1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #ifndef	_SYS_IB_IBTL_IBTI_COMMON_H
27 #define	_SYS_IB_IBTL_IBTI_COMMON_H
28 
29 #pragma ident	"%Z%%M%	%I%	%E% SMI"
30 
31 /*
32  * ibti_common.h
33  *
34  * This file contains the shared/common transport data types and function
35  * prototypes.
36  */
37 #include <sys/ib/ibtl/ibtl_types.h>
38 #include <sys/ib/ibtl/ibti_cm.h>
39 #include <sys/isa_defs.h>
40 #include <sys/byteorder.h>
41 
42 #ifdef __cplusplus
43 extern "C" {
44 #endif
45 
46 /*
47  * Endian Macros
48  *    h2b - host endian to big endian protocol
49  *    b2h - big endian protocol to host endian
50  *    h2l - host endian to little endian protocol
51  *    l2h - little endian protocol to host endian
52  */
53 #if defined(_LITTLE_ENDIAN)
54 #define	h2b16(x)	(htons(x))
55 #define	h2b32(x)	(htonl(x))
56 #define	h2b64(x)	(ddi_swap64(x))
57 #define	b2h16(x)	(ntohs(x))
58 #define	b2h32(x)	(ntohl(x))
59 #define	b2h64(x)	(ddi_swap64(x))
60 
61 #define	h2l16(x)	(x)
62 #define	h2l32(x)	(x)
63 #define	h2l64(x)	(x)
64 #define	l2h16(x)	(x)
65 #define	l2h32(x)	(x)
66 #define	l2h64(x)	(x)
67 
68 #elif defined(_BIG_ENDIAN)
69 #define	h2b16(x)	(x)
70 #define	h2b32(x)	(x)
71 #define	h2b64(x)	(x)
72 #define	b2h16(x)	(x)
73 #define	b2h32(x)	(x)
74 #define	b2h64(x)	(x)
75 
76 #define	h2l16(x)	(ddi_swap16(x))
77 #define	h2l32(x)	(ddi_swap32(x))
78 #define	h2l64(x)	(ddi_swap64(x))
79 #define	l2h16(x)	(ddi_swap16(x))
80 #define	l2h32(x)	(ddi_swap32(x))
81 #define	l2h64(x)	(ddi_swap64(x))
82 
83 #else
84 #error	"what endian is this machine?"
85 #endif
86 
87 /*
88  * Max number of paths that can be requested in an ibt_get_paths() call,
89  * if IBT_PATH_PERF or IBT_PATH_AVAIL flag (ibt_path_flags_t) is set.
90  */
91 #define	IBT_MAX_SPECIAL_PATHS	2
92 
93 /*
94  * The name of DDI Event, generated when the properties of IOC device
95  * node properties were modified.
96  */
97 #define	IB_PROP_UPDATE_EVENT	"SUNW,IB:IB_PROP_UPDATE"
98 
99 
100 /* Transport Interface version */
101 typedef enum ibt_version_e {
102 	IBTI_V1 = 1,
103 	IBTI_V2 = 2		/* FMR Support */
104 } ibt_version_t;
105 
106 /*
107  * Driver class type. Identifies a type of client driver so that
108  * "IBTF Policy" decisions can be made on a driver class basis.
109  * The last class should always be IBT_CLNT_NUM, and any new classes added
110  * must be defined before IBT_CLNT_NUM. The class values must be above 0.
111  * Any class values below or equal to 0 shall be invalid
112  */
113 typedef enum ibt_clnt_class_e {
114 	IBT_STORAGE_DEV = 0x1,	/* SCSI, FC, etc.. */
115 	IBT_NETWORK_DEV,	/* Network driver with associated client H/W */
116 	IBT_GENERIC_DEV,	/* Generic client H/W device driver */
117 	IBT_NETWORK,		/* Network driver with no associated */
118 				/* client H/W, e.g., IPoIB */
119 	IBT_GENERIC,		/* A generic IB driver not */
120 				/* associated with client H/W */
121 	IBT_USER,		/* A user application IBT interface driver */
122 	IBT_IBMA,		/* The IBMA Module */
123 	IBT_CM,			/* The CM Module */
124 	IBT_DM,			/* The DM Module */
125 	IBT_CLASS_NUM		/* Place holder for class count */
126 } ibt_clnt_class_t;
127 
128 #define	IBT_TEST_DEV	999	/* Place holder for modules that test IBTL */
129 
130 #define	IBT_CLNT_DEVICE_CLASS(class)	((class) == IBT_STORAGE_DEV || \
131 					(class) == IBT_NETWORK_DEV || \
132 					(class) == IBT_GENERIC_DEV)
133 
134 #define	IBT_CLNT_GENERAL_CLASS(class)	((class) == IBT_NETWORK || \
135 					(class) == IBT_GENERIC || \
136 					(class) == IBT_USER)
137 
138 #define	IBT_CLNT_MGMT_CLASS(class)	((class) == IBT_IBMA || \
139 					(class) == IBT_CM || \
140 					(class) == IBT_DM || \
141 					(class) == IBT_TEST_DEV)
142 /*
143  * Event record & status returns for asynchronous events and errors.
144  */
145 typedef struct ibt_async_event_s {
146 	uint64_t		ev_fma_ena;		/* FMA Error data */
147 	ibt_channel_hdl_t	ev_chan_hdl;		/* Channel handle */
148 	ibt_cq_hdl_t		ev_cq_hdl;		/* CQ handle */
149 	ib_guid_t		ev_hca_guid;		/* HCA node GUID */
150 	uint8_t			ev_port;		/* HCA port */
151 	ibt_srq_hdl_t		ev_srq_hdl;		/* SRQ handle */
152 } ibt_async_event_t;
153 
154 /*
155  * IBT Client Callback function typedefs.
156  *
157  * ibt_async_handler_t
158  *	Pointer to an async event/error handler function.  This function is
159  *	called when an async event/error is detected on a HCA that is being
160  *	used by the IBT client driver that registered the function.
161  */
162 typedef void (*ibt_async_handler_t)(void *clnt_private,
163     ibt_hca_hdl_t hca_hdl, ibt_async_code_t code, ibt_async_event_t *event);
164 
165 /*
166  * IBT Client Memory Error Callback function typedefs.
167  *
168  * ibt_memory_handler_t
169  *	Pointer to an memory event/error handler function.
170  */
171 typedef void (*ibt_memory_handler_t)(void *clnt_private,
172     ibt_hca_hdl_t hca_hdl, ibt_mem_code_t code, ibt_mem_data_t *data);
173 
174 /*
175  * Define a client module information structure. All clients MUST
176  * define a global of type ibt_clnt_modinfo_t. A pointer to this global
177  * is passed into the IBTF by a client when calling ibt_attach().
178  * This struct must persist during the life of the client.
179  *
180  * The client's mi_async_handler is called when an async event/error is
181  * detected on a HCA that is being used by this client.
182  */
183 typedef struct ibt_clnt_modinfo_s {
184 	ibt_version_t		mi_ibt_version;		/* TI version */
185 	ibt_clnt_class_t	mi_clnt_class;		/* Type of client */
186 	ibt_async_handler_t	mi_async_handler;	/* Async Handler */
187 	ibt_memory_handler_t	mi_reserved;		/* Memory handler */
188 	char			*mi_clnt_name;		/* Client Name. */
189 } ibt_clnt_modinfo_t;
190 
191 
192 /*
193  * Definitions for use with ibt_register_subnet_notices()
194  */
195 typedef enum ibt_subnet_event_code_e {
196 	IBT_SM_EVENT_MCG_CREATED = 1,
197 	IBT_SM_EVENT_MCG_DELETED = 2,
198 	IBT_SM_EVENT_AVAILABLE	 = 3,
199 	IBT_SM_EVENT_UNAVAILABLE = 4,
200 	IBT_SM_EVENT_GID_AVAIL	 = 5,
201 	IBT_SM_EVENT_GID_UNAVAIL = 6
202 } ibt_subnet_event_code_t;
203 
204 typedef struct ibt_subnet_event_s {
205 	ib_gid_t sm_notice_gid;
206 } ibt_subnet_event_t;
207 
208 typedef void (*ibt_sm_notice_handler_t)(void *private, ib_gid_t gid,
209     ibt_subnet_event_code_t code, ibt_subnet_event_t *event);
210 
211 
212 /*
213  * MTU Request type.
214  */
215 typedef struct ibt_mtu_req_s {
216 	ib_mtu_t	r_mtu;		/* Requested MTU */
217 	ibt_selector_t	r_selector;	/* Qualifier for r_mtu */
218 } ibt_mtu_req_t;
219 
220 
221 /*
222  * Qflags, used by ibt_resize_queues().
223  */
224 typedef enum ibt_qflags_e {
225 	IBT_SEND_Q	= 1 << 0,	/* Op applies to the Send Q */
226 	IBT_RECV_Q	= 1 << 1	/* Op applies to the Recv Q */
227 } ibt_qflags_t;
228 
229 /*
230  * CQ priorities
231  * The IBTF will attempt to implement a coarse 3 level priority scheme
232  * (IBT_CQ_LOW, IBT_CQ_MEDIUM, IBT_CQ_HIGH) based on the class of client
233  * driver. The requested priority is not guaranteed. If a CI implementation
234  * has the ability to implement priority CQs, then the IBTF will take advantage
235  * of that when calling the CI to create a CQ by passing a priority indicator
236  * to the CI.
237  */
238 typedef enum ibt_cq_priority_e {
239 	IBT_CQ_DEFAULT		= 0x0,
240 	IBT_CQ_LOW		= 0x1,
241 	IBT_CQ_MEDIUM		= 0x2,
242 	IBT_CQ_HIGH		= 0x3,
243 	IBT_CQ_OPAQUE_1		= 0x4,
244 	IBT_CQ_OPAQUE_2		= 0x5,
245 	IBT_CQ_OPAQUE_3		= 0x6,
246 	IBT_CQ_OPAQUE_4		= 0x7,
247 	IBT_CQ_OPAQUE_5		= 0x8,
248 	IBT_CQ_OPAQUE_6		= 0x9,
249 	IBT_CQ_OPAQUE_7		= 0xA,
250 	IBT_CQ_OPAQUE_8		= 0xB,
251 	IBT_CQ_OPAQUE_9		= 0xC,
252 	IBT_CQ_OPAQUE_10	= 0xD,
253 	IBT_CQ_OPAQUE_11	= 0xE,
254 	IBT_CQ_OPAQUE_12	= 0xF,
255 	IBT_CQ_OPAQUE_13	= 0x10,
256 	IBT_CQ_OPAQUE_14	= 0x11,
257 	IBT_CQ_OPAQUE_15	= 0x12,
258 	IBT_CQ_OPAQUE_16	= 0x13
259 } ibt_cq_priority_t;
260 
261 /*
262  * Attributes when creating a Completion Queue Scheduling Handle.
263  */
264 typedef struct ibt_cq_sched_attr_s {
265 	ibt_cq_sched_flags_t	cqs_flags;
266 	ibt_cq_priority_t	cqs_priority;
267 	uint_t			cqs_load;
268 	ibt_sched_hdl_t		cqs_affinity_hdl;
269 } ibt_cq_sched_attr_t;
270 
271 
272 /*
273  * ibt_cq_handler_t
274  *	Pointer to a work request completion handler function.  This function
275  *	is called when a WR completes on a CQ that is being used by the IBTF
276  *	client driver that registered the function.
277  */
278 typedef void (*ibt_cq_handler_t)(ibt_cq_hdl_t ibt_cq, void *arg);
279 
280 /*
281  * Service Data and flags.
282  *	(IBTA Spec Release 1.1, Vol-1 Ref: 15.2.5.14.4)
283  *
284  * The ServiceData8.1 (sb_data8[0]) through ServiceData64.2 (sb_data64[1])
285  * components together constitutes a 64-byte area in which any data may be
286  * placed. It is intended to be a convenient way for a service to provide its
287  * clients with some initial data.
288  *
289  * In addition, this 64-byte area is formally divided into a total of 30
290  * components, 16 8-bit (uint8_t) components, then 8 16-bit (uint16_t)
291  * components, then 6 32-bit (uint32_t) components, then 2 64-bit (uint64_t)
292  * components,  thereby assigning ComponentMask bits (ibt_srv_data_flags_t) to
293  * variously-sized segments of the data. All data are in host endian format.
294  * This allows query operations (ibt_get_paths()) to be used which match
295  * parts of the Service Data, making it possible, for example, for
296  * service-specific parts of the ServiceData to serve as a binary-coded
297  * extension to the ServiceName for purposes of lookup.
298  */
299 typedef enum ibt_srv_data_flags_e {
300 	IBT_NO_SDATA	= 0,
301 
302 	IBT_SDATA8_0	= (1 << 0),
303 	IBT_SDATA8_1	= (1 << 1),
304 	IBT_SDATA8_2	= (1 << 2),
305 	IBT_SDATA8_3	= (1 << 3),
306 	IBT_SDATA8_4	= (1 << 4),
307 	IBT_SDATA8_5	= (1 << 5),
308 	IBT_SDATA8_6	= (1 << 6),
309 	IBT_SDATA8_7	= (1 << 7),
310 	IBT_SDATA8_8	= (1 << 8),
311 	IBT_SDATA8_9	= (1 << 9),
312 	IBT_SDATA8_10	= (1 << 10),
313 	IBT_SDATA8_11	= (1 << 11),
314 	IBT_SDATA8_12	= (1 << 12),
315 	IBT_SDATA8_13	= (1 << 13),
316 	IBT_SDATA8_14	= (1 << 14),
317 	IBT_SDATA8_15	= (1 << 15),
318 
319 	IBT_SDATA16_0	= (1 << 16),
320 	IBT_SDATA16_1	= (1 << 17),
321 	IBT_SDATA16_2	= (1 << 18),
322 	IBT_SDATA16_3	= (1 << 19),
323 	IBT_SDATA16_4	= (1 << 20),
324 	IBT_SDATA16_5	= (1 << 21),
325 	IBT_SDATA16_6	= (1 << 22),
326 	IBT_SDATA16_7	= (1 << 23),
327 
328 	IBT_SDATA32_0	= (1 << 24),
329 	IBT_SDATA32_1	= (1 << 25),
330 	IBT_SDATA32_2	= (1 << 26),
331 	IBT_SDATA32_3	= (1 << 27),
332 
333 	IBT_SDATA64_0	= (1 << 28),
334 	IBT_SDATA64_1	= (1 << 29),
335 
336 	IBT_SDATA_ALL	= 0x3FFFFFFF
337 } ibt_srv_data_flags_t;
338 
339 typedef struct ibt_srv_data_s {
340 	uint8_t		s_data8[16];	/* 8-bit service data fields. */
341 	uint16_t	s_data16[8];	/* 16-bit service data fields. */
342 	uint32_t	s_data32[4];	/* 32-bit service data fields. */
343 	uint64_t	s_data64[2];	/* 64-bit service data fields. */
344 } ibt_srv_data_t;
345 
346 /*
347  * Path flags, used in ibt_get_paths()
348  */
349 typedef enum ibt_path_flags_e {
350 	IBT_PATH_NO_FLAGS	= 0,
351 	IBT_PATH_APM		= 1 << 0,	/* APM is desired. */
352 	IBT_PATH_AVAIL		= 1 << 2,
353 	IBT_PATH_PERF		= 1 << 3,
354 	IBT_PATH_MULTI_SVC_DEST	= 1 << 4,	/* Multiple ServiceRecords */
355 	IBT_PATH_HOP		= 1 << 5,	/* pa_hop is specified. */
356 	IBT_PATH_PKEY		= 1 << 6	/* pa_pkey is specified. */
357 } ibt_path_flags_t;
358 
359 /*
360  * Path attributes.
361  *
362  * The ibt_path_attr_t structure is used to specify required attributes in a
363  * path from the requesting (source) node to a specified destination node.
364  * Attributes that are don't care should be set to NULL or '0'.
365  * A destination must be specified, where a destination can be defined as
366  * one of the following:
367  *
368  *	o Service Name
369  *	o Service ID (SID)
370  *	o Array of DGIDs.
371  *	o Service Name and Array of DGIDs.
372  */
373 typedef struct ibt_path_attr_s {
374 	ib_gid_t		*pa_dgids;	/* Array of DGIDs */
375 	ib_gid_t		pa_sgid;
376 	ib_guid_t		pa_hca_guid;
377 	char			*pa_sname;	/* ASCII Service name  */
378 						/* NULL Terminated */
379 	ib_svc_id_t		pa_sid;		/* Service ID */
380 	ibt_srv_data_flags_t	pa_sd_flags;	/* Service Data flags. */
381 	ibt_srv_data_t		pa_sdata;	/* Service Data */
382 	uint8_t			pa_hca_port_num;
383 	uint8_t			pa_num_dgids;	/* size of pa_dgids array */
384 	uint8_t			pa_sl:4;
385 	ibt_mtu_req_t		pa_mtu;
386 	ibt_srate_req_t		pa_srate;
387 	ibt_pkt_lt_req_t	pa_pkt_lt;	/* Packet Life Time Request */
388 	uint_t			pa_flow:20;
389 	uint8_t			pa_hop;		/* IBT_PATH_HOP */
390 	uint8_t			pa_tclass;
391 	ib_pkey_t		pa_pkey;	/* IBT_PATH_PKEY */
392 } ibt_path_attr_t;
393 
394 /*
395  * Path Information.
396  *
397  * The ibt_get_paths() performs SA Path record lookups to select a path(s) to
398  * a given destination(s), details of selected path(s) are returned in this
399  * structure.
400  *
401  * The ibt_path_info_t contains all the attributes of the best path(s), as
402  * as determined by IBTL, to the specified destination(s), including the
403  * local HCA and HCA port to use to access the fabric.
404  *
405  * The Service ID (pi_sid) and Service Data (pi_sdata) are returned only for
406  * lookups based on Service ID or/and Service Name.
407  */
408 typedef struct ibt_path_info_s {
409 	ib_guid_t	pi_hca_guid;		/* Local HCA GUID; 0 implies */
410 						/* this record is invalid */
411 	ib_svc_id_t	pi_sid;			/* Service ID */
412 	ibt_srv_data_t	pi_sdata;		/* Service Data */
413 
414 	ibt_cep_path_t	pi_prim_cep_path;	/* Contains CEP adds info */
415 	ibt_cep_path_t	pi_alt_cep_path;	/* RC & UC Only, valid if */
416 						/* cep_hca_port_num is not */
417 						/* '0' */
418 	ib_mtu_t	pi_path_mtu;		/* Common path MTU */
419 	ib_time_t	pi_prim_pkt_lt;
420 	ib_time_t	pi_alt_pkt_lt;
421 } ibt_path_info_t;
422 
423 /*
424  * Optional Alternate Path attributes.
425  *
426  * The ibt_alt_path_attr_t structure is used to specify additional optional
427  * attributes when requesting an alternate path for an existing channel.
428  *
429  * Attributes that are don't care should be set to NULL or '0'.
430  */
431 typedef struct ibt_alt_path_attr_s {
432 	ib_gid_t		apa_sgid;
433 	ib_gid_t		apa_dgid;
434 	ibt_srate_req_t		apa_srate;
435 	ibt_pkt_lt_req_t	apa_pkt_lt;	/* Packet Life Time Request */
436 	uint_t			apa_flow:20;
437 	uint8_t			apa_sl:4;
438 	uint8_t			apa_hop;
439 	uint8_t			apa_tclass;
440 } ibt_alt_path_attr_t;
441 
442 /*
443  * Path Information for Alternate Path - input to ibt_set_alt_path().
444  */
445 typedef struct ibt_alt_path_info_s {
446 	ibt_cep_path_t	ap_alt_cep_path;	/* RC & UC Only, valid if */
447 						/* cep_hca_port_num is not */
448 						/* '0' */
449 	ib_time_t	ap_alt_pkt_lt;
450 } ibt_alt_path_info_t;
451 
452 /*
453  * Open Channel flags, Used in ibt_open_rc_channel call
454  */
455 typedef enum ibt_chan_open_flags_e {
456 	IBT_OCHAN_NO_FLAGS		= 0,
457 	IBT_OCHAN_REDIRECTED		= 1 << 0,
458 	IBT_OCHAN_PORT_REDIRECTED	= 1 << 1,
459 	IBT_OCHAN_DUP			= 1 << 2,
460 	IBT_OCHAN_PORT_FIXED		= 1 << 3,
461 	IBT_OCHAN_OPAQUE1		= 1 << 4,
462 	IBT_OCHAN_OPAQUE2		= 1 << 5,
463 	IBT_OCHAN_OPAQUE3		= 1 << 6,
464 	IBT_OCHAN_OPAQUE4		= 1 << 7,
465 	IBT_OCHAN_OPAQUE5		= 1 << 8
466 } ibt_chan_open_flags_t;
467 
468 /*
469  * Arguments for ibt_open_rc_channel().
470  *
471  * oc_priv_data should be NULL or point to a buffer allocated by the caller,
472  * the size of which should be in oc_priv_data_len, where oc_priv_data_len <=
473  * IBT_REQ_PRIV_DATA_SZ.
474  *
475  * When ibt_open_rc_channel returns with ibt_cm_reason_t of
476  * IBT_CM_REDIRECT_PORT, the client can re-issue ibt_open_rc_channel setting
477  * new fields as follows:
478  *
479  * Set (ibt_chan_args_t)->oc_cm_cep_path  =
480  *    original (ibt_chan_open_args_t)->oc_path->pi_prim_cep_path.
481  * Set (ibt_chan_args_t)->oc_cm_pkt_lt  =
482  *    original (ibt_chan_open_args_t)->oc_prim_pkt_lt.
483  * Update (ibt_chan_args_t)->oc_path based on path information returned
484  * from ibt_get_paths using the gid in the return data below:
485  * 	(ibt_rc_returns_t)->rc_arej_info.ari_redirect_info.ari_gid.
486  * Set flags to IBT_OCHAN_PORT_REDIRECTED.
487  *
488  * Note : oc_cm_path is not used for any other scenario, and must be set for
489  * IBT_OCHAN_PORT_REDIRECTED.
490  *
491  * When ibt_open_rc_channel returns with ibt_cm_reason_t of
492  * IBT_CM_REDIRECT_CM, the client can re-issue ibt_open_rc_channel setting
493  * new fields as follows:
494  *
495  * Update (ibt_chan_args_t)->oc_path based on path information returned
496  * from ibt_get_paths using the return data in
497  * (ibt_rc_returns_t)->rc_arej_info.ari_redirect_info.
498  *
499  * Set (ibt_chan_args_t)->oc_cm_redirect_info =
500  *    Returned (ibt_rc_returns_t)->rc_arej_info.ari_redirect_info.
501  * Set flags to IBT_OCHAN_REDIRECTED.
502  *
503  * Note:
504  *
505  * IBT_OCHAN_PORT_REDIRECTED flag cannot be used to specify a remote CM MAD
506  * address, that is on a different subnet than the RC connection itself.
507  *
508  * Not specified attributes should be set to "NULL" or "0".
509  */
510 typedef struct ibt_chan_open_args_s {
511 	ibt_path_info_t 	*oc_path;	/* Primary & Alternate */
512 	ibt_cm_handler_t 	oc_cm_handler;	/* cm_handler - required */
513 	void			*oc_cm_clnt_private;	/* First argument to */
514 							/* cm_handler */
515 	ibt_rnr_retry_cnt_t	oc_path_rnr_retry_cnt;
516 	uint8_t			oc_path_retry_cnt:3;
517 	uint8_t			oc_rdma_ra_out;
518 	uint8_t			oc_rdma_ra_in;
519 	ibt_priv_data_len_t	oc_priv_data_len;	/* Number of bytes of */
520 							/* REQ Private data */
521 	void			*oc_priv_data;		/* REQ private data */
522 	ibt_channel_hdl_t	oc_dup_channel; 	/* IBT_OCHAN_DUP */
523 	ibt_redirect_info_t	*oc_cm_redirect_info;	/* Redirect params */
524 							/* for port and CM */
525 							/* redirection */
526 	ibt_cep_path_t		*oc_cm_cep_path;	/* Optional Path for */
527 							/* CM MADs on */
528 							/* port redirection */
529 	ib_time_t		oc_cm_pkt_lt;		/* Pkt life time for */
530 							/* CM MADs */
531 	uint32_t		oc_opaque1:4;
532 	uint32_t		oc_opaque2:24;
533 	uint32_t		oc_opaque3;
534 	uint32_t		oc_opaque4;
535 } ibt_chan_open_args_t;
536 
537 
538 /*
539  * Define an optional RC return arguments structure. This contains return
540  * parameters from ibt_open_rc_channel() when called in BLOCKING mode.
541  *
542  * rc_priv_data should be NULL or point to a buffer allocated by the caller,
543  * the size of which should be in rc_priv_data_len, where rc_priv_data_len <=
544  * IBT_REP_PRIV_DATA_SZ.
545  */
546 typedef struct ibt_rc_returns_s {
547 	uint8_t			rc_rdma_ra_in;	/* Arbitrated resp resources */
548 	uint8_t			rc_rdma_ra_out;	/* Arbitrated initiator depth */
549 	ibt_arej_info_t		rc_arej_info;
550 	ibt_cm_reason_t		rc_status;
551 	uint8_t			rc_failover_status;	/* Failover status */
552 	ibt_priv_data_len_t	rc_priv_data_len;
553 	void			*rc_priv_data;
554 } ibt_rc_returns_t;
555 
556 /*
557  * Define a callback function that can be used in Non-Blocking calls to
558  * ibt_recycle_rc().
559  */
560 
561 typedef	void	(*ibt_recycle_handler_t)(ibt_status_t ibt_status, void *arg);
562 
563 /*
564  * Define an optional return arguments structure from ibt_set_alt_path()
565  * This contains return parameters, when called in BLOCKING mode.
566  *
567  * ap_priv_data should be NULL or point to a buffer allocated by the caller,
568  * the size of which should be in ap_priv_data_len, where ap_priv_data_len <=
569  * IBT_APR_PRIV_DATA_SZ.
570  * The private data from APR is returned in ap_priv_data.
571  * The caller specifies amount of APR private data to be returned in
572  * ap_priv_data_len.
573  */
574 typedef struct ibt_ap_returns_s {
575 	ibt_ap_status_t		ap_status;
576 	boolean_t		ap_arej_info_valid;
577 	ibt_arej_info_t		ap_arej_info;	/* Only valid if redirect */
578 	ibt_priv_data_len_t	ap_priv_data_len;
579 	void			*ap_priv_data;
580 } ibt_ap_returns_t;
581 
582 /*
583  * UD remote destination attributes.
584  *
585  * ud_sid, ud_addr, ud_pkt_lt and ud_pkey_ix must be specified.
586  * These values can be as returned in an ibt_path_info_t struct from an
587  * ibt_get_paths() call.
588  *
589  * ud_priv_data should be NULL or point to a buffer allocated by the caller,
590  * the size of which is in ud_priv_data_len, where ud_priv_data_len <=
591  * IBT_SIDR_REQ_PRIV_DATA_SZ.
592  */
593 typedef struct ibt_ud_dest_attr_s {
594 	ib_svc_id_t		ud_sid;		/* Service ID */
595 	ibt_adds_vect_t		*ud_addr;	/* Address Info */
596 	uint16_t		ud_pkey_ix;	/* Pkey Index */
597 	ib_time_t		ud_pkt_lt;
598 	ibt_cm_ud_handler_t	ud_cm_handler;	/* An optional CM UD event */
599 						/* which must be NULL */
600 						/* if not specified. */
601 	void			*ud_cm_private; /* First arg to ud_cm_handler */
602 	ibt_priv_data_len_t	ud_priv_data_len;
603 	void			*ud_priv_data;	/* SIDR REQ private data */
604 } ibt_ud_dest_attr_t;
605 
606 /*
607  * Define an optional UD return arguments structure.
608  *
609  * ud_priv_data should be NULL or point to a buffer allocated by the caller,
610  * the size of which should be in ud_priv_data_len, where ud_priv_data_len <=
611  * IBT_SIDR_REP_PRIV_DATA_SZ.
612  */
613 typedef struct ibt_ud_returns_s {
614 	ibt_sidr_status_t	ud_status;
615 	ibt_redirect_info_t	ud_redirect;
616 	ib_qpn_t		ud_dqpn;	/* Returned destination QPN */
617 	ib_qkey_t		ud_qkey;	/* Q_Key for destination QPN */
618 	ibt_priv_data_len_t	ud_priv_data_len;
619 	void			*ud_priv_data;
620 } ibt_ud_returns_t;
621 
622 /*
623  * Multicast group attributes
624  * Not specified attributes should be set to "NULL" or "0".
625  * Used by ibt_join_mcg()/ibt_query_mcg().
626  *
627  * mc_qkey, mc_pkey, mc_flow, mc_tclass, mc_sl, mc_join_state are required for
628  * create - ibt_join_mcg().
629  */
630 typedef struct ibt_mcg_attr_s {
631 	ib_gid_t		mc_mgid;	/* MGID */
632 	ib_gid_t		mc_pgid;	/* SGID of the end port being */
633 						/* added to the MCG. */
634 	ib_qkey_t		mc_qkey;	/* Q_Key */
635 	ib_pkey_t		mc_pkey;	/* Partition key for this MCG */
636 	ibt_mtu_req_t		mc_mtu_req;	/* MTU */
637 	ibt_srate_req_t		mc_rate_req;	/* Static rate */
638 	ibt_pkt_lt_req_t	mc_pkt_lt_req;	/* Packet Life Time Request */
639 	uint_t			mc_flow:20;	/* FlowLabel. */
640 	uint8_t			mc_hop;		/* HopLimit */
641 	uint8_t			mc_tclass;	/* Traffic Class. */
642 	uint8_t			mc_sl:4;	/* Service Level */
643 	uint8_t			mc_scope:4,	/* Multicast Address Scope */
644 				mc_join_state:4; /* FULL For create */
645 	ib_lid_t		mc_opaque1;
646 } ibt_mcg_attr_t;
647 
648 /*
649  * Multicast group attributes.
650  * returned by ibt_join_mcg()/ibt_query_mcg().
651  */
652 typedef struct ibt_mcg_info_s {
653 	ibt_adds_vect_t		mc_adds_vect;   /* Address information */
654 	ib_mtu_t		mc_mtu;		/* MTU */
655 	ib_qkey_t		mc_qkey;	/* Q_Key */
656 	uint16_t		mc_pkey_ix;	/* Pkey Index */
657 	uint8_t			mc_scope:4;	/* Multicast Address Scope */
658 	clock_t			mc_opaque2;
659 } ibt_mcg_info_t;
660 
661 /*
662  * Define a callback function that can be used in Non-Blocking calls to
663  * ibt_join_mcg().
664  */
665 typedef void (*ibt_mcg_handler_t)(void *arg, ibt_status_t retval,
666     ibt_mcg_info_t *mcg_info_p);
667 
668 
669 /*
670  * Service Flags - sd_flags
671  *
672  *    IBT_SRV_PEER_TYPE_SID	Peer-to-peer Service IDs.
673  */
674 
675 typedef enum ibt_service_flags_e {
676 	IBT_SRV_NO_FLAGS	= 0x0,
677 	IBT_SRV_PEER_TYPE_SID	= 0x1
678 } ibt_service_flags_t;
679 
680 /*
681  * Define a Service ID Registration structure.
682  */
683 typedef struct ibt_srv_desc_s {
684 	ibt_cm_ud_handler_t	sd_ud_handler;	/* UD Service Handler */
685 	ibt_cm_handler_t	sd_handler;	/* Non-UD Service Handler */
686 	ibt_service_flags_t	sd_flags;	/* Flags */
687 } ibt_srv_desc_t;
688 
689 /*
690  * Flag to indicate ibt_bind_service() to or NOT-to clean-up Stale matching
691  * Local Service Records with SA prior to binding the new request.
692  */
693 #define	IBT_SBIND_NO_FLAGS	0
694 #define	IBT_SBIND_NO_CLEANUP	1
695 
696 /*
697  * Define a Service ID Binding structure (data for service records).
698  */
699 typedef struct ibt_srv_bind_s {
700 	uint64_t	sb_key[2];	/* Service Key */
701 	char		*sb_name;	/* Service Name (up to 63 chars) */
702 	uint32_t	sb_lease;	/* Service Lease period (in seconds) */
703 	ib_pkey_t	sb_pkey;	/* Service P_Key */
704 	ibt_srv_data_t	sb_data;	/* Service Data */
705 	uint_t		sb_flag;	/* indicates to/not-to clean-up stale */
706 					/* matching local service records. */
707 } ibt_srv_bind_t;
708 
709 /*
710  * ibt_cm_delay() flags.
711  *
712  * Refer to InfiniBand Architecture Release Volume 1 Rev 1.0a:
713  * Section 12.6.6 MRA
714  */
715 typedef enum ibt_cmdelay_flags_e {
716 	IBT_CM_DELAY_REQ	= 0,
717 	IBT_CM_DELAY_REP	= 1,
718 	IBT_CM_DELAY_LAP	= 2
719 } ibt_cmdelay_flags_t;
720 
721 /*
722  * The payload for DDI events passed on IB_PROP_UPDATE_EVENT.
723  * This is passed as the bus nexus data to event_handler(9e).
724  */
725 typedef struct ibt_prop_update_payload_s {
726 	union {
727 		struct {
728 			uint32_t	srv_updated:1;
729 			uint32_t	gid_updated:1;
730 		} _ib_prop_update_struct;
731 		uint32_t	prop_updated;
732 	} _ib_prop_update_union;
733 	ibt_status_t		ib_reprobe_status;
734 
735 #define	ib_srv_prop_updated	\
736     _ib_prop_update_union._ib_prop_update_struct.srv_updated
737 #define	ib_gid_prop_updated	\
738     _ib_prop_update_union._ib_prop_update_struct.gid_updated
739 #define	ib_prop_updated		\
740     _ib_prop_update_union.prop_updated
741 } ibt_prop_update_payload_t;
742 
743 
744 /*
745  * FUNCTION PROTOTYPES.
746  */
747 
748 /*
749  * ibt_attach() and ibt_detach():
750  *	These are the calls into IBTF used during client driver attach() and
751  *	detach().
752  *
753  *	The IBTF returns an ibt_clnt_hdl_t to the client. This handle is used
754  *	to identify this client device in all subsequent calls into the IBTF.
755  *
756  *	The ibt_detach() routine is called from a client driver's detach()
757  *	routine to deregister itself from the IBTF.
758  */
759 ibt_status_t ibt_attach(ibt_clnt_modinfo_t *mod_infop, dev_info_t *arg,
760     void *clnt_private, ibt_clnt_hdl_t *ibt_hdl_p);
761 
762 ibt_status_t ibt_detach(ibt_clnt_hdl_t ibt_hdl);
763 
764 /*
765  * HCA FUNCTIONS
766  */
767 
768 /*
769  * ibt_get_hca_list()
770  *	Returns the number of HCAs in a system and their node GUIDS.
771  *
772  *	If hca_list_p is not NULL then the memory for the array of GUIDs is
773  *	allocated by the IBTF and should be freed by the caller using
774  *	ibt_free_hca_list(). If hca_list_p is NULL then no memory is allocated
775  *	by ibt_get_hca_list and only the number of HCAs in a system is returned.
776  *
777  *	It is assumed that the caller can block in kmem_alloc.
778  *
779  * ibt_free_hca_list()
780  *	Free the memory allocated by ibt_get_hca_list().
781  */
782 uint_t ibt_get_hca_list(ib_guid_t **hca_list_p);
783 
784 void ibt_free_hca_list(ib_guid_t *hca_list, uint_t entries);
785 
786 /*
787  * ibt_open_hca()	- Open/Close a HCA. HCA can only be opened/closed
788  * ibt_close_hca()	  once. ibt_open_hca() takes a client's ibt handle
789  *			  and a GUID and returns a unique IBT client HCA
790  *			  handle.
791  *
792  * These routines can not be called from interrupt context.
793  */
794 ibt_status_t ibt_open_hca(ibt_clnt_hdl_t ibt_hdl, ib_guid_t hca_guid,
795     ibt_hca_hdl_t *hca_hdl);
796 
797 ibt_status_t ibt_close_hca(ibt_hca_hdl_t hca_hdl);
798 
799 
800 /*
801  * ibt_query_hca()
802  * ibt_query_hca_byguid()
803  * 	Returns the static attributes of the specified HCA
804  */
805 ibt_status_t ibt_query_hca(ibt_hca_hdl_t hca_hdl, ibt_hca_attr_t *hca_attrs);
806 
807 ibt_status_t ibt_query_hca_byguid(ib_guid_t hca_guid,
808     ibt_hca_attr_t *hca_attrs);
809 
810 
811 /*
812  * ibt_query_hca_ports()
813  * ibt_query_hca_ports_byguid()
814  *	Returns HCA port/ports attributes for the specified HCA port/ports.
815  *	ibt_query_hca_ports() allocates the memory required for the
816  *	ibt_hca_portinfo_t struct as well as the memory required for the SGID
817  *	and P_Key tables contained within that struct.
818  *
819  * ibt_free_portinfo()
820  *	Frees the memory allocated for a specified ibt_hca_portinfo_t struct.
821  */
822 ibt_status_t ibt_query_hca_ports(ibt_hca_hdl_t hca_hdl, uint8_t port,
823     ibt_hca_portinfo_t **port_info_p, uint_t *ports_p, uint_t *size_p);
824 
825 ibt_status_t ibt_query_hca_ports_byguid(ib_guid_t hca_guid, uint8_t port,
826     ibt_hca_portinfo_t **port_info_p, uint_t *ports_p, uint_t *size_p);
827 
828 void ibt_free_portinfo(ibt_hca_portinfo_t *port_info, uint_t size);
829 
830 /*
831  * ibt_set_hca_private()	- Set/get the client private data.
832  * ibt_get_hca_private()
833  */
834 void ibt_set_hca_private(ibt_hca_hdl_t hca_hdl, void *clnt_private);
835 void *ibt_get_hca_private(ibt_hca_hdl_t hca_hdl);
836 
837 /*
838  * ibt_hca_handle_to_guid()
839  *	A helper function to retrieve HCA GUID for the specified handle.
840  *	Returns HCA GUID on which the specified Channel is allocated. Valid
841  *	if it is non-NULL on return.
842  */
843 ib_guid_t ibt_hca_handle_to_guid(ibt_hca_hdl_t hca);
844 
845 /*
846  * ibt_hca_guid_to_handle()
847  *	A helper function to retrieve a hca handle from a HCA GUID.
848  */
849 ibt_status_t ibt_hca_guid_to_handle(ibt_clnt_hdl_t ibt_hdl, ib_guid_t hca_guid,
850     ibt_hca_hdl_t *hca_hdl);
851 
852 /*
853  * CONNECTION ESTABLISHMENT/TEAR DOWN FUNCTIONS.
854  */
855 
856 /*
857  * ibt_get_paths
858  *	Finds the best path to a specified destination (as determined by the
859  *	IBTL) that satisfies the requirements specified in an ibt_path_attr_t
860  *	struct.
861  */
862 ibt_status_t ibt_get_paths(ibt_clnt_hdl_t ibt_hdl, ibt_path_flags_t flags,
863     ibt_path_attr_t *attr, uint8_t max_paths, ibt_path_info_t *paths,
864     uint8_t *num_paths_p);
865 
866 
867 /*
868  * Callback function that can be used in ibt_aget_paths(), a Non-Blocking
869  * version of ibt_get_paths().
870  */
871 typedef void (*ibt_path_handler_t)(void *arg, ibt_status_t retval,
872     ibt_path_info_t *paths, uint8_t num_paths);
873 
874 /*
875  * Find path(s) to a given destination or service asynchronously.
876  * ibt_aget_paths() is a Non-Blocking version of ibt_get_paths().
877  */
878 ibt_status_t ibt_aget_paths(ibt_clnt_hdl_t ibt_hdl, ibt_path_flags_t flags,
879     ibt_path_attr_t *attr, uint8_t max_paths, ibt_path_handler_t func,
880     void  *arg);
881 
882 /*
883  * ibt_get_alt_path
884  *	Finds the best alternate path to a specified channel (as determined by
885  *	the IBTL) that satisfies the requirements specified in an
886  *	ibt_alt_path_attr_t struct.  The specified channel must have been
887  *	previously opened successfully using ibt_open_rc_channel.
888  */
889 ibt_status_t ibt_get_alt_path(ibt_channel_hdl_t chan, ibt_path_flags_t flags,
890     ibt_alt_path_attr_t *attr, ibt_alt_path_info_t *alt_path);
891 
892 /*
893  * ibt_open_rc_channel
894  * 	ibt_open_rc_channel() opens a previously allocated RC communication
895  *	channel. The IBTL initiates the channel establishment protocol.
896  */
897 ibt_status_t ibt_open_rc_channel(ibt_channel_hdl_t rc_chan,
898     ibt_chan_open_flags_t flags, ibt_execution_mode_t mode,
899     ibt_chan_open_args_t *args, ibt_rc_returns_t *returns);
900 
901 /*
902  * ibt_close_rc_channel
903  *	Close the specified channel. Outstanding work requests are flushed
904  *	so that the client can do the associated clean up. After that, the
905  *	client will usually deregister the previously registered memory,
906  *	then free the channel by calling ibt_free_rc_channel().
907  *
908  *	This function will reuse CM event Handler provided in
909  *	ibt_open_rc_channel().
910  */
911 ibt_status_t ibt_close_rc_channel(ibt_channel_hdl_t rc_chan,
912     ibt_execution_mode_t mode, void *priv_data,
913     ibt_priv_data_len_t priv_data_len, uint8_t *ret_status,
914     void *ret_priv_data, ibt_priv_data_len_t *ret_priv_data_len_p);
915 
916 /*
917  * ibt_prime_close_rc_channel
918  *
919  *	Allocates resources required for a close rc channel operation.
920  *	Calling ibt_prime_close_rc_channel() allows a channel to be
921  *	subsequently closed in interrupt context.
922  *
923  *	A call is first made to ibt_prime_close_rc_channel in non-interrupt
924  *	context, followed by ibt_close_rc_channel in non-blocking mode from
925  *	interrupt context
926  *
927  *	ibt_prime_close_rc_channel() can only be called on a previously opened
928  *	channel.
929  */
930 ibt_status_t ibt_prime_close_rc_channel(ibt_channel_hdl_t rc_chan);
931 
932 /*
933  * ibt_recycle_rc
934  *
935  *      Recycle a RC channel which has transitioned to Error state. The
936  *      ibt_recycle_rc() function transitions the channel from Error
937  *      state (IBT_STATE_ERROR) to the state ready for use by
938  *      ibt_open_rc_channel. Basically, this function is very similar to
939  *      ibt_alloc_rc_channel, but reuses an existing RC channel.
940  *
941  * Clients are allowed to make resource clean up/free calls in the CM handler
942  *
943  * Client(s) must not invoke blocking version (ie., func specified as NULL) of
944  * ibt_recycle_rc from cm callback for IBT_CM_EVENT_CONN_CLOSED
945  *
946  * Clients are strongly advised not to issue blocking calls from  func, as this
947  * would block the CM threads, and could delay or block other client connections
948  * and ibtl related API invocations.
949  */
950 ibt_status_t ibt_recycle_rc(ibt_channel_hdl_t rc_chan, ibt_cep_flags_t control,
951     uint8_t hca_port_num, ibt_recycle_handler_t func, void *arg);
952 
953 /*
954  * ibt_recycle_ud
955  *
956  *      Recycle a UD channel which has transitioned to Error state. The
957  *      ibt_recycle_ud() function transitions the channel from Error
958  *      state (IBT_STATE_ERROR) to a usable state (IBT_STATE_RTS).
959  *      Basically, this function is very similar to ibt_alloc_ud_channel,
960  *	but reuses an existing UD channel.
961  */
962 ibt_status_t ibt_recycle_ud(ibt_channel_hdl_t ud_chan, uint8_t hca_port_num,
963     uint16_t pkey_ix, ib_qkey_t qkey);
964 
965 /*
966  * MODIFY CHANNEL ATTRIBUTE FUNCTIONs.
967  */
968 
969 /*
970  * ibt_pause_sendq
971  * ibt_unpause_sendq
972  *	Place the send queue of the specified channel into the send queue
973  *	drained state.
974  *	Applicable for both RC and UD channels.
975  */
976 ibt_status_t ibt_pause_sendq(ibt_channel_hdl_t chan,
977     ibt_cep_modify_flags_t modify_flags);
978 
979 ibt_status_t ibt_unpause_sendq(ibt_channel_hdl_t chan);
980 
981 /*
982  * ibt_resize_queues()
983  *	Resize the SendQ/RecvQ sizes of a channel.
984  *
985  *	Applicable for both RC and UD channels.
986  */
987 ibt_status_t ibt_resize_queues(ibt_channel_hdl_t chan, ibt_qflags_t flags,
988     ibt_queue_sizes_t *request_sz, ibt_queue_sizes_t *actual_sz);
989 
990 /*
991  * ibt_query_queues()
992  *
993  *	Query the SendQ/RecvQ sizes of a channel.
994  *	Applicable for both RC and UD channels.
995  */
996 ibt_status_t ibt_query_queues(ibt_channel_hdl_t chan,
997     ibt_queue_sizes_t *actual_sz);
998 
999 /*
1000  * ibt_modify_rdma
1001  *	Enable/disable RDMA operations.
1002  *
1003  *	Applicable for RC channels only.
1004  */
1005 ibt_status_t ibt_modify_rdma(ibt_channel_hdl_t rc_chan,
1006     ibt_cep_modify_flags_t modify_flags, ibt_cep_flags_t flags);
1007 
1008 
1009 /*
1010  * ibt_set_rdma_resource
1011  *	Change the number of resources to be used for incoming and outgoing
1012  *	RDMA reads & Atomics.
1013  */
1014 ibt_status_t ibt_set_rdma_resource(ibt_channel_hdl_t rc_chan,
1015     ibt_cep_modify_flags_t modify_flags, uint8_t rdma_ra_out,
1016     uint8_t rdma_ra_in);
1017 
1018 /*
1019  * ibt_change_port
1020  *	Change the primary physical port of an RC channel. (This is done only
1021  *	if HCA supports this capability).  Can only be called on a paused
1022  *	channel.
1023  *	Applicable for RC channels only.
1024  */
1025 ibt_status_t ibt_change_port(ibt_channel_hdl_t rc_chan, uint8_t port_num);
1026 
1027 
1028 /*
1029  * SERVICE REGISTRATION FUNCTIONS
1030  */
1031 
1032 /*
1033  * ibt_register_service()
1034  * ibt_deregister_service()
1035  *	Register/deregister a Service (range of Service IDs) with the IBTF.
1036  *
1037  * ibt_bind_service()
1038  * ibt_unbind_service()
1039  * ibt_unbind_all_services()
1040  *	Bind a Service to a given port (GID), and optionally create
1041  *	service record(s) with the SA for ibt_get_paths() to find.
1042  */
1043 ibt_status_t ibt_register_service(ibt_clnt_hdl_t ibt_hdl,
1044     ibt_srv_desc_t *service, ib_svc_id_t sid, int num_sids,
1045     ibt_srv_hdl_t *srv_hdl_p, ib_svc_id_t *ret_sid_p);
1046 
1047 ibt_status_t ibt_deregister_service(ibt_clnt_hdl_t ibt_hdl,
1048     ibt_srv_hdl_t srv_hdl);
1049 
1050 ibt_status_t ibt_bind_service(ibt_srv_hdl_t srv_hdl, ib_gid_t gid,
1051     ibt_srv_bind_t *srv_bind, void *cm_private, ibt_sbind_hdl_t *sb_hdl_p);
1052 
1053 ibt_status_t ibt_unbind_service(ibt_srv_hdl_t srv_hdl, ibt_sbind_hdl_t sb_hdl);
1054 ibt_status_t ibt_unbind_all_services(ibt_srv_hdl_t srv_hdl);
1055 
1056 /*
1057  * ibt_cm_delay
1058  *	A client CM handler/srv_handler function can call this function to
1059  *	extend its response time to a CM event.
1060  *	Applicable for RC channels only.
1061  */
1062 ibt_status_t ibt_cm_delay(ibt_cmdelay_flags_t flags, void *cm_session_id,
1063     clock_t service_time, void *priv_data, ibt_priv_data_len_t priv_data_len);
1064 
1065 /*
1066  * ibt_cm_proceed
1067  *
1068  * An IBT client calls ibt_cm_proceed() to proceed with a connection that
1069  * previously deferred by the client returning IBT_CM_DEFER on a CM handler
1070  * callback. CM events that can be deferred and continued with ibt_cm_proceed()
1071  * are REQ_RCV, REP_RCV, LAP_RCV, and DREQ_RCV.
1072  *
1073  * NOTE :
1074  *
1075  * Typically CM completes processing of a client's CM handler return, with
1076  * IBT_CM_DEFER status, before  processing of the corresponding ibt_cm_proceed()
1077  * is started. However a race exists where by CM may not have completed the
1078  * client's handler return processing when ibt_cm_proceed() is called by a
1079  * client. In this case ibt_cm_proceed() will block until processing of the
1080  * client's CM handler return is complete.
1081  *
1082  * A client that returns IBT_CM_DEFER from the cm handler must
1083  * subsequently make a call to ibt_cm_proceed(). It is illegal to call
1084  * ibt_cm_proceed() on a channel that has not had the connection
1085  * establishment deferred.
1086  *
1087  * Client cannot call ibt_cm_proceed from the cm handler.
1088  */
1089 ibt_status_t ibt_cm_proceed(ibt_cm_event_type_t event, void *session_id,
1090     ibt_cm_status_t status, ibt_cm_proceed_reply_t *cm_event_data,
1091     void *priv_data, ibt_priv_data_len_t priv_data_len);
1092 
1093 /*
1094  * ibt_cm_ud_proceed
1095  *
1096  * An IBT client calls ibt_cm_ud_proceed() to proceed with an
1097  * IBT_CM_UD_EVENT_SIDR_REQ  UD event that was previously deferred by the
1098  * client returning IBT_CM_DEFER on a CM UD handler callback.
1099  * NOTE :
1100  *
1101  * Typically CM completes processing of a client's CM handler return, with
1102  * IBT_CM_DEFER status, before  processing of the corresponding
1103  * ibt_cm_ud_proceed() is started. However a race exists where by CM may not
1104  * have completed the client's handler return processing when
1105  * ibt_cm_ud_proceed() is called by a client. In this case ibt_cm_ud_proceed()
1106  * will block until processing of the client's CM handler return is complete.
1107  *
1108  * A client that returns IBT_CM_DEFER from the cm handler must
1109  * subsequently make a call to ibt_cm_ud_proceed(). It is illegal to call
1110  * ibt_cm_ud_proceed() on a channel that has not had the connection
1111  * establishment deferred.
1112  *
1113  * Client cannot call ibt_cm_ud_proceed from the cm handler.
1114  */
1115 ibt_status_t ibt_cm_ud_proceed(void *session_id, ibt_channel_hdl_t ud_channel,
1116     ibt_cm_status_t status, ibt_redirect_info_t *redirect_infop,
1117     void *priv_data, ibt_priv_data_len_t priv_data_len);
1118 
1119 
1120 /*
1121  * COMPLETION QUEUES.
1122  *
1123  * ibt_alloc_cq_sched()
1124  *	Reserve CQ scheduling class resources
1125  *
1126  * ibt_free_cq_sched()
1127  *	Free CQ scheduling class resources
1128  */
1129 ibt_status_t ibt_alloc_cq_sched(ibt_hca_hdl_t hca_hdl,
1130     ibt_cq_sched_attr_t *attr, ibt_sched_hdl_t *sched_hdl_p);
1131 
1132 ibt_status_t ibt_free_cq_sched(ibt_hca_hdl_t hca_hdl,
1133     ibt_sched_hdl_t sched_hdl, uint_t load);
1134 
1135 /*
1136  * ibt_alloc_cq()
1137  *	Allocate a completion queue.
1138  */
1139 ibt_status_t ibt_alloc_cq(ibt_hca_hdl_t hca_hdl, ibt_cq_attr_t *cq_attr,
1140     ibt_cq_hdl_t *ibt_cq_p, uint_t *real_size);
1141 
1142 /*
1143  * ibt_free_cq()
1144  *	Free allocated CQ resources.
1145  */
1146 ibt_status_t ibt_free_cq(ibt_cq_hdl_t ibt_cq);
1147 
1148 
1149 /*
1150  * ibt_enable_cq_notify()
1151  *	Enable notification requests on the specified CQ.
1152  *	Applicable for both RC and UD channels.
1153  *
1154  *	Completion notifications are disabled by setting the completion
1155  *	handler to NULL by calling ibt_set_cq_handler().
1156  */
1157 ibt_status_t ibt_enable_cq_notify(ibt_cq_hdl_t ibt_cq,
1158     ibt_cq_notify_flags_t notify_type);
1159 
1160 /*
1161  * ibt_set_cq_handler()
1162  *	Register a work request completion handler with the IBTF.
1163  *	Applicable for both RC and UD channels.
1164  *
1165  *	Completion notifications are disabled by setting the completion
1166  *	handler to NULL. When setting the handler to NULL, no additional
1167  *	calls to the CQ handler will be initiated.
1168  *
1169  *	This function does not otherwise change the state of previous
1170  *	calls to ibt_enable_cq_notify().
1171  */
1172 void ibt_set_cq_handler(ibt_cq_hdl_t ibt_cq,
1173     ibt_cq_handler_t completion_handler, void *arg);
1174 
1175 /*
1176  * ibt_poll_cq()
1177  *	Poll the specified CQ for the completion of work requests (WRs).
1178  *	If the CQ contains completed WRs, up to num_wc of them are returned.
1179  *	Applicable for both RC and UD channels.
1180  */
1181 ibt_status_t ibt_poll_cq(ibt_cq_hdl_t ibt_cq, ibt_wc_t *work_completions,
1182     uint_t num_wc, uint_t *num_polled);
1183 
1184 /*
1185  * ibt_query_cq()
1186  *	Return the total number of entries in the CQ.
1187  */
1188 ibt_status_t ibt_query_cq(ibt_cq_hdl_t ibt_cq, uint_t *entries);
1189 
1190 /*
1191  * ibt_resize_cq()
1192  *	Change the size of a CQ.
1193  */
1194 ibt_status_t ibt_resize_cq(ibt_cq_hdl_t ibt_cq, uint_t new_sz, uint_t *real_sz);
1195 
1196 /*
1197  * ibt_set_cq_private()
1198  * ibt_get_cq_private()
1199  *	Set/get the client private data.
1200  */
1201 void ibt_set_cq_private(ibt_cq_hdl_t ibt_cq, void *clnt_private);
1202 void *ibt_get_cq_private(ibt_cq_hdl_t ibt_cq);
1203 
1204 
1205 /*
1206  * Memory Management Functions.
1207  *	Applicable for both RC and UD channels.
1208  *
1209  * ibt_register_mr()
1210  * 	Prepares a virtually addressed memory region for use by a HCA. A
1211  *	description of the registered memory suitable for use in Work Requests
1212  *	(WRs) is returned in the ibt_mr_desc_t parameter.
1213  *
1214  * ibt_register_buf()
1215  * 	Prepares a memory region described by a buf(9S) struct for use by a
1216  *	HCA. A description of the registered memory suitable for use in
1217  *	Work Requests (WRs) is returned in the ibt_mr_desc_t parameter.
1218  *
1219  * ibt_query_mr()
1220  *	Retrieves information about a specified memory region.
1221  *
1222  * ibt_deregister_mr()
1223  *	Remove a memory region from a HCA translation table, and free all
1224  *	resources associated with the memory region.
1225  *
1226  * ibt_reregister_mr()
1227  * ibt_reregister_buf()
1228  *	Modify the attributes of an existing memory region.
1229  *
1230  * ibt_register_shared_mr()
1231  *	Given an existing memory region, a new memory region associated with
1232  *	the same physical locations is created.
1233  *
1234  * ibt_sync_mr()
1235  *	Sync a memory region for either RDMA reads or RDMA writes
1236  *
1237  * ibt_alloc_mw()
1238  *	Allocate a memory window.
1239  *
1240  * ibt_query_mw()
1241  *	Retrieves information about a specified memory window.
1242  *
1243  * ibt_free_mw()
1244  *	De-allocate the Memory Window.
1245  */
1246 ibt_status_t ibt_register_mr(ibt_hca_hdl_t hca_hdl, ibt_pd_hdl_t pd,
1247     ibt_mr_attr_t *mem_attr, ibt_mr_hdl_t *mr_hdl_p, ibt_mr_desc_t *mem_desc);
1248 
1249 ibt_status_t ibt_register_buf(ibt_hca_hdl_t hca_hdl, ibt_pd_hdl_t pd,
1250     ibt_smr_attr_t *mem_bpattr, struct buf *bp, ibt_mr_hdl_t *mr_hdl_p,
1251     ibt_mr_desc_t *mem_desc);
1252 
1253 ibt_status_t ibt_query_mr(ibt_hca_hdl_t hca_hdl, ibt_mr_hdl_t mr_hdl,
1254     ibt_mr_query_attr_t *attr);
1255 
1256 ibt_status_t ibt_deregister_mr(ibt_hca_hdl_t hca_hdl, ibt_mr_hdl_t mr_hdl);
1257 
1258 ibt_status_t ibt_reregister_mr(ibt_hca_hdl_t hca_hdl, ibt_mr_hdl_t mr_hdl,
1259     ibt_pd_hdl_t pd, ibt_mr_attr_t *mem_attr, ibt_mr_hdl_t *mr_hdl_p,
1260     ibt_mr_desc_t *mem_desc);
1261 
1262 ibt_status_t ibt_reregister_buf(ibt_hca_hdl_t hca_hdl, ibt_mr_hdl_t mr_hdl,
1263     ibt_pd_hdl_t pd, ibt_smr_attr_t *mem_bpattr, struct buf *bp,
1264     ibt_mr_hdl_t *mr_hdl_p, ibt_mr_desc_t *mem_desc);
1265 
1266 ibt_status_t ibt_register_shared_mr(ibt_hca_hdl_t hca_hdl, ibt_mr_hdl_t mr_hdl,
1267     ibt_pd_hdl_t pd, ibt_smr_attr_t *mem_sattr, ibt_mr_hdl_t *mr_hdl_p,
1268     ibt_mr_desc_t *mem_desc);
1269 
1270 ibt_status_t ibt_sync_mr(ibt_hca_hdl_t hca_hdl, ibt_mr_sync_t *mr_segments,
1271     size_t num_segments);
1272 
1273 ibt_status_t ibt_alloc_mw(ibt_hca_hdl_t hca_hdl, ibt_pd_hdl_t pd,
1274     ibt_mw_flags_t flags, ibt_mw_hdl_t *mw_hdl_p, ibt_rkey_t *rkey);
1275 
1276 ibt_status_t ibt_query_mw(ibt_hca_hdl_t hca_hdl, ibt_mw_hdl_t mw_hdl,
1277     ibt_mw_query_attr_t *mw_attr_p);
1278 
1279 ibt_status_t ibt_free_mw(ibt_hca_hdl_t hca_hdl, ibt_mw_hdl_t mw_hdl);
1280 
1281 /*
1282  * ibt_alloc_lkey()
1283  * 	Allocates physical buffer list resources for use in memory
1284  *	registrations.
1285  *
1286  *	Applicable for both RC and UD channels.
1287  */
1288 ibt_status_t ibt_alloc_lkey(ibt_hca_hdl_t hca_hdl, ibt_pd_hdl_t pd,
1289     ibt_lkey_flags_t flags, uint_t phys_buf_list_sz, ibt_mr_hdl_t *mr_p,
1290     ibt_pmr_desc_t *mem_desc_p);
1291 
1292 
1293 /*
1294  * Physical Memory Management Functions.
1295  *	Applicable for both RC and UD channels.
1296  *
1297  * ibt_register_phys_mr()
1298  *	Prepares a physically addressed memory region for use by a HCA.
1299  *
1300  * ibt_reregister_phys_mr()
1301  *	Modify the attributes of an existing memory region.
1302  */
1303 ibt_status_t ibt_register_phys_mr(ibt_hca_hdl_t hca_hdl, ibt_pd_hdl_t pd,
1304     ibt_pmr_attr_t *mem_pattr, ibt_mr_hdl_t *mr_hdl_p,
1305     ibt_pmr_desc_t *mem_desc_p);
1306 
1307 ibt_status_t ibt_reregister_phys_mr(ibt_hca_hdl_t hca_hdl, ibt_mr_hdl_t mr_hdl,
1308     ibt_pd_hdl_t pd, ibt_pmr_attr_t *mem_pattr, ibt_mr_hdl_t *mr_hdl_p,
1309     ibt_pmr_desc_t *mem_desc_p);
1310 
1311 
1312 /*
1313  * Address Translation.
1314  */
1315 
1316 /*
1317  * ibt_map_mem_area()
1318  *	Translate a kernel virtual address range into HCA physical addresses.
1319  *	A set of physical addresses, that can be used with "Reserved L_Key",
1320  *	register physical,  and "Fast Registration Work Request" operations
1321  *	is returned.
1322  */
1323 ibt_status_t ibt_map_mem_area(ibt_hca_hdl_t hca_hdl, ibt_va_attr_t *va_attrs,
1324     uint_t paddr_list_len, ibt_phys_buf_t *paddr_list_p, uint_t *num_paddr_p,
1325     size_t *paddr_bufsz_p, ib_memlen_t *paddr_offset_p, ibt_ma_hdl_t *ma_hdl_p);
1326 
1327 /*
1328  * ibt_unmap_mem_area()
1329  *	Un pin physical pages pinned during an ibt_map_mem_area() call.
1330  */
1331 ibt_status_t ibt_unmap_mem_area(ibt_hca_hdl_t hca_hdl, ibt_ma_hdl_t ma_hdl);
1332 
1333 /*
1334  * Work Request Functions
1335  *	Applicable for RC and UD channels.
1336  *
1337  * ibt_post_send()
1338  *	Post send work requests to the specified channel.
1339  *
1340  * ibt_post_recv()
1341  * ibt_post_srq()
1342  *	Post receive work requests to the specified channel.
1343  */
1344 ibt_status_t ibt_post_send(ibt_channel_hdl_t chan, ibt_send_wr_t *wr_list,
1345     uint_t num_wr, uint_t *posted);
1346 
1347 ibt_status_t ibt_post_recv(ibt_channel_hdl_t chan, ibt_recv_wr_t *wr_list,
1348     uint_t num_wr, uint_t *posted);
1349 
1350 ibt_status_t ibt_post_srq(ibt_srq_hdl_t srq, ibt_recv_wr_t *wr_list,
1351     uint_t num_wr, uint_t *posted);
1352 
1353 
1354 /*
1355  * Alternate Path Migration Functions.
1356  *	Applicable for RC channels only.
1357  *
1358  *
1359  * ibt_get_alt_path()
1360  *	Finds the best alternate path to a specified channel (as determined by
1361  *	the IBTL) that satisfies the requirements specified in an
1362  *	ibt_alt_path_attr_t struct.  The specified channel must have been
1363  *	previously opened successfully using ibt_open_rc_channel.
1364  *	This function also ensures that the service being accessed by the
1365  *	channel is available at the selected alternate port.
1366  *
1367  *	Note: The apa_dgid must be on the same destination channel adapter,
1368  *	if specified.
1369  *
1370  *
1371  * ibt_set_alt_path()
1372  *	Load the specified alternate path. Causes the CM to send an LAP message
1373  *	to the remote node. If successful, the local channel is updated with
1374  *	the new alternate path and the channel migration state is set to REARM.
1375  *	Can only be called on a previously opened RC channel. The channel must
1376  *	be either in RTS or paused state.
1377  *
1378  *
1379  * ibt_migrate_path()
1380  *	Force the CI to use the alternate path. The alternate path becomes
1381  *	the primary path. A new alternate path should be loaded and enabled.
1382  */
1383 ibt_status_t ibt_get_alt_path(ibt_channel_hdl_t rc_chan, ibt_path_flags_t flags,
1384     ibt_alt_path_attr_t *attr, ibt_alt_path_info_t *alt_pathp);
1385 
1386 ibt_status_t ibt_set_alt_path(ibt_channel_hdl_t rc_chan,
1387     ibt_execution_mode_t mode, ibt_alt_path_info_t *alt_pinfo, void *priv_data,
1388     ibt_priv_data_len_t priv_data_len, ibt_ap_returns_t *ret_args);
1389 
1390 ibt_status_t ibt_migrate_path(ibt_channel_hdl_t rc_chan);
1391 
1392 
1393 /*
1394  * Multicast group Functions.
1395  *	Applicable for UD channels only.
1396  */
1397 
1398 /*
1399  * ibt_attach_mcg()
1400  *	Attaches a UD channel to the specified multicast group. On successful
1401  *	completion, this channel will be provided with a copy of every
1402  *	multicast message addressed to the group specified by the MGID
1403  *	(mcg_info->mc_adds_vect.av_dgid) and received on the HCA port with
1404  *	which the channel is associated.
1405  */
1406 ibt_status_t ibt_attach_mcg(ibt_channel_hdl_t ud_chan,
1407     ibt_mcg_info_t *mcg_info);
1408 
1409 /*
1410  * ibt_detach_mcg()
1411  *	Detach the specified UD channel from the specified multicast group.
1412  */
1413 ibt_status_t ibt_detach_mcg(ibt_channel_hdl_t ud_chan,
1414     ibt_mcg_info_t *mcg_info);
1415 
1416 /*
1417  * ibt_join_mcg()
1418  *	Join a multicast group.  The first full member "join" causes the MCG
1419  *	to be created.
1420  */
1421 ibt_status_t ibt_join_mcg(ib_gid_t rgid, ibt_mcg_attr_t *mcg_attr,
1422     ibt_mcg_info_t *mcg_info_p,  ibt_mcg_handler_t func, void  *arg);
1423 
1424 /*
1425  * ibt_leave_mcg()
1426  *	The port associated with the port GID shall be removed from the
1427  *	multicast group specified by MGID (mc_gid) or from all the multicast
1428  *	groups of which it is a member if the MGID (mc_gid) is not specified
1429  *	(i.e. mc_gid.mgid_prefix must have 8-bits of 11111111 at the start of
1430  *	the GID to identify this as being a multicast GID).
1431  *
1432  *	The last full member to leave causes the destruction of the Multicast
1433  *	Group.
1434  */
1435 ibt_status_t ibt_leave_mcg(ib_gid_t rgid, ib_gid_t mc_gid, ib_gid_t port_gid,
1436     uint8_t mc_join_state);
1437 
1438 /*
1439  * ibt_query_mcg()
1440  *	Request information on multicast groups that match the parameters
1441  *	specified in mcg_attr. Information on each multicast group is returned
1442  *	to the caller in the form of an array of ibt_mcg_info_t.
1443  *	ibt_query_mcg() allocates the memory for this array and returns a
1444  *	pointer to the array (mcgs_p) and the number of entries in the array
1445  *	(entries_p). This memory should be freed by the client using
1446  *	ibt_free_mcg_info().
1447  */
1448 ibt_status_t ibt_query_mcg(ib_gid_t rgid, ibt_mcg_attr_t *mcg_attr,
1449     uint_t mcgs_max_num, ibt_mcg_info_t **mcgs_info_p, uint_t *entries_p);
1450 
1451 /*
1452  * ibt_free_mcg_info()
1453  *	Free the memory allocated by successful ibt_query_mcg()
1454  */
1455 void ibt_free_mcg_info(ibt_mcg_info_t *mcgs_info, uint_t entries);
1456 
1457 
1458 /*
1459  * ibt_register_subnet_notices()
1460  *	Register a handler to be called for subnet notifications.
1461  */
1462 void ibt_register_subnet_notices(ibt_clnt_hdl_t ibt_hdl,
1463     ibt_sm_notice_handler_t sm_notice_handler, void *private);
1464 
1465 
1466 /*
1467  * Protection Domain Functions.
1468  *
1469  * ibt_alloc_pd()
1470  * ibt_free_pd()
1471  * 	Allocate/Release a protection domain
1472  */
1473 ibt_status_t ibt_alloc_pd(ibt_hca_hdl_t hca_hdl, ibt_pd_flags_t flags,
1474     ibt_pd_hdl_t *pd);
1475 ibt_status_t ibt_free_pd(ibt_hca_hdl_t hca_hdl, ibt_pd_hdl_t pd);
1476 
1477 /*
1478  * P_Key to P_Key Index conversion Functions.
1479  *
1480  * ibt_pkey2index_byguid
1481  * ibt_pkey2index	Convert a P_Key into a P_Key index.
1482  *
1483  * ibt_index2pkey_byguid
1484  * ibt_index2pkey	Convert a P_Key Index into a P_Key.
1485  */
1486 ibt_status_t ibt_pkey2index(ibt_hca_hdl_t hca_hdl, uint8_t port_num,
1487     ib_pkey_t pkey, uint16_t *pkey_ix);
1488 
1489 ibt_status_t ibt_index2pkey(ibt_hca_hdl_t hca_hdl, uint8_t port_num,
1490     uint16_t pkey_ix, ib_pkey_t *pkey);
1491 
1492 ibt_status_t ibt_pkey2index_byguid(ib_guid_t hca_guid, uint8_t port_num,
1493     ib_pkey_t pkey, uint16_t *pkey_ix);
1494 
1495 ibt_status_t ibt_index2pkey_byguid(ib_guid_t hca_guid, uint8_t port_num,
1496     uint16_t pkey_ix, ib_pkey_t *pkey);
1497 
1498 /*
1499  *  ibt_ci_data_in()
1500  *
1501  *  Pass CI specific userland data for CI objects to the CI.
1502  */
1503 ibt_status_t ibt_ci_data_in(ibt_hca_hdl_t hca, ibt_ci_data_flags_t flags,
1504     ibt_object_type_t object, void *ibt_object_handle, void *data_p,
1505     size_t data_sz);
1506 
1507 /*
1508  *  ibt_ci_data_out()
1509  *
1510  *  Obtain CI specific userland data for CI objects.
1511  */
1512 ibt_status_t ibt_ci_data_out(ibt_hca_hdl_t hca, ibt_ci_data_flags_t flags,
1513     ibt_object_type_t object, void *ibt_object_handle, void *data_p,
1514     size_t data_sz);
1515 
1516 
1517 /*
1518  * Node Information.
1519  */
1520 
1521 /* Node type : n_node_type */
1522 #define	IBT_NODE_TYPE_CHANNEL_ADAPTER	1	/* HCA or TCA */
1523 #define	IBT_NODE_TYPE_SWITCH		2
1524 #define	IBT_NODE_TYPE_ROUTER		3
1525 
1526 typedef struct ibt_node_info_s {
1527 	ib_guid_t	n_sys_img_guid;	/* System Image GUID */
1528 	ib_guid_t	n_node_guid;	/* Node GUID */
1529 	ib_guid_t	n_port_guid;	/* Port GUID */
1530 	uint16_t	n_dev_id;	/* Device ID */
1531 	uint32_t	n_revision;	/* Device Revision */
1532 	uint32_t	n_vendor_id:24;	/* Device Vendor ID */
1533 	uint8_t		n_num_ports;	/* Number of ports on this node. */
1534 	uint8_t		n_port_num;	/* Port number. */
1535 	uint8_t		n_node_type;	/* Node type */
1536 	char		n_description[64]; /* NULL terminated ASCII string */
1537 } ibt_node_info_t;
1538 
1539 
1540 /*
1541  * ibt_gid_to_node_info()
1542  *	Retrieve node information for the specified GID.
1543  */
1544 ibt_status_t ibt_gid_to_node_info(ib_gid_t gid, ibt_node_info_t *node_info_p);
1545 
1546 /*
1547  * ibt_reprobe_dev
1548  *	Reprobe properties for IOC device node.
1549  */
1550 ibt_status_t	ibt_reprobe_dev(dev_info_t *dip);
1551 
1552 /*
1553  * ibt_get_companion_port_gids()
1554  *
1555  *	Get list of GID's available on a companion port(s) of the specified
1556  *	GID or list of GIDs available on a specified Node GUID/System Image
1557  *	GUID.
1558  */
1559 ibt_status_t ibt_get_companion_port_gids(ib_gid_t gid, ib_guid_t hca_guid,
1560     ib_guid_t sysimg_guid, ib_gid_t **gids_p, uint_t *num_gids_p);
1561 
1562 /*
1563  * SHARED RECEIVE QUEUE
1564  */
1565 
1566 
1567 /*
1568  * ibt_alloc_srq()
1569  *	Allocate a shared receive queue.
1570  */
1571 ibt_status_t ibt_alloc_srq(ibt_hca_hdl_t hca_hdl, ibt_srq_flags_t flags,
1572     ibt_pd_hdl_t pd, ibt_srq_sizes_t *sizes, ibt_srq_hdl_t *ibt_srq_p,
1573     ibt_srq_sizes_t *real_size_p);
1574 
1575 /*
1576  * ibt_free_srq()
1577  *	Free allocated SRQ resources.
1578  */
1579 ibt_status_t ibt_free_srq(ibt_srq_hdl_t ibt_srq);
1580 
1581 /*
1582  * ibt_query_srq()
1583  *	Query a shared receive queue.
1584  */
1585 ibt_status_t ibt_query_srq(ibt_srq_hdl_t ibt_srq, ibt_pd_hdl_t *pd_p,
1586     ibt_srq_sizes_t *sizes_p, uint_t *limit_p);
1587 
1588 /*
1589  * ibt_modify_srq()
1590  *	Modify a shared receive queue.
1591  */
1592 ibt_status_t ibt_modify_srq(ibt_srq_hdl_t ibt_srq, ibt_srq_modify_flags_t flags,
1593     uint_t size, uint_t limit, uint_t *real_size_p);
1594 
1595 /*
1596  * ibt_set_srq_private()
1597  * ibt_get_srq_private()
1598  *	Set/get the SRQ client private data.
1599  */
1600 void ibt_set_srq_private(ibt_srq_hdl_t ibt_srq, void *clnt_private);
1601 void *ibt_get_srq_private(ibt_srq_hdl_t ibt_srq);
1602 
1603 /*
1604  * ibt_check_failure()
1605  * 	Function to test for special case failures
1606  */
1607 ibt_failure_type_t ibt_check_failure(ibt_status_t status, uint64_t *reserved_p);
1608 
1609 
1610 /*
1611  * ibt_hw_is_present() returns 0 when there is no IB hardware actively
1612  * running.  This is primarily useful for modules like rpcmod which needs a
1613  * quick check to decide whether or not it should try to use InfiniBand.
1614  */
1615 int ibt_hw_is_present();
1616 
1617 /*
1618  * Fast Memory Registration (FMR).
1619  *
1620  * ibt_create_fmr_pool
1621  *	Not fast-path.
1622  *	ibt_create_fmr_pool() verifies that the HCA supports FMR and allocates
1623  *	and initializes an "FMR pool".  This pool contains state specific to
1624  *	this registration, including the watermark setting to determine when
1625  *	to sync, and the total number of FMR regions available within this pool.
1626  *
1627  * ibt_destroy_fmr_pool
1628  *	ibt_destroy_fmr_pool() deallocates all of the FMR regions in a specific
1629  *	pool.  All state and information regarding the pool are destroyed and
1630  *	returned as free space once again.  No more use of FMR regions in this
1631  *	pool are possible without a subsequent call to ibt_create_fmr_pool().
1632  *
1633  * ibt_flush_fmr_pool
1634  *	ibt_flush_fmr_pool forces a flush to occur.  At the client's request,
1635  *	any unmapped FMR regions (See 'ibt_deregister_mr())') are returned to
1636  *	a free state.  This function allows for an asynchronous cleanup of
1637  *	formerly used FMR regions.  Sync operation is also performed internally
1638  *	by HCA driver, when 'watermark' settings for the number of free FMR
1639  *	regions left in the "pool" is reached.
1640  *
1641  * ibt_register_physical_fmr
1642  *	ibt_register_physical_fmr() assigns a "free" entry from the FMR Pool.
1643  *	It first consults the "FMR cache" to see if this is a duplicate memory
1644  *	registration to something already in use.  If not, then a free entry
1645  *	in the "pool" is marked used.
1646  *
1647  * ibt_deregister_fmr
1648  *	The ibt_deregister_fmr un-maps the resources reserved from the FMR
1649  *	pool by ibt_register_physical_fmr().   The ibt_deregister_fmr() will
1650  *	mark the region as free in the FMR Pool.
1651  */
1652 ibt_status_t ibt_create_fmr_pool(ibt_hca_hdl_t hca_hdl, ibt_pd_hdl_t pd,
1653     ibt_fmr_pool_attr_t *fmr_params, ibt_fmr_pool_hdl_t *fmr_pool_p);
1654 
1655 ibt_status_t ibt_destroy_fmr_pool(ibt_hca_hdl_t hca_hdl,
1656     ibt_fmr_pool_hdl_t fmr_pool);
1657 
1658 ibt_status_t ibt_flush_fmr_pool(ibt_hca_hdl_t hca_hdl,
1659     ibt_fmr_pool_hdl_t fmr_pool);
1660 
1661 ibt_status_t ibt_register_physical_fmr(ibt_hca_hdl_t hca_hdl,
1662     ibt_fmr_pool_hdl_t fmr_pool, ibt_pmr_attr_t *mem_pattr,
1663     ibt_mr_hdl_t *mr_hdl_p, ibt_pmr_desc_t *mem_desc_p);
1664 
1665 ibt_status_t ibt_deregister_fmr(ibt_hca_hdl_t hca, ibt_mr_hdl_t mr_hdl);
1666 
1667 /*
1668  * IP SUPPORT
1669  */
1670 
1671 /*
1672  * IP get_paths
1673  * Returns an array (or single) of paths and source IP addresses. In the
1674  * simplest form just the destination IP address is specified, and one path
1675  * is requested, then one ibt_path_info_t struct and one source IP.
1676  *
1677  * More than one path can be requested to a single destination, in which case
1678  * the requested number of ibt_path_info_t's are returned, and the same
1679  * number of SRC IP address, with the first SRC IP address corrosponding
1680  * to the first ibt_path_info_t, etc.
1681  *
1682  * Restrictions on the source end point can be specified, in the form of a
1683  * source IP address (this implicitly defines the HCA, HCA port and Pkey)
1684  * HCA, HCA port, and sgid (implicitly defines HCA and HCA port).
1685  * Combinations are allowed but they  must be consistent.
1686  *
1687  * Path attributes can also be specified, these can also affect local HCA
1688  * selection.
1689  *
1690  * ibt_get_ip_paths()  internally does (among other things):
1691  *
1692  *   o ibt_get_list_of_ibd_ipaddr_and_macaddr( OUT list_ipaddr_macaddr)
1693  *
1694  *   o extract_pkey_and_sgid(IN list_ipaddr_macaddr, OUT list_pkey_and_sgid)
1695  *
1696  *   o map_dst_ip_addr(IN dst_ip_addr, OUT dst_pkey, OUT dgid) - See Note
1697  *
1698  *   o filter_by_pkey(IN list_pkey_and_sgid, IN dst_pkey, OUT list_of_sgid)
1699  *
1700  *   o do_multipath_query(IN list_of_sgid, IN dst_pkey, IN dgid, OUT path_list)
1701  *
1702  *   o pick_a_good_path(IN path_list, OUT the_path)
1703  *
1704  *   o find_matching_src_ip(IN the_path, IN list_ipaddr_macaddr, OUT src_ip)
1705  *
1706  * The ibd instance which got the ARP response is only on one P_Key
1707  * knowing the ibd instance (or which IPonIB MCG) got the ARP response
1708  * determins the P_Key associated with a dgid. If the proposedi "ip2mac()"
1709  * API is used to get an IP to GID translations, then returned 'sockaddr_dl'
1710  * contains the interface name and index.
1711  *
1712  *
1713  * Example:
1714  *   ip_path_attr.ipa_dst_ip = dst_ip_addr;
1715  *   ip_path_attr.ipa_ndst = 1;
1716  *   ip_path_attr.ipa_max_paths = 1;
1717  *
1718  *   status = ibt_get_ip_paths(clnt_hdl, flags, &ip_path_attr, &paths,
1719  *      &num_paths_p, &src_ip);
1720  *
1721  *   sid = ibt_get_ip_sid(protocol_num, dst_port);
1722  *   path_info->sid = sid;
1723  *
1724  *   ip_cm_info.src_addr = src_ip;
1725  *   ip_cm_info.dst_addr = dst_ip_addr;
1726  *   ip_cm_info.src_port = src_port
1727  *
1728  *   ibt_format_ip_private_data(ip_cm_info, priv_data_len, &priv_data);
1729  *   ibt_open_rc_channel(chan, private_data);
1730  */
1731 typedef struct ibt_ip_path_attr_s {
1732 	ibt_ip_addr_t		*ipa_dst_ip;		/* Required */
1733 	ibt_ip_addr_t		ipa_src_ip;		/* Optional */
1734 	ib_guid_t		ipa_hca_guid;		/* Optional */
1735 	uint8_t			ipa_hca_port_num;	/* Optional */
1736 	uint8_t			ipa_max_paths;		/* Required */
1737 	uint8_t			ipa_ndst;		/* Required */
1738 	uint8_t			ipa_sl:4;		/* Optional */
1739 	ibt_mtu_req_t		ipa_mtu;		/* Optional */
1740 	ibt_srate_req_t		ipa_srate;		/* Optional */
1741 	ibt_pkt_lt_req_t	ipa_pkt_lt;		/* Optional */
1742 	uint_t			ipa_flow:20;		/* Optional */
1743 	uint8_t			ipa_hop;		/* Optional */
1744 	uint8_t			ipa_tclass;		/* Optional */
1745 } ibt_ip_path_attr_t;
1746 
1747 /*
1748  * Path SRC IP addresses
1749  */
1750 typedef struct ibt_path_ip_src_s {
1751 	ibt_ip_addr_t	ip_primary;
1752 	ibt_ip_addr_t	ip_alternate;
1753 } ibt_path_ip_src_t;
1754 
1755 
1756 ibt_status_t ibt_get_ip_paths(ibt_clnt_hdl_t ibt_hdl, ibt_path_flags_t flags,
1757     ibt_ip_path_attr_t *attr, ibt_path_info_t *paths_p, uint8_t *num_paths_p,
1758     ibt_path_ip_src_t *src_ip_p);
1759 
1760 ibt_status_t ibt_get_src_ip(ib_gid_t gid, ib_pkey_t pkey,
1761     ibt_ip_addr_t *src_ip);
1762 
1763 /*
1764  * Callback function that can be used in ibt_aget_ip_paths(), a Non-Blocking
1765  * version of ibt_get_ip_paths().
1766  */
1767 typedef void (*ibt_ip_path_handler_t)(void *arg, ibt_status_t retval,
1768     ibt_path_info_t *paths_p, uint8_t num_paths, ibt_path_ip_src_t *src_ip_p);
1769 
1770 /*
1771  * Find path(s) to a given destination or service asynchronously.
1772  * ibt_aget_ip_paths() is a Non-Blocking version of ibt_get_ip_paths().
1773  */
1774 ibt_status_t ibt_aget_ip_paths(ibt_clnt_hdl_t ibt_hdl, ibt_path_flags_t flags,
1775     ibt_ip_path_attr_t *attr, ibt_ip_path_handler_t func, void  *arg);
1776 
1777 /*
1778  * IP RDMA protocol functions
1779  */
1780 
1781 /*
1782  * IBTF manages the port number space for non well known ports. If a ULP
1783  * is not using TCP/UDP and a well known port, then ibt_get_ip_sid() returns
1784  * an sid based on the IP protocol number '0' (reserved) and an IBTF assigned
1785  * port number.  ibt_release_ip_sid() should be used to release the hold
1786  * of SID created by ibt_get_ip_sid().
1787  */
1788 ib_svc_id_t ibt_get_ip_sid(uint8_t protocol_num, in_port_t dst_port);
1789 ibt_status_t ibt_release_ip_sid(ib_svc_id_t sid);
1790 
1791 uint8_t ibt_get_ip_protocol_num(ib_svc_id_t sid);
1792 in_port_t ibt_get_ip_dst_port(ib_svc_id_t sid);
1793 
1794 /*
1795  * Functions to format/extract the RDMA IP CM private data
1796  */
1797 typedef struct ibt_ip_cm_info_s {
1798 	ibt_ip_addr_t	src_addr;
1799 	ibt_ip_addr_t	dst_addr;
1800 	in_port_t	src_port;
1801 } ibt_ip_cm_info_t;
1802 
1803 /*
1804  * If a ULP is using IP addressing as defined by the RDMA IP CM Service IBTA
1805  * Annex 11, then it must always allocate a private data buffer for use in
1806  * the ibt_open_rc_channel(9F) call. The minimum size of the buffer is
1807  * IBT_IP_HDR_PRIV_DATA_SZ, if the ULP has no ULP specific private data.
1808  * This allows ibt_format_ip_private_data() to place the RDMA IP CM service
1809  * hello message in the private data of the REQ. If the ULP has some ULP
1810  * specific private data then it should allocate a buffer big enough to
1811  * contain that data plus an additional IBT_IP_HDR_PRIV_DATA_SZ bytes.
1812  * The ULP should place its  ULP specific private data at offset
1813  * IBT_IP_HDR_PRIV_DATA_SZ in the allocated buffer before calling
1814  * ibt_format_ip_private_data().
1815  */
1816 ibt_status_t ibt_format_ip_private_data(ibt_ip_cm_info_t *ip_cm_info,
1817     ibt_priv_data_len_t priv_data_len, void *priv_data_p);
1818 ibt_status_t ibt_get_ip_data(ibt_priv_data_len_t priv_data_len,
1819     void *priv_data, ibt_ip_cm_info_t *ip_info_p);
1820 
1821 /*
1822  * The ibt_alt_ip_path_attr_t structure is used to specify additional optional
1823  * attributes when requesting an alternate path for an existing channel.
1824  *
1825  * Attributes that are don't care should be set to NULL or '0'.
1826  */
1827 typedef struct ibt_alt_ip_path_attr_s {
1828 	ibt_ip_addr_t		apa_dst_ip;
1829 	ibt_ip_addr_t		apa_src_ip;
1830 	ibt_srate_req_t		apa_srate;
1831 	ibt_pkt_lt_req_t	apa_pkt_lt;	/* Packet Life Time Request */
1832 	uint_t			apa_flow:20;
1833 	uint8_t			apa_sl:4;
1834 	uint8_t			apa_hop;
1835 	uint8_t			apa_tclass;
1836 } ibt_alt_ip_path_attr_t;
1837 
1838 ibt_status_t ibt_get_ip_alt_path(ibt_channel_hdl_t rc_chan,
1839     ibt_path_flags_t flags, ibt_alt_ip_path_attr_t *attr,
1840     ibt_alt_path_info_t *alt_path);
1841 
1842 /*
1843  * CONTRACT PRIVATE ONLY INTERFACES
1844  *
1845  * DO NOT USE THE FOLLOWING FUNCTIONS WITHOUT SIGNING THE CONTRACT
1846  * WITH IBTF GROUP.
1847  */
1848 
1849 /* Define an Address Record structure (data for ATS service records). */
1850 typedef struct ibt_ar_s {
1851 	ib_gid_t	ar_gid;		/* GID of local HCA port */
1852 	ib_pkey_t	ar_pkey;	/* P_Key valid on port of ar_gid */
1853 	uint8_t		ar_data[16];	/* Data affiliated with GID/P_Key */
1854 } ibt_ar_t;
1855 
1856 /*
1857  * ibt_register_ar()
1858  * ibt_deregister_ar()
1859  *	Register/deregister an Address Record with the SA.
1860  * ibt_query_ar()
1861  *	Query the SA for Address Records matching either GID/P_Key or Data.
1862  */
1863 ibt_status_t ibt_register_ar(ibt_clnt_hdl_t ibt_hdl, ibt_ar_t *arp);
1864 
1865 ibt_status_t ibt_deregister_ar(ibt_clnt_hdl_t ibt_hdl, ibt_ar_t *arp);
1866 
1867 ibt_status_t ibt_query_ar(ib_gid_t *sgid, ibt_ar_t *queryp, ibt_ar_t *resultp);
1868 
1869 
1870 /*
1871  * ibt_modify_system_image()
1872  * ibt_modify_system_image_byguid()
1873  *	Modify specified HCA's system image GUID.
1874  */
1875 ibt_status_t ibt_modify_system_image(ibt_hca_hdl_t hca_hdl, ib_guid_t sys_guid);
1876 
1877 ibt_status_t ibt_modify_system_image_byguid(ib_guid_t hca_guid,
1878     ib_guid_t sys_guid);
1879 
1880 
1881 /*
1882  * ibt_modify_port()
1883  * ibt_modify_port_byguid()
1884  *	Modify the specified port, or all ports attribute(s).
1885  */
1886 ibt_status_t ibt_modify_port(ibt_hca_hdl_t hca_hdl, uint8_t port,
1887     ibt_port_modify_flags_t flags, uint8_t init_type);
1888 
1889 ibt_status_t ibt_modify_port_byguid(ib_guid_t hca_guid, uint8_t port,
1890     ibt_port_modify_flags_t flags, uint8_t init_type);
1891 
1892 
1893 /*
1894  * ibt_get_port_state()
1895  * ibt_get_port_state_byguid()
1896  *	Return the most commonly requested attributes of an HCA port.
1897  *	If the link state is not IBT_PORT_ACTIVE, the other returned values
1898  *	are undefined.
1899  */
1900 ibt_status_t ibt_get_port_state(ibt_hca_hdl_t hca_hdl, uint8_t port,
1901     ib_gid_t *sgid_p, ib_lid_t *base_lid_p);
1902 
1903 ibt_status_t ibt_get_port_state_byguid(ib_guid_t hca_guid, uint8_t port,
1904     ib_gid_t *sgid_p, ib_lid_t *base_lid_p);
1905 
1906 #ifdef __cplusplus
1907 }
1908 #endif
1909 
1910 #endif /* _SYS_IB_IBTL_IBTI_COMMON_H */
1911