1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #ifndef	_SYS_IB_IBTL_IBTL_TYPES_H
27 #define	_SYS_IB_IBTL_IBTL_TYPES_H
28 
29 #pragma ident	"%Z%%M%	%I%	%E% SMI"
30 
31 /*
32  * ibtl_types.h
33  *
34  * All common IBTL defined types. These are common data types
35  * that are shared by the IBTI and IBCI interfaces, it is only included
36  * by ibti.h and ibci.h
37  */
38 #include <sys/ddi.h>
39 #include <sys/sunddi.h>
40 #include <sys/ib/ib_types.h>
41 #include <sys/ib/ibtl/ibtl_status.h>
42 #include <sys/socket.h>
43 
44 
45 #ifdef	__cplusplus
46 extern "C" {
47 #endif
48 
49 /*
50  * Define Internal IBTL handles
51  */
52 typedef	struct	ibtl_clnt_s	*ibt_clnt_hdl_t;    /* ibt_attach() */
53 typedef	struct	ibtl_hca_s	*ibt_hca_hdl_t;	    /* ibt_open_hca() */
54 typedef	struct	ibtl_channel_s	*ibt_channel_hdl_t; /* alloc_rc|ud_channel() */
55 typedef	struct	ibtl_srq_s	*ibt_srq_hdl_t;	    /* ibt_alloc_srq() */
56 typedef	struct	ibtl_cq_s	*ibt_cq_hdl_t;	    /* ibt_alloc_cq() */
57 typedef	struct	ibcm_svc_info_s	*ibt_srv_hdl_t;	    /* ibt_register_service() */
58 typedef	struct	ibcm_svc_bind_s	*ibt_sbind_hdl_t;   /* ibt_bind_service() */
59 
60 typedef	struct	ibc_fmr_pool_s	*ibt_fmr_pool_hdl_t; /* ibt_create_fmr_pool() */
61 typedef	struct	ibc_ma_s	*ibt_ma_hdl_t;	    /* ibt_map_mem_area() */
62 typedef	struct	ibc_pd_s	*ibt_pd_hdl_t;	    /* ibt_alloc_pd() */
63 typedef	struct	ibc_sched_s	*ibt_sched_hdl_t;   /* ibt_alloc_cq_sched() */
64 typedef	struct	ibc_mr_s	*ibt_mr_hdl_t;	    /* ibt_register_mr() */
65 typedef	struct	ibc_mw_s	*ibt_mw_hdl_t;	    /* ibt_alloc_mw() */
66 typedef	struct	ibt_ud_dest_s	*ibt_ud_dest_hdl_t; /* UD dest handle */
67 typedef	struct	ibc_ah_s	*ibt_ah_hdl_t;	    /* ibt_alloc_ah() */
68 typedef struct	ibtl_eec_s	*ibt_eec_hdl_t;
69 typedef	struct	ibt_rd_dest_s	*ibt_rd_dest_hdl_t;	/* Reserved for */
70 							/* Future use */
71 
72 /*
73  * Some General Types.
74  */
75 typedef uint32_t	ibt_lkey_t;		/* L_Key */
76 typedef uint32_t	ibt_rkey_t;		/* R_Key */
77 typedef uint64_t	ibt_wrid_t;		/* Client assigned WR ID */
78 typedef uint32_t	ibt_immed_t;		/* WR Immediate Data */
79 typedef uint64_t	ibt_atom_arg_t;		/* WR Atomic Operation arg */
80 typedef	uint_t		ibt_cq_handler_id_t;	/* Event handler ID */
81 
82 /*
83  * IBT selector type, used when looking up/requesting either an
84  * MTU, Pkt lifetime, or Static rate.
85  * The interpretation of IBT_BEST depends on the attribute being selected.
86  */
87 typedef enum ibt_selector_e {
88 	IBT_GT		= 0,	/* Greater than */
89 	IBT_LT		= 1,	/* Less than */
90 	IBT_EQU		= 2,	/* Equal to */
91 	IBT_BEST	= 3	/* Best */
92 } ibt_selector_t;
93 
94 
95 /*
96  * Static rate definitions.
97  */
98 typedef enum ibt_srate_e {
99 	IBT_SRATE_NOT_SPECIFIED	= 0,
100 	IBT_SRATE_2		= 2,	/*  1X SDR i.e 2.5 Gbps */
101 	IBT_SRATE_10		= 3,	/*  4X SDR or 1X QDR i.e 10 Gbps */
102 	IBT_SRATE_30		= 4,	/* 12X SDR i.e 30 Gbps */
103 
104 	IBT_SRATE_5		= 5,	/*  1X DDR i.e  5 Gbps */
105 	IBT_SRATE_20		= 6,	/*  4X DDR or 8X SDR i.e 20 Gbps */
106 	IBT_SRATE_40		= 7,	/*  8X DDR or 4X QDR i.e 40 Gbps */
107 
108 	IBT_SRATE_60		= 8,	/* 12X DDR i.e 60 Gbps */
109 	IBT_SRATE_80		= 9,	/*  8X QDR i.e 80 Gbps */
110 	IBT_SRATE_120		= 10	/* 12X QDR i.e 120 Gbps */
111 } ibt_srate_t;
112 
113 /* retain old definition to be compatible with older bits. */
114 #define	IBT_SRATE_1X	IBT_SRATE_2
115 #define	IBT_SRATE_4X	IBT_SRATE_10
116 #define	IBT_SRATE_12X	IBT_SRATE_30
117 
118 /*
119  * Static rate request type.
120  */
121 typedef struct ibt_srate_req_s {
122 	ibt_srate_t	r_srate;	/* Requested srate */
123 	ibt_selector_t	r_selector;	/* Qualifier for r_srate */
124 } ibt_srate_req_t;
125 
126 /*
127  * Packet Life Time Request Type.
128  */
129 typedef struct ibt_pkt_lt_req_s {
130 	clock_t		p_pkt_lt;	/* Requested Packet Life Time */
131 	ibt_selector_t	p_selector;	/* Qualifier for p_pkt_lt */
132 } ibt_pkt_lt_req_t;
133 
134 /*
135  * Queue size struct.
136  */
137 typedef struct ibt_queue_sizes_s {
138 	uint_t	qs_sq;		/* SendQ size. */
139 	uint_t	qs_rq;		/* RecvQ size. */
140 } ibt_queue_sizes_t;
141 
142 /*
143  * Channel sizes struct, used by functions that allocate/query RC or UD
144  * channels.
145  */
146 typedef struct ibt_chan_sizes_s {
147 	uint_t	cs_sq;		/* SendQ size. */
148 	uint_t	cs_rq;		/* ReceiveQ size. */
149 	uint_t	cs_sq_sgl;	/* Max SGL elements in a SQ WR. */
150 	uint_t	cs_rq_sgl;	/* Max SGL elements in a RQ Wr. */
151 } ibt_chan_sizes_t;
152 
153 /*
154  * Shared Queue size struct.
155  */
156 typedef struct ibt_srq_sizes_s {
157 	uint_t	srq_wr_sz;
158 	uint_t	srq_sgl_sz;
159 } ibt_srq_sizes_t;
160 
161 /*
162  * SRQ Modify Flags
163  */
164 typedef enum ibt_srq_modify_flags_e {
165 	IBT_SRQ_SET_NOTHING		= 0,
166 	IBT_SRQ_SET_SIZE		= (1 << 1),
167 	IBT_SRQ_SET_LIMIT		= (1 << 2)
168 } ibt_srq_modify_flags_t;
169 
170 
171 /*
172  * Execution flags, indicates if the function should block or not.
173  * Note: in some cases, e.g., a NULL rc_cm_handler, IBT_NONBLOCKING
174  * will not have an effect, and the thread will block.
175  * IBT_NOCALLBACKS is valid for ibt_close_rc_channel only.
176  */
177 typedef enum ibt_execution_mode_e {
178 	IBT_BLOCKING	= 0,	/* Block */
179 	IBT_NONBLOCKING	= 1,	/* Return as soon as possible */
180 	IBT_NOCALLBACKS	= 2	/* cm_handler is not invoked after */
181 				/* ibt_close_rc_channel returns */
182 } ibt_execution_mode_t;
183 
184 /*
185  * Memory window alloc flags
186  */
187 typedef enum ibt_mw_flags_e {
188 	IBT_MW_SLEEP		= 0,		/* Can block */
189 	IBT_MW_NOSLEEP		= (1 << 0),	/* Can't block */
190 	IBT_MW_USER_MAP		= (1 << 1),
191 	IBT_MW_DEFER_ALLOC	= (1 << 2),
192 	IBT_MW_TYPE_1		= (1 << 3),
193 	IBT_MW_TYPE_2		= (1 << 4)
194 } ibt_mw_flags_t;
195 
196 /*
197  * PD alloc flags
198  */
199 typedef enum ibt_pd_flags_e {
200 	IBT_PD_NO_FLAGS		= 0,
201 	IBT_PD_USER_MAP		= (1 << 0),
202 	IBT_PD_DEFER_ALLOC	= (1 << 1)
203 } ibt_pd_flags_t;
204 
205 /*
206  * UD Dest alloc flags
207  */
208 typedef enum ibt_ud_dest_flags_e {
209 	IBT_UD_DEST_NO_FLAGS	= 0,
210 	IBT_UD_DEST_USER_MAP	= (1 << 0),
211 	IBT_UD_DEST_DEFER_ALLOC	= (1 << 1)
212 } ibt_ud_dest_flags_t;
213 
214 /*
215  * SRQ alloc flags
216  */
217 typedef enum ibt_srq_flags_e {
218 	IBT_SRQ_NO_FLAGS	= 0,
219 	IBT_SRQ_USER_MAP	= (1 << 0),
220 	IBT_SRQ_DEFER_ALLOC	= (1 << 1)
221 } ibt_srq_flags_t;
222 
223 /*
224  * ibt_alloc_lkey() alloc flags
225  */
226 typedef enum ibt_lkey_flags_e {
227 	IBT_KEY_NO_FLAGS	= 0,
228 	IBT_KEY_REMOTE		= (1 << 0)
229 } ibt_lkey_flags_t;
230 
231 /*
232  *  RNR NAK retry counts.
233  */
234 typedef enum ibt_rnr_retry_cnt_e {
235 	IBT_RNR_NO_RETRY	= 0x0,	/* Don't retry, fail on first timeout */
236 	IBT_RNR_RETRY_1		= 0x1,	/* Retry once */
237 	IBT_RNR_RETRY_2		= 0x2,	/* Retry twice */
238 	IBT_RNR_RETRY_3		= 0x3,	/* Retry three times */
239 	IBT_RNR_RETRY_4		= 0x4,	/* Retry four times */
240 	IBT_RNR_RETRY_5		= 0x5,	/* Retry five times */
241 	IBT_RNR_RETRY_6		= 0x6,	/* Retry six times */
242 	IBT_RNR_INFINITE_RETRY	= 0x7	/* Retry forever */
243 } ibt_rnr_retry_cnt_t;
244 
245 /*
246  * Valid values for RNR NAK timer fields, part of a channel's context.
247  */
248 typedef enum ibt_rnr_nak_time_e {
249 	IBT_RNR_NAK_655ms	= 0x0,
250 	IBT_RNR_NAK_10us	= 0x1,
251 	IBT_RNR_NAK_20us	= 0x2,
252 	IBT_RNR_NAK_30us	= 0x3,
253 	IBT_RNR_NAK_40us	= 0x4,
254 	IBT_RNR_NAK_60us	= 0x5,
255 	IBT_RNR_NAK_80us	= 0x6,
256 	IBT_RNR_NAK_120us	= 0x7,
257 	IBT_RNR_NAK_160us	= 0x8,
258 	IBT_RNR_NAK_240us	= 0x9,
259 	IBT_RNR_NAK_320us	= 0xA,
260 	IBT_RNR_NAK_480us	= 0xB,
261 	IBT_RNR_NAK_640us	= 0xC,
262 	IBT_RNR_NAK_960us	= 0xD,
263 	IBT_RNR_NAK_1280us	= 0xE,
264 	IBT_RNR_NAK_1920us	= 0xF,
265 	IBT_RNR_NAK_2560us	= 0x10,
266 	IBT_RNR_NAK_3840us	= 0x11,
267 	IBT_RNR_NAK_5120us	= 0x12,
268 	IBT_RNR_NAK_7680us	= 0x13,
269 	IBT_RNR_NAK_10ms	= 0x14,
270 	IBT_RNR_NAK_15ms	= 0x15,
271 	IBT_RNR_NAK_20ms	= 0x16,
272 	IBT_RNR_NAK_31ms	= 0x17,
273 	IBT_RNR_NAK_41ms	= 0x18,
274 	IBT_RNR_NAK_61ms	= 0x19,
275 	IBT_RNR_NAK_82ms	= 0x1A,
276 	IBT_RNR_NAK_123ms	= 0x1B,
277 	IBT_RNR_NAK_164ms	= 0x1C,
278 	IBT_RNR_NAK_246ms	= 0x1D,
279 	IBT_RNR_NAK_328ms	= 0x1E,
280 	IBT_RNR_NAK_492ms	= 0x1F
281 } ibt_rnr_nak_time_t;
282 
283 /*
284  * The definition of HCA capabilities etc as a bitfield.
285  */
286 typedef enum ibt_hca_flags_e {
287 	IBT_HCA_NO_FLAGS	= 0,
288 
289 	IBT_HCA_RD		= 1 << 0,
290 	IBT_HCA_UD_MULTICAST	= 1 << 1,
291 	IBT_HCA_RAW_MULTICAST	= 1 << 2,
292 
293 	IBT_HCA_ATOMICS_HCA	= 1 << 3,
294 	IBT_HCA_ATOMICS_GLOBAL	= 1 << 4,
295 
296 	IBT_HCA_RESIZE_CHAN	= 1 << 5,	/* Is resize supported? */
297 	IBT_HCA_AUTO_PATH_MIG	= 1 << 6,	/* Is APM supported? */
298 	IBT_HCA_SQD_SQD_PORT	= 1 << 7,	/* Can change physical port */
299 						/* on transit from SQD to SQD */
300 	IBT_HCA_PKEY_CNTR	= 1 << 8,
301 	IBT_HCA_QKEY_CNTR	= 1 << 9,
302 	IBT_HCA_AH_PORT_CHECK	= 1 << 10,	/* HCA checks AH port match */
303 						/* in UD WRs */
304 	IBT_HCA_PORT_UP		= 1 << 11,	/* PortActive event supported */
305 	IBT_HCA_INIT_TYPE	= 1 << 12,	/* InitType supported */
306 	IBT_HCA_SI_GUID		= 1 << 13,	/* System Image GUID */
307 						/* supported */
308 	IBT_HCA_SHUTDOWN_PORT	= 1 << 14,	/* ShutdownPort supported */
309 	IBT_HCA_RNR_NAK		= 1 << 15,	/* RNR-NAK supported for RC */
310 	IBT_HCA_CURRENT_QP_STATE = 1 << 16,	/* Does modify_qp support */
311 						/* checking of current state? */
312 	IBT_HCA_SRQ 		= 1 << 17,	/* Shared Receive Queue */
313 	IBT_HCA_RESIZE_SRQ	= 1 << 18,	/* Is resize SRQ supported? */
314 	IBT_HCA_BASE_MEM_MGT	= 1 << 19,	/* Base memory mgt supported? */
315 	IBT_HCA_MULT_PAGE_SZ_MR	= 1 << 20,	/* Support of multiple page */
316 						/* sizes per memory region? */
317 	IBT_HCA_BLOCK_LIST	= 1 << 21,	/* Block list physical buffer */
318 						/* lists supported? */
319 	IBT_HCA_ZERO_BASED_VA	= 1 << 22,	/* Zero Based Virtual */
320 						/* Addresses supported? */
321 	IBT_HCA_LOCAL_INVAL_FENCE = 1 << 23,	/* Local invalidate fencing? */
322 	IBT_HCA_BASE_QUEUE_MGT	= 1 << 24,	/* Base Queue Mgt supported? */
323 	IBT_HCA_CKSUM_FULL	= 1 << 25,	/* Checksum offload supported */
324 	IBT_HCA_MEM_WIN_TYPE_2B	= 1 << 26,	/* Type 2B memory windows */
325 	IBT_HCA_PHYS_BUF_BLOCK	= 1 << 27,	/* Block mode phys buf lists */
326 	IBT_HCA_FMR		= 1 << 28	/* FMR Support */
327 } ibt_hca_flags_t;
328 
329 /*
330  * The definition of HCA page size capabilities as a bitfield
331  */
332 typedef enum ibt_page_sizes_e {
333 	IBT_PAGE_4K		= 0x1 << 2,
334 	IBT_PAGE_8K		= 0x1 << 3,
335 	IBT_PAGE_16K		= 0x1 << 4,
336 	IBT_PAGE_32K		= 0x1 << 5,
337 	IBT_PAGE_64K		= 0x1 << 6,
338 	IBT_PAGE_128K		= 0x1 << 7,
339 	IBT_PAGE_256K		= 0x1 << 8,
340 	IBT_PAGE_512K		= 0x1 << 9,
341 	IBT_PAGE_1M		= 0x1 << 10,
342 	IBT_PAGE_2M		= 0x1 << 11,
343 	IBT_PAGE_4M		= 0x1 << 12,
344 	IBT_PAGE_8M		= 0x1 << 13,
345 	IBT_PAGE_16M		= 0x1 << 14,
346 	IBT_PAGE_32M		= 0x1 << 15,
347 	IBT_PAGE_64M		= 0x1 << 16,
348 	IBT_PAGE_128M		= 0x1 << 17,
349 	IBT_PAGE_256M		= 0x1 << 18,
350 	IBT_PAGE_512M		= 0x1 << 19,
351 	IBT_PAGE_1G		= 0x1 << 20,
352 	IBT_PAGE_2G		= 0x1 << 21,
353 	IBT_PAGE_4G		= 0x1 << 22,
354 	IBT_PAGE_8G		= 0x1 << 23,
355 	IBT_PAGE_16G		= 0x1 << 24
356 } ibt_page_sizes_t;
357 
358 /*
359  * Memory Window Type.
360  */
361 typedef enum ibt_mem_win_type_e {
362 	IBT_MEM_WIN_TYPE_NOT_DEFINED	= 0,
363 	IBT_MEM_WIN_TYPE_1		= (1 << 0),
364 	IBT_MEM_WIN_TYPE_2		= (1 << 1)
365 } ibt_mem_win_type_t;
366 
367 /*
368  * HCA attributes.
369  * Contains all HCA static attributes.
370  */
371 typedef struct ibt_hca_attr_s {
372 	ibt_hca_flags_t	hca_flags;		/* HCA capabilities etc */
373 
374 	/* device/version inconsistency w/ NodeInfo and IOControllerProfile */
375 	uint32_t	hca_vendor_id:24;	/* 24 bit Vendor ID */
376 	uint16_t	hca_device_id;
377 	uint32_t	hca_version_id;
378 
379 	uint_t		hca_max_chans;		/* Max Chans supported */
380 	uint_t		hca_max_chan_sz;	/* Max outstanding WRs on any */
381 						/* channel */
382 
383 	uint_t		hca_max_sgl;		/* Max SGL entries per WR */
384 
385 	uint_t		hca_max_cq;		/* Max num of CQs supported  */
386 	uint_t		hca_max_cq_sz;		/* Max capacity of each CQ */
387 
388 	ibt_page_sizes_t	hca_page_sz;	/* Bit mask of page sizes */
389 
390 	uint_t		hca_max_memr;		/* Max num of HCA mem regions */
391 	ib_memlen_t	hca_max_memr_len;	/* Largest block, in bytes of */
392 						/* mem that can be registered */
393 	uint_t		hca_max_mem_win;	/* Max Memory windows in HCA */
394 
395 	uint_t		hca_max_rsc; 		/* Max Responder Resources of */
396 						/* this HCA for RDMAR/Atomics */
397 						/* with this HCA as target. */
398 	uint8_t		hca_max_rdma_in_chan;	/* Max RDMAR/Atomics in per */
399 						/* chan this HCA as target. */
400 	uint8_t		hca_max_rdma_out_chan;	/* Max RDMA Reads/Atomics out */
401 						/* per channel by this HCA */
402 	uint_t		hca_max_ipv6_chan;	/* Max IPV6 channels in HCA */
403 	uint_t		hca_max_ether_chan;	/* Max Ether channels in HCA */
404 
405 	uint_t		hca_max_mcg_chans;	/* Max number of channels */
406 						/* that can join multicast */
407 						/* groups */
408 	uint_t		hca_max_mcg;		/* Max multicast groups */
409 	uint_t		hca_max_chan_per_mcg;	/* Max number of channels per */
410 						/* Multicast group in HCA */
411 
412 	uint16_t	hca_max_partitions;	/* Max partitions in HCA */
413 	uint8_t		hca_nports;		/* Number of physical ports */
414 	ib_guid_t	hca_node_guid;		/* Node GUID */
415 
416 	ib_time_t	hca_local_ack_delay;
417 
418 	uint_t		hca_max_port_sgid_tbl_sz;
419 	uint16_t	hca_max_port_pkey_tbl_sz;
420 	uint_t		hca_max_pd;		/* Max# of Protection Domains */
421 	ib_guid_t	hca_si_guid;		/* Optional System Image GUID */
422 	uint_t		hca_hca_max_ci_priv_sz;
423 	uint_t		hca_chan_max_ci_priv_sz;
424 	uint_t		hca_cq_max_ci_priv_sz;
425 	uint_t		hca_pd_max_ci_priv_sz;
426 	uint_t		hca_mr_max_ci_priv_sz;
427 	uint_t		hca_mw_max_ci_priv_sz;
428 	uint_t		hca_ud_dest_max_ci_priv_sz;
429 	uint_t		hca_cq_sched_max_ci_priv_sz;
430 	uint_t		hca_max_ud_dest;
431 	uint_t		hca_opaque2;
432 	uint_t		hca_opaque3;
433 	uint_t		hca_opaque4;
434 	uint8_t		hca_opaque5;
435 	uint8_t		hca_opaque6;
436 	uint_t		hca_opaque7;
437 	uint_t		hca_opaque8;
438 	uint_t		hca_max_srqs;		/* Max SRQs supported */
439 	uint_t		hca_max_srqs_sz;	/* Max outstanding WRs on any */
440 						/* SRQ */
441 	uint_t		hca_max_srq_sgl;	/* Max SGL entries per SRQ WR */
442 	uint_t		hca_max_phys_buf_list_sz;
443 	size_t		hca_block_sz_lo;	/* Range of block sizes */
444 	size_t		hca_block_sz_hi;	/* supported by the HCA */
445 	uint_t		hca_max_cq_handlers;
446 	ibt_lkey_t	hca_reserved_lkey;
447 	uint_t		hca_max_fmrs;		/* Max FMR Supported */
448 	uint_t		hca_opaque9;
449 } ibt_hca_attr_t;
450 
451 /*
452  * HCA Port link states.
453  */
454 typedef enum ibt_port_state_e {
455 	IBT_PORT_DOWN	= 1,
456 	IBT_PORT_INIT,
457 	IBT_PORT_ARM,
458 	IBT_PORT_ACTIVE
459 } ibt_port_state_t;
460 
461 /*
462  * HCA Port capabilities as a bitfield.
463  */
464 typedef enum ibt_port_caps_e {
465 	IBT_PORT_CAP_NO_FLAGS		= 0,
466 	IBT_PORT_CAP_SM			= 1 << 0,	/* SM port */
467 	IBT_PORT_CAP_SM_DISABLED	= 1 << 1,
468 	IBT_PORT_CAP_SNMP_TUNNEL	= 1 << 2,	/* SNMP Tunneling */
469 	IBT_PORT_CAP_DM			= 1 << 3,	/* DM supported */
470 	IBT_PORT_CAP_VENDOR		= 1 << 4	/* Vendor Class */
471 } ibt_port_caps_t;
472 
473 
474 /*
475  * HCA port attributes structure definition. The number of ports per HCA
476  * can be found from the "ibt_hca_attr_t" structure.
477  *
478  * p_pkey_tbl is a pointer to an array of ib_pkey_t, members are
479  * accessed as:
480  *		hca_portinfo->p_pkey_tbl[i]
481  *
482  * Where 0 <= i < hca_portinfo.p_pkey_tbl_sz
483  *
484  * Similarly p_sgid_tbl is a pointer to an array of ib_gid_t.
485  *
486  * The Query Port function - ibt_query_hca_ports() allocates the memory
487  * required for the ibt_hca_portinfo_t struct as well as the memory
488  * required for the SGID and P_Key tables. The memory is freed by calling
489  * ibt_free_portinfo().
490  */
491 typedef struct ibt_hca_portinfo_s {
492 	ib_lid_t		p_opaque1;	/* Base LID of port */
493 	ib_qkey_cntr_t		p_qkey_violations; /* Bad Q_Key cnt */
494 	ib_pkey_cntr_t		p_pkey_violations; /* Optional bad P_Key cnt */
495 	uint8_t			p_sm_sl:4;	/* SM Service level */
496 	ib_lid_t		p_sm_lid;	/* SM LID */
497 	ibt_port_state_t	p_linkstate;	/* Port state */
498 	uint8_t			p_port_num;
499 	ib_mtu_t		p_mtu;		/* Max transfer unit - pkt */
500 	uint8_t			p_lmc:3;	/* Local mask control */
501 	ib_gid_t		*p_sgid_tbl;	/* SGID Table */
502 	uint_t			p_sgid_tbl_sz;	/* Size of SGID table */
503 	uint16_t		p_pkey_tbl_sz;	/* Size of P_Key table */
504 	uint16_t		p_def_pkey_ix;	/* default pkey index for TI */
505 	ib_pkey_t		*p_pkey_tbl;	/* P_Key table */
506 	uint8_t			p_max_vl;	/* Max num of virtual lanes */
507 	uint8_t			p_init_type_reply; /* Optional InitTypeReply */
508 	ib_time_t		p_subnet_timeout; /* Max Subnet Timeout */
509 	ibt_port_caps_t		p_capabilities;	/* Port Capabilities */
510 	uint32_t		p_msg_sz;	/* Max message size */
511 } ibt_hca_portinfo_t;
512 
513 /*
514  * Modify HCA port attributes flags, specifies which HCA port
515  * attributes to modify.
516  */
517 typedef enum ibt_port_modify_flags_e {
518 	IBT_PORT_NO_FLAGS	= 0,
519 
520 	IBT_PORT_RESET_QKEY	= 1 << 0,	/* Reset Q_Key violation */
521 						/* counter */
522 	IBT_PORT_RESET_SM	= 1 << 1,	/* SM */
523 	IBT_PORT_SET_SM		= 1 << 2,
524 	IBT_PORT_RESET_SNMP	= 1 << 3,	/* SNMP Tunneling */
525 	IBT_PORT_SET_SNMP	= 1 << 4,
526 	IBT_PORT_RESET_DEVMGT	= 1 << 5,	/* Device Management */
527 	IBT_PORT_SET_DEVMGT	= 1 << 6,
528 	IBT_PORT_RESET_VENDOR	= 1 << 7,	/* Vendor Class */
529 	IBT_PORT_SET_VENDOR	= 1 << 8,
530 	IBT_PORT_SHUTDOWN	= 1 << 9,	/* Shut down the port */
531 	IBT_PORT_SET_INIT_TYPE	= 1 << 10	/* InitTypeReply value */
532 } ibt_port_modify_flags_t;
533 
534 /*
535  * Modify HCA port InitType bit definitions, applicable only if
536  * IBT_PORT_SET_INIT_TYPE modify flag (ibt_port_modify_flags_t) is set.
537  */
538 #define	IBT_PINIT_NO_LOAD		0x1
539 #define	IBT_PINIT_PRESERVE_CONTENT	0x2
540 #define	IBT_PINIT_PRESERVE_PRESENCE	0x4
541 #define	IBT_PINIT_NO_RESUSCITATE	0x8
542 
543 
544 /*
545  * Address vector definition.
546  */
547 typedef struct ibt_adds_vect_s {
548 	ib_gid_t	av_dgid;	/* IPV6 dest GID in GRH */
549 	ib_gid_t	av_sgid;	/* SGID */
550 	ibt_srate_t	av_srate;	/* Max static rate */
551 	uint8_t		av_srvl:4;	/* Service level in LRH */
552 	uint_t		av_flow:20;	/* 20 bit Flow Label */
553 	uint8_t		av_tclass;	/* Traffic Class */
554 	uint8_t		av_hop;		/* Hop Limit */
555 	uint8_t		av_port_num;	/* Port number for UD */
556 	boolean_t	av_opaque1;
557 	ib_lid_t	av_opaque2;
558 	ib_path_bits_t	av_opaque3;
559 	uint32_t	av_opaque4;
560 } ibt_adds_vect_t;
561 
562 typedef struct ibt_cep_path_s {
563 	ibt_adds_vect_t	cep_adds_vect;		/* Address Vector */
564 	uint16_t	cep_pkey_ix;		/* P_Key Index */
565 	uint8_t		cep_hca_port_num;	/* Port number for connected */
566 						/* channels.  A value of 0 */
567 						/* indicates an invalid path */
568 	ib_time_t	cep_cm_opaque1;
569 } ibt_cep_path_t;
570 
571 /*
572  * Channel Migration State.
573  */
574 typedef enum ibt_cep_cmstate_e {
575 	IBT_STATE_NOT_SUPPORTED	= 0,
576 	IBT_STATE_MIGRATED	= 1,
577 	IBT_STATE_REARMED	= 2,
578 	IBT_STATE_ARMED		= 3
579 } ibt_cep_cmstate_t;
580 
581 /*
582  * Transport service type
583  *
584  * NOTE: this was converted from an enum to a uint8_t to save space.
585  */
586 typedef uint8_t ibt_tran_srv_t;
587 
588 #define	IBT_RC_SRV		0
589 #define	IBT_UC_SRV		1
590 #define	IBT_RD_SRV		2
591 #define	IBT_UD_SRV		3
592 #define	IBT_RAWIP_SRV		4
593 #define	IBT_RAWETHER_SRV	5
594 
595 /*
596  * Channel (QP/EEC) state definitions.
597  */
598 typedef enum ibt_cep_state_e {
599 	IBT_STATE_RESET	= 0,		/* Reset */
600 	IBT_STATE_INIT,			/* Initialized */
601 	IBT_STATE_RTR,			/* Ready to Receive */
602 	IBT_STATE_RTS,			/* Ready to Send */
603 	IBT_STATE_SQD,			/* Send Queue Drained */
604 	IBT_STATE_SQE,			/* Send Queue Error */
605 	IBT_STATE_ERROR,		/* Error */
606 	IBT_STATE_SQDRAIN,		/* Send Queue Draining */
607 	IBT_STATE_NUM			/* Number of states */
608 } ibt_cep_state_t;
609 
610 
611 /*
612  * Channel Attribute flags.
613  */
614 typedef enum ibt_attr_flags_e {
615 	IBT_ALL_SIGNALED	= 0,	/* All sends signaled */
616 	IBT_WR_SIGNALED		= 1,	/* Signaled on a WR basis */
617 	IBT_FAST_REG_RES_LKEY	= (1 << 1)
618 } ibt_attr_flags_t;
619 
620 /*
621  * Channel End Point (CEP) Control Flags.
622  */
623 typedef enum ibt_cep_flags_e {
624 	IBT_CEP_NO_FLAGS	= 0,		/* Enable Nothing */
625 	IBT_CEP_RDMA_RD		= (1 << 0),	/* Enable incoming RDMA RD's */
626 						/* RC & RD only */
627 	IBT_CEP_RDMA_WR		= (1 << 1),	/* Enable incoming RDMA WR's */
628 						/* RC & RD only */
629 	IBT_CEP_ATOMIC		= (1 << 2)	/* Enable incoming Atomics, */
630 						/* RC & RD only */
631 } ibt_cep_flags_t;
632 
633 /*
634  * Channel Modify Flags
635  */
636 typedef enum ibt_cep_modify_flags_e {
637 	IBT_CEP_SET_NOTHING		= 0,
638 	IBT_CEP_SET_SQ_SIZE		= (1 << 1),
639 	IBT_CEP_SET_RQ_SIZE		= (1 << 2),
640 
641 	IBT_CEP_SET_RDMA_R		= (1 << 3),
642 	IBT_CEP_SET_RDMA_W		= (1 << 4),
643 	IBT_CEP_SET_ATOMIC		= (1 << 5),
644 
645 	IBT_CEP_SET_ALT_PATH		= (1 << 6),	/* Alternate Path */
646 
647 	IBT_CEP_SET_ADDS_VECT		= (1 << 7),
648 	IBT_CEP_SET_PORT		= (1 << 8),
649 	IBT_CEP_SET_OPAQUE5		= (1 << 9),
650 	IBT_CEP_SET_RETRY		= (1 << 10),
651 	IBT_CEP_SET_RNR_NAK_RETRY 	= (1 << 11),
652 	IBT_CEP_SET_MIN_RNR_NAK		= (1 << 12),
653 
654 	IBT_CEP_SET_QKEY		= (1 << 13),
655 	IBT_CEP_SET_RDMARA_OUT		= (1 << 14),
656 	IBT_CEP_SET_RDMARA_IN		= (1 << 15),
657 
658 	IBT_CEP_SET_OPAQUE1		= (1 << 16),
659 	IBT_CEP_SET_OPAQUE2		= (1 << 17),
660 	IBT_CEP_SET_OPAQUE3		= (1 << 18),
661 	IBT_CEP_SET_OPAQUE4		= (1 << 19),
662 	IBT_CEP_SET_SQD_EVENT		= (1 << 20),
663 	IBT_CEP_SET_OPAQUE6		= (1 << 21),
664 	IBT_CEP_SET_OPAQUE7		= (1 << 22),
665 	IBT_CEP_SET_OPAQUE8		= (1 << 23)
666 } ibt_cep_modify_flags_t;
667 
668 /*
669  * CQ notify types.
670  */
671 typedef enum ibt_cq_notify_flags_e {
672 	IBT_NEXT_COMPLETION	= 1,
673 	IBT_NEXT_SOLICITED	= 2
674 } ibt_cq_notify_flags_t;
675 
676 /*
677  * CQ types shared across TI and CI.
678  */
679 typedef enum ibt_cq_flags_e {
680 	IBT_CQ_NO_FLAGS			= 0,
681 	IBT_CQ_HANDLER_IN_THREAD	= 1 << 0,	/* A thread calls the */
682 							/* CQ handler */
683 	IBT_CQ_USER_MAP			= 1 << 1,
684 	IBT_CQ_DEFER_ALLOC		= 1 << 2
685 } ibt_cq_flags_t;
686 
687 /*
688  * CQ types shared across TI and CI.
689  */
690 typedef enum ibt_cq_sched_flags_e {
691 	IBT_CQS_NO_FLAGS	= 0,
692 	IBT_CQS_WARM_CACHE	= 1 << 0, /* run on same CPU */
693 	IBT_CQS_AFFINITY	= 1 << 1,
694 	IBT_CQS_SCHED_GROUP	= 1 << 2,
695 	IBT_CQS_USER_MAP	= 1 << 3,
696 	IBT_CQS_DEFER_ALLOC	= 1 << 4
697 } ibt_cq_sched_flags_t;
698 
699 /*
700  * Attributes when creating a Completion Queue.
701  *
702  * Note:
703  *	The IBT_CQ_HANDLER_IN_THREAD cq_flags bit should be ignored by the CI.
704  */
705 typedef struct ibt_cq_attr_s {
706 	uint_t			cq_size;
707 	ibt_sched_hdl_t		cq_sched;	/* 0 = no hint, */
708 						/* other = cq_sched value */
709 	ibt_cq_flags_t		cq_flags;
710 } ibt_cq_attr_t;
711 
712 /*
713  * Memory Management
714  */
715 
716 /* Memory management flags */
717 typedef enum ibt_mr_flags_e {
718 	IBT_MR_SLEEP			= 0,
719 	IBT_MR_NOSLEEP			= (1 << 1),
720 	IBT_MR_NONCOHERENT		= (1 << 2),
721 	IBT_MR_PHYS_IOVA		= (1 << 3),  /* ibt_(re)register_buf */
722 
723 	/* Access control flags */
724 	IBT_MR_ENABLE_WINDOW_BIND	= (1 << 4),
725 	IBT_MR_ENABLE_LOCAL_WRITE	= (1 << 5),
726 	IBT_MR_ENABLE_REMOTE_READ	= (1 << 6),
727 	IBT_MR_ENABLE_REMOTE_WRITE	= (1 << 7),
728 	IBT_MR_ENABLE_REMOTE_ATOMIC	= (1 << 8),
729 
730 	/* Reregister flags */
731 	IBT_MR_CHANGE_TRANSLATION	= (1 << 9),
732 	IBT_MR_CHANGE_ACCESS		= (1 << 10),
733 	IBT_MR_CHANGE_PD		= (1 << 11),
734 
735 	/* Additional registration flags */
736 	IBT_MR_ZBVA			= (1 << 12),
737 
738 	/* Additional physical registration flags */
739 	IBT_MR_CONSUMER_KEY		= (1 << 13)	/* Consumer owns key */
740 							/* portion of keys */
741 } ibt_mr_flags_t;
742 
743 
744 /* Memory Region attribute flags */
745 typedef enum ibt_mr_attr_flags_e {
746 	/* Access control flags */
747 	IBT_MR_WINDOW_BIND		= (1 << 0),
748 	IBT_MR_LOCAL_WRITE		= (1 << 1),
749 	IBT_MR_REMOTE_READ		= (1 << 2),
750 	IBT_MR_REMOTE_WRITE		= (1 << 3),
751 	IBT_MR_REMOTE_ATOMIC		= (1 << 4),
752 	IBT_MR_ZERO_BASED_VA		= (1 << 5),
753 	IBT_MR_CONSUMER_OWNED_KEY	= (1 << 6),
754 	IBT_MR_SHARED			= (1 << 7),
755 	IBT_MR_FMR			= (1 << 8)
756 } ibt_mr_attr_flags_t;
757 
758 /* Memory region physical descriptor. */
759 typedef struct ibt_phys_buf_s {
760 	union {
761 		uint64_t	_p_ll;		/* 64 bit DMA address */
762 		uint32_t	_p_la[2];	/* 2 x 32 bit address */
763 	} _phys_buf;
764 	size_t	p_size;
765 } ibt_phys_buf_t;
766 
767 #define	p_laddr		_phys_buf._p_ll
768 #ifdef	_LONG_LONG_HTOL
769 #define	p_notused	_phys_buf._p_la[0]
770 #define	p_addr		_phys_buf._p_la[1]
771 #else
772 #define	p_addr		_phys_buf._p_la[0]
773 #define	p_notused	_phys_buf._p_la[1]
774 #endif
775 
776 
777 /* Memory region descriptor. */
778 typedef struct ibt_mr_desc_s {
779 	ib_vaddr_t	md_vaddr;	/* IB virtual adds of memory */
780 	ibt_lkey_t	md_lkey;
781 	ibt_rkey_t	md_rkey;
782 	boolean_t	md_sync_required;
783 } ibt_mr_desc_t;
784 
785 /* Physical Memory region descriptor. */
786 typedef struct ibt_pmr_desc_s {
787 	ib_vaddr_t	pmd_iova;	/* Returned I/O Virtual Address */
788 	ibt_lkey_t	pmd_lkey;
789 	ibt_rkey_t	pmd_rkey;
790 	uint_t 		pmd_phys_buf_list_sz;	/* Allocated Phys buf sz */
791 	boolean_t	pmd_sync_required;
792 } ibt_pmr_desc_t;
793 
794 /* Memory region protection bounds. */
795 typedef struct ibt_mr_prot_bounds_s {
796 	ib_vaddr_t	pb_addr;	/* Beginning address */
797 	size_t		pb_len;		/* Length of protected region */
798 } ibt_mr_prot_bounds_t;
799 
800 /* Memory Region (Re)Register attributes */
801 typedef struct ibt_mr_attr_s {
802 	ib_vaddr_t	mr_vaddr;	/* Virtual address to register */
803 	ib_memlen_t	mr_len;		/* Length of region to register */
804 	struct as	*mr_as;		/* A pointer to an address space */
805 					/* structure. This parameter should */
806 					/* be set to NULL, which implies */
807 					/* kernel address space. */
808 	ibt_mr_flags_t	mr_flags;
809 } ibt_mr_attr_t;
810 
811 /* Physical Memory Region (Re)Register */
812 typedef struct ibt_pmr_attr_s {
813 	ib_vaddr_t	pmr_iova;	/* I/O virtual address requested by */
814 					/* client for the first byte of the */
815 					/* region */
816 	ib_memlen_t	pmr_len;	/* Length of region to register */
817 	ib_memlen_t	pmr_offset;	/* Offset of the regions starting */
818 					/* IOVA within the 1st physical */
819 					/* buffer */
820 	ibt_mr_flags_t	pmr_flags;
821 	ibt_lkey_t	pmr_lkey;	/* Reregister only */
822 	ibt_rkey_t	pmr_rkey;	/* Reregister only */
823 	uint8_t		pmr_key;	/* Key to use on new Lkey & Rkey */
824 	uint_t		pmr_num_buf;	/* Num of entries in the pmr_buf_list */
825 	size_t		pmr_buf_sz;
826 	ibt_phys_buf_t	*pmr_buf_list;	/* List of physical buffers accessed */
827 					/* as an array */
828 	ibt_ma_hdl_t	pmr_ma;		/* Memory handle used to obtain the */
829 					/* pmr_buf_list */
830 } ibt_pmr_attr_t;
831 
832 
833 /*
834  * Memory Region (Re)Register attributes - used by ibt_register_shared_mr(),
835  * ibt_register_buf() and ibt_reregister_buf().
836  */
837 typedef struct ibt_smr_attr_s {
838 	ib_vaddr_t		mr_vaddr;
839 	ibt_mr_flags_t		mr_flags;
840 	uint8_t			mr_key;		/* Only for physical */
841 						/* ibt_(Re)register_buf() */
842 	ibt_lkey_t		mr_lkey;	/* Only for physical */
843 	ibt_rkey_t		mr_rkey;	/* ibt_Reregister_buf() */
844 } ibt_smr_attr_t;
845 
846 /*
847  * key states.
848  */
849 typedef enum ibt_key_state_e {
850 	IBT_KEY_INVALID	= 0,
851 	IBT_KEY_FREE,
852 	IBT_KEY_VALID
853 } ibt_key_state_t;
854 
855 /* Memory region query attributes */
856 typedef struct ibt_mr_query_attr_s {
857 	ibt_lkey_t		mr_lkey;
858 	ibt_rkey_t		mr_rkey;
859 	ibt_mr_prot_bounds_t	mr_lbounds;	/* Actual local CI protection */
860 						/* bounds */
861 	ibt_mr_prot_bounds_t	mr_rbounds;	/* Actual remote CI */
862 						/* protection bounds */
863 	ibt_mr_attr_flags_t	mr_attr_flags;	/* Access rights etc. */
864 	ibt_pd_hdl_t		mr_pd;		/* Protection domain */
865 	boolean_t		mr_sync_required;
866 	ibt_key_state_t		mr_lkey_state;
867 	uint_t			mr_phys_buf_list_sz;
868 } ibt_mr_query_attr_t;
869 
870 /* Memory window query attributes */
871 typedef struct ibt_mw_query_attr_s {
872 	ibt_pd_hdl_t		mw_pd;
873 	ibt_mem_win_type_t	mw_type;
874 	ibt_rkey_t		mw_rkey;
875 	ibt_key_state_t		mw_state;
876 } ibt_mw_query_attr_t;
877 
878 
879 /* Memory Region Sync Flags. */
880 #define	IBT_SYNC_READ	0x1	/* Make memory changes visible to incoming */
881 				/* RDMA reads */
882 
883 #define	IBT_SYNC_WRITE	0x2	/* Make the affects of an incoming RDMA write */
884 				/* visible to the consumer */
885 
886 /* Memory region sync args */
887 typedef struct ibt_mr_sync_s {
888 	ibt_mr_hdl_t	ms_handle;
889 	ib_vaddr_t	ms_vaddr;
890 	ib_memlen_t	ms_len;
891 	uint32_t	ms_flags;	/* IBT_SYNC_READ or  IBT_SYNC_WRITE */
892 } ibt_mr_sync_t;
893 
894 /*
895  * Flags for Virtual Address to HCA Physical Address translation.
896  */
897 typedef enum ibt_va_flags_e {
898 	IBT_VA_SLEEP		= 0,
899 	IBT_VA_NOSLEEP		= (1 << 0),
900 	IBT_VA_NONCOHERENT	= (1 << 1),
901 	IBT_VA_FMR		= (1 << 2),
902 	IBT_VA_BLOCK_MODE	= (1 << 3),
903 	IBT_VA_BUF		= (1 << 4)
904 } ibt_va_flags_t;
905 
906 
907 /*  Address Translation parameters */
908 typedef struct ibt_va_attr_s {
909 	ib_vaddr_t	va_vaddr;	/* Virtual address to register */
910 	ib_memlen_t	va_len;		/* Length of region to register */
911 	struct as	*va_as;		/* A pointer to an address space */
912 					/* structure. */
913 	size_t		va_phys_buf_min;
914 	size_t		va_phys_buf_max;
915 	ibt_va_flags_t	va_flags;
916 	struct buf	*va_buf;
917 } ibt_va_attr_t;
918 
919 
920 /*
921  * Fast Memory Registration (FMR) support.
922  */
923 
924 /* FMR flush function handler. */
925 typedef void (*ibt_fmr_flush_handler_t)(ibt_fmr_pool_hdl_t fmr_pool,
926     void *fmr_func_arg);
927 
928 /* FMR Pool create attributes. */
929 typedef struct ibt_fmr_pool_attr_s {
930 	uint_t			fmr_max_pages_per_fmr;
931 	uint_t			fmr_pool_size;
932 	uint_t			fmr_dirty_watermark;
933 	size_t			fmr_page_sz;
934 	boolean_t		fmr_cache;
935 	ibt_mr_flags_t		fmr_flags;
936 	ibt_fmr_flush_handler_t	fmr_func_hdlr;
937 	void			*fmr_func_arg;
938 } ibt_fmr_pool_attr_t;
939 
940 
941 /*
942  * WORK REQUEST AND WORK REQUEST COMPLETION DEFINITIONS.
943  */
944 
945 /*
946  * Work Request and Work Request Completion types - These types are used
947  *   to indicate the type of work requests posted to a work queue
948  *   or the type of completion received.  Immediate Data is indicated via
949  *   ibt_wr_flags_t or ibt_wc_flags_t.
950  *
951  *   IBT_WRC_RECV and IBT_WRC_RECV_RDMAWI are only used as opcodes in the
952  *   work completions.
953  *
954  * NOTE: this was converted from an enum to a uint8_t to save space.
955  */
956 typedef uint8_t ibt_wrc_opcode_t;
957 
958 #define	IBT_WRC_SEND		1	/* Send */
959 #define	IBT_WRC_RDMAR		2	/* RDMA Read */
960 #define	IBT_WRC_RDMAW		3	/* RDMA Write */
961 #define	IBT_WRC_CSWAP		4	/* Compare & Swap Atomic */
962 #define	IBT_WRC_FADD		5	/* Fetch & Add Atomic */
963 #define	IBT_WRC_BIND		6	/* Bind Memory Window */
964 #define	IBT_WRC_RECV		7	/* Receive */
965 #define	IBT_WRC_RECV_RDMAWI	8	/* Received RDMA Write w/ Immediate */
966 #define	IBT_WRC_FAST_REG_PMR	9	/* Fast Register Physical mem region */
967 #define	IBT_WRC_LOCAL_INVALIDATE 10
968 
969 
970 /*
971  * Work Request Completion flags - These flags indicate what type
972  *   of data is present in the Work Request Completion structure
973  */
974 typedef uint8_t ibt_wc_flags_t;
975 
976 #define	IBT_WC_NO_FLAGS			0
977 #define	IBT_WC_GRH_PRESENT		(1 << 0)
978 #define	IBT_WC_IMMED_DATA_PRESENT	(1 << 1)
979 #define	IBT_WC_RKEY_INVALIDATED		(1 << 2)
980 #define	IBT_WC_CKSUM_OK			(1 << 3)
981 
982 
983 /*
984  * Work Request Completion - This structure encapsulates the information
985  *   necessary to define a work request completion.
986  */
987 typedef struct ibt_wc_s {
988 	ibt_wrid_t		wc_id;		/* Work Request Id */
989 	uint64_t		wc_fma_ena;	/* fault management err data */
990 	ib_msglen_t		wc_bytes_xfer;	/* Number of Bytes */
991 						/* Transferred */
992 	ibt_wc_flags_t		wc_flags;	/* WR Completion Flags */
993 	ibt_wrc_opcode_t	wc_type;	/* Operation Type */
994 	uint16_t		wc_cksum;	/* payload checksum */
995 	ibt_immed_t		wc_immed_data;	/* Immediate Data */
996 	uint32_t		wc_freed_rc;	/* Freed Resource Count */
997 	ibt_wc_status_t		wc_status;	/* Completion Status */
998 	uint8_t			wc_sl:4;	/* Remote SL */
999 	uint16_t		wc_ethertype;	/* Ethertype Field - RE */
1000 	ib_lid_t		wc_opaque1;
1001 	uint16_t		wc_opaque2;
1002 	ib_qpn_t		wc_qpn;		/* Source QPN Datagram only */
1003 	ib_eecn_t		wc_opaque3;
1004 	ib_qpn_t		wc_local_qpn;
1005 	ibt_rkey_t		wc_rkey;
1006 	ib_path_bits_t		wc_opaque4;
1007 } ibt_wc_t;
1008 
1009 
1010 /*
1011  * WR Flags. Common for both RC and UD
1012  *
1013  * NOTE: this was converted from an enum to a uint8_t to save space.
1014  */
1015 typedef uint8_t ibt_wr_flags_t;
1016 
1017 #define	IBT_WR_NO_FLAGS		0
1018 #define	IBT_WR_SEND_IMMED	(1 << 0)	/* Immediate Data Indicator */
1019 #define	IBT_WR_SEND_SIGNAL	(1 << 1)	/* Signaled, if set */
1020 #define	IBT_WR_SEND_FENCE	(1 << 2)	/* Fence Indicator */
1021 #define	IBT_WR_SEND_SOLICIT	(1 << 3)	/* Solicited Event Indicator */
1022 #define	IBT_WR_SEND_REMOTE_INVAL	(1 << 4) /* Remote Invalidate */
1023 #define	IBT_WR_SEND_CKSUM	(1 << 5)	/* Checksum offload Indicator */
1024 
1025 /*
1026  * Access control flags for Bind Memory Window operation,
1027  * applicable for RC/UC/RD only.
1028  *
1029  * If IBT_WR_BIND_WRITE or IBT_WR_BIND_ATOMIC is desired then
1030  * it is required that Memory Region should have Local Write Access.
1031  */
1032 typedef enum ibt_bind_flags_e {
1033 	IBT_WR_BIND_READ	= (1 << 0),	/* enable remote read */
1034 	IBT_WR_BIND_WRITE	= (1 << 1),	/* enable remote write */
1035 	IBT_WR_BIND_ATOMIC	= (1 << 2),	/* enable remote atomics */
1036 	IBT_WR_BIND_ZBVA	= (1 << 3)	/* Zero Based Virtual Address */
1037 } ibt_bind_flags_t;
1038 
1039 /*
1040  * Data Segment for scatter-gather list
1041  *
1042  * SGL consists of an array of data segments and the length of the SGL.
1043  */
1044 typedef struct ibt_wr_ds_s {
1045 	ib_vaddr_t	ds_va;		/* Virtual Address */
1046 	ibt_lkey_t	ds_key;		/* L_Key */
1047 	ib_msglen_t	ds_len;		/* Length of DS */
1048 } ibt_wr_ds_t;
1049 
1050 /*
1051  * Bind Memory Window WR
1052  *
1053  * WR ID from ibt_send_wr_t applies here too, SWG_0038 errata.
1054  */
1055 typedef struct ibt_wr_bind_s {
1056 	ibt_bind_flags_t	bind_flags;
1057 	ibt_rkey_t		bind_rkey;		/* Mem Window's R_key */
1058 	ibt_lkey_t		bind_lkey;		/* Mem Region's L_Key */
1059 	ibt_rkey_t		bind_rkey_out;		/* OUT: new R_Key */
1060 	ibt_mr_hdl_t		bind_ibt_mr_hdl;	/* Mem Region handle */
1061 	ibt_mw_hdl_t		bind_ibt_mw_hdl;	/* Mem Window handle */
1062 	ib_vaddr_t		bind_va;		/* Virtual Address */
1063 	ib_memlen_t		bind_len;		/* Length of Window */
1064 } ibt_wr_bind_t;
1065 
1066 /*
1067  * Atomic WR
1068  *
1069  * Operation type (compare & swap or fetch & add) in ibt_wrc_opcode_t.
1070  *
1071  * A copy of the original contents of the remote memory will be stored
1072  * in the local data segment described by wr_sgl within ibt_send_wr_t,
1073  * and wr_nds should be set to 1.
1074  *
1075  * Atomic operation operands:
1076  *   Compare & Swap Operation:
1077  *	atom_arg1 - Compare Operand
1078  *	atom_arg2 - Swap Operand
1079  *
1080  *   Fetch & Add Operation:
1081  *	atom_arg1 - Add Operand
1082  *	atom_arg2 - ignored
1083  */
1084 typedef struct ibt_wr_atomic_s {
1085 	ib_vaddr_t	atom_raddr;	/* Remote address. */
1086 	ibt_atom_arg_t	atom_arg1;	/* operand #1 */
1087 	ibt_atom_arg_t	atom_arg2;	/* operand #2 */
1088 	ibt_rkey_t	atom_rkey;	/* R_Key. */
1089 } ibt_wr_atomic_t;
1090 
1091 /*
1092  * RDMA WR
1093  * Immediate Data indicator in ibt_wr_flags_t.
1094  */
1095 typedef struct ibt_wr_rdma_s {
1096 	ib_vaddr_t	rdma_raddr;	/* Remote address. */
1097 	ibt_rkey_t	rdma_rkey;	/* R_Key. */
1098 	ibt_immed_t	rdma_immed;	/* Immediate Data */
1099 } ibt_wr_rdma_t;
1100 
1101 /*
1102  * Fast Register Physical Memory Region Work Request.
1103  */
1104 typedef struct ibt_wr_reg_pmr_s {
1105 	ib_vaddr_t	pmr_iova;	/* I/O virtual address requested by */
1106 					/* client for the first byte of the */
1107 					/* region */
1108 	ib_memlen_t	pmr_len;	/* Length of region to register */
1109 	ib_memlen_t	pmr_offset;	/* Offset of the regions starting */
1110 					/* IOVA within the 1st physical */
1111 					/* buffer */
1112 	ibt_mr_hdl_t	pmr_mr_hdl;
1113 	ibt_phys_buf_t	*pmr_buf_list;	/* List of physical buffers accessed */
1114 					/* as an array */
1115 	uint_t		pmr_num_buf;	/* Num of entries in the pmr_buf_list */
1116 	ibt_lkey_t	pmr_lkey;
1117 	ibt_rkey_t	pmr_rkey;
1118 	ibt_mr_flags_t	pmr_flags;
1119 	uint8_t		pmr_key;	/* Key to use on new Lkey & Rkey */
1120 } ibt_wr_reg_pmr_t;
1121 
1122 /*
1123  * Local Invalidate.
1124  */
1125 typedef struct ibt_wr_li_s {
1126 	ibt_mr_hdl_t	li_mr_hdl;	/* Null for MW invalidates */
1127 	ibt_mw_hdl_t	li_mw_hdl;	/* Null for MR invalidates */
1128 	ibt_lkey_t	li_lkey;	/* Ignore for MW invalidates */
1129 	ibt_rkey_t	li_rkey;
1130 } ibt_wr_li_t;
1131 
1132 /*
1133  * Reserved For Future Use.
1134  * Raw IPv6 Send WR
1135  */
1136 typedef struct ibt_wr_ripv6_s {
1137 	ib_lid_t	rip_dlid;	/* DLID */
1138 	ib_path_bits_t  rip_slid_bits;	/* SLID path bits, SWG_0033 errata */
1139 	uint8_t		rip_sl:4;	/* SL */
1140 	ibt_srate_t	rip_rate;	/* Max Static Rate, SWG_0007 errata */
1141 } ibt_wr_ripv6_t;
1142 
1143 /*
1144  * Reserved For Future Use.
1145  * Raw Ethertype Send WR
1146  */
1147 typedef struct ibt_wr_reth_s {
1148 	ib_ethertype_t  reth_type;	/* Ethertype */
1149 	ib_lid_t	reth_dlid;	/* DLID */
1150 	ib_path_bits_t	reth_slid_bits;	/* SLID path bits, SWG_0033 errata */
1151 	uint8_t		reth_sl:4;	/* SL */
1152 	ibt_srate_t	reth_rate;	/* Max Static Rate, SWG_0007 errata */
1153 } ibt_wr_reth_t;
1154 
1155 /*
1156  * Reserved For future Use.
1157  * RD Send WR, Operation type in ibt_wrc_opcode_t.
1158  */
1159 typedef struct ibt_wr_rd_s {
1160 	ibt_rd_dest_hdl_t	rdwr_dest_hdl;
1161 	union {
1162 	    ibt_immed_t		send_immed;	/* IBT_WRC_SEND */
1163 	    ibt_wr_rdma_t	rdma;		/* IBT_WRC_RDMAR */
1164 						/* IBT_WRC_RDMAW */
1165 	    ibt_wr_li_t		*li;		/* IBT_WRC_LOCAL_INVALIDATE */
1166 	    ibt_wr_atomic_t	*atomic;	/* IBT_WRC_FADD */
1167 						/* IBT_WRC_CSWAP */
1168 	    ibt_wr_bind_t	*bind;		/* IBT_WRC_BIND */
1169 	    ibt_wr_reg_pmr_t	*reg_pmr;	/* IBT_WRC_FAST_REG_PMR */
1170 	} rdwr;
1171 } ibt_wr_rd_t;
1172 
1173 /*
1174  * Reserved For Future Use.
1175  * UC Send WR, Operation type in ibt_wrc_opcode_t, the only valid
1176  * ones are:
1177  *		IBT_WRC_SEND
1178  *		IBT_WRC_RDMAW
1179  *		IBT_WRC_BIND
1180  */
1181 typedef struct ibt_wr_uc_s {
1182 	union {
1183 	    ibt_immed_t		send_immed;	/* IBT_WRC_SEND */
1184 	    ibt_wr_rdma_t	rdma;		/* IBT_WRC_RDMAW */
1185 	    ibt_wr_li_t		*li;		/* IBT_WRC_LOCAL_INVALIDATE */
1186 	    ibt_wr_bind_t	*bind;		/* IBT_WRC_BIND */
1187 	    ibt_wr_reg_pmr_t	*reg_pmr;	/* IBT_WRC_FAST_REG_PMR */
1188 	} ucwr;
1189 } ibt_wr_uc_t;
1190 
1191 /*
1192  * RC Send WR, Operation type in ibt_wrc_opcode_t.
1193  */
1194 typedef struct ibt_wr_rc_s {
1195 	union {
1196 	    ibt_immed_t		send_immed;	/* IBT_WRC_SEND w/ immediate */
1197 	    ibt_rkey_t		send_inval;	/* IBT_WRC_SEND w/ invalidate */
1198 	    ibt_wr_rdma_t	rdma;		/* IBT_WRC_RDMAR */
1199 						/* IBT_WRC_RDMAW */
1200 	    ibt_wr_li_t		*li;		/* IBT_WRC_LOCAL_INVALIDATE */
1201 	    ibt_wr_atomic_t	*atomic;	/* IBT_WRC_CSWAP */
1202 						/* IBT_WRC_FADD */
1203 	    ibt_wr_bind_t	*bind;		/* IBT_WRC_BIND */
1204 	    ibt_wr_reg_pmr_t	*reg_pmr;	/* IBT_WRC_FAST_REG_PMR */
1205 	} rcwr;
1206 } ibt_wr_rc_t;
1207 
1208 /*
1209  * UD Send WR, the only valid Operation is IBT_WRC_SEND.
1210  */
1211 typedef struct ibt_wr_ud_s {
1212 	ibt_immed_t		udwr_immed;
1213 	ibt_ud_dest_hdl_t	udwr_dest;
1214 } ibt_wr_ud_t;
1215 
1216 /*
1217  * Send Work Request (WR) attributes structure.
1218  *
1219  * Operation type in ibt_wrc_opcode_t.
1220  * Immediate Data indicator in ibt_wr_flags_t.
1221  */
1222 typedef struct ibt_send_wr_s {
1223 	ibt_wrid_t		wr_id;		/* WR ID */
1224 	ibt_wr_flags_t		wr_flags;	/* Work Request Flags. */
1225 	ibt_tran_srv_t		wr_trans;	/* Transport Type. */
1226 	ibt_wrc_opcode_t	wr_opcode;	/* Operation Type. */
1227 	uint8_t			wr_rsvd;	/* maybe later */
1228 	uint32_t		wr_nds;		/* Number of data segments */
1229 						/* pointed to by wr_sgl */
1230 	ibt_wr_ds_t		*wr_sgl;	/* SGL */
1231 	union {
1232 		ibt_wr_ud_t	ud;
1233 		ibt_wr_rc_t	rc;
1234 		ibt_wr_rd_t	rd;	/* Reserved For Future Use */
1235 		ibt_wr_uc_t	uc;	/* Reserved For Future Use */
1236 		ibt_wr_reth_t	reth;	/* Reserved For Future Use */
1237 		ibt_wr_ripv6_t	ripv6;	/* Reserved For Future Use */
1238 	} wr;				/* operation specific */
1239 } ibt_send_wr_t;
1240 
1241 /*
1242  * Receive Work Request (WR) attributes structure.
1243  */
1244 typedef struct ibt_recv_wr_s {
1245 	ibt_wrid_t		wr_id;		/* WR ID */
1246 	uint32_t		wr_nds;		/* number of data segments */
1247 						/* pointed to by wr_sgl */
1248 	ibt_wr_ds_t		*wr_sgl;	/* SGL */
1249 } ibt_recv_wr_t;
1250 
1251 
1252 /*
1253  * Asynchronous Events and Errors.
1254  *
1255  * The following codes are not used in calls to ibc_async_handler, but
1256  * are used by IBTL to inform IBT clients of a significant event.
1257  *
1258  *  IBT_HCA_ATTACH_EVENT	- New HCA available.
1259  *  IBT_HCA_DETACH_EVENT	- HCA is requesting not to be used.
1260  *
1261  * ERRORs on a channel indicate that the channel has entered error state.
1262  * EVENTs on a channel indicate that the channel has not changed state.
1263  *
1264  */
1265 typedef enum ibt_async_code_e {
1266 	IBT_EVENT_PATH_MIGRATED			= 0x000001,
1267 	IBT_EVENT_SQD				= 0x000002,
1268 	IBT_EVENT_COM_EST			= 0x000004,
1269 	IBT_ERROR_CATASTROPHIC_CHAN		= 0x000008,
1270 	IBT_ERROR_INVALID_REQUEST_CHAN		= 0x000010,
1271 	IBT_ERROR_ACCESS_VIOLATION_CHAN		= 0x000020,
1272 	IBT_ERROR_PATH_MIGRATE_REQ		= 0x000040,
1273 
1274 	IBT_ERROR_CQ				= 0x000080,
1275 
1276 	IBT_EVENT_PORT_UP			= 0x000100,
1277 	IBT_ERROR_PORT_DOWN			= 0x000200,
1278 	IBT_ERROR_LOCAL_CATASTROPHIC		= 0x000400,
1279 
1280 	IBT_HCA_ATTACH_EVENT			= 0x000800,
1281 	IBT_HCA_DETACH_EVENT			= 0x001000,
1282 	IBT_ASYNC_OPAQUE1			= 0x002000,
1283 	IBT_ASYNC_OPAQUE2			= 0x004000,
1284 	IBT_ASYNC_OPAQUE3			= 0x008000,
1285 	IBT_ASYNC_OPAQUE4			= 0x010000,
1286 	IBT_EVENT_LIMIT_REACHED_SRQ		= 0x020000,
1287 	IBT_EVENT_EMPTY_CHAN			= 0x040000,
1288 	IBT_ERROR_CATASTROPHIC_SRQ		= 0x080000
1289 } ibt_async_code_t;
1290 
1291 
1292 /*
1293  * ibt_ci_data_in() and ibt_ci_data_out() flags.
1294  */
1295 typedef enum ibt_ci_data_flags_e {
1296 	IBT_CI_NO_FLAGS		= 0,
1297 	IBT_CI_COMPLETE_ALLOC	= (1 << 0)
1298 } ibt_ci_data_flags_t;
1299 
1300 /*
1301  * Used by ibt_ci_data_in() and ibt_ci_data_out() identifies the type of handle
1302  * mapping data is being obtained for.
1303  */
1304 typedef enum ibt_object_type_e {
1305 	IBT_HDL_HCA	=	1,
1306 	IBT_HDL_CHANNEL,
1307 	IBT_HDL_CQ,
1308 	IBT_HDL_PD,
1309 	IBT_HDL_MR,
1310 	IBT_HDL_MW,
1311 	IBT_HDL_UD_DEST,
1312 	IBT_HDL_SCHED,
1313 	IBT_HDL_OPAQUE1,
1314 	IBT_HDL_OPAQUE2,
1315 	IBT_HDL_SRQ
1316 } ibt_object_type_t;
1317 
1318 /*
1319  * Memory error handler data structures; code, and payload data.
1320  */
1321 typedef enum ibt_mem_code_s {
1322 	IBT_MEM_AREA	= 0x1,
1323 	IBT_MEM_REGION	= 0x2
1324 } ibt_mem_code_t;
1325 
1326 typedef struct ibt_mem_data_s {
1327 	uint64_t	ev_fma_ena;	/* FMA Error data */
1328 	ibt_mr_hdl_t	ev_mr_hdl;	/* MR handle */
1329 	ibt_ma_hdl_t	ev_ma_hdl;	/* MA handle */
1330 } ibt_mem_data_t;
1331 
1332 /*
1333  * Special case failure type.
1334  */
1335 typedef enum ibt_failure_type_e {
1336 	IBT_FAILURE_STANDARD	= 0,
1337 	IBT_FAILURE_CI,
1338 	IBT_FAILURE_IBMF,
1339 	IBT_FAILURE_IBTL,
1340 	IBT_FAILURE_IBCM,
1341 	IBT_FAILURE_IBDM,
1342 	IBT_FAILURE_IBSM
1343 } ibt_failure_type_t;
1344 
1345 /*
1346  * RDMA IP CM service Annex definitions
1347  */
1348 typedef struct ibt_ip_addr_s {
1349 	sa_family_t family;		/* AF_INET or AF_INET6 */
1350 	union {
1351 		in_addr_t	ip4addr;
1352 		in6_addr_t	ip6addr;
1353 	} un;
1354 } ibt_ip_addr_t;
1355 
1356 #ifdef __cplusplus
1357 }
1358 #endif
1359 
1360 #endif /* _SYS_IB_IBTL_IBTL_TYPES_H */
1361