xref: /illumos-gate/usr/src/uts/common/vm/seg_vn.c (revision 24da5b34)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
27 /*	  All Rights Reserved  	*/
28 
29 /*
30  * University Copyright- Copyright (c) 1982, 1986, 1988
31  * The Regents of the University of California
32  * All Rights Reserved
33  *
34  * University Acknowledgment- Portions of this document are derived from
35  * software developed by the University of California, Berkeley, and its
36  * contributors.
37  */
38 
39 #pragma ident	"%Z%%M%	%I%	%E% SMI"
40 
41 /*
42  * VM - shared or copy-on-write from a vnode/anonymous memory.
43  */
44 
45 #include <sys/types.h>
46 #include <sys/param.h>
47 #include <sys/t_lock.h>
48 #include <sys/errno.h>
49 #include <sys/systm.h>
50 #include <sys/mman.h>
51 #include <sys/debug.h>
52 #include <sys/cred.h>
53 #include <sys/vmsystm.h>
54 #include <sys/tuneable.h>
55 #include <sys/bitmap.h>
56 #include <sys/swap.h>
57 #include <sys/kmem.h>
58 #include <sys/sysmacros.h>
59 #include <sys/vtrace.h>
60 #include <sys/cmn_err.h>
61 #include <sys/vm.h>
62 #include <sys/dumphdr.h>
63 #include <sys/lgrp.h>
64 
65 #include <vm/hat.h>
66 #include <vm/as.h>
67 #include <vm/seg.h>
68 #include <vm/seg_vn.h>
69 #include <vm/pvn.h>
70 #include <vm/anon.h>
71 #include <vm/page.h>
72 #include <vm/vpage.h>
73 #include <sys/proc.h>
74 #include <sys/task.h>
75 #include <sys/project.h>
76 #include <sys/zone.h>
77 #include <sys/shm_impl.h>
78 /*
79  * Private seg op routines.
80  */
81 static int	segvn_dup(struct seg *seg, struct seg *newseg);
82 static int	segvn_unmap(struct seg *seg, caddr_t addr, size_t len);
83 static void	segvn_free(struct seg *seg);
84 static faultcode_t segvn_fault(struct hat *hat, struct seg *seg,
85 		    caddr_t addr, size_t len, enum fault_type type,
86 		    enum seg_rw rw);
87 static faultcode_t segvn_faulta(struct seg *seg, caddr_t addr);
88 static int	segvn_setprot(struct seg *seg, caddr_t addr,
89 		    size_t len, uint_t prot);
90 static int	segvn_checkprot(struct seg *seg, caddr_t addr,
91 		    size_t len, uint_t prot);
92 static int	segvn_kluster(struct seg *seg, caddr_t addr, ssize_t delta);
93 static size_t	segvn_swapout(struct seg *seg);
94 static int	segvn_sync(struct seg *seg, caddr_t addr, size_t len,
95 		    int attr, uint_t flags);
96 static size_t	segvn_incore(struct seg *seg, caddr_t addr, size_t len,
97 		    char *vec);
98 static int	segvn_lockop(struct seg *seg, caddr_t addr, size_t len,
99 		    int attr, int op, ulong_t *lockmap, size_t pos);
100 static int	segvn_getprot(struct seg *seg, caddr_t addr, size_t len,
101 		    uint_t *protv);
102 static u_offset_t	segvn_getoffset(struct seg *seg, caddr_t addr);
103 static int	segvn_gettype(struct seg *seg, caddr_t addr);
104 static int	segvn_getvp(struct seg *seg, caddr_t addr,
105 		    struct vnode **vpp);
106 static int	segvn_advise(struct seg *seg, caddr_t addr, size_t len,
107 		    uint_t behav);
108 static void	segvn_dump(struct seg *seg);
109 static int	segvn_pagelock(struct seg *seg, caddr_t addr, size_t len,
110 		    struct page ***ppp, enum lock_type type, enum seg_rw rw);
111 static int	segvn_setpagesize(struct seg *seg, caddr_t addr, size_t len,
112 		    uint_t szc);
113 static int	segvn_getmemid(struct seg *seg, caddr_t addr,
114 		    memid_t *memidp);
115 static lgrp_mem_policy_info_t	*segvn_getpolicy(struct seg *, caddr_t);
116 static int	segvn_capable(struct seg *seg, segcapability_t capable);
117 
118 struct	seg_ops segvn_ops = {
119 	segvn_dup,
120 	segvn_unmap,
121 	segvn_free,
122 	segvn_fault,
123 	segvn_faulta,
124 	segvn_setprot,
125 	segvn_checkprot,
126 	segvn_kluster,
127 	segvn_swapout,
128 	segvn_sync,
129 	segvn_incore,
130 	segvn_lockop,
131 	segvn_getprot,
132 	segvn_getoffset,
133 	segvn_gettype,
134 	segvn_getvp,
135 	segvn_advise,
136 	segvn_dump,
137 	segvn_pagelock,
138 	segvn_setpagesize,
139 	segvn_getmemid,
140 	segvn_getpolicy,
141 	segvn_capable,
142 };
143 
144 /*
145  * Common zfod structures, provided as a shorthand for others to use.
146  */
147 static segvn_crargs_t zfod_segvn_crargs =
148 	SEGVN_ZFOD_ARGS(PROT_ZFOD, PROT_ALL);
149 static segvn_crargs_t kzfod_segvn_crargs =
150 	SEGVN_ZFOD_ARGS(PROT_ZFOD & ~PROT_USER,
151 	PROT_ALL & ~PROT_USER);
152 static segvn_crargs_t stack_noexec_crargs =
153 	SEGVN_ZFOD_ARGS(PROT_ZFOD & ~PROT_EXEC, PROT_ALL);
154 
155 caddr_t	zfod_argsp = (caddr_t)&zfod_segvn_crargs;	/* user zfod argsp */
156 caddr_t	kzfod_argsp = (caddr_t)&kzfod_segvn_crargs;	/* kernel zfod argsp */
157 caddr_t	stack_exec_argsp = (caddr_t)&zfod_segvn_crargs;	/* executable stack */
158 caddr_t	stack_noexec_argsp = (caddr_t)&stack_noexec_crargs; /* noexec stack */
159 
160 #define	vpgtob(n)	((n) * sizeof (struct vpage))	/* For brevity */
161 
162 size_t	segvn_comb_thrshld = UINT_MAX;	/* patchable -- see 1196681 */
163 
164 static int	segvn_concat(struct seg *, struct seg *, int);
165 static int	segvn_extend_prev(struct seg *, struct seg *,
166 		    struct segvn_crargs *, size_t);
167 static int	segvn_extend_next(struct seg *, struct seg *,
168 		    struct segvn_crargs *, size_t);
169 static void	segvn_softunlock(struct seg *, caddr_t, size_t, enum seg_rw);
170 static void	segvn_pagelist_rele(page_t **);
171 static void	segvn_setvnode_mpss(vnode_t *);
172 static void	segvn_relocate_pages(page_t **, page_t *);
173 static int	segvn_full_szcpages(page_t **, uint_t, int *, uint_t *);
174 static int	segvn_fill_vp_pages(struct segvn_data *, vnode_t *, u_offset_t,
175     uint_t, page_t **, page_t **, uint_t *, int *);
176 static faultcode_t segvn_fault_vnodepages(struct hat *, struct seg *, caddr_t,
177     caddr_t, enum fault_type, enum seg_rw, caddr_t, caddr_t, int);
178 static faultcode_t segvn_fault_anonpages(struct hat *, struct seg *, caddr_t,
179     caddr_t, enum fault_type, enum seg_rw, caddr_t, caddr_t, int);
180 static faultcode_t segvn_faultpage(struct hat *, struct seg *, caddr_t,
181     u_offset_t, struct vpage *, page_t **, uint_t,
182     enum fault_type, enum seg_rw, int, int);
183 static void	segvn_vpage(struct seg *);
184 
185 static void segvn_purge(struct seg *seg);
186 static int segvn_reclaim(struct seg *, caddr_t, size_t, struct page **,
187     enum seg_rw);
188 
189 static int sameprot(struct seg *, caddr_t, size_t);
190 
191 static int segvn_demote_range(struct seg *, caddr_t, size_t, int, uint_t);
192 static int segvn_clrszc(struct seg *);
193 static struct seg *segvn_split_seg(struct seg *, caddr_t);
194 static int segvn_claim_pages(struct seg *, struct vpage *, u_offset_t,
195     ulong_t, uint_t);
196 
197 static int segvn_pp_lock_anonpages(page_t *, int);
198 static void segvn_pp_unlock_anonpages(page_t *, int);
199 
200 static struct kmem_cache *segvn_cache;
201 
202 #ifdef VM_STATS
203 static struct segvnvmstats_str {
204 	ulong_t	fill_vp_pages[31];
205 	ulong_t fltvnpages[49];
206 	ulong_t	fullszcpages[10];
207 	ulong_t	relocatepages[3];
208 	ulong_t	fltanpages[17];
209 	ulong_t pagelock[3];
210 	ulong_t	demoterange[3];
211 } segvnvmstats;
212 #endif /* VM_STATS */
213 
214 #define	SDR_RANGE	1		/* demote entire range */
215 #define	SDR_END		2		/* demote non aligned ends only */
216 
217 #define	CALC_LPG_REGION(pgsz, seg, addr, len, lpgaddr, lpgeaddr) {	    \
218 		if ((len) != 0) { 		      	      		      \
219 			lpgaddr = (caddr_t)P2ALIGN((uintptr_t)(addr), pgsz);  \
220 			ASSERT(lpgaddr >= (seg)->s_base);	      	      \
221 			lpgeaddr = (caddr_t)P2ROUNDUP((uintptr_t)((addr) +    \
222 			    (len)), pgsz);				      \
223 			ASSERT(lpgeaddr > lpgaddr);		      	      \
224 			ASSERT(lpgeaddr <= (seg)->s_base + (seg)->s_size);    \
225 		} else {					      	      \
226 			lpgeaddr = lpgaddr = (addr);	      		      \
227 		}							      \
228 	}
229 
230 /*ARGSUSED*/
231 static int
232 segvn_cache_constructor(void *buf, void *cdrarg, int kmflags)
233 {
234 	struct segvn_data *svd = buf;
235 
236 	rw_init(&svd->lock, NULL, RW_DEFAULT, NULL);
237 	mutex_init(&svd->segp_slock, NULL, MUTEX_DEFAULT, NULL);
238 	return (0);
239 }
240 
241 /*ARGSUSED1*/
242 static void
243 segvn_cache_destructor(void *buf, void *cdrarg)
244 {
245 	struct segvn_data *svd = buf;
246 
247 	rw_destroy(&svd->lock);
248 	mutex_destroy(&svd->segp_slock);
249 }
250 
251 /*
252  * Patching this variable to non-zero allows the system to run with
253  * stacks marked as "not executable".  It's a bit of a kludge, but is
254  * provided as a tweakable for platforms that export those ABIs
255  * (e.g. sparc V8) that have executable stacks enabled by default.
256  * There are also some restrictions for platforms that don't actually
257  * implement 'noexec' protections.
258  *
259  * Once enabled, the system is (therefore) unable to provide a fully
260  * ABI-compliant execution environment, though practically speaking,
261  * most everything works.  The exceptions are generally some interpreters
262  * and debuggers that create executable code on the stack and jump
263  * into it (without explicitly mprotecting the address range to include
264  * PROT_EXEC).
265  *
266  * One important class of applications that are disabled are those
267  * that have been transformed into malicious agents using one of the
268  * numerous "buffer overflow" attacks.  See 4007890.
269  */
270 int noexec_user_stack = 0;
271 int noexec_user_stack_log = 1;
272 
273 int segvn_lpg_disable = 0;
274 uint_t segvn_maxpgszc = 0;
275 
276 ulong_t segvn_vmpss_clrszc_cnt;
277 ulong_t segvn_vmpss_clrszc_err;
278 ulong_t segvn_fltvnpages_clrszc_cnt;
279 ulong_t segvn_fltvnpages_clrszc_err;
280 ulong_t segvn_setpgsz_align_err;
281 ulong_t segvn_setpgsz_anon_align_err;
282 ulong_t segvn_setpgsz_getattr_err;
283 ulong_t segvn_setpgsz_eof_err;
284 ulong_t segvn_faultvnmpss_align_err1;
285 ulong_t segvn_faultvnmpss_align_err2;
286 ulong_t segvn_faultvnmpss_align_err3;
287 ulong_t segvn_faultvnmpss_align_err4;
288 ulong_t segvn_faultvnmpss_align_err5;
289 ulong_t	segvn_vmpss_pageio_deadlk_err;
290 
291 /*
292  * Initialize segvn data structures
293  */
294 void
295 segvn_init(void)
296 {
297 	uint_t maxszc;
298 	uint_t szc;
299 	size_t pgsz;
300 
301 	segvn_cache = kmem_cache_create("segvn_cache",
302 		sizeof (struct segvn_data), 0,
303 		segvn_cache_constructor, segvn_cache_destructor, NULL,
304 		NULL, NULL, 0);
305 
306 	if (segvn_lpg_disable != 0)
307 		return;
308 	szc = maxszc = page_num_pagesizes() - 1;
309 	if (szc == 0) {
310 		segvn_lpg_disable = 1;
311 		return;
312 	}
313 	if (page_get_pagesize(0) != PAGESIZE) {
314 		panic("segvn_init: bad szc 0");
315 		/*NOTREACHED*/
316 	}
317 	while (szc != 0) {
318 		pgsz = page_get_pagesize(szc);
319 		if (pgsz <= PAGESIZE || !IS_P2ALIGNED(pgsz, pgsz)) {
320 			panic("segvn_init: bad szc %d", szc);
321 			/*NOTREACHED*/
322 		}
323 		szc--;
324 	}
325 	if (segvn_maxpgszc == 0 || segvn_maxpgszc > maxszc)
326 		segvn_maxpgszc = maxszc;
327 }
328 
329 #define	SEGVN_PAGEIO	((void *)0x1)
330 #define	SEGVN_NOPAGEIO	((void *)0x2)
331 
332 static void
333 segvn_setvnode_mpss(vnode_t *vp)
334 {
335 	int err;
336 
337 	ASSERT(vp->v_mpssdata == NULL ||
338 	    vp->v_mpssdata == SEGVN_PAGEIO ||
339 	    vp->v_mpssdata == SEGVN_NOPAGEIO);
340 
341 	if (vp->v_mpssdata == NULL) {
342 		if (vn_vmpss_usepageio(vp)) {
343 			err = VOP_PAGEIO(vp, (page_t *)NULL,
344 			    (u_offset_t)0, 0, 0, CRED());
345 		} else {
346 			err = ENOSYS;
347 		}
348 		/*
349 		 * set v_mpssdata just once per vnode life
350 		 * so that it never changes.
351 		 */
352 		mutex_enter(&vp->v_lock);
353 		if (vp->v_mpssdata == NULL) {
354 			if (err == EINVAL) {
355 				vp->v_mpssdata = SEGVN_PAGEIO;
356 			} else {
357 				vp->v_mpssdata = SEGVN_NOPAGEIO;
358 			}
359 		}
360 		mutex_exit(&vp->v_lock);
361 	}
362 }
363 
364 int
365 segvn_create(struct seg *seg, void *argsp)
366 {
367 	struct segvn_crargs *a = (struct segvn_crargs *)argsp;
368 	struct segvn_data *svd;
369 	size_t swresv = 0;
370 	struct cred *cred;
371 	struct anon_map *amp;
372 	int error = 0;
373 	size_t pgsz;
374 	lgrp_mem_policy_t mpolicy = LGRP_MEM_POLICY_DEFAULT;
375 
376 
377 	ASSERT(seg->s_as && AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
378 
379 	if (a->type != MAP_PRIVATE && a->type != MAP_SHARED) {
380 		panic("segvn_create type");
381 		/*NOTREACHED*/
382 	}
383 
384 	/*
385 	 * Check arguments.  If a shared anon structure is given then
386 	 * it is illegal to also specify a vp.
387 	 */
388 	if (a->amp != NULL && a->vp != NULL) {
389 		panic("segvn_create anon_map");
390 		/*NOTREACHED*/
391 	}
392 
393 	/* MAP_NORESERVE on a MAP_SHARED segment is meaningless. */
394 	if (a->type == MAP_SHARED)
395 		a->flags &= ~MAP_NORESERVE;
396 
397 	if (a->szc != 0) {
398 		if (segvn_lpg_disable != 0 || (a->szc == AS_MAP_NO_LPOOB) ||
399 		    (a->amp != NULL && a->type == MAP_PRIVATE) ||
400 		    (a->flags & MAP_NORESERVE) || seg->s_as == &kas) {
401 			a->szc = 0;
402 		} else {
403 			if (a->szc > segvn_maxpgszc)
404 				a->szc = segvn_maxpgszc;
405 			pgsz = page_get_pagesize(a->szc);
406 			if (!IS_P2ALIGNED(seg->s_base, pgsz) ||
407 			    !IS_P2ALIGNED(seg->s_size, pgsz)) {
408 				a->szc = 0;
409 			} else if (a->vp != NULL) {
410 				extern struct vnode kvp;
411 				if (IS_SWAPFSVP(a->vp) || VN_ISKAS(a->vp)) {
412 					/*
413 					 * paranoid check.
414 					 * hat_page_demote() is not supported
415 					 * on swapfs pages.
416 					 */
417 					a->szc = 0;
418 				} else if (map_addr_vacalign_check(seg->s_base,
419 				    a->offset & PAGEMASK)) {
420 					a->szc = 0;
421 				}
422 			} else if (a->amp != NULL) {
423 				pgcnt_t anum = btopr(a->offset);
424 				pgcnt_t pgcnt = page_get_pagecnt(a->szc);
425 				if (!IS_P2ALIGNED(anum, pgcnt)) {
426 					a->szc = 0;
427 				}
428 			}
429 		}
430 	}
431 
432 	/*
433 	 * If segment may need private pages, reserve them now.
434 	 */
435 	if (!(a->flags & MAP_NORESERVE) && ((a->vp == NULL && a->amp == NULL) ||
436 	    (a->type == MAP_PRIVATE && (a->prot & PROT_WRITE)))) {
437 		if (anon_resv(seg->s_size) == 0)
438 			return (EAGAIN);
439 		swresv = seg->s_size;
440 		TRACE_3(TR_FAC_VM, TR_ANON_PROC, "anon proc:%p %lu %u",
441 			seg, swresv, 1);
442 	}
443 
444 	/*
445 	 * Reserve any mapping structures that may be required.
446 	 */
447 	hat_map(seg->s_as->a_hat, seg->s_base, seg->s_size, HAT_MAP);
448 
449 	if (a->cred) {
450 		cred = a->cred;
451 		crhold(cred);
452 	} else {
453 		crhold(cred = CRED());
454 	}
455 
456 	/* Inform the vnode of the new mapping */
457 	if (a->vp) {
458 		error = VOP_ADDMAP(a->vp, a->offset & PAGEMASK,
459 		    seg->s_as, seg->s_base, seg->s_size, a->prot,
460 		    a->maxprot, a->type, cred);
461 		if (error) {
462 			if (swresv != 0) {
463 				anon_unresv(swresv);
464 				TRACE_3(TR_FAC_VM, TR_ANON_PROC,
465 					"anon proc:%p %lu %u",
466 					seg, swresv, 0);
467 			}
468 			crfree(cred);
469 			hat_unload(seg->s_as->a_hat, seg->s_base,
470 				seg->s_size, HAT_UNLOAD_UNMAP);
471 			return (error);
472 		}
473 	}
474 
475 	/*
476 	 * If more than one segment in the address space, and
477 	 * they're adjacent virtually, try to concatenate them.
478 	 * Don't concatenate if an explicit anon_map structure
479 	 * was supplied (e.g., SystemV shared memory).
480 	 */
481 	if (a->amp == NULL) {
482 		struct seg *pseg, *nseg;
483 		struct segvn_data *psvd, *nsvd;
484 		lgrp_mem_policy_t ppolicy, npolicy;
485 		uint_t	lgrp_mem_policy_flags = 0;
486 		extern lgrp_mem_policy_t lgrp_mem_default_policy;
487 
488 		/*
489 		 * Memory policy flags (lgrp_mem_policy_flags) is valid when
490 		 * extending stack/heap segments.
491 		 */
492 		if ((a->vp == NULL) && (a->type == MAP_PRIVATE) &&
493 			!(a->flags & MAP_NORESERVE) && (seg->s_as != &kas)) {
494 			lgrp_mem_policy_flags = a->lgrp_mem_policy_flags;
495 		} else {
496 			/*
497 			 * Get policy when not extending it from another segment
498 			 */
499 			mpolicy = lgrp_mem_policy_default(seg->s_size, a->type);
500 		}
501 
502 		/*
503 		 * First, try to concatenate the previous and new segments
504 		 */
505 		pseg = AS_SEGPREV(seg->s_as, seg);
506 		if (pseg != NULL &&
507 		    pseg->s_base + pseg->s_size == seg->s_base &&
508 		    pseg->s_ops == &segvn_ops) {
509 			/*
510 			 * Get memory allocation policy from previous segment.
511 			 * When extension is specified (e.g. for heap) apply
512 			 * this policy to the new segment regardless of the
513 			 * outcome of segment concatenation.  Extension occurs
514 			 * for non-default policy otherwise default policy is
515 			 * used and is based on extended segment size.
516 			 */
517 			psvd = (struct segvn_data *)pseg->s_data;
518 			ppolicy = psvd->policy_info.mem_policy;
519 			if (lgrp_mem_policy_flags ==
520 			    LGRP_MP_FLAG_EXTEND_UP) {
521 				if (ppolicy != lgrp_mem_default_policy) {
522 					mpolicy = ppolicy;
523 				} else {
524 					mpolicy = lgrp_mem_policy_default(
525 					    pseg->s_size + seg->s_size,
526 					    a->type);
527 				}
528 			}
529 
530 			if (mpolicy == ppolicy &&
531 			    (pseg->s_size + seg->s_size <=
532 			    segvn_comb_thrshld || psvd->amp == NULL) &&
533 			    segvn_extend_prev(pseg, seg, a, swresv) == 0) {
534 				/*
535 				 * success! now try to concatenate
536 				 * with following seg
537 				 */
538 				crfree(cred);
539 				nseg = AS_SEGNEXT(pseg->s_as, pseg);
540 				if (nseg != NULL &&
541 				    nseg != pseg &&
542 				    nseg->s_ops == &segvn_ops &&
543 				    pseg->s_base + pseg->s_size ==
544 				    nseg->s_base)
545 					(void) segvn_concat(pseg, nseg, 0);
546 				ASSERT(pseg->s_szc == 0 ||
547 				    (a->szc == pseg->s_szc &&
548 				    IS_P2ALIGNED(pseg->s_base, pgsz) &&
549 				    IS_P2ALIGNED(pseg->s_size, pgsz)));
550 				return (0);
551 			}
552 		}
553 
554 		/*
555 		 * Failed, so try to concatenate with following seg
556 		 */
557 		nseg = AS_SEGNEXT(seg->s_as, seg);
558 		if (nseg != NULL &&
559 		    seg->s_base + seg->s_size == nseg->s_base &&
560 		    nseg->s_ops == &segvn_ops) {
561 			/*
562 			 * Get memory allocation policy from next segment.
563 			 * When extension is specified (e.g. for stack) apply
564 			 * this policy to the new segment regardless of the
565 			 * outcome of segment concatenation.  Extension occurs
566 			 * for non-default policy otherwise default policy is
567 			 * used and is based on extended segment size.
568 			 */
569 			nsvd = (struct segvn_data *)nseg->s_data;
570 			npolicy = nsvd->policy_info.mem_policy;
571 			if (lgrp_mem_policy_flags ==
572 			    LGRP_MP_FLAG_EXTEND_DOWN) {
573 				if (npolicy != lgrp_mem_default_policy) {
574 					mpolicy = npolicy;
575 				} else {
576 					mpolicy = lgrp_mem_policy_default(
577 					    nseg->s_size + seg->s_size,
578 					    a->type);
579 				}
580 			}
581 
582 			if (mpolicy == npolicy &&
583 			    segvn_extend_next(seg, nseg, a, swresv) == 0) {
584 				crfree(cred);
585 				ASSERT(nseg->s_szc == 0 ||
586 				    (a->szc == nseg->s_szc &&
587 				    IS_P2ALIGNED(nseg->s_base, pgsz) &&
588 				    IS_P2ALIGNED(nseg->s_size, pgsz)));
589 				return (0);
590 			}
591 		}
592 	}
593 
594 	if (a->vp != NULL) {
595 		VN_HOLD(a->vp);
596 		if (a->type == MAP_SHARED)
597 			lgrp_shm_policy_init(NULL, a->vp);
598 	}
599 	svd = kmem_cache_alloc(segvn_cache, KM_SLEEP);
600 
601 	seg->s_ops = &segvn_ops;
602 	seg->s_data = (void *)svd;
603 	seg->s_szc = a->szc;
604 
605 	svd->vp = a->vp;
606 	/*
607 	 * Anonymous mappings have no backing file so the offset is meaningless.
608 	 */
609 	svd->offset = a->vp ? (a->offset & PAGEMASK) : 0;
610 	svd->prot = a->prot;
611 	svd->maxprot = a->maxprot;
612 	svd->pageprot = 0;
613 	svd->type = a->type;
614 	svd->vpage = NULL;
615 	svd->cred = cred;
616 	svd->advice = MADV_NORMAL;
617 	svd->pageadvice = 0;
618 	svd->flags = (ushort_t)a->flags;
619 	svd->softlockcnt = 0;
620 	if (a->szc != 0 && a->vp != NULL) {
621 		segvn_setvnode_mpss(a->vp);
622 	}
623 
624 	amp = a->amp;
625 	if ((svd->amp = amp) == NULL) {
626 		svd->anon_index = 0;
627 		if (svd->type == MAP_SHARED) {
628 			svd->swresv = 0;
629 			/*
630 			 * Shared mappings to a vp need no other setup.
631 			 * If we have a shared mapping to an anon_map object
632 			 * which hasn't been allocated yet,  allocate the
633 			 * struct now so that it will be properly shared
634 			 * by remembering the swap reservation there.
635 			 */
636 			if (a->vp == NULL) {
637 				svd->amp = anonmap_alloc(seg->s_size, swresv);
638 				svd->amp->a_szc = seg->s_szc;
639 			}
640 		} else {
641 			/*
642 			 * Private mapping (with or without a vp).
643 			 * Allocate anon_map when needed.
644 			 */
645 			svd->swresv = swresv;
646 		}
647 	} else {
648 		pgcnt_t anon_num;
649 
650 		/*
651 		 * Mapping to an existing anon_map structure without a vp.
652 		 * For now we will insure that the segment size isn't larger
653 		 * than the size - offset gives us.  Later on we may wish to
654 		 * have the anon array dynamically allocated itself so that
655 		 * we don't always have to allocate all the anon pointer slots.
656 		 * This of course involves adding extra code to check that we
657 		 * aren't trying to use an anon pointer slot beyond the end
658 		 * of the currently allocated anon array.
659 		 */
660 		if ((amp->size - a->offset) < seg->s_size) {
661 			panic("segvn_create anon_map size");
662 			/*NOTREACHED*/
663 		}
664 
665 		anon_num = btopr(a->offset);
666 
667 		if (a->type == MAP_SHARED) {
668 			/*
669 			 * SHARED mapping to a given anon_map.
670 			 */
671 			ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
672 			amp->refcnt++;
673 			if (a->szc > amp->a_szc) {
674 				amp->a_szc = a->szc;
675 			}
676 			ANON_LOCK_EXIT(&amp->a_rwlock);
677 			svd->anon_index = anon_num;
678 			svd->swresv = 0;
679 		} else {
680 			/*
681 			 * PRIVATE mapping to a given anon_map.
682 			 * Make sure that all the needed anon
683 			 * structures are created (so that we will
684 			 * share the underlying pages if nothing
685 			 * is written by this mapping) and then
686 			 * duplicate the anon array as is done
687 			 * when a privately mapped segment is dup'ed.
688 			 */
689 			struct anon *ap;
690 			caddr_t addr;
691 			caddr_t eaddr;
692 			ulong_t	anon_idx;
693 			int hat_flag = HAT_LOAD;
694 
695 			if (svd->flags & MAP_TEXT) {
696 				hat_flag |= HAT_LOAD_TEXT;
697 			}
698 
699 			svd->amp = anonmap_alloc(seg->s_size, 0);
700 			svd->amp->a_szc = seg->s_szc;
701 			svd->anon_index = 0;
702 			svd->swresv = swresv;
703 
704 			/*
705 			 * Prevent 2 threads from allocating anon
706 			 * slots simultaneously.
707 			 */
708 			ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
709 			eaddr = seg->s_base + seg->s_size;
710 
711 			for (anon_idx = anon_num, addr = seg->s_base;
712 			    addr < eaddr; addr += PAGESIZE, anon_idx++) {
713 				page_t *pp;
714 
715 				if ((ap = anon_get_ptr(amp->ahp,
716 				    anon_idx)) != NULL)
717 					continue;
718 
719 				/*
720 				 * Allocate the anon struct now.
721 				 * Might as well load up translation
722 				 * to the page while we're at it...
723 				 */
724 				pp = anon_zero(seg, addr, &ap, cred);
725 				if (ap == NULL || pp == NULL) {
726 					panic("segvn_create anon_zero");
727 					/*NOTREACHED*/
728 				}
729 
730 				/*
731 				 * Re-acquire the anon_map lock and
732 				 * initialize the anon array entry.
733 				 */
734 				ASSERT(anon_get_ptr(amp->ahp,
735 				    anon_idx) == NULL);
736 				(void) anon_set_ptr(amp->ahp, anon_idx, ap,
737 				    ANON_SLEEP);
738 
739 				ASSERT(seg->s_szc == 0);
740 				ASSERT(!IS_VMODSORT(pp->p_vnode));
741 
742 				hat_memload(seg->s_as->a_hat, addr, pp,
743 					svd->prot & ~PROT_WRITE, hat_flag);
744 
745 				page_unlock(pp);
746 			}
747 			ASSERT(seg->s_szc == 0);
748 			anon_dup(amp->ahp, anon_num, svd->amp->ahp,
749 			    0, seg->s_size);
750 			ANON_LOCK_EXIT(&amp->a_rwlock);
751 		}
752 	}
753 
754 	/*
755 	 * Set default memory allocation policy for segment
756 	 *
757 	 * Always set policy for private memory at least for initialization
758 	 * even if this is a shared memory segment
759 	 */
760 	(void) lgrp_privm_policy_set(mpolicy, &svd->policy_info, seg->s_size);
761 
762 	if (svd->type == MAP_SHARED)
763 		(void) lgrp_shm_policy_set(mpolicy, svd->amp, svd->anon_index,
764 		    svd->vp, svd->offset, seg->s_size);
765 
766 	return (0);
767 }
768 
769 /*
770  * Concatenate two existing segments, if possible.
771  * Return 0 on success, -1 if two segments are not compatible
772  * or -2 on memory allocation failure.
773  * If amp_cat == 1 then try and concat segments with anon maps
774  */
775 static int
776 segvn_concat(struct seg *seg1, struct seg *seg2, int amp_cat)
777 {
778 	struct segvn_data *svd1 = seg1->s_data;
779 	struct segvn_data *svd2 = seg2->s_data;
780 	struct anon_map *amp1 = svd1->amp;
781 	struct anon_map *amp2 = svd2->amp;
782 	struct vpage *vpage1 = svd1->vpage;
783 	struct vpage *vpage2 = svd2->vpage, *nvpage = NULL;
784 	size_t size, nvpsize;
785 	pgcnt_t npages1, npages2;
786 
787 	ASSERT(seg1->s_as && seg2->s_as && seg1->s_as == seg2->s_as);
788 	ASSERT(AS_WRITE_HELD(seg1->s_as, &seg1->s_as->a_lock));
789 	ASSERT(seg1->s_ops == seg2->s_ops);
790 
791 	/* both segments exist, try to merge them */
792 #define	incompat(x)	(svd1->x != svd2->x)
793 	if (incompat(vp) || incompat(maxprot) ||
794 	    (!svd1->pageadvice && !svd2->pageadvice && incompat(advice)) ||
795 	    (!svd1->pageprot && !svd2->pageprot && incompat(prot)) ||
796 	    incompat(type) || incompat(cred) || incompat(flags) ||
797 	    seg1->s_szc != seg2->s_szc || incompat(policy_info.mem_policy) ||
798 	    (svd2->softlockcnt > 0))
799 		return (-1);
800 #undef incompat
801 
802 	/*
803 	 * vp == NULL implies zfod, offset doesn't matter
804 	 */
805 	if (svd1->vp != NULL &&
806 	    svd1->offset + seg1->s_size != svd2->offset) {
807 		return (-1);
808 	}
809 
810 	/*
811 	 * Fail early if we're not supposed to concatenate
812 	 * segments with non NULL amp.
813 	 */
814 	if (amp_cat == 0 && (amp1 != NULL || amp2 != NULL)) {
815 		return (-1);
816 	}
817 
818 	if (svd1->vp == NULL && svd1->type == MAP_SHARED) {
819 		if (amp1 != amp2) {
820 			return (-1);
821 		}
822 		if (amp1 != NULL && svd1->anon_index + btop(seg1->s_size) !=
823 		    svd2->anon_index) {
824 			return (-1);
825 		}
826 		ASSERT(amp1 == NULL || amp1->refcnt >= 2);
827 	}
828 
829 	/*
830 	 * If either seg has vpages, create a new merged vpage array.
831 	 */
832 	if (vpage1 != NULL || vpage2 != NULL) {
833 		struct vpage *vp;
834 
835 		npages1 = seg_pages(seg1);
836 		npages2 = seg_pages(seg2);
837 		nvpsize = vpgtob(npages1 + npages2);
838 
839 		if ((nvpage = kmem_zalloc(nvpsize, KM_NOSLEEP)) == NULL) {
840 			return (-2);
841 		}
842 		if (vpage1 != NULL) {
843 			bcopy(vpage1, nvpage, vpgtob(npages1));
844 		}
845 		if (vpage2 != NULL) {
846 			bcopy(vpage2, nvpage + npages1, vpgtob(npages2));
847 		}
848 		for (vp = nvpage; vp < nvpage + npages1; vp++) {
849 			if (svd2->pageprot && !svd1->pageprot) {
850 				VPP_SETPROT(vp, svd1->prot);
851 			}
852 			if (svd2->pageadvice && !svd1->pageadvice) {
853 				VPP_SETADVICE(vp, svd1->advice);
854 			}
855 		}
856 		for (vp = nvpage + npages1;
857 		    vp < nvpage + npages1 + npages2; vp++) {
858 			if (svd1->pageprot && !svd2->pageprot) {
859 				VPP_SETPROT(vp, svd2->prot);
860 			}
861 			if (svd1->pageadvice && !svd2->pageadvice) {
862 				VPP_SETADVICE(vp, svd2->advice);
863 			}
864 		}
865 	}
866 
867 	/*
868 	 * If either segment has private pages, create a new merged anon
869 	 * array. If mergeing shared anon segments just decrement anon map's
870 	 * refcnt.
871 	 */
872 	if (amp1 != NULL && svd1->type == MAP_SHARED) {
873 		ASSERT(amp1 == amp2 && svd1->vp == NULL);
874 		ANON_LOCK_ENTER(&amp1->a_rwlock, RW_WRITER);
875 		ASSERT(amp1->refcnt >= 2);
876 		amp1->refcnt--;
877 		ANON_LOCK_EXIT(&amp1->a_rwlock);
878 		svd2->amp = NULL;
879 	} else if (amp1 != NULL || amp2 != NULL) {
880 		struct anon_hdr *nahp;
881 		struct anon_map *namp = NULL;
882 		size_t asize;
883 
884 		ASSERT(svd1->type == MAP_PRIVATE);
885 
886 		asize = seg1->s_size + seg2->s_size;
887 		if ((nahp = anon_create(btop(asize), ANON_NOSLEEP)) == NULL) {
888 			if (nvpage != NULL) {
889 				kmem_free(nvpage, nvpsize);
890 			}
891 			return (-2);
892 		}
893 		if (amp1 != NULL) {
894 			/*
895 			 * XXX anon rwlock is not really needed because
896 			 * this is a private segment and we are writers.
897 			 */
898 			ANON_LOCK_ENTER(&amp1->a_rwlock, RW_WRITER);
899 			ASSERT(amp1->refcnt == 1);
900 			if (anon_copy_ptr(amp1->ahp, svd1->anon_index,
901 			    nahp, 0, btop(seg1->s_size), ANON_NOSLEEP)) {
902 				anon_release(nahp, btop(asize));
903 				ANON_LOCK_EXIT(&amp1->a_rwlock);
904 				if (nvpage != NULL) {
905 					kmem_free(nvpage, nvpsize);
906 				}
907 				return (-2);
908 			}
909 		}
910 		if (amp2 != NULL) {
911 			ANON_LOCK_ENTER(&amp2->a_rwlock, RW_WRITER);
912 			ASSERT(amp2->refcnt == 1);
913 			if (anon_copy_ptr(amp2->ahp, svd2->anon_index,
914 			    nahp, btop(seg1->s_size), btop(seg2->s_size),
915 			    ANON_NOSLEEP)) {
916 				anon_release(nahp, btop(asize));
917 				ANON_LOCK_EXIT(&amp2->a_rwlock);
918 				if (amp1 != NULL) {
919 					ANON_LOCK_EXIT(&amp1->a_rwlock);
920 				}
921 				if (nvpage != NULL) {
922 					kmem_free(nvpage, nvpsize);
923 				}
924 				return (-2);
925 			}
926 		}
927 		if (amp1 != NULL) {
928 			namp = amp1;
929 			anon_release(amp1->ahp, btop(amp1->size));
930 		}
931 		if (amp2 != NULL) {
932 			if (namp == NULL) {
933 				ASSERT(amp1 == NULL);
934 				namp = amp2;
935 				anon_release(amp2->ahp, btop(amp2->size));
936 			} else {
937 				amp2->refcnt--;
938 				ANON_LOCK_EXIT(&amp2->a_rwlock);
939 				anonmap_free(amp2);
940 			}
941 			svd2->amp = NULL; /* needed for seg_free */
942 		}
943 		namp->ahp = nahp;
944 		namp->size = asize;
945 		svd1->amp = namp;
946 		svd1->anon_index = 0;
947 		ANON_LOCK_EXIT(&namp->a_rwlock);
948 	}
949 	/*
950 	 * Now free the old vpage structures.
951 	 */
952 	if (nvpage != NULL) {
953 		if (vpage1 != NULL) {
954 			kmem_free(vpage1, vpgtob(npages1));
955 		}
956 		if (vpage2 != NULL) {
957 			svd2->vpage = NULL;
958 			kmem_free(vpage2, vpgtob(npages2));
959 		}
960 		if (svd2->pageprot) {
961 			svd1->pageprot = 1;
962 		}
963 		if (svd2->pageadvice) {
964 			svd1->pageadvice = 1;
965 		}
966 		svd1->vpage = nvpage;
967 	}
968 
969 	/* all looks ok, merge segments */
970 	svd1->swresv += svd2->swresv;
971 	svd2->swresv = 0;  /* so seg_free doesn't release swap space */
972 	size = seg2->s_size;
973 	seg_free(seg2);
974 	seg1->s_size += size;
975 	return (0);
976 }
977 
978 /*
979  * Extend the previous segment (seg1) to include the
980  * new segment (seg2 + a), if possible.
981  * Return 0 on success.
982  */
983 static int
984 segvn_extend_prev(seg1, seg2, a, swresv)
985 	struct seg *seg1, *seg2;
986 	struct segvn_crargs *a;
987 	size_t swresv;
988 {
989 	struct segvn_data *svd1 = (struct segvn_data *)seg1->s_data;
990 	size_t size;
991 	struct anon_map *amp1;
992 	struct vpage *new_vpage;
993 
994 	/*
995 	 * We don't need any segment level locks for "segvn" data
996 	 * since the address space is "write" locked.
997 	 */
998 	ASSERT(seg1->s_as && AS_WRITE_HELD(seg1->s_as, &seg1->s_as->a_lock));
999 
1000 	/* second segment is new, try to extend first */
1001 	/* XXX - should also check cred */
1002 	if (svd1->vp != a->vp || svd1->maxprot != a->maxprot ||
1003 	    (!svd1->pageprot && (svd1->prot != a->prot)) ||
1004 	    svd1->type != a->type || svd1->flags != a->flags ||
1005 	    seg1->s_szc != a->szc)
1006 		return (-1);
1007 
1008 	/* vp == NULL implies zfod, offset doesn't matter */
1009 	if (svd1->vp != NULL &&
1010 	    svd1->offset + seg1->s_size != (a->offset & PAGEMASK))
1011 		return (-1);
1012 
1013 	amp1 = svd1->amp;
1014 	if (amp1) {
1015 		pgcnt_t newpgs;
1016 
1017 		/*
1018 		 * Segment has private pages, can data structures
1019 		 * be expanded?
1020 		 *
1021 		 * Acquire the anon_map lock to prevent it from changing,
1022 		 * if it is shared.  This ensures that the anon_map
1023 		 * will not change while a thread which has a read/write
1024 		 * lock on an address space references it.
1025 		 * XXX - Don't need the anon_map lock at all if "refcnt"
1026 		 * is 1.
1027 		 *
1028 		 * Can't grow a MAP_SHARED segment with an anonmap because
1029 		 * there may be existing anon slots where we want to extend
1030 		 * the segment and we wouldn't know what to do with them
1031 		 * (e.g., for tmpfs right thing is to just leave them there,
1032 		 * for /dev/zero they should be cleared out).
1033 		 */
1034 		if (svd1->type == MAP_SHARED)
1035 			return (-1);
1036 
1037 		ANON_LOCK_ENTER(&amp1->a_rwlock, RW_WRITER);
1038 		if (amp1->refcnt > 1) {
1039 			ANON_LOCK_EXIT(&amp1->a_rwlock);
1040 			return (-1);
1041 		}
1042 		newpgs = anon_grow(amp1->ahp, &svd1->anon_index,
1043 		    btop(seg1->s_size), btop(seg2->s_size), ANON_NOSLEEP);
1044 
1045 		if (newpgs == 0) {
1046 			ANON_LOCK_EXIT(&amp1->a_rwlock);
1047 			return (-1);
1048 		}
1049 		amp1->size = ptob(newpgs);
1050 		ANON_LOCK_EXIT(&amp1->a_rwlock);
1051 	}
1052 	if (svd1->vpage != NULL) {
1053 		new_vpage =
1054 		    kmem_zalloc(vpgtob(seg_pages(seg1) + seg_pages(seg2)),
1055 			KM_NOSLEEP);
1056 		if (new_vpage == NULL)
1057 			return (-1);
1058 		bcopy(svd1->vpage, new_vpage, vpgtob(seg_pages(seg1)));
1059 		kmem_free(svd1->vpage, vpgtob(seg_pages(seg1)));
1060 		svd1->vpage = new_vpage;
1061 		if (svd1->pageprot) {
1062 			struct vpage *vp, *evp;
1063 
1064 			vp = new_vpage + seg_pages(seg1);
1065 			evp = vp + seg_pages(seg2);
1066 			for (; vp < evp; vp++)
1067 				VPP_SETPROT(vp, a->prot);
1068 		}
1069 	}
1070 	size = seg2->s_size;
1071 	seg_free(seg2);
1072 	seg1->s_size += size;
1073 	svd1->swresv += swresv;
1074 	return (0);
1075 }
1076 
1077 /*
1078  * Extend the next segment (seg2) to include the
1079  * new segment (seg1 + a), if possible.
1080  * Return 0 on success.
1081  */
1082 static int
1083 segvn_extend_next(
1084 	struct seg *seg1,
1085 	struct seg *seg2,
1086 	struct segvn_crargs *a,
1087 	size_t swresv)
1088 {
1089 	struct segvn_data *svd2 = (struct segvn_data *)seg2->s_data;
1090 	size_t size;
1091 	struct anon_map *amp2;
1092 	struct vpage *new_vpage;
1093 
1094 	/*
1095 	 * We don't need any segment level locks for "segvn" data
1096 	 * since the address space is "write" locked.
1097 	 */
1098 	ASSERT(seg2->s_as && AS_WRITE_HELD(seg2->s_as, &seg2->s_as->a_lock));
1099 
1100 	/* first segment is new, try to extend second */
1101 	/* XXX - should also check cred */
1102 	if (svd2->vp != a->vp || svd2->maxprot != a->maxprot ||
1103 	    (!svd2->pageprot && (svd2->prot != a->prot)) ||
1104 	    svd2->type != a->type || svd2->flags != a->flags ||
1105 	    seg2->s_szc != a->szc)
1106 		return (-1);
1107 	/* vp == NULL implies zfod, offset doesn't matter */
1108 	if (svd2->vp != NULL &&
1109 	    (a->offset & PAGEMASK) + seg1->s_size != svd2->offset)
1110 		return (-1);
1111 
1112 	amp2 = svd2->amp;
1113 	if (amp2) {
1114 		pgcnt_t newpgs;
1115 
1116 		/*
1117 		 * Segment has private pages, can data structures
1118 		 * be expanded?
1119 		 *
1120 		 * Acquire the anon_map lock to prevent it from changing,
1121 		 * if it is shared.  This ensures that the anon_map
1122 		 * will not change while a thread which has a read/write
1123 		 * lock on an address space references it.
1124 		 *
1125 		 * XXX - Don't need the anon_map lock at all if "refcnt"
1126 		 * is 1.
1127 		 */
1128 		if (svd2->type == MAP_SHARED)
1129 			return (-1);
1130 
1131 		ANON_LOCK_ENTER(&amp2->a_rwlock, RW_WRITER);
1132 		if (amp2->refcnt > 1) {
1133 			ANON_LOCK_EXIT(&amp2->a_rwlock);
1134 			return (-1);
1135 		}
1136 		newpgs = anon_grow(amp2->ahp, &svd2->anon_index,
1137 		    btop(seg2->s_size), btop(seg1->s_size),
1138 		    ANON_NOSLEEP | ANON_GROWDOWN);
1139 
1140 		if (newpgs == 0) {
1141 			ANON_LOCK_EXIT(&amp2->a_rwlock);
1142 			return (-1);
1143 		}
1144 		amp2->size = ptob(newpgs);
1145 		ANON_LOCK_EXIT(&amp2->a_rwlock);
1146 	}
1147 	if (svd2->vpage != NULL) {
1148 		new_vpage =
1149 		    kmem_zalloc(vpgtob(seg_pages(seg1) + seg_pages(seg2)),
1150 			KM_NOSLEEP);
1151 		if (new_vpage == NULL) {
1152 			/* Not merging segments so adjust anon_index back */
1153 			if (amp2)
1154 				svd2->anon_index += seg_pages(seg1);
1155 			return (-1);
1156 		}
1157 		bcopy(svd2->vpage, new_vpage + seg_pages(seg1),
1158 		    vpgtob(seg_pages(seg2)));
1159 		kmem_free(svd2->vpage, vpgtob(seg_pages(seg2)));
1160 		svd2->vpage = new_vpage;
1161 		if (svd2->pageprot) {
1162 			struct vpage *vp, *evp;
1163 
1164 			vp = new_vpage;
1165 			evp = vp + seg_pages(seg1);
1166 			for (; vp < evp; vp++)
1167 				VPP_SETPROT(vp, a->prot);
1168 		}
1169 	}
1170 	size = seg1->s_size;
1171 	seg_free(seg1);
1172 	seg2->s_size += size;
1173 	seg2->s_base -= size;
1174 	svd2->offset -= size;
1175 	svd2->swresv += swresv;
1176 	return (0);
1177 }
1178 
1179 static int
1180 segvn_dup(struct seg *seg, struct seg *newseg)
1181 {
1182 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
1183 	struct segvn_data *newsvd;
1184 	pgcnt_t npages = seg_pages(seg);
1185 	int error = 0;
1186 	uint_t prot;
1187 	size_t len;
1188 
1189 	ASSERT(seg->s_as && AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
1190 
1191 	/*
1192 	 * If segment has anon reserved, reserve more for the new seg.
1193 	 * For a MAP_NORESERVE segment swresv will be a count of all the
1194 	 * allocated anon slots; thus we reserve for the child as many slots
1195 	 * as the parent has allocated. This semantic prevents the child or
1196 	 * parent from dieing during a copy-on-write fault caused by trying
1197 	 * to write a shared pre-existing anon page.
1198 	 */
1199 	if ((len = svd->swresv) != 0) {
1200 		if (anon_resv(svd->swresv) == 0)
1201 			return (ENOMEM);
1202 
1203 		TRACE_3(TR_FAC_VM, TR_ANON_PROC, "anon proc:%p %lu %u",
1204 			seg, len, 0);
1205 	}
1206 
1207 	newsvd = kmem_cache_alloc(segvn_cache, KM_SLEEP);
1208 
1209 	newseg->s_ops = &segvn_ops;
1210 	newseg->s_data = (void *)newsvd;
1211 	newseg->s_szc = seg->s_szc;
1212 
1213 	if ((newsvd->vp = svd->vp) != NULL) {
1214 		VN_HOLD(svd->vp);
1215 		if (svd->type == MAP_SHARED)
1216 			lgrp_shm_policy_init(NULL, svd->vp);
1217 	}
1218 	newsvd->offset = svd->offset;
1219 	newsvd->prot = svd->prot;
1220 	newsvd->maxprot = svd->maxprot;
1221 	newsvd->pageprot = svd->pageprot;
1222 	newsvd->type = svd->type;
1223 	newsvd->cred = svd->cred;
1224 	crhold(newsvd->cred);
1225 	newsvd->advice = svd->advice;
1226 	newsvd->pageadvice = svd->pageadvice;
1227 	newsvd->swresv = svd->swresv;
1228 	newsvd->flags = svd->flags;
1229 	newsvd->softlockcnt = 0;
1230 	newsvd->policy_info = svd->policy_info;
1231 	if ((newsvd->amp = svd->amp) == NULL) {
1232 		/*
1233 		 * Not attaching to a shared anon object.
1234 		 */
1235 		newsvd->anon_index = 0;
1236 	} else {
1237 		struct anon_map *amp;
1238 
1239 		amp = svd->amp;
1240 		if (svd->type == MAP_SHARED) {
1241 			ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
1242 			amp->refcnt++;
1243 			ANON_LOCK_EXIT(&amp->a_rwlock);
1244 			newsvd->anon_index = svd->anon_index;
1245 		} else {
1246 			int reclaim = 1;
1247 
1248 			/*
1249 			 * Allocate and initialize new anon_map structure.
1250 			 */
1251 			newsvd->amp = anonmap_alloc(newseg->s_size, 0);
1252 			newsvd->amp->a_szc = newseg->s_szc;
1253 			newsvd->anon_index = 0;
1254 
1255 			/*
1256 			 * We don't have to acquire the anon_map lock
1257 			 * for the new segment (since it belongs to an
1258 			 * address space that is still not associated
1259 			 * with any process), or the segment in the old
1260 			 * address space (since all threads in it
1261 			 * are stopped while duplicating the address space).
1262 			 */
1263 
1264 			/*
1265 			 * The goal of the following code is to make sure that
1266 			 * softlocked pages do not end up as copy on write
1267 			 * pages.  This would cause problems where one
1268 			 * thread writes to a page that is COW and a different
1269 			 * thread in the same process has softlocked it.  The
1270 			 * softlock lock would move away from this process
1271 			 * because the write would cause this process to get
1272 			 * a copy (without the softlock).
1273 			 *
1274 			 * The strategy here is to just break the
1275 			 * sharing on pages that could possibly be
1276 			 * softlocked.
1277 			 */
1278 retry:
1279 			if (svd->softlockcnt) {
1280 				struct anon *ap, *newap;
1281 				size_t i;
1282 				uint_t vpprot;
1283 				page_t *anon_pl[1+1], *pp;
1284 				caddr_t addr;
1285 				ulong_t anon_idx = 0;
1286 
1287 				/*
1288 				 * The softlock count might be non zero
1289 				 * because some pages are still stuck in the
1290 				 * cache for lazy reclaim. Flush the cache
1291 				 * now. This should drop the count to zero.
1292 				 * [or there is really I/O going on to these
1293 				 * pages]. Note, we have the writers lock so
1294 				 * nothing gets inserted during the flush.
1295 				 */
1296 				if (reclaim == 1) {
1297 					segvn_purge(seg);
1298 					reclaim = 0;
1299 					goto retry;
1300 				}
1301 				i = btopr(seg->s_size);
1302 				addr = seg->s_base;
1303 				/*
1304 				 * XXX break cow sharing using PAGESIZE
1305 				 * pages. They will be relocated into larger
1306 				 * pages at fault time.
1307 				 */
1308 				while (i-- > 0) {
1309 					if (ap = anon_get_ptr(amp->ahp,
1310 					    anon_idx)) {
1311 						error = anon_getpage(&ap,
1312 						    &vpprot, anon_pl, PAGESIZE,
1313 						    seg, addr, S_READ,
1314 						    svd->cred);
1315 						if (error) {
1316 							newsvd->vpage = NULL;
1317 							goto out;
1318 						}
1319 						/*
1320 						 * prot need not be computed
1321 						 * below 'cause anon_private is
1322 						 * going to ignore it anyway
1323 						 * as child doesn't inherit
1324 						 * pagelock from parent.
1325 						 */
1326 						prot = svd->pageprot ?
1327 						    VPP_PROT(
1328 						    &svd->vpage[
1329 						    seg_page(seg, addr)])
1330 						    : svd->prot;
1331 						pp = anon_private(&newap,
1332 						    newseg, addr, prot,
1333 						    anon_pl[0],	0,
1334 						    newsvd->cred);
1335 						if (pp == NULL) {
1336 							/* no mem abort */
1337 							newsvd->vpage = NULL;
1338 							error = ENOMEM;
1339 							goto out;
1340 						}
1341 						(void) anon_set_ptr(
1342 						    newsvd->amp->ahp, anon_idx,
1343 						    newap, ANON_SLEEP);
1344 						page_unlock(pp);
1345 					}
1346 					addr += PAGESIZE;
1347 					anon_idx++;
1348 				}
1349 			} else {	/* common case */
1350 				if (seg->s_szc != 0) {
1351 					/*
1352 					 * If at least one of anon slots of a
1353 					 * large page exists then make sure
1354 					 * all anon slots of a large page
1355 					 * exist to avoid partial cow sharing
1356 					 * of a large page in the future.
1357 					 */
1358 					anon_dup_fill_holes(amp->ahp,
1359 					    svd->anon_index, newsvd->amp->ahp,
1360 					    0, seg->s_size, seg->s_szc,
1361 					    svd->vp != NULL);
1362 				} else {
1363 					anon_dup(amp->ahp, svd->anon_index,
1364 					    newsvd->amp->ahp, 0, seg->s_size);
1365 				}
1366 
1367 				hat_clrattr(seg->s_as->a_hat, seg->s_base,
1368 				    seg->s_size, PROT_WRITE);
1369 			}
1370 		}
1371 	}
1372 	/*
1373 	 * If necessary, create a vpage structure for the new segment.
1374 	 * Do not copy any page lock indications.
1375 	 */
1376 	if (svd->vpage != NULL) {
1377 		uint_t i;
1378 		struct vpage *ovp = svd->vpage;
1379 		struct vpage *nvp;
1380 
1381 		nvp = newsvd->vpage =
1382 		    kmem_alloc(vpgtob(npages), KM_SLEEP);
1383 		for (i = 0; i < npages; i++) {
1384 			*nvp = *ovp++;
1385 			VPP_CLRPPLOCK(nvp++);
1386 		}
1387 	} else
1388 		newsvd->vpage = NULL;
1389 
1390 	/* Inform the vnode of the new mapping */
1391 	if (newsvd->vp != NULL) {
1392 		error = VOP_ADDMAP(newsvd->vp, (offset_t)newsvd->offset,
1393 		    newseg->s_as, newseg->s_base, newseg->s_size, newsvd->prot,
1394 		    newsvd->maxprot, newsvd->type, newsvd->cred);
1395 	}
1396 out:
1397 	return (error);
1398 }
1399 
1400 
1401 /*
1402  * callback function used by segvn_unmap to invoke free_vp_pages() for only
1403  * those pages actually processed by the HAT
1404  */
1405 extern int free_pages;
1406 
1407 static void
1408 segvn_hat_unload_callback(hat_callback_t *cb)
1409 {
1410 	struct seg		*seg = cb->hcb_data;
1411 	struct segvn_data	*svd = (struct segvn_data *)seg->s_data;
1412 	size_t			len;
1413 	u_offset_t		off;
1414 
1415 	ASSERT(svd->vp != NULL);
1416 	ASSERT(cb->hcb_end_addr > cb->hcb_start_addr);
1417 	ASSERT(cb->hcb_start_addr >= seg->s_base);
1418 
1419 	len = cb->hcb_end_addr - cb->hcb_start_addr;
1420 	off = cb->hcb_start_addr - seg->s_base;
1421 	free_vp_pages(svd->vp, svd->offset + off, len);
1422 }
1423 
1424 
1425 static int
1426 segvn_unmap(struct seg *seg, caddr_t addr, size_t len)
1427 {
1428 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
1429 	struct segvn_data *nsvd;
1430 	struct seg *nseg;
1431 	struct anon_map *amp;
1432 	pgcnt_t	opages;		/* old segment size in pages */
1433 	pgcnt_t	npages;		/* new segment size in pages */
1434 	pgcnt_t	dpages;		/* pages being deleted (unmapped) */
1435 	hat_callback_t callback;	/* used for free_vp_pages() */
1436 	hat_callback_t *cbp = NULL;
1437 	caddr_t nbase;
1438 	size_t nsize;
1439 	size_t oswresv;
1440 	int reclaim = 1;
1441 
1442 	/*
1443 	 * We don't need any segment level locks for "segvn" data
1444 	 * since the address space is "write" locked.
1445 	 */
1446 	ASSERT(seg->s_as && AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
1447 
1448 	/*
1449 	 * Fail the unmap if pages are SOFTLOCKed through this mapping.
1450 	 * softlockcnt is protected from change by the as write lock.
1451 	 */
1452 retry:
1453 	if (svd->softlockcnt > 0) {
1454 		/*
1455 		 * since we do have the writers lock nobody can fill
1456 		 * the cache during the purge. The flush either succeeds
1457 		 * or we still have pending I/Os.
1458 		 */
1459 		if (reclaim == 1) {
1460 			segvn_purge(seg);
1461 			reclaim = 0;
1462 			goto retry;
1463 		}
1464 		return (EAGAIN);
1465 	}
1466 
1467 	/*
1468 	 * Check for bad sizes
1469 	 */
1470 	if (addr < seg->s_base || addr + len > seg->s_base + seg->s_size ||
1471 	    (len & PAGEOFFSET) || ((uintptr_t)addr & PAGEOFFSET)) {
1472 		panic("segvn_unmap");
1473 		/*NOTREACHED*/
1474 	}
1475 
1476 	if (seg->s_szc != 0) {
1477 		size_t pgsz = page_get_pagesize(seg->s_szc);
1478 		int err;
1479 		if (!IS_P2ALIGNED(addr, pgsz) || !IS_P2ALIGNED(len, pgsz)) {
1480 			ASSERT(seg->s_base != addr || seg->s_size != len);
1481 			VM_STAT_ADD(segvnvmstats.demoterange[0]);
1482 			err = segvn_demote_range(seg, addr, len, SDR_END, 0);
1483 			if (err == 0) {
1484 				return (IE_RETRY);
1485 			}
1486 			return (err);
1487 		}
1488 	}
1489 
1490 	/* Inform the vnode of the unmapping. */
1491 	if (svd->vp) {
1492 		int error;
1493 
1494 		error = VOP_DELMAP(svd->vp,
1495 			(offset_t)svd->offset + (uintptr_t)(addr - seg->s_base),
1496 			seg->s_as, addr, len, svd->prot, svd->maxprot,
1497 			svd->type, svd->cred);
1498 
1499 		if (error == EAGAIN)
1500 			return (error);
1501 	}
1502 	/*
1503 	 * Remove any page locks set through this mapping.
1504 	 */
1505 	(void) segvn_lockop(seg, addr, len, 0, MC_UNLOCK, NULL, 0);
1506 
1507 	/*
1508 	 * Unload any hardware translations in the range to be taken out.
1509 	 * Use a callback to invoke free_vp_pages() effectively.
1510 	 */
1511 	if (svd->vp != NULL && free_pages != 0) {
1512 		callback.hcb_data = seg;
1513 		callback.hcb_function = segvn_hat_unload_callback;
1514 		cbp = &callback;
1515 	}
1516 	hat_unload_callback(seg->s_as->a_hat, addr, len, HAT_UNLOAD_UNMAP, cbp);
1517 
1518 	/*
1519 	 * Check for entire segment
1520 	 */
1521 	if (addr == seg->s_base && len == seg->s_size) {
1522 		seg_free(seg);
1523 		return (0);
1524 	}
1525 
1526 	opages = seg_pages(seg);
1527 	dpages = btop(len);
1528 	npages = opages - dpages;
1529 	amp = svd->amp;
1530 	ASSERT(amp == NULL || amp->a_szc >= seg->s_szc);
1531 
1532 	/*
1533 	 * Check for beginning of segment
1534 	 */
1535 	if (addr == seg->s_base) {
1536 		if (svd->vpage != NULL) {
1537 			size_t nbytes;
1538 			struct vpage *ovpage;
1539 
1540 			ovpage = svd->vpage;	/* keep pointer to vpage */
1541 
1542 			nbytes = vpgtob(npages);
1543 			svd->vpage = kmem_alloc(nbytes, KM_SLEEP);
1544 			bcopy(&ovpage[dpages], svd->vpage, nbytes);
1545 
1546 			/* free up old vpage */
1547 			kmem_free(ovpage, vpgtob(opages));
1548 		}
1549 		if (amp != NULL) {
1550 			ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
1551 			if (amp->refcnt == 1 || svd->type == MAP_PRIVATE) {
1552 				/*
1553 				 * Free up now unused parts of anon_map array.
1554 				 */
1555 				if (amp->a_szc == seg->s_szc) {
1556 					if (seg->s_szc != 0) {
1557 						anon_free_pages(amp->ahp,
1558 						    svd->anon_index, len,
1559 						    seg->s_szc);
1560 					} else {
1561 						anon_free(amp->ahp,
1562 						    svd->anon_index,
1563 						    len);
1564 					}
1565 				} else {
1566 					ASSERT(svd->type == MAP_SHARED);
1567 					ASSERT(amp->a_szc > seg->s_szc);
1568 					anon_shmap_free_pages(amp,
1569 					    svd->anon_index, len);
1570 				}
1571 
1572 				/*
1573 				 * Unreserve swap space for the
1574 				 * unmapped chunk of this segment in
1575 				 * case it's MAP_SHARED
1576 				 */
1577 				if (svd->type == MAP_SHARED) {
1578 					anon_unresv(len);
1579 					amp->swresv -= len;
1580 				}
1581 			}
1582 			ANON_LOCK_EXIT(&amp->a_rwlock);
1583 			svd->anon_index += dpages;
1584 		}
1585 		if (svd->vp != NULL)
1586 			svd->offset += len;
1587 
1588 		if (svd->swresv) {
1589 			if (svd->flags & MAP_NORESERVE) {
1590 				ASSERT(amp);
1591 				oswresv = svd->swresv;
1592 
1593 				svd->swresv = ptob(anon_pages(amp->ahp,
1594 				    svd->anon_index, npages));
1595 				anon_unresv(oswresv - svd->swresv);
1596 			} else {
1597 				anon_unresv(len);
1598 				svd->swresv -= len;
1599 			}
1600 			TRACE_3(TR_FAC_VM, TR_ANON_PROC, "anon proc:%p %lu %u",
1601 				seg, len, 0);
1602 		}
1603 
1604 		seg->s_base += len;
1605 		seg->s_size -= len;
1606 		return (0);
1607 	}
1608 
1609 	/*
1610 	 * Check for end of segment
1611 	 */
1612 	if (addr + len == seg->s_base + seg->s_size) {
1613 		if (svd->vpage != NULL) {
1614 			size_t nbytes;
1615 			struct vpage *ovpage;
1616 
1617 			ovpage = svd->vpage;	/* keep pointer to vpage */
1618 
1619 			nbytes = vpgtob(npages);
1620 			svd->vpage = kmem_alloc(nbytes, KM_SLEEP);
1621 			bcopy(ovpage, svd->vpage, nbytes);
1622 
1623 			/* free up old vpage */
1624 			kmem_free(ovpage, vpgtob(opages));
1625 
1626 		}
1627 		if (amp != NULL) {
1628 			ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
1629 			if (amp->refcnt == 1 || svd->type == MAP_PRIVATE) {
1630 				/*
1631 				 * Free up now unused parts of anon_map array.
1632 				 */
1633 				ulong_t an_idx = svd->anon_index + npages;
1634 				if (amp->a_szc == seg->s_szc) {
1635 					if (seg->s_szc != 0) {
1636 						anon_free_pages(amp->ahp,
1637 						    an_idx, len,
1638 						    seg->s_szc);
1639 					} else {
1640 						anon_free(amp->ahp, an_idx,
1641 						    len);
1642 					}
1643 				} else {
1644 					ASSERT(svd->type == MAP_SHARED);
1645 					ASSERT(amp->a_szc > seg->s_szc);
1646 					anon_shmap_free_pages(amp,
1647 					    an_idx, len);
1648 				}
1649 
1650 				/*
1651 				 * Unreserve swap space for the
1652 				 * unmapped chunk of this segment in
1653 				 * case it's MAP_SHARED
1654 				 */
1655 				if (svd->type == MAP_SHARED) {
1656 					anon_unresv(len);
1657 					amp->swresv -= len;
1658 				}
1659 			}
1660 			ANON_LOCK_EXIT(&amp->a_rwlock);
1661 		}
1662 
1663 		if (svd->swresv) {
1664 			if (svd->flags & MAP_NORESERVE) {
1665 				ASSERT(amp);
1666 				oswresv = svd->swresv;
1667 				svd->swresv = ptob(anon_pages(amp->ahp,
1668 					svd->anon_index, npages));
1669 				anon_unresv(oswresv - svd->swresv);
1670 			} else {
1671 				anon_unresv(len);
1672 				svd->swresv -= len;
1673 			}
1674 			TRACE_3(TR_FAC_VM, TR_ANON_PROC,
1675 				"anon proc:%p %lu %u", seg, len, 0);
1676 		}
1677 
1678 		seg->s_size -= len;
1679 		return (0);
1680 	}
1681 
1682 	/*
1683 	 * The section to go is in the middle of the segment,
1684 	 * have to make it into two segments.  nseg is made for
1685 	 * the high end while seg is cut down at the low end.
1686 	 */
1687 	nbase = addr + len;				/* new seg base */
1688 	nsize = (seg->s_base + seg->s_size) - nbase;	/* new seg size */
1689 	seg->s_size = addr - seg->s_base;		/* shrink old seg */
1690 	nseg = seg_alloc(seg->s_as, nbase, nsize);
1691 	if (nseg == NULL) {
1692 		panic("segvn_unmap seg_alloc");
1693 		/*NOTREACHED*/
1694 	}
1695 	nseg->s_ops = seg->s_ops;
1696 	nsvd = kmem_cache_alloc(segvn_cache, KM_SLEEP);
1697 	nseg->s_data = (void *)nsvd;
1698 	nseg->s_szc = seg->s_szc;
1699 	*nsvd = *svd;
1700 	nsvd->offset = svd->offset + (uintptr_t)(nseg->s_base - seg->s_base);
1701 	nsvd->swresv = 0;
1702 	nsvd->softlockcnt = 0;
1703 
1704 	if (svd->vp != NULL) {
1705 		VN_HOLD(nsvd->vp);
1706 		if (nsvd->type == MAP_SHARED)
1707 			lgrp_shm_policy_init(NULL, nsvd->vp);
1708 	}
1709 	crhold(svd->cred);
1710 
1711 	if (svd->vpage == NULL) {
1712 		nsvd->vpage = NULL;
1713 	} else {
1714 		/* need to split vpage into two arrays */
1715 		size_t nbytes;
1716 		struct vpage *ovpage;
1717 
1718 		ovpage = svd->vpage;		/* keep pointer to vpage */
1719 
1720 		npages = seg_pages(seg);	/* seg has shrunk */
1721 		nbytes = vpgtob(npages);
1722 		svd->vpage = kmem_alloc(nbytes, KM_SLEEP);
1723 
1724 		bcopy(ovpage, svd->vpage, nbytes);
1725 
1726 		npages = seg_pages(nseg);
1727 		nbytes = vpgtob(npages);
1728 		nsvd->vpage = kmem_alloc(nbytes, KM_SLEEP);
1729 
1730 		bcopy(&ovpage[opages - npages], nsvd->vpage, nbytes);
1731 
1732 		/* free up old vpage */
1733 		kmem_free(ovpage, vpgtob(opages));
1734 	}
1735 
1736 	if (amp == NULL) {
1737 		nsvd->amp = NULL;
1738 		nsvd->anon_index = 0;
1739 	} else {
1740 		/*
1741 		 * Need to create a new anon map for the new segment.
1742 		 * We'll also allocate a new smaller array for the old
1743 		 * smaller segment to save space.
1744 		 */
1745 		opages = btop((uintptr_t)(addr - seg->s_base));
1746 		ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
1747 		if (amp->refcnt == 1 || svd->type == MAP_PRIVATE) {
1748 			/*
1749 			 * Free up now unused parts of anon_map array.
1750 			 */
1751 			ulong_t an_idx = svd->anon_index + opages;
1752 			if (amp->a_szc == seg->s_szc) {
1753 				if (seg->s_szc != 0) {
1754 					anon_free_pages(amp->ahp, an_idx, len,
1755 					    seg->s_szc);
1756 				} else {
1757 					anon_free(amp->ahp, an_idx,
1758 					    len);
1759 				}
1760 			} else {
1761 				ASSERT(svd->type == MAP_SHARED);
1762 				ASSERT(amp->a_szc > seg->s_szc);
1763 				anon_shmap_free_pages(amp, an_idx, len);
1764 			}
1765 
1766 			/*
1767 			 * Unreserve swap space for the
1768 			 * unmapped chunk of this segment in
1769 			 * case it's MAP_SHARED
1770 			 */
1771 			if (svd->type == MAP_SHARED) {
1772 				anon_unresv(len);
1773 				amp->swresv -= len;
1774 			}
1775 		}
1776 		nsvd->anon_index = svd->anon_index +
1777 		    btop((uintptr_t)(nseg->s_base - seg->s_base));
1778 		if (svd->type == MAP_SHARED) {
1779 			amp->refcnt++;
1780 			nsvd->amp = amp;
1781 		} else {
1782 			struct anon_map *namp;
1783 			struct anon_hdr *nahp;
1784 
1785 			ASSERT(svd->type == MAP_PRIVATE);
1786 			nahp = anon_create(btop(seg->s_size), ANON_SLEEP);
1787 			namp = anonmap_alloc(nseg->s_size, 0);
1788 			namp->a_szc = seg->s_szc;
1789 			(void) anon_copy_ptr(amp->ahp, svd->anon_index, nahp,
1790 			    0, btop(seg->s_size), ANON_SLEEP);
1791 			(void) anon_copy_ptr(amp->ahp, nsvd->anon_index,
1792 			    namp->ahp, 0, btop(nseg->s_size), ANON_SLEEP);
1793 			anon_release(amp->ahp, btop(amp->size));
1794 			svd->anon_index = 0;
1795 			nsvd->anon_index = 0;
1796 			amp->ahp = nahp;
1797 			amp->size = seg->s_size;
1798 			nsvd->amp = namp;
1799 		}
1800 		ANON_LOCK_EXIT(&amp->a_rwlock);
1801 	}
1802 	if (svd->swresv) {
1803 		if (svd->flags & MAP_NORESERVE) {
1804 			ASSERT(amp);
1805 			oswresv = svd->swresv;
1806 			svd->swresv = ptob(anon_pages(amp->ahp,
1807 				svd->anon_index, btop(seg->s_size)));
1808 			nsvd->swresv = ptob(anon_pages(nsvd->amp->ahp,
1809 				nsvd->anon_index, btop(nseg->s_size)));
1810 			ASSERT(oswresv >= (svd->swresv + nsvd->swresv));
1811 			anon_unresv(oswresv - (svd->swresv + nsvd->swresv));
1812 		} else {
1813 			if (seg->s_size + nseg->s_size + len != svd->swresv) {
1814 				panic("segvn_unmap: "
1815 				    "cannot split swap reservation");
1816 				/*NOTREACHED*/
1817 			}
1818 			anon_unresv(len);
1819 			svd->swresv = seg->s_size;
1820 			nsvd->swresv = nseg->s_size;
1821 		}
1822 		TRACE_3(TR_FAC_VM, TR_ANON_PROC, "anon proc:%p %lu %u",
1823 			seg, len, 0);
1824 	}
1825 
1826 	return (0);			/* I'm glad that's all over with! */
1827 }
1828 
1829 static void
1830 segvn_free(struct seg *seg)
1831 {
1832 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
1833 	pgcnt_t npages = seg_pages(seg);
1834 	struct anon_map *amp;
1835 	size_t len;
1836 
1837 	/*
1838 	 * We don't need any segment level locks for "segvn" data
1839 	 * since the address space is "write" locked.
1840 	 */
1841 	ASSERT(seg->s_as && AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
1842 
1843 	/*
1844 	 * Be sure to unlock pages. XXX Why do things get free'ed instead
1845 	 * of unmapped? XXX
1846 	 */
1847 	(void) segvn_lockop(seg, seg->s_base, seg->s_size,
1848 	    0, MC_UNLOCK, NULL, 0);
1849 
1850 	/*
1851 	 * Deallocate the vpage and anon pointers if necessary and possible.
1852 	 */
1853 	if (svd->vpage != NULL) {
1854 		kmem_free(svd->vpage, vpgtob(npages));
1855 		svd->vpage = NULL;
1856 	}
1857 	if ((amp = svd->amp) != NULL) {
1858 		/*
1859 		 * If there are no more references to this anon_map
1860 		 * structure, then deallocate the structure after freeing
1861 		 * up all the anon slot pointers that we can.
1862 		 */
1863 		ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
1864 		ASSERT(amp->a_szc >= seg->s_szc);
1865 		if (--amp->refcnt == 0) {
1866 			if (svd->type == MAP_PRIVATE) {
1867 				/*
1868 				 * Private - we only need to anon_free
1869 				 * the part that this segment refers to.
1870 				 */
1871 				if (seg->s_szc != 0) {
1872 					anon_free_pages(amp->ahp,
1873 					    svd->anon_index, seg->s_size,
1874 					    seg->s_szc);
1875 				} else {
1876 					anon_free(amp->ahp, svd->anon_index,
1877 					    seg->s_size);
1878 				}
1879 			} else {
1880 				/*
1881 				 * Shared - anon_free the entire
1882 				 * anon_map's worth of stuff and
1883 				 * release any swap reservation.
1884 				 */
1885 				if (amp->a_szc != 0) {
1886 					anon_shmap_free_pages(amp, 0,
1887 					    amp->size);
1888 				} else {
1889 					anon_free(amp->ahp, 0, amp->size);
1890 				}
1891 				if ((len = amp->swresv) != 0) {
1892 					anon_unresv(len);
1893 					TRACE_3(TR_FAC_VM, TR_ANON_PROC,
1894 						"anon proc:%p %lu %u",
1895 						seg, len, 0);
1896 				}
1897 			}
1898 			svd->amp = NULL;
1899 			ANON_LOCK_EXIT(&amp->a_rwlock);
1900 			anonmap_free(amp);
1901 		} else if (svd->type == MAP_PRIVATE) {
1902 			/*
1903 			 * We had a private mapping which still has
1904 			 * a held anon_map so just free up all the
1905 			 * anon slot pointers that we were using.
1906 			 */
1907 			if (seg->s_szc != 0) {
1908 				anon_free_pages(amp->ahp, svd->anon_index,
1909 				    seg->s_size, seg->s_szc);
1910 			} else {
1911 				anon_free(amp->ahp, svd->anon_index,
1912 				    seg->s_size);
1913 			}
1914 			ANON_LOCK_EXIT(&amp->a_rwlock);
1915 		} else {
1916 			ANON_LOCK_EXIT(&amp->a_rwlock);
1917 		}
1918 	}
1919 
1920 	/*
1921 	 * Release swap reservation.
1922 	 */
1923 	if ((len = svd->swresv) != 0) {
1924 		anon_unresv(svd->swresv);
1925 		TRACE_3(TR_FAC_VM, TR_ANON_PROC, "anon proc:%p %lu %u",
1926 			seg, len, 0);
1927 		svd->swresv = 0;
1928 	}
1929 	/*
1930 	 * Release claim on vnode, credentials, and finally free the
1931 	 * private data.
1932 	 */
1933 	if (svd->vp != NULL) {
1934 		if (svd->type == MAP_SHARED)
1935 			lgrp_shm_policy_fini(NULL, svd->vp);
1936 		VN_RELE(svd->vp);
1937 		svd->vp = NULL;
1938 	}
1939 	crfree(svd->cred);
1940 	svd->cred = NULL;
1941 
1942 	seg->s_data = NULL;
1943 	kmem_cache_free(segvn_cache, svd);
1944 }
1945 
1946 ulong_t segvn_lpglck_limit = 0;
1947 /*
1948  * Support routines used by segvn_pagelock() and softlock faults for anonymous
1949  * pages to implement availrmem accounting in a way that makes sure the
1950  * same memory is accounted just once for all softlock/pagelock purposes.
1951  * This prevents a bug when availrmem is quickly incorrectly exausted from
1952  * several pagelocks to different parts of the same large page since each
1953  * pagelock has to decrement availrmem by the size of the entire large
1954  * page. Note those pages are not COW shared until softunlock/pageunlock so
1955  * we don't need to use cow style accounting here.  We also need to make sure
1956  * the entire large page is accounted even if softlock range is less than the
1957  * entire large page because large anon pages can't be demoted when any of
1958  * constituent pages is locked. The caller calls this routine for every page_t
1959  * it locks. The very first page in the range may not be the root page of a
1960  * large page. For all other pages it's guranteed we are going to visit the
1961  * root of a particular large page before any other constituent page as we are
1962  * locking sequential pages belonging to the same anon map. So we do all the
1963  * locking when the root is encountered except for the very first page.  Since
1964  * softlocking is not supported (except S_READ_NOCOW special case) for vmpss
1965  * segments and since vnode pages can be demoted without locking all
1966  * constituent pages vnode pages don't come here.  Unlocking relies on the
1967  * fact that pagesize can't change whenever any of constituent large pages is
1968  * locked at least SE_SHARED. This allows unlocking code to find the right
1969  * root and decrement availrmem by the same amount it was incremented when the
1970  * page was locked.
1971  */
1972 static int
1973 segvn_pp_lock_anonpages(page_t *pp, int first)
1974 {
1975 	pgcnt_t		pages;
1976 	pfn_t		pfn;
1977 	uchar_t		szc = pp->p_szc;
1978 
1979 	ASSERT(PAGE_LOCKED(pp));
1980 	ASSERT(pp->p_vnode != NULL);
1981 	ASSERT(IS_SWAPFSVP(pp->p_vnode));
1982 
1983 	/*
1984 	 * pagesize won't change as long as any constituent page is locked.
1985 	 */
1986 	pages = page_get_pagecnt(pp->p_szc);
1987 	pfn = page_pptonum(pp);
1988 
1989 	if (!first) {
1990 		if (!IS_P2ALIGNED(pfn, pages)) {
1991 #ifdef DEBUG
1992 			pp = &pp[-(spgcnt_t)(pfn & (pages - 1))];
1993 			pfn = page_pptonum(pp);
1994 			ASSERT(IS_P2ALIGNED(pfn, pages));
1995 			ASSERT(pp->p_szc == szc);
1996 			ASSERT(pp->p_vnode != NULL);
1997 			ASSERT(IS_SWAPFSVP(pp->p_vnode));
1998 			ASSERT(pp->p_slckcnt != 0);
1999 #endif /* DEBUG */
2000 			return (1);
2001 		}
2002 	} else if (!IS_P2ALIGNED(pfn, pages)) {
2003 		pp = &pp[-(spgcnt_t)(pfn & (pages - 1))];
2004 #ifdef DEBUG
2005 		pfn = page_pptonum(pp);
2006 		ASSERT(IS_P2ALIGNED(pfn, pages));
2007 		ASSERT(pp->p_szc == szc);
2008 		ASSERT(pp->p_vnode != NULL);
2009 		ASSERT(IS_SWAPFSVP(pp->p_vnode));
2010 #endif /* DEBUG */
2011 	}
2012 
2013 	/*
2014 	 * pp is a root page.
2015 	 * We haven't locked this large page yet.
2016 	 */
2017 	page_struct_lock(pp);
2018 	if (pp->p_slckcnt != 0) {
2019 		if (pp->p_slckcnt < PAGE_SLOCK_MAXIMUM) {
2020 			pp->p_slckcnt++;
2021 			page_struct_unlock(pp);
2022 			return (1);
2023 		}
2024 		page_struct_unlock(pp);
2025 		segvn_lpglck_limit++;
2026 		return (0);
2027 	}
2028 	mutex_enter(&freemem_lock);
2029 	if (availrmem < tune.t_minarmem + pages) {
2030 		mutex_exit(&freemem_lock);
2031 		page_struct_unlock(pp);
2032 		return (0);
2033 	}
2034 	pp->p_slckcnt++;
2035 	availrmem -= pages;
2036 	mutex_exit(&freemem_lock);
2037 	page_struct_unlock(pp);
2038 	return (1);
2039 }
2040 
2041 static void
2042 segvn_pp_unlock_anonpages(page_t *pp, int first)
2043 {
2044 	pgcnt_t		pages;
2045 	pfn_t		pfn;
2046 
2047 	ASSERT(PAGE_LOCKED(pp));
2048 	ASSERT(pp->p_vnode != NULL);
2049 	ASSERT(IS_SWAPFSVP(pp->p_vnode));
2050 
2051 	/*
2052 	 * pagesize won't change as long as any constituent page is locked.
2053 	 */
2054 	pages = page_get_pagecnt(pp->p_szc);
2055 	pfn = page_pptonum(pp);
2056 
2057 	if (!first) {
2058 		if (!IS_P2ALIGNED(pfn, pages)) {
2059 			return;
2060 		}
2061 	} else if (!IS_P2ALIGNED(pfn, pages)) {
2062 		pp = &pp[-(spgcnt_t)(pfn & (pages - 1))];
2063 #ifdef DEBUG
2064 		pfn = page_pptonum(pp);
2065 		ASSERT(IS_P2ALIGNED(pfn, pages));
2066 #endif /* DEBUG */
2067 	}
2068 	ASSERT(pp->p_vnode != NULL);
2069 	ASSERT(IS_SWAPFSVP(pp->p_vnode));
2070 	ASSERT(pp->p_slckcnt != 0);
2071 	page_struct_lock(pp);
2072 	if (--pp->p_slckcnt == 0) {
2073 		mutex_enter(&freemem_lock);
2074 		availrmem += pages;
2075 		mutex_exit(&freemem_lock);
2076 	}
2077 	page_struct_unlock(pp);
2078 }
2079 
2080 /*
2081  * Do a F_SOFTUNLOCK call over the range requested.  The range must have
2082  * already been F_SOFTLOCK'ed.
2083  * Caller must always match addr and len of a softunlock with a previous
2084  * softlock with exactly the same addr and len.
2085  */
2086 static void
2087 segvn_softunlock(struct seg *seg, caddr_t addr, size_t len, enum seg_rw rw)
2088 {
2089 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
2090 	page_t *pp;
2091 	caddr_t adr;
2092 	struct vnode *vp;
2093 	u_offset_t offset;
2094 	ulong_t anon_index;
2095 	struct anon_map *amp;
2096 	struct anon *ap = NULL;
2097 
2098 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
2099 	ASSERT(SEGVN_LOCK_HELD(seg->s_as, &svd->lock));
2100 
2101 	if ((amp = svd->amp) != NULL)
2102 		anon_index = svd->anon_index + seg_page(seg, addr);
2103 
2104 	hat_unlock(seg->s_as->a_hat, addr, len);
2105 	for (adr = addr; adr < addr + len; adr += PAGESIZE) {
2106 		if (amp != NULL) {
2107 			ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
2108 			if ((ap = anon_get_ptr(amp->ahp, anon_index++))
2109 								!= NULL) {
2110 				swap_xlate(ap, &vp, &offset);
2111 			} else {
2112 				vp = svd->vp;
2113 				offset = svd->offset +
2114 				    (uintptr_t)(adr - seg->s_base);
2115 			}
2116 			ANON_LOCK_EXIT(&amp->a_rwlock);
2117 		} else {
2118 			vp = svd->vp;
2119 			offset = svd->offset +
2120 			    (uintptr_t)(adr - seg->s_base);
2121 		}
2122 
2123 		/*
2124 		 * Use page_find() instead of page_lookup() to
2125 		 * find the page since we know that it is locked.
2126 		 */
2127 		pp = page_find(vp, offset);
2128 		if (pp == NULL) {
2129 			panic(
2130 			    "segvn_softunlock: addr %p, ap %p, vp %p, off %llx",
2131 			    (void *)adr, (void *)ap, (void *)vp, offset);
2132 			/*NOTREACHED*/
2133 		}
2134 
2135 		if (rw == S_WRITE) {
2136 			hat_setrefmod(pp);
2137 			if (seg->s_as->a_vbits)
2138 				hat_setstat(seg->s_as, adr, PAGESIZE,
2139 				    P_REF | P_MOD);
2140 		} else if (rw != S_OTHER) {
2141 			hat_setref(pp);
2142 			if (seg->s_as->a_vbits)
2143 				hat_setstat(seg->s_as, adr, PAGESIZE, P_REF);
2144 		}
2145 		TRACE_3(TR_FAC_VM, TR_SEGVN_FAULT,
2146 			"segvn_fault:pp %p vp %p offset %llx", pp, vp, offset);
2147 		if (svd->vp == NULL) {
2148 			segvn_pp_unlock_anonpages(pp, adr == addr);
2149 		}
2150 		page_unlock(pp);
2151 	}
2152 	mutex_enter(&freemem_lock); /* for availrmem */
2153 	if (svd->vp != NULL) {
2154 		availrmem += btop(len);
2155 	}
2156 	segvn_pages_locked -= btop(len);
2157 	svd->softlockcnt -= btop(len);
2158 	mutex_exit(&freemem_lock);
2159 	if (svd->softlockcnt == 0) {
2160 		/*
2161 		 * All SOFTLOCKS are gone. Wakeup any waiting
2162 		 * unmappers so they can try again to unmap.
2163 		 * Check for waiters first without the mutex
2164 		 * held so we don't always grab the mutex on
2165 		 * softunlocks.
2166 		 */
2167 		if (AS_ISUNMAPWAIT(seg->s_as)) {
2168 			mutex_enter(&seg->s_as->a_contents);
2169 			if (AS_ISUNMAPWAIT(seg->s_as)) {
2170 				AS_CLRUNMAPWAIT(seg->s_as);
2171 				cv_broadcast(&seg->s_as->a_cv);
2172 			}
2173 			mutex_exit(&seg->s_as->a_contents);
2174 		}
2175 	}
2176 }
2177 
2178 #define	PAGE_HANDLED	((page_t *)-1)
2179 
2180 /*
2181  * Release all the pages in the NULL terminated ppp list
2182  * which haven't already been converted to PAGE_HANDLED.
2183  */
2184 static void
2185 segvn_pagelist_rele(page_t **ppp)
2186 {
2187 	for (; *ppp != NULL; ppp++) {
2188 		if (*ppp != PAGE_HANDLED)
2189 			page_unlock(*ppp);
2190 	}
2191 }
2192 
2193 static int stealcow = 1;
2194 
2195 /*
2196  * Workaround for viking chip bug.  See bug id 1220902.
2197  * To fix this down in pagefault() would require importing so
2198  * much as and segvn code as to be unmaintainable.
2199  */
2200 int enable_mbit_wa = 0;
2201 
2202 /*
2203  * Handles all the dirty work of getting the right
2204  * anonymous pages and loading up the translations.
2205  * This routine is called only from segvn_fault()
2206  * when looping over the range of addresses requested.
2207  *
2208  * The basic algorithm here is:
2209  * 	If this is an anon_zero case
2210  *		Call anon_zero to allocate page
2211  *		Load up translation
2212  *		Return
2213  *	endif
2214  *	If this is an anon page
2215  *		Use anon_getpage to get the page
2216  *	else
2217  *		Find page in pl[] list passed in
2218  *	endif
2219  *	If not a cow
2220  *		Load up the translation to the page
2221  *		return
2222  *	endif
2223  *	Call anon_private to handle cow
2224  *	Load up (writable) translation to new page
2225  */
2226 static faultcode_t
2227 segvn_faultpage(
2228 	struct hat *hat,		/* the hat to use for mapping */
2229 	struct seg *seg,		/* seg_vn of interest */
2230 	caddr_t addr,			/* address in as */
2231 	u_offset_t off,			/* offset in vp */
2232 	struct vpage *vpage,		/* pointer to vpage for vp, off */
2233 	page_t *pl[],			/* object source page pointer */
2234 	uint_t vpprot,			/* access allowed to object pages */
2235 	enum fault_type type,		/* type of fault */
2236 	enum seg_rw rw,			/* type of access at fault */
2237 	int brkcow,			/* we may need to break cow */
2238 	int first)			/* first page for this fault if 1 */
2239 {
2240 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
2241 	page_t *pp, **ppp;
2242 	uint_t pageflags = 0;
2243 	page_t *anon_pl[1 + 1];
2244 	page_t *opp = NULL;		/* original page */
2245 	uint_t prot;
2246 	int err;
2247 	int cow;
2248 	int claim;
2249 	int steal = 0;
2250 	ulong_t anon_index;
2251 	struct anon *ap, *oldap;
2252 	struct anon_map *amp;
2253 	int hat_flag = (type == F_SOFTLOCK) ? HAT_LOAD_LOCK : HAT_LOAD;
2254 	int anon_lock = 0;
2255 	anon_sync_obj_t cookie;
2256 
2257 	if (svd->flags & MAP_TEXT) {
2258 		hat_flag |= HAT_LOAD_TEXT;
2259 	}
2260 
2261 	ASSERT(SEGVN_READ_HELD(seg->s_as, &svd->lock));
2262 	ASSERT(seg->s_szc == 0);
2263 
2264 	/*
2265 	 * Initialize protection value for this page.
2266 	 * If we have per page protection values check it now.
2267 	 */
2268 	if (svd->pageprot) {
2269 		uint_t protchk;
2270 
2271 		switch (rw) {
2272 		case S_READ:
2273 			protchk = PROT_READ;
2274 			break;
2275 		case S_WRITE:
2276 			protchk = PROT_WRITE;
2277 			break;
2278 		case S_EXEC:
2279 			protchk = PROT_EXEC;
2280 			break;
2281 		case S_OTHER:
2282 		default:
2283 			protchk = PROT_READ | PROT_WRITE | PROT_EXEC;
2284 			break;
2285 		}
2286 
2287 		prot = VPP_PROT(vpage);
2288 		if ((prot & protchk) == 0)
2289 			return (FC_PROT);	/* illegal access type */
2290 	} else {
2291 		prot = svd->prot;
2292 	}
2293 
2294 	if (type == F_SOFTLOCK && svd->vp != NULL) {
2295 		mutex_enter(&freemem_lock);
2296 		if (availrmem <= tune.t_minarmem) {
2297 			mutex_exit(&freemem_lock);
2298 			return (FC_MAKE_ERR(ENOMEM));	/* out of real memory */
2299 		} else {
2300 			availrmem--;
2301 			svd->softlockcnt++;
2302 			segvn_pages_locked++;
2303 		}
2304 		mutex_exit(&freemem_lock);
2305 	}
2306 
2307 	/*
2308 	 * Always acquire the anon array lock to prevent 2 threads from
2309 	 * allocating separate anon slots for the same "addr".
2310 	 */
2311 
2312 	if ((amp = svd->amp) != NULL) {
2313 		ASSERT(RW_READ_HELD(&amp->a_rwlock));
2314 		anon_index = svd->anon_index + seg_page(seg, addr);
2315 		anon_array_enter(amp, anon_index, &cookie);
2316 		anon_lock = 1;
2317 	}
2318 
2319 	if (svd->vp == NULL && amp != NULL) {
2320 		if ((ap = anon_get_ptr(amp->ahp, anon_index)) == NULL) {
2321 			/*
2322 			 * Allocate a (normally) writable anonymous page of
2323 			 * zeroes. If no advance reservations, reserve now.
2324 			 */
2325 			if (svd->flags & MAP_NORESERVE) {
2326 				if (anon_resv_zone(ptob(1),
2327 				    seg->s_as->a_proc->p_zone)) {
2328 					atomic_add_long(&svd->swresv, ptob(1));
2329 				} else {
2330 					err = ENOMEM;
2331 					goto out;
2332 				}
2333 			}
2334 			if ((pp = anon_zero(seg, addr, &ap,
2335 			    svd->cred)) == NULL) {
2336 				err = ENOMEM;
2337 				goto out;	/* out of swap space */
2338 			}
2339 			/*
2340 			 * Re-acquire the anon_map lock and
2341 			 * initialize the anon array entry.
2342 			 */
2343 			(void) anon_set_ptr(amp->ahp, anon_index, ap,
2344 				ANON_SLEEP);
2345 
2346 			ASSERT(pp->p_szc == 0);
2347 
2348 			/*
2349 			 * Handle pages that have been marked for migration
2350 			 */
2351 			if (lgrp_optimizations())
2352 				page_migrate(seg, addr, &pp, 1);
2353 
2354 			if (type == F_SOFTLOCK) {
2355 				if (!segvn_pp_lock_anonpages(pp, first)) {
2356 					page_unlock(pp);
2357 					err = ENOMEM;
2358 					goto out;
2359 				} else {
2360 					mutex_enter(&freemem_lock);
2361 					svd->softlockcnt++;
2362 					segvn_pages_locked++;
2363 					mutex_exit(&freemem_lock);
2364 				}
2365 			}
2366 
2367 			if (enable_mbit_wa) {
2368 				if (rw == S_WRITE)
2369 					hat_setmod(pp);
2370 				else if (!hat_ismod(pp))
2371 					prot &= ~PROT_WRITE;
2372 			}
2373 			/*
2374 			 * If AS_PAGLCK is set in a_flags (via memcntl(2)
2375 			 * with MC_LOCKAS, MCL_FUTURE) and this is a
2376 			 * MAP_NORESERVE segment, we may need to
2377 			 * permanently lock the page as it is being faulted
2378 			 * for the first time. The following text applies
2379 			 * only to MAP_NORESERVE segments:
2380 			 *
2381 			 * As per memcntl(2), if this segment was created
2382 			 * after MCL_FUTURE was applied (a "future"
2383 			 * segment), its pages must be locked.  If this
2384 			 * segment existed at MCL_FUTURE application (a
2385 			 * "past" segment), the interface is unclear.
2386 			 *
2387 			 * We decide to lock only if vpage is present:
2388 			 *
2389 			 * - "future" segments will have a vpage array (see
2390 			 *    as_map), and so will be locked as required
2391 			 *
2392 			 * - "past" segments may not have a vpage array,
2393 			 *    depending on whether events (such as
2394 			 *    mprotect) have occurred. Locking if vpage
2395 			 *    exists will preserve legacy behavior.  Not
2396 			 *    locking if vpage is absent, will not break
2397 			 *    the interface or legacy behavior.  Note that
2398 			 *    allocating vpage here if it's absent requires
2399 			 *    upgrading the segvn reader lock, the cost of
2400 			 *    which does not seem worthwhile.
2401 			 *
2402 			 * Usually testing and setting VPP_ISPPLOCK and
2403 			 * VPP_SETPPLOCK requires holding the segvn lock as
2404 			 * writer, but in this case all readers are
2405 			 * serializing on the anon array lock.
2406 			 */
2407 			if (AS_ISPGLCK(seg->s_as) && vpage != NULL &&
2408 			    (svd->flags & MAP_NORESERVE) &&
2409 			    !VPP_ISPPLOCK(vpage)) {
2410 				proc_t *p = seg->s_as->a_proc;
2411 				ASSERT(svd->type == MAP_PRIVATE);
2412 				mutex_enter(&p->p_lock);
2413 				if (rctl_incr_locked_mem(p, NULL, PAGESIZE,
2414 				    1) == 0) {
2415 					claim = VPP_PROT(vpage) & PROT_WRITE;
2416 					if (page_pp_lock(pp, claim, 0)) {
2417 						VPP_SETPPLOCK(vpage);
2418 					} else {
2419 						rctl_decr_locked_mem(p, NULL,
2420 						    PAGESIZE, 1);
2421 					}
2422 				}
2423 				mutex_exit(&p->p_lock);
2424 			}
2425 
2426 			hat_memload(hat, addr, pp, prot, hat_flag);
2427 
2428 			if (!(hat_flag & HAT_LOAD_LOCK))
2429 				page_unlock(pp);
2430 
2431 			anon_array_exit(&cookie);
2432 			return (0);
2433 		}
2434 	}
2435 
2436 	/*
2437 	 * Obtain the page structure via anon_getpage() if it is
2438 	 * a private copy of an object (the result of a previous
2439 	 * copy-on-write).
2440 	 */
2441 	if (amp != NULL) {
2442 		if ((ap = anon_get_ptr(amp->ahp, anon_index)) != NULL) {
2443 			err = anon_getpage(&ap, &vpprot, anon_pl, PAGESIZE,
2444 			    seg, addr, rw, svd->cred);
2445 			if (err)
2446 				goto out;
2447 
2448 			if (svd->type == MAP_SHARED) {
2449 				/*
2450 				 * If this is a shared mapping to an
2451 				 * anon_map, then ignore the write
2452 				 * permissions returned by anon_getpage().
2453 				 * They apply to the private mappings
2454 				 * of this anon_map.
2455 				 */
2456 				vpprot |= PROT_WRITE;
2457 			}
2458 			opp = anon_pl[0];
2459 		}
2460 	}
2461 
2462 	/*
2463 	 * Search the pl[] list passed in if it is from the
2464 	 * original object (i.e., not a private copy).
2465 	 */
2466 	if (opp == NULL) {
2467 		/*
2468 		 * Find original page.  We must be bringing it in
2469 		 * from the list in pl[].
2470 		 */
2471 		for (ppp = pl; (opp = *ppp) != NULL; ppp++) {
2472 			if (opp == PAGE_HANDLED)
2473 				continue;
2474 			ASSERT(opp->p_vnode == svd->vp); /* XXX */
2475 			if (opp->p_offset == off)
2476 				break;
2477 		}
2478 		if (opp == NULL) {
2479 			panic("segvn_faultpage not found");
2480 			/*NOTREACHED*/
2481 		}
2482 		*ppp = PAGE_HANDLED;
2483 
2484 	}
2485 
2486 	ASSERT(PAGE_LOCKED(opp));
2487 
2488 	TRACE_3(TR_FAC_VM, TR_SEGVN_FAULT,
2489 		"segvn_fault:pp %p vp %p offset %llx",
2490 		opp, NULL, 0);
2491 
2492 	/*
2493 	 * The fault is treated as a copy-on-write fault if a
2494 	 * write occurs on a private segment and the object
2495 	 * page (i.e., mapping) is write protected.  We assume
2496 	 * that fatal protection checks have already been made.
2497 	 */
2498 
2499 	cow = brkcow && ((vpprot & PROT_WRITE) == 0);
2500 
2501 	/*
2502 	 * If not a copy-on-write case load the translation
2503 	 * and return.
2504 	 */
2505 	if (cow == 0) {
2506 
2507 		/*
2508 		 * Handle pages that have been marked for migration
2509 		 */
2510 		if (lgrp_optimizations())
2511 			page_migrate(seg, addr, &opp, 1);
2512 
2513 		if (type == F_SOFTLOCK && svd->vp == NULL) {
2514 
2515 			ASSERT(opp->p_szc == 0 ||
2516 			    (svd->type == MAP_SHARED &&
2517 				amp != NULL && amp->a_szc != 0));
2518 
2519 			if (!segvn_pp_lock_anonpages(opp, first)) {
2520 				page_unlock(opp);
2521 				err = ENOMEM;
2522 				goto out;
2523 			} else {
2524 				mutex_enter(&freemem_lock);
2525 				svd->softlockcnt++;
2526 				segvn_pages_locked++;
2527 				mutex_exit(&freemem_lock);
2528 			}
2529 		}
2530 		if (IS_VMODSORT(opp->p_vnode) || enable_mbit_wa) {
2531 			if (rw == S_WRITE)
2532 				hat_setmod(opp);
2533 			else if (rw != S_OTHER && !hat_ismod(opp))
2534 				prot &= ~PROT_WRITE;
2535 		}
2536 
2537 		hat_memload(hat, addr, opp, prot & vpprot, hat_flag);
2538 
2539 		if (!(hat_flag & HAT_LOAD_LOCK))
2540 			page_unlock(opp);
2541 
2542 		if (anon_lock) {
2543 			anon_array_exit(&cookie);
2544 		}
2545 		return (0);
2546 	}
2547 
2548 	hat_setref(opp);
2549 
2550 	ASSERT(amp != NULL && anon_lock);
2551 
2552 	/*
2553 	 * Steal the page only if it isn't a private page
2554 	 * since stealing a private page is not worth the effort.
2555 	 */
2556 	if ((ap = anon_get_ptr(amp->ahp, anon_index)) == NULL)
2557 		steal = 1;
2558 
2559 	/*
2560 	 * Steal the original page if the following conditions are true:
2561 	 *
2562 	 * We are low on memory, the page is not private, page is not large,
2563 	 * not shared, not modified, not `locked' or if we have it `locked'
2564 	 * (i.e., p_cowcnt == 1 and p_lckcnt == 0, which also implies
2565 	 * that the page is not shared) and if it doesn't have any
2566 	 * translations. page_struct_lock isn't needed to look at p_cowcnt
2567 	 * and p_lckcnt because we first get exclusive lock on page.
2568 	 */
2569 	(void) hat_pagesync(opp, HAT_SYNC_DONTZERO | HAT_SYNC_STOPON_MOD);
2570 
2571 	if (stealcow && freemem < minfree && steal && opp->p_szc == 0 &&
2572 	    page_tryupgrade(opp) && !hat_ismod(opp) &&
2573 	    ((opp->p_lckcnt == 0 && opp->p_cowcnt == 0) ||
2574 	    (opp->p_lckcnt == 0 && opp->p_cowcnt == 1 &&
2575 	    vpage != NULL && VPP_ISPPLOCK(vpage)))) {
2576 		/*
2577 		 * Check if this page has other translations
2578 		 * after unloading our translation.
2579 		 */
2580 		if (hat_page_is_mapped(opp)) {
2581 			hat_unload(seg->s_as->a_hat, addr, PAGESIZE,
2582 				HAT_UNLOAD);
2583 		}
2584 
2585 		/*
2586 		 * hat_unload() might sync back someone else's recent
2587 		 * modification, so check again.
2588 		 */
2589 		if (!hat_ismod(opp) && !hat_page_is_mapped(opp))
2590 			pageflags |= STEAL_PAGE;
2591 	}
2592 
2593 	/*
2594 	 * If we have a vpage pointer, see if it indicates that we have
2595 	 * ``locked'' the page we map -- if so, tell anon_private to
2596 	 * transfer the locking resource to the new page.
2597 	 *
2598 	 * See Statement at the beginning of segvn_lockop regarding
2599 	 * the way lockcnts/cowcnts are handled during COW.
2600 	 *
2601 	 */
2602 	if (vpage != NULL && VPP_ISPPLOCK(vpage))
2603 		pageflags |= LOCK_PAGE;
2604 
2605 	/*
2606 	 * Allocate a private page and perform the copy.
2607 	 * For MAP_NORESERVE reserve swap space now, unless this
2608 	 * is a cow fault on an existing anon page in which case
2609 	 * MAP_NORESERVE will have made advance reservations.
2610 	 */
2611 	if ((svd->flags & MAP_NORESERVE) && (ap == NULL)) {
2612 		if (anon_resv_zone(ptob(1), seg->s_as->a_proc->p_zone)) {
2613 			atomic_add_long(&svd->swresv, ptob(1));
2614 		} else {
2615 			page_unlock(opp);
2616 			err = ENOMEM;
2617 			goto out;
2618 		}
2619 	}
2620 	oldap = ap;
2621 	pp = anon_private(&ap, seg, addr, prot, opp, pageflags, svd->cred);
2622 	if (pp == NULL) {
2623 		err = ENOMEM;	/* out of swap space */
2624 		goto out;
2625 	}
2626 
2627 	/*
2628 	 * If we copied away from an anonymous page, then
2629 	 * we are one step closer to freeing up an anon slot.
2630 	 *
2631 	 * NOTE:  The original anon slot must be released while
2632 	 * holding the "anon_map" lock.  This is necessary to prevent
2633 	 * other threads from obtaining a pointer to the anon slot
2634 	 * which may be freed if its "refcnt" is 1.
2635 	 */
2636 	if (oldap != NULL)
2637 		anon_decref(oldap);
2638 
2639 	(void) anon_set_ptr(amp->ahp, anon_index, ap, ANON_SLEEP);
2640 
2641 	/*
2642 	 * Handle pages that have been marked for migration
2643 	 */
2644 	if (lgrp_optimizations())
2645 		page_migrate(seg, addr, &pp, 1);
2646 
2647 	ASSERT(pp->p_szc == 0);
2648 	if (type == F_SOFTLOCK && svd->vp == NULL) {
2649 		if (!segvn_pp_lock_anonpages(pp, first)) {
2650 			page_unlock(pp);
2651 			err = ENOMEM;
2652 			goto out;
2653 		} else {
2654 			mutex_enter(&freemem_lock);
2655 			svd->softlockcnt++;
2656 			segvn_pages_locked++;
2657 			mutex_exit(&freemem_lock);
2658 		}
2659 	}
2660 
2661 	ASSERT(!IS_VMODSORT(pp->p_vnode));
2662 	if (enable_mbit_wa) {
2663 		if (rw == S_WRITE)
2664 			hat_setmod(pp);
2665 		else if (!hat_ismod(pp))
2666 			prot &= ~PROT_WRITE;
2667 	}
2668 
2669 	hat_memload(hat, addr, pp, prot, hat_flag);
2670 
2671 	if (!(hat_flag & HAT_LOAD_LOCK))
2672 		page_unlock(pp);
2673 
2674 	ASSERT(anon_lock);
2675 	anon_array_exit(&cookie);
2676 	return (0);
2677 out:
2678 	if (anon_lock)
2679 		anon_array_exit(&cookie);
2680 
2681 	if (type == F_SOFTLOCK && svd->vp != NULL) {
2682 		mutex_enter(&freemem_lock);
2683 		availrmem++;
2684 		segvn_pages_locked--;
2685 		svd->softlockcnt--;
2686 		mutex_exit(&freemem_lock);
2687 	}
2688 	return (FC_MAKE_ERR(err));
2689 }
2690 
2691 /*
2692  * relocate a bunch of smaller targ pages into one large repl page. all targ
2693  * pages must be complete pages smaller than replacement pages.
2694  * it's assumed that no page's szc can change since they are all PAGESIZE or
2695  * complete large pages locked SHARED.
2696  */
2697 static void
2698 segvn_relocate_pages(page_t **targ, page_t *replacement)
2699 {
2700 	page_t *pp;
2701 	pgcnt_t repl_npgs, curnpgs;
2702 	pgcnt_t i;
2703 	uint_t repl_szc = replacement->p_szc;
2704 	page_t *first_repl = replacement;
2705 	page_t *repl;
2706 	spgcnt_t npgs;
2707 
2708 	VM_STAT_ADD(segvnvmstats.relocatepages[0]);
2709 
2710 	ASSERT(repl_szc != 0);
2711 	npgs = repl_npgs = page_get_pagecnt(repl_szc);
2712 
2713 	i = 0;
2714 	while (repl_npgs) {
2715 		spgcnt_t nreloc;
2716 		int err;
2717 		ASSERT(replacement != NULL);
2718 		pp = targ[i];
2719 		ASSERT(pp->p_szc < repl_szc);
2720 		ASSERT(PAGE_EXCL(pp));
2721 		ASSERT(!PP_ISFREE(pp));
2722 		curnpgs = page_get_pagecnt(pp->p_szc);
2723 		if (curnpgs == 1) {
2724 			VM_STAT_ADD(segvnvmstats.relocatepages[1]);
2725 			repl = replacement;
2726 			page_sub(&replacement, repl);
2727 			ASSERT(PAGE_EXCL(repl));
2728 			ASSERT(!PP_ISFREE(repl));
2729 			ASSERT(repl->p_szc == repl_szc);
2730 		} else {
2731 			page_t *repl_savepp;
2732 			int j;
2733 			VM_STAT_ADD(segvnvmstats.relocatepages[2]);
2734 			repl_savepp = replacement;
2735 			for (j = 0; j < curnpgs; j++) {
2736 				repl = replacement;
2737 				page_sub(&replacement, repl);
2738 				ASSERT(PAGE_EXCL(repl));
2739 				ASSERT(!PP_ISFREE(repl));
2740 				ASSERT(repl->p_szc == repl_szc);
2741 				ASSERT(page_pptonum(targ[i + j]) ==
2742 				    page_pptonum(targ[i]) + j);
2743 			}
2744 			repl = repl_savepp;
2745 			ASSERT(IS_P2ALIGNED(page_pptonum(repl), curnpgs));
2746 		}
2747 		err = page_relocate(&pp, &repl, 0, 1, &nreloc, NULL);
2748 		if (err || nreloc != curnpgs) {
2749 			panic("segvn_relocate_pages: "
2750 			    "page_relocate failed err=%d curnpgs=%ld "
2751 			    "nreloc=%ld", err, curnpgs, nreloc);
2752 		}
2753 		ASSERT(curnpgs <= repl_npgs);
2754 		repl_npgs -= curnpgs;
2755 		i += curnpgs;
2756 	}
2757 	ASSERT(replacement == NULL);
2758 
2759 	repl = first_repl;
2760 	repl_npgs = npgs;
2761 	for (i = 0; i < repl_npgs; i++) {
2762 		ASSERT(PAGE_EXCL(repl));
2763 		ASSERT(!PP_ISFREE(repl));
2764 		targ[i] = repl;
2765 		page_downgrade(targ[i]);
2766 		repl++;
2767 	}
2768 }
2769 
2770 /*
2771  * Check if all pages in ppa array are complete smaller than szc pages and
2772  * their roots will still be aligned relative to their current size if the
2773  * entire ppa array is relocated into one szc page. If these conditions are
2774  * not met return 0.
2775  *
2776  * If all pages are properly aligned attempt to upgrade their locks
2777  * to exclusive mode. If it fails set *upgrdfail to 1 and return 0.
2778  * upgrdfail was set to 0 by caller.
2779  *
2780  * Return 1 if all pages are aligned and locked exclusively.
2781  *
2782  * If all pages in ppa array happen to be physically contiguous to make one
2783  * szc page and all exclusive locks are successfully obtained promote the page
2784  * size to szc and set *pszc to szc. Return 1 with pages locked shared.
2785  */
2786 static int
2787 segvn_full_szcpages(page_t **ppa, uint_t szc, int *upgrdfail, uint_t *pszc)
2788 {
2789 	page_t *pp;
2790 	pfn_t pfn;
2791 	pgcnt_t totnpgs = page_get_pagecnt(szc);
2792 	pfn_t first_pfn;
2793 	int contig = 1;
2794 	pgcnt_t i;
2795 	pgcnt_t j;
2796 	uint_t curszc;
2797 	pgcnt_t curnpgs;
2798 	int root = 0;
2799 
2800 	ASSERT(szc > 0);
2801 
2802 	VM_STAT_ADD(segvnvmstats.fullszcpages[0]);
2803 
2804 	for (i = 0; i < totnpgs; i++) {
2805 		pp = ppa[i];
2806 		ASSERT(PAGE_SHARED(pp));
2807 		ASSERT(!PP_ISFREE(pp));
2808 		pfn = page_pptonum(pp);
2809 		if (i == 0) {
2810 			if (!IS_P2ALIGNED(pfn, totnpgs)) {
2811 				contig = 0;
2812 			} else {
2813 				first_pfn = pfn;
2814 			}
2815 		} else if (contig && pfn != first_pfn + i) {
2816 			contig = 0;
2817 		}
2818 		if (pp->p_szc == 0) {
2819 			if (root) {
2820 				VM_STAT_ADD(segvnvmstats.fullszcpages[1]);
2821 				return (0);
2822 			}
2823 		} else if (!root) {
2824 			if ((curszc = pp->p_szc) >= szc) {
2825 				VM_STAT_ADD(segvnvmstats.fullszcpages[2]);
2826 				return (0);
2827 			}
2828 			if (curszc == 0) {
2829 				/*
2830 				 * p_szc changed means we don't have all pages
2831 				 * locked. return failure.
2832 				 */
2833 				VM_STAT_ADD(segvnvmstats.fullszcpages[3]);
2834 				return (0);
2835 			}
2836 			curnpgs = page_get_pagecnt(curszc);
2837 			if (!IS_P2ALIGNED(pfn, curnpgs) ||
2838 			    !IS_P2ALIGNED(i, curnpgs)) {
2839 				VM_STAT_ADD(segvnvmstats.fullszcpages[4]);
2840 				return (0);
2841 			}
2842 			root = 1;
2843 		} else {
2844 			ASSERT(i > 0);
2845 			VM_STAT_ADD(segvnvmstats.fullszcpages[5]);
2846 			if (pp->p_szc != curszc) {
2847 				VM_STAT_ADD(segvnvmstats.fullszcpages[6]);
2848 				return (0);
2849 			}
2850 			if (pfn - 1 != page_pptonum(ppa[i - 1])) {
2851 				panic("segvn_full_szcpages: "
2852 				    "large page not physically contiguous");
2853 			}
2854 			if (P2PHASE(pfn, curnpgs) == curnpgs - 1) {
2855 				root = 0;
2856 			}
2857 		}
2858 	}
2859 
2860 	for (i = 0; i < totnpgs; i++) {
2861 		ASSERT(ppa[i]->p_szc < szc);
2862 		if (!page_tryupgrade(ppa[i])) {
2863 			for (j = 0; j < i; j++) {
2864 				page_downgrade(ppa[j]);
2865 			}
2866 			*pszc = ppa[i]->p_szc;
2867 			*upgrdfail = 1;
2868 			VM_STAT_ADD(segvnvmstats.fullszcpages[7]);
2869 			return (0);
2870 		}
2871 	}
2872 
2873 	/*
2874 	 * When a page is put a free cachelist its szc is set to 0.  if file
2875 	 * system reclaimed pages from cachelist targ pages will be physically
2876 	 * contiguous with 0 p_szc.  in this case just upgrade szc of targ
2877 	 * pages without any relocations.
2878 	 * To avoid any hat issues with previous small mappings
2879 	 * hat_pageunload() the target pages first.
2880 	 */
2881 	if (contig) {
2882 		VM_STAT_ADD(segvnvmstats.fullszcpages[8]);
2883 		for (i = 0; i < totnpgs; i++) {
2884 			(void) hat_pageunload(ppa[i], HAT_FORCE_PGUNLOAD);
2885 		}
2886 		for (i = 0; i < totnpgs; i++) {
2887 			ppa[i]->p_szc = szc;
2888 		}
2889 		for (i = 0; i < totnpgs; i++) {
2890 			ASSERT(PAGE_EXCL(ppa[i]));
2891 			page_downgrade(ppa[i]);
2892 		}
2893 		if (pszc != NULL) {
2894 			*pszc = szc;
2895 		}
2896 	}
2897 	VM_STAT_ADD(segvnvmstats.fullszcpages[9]);
2898 	return (1);
2899 }
2900 
2901 /*
2902  * Create physically contiguous pages for [vp, off] - [vp, off +
2903  * page_size(szc)) range and for private segment return them in ppa array.
2904  * Pages are created either via IO or relocations.
2905  *
2906  * Return 1 on sucess and 0 on failure.
2907  *
2908  * If physically contiguos pages already exist for this range return 1 without
2909  * filling ppa array. Caller initializes ppa[0] as NULL to detect that ppa
2910  * array wasn't filled. In this case caller fills ppa array via VOP_GETPAGE().
2911  */
2912 
2913 static int
2914 segvn_fill_vp_pages(struct segvn_data *svd, vnode_t *vp, u_offset_t off,
2915     uint_t szc, page_t **ppa, page_t **ppplist, uint_t *ret_pszc,
2916     int *downsize)
2917 
2918 {
2919 	page_t *pplist = *ppplist;
2920 	size_t pgsz = page_get_pagesize(szc);
2921 	pgcnt_t pages = btop(pgsz);
2922 	ulong_t start_off = off;
2923 	u_offset_t eoff = off + pgsz;
2924 	spgcnt_t nreloc;
2925 	u_offset_t io_off = off;
2926 	size_t io_len;
2927 	page_t *io_pplist = NULL;
2928 	page_t *done_pplist = NULL;
2929 	pgcnt_t pgidx = 0;
2930 	page_t *pp;
2931 	page_t *newpp;
2932 	page_t *targpp;
2933 	int io_err = 0;
2934 	int i;
2935 	pfn_t pfn;
2936 	ulong_t ppages;
2937 	page_t *targ_pplist = NULL;
2938 	page_t *repl_pplist = NULL;
2939 	page_t *tmp_pplist;
2940 	int nios = 0;
2941 	uint_t pszc;
2942 	struct vattr va;
2943 
2944 	VM_STAT_ADD(segvnvmstats.fill_vp_pages[0]);
2945 
2946 	ASSERT(szc != 0);
2947 	ASSERT(pplist->p_szc == szc);
2948 
2949 	/*
2950 	 * downsize will be set to 1 only if we fail to lock pages. this will
2951 	 * allow subsequent faults to try to relocate the page again. If we
2952 	 * fail due to misalignment don't downsize and let the caller map the
2953 	 * whole region with small mappings to avoid more faults into the area
2954 	 * where we can't get large pages anyway.
2955 	 */
2956 	*downsize = 0;
2957 
2958 	while (off < eoff) {
2959 		newpp = pplist;
2960 		ASSERT(newpp != NULL);
2961 		ASSERT(PAGE_EXCL(newpp));
2962 		ASSERT(!PP_ISFREE(newpp));
2963 		/*
2964 		 * we pass NULL for nrelocp to page_lookup_create()
2965 		 * so that it doesn't relocate. We relocate here
2966 		 * later only after we make sure we can lock all
2967 		 * pages in the range we handle and they are all
2968 		 * aligned.
2969 		 */
2970 		pp = page_lookup_create(vp, off, SE_SHARED, newpp, NULL, 0);
2971 		ASSERT(pp != NULL);
2972 		ASSERT(!PP_ISFREE(pp));
2973 		ASSERT(pp->p_vnode == vp);
2974 		ASSERT(pp->p_offset == off);
2975 		if (pp == newpp) {
2976 			VM_STAT_ADD(segvnvmstats.fill_vp_pages[1]);
2977 			page_sub(&pplist, pp);
2978 			ASSERT(PAGE_EXCL(pp));
2979 			ASSERT(page_iolock_assert(pp));
2980 			page_list_concat(&io_pplist, &pp);
2981 			off += PAGESIZE;
2982 			continue;
2983 		}
2984 		VM_STAT_ADD(segvnvmstats.fill_vp_pages[2]);
2985 		pfn = page_pptonum(pp);
2986 		pszc = pp->p_szc;
2987 		if (pszc >= szc && targ_pplist == NULL && io_pplist == NULL &&
2988 		    IS_P2ALIGNED(pfn, pages)) {
2989 			ASSERT(repl_pplist == NULL);
2990 			ASSERT(done_pplist == NULL);
2991 			ASSERT(pplist == *ppplist);
2992 			page_unlock(pp);
2993 			page_free_replacement_page(pplist);
2994 			page_create_putback(pages);
2995 			*ppplist = NULL;
2996 			VM_STAT_ADD(segvnvmstats.fill_vp_pages[3]);
2997 			return (1);
2998 		}
2999 		if (pszc >= szc) {
3000 			page_unlock(pp);
3001 			segvn_faultvnmpss_align_err1++;
3002 			goto out;
3003 		}
3004 		ppages = page_get_pagecnt(pszc);
3005 		if (!IS_P2ALIGNED(pfn, ppages)) {
3006 			ASSERT(pszc > 0);
3007 			/*
3008 			 * sizing down to pszc won't help.
3009 			 */
3010 			page_unlock(pp);
3011 			segvn_faultvnmpss_align_err2++;
3012 			goto out;
3013 		}
3014 		pfn = page_pptonum(newpp);
3015 		if (!IS_P2ALIGNED(pfn, ppages)) {
3016 			ASSERT(pszc > 0);
3017 			/*
3018 			 * sizing down to pszc won't help.
3019 			 */
3020 			page_unlock(pp);
3021 			segvn_faultvnmpss_align_err3++;
3022 			goto out;
3023 		}
3024 		if (!PAGE_EXCL(pp)) {
3025 			VM_STAT_ADD(segvnvmstats.fill_vp_pages[4]);
3026 			page_unlock(pp);
3027 			*downsize = 1;
3028 			*ret_pszc = pp->p_szc;
3029 			goto out;
3030 		}
3031 		targpp = pp;
3032 		if (io_pplist != NULL) {
3033 			VM_STAT_ADD(segvnvmstats.fill_vp_pages[5]);
3034 			io_len = off - io_off;
3035 			/*
3036 			 * Some file systems like NFS don't check EOF
3037 			 * conditions in VOP_PAGEIO(). Check it here
3038 			 * now that pages are locked SE_EXCL. Any file
3039 			 * truncation will wait until the pages are
3040 			 * unlocked so no need to worry that file will
3041 			 * be truncated after we check its size here.
3042 			 * XXX fix NFS to remove this check.
3043 			 */
3044 			va.va_mask = AT_SIZE;
3045 			if (VOP_GETATTR(vp, &va, ATTR_HINT, svd->cred) != 0) {
3046 				VM_STAT_ADD(segvnvmstats.fill_vp_pages[6]);
3047 				page_unlock(targpp);
3048 				goto out;
3049 			}
3050 			if (btopr(va.va_size) < btopr(io_off + io_len)) {
3051 				VM_STAT_ADD(segvnvmstats.fill_vp_pages[7]);
3052 				*downsize = 1;
3053 				*ret_pszc = 0;
3054 				page_unlock(targpp);
3055 				goto out;
3056 			}
3057 			io_err = VOP_PAGEIO(vp, io_pplist, io_off, io_len,
3058 				B_READ, svd->cred);
3059 			if (io_err) {
3060 				VM_STAT_ADD(segvnvmstats.fill_vp_pages[8]);
3061 				page_unlock(targpp);
3062 				if (io_err == EDEADLK) {
3063 					segvn_vmpss_pageio_deadlk_err++;
3064 				}
3065 				goto out;
3066 			}
3067 			nios++;
3068 			VM_STAT_ADD(segvnvmstats.fill_vp_pages[9]);
3069 			while (io_pplist != NULL) {
3070 				pp = io_pplist;
3071 				page_sub(&io_pplist, pp);
3072 				ASSERT(page_iolock_assert(pp));
3073 				page_io_unlock(pp);
3074 				pgidx = (pp->p_offset - start_off) >>
3075 				    PAGESHIFT;
3076 				ASSERT(pgidx < pages);
3077 				ppa[pgidx] = pp;
3078 				page_list_concat(&done_pplist, &pp);
3079 			}
3080 		}
3081 		pp = targpp;
3082 		ASSERT(PAGE_EXCL(pp));
3083 		ASSERT(pp->p_szc <= pszc);
3084 		if (pszc != 0 && !group_page_trylock(pp, SE_EXCL)) {
3085 			VM_STAT_ADD(segvnvmstats.fill_vp_pages[10]);
3086 			page_unlock(pp);
3087 			*downsize = 1;
3088 			*ret_pszc = pp->p_szc;
3089 			goto out;
3090 		}
3091 		VM_STAT_ADD(segvnvmstats.fill_vp_pages[11]);
3092 		/*
3093 		 * page szc chould have changed before the entire group was
3094 		 * locked. reread page szc.
3095 		 */
3096 		pszc = pp->p_szc;
3097 		ppages = page_get_pagecnt(pszc);
3098 
3099 		/* link just the roots */
3100 		page_list_concat(&targ_pplist, &pp);
3101 		page_sub(&pplist, newpp);
3102 		page_list_concat(&repl_pplist, &newpp);
3103 		off += PAGESIZE;
3104 		while (--ppages != 0) {
3105 			newpp = pplist;
3106 			page_sub(&pplist, newpp);
3107 			off += PAGESIZE;
3108 		}
3109 		io_off = off;
3110 	}
3111 	if (io_pplist != NULL) {
3112 		VM_STAT_ADD(segvnvmstats.fill_vp_pages[12]);
3113 		io_len = eoff - io_off;
3114 		va.va_mask = AT_SIZE;
3115 		if (VOP_GETATTR(vp, &va, ATTR_HINT, svd->cred) != 0) {
3116 			VM_STAT_ADD(segvnvmstats.fill_vp_pages[13]);
3117 			goto out;
3118 		}
3119 		if (btopr(va.va_size) < btopr(io_off + io_len)) {
3120 			VM_STAT_ADD(segvnvmstats.fill_vp_pages[14]);
3121 			*downsize = 1;
3122 			*ret_pszc = 0;
3123 			goto out;
3124 		}
3125 		io_err = VOP_PAGEIO(vp, io_pplist, io_off, io_len,
3126 		    B_READ, svd->cred);
3127 		if (io_err) {
3128 			VM_STAT_ADD(segvnvmstats.fill_vp_pages[15]);
3129 			if (io_err == EDEADLK) {
3130 				segvn_vmpss_pageio_deadlk_err++;
3131 			}
3132 			goto out;
3133 		}
3134 		nios++;
3135 		while (io_pplist != NULL) {
3136 			pp = io_pplist;
3137 			page_sub(&io_pplist, pp);
3138 			ASSERT(page_iolock_assert(pp));
3139 			page_io_unlock(pp);
3140 			pgidx = (pp->p_offset - start_off) >> PAGESHIFT;
3141 			ASSERT(pgidx < pages);
3142 			ppa[pgidx] = pp;
3143 		}
3144 	}
3145 	/*
3146 	 * we're now bound to succeed or panic.
3147 	 * remove pages from done_pplist. it's not needed anymore.
3148 	 */
3149 	while (done_pplist != NULL) {
3150 		pp = done_pplist;
3151 		page_sub(&done_pplist, pp);
3152 	}
3153 	VM_STAT_ADD(segvnvmstats.fill_vp_pages[16]);
3154 	ASSERT(pplist == NULL);
3155 	*ppplist = NULL;
3156 	while (targ_pplist != NULL) {
3157 		int ret;
3158 		VM_STAT_ADD(segvnvmstats.fill_vp_pages[17]);
3159 		ASSERT(repl_pplist);
3160 		pp = targ_pplist;
3161 		page_sub(&targ_pplist, pp);
3162 		pgidx = (pp->p_offset - start_off) >> PAGESHIFT;
3163 		newpp = repl_pplist;
3164 		page_sub(&repl_pplist, newpp);
3165 #ifdef DEBUG
3166 		pfn = page_pptonum(pp);
3167 		pszc = pp->p_szc;
3168 		ppages = page_get_pagecnt(pszc);
3169 		ASSERT(IS_P2ALIGNED(pfn, ppages));
3170 		pfn = page_pptonum(newpp);
3171 		ASSERT(IS_P2ALIGNED(pfn, ppages));
3172 		ASSERT(P2PHASE(pfn, pages) == pgidx);
3173 #endif
3174 		nreloc = 0;
3175 		ret = page_relocate(&pp, &newpp, 0, 1, &nreloc, NULL);
3176 		if (ret != 0 || nreloc == 0) {
3177 			panic("segvn_fill_vp_pages: "
3178 			    "page_relocate failed");
3179 		}
3180 		pp = newpp;
3181 		while (nreloc-- != 0) {
3182 			ASSERT(PAGE_EXCL(pp));
3183 			ASSERT(pp->p_vnode == vp);
3184 			ASSERT(pgidx ==
3185 			    ((pp->p_offset - start_off) >> PAGESHIFT));
3186 			ppa[pgidx++] = pp;
3187 			pp++;
3188 		}
3189 	}
3190 
3191 	if (svd->type == MAP_PRIVATE) {
3192 		VM_STAT_ADD(segvnvmstats.fill_vp_pages[18]);
3193 		for (i = 0; i < pages; i++) {
3194 			ASSERT(ppa[i] != NULL);
3195 			ASSERT(PAGE_EXCL(ppa[i]));
3196 			ASSERT(ppa[i]->p_vnode == vp);
3197 			ASSERT(ppa[i]->p_offset ==
3198 			    start_off + (i << PAGESHIFT));
3199 			page_downgrade(ppa[i]);
3200 		}
3201 		ppa[pages] = NULL;
3202 	} else {
3203 		VM_STAT_ADD(segvnvmstats.fill_vp_pages[19]);
3204 		/*
3205 		 * the caller will still call VOP_GETPAGE() for shared segments
3206 		 * to check FS write permissions. For private segments we map
3207 		 * file read only anyway.  so no VOP_GETPAGE is needed.
3208 		 */
3209 		for (i = 0; i < pages; i++) {
3210 			ASSERT(ppa[i] != NULL);
3211 			ASSERT(PAGE_EXCL(ppa[i]));
3212 			ASSERT(ppa[i]->p_vnode == vp);
3213 			ASSERT(ppa[i]->p_offset ==
3214 			    start_off + (i << PAGESHIFT));
3215 			page_unlock(ppa[i]);
3216 		}
3217 		ppa[0] = NULL;
3218 	}
3219 
3220 	return (1);
3221 out:
3222 	/*
3223 	 * Do the cleanup. Unlock target pages we didn't relocate. They are
3224 	 * linked on targ_pplist by root pages. reassemble unused replacement
3225 	 * and io pages back to pplist.
3226 	 */
3227 	if (io_pplist != NULL) {
3228 		VM_STAT_ADD(segvnvmstats.fill_vp_pages[20]);
3229 		pp = io_pplist;
3230 		do {
3231 			ASSERT(pp->p_vnode == vp);
3232 			ASSERT(pp->p_offset == io_off);
3233 			ASSERT(page_iolock_assert(pp));
3234 			page_io_unlock(pp);
3235 			page_hashout(pp, NULL);
3236 			io_off += PAGESIZE;
3237 		} while ((pp = pp->p_next) != io_pplist);
3238 		page_list_concat(&io_pplist, &pplist);
3239 		pplist = io_pplist;
3240 	}
3241 	tmp_pplist = NULL;
3242 	while (targ_pplist != NULL) {
3243 		VM_STAT_ADD(segvnvmstats.fill_vp_pages[21]);
3244 		pp = targ_pplist;
3245 		ASSERT(PAGE_EXCL(pp));
3246 		page_sub(&targ_pplist, pp);
3247 
3248 		pszc = pp->p_szc;
3249 		ppages = page_get_pagecnt(pszc);
3250 		ASSERT(IS_P2ALIGNED(page_pptonum(pp), ppages));
3251 
3252 		if (pszc != 0) {
3253 			group_page_unlock(pp);
3254 		}
3255 		page_unlock(pp);
3256 
3257 		pp = repl_pplist;
3258 		ASSERT(pp != NULL);
3259 		ASSERT(PAGE_EXCL(pp));
3260 		ASSERT(pp->p_szc == szc);
3261 		page_sub(&repl_pplist, pp);
3262 
3263 		ASSERT(IS_P2ALIGNED(page_pptonum(pp), ppages));
3264 
3265 		/* relink replacement page */
3266 		page_list_concat(&tmp_pplist, &pp);
3267 		while (--ppages != 0) {
3268 			VM_STAT_ADD(segvnvmstats.fill_vp_pages[22]);
3269 			pp++;
3270 			ASSERT(PAGE_EXCL(pp));
3271 			ASSERT(pp->p_szc == szc);
3272 			page_list_concat(&tmp_pplist, &pp);
3273 		}
3274 	}
3275 	if (tmp_pplist != NULL) {
3276 		VM_STAT_ADD(segvnvmstats.fill_vp_pages[23]);
3277 		page_list_concat(&tmp_pplist, &pplist);
3278 		pplist = tmp_pplist;
3279 	}
3280 	/*
3281 	 * at this point all pages are either on done_pplist or
3282 	 * pplist. They can't be all on done_pplist otherwise
3283 	 * we'd've been done.
3284 	 */
3285 	ASSERT(pplist != NULL);
3286 	if (nios != 0) {
3287 		VM_STAT_ADD(segvnvmstats.fill_vp_pages[24]);
3288 		pp = pplist;
3289 		do {
3290 			VM_STAT_ADD(segvnvmstats.fill_vp_pages[25]);
3291 			ASSERT(pp->p_szc == szc);
3292 			ASSERT(PAGE_EXCL(pp));
3293 			ASSERT(pp->p_vnode != vp);
3294 			pp->p_szc = 0;
3295 		} while ((pp = pp->p_next) != pplist);
3296 
3297 		pp = done_pplist;
3298 		do {
3299 			VM_STAT_ADD(segvnvmstats.fill_vp_pages[26]);
3300 			ASSERT(pp->p_szc == szc);
3301 			ASSERT(PAGE_EXCL(pp));
3302 			ASSERT(pp->p_vnode == vp);
3303 			pp->p_szc = 0;
3304 		} while ((pp = pp->p_next) != done_pplist);
3305 
3306 		while (pplist != NULL) {
3307 			VM_STAT_ADD(segvnvmstats.fill_vp_pages[27]);
3308 			pp = pplist;
3309 			page_sub(&pplist, pp);
3310 			page_free(pp, 0);
3311 		}
3312 
3313 		while (done_pplist != NULL) {
3314 			VM_STAT_ADD(segvnvmstats.fill_vp_pages[28]);
3315 			pp = done_pplist;
3316 			page_sub(&done_pplist, pp);
3317 			page_unlock(pp);
3318 		}
3319 		*ppplist = NULL;
3320 		return (0);
3321 	}
3322 	ASSERT(pplist == *ppplist);
3323 	if (io_err) {
3324 		VM_STAT_ADD(segvnvmstats.fill_vp_pages[29]);
3325 		/*
3326 		 * don't downsize on io error.
3327 		 * see if vop_getpage succeeds.
3328 		 * pplist may still be used in this case
3329 		 * for relocations.
3330 		 */
3331 		return (0);
3332 	}
3333 	VM_STAT_ADD(segvnvmstats.fill_vp_pages[30]);
3334 	page_free_replacement_page(pplist);
3335 	page_create_putback(pages);
3336 	*ppplist = NULL;
3337 	return (0);
3338 }
3339 
3340 int segvn_anypgsz = 0;
3341 
3342 #define	SEGVN_RESTORE_SOFTLOCK(type, pages) 		\
3343 		if ((type) == F_SOFTLOCK) {		\
3344 			mutex_enter(&freemem_lock);	\
3345 			availrmem += (pages);		\
3346 			segvn_pages_locked -= (pages);	\
3347 			svd->softlockcnt -= (pages);	\
3348 			mutex_exit(&freemem_lock);	\
3349 		}
3350 
3351 #define	SEGVN_UPDATE_MODBITS(ppa, pages, rw, prot, vpprot)		\
3352 		if (IS_VMODSORT((ppa)[0]->p_vnode)) {			\
3353 			if ((rw) == S_WRITE) {				\
3354 				for (i = 0; i < (pages); i++) {		\
3355 					ASSERT((ppa)[i]->p_vnode ==	\
3356 					    (ppa)[0]->p_vnode);		\
3357 					hat_setmod((ppa)[i]);		\
3358 				}					\
3359 			} else if ((rw) != S_OTHER &&			\
3360 			    ((prot) & (vpprot) & PROT_WRITE)) {		\
3361 				for (i = 0; i < (pages); i++) {		\
3362 					ASSERT((ppa)[i]->p_vnode ==	\
3363 					    (ppa)[0]->p_vnode);		\
3364 					if (!hat_ismod((ppa)[i])) {	\
3365 						prot &= ~PROT_WRITE;	\
3366 						break;			\
3367 					}				\
3368 				}					\
3369 			}						\
3370 		}
3371 
3372 #ifdef  VM_STATS
3373 
3374 #define	SEGVN_VMSTAT_FLTVNPAGES(idx)					\
3375 		VM_STAT_ADD(segvnvmstats.fltvnpages[(idx)]);
3376 
3377 #else /* VM_STATS */
3378 
3379 #define	SEGVN_VMSTAT_FLTVNPAGES(idx)
3380 
3381 #endif
3382 
3383 static faultcode_t
3384 segvn_fault_vnodepages(struct hat *hat, struct seg *seg, caddr_t lpgaddr,
3385     caddr_t lpgeaddr, enum fault_type type, enum seg_rw rw, caddr_t addr,
3386     caddr_t eaddr, int brkcow)
3387 {
3388 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
3389 	struct anon_map *amp = svd->amp;
3390 	uchar_t segtype = svd->type;
3391 	uint_t szc = seg->s_szc;
3392 	size_t pgsz = page_get_pagesize(szc);
3393 	size_t maxpgsz = pgsz;
3394 	pgcnt_t pages = btop(pgsz);
3395 	pgcnt_t maxpages = pages;
3396 	size_t ppasize = (pages + 1) * sizeof (page_t *);
3397 	caddr_t a = lpgaddr;
3398 	caddr_t	maxlpgeaddr = lpgeaddr;
3399 	u_offset_t off = svd->offset + (uintptr_t)(a - seg->s_base);
3400 	ulong_t aindx = svd->anon_index + seg_page(seg, a);
3401 	struct vpage *vpage = (svd->vpage != NULL) ?
3402 	    &svd->vpage[seg_page(seg, a)] : NULL;
3403 	vnode_t *vp = svd->vp;
3404 	page_t **ppa;
3405 	uint_t	pszc;
3406 	size_t	ppgsz;
3407 	pgcnt_t	ppages;
3408 	faultcode_t err = 0;
3409 	int ierr;
3410 	int vop_size_err = 0;
3411 	uint_t protchk, prot, vpprot;
3412 	ulong_t i;
3413 	int hat_flag = (type == F_SOFTLOCK) ? HAT_LOAD_LOCK : HAT_LOAD;
3414 	anon_sync_obj_t an_cookie;
3415 	enum seg_rw arw;
3416 	int alloc_failed = 0;
3417 	int adjszc_chk;
3418 	struct vattr va;
3419 	int xhat = 0;
3420 	page_t *pplist;
3421 	pfn_t pfn;
3422 	int physcontig;
3423 	int upgrdfail;
3424 	int segvn_anypgsz_vnode = 0; /* for now map vnode with 2 page sizes */
3425 
3426 	ASSERT(szc != 0);
3427 	ASSERT(vp != NULL);
3428 	ASSERT(brkcow == 0 || amp != NULL);
3429 	ASSERT(enable_mbit_wa == 0); /* no mbit simulations with large pages */
3430 	ASSERT(!(svd->flags & MAP_NORESERVE));
3431 	ASSERT(type != F_SOFTUNLOCK);
3432 	ASSERT(IS_P2ALIGNED(a, maxpgsz));
3433 	ASSERT(amp == NULL || IS_P2ALIGNED(aindx, maxpages));
3434 	ASSERT(SEGVN_LOCK_HELD(seg->s_as, &svd->lock));
3435 	ASSERT(seg->s_szc < NBBY * sizeof (int));
3436 	ASSERT(type != F_SOFTLOCK || lpgeaddr - a == maxpgsz);
3437 
3438 	VM_STAT_COND_ADD(type == F_SOFTLOCK, segvnvmstats.fltvnpages[0]);
3439 	VM_STAT_COND_ADD(type != F_SOFTLOCK, segvnvmstats.fltvnpages[1]);
3440 
3441 	if (svd->flags & MAP_TEXT) {
3442 		hat_flag |= HAT_LOAD_TEXT;
3443 	}
3444 
3445 	if (svd->pageprot) {
3446 		switch (rw) {
3447 		case S_READ:
3448 			protchk = PROT_READ;
3449 			break;
3450 		case S_WRITE:
3451 			protchk = PROT_WRITE;
3452 			break;
3453 		case S_EXEC:
3454 			protchk = PROT_EXEC;
3455 			break;
3456 		case S_OTHER:
3457 		default:
3458 			protchk = PROT_READ | PROT_WRITE | PROT_EXEC;
3459 			break;
3460 		}
3461 	} else {
3462 		prot = svd->prot;
3463 		/* caller has already done segment level protection check. */
3464 	}
3465 
3466 	if (seg->s_as->a_hat != hat) {
3467 		xhat = 1;
3468 	}
3469 
3470 	if (rw == S_WRITE && segtype == MAP_PRIVATE) {
3471 		SEGVN_VMSTAT_FLTVNPAGES(2);
3472 		arw = S_READ;
3473 	} else {
3474 		arw = rw;
3475 	}
3476 
3477 	ppa = kmem_alloc(ppasize, KM_SLEEP);
3478 
3479 	VM_STAT_COND_ADD(amp != NULL, segvnvmstats.fltvnpages[3]);
3480 
3481 	for (;;) {
3482 		adjszc_chk = 0;
3483 		for (; a < lpgeaddr; a += pgsz, off += pgsz, aindx += pages) {
3484 			if (adjszc_chk) {
3485 				while (szc < seg->s_szc) {
3486 					uintptr_t e;
3487 					uint_t tszc;
3488 					tszc = segvn_anypgsz_vnode ? szc + 1 :
3489 					    seg->s_szc;
3490 					ppgsz = page_get_pagesize(tszc);
3491 					if (!IS_P2ALIGNED(a, ppgsz) ||
3492 					    ((alloc_failed >> tszc) &
3493 						0x1)) {
3494 						break;
3495 					}
3496 					SEGVN_VMSTAT_FLTVNPAGES(4);
3497 					szc = tszc;
3498 					pgsz = ppgsz;
3499 					pages = btop(pgsz);
3500 					e = P2ROUNDUP((uintptr_t)eaddr, pgsz);
3501 					lpgeaddr = (caddr_t)e;
3502 				}
3503 			}
3504 
3505 		again:
3506 			if (IS_P2ALIGNED(a, maxpgsz) && amp != NULL) {
3507 				ASSERT(IS_P2ALIGNED(aindx, maxpages));
3508 				ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
3509 				anon_array_enter(amp, aindx, &an_cookie);
3510 				if (anon_get_ptr(amp->ahp, aindx) != NULL) {
3511 					SEGVN_VMSTAT_FLTVNPAGES(5);
3512 					if (anon_pages(amp->ahp, aindx,
3513 					    maxpages) != maxpages) {
3514 						panic("segvn_fault_vnodepages:"
3515 						    " empty anon slots\n");
3516 					}
3517 					anon_array_exit(&an_cookie);
3518 					ANON_LOCK_EXIT(&amp->a_rwlock);
3519 					err = segvn_fault_anonpages(hat, seg,
3520 					    a, a + maxpgsz, type, rw,
3521 					    MAX(a, addr),
3522 					    MIN(a + maxpgsz, eaddr), brkcow);
3523 					if (err != 0) {
3524 						SEGVN_VMSTAT_FLTVNPAGES(6);
3525 						goto out;
3526 					}
3527 					if (szc < seg->s_szc) {
3528 						szc = seg->s_szc;
3529 						pgsz = maxpgsz;
3530 						pages = maxpages;
3531 						lpgeaddr = maxlpgeaddr;
3532 					}
3533 					goto next;
3534 				} else if (anon_pages(amp->ahp, aindx,
3535 				    maxpages)) {
3536 					panic("segvn_fault_vnodepages:"
3537 						" non empty anon slots\n");
3538 				} else {
3539 					SEGVN_VMSTAT_FLTVNPAGES(7);
3540 					anon_array_exit(&an_cookie);
3541 					ANON_LOCK_EXIT(&amp->a_rwlock);
3542 				}
3543 			}
3544 			ASSERT(!brkcow || IS_P2ALIGNED(a, maxpgsz));
3545 
3546 			if (svd->pageprot != 0 && IS_P2ALIGNED(a, maxpgsz)) {
3547 				ASSERT(vpage != NULL);
3548 				prot = VPP_PROT(vpage);
3549 				ASSERT(sameprot(seg, a, maxpgsz));
3550 				if ((prot & protchk) == 0) {
3551 					SEGVN_VMSTAT_FLTVNPAGES(8);
3552 					err = FC_PROT;
3553 					goto out;
3554 				}
3555 			}
3556 			if (type == F_SOFTLOCK) {
3557 				mutex_enter(&freemem_lock);
3558 				if (availrmem < tune.t_minarmem + pages) {
3559 					mutex_exit(&freemem_lock);
3560 					err = FC_MAKE_ERR(ENOMEM);
3561 					goto out;
3562 				} else {
3563 					availrmem -= pages;
3564 					segvn_pages_locked += pages;
3565 					svd->softlockcnt += pages;
3566 				}
3567 				mutex_exit(&freemem_lock);
3568 			}
3569 
3570 			pplist = NULL;
3571 			physcontig = 0;
3572 			ppa[0] = NULL;
3573 			if (!brkcow && szc &&
3574 			    !page_exists_physcontig(vp, off, szc,
3575 				segtype == MAP_PRIVATE ? ppa : NULL)) {
3576 				SEGVN_VMSTAT_FLTVNPAGES(9);
3577 				if (page_alloc_pages(vp, seg, a, &pplist, NULL,
3578 				    szc, 0) && type != F_SOFTLOCK) {
3579 					SEGVN_VMSTAT_FLTVNPAGES(10);
3580 					pszc = 0;
3581 					ierr = -1;
3582 					alloc_failed |= (1 << szc);
3583 					break;
3584 				}
3585 				if (pplist != NULL &&
3586 				    vp->v_mpssdata == SEGVN_PAGEIO) {
3587 					int downsize;
3588 					SEGVN_VMSTAT_FLTVNPAGES(11);
3589 					physcontig = segvn_fill_vp_pages(svd,
3590 					    vp, off, szc, ppa, &pplist,
3591 					    &pszc, &downsize);
3592 					ASSERT(!physcontig || pplist == NULL);
3593 					if (!physcontig && downsize &&
3594 					    type != F_SOFTLOCK) {
3595 						ASSERT(pplist == NULL);
3596 						SEGVN_VMSTAT_FLTVNPAGES(12);
3597 						ierr = -1;
3598 						break;
3599 					}
3600 					ASSERT(!physcontig ||
3601 					    segtype == MAP_PRIVATE ||
3602 					    ppa[0] == NULL);
3603 					if (physcontig && ppa[0] == NULL) {
3604 						physcontig = 0;
3605 					}
3606 				}
3607 			} else if (!brkcow && szc && ppa[0] != NULL) {
3608 				SEGVN_VMSTAT_FLTVNPAGES(13);
3609 				ASSERT(segtype == MAP_PRIVATE);
3610 				physcontig = 1;
3611 			}
3612 
3613 			if (!physcontig) {
3614 				SEGVN_VMSTAT_FLTVNPAGES(14);
3615 				ppa[0] = NULL;
3616 				ierr = VOP_GETPAGE(vp, (offset_t)off, pgsz,
3617 				    &vpprot, ppa, pgsz, seg, a, arw,
3618 				    svd->cred);
3619 #ifdef DEBUG
3620 				if (ierr == 0) {
3621 					for (i = 0; i < pages; i++) {
3622 						ASSERT(PAGE_LOCKED(ppa[i]));
3623 						ASSERT(!PP_ISFREE(ppa[i]));
3624 						ASSERT(ppa[i]->p_vnode == vp);
3625 						ASSERT(ppa[i]->p_offset ==
3626 						    off + (i << PAGESHIFT));
3627 					}
3628 				}
3629 #endif /* DEBUG */
3630 				if (segtype == MAP_PRIVATE) {
3631 					SEGVN_VMSTAT_FLTVNPAGES(15);
3632 					vpprot &= ~PROT_WRITE;
3633 				}
3634 			} else {
3635 				ASSERT(segtype == MAP_PRIVATE);
3636 				SEGVN_VMSTAT_FLTVNPAGES(16);
3637 				vpprot = PROT_ALL & ~PROT_WRITE;
3638 				ierr = 0;
3639 			}
3640 
3641 			if (ierr != 0) {
3642 				SEGVN_VMSTAT_FLTVNPAGES(17);
3643 				if (pplist != NULL) {
3644 					SEGVN_VMSTAT_FLTVNPAGES(18);
3645 					page_free_replacement_page(pplist);
3646 					page_create_putback(pages);
3647 				}
3648 				SEGVN_RESTORE_SOFTLOCK(type, pages);
3649 				if (a + pgsz <= eaddr) {
3650 					SEGVN_VMSTAT_FLTVNPAGES(19);
3651 					err = FC_MAKE_ERR(ierr);
3652 					goto out;
3653 				}
3654 				va.va_mask = AT_SIZE;
3655 				if (VOP_GETATTR(vp, &va, 0, svd->cred) != 0) {
3656 					SEGVN_VMSTAT_FLTVNPAGES(20);
3657 					err = FC_MAKE_ERR(EIO);
3658 					goto out;
3659 				}
3660 				if (btopr(va.va_size) >= btopr(off + pgsz)) {
3661 					SEGVN_VMSTAT_FLTVNPAGES(21);
3662 					err = FC_MAKE_ERR(ierr);
3663 					goto out;
3664 				}
3665 				if (btopr(va.va_size) <
3666 				    btopr(off + (eaddr - a))) {
3667 					SEGVN_VMSTAT_FLTVNPAGES(22);
3668 					err = FC_MAKE_ERR(ierr);
3669 					goto out;
3670 				}
3671 				if (brkcow || type == F_SOFTLOCK) {
3672 					/* can't reduce map area */
3673 					SEGVN_VMSTAT_FLTVNPAGES(23);
3674 					vop_size_err = 1;
3675 					goto out;
3676 				}
3677 				SEGVN_VMSTAT_FLTVNPAGES(24);
3678 				ASSERT(szc != 0);
3679 				pszc = 0;
3680 				ierr = -1;
3681 				break;
3682 			}
3683 
3684 			if (amp != NULL) {
3685 				ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
3686 				anon_array_enter(amp, aindx, &an_cookie);
3687 			}
3688 			if (amp != NULL &&
3689 			    anon_get_ptr(amp->ahp, aindx) != NULL) {
3690 				ulong_t taindx = P2ALIGN(aindx, maxpages);
3691 
3692 				SEGVN_VMSTAT_FLTVNPAGES(25);
3693 				if (anon_pages(amp->ahp, taindx, maxpages) !=
3694 				    maxpages) {
3695 					panic("segvn_fault_vnodepages:"
3696 					    " empty anon slots\n");
3697 				}
3698 				for (i = 0; i < pages; i++) {
3699 					page_unlock(ppa[i]);
3700 				}
3701 				anon_array_exit(&an_cookie);
3702 				ANON_LOCK_EXIT(&amp->a_rwlock);
3703 				if (pplist != NULL) {
3704 					page_free_replacement_page(pplist);
3705 					page_create_putback(pages);
3706 				}
3707 				SEGVN_RESTORE_SOFTLOCK(type, pages);
3708 				if (szc < seg->s_szc) {
3709 					SEGVN_VMSTAT_FLTVNPAGES(26);
3710 					/*
3711 					 * For private segments SOFTLOCK
3712 					 * either always breaks cow (any rw
3713 					 * type except S_READ_NOCOW) or
3714 					 * address space is locked as writer
3715 					 * (S_READ_NOCOW case) and anon slots
3716 					 * can't show up on second check.
3717 					 * Therefore if we are here for
3718 					 * SOFTLOCK case it must be a cow
3719 					 * break but cow break never reduces
3720 					 * szc. Thus the assert below.
3721 					 */
3722 					ASSERT(!brkcow && type != F_SOFTLOCK);
3723 					pszc = seg->s_szc;
3724 					ierr = -2;
3725 					break;
3726 				}
3727 				ASSERT(IS_P2ALIGNED(a, maxpgsz));
3728 				goto again;
3729 			}
3730 #ifdef DEBUG
3731 			if (amp != NULL) {
3732 				ulong_t taindx = P2ALIGN(aindx, maxpages);
3733 				ASSERT(!anon_pages(amp->ahp, taindx, maxpages));
3734 			}
3735 #endif /* DEBUG */
3736 
3737 			if (brkcow) {
3738 				ASSERT(amp != NULL);
3739 				ASSERT(pplist == NULL);
3740 				ASSERT(szc == seg->s_szc);
3741 				ASSERT(IS_P2ALIGNED(a, maxpgsz));
3742 				ASSERT(IS_P2ALIGNED(aindx, maxpages));
3743 				SEGVN_VMSTAT_FLTVNPAGES(27);
3744 				ierr = anon_map_privatepages(amp, aindx, szc,
3745 				    seg, a, prot, ppa, vpage, segvn_anypgsz,
3746 				    svd->cred);
3747 				if (ierr != 0) {
3748 					SEGVN_VMSTAT_FLTVNPAGES(28);
3749 					anon_array_exit(&an_cookie);
3750 					ANON_LOCK_EXIT(&amp->a_rwlock);
3751 					SEGVN_RESTORE_SOFTLOCK(type, pages);
3752 					err = FC_MAKE_ERR(ierr);
3753 					goto out;
3754 				}
3755 
3756 				ASSERT(!IS_VMODSORT(ppa[0]->p_vnode));
3757 				/*
3758 				 * p_szc can't be changed for locked
3759 				 * swapfs pages.
3760 				 */
3761 				hat_memload_array(hat, a, pgsz, ppa, prot,
3762 				    hat_flag);
3763 
3764 				if (!(hat_flag & HAT_LOAD_LOCK)) {
3765 					SEGVN_VMSTAT_FLTVNPAGES(29);
3766 					for (i = 0; i < pages; i++) {
3767 						page_unlock(ppa[i]);
3768 					}
3769 				}
3770 				anon_array_exit(&an_cookie);
3771 				ANON_LOCK_EXIT(&amp->a_rwlock);
3772 				goto next;
3773 			}
3774 
3775 			pfn = page_pptonum(ppa[0]);
3776 			/*
3777 			 * hat_page_demote() needs an EXCl lock on one of
3778 			 * constituent page_t's and it decreases root's p_szc
3779 			 * last. This means if root's p_szc is equal szc and
3780 			 * all its constituent pages are locked
3781 			 * hat_page_demote() that could have changed p_szc to
3782 			 * szc is already done and no new have page_demote()
3783 			 * can start for this large page.
3784 			 */
3785 
3786 			/*
3787 			 * we need to make sure same mapping size is used for
3788 			 * the same address range if there's a possibility the
3789 			 * adddress is already mapped because hat layer panics
3790 			 * when translation is loaded for the range already
3791 			 * mapped with a different page size.  We achieve it
3792 			 * by always using largest page size possible subject
3793 			 * to the constraints of page size, segment page size
3794 			 * and page alignment.  Since mappings are invalidated
3795 			 * when those constraints change and make it
3796 			 * impossible to use previously used mapping size no
3797 			 * mapping size conflicts should happen.
3798 			 */
3799 
3800 		chkszc:
3801 			if ((pszc = ppa[0]->p_szc) == szc &&
3802 			    IS_P2ALIGNED(pfn, pages)) {
3803 
3804 				SEGVN_VMSTAT_FLTVNPAGES(30);
3805 #ifdef DEBUG
3806 				for (i = 0; i < pages; i++) {
3807 					ASSERT(PAGE_LOCKED(ppa[i]));
3808 					ASSERT(!PP_ISFREE(ppa[i]));
3809 					ASSERT(page_pptonum(ppa[i]) ==
3810 					    pfn + i);
3811 					ASSERT(ppa[i]->p_szc == szc);
3812 					ASSERT(ppa[i]->p_vnode == vp);
3813 					ASSERT(ppa[i]->p_offset ==
3814 					    off + (i << PAGESHIFT));
3815 				}
3816 #endif /* DEBUG */
3817 				/*
3818 				 * All pages are of szc we need and they are
3819 				 * all locked so they can't change szc. load
3820 				 * translations.
3821 				 *
3822 				 * if page got promoted since last check
3823 				 * we don't need pplist.
3824 				 */
3825 				if (pplist != NULL) {
3826 					page_free_replacement_page(pplist);
3827 					page_create_putback(pages);
3828 				}
3829 				if (PP_ISMIGRATE(ppa[0])) {
3830 					page_migrate(seg, a, ppa, pages);
3831 				}
3832 				SEGVN_UPDATE_MODBITS(ppa, pages, rw,
3833 				    prot, vpprot);
3834 				if (!xhat) {
3835 					hat_memload_array(hat, a, pgsz, ppa,
3836 					    prot & vpprot, hat_flag);
3837 				} else {
3838 					/*
3839 					 * avoid large xhat mappings to FS
3840 					 * pages so that hat_page_demote()
3841 					 * doesn't need to check for xhat
3842 					 * large mappings.
3843 					 */
3844 					for (i = 0; i < pages; i++) {
3845 						hat_memload(hat,
3846 						    a + (i << PAGESHIFT),
3847 						    ppa[i], prot & vpprot,
3848 						    hat_flag);
3849 					}
3850 				}
3851 
3852 				if (!(hat_flag & HAT_LOAD_LOCK)) {
3853 					for (i = 0; i < pages; i++) {
3854 						page_unlock(ppa[i]);
3855 					}
3856 				}
3857 				if (amp != NULL) {
3858 					anon_array_exit(&an_cookie);
3859 					ANON_LOCK_EXIT(&amp->a_rwlock);
3860 				}
3861 				goto next;
3862 			}
3863 
3864 			/*
3865 			 * See if upsize is possible.
3866 			 */
3867 			if (pszc > szc && szc < seg->s_szc &&
3868 			    (segvn_anypgsz_vnode || pszc >= seg->s_szc)) {
3869 				pgcnt_t aphase;
3870 				uint_t pszc1 = MIN(pszc, seg->s_szc);
3871 				ppgsz = page_get_pagesize(pszc1);
3872 				ppages = btop(ppgsz);
3873 				aphase = btop(P2PHASE((uintptr_t)a, ppgsz));
3874 
3875 				ASSERT(type != F_SOFTLOCK);
3876 
3877 				SEGVN_VMSTAT_FLTVNPAGES(31);
3878 				if (aphase != P2PHASE(pfn, ppages)) {
3879 					segvn_faultvnmpss_align_err4++;
3880 				} else {
3881 					SEGVN_VMSTAT_FLTVNPAGES(32);
3882 					if (pplist != NULL) {
3883 						page_t *pl = pplist;
3884 						page_free_replacement_page(pl);
3885 						page_create_putback(pages);
3886 					}
3887 					for (i = 0; i < pages; i++) {
3888 						page_unlock(ppa[i]);
3889 					}
3890 					if (amp != NULL) {
3891 						anon_array_exit(&an_cookie);
3892 						ANON_LOCK_EXIT(&amp->a_rwlock);
3893 					}
3894 					pszc = pszc1;
3895 					ierr = -2;
3896 					break;
3897 				}
3898 			}
3899 
3900 			/*
3901 			 * check if we should use smallest mapping size.
3902 			 */
3903 			upgrdfail = 0;
3904 			if (szc == 0 || xhat ||
3905 			    (pszc >= szc &&
3906 			    !IS_P2ALIGNED(pfn, pages)) ||
3907 			    (pszc < szc &&
3908 			    !segvn_full_szcpages(ppa, szc, &upgrdfail,
3909 				&pszc))) {
3910 
3911 				if (upgrdfail && type != F_SOFTLOCK) {
3912 					/*
3913 					 * segvn_full_szcpages failed to lock
3914 					 * all pages EXCL. Size down.
3915 					 */
3916 					ASSERT(pszc < szc);
3917 
3918 					SEGVN_VMSTAT_FLTVNPAGES(33);
3919 
3920 					if (pplist != NULL) {
3921 						page_t *pl = pplist;
3922 						page_free_replacement_page(pl);
3923 						page_create_putback(pages);
3924 					}
3925 
3926 					for (i = 0; i < pages; i++) {
3927 						page_unlock(ppa[i]);
3928 					}
3929 					if (amp != NULL) {
3930 						anon_array_exit(&an_cookie);
3931 						ANON_LOCK_EXIT(&amp->a_rwlock);
3932 					}
3933 					ierr = -1;
3934 					break;
3935 				}
3936 				if (szc != 0 && !xhat && !upgrdfail) {
3937 					segvn_faultvnmpss_align_err5++;
3938 				}
3939 				SEGVN_VMSTAT_FLTVNPAGES(34);
3940 				if (pplist != NULL) {
3941 					page_free_replacement_page(pplist);
3942 					page_create_putback(pages);
3943 				}
3944 				SEGVN_UPDATE_MODBITS(ppa, pages, rw,
3945 				    prot, vpprot);
3946 				if (upgrdfail && segvn_anypgsz_vnode) {
3947 					/* SOFTLOCK case */
3948 					hat_memload_array(hat, a, pgsz,
3949 					    ppa, prot & vpprot, hat_flag);
3950 				} else {
3951 					for (i = 0; i < pages; i++) {
3952 						hat_memload(hat,
3953 						    a + (i << PAGESHIFT),
3954 						    ppa[i], prot & vpprot,
3955 						    hat_flag);
3956 					}
3957 				}
3958 				if (!(hat_flag & HAT_LOAD_LOCK)) {
3959 					for (i = 0; i < pages; i++) {
3960 						page_unlock(ppa[i]);
3961 					}
3962 				}
3963 				if (amp != NULL) {
3964 					anon_array_exit(&an_cookie);
3965 					ANON_LOCK_EXIT(&amp->a_rwlock);
3966 				}
3967 				goto next;
3968 			}
3969 
3970 			if (pszc == szc) {
3971 				/*
3972 				 * segvn_full_szcpages() upgraded pages szc.
3973 				 */
3974 				ASSERT(pszc == ppa[0]->p_szc);
3975 				ASSERT(IS_P2ALIGNED(pfn, pages));
3976 				goto chkszc;
3977 			}
3978 
3979 			if (pszc > szc) {
3980 				kmutex_t *szcmtx;
3981 				SEGVN_VMSTAT_FLTVNPAGES(35);
3982 				/*
3983 				 * p_szc of ppa[0] can change since we haven't
3984 				 * locked all constituent pages. Call
3985 				 * page_lock_szc() to prevent szc changes.
3986 				 * This should be a rare case that happens when
3987 				 * multiple segments use a different page size
3988 				 * to map the same file offsets.
3989 				 */
3990 				szcmtx = page_szc_lock(ppa[0]);
3991 				pszc = ppa[0]->p_szc;
3992 				ASSERT(szcmtx != NULL || pszc == 0);
3993 				ASSERT(ppa[0]->p_szc <= pszc);
3994 				if (pszc <= szc) {
3995 					SEGVN_VMSTAT_FLTVNPAGES(36);
3996 					if (szcmtx != NULL) {
3997 						mutex_exit(szcmtx);
3998 					}
3999 					goto chkszc;
4000 				}
4001 				if (pplist != NULL) {
4002 					/*
4003 					 * page got promoted since last check.
4004 					 * we don't need preaalocated large
4005 					 * page.
4006 					 */
4007 					SEGVN_VMSTAT_FLTVNPAGES(37);
4008 					page_free_replacement_page(pplist);
4009 					page_create_putback(pages);
4010 				}
4011 				SEGVN_UPDATE_MODBITS(ppa, pages, rw,
4012 				    prot, vpprot);
4013 				hat_memload_array(hat, a, pgsz, ppa,
4014 				    prot & vpprot, hat_flag);
4015 				mutex_exit(szcmtx);
4016 				if (!(hat_flag & HAT_LOAD_LOCK)) {
4017 					for (i = 0; i < pages; i++) {
4018 						page_unlock(ppa[i]);
4019 					}
4020 				}
4021 				if (amp != NULL) {
4022 					anon_array_exit(&an_cookie);
4023 					ANON_LOCK_EXIT(&amp->a_rwlock);
4024 				}
4025 				goto next;
4026 			}
4027 
4028 			/*
4029 			 * if page got demoted since last check
4030 			 * we could have not allocated larger page.
4031 			 * allocate now.
4032 			 */
4033 			if (pplist == NULL &&
4034 			    page_alloc_pages(vp, seg, a, &pplist, NULL,
4035 				szc, 0) && type != F_SOFTLOCK) {
4036 				SEGVN_VMSTAT_FLTVNPAGES(38);
4037 				for (i = 0; i < pages; i++) {
4038 					page_unlock(ppa[i]);
4039 				}
4040 				if (amp != NULL) {
4041 					anon_array_exit(&an_cookie);
4042 					ANON_LOCK_EXIT(&amp->a_rwlock);
4043 				}
4044 				ierr = -1;
4045 				alloc_failed |= (1 << szc);
4046 				break;
4047 			}
4048 
4049 			SEGVN_VMSTAT_FLTVNPAGES(39);
4050 
4051 			if (pplist != NULL) {
4052 				segvn_relocate_pages(ppa, pplist);
4053 #ifdef DEBUG
4054 			} else {
4055 				ASSERT(type == F_SOFTLOCK);
4056 				SEGVN_VMSTAT_FLTVNPAGES(40);
4057 #endif /* DEBUG */
4058 			}
4059 
4060 			SEGVN_UPDATE_MODBITS(ppa, pages, rw, prot, vpprot);
4061 
4062 			if (pplist == NULL && segvn_anypgsz_vnode == 0) {
4063 				ASSERT(type == F_SOFTLOCK);
4064 				for (i = 0; i < pages; i++) {
4065 					ASSERT(ppa[i]->p_szc < szc);
4066 					hat_memload(hat, a + (i << PAGESHIFT),
4067 					    ppa[i], prot & vpprot, hat_flag);
4068 				}
4069 			} else {
4070 				ASSERT(pplist != NULL || type == F_SOFTLOCK);
4071 				hat_memload_array(hat, a, pgsz, ppa,
4072 				    prot & vpprot, hat_flag);
4073 			}
4074 			if (!(hat_flag & HAT_LOAD_LOCK)) {
4075 				for (i = 0; i < pages; i++) {
4076 					ASSERT(PAGE_SHARED(ppa[i]));
4077 					page_unlock(ppa[i]);
4078 				}
4079 			}
4080 			if (amp != NULL) {
4081 				anon_array_exit(&an_cookie);
4082 				ANON_LOCK_EXIT(&amp->a_rwlock);
4083 			}
4084 
4085 		next:
4086 			if (vpage != NULL) {
4087 				vpage += pages;
4088 			}
4089 			adjszc_chk = 1;
4090 		}
4091 		if (a == lpgeaddr)
4092 			break;
4093 		ASSERT(a < lpgeaddr);
4094 
4095 		ASSERT(!brkcow && type != F_SOFTLOCK);
4096 
4097 		/*
4098 		 * ierr == -1 means we failed to map with a large page.
4099 		 * (either due to allocation/relocation failures or
4100 		 * misalignment with other mappings to this file.
4101 		 *
4102 		 * ierr == -2 means some other thread allocated a large page
4103 		 * after we gave up tp map with a large page.  retry with
4104 		 * larger mapping.
4105 		 */
4106 		ASSERT(ierr == -1 || ierr == -2);
4107 		ASSERT(ierr == -2 || szc != 0);
4108 		ASSERT(ierr == -1 || szc < seg->s_szc);
4109 		if (ierr == -2) {
4110 			SEGVN_VMSTAT_FLTVNPAGES(41);
4111 			ASSERT(pszc > szc && pszc <= seg->s_szc);
4112 			szc = pszc;
4113 		} else if (segvn_anypgsz_vnode) {
4114 			SEGVN_VMSTAT_FLTVNPAGES(42);
4115 			szc--;
4116 		} else {
4117 			SEGVN_VMSTAT_FLTVNPAGES(43);
4118 			ASSERT(pszc < szc);
4119 			/*
4120 			 * other process created pszc large page.
4121 			 * but we still have to drop to 0 szc.
4122 			 */
4123 			szc = 0;
4124 		}
4125 
4126 		pgsz = page_get_pagesize(szc);
4127 		pages = btop(pgsz);
4128 		if (ierr == -2) {
4129 			/*
4130 			 * Size up case. Note lpgaddr may only be needed for
4131 			 * softlock case so we don't adjust it here.
4132 			 */
4133 			a = (caddr_t)P2ALIGN((uintptr_t)a, pgsz);
4134 			ASSERT(a >= lpgaddr);
4135 			lpgeaddr = (caddr_t)P2ROUNDUP((uintptr_t)eaddr, pgsz);
4136 			off = svd->offset + (uintptr_t)(a - seg->s_base);
4137 			aindx = svd->anon_index + seg_page(seg, a);
4138 			vpage = (svd->vpage != NULL) ?
4139 			    &svd->vpage[seg_page(seg, a)] : NULL;
4140 		} else {
4141 			/*
4142 			 * Size down case. Note lpgaddr may only be needed for
4143 			 * softlock case so we don't adjust it here.
4144 			 */
4145 			ASSERT(IS_P2ALIGNED(a, pgsz));
4146 			ASSERT(IS_P2ALIGNED(lpgeaddr, pgsz));
4147 			lpgeaddr = (caddr_t)P2ROUNDUP((uintptr_t)eaddr, pgsz);
4148 			ASSERT(a < lpgeaddr);
4149 			if (a < addr) {
4150 				SEGVN_VMSTAT_FLTVNPAGES(44);
4151 				/*
4152 				 * The beginning of the large page region can
4153 				 * be pulled to the right to make a smaller
4154 				 * region. We haven't yet faulted a single
4155 				 * page.
4156 				 */
4157 				a = (caddr_t)P2ALIGN((uintptr_t)addr, pgsz);
4158 				ASSERT(a >= lpgaddr);
4159 				off = svd->offset +
4160 				    (uintptr_t)(a - seg->s_base);
4161 				aindx = svd->anon_index + seg_page(seg, a);
4162 				vpage = (svd->vpage != NULL) ?
4163 				    &svd->vpage[seg_page(seg, a)] : NULL;
4164 			}
4165 		}
4166 	}
4167 out:
4168 	kmem_free(ppa, ppasize);
4169 	if (!err && !vop_size_err) {
4170 		SEGVN_VMSTAT_FLTVNPAGES(45);
4171 		return (0);
4172 	}
4173 	if (type == F_SOFTLOCK && a > lpgaddr) {
4174 		SEGVN_VMSTAT_FLTVNPAGES(46);
4175 		segvn_softunlock(seg, lpgaddr, a - lpgaddr, S_OTHER);
4176 	}
4177 	if (!vop_size_err) {
4178 		SEGVN_VMSTAT_FLTVNPAGES(47);
4179 		return (err);
4180 	}
4181 	ASSERT(brkcow || type == F_SOFTLOCK);
4182 	/*
4183 	 * Large page end is mapped beyond the end of file and it's a cow
4184 	 * fault or softlock so we can't reduce the map area.  For now just
4185 	 * demote the segment. This should really only happen if the end of
4186 	 * the file changed after the mapping was established since when large
4187 	 * page segments are created we make sure they don't extend beyond the
4188 	 * end of the file.
4189 	 */
4190 	SEGVN_VMSTAT_FLTVNPAGES(48);
4191 
4192 	SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
4193 	SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_WRITER);
4194 	err = 0;
4195 	if (seg->s_szc != 0) {
4196 		segvn_fltvnpages_clrszc_cnt++;
4197 		ASSERT(svd->softlockcnt == 0);
4198 		err = segvn_clrszc(seg);
4199 		if (err != 0) {
4200 			segvn_fltvnpages_clrszc_err++;
4201 		}
4202 	}
4203 	ASSERT(err || seg->s_szc == 0);
4204 	SEGVN_LOCK_DOWNGRADE(seg->s_as, &svd->lock);
4205 	/* segvn_fault will do its job as if szc had been zero to begin with */
4206 	return (err == 0 ? IE_RETRY : FC_MAKE_ERR(err));
4207 }
4208 
4209 /*
4210  * This routine will attempt to fault in one large page.
4211  * it will use smaller pages if that fails.
4212  * It should only be called for pure anonymous segments.
4213  */
4214 static faultcode_t
4215 segvn_fault_anonpages(struct hat *hat, struct seg *seg, caddr_t lpgaddr,
4216     caddr_t lpgeaddr, enum fault_type type, enum seg_rw rw, caddr_t addr,
4217     caddr_t eaddr, int brkcow)
4218 {
4219 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
4220 	struct anon_map *amp = svd->amp;
4221 	uchar_t segtype = svd->type;
4222 	uint_t szc = seg->s_szc;
4223 	size_t pgsz = page_get_pagesize(szc);
4224 	size_t maxpgsz = pgsz;
4225 	pgcnt_t pages = btop(pgsz);
4226 	size_t ppasize = pages * sizeof (page_t *);
4227 	caddr_t a = lpgaddr;
4228 	ulong_t aindx = svd->anon_index + seg_page(seg, a);
4229 	struct vpage *vpage = (svd->vpage != NULL) ?
4230 	    &svd->vpage[seg_page(seg, a)] : NULL;
4231 	page_t **ppa;
4232 	uint_t	ppa_szc;
4233 	faultcode_t err;
4234 	int ierr;
4235 	uint_t protchk, prot, vpprot;
4236 	ulong_t i;
4237 	int hat_flag = (type == F_SOFTLOCK) ? HAT_LOAD_LOCK : HAT_LOAD;
4238 	anon_sync_obj_t cookie;
4239 	int first = 1;
4240 	int adjszc_chk;
4241 	int purged = 0;
4242 
4243 	ASSERT(szc != 0);
4244 	ASSERT(amp != NULL);
4245 	ASSERT(enable_mbit_wa == 0); /* no mbit simulations with large pages */
4246 	ASSERT(!(svd->flags & MAP_NORESERVE));
4247 	ASSERT(type != F_SOFTUNLOCK);
4248 	ASSERT(IS_P2ALIGNED(a, maxpgsz));
4249 
4250 	ASSERT(SEGVN_LOCK_HELD(seg->s_as, &svd->lock));
4251 
4252 	VM_STAT_COND_ADD(type == F_SOFTLOCK, segvnvmstats.fltanpages[0]);
4253 	VM_STAT_COND_ADD(type != F_SOFTLOCK, segvnvmstats.fltanpages[1]);
4254 
4255 	if (svd->flags & MAP_TEXT) {
4256 		hat_flag |= HAT_LOAD_TEXT;
4257 	}
4258 
4259 	if (svd->pageprot) {
4260 		switch (rw) {
4261 		case S_READ:
4262 			protchk = PROT_READ;
4263 			break;
4264 		case S_WRITE:
4265 			protchk = PROT_WRITE;
4266 			break;
4267 		case S_EXEC:
4268 			protchk = PROT_EXEC;
4269 			break;
4270 		case S_OTHER:
4271 		default:
4272 			protchk = PROT_READ | PROT_WRITE | PROT_EXEC;
4273 			break;
4274 		}
4275 		VM_STAT_ADD(segvnvmstats.fltanpages[2]);
4276 	} else {
4277 		prot = svd->prot;
4278 		/* caller has already done segment level protection check. */
4279 	}
4280 
4281 	ppa = kmem_alloc(ppasize, KM_SLEEP);
4282 	ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
4283 	for (;;) {
4284 		adjszc_chk = 0;
4285 		for (; a < lpgeaddr; a += pgsz, aindx += pages) {
4286 			if (svd->pageprot != 0 && IS_P2ALIGNED(a, maxpgsz)) {
4287 				VM_STAT_ADD(segvnvmstats.fltanpages[3]);
4288 				ASSERT(vpage != NULL);
4289 				prot = VPP_PROT(vpage);
4290 				ASSERT(sameprot(seg, a, maxpgsz));
4291 				if ((prot & protchk) == 0) {
4292 					err = FC_PROT;
4293 					goto error;
4294 				}
4295 			}
4296 			if (adjszc_chk && IS_P2ALIGNED(a, maxpgsz) &&
4297 			    pgsz < maxpgsz) {
4298 				ASSERT(a > lpgaddr);
4299 				szc = seg->s_szc;
4300 				pgsz = maxpgsz;
4301 				pages = btop(pgsz);
4302 				ASSERT(IS_P2ALIGNED(aindx, pages));
4303 				lpgeaddr = (caddr_t)P2ROUNDUP((uintptr_t)eaddr,
4304 				    pgsz);
4305 			}
4306 			if (type == F_SOFTLOCK && svd->vp != NULL) {
4307 				mutex_enter(&freemem_lock);
4308 				if (availrmem < tune.t_minarmem + pages) {
4309 					mutex_exit(&freemem_lock);
4310 					err = FC_MAKE_ERR(ENOMEM);
4311 					goto error;
4312 				} else {
4313 					availrmem -= pages;
4314 					segvn_pages_locked += pages;
4315 					svd->softlockcnt += pages;
4316 				}
4317 				mutex_exit(&freemem_lock);
4318 			}
4319 			anon_array_enter(amp, aindx, &cookie);
4320 			ppa_szc = (uint_t)-1;
4321 			ierr = anon_map_getpages(amp, aindx, szc, seg, a,
4322 				prot, &vpprot, ppa, &ppa_szc, vpage, rw, brkcow,
4323 				segvn_anypgsz, svd->cred);
4324 			if (ierr != 0) {
4325 				anon_array_exit(&cookie);
4326 				VM_STAT_ADD(segvnvmstats.fltanpages[4]);
4327 				if (type == F_SOFTLOCK && svd->vp != NULL) {
4328 					VM_STAT_ADD(segvnvmstats.fltanpages[5]);
4329 					mutex_enter(&freemem_lock);
4330 					availrmem += pages;
4331 					segvn_pages_locked -= pages;
4332 					svd->softlockcnt -= pages;
4333 					mutex_exit(&freemem_lock);
4334 				}
4335 				if (ierr > 0) {
4336 					VM_STAT_ADD(segvnvmstats.fltanpages[6]);
4337 					err = FC_MAKE_ERR(ierr);
4338 					goto error;
4339 				}
4340 				break;
4341 			}
4342 
4343 			ASSERT(!IS_VMODSORT(ppa[0]->p_vnode));
4344 
4345 			ASSERT(segtype == MAP_SHARED ||
4346 			    ppa[0]->p_szc <= szc);
4347 			ASSERT(segtype == MAP_PRIVATE ||
4348 			    ppa[0]->p_szc >= szc);
4349 
4350 			/*
4351 			 * Handle pages that have been marked for migration
4352 			 */
4353 			if (lgrp_optimizations())
4354 				page_migrate(seg, a, ppa, pages);
4355 
4356 			if (type == F_SOFTLOCK && svd->vp == NULL) {
4357 				/*
4358 				 * All pages in ppa array belong to the same
4359 				 * large page. This means it's ok to call
4360 				 * segvn_pp_lock_anonpages just for ppa[0].
4361 				 */
4362 				if (!segvn_pp_lock_anonpages(ppa[0], first)) {
4363 					for (i = 0; i < pages; i++) {
4364 						page_unlock(ppa[i]);
4365 					}
4366 					err = FC_MAKE_ERR(ENOMEM);
4367 					goto error;
4368 				}
4369 				first = 0;
4370 				mutex_enter(&freemem_lock);
4371 				svd->softlockcnt += pages;
4372 				segvn_pages_locked += pages;
4373 				mutex_exit(&freemem_lock);
4374 			}
4375 
4376 			if (segtype == MAP_SHARED) {
4377 				vpprot |= PROT_WRITE;
4378 			}
4379 
4380 			hat_memload_array(hat, a, pgsz, ppa,
4381 			    prot & vpprot, hat_flag);
4382 
4383 			if (hat_flag & HAT_LOAD_LOCK) {
4384 				VM_STAT_ADD(segvnvmstats.fltanpages[7]);
4385 			} else {
4386 				VM_STAT_ADD(segvnvmstats.fltanpages[8]);
4387 				for (i = 0; i < pages; i++)
4388 					page_unlock(ppa[i]);
4389 			}
4390 			if (vpage != NULL)
4391 				vpage += pages;
4392 
4393 			anon_array_exit(&cookie);
4394 			adjszc_chk = 1;
4395 		}
4396 		if (a == lpgeaddr)
4397 			break;
4398 		ASSERT(a < lpgeaddr);
4399 		/*
4400 		 * ierr == -1 means we failed to allocate a large page.
4401 		 * so do a size down operation.
4402 		 *
4403 		 * ierr == -2 means some other process that privately shares
4404 		 * pages with this process has allocated a larger page and we
4405 		 * need to retry with larger pages. So do a size up
4406 		 * operation. This relies on the fact that large pages are
4407 		 * never partially shared i.e. if we share any constituent
4408 		 * page of a large page with another process we must share the
4409 		 * entire large page. Note this cannot happen for SOFTLOCK
4410 		 * case, unless current address (a) is at the beginning of the
4411 		 * next page size boundary because the other process couldn't
4412 		 * have relocated locked pages.
4413 		 */
4414 		ASSERT(ierr == -1 || ierr == -2);
4415 		/*
4416 		 * For the very first relocation failure try to purge this
4417 		 * segment's cache so that the relocator can obtain an
4418 		 * exclusive lock on pages we want to relocate.
4419 		 */
4420 		if (!purged && ierr == -1 && ppa_szc != (uint_t)-1 &&
4421 		    svd->softlockcnt != 0) {
4422 			purged = 1;
4423 			segvn_purge(seg);
4424 			continue;
4425 		}
4426 
4427 		if (segvn_anypgsz) {
4428 			ASSERT(ierr == -2 || szc != 0);
4429 			ASSERT(ierr == -1 || szc < seg->s_szc);
4430 			szc = (ierr == -1) ? szc - 1 : szc + 1;
4431 		} else {
4432 			/*
4433 			 * For non COW faults and segvn_anypgsz == 0
4434 			 * we need to be careful not to loop forever
4435 			 * if existing page is found with szc other
4436 			 * than 0 or seg->s_szc. This could be due
4437 			 * to page relocations on behalf of DR or
4438 			 * more likely large page creation. For this
4439 			 * case simply re-size to existing page's szc
4440 			 * if returned by anon_map_getpages().
4441 			 */
4442 			if (ppa_szc == (uint_t)-1) {
4443 				szc = (ierr == -1) ? 0 : seg->s_szc;
4444 			} else {
4445 				ASSERT(ppa_szc <= seg->s_szc);
4446 				ASSERT(ierr == -2 || ppa_szc < szc);
4447 				ASSERT(ierr == -1 || ppa_szc > szc);
4448 				szc = ppa_szc;
4449 			}
4450 		}
4451 
4452 		pgsz = page_get_pagesize(szc);
4453 		pages = btop(pgsz);
4454 		ASSERT(type != F_SOFTLOCK || ierr == -1 ||
4455 		    (IS_P2ALIGNED(a, pgsz) && IS_P2ALIGNED(lpgeaddr, pgsz)));
4456 		if (type == F_SOFTLOCK) {
4457 			/*
4458 			 * For softlocks we cannot reduce the fault area
4459 			 * (calculated based on the largest page size for this
4460 			 * segment) for size down and a is already next
4461 			 * page size aligned as assertted above for size
4462 			 * ups. Therefore just continue in case of softlock.
4463 			 */
4464 			VM_STAT_ADD(segvnvmstats.fltanpages[9]);
4465 			continue; /* keep lint happy */
4466 		} else if (ierr == -2) {
4467 
4468 			/*
4469 			 * Size up case. Note lpgaddr may only be needed for
4470 			 * softlock case so we don't adjust it here.
4471 			 */
4472 			VM_STAT_ADD(segvnvmstats.fltanpages[10]);
4473 			a = (caddr_t)P2ALIGN((uintptr_t)a, pgsz);
4474 			ASSERT(a >= lpgaddr);
4475 			lpgeaddr = (caddr_t)P2ROUNDUP((uintptr_t)eaddr, pgsz);
4476 			aindx = svd->anon_index + seg_page(seg, a);
4477 			vpage = (svd->vpage != NULL) ?
4478 			    &svd->vpage[seg_page(seg, a)] : NULL;
4479 		} else {
4480 			/*
4481 			 * Size down case. Note lpgaddr may only be needed for
4482 			 * softlock case so we don't adjust it here.
4483 			 */
4484 			VM_STAT_ADD(segvnvmstats.fltanpages[11]);
4485 			ASSERT(IS_P2ALIGNED(a, pgsz));
4486 			ASSERT(IS_P2ALIGNED(lpgeaddr, pgsz));
4487 			lpgeaddr = (caddr_t)P2ROUNDUP((uintptr_t)eaddr, pgsz);
4488 			ASSERT(a < lpgeaddr);
4489 			if (a < addr) {
4490 				/*
4491 				 * The beginning of the large page region can
4492 				 * be pulled to the right to make a smaller
4493 				 * region. We haven't yet faulted a single
4494 				 * page.
4495 				 */
4496 				VM_STAT_ADD(segvnvmstats.fltanpages[12]);
4497 				a = (caddr_t)P2ALIGN((uintptr_t)addr, pgsz);
4498 				ASSERT(a >= lpgaddr);
4499 				aindx = svd->anon_index + seg_page(seg, a);
4500 				vpage = (svd->vpage != NULL) ?
4501 				    &svd->vpage[seg_page(seg, a)] : NULL;
4502 			}
4503 		}
4504 	}
4505 	VM_STAT_ADD(segvnvmstats.fltanpages[13]);
4506 	ANON_LOCK_EXIT(&amp->a_rwlock);
4507 	kmem_free(ppa, ppasize);
4508 	return (0);
4509 error:
4510 	VM_STAT_ADD(segvnvmstats.fltanpages[14]);
4511 	ANON_LOCK_EXIT(&amp->a_rwlock);
4512 	kmem_free(ppa, ppasize);
4513 	if (type == F_SOFTLOCK && a > lpgaddr) {
4514 		VM_STAT_ADD(segvnvmstats.fltanpages[15]);
4515 		segvn_softunlock(seg, lpgaddr, a - lpgaddr, S_OTHER);
4516 	}
4517 	return (err);
4518 }
4519 
4520 int fltadvice = 1;	/* set to free behind pages for sequential access */
4521 
4522 /*
4523  * This routine is called via a machine specific fault handling routine.
4524  * It is also called by software routines wishing to lock or unlock
4525  * a range of addresses.
4526  *
4527  * Here is the basic algorithm:
4528  *	If unlocking
4529  *		Call segvn_softunlock
4530  *		Return
4531  *	endif
4532  *	Checking and set up work
4533  *	If we will need some non-anonymous pages
4534  *		Call VOP_GETPAGE over the range of non-anonymous pages
4535  *	endif
4536  *	Loop over all addresses requested
4537  *		Call segvn_faultpage passing in page list
4538  *		    to load up translations and handle anonymous pages
4539  *	endloop
4540  *	Load up translation to any additional pages in page list not
4541  *	    already handled that fit into this segment
4542  */
4543 static faultcode_t
4544 segvn_fault(struct hat *hat, struct seg *seg, caddr_t addr, size_t len,
4545     enum fault_type type, enum seg_rw rw)
4546 {
4547 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
4548 	page_t **plp, **ppp, *pp;
4549 	u_offset_t off;
4550 	caddr_t a;
4551 	struct vpage *vpage;
4552 	uint_t vpprot, prot;
4553 	int err;
4554 	page_t *pl[PVN_GETPAGE_NUM + 1];
4555 	size_t plsz, pl_alloc_sz;
4556 	size_t page;
4557 	ulong_t anon_index;
4558 	struct anon_map *amp;
4559 	int dogetpage = 0;
4560 	caddr_t	lpgaddr, lpgeaddr;
4561 	size_t pgsz;
4562 	anon_sync_obj_t cookie;
4563 	int brkcow = BREAK_COW_SHARE(rw, type, svd->type);
4564 
4565 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
4566 
4567 	/*
4568 	 * First handle the easy stuff
4569 	 */
4570 	if (type == F_SOFTUNLOCK) {
4571 		if (rw == S_READ_NOCOW) {
4572 			rw = S_READ;
4573 			ASSERT(AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
4574 		}
4575 		SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
4576 		pgsz = (seg->s_szc == 0) ? PAGESIZE :
4577 		    page_get_pagesize(seg->s_szc);
4578 		VM_STAT_COND_ADD(pgsz > PAGESIZE, segvnvmstats.fltanpages[16]);
4579 		CALC_LPG_REGION(pgsz, seg, addr, len, lpgaddr, lpgeaddr);
4580 		segvn_softunlock(seg, lpgaddr, lpgeaddr - lpgaddr, rw);
4581 		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
4582 		return (0);
4583 	}
4584 
4585 top:
4586 	SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
4587 
4588 	/*
4589 	 * If we have the same protections for the entire segment,
4590 	 * insure that the access being attempted is legitimate.
4591 	 */
4592 
4593 	if (svd->pageprot == 0) {
4594 		uint_t protchk;
4595 
4596 		switch (rw) {
4597 		case S_READ:
4598 		case S_READ_NOCOW:
4599 			protchk = PROT_READ;
4600 			break;
4601 		case S_WRITE:
4602 			protchk = PROT_WRITE;
4603 			break;
4604 		case S_EXEC:
4605 			protchk = PROT_EXEC;
4606 			break;
4607 		case S_OTHER:
4608 		default:
4609 			protchk = PROT_READ | PROT_WRITE | PROT_EXEC;
4610 			break;
4611 		}
4612 
4613 		if ((svd->prot & protchk) == 0) {
4614 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
4615 			return (FC_PROT);	/* illegal access type */
4616 		}
4617 	}
4618 
4619 	/*
4620 	 * We can't allow the long term use of softlocks for vmpss segments,
4621 	 * because in some file truncation cases we should be able to demote
4622 	 * the segment, which requires that there are no softlocks.  The
4623 	 * only case where it's ok to allow a SOFTLOCK fault against a vmpss
4624 	 * segment is S_READ_NOCOW, where the caller holds the address space
4625 	 * locked as writer and calls softunlock before dropping the as lock.
4626 	 * S_READ_NOCOW is used by /proc to read memory from another user.
4627 	 *
4628 	 * Another deadlock between SOFTLOCK and file truncation can happen
4629 	 * because segvn_fault_vnodepages() calls the FS one pagesize at
4630 	 * a time. A second VOP_GETPAGE() call by segvn_fault_vnodepages()
4631 	 * can cause a deadlock because the first set of page_t's remain
4632 	 * locked SE_SHARED.  To avoid this, we demote segments on a first
4633 	 * SOFTLOCK if they have a length greater than the segment's
4634 	 * page size.
4635 	 *
4636 	 * So for now, we only avoid demoting a segment on a SOFTLOCK when
4637 	 * the access type is S_READ_NOCOW and the fault length is less than
4638 	 * or equal to the segment's page size. While this is quite restrictive,
4639 	 * it should be the most common case of SOFTLOCK against a vmpss
4640 	 * segment.
4641 	 *
4642 	 * For S_READ_NOCOW, it's safe not to do a copy on write because the
4643 	 * caller makes sure no COW will be caused by another thread for a
4644 	 * softlocked page.
4645 	 */
4646 	if (type == F_SOFTLOCK && svd->vp != NULL && seg->s_szc != 0) {
4647 		int demote = 0;
4648 
4649 		if (rw != S_READ_NOCOW) {
4650 			demote = 1;
4651 		}
4652 		if (!demote && len > PAGESIZE) {
4653 			pgsz = page_get_pagesize(seg->s_szc);
4654 			CALC_LPG_REGION(pgsz, seg, addr, len, lpgaddr,
4655 			    lpgeaddr);
4656 			if (lpgeaddr - lpgaddr > pgsz) {
4657 				demote = 1;
4658 			}
4659 		}
4660 
4661 		ASSERT(demote || AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
4662 
4663 		if (demote) {
4664 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
4665 			SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_WRITER);
4666 			if (seg->s_szc != 0) {
4667 				segvn_vmpss_clrszc_cnt++;
4668 				ASSERT(svd->softlockcnt == 0);
4669 				err = segvn_clrszc(seg);
4670 				if (err) {
4671 					segvn_vmpss_clrszc_err++;
4672 					SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
4673 					return (FC_MAKE_ERR(err));
4674 				}
4675 			}
4676 			ASSERT(seg->s_szc == 0);
4677 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
4678 			goto top;
4679 		}
4680 	}
4681 
4682 	/*
4683 	 * Check to see if we need to allocate an anon_map structure.
4684 	 */
4685 	if (svd->amp == NULL && (svd->vp == NULL || brkcow)) {
4686 		/*
4687 		 * Drop the "read" lock on the segment and acquire
4688 		 * the "write" version since we have to allocate the
4689 		 * anon_map.
4690 		 */
4691 		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
4692 		SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_WRITER);
4693 
4694 		if (svd->amp == NULL) {
4695 			svd->amp = anonmap_alloc(seg->s_size, 0);
4696 			svd->amp->a_szc = seg->s_szc;
4697 		}
4698 		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
4699 
4700 		/*
4701 		 * Start all over again since segment protections
4702 		 * may have changed after we dropped the "read" lock.
4703 		 */
4704 		goto top;
4705 	}
4706 
4707 	/*
4708 	 * S_READ_NOCOW vs S_READ distinction was
4709 	 * only needed for the code above. After
4710 	 * that we treat it as S_READ.
4711 	 */
4712 	if (rw == S_READ_NOCOW) {
4713 		ASSERT(type == F_SOFTLOCK);
4714 		ASSERT(AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
4715 		rw = S_READ;
4716 	}
4717 
4718 	amp = svd->amp;
4719 
4720 	/*
4721 	 * MADV_SEQUENTIAL work is ignored for large page segments.
4722 	 */
4723 	if (seg->s_szc != 0) {
4724 		pgsz = page_get_pagesize(seg->s_szc);
4725 		ASSERT(SEGVN_LOCK_HELD(seg->s_as, &svd->lock));
4726 		CALC_LPG_REGION(pgsz, seg, addr, len, lpgaddr, lpgeaddr);
4727 		if (svd->vp == NULL) {
4728 			err = segvn_fault_anonpages(hat, seg, lpgaddr,
4729 			    lpgeaddr, type, rw, addr, addr + len, brkcow);
4730 		} else {
4731 			err = segvn_fault_vnodepages(hat, seg, lpgaddr,
4732 				lpgeaddr, type, rw, addr, addr + len, brkcow);
4733 			if (err == IE_RETRY) {
4734 				ASSERT(seg->s_szc == 0);
4735 				ASSERT(SEGVN_READ_HELD(seg->s_as, &svd->lock));
4736 				SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
4737 				goto top;
4738 			}
4739 		}
4740 		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
4741 		return (err);
4742 	}
4743 
4744 	page = seg_page(seg, addr);
4745 	if (amp != NULL) {
4746 		anon_index = svd->anon_index + page;
4747 
4748 		if ((type == F_PROT) && (rw == S_READ) &&
4749 		    svd->type == MAP_PRIVATE && svd->pageprot == 0) {
4750 			size_t index = anon_index;
4751 			struct anon *ap;
4752 
4753 			ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
4754 			/*
4755 			 * The fast path could apply to S_WRITE also, except
4756 			 * that the protection fault could be caused by lazy
4757 			 * tlb flush when ro->rw. In this case, the pte is
4758 			 * RW already. But RO in the other cpu's tlb causes
4759 			 * the fault. Since hat_chgprot won't do anything if
4760 			 * pte doesn't change, we may end up faulting
4761 			 * indefinitely until the RO tlb entry gets replaced.
4762 			 */
4763 			for (a = addr; a < addr + len; a += PAGESIZE, index++) {
4764 				anon_array_enter(amp, index, &cookie);
4765 				ap = anon_get_ptr(amp->ahp, index);
4766 				anon_array_exit(&cookie);
4767 				if ((ap == NULL) || (ap->an_refcnt != 1)) {
4768 					ANON_LOCK_EXIT(&amp->a_rwlock);
4769 					goto slow;
4770 				}
4771 			}
4772 			hat_chgprot(seg->s_as->a_hat, addr, len, svd->prot);
4773 			ANON_LOCK_EXIT(&amp->a_rwlock);
4774 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
4775 			return (0);
4776 		}
4777 	}
4778 slow:
4779 
4780 	if (svd->vpage == NULL)
4781 		vpage = NULL;
4782 	else
4783 		vpage = &svd->vpage[page];
4784 
4785 	off = svd->offset + (uintptr_t)(addr - seg->s_base);
4786 
4787 	/*
4788 	 * If MADV_SEQUENTIAL has been set for the particular page we
4789 	 * are faulting on, free behind all pages in the segment and put
4790 	 * them on the free list.
4791 	 */
4792 	if ((page != 0) && fltadvice) {	/* not if first page in segment */
4793 		struct vpage *vpp;
4794 		ulong_t fanon_index;
4795 		size_t fpage;
4796 		u_offset_t pgoff, fpgoff;
4797 		struct vnode *fvp;
4798 		struct anon *fap = NULL;
4799 
4800 		if (svd->advice == MADV_SEQUENTIAL ||
4801 		    (svd->pageadvice &&
4802 		    VPP_ADVICE(vpage) == MADV_SEQUENTIAL)) {
4803 			pgoff = off - PAGESIZE;
4804 			fpage = page - 1;
4805 			if (vpage != NULL)
4806 				vpp = &svd->vpage[fpage];
4807 			if (amp != NULL)
4808 				fanon_index = svd->anon_index + fpage;
4809 
4810 			while (pgoff > svd->offset) {
4811 				if (svd->advice != MADV_SEQUENTIAL &&
4812 				    (!svd->pageadvice || (vpage &&
4813 				    VPP_ADVICE(vpp) != MADV_SEQUENTIAL)))
4814 					break;
4815 
4816 				/*
4817 				 * If this is an anon page, we must find the
4818 				 * correct <vp, offset> for it
4819 				 */
4820 				fap = NULL;
4821 				if (amp != NULL) {
4822 					ANON_LOCK_ENTER(&amp->a_rwlock,
4823 						RW_READER);
4824 					anon_array_enter(amp, fanon_index,
4825 						&cookie);
4826 					fap = anon_get_ptr(amp->ahp,
4827 					    fanon_index);
4828 					if (fap != NULL) {
4829 						swap_xlate(fap, &fvp, &fpgoff);
4830 					} else {
4831 						fpgoff = pgoff;
4832 						fvp = svd->vp;
4833 					}
4834 					anon_array_exit(&cookie);
4835 					ANON_LOCK_EXIT(&amp->a_rwlock);
4836 				} else {
4837 					fpgoff = pgoff;
4838 					fvp = svd->vp;
4839 				}
4840 				if (fvp == NULL)
4841 					break;	/* XXX */
4842 				/*
4843 				 * Skip pages that are free or have an
4844 				 * "exclusive" lock.
4845 				 */
4846 				pp = page_lookup_nowait(fvp, fpgoff, SE_SHARED);
4847 				if (pp == NULL)
4848 					break;
4849 				/*
4850 				 * We don't need the page_struct_lock to test
4851 				 * as this is only advisory; even if we
4852 				 * acquire it someone might race in and lock
4853 				 * the page after we unlock and before the
4854 				 * PUTPAGE, then VOP_PUTPAGE will do nothing.
4855 				 */
4856 				if (pp->p_lckcnt == 0 && pp->p_cowcnt == 0) {
4857 					/*
4858 					 * Hold the vnode before releasing
4859 					 * the page lock to prevent it from
4860 					 * being freed and re-used by some
4861 					 * other thread.
4862 					 */
4863 					VN_HOLD(fvp);
4864 					page_unlock(pp);
4865 					/*
4866 					 * We should build a page list
4867 					 * to kluster putpages XXX
4868 					 */
4869 					(void) VOP_PUTPAGE(fvp,
4870 					    (offset_t)fpgoff, PAGESIZE,
4871 					    (B_DONTNEED|B_FREE|B_ASYNC),
4872 					    svd->cred);
4873 					VN_RELE(fvp);
4874 				} else {
4875 					/*
4876 					 * XXX - Should the loop terminate if
4877 					 * the page is `locked'?
4878 					 */
4879 					page_unlock(pp);
4880 				}
4881 				--vpp;
4882 				--fanon_index;
4883 				pgoff -= PAGESIZE;
4884 			}
4885 		}
4886 	}
4887 
4888 	plp = pl;
4889 	*plp = NULL;
4890 	pl_alloc_sz = 0;
4891 
4892 	/*
4893 	 * See if we need to call VOP_GETPAGE for
4894 	 * *any* of the range being faulted on.
4895 	 * We can skip all of this work if there
4896 	 * was no original vnode.
4897 	 */
4898 	if (svd->vp != NULL) {
4899 		u_offset_t vp_off;
4900 		size_t vp_len;
4901 		struct anon *ap;
4902 		vnode_t *vp;
4903 
4904 		vp_off = off;
4905 		vp_len = len;
4906 
4907 		if (amp == NULL)
4908 			dogetpage = 1;
4909 		else {
4910 			/*
4911 			 * Only acquire reader lock to prevent amp->ahp
4912 			 * from being changed.  It's ok to miss pages,
4913 			 * hence we don't do anon_array_enter
4914 			 */
4915 			ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
4916 			ap = anon_get_ptr(amp->ahp, anon_index);
4917 
4918 			if (len <= PAGESIZE)
4919 				/* inline non_anon() */
4920 				dogetpage = (ap == NULL);
4921 			else
4922 				dogetpage = non_anon(amp->ahp, anon_index,
4923 				    &vp_off, &vp_len);
4924 			ANON_LOCK_EXIT(&amp->a_rwlock);
4925 		}
4926 
4927 		if (dogetpage) {
4928 			enum seg_rw arw;
4929 			struct as *as = seg->s_as;
4930 
4931 			if (len > ptob((sizeof (pl) / sizeof (pl[0])) - 1)) {
4932 				/*
4933 				 * Page list won't fit in local array,
4934 				 * allocate one of the needed size.
4935 				 */
4936 				pl_alloc_sz =
4937 				    (btop(len) + 1) * sizeof (page_t *);
4938 				plp = kmem_alloc(pl_alloc_sz, KM_SLEEP);
4939 				plp[0] = NULL;
4940 				plsz = len;
4941 			} else if (rw == S_WRITE && svd->type == MAP_PRIVATE ||
4942 			    rw == S_OTHER ||
4943 			    (((size_t)(addr + PAGESIZE) <
4944 			    (size_t)(seg->s_base + seg->s_size)) &&
4945 			    hat_probe(as->a_hat, addr + PAGESIZE))) {
4946 				/*
4947 				 * Ask VOP_GETPAGE to return the exact number
4948 				 * of pages if
4949 				 * (a) this is a COW fault, or
4950 				 * (b) this is a software fault, or
4951 				 * (c) next page is already mapped.
4952 				 */
4953 				plsz = len;
4954 			} else {
4955 				/*
4956 				 * Ask VOP_GETPAGE to return adjacent pages
4957 				 * within the segment.
4958 				 */
4959 				plsz = MIN((size_t)PVN_GETPAGE_SZ, (size_t)
4960 					((seg->s_base + seg->s_size) - addr));
4961 				ASSERT((addr + plsz) <=
4962 				    (seg->s_base + seg->s_size));
4963 			}
4964 
4965 			/*
4966 			 * Need to get some non-anonymous pages.
4967 			 * We need to make only one call to GETPAGE to do
4968 			 * this to prevent certain deadlocking conditions
4969 			 * when we are doing locking.  In this case
4970 			 * non_anon() should have picked up the smallest
4971 			 * range which includes all the non-anonymous
4972 			 * pages in the requested range.  We have to
4973 			 * be careful regarding which rw flag to pass in
4974 			 * because on a private mapping, the underlying
4975 			 * object is never allowed to be written.
4976 			 */
4977 			if (rw == S_WRITE && svd->type == MAP_PRIVATE) {
4978 				arw = S_READ;
4979 			} else {
4980 				arw = rw;
4981 			}
4982 			vp = svd->vp;
4983 			TRACE_3(TR_FAC_VM, TR_SEGVN_GETPAGE,
4984 				"segvn_getpage:seg %p addr %p vp %p",
4985 				seg, addr, vp);
4986 			err = VOP_GETPAGE(vp, (offset_t)vp_off, vp_len,
4987 			    &vpprot, plp, plsz, seg, addr + (vp_off - off), arw,
4988 			    svd->cred);
4989 			if (err) {
4990 				SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
4991 				segvn_pagelist_rele(plp);
4992 				if (pl_alloc_sz)
4993 					kmem_free(plp, pl_alloc_sz);
4994 				return (FC_MAKE_ERR(err));
4995 			}
4996 			if (svd->type == MAP_PRIVATE)
4997 				vpprot &= ~PROT_WRITE;
4998 		}
4999 	}
5000 
5001 	/*
5002 	 * N.B. at this time the plp array has all the needed non-anon
5003 	 * pages in addition to (possibly) having some adjacent pages.
5004 	 */
5005 
5006 	/*
5007 	 * Always acquire the anon_array_lock to prevent
5008 	 * 2 threads from allocating separate anon slots for
5009 	 * the same "addr".
5010 	 *
5011 	 * If this is a copy-on-write fault and we don't already
5012 	 * have the anon_array_lock, acquire it to prevent the
5013 	 * fault routine from handling multiple copy-on-write faults
5014 	 * on the same "addr" in the same address space.
5015 	 *
5016 	 * Only one thread should deal with the fault since after
5017 	 * it is handled, the other threads can acquire a translation
5018 	 * to the newly created private page.  This prevents two or
5019 	 * more threads from creating different private pages for the
5020 	 * same fault.
5021 	 *
5022 	 * We grab "serialization" lock here if this is a MAP_PRIVATE segment
5023 	 * to prevent deadlock between this thread and another thread
5024 	 * which has soft-locked this page and wants to acquire serial_lock.
5025 	 * ( bug 4026339 )
5026 	 *
5027 	 * The fix for bug 4026339 becomes unnecessary when using the
5028 	 * locking scheme with per amp rwlock and a global set of hash
5029 	 * lock, anon_array_lock.  If we steal a vnode page when low
5030 	 * on memory and upgrad the page lock through page_rename,
5031 	 * then the page is PAGE_HANDLED, nothing needs to be done
5032 	 * for this page after returning from segvn_faultpage.
5033 	 *
5034 	 * But really, the page lock should be downgraded after
5035 	 * the stolen page is page_rename'd.
5036 	 */
5037 
5038 	if (amp != NULL)
5039 		ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
5040 
5041 	/*
5042 	 * Ok, now loop over the address range and handle faults
5043 	 */
5044 	for (a = addr; a < addr + len; a += PAGESIZE, off += PAGESIZE) {
5045 		err = segvn_faultpage(hat, seg, a, off, vpage, plp, vpprot,
5046 		    type, rw, brkcow, a == addr);
5047 		if (err) {
5048 			if (amp != NULL)
5049 				ANON_LOCK_EXIT(&amp->a_rwlock);
5050 			if (type == F_SOFTLOCK && a > addr) {
5051 				segvn_softunlock(seg, addr, (a - addr),
5052 				    S_OTHER);
5053 			}
5054 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5055 			segvn_pagelist_rele(plp);
5056 			if (pl_alloc_sz)
5057 				kmem_free(plp, pl_alloc_sz);
5058 			return (err);
5059 		}
5060 		if (vpage) {
5061 			vpage++;
5062 		} else if (svd->vpage) {
5063 			page = seg_page(seg, addr);
5064 			vpage = &svd->vpage[++page];
5065 		}
5066 	}
5067 
5068 	/* Didn't get pages from the underlying fs so we're done */
5069 	if (!dogetpage)
5070 		goto done;
5071 
5072 	/*
5073 	 * Now handle any other pages in the list returned.
5074 	 * If the page can be used, load up the translations now.
5075 	 * Note that the for loop will only be entered if "plp"
5076 	 * is pointing to a non-NULL page pointer which means that
5077 	 * VOP_GETPAGE() was called and vpprot has been initialized.
5078 	 */
5079 	if (svd->pageprot == 0)
5080 		prot = svd->prot & vpprot;
5081 
5082 
5083 	/*
5084 	 * Large Files: diff should be unsigned value because we started
5085 	 * supporting > 2GB segment sizes from 2.5.1 and when a
5086 	 * large file of size > 2GB gets mapped to address space
5087 	 * the diff value can be > 2GB.
5088 	 */
5089 
5090 	for (ppp = plp; (pp = *ppp) != NULL; ppp++) {
5091 		size_t diff;
5092 		struct anon *ap;
5093 		int anon_index;
5094 		anon_sync_obj_t cookie;
5095 		int hat_flag = HAT_LOAD_ADV;
5096 
5097 		if (svd->flags & MAP_TEXT) {
5098 			hat_flag |= HAT_LOAD_TEXT;
5099 		}
5100 
5101 		if (pp == PAGE_HANDLED)
5102 			continue;
5103 
5104 		if (pp->p_offset >=  svd->offset &&
5105 			(pp->p_offset < svd->offset + seg->s_size)) {
5106 
5107 			diff = pp->p_offset - svd->offset;
5108 
5109 			/*
5110 			 * Large Files: Following is the assertion
5111 			 * validating the above cast.
5112 			 */
5113 			ASSERT(svd->vp == pp->p_vnode);
5114 
5115 			page = btop(diff);
5116 			if (svd->pageprot)
5117 				prot = VPP_PROT(&svd->vpage[page]) & vpprot;
5118 
5119 			/*
5120 			 * Prevent other threads in the address space from
5121 			 * creating private pages (i.e., allocating anon slots)
5122 			 * while we are in the process of loading translations
5123 			 * to additional pages returned by the underlying
5124 			 * object.
5125 			 */
5126 			if (amp != NULL) {
5127 				anon_index = svd->anon_index + page;
5128 				anon_array_enter(amp, anon_index, &cookie);
5129 				ap = anon_get_ptr(amp->ahp, anon_index);
5130 			}
5131 			if ((amp == NULL) || (ap == NULL)) {
5132 				if (IS_VMODSORT(pp->p_vnode) ||
5133 				    enable_mbit_wa) {
5134 					if (rw == S_WRITE)
5135 						hat_setmod(pp);
5136 					else if (rw != S_OTHER &&
5137 					    !hat_ismod(pp))
5138 						prot &= ~PROT_WRITE;
5139 				}
5140 				/*
5141 				 * Skip mapping read ahead pages marked
5142 				 * for migration, so they will get migrated
5143 				 * properly on fault
5144 				 */
5145 				if ((prot & PROT_READ) && !PP_ISMIGRATE(pp)) {
5146 					hat_memload(hat, seg->s_base + diff,
5147 						pp, prot, hat_flag);
5148 				}
5149 			}
5150 			if (amp != NULL)
5151 				anon_array_exit(&cookie);
5152 		}
5153 		page_unlock(pp);
5154 	}
5155 done:
5156 	if (amp != NULL)
5157 		ANON_LOCK_EXIT(&amp->a_rwlock);
5158 	SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5159 	if (pl_alloc_sz)
5160 		kmem_free(plp, pl_alloc_sz);
5161 	return (0);
5162 }
5163 
5164 /*
5165  * This routine is used to start I/O on pages asynchronously.  XXX it will
5166  * only create PAGESIZE pages. At fault time they will be relocated into
5167  * larger pages.
5168  */
5169 static faultcode_t
5170 segvn_faulta(struct seg *seg, caddr_t addr)
5171 {
5172 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
5173 	int err;
5174 	struct anon_map *amp;
5175 	vnode_t *vp;
5176 
5177 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
5178 
5179 	SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
5180 	if ((amp = svd->amp) != NULL) {
5181 		struct anon *ap;
5182 
5183 		/*
5184 		 * Reader lock to prevent amp->ahp from being changed.
5185 		 * This is advisory, it's ok to miss a page, so
5186 		 * we don't do anon_array_enter lock.
5187 		 */
5188 		ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
5189 		if ((ap = anon_get_ptr(amp->ahp,
5190 			svd->anon_index + seg_page(seg, addr))) != NULL) {
5191 
5192 			err = anon_getpage(&ap, NULL, NULL,
5193 			    0, seg, addr, S_READ, svd->cred);
5194 
5195 			ANON_LOCK_EXIT(&amp->a_rwlock);
5196 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5197 			if (err)
5198 				return (FC_MAKE_ERR(err));
5199 			return (0);
5200 		}
5201 		ANON_LOCK_EXIT(&amp->a_rwlock);
5202 	}
5203 
5204 	if (svd->vp == NULL) {
5205 		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5206 		return (0);			/* zfod page - do nothing now */
5207 	}
5208 
5209 	vp = svd->vp;
5210 	TRACE_3(TR_FAC_VM, TR_SEGVN_GETPAGE,
5211 		"segvn_getpage:seg %p addr %p vp %p", seg, addr, vp);
5212 	err = VOP_GETPAGE(vp,
5213 	    (offset_t)(svd->offset + (uintptr_t)(addr - seg->s_base)),
5214 	    PAGESIZE, NULL, NULL, 0, seg, addr,
5215 	    S_OTHER, svd->cred);
5216 
5217 	SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5218 	if (err)
5219 		return (FC_MAKE_ERR(err));
5220 	return (0);
5221 }
5222 
5223 static int
5224 segvn_setprot(struct seg *seg, caddr_t addr, size_t len, uint_t prot)
5225 {
5226 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
5227 	struct vpage *svp, *evp;
5228 	struct vnode *vp;
5229 	size_t pgsz;
5230 	pgcnt_t pgcnt;
5231 	anon_sync_obj_t cookie;
5232 
5233 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
5234 
5235 	if ((svd->maxprot & prot) != prot)
5236 		return (EACCES);			/* violated maxprot */
5237 
5238 	SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_WRITER);
5239 
5240 	/* return if prot is the same */
5241 	if (!svd->pageprot && svd->prot == prot) {
5242 		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5243 		return (0);
5244 	}
5245 
5246 	/*
5247 	 * Since we change protections we first have to flush the cache.
5248 	 * This makes sure all the pagelock calls have to recheck
5249 	 * protections.
5250 	 */
5251 	if (svd->softlockcnt > 0) {
5252 		/*
5253 		 * Since we do have the segvn writers lock nobody can fill
5254 		 * the cache with entries belonging to this seg during
5255 		 * the purge. The flush either succeeds or we still have
5256 		 * pending I/Os.
5257 		 */
5258 		segvn_purge(seg);
5259 		if (svd->softlockcnt > 0) {
5260 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5261 			return (EAGAIN);
5262 		}
5263 	}
5264 
5265 	if (seg->s_szc != 0) {
5266 		int err;
5267 		pgsz = page_get_pagesize(seg->s_szc);
5268 		pgcnt = pgsz >> PAGESHIFT;
5269 		ASSERT(IS_P2ALIGNED(pgcnt, pgcnt));
5270 		if (!IS_P2ALIGNED(addr, pgsz) || !IS_P2ALIGNED(len, pgsz)) {
5271 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5272 			ASSERT(seg->s_base != addr || seg->s_size != len);
5273 			/*
5274 			 * If we are holding the as lock as a reader then
5275 			 * we need to return IE_RETRY and let the as
5276 			 * layer drop and re-aquire the lock as a writer.
5277 			 */
5278 			if (AS_READ_HELD(seg->s_as, &seg->s_as->a_lock))
5279 				return (IE_RETRY);
5280 			VM_STAT_ADD(segvnvmstats.demoterange[1]);
5281 			if (svd->type == MAP_PRIVATE || svd->vp != NULL) {
5282 				err = segvn_demote_range(seg, addr, len,
5283 				    SDR_END, 0);
5284 			} else {
5285 				uint_t szcvec = map_pgszcvec(seg->s_base,
5286 				    pgsz, (uintptr_t)seg->s_base,
5287 				    (svd->flags & MAP_TEXT), MAPPGSZC_SHM, 0);
5288 				err = segvn_demote_range(seg, addr, len,
5289 				    SDR_END, szcvec);
5290 			}
5291 			if (err == 0)
5292 				return (IE_RETRY);
5293 			if (err == ENOMEM)
5294 				return (IE_NOMEM);
5295 			return (err);
5296 		}
5297 	}
5298 
5299 
5300 	/*
5301 	 * If it's a private mapping and we're making it writable
5302 	 * and no swap space has been reserved, have to reserve
5303 	 * it all now.  If it's a private mapping to a file (i.e., vp != NULL)
5304 	 * and we're removing write permission on the entire segment and
5305 	 * we haven't modified any pages, we can release the swap space.
5306 	 */
5307 	if (svd->type == MAP_PRIVATE) {
5308 		if (prot & PROT_WRITE) {
5309 			size_t sz;
5310 			if (svd->swresv == 0 && !(svd->flags & MAP_NORESERVE)) {
5311 				if (anon_resv_zone(seg->s_size,
5312 				    seg->s_as->a_proc->p_zone) == 0) {
5313 					SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5314 					return (IE_NOMEM);
5315 				}
5316 				sz = svd->swresv = seg->s_size;
5317 				TRACE_3(TR_FAC_VM, TR_ANON_PROC,
5318 					"anon proc:%p %lu %u",
5319 					seg, sz, 1);
5320 			}
5321 		} else {
5322 			/*
5323 			 * Swap space is released only if this segment
5324 			 * does not map anonymous memory, since read faults
5325 			 * on such segments still need an anon slot to read
5326 			 * in the data.
5327 			 */
5328 			if (svd->swresv != 0 && svd->vp != NULL &&
5329 			    svd->amp == NULL && addr == seg->s_base &&
5330 			    len == seg->s_size && svd->pageprot == 0) {
5331 				anon_unresv_zone(svd->swresv,
5332 				    seg->s_as->a_proc->p_zone);
5333 				svd->swresv = 0;
5334 				TRACE_3(TR_FAC_VM, TR_ANON_PROC,
5335 					"anon proc:%p %lu %u",
5336 					seg, 0, 0);
5337 			}
5338 		}
5339 	}
5340 
5341 	if (addr == seg->s_base && len == seg->s_size && svd->pageprot == 0) {
5342 		if (svd->prot == prot) {
5343 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5344 			return (0);			/* all done */
5345 		}
5346 		svd->prot = (uchar_t)prot;
5347 	} else if (svd->type == MAP_PRIVATE) {
5348 		struct anon *ap = NULL;
5349 		page_t *pp;
5350 		u_offset_t offset, off;
5351 		struct anon_map *amp;
5352 		ulong_t anon_idx = 0;
5353 
5354 		/*
5355 		 * A vpage structure exists or else the change does not
5356 		 * involve the entire segment.  Establish a vpage structure
5357 		 * if none is there.  Then, for each page in the range,
5358 		 * adjust its individual permissions.  Note that write-
5359 		 * enabling a MAP_PRIVATE page can affect the claims for
5360 		 * locked down memory.  Overcommitting memory terminates
5361 		 * the operation.
5362 		 */
5363 		segvn_vpage(seg);
5364 		if ((amp = svd->amp) != NULL) {
5365 			anon_idx = svd->anon_index + seg_page(seg, addr);
5366 			ASSERT(seg->s_szc == 0 ||
5367 			    IS_P2ALIGNED(anon_idx, pgcnt));
5368 			ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
5369 		}
5370 
5371 		offset = svd->offset + (uintptr_t)(addr - seg->s_base);
5372 		evp = &svd->vpage[seg_page(seg, addr + len)];
5373 
5374 		/*
5375 		 * See Statement at the beginning of segvn_lockop regarding
5376 		 * the way cowcnts and lckcnts are handled.
5377 		 */
5378 		for (svp = &svd->vpage[seg_page(seg, addr)]; svp < evp; svp++) {
5379 
5380 			if (seg->s_szc != 0) {
5381 				if (amp != NULL) {
5382 					anon_array_enter(amp, anon_idx,
5383 					    &cookie);
5384 				}
5385 				if (IS_P2ALIGNED(anon_idx, pgcnt) &&
5386 				    !segvn_claim_pages(seg, svp, offset,
5387 					anon_idx, prot)) {
5388 					if (amp != NULL) {
5389 						anon_array_exit(&cookie);
5390 					}
5391 					break;
5392 				}
5393 				if (amp != NULL) {
5394 					anon_array_exit(&cookie);
5395 				}
5396 				anon_idx++;
5397 			} else {
5398 				if (amp != NULL) {
5399 					anon_array_enter(amp, anon_idx,
5400 						&cookie);
5401 					ap = anon_get_ptr(amp->ahp, anon_idx++);
5402 				}
5403 
5404 				if (VPP_ISPPLOCK(svp) &&
5405 				    VPP_PROT(svp) != prot) {
5406 
5407 					if (amp == NULL || ap == NULL) {
5408 						vp = svd->vp;
5409 						off = offset;
5410 					} else
5411 						swap_xlate(ap, &vp, &off);
5412 					if (amp != NULL)
5413 						anon_array_exit(&cookie);
5414 
5415 					if ((pp = page_lookup(vp, off,
5416 					    SE_SHARED)) == NULL) {
5417 						panic("segvn_setprot: no page");
5418 						/*NOTREACHED*/
5419 					}
5420 					ASSERT(seg->s_szc == 0);
5421 					if ((VPP_PROT(svp) ^ prot) &
5422 					    PROT_WRITE) {
5423 						if (prot & PROT_WRITE) {
5424 						    if (!page_addclaim(pp)) {
5425 							page_unlock(pp);
5426 							break;
5427 						    }
5428 						} else {
5429 						    if (!page_subclaim(pp)) {
5430 							page_unlock(pp);
5431 							break;
5432 						    }
5433 						}
5434 					}
5435 					page_unlock(pp);
5436 				} else if (amp != NULL)
5437 					anon_array_exit(&cookie);
5438 			}
5439 			VPP_SETPROT(svp, prot);
5440 			offset += PAGESIZE;
5441 		}
5442 		if (amp != NULL)
5443 			ANON_LOCK_EXIT(&amp->a_rwlock);
5444 
5445 		/*
5446 		 * Did we terminate prematurely?  If so, simply unload
5447 		 * the translations to the things we've updated so far.
5448 		 */
5449 		if (svp != evp) {
5450 			len = (svp - &svd->vpage[seg_page(seg, addr)]) *
5451 			    PAGESIZE;
5452 			ASSERT(seg->s_szc == 0 || IS_P2ALIGNED(len, pgsz));
5453 			if (len != 0)
5454 				hat_unload(seg->s_as->a_hat, addr,
5455 				    len, HAT_UNLOAD);
5456 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5457 			return (IE_NOMEM);
5458 		}
5459 	} else {
5460 		segvn_vpage(seg);
5461 		evp = &svd->vpage[seg_page(seg, addr + len)];
5462 		for (svp = &svd->vpage[seg_page(seg, addr)]; svp < evp; svp++) {
5463 			VPP_SETPROT(svp, prot);
5464 		}
5465 	}
5466 
5467 	if (((prot & PROT_WRITE) != 0 &&
5468 	    (svd->vp != NULL || svd->type == MAP_PRIVATE)) ||
5469 	    (prot & ~PROT_USER) == PROT_NONE) {
5470 		/*
5471 		 * Either private or shared data with write access (in
5472 		 * which case we need to throw out all former translations
5473 		 * so that we get the right translations set up on fault
5474 		 * and we don't allow write access to any copy-on-write pages
5475 		 * that might be around or to prevent write access to pages
5476 		 * representing holes in a file), or we don't have permission
5477 		 * to access the memory at all (in which case we have to
5478 		 * unload any current translations that might exist).
5479 		 */
5480 		hat_unload(seg->s_as->a_hat, addr, len, HAT_UNLOAD);
5481 	} else {
5482 		/*
5483 		 * A shared mapping or a private mapping in which write
5484 		 * protection is going to be denied - just change all the
5485 		 * protections over the range of addresses in question.
5486 		 * segvn does not support any other attributes other
5487 		 * than prot so we can use hat_chgattr.
5488 		 */
5489 		hat_chgattr(seg->s_as->a_hat, addr, len, prot);
5490 	}
5491 
5492 	SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
5493 
5494 	return (0);
5495 }
5496 
5497 /*
5498  * segvn_setpagesize is called via SEGOP_SETPAGESIZE from as_setpagesize,
5499  * to determine if the seg is capable of mapping the requested szc.
5500  */
5501 static int
5502 segvn_setpagesize(struct seg *seg, caddr_t addr, size_t len, uint_t szc)
5503 {
5504 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
5505 	struct segvn_data *nsvd;
5506 	struct anon_map *amp = svd->amp;
5507 	struct seg *nseg;
5508 	caddr_t eaddr = addr + len, a;
5509 	size_t pgsz = page_get_pagesize(szc);
5510 	pgcnt_t pgcnt = page_get_pagecnt(szc);
5511 	int err;
5512 	u_offset_t off = svd->offset + (uintptr_t)(addr - seg->s_base);
5513 	extern struct vnode kvp;
5514 
5515 	ASSERT(seg->s_as && AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
5516 	ASSERT(addr >= seg->s_base && eaddr <= seg->s_base + seg->s_size);
5517 
5518 	if (seg->s_szc == szc || segvn_lpg_disable != 0) {
5519 		return (0);
5520 	}
5521 
5522 	/*
5523 	 * addr should always be pgsz aligned but eaddr may be misaligned if
5524 	 * it's at the end of the segment.
5525 	 *
5526 	 * XXX we should assert this condition since as_setpagesize() logic
5527 	 * guarantees it.
5528 	 */
5529 	if (!IS_P2ALIGNED(addr, pgsz) ||
5530 	    (!IS_P2ALIGNED(eaddr, pgsz) &&
5531 		eaddr != seg->s_base + seg->s_size)) {
5532 
5533 		segvn_setpgsz_align_err++;
5534 		return (EINVAL);
5535 	}
5536 
5537 	if (amp != NULL && svd->type == MAP_SHARED) {
5538 		ulong_t an_idx = svd->anon_index + seg_page(seg, addr);
5539 		if (!IS_P2ALIGNED(an_idx, pgcnt)) {
5540 
5541 			segvn_setpgsz_anon_align_err++;
5542 			return (EINVAL);
5543 		}
5544 	}
5545 
5546 	if ((svd->flags & MAP_NORESERVE) || seg->s_as == &kas ||
5547 	    szc > segvn_maxpgszc) {
5548 		return (EINVAL);
5549 	}
5550 
5551 	/* paranoid check */
5552 	if (svd->vp != NULL &&
5553 	    (IS_SWAPFSVP(svd->vp) || VN_ISKAS(svd->vp))) {
5554 		    return (EINVAL);
5555 	}
5556 
5557 	if (seg->s_szc == 0 && svd->vp != NULL &&
5558 	    map_addr_vacalign_check(addr, off)) {
5559 		return (EINVAL);
5560 	}
5561 
5562 	/*
5563 	 * Check that protections are the same within new page
5564 	 * size boundaries.
5565 	 */
5566 	if (svd->pageprot) {
5567 		for (a = addr; a < eaddr; a += pgsz) {
5568 			if ((a + pgsz) > eaddr) {
5569 				if (!sameprot(seg, a, eaddr - a)) {
5570 					return (EINVAL);
5571 				}
5572 			} else {
5573 				if (!sameprot(seg, a, pgsz)) {
5574 					return (EINVAL);
5575 				}
5576 			}
5577 		}
5578 	}
5579 
5580 	/*
5581 	 * Since we are changing page size we first have to flush
5582 	 * the cache. This makes sure all the pagelock calls have
5583 	 * to recheck protections.
5584 	 */
5585 	if (svd->softlockcnt > 0) {
5586 		/*
5587 		 * Since we do have the segvn writers lock nobody can fill
5588 		 * the cache with entries belonging to this seg during
5589 		 * the purge. The flush either succeeds or we still have
5590 		 * pending I/Os.
5591 		 */
5592 		segvn_purge(seg);
5593 		if (svd->softlockcnt > 0) {
5594 			return (EAGAIN);
5595 		}
5596 	}
5597 
5598 	/*
5599 	 * Operation for sub range of existing segment.
5600 	 */
5601 	if (addr != seg->s_base || eaddr != (seg->s_base + seg->s_size)) {
5602 		if (szc < seg->s_szc) {
5603 			VM_STAT_ADD(segvnvmstats.demoterange[2]);
5604 			err = segvn_demote_range(seg, addr, len, SDR_RANGE, 0);
5605 			if (err == 0) {
5606 				return (IE_RETRY);
5607 			}
5608 			if (err == ENOMEM) {
5609 				return (IE_NOMEM);
5610 			}
5611 			return (err);
5612 		}
5613 		if (addr != seg->s_base) {
5614 			nseg = segvn_split_seg(seg, addr);
5615 			if (eaddr != (nseg->s_base + nseg->s_size)) {
5616 				/* eaddr is szc aligned */
5617 				(void) segvn_split_seg(nseg, eaddr);
5618 			}
5619 			return (IE_RETRY);
5620 		}
5621 		if (eaddr != (seg->s_base + seg->s_size)) {
5622 			/* eaddr is szc aligned */
5623 			(void) segvn_split_seg(seg, eaddr);
5624 		}
5625 		return (IE_RETRY);
5626 	}
5627 
5628 	/*
5629 	 * Break any low level sharing and reset seg->s_szc to 0.
5630 	 */
5631 	if ((err = segvn_clrszc(seg)) != 0) {
5632 		if (err == ENOMEM) {
5633 			err = IE_NOMEM;
5634 		}
5635 		return (err);
5636 	}
5637 	ASSERT(seg->s_szc == 0);
5638 
5639 	/*
5640 	 * If the end of the current segment is not pgsz aligned
5641 	 * then attempt to concatenate with the next segment.
5642 	 */
5643 	if (!IS_P2ALIGNED(eaddr, pgsz)) {
5644 		nseg = AS_SEGNEXT(seg->s_as, seg);
5645 		if (nseg == NULL || nseg == seg || eaddr != nseg->s_base) {
5646 			return (ENOMEM);
5647 		}
5648 		if (nseg->s_ops != &segvn_ops) {
5649 			return (EINVAL);
5650 		}
5651 		nsvd = (struct segvn_data *)nseg->s_data;
5652 		if (nsvd->softlockcnt > 0) {
5653 			segvn_purge(nseg);
5654 			if (nsvd->softlockcnt > 0) {
5655 				return (EAGAIN);
5656 			}
5657 		}
5658 		err = segvn_clrszc(nseg);
5659 		if (err == ENOMEM) {
5660 			err = IE_NOMEM;
5661 		}
5662 		if (err != 0) {
5663 			return (err);
5664 		}
5665 		err = segvn_concat(seg, nseg, 1);
5666 		if (err == -1) {
5667 			return (EINVAL);
5668 		}
5669 		if (err == -2) {
5670 			return (IE_NOMEM);
5671 		}
5672 		return (IE_RETRY);
5673 	}
5674 
5675 	/*
5676 	 * May need to re-align anon array to
5677 	 * new szc.
5678 	 */
5679 	if (amp != NULL) {
5680 		if (!IS_P2ALIGNED(svd->anon_index, pgcnt)) {
5681 			struct anon_hdr *nahp;
5682 
5683 			ASSERT(svd->type == MAP_PRIVATE);
5684 
5685 			ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
5686 			ASSERT(amp->refcnt == 1);
5687 			nahp = anon_create(btop(amp->size), ANON_NOSLEEP);
5688 			if (nahp == NULL) {
5689 				ANON_LOCK_EXIT(&amp->a_rwlock);
5690 				return (IE_NOMEM);
5691 			}
5692 			if (anon_copy_ptr(amp->ahp, svd->anon_index,
5693 				nahp, 0, btop(seg->s_size), ANON_NOSLEEP)) {
5694 				anon_release(nahp, btop(amp->size));
5695 				ANON_LOCK_EXIT(&amp->a_rwlock);
5696 				return (IE_NOMEM);
5697 			}
5698 			anon_release(amp->ahp, btop(amp->size));
5699 			amp->ahp = nahp;
5700 			svd->anon_index = 0;
5701 			ANON_LOCK_EXIT(&amp->a_rwlock);
5702 		}
5703 	}
5704 	if (svd->vp != NULL && szc != 0) {
5705 		struct vattr va;
5706 		u_offset_t eoffpage = svd->offset;
5707 		va.va_mask = AT_SIZE;
5708 		eoffpage += seg->s_size;
5709 		eoffpage = btopr(eoffpage);
5710 		if (VOP_GETATTR(svd->vp, &va, 0, svd->cred) != 0) {
5711 			segvn_setpgsz_getattr_err++;
5712 			return (EINVAL);
5713 		}
5714 		if (btopr(va.va_size) < eoffpage) {
5715 			segvn_setpgsz_eof_err++;
5716 			return (EINVAL);
5717 		}
5718 		if (amp != NULL) {
5719 			/*
5720 			 * anon_fill_cow_holes() may call VOP_GETPAGE().
5721 			 * don't take anon map lock here to avoid holding it
5722 			 * across VOP_GETPAGE() calls that may call back into
5723 			 * segvn for klsutering checks. We don't really need
5724 			 * anon map lock here since it's a private segment and
5725 			 * we hold as level lock as writers.
5726 			 */
5727 			if ((err = anon_fill_cow_holes(seg, seg->s_base,
5728 			    amp->ahp, svd->anon_index, svd->vp, svd->offset,
5729 			    seg->s_size, szc, svd->prot, svd->vpage,
5730 			    svd->cred)) != 0) {
5731 				return (EINVAL);
5732 			}
5733 		}
5734 		segvn_setvnode_mpss(svd->vp);
5735 	}
5736 
5737 	if (amp != NULL) {
5738 		ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
5739 		if (svd->type == MAP_PRIVATE) {
5740 			amp->a_szc = szc;
5741 		} else if (szc > amp->a_szc) {
5742 			amp->a_szc = szc;
5743 		}
5744 		ANON_LOCK_EXIT(&amp->a_rwlock);
5745 	}
5746 
5747 	seg->s_szc = szc;
5748 
5749 	return (0);
5750 }
5751 
5752 static int
5753 segvn_clrszc(struct seg *seg)
5754 {
5755 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
5756 	struct anon_map *amp = svd->amp;
5757 	size_t pgsz;
5758 	pgcnt_t pages;
5759 	int err = 0;
5760 	caddr_t a = seg->s_base;
5761 	caddr_t ea = a + seg->s_size;
5762 	ulong_t an_idx = svd->anon_index;
5763 	vnode_t *vp = svd->vp;
5764 	struct vpage *vpage = svd->vpage;
5765 	page_t *anon_pl[1 + 1], *pp;
5766 	struct anon *ap, *oldap;
5767 	uint_t prot = svd->prot, vpprot;
5768 	int pageflag = 0;
5769 
5770 	ASSERT(AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock) ||
5771 	    SEGVN_WRITE_HELD(seg->s_as, &svd->lock));
5772 
5773 	if (vp == NULL && amp == NULL) {
5774 		seg->s_szc = 0;
5775 		return (0);
5776 	}
5777 
5778 	/*
5779 	 * do HAT_UNLOAD_UNMAP since we are changing the pagesize.
5780 	 * unload argument is 0 when we are freeing the segment
5781 	 * and unload was already done.
5782 	 */
5783 	hat_unload(seg->s_as->a_hat, seg->s_base, seg->s_size,
5784 	    HAT_UNLOAD_UNMAP);
5785 
5786 	if (amp == NULL || svd->type == MAP_SHARED) {
5787 		seg->s_szc = 0;
5788 		return (0);
5789 	}
5790 
5791 	pgsz = page_get_pagesize(seg->s_szc);
5792 	pages = btop(pgsz);
5793 
5794 	/*
5795 	 * XXX anon rwlock is not really needed because this is a
5796 	 * private segment and we are writers.
5797 	 */
5798 	ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
5799 
5800 	for (; a < ea; a += pgsz, an_idx += pages) {
5801 		if ((oldap = anon_get_ptr(amp->ahp, an_idx)) != NULL) {
5802 			ASSERT(vpage != NULL || svd->pageprot == 0);
5803 			if (vpage != NULL) {
5804 				ASSERT(sameprot(seg, a, pgsz));
5805 				prot = VPP_PROT(vpage);
5806 				pageflag = VPP_ISPPLOCK(vpage) ? LOCK_PAGE : 0;
5807 			}
5808 			if (seg->s_szc != 0) {
5809 				ASSERT(vp == NULL || anon_pages(amp->ahp,
5810 				    an_idx, pages) == pages);
5811 				if ((err = anon_map_demotepages(amp, an_idx,
5812 				    seg, a, prot, vpage, svd->cred)) != 0) {
5813 					goto out;
5814 				}
5815 			} else {
5816 				if (oldap->an_refcnt == 1) {
5817 					continue;
5818 				}
5819 				if ((err = anon_getpage(&oldap, &vpprot,
5820 				    anon_pl, PAGESIZE, seg, a, S_READ,
5821 				    svd->cred))) {
5822 					goto out;
5823 				}
5824 				if ((pp = anon_private(&ap, seg, a, prot,
5825 				    anon_pl[0], pageflag, svd->cred)) == NULL) {
5826 					err = ENOMEM;
5827 					goto out;
5828 				}
5829 				anon_decref(oldap);
5830 				(void) anon_set_ptr(amp->ahp, an_idx, ap,
5831 				    ANON_SLEEP);
5832 				page_unlock(pp);
5833 			}
5834 		}
5835 		vpage = (vpage == NULL) ? NULL : vpage + pages;
5836 	}
5837 
5838 	amp->a_szc = 0;
5839 	seg->s_szc = 0;
5840 out:
5841 	ANON_LOCK_EXIT(&amp->a_rwlock);
5842 	return (err);
5843 }
5844 
5845 static int
5846 segvn_claim_pages(
5847 	struct seg *seg,
5848 	struct vpage *svp,
5849 	u_offset_t off,
5850 	ulong_t anon_idx,
5851 	uint_t prot)
5852 {
5853 	pgcnt_t	pgcnt = page_get_pagecnt(seg->s_szc);
5854 	size_t ppasize = (pgcnt + 1) * sizeof (page_t *);
5855 	page_t	**ppa;
5856 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
5857 	struct anon_map *amp = svd->amp;
5858 	struct vpage *evp = svp + pgcnt;
5859 	caddr_t addr = ((uintptr_t)(svp - svd->vpage) << PAGESHIFT)
5860 	    + seg->s_base;
5861 	struct anon *ap;
5862 	struct vnode *vp = svd->vp;
5863 	page_t *pp;
5864 	pgcnt_t pg_idx, i;
5865 	int err = 0;
5866 	anoff_t aoff;
5867 	int anon = (amp != NULL) ? 1 : 0;
5868 
5869 	ASSERT(svd->type == MAP_PRIVATE);
5870 	ASSERT(svd->vpage != NULL);
5871 	ASSERT(seg->s_szc != 0);
5872 	ASSERT(IS_P2ALIGNED(pgcnt, pgcnt));
5873 	ASSERT(amp == NULL || IS_P2ALIGNED(anon_idx, pgcnt));
5874 	ASSERT(sameprot(seg, addr, pgcnt << PAGESHIFT));
5875 
5876 	if (VPP_PROT(svp) == prot)
5877 		return (1);
5878 	if (!((VPP_PROT(svp) ^ prot) & PROT_WRITE))
5879 		return (1);
5880 
5881 	ppa = kmem_alloc(ppasize, KM_SLEEP);
5882 	if (anon && vp != NULL) {
5883 		if (anon_get_ptr(amp->ahp, anon_idx) == NULL) {
5884 			anon = 0;
5885 			ASSERT(!anon_pages(amp->ahp, anon_idx, pgcnt));
5886 		}
5887 		ASSERT(!anon ||
5888 		    anon_pages(amp->ahp, anon_idx, pgcnt) == pgcnt);
5889 	}
5890 
5891 	for (*ppa = NULL, pg_idx = 0; svp < evp; svp++, anon_idx++) {
5892 		if (!VPP_ISPPLOCK(svp))
5893 			continue;
5894 		if (anon) {
5895 			ap = anon_get_ptr(amp->ahp, anon_idx);
5896 			if (ap == NULL) {
5897 				panic("segvn_claim_pages: no anon slot");
5898 			}
5899 			swap_xlate(ap, &vp, &aoff);
5900 			off = (u_offset_t)aoff;
5901 		}
5902 		ASSERT(vp != NULL);
5903 		if ((pp = page_lookup(vp,
5904 		    (u_offset_t)off, SE_SHARED)) == NULL) {
5905 			panic("segvn_claim_pages: no page");
5906 		}
5907 		ppa[pg_idx++] = pp;
5908 		off += PAGESIZE;
5909 	}
5910 
5911 	if (ppa[0] == NULL) {
5912 		kmem_free(ppa, ppasize);
5913 		return (1);
5914 	}
5915 
5916 	ASSERT(pg_idx <= pgcnt);
5917 	ppa[pg_idx] = NULL;
5918 
5919 	if (prot & PROT_WRITE)
5920 		err = page_addclaim_pages(ppa);
5921 	else
5922 		err = page_subclaim_pages(ppa);
5923 
5924 	for (i = 0; i < pg_idx; i++) {
5925 		ASSERT(ppa[i] != NULL);
5926 		page_unlock(ppa[i]);
5927 	}
5928 
5929 	kmem_free(ppa, ppasize);
5930 	return (err);
5931 }
5932 
5933 /*
5934  * Returns right (upper address) segment if split occured.
5935  * If the address is equal to the beginning or end of its segment it returns
5936  * the current segment.
5937  */
5938 static struct seg *
5939 segvn_split_seg(struct seg *seg, caddr_t addr)
5940 {
5941 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
5942 	struct seg *nseg;
5943 	size_t nsize;
5944 	struct segvn_data *nsvd;
5945 
5946 	ASSERT(AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
5947 	ASSERT(addr >= seg->s_base);
5948 	ASSERT(addr <= seg->s_base + seg->s_size);
5949 
5950 	if (addr == seg->s_base || addr == seg->s_base + seg->s_size)
5951 		return (seg);
5952 
5953 	nsize = seg->s_base + seg->s_size - addr;
5954 	seg->s_size = addr - seg->s_base;
5955 	nseg = seg_alloc(seg->s_as, addr, nsize);
5956 	ASSERT(nseg != NULL);
5957 	nseg->s_ops = seg->s_ops;
5958 	nsvd = kmem_cache_alloc(segvn_cache, KM_SLEEP);
5959 	nseg->s_data = (void *)nsvd;
5960 	nseg->s_szc = seg->s_szc;
5961 	*nsvd = *svd;
5962 	rw_init(&nsvd->lock, NULL, RW_DEFAULT, NULL);
5963 
5964 	if (nsvd->vp != NULL) {
5965 		VN_HOLD(nsvd->vp);
5966 		nsvd->offset = svd->offset +
5967 		    (uintptr_t)(nseg->s_base - seg->s_base);
5968 		if (nsvd->type == MAP_SHARED)
5969 			lgrp_shm_policy_init(NULL, nsvd->vp);
5970 	} else {
5971 		/*
5972 		 * The offset for an anonymous segment has no signifigance in
5973 		 * terms of an offset into a file. If we were to use the above
5974 		 * calculation instead, the structures read out of
5975 		 * /proc/<pid>/xmap would be more difficult to decipher since
5976 		 * it would be unclear whether two seemingly contiguous
5977 		 * prxmap_t structures represented different segments or a
5978 		 * single segment that had been split up into multiple prxmap_t
5979 		 * structures (e.g. if some part of the segment had not yet
5980 		 * been faulted in).
5981 		 */
5982 		nsvd->offset = 0;
5983 	}
5984 
5985 	ASSERT(svd->softlockcnt == 0);
5986 	crhold(svd->cred);
5987 
5988 	if (svd->vpage != NULL) {
5989 		size_t bytes = vpgtob(seg_pages(seg));
5990 		size_t nbytes = vpgtob(seg_pages(nseg));
5991 		struct vpage *ovpage = svd->vpage;
5992 
5993 		svd->vpage = kmem_alloc(bytes, KM_SLEEP);
5994 		bcopy(ovpage, svd->vpage, bytes);
5995 		nsvd->vpage = kmem_alloc(nbytes, KM_SLEEP);
5996 		bcopy(ovpage + seg_pages(seg), nsvd->vpage, nbytes);
5997 		kmem_free(ovpage, bytes + nbytes);
5998 	}
5999 	if (svd->amp != NULL && svd->type == MAP_PRIVATE) {
6000 		struct anon_map *oamp = svd->amp, *namp;
6001 		struct anon_hdr *nahp;
6002 
6003 		ANON_LOCK_ENTER(&oamp->a_rwlock, RW_WRITER);
6004 		ASSERT(oamp->refcnt == 1);
6005 		nahp = anon_create(btop(seg->s_size), ANON_SLEEP);
6006 		(void) anon_copy_ptr(oamp->ahp, svd->anon_index,
6007 		    nahp, 0, btop(seg->s_size), ANON_SLEEP);
6008 
6009 		namp = anonmap_alloc(nseg->s_size, 0);
6010 		namp->a_szc = nseg->s_szc;
6011 		(void) anon_copy_ptr(oamp->ahp,
6012 		    svd->anon_index + btop(seg->s_size),
6013 		    namp->ahp, 0, btop(nseg->s_size), ANON_SLEEP);
6014 		anon_release(oamp->ahp, btop(oamp->size));
6015 		oamp->ahp = nahp;
6016 		oamp->size = seg->s_size;
6017 		svd->anon_index = 0;
6018 		nsvd->amp = namp;
6019 		nsvd->anon_index = 0;
6020 		ANON_LOCK_EXIT(&oamp->a_rwlock);
6021 	} else if (svd->amp != NULL) {
6022 		pgcnt_t pgcnt = page_get_pagecnt(seg->s_szc);
6023 		ASSERT(svd->amp == nsvd->amp);
6024 		ASSERT(seg->s_szc <= svd->amp->a_szc);
6025 		nsvd->anon_index = svd->anon_index + seg_pages(seg);
6026 		ASSERT(IS_P2ALIGNED(nsvd->anon_index, pgcnt));
6027 		ANON_LOCK_ENTER(&svd->amp->a_rwlock, RW_WRITER);
6028 		svd->amp->refcnt++;
6029 		ANON_LOCK_EXIT(&svd->amp->a_rwlock);
6030 	}
6031 
6032 	/*
6033 	 * Split amount of swap reserve
6034 	 */
6035 	if (svd->swresv) {
6036 		/*
6037 		 * For MAP_NORESERVE, only allocate swap reserve for pages
6038 		 * being used.  Other segments get enough to cover whole
6039 		 * segment.
6040 		 */
6041 		if (svd->flags & MAP_NORESERVE) {
6042 			size_t	oswresv;
6043 
6044 			ASSERT(svd->amp);
6045 			oswresv = svd->swresv;
6046 			svd->swresv = ptob(anon_pages(svd->amp->ahp,
6047 				svd->anon_index, btop(seg->s_size)));
6048 			nsvd->swresv = ptob(anon_pages(nsvd->amp->ahp,
6049 				nsvd->anon_index, btop(nseg->s_size)));
6050 			ASSERT(oswresv >= (svd->swresv + nsvd->swresv));
6051 		} else {
6052 			ASSERT(svd->swresv == seg->s_size + nseg->s_size);
6053 			svd->swresv = seg->s_size;
6054 			nsvd->swresv = nseg->s_size;
6055 		}
6056 	}
6057 
6058 	return (nseg);
6059 }
6060 
6061 /*
6062  * called on memory operations (unmap, setprot, setpagesize) for a subset
6063  * of a large page segment to either demote the memory range (SDR_RANGE)
6064  * or the ends (SDR_END) by addr/len.
6065  *
6066  * returns 0 on success. returns errno, including ENOMEM, on failure.
6067  */
6068 static int
6069 segvn_demote_range(
6070 	struct seg *seg,
6071 	caddr_t addr,
6072 	size_t len,
6073 	int flag,
6074 	uint_t szcvec)
6075 {
6076 	caddr_t eaddr = addr + len;
6077 	caddr_t lpgaddr, lpgeaddr;
6078 	struct seg *nseg;
6079 	struct seg *badseg1 = NULL;
6080 	struct seg *badseg2 = NULL;
6081 	size_t pgsz;
6082 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
6083 	int err;
6084 	uint_t szc = seg->s_szc;
6085 	uint_t tszcvec;
6086 
6087 	ASSERT(AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
6088 	ASSERT(szc != 0);
6089 	pgsz = page_get_pagesize(szc);
6090 	ASSERT(seg->s_base != addr || seg->s_size != len);
6091 	ASSERT(addr >= seg->s_base && eaddr <= seg->s_base + seg->s_size);
6092 	ASSERT(svd->softlockcnt == 0);
6093 	ASSERT(szcvec == 0 || (flag == SDR_END && svd->type == MAP_SHARED));
6094 
6095 	CALC_LPG_REGION(pgsz, seg, addr, len, lpgaddr, lpgeaddr);
6096 	ASSERT(flag == SDR_RANGE || eaddr < lpgeaddr || addr > lpgaddr);
6097 	if (flag == SDR_RANGE) {
6098 		/* demote entire range */
6099 		badseg1 = nseg = segvn_split_seg(seg, lpgaddr);
6100 		(void) segvn_split_seg(nseg, lpgeaddr);
6101 		ASSERT(badseg1->s_base == lpgaddr);
6102 		ASSERT(badseg1->s_size == lpgeaddr - lpgaddr);
6103 	} else if (addr != lpgaddr) {
6104 		ASSERT(flag == SDR_END);
6105 		badseg1 = nseg = segvn_split_seg(seg, lpgaddr);
6106 		if (eaddr != lpgeaddr && eaddr > lpgaddr + pgsz &&
6107 		    eaddr < lpgaddr + 2 * pgsz) {
6108 			(void) segvn_split_seg(nseg, lpgeaddr);
6109 			ASSERT(badseg1->s_base == lpgaddr);
6110 			ASSERT(badseg1->s_size == 2 * pgsz);
6111 		} else {
6112 			nseg = segvn_split_seg(nseg, lpgaddr + pgsz);
6113 			ASSERT(badseg1->s_base == lpgaddr);
6114 			ASSERT(badseg1->s_size == pgsz);
6115 			if (eaddr != lpgeaddr && eaddr > lpgaddr + pgsz) {
6116 				ASSERT(lpgeaddr - lpgaddr > 2 * pgsz);
6117 				nseg = segvn_split_seg(nseg, lpgeaddr - pgsz);
6118 				badseg2 = nseg;
6119 				(void) segvn_split_seg(nseg, lpgeaddr);
6120 				ASSERT(badseg2->s_base == lpgeaddr - pgsz);
6121 				ASSERT(badseg2->s_size == pgsz);
6122 			}
6123 		}
6124 	} else {
6125 		ASSERT(flag == SDR_END);
6126 		ASSERT(eaddr < lpgeaddr);
6127 		badseg1 = nseg = segvn_split_seg(seg, lpgeaddr - pgsz);
6128 		(void) segvn_split_seg(nseg, lpgeaddr);
6129 		ASSERT(badseg1->s_base == lpgeaddr - pgsz);
6130 		ASSERT(badseg1->s_size == pgsz);
6131 	}
6132 
6133 	ASSERT(badseg1 != NULL);
6134 	ASSERT(badseg1->s_szc == szc);
6135 	ASSERT(flag == SDR_RANGE || badseg1->s_size == pgsz ||
6136 	    badseg1->s_size == 2 * pgsz);
6137 	ASSERT(sameprot(badseg1, badseg1->s_base, pgsz));
6138 	ASSERT(badseg1->s_size == pgsz ||
6139 	    sameprot(badseg1, badseg1->s_base + pgsz, pgsz));
6140 	if (err = segvn_clrszc(badseg1)) {
6141 		return (err);
6142 	}
6143 	ASSERT(badseg1->s_szc == 0);
6144 
6145 	if (szc > 1 && (tszcvec = P2PHASE(szcvec, 1 << szc)) > 1) {
6146 		uint_t tszc = highbit(tszcvec) - 1;
6147 		caddr_t ta = MAX(addr, badseg1->s_base);
6148 		caddr_t te;
6149 		size_t tpgsz = page_get_pagesize(tszc);
6150 
6151 		ASSERT(svd->type == MAP_SHARED);
6152 		ASSERT(flag == SDR_END);
6153 		ASSERT(tszc < szc && tszc > 0);
6154 
6155 		if (eaddr > badseg1->s_base + badseg1->s_size) {
6156 			te = badseg1->s_base + badseg1->s_size;
6157 		} else {
6158 			te = eaddr;
6159 		}
6160 
6161 		ASSERT(ta <= te);
6162 		badseg1->s_szc = tszc;
6163 		if (!IS_P2ALIGNED(ta, tpgsz) || !IS_P2ALIGNED(te, tpgsz)) {
6164 			if (badseg2 != NULL) {
6165 				err = segvn_demote_range(badseg1, ta, te - ta,
6166 				    SDR_END, tszcvec);
6167 				if (err != 0) {
6168 					return (err);
6169 				}
6170 			} else {
6171 				return (segvn_demote_range(badseg1, ta,
6172 				    te - ta, SDR_END, tszcvec));
6173 			}
6174 		}
6175 	}
6176 
6177 	if (badseg2 == NULL)
6178 		return (0);
6179 	ASSERT(badseg2->s_szc == szc);
6180 	ASSERT(badseg2->s_size == pgsz);
6181 	ASSERT(sameprot(badseg2, badseg2->s_base, badseg2->s_size));
6182 	if (err = segvn_clrszc(badseg2)) {
6183 		return (err);
6184 	}
6185 	ASSERT(badseg2->s_szc == 0);
6186 
6187 	if (szc > 1 && (tszcvec = P2PHASE(szcvec, 1 << szc)) > 1) {
6188 		uint_t tszc = highbit(tszcvec) - 1;
6189 		size_t tpgsz = page_get_pagesize(tszc);
6190 
6191 		ASSERT(svd->type == MAP_SHARED);
6192 		ASSERT(flag == SDR_END);
6193 		ASSERT(tszc < szc && tszc > 0);
6194 		ASSERT(badseg2->s_base > addr);
6195 		ASSERT(eaddr > badseg2->s_base);
6196 		ASSERT(eaddr < badseg2->s_base + badseg2->s_size);
6197 
6198 		badseg2->s_szc = tszc;
6199 		if (!IS_P2ALIGNED(eaddr, tpgsz)) {
6200 			return (segvn_demote_range(badseg2, badseg2->s_base,
6201 			    eaddr - badseg2->s_base, SDR_END, tszcvec));
6202 		}
6203 	}
6204 
6205 	return (0);
6206 }
6207 
6208 static int
6209 segvn_checkprot(struct seg *seg, caddr_t addr, size_t len, uint_t prot)
6210 {
6211 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
6212 	struct vpage *vp, *evp;
6213 
6214 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
6215 
6216 	SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
6217 	/*
6218 	 * If segment protection can be used, simply check against them.
6219 	 */
6220 	if (svd->pageprot == 0) {
6221 		int err;
6222 
6223 		err = ((svd->prot & prot) != prot) ? EACCES : 0;
6224 		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
6225 		return (err);
6226 	}
6227 
6228 	/*
6229 	 * Have to check down to the vpage level.
6230 	 */
6231 	evp = &svd->vpage[seg_page(seg, addr + len)];
6232 	for (vp = &svd->vpage[seg_page(seg, addr)]; vp < evp; vp++) {
6233 		if ((VPP_PROT(vp) & prot) != prot) {
6234 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
6235 			return (EACCES);
6236 		}
6237 	}
6238 	SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
6239 	return (0);
6240 }
6241 
6242 static int
6243 segvn_getprot(struct seg *seg, caddr_t addr, size_t len, uint_t *protv)
6244 {
6245 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
6246 	size_t pgno = seg_page(seg, addr + len) - seg_page(seg, addr) + 1;
6247 
6248 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
6249 
6250 	if (pgno != 0) {
6251 		SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
6252 		if (svd->pageprot == 0) {
6253 			do
6254 				protv[--pgno] = svd->prot;
6255 			while (pgno != 0);
6256 		} else {
6257 			size_t pgoff = seg_page(seg, addr);
6258 
6259 			do {
6260 				pgno--;
6261 				protv[pgno] = VPP_PROT(&svd->vpage[pgno+pgoff]);
6262 			} while (pgno != 0);
6263 		}
6264 		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
6265 	}
6266 	return (0);
6267 }
6268 
6269 static u_offset_t
6270 segvn_getoffset(struct seg *seg, caddr_t addr)
6271 {
6272 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
6273 
6274 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
6275 
6276 	return (svd->offset + (uintptr_t)(addr - seg->s_base));
6277 }
6278 
6279 /*ARGSUSED*/
6280 static int
6281 segvn_gettype(struct seg *seg, caddr_t addr)
6282 {
6283 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
6284 
6285 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
6286 
6287 	return (svd->type | (svd->flags & (MAP_NORESERVE | MAP_TEXT |
6288 	    MAP_INITDATA)));
6289 }
6290 
6291 /*ARGSUSED*/
6292 static int
6293 segvn_getvp(struct seg *seg, caddr_t addr, struct vnode **vpp)
6294 {
6295 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
6296 
6297 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
6298 
6299 	*vpp = svd->vp;
6300 	return (0);
6301 }
6302 
6303 /*
6304  * Check to see if it makes sense to do kluster/read ahead to
6305  * addr + delta relative to the mapping at addr.  We assume here
6306  * that delta is a signed PAGESIZE'd multiple (which can be negative).
6307  *
6308  * For segvn, we currently "approve" of the action if we are
6309  * still in the segment and it maps from the same vp/off,
6310  * or if the advice stored in segvn_data or vpages allows it.
6311  * Currently, klustering is not allowed only if MADV_RANDOM is set.
6312  */
6313 static int
6314 segvn_kluster(struct seg *seg, caddr_t addr, ssize_t delta)
6315 {
6316 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
6317 	struct anon *oap, *ap;
6318 	ssize_t pd;
6319 	size_t page;
6320 	struct vnode *vp1, *vp2;
6321 	u_offset_t off1, off2;
6322 	struct anon_map *amp;
6323 
6324 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
6325 	ASSERT(AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock) ||
6326 	    SEGVN_LOCK_HELD(seg->s_as, &svd->lock));
6327 
6328 	if (addr + delta < seg->s_base ||
6329 	    addr + delta >= (seg->s_base + seg->s_size))
6330 		return (-1);		/* exceeded segment bounds */
6331 
6332 	pd = delta / (ssize_t)PAGESIZE;	/* divide to preserve sign bit */
6333 	page = seg_page(seg, addr);
6334 
6335 	/*
6336 	 * Check to see if either of the pages addr or addr + delta
6337 	 * have advice set that prevents klustering (if MADV_RANDOM advice
6338 	 * is set for entire segment, or MADV_SEQUENTIAL is set and delta
6339 	 * is negative).
6340 	 */
6341 	if (svd->advice == MADV_RANDOM ||
6342 	    svd->advice == MADV_SEQUENTIAL && delta < 0)
6343 		return (-1);
6344 	else if (svd->pageadvice && svd->vpage) {
6345 		struct vpage *bvpp, *evpp;
6346 
6347 		bvpp = &svd->vpage[page];
6348 		evpp = &svd->vpage[page + pd];
6349 		if (VPP_ADVICE(bvpp) == MADV_RANDOM ||
6350 		    VPP_ADVICE(evpp) == MADV_SEQUENTIAL && delta < 0)
6351 			return (-1);
6352 		if (VPP_ADVICE(bvpp) != VPP_ADVICE(evpp) &&
6353 		    VPP_ADVICE(evpp) == MADV_RANDOM)
6354 			return (-1);
6355 	}
6356 
6357 	if (svd->type == MAP_SHARED)
6358 		return (0);		/* shared mapping - all ok */
6359 
6360 	if ((amp = svd->amp) == NULL)
6361 		return (0);		/* off original vnode */
6362 
6363 	page += svd->anon_index;
6364 
6365 	ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
6366 
6367 	oap = anon_get_ptr(amp->ahp, page);
6368 	ap = anon_get_ptr(amp->ahp, page + pd);
6369 
6370 	ANON_LOCK_EXIT(&amp->a_rwlock);
6371 
6372 	if ((oap == NULL && ap != NULL) || (oap != NULL && ap == NULL)) {
6373 		return (-1);		/* one with and one without an anon */
6374 	}
6375 
6376 	if (oap == NULL) {		/* implies that ap == NULL */
6377 		return (0);		/* off original vnode */
6378 	}
6379 
6380 	/*
6381 	 * Now we know we have two anon pointers - check to
6382 	 * see if they happen to be properly allocated.
6383 	 */
6384 
6385 	/*
6386 	 * XXX We cheat here and don't lock the anon slots. We can't because
6387 	 * we may have been called from the anon layer which might already
6388 	 * have locked them. We are holding a refcnt on the slots so they
6389 	 * can't disappear. The worst that will happen is we'll get the wrong
6390 	 * names (vp, off) for the slots and make a poor klustering decision.
6391 	 */
6392 	swap_xlate(ap, &vp1, &off1);
6393 	swap_xlate(oap, &vp2, &off2);
6394 
6395 
6396 	if (!VOP_CMP(vp1, vp2) || off1 - off2 != delta)
6397 		return (-1);
6398 	return (0);
6399 }
6400 
6401 /*
6402  * Swap the pages of seg out to secondary storage, returning the
6403  * number of bytes of storage freed.
6404  *
6405  * The basic idea is first to unload all translations and then to call
6406  * VOP_PUTPAGE() for all newly-unmapped pages, to push them out to the
6407  * swap device.  Pages to which other segments have mappings will remain
6408  * mapped and won't be swapped.  Our caller (as_swapout) has already
6409  * performed the unloading step.
6410  *
6411  * The value returned is intended to correlate well with the process's
6412  * memory requirements.  However, there are some caveats:
6413  * 1)	When given a shared segment as argument, this routine will
6414  *	only succeed in swapping out pages for the last sharer of the
6415  *	segment.  (Previous callers will only have decremented mapping
6416  *	reference counts.)
6417  * 2)	We assume that the hat layer maintains a large enough translation
6418  *	cache to capture process reference patterns.
6419  */
6420 static size_t
6421 segvn_swapout(struct seg *seg)
6422 {
6423 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
6424 	struct anon_map *amp;
6425 	pgcnt_t pgcnt = 0;
6426 	pgcnt_t npages;
6427 	pgcnt_t page;
6428 	ulong_t anon_index;
6429 
6430 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
6431 
6432 	SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
6433 	/*
6434 	 * Find pages unmapped by our caller and force them
6435 	 * out to the virtual swap device.
6436 	 */
6437 	if ((amp = svd->amp) != NULL)
6438 		anon_index = svd->anon_index;
6439 	npages = seg->s_size >> PAGESHIFT;
6440 	for (page = 0; page < npages; page++) {
6441 		page_t *pp;
6442 		struct anon *ap;
6443 		struct vnode *vp;
6444 		u_offset_t off;
6445 		anon_sync_obj_t cookie;
6446 
6447 		/*
6448 		 * Obtain <vp, off> pair for the page, then look it up.
6449 		 *
6450 		 * Note that this code is willing to consider regular
6451 		 * pages as well as anon pages.  Is this appropriate here?
6452 		 */
6453 		ap = NULL;
6454 		if (amp != NULL) {
6455 			ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
6456 			if (anon_array_try_enter(amp, anon_index + page,
6457 						&cookie)) {
6458 				ANON_LOCK_EXIT(&amp->a_rwlock);
6459 				continue;
6460 			}
6461 			ap = anon_get_ptr(amp->ahp, anon_index + page);
6462 			if (ap != NULL) {
6463 				swap_xlate(ap, &vp, &off);
6464 			} else {
6465 				vp = svd->vp;
6466 				off = svd->offset + ptob(page);
6467 			}
6468 			anon_array_exit(&cookie);
6469 			ANON_LOCK_EXIT(&amp->a_rwlock);
6470 		} else {
6471 			vp = svd->vp;
6472 			off = svd->offset + ptob(page);
6473 		}
6474 		if (vp == NULL) {		/* untouched zfod page */
6475 			ASSERT(ap == NULL);
6476 			continue;
6477 		}
6478 
6479 		pp = page_lookup_nowait(vp, off, SE_SHARED);
6480 		if (pp == NULL)
6481 			continue;
6482 
6483 
6484 		/*
6485 		 * Examine the page to see whether it can be tossed out,
6486 		 * keeping track of how many we've found.
6487 		 */
6488 		if (!page_tryupgrade(pp)) {
6489 			/*
6490 			 * If the page has an i/o lock and no mappings,
6491 			 * it's very likely that the page is being
6492 			 * written out as a result of klustering.
6493 			 * Assume this is so and take credit for it here.
6494 			 */
6495 			if (!page_io_trylock(pp)) {
6496 				if (!hat_page_is_mapped(pp))
6497 					pgcnt++;
6498 			} else {
6499 				page_io_unlock(pp);
6500 			}
6501 			page_unlock(pp);
6502 			continue;
6503 		}
6504 		ASSERT(!page_iolock_assert(pp));
6505 
6506 
6507 		/*
6508 		 * Skip if page is locked or has mappings.
6509 		 * We don't need the page_struct_lock to look at lckcnt
6510 		 * and cowcnt because the page is exclusive locked.
6511 		 */
6512 		if (pp->p_lckcnt != 0 || pp->p_cowcnt != 0 ||
6513 		    hat_page_is_mapped(pp)) {
6514 			page_unlock(pp);
6515 			continue;
6516 		}
6517 
6518 		/*
6519 		 * dispose skips large pages so try to demote first.
6520 		 */
6521 		if (pp->p_szc != 0 && !page_try_demote_pages(pp)) {
6522 			page_unlock(pp);
6523 			/*
6524 			 * XXX should skip the remaining page_t's of this
6525 			 * large page.
6526 			 */
6527 			continue;
6528 		}
6529 
6530 		ASSERT(pp->p_szc == 0);
6531 
6532 		/*
6533 		 * No longer mapped -- we can toss it out.  How
6534 		 * we do so depends on whether or not it's dirty.
6535 		 */
6536 		if (hat_ismod(pp) && pp->p_vnode) {
6537 			/*
6538 			 * We must clean the page before it can be
6539 			 * freed.  Setting B_FREE will cause pvn_done
6540 			 * to free the page when the i/o completes.
6541 			 * XXX:	This also causes it to be accounted
6542 			 *	as a pageout instead of a swap: need
6543 			 *	B_SWAPOUT bit to use instead of B_FREE.
6544 			 *
6545 			 * Hold the vnode before releasing the page lock
6546 			 * to prevent it from being freed and re-used by
6547 			 * some other thread.
6548 			 */
6549 			VN_HOLD(vp);
6550 			page_unlock(pp);
6551 
6552 			/*
6553 			 * Queue all i/o requests for the pageout thread
6554 			 * to avoid saturating the pageout devices.
6555 			 */
6556 			if (!queue_io_request(vp, off))
6557 				VN_RELE(vp);
6558 		} else {
6559 			/*
6560 			 * The page was clean, free it.
6561 			 *
6562 			 * XXX:	Can we ever encounter modified pages
6563 			 *	with no associated vnode here?
6564 			 */
6565 			ASSERT(pp->p_vnode != NULL);
6566 			/*LINTED: constant in conditional context*/
6567 			VN_DISPOSE(pp, B_FREE, 0, kcred);
6568 		}
6569 
6570 		/*
6571 		 * Credit now even if i/o is in progress.
6572 		 */
6573 		pgcnt++;
6574 	}
6575 	SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
6576 
6577 	/*
6578 	 * Wakeup pageout to initiate i/o on all queued requests.
6579 	 */
6580 	cv_signal_pageout();
6581 	return (ptob(pgcnt));
6582 }
6583 
6584 /*
6585  * Synchronize primary storage cache with real object in virtual memory.
6586  *
6587  * XXX - Anonymous pages should not be sync'ed out at all.
6588  */
6589 static int
6590 segvn_sync(struct seg *seg, caddr_t addr, size_t len, int attr, uint_t flags)
6591 {
6592 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
6593 	struct vpage *vpp;
6594 	page_t *pp;
6595 	u_offset_t offset;
6596 	struct vnode *vp;
6597 	u_offset_t off;
6598 	caddr_t eaddr;
6599 	int bflags;
6600 	int err = 0;
6601 	int segtype;
6602 	int pageprot;
6603 	int prot;
6604 	ulong_t anon_index;
6605 	struct anon_map *amp;
6606 	struct anon *ap;
6607 	anon_sync_obj_t cookie;
6608 
6609 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
6610 
6611 	SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
6612 
6613 	if (svd->softlockcnt > 0) {
6614 		/*
6615 		 * flush all pages from seg cache
6616 		 * otherwise we may deadlock in swap_putpage
6617 		 * for B_INVAL page (4175402).
6618 		 *
6619 		 * Even if we grab segvn WRITER's lock or segp_slock
6620 		 * here, there might be another thread which could've
6621 		 * successfully performed lookup/insert just before
6622 		 * we acquired the lock here.  So, grabbing either
6623 		 * lock here is of not much use.  Until we devise
6624 		 * a strategy at upper layers to solve the
6625 		 * synchronization issues completely, we expect
6626 		 * applications to handle this appropriately.
6627 		 */
6628 		segvn_purge(seg);
6629 		if (svd->softlockcnt > 0) {
6630 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
6631 			return (EAGAIN);
6632 		}
6633 	}
6634 
6635 	vpp = svd->vpage;
6636 	offset = svd->offset + (uintptr_t)(addr - seg->s_base);
6637 	bflags = ((flags & MS_ASYNC) ? B_ASYNC : 0) |
6638 	    ((flags & MS_INVALIDATE) ? B_INVAL : 0);
6639 
6640 	if (attr) {
6641 		pageprot = attr & ~(SHARED|PRIVATE);
6642 		segtype = (attr & SHARED) ? MAP_SHARED : MAP_PRIVATE;
6643 
6644 		/*
6645 		 * We are done if the segment types don't match
6646 		 * or if we have segment level protections and
6647 		 * they don't match.
6648 		 */
6649 		if (svd->type != segtype) {
6650 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
6651 			return (0);
6652 		}
6653 		if (vpp == NULL) {
6654 			if (svd->prot != pageprot) {
6655 				SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
6656 				return (0);
6657 			}
6658 			prot = svd->prot;
6659 		} else
6660 			vpp = &svd->vpage[seg_page(seg, addr)];
6661 
6662 	} else if (svd->vp && svd->amp == NULL &&
6663 	    (flags & MS_INVALIDATE) == 0) {
6664 
6665 		/*
6666 		 * No attributes, no anonymous pages and MS_INVALIDATE flag
6667 		 * is not on, just use one big request.
6668 		 */
6669 		err = VOP_PUTPAGE(svd->vp, (offset_t)offset, len,
6670 		    bflags, svd->cred);
6671 		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
6672 		return (err);
6673 	}
6674 
6675 	if ((amp = svd->amp) != NULL)
6676 		anon_index = svd->anon_index + seg_page(seg, addr);
6677 
6678 	for (eaddr = addr + len; addr < eaddr; addr += PAGESIZE) {
6679 		ap = NULL;
6680 		if (amp != NULL) {
6681 			ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
6682 			anon_array_enter(amp, anon_index, &cookie);
6683 			ap = anon_get_ptr(amp->ahp, anon_index++);
6684 			if (ap != NULL) {
6685 				swap_xlate(ap, &vp, &off);
6686 			} else {
6687 				vp = svd->vp;
6688 				off = offset;
6689 			}
6690 			anon_array_exit(&cookie);
6691 			ANON_LOCK_EXIT(&amp->a_rwlock);
6692 		} else {
6693 			vp = svd->vp;
6694 			off = offset;
6695 		}
6696 		offset += PAGESIZE;
6697 
6698 		if (vp == NULL)		/* untouched zfod page */
6699 			continue;
6700 
6701 		if (attr) {
6702 			if (vpp) {
6703 				prot = VPP_PROT(vpp);
6704 				vpp++;
6705 			}
6706 			if (prot != pageprot) {
6707 				continue;
6708 			}
6709 		}
6710 
6711 		/*
6712 		 * See if any of these pages are locked --  if so, then we
6713 		 * will have to truncate an invalidate request at the first
6714 		 * locked one. We don't need the page_struct_lock to test
6715 		 * as this is only advisory; even if we acquire it someone
6716 		 * might race in and lock the page after we unlock and before
6717 		 * we do the PUTPAGE, then PUTPAGE simply does nothing.
6718 		 */
6719 		if (flags & MS_INVALIDATE) {
6720 			if ((pp = page_lookup(vp, off, SE_SHARED)) != NULL) {
6721 				if (pp->p_lckcnt != 0 || pp->p_cowcnt != 0) {
6722 					page_unlock(pp);
6723 					SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
6724 					return (EBUSY);
6725 				}
6726 				if (ap != NULL && pp->p_szc != 0 &&
6727 				    page_tryupgrade(pp)) {
6728 					if (pp->p_lckcnt == 0 &&
6729 					    pp->p_cowcnt == 0) {
6730 						/*
6731 						 * swapfs VN_DISPOSE() won't
6732 						 * invalidate large pages.
6733 						 * Attempt to demote.
6734 						 * XXX can't help it if it
6735 						 * fails. But for swapfs
6736 						 * pages it is no big deal.
6737 						 */
6738 						(void) page_try_demote_pages(
6739 						    pp);
6740 				    }
6741 				}
6742 				page_unlock(pp);
6743 			}
6744 		} else if (svd->type == MAP_SHARED && amp != NULL) {
6745 			/*
6746 			 * Avoid writting out to disk ISM's large pages
6747 			 * because segspt_free_pages() relies on NULL an_pvp
6748 			 * of anon slots of such pages.
6749 			 */
6750 
6751 			ASSERT(svd->vp == NULL);
6752 			/*
6753 			 * swapfs uses page_lookup_nowait if not freeing or
6754 			 * invalidating and skips a page if
6755 			 * page_lookup_nowait returns NULL.
6756 			 */
6757 			pp = page_lookup_nowait(vp, off, SE_SHARED);
6758 			if (pp == NULL) {
6759 				continue;
6760 			}
6761 			if (pp->p_szc != 0) {
6762 				page_unlock(pp);
6763 				continue;
6764 			}
6765 
6766 			/*
6767 			 * Note ISM pages are created large so (vp, off)'s
6768 			 * page cannot suddenly become large after we unlock
6769 			 * pp.
6770 			 */
6771 			page_unlock(pp);
6772 		}
6773 		/*
6774 		 * XXX - Should ultimately try to kluster
6775 		 * calls to VOP_PUTPAGE() for performance.
6776 		 */
6777 		VN_HOLD(vp);
6778 		err = VOP_PUTPAGE(vp, (offset_t)off, PAGESIZE,
6779 		    bflags, svd->cred);
6780 		VN_RELE(vp);
6781 		if (err)
6782 			break;
6783 	}
6784 	SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
6785 	return (err);
6786 }
6787 
6788 /*
6789  * Determine if we have data corresponding to pages in the
6790  * primary storage virtual memory cache (i.e., "in core").
6791  */
6792 static size_t
6793 segvn_incore(struct seg *seg, caddr_t addr, size_t len, char *vec)
6794 {
6795 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
6796 	struct vnode *vp, *avp;
6797 	u_offset_t offset, aoffset;
6798 	size_t p, ep;
6799 	int ret;
6800 	struct vpage *vpp;
6801 	page_t *pp;
6802 	uint_t start;
6803 	struct anon_map *amp;		/* XXX - for locknest */
6804 	struct anon *ap;
6805 	uint_t attr;
6806 	anon_sync_obj_t cookie;
6807 
6808 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
6809 
6810 	SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
6811 	if (svd->amp == NULL && svd->vp == NULL) {
6812 		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
6813 		bzero(vec, btopr(len));
6814 		return (len);	/* no anonymous pages created yet */
6815 	}
6816 
6817 	p = seg_page(seg, addr);
6818 	ep = seg_page(seg, addr + len);
6819 	start = svd->vp ? SEG_PAGE_VNODEBACKED : 0;
6820 
6821 	amp = svd->amp;
6822 	for (; p < ep; p++, addr += PAGESIZE) {
6823 		vpp = (svd->vpage) ? &svd->vpage[p]: NULL;
6824 		ret = start;
6825 		ap = NULL;
6826 		avp = NULL;
6827 		/* Grab the vnode/offset for the anon slot */
6828 		if (amp != NULL) {
6829 			ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
6830 			anon_array_enter(amp, svd->anon_index + p, &cookie);
6831 			ap = anon_get_ptr(amp->ahp, svd->anon_index + p);
6832 			if (ap != NULL) {
6833 				swap_xlate(ap, &avp, &aoffset);
6834 			}
6835 			anon_array_exit(&cookie);
6836 			ANON_LOCK_EXIT(&amp->a_rwlock);
6837 		}
6838 		if ((avp != NULL) && page_exists(avp, aoffset)) {
6839 			/* A page exists for the anon slot */
6840 			ret |= SEG_PAGE_INCORE;
6841 
6842 			/*
6843 			 * If page is mapped and writable
6844 			 */
6845 			attr = (uint_t)0;
6846 			if ((hat_getattr(seg->s_as->a_hat, addr,
6847 			    &attr) != -1) && (attr & PROT_WRITE)) {
6848 				ret |= SEG_PAGE_ANON;
6849 			}
6850 			/*
6851 			 * Don't get page_struct lock for lckcnt and cowcnt,
6852 			 * since this is purely advisory.
6853 			 */
6854 			if ((pp = page_lookup_nowait(avp, aoffset,
6855 			    SE_SHARED)) != NULL) {
6856 				if (pp->p_lckcnt)
6857 					ret |= SEG_PAGE_SOFTLOCK;
6858 				if (pp->p_cowcnt)
6859 					ret |= SEG_PAGE_HASCOW;
6860 				page_unlock(pp);
6861 			}
6862 		}
6863 
6864 		/* Gather vnode statistics */
6865 		vp = svd->vp;
6866 		offset = svd->offset + (uintptr_t)(addr - seg->s_base);
6867 
6868 		if (vp != NULL) {
6869 			/*
6870 			 * Try to obtain a "shared" lock on the page
6871 			 * without blocking.  If this fails, determine
6872 			 * if the page is in memory.
6873 			 */
6874 			pp = page_lookup_nowait(vp, offset, SE_SHARED);
6875 			if ((pp == NULL) && (page_exists(vp, offset))) {
6876 				/* Page is incore, and is named */
6877 				ret |= (SEG_PAGE_INCORE | SEG_PAGE_VNODE);
6878 			}
6879 			/*
6880 			 * Don't get page_struct lock for lckcnt and cowcnt,
6881 			 * since this is purely advisory.
6882 			 */
6883 			if (pp != NULL) {
6884 				ret |= (SEG_PAGE_INCORE | SEG_PAGE_VNODE);
6885 				if (pp->p_lckcnt)
6886 					ret |= SEG_PAGE_SOFTLOCK;
6887 				if (pp->p_cowcnt)
6888 					ret |= SEG_PAGE_HASCOW;
6889 				page_unlock(pp);
6890 			}
6891 		}
6892 
6893 		/* Gather virtual page information */
6894 		if (vpp) {
6895 			if (VPP_ISPPLOCK(vpp))
6896 				ret |= SEG_PAGE_LOCKED;
6897 			vpp++;
6898 		}
6899 
6900 		*vec++ = (char)ret;
6901 	}
6902 	SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
6903 	return (len);
6904 }
6905 
6906 /*
6907  * Statement for p_cowcnts/p_lckcnts.
6908  *
6909  * p_cowcnt is updated while mlock/munlocking MAP_PRIVATE and PROT_WRITE region
6910  * irrespective of the following factors or anything else:
6911  *
6912  *	(1) anon slots are populated or not
6913  *	(2) cow is broken or not
6914  *	(3) refcnt on ap is 1 or greater than 1
6915  *
6916  * If it's not MAP_PRIVATE and PROT_WRITE, p_lckcnt is updated during mlock
6917  * and munlock.
6918  *
6919  *
6920  * Handling p_cowcnts/p_lckcnts during copy-on-write fault:
6921  *
6922  *	if vpage has PROT_WRITE
6923  *		transfer cowcnt on the oldpage -> cowcnt on the newpage
6924  *	else
6925  *		transfer lckcnt on the oldpage -> lckcnt on the newpage
6926  *
6927  *	During copy-on-write, decrement p_cowcnt on the oldpage and increment
6928  *	p_cowcnt on the newpage *if* the corresponding vpage has PROT_WRITE.
6929  *
6930  *	We may also break COW if softlocking on read access in the physio case.
6931  *	In this case, vpage may not have PROT_WRITE. So, we need to decrement
6932  *	p_lckcnt on the oldpage and increment p_lckcnt on the newpage *if* the
6933  *	vpage doesn't have PROT_WRITE.
6934  *
6935  *
6936  * Handling p_cowcnts/p_lckcnts during mprotect on mlocked region:
6937  *
6938  * 	If a MAP_PRIVATE region loses PROT_WRITE, we decrement p_cowcnt and
6939  *	increment p_lckcnt by calling page_subclaim() which takes care of
6940  * 	availrmem accounting and p_lckcnt overflow.
6941  *
6942  *	If a MAP_PRIVATE region gains PROT_WRITE, we decrement p_lckcnt and
6943  *	increment p_cowcnt by calling page_addclaim() which takes care of
6944  *	availrmem availability and p_cowcnt overflow.
6945  */
6946 
6947 /*
6948  * Lock down (or unlock) pages mapped by this segment.
6949  *
6950  * XXX only creates PAGESIZE pages if anon slots are not initialized.
6951  * At fault time they will be relocated into larger pages.
6952  */
6953 static int
6954 segvn_lockop(struct seg *seg, caddr_t addr, size_t len,
6955     int attr, int op, ulong_t *lockmap, size_t pos)
6956 {
6957 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
6958 	struct vpage *vpp;
6959 	struct vpage *evp;
6960 	page_t *pp;
6961 	u_offset_t offset;
6962 	u_offset_t off;
6963 	int segtype;
6964 	int pageprot;
6965 	int claim;
6966 	struct vnode *vp;
6967 	ulong_t anon_index;
6968 	struct anon_map *amp;
6969 	struct anon *ap;
6970 	struct vattr va;
6971 	anon_sync_obj_t cookie;
6972 	struct kshmid *sp = NULL;
6973 	struct proc	*p = curproc;
6974 	kproject_t	*proj = NULL;
6975 	int chargeproc = 1;
6976 	size_t locked_bytes = 0;
6977 	size_t unlocked_bytes = 0;
6978 	int err = 0;
6979 
6980 	/*
6981 	 * Hold write lock on address space because may split or concatenate
6982 	 * segments
6983 	 */
6984 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
6985 
6986 	/*
6987 	 * If this is a shm, use shm's project and zone, else use
6988 	 * project and zone of calling process
6989 	 */
6990 
6991 	/* Determine if this segment backs a sysV shm */
6992 	if (svd->amp != NULL && svd->amp->a_sp != NULL) {
6993 		sp = svd->amp->a_sp;
6994 		proj = sp->shm_perm.ipc_proj;
6995 		chargeproc = 0;
6996 	}
6997 
6998 	SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_WRITER);
6999 	if (attr) {
7000 		pageprot = attr & ~(SHARED|PRIVATE);
7001 		segtype = attr & SHARED ? MAP_SHARED : MAP_PRIVATE;
7002 
7003 		/*
7004 		 * We are done if the segment types don't match
7005 		 * or if we have segment level protections and
7006 		 * they don't match.
7007 		 */
7008 		if (svd->type != segtype) {
7009 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7010 			return (0);
7011 		}
7012 		if (svd->pageprot == 0 && svd->prot != pageprot) {
7013 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7014 			return (0);
7015 		}
7016 	}
7017 
7018 	/*
7019 	 * If we're locking, then we must create a vpage structure if
7020 	 * none exists.  If we're unlocking, then check to see if there
7021 	 * is a vpage --  if not, then we could not have locked anything.
7022 	 */
7023 
7024 	if ((vpp = svd->vpage) == NULL) {
7025 		if (op == MC_LOCK)
7026 			segvn_vpage(seg);
7027 		else {
7028 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7029 			return (0);
7030 		}
7031 	}
7032 
7033 	/*
7034 	 * The anonymous data vector (i.e., previously
7035 	 * unreferenced mapping to swap space) can be allocated
7036 	 * by lazily testing for its existence.
7037 	 */
7038 	if (op == MC_LOCK && svd->amp == NULL && svd->vp == NULL) {
7039 		svd->amp = anonmap_alloc(seg->s_size, 0);
7040 		svd->amp->a_szc = seg->s_szc;
7041 	}
7042 
7043 	if ((amp = svd->amp) != NULL) {
7044 		anon_index = svd->anon_index + seg_page(seg, addr);
7045 	}
7046 
7047 	offset = svd->offset + (uintptr_t)(addr - seg->s_base);
7048 	evp = &svd->vpage[seg_page(seg, addr + len)];
7049 
7050 	if (sp != NULL)
7051 		mutex_enter(&sp->shm_mlock);
7052 
7053 	/* determine number of unlocked bytes in range for lock operation */
7054 	if (op == MC_LOCK) {
7055 
7056 		if (sp == NULL) {
7057 			for (vpp = &svd->vpage[seg_page(seg, addr)]; vpp < evp;
7058 			    vpp++) {
7059 				if (!VPP_ISPPLOCK(vpp))
7060 					unlocked_bytes += PAGESIZE;
7061 			}
7062 		} else {
7063 			ulong_t		i_idx, i_edx;
7064 			anon_sync_obj_t	i_cookie;
7065 			struct anon	*i_ap;
7066 			struct vnode	*i_vp;
7067 			u_offset_t	i_off;
7068 
7069 			/* Only count sysV pages once for locked memory */
7070 			i_edx = svd->anon_index + seg_page(seg, addr + len);
7071 			ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
7072 			for (i_idx = anon_index; i_idx < i_edx; i_idx++) {
7073 				anon_array_enter(amp, i_idx, &i_cookie);
7074 				i_ap = anon_get_ptr(amp->ahp, i_idx);
7075 				if (i_ap == NULL) {
7076 					unlocked_bytes += PAGESIZE;
7077 					anon_array_exit(&i_cookie);
7078 					continue;
7079 				}
7080 				swap_xlate(i_ap, &i_vp, &i_off);
7081 				anon_array_exit(&i_cookie);
7082 				pp = page_lookup(i_vp, i_off, SE_SHARED);
7083 				if (pp == NULL) {
7084 					unlocked_bytes += PAGESIZE;
7085 					continue;
7086 				} else if (pp->p_lckcnt == 0)
7087 					unlocked_bytes += PAGESIZE;
7088 				page_unlock(pp);
7089 			}
7090 			ANON_LOCK_EXIT(&amp->a_rwlock);
7091 		}
7092 
7093 		mutex_enter(&p->p_lock);
7094 		err = rctl_incr_locked_mem(p, proj, unlocked_bytes,
7095 		    chargeproc);
7096 		mutex_exit(&p->p_lock);
7097 
7098 		if (err) {
7099 			if (sp != NULL)
7100 				mutex_exit(&sp->shm_mlock);
7101 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7102 			return (err);
7103 		}
7104 	}
7105 	/*
7106 	 * Loop over all pages in the range.  Process if we're locking and
7107 	 * page has not already been locked in this mapping; or if we're
7108 	 * unlocking and the page has been locked.
7109 	 */
7110 	for (vpp = &svd->vpage[seg_page(seg, addr)]; vpp < evp;
7111 	    vpp++, pos++, addr += PAGESIZE, offset += PAGESIZE, anon_index++) {
7112 		if ((attr == 0 || VPP_PROT(vpp) == pageprot) &&
7113 		    ((op == MC_LOCK && !VPP_ISPPLOCK(vpp)) ||
7114 		    (op == MC_UNLOCK && VPP_ISPPLOCK(vpp)))) {
7115 
7116 			if (amp != NULL)
7117 				ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
7118 			/*
7119 			 * If this isn't a MAP_NORESERVE segment and
7120 			 * we're locking, allocate anon slots if they
7121 			 * don't exist.  The page is brought in later on.
7122 			 */
7123 			if (op == MC_LOCK && svd->vp == NULL &&
7124 			    ((svd->flags & MAP_NORESERVE) == 0) &&
7125 			    amp != NULL &&
7126 			    ((ap = anon_get_ptr(amp->ahp, anon_index))
7127 								== NULL)) {
7128 				anon_array_enter(amp, anon_index, &cookie);
7129 
7130 				if ((ap = anon_get_ptr(amp->ahp,
7131 						anon_index)) == NULL) {
7132 					pp = anon_zero(seg, addr, &ap,
7133 					    svd->cred);
7134 					if (pp == NULL) {
7135 						anon_array_exit(&cookie);
7136 						ANON_LOCK_EXIT(&amp->a_rwlock);
7137 						err = ENOMEM;
7138 						goto out;
7139 					}
7140 					ASSERT(anon_get_ptr(amp->ahp,
7141 						anon_index) == NULL);
7142 					(void) anon_set_ptr(amp->ahp,
7143 						anon_index, ap, ANON_SLEEP);
7144 					page_unlock(pp);
7145 				}
7146 				anon_array_exit(&cookie);
7147 			}
7148 
7149 			/*
7150 			 * Get name for page, accounting for
7151 			 * existence of private copy.
7152 			 */
7153 			ap = NULL;
7154 			if (amp != NULL) {
7155 				anon_array_enter(amp, anon_index, &cookie);
7156 				ap = anon_get_ptr(amp->ahp, anon_index);
7157 				if (ap != NULL) {
7158 					swap_xlate(ap, &vp, &off);
7159 				} else {
7160 					if (svd->vp == NULL &&
7161 					    (svd->flags & MAP_NORESERVE)) {
7162 						anon_array_exit(&cookie);
7163 						ANON_LOCK_EXIT(&amp->a_rwlock);
7164 						continue;
7165 					}
7166 					vp = svd->vp;
7167 					off = offset;
7168 				}
7169 				anon_array_exit(&cookie);
7170 				ANON_LOCK_EXIT(&amp->a_rwlock);
7171 			} else {
7172 				vp = svd->vp;
7173 				off = offset;
7174 			}
7175 
7176 			/*
7177 			 * Get page frame.  It's ok if the page is
7178 			 * not available when we're unlocking, as this
7179 			 * may simply mean that a page we locked got
7180 			 * truncated out of existence after we locked it.
7181 			 *
7182 			 * Invoke VOP_GETPAGE() to obtain the page struct
7183 			 * since we may need to read it from disk if its
7184 			 * been paged out.
7185 			 */
7186 			if (op != MC_LOCK)
7187 				pp = page_lookup(vp, off, SE_SHARED);
7188 			else {
7189 				page_t *pl[1 + 1];
7190 				int error;
7191 
7192 				ASSERT(vp != NULL);
7193 
7194 				error = VOP_GETPAGE(vp, (offset_t)off, PAGESIZE,
7195 				    (uint_t *)NULL, pl, PAGESIZE, seg, addr,
7196 				    S_OTHER, svd->cred);
7197 
7198 				/*
7199 				 * If the error is EDEADLK then we must bounce
7200 				 * up and drop all vm subsystem locks and then
7201 				 * retry the operation later
7202 				 * This behavior is a temporary measure because
7203 				 * ufs/sds logging is badly designed and will
7204 				 * deadlock if we don't allow this bounce to
7205 				 * happen.  The real solution is to re-design
7206 				 * the logging code to work properly.  See bug
7207 				 * 4125102 for details of the problem.
7208 				 */
7209 				if (error == EDEADLK) {
7210 					err = error;
7211 					goto out;
7212 				}
7213 				/*
7214 				 * Quit if we fail to fault in the page.  Treat
7215 				 * the failure as an error, unless the addr
7216 				 * is mapped beyond the end of a file.
7217 				 */
7218 				if (error && svd->vp) {
7219 					va.va_mask = AT_SIZE;
7220 					if (VOP_GETATTR(svd->vp, &va, 0,
7221 					    svd->cred) != 0) {
7222 						err = EIO;
7223 						goto out;
7224 					}
7225 					if (btopr(va.va_size) >=
7226 					    btopr(off + 1)) {
7227 						err = EIO;
7228 						goto out;
7229 					}
7230 					goto out;
7231 
7232 				} else if (error) {
7233 					err = EIO;
7234 					goto out;
7235 				}
7236 				pp = pl[0];
7237 				ASSERT(pp != NULL);
7238 			}
7239 
7240 			/*
7241 			 * See Statement at the beginning of this routine.
7242 			 *
7243 			 * claim is always set if MAP_PRIVATE and PROT_WRITE
7244 			 * irrespective of following factors:
7245 			 *
7246 			 * (1) anon slots are populated or not
7247 			 * (2) cow is broken or not
7248 			 * (3) refcnt on ap is 1 or greater than 1
7249 			 *
7250 			 * See 4140683 for details
7251 			 */
7252 			claim = ((VPP_PROT(vpp) & PROT_WRITE) &&
7253 				(svd->type == MAP_PRIVATE));
7254 
7255 			/*
7256 			 * Perform page-level operation appropriate to
7257 			 * operation.  If locking, undo the SOFTLOCK
7258 			 * performed to bring the page into memory
7259 			 * after setting the lock.  If unlocking,
7260 			 * and no page was found, account for the claim
7261 			 * separately.
7262 			 */
7263 			if (op == MC_LOCK) {
7264 				int ret = 1;	/* Assume success */
7265 
7266 				ASSERT(!VPP_ISPPLOCK(vpp));
7267 
7268 				ret = page_pp_lock(pp, claim, 0);
7269 				if (ret == 0) {
7270 					/* locking page failed */
7271 					page_unlock(pp);
7272 					err = EAGAIN;
7273 					goto out;
7274 				}
7275 				VPP_SETPPLOCK(vpp);
7276 				if (sp != NULL) {
7277 					if (pp->p_lckcnt == 1)
7278 						locked_bytes += PAGESIZE;
7279 				} else
7280 					locked_bytes += PAGESIZE;
7281 
7282 				if (lockmap != (ulong_t *)NULL)
7283 					BT_SET(lockmap, pos);
7284 
7285 				page_unlock(pp);
7286 			} else {
7287 				ASSERT(VPP_ISPPLOCK(vpp));
7288 				if (pp != NULL) {
7289 					/* sysV pages should be locked */
7290 					ASSERT(sp == NULL || pp->p_lckcnt > 0);
7291 					page_pp_unlock(pp, claim, 0);
7292 					if (sp != NULL) {
7293 						if (pp->p_lckcnt == 0)
7294 							unlocked_bytes
7295 							    += PAGESIZE;
7296 					} else
7297 						unlocked_bytes += PAGESIZE;
7298 					page_unlock(pp);
7299 				} else {
7300 					ASSERT(sp == NULL);
7301 					unlocked_bytes += PAGESIZE;
7302 				}
7303 				VPP_CLRPPLOCK(vpp);
7304 			}
7305 		}
7306 	}
7307 out:
7308 	if (op == MC_LOCK) {
7309 		/* Credit back bytes that did not get locked */
7310 		if ((unlocked_bytes - locked_bytes) > 0) {
7311 			if (proj == NULL)
7312 				mutex_enter(&p->p_lock);
7313 			rctl_decr_locked_mem(p, proj,
7314 			    (unlocked_bytes - locked_bytes), chargeproc);
7315 			if (proj == NULL)
7316 				mutex_exit(&p->p_lock);
7317 		}
7318 
7319 	} else {
7320 		/* Account bytes that were unlocked */
7321 		if (unlocked_bytes > 0) {
7322 			if (proj == NULL)
7323 				mutex_enter(&p->p_lock);
7324 			rctl_decr_locked_mem(p, proj, unlocked_bytes,
7325 			    chargeproc);
7326 			if (proj == NULL)
7327 				mutex_exit(&p->p_lock);
7328 		}
7329 	}
7330 	if (sp != NULL)
7331 		mutex_exit(&sp->shm_mlock);
7332 	SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7333 
7334 	return (err);
7335 }
7336 
7337 /*
7338  * Set advice from user for specified pages
7339  * There are 5 types of advice:
7340  *	MADV_NORMAL	- Normal (default) behavior (whatever that is)
7341  *	MADV_RANDOM	- Random page references
7342  *				do not allow readahead or 'klustering'
7343  *	MADV_SEQUENTIAL	- Sequential page references
7344  *				Pages previous to the one currently being
7345  *				accessed (determined by fault) are 'not needed'
7346  *				and are freed immediately
7347  *	MADV_WILLNEED	- Pages are likely to be used (fault ahead in mctl)
7348  *	MADV_DONTNEED	- Pages are not needed (synced out in mctl)
7349  *	MADV_FREE	- Contents can be discarded
7350  *	MADV_ACCESS_DEFAULT- Default access
7351  *	MADV_ACCESS_LWP	- Next LWP will access heavily
7352  *	MADV_ACCESS_MANY- Many LWPs or processes will access heavily
7353  */
7354 static int
7355 segvn_advise(struct seg *seg, caddr_t addr, size_t len, uint_t behav)
7356 {
7357 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
7358 	size_t page;
7359 	int err = 0;
7360 	int already_set;
7361 	struct anon_map *amp;
7362 	ulong_t anon_index;
7363 	struct seg *next;
7364 	lgrp_mem_policy_t policy;
7365 	struct seg *prev;
7366 	struct vnode *vp;
7367 
7368 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
7369 
7370 	/*
7371 	 * In case of MADV_FREE, we won't be modifying any segment private
7372 	 * data structures; so, we only need to grab READER's lock
7373 	 */
7374 	if (behav != MADV_FREE)
7375 		SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_WRITER);
7376 	else
7377 		SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
7378 
7379 	/*
7380 	 * Large pages are assumed to be only turned on when accesses to the
7381 	 * segment's address range have spatial and temporal locality. That
7382 	 * justifies ignoring MADV_SEQUENTIAL for large page segments.
7383 	 * Also, ignore advice affecting lgroup memory allocation
7384 	 * if don't need to do lgroup optimizations on this system
7385 	 */
7386 
7387 	if ((behav == MADV_SEQUENTIAL && seg->s_szc != 0) ||
7388 	    (!lgrp_optimizations() && (behav == MADV_ACCESS_DEFAULT ||
7389 	    behav == MADV_ACCESS_LWP || behav == MADV_ACCESS_MANY))) {
7390 		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7391 		return (0);
7392 	}
7393 
7394 	if (behav == MADV_SEQUENTIAL || behav == MADV_ACCESS_DEFAULT ||
7395 	    behav == MADV_ACCESS_LWP || behav == MADV_ACCESS_MANY) {
7396 		/*
7397 		 * Since we are going to unload hat mappings
7398 		 * we first have to flush the cache. Otherwise
7399 		 * this might lead to system panic if another
7400 		 * thread is doing physio on the range whose
7401 		 * mappings are unloaded by madvise(3C).
7402 		 */
7403 		if (svd->softlockcnt > 0) {
7404 			/*
7405 			 * Since we do have the segvn writers lock
7406 			 * nobody can fill the cache with entries
7407 			 * belonging to this seg during the purge.
7408 			 * The flush either succeeds or we still
7409 			 * have pending I/Os. In the later case,
7410 			 * madvise(3C) fails.
7411 			 */
7412 			segvn_purge(seg);
7413 			if (svd->softlockcnt > 0) {
7414 				/*
7415 				 * Since madvise(3C) is advisory and
7416 				 * it's not part of UNIX98, madvise(3C)
7417 				 * failure here doesn't cause any hardship.
7418 				 * Note that we don't block in "as" layer.
7419 				 */
7420 				SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7421 				return (EAGAIN);
7422 			}
7423 		}
7424 	}
7425 
7426 	amp = svd->amp;
7427 	vp = svd->vp;
7428 	if (behav == MADV_FREE) {
7429 		/*
7430 		 * MADV_FREE is not supported for segments with
7431 		 * underlying object; if anonmap is NULL, anon slots
7432 		 * are not yet populated and there is nothing for
7433 		 * us to do. As MADV_FREE is advisory, we don't
7434 		 * return error in either case.
7435 		 */
7436 		if (vp || amp == NULL) {
7437 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7438 			return (0);
7439 		}
7440 
7441 		page = seg_page(seg, addr);
7442 		ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
7443 		anon_disclaim(amp, svd->anon_index + page, len, 0);
7444 		ANON_LOCK_EXIT(&amp->a_rwlock);
7445 		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7446 		return (0);
7447 	}
7448 
7449 	/*
7450 	 * If advice is to be applied to entire segment,
7451 	 * use advice field in seg_data structure
7452 	 * otherwise use appropriate vpage entry.
7453 	 */
7454 	if ((addr == seg->s_base) && (len == seg->s_size)) {
7455 		switch (behav) {
7456 		case MADV_ACCESS_LWP:
7457 		case MADV_ACCESS_MANY:
7458 		case MADV_ACCESS_DEFAULT:
7459 			/*
7460 			 * Set memory allocation policy for this segment
7461 			 */
7462 			policy = lgrp_madv_to_policy(behav, len, svd->type);
7463 			if (svd->type == MAP_SHARED)
7464 				already_set = lgrp_shm_policy_set(policy, amp,
7465 				    svd->anon_index, vp, svd->offset, len);
7466 			else {
7467 				/*
7468 				 * For private memory, need writers lock on
7469 				 * address space because the segment may be
7470 				 * split or concatenated when changing policy
7471 				 */
7472 				if (AS_READ_HELD(seg->s_as,
7473 				    &seg->s_as->a_lock)) {
7474 					SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7475 					return (IE_RETRY);
7476 				}
7477 
7478 				already_set = lgrp_privm_policy_set(policy,
7479 				    &svd->policy_info, len);
7480 			}
7481 
7482 			/*
7483 			 * If policy set already and it shouldn't be reapplied,
7484 			 * don't do anything.
7485 			 */
7486 			if (already_set &&
7487 			    !LGRP_MEM_POLICY_REAPPLICABLE(policy))
7488 				break;
7489 
7490 			/*
7491 			 * Mark any existing pages in given range for
7492 			 * migration
7493 			 */
7494 			page_mark_migrate(seg, addr, len, amp, svd->anon_index,
7495 			    vp, svd->offset, 1);
7496 
7497 			/*
7498 			 * If same policy set already or this is a shared
7499 			 * memory segment, don't need to try to concatenate
7500 			 * segment with adjacent ones.
7501 			 */
7502 			if (already_set || svd->type == MAP_SHARED)
7503 				break;
7504 
7505 			/*
7506 			 * Try to concatenate this segment with previous
7507 			 * one and next one, since we changed policy for
7508 			 * this one and it may be compatible with adjacent
7509 			 * ones now.
7510 			 */
7511 			prev = AS_SEGPREV(seg->s_as, seg);
7512 			next = AS_SEGNEXT(seg->s_as, seg);
7513 
7514 			if (next && next->s_ops == &segvn_ops &&
7515 			    addr + len == next->s_base)
7516 				(void) segvn_concat(seg, next, 1);
7517 
7518 			if (prev && prev->s_ops == &segvn_ops &&
7519 			    addr == prev->s_base + prev->s_size) {
7520 				/*
7521 				 * Drop lock for private data of current
7522 				 * segment before concatenating (deleting) it
7523 				 * and return IE_REATTACH to tell as_ctl() that
7524 				 * current segment has changed
7525 				 */
7526 				SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7527 				if (!segvn_concat(prev, seg, 1))
7528 					err = IE_REATTACH;
7529 
7530 				return (err);
7531 			}
7532 			break;
7533 
7534 		case MADV_SEQUENTIAL:
7535 			/*
7536 			 * unloading mapping guarantees
7537 			 * detection in segvn_fault
7538 			 */
7539 			ASSERT(seg->s_szc == 0);
7540 			hat_unload(seg->s_as->a_hat, addr, len,
7541 				HAT_UNLOAD);
7542 			/* FALLTHROUGH */
7543 		case MADV_NORMAL:
7544 		case MADV_RANDOM:
7545 			svd->advice = (uchar_t)behav;
7546 			svd->pageadvice = 0;
7547 			break;
7548 		case MADV_WILLNEED:	/* handled in memcntl */
7549 		case MADV_DONTNEED:	/* handled in memcntl */
7550 		case MADV_FREE:		/* handled above */
7551 			break;
7552 		default:
7553 			err = EINVAL;
7554 		}
7555 	} else {
7556 		caddr_t			eaddr;
7557 		struct seg		*new_seg;
7558 		struct segvn_data	*new_svd;
7559 		u_offset_t		off;
7560 		caddr_t			oldeaddr;
7561 
7562 		page = seg_page(seg, addr);
7563 
7564 		segvn_vpage(seg);
7565 
7566 		switch (behav) {
7567 			struct vpage *bvpp, *evpp;
7568 
7569 		case MADV_ACCESS_LWP:
7570 		case MADV_ACCESS_MANY:
7571 		case MADV_ACCESS_DEFAULT:
7572 			/*
7573 			 * Set memory allocation policy for portion of this
7574 			 * segment
7575 			 */
7576 
7577 			/*
7578 			 * Align address and length of advice to page
7579 			 * boundaries for large pages
7580 			 */
7581 			if (seg->s_szc != 0) {
7582 				size_t	pgsz;
7583 
7584 				pgsz = page_get_pagesize(seg->s_szc);
7585 				addr = (caddr_t)P2ALIGN((uintptr_t)addr, pgsz);
7586 				len = P2ROUNDUP(len, pgsz);
7587 			}
7588 
7589 			/*
7590 			 * Check to see whether policy is set already
7591 			 */
7592 			policy = lgrp_madv_to_policy(behav, len, svd->type);
7593 
7594 			anon_index = svd->anon_index + page;
7595 			off = svd->offset + (uintptr_t)(addr - seg->s_base);
7596 
7597 			if (svd->type == MAP_SHARED)
7598 				already_set = lgrp_shm_policy_set(policy, amp,
7599 				    anon_index, vp, off, len);
7600 			else
7601 				already_set =
7602 				    (policy == svd->policy_info.mem_policy);
7603 
7604 			/*
7605 			 * If policy set already and it shouldn't be reapplied,
7606 			 * don't do anything.
7607 			 */
7608 			if (already_set &&
7609 			    !LGRP_MEM_POLICY_REAPPLICABLE(policy))
7610 				break;
7611 
7612 			/*
7613 			 * For private memory, need writers lock on
7614 			 * address space because the segment may be
7615 			 * split or concatenated when changing policy
7616 			 */
7617 			if (svd->type == MAP_PRIVATE &&
7618 			    AS_READ_HELD(seg->s_as, &seg->s_as->a_lock)) {
7619 				SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7620 				return (IE_RETRY);
7621 			}
7622 
7623 			/*
7624 			 * Mark any existing pages in given range for
7625 			 * migration
7626 			 */
7627 			page_mark_migrate(seg, addr, len, amp, svd->anon_index,
7628 			    vp, svd->offset, 1);
7629 
7630 			/*
7631 			 * Don't need to try to split or concatenate
7632 			 * segments, since policy is same or this is a shared
7633 			 * memory segment
7634 			 */
7635 			if (already_set || svd->type == MAP_SHARED)
7636 				break;
7637 
7638 			/*
7639 			 * Split off new segment if advice only applies to a
7640 			 * portion of existing segment starting in middle
7641 			 */
7642 			new_seg = NULL;
7643 			eaddr = addr + len;
7644 			oldeaddr = seg->s_base + seg->s_size;
7645 			if (addr > seg->s_base) {
7646 				/*
7647 				 * Must flush I/O page cache
7648 				 * before splitting segment
7649 				 */
7650 				if (svd->softlockcnt > 0)
7651 					segvn_purge(seg);
7652 
7653 				/*
7654 				 * Split segment and return IE_REATTACH to tell
7655 				 * as_ctl() that current segment changed
7656 				 */
7657 				new_seg = segvn_split_seg(seg, addr);
7658 				new_svd = (struct segvn_data *)new_seg->s_data;
7659 				err = IE_REATTACH;
7660 
7661 				/*
7662 				 * If new segment ends where old one
7663 				 * did, try to concatenate the new
7664 				 * segment with next one.
7665 				 */
7666 				if (eaddr == oldeaddr) {
7667 					/*
7668 					 * Set policy for new segment
7669 					 */
7670 					(void) lgrp_privm_policy_set(policy,
7671 					    &new_svd->policy_info,
7672 					    new_seg->s_size);
7673 
7674 					next = AS_SEGNEXT(new_seg->s_as,
7675 					    new_seg);
7676 
7677 					if (next &&
7678 					    next->s_ops == &segvn_ops &&
7679 					    eaddr == next->s_base)
7680 						(void) segvn_concat(new_seg,
7681 						    next, 1);
7682 				}
7683 			}
7684 
7685 			/*
7686 			 * Split off end of existing segment if advice only
7687 			 * applies to a portion of segment ending before
7688 			 * end of the existing segment
7689 			 */
7690 			if (eaddr < oldeaddr) {
7691 				/*
7692 				 * Must flush I/O page cache
7693 				 * before splitting segment
7694 				 */
7695 				if (svd->softlockcnt > 0)
7696 					segvn_purge(seg);
7697 
7698 				/*
7699 				 * If beginning of old segment was already
7700 				 * split off, use new segment to split end off
7701 				 * from.
7702 				 */
7703 				if (new_seg != NULL && new_seg != seg) {
7704 					/*
7705 					 * Split segment
7706 					 */
7707 					(void) segvn_split_seg(new_seg, eaddr);
7708 
7709 					/*
7710 					 * Set policy for new segment
7711 					 */
7712 					(void) lgrp_privm_policy_set(policy,
7713 					    &new_svd->policy_info,
7714 					    new_seg->s_size);
7715 				} else {
7716 					/*
7717 					 * Split segment and return IE_REATTACH
7718 					 * to tell as_ctl() that current
7719 					 * segment changed
7720 					 */
7721 					(void) segvn_split_seg(seg, eaddr);
7722 					err = IE_REATTACH;
7723 
7724 					(void) lgrp_privm_policy_set(policy,
7725 					    &svd->policy_info, seg->s_size);
7726 
7727 					/*
7728 					 * If new segment starts where old one
7729 					 * did, try to concatenate it with
7730 					 * previous segment.
7731 					 */
7732 					if (addr == seg->s_base) {
7733 						prev = AS_SEGPREV(seg->s_as,
7734 						    seg);
7735 
7736 						/*
7737 						 * Drop lock for private data
7738 						 * of current segment before
7739 						 * concatenating (deleting) it
7740 						 */
7741 						if (prev &&
7742 						    prev->s_ops ==
7743 						    &segvn_ops &&
7744 						    addr == prev->s_base +
7745 						    prev->s_size) {
7746 							SEGVN_LOCK_EXIT(
7747 							    seg->s_as,
7748 							    &svd->lock);
7749 							(void) segvn_concat(
7750 							    prev, seg, 1);
7751 							return (err);
7752 						}
7753 					}
7754 				}
7755 			}
7756 			break;
7757 		case MADV_SEQUENTIAL:
7758 			ASSERT(seg->s_szc == 0);
7759 			hat_unload(seg->s_as->a_hat, addr, len, HAT_UNLOAD);
7760 			/* FALLTHROUGH */
7761 		case MADV_NORMAL:
7762 		case MADV_RANDOM:
7763 			bvpp = &svd->vpage[page];
7764 			evpp = &svd->vpage[page + (len >> PAGESHIFT)];
7765 			for (; bvpp < evpp; bvpp++)
7766 				VPP_SETADVICE(bvpp, behav);
7767 			svd->advice = MADV_NORMAL;
7768 			break;
7769 		case MADV_WILLNEED:	/* handled in memcntl */
7770 		case MADV_DONTNEED:	/* handled in memcntl */
7771 		case MADV_FREE:		/* handled above */
7772 			break;
7773 		default:
7774 			err = EINVAL;
7775 		}
7776 	}
7777 	SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7778 	return (err);
7779 }
7780 
7781 /*
7782  * Create a vpage structure for this seg.
7783  */
7784 static void
7785 segvn_vpage(struct seg *seg)
7786 {
7787 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
7788 	struct vpage *vp, *evp;
7789 
7790 	ASSERT(SEGVN_WRITE_HELD(seg->s_as, &svd->lock));
7791 
7792 	/*
7793 	 * If no vpage structure exists, allocate one.  Copy the protections
7794 	 * and the advice from the segment itself to the individual pages.
7795 	 */
7796 	if (svd->vpage == NULL) {
7797 		svd->pageprot = 1;
7798 		svd->pageadvice = 1;
7799 		svd->vpage = kmem_zalloc(seg_pages(seg) * sizeof (struct vpage),
7800 		    KM_SLEEP);
7801 		evp = &svd->vpage[seg_page(seg, seg->s_base + seg->s_size)];
7802 		for (vp = svd->vpage; vp < evp; vp++) {
7803 			VPP_SETPROT(vp, svd->prot);
7804 			VPP_SETADVICE(vp, svd->advice);
7805 		}
7806 	}
7807 }
7808 
7809 /*
7810  * Dump the pages belonging to this segvn segment.
7811  */
7812 static void
7813 segvn_dump(struct seg *seg)
7814 {
7815 	struct segvn_data *svd;
7816 	page_t *pp;
7817 	struct anon_map *amp;
7818 	ulong_t	anon_index;
7819 	struct vnode *vp;
7820 	u_offset_t off, offset;
7821 	pfn_t pfn;
7822 	pgcnt_t page, npages;
7823 	caddr_t addr;
7824 
7825 	npages = seg_pages(seg);
7826 	svd = (struct segvn_data *)seg->s_data;
7827 	vp = svd->vp;
7828 	off = offset = svd->offset;
7829 	addr = seg->s_base;
7830 
7831 	if ((amp = svd->amp) != NULL) {
7832 		anon_index = svd->anon_index;
7833 		ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
7834 	}
7835 
7836 	for (page = 0; page < npages; page++, offset += PAGESIZE) {
7837 		struct anon *ap;
7838 		int we_own_it = 0;
7839 
7840 		if (amp && (ap = anon_get_ptr(svd->amp->ahp, anon_index++))) {
7841 			swap_xlate_nopanic(ap, &vp, &off);
7842 		} else {
7843 			vp = svd->vp;
7844 			off = offset;
7845 		}
7846 
7847 		/*
7848 		 * If pp == NULL, the page either does not exist
7849 		 * or is exclusively locked.  So determine if it
7850 		 * exists before searching for it.
7851 		 */
7852 
7853 		if ((pp = page_lookup_nowait(vp, off, SE_SHARED)))
7854 			we_own_it = 1;
7855 		else
7856 			pp = page_exists(vp, off);
7857 
7858 		if (pp) {
7859 			pfn = page_pptonum(pp);
7860 			dump_addpage(seg->s_as, addr, pfn);
7861 			if (we_own_it)
7862 				page_unlock(pp);
7863 		}
7864 		addr += PAGESIZE;
7865 		dump_timeleft = dump_timeout;
7866 	}
7867 
7868 	if (amp != NULL)
7869 		ANON_LOCK_EXIT(&amp->a_rwlock);
7870 }
7871 
7872 /*
7873  * lock/unlock anon pages over a given range. Return shadow list
7874  */
7875 static int
7876 segvn_pagelock(struct seg *seg, caddr_t addr, size_t len, struct page ***ppp,
7877     enum lock_type type, enum seg_rw rw)
7878 {
7879 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
7880 	size_t np, adjustpages = 0, npages = (len >> PAGESHIFT);
7881 	ulong_t anon_index;
7882 	uint_t protchk;
7883 	uint_t error;
7884 	struct anon_map *amp;
7885 	struct page **pplist, **pl, *pp;
7886 	caddr_t a;
7887 	size_t page;
7888 	caddr_t lpgaddr, lpgeaddr;
7889 	pgcnt_t szc0_npages = 0;
7890 
7891 	TRACE_2(TR_FAC_PHYSIO, TR_PHYSIO_SEGVN_START,
7892 		"segvn_pagelock: start seg %p addr %p", seg, addr);
7893 
7894 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
7895 	if (seg->s_szc != 0 && (type == L_PAGELOCK || type == L_PAGEUNLOCK)) {
7896 		/*
7897 		 * We are adjusting the pagelock region to the large page size
7898 		 * boundary because the unlocked part of a large page cannot
7899 		 * be freed anyway unless all constituent pages of a large
7900 		 * page are locked. Therefore this adjustment allows us to
7901 		 * decrement availrmem by the right value (note we don't want
7902 		 * to just decrement availrem by the large page size without
7903 		 * adjusting addr and len because then we may end up
7904 		 * decrementing availrmem by large page size for every
7905 		 * constituent page locked by a new as_pagelock call).
7906 		 * as_pageunlock caller must always match as_pagelock call's
7907 		 * addr and len.
7908 		 *
7909 		 * Note segment's page size cannot change while we are holding
7910 		 * as lock.  And then it cannot change while softlockcnt is
7911 		 * not 0. This will allow us to correctly recalculate large
7912 		 * page size region for the matching pageunlock/reclaim call.
7913 		 *
7914 		 * for pageunlock *ppp points to the pointer of page_t that
7915 		 * corresponds to the real unadjusted start address. Similar
7916 		 * for pagelock *ppp must point to the pointer of page_t that
7917 		 * corresponds to the real unadjusted start address.
7918 		 */
7919 		size_t pgsz = page_get_pagesize(seg->s_szc);
7920 		CALC_LPG_REGION(pgsz, seg, addr, len, lpgaddr, lpgeaddr);
7921 		adjustpages = ((uintptr_t)(addr - lpgaddr)) >> PAGESHIFT;
7922 	}
7923 
7924 	if (type == L_PAGEUNLOCK) {
7925 
7926 		/*
7927 		 * update hat ref bits for /proc. We need to make sure
7928 		 * that threads tracing the ref and mod bits of the
7929 		 * address space get the right data.
7930 		 * Note: page ref and mod bits are updated at reclaim time
7931 		 */
7932 		if (seg->s_as->a_vbits) {
7933 			for (a = addr; a < addr + len; a += PAGESIZE) {
7934 				if (rw == S_WRITE) {
7935 					hat_setstat(seg->s_as, a,
7936 					    PAGESIZE, P_REF | P_MOD);
7937 				} else {
7938 					hat_setstat(seg->s_as, a,
7939 					    PAGESIZE, P_REF);
7940 				}
7941 			}
7942 		}
7943 		SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
7944 		if (seg->s_szc != 0) {
7945 			VM_STAT_ADD(segvnvmstats.pagelock[0]);
7946 			seg_pinactive(seg, lpgaddr, lpgeaddr - lpgaddr,
7947 			    *ppp - adjustpages, rw, segvn_reclaim);
7948 		} else {
7949 			seg_pinactive(seg, addr, len, *ppp, rw, segvn_reclaim);
7950 		}
7951 
7952 		/*
7953 		 * If someone is blocked while unmapping, we purge
7954 		 * segment page cache and thus reclaim pplist synchronously
7955 		 * without waiting for seg_pasync_thread. This speeds up
7956 		 * unmapping in cases where munmap(2) is called, while
7957 		 * raw async i/o is still in progress or where a thread
7958 		 * exits on data fault in a multithreaded application.
7959 		 */
7960 		if (AS_ISUNMAPWAIT(seg->s_as) && (svd->softlockcnt > 0)) {
7961 			/*
7962 			 * Even if we grab segvn WRITER's lock or segp_slock
7963 			 * here, there might be another thread which could've
7964 			 * successfully performed lookup/insert just before
7965 			 * we acquired the lock here.  So, grabbing either
7966 			 * lock here is of not much use.  Until we devise
7967 			 * a strategy at upper layers to solve the
7968 			 * synchronization issues completely, we expect
7969 			 * applications to handle this appropriately.
7970 			 */
7971 			segvn_purge(seg);
7972 		}
7973 		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7974 		TRACE_2(TR_FAC_PHYSIO, TR_PHYSIO_SEGVN_UNLOCK_END,
7975 			"segvn_pagelock: unlock seg %p addr %p", seg, addr);
7976 		return (0);
7977 	} else if (type == L_PAGERECLAIM) {
7978 		VM_STAT_COND_ADD(seg->s_szc != 0, segvnvmstats.pagelock[1]);
7979 		SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
7980 		(void) segvn_reclaim(seg, addr, len, *ppp, rw);
7981 		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
7982 		TRACE_2(TR_FAC_PHYSIO, TR_PHYSIO_SEGVN_UNLOCK_END,
7983 			"segvn_pagelock: reclaim seg %p addr %p", seg, addr);
7984 		return (0);
7985 	}
7986 
7987 	if (seg->s_szc != 0) {
7988 		VM_STAT_ADD(segvnvmstats.pagelock[2]);
7989 		addr = lpgaddr;
7990 		len = lpgeaddr - lpgaddr;
7991 		npages = (len >> PAGESHIFT);
7992 	}
7993 
7994 	/*
7995 	 * for now we only support pagelock to anon memory. We've to check
7996 	 * protections for vnode objects and call into the vnode driver.
7997 	 * That's too much for a fast path. Let the fault entry point handle it.
7998 	 */
7999 	if (svd->vp != NULL) {
8000 		TRACE_2(TR_FAC_PHYSIO, TR_PHYSIO_SEGVN_MISS_END,
8001 		    "segvn_pagelock: mapped vnode seg %p addr %p", seg, addr);
8002 		*ppp = NULL;
8003 		return (ENOTSUP);
8004 	}
8005 
8006 	/*
8007 	 * if anonmap is not yet created, let the fault entry point populate it
8008 	 * with anon ptrs.
8009 	 */
8010 	if ((amp = svd->amp) == NULL) {
8011 		TRACE_2(TR_FAC_PHYSIO, TR_PHYSIO_SEGVN_MISS_END,
8012 		    "segvn_pagelock: anonmap null seg %p addr %p", seg, addr);
8013 		*ppp = NULL;
8014 		return (EFAULT);
8015 	}
8016 
8017 	SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
8018 
8019 	/*
8020 	 * we acquire segp_slock to prevent duplicate entries
8021 	 * in seg_pcache
8022 	 */
8023 	mutex_enter(&svd->segp_slock);
8024 
8025 	/*
8026 	 * try to find pages in segment page cache
8027 	 */
8028 	pplist = seg_plookup(seg, addr, len, rw);
8029 	if (pplist != NULL) {
8030 		mutex_exit(&svd->segp_slock);
8031 		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
8032 		*ppp = pplist + adjustpages;
8033 		TRACE_2(TR_FAC_PHYSIO, TR_PHYSIO_SEGVN_HIT_END,
8034 			"segvn_pagelock: cache hit seg %p addr %p", seg, addr);
8035 		return (0);
8036 	}
8037 
8038 	if (rw == S_READ) {
8039 		protchk = PROT_READ;
8040 	} else {
8041 		protchk = PROT_WRITE;
8042 	}
8043 
8044 	if (svd->pageprot == 0) {
8045 		if ((svd->prot & protchk) == 0) {
8046 			mutex_exit(&svd->segp_slock);
8047 			error = EFAULT;
8048 			goto out;
8049 		}
8050 	} else {
8051 		/*
8052 		 * check page protections
8053 		 */
8054 		for (a = addr; a < addr + len; a += PAGESIZE) {
8055 			struct vpage *vp;
8056 
8057 			vp = &svd->vpage[seg_page(seg, a)];
8058 			if ((VPP_PROT(vp) & protchk) == 0) {
8059 				mutex_exit(&svd->segp_slock);
8060 				error = EFAULT;
8061 				goto out;
8062 			}
8063 		}
8064 	}
8065 
8066 	/*
8067 	 * Avoid per page overhead of segvn_pp_lock_anonpages() for small
8068 	 * pages. For large pages segvn_pp_lock_anonpages() only does real
8069 	 * work once per large page.  The tradeoff is that we may decrement
8070 	 * availrmem more than once for the same page but this is ok
8071 	 * for small pages.
8072 	 */
8073 	if (seg->s_szc == 0) {
8074 		mutex_enter(&freemem_lock);
8075 		if (availrmem < tune.t_minarmem + npages) {
8076 			mutex_exit(&freemem_lock);
8077 			mutex_exit(&svd->segp_slock);
8078 			error = ENOMEM;
8079 			goto out;
8080 		}
8081 		availrmem -= npages;
8082 		mutex_exit(&freemem_lock);
8083 	}
8084 
8085 	pplist = kmem_alloc(sizeof (page_t *) * npages, KM_SLEEP);
8086 	pl = pplist;
8087 	*ppp = pplist + adjustpages;
8088 
8089 	page = seg_page(seg, addr);
8090 	anon_index = svd->anon_index + page;
8091 
8092 	ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
8093 	for (a = addr; a < addr + len; a += PAGESIZE, anon_index++) {
8094 		struct anon *ap;
8095 		struct vnode *vp;
8096 		u_offset_t off;
8097 		anon_sync_obj_t cookie;
8098 
8099 		anon_array_enter(amp, anon_index, &cookie);
8100 		ap = anon_get_ptr(amp->ahp, anon_index);
8101 		if (ap == NULL) {
8102 			anon_array_exit(&cookie);
8103 			break;
8104 		} else {
8105 			/*
8106 			 * We must never use seg_pcache for COW pages
8107 			 * because we might end up with original page still
8108 			 * lying in seg_pcache even after private page is
8109 			 * created. This leads to data corruption as
8110 			 * aio_write refers to the page still in cache
8111 			 * while all other accesses refer to the private
8112 			 * page.
8113 			 */
8114 			if (ap->an_refcnt != 1) {
8115 				anon_array_exit(&cookie);
8116 				break;
8117 			}
8118 		}
8119 		swap_xlate(ap, &vp, &off);
8120 		anon_array_exit(&cookie);
8121 
8122 		pp = page_lookup_nowait(vp, off, SE_SHARED);
8123 		if (pp == NULL) {
8124 			break;
8125 		}
8126 		if (seg->s_szc != 0 || pp->p_szc != 0) {
8127 			if (!segvn_pp_lock_anonpages(pp, a == addr)) {
8128 				page_unlock(pp);
8129 				break;
8130 			}
8131 		} else {
8132 			szc0_npages++;
8133 		}
8134 		*pplist++ = pp;
8135 	}
8136 	ANON_LOCK_EXIT(&amp->a_rwlock);
8137 
8138 	ASSERT(npages >= szc0_npages);
8139 
8140 	if (a >= addr + len) {
8141 		mutex_enter(&freemem_lock);
8142 		if (seg->s_szc == 0 && npages != szc0_npages) {
8143 			ASSERT(svd->type == MAP_SHARED && amp->a_szc > 0);
8144 			availrmem += (npages - szc0_npages);
8145 		}
8146 		svd->softlockcnt += npages;
8147 		segvn_pages_locked += npages;
8148 		mutex_exit(&freemem_lock);
8149 		(void) seg_pinsert(seg, addr, len, pl, rw, SEGP_ASYNC_FLUSH,
8150 			segvn_reclaim);
8151 		mutex_exit(&svd->segp_slock);
8152 		SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
8153 		TRACE_2(TR_FAC_PHYSIO, TR_PHYSIO_SEGVN_FILL_END,
8154 		    "segvn_pagelock: cache fill seg %p addr %p", seg, addr);
8155 		return (0);
8156 	}
8157 
8158 	mutex_exit(&svd->segp_slock);
8159 	if (seg->s_szc == 0) {
8160 		mutex_enter(&freemem_lock);
8161 		availrmem += npages;
8162 		mutex_exit(&freemem_lock);
8163 	}
8164 	error = EFAULT;
8165 	pplist = pl;
8166 	np = ((uintptr_t)(a - addr)) >> PAGESHIFT;
8167 	while (np > (uint_t)0) {
8168 		ASSERT(PAGE_LOCKED(*pplist));
8169 		if (seg->s_szc != 0 || (*pplist)->p_szc != 0) {
8170 			segvn_pp_unlock_anonpages(*pplist, pplist == pl);
8171 		}
8172 		page_unlock(*pplist);
8173 		np--;
8174 		pplist++;
8175 	}
8176 	kmem_free(pl, sizeof (page_t *) * npages);
8177 out:
8178 	SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
8179 	*ppp = NULL;
8180 	TRACE_2(TR_FAC_PHYSIO, TR_PHYSIO_SEGVN_MISS_END,
8181 		"segvn_pagelock: cache miss seg %p addr %p", seg, addr);
8182 	return (error);
8183 }
8184 
8185 /*
8186  * purge any cached pages in the I/O page cache
8187  */
8188 static void
8189 segvn_purge(struct seg *seg)
8190 {
8191 	seg_ppurge(seg);
8192 }
8193 
8194 static int
8195 segvn_reclaim(struct seg *seg, caddr_t addr, size_t len, struct page **pplist,
8196 	enum seg_rw rw)
8197 {
8198 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
8199 	pgcnt_t np, npages;
8200 	struct page **pl;
8201 	pgcnt_t szc0_npages = 0;
8202 
8203 #ifdef lint
8204 	addr = addr;
8205 #endif
8206 
8207 	npages = np = (len >> PAGESHIFT);
8208 	ASSERT(npages);
8209 	pl = pplist;
8210 	if (seg->s_szc != 0) {
8211 		size_t pgsz = page_get_pagesize(seg->s_szc);
8212 		if (!IS_P2ALIGNED(addr, pgsz) || !IS_P2ALIGNED(len, pgsz)) {
8213 			panic("segvn_reclaim: unaligned addr or len");
8214 			/*NOTREACHED*/
8215 		}
8216 	}
8217 
8218 	ASSERT(svd->vp == NULL && svd->amp != NULL);
8219 
8220 	while (np > (uint_t)0) {
8221 		if (rw == S_WRITE) {
8222 			hat_setrefmod(*pplist);
8223 		} else {
8224 			hat_setref(*pplist);
8225 		}
8226 		if (seg->s_szc != 0 || (*pplist)->p_szc != 0) {
8227 			segvn_pp_unlock_anonpages(*pplist, pplist == pl);
8228 		} else {
8229 			szc0_npages++;
8230 		}
8231 		page_unlock(*pplist);
8232 		np--;
8233 		pplist++;
8234 	}
8235 	kmem_free(pl, sizeof (page_t *) * npages);
8236 
8237 	mutex_enter(&freemem_lock);
8238 	segvn_pages_locked -= npages;
8239 	svd->softlockcnt -= npages;
8240 	if (szc0_npages != 0) {
8241 		availrmem += szc0_npages;
8242 	}
8243 	mutex_exit(&freemem_lock);
8244 	if (svd->softlockcnt <= 0) {
8245 		if (AS_ISUNMAPWAIT(seg->s_as)) {
8246 			mutex_enter(&seg->s_as->a_contents);
8247 			if (AS_ISUNMAPWAIT(seg->s_as)) {
8248 				AS_CLRUNMAPWAIT(seg->s_as);
8249 				cv_broadcast(&seg->s_as->a_cv);
8250 			}
8251 			mutex_exit(&seg->s_as->a_contents);
8252 		}
8253 	}
8254 	return (0);
8255 }
8256 /*
8257  * get a memory ID for an addr in a given segment
8258  *
8259  * XXX only creates PAGESIZE pages if anon slots are not initialized.
8260  * At fault time they will be relocated into larger pages.
8261  */
8262 static int
8263 segvn_getmemid(struct seg *seg, caddr_t addr, memid_t *memidp)
8264 {
8265 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
8266 	struct anon 	*ap = NULL;
8267 	ulong_t		anon_index;
8268 	struct anon_map	*amp;
8269 	anon_sync_obj_t cookie;
8270 
8271 	if (svd->type == MAP_PRIVATE) {
8272 		memidp->val[0] = (uintptr_t)seg->s_as;
8273 		memidp->val[1] = (uintptr_t)addr;
8274 		return (0);
8275 	}
8276 
8277 	if (svd->type == MAP_SHARED) {
8278 		if (svd->vp) {
8279 			memidp->val[0] = (uintptr_t)svd->vp;
8280 			memidp->val[1] = (u_longlong_t)svd->offset +
8281 			    (uintptr_t)(addr - seg->s_base);
8282 			return (0);
8283 		} else {
8284 
8285 			SEGVN_LOCK_ENTER(seg->s_as, &svd->lock, RW_READER);
8286 			if ((amp = svd->amp) != NULL) {
8287 				anon_index = svd->anon_index +
8288 				    seg_page(seg, addr);
8289 			}
8290 			SEGVN_LOCK_EXIT(seg->s_as, &svd->lock);
8291 
8292 			ASSERT(amp != NULL);
8293 
8294 			ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
8295 			anon_array_enter(amp, anon_index, &cookie);
8296 			ap = anon_get_ptr(amp->ahp, anon_index);
8297 			if (ap == NULL) {
8298 				page_t		*pp;
8299 
8300 				pp = anon_zero(seg, addr, &ap, svd->cred);
8301 				if (pp == NULL) {
8302 					anon_array_exit(&cookie);
8303 					ANON_LOCK_EXIT(&amp->a_rwlock);
8304 					return (ENOMEM);
8305 				}
8306 				ASSERT(anon_get_ptr(amp->ahp, anon_index)
8307 								== NULL);
8308 				(void) anon_set_ptr(amp->ahp, anon_index,
8309 				    ap, ANON_SLEEP);
8310 				page_unlock(pp);
8311 			}
8312 
8313 			anon_array_exit(&cookie);
8314 			ANON_LOCK_EXIT(&amp->a_rwlock);
8315 
8316 			memidp->val[0] = (uintptr_t)ap;
8317 			memidp->val[1] = (uintptr_t)addr & PAGEOFFSET;
8318 			return (0);
8319 		}
8320 	}
8321 	return (EINVAL);
8322 }
8323 
8324 static int
8325 sameprot(struct seg *seg, caddr_t a, size_t len)
8326 {
8327 	struct segvn_data *svd = (struct segvn_data *)seg->s_data;
8328 	struct vpage *vpage;
8329 	spgcnt_t pages = btop(len);
8330 	uint_t prot;
8331 
8332 	if (svd->pageprot == 0)
8333 		return (1);
8334 
8335 	ASSERT(svd->vpage != NULL);
8336 
8337 	vpage = &svd->vpage[seg_page(seg, a)];
8338 	prot = VPP_PROT(vpage);
8339 	vpage++;
8340 	pages--;
8341 	while (pages-- > 0) {
8342 		if (prot != VPP_PROT(vpage))
8343 			return (0);
8344 		vpage++;
8345 	}
8346 	return (1);
8347 }
8348 
8349 /*
8350  * Get memory allocation policy info for specified address in given segment
8351  */
8352 static lgrp_mem_policy_info_t *
8353 segvn_getpolicy(struct seg *seg, caddr_t addr)
8354 {
8355 	struct anon_map		*amp;
8356 	ulong_t			anon_index;
8357 	lgrp_mem_policy_info_t	*policy_info;
8358 	struct segvn_data	*svn_data;
8359 	u_offset_t		vn_off;
8360 	vnode_t			*vp;
8361 
8362 	ASSERT(seg != NULL);
8363 
8364 	svn_data = (struct segvn_data *)seg->s_data;
8365 	if (svn_data == NULL)
8366 		return (NULL);
8367 
8368 	/*
8369 	 * Get policy info for private or shared memory
8370 	 */
8371 	if (svn_data->type != MAP_SHARED)
8372 		policy_info = &svn_data->policy_info;
8373 	else {
8374 		amp = svn_data->amp;
8375 		anon_index = svn_data->anon_index + seg_page(seg, addr);
8376 		vp = svn_data->vp;
8377 		vn_off = svn_data->offset + (uintptr_t)(addr - seg->s_base);
8378 		policy_info = lgrp_shm_policy_get(amp, anon_index, vp, vn_off);
8379 	}
8380 
8381 	return (policy_info);
8382 }
8383 
8384 /*ARGSUSED*/
8385 static int
8386 segvn_capable(struct seg *seg, segcapability_t capability)
8387 {
8388 	return (0);
8389 }
8390