1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
28 /*	  All Rights Reserved	*/
29 
30 #pragma ident	"%Z%%M%	%I%	%E% SMI"
31 
32 #include <sys/param.h>
33 #include <sys/types.h>
34 #include <sys/sysmacros.h>
35 #include <sys/systm.h>
36 #include <sys/cred.h>
37 #include <sys/user.h>
38 #include <sys/errno.h>
39 #include <sys/file.h>
40 #include <sys/proc.h>
41 #include <sys/prsystm.h>
42 #include <sys/kmem.h>
43 #include <sys/sobject.h>
44 #include <sys/fault.h>
45 #include <sys/procfs.h>
46 #include <sys/watchpoint.h>
47 #include <sys/time.h>
48 #include <sys/cmn_err.h>
49 #include <sys/machlock.h>
50 #include <sys/debug.h>
51 #include <sys/synch.h>
52 #include <sys/synch32.h>
53 #include <sys/mman.h>
54 #include <sys/class.h>
55 #include <sys/schedctl.h>
56 #include <sys/sleepq.h>
57 #include <sys/policy.h>
58 #include <sys/tnf_probe.h>
59 #include <sys/lwpchan_impl.h>
60 #include <sys/turnstile.h>
61 #include <sys/atomic.h>
62 #include <sys/lwp_timer_impl.h>
63 #include <sys/lwp_upimutex_impl.h>
64 #include <vm/as.h>
65 #include <sys/sdt.h>
66 
67 static kthread_t *lwpsobj_owner(caddr_t);
68 static void lwp_unsleep(kthread_t *t);
69 static void lwp_change_pri(kthread_t *t, pri_t pri, pri_t *t_prip);
70 static void lwp_mutex_cleanup(lwpchan_entry_t *ent, uint16_t lockflg);
71 
72 extern int lwp_cond_signal(lwp_cond_t *cv);
73 
74 /*
75  * Maximum number of user prio inheritance locks that can be held by a thread.
76  * Used to limit kmem for each thread. This is a per-thread limit that
77  * can be administered on a system wide basis (using /etc/system).
78  *
79  * Also, when a limit, say maxlwps is added for numbers of lwps within a
80  * process, the per-thread limit automatically becomes a process-wide limit
81  * of maximum number of held upi locks within a process:
82  *      maxheldupimx = maxnestupimx * maxlwps;
83  */
84 static uint32_t maxnestupimx = 2000;
85 
86 /*
87  * The sobj_ops vector exports a set of functions needed when a thread
88  * is asleep on a synchronization object of this type.
89  */
90 static sobj_ops_t lwp_sobj_ops = {
91 	SOBJ_USER, lwpsobj_owner, lwp_unsleep, lwp_change_pri
92 };
93 
94 static kthread_t *lwpsobj_pi_owner(upimutex_t *up);
95 
96 static sobj_ops_t lwp_sobj_pi_ops = {
97 	SOBJ_USER_PI, lwpsobj_pi_owner, turnstile_unsleep,
98 	turnstile_change_pri
99 };
100 
101 static sleepq_head_t	lwpsleepq[NSLEEPQ];
102 upib_t			upimutextab[UPIMUTEX_TABSIZE];
103 
104 #define	LWPCHAN_LOCK_SHIFT	10	/* 1024 locks for each pool */
105 #define	LWPCHAN_LOCK_SIZE	(1 << LWPCHAN_LOCK_SHIFT)
106 
107 /*
108  * We know that both lc_wchan and lc_wchan0 are addresses that most
109  * likely are 8-byte aligned, so we shift off the low-order 3 bits.
110  * 'pool' is either 0 or 1.
111  */
112 #define	LWPCHAN_LOCK_HASH(X, pool) \
113 	(((((X) >> 3) ^ ((X) >> (LWPCHAN_LOCK_SHIFT + 3))) & \
114 	(LWPCHAN_LOCK_SIZE - 1)) + ((pool)? LWPCHAN_LOCK_SIZE : 0))
115 
116 static kmutex_t		lwpchanlock[2 * LWPCHAN_LOCK_SIZE];
117 
118 /*
119  * Is this a POSIX threads user-level lock requiring priority inheritance?
120  */
121 #define	UPIMUTEX(type)	((type) & LOCK_PRIO_INHERIT)
122 
123 static sleepq_head_t *
124 lwpsqhash(lwpchan_t *lwpchan)
125 {
126 	uint_t x = (uintptr_t)lwpchan->lc_wchan ^ (uintptr_t)lwpchan->lc_wchan0;
127 	return (&lwpsleepq[SQHASHINDEX(x)]);
128 }
129 
130 /*
131  * Lock an lwpchan.
132  * Keep this in sync with lwpchan_unlock(), below.
133  */
134 static void
135 lwpchan_lock(lwpchan_t *lwpchan, int pool)
136 {
137 	uint_t x = (uintptr_t)lwpchan->lc_wchan ^ (uintptr_t)lwpchan->lc_wchan0;
138 	mutex_enter(&lwpchanlock[LWPCHAN_LOCK_HASH(x, pool)]);
139 }
140 
141 /*
142  * Unlock an lwpchan.
143  * Keep this in sync with lwpchan_lock(), above.
144  */
145 static void
146 lwpchan_unlock(lwpchan_t *lwpchan, int pool)
147 {
148 	uint_t x = (uintptr_t)lwpchan->lc_wchan ^ (uintptr_t)lwpchan->lc_wchan0;
149 	mutex_exit(&lwpchanlock[LWPCHAN_LOCK_HASH(x, pool)]);
150 }
151 
152 /*
153  * Delete mappings from the lwpchan cache for pages that are being
154  * unmapped by as_unmap().  Given a range of addresses, "start" to "end",
155  * all mappings within the range are deleted from the lwpchan cache.
156  */
157 void
158 lwpchan_delete_mapping(proc_t *p, caddr_t start, caddr_t end)
159 {
160 	lwpchan_data_t *lcp;
161 	lwpchan_hashbucket_t *hashbucket;
162 	lwpchan_hashbucket_t *endbucket;
163 	lwpchan_entry_t *ent;
164 	lwpchan_entry_t **prev;
165 	caddr_t addr;
166 
167 	mutex_enter(&p->p_lcp_lock);
168 	lcp = p->p_lcp;
169 	hashbucket = lcp->lwpchan_cache;
170 	endbucket = hashbucket + lcp->lwpchan_size;
171 	for (; hashbucket < endbucket; hashbucket++) {
172 		if (hashbucket->lwpchan_chain == NULL)
173 			continue;
174 		mutex_enter(&hashbucket->lwpchan_lock);
175 		prev = &hashbucket->lwpchan_chain;
176 		/* check entire chain */
177 		while ((ent = *prev) != NULL) {
178 			addr = ent->lwpchan_addr;
179 			if (start <= addr && addr < end) {
180 				*prev = ent->lwpchan_next;
181 				/*
182 				 * We do this only for the obsolete type
183 				 * USYNC_PROCESS_ROBUST.  Otherwise robust
184 				 * locks do not draw ELOCKUNMAPPED or
185 				 * EOWNERDEAD due to being unmapped.
186 				 */
187 				if (ent->lwpchan_pool == LWPCHAN_MPPOOL &&
188 				    (ent->lwpchan_type & USYNC_PROCESS_ROBUST))
189 					lwp_mutex_cleanup(ent, LOCK_UNMAPPED);
190 				kmem_free(ent, sizeof (*ent));
191 				atomic_add_32(&lcp->lwpchan_entries, -1);
192 			} else {
193 				prev = &ent->lwpchan_next;
194 			}
195 		}
196 		mutex_exit(&hashbucket->lwpchan_lock);
197 	}
198 	mutex_exit(&p->p_lcp_lock);
199 }
200 
201 /*
202  * Given an lwpchan cache pointer and a process virtual address,
203  * return a pointer to the corresponding lwpchan hash bucket.
204  */
205 static lwpchan_hashbucket_t *
206 lwpchan_bucket(lwpchan_data_t *lcp, uintptr_t addr)
207 {
208 	uint_t i;
209 
210 	/*
211 	 * All user-level sync object addresses are 8-byte aligned.
212 	 * Ignore the lowest 3 bits of the address and use the
213 	 * higher-order 2*lwpchan_bits bits for the hash index.
214 	 */
215 	addr >>= 3;
216 	i = (addr ^ (addr >> lcp->lwpchan_bits)) & lcp->lwpchan_mask;
217 	return (lcp->lwpchan_cache + i);
218 }
219 
220 /*
221  * (Re)allocate the per-process lwpchan cache.
222  */
223 static void
224 lwpchan_alloc_cache(proc_t *p, uint_t bits)
225 {
226 	lwpchan_data_t *lcp;
227 	lwpchan_data_t *old_lcp;
228 	lwpchan_hashbucket_t *hashbucket;
229 	lwpchan_hashbucket_t *endbucket;
230 	lwpchan_hashbucket_t *newbucket;
231 	lwpchan_entry_t *ent;
232 	lwpchan_entry_t *next;
233 	uint_t count;
234 
235 	ASSERT(bits >= LWPCHAN_INITIAL_BITS && bits <= LWPCHAN_MAX_BITS);
236 
237 	lcp = kmem_alloc(sizeof (lwpchan_data_t), KM_SLEEP);
238 	lcp->lwpchan_bits = bits;
239 	lcp->lwpchan_size = 1 << lcp->lwpchan_bits;
240 	lcp->lwpchan_mask = lcp->lwpchan_size - 1;
241 	lcp->lwpchan_entries = 0;
242 	lcp->lwpchan_cache = kmem_zalloc(lcp->lwpchan_size *
243 	    sizeof (lwpchan_hashbucket_t), KM_SLEEP);
244 	lcp->lwpchan_next_data = NULL;
245 
246 	mutex_enter(&p->p_lcp_lock);
247 	if ((old_lcp = p->p_lcp) != NULL) {
248 		if (old_lcp->lwpchan_bits >= bits) {
249 			/* someone beat us to it */
250 			mutex_exit(&p->p_lcp_lock);
251 			kmem_free(lcp->lwpchan_cache, lcp->lwpchan_size *
252 			    sizeof (lwpchan_hashbucket_t));
253 			kmem_free(lcp, sizeof (lwpchan_data_t));
254 			return;
255 		}
256 		/*
257 		 * Acquire all of the old hash table locks.
258 		 */
259 		hashbucket = old_lcp->lwpchan_cache;
260 		endbucket = hashbucket + old_lcp->lwpchan_size;
261 		for (; hashbucket < endbucket; hashbucket++)
262 			mutex_enter(&hashbucket->lwpchan_lock);
263 		/*
264 		 * Move all of the old hash table entries to the
265 		 * new hash table.  The new hash table has not yet
266 		 * been installed so we don't need any of its locks.
267 		 */
268 		count = 0;
269 		hashbucket = old_lcp->lwpchan_cache;
270 		for (; hashbucket < endbucket; hashbucket++) {
271 			ent = hashbucket->lwpchan_chain;
272 			while (ent != NULL) {
273 				next = ent->lwpchan_next;
274 				newbucket = lwpchan_bucket(lcp,
275 				    (uintptr_t)ent->lwpchan_addr);
276 				ent->lwpchan_next = newbucket->lwpchan_chain;
277 				newbucket->lwpchan_chain = ent;
278 				ent = next;
279 				count++;
280 			}
281 			hashbucket->lwpchan_chain = NULL;
282 		}
283 		lcp->lwpchan_entries = count;
284 	}
285 
286 	/*
287 	 * Retire the old hash table.  We can't actually kmem_free() it
288 	 * now because someone may still have a pointer to it.  Instead,
289 	 * we link it onto the new hash table's list of retired hash tables.
290 	 * The new hash table is double the size of the previous one, so
291 	 * the total size of all retired hash tables is less than the size
292 	 * of the new one.  exit() and exec() free the retired hash tables
293 	 * (see lwpchan_destroy_cache(), below).
294 	 */
295 	lcp->lwpchan_next_data = old_lcp;
296 
297 	/*
298 	 * As soon as we store the new lcp, future locking operations will
299 	 * use it.  Therefore, we must ensure that all the state we've just
300 	 * established reaches global visibility before the new lcp does.
301 	 */
302 	membar_producer();
303 	p->p_lcp = lcp;
304 
305 	if (old_lcp != NULL) {
306 		/*
307 		 * Release all of the old hash table locks.
308 		 */
309 		hashbucket = old_lcp->lwpchan_cache;
310 		for (; hashbucket < endbucket; hashbucket++)
311 			mutex_exit(&hashbucket->lwpchan_lock);
312 	}
313 	mutex_exit(&p->p_lcp_lock);
314 }
315 
316 /*
317  * Deallocate the lwpchan cache, and any dynamically allocated mappings.
318  * Called when the process exits or execs.  All lwps except one have
319  * exited so we need no locks here.
320  */
321 void
322 lwpchan_destroy_cache(int exec)
323 {
324 	proc_t *p = curproc;
325 	lwpchan_hashbucket_t *hashbucket;
326 	lwpchan_hashbucket_t *endbucket;
327 	lwpchan_data_t *lcp;
328 	lwpchan_entry_t *ent;
329 	lwpchan_entry_t *next;
330 	uint16_t lockflg;
331 
332 	lcp = p->p_lcp;
333 	p->p_lcp = NULL;
334 
335 	lockflg = exec? LOCK_UNMAPPED : LOCK_OWNERDEAD;
336 	hashbucket = lcp->lwpchan_cache;
337 	endbucket = hashbucket + lcp->lwpchan_size;
338 	for (; hashbucket < endbucket; hashbucket++) {
339 		ent = hashbucket->lwpchan_chain;
340 		hashbucket->lwpchan_chain = NULL;
341 		while (ent != NULL) {
342 			next = ent->lwpchan_next;
343 			if (ent->lwpchan_pool == LWPCHAN_MPPOOL &&
344 			    (ent->lwpchan_type & LOCK_ROBUST))
345 				lwp_mutex_cleanup(ent, lockflg);
346 			kmem_free(ent, sizeof (*ent));
347 			ent = next;
348 		}
349 	}
350 
351 	while (lcp != NULL) {
352 		lwpchan_data_t *next_lcp = lcp->lwpchan_next_data;
353 		kmem_free(lcp->lwpchan_cache, lcp->lwpchan_size *
354 		    sizeof (lwpchan_hashbucket_t));
355 		kmem_free(lcp, sizeof (lwpchan_data_t));
356 		lcp = next_lcp;
357 	}
358 }
359 
360 /*
361  * Return zero when there is an entry in the lwpchan cache for the
362  * given process virtual address and non-zero when there is not.
363  * The returned non-zero value is the current length of the
364  * hash chain plus one.  The caller holds the hash bucket lock.
365  */
366 static uint_t
367 lwpchan_cache_mapping(caddr_t addr, int type, int pool, lwpchan_t *lwpchan,
368 	lwpchan_hashbucket_t *hashbucket)
369 {
370 	lwpchan_entry_t *ent;
371 	uint_t count = 1;
372 
373 	for (ent = hashbucket->lwpchan_chain; ent; ent = ent->lwpchan_next) {
374 		if (ent->lwpchan_addr == addr) {
375 			if (ent->lwpchan_type != type ||
376 			    ent->lwpchan_pool != pool) {
377 				/*
378 				 * This shouldn't happen, but might if the
379 				 * process reuses its memory for different
380 				 * types of sync objects.  We test first
381 				 * to avoid grabbing the memory cache line.
382 				 */
383 				ent->lwpchan_type = (uint16_t)type;
384 				ent->lwpchan_pool = (uint16_t)pool;
385 			}
386 			*lwpchan = ent->lwpchan_lwpchan;
387 			return (0);
388 		}
389 		count++;
390 	}
391 	return (count);
392 }
393 
394 /*
395  * Return the cached lwpchan mapping if cached, otherwise insert
396  * a virtual address to lwpchan mapping into the cache.
397  */
398 static int
399 lwpchan_get_mapping(struct as *as, caddr_t addr,
400 	int type, lwpchan_t *lwpchan, int pool)
401 {
402 	proc_t *p = curproc;
403 	lwpchan_data_t *lcp;
404 	lwpchan_hashbucket_t *hashbucket;
405 	lwpchan_entry_t *ent;
406 	memid_t	memid;
407 	uint_t count;
408 	uint_t bits;
409 
410 top:
411 	/* initialize the lwpchan cache, if necesary */
412 	if ((lcp = p->p_lcp) == NULL) {
413 		lwpchan_alloc_cache(p, LWPCHAN_INITIAL_BITS);
414 		goto top;
415 	}
416 	hashbucket = lwpchan_bucket(lcp, (uintptr_t)addr);
417 	mutex_enter(&hashbucket->lwpchan_lock);
418 	if (lcp != p->p_lcp) {
419 		/* someone resized the lwpchan cache; start over */
420 		mutex_exit(&hashbucket->lwpchan_lock);
421 		goto top;
422 	}
423 	if (lwpchan_cache_mapping(addr, type, pool, lwpchan, hashbucket) == 0) {
424 		/* it's in the cache */
425 		mutex_exit(&hashbucket->lwpchan_lock);
426 		return (1);
427 	}
428 	mutex_exit(&hashbucket->lwpchan_lock);
429 	if (as_getmemid(as, addr, &memid) != 0)
430 		return (0);
431 	lwpchan->lc_wchan0 = (caddr_t)(uintptr_t)memid.val[0];
432 	lwpchan->lc_wchan = (caddr_t)(uintptr_t)memid.val[1];
433 	ent = kmem_alloc(sizeof (lwpchan_entry_t), KM_SLEEP);
434 	mutex_enter(&hashbucket->lwpchan_lock);
435 	if (lcp != p->p_lcp) {
436 		/* someone resized the lwpchan cache; start over */
437 		mutex_exit(&hashbucket->lwpchan_lock);
438 		kmem_free(ent, sizeof (*ent));
439 		goto top;
440 	}
441 	count = lwpchan_cache_mapping(addr, type, pool, lwpchan, hashbucket);
442 	if (count == 0) {
443 		/* someone else added this entry to the cache */
444 		mutex_exit(&hashbucket->lwpchan_lock);
445 		kmem_free(ent, sizeof (*ent));
446 		return (1);
447 	}
448 	if (count > lcp->lwpchan_bits + 2 && /* larger table, longer chains */
449 	    (bits = lcp->lwpchan_bits) < LWPCHAN_MAX_BITS) {
450 		/* hash chain too long; reallocate the hash table */
451 		mutex_exit(&hashbucket->lwpchan_lock);
452 		kmem_free(ent, sizeof (*ent));
453 		lwpchan_alloc_cache(p, bits + 1);
454 		goto top;
455 	}
456 	ent->lwpchan_addr = addr;
457 	ent->lwpchan_type = (uint16_t)type;
458 	ent->lwpchan_pool = (uint16_t)pool;
459 	ent->lwpchan_lwpchan = *lwpchan;
460 	ent->lwpchan_next = hashbucket->lwpchan_chain;
461 	hashbucket->lwpchan_chain = ent;
462 	atomic_add_32(&lcp->lwpchan_entries, 1);
463 	mutex_exit(&hashbucket->lwpchan_lock);
464 	return (1);
465 }
466 
467 /*
468  * Return a unique pair of identifiers that corresponds to a
469  * synchronization object's virtual address.  Process-shared
470  * sync objects usually get vnode/offset from as_getmemid().
471  */
472 static int
473 get_lwpchan(struct as *as, caddr_t addr, int type, lwpchan_t *lwpchan, int pool)
474 {
475 	/*
476 	 * If the lwp synch object is defined to be process-private,
477 	 * we just make the first field of the lwpchan be 'as' and
478 	 * the second field be the synch object's virtual address.
479 	 * (segvn_getmemid() does the same for MAP_PRIVATE mappings.)
480 	 * The lwpchan cache is used only for process-shared objects.
481 	 */
482 	if (!(type & USYNC_PROCESS)) {
483 		lwpchan->lc_wchan0 = (caddr_t)as;
484 		lwpchan->lc_wchan = addr;
485 		return (1);
486 	}
487 
488 	return (lwpchan_get_mapping(as, addr, type, lwpchan, pool));
489 }
490 
491 static void
492 lwp_block(lwpchan_t *lwpchan)
493 {
494 	kthread_t *t = curthread;
495 	klwp_t *lwp = ttolwp(t);
496 	sleepq_head_t *sqh;
497 
498 	thread_lock(t);
499 	t->t_flag |= T_WAKEABLE;
500 	t->t_lwpchan = *lwpchan;
501 	t->t_sobj_ops = &lwp_sobj_ops;
502 	t->t_release = 0;
503 	sqh = lwpsqhash(lwpchan);
504 	disp_lock_enter_high(&sqh->sq_lock);
505 	CL_SLEEP(t);
506 	DTRACE_SCHED(sleep);
507 	THREAD_SLEEP(t, &sqh->sq_lock);
508 	sleepq_insert(&sqh->sq_queue, t);
509 	thread_unlock(t);
510 	lwp->lwp_asleep = 1;
511 	lwp->lwp_sysabort = 0;
512 	lwp->lwp_ru.nvcsw++;
513 	(void) new_mstate(curthread, LMS_SLEEP);
514 }
515 
516 static kthread_t *
517 lwpsobj_pi_owner(upimutex_t *up)
518 {
519 	return (up->upi_owner);
520 }
521 
522 static struct upimutex *
523 upi_get(upib_t *upibp, lwpchan_t *lcp)
524 {
525 	struct upimutex *upip;
526 
527 	for (upip = upibp->upib_first; upip != NULL;
528 	    upip = upip->upi_nextchain) {
529 		if (upip->upi_lwpchan.lc_wchan0 == lcp->lc_wchan0 &&
530 		    upip->upi_lwpchan.lc_wchan == lcp->lc_wchan)
531 			break;
532 	}
533 	return (upip);
534 }
535 
536 static void
537 upi_chain_add(upib_t *upibp, struct upimutex *upimutex)
538 {
539 	ASSERT(MUTEX_HELD(&upibp->upib_lock));
540 
541 	/*
542 	 * Insert upimutex at front of list. Maybe a bit unfair
543 	 * but assume that not many lwpchans hash to the same
544 	 * upimutextab bucket, i.e. the list of upimutexes from
545 	 * upib_first is not too long.
546 	 */
547 	upimutex->upi_nextchain = upibp->upib_first;
548 	upibp->upib_first = upimutex;
549 }
550 
551 static void
552 upi_chain_del(upib_t *upibp, struct upimutex *upimutex)
553 {
554 	struct upimutex **prev;
555 
556 	ASSERT(MUTEX_HELD(&upibp->upib_lock));
557 
558 	prev = &upibp->upib_first;
559 	while (*prev != upimutex) {
560 		prev = &(*prev)->upi_nextchain;
561 	}
562 	*prev = upimutex->upi_nextchain;
563 	upimutex->upi_nextchain = NULL;
564 }
565 
566 /*
567  * Add upimutex to chain of upimutexes held by curthread.
568  * Returns number of upimutexes held by curthread.
569  */
570 static uint32_t
571 upi_mylist_add(struct upimutex *upimutex)
572 {
573 	kthread_t *t = curthread;
574 
575 	/*
576 	 * Insert upimutex at front of list of upimutexes owned by t. This
577 	 * would match typical LIFO order in which nested locks are acquired
578 	 * and released.
579 	 */
580 	upimutex->upi_nextowned = t->t_upimutex;
581 	t->t_upimutex = upimutex;
582 	t->t_nupinest++;
583 	ASSERT(t->t_nupinest > 0);
584 	return (t->t_nupinest);
585 }
586 
587 /*
588  * Delete upimutex from list of upimutexes owned by curthread.
589  */
590 static void
591 upi_mylist_del(struct upimutex *upimutex)
592 {
593 	kthread_t *t = curthread;
594 	struct upimutex **prev;
595 
596 	/*
597 	 * Since the order in which nested locks are acquired and released,
598 	 * is typically LIFO, and typical nesting levels are not too deep, the
599 	 * following should not be expensive in the general case.
600 	 */
601 	prev = &t->t_upimutex;
602 	while (*prev != upimutex) {
603 		prev = &(*prev)->upi_nextowned;
604 	}
605 	*prev = upimutex->upi_nextowned;
606 	upimutex->upi_nextowned = NULL;
607 	ASSERT(t->t_nupinest > 0);
608 	t->t_nupinest--;
609 }
610 
611 /*
612  * Returns true if upimutex is owned. Should be called only when upim points
613  * to kmem which cannot disappear from underneath.
614  */
615 static int
616 upi_owned(upimutex_t *upim)
617 {
618 	return (upim->upi_owner == curthread);
619 }
620 
621 /*
622  * Returns pointer to kernel object (upimutex_t *) if lp is owned.
623  */
624 static struct upimutex *
625 lwp_upimutex_owned(lwp_mutex_t *lp, uint8_t type)
626 {
627 	lwpchan_t lwpchan;
628 	upib_t *upibp;
629 	struct upimutex *upimutex;
630 
631 	if (!get_lwpchan(curproc->p_as, (caddr_t)lp, type,
632 	    &lwpchan, LWPCHAN_MPPOOL))
633 		return (NULL);
634 
635 	upibp = &UPI_CHAIN(lwpchan);
636 	mutex_enter(&upibp->upib_lock);
637 	upimutex = upi_get(upibp, &lwpchan);
638 	if (upimutex == NULL || upimutex->upi_owner != curthread) {
639 		mutex_exit(&upibp->upib_lock);
640 		return (NULL);
641 	}
642 	mutex_exit(&upibp->upib_lock);
643 	return (upimutex);
644 }
645 
646 /*
647  * Unlocks upimutex, waking up waiters if any. upimutex kmem is freed if
648  * no lock hand-off occurrs.
649  */
650 static void
651 upimutex_unlock(struct upimutex *upimutex, uint16_t flag)
652 {
653 	turnstile_t *ts;
654 	upib_t *upibp;
655 	kthread_t *newowner;
656 
657 	upi_mylist_del(upimutex);
658 	upibp = upimutex->upi_upibp;
659 	mutex_enter(&upibp->upib_lock);
660 	if (upimutex->upi_waiter != 0) { /* if waiters */
661 		ts = turnstile_lookup(upimutex);
662 		if (ts != NULL && !(flag & LOCK_NOTRECOVERABLE)) {
663 			/* hand-off lock to highest prio waiter */
664 			newowner = ts->ts_sleepq[TS_WRITER_Q].sq_first;
665 			upimutex->upi_owner = newowner;
666 			if (ts->ts_waiters == 1)
667 				upimutex->upi_waiter = 0;
668 			turnstile_wakeup(ts, TS_WRITER_Q, 1, newowner);
669 			mutex_exit(&upibp->upib_lock);
670 			return;
671 		} else if (ts != NULL) {
672 			/* LOCK_NOTRECOVERABLE: wakeup all */
673 			turnstile_wakeup(ts, TS_WRITER_Q, ts->ts_waiters, NULL);
674 		} else {
675 			/*
676 			 * Misleading w bit. Waiters might have been
677 			 * interrupted. No need to clear the w bit (upimutex
678 			 * will soon be freed). Re-calculate PI from existing
679 			 * waiters.
680 			 */
681 			turnstile_exit(upimutex);
682 			turnstile_pi_recalc();
683 		}
684 	}
685 	/*
686 	 * no waiters, or LOCK_NOTRECOVERABLE.
687 	 * remove from the bucket chain of upi mutexes.
688 	 * de-allocate kernel memory (upimutex).
689 	 */
690 	upi_chain_del(upimutex->upi_upibp, upimutex);
691 	mutex_exit(&upibp->upib_lock);
692 	kmem_free(upimutex, sizeof (upimutex_t));
693 }
694 
695 static int
696 lwp_upimutex_lock(lwp_mutex_t *lp, uint8_t type, int try, lwp_timer_t *lwptp)
697 {
698 	label_t ljb;
699 	int error = 0;
700 	lwpchan_t lwpchan;
701 	uint16_t flag;
702 	upib_t *upibp;
703 	volatile struct upimutex *upimutex = NULL;
704 	turnstile_t *ts;
705 	uint32_t nupinest;
706 	volatile int upilocked = 0;
707 
708 	if (on_fault(&ljb)) {
709 		if (upilocked)
710 			upimutex_unlock((upimutex_t *)upimutex, 0);
711 		error = EFAULT;
712 		goto out;
713 	}
714 	if (!get_lwpchan(curproc->p_as, (caddr_t)lp, type,
715 	    &lwpchan, LWPCHAN_MPPOOL)) {
716 		error = EFAULT;
717 		goto out;
718 	}
719 	upibp = &UPI_CHAIN(lwpchan);
720 retry:
721 	mutex_enter(&upibp->upib_lock);
722 	upimutex = upi_get(upibp, &lwpchan);
723 	if (upimutex == NULL)  {
724 		/* lock available since lwpchan has no upimutex */
725 		upimutex = kmem_zalloc(sizeof (upimutex_t), KM_SLEEP);
726 		upi_chain_add(upibp, (upimutex_t *)upimutex);
727 		upimutex->upi_owner = curthread; /* grab lock */
728 		upimutex->upi_upibp = upibp;
729 		upimutex->upi_vaddr = lp;
730 		upimutex->upi_lwpchan = lwpchan;
731 		mutex_exit(&upibp->upib_lock);
732 		nupinest = upi_mylist_add((upimutex_t *)upimutex);
733 		upilocked = 1;
734 		fuword16_noerr(&lp->mutex_flag, &flag);
735 		if (nupinest > maxnestupimx &&
736 		    secpolicy_resource(CRED()) != 0) {
737 			upimutex_unlock((upimutex_t *)upimutex, flag);
738 			error = ENOMEM;
739 			goto out;
740 		}
741 		if (flag & LOCK_NOTRECOVERABLE) {
742 			/*
743 			 * Since the setting of LOCK_NOTRECOVERABLE
744 			 * was done under the high-level upi mutex,
745 			 * in lwp_upimutex_unlock(), this flag needs to
746 			 * be checked while holding the upi mutex.
747 			 * If set, this thread should return without
748 			 * the lock held, and with the right error code.
749 			 */
750 			upimutex_unlock((upimutex_t *)upimutex, flag);
751 			upilocked = 0;
752 			error = ENOTRECOVERABLE;
753 		} else if (flag & (LOCK_OWNERDEAD | LOCK_UNMAPPED)) {
754 			if (flag & LOCK_OWNERDEAD)
755 				error = EOWNERDEAD;
756 			else if (type & USYNC_PROCESS_ROBUST)
757 				error = ELOCKUNMAPPED;
758 			else
759 				error = EOWNERDEAD;
760 		}
761 		goto out;
762 	}
763 	/*
764 	 * If a upimutex object exists, it must have an owner.
765 	 * This is due to lock hand-off, and release of upimutex when no
766 	 * waiters are present at unlock time,
767 	 */
768 	ASSERT(upimutex->upi_owner != NULL);
769 	if (upimutex->upi_owner == curthread) {
770 		/*
771 		 * The user wrapper can check if the mutex type is
772 		 * ERRORCHECK: if not, it should stall at user-level.
773 		 * If so, it should return the error code.
774 		 */
775 		mutex_exit(&upibp->upib_lock);
776 		error = EDEADLK;
777 		goto out;
778 	}
779 	if (try == UPIMUTEX_TRY) {
780 		mutex_exit(&upibp->upib_lock);
781 		error = EBUSY;
782 		goto out;
783 	}
784 	/*
785 	 * Block for the lock.
786 	 * Put the lwp in an orderly state for debugging.
787 	 * Calling prstop() has to be done here, and not in
788 	 * turnstile_block(), since the preceding call to
789 	 * turnstile_lookup() raises the PIL to a level
790 	 * at which calls to prstop() should not be made.
791 	 */
792 	if ((error = lwptp->lwpt_time_error) != 0) {
793 		/*
794 		 * The SUSV3 Posix spec is very clear that we
795 		 * should get no error from validating the
796 		 * timer until we would actually sleep.
797 		 */
798 		mutex_exit(&upibp->upib_lock);
799 		goto out;
800 	}
801 	prstop(PR_REQUESTED, 0);
802 	if (lwptp->lwpt_tsp != NULL) {
803 		/*
804 		 * Unlike the protocol for other lwp timedwait operations,
805 		 * we must drop t_delay_lock before going to sleep in
806 		 * turnstile_block() for a upi mutex.
807 		 * See the comments below and in turnstile.c
808 		 */
809 		mutex_enter(&curthread->t_delay_lock);
810 		(void) lwp_timer_enqueue(lwptp);
811 		mutex_exit(&curthread->t_delay_lock);
812 	}
813 	/*
814 	 * Now, set the waiter bit and block for the lock in turnstile_block().
815 	 * No need to preserve the previous wbit since a lock try is not
816 	 * attempted after setting the wait bit. Wait bit is set under
817 	 * the upib_lock, which is not released until the turnstile lock
818 	 * is acquired. Say, the upimutex is L:
819 	 *
820 	 * 1. upib_lock is held so the waiter does not have to retry L after
821 	 *    setting the wait bit: since the owner has to grab the upib_lock
822 	 *    to unlock L, it will certainly see the wait bit set.
823 	 * 2. upib_lock is not released until the turnstile lock is acquired.
824 	 *    This is the key to preventing a missed wake-up. Otherwise, the
825 	 *    owner could acquire the upib_lock, and the tc_lock, to call
826 	 *    turnstile_wakeup(). All this, before the waiter gets tc_lock
827 	 *    to sleep in turnstile_block(). turnstile_wakeup() will then not
828 	 *    find this waiter, resulting in the missed wakeup.
829 	 * 3. The upib_lock, being a kernel mutex, cannot be released while
830 	 *    holding the tc_lock (since mutex_exit() could need to acquire
831 	 *    the same tc_lock)...and so is held when calling turnstile_block().
832 	 *    The address of upib_lock is passed to turnstile_block() which
833 	 *    releases it after releasing all turnstile locks, and before going
834 	 *    to sleep in swtch().
835 	 * 4. The waiter value cannot be a count of waiters, because a waiter
836 	 *    can be interrupted. The interrupt occurs under the tc_lock, at
837 	 *    which point, the upib_lock cannot be locked, to decrement waiter
838 	 *    count. So, just treat the waiter state as a bit, not a count.
839 	 */
840 	ts = turnstile_lookup((upimutex_t *)upimutex);
841 	upimutex->upi_waiter = 1;
842 	error = turnstile_block(ts, TS_WRITER_Q, (upimutex_t *)upimutex,
843 	    &lwp_sobj_pi_ops, &upibp->upib_lock, lwptp);
844 	/*
845 	 * Hand-off implies that we wakeup holding the lock, except when:
846 	 *	- deadlock is detected
847 	 *	- lock is not recoverable
848 	 *	- we got an interrupt or timeout
849 	 * If we wake up due to an interrupt or timeout, we may
850 	 * or may not be holding the lock due to mutex hand-off.
851 	 * Use lwp_upimutex_owned() to check if we do hold the lock.
852 	 */
853 	if (error != 0) {
854 		if ((error == EINTR || error == ETIME) &&
855 		    (upimutex = lwp_upimutex_owned(lp, type))) {
856 			/*
857 			 * Unlock and return - the re-startable syscall will
858 			 * try the lock again if we got EINTR.
859 			 */
860 			(void) upi_mylist_add((upimutex_t *)upimutex);
861 			upimutex_unlock((upimutex_t *)upimutex, 0);
862 		}
863 		/*
864 		 * The only other possible error is EDEADLK.  If so, upimutex
865 		 * is valid, since its owner is deadlocked with curthread.
866 		 */
867 		ASSERT(error == EINTR || error == ETIME ||
868 		    (error == EDEADLK && !upi_owned((upimutex_t *)upimutex)));
869 		ASSERT(!lwp_upimutex_owned(lp, type));
870 		goto out;
871 	}
872 	if (lwp_upimutex_owned(lp, type)) {
873 		ASSERT(lwp_upimutex_owned(lp, type) == upimutex);
874 		nupinest = upi_mylist_add((upimutex_t *)upimutex);
875 		upilocked = 1;
876 	}
877 	/*
878 	 * Now, need to read the user-level lp->mutex_flag to do the following:
879 	 *
880 	 * - if lock is held, check if EOWNERDEAD or ELOCKUNMAPPED
881 	 *   should be returned.
882 	 * - if lock isn't held, check if ENOTRECOVERABLE should
883 	 *   be returned.
884 	 *
885 	 * Now, either lp->mutex_flag is readable or it's not. If not
886 	 * readable, the on_fault path will cause a return with EFAULT
887 	 * as it should.  If it is readable, the state of the flag
888 	 * encodes the robustness state of the lock:
889 	 *
890 	 * If the upimutex is locked here, the flag's LOCK_OWNERDEAD
891 	 * or LOCK_UNMAPPED setting will influence the return code
892 	 * appropriately.  If the upimutex is not locked here, this
893 	 * could be due to a spurious wake-up or a NOTRECOVERABLE
894 	 * event.  The flag's setting can be used to distinguish
895 	 * between these two events.
896 	 */
897 	fuword16_noerr(&lp->mutex_flag, &flag);
898 	if (upilocked) {
899 		/*
900 		 * If the thread wakes up from turnstile_block with the lock
901 		 * held, the flag could not be set to LOCK_NOTRECOVERABLE,
902 		 * since it would not have been handed-off the lock.
903 		 * So, no need to check for this case.
904 		 */
905 		if (nupinest > maxnestupimx &&
906 		    secpolicy_resource(CRED()) != 0) {
907 			upimutex_unlock((upimutex_t *)upimutex, flag);
908 			upilocked = 0;
909 			error = ENOMEM;
910 		} else if (flag & (LOCK_OWNERDEAD | LOCK_UNMAPPED)) {
911 			if (flag & LOCK_OWNERDEAD)
912 				error = EOWNERDEAD;
913 			else if (type & USYNC_PROCESS_ROBUST)
914 				error = ELOCKUNMAPPED;
915 			else
916 				error = EOWNERDEAD;
917 		}
918 	} else {
919 		/*
920 		 * Wake-up without the upimutex held. Either this is a
921 		 * spurious wake-up (due to signals, forkall(), whatever), or
922 		 * it is a LOCK_NOTRECOVERABLE robustness event. The setting
923 		 * of the mutex flag can be used to distinguish between the
924 		 * two events.
925 		 */
926 		if (flag & LOCK_NOTRECOVERABLE) {
927 			error = ENOTRECOVERABLE;
928 		} else {
929 			/*
930 			 * Here, the flag could be set to LOCK_OWNERDEAD or
931 			 * not. In both cases, this is a spurious wakeup,
932 			 * since the upi lock is not held, but the thread
933 			 * has returned from turnstile_block().
934 			 *
935 			 * The user flag could be LOCK_OWNERDEAD if, at the
936 			 * same time as curthread having been woken up
937 			 * spuriously, the owner (say Tdead) has died, marked
938 			 * the mutex flag accordingly, and handed off the lock
939 			 * to some other waiter (say Tnew). curthread just
940 			 * happened to read the flag while Tnew has yet to deal
941 			 * with the owner-dead event.
942 			 *
943 			 * In this event, curthread should retry the lock.
944 			 * If Tnew is able to cleanup the lock, curthread
945 			 * will eventually get the lock with a zero error code,
946 			 * If Tnew is unable to cleanup, its eventual call to
947 			 * unlock the lock will result in the mutex flag being
948 			 * set to LOCK_NOTRECOVERABLE, and the wake-up of
949 			 * all waiters, including curthread, which will then
950 			 * eventually return ENOTRECOVERABLE due to the above
951 			 * check.
952 			 *
953 			 * Of course, if the user-flag is not set with
954 			 * LOCK_OWNERDEAD, retrying is the thing to do, since
955 			 * this is definitely a spurious wakeup.
956 			 */
957 			goto retry;
958 		}
959 	}
960 
961 out:
962 	no_fault();
963 	return (error);
964 }
965 
966 
967 static int
968 lwp_upimutex_unlock(lwp_mutex_t *lp, uint8_t type)
969 {
970 	label_t ljb;
971 	int error = 0;
972 	lwpchan_t lwpchan;
973 	uint16_t flag;
974 	upib_t *upibp;
975 	volatile struct upimutex *upimutex = NULL;
976 	volatile int upilocked = 0;
977 
978 	if (on_fault(&ljb)) {
979 		if (upilocked)
980 			upimutex_unlock((upimutex_t *)upimutex, 0);
981 		error = EFAULT;
982 		goto out;
983 	}
984 	if (!get_lwpchan(curproc->p_as, (caddr_t)lp, type,
985 	    &lwpchan, LWPCHAN_MPPOOL)) {
986 		error = EFAULT;
987 		goto out;
988 	}
989 	upibp = &UPI_CHAIN(lwpchan);
990 	mutex_enter(&upibp->upib_lock);
991 	upimutex = upi_get(upibp, &lwpchan);
992 	/*
993 	 * If the lock is not held, or the owner is not curthread, return
994 	 * error. The user-level wrapper can return this error or stall,
995 	 * depending on whether mutex is of ERRORCHECK type or not.
996 	 */
997 	if (upimutex == NULL || upimutex->upi_owner != curthread) {
998 		mutex_exit(&upibp->upib_lock);
999 		error = EPERM;
1000 		goto out;
1001 	}
1002 	mutex_exit(&upibp->upib_lock); /* release for user memory access */
1003 	upilocked = 1;
1004 	fuword16_noerr(&lp->mutex_flag, &flag);
1005 	if (flag & (LOCK_OWNERDEAD | LOCK_UNMAPPED)) {
1006 		/*
1007 		 * transition mutex to the LOCK_NOTRECOVERABLE state.
1008 		 */
1009 		flag &= ~(LOCK_OWNERDEAD | LOCK_UNMAPPED);
1010 		flag |= LOCK_NOTRECOVERABLE;
1011 		suword16_noerr(&lp->mutex_flag, flag);
1012 	}
1013 	if (type & USYNC_PROCESS)
1014 		suword32_noerr(&lp->mutex_ownerpid, 0);
1015 	upimutex_unlock((upimutex_t *)upimutex, flag);
1016 	upilocked = 0;
1017 out:
1018 	no_fault();
1019 	return (error);
1020 }
1021 
1022 /*
1023  * Clear the contents of a user-level mutex; return the flags.
1024  * Used only by upi_dead() and lwp_mutex_cleanup(), below.
1025  */
1026 static uint16_t
1027 lwp_clear_mutex(lwp_mutex_t *lp, uint16_t lockflg)
1028 {
1029 	uint16_t flag;
1030 
1031 	fuword16_noerr(&lp->mutex_flag, &flag);
1032 	if ((flag &
1033 	    (LOCK_OWNERDEAD | LOCK_UNMAPPED | LOCK_NOTRECOVERABLE)) == 0) {
1034 		flag |= lockflg;
1035 		suword16_noerr(&lp->mutex_flag, flag);
1036 	}
1037 	suword32_noerr((uint32_t *)&lp->mutex_owner, 0);
1038 	suword32_noerr((uint32_t *)&lp->mutex_owner + 1, 0);
1039 	suword32_noerr(&lp->mutex_ownerpid, 0);
1040 	suword8_noerr(&lp->mutex_rcount, 0);
1041 
1042 	return (flag);
1043 }
1044 
1045 /*
1046  * Mark user mutex state, corresponding to kernel upimutex,
1047  * as LOCK_UNMAPPED or LOCK_OWNERDEAD, as appropriate
1048  */
1049 static int
1050 upi_dead(upimutex_t *upip, uint16_t lockflg)
1051 {
1052 	label_t ljb;
1053 	int error = 0;
1054 	lwp_mutex_t *lp;
1055 
1056 	if (on_fault(&ljb)) {
1057 		error = EFAULT;
1058 		goto out;
1059 	}
1060 
1061 	lp = upip->upi_vaddr;
1062 	(void) lwp_clear_mutex(lp, lockflg);
1063 	suword8_noerr(&lp->mutex_lockw, 0);
1064 out:
1065 	no_fault();
1066 	return (error);
1067 }
1068 
1069 /*
1070  * Unlock all upimutexes held by curthread, since curthread is dying.
1071  * For each upimutex, attempt to mark its corresponding user mutex object as
1072  * dead.
1073  */
1074 void
1075 upimutex_cleanup()
1076 {
1077 	kthread_t *t = curthread;
1078 	uint16_t lockflg = (ttoproc(t)->p_proc_flag & P_PR_EXEC)?
1079 	    LOCK_UNMAPPED : LOCK_OWNERDEAD;
1080 	struct upimutex *upip;
1081 
1082 	while ((upip = t->t_upimutex) != NULL) {
1083 		if (upi_dead(upip, lockflg) != 0) {
1084 			/*
1085 			 * If the user object associated with this upimutex is
1086 			 * unmapped, unlock upimutex with the
1087 			 * LOCK_NOTRECOVERABLE flag, so that all waiters are
1088 			 * woken up. Since user object is unmapped, it could
1089 			 * not be marked as dead or notrecoverable.
1090 			 * The waiters will now all wake up and return
1091 			 * ENOTRECOVERABLE, since they would find that the lock
1092 			 * has not been handed-off to them.
1093 			 * See lwp_upimutex_lock().
1094 			 */
1095 			upimutex_unlock(upip, LOCK_NOTRECOVERABLE);
1096 		} else {
1097 			/*
1098 			 * The user object has been updated as dead.
1099 			 * Unlock the upimutex: if no waiters, upip kmem will
1100 			 * be freed. If there is a waiter, the lock will be
1101 			 * handed off. If exit() is in progress, each existing
1102 			 * waiter will successively get the lock, as owners
1103 			 * die, and each new owner will call this routine as
1104 			 * it dies. The last owner will free kmem, since
1105 			 * it will find the upimutex has no waiters. So,
1106 			 * eventually, the kmem is guaranteed to be freed.
1107 			 */
1108 			upimutex_unlock(upip, 0);
1109 		}
1110 		/*
1111 		 * Note that the call to upimutex_unlock() above will delete
1112 		 * upimutex from the t_upimutexes chain. And so the
1113 		 * while loop will eventually terminate.
1114 		 */
1115 	}
1116 }
1117 
1118 int
1119 lwp_mutex_timedlock(lwp_mutex_t *lp, timespec_t *tsp)
1120 {
1121 	kthread_t *t = curthread;
1122 	klwp_t *lwp = ttolwp(t);
1123 	proc_t *p = ttoproc(t);
1124 	lwp_timer_t lwpt;
1125 	caddr_t timedwait;
1126 	int error = 0;
1127 	int time_error;
1128 	clock_t tim = -1;
1129 	uchar_t waiters;
1130 	volatile int locked = 0;
1131 	volatile int watched = 0;
1132 	label_t ljb;
1133 	volatile uint8_t type = 0;
1134 	lwpchan_t lwpchan;
1135 	sleepq_head_t *sqh;
1136 	static int iswanted();
1137 	uint16_t flag;
1138 	int imm_timeout = 0;
1139 
1140 	if ((caddr_t)lp >= p->p_as->a_userlimit)
1141 		return (set_errno(EFAULT));
1142 
1143 	timedwait = (caddr_t)tsp;
1144 	if ((time_error = lwp_timer_copyin(&lwpt, tsp)) == 0 &&
1145 	    lwpt.lwpt_imm_timeout) {
1146 		imm_timeout = 1;
1147 		timedwait = NULL;
1148 	}
1149 
1150 	/*
1151 	 * Although LMS_USER_LOCK implies "asleep waiting for user-mode lock",
1152 	 * this micro state is really a run state. If the thread indeed blocks,
1153 	 * this state becomes valid. If not, the state is converted back to
1154 	 * LMS_SYSTEM. So, it is OK to set the mstate here, instead of just
1155 	 * when blocking.
1156 	 */
1157 	(void) new_mstate(t, LMS_USER_LOCK);
1158 	if (on_fault(&ljb)) {
1159 		if (locked)
1160 			lwpchan_unlock(&lwpchan, LWPCHAN_MPPOOL);
1161 		error = EFAULT;
1162 		goto out;
1163 	}
1164 	/*
1165 	 * Force Copy-on-write if necessary and ensure that the
1166 	 * synchronization object resides in read/write memory.
1167 	 * Cause an EFAULT return now if this is not so.
1168 	 */
1169 	fuword8_noerr(&lp->mutex_type, (uint8_t *)&type);
1170 	suword8_noerr(&lp->mutex_type, type);
1171 	if (UPIMUTEX(type)) {
1172 		no_fault();
1173 		error = lwp_upimutex_lock(lp, type, UPIMUTEX_BLOCK, &lwpt);
1174 		if ((type & USYNC_PROCESS) &&
1175 		    (error == 0 ||
1176 		    error == EOWNERDEAD || error == ELOCKUNMAPPED))
1177 			(void) suword32(&lp->mutex_ownerpid, p->p_pid);
1178 		if (tsp && !time_error)	/* copyout the residual time left */
1179 			error = lwp_timer_copyout(&lwpt, error);
1180 		if (error)
1181 			return (set_errno(error));
1182 		return (0);
1183 	}
1184 	if (!get_lwpchan(curproc->p_as, (caddr_t)lp, type,
1185 	    &lwpchan, LWPCHAN_MPPOOL)) {
1186 		error = EFAULT;
1187 		goto out;
1188 	}
1189 	lwpchan_lock(&lwpchan, LWPCHAN_MPPOOL);
1190 	locked = 1;
1191 	if (type & LOCK_ROBUST) {
1192 		fuword16_noerr(&lp->mutex_flag, &flag);
1193 		if (flag & LOCK_NOTRECOVERABLE) {
1194 			lwpchan_unlock(&lwpchan, LWPCHAN_MPPOOL);
1195 			error = ENOTRECOVERABLE;
1196 			goto out;
1197 		}
1198 	}
1199 	fuword8_noerr(&lp->mutex_waiters, &waiters);
1200 	suword8_noerr(&lp->mutex_waiters, 1);
1201 
1202 	/*
1203 	 * If watchpoints are set, they need to be restored, since
1204 	 * atomic accesses of memory such as the call to ulock_try()
1205 	 * below cannot be watched.
1206 	 */
1207 
1208 	watched = watch_disable_addr((caddr_t)lp, sizeof (*lp), S_WRITE);
1209 
1210 	while (!ulock_try(&lp->mutex_lockw)) {
1211 		if (time_error) {
1212 			/*
1213 			 * The SUSV3 Posix spec is very clear that we
1214 			 * should get no error from validating the
1215 			 * timer until we would actually sleep.
1216 			 */
1217 			error = time_error;
1218 			break;
1219 		}
1220 
1221 		if (watched) {
1222 			watch_enable_addr((caddr_t)lp, sizeof (*lp), S_WRITE);
1223 			watched = 0;
1224 		}
1225 
1226 		/*
1227 		 * Put the lwp in an orderly state for debugging.
1228 		 */
1229 		prstop(PR_REQUESTED, 0);
1230 		if (timedwait) {
1231 			/*
1232 			 * If we successfully queue the timeout,
1233 			 * then don't drop t_delay_lock until
1234 			 * we are on the sleep queue (below).
1235 			 */
1236 			mutex_enter(&t->t_delay_lock);
1237 			if (lwp_timer_enqueue(&lwpt) != 0) {
1238 				mutex_exit(&t->t_delay_lock);
1239 				imm_timeout = 1;
1240 				timedwait = NULL;
1241 			}
1242 		}
1243 		lwp_block(&lwpchan);
1244 		/*
1245 		 * Nothing should happen to cause the lwp to go to
1246 		 * sleep again until after it returns from swtch().
1247 		 */
1248 		if (timedwait)
1249 			mutex_exit(&t->t_delay_lock);
1250 		locked = 0;
1251 		lwpchan_unlock(&lwpchan, LWPCHAN_MPPOOL);
1252 		if (ISSIG(t, JUSTLOOKING) || MUSTRETURN(p, t) || imm_timeout)
1253 			setrun(t);
1254 		swtch();
1255 		t->t_flag &= ~T_WAKEABLE;
1256 		if (timedwait)
1257 			tim = lwp_timer_dequeue(&lwpt);
1258 		setallwatch();
1259 		if (ISSIG(t, FORREAL) || lwp->lwp_sysabort || MUSTRETURN(p, t))
1260 			error = EINTR;
1261 		else if (imm_timeout || (timedwait && tim == -1))
1262 			error = ETIME;
1263 		if (error) {
1264 			lwp->lwp_asleep = 0;
1265 			lwp->lwp_sysabort = 0;
1266 			watched = watch_disable_addr((caddr_t)lp, sizeof (*lp),
1267 			    S_WRITE);
1268 
1269 			/*
1270 			 * Need to re-compute waiters bit. The waiters field in
1271 			 * the lock is not reliable. Either of two things could
1272 			 * have occurred: no lwp may have called lwp_release()
1273 			 * for me but I have woken up due to a signal or
1274 			 * timeout.  In this case, the waiter bit is incorrect
1275 			 * since it is still set to 1, set above.
1276 			 * OR an lwp_release() did occur for some other lwp on
1277 			 * the same lwpchan. In this case, the waiter bit is
1278 			 * correct.  But which event occurred, one can't tell.
1279 			 * So, recompute.
1280 			 */
1281 			lwpchan_lock(&lwpchan, LWPCHAN_MPPOOL);
1282 			locked = 1;
1283 			sqh = lwpsqhash(&lwpchan);
1284 			disp_lock_enter(&sqh->sq_lock);
1285 			waiters = iswanted(sqh->sq_queue.sq_first, &lwpchan);
1286 			disp_lock_exit(&sqh->sq_lock);
1287 			break;
1288 		}
1289 		lwp->lwp_asleep = 0;
1290 		watched = watch_disable_addr((caddr_t)lp, sizeof (*lp),
1291 		    S_WRITE);
1292 		lwpchan_lock(&lwpchan, LWPCHAN_MPPOOL);
1293 		locked = 1;
1294 		fuword8_noerr(&lp->mutex_waiters, &waiters);
1295 		suword8_noerr(&lp->mutex_waiters, 1);
1296 		if (type & LOCK_ROBUST) {
1297 			fuword16_noerr(&lp->mutex_flag, &flag);
1298 			if (flag & LOCK_NOTRECOVERABLE) {
1299 				error = ENOTRECOVERABLE;
1300 				break;
1301 			}
1302 		}
1303 	}
1304 
1305 	if (t->t_mstate == LMS_USER_LOCK)
1306 		(void) new_mstate(t, LMS_SYSTEM);
1307 
1308 	if (error == 0) {
1309 		if (type & USYNC_PROCESS)
1310 			suword32_noerr(&lp->mutex_ownerpid, p->p_pid);
1311 		if (type & LOCK_ROBUST) {
1312 			fuword16_noerr(&lp->mutex_flag, &flag);
1313 			if (flag & (LOCK_OWNERDEAD | LOCK_UNMAPPED)) {
1314 				if (flag & LOCK_OWNERDEAD)
1315 					error = EOWNERDEAD;
1316 				else if (type & USYNC_PROCESS_ROBUST)
1317 					error = ELOCKUNMAPPED;
1318 				else
1319 					error = EOWNERDEAD;
1320 			}
1321 		}
1322 	}
1323 	suword8_noerr(&lp->mutex_waiters, waiters);
1324 	locked = 0;
1325 	lwpchan_unlock(&lwpchan, LWPCHAN_MPPOOL);
1326 out:
1327 	no_fault();
1328 	if (watched)
1329 		watch_enable_addr((caddr_t)lp, sizeof (*lp), S_WRITE);
1330 	if (tsp && !time_error)		/* copyout the residual time left */
1331 		error = lwp_timer_copyout(&lwpt, error);
1332 	if (error)
1333 		return (set_errno(error));
1334 	return (0);
1335 }
1336 
1337 /*
1338  * Obsolete lwp_mutex_lock() interface, no longer called from libc.
1339  * libc now calls lwp_mutex_timedlock(lp, NULL).
1340  * This system call trap continues to exist solely for the benefit
1341  * of old statically-linked binaries from Solaris 9 and before.
1342  * It should be removed from the system when we no longer care
1343  * about such applications.
1344  */
1345 int
1346 lwp_mutex_lock(lwp_mutex_t *lp)
1347 {
1348 	return (lwp_mutex_timedlock(lp, NULL));
1349 }
1350 
1351 static int
1352 iswanted(kthread_t *t, lwpchan_t *lwpchan)
1353 {
1354 	/*
1355 	 * The caller holds the dispatcher lock on the sleep queue.
1356 	 */
1357 	while (t != NULL) {
1358 		if (t->t_lwpchan.lc_wchan0 == lwpchan->lc_wchan0 &&
1359 		    t->t_lwpchan.lc_wchan == lwpchan->lc_wchan)
1360 			return (1);
1361 		t = t->t_link;
1362 	}
1363 	return (0);
1364 }
1365 
1366 /*
1367  * Return the highest priority thread sleeping on this lwpchan.
1368  */
1369 static kthread_t *
1370 lwp_queue_waiter(lwpchan_t *lwpchan)
1371 {
1372 	sleepq_head_t *sqh;
1373 	kthread_t *tp;
1374 
1375 	sqh = lwpsqhash(lwpchan);
1376 	disp_lock_enter(&sqh->sq_lock);		/* lock the sleep queue */
1377 	for (tp = sqh->sq_queue.sq_first; tp != NULL; tp = tp->t_link) {
1378 		if (tp->t_lwpchan.lc_wchan0 == lwpchan->lc_wchan0 &&
1379 		    tp->t_lwpchan.lc_wchan == lwpchan->lc_wchan)
1380 			break;
1381 	}
1382 	disp_lock_exit(&sqh->sq_lock);
1383 	return (tp);
1384 }
1385 
1386 static int
1387 lwp_release(lwpchan_t *lwpchan, uchar_t *waiters, int sync_type)
1388 {
1389 	sleepq_head_t *sqh;
1390 	kthread_t *tp;
1391 	kthread_t **tpp;
1392 
1393 	sqh = lwpsqhash(lwpchan);
1394 	disp_lock_enter(&sqh->sq_lock);		/* lock the sleep queue */
1395 	tpp = &sqh->sq_queue.sq_first;
1396 	while ((tp = *tpp) != NULL) {
1397 		if (tp->t_lwpchan.lc_wchan0 == lwpchan->lc_wchan0 &&
1398 		    tp->t_lwpchan.lc_wchan == lwpchan->lc_wchan) {
1399 			/*
1400 			 * The following is typically false. It could be true
1401 			 * only if lwp_release() is called from
1402 			 * lwp_mutex_wakeup() after reading the waiters field
1403 			 * from memory in which the lwp lock used to be, but has
1404 			 * since been re-used to hold a lwp cv or lwp semaphore.
1405 			 * The thread "tp" found to match the lwp lock's wchan
1406 			 * is actually sleeping for the cv or semaphore which
1407 			 * now has the same wchan. In this case, lwp_release()
1408 			 * should return failure.
1409 			 */
1410 			if (sync_type != (tp->t_flag & T_WAITCVSEM)) {
1411 				ASSERT(sync_type == 0);
1412 				/*
1413 				 * assert that this can happen only for mutexes
1414 				 * i.e. sync_type == 0, for correctly written
1415 				 * user programs.
1416 				 */
1417 				disp_lock_exit(&sqh->sq_lock);
1418 				return (0);
1419 			}
1420 			*waiters = iswanted(tp->t_link, lwpchan);
1421 			sleepq_unlink(tpp, tp);
1422 			DTRACE_SCHED1(wakeup, kthread_t *, tp);
1423 			tp->t_wchan0 = NULL;
1424 			tp->t_wchan = NULL;
1425 			tp->t_sobj_ops = NULL;
1426 			tp->t_release = 1;
1427 			THREAD_TRANSITION(tp);	/* drops sleepq lock */
1428 			CL_WAKEUP(tp);
1429 			thread_unlock(tp);	/* drop run queue lock */
1430 			return (1);
1431 		}
1432 		tpp = &tp->t_link;
1433 	}
1434 	*waiters = 0;
1435 	disp_lock_exit(&sqh->sq_lock);
1436 	return (0);
1437 }
1438 
1439 static void
1440 lwp_release_all(lwpchan_t *lwpchan)
1441 {
1442 	sleepq_head_t	*sqh;
1443 	kthread_t *tp;
1444 	kthread_t **tpp;
1445 
1446 	sqh = lwpsqhash(lwpchan);
1447 	disp_lock_enter(&sqh->sq_lock);		/* lock sleep q queue */
1448 	tpp = &sqh->sq_queue.sq_first;
1449 	while ((tp = *tpp) != NULL) {
1450 		if (tp->t_lwpchan.lc_wchan0 == lwpchan->lc_wchan0 &&
1451 		    tp->t_lwpchan.lc_wchan == lwpchan->lc_wchan) {
1452 			sleepq_unlink(tpp, tp);
1453 			DTRACE_SCHED1(wakeup, kthread_t *, tp);
1454 			tp->t_wchan0 = NULL;
1455 			tp->t_wchan = NULL;
1456 			tp->t_sobj_ops = NULL;
1457 			CL_WAKEUP(tp);
1458 			thread_unlock_high(tp);	/* release run queue lock */
1459 		} else {
1460 			tpp = &tp->t_link;
1461 		}
1462 	}
1463 	disp_lock_exit(&sqh->sq_lock);		/* drop sleep q lock */
1464 }
1465 
1466 /*
1467  * unblock a lwp that is trying to acquire this mutex. the blocked
1468  * lwp resumes and retries to acquire the lock.
1469  */
1470 int
1471 lwp_mutex_wakeup(lwp_mutex_t *lp, int release_all)
1472 {
1473 	proc_t *p = ttoproc(curthread);
1474 	lwpchan_t lwpchan;
1475 	uchar_t waiters;
1476 	volatile int locked = 0;
1477 	volatile int watched = 0;
1478 	volatile uint8_t type = 0;
1479 	label_t ljb;
1480 	int error = 0;
1481 
1482 	if ((caddr_t)lp >= p->p_as->a_userlimit)
1483 		return (set_errno(EFAULT));
1484 
1485 	watched = watch_disable_addr((caddr_t)lp, sizeof (*lp), S_WRITE);
1486 
1487 	if (on_fault(&ljb)) {
1488 		if (locked)
1489 			lwpchan_unlock(&lwpchan, LWPCHAN_MPPOOL);
1490 		error = EFAULT;
1491 		goto out;
1492 	}
1493 	/*
1494 	 * Force Copy-on-write if necessary and ensure that the
1495 	 * synchronization object resides in read/write memory.
1496 	 * Cause an EFAULT return now if this is not so.
1497 	 */
1498 	fuword8_noerr(&lp->mutex_type, (uint8_t *)&type);
1499 	suword8_noerr(&lp->mutex_type, type);
1500 	if (!get_lwpchan(curproc->p_as, (caddr_t)lp, type,
1501 	    &lwpchan, LWPCHAN_MPPOOL)) {
1502 		error = EFAULT;
1503 		goto out;
1504 	}
1505 	lwpchan_lock(&lwpchan, LWPCHAN_MPPOOL);
1506 	locked = 1;
1507 	/*
1508 	 * Always wake up an lwp (if any) waiting on lwpchan. The woken lwp will
1509 	 * re-try the lock in lwp_mutex_timedlock(). The call to lwp_release()
1510 	 * may fail.  If it fails, do not write into the waiter bit.
1511 	 * The call to lwp_release() might fail due to one of three reasons:
1512 	 *
1513 	 * 	1. due to the thread which set the waiter bit not actually
1514 	 *	   sleeping since it got the lock on the re-try. The waiter
1515 	 *	   bit will then be correctly updated by that thread. This
1516 	 *	   window may be closed by reading the wait bit again here
1517 	 *	   and not calling lwp_release() at all if it is zero.
1518 	 *	2. the thread which set the waiter bit and went to sleep
1519 	 *	   was woken up by a signal. This time, the waiter recomputes
1520 	 *	   the wait bit in the return with EINTR code.
1521 	 *	3. the waiter bit read by lwp_mutex_wakeup() was in
1522 	 *	   memory that has been re-used after the lock was dropped.
1523 	 *	   In this case, writing into the waiter bit would cause data
1524 	 *	   corruption.
1525 	 */
1526 	if (release_all)
1527 		lwp_release_all(&lwpchan);
1528 	else if (lwp_release(&lwpchan, &waiters, 0))
1529 		suword8_noerr(&lp->mutex_waiters, waiters);
1530 	lwpchan_unlock(&lwpchan, LWPCHAN_MPPOOL);
1531 out:
1532 	no_fault();
1533 	if (watched)
1534 		watch_enable_addr((caddr_t)lp, sizeof (*lp), S_WRITE);
1535 	if (error)
1536 		return (set_errno(error));
1537 	return (0);
1538 }
1539 
1540 /*
1541  * lwp_cond_wait() has four arguments, a pointer to a condition variable,
1542  * a pointer to a mutex, a pointer to a timespec for a timed wait and
1543  * a flag telling the kernel whether or not to honor the kernel/user
1544  * schedctl parking protocol (see schedctl_is_park() in schedctl.c).
1545  * The kernel puts the lwp to sleep on a unique pair of caddr_t's called an
1546  * lwpchan, returned by get_lwpchan().  If the timespec pointer is non-NULL,
1547  * it is used an an in/out parameter.  On entry, it contains the relative
1548  * time until timeout.  On exit, we copyout the residual time left to it.
1549  */
1550 int
1551 lwp_cond_wait(lwp_cond_t *cv, lwp_mutex_t *mp, timespec_t *tsp, int check_park)
1552 {
1553 	kthread_t *t = curthread;
1554 	klwp_t *lwp = ttolwp(t);
1555 	proc_t *p = ttoproc(t);
1556 	lwp_timer_t lwpt;
1557 	lwpchan_t cv_lwpchan;
1558 	lwpchan_t m_lwpchan;
1559 	caddr_t timedwait;
1560 	volatile uint16_t type = 0;
1561 	volatile uint8_t mtype = 0;
1562 	uchar_t waiters;
1563 	volatile int error;
1564 	clock_t tim = -1;
1565 	volatile int locked = 0;
1566 	volatile int m_locked = 0;
1567 	volatile int cvwatched = 0;
1568 	volatile int mpwatched = 0;
1569 	label_t ljb;
1570 	volatile int no_lwpchan = 1;
1571 	int imm_timeout = 0;
1572 	int imm_unpark = 0;
1573 
1574 	if ((caddr_t)cv >= p->p_as->a_userlimit ||
1575 	    (caddr_t)mp >= p->p_as->a_userlimit)
1576 		return (set_errno(EFAULT));
1577 
1578 	timedwait = (caddr_t)tsp;
1579 	if ((error = lwp_timer_copyin(&lwpt, tsp)) != 0)
1580 		return (set_errno(error));
1581 	if (lwpt.lwpt_imm_timeout) {
1582 		imm_timeout = 1;
1583 		timedwait = NULL;
1584 	}
1585 
1586 	(void) new_mstate(t, LMS_USER_LOCK);
1587 
1588 	if (on_fault(&ljb)) {
1589 		if (no_lwpchan) {
1590 			error = EFAULT;
1591 			goto out;
1592 		}
1593 		if (m_locked) {
1594 			m_locked = 0;
1595 			lwpchan_unlock(&m_lwpchan, LWPCHAN_MPPOOL);
1596 		}
1597 		if (locked) {
1598 			locked = 0;
1599 			lwpchan_unlock(&cv_lwpchan, LWPCHAN_CVPOOL);
1600 		}
1601 		/*
1602 		 * set up another on_fault() for a possible fault
1603 		 * on the user lock accessed at "efault"
1604 		 */
1605 		if (on_fault(&ljb)) {
1606 			if (m_locked) {
1607 				m_locked = 0;
1608 				lwpchan_unlock(&m_lwpchan, LWPCHAN_MPPOOL);
1609 			}
1610 			goto out;
1611 		}
1612 		error = EFAULT;
1613 		goto efault;
1614 	}
1615 
1616 	/*
1617 	 * Force Copy-on-write if necessary and ensure that the
1618 	 * synchronization object resides in read/write memory.
1619 	 * Cause an EFAULT return now if this is not so.
1620 	 */
1621 	fuword8_noerr(&mp->mutex_type, (uint8_t *)&mtype);
1622 	suword8_noerr(&mp->mutex_type, mtype);
1623 	if (UPIMUTEX(mtype) == 0) {
1624 		/* convert user level mutex, "mp", to a unique lwpchan */
1625 		/* check if mtype is ok to use below, instead of type from cv */
1626 		if (!get_lwpchan(p->p_as, (caddr_t)mp, mtype,
1627 		    &m_lwpchan, LWPCHAN_MPPOOL)) {
1628 			error = EFAULT;
1629 			goto out;
1630 		}
1631 	}
1632 	fuword16_noerr(&cv->cond_type, (uint16_t *)&type);
1633 	suword16_noerr(&cv->cond_type, type);
1634 	/* convert user level condition variable, "cv", to a unique lwpchan */
1635 	if (!get_lwpchan(p->p_as, (caddr_t)cv, type,
1636 	    &cv_lwpchan, LWPCHAN_CVPOOL)) {
1637 		error = EFAULT;
1638 		goto out;
1639 	}
1640 	no_lwpchan = 0;
1641 	cvwatched = watch_disable_addr((caddr_t)cv, sizeof (*cv), S_WRITE);
1642 	if (UPIMUTEX(mtype) == 0)
1643 		mpwatched = watch_disable_addr((caddr_t)mp, sizeof (*mp),
1644 		    S_WRITE);
1645 
1646 	/*
1647 	 * lwpchan_lock ensures that the calling lwp is put to sleep atomically
1648 	 * with respect to a possible wakeup which is a result of either
1649 	 * an lwp_cond_signal() or an lwp_cond_broadcast().
1650 	 *
1651 	 * What's misleading, is that the lwp is put to sleep after the
1652 	 * condition variable's mutex is released.  This is OK as long as
1653 	 * the release operation is also done while holding lwpchan_lock.
1654 	 * The lwp is then put to sleep when the possibility of pagefaulting
1655 	 * or sleeping is completely eliminated.
1656 	 */
1657 	lwpchan_lock(&cv_lwpchan, LWPCHAN_CVPOOL);
1658 	locked = 1;
1659 	if (UPIMUTEX(mtype) == 0) {
1660 		lwpchan_lock(&m_lwpchan, LWPCHAN_MPPOOL);
1661 		m_locked = 1;
1662 		suword8_noerr(&cv->cond_waiters_kernel, 1);
1663 		/*
1664 		 * unlock the condition variable's mutex. (pagefaults are
1665 		 * possible here.)
1666 		 */
1667 		if (mtype & USYNC_PROCESS)
1668 			suword32_noerr(&mp->mutex_ownerpid, 0);
1669 		ulock_clear(&mp->mutex_lockw);
1670 		fuword8_noerr(&mp->mutex_waiters, &waiters);
1671 		if (waiters != 0) {
1672 			/*
1673 			 * Given the locking of lwpchan_lock around the release
1674 			 * of the mutex and checking for waiters, the following
1675 			 * call to lwp_release() can fail ONLY if the lock
1676 			 * acquirer is interrupted after setting the waiter bit,
1677 			 * calling lwp_block() and releasing lwpchan_lock.
1678 			 * In this case, it could get pulled off the lwp sleep
1679 			 * q (via setrun()) before the following call to
1680 			 * lwp_release() occurs. In this case, the lock
1681 			 * requestor will update the waiter bit correctly by
1682 			 * re-evaluating it.
1683 			 */
1684 			if (lwp_release(&m_lwpchan, &waiters, 0))
1685 				suword8_noerr(&mp->mutex_waiters, waiters);
1686 		}
1687 		m_locked = 0;
1688 		lwpchan_unlock(&m_lwpchan, LWPCHAN_MPPOOL);
1689 	} else {
1690 		suword8_noerr(&cv->cond_waiters_kernel, 1);
1691 		error = lwp_upimutex_unlock(mp, mtype);
1692 		if (error) {	/* if the upimutex unlock failed */
1693 			locked = 0;
1694 			lwpchan_unlock(&cv_lwpchan, LWPCHAN_CVPOOL);
1695 			goto out;
1696 		}
1697 	}
1698 	no_fault();
1699 
1700 	if (mpwatched) {
1701 		watch_enable_addr((caddr_t)mp, sizeof (*mp), S_WRITE);
1702 		mpwatched = 0;
1703 	}
1704 	if (cvwatched) {
1705 		watch_enable_addr((caddr_t)cv, sizeof (*cv), S_WRITE);
1706 		cvwatched = 0;
1707 	}
1708 
1709 	/*
1710 	 * Put the lwp in an orderly state for debugging.
1711 	 */
1712 	prstop(PR_REQUESTED, 0);
1713 	if (check_park && (!schedctl_is_park() || t->t_unpark)) {
1714 		/*
1715 		 * We received a signal at user-level before calling here
1716 		 * or another thread wants us to return immediately
1717 		 * with EINTR.  See lwp_unpark().
1718 		 */
1719 		imm_unpark = 1;
1720 		t->t_unpark = 0;
1721 		timedwait = NULL;
1722 	} else if (timedwait) {
1723 		/*
1724 		 * If we successfully queue the timeout,
1725 		 * then don't drop t_delay_lock until
1726 		 * we are on the sleep queue (below).
1727 		 */
1728 		mutex_enter(&t->t_delay_lock);
1729 		if (lwp_timer_enqueue(&lwpt) != 0) {
1730 			mutex_exit(&t->t_delay_lock);
1731 			imm_timeout = 1;
1732 			timedwait = NULL;
1733 		}
1734 	}
1735 	t->t_flag |= T_WAITCVSEM;
1736 	lwp_block(&cv_lwpchan);
1737 	/*
1738 	 * Nothing should happen to cause the lwp to go to sleep
1739 	 * until after it returns from swtch().
1740 	 */
1741 	if (timedwait)
1742 		mutex_exit(&t->t_delay_lock);
1743 	locked = 0;
1744 	lwpchan_unlock(&cv_lwpchan, LWPCHAN_CVPOOL);
1745 	if (ISSIG(t, JUSTLOOKING) || MUSTRETURN(p, t) ||
1746 	    (imm_timeout | imm_unpark))
1747 		setrun(t);
1748 	swtch();
1749 	t->t_flag &= ~(T_WAITCVSEM | T_WAKEABLE);
1750 	if (timedwait)
1751 		tim = lwp_timer_dequeue(&lwpt);
1752 	if (ISSIG(t, FORREAL) || lwp->lwp_sysabort ||
1753 	    MUSTRETURN(p, t) || imm_unpark)
1754 		error = EINTR;
1755 	else if (imm_timeout || (timedwait && tim == -1))
1756 		error = ETIME;
1757 	lwp->lwp_asleep = 0;
1758 	lwp->lwp_sysabort = 0;
1759 	setallwatch();
1760 
1761 	if (t->t_mstate == LMS_USER_LOCK)
1762 		(void) new_mstate(t, LMS_SYSTEM);
1763 
1764 	if (tsp && check_park)		/* copyout the residual time left */
1765 		error = lwp_timer_copyout(&lwpt, error);
1766 
1767 	/* the mutex is reacquired by the caller on return to user level */
1768 	if (error) {
1769 		/*
1770 		 * If we were concurrently lwp_cond_signal()d and we
1771 		 * received a UNIX signal or got a timeout, then perform
1772 		 * another lwp_cond_signal() to avoid consuming the wakeup.
1773 		 */
1774 		if (t->t_release)
1775 			(void) lwp_cond_signal(cv);
1776 		return (set_errno(error));
1777 	}
1778 	return (0);
1779 
1780 efault:
1781 	/*
1782 	 * make sure that the user level lock is dropped before
1783 	 * returning to caller, since the caller always re-acquires it.
1784 	 */
1785 	if (UPIMUTEX(mtype) == 0) {
1786 		lwpchan_lock(&m_lwpchan, LWPCHAN_MPPOOL);
1787 		m_locked = 1;
1788 		if (mtype & USYNC_PROCESS)
1789 			suword32_noerr(&mp->mutex_ownerpid, 0);
1790 		ulock_clear(&mp->mutex_lockw);
1791 		fuword8_noerr(&mp->mutex_waiters, &waiters);
1792 		if (waiters != 0) {
1793 			/*
1794 			 * See comment above on lock clearing and lwp_release()
1795 			 * success/failure.
1796 			 */
1797 			if (lwp_release(&m_lwpchan, &waiters, 0))
1798 				suword8_noerr(&mp->mutex_waiters, waiters);
1799 		}
1800 		m_locked = 0;
1801 		lwpchan_unlock(&m_lwpchan, LWPCHAN_MPPOOL);
1802 	} else {
1803 		(void) lwp_upimutex_unlock(mp, mtype);
1804 	}
1805 out:
1806 	no_fault();
1807 	if (mpwatched)
1808 		watch_enable_addr((caddr_t)mp, sizeof (*mp), S_WRITE);
1809 	if (cvwatched)
1810 		watch_enable_addr((caddr_t)cv, sizeof (*cv), S_WRITE);
1811 	if (t->t_mstate == LMS_USER_LOCK)
1812 		(void) new_mstate(t, LMS_SYSTEM);
1813 	return (set_errno(error));
1814 }
1815 
1816 /*
1817  * wakeup one lwp that's blocked on this condition variable.
1818  */
1819 int
1820 lwp_cond_signal(lwp_cond_t *cv)
1821 {
1822 	proc_t *p = ttoproc(curthread);
1823 	lwpchan_t lwpchan;
1824 	uchar_t waiters;
1825 	volatile uint16_t type = 0;
1826 	volatile int locked = 0;
1827 	volatile int watched = 0;
1828 	label_t ljb;
1829 	int error = 0;
1830 
1831 	if ((caddr_t)cv >= p->p_as->a_userlimit)
1832 		return (set_errno(EFAULT));
1833 
1834 	watched = watch_disable_addr((caddr_t)cv, sizeof (*cv), S_WRITE);
1835 
1836 	if (on_fault(&ljb)) {
1837 		if (locked)
1838 			lwpchan_unlock(&lwpchan, LWPCHAN_CVPOOL);
1839 		error = EFAULT;
1840 		goto out;
1841 	}
1842 	/*
1843 	 * Force Copy-on-write if necessary and ensure that the
1844 	 * synchronization object resides in read/write memory.
1845 	 * Cause an EFAULT return now if this is not so.
1846 	 */
1847 	fuword16_noerr(&cv->cond_type, (uint16_t *)&type);
1848 	suword16_noerr(&cv->cond_type, type);
1849 	if (!get_lwpchan(curproc->p_as, (caddr_t)cv, type,
1850 	    &lwpchan, LWPCHAN_CVPOOL)) {
1851 		error = EFAULT;
1852 		goto out;
1853 	}
1854 	lwpchan_lock(&lwpchan, LWPCHAN_CVPOOL);
1855 	locked = 1;
1856 	fuword8_noerr(&cv->cond_waiters_kernel, &waiters);
1857 	if (waiters != 0) {
1858 		/*
1859 		 * The following call to lwp_release() might fail but it is
1860 		 * OK to write into the waiters bit below, since the memory
1861 		 * could not have been re-used or unmapped (for correctly
1862 		 * written user programs) as in the case of lwp_mutex_wakeup().
1863 		 * For an incorrect program, we should not care about data
1864 		 * corruption since this is just one instance of other places
1865 		 * where corruption can occur for such a program. Of course
1866 		 * if the memory is unmapped, normal fault recovery occurs.
1867 		 */
1868 		(void) lwp_release(&lwpchan, &waiters, T_WAITCVSEM);
1869 		suword8_noerr(&cv->cond_waiters_kernel, waiters);
1870 	}
1871 	lwpchan_unlock(&lwpchan, LWPCHAN_CVPOOL);
1872 out:
1873 	no_fault();
1874 	if (watched)
1875 		watch_enable_addr((caddr_t)cv, sizeof (*cv), S_WRITE);
1876 	if (error)
1877 		return (set_errno(error));
1878 	return (0);
1879 }
1880 
1881 /*
1882  * wakeup every lwp that's blocked on this condition variable.
1883  */
1884 int
1885 lwp_cond_broadcast(lwp_cond_t *cv)
1886 {
1887 	proc_t *p = ttoproc(curthread);
1888 	lwpchan_t lwpchan;
1889 	volatile uint16_t type = 0;
1890 	volatile int locked = 0;
1891 	volatile int watched = 0;
1892 	label_t ljb;
1893 	uchar_t waiters;
1894 	int error = 0;
1895 
1896 	if ((caddr_t)cv >= p->p_as->a_userlimit)
1897 		return (set_errno(EFAULT));
1898 
1899 	watched = watch_disable_addr((caddr_t)cv, sizeof (*cv), S_WRITE);
1900 
1901 	if (on_fault(&ljb)) {
1902 		if (locked)
1903 			lwpchan_unlock(&lwpchan, LWPCHAN_CVPOOL);
1904 		error = EFAULT;
1905 		goto out;
1906 	}
1907 	/*
1908 	 * Force Copy-on-write if necessary and ensure that the
1909 	 * synchronization object resides in read/write memory.
1910 	 * Cause an EFAULT return now if this is not so.
1911 	 */
1912 	fuword16_noerr(&cv->cond_type, (uint16_t *)&type);
1913 	suword16_noerr(&cv->cond_type, type);
1914 	if (!get_lwpchan(curproc->p_as, (caddr_t)cv, type,
1915 	    &lwpchan, LWPCHAN_CVPOOL)) {
1916 		error = EFAULT;
1917 		goto out;
1918 	}
1919 	lwpchan_lock(&lwpchan, LWPCHAN_CVPOOL);
1920 	locked = 1;
1921 	fuword8_noerr(&cv->cond_waiters_kernel, &waiters);
1922 	if (waiters != 0) {
1923 		lwp_release_all(&lwpchan);
1924 		suword8_noerr(&cv->cond_waiters_kernel, 0);
1925 	}
1926 	lwpchan_unlock(&lwpchan, LWPCHAN_CVPOOL);
1927 out:
1928 	no_fault();
1929 	if (watched)
1930 		watch_enable_addr((caddr_t)cv, sizeof (*cv), S_WRITE);
1931 	if (error)
1932 		return (set_errno(error));
1933 	return (0);
1934 }
1935 
1936 int
1937 lwp_sema_trywait(lwp_sema_t *sp)
1938 {
1939 	kthread_t *t = curthread;
1940 	proc_t *p = ttoproc(t);
1941 	label_t ljb;
1942 	volatile int locked = 0;
1943 	volatile int watched = 0;
1944 	volatile uint16_t type = 0;
1945 	int count;
1946 	lwpchan_t lwpchan;
1947 	uchar_t waiters;
1948 	int error = 0;
1949 
1950 	if ((caddr_t)sp >= p->p_as->a_userlimit)
1951 		return (set_errno(EFAULT));
1952 
1953 	watched = watch_disable_addr((caddr_t)sp, sizeof (*sp), S_WRITE);
1954 
1955 	if (on_fault(&ljb)) {
1956 		if (locked)
1957 			lwpchan_unlock(&lwpchan, LWPCHAN_CVPOOL);
1958 		error = EFAULT;
1959 		goto out;
1960 	}
1961 	/*
1962 	 * Force Copy-on-write if necessary and ensure that the
1963 	 * synchronization object resides in read/write memory.
1964 	 * Cause an EFAULT return now if this is not so.
1965 	 */
1966 	fuword16_noerr((void *)&sp->sema_type, (uint16_t *)&type);
1967 	suword16_noerr((void *)&sp->sema_type, type);
1968 	if (!get_lwpchan(p->p_as, (caddr_t)sp, type,
1969 	    &lwpchan, LWPCHAN_CVPOOL)) {
1970 		error = EFAULT;
1971 		goto out;
1972 	}
1973 	lwpchan_lock(&lwpchan, LWPCHAN_CVPOOL);
1974 	locked = 1;
1975 	fuword32_noerr((void *)&sp->sema_count, (uint32_t *)&count);
1976 	if (count == 0)
1977 		error = EBUSY;
1978 	else
1979 		suword32_noerr((void *)&sp->sema_count, --count);
1980 	if (count != 0) {
1981 		fuword8_noerr(&sp->sema_waiters, &waiters);
1982 		if (waiters != 0) {
1983 			(void) lwp_release(&lwpchan, &waiters, T_WAITCVSEM);
1984 			suword8_noerr(&sp->sema_waiters, waiters);
1985 		}
1986 	}
1987 	lwpchan_unlock(&lwpchan, LWPCHAN_CVPOOL);
1988 out:
1989 	no_fault();
1990 	if (watched)
1991 		watch_enable_addr((caddr_t)sp, sizeof (*sp), S_WRITE);
1992 	if (error)
1993 		return (set_errno(error));
1994 	return (0);
1995 }
1996 
1997 /*
1998  * See lwp_cond_wait(), above, for an explanation of the 'check_park' argument.
1999  */
2000 int
2001 lwp_sema_timedwait(lwp_sema_t *sp, timespec_t *tsp, int check_park)
2002 {
2003 	kthread_t *t = curthread;
2004 	klwp_t *lwp = ttolwp(t);
2005 	proc_t *p = ttoproc(t);
2006 	lwp_timer_t lwpt;
2007 	caddr_t timedwait;
2008 	clock_t tim = -1;
2009 	label_t ljb;
2010 	volatile int locked = 0;
2011 	volatile int watched = 0;
2012 	volatile uint16_t type = 0;
2013 	int count;
2014 	lwpchan_t lwpchan;
2015 	uchar_t waiters;
2016 	int error = 0;
2017 	int time_error;
2018 	int imm_timeout = 0;
2019 	int imm_unpark = 0;
2020 
2021 	if ((caddr_t)sp >= p->p_as->a_userlimit)
2022 		return (set_errno(EFAULT));
2023 
2024 	timedwait = (caddr_t)tsp;
2025 	if ((time_error = lwp_timer_copyin(&lwpt, tsp)) == 0 &&
2026 	    lwpt.lwpt_imm_timeout) {
2027 		imm_timeout = 1;
2028 		timedwait = NULL;
2029 	}
2030 
2031 	watched = watch_disable_addr((caddr_t)sp, sizeof (*sp), S_WRITE);
2032 
2033 	if (on_fault(&ljb)) {
2034 		if (locked)
2035 			lwpchan_unlock(&lwpchan, LWPCHAN_CVPOOL);
2036 		error = EFAULT;
2037 		goto out;
2038 	}
2039 	/*
2040 	 * Force Copy-on-write if necessary and ensure that the
2041 	 * synchronization object resides in read/write memory.
2042 	 * Cause an EFAULT return now if this is not so.
2043 	 */
2044 	fuword16_noerr((void *)&sp->sema_type, (uint16_t *)&type);
2045 	suword16_noerr((void *)&sp->sema_type, type);
2046 	if (!get_lwpchan(p->p_as, (caddr_t)sp, type,
2047 	    &lwpchan, LWPCHAN_CVPOOL)) {
2048 		error = EFAULT;
2049 		goto out;
2050 	}
2051 	lwpchan_lock(&lwpchan, LWPCHAN_CVPOOL);
2052 	locked = 1;
2053 	fuword32_noerr((void *)&sp->sema_count, (uint32_t *)&count);
2054 	while (error == 0 && count == 0) {
2055 		if (time_error) {
2056 			/*
2057 			 * The SUSV3 Posix spec is very clear that we
2058 			 * should get no error from validating the
2059 			 * timer until we would actually sleep.
2060 			 */
2061 			error = time_error;
2062 			break;
2063 		}
2064 		suword8_noerr(&sp->sema_waiters, 1);
2065 		if (watched)
2066 			watch_enable_addr((caddr_t)sp, sizeof (*sp), S_WRITE);
2067 		/*
2068 		 * Put the lwp in an orderly state for debugging.
2069 		 */
2070 		prstop(PR_REQUESTED, 0);
2071 		if (check_park && (!schedctl_is_park() || t->t_unpark)) {
2072 			/*
2073 			 * We received a signal at user-level before calling
2074 			 * here or another thread wants us to return
2075 			 * immediately with EINTR.  See lwp_unpark().
2076 			 */
2077 			imm_unpark = 1;
2078 			t->t_unpark = 0;
2079 			timedwait = NULL;
2080 		} else if (timedwait) {
2081 			/*
2082 			 * If we successfully queue the timeout,
2083 			 * then don't drop t_delay_lock until
2084 			 * we are on the sleep queue (below).
2085 			 */
2086 			mutex_enter(&t->t_delay_lock);
2087 			if (lwp_timer_enqueue(&lwpt) != 0) {
2088 				mutex_exit(&t->t_delay_lock);
2089 				imm_timeout = 1;
2090 				timedwait = NULL;
2091 			}
2092 		}
2093 		t->t_flag |= T_WAITCVSEM;
2094 		lwp_block(&lwpchan);
2095 		/*
2096 		 * Nothing should happen to cause the lwp to sleep
2097 		 * again until after it returns from swtch().
2098 		 */
2099 		if (timedwait)
2100 			mutex_exit(&t->t_delay_lock);
2101 		locked = 0;
2102 		lwpchan_unlock(&lwpchan, LWPCHAN_CVPOOL);
2103 		if (ISSIG(t, JUSTLOOKING) || MUSTRETURN(p, t) ||
2104 		    (imm_timeout | imm_unpark))
2105 			setrun(t);
2106 		swtch();
2107 		t->t_flag &= ~(T_WAITCVSEM | T_WAKEABLE);
2108 		if (timedwait)
2109 			tim = lwp_timer_dequeue(&lwpt);
2110 		setallwatch();
2111 		if (ISSIG(t, FORREAL) || lwp->lwp_sysabort ||
2112 		    MUSTRETURN(p, t) || imm_unpark)
2113 			error = EINTR;
2114 		else if (imm_timeout || (timedwait && tim == -1))
2115 			error = ETIME;
2116 		lwp->lwp_asleep = 0;
2117 		lwp->lwp_sysabort = 0;
2118 		watched = watch_disable_addr((caddr_t)sp,
2119 		    sizeof (*sp), S_WRITE);
2120 		lwpchan_lock(&lwpchan, LWPCHAN_CVPOOL);
2121 		locked = 1;
2122 		fuword32_noerr((void *)&sp->sema_count, (uint32_t *)&count);
2123 	}
2124 	if (error == 0)
2125 		suword32_noerr((void *)&sp->sema_count, --count);
2126 	if (count != 0) {
2127 		(void) lwp_release(&lwpchan, &waiters, T_WAITCVSEM);
2128 		suword8_noerr(&sp->sema_waiters, waiters);
2129 	}
2130 	lwpchan_unlock(&lwpchan, LWPCHAN_CVPOOL);
2131 out:
2132 	no_fault();
2133 	if (watched)
2134 		watch_enable_addr((caddr_t)sp, sizeof (*sp), S_WRITE);
2135 	if (tsp && check_park && !time_error)
2136 		error = lwp_timer_copyout(&lwpt, error);
2137 	if (error)
2138 		return (set_errno(error));
2139 	return (0);
2140 }
2141 
2142 /*
2143  * Obsolete lwp_sema_wait() interface, no longer called from libc.
2144  * libc now calls lwp_sema_timedwait().
2145  * This system call trap exists solely for the benefit of old
2146  * statically linked applications from Solaris 9 and before.
2147  * It should be removed when we no longer care about such applications.
2148  */
2149 int
2150 lwp_sema_wait(lwp_sema_t *sp)
2151 {
2152 	return (lwp_sema_timedwait(sp, NULL, 0));
2153 }
2154 
2155 int
2156 lwp_sema_post(lwp_sema_t *sp)
2157 {
2158 	proc_t *p = ttoproc(curthread);
2159 	label_t ljb;
2160 	volatile int locked = 0;
2161 	volatile int watched = 0;
2162 	volatile uint16_t type = 0;
2163 	int count;
2164 	lwpchan_t lwpchan;
2165 	uchar_t waiters;
2166 	int error = 0;
2167 
2168 	if ((caddr_t)sp >= p->p_as->a_userlimit)
2169 		return (set_errno(EFAULT));
2170 
2171 	watched = watch_disable_addr((caddr_t)sp, sizeof (*sp), S_WRITE);
2172 
2173 	if (on_fault(&ljb)) {
2174 		if (locked)
2175 			lwpchan_unlock(&lwpchan, LWPCHAN_CVPOOL);
2176 		error = EFAULT;
2177 		goto out;
2178 	}
2179 	/*
2180 	 * Force Copy-on-write if necessary and ensure that the
2181 	 * synchronization object resides in read/write memory.
2182 	 * Cause an EFAULT return now if this is not so.
2183 	 */
2184 	fuword16_noerr(&sp->sema_type, (uint16_t *)&type);
2185 	suword16_noerr(&sp->sema_type, type);
2186 	if (!get_lwpchan(curproc->p_as, (caddr_t)sp, type,
2187 	    &lwpchan, LWPCHAN_CVPOOL)) {
2188 		error = EFAULT;
2189 		goto out;
2190 	}
2191 	lwpchan_lock(&lwpchan, LWPCHAN_CVPOOL);
2192 	locked = 1;
2193 	fuword32_noerr(&sp->sema_count, (uint32_t *)&count);
2194 	if (count == _SEM_VALUE_MAX)
2195 		error = EOVERFLOW;
2196 	else
2197 		suword32_noerr(&sp->sema_count, ++count);
2198 	if (count == 1) {
2199 		fuword8_noerr(&sp->sema_waiters, &waiters);
2200 		if (waiters) {
2201 			(void) lwp_release(&lwpchan, &waiters, T_WAITCVSEM);
2202 			suword8_noerr(&sp->sema_waiters, waiters);
2203 		}
2204 	}
2205 	lwpchan_unlock(&lwpchan, LWPCHAN_CVPOOL);
2206 out:
2207 	no_fault();
2208 	if (watched)
2209 		watch_enable_addr((caddr_t)sp, sizeof (*sp), S_WRITE);
2210 	if (error)
2211 		return (set_errno(error));
2212 	return (0);
2213 }
2214 
2215 #define	TRW_WANT_WRITE		0x1
2216 #define	TRW_LOCK_GRANTED	0x2
2217 
2218 #define	READ_LOCK		0
2219 #define	WRITE_LOCK		1
2220 #define	TRY_FLAG		0x10
2221 #define	READ_LOCK_TRY		(READ_LOCK | TRY_FLAG)
2222 #define	WRITE_LOCK_TRY		(WRITE_LOCK | TRY_FLAG)
2223 
2224 /*
2225  * Release one writer or one or more readers. Compute the rwstate word to
2226  * reflect the new state of the queue. For a safe hand-off we copy the new
2227  * rwstate value back to userland before we wake any of the new lock holders.
2228  *
2229  * Note that sleepq_insert() implements a prioritized FIFO (with writers
2230  * being given precedence over readers of the same priority).
2231  *
2232  * If the first thread is a reader we scan the queue releasing all readers
2233  * until we hit a writer or the end of the queue. If the first thread is a
2234  * writer we still need to check for another writer.
2235  */
2236 void
2237 lwp_rwlock_release(lwpchan_t *lwpchan, lwp_rwlock_t *rw)
2238 {
2239 	sleepq_head_t *sqh;
2240 	kthread_t *tp;
2241 	kthread_t **tpp;
2242 	kthread_t *tpnext;
2243 	kthread_t *wakelist = NULL;
2244 	uint32_t rwstate = 0;
2245 	int wcount = 0;
2246 	int rcount = 0;
2247 
2248 	sqh = lwpsqhash(lwpchan);
2249 	disp_lock_enter(&sqh->sq_lock);
2250 	tpp = &sqh->sq_queue.sq_first;
2251 	while ((tp = *tpp) != NULL) {
2252 		if (tp->t_lwpchan.lc_wchan0 == lwpchan->lc_wchan0 &&
2253 		    tp->t_lwpchan.lc_wchan == lwpchan->lc_wchan) {
2254 			if (tp->t_writer & TRW_WANT_WRITE) {
2255 				if ((wcount++ == 0) && (rcount == 0)) {
2256 					rwstate |= URW_WRITE_LOCKED;
2257 
2258 					/* Just one writer to wake. */
2259 					sleepq_unlink(tpp, tp);
2260 					wakelist = tp;
2261 
2262 					/* tpp already set for next thread. */
2263 					continue;
2264 				} else {
2265 					rwstate |= URW_HAS_WAITERS;
2266 					/* We need look no further. */
2267 					break;
2268 				}
2269 			} else {
2270 				rcount++;
2271 				if (wcount == 0) {
2272 					rwstate++;
2273 
2274 					/* Add reader to wake list. */
2275 					sleepq_unlink(tpp, tp);
2276 					tp->t_link = wakelist;
2277 					wakelist = tp;
2278 
2279 					/* tpp already set for next thread. */
2280 					continue;
2281 				} else {
2282 					rwstate |= URW_HAS_WAITERS;
2283 					/* We need look no further. */
2284 					break;
2285 				}
2286 			}
2287 		}
2288 		tpp = &tp->t_link;
2289 	}
2290 
2291 	/* Copy the new rwstate back to userland. */
2292 	suword32_noerr(&rw->rwlock_readers, rwstate);
2293 
2294 	/* Wake the new lock holder(s) up. */
2295 	tp = wakelist;
2296 	while (tp != NULL) {
2297 		DTRACE_SCHED1(wakeup, kthread_t *, tp);
2298 		tp->t_wchan0 = NULL;
2299 		tp->t_wchan = NULL;
2300 		tp->t_sobj_ops = NULL;
2301 		tp->t_writer |= TRW_LOCK_GRANTED;
2302 		tpnext = tp->t_link;
2303 		tp->t_link = NULL;
2304 		CL_WAKEUP(tp);
2305 		thread_unlock_high(tp);
2306 		tp = tpnext;
2307 	}
2308 
2309 	disp_lock_exit(&sqh->sq_lock);
2310 }
2311 
2312 /*
2313  * We enter here holding the user-level mutex, which we must release before
2314  * returning or blocking. Based on lwp_cond_wait().
2315  */
2316 static int
2317 lwp_rwlock_lock(lwp_rwlock_t *rw, timespec_t *tsp, int rd_wr)
2318 {
2319 	lwp_mutex_t *mp = NULL;
2320 	kthread_t *t = curthread;
2321 	kthread_t *tp;
2322 	klwp_t *lwp = ttolwp(t);
2323 	proc_t *p = ttoproc(t);
2324 	lwp_timer_t lwpt;
2325 	lwpchan_t lwpchan;
2326 	lwpchan_t mlwpchan;
2327 	caddr_t timedwait;
2328 	volatile uint16_t type = 0;
2329 	volatile uint8_t mtype = 0;
2330 	uchar_t mwaiters;
2331 	volatile int error = 0;
2332 	int time_error;
2333 	clock_t tim = -1;
2334 	volatile int locked = 0;
2335 	volatile int mlocked = 0;
2336 	volatile int watched = 0;
2337 	volatile int mwatched = 0;
2338 	label_t ljb;
2339 	volatile int no_lwpchan = 1;
2340 	int imm_timeout = 0;
2341 	int try_flag;
2342 	uint32_t rwstate;
2343 	int acquired = 0;
2344 
2345 	/* We only check rw because the mutex is included in it. */
2346 	if ((caddr_t)rw >= p->p_as->a_userlimit)
2347 		return (set_errno(EFAULT));
2348 
2349 	/* We must only report this error if we are about to sleep (later). */
2350 	timedwait = (caddr_t)tsp;
2351 	if ((time_error = lwp_timer_copyin(&lwpt, tsp)) == 0 &&
2352 	    lwpt.lwpt_imm_timeout) {
2353 		imm_timeout = 1;
2354 		timedwait = NULL;
2355 	}
2356 
2357 	(void) new_mstate(t, LMS_USER_LOCK);
2358 
2359 	if (on_fault(&ljb)) {
2360 		if (no_lwpchan) {
2361 			error = EFAULT;
2362 			goto out_nodrop;
2363 		}
2364 		if (mlocked) {
2365 			mlocked = 0;
2366 			lwpchan_unlock(&mlwpchan, LWPCHAN_MPPOOL);
2367 		}
2368 		if (locked) {
2369 			locked = 0;
2370 			lwpchan_unlock(&lwpchan, LWPCHAN_CVPOOL);
2371 		}
2372 		/*
2373 		 * Set up another on_fault() for a possible fault
2374 		 * on the user lock accessed at "out_drop".
2375 		 */
2376 		if (on_fault(&ljb)) {
2377 			if (mlocked) {
2378 				mlocked = 0;
2379 				lwpchan_unlock(&mlwpchan, LWPCHAN_MPPOOL);
2380 			}
2381 			error = EFAULT;
2382 			goto out_nodrop;
2383 		}
2384 		error = EFAULT;
2385 		goto out_nodrop;
2386 	}
2387 
2388 	/* Process rd_wr (including sanity check). */
2389 	try_flag = (rd_wr & TRY_FLAG);
2390 	rd_wr &= ~TRY_FLAG;
2391 	if ((rd_wr != READ_LOCK) && (rd_wr != WRITE_LOCK)) {
2392 		error = EINVAL;
2393 		goto out_nodrop;
2394 	}
2395 
2396 	/*
2397 	 * Force Copy-on-write if necessary and ensure that the
2398 	 * synchronization object resides in read/write memory.
2399 	 * Cause an EFAULT return now if this is not so.
2400 	 */
2401 	mp = &rw->mutex;
2402 	fuword8_noerr(&mp->mutex_type, (uint8_t *)&mtype);
2403 	fuword16_noerr(&rw->rwlock_type, (uint16_t *)&type);
2404 	suword8_noerr(&mp->mutex_type, mtype);
2405 	suword16_noerr(&rw->rwlock_type, type);
2406 
2407 	/* We can only continue for simple USYNC_PROCESS locks. */
2408 	if ((mtype != USYNC_PROCESS) || (type != USYNC_PROCESS)) {
2409 		error = EINVAL;
2410 		goto out_nodrop;
2411 	}
2412 
2413 	/* Convert user level mutex, "mp", to a unique lwpchan. */
2414 	if (!get_lwpchan(p->p_as, (caddr_t)mp, mtype,
2415 	    &mlwpchan, LWPCHAN_MPPOOL)) {
2416 		error = EFAULT;
2417 		goto out_nodrop;
2418 	}
2419 
2420 	/* Convert user level rwlock, "rw", to a unique lwpchan. */
2421 	if (!get_lwpchan(p->p_as, (caddr_t)rw, type,
2422 	    &lwpchan, LWPCHAN_CVPOOL)) {
2423 		error = EFAULT;
2424 		goto out_nodrop;
2425 	}
2426 
2427 	no_lwpchan = 0;
2428 	watched = watch_disable_addr((caddr_t)rw, sizeof (*rw), S_WRITE);
2429 	mwatched = watch_disable_addr((caddr_t)mp, sizeof (*mp), S_WRITE);
2430 
2431 	/*
2432 	 * lwpchan_lock() ensures that the calling LWP is put to sleep
2433 	 * atomically with respect to a possible wakeup which is a result
2434 	 * of lwp_rwlock_unlock().
2435 	 *
2436 	 * What's misleading is that the LWP is put to sleep after the
2437 	 * rwlock's mutex is released. This is OK as long as the release
2438 	 * operation is also done while holding mlwpchan. The LWP is then
2439 	 * put to sleep when the possibility of pagefaulting or sleeping
2440 	 * has been completely eliminated.
2441 	 */
2442 	lwpchan_lock(&lwpchan, LWPCHAN_CVPOOL);
2443 	locked = 1;
2444 	lwpchan_lock(&mlwpchan, LWPCHAN_MPPOOL);
2445 	mlocked = 1;
2446 
2447 	/*
2448 	 * Fetch the current rwlock state.
2449 	 *
2450 	 * The possibility of spurious wake-ups or killed waiters means
2451 	 * rwstate's URW_HAS_WAITERS bit may indicate false positives.
2452 	 * We only fix these if they are important to us.
2453 	 *
2454 	 * Although various error states can be observed here (e.g. the lock
2455 	 * is not held, but there are waiters) we assume these are applicaton
2456 	 * errors and so we take no corrective action.
2457 	 */
2458 	fuword32_noerr(&rw->rwlock_readers, &rwstate);
2459 	/*
2460 	 * We cannot legitimately get here from user-level
2461 	 * without URW_HAS_WAITERS being set.
2462 	 * Set it now to guard against user-level error.
2463 	 */
2464 	rwstate |= URW_HAS_WAITERS;
2465 
2466 	/*
2467 	 * We can try only if the lock isn't held by a writer.
2468 	 */
2469 	if (!(rwstate & URW_WRITE_LOCKED)) {
2470 		tp = lwp_queue_waiter(&lwpchan);
2471 		if (tp == NULL) {
2472 			/*
2473 			 * Hmmm, rwstate indicates waiters but there are
2474 			 * none queued. This could just be the result of a
2475 			 * spurious wakeup, so let's ignore it.
2476 			 *
2477 			 * We now have a chance to acquire the lock
2478 			 * uncontended, but this is the last chance for
2479 			 * a writer to acquire the lock without blocking.
2480 			 */
2481 			if (rd_wr == READ_LOCK) {
2482 				rwstate++;
2483 				acquired = 1;
2484 			} else if ((rwstate & URW_READERS_MASK) == 0) {
2485 				rwstate |= URW_WRITE_LOCKED;
2486 				acquired = 1;
2487 			}
2488 		} else if (rd_wr == READ_LOCK) {
2489 			/*
2490 			 * This is the last chance for a reader to acquire
2491 			 * the lock now, but it can only do so if there is
2492 			 * no writer of equal or greater priority at the
2493 			 * head of the queue .
2494 			 *
2495 			 * It is also just possible that there is a reader
2496 			 * at the head of the queue. This may be the result
2497 			 * of a spurious wakeup or an application failure.
2498 			 * In this case we only acquire the lock if we have
2499 			 * equal or greater priority. It is not our job to
2500 			 * release spurious waiters.
2501 			 */
2502 			pri_t our_pri = DISP_PRIO(t);
2503 			pri_t his_pri = DISP_PRIO(tp);
2504 
2505 			if ((our_pri > his_pri) || ((our_pri == his_pri) &&
2506 			    !(tp->t_writer & TRW_WANT_WRITE))) {
2507 				rwstate++;
2508 				acquired = 1;
2509 			}
2510 		}
2511 	}
2512 
2513 	if (acquired || try_flag || time_error) {
2514 		/*
2515 		 * We're not going to block this time.
2516 		 */
2517 		suword32_noerr(&rw->rwlock_readers, rwstate);
2518 		lwpchan_unlock(&lwpchan, LWPCHAN_CVPOOL);
2519 		locked = 0;
2520 
2521 		if (acquired) {
2522 			/*
2523 			 * Got the lock!
2524 			 */
2525 			error = 0;
2526 
2527 		} else if (try_flag) {
2528 			/*
2529 			 * We didn't get the lock and we're about to block.
2530 			 * If we're doing a trylock, return EBUSY instead.
2531 			 */
2532 			error = EBUSY;
2533 
2534 		} else if (time_error) {
2535 			/*
2536 			 * The SUSV3 POSIX spec is very clear that we should
2537 			 * get no error from validating the timer (above)
2538 			 * until we would actually sleep.
2539 			 */
2540 			error = time_error;
2541 		}
2542 
2543 		goto out_drop;
2544 	}
2545 
2546 	/*
2547 	 * We're about to block, so indicate what kind of waiter we are.
2548 	 */
2549 	t->t_writer = 0;
2550 	if (rd_wr == WRITE_LOCK)
2551 		t->t_writer = TRW_WANT_WRITE;
2552 	suword32_noerr(&rw->rwlock_readers, rwstate);
2553 
2554 	/*
2555 	 * Unlock the rwlock's mutex (pagefaults are possible here).
2556 	 */
2557 	suword32_noerr((uint32_t *)&mp->mutex_owner, 0);
2558 	suword32_noerr((uint32_t *)&mp->mutex_owner + 1, 0);
2559 	suword32_noerr(&mp->mutex_ownerpid, 0);
2560 	ulock_clear(&mp->mutex_lockw);
2561 	fuword8_noerr(&mp->mutex_waiters, &mwaiters);
2562 	if (mwaiters != 0) {
2563 		/*
2564 		 * Given the locking of mlwpchan around the release of
2565 		 * the mutex and checking for waiters, the following
2566 		 * call to lwp_release() can fail ONLY if the lock
2567 		 * acquirer is interrupted after setting the waiter bit,
2568 		 * calling lwp_block() and releasing mlwpchan.
2569 		 * In this case, it could get pulled off the LWP sleep
2570 		 * queue (via setrun()) before the following call to
2571 		 * lwp_release() occurs, and the lock requestor will
2572 		 * update the waiter bit correctly by re-evaluating it.
2573 		 */
2574 		if (lwp_release(&mlwpchan, &mwaiters, 0))
2575 			suword8_noerr(&mp->mutex_waiters, mwaiters);
2576 	}
2577 	lwpchan_unlock(&mlwpchan, LWPCHAN_MPPOOL);
2578 	mlocked = 0;
2579 	no_fault();
2580 
2581 	if (mwatched) {
2582 		watch_enable_addr((caddr_t)mp, sizeof (*mp), S_WRITE);
2583 		mwatched = 0;
2584 	}
2585 	if (watched) {
2586 		watch_enable_addr((caddr_t)rw, sizeof (*rw), S_WRITE);
2587 		watched = 0;
2588 	}
2589 
2590 	/*
2591 	 * Put the LWP in an orderly state for debugging.
2592 	 */
2593 	prstop(PR_REQUESTED, 0);
2594 	if (timedwait) {
2595 		/*
2596 		 * If we successfully queue the timeout,
2597 		 * then don't drop t_delay_lock until
2598 		 * we are on the sleep queue (below).
2599 		 */
2600 		mutex_enter(&t->t_delay_lock);
2601 		if (lwp_timer_enqueue(&lwpt) != 0) {
2602 			mutex_exit(&t->t_delay_lock);
2603 			imm_timeout = 1;
2604 			timedwait = NULL;
2605 		}
2606 	}
2607 	t->t_flag |= T_WAITCVSEM;
2608 	lwp_block(&lwpchan);
2609 
2610 	/*
2611 	 * Nothing should happen to cause the LWp to go to sleep until after
2612 	 * it returns from swtch().
2613 	 */
2614 	if (timedwait)
2615 		mutex_exit(&t->t_delay_lock);
2616 	locked = 0;
2617 	lwpchan_unlock(&lwpchan, LWPCHAN_CVPOOL);
2618 	if (ISSIG(t, JUSTLOOKING) || MUSTRETURN(p, t) || imm_timeout)
2619 		setrun(t);
2620 	swtch();
2621 
2622 	/*
2623 	 * We're back, but we need to work out why. Were we interrupted? Did
2624 	 * we timeout? Were we granted the lock?
2625 	 */
2626 	error = EAGAIN;
2627 	acquired = (t->t_writer & TRW_LOCK_GRANTED);
2628 	t->t_writer = 0;
2629 	t->t_flag &= ~(T_WAITCVSEM | T_WAKEABLE);
2630 	if (timedwait)
2631 		tim = lwp_timer_dequeue(&lwpt);
2632 	if (ISSIG(t, FORREAL) || lwp->lwp_sysabort || MUSTRETURN(p, t))
2633 		error = EINTR;
2634 	else if (imm_timeout || (timedwait && tim == -1))
2635 		error = ETIME;
2636 	lwp->lwp_asleep = 0;
2637 	lwp->lwp_sysabort = 0;
2638 	setallwatch();
2639 
2640 	/*
2641 	 * If we were granted the lock we don't care about EINTR or ETIME.
2642 	 */
2643 	if (acquired)
2644 		error = 0;
2645 
2646 	if (t->t_mstate == LMS_USER_LOCK)
2647 		(void) new_mstate(t, LMS_SYSTEM);
2648 
2649 	if (error)
2650 		return (set_errno(error));
2651 	return (0);
2652 
2653 out_drop:
2654 	/*
2655 	 * Make sure that the user level lock is dropped before returning
2656 	 * to the caller.
2657 	 */
2658 	if (!mlocked) {
2659 		lwpchan_lock(&mlwpchan, LWPCHAN_MPPOOL);
2660 		mlocked = 1;
2661 	}
2662 	suword32_noerr((uint32_t *)&mp->mutex_owner, 0);
2663 	suword32_noerr((uint32_t *)&mp->mutex_owner + 1, 0);
2664 	suword32_noerr(&mp->mutex_ownerpid, 0);
2665 	ulock_clear(&mp->mutex_lockw);
2666 	fuword8_noerr(&mp->mutex_waiters, &mwaiters);
2667 	if (mwaiters != 0) {
2668 		/*
2669 		 * See comment above on lock clearing and lwp_release()
2670 		 * success/failure.
2671 		 */
2672 		if (lwp_release(&mlwpchan, &mwaiters, 0))
2673 			suword8_noerr(&mp->mutex_waiters, mwaiters);
2674 	}
2675 	lwpchan_unlock(&mlwpchan, LWPCHAN_MPPOOL);
2676 	mlocked = 0;
2677 
2678 out_nodrop:
2679 	no_fault();
2680 	if (mwatched)
2681 		watch_enable_addr((caddr_t)mp, sizeof (*mp), S_WRITE);
2682 	if (watched)
2683 		watch_enable_addr((caddr_t)rw, sizeof (*rw), S_WRITE);
2684 	if (t->t_mstate == LMS_USER_LOCK)
2685 		(void) new_mstate(t, LMS_SYSTEM);
2686 	if (error)
2687 		return (set_errno(error));
2688 	return (0);
2689 }
2690 
2691 /*
2692  * We enter here holding the user-level mutex but, unlike lwp_rwlock_lock(),
2693  * we never drop the lock.
2694  */
2695 static int
2696 lwp_rwlock_unlock(lwp_rwlock_t *rw)
2697 {
2698 	kthread_t *t = curthread;
2699 	proc_t *p = ttoproc(t);
2700 	lwpchan_t lwpchan;
2701 	volatile uint16_t type = 0;
2702 	volatile int error = 0;
2703 	volatile int locked = 0;
2704 	volatile int watched = 0;
2705 	label_t ljb;
2706 	volatile int no_lwpchan = 1;
2707 	uint32_t rwstate;
2708 
2709 	/* We only check rw because the mutex is included in it. */
2710 	if ((caddr_t)rw >= p->p_as->a_userlimit)
2711 		return (set_errno(EFAULT));
2712 
2713 	if (on_fault(&ljb)) {
2714 		if (no_lwpchan) {
2715 			error = EFAULT;
2716 			goto out_nodrop;
2717 		}
2718 		if (locked) {
2719 			locked = 0;
2720 			lwpchan_unlock(&lwpchan, LWPCHAN_CVPOOL);
2721 		}
2722 		error = EFAULT;
2723 		goto out_nodrop;
2724 	}
2725 
2726 	/*
2727 	 * Force Copy-on-write if necessary and ensure that the
2728 	 * synchronization object resides in read/write memory.
2729 	 * Cause an EFAULT return now if this is not so.
2730 	 */
2731 	fuword16_noerr(&rw->rwlock_type, (uint16_t *)&type);
2732 	suword16_noerr(&rw->rwlock_type, type);
2733 
2734 	/* We can only continue for simple USYNC_PROCESS locks. */
2735 	if (type != USYNC_PROCESS) {
2736 		error = EINVAL;
2737 		goto out_nodrop;
2738 	}
2739 
2740 	/* Convert user level rwlock, "rw", to a unique lwpchan. */
2741 	if (!get_lwpchan(p->p_as, (caddr_t)rw, type,
2742 	    &lwpchan, LWPCHAN_CVPOOL)) {
2743 		error = EFAULT;
2744 		goto out_nodrop;
2745 	}
2746 
2747 	no_lwpchan = 0;
2748 	watched = watch_disable_addr((caddr_t)rw, sizeof (*rw), S_WRITE);
2749 
2750 	lwpchan_lock(&lwpchan, LWPCHAN_CVPOOL);
2751 	locked = 1;
2752 
2753 	/*
2754 	 * We can resolve multiple readers (except the last reader) here.
2755 	 * For the last reader or a writer we need lwp_rwlock_release(),
2756 	 * to which we also delegate the task of copying the new rwstate
2757 	 * back to userland (see the comment there).
2758 	 */
2759 	fuword32_noerr(&rw->rwlock_readers, &rwstate);
2760 	if (rwstate & URW_WRITE_LOCKED)
2761 		lwp_rwlock_release(&lwpchan, rw);
2762 	else if ((rwstate & URW_READERS_MASK) > 0) {
2763 		rwstate--;
2764 		if ((rwstate & URW_READERS_MASK) == 0)
2765 			lwp_rwlock_release(&lwpchan, rw);
2766 		else
2767 			suword32_noerr(&rw->rwlock_readers, rwstate);
2768 	}
2769 
2770 	lwpchan_unlock(&lwpchan, LWPCHAN_CVPOOL);
2771 	locked = 0;
2772 	error = 0;
2773 
2774 out_nodrop:
2775 	no_fault();
2776 	if (watched)
2777 		watch_enable_addr((caddr_t)rw, sizeof (*rw), S_WRITE);
2778 	if (error)
2779 		return (set_errno(error));
2780 	return (0);
2781 }
2782 
2783 int
2784 lwp_rwlock_sys(int subcode, lwp_rwlock_t *rwlp, timespec_t *tsp)
2785 {
2786 	switch (subcode) {
2787 	case 0:
2788 		return (lwp_rwlock_lock(rwlp, tsp, READ_LOCK));
2789 	case 1:
2790 		return (lwp_rwlock_lock(rwlp, tsp, WRITE_LOCK));
2791 	case 2:
2792 		return (lwp_rwlock_lock(rwlp, NULL, READ_LOCK_TRY));
2793 	case 3:
2794 		return (lwp_rwlock_lock(rwlp, NULL, WRITE_LOCK_TRY));
2795 	case 4:
2796 		return (lwp_rwlock_unlock(rwlp));
2797 	}
2798 	return (set_errno(EINVAL));
2799 }
2800 
2801 /*
2802  * Return the owner of the user-level s-object.
2803  * Since we can't really do this, return NULL.
2804  */
2805 /* ARGSUSED */
2806 static kthread_t *
2807 lwpsobj_owner(caddr_t sobj)
2808 {
2809 	return ((kthread_t *)NULL);
2810 }
2811 
2812 /*
2813  * Wake up a thread asleep on a user-level synchronization
2814  * object.
2815  */
2816 static void
2817 lwp_unsleep(kthread_t *t)
2818 {
2819 	ASSERT(THREAD_LOCK_HELD(t));
2820 	if (t->t_wchan0 != NULL) {
2821 		sleepq_head_t *sqh;
2822 		sleepq_t *sqp = t->t_sleepq;
2823 
2824 		if (sqp != NULL) {
2825 			sqh = lwpsqhash(&t->t_lwpchan);
2826 			ASSERT(&sqh->sq_queue == sqp);
2827 			sleepq_unsleep(t);
2828 			disp_lock_exit_high(&sqh->sq_lock);
2829 			CL_SETRUN(t);
2830 			return;
2831 		}
2832 	}
2833 	panic("lwp_unsleep: thread %p not on sleepq", (void *)t);
2834 }
2835 
2836 /*
2837  * Change the priority of a thread asleep on a user-level
2838  * synchronization object. To maintain proper priority order,
2839  * we:
2840  *	o dequeue the thread.
2841  *	o change its priority.
2842  *	o re-enqueue the thread.
2843  * Assumption: the thread is locked on entry.
2844  */
2845 static void
2846 lwp_change_pri(kthread_t *t, pri_t pri, pri_t *t_prip)
2847 {
2848 	ASSERT(THREAD_LOCK_HELD(t));
2849 	if (t->t_wchan0 != NULL) {
2850 		sleepq_t   *sqp = t->t_sleepq;
2851 
2852 		sleepq_dequeue(t);
2853 		*t_prip = pri;
2854 		sleepq_insert(sqp, t);
2855 	} else
2856 		panic("lwp_change_pri: %p not on a sleep queue", (void *)t);
2857 }
2858 
2859 /*
2860  * Clean up a locked robust mutex
2861  */
2862 static void
2863 lwp_mutex_cleanup(lwpchan_entry_t *ent, uint16_t lockflg)
2864 {
2865 	uint16_t flag;
2866 	uchar_t waiters;
2867 	label_t ljb;
2868 	pid_t owner_pid;
2869 	lwp_mutex_t *lp;
2870 	volatile int locked = 0;
2871 	volatile int watched = 0;
2872 	volatile struct upimutex *upimutex = NULL;
2873 	volatile int upilocked = 0;
2874 
2875 	ASSERT(ent->lwpchan_type & LOCK_ROBUST);
2876 
2877 	lp = (lwp_mutex_t *)ent->lwpchan_addr;
2878 	watched = watch_disable_addr((caddr_t)lp, sizeof (*lp), S_WRITE);
2879 	if (on_fault(&ljb)) {
2880 		if (locked)
2881 			lwpchan_unlock(&ent->lwpchan_lwpchan, LWPCHAN_MPPOOL);
2882 		if (upilocked)
2883 			upimutex_unlock((upimutex_t *)upimutex, 0);
2884 		goto out;
2885 	}
2886 	if (ent->lwpchan_type & USYNC_PROCESS) {
2887 		fuword32_noerr(&lp->mutex_ownerpid, (uint32_t *)&owner_pid);
2888 		if ((UPIMUTEX(ent->lwpchan_type) || owner_pid != 0) &&
2889 		    owner_pid != curproc->p_pid)
2890 			goto out;
2891 	}
2892 	if (UPIMUTEX(ent->lwpchan_type)) {
2893 		lwpchan_t lwpchan = ent->lwpchan_lwpchan;
2894 		upib_t *upibp = &UPI_CHAIN(lwpchan);
2895 
2896 		mutex_enter(&upibp->upib_lock);
2897 		upimutex = upi_get(upibp, &lwpchan);
2898 		if (upimutex == NULL || upimutex->upi_owner != curthread) {
2899 			mutex_exit(&upibp->upib_lock);
2900 			goto out;
2901 		}
2902 		mutex_exit(&upibp->upib_lock);
2903 		upilocked = 1;
2904 		flag = lwp_clear_mutex(lp, lockflg);
2905 		suword8_noerr(&lp->mutex_lockw, 0);
2906 		upimutex_unlock((upimutex_t *)upimutex, flag);
2907 	} else {
2908 		lwpchan_lock(&ent->lwpchan_lwpchan, LWPCHAN_MPPOOL);
2909 		locked = 1;
2910 		if ((ent->lwpchan_type & USYNC_PROCESS) && owner_pid == 0) {
2911 			/*
2912 			 * There is no owner.  If there are waiters,
2913 			 * we should wake up one or all of them.
2914 			 * It doesn't hurt to wake them up in error
2915 			 * since they will just retry the lock and
2916 			 * go to sleep again if necessary.
2917 			 */
2918 			fuword8_noerr(&lp->mutex_waiters, &waiters);
2919 			if (waiters != 0) {	/* there are waiters */
2920 				fuword16_noerr(&lp->mutex_flag, &flag);
2921 				if (flag & LOCK_NOTRECOVERABLE) {
2922 					lwp_release_all(&ent->lwpchan_lwpchan);
2923 					suword8_noerr(&lp->mutex_waiters, 0);
2924 				} else if (lwp_release(&ent->lwpchan_lwpchan,
2925 				    &waiters, 0)) {
2926 					suword8_noerr(&lp->mutex_waiters,
2927 					    waiters);
2928 				}
2929 			}
2930 		} else {
2931 			(void) lwp_clear_mutex(lp, lockflg);
2932 			ulock_clear(&lp->mutex_lockw);
2933 			fuword8_noerr(&lp->mutex_waiters, &waiters);
2934 			if (waiters &&
2935 			    lwp_release(&ent->lwpchan_lwpchan, &waiters, 0))
2936 				suword8_noerr(&lp->mutex_waiters, waiters);
2937 		}
2938 		lwpchan_unlock(&ent->lwpchan_lwpchan, LWPCHAN_MPPOOL);
2939 	}
2940 out:
2941 	no_fault();
2942 	if (watched)
2943 		watch_enable_addr((caddr_t)lp, sizeof (*lp), S_WRITE);
2944 }
2945 
2946 /*
2947  * Register a process-shared robust mutex in the lwpchan cache.
2948  */
2949 int
2950 lwp_mutex_register(lwp_mutex_t *lp)
2951 {
2952 	int error = 0;
2953 	volatile int watched;
2954 	label_t ljb;
2955 	uint8_t type;
2956 	lwpchan_t lwpchan;
2957 
2958 	if ((caddr_t)lp >= (caddr_t)USERLIMIT)
2959 		return (set_errno(EFAULT));
2960 
2961 	watched = watch_disable_addr((caddr_t)lp, sizeof (*lp), S_WRITE);
2962 
2963 	if (on_fault(&ljb)) {
2964 		error = EFAULT;
2965 	} else {
2966 		/*
2967 		 * Force Copy-on-write if necessary and ensure that the
2968 		 * synchronization object resides in read/write memory.
2969 		 * Cause an EFAULT return now if this is not so.
2970 		 */
2971 		fuword8_noerr(&lp->mutex_type, &type);
2972 		suword8_noerr(&lp->mutex_type, type);
2973 		if ((type & (USYNC_PROCESS|LOCK_ROBUST))
2974 		    != (USYNC_PROCESS|LOCK_ROBUST)) {
2975 			error = EINVAL;
2976 		} else if (!get_lwpchan(curproc->p_as, (caddr_t)lp, type,
2977 		    &lwpchan, LWPCHAN_MPPOOL)) {
2978 			error = EFAULT;
2979 		}
2980 	}
2981 	no_fault();
2982 	if (watched)
2983 		watch_enable_addr((caddr_t)lp, sizeof (*lp), S_WRITE);
2984 	if (error)
2985 		return (set_errno(error));
2986 	return (0);
2987 }
2988 
2989 int
2990 lwp_mutex_trylock(lwp_mutex_t *lp)
2991 {
2992 	kthread_t *t = curthread;
2993 	proc_t *p = ttoproc(t);
2994 	int error = 0;
2995 	volatile int locked = 0;
2996 	volatile int watched = 0;
2997 	label_t ljb;
2998 	volatile uint8_t type = 0;
2999 	uint16_t flag;
3000 	lwpchan_t lwpchan;
3001 
3002 	if ((caddr_t)lp >= p->p_as->a_userlimit)
3003 		return (set_errno(EFAULT));
3004 
3005 	(void) new_mstate(t, LMS_USER_LOCK);
3006 
3007 	if (on_fault(&ljb)) {
3008 		if (locked)
3009 			lwpchan_unlock(&lwpchan, LWPCHAN_MPPOOL);
3010 		error = EFAULT;
3011 		goto out;
3012 	}
3013 	/*
3014 	 * Force Copy-on-write if necessary and ensure that the
3015 	 * synchronization object resides in read/write memory.
3016 	 * Cause an EFAULT return now if this is not so.
3017 	 */
3018 	fuword8_noerr(&lp->mutex_type, (uint8_t *)&type);
3019 	suword8_noerr(&lp->mutex_type, type);
3020 	if (UPIMUTEX(type)) {
3021 		no_fault();
3022 		error = lwp_upimutex_lock(lp, type, UPIMUTEX_TRY, NULL);
3023 		if ((type & USYNC_PROCESS) &&
3024 		    (error == 0 ||
3025 		    error == EOWNERDEAD || error == ELOCKUNMAPPED))
3026 			(void) suword32(&lp->mutex_ownerpid, p->p_pid);
3027 		if (error)
3028 			return (set_errno(error));
3029 		return (0);
3030 	}
3031 	if (!get_lwpchan(curproc->p_as, (caddr_t)lp, type,
3032 	    &lwpchan, LWPCHAN_MPPOOL)) {
3033 		error = EFAULT;
3034 		goto out;
3035 	}
3036 	lwpchan_lock(&lwpchan, LWPCHAN_MPPOOL);
3037 	locked = 1;
3038 	if (type & LOCK_ROBUST) {
3039 		fuword16_noerr(&lp->mutex_flag, &flag);
3040 		if (flag & LOCK_NOTRECOVERABLE) {
3041 			lwpchan_unlock(&lwpchan, LWPCHAN_MPPOOL);
3042 			error =  ENOTRECOVERABLE;
3043 			goto out;
3044 		}
3045 	}
3046 
3047 	watched = watch_disable_addr((caddr_t)lp, sizeof (*lp), S_WRITE);
3048 
3049 	if (!ulock_try(&lp->mutex_lockw))
3050 		error = EBUSY;
3051 	else {
3052 		if (type & USYNC_PROCESS)
3053 			suword32_noerr(&lp->mutex_ownerpid, p->p_pid);
3054 		if (type & LOCK_ROBUST) {
3055 			fuword16_noerr(&lp->mutex_flag, &flag);
3056 			if (flag & (LOCK_OWNERDEAD | LOCK_UNMAPPED)) {
3057 				if (flag & LOCK_OWNERDEAD)
3058 					error = EOWNERDEAD;
3059 				else if (type & USYNC_PROCESS_ROBUST)
3060 					error = ELOCKUNMAPPED;
3061 				else
3062 					error = EOWNERDEAD;
3063 			}
3064 		}
3065 	}
3066 	locked = 0;
3067 	lwpchan_unlock(&lwpchan, LWPCHAN_MPPOOL);
3068 out:
3069 
3070 	if (t->t_mstate == LMS_USER_LOCK)
3071 		(void) new_mstate(t, LMS_SYSTEM);
3072 
3073 	no_fault();
3074 	if (watched)
3075 		watch_enable_addr((caddr_t)lp, sizeof (*lp), S_WRITE);
3076 	if (error)
3077 		return (set_errno(error));
3078 	return (0);
3079 }
3080 
3081 /*
3082  * unlock the mutex and unblock lwps that is trying to acquire this mutex.
3083  * the blocked lwp resumes and retries to acquire the lock.
3084  */
3085 int
3086 lwp_mutex_unlock(lwp_mutex_t *lp)
3087 {
3088 	proc_t *p = ttoproc(curthread);
3089 	lwpchan_t lwpchan;
3090 	uchar_t waiters;
3091 	volatile int locked = 0;
3092 	volatile int watched = 0;
3093 	volatile uint8_t type = 0;
3094 	label_t ljb;
3095 	uint16_t flag;
3096 	int error = 0;
3097 
3098 	if ((caddr_t)lp >= p->p_as->a_userlimit)
3099 		return (set_errno(EFAULT));
3100 
3101 	if (on_fault(&ljb)) {
3102 		if (locked)
3103 			lwpchan_unlock(&lwpchan, LWPCHAN_MPPOOL);
3104 		error = EFAULT;
3105 		goto out;
3106 	}
3107 
3108 	/*
3109 	 * Force Copy-on-write if necessary and ensure that the
3110 	 * synchronization object resides in read/write memory.
3111 	 * Cause an EFAULT return now if this is not so.
3112 	 */
3113 	fuword8_noerr(&lp->mutex_type, (uint8_t *)&type);
3114 	suword8_noerr(&lp->mutex_type, type);
3115 
3116 	if (UPIMUTEX(type)) {
3117 		no_fault();
3118 		error = lwp_upimutex_unlock(lp, type);
3119 		if (error)
3120 			return (set_errno(error));
3121 		return (0);
3122 	}
3123 
3124 	watched = watch_disable_addr((caddr_t)lp, sizeof (*lp), S_WRITE);
3125 
3126 	if (!get_lwpchan(curproc->p_as, (caddr_t)lp, type,
3127 	    &lwpchan, LWPCHAN_MPPOOL)) {
3128 		error = EFAULT;
3129 		goto out;
3130 	}
3131 	lwpchan_lock(&lwpchan, LWPCHAN_MPPOOL);
3132 	locked = 1;
3133 	if (type & LOCK_ROBUST) {
3134 		fuword16_noerr(&lp->mutex_flag, &flag);
3135 		if (flag & (LOCK_OWNERDEAD | LOCK_UNMAPPED)) {
3136 			flag &= ~(LOCK_OWNERDEAD | LOCK_UNMAPPED);
3137 			flag |= LOCK_NOTRECOVERABLE;
3138 			suword16_noerr(&lp->mutex_flag, flag);
3139 		}
3140 	}
3141 	if (type & USYNC_PROCESS)
3142 		suword32_noerr(&lp->mutex_ownerpid, 0);
3143 	ulock_clear(&lp->mutex_lockw);
3144 	/*
3145 	 * Always wake up an lwp (if any) waiting on lwpchan. The woken lwp will
3146 	 * re-try the lock in lwp_mutex_timedlock(). The call to lwp_release()
3147 	 * may fail.  If it fails, do not write into the waiter bit.
3148 	 * The call to lwp_release() might fail due to one of three reasons:
3149 	 *
3150 	 * 	1. due to the thread which set the waiter bit not actually
3151 	 *	   sleeping since it got the lock on the re-try. The waiter
3152 	 *	   bit will then be correctly updated by that thread. This
3153 	 *	   window may be closed by reading the wait bit again here
3154 	 *	   and not calling lwp_release() at all if it is zero.
3155 	 *	2. the thread which set the waiter bit and went to sleep
3156 	 *	   was woken up by a signal. This time, the waiter recomputes
3157 	 *	   the wait bit in the return with EINTR code.
3158 	 *	3. the waiter bit read by lwp_mutex_wakeup() was in
3159 	 *	   memory that has been re-used after the lock was dropped.
3160 	 *	   In this case, writing into the waiter bit would cause data
3161 	 *	   corruption.
3162 	 */
3163 	fuword8_noerr(&lp->mutex_waiters, &waiters);
3164 	if (waiters) {
3165 		if ((type & LOCK_ROBUST) &&
3166 		    (flag & LOCK_NOTRECOVERABLE)) {
3167 			lwp_release_all(&lwpchan);
3168 			suword8_noerr(&lp->mutex_waiters, 0);
3169 		} else if (lwp_release(&lwpchan, &waiters, 0)) {
3170 			suword8_noerr(&lp->mutex_waiters, waiters);
3171 		}
3172 	}
3173 
3174 	lwpchan_unlock(&lwpchan, LWPCHAN_MPPOOL);
3175 out:
3176 	no_fault();
3177 	if (watched)
3178 		watch_enable_addr((caddr_t)lp, sizeof (*lp), S_WRITE);
3179 	if (error)
3180 		return (set_errno(error));
3181 	return (0);
3182 }
3183