xref: /illumos-gate/usr/src/uts/common/vm/vm_pagelist.c (revision e8031f0a)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */
28 /*	All Rights Reserved   */
29 
30 /*
31  * Portions of this source code were derived from Berkeley 4.3 BSD
32  * under license from the Regents of the University of California.
33  */
34 
35 #pragma ident	"%Z%%M%	%I%	%E% SMI"
36 
37 /*
38  * This file contains common functions to access and manage the page lists.
39  * Many of these routines originated from platform dependent modules
40  * (sun4/vm/vm_dep.c, i86pc/vm/vm_machdep.c) and modified to function in
41  * a platform independent manner.
42  *
43  * vm/vm_dep.h provides for platform specific support.
44  */
45 
46 #include <sys/types.h>
47 #include <sys/debug.h>
48 #include <sys/cmn_err.h>
49 #include <sys/systm.h>
50 #include <sys/atomic.h>
51 #include <sys/sysmacros.h>
52 #include <vm/as.h>
53 #include <vm/page.h>
54 #include <vm/seg_kmem.h>
55 #include <vm/seg_vn.h>
56 #include <sys/memnode.h>
57 #include <vm/vm_dep.h>
58 #include <sys/lgrp.h>
59 #include <sys/mem_config.h>
60 #include <sys/callb.h>
61 #include <sys/mem_cage.h>
62 #include <sys/sdt.h>
63 
64 extern uint_t	vac_colors;
65 
66 #define	MAX_PRAGMA_ALIGN	128
67 
68 /* vm_cpu_data0 for the boot cpu before kmem is initialized */
69 
70 #if L2CACHE_ALIGN_MAX <= MAX_PRAGMA_ALIGN
71 #pragma align	L2CACHE_ALIGN_MAX(vm_cpu_data0)
72 #else
73 #pragma align	MAX_PRAGMA_ALIGN(vm_cpu_data0)
74 #endif
75 char		vm_cpu_data0[VM_CPU_DATA_PADSIZE];
76 
77 /*
78  * number of page colors equivalent to reqested color in page_get routines.
79  * If set, keeps large pages intact longer and keeps MPO allocation
80  * from the local mnode in favor of acquiring the 'correct' page color from
81  * a demoted large page or from a remote mnode.
82  */
83 int	colorequiv;
84 
85 /*
86  * if set, specifies the percentage of large pages that are free from within
87  * a large page region before attempting to lock those pages for
88  * page_get_contig_pages processing.
89  *
90  * Should be turned on when kpr is available when page_trylock_contig_pages
91  * can be more selective.
92  */
93 
94 int	ptcpthreshold;
95 
96 /*
97  * Limit page get contig page search based on failure cnts in pgcpfailcnt[].
98  * Enabled by default via pgcplimitsearch.
99  *
100  * pgcpfailcnt[] is bounded by PGCPFAILMAX (>= 1/2 of installed
101  * memory). When reached, pgcpfailcnt[] is reset to 1/2 of this upper
102  * bound. This upper bound range guarantees:
103  *    - all large page 'slots' will be searched over time
104  *    - the minimum (1) large page candidates considered on each pgcp call
105  *    - count doesn't wrap around to 0
106  */
107 pgcnt_t	pgcpfailcnt[MMU_PAGE_SIZES];
108 int	pgcplimitsearch = 1;
109 
110 #define	PGCPFAILMAX		(1 << (highbit(physinstalled) - 1))
111 #define	SETPGCPFAILCNT(szc)						\
112 	if (++pgcpfailcnt[szc] >= PGCPFAILMAX)				\
113 		pgcpfailcnt[szc] = PGCPFAILMAX / 2;
114 
115 #ifdef VM_STATS
116 struct vmm_vmstats_str  vmm_vmstats;
117 
118 #endif /* VM_STATS */
119 
120 #if defined(__sparc)
121 #define	LPGCREATE	0
122 #else
123 /* enable page_get_contig_pages */
124 #define	LPGCREATE	1
125 #endif
126 
127 int pg_contig_disable;
128 int pg_lpgcreate_nocage = LPGCREATE;
129 
130 /*
131  * page_freelist_fill pfn flag to signify no hi pfn requirement.
132  */
133 #define	PFNNULL		0
134 
135 /* Flags involved in promotion and demotion routines */
136 #define	PC_FREE		0x1	/* put page on freelist */
137 #define	PC_ALLOC	0x2	/* return page for allocation */
138 
139 /*
140  * Flag for page_demote to be used with PC_FREE to denote that we don't care
141  * what the color is as the color parameter to the function is ignored.
142  */
143 #define	PC_NO_COLOR	(-1)
144 
145 /*
146  * page counters candidates info
147  * See page_ctrs_cands comment below for more details.
148  * fields are as follows:
149  *	pcc_pages_free:		# pages which freelist coalesce can create
150  *	pcc_color_free_len:	number of elements in pcc_color_free array
151  *	pcc_color_free:		pointer to page free counts per color
152  */
153 typedef struct pcc_info {
154 	pgcnt_t	pcc_pages_free;
155 	int	pcc_color_free_len;
156 	pgcnt_t	*pcc_color_free;
157 } pcc_info_t;
158 
159 /*
160  * On big machines it can take a long time to check page_counters
161  * arrays. page_ctrs_cands is a summary array whose elements are a dynamically
162  * updated sum of all elements of the corresponding page_counters arrays.
163  * page_freelist_coalesce() searches page_counters only if an appropriate
164  * element of page_ctrs_cands array is greater than 0.
165  *
166  * An extra dimension is used for page_ctrs_cands to spread the elements
167  * over a few e$ cache lines to avoid serialization during the array
168  * updates.
169  */
170 #pragma	align 64(page_ctrs_cands)
171 
172 static pcc_info_t *page_ctrs_cands[NPC_MUTEX][MMU_PAGE_SIZES];
173 
174 /*
175  * Return in val the total number of free pages which can be created
176  * for the given mnode (m) and region size (r)
177  */
178 #define	PGCTRS_CANDS_GETVALUE(m, r, val) {				\
179 	int i;								\
180 	val = 0;							\
181 	for (i = 0; i < NPC_MUTEX; i++) {				\
182 	    val += page_ctrs_cands[i][(r)][(m)].pcc_pages_free;		\
183 	}								\
184 }
185 
186 /*
187  * Return in val the total number of free pages which can be created
188  * for the given mnode (m), region size (r), and color (c)
189  */
190 #define	PGCTRS_CANDS_GETVALUECOLOR(m, r, c, val) {			\
191 	int i;								\
192 	val = 0;							\
193 	ASSERT((c) < page_ctrs_cands[0][(r)][(m)].pcc_color_free_len);	\
194 	for (i = 0; i < NPC_MUTEX; i++) {				\
195 	    val += page_ctrs_cands[i][(r)][(m)].pcc_color_free[(c)];	\
196 	}								\
197 }
198 
199 /*
200  * We can only allow a single thread to update a counter within the physical
201  * range of the largest supported page size. That is the finest granularity
202  * possible since the counter values are dependent on each other
203  * as you move accross region sizes. PP_CTR_LOCK_INDX is used to determine the
204  * ctr_mutex lock index for a particular physical range.
205  */
206 static kmutex_t	*ctr_mutex[NPC_MUTEX];
207 
208 #define	PP_CTR_LOCK_INDX(pp)						\
209 	(((pp)->p_pagenum >>					\
210 	    (PAGE_BSZS_SHIFT(mmu_page_sizes - 1))) & (NPC_MUTEX - 1))
211 
212 /*
213  * Local functions prototypes.
214  */
215 
216 void page_ctr_add(int, int, page_t *, int);
217 void page_ctr_add_internal(int, int, page_t *, int);
218 void page_ctr_sub(int, int, page_t *, int);
219 uint_t  page_convert_color(uchar_t, uchar_t, uint_t);
220 void page_freelist_lock(int);
221 void page_freelist_unlock(int);
222 page_t *page_promote(int, pfn_t, uchar_t, int);
223 page_t *page_demote(int, pfn_t, uchar_t, uchar_t, int, int);
224 page_t *page_freelist_fill(uchar_t, int, int, int, pfn_t);
225 page_t *page_get_mnode_cachelist(uint_t, uint_t, int, int);
226 static int page_trylock_cons(page_t *pp, se_t se);
227 
228 #define	PNUM_SIZE(szc)							\
229 	(hw_page_array[(szc)].hp_size >> hw_page_array[0].hp_shift)
230 #define	PNUM_SHIFT(szc)							\
231 	(hw_page_array[(szc)].hp_shift - hw_page_array[0].hp_shift)
232 
233 /*
234  * The page_counters array below is used to keep track of free contiguous
235  * physical memory.  A hw_page_map_t will be allocated per mnode per szc.
236  * This contains an array of counters, the size of the array, a shift value
237  * used to convert a pagenum into a counter array index or vice versa, as
238  * well as a cache of the last successful index to be promoted to a larger
239  * page size.  As an optimization, we keep track of the last successful index
240  * to be promoted per page color for the given size region, and this is
241  * allocated dynamically based upon the number of colors for a given
242  * region size.
243  *
244  * Conceptually, the page counters are represented as:
245  *
246  *	page_counters[region_size][mnode]
247  *
248  *	region_size:	size code of a candidate larger page made up
249  *			of contiguous free smaller pages.
250  *
251  *	page_counters[region_size][mnode].hpm_counters[index]:
252  *		represents how many (region_size - 1) pages either
253  *		exist or can be created within the given index range.
254  *
255  * Let's look at a sparc example:
256  *	If we want to create a free 512k page, we look at region_size 2
257  *	for the mnode we want.  We calculate the index and look at a specific
258  *	hpm_counters location.  If we see 8 (FULL_REGION_CNT on sparc) at
259  *	this location, it means that 8 64k pages either exist or can be created
260  *	from 8K pages in order to make a single free 512k page at the given
261  *	index.  Note that when a region is full, it will contribute to the
262  *	counts in the region above it.  Thus we will not know what page
263  *	size the free pages will be which can be promoted to this new free
264  *	page unless we look at all regions below the current region.
265  */
266 
267 /*
268  * Note: hpmctr_t is defined in platform vm_dep.h
269  * hw_page_map_t contains all the information needed for the page_counters
270  * logic. The fields are as follows:
271  *
272  *	hpm_counters:	dynamically allocated array to hold counter data
273  *	hpm_entries:	entries in hpm_counters
274  *	hpm_shift:	shift for pnum/array index conv
275  *	hpm_base:	PFN mapped to counter index 0
276  *	hpm_color_current_len:	# of elements in hpm_color_current "array" below
277  *	hpm_color_current:	last index in counter array for this color at
278  *				which we successfully created a large page
279  */
280 typedef struct hw_page_map {
281 	hpmctr_t	*hpm_counters;
282 	size_t		hpm_entries;
283 	int		hpm_shift;
284 	pfn_t		hpm_base;
285 	size_t		hpm_color_current_len;
286 	size_t 		*hpm_color_current;
287 } hw_page_map_t;
288 
289 /*
290  * Element zero is not used, but is allocated for convenience.
291  */
292 static hw_page_map_t *page_counters[MMU_PAGE_SIZES];
293 
294 /*
295  * The following macros are convenient ways to get access to the individual
296  * elements of the page_counters arrays.  They can be used on both
297  * the left side and right side of equations.
298  */
299 #define	PAGE_COUNTERS(mnode, rg_szc, idx)			\
300 	(page_counters[(rg_szc)][(mnode)].hpm_counters[(idx)])
301 
302 #define	PAGE_COUNTERS_COUNTERS(mnode, rg_szc) 			\
303 	(page_counters[(rg_szc)][(mnode)].hpm_counters)
304 
305 #define	PAGE_COUNTERS_SHIFT(mnode, rg_szc) 			\
306 	(page_counters[(rg_szc)][(mnode)].hpm_shift)
307 
308 #define	PAGE_COUNTERS_ENTRIES(mnode, rg_szc) 			\
309 	(page_counters[(rg_szc)][(mnode)].hpm_entries)
310 
311 #define	PAGE_COUNTERS_BASE(mnode, rg_szc) 			\
312 	(page_counters[(rg_szc)][(mnode)].hpm_base)
313 
314 #define	PAGE_COUNTERS_CURRENT_COLOR_LEN(mnode, rg_szc)		\
315 	(page_counters[(rg_szc)][(mnode)].hpm_color_current_len)
316 
317 #define	PAGE_COUNTERS_CURRENT_COLOR_ARRAY(mnode, rg_szc)	\
318 	(page_counters[(rg_szc)][(mnode)].hpm_color_current)
319 
320 #define	PAGE_COUNTERS_CURRENT_COLOR(mnode, rg_szc, color)	\
321 	(page_counters[(rg_szc)][(mnode)].hpm_color_current[(color)])
322 
323 #define	PNUM_TO_IDX(mnode, rg_szc, pnum)			\
324 	(((pnum) - PAGE_COUNTERS_BASE((mnode), (rg_szc))) >>	\
325 		PAGE_COUNTERS_SHIFT((mnode), (rg_szc)))
326 
327 #define	IDX_TO_PNUM(mnode, rg_szc, index) 			\
328 	(PAGE_COUNTERS_BASE((mnode), (rg_szc)) +		\
329 		((index) << PAGE_COUNTERS_SHIFT((mnode), (rg_szc))))
330 
331 /*
332  * Protects the hpm_counters and hpm_color_current memory from changing while
333  * looking at page counters information.
334  * Grab the write lock to modify what these fields point at.
335  * Grab the read lock to prevent any pointers from changing.
336  * The write lock can not be held during memory allocation due to a possible
337  * recursion deadlock with trying to grab the read lock while the
338  * write lock is already held.
339  */
340 krwlock_t page_ctrs_rwlock[MAX_MEM_NODES];
341 
342 
343 /*
344  * initialize cpu_vm_data to point at cache aligned vm_cpu_data_t.
345  */
346 void
347 cpu_vm_data_init(struct cpu *cp)
348 {
349 	if (cp == CPU0) {
350 		cp->cpu_vm_data = (void *)&vm_cpu_data0;
351 	} else {
352 		void	*kmptr;
353 		int	align;
354 		size_t	sz;
355 
356 		align = (L2CACHE_ALIGN) ? L2CACHE_ALIGN : L2CACHE_ALIGN_MAX;
357 		sz = P2ROUNDUP(sizeof (vm_cpu_data_t), align) + align;
358 		kmptr = kmem_zalloc(sz, KM_SLEEP);
359 		cp->cpu_vm_data = (void *) P2ROUNDUP((uintptr_t)kmptr, align);
360 		((vm_cpu_data_t *)cp->cpu_vm_data)->vc_kmptr = kmptr;
361 		((vm_cpu_data_t *)cp->cpu_vm_data)->vc_kmsize = sz;
362 	}
363 }
364 
365 /*
366  * free cpu_vm_data
367  */
368 void
369 cpu_vm_data_destroy(struct cpu *cp)
370 {
371 	if (cp->cpu_seqid && cp->cpu_vm_data) {
372 		ASSERT(cp != CPU0);
373 		kmem_free(((vm_cpu_data_t *)cp->cpu_vm_data)->vc_kmptr,
374 		    ((vm_cpu_data_t *)cp->cpu_vm_data)->vc_kmsize);
375 	}
376 	cp->cpu_vm_data = NULL;
377 }
378 
379 
380 /*
381  * page size to page size code
382  */
383 int
384 page_szc(size_t pagesize)
385 {
386 	int	i = 0;
387 
388 	while (hw_page_array[i].hp_size) {
389 		if (pagesize == hw_page_array[i].hp_size)
390 			return (i);
391 		i++;
392 	}
393 	return (-1);
394 }
395 
396 /*
397  * page size to page size code with the restriction that it be a supported
398  * user page size.  If it's not a supported user page size, -1 will be returned.
399  */
400 int
401 page_szc_user_filtered(size_t pagesize)
402 {
403 	int szc = page_szc(pagesize);
404 	if ((szc != -1) && (SZC_2_USERSZC(szc) != -1)) {
405 		return (szc);
406 	}
407 	return (-1);
408 }
409 
410 /*
411  * Return how many page sizes are available for the user to use.  This is
412  * what the hardware supports and not based upon how the OS implements the
413  * support of different page sizes.
414  */
415 uint_t
416 page_num_user_pagesizes(void)
417 {
418 	return (mmu_exported_page_sizes);
419 }
420 
421 uint_t
422 page_num_pagesizes(void)
423 {
424 	return (mmu_page_sizes);
425 }
426 
427 /*
428  * returns the count of the number of base pagesize pages associated with szc
429  */
430 pgcnt_t
431 page_get_pagecnt(uint_t szc)
432 {
433 	if (szc >= mmu_page_sizes)
434 		panic("page_get_pagecnt: out of range %d", szc);
435 	return (hw_page_array[szc].hp_pgcnt);
436 }
437 
438 size_t
439 page_get_pagesize(uint_t szc)
440 {
441 	if (szc >= mmu_page_sizes)
442 		panic("page_get_pagesize: out of range %d", szc);
443 	return (hw_page_array[szc].hp_size);
444 }
445 
446 /*
447  * Return the size of a page based upon the index passed in.  An index of
448  * zero refers to the smallest page size in the system, and as index increases
449  * it refers to the next larger supported page size in the system.
450  * Note that szc and userszc may not be the same due to unsupported szc's on
451  * some systems.
452  */
453 size_t
454 page_get_user_pagesize(uint_t userszc)
455 {
456 	uint_t szc = USERSZC_2_SZC(userszc);
457 
458 	if (szc >= mmu_page_sizes)
459 		panic("page_get_user_pagesize: out of range %d", szc);
460 	return (hw_page_array[szc].hp_size);
461 }
462 
463 uint_t
464 page_get_shift(uint_t szc)
465 {
466 	if (szc >= mmu_page_sizes)
467 		panic("page_get_shift: out of range %d", szc);
468 	return (hw_page_array[szc].hp_shift);
469 }
470 
471 uint_t
472 page_get_pagecolors(uint_t szc)
473 {
474 	ASSERT(page_colors != 0);
475 	return (MAX(page_colors >> PAGE_BSZS_SHIFT(szc), 1));
476 }
477 
478 /*
479  * Called by startup().
480  * Size up the per page size free list counters based on physmax
481  * of each node and max_mem_nodes.
482  */
483 size_t
484 page_ctrs_sz(void)
485 {
486 	int	r;		/* region size */
487 	int	mnode;
488 	uint_t	ctrs_sz = 0;
489 	int 	i;
490 	pgcnt_t colors_per_szc[MMU_PAGE_SIZES];
491 
492 	/*
493 	 * We need to determine how many page colors there are for each
494 	 * page size in order to allocate memory for any color specific
495 	 * arrays.
496 	 */
497 	colors_per_szc[0] = page_colors;
498 	for (i = 1; i < mmu_page_sizes; i++) {
499 		colors_per_szc[i] =
500 		    page_convert_color(0, i, page_colors - 1) + 1;
501 	}
502 
503 	for (mnode = 0; mnode < max_mem_nodes; mnode++) {
504 
505 		pgcnt_t r_pgcnt;
506 		pfn_t   r_base;
507 		pgcnt_t r_align;
508 
509 		if (mem_node_config[mnode].exists == 0)
510 			continue;
511 
512 		/*
513 		 * determine size needed for page counter arrays with
514 		 * base aligned to large page size.
515 		 */
516 		for (r = 1; r < mmu_page_sizes; r++) {
517 			/* add in space for hpm_counters */
518 			r_align = page_get_pagecnt(r);
519 			r_base = mem_node_config[mnode].physbase;
520 			r_base &= ~(r_align - 1);
521 			r_pgcnt = howmany(mem_node_config[mnode].physmax -
522 			    r_base + 1, r_align);
523 			/*
524 			 * Round up to always allocate on pointer sized
525 			 * boundaries.
526 			 */
527 			ctrs_sz += P2ROUNDUP((r_pgcnt * sizeof (hpmctr_t)),
528 			    sizeof (hpmctr_t *));
529 
530 			/* add in space for hpm_color_current */
531 			ctrs_sz += (colors_per_szc[r] *
532 			    sizeof (size_t));
533 		}
534 	}
535 
536 	for (r = 1; r < mmu_page_sizes; r++) {
537 		ctrs_sz += (max_mem_nodes * sizeof (hw_page_map_t));
538 
539 		/* add in space for page_ctrs_cands */
540 		ctrs_sz += NPC_MUTEX * max_mem_nodes * (sizeof (pcc_info_t));
541 		ctrs_sz += NPC_MUTEX * max_mem_nodes * colors_per_szc[r] *
542 		    sizeof (pgcnt_t);
543 	}
544 
545 	/* ctr_mutex */
546 	ctrs_sz += (max_mem_nodes * NPC_MUTEX * sizeof (kmutex_t));
547 
548 	/* size for page list counts */
549 	PLCNT_SZ(ctrs_sz);
550 
551 	/*
552 	 * add some slop for roundups. page_ctrs_alloc will roundup the start
553 	 * address of the counters to ecache_alignsize boundary for every
554 	 * memory node.
555 	 */
556 	return (ctrs_sz + max_mem_nodes * L2CACHE_ALIGN);
557 }
558 
559 caddr_t
560 page_ctrs_alloc(caddr_t alloc_base)
561 {
562 	int	mnode;
563 	int	r;		/* region size */
564 	int	i;
565 	pgcnt_t colors_per_szc[MMU_PAGE_SIZES];
566 
567 	/*
568 	 * We need to determine how many page colors there are for each
569 	 * page size in order to allocate memory for any color specific
570 	 * arrays.
571 	 */
572 	colors_per_szc[0] = page_colors;
573 	for (i = 1; i < mmu_page_sizes; i++) {
574 		colors_per_szc[i] =
575 		    page_convert_color(0, i, page_colors - 1) + 1;
576 	}
577 
578 	for (r = 1; r < mmu_page_sizes; r++) {
579 		page_counters[r] = (hw_page_map_t *)alloc_base;
580 		alloc_base += (max_mem_nodes * sizeof (hw_page_map_t));
581 	}
582 
583 	/* page_ctrs_cands */
584 	for (r = 1; r < mmu_page_sizes; r++) {
585 		for (i = 0; i < NPC_MUTEX; i++) {
586 			page_ctrs_cands[i][r] = (pcc_info_t *)alloc_base;
587 			alloc_base += max_mem_nodes * (sizeof (pcc_info_t));
588 
589 		}
590 	}
591 
592 	/* page_ctrs_cands pcc_color_free array */
593 	for (r = 1; r < mmu_page_sizes; r++) {
594 		for (i = 0; i < NPC_MUTEX; i++) {
595 			for (mnode = 0; mnode < max_mem_nodes; mnode++) {
596 				page_ctrs_cands[i][r][mnode].pcc_color_free_len
597 				    = colors_per_szc[r];
598 				page_ctrs_cands[i][r][mnode].pcc_color_free =
599 				    (pgcnt_t *)alloc_base;
600 				alloc_base += colors_per_szc[r] *
601 				    sizeof (pgcnt_t);
602 			}
603 		}
604 	}
605 
606 	/* ctr_mutex */
607 	for (i = 0; i < NPC_MUTEX; i++) {
608 		ctr_mutex[i] = (kmutex_t *)alloc_base;
609 		alloc_base += (max_mem_nodes * sizeof (kmutex_t));
610 	}
611 
612 	/* initialize page list counts */
613 	PLCNT_INIT(alloc_base);
614 
615 	for (mnode = 0; mnode < max_mem_nodes; mnode++) {
616 
617 		pgcnt_t r_pgcnt;
618 		pfn_t	r_base;
619 		pgcnt_t r_align;
620 		int	r_shift;
621 
622 		if (mem_node_config[mnode].exists == 0)
623 			continue;
624 
625 		for (r = 1; r < mmu_page_sizes; r++) {
626 			/*
627 			 * the page_counters base has to be aligned to the
628 			 * page count of page size code r otherwise the counts
629 			 * will cross large page boundaries.
630 			 */
631 			r_align = page_get_pagecnt(r);
632 			r_base = mem_node_config[mnode].physbase;
633 			/* base needs to be aligned - lower to aligned value */
634 			r_base &= ~(r_align - 1);
635 			r_pgcnt = howmany(mem_node_config[mnode].physmax -
636 			    r_base + 1, r_align);
637 			r_shift = PAGE_BSZS_SHIFT(r);
638 
639 			PAGE_COUNTERS_SHIFT(mnode, r) = r_shift;
640 			PAGE_COUNTERS_ENTRIES(mnode, r) = r_pgcnt;
641 			PAGE_COUNTERS_BASE(mnode, r) = r_base;
642 			PAGE_COUNTERS_CURRENT_COLOR_LEN(mnode, r) =
643 			    colors_per_szc[r];
644 			PAGE_COUNTERS_CURRENT_COLOR_ARRAY(mnode, r) =
645 			    (size_t *)alloc_base;
646 			alloc_base += (sizeof (size_t) * colors_per_szc[r]);
647 			for (i = 0; i < colors_per_szc[r]; i++) {
648 				PAGE_COUNTERS_CURRENT_COLOR(mnode, r, i) = i;
649 			}
650 			PAGE_COUNTERS_COUNTERS(mnode, r) =
651 			    (hpmctr_t *)alloc_base;
652 			/*
653 			 * Round up to make alloc_base always be aligned on
654 			 * a pointer boundary.
655 			 */
656 			alloc_base += P2ROUNDUP((sizeof (hpmctr_t) * r_pgcnt),
657 			    sizeof (hpmctr_t *));
658 
659 			/*
660 			 * Verify that PNUM_TO_IDX and IDX_TO_PNUM
661 			 * satisfy the identity requirement.
662 			 * We should be able to go from one to the other
663 			 * and get consistent values.
664 			 */
665 			ASSERT(PNUM_TO_IDX(mnode, r,
666 			    (IDX_TO_PNUM(mnode, r, 0))) == 0);
667 			ASSERT(IDX_TO_PNUM(mnode, r,
668 			    (PNUM_TO_IDX(mnode, r, r_base))) == r_base);
669 		}
670 		/*
671 		 * Roundup the start address of the page_counters to
672 		 * cache aligned boundary for every memory node.
673 		 * page_ctrs_sz() has added some slop for these roundups.
674 		 */
675 		alloc_base = (caddr_t)P2ROUNDUP((uintptr_t)alloc_base,
676 			L2CACHE_ALIGN);
677 	}
678 
679 	/* Initialize other page counter specific data structures. */
680 	for (mnode = 0; mnode < MAX_MEM_NODES; mnode++) {
681 		rw_init(&page_ctrs_rwlock[mnode], NULL, RW_DEFAULT, NULL);
682 	}
683 
684 	return (alloc_base);
685 }
686 
687 /*
688  * Functions to adjust region counters for each size free list.
689  * Caller is responsible to acquire the ctr_mutex lock if necessary and
690  * thus can be called during startup without locks.
691  */
692 /* ARGSUSED */
693 void
694 page_ctr_add_internal(int mnode, int mtype, page_t *pp, int flags)
695 {
696 	ssize_t		r;	/* region size */
697 	ssize_t		idx;
698 	pfn_t		pfnum;
699 	int		lckidx;
700 
701 	ASSERT(mnode == PP_2_MEM_NODE(pp));
702 	ASSERT(mtype == PP_2_MTYPE(pp));
703 
704 	ASSERT(pp->p_szc < mmu_page_sizes);
705 
706 	PLCNT_INCR(pp, mnode, mtype, pp->p_szc, flags);
707 
708 	/* no counter update needed for largest page size */
709 	if (pp->p_szc >= mmu_page_sizes - 1) {
710 		return;
711 	}
712 
713 	r = pp->p_szc + 1;
714 	pfnum = pp->p_pagenum;
715 	lckidx = PP_CTR_LOCK_INDX(pp);
716 
717 	/*
718 	 * Increment the count of free pages for the current
719 	 * region. Continue looping up in region size incrementing
720 	 * count if the preceeding region is full.
721 	 */
722 	while (r < mmu_page_sizes) {
723 		idx = PNUM_TO_IDX(mnode, r, pfnum);
724 
725 		ASSERT(idx < PAGE_COUNTERS_ENTRIES(mnode, r));
726 		ASSERT(PAGE_COUNTERS(mnode, r, idx) < FULL_REGION_CNT(r));
727 
728 		if (++PAGE_COUNTERS(mnode, r, idx) != FULL_REGION_CNT(r))
729 			break;
730 
731 		page_ctrs_cands[lckidx][r][mnode].pcc_pages_free++;
732 		page_ctrs_cands[lckidx][r][mnode].
733 		    pcc_color_free[PP_2_BIN_SZC(pp, r)]++;
734 		r++;
735 	}
736 }
737 
738 void
739 page_ctr_add(int mnode, int mtype, page_t *pp, int flags)
740 {
741 	int		lckidx = PP_CTR_LOCK_INDX(pp);
742 	kmutex_t	*lock = &ctr_mutex[lckidx][mnode];
743 
744 	mutex_enter(lock);
745 	page_ctr_add_internal(mnode, mtype, pp, flags);
746 	mutex_exit(lock);
747 }
748 
749 void
750 page_ctr_sub(int mnode, int mtype, page_t *pp, int flags)
751 {
752 	int		lckidx;
753 	kmutex_t	*lock;
754 	ssize_t		r;	/* region size */
755 	ssize_t		idx;
756 	pfn_t		pfnum;
757 
758 	ASSERT(mnode == PP_2_MEM_NODE(pp));
759 	ASSERT(mtype == PP_2_MTYPE(pp));
760 
761 	ASSERT(pp->p_szc < mmu_page_sizes);
762 
763 	PLCNT_DECR(pp, mnode, mtype, pp->p_szc, flags);
764 
765 	/* no counter update needed for largest page size */
766 	if (pp->p_szc >= mmu_page_sizes - 1) {
767 		return;
768 	}
769 
770 	r = pp->p_szc + 1;
771 	pfnum = pp->p_pagenum;
772 	lckidx = PP_CTR_LOCK_INDX(pp);
773 	lock = &ctr_mutex[lckidx][mnode];
774 
775 	/*
776 	 * Decrement the count of free pages for the current
777 	 * region. Continue looping up in region size decrementing
778 	 * count if the preceeding region was full.
779 	 */
780 	mutex_enter(lock);
781 	while (r < mmu_page_sizes) {
782 		idx = PNUM_TO_IDX(mnode, r, pfnum);
783 
784 		ASSERT(idx < PAGE_COUNTERS_ENTRIES(mnode, r));
785 		ASSERT(PAGE_COUNTERS(mnode, r, idx) > 0);
786 
787 		if (--PAGE_COUNTERS(mnode, r, idx) != FULL_REGION_CNT(r) - 1) {
788 			break;
789 		}
790 		ASSERT(page_ctrs_cands[lckidx][r][mnode].pcc_pages_free != 0);
791 		ASSERT(page_ctrs_cands[lckidx][r][mnode].
792 		    pcc_color_free[PP_2_BIN_SZC(pp, r)] != 0);
793 
794 		page_ctrs_cands[lckidx][r][mnode].pcc_pages_free--;
795 		page_ctrs_cands[lckidx][r][mnode].
796 		    pcc_color_free[PP_2_BIN_SZC(pp, r)]--;
797 		r++;
798 	}
799 	mutex_exit(lock);
800 }
801 
802 /*
803  * Adjust page counters following a memory attach, since typically the
804  * size of the array needs to change, and the PFN to counter index
805  * mapping needs to change.
806  */
807 uint_t
808 page_ctrs_adjust(int mnode)
809 {
810 	pgcnt_t npgs;
811 	int	r;		/* region size */
812 	int	i;
813 	size_t	pcsz, old_csz;
814 	hpmctr_t *new_ctr, *old_ctr;
815 	pfn_t	oldbase, newbase;
816 	size_t	old_npgs;
817 	hpmctr_t *ctr_cache[MMU_PAGE_SIZES];
818 	size_t	size_cache[MMU_PAGE_SIZES];
819 	size_t	*color_cache[MMU_PAGE_SIZES];
820 	size_t	*old_color_array;
821 	pgcnt_t	colors_per_szc[MMU_PAGE_SIZES];
822 
823 	newbase = mem_node_config[mnode].physbase & ~PC_BASE_ALIGN_MASK;
824 	npgs = roundup(mem_node_config[mnode].physmax,
825 	    PC_BASE_ALIGN) - newbase;
826 
827 	/*
828 	 * We need to determine how many page colors there are for each
829 	 * page size in order to allocate memory for any color specific
830 	 * arrays.
831 	 */
832 	colors_per_szc[0] = page_colors;
833 	for (r = 1; r < mmu_page_sizes; r++) {
834 		colors_per_szc[r] =
835 		    page_convert_color(0, r, page_colors - 1) + 1;
836 	}
837 
838 	/*
839 	 * Preallocate all of the new hpm_counters arrays as we can't
840 	 * hold the page_ctrs_rwlock as a writer and allocate memory.
841 	 * If we can't allocate all of the arrays, undo our work so far
842 	 * and return failure.
843 	 */
844 	for (r = 1; r < mmu_page_sizes; r++) {
845 		pcsz = npgs >> PAGE_BSZS_SHIFT(r);
846 
847 		ctr_cache[r] = kmem_zalloc(pcsz *
848 		    sizeof (hpmctr_t), KM_NOSLEEP);
849 		if (ctr_cache[r] == NULL) {
850 			while (--r >= 1) {
851 				kmem_free(ctr_cache[r],
852 				    size_cache[r] * sizeof (hpmctr_t));
853 			}
854 			return (ENOMEM);
855 		}
856 		size_cache[r] = pcsz;
857 	}
858 	/*
859 	 * Preallocate all of the new color current arrays as we can't
860 	 * hold the page_ctrs_rwlock as a writer and allocate memory.
861 	 * If we can't allocate all of the arrays, undo our work so far
862 	 * and return failure.
863 	 */
864 	for (r = 1; r < mmu_page_sizes; r++) {
865 		color_cache[r] = kmem_zalloc(sizeof (size_t) *
866 		    colors_per_szc[r], KM_NOSLEEP);
867 		if (color_cache[r] == NULL) {
868 			while (--r >= 1) {
869 				kmem_free(color_cache[r],
870 				    colors_per_szc[r] * sizeof (size_t));
871 			}
872 			for (r = 1; r < mmu_page_sizes; r++) {
873 				kmem_free(ctr_cache[r],
874 				    size_cache[r] * sizeof (hpmctr_t));
875 			}
876 			return (ENOMEM);
877 		}
878 	}
879 
880 	/*
881 	 * Grab the write lock to prevent others from walking these arrays
882 	 * while we are modifying them.
883 	 */
884 	rw_enter(&page_ctrs_rwlock[mnode], RW_WRITER);
885 	page_freelist_lock(mnode);
886 	for (r = 1; r < mmu_page_sizes; r++) {
887 		PAGE_COUNTERS_SHIFT(mnode, r) = PAGE_BSZS_SHIFT(r);
888 		old_ctr = PAGE_COUNTERS_COUNTERS(mnode, r);
889 		old_csz = PAGE_COUNTERS_ENTRIES(mnode, r);
890 		oldbase = PAGE_COUNTERS_BASE(mnode, r);
891 		old_npgs = old_csz << PAGE_COUNTERS_SHIFT(mnode, r);
892 		old_color_array = PAGE_COUNTERS_CURRENT_COLOR_ARRAY(mnode, r);
893 
894 		pcsz = npgs >> PAGE_COUNTERS_SHIFT(mnode, r);
895 		new_ctr = ctr_cache[r];
896 		ctr_cache[r] = NULL;
897 		if (old_ctr != NULL &&
898 		    (oldbase + old_npgs > newbase) &&
899 		    (newbase + npgs > oldbase)) {
900 			/*
901 			 * Map the intersection of the old and new
902 			 * counters into the new array.
903 			 */
904 			size_t offset;
905 			if (newbase > oldbase) {
906 				offset = (newbase - oldbase) >>
907 				    PAGE_COUNTERS_SHIFT(mnode, r);
908 				bcopy(old_ctr + offset, new_ctr,
909 				    MIN(pcsz, (old_csz - offset)) *
910 				    sizeof (hpmctr_t));
911 			} else {
912 				offset = (oldbase - newbase) >>
913 				    PAGE_COUNTERS_SHIFT(mnode, r);
914 				bcopy(old_ctr, new_ctr + offset,
915 				    MIN(pcsz - offset, old_csz) *
916 				    sizeof (hpmctr_t));
917 			}
918 		}
919 
920 		PAGE_COUNTERS_COUNTERS(mnode, r) = new_ctr;
921 		PAGE_COUNTERS_ENTRIES(mnode, r) = pcsz;
922 		PAGE_COUNTERS_BASE(mnode, r) = newbase;
923 		PAGE_COUNTERS_CURRENT_COLOR_LEN(mnode, r) = colors_per_szc[r];
924 		PAGE_COUNTERS_CURRENT_COLOR_ARRAY(mnode, r) = color_cache[r];
925 		color_cache[r] = NULL;
926 		/*
927 		 * for now, just reset on these events as it's probably
928 		 * not worthwhile to try and optimize this.
929 		 */
930 		for (i = 0; i < colors_per_szc[r]; i++) {
931 			PAGE_COUNTERS_CURRENT_COLOR(mnode, r, i) = i;
932 		}
933 
934 		/* cache info for freeing out of the critical path */
935 		if ((caddr_t)old_ctr >= kernelheap &&
936 		    (caddr_t)old_ctr < ekernelheap) {
937 			ctr_cache[r] = old_ctr;
938 			size_cache[r] = old_csz;
939 		}
940 		if ((caddr_t)old_color_array >= kernelheap &&
941 		    (caddr_t)old_color_array < ekernelheap) {
942 			color_cache[r] = old_color_array;
943 		}
944 		/*
945 		 * Verify that PNUM_TO_IDX and IDX_TO_PNUM
946 		 * satisfy the identity requirement.
947 		 * We should be able to go from one to the other
948 		 * and get consistent values.
949 		 */
950 		ASSERT(PNUM_TO_IDX(mnode, r,
951 		    (IDX_TO_PNUM(mnode, r, 0))) == 0);
952 		ASSERT(IDX_TO_PNUM(mnode, r,
953 		    (PNUM_TO_IDX(mnode, r, newbase))) == newbase);
954 	}
955 	page_freelist_unlock(mnode);
956 	rw_exit(&page_ctrs_rwlock[mnode]);
957 
958 	/*
959 	 * Now that we have dropped the write lock, it is safe to free all
960 	 * of the memory we have cached above.
961 	 */
962 	for (r = 1; r < mmu_page_sizes; r++) {
963 		if (ctr_cache[r] != NULL) {
964 			kmem_free(ctr_cache[r],
965 			    size_cache[r] * sizeof (hpmctr_t));
966 		}
967 		if (color_cache[r] != NULL) {
968 			kmem_free(color_cache[r],
969 			    colors_per_szc[r] * sizeof (size_t));
970 		}
971 	}
972 	return (0);
973 }
974 
975 /*
976  * color contains a valid color index or bin for cur_szc
977  */
978 uint_t
979 page_convert_color(uchar_t cur_szc, uchar_t new_szc, uint_t color)
980 {
981 	uint_t shift;
982 
983 	if (cur_szc > new_szc) {
984 		shift = page_get_shift(cur_szc) - page_get_shift(new_szc);
985 		return (color << shift);
986 	} else if (cur_szc < new_szc) {
987 		shift = page_get_shift(new_szc) - page_get_shift(cur_szc);
988 		return (color >> shift);
989 	}
990 	return (color);
991 }
992 
993 #ifdef DEBUG
994 
995 /*
996  * confirm pp is a large page corresponding to szc
997  */
998 void
999 chk_lpg(page_t *pp, uchar_t szc)
1000 {
1001 	spgcnt_t npgs = page_get_pagecnt(pp->p_szc);
1002 	uint_t noreloc;
1003 
1004 	if (npgs == 1) {
1005 		ASSERT(pp->p_szc == 0);
1006 		ASSERT(pp->p_next == pp);
1007 		ASSERT(pp->p_prev == pp);
1008 		return;
1009 	}
1010 
1011 	ASSERT(pp->p_vpnext == pp || pp->p_vpnext == NULL);
1012 	ASSERT(pp->p_vpprev == pp || pp->p_vpprev == NULL);
1013 
1014 	ASSERT(IS_P2ALIGNED(pp->p_pagenum, npgs));
1015 	ASSERT(pp->p_pagenum == (pp->p_next->p_pagenum - 1));
1016 	ASSERT(pp->p_prev->p_pagenum == (pp->p_pagenum + (npgs - 1)));
1017 	ASSERT(pp->p_prev == (pp + (npgs - 1)));
1018 
1019 	/*
1020 	 * Check list of pages.
1021 	 */
1022 	noreloc = PP_ISNORELOC(pp);
1023 	while (npgs--) {
1024 		if (npgs != 0) {
1025 			ASSERT(pp->p_pagenum == pp->p_next->p_pagenum - 1);
1026 			ASSERT(pp->p_next == (pp + 1));
1027 		}
1028 		ASSERT(pp->p_szc == szc);
1029 		ASSERT(PP_ISFREE(pp));
1030 		ASSERT(PP_ISAGED(pp));
1031 		ASSERT(pp->p_vpnext == pp || pp->p_vpnext == NULL);
1032 		ASSERT(pp->p_vpprev == pp || pp->p_vpprev == NULL);
1033 		ASSERT(pp->p_vnode  == NULL);
1034 		ASSERT(PP_ISNORELOC(pp) == noreloc);
1035 
1036 		pp = pp->p_next;
1037 	}
1038 }
1039 #endif /* DEBUG */
1040 
1041 void
1042 page_freelist_lock(int mnode)
1043 {
1044 	int i;
1045 	for (i = 0; i < NPC_MUTEX; i++) {
1046 		mutex_enter(FPC_MUTEX(mnode, i));
1047 		mutex_enter(CPC_MUTEX(mnode, i));
1048 	}
1049 }
1050 
1051 void
1052 page_freelist_unlock(int mnode)
1053 {
1054 	int i;
1055 	for (i = 0; i < NPC_MUTEX; i++) {
1056 		mutex_exit(FPC_MUTEX(mnode, i));
1057 		mutex_exit(CPC_MUTEX(mnode, i));
1058 	}
1059 }
1060 
1061 /*
1062  * update the page list max counts for already allocated pages that has xfer'ed
1063  * (kcage_assimilate_page) between different mtypes.
1064  */
1065 /* ARGSUSED */
1066 void
1067 page_list_xfer(page_t *pp, int to_mtype, int from_mtype)
1068 {
1069 	PLCNT_MAX_INCR(pp, PP_2_MEM_NODE(pp), to_mtype, pp->p_szc);
1070 	PLCNT_MAX_DECR(pp, PP_2_MEM_NODE(pp), from_mtype, pp->p_szc);
1071 }
1072 
1073 /*
1074  * add pp to the specified page list. Defaults to head of the page list
1075  * unless PG_LIST_TAIL is specified.
1076  */
1077 void
1078 page_list_add(page_t *pp, int flags)
1079 {
1080 	page_t		**ppp;
1081 	kmutex_t	*pcm;
1082 	uint_t		bin, mtype;
1083 	int		mnode;
1084 
1085 	ASSERT(PAGE_EXCL(pp) || (flags & PG_LIST_ISINIT));
1086 	ASSERT(PP_ISFREE(pp));
1087 	ASSERT(!hat_page_is_mapped(pp));
1088 	ASSERT(hat_page_getshare(pp) == 0);
1089 
1090 	/*
1091 	 * Large pages should be freed via page_list_add_pages().
1092 	 */
1093 	ASSERT(pp->p_szc == 0);
1094 
1095 	/*
1096 	 * Don't need to lock the freelist first here
1097 	 * because the page isn't on the freelist yet.
1098 	 * This means p_szc can't change on us.
1099 	 */
1100 
1101 	bin = PP_2_BIN(pp);
1102 	mnode = PP_2_MEM_NODE(pp);
1103 	mtype = PP_2_MTYPE(pp);
1104 
1105 	if (flags & PG_LIST_ISINIT) {
1106 		/*
1107 		 * PG_LIST_ISINIT is set during system startup (ie. single
1108 		 * threaded), add a page to the free list and add to the
1109 		 * the free region counters w/o any locking
1110 		 */
1111 		ppp = &PAGE_FREELISTS(mnode, 0, bin, mtype);
1112 
1113 		/* inline version of page_add() */
1114 		if (*ppp != NULL) {
1115 			pp->p_next = *ppp;
1116 			pp->p_prev = (*ppp)->p_prev;
1117 			(*ppp)->p_prev = pp;
1118 			pp->p_prev->p_next = pp;
1119 		} else
1120 			*ppp = pp;
1121 
1122 		page_ctr_add_internal(mnode, mtype, pp, flags);
1123 		VM_STAT_ADD(vmm_vmstats.pladd_free[0]);
1124 	} else {
1125 		pcm = PC_BIN_MUTEX(mnode, bin, flags);
1126 
1127 		if (flags & PG_FREE_LIST) {
1128 			VM_STAT_ADD(vmm_vmstats.pladd_free[0]);
1129 			ASSERT(PP_ISAGED(pp));
1130 			ppp = &PAGE_FREELISTS(mnode, 0, bin, mtype);
1131 
1132 		} else {
1133 			VM_STAT_ADD(vmm_vmstats.pladd_cache);
1134 			ASSERT(pp->p_vnode);
1135 			ASSERT((pp->p_offset & PAGEOFFSET) == 0);
1136 			ppp = &PAGE_CACHELISTS(mnode, bin, mtype);
1137 		}
1138 		mutex_enter(pcm);
1139 		page_add(ppp, pp);
1140 
1141 		if (flags & PG_LIST_TAIL)
1142 			*ppp = (*ppp)->p_next;
1143 		/*
1144 		 * Add counters before releasing pcm mutex to avoid a race with
1145 		 * page_freelist_coalesce and page_freelist_fill.
1146 		 */
1147 		page_ctr_add(mnode, mtype, pp, flags);
1148 		mutex_exit(pcm);
1149 	}
1150 
1151 
1152 #if defined(__sparc)
1153 	if (PP_ISNORELOC(pp)) {
1154 		kcage_freemem_add(1);
1155 	}
1156 #endif
1157 	/*
1158 	 * It is up to the caller to unlock the page!
1159 	 */
1160 	ASSERT(PAGE_EXCL(pp) || (flags & PG_LIST_ISINIT));
1161 }
1162 
1163 
1164 #ifdef __sparc
1165 /*
1166  * This routine is only used by kcage_init during system startup.
1167  * It performs the function of page_list_sub/PP_SETNORELOC/page_list_add
1168  * without the overhead of taking locks and updating counters.
1169  */
1170 void
1171 page_list_noreloc_startup(page_t *pp)
1172 {
1173 	page_t		**ppp;
1174 	uint_t		bin;
1175 	int		mnode;
1176 	int		mtype;
1177 	int		flags = PG_LIST_ISCAGE;
1178 
1179 	/*
1180 	 * If this is a large page on the freelist then
1181 	 * break it up into smaller pages.
1182 	 */
1183 	if (pp->p_szc != 0)
1184 		page_boot_demote(pp);
1185 
1186 	/*
1187 	 * Get list page is currently on.
1188 	 */
1189 	bin = PP_2_BIN(pp);
1190 	mnode = PP_2_MEM_NODE(pp);
1191 	mtype = PP_2_MTYPE(pp);
1192 	ASSERT(mtype == MTYPE_RELOC);
1193 	ASSERT(pp->p_szc == 0);
1194 
1195 	if (PP_ISAGED(pp)) {
1196 		ppp = &PAGE_FREELISTS(mnode, 0, bin, mtype);
1197 		flags |= PG_FREE_LIST;
1198 	} else {
1199 		ppp = &PAGE_CACHELISTS(mnode, bin, mtype);
1200 		flags |= PG_CACHE_LIST;
1201 	}
1202 
1203 	ASSERT(*ppp != NULL);
1204 
1205 	/*
1206 	 * Delete page from current list.
1207 	 */
1208 	if (*ppp == pp)
1209 		*ppp = pp->p_next;		/* go to next page */
1210 	if (*ppp == pp) {
1211 		*ppp = NULL;			/* page list is gone */
1212 	} else {
1213 		pp->p_prev->p_next = pp->p_next;
1214 		pp->p_next->p_prev = pp->p_prev;
1215 	}
1216 
1217 	/* LINTED */
1218 	PLCNT_DECR(pp, mnode, mtype, 0, flags);
1219 
1220 	/*
1221 	 * Set no reloc for cage initted pages.
1222 	 */
1223 	PP_SETNORELOC(pp);
1224 
1225 	mtype = PP_2_MTYPE(pp);
1226 	ASSERT(mtype == MTYPE_NORELOC);
1227 
1228 	/*
1229 	 * Get new list for page.
1230 	 */
1231 	if (PP_ISAGED(pp)) {
1232 		ppp = &PAGE_FREELISTS(mnode, 0, bin, mtype);
1233 	} else {
1234 		ppp = &PAGE_CACHELISTS(mnode, bin, mtype);
1235 	}
1236 
1237 	/*
1238 	 * Insert page on new list.
1239 	 */
1240 	if (*ppp == NULL) {
1241 		*ppp = pp;
1242 		pp->p_next = pp->p_prev = pp;
1243 	} else {
1244 		pp->p_next = *ppp;
1245 		pp->p_prev = (*ppp)->p_prev;
1246 		(*ppp)->p_prev = pp;
1247 		pp->p_prev->p_next = pp;
1248 	}
1249 
1250 	/* LINTED */
1251 	PLCNT_INCR(pp, mnode, mtype, 0, flags);
1252 
1253 	/*
1254 	 * Update cage freemem counter
1255 	 */
1256 	atomic_add_long(&kcage_freemem, 1);
1257 }
1258 #else	/* __sparc */
1259 
1260 /* ARGSUSED */
1261 void
1262 page_list_noreloc_startup(page_t *pp)
1263 {
1264 	panic("page_list_noreloc_startup: should be here only for sparc");
1265 }
1266 #endif
1267 
1268 void
1269 page_list_add_pages(page_t *pp, int flags)
1270 {
1271 	kmutex_t *pcm;
1272 	pgcnt_t	pgcnt;
1273 	uint_t	bin, mtype, i;
1274 	int	mnode;
1275 
1276 	/* default to freelist/head */
1277 	ASSERT((flags & (PG_CACHE_LIST | PG_LIST_TAIL)) == 0);
1278 
1279 	CHK_LPG(pp, pp->p_szc);
1280 	VM_STAT_ADD(vmm_vmstats.pladd_free[pp->p_szc]);
1281 
1282 	bin = PP_2_BIN(pp);
1283 	mnode = PP_2_MEM_NODE(pp);
1284 	mtype = PP_2_MTYPE(pp);
1285 
1286 	if (flags & PG_LIST_ISINIT) {
1287 		ASSERT(pp->p_szc == mmu_page_sizes - 1);
1288 		page_vpadd(&PAGE_FREELISTS(mnode, pp->p_szc, bin, mtype), pp);
1289 		ASSERT(!PP_ISNORELOC(pp));
1290 		PLCNT_INCR(pp, mnode, mtype, pp->p_szc, flags);
1291 	} else {
1292 
1293 		ASSERT(pp->p_szc != 0 && pp->p_szc < mmu_page_sizes);
1294 
1295 		pcm = PC_BIN_MUTEX(mnode, bin, PG_FREE_LIST);
1296 
1297 		mutex_enter(pcm);
1298 		page_vpadd(&PAGE_FREELISTS(mnode, pp->p_szc, bin, mtype), pp);
1299 		page_ctr_add(mnode, mtype, pp, PG_FREE_LIST);
1300 		mutex_exit(pcm);
1301 
1302 		pgcnt = page_get_pagecnt(pp->p_szc);
1303 #if defined(__sparc)
1304 		if (PP_ISNORELOC(pp))
1305 			kcage_freemem_add(pgcnt);
1306 #endif
1307 		for (i = 0; i < pgcnt; i++, pp++)
1308 			page_unlock_noretire(pp);
1309 	}
1310 }
1311 
1312 /*
1313  * During boot, need to demote a large page to base
1314  * pagesize pages for seg_kmem for use in boot_alloc()
1315  */
1316 void
1317 page_boot_demote(page_t *pp)
1318 {
1319 	ASSERT(pp->p_szc != 0);
1320 	ASSERT(PP_ISFREE(pp));
1321 	ASSERT(PP_ISAGED(pp));
1322 
1323 	(void) page_demote(PP_2_MEM_NODE(pp),
1324 	    PFN_BASE(pp->p_pagenum, pp->p_szc), pp->p_szc, 0, PC_NO_COLOR,
1325 	    PC_FREE);
1326 
1327 	ASSERT(PP_ISFREE(pp));
1328 	ASSERT(PP_ISAGED(pp));
1329 	ASSERT(pp->p_szc == 0);
1330 }
1331 
1332 /*
1333  * Take a particular page off of whatever freelist the page
1334  * is claimed to be on.
1335  *
1336  * NOTE: Only used for PAGESIZE pages.
1337  */
1338 void
1339 page_list_sub(page_t *pp, int flags)
1340 {
1341 	int		bin;
1342 	uint_t		mtype;
1343 	int		mnode;
1344 	kmutex_t	*pcm;
1345 	page_t		**ppp;
1346 
1347 	ASSERT(PAGE_EXCL(pp));
1348 	ASSERT(PP_ISFREE(pp));
1349 
1350 	/*
1351 	 * The p_szc field can only be changed by page_promote()
1352 	 * and page_demote(). Only free pages can be promoted and
1353 	 * demoted and the free list MUST be locked during these
1354 	 * operations. So to prevent a race in page_list_sub()
1355 	 * between computing which bin of the freelist lock to
1356 	 * grab and actually grabing the lock we check again that
1357 	 * the bin we locked is still the correct one. Notice that
1358 	 * the p_szc field could have actually changed on us but
1359 	 * if the bin happens to still be the same we are safe.
1360 	 */
1361 try_again:
1362 	bin = PP_2_BIN(pp);
1363 	mnode = PP_2_MEM_NODE(pp);
1364 	pcm = PC_BIN_MUTEX(mnode, bin, flags);
1365 	mutex_enter(pcm);
1366 	if (PP_2_BIN(pp) != bin) {
1367 		mutex_exit(pcm);
1368 		goto try_again;
1369 	}
1370 	mtype = PP_2_MTYPE(pp);
1371 
1372 	if (flags & PG_FREE_LIST) {
1373 		VM_STAT_ADD(vmm_vmstats.plsub_free[0]);
1374 		ASSERT(PP_ISAGED(pp));
1375 		ppp = &PAGE_FREELISTS(mnode, pp->p_szc, bin, mtype);
1376 	} else {
1377 		VM_STAT_ADD(vmm_vmstats.plsub_cache);
1378 		ASSERT(!PP_ISAGED(pp));
1379 		ppp = &PAGE_CACHELISTS(mnode, bin, mtype);
1380 	}
1381 
1382 	/*
1383 	 * Common PAGESIZE case.
1384 	 *
1385 	 * Note that we locked the freelist. This prevents
1386 	 * any page promotion/demotion operations. Therefore
1387 	 * the p_szc will not change until we drop pcm mutex.
1388 	 */
1389 	if (pp->p_szc == 0) {
1390 		page_sub(ppp, pp);
1391 		/*
1392 		 * Subtract counters before releasing pcm mutex
1393 		 * to avoid race with page_freelist_coalesce.
1394 		 */
1395 		page_ctr_sub(mnode, mtype, pp, flags);
1396 		mutex_exit(pcm);
1397 
1398 #if defined(__sparc)
1399 		if (PP_ISNORELOC(pp)) {
1400 			kcage_freemem_sub(1);
1401 		}
1402 #endif
1403 		return;
1404 	}
1405 
1406 	/*
1407 	 * Large pages on the cache list are not supported.
1408 	 */
1409 	if (flags & PG_CACHE_LIST)
1410 		panic("page_list_sub: large page on cachelist");
1411 
1412 	/*
1413 	 * Slow but rare.
1414 	 *
1415 	 * Somebody wants this particular page which is part
1416 	 * of a large page. In this case we just demote the page
1417 	 * if it's on the freelist.
1418 	 *
1419 	 * We have to drop pcm before locking the entire freelist.
1420 	 * Once we have re-locked the freelist check to make sure
1421 	 * the page hasn't already been demoted or completely
1422 	 * freed.
1423 	 */
1424 	mutex_exit(pcm);
1425 	page_freelist_lock(mnode);
1426 	if (pp->p_szc != 0) {
1427 		/*
1428 		 * Large page is on freelist.
1429 		 */
1430 		(void) page_demote(mnode, PFN_BASE(pp->p_pagenum, pp->p_szc),
1431 		    pp->p_szc, 0, PC_NO_COLOR, PC_FREE);
1432 	}
1433 	ASSERT(PP_ISFREE(pp));
1434 	ASSERT(PP_ISAGED(pp));
1435 	ASSERT(pp->p_szc == 0);
1436 
1437 	/*
1438 	 * Subtract counters before releasing pcm mutex
1439 	 * to avoid race with page_freelist_coalesce.
1440 	 */
1441 	bin = PP_2_BIN(pp);
1442 	mtype = PP_2_MTYPE(pp);
1443 	ppp = &PAGE_FREELISTS(mnode, pp->p_szc, bin, mtype);
1444 
1445 	page_sub(ppp, pp);
1446 	page_ctr_sub(mnode, mtype, pp, flags);
1447 	page_freelist_unlock(mnode);
1448 
1449 #if defined(__sparc)
1450 	if (PP_ISNORELOC(pp)) {
1451 		kcage_freemem_sub(1);
1452 	}
1453 #endif
1454 }
1455 
1456 void
1457 page_list_sub_pages(page_t *pp, uint_t szc)
1458 {
1459 	kmutex_t *pcm;
1460 	uint_t	bin, mtype;
1461 	int	mnode;
1462 
1463 	ASSERT(PAGE_EXCL(pp));
1464 	ASSERT(PP_ISFREE(pp));
1465 	ASSERT(PP_ISAGED(pp));
1466 
1467 	/*
1468 	 * See comment in page_list_sub().
1469 	 */
1470 try_again:
1471 	bin = PP_2_BIN(pp);
1472 	mnode = PP_2_MEM_NODE(pp);
1473 	pcm = PC_BIN_MUTEX(mnode, bin, PG_FREE_LIST);
1474 	mutex_enter(pcm);
1475 	if (PP_2_BIN(pp) != bin) {
1476 		mutex_exit(pcm);
1477 		goto	try_again;
1478 	}
1479 
1480 	/*
1481 	 * If we're called with a page larger than szc or it got
1482 	 * promoted above szc before we locked the freelist then
1483 	 * drop pcm and re-lock entire freelist. If page still larger
1484 	 * than szc then demote it.
1485 	 */
1486 	if (pp->p_szc > szc) {
1487 		mutex_exit(pcm);
1488 		pcm = NULL;
1489 		page_freelist_lock(mnode);
1490 		if (pp->p_szc > szc) {
1491 			VM_STAT_ADD(vmm_vmstats.plsubpages_szcbig);
1492 			(void) page_demote(mnode,
1493 			    PFN_BASE(pp->p_pagenum, pp->p_szc),
1494 			    pp->p_szc, szc, PC_NO_COLOR, PC_FREE);
1495 		}
1496 		bin = PP_2_BIN(pp);
1497 	}
1498 	ASSERT(PP_ISFREE(pp));
1499 	ASSERT(PP_ISAGED(pp));
1500 	ASSERT(pp->p_szc <= szc);
1501 	ASSERT(pp == PP_PAGEROOT(pp));
1502 
1503 	VM_STAT_ADD(vmm_vmstats.plsub_free[pp->p_szc]);
1504 
1505 	mtype = PP_2_MTYPE(pp);
1506 	if (pp->p_szc != 0) {
1507 		page_vpsub(&PAGE_FREELISTS(mnode, pp->p_szc, bin, mtype), pp);
1508 		CHK_LPG(pp, pp->p_szc);
1509 	} else {
1510 		VM_STAT_ADD(vmm_vmstats.plsubpages_szc0);
1511 		page_sub(&PAGE_FREELISTS(mnode, pp->p_szc, bin, mtype), pp);
1512 	}
1513 	page_ctr_sub(mnode, mtype, pp, PG_FREE_LIST);
1514 
1515 	if (pcm != NULL) {
1516 		mutex_exit(pcm);
1517 	} else {
1518 		page_freelist_unlock(mnode);
1519 	}
1520 
1521 #if defined(__sparc)
1522 	if (PP_ISNORELOC(pp)) {
1523 		pgcnt_t	pgcnt;
1524 
1525 		pgcnt = page_get_pagecnt(pp->p_szc);
1526 		kcage_freemem_sub(pgcnt);
1527 	}
1528 #endif
1529 }
1530 
1531 /*
1532  * Add the page to the front of a linked list of pages
1533  * using the p_next & p_prev pointers for the list.
1534  * The caller is responsible for protecting the list pointers.
1535  */
1536 void
1537 mach_page_add(page_t **ppp, page_t *pp)
1538 {
1539 	if (*ppp == NULL) {
1540 		pp->p_next = pp->p_prev = pp;
1541 	} else {
1542 		pp->p_next = *ppp;
1543 		pp->p_prev = (*ppp)->p_prev;
1544 		(*ppp)->p_prev = pp;
1545 		pp->p_prev->p_next = pp;
1546 	}
1547 	*ppp = pp;
1548 }
1549 
1550 /*
1551  * Remove this page from a linked list of pages
1552  * using the p_next & p_prev pointers for the list.
1553  *
1554  * The caller is responsible for protecting the list pointers.
1555  */
1556 void
1557 mach_page_sub(page_t **ppp, page_t *pp)
1558 {
1559 	ASSERT(PP_ISFREE(pp));
1560 
1561 	if (*ppp == NULL || pp == NULL)
1562 		panic("mach_page_sub");
1563 
1564 	if (*ppp == pp)
1565 		*ppp = pp->p_next;		/* go to next page */
1566 
1567 	if (*ppp == pp)
1568 		*ppp = NULL;			/* page list is gone */
1569 	else {
1570 		pp->p_prev->p_next = pp->p_next;
1571 		pp->p_next->p_prev = pp->p_prev;
1572 	}
1573 	pp->p_prev = pp->p_next = pp;		/* make pp a list of one */
1574 }
1575 
1576 /*
1577  * Routine fsflush uses to gradually coalesce the free list into larger pages.
1578  */
1579 void
1580 page_promote_size(page_t *pp, uint_t cur_szc)
1581 {
1582 	pfn_t pfn;
1583 	int mnode;
1584 	int idx;
1585 	int new_szc = cur_szc + 1;
1586 	int full = FULL_REGION_CNT(new_szc);
1587 
1588 	pfn = page_pptonum(pp);
1589 	mnode = PFN_2_MEM_NODE(pfn);
1590 
1591 	page_freelist_lock(mnode);
1592 
1593 	idx = PNUM_TO_IDX(mnode, new_szc, pfn);
1594 	if (PAGE_COUNTERS(mnode, new_szc, idx) == full)
1595 		(void) page_promote(mnode, pfn, new_szc, PC_FREE);
1596 
1597 	page_freelist_unlock(mnode);
1598 }
1599 
1600 static uint_t page_promote_err;
1601 static uint_t page_promote_noreloc_err;
1602 
1603 /*
1604  * Create a single larger page (of szc new_szc) from smaller contiguous pages
1605  * for the given mnode starting at pfnum. Pages involved are on the freelist
1606  * before the call and may be returned to the caller if requested, otherwise
1607  * they will be placed back on the freelist.
1608  * If flags is PC_ALLOC, then the large page will be returned to the user in
1609  * a state which is consistent with a page being taken off the freelist.  If
1610  * we failed to lock the new large page, then we will return NULL to the
1611  * caller and put the large page on the freelist instead.
1612  * If flags is PC_FREE, then the large page will be placed on the freelist,
1613  * and NULL will be returned.
1614  * The caller is responsible for locking the freelist as well as any other
1615  * accounting which needs to be done for a returned page.
1616  *
1617  * RFE: For performance pass in pp instead of pfnum so
1618  * 	we can avoid excessive calls to page_numtopp_nolock().
1619  *	This would depend on an assumption that all contiguous
1620  *	pages are in the same memseg so we can just add/dec
1621  *	our pp.
1622  *
1623  * Lock ordering:
1624  *
1625  *	There is a potential but rare deadlock situation
1626  *	for page promotion and demotion operations. The problem
1627  *	is there are two paths into the freelist manager and
1628  *	they have different lock orders:
1629  *
1630  *	page_create()
1631  *		lock freelist
1632  *		page_lock(EXCL)
1633  *		unlock freelist
1634  *		return
1635  *		caller drops page_lock
1636  *
1637  *	page_free() and page_reclaim()
1638  *		caller grabs page_lock(EXCL)
1639  *
1640  *		lock freelist
1641  *		unlock freelist
1642  *		drop page_lock
1643  *
1644  *	What prevents a thread in page_create() from deadlocking
1645  *	with a thread freeing or reclaiming the same page is the
1646  *	page_trylock() in page_get_freelist(). If the trylock fails
1647  *	it skips the page.
1648  *
1649  *	The lock ordering for promotion and demotion is the same as
1650  *	for page_create(). Since the same deadlock could occur during
1651  *	page promotion and freeing or reclaiming of a page on the
1652  *	cache list we might have to fail the operation and undo what
1653  *	have done so far. Again this is rare.
1654  */
1655 page_t *
1656 page_promote(int mnode, pfn_t pfnum, uchar_t new_szc, int flags)
1657 {
1658 	page_t		*pp, *pplist, *tpp, *start_pp;
1659 	pgcnt_t		new_npgs, npgs;
1660 	uint_t		bin;
1661 	pgcnt_t		tmpnpgs, pages_left;
1662 	uint_t		mtype;
1663 	uint_t		noreloc;
1664 	uint_t 		i;
1665 	int 		which_list;
1666 	ulong_t		index;
1667 	kmutex_t	*phm;
1668 
1669 	/*
1670 	 * General algorithm:
1671 	 * Find the starting page
1672 	 * Walk each page struct removing it from the freelist,
1673 	 * and linking it to all the other pages removed.
1674 	 * Once all pages are off the freelist,
1675 	 * walk the list, modifying p_szc to new_szc and what
1676 	 * ever other info needs to be done to create a large free page.
1677 	 * According to the flags, either return the page or put it
1678 	 * on the freelist.
1679 	 */
1680 
1681 	start_pp = page_numtopp_nolock(pfnum);
1682 	ASSERT(start_pp && (start_pp->p_pagenum == pfnum));
1683 	new_npgs = page_get_pagecnt(new_szc);
1684 	ASSERT(IS_P2ALIGNED(pfnum, new_npgs));
1685 
1686 	/*
1687 	 * Loop through smaller pages to confirm that all pages
1688 	 * give the same result for PP_ISNORELOC().
1689 	 * We can check this reliably here as the protocol for setting
1690 	 * P_NORELOC requires pages to be taken off the free list first.
1691 	 */
1692 	for (i = 0, pp = start_pp; i < new_npgs; i++, pp++) {
1693 		if (pp == start_pp) {
1694 			/* First page, set requirement. */
1695 			noreloc = PP_ISNORELOC(pp);
1696 		} else if (noreloc != PP_ISNORELOC(pp)) {
1697 			page_promote_noreloc_err++;
1698 			page_promote_err++;
1699 			return (NULL);
1700 		}
1701 	}
1702 
1703 	pages_left = new_npgs;
1704 	pplist = NULL;
1705 	pp = start_pp;
1706 
1707 	/* Loop around coalescing the smaller pages into a big page. */
1708 	while (pages_left) {
1709 		/*
1710 		 * Remove from the freelist.
1711 		 */
1712 		ASSERT(PP_ISFREE(pp));
1713 		bin = PP_2_BIN(pp);
1714 		ASSERT(mnode == PP_2_MEM_NODE(pp));
1715 		mtype = PP_2_MTYPE(pp);
1716 		if (PP_ISAGED(pp)) {
1717 
1718 			/*
1719 			 * PG_FREE_LIST
1720 			 */
1721 			if (pp->p_szc) {
1722 				page_vpsub(&PAGE_FREELISTS(mnode,
1723 				    pp->p_szc, bin, mtype), pp);
1724 			} else {
1725 				mach_page_sub(&PAGE_FREELISTS(mnode, 0,
1726 				    bin, mtype), pp);
1727 			}
1728 			which_list = PG_FREE_LIST;
1729 		} else {
1730 			ASSERT(pp->p_szc == 0);
1731 
1732 			/*
1733 			 * PG_CACHE_LIST
1734 			 *
1735 			 * Since this page comes from the
1736 			 * cachelist, we must destroy the
1737 			 * vnode association.
1738 			 */
1739 			if (!page_trylock(pp, SE_EXCL)) {
1740 				goto fail_promote;
1741 			}
1742 
1743 			/*
1744 			 * We need to be careful not to deadlock
1745 			 * with another thread in page_lookup().
1746 			 * The page_lookup() thread could be holding
1747 			 * the same phm that we need if the two
1748 			 * pages happen to hash to the same phm lock.
1749 			 * At this point we have locked the entire
1750 			 * freelist and page_lookup() could be trying
1751 			 * to grab a freelist lock.
1752 			 */
1753 			index = PAGE_HASH_FUNC(pp->p_vnode, pp->p_offset);
1754 			phm = PAGE_HASH_MUTEX(index);
1755 			if (!mutex_tryenter(phm)) {
1756 				page_unlock_noretire(pp);
1757 				goto fail_promote;
1758 			}
1759 
1760 			mach_page_sub(&PAGE_CACHELISTS(mnode, bin, mtype), pp);
1761 			page_hashout(pp, phm);
1762 			mutex_exit(phm);
1763 			PP_SETAGED(pp);
1764 			page_unlock_noretire(pp);
1765 			which_list = PG_CACHE_LIST;
1766 		}
1767 		page_ctr_sub(mnode, mtype, pp, which_list);
1768 
1769 		/*
1770 		 * Concatenate the smaller page(s) onto
1771 		 * the large page list.
1772 		 */
1773 		tmpnpgs = npgs = page_get_pagecnt(pp->p_szc);
1774 		pages_left -= npgs;
1775 		tpp = pp;
1776 		while (npgs--) {
1777 			tpp->p_szc = new_szc;
1778 			tpp = tpp->p_next;
1779 		}
1780 		page_list_concat(&pplist, &pp);
1781 		pp += tmpnpgs;
1782 	}
1783 	CHK_LPG(pplist, new_szc);
1784 
1785 	/*
1786 	 * return the page to the user if requested
1787 	 * in the properly locked state.
1788 	 */
1789 	if (flags == PC_ALLOC && (page_trylock_cons(pplist, SE_EXCL))) {
1790 		return (pplist);
1791 	}
1792 
1793 	/*
1794 	 * Otherwise place the new large page on the freelist
1795 	 */
1796 	bin = PP_2_BIN(pplist);
1797 	mnode = PP_2_MEM_NODE(pplist);
1798 	mtype = PP_2_MTYPE(pplist);
1799 	page_vpadd(&PAGE_FREELISTS(mnode, new_szc, bin, mtype), pplist);
1800 
1801 	page_ctr_add(mnode, mtype, pplist, PG_FREE_LIST);
1802 	return (NULL);
1803 
1804 fail_promote:
1805 	/*
1806 	 * A thread must have still been freeing or
1807 	 * reclaiming the page on the cachelist.
1808 	 * To prevent a deadlock undo what we have
1809 	 * done sofar and return failure. This
1810 	 * situation can only happen while promoting
1811 	 * PAGESIZE pages.
1812 	 */
1813 	page_promote_err++;
1814 	while (pplist) {
1815 		pp = pplist;
1816 		mach_page_sub(&pplist, pp);
1817 		pp->p_szc = 0;
1818 		bin = PP_2_BIN(pp);
1819 		mtype = PP_2_MTYPE(pp);
1820 		mach_page_add(&PAGE_FREELISTS(mnode, 0, bin, mtype), pp);
1821 		page_ctr_add(mnode, mtype, pp, PG_FREE_LIST);
1822 	}
1823 	return (NULL);
1824 
1825 }
1826 
1827 /*
1828  * Break up a large page into smaller size pages.
1829  * Pages involved are on the freelist before the call and may
1830  * be returned to the caller if requested, otherwise they will
1831  * be placed back on the freelist.
1832  * The caller is responsible for locking the freelist as well as any other
1833  * accounting which needs to be done for a returned page.
1834  * If flags is not PC_ALLOC, the color argument is ignored, and thus
1835  * technically, any value may be passed in but PC_NO_COLOR is the standard
1836  * which should be followed for clarity's sake.
1837  */
1838 page_t *
1839 page_demote(int mnode, pfn_t pfnum, uchar_t cur_szc, uchar_t new_szc,
1840     int color, int flags)
1841 {
1842 	page_t	*pp, *pplist, *npplist;
1843 	pgcnt_t	npgs, n;
1844 	uint_t	bin;
1845 	uint_t	mtype;
1846 	page_t	*ret_pp = NULL;
1847 
1848 	ASSERT(cur_szc != 0);
1849 	ASSERT(new_szc < cur_szc);
1850 
1851 	pplist = page_numtopp_nolock(pfnum);
1852 	ASSERT(pplist != NULL);
1853 
1854 	ASSERT(pplist->p_szc == cur_szc);
1855 
1856 	bin = PP_2_BIN(pplist);
1857 	ASSERT(mnode == PP_2_MEM_NODE(pplist));
1858 	mtype = PP_2_MTYPE(pplist);
1859 	page_vpsub(&PAGE_FREELISTS(mnode, cur_szc, bin, mtype), pplist);
1860 
1861 	CHK_LPG(pplist, cur_szc);
1862 	page_ctr_sub(mnode, mtype, pplist, PG_FREE_LIST);
1863 
1864 	/*
1865 	 * Number of PAGESIZE pages for smaller new_szc
1866 	 * page.
1867 	 */
1868 	npgs = page_get_pagecnt(new_szc);
1869 
1870 	while (pplist) {
1871 		pp = pplist;
1872 
1873 		ASSERT(pp->p_szc == cur_szc);
1874 
1875 		/*
1876 		 * We either break it up into PAGESIZE pages or larger.
1877 		 */
1878 		if (npgs == 1) {	/* PAGESIZE case */
1879 			mach_page_sub(&pplist, pp);
1880 			ASSERT(pp->p_szc == cur_szc);
1881 			ASSERT(new_szc == 0);
1882 			ASSERT(mnode == PP_2_MEM_NODE(pp));
1883 			pp->p_szc = new_szc;
1884 			bin = PP_2_BIN(pp);
1885 			if ((bin == color) && (flags == PC_ALLOC) &&
1886 			    (ret_pp == NULL) &&
1887 			    page_trylock_cons(pp, SE_EXCL)) {
1888 				ret_pp = pp;
1889 			} else {
1890 				mtype = PP_2_MTYPE(pp);
1891 				mach_page_add(&PAGE_FREELISTS(mnode, 0, bin,
1892 				    mtype), pp);
1893 				page_ctr_add(mnode, mtype, pp, PG_FREE_LIST);
1894 			}
1895 		} else {
1896 
1897 			/*
1898 			 * Break down into smaller lists of pages.
1899 			 */
1900 			page_list_break(&pplist, &npplist, npgs);
1901 
1902 			pp = pplist;
1903 			n = npgs;
1904 			while (n--) {
1905 				ASSERT(pp->p_szc == cur_szc);
1906 				pp->p_szc = new_szc;
1907 				pp = pp->p_next;
1908 			}
1909 
1910 			CHK_LPG(pplist, new_szc);
1911 
1912 			bin = PP_2_BIN(pplist);
1913 			ASSERT(mnode == PP_2_MEM_NODE(pp));
1914 			if ((bin == color) && (flags == PC_ALLOC) &&
1915 			    (ret_pp == NULL) &&
1916 			    page_trylock_cons(pp, SE_EXCL)) {
1917 				ret_pp = pp;
1918 			} else {
1919 				mtype = PP_2_MTYPE(pp);
1920 				page_vpadd(&PAGE_FREELISTS(mnode, new_szc,
1921 				    bin, mtype), pplist);
1922 
1923 				page_ctr_add(mnode, mtype, pplist,
1924 				    PG_FREE_LIST);
1925 			}
1926 			pplist = npplist;
1927 		}
1928 	}
1929 	return (ret_pp);
1930 }
1931 
1932 int mpss_coalesce_disable = 0;
1933 
1934 /*
1935  * Coalesce free pages into a page of the given szc and color if possible.
1936  * Return the pointer to the page created, otherwise, return NULL.
1937  */
1938 static page_t *
1939 page_freelist_coalesce(int mnode, uchar_t szc, int color)
1940 {
1941 	int 	r;		/* region size */
1942 	int 	idx, full, i;
1943 	pfn_t	pfnum;
1944 	size_t	len;
1945 	size_t	buckets_to_check;
1946 	pgcnt_t	cands;
1947 	page_t	*ret_pp;
1948 	int	color_stride;
1949 
1950 	VM_STAT_ADD(vmm_vmstats.page_ctrs_coalesce);
1951 
1952 	if (mpss_coalesce_disable) {
1953 		return (NULL);
1954 	}
1955 
1956 	r = szc;
1957 	PGCTRS_CANDS_GETVALUECOLOR(mnode, r, color, cands);
1958 	if (cands == 0) {
1959 		VM_STAT_ADD(vmm_vmstats.page_ctrs_cands_skip);
1960 		return (NULL);
1961 	}
1962 	full = FULL_REGION_CNT(r);
1963 	color_stride = (szc) ? page_convert_color(0, szc, page_colors - 1) + 1 :
1964 	    page_colors;
1965 
1966 	/* Prevent page_counters dynamic memory from being freed */
1967 	rw_enter(&page_ctrs_rwlock[mnode], RW_READER);
1968 	len  = PAGE_COUNTERS_ENTRIES(mnode, r);
1969 	buckets_to_check = len / color_stride;
1970 	idx = PAGE_COUNTERS_CURRENT_COLOR(mnode, r, color);
1971 	ASSERT((idx % color_stride) == color);
1972 	idx += color_stride;
1973 	if (idx >= len)
1974 		idx = color;
1975 	for (i = 0; i < buckets_to_check; i++) {
1976 		if (PAGE_COUNTERS(mnode, r, idx) == full) {
1977 			pfnum = IDX_TO_PNUM(mnode, r, idx);
1978 			ASSERT(pfnum >= mem_node_config[mnode].physbase &&
1979 			    pfnum < mem_node_config[mnode].physmax);
1980 			/*
1981 			 * RFE: For performance maybe we can do something less
1982 			 *	brutal than locking the entire freelist. So far
1983 			 * 	this doesn't seem to be a performance problem?
1984 			 */
1985 			page_freelist_lock(mnode);
1986 			if (PAGE_COUNTERS(mnode, r, idx) != full) {
1987 				VM_STAT_ADD(vmm_vmstats.page_ctrs_changed);
1988 				goto skip_this_one;
1989 			}
1990 			ret_pp = page_promote(mnode, pfnum, r, PC_ALLOC);
1991 			if (ret_pp != NULL) {
1992 				PAGE_COUNTERS_CURRENT_COLOR(mnode, r, color) =
1993 				    idx;
1994 				page_freelist_unlock(mnode);
1995 				rw_exit(&page_ctrs_rwlock[mnode]);
1996 #if defined(__sparc)
1997 				if (PP_ISNORELOC(ret_pp)) {
1998 					pgcnt_t npgs;
1999 
2000 					npgs = page_get_pagecnt(ret_pp->p_szc);
2001 					kcage_freemem_sub(npgs);
2002 				}
2003 #endif
2004 				return (ret_pp);
2005 			}
2006 skip_this_one:
2007 			page_freelist_unlock(mnode);
2008 			/*
2009 			 * No point looking for another page if we've
2010 			 * already tried all of the ones that
2011 			 * page_ctr_cands indicated.  Stash off where we left
2012 			 * off.
2013 			 * Note: this is not exact since we don't hold the
2014 			 * page_freelist_locks before we initially get the
2015 			 * value of cands for performance reasons, but should
2016 			 * be a decent approximation.
2017 			 */
2018 			if (--cands == 0) {
2019 				PAGE_COUNTERS_CURRENT_COLOR(mnode, r, color) =
2020 				    idx;
2021 				break;
2022 			}
2023 		}
2024 		idx += color_stride;
2025 		if (idx >= len)
2026 			idx = color;
2027 	}
2028 	rw_exit(&page_ctrs_rwlock[mnode]);
2029 	VM_STAT_ADD(vmm_vmstats.page_ctrs_failed);
2030 	return (NULL);
2031 }
2032 
2033 /*
2034  * For the given mnode, promote as many small pages to large pages as possible.
2035  */
2036 void
2037 page_freelist_coalesce_all(int mnode)
2038 {
2039 	int 	r;		/* region size */
2040 	int 	idx, full;
2041 	pfn_t	pfnum;
2042 	size_t	len;
2043 
2044 	VM_STAT_ADD(vmm_vmstats.page_ctrs_coalesce_all);
2045 
2046 	if (mpss_coalesce_disable) {
2047 		return;
2048 	}
2049 
2050 	/*
2051 	 * Lock the entire freelist and coalesce what we can.
2052 	 *
2053 	 * Always promote to the largest page possible
2054 	 * first to reduce the number of page promotions.
2055 	 */
2056 	rw_enter(&page_ctrs_rwlock[mnode], RW_READER);
2057 	page_freelist_lock(mnode);
2058 	for (r = mmu_page_sizes - 1; r > 0; r--) {
2059 		pgcnt_t cands;
2060 
2061 		PGCTRS_CANDS_GETVALUE(mnode, r, cands);
2062 		if (cands == 0) {
2063 			VM_STAT_ADD(vmm_vmstats.page_ctrs_cands_skip_all);
2064 			continue;
2065 		}
2066 
2067 		full = FULL_REGION_CNT(r);
2068 		len  = PAGE_COUNTERS_ENTRIES(mnode, r);
2069 
2070 		for (idx = 0; idx < len; idx++) {
2071 			if (PAGE_COUNTERS(mnode, r, idx) == full) {
2072 				pfnum = IDX_TO_PNUM(mnode, r, idx);
2073 				ASSERT(pfnum >=
2074 				    mem_node_config[mnode].physbase &&
2075 				    pfnum <
2076 				    mem_node_config[mnode].physmax);
2077 				(void) page_promote(mnode, pfnum, r, PC_FREE);
2078 			}
2079 		}
2080 	}
2081 	page_freelist_unlock(mnode);
2082 	rw_exit(&page_ctrs_rwlock[mnode]);
2083 }
2084 
2085 /*
2086  * This is where all polices for moving pages around
2087  * to different page size free lists is implemented.
2088  * Returns 1 on success, 0 on failure.
2089  *
2090  * So far these are the priorities for this algorithm in descending
2091  * order:
2092  *
2093  *	1) When servicing a request try to do so with a free page
2094  *	   from next size up. Helps defer fragmentation as long
2095  *	   as possible.
2096  *
2097  *	2) Page coalesce on demand. Only when a freelist
2098  *	   larger than PAGESIZE is empty and step 1
2099  *	   will not work since all larger size lists are
2100  *	   also empty.
2101  *
2102  * If pfnhi is non-zero, search for large page with pfn range less than pfnhi.
2103  */
2104 page_t *
2105 page_freelist_fill(uchar_t szc, int color, int mnode, int mtype, pfn_t pfnhi)
2106 {
2107 	uchar_t nszc = szc + 1;
2108 	int 	bin;
2109 	page_t	*pp, *firstpp;
2110 	page_t	*ret_pp = NULL;
2111 
2112 	ASSERT(szc < mmu_page_sizes);
2113 
2114 	VM_STAT_ADD(vmm_vmstats.pff_req[szc]);
2115 	/*
2116 	 * First try to break up a larger page to fill
2117 	 * current size freelist.
2118 	 */
2119 	while (nszc < mmu_page_sizes) {
2120 		/*
2121 		 * If page found then demote it.
2122 		 */
2123 		bin = page_convert_color(szc, nszc, color);
2124 		if (PAGE_FREELISTS(mnode, nszc, bin, mtype)) {
2125 			page_freelist_lock(mnode);
2126 			firstpp = pp = PAGE_FREELISTS(mnode, nszc, bin, mtype);
2127 
2128 			/*
2129 			 * If pfnhi is not PFNNULL, look for large page below
2130 			 * pfnhi. PFNNULL signifies no pfn requirement.
2131 			 */
2132 			if (pfnhi != PFNNULL && pp->p_pagenum >= pfnhi) {
2133 				do {
2134 					pp = pp->p_vpnext;
2135 					if (pp == firstpp) {
2136 						pp = NULL;
2137 						break;
2138 					}
2139 				} while (pp->p_pagenum >= pfnhi);
2140 			}
2141 			if (pp) {
2142 				ASSERT(pp->p_szc == nszc);
2143 				VM_STAT_ADD(vmm_vmstats.pff_demote[nszc]);
2144 				ret_pp = page_demote(mnode, pp->p_pagenum,
2145 				    pp->p_szc, szc, color, PC_ALLOC);
2146 				if (ret_pp) {
2147 					page_freelist_unlock(mnode);
2148 #if defined(__sparc)
2149 					if (PP_ISNORELOC(ret_pp)) {
2150 						pgcnt_t npgs;
2151 
2152 						npgs = page_get_pagecnt(
2153 						    ret_pp->p_szc);
2154 						kcage_freemem_sub(npgs);
2155 					}
2156 #endif
2157 					return (ret_pp);
2158 				}
2159 			}
2160 			page_freelist_unlock(mnode);
2161 		}
2162 		nszc++;
2163 	}
2164 
2165 	/*
2166 	 * Ok that didn't work. Time to coalesce.
2167 	 */
2168 	if (szc != 0) {
2169 		ret_pp = page_freelist_coalesce(mnode, szc, color);
2170 		VM_STAT_COND_ADD(ret_pp, vmm_vmstats.pff_coalok[szc]);
2171 	}
2172 
2173 	return (ret_pp);
2174 }
2175 
2176 /*
2177  * Helper routine used only by the freelist code to lock
2178  * a page. If the page is a large page then it succeeds in
2179  * locking all the constituent pages or none at all.
2180  * Returns 1 on sucess, 0 on failure.
2181  */
2182 static int
2183 page_trylock_cons(page_t *pp, se_t se)
2184 {
2185 	page_t	*tpp, *first_pp = pp;
2186 
2187 	/*
2188 	 * Fail if can't lock first or only page.
2189 	 */
2190 	if (!page_trylock(pp, se)) {
2191 		return (0);
2192 	}
2193 
2194 	/*
2195 	 * PAGESIZE: common case.
2196 	 */
2197 	if (pp->p_szc == 0) {
2198 		return (1);
2199 	}
2200 
2201 	/*
2202 	 * Large page case.
2203 	 */
2204 	tpp = pp->p_next;
2205 	while (tpp != pp) {
2206 		if (!page_trylock(tpp, se)) {
2207 			/*
2208 			 * On failure unlock what we
2209 			 * have locked so far.
2210 			 */
2211 			while (first_pp != tpp) {
2212 				page_unlock_noretire(first_pp);
2213 				first_pp = first_pp->p_next;
2214 			}
2215 			return (0);
2216 		}
2217 		tpp = tpp->p_next;
2218 	}
2219 	return (1);
2220 }
2221 
2222 page_t *
2223 page_get_mnode_freelist(int mnode, uint_t bin, int mtype, uchar_t szc,
2224     uint_t flags)
2225 {
2226 	kmutex_t	*pcm;
2227 	int		i, fill_tried, fill_marker;
2228 	page_t		*pp, *first_pp;
2229 	uint_t		bin_marker;
2230 	int		colors, cpucolors;
2231 	uchar_t		nszc;
2232 	uint_t		nszc_color_shift;
2233 	int		nwaybins = 0, nwaycnt;
2234 
2235 	ASSERT(szc < mmu_page_sizes);
2236 
2237 	VM_STAT_ADD(vmm_vmstats.pgmf_alloc[szc]);
2238 
2239 	MTYPE_START(mnode, mtype, flags);
2240 	if (mtype < 0) {	/* mnode foes not have memory in mtype range */
2241 		VM_STAT_ADD(vmm_vmstats.pgmf_allocempty[szc]);
2242 		return (NULL);
2243 	}
2244 
2245 	/*
2246 	 * Set how many physical colors for this page size.
2247 	 */
2248 	colors = (szc) ? page_convert_color(0, szc, page_colors - 1) + 1 :
2249 	    page_colors;
2250 
2251 	nszc = MIN(szc + 1, mmu_page_sizes - 1);
2252 	nszc_color_shift = page_get_shift(nszc) - page_get_shift(szc);
2253 
2254 	/* cpu_page_colors is non-zero if a page color may be in > 1 bin */
2255 	cpucolors = cpu_page_colors;
2256 
2257 	/*
2258 	 * adjust cpucolors to possibly check additional 'equivalent' bins
2259 	 * to try to minimize fragmentation of large pages by delaying calls
2260 	 * to page_freelist_fill.
2261 	 */
2262 	if (colorequiv > 1) {
2263 		int equivcolors = colors / colorequiv;
2264 
2265 		if (equivcolors && (cpucolors == 0 || equivcolors < cpucolors))
2266 			cpucolors = equivcolors;
2267 	}
2268 
2269 	ASSERT(colors <= page_colors);
2270 	ASSERT(colors);
2271 	ASSERT((colors & (colors - 1)) == 0);
2272 
2273 	ASSERT(bin < colors);
2274 
2275 	/*
2276 	 * Only hold one freelist lock at a time, that way we
2277 	 * can start anywhere and not have to worry about lock
2278 	 * ordering.
2279 	 */
2280 big_try_again:
2281 	fill_tried = 0;
2282 	nwaycnt = 0;
2283 	for (i = 0; i <= colors; i++) {
2284 try_again:
2285 		ASSERT(bin < colors);
2286 		if (PAGE_FREELISTS(mnode, szc, bin, mtype)) {
2287 			pcm = PC_BIN_MUTEX(mnode, bin, PG_FREE_LIST);
2288 			mutex_enter(pcm);
2289 			pp = PAGE_FREELISTS(mnode, szc, bin, mtype);
2290 			if (pp != NULL) {
2291 				/*
2292 				 * These were set before the page
2293 				 * was put on the free list,
2294 				 * they must still be set.
2295 				 */
2296 				ASSERT(PP_ISFREE(pp));
2297 				ASSERT(PP_ISAGED(pp));
2298 				ASSERT(pp->p_vnode == NULL);
2299 				ASSERT(pp->p_hash == NULL);
2300 				ASSERT(pp->p_offset == (u_offset_t)-1);
2301 				ASSERT(pp->p_szc == szc);
2302 				ASSERT(PFN_2_MEM_NODE(pp->p_pagenum) == mnode);
2303 
2304 				/*
2305 				 * Walk down the hash chain.
2306 				 * 8k pages are linked on p_next
2307 				 * and p_prev fields. Large pages
2308 				 * are a contiguous group of
2309 				 * constituent pages linked together
2310 				 * on their p_next and p_prev fields.
2311 				 * The large pages are linked together
2312 				 * on the hash chain using p_vpnext
2313 				 * p_vpprev of the base constituent
2314 				 * page of each large page.
2315 				 */
2316 				first_pp = pp;
2317 				while (!page_trylock_cons(pp, SE_EXCL)) {
2318 					if (szc == 0) {
2319 						pp = pp->p_next;
2320 					} else {
2321 						pp = pp->p_vpnext;
2322 					}
2323 
2324 					ASSERT(PP_ISFREE(pp));
2325 					ASSERT(PP_ISAGED(pp));
2326 					ASSERT(pp->p_vnode == NULL);
2327 					ASSERT(pp->p_hash == NULL);
2328 					ASSERT(pp->p_offset == (u_offset_t)-1);
2329 					ASSERT(pp->p_szc == szc);
2330 					ASSERT(PFN_2_MEM_NODE(pp->p_pagenum) ==
2331 							mnode);
2332 
2333 					if (pp == first_pp) {
2334 						pp = NULL;
2335 						break;
2336 					}
2337 				}
2338 
2339 				if (pp) {
2340 					ASSERT(mtype == PP_2_MTYPE(pp));
2341 					ASSERT(pp->p_szc == szc);
2342 					if (szc == 0) {
2343 						page_sub(&PAGE_FREELISTS(mnode,
2344 						    szc, bin, mtype), pp);
2345 					} else {
2346 						page_vpsub(&PAGE_FREELISTS(
2347 						    mnode, szc, bin, mtype),
2348 						    pp);
2349 						CHK_LPG(pp, szc);
2350 					}
2351 					page_ctr_sub(mnode, mtype, pp,
2352 					    PG_FREE_LIST);
2353 
2354 					if ((PP_ISFREE(pp) == 0) ||
2355 					    (PP_ISAGED(pp) == 0))
2356 						panic("free page is not. pp %p",
2357 						    (void *)pp);
2358 					mutex_exit(pcm);
2359 
2360 #if defined(__sparc)
2361 					ASSERT(!kcage_on || PP_ISNORELOC(pp) ||
2362 					    (flags & PG_NORELOC) == 0);
2363 
2364 					if (PP_ISNORELOC(pp)) {
2365 						pgcnt_t	npgs;
2366 
2367 						npgs = page_get_pagecnt(szc);
2368 						kcage_freemem_sub(npgs);
2369 					}
2370 #endif
2371 					VM_STAT_ADD(vmm_vmstats.
2372 					    pgmf_allocok[szc]);
2373 					return (pp);
2374 				}
2375 			}
2376 			mutex_exit(pcm);
2377 		}
2378 
2379 		/*
2380 		 * Wow! The initial bin is empty.
2381 		 * If specific color is needed, check if page color may be
2382 		 * in other bins. cpucolors is:
2383 		 *   0	if the colors for this cpu is equal to page_colors.
2384 		 *	This means that pages with a particular color are in a
2385 		 *	single bin.
2386 		 *  -1	if colors of cpus (cheetah+) are heterogenous. Need to
2387 		 *	first determine the colors for the current cpu.
2388 		 *  >0	colors of all cpus are homogenous and < page_colors
2389 		 */
2390 
2391 		if ((flags & PG_MATCH_COLOR) && (cpucolors != 0)) {
2392 			if (!nwaybins) {
2393 				/*
2394 				 * cpucolors is negative if ecache setsizes
2395 				 * are heterogenous. determine colors for this
2396 				 * particular cpu.
2397 				 */
2398 				if (cpucolors < 0) {
2399 					cpucolors = CPUSETSIZE() / MMU_PAGESIZE;
2400 					ASSERT(cpucolors > 0);
2401 					nwaybins = colors / cpucolors;
2402 				} else {
2403 					nwaybins = colors / cpucolors;
2404 					ASSERT(szc > 0 || nwaybins > 1);
2405 				}
2406 				if (nwaybins < 2)
2407 					cpucolors = 0;
2408 			}
2409 
2410 			if (cpucolors && (nwaycnt + 1 <= nwaybins)) {
2411 				nwaycnt++;
2412 				bin = (bin + (colors / nwaybins)) &
2413 				    (colors - 1);
2414 				if (nwaycnt < nwaybins) {
2415 					goto try_again;
2416 				}
2417 			}
2418 			/* back to initial color if fall-thru */
2419 		}
2420 
2421 		/*
2422 		 * color bins are all empty if color match. Try and satisfy
2423 		 * the request by breaking up or coalescing pages from
2424 		 * a different size freelist of the correct color that
2425 		 * satisfies the ORIGINAL color requested. If that
2426 		 * fails then try pages of the same size but different
2427 		 * colors assuming we are not called with
2428 		 * PG_MATCH_COLOR.
2429 		 */
2430 		if (!fill_tried) {
2431 			fill_tried = 1;
2432 			fill_marker = bin >> nszc_color_shift;
2433 			pp = page_freelist_fill(szc, bin, mnode, mtype,
2434 			    PFNNULL);
2435 			if (pp != NULL) {
2436 				return (pp);
2437 			}
2438 		}
2439 
2440 		if (flags & PG_MATCH_COLOR)
2441 			break;
2442 
2443 		/*
2444 		 * Select next color bin to try.
2445 		 */
2446 		if (szc == 0) {
2447 			/*
2448 			 * PAGESIZE page case.
2449 			 */
2450 			if (i == 0) {
2451 				bin = (bin + BIN_STEP) & page_colors_mask;
2452 				bin_marker = bin;
2453 			} else {
2454 				bin = (bin + vac_colors) & page_colors_mask;
2455 				if (bin == bin_marker) {
2456 					bin = (bin + 1) & page_colors_mask;
2457 					bin_marker = bin;
2458 				}
2459 			}
2460 		} else {
2461 			/*
2462 			 * Large page case.
2463 			 */
2464 			bin = (bin + 1) & (colors - 1);
2465 		}
2466 		/*
2467 		 * If bin advanced to the next color bin of the
2468 		 * next larger pagesize, there is a chance the fill
2469 		 * could succeed.
2470 		 */
2471 		if (fill_marker != (bin >> nszc_color_shift))
2472 			fill_tried = 0;
2473 	}
2474 
2475 	/* if allowed, cycle through additional mtypes */
2476 	MTYPE_NEXT(mnode, mtype, flags);
2477 	if (mtype >= 0)
2478 		goto big_try_again;
2479 
2480 	VM_STAT_ADD(vmm_vmstats.pgmf_allocfailed[szc]);
2481 
2482 	return (NULL);
2483 }
2484 
2485 
2486 /*
2487  * Returns the count of free pages for 'pp' with size code 'szc'.
2488  * Note: This function does not return an exact value as the page freelist
2489  * locks are not held and thus the values in the page_counters may be
2490  * changing as we walk through the data.
2491  */
2492 static int
2493 page_freecnt(int mnode, page_t *pp, uchar_t szc)
2494 {
2495 	pgcnt_t	pgfree;
2496 	pgcnt_t cnt;
2497 	ssize_t	r = szc;	/* region size */
2498 	ssize_t	idx;
2499 	int	i;
2500 	int	full, range;
2501 
2502 	/* Make sure pagenum passed in is aligned properly */
2503 	ASSERT((pp->p_pagenum & (PNUM_SIZE(szc) - 1)) == 0);
2504 	ASSERT(szc > 0);
2505 
2506 	/* Prevent page_counters dynamic memory from being freed */
2507 	rw_enter(&page_ctrs_rwlock[mnode], RW_READER);
2508 	idx = PNUM_TO_IDX(mnode, r, pp->p_pagenum);
2509 	cnt = PAGE_COUNTERS(mnode, r, idx);
2510 	pgfree = cnt << PNUM_SHIFT(r - 1);
2511 	range = FULL_REGION_CNT(szc);
2512 
2513 	/* Check for completely full region */
2514 	if (cnt == range) {
2515 		rw_exit(&page_ctrs_rwlock[mnode]);
2516 		return (pgfree);
2517 	}
2518 
2519 	while (--r > 0) {
2520 		idx = PNUM_TO_IDX(mnode, r, pp->p_pagenum);
2521 		full = FULL_REGION_CNT(r);
2522 		for (i = 0; i < range; i++, idx++) {
2523 			cnt = PAGE_COUNTERS(mnode, r, idx);
2524 			/*
2525 			 * If cnt here is full, that means we have already
2526 			 * accounted for these pages earlier.
2527 			 */
2528 			if (cnt != full) {
2529 				pgfree += (cnt << PNUM_SHIFT(r - 1));
2530 			}
2531 		}
2532 		range *= full;
2533 	}
2534 	rw_exit(&page_ctrs_rwlock[mnode]);
2535 	return (pgfree);
2536 }
2537 
2538 /*
2539  * Called from page_geti_contig_pages to exclusively lock constituent pages
2540  * starting from 'spp' for page size code 'szc'.
2541  *
2542  * If 'ptcpthreshold' is set, the number of free pages needed in the 'szc'
2543  * region needs to be greater than or equal to the threshold.
2544  */
2545 static int
2546 page_trylock_contig_pages(int mnode, page_t *spp, uchar_t szc, int flags)
2547 {
2548 	pgcnt_t	pgcnt = PNUM_SIZE(szc);
2549 	pgcnt_t pgfree, i;
2550 	page_t *pp;
2551 
2552 	VM_STAT_ADD(vmm_vmstats.ptcp[szc]);
2553 
2554 
2555 	if ((ptcpthreshold == 0) || (flags & PGI_PGCPHIPRI))
2556 		goto skipptcpcheck;
2557 	/*
2558 	 * check if there are sufficient free pages available before attempting
2559 	 * to trylock. Count is approximate as page counters can change.
2560 	 */
2561 	pgfree = page_freecnt(mnode, spp, szc);
2562 
2563 	/* attempt to trylock if there are sufficient already free pages */
2564 	if (pgfree < pgcnt/ptcpthreshold) {
2565 		VM_STAT_ADD(vmm_vmstats.ptcpfreethresh[szc]);
2566 		return (0);
2567 	}
2568 
2569 skipptcpcheck:
2570 
2571 	for (i = 0; i < pgcnt; i++) {
2572 		pp = &spp[i];
2573 		if (!page_trylock(pp, SE_EXCL)) {
2574 			VM_STAT_ADD(vmm_vmstats.ptcpfailexcl[szc]);
2575 			while (--i != (pgcnt_t)-1) {
2576 				pp = &spp[i];
2577 				ASSERT(PAGE_EXCL(pp));
2578 				page_unlock_noretire(pp);
2579 			}
2580 			return (0);
2581 		}
2582 		ASSERT(spp[i].p_pagenum == spp->p_pagenum + i);
2583 		if ((pp->p_szc > szc || (szc && pp->p_szc == szc)) &&
2584 		    !PP_ISFREE(pp)) {
2585 			VM_STAT_ADD(vmm_vmstats.ptcpfailszc[szc]);
2586 			ASSERT(i == 0);
2587 			page_unlock_noretire(pp);
2588 			return (0);
2589 		}
2590 		if (PP_ISNORELOC(pp)) {
2591 			VM_STAT_ADD(vmm_vmstats.ptcpfailcage[szc]);
2592 			while (i != (pgcnt_t)-1) {
2593 				pp = &spp[i];
2594 				ASSERT(PAGE_EXCL(pp));
2595 				page_unlock_noretire(pp);
2596 				i--;
2597 			}
2598 			return (0);
2599 		}
2600 	}
2601 	VM_STAT_ADD(vmm_vmstats.ptcpok[szc]);
2602 	return (1);
2603 }
2604 
2605 /*
2606  * Claim large page pointed to by 'pp'. 'pp' is the starting set
2607  * of 'szc' constituent pages that had been locked exclusively previously.
2608  * Will attempt to relocate constituent pages in use.
2609  */
2610 static page_t *
2611 page_claim_contig_pages(page_t *pp, uchar_t szc, int flags)
2612 {
2613 	spgcnt_t pgcnt, npgs, i;
2614 	page_t *targpp, *rpp, *hpp;
2615 	page_t *replpp = NULL;
2616 	page_t *pplist = NULL;
2617 
2618 	ASSERT(pp != NULL);
2619 
2620 	pgcnt = page_get_pagecnt(szc);
2621 	while (pgcnt) {
2622 		ASSERT(PAGE_EXCL(pp));
2623 		ASSERT(!PP_ISNORELOC(pp));
2624 		if (PP_ISFREE(pp)) {
2625 			/*
2626 			 * If this is a PG_FREE_LIST page then its
2627 			 * size code can change underneath us due to
2628 			 * page promotion or demotion. As an optimzation
2629 			 * use page_list_sub_pages() instead of
2630 			 * page_list_sub().
2631 			 */
2632 			if (PP_ISAGED(pp)) {
2633 				page_list_sub_pages(pp, szc);
2634 				if (pp->p_szc == szc) {
2635 					return (pp);
2636 				}
2637 				ASSERT(pp->p_szc < szc);
2638 				npgs = page_get_pagecnt(pp->p_szc);
2639 				hpp = pp;
2640 				for (i = 0; i < npgs; i++, pp++) {
2641 					pp->p_szc = szc;
2642 				}
2643 				page_list_concat(&pplist, &hpp);
2644 				pgcnt -= npgs;
2645 				continue;
2646 			}
2647 			ASSERT(!PP_ISAGED(pp));
2648 			ASSERT(pp->p_szc == 0);
2649 			page_list_sub(pp, PG_CACHE_LIST);
2650 			page_hashout(pp, NULL);
2651 			PP_SETAGED(pp);
2652 			pp->p_szc = szc;
2653 			page_list_concat(&pplist, &pp);
2654 			pp++;
2655 			pgcnt--;
2656 			continue;
2657 		}
2658 		npgs = page_get_pagecnt(pp->p_szc);
2659 
2660 		/*
2661 		 * page_create_wait freemem accounting done by caller of
2662 		 * page_get_freelist and not necessary to call it prior to
2663 		 * calling page_get_replacement_page.
2664 		 *
2665 		 * page_get_replacement_page can call page_get_contig_pages
2666 		 * to acquire a large page (szc > 0); the replacement must be
2667 		 * smaller than the contig page size to avoid looping or
2668 		 * szc == 0 and PGI_PGCPSZC0 is set.
2669 		 */
2670 		if (pp->p_szc < szc || (szc == 0 && (flags & PGI_PGCPSZC0))) {
2671 			replpp = page_get_replacement_page(pp, NULL, 0);
2672 			if (replpp) {
2673 				npgs = page_get_pagecnt(pp->p_szc);
2674 				ASSERT(npgs <= pgcnt);
2675 				targpp = pp;
2676 			}
2677 		}
2678 
2679 		/*
2680 		 * If replacement is NULL or do_page_relocate fails, fail
2681 		 * coalescing of pages.
2682 		 */
2683 		if (replpp == NULL || (do_page_relocate(&targpp, &replpp, 0,
2684 		    &npgs, NULL) != 0)) {
2685 			/*
2686 			 * Unlock un-processed target list
2687 			 */
2688 			while (pgcnt--) {
2689 				ASSERT(PAGE_EXCL(pp));
2690 				page_unlock_noretire(pp);
2691 				pp++;
2692 			}
2693 			/*
2694 			 * Free the processed target list.
2695 			 */
2696 			while (pplist) {
2697 				pp = pplist;
2698 				page_sub(&pplist, pp);
2699 				ASSERT(PAGE_EXCL(pp));
2700 				ASSERT(pp->p_szc == szc);
2701 				ASSERT(PP_ISFREE(pp));
2702 				ASSERT(PP_ISAGED(pp));
2703 				pp->p_szc = 0;
2704 				page_list_add(pp, PG_FREE_LIST | PG_LIST_TAIL);
2705 				page_unlock_noretire(pp);
2706 			}
2707 
2708 			if (replpp != NULL)
2709 				page_free_replacement_page(replpp);
2710 
2711 			return (NULL);
2712 		}
2713 		ASSERT(pp == targpp);
2714 
2715 		/* LINTED */
2716 		ASSERT(hpp = pp); /* That's right, it's an assignment */
2717 
2718 		pp += npgs;
2719 		pgcnt -= npgs;
2720 
2721 		while (npgs--) {
2722 			ASSERT(PAGE_EXCL(targpp));
2723 			ASSERT(!PP_ISFREE(targpp));
2724 			ASSERT(!PP_ISNORELOC(targpp));
2725 			PP_SETFREE(targpp);
2726 			ASSERT(PP_ISAGED(targpp));
2727 			ASSERT(targpp->p_szc < szc || (szc == 0 &&
2728 			    (flags & PGI_PGCPSZC0)));
2729 			targpp->p_szc = szc;
2730 			targpp = targpp->p_next;
2731 
2732 			rpp = replpp;
2733 			ASSERT(rpp != NULL);
2734 			page_sub(&replpp, rpp);
2735 			ASSERT(PAGE_EXCL(rpp));
2736 			ASSERT(!PP_ISFREE(rpp));
2737 			page_unlock_noretire(rpp);
2738 		}
2739 		ASSERT(targpp == hpp);
2740 		ASSERT(replpp == NULL);
2741 		page_list_concat(&pplist, &targpp);
2742 	}
2743 	CHK_LPG(pplist, szc);
2744 	return (pplist);
2745 }
2746 
2747 /*
2748  * Trim kernel cage from pfnlo-pfnhi and store result in lo-hi. Return code
2749  * of 0 means nothing left after trim.
2750  */
2751 
2752 int
2753 trimkcage(struct memseg *mseg, pfn_t *lo, pfn_t *hi, pfn_t pfnlo, pfn_t pfnhi)
2754 {
2755 	pfn_t	kcagepfn;
2756 	int	decr;
2757 	int	rc = 0;
2758 
2759 	if (PP_ISNORELOC(mseg->pages)) {
2760 		if (PP_ISNORELOC(mseg->epages - 1) == 0) {
2761 
2762 			/* lower part of this mseg inside kernel cage */
2763 			decr = kcage_current_pfn(&kcagepfn);
2764 
2765 			/* kernel cage may have transitioned past mseg */
2766 			if (kcagepfn >= mseg->pages_base &&
2767 			    kcagepfn < mseg->pages_end) {
2768 				ASSERT(decr == 0);
2769 				*lo = kcagepfn;
2770 				*hi = MIN(pfnhi,
2771 				    (mseg->pages_end - 1));
2772 				rc = 1;
2773 			}
2774 		}
2775 		/* else entire mseg in the cage */
2776 	} else {
2777 		if (PP_ISNORELOC(mseg->epages - 1)) {
2778 
2779 			/* upper part of this mseg inside kernel cage */
2780 			decr = kcage_current_pfn(&kcagepfn);
2781 
2782 			/* kernel cage may have transitioned past mseg */
2783 			if (kcagepfn >= mseg->pages_base &&
2784 			    kcagepfn < mseg->pages_end) {
2785 				ASSERT(decr);
2786 				*hi = kcagepfn;
2787 				*lo = MAX(pfnlo, mseg->pages_base);
2788 				rc = 1;
2789 			}
2790 		} else {
2791 			/* entire mseg outside of kernel cage */
2792 			*lo = MAX(pfnlo, mseg->pages_base);
2793 			*hi = MIN(pfnhi, (mseg->pages_end - 1));
2794 			rc = 1;
2795 		}
2796 	}
2797 	return (rc);
2798 }
2799 
2800 /*
2801  * called from page_get_contig_pages to search 'pfnlo' thru 'pfnhi' to "claim" a
2802  * page with size code 'szc'. Claiming such a page requires acquiring
2803  * exclusive locks on all constituent pages (page_trylock_contig_pages),
2804  * relocating pages in use and concatenating these constituent pages into a
2805  * large page.
2806  *
2807  * The page lists do not have such a large page and page_freelist_fill has
2808  * already failed to demote larger pages and/or coalesce smaller free pages.
2809  *
2810  * 'flags' may specify PG_COLOR_MATCH which would limit the search of large
2811  * pages with the same color as 'bin'.
2812  *
2813  * 'pfnflag' specifies the subset of the pfn range to search.
2814  */
2815 
2816 
2817 static page_t *
2818 page_geti_contig_pages(int mnode, uint_t bin, uchar_t szc, int flags,
2819     pfn_t pfnlo, pfn_t pfnhi, pgcnt_t pfnflag)
2820 {
2821 	struct memseg *mseg;
2822 	pgcnt_t	szcpgcnt = page_get_pagecnt(szc);
2823 	pgcnt_t szcpgmask = szcpgcnt - 1;
2824 	pfn_t	randpfn;
2825 	page_t *pp, *randpp, *endpp;
2826 	uint_t colors;
2827 	pfn_t hi, lo;
2828 	uint_t skip;
2829 
2830 	ASSERT(szc != 0 || (flags & PGI_PGCPSZC0));
2831 
2832 	if ((pfnhi - pfnlo) + 1 < szcpgcnt)
2833 		return (NULL);
2834 
2835 	ASSERT(szc < mmu_page_sizes);
2836 
2837 	colors = (szc) ? page_convert_color(0, szc, page_colors - 1) + 1 :
2838 	    page_colors;
2839 
2840 	ASSERT(bin < colors);
2841 
2842 	/*
2843 	 * trim the pfn range to search based on pfnflag. pfnflag is set
2844 	 * when there have been previous page_get_contig_page failures to
2845 	 * limit the search.
2846 	 *
2847 	 * The high bit in pfnflag specifies the number of 'slots' in the
2848 	 * pfn range and the remainder of pfnflag specifies which slot.
2849 	 * For example, a value of 1010b would mean the second slot of
2850 	 * the pfn range that has been divided into 8 slots.
2851 	 */
2852 	if (pfnflag > 1) {
2853 		int	slots = 1 << (highbit(pfnflag) - 1);
2854 		int	slotid = pfnflag & (slots - 1);
2855 		pgcnt_t	szcpages;
2856 		int	slotlen;
2857 
2858 		pfnlo = P2ROUNDUP(pfnlo, szcpgcnt);
2859 		pfnhi = pfnhi & ~(szcpgcnt - 1);
2860 
2861 		szcpages = ((pfnhi - pfnlo) + 1) / szcpgcnt;
2862 		slotlen = howmany(szcpages, slots);
2863 		pfnlo = pfnlo + (((slotid * slotlen) % szcpages) * szcpgcnt);
2864 		ASSERT(pfnlo < pfnhi);
2865 		if (pfnhi > pfnlo + (slotlen * szcpgcnt))
2866 			pfnhi = pfnlo + (slotlen * szcpgcnt);
2867 	}
2868 
2869 	memsegs_lock(0);
2870 
2871 	/*
2872 	 * loop through memsegs to look for contig page candidates
2873 	 */
2874 
2875 	for (mseg = memsegs; mseg != NULL; mseg = mseg->next) {
2876 		if (pfnhi < mseg->pages_base || pfnlo >= mseg->pages_end) {
2877 			/* no overlap */
2878 			continue;
2879 		}
2880 
2881 		if (mseg->pages_end - mseg->pages_base < szcpgcnt)
2882 			/* mseg too small */
2883 			continue;
2884 
2885 		/* trim off kernel cage pages from pfn range */
2886 		if (kcage_on) {
2887 			if (trimkcage(mseg, &lo, &hi, pfnlo, pfnhi) == 0)
2888 				continue;
2889 		} else {
2890 			lo = MAX(pfnlo, mseg->pages_base);
2891 			hi = MIN(pfnhi, (mseg->pages_end - 1));
2892 		}
2893 
2894 		/* round to szcpgcnt boundaries */
2895 		lo = P2ROUNDUP(lo, szcpgcnt);
2896 		hi = hi & ~(szcpgcnt - 1);
2897 
2898 		if (hi <= lo)
2899 			continue;
2900 
2901 		/*
2902 		 * set lo to point to the pfn for the desired bin. Large
2903 		 * page sizes may only have a single page color
2904 		 */
2905 		if ((colors > 1) && (flags & PG_MATCH_COLOR)) {
2906 			uint_t	lobin;
2907 
2908 			/*
2909 			 * factor in colorequiv to check additional
2910 			 * 'equivalent' bins.
2911 			 */
2912 			if (colorequiv > 1 && colors > colorequiv)
2913 				colors = colors / colorequiv;
2914 
2915 			/* determine bin that lo currently points to */
2916 			lobin = (lo & ((szcpgcnt * colors) - 1)) / szcpgcnt;
2917 
2918 			/*
2919 			 * set lo to point at appropriate color and set skip
2920 			 * to arrive at the next szc page of the same color.
2921 			 */
2922 			lo += ((bin - lobin) & (colors - 1)) * szcpgcnt;
2923 
2924 			skip = colors * szcpgcnt;
2925 		} else {
2926 			/* check all pages starting from lo */
2927 			skip = szcpgcnt;
2928 		}
2929 		if (hi <= lo)
2930 			/* mseg cannot satisfy color request */
2931 			continue;
2932 
2933 		/* randomly choose a point between lo and hi to begin search */
2934 
2935 		randpfn = (pfn_t)GETTICK();
2936 		randpfn = ((randpfn % (hi - lo)) + lo) & ~(skip - 1);
2937 		randpp = mseg->pages + (randpfn - mseg->pages_base);
2938 
2939 		ASSERT(randpp->p_pagenum == randpfn);
2940 
2941 		pp = randpp;
2942 		endpp =  mseg->pages + (hi - mseg->pages_base);
2943 
2944 		ASSERT(randpp + szcpgcnt <= endpp);
2945 
2946 		do {
2947 			ASSERT(!(pp->p_pagenum & szcpgmask));
2948 			ASSERT((flags & PG_MATCH_COLOR) == 0 ||
2949 			    colorequiv > 1 ||
2950 			    PP_2_BIN(pp) == bin);
2951 			if (page_trylock_contig_pages(mnode, pp, szc, flags)) {
2952 				/* pages unlocked by page_claim on failure */
2953 				if (page_claim_contig_pages(pp, szc, flags)) {
2954 					memsegs_unlock(0);
2955 					return (pp);
2956 				}
2957 			}
2958 
2959 			pp += skip;
2960 			if (pp >= endpp) {
2961 				/* start from the beginning */
2962 				pp = mseg->pages + (lo - mseg->pages_base);
2963 				ASSERT(pp->p_pagenum == lo);
2964 				ASSERT(pp + szcpgcnt <= endpp);
2965 			}
2966 		} while (pp != randpp);
2967 	}
2968 	memsegs_unlock(0);
2969 	return (NULL);
2970 }
2971 
2972 
2973 /*
2974  * controlling routine that searches through physical memory in an attempt to
2975  * claim a large page based on the input parameters.
2976  * on the page free lists.
2977  *
2978  * calls page_geti_contig_pages with an initial pfn range from the mnode
2979  * and mtype. page_geti_contig_pages will trim off the parts of the pfn range
2980  * that overlaps with the kernel cage or does not match the requested page
2981  * color if PG_MATCH_COLOR is set.  Since this search is very expensive,
2982  * page_geti_contig_pages may further limit the search range based on
2983  * previous failure counts (pgcpfailcnt[]).
2984  *
2985  * for PGI_PGCPSZC0 requests, page_get_contig_pages will relocate a base
2986  * pagesize page that satisfies mtype.
2987  */
2988 page_t *
2989 page_get_contig_pages(int mnode, uint_t bin, int mtype, uchar_t szc,
2990     uint_t flags)
2991 {
2992 	pfn_t		pfnlo, pfnhi;	/* contig pages pfn range */
2993 	page_t		*pp;
2994 	pgcnt_t		pfnflag = 0;	/* no limit on search if 0 */
2995 
2996 	VM_STAT_ADD(vmm_vmstats.pgcp_alloc[szc]);
2997 
2998 	/* LINTED */
2999 	MTYPE_START(mnode, mtype, flags);
3000 	if (mtype < 0) {	/* mnode does not have memory in mtype range */
3001 		VM_STAT_ADD(vmm_vmstats.pgcp_allocempty[szc]);
3002 		return (NULL);
3003 	}
3004 
3005 	ASSERT(szc > 0 || (flags & PGI_PGCPSZC0));
3006 
3007 	/* no allocations from cage */
3008 	flags |= PGI_NOCAGE;
3009 
3010 	/* do not limit search and ignore color if hi pri */
3011 
3012 	if (pgcplimitsearch && ((flags & PGI_PGCPHIPRI) == 0))
3013 		pfnflag = pgcpfailcnt[szc];
3014 
3015 	/* remove color match to improve chances */
3016 
3017 	if (flags & PGI_PGCPHIPRI || pfnflag)
3018 		flags &= ~PG_MATCH_COLOR;
3019 
3020 	do {
3021 		/* get pfn range based on mnode and mtype */
3022 		MNODETYPE_2_PFN(mnode, mtype, pfnlo, pfnhi);
3023 
3024 		ASSERT(pfnhi >= pfnlo);
3025 
3026 		pp = page_geti_contig_pages(mnode, bin, szc, flags,
3027 		    pfnlo, pfnhi, pfnflag);
3028 
3029 		if (pp != NULL) {
3030 			pfnflag = pgcpfailcnt[szc];
3031 			if (pfnflag) {
3032 				/* double the search size */
3033 				pgcpfailcnt[szc] = pfnflag >> 1;
3034 			}
3035 			VM_STAT_ADD(vmm_vmstats.pgcp_allocok[szc]);
3036 			return (pp);
3037 		}
3038 		MTYPE_NEXT(mnode, mtype, flags);
3039 	} while (mtype >= 0);
3040 
3041 	VM_STAT_ADD(vmm_vmstats.pgcp_allocfailed[szc]);
3042 	return (NULL);
3043 }
3044 
3045 
3046 /*
3047  * Find the `best' page on the freelist for this (vp,off) (as,vaddr) pair.
3048  *
3049  * Does its own locking and accounting.
3050  * If PG_MATCH_COLOR is set, then NULL will be returned if there are no
3051  * pages of the proper color even if there are pages of a different color.
3052  *
3053  * Finds a page, removes it, THEN locks it.
3054  */
3055 
3056 /*ARGSUSED*/
3057 page_t *
3058 page_get_freelist(struct vnode *vp, u_offset_t off, struct seg *seg,
3059 	caddr_t vaddr, size_t size, uint_t flags, struct lgrp *lgrp)
3060 {
3061 	struct as	*as = seg->s_as;
3062 	page_t		*pp = NULL;
3063 	ulong_t		bin;
3064 	uchar_t		szc;
3065 	int		mnode;
3066 	int		mtype;
3067 	page_t		*(*page_get_func)(int, uint_t, int, uchar_t, uint_t);
3068 	lgrp_mnode_cookie_t	lgrp_cookie;
3069 
3070 	page_get_func = page_get_mnode_freelist;
3071 
3072 	/*
3073 	 * If we aren't passed a specific lgroup, or passed a freed lgrp
3074 	 * assume we wish to allocate near to the current thread's home.
3075 	 */
3076 	if (!LGRP_EXISTS(lgrp))
3077 		lgrp = lgrp_home_lgrp();
3078 
3079 	if (kcage_on) {
3080 		if ((flags & (PG_NORELOC | PG_PANIC)) == PG_NORELOC &&
3081 		    kcage_freemem < kcage_throttlefree + btop(size) &&
3082 		    curthread != kcage_cageout_thread) {
3083 			/*
3084 			 * Set a "reserve" of kcage_throttlefree pages for
3085 			 * PG_PANIC and cageout thread allocations.
3086 			 *
3087 			 * Everybody else has to serialize in
3088 			 * page_create_get_something() to get a cage page, so
3089 			 * that we don't deadlock cageout!
3090 			 */
3091 			return (NULL);
3092 		}
3093 	} else {
3094 		flags &= ~PG_NORELOC;
3095 		flags |= PGI_NOCAGE;
3096 	}
3097 
3098 	/* LINTED */
3099 	MTYPE_INIT(mtype, vp, vaddr, flags);
3100 
3101 	/*
3102 	 * Convert size to page size code.
3103 	 */
3104 	if ((szc = page_szc(size)) == (uchar_t)-1)
3105 		panic("page_get_freelist: illegal page size request");
3106 	ASSERT(szc < mmu_page_sizes);
3107 
3108 	VM_STAT_ADD(vmm_vmstats.pgf_alloc[szc]);
3109 
3110 	/* LINTED */
3111 	AS_2_BIN(as, seg, vp, vaddr, bin);
3112 
3113 	/* bin is for base pagesize color - convert if larger pagesize. */
3114 	if (szc)
3115 		bin = page_convert_color(0, szc, bin);
3116 
3117 	/*
3118 	 * Try to get a local page first, but try remote if we can't
3119 	 * get a page of the right color.
3120 	 */
3121 pgretry:
3122 	LGRP_MNODE_COOKIE_INIT(lgrp_cookie, lgrp, LGRP_SRCH_LOCAL);
3123 	while ((mnode = lgrp_memnode_choose(&lgrp_cookie)) >= 0) {
3124 		pp = page_get_func(mnode, bin, mtype, szc, flags);
3125 		if (pp != NULL) {
3126 			VM_STAT_ADD(vmm_vmstats.pgf_allocok[szc]);
3127 			DTRACE_PROBE4(page__get,
3128 			    lgrp_t *, lgrp,
3129 			    int, mnode,
3130 			    ulong_t, bin,
3131 			    uint_t, flags);
3132 			return (pp);
3133 		}
3134 	}
3135 	ASSERT(pp == NULL);
3136 
3137 	/*
3138 	 * for non-SZC0 PAGESIZE requests, check cachelist before checking
3139 	 * remote free lists.  Caller expected to call page_get_cachelist which
3140 	 * will check local cache lists and remote free lists.
3141 	 */
3142 	if (szc == 0 && ((flags & PGI_PGCPSZC0) == 0)) {
3143 		VM_STAT_ADD(vmm_vmstats.pgf_allocdeferred);
3144 		return (NULL);
3145 	}
3146 
3147 	ASSERT(szc > 0 || (flags & PGI_PGCPSZC0));
3148 
3149 	lgrp_stat_add(lgrp->lgrp_id, LGRP_NUM_ALLOC_FAIL, 1);
3150 
3151 	/*
3152 	 * Try to get a non-local freelist page.
3153 	 */
3154 	LGRP_MNODE_COOKIE_UPGRADE(lgrp_cookie);
3155 	while ((mnode = lgrp_memnode_choose(&lgrp_cookie)) >= 0) {
3156 		pp = page_get_func(mnode, bin, mtype, szc, flags);
3157 		if (pp != NULL) {
3158 			DTRACE_PROBE4(page__get,
3159 			    lgrp_t *, lgrp,
3160 			    int, mnode,
3161 			    ulong_t, bin,
3162 			    uint_t, flags);
3163 			VM_STAT_ADD(vmm_vmstats.pgf_allocokrem[szc]);
3164 			return (pp);
3165 		}
3166 	}
3167 
3168 	ASSERT(pp == NULL);
3169 
3170 	/*
3171 	 * when the cage is off chances are page_get_contig_pages() will fail
3172 	 * to lock a large page chunk therefore when the cage is off it's not
3173 	 * called by default.  this can be changed via /etc/system.
3174 	 *
3175 	 * page_get_contig_pages() also called to acquire a base pagesize page
3176 	 * for page_create_get_something().
3177 	 */
3178 	if (!(flags & PG_NORELOC) && (pg_contig_disable == 0) &&
3179 	    (kcage_on || pg_lpgcreate_nocage || szc == 0) &&
3180 	    (page_get_func != page_get_contig_pages)) {
3181 
3182 		VM_STAT_ADD(vmm_vmstats.pgf_allocretry[szc]);
3183 		page_get_func = page_get_contig_pages;
3184 		goto pgretry;
3185 	}
3186 
3187 	if (pgcplimitsearch && page_get_func == page_get_contig_pages)
3188 		SETPGCPFAILCNT(szc);
3189 
3190 	VM_STAT_ADD(vmm_vmstats.pgf_allocfailed[szc]);
3191 	return (NULL);
3192 }
3193 
3194 /*
3195  * Find the `best' page on the cachelist for this (vp,off) (as,vaddr) pair.
3196  *
3197  * Does its own locking.
3198  * If PG_MATCH_COLOR is set, then NULL will be returned if there are no
3199  * pages of the proper color even if there are pages of a different color.
3200  * Otherwise, scan the bins for ones with pages.  For each bin with pages,
3201  * try to lock one of them.  If no page can be locked, try the
3202  * next bin.  Return NULL if a page can not be found and locked.
3203  *
3204  * Finds a pages, trys to lock it, then removes it.
3205  */
3206 
3207 /*ARGSUSED*/
3208 page_t *
3209 page_get_cachelist(struct vnode *vp, u_offset_t off, struct seg *seg,
3210     caddr_t vaddr, uint_t flags, struct lgrp *lgrp)
3211 {
3212 	page_t		*pp;
3213 	struct as	*as = seg->s_as;
3214 	ulong_t		bin;
3215 	/*LINTED*/
3216 	int		mnode;
3217 	int		mtype;
3218 	lgrp_mnode_cookie_t	lgrp_cookie;
3219 
3220 	/*
3221 	 * If we aren't passed a specific lgroup, or pasased a freed lgrp
3222 	 * assume we wish to allocate near to the current thread's home.
3223 	 */
3224 	if (!LGRP_EXISTS(lgrp))
3225 		lgrp = lgrp_home_lgrp();
3226 
3227 	if (!kcage_on) {
3228 		flags &= ~PG_NORELOC;
3229 		flags |= PGI_NOCAGE;
3230 	}
3231 
3232 	if ((flags & (PG_NORELOC | PG_PANIC | PG_PUSHPAGE)) == PG_NORELOC &&
3233 	    kcage_freemem <= kcage_throttlefree) {
3234 		/*
3235 		 * Reserve kcage_throttlefree pages for critical kernel
3236 		 * threads.
3237 		 *
3238 		 * Everybody else has to go to page_create_get_something()
3239 		 * to get a cage page, so we don't deadlock cageout.
3240 		 */
3241 		return (NULL);
3242 	}
3243 
3244 	/* LINTED */
3245 	AS_2_BIN(as, seg, vp, vaddr, bin);
3246 
3247 	ASSERT(bin <= page_colors_mask);
3248 
3249 	/* LINTED */
3250 	MTYPE_INIT(mtype, vp, vaddr, flags);
3251 
3252 	VM_STAT_ADD(vmm_vmstats.pgc_alloc);
3253 
3254 	/*
3255 	 * Try local cachelists first
3256 	 */
3257 	LGRP_MNODE_COOKIE_INIT(lgrp_cookie, lgrp, LGRP_SRCH_LOCAL);
3258 	while ((mnode = lgrp_memnode_choose(&lgrp_cookie)) >= 0) {
3259 		pp = page_get_mnode_cachelist(bin, flags, mnode, mtype);
3260 		if (pp != NULL) {
3261 			VM_STAT_ADD(vmm_vmstats.pgc_allocok);
3262 			DTRACE_PROBE4(page__get,
3263 			    lgrp_t *, lgrp,
3264 			    int, mnode,
3265 			    ulong_t, bin,
3266 			    uint_t, flags);
3267 			return (pp);
3268 		}
3269 	}
3270 
3271 	lgrp_stat_add(lgrp->lgrp_id, LGRP_NUM_ALLOC_FAIL, 1);
3272 
3273 	/*
3274 	 * Try freelists/cachelists that are farther away
3275 	 * This is our only chance to allocate remote pages for PAGESIZE
3276 	 * requests.
3277 	 */
3278 	LGRP_MNODE_COOKIE_UPGRADE(lgrp_cookie);
3279 	while ((mnode = lgrp_memnode_choose(&lgrp_cookie)) >= 0) {
3280 		pp = page_get_mnode_freelist(mnode, bin, mtype,
3281 		    0, flags);
3282 		if (pp != NULL) {
3283 			VM_STAT_ADD(vmm_vmstats.pgc_allocokdeferred);
3284 			DTRACE_PROBE4(page__get,
3285 			    lgrp_t *, lgrp,
3286 			    int, mnode,
3287 			    ulong_t, bin,
3288 			    uint_t, flags);
3289 			return (pp);
3290 		}
3291 		pp = page_get_mnode_cachelist(bin, flags, mnode, mtype);
3292 		if (pp != NULL) {
3293 			VM_STAT_ADD(vmm_vmstats.pgc_allocokrem);
3294 			DTRACE_PROBE4(page__get,
3295 			    lgrp_t *, lgrp,
3296 			    int, mnode,
3297 			    ulong_t, bin,
3298 			    uint_t, flags);
3299 			return (pp);
3300 		}
3301 	}
3302 
3303 	VM_STAT_ADD(vmm_vmstats.pgc_allocfailed);
3304 	return (NULL);
3305 }
3306 
3307 page_t *
3308 page_get_mnode_cachelist(uint_t bin, uint_t flags, int mnode, int mtype)
3309 {
3310 	kmutex_t	*pcm;
3311 	int		i;
3312 	page_t		*pp;
3313 	page_t		*first_pp;
3314 	uint_t		bin_marker;
3315 	int		nwaybins, nwaycnt;
3316 	int		cpucolors;
3317 
3318 	VM_STAT_ADD(vmm_vmstats.pgmc_alloc);
3319 
3320 	/* LINTED */
3321 	MTYPE_START(mnode, mtype, flags);
3322 	if (mtype < 0) {	/* mnode does not have memory in mtype range */
3323 		VM_STAT_ADD(vmm_vmstats.pgmc_allocempty);
3324 		return (NULL);
3325 	}
3326 
3327 	nwaybins = 0;
3328 	cpucolors = cpu_page_colors;
3329 	/*
3330 	 * adjust cpucolors to possibly check additional 'equivalent' bins
3331 	 * to try to minimize fragmentation of large pages by delaying calls
3332 	 * to page_freelist_fill.
3333 	 */
3334 	if (colorequiv > 1) {
3335 		int equivcolors = page_colors / colorequiv;
3336 
3337 		if (equivcolors && (cpucolors == 0 || equivcolors < cpucolors))
3338 			cpucolors = equivcolors;
3339 	}
3340 
3341 	/*
3342 	 * Only hold one cachelist lock at a time, that way we
3343 	 * can start anywhere and not have to worry about lock
3344 	 * ordering.
3345 	 */
3346 
3347 big_try_again:
3348 	nwaycnt = 0;
3349 	for (i = 0; i <= page_colors; i++) {
3350 		if (PAGE_CACHELISTS(mnode, bin, mtype)) {
3351 			pcm = PC_BIN_MUTEX(mnode, bin, PG_CACHE_LIST);
3352 			mutex_enter(pcm);
3353 			pp = PAGE_CACHELISTS(mnode, bin, mtype);
3354 			if (pp != NULL) {
3355 				first_pp = pp;
3356 				ASSERT(pp->p_vnode);
3357 				ASSERT(PP_ISAGED(pp) == 0);
3358 				ASSERT(pp->p_szc == 0);
3359 				ASSERT(PFN_2_MEM_NODE(pp->p_pagenum) == mnode);
3360 				while (!page_trylock(pp, SE_EXCL)) {
3361 					pp = pp->p_next;
3362 					ASSERT(pp->p_szc == 0);
3363 					if (pp == first_pp) {
3364 						/*
3365 						 * We have searched the
3366 						 * complete list!
3367 						 * And all of them (might
3368 						 * only be one) are locked.
3369 						 * This can happen since
3370 						 * these pages can also be
3371 						 * found via the hash list.
3372 						 * When found via the hash
3373 						 * list, they are locked
3374 						 * first, then removed.
3375 						 * We give up to let the
3376 						 * other thread run.
3377 						 */
3378 						pp = NULL;
3379 						break;
3380 					}
3381 					ASSERT(pp->p_vnode);
3382 					ASSERT(PP_ISFREE(pp));
3383 					ASSERT(PP_ISAGED(pp) == 0);
3384 					ASSERT(PFN_2_MEM_NODE(pp->p_pagenum) ==
3385 							mnode);
3386 				}
3387 
3388 				if (pp) {
3389 					page_t	**ppp;
3390 					/*
3391 					 * Found and locked a page.
3392 					 * Pull it off the list.
3393 					 */
3394 					ASSERT(mtype == PP_2_MTYPE(pp));
3395 					ppp = &PAGE_CACHELISTS(mnode, bin,
3396 					    mtype);
3397 					page_sub(ppp, pp);
3398 					/*
3399 					 * Subtract counters before releasing
3400 					 * pcm mutex to avoid a race with
3401 					 * page_freelist_coalesce and
3402 					 * page_freelist_fill.
3403 					 */
3404 					page_ctr_sub(mnode, mtype, pp,
3405 					    PG_CACHE_LIST);
3406 					mutex_exit(pcm);
3407 					ASSERT(pp->p_vnode);
3408 					ASSERT(PP_ISAGED(pp) == 0);
3409 #if defined(__sparc)
3410 					ASSERT(!kcage_on ||
3411 					    (flags & PG_NORELOC) == 0 ||
3412 					    PP_ISNORELOC(pp));
3413 					if (PP_ISNORELOC(pp)) {
3414 						kcage_freemem_sub(1);
3415 					}
3416 #endif
3417 					VM_STAT_ADD(vmm_vmstats.
3418 					    pgmc_allocok);
3419 					return (pp);
3420 				}
3421 			}
3422 			mutex_exit(pcm);
3423 		}
3424 
3425 		/*
3426 		 * Wow! The initial bin is empty or no page in the bin could
3427 		 * be locked.
3428 		 *
3429 		 * If specific color is needed, check if page color may be in
3430 		 * other bins.
3431 		 */
3432 		if ((flags & PG_MATCH_COLOR) && (cpucolors != 0)) {
3433 			if (!nwaybins) {
3434 				if (cpucolors < 0) {
3435 					cpucolors = CPUSETSIZE() / MMU_PAGESIZE;
3436 					ASSERT(cpucolors > 0);
3437 					nwaybins = page_colors / cpucolors;
3438 					if (nwaybins < 2)
3439 						cpucolors = 0;
3440 				} else {
3441 					nwaybins = page_colors / cpucolors;
3442 					ASSERT(nwaybins > 1);
3443 				}
3444 			}
3445 
3446 			if (++nwaycnt >= nwaybins) {
3447 				break;
3448 			}
3449 			bin = (bin + (page_colors / nwaybins)) &
3450 			    page_colors_mask;
3451 			continue;
3452 		}
3453 
3454 		if (i == 0) {
3455 			bin = (bin + BIN_STEP) & page_colors_mask;
3456 			bin_marker = bin;
3457 		} else {
3458 			bin = (bin + vac_colors) & page_colors_mask;
3459 			if (bin == bin_marker) {
3460 				bin = (bin + 1) & page_colors_mask;
3461 				bin_marker = bin;
3462 			}
3463 		}
3464 	}
3465 
3466 	MTYPE_NEXT(mnode, mtype, flags);
3467 	if (mtype >= 0)
3468 		goto big_try_again;
3469 
3470 	VM_STAT_ADD(vmm_vmstats.pgmc_allocfailed);
3471 	return (NULL);
3472 }
3473 
3474 #ifdef DEBUG
3475 #define	REPL_PAGE_STATS
3476 #endif /* DEBUG */
3477 
3478 #ifdef REPL_PAGE_STATS
3479 struct repl_page_stats {
3480 	uint_t	ngets;
3481 	uint_t	ngets_noreloc;
3482 	uint_t	npgr_noreloc;
3483 	uint_t	nnopage_first;
3484 	uint_t	nnopage;
3485 	uint_t	nhashout;
3486 	uint_t	nnofree;
3487 	uint_t	nnext_pp;
3488 } repl_page_stats;
3489 #define	REPL_STAT_INCR(v)	atomic_add_32(&repl_page_stats.v, 1)
3490 #else /* REPL_PAGE_STATS */
3491 #define	REPL_STAT_INCR(v)
3492 #endif /* REPL_PAGE_STATS */
3493 
3494 int	pgrppgcp;
3495 
3496 /*
3497  * The freemem accounting must be done by the caller.
3498  * First we try to get a replacement page of the same size as like_pp,
3499  * if that is not possible, then we just get a set of discontiguous
3500  * PAGESIZE pages.
3501  */
3502 page_t *
3503 page_get_replacement_page(page_t *orig_like_pp, struct lgrp *lgrp_target,
3504     uint_t pgrflags)
3505 {
3506 	page_t		*like_pp;
3507 	page_t		*pp, *pplist;
3508 	page_t		*pl = NULL;
3509 	ulong_t		bin;
3510 	int		mnode, page_mnode;
3511 	int		szc;
3512 	spgcnt_t	npgs, pg_cnt;
3513 	pfn_t		pfnum;
3514 	int		mtype;
3515 	int		flags = 0;
3516 	lgrp_mnode_cookie_t	lgrp_cookie;
3517 	lgrp_t		*lgrp;
3518 
3519 	REPL_STAT_INCR(ngets);
3520 	like_pp = orig_like_pp;
3521 	ASSERT(PAGE_EXCL(like_pp));
3522 
3523 	szc = like_pp->p_szc;
3524 	npgs = page_get_pagecnt(szc);
3525 	/*
3526 	 * Now we reset like_pp to the base page_t.
3527 	 * That way, we won't walk past the end of this 'szc' page.
3528 	 */
3529 	pfnum = PFN_BASE(like_pp->p_pagenum, szc);
3530 	like_pp = page_numtopp_nolock(pfnum);
3531 	ASSERT(like_pp->p_szc == szc);
3532 
3533 	if (PP_ISNORELOC(like_pp)) {
3534 		ASSERT(kcage_on);
3535 		REPL_STAT_INCR(ngets_noreloc);
3536 		flags = PGI_RELOCONLY;
3537 	} else if (pgrflags & PGR_NORELOC) {
3538 		ASSERT(kcage_on);
3539 		REPL_STAT_INCR(npgr_noreloc);
3540 		flags = PG_NORELOC;
3541 	}
3542 
3543 	/*
3544 	 * Kernel pages must always be replaced with the same size
3545 	 * pages, since we cannot properly handle demotion of kernel
3546 	 * pages.
3547 	 */
3548 	if (like_pp->p_vnode == &kvp)
3549 		pgrflags |= PGR_SAMESZC;
3550 
3551 	/* LINTED */
3552 	MTYPE_PGR_INIT(mtype, flags, like_pp, page_mnode);
3553 
3554 	while (npgs) {
3555 		pplist = NULL;
3556 		for (;;) {
3557 			pg_cnt = page_get_pagecnt(szc);
3558 			bin = PP_2_BIN(like_pp);
3559 			ASSERT(like_pp->p_szc == orig_like_pp->p_szc);
3560 			ASSERT(pg_cnt <= npgs);
3561 
3562 			/*
3563 			 * If an lgroup was specified, try to get the
3564 			 * page from that lgroup.
3565 			 * NOTE: Must be careful with code below because
3566 			 *	 lgroup may disappear and reappear since there
3567 			 *	 is no locking for lgroup here.
3568 			 */
3569 			if (LGRP_EXISTS(lgrp_target)) {
3570 				/*
3571 				 * Keep local variable for lgroup separate
3572 				 * from lgroup argument since this code should
3573 				 * only be exercised when lgroup argument
3574 				 * exists....
3575 				 */
3576 				lgrp = lgrp_target;
3577 
3578 				/* Try the lgroup's freelists first */
3579 				LGRP_MNODE_COOKIE_INIT(lgrp_cookie, lgrp,
3580 				    LGRP_SRCH_LOCAL);
3581 				while ((pplist == NULL) &&
3582 				    (mnode = lgrp_memnode_choose(&lgrp_cookie))
3583 				    != -1) {
3584 					pplist = page_get_mnode_freelist(
3585 						mnode, bin, mtype, szc,
3586 						    flags);
3587 				}
3588 
3589 				/*
3590 				 * Now try it's cachelists if this is a
3591 				 * small page. Don't need to do it for
3592 				 * larger ones since page_freelist_coalesce()
3593 				 * already failed.
3594 				 */
3595 				if (pplist != NULL || szc != 0)
3596 					break;
3597 
3598 				/* Now try it's cachelists */
3599 				LGRP_MNODE_COOKIE_INIT(lgrp_cookie, lgrp,
3600 				    LGRP_SRCH_LOCAL);
3601 
3602 				while ((pplist == NULL) &&
3603 				    (mnode = lgrp_memnode_choose(&lgrp_cookie))
3604 				    != -1) {
3605 					pplist = page_get_mnode_cachelist(
3606 						bin, flags, mnode, mtype);
3607 				}
3608 				if (pplist != NULL) {
3609 					page_hashout(pplist, NULL);
3610 					PP_SETAGED(pplist);
3611 					REPL_STAT_INCR(nhashout);
3612 					break;
3613 				}
3614 				/* Done looking in this lgroup. Bail out. */
3615 				break;
3616 			}
3617 
3618 			/*
3619 			 * No lgroup was specified (or lgroup was removed by
3620 			 * DR, so just try to get the page as close to
3621 			 * like_pp's mnode as possible.
3622 			 * First try the local freelist...
3623 			 */
3624 			mnode = PP_2_MEM_NODE(like_pp);
3625 			pplist = page_get_mnode_freelist(mnode, bin,
3626 			    mtype, szc, flags);
3627 			if (pplist != NULL)
3628 				break;
3629 
3630 			REPL_STAT_INCR(nnofree);
3631 
3632 			/*
3633 			 * ...then the local cachelist. Don't need to do it for
3634 			 * larger pages cause page_freelist_coalesce() already
3635 			 * failed there anyway.
3636 			 */
3637 			if (szc == 0) {
3638 				pplist = page_get_mnode_cachelist(bin, flags,
3639 				    mnode, mtype);
3640 				if (pplist != NULL) {
3641 					page_hashout(pplist, NULL);
3642 					PP_SETAGED(pplist);
3643 					REPL_STAT_INCR(nhashout);
3644 					break;
3645 				}
3646 			}
3647 
3648 			/* Now try remote freelists */
3649 			page_mnode = mnode;
3650 			lgrp =
3651 			    lgrp_hand_to_lgrp(MEM_NODE_2_LGRPHAND(page_mnode));
3652 			LGRP_MNODE_COOKIE_INIT(lgrp_cookie, lgrp,
3653 			    LGRP_SRCH_HIER);
3654 			while (pplist == NULL &&
3655 			    (mnode = lgrp_memnode_choose(&lgrp_cookie))
3656 			    != -1) {
3657 				/*
3658 				 * Skip local mnode.
3659 				 */
3660 				if ((mnode == page_mnode) ||
3661 				    (mem_node_config[mnode].exists == 0))
3662 					continue;
3663 
3664 				pplist = page_get_mnode_freelist(mnode,
3665 				    bin, mtype, szc, flags);
3666 			}
3667 
3668 			if (pplist != NULL)
3669 				break;
3670 
3671 
3672 			/* Now try remote cachelists */
3673 			LGRP_MNODE_COOKIE_INIT(lgrp_cookie, lgrp,
3674 			    LGRP_SRCH_HIER);
3675 			while (pplist == NULL && szc == 0) {
3676 				mnode = lgrp_memnode_choose(&lgrp_cookie);
3677 				if (mnode == -1)
3678 					break;
3679 				/*
3680 				 * Skip local mnode.
3681 				 */
3682 				if ((mnode == page_mnode) ||
3683 				    (mem_node_config[mnode].exists == 0))
3684 					continue;
3685 
3686 				pplist = page_get_mnode_cachelist(bin,
3687 				    flags, mnode, mtype);
3688 
3689 				if (pplist != NULL) {
3690 					page_hashout(pplist, NULL);
3691 					PP_SETAGED(pplist);
3692 					REPL_STAT_INCR(nhashout);
3693 					break;
3694 				}
3695 			}
3696 
3697 			/*
3698 			 * Break out of while loop under the following cases:
3699 			 * - If we successfully got a page.
3700 			 * - If pgrflags specified only returning a specific
3701 			 *   page size and we could not find that page size.
3702 			 * - If we could not satisfy the request with PAGESIZE
3703 			 *   or larger pages.
3704 			 */
3705 			if (pplist != NULL || szc == 0)
3706 				break;
3707 
3708 			if ((pgrflags & PGR_SAMESZC) || pgrppgcp) {
3709 				/* try to find contig page */
3710 
3711 				LGRP_MNODE_COOKIE_INIT(lgrp_cookie, lgrp,
3712 				    LGRP_SRCH_HIER);
3713 
3714 				while ((pplist == NULL) &&
3715 				    (mnode =
3716 					lgrp_memnode_choose(&lgrp_cookie))
3717 				    != -1) {
3718 					pplist = page_get_contig_pages(
3719 						mnode, bin, mtype, szc,
3720 						    flags | PGI_PGCPHIPRI);
3721 				}
3722 				break;
3723 			}
3724 
3725 			/*
3726 			 * The correct thing to do here is try the next
3727 			 * page size down using szc--. Due to a bug
3728 			 * with the processing of HAT_RELOAD_SHARE
3729 			 * where the sfmmu_ttecnt arrays of all
3730 			 * hats sharing an ISM segment don't get updated,
3731 			 * using intermediate size pages for relocation
3732 			 * can lead to continuous page faults.
3733 			 */
3734 			szc = 0;
3735 		}
3736 
3737 		if (pplist != NULL) {
3738 			DTRACE_PROBE4(page__get,
3739 			    lgrp_t *, lgrp,
3740 			    int, mnode,
3741 			    ulong_t, bin,
3742 			    uint_t, flags);
3743 
3744 			while (pplist != NULL && pg_cnt--) {
3745 				ASSERT(pplist != NULL);
3746 				pp = pplist;
3747 				page_sub(&pplist, pp);
3748 				PP_CLRFREE(pp);
3749 				PP_CLRAGED(pp);
3750 				page_list_concat(&pl, &pp);
3751 				npgs--;
3752 				like_pp = like_pp + 1;
3753 				REPL_STAT_INCR(nnext_pp);
3754 			}
3755 			ASSERT(pg_cnt == 0);
3756 		} else {
3757 			break;
3758 		}
3759 	}
3760 
3761 	if (npgs) {
3762 		/*
3763 		 * We were unable to allocate the necessary number
3764 		 * of pages.
3765 		 * We need to free up any pl.
3766 		 */
3767 		REPL_STAT_INCR(nnopage);
3768 		page_free_replacement_page(pl);
3769 		return (NULL);
3770 	} else {
3771 		return (pl);
3772 	}
3773 }
3774 
3775 /*
3776  * demote a free large page to it's constituent pages
3777  */
3778 void
3779 page_demote_free_pages(page_t *pp)
3780 {
3781 
3782 	int mnode;
3783 
3784 	ASSERT(pp != NULL);
3785 	ASSERT(PAGE_LOCKED(pp));
3786 	ASSERT(PP_ISFREE(pp));
3787 	ASSERT(pp->p_szc != 0 && pp->p_szc < mmu_page_sizes);
3788 
3789 	mnode = PP_2_MEM_NODE(pp);
3790 	page_freelist_lock(mnode);
3791 	if (pp->p_szc != 0) {
3792 		(void) page_demote(mnode, PFN_BASE(pp->p_pagenum,
3793 		    pp->p_szc), pp->p_szc, 0, PC_NO_COLOR, PC_FREE);
3794 	}
3795 	page_freelist_unlock(mnode);
3796 	ASSERT(pp->p_szc == 0);
3797 }
3798