1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  *
21  *
22  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 #ifndef	_PMCS_DEF_H
26 #define	_PMCS_DEF_H
27 #ifdef	__cplusplus
28 extern "C" {
29 #endif
30 
31 typedef enum {
32 	NOTHING,	/* nothing connected here */
33 	SATA,		/* SATA connection */
34 	SAS,		/* direct or indirect SAS connection */
35 	EXPANDER,	/* connection to an expander */
36 	NEW		/* Brand new device (pending state) */
37 } pmcs_dtype_t;
38 
39 /*
40  * This structure defines a PHY device that represents what we
41  * are connected to.
42  *
43  * The eight real physical PHYs that are in the PMC8X6G are represented
44  * as an array of eight of these structures which define what these
45  * real PHYs are connected to.
46  *
47  * Depending upon what is actually connected to each PHY, the
48  * type set will define what we're connected to. If it is
49  * a direct SATA connection, the phy will describe a SATA endpoint
50  * If it is a direct SAS connection, it will describe a SAS
51  * endpoint.
52  *
53  * If it is an EXPANDER, this will describe the edge of an expander.
54  * As we perform discovery on what is in an EXPANDER we define an
55  * additional list of phys that represent what the Expander is connected to.
56  */
57 #define	PMCS_HW_MIN_LINK_RATE	SAS_LINK_RATE_1_5GBIT
58 #define	PMCS_HW_MAX_LINK_RATE	SAS_LINK_RATE_6GBIT
59 
60 #define	PMCS_INVALID_DEVICE_ID		0xffffffff
61 #define	PMCS_PHY_INVALID_PORT_ID	0xf
62 
63 #define	PMCS_PM_MAX_NAMELEN	16
64 
65 struct pmcs_phy {
66 	pmcs_phy_t	*sibling;	/* sibling phy */
67 	pmcs_phy_t 	*parent;	/* parent phy */
68 	pmcs_phy_t 	*children;	/* head of list of children */
69 	pmcs_phy_t 	*dead_next;	/* dead PHY list link */
70 	list_node_t	list_node;	/* list element */
71 	uint32_t	device_id;	/* PMC8X6G device handle */
72 	uint32_t
73 		ncphy 		: 8,	/* # of contained phys for expander */
74 		hw_event_ack	: 24;	/* XXX: first level phy event acked */
75 	uint8_t		phynum;		/* phy number on parent expander */
76 	uint8_t		width;		/* how many phys wide */
77 	uint8_t		ds_recovery_retries; /* # error retry attempts */
78 	uint8_t		ds_prev_good_recoveries; /* # successful recoveries */
79 	clock_t		prev_recovery;	/* previous successful recovery */
80 	clock_t		last_good_recovery; /* oldest successful recovery */
81 			/* within PMCS_MAX_DS_RECOVERY_TIME time frame */
82 	pmcs_dtype_t	dtype;		/* current dtype of the phy */
83 	pmcs_dtype_t	pend_dtype;	/* new dtype (pending change) */
84 	uint32_t
85 		level		: 8,	/* level in expander tree */
86 		tolerates_sas2	: 1,	/* tolerates SAS2 SMP */
87 		spinup_hold	: 1,	/* spinup hold needs releasing */
88 		atdt		: 3,	/* attached device type */
89 		portid		: 4,	/* PMC8X6G port context */
90 		link_rate   	: 4,	/* current supported speeds */
91 		valid_device_id	: 1,	/* device id is valid */
92 		abort_sent	: 1,	/* we've sent an abort */
93 		abort_pending	: 1,	/* we have an abort pending */
94 		need_rl_ext	: 1,	/* need SATA RL_EXT recocvery */
95 		subsidiary	: 1,	/* this is part of a wide phy */
96 		configured	: 1,	/* is configured */
97 		dead		: 1,	/* dead */
98 		changed		: 1,	/* this phy is changing */
99 		deregister_wait : 1;	/* phy waiting to get deregistered */
100 	clock_t		config_stop;	/* When config attempts will stop */
101 	hrtime_t	abort_all_start;
102 	kcondvar_t	abort_all_cv;	/* Wait for ABORT_ALL completion */
103 	kmutex_t	phy_lock;
104 	volatile uint32_t ref_count;	/* Targets & work on this PHY */
105 	uint8_t 	sas_address[8];	/* SAS address for this PHY */
106 	struct {
107 	uint32_t
108 		prog_min_rate	:4,
109 		hw_min_rate	:4,
110 		prog_max_rate	:4,
111 		hw_max_rate	:4,
112 		reserved	:16;
113 	} state;
114 	char		path[32];	/* path name for this phy */
115 	pmcs_hw_t	*pwp;		/* back ptr to hba struct */
116 	pmcs_iport_t	*iport;		/* back ptr to the iport handle */
117 	pmcs_iport_t	*last_iport;	/* last iport this PHY was on */
118 	pmcs_xscsi_t	*target;	/* back ptr to current target */
119 	kstat_t		*phy_stats;	/* kstats for this phy */
120 	/*
121 	 * Attached port phy mask and target port phymask.  With 16 bytes
122 	 * we can represent a phymask for anything with up to 64 ports
123 	 */
124 	uint64_t	att_port_pm;		/* att port pm for this PHY */
125 	uint64_t	att_port_pm_tmp;	/* Temp area for wide-ports */
126 	char		att_port_pm_str[PMCS_PM_MAX_NAMELEN + 1];
127 	uint64_t	tgt_port_pm;		/* tgt port pm for this PHY */
128 	uint64_t	tgt_port_pm_tmp;	/* Temp area for wide-ports */
129 	char		tgt_port_pm_str[PMCS_PM_MAX_NAMELEN + 1];
130 };
131 
132 /* maximum number of ds recovery retries (ds_recovery_retries) */
133 #define	PMCS_MAX_DS_RECOVERY_RETRIES	10
134 
135 /* max time allowed for successful recovery */
136 #define	PMCS_MAX_DS_RECOVERY_TIME	(60 * 1000000) /* 60 seconds */
137 
138 /* ds recovery on same same phy is not allowed within this interval */
139 #define	PMCS_DS_RECOVERY_INTERVAL	(1000000) /* 1 second */
140 
141 
142 /*
143  * Inbound and Outbound Queue Related Definitions.
144  *
145  * The PMC8X6G has a programmable number of inbound and outbound circular
146  * queues for use in message passing between the host and the PMC8X6G
147  * (up to 64 queues for the Rev C Chip). This driver does not use all
148  * possible queues.
149  *
150  * Each Queue is given 4K of consistent memory and we set a 64 byte size for
151  * the queue entry size (this gives us 256 queue entries per queue).
152  *
153  * This allocation then continues up a further PMCS_SCRATCH_SIZE bytes
154  * that the driver uses as a temporary scratch area for things like
155  * SMP discovery.
156  *
157  * This control area looks like this:
158  *
159  * Offset			What
160  * ------------------------------------------------
161  * 0					IQ 0 Consumer Index
162  * 4					IQ 1 Consumer Index
163  * 8..255				...
164  * 252..255				IQ 63 Consumer Index
165  * 256					OQ 0 Producer Index
166  * 260					OQ 1 Producer Index
167  * 264..259				....
168  * 508..511				OQ 63 Producer Index
169  * 512..512+PMCS_SCRATCH_SIZE-1		Scratch area.
170  */
171 #define	IQCI_BASE_OFFSET	0
172 #define	IQ_OFFSET(qnum)		(IQCI_BASE_OFFSET + (qnum << 2))
173 #define	OQPI_BASE_OFFSET	256
174 #define	OQ_OFFSET(qnum)		(OQPI_BASE_OFFSET + (qnum << 2))
175 
176 /*
177  * Work related structures. Each one of these structures is paired
178  * with *any* command that is fed to the PMC8X6G via one of the
179  * Inbound Queues. The work structure has a tag to compare with
180  * the message that comes back out of an Outbound Queue. The
181  * work structure also points to the phy which this command is
182  * tied to. It also has a pointer a callback function (if defined).
183  * See that TAG Architecture below for the various kinds of
184  * dispositions of a work structure.
185  */
186 
187 /*
188  * Work Structure States
189  *
190  * NIL			->	READY
191  * READY		->	NIL
192  * READY		->	ONCHIP
193  * ONCHIP		->	INTR
194  * INTR			->	READY
195  * INTR			->	NIL
196  * INTR			->	ABORTED
197  * INTR			->	TIMED_OUT
198  * ABORTED		->	NIL
199  * TIMED_OUT		->	NIL
200  */
201 typedef enum {
202 	PMCS_WORK_STATE_NIL = 0,
203 	PMCS_WORK_STATE_READY,
204 	PMCS_WORK_STATE_ONCHIP,
205 	PMCS_WORK_STATE_INTR,
206 	PMCS_WORK_STATE_IOCOMPQ,
207 	PMCS_WORK_STATE_ABORTED,
208 	PMCS_WORK_STATE_TIMED_OUT
209 } pmcs_work_state_t;
210 
211 struct pmcwork {
212 	STAILQ_ENTRY(pmcwork)	next;
213 	kmutex_t		lock;
214 	kcondvar_t		sleep_cv;
215 	void			*ptr;	/* linkage or callback function */
216 	void 			*arg;	/* command specific data */
217 	pmcs_phy_t 		*phy;	/* phy who owns this command */
218 	pmcs_xscsi_t		*xp;	/* Back pointer to xscsi struct */
219 	volatile uint32_t	htag;	/* tag for this structure */
220 	uint32_t		abt_htag; /* Tag of command to be aborted */
221 	uint32_t
222 			timer	:	27,
223 			onwire	:	1,
224 			dead	:	1,
225 			state	:	3;
226 	hrtime_t		start;	/* timestamp start */
227 	uint32_t		ssp_event; /* ssp event */
228 	pmcs_dtype_t		dtype;	/* stash, incase phy gets cleared */
229 
230 	void			*last_ptr;
231 	void			*last_arg;
232 	pmcs_phy_t		*last_phy;
233 	pmcs_xscsi_t		*last_xp;
234 	uint32_t		last_htag;
235 	pmcs_work_state_t	last_state;
236 	hrtime_t		finish;
237 };
238 
239 #define	PMCS_REC_EVENT	0xffffffff	/* event recovery */
240 
241 /*
242  * This structure defines a PMC-Sierra defined firmware header.
243  */
244 #pragma	pack(4)
245 typedef struct {
246 	char 		vendor_id[8];
247 	uint8_t		product_id;
248 	uint8_t		hwrev;
249 	uint8_t		destination_partition;
250 	uint8_t		reserved0;
251 	uint8_t		fwrev[4];
252 	uint32_t	firmware_length;
253 	uint32_t	crc;
254 	uint32_t	start_address;
255 	uint8_t		data[];
256 } pmcs_fw_hdr_t;
257 #pragma	pack()
258 
259 /*
260  * Offlevel work as a bit pattern.
261  */
262 #define	PMCS_WORK_DISCOVER		0
263 #define	PMCS_WORK_ABORT_HANDLE		3
264 #define	PMCS_WORK_SPINUP_RELEASE	4
265 #define	PMCS_WORK_SAS_HW_ACK		5
266 #define	PMCS_WORK_SATA_RUN		6
267 #define	PMCS_WORK_RUN_QUEUES		7
268 #define	PMCS_WORK_ADD_DMA_CHUNKS	8
269 #define	PMCS_WORK_DS_ERR_RECOVERY	9
270 #define	PMCS_WORK_SSP_EVT_RECOVERY	10
271 #define	PMCS_WORK_DEREGISTER_DEV	11
272 
273 /*
274  * The actual values as they appear in work_flags
275  */
276 #define	PMCS_WORK_FLAG_DISCOVER		(1 << 0)
277 #define	PMCS_WORK_FLAG_ABORT_HANDLE	(1 << 3)
278 #define	PMCS_WORK_FLAG_SPINUP_RELEASE	(1 << 4)
279 #define	PMCS_WORK_FLAG_SAS_HW_ACK	(1 << 5)
280 #define	PMCS_WORK_FLAG_SATA_RUN		(1 << 6)
281 #define	PMCS_WORK_FLAG_RUN_QUEUES	(1 << 7)
282 #define	PMCS_WORK_FLAG_ADD_DMA_CHUNKS	(1 << 8)
283 #define	PMCS_WORK_FLAG_DS_ERR_RECOVERY	(1 << 9)
284 #define	PMCS_WORK_FLAG_SSP_EVT_RECOVERY (1 << 10)
285 #define	PMCS_WORK_FLAG_DEREGISTER_DEV   (1 << 11)
286 
287 /*
288  * This structure is used by this function to test MPI (and interrupts)
289  * after MPI has been started to make sure it's working reliably.
290  */
291 typedef struct {
292 	uint32_t signature;
293 	uint32_t count;
294 	uint32_t *ptr;
295 } echo_test_t;
296 #define	ECHO_SIGNATURE	0xbebebeef
297 
298 /*
299  * Tag Architecture. The PMC has 32 bit tags for MPI messages.
300  * We use this tag this way.
301  *
302  * bits		what
303  * ------------------------
304  * 31		done bit
305  * 30..28	tag type
306  * 27..12	rolling serial number
307  * 11..0	index into work area to get pmcwork structure
308  *
309  * A tag type of NONE means that nobody is waiting on any results,
310  * so the interrupt code frees the work structure that has this
311  * tag.
312  *
313  * A tag type of CBACK means that the the interrupt handler
314  * takes the tag 'arg' in the work structure to be a callback
315  * function pointer (see pmcs_cb_t). The callee is responsible
316  * for freeing the work structure that has this tag.
317  *
318  * A tag type of WAIT means that the issuer of the work needs
319  * be woken up from interrupt level when the command completes
320  * (or times out). If work structure tag 'arg' is non-null,
321  * up to 2*PMCS_QENTRY_SIZE bits of data from the Outbound Queue
322  * entry may be copied to the area pointed to by 'arg'. This
323  * allows issuers to get directly at the results of the command
324  * they issed. The synchronization point for the issuer and the
325  * interrupt code for command done notification is the setting
326  * of the 'DONE' bit in the tag as stored in the work structure.
327  */
328 #define	PMCS_TAG_TYPE_FREE	0
329 #define	PMCS_TAG_TYPE_NONE	1
330 #define	PMCS_TAG_TYPE_CBACK  	2
331 #define	PMCS_TAG_TYPE_WAIT	3
332 #define	PMCS_TAG_TYPE_SHIFT	28
333 #define	PMCS_TAG_SERNO_SHIFT	12
334 #define	PMCS_TAG_INDEX_SHIFT	0
335 #define	PMCS_TAG_TYPE_MASK	0x70000000
336 #define	PMCS_TAG_DONE		0x80000000
337 #define	PMCS_TAG_SERNO_MASK	0x0ffff000
338 #define	PMCS_TAG_INDEX_MASK	0x00000fff
339 #define	PMCS_TAG_TYPE(x)		\
340 	(((x) & PMCS_TAG_TYPE_MASK) >> PMCS_TAG_TYPE_SHIFT)
341 #define	PMCS_TAG_SERNO(x)	\
342 	(((x) & PMCS_TAG_SERNO_MASK) >> PMCS_TAG_SERNO_SHIFT)
343 #define	PMCS_TAG_INDEX(x)	\
344 	(((x) & PMCS_TAG_INDEX_MASK) >> PMCS_TAG_INDEX_SHIFT)
345 #define	PMCS_TAG_FREE		0
346 #define	PMCS_COMMAND_DONE(x)	\
347 	(((x)->htag == PMCS_TAG_FREE) || (((x)->htag & PMCS_TAG_DONE) != 0))
348 #define	PMCS_COMMAND_ACTIVE(x)	\
349 	((x)->htag != PMCS_TAG_FREE && (x)->state == PMCS_WORK_STATE_ONCHIP)
350 
351 /*
352  * Miscellaneous Definitions
353  */
354 #define	CLEAN_MESSAGE(m, x)	{	\
355 	int _j = x;			\
356 	while (_j < PMCS_MSG_SIZE) {	\
357 		m[_j++] = 0;		\
358 	}				\
359 }
360 
361 #define	COPY_MESSAGE(t, f, a)	{	\
362 	int _j;				\
363 	for (_j = 0; _j < a; _j++) {	\
364 		t[_j] = f[_j];		\
365 	}				\
366 	while (_j < PMCS_MSG_SIZE) {	\
367 		t[_j++] = 0;		\
368 	}				\
369 }
370 
371 #define	PMCS_PHY_ADDRESSABLE(pp)			\
372 	((pp)->level == 0 && (pp)->dtype == SATA &&	\
373 	    ((pp)->sas_address[0] >> 4) != 5)
374 
375 #define	RESTART_DISCOVERY(pwp)				\
376 	ASSERT(!mutex_owned(&pwp->config_lock));	\
377 	mutex_enter(&pwp->config_lock);			\
378 	pwp->config_changed = B_TRUE;			\
379 	mutex_exit(&pwp->config_lock);			\
380 	SCHEDULE_WORK(pwp, PMCS_WORK_DISCOVER);
381 
382 #define	RESTART_DISCOVERY_LOCKED(pwp)			\
383 	ASSERT(mutex_owned(&pwp->config_lock));		\
384 	pwp->config_changed = B_TRUE;			\
385 	SCHEDULE_WORK(pwp, PMCS_WORK_DISCOVER);
386 
387 #define	PHY_CHANGED(pwp, p)						\
388 	pmcs_prt(pwp, PMCS_PRT_DEBUG_CONFIG, p, NULL, "%s changed in "  \
389 	    "%s line %d", p->path, __func__, __LINE__); 		\
390 	p->changed = 1
391 
392 #define	PHY_CHANGED_AT_LOCATION(pwp, p, func, line)			\
393 	pmcs_prt(pwp, PMCS_PRT_DEBUG_CONFIG, p, NULL, "%s changed in "  \
394 	    "%s line %d", p->path, func, line);				\
395 	p->changed = 1
396 
397 #define	PHY_TYPE(pptr)					\
398 	(((pptr)->dtype == NOTHING)?  "NOTHING" :	\
399 	(((pptr)->dtype == SATA)? "SATA" :		\
400 	(((pptr)->dtype == SAS)? "SAS" : "EXPANDER")))
401 
402 #define	IS_ROOT_PHY(pptr)	(pptr->parent == NULL)
403 
404 #define	PMCS_HIPRI(pwp, oq, c)				\
405 	(pwp->hipri_queue & (1 << PMCS_IQ_OTHER)) ?	\
406 	(PMCS_IOMB_HIPRI | PMCS_IOMB_IN_SAS(oq, c)) :	\
407 	(PMCS_IOMB_IN_SAS(oq, c))
408 
409 #define	SCHEDULE_WORK(hwp, wrk)		\
410 	(void) atomic_set_long_excl(&hwp->work_flags, wrk)
411 
412 /*
413  * Check to see if the requested work bit is set.  Either way, the bit will
414  * be cleared upon return.
415  */
416 #define	WORK_SCHEDULED(hwp, wrk)	\
417 	(atomic_clear_long_excl(&hwp->work_flags, wrk) == 0)
418 
419 /*
420  * Check to see if the requested work bit is set.  The value will not be
421  * changed in this case.  The atomic_xx_nv operations can be quite expensive
422  * so this should not be used in non-DEBUG code.
423  */
424 #define	WORK_IS_SCHEDULED(hwp, wrk)	\
425 	((atomic_and_ulong_nv(&hwp->work_flags, (ulong_t)-1) & (1 << wrk)) != 0)
426 
427 #define	WAIT_FOR(p, t, r)					\
428 	r = 0;							\
429 	while (!PMCS_COMMAND_DONE(p)) {				\
430 		clock_t tmp = cv_timedwait(&p->sleep_cv,	\
431 		    &p->lock, ddi_get_lbolt() +			\
432 		    drv_usectohz(t * 1000));			\
433 		if (!PMCS_COMMAND_DONE(p) && tmp < 0) {		\
434 			r = 1;					\
435 			break;					\
436 		}						\
437 	}
438 
439 /*
440  * Signal the next I/O completion thread to start running.
441  */
442 
443 #define	PMCS_CQ_RUN_LOCKED(hwp)						\
444 	if (!STAILQ_EMPTY(&hwp->cq) || hwp->iocomp_cb_head) {		\
445 		pmcs_cq_thr_info_t *cqti;				\
446 		cqti = &hwp->cq_info.cq_thr_info			\
447 		    [hwp->cq_info.cq_next_disp_thr];			\
448 		hwp->cq_info.cq_next_disp_thr++;			\
449 		if (hwp->cq_info.cq_next_disp_thr ==			\
450 		    hwp->cq_info.cq_threads) {				\
451 			hwp->cq_info.cq_next_disp_thr = 0;		\
452 		}							\
453 		mutex_enter(&cqti->cq_thr_lock);			\
454 		cv_signal(&cqti->cq_cv);				\
455 		mutex_exit(&cqti->cq_thr_lock);				\
456 	}								\
457 
458 #define	PMCS_CQ_RUN(hwp)						\
459 	mutex_enter(&hwp->cq_lock);					\
460 	PMCS_CQ_RUN_LOCKED(hwp);					\
461 	mutex_exit(&hwp->cq_lock);
462 
463 
464 /*
465  * Watchdog/SCSA timer definitions
466  */
467 /* usecs to SCSA watchdog ticks */
468 #define	US2WT(x)	(x)/10
469 
470 /*
471  * More misc
472  */
473 #define	BYTE0(x)	(((x) >>  0) & 0xff)
474 #define	BYTE1(x)	(((x) >>  8) & 0xff)
475 #define	BYTE2(x)	(((x) >> 16) & 0xff)
476 #define	BYTE3(x)	(((x) >> 24) & 0xff)
477 #define	BYTE4(x)	(((x) >> 32) & 0xff)
478 #define	BYTE5(x)	(((x) >> 40) & 0xff)
479 #define	BYTE6(x)	(((x) >> 48) & 0xff)
480 #define	BYTE7(x)	(((x) >> 56) & 0xff)
481 #define	WORD0(x)	(((x) >>  0) & 0xffff)
482 #define	WORD1(x)	(((x) >> 16) & 0xffff)
483 #define	WORD2(x)	(((x) >> 32) & 0xffff)
484 #define	WORD3(x)	(((x) >> 48) & 0xffff)
485 #define	DWORD0(x)	((uint32_t)(x))
486 #define	DWORD1(x)	((uint32_t)(((uint64_t)x) >> 32))
487 
488 #define	SAS_ADDR_FMT	"0x%02x%02x%02x%02x%02x%02x%02x%02x"
489 #define	SAS_ADDR_PRT(x)	x[0], x[1], x[2], x[3], x[4], x[5], x[6], x[7]
490 
491 #define	PMCS_VALID_LINK_RATE(r) \
492 	((r == SAS_LINK_RATE_1_5GBIT) || (r == SAS_LINK_RATE_3GBIT) || \
493 	(r == SAS_LINK_RATE_6GBIT))
494 
495 /*
496  * This is here to avoid inclusion of <sys/ctype.h> which is not lint clean.
497  */
498 #define	HEXDIGIT(x)	(((x) >= '0' && (x) <= '9') || \
499 	((x) >= 'a' && (x) <= 'f') || ((x) >= 'A' && (x) <= 'F'))
500 
501 
502 typedef void (*pmcs_cb_t) (pmcs_hw_t *, pmcwork_t *, uint32_t *);
503 
504 /*
505  * Defines and structure used for tracing/logging information
506  */
507 
508 #define	PMCS_TBUF_ELEM_SIZE	120
509 
510 #ifdef DEBUG
511 #define	PMCS_TBUF_NUM_ELEMS_DEF	100000
512 #else
513 #define	PMCS_TBUF_NUM_ELEMS_DEF	15000
514 #endif
515 
516 #define	PMCS_TBUF_UA_MAX_SIZE	32
517 typedef struct {
518 	/* Target-specific data */
519 	uint16_t	target_num;
520 	char		target_ua[PMCS_TBUF_UA_MAX_SIZE];
521 	/* PHY-specific data */
522 	uint8_t 	phy_sas_address[8];
523 	char		phy_path[32];
524 	pmcs_dtype_t	phy_dtype;
525 	/* Log data */
526 	timespec_t	timestamp;
527 	char		buf[PMCS_TBUF_ELEM_SIZE];
528 } pmcs_tbuf_t;
529 
530 /*
531  * Firmware event log header format
532  */
533 
534 typedef struct pmcs_fw_event_hdr_s {
535 	uint32_t	fw_el_signature;
536 	uint32_t	fw_el_entry_start_offset;
537 	uint32_t	fw_el_rsvd1;
538 	uint32_t	fw_el_buf_size;
539 	uint32_t	fw_el_rsvd2;
540 	uint32_t	fw_el_oldest_idx;
541 	uint32_t	fw_el_latest_idx;
542 	uint32_t	fw_el_entry_size;
543 } pmcs_fw_event_hdr_t;
544 
545 #ifdef	__cplusplus
546 }
547 #endif
548 #endif	/* _PMCS_DEF_H */
549