xref: /illumos-gate/usr/src/uts/common/vm/vm_page.c (revision 7257d1b4)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*	Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989  AT&T	*/
27 /*	  All Rights Reserved  	*/
28 
29 /*
30  * University Copyright- Copyright (c) 1982, 1986, 1988
31  * The Regents of the University of California
32  * All Rights Reserved
33  *
34  * University Acknowledgment- Portions of this document are derived from
35  * software developed by the University of California, Berkeley, and its
36  * contributors.
37  */
38 
39 #pragma ident	"%Z%%M%	%I%	%E% SMI"
40 
41 /*
42  * VM - physical page management.
43  */
44 
45 #include <sys/types.h>
46 #include <sys/t_lock.h>
47 #include <sys/param.h>
48 #include <sys/systm.h>
49 #include <sys/errno.h>
50 #include <sys/time.h>
51 #include <sys/vnode.h>
52 #include <sys/vm.h>
53 #include <sys/vtrace.h>
54 #include <sys/swap.h>
55 #include <sys/cmn_err.h>
56 #include <sys/tuneable.h>
57 #include <sys/sysmacros.h>
58 #include <sys/cpuvar.h>
59 #include <sys/callb.h>
60 #include <sys/debug.h>
61 #include <sys/tnf_probe.h>
62 #include <sys/condvar_impl.h>
63 #include <sys/mem_config.h>
64 #include <sys/mem_cage.h>
65 #include <sys/kmem.h>
66 #include <sys/atomic.h>
67 #include <sys/strlog.h>
68 #include <sys/mman.h>
69 #include <sys/ontrap.h>
70 #include <sys/lgrp.h>
71 #include <sys/vfs.h>
72 
73 #include <vm/hat.h>
74 #include <vm/anon.h>
75 #include <vm/page.h>
76 #include <vm/seg.h>
77 #include <vm/pvn.h>
78 #include <vm/seg_kmem.h>
79 #include <vm/vm_dep.h>
80 #include <sys/vm_usage.h>
81 #include <fs/fs_subr.h>
82 #include <sys/ddi.h>
83 #include <sys/modctl.h>
84 
85 static int nopageage = 0;
86 
87 static pgcnt_t max_page_get;	/* max page_get request size in pages */
88 pgcnt_t total_pages = 0;	/* total number of pages (used by /proc) */
89 
90 /*
91  * freemem_lock protects all freemem variables:
92  * availrmem. Also this lock protects the globals which track the
93  * availrmem changes for accurate kernel footprint calculation.
94  * See below for an explanation of these
95  * globals.
96  */
97 kmutex_t freemem_lock;
98 pgcnt_t availrmem;
99 pgcnt_t availrmem_initial;
100 
101 /*
102  * These globals track availrmem changes to get a more accurate
103  * estimate of tke kernel size. Historically pp_kernel is used for
104  * kernel size and is based on availrmem. But availrmem is adjusted for
105  * locked pages in the system not just for kernel locked pages.
106  * These new counters will track the pages locked through segvn and
107  * by explicit user locking.
108  *
109  * pages_locked : How many pages are locked because of user specified
110  * locking through mlock or plock.
111  *
112  * pages_useclaim,pages_claimed : These two variables track the
113  * claim adjustments because of the protection changes on a segvn segment.
114  *
115  * All these globals are protected by the same lock which protects availrmem.
116  */
117 pgcnt_t pages_locked = 0;
118 pgcnt_t pages_useclaim = 0;
119 pgcnt_t pages_claimed = 0;
120 
121 
122 /*
123  * new_freemem_lock protects freemem, freemem_wait & freemem_cv.
124  */
125 static kmutex_t	new_freemem_lock;
126 static uint_t	freemem_wait;	/* someone waiting for freemem */
127 static kcondvar_t freemem_cv;
128 
129 /*
130  * The logical page free list is maintained as two lists, the 'free'
131  * and the 'cache' lists.
132  * The free list contains those pages that should be reused first.
133  *
134  * The implementation of the lists is machine dependent.
135  * page_get_freelist(), page_get_cachelist(),
136  * page_list_sub(), and page_list_add()
137  * form the interface to the machine dependent implementation.
138  *
139  * Pages with p_free set are on the cache list.
140  * Pages with p_free and p_age set are on the free list,
141  *
142  * A page may be locked while on either list.
143  */
144 
145 /*
146  * free list accounting stuff.
147  *
148  *
149  * Spread out the value for the number of pages on the
150  * page free and page cache lists.  If there is just one
151  * value, then it must be under just one lock.
152  * The lock contention and cache traffic are a real bother.
153  *
154  * When we acquire and then drop a single pcf lock
155  * we can start in the middle of the array of pcf structures.
156  * If we acquire more than one pcf lock at a time, we need to
157  * start at the front to avoid deadlocking.
158  *
159  * pcf_count holds the number of pages in each pool.
160  *
161  * pcf_block is set when page_create_get_something() has asked the
162  * PSM page freelist and page cachelist routines without specifying
163  * a color and nothing came back.  This is used to block anything
164  * else from moving pages from one list to the other while the
165  * lists are searched again.  If a page is freeed while pcf_block is
166  * set, then pcf_reserve is incremented.  pcgs_unblock() takes care
167  * of clearning pcf_block, doing the wakeups, etc.
168  */
169 
170 #if NCPU <= 4
171 #define	PAD	2
172 #define	PCF_FANOUT	4
173 static	uint_t	pcf_mask = PCF_FANOUT - 1;
174 #else
175 #define	PAD	10
176 #ifdef sun4v
177 #define	PCF_FANOUT	32
178 #else
179 #define	PCF_FANOUT	128
180 #endif
181 static	uint_t	pcf_mask = PCF_FANOUT - 1;
182 #endif
183 
184 struct pcf {
185 	kmutex_t	pcf_lock;	/* protects the structure */
186 	uint_t		pcf_count;	/* page count */
187 	uint_t		pcf_wait;	/* number of waiters */
188 	uint_t		pcf_block; 	/* pcgs flag to page_free() */
189 	uint_t		pcf_reserve; 	/* pages freed after pcf_block set */
190 	uint_t		pcf_fill[PAD];	/* to line up on the caches */
191 };
192 
193 static struct	pcf	pcf[PCF_FANOUT];
194 #define	PCF_INDEX()	((CPU->cpu_id) & (pcf_mask))
195 
196 kmutex_t	pcgs_lock;		/* serializes page_create_get_ */
197 kmutex_t	pcgs_cagelock;		/* serializes NOSLEEP cage allocs */
198 kmutex_t	pcgs_wait_lock;		/* used for delay in pcgs */
199 static kcondvar_t	pcgs_cv;	/* cv for delay in pcgs */
200 
201 #ifdef VM_STATS
202 
203 /*
204  * No locks, but so what, they are only statistics.
205  */
206 
207 static struct page_tcnt {
208 	int	pc_free_cache;		/* free's into cache list */
209 	int	pc_free_dontneed;	/* free's with dontneed */
210 	int	pc_free_pageout;	/* free's from pageout */
211 	int	pc_free_free;		/* free's into free list */
212 	int	pc_free_pages;		/* free's into large page free list */
213 	int	pc_destroy_pages;	/* large page destroy's */
214 	int	pc_get_cache;		/* get's from cache list */
215 	int	pc_get_free;		/* get's from free list */
216 	int	pc_reclaim;		/* reclaim's */
217 	int	pc_abortfree;		/* abort's of free pages */
218 	int	pc_find_hit;		/* find's that find page */
219 	int	pc_find_miss;		/* find's that don't find page */
220 	int	pc_destroy_free;	/* # of free pages destroyed */
221 #define	PC_HASH_CNT	(4*PAGE_HASHAVELEN)
222 	int	pc_find_hashlen[PC_HASH_CNT+1];
223 	int	pc_addclaim_pages;
224 	int	pc_subclaim_pages;
225 	int	pc_free_replacement_page[2];
226 	int	pc_try_demote_pages[6];
227 	int	pc_demote_pages[2];
228 } pagecnt;
229 
230 uint_t	hashin_count;
231 uint_t	hashin_not_held;
232 uint_t	hashin_already;
233 
234 uint_t	hashout_count;
235 uint_t	hashout_not_held;
236 
237 uint_t	page_create_count;
238 uint_t	page_create_not_enough;
239 uint_t	page_create_not_enough_again;
240 uint_t	page_create_zero;
241 uint_t	page_create_hashout;
242 uint_t	page_create_page_lock_failed;
243 uint_t	page_create_trylock_failed;
244 uint_t	page_create_found_one;
245 uint_t	page_create_hashin_failed;
246 uint_t	page_create_dropped_phm;
247 
248 uint_t	page_create_new;
249 uint_t	page_create_exists;
250 uint_t	page_create_putbacks;
251 uint_t	page_create_overshoot;
252 
253 uint_t	page_reclaim_zero;
254 uint_t	page_reclaim_zero_locked;
255 
256 uint_t	page_rename_exists;
257 uint_t	page_rename_count;
258 
259 uint_t	page_lookup_cnt[20];
260 uint_t	page_lookup_nowait_cnt[10];
261 uint_t	page_find_cnt;
262 uint_t	page_exists_cnt;
263 uint_t	page_exists_forreal_cnt;
264 uint_t	page_lookup_dev_cnt;
265 uint_t	get_cachelist_cnt;
266 uint_t	page_create_cnt[10];
267 uint_t	alloc_pages[9];
268 uint_t	page_exphcontg[19];
269 uint_t  page_create_large_cnt[10];
270 
271 /*
272  * Collects statistics.
273  */
274 #define	PAGE_HASH_SEARCH(index, pp, vp, off) { \
275 	uint_t	mylen = 0; \
276 			\
277 	for ((pp) = page_hash[(index)]; (pp); (pp) = (pp)->p_hash, mylen++) { \
278 		if ((pp)->p_vnode == (vp) && (pp)->p_offset == (off)) \
279 			break; \
280 	} \
281 	if ((pp) != NULL) \
282 		pagecnt.pc_find_hit++; \
283 	else \
284 		pagecnt.pc_find_miss++; \
285 	if (mylen > PC_HASH_CNT) \
286 		mylen = PC_HASH_CNT; \
287 	pagecnt.pc_find_hashlen[mylen]++; \
288 }
289 
290 #else	/* VM_STATS */
291 
292 /*
293  * Don't collect statistics
294  */
295 #define	PAGE_HASH_SEARCH(index, pp, vp, off) { \
296 	for ((pp) = page_hash[(index)]; (pp); (pp) = (pp)->p_hash) { \
297 		if ((pp)->p_vnode == (vp) && (pp)->p_offset == (off)) \
298 			break; \
299 	} \
300 }
301 
302 #endif	/* VM_STATS */
303 
304 
305 
306 #ifdef DEBUG
307 #define	MEMSEG_SEARCH_STATS
308 #endif
309 
310 #ifdef MEMSEG_SEARCH_STATS
311 struct memseg_stats {
312     uint_t nsearch;
313     uint_t nlastwon;
314     uint_t nhashwon;
315     uint_t nnotfound;
316 } memseg_stats;
317 
318 #define	MEMSEG_STAT_INCR(v) \
319 	atomic_add_32(&memseg_stats.v, 1)
320 #else
321 #define	MEMSEG_STAT_INCR(x)
322 #endif
323 
324 struct memseg *memsegs;		/* list of memory segments */
325 
326 /*
327  * /etc/system tunable to control large page allocation hueristic.
328  *
329  * Setting to LPAP_LOCAL will heavily prefer the local lgroup over remote lgroup
330  * for large page allocation requests.  If a large page is not readily
331  * avaliable on the local freelists we will go through additional effort
332  * to create a large page, potentially moving smaller pages around to coalesce
333  * larger pages in the local lgroup.
334  * Default value of LPAP_DEFAULT will go to remote freelists if large pages
335  * are not readily available in the local lgroup.
336  */
337 enum lpap {
338 	LPAP_DEFAULT,	/* default large page allocation policy */
339 	LPAP_LOCAL	/* local large page allocation policy */
340 };
341 
342 enum lpap lpg_alloc_prefer = LPAP_DEFAULT;
343 
344 static void page_init_mem_config(void);
345 static int page_do_hashin(page_t *, vnode_t *, u_offset_t);
346 static void page_do_hashout(page_t *);
347 static void page_capture_init();
348 int page_capture_take_action(page_t *, uint_t, void *);
349 
350 static void page_demote_vp_pages(page_t *);
351 
352 /*
353  * vm subsystem related initialization
354  */
355 void
356 vm_init(void)
357 {
358 	boolean_t callb_vm_cpr(void *, int);
359 
360 	(void) callb_add(callb_vm_cpr, 0, CB_CL_CPR_VM, "vm");
361 	page_init_mem_config();
362 	page_retire_init();
363 	vm_usage_init();
364 	page_capture_init();
365 }
366 
367 /*
368  * This function is called at startup and when memory is added or deleted.
369  */
370 void
371 init_pages_pp_maximum()
372 {
373 	static pgcnt_t p_min;
374 	static pgcnt_t pages_pp_maximum_startup;
375 	static pgcnt_t avrmem_delta;
376 	static int init_done;
377 	static int user_set;	/* true if set in /etc/system */
378 
379 	if (init_done == 0) {
380 
381 		/* If the user specified a value, save it */
382 		if (pages_pp_maximum != 0) {
383 			user_set = 1;
384 			pages_pp_maximum_startup = pages_pp_maximum;
385 		}
386 
387 		/*
388 		 * Setting of pages_pp_maximum is based first time
389 		 * on the value of availrmem just after the start-up
390 		 * allocations. To preserve this relationship at run
391 		 * time, use a delta from availrmem_initial.
392 		 */
393 		ASSERT(availrmem_initial >= availrmem);
394 		avrmem_delta = availrmem_initial - availrmem;
395 
396 		/* The allowable floor of pages_pp_maximum */
397 		p_min = tune.t_minarmem + 100;
398 
399 		/* Make sure we don't come through here again. */
400 		init_done = 1;
401 	}
402 	/*
403 	 * Determine pages_pp_maximum, the number of currently available
404 	 * pages (availrmem) that can't be `locked'. If not set by
405 	 * the user, we set it to 4% of the currently available memory
406 	 * plus 4MB.
407 	 * But we also insist that it be greater than tune.t_minarmem;
408 	 * otherwise a process could lock down a lot of memory, get swapped
409 	 * out, and never have enough to get swapped back in.
410 	 */
411 	if (user_set)
412 		pages_pp_maximum = pages_pp_maximum_startup;
413 	else
414 		pages_pp_maximum = ((availrmem_initial - avrmem_delta) / 25)
415 		    + btop(4 * 1024 * 1024);
416 
417 	if (pages_pp_maximum <= p_min) {
418 		pages_pp_maximum = p_min;
419 	}
420 }
421 
422 void
423 set_max_page_get(pgcnt_t target_total_pages)
424 {
425 	max_page_get = target_total_pages / 2;
426 }
427 
428 static pgcnt_t pending_delete;
429 
430 /*ARGSUSED*/
431 static void
432 page_mem_config_post_add(
433 	void *arg,
434 	pgcnt_t delta_pages)
435 {
436 	set_max_page_get(total_pages - pending_delete);
437 	init_pages_pp_maximum();
438 }
439 
440 /*ARGSUSED*/
441 static int
442 page_mem_config_pre_del(
443 	void *arg,
444 	pgcnt_t delta_pages)
445 {
446 	pgcnt_t nv;
447 
448 	nv = atomic_add_long_nv(&pending_delete, (spgcnt_t)delta_pages);
449 	set_max_page_get(total_pages - nv);
450 	return (0);
451 }
452 
453 /*ARGSUSED*/
454 static void
455 page_mem_config_post_del(
456 	void *arg,
457 	pgcnt_t delta_pages,
458 	int cancelled)
459 {
460 	pgcnt_t nv;
461 
462 	nv = atomic_add_long_nv(&pending_delete, -(spgcnt_t)delta_pages);
463 	set_max_page_get(total_pages - nv);
464 	if (!cancelled)
465 		init_pages_pp_maximum();
466 }
467 
468 static kphysm_setup_vector_t page_mem_config_vec = {
469 	KPHYSM_SETUP_VECTOR_VERSION,
470 	page_mem_config_post_add,
471 	page_mem_config_pre_del,
472 	page_mem_config_post_del,
473 };
474 
475 static void
476 page_init_mem_config(void)
477 {
478 	int ret;
479 
480 	ret = kphysm_setup_func_register(&page_mem_config_vec, (void *)NULL);
481 	ASSERT(ret == 0);
482 }
483 
484 /*
485  * Evenly spread out the PCF counters for large free pages
486  */
487 static void
488 page_free_large_ctr(pgcnt_t npages)
489 {
490 	static struct pcf	*p = pcf;
491 	pgcnt_t			lump;
492 
493 	freemem += npages;
494 
495 	lump = roundup(npages, PCF_FANOUT) / PCF_FANOUT;
496 
497 	while (npages > 0) {
498 
499 		ASSERT(!p->pcf_block);
500 
501 		if (lump < npages) {
502 			p->pcf_count += (uint_t)lump;
503 			npages -= lump;
504 		} else {
505 			p->pcf_count += (uint_t)npages;
506 			npages = 0;
507 		}
508 
509 		ASSERT(!p->pcf_wait);
510 
511 		if (++p > &pcf[PCF_FANOUT - 1])
512 			p = pcf;
513 	}
514 
515 	ASSERT(npages == 0);
516 }
517 
518 /*
519  * Add a physical chunk of memory to the system free lists during startup.
520  * Platform specific startup() allocates the memory for the page structs.
521  *
522  * num	- number of page structures
523  * base - page number (pfn) to be associated with the first page.
524  *
525  * Since we are doing this during startup (ie. single threaded), we will
526  * use shortcut routines to avoid any locking overhead while putting all
527  * these pages on the freelists.
528  *
529  * NOTE: Any changes performed to page_free(), must also be performed to
530  *	 add_physmem() since this is how we initialize all page_t's at
531  *	 boot time.
532  */
533 void
534 add_physmem(
535 	page_t	*pp,
536 	pgcnt_t	num,
537 	pfn_t	pnum)
538 {
539 	page_t	*root = NULL;
540 	uint_t	szc = page_num_pagesizes() - 1;
541 	pgcnt_t	large = page_get_pagecnt(szc);
542 	pgcnt_t	cnt = 0;
543 
544 	TRACE_2(TR_FAC_VM, TR_PAGE_INIT,
545 	    "add_physmem:pp %p num %lu", pp, num);
546 
547 	/*
548 	 * Arbitrarily limit the max page_get request
549 	 * to 1/2 of the page structs we have.
550 	 */
551 	total_pages += num;
552 	set_max_page_get(total_pages);
553 
554 	PLCNT_MODIFY_MAX(pnum, (long)num);
555 
556 	/*
557 	 * The physical space for the pages array
558 	 * representing ram pages has already been
559 	 * allocated.  Here we initialize each lock
560 	 * in the page structure, and put each on
561 	 * the free list
562 	 */
563 	for (; num; pp++, pnum++, num--) {
564 
565 		/*
566 		 * this needs to fill in the page number
567 		 * and do any other arch specific initialization
568 		 */
569 		add_physmem_cb(pp, pnum);
570 
571 		pp->p_lckcnt = 0;
572 		pp->p_cowcnt = 0;
573 		pp->p_slckcnt = 0;
574 
575 		/*
576 		 * Initialize the page lock as unlocked, since nobody
577 		 * can see or access this page yet.
578 		 */
579 		pp->p_selock = 0;
580 
581 		/*
582 		 * Initialize IO lock
583 		 */
584 		page_iolock_init(pp);
585 
586 		/*
587 		 * initialize other fields in the page_t
588 		 */
589 		PP_SETFREE(pp);
590 		page_clr_all_props(pp);
591 		PP_SETAGED(pp);
592 		pp->p_offset = (u_offset_t)-1;
593 		pp->p_next = pp;
594 		pp->p_prev = pp;
595 
596 		/*
597 		 * Simple case: System doesn't support large pages.
598 		 */
599 		if (szc == 0) {
600 			pp->p_szc = 0;
601 			page_free_at_startup(pp);
602 			continue;
603 		}
604 
605 		/*
606 		 * Handle unaligned pages, we collect them up onto
607 		 * the root page until we have a full large page.
608 		 */
609 		if (!IS_P2ALIGNED(pnum, large)) {
610 
611 			/*
612 			 * If not in a large page,
613 			 * just free as small page.
614 			 */
615 			if (root == NULL) {
616 				pp->p_szc = 0;
617 				page_free_at_startup(pp);
618 				continue;
619 			}
620 
621 			/*
622 			 * Link a constituent page into the large page.
623 			 */
624 			pp->p_szc = szc;
625 			page_list_concat(&root, &pp);
626 
627 			/*
628 			 * When large page is fully formed, free it.
629 			 */
630 			if (++cnt == large) {
631 				page_free_large_ctr(cnt);
632 				page_list_add_pages(root, PG_LIST_ISINIT);
633 				root = NULL;
634 				cnt = 0;
635 			}
636 			continue;
637 		}
638 
639 		/*
640 		 * At this point we have a page number which
641 		 * is aligned. We assert that we aren't already
642 		 * in a different large page.
643 		 */
644 		ASSERT(IS_P2ALIGNED(pnum, large));
645 		ASSERT(root == NULL && cnt == 0);
646 
647 		/*
648 		 * If insufficient number of pages left to form
649 		 * a large page, just free the small page.
650 		 */
651 		if (num < large) {
652 			pp->p_szc = 0;
653 			page_free_at_startup(pp);
654 			continue;
655 		}
656 
657 		/*
658 		 * Otherwise start a new large page.
659 		 */
660 		pp->p_szc = szc;
661 		cnt++;
662 		root = pp;
663 	}
664 	ASSERT(root == NULL && cnt == 0);
665 }
666 
667 /*
668  * Find a page representing the specified [vp, offset].
669  * If we find the page but it is intransit coming in,
670  * it will have an "exclusive" lock and we wait for
671  * the i/o to complete.  A page found on the free list
672  * is always reclaimed and then locked.  On success, the page
673  * is locked, its data is valid and it isn't on the free
674  * list, while a NULL is returned if the page doesn't exist.
675  */
676 page_t *
677 page_lookup(vnode_t *vp, u_offset_t off, se_t se)
678 {
679 	return (page_lookup_create(vp, off, se, NULL, NULL, 0));
680 }
681 
682 /*
683  * Find a page representing the specified [vp, offset].
684  * We either return the one we found or, if passed in,
685  * create one with identity of [vp, offset] of the
686  * pre-allocated page. If we find existing page but it is
687  * intransit coming in, it will have an "exclusive" lock
688  * and we wait for the i/o to complete.  A page found on
689  * the free list is always reclaimed and then locked.
690  * On success, the page is locked, its data is valid and
691  * it isn't on the free list, while a NULL is returned
692  * if the page doesn't exist and newpp is NULL;
693  */
694 page_t *
695 page_lookup_create(
696 	vnode_t *vp,
697 	u_offset_t off,
698 	se_t se,
699 	page_t *newpp,
700 	spgcnt_t *nrelocp,
701 	int flags)
702 {
703 	page_t		*pp;
704 	kmutex_t	*phm;
705 	ulong_t		index;
706 	uint_t		hash_locked;
707 	uint_t		es;
708 
709 	ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
710 	VM_STAT_ADD(page_lookup_cnt[0]);
711 	ASSERT(newpp ? PAGE_EXCL(newpp) : 1);
712 
713 	/*
714 	 * Acquire the appropriate page hash lock since
715 	 * we have to search the hash list.  Pages that
716 	 * hash to this list can't change identity while
717 	 * this lock is held.
718 	 */
719 	hash_locked = 0;
720 	index = PAGE_HASH_FUNC(vp, off);
721 	phm = NULL;
722 top:
723 	PAGE_HASH_SEARCH(index, pp, vp, off);
724 	if (pp != NULL) {
725 		VM_STAT_ADD(page_lookup_cnt[1]);
726 		es = (newpp != NULL) ? 1 : 0;
727 		es |= flags;
728 		if (!hash_locked) {
729 			VM_STAT_ADD(page_lookup_cnt[2]);
730 			if (!page_try_reclaim_lock(pp, se, es)) {
731 				/*
732 				 * On a miss, acquire the phm.  Then
733 				 * next time, page_lock() will be called,
734 				 * causing a wait if the page is busy.
735 				 * just looping with page_trylock() would
736 				 * get pretty boring.
737 				 */
738 				VM_STAT_ADD(page_lookup_cnt[3]);
739 				phm = PAGE_HASH_MUTEX(index);
740 				mutex_enter(phm);
741 				hash_locked = 1;
742 				goto top;
743 			}
744 		} else {
745 			VM_STAT_ADD(page_lookup_cnt[4]);
746 			if (!page_lock_es(pp, se, phm, P_RECLAIM, es)) {
747 				VM_STAT_ADD(page_lookup_cnt[5]);
748 				goto top;
749 			}
750 		}
751 
752 		/*
753 		 * Since `pp' is locked it can not change identity now.
754 		 * Reconfirm we locked the correct page.
755 		 *
756 		 * Both the p_vnode and p_offset *must* be cast volatile
757 		 * to force a reload of their values: The PAGE_HASH_SEARCH
758 		 * macro will have stuffed p_vnode and p_offset into
759 		 * registers before calling page_trylock(); another thread,
760 		 * actually holding the hash lock, could have changed the
761 		 * page's identity in memory, but our registers would not
762 		 * be changed, fooling the reconfirmation.  If the hash
763 		 * lock was held during the search, the casting would
764 		 * not be needed.
765 		 */
766 		VM_STAT_ADD(page_lookup_cnt[6]);
767 		if (((volatile struct vnode *)(pp->p_vnode) != vp) ||
768 		    ((volatile u_offset_t)(pp->p_offset) != off)) {
769 			VM_STAT_ADD(page_lookup_cnt[7]);
770 			if (hash_locked) {
771 				panic("page_lookup_create: lost page %p",
772 				    (void *)pp);
773 				/*NOTREACHED*/
774 			}
775 			page_unlock(pp);
776 			phm = PAGE_HASH_MUTEX(index);
777 			mutex_enter(phm);
778 			hash_locked = 1;
779 			goto top;
780 		}
781 
782 		/*
783 		 * If page_trylock() was called, then pp may still be on
784 		 * the cachelist (can't be on the free list, it would not
785 		 * have been found in the search).  If it is on the
786 		 * cachelist it must be pulled now. To pull the page from
787 		 * the cachelist, it must be exclusively locked.
788 		 *
789 		 * The other big difference between page_trylock() and
790 		 * page_lock(), is that page_lock() will pull the
791 		 * page from whatever free list (the cache list in this
792 		 * case) the page is on.  If page_trylock() was used
793 		 * above, then we have to do the reclaim ourselves.
794 		 */
795 		if ((!hash_locked) && (PP_ISFREE(pp))) {
796 			ASSERT(PP_ISAGED(pp) == 0);
797 			VM_STAT_ADD(page_lookup_cnt[8]);
798 
799 			/*
800 			 * page_relcaim will insure that we
801 			 * have this page exclusively
802 			 */
803 
804 			if (!page_reclaim(pp, NULL)) {
805 				/*
806 				 * Page_reclaim dropped whatever lock
807 				 * we held.
808 				 */
809 				VM_STAT_ADD(page_lookup_cnt[9]);
810 				phm = PAGE_HASH_MUTEX(index);
811 				mutex_enter(phm);
812 				hash_locked = 1;
813 				goto top;
814 			} else if (se == SE_SHARED && newpp == NULL) {
815 				VM_STAT_ADD(page_lookup_cnt[10]);
816 				page_downgrade(pp);
817 			}
818 		}
819 
820 		if (hash_locked) {
821 			mutex_exit(phm);
822 		}
823 
824 		if (newpp != NULL && pp->p_szc < newpp->p_szc &&
825 		    PAGE_EXCL(pp) && nrelocp != NULL) {
826 			ASSERT(nrelocp != NULL);
827 			(void) page_relocate(&pp, &newpp, 1, 1, nrelocp,
828 			    NULL);
829 			if (*nrelocp > 0) {
830 				VM_STAT_COND_ADD(*nrelocp == 1,
831 				    page_lookup_cnt[11]);
832 				VM_STAT_COND_ADD(*nrelocp > 1,
833 				    page_lookup_cnt[12]);
834 				pp = newpp;
835 				se = SE_EXCL;
836 			} else {
837 				if (se == SE_SHARED) {
838 					page_downgrade(pp);
839 				}
840 				VM_STAT_ADD(page_lookup_cnt[13]);
841 			}
842 		} else if (newpp != NULL && nrelocp != NULL) {
843 			if (PAGE_EXCL(pp) && se == SE_SHARED) {
844 				page_downgrade(pp);
845 			}
846 			VM_STAT_COND_ADD(pp->p_szc < newpp->p_szc,
847 			    page_lookup_cnt[14]);
848 			VM_STAT_COND_ADD(pp->p_szc == newpp->p_szc,
849 			    page_lookup_cnt[15]);
850 			VM_STAT_COND_ADD(pp->p_szc > newpp->p_szc,
851 			    page_lookup_cnt[16]);
852 		} else if (newpp != NULL && PAGE_EXCL(pp)) {
853 			se = SE_EXCL;
854 		}
855 	} else if (!hash_locked) {
856 		VM_STAT_ADD(page_lookup_cnt[17]);
857 		phm = PAGE_HASH_MUTEX(index);
858 		mutex_enter(phm);
859 		hash_locked = 1;
860 		goto top;
861 	} else if (newpp != NULL) {
862 		/*
863 		 * If we have a preallocated page then
864 		 * insert it now and basically behave like
865 		 * page_create.
866 		 */
867 		VM_STAT_ADD(page_lookup_cnt[18]);
868 		/*
869 		 * Since we hold the page hash mutex and
870 		 * just searched for this page, page_hashin
871 		 * had better not fail.  If it does, that
872 		 * means some thread did not follow the
873 		 * page hash mutex rules.  Panic now and
874 		 * get it over with.  As usual, go down
875 		 * holding all the locks.
876 		 */
877 		ASSERT(MUTEX_HELD(phm));
878 		if (!page_hashin(newpp, vp, off, phm)) {
879 			ASSERT(MUTEX_HELD(phm));
880 			panic("page_lookup_create: hashin failed %p %p %llx %p",
881 			    (void *)newpp, (void *)vp, off, (void *)phm);
882 			/*NOTREACHED*/
883 		}
884 		ASSERT(MUTEX_HELD(phm));
885 		mutex_exit(phm);
886 		phm = NULL;
887 		page_set_props(newpp, P_REF);
888 		page_io_lock(newpp);
889 		pp = newpp;
890 		se = SE_EXCL;
891 	} else {
892 		VM_STAT_ADD(page_lookup_cnt[19]);
893 		mutex_exit(phm);
894 	}
895 
896 	ASSERT(pp ? PAGE_LOCKED_SE(pp, se) : 1);
897 
898 	ASSERT(pp ? ((PP_ISFREE(pp) == 0) && (PP_ISAGED(pp) == 0)) : 1);
899 
900 	return (pp);
901 }
902 
903 /*
904  * Search the hash list for the page representing the
905  * specified [vp, offset] and return it locked.  Skip
906  * free pages and pages that cannot be locked as requested.
907  * Used while attempting to kluster pages.
908  */
909 page_t *
910 page_lookup_nowait(vnode_t *vp, u_offset_t off, se_t se)
911 {
912 	page_t		*pp;
913 	kmutex_t	*phm;
914 	ulong_t		index;
915 	uint_t		locked;
916 
917 	ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
918 	VM_STAT_ADD(page_lookup_nowait_cnt[0]);
919 
920 	index = PAGE_HASH_FUNC(vp, off);
921 	PAGE_HASH_SEARCH(index, pp, vp, off);
922 	locked = 0;
923 	if (pp == NULL) {
924 top:
925 		VM_STAT_ADD(page_lookup_nowait_cnt[1]);
926 		locked = 1;
927 		phm = PAGE_HASH_MUTEX(index);
928 		mutex_enter(phm);
929 		PAGE_HASH_SEARCH(index, pp, vp, off);
930 	}
931 
932 	if (pp == NULL || PP_ISFREE(pp)) {
933 		VM_STAT_ADD(page_lookup_nowait_cnt[2]);
934 		pp = NULL;
935 	} else {
936 		if (!page_trylock(pp, se)) {
937 			VM_STAT_ADD(page_lookup_nowait_cnt[3]);
938 			pp = NULL;
939 		} else {
940 			VM_STAT_ADD(page_lookup_nowait_cnt[4]);
941 			/*
942 			 * See the comment in page_lookup()
943 			 */
944 			if (((volatile struct vnode *)(pp->p_vnode) != vp) ||
945 			    ((u_offset_t)(pp->p_offset) != off)) {
946 				VM_STAT_ADD(page_lookup_nowait_cnt[5]);
947 				if (locked) {
948 					panic("page_lookup_nowait %p",
949 					    (void *)pp);
950 					/*NOTREACHED*/
951 				}
952 				page_unlock(pp);
953 				goto top;
954 			}
955 			if (PP_ISFREE(pp)) {
956 				VM_STAT_ADD(page_lookup_nowait_cnt[6]);
957 				page_unlock(pp);
958 				pp = NULL;
959 			}
960 		}
961 	}
962 	if (locked) {
963 		VM_STAT_ADD(page_lookup_nowait_cnt[7]);
964 		mutex_exit(phm);
965 	}
966 
967 	ASSERT(pp ? PAGE_LOCKED_SE(pp, se) : 1);
968 
969 	return (pp);
970 }
971 
972 /*
973  * Search the hash list for a page with the specified [vp, off]
974  * that is known to exist and is already locked.  This routine
975  * is typically used by segment SOFTUNLOCK routines.
976  */
977 page_t *
978 page_find(vnode_t *vp, u_offset_t off)
979 {
980 	page_t		*pp;
981 	kmutex_t	*phm;
982 	ulong_t		index;
983 
984 	ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
985 	VM_STAT_ADD(page_find_cnt);
986 
987 	index = PAGE_HASH_FUNC(vp, off);
988 	phm = PAGE_HASH_MUTEX(index);
989 
990 	mutex_enter(phm);
991 	PAGE_HASH_SEARCH(index, pp, vp, off);
992 	mutex_exit(phm);
993 
994 	ASSERT(pp == NULL || PAGE_LOCKED(pp) || panicstr);
995 	return (pp);
996 }
997 
998 /*
999  * Determine whether a page with the specified [vp, off]
1000  * currently exists in the system.  Obviously this should
1001  * only be considered as a hint since nothing prevents the
1002  * page from disappearing or appearing immediately after
1003  * the return from this routine. Subsequently, we don't
1004  * even bother to lock the list.
1005  */
1006 page_t *
1007 page_exists(vnode_t *vp, u_offset_t off)
1008 {
1009 	page_t	*pp;
1010 	ulong_t		index;
1011 
1012 	ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
1013 	VM_STAT_ADD(page_exists_cnt);
1014 
1015 	index = PAGE_HASH_FUNC(vp, off);
1016 	PAGE_HASH_SEARCH(index, pp, vp, off);
1017 
1018 	return (pp);
1019 }
1020 
1021 /*
1022  * Determine if physically contiguous pages exist for [vp, off] - [vp, off +
1023  * page_size(szc)) range.  if they exist and ppa is not NULL fill ppa array
1024  * with these pages locked SHARED. If necessary reclaim pages from
1025  * freelist. Return 1 if contiguous pages exist and 0 otherwise.
1026  *
1027  * If we fail to lock pages still return 1 if pages exist and contiguous.
1028  * But in this case return value is just a hint. ppa array won't be filled.
1029  * Caller should initialize ppa[0] as NULL to distinguish return value.
1030  *
1031  * Returns 0 if pages don't exist or not physically contiguous.
1032  *
1033  * This routine doesn't work for anonymous(swapfs) pages.
1034  */
1035 int
1036 page_exists_physcontig(vnode_t *vp, u_offset_t off, uint_t szc, page_t *ppa[])
1037 {
1038 	pgcnt_t pages;
1039 	pfn_t pfn;
1040 	page_t *rootpp;
1041 	pgcnt_t i;
1042 	pgcnt_t j;
1043 	u_offset_t save_off = off;
1044 	ulong_t index;
1045 	kmutex_t *phm;
1046 	page_t *pp;
1047 	uint_t pszc;
1048 	int loopcnt = 0;
1049 
1050 	ASSERT(szc != 0);
1051 	ASSERT(vp != NULL);
1052 	ASSERT(!IS_SWAPFSVP(vp));
1053 	ASSERT(!VN_ISKAS(vp));
1054 
1055 again:
1056 	if (++loopcnt > 3) {
1057 		VM_STAT_ADD(page_exphcontg[0]);
1058 		return (0);
1059 	}
1060 
1061 	index = PAGE_HASH_FUNC(vp, off);
1062 	phm = PAGE_HASH_MUTEX(index);
1063 
1064 	mutex_enter(phm);
1065 	PAGE_HASH_SEARCH(index, pp, vp, off);
1066 	mutex_exit(phm);
1067 
1068 	VM_STAT_ADD(page_exphcontg[1]);
1069 
1070 	if (pp == NULL) {
1071 		VM_STAT_ADD(page_exphcontg[2]);
1072 		return (0);
1073 	}
1074 
1075 	pages = page_get_pagecnt(szc);
1076 	rootpp = pp;
1077 	pfn = rootpp->p_pagenum;
1078 
1079 	if ((pszc = pp->p_szc) >= szc && ppa != NULL) {
1080 		VM_STAT_ADD(page_exphcontg[3]);
1081 		if (!page_trylock(pp, SE_SHARED)) {
1082 			VM_STAT_ADD(page_exphcontg[4]);
1083 			return (1);
1084 		}
1085 		if (pp->p_szc != pszc || pp->p_vnode != vp ||
1086 		    pp->p_offset != off) {
1087 			VM_STAT_ADD(page_exphcontg[5]);
1088 			page_unlock(pp);
1089 			off = save_off;
1090 			goto again;
1091 		}
1092 		/*
1093 		 * szc was non zero and vnode and offset matched after we
1094 		 * locked the page it means it can't become free on us.
1095 		 */
1096 		ASSERT(!PP_ISFREE(pp));
1097 		if (!IS_P2ALIGNED(pfn, pages)) {
1098 			page_unlock(pp);
1099 			return (0);
1100 		}
1101 		ppa[0] = pp;
1102 		pp++;
1103 		off += PAGESIZE;
1104 		pfn++;
1105 		for (i = 1; i < pages; i++, pp++, off += PAGESIZE, pfn++) {
1106 			if (!page_trylock(pp, SE_SHARED)) {
1107 				VM_STAT_ADD(page_exphcontg[6]);
1108 				pp--;
1109 				while (i-- > 0) {
1110 					page_unlock(pp);
1111 					pp--;
1112 				}
1113 				ppa[0] = NULL;
1114 				return (1);
1115 			}
1116 			if (pp->p_szc != pszc) {
1117 				VM_STAT_ADD(page_exphcontg[7]);
1118 				page_unlock(pp);
1119 				pp--;
1120 				while (i-- > 0) {
1121 					page_unlock(pp);
1122 					pp--;
1123 				}
1124 				ppa[0] = NULL;
1125 				off = save_off;
1126 				goto again;
1127 			}
1128 			/*
1129 			 * szc the same as for previous already locked pages
1130 			 * with right identity. Since this page had correct
1131 			 * szc after we locked it can't get freed or destroyed
1132 			 * and therefore must have the expected identity.
1133 			 */
1134 			ASSERT(!PP_ISFREE(pp));
1135 			if (pp->p_vnode != vp ||
1136 			    pp->p_offset != off) {
1137 				panic("page_exists_physcontig: "
1138 				    "large page identity doesn't match");
1139 			}
1140 			ppa[i] = pp;
1141 			ASSERT(pp->p_pagenum == pfn);
1142 		}
1143 		VM_STAT_ADD(page_exphcontg[8]);
1144 		ppa[pages] = NULL;
1145 		return (1);
1146 	} else if (pszc >= szc) {
1147 		VM_STAT_ADD(page_exphcontg[9]);
1148 		if (!IS_P2ALIGNED(pfn, pages)) {
1149 			return (0);
1150 		}
1151 		return (1);
1152 	}
1153 
1154 	if (!IS_P2ALIGNED(pfn, pages)) {
1155 		VM_STAT_ADD(page_exphcontg[10]);
1156 		return (0);
1157 	}
1158 
1159 	if (page_numtomemseg_nolock(pfn) !=
1160 	    page_numtomemseg_nolock(pfn + pages - 1)) {
1161 		VM_STAT_ADD(page_exphcontg[11]);
1162 		return (0);
1163 	}
1164 
1165 	/*
1166 	 * We loop up 4 times across pages to promote page size.
1167 	 * We're extra cautious to promote page size atomically with respect
1168 	 * to everybody else.  But we can probably optimize into 1 loop if
1169 	 * this becomes an issue.
1170 	 */
1171 
1172 	for (i = 0; i < pages; i++, pp++, off += PAGESIZE, pfn++) {
1173 		ASSERT(pp->p_pagenum == pfn);
1174 		if (!page_trylock(pp, SE_EXCL)) {
1175 			VM_STAT_ADD(page_exphcontg[12]);
1176 			break;
1177 		}
1178 		if (pp->p_vnode != vp ||
1179 		    pp->p_offset != off) {
1180 			VM_STAT_ADD(page_exphcontg[13]);
1181 			page_unlock(pp);
1182 			break;
1183 		}
1184 		if (pp->p_szc >= szc) {
1185 			ASSERT(i == 0);
1186 			page_unlock(pp);
1187 			off = save_off;
1188 			goto again;
1189 		}
1190 	}
1191 
1192 	if (i != pages) {
1193 		VM_STAT_ADD(page_exphcontg[14]);
1194 		--pp;
1195 		while (i-- > 0) {
1196 			page_unlock(pp);
1197 			--pp;
1198 		}
1199 		return (0);
1200 	}
1201 
1202 	pp = rootpp;
1203 	for (i = 0; i < pages; i++, pp++) {
1204 		if (PP_ISFREE(pp)) {
1205 			VM_STAT_ADD(page_exphcontg[15]);
1206 			ASSERT(!PP_ISAGED(pp));
1207 			ASSERT(pp->p_szc == 0);
1208 			if (!page_reclaim(pp, NULL)) {
1209 				break;
1210 			}
1211 		} else {
1212 			ASSERT(pp->p_szc < szc);
1213 			VM_STAT_ADD(page_exphcontg[16]);
1214 			(void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD);
1215 		}
1216 	}
1217 	if (i < pages) {
1218 		VM_STAT_ADD(page_exphcontg[17]);
1219 		/*
1220 		 * page_reclaim failed because we were out of memory.
1221 		 * drop the rest of the locks and return because this page
1222 		 * must be already reallocated anyway.
1223 		 */
1224 		pp = rootpp;
1225 		for (j = 0; j < pages; j++, pp++) {
1226 			if (j != i) {
1227 				page_unlock(pp);
1228 			}
1229 		}
1230 		return (0);
1231 	}
1232 
1233 	off = save_off;
1234 	pp = rootpp;
1235 	for (i = 0; i < pages; i++, pp++, off += PAGESIZE) {
1236 		ASSERT(PAGE_EXCL(pp));
1237 		ASSERT(!PP_ISFREE(pp));
1238 		ASSERT(!hat_page_is_mapped(pp));
1239 		ASSERT(pp->p_vnode == vp);
1240 		ASSERT(pp->p_offset == off);
1241 		pp->p_szc = szc;
1242 	}
1243 	pp = rootpp;
1244 	for (i = 0; i < pages; i++, pp++) {
1245 		if (ppa == NULL) {
1246 			page_unlock(pp);
1247 		} else {
1248 			ppa[i] = pp;
1249 			page_downgrade(ppa[i]);
1250 		}
1251 	}
1252 	if (ppa != NULL) {
1253 		ppa[pages] = NULL;
1254 	}
1255 	VM_STAT_ADD(page_exphcontg[18]);
1256 	ASSERT(vp->v_pages != NULL);
1257 	return (1);
1258 }
1259 
1260 /*
1261  * Determine whether a page with the specified [vp, off]
1262  * currently exists in the system and if so return its
1263  * size code. Obviously this should only be considered as
1264  * a hint since nothing prevents the page from disappearing
1265  * or appearing immediately after the return from this routine.
1266  */
1267 int
1268 page_exists_forreal(vnode_t *vp, u_offset_t off, uint_t *szc)
1269 {
1270 	page_t		*pp;
1271 	kmutex_t	*phm;
1272 	ulong_t		index;
1273 	int		rc = 0;
1274 
1275 	ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
1276 	ASSERT(szc != NULL);
1277 	VM_STAT_ADD(page_exists_forreal_cnt);
1278 
1279 	index = PAGE_HASH_FUNC(vp, off);
1280 	phm = PAGE_HASH_MUTEX(index);
1281 
1282 	mutex_enter(phm);
1283 	PAGE_HASH_SEARCH(index, pp, vp, off);
1284 	if (pp != NULL) {
1285 		*szc = pp->p_szc;
1286 		rc = 1;
1287 	}
1288 	mutex_exit(phm);
1289 	return (rc);
1290 }
1291 
1292 /* wakeup threads waiting for pages in page_create_get_something() */
1293 void
1294 wakeup_pcgs(void)
1295 {
1296 	if (!CV_HAS_WAITERS(&pcgs_cv))
1297 		return;
1298 	cv_broadcast(&pcgs_cv);
1299 }
1300 
1301 /*
1302  * 'freemem' is used all over the kernel as an indication of how many
1303  * pages are free (either on the cache list or on the free page list)
1304  * in the system.  In very few places is a really accurate 'freemem'
1305  * needed.  To avoid contention of the lock protecting a the
1306  * single freemem, it was spread out into NCPU buckets.  Set_freemem
1307  * sets freemem to the total of all NCPU buckets.  It is called from
1308  * clock() on each TICK.
1309  */
1310 void
1311 set_freemem()
1312 {
1313 	struct pcf	*p;
1314 	ulong_t		t;
1315 	uint_t		i;
1316 
1317 	t = 0;
1318 	p = pcf;
1319 	for (i = 0;  i < PCF_FANOUT; i++) {
1320 		t += p->pcf_count;
1321 		p++;
1322 	}
1323 	freemem = t;
1324 
1325 	/*
1326 	 * Don't worry about grabbing mutex.  It's not that
1327 	 * critical if we miss a tick or two.  This is
1328 	 * where we wakeup possible delayers in
1329 	 * page_create_get_something().
1330 	 */
1331 	wakeup_pcgs();
1332 }
1333 
1334 ulong_t
1335 get_freemem()
1336 {
1337 	struct pcf	*p;
1338 	ulong_t		t;
1339 	uint_t		i;
1340 
1341 	t = 0;
1342 	p = pcf;
1343 	for (i = 0; i < PCF_FANOUT; i++) {
1344 		t += p->pcf_count;
1345 		p++;
1346 	}
1347 	/*
1348 	 * We just calculated it, might as well set it.
1349 	 */
1350 	freemem = t;
1351 	return (t);
1352 }
1353 
1354 /*
1355  * Acquire all of the page cache & free (pcf) locks.
1356  */
1357 void
1358 pcf_acquire_all()
1359 {
1360 	struct pcf	*p;
1361 	uint_t		i;
1362 
1363 	p = pcf;
1364 	for (i = 0; i < PCF_FANOUT; i++) {
1365 		mutex_enter(&p->pcf_lock);
1366 		p++;
1367 	}
1368 }
1369 
1370 /*
1371  * Release all the pcf_locks.
1372  */
1373 void
1374 pcf_release_all()
1375 {
1376 	struct pcf	*p;
1377 	uint_t		i;
1378 
1379 	p = pcf;
1380 	for (i = 0; i < PCF_FANOUT; i++) {
1381 		mutex_exit(&p->pcf_lock);
1382 		p++;
1383 	}
1384 }
1385 
1386 /*
1387  * Inform the VM system that we need some pages freed up.
1388  * Calls must be symmetric, e.g.:
1389  *
1390  *	page_needfree(100);
1391  *	wait a bit;
1392  *	page_needfree(-100);
1393  */
1394 void
1395 page_needfree(spgcnt_t npages)
1396 {
1397 	mutex_enter(&new_freemem_lock);
1398 	needfree += npages;
1399 	mutex_exit(&new_freemem_lock);
1400 }
1401 
1402 /*
1403  * Throttle for page_create(): try to prevent freemem from dropping
1404  * below throttlefree.  We can't provide a 100% guarantee because
1405  * KM_NOSLEEP allocations, page_reclaim(), and various other things
1406  * nibble away at the freelist.  However, we can block all PG_WAIT
1407  * allocations until memory becomes available.  The motivation is
1408  * that several things can fall apart when there's no free memory:
1409  *
1410  * (1) If pageout() needs memory to push a page, the system deadlocks.
1411  *
1412  * (2) By (broken) specification, timeout(9F) can neither fail nor
1413  *     block, so it has no choice but to panic the system if it
1414  *     cannot allocate a callout structure.
1415  *
1416  * (3) Like timeout(), ddi_set_callback() cannot fail and cannot block;
1417  *     it panics if it cannot allocate a callback structure.
1418  *
1419  * (4) Untold numbers of third-party drivers have not yet been hardened
1420  *     against KM_NOSLEEP and/or allocb() failures; they simply assume
1421  *     success and panic the system with a data fault on failure.
1422  *     (The long-term solution to this particular problem is to ship
1423  *     hostile fault-injecting DEBUG kernels with the DDK.)
1424  *
1425  * It is theoretically impossible to guarantee success of non-blocking
1426  * allocations, but in practice, this throttle is very hard to break.
1427  */
1428 static int
1429 page_create_throttle(pgcnt_t npages, int flags)
1430 {
1431 	ulong_t	fm;
1432 	uint_t	i;
1433 	pgcnt_t tf;	/* effective value of throttlefree */
1434 
1435 	/*
1436 	 * Never deny pages when:
1437 	 * - it's a thread that cannot block [NOMEMWAIT()]
1438 	 * - the allocation cannot block and must not fail
1439 	 * - the allocation cannot block and is pageout dispensated
1440 	 */
1441 	if (NOMEMWAIT() ||
1442 	    ((flags & (PG_WAIT | PG_PANIC)) == PG_PANIC) ||
1443 	    ((flags & (PG_WAIT | PG_PUSHPAGE)) == PG_PUSHPAGE))
1444 		return (1);
1445 
1446 	/*
1447 	 * If the allocation can't block, we look favorably upon it
1448 	 * unless we're below pageout_reserve.  In that case we fail
1449 	 * the allocation because we want to make sure there are a few
1450 	 * pages available for pageout.
1451 	 */
1452 	if ((flags & PG_WAIT) == 0)
1453 		return (freemem >= npages + pageout_reserve);
1454 
1455 	/* Calculate the effective throttlefree value */
1456 	tf = throttlefree -
1457 	    ((flags & PG_PUSHPAGE) ? pageout_reserve : 0);
1458 
1459 	cv_signal(&proc_pageout->p_cv);
1460 
1461 	for (;;) {
1462 		fm = 0;
1463 		pcf_acquire_all();
1464 		mutex_enter(&new_freemem_lock);
1465 		for (i = 0; i < PCF_FANOUT; i++) {
1466 			fm += pcf[i].pcf_count;
1467 			pcf[i].pcf_wait++;
1468 			mutex_exit(&pcf[i].pcf_lock);
1469 		}
1470 		freemem = fm;
1471 		if (freemem >= npages + tf) {
1472 			mutex_exit(&new_freemem_lock);
1473 			break;
1474 		}
1475 		needfree += npages;
1476 		freemem_wait++;
1477 		cv_wait(&freemem_cv, &new_freemem_lock);
1478 		freemem_wait--;
1479 		needfree -= npages;
1480 		mutex_exit(&new_freemem_lock);
1481 	}
1482 	return (1);
1483 }
1484 
1485 /*
1486  * page_create_wait() is called to either coalesce pages from the
1487  * different pcf buckets or to wait because there simply are not
1488  * enough pages to satisfy the caller's request.
1489  *
1490  * Sadly, this is called from platform/vm/vm_machdep.c
1491  */
1492 int
1493 page_create_wait(size_t npages, uint_t flags)
1494 {
1495 	pgcnt_t		total;
1496 	uint_t		i;
1497 	struct pcf	*p;
1498 
1499 	/*
1500 	 * Wait until there are enough free pages to satisfy our
1501 	 * entire request.
1502 	 * We set needfree += npages before prodding pageout, to make sure
1503 	 * it does real work when npages > lotsfree > freemem.
1504 	 */
1505 	VM_STAT_ADD(page_create_not_enough);
1506 
1507 	ASSERT(!kcage_on ? !(flags & PG_NORELOC) : 1);
1508 checkagain:
1509 	if ((flags & PG_NORELOC) &&
1510 	    kcage_freemem < kcage_throttlefree + npages)
1511 		(void) kcage_create_throttle(npages, flags);
1512 
1513 	if (freemem < npages + throttlefree)
1514 		if (!page_create_throttle(npages, flags))
1515 			return (0);
1516 
1517 	/*
1518 	 * Since page_create_va() looked at every
1519 	 * bucket, assume we are going to have to wait.
1520 	 * Get all of the pcf locks.
1521 	 */
1522 	total = 0;
1523 	p = pcf;
1524 	for (i = 0; i < PCF_FANOUT; i++) {
1525 		mutex_enter(&p->pcf_lock);
1526 		total += p->pcf_count;
1527 		if (total >= npages) {
1528 			/*
1529 			 * Wow!  There are enough pages laying around
1530 			 * to satisfy the request.  Do the accounting,
1531 			 * drop the locks we acquired, and go back.
1532 			 *
1533 			 * freemem is not protected by any lock. So,
1534 			 * we cannot have any assertion containing
1535 			 * freemem.
1536 			 */
1537 			freemem -= npages;
1538 
1539 			while (p >= pcf) {
1540 				if (p->pcf_count <= npages) {
1541 					npages -= p->pcf_count;
1542 					p->pcf_count = 0;
1543 				} else {
1544 					p->pcf_count -= (uint_t)npages;
1545 					npages = 0;
1546 				}
1547 				mutex_exit(&p->pcf_lock);
1548 				p--;
1549 			}
1550 			ASSERT(npages == 0);
1551 			return (1);
1552 		}
1553 		p++;
1554 	}
1555 
1556 	/*
1557 	 * All of the pcf locks are held, there are not enough pages
1558 	 * to satisfy the request (npages < total).
1559 	 * Be sure to acquire the new_freemem_lock before dropping
1560 	 * the pcf locks.  This prevents dropping wakeups in page_free().
1561 	 * The order is always pcf_lock then new_freemem_lock.
1562 	 *
1563 	 * Since we hold all the pcf locks, it is a good time to set freemem.
1564 	 *
1565 	 * If the caller does not want to wait, return now.
1566 	 * Else turn the pageout daemon loose to find something
1567 	 * and wait till it does.
1568 	 *
1569 	 */
1570 	freemem = total;
1571 
1572 	if ((flags & PG_WAIT) == 0) {
1573 		pcf_release_all();
1574 
1575 		TRACE_2(TR_FAC_VM, TR_PAGE_CREATE_NOMEM,
1576 		"page_create_nomem:npages %ld freemem %ld", npages, freemem);
1577 		return (0);
1578 	}
1579 
1580 	ASSERT(proc_pageout != NULL);
1581 	cv_signal(&proc_pageout->p_cv);
1582 
1583 	TRACE_2(TR_FAC_VM, TR_PAGE_CREATE_SLEEP_START,
1584 	    "page_create_sleep_start: freemem %ld needfree %ld",
1585 	    freemem, needfree);
1586 
1587 	/*
1588 	 * We are going to wait.
1589 	 * We currently hold all of the pcf_locks,
1590 	 * get the new_freemem_lock (it protects freemem_wait),
1591 	 * before dropping the pcf_locks.
1592 	 */
1593 	mutex_enter(&new_freemem_lock);
1594 
1595 	p = pcf;
1596 	for (i = 0; i < PCF_FANOUT; i++) {
1597 		p->pcf_wait++;
1598 		mutex_exit(&p->pcf_lock);
1599 		p++;
1600 	}
1601 
1602 	needfree += npages;
1603 	freemem_wait++;
1604 
1605 	cv_wait(&freemem_cv, &new_freemem_lock);
1606 
1607 	freemem_wait--;
1608 	needfree -= npages;
1609 
1610 	mutex_exit(&new_freemem_lock);
1611 
1612 	TRACE_2(TR_FAC_VM, TR_PAGE_CREATE_SLEEP_END,
1613 	    "page_create_sleep_end: freemem %ld needfree %ld",
1614 	    freemem, needfree);
1615 
1616 	VM_STAT_ADD(page_create_not_enough_again);
1617 	goto checkagain;
1618 }
1619 
1620 /*
1621  * A routine to do the opposite of page_create_wait().
1622  */
1623 void
1624 page_create_putback(spgcnt_t npages)
1625 {
1626 	struct pcf	*p;
1627 	pgcnt_t		lump;
1628 	uint_t		*which;
1629 
1630 	/*
1631 	 * When a contiguous lump is broken up, we have to
1632 	 * deal with lots of pages (min 64) so lets spread
1633 	 * the wealth around.
1634 	 */
1635 	lump = roundup(npages, PCF_FANOUT) / PCF_FANOUT;
1636 	freemem += npages;
1637 
1638 	for (p = pcf; (npages > 0) && (p < &pcf[PCF_FANOUT]); p++) {
1639 		which = &p->pcf_count;
1640 
1641 		mutex_enter(&p->pcf_lock);
1642 
1643 		if (p->pcf_block) {
1644 			which = &p->pcf_reserve;
1645 		}
1646 
1647 		if (lump < npages) {
1648 			*which += (uint_t)lump;
1649 			npages -= lump;
1650 		} else {
1651 			*which += (uint_t)npages;
1652 			npages = 0;
1653 		}
1654 
1655 		if (p->pcf_wait) {
1656 			mutex_enter(&new_freemem_lock);
1657 			/*
1658 			 * Check to see if some other thread
1659 			 * is actually waiting.  Another bucket
1660 			 * may have woken it up by now.  If there
1661 			 * are no waiters, then set our pcf_wait
1662 			 * count to zero to avoid coming in here
1663 			 * next time.
1664 			 */
1665 			if (freemem_wait) {
1666 				if (npages > 1) {
1667 					cv_broadcast(&freemem_cv);
1668 				} else {
1669 					cv_signal(&freemem_cv);
1670 				}
1671 				p->pcf_wait--;
1672 			} else {
1673 				p->pcf_wait = 0;
1674 			}
1675 			mutex_exit(&new_freemem_lock);
1676 		}
1677 		mutex_exit(&p->pcf_lock);
1678 	}
1679 	ASSERT(npages == 0);
1680 }
1681 
1682 /*
1683  * A helper routine for page_create_get_something.
1684  * The indenting got to deep down there.
1685  * Unblock the pcf counters.  Any pages freed after
1686  * pcf_block got set are moved to pcf_count and
1687  * wakeups (cv_broadcast() or cv_signal()) are done as needed.
1688  */
1689 static void
1690 pcgs_unblock(void)
1691 {
1692 	int		i;
1693 	struct pcf	*p;
1694 
1695 	/* Update freemem while we're here. */
1696 	freemem = 0;
1697 	p = pcf;
1698 	for (i = 0; i < PCF_FANOUT; i++) {
1699 		mutex_enter(&p->pcf_lock);
1700 		ASSERT(p->pcf_count == 0);
1701 		p->pcf_count = p->pcf_reserve;
1702 		p->pcf_block = 0;
1703 		freemem += p->pcf_count;
1704 		if (p->pcf_wait) {
1705 			mutex_enter(&new_freemem_lock);
1706 			if (freemem_wait) {
1707 				if (p->pcf_reserve > 1) {
1708 					cv_broadcast(&freemem_cv);
1709 					p->pcf_wait = 0;
1710 				} else {
1711 					cv_signal(&freemem_cv);
1712 					p->pcf_wait--;
1713 				}
1714 			} else {
1715 				p->pcf_wait = 0;
1716 			}
1717 			mutex_exit(&new_freemem_lock);
1718 		}
1719 		p->pcf_reserve = 0;
1720 		mutex_exit(&p->pcf_lock);
1721 		p++;
1722 	}
1723 }
1724 
1725 /*
1726  * Called from page_create_va() when both the cache and free lists
1727  * have been checked once.
1728  *
1729  * Either returns a page or panics since the accounting was done
1730  * way before we got here.
1731  *
1732  * We don't come here often, so leave the accounting on permanently.
1733  */
1734 
1735 #define	MAX_PCGS	100
1736 
1737 #ifdef	DEBUG
1738 #define	PCGS_TRIES	100
1739 #else	/* DEBUG */
1740 #define	PCGS_TRIES	10
1741 #endif	/* DEBUG */
1742 
1743 #ifdef	VM_STATS
1744 uint_t	pcgs_counts[PCGS_TRIES];
1745 uint_t	pcgs_too_many;
1746 uint_t	pcgs_entered;
1747 uint_t	pcgs_entered_noreloc;
1748 uint_t	pcgs_locked;
1749 uint_t	pcgs_cagelocked;
1750 #endif	/* VM_STATS */
1751 
1752 static page_t *
1753 page_create_get_something(vnode_t *vp, u_offset_t off, struct seg *seg,
1754     caddr_t vaddr, uint_t flags)
1755 {
1756 	uint_t		count;
1757 	page_t		*pp;
1758 	uint_t		locked, i;
1759 	struct	pcf	*p;
1760 	lgrp_t		*lgrp;
1761 	int		cagelocked = 0;
1762 
1763 	VM_STAT_ADD(pcgs_entered);
1764 
1765 	/*
1766 	 * Tap any reserve freelists: if we fail now, we'll die
1767 	 * since the page(s) we're looking for have already been
1768 	 * accounted for.
1769 	 */
1770 	flags |= PG_PANIC;
1771 
1772 	if ((flags & PG_NORELOC) != 0) {
1773 		VM_STAT_ADD(pcgs_entered_noreloc);
1774 		/*
1775 		 * Requests for free pages from critical threads
1776 		 * such as pageout still won't throttle here, but
1777 		 * we must try again, to give the cageout thread
1778 		 * another chance to catch up. Since we already
1779 		 * accounted for the pages, we had better get them
1780 		 * this time.
1781 		 *
1782 		 * N.B. All non-critical threads acquire the pcgs_cagelock
1783 		 * to serialize access to the freelists. This implements a
1784 		 * turnstile-type synchornization to avoid starvation of
1785 		 * critical requests for PG_NORELOC memory by non-critical
1786 		 * threads: all non-critical threads must acquire a 'ticket'
1787 		 * before passing through, which entails making sure
1788 		 * kcage_freemem won't fall below minfree prior to grabbing
1789 		 * pages from the freelists.
1790 		 */
1791 		if (kcage_create_throttle(1, flags) == KCT_NONCRIT) {
1792 			mutex_enter(&pcgs_cagelock);
1793 			cagelocked = 1;
1794 			VM_STAT_ADD(pcgs_cagelocked);
1795 		}
1796 	}
1797 
1798 	/*
1799 	 * Time to get serious.
1800 	 * We failed to get a `correctly colored' page from both the
1801 	 * free and cache lists.
1802 	 * We escalate in stage.
1803 	 *
1804 	 * First try both lists without worring about color.
1805 	 *
1806 	 * Then, grab all page accounting locks (ie. pcf[]) and
1807 	 * steal any pages that they have and set the pcf_block flag to
1808 	 * stop deletions from the lists.  This will help because
1809 	 * a page can get added to the free list while we are looking
1810 	 * at the cache list, then another page could be added to the cache
1811 	 * list allowing the page on the free list to be removed as we
1812 	 * move from looking at the cache list to the free list. This
1813 	 * could happen over and over. We would never find the page
1814 	 * we have accounted for.
1815 	 *
1816 	 * Noreloc pages are a subset of the global (relocatable) page pool.
1817 	 * They are not tracked separately in the pcf bins, so it is
1818 	 * impossible to know when doing pcf accounting if the available
1819 	 * page(s) are noreloc pages or not. When looking for a noreloc page
1820 	 * it is quite easy to end up here even if the global (relocatable)
1821 	 * page pool has plenty of free pages but the noreloc pool is empty.
1822 	 *
1823 	 * When the noreloc pool is empty (or low), additional noreloc pages
1824 	 * are created by converting pages from the global page pool. This
1825 	 * process will stall during pcf accounting if the pcf bins are
1826 	 * already locked. Such is the case when a noreloc allocation is
1827 	 * looping here in page_create_get_something waiting for more noreloc
1828 	 * pages to appear.
1829 	 *
1830 	 * Short of adding a new field to the pcf bins to accurately track
1831 	 * the number of free noreloc pages, we instead do not grab the
1832 	 * pcgs_lock, do not set the pcf blocks and do not timeout when
1833 	 * allocating a noreloc page. This allows noreloc allocations to
1834 	 * loop without blocking global page pool allocations.
1835 	 *
1836 	 * NOTE: the behaviour of page_create_get_something has not changed
1837 	 * for the case of global page pool allocations.
1838 	 */
1839 
1840 	flags &= ~PG_MATCH_COLOR;
1841 	locked = 0;
1842 #if defined(__i386) || defined(__amd64)
1843 	flags = page_create_update_flags_x86(flags);
1844 #endif
1845 
1846 	lgrp = lgrp_mem_choose(seg, vaddr, PAGESIZE);
1847 
1848 	for (count = 0; kcage_on || count < MAX_PCGS; count++) {
1849 		pp = page_get_freelist(vp, off, seg, vaddr, PAGESIZE,
1850 		    flags, lgrp);
1851 		if (pp == NULL) {
1852 			pp = page_get_cachelist(vp, off, seg, vaddr,
1853 			    flags, lgrp);
1854 		}
1855 		if (pp == NULL) {
1856 			/*
1857 			 * Serialize.  Don't fight with other pcgs().
1858 			 */
1859 			if (!locked && (!kcage_on || !(flags & PG_NORELOC))) {
1860 				mutex_enter(&pcgs_lock);
1861 				VM_STAT_ADD(pcgs_locked);
1862 				locked = 1;
1863 				p = pcf;
1864 				for (i = 0; i < PCF_FANOUT; i++) {
1865 					mutex_enter(&p->pcf_lock);
1866 					ASSERT(p->pcf_block == 0);
1867 					p->pcf_block = 1;
1868 					p->pcf_reserve = p->pcf_count;
1869 					p->pcf_count = 0;
1870 					mutex_exit(&p->pcf_lock);
1871 					p++;
1872 				}
1873 				freemem = 0;
1874 			}
1875 
1876 			if (count) {
1877 				/*
1878 				 * Since page_free() puts pages on
1879 				 * a list then accounts for it, we
1880 				 * just have to wait for page_free()
1881 				 * to unlock any page it was working
1882 				 * with. The page_lock()-page_reclaim()
1883 				 * path falls in the same boat.
1884 				 *
1885 				 * We don't need to check on the
1886 				 * PG_WAIT flag, we have already
1887 				 * accounted for the page we are
1888 				 * looking for in page_create_va().
1889 				 *
1890 				 * We just wait a moment to let any
1891 				 * locked pages on the lists free up,
1892 				 * then continue around and try again.
1893 				 *
1894 				 * Will be awakened by set_freemem().
1895 				 */
1896 				mutex_enter(&pcgs_wait_lock);
1897 				cv_wait(&pcgs_cv, &pcgs_wait_lock);
1898 				mutex_exit(&pcgs_wait_lock);
1899 			}
1900 		} else {
1901 #ifdef VM_STATS
1902 			if (count >= PCGS_TRIES) {
1903 				VM_STAT_ADD(pcgs_too_many);
1904 			} else {
1905 				VM_STAT_ADD(pcgs_counts[count]);
1906 			}
1907 #endif
1908 			if (locked) {
1909 				pcgs_unblock();
1910 				mutex_exit(&pcgs_lock);
1911 			}
1912 			if (cagelocked)
1913 				mutex_exit(&pcgs_cagelock);
1914 			return (pp);
1915 		}
1916 	}
1917 	/*
1918 	 * we go down holding the pcf locks.
1919 	 */
1920 	panic("no %spage found %d",
1921 	    ((flags & PG_NORELOC) ? "non-reloc " : ""), count);
1922 	/*NOTREACHED*/
1923 }
1924 
1925 /*
1926  * Create enough pages for "bytes" worth of data starting at
1927  * "off" in "vp".
1928  *
1929  *	Where flag must be one of:
1930  *
1931  *		PG_EXCL:	Exclusive create (fail if any page already
1932  *				exists in the page cache) which does not
1933  *				wait for memory to become available.
1934  *
1935  *		PG_WAIT:	Non-exclusive create which can wait for
1936  *				memory to become available.
1937  *
1938  *		PG_PHYSCONTIG:	Allocate physically contiguous pages.
1939  *				(Not Supported)
1940  *
1941  * A doubly linked list of pages is returned to the caller.  Each page
1942  * on the list has the "exclusive" (p_selock) lock and "iolock" (p_iolock)
1943  * lock.
1944  *
1945  * Unable to change the parameters to page_create() in a minor release,
1946  * we renamed page_create() to page_create_va(), changed all known calls
1947  * from page_create() to page_create_va(), and created this wrapper.
1948  *
1949  * Upon a major release, we should break compatibility by deleting this
1950  * wrapper, and replacing all the strings "page_create_va", with "page_create".
1951  *
1952  * NOTE: There is a copy of this interface as page_create_io() in
1953  *	 i86/vm/vm_machdep.c. Any bugs fixed here should be applied
1954  *	 there.
1955  */
1956 page_t *
1957 page_create(vnode_t *vp, u_offset_t off, size_t bytes, uint_t flags)
1958 {
1959 	caddr_t random_vaddr;
1960 	struct seg kseg;
1961 
1962 #ifdef DEBUG
1963 	cmn_err(CE_WARN, "Using deprecated interface page_create: caller %p",
1964 	    (void *)caller());
1965 #endif
1966 
1967 	random_vaddr = (caddr_t)(((uintptr_t)vp >> 7) ^
1968 	    (uintptr_t)(off >> PAGESHIFT));
1969 	kseg.s_as = &kas;
1970 
1971 	return (page_create_va(vp, off, bytes, flags, &kseg, random_vaddr));
1972 }
1973 
1974 #ifdef DEBUG
1975 uint32_t pg_alloc_pgs_mtbf = 0;
1976 #endif
1977 
1978 /*
1979  * Used for large page support. It will attempt to allocate
1980  * a large page(s) off the freelist.
1981  *
1982  * Returns non zero on failure.
1983  */
1984 int
1985 page_alloc_pages(struct vnode *vp, struct seg *seg, caddr_t addr,
1986     page_t **basepp, page_t *ppa[], uint_t szc, int anypgsz, int pgflags)
1987 {
1988 	pgcnt_t		npgs, curnpgs, totpgs;
1989 	size_t		pgsz;
1990 	page_t		*pplist = NULL, *pp;
1991 	int		err = 0;
1992 	lgrp_t		*lgrp;
1993 
1994 	ASSERT(szc != 0 && szc <= (page_num_pagesizes() - 1));
1995 	ASSERT(pgflags == 0 || pgflags == PG_LOCAL);
1996 
1997 	/*
1998 	 * Check if system heavily prefers local large pages over remote
1999 	 * on systems with multiple lgroups.
2000 	 */
2001 	if (lpg_alloc_prefer == LPAP_LOCAL && nlgrps > 1) {
2002 		pgflags = PG_LOCAL;
2003 	}
2004 
2005 	VM_STAT_ADD(alloc_pages[0]);
2006 
2007 #ifdef DEBUG
2008 	if (pg_alloc_pgs_mtbf && !(gethrtime() % pg_alloc_pgs_mtbf)) {
2009 		return (ENOMEM);
2010 	}
2011 #endif
2012 
2013 	/*
2014 	 * One must be NULL but not both.
2015 	 * And one must be non NULL but not both.
2016 	 */
2017 	ASSERT(basepp != NULL || ppa != NULL);
2018 	ASSERT(basepp == NULL || ppa == NULL);
2019 
2020 #if defined(__i386) || defined(__amd64)
2021 	while (page_chk_freelist(szc) == 0) {
2022 		VM_STAT_ADD(alloc_pages[8]);
2023 		if (anypgsz == 0 || --szc == 0)
2024 			return (ENOMEM);
2025 	}
2026 #endif
2027 
2028 	pgsz = page_get_pagesize(szc);
2029 	totpgs = curnpgs = npgs = pgsz >> PAGESHIFT;
2030 
2031 	ASSERT(((uintptr_t)addr & (pgsz - 1)) == 0);
2032 
2033 	(void) page_create_wait(npgs, PG_WAIT);
2034 
2035 	while (npgs && szc) {
2036 		lgrp = lgrp_mem_choose(seg, addr, pgsz);
2037 		if (pgflags == PG_LOCAL) {
2038 			pp = page_get_freelist(vp, 0, seg, addr, pgsz,
2039 			    pgflags, lgrp);
2040 			if (pp == NULL) {
2041 				pp = page_get_freelist(vp, 0, seg, addr, pgsz,
2042 				    0, lgrp);
2043 			}
2044 		} else {
2045 			pp = page_get_freelist(vp, 0, seg, addr, pgsz,
2046 			    0, lgrp);
2047 		}
2048 		if (pp != NULL) {
2049 			VM_STAT_ADD(alloc_pages[1]);
2050 			page_list_concat(&pplist, &pp);
2051 			ASSERT(npgs >= curnpgs);
2052 			npgs -= curnpgs;
2053 		} else if (anypgsz) {
2054 			VM_STAT_ADD(alloc_pages[2]);
2055 			szc--;
2056 			pgsz = page_get_pagesize(szc);
2057 			curnpgs = pgsz >> PAGESHIFT;
2058 		} else {
2059 			VM_STAT_ADD(alloc_pages[3]);
2060 			ASSERT(npgs == totpgs);
2061 			page_create_putback(npgs);
2062 			return (ENOMEM);
2063 		}
2064 	}
2065 	if (szc == 0) {
2066 		VM_STAT_ADD(alloc_pages[4]);
2067 		ASSERT(npgs != 0);
2068 		page_create_putback(npgs);
2069 		err = ENOMEM;
2070 	} else if (basepp != NULL) {
2071 		ASSERT(npgs == 0);
2072 		ASSERT(ppa == NULL);
2073 		*basepp = pplist;
2074 	}
2075 
2076 	npgs = totpgs - npgs;
2077 	pp = pplist;
2078 
2079 	/*
2080 	 * Clear the free and age bits. Also if we were passed in a ppa then
2081 	 * fill it in with all the constituent pages from the large page. But
2082 	 * if we failed to allocate all the pages just free what we got.
2083 	 */
2084 	while (npgs != 0) {
2085 		ASSERT(PP_ISFREE(pp));
2086 		ASSERT(PP_ISAGED(pp));
2087 		if (ppa != NULL || err != 0) {
2088 			if (err == 0) {
2089 				VM_STAT_ADD(alloc_pages[5]);
2090 				PP_CLRFREE(pp);
2091 				PP_CLRAGED(pp);
2092 				page_sub(&pplist, pp);
2093 				*ppa++ = pp;
2094 				npgs--;
2095 			} else {
2096 				VM_STAT_ADD(alloc_pages[6]);
2097 				ASSERT(pp->p_szc != 0);
2098 				curnpgs = page_get_pagecnt(pp->p_szc);
2099 				page_list_break(&pp, &pplist, curnpgs);
2100 				page_list_add_pages(pp, 0);
2101 				page_create_putback(curnpgs);
2102 				ASSERT(npgs >= curnpgs);
2103 				npgs -= curnpgs;
2104 			}
2105 			pp = pplist;
2106 		} else {
2107 			VM_STAT_ADD(alloc_pages[7]);
2108 			PP_CLRFREE(pp);
2109 			PP_CLRAGED(pp);
2110 			pp = pp->p_next;
2111 			npgs--;
2112 		}
2113 	}
2114 	return (err);
2115 }
2116 
2117 /*
2118  * Get a single large page off of the freelists, and set it up for use.
2119  * Number of bytes requested must be a supported page size.
2120  *
2121  * Note that this call may fail even if there is sufficient
2122  * memory available or PG_WAIT is set, so the caller must
2123  * be willing to fallback on page_create_va(), block and retry,
2124  * or fail the requester.
2125  */
2126 page_t *
2127 page_create_va_large(vnode_t *vp, u_offset_t off, size_t bytes, uint_t flags,
2128     struct seg *seg, caddr_t vaddr, void *arg)
2129 {
2130 	pgcnt_t		npages, pcftotal;
2131 	page_t		*pp;
2132 	page_t		*rootpp;
2133 	lgrp_t		*lgrp;
2134 	uint_t		enough;
2135 	uint_t		pcf_index;
2136 	uint_t		i;
2137 	struct pcf	*p;
2138 	struct pcf	*q;
2139 	lgrp_id_t	*lgrpid = (lgrp_id_t *)arg;
2140 
2141 	ASSERT(vp != NULL);
2142 
2143 	ASSERT((flags & ~(PG_EXCL | PG_WAIT |
2144 	    PG_NORELOC | PG_PANIC | PG_PUSHPAGE)) == 0);
2145 	/* but no others */
2146 
2147 	ASSERT((flags & PG_EXCL) == PG_EXCL);
2148 
2149 	npages = btop(bytes);
2150 
2151 	if (!kcage_on || panicstr) {
2152 		/*
2153 		 * Cage is OFF, or we are single threaded in
2154 		 * panic, so make everything a RELOC request.
2155 		 */
2156 		flags &= ~PG_NORELOC;
2157 	}
2158 
2159 	/*
2160 	 * Make sure there's adequate physical memory available.
2161 	 * Note: PG_WAIT is ignored here.
2162 	 */
2163 	if (freemem <= throttlefree + npages) {
2164 		VM_STAT_ADD(page_create_large_cnt[1]);
2165 		return (NULL);
2166 	}
2167 
2168 	/*
2169 	 * If cage is on, dampen draw from cage when available
2170 	 * cage space is low.
2171 	 */
2172 	if ((flags & (PG_NORELOC | PG_WAIT)) ==  (PG_NORELOC | PG_WAIT) &&
2173 	    kcage_freemem < kcage_throttlefree + npages) {
2174 
2175 		/*
2176 		 * The cage is on, the caller wants PG_NORELOC
2177 		 * pages and available cage memory is very low.
2178 		 * Call kcage_create_throttle() to attempt to
2179 		 * control demand on the cage.
2180 		 */
2181 		if (kcage_create_throttle(npages, flags) == KCT_FAILURE) {
2182 			VM_STAT_ADD(page_create_large_cnt[2]);
2183 			return (NULL);
2184 		}
2185 	}
2186 
2187 	enough = 0;
2188 	pcf_index = PCF_INDEX();
2189 	p = &pcf[pcf_index];
2190 	q = &pcf[PCF_FANOUT];
2191 	for (pcftotal = 0, i = 0; i < PCF_FANOUT; i++) {
2192 		if (p->pcf_count > npages) {
2193 			/*
2194 			 * a good one to try.
2195 			 */
2196 			mutex_enter(&p->pcf_lock);
2197 			if (p->pcf_count > npages) {
2198 				p->pcf_count -= (uint_t)npages;
2199 				/*
2200 				 * freemem is not protected by any lock.
2201 				 * Thus, we cannot have any assertion
2202 				 * containing freemem here.
2203 				 */
2204 				freemem -= npages;
2205 				enough = 1;
2206 				mutex_exit(&p->pcf_lock);
2207 				break;
2208 			}
2209 			mutex_exit(&p->pcf_lock);
2210 		}
2211 		pcftotal += p->pcf_count;
2212 		p++;
2213 		if (p >= q) {
2214 			p = pcf;
2215 		}
2216 	}
2217 
2218 	if (!enough) {
2219 		/* If there isn't enough memory available, give up. */
2220 		if (pcftotal < npages) {
2221 			VM_STAT_ADD(page_create_large_cnt[3]);
2222 			return (NULL);
2223 		}
2224 
2225 		/* try to collect pages from several pcf bins */
2226 		for (p = pcf, pcftotal = 0, i = 0; i < PCF_FANOUT; i++) {
2227 			mutex_enter(&p->pcf_lock);
2228 			pcftotal += p->pcf_count;
2229 			if (pcftotal >= npages) {
2230 				/*
2231 				 * Wow!  There are enough pages laying around
2232 				 * to satisfy the request.  Do the accounting,
2233 				 * drop the locks we acquired, and go back.
2234 				 *
2235 				 * freemem is not protected by any lock. So,
2236 				 * we cannot have any assertion containing
2237 				 * freemem.
2238 				 */
2239 				pgcnt_t	tpages = npages;
2240 				freemem -= npages;
2241 				while (p >= pcf) {
2242 					if (p->pcf_count <= tpages) {
2243 						tpages -= p->pcf_count;
2244 						p->pcf_count = 0;
2245 					} else {
2246 						p->pcf_count -= (uint_t)tpages;
2247 						tpages = 0;
2248 					}
2249 					mutex_exit(&p->pcf_lock);
2250 					p--;
2251 				}
2252 				ASSERT(tpages == 0);
2253 				break;
2254 			}
2255 			p++;
2256 		}
2257 		if (i == PCF_FANOUT) {
2258 			/* failed to collect pages - release the locks */
2259 			while (--p >= pcf) {
2260 				mutex_exit(&p->pcf_lock);
2261 			}
2262 			VM_STAT_ADD(page_create_large_cnt[4]);
2263 			return (NULL);
2264 		}
2265 	}
2266 
2267 	/*
2268 	 * This is where this function behaves fundamentally differently
2269 	 * than page_create_va(); since we're intending to map the page
2270 	 * with a single TTE, we have to get it as a physically contiguous
2271 	 * hardware pagesize chunk.  If we can't, we fail.
2272 	 */
2273 	if (lgrpid != NULL && *lgrpid >= 0 && *lgrpid <= lgrp_alloc_max &&
2274 	    LGRP_EXISTS(lgrp_table[*lgrpid]))
2275 		lgrp = lgrp_table[*lgrpid];
2276 	else
2277 		lgrp = lgrp_mem_choose(seg, vaddr, bytes);
2278 
2279 	if ((rootpp = page_get_freelist(&kvp, off, seg, vaddr,
2280 	    bytes, flags & ~PG_MATCH_COLOR, lgrp)) == NULL) {
2281 		page_create_putback(npages);
2282 		VM_STAT_ADD(page_create_large_cnt[5]);
2283 		return (NULL);
2284 	}
2285 
2286 	/*
2287 	 * if we got the page with the wrong mtype give it back this is a
2288 	 * workaround for CR 6249718. When CR 6249718 is fixed we never get
2289 	 * inside "if" and the workaround becomes just a nop
2290 	 */
2291 	if (kcage_on && (flags & PG_NORELOC) && !PP_ISNORELOC(rootpp)) {
2292 		page_list_add_pages(rootpp, 0);
2293 		page_create_putback(npages);
2294 		VM_STAT_ADD(page_create_large_cnt[6]);
2295 		return (NULL);
2296 	}
2297 
2298 	/*
2299 	 * If satisfying this request has left us with too little
2300 	 * memory, start the wheels turning to get some back.  The
2301 	 * first clause of the test prevents waking up the pageout
2302 	 * daemon in situations where it would decide that there's
2303 	 * nothing to do.
2304 	 */
2305 	if (nscan < desscan && freemem < minfree) {
2306 		TRACE_1(TR_FAC_VM, TR_PAGEOUT_CV_SIGNAL,
2307 		    "pageout_cv_signal:freemem %ld", freemem);
2308 		cv_signal(&proc_pageout->p_cv);
2309 	}
2310 
2311 	pp = rootpp;
2312 	while (npages--) {
2313 		ASSERT(PAGE_EXCL(pp));
2314 		ASSERT(pp->p_vnode == NULL);
2315 		ASSERT(!hat_page_is_mapped(pp));
2316 		PP_CLRFREE(pp);
2317 		PP_CLRAGED(pp);
2318 		if (!page_hashin(pp, vp, off, NULL))
2319 			panic("page_create_large: hashin failed: page %p",
2320 			    (void *)pp);
2321 		page_io_lock(pp);
2322 		off += PAGESIZE;
2323 		pp = pp->p_next;
2324 	}
2325 
2326 	VM_STAT_ADD(page_create_large_cnt[0]);
2327 	return (rootpp);
2328 }
2329 
2330 page_t *
2331 page_create_va(vnode_t *vp, u_offset_t off, size_t bytes, uint_t flags,
2332     struct seg *seg, caddr_t vaddr)
2333 {
2334 	page_t		*plist = NULL;
2335 	pgcnt_t		npages;
2336 	pgcnt_t		found_on_free = 0;
2337 	pgcnt_t		pages_req;
2338 	page_t		*npp = NULL;
2339 	uint_t		enough;
2340 	uint_t		i;
2341 	uint_t		pcf_index;
2342 	struct pcf	*p;
2343 	struct pcf	*q;
2344 	lgrp_t		*lgrp;
2345 
2346 	TRACE_4(TR_FAC_VM, TR_PAGE_CREATE_START,
2347 	    "page_create_start:vp %p off %llx bytes %lu flags %x",
2348 	    vp, off, bytes, flags);
2349 
2350 	ASSERT(bytes != 0 && vp != NULL);
2351 
2352 	if ((flags & PG_EXCL) == 0 && (flags & PG_WAIT) == 0) {
2353 		panic("page_create: invalid flags");
2354 		/*NOTREACHED*/
2355 	}
2356 	ASSERT((flags & ~(PG_EXCL | PG_WAIT |
2357 	    PG_NORELOC | PG_PANIC | PG_PUSHPAGE)) == 0);
2358 	    /* but no others */
2359 
2360 	pages_req = npages = btopr(bytes);
2361 	/*
2362 	 * Try to see whether request is too large to *ever* be
2363 	 * satisfied, in order to prevent deadlock.  We arbitrarily
2364 	 * decide to limit maximum size requests to max_page_get.
2365 	 */
2366 	if (npages >= max_page_get) {
2367 		if ((flags & PG_WAIT) == 0) {
2368 			TRACE_4(TR_FAC_VM, TR_PAGE_CREATE_TOOBIG,
2369 			    "page_create_toobig:vp %p off %llx npages "
2370 			    "%lu max_page_get %lu",
2371 			    vp, off, npages, max_page_get);
2372 			return (NULL);
2373 		} else {
2374 			cmn_err(CE_WARN,
2375 			    "Request for too much kernel memory "
2376 			    "(%lu bytes), will hang forever", bytes);
2377 			for (;;)
2378 				delay(1000000000);
2379 		}
2380 	}
2381 
2382 	if (!kcage_on || panicstr) {
2383 		/*
2384 		 * Cage is OFF, or we are single threaded in
2385 		 * panic, so make everything a RELOC request.
2386 		 */
2387 		flags &= ~PG_NORELOC;
2388 	}
2389 
2390 	if (freemem <= throttlefree + npages)
2391 		if (!page_create_throttle(npages, flags))
2392 			return (NULL);
2393 
2394 	/*
2395 	 * If cage is on, dampen draw from cage when available
2396 	 * cage space is low.
2397 	 */
2398 	if ((flags & PG_NORELOC) &&
2399 	    kcage_freemem < kcage_throttlefree + npages) {
2400 
2401 		/*
2402 		 * The cage is on, the caller wants PG_NORELOC
2403 		 * pages and available cage memory is very low.
2404 		 * Call kcage_create_throttle() to attempt to
2405 		 * control demand on the cage.
2406 		 */
2407 		if (kcage_create_throttle(npages, flags) == KCT_FAILURE)
2408 			return (NULL);
2409 	}
2410 
2411 	VM_STAT_ADD(page_create_cnt[0]);
2412 
2413 	enough = 0;
2414 	pcf_index = PCF_INDEX();
2415 
2416 	p = &pcf[pcf_index];
2417 	q = &pcf[PCF_FANOUT];
2418 	for (i = 0; i < PCF_FANOUT; i++) {
2419 		if (p->pcf_count > npages) {
2420 			/*
2421 			 * a good one to try.
2422 			 */
2423 			mutex_enter(&p->pcf_lock);
2424 			if (p->pcf_count > npages) {
2425 				p->pcf_count -= (uint_t)npages;
2426 				/*
2427 				 * freemem is not protected by any lock.
2428 				 * Thus, we cannot have any assertion
2429 				 * containing freemem here.
2430 				 */
2431 				freemem -= npages;
2432 				enough = 1;
2433 				mutex_exit(&p->pcf_lock);
2434 				break;
2435 			}
2436 			mutex_exit(&p->pcf_lock);
2437 		}
2438 		p++;
2439 		if (p >= q) {
2440 			p = pcf;
2441 		}
2442 	}
2443 
2444 	if (!enough) {
2445 		/*
2446 		 * Have to look harder.  If npages is greater than
2447 		 * one, then we might have to coalesce the counters.
2448 		 *
2449 		 * Go wait.  We come back having accounted
2450 		 * for the memory.
2451 		 */
2452 		VM_STAT_ADD(page_create_cnt[1]);
2453 		if (!page_create_wait(npages, flags)) {
2454 			VM_STAT_ADD(page_create_cnt[2]);
2455 			return (NULL);
2456 		}
2457 	}
2458 
2459 	TRACE_2(TR_FAC_VM, TR_PAGE_CREATE_SUCCESS,
2460 	    "page_create_success:vp %p off %llx", vp, off);
2461 
2462 	/*
2463 	 * If satisfying this request has left us with too little
2464 	 * memory, start the wheels turning to get some back.  The
2465 	 * first clause of the test prevents waking up the pageout
2466 	 * daemon in situations where it would decide that there's
2467 	 * nothing to do.
2468 	 */
2469 	if (nscan < desscan && freemem < minfree) {
2470 		TRACE_1(TR_FAC_VM, TR_PAGEOUT_CV_SIGNAL,
2471 		    "pageout_cv_signal:freemem %ld", freemem);
2472 		cv_signal(&proc_pageout->p_cv);
2473 	}
2474 
2475 	/*
2476 	 * Loop around collecting the requested number of pages.
2477 	 * Most of the time, we have to `create' a new page. With
2478 	 * this in mind, pull the page off the free list before
2479 	 * getting the hash lock.  This will minimize the hash
2480 	 * lock hold time, nesting, and the like.  If it turns
2481 	 * out we don't need the page, we put it back at the end.
2482 	 */
2483 	while (npages--) {
2484 		page_t		*pp;
2485 		kmutex_t	*phm = NULL;
2486 		ulong_t		index;
2487 
2488 		index = PAGE_HASH_FUNC(vp, off);
2489 top:
2490 		ASSERT(phm == NULL);
2491 		ASSERT(index == PAGE_HASH_FUNC(vp, off));
2492 		ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
2493 
2494 		if (npp == NULL) {
2495 			/*
2496 			 * Try to get a page from the freelist (ie,
2497 			 * a page with no [vp, off] tag).  If that
2498 			 * fails, use the cachelist.
2499 			 *
2500 			 * During the first attempt at both the free
2501 			 * and cache lists we try for the correct color.
2502 			 */
2503 			/*
2504 			 * XXXX-how do we deal with virtual indexed
2505 			 * caches and and colors?
2506 			 */
2507 			VM_STAT_ADD(page_create_cnt[4]);
2508 			/*
2509 			 * Get lgroup to allocate next page of shared memory
2510 			 * from and use it to specify where to allocate
2511 			 * the physical memory
2512 			 */
2513 			lgrp = lgrp_mem_choose(seg, vaddr, PAGESIZE);
2514 			npp = page_get_freelist(vp, off, seg, vaddr, PAGESIZE,
2515 			    flags | PG_MATCH_COLOR, lgrp);
2516 			if (npp == NULL) {
2517 				npp = page_get_cachelist(vp, off, seg,
2518 				    vaddr, flags | PG_MATCH_COLOR, lgrp);
2519 				if (npp == NULL) {
2520 					npp = page_create_get_something(vp,
2521 					    off, seg, vaddr,
2522 					    flags & ~PG_MATCH_COLOR);
2523 				}
2524 
2525 				if (PP_ISAGED(npp) == 0) {
2526 					/*
2527 					 * Since this page came from the
2528 					 * cachelist, we must destroy the
2529 					 * old vnode association.
2530 					 */
2531 					page_hashout(npp, NULL);
2532 				}
2533 			}
2534 		}
2535 
2536 		/*
2537 		 * We own this page!
2538 		 */
2539 		ASSERT(PAGE_EXCL(npp));
2540 		ASSERT(npp->p_vnode == NULL);
2541 		ASSERT(!hat_page_is_mapped(npp));
2542 		PP_CLRFREE(npp);
2543 		PP_CLRAGED(npp);
2544 
2545 		/*
2546 		 * Here we have a page in our hot little mits and are
2547 		 * just waiting to stuff it on the appropriate lists.
2548 		 * Get the mutex and check to see if it really does
2549 		 * not exist.
2550 		 */
2551 		phm = PAGE_HASH_MUTEX(index);
2552 		mutex_enter(phm);
2553 		PAGE_HASH_SEARCH(index, pp, vp, off);
2554 		if (pp == NULL) {
2555 			VM_STAT_ADD(page_create_new);
2556 			pp = npp;
2557 			npp = NULL;
2558 			if (!page_hashin(pp, vp, off, phm)) {
2559 				/*
2560 				 * Since we hold the page hash mutex and
2561 				 * just searched for this page, page_hashin
2562 				 * had better not fail.  If it does, that
2563 				 * means somethread did not follow the
2564 				 * page hash mutex rules.  Panic now and
2565 				 * get it over with.  As usual, go down
2566 				 * holding all the locks.
2567 				 */
2568 				ASSERT(MUTEX_HELD(phm));
2569 				panic("page_create: "
2570 				    "hashin failed %p %p %llx %p",
2571 				    (void *)pp, (void *)vp, off, (void *)phm);
2572 				/*NOTREACHED*/
2573 			}
2574 			ASSERT(MUTEX_HELD(phm));
2575 			mutex_exit(phm);
2576 			phm = NULL;
2577 
2578 			/*
2579 			 * Hat layer locking need not be done to set
2580 			 * the following bits since the page is not hashed
2581 			 * and was on the free list (i.e., had no mappings).
2582 			 *
2583 			 * Set the reference bit to protect
2584 			 * against immediate pageout
2585 			 *
2586 			 * XXXmh modify freelist code to set reference
2587 			 * bit so we don't have to do it here.
2588 			 */
2589 			page_set_props(pp, P_REF);
2590 			found_on_free++;
2591 		} else {
2592 			VM_STAT_ADD(page_create_exists);
2593 			if (flags & PG_EXCL) {
2594 				/*
2595 				 * Found an existing page, and the caller
2596 				 * wanted all new pages.  Undo all of the work
2597 				 * we have done.
2598 				 */
2599 				mutex_exit(phm);
2600 				phm = NULL;
2601 				while (plist != NULL) {
2602 					pp = plist;
2603 					page_sub(&plist, pp);
2604 					page_io_unlock(pp);
2605 					/* large pages should not end up here */
2606 					ASSERT(pp->p_szc == 0);
2607 					/*LINTED: constant in conditional ctx*/
2608 					VN_DISPOSE(pp, B_INVAL, 0, kcred);
2609 				}
2610 				VM_STAT_ADD(page_create_found_one);
2611 				goto fail;
2612 			}
2613 			ASSERT(flags & PG_WAIT);
2614 			if (!page_lock(pp, SE_EXCL, phm, P_NO_RECLAIM)) {
2615 				/*
2616 				 * Start all over again if we blocked trying
2617 				 * to lock the page.
2618 				 */
2619 				mutex_exit(phm);
2620 				VM_STAT_ADD(page_create_page_lock_failed);
2621 				phm = NULL;
2622 				goto top;
2623 			}
2624 			mutex_exit(phm);
2625 			phm = NULL;
2626 
2627 			if (PP_ISFREE(pp)) {
2628 				ASSERT(PP_ISAGED(pp) == 0);
2629 				VM_STAT_ADD(pagecnt.pc_get_cache);
2630 				page_list_sub(pp, PG_CACHE_LIST);
2631 				PP_CLRFREE(pp);
2632 				found_on_free++;
2633 			}
2634 		}
2635 
2636 		/*
2637 		 * Got a page!  It is locked.  Acquire the i/o
2638 		 * lock since we are going to use the p_next and
2639 		 * p_prev fields to link the requested pages together.
2640 		 */
2641 		page_io_lock(pp);
2642 		page_add(&plist, pp);
2643 		plist = plist->p_next;
2644 		off += PAGESIZE;
2645 		vaddr += PAGESIZE;
2646 	}
2647 
2648 	ASSERT((flags & PG_EXCL) ? (found_on_free == pages_req) : 1);
2649 fail:
2650 	if (npp != NULL) {
2651 		/*
2652 		 * Did not need this page after all.
2653 		 * Put it back on the free list.
2654 		 */
2655 		VM_STAT_ADD(page_create_putbacks);
2656 		PP_SETFREE(npp);
2657 		PP_SETAGED(npp);
2658 		npp->p_offset = (u_offset_t)-1;
2659 		page_list_add(npp, PG_FREE_LIST | PG_LIST_TAIL);
2660 		page_unlock(npp);
2661 
2662 	}
2663 
2664 	ASSERT(pages_req >= found_on_free);
2665 
2666 	{
2667 		uint_t overshoot = (uint_t)(pages_req - found_on_free);
2668 
2669 		if (overshoot) {
2670 			VM_STAT_ADD(page_create_overshoot);
2671 			p = &pcf[pcf_index];
2672 			mutex_enter(&p->pcf_lock);
2673 			if (p->pcf_block) {
2674 				p->pcf_reserve += overshoot;
2675 			} else {
2676 				p->pcf_count += overshoot;
2677 				if (p->pcf_wait) {
2678 					mutex_enter(&new_freemem_lock);
2679 					if (freemem_wait) {
2680 						cv_signal(&freemem_cv);
2681 						p->pcf_wait--;
2682 					} else {
2683 						p->pcf_wait = 0;
2684 					}
2685 					mutex_exit(&new_freemem_lock);
2686 				}
2687 			}
2688 			mutex_exit(&p->pcf_lock);
2689 			/* freemem is approximate, so this test OK */
2690 			if (!p->pcf_block)
2691 				freemem += overshoot;
2692 		}
2693 	}
2694 
2695 	return (plist);
2696 }
2697 
2698 /*
2699  * One or more constituent pages of this large page has been marked
2700  * toxic. Simply demote the large page to PAGESIZE pages and let
2701  * page_free() handle it. This routine should only be called by
2702  * large page free routines (page_free_pages() and page_destroy_pages().
2703  * All pages are locked SE_EXCL and have already been marked free.
2704  */
2705 static void
2706 page_free_toxic_pages(page_t *rootpp)
2707 {
2708 	page_t	*tpp;
2709 	pgcnt_t	i, pgcnt = page_get_pagecnt(rootpp->p_szc);
2710 	uint_t	szc = rootpp->p_szc;
2711 
2712 	for (i = 0, tpp = rootpp; i < pgcnt; i++, tpp = tpp->p_next) {
2713 		ASSERT(tpp->p_szc == szc);
2714 		ASSERT((PAGE_EXCL(tpp) &&
2715 		    !page_iolock_assert(tpp)) || panicstr);
2716 		tpp->p_szc = 0;
2717 	}
2718 
2719 	while (rootpp != NULL) {
2720 		tpp = rootpp;
2721 		page_sub(&rootpp, tpp);
2722 		ASSERT(PP_ISFREE(tpp));
2723 		PP_CLRFREE(tpp);
2724 		page_free(tpp, 1);
2725 	}
2726 }
2727 
2728 /*
2729  * Put page on the "free" list.
2730  * The free list is really two lists maintained by
2731  * the PSM of whatever machine we happen to be on.
2732  */
2733 void
2734 page_free(page_t *pp, int dontneed)
2735 {
2736 	struct pcf	*p;
2737 	uint_t		pcf_index;
2738 
2739 	ASSERT((PAGE_EXCL(pp) &&
2740 	    !page_iolock_assert(pp)) || panicstr);
2741 
2742 	if (PP_ISFREE(pp)) {
2743 		panic("page_free: page %p is free", (void *)pp);
2744 	}
2745 
2746 	if (pp->p_szc != 0) {
2747 		if (pp->p_vnode == NULL || IS_SWAPFSVP(pp->p_vnode) ||
2748 		    PP_ISKAS(pp)) {
2749 			panic("page_free: anon or kernel "
2750 			    "or no vnode large page %p", (void *)pp);
2751 		}
2752 		page_demote_vp_pages(pp);
2753 		ASSERT(pp->p_szc == 0);
2754 	}
2755 
2756 	/*
2757 	 * The page_struct_lock need not be acquired to examine these
2758 	 * fields since the page has an "exclusive" lock.
2759 	 */
2760 	if (hat_page_is_mapped(pp) || pp->p_lckcnt != 0 || pp->p_cowcnt != 0 ||
2761 	    pp->p_slckcnt != 0) {
2762 		panic("page_free pp=%p, pfn=%lx, lckcnt=%d, cowcnt=%d "
2763 		    "slckcnt = %d", pp, page_pptonum(pp), pp->p_lckcnt,
2764 		    pp->p_cowcnt, pp->p_slckcnt);
2765 		/*NOTREACHED*/
2766 	}
2767 
2768 	ASSERT(!hat_page_getshare(pp));
2769 
2770 	PP_SETFREE(pp);
2771 	ASSERT(pp->p_vnode == NULL || !IS_VMODSORT(pp->p_vnode) ||
2772 	    !hat_ismod(pp));
2773 	page_clr_all_props(pp);
2774 	ASSERT(!hat_page_getshare(pp));
2775 
2776 	/*
2777 	 * Now we add the page to the head of the free list.
2778 	 * But if this page is associated with a paged vnode
2779 	 * then we adjust the head forward so that the page is
2780 	 * effectively at the end of the list.
2781 	 */
2782 	if (pp->p_vnode == NULL) {
2783 		/*
2784 		 * Page has no identity, put it on the free list.
2785 		 */
2786 		PP_SETAGED(pp);
2787 		pp->p_offset = (u_offset_t)-1;
2788 		page_list_add(pp, PG_FREE_LIST | PG_LIST_TAIL);
2789 		VM_STAT_ADD(pagecnt.pc_free_free);
2790 		TRACE_1(TR_FAC_VM, TR_PAGE_FREE_FREE,
2791 		    "page_free_free:pp %p", pp);
2792 	} else {
2793 		PP_CLRAGED(pp);
2794 
2795 		if (!dontneed || nopageage) {
2796 			/* move it to the tail of the list */
2797 			page_list_add(pp, PG_CACHE_LIST | PG_LIST_TAIL);
2798 
2799 			VM_STAT_ADD(pagecnt.pc_free_cache);
2800 			TRACE_1(TR_FAC_VM, TR_PAGE_FREE_CACHE_TAIL,
2801 			    "page_free_cache_tail:pp %p", pp);
2802 		} else {
2803 			page_list_add(pp, PG_CACHE_LIST | PG_LIST_HEAD);
2804 
2805 			VM_STAT_ADD(pagecnt.pc_free_dontneed);
2806 			TRACE_1(TR_FAC_VM, TR_PAGE_FREE_CACHE_HEAD,
2807 			    "page_free_cache_head:pp %p", pp);
2808 		}
2809 	}
2810 	page_unlock(pp);
2811 
2812 	/*
2813 	 * Now do the `freemem' accounting.
2814 	 */
2815 	pcf_index = PCF_INDEX();
2816 	p = &pcf[pcf_index];
2817 
2818 	mutex_enter(&p->pcf_lock);
2819 	if (p->pcf_block) {
2820 		p->pcf_reserve += 1;
2821 	} else {
2822 		p->pcf_count += 1;
2823 		if (p->pcf_wait) {
2824 			mutex_enter(&new_freemem_lock);
2825 			/*
2826 			 * Check to see if some other thread
2827 			 * is actually waiting.  Another bucket
2828 			 * may have woken it up by now.  If there
2829 			 * are no waiters, then set our pcf_wait
2830 			 * count to zero to avoid coming in here
2831 			 * next time.  Also, since only one page
2832 			 * was put on the free list, just wake
2833 			 * up one waiter.
2834 			 */
2835 			if (freemem_wait) {
2836 				cv_signal(&freemem_cv);
2837 				p->pcf_wait--;
2838 			} else {
2839 				p->pcf_wait = 0;
2840 			}
2841 			mutex_exit(&new_freemem_lock);
2842 		}
2843 	}
2844 	mutex_exit(&p->pcf_lock);
2845 
2846 	/* freemem is approximate, so this test OK */
2847 	if (!p->pcf_block)
2848 		freemem += 1;
2849 }
2850 
2851 /*
2852  * Put page on the "free" list during intial startup.
2853  * This happens during initial single threaded execution.
2854  */
2855 void
2856 page_free_at_startup(page_t *pp)
2857 {
2858 	struct pcf	*p;
2859 	uint_t		pcf_index;
2860 
2861 	page_list_add(pp, PG_FREE_LIST | PG_LIST_HEAD | PG_LIST_ISINIT);
2862 	VM_STAT_ADD(pagecnt.pc_free_free);
2863 
2864 	/*
2865 	 * Now do the `freemem' accounting.
2866 	 */
2867 	pcf_index = PCF_INDEX();
2868 	p = &pcf[pcf_index];
2869 
2870 	ASSERT(p->pcf_block == 0);
2871 	ASSERT(p->pcf_wait == 0);
2872 	p->pcf_count += 1;
2873 
2874 	/* freemem is approximate, so this is OK */
2875 	freemem += 1;
2876 }
2877 
2878 void
2879 page_free_pages(page_t *pp)
2880 {
2881 	page_t	*tpp, *rootpp = NULL;
2882 	pgcnt_t	pgcnt = page_get_pagecnt(pp->p_szc);
2883 	pgcnt_t	i;
2884 	uint_t	szc = pp->p_szc;
2885 
2886 	VM_STAT_ADD(pagecnt.pc_free_pages);
2887 	TRACE_1(TR_FAC_VM, TR_PAGE_FREE_FREE,
2888 	    "page_free_free:pp %p", pp);
2889 
2890 	ASSERT(pp->p_szc != 0 && pp->p_szc < page_num_pagesizes());
2891 	if ((page_pptonum(pp) & (pgcnt - 1)) != 0) {
2892 		panic("page_free_pages: not root page %p", (void *)pp);
2893 		/*NOTREACHED*/
2894 	}
2895 
2896 	for (i = 0, tpp = pp; i < pgcnt; i++, tpp++) {
2897 		ASSERT((PAGE_EXCL(tpp) &&
2898 		    !page_iolock_assert(tpp)) || panicstr);
2899 		if (PP_ISFREE(tpp)) {
2900 			panic("page_free_pages: page %p is free", (void *)tpp);
2901 			/*NOTREACHED*/
2902 		}
2903 		if (hat_page_is_mapped(tpp) || tpp->p_lckcnt != 0 ||
2904 		    tpp->p_cowcnt != 0 || tpp->p_slckcnt != 0) {
2905 			panic("page_free_pages %p", (void *)tpp);
2906 			/*NOTREACHED*/
2907 		}
2908 
2909 		ASSERT(!hat_page_getshare(tpp));
2910 		ASSERT(tpp->p_vnode == NULL);
2911 		ASSERT(tpp->p_szc == szc);
2912 
2913 		PP_SETFREE(tpp);
2914 		page_clr_all_props(tpp);
2915 		PP_SETAGED(tpp);
2916 		tpp->p_offset = (u_offset_t)-1;
2917 		ASSERT(tpp->p_next == tpp);
2918 		ASSERT(tpp->p_prev == tpp);
2919 		page_list_concat(&rootpp, &tpp);
2920 	}
2921 	ASSERT(rootpp == pp);
2922 
2923 	page_list_add_pages(rootpp, 0);
2924 	page_create_putback(pgcnt);
2925 }
2926 
2927 int free_pages = 1;
2928 
2929 /*
2930  * This routine attempts to return pages to the cachelist via page_release().
2931  * It does not *have* to be successful in all cases, since the pageout scanner
2932  * will catch any pages it misses.  It does need to be fast and not introduce
2933  * too much overhead.
2934  *
2935  * If a page isn't found on the unlocked sweep of the page_hash bucket, we
2936  * don't lock and retry.  This is ok, since the page scanner will eventually
2937  * find any page we miss in free_vp_pages().
2938  */
2939 void
2940 free_vp_pages(vnode_t *vp, u_offset_t off, size_t len)
2941 {
2942 	page_t *pp;
2943 	u_offset_t eoff;
2944 	extern int swap_in_range(vnode_t *, u_offset_t, size_t);
2945 
2946 	eoff = off + len;
2947 
2948 	if (free_pages == 0)
2949 		return;
2950 	if (swap_in_range(vp, off, len))
2951 		return;
2952 
2953 	for (; off < eoff; off += PAGESIZE) {
2954 
2955 		/*
2956 		 * find the page using a fast, but inexact search. It'll be OK
2957 		 * if a few pages slip through the cracks here.
2958 		 */
2959 		pp = page_exists(vp, off);
2960 
2961 		/*
2962 		 * If we didn't find the page (it may not exist), the page
2963 		 * is free, looks still in use (shared), or we can't lock it,
2964 		 * just give up.
2965 		 */
2966 		if (pp == NULL ||
2967 		    PP_ISFREE(pp) ||
2968 		    page_share_cnt(pp) > 0 ||
2969 		    !page_trylock(pp, SE_EXCL))
2970 			continue;
2971 
2972 		/*
2973 		 * Once we have locked pp, verify that it's still the
2974 		 * correct page and not already free
2975 		 */
2976 		ASSERT(PAGE_LOCKED_SE(pp, SE_EXCL));
2977 		if (pp->p_vnode != vp || pp->p_offset != off || PP_ISFREE(pp)) {
2978 			page_unlock(pp);
2979 			continue;
2980 		}
2981 
2982 		/*
2983 		 * try to release the page...
2984 		 */
2985 		(void) page_release(pp, 1);
2986 	}
2987 }
2988 
2989 /*
2990  * Reclaim the given page from the free list.
2991  * If pp is part of a large pages, only the given constituent page is reclaimed
2992  * and the large page it belonged to will be demoted.  This can only happen
2993  * if the page is not on the cachelist.
2994  *
2995  * Returns 1 on success or 0 on failure.
2996  *
2997  * The page is unlocked if it can't be reclaimed (when freemem == 0).
2998  * If `lock' is non-null, it will be dropped and re-acquired if
2999  * the routine must wait while freemem is 0.
3000  *
3001  * As it turns out, boot_getpages() does this.  It picks a page,
3002  * based on where OBP mapped in some address, gets its pfn, searches
3003  * the memsegs, locks the page, then pulls it off the free list!
3004  */
3005 int
3006 page_reclaim(page_t *pp, kmutex_t *lock)
3007 {
3008 	struct pcf	*p;
3009 	uint_t		pcf_index;
3010 	struct cpu	*cpup;
3011 	int		enough;
3012 	uint_t		i;
3013 
3014 	ASSERT(lock != NULL ? MUTEX_HELD(lock) : 1);
3015 	ASSERT(PAGE_EXCL(pp) && PP_ISFREE(pp));
3016 
3017 	/*
3018 	 * If `freemem' is 0, we cannot reclaim this page from the
3019 	 * freelist, so release every lock we might hold: the page,
3020 	 * and the `lock' before blocking.
3021 	 *
3022 	 * The only way `freemem' can become 0 while there are pages
3023 	 * marked free (have their p->p_free bit set) is when the
3024 	 * system is low on memory and doing a page_create().  In
3025 	 * order to guarantee that once page_create() starts acquiring
3026 	 * pages it will be able to get all that it needs since `freemem'
3027 	 * was decreased by the requested amount.  So, we need to release
3028 	 * this page, and let page_create() have it.
3029 	 *
3030 	 * Since `freemem' being zero is not supposed to happen, just
3031 	 * use the usual hash stuff as a starting point.  If that bucket
3032 	 * is empty, then assume the worst, and start at the beginning
3033 	 * of the pcf array.  If we always start at the beginning
3034 	 * when acquiring more than one pcf lock, there won't be any
3035 	 * deadlock problems.
3036 	 */
3037 
3038 	/* TODO: Do we need to test kcage_freemem if PG_NORELOC(pp)? */
3039 
3040 	if (freemem <= throttlefree && !page_create_throttle(1l, 0)) {
3041 		pcf_acquire_all();
3042 		goto page_reclaim_nomem;
3043 	}
3044 
3045 	enough = 0;
3046 	pcf_index = PCF_INDEX();
3047 	p = &pcf[pcf_index];
3048 	mutex_enter(&p->pcf_lock);
3049 	if (p->pcf_count >= 1) {
3050 		enough = 1;
3051 		p->pcf_count--;
3052 	}
3053 	mutex_exit(&p->pcf_lock);
3054 
3055 	if (!enough) {
3056 		VM_STAT_ADD(page_reclaim_zero);
3057 		/*
3058 		 * Check again. Its possible that some other thread
3059 		 * could have been right behind us, and added one
3060 		 * to a list somewhere.  Acquire each of the pcf locks
3061 		 * until we find a page.
3062 		 */
3063 		p = pcf;
3064 		for (i = 0; i < PCF_FANOUT; i++) {
3065 			mutex_enter(&p->pcf_lock);
3066 			if (p->pcf_count >= 1) {
3067 				p->pcf_count -= 1;
3068 				enough = 1;
3069 				break;
3070 			}
3071 			p++;
3072 		}
3073 
3074 		if (!enough) {
3075 page_reclaim_nomem:
3076 			/*
3077 			 * We really can't have page `pp'.
3078 			 * Time for the no-memory dance with
3079 			 * page_free().  This is just like
3080 			 * page_create_wait().  Plus the added
3081 			 * attraction of releasing whatever mutex
3082 			 * we held when we were called with in `lock'.
3083 			 * Page_unlock() will wakeup any thread
3084 			 * waiting around for this page.
3085 			 */
3086 			if (lock) {
3087 				VM_STAT_ADD(page_reclaim_zero_locked);
3088 				mutex_exit(lock);
3089 			}
3090 			page_unlock(pp);
3091 
3092 			/*
3093 			 * get this before we drop all the pcf locks.
3094 			 */
3095 			mutex_enter(&new_freemem_lock);
3096 
3097 			p = pcf;
3098 			for (i = 0; i < PCF_FANOUT; i++) {
3099 				p->pcf_wait++;
3100 				mutex_exit(&p->pcf_lock);
3101 				p++;
3102 			}
3103 
3104 			freemem_wait++;
3105 			cv_wait(&freemem_cv, &new_freemem_lock);
3106 			freemem_wait--;
3107 
3108 			mutex_exit(&new_freemem_lock);
3109 
3110 			if (lock) {
3111 				mutex_enter(lock);
3112 			}
3113 			return (0);
3114 		}
3115 
3116 		/*
3117 		 * The pcf accounting has been done,
3118 		 * though none of the pcf_wait flags have been set,
3119 		 * drop the locks and continue on.
3120 		 */
3121 		while (p >= pcf) {
3122 			mutex_exit(&p->pcf_lock);
3123 			p--;
3124 		}
3125 	}
3126 
3127 	/*
3128 	 * freemem is not protected by any lock. Thus, we cannot
3129 	 * have any assertion containing freemem here.
3130 	 */
3131 	freemem -= 1;
3132 
3133 	VM_STAT_ADD(pagecnt.pc_reclaim);
3134 
3135 	/*
3136 	 * page_list_sub will handle the case where pp is a large page.
3137 	 * It's possible that the page was promoted while on the freelist
3138 	 */
3139 	if (PP_ISAGED(pp)) {
3140 		page_list_sub(pp, PG_FREE_LIST);
3141 		TRACE_1(TR_FAC_VM, TR_PAGE_UNFREE_FREE,
3142 		    "page_reclaim_free:pp %p", pp);
3143 	} else {
3144 		page_list_sub(pp, PG_CACHE_LIST);
3145 		TRACE_1(TR_FAC_VM, TR_PAGE_UNFREE_CACHE,
3146 		    "page_reclaim_cache:pp %p", pp);
3147 	}
3148 
3149 	/*
3150 	 * clear the p_free & p_age bits since this page is no longer
3151 	 * on the free list.  Notice that there was a brief time where
3152 	 * a page is marked as free, but is not on the list.
3153 	 *
3154 	 * Set the reference bit to protect against immediate pageout.
3155 	 */
3156 	PP_CLRFREE(pp);
3157 	PP_CLRAGED(pp);
3158 	page_set_props(pp, P_REF);
3159 
3160 	CPU_STATS_ENTER_K();
3161 	cpup = CPU;	/* get cpup now that CPU cannot change */
3162 	CPU_STATS_ADDQ(cpup, vm, pgrec, 1);
3163 	CPU_STATS_ADDQ(cpup, vm, pgfrec, 1);
3164 	CPU_STATS_EXIT_K();
3165 	ASSERT(pp->p_szc == 0);
3166 
3167 	return (1);
3168 }
3169 
3170 /*
3171  * Destroy identity of the page and put it back on
3172  * the page free list.  Assumes that the caller has
3173  * acquired the "exclusive" lock on the page.
3174  */
3175 void
3176 page_destroy(page_t *pp, int dontfree)
3177 {
3178 	ASSERT((PAGE_EXCL(pp) &&
3179 	    !page_iolock_assert(pp)) || panicstr);
3180 	ASSERT(pp->p_slckcnt == 0 || panicstr);
3181 
3182 	if (pp->p_szc != 0) {
3183 		if (pp->p_vnode == NULL || IS_SWAPFSVP(pp->p_vnode) ||
3184 		    PP_ISKAS(pp)) {
3185 			panic("page_destroy: anon or kernel or no vnode "
3186 			    "large page %p", (void *)pp);
3187 		}
3188 		page_demote_vp_pages(pp);
3189 		ASSERT(pp->p_szc == 0);
3190 	}
3191 
3192 	TRACE_1(TR_FAC_VM, TR_PAGE_DESTROY, "page_destroy:pp %p", pp);
3193 
3194 	/*
3195 	 * Unload translations, if any, then hash out the
3196 	 * page to erase its identity.
3197 	 */
3198 	(void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD);
3199 	page_hashout(pp, NULL);
3200 
3201 	if (!dontfree) {
3202 		/*
3203 		 * Acquire the "freemem_lock" for availrmem.
3204 		 * The page_struct_lock need not be acquired for lckcnt
3205 		 * and cowcnt since the page has an "exclusive" lock.
3206 		 */
3207 		if ((pp->p_lckcnt != 0) || (pp->p_cowcnt != 0)) {
3208 			mutex_enter(&freemem_lock);
3209 			if (pp->p_lckcnt != 0) {
3210 				availrmem++;
3211 				pp->p_lckcnt = 0;
3212 			}
3213 			if (pp->p_cowcnt != 0) {
3214 				availrmem += pp->p_cowcnt;
3215 				pp->p_cowcnt = 0;
3216 			}
3217 			mutex_exit(&freemem_lock);
3218 		}
3219 		/*
3220 		 * Put the page on the "free" list.
3221 		 */
3222 		page_free(pp, 0);
3223 	}
3224 }
3225 
3226 void
3227 page_destroy_pages(page_t *pp)
3228 {
3229 
3230 	page_t	*tpp, *rootpp = NULL;
3231 	pgcnt_t	pgcnt = page_get_pagecnt(pp->p_szc);
3232 	pgcnt_t	i, pglcks = 0;
3233 	uint_t	szc = pp->p_szc;
3234 
3235 	ASSERT(pp->p_szc != 0 && pp->p_szc < page_num_pagesizes());
3236 
3237 	VM_STAT_ADD(pagecnt.pc_destroy_pages);
3238 
3239 	TRACE_1(TR_FAC_VM, TR_PAGE_DESTROY, "page_destroy_pages:pp %p", pp);
3240 
3241 	if ((page_pptonum(pp) & (pgcnt - 1)) != 0) {
3242 		panic("page_destroy_pages: not root page %p", (void *)pp);
3243 		/*NOTREACHED*/
3244 	}
3245 
3246 	for (i = 0, tpp = pp; i < pgcnt; i++, tpp++) {
3247 		ASSERT((PAGE_EXCL(tpp) &&
3248 		    !page_iolock_assert(tpp)) || panicstr);
3249 		ASSERT(tpp->p_slckcnt == 0 || panicstr);
3250 		(void) hat_pageunload(tpp, HAT_FORCE_PGUNLOAD);
3251 		page_hashout(tpp, NULL);
3252 		ASSERT(tpp->p_offset == (u_offset_t)-1);
3253 		if (tpp->p_lckcnt != 0) {
3254 			pglcks++;
3255 			tpp->p_lckcnt = 0;
3256 		} else if (tpp->p_cowcnt != 0) {
3257 			pglcks += tpp->p_cowcnt;
3258 			tpp->p_cowcnt = 0;
3259 		}
3260 		ASSERT(!hat_page_getshare(tpp));
3261 		ASSERT(tpp->p_vnode == NULL);
3262 		ASSERT(tpp->p_szc == szc);
3263 
3264 		PP_SETFREE(tpp);
3265 		page_clr_all_props(tpp);
3266 		PP_SETAGED(tpp);
3267 		ASSERT(tpp->p_next == tpp);
3268 		ASSERT(tpp->p_prev == tpp);
3269 		page_list_concat(&rootpp, &tpp);
3270 	}
3271 
3272 	ASSERT(rootpp == pp);
3273 	if (pglcks != 0) {
3274 		mutex_enter(&freemem_lock);
3275 		availrmem += pglcks;
3276 		mutex_exit(&freemem_lock);
3277 	}
3278 
3279 	page_list_add_pages(rootpp, 0);
3280 	page_create_putback(pgcnt);
3281 }
3282 
3283 /*
3284  * Similar to page_destroy(), but destroys pages which are
3285  * locked and known to be on the page free list.  Since
3286  * the page is known to be free and locked, no one can access
3287  * it.
3288  *
3289  * Also, the number of free pages does not change.
3290  */
3291 void
3292 page_destroy_free(page_t *pp)
3293 {
3294 	ASSERT(PAGE_EXCL(pp));
3295 	ASSERT(PP_ISFREE(pp));
3296 	ASSERT(pp->p_vnode);
3297 	ASSERT(hat_page_getattr(pp, P_MOD | P_REF | P_RO) == 0);
3298 	ASSERT(!hat_page_is_mapped(pp));
3299 	ASSERT(PP_ISAGED(pp) == 0);
3300 	ASSERT(pp->p_szc == 0);
3301 
3302 	VM_STAT_ADD(pagecnt.pc_destroy_free);
3303 	page_list_sub(pp, PG_CACHE_LIST);
3304 
3305 	page_hashout(pp, NULL);
3306 	ASSERT(pp->p_vnode == NULL);
3307 	ASSERT(pp->p_offset == (u_offset_t)-1);
3308 	ASSERT(pp->p_hash == NULL);
3309 
3310 	PP_SETAGED(pp);
3311 	page_list_add(pp, PG_FREE_LIST | PG_LIST_TAIL);
3312 	page_unlock(pp);
3313 
3314 	mutex_enter(&new_freemem_lock);
3315 	if (freemem_wait) {
3316 		cv_signal(&freemem_cv);
3317 	}
3318 	mutex_exit(&new_freemem_lock);
3319 }
3320 
3321 /*
3322  * Rename the page "opp" to have an identity specified
3323  * by [vp, off].  If a page already exists with this name
3324  * it is locked and destroyed.  Note that the page's
3325  * translations are not unloaded during the rename.
3326  *
3327  * This routine is used by the anon layer to "steal" the
3328  * original page and is not unlike destroying a page and
3329  * creating a new page using the same page frame.
3330  *
3331  * XXX -- Could deadlock if caller 1 tries to rename A to B while
3332  * caller 2 tries to rename B to A.
3333  */
3334 void
3335 page_rename(page_t *opp, vnode_t *vp, u_offset_t off)
3336 {
3337 	page_t		*pp;
3338 	int		olckcnt = 0;
3339 	int		ocowcnt = 0;
3340 	kmutex_t	*phm;
3341 	ulong_t		index;
3342 
3343 	ASSERT(PAGE_EXCL(opp) && !page_iolock_assert(opp));
3344 	ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
3345 	ASSERT(PP_ISFREE(opp) == 0);
3346 
3347 	VM_STAT_ADD(page_rename_count);
3348 
3349 	TRACE_3(TR_FAC_VM, TR_PAGE_RENAME,
3350 	    "page rename:pp %p vp %p off %llx", opp, vp, off);
3351 
3352 	/*
3353 	 * CacheFS may call page_rename for a large NFS page
3354 	 * when both CacheFS and NFS mount points are used
3355 	 * by applications. Demote this large page before
3356 	 * renaming it, to ensure that there are no "partial"
3357 	 * large pages left lying around.
3358 	 */
3359 	if (opp->p_szc != 0) {
3360 		vnode_t *ovp = opp->p_vnode;
3361 		ASSERT(ovp != NULL);
3362 		ASSERT(!IS_SWAPFSVP(ovp));
3363 		ASSERT(!VN_ISKAS(ovp));
3364 		page_demote_vp_pages(opp);
3365 		ASSERT(opp->p_szc == 0);
3366 	}
3367 
3368 	page_hashout(opp, NULL);
3369 	PP_CLRAGED(opp);
3370 
3371 	/*
3372 	 * Acquire the appropriate page hash lock, since
3373 	 * we're going to rename the page.
3374 	 */
3375 	index = PAGE_HASH_FUNC(vp, off);
3376 	phm = PAGE_HASH_MUTEX(index);
3377 	mutex_enter(phm);
3378 top:
3379 	/*
3380 	 * Look for an existing page with this name and destroy it if found.
3381 	 * By holding the page hash lock all the way to the page_hashin()
3382 	 * call, we are assured that no page can be created with this
3383 	 * identity.  In the case when the phm lock is dropped to undo any
3384 	 * hat layer mappings, the existing page is held with an "exclusive"
3385 	 * lock, again preventing another page from being created with
3386 	 * this identity.
3387 	 */
3388 	PAGE_HASH_SEARCH(index, pp, vp, off);
3389 	if (pp != NULL) {
3390 		VM_STAT_ADD(page_rename_exists);
3391 
3392 		/*
3393 		 * As it turns out, this is one of only two places where
3394 		 * page_lock() needs to hold the passed in lock in the
3395 		 * successful case.  In all of the others, the lock could
3396 		 * be dropped as soon as the attempt is made to lock
3397 		 * the page.  It is tempting to add yet another arguement,
3398 		 * PL_KEEP or PL_DROP, to let page_lock know what to do.
3399 		 */
3400 		if (!page_lock(pp, SE_EXCL, phm, P_RECLAIM)) {
3401 			/*
3402 			 * Went to sleep because the page could not
3403 			 * be locked.  We were woken up when the page
3404 			 * was unlocked, or when the page was destroyed.
3405 			 * In either case, `phm' was dropped while we
3406 			 * slept.  Hence we should not just roar through
3407 			 * this loop.
3408 			 */
3409 			goto top;
3410 		}
3411 
3412 		/*
3413 		 * If an existing page is a large page, then demote
3414 		 * it to ensure that no "partial" large pages are
3415 		 * "created" after page_rename. An existing page
3416 		 * can be a CacheFS page, and can't belong to swapfs.
3417 		 */
3418 		if (hat_page_is_mapped(pp)) {
3419 			/*
3420 			 * Unload translations.  Since we hold the
3421 			 * exclusive lock on this page, the page
3422 			 * can not be changed while we drop phm.
3423 			 * This is also not a lock protocol violation,
3424 			 * but rather the proper way to do things.
3425 			 */
3426 			mutex_exit(phm);
3427 			(void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD);
3428 			if (pp->p_szc != 0) {
3429 				ASSERT(!IS_SWAPFSVP(vp));
3430 				ASSERT(!VN_ISKAS(vp));
3431 				page_demote_vp_pages(pp);
3432 				ASSERT(pp->p_szc == 0);
3433 			}
3434 			mutex_enter(phm);
3435 		} else if (pp->p_szc != 0) {
3436 			ASSERT(!IS_SWAPFSVP(vp));
3437 			ASSERT(!VN_ISKAS(vp));
3438 			mutex_exit(phm);
3439 			page_demote_vp_pages(pp);
3440 			ASSERT(pp->p_szc == 0);
3441 			mutex_enter(phm);
3442 		}
3443 		page_hashout(pp, phm);
3444 	}
3445 	/*
3446 	 * Hash in the page with the new identity.
3447 	 */
3448 	if (!page_hashin(opp, vp, off, phm)) {
3449 		/*
3450 		 * We were holding phm while we searched for [vp, off]
3451 		 * and only dropped phm if we found and locked a page.
3452 		 * If we can't create this page now, then some thing
3453 		 * is really broken.
3454 		 */
3455 		panic("page_rename: Can't hash in page: %p", (void *)pp);
3456 		/*NOTREACHED*/
3457 	}
3458 
3459 	ASSERT(MUTEX_HELD(phm));
3460 	mutex_exit(phm);
3461 
3462 	/*
3463 	 * Now that we have dropped phm, lets get around to finishing up
3464 	 * with pp.
3465 	 */
3466 	if (pp != NULL) {
3467 		ASSERT(!hat_page_is_mapped(pp));
3468 		/* for now large pages should not end up here */
3469 		ASSERT(pp->p_szc == 0);
3470 		/*
3471 		 * Save the locks for transfer to the new page and then
3472 		 * clear them so page_free doesn't think they're important.
3473 		 * The page_struct_lock need not be acquired for lckcnt and
3474 		 * cowcnt since the page has an "exclusive" lock.
3475 		 */
3476 		olckcnt = pp->p_lckcnt;
3477 		ocowcnt = pp->p_cowcnt;
3478 		pp->p_lckcnt = pp->p_cowcnt = 0;
3479 
3480 		/*
3481 		 * Put the page on the "free" list after we drop
3482 		 * the lock.  The less work under the lock the better.
3483 		 */
3484 		/*LINTED: constant in conditional context*/
3485 		VN_DISPOSE(pp, B_FREE, 0, kcred);
3486 	}
3487 
3488 	/*
3489 	 * Transfer the lock count from the old page (if any).
3490 	 * The page_struct_lock need not be acquired for lckcnt and
3491 	 * cowcnt since the page has an "exclusive" lock.
3492 	 */
3493 	opp->p_lckcnt += olckcnt;
3494 	opp->p_cowcnt += ocowcnt;
3495 }
3496 
3497 /*
3498  * low level routine to add page `pp' to the hash and vp chains for [vp, offset]
3499  *
3500  * Pages are normally inserted at the start of a vnode's v_pages list.
3501  * If the vnode is VMODSORT and the page is modified, it goes at the end.
3502  * This can happen when a modified page is relocated for DR.
3503  *
3504  * Returns 1 on success and 0 on failure.
3505  */
3506 static int
3507 page_do_hashin(page_t *pp, vnode_t *vp, u_offset_t offset)
3508 {
3509 	page_t		**listp;
3510 	page_t		*tp;
3511 	ulong_t		index;
3512 
3513 	ASSERT(PAGE_EXCL(pp));
3514 	ASSERT(vp != NULL);
3515 	ASSERT(MUTEX_HELD(page_vnode_mutex(vp)));
3516 
3517 	/*
3518 	 * Be sure to set these up before the page is inserted on the hash
3519 	 * list.  As soon as the page is placed on the list some other
3520 	 * thread might get confused and wonder how this page could
3521 	 * possibly hash to this list.
3522 	 */
3523 	pp->p_vnode = vp;
3524 	pp->p_offset = offset;
3525 
3526 	/*
3527 	 * record if this page is on a swap vnode
3528 	 */
3529 	if ((vp->v_flag & VISSWAP) != 0)
3530 		PP_SETSWAP(pp);
3531 
3532 	index = PAGE_HASH_FUNC(vp, offset);
3533 	ASSERT(MUTEX_HELD(PAGE_HASH_MUTEX(index)));
3534 	listp = &page_hash[index];
3535 
3536 	/*
3537 	 * If this page is already hashed in, fail this attempt to add it.
3538 	 */
3539 	for (tp = *listp; tp != NULL; tp = tp->p_hash) {
3540 		if (tp->p_vnode == vp && tp->p_offset == offset) {
3541 			pp->p_vnode = NULL;
3542 			pp->p_offset = (u_offset_t)(-1);
3543 			return (0);
3544 		}
3545 	}
3546 	pp->p_hash = *listp;
3547 	*listp = pp;
3548 
3549 	/*
3550 	 * Add the page to the vnode's list of pages
3551 	 */
3552 	if (vp->v_pages != NULL && IS_VMODSORT(vp) && hat_ismod(pp))
3553 		listp = &vp->v_pages->p_vpprev->p_vpnext;
3554 	else
3555 		listp = &vp->v_pages;
3556 
3557 	page_vpadd(listp, pp);
3558 
3559 	return (1);
3560 }
3561 
3562 /*
3563  * Add page `pp' to both the hash and vp chains for [vp, offset].
3564  *
3565  * Returns 1 on success and 0 on failure.
3566  * If hold is passed in, it is not dropped.
3567  */
3568 int
3569 page_hashin(page_t *pp, vnode_t *vp, u_offset_t offset, kmutex_t *hold)
3570 {
3571 	kmutex_t	*phm = NULL;
3572 	kmutex_t	*vphm;
3573 	int		rc;
3574 
3575 	ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
3576 
3577 	TRACE_3(TR_FAC_VM, TR_PAGE_HASHIN,
3578 	    "page_hashin:pp %p vp %p offset %llx",
3579 	    pp, vp, offset);
3580 
3581 	VM_STAT_ADD(hashin_count);
3582 
3583 	if (hold != NULL)
3584 		phm = hold;
3585 	else {
3586 		VM_STAT_ADD(hashin_not_held);
3587 		phm = PAGE_HASH_MUTEX(PAGE_HASH_FUNC(vp, offset));
3588 		mutex_enter(phm);
3589 	}
3590 
3591 	vphm = page_vnode_mutex(vp);
3592 	mutex_enter(vphm);
3593 	rc = page_do_hashin(pp, vp, offset);
3594 	mutex_exit(vphm);
3595 	if (hold == NULL)
3596 		mutex_exit(phm);
3597 	if (rc == 0)
3598 		VM_STAT_ADD(hashin_already);
3599 	return (rc);
3600 }
3601 
3602 /*
3603  * Remove page ``pp'' from the hash and vp chains and remove vp association.
3604  * All mutexes must be held
3605  */
3606 static void
3607 page_do_hashout(page_t *pp)
3608 {
3609 	page_t	**hpp;
3610 	page_t	*hp;
3611 	vnode_t	*vp = pp->p_vnode;
3612 
3613 	ASSERT(vp != NULL);
3614 	ASSERT(MUTEX_HELD(page_vnode_mutex(vp)));
3615 
3616 	/*
3617 	 * First, take pp off of its hash chain.
3618 	 */
3619 	hpp = &page_hash[PAGE_HASH_FUNC(vp, pp->p_offset)];
3620 
3621 	for (;;) {
3622 		hp = *hpp;
3623 		if (hp == pp)
3624 			break;
3625 		if (hp == NULL) {
3626 			panic("page_do_hashout");
3627 			/*NOTREACHED*/
3628 		}
3629 		hpp = &hp->p_hash;
3630 	}
3631 	*hpp = pp->p_hash;
3632 
3633 	/*
3634 	 * Now remove it from its associated vnode.
3635 	 */
3636 	if (vp->v_pages)
3637 		page_vpsub(&vp->v_pages, pp);
3638 
3639 	pp->p_hash = NULL;
3640 	page_clr_all_props(pp);
3641 	PP_CLRSWAP(pp);
3642 	pp->p_vnode = NULL;
3643 	pp->p_offset = (u_offset_t)-1;
3644 }
3645 
3646 /*
3647  * Remove page ``pp'' from the hash and vp chains and remove vp association.
3648  *
3649  * When `phm' is non-NULL it contains the address of the mutex protecting the
3650  * hash list pp is on.  It is not dropped.
3651  */
3652 void
3653 page_hashout(page_t *pp, kmutex_t *phm)
3654 {
3655 	vnode_t		*vp;
3656 	ulong_t		index;
3657 	kmutex_t	*nphm;
3658 	kmutex_t	*vphm;
3659 	kmutex_t	*sep;
3660 
3661 	ASSERT(phm != NULL ? MUTEX_HELD(phm) : 1);
3662 	ASSERT(pp->p_vnode != NULL);
3663 	ASSERT((PAGE_EXCL(pp) && !page_iolock_assert(pp)) || panicstr);
3664 	ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(pp->p_vnode)));
3665 
3666 	vp = pp->p_vnode;
3667 
3668 	TRACE_2(TR_FAC_VM, TR_PAGE_HASHOUT,
3669 	    "page_hashout:pp %p vp %p", pp, vp);
3670 
3671 	/* Kernel probe */
3672 	TNF_PROBE_2(page_unmap, "vm pagefault", /* CSTYLED */,
3673 	    tnf_opaque, vnode, vp,
3674 	    tnf_offset, offset, pp->p_offset);
3675 
3676 	/*
3677 	 *
3678 	 */
3679 	VM_STAT_ADD(hashout_count);
3680 	index = PAGE_HASH_FUNC(vp, pp->p_offset);
3681 	if (phm == NULL) {
3682 		VM_STAT_ADD(hashout_not_held);
3683 		nphm = PAGE_HASH_MUTEX(index);
3684 		mutex_enter(nphm);
3685 	}
3686 	ASSERT(phm ? phm == PAGE_HASH_MUTEX(index) : 1);
3687 
3688 
3689 	/*
3690 	 * grab page vnode mutex and remove it...
3691 	 */
3692 	vphm = page_vnode_mutex(vp);
3693 	mutex_enter(vphm);
3694 
3695 	page_do_hashout(pp);
3696 
3697 	mutex_exit(vphm);
3698 	if (phm == NULL)
3699 		mutex_exit(nphm);
3700 
3701 	/*
3702 	 * Wake up processes waiting for this page.  The page's
3703 	 * identity has been changed, and is probably not the
3704 	 * desired page any longer.
3705 	 */
3706 	sep = page_se_mutex(pp);
3707 	mutex_enter(sep);
3708 	pp->p_selock &= ~SE_EWANTED;
3709 	if (CV_HAS_WAITERS(&pp->p_cv))
3710 		cv_broadcast(&pp->p_cv);
3711 	mutex_exit(sep);
3712 }
3713 
3714 /*
3715  * Add the page to the front of a linked list of pages
3716  * using the p_next & p_prev pointers for the list.
3717  * The caller is responsible for protecting the list pointers.
3718  */
3719 void
3720 page_add(page_t **ppp, page_t *pp)
3721 {
3722 	ASSERT(PAGE_EXCL(pp) || (PAGE_SHARED(pp) && page_iolock_assert(pp)));
3723 
3724 	page_add_common(ppp, pp);
3725 }
3726 
3727 
3728 
3729 /*
3730  *  Common code for page_add() and mach_page_add()
3731  */
3732 void
3733 page_add_common(page_t **ppp, page_t *pp)
3734 {
3735 	if (*ppp == NULL) {
3736 		pp->p_next = pp->p_prev = pp;
3737 	} else {
3738 		pp->p_next = *ppp;
3739 		pp->p_prev = (*ppp)->p_prev;
3740 		(*ppp)->p_prev = pp;
3741 		pp->p_prev->p_next = pp;
3742 	}
3743 	*ppp = pp;
3744 }
3745 
3746 
3747 /*
3748  * Remove this page from a linked list of pages
3749  * using the p_next & p_prev pointers for the list.
3750  *
3751  * The caller is responsible for protecting the list pointers.
3752  */
3753 void
3754 page_sub(page_t **ppp, page_t *pp)
3755 {
3756 	ASSERT((PP_ISFREE(pp)) ? 1 :
3757 	    (PAGE_EXCL(pp)) || (PAGE_SHARED(pp) && page_iolock_assert(pp)));
3758 
3759 	if (*ppp == NULL || pp == NULL) {
3760 		panic("page_sub: bad arg(s): pp %p, *ppp %p",
3761 		    (void *)pp, (void *)(*ppp));
3762 		/*NOTREACHED*/
3763 	}
3764 
3765 	page_sub_common(ppp, pp);
3766 }
3767 
3768 
3769 /*
3770  *  Common code for page_sub() and mach_page_sub()
3771  */
3772 void
3773 page_sub_common(page_t **ppp, page_t *pp)
3774 {
3775 	if (*ppp == pp)
3776 		*ppp = pp->p_next;		/* go to next page */
3777 
3778 	if (*ppp == pp)
3779 		*ppp = NULL;			/* page list is gone */
3780 	else {
3781 		pp->p_prev->p_next = pp->p_next;
3782 		pp->p_next->p_prev = pp->p_prev;
3783 	}
3784 	pp->p_prev = pp->p_next = pp;		/* make pp a list of one */
3785 }
3786 
3787 
3788 /*
3789  * Break page list cppp into two lists with npages in the first list.
3790  * The tail is returned in nppp.
3791  */
3792 void
3793 page_list_break(page_t **oppp, page_t **nppp, pgcnt_t npages)
3794 {
3795 	page_t *s1pp = *oppp;
3796 	page_t *s2pp;
3797 	page_t *e1pp, *e2pp;
3798 	long n = 0;
3799 
3800 	if (s1pp == NULL) {
3801 		*nppp = NULL;
3802 		return;
3803 	}
3804 	if (npages == 0) {
3805 		*nppp = s1pp;
3806 		*oppp = NULL;
3807 		return;
3808 	}
3809 	for (n = 0, s2pp = *oppp; n < npages; n++) {
3810 		s2pp = s2pp->p_next;
3811 	}
3812 	/* Fix head and tail of new lists */
3813 	e1pp = s2pp->p_prev;
3814 	e2pp = s1pp->p_prev;
3815 	s1pp->p_prev = e1pp;
3816 	e1pp->p_next = s1pp;
3817 	s2pp->p_prev = e2pp;
3818 	e2pp->p_next = s2pp;
3819 
3820 	/* second list empty */
3821 	if (s2pp == s1pp) {
3822 		*oppp = s1pp;
3823 		*nppp = NULL;
3824 	} else {
3825 		*oppp = s1pp;
3826 		*nppp = s2pp;
3827 	}
3828 }
3829 
3830 /*
3831  * Concatenate page list nppp onto the end of list ppp.
3832  */
3833 void
3834 page_list_concat(page_t **ppp, page_t **nppp)
3835 {
3836 	page_t *s1pp, *s2pp, *e1pp, *e2pp;
3837 
3838 	if (*nppp == NULL) {
3839 		return;
3840 	}
3841 	if (*ppp == NULL) {
3842 		*ppp = *nppp;
3843 		return;
3844 	}
3845 	s1pp = *ppp;
3846 	e1pp =  s1pp->p_prev;
3847 	s2pp = *nppp;
3848 	e2pp = s2pp->p_prev;
3849 	s1pp->p_prev = e2pp;
3850 	e2pp->p_next = s1pp;
3851 	e1pp->p_next = s2pp;
3852 	s2pp->p_prev = e1pp;
3853 }
3854 
3855 /*
3856  * return the next page in the page list
3857  */
3858 page_t *
3859 page_list_next(page_t *pp)
3860 {
3861 	return (pp->p_next);
3862 }
3863 
3864 
3865 /*
3866  * Add the page to the front of the linked list of pages
3867  * using p_vpnext/p_vpprev pointers for the list.
3868  *
3869  * The caller is responsible for protecting the lists.
3870  */
3871 void
3872 page_vpadd(page_t **ppp, page_t *pp)
3873 {
3874 	if (*ppp == NULL) {
3875 		pp->p_vpnext = pp->p_vpprev = pp;
3876 	} else {
3877 		pp->p_vpnext = *ppp;
3878 		pp->p_vpprev = (*ppp)->p_vpprev;
3879 		(*ppp)->p_vpprev = pp;
3880 		pp->p_vpprev->p_vpnext = pp;
3881 	}
3882 	*ppp = pp;
3883 }
3884 
3885 /*
3886  * Remove this page from the linked list of pages
3887  * using p_vpnext/p_vpprev pointers for the list.
3888  *
3889  * The caller is responsible for protecting the lists.
3890  */
3891 void
3892 page_vpsub(page_t **ppp, page_t *pp)
3893 {
3894 	if (*ppp == NULL || pp == NULL) {
3895 		panic("page_vpsub: bad arg(s): pp %p, *ppp %p",
3896 		    (void *)pp, (void *)(*ppp));
3897 		/*NOTREACHED*/
3898 	}
3899 
3900 	if (*ppp == pp)
3901 		*ppp = pp->p_vpnext;		/* go to next page */
3902 
3903 	if (*ppp == pp)
3904 		*ppp = NULL;			/* page list is gone */
3905 	else {
3906 		pp->p_vpprev->p_vpnext = pp->p_vpnext;
3907 		pp->p_vpnext->p_vpprev = pp->p_vpprev;
3908 	}
3909 	pp->p_vpprev = pp->p_vpnext = pp;	/* make pp a list of one */
3910 }
3911 
3912 /*
3913  * Lock a physical page into memory "long term".  Used to support "lock
3914  * in memory" functions.  Accepts the page to be locked, and a cow variable
3915  * to indicate whether a the lock will travel to the new page during
3916  * a potential copy-on-write.
3917  */
3918 int
3919 page_pp_lock(
3920 	page_t *pp,			/* page to be locked */
3921 	int cow,			/* cow lock */
3922 	int kernel)			/* must succeed -- ignore checking */
3923 {
3924 	int r = 0;			/* result -- assume failure */
3925 
3926 	ASSERT(PAGE_LOCKED(pp));
3927 
3928 	page_struct_lock(pp);
3929 	/*
3930 	 * Acquire the "freemem_lock" for availrmem.
3931 	 */
3932 	if (cow) {
3933 		mutex_enter(&freemem_lock);
3934 		if ((availrmem > pages_pp_maximum) &&
3935 		    (pp->p_cowcnt < (ushort_t)PAGE_LOCK_MAXIMUM)) {
3936 			availrmem--;
3937 			pages_locked++;
3938 			mutex_exit(&freemem_lock);
3939 			r = 1;
3940 			if (++pp->p_cowcnt == (ushort_t)PAGE_LOCK_MAXIMUM) {
3941 				cmn_err(CE_WARN,
3942 				    "COW lock limit reached on pfn 0x%lx",
3943 				    page_pptonum(pp));
3944 			}
3945 		} else
3946 			mutex_exit(&freemem_lock);
3947 	} else {
3948 		if (pp->p_lckcnt) {
3949 			if (pp->p_lckcnt < (ushort_t)PAGE_LOCK_MAXIMUM) {
3950 				r = 1;
3951 				if (++pp->p_lckcnt ==
3952 				    (ushort_t)PAGE_LOCK_MAXIMUM) {
3953 					cmn_err(CE_WARN, "Page lock limit "
3954 					    "reached on pfn 0x%lx",
3955 					    page_pptonum(pp));
3956 				}
3957 			}
3958 		} else {
3959 			if (kernel) {
3960 				/* availrmem accounting done by caller */
3961 				++pp->p_lckcnt;
3962 				r = 1;
3963 			} else {
3964 				mutex_enter(&freemem_lock);
3965 				if (availrmem > pages_pp_maximum) {
3966 					availrmem--;
3967 					pages_locked++;
3968 					++pp->p_lckcnt;
3969 					r = 1;
3970 				}
3971 				mutex_exit(&freemem_lock);
3972 			}
3973 		}
3974 	}
3975 	page_struct_unlock(pp);
3976 	return (r);
3977 }
3978 
3979 /*
3980  * Decommit a lock on a physical page frame.  Account for cow locks if
3981  * appropriate.
3982  */
3983 void
3984 page_pp_unlock(
3985 	page_t *pp,			/* page to be unlocked */
3986 	int cow,			/* expect cow lock */
3987 	int kernel)			/* this was a kernel lock */
3988 {
3989 	ASSERT(PAGE_LOCKED(pp));
3990 
3991 	page_struct_lock(pp);
3992 	/*
3993 	 * Acquire the "freemem_lock" for availrmem.
3994 	 * If cowcnt or lcknt is already 0 do nothing; i.e., we
3995 	 * could be called to unlock even if nothing is locked. This could
3996 	 * happen if locked file pages were truncated (removing the lock)
3997 	 * and the file was grown again and new pages faulted in; the new
3998 	 * pages are unlocked but the segment still thinks they're locked.
3999 	 */
4000 	if (cow) {
4001 		if (pp->p_cowcnt) {
4002 			mutex_enter(&freemem_lock);
4003 			pp->p_cowcnt--;
4004 			availrmem++;
4005 			pages_locked--;
4006 			mutex_exit(&freemem_lock);
4007 		}
4008 	} else {
4009 		if (pp->p_lckcnt && --pp->p_lckcnt == 0) {
4010 			if (!kernel) {
4011 				mutex_enter(&freemem_lock);
4012 				availrmem++;
4013 				pages_locked--;
4014 				mutex_exit(&freemem_lock);
4015 			}
4016 		}
4017 	}
4018 	page_struct_unlock(pp);
4019 }
4020 
4021 /*
4022  * This routine reserves availrmem for npages;
4023  * 	flags: KM_NOSLEEP or KM_SLEEP
4024  * 	returns 1 on success or 0 on failure
4025  */
4026 int
4027 page_resv(pgcnt_t npages, uint_t flags)
4028 {
4029 	mutex_enter(&freemem_lock);
4030 	while (availrmem < tune.t_minarmem + npages) {
4031 		if (flags & KM_NOSLEEP) {
4032 			mutex_exit(&freemem_lock);
4033 			return (0);
4034 		}
4035 		mutex_exit(&freemem_lock);
4036 		page_needfree(npages);
4037 		kmem_reap();
4038 		delay(hz >> 2);
4039 		page_needfree(-(spgcnt_t)npages);
4040 		mutex_enter(&freemem_lock);
4041 	}
4042 	availrmem -= npages;
4043 	mutex_exit(&freemem_lock);
4044 	return (1);
4045 }
4046 
4047 /*
4048  * This routine unreserves availrmem for npages;
4049  */
4050 void
4051 page_unresv(pgcnt_t npages)
4052 {
4053 	mutex_enter(&freemem_lock);
4054 	availrmem += npages;
4055 	mutex_exit(&freemem_lock);
4056 }
4057 
4058 /*
4059  * See Statement at the beginning of segvn_lockop() regarding
4060  * the way we handle cowcnts and lckcnts.
4061  *
4062  * Transfer cowcnt on 'opp' to cowcnt on 'npp' if the vpage
4063  * that breaks COW has PROT_WRITE.
4064  *
4065  * Note that, we may also break COW in case we are softlocking
4066  * on read access during physio;
4067  * in this softlock case, the vpage may not have PROT_WRITE.
4068  * So, we need to transfer lckcnt on 'opp' to lckcnt on 'npp'
4069  * if the vpage doesn't have PROT_WRITE.
4070  *
4071  * This routine is never called if we are stealing a page
4072  * in anon_private.
4073  *
4074  * The caller subtracted from availrmem for read only mapping.
4075  * if lckcnt is 1 increment availrmem.
4076  */
4077 void
4078 page_pp_useclaim(
4079 	page_t *opp,		/* original page frame losing lock */
4080 	page_t *npp,		/* new page frame gaining lock */
4081 	uint_t	write_perm) 	/* set if vpage has PROT_WRITE */
4082 {
4083 	int payback = 0;
4084 
4085 	ASSERT(PAGE_LOCKED(opp));
4086 	ASSERT(PAGE_LOCKED(npp));
4087 
4088 	page_struct_lock(opp);
4089 
4090 	ASSERT(npp->p_cowcnt == 0);
4091 	ASSERT(npp->p_lckcnt == 0);
4092 
4093 	/* Don't use claim if nothing is locked (see page_pp_unlock above) */
4094 	if ((write_perm && opp->p_cowcnt != 0) ||
4095 	    (!write_perm && opp->p_lckcnt != 0)) {
4096 
4097 		if (write_perm) {
4098 			npp->p_cowcnt++;
4099 			ASSERT(opp->p_cowcnt != 0);
4100 			opp->p_cowcnt--;
4101 		} else {
4102 
4103 			ASSERT(opp->p_lckcnt != 0);
4104 
4105 			/*
4106 			 * We didn't need availrmem decremented if p_lckcnt on
4107 			 * original page is 1. Here, we are unlocking
4108 			 * read-only copy belonging to original page and
4109 			 * are locking a copy belonging to new page.
4110 			 */
4111 			if (opp->p_lckcnt == 1)
4112 				payback = 1;
4113 
4114 			npp->p_lckcnt++;
4115 			opp->p_lckcnt--;
4116 		}
4117 	}
4118 	if (payback) {
4119 		mutex_enter(&freemem_lock);
4120 		availrmem++;
4121 		pages_useclaim--;
4122 		mutex_exit(&freemem_lock);
4123 	}
4124 	page_struct_unlock(opp);
4125 }
4126 
4127 /*
4128  * Simple claim adjust functions -- used to support changes in
4129  * claims due to changes in access permissions.  Used by segvn_setprot().
4130  */
4131 int
4132 page_addclaim(page_t *pp)
4133 {
4134 	int r = 0;			/* result */
4135 
4136 	ASSERT(PAGE_LOCKED(pp));
4137 
4138 	page_struct_lock(pp);
4139 	ASSERT(pp->p_lckcnt != 0);
4140 
4141 	if (pp->p_lckcnt == 1) {
4142 		if (pp->p_cowcnt < (ushort_t)PAGE_LOCK_MAXIMUM) {
4143 			--pp->p_lckcnt;
4144 			r = 1;
4145 			if (++pp->p_cowcnt == (ushort_t)PAGE_LOCK_MAXIMUM) {
4146 				cmn_err(CE_WARN,
4147 				    "COW lock limit reached on pfn 0x%lx",
4148 				    page_pptonum(pp));
4149 			}
4150 		}
4151 	} else {
4152 		mutex_enter(&freemem_lock);
4153 		if ((availrmem > pages_pp_maximum) &&
4154 		    (pp->p_cowcnt < (ushort_t)PAGE_LOCK_MAXIMUM)) {
4155 			--availrmem;
4156 			++pages_claimed;
4157 			mutex_exit(&freemem_lock);
4158 			--pp->p_lckcnt;
4159 			r = 1;
4160 			if (++pp->p_cowcnt == (ushort_t)PAGE_LOCK_MAXIMUM) {
4161 				cmn_err(CE_WARN,
4162 				    "COW lock limit reached on pfn 0x%lx",
4163 				    page_pptonum(pp));
4164 			}
4165 		} else
4166 			mutex_exit(&freemem_lock);
4167 	}
4168 	page_struct_unlock(pp);
4169 	return (r);
4170 }
4171 
4172 int
4173 page_subclaim(page_t *pp)
4174 {
4175 	int r = 0;
4176 
4177 	ASSERT(PAGE_LOCKED(pp));
4178 
4179 	page_struct_lock(pp);
4180 	ASSERT(pp->p_cowcnt != 0);
4181 
4182 	if (pp->p_lckcnt) {
4183 		if (pp->p_lckcnt < (ushort_t)PAGE_LOCK_MAXIMUM) {
4184 			r = 1;
4185 			/*
4186 			 * for availrmem
4187 			 */
4188 			mutex_enter(&freemem_lock);
4189 			availrmem++;
4190 			pages_claimed--;
4191 			mutex_exit(&freemem_lock);
4192 
4193 			pp->p_cowcnt--;
4194 
4195 			if (++pp->p_lckcnt == (ushort_t)PAGE_LOCK_MAXIMUM) {
4196 				cmn_err(CE_WARN,
4197 				    "Page lock limit reached on pfn 0x%lx",
4198 				    page_pptonum(pp));
4199 			}
4200 		}
4201 	} else {
4202 		r = 1;
4203 		pp->p_cowcnt--;
4204 		pp->p_lckcnt++;
4205 	}
4206 	page_struct_unlock(pp);
4207 	return (r);
4208 }
4209 
4210 int
4211 page_addclaim_pages(page_t  **ppa)
4212 {
4213 
4214 	pgcnt_t	lckpgs = 0, pg_idx;
4215 
4216 	VM_STAT_ADD(pagecnt.pc_addclaim_pages);
4217 
4218 	mutex_enter(&page_llock);
4219 	for (pg_idx = 0; ppa[pg_idx] != NULL; pg_idx++) {
4220 
4221 		ASSERT(PAGE_LOCKED(ppa[pg_idx]));
4222 		ASSERT(ppa[pg_idx]->p_lckcnt != 0);
4223 		if (ppa[pg_idx]->p_cowcnt == (ushort_t)PAGE_LOCK_MAXIMUM) {
4224 			mutex_exit(&page_llock);
4225 			return (0);
4226 		}
4227 		if (ppa[pg_idx]->p_lckcnt > 1)
4228 			lckpgs++;
4229 	}
4230 
4231 	if (lckpgs != 0) {
4232 		mutex_enter(&freemem_lock);
4233 		if (availrmem >= pages_pp_maximum + lckpgs) {
4234 			availrmem -= lckpgs;
4235 			pages_claimed += lckpgs;
4236 		} else {
4237 			mutex_exit(&freemem_lock);
4238 			mutex_exit(&page_llock);
4239 			return (0);
4240 		}
4241 		mutex_exit(&freemem_lock);
4242 	}
4243 
4244 	for (pg_idx = 0; ppa[pg_idx] != NULL; pg_idx++) {
4245 		ppa[pg_idx]->p_lckcnt--;
4246 		ppa[pg_idx]->p_cowcnt++;
4247 	}
4248 	mutex_exit(&page_llock);
4249 	return (1);
4250 }
4251 
4252 int
4253 page_subclaim_pages(page_t  **ppa)
4254 {
4255 	pgcnt_t	ulckpgs = 0, pg_idx;
4256 
4257 	VM_STAT_ADD(pagecnt.pc_subclaim_pages);
4258 
4259 	mutex_enter(&page_llock);
4260 	for (pg_idx = 0; ppa[pg_idx] != NULL; pg_idx++) {
4261 
4262 		ASSERT(PAGE_LOCKED(ppa[pg_idx]));
4263 		ASSERT(ppa[pg_idx]->p_cowcnt != 0);
4264 		if (ppa[pg_idx]->p_lckcnt == (ushort_t)PAGE_LOCK_MAXIMUM) {
4265 			mutex_exit(&page_llock);
4266 			return (0);
4267 		}
4268 		if (ppa[pg_idx]->p_lckcnt != 0)
4269 			ulckpgs++;
4270 	}
4271 
4272 	if (ulckpgs != 0) {
4273 		mutex_enter(&freemem_lock);
4274 		availrmem += ulckpgs;
4275 		pages_claimed -= ulckpgs;
4276 		mutex_exit(&freemem_lock);
4277 	}
4278 
4279 	for (pg_idx = 0; ppa[pg_idx] != NULL; pg_idx++) {
4280 		ppa[pg_idx]->p_cowcnt--;
4281 		ppa[pg_idx]->p_lckcnt++;
4282 
4283 	}
4284 	mutex_exit(&page_llock);
4285 	return (1);
4286 }
4287 
4288 page_t *
4289 page_numtopp(pfn_t pfnum, se_t se)
4290 {
4291 	page_t *pp;
4292 
4293 retry:
4294 	pp = page_numtopp_nolock(pfnum);
4295 	if (pp == NULL) {
4296 		return ((page_t *)NULL);
4297 	}
4298 
4299 	/*
4300 	 * Acquire the appropriate lock on the page.
4301 	 */
4302 	while (!page_lock(pp, se, (kmutex_t *)NULL, P_RECLAIM)) {
4303 		if (page_pptonum(pp) != pfnum)
4304 			goto retry;
4305 		continue;
4306 	}
4307 
4308 	if (page_pptonum(pp) != pfnum) {
4309 		page_unlock(pp);
4310 		goto retry;
4311 	}
4312 
4313 	return (pp);
4314 }
4315 
4316 page_t *
4317 page_numtopp_noreclaim(pfn_t pfnum, se_t se)
4318 {
4319 	page_t *pp;
4320 
4321 retry:
4322 	pp = page_numtopp_nolock(pfnum);
4323 	if (pp == NULL) {
4324 		return ((page_t *)NULL);
4325 	}
4326 
4327 	/*
4328 	 * Acquire the appropriate lock on the page.
4329 	 */
4330 	while (!page_lock(pp, se, (kmutex_t *)NULL, P_NO_RECLAIM)) {
4331 		if (page_pptonum(pp) != pfnum)
4332 			goto retry;
4333 		continue;
4334 	}
4335 
4336 	if (page_pptonum(pp) != pfnum) {
4337 		page_unlock(pp);
4338 		goto retry;
4339 	}
4340 
4341 	return (pp);
4342 }
4343 
4344 /*
4345  * This routine is like page_numtopp, but will only return page structs
4346  * for pages which are ok for loading into hardware using the page struct.
4347  */
4348 page_t *
4349 page_numtopp_nowait(pfn_t pfnum, se_t se)
4350 {
4351 	page_t *pp;
4352 
4353 retry:
4354 	pp = page_numtopp_nolock(pfnum);
4355 	if (pp == NULL) {
4356 		return ((page_t *)NULL);
4357 	}
4358 
4359 	/*
4360 	 * Try to acquire the appropriate lock on the page.
4361 	 */
4362 	if (PP_ISFREE(pp))
4363 		pp = NULL;
4364 	else {
4365 		if (!page_trylock(pp, se))
4366 			pp = NULL;
4367 		else {
4368 			if (page_pptonum(pp) != pfnum) {
4369 				page_unlock(pp);
4370 				goto retry;
4371 			}
4372 			if (PP_ISFREE(pp)) {
4373 				page_unlock(pp);
4374 				pp = NULL;
4375 			}
4376 		}
4377 	}
4378 	return (pp);
4379 }
4380 
4381 /*
4382  * Returns a count of dirty pages that are in the process
4383  * of being written out.  If 'cleanit' is set, try to push the page.
4384  */
4385 pgcnt_t
4386 page_busy(int cleanit)
4387 {
4388 	page_t *page0 = page_first();
4389 	page_t *pp = page0;
4390 	pgcnt_t nppbusy = 0;
4391 	u_offset_t off;
4392 
4393 	do {
4394 		vnode_t *vp = pp->p_vnode;
4395 
4396 		/*
4397 		 * A page is a candidate for syncing if it is:
4398 		 *
4399 		 * (a)	On neither the freelist nor the cachelist
4400 		 * (b)	Hashed onto a vnode
4401 		 * (c)	Not a kernel page
4402 		 * (d)	Dirty
4403 		 * (e)	Not part of a swapfile
4404 		 * (f)	a page which belongs to a real vnode; eg has a non-null
4405 		 *	v_vfsp pointer.
4406 		 * (g)	Backed by a filesystem which doesn't have a
4407 		 *	stubbed-out sync operation
4408 		 */
4409 		if (!PP_ISFREE(pp) && vp != NULL && !VN_ISKAS(vp) &&
4410 		    hat_ismod(pp) && !IS_SWAPVP(vp) && vp->v_vfsp != NULL &&
4411 		    vfs_can_sync(vp->v_vfsp)) {
4412 			nppbusy++;
4413 			vfs_syncprogress();
4414 
4415 			if (!cleanit)
4416 				continue;
4417 			if (!page_trylock(pp, SE_EXCL))
4418 				continue;
4419 
4420 			if (PP_ISFREE(pp) || vp == NULL || IS_SWAPVP(vp) ||
4421 			    pp->p_lckcnt != 0 || pp->p_cowcnt != 0 ||
4422 			    !(hat_pagesync(pp,
4423 			    HAT_SYNC_DONTZERO | HAT_SYNC_STOPON_MOD) & P_MOD)) {
4424 				page_unlock(pp);
4425 				continue;
4426 			}
4427 			off = pp->p_offset;
4428 			VN_HOLD(vp);
4429 			page_unlock(pp);
4430 			(void) VOP_PUTPAGE(vp, off, PAGESIZE,
4431 			    B_ASYNC | B_FREE, kcred, NULL);
4432 			VN_RELE(vp);
4433 		}
4434 	} while ((pp = page_next(pp)) != page0);
4435 
4436 	return (nppbusy);
4437 }
4438 
4439 void page_invalidate_pages(void);
4440 
4441 /*
4442  * callback handler to vm sub-system
4443  *
4444  * callers make sure no recursive entries to this func.
4445  */
4446 /*ARGSUSED*/
4447 boolean_t
4448 callb_vm_cpr(void *arg, int code)
4449 {
4450 	if (code == CB_CODE_CPR_CHKPT)
4451 		page_invalidate_pages();
4452 	return (B_TRUE);
4453 }
4454 
4455 /*
4456  * Invalidate all pages of the system.
4457  * It shouldn't be called until all user page activities are all stopped.
4458  */
4459 void
4460 page_invalidate_pages()
4461 {
4462 	page_t *pp;
4463 	page_t *page0;
4464 	pgcnt_t nbusypages;
4465 	int retry = 0;
4466 	const int MAXRETRIES = 4;
4467 #if defined(__sparc)
4468 	extern struct vnode prom_ppages;
4469 #endif /* __sparc */
4470 
4471 top:
4472 	/*
4473 	 * Flush dirty pages and destroy the clean ones.
4474 	 */
4475 	nbusypages = 0;
4476 
4477 	pp = page0 = page_first();
4478 	do {
4479 		struct vnode	*vp;
4480 		u_offset_t	offset;
4481 		int		mod;
4482 
4483 		/*
4484 		 * skip the page if it has no vnode or the page associated
4485 		 * with the kernel vnode or prom allocated kernel mem.
4486 		 */
4487 #if defined(__sparc)
4488 		if ((vp = pp->p_vnode) == NULL || VN_ISKAS(vp) ||
4489 		    vp == &prom_ppages)
4490 #else /* x86 doesn't have prom or prom_ppage */
4491 		if ((vp = pp->p_vnode) == NULL || VN_ISKAS(vp))
4492 #endif /* __sparc */
4493 			continue;
4494 
4495 		/*
4496 		 * skip the page which is already free invalidated.
4497 		 */
4498 		if (PP_ISFREE(pp) && PP_ISAGED(pp))
4499 			continue;
4500 
4501 		/*
4502 		 * skip pages that are already locked or can't be "exclusively"
4503 		 * locked or are already free.  After we lock the page, check
4504 		 * the free and age bits again to be sure it's not destroied
4505 		 * yet.
4506 		 * To achieve max. parallelization, we use page_trylock instead
4507 		 * of page_lock so that we don't get block on individual pages
4508 		 * while we have thousands of other pages to process.
4509 		 */
4510 		if (!page_trylock(pp, SE_EXCL)) {
4511 			nbusypages++;
4512 			continue;
4513 		} else if (PP_ISFREE(pp)) {
4514 			if (!PP_ISAGED(pp)) {
4515 				page_destroy_free(pp);
4516 			} else {
4517 				page_unlock(pp);
4518 			}
4519 			continue;
4520 		}
4521 		/*
4522 		 * Is this page involved in some I/O? shared?
4523 		 *
4524 		 * The page_struct_lock need not be acquired to
4525 		 * examine these fields since the page has an
4526 		 * "exclusive" lock.
4527 		 */
4528 		if (pp->p_lckcnt != 0 || pp->p_cowcnt != 0) {
4529 			page_unlock(pp);
4530 			continue;
4531 		}
4532 
4533 		if (vp->v_type == VCHR) {
4534 			panic("vp->v_type == VCHR");
4535 			/*NOTREACHED*/
4536 		}
4537 
4538 		if (!page_try_demote_pages(pp)) {
4539 			page_unlock(pp);
4540 			continue;
4541 		}
4542 
4543 		/*
4544 		 * Check the modified bit. Leave the bits alone in hardware
4545 		 * (they will be modified if we do the putpage).
4546 		 */
4547 		mod = (hat_pagesync(pp, HAT_SYNC_DONTZERO | HAT_SYNC_STOPON_MOD)
4548 		    & P_MOD);
4549 		if (mod) {
4550 			offset = pp->p_offset;
4551 			/*
4552 			 * Hold the vnode before releasing the page lock
4553 			 * to prevent it from being freed and re-used by
4554 			 * some other thread.
4555 			 */
4556 			VN_HOLD(vp);
4557 			page_unlock(pp);
4558 			/*
4559 			 * No error return is checked here. Callers such as
4560 			 * cpr deals with the dirty pages at the dump time
4561 			 * if this putpage fails.
4562 			 */
4563 			(void) VOP_PUTPAGE(vp, offset, PAGESIZE, B_INVAL,
4564 			    kcred, NULL);
4565 			VN_RELE(vp);
4566 		} else {
4567 			page_destroy(pp, 0);
4568 		}
4569 	} while ((pp = page_next(pp)) != page0);
4570 	if (nbusypages && retry++ < MAXRETRIES) {
4571 		delay(1);
4572 		goto top;
4573 	}
4574 }
4575 
4576 /*
4577  * Replace the page "old" with the page "new" on the page hash and vnode lists
4578  *
4579  * the replacement must be done in place, ie the equivalent sequence:
4580  *
4581  *	vp = old->p_vnode;
4582  *	off = old->p_offset;
4583  *	page_do_hashout(old)
4584  *	page_do_hashin(new, vp, off)
4585  *
4586  * doesn't work, since
4587  *  1) if old is the only page on the vnode, the v_pages list has a window
4588  *     where it looks empty. This will break file system assumptions.
4589  * and
4590  *  2) pvn_vplist_dirty() can't deal with pages moving on the v_pages list.
4591  */
4592 static void
4593 page_do_relocate_hash(page_t *new, page_t *old)
4594 {
4595 	page_t	**hash_list;
4596 	vnode_t	*vp = old->p_vnode;
4597 	kmutex_t *sep;
4598 
4599 	ASSERT(PAGE_EXCL(old));
4600 	ASSERT(PAGE_EXCL(new));
4601 	ASSERT(vp != NULL);
4602 	ASSERT(MUTEX_HELD(page_vnode_mutex(vp)));
4603 	ASSERT(MUTEX_HELD(PAGE_HASH_MUTEX(PAGE_HASH_FUNC(vp, old->p_offset))));
4604 
4605 	/*
4606 	 * First find old page on the page hash list
4607 	 */
4608 	hash_list = &page_hash[PAGE_HASH_FUNC(vp, old->p_offset)];
4609 
4610 	for (;;) {
4611 		if (*hash_list == old)
4612 			break;
4613 		if (*hash_list == NULL) {
4614 			panic("page_do_hashout");
4615 			/*NOTREACHED*/
4616 		}
4617 		hash_list = &(*hash_list)->p_hash;
4618 	}
4619 
4620 	/*
4621 	 * update new and replace old with new on the page hash list
4622 	 */
4623 	new->p_vnode = old->p_vnode;
4624 	new->p_offset = old->p_offset;
4625 	new->p_hash = old->p_hash;
4626 	*hash_list = new;
4627 
4628 	if ((new->p_vnode->v_flag & VISSWAP) != 0)
4629 		PP_SETSWAP(new);
4630 
4631 	/*
4632 	 * replace old with new on the vnode's page list
4633 	 */
4634 	if (old->p_vpnext == old) {
4635 		new->p_vpnext = new;
4636 		new->p_vpprev = new;
4637 	} else {
4638 		new->p_vpnext = old->p_vpnext;
4639 		new->p_vpprev = old->p_vpprev;
4640 		new->p_vpnext->p_vpprev = new;
4641 		new->p_vpprev->p_vpnext = new;
4642 	}
4643 	if (vp->v_pages == old)
4644 		vp->v_pages = new;
4645 
4646 	/*
4647 	 * clear out the old page
4648 	 */
4649 	old->p_hash = NULL;
4650 	old->p_vpnext = NULL;
4651 	old->p_vpprev = NULL;
4652 	old->p_vnode = NULL;
4653 	PP_CLRSWAP(old);
4654 	old->p_offset = (u_offset_t)-1;
4655 	page_clr_all_props(old);
4656 
4657 	/*
4658 	 * Wake up processes waiting for this page.  The page's
4659 	 * identity has been changed, and is probably not the
4660 	 * desired page any longer.
4661 	 */
4662 	sep = page_se_mutex(old);
4663 	mutex_enter(sep);
4664 	old->p_selock &= ~SE_EWANTED;
4665 	if (CV_HAS_WAITERS(&old->p_cv))
4666 		cv_broadcast(&old->p_cv);
4667 	mutex_exit(sep);
4668 }
4669 
4670 /*
4671  * This function moves the identity of page "pp_old" to page "pp_new".
4672  * Both pages must be locked on entry.  "pp_new" is free, has no identity,
4673  * and need not be hashed out from anywhere.
4674  */
4675 void
4676 page_relocate_hash(page_t *pp_new, page_t *pp_old)
4677 {
4678 	vnode_t *vp = pp_old->p_vnode;
4679 	u_offset_t off = pp_old->p_offset;
4680 	kmutex_t *phm, *vphm;
4681 
4682 	/*
4683 	 * Rehash two pages
4684 	 */
4685 	ASSERT(PAGE_EXCL(pp_old));
4686 	ASSERT(PAGE_EXCL(pp_new));
4687 	ASSERT(vp != NULL);
4688 	ASSERT(pp_new->p_vnode == NULL);
4689 
4690 	/*
4691 	 * hashout then hashin while holding the mutexes
4692 	 */
4693 	phm = PAGE_HASH_MUTEX(PAGE_HASH_FUNC(vp, off));
4694 	mutex_enter(phm);
4695 	vphm = page_vnode_mutex(vp);
4696 	mutex_enter(vphm);
4697 
4698 	page_do_relocate_hash(pp_new, pp_old);
4699 
4700 	mutex_exit(vphm);
4701 	mutex_exit(phm);
4702 
4703 	/*
4704 	 * The page_struct_lock need not be acquired for lckcnt and
4705 	 * cowcnt since the page has an "exclusive" lock.
4706 	 */
4707 	ASSERT(pp_new->p_lckcnt == 0);
4708 	ASSERT(pp_new->p_cowcnt == 0);
4709 	pp_new->p_lckcnt = pp_old->p_lckcnt;
4710 	pp_new->p_cowcnt = pp_old->p_cowcnt;
4711 	pp_old->p_lckcnt = pp_old->p_cowcnt = 0;
4712 
4713 	/* The following comment preserved from page_flip(). */
4714 	/* XXX - Do we need to protect fsdata? */
4715 	pp_new->p_fsdata = pp_old->p_fsdata;
4716 }
4717 
4718 /*
4719  * Helper routine used to lock all remaining members of a
4720  * large page. The caller is responsible for passing in a locked
4721  * pp. If pp is a large page, then it succeeds in locking all the
4722  * remaining constituent pages or it returns with only the
4723  * original page locked.
4724  *
4725  * Returns 1 on success, 0 on failure.
4726  *
4727  * If success is returned this routine guarantees p_szc for all constituent
4728  * pages of a large page pp belongs to can't change. To achieve this we
4729  * recheck szc of pp after locking all constituent pages and retry if szc
4730  * changed (it could only decrease). Since hat_page_demote() needs an EXCL
4731  * lock on one of constituent pages it can't be running after all constituent
4732  * pages are locked.  hat_page_demote() with a lock on a constituent page
4733  * outside of this large page (i.e. pp belonged to a larger large page) is
4734  * already done with all constituent pages of pp since the root's p_szc is
4735  * changed last. Therefore no need to synchronize with hat_page_demote() that
4736  * locked a constituent page outside of pp's current large page.
4737  */
4738 #ifdef DEBUG
4739 uint32_t gpg_trylock_mtbf = 0;
4740 #endif
4741 
4742 int
4743 group_page_trylock(page_t *pp, se_t se)
4744 {
4745 	page_t  *tpp;
4746 	pgcnt_t	npgs, i, j;
4747 	uint_t pszc = pp->p_szc;
4748 
4749 #ifdef DEBUG
4750 	if (gpg_trylock_mtbf && !(gethrtime() % gpg_trylock_mtbf)) {
4751 		return (0);
4752 	}
4753 #endif
4754 
4755 	if (pp != PP_GROUPLEADER(pp, pszc)) {
4756 		return (0);
4757 	}
4758 
4759 retry:
4760 	ASSERT(PAGE_LOCKED_SE(pp, se));
4761 	ASSERT(!PP_ISFREE(pp));
4762 	if (pszc == 0) {
4763 		return (1);
4764 	}
4765 	npgs = page_get_pagecnt(pszc);
4766 	tpp = pp + 1;
4767 	for (i = 1; i < npgs; i++, tpp++) {
4768 		if (!page_trylock(tpp, se)) {
4769 			tpp = pp + 1;
4770 			for (j = 1; j < i; j++, tpp++) {
4771 				page_unlock(tpp);
4772 			}
4773 			return (0);
4774 		}
4775 	}
4776 	if (pp->p_szc != pszc) {
4777 		ASSERT(pp->p_szc < pszc);
4778 		ASSERT(pp->p_vnode != NULL && !PP_ISKAS(pp) &&
4779 		    !IS_SWAPFSVP(pp->p_vnode));
4780 		tpp = pp + 1;
4781 		for (i = 1; i < npgs; i++, tpp++) {
4782 			page_unlock(tpp);
4783 		}
4784 		pszc = pp->p_szc;
4785 		goto retry;
4786 	}
4787 	return (1);
4788 }
4789 
4790 void
4791 group_page_unlock(page_t *pp)
4792 {
4793 	page_t *tpp;
4794 	pgcnt_t	npgs, i;
4795 
4796 	ASSERT(PAGE_LOCKED(pp));
4797 	ASSERT(!PP_ISFREE(pp));
4798 	ASSERT(pp == PP_PAGEROOT(pp));
4799 	npgs = page_get_pagecnt(pp->p_szc);
4800 	for (i = 1, tpp = pp + 1; i < npgs; i++, tpp++) {
4801 		page_unlock(tpp);
4802 	}
4803 }
4804 
4805 /*
4806  * returns
4807  * 0 		: on success and *nrelocp is number of relocated PAGESIZE pages
4808  * ERANGE	: this is not a base page
4809  * EBUSY	: failure to get locks on the page/pages
4810  * ENOMEM	: failure to obtain replacement pages
4811  * EAGAIN	: OBP has not yet completed its boot-time handoff to the kernel
4812  * EIO		: An error occurred while trying to copy the page data
4813  *
4814  * Return with all constituent members of target and replacement
4815  * SE_EXCL locked. It is the callers responsibility to drop the
4816  * locks.
4817  */
4818 int
4819 do_page_relocate(
4820 	page_t **target,
4821 	page_t **replacement,
4822 	int grouplock,
4823 	spgcnt_t *nrelocp,
4824 	lgrp_t *lgrp)
4825 {
4826 	page_t *first_repl;
4827 	page_t *repl;
4828 	page_t *targ;
4829 	page_t *pl = NULL;
4830 	uint_t ppattr;
4831 	pfn_t   pfn, repl_pfn;
4832 	uint_t	szc;
4833 	spgcnt_t npgs, i;
4834 	int repl_contig = 0;
4835 	uint_t flags = 0;
4836 	spgcnt_t dofree = 0;
4837 
4838 	*nrelocp = 0;
4839 
4840 #if defined(__sparc)
4841 	/*
4842 	 * We need to wait till OBP has completed
4843 	 * its boot-time handoff of its resources to the kernel
4844 	 * before we allow page relocation
4845 	 */
4846 	if (page_relocate_ready == 0) {
4847 		return (EAGAIN);
4848 	}
4849 #endif
4850 
4851 	/*
4852 	 * If this is not a base page,
4853 	 * just return with 0x0 pages relocated.
4854 	 */
4855 	targ = *target;
4856 	ASSERT(PAGE_EXCL(targ));
4857 	ASSERT(!PP_ISFREE(targ));
4858 	szc = targ->p_szc;
4859 	ASSERT(szc < mmu_page_sizes);
4860 	VM_STAT_ADD(vmm_vmstats.ppr_reloc[szc]);
4861 	pfn = targ->p_pagenum;
4862 	if (pfn != PFN_BASE(pfn, szc)) {
4863 		VM_STAT_ADD(vmm_vmstats.ppr_relocnoroot[szc]);
4864 		return (ERANGE);
4865 	}
4866 
4867 	if ((repl = *replacement) != NULL && repl->p_szc >= szc) {
4868 		repl_pfn = repl->p_pagenum;
4869 		if (repl_pfn != PFN_BASE(repl_pfn, szc)) {
4870 			VM_STAT_ADD(vmm_vmstats.ppr_reloc_replnoroot[szc]);
4871 			return (ERANGE);
4872 		}
4873 		repl_contig = 1;
4874 	}
4875 
4876 	/*
4877 	 * We must lock all members of this large page or we cannot
4878 	 * relocate any part of it.
4879 	 */
4880 	if (grouplock != 0 && !group_page_trylock(targ, SE_EXCL)) {
4881 		VM_STAT_ADD(vmm_vmstats.ppr_relocnolock[targ->p_szc]);
4882 		return (EBUSY);
4883 	}
4884 
4885 	/*
4886 	 * reread szc it could have been decreased before
4887 	 * group_page_trylock() was done.
4888 	 */
4889 	szc = targ->p_szc;
4890 	ASSERT(szc < mmu_page_sizes);
4891 	VM_STAT_ADD(vmm_vmstats.ppr_reloc[szc]);
4892 	ASSERT(pfn == PFN_BASE(pfn, szc));
4893 
4894 	npgs = page_get_pagecnt(targ->p_szc);
4895 
4896 	if (repl == NULL) {
4897 		dofree = npgs;		/* Size of target page in MMU pages */
4898 		if (!page_create_wait(dofree, 0)) {
4899 			if (grouplock != 0) {
4900 				group_page_unlock(targ);
4901 			}
4902 			VM_STAT_ADD(vmm_vmstats.ppr_relocnomem[szc]);
4903 			return (ENOMEM);
4904 		}
4905 
4906 		/*
4907 		 * seg kmem pages require that the target and replacement
4908 		 * page be the same pagesize.
4909 		 */
4910 		flags = (VN_ISKAS(targ->p_vnode)) ? PGR_SAMESZC : 0;
4911 		repl = page_get_replacement_page(targ, lgrp, flags);
4912 		if (repl == NULL) {
4913 			if (grouplock != 0) {
4914 				group_page_unlock(targ);
4915 			}
4916 			page_create_putback(dofree);
4917 			VM_STAT_ADD(vmm_vmstats.ppr_relocnomem[szc]);
4918 			return (ENOMEM);
4919 		}
4920 	}
4921 #ifdef DEBUG
4922 	else {
4923 		ASSERT(PAGE_LOCKED(repl));
4924 	}
4925 #endif /* DEBUG */
4926 
4927 #if defined(__sparc)
4928 	/*
4929 	 * Let hat_page_relocate() complete the relocation if it's kernel page
4930 	 */
4931 	if (VN_ISKAS(targ->p_vnode)) {
4932 		*replacement = repl;
4933 		if (hat_page_relocate(target, replacement, nrelocp) != 0) {
4934 			if (grouplock != 0) {
4935 				group_page_unlock(targ);
4936 			}
4937 			if (dofree) {
4938 				*replacement = NULL;
4939 				page_free_replacement_page(repl);
4940 				page_create_putback(dofree);
4941 			}
4942 			VM_STAT_ADD(vmm_vmstats.ppr_krelocfail[szc]);
4943 			return (EAGAIN);
4944 		}
4945 		VM_STAT_ADD(vmm_vmstats.ppr_relocok[szc]);
4946 		return (0);
4947 	}
4948 #else
4949 #if defined(lint)
4950 	dofree = dofree;
4951 #endif
4952 #endif
4953 
4954 	first_repl = repl;
4955 
4956 	for (i = 0; i < npgs; i++) {
4957 		ASSERT(PAGE_EXCL(targ));
4958 		ASSERT(targ->p_slckcnt == 0);
4959 		ASSERT(repl->p_slckcnt == 0);
4960 
4961 		(void) hat_pageunload(targ, HAT_FORCE_PGUNLOAD);
4962 
4963 		ASSERT(hat_page_getshare(targ) == 0);
4964 		ASSERT(!PP_ISFREE(targ));
4965 		ASSERT(targ->p_pagenum == (pfn + i));
4966 		ASSERT(repl_contig == 0 ||
4967 		    repl->p_pagenum == (repl_pfn + i));
4968 
4969 		/*
4970 		 * Copy the page contents and attributes then
4971 		 * relocate the page in the page hash.
4972 		 */
4973 		if (ppcopy(targ, repl) == 0) {
4974 			targ = *target;
4975 			repl = first_repl;
4976 			VM_STAT_ADD(vmm_vmstats.ppr_copyfail);
4977 			if (grouplock != 0) {
4978 				group_page_unlock(targ);
4979 			}
4980 			if (dofree) {
4981 				*replacement = NULL;
4982 				page_free_replacement_page(repl);
4983 				page_create_putback(dofree);
4984 			}
4985 			return (EIO);
4986 		}
4987 
4988 		targ++;
4989 		if (repl_contig != 0) {
4990 			repl++;
4991 		} else {
4992 			repl = repl->p_next;
4993 		}
4994 	}
4995 
4996 	repl = first_repl;
4997 	targ = *target;
4998 
4999 	for (i = 0; i < npgs; i++) {
5000 		ppattr = hat_page_getattr(targ, (P_MOD | P_REF | P_RO));
5001 		page_clr_all_props(repl);
5002 		page_set_props(repl, ppattr);
5003 		page_relocate_hash(repl, targ);
5004 
5005 		ASSERT(hat_page_getshare(targ) == 0);
5006 		ASSERT(hat_page_getshare(repl) == 0);
5007 		/*
5008 		 * Now clear the props on targ, after the
5009 		 * page_relocate_hash(), they no longer
5010 		 * have any meaning.
5011 		 */
5012 		page_clr_all_props(targ);
5013 		ASSERT(targ->p_next == targ);
5014 		ASSERT(targ->p_prev == targ);
5015 		page_list_concat(&pl, &targ);
5016 
5017 		targ++;
5018 		if (repl_contig != 0) {
5019 			repl++;
5020 		} else {
5021 			repl = repl->p_next;
5022 		}
5023 	}
5024 	/* assert that we have come full circle with repl */
5025 	ASSERT(repl_contig == 1 || first_repl == repl);
5026 
5027 	*target = pl;
5028 	if (*replacement == NULL) {
5029 		ASSERT(first_repl == repl);
5030 		*replacement = repl;
5031 	}
5032 	VM_STAT_ADD(vmm_vmstats.ppr_relocok[szc]);
5033 	*nrelocp = npgs;
5034 	return (0);
5035 }
5036 /*
5037  * On success returns 0 and *nrelocp the number of PAGESIZE pages relocated.
5038  */
5039 int
5040 page_relocate(
5041 	page_t **target,
5042 	page_t **replacement,
5043 	int grouplock,
5044 	int freetarget,
5045 	spgcnt_t *nrelocp,
5046 	lgrp_t *lgrp)
5047 {
5048 	spgcnt_t ret;
5049 
5050 	/* do_page_relocate returns 0 on success or errno value */
5051 	ret = do_page_relocate(target, replacement, grouplock, nrelocp, lgrp);
5052 
5053 	if (ret != 0 || freetarget == 0) {
5054 		return (ret);
5055 	}
5056 	if (*nrelocp == 1) {
5057 		ASSERT(*target != NULL);
5058 		page_free(*target, 1);
5059 	} else {
5060 		page_t *tpp = *target;
5061 		uint_t szc = tpp->p_szc;
5062 		pgcnt_t npgs = page_get_pagecnt(szc);
5063 		ASSERT(npgs > 1);
5064 		ASSERT(szc != 0);
5065 		do {
5066 			ASSERT(PAGE_EXCL(tpp));
5067 			ASSERT(!hat_page_is_mapped(tpp));
5068 			ASSERT(tpp->p_szc == szc);
5069 			PP_SETFREE(tpp);
5070 			PP_SETAGED(tpp);
5071 			npgs--;
5072 		} while ((tpp = tpp->p_next) != *target);
5073 		ASSERT(npgs == 0);
5074 		page_list_add_pages(*target, 0);
5075 		npgs = page_get_pagecnt(szc);
5076 		page_create_putback(npgs);
5077 	}
5078 	return (ret);
5079 }
5080 
5081 /*
5082  * it is up to the caller to deal with pcf accounting.
5083  */
5084 void
5085 page_free_replacement_page(page_t *pplist)
5086 {
5087 	page_t *pp;
5088 
5089 	while (pplist != NULL) {
5090 		/*
5091 		 * pp_targ is a linked list.
5092 		 */
5093 		pp = pplist;
5094 		if (pp->p_szc == 0) {
5095 			page_sub(&pplist, pp);
5096 			page_clr_all_props(pp);
5097 			PP_SETFREE(pp);
5098 			PP_SETAGED(pp);
5099 			page_list_add(pp, PG_FREE_LIST | PG_LIST_TAIL);
5100 			page_unlock(pp);
5101 			VM_STAT_ADD(pagecnt.pc_free_replacement_page[0]);
5102 		} else {
5103 			spgcnt_t curnpgs = page_get_pagecnt(pp->p_szc);
5104 			page_t *tpp;
5105 			page_list_break(&pp, &pplist, curnpgs);
5106 			tpp = pp;
5107 			do {
5108 				ASSERT(PAGE_EXCL(tpp));
5109 				ASSERT(!hat_page_is_mapped(tpp));
5110 				page_clr_all_props(pp);
5111 				PP_SETFREE(tpp);
5112 				PP_SETAGED(tpp);
5113 			} while ((tpp = tpp->p_next) != pp);
5114 			page_list_add_pages(pp, 0);
5115 			VM_STAT_ADD(pagecnt.pc_free_replacement_page[1]);
5116 		}
5117 	}
5118 }
5119 
5120 /*
5121  * Relocate target to non-relocatable replacement page.
5122  */
5123 int
5124 page_relocate_cage(page_t **target, page_t **replacement)
5125 {
5126 	page_t *tpp, *rpp;
5127 	spgcnt_t pgcnt, npgs;
5128 	int result;
5129 
5130 	tpp = *target;
5131 
5132 	ASSERT(PAGE_EXCL(tpp));
5133 	ASSERT(tpp->p_szc == 0);
5134 
5135 	pgcnt = btop(page_get_pagesize(tpp->p_szc));
5136 
5137 	do {
5138 		(void) page_create_wait(pgcnt, PG_WAIT | PG_NORELOC);
5139 		rpp = page_get_replacement_page(tpp, NULL, PGR_NORELOC);
5140 		if (rpp == NULL) {
5141 			page_create_putback(pgcnt);
5142 			kcage_cageout_wakeup();
5143 		}
5144 	} while (rpp == NULL);
5145 
5146 	ASSERT(PP_ISNORELOC(rpp));
5147 
5148 	result = page_relocate(&tpp, &rpp, 0, 1, &npgs, NULL);
5149 
5150 	if (result == 0) {
5151 		*replacement = rpp;
5152 		if (pgcnt != npgs)
5153 			panic("page_relocate_cage: partial relocation");
5154 	}
5155 
5156 	return (result);
5157 }
5158 
5159 /*
5160  * Release the page lock on a page, place on cachelist
5161  * tail if no longer mapped. Caller can let us know if
5162  * the page is known to be clean.
5163  */
5164 int
5165 page_release(page_t *pp, int checkmod)
5166 {
5167 	int status;
5168 
5169 	ASSERT(PAGE_LOCKED(pp) && !PP_ISFREE(pp) &&
5170 	    (pp->p_vnode != NULL));
5171 
5172 	if (!hat_page_is_mapped(pp) && !IS_SWAPVP(pp->p_vnode) &&
5173 	    ((PAGE_SHARED(pp) && page_tryupgrade(pp)) || PAGE_EXCL(pp)) &&
5174 	    pp->p_lckcnt == 0 && pp->p_cowcnt == 0 &&
5175 	    !hat_page_is_mapped(pp)) {
5176 
5177 		/*
5178 		 * If page is modified, unlock it
5179 		 *
5180 		 * (p_nrm & P_MOD) bit has the latest stuff because:
5181 		 * (1) We found that this page doesn't have any mappings
5182 		 *	_after_ holding SE_EXCL and
5183 		 * (2) We didn't drop SE_EXCL lock after the check in (1)
5184 		 */
5185 		if (checkmod && hat_ismod(pp)) {
5186 			page_unlock(pp);
5187 			status = PGREL_MOD;
5188 		} else {
5189 			/*LINTED: constant in conditional context*/
5190 			VN_DISPOSE(pp, B_FREE, 0, kcred);
5191 			status = PGREL_CLEAN;
5192 		}
5193 	} else {
5194 		page_unlock(pp);
5195 		status = PGREL_NOTREL;
5196 	}
5197 	return (status);
5198 }
5199 
5200 /*
5201  * Given a constituent page, try to demote the large page on the freelist.
5202  *
5203  * Returns nonzero if the page could be demoted successfully. Returns with
5204  * the constituent page still locked.
5205  */
5206 int
5207 page_try_demote_free_pages(page_t *pp)
5208 {
5209 	page_t *rootpp = pp;
5210 	pfn_t	pfn = page_pptonum(pp);
5211 	spgcnt_t npgs;
5212 	uint_t	szc = pp->p_szc;
5213 
5214 	ASSERT(PP_ISFREE(pp));
5215 	ASSERT(PAGE_EXCL(pp));
5216 
5217 	/*
5218 	 * Adjust rootpp and lock it, if `pp' is not the base
5219 	 * constituent page.
5220 	 */
5221 	npgs = page_get_pagecnt(pp->p_szc);
5222 	if (npgs == 1) {
5223 		return (0);
5224 	}
5225 
5226 	if (!IS_P2ALIGNED(pfn, npgs)) {
5227 		pfn = P2ALIGN(pfn, npgs);
5228 		rootpp = page_numtopp_nolock(pfn);
5229 	}
5230 
5231 	if (pp != rootpp && !page_trylock(rootpp, SE_EXCL)) {
5232 		return (0);
5233 	}
5234 
5235 	if (rootpp->p_szc != szc) {
5236 		if (pp != rootpp)
5237 			page_unlock(rootpp);
5238 		return (0);
5239 	}
5240 
5241 	page_demote_free_pages(rootpp);
5242 
5243 	if (pp != rootpp)
5244 		page_unlock(rootpp);
5245 
5246 	ASSERT(PP_ISFREE(pp));
5247 	ASSERT(PAGE_EXCL(pp));
5248 	return (1);
5249 }
5250 
5251 /*
5252  * Given a constituent page, try to demote the large page.
5253  *
5254  * Returns nonzero if the page could be demoted successfully. Returns with
5255  * the constituent page still locked.
5256  */
5257 int
5258 page_try_demote_pages(page_t *pp)
5259 {
5260 	page_t *tpp, *rootpp = pp;
5261 	pfn_t	pfn = page_pptonum(pp);
5262 	spgcnt_t i, npgs;
5263 	uint_t	szc = pp->p_szc;
5264 	vnode_t *vp = pp->p_vnode;
5265 
5266 	ASSERT(PAGE_EXCL(pp));
5267 
5268 	VM_STAT_ADD(pagecnt.pc_try_demote_pages[0]);
5269 
5270 	if (pp->p_szc == 0) {
5271 		VM_STAT_ADD(pagecnt.pc_try_demote_pages[1]);
5272 		return (1);
5273 	}
5274 
5275 	if (vp != NULL && !IS_SWAPFSVP(vp) && !VN_ISKAS(vp)) {
5276 		VM_STAT_ADD(pagecnt.pc_try_demote_pages[2]);
5277 		page_demote_vp_pages(pp);
5278 		ASSERT(pp->p_szc == 0);
5279 		return (1);
5280 	}
5281 
5282 	/*
5283 	 * Adjust rootpp if passed in is not the base
5284 	 * constituent page.
5285 	 */
5286 	npgs = page_get_pagecnt(pp->p_szc);
5287 	ASSERT(npgs > 1);
5288 	if (!IS_P2ALIGNED(pfn, npgs)) {
5289 		pfn = P2ALIGN(pfn, npgs);
5290 		rootpp = page_numtopp_nolock(pfn);
5291 		VM_STAT_ADD(pagecnt.pc_try_demote_pages[3]);
5292 		ASSERT(rootpp->p_vnode != NULL);
5293 		ASSERT(rootpp->p_szc == szc);
5294 	}
5295 
5296 	/*
5297 	 * We can't demote kernel pages since we can't hat_unload()
5298 	 * the mappings.
5299 	 */
5300 	if (VN_ISKAS(rootpp->p_vnode))
5301 		return (0);
5302 
5303 	/*
5304 	 * Attempt to lock all constituent pages except the page passed
5305 	 * in since it's already locked.
5306 	 */
5307 	for (tpp = rootpp, i = 0; i < npgs; i++, tpp++) {
5308 		ASSERT(!PP_ISFREE(tpp));
5309 		ASSERT(tpp->p_vnode != NULL);
5310 
5311 		if (tpp != pp && !page_trylock(tpp, SE_EXCL))
5312 			break;
5313 		ASSERT(tpp->p_szc == rootpp->p_szc);
5314 		ASSERT(page_pptonum(tpp) == page_pptonum(rootpp) + i);
5315 	}
5316 
5317 	/*
5318 	 * If we failed to lock them all then unlock what we have
5319 	 * locked so far and bail.
5320 	 */
5321 	if (i < npgs) {
5322 		tpp = rootpp;
5323 		while (i-- > 0) {
5324 			if (tpp != pp)
5325 				page_unlock(tpp);
5326 			tpp++;
5327 		}
5328 		VM_STAT_ADD(pagecnt.pc_try_demote_pages[4]);
5329 		return (0);
5330 	}
5331 
5332 	for (tpp = rootpp, i = 0; i < npgs; i++, tpp++) {
5333 		ASSERT(PAGE_EXCL(tpp));
5334 		ASSERT(tpp->p_slckcnt == 0);
5335 		(void) hat_pageunload(tpp, HAT_FORCE_PGUNLOAD);
5336 		tpp->p_szc = 0;
5337 	}
5338 
5339 	/*
5340 	 * Unlock all pages except the page passed in.
5341 	 */
5342 	for (tpp = rootpp, i = 0; i < npgs; i++, tpp++) {
5343 		ASSERT(!hat_page_is_mapped(tpp));
5344 		if (tpp != pp)
5345 			page_unlock(tpp);
5346 	}
5347 
5348 	VM_STAT_ADD(pagecnt.pc_try_demote_pages[5]);
5349 	return (1);
5350 }
5351 
5352 /*
5353  * Called by page_free() and page_destroy() to demote the page size code
5354  * (p_szc) to 0 (since we can't just put a single PAGESIZE page with non zero
5355  * p_szc on free list, neither can we just clear p_szc of a single page_t
5356  * within a large page since it will break other code that relies on p_szc
5357  * being the same for all page_t's of a large page). Anonymous pages should
5358  * never end up here because anon_map_getpages() cannot deal with p_szc
5359  * changes after a single constituent page is locked.  While anonymous or
5360  * kernel large pages are demoted or freed the entire large page at a time
5361  * with all constituent pages locked EXCL for the file system pages we
5362  * have to be able to demote a large page (i.e. decrease all constituent pages
5363  * p_szc) with only just an EXCL lock on one of constituent pages. The reason
5364  * we can easily deal with anonymous page demotion the entire large page at a
5365  * time is that those operation originate at address space level and concern
5366  * the entire large page region with actual demotion only done when pages are
5367  * not shared with any other processes (therefore we can always get EXCL lock
5368  * on all anonymous constituent pages after clearing segment page
5369  * cache). However file system pages can be truncated or invalidated at a
5370  * PAGESIZE level from the file system side and end up in page_free() or
5371  * page_destroy() (we also allow only part of the large page to be SOFTLOCKed
5372  * and therefore pageout should be able to demote a large page by EXCL locking
5373  * any constituent page that is not under SOFTLOCK). In those cases we cannot
5374  * rely on being able to lock EXCL all constituent pages.
5375  *
5376  * To prevent szc changes on file system pages one has to lock all constituent
5377  * pages at least SHARED (or call page_szc_lock()). The only subsystem that
5378  * doesn't rely on locking all constituent pages (or using page_szc_lock()) to
5379  * prevent szc changes is hat layer that uses its own page level mlist
5380  * locks. hat assumes that szc doesn't change after mlist lock for a page is
5381  * taken. Therefore we need to change szc under hat level locks if we only
5382  * have an EXCL lock on a single constituent page and hat still references any
5383  * of constituent pages.  (Note we can't "ignore" hat layer by simply
5384  * hat_pageunload() all constituent pages without having EXCL locks on all of
5385  * constituent pages). We use hat_page_demote() call to safely demote szc of
5386  * all constituent pages under hat locks when we only have an EXCL lock on one
5387  * of constituent pages.
5388  *
5389  * This routine calls page_szc_lock() before calling hat_page_demote() to
5390  * allow segvn in one special case not to lock all constituent pages SHARED
5391  * before calling hat_memload_array() that relies on p_szc not changing even
5392  * before hat level mlist lock is taken.  In that case segvn uses
5393  * page_szc_lock() to prevent hat_page_demote() changing p_szc values.
5394  *
5395  * Anonymous or kernel page demotion still has to lock all pages exclusively
5396  * and do hat_pageunload() on all constituent pages before demoting the page
5397  * therefore there's no need for anonymous or kernel page demotion to use
5398  * hat_page_demote() mechanism.
5399  *
5400  * hat_page_demote() removes all large mappings that map pp and then decreases
5401  * p_szc starting from the last constituent page of the large page. By working
5402  * from the tail of a large page in pfn decreasing order allows one looking at
5403  * the root page to know that hat_page_demote() is done for root's szc area.
5404  * e.g. if a root page has szc 1 one knows it only has to lock all constituent
5405  * pages within szc 1 area to prevent szc changes because hat_page_demote()
5406  * that started on this page when it had szc > 1 is done for this szc 1 area.
5407  *
5408  * We are guaranteed that all constituent pages of pp's large page belong to
5409  * the same vnode with the consecutive offsets increasing in the direction of
5410  * the pfn i.e. the identity of constituent pages can't change until their
5411  * p_szc is decreased. Therefore it's safe for hat_page_demote() to remove
5412  * large mappings to pp even though we don't lock any constituent page except
5413  * pp (i.e. we won't unload e.g. kernel locked page).
5414  */
5415 static void
5416 page_demote_vp_pages(page_t *pp)
5417 {
5418 	kmutex_t *mtx;
5419 
5420 	ASSERT(PAGE_EXCL(pp));
5421 	ASSERT(!PP_ISFREE(pp));
5422 	ASSERT(pp->p_vnode != NULL);
5423 	ASSERT(!IS_SWAPFSVP(pp->p_vnode));
5424 	ASSERT(!PP_ISKAS(pp));
5425 
5426 	VM_STAT_ADD(pagecnt.pc_demote_pages[0]);
5427 
5428 	mtx = page_szc_lock(pp);
5429 	if (mtx != NULL) {
5430 		hat_page_demote(pp);
5431 		mutex_exit(mtx);
5432 	}
5433 	ASSERT(pp->p_szc == 0);
5434 }
5435 
5436 /*
5437  * Mark any existing pages for migration in the given range
5438  */
5439 void
5440 page_mark_migrate(struct seg *seg, caddr_t addr, size_t len,
5441     struct anon_map *amp, ulong_t anon_index, vnode_t *vp,
5442     u_offset_t vnoff, int rflag)
5443 {
5444 	struct anon	*ap;
5445 	vnode_t		*curvp;
5446 	lgrp_t		*from;
5447 	pgcnt_t		i;
5448 	pgcnt_t		nlocked;
5449 	u_offset_t	off;
5450 	pfn_t		pfn;
5451 	size_t		pgsz;
5452 	size_t		segpgsz;
5453 	pgcnt_t		pages;
5454 	uint_t		pszc;
5455 	page_t		**ppa;
5456 	pgcnt_t		ppa_nentries;
5457 	page_t		*pp;
5458 	caddr_t		va;
5459 	ulong_t		an_idx;
5460 	anon_sync_obj_t	cookie;
5461 
5462 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
5463 
5464 	/*
5465 	 * Don't do anything if don't need to do lgroup optimizations
5466 	 * on this system
5467 	 */
5468 	if (!lgrp_optimizations())
5469 		return;
5470 
5471 	/*
5472 	 * Align address and length to (potentially large) page boundary
5473 	 */
5474 	segpgsz = page_get_pagesize(seg->s_szc);
5475 	addr = (caddr_t)P2ALIGN((uintptr_t)addr, segpgsz);
5476 	if (rflag)
5477 		len = P2ROUNDUP(len, segpgsz);
5478 
5479 	/*
5480 	 * Allocate page array to accommodate largest page size
5481 	 */
5482 	pgsz = page_get_pagesize(page_num_pagesizes() - 1);
5483 	ppa_nentries = btop(pgsz);
5484 	ppa = kmem_zalloc(ppa_nentries * sizeof (page_t *), KM_SLEEP);
5485 
5486 	/*
5487 	 * Do one (large) page at a time
5488 	 */
5489 	va = addr;
5490 	while (va < addr + len) {
5491 		/*
5492 		 * Lookup (root) page for vnode and offset corresponding to
5493 		 * this virtual address
5494 		 * Try anonmap first since there may be copy-on-write
5495 		 * pages, but initialize vnode pointer and offset using
5496 		 * vnode arguments just in case there isn't an amp.
5497 		 */
5498 		curvp = vp;
5499 		off = vnoff + va - seg->s_base;
5500 		if (amp) {
5501 			ANON_LOCK_ENTER(&amp->a_rwlock, RW_READER);
5502 			an_idx = anon_index + seg_page(seg, va);
5503 			anon_array_enter(amp, an_idx, &cookie);
5504 			ap = anon_get_ptr(amp->ahp, an_idx);
5505 			if (ap)
5506 				swap_xlate(ap, &curvp, &off);
5507 			anon_array_exit(&cookie);
5508 			ANON_LOCK_EXIT(&amp->a_rwlock);
5509 		}
5510 
5511 		pp = NULL;
5512 		if (curvp)
5513 			pp = page_lookup(curvp, off, SE_SHARED);
5514 
5515 		/*
5516 		 * If there isn't a page at this virtual address,
5517 		 * skip to next page
5518 		 */
5519 		if (pp == NULL) {
5520 			va += PAGESIZE;
5521 			continue;
5522 		}
5523 
5524 		/*
5525 		 * Figure out which lgroup this page is in for kstats
5526 		 */
5527 		pfn = page_pptonum(pp);
5528 		from = lgrp_pfn_to_lgrp(pfn);
5529 
5530 		/*
5531 		 * Get page size, and round up and skip to next page boundary
5532 		 * if unaligned address
5533 		 */
5534 		pszc = pp->p_szc;
5535 		pgsz = page_get_pagesize(pszc);
5536 		pages = btop(pgsz);
5537 		if (!IS_P2ALIGNED(va, pgsz) ||
5538 		    !IS_P2ALIGNED(pfn, pages) ||
5539 		    pgsz > segpgsz) {
5540 			pgsz = MIN(pgsz, segpgsz);
5541 			page_unlock(pp);
5542 			i = btop(P2END((uintptr_t)va, pgsz) -
5543 			    (uintptr_t)va);
5544 			va = (caddr_t)P2END((uintptr_t)va, pgsz);
5545 			lgrp_stat_add(from->lgrp_id, LGRP_PMM_FAIL_PGS, i);
5546 			continue;
5547 		}
5548 
5549 		/*
5550 		 * Upgrade to exclusive lock on page
5551 		 */
5552 		if (!page_tryupgrade(pp)) {
5553 			page_unlock(pp);
5554 			va += pgsz;
5555 			lgrp_stat_add(from->lgrp_id, LGRP_PMM_FAIL_PGS,
5556 			    btop(pgsz));
5557 			continue;
5558 		}
5559 
5560 		/*
5561 		 * Remember pages locked exclusively and how many
5562 		 */
5563 		ppa[0] = pp;
5564 		nlocked = 1;
5565 
5566 		/*
5567 		 * Lock constituent pages if this is large page
5568 		 */
5569 		if (pages > 1) {
5570 			/*
5571 			 * Lock all constituents except root page, since it
5572 			 * should be locked already.
5573 			 */
5574 			for (i = 1; i < pages; i++) {
5575 				pp++;
5576 				if (!page_trylock(pp, SE_EXCL)) {
5577 					break;
5578 				}
5579 				if (PP_ISFREE(pp) ||
5580 				    pp->p_szc != pszc) {
5581 					/*
5582 					 * hat_page_demote() raced in with us.
5583 					 */
5584 					ASSERT(!IS_SWAPFSVP(curvp));
5585 					page_unlock(pp);
5586 					break;
5587 				}
5588 				ppa[nlocked] = pp;
5589 				nlocked++;
5590 			}
5591 		}
5592 
5593 		/*
5594 		 * If all constituent pages couldn't be locked,
5595 		 * unlock pages locked so far and skip to next page.
5596 		 */
5597 		if (nlocked != pages) {
5598 			for (i = 0; i < nlocked; i++)
5599 				page_unlock(ppa[i]);
5600 			va += pgsz;
5601 			lgrp_stat_add(from->lgrp_id, LGRP_PMM_FAIL_PGS,
5602 			    btop(pgsz));
5603 			continue;
5604 		}
5605 
5606 		/*
5607 		 * hat_page_demote() can no longer happen
5608 		 * since last cons page had the right p_szc after
5609 		 * all cons pages were locked. all cons pages
5610 		 * should now have the same p_szc.
5611 		 */
5612 
5613 		/*
5614 		 * All constituent pages locked successfully, so mark
5615 		 * large page for migration and unload the mappings of
5616 		 * constituent pages, so a fault will occur on any part of the
5617 		 * large page
5618 		 */
5619 		PP_SETMIGRATE(ppa[0]);
5620 		for (i = 0; i < nlocked; i++) {
5621 			pp = ppa[i];
5622 			(void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD);
5623 			ASSERT(hat_page_getshare(pp) == 0);
5624 			page_unlock(pp);
5625 		}
5626 		lgrp_stat_add(from->lgrp_id, LGRP_PMM_PGS, nlocked);
5627 
5628 		va += pgsz;
5629 	}
5630 	kmem_free(ppa, ppa_nentries * sizeof (page_t *));
5631 }
5632 
5633 /*
5634  * Migrate any pages that have been marked for migration in the given range
5635  */
5636 void
5637 page_migrate(
5638 	struct seg	*seg,
5639 	caddr_t		addr,
5640 	page_t		**ppa,
5641 	pgcnt_t		npages)
5642 {
5643 	lgrp_t		*from;
5644 	lgrp_t		*to;
5645 	page_t		*newpp;
5646 	page_t		*pp;
5647 	pfn_t		pfn;
5648 	size_t		pgsz;
5649 	spgcnt_t	page_cnt;
5650 	spgcnt_t	i;
5651 	uint_t		pszc;
5652 
5653 	ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock));
5654 
5655 	while (npages > 0) {
5656 		pp = *ppa;
5657 		pszc = pp->p_szc;
5658 		pgsz = page_get_pagesize(pszc);
5659 		page_cnt = btop(pgsz);
5660 
5661 		/*
5662 		 * Check to see whether this page is marked for migration
5663 		 *
5664 		 * Assume that root page of large page is marked for
5665 		 * migration and none of the other constituent pages
5666 		 * are marked.  This really simplifies clearing the
5667 		 * migrate bit by not having to clear it from each
5668 		 * constituent page.
5669 		 *
5670 		 * note we don't want to relocate an entire large page if
5671 		 * someone is only using one subpage.
5672 		 */
5673 		if (npages < page_cnt)
5674 			break;
5675 
5676 		/*
5677 		 * Is it marked for migration?
5678 		 */
5679 		if (!PP_ISMIGRATE(pp))
5680 			goto next;
5681 
5682 		/*
5683 		 * Determine lgroups that page is being migrated between
5684 		 */
5685 		pfn = page_pptonum(pp);
5686 		if (!IS_P2ALIGNED(pfn, page_cnt)) {
5687 			break;
5688 		}
5689 		from = lgrp_pfn_to_lgrp(pfn);
5690 		to = lgrp_mem_choose(seg, addr, pgsz);
5691 
5692 		/*
5693 		 * Need to get exclusive lock's to migrate
5694 		 */
5695 		for (i = 0; i < page_cnt; i++) {
5696 			ASSERT(PAGE_LOCKED(ppa[i]));
5697 			if (page_pptonum(ppa[i]) != pfn + i ||
5698 			    ppa[i]->p_szc != pszc) {
5699 				break;
5700 			}
5701 			if (!page_tryupgrade(ppa[i])) {
5702 				lgrp_stat_add(from->lgrp_id,
5703 				    LGRP_PM_FAIL_LOCK_PGS,
5704 				    page_cnt);
5705 				break;
5706 			}
5707 
5708 			/*
5709 			 * Check to see whether we are trying to migrate
5710 			 * page to lgroup where it is allocated already.
5711 			 * If so, clear the migrate bit and skip to next
5712 			 * page.
5713 			 */
5714 			if (i == 0 && to == from) {
5715 				PP_CLRMIGRATE(ppa[0]);
5716 				page_downgrade(ppa[0]);
5717 				goto next;
5718 			}
5719 		}
5720 
5721 		/*
5722 		 * If all constituent pages couldn't be locked,
5723 		 * unlock pages locked so far and skip to next page.
5724 		 */
5725 		if (i != page_cnt) {
5726 			while (--i != -1) {
5727 				page_downgrade(ppa[i]);
5728 			}
5729 			goto next;
5730 		}
5731 
5732 		(void) page_create_wait(page_cnt, PG_WAIT);
5733 		newpp = page_get_replacement_page(pp, to, PGR_SAMESZC);
5734 		if (newpp == NULL) {
5735 			page_create_putback(page_cnt);
5736 			for (i = 0; i < page_cnt; i++) {
5737 				page_downgrade(ppa[i]);
5738 			}
5739 			lgrp_stat_add(to->lgrp_id, LGRP_PM_FAIL_ALLOC_PGS,
5740 			    page_cnt);
5741 			goto next;
5742 		}
5743 		ASSERT(newpp->p_szc == pszc);
5744 		/*
5745 		 * Clear migrate bit and relocate page
5746 		 */
5747 		PP_CLRMIGRATE(pp);
5748 		if (page_relocate(&pp, &newpp, 0, 1, &page_cnt, to)) {
5749 			panic("page_migrate: page_relocate failed");
5750 		}
5751 		ASSERT(page_cnt * PAGESIZE == pgsz);
5752 
5753 		/*
5754 		 * Keep stats for number of pages migrated from and to
5755 		 * each lgroup
5756 		 */
5757 		lgrp_stat_add(from->lgrp_id, LGRP_PM_SRC_PGS, page_cnt);
5758 		lgrp_stat_add(to->lgrp_id, LGRP_PM_DEST_PGS, page_cnt);
5759 		/*
5760 		 * update the page_t array we were passed in and
5761 		 * unlink constituent pages of a large page.
5762 		 */
5763 		for (i = 0; i < page_cnt; ++i, ++pp) {
5764 			ASSERT(PAGE_EXCL(newpp));
5765 			ASSERT(newpp->p_szc == pszc);
5766 			ppa[i] = newpp;
5767 			pp = newpp;
5768 			page_sub(&newpp, pp);
5769 			page_downgrade(pp);
5770 		}
5771 		ASSERT(newpp == NULL);
5772 next:
5773 		addr += pgsz;
5774 		ppa += page_cnt;
5775 		npages -= page_cnt;
5776 	}
5777 }
5778 
5779 ulong_t mem_waiters 	= 0;
5780 ulong_t	max_count 	= 20;
5781 #define	MAX_DELAY	0x1ff
5782 
5783 /*
5784  * Check if enough memory is available to proceed.
5785  * Depending on system configuration and how much memory is
5786  * reserved for swap we need to check against two variables.
5787  * e.g. on systems with little physical swap availrmem can be
5788  * more reliable indicator of how much memory is available.
5789  * On systems with large phys swap freemem can be better indicator.
5790  * If freemem drops below threshold level don't return an error
5791  * immediately but wake up pageout to free memory and block.
5792  * This is done number of times. If pageout is not able to free
5793  * memory within certain time return an error.
5794  * The same applies for availrmem but kmem_reap is used to
5795  * free memory.
5796  */
5797 int
5798 page_mem_avail(pgcnt_t npages)
5799 {
5800 	ulong_t count;
5801 
5802 #if defined(__i386)
5803 	if (freemem > desfree + npages &&
5804 	    availrmem > swapfs_reserve + npages &&
5805 	    btop(vmem_size(heap_arena, VMEM_FREE)) > tune.t_minarmem +
5806 	    npages)
5807 		return (1);
5808 #else
5809 	if (freemem > desfree + npages &&
5810 	    availrmem > swapfs_reserve + npages)
5811 		return (1);
5812 #endif
5813 
5814 	count = max_count;
5815 	atomic_add_long(&mem_waiters, 1);
5816 
5817 	while (freemem < desfree + npages && --count) {
5818 		cv_signal(&proc_pageout->p_cv);
5819 		if (delay_sig(hz + (mem_waiters & MAX_DELAY))) {
5820 			atomic_add_long(&mem_waiters, -1);
5821 			return (0);
5822 		}
5823 	}
5824 	if (count == 0) {
5825 		atomic_add_long(&mem_waiters, -1);
5826 		return (0);
5827 	}
5828 
5829 	count = max_count;
5830 	while (availrmem < swapfs_reserve + npages && --count) {
5831 		kmem_reap();
5832 		if (delay_sig(hz + (mem_waiters & MAX_DELAY))) {
5833 			atomic_add_long(&mem_waiters, -1);
5834 			return (0);
5835 		}
5836 	}
5837 	atomic_add_long(&mem_waiters, -1);
5838 	if (count == 0)
5839 		return (0);
5840 
5841 #if defined(__i386)
5842 	if (btop(vmem_size(heap_arena, VMEM_FREE)) <
5843 	    tune.t_minarmem + npages)
5844 		return (0);
5845 #endif
5846 	return (1);
5847 }
5848 
5849 #define	MAX_CNT	60	/* max num of iterations */
5850 /*
5851  * Reclaim/reserve availrmem for npages.
5852  * If there is not enough memory start reaping seg, kmem caches.
5853  * Start pageout scanner (via page_needfree()).
5854  * Exit after ~ MAX_CNT s regardless of how much memory has been released.
5855  * Note: There is no guarantee that any availrmem will be freed as
5856  * this memory typically is locked (kernel heap) or reserved for swap.
5857  * Also due to memory fragmentation kmem allocator may not be able
5858  * to free any memory (single user allocated buffer will prevent
5859  * freeing slab or a page).
5860  */
5861 int
5862 page_reclaim_mem(pgcnt_t npages, pgcnt_t epages, int adjust)
5863 {
5864 	int	i = 0;
5865 	int	ret = 0;
5866 	pgcnt_t	deficit;
5867 	pgcnt_t old_availrmem;
5868 
5869 	mutex_enter(&freemem_lock);
5870 	old_availrmem = availrmem - 1;
5871 	while ((availrmem < tune.t_minarmem + npages + epages) &&
5872 	    (old_availrmem < availrmem) && (i++ < MAX_CNT)) {
5873 		old_availrmem = availrmem;
5874 		deficit = tune.t_minarmem + npages + epages - availrmem;
5875 		mutex_exit(&freemem_lock);
5876 		page_needfree(deficit);
5877 		kmem_reap();
5878 		delay(hz);
5879 		page_needfree(-(spgcnt_t)deficit);
5880 		mutex_enter(&freemem_lock);
5881 	}
5882 
5883 	if (adjust && (availrmem >= tune.t_minarmem + npages + epages)) {
5884 		availrmem -= npages;
5885 		ret = 1;
5886 	}
5887 
5888 	mutex_exit(&freemem_lock);
5889 
5890 	return (ret);
5891 }
5892 
5893 /*
5894  * Search the memory segments to locate the desired page.  Within a
5895  * segment, pages increase linearly with one page structure per
5896  * physical page frame (size PAGESIZE).  The search begins
5897  * with the segment that was accessed last, to take advantage of locality.
5898  * If the hint misses, we start from the beginning of the sorted memseg list
5899  */
5900 
5901 
5902 /*
5903  * Some data structures for pfn to pp lookup.
5904  */
5905 ulong_t mhash_per_slot;
5906 struct memseg *memseg_hash[N_MEM_SLOTS];
5907 
5908 page_t *
5909 page_numtopp_nolock(pfn_t pfnum)
5910 {
5911 	struct memseg *seg;
5912 	page_t *pp;
5913 	vm_cpu_data_t *vc = CPU->cpu_vm_data;
5914 
5915 	ASSERT(vc != NULL);
5916 
5917 	MEMSEG_STAT_INCR(nsearch);
5918 
5919 	/* Try last winner first */
5920 	if (((seg = vc->vc_pnum_memseg) != NULL) &&
5921 	    (pfnum >= seg->pages_base) && (pfnum < seg->pages_end)) {
5922 		MEMSEG_STAT_INCR(nlastwon);
5923 		pp = seg->pages + (pfnum - seg->pages_base);
5924 		if (pp->p_pagenum == pfnum)
5925 			return ((page_t *)pp);
5926 	}
5927 
5928 	/* Else Try hash */
5929 	if (((seg = memseg_hash[MEMSEG_PFN_HASH(pfnum)]) != NULL) &&
5930 	    (pfnum >= seg->pages_base) && (pfnum < seg->pages_end)) {
5931 		MEMSEG_STAT_INCR(nhashwon);
5932 		vc->vc_pnum_memseg = seg;
5933 		pp = seg->pages + (pfnum - seg->pages_base);
5934 		if (pp->p_pagenum == pfnum)
5935 			return ((page_t *)pp);
5936 	}
5937 
5938 	/* Else Brute force */
5939 	for (seg = memsegs; seg != NULL; seg = seg->next) {
5940 		if (pfnum >= seg->pages_base && pfnum < seg->pages_end) {
5941 			vc->vc_pnum_memseg = seg;
5942 			pp = seg->pages + (pfnum - seg->pages_base);
5943 			return ((page_t *)pp);
5944 		}
5945 	}
5946 	vc->vc_pnum_memseg = NULL;
5947 	MEMSEG_STAT_INCR(nnotfound);
5948 	return ((page_t *)NULL);
5949 
5950 }
5951 
5952 struct memseg *
5953 page_numtomemseg_nolock(pfn_t pfnum)
5954 {
5955 	struct memseg *seg;
5956 	page_t *pp;
5957 
5958 	/* Try hash */
5959 	if (((seg = memseg_hash[MEMSEG_PFN_HASH(pfnum)]) != NULL) &&
5960 	    (pfnum >= seg->pages_base) && (pfnum < seg->pages_end)) {
5961 		pp = seg->pages + (pfnum - seg->pages_base);
5962 		if (pp->p_pagenum == pfnum)
5963 			return (seg);
5964 	}
5965 
5966 	/* Else Brute force */
5967 	for (seg = memsegs; seg != NULL; seg = seg->next) {
5968 		if (pfnum >= seg->pages_base && pfnum < seg->pages_end) {
5969 			return (seg);
5970 		}
5971 	}
5972 	return ((struct memseg *)NULL);
5973 }
5974 
5975 /*
5976  * Given a page and a count return the page struct that is
5977  * n structs away from the current one in the global page
5978  * list.
5979  *
5980  * This function wraps to the first page upon
5981  * reaching the end of the memseg list.
5982  */
5983 page_t *
5984 page_nextn(page_t *pp, ulong_t n)
5985 {
5986 	struct memseg *seg;
5987 	page_t *ppn;
5988 	vm_cpu_data_t *vc = (vm_cpu_data_t *)CPU->cpu_vm_data;
5989 
5990 	ASSERT(vc != NULL);
5991 
5992 	if (((seg = vc->vc_pnext_memseg) == NULL) ||
5993 	    (seg->pages_base == seg->pages_end) ||
5994 	    !(pp >= seg->pages && pp < seg->epages)) {
5995 
5996 		for (seg = memsegs; seg; seg = seg->next) {
5997 			if (pp >= seg->pages && pp < seg->epages)
5998 				break;
5999 		}
6000 
6001 		if (seg == NULL) {
6002 			/* Memory delete got in, return something valid. */
6003 			/* TODO: fix me. */
6004 			seg = memsegs;
6005 			pp = seg->pages;
6006 		}
6007 	}
6008 
6009 	/* check for wraparound - possible if n is large */
6010 	while ((ppn = (pp + n)) >= seg->epages || ppn < pp) {
6011 		n -= seg->epages - pp;
6012 		seg = seg->next;
6013 		if (seg == NULL)
6014 			seg = memsegs;
6015 		pp = seg->pages;
6016 	}
6017 	vc->vc_pnext_memseg = seg;
6018 	return (ppn);
6019 }
6020 
6021 /*
6022  * Initialize for a loop using page_next_scan_large().
6023  */
6024 page_t *
6025 page_next_scan_init(void **cookie)
6026 {
6027 	ASSERT(cookie != NULL);
6028 	*cookie = (void *)memsegs;
6029 	return ((page_t *)memsegs->pages);
6030 }
6031 
6032 /*
6033  * Return the next page in a scan of page_t's, assuming we want
6034  * to skip over sub-pages within larger page sizes.
6035  *
6036  * The cookie is used to keep track of the current memseg.
6037  */
6038 page_t *
6039 page_next_scan_large(
6040 	page_t		*pp,
6041 	ulong_t		*n,
6042 	void		**cookie)
6043 {
6044 	struct memseg	*seg = (struct memseg *)*cookie;
6045 	page_t		*new_pp;
6046 	ulong_t		cnt;
6047 	pfn_t		pfn;
6048 
6049 
6050 	/*
6051 	 * get the count of page_t's to skip based on the page size
6052 	 */
6053 	ASSERT(pp != NULL);
6054 	if (pp->p_szc == 0) {
6055 		cnt = 1;
6056 	} else {
6057 		pfn = page_pptonum(pp);
6058 		cnt = page_get_pagecnt(pp->p_szc);
6059 		cnt -= pfn & (cnt - 1);
6060 	}
6061 	*n += cnt;
6062 	new_pp = pp + cnt;
6063 
6064 	/*
6065 	 * Catch if we went past the end of the current memory segment. If so,
6066 	 * just move to the next segment with pages.
6067 	 */
6068 	if (new_pp >= seg->epages) {
6069 		do {
6070 			seg = seg->next;
6071 			if (seg == NULL)
6072 				seg = memsegs;
6073 		} while (seg->pages == seg->epages);
6074 		new_pp = seg->pages;
6075 		*cookie = (void *)seg;
6076 	}
6077 
6078 	return (new_pp);
6079 }
6080 
6081 
6082 /*
6083  * Returns next page in list. Note: this function wraps
6084  * to the first page in the list upon reaching the end
6085  * of the list. Callers should be aware of this fact.
6086  */
6087 
6088 /* We should change this be a #define */
6089 
6090 page_t *
6091 page_next(page_t *pp)
6092 {
6093 	return (page_nextn(pp, 1));
6094 }
6095 
6096 page_t *
6097 page_first()
6098 {
6099 	return ((page_t *)memsegs->pages);
6100 }
6101 
6102 
6103 /*
6104  * This routine is called at boot with the initial memory configuration
6105  * and when memory is added or removed.
6106  */
6107 void
6108 build_pfn_hash()
6109 {
6110 	pfn_t cur;
6111 	pgcnt_t index;
6112 	struct memseg *pseg;
6113 	int	i;
6114 
6115 	/*
6116 	 * Clear memseg_hash array.
6117 	 * Since memory add/delete is designed to operate concurrently
6118 	 * with normal operation, the hash rebuild must be able to run
6119 	 * concurrently with page_numtopp_nolock(). To support this
6120 	 * functionality, assignments to memseg_hash array members must
6121 	 * be done atomically.
6122 	 *
6123 	 * NOTE: bzero() does not currently guarantee this for kernel
6124 	 * threads, and cannot be used here.
6125 	 */
6126 	for (i = 0; i < N_MEM_SLOTS; i++)
6127 		memseg_hash[i] = NULL;
6128 
6129 	hat_kpm_mseghash_clear(N_MEM_SLOTS);
6130 
6131 	/*
6132 	 * Physmax is the last valid pfn.
6133 	 */
6134 	mhash_per_slot = (physmax + 1) >> MEM_HASH_SHIFT;
6135 	for (pseg = memsegs; pseg != NULL; pseg = pseg->next) {
6136 		index = MEMSEG_PFN_HASH(pseg->pages_base);
6137 		cur = pseg->pages_base;
6138 		do {
6139 			if (index >= N_MEM_SLOTS)
6140 				index = MEMSEG_PFN_HASH(cur);
6141 
6142 			if (memseg_hash[index] == NULL ||
6143 			    memseg_hash[index]->pages_base > pseg->pages_base) {
6144 				memseg_hash[index] = pseg;
6145 				hat_kpm_mseghash_update(index, pseg);
6146 			}
6147 			cur += mhash_per_slot;
6148 			index++;
6149 		} while (cur < pseg->pages_end);
6150 	}
6151 }
6152 
6153 /*
6154  * Return the pagenum for the pp
6155  */
6156 pfn_t
6157 page_pptonum(page_t *pp)
6158 {
6159 	return (pp->p_pagenum);
6160 }
6161 
6162 /*
6163  * interface to the referenced and modified etc bits
6164  * in the PSM part of the page struct
6165  * when no locking is desired.
6166  */
6167 void
6168 page_set_props(page_t *pp, uint_t flags)
6169 {
6170 	ASSERT((flags & ~(P_MOD | P_REF | P_RO)) == 0);
6171 	pp->p_nrm |= (uchar_t)flags;
6172 }
6173 
6174 void
6175 page_clr_all_props(page_t *pp)
6176 {
6177 	pp->p_nrm = 0;
6178 }
6179 
6180 /*
6181  * Clear p_lckcnt and p_cowcnt, adjusting freemem if required.
6182  */
6183 int
6184 page_clear_lck_cow(page_t *pp, int adjust)
6185 {
6186 	int	f_amount;
6187 
6188 	ASSERT(PAGE_EXCL(pp));
6189 
6190 	/*
6191 	 * The page_struct_lock need not be acquired here since
6192 	 * we require the caller hold the page exclusively locked.
6193 	 */
6194 	f_amount = 0;
6195 	if (pp->p_lckcnt) {
6196 		f_amount = 1;
6197 		pp->p_lckcnt = 0;
6198 	}
6199 	if (pp->p_cowcnt) {
6200 		f_amount += pp->p_cowcnt;
6201 		pp->p_cowcnt = 0;
6202 	}
6203 
6204 	if (adjust && f_amount) {
6205 		mutex_enter(&freemem_lock);
6206 		availrmem += f_amount;
6207 		mutex_exit(&freemem_lock);
6208 	}
6209 
6210 	return (f_amount);
6211 }
6212 
6213 /*
6214  * The following functions is called from free_vp_pages()
6215  * for an inexact estimate of a newly free'd page...
6216  */
6217 ulong_t
6218 page_share_cnt(page_t *pp)
6219 {
6220 	return (hat_page_getshare(pp));
6221 }
6222 
6223 int
6224 page_isshared(page_t *pp)
6225 {
6226 	return (hat_page_checkshare(pp, 1));
6227 }
6228 
6229 int
6230 page_isfree(page_t *pp)
6231 {
6232 	return (PP_ISFREE(pp));
6233 }
6234 
6235 int
6236 page_isref(page_t *pp)
6237 {
6238 	return (hat_page_getattr(pp, P_REF));
6239 }
6240 
6241 int
6242 page_ismod(page_t *pp)
6243 {
6244 	return (hat_page_getattr(pp, P_MOD));
6245 }
6246 
6247 /*
6248  * The following code all currently relates to the page capture logic:
6249  *
6250  * This logic is used for cases where there is a desire to claim a certain
6251  * physical page in the system for the caller.  As it may not be possible
6252  * to capture the page immediately, the p_toxic bits are used in the page
6253  * structure to indicate that someone wants to capture this page.  When the
6254  * page gets unlocked, the toxic flag will be noted and an attempt to capture
6255  * the page will be made.  If it is successful, the original callers callback
6256  * will be called with the page to do with it what they please.
6257  *
6258  * There is also an async thread which wakes up to attempt to capture
6259  * pages occasionally which have the capture bit set.  All of the pages which
6260  * need to be captured asynchronously have been inserted into the
6261  * page_capture_hash and thus this thread walks that hash list.  Items in the
6262  * hash have an expiration time so this thread handles that as well by removing
6263  * the item from the hash if it has expired.
6264  *
6265  * Some important things to note are:
6266  * - if the PR_CAPTURE bit is set on a page, then the page is in the
6267  *   page_capture_hash.  The page_capture_hash_head.pchh_mutex is needed
6268  *   to set and clear this bit, and while the lock is held is the only time
6269  *   you can add or remove an entry from the hash.
6270  * - the PR_CAPTURE bit can only be set and cleared while holding the
6271  *   page_capture_hash_head.pchh_mutex
6272  * - the t_flag field of the thread struct is used with the T_CAPTURING
6273  *   flag to prevent recursion while dealing with large pages.
6274  * - pages which need to be retired never expire on the page_capture_hash.
6275  */
6276 
6277 static void page_capture_thread(void);
6278 static kthread_t *pc_thread_id;
6279 kcondvar_t pc_cv;
6280 static kmutex_t pc_thread_mutex;
6281 static clock_t pc_thread_shortwait;
6282 static clock_t pc_thread_longwait;
6283 static int pc_thread_retry;
6284 
6285 struct page_capture_callback pc_cb[PC_NUM_CALLBACKS];
6286 
6287 /* Note that this is a circular linked list */
6288 typedef struct page_capture_hash_bucket {
6289 	page_t *pp;
6290 	uint_t szc;
6291 	uint_t flags;
6292 	clock_t expires;	/* lbolt at which this request expires. */
6293 	void *datap;		/* Cached data passed in for callback */
6294 	struct page_capture_hash_bucket *next;
6295 	struct page_capture_hash_bucket *prev;
6296 } page_capture_hash_bucket_t;
6297 
6298 /*
6299  * Each hash bucket will have it's own mutex and two lists which are:
6300  * active (0):	represents requests which have not been processed by
6301  *		the page_capture async thread yet.
6302  * walked (1):	represents requests which have been processed by the
6303  *		page_capture async thread within it's given walk of this bucket.
6304  *
6305  * These are all needed so that we can synchronize all async page_capture
6306  * events.  When the async thread moves to a new bucket, it will append the
6307  * walked list to the active list and walk each item one at a time, moving it
6308  * from the active list to the walked list.  Thus if there is an async request
6309  * outstanding for a given page, it will always be in one of the two lists.
6310  * New requests will always be added to the active list.
6311  * If we were not able to capture a page before the request expired, we'd free
6312  * up the request structure which would indicate to page_capture that there is
6313  * no longer a need for the given page, and clear the PR_CAPTURE flag if
6314  * possible.
6315  */
6316 typedef struct page_capture_hash_head {
6317 	kmutex_t pchh_mutex;
6318 	uint_t num_pages;
6319 	page_capture_hash_bucket_t lists[2]; /* sentinel nodes */
6320 } page_capture_hash_head_t;
6321 
6322 #ifdef DEBUG
6323 #define	NUM_PAGE_CAPTURE_BUCKETS 4
6324 #else
6325 #define	NUM_PAGE_CAPTURE_BUCKETS 64
6326 #endif
6327 
6328 page_capture_hash_head_t page_capture_hash[NUM_PAGE_CAPTURE_BUCKETS];
6329 
6330 /* for now use a very simple hash based upon the size of a page struct */
6331 #define	PAGE_CAPTURE_HASH(pp)	\
6332 	((int)(((uintptr_t)pp >> 7) & (NUM_PAGE_CAPTURE_BUCKETS - 1)))
6333 
6334 extern pgcnt_t swapfs_minfree;
6335 
6336 int page_trycapture(page_t *pp, uint_t szc, uint_t flags, void *datap);
6337 
6338 /*
6339  * a callback function is required for page capture requests.
6340  */
6341 void
6342 page_capture_register_callback(uint_t index, clock_t duration,
6343     int (*cb_func)(page_t *, void *, uint_t))
6344 {
6345 	ASSERT(pc_cb[index].cb_active == 0);
6346 	ASSERT(cb_func != NULL);
6347 	rw_enter(&pc_cb[index].cb_rwlock, RW_WRITER);
6348 	pc_cb[index].duration = duration;
6349 	pc_cb[index].cb_func = cb_func;
6350 	pc_cb[index].cb_active = 1;
6351 	rw_exit(&pc_cb[index].cb_rwlock);
6352 }
6353 
6354 void
6355 page_capture_unregister_callback(uint_t index)
6356 {
6357 	int i, j;
6358 	struct page_capture_hash_bucket *bp1;
6359 	struct page_capture_hash_bucket *bp2;
6360 	struct page_capture_hash_bucket *head = NULL;
6361 	uint_t flags = (1 << index);
6362 
6363 	rw_enter(&pc_cb[index].cb_rwlock, RW_WRITER);
6364 	ASSERT(pc_cb[index].cb_active == 1);
6365 	pc_cb[index].duration = 0;	/* Paranoia */
6366 	pc_cb[index].cb_func = NULL;	/* Paranoia */
6367 	pc_cb[index].cb_active = 0;
6368 	rw_exit(&pc_cb[index].cb_rwlock);
6369 
6370 	/*
6371 	 * Just move all the entries to a private list which we can walk
6372 	 * through without the need to hold any locks.
6373 	 * No more requests can get added to the hash lists for this consumer
6374 	 * as the cb_active field for the callback has been cleared.
6375 	 */
6376 	for (i = 0; i < NUM_PAGE_CAPTURE_BUCKETS; i++) {
6377 		mutex_enter(&page_capture_hash[i].pchh_mutex);
6378 		for (j = 0; j < 2; j++) {
6379 			bp1 = page_capture_hash[i].lists[j].next;
6380 			/* walk through all but first (sentinel) element */
6381 			while (bp1 != &page_capture_hash[i].lists[j]) {
6382 				bp2 = bp1;
6383 				if (bp2->flags & flags) {
6384 					bp1 = bp2->next;
6385 					bp1->prev = bp2->prev;
6386 					bp2->prev->next = bp1;
6387 					bp2->next = head;
6388 					head = bp2;
6389 					/*
6390 					 * Clear the PR_CAPTURE bit as we
6391 					 * hold appropriate locks here.
6392 					 */
6393 					page_clrtoxic(head->pp, PR_CAPTURE);
6394 					page_capture_hash[i].num_pages--;
6395 					continue;
6396 				}
6397 				bp1 = bp1->next;
6398 			}
6399 		}
6400 		mutex_exit(&page_capture_hash[i].pchh_mutex);
6401 	}
6402 
6403 	while (head != NULL) {
6404 		bp1 = head;
6405 		head = head->next;
6406 		kmem_free(bp1, sizeof (*bp1));
6407 	}
6408 }
6409 
6410 
6411 /*
6412  * Find pp in the active list and move it to the walked list if it
6413  * exists.
6414  * Note that most often pp should be at the front of the active list
6415  * as it is currently used and thus there is no other sort of optimization
6416  * being done here as this is a linked list data structure.
6417  * Returns 1 on successful move or 0 if page could not be found.
6418  */
6419 static int
6420 page_capture_move_to_walked(page_t *pp)
6421 {
6422 	page_capture_hash_bucket_t *bp;
6423 	int index;
6424 
6425 	index = PAGE_CAPTURE_HASH(pp);
6426 
6427 	mutex_enter(&page_capture_hash[index].pchh_mutex);
6428 	bp = page_capture_hash[index].lists[0].next;
6429 	while (bp != &page_capture_hash[index].lists[0]) {
6430 		if (bp->pp == pp) {
6431 			/* Remove from old list */
6432 			bp->next->prev = bp->prev;
6433 			bp->prev->next = bp->next;
6434 
6435 			/* Add to new list */
6436 			bp->next = page_capture_hash[index].lists[1].next;
6437 			bp->prev = &page_capture_hash[index].lists[1];
6438 			page_capture_hash[index].lists[1].next = bp;
6439 			bp->next->prev = bp;
6440 			mutex_exit(&page_capture_hash[index].pchh_mutex);
6441 
6442 			return (1);
6443 		}
6444 		bp = bp->next;
6445 	}
6446 	mutex_exit(&page_capture_hash[index].pchh_mutex);
6447 	return (0);
6448 }
6449 
6450 /*
6451  * Add a new entry to the page capture hash.  The only case where a new
6452  * entry is not added is when the page capture consumer is no longer registered.
6453  * In this case, we'll silently not add the page to the hash.  We know that
6454  * page retire will always be registered for the case where we are currently
6455  * unretiring a page and thus there are no conflicts.
6456  */
6457 static void
6458 page_capture_add_hash(page_t *pp, uint_t szc, uint_t flags, void *datap)
6459 {
6460 	page_capture_hash_bucket_t *bp1;
6461 	page_capture_hash_bucket_t *bp2;
6462 	int index;
6463 	int cb_index;
6464 	int i;
6465 #ifdef DEBUG
6466 	page_capture_hash_bucket_t *tp1;
6467 	int l;
6468 #endif
6469 
6470 	ASSERT(!(flags & CAPTURE_ASYNC));
6471 
6472 	bp1 = kmem_alloc(sizeof (struct page_capture_hash_bucket), KM_SLEEP);
6473 
6474 	bp1->pp = pp;
6475 	bp1->szc = szc;
6476 	bp1->flags = flags;
6477 	bp1->datap = datap;
6478 
6479 	for (cb_index = 0; cb_index < PC_NUM_CALLBACKS; cb_index++) {
6480 		if ((flags >> cb_index) & 1) {
6481 			break;
6482 		}
6483 	}
6484 
6485 	ASSERT(cb_index != PC_NUM_CALLBACKS);
6486 
6487 	rw_enter(&pc_cb[cb_index].cb_rwlock, RW_READER);
6488 	if (pc_cb[cb_index].cb_active) {
6489 		if (pc_cb[cb_index].duration == -1) {
6490 			bp1->expires = (clock_t)-1;
6491 		} else {
6492 			bp1->expires = lbolt + pc_cb[cb_index].duration;
6493 		}
6494 	} else {
6495 		/* There's no callback registered so don't add to the hash */
6496 		rw_exit(&pc_cb[cb_index].cb_rwlock);
6497 		kmem_free(bp1, sizeof (*bp1));
6498 		return;
6499 	}
6500 
6501 	index = PAGE_CAPTURE_HASH(pp);
6502 
6503 	/*
6504 	 * Only allow capture flag to be modified under this mutex.
6505 	 * Prevents multiple entries for same page getting added.
6506 	 */
6507 	mutex_enter(&page_capture_hash[index].pchh_mutex);
6508 
6509 	/*
6510 	 * if not already on the hash, set capture bit and add to the hash
6511 	 */
6512 	if (!(pp->p_toxic & PR_CAPTURE)) {
6513 #ifdef DEBUG
6514 		/* Check for duplicate entries */
6515 		for (l = 0; l < 2; l++) {
6516 			tp1 = page_capture_hash[index].lists[l].next;
6517 			while (tp1 != &page_capture_hash[index].lists[l]) {
6518 				if (tp1->pp == pp) {
6519 					panic("page pp 0x%p already on hash "
6520 					    "at 0x%p\n", pp, tp1);
6521 				}
6522 				tp1 = tp1->next;
6523 			}
6524 		}
6525 
6526 #endif
6527 		page_settoxic(pp, PR_CAPTURE);
6528 		bp1->next = page_capture_hash[index].lists[0].next;
6529 		bp1->prev = &page_capture_hash[index].lists[0];
6530 		bp1->next->prev = bp1;
6531 		page_capture_hash[index].lists[0].next = bp1;
6532 		page_capture_hash[index].num_pages++;
6533 		if (flags & CAPTURE_RETIRE) {
6534 			page_retire_incr_pend_count();
6535 		}
6536 		mutex_exit(&page_capture_hash[index].pchh_mutex);
6537 		rw_exit(&pc_cb[cb_index].cb_rwlock);
6538 		cv_signal(&pc_cv);
6539 		return;
6540 	}
6541 
6542 	/*
6543 	 * A page retire request will replace any other request.
6544 	 * A second physmem request which is for a different process than
6545 	 * the currently registered one will be dropped as there is
6546 	 * no way to hold the private data for both calls.
6547 	 * In the future, once there are more callers, this will have to
6548 	 * be worked out better as there needs to be private storage for
6549 	 * at least each type of caller (maybe have datap be an array of
6550 	 * *void's so that we can index based upon callers index).
6551 	 */
6552 
6553 	/* walk hash list to update expire time */
6554 	for (i = 0; i < 2; i++) {
6555 		bp2 = page_capture_hash[index].lists[i].next;
6556 		while (bp2 != &page_capture_hash[index].lists[i]) {
6557 			if (bp2->pp == pp) {
6558 				if (flags & CAPTURE_RETIRE) {
6559 					if (!(bp2->flags & CAPTURE_RETIRE)) {
6560 						page_retire_incr_pend_count();
6561 						bp2->flags = flags;
6562 						bp2->expires = bp1->expires;
6563 						bp2->datap = datap;
6564 					}
6565 				} else {
6566 					ASSERT(flags & CAPTURE_PHYSMEM);
6567 					if (!(bp2->flags & CAPTURE_RETIRE) &&
6568 					    (datap == bp2->datap)) {
6569 						bp2->expires = bp1->expires;
6570 					}
6571 				}
6572 				mutex_exit(&page_capture_hash[index].
6573 				    pchh_mutex);
6574 				rw_exit(&pc_cb[cb_index].cb_rwlock);
6575 				kmem_free(bp1, sizeof (*bp1));
6576 				return;
6577 			}
6578 			bp2 = bp2->next;
6579 		}
6580 	}
6581 
6582 	/*
6583 	 * the PR_CAPTURE flag is protected by the page_capture_hash mutexes
6584 	 * and thus it either has to be set or not set and can't change
6585 	 * while holding the mutex above.
6586 	 */
6587 	panic("page_capture_add_hash, PR_CAPTURE flag set on pp %p\n", pp);
6588 }
6589 
6590 /*
6591  * We have a page in our hands, lets try and make it ours by turning
6592  * it into a clean page like it had just come off the freelists.
6593  *
6594  * Returns 0 on success, with the page still EXCL locked.
6595  * On failure, the page will be unlocked, and returns EAGAIN
6596  */
6597 static int
6598 page_capture_clean_page(page_t *pp)
6599 {
6600 	page_t *newpp;
6601 	int skip_unlock = 0;
6602 	spgcnt_t count;
6603 	page_t *tpp;
6604 	int ret = 0;
6605 	int extra;
6606 
6607 	ASSERT(PAGE_EXCL(pp));
6608 	ASSERT(!PP_RETIRED(pp));
6609 	ASSERT(curthread->t_flag & T_CAPTURING);
6610 
6611 	if (PP_ISFREE(pp)) {
6612 		if (!page_reclaim(pp, NULL)) {
6613 			skip_unlock = 1;
6614 			ret = EAGAIN;
6615 			goto cleanup;
6616 		}
6617 		ASSERT(pp->p_szc == 0);
6618 		if (pp->p_vnode != NULL) {
6619 			/*
6620 			 * Since this page came from the
6621 			 * cachelist, we must destroy the
6622 			 * old vnode association.
6623 			 */
6624 			page_hashout(pp, NULL);
6625 		}
6626 		goto cleanup;
6627 	}
6628 
6629 	/*
6630 	 * If we know page_relocate will fail, skip it
6631 	 * It could still fail due to a UE on another page but we
6632 	 * can't do anything about that.
6633 	 */
6634 	if (pp->p_toxic & PR_UE) {
6635 		goto skip_relocate;
6636 	}
6637 
6638 	/*
6639 	 * It's possible that pages can not have a vnode as fsflush comes
6640 	 * through and cleans up these pages.  It's ugly but that's how it is.
6641 	 */
6642 	if (pp->p_vnode == NULL) {
6643 		goto skip_relocate;
6644 	}
6645 
6646 	/*
6647 	 * Page was not free, so lets try to relocate it.
6648 	 * page_relocate only works with root pages, so if this is not a root
6649 	 * page, we need to demote it to try and relocate it.
6650 	 * Unfortunately this is the best we can do right now.
6651 	 */
6652 	newpp = NULL;
6653 	if ((pp->p_szc > 0) && (pp != PP_PAGEROOT(pp))) {
6654 		if (page_try_demote_pages(pp) == 0) {
6655 			ret = EAGAIN;
6656 			goto cleanup;
6657 		}
6658 	}
6659 	ret = page_relocate(&pp, &newpp, 1, 0, &count, NULL);
6660 	if (ret == 0) {
6661 		page_t *npp;
6662 		/* unlock the new page(s) */
6663 		while (count-- > 0) {
6664 			ASSERT(newpp != NULL);
6665 			npp = newpp;
6666 			page_sub(&newpp, npp);
6667 			page_unlock(npp);
6668 		}
6669 		ASSERT(newpp == NULL);
6670 		/*
6671 		 * Check to see if the page we have is too large.
6672 		 * If so, demote it freeing up the extra pages.
6673 		 */
6674 		if (pp->p_szc > 0) {
6675 			/* For now demote extra pages to szc == 0 */
6676 			extra = page_get_pagecnt(pp->p_szc) - 1;
6677 			while (extra > 0) {
6678 				tpp = pp->p_next;
6679 				page_sub(&pp, tpp);
6680 				tpp->p_szc = 0;
6681 				page_free(tpp, 1);
6682 				extra--;
6683 			}
6684 			/* Make sure to set our page to szc 0 as well */
6685 			ASSERT(pp->p_next == pp && pp->p_prev == pp);
6686 			pp->p_szc = 0;
6687 		}
6688 		goto cleanup;
6689 	} else if (ret == EIO) {
6690 		ret = EAGAIN;
6691 		goto cleanup;
6692 	} else {
6693 		/*
6694 		 * Need to reset return type as we failed to relocate the page
6695 		 * but that does not mean that some of the next steps will not
6696 		 * work.
6697 		 */
6698 		ret = 0;
6699 	}
6700 
6701 skip_relocate:
6702 
6703 	if (pp->p_szc > 0) {
6704 		if (page_try_demote_pages(pp) == 0) {
6705 			ret = EAGAIN;
6706 			goto cleanup;
6707 		}
6708 	}
6709 
6710 	ASSERT(pp->p_szc == 0);
6711 
6712 	if (hat_ismod(pp)) {
6713 		ret = EAGAIN;
6714 		goto cleanup;
6715 	}
6716 	if (PP_ISKAS(pp)) {
6717 		ret = EAGAIN;
6718 		goto cleanup;
6719 	}
6720 	if (pp->p_lckcnt || pp->p_cowcnt) {
6721 		ret = EAGAIN;
6722 		goto cleanup;
6723 	}
6724 
6725 	(void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD);
6726 	ASSERT(!hat_page_is_mapped(pp));
6727 
6728 	if (hat_ismod(pp)) {
6729 		/*
6730 		 * This is a semi-odd case as the page is now modified but not
6731 		 * mapped as we just unloaded the mappings above.
6732 		 */
6733 		ret = EAGAIN;
6734 		goto cleanup;
6735 	}
6736 	if (pp->p_vnode != NULL) {
6737 		page_hashout(pp, NULL);
6738 	}
6739 
6740 	/*
6741 	 * At this point, the page should be in a clean state and
6742 	 * we can do whatever we want with it.
6743 	 */
6744 
6745 cleanup:
6746 	if (ret != 0) {
6747 		if (!skip_unlock) {
6748 			page_unlock(pp);
6749 		}
6750 	} else {
6751 		ASSERT(pp->p_szc == 0);
6752 		ASSERT(PAGE_EXCL(pp));
6753 
6754 		pp->p_next = pp;
6755 		pp->p_prev = pp;
6756 	}
6757 	return (ret);
6758 }
6759 
6760 /*
6761  * Various callers of page_trycapture() can have different restrictions upon
6762  * what memory they have access to.
6763  * Returns 0 on success, with the following error codes on failure:
6764  *      EPERM - The requested page is long term locked, and thus repeated
6765  *              requests to capture this page will likely fail.
6766  *      ENOMEM - There was not enough free memory in the system to safely
6767  *              map the requested page.
6768  *      ENOENT - The requested page was inside the kernel cage, and the
6769  *              PHYSMEM_CAGE flag was not set.
6770  */
6771 int
6772 page_capture_pre_checks(page_t *pp, uint_t flags)
6773 {
6774 #if defined(__sparc)
6775 	extern struct vnode prom_ppages;
6776 #endif /* __sparc */
6777 
6778 	ASSERT(pp != NULL);
6779 
6780 #if defined(__sparc)
6781 	if (pp->p_vnode == &prom_ppages) {
6782 		return (EPERM);
6783 	}
6784 
6785 	if (PP_ISNORELOC(pp) && !(flags & CAPTURE_GET_CAGE) &&
6786 	    (flags & CAPTURE_PHYSMEM)) {
6787 		return (ENOENT);
6788 	}
6789 
6790 	if (PP_ISNORELOCKERNEL(pp)) {
6791 		return (EPERM);
6792 	}
6793 #else
6794 	if (PP_ISKAS(pp)) {
6795 		return (EPERM);
6796 	}
6797 #endif /* __sparc */
6798 
6799 	/* only physmem currently has the restrictions checked below */
6800 	if (!(flags & CAPTURE_PHYSMEM)) {
6801 		return (0);
6802 	}
6803 
6804 	if (availrmem < swapfs_minfree) {
6805 		/*
6806 		 * We won't try to capture this page as we are
6807 		 * running low on memory.
6808 		 */
6809 		return (ENOMEM);
6810 	}
6811 	return (0);
6812 }
6813 
6814 /*
6815  * Once we have a page in our mits, go ahead and complete the capture
6816  * operation.
6817  * Returns 1 on failure where page is no longer needed
6818  * Returns 0 on success
6819  * Returns -1 if there was a transient failure.
6820  * Failure cases must release the SE_EXCL lock on pp (usually via page_free).
6821  */
6822 int
6823 page_capture_take_action(page_t *pp, uint_t flags, void *datap)
6824 {
6825 	int cb_index;
6826 	int ret = 0;
6827 	page_capture_hash_bucket_t *bp1;
6828 	page_capture_hash_bucket_t *bp2;
6829 	int index;
6830 	int found = 0;
6831 	int i;
6832 
6833 	ASSERT(PAGE_EXCL(pp));
6834 	ASSERT(curthread->t_flag & T_CAPTURING);
6835 
6836 	for (cb_index = 0; cb_index < PC_NUM_CALLBACKS; cb_index++) {
6837 		if ((flags >> cb_index) & 1) {
6838 			break;
6839 		}
6840 	}
6841 	ASSERT(cb_index < PC_NUM_CALLBACKS);
6842 
6843 	/*
6844 	 * Remove the entry from the page_capture hash, but don't free it yet
6845 	 * as we may need to put it back.
6846 	 * Since we own the page at this point in time, we should find it
6847 	 * in the hash if this is an ASYNC call.  If we don't it's likely
6848 	 * that the page_capture_async() thread decided that this request
6849 	 * had expired, in which case we just continue on.
6850 	 */
6851 	if (flags & CAPTURE_ASYNC) {
6852 
6853 		index = PAGE_CAPTURE_HASH(pp);
6854 
6855 		mutex_enter(&page_capture_hash[index].pchh_mutex);
6856 		for (i = 0; i < 2 && !found; i++) {
6857 			bp1 = page_capture_hash[index].lists[i].next;
6858 			while (bp1 != &page_capture_hash[index].lists[i]) {
6859 				if (bp1->pp == pp) {
6860 					bp1->next->prev = bp1->prev;
6861 					bp1->prev->next = bp1->next;
6862 					page_capture_hash[index].num_pages--;
6863 					page_clrtoxic(pp, PR_CAPTURE);
6864 					found = 1;
6865 					break;
6866 				}
6867 				bp1 = bp1->next;
6868 			}
6869 		}
6870 		mutex_exit(&page_capture_hash[index].pchh_mutex);
6871 	}
6872 
6873 	/* Synchronize with the unregister func. */
6874 	rw_enter(&pc_cb[cb_index].cb_rwlock, RW_READER);
6875 	if (!pc_cb[cb_index].cb_active) {
6876 		page_free(pp, 1);
6877 		rw_exit(&pc_cb[cb_index].cb_rwlock);
6878 		if (found) {
6879 			kmem_free(bp1, sizeof (*bp1));
6880 		}
6881 		return (1);
6882 	}
6883 
6884 	/*
6885 	 * We need to remove the entry from the page capture hash and turn off
6886 	 * the PR_CAPTURE bit before calling the callback.  We'll need to cache
6887 	 * the entry here, and then based upon the return value, cleanup
6888 	 * appropriately or re-add it to the hash, making sure that someone else
6889 	 * hasn't already done so.
6890 	 * It should be rare for the callback to fail and thus it's ok for
6891 	 * the failure path to be a bit complicated as the success path is
6892 	 * cleaner and the locking rules are easier to follow.
6893 	 */
6894 
6895 	ret = pc_cb[cb_index].cb_func(pp, datap, flags);
6896 
6897 	rw_exit(&pc_cb[cb_index].cb_rwlock);
6898 
6899 	/*
6900 	 * If this was an ASYNC request, we need to cleanup the hash if the
6901 	 * callback was successful or if the request was no longer valid.
6902 	 * For non-ASYNC requests, we return failure to map and the caller
6903 	 * will take care of adding the request to the hash.
6904 	 * Note also that the callback itself is responsible for the page
6905 	 * at this point in time in terms of locking ...  The most common
6906 	 * case for the failure path should just be a page_free.
6907 	 */
6908 	if (ret >= 0) {
6909 		if (found) {
6910 			if (bp1->flags & CAPTURE_RETIRE) {
6911 				page_retire_decr_pend_count();
6912 			}
6913 			kmem_free(bp1, sizeof (*bp1));
6914 		}
6915 		return (ret);
6916 	}
6917 	if (!found) {
6918 		return (ret);
6919 	}
6920 
6921 	ASSERT(flags & CAPTURE_ASYNC);
6922 
6923 	/*
6924 	 * Check for expiration time first as we can just free it up if it's
6925 	 * expired.
6926 	 */
6927 	if (lbolt > bp1->expires && bp1->expires != -1) {
6928 		kmem_free(bp1, sizeof (*bp1));
6929 		return (ret);
6930 	}
6931 
6932 	/*
6933 	 * The callback failed and there used to be an entry in the hash for
6934 	 * this page, so we need to add it back to the hash.
6935 	 */
6936 	mutex_enter(&page_capture_hash[index].pchh_mutex);
6937 	if (!(pp->p_toxic & PR_CAPTURE)) {
6938 		/* just add bp1 back to head of walked list */
6939 		page_settoxic(pp, PR_CAPTURE);
6940 		bp1->next = page_capture_hash[index].lists[1].next;
6941 		bp1->prev = &page_capture_hash[index].lists[1];
6942 		bp1->next->prev = bp1;
6943 		page_capture_hash[index].lists[1].next = bp1;
6944 		page_capture_hash[index].num_pages++;
6945 		mutex_exit(&page_capture_hash[index].pchh_mutex);
6946 		return (ret);
6947 	}
6948 
6949 	/*
6950 	 * Otherwise there was a new capture request added to list
6951 	 * Need to make sure that our original data is represented if
6952 	 * appropriate.
6953 	 */
6954 	for (i = 0; i < 2; i++) {
6955 		bp2 = page_capture_hash[index].lists[i].next;
6956 		while (bp2 != &page_capture_hash[index].lists[i]) {
6957 			if (bp2->pp == pp) {
6958 				if (bp1->flags & CAPTURE_RETIRE) {
6959 					if (!(bp2->flags & CAPTURE_RETIRE)) {
6960 						bp2->szc = bp1->szc;
6961 						bp2->flags = bp1->flags;
6962 						bp2->expires = bp1->expires;
6963 						bp2->datap = bp1->datap;
6964 					}
6965 				} else {
6966 					ASSERT(bp1->flags & CAPTURE_PHYSMEM);
6967 					if (!(bp2->flags & CAPTURE_RETIRE)) {
6968 						bp2->szc = bp1->szc;
6969 						bp2->flags = bp1->flags;
6970 						bp2->expires = bp1->expires;
6971 						bp2->datap = bp1->datap;
6972 					}
6973 				}
6974 				mutex_exit(&page_capture_hash[index].
6975 				    pchh_mutex);
6976 				kmem_free(bp1, sizeof (*bp1));
6977 				return (ret);
6978 			}
6979 			bp2 = bp2->next;
6980 		}
6981 	}
6982 	panic("PR_CAPTURE set but not on hash for pp 0x%p\n", pp);
6983 	/*NOTREACHED*/
6984 }
6985 
6986 /*
6987  * Try to capture the given page for the caller specified in the flags
6988  * parameter.  The page will either be captured and handed over to the
6989  * appropriate callback, or will be queued up in the page capture hash
6990  * to be captured asynchronously.
6991  * If the current request is due to an async capture, the page must be
6992  * exclusively locked before calling this function.
6993  * Currently szc must be 0 but in the future this should be expandable to
6994  * other page sizes.
6995  * Returns 0 on success, with the following error codes on failure:
6996  *      EPERM - The requested page is long term locked, and thus repeated
6997  *              requests to capture this page will likely fail.
6998  *      ENOMEM - There was not enough free memory in the system to safely
6999  *              map the requested page.
7000  *      ENOENT - The requested page was inside the kernel cage, and the
7001  *              CAPTURE_GET_CAGE flag was not set.
7002  *	EAGAIN - The requested page could not be capturead at this point in
7003  *		time but future requests will likely work.
7004  *	EBUSY - The requested page is retired and the CAPTURE_GET_RETIRED flag
7005  *		was not set.
7006  */
7007 int
7008 page_itrycapture(page_t *pp, uint_t szc, uint_t flags, void *datap)
7009 {
7010 	int ret;
7011 	int cb_index;
7012 
7013 	if (flags & CAPTURE_ASYNC) {
7014 		ASSERT(PAGE_EXCL(pp));
7015 		goto async;
7016 	}
7017 
7018 	/* Make sure there's enough availrmem ... */
7019 	ret = page_capture_pre_checks(pp, flags);
7020 	if (ret != 0) {
7021 		return (ret);
7022 	}
7023 
7024 	if (!page_trylock(pp, SE_EXCL)) {
7025 		for (cb_index = 0; cb_index < PC_NUM_CALLBACKS; cb_index++) {
7026 			if ((flags >> cb_index) & 1) {
7027 				break;
7028 			}
7029 		}
7030 		ASSERT(cb_index < PC_NUM_CALLBACKS);
7031 		ret = EAGAIN;
7032 		/* Special case for retired pages */
7033 		if (PP_RETIRED(pp)) {
7034 			if (flags & CAPTURE_GET_RETIRED) {
7035 				if (!page_unretire_pp(pp, PR_UNR_TEMP)) {
7036 					/*
7037 					 * Need to set capture bit and add to
7038 					 * hash so that the page will be
7039 					 * retired when freed.
7040 					 */
7041 					page_capture_add_hash(pp, szc,
7042 					    CAPTURE_RETIRE, NULL);
7043 					ret = 0;
7044 					goto own_page;
7045 				}
7046 			} else {
7047 				return (EBUSY);
7048 			}
7049 		}
7050 		page_capture_add_hash(pp, szc, flags, datap);
7051 		return (ret);
7052 	}
7053 
7054 async:
7055 	ASSERT(PAGE_EXCL(pp));
7056 
7057 	/* Need to check for physmem async requests that availrmem is sane */
7058 	if ((flags & (CAPTURE_ASYNC | CAPTURE_PHYSMEM)) ==
7059 	    (CAPTURE_ASYNC | CAPTURE_PHYSMEM) &&
7060 	    (availrmem < swapfs_minfree)) {
7061 		page_unlock(pp);
7062 		return (ENOMEM);
7063 	}
7064 
7065 	ret = page_capture_clean_page(pp);
7066 
7067 	if (ret != 0) {
7068 		/* We failed to get the page, so lets add it to the hash */
7069 		if (!(flags & CAPTURE_ASYNC)) {
7070 			page_capture_add_hash(pp, szc, flags, datap);
7071 		}
7072 		return (ret);
7073 	}
7074 
7075 own_page:
7076 	ASSERT(PAGE_EXCL(pp));
7077 	ASSERT(pp->p_szc == 0);
7078 
7079 	/* Call the callback */
7080 	ret = page_capture_take_action(pp, flags, datap);
7081 
7082 	if (ret == 0) {
7083 		return (0);
7084 	}
7085 
7086 	/*
7087 	 * Note that in the failure cases from page_capture_take_action, the
7088 	 * EXCL lock will have already been dropped.
7089 	 */
7090 	if ((ret == -1) && (!(flags & CAPTURE_ASYNC))) {
7091 		page_capture_add_hash(pp, szc, flags, datap);
7092 	}
7093 	return (EAGAIN);
7094 }
7095 
7096 int
7097 page_trycapture(page_t *pp, uint_t szc, uint_t flags, void *datap)
7098 {
7099 	int ret;
7100 
7101 	curthread->t_flag |= T_CAPTURING;
7102 	ret = page_itrycapture(pp, szc, flags, datap);
7103 	curthread->t_flag &= ~T_CAPTURING; /* xor works as we know its set */
7104 	return (ret);
7105 }
7106 
7107 /*
7108  * When unlocking a page which has the PR_CAPTURE bit set, this routine
7109  * gets called to try and capture the page.
7110  */
7111 void
7112 page_unlock_capture(page_t *pp)
7113 {
7114 	page_capture_hash_bucket_t *bp;
7115 	int index;
7116 	int i;
7117 	uint_t szc;
7118 	uint_t flags = 0;
7119 	void *datap;
7120 	kmutex_t *mp;
7121 	extern vnode_t retired_pages;
7122 
7123 	/*
7124 	 * We need to protect against a possible deadlock here where we own
7125 	 * the vnode page hash mutex and want to acquire it again as there
7126 	 * are locations in the code, where we unlock a page while holding
7127 	 * the mutex which can lead to the page being captured and eventually
7128 	 * end up here.  As we may be hashing out the old page and hashing into
7129 	 * the retire vnode, we need to make sure we don't own them.
7130 	 * Other callbacks who do hash operations also need to make sure that
7131 	 * before they hashin to a vnode that they do not currently own the
7132 	 * vphm mutex otherwise there will be a panic.
7133 	 */
7134 	if (mutex_owned(page_vnode_mutex(&retired_pages))) {
7135 		page_unlock_nocapture(pp);
7136 		return;
7137 	}
7138 	if (pp->p_vnode != NULL && mutex_owned(page_vnode_mutex(pp->p_vnode))) {
7139 		page_unlock_nocapture(pp);
7140 		return;
7141 	}
7142 
7143 	index = PAGE_CAPTURE_HASH(pp);
7144 
7145 	mp = &page_capture_hash[index].pchh_mutex;
7146 	mutex_enter(mp);
7147 	for (i = 0; i < 2; i++) {
7148 		bp = page_capture_hash[index].lists[i].next;
7149 		while (bp != &page_capture_hash[index].lists[i]) {
7150 			if (bp->pp == pp) {
7151 				szc = bp->szc;
7152 				flags = bp->flags | CAPTURE_ASYNC;
7153 				datap = bp->datap;
7154 				mutex_exit(mp);
7155 				(void) page_trycapture(pp, szc, flags, datap);
7156 				return;
7157 			}
7158 			bp = bp->next;
7159 		}
7160 	}
7161 
7162 	/* Failed to find page in hash so clear flags and unlock it. */
7163 	page_clrtoxic(pp, PR_CAPTURE);
7164 	page_unlock(pp);
7165 
7166 	mutex_exit(mp);
7167 }
7168 
7169 void
7170 page_capture_init()
7171 {
7172 	int i;
7173 	for (i = 0; i < NUM_PAGE_CAPTURE_BUCKETS; i++) {
7174 		page_capture_hash[i].lists[0].next =
7175 		    &page_capture_hash[i].lists[0];
7176 		page_capture_hash[i].lists[0].prev =
7177 		    &page_capture_hash[i].lists[0];
7178 		page_capture_hash[i].lists[1].next =
7179 		    &page_capture_hash[i].lists[1];
7180 		page_capture_hash[i].lists[1].prev =
7181 		    &page_capture_hash[i].lists[1];
7182 	}
7183 
7184 	pc_thread_shortwait = 23 * hz;
7185 	pc_thread_longwait = 1201 * hz;
7186 	pc_thread_retry = 3;
7187 	mutex_init(&pc_thread_mutex, NULL, MUTEX_DEFAULT, NULL);
7188 	cv_init(&pc_cv, NULL, CV_DEFAULT, NULL);
7189 	pc_thread_id = thread_create(NULL, 0, page_capture_thread, NULL, 0, &p0,
7190 	    TS_RUN, minclsyspri);
7191 }
7192 
7193 /*
7194  * It is necessary to scrub any failing pages prior to reboot in order to
7195  * prevent a latent error trap from occurring on the next boot.
7196  */
7197 void
7198 page_retire_mdboot()
7199 {
7200 	page_t *pp;
7201 	int i, j;
7202 	page_capture_hash_bucket_t *bp;
7203 
7204 	/* walk lists looking for pages to scrub */
7205 	for (i = 0; i < NUM_PAGE_CAPTURE_BUCKETS; i++) {
7206 		if (page_capture_hash[i].num_pages == 0)
7207 			continue;
7208 
7209 		mutex_enter(&page_capture_hash[i].pchh_mutex);
7210 
7211 		for (j = 0; j < 2; j++) {
7212 			bp = page_capture_hash[i].lists[j].next;
7213 			while (bp != &page_capture_hash[i].lists[j]) {
7214 				pp = bp->pp;
7215 				if (!PP_ISKAS(pp) && PP_TOXIC(pp)) {
7216 					pp->p_selock = -1;  /* pacify ASSERTs */
7217 					PP_CLRFREE(pp);
7218 					pagescrub(pp, 0, PAGESIZE);
7219 					pp->p_selock = 0;
7220 				}
7221 				bp = bp->next;
7222 			}
7223 		}
7224 		mutex_exit(&page_capture_hash[i].pchh_mutex);
7225 	}
7226 }
7227 
7228 /*
7229  * Walk the page_capture_hash trying to capture pages and also cleanup old
7230  * entries which have expired.
7231  */
7232 void
7233 page_capture_async()
7234 {
7235 	page_t *pp;
7236 	int i;
7237 	int ret;
7238 	page_capture_hash_bucket_t *bp1, *bp2;
7239 	uint_t szc;
7240 	uint_t flags;
7241 	void *datap;
7242 
7243 	/* If there are outstanding pages to be captured, get to work */
7244 	for (i = 0; i < NUM_PAGE_CAPTURE_BUCKETS; i++) {
7245 		if (page_capture_hash[i].num_pages == 0)
7246 			continue;
7247 		/* Append list 1 to list 0 and then walk through list 0 */
7248 		mutex_enter(&page_capture_hash[i].pchh_mutex);
7249 		bp1 = &page_capture_hash[i].lists[1];
7250 		bp2 = bp1->next;
7251 		if (bp1 != bp2) {
7252 			bp1->prev->next = page_capture_hash[i].lists[0].next;
7253 			bp2->prev = &page_capture_hash[i].lists[0];
7254 			page_capture_hash[i].lists[0].next->prev = bp1->prev;
7255 			page_capture_hash[i].lists[0].next = bp2;
7256 			bp1->next = bp1;
7257 			bp1->prev = bp1;
7258 		}
7259 
7260 		/* list[1] will be empty now */
7261 
7262 		bp1 = page_capture_hash[i].lists[0].next;
7263 		while (bp1 != &page_capture_hash[i].lists[0]) {
7264 			/* Check expiration time */
7265 			if ((lbolt > bp1->expires && bp1->expires != -1) ||
7266 			    page_deleted(bp1->pp)) {
7267 				page_capture_hash[i].lists[0].next = bp1->next;
7268 				bp1->next->prev =
7269 				    &page_capture_hash[i].lists[0];
7270 				page_capture_hash[i].num_pages--;
7271 
7272 				/*
7273 				 * We can safely remove the PR_CAPTURE bit
7274 				 * without holding the EXCL lock on the page
7275 				 * as the PR_CAPTURE bit requres that the
7276 				 * page_capture_hash[].pchh_mutex be held
7277 				 * to modify it.
7278 				 */
7279 				page_clrtoxic(bp1->pp, PR_CAPTURE);
7280 				mutex_exit(&page_capture_hash[i].pchh_mutex);
7281 				kmem_free(bp1, sizeof (*bp1));
7282 				mutex_enter(&page_capture_hash[i].pchh_mutex);
7283 				bp1 = page_capture_hash[i].lists[0].next;
7284 				continue;
7285 			}
7286 			pp = bp1->pp;
7287 			szc = bp1->szc;
7288 			flags = bp1->flags;
7289 			datap = bp1->datap;
7290 			mutex_exit(&page_capture_hash[i].pchh_mutex);
7291 			if (page_trylock(pp, SE_EXCL)) {
7292 				ret = page_trycapture(pp, szc,
7293 				    flags | CAPTURE_ASYNC, datap);
7294 			} else {
7295 				ret = 1;	/* move to walked hash */
7296 			}
7297 
7298 			if (ret != 0) {
7299 				/* Move to walked hash */
7300 				(void) page_capture_move_to_walked(pp);
7301 			}
7302 			mutex_enter(&page_capture_hash[i].pchh_mutex);
7303 			bp1 = page_capture_hash[i].lists[0].next;
7304 		}
7305 
7306 		mutex_exit(&page_capture_hash[i].pchh_mutex);
7307 	}
7308 }
7309 
7310 /*
7311  * This function is called by the page_capture_thread, and is needed in
7312  * in order to initiate aio cleanup, so that pages used in aio
7313  * will be unlocked and subsequently retired by page_capture_thread.
7314  */
7315 static int
7316 do_aio_cleanup(void)
7317 {
7318 	proc_t *procp;
7319 	int (*aio_cleanup_dr_delete_memory)(proc_t *);
7320 	int cleaned = 0;
7321 
7322 	if (modload("sys", "kaio") == -1) {
7323 		cmn_err(CE_WARN, "do_aio_cleanup: cannot load kaio");
7324 		return (0);
7325 	}
7326 	/*
7327 	 * We use the aio_cleanup_dr_delete_memory function to
7328 	 * initiate the actual clean up; this function will wake
7329 	 * up the per-process aio_cleanup_thread.
7330 	 */
7331 	aio_cleanup_dr_delete_memory = (int (*)(proc_t *))
7332 	    modgetsymvalue("aio_cleanup_dr_delete_memory", 0);
7333 	if (aio_cleanup_dr_delete_memory == NULL) {
7334 		cmn_err(CE_WARN,
7335 	    "aio_cleanup_dr_delete_memory not found in kaio");
7336 		return (0);
7337 	}
7338 	mutex_enter(&pidlock);
7339 	for (procp = practive; (procp != NULL); procp = procp->p_next) {
7340 		mutex_enter(&procp->p_lock);
7341 		if (procp->p_aio != NULL) {
7342 			/* cleanup proc's outstanding kaio */
7343 			cleaned += (*aio_cleanup_dr_delete_memory)(procp);
7344 		}
7345 		mutex_exit(&procp->p_lock);
7346 	}
7347 	mutex_exit(&pidlock);
7348 	return (cleaned);
7349 }
7350 
7351 /*
7352  * helper function for page_capture_thread
7353  */
7354 static void
7355 page_capture_handle_outstanding(void)
7356 {
7357 	int ntry;
7358 
7359 	if (!page_retire_pend_count()) {
7360 		/*
7361 		 * Do we really want to be this aggressive
7362 		 * for things other than page_retire?
7363 		 * Maybe have a counter for each callback
7364 		 * type to guide how aggressive we should
7365 		 * be here.  Thus if there's at least one
7366 		 * page for page_retire we go ahead and reap
7367 		 * like this.
7368 		 */
7369 		kmem_reap();
7370 		seg_preap();
7371 		page_capture_async();
7372 	} else {
7373 		/*
7374 		 * There are pages pending retirement, so
7375 		 * we reap prior to attempting to capture.
7376 		 */
7377 		kmem_reap();
7378 
7379 		/* disable and purge seg_pcache */
7380 		(void) seg_p_disable();
7381 		for (ntry = 0; ntry < pc_thread_retry; ntry++) {
7382 			if (!page_retire_pend_count())
7383 				break;
7384 			if (do_aio_cleanup()) {
7385 				/*
7386 				 * allow the apps cleanup threads
7387 				 * to run
7388 				 */
7389 				delay(pc_thread_shortwait);
7390 			}
7391 			page_capture_async();
7392 		}
7393 		/* reenable seg_pcache */
7394 		seg_p_enable();
7395 	}
7396 }
7397 
7398 /*
7399  * The page_capture_thread loops forever, looking to see if there are
7400  * pages still waiting to be captured.
7401  */
7402 static void
7403 page_capture_thread(void)
7404 {
7405 	callb_cpr_t c;
7406 	int outstanding;
7407 	int i;
7408 
7409 	CALLB_CPR_INIT(&c, &pc_thread_mutex, callb_generic_cpr, "page_capture");
7410 
7411 	mutex_enter(&pc_thread_mutex);
7412 	for (;;) {
7413 		outstanding = 0;
7414 		for (i = 0; i < NUM_PAGE_CAPTURE_BUCKETS; i++)
7415 			outstanding += page_capture_hash[i].num_pages;
7416 		if (outstanding) {
7417 			page_capture_handle_outstanding();
7418 			CALLB_CPR_SAFE_BEGIN(&c);
7419 			(void) cv_timedwait(&pc_cv, &pc_thread_mutex,
7420 			    lbolt + pc_thread_shortwait);
7421 			CALLB_CPR_SAFE_END(&c, &pc_thread_mutex);
7422 		} else {
7423 			CALLB_CPR_SAFE_BEGIN(&c);
7424 			(void) cv_timedwait(&pc_cv, &pc_thread_mutex,
7425 			    lbolt + pc_thread_longwait);
7426 			CALLB_CPR_SAFE_END(&c, &pc_thread_mutex);
7427 		}
7428 	}
7429 	/*NOTREACHED*/
7430 }
7431