				mutex_enter(&stp->sd_lock);
4588 				mutex_enter(&stp->sd_reflock);
4589 			}
4590 		}
4591 		STREAM_PUTLOCKS_ENTER(stp);
4592 	}
4593 
4594 	if (sqlist == NULL)
4595 		return;
4596 
4597 	for (sql = sqlist->sqlist_head; sql; sql = sql->sql_next) {
4598 		syncq_t *sq = sql->sql_sq;
4599 		uint16_t count;
4600 
4601 		mutex_enter(SQLOCK(sq));
4602 		count = sq->sq_count;
4603 		ASSERT(sq->sq_rmqcount <= count);
4604 		SQ_PUTLOCKS_ENTER(sq);
4605 		SUM_SQ_PUTCOUNTS(sq, count);
4606 		if (count == sq->sq_rmqcount)
4607 			continue;
4608 
4609 		/* Failed - drop all locks that we have acquired so far */
4610 		if (STRMATED(stp)) {
4611 			STREAM_PUTLOCKS_EXIT(stp);
4612 			STREAM_PUTLOCKS_EXIT(stp->sd_mate);
4613 			STRUNLOCKMATES(stp);
4614 			mutex_exit(&stp->sd_reflock);
4615 			mutex_exit(&stp->sd_mate->sd_reflock);
4616 		} else {
4617 			STREAM_PUTLOCKS_EXIT(stp);
4618 			mutex_exit(&stp->sd_lock);
4619 			mutex_exit(&stp->sd_reflock);
4620 		}
4621 		for (sql2 = sqlist->sqlist_head; sql2 != sql;
4622 		    sql2 = sql2->sql_next) {
4623 			SQ_PUTLOCKS_EXIT(sql2->sql_sq);
4624 			mutex_exit(SQLOCK(sql2->sql_sq));
4625 		}
4626 
4627 		/*
4628 		 * The wait loop below may starve when there are many threads
4629 		 * claiming the syncq. This is especially a problem with permod
4630 		 * syncqs (IP). To lessen the impact of the problem we increment
4631 		 * sq_needexcl and clear fastbits so that putnexts will slow
4632 		 * down and call sqenable instead of draining right away.
4633 		 */
4634 		sq->sq_needexcl++;
4635 		SQ_PUTCOUNT_CLRFAST_LOCKED(sq);
4636 		while (count > sq->sq_rmqcount) {
4637 			sq->sq_flags |= SQ_WANTWAKEUP;
4638 			SQ_PUTLOCKS_EXIT(sq);
4639 			cv_wait(&sq->sq_wait, SQLOCK(sq));
4640 			count = sq->sq_count;
4641 			SQ_PUTLOCKS_ENTER(sq);
4642 			SUM_SQ_PUTCOUNTS(sq, count);
4643 		}
4644 		sq->sq_needexcl--;
4645 		if (sq->sq_needexcl == 0)
4646 			SQ_PUTCOUNT_SETFAST_LOCKED(sq);
4647 		SQ_PUTLOCKS_EXIT(sq);
4648 		ASSERT(count == sq->sq_rmqcount);
4649 		mutex_exit(SQLOCK(sq));
4650 		goto retry;
4651 	}
4652 }
4653 
4654 /*
4655  * Drop all the locks that strlock acquired.
4656  */
4657 static void
4658 strunlock(struct stdata *stp, sqlist_t *sqlist)
4659 {
4660 	syncql_t *sql;
4661 
4662 	if (STRMATED(stp)) {
4663 		STREAM_PUTLOCKS_EXIT(stp);
4664 		STREAM_PUTLOCKS_EXIT(stp->sd_mate);
4665 		STRUNLOCKMATES(stp);
4666 		mutex_exit(&stp->sd_reflock);
4667 		mutex_exit(&stp->sd_mate->sd_reflock);
4668 	} else {
4669 		STREAM_PUTLOCKS_EXIT(stp);
4670 		mutex_exit(&stp->sd_lock);
4671 		mutex_exit(&stp->sd_reflock);
4672 	}
4673 
4674 	if (sqlist == NULL)
4675 		return;
4676 
4677 	for (sql = sqlist->sqlist_head; sql; sql = sql->sql_next) {
4678 		SQ_PUTLOCKS_EXIT(sql->sql_sq);
4679 		mutex_exit(SQLOCK(sql->sql_sq));
4680 	}
4681 }
4682 
4683 /*
4684  * When the module has service procedure, we need check if the next
4685  * module which has service procedure is in flow control to trigger
4686  * the backenable.
4687  */
4688 static void
4689 backenable_insertedq(queue_t *q)
4690 {
4691 	qband_t	*qbp;
4692 
4693 	claimstr(q);
4694 	if (q->q_qinfo->qi_srvp != NULL && q->q_next != NULL) {
4695 		if (q->q_next->q_nfsrv->q_flag & QWANTW)
4696 			backenable(q, 0);
4697 
4698 		qbp = q->q_next->q_nfsrv->q_bandp;
4699 		for (; qbp != NULL; qbp = qbp->qb_next)
4700 			if ((qbp->qb_flag & QB_WANTW) && qbp->qb_first != NULL)
4701 				backenable(q, qbp->qb_first->b_band);
4702 	}
4703 	releasestr(q);
4704 }
4705 
4706 /*
4707  * Given two read queues, insert a new single one after another.
4708  *
4709  * This routine acquires all the necessary locks in order to change
4710  * q_next and related pointer using strlock().
4711  * It depends on the stream head ensuring that there are no concurrent
4712  * insertq or removeq on the same stream. The stream head ensures this
4713  * using the flags STWOPEN, STRCLOSE, and STRPLUMB.
4714  *
4715  * Note that no syncq locks are held during the q_next change. This is
4716  * applied to all streams since, unlike removeq, there is no problem of stale
4717  * pointers when adding a module to the stream. Thus drivers/modules that do a
4718  * canput(rq->q_next) would never get a closed/freed queue pointer even if we
4719  * applied this optimization to all streams.
4720  */
4721 void
4722 insertq(struct stdata *stp, queue_t *new)
4723 {
4724 	queue_t	*after;
4725 	queue_t *wafter;
4726 	queue_t *wnew = _WR(new);
4727 	boolean_t have_fifo = B_FALSE;
4728 
4729 	if (new->q_flag & _QINSERTING) {
4730 		ASSERT(stp->sd_vnode->v_type != VFIFO);
4731 		after = new->q_next;
4732 		wafter = _WR(new->q_next);
4733 	} else {
4734 		after = _RD(stp->sd_wrq);
4735 		wafter = stp->sd_wrq;
4736 	}
4737 
4738 	TRACE_2(TR_FAC_STREAMS_FR, TR_INSERTQ,
4739 	    "insertq:%p, %p", after, new);
4740 	ASSERT(after->q_flag & QREADR);
4741 	ASSERT(new->q_flag & QREADR);
4742 
4743 	strlock(stp, NULL);
4744 
4745 	/* Do we have a FIFO? */
4746 	if (wafter->q_next == after) {
4747 		have_fifo = B_TRUE;
4748 		wnew->q_next = new;
4749 	} else {
4750 		wnew->q_next = wafter->q_next;
4751 	}
4752 	new->q_next = after;
4753 
4754 	set_nfsrv_ptr(new, wnew, after, wafter);
4755 	/*
4756 	 * set_nfsrv_ptr() needs to know if this is an insertion or not,
4757 	 * so only reset this flag after calling it.
4758 	 */
4759 	new->q_flag &= ~_QINSERTING;
4760 
4761 	if (have_fifo) {
4762 		wafter->q_next = wnew;
4763 	} else {
4764 		if (wafter->q_next)
4765 			_OTHERQ(wafter->q_next)->q_next = new;
4766 		wafter->q_next = wnew;
4767 	}
4768 
4769 	set_qend(new);
4770 	/* The QEND flag might have to be updated for the upstream guy */
4771 	set_qend(after);
4772 
4773 	ASSERT(_SAMESTR(new) == O_SAMESTR(new));
4774 	ASSERT(_SAMESTR(wnew) == O_SAMESTR(wnew));
4775 	ASSERT(_SAMESTR(after) == O_SAMESTR(after));
4776 	ASSERT(_SAMESTR(wafter) == O_SAMESTR(wafter));
4777 	strsetuio(stp);
4778 
4779 	/*
4780 	 * If this was a module insertion, bump the push count.
4781 	 */
4782 	if (!(new->q_flag & QISDRV))
4783 		stp->sd_pushcnt++;
4784 
4785 	strunlock(stp, NULL);
4786 
4787 	/* check if the write Q needs backenable */
4788 	backenable_insertedq(wnew);
4789 
4790 	/* check if the read Q needs backenable */
4791 	backenable_insertedq(new);
4792 }
4793 
4794 /*
4795  * Given a read queue, unlink it from any neighbors.
4796  *
4797  * This routine acquires all the necessary locks in order to
4798  * change q_next and related pointers and also guard against
4799  * stale references (e.g. through q_next) to the queue that
4800  * is being removed. It also plays part of the role in ensuring
4801  * that the module's/driver's put procedure doesn't get called
4802  * after qprocsoff returns.
4803  *
4804  * Removeq depends on the stream head ensuring that there are
4805  * no concurrent insertq or removeq on the same stream. The
4806  * stream head ensures this using the flags STWOPEN, STRCLOSE and
4807  * STRPLUMB.
4808  *
4809  * The set of locks needed to remove the queue is different in
4810  * different cases:
4811  *
4812  * Acquire sd_lock, sd_reflock, and all the syncq locks in the stream after
4813  * waiting for the syncq reference count to drop to 0 indicating that no
4814  * non-close threads are present anywhere in the stream. This ensures that any
4815  * module/driver can reference q_next in its open, close, put, or service
4816  * procedures.
4817  *
4818  * The sq_rmqcount counter tracks the number of threads inside removeq().
4819  * strlock() ensures that there is either no threads executing inside perimeter
4820  * or there is only a thread calling qprocsoff().
4821  *
4822  * strlock() compares the value of sq_count with the number of threads inside
4823  * removeq() and waits until sq_count is equal to sq_rmqcount. We need to wakeup
4824  * any threads waiting in strlock() when the sq_rmqcount increases.
4825  */
4826 
4827 void
4828 removeq(queue_t *qp)
4829 {
4830 	queue_t *wqp = _WR(qp);
4831 	struct stdata *stp = STREAM(qp);
4832 	sqlist_t *sqlist = NULL;
4833 	boolean_t isdriver;
4834 	int moved;
4835 	syncq_t *sq = qp->q_syncq;
4836 	syncq_t *wsq = wqp->q_syncq;
4837 
4838 	ASSERT(stp);
4839 
4840 	TRACE_2(TR_FAC_STREAMS_FR, TR_REMOVEQ,
4841 	    "removeq:%p %p", qp, wqp);
4842 	ASSERT(qp->q_flag&QREADR);
4843 
4844 	/*
4845 	 * For queues using Synchronous streams, we must wait for all threads in
4846 	 * rwnext() to drain out before proceeding.
4847 	 */
4848 	if (qp->q_flag & QSYNCSTR) {
4849 		/* First, we need wakeup any threads blocked in rwnext() */
4850 		mutex_enter(SQLOCK(sq));
4851 		if (sq->sq_flags & SQ_WANTWAKEUP) {
4852 			sq->sq_flags &= ~SQ_WANTWAKEUP;
4853 			cv_broadcast(&sq->sq_wait);
4854 		}
4855 		mutex_exit(SQLOCK(sq));
4856 
4857 		if (wsq != sq) {
4858 			mutex_enter(SQLOCK(wsq));
4859 			if (wsq->sq_flags & SQ_WANTWAKEUP) {
4860 				wsq->sq_flags &= ~SQ_WANTWAKEUP;
4861 				cv_broadcast(&wsq->sq_wait);
4862 			}
4863 			mutex_exit(SQLOCK(wsq));
4864 		}
4865 
4866 		mutex_enter(QLOCK(qp));
4867 		while (qp->q_rwcnt > 0) {
4868 			qp->q_flag |= QWANTRMQSYNC;
4869 			cv_wait(&qp->q_wait, QLOCK(qp));
4870 		}
4871 		mutex_exit(QLOCK(qp));
4872 
4873 		mutex_enter(QLOCK(wqp));
4874 		while (wqp->q_rwcnt > 0) {
4875 			wqp->q_flag |= QWANTRMQSYNC;
4876 			cv_wait(&wqp->q_wait, QLOCK(wqp));
4877 		}
4878 		mutex_exit(QLOCK(wqp));
4879 	}
4880 
4881 	mutex_enter(SQLOCK(sq));
4882 	sq->sq_rmqcount++;
4883 	if (sq->sq_flags & SQ_WANTWAKEUP) {
4884 		sq->sq_flags &= ~SQ_WANTWAKEUP;
4885 		cv_broadcast(&sq->sq_wait);
4886 	}
4887 	mutex_exit(SQLOCK(sq));
4888 
4889 	isdriver = (qp->q_flag & QISDRV);
4890 
4891 	sqlist = sqlist_build(qp, stp, STRMATED(stp));
4892 	strlock(stp, sqlist);
4893 
4894 	reset_nfsrv_ptr(qp, wqp);
4895 
4896 	ASSERT(wqp->q_next == NULL || backq(qp)->q_next == qp);
4897 	ASSERT(qp->q_next == NULL || backq(wqp)->q_next == wqp);
4898 	/* Do we have a FIFO? */
4899 	if (wqp->q_next == qp) {
4900 		stp->sd_wrq->q_next = _RD(stp->sd_wrq);
4901 	} else {
4902 		if (wqp->q_next)
4903 			backq(qp)->q_next = qp->q_next;
4904 		if (qp->q_next)
4905 			backq(wqp)->q_next = wqp->q_next;
4906 	}
4907 
4908 	/* The QEND flag might have to be updated for the upstream guy */
4909 	if (qp->q_next)
4910 		set_qend(qp->q_next);
4911 
4912 	ASSERT(_SAMESTR(stp->sd_wrq) == O_SAMESTR(stp->sd_wrq));
4913 	ASSERT(_SAMESTR(_RD(stp->sd_wrq)) == O_SAMESTR(_RD(stp->sd_wrq)));
4914 
4915 	/*
4916 	 * Move any messages destined for the put procedures to the next
4917 	 * syncq in line. Otherwise free them.
4918 	 */
4919 	moved = 0;
4920 	/*
4921 	 * Quick check to see whether there are any messages or events.
4922 	 */
4923 	if (qp->q_syncqmsgs != 0 || (qp->q_syncq->sq_flags & SQ_EVENTS))
4924 		moved += propagate_syncq(qp);
4925 	if (wqp->q_syncqmsgs != 0 ||
4926 	    (wqp->q_syncq->sq_flags & SQ_EVENTS))
4927 		moved += propagate_syncq(wqp);
4928 
4929 	strsetuio(stp);
4930 
4931 	/*
4932 	 * If this was a module removal, decrement the push count.
4933 	 */
4934 	if (!isdriver)
4935 		stp->sd_pushcnt--;
4936 
4937 	strunlock(stp, sqlist);
4938 	sqlist_free(sqlist);
4939 
4940 	/*
4941 	 * Make sure any messages that were propagated are drained.
4942 	 * Also clear any QFULL bit caused by messages that were propagated.
4943 	 */
4944 
4945 	if (qp->q_next != NULL) {
4946 		clr_qfull(qp);
4947 		/*
4948 		 * For the driver calling qprocsoff, propagate_syncq
4949 		 * frees all the messages instead of putting it in
4950 		 * the stream head
4951 		 */
4952 		if (!isdriver && (moved > 0))
4953 			emptysq(qp->q_next->q_syncq);
4954 	}
4955 	if (wqp->q_next != NULL) {
4956 		clr_qfull(wqp);
4957 		/*
4958 		 * We come here for any pop of a module except for the
4959 		 * case of driver being removed. We don't call emptysq
4960 		 * if we did not move any messages. This will avoid holding
4961 		 * PERMOD syncq locks in emptysq
4962 		 */
4963 		if (moved > 0)
4964 			emptysq(wqp->q_next->q_syncq);
4965 	}
4966 
4967 	mutex_enter(SQLOCK(sq));
4968 	sq->sq_rmqcount--;
4969 	mutex_exit(SQLOCK(sq));
4970 }
4971 
4972 /*
4973  * Prevent further entry by setting a flag (like SQ_FROZEN, SQ_BLOCKED or
4974  * SQ_WRITER) on a syncq.
4975  * If maxcnt is not -1 it assumes that caller has "maxcnt" claim(s) on the
4976  * sync queue and waits until sq_count reaches maxcnt.
4977  *
4978  * if maxcnt is -1 there's no need to grab sq_putlocks since the caller
4979  * does not care about putnext threads that are in the middle of calling put
4980  * entry points.
4981  *
4982  * This routine is used for both inner and outer syncqs.
4983  */
4984 static void
4985 blocksq(syncq_t *sq, ushort_t flag, int maxcnt)
4986 {
4987 	uint16_t count = 0;
4988 
4989 	mutex_enter(SQLOCK(sq));
4990 	/*
4991 	 * Wait for SQ_FROZEN/SQ_BLOCKED to be reset.
4992 	 * SQ_FROZEN will be set if there is a frozen stream that has a
4993 	 * queue which also refers to this "shared" syncq.
4994 	 * SQ_BLOCKED will be set if there is "off" queue which also
4995 	 * refers to this "shared" syncq.
4996 	 */
4997 	if (maxcnt != -1) {
4998 		count = sq->sq_count;
4999 		SQ_PUTLOCKS_ENTER(sq);
5000 		SQ_PUTCOUNT_CLRFAST_LOCKED(sq);
5001 		SUM_SQ_PUTCOUNTS(sq, count);
5002 	}
5003 	sq->sq_needexcl++;
5004 	ASSERT(sq->sq_needexcl != 0);	/* wraparound */
5005 
5006 	while ((sq->sq_flags & flag) ||
5007 	    (maxcnt != -1 && count > (unsigned)maxcnt)) {
5008 		sq->sq_flags |= SQ_WANTWAKEUP;
5009 		if (maxcnt != -1) {
5010 			SQ_PUTLOCKS_EXIT(sq);
5011 		}
5012 		cv_wait(&sq->sq_wait, SQLOCK(sq));
5013 		if (maxcnt != -1) {
5014 			count = sq->sq_count;
5015 			SQ_PUTLOCKS_ENTER(sq);
5016 			SUM_SQ_PUTCOUNTS(sq, count);
5017 		}
5018 	}
5019 	sq->sq_needexcl--;
5020 	sq->sq_flags |= flag;
5021 	ASSERT(maxcnt == -1 || count == maxcnt);
5022 	if (maxcnt != -1) {
5023 		if (sq->sq_needexcl == 0) {
5024 			SQ_PUTCOUNT_SETFAST_LOCKED(sq);
5025 		}
5026 		SQ_PUTLOCKS_EXIT(sq);
5027 	} else if (sq->sq_needexcl == 0) {
5028 		SQ_PUTCOUNT_SETFAST(sq);
5029 	}
5030 
5031 	mutex_exit(SQLOCK(sq));
5032 }
5033 
5034 /*
5035  * Reset a flag that was set with blocksq.
5036  *
5037  * Can not use this routine to reset SQ_WRITER.
5038  *
5039  * If "isouter" is set then the syncq is assumed to be an outer perimeter
5040  * and drain_syncq is not called. Instead we rely on the qwriter_outer thread
5041  * to handle the queued qwriter operations.
5042  *
5043  * no need to grab sq_putlocks here. See comment in strsubr.h that explains when
5044  * sq_putlocks are used.
5045  */
5046 static void
5047 unblocksq(syncq_t *sq, uint16_t resetflag, int isouter)
5048 {
5049 	uint16_t flags;
5050 
5051 	mutex_enter(SQLOCK(sq));
5052 	ASSERT(resetflag != SQ_WRITER);
5053 	ASSERT(sq->sq_flags & resetflag);
5054 	flags = sq->sq_flags & ~resetflag;
5055 	sq->sq_flags = flags;
5056 	if (flags & (SQ_QUEUED | SQ_WANTWAKEUP)) {
5057 		if (flags & SQ_WANTWAKEUP) {
5058 			flags &= ~SQ_WANTWAKEUP;
5059 			cv_broadcast(&sq->sq_wait);
5060 		}
5061 		sq->sq_flags = flags;
5062 		if ((flags & SQ_QUEUED) && !(flags & (SQ_STAYAWAY|SQ_EXCL))) {
5063 			if (!isouter) {
5064 				/* drain_syncq drops SQLOCK */
5065 				drain_syncq(sq);
5066 				return;
5067 			}
5068 		}
5069 	}
5070 	mutex_exit(SQLOCK(sq));
5071 }
5072 
5073 /*
5074  * Reset a flag that was set with blocksq.
5075  * Does not drain the syncq. Use emptysq() for that.
5076  * Returns 1 if SQ_QUEUED is set. Otherwise 0.
5077  *
5078  * no need to grab sq_putlocks here. See comment in strsubr.h that explains when
5079  * sq_putlocks are used.
5080  */
5081 static int
5082 dropsq(syncq_t *sq, uint16_t resetflag)
5083 {
5084 	uint16_t flags;
5085 
5086 	mutex_enter(SQLOCK(sq));
5087 	ASSERT(sq->sq_flags & resetflag);
5088 	flags = sq->sq_flags & ~resetflag;
5089 	if (flags & SQ_WANTWAKEUP) {
5090 		flags &= ~SQ_WANTWAKEUP;
5091 		cv_broadcast(&sq->sq_wait);
5092 	}
5093 	sq->sq_flags = flags;
5094 	mutex_exit(SQLOCK(sq));
5095 	if (flags & SQ_QUEUED)
5096 		return (1);
5097 	return (0);
5098 }
5099 
5100 /*
5101  * Empty all the messages on a syncq.
5102  *
5103  * no need to grab sq_putlocks here. See comment in strsubr.h that explains when
5104  * sq_putlocks are used.
5105  */
5106 static void
5107 emptysq(syncq_t *sq)
5108 {
5109 	uint16_t flags;
5110 
5111 	mutex_enter(SQLOCK(sq));
5112 	flags = sq->sq_flags;
5113 	if ((flags & SQ_QUEUED) && !(flags & (SQ_STAYAWAY|SQ_EXCL))) {
5114 		/*
5115 		 * To prevent potential recursive invocation of drain_syncq we
5116 		 * do not call drain_syncq if count is non-zero.
5117 		 */
5118 		if (sq->sq_count == 0) {
5119 			/* drain_syncq() drops SQLOCK */
5120 			drain_syncq(sq);
5121 			return;
5122 		} else
5123 			sqenable(sq);
5124 	}
5125 	mutex_exit(SQLOCK(sq));
5126 }
5127 
5128 /*
5129  * Ordered insert while removing duplicates.
5130  */
5131 static void
5132 sqlist_insert(sqlist_t *sqlist, syncq_t *sqp)
5133 {
5134 	syncql_t *sqlp, **prev_sqlpp, *new_sqlp;
5135 
5136 	prev_sqlpp = &sqlist->sqlist_head;
5137 	while ((sqlp = *prev_sqlpp) != NULL) {
5138 		if (sqlp->sql_sq >= sqp) {
5139 			if (sqlp->sql_sq == sqp)	/* duplicate */
5140 				return;
5141 			break;
5142 		}
5143 		prev_sqlpp = &sqlp->sql_next;
5144 	}
5145 	new_sqlp = &sqlist->sqlist_array[sqlist->sqlist_index++];
5146 	ASSERT((char *)new_sqlp < (char *)sqlist + sqlist->sqlist_size);
5147 	new_sqlp->sql_next = sqlp;
5148 	new_sqlp->sql_sq = sqp;
5149 	*prev_sqlpp = new_sqlp;
5150 }
5151 
5152 /*
5153  * Walk the write side queues until we hit either the driver
5154  * or a twist in the stream (_SAMESTR will return false in both
5155  * these cases) then turn around and walk the read side queues
5156  * back up to the stream head.
5157  */
5158 static void
5159 sqlist_insertall(sqlist_t *sqlist, queue_t *q)
5160 {
5161 	while (q != NULL) {
5162 		sqlist_insert(sqlist, q->q_syncq);
5163 
5164 		if (_SAMESTR(q))
5165 			q = q->q_next;
5166 		else if (!(q->q_flag & QREADR))
5167 			q = _RD(q);
5168 		else
5169 			q = NULL;
5170 	}
5171 }
5172 
5173 /*
5174  * Allocate and build a list of all syncqs in a stream and the syncq(s)
5175  * associated with the "q" parameter. The resulting list is sorted in a
5176  * canonical order and is free of duplicates.
5177  * Assumes the passed queue is a _RD(q).
5178  */
5179 static sqlist_t *
5180 sqlist_build(queue_t *q, struct stdata *stp, boolean_t do_twist)
5181 {
5182 	sqlist_t *sqlist = sqlist_alloc(stp, KM_SLEEP);
5183 
5184 	/*
5185 	 * start with the current queue/qpair
5186 	 */
5187 	ASSERT(q->q_flag & QREADR);
5188 
5189 	sqlist_insert(sqlist, q->q_syncq);
5190 	sqlist_insert(sqlist, _WR(q)->q_syncq);
5191 
5192 	sqlist_insertall(sqlist, stp->sd_wrq);
5193 	if (do_twist)
5194 		sqlist_insertall(sqlist, stp->sd_mate->sd_wrq);
5195 
5196 	return (sqlist);
5197 }
5198 
5199 static sqlist_t *
5200 sqlist_alloc(struct stdata *stp, int kmflag)
5201 {
5202 	size_t sqlist_size;
5203 	sqlist_t *sqlist;
5204 
5205 	/*
5206 	 * Allocate 2 syncql_t's for each pushed module. Note that
5207 	 * the sqlist_t structure already has 4 syncql_t's built in:
5208 	 * 2 for the stream head, and 2 for the driver/other stream head.
5209 	 */
5210 	sqlist_size = 2 * sizeof (syncql_t) * stp->sd_pushcnt +
5211 	    sizeof (sqlist_t);
5212 	if (STRMATED(stp))
5213 		sqlist_size += 2 * sizeof (syncql_t) * stp->sd_mate->sd_pushcnt;
5214 	sqlist = kmem_alloc(sqlist_size, kmflag);
5215 
5216 	sqlist->sqlist_head = NULL;
5217 	sqlist->sqlist_size = sqlist_size;
5218 	sqlist->sqlist_index = 0;
5219 
5220 	return (sqlist);
5221 }
5222 
5223 /*
5224  * Free the list created by sqlist_alloc()
5225  */
5226 static void
5227 sqlist_free(sqlist_t *sqlist)
5228 {
5229 	kmem_free(sqlist, sqlist->sqlist_size);
5230 }
5231 
5232 /*
5233  * Prevent any new entries into any syncq in this stream.
5234  * Used by freezestr.
5235  */
5236 void
5237 strblock(queue_t *q)
5238 {
5239 	struct stdata	*stp;
5240 	syncql_t	*sql;
5241 	sqlist_t	*sqlist;
5242 
5243 	q = _RD(q);
5244 
5245 	stp = STREAM(q);
5246 	ASSERT(stp != NULL);
5247 
5248 	/*
5249 	 * Get a sorted list with all the duplicates removed containing
5250 	 * all the syncqs referenced by this stream.
5251 	 */
5252 	sqlist = sqlist_build(q, stp, B_FALSE);
5253 	for (sql = sqlist->sqlist_head; sql != NULL; sql = sql->sql_next)
5254 		blocksq(sql->sql_sq, SQ_FROZEN, -1);
5255 	sqlist_free(sqlist);
5256 }
5257 
5258 /*
5259  * Release the block on new entries into this stream
5260  */
5261 void
5262 strunblock(queue_t *q)
5263 {
5264 	struct stdata	*stp;
5265 	syncql_t	*sql;
5266 	sqlist_t	*sqlist;
5267 	int		drain_needed;
5268 
5269 	q = _RD(q);
5270 
5271 	/*
5272 	 * Get a sorted list with all the duplicates removed containing
5273 	 * all the syncqs referenced by this stream.
5274 	 * Have to drop the SQ_FROZEN flag on all the syncqs before
5275 	 * starting to drain them; otherwise the draining might
5276 	 * cause a freezestr in some module on the stream (which
5277 	 * would deadlock.)
5278 	 */
5279 	stp = STREAM(q);
5280 	ASSERT(stp != NULL);
5281 	sqlist = sqlist_build(q, stp, B_FALSE);
5282 	drain_needed = 0;
5283 	for (sql = sqlist->sqlist_head; sql != NULL; sql = sql->sql_next)
5284 		drain_needed += dropsq(sql->sql_sq, SQ_FROZEN);
5285 	if (drain_needed) {
5286 		for (sql = sqlist->sqlist_head; sql != NULL;
5287 		    sql = sql->sql_next)
5288 			emptysq(sql->sql_sq);
5289 	}
5290 	sqlist_free(sqlist);
5291 }
5292 
5293 #ifdef DEBUG
5294 static int
5295 qprocsareon(queue_t *rq)
5296 {
5297 	if (rq->q_next == NULL)
5298 		return (0);
5299 	return (_WR(rq->q_next)->q_next == _WR(rq));
5300 }
5301 
5302 int
5303 qclaimed(queue_t *q)
5304 {
5305 	uint_t count;
5306 
5307 	count = q->q_syncq->sq_count;
5308 	SUM_SQ_PUTCOUNTS(q->q_syncq, count);
5309 	return (count != 0);
5310 }
5311 
5312 /*
5313  * Check if anyone has frozen this stream with freezestr
5314  */
5315 int
5316 frozenstr(queue_t *q)
5317 {
5318 	return ((q->q_syncq->sq_flags & SQ_FROZEN) != 0);
5319 }
5320 #endif /* DEBUG */
5321 
5322 /*
5323  * Enter a queue.
5324  * Obsoleted interface. Should not be used.
5325  */
5326 void
5327 enterq(queue_t *q)
5328 {
5329 	entersq(q->q_syncq, SQ_CALLBACK);
5330 }
5331 
5332 void
5333 leaveq(queue_t *q)
5334 {
5335 	leavesq(q->q_syncq, SQ_CALLBACK);
5336 }
5337 
5338 /*
5339  * Enter a perimeter. c_inner and c_outer specifies which concurrency bits
5340  * to check.
5341  * Wait if SQ_QUEUED is set to preserve ordering between messages and qwriter
5342  * calls and the running of open, close and service procedures.
5343  *
5344  * if c_inner bit is set no need to grab sq_putlocks since we don't care
5345  * if other threads have entered or are entering put entry point.
5346  *
5347  * if c_inner bit is set it might have been posible to use
5348  * sq_putlocks/sq_putcounts instead of SQLOCK/sq_count (e.g. to optimize
5349  * open/close path for IP) but since the count may need to be decremented in
5350  * qwait() we wouldn't know which counter to decrement. Currently counter is
5351  * selected by current cpu_seqid and current CPU can change at any moment. XXX
5352  * in the future we might use curthread id bits to select the counter and this
5353  * would stay constant across routine calls.
5354  */
5355 void
5356 entersq(syncq_t *sq, int entrypoint)
5357 {
5358 	uint16_t	count = 0;
5359 	uint16_t	flags;
5360 	uint16_t	waitflags = SQ_STAYAWAY | SQ_EVENTS | SQ_EXCL;
5361 	uint16_t	type;
5362 	uint_t		c_inner = entrypoint & SQ_CI;
5363 	uint_t		c_outer = entrypoint & SQ_CO;
5364 
5365 	/*
5366 	 * Increment ref count to keep closes out of this queue.
5367 	 */
5368 	ASSERT(sq);
5369 	ASSERT(c_inner && c_outer);
5370 	mutex_enter(SQLOCK(sq));
5371 	flags = sq->sq_flags;
5372 	type = sq->sq_type;
5373 	if (!(type & c_inner)) {
5374 		/* Make sure all putcounts now use slowlock. */
5375 		count = sq->sq_count;
5376 		SQ_PUTLOCKS_ENTER(sq);
5377 		SQ_PUTCOUNT_CLRFAST_LOCKED(sq);
5378 		SUM_SQ_PUTCOUNTS(sq, count);
5379 		sq->sq_needexcl++;
5380 		ASSERT(sq->sq_needexcl != 0);	/* wraparound */
5381 		waitflags |= SQ_MESSAGES;
5382 	}
5383 	/*
5384 	 * Wait until we can enter the inner perimeter.
5385 	 * If we want exclusive access we wait until sq_count is 0.
5386 	 * We have to do this before entering the outer perimeter in order
5387 	 * to preserve put/close message ordering.
5388 	 */
5389 	while ((flags & waitflags) || (!(type & c_inner) && count != 0)) {
5390 		sq->sq_flags = flags | SQ_WANTWAKEUP;
5391 		if (!(type & c_inner)) {
5392 			SQ_PUTLOCKS_EXIT(sq);
5393 		}
5394 		cv_wait(&sq->sq_wait, SQLOCK(sq));
5395 		if (!(type & c_inner)) {
5396 			count = sq->sq_count;
5397 			SQ_PUTLOCKS_ENTER(sq);
5398 			SUM_SQ_PUTCOUNTS(sq, count);
5399 		}
5400 		flags = sq->sq_flags;
5401 	}
5402 
5403 	if (!(type & c_inner)) {
5404 		ASSERT(sq->sq_needexcl > 0);
5405 		sq->sq_needexcl--;
5406 		if (sq->sq_needexcl == 0) {
5407 			SQ_PUTCOUNT_SETFAST_LOCKED(sq);
5408 		}
5409 	}
5410 
5411 	/* Check if we need to enter the outer perimeter */
5412 	if (!(type & c_outer)) {
5413 		/*
5414 		 * We have to enter the outer perimeter exclusively before
5415 		 * we can increment sq_count to avoid deadlock. This implies
5416 		 * that we have to re-check sq_flags and sq_count.
5417 		 *
5418 		 * is it possible to have c_inner set when c_outer is not set?
5419 		 */
5420 		if (!(type & c_inner)) {
5421 			SQ_PUTLOCKS_EXIT(sq);
5422 		}
5423 		mutex_exit(SQLOCK(sq));
5424 		outer_enter(sq->sq_outer, SQ_GOAWAY);
5425 		mutex_enter(SQLOCK(sq));
5426 		flags = sq->sq_flags;
5427 		/*
5428 		 * there should be no need to recheck sq_putcounts
5429 		 * because outer_enter() has already waited for them to clear
5430 		 * after setting SQ_WRITER.
5431 		 */
5432 		count = sq->sq_count;
5433 #ifdef DEBUG
5434 		/*
5435 		 * SUMCHECK_SQ_PUTCOUNTS should return the sum instead
5436 		 * of doing an ASSERT internally. Others should do
5437 		 * something like
5438 		 *	 ASSERT(SUMCHECK_SQ_PUTCOUNTS(sq) == 0);
5439 		 * without the need to #ifdef DEBUG it.
5440 		 */
5441 		SUMCHECK_SQ_PUTCOUNTS(sq, 0);
5442 #endif
5443 		while ((flags & (SQ_EXCL|SQ_BLOCKED|SQ_FROZEN)) ||
5444 		    (!(type & c_inner) && count != 0)) {
5445 			sq->sq_flags = flags | SQ_WANTWAKEUP;
5446 			cv_wait(&sq->sq_wait, SQLOCK(sq));
5447 			count = sq->sq_count;
5448 			flags = sq->sq_flags;
5449 		}
5450 	}
5451 
5452 	sq->sq_count++;
5453 	ASSERT(sq->sq_count != 0);	/* Wraparound */
5454 	if (!(type & c_inner)) {
5455 		/* Exclusive entry */
5456 		ASSERT(sq->sq_count == 1);
5457 		sq->sq_flags |= SQ_EXCL;
5458 		if (type & c_outer) {
5459 			SQ_PUTLOCKS_EXIT(sq);
5460 		}
5461 	}
5462 	mutex_exit(SQLOCK(sq));
5463 }
5464 
5465 /*
5466  * leave a syncq. announce to framework that closes may proceed.
5467  * c_inner and c_outer specifies which concurrency bits
5468  * to check.
5469  *
5470  * must never be called from driver or module put entry point.
5471  *
5472  * no need to grab sq_putlocks here. See comment in strsubr.h that explains when
5473  * sq_putlocks are used.
5474  */
5475 void
5476 leavesq(syncq_t *sq, int entrypoint)
5477 {
5478 	uint16_t	flags;
5479 	uint16_t	type;
5480 	uint_t		c_outer = entrypoint & SQ_CO;
5481 #ifdef DEBUG
5482 	uint_t		c_inner = entrypoint & SQ_CI;
5483 #endif
5484 
5485 	/*
5486 	 * decrement ref count, drain the syncq if possible, and wake up
5487 	 * any waiting close.
5488 	 */
5489 	ASSERT(sq);
5490 	ASSERT(c_inner && c_outer);
5491 	mutex_enter(SQLOCK(sq));
5492 	flags = sq->sq_flags;
5493 	type = sq->sq_type;
5494 	if (flags & (SQ_QUEUED|SQ_WANTWAKEUP|SQ_WANTEXWAKEUP)) {
5495 
5496 		if (flags & SQ_WANTWAKEUP) {
5497 			flags &= ~SQ_WANTWAKEUP;
5498 			cv_broadcast(&sq->sq_wait);
5499 		}
5500 		if (flags & SQ_WANTEXWAKEUP) {
5501 			flags &= ~SQ_WANTEXWAKEUP;
5502 			cv_broadcast(&sq->sq_exitwait);
5503 		}
5504 
5505 		if ((flags & SQ_QUEUED) && !(flags & SQ_STAYAWAY)) {
5506 			/*
5507 			 * The syncq needs to be drained. "Exit" the syncq
5508 			 * before calling drain_syncq.
5509 			 */
5510 			ASSERT(sq->sq_count != 0);
5511 			sq->sq_count--;
5512 			ASSERT((flags & SQ_EXCL) || (type & c_inner));
5513 			sq->sq_flags = flags & ~SQ_EXCL;
5514 			drain_syncq(sq);
5515 			ASSERT(MUTEX_NOT_HELD(SQLOCK(sq)));
5516 			/* Check if we need to exit the outer perimeter */
5517 			/* XXX will this ever be true? */
5518 			if (!(type & c_outer))
5519 				outer_exit(sq->sq_outer);
5520 			return;
5521 		}
5522 	}
5523 	ASSERT(sq->sq_count != 0);
5524 	sq->sq_count--;
5525 	ASSERT((flags & SQ_EXCL) || (type & c_inner));
5526 	sq->sq_flags = flags & ~SQ_EXCL;
5527 	mutex_exit(SQLOCK(sq));
5528 
5529 	/* Check if we need to exit the outer perimeter */
5530 	if (!(sq->sq_type & c_outer))
5531 		outer_exit(sq->sq_outer);
5532 }
5533 
5534 /*
5535  * Prevent q_next from changing in this stream by incrementing sq_count.
5536  *
5537  * no need to grab sq_putlocks here. See comment in strsubr.h that explains when
5538  * sq_putlocks are used.
5539  */
5540 void
5541 claimq(queue_t *qp)
5542 {
5543 	syncq_t	*sq = qp->q_syncq;
5544 
5545 	mutex_enter(SQLOCK(sq));
5546 	sq->sq_count++;
5547 	ASSERT(sq->sq_count != 0);	/* Wraparound */
5548 	mutex_exit(SQLOCK(sq));
5549 }
5550 
5551 /*
5552  * Undo claimq.
5553  *
5554  * no need to grab sq_putlocks here. See comment in strsubr.h that explains when
5555  * sq_putlocks are used.
5556  */
5557 void
5558 releaseq(queue_t *qp)
5559 {
5560 	syncq_t	*sq = qp->q_syncq;
5561 	uint16_t flags;
5562 
5563 	mutex_enter(SQLOCK(sq));
5564 	ASSERT(sq->sq_count > 0);
5565 	sq->sq_count--;
5566 
5567 	flags = sq->sq_flags;
5568 	if (flags & (SQ_WANTWAKEUP|SQ_QUEUED)) {
5569 		if (flags & SQ_WANTWAKEUP) {
5570 			flags &= ~SQ_WANTWAKEUP;
5571 			cv_broadcast(&sq->sq_wait);
5572 		}
5573 		sq->sq_flags = flags;
5574 		if ((flags & SQ_QUEUED) && !(flags & (SQ_STAYAWAY|SQ_EXCL))) {
5575 			/*
5576 			 * To prevent potential recursive invocation of
5577 			 * drain_syncq we do not call drain_syncq if count is
5578 			 * non-zero.
5579 			 */
5580 			if (sq->sq_count == 0) {
5581 				drain_syncq(sq);
5582 				return;
5583 			} else
5584 				sqenable(sq);
5585 		}
5586 	}
5587 	mutex_exit(SQLOCK(sq));
5588 }
5589 
5590 /*
5591  * Prevent q_next from changing in this stream by incrementing sd_refcnt.
5592  */
5593 void
5594 claimstr(queue_t *qp)
5595 {
5596 	struct stdata *stp = STREAM(qp);
5597 
5598 	mutex_enter(&stp->sd_reflock);
5599 	stp->sd_refcnt++;
5600 	ASSERT(stp->sd_refcnt != 0);	/* Wraparound */
5601 	mutex_exit(&stp->sd_reflock);
5602 }
5603 
5604 /*
5605  * Undo claimstr.
5606  */
5607 void
5608 releasestr(queue_t *qp)
5609 {
5610 	struct stdata *stp = STREAM(qp);
5611 
5612 	mutex_enter(&stp->sd_reflock);
5613 	ASSERT(stp->sd_refcnt != 0);
5614 	if (--stp->sd_refcnt == 0)
5615 		cv_broadcast(&stp->sd_refmonitor);
5616 	mutex_exit(&stp->sd_reflock);
5617 }
5618 
5619 static syncq_t *
5620 new_syncq(void)
5621 {
5622 	return (kmem_cache_alloc(syncq_cache, KM_SLEEP));
5623 }
5624 
5625 static void
5626 free_syncq(syncq_t *sq)
5627 {
5628 	ASSERT(sq->sq_head == NULL);
5629 	ASSERT(sq->sq_outer == NULL);
5630 	ASSERT(sq->sq_callbpend == NULL);
5631 	ASSERT((sq->sq_onext == NULL && sq->sq_oprev == NULL) ||
5632 	    (sq->sq_onext == sq && sq->sq_oprev == sq));
5633 
5634 	if (sq->sq_ciputctrl != NULL) {
5635 		ASSERT(sq->sq_nciputctrl == n_ciputctrl - 1);
5636 		SUMCHECK_CIPUTCTRL_COUNTS(sq->sq_ciputctrl,
5637 		    sq->sq_nciputctrl, 0);
5638 		ASSERT(ciputctrl_cache != NULL);
5639 		kmem_cache_free(ciputctrl_cache, sq->sq_ciputctrl);
5640 	}
5641 
5642 	sq->sq_tail = NULL;
5643 	sq->sq_evhead = NULL;
5644 	sq->sq_evtail = NULL;
5645 	sq->sq_ciputctrl = NULL;
5646 	sq->sq_nciputctrl = 0;
5647 	sq->sq_count = 0;
5648 	sq->sq_rmqcount = 0;
5649 	sq->sq_callbflags = 0;
5650 	sq->sq_cancelid = 0;
5651 	sq->sq_next = NULL;
5652 	sq->sq_needexcl = 0;
5653 	sq->sq_svcflags = 0;
5654 	sq->sq_nqueues = 0;
5655 	sq->sq_pri = 0;
5656 	sq->sq_onext = NULL;
5657 	sq->sq_oprev = NULL;
5658 	sq->sq_flags = 0;
5659 	sq->sq_type = 0;
5660 	sq->sq_servcount = 0;
5661 
5662 	kmem_cache_free(syncq_cache, sq);
5663 }
5664 
5665 /* Outer perimeter code */
5666 
5667 /*
5668  * The outer syncq uses the fields and flags in the syncq slightly
5669  * differently from the inner syncqs.
5670  *	sq_count	Incremented when there are pending or running
5671  *			writers at the outer perimeter to prevent the set of
5672  *			inner syncqs that belong to the outer perimeter from
5673  *			changing.
5674  *	sq_head/tail	List of deferred qwriter(OUTER) operations.
5675  *
5676  *	SQ_BLOCKED	Set to prevent traversing of sq_next,sq_prev while
5677  *			inner syncqs are added to or removed from the
5678  *			outer perimeter.
5679  *	SQ_QUEUED	sq_head/tail has messages or eventsqueued.
5680  *
5681  *	SQ_WRITER	A thread is currently traversing all the inner syncqs
5682  *			setting the SQ_WRITER flag.
5683  */
5684 
5685 /*
5686  * Get write access at the outer perimeter.
5687  * Note that read access is done by entersq, putnext, and put by simply
5688  * incrementing sq_count in the inner syncq.
5689  *
5690  * Waits until "flags" is no longer set in the outer to prevent multiple
5691  * threads from having write access at the same time. SQ_WRITER has to be part
5692  * of "flags".
5693  *
5694  * Increases sq_count on the outer syncq to keep away outer_insert/remove
5695  * until the outer_exit is finished.
5696  *
5697  * outer_enter is vulnerable to starvation since it does not prevent new
5698  * threads from entering the inner syncqs while it is waiting for sq_count to
5699  * go to zero.
5700  */
5701 void
5702 outer_enter(syncq_t *outer, uint16_t flags)
5703 {
5704 	syncq_t	*sq;
5705 	int	wait_needed;
5706 	uint16_t	count;
5707 
5708 	ASSERT(outer->sq_outer == NULL && outer->sq_onext != NULL &&
5709 	    outer->sq_oprev != NULL);
5710 	ASSERT(flags & SQ_WRITER);
5711 
5712 retry:
5713 	mutex_enter(SQLOCK(outer));
5714 	while (outer->sq_flags & flags) {
5715 		outer->sq_flags |= SQ_WANTWAKEUP;
5716 		cv_wait(&outer->sq_wait, SQLOCK(outer));
5717 	}
5718 
5719 	ASSERT(!(outer->sq_flags & SQ_WRITER));
5720 	outer->sq_flags |= SQ_WRITER;
5721 	outer->sq_count++;
5722 	ASSERT(outer->sq_count != 0);	/* wraparound */
5723 	wait_needed = 0;
5724 	/*
5725 	 * Set SQ_WRITER on all the inner syncqs while holding
5726 	 * the SQLOCK on the outer syncq. This ensures that the changing
5727 	 * of SQ_WRITER is atomic under the outer SQLOCK.
5728 	 */
5729 	for (sq = outer->sq_onext; sq != outer; sq = sq->sq_onext) {
5730 		mutex_enter(SQLOCK(sq));
5731 		count = sq->sq_count;
5732 		SQ_PUTLOCKS_ENTER(sq);
5733 		sq->sq_flags |= SQ_WRITER;
5734 		SUM_SQ_PUTCOUNTS(sq, count);
5735 		if (count != 0)
5736 			wait_needed = 1;
5737 		SQ_PUTLOCKS_EXIT(sq);
5738 		mutex_exit(SQLOCK(sq));
5739 	}
5740 	mutex_exit(SQLOCK(outer));
5741 
5742 	/*
5743 	 * Get everybody out of the syncqs sequentially.
5744 	 * Note that we don't actually need to aqiure the PUTLOCKS, since
5745 	 * we have already cleared the fastbit, and set QWRITER.  By
5746 	 * definition, the count can not increase since putnext will
5747 	 * take the slowlock path (and the purpose of aquiring the
5748 	 * putlocks was to make sure it didn't increase while we were
5749 	 * waiting).
5750 	 *
5751 	 * Note that we still aquire the PUTLOCKS to be safe.
5752 	 */
5753 	if (wait_needed) {
5754 		for (sq = outer->sq_onext; sq != outer; sq = sq->sq_onext) {
5755 			mutex_enter(SQLOCK(sq));
5756 			count = sq->sq_count;
5757 			SQ_PUTLOCKS_ENTER(sq);
5758 			SUM_SQ_PUTCOUNTS(sq, count);
5759 			while (count != 0) {
5760 				sq->sq_flags |= SQ_WANTWAKEUP;
5761 				SQ_PUTLOCKS_EXIT(sq);
5762 				cv_wait(&sq->sq_wait, SQLOCK(sq));
5763 				count = sq->sq_count;
5764 				SQ_PUTLOCKS_ENTER(sq);
5765 				SUM_SQ_PUTCOUNTS(sq, count);
5766 			}
5767 			SQ_PUTLOCKS_EXIT(sq);
5768 			mutex_exit(SQLOCK(sq));
5769 		}
5770 		/*
5771 		 * Verify that none of the flags got set while we
5772 		 * were waiting for the sq_counts to drop.
5773 		 * If this happens we exit and retry entering the
5774 		 * outer perimeter.
5775 		 */
5776 		mutex_enter(SQLOCK(outer));
5777 		if (outer->sq_flags & (flags & ~SQ_WRITER)) {
5778 			mutex_exit(SQLOCK(outer));
5779 			outer_exit(outer);
5780 			goto retry;
5781 		}
5782 		mutex_exit(SQLOCK(outer));
5783 	}
5784 }
5785 
5786 /*
5787  * Drop the write access at the outer perimeter.
5788  * Read access is dropped implicitly (by putnext, put, and leavesq) by
5789  * decrementing sq_count.
5790  */
5791 void
5792 outer_exit(syncq_t *outer)
5793 {
5794 	syncq_t	*sq;
5795 	int	 drain_needed;
5796 	uint16_t flags;
5797 
5798 	ASSERT(outer->sq_outer == NULL && outer->sq_onext != NULL &&
5799 	    outer->sq_oprev != NULL);
5800 	ASSERT(MUTEX_NOT_HELD(SQLOCK(outer)));
5801 
5802 	/*
5803 	 * Atomically (from the perspective of threads calling become_writer)
5804 	 * drop the write access at the outer perimeter by holding
5805 	 * SQLOCK(outer) across all the dropsq calls and the resetting of
5806 	 * SQ_WRITER.
5807 	 * This defines a locking order between the outer perimeter
5808 	 * SQLOCK and the inner perimeter SQLOCKs.
5809 	 */
5810 	mutex_enter(SQLOCK(outer));
5811 	flags = outer->sq_flags;
5812 	ASSERT(outer->sq_flags & SQ_WRITER);
5813 	if (flags & SQ_QUEUED) {
5814 		write_now(outer);
5815 		flags = outer->sq_flags;
5816 	}
5817 
5818 	/*
5819 	 * sq_onext is stable since sq_count has not yet been decreased.
5820 	 * Reset the SQ_WRITER flags in all syncqs.
5821 	 * After dropping SQ_WRITER on the outer syncq we empty all the
5822 	 * inner syncqs.
5823 	 */
5824 	drain_needed = 0;
5825 	for (sq = outer->sq_onext; sq != outer; sq = sq->sq_onext)
5826 		drain_needed += dropsq(sq, SQ_WRITER);
5827 	ASSERT(!(outer->sq_flags & SQ_QUEUED));
5828 	flags &= ~SQ_WRITER;
5829 	if (drain_needed) {
5830 		outer->sq_flags = flags;
5831 		mutex_exit(SQLOCK(outer));
5832 		for (sq = outer->sq_onext; sq != outer; sq = sq->sq_onext)
5833 			emptysq(sq);
5834 		mutex_enter(SQLOCK(outer));
5835 		flags = outer->sq_flags;
5836 	}
5837 	if (flags & SQ_WANTWAKEUP) {
5838 		flags &= ~SQ_WANTWAKEUP;
5839 		cv_broadcast(&outer->sq_wait);
5840 	}
5841 	outer->sq_flags = flags;
5842 	ASSERT(outer->sq_count > 0);
5843 	outer->sq_count--;
5844 	mutex_exit(SQLOCK(outer));
5845 }
5846 
5847 /*
5848  * Add another syncq to an outer perimeter.
5849  * Block out all other access to the outer perimeter while it is being
5850  * changed using blocksq.
5851  * Assumes that the caller has *not* done an outer_enter.
5852  *
5853  * Vulnerable to starvation in blocksq.
5854  */
5855 static void
5856 outer_insert(syncq_t *outer, syncq_t *sq)
5857 {
5858 	ASSERT(outer->sq_outer == NULL && outer->sq_onext != NULL &&
5859 	    outer->sq_oprev != NULL);
5860 	ASSERT(sq->sq_outer == NULL && sq->sq_onext == NULL &&
5861 	    sq->sq_oprev == NULL);	/* Can't be in an outer perimeter */
5862 
5863 	/* Get exclusive access to the outer perimeter list */
5864 	blocksq(outer, SQ_BLOCKED, 0);
5865 	ASSERT(outer->sq_flags & SQ_BLOCKED);
5866 	ASSERT(!(outer->sq_flags & SQ_WRITER));
5867 
5868 	mutex_enter(SQLOCK(sq));
5869 	sq->sq_outer = outer;
5870 	outer->sq_onext->sq_oprev = sq;
5871 	sq->sq_onext = outer->sq_onext;
5872 	outer->sq_onext = sq;
5873 	sq->sq_oprev = outer;
5874 	mutex_exit(SQLOCK(sq));
5875 	unblocksq(outer, SQ_BLOCKED, 1);
5876 }
5877 
5878 /*
5879  * Remove a syncq from an outer perimeter.
5880  * Block out all other access to the outer perimeter while it is being
5881  * changed using blocksq.
5882  * Assumes that the caller has *not* done an outer_enter.
5883  *
5884  * Vulnerable to starvation in blocksq.
5885  */
5886 static void
5887 outer_remove(syncq_t *outer, syncq_t *sq)
5888 {
5889 	ASSERT(outer->sq_outer == NULL && outer->sq_onext != NULL &&
5890 	    outer->sq_oprev != NULL);
5891 	ASSERT(sq->sq_outer == outer);
5892 
5893 	/* Get exclusive access to the outer perimeter list */
5894 	blocksq(outer, SQ_BLOCKED, 0);
5895 	ASSERT(outer->sq_flags & SQ_BLOCKED);
5896 	ASSERT(!(outer->sq_flags & SQ_WRITER));
5897 
5898 	mutex_enter(SQLOCK(sq));
5899 	sq->sq_outer = NULL;
5900 	sq->sq_onext->sq_oprev = sq->sq_oprev;
5901 	sq->sq_oprev->sq_onext = sq->sq_onext;
5902 	sq->sq_oprev = sq->sq_onext = NULL;
5903 	mutex_exit(SQLOCK(sq));
5904 	unblocksq(outer, SQ_BLOCKED, 1);
5905 }
5906 
5907 /*
5908  * Queue a deferred qwriter(OUTER) callback for this outer perimeter.
5909  * If this is the first callback for this outer perimeter then add
5910  * this outer perimeter to the list of outer perimeters that
5911  * the qwriter_outer_thread will process.
5912  *
5913  * Increments sq_count in the outer syncq to prevent the membership
5914  * of the outer perimeter (in terms of inner syncqs) to change while
5915  * the callback is pending.
5916  */
5917 static void
5918 queue_writer(syncq_t *outer, void (*func)(), queue_t *q, mblk_t *mp)
5919 {
5920 	ASSERT(MUTEX_HELD(SQLOCK(outer)));
5921 
5922 	mp->b_prev = (mblk_t *)func;
5923 	mp->b_queue = q;
5924 	mp->b_next = NULL;
5925 	outer->sq_count++;	/* Decremented when dequeued */
5926 	ASSERT(outer->sq_count != 0);	/* Wraparound */
5927 	if (outer->sq_evhead == NULL) {
5928 		/* First message. */
5929 		outer->sq_evhead = outer->sq_evtail = mp;
5930 		outer->sq_flags |= SQ_EVENTS;
5931 		mutex_exit(SQLOCK(outer));
5932 		STRSTAT(qwr_outer);
5933 		(void) taskq_dispatch(streams_taskq,
5934 		    (task_func_t *)qwriter_outer_service, outer, TQ_SLEEP);
5935 	} else {
5936 		ASSERT(outer->sq_flags & SQ_EVENTS);
5937 		outer->sq_evtail->b_next = mp;
5938 		outer->sq_evtail = mp;
5939 		mutex_exit(SQLOCK(outer));
5940 	}
5941 }
5942 
5943 /*
5944  * Try and upgrade to write access at the outer perimeter. If this can
5945  * not be done without blocking then queue the callback to be done
5946  * by the qwriter_outer_thread.
5947  *
5948  * This routine can only be called from put or service procedures plus
5949  * asynchronous callback routines that have properly entered to
5950  * queue (with entersq.) Thus qwriter(OUTER) assumes the caller has one claim
5951  * on the syncq associated with q.
5952  */
5953 void
5954 qwriter_outer(queue_t *q, mblk_t *mp, void (*func)())
5955 {
5956 	syncq_t	*osq, *sq, *outer;
5957 	int	failed;
5958 	uint16_t flags;
5959 
5960 	osq = q->q_syncq;
5961 	outer = osq->sq_outer;
5962 	if (outer == NULL)
5963 		panic("qwriter(PERIM_OUTER): no outer perimeter");
5964 	ASSERT(outer->sq_outer == NULL && outer->sq_onext != NULL &&
5965 	    outer->sq_oprev != NULL);
5966 
5967 	mutex_enter(SQLOCK(outer));
5968 	flags = outer->sq_flags;
5969 	/*
5970 	 * If some thread is traversing sq_next, or if we are blocked by
5971 	 * outer_insert or outer_remove, or if the we already have queued
5972 	 * callbacks, then queue this callback for later processing.
5973 	 *
5974 	 * Also queue the qwriter for an interrupt thread in order
5975 	 * to reduce the time spent running at high IPL.
5976 	 * to identify there are events.
5977 	 */
5978 	if ((flags & SQ_GOAWAY) || (curthread->t_pri >= kpreemptpri)) {
5979 		/*
5980 		 * Queue the become_writer request.
5981 		 * The queueing is atomic under SQLOCK(outer) in order
5982 		 * to synchronize with outer_exit.
5983 		 * queue_writer will drop the outer SQLOCK
5984 		 */
5985 		if (flags & SQ_BLOCKED) {
5986 			/* Must set SQ_WRITER on inner perimeter */
5987 			mutex_enter(SQLOCK(osq));
5988 			osq->sq_flags |= SQ_WRITER;
5989 			mutex_exit(SQLOCK(osq));
5990 		} else {
5991 			if (!(flags & SQ_WRITER)) {
5992 				/*
5993 				 * The outer could have been SQ_BLOCKED thus
5994 				 * SQ_WRITER might not be set on the inner.
5995 				 */
5996 				mutex_enter(SQLOCK(osq));
5997 				osq->sq_flags |= SQ_WRITER;
5998 				mutex_exit(SQLOCK(osq));
5999 			}
6000 			ASSERT(osq->sq_flags & SQ_WRITER);
6001 		}
6002 		queue_writer(outer, func, q, mp);
6003 		return;
6004 	}
6005 	/*
6006 	 * We are half-way to exclusive access to the outer perimeter.
6007 	 * Prevent any outer_enter, qwriter(OUTER), or outer_insert/remove
6008 	 * while the inner syncqs are traversed.
6009 	 */
6010 	outer->sq_count++;
6011 	ASSERT(outer->sq_count != 0);	/* wraparound */
6012 	flags |= SQ_WRITER;
6013 	/*
6014 	 * Check if we can run the function immediately. Mark all
6015 	 * syncqs with the writer flag to prevent new entries into
6016 	 * put and service procedures.
6017 	 *
6018 	 * Set SQ_WRITER on all the inner syncqs while holding
6019 	 * the SQLOCK on the outer syncq. This ensures that the changing
6020 	 * of SQ_WRITER is atomic under the outer SQLOCK.
6021 	 */
6022 	failed = 0;
6023 	for (sq = outer->sq_onext; sq != outer; sq = sq->sq_onext) {
6024 		uint16_t count;
6025 		uint_t	maxcnt = (sq == osq) ? 1 : 0;
6026 
6027 		mutex_enter(SQLOCK(sq));
6028 		count = sq->sq_count;
6029 		SQ_PUTLOCKS_ENTER(sq);
6030 		SUM_SQ_PUTCOUNTS(sq, count);
6031 		if (sq->sq_count > maxcnt)
6032 			failed = 1;
6033 		sq->sq_flags |= SQ_WRITER;
6034 		SQ_PUTLOCKS_EXIT(sq);
6035 		mutex_exit(SQLOCK(sq));
6036 	}
6037 	if (failed) {
6038 		/*
6039 		 * Some other thread has a read claim on the outer perimeter.
6040 		 * Queue the callback for deferred processing.
6041 		 *
6042 		 * queue_writer will set SQ_QUEUED before we drop SQ_WRITER
6043 		 * so that other qwriter(OUTER) calls will queue their
6044 		 * callbacks as well. queue_writer increments sq_count so we
6045 		 * decrement to compensate for the our increment.
6046 		 *
6047 		 * Dropping SQ_WRITER enables the writer thread to work
6048 		 * on this outer perimeter.
6049 		 */
6050 		outer->sq_flags = flags;
6051 		queue_writer(outer, func, q, mp);
6052 		/* queue_writer dropper the lock */
6053 		mutex_enter(SQLOCK(outer));
6054 		ASSERT(outer->sq_count > 0);
6055 		outer->sq_count--;
6056 		ASSERT(outer->sq_flags & SQ_WRITER);
6057 		flags = outer->sq_flags;
6058 		flags &= ~SQ_WRITER;
6059 		if (flags & SQ_WANTWAKEUP) {
6060 			flags &= ~SQ_WANTWAKEUP;
6061 			cv_broadcast(&outer->sq_wait);
6062 		}
6063 		outer->sq_flags = flags;
6064 		mutex_exit(SQLOCK(outer));
6065 		return;
6066 	} else {
6067 		outer->sq_flags = flags;
6068 		mutex_exit(SQLOCK(outer));
6069 	}
6070 
6071 	/* Can run it immediately */
6072 	(*func)(q, mp);
6073 
6074 	outer_exit(outer);
6075 }
6076 
6077 /*
6078  * Dequeue all writer callbacks from the outer perimeter and run them.
6079  */
6080 static void
6081 write_now(syncq_t *outer)
6082 {
6083 	mblk_t		*mp;
6084 	queue_t		*q;
6085 	void	(*func)();
6086 
6087 	ASSERT(MUTEX_HELD(SQLOCK(outer)));
6088 	ASSERT(outer->sq_outer == NULL && outer->sq_onext != NULL &&
6089 	    outer->sq_oprev != NULL);
6090 	while ((mp = outer->sq_evhead) != NULL) {
6091 		/*
6092 		 * queues cannot be placed on the queuelist on the outer
6093 		 * perimiter.
6094 		 */
6095 		ASSERT(!(outer->sq_flags & SQ_MESSAGES));
6096 		ASSERT((outer->sq_flags & SQ_EVENTS));
6097 
6098 		outer->sq_evhead = mp->b_next;
6099 		if (outer->sq_evhead == NULL) {
6100 			outer->sq_evtail = NULL;
6101 			outer->sq_flags &= ~SQ_EVENTS;
6102 		}
6103 		ASSERT(outer->sq_count != 0);
6104 		outer->sq_count--;	/* Incremented when enqueued. */
6105 		mutex_exit(SQLOCK(outer));
6106 		/*
6107 		 * Drop the message if the queue is closing.
6108 		 * Make sure that the queue is "claimed" when the callback
6109 		 * is run in order to satisfy various ASSERTs.
6110 		 */
6111 		q = mp->b_queue;
6112 		func = (void (*)())mp->b_prev;
6113 		ASSERT(func != NULL);
6114 		mp->b_next = mp->b_prev = NULL;
6115 		if (q->q_flag & QWCLOSE) {
6116 			freemsg(mp);
6117 		} else {
6118 			claimq(q);
6119 			(*func)(q, mp);
6120 			releaseq(q);
6121 		}
6122 		mutex_enter(SQLOCK(outer));
6123 	}
6124 	ASSERT(MUTEX_HELD(SQLOCK(outer)));
6125 }
6126 
6127 /*
6128  * The list of messages on the inner syncq is effectively hashed
6129  * by destination queue.  These destination queues are doubly
6130  * linked lists (hopefully) in priority order.  Messages are then
6131  * put on the queue referenced by the q_sqhead/q_sqtail elements.
6132  * Additional messages are linked together by the b_next/b_prev
6133  * elements in the mblk, with (similar to putq()) the first message
6134  * having a NULL b_prev and the last message having a NULL b_next.
6135  *
6136  * Events, such as qwriter callbacks, are put onto a list in FIFO
6137  * order referenced by sq_evhead, and sq_evtail.  This is a singly
6138  * linked list, and messages here MUST be processed in the order queued.
6139  */
6140 
6141 /*
6142  * Run the events on the syncq event list (sq_evhead).
6143  * Assumes there is only one claim on the syncq, it is
6144  * already exclusive (SQ_EXCL set), and the SQLOCK held.
6145  * Messages here are processed in order, with the SQ_EXCL bit
6146  * held all the way through till the last message is processed.
6147  */
6148 void
6149 sq_run_events(syncq_t *sq)
6150 {
6151 	mblk_t		*bp;
6152 	queue_t		*qp;
6153 	uint16_t	flags = sq->sq_flags;
6154 	void		(*func)();
6155 
6156 	ASSERT(MUTEX_HELD(SQLOCK(sq)));
6157 	ASSERT((sq->sq_outer == NULL && sq->sq_onext == NULL &&
6158 	    sq->sq_oprev == NULL) ||
6159 	    (sq->sq_outer != NULL && sq->sq_onext != NULL &&
6160 	    sq->sq_oprev != NULL));
6161 
6162 	ASSERT(flags & SQ_EXCL);
6163 	ASSERT(sq->sq_count == 1);
6164 
6165 	/*
6166 	 * We need to process all of the events on this list.  It
6167 	 * is possible that new events will be added while we are
6168 	 * away processing a callback, so on every loop, we start
6169 	 * back at the beginning of the list.
6170 	 */
6171 	/*
6172 	 * We have to reaccess sq_evhead since there is a
6173 	 * possibility of a new entry while we were running
6174 	 * the callback.
6175 	 */
6176 	for (bp = sq->sq_evhead; bp != NULL; bp = sq->sq_evhead) {
6177 		ASSERT(bp->b_queue->q_syncq == sq);
6178 		ASSERT(sq->sq_flags & SQ_EVENTS);
6179 
6180 		qp = bp->b_queue;
6181 		func = (void (*)())bp->b_prev;
6182 		ASSERT(func != NULL);
6183 
6184 		/*
6185 		 * Messages from the event queue must be taken off in
6186 		 * FIFO order.
6187 		 */
6188 		ASSERT(sq->sq_evhead == bp);
6189 		sq->sq_evhead = bp->b_next;
6190 
6191 		if (bp->b_next == NULL) {
6192 			/* Deleting last */
6193 			ASSERT(sq->sq_evtail == bp);
6194 			sq->sq_evtail = NULL;
6195 			sq->sq_flags &= ~SQ_EVENTS;
6196 		}
6197 		bp->b_prev = bp->b_next = NULL;
6198 		ASSERT(bp->b_datap->db_ref != 0);
6199 
6200 		mutex_exit(SQLOCK(sq));
6201 
6202 		(*func)(qp, bp);
6203 
6204 		mutex_enter(SQLOCK(sq));
6205 		/*
6206 		 * re-read the flags, since they could have changed.
6207 		 */
6208 		flags = sq->sq_flags;
6209 		ASSERT(flags & SQ_EXCL);
6210 	}
6211 	ASSERT(sq->sq_evhead == NULL && sq->sq_evtail == NULL);
6212 	ASSERT(!(sq->sq_flags & SQ_EVENTS));
6213 
6214 	if (flags & SQ_WANTWAKEUP) {
6215 		flags &= ~SQ_WANTWAKEUP;
6216 		cv_broadcast(&sq->sq_wait);
6217 	}
6218 	if (flags & SQ_WANTEXWAKEUP) {
6219 		flags &= ~SQ_WANTEXWAKEUP;
6220 		cv_broadcast(&sq->sq_exitwait);
6221 	}
6222 	sq->sq_flags = flags;
6223 }
6224 
6225 /*
6226  * Put messages on the event list.
6227  * If we can go exclusive now, do so and process the event list, otherwise
6228  * let the last claim service this list (or wake the sqthread).
6229  * This procedure assumes SQLOCK is held.  To run the event list, it
6230  * must be called with no claims.
6231  */
6232 static void
6233 sqfill_events(syncq_t *sq, queue_t *q, mblk_t *mp, void (*func)())
6234 {
6235 	uint16_t count;
6236 
6237 	ASSERT(MUTEX_HELD(SQLOCK(sq)));
6238 	ASSERT(func != NULL);
6239 
6240 	/*
6241 	 * This is a callback.  Add it to the list of callbacks
6242 	 * and see about upgrading.
6243 	 */
6244 	mp->b_prev = (mblk_t *)func;
6245 	mp->b_queue = q;
6246 	mp->b_next = NULL;
6247 	if (sq->sq_evhead == NULL) {
6248 		sq->sq_evhead = sq->sq_evtail = mp;
6249 		sq->sq_flags |= SQ_EVENTS;
6250 	} else {
6251 		ASSERT(sq->sq_evtail != NULL);
6252 		ASSERT(sq->sq_evtail->b_next == NULL);
6253 		ASSERT(sq->sq_flags & SQ_EVENTS);
6254 		sq->sq_evtail->b_next = mp;
6255 		sq->sq_evtail = mp;
6256 	}
6257 	/*
6258 	 * We have set SQ_EVENTS, so threads will have to
6259 	 * unwind out of the perimiter, and new entries will
6260 	 * not grab a putlock.  But we still need to know
6261 	 * how many threads have already made a claim to the
6262 	 * syncq, so grab the putlocks, and sum the counts.
6263 	 * If there are no claims on the syncq, we can upgrade
6264 	 * to exclusive, and run the event list.
6265 	 * NOTE: We hold the SQLOCK, so we can just grab the
6266 	 * putlocks.
6267 	 */
6268 	count = sq->sq_count;
6269 	SQ_PUTLOCKS_ENTER(sq);
6270 	SUM_SQ_PUTCOUNTS(sq, count);
6271 	/*
6272 	 * We have no claim, so we need to check if there
6273 	 * are no others, then we can upgrade.
6274 	 */
6275 	/*
6276 	 * There are currently no claims on
6277 	 * the syncq by this thread (at least on this entry). The thread who has
6278 	 * the claim should drain syncq.
6279 	 */
6280 	if (count > 0) {
6281 		/*
6282 		 * Can't upgrade - other threads inside.
6283 		 */
6284 		SQ_PUTLOCKS_EXIT(sq);
6285 		mutex_exit(SQLOCK(sq));
6286 		return;
6287 	}
6288 	/*
6289 	 * Need to set SQ_EXCL and make a claim on the syncq.
6290 	 */
6291 	ASSERT((sq->sq_flags & SQ_EXCL) == 0);
6292 	sq->sq_flags |= SQ_EXCL;
6293 	ASSERT(sq->sq_count == 0);
6294 	sq->sq_count++;
6295 	SQ_PUTLOCKS_EXIT(sq);
6296 
6297 	/* Process the events list */
6298 	sq_run_events(sq);
6299 
6300 	/*
6301 	 * Release our claim...
6302 	 */
6303 	sq->sq_count--;
6304 
6305 	/*
6306 	 * And release SQ_EXCL.
6307 	 * We don't need to acquire the putlocks to release
6308 	 * SQ_EXCL, since we are exclusive, and hold the SQLOCK.
6309 	 */
6310 	sq->sq_flags &= ~SQ_EXCL;
6311 
6312 	/*
6313 	 * sq_run_events should have released SQ_EXCL
6314 	 */
6315 	ASSERT(!(sq->sq_flags & SQ_EXCL));
6316 
6317 	/*
6318 	 * If anything happened while we were running the
6319 	 * events (or was there before), we need to process
6320 	 * them now.  We shouldn't be exclusive sine we
6321 	 * released the perimiter above (plus, we asserted
6322 	 * for it).
6323 	 */
6324 	if (!(sq->sq_flags & SQ_STAYAWAY) && (sq->sq_flags & SQ_QUEUED))
6325 		drain_syncq(sq);
6326 	else
6327 		mutex_exit(SQLOCK(sq));
6328 }
6329 
6330 /*
6331  * Perform delayed processing. The caller has to make sure that it is safe
6332  * to enter the syncq (e.g. by checking that none of the SQ_STAYAWAY bits are
6333  * set.)
6334  *
6335  * Assume that the caller has NO claims on the syncq.  However, a claim
6336  * on the syncq does not indicate that a thread is draining the syncq.
6337  * There may be more claims on the syncq than there are threads draining
6338  * (i.e.  #_threads_draining <= sq_count)
6339  *
6340  * drain_syncq has to terminate when one of the SQ_STAYAWAY bits gets set
6341  * in order to preserve qwriter(OUTER) ordering constraints.
6342  *
6343  * sq_putcount only needs to be checked when dispatching the queued
6344  * writer call for CIPUT sync queue, but this is handled in sq_run_events.
6345  */
6346 void
6347 drain_syncq(syncq_t *sq)
6348 {
6349 	queue_t		*qp;
6350 	uint16_t	count;
6351 	uint16_t	type = sq->sq_type;
6352 	uint16_t	flags = sq->sq_flags;
6353 	boolean_t	bg_service = sq->sq_svcflags & SQ_SERVICE;
6354 
6355 	TRACE_1(TR_FAC_STREAMS_FR, TR_DRAIN_SYNCQ_START,
6356 	    "drain_syncq start:%p", sq);
6357 	ASSERT(MUTEX_HELD(SQLOCK(sq)));
6358 	ASSERT((sq->sq_outer == NULL && sq->sq_onext == NULL &&
6359 	    sq->sq_oprev == NULL) ||
6360 	    (sq->sq_outer != NULL && sq->sq_onext != NULL &&
6361 	    sq->sq_oprev != NULL));
6362 
6363 	/*
6364 	 * Drop SQ_SERVICE flag.
6365 	 */
6366 	if (bg_service)
6367 		sq->sq_svcflags &= ~SQ_SERVICE;
6368 
6369 	/*
6370 	 * If SQ_EXCL is set, someone else is processing this syncq - let him
6371 	 * finish the job.
6372 	 */
6373 	if (flags & SQ_EXCL) {
6374 		if (bg_service) {
6375 			ASSERT(sq->sq_servcount != 0);
6376 			sq->sq_servcount--;
6377 		}
6378 		mutex_exit(SQLOCK(sq));
6379 		return;
6380 	}
6381 
6382 	/*
6383 	 * This routine can be called by a background thread if
6384 	 * it was scheduled by a hi-priority thread.  SO, if there are
6385 	 * NOT messages queued, return (remember, we have the SQLOCK,
6386 	 * and it cannot change until we release it). Wakeup any waiters also.
6387 	 */
6388 	if (!(flags & SQ_QUEUED)) {
6389 		if (flags & SQ_WANTWAKEUP) {
6390 			flags &= ~SQ_WANTWAKEUP;
6391 			cv_broadcast(&sq->sq_wait);
6392 		}
6393 		if (flags & SQ_WANTEXWAKEUP) {
6394 			flags &= ~SQ_WANTEXWAKEUP;
6395 			cv_broadcast(&sq->sq_exitwait);
6396 		}
6397 		sq->sq_flags = flags;
6398 		if (bg_service) {
6399 			ASSERT(sq->sq_servcount != 0);
6400 			sq->sq_servcount--;
6401 		}
6402 		mutex_exit(SQLOCK(sq));
6403 		return;
6404 	}
6405 
6406 	/*
6407 	 * If this is not a concurrent put perimiter, we need to
6408 	 * become exclusive to drain.  Also, if not CIPUT, we would
6409 	 * not have acquired a putlock, so we don't need to check
6410 	 * the putcounts.  If not entering with a claim, we test
6411 	 * for sq_count == 0.
6412 	 */
6413 	type = sq->sq_type;
6414 	if (!(type & SQ_CIPUT)) {
6415 		if (sq->sq_count > 1) {
6416 			if (bg_service) {
6417 				ASSERT(sq->sq_servcount != 0);
6418 				sq->sq_servcount--;
6419 			}
6420 			mutex_exit(SQLOCK(sq));
6421 			return;
6422 		}
6423 		sq->sq_flags |= SQ_EXCL;
6424 	}
6425 
6426 	/*
6427 	 * This is where we make a claim to the syncq.
6428 	 * This can either be done by incrementing a putlock, or
6429 	 * the sq_count.  But since we already have the SQLOCK
6430 	 * here, we just bump the sq_count.
6431 	 *
6432 	 * Note that after we make a claim, we need to let the code
6433 	 * fall through to the end of this routine to clean itself
6434 	 * up.  A return in the while loop will put the syncq in a
6435 	 * very bad state.
6436 	 */
6437 	sq->sq_count++;
6438 	ASSERT(sq->sq_count != 0);	/* wraparound */
6439 
6440 	while ((flags = sq->sq_flags) & SQ_QUEUED) {
6441 		/*
6442 		 * If we are told to stayaway or went exclusive,
6443 		 * we are done.
6444 		 */
6445 		if (flags & (SQ_STAYAWAY)) {
6446 			break;
6447 		}
6448 
6449 		/*
6450 		 * If there are events to run, do so.
6451 		 * We have one claim to the syncq, so if there are
6452 		 * more than one, other threads are running.
6453 		 */
6454 		if (sq->sq_evhead != NULL) {
6455 			ASSERT(sq->sq_flags & SQ_EVENTS);
6456 
6457 			count = sq->sq_count;
6458 			SQ_PUTLOCKS_ENTER(sq);
6459 			SUM_SQ_PUTCOUNTS(sq, count);
6460 			if (count > 1) {
6461 				SQ_PUTLOCKS_EXIT(sq);
6462 				/* Can't upgrade - other threads inside */
6463 				break;
6464 			}
6465 			ASSERT((flags & SQ_EXCL) == 0);
6466 			sq->sq_flags = flags | SQ_EXCL;
6467 			SQ_PUTLOCKS_EXIT(sq);
6468 			/*
6469 			 * we have the only claim, run the events,
6470 			 * sq_run_events will clear the SQ_EXCL flag.
6471 			 */
6472 			sq_run_events(sq);
6473 
6474 			/*
6475 			 * If this is a CIPUT perimiter, we need
6476 			 * to drop the SQ_EXCL flag so we can properly
6477 			 * continue draining the syncq.
6478 			 */
6479 			if (type & SQ_CIPUT) {
6480 				ASSERT(sq->sq_flags & SQ_EXCL);
6481 				sq->sq_flags &= ~SQ_EXCL;
6482 			}
6483 
6484 			/*
6485 			 * And go back to the beginning just in case
6486 			 * anything changed while we were away.
6487 			 */
6488 			ASSERT((sq->sq_flags & SQ_EXCL) || (type & SQ_CIPUT));
6489 			continue;
6490 		}
6491 
6492 		ASSERT(sq->sq_evhead == NULL);
6493 		ASSERT(!(sq->sq_flags & SQ_EVENTS));
6494 
6495 		/*
6496 		 * Find the queue that is not draining.
6497 		 *
6498 		 * q_draining is protected by QLOCK which we do not hold.
6499 		 * But if it was set, then a thread was draining, and if it gets
6500 		 * cleared, then it was because the thread has successfully
6501 		 * drained the syncq, or a GOAWAY state occured. For the GOAWAY
6502 		 * state to happen, a thread needs the SQLOCK which we hold, and
6503 		 * if there was such a flag, we whould have already seen it.
6504 		 */
6505 
6506 		for (qp = sq->sq_head;
6507 		    qp != NULL && (qp->q_draining ||
6508 		    (qp->q_sqflags & Q_SQDRAINING));
6509 		    qp = qp->q_sqnext)
6510 			;
6511 
6512 		if (qp == NULL)
6513 			break;
6514 
6515 		/*
6516 		 * We have a queue to work on, and we hold the
6517 		 * SQLOCK and one claim, call qdrain_syncq.
6518 		 * This means we need to release the SQLOCK and
6519 		 * aquire the QLOCK (OK since we have a claim).
6520 		 * Note that qdrain_syncq will actually dequeue
6521 		 * this queue from the sq_head list when it is
6522 		 * convinced all the work is done and release
6523 		 * the QLOCK before returning.
6524 		 */
6525 		qp->q_sqflags |= Q_SQDRAINING;
6526 		mutex_exit(SQLOCK(sq));
6527 		mutex_enter(QLOCK(qp));
6528 		qdrain_syncq(sq, qp);
6529 		mutex_enter(SQLOCK(sq));
6530 
6531 		/* The queue is drained */
6532 		ASSERT(qp->q_sqflags & Q_SQDRAINING);
6533 		qp->q_sqflags &= ~Q_SQDRAINING;
6534 		/*
6535 		 * NOTE: After this point qp should not be used since it may be
6536 		 * closed.
6537 		 */
6538 	}
6539 
6540 	ASSERT(MUTEX_HELD(SQLOCK(sq)));
6541 	flags = sq->sq_flags;
6542 
6543 	/*
6544 	 * sq->sq_head cannot change because we hold the
6545 	 * sqlock. However, a thread CAN decide that it is no longer
6546 	 * going to drain that queue.  However, this should be due to
6547 	 * a GOAWAY state, and we should see that here.
6548 	 *
6549 	 * This loop is not very efficient. One solution may be adding a second
6550 	 * pointer to the "draining" queue, but it is difficult to do when
6551 	 * queues are inserted in the middle due to priority ordering. Another
6552 	 * possibility is to yank the queue out of the sq list and put it onto
6553 	 * the "draining list" and then put it back if it can't be drained.
6554 	 */
6555 
6556 	ASSERT((sq->sq_head == NULL) || (flags & SQ_GOAWAY) ||
6557 	    (type & SQ_CI) || sq->sq_head->q_draining);
6558 
6559 	/* Drop SQ_EXCL for non-CIPUT perimiters */
6560 	if (!(type & SQ_CIPUT))
6561 		flags &= ~SQ_EXCL;
6562 	ASSERT((flags & SQ_EXCL) == 0);
6563 
6564 	/* Wake up any waiters. */
6565 	if (flags & SQ_WANTWAKEUP) {
6566 		flags &= ~SQ_WANTWAKEUP;
6567 		cv_broadcast(&sq->sq_wait);
6568 	}
6569 	if (flags & SQ_WANTEXWAKEUP) {
6570 		flags &= ~SQ_WANTEXWAKEUP;
6571 		cv_broadcast(&sq->sq_exitwait);
6572 	}
6573 	sq->sq_flags = flags;
6574 
6575 	ASSERT(sq->sq_count != 0);
6576 	/* Release our claim. */
6577 	sq->sq_count--;
6578 
6579 	if (bg_service) {
6580 		ASSERT(sq->sq_servcount != 0);
6581 		sq->sq_servcount--;
6582 	}
6583 
6584 	mutex_exit(SQLOCK(sq));
6585 
6586 	TRACE_1(TR_FAC_STREAMS_FR, TR_DRAIN_SYNCQ_END,
6587 	    "drain_syncq end:%p", sq);
6588 }
6589 
6590 
6591 /*
6592  *
6593  * qdrain_syncq can be called (currently) from only one of two places:
6594  *	drain_syncq
6595  * 	putnext  (or some variation of it).
6596  * and eventually
6597  * 	qwait(_sig)
6598  *
6599  * If called from drain_syncq, we found it in the list
6600  * of queue's needing service, so there is work to be done (or it
6601  * wouldn't be on the list).
6602  *
6603  * If called from some putnext variation, it was because the
6604  * perimiter is open, but messages are blocking a putnext and
6605  * there is not a thread working on it.  Now a thread could start
6606  * working on it while we are getting ready to do so ourself, but
6607  * the thread would set the q_draining flag, and we can spin out.
6608  *
6609  * As for qwait(_sig), I think I shall let it continue to call
6610  * drain_syncq directly (after all, it will get here eventually).
6611  *
6612  * qdrain_syncq has to terminate when:
6613  * - one of the SQ_STAYAWAY bits gets set to preserve qwriter(OUTER) ordering
6614  * - SQ_EVENTS gets set to preserve qwriter(INNER) ordering
6615  *
6616  * ASSUMES:
6617  *	One claim
6618  * 	QLOCK held
6619  * 	SQLOCK not held
6620  *	Will release QLOCK before returning
6621  */
6622 void
6623 qdrain_syncq(syncq_t *sq, queue_t *q)
6624 {
6625 	mblk_t		*bp;
6626 	boolean_t	do_clr;
6627 #ifdef DEBUG
6628 	uint16_t	count;
6629 #endif
6630 
6631 	TRACE_1(TR_FAC_STREAMS_FR, TR_DRAIN_SYNCQ_START,
6632 	    "drain_syncq start:%p", sq);
6633 	ASSERT(q->q_syncq == sq);
6634 	ASSERT(MUTEX_HELD(QLOCK(q)));
6635 	ASSERT(MUTEX_NOT_HELD(SQLOCK(sq)));
6636 	/*
6637 	 * For non-CIPUT perimiters, we should be called with the
6638 	 * exclusive bit set already.  For non-CIPUT perimiters we
6639 	 * will be doing a concurrent drain, so it better not be set.
6640 	 */
6641 	ASSERT((sq->sq_flags & (SQ_EXCL|SQ_CIPUT)));
6642 	ASSERT(!((sq->sq_type & SQ_CIPUT) && (sq->sq_flags & SQ_EXCL)));
6643 	ASSERT((sq->sq_type & SQ_CIPUT) || (sq->sq_flags & SQ_EXCL));
6644 	/*
6645 	 * All outer pointers are set, or none of them are
6646 	 */
6647 	ASSERT((sq->sq_outer == NULL && sq->sq_onext == NULL &&
6648 	    sq->sq_oprev == NULL) ||
6649 	    (sq->sq_outer != NULL && sq->sq_onext != NULL &&
6650 	    sq->sq_oprev != NULL));
6651 #ifdef DEBUG
6652 	count = sq->sq_count;
6653 	/*
6654 	 * This is OK without the putlocks, because we have one
6655 	 * claim either from the sq_count, or a putcount.  We could
6656 	 * get an erroneous value from other counts, but ours won't
6657 	 * change, so one way or another, we will have at least a
6658 	 * value of one.
6659 	 */
6660 	SUM_SQ_PUTCOUNTS(sq, count);
6661 	ASSERT(count >= 1);
6662 #endif /* DEBUG */
6663 
6664 	/*
6665 	 * The first thing to do here, is find out if a thread is already
6666 	 * draining this queue or the queue is closing. If so, we are done,
6667 	 * just return. Also, if there are no messages, we are done as well.
6668 	 * Note that we check the q_sqhead since there is s window of
6669 	 * opportunity for us to enter here because Q_SQQUEUED was set, but is
6670 	 * not anymore.
6671 	 */
6672 	if (q->q_draining || (q->q_sqhead == NULL)) {
6673 		mutex_exit(QLOCK(q));
6674 		return;
6675 	}
6676 
6677 	/*
6678 	 * If the perimiter is exclusive, there is nothing we can
6679 	 * do right now, go away.
6680 	 * Note that there is nothing to prevent this case from changing
6681 	 * right after this check, but the spin-out will catch it.
6682 	 */
6683 
6684 	/* Tell other threads that we are draining this queue */
6685 	q->q_draining = 1;	/* Protected by QLOCK */
6686 
6687 	for (bp = q->q_sqhead; bp != NULL; bp = q->q_sqhead) {
6688 
6689 		/*
6690 		 * Because we can enter this routine just because
6691 		 * a putnext is blocked, we need to spin out if
6692 		 * the perimiter wants to go exclusive as well
6693 		 * as just blocked. We need to spin out also if
6694 		 * events are queued on the syncq.
6695 		 * Don't check for SQ_EXCL, because non-CIPUT
6696 		 * perimiters would set it, and it can't become
6697 		 * exclusive while we hold a claim.
6698 		 */
6699 		if (sq->sq_flags & (SQ_STAYAWAY | SQ_EVENTS)) {
6700 			break;
6701 		}
6702 
6703 #ifdef DEBUG
6704 		/*
6705 		 * Since we are in qdrain_syncq, we already know the queue,
6706 		 * but for sanity, we want to check this against the qp that
6707 		 * was passed in by bp->b_queue.
6708 		 */
6709 
6710 		ASSERT(bp->b_queue == q);
6711 		ASSERT(bp->b_queue->q_syncq == sq);
6712 		bp->b_queue = NULL;
6713 
6714 		/*
6715 		 * We would have the following check in the DEBUG code:
6716 		 *
6717 		 * if (bp->b_prev != NULL)  {
6718 		 *	ASSERT(bp->b_prev == (void (*)())q->q_qinfo->qi_putp);
6719 		 * }
6720 		 *
6721 		 * This can't be done, however, since IP modifies qinfo
6722 		 * structure at run-time (switching between IPv4 qinfo and IPv6
6723 		 * qinfo), invalidating the check.
6724 		 * So the assignment to func is left here, but the ASSERT itself
6725 		 * is removed until the whole issue is resolved.
6726 		 */
6727 #endif
6728 		ASSERT(q->q_sqhead == bp);
6729 		q->q_sqhead = bp->b_next;
6730 		bp->b_prev = bp->b_next = NULL;
6731 		ASSERT(q->q_syncqmsgs > 0);
6732 		mutex_exit(QLOCK(q));
6733 
6734 		ASSERT(bp->b_datap->db_ref != 0);
6735 
6736 		(void) (*q->q_qinfo->qi_putp)(q, bp);
6737 
6738 		mutex_enter(QLOCK(q));
6739 		/*
6740 		 * We should decrement q_syncqmsgs only after executing the
6741 		 * put procedure to avoid a possible race with putnext().
6742 		 * In putnext() though it sees Q_SQQUEUED is set, there is
6743 		 * an optimization which allows putnext to call the put
6744 		 * procedure directly if (q_syncqmsgs == 0) and thus
6745 		 * a message reodering could otherwise occur.
6746 		 */
6747 		q->q_syncqmsgs--;
6748 
6749 		/*
6750 		 * Clear QFULL in the next service procedure queue if
6751 		 * this is the last message destined to that queue.
6752 		 *
6753 		 * It would make better sense to have some sort of
6754 		 * tunable for the low water mark, but these symantics
6755 		 * are not yet defined.  So, alas, we use a constant.
6756 		 */
6757 		do_clr = (q->q_syncqmsgs == 0);
6758 		mutex_exit(QLOCK(q));
6759 
6760 		if (do_clr)
6761 			clr_qfull(q);
6762 
6763 		mutex_enter(QLOCK(q));
6764 		/*
6765 		 * Always clear SQ_EXCL when CIPUT in order to handle
6766 		 * qwriter(INNER).
6767 		 */
6768 		/*
6769 		 * The putp() can call qwriter and get exclusive access
6770 		 * IFF this is the only claim.  So, we need to test for
6771 		 * this possibility so we can aquire the mutex and clear
6772 		 * the bit.
6773 		 */
6774 		if ((sq->sq_type & SQ_CIPUT) && (sq->sq_flags & SQ_EXCL)) {
6775 			mutex_enter(SQLOCK(sq));
6776 			sq->sq_flags &= ~SQ_EXCL;
6777 			mutex_exit(SQLOCK(sq));
6778 		}
6779 	}
6780 
6781 	/*
6782 	 * We should either have no queues on the syncq, or we were
6783 	 * told to goaway by a waiter (which we will wake up at the
6784 	 * end of this function).
6785 	 */
6786 	ASSERT((q->q_sqhead == NULL) ||
6787 	    (sq->sq_flags & (SQ_STAYAWAY | SQ_EVENTS)));
6788 
6789 	ASSERT(MUTEX_HELD(QLOCK(q)));
6790 	ASSERT(MUTEX_NOT_HELD(SQLOCK(sq)));
6791 
6792 	/*
6793 	 * Remove the q from the syncq list if all the messages are
6794 	 * drained.
6795 	 */
6796 	if (q->q_sqhead == NULL) {
6797 		mutex_enter(SQLOCK(sq));
6798 		if (q->q_sqflags & Q_SQQUEUED)
6799 			SQRM_Q(sq, q);
6800 		mutex_exit(SQLOCK(sq));
6801 		/*
6802 		 * Since the queue is removed from the list, reset its priority.
6803 		 */
6804 		q->q_spri = 0;
6805 	}
6806 
6807 	/*
6808 	 * Remember, the q_draining flag is used to let another
6809 	 * thread know that there is a thread currently draining
6810 	 * the messages for a queue.  Since we are now done with
6811 	 * this queue (even if there may be messages still there),
6812 	 * we need to clear this flag so some thread will work
6813 	 * on it if needed.
6814 	 */
6815 	ASSERT(q->q_draining);
6816 	q->q_draining = 0;
6817 
6818 	/* called with a claim, so OK to drop all locks. */
6819 	mutex_exit(QLOCK(q));
6820 
6821 	TRACE_1(TR_FAC_STREAMS_FR, TR_DRAIN_SYNCQ_END,
6822 	    "drain_syncq end:%p", sq);
6823 }
6824 /* END OF QDRAIN_SYNCQ  */
6825 
6826 
6827 /*
6828  * This is the mate to qdrain_syncq, except that it is putting the
6829  * message onto the the queue instead draining.  Since the
6830  * message is destined for the queue that is selected, there is
6831  * no need to identify the function because the message is
6832  * intended for the put routine for the queue.  But this
6833  * routine will do it anyway just in case (but only for debug kernels).
6834  *
6835  * After the message is enqueued on the syncq, it calls putnext_tail()
6836  * which will schedule a background thread to actually process the message.
6837  *
6838  * Assumes that there is a claim on the syncq (sq->sq_count > 0) and
6839  * SQLOCK(sq) and QLOCK(q) are not held.
6840  */
6841 void
6842 qfill_syncq(syncq_t *sq, queue_t *q, mblk_t *mp)
6843 {
6844 	ASSERT(MUTEX_NOT_HELD(SQLOCK(sq)));
6845 	ASSERT(MUTEX_NOT_HELD(QLOCK(q)));
6846 	ASSERT(sq->sq_count > 0);
6847 	ASSERT(q->q_syncq == sq);
6848 	ASSERT((sq->sq_outer == NULL && sq->sq_onext == NULL &&
6849 	    sq->sq_oprev == NULL) ||
6850 	    (sq->sq_outer != NULL && sq->sq_onext != NULL &&
6851 	    sq->sq_oprev != NULL));
6852 
6853 	mutex_enter(QLOCK(q));
6854 
6855 #ifdef DEBUG
6856 	/*
6857 	 * This is used for debug in the qfill_syncq/qdrain_syncq case
6858 	 * to trace the queue that the message is intended for.  Note
6859 	 * that the original use was to identify the queue and function
6860 	 * to call on the drain.  In the new syncq, we have the context
6861 	 * of the queue that we are draining, so call it's putproc and
6862 	 * don't rely on the saved values.  But for debug this is still
6863 	 * usefull information.
6864 	 */
6865 	mp->b_prev = (mblk_t *)q->q_qinfo->qi_putp;
6866 	mp->b_queue = q;
6867 	mp->b_next = NULL;
6868 #endif
6869 	ASSERT(q->q_syncq == sq);
6870 	/*
6871 	 * Enqueue the message on the list.
6872 	 * SQPUT_MP() accesses q_syncqmsgs.  We are already holding QLOCK to
6873 	 * protect it.  So its ok to acquire SQLOCK after SQPUT_MP().
6874 	 */
6875 	SQPUT_MP(q, mp);
6876 	mutex_enter(SQLOCK(sq));
6877 
6878 	/*
6879 	 * And queue on syncq for scheduling, if not already queued.
6880 	 * Note that we need the SQLOCK for this, and for testing flags
6881 	 * at the end to see if we will drain.  So grab it now, and
6882 	 * release it before we call qdrain_syncq or return.
6883 	 */
6884 	if (!(q->q_sqflags & Q_SQQUEUED)) {
6885 		q->q_spri = curthread->t_pri;
6886 		SQPUT_Q(sq, q);
6887 	}
6888 #ifdef DEBUG
6889 	else {
6890 		/*
6891 		 * All of these conditions MUST be true!
6892 		 */
6893 		ASSERT(sq->sq_tail != NULL);
6894 		if (sq->sq_tail == sq->sq_head) {
6895 			ASSERT((q->q_sqprev == NULL) &&
6896 			    (q->q_sqnext == NULL));
6897 		} else {
6898 			ASSERT((q->q_sqprev != NULL) ||
6899 			    (q->q_sqnext != NULL));
6900 		}
6901 		ASSERT(sq->sq_flags & SQ_QUEUED);
6902 		ASSERT(q->q_syncqmsgs != 0);
6903 		ASSERT(q->q_sqflags & Q_SQQUEUED);
6904 	}
6905 #endif
6906 	mutex_exit(QLOCK(q));
6907 	/*
6908 	 * SQLOCK is still held, so sq_count can be safely decremented.
6909 	 */
6910 	sq->sq_count--;
6911 
6912 	putnext_tail(sq, q, 0);
6913 	/* Should not reference sq or q after this point. */
6914 }
6915 
6916 /*  End of qfill_syncq  */
6917 
6918 /*
6919  * Remove all messages from a syncq (if qp is NULL) or remove all messages
6920  * that would be put into qp by drain_syncq.
6921  * Used when deleting the syncq (qp == NULL) or when detaching
6922  * a queue (qp != NULL).
6923  * Return non-zero if one or more messages were freed.
6924  *
6925  * no need to grab sq_putlocks here. See comment in strsubr.h that explains when
6926  * sq_putlocks are used.
6927  *
6928  * NOTE: This function assumes that it is called from the close() context and
6929  * that all the queues in the syncq are going aay. For this reason it doesn't
6930  * acquire QLOCK for modifying q_sqhead/q_sqtail fields. This assumption is
6931  * currently valid, but it is useful to rethink this function to behave properly
6932  * in other cases.
6933  */
6934 int
6935 flush_syncq(syncq_t *sq, queue_t *qp)
6936 {
6937 	mblk_t		*bp, *mp_head, *mp_next, *mp_prev;
6938 	queue_t		*q;
6939 	int		ret = 0;
6940 
6941 	mutex_enter(SQLOCK(sq));
6942 
6943 	/*
6944 	 * Before we leave, we need to make sure there are no
6945 	 * events listed for this queue.  All events for this queue
6946 	 * will just be freed.
6947 	 */
6948 	if (qp != NULL && sq->sq_evhead != NULL) {
6949 		ASSERT(sq->sq_flags & SQ_EVENTS);
6950 
6951 		mp_prev = NULL;
6952 		for (bp = sq->sq_evhead; bp != NULL; bp = mp_next) {
6953 			mp_next = bp->b_next;
6954 			if (bp->b_queue == qp) {
6955 				/* Delete this message */
6956 				if (mp_prev != NULL) {
6957 					mp_prev->b_next = mp_next;
6958 					/*
6959 					 * Update sq_evtail if the last element
6960 					 * is removed.
6961 					 */
6962 					if (bp == sq->sq_evtail) {
6963 						ASSERT(mp_next == NULL);
6964 						sq->sq_evtail = mp_prev;
6965 					}
6966 				} else
6967 					sq->sq_evhead = mp_next;
6968 				if (sq->sq_evhead == NULL)
6969 					sq->sq_flags &= ~SQ_EVENTS;
6970 				bp->b_prev = bp->b_next = NULL;
6971 				freemsg(bp);
6972 				ret++;
6973 			} else {
6974 				mp_prev = bp;
6975 			}
6976 		}
6977 	}
6978 
6979 	/*
6980 	 * Walk sq_head and:
6981 	 *	- match qp if qp is set, remove it's messages
6982 	 *	- all if qp is not set
6983 	 */
6984 	q = sq->sq_head;
6985 	while (q != NULL) {
6986 		ASSERT(q->q_syncq == sq);
6987 		if ((qp == NULL) || (qp == q)) {
6988 			/*
6989 			 * Yank the messages as a list off the queue
6990 			 */
6991 			mp_head = q->q_sqhead;
6992 			/*
6993 			 * We do not have QLOCK(q) here (which is safe due to
6994 			 * assumptions mentioned above). To obtain the lock we
6995 			 * need to release SQLOCK which may allow lots of things
6996 			 * to change upon us. This place requires more analysis.
6997 			 */
6998 			q->q_sqhead = q->q_sqtail = NULL;
6999 			ASSERT(mp_head->b_queue &&
7000 			    mp_head->b_queue->q_syncq == sq);
7001 
7002 			/*
7003 			 * Free each of the messages.
7004 			 */
7005 			for (bp = mp_head; bp != NULL; bp = mp_next) {
7006 				mp_next = bp->b_next;
7007 				bp->b_prev = bp->b_next = NULL;
7008 				freemsg(bp);
7009 				ret++;
7010 			}
7011 			/*
7012 			 * Now remove the queue from the syncq.
7013 			 */
7014 			ASSERT(q->q_sqflags & Q_SQQUEUED);
7015 			SQRM_Q(sq, q);
7016 			q->q_spri = 0;
7017 			q->q_syncqmsgs = 0;
7018 
7019 			/*
7020 			 * If qp was specified, we are done with it and are
7021 			 * going to drop SQLOCK(sq) and return. We wakeup syncq
7022 			 * waiters while we still have the SQLOCK.
7023 			 */
7024 			if ((qp != NULL) && (sq->sq_flags & SQ_WANTWAKEUP)) {
7025 				sq->sq_flags &= ~SQ_WANTWAKEUP;
7026 				cv_broadcast(&sq->sq_wait);
7027 			}
7028 			/* Drop SQLOCK across clr_qfull */
7029 			mutex_exit(SQLOCK(sq));
7030 
7031 			/*
7032 			 * We avoid doing the test that drain_syncq does and
7033 			 * unconditionally clear qfull for every flushed
7034 			 * message. Since flush_syncq is only called during
7035 			 * close this should not be a problem.
7036 			 */
7037 			clr_qfull(q);
7038 			if (qp != NULL) {
7039 				return (ret);
7040 			} else {
7041 				mutex_enter(SQLOCK(sq));
7042 				/*
7043 				 * The head was removed by SQRM_Q above.
7044 				 * reread the new head and flush it.
7045 				 */
7046 				q = sq->sq_head;
7047 			}
7048 		} else {
7049 			q = q->q_sqnext;
7050 		}
7051 		ASSERT(MUTEX_HELD(SQLOCK(sq)));
7052 	}
7053 
7054 	if (sq->sq_flags & SQ_WANTWAKEUP) {
7055 		sq->sq_flags &= ~SQ_WANTWAKEUP;
7056 		cv_broadcast(&sq->sq_wait);
7057 	}
7058 
7059 	mutex_exit(SQLOCK(sq));
7060 	return (ret);
7061 }
7062 
7063 /*
7064  * Propagate all messages from a syncq to the next syncq that are associated
7065  * with the specified queue. If the queue is attached to a driver or if the
7066  * messages have been added due to a qwriter(PERIM_INNER), free the messages.
7067  *
7068  * Assumes that the stream is strlock()'ed. We don't come here if there
7069  * are no messages to propagate.
7070  *
7071  * NOTE : If the queue is attached to a driver, all the messages are freed
7072  * as there is no point in propagating the messages from the driver syncq
7073  * to the closing stream head which will in turn get freed later.
7074  */
7075 static int
7076 propagate_syncq(queue_t *qp)
7077 {
7078 	mblk_t		*bp, *head, *tail, *prev, *next;
7079 	syncq_t 	*sq;
7080 	queue_t		*nqp;
7081 	syncq_t		*nsq;
7082 	boolean_t	isdriver;
7083 	int 		moved = 0;
7084 	uint16_t	flags;
7085 	pri_t		priority = curthread->t_pri;
7086 #ifdef DEBUG
7087 	void		(*func)();
7088 #endif
7089 
7090 	sq = qp->q_syncq;
7091 	ASSERT(MUTEX_HELD(SQLOCK(sq)));
7092 	/* debug macro */
7093 	SQ_PUTLOCKS_HELD(sq);
7094 	/*
7095 	 * As entersq() does not increment the sq_count for
7096 	 * the write side, check sq_count for non-QPERQ
7097 	 * perimeters alone.
7098 	 */
7099 	ASSERT((qp->q_flag & QPERQ) || (sq->sq_count >= 1));
7100 
7101 	/*
7102 	 * propagate_syncq() can be called because of either messages on the
7103 	 * queue syncq or because on events on the queue syncq. Do actual
7104 	 * message propagations if there are any messages.
7105 	 */
7106 	if (qp->q_syncqmsgs) {
7107 		isdriver = (qp->q_flag & QISDRV);
7108 
7109 		if (!isdriver) {
7110 			nqp = qp->q_next;
7111 			nsq = nqp->q_syncq;
7112 			ASSERT(MUTEX_HELD(SQLOCK(nsq)));
7113 			/* debug macro */
7114 			SQ_PUTLOCKS_HELD(nsq);
7115 #ifdef DEBUG
7116 			func = (void (*)())nqp->q_qinfo->qi_putp;
7117 #endif
7118 		}
7119 
7120 		SQRM_Q(sq, qp);
7121 		priority = MAX(qp->q_spri, priority);
7122 		qp->q_spri = 0;
7123 		head = qp->q_sqhead;
7124 		tail = qp->q_sqtail;
7125 		qp->q_sqhead = qp->q_sqtail = NULL;
7126 		qp->q_syncqmsgs = 0;
7127 
7128 		/*
7129 		 * Walk the list of messages, and free them if this is a driver,
7130 		 * otherwise reset the b_prev and b_queue value to the new putp.
7131 		 * Afterward, we will just add the head to the end of the next
7132 		 * syncq, and point the tail to the end of this one.
7133 		 */
7134 
7135 		for (bp = head; bp != NULL; bp = next) {
7136 			next = bp->b_next;
7137 			if (isdriver) {
7138 				bp->b_prev = bp->b_next = NULL;
7139 				freemsg(bp);
7140 				continue;
7141 			}
7142 			/* Change the q values for this message */
7143 			bp->b_queue = nqp;
7144 #ifdef DEBUG
7145 			bp->b_prev = (mblk_t *)func;
7146 #endif
7147 			moved++;
7148 		}
7149 		/*
7150 		 * Attach list of messages to the end of the new queue (if there
7151 		 * is a list of messages).
7152 		 */
7153 
7154 		if (!isdriver && head != NULL) {
7155 			ASSERT(tail != NULL);
7156 			if (nqp->q_sqhead == NULL) {
7157 				nqp->q_sqhead = head;
7158 			} else {
7159 				ASSERT(nqp->q_sqtail != NULL);
7160 				nqp->q_sqtail->b_next = head;
7161 			}
7162 			nqp->q_sqtail = tail;
7163 			/*
7164 			 * When messages are moved from high priority queue to
7165 			 * another queue, the destination queue priority is
7166 			 * upgraded.
7167 			 */
7168 
7169 			if (priority > nqp->q_spri)
7170 				nqp->q_spri = priority;
7171 
7172 			SQPUT_Q(nsq, nqp);
7173 
7174 			nqp->q_syncqmsgs += moved;
7175 			ASSERT(nqp->q_syncqmsgs != 0);
7176 		}
7177 	}
7178 
7179 	/*
7180 	 * Before we leave, we need to make sure there are no
7181 	 * events listed for this queue.  All events for this queue
7182 	 * will just be freed.
7183 	 */
7184 	if (sq->sq_evhead != NULL) {
7185 		ASSERT(sq->sq_flags & SQ_EVENTS);
7186 		prev = NULL;
7187 		for (bp = sq->sq_evhead; bp != NULL; bp = next) {
7188 			next = bp->b_next;
7189 			if (bp->b_queue == qp) {
7190 				/* Delete this message */
7191 				if (prev != NULL) {
7192 					prev->b_next = next;
7193 					/*
7194 					 * Update sq_evtail if the last element
7195 					 * is removed.
7196 					 */
7197 					if (bp == sq->sq_evtail) {
7198 						ASSERT(next == NULL);
7199 						sq->sq_evtail = prev;
7200 					}
7201 				} else
7202 					sq->sq_evhead = next;
7203 				if (sq->sq_evhead == NULL)
7204 					sq->sq_flags &= ~SQ_EVENTS;
7205 				bp->b_prev = bp->b_next = NULL;
7206 				freemsg(bp);
7207 			} else {
7208 				prev = bp;
7209 			}
7210 		}
7211 	}
7212 
7213 	flags = sq->sq_flags;
7214 
7215 	/* Wake up any waiter before leaving. */
7216 	if (flags & SQ_WANTWAKEUP) {
7217 		flags &= ~SQ_WANTWAKEUP;
7218 		cv_broadcast(&sq->sq_wait);
7219 	}
7220 	sq->sq_flags = flags;
7221 
7222 	return (moved);
7223 }
7224 
7225 /*
7226  * Try and upgrade to exclusive access at the inner perimeter. If this can
7227  * not be done without blocking then request will be queued on the syncq
7228  * and drain_syncq will run it later.
7229  *
7230  * This routine can only be called from put or service procedures plus
7231  * asynchronous callback routines that have properly entered to
7232  * queue (with entersq.) Thus qwriter_inner assumes the caller has one claim
7233  * on the syncq associated with q.
7234  */
7235 void
7236 qwriter_inner(queue_t *q, mblk_t *mp, void (*func)())
7237 {
7238 	syncq_t	*sq = q->q_syncq;
7239 	uint16_t count;
7240 
7241 	mutex_enter(SQLOCK(sq));
7242 	count = sq->sq_count;
7243 	SQ_PUTLOCKS_ENTER(sq);
7244 	SUM_SQ_PUTCOUNTS(sq, count);
7245 	ASSERT(count >= 1);
7246 	ASSERT(sq->sq_type & (SQ_CIPUT|SQ_CISVC));
7247 
7248 	if (count == 1) {
7249 		/*
7250 		 * Can upgrade. This case also handles nested qwriter calls
7251 		 * (when the qwriter callback function calls qwriter). In that
7252 		 * case SQ_EXCL is already set.
7253 		 */
7254 		sq->sq_flags |= SQ_EXCL;
7255 		SQ_PUTLOCKS_EXIT(sq);
7256 		mutex_exit(SQLOCK(sq));
7257 		(*func)(q, mp);
7258 		/*
7259 		 * Assumes that leavesq, putnext, and drain_syncq will reset
7260 		 * SQ_EXCL for SQ_CIPUT/SQ_CISVC queues. We leave SQ_EXCL on
7261 		 * until putnext, leavesq, or drain_syncq drops it.
7262 		 * That way we handle nested qwriter(INNER) without dropping
7263 		 * SQ_EXCL until the outermost qwriter callback routine is
7264 		 * done.
7265 		 */
7266 		return;
7267 	}
7268 	SQ_PUTLOCKS_EXIT(sq);
7269 	sqfill_events(sq, q, mp, func);
7270 }
7271 
7272 /*
7273  * Synchronous callback support functions
7274  */
7275 
7276 /*
7277  * Allocate a callback parameter structure.
7278  * Assumes that caller initializes the flags and the id.
7279  * Acquires SQLOCK(sq) if non-NULL is returned.
7280  */
7281 callbparams_t *
7282 callbparams_alloc(syncq_t *sq, void (*func)(void *), void *arg, int kmflags)
7283 {
7284 	callbparams_t *cbp;
7285 	size_t size = sizeof (callbparams_t);
7286 
7287 	cbp = kmem_alloc(size, kmflags & ~KM_PANIC);
7288 
7289 	/*
7290 	 * Only try tryhard allocation if the caller is ready to panic.
7291 	 * Otherwise just fail.
7292 	 */
7293 	if (cbp == NULL) {
7294 		if (kmflags & KM_PANIC)
7295 			cbp = kmem_alloc_tryhard(sizeof (callbparams_t),
7296 			    &size, kmflags);
7297 		else
7298 			return (NULL);
7299 	}
7300 
7301 	ASSERT(size >= sizeof (callbparams_t));
7302 	cbp->cbp_size = size;
7303 	cbp->cbp_sq = sq;
7304 	cbp->cbp_func = func;
7305 	cbp->cbp_arg = arg;
7306 	mutex_enter(SQLOCK(sq));
7307 	cbp->cbp_next = sq->sq_callbpend;
7308 	sq->sq_callbpend = cbp;
7309 	return (cbp);
7310 }
7311 
7312 void
7313 callbparams_free(syncq_t *sq, callbparams_t *cbp)
7314 {
7315 	callbparams_t **pp, *p;
7316 
7317 	ASSERT(MUTEX_HELD(SQLOCK(sq)));
7318 
7319 	for (pp = &sq->sq_callbpend; (p = *pp) != NULL; pp = &p->cbp_next) {
7320 		if (p == cbp) {
7321 			*pp = p->cbp_next;
7322 			kmem_free(p, p->cbp_size);
7323 			return;
7324 		}
7325 	}
7326 	(void) (STRLOG(0, 0, 0, SL_CONSOLE,
7327 	    "callbparams_free: not found\n"));
7328 }
7329 
7330 void
7331 callbparams_free_id(syncq_t *sq, callbparams_id_t id, int32_t flag)
7332 {
7333 	callbparams_t **pp, *p;
7334 
7335 	ASSERT(MUTEX_HELD(SQLOCK(sq)));
7336 
7337 	for (pp = &sq->sq_callbpend; (p = *pp) != NULL; pp = &p->cbp_next) {
7338 		if (p->cbp_id == id && p->cbp_flags == flag) {
7339 			*pp = p->cbp_next;
7340 			kmem_free(p, p->cbp_size);
7341 			return;
7342 		}
7343 	}
7344 	(void) (STRLOG(0, 0, 0, SL_CONSOLE,
7345 	    "callbparams_free_id: not found\n"));
7346 }
7347 
7348 /*
7349  * Callback wrapper function used by once-only callbacks that can be
7350  * cancelled (qtimeout and qbufcall)
7351  * Contains inline version of entersq(sq, SQ_CALLBACK) that can be
7352  * cancelled by the qun* functions.
7353  */
7354 void
7355 qcallbwrapper(void *arg)
7356 {
7357 	callbparams_t *cbp = arg;
7358 	syncq_t	*sq;
7359 	uint16_t count = 0;
7360 	uint16_t waitflags = SQ_STAYAWAY | SQ_EVENTS | SQ_EXCL;
7361 	uint16_t type;
7362 
7363 	sq = cbp->cbp_sq;
7364 	mutex_enter(SQLOCK(sq));
7365 	type = sq->sq_type;
7366 	if (!(type & SQ_CICB)) {
7367 		count = sq->sq_count;
7368 		SQ_PUTLOCKS_ENTER(sq);
7369 		SQ_PUTCOUNT_CLRFAST_LOCKED(sq);
7370 		SUM_SQ_PUTCOUNTS(sq, count);
7371 		sq->sq_needexcl++;
7372 		ASSERT(sq->sq_needexcl != 0);	/* wraparound */
7373 		waitflags |= SQ_MESSAGES;
7374 	}
7375 	/* Can not handle exlusive entry at outer perimeter */
7376 	ASSERT(type & SQ_COCB);
7377 
7378 	while ((sq->sq_flags & waitflags) || (!(type & SQ_CICB) &&count != 0)) {
7379 		if ((sq->sq_callbflags & cbp->cbp_flags) &&
7380 		    (sq->sq_cancelid == cbp->cbp_id)) {
7381 			/* timeout has been cancelled */
7382 			sq->sq_callbflags |= SQ_CALLB_BYPASSED;
7383 			callbparams_free(sq, cbp);
7384 			if (!(type & SQ_CICB)) {
7385 				ASSERT(sq->sq_needexcl > 0);
7386 				sq->sq_needexcl--;
7387 				if (sq->sq_needexcl == 0) {
7388 					SQ_PUTCOUNT_SETFAST_LOCKED(sq);
7389 				}
7390 				SQ_PUTLOCKS_EXIT(sq);
7391 			}
7392 			mutex_exit(SQLOCK(sq));
7393 			return;
7394 		}
7395 		sq->sq_flags |= SQ_WANTWAKEUP;
7396 		if (!(type & SQ_CICB)) {
7397 			SQ_PUTLOCKS_EXIT(sq);
7398 		}
7399 		cv_wait(&sq->sq_wait, SQLOCK(sq));
7400 		if (!(type & SQ_CICB)) {
7401 			count = sq->sq_count;
7402 			SQ_PUTLOCKS_ENTER(sq);
7403 			SUM_SQ_PUTCOUNTS(sq, count);
7404 		}
7405 	}
7406 
7407 	sq->sq_count++;
7408 	ASSERT(sq->sq_count != 0);	/* Wraparound */
7409 	if (!(type & SQ_CICB)) {
7410 		ASSERT(count == 0);
7411 		sq->sq_flags |= SQ_EXCL;
7412 		ASSERT(sq->sq_needexcl > 0);
7413 		sq->sq_needexcl--;
7414 		if (sq->sq_needexcl == 0) {
7415 			SQ_PUTCOUNT_SETFAST_LOCKED(sq);
7416 		}
7417 		SQ_PUTLOCKS_EXIT(sq);
7418 	}
7419 
7420 	mutex_exit(SQLOCK(sq));
7421 
7422 	cbp->cbp_func(cbp->cbp_arg);
7423 
7424 	/*
7425 	 * We drop the lock only for leavesq to re-acquire it.
7426 	 * Possible optimization is inline of leavesq.
7427 	 */
7428 	mutex_enter(SQLOCK(sq));
7429 	callbparams_free(sq, cbp);
7430 	mutex_exit(SQLOCK(sq));
7431 	leavesq(sq, SQ_CALLBACK);
7432 }
7433 
7434 /*
7435  * no need to grab sq_putlocks here. See comment in strsubr.h that
7436  * explains when sq_putlocks are used.
7437  *
7438  * sq_count (or one of the sq_putcounts) has already been
7439  * decremented by the caller, and if SQ_QUEUED, we need to call
7440  * drain_syncq (the global syncq drain).
7441  * If putnext_tail is called with the SQ_EXCL bit set, we are in
7442  * one of two states, non-CIPUT perimiter, and we need to clear
7443  * it, or we went exclusive in the put procedure.  In any case,
7444  * we want to clear the bit now, and it is probably easier to do
7445  * this at the beginning of this function (remember, we hold
7446  * the SQLOCK).  Lastly, if there are other messages queued
7447  * on the syncq (and not for our destination), enable the syncq
7448  * for background work.
7449  */
7450 
7451 /* ARGSUSED */
7452 void
7453 putnext_tail(syncq_t *sq, queue_t *qp, uint32_t passflags)
7454 {
7455 	uint16_t	flags = sq->sq_flags;
7456 
7457 	ASSERT(MUTEX_HELD(SQLOCK(sq)));
7458 	ASSERT(MUTEX_NOT_HELD(QLOCK(qp)));
7459 
7460 	/* Clear SQ_EXCL if set in passflags */
7461 	if (passflags & SQ_EXCL) {
7462 		flags &= ~SQ_EXCL;
7463 	}
7464 	if (flags & SQ_WANTWAKEUP) {
7465 		flags &= ~SQ_WANTWAKEUP;
7466 		cv_broadcast(&sq->sq_wait);
7467 	}
7468 	if (flags & SQ_WANTEXWAKEUP) {
7469 		flags &= ~SQ_WANTEXWAKEUP;
7470 		cv_broadcast(&sq->sq_exitwait);
7471 	}
7472 	sq->sq_flags = flags;
7473 
7474 	/*
7475 	 * We have cleared SQ_EXCL if we were asked to, and started
7476 	 * the wakeup process for waiters.  If there are no writers
7477 	 * then we need to drain the syncq if we were told to, or
7478 	 * enable the background thread to do it.
7479 	 */
7480 	if (!(flags & (SQ_STAYAWAY|SQ_EXCL))) {
7481 		if ((passflags & SQ_QUEUED) ||
7482 		    (sq->sq_svcflags & SQ_DISABLED)) {
7483 			/* drain_syncq will take care of events in the list */
7484 			drain_syncq(sq);
7485 			return;
7486 		} else if (flags & SQ_QUEUED) {
7487 			sqenable(sq);
7488 		}
7489 	}
7490 	/* Drop the SQLOCK on exit */
7491 	mutex_exit(SQLOCK(sq));
7492 	TRACE_3(TR_FAC_STREAMS_FR, TR_PUTNEXT_END,
7493 	    "putnext_end:(%p, %p, %p) done", NULL, qp, sq);
7494 }
7495 
7496 void
7497 set_qend(queue_t *q)
7498 {
7499 	mutex_enter(QLOCK(q));
7500 	if (!O_SAMESTR(q))
7501 		q->q_flag |= QEND;
7502 	else
7503 		q->q_flag &= ~QEND;
7504 	mutex_exit(QLOCK(q));
7505 	q = _OTHERQ(q);
7506 	mutex_enter(QLOCK(q));
7507 	if (!O_SAMESTR(q))
7508 		q->q_flag |= QEND;
7509 	else
7510 		q->q_flag &= ~QEND;
7511 	mutex_exit(QLOCK(q));
7512 }
7513 
7514 /*
7515  * Set QFULL in next service procedure queue (that cares) if not already
7516  * set and if there are already more messages on the syncq than
7517  * sq_max_size.  If sq_max_size is 0, no flow control will be asserted on
7518  * any syncq.
7519  *
7520  * The fq here is the next queue with a service procedure.  This is where
7521  * we would fail canputnext, so this is where we need to set QFULL.
7522  * In the case when fq != q we need to take QLOCK(fq) to set QFULL flag.
7523  *
7524  * We already have QLOCK at this point. To avoid cross-locks with
7525  * freezestr() which grabs all QLOCKs and with strlock() which grabs both
7526  * SQLOCK and sd_reflock, we need to drop respective locks first.
7527  */
7528 void
7529 set_qfull(queue_t *q)
7530 {
7531 	queue_t		*fq = NULL;
7532 
7533 	ASSERT(MUTEX_HELD(QLOCK(q)));
7534 	if ((sq_max_size != 0) && (!(q->q_nfsrv->q_flag & QFULL)) &&
7535 	    (q->q_syncqmsgs > sq_max_size)) {
7536 		if ((fq = q->q_nfsrv) == q) {
7537 			fq->q_flag |= QFULL;
7538 		} else {
7539 			mutex_exit(QLOCK(q));
7540 			mutex_enter(QLOCK(fq));
7541 			fq->q_flag |= QFULL;
7542 			mutex_exit(QLOCK(fq));
7543 			mutex_enter(QLOCK(q));
7544 		}
7545 	}
7546 }
7547 
7548 void
7549 clr_qfull(queue_t *q)
7550 {
7551 	queue_t	*oq = q;
7552 
7553 	q = q->q_nfsrv;
7554 	/* Fast check if there is any work to do before getting the lock. */
7555 	if ((q->q_flag & (QFULL|QWANTW)) == 0) {
7556 		return;
7557 	}
7558 
7559 	/*
7560 	 * Do not reset QFULL (and backenable) if the q_count is the reason
7561 	 * for QFULL being set.
7562 	 */
7563 	mutex_enter(QLOCK(q));
7564 	/*
7565 	 * If queue is empty i.e q_mblkcnt is zero, queue can not be full.
7566 	 * Hence clear the QFULL.
7567 	 * If both q_count and q_mblkcnt are less than the hiwat mark,
7568 	 * clear the QFULL.
7569 	 */
7570 	if (q->q_mblkcnt == 0 || ((q->q_count < q->q_hiwat) &&
7571 	    (q->q_mblkcnt < q->q_hiwat))) {
7572 		q->q_flag &= ~QFULL;
7573 		/*
7574 		 * A little more confusing, how about this way:
7575 		 * if someone wants to write,
7576 		 * AND
7577 		 *    both counts are less than the lowat mark
7578 		 *    OR
7579 		 *    the lowat mark is zero
7580 		 * THEN
7581 		 * backenable
7582 		 */
7583 		if ((q->q_flag & QWANTW) &&
7584 		    (((q->q_count < q->q_lowat) &&
7585 		    (q->q_mblkcnt < q->q_lowat)) || q->q_lowat == 0)) {
7586 			q->q_flag &= ~QWANTW;
7587 			mutex_exit(QLOCK(q));
7588 			backenable(oq, 0);
7589 		} else
7590 			mutex_exit(QLOCK(q));
7591 	} else
7592 		mutex_exit(QLOCK(q));
7593 }
7594 
7595 /*
7596  * Set the forward service procedure pointer.
7597  *
7598  * Called at insert-time to cache a queue's next forward service procedure in
7599  * q_nfsrv; used by canput() and canputnext().  If the queue to be inserted
7600  * has a service procedure then q_nfsrv points to itself.  If the queue to be
7601  * inserted does not have a service procedure, then q_nfsrv points to the next
7602  * queue forward that has a service procedure.  If the queue is at the logical
7603  * end of the stream (driver for write side, stream head for the read side)
7604  * and does not have a service procedure, then q_nfsrv also points to itself.
7605  */
7606 void
7607 set_nfsrv_ptr(
7608 	queue_t  *rnew,		/* read queue pointer to new module */
7609 	queue_t  *wnew,		/* write queue pointer to new module */
7610 	queue_t  *prev_rq,	/* read queue pointer to the module above */
7611 	queue_t  *prev_wq)	/* write queue pointer to the module above */
7612 {
7613 	queue_t *qp;
7614 
7615 	if (prev_wq->q_next == NULL) {
7616 		/*
7617 		 * Insert the driver, initialize the driver and stream head.
7618 		 * In this case, prev_rq/prev_wq should be the stream head.
7619 		 * _I_INSERT does not allow inserting a driver.  Make sure
7620 		 * that it is not an insertion.
7621 		 */
7622 		ASSERT(!(rnew->q_flag & _QINSERTING));
7623 		wnew->q_nfsrv = wnew;
7624 		if (rnew->q_qinfo->qi_srvp)
7625 			rnew->q_nfsrv = rnew;
7626 		else
7627 			rnew->q_nfsrv = prev_rq;
7628 		prev_rq->q_nfsrv = prev_rq;
7629 		prev_wq->q_nfsrv = prev_wq;
7630 	} else {
7631 		/*
7632 		 * set up read side q_nfsrv pointer.  This MUST be done
7633 		 * before setting the write side, because the setting of
7634 		 * the write side for a fifo may depend on it.
7635 		 *
7636 		 * Suppose we have a fifo that only has pipemod pushed.
7637 		 * pipemod has no read or write service procedures, so
7638 		 * nfsrv for both pipemod queues points to prev_rq (the
7639 		 * stream read head).  Now push bufmod (which has only a
7640 		 * read service procedure).  Doing the write side first,
7641 		 * wnew->q_nfsrv is set to pipemod's writeq nfsrv, which
7642 		 * is WRONG; the next queue forward from wnew with a
7643 		 * service procedure will be rnew, not the stream read head.
7644 		 * Since the downstream queue (which in the case of a fifo
7645 		 * is the read queue rnew) can affect upstream queues, it
7646 		 * needs to be done first.  Setting up the read side first
7647 		 * sets nfsrv for both pipemod queues to rnew and then
7648 		 * when the write side is set up, wnew-q_nfsrv will also
7649 		 * point to rnew.
7650 		 */
7651 		if (rnew->q_qinfo->qi_srvp) {
7652 			/*
7653 			 * use _OTHERQ() because, if this is a pipe, next
7654 			 * module may have been pushed from other end and
7655 			 * q_next could be a read queue.
7656 			 */
7657 			qp = _OTHERQ(prev_wq->q_next);
7658 			while (qp && qp->q_nfsrv != qp) {
7659 				qp->q_nfsrv = rnew;
7660 				qp = backq(qp);
7661 			}
7662 			rnew->q_nfsrv = rnew;
7663 		} else
7664 			rnew->q_nfsrv = prev_rq->q_nfsrv;
7665 
7666 		/* set up write side q_nfsrv pointer */
7667 		if (wnew->q_qinfo->qi_srvp) {
7668 			wnew->q_nfsrv = wnew;
7669 
7670 			/*
7671 			 * For insertion, need to update nfsrv of the modules
7672 			 * above which do not have a service routine.
7673 			 */
7674 			if (rnew->q_flag & _QINSERTING) {
7675 				for (qp = prev_wq;
7676 				    qp != NULL && qp->q_nfsrv != qp;
7677 				    qp = backq(qp)) {
7678 					qp->q_nfsrv = wnew->q_nfsrv;
7679 				}
7680 			}
7681 		} else {
7682 			if (prev_wq->q_next == prev_rq)
7683 				/*
7684 				 * Since prev_wq/prev_rq are the middle of a
7685 				 * fifo, wnew/rnew will also be the middle of
7686 				 * a fifo and wnew's nfsrv is same as rnew's.
7687 				 */
7688 				wnew->q_nfsrv = rnew->q_nfsrv;
7689 			else
7690 				wnew->q_nfsrv = prev_wq->q_next->q_nfsrv;
7691 		}
7692 	}
7693 }
7694 
7695 /*
7696  * Reset the forward service procedure pointer; called at remove-time.
7697  */
7698 void
7699 reset_nfsrv_ptr(queue_t *rqp, queue_t *wqp)
7700 {
7701 	queue_t *tmp_qp;
7702 
7703 	/* Reset the write side q_nfsrv pointer for _I_REMOVE */
7704 	if ((rqp->q_flag & _QREMOVING) && (wqp->q_qinfo->qi_srvp != NULL)) {
7705 		for (tmp_qp = backq(wqp);
7706 		    tmp_qp != NULL && tmp_qp->q_nfsrv == wqp;
7707 		    tmp_qp = backq(tmp_qp)) {
7708 			tmp_qp->q_nfsrv = wqp->q_nfsrv;
7709 		}
7710 	}
7711 
7712 	/* reset the read side q_nfsrv pointer */
7713 	if (rqp->q_qinfo->qi_srvp) {
7714 		if (wqp->q_next) {	/* non-driver case */
7715 			tmp_qp = _OTHERQ(wqp->q_next);
7716 			while (tmp_qp && tmp_qp->q_nfsrv == rqp) {
7717 				/* Note that rqp->q_next cannot be NULL */
7718 				ASSERT(rqp->q_next != NULL);
7719 				tmp_qp->q_nfsrv = rqp->q_next->q_nfsrv;
7720 				tmp_qp = backq(tmp_qp);
7721 			}
7722 		}
7723 	}
7724 }
7725 
7726 /*
7727  * This routine should be called after all stream geometry changes to update
7728  * the stream head cached struio() rd/wr queue pointers. Note must be called
7729  * with the streamlock()ed.
7730  *
7731  * Note: only enables Synchronous STREAMS for a side of a Stream which has
7732  *	 an explicit synchronous barrier module queue. That is, a queue that
7733  *	 has specified a struio() type.
7734  */
7735 static void
7736 strsetuio(stdata_t *stp)
7737 {
7738 	queue_t *wrq;
7739 
7740 	if (stp->sd_flag & STPLEX) {
7741 		/*
7742 		 * Not stremahead, but a mux, so no Synchronous STREAMS.
7743 		 */
7744 		stp->sd_struiowrq = NULL;
7745 		stp->sd_struiordq = NULL;
7746 		return;
7747 	}
7748 	/*
7749 	 * Scan the write queue(s) while synchronous
7750 	 * until we find a qinfo uio type specified.
7751 	 */
7752 	wrq = stp->sd_wrq->q_next;
7753 	while (wrq) {
7754 		if (wrq->q_struiot == STRUIOT_NONE) {
7755 			wrq = 0;
7756 			break;
7757 		}
7758 		if (wrq->q_struiot != STRUIOT_DONTCARE)
7759 			break;
7760 		if (! _SAMESTR(wrq)) {
7761 			wrq = 0;
7762 			break;
7763 		}
7764 		wrq = wrq->q_next;
7765 	}
7766 	stp->sd_struiowrq = wrq;
7767 	/*
7768 	 * Scan the read queue(s) while synchronous
7769 	 * until we find a qinfo uio type specified.
7770 	 */
7771 	wrq = stp->sd_wrq->q_next;
7772 	while (wrq) {
7773 		if (_RD(wrq)->q_struiot == STRUIOT_NONE) {
7774 			wrq = 0;
7775 			break;
7776 		}
7777 		if (_RD(wrq)->q_struiot != STRUIOT_DONTCARE)
7778 			break;
7779 		if (! _SAMESTR(wrq)) {
7780 			wrq = 0;
7781 			break;
7782 		}
7783 		wrq = wrq->q_next;
7784 	}
7785 	stp->sd_struiordq = wrq ? _RD(wrq) : 0;
7786 }
7787 
7788 /*
7789  * pass_wput, unblocks the passthru queues, so that
7790  * messages can arrive at muxs lower read queue, before
7791  * I_LINK/I_UNLINK is acked/nacked.
7792  */
7793 static void
7794 pass_wput(queue_t *q, mblk_t *mp)
7795 {
7796 	syncq_t *sq;
7797 
7798 	sq = _RD(q)->q_syncq;
7799 	if (sq->sq_flags & SQ_BLOCKED)
7800 		unblocksq(sq, SQ_BLOCKED, 0);
7801 	putnext(q, mp);
7802 }
7803 
7804 /*
7805  * Set up queues for the link/unlink.
7806  * Create a new queue and block it and then insert it
7807  * below the stream head on the lower stream.
7808  * This prevents any messages from arriving during the setq
7809  * as well as while the mux is processing the LINK/I_UNLINK.
7810  * The blocked passq is unblocked once the LINK/I_UNLINK has
7811  * been acked or nacked or if a message is generated and sent
7812  * down muxs write put procedure.
7813  * see pass_wput().
7814  *
7815  * After the new queue is inserted, all messages coming from below are
7816  * blocked. The call to strlock will ensure that all activity in the stream head
7817  * read queue syncq is stopped (sq_count drops to zero).
7818  */
7819 static queue_t *
7820 link_addpassthru(stdata_t *stpdown)
7821 {
7822 	queue_t *passq;
7823 	sqlist_t sqlist;
7824 
7825 	passq = allocq();
7826 	STREAM(passq) = STREAM(_WR(passq)) = stpdown;
7827 	/* setq might sleep in allocator - avoid holding locks. */
7828 	setq(passq, &passthru_rinit, &passthru_winit, NULL, QPERQ,
7829 	    SQ_CI|SQ_CO, B_FALSE);
7830 	claimq(passq);
7831 	blocksq(passq->q_syncq, SQ_BLOCKED, 1);
7832 	insertq(STREAM(passq), passq);
7833 
7834 	/*
7835 	 * Use strlock() to wait for the stream head sq_count to drop to zero
7836 	 * since we are going to change q_ptr in the stream head.  Note that
7837 	 * insertq() doesn't wait for any syncq counts to drop to zero.
7838 	 */
7839 	sqlist.sqlist_head = NULL;
7840 	sqlist.sqlist_index = 0;
7841 	sqlist.sqlist_size = sizeof (sqlist_t);
7842 	sqlist_insert(&sqlist, _RD(stpdown->sd_wrq)->q_syncq);
7843 	strlock(stpdown, &sqlist);
7844 	strunlock(stpdown, &sqlist);
7845 
7846 	releaseq(passq);
7847 	return (passq);
7848 }
7849 
7850 /*
7851  * Let messages flow up into the mux by removing
7852  * the passq.
7853  */
7854 static void
7855 link_rempassthru(queue_t *passq)
7856 {
7857 	claimq(passq);
7858 	removeq(passq);
7859 	releaseq(passq);
7860 	freeq(passq);
7861 }
7862 
7863 /*
7864  * Wait for the condition variable pointed to by `cvp' to be signaled,
7865  * or for `tim' milliseconds to elapse, whichever comes first.  If `tim'
7866  * is negative, then there is no time limit.  If `nosigs' is non-zero,
7867  * then the wait will be non-interruptible.
7868  *
7869  * Returns >0 if signaled, 0 if interrupted, or -1 upon timeout.
7870  */
7871 clock_t
7872 str_cv_wait(kcondvar_t *cvp, kmutex_t *mp, clock_t tim, int nosigs)
7873 {
7874 	clock_t ret, now, tick;
7875 
7876 	if (tim < 0) {
7877 		if (nosigs) {
7878 			cv_wait(cvp, mp);
7879 			ret = 1;
7880 		} else {
7881 			ret = cv_wait_sig(cvp, mp);
7882 		}
7883 	} else if (tim > 0) {
7884 		/*
7885 		 * convert milliseconds to clock ticks
7886 		 */
7887 		tick = MSEC_TO_TICK_ROUNDUP(tim);
7888 		time_to_wait(&now, tick);
7889 		if (nosigs) {
7890 			ret = cv_timedwait(cvp, mp, now);
7891 		} else {
7892 			ret = cv_timedwait_sig(cvp, mp, now);
7893 		}
7894 	} else {
7895 		ret = -1;
7896 	}
7897 	return (ret);
7898 }
7899 
7900 /*
7901  * Wait until the stream head can determine if it is at the mark but
7902  * don't wait forever to prevent a race condition between the "mark" state
7903  * in the stream head and any mark state in the caller/user of this routine.
7904  *
7905  * This is used by sockets and for a socket it would be incorrect
7906  * to return a failure for SIOCATMARK when there is no data in the receive
7907  * queue and the marked urgent data is traveling up the stream.
7908  *
7909  * This routine waits until the mark is known by waiting for one of these
7910  * three events:
7911  *	The stream head read queue becoming non-empty (including an EOF)
7912  *	The STRATMARK flag being set. (Due to a MSGMARKNEXT message.)
7913  *	The STRNOTATMARK flag being set (which indicates that the transport
7914  *	has sent a MSGNOTMARKNEXT message to indicate that it is not at
7915  *	the mark).
7916  *
7917  * The routine returns 1 if the stream is at the mark; 0 if it can
7918  * be determined that the stream is not at the mark.
7919  * If the wait times out and it can't determine
7920  * whether or not the stream might be at the mark the routine will return -1.
7921  *
7922  * Note: This routine should only be used when a mark is pending i.e.,
7923  * in the socket case the SIGURG has been posted.
7924  * Note2: This can not wakeup just because synchronous streams indicate
7925  * that data is available since it is not possible to use the synchronous
7926  * streams interfaces to determine the b_flag value for the data queued below
7927  * the stream head.
7928  */
7929 int
7930 strwaitmark(vnode_t *vp)
7931 {
7932 	struct stdata *stp = vp->v_stream;
7933 	queue_t *rq = _RD(stp->sd_wrq);
7934 	int mark;
7935 
7936 	mutex_enter(&stp->sd_lock);
7937 	while (rq->q_first == NULL &&
7938 	    !(stp->sd_flag & (STRATMARK|STRNOTATMARK|STREOF))) {
7939 		stp->sd_flag |= RSLEEP;
7940 
7941 		/* Wait for 100 milliseconds for any state change. */
7942 		if (str_cv_wait(&rq->q_wait, &stp->sd_lock, 100, 1) == -1) {
7943 			mutex_exit(&stp->sd_lock);
7944 			return (-1);
7945 		}
7946 	}
7947 	if (stp->sd_flag & STRATMARK)
7948 		mark = 1;
7949 	else if (rq->q_first != NULL && (rq->q_first->b_flag & MSGMARK))
7950 		mark = 1;
7951 	else
7952 		mark = 0;
7953 
7954 	mutex_exit(&stp->sd_lock);
7955 	return (mark);
7956 }
7957 
7958 /*
7959  * Set a read side error. If persist is set change the socket error
7960  * to persistent. If errfunc is set install the function as the exported
7961  * error handler.
7962  */
7963 void
7964 strsetrerror(vnode_t *vp, int error, int persist, errfunc_t errfunc)
7965 {
7966 	struct stdata *stp = vp->v_stream;
7967 
7968 	mutex_enter(&stp->sd_lock);
7969 	stp->sd_rerror = error;
7970 	if (error == 0 && errfunc == NULL)
7971 		stp->sd_flag &= ~STRDERR;
7972 	else
7973 		stp->sd_flag |= STRDERR;
7974 	if (persist) {
7975 		stp->sd_flag &= ~STRDERRNONPERSIST;
7976 	} else {
7977 		stp->sd_flag |= STRDERRNONPERSIST;
7978 	}
7979 	stp->sd_rderrfunc = errfunc;
7980 	if (error != 0 || errfunc != NULL) {
7981 		cv_broadcast(&_RD(stp->sd_wrq)->q_wait);	/* readers */
7982 		cv_broadcast(&stp->sd_wrq->q_wait);		/* writers */
7983 		cv_broadcast(&stp->sd_monitor);			/* ioctllers */
7984 
7985 		mutex_exit(&stp->sd_lock);
7986 		pollwakeup(&stp->sd_pollist, POLLERR);
7987 		mutex_enter(&stp->sd_lock);
7988 
7989 		if (stp->sd_sigflags & S_ERROR)
7990 			strsendsig(stp->sd_siglist, S_ERROR, 0, error);
7991 	}
7992 	mutex_exit(&stp->sd_lock);
7993 }
7994 
7995 /*
7996  * Set a write side error. If persist is set change the socket error
7997  * to persistent.
7998  */
7999 void
8000 strsetwerror(vnode_t *vp, int error, int persist, errfunc_t errfunc)
8001 {
8002 	struct stdata *stp = vp->v_stream;
8003 
8004 	mutex_enter(&stp->sd_lock);
8005 	stp->sd_werror = error;
8006 	if (error == 0 && errfunc == NULL)
8007 		stp->sd_flag &= ~STWRERR;
8008 	else
8009 		stp->sd_flag |= STWRERR;
8010 	if (persist) {
8011 		stp->sd_flag &= ~STWRERRNONPERSIST;
8012 	} else {
8013 		stp->sd_flag |= STWRERRNONPERSIST;
8014 	}
8015 	stp->sd_wrerrfunc = errfunc;
8016 	if (error != 0 || errfunc != NULL) {
8017 		cv_broadcast(&_RD(stp->sd_wrq)->q_wait);	/* readers */
8018 		cv_broadcast(&stp->sd_wrq->q_wait);		/* writers */
8019 		cv_broadcast(&stp->sd_monitor);			/* ioctllers */
8020 
8021 		mutex_exit(&stp->sd_lock);
8022 		pollwakeup(&stp->sd_pollist, POLLERR);
8023 		mutex_enter(&stp->sd_lock);
8024 
8025 		if (stp->sd_sigflags & S_ERROR)
8026 			strsendsig(stp->sd_siglist, S_ERROR, 0, error);
8027 	}
8028 	mutex_exit(&stp->sd_lock);
8029 }
8030 
8031 /*
8032  * Make the stream return 0 (EOF) when all data has been read.
8033  * No effect on write side.
8034  */
8035 void
8036 strseteof(vnode_t *vp, int eof)
8037 {
8038 	struct stdata *stp = vp->v_stream;
8039 
8040 	mutex_enter(&stp->sd_lock);
8041 	if (!eof) {
8042 		stp->sd_flag &= ~STREOF;
8043 		mutex_exit(&stp->sd_lock);
8044 		return;
8045 	}
8046 	stp->sd_flag |= STREOF;
8047 	if (stp->sd_flag & RSLEEP) {
8048 		stp->sd_flag &= ~RSLEEP;
8049 		cv_broadcast(&_RD(stp->sd_wrq)->q_wait);
8050 	}
8051 
8052 	mutex_exit(&stp->sd_lock);
8053 	pollwakeup(&stp->sd_pollist, POLLIN|POLLRDNORM);
8054 	mutex_enter(&stp->sd_lock);
8055 
8056 	if (stp->sd_sigflags & (S_INPUT|S_RDNORM))
8057 		strsendsig(stp->sd_siglist, S_INPUT|S_RDNORM, 0, 0);
8058 	mutex_exit(&stp->sd_lock);
8059 }
8060 
8061 void
8062 strflushrq(vnode_t *vp, int flag)
8063 {
8064 	struct stdata *stp = vp->v_stream;
8065 
8066 	mutex_enter(&stp->sd_lock);
8067 	flushq(_RD(stp->sd_wrq), flag);
8068 	mutex_exit(&stp->sd_lock);
8069 }
8070 
8071 void
8072 strsetrputhooks(vnode_t *vp, uint_t flags,
8073 		msgfunc_t protofunc, msgfunc_t miscfunc)
8074 {
8075 	struct stdata *stp = vp->v_stream;
8076 
8077 	mutex_enter(&stp->sd_lock);
8078 
8079 	if (protofunc == NULL)
8080 		stp->sd_rprotofunc = strrput_proto;
8081 	else
8082 		stp->sd_rprotofunc = protofunc;
8083 
8084 	if (miscfunc == NULL)
8085 		stp->sd_rmiscfunc = strrput_misc;
8086 	else
8087 		stp->sd_rmiscfunc = miscfunc;
8088 
8089 	if (flags & SH_CONSOL_DATA)
8090 		stp->sd_rput_opt |= SR_CONSOL_DATA;
8091 	else
8092 		stp->sd_rput_opt &= ~SR_CONSOL_DATA;
8093 
8094 	if (flags & SH_SIGALLDATA)
8095 		stp->sd_rput_opt |= SR_SIGALLDATA;
8096 	else
8097 		stp->sd_rput_opt &= ~SR_SIGALLDATA;
8098 
8099 	if (flags & SH_IGN_ZEROLEN)
8100 		stp->sd_rput_opt |= SR_IGN_ZEROLEN;
8101 	else
8102 		stp->sd_rput_opt &= ~SR_IGN_ZEROLEN;
8103 
8104 	mutex_exit(&stp->sd_lock);
8105 }
8106 
8107 void
8108 strsetwputhooks(vnode_t *vp, uint_t flags, clock_t closetime)
8109 {
8110 	struct stdata *stp = vp->v_stream;
8111 
8112 	mutex_enter(&stp->sd_lock);
8113 	stp->sd_closetime = closetime;
8114 
8115 	if (flags & SH_SIGPIPE)
8116 		stp->sd_wput_opt |= SW_SIGPIPE;
8117 	else
8118 		stp->sd_wput_opt &= ~SW_SIGPIPE;
8119 	if (flags & SH_RECHECK_ERR)
8120 		stp->sd_wput_opt |= SW_RECHECK_ERR;
8121 	else
8122 		stp->sd_wput_opt &= ~SW_RECHECK_ERR;
8123 
8124 	mutex_exit(&stp->sd_lock);
8125 }
8126 
8127 void
8128 strsetrwputdatahooks(vnode_t *vp, msgfunc_t rdatafunc, msgfunc_t wdatafunc)
8129 {
8130 	struct stdata *stp = vp->v_stream;
8131 
8132 	mutex_enter(&stp->sd_lock);
8133 
8134 	stp->sd_rputdatafunc = rdatafunc;
8135 	stp->sd_wputdatafunc = wdatafunc;
8136 
8137 	mutex_exit(&stp->sd_lock);
8138 }
8139 
8140 /* Used within framework when the queue is already locked */
8141 void
8142 qenable_locked(queue_t *q)
8143 {
8144 	stdata_t *stp = STREAM(q);
8145 
8146 	ASSERT(MUTEX_HELD(QLOCK(q)));
8147 
8148 	if (!q->q_qinfo->qi_srvp)
8149 		return;
8150 
8151 	/*
8152 	 * Do not place on run queue if already enabled or closing.
8153 	 */
8154 	if (q->q_flag & (QWCLOSE|QENAB))
8155 		return;
8156 
8157 	/*
8158 	 * mark queue enabled and place on run list if it is not already being
8159 	 * serviced. If it is serviced, the runservice() function will detect
8160 	 * that QENAB is set and call service procedure before clearing
8161 	 * QINSERVICE flag.
8162 	 */
8163 	q->q_flag |= QENAB;
8164 	if (q->q_flag & QINSERVICE)
8165 		return;
8166 
8167 	/* Record the time of qenable */
8168 	q->q_qtstamp = lbolt;
8169 
8170 	/*
8171 	 * Put the queue in the stp list and schedule it for background
8172 	 * processing if it is not already scheduled or if stream head does not
8173 	 * intent to process it in the foreground later by setting
8174 	 * STRS_WILLSERVICE flag.
8175 	 */
8176 	mutex_enter(&stp->sd_qlock);
8177 	/*
8178 	 * If there are already something on the list, stp flags should show
8179 	 * intention to drain it.
8180 	 */
8181 	IMPLY(STREAM_NEEDSERVICE(stp),
8182 	    (stp->sd_svcflags & (STRS_WILLSERVICE | STRS_SCHEDULED)));
8183 
8184 	ENQUEUE(q, stp->sd_qhead, stp->sd_qtail, q_link);
8185 	stp->sd_nqueues++;
8186 
8187 	/*
8188 	 * If no one will drain this stream we are the first producer and
8189 	 * need to schedule it for background thread.
8190 	 */
8191 	if (!(stp->sd_svcflags & (STRS_WILLSERVICE | STRS_SCHEDULED))) {
8192 		/*
8193 		 * No one will service this stream later, so we have to
8194 		 * schedule it now.
8195 		 */
8196 		STRSTAT(stenables);
8197 		stp->sd_svcflags |= STRS_SCHEDULED;
8198 		stp->sd_servid = (void *)taskq_dispatch(streams_taskq,
8199 		    (task_func_t *)stream_service, stp, TQ_NOSLEEP|TQ_NOQUEUE);
8200 
8201 		if (stp->sd_servid == NULL) {
8202 			/*
8203 			 * Task queue failed so fail over to the backup
8204 			 * servicing thread.
8205 			 */
8206 			STRSTAT(taskqfails);
8207 			/*
8208 			 * It is safe to clear STRS_SCHEDULED flag because it
8209 			 * was set by this thread above.
8210 			 */
8211 			stp->sd_svcflags &= ~STRS_SCHEDULED;
8212 
8213 			/*
8214 			 * Failover scheduling is protected by service_queue
8215 			 * lock.
8216 			 */
8217 			mutex_enter(&service_queue);
8218 			ASSERT((stp->sd_qhead == q) && (stp->sd_qtail == q));
8219 			ASSERT(q->q_link == NULL);
8220 			/*
8221 			 * Append the queue to qhead/qtail list.
8222 			 */
8223 			if (qhead == NULL)
8224 				qhead = q;
8225 			else
8226 				qtail->q_link = q;
8227 			qtail = q;
8228 			/*
8229 			 * Clear stp queue list.
8230 			 */
8231 			stp->sd_qhead = stp->sd_qtail = NULL;
8232 			stp->sd_nqueues = 0;
8233 			/*
8234 			 * Wakeup background queue processing thread.
8235 			 */
8236 			cv_signal(&services_to_run);
8237 			mutex_exit(&service_queue);
8238 		}
8239 	}
8240 	mutex_exit(&stp->sd_qlock);
8241 }
8242 
8243 static void
8244 queue_service(queue_t *q)
8245 {
8246 	/*
8247 	 * The queue in the list should have
8248 	 * QENAB flag set and should not have
8249 	 * QINSERVICE flag set. QINSERVICE is
8250 	 * set when the queue is dequeued and
8251 	 * qenable_locked doesn't enqueue a
8252 	 * queue with QINSERVICE set.
8253 	 */
8254 
8255 	ASSERT(!(q->q_flag & QINSERVICE));
8256 	ASSERT((q->q_flag & QENAB));
8257 	mutex_enter(QLOCK(q));
8258 	q->q_flag &= ~QENAB;
8259 	q->q_flag |= QINSERVICE;
8260 	mutex_exit(QLOCK(q));
8261 	runservice(q);
8262 }
8263 
8264 static void
8265 syncq_service(syncq_t *sq)
8266 {
8267 	STRSTAT(syncqservice);
8268 	mutex_enter(SQLOCK(sq));
8269 	ASSERT(!(sq->sq_svcflags & SQ_SERVICE));
8270 	ASSERT(sq->sq_servcount != 0);
8271 	ASSERT(sq->sq_next == NULL);
8272 
8273 	/* if we came here from the background thread, clear the flag */
8274 	if (sq->sq_svcflags & SQ_BGTHREAD)
8275 		sq->sq_svcflags &= ~SQ_BGTHREAD;
8276 
8277 	/* let drain_syncq know that it's being called in the background */
8278 	sq->sq_svcflags |= SQ_SERVICE;
8279 	drain_syncq(sq);
8280 }
8281 
8282 static void
8283 qwriter_outer_service(syncq_t *outer)
8284 {
8285 	/*
8286 	 * Note that SQ_WRITER is used on the outer perimeter
8287 	 * to signal that a qwriter(OUTER) is either investigating
8288 	 * running or that it is actually running a function.
8289 	 */
8290 	outer_enter(outer, SQ_BLOCKED|SQ_WRITER);
8291 
8292 	/*
8293 	 * All inner syncq are empty and have SQ_WRITER set
8294 	 * to block entering the outer perimeter.
8295 	 *
8296 	 * We do not need to explicitly call write_now since
8297 	 * outer_exit does it for us.
8298 	 */
8299 	outer_exit(outer);
8300 }
8301 
8302 static void
8303 mblk_free(mblk_t *mp)
8304 {
8305 	dblk_t *dbp = mp->b_datap;
8306 	frtn_t *frp = dbp->db_frtnp;
8307 
8308 	mp->b_next = NULL;
8309 	if (dbp->db_fthdr != NULL)
8310 		str_ftfree(dbp);
8311 
8312 	ASSERT(dbp->db_fthdr == NULL);
8313 	frp->free_func(frp->free_arg);
8314 	ASSERT(dbp->db_mblk == mp);
8315 
8316 	if (dbp->db_credp != NULL) {
8317 		crfree(dbp->db_credp);
8318 		dbp->db_credp = NULL;
8319 	}
8320 	dbp->db_cpid = -1;
8321 	dbp->db_struioflag = 0;
8322 	dbp->db_struioun.cksum.flags = 0;
8323 
8324 	kmem_cache_free(dbp->db_cache, dbp);
8325 }
8326 
8327 /*
8328  * Background processing of the stream queue list.
8329  */
8330 static void
8331 stream_service(stdata_t *stp)
8332 {
8333 	queue_t *q;
8334 
8335 	mutex_enter(&stp->sd_qlock);
8336 
8337 	STR_SERVICE(stp, q);
8338 
8339 	stp->sd_svcflags &= ~STRS_SCHEDULED;
8340 	stp->sd_servid = NULL;
8341 	cv_signal(&stp->sd_qcv);
8342 	mutex_exit(&stp->sd_qlock);
8343 }
8344 
8345 /*
8346  * Foreground processing of the stream queue list.
8347  */
8348 void
8349 stream_runservice(stdata_t *stp)
8350 {
8351 	queue_t *q;
8352 
8353 	mutex_enter(&stp->sd_qlock);
8354 	STRSTAT(rservice);
8355 	/*
8356 	 * We are going to drain this stream queue list, so qenable_locked will
8357 	 * not schedule it until we finish.
8358 	 */
8359 	stp->sd_svcflags |= STRS_WILLSERVICE;
8360 
8361 	STR_SERVICE(stp, q);
8362 
8363 	stp->sd_svcflags &= ~STRS_WILLSERVICE;
8364 	mutex_exit(&stp->sd_qlock);
8365 	/*
8366 	 * Help backup background thread to drain the qhead/qtail list.
8367 	 */
8368 	while (qhead != NULL) {
8369 		STRSTAT(qhelps);
8370 		mutex_enter(&service_queue);
8371 		DQ(q, qhead, qtail, q_link);
8372 		mutex_exit(&service_queue);
8373 		if (q != NULL)
8374 			queue_service(q);
8375 	}
8376 }
8377 
8378 void
8379 stream_willservice(stdata_t *stp)
8380 {
8381 	mutex_enter(&stp->sd_qlock);
8382 	stp->sd_svcflags |= STRS_WILLSERVICE;
8383 	mutex_exit(&stp->sd_qlock);
8384 }
8385 
8386 /*
8387  * Replace the cred currently in the mblk with a different one.
8388  */
8389 void
8390 mblk_setcred(mblk_t *mp, cred_t *cr)
8391 {
8392 	cred_t *ocr = DB_CRED(mp);
8393 
8394 	ASSERT(cr != NULL);
8395 
8396 	if (cr != ocr) {
8397 		crhold(mp->b_datap->db_credp = cr);
8398 		if (ocr != NULL)
8399 			crfree(ocr);
8400 	}
8401 }
8402 
8403 /*
8404  * Set the cred and pid for each mblk in the message. It is assumed that
8405  * the message passed in does not already have a cred.
8406  */
8407 void
8408 msg_setcredpid(mblk_t *mp, cred_t *cr, pid_t pid)
8409 {
8410 	while (mp != NULL) {
8411 		ASSERT(DB_CRED(mp) == NULL);
8412 		mblk_setcred(mp, cr);
8413 		DB_CPID(mp) = pid;
8414 		mp = mp->b_cont;
8415 	}
8416 }
8417 
8418 int
8419 hcksum_assoc(mblk_t *mp,  multidata_t *mmd, pdesc_t *pd,
8420     uint32_t start, uint32_t stuff, uint32_t end, uint32_t value,
8421     uint32_t flags, int km_flags)
8422 {
8423 	int rc = 0;
8424 
8425 	ASSERT(DB_TYPE(mp) == M_DATA || DB_TYPE(mp) == M_MULTIDATA);
8426 	if (mp->b_datap->db_type == M_DATA) {
8427 		/* Associate values for M_DATA type */
8428 		DB_CKSUMSTART(mp) = (intptr_t)start;
8429 		DB_CKSUMSTUFF(mp) = (intptr_t)stuff;
8430 		DB_CKSUMEND(mp) = (intptr_t)end;
8431 		DB_CKSUMFLAGS(mp) = flags;
8432 		DB_CKSUM16(mp) = (uint16_t)value;
8433 
8434 	} else {
8435 		pattrinfo_t pa_info;
8436 
8437 		ASSERT(mmd != NULL);
8438 
8439 		pa_info.type = PATTR_HCKSUM;
8440 		pa_info.len = sizeof (pattr_hcksum_t);
8441 
8442 		if (mmd_addpattr(mmd, pd, &pa_info, B_TRUE, km_flags) != NULL) {
8443 			pattr_hcksum_t *hck = (pattr_hcksum_t *)pa_info.buf;
8444 
8445 			hck->hcksum_start_offset = start;
8446 			hck->hcksum_stuff_offset = stuff;
8447 			hck->hcksum_end_offset = end;
8448 			hck->hcksum_cksum_val.inet_cksum = (uint16_t)value;
8449 			hck->hcksum_flags = flags;
8450 		} else {
8451 			rc = -1;
8452 		}
8453 	}
8454 	return (rc);
8455 }
8456 
8457 void
8458 hcksum_retrieve(mblk_t *mp, multidata_t *mmd, pdesc_t *pd,
8459     uint32_t *start, uint32_t *stuff, uint32_t *end,
8460     uint32_t *value, uint32_t *flags)
8461 {
8462 	ASSERT(DB_TYPE(mp) == M_DATA || DB_TYPE(mp) == M_MULTIDATA);
8463 	if (mp->b_datap->db_type == M_DATA) {
8464 		if (flags != NULL) {
8465 			*flags = DB_CKSUMFLAGS(mp) & (HCK_IPV4_HDRCKSUM |
8466 			    HCK_PARTIALCKSUM | HCK_FULLCKSUM |
8467 			    HCK_FULLCKSUM_OK);
8468 			if ((*flags & (HCK_PARTIALCKSUM |
8469 			    HCK_FULLCKSUM)) != 0) {
8470 				if (value != NULL)
8471 					*value = (uint32_t)DB_CKSUM16(mp);
8472 				if ((*flags & HCK_PARTIALCKSUM) != 0) {
8473 					if (start != NULL)
8474 						*start =
8475 						    (uint32_t)DB_CKSUMSTART(mp);
8476 					if (stuff != NULL)
8477 						*stuff =
8478 						    (uint32_t)DB_CKSUMSTUFF(mp);
8479 					if (end != NULL)
8480 						*end =
8481 						    (uint32_t)DB_CKSUMEND(mp);
8482 				}
8483 			}
8484 		}
8485 	} else {
8486 		pattrinfo_t hck_attr = {PATTR_HCKSUM};
8487 
8488 		ASSERT(mmd != NULL);
8489 
8490 		/* get hardware checksum attribute */
8491 		if (mmd_getpattr(mmd, pd, &hck_attr) != NULL) {
8492 			pattr_hcksum_t *hck = (pattr_hcksum_t *)hck_attr.buf;
8493 
8494 			ASSERT(hck_attr.len >= sizeof (pattr_hcksum_t));
8495 			if (flags != NULL)
8496 				*flags = hck->hcksum_flags;
8497 			if (start != NULL)
8498 				*start = hck->hcksum_start_offset;
8499 			if (stuff != NULL)
8500 				*stuff = hck->hcksum_stuff_offset;
8501 			if (end != NULL)
8502 				*end = hck->hcksum_end_offset;
8503 			if (value != NULL)
8504 				*value = (uint32_t)
8505 				    hck->hcksum_cksum_val.inet_cksum;
8506 		}
8507 	}
8508 }
8509 
8510 void
8511 lso_info_set(mblk_t *mp, uint32_t mss, uint32_t flags)
8512 {
8513 	ASSERT(DB_TYPE(mp) == M_DATA);
8514 
8515 	/* Set the flags */
8516 	DB_LSOFLAGS(mp) |= flags;
8517 	DB_LSOMSS(mp) = mss;
8518 }
8519 
8520 void
8521 lso_info_get(mblk_t *mp, uint32_t *mss, uint32_t *flags)
8522 {
8523 	ASSERT(DB_TYPE(mp) == M_DATA);
8524 
8525 	if (flags != NULL) {
8526 		*flags = DB_CKSUMFLAGS(mp) & HW_LSO;
8527 		if ((*flags != 0) && (mss != NULL))
8528 			*mss = (uint32_t)DB_LSOMSS(mp);
8529 	}
8530 }
8531 
8532 /*
8533  * Checksum buffer *bp for len bytes with psum partial checksum,
8534  * or 0 if none, and return the 16 bit partial checksum.
8535  */
8536 unsigned
8537 bcksum(uchar_t *bp, int len, unsigned int psum)
8538 {
8539 	int odd = len & 1;
8540 	extern unsigned int ip_ocsum();
8541 
8542 	if (((intptr_t)bp & 1) == 0 && !odd) {
8543 		/*
8544 		 * Bp is 16 bit aligned and len is multiple of 16 bit word.
8545 		 */
8546 		return (ip_ocsum((ushort_t *)bp, len >> 1, psum));
8547 	}
8548 	if (((intptr_t)bp & 1) != 0) {
8549 		/*
8550 		 * Bp isn't 16 bit aligned.
8551 		 */
8552 		unsigned int tsum;
8553 
8554 #ifdef _LITTLE_ENDIAN
8555 		psum += *bp;
8556 #else
8557 		psum += *bp << 8;
8558 #endif
8559 		len--;
8560 		bp++;
8561 		tsum = ip_ocsum((ushort_t *)bp, len >> 1, 0);
8562 		psum += (tsum << 8) & 0xffff | (tsum >> 8);
8563 		if (len & 1) {
8564 			bp += len - 1;
8565 #ifdef _LITTLE_ENDIAN
8566 			psum += *bp << 8;
8567 #else
8568 			psum += *bp;
8569 #endif
8570 		}
8571 	} else {
8572 		/*
8573 		 * Bp is 16 bit aligned.
8574 		 */
8575 		psum = ip_ocsum((ushort_t *)bp, len >> 1, psum);
8576 		if (odd) {
8577 			bp += len - 1;
8578 #ifdef _LITTLE_ENDIAN
8579 			psum += *bp;
8580 #else
8581 			psum += *bp << 8;
8582 #endif
8583 		}
8584 	}
8585 	/*
8586 	 * Normalize psum to 16 bits before returning the new partial
8587 	 * checksum. The max psum value before normalization is 0x3FDFE.
8588 	 */
8589 	return ((psum >> 16) + (psum & 0xFFFF));
8590 }
8591 
8592 boolean_t
8593 is_vmloaned_mblk(mblk_t *mp, multidata_t *mmd, pdesc_t *pd)
8594 {
8595 	boolean_t rc;
8596 
8597 	ASSERT(DB_TYPE(mp) == M_DATA || DB_TYPE(mp) == M_MULTIDATA);
8598 	if (DB_TYPE(mp) == M_DATA) {
8599 		rc = (((mp)->b_datap->db_struioflag & STRUIO_ZC) != 0);
8600 	} else {
8601 		pattrinfo_t zcopy_attr = {PATTR_ZCOPY};
8602 
8603 		ASSERT(mmd != NULL);
8604 		rc = (mmd_getpattr(mmd, pd, &zcopy_attr) != NULL);
8605 	}
8606 	return (rc);
8607 }
8608 
8609 void
8610 freemsgchain(mblk_t *mp)
8611 {
8612 	mblk_t	*next;
8613 
8614 	while (mp != NULL) {
8615 		next = mp->b_next;
8616 		mp->b_next = NULL;
8617 
8618 		freemsg(mp);
8619 		mp = next;
8620 	}
8621 }
8622 
8623 mblk_t *
8624 copymsgchain(mblk_t *mp)
8625 {
8626 	mblk_t	*nmp = NULL;
8627 	mblk_t	**nmpp = &nmp;
8628 
8629 	for (; mp != NULL; mp = mp->b_next) {
8630 		if ((*nmpp = copymsg(mp)) == NULL) {
8631 			freemsgchain(nmp);
8632 			return (NULL);
8633 		}
8634 
8635 		nmpp = &((*nmpp)->b_next);
8636 	}
8637 
8638 	return (nmp);
8639 }
8640 
8641 /* NOTE: Do not add code after this point. */
8642 #undef QLOCK
8643 
8644 /*
8645  * replacement for QLOCK macro for those that can't use it.
8646  */
8647 kmutex_t *
8648 QLOCK(queue_t *q)
8649 {
8650 	return (&(q)->q_lock);
8651 }
8652 
8653 /*
8654  * Dummy runqueues/queuerun functions functions for backwards compatibility.
8655  */
8656 #undef runqueues
8657 void
8658 runqueues(void)
8659 {
8660 }
8661 
8662 #undef queuerun
8663 void
8664 queuerun(void)
8665 {
8666 }
8667 
8668 /*
8669  * Initialize the STR stack instance, which tracks autopush and persistent
8670  * links.
8671  */
8672 /* ARGSUSED */
8673 static void *
8674 str_stack_init(netstackid_t stackid, netstack_t *ns)
8675 {
8676 	str_stack_t	*ss;
8677 	int i;
8678 
8679 	ss = (str_stack_t *)kmem_zalloc(sizeof (*ss), KM_SLEEP);
8680 	ss->ss_netstack = ns;
8681 
8682 	/*
8683 	 * set up autopush
8684 	 */
8685 	sad_initspace(ss);
8686 
8687 	/*
8688 	 * set up mux_node structures.
8689 	 */
8690 	ss->ss_devcnt = devcnt;	/* In case it should change before free */
8691 	ss->ss_mux_nodes = kmem_zalloc((sizeof (struct mux_node) *
8692 	    ss->ss_devcnt), KM_SLEEP);
8693 	for (i = 0; i < ss->ss_devcnt; i++)
8694 		ss->ss_mux_nodes[i].mn_imaj = i;
8695 	return (ss);
8696 }
8697 
8698 /*
8699  * Note: run at zone shutdown and not destroy so that the PLINKs are
8700  * gone by the time other cleanup happens from the destroy callbacks.
8701  */
8702 static void
8703 str_stack_shutdown(netstackid_t stackid, void *arg)
8704 {
8705 	str_stack_t *ss = (str_stack_t *)arg;
8706 	int i;
8707 	cred_t *cr;
8708 
8709 	cr = zone_get_kcred(netstackid_to_zoneid(stackid));
8710 	ASSERT(cr != NULL);
8711 
8712 	/* Undo all the I_PLINKs for this zone */
8713 	for (i = 0; i < ss->ss_devcnt; i++) {
8714 		struct mux_edge		*ep;
8715 		ldi_handle_t		lh;
8716 		ldi_ident_t		li;
8717 		int			ret;
8718 		int			rval;
8719 		dev_t			rdev;
8720 
8721 		ep = ss->ss_mux_nodes[i].mn_outp;
8722 		if (ep == NULL)
8723 			continue;
8724 		ret = ldi_ident_from_major((major_t)i, &li);
8725 		if (ret != 0) {
8726 			continue;
8727 		}
8728 		rdev = ep->me_dev;
8729 		ret = ldi_open_by_dev(&rdev, OTYP_CHR, FREAD|FWRITE,
8730 		    cr, &lh, li);
8731 		if (ret != 0) {
8732 			ldi_ident_release(li);
8733 			continue;
8734 		}
8735 
8736 		ret = ldi_ioctl(lh, I_PUNLINK, (intptr_t)MUXID_ALL, FKIOCTL,
8737 		    cr, &rval);
8738 		if (ret) {
8739 			(void) ldi_close(lh, FREAD|FWRITE, cr);
8740 			ldi_ident_release(li);
8741 			continue;
8742 		}
8743 		(void) ldi_close(lh, FREAD|FWRITE, cr);
8744 
8745 		/* Close layered handles */
8746 		ldi_ident_release(li);
8747 	}
8748 	crfree(cr);
8749 
8750 	sad_freespace(ss);
8751 
8752 	kmem_free(ss->ss_mux_nodes, sizeof (struct mux_node) * ss->ss_devcnt);
8753 	ss->ss_mux_nodes = NULL;
8754 }
8755 
8756 /*
8757  * Free the structure; str_stack_shutdown did the other cleanup work.
8758  */
8759 /* ARGSUSED */
8760 static void
8761 str_stack_fini(netstackid_t stackid, void *arg)
8762 {
8763 	str_stack_t	*ss = (str_stack_t *)arg;
8764 
8765 	kmem_free(ss, sizeof (*ss));
8766 }
8767