xref: /illumos-gate/usr/src/uts/i86pc/os/mp_machdep.c (revision abcc7ef9)
1 
2 /*
3  * CDDL HEADER START
4  *
5  * The contents of this file are subject to the terms of the
6  * Common Development and Distribution License (the "License").
7  * You may not use this file except in compliance with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright (c) 1992, 2010, Oracle and/or its affiliates. All rights reserved.
24  */
25 /*
26  * Copyright (c) 2009-2010, Intel Corporation.
27  * All rights reserved.
28  */
29 
30 #define	PSMI_1_7
31 #include <sys/smp_impldefs.h>
32 #include <sys/psm.h>
33 #include <sys/psm_modctl.h>
34 #include <sys/pit.h>
35 #include <sys/cmn_err.h>
36 #include <sys/strlog.h>
37 #include <sys/clock.h>
38 #include <sys/debug.h>
39 #include <sys/rtc.h>
40 #include <sys/x86_archext.h>
41 #include <sys/cpupart.h>
42 #include <sys/cpuvar.h>
43 #include <sys/cpu_event.h>
44 #include <sys/cmt.h>
45 #include <sys/cpu.h>
46 #include <sys/disp.h>
47 #include <sys/archsystm.h>
48 #include <sys/machsystm.h>
49 #include <sys/sysmacros.h>
50 #include <sys/memlist.h>
51 #include <sys/param.h>
52 #include <sys/promif.h>
53 #include <sys/cpu_pm.h>
54 #if defined(__xpv)
55 #include <sys/hypervisor.h>
56 #endif
57 #include <sys/mach_intr.h>
58 #include <vm/hat_i86.h>
59 #include <sys/kdi_machimpl.h>
60 #include <sys/sdt.h>
61 #include <sys/hpet.h>
62 #include <sys/sunddi.h>
63 #include <sys/sunndi.h>
64 #include <sys/cpc_pcbe.h>
65 
66 #define	OFFSETOF(s, m)		(size_t)(&(((s *)0)->m))
67 
68 /*
69  *	Local function prototypes
70  */
71 static int mp_disable_intr(processorid_t cpun);
72 static void mp_enable_intr(processorid_t cpun);
73 static void mach_init();
74 static void mach_picinit();
75 static int machhztomhz(uint64_t cpu_freq_hz);
76 static uint64_t mach_getcpufreq(void);
77 static void mach_fixcpufreq(void);
78 static int mach_clkinit(int, int *);
79 static void mach_smpinit(void);
80 static int mach_softlvl_to_vect(int ipl);
81 static void mach_get_platform(int owner);
82 static void mach_construct_info();
83 static int mach_translate_irq(dev_info_t *dip, int irqno);
84 static int mach_intr_ops(dev_info_t *, ddi_intr_handle_impl_t *,
85     psm_intr_op_t, int *);
86 static void mach_notify_error(int level, char *errmsg);
87 static hrtime_t dummy_hrtime(void);
88 static void dummy_scalehrtime(hrtime_t *);
89 static uint64_t dummy_unscalehrtime(hrtime_t);
90 void cpu_idle(void);
91 static void cpu_wakeup(cpu_t *, int);
92 #ifndef __xpv
93 void cpu_idle_mwait(void);
94 static void cpu_wakeup_mwait(cpu_t *, int);
95 #endif
96 static int mach_cpu_create_devinfo(cpu_t *cp, dev_info_t **dipp);
97 
98 /*
99  *	External reference functions
100  */
101 extern void return_instr();
102 extern uint64_t freq_tsc(uint32_t *);
103 #if defined(__i386)
104 extern uint64_t freq_notsc(uint32_t *);
105 #endif
106 extern void pc_gethrestime(timestruc_t *);
107 extern int cpuid_get_coreid(cpu_t *);
108 extern int cpuid_get_chipid(cpu_t *);
109 
110 /*
111  *	PSM functions initialization
112  */
113 void (*psm_shutdownf)(int, int)	= (void (*)(int, int))return_instr;
114 void (*psm_preshutdownf)(int, int) = (void (*)(int, int))return_instr;
115 void (*psm_notifyf)(int)	= (void (*)(int))return_instr;
116 void (*psm_set_idle_cpuf)(int)	= (void (*)(int))return_instr;
117 void (*psm_unset_idle_cpuf)(int) = (void (*)(int))return_instr;
118 void (*psminitf)()		= mach_init;
119 void (*picinitf)() 		= return_instr;
120 int (*clkinitf)(int, int *) 	= (int (*)(int, int *))return_instr;
121 int (*ap_mlsetup)() 		= (int (*)(void))return_instr;
122 void (*send_dirintf)() 		= return_instr;
123 void (*setspl)(int)		= (void (*)(int))return_instr;
124 int (*addspl)(int, int, int, int) = (int (*)(int, int, int, int))return_instr;
125 int (*delspl)(int, int, int, int) = (int (*)(int, int, int, int))return_instr;
126 void (*kdisetsoftint)(int, struct av_softinfo *)=
127 	(void (*)(int, struct av_softinfo *))return_instr;
128 void (*setsoftint)(int, struct av_softinfo *)=
129 	(void (*)(int, struct av_softinfo *))return_instr;
130 int (*slvltovect)(int)		= (int (*)(int))return_instr;
131 int (*setlvl)(int, int *)	= (int (*)(int, int *))return_instr;
132 void (*setlvlx)(int, int)	= (void (*)(int, int))return_instr;
133 int (*psm_disable_intr)(int)	= mp_disable_intr;
134 void (*psm_enable_intr)(int)	= mp_enable_intr;
135 hrtime_t (*gethrtimef)(void)	= dummy_hrtime;
136 hrtime_t (*gethrtimeunscaledf)(void)	= dummy_hrtime;
137 void (*scalehrtimef)(hrtime_t *)	= dummy_scalehrtime;
138 uint64_t (*unscalehrtimef)(hrtime_t)	= dummy_unscalehrtime;
139 int (*psm_translate_irq)(dev_info_t *, int) = mach_translate_irq;
140 void (*gethrestimef)(timestruc_t *) = pc_gethrestime;
141 void (*psm_notify_error)(int, char *) = (void (*)(int, char *))NULL;
142 int (*psm_get_clockirq)(int) = NULL;
143 int (*psm_get_ipivect)(int, int) = NULL;
144 
145 int (*psm_clkinit)(int) = NULL;
146 void (*psm_timer_reprogram)(hrtime_t) = NULL;
147 void (*psm_timer_enable)(void) = NULL;
148 void (*psm_timer_disable)(void) = NULL;
149 void (*psm_post_cyclic_setup)(void *arg) = NULL;
150 int (*psm_intr_ops)(dev_info_t *, ddi_intr_handle_impl_t *, psm_intr_op_t,
151     int *) = mach_intr_ops;
152 int (*psm_state)(psm_state_request_t *) = (int (*)(psm_state_request_t *))
153     return_instr;
154 
155 void (*notify_error)(int, char *) = (void (*)(int, char *))return_instr;
156 void (*hrtime_tick)(void)	= return_instr;
157 
158 int (*psm_cpu_create_devinfo)(cpu_t *, dev_info_t **) = mach_cpu_create_devinfo;
159 int (*psm_cpu_get_devinfo)(cpu_t *, dev_info_t **) = NULL;
160 
161 /*
162  * True if the generic TSC code is our source of hrtime, rather than whatever
163  * the PSM can provide.
164  */
165 #ifdef __xpv
166 int tsc_gethrtime_enable = 0;
167 #else
168 int tsc_gethrtime_enable = 1;
169 #endif
170 int tsc_gethrtime_initted = 0;
171 
172 /*
173  * True if the hrtime implementation is "hires"; namely, better than microdata.
174  */
175 int gethrtime_hires = 0;
176 
177 /*
178  * Local Static Data
179  */
180 static struct psm_ops mach_ops;
181 static struct psm_ops *mach_set[4] = {&mach_ops, NULL, NULL, NULL};
182 static ushort_t mach_ver[4] = {0, 0, 0, 0};
183 
184 /*
185  * virtualization support for psm
186  */
187 void *psm_vt_ops = NULL;
188 /*
189  * If non-zero, idle cpus will become "halted" when there's
190  * no work to do.
191  */
192 int	idle_cpu_use_hlt = 1;
193 
194 #ifndef __xpv
195 /*
196  * If non-zero, idle cpus will use mwait if available to halt instead of hlt.
197  */
198 int	idle_cpu_prefer_mwait = 1;
199 /*
200  * Set to 0 to avoid MONITOR+CLFLUSH assertion.
201  */
202 int	idle_cpu_assert_cflush_monitor = 1;
203 
204 /*
205  * If non-zero, idle cpus will not use power saving Deep C-States idle loop.
206  */
207 int	idle_cpu_no_deep_c = 0;
208 /*
209  * Non-power saving idle loop and wakeup pointers.
210  * Allows user to toggle Deep Idle power saving feature on/off.
211  */
212 void	(*non_deep_idle_cpu)() = cpu_idle;
213 void	(*non_deep_idle_disp_enq_thread)(cpu_t *, int);
214 
215 /*
216  * Object for the kernel to access the HPET.
217  */
218 hpet_t hpet;
219 
220 #endif	/* ifndef __xpv */
221 
222 uint_t cp_haltset_fanout = 0;
223 
224 /*ARGSUSED*/
225 int
226 pg_plat_hw_shared(cpu_t *cp, pghw_type_t hw)
227 {
228 	switch (hw) {
229 	case PGHW_IPIPE:
230 		if (x86_feature & (X86_HTT)) {
231 			/*
232 			 * Hyper-threading is SMT
233 			 */
234 			return (1);
235 		} else {
236 			return (0);
237 		}
238 	case PGHW_PROCNODE:
239 		if (cpuid_get_procnodes_per_pkg(cp) > 1)
240 			return (1);
241 		else
242 			return (0);
243 	case PGHW_CHIP:
244 		if (x86_feature & (X86_CMP|X86_HTT))
245 			return (1);
246 		else
247 			return (0);
248 	case PGHW_CACHE:
249 		if (cpuid_get_ncpu_sharing_last_cache(cp) > 1)
250 			return (1);
251 		else
252 			return (0);
253 	case PGHW_POW_ACTIVE:
254 		if (cpupm_domain_id(cp, CPUPM_DTYPE_ACTIVE) != (id_t)-1)
255 			return (1);
256 		else
257 			return (0);
258 	case PGHW_POW_IDLE:
259 		if (cpupm_domain_id(cp, CPUPM_DTYPE_IDLE) != (id_t)-1)
260 			return (1);
261 		else
262 			return (0);
263 	default:
264 		return (0);
265 	}
266 }
267 
268 /*
269  * Compare two CPUs and see if they have a pghw_type_t sharing relationship
270  * If pghw_type_t is an unsupported hardware type, then return -1
271  */
272 int
273 pg_plat_cpus_share(cpu_t *cpu_a, cpu_t *cpu_b, pghw_type_t hw)
274 {
275 	id_t pgp_a, pgp_b;
276 
277 	pgp_a = pg_plat_hw_instance_id(cpu_a, hw);
278 	pgp_b = pg_plat_hw_instance_id(cpu_b, hw);
279 
280 	if (pgp_a == -1 || pgp_b == -1)
281 		return (-1);
282 
283 	return (pgp_a == pgp_b);
284 }
285 
286 /*
287  * Return a physical instance identifier for known hardware sharing
288  * relationships
289  */
290 id_t
291 pg_plat_hw_instance_id(cpu_t *cpu, pghw_type_t hw)
292 {
293 	switch (hw) {
294 	case PGHW_IPIPE:
295 		return (cpuid_get_coreid(cpu));
296 	case PGHW_CACHE:
297 		return (cpuid_get_last_lvl_cacheid(cpu));
298 	case PGHW_PROCNODE:
299 		return (cpuid_get_procnodeid(cpu));
300 	case PGHW_CHIP:
301 		return (cpuid_get_chipid(cpu));
302 	case PGHW_POW_ACTIVE:
303 		return (cpupm_domain_id(cpu, CPUPM_DTYPE_ACTIVE));
304 	case PGHW_POW_IDLE:
305 		return (cpupm_domain_id(cpu, CPUPM_DTYPE_IDLE));
306 	default:
307 		return (-1);
308 	}
309 }
310 
311 /*
312  * Express preference for optimizing for sharing relationship
313  * hw1 vs hw2
314  */
315 pghw_type_t
316 pg_plat_hw_rank(pghw_type_t hw1, pghw_type_t hw2)
317 {
318 	int i, rank1, rank2;
319 
320 	static pghw_type_t hw_hier[] = {
321 		PGHW_IPIPE,
322 		PGHW_CACHE,
323 		PGHW_PROCNODE,
324 		PGHW_CHIP,
325 		PGHW_POW_IDLE,
326 		PGHW_POW_ACTIVE,
327 		PGHW_NUM_COMPONENTS
328 	};
329 
330 	for (i = 0; hw_hier[i] != PGHW_NUM_COMPONENTS; i++) {
331 		if (hw_hier[i] == hw1)
332 			rank1 = i;
333 		if (hw_hier[i] == hw2)
334 			rank2 = i;
335 	}
336 
337 	if (rank1 > rank2)
338 		return (hw1);
339 	else
340 		return (hw2);
341 }
342 
343 /*
344  * Override the default CMT dispatcher policy for the specified
345  * hardware sharing relationship
346  */
347 pg_cmt_policy_t
348 pg_plat_cmt_policy(pghw_type_t hw)
349 {
350 	/*
351 	 * For shared caches, also load balance across them to
352 	 * maximize aggregate cache capacity
353 	 */
354 	switch (hw) {
355 	case PGHW_CACHE:
356 		return (CMT_BALANCE|CMT_AFFINITY);
357 	default:
358 		return (CMT_NO_POLICY);
359 	}
360 }
361 
362 id_t
363 pg_plat_get_core_id(cpu_t *cpu)
364 {
365 	return ((id_t)cpuid_get_coreid(cpu));
366 }
367 
368 void
369 cmp_set_nosteal_interval(void)
370 {
371 	/* Set the nosteal interval (used by disp_getbest()) to 100us */
372 	nosteal_nsec = 100000UL;
373 }
374 
375 /*
376  * Routine to ensure initial callers to hrtime gets 0 as return
377  */
378 static hrtime_t
379 dummy_hrtime(void)
380 {
381 	return (0);
382 }
383 
384 /* ARGSUSED */
385 static void
386 dummy_scalehrtime(hrtime_t *ticks)
387 {}
388 
389 static uint64_t
390 dummy_unscalehrtime(hrtime_t nsecs)
391 {
392 	return ((uint64_t)nsecs);
393 }
394 
395 /*
396  * Supports Deep C-State power saving idle loop.
397  */
398 void
399 cpu_idle_adaptive(void)
400 {
401 	(*CPU->cpu_m.mcpu_idle_cpu)();
402 }
403 
404 /*
405  * Function called by CPU idle notification framework to check whether CPU
406  * has been awakened. It will be called with interrupt disabled.
407  * If CPU has been awakened, call cpu_idle_exit() to notify CPU idle
408  * notification framework.
409  */
410 /*ARGSUSED*/
411 static void
412 cpu_idle_check_wakeup(void *arg)
413 {
414 	/*
415 	 * Toggle interrupt flag to detect pending interrupts.
416 	 * If interrupt happened, do_interrupt() will notify CPU idle
417 	 * notification framework so no need to call cpu_idle_exit() here.
418 	 */
419 	sti();
420 	SMT_PAUSE();
421 	cli();
422 }
423 
424 /*
425  * Idle the present CPU until wakened via an interrupt
426  */
427 void
428 cpu_idle(void)
429 {
430 	cpu_t		*cpup = CPU;
431 	processorid_t	cpu_sid = cpup->cpu_seqid;
432 	cpupart_t	*cp = cpup->cpu_part;
433 	int		hset_update = 1;
434 
435 	/*
436 	 * If this CPU is online, and there's multiple CPUs
437 	 * in the system, then we should notate our halting
438 	 * by adding ourselves to the partition's halted CPU
439 	 * bitmap. This allows other CPUs to find/awaken us when
440 	 * work becomes available.
441 	 */
442 	if (cpup->cpu_flags & CPU_OFFLINE || ncpus == 1)
443 		hset_update = 0;
444 
445 	/*
446 	 * Add ourselves to the partition's halted CPUs bitmap
447 	 * and set our HALTED flag, if necessary.
448 	 *
449 	 * When a thread becomes runnable, it is placed on the queue
450 	 * and then the halted CPU bitmap is checked to determine who
451 	 * (if anyone) should be awakened. We therefore need to first
452 	 * add ourselves to the bitmap, and and then check if there
453 	 * is any work available. The order is important to prevent a race
454 	 * that can lead to work languishing on a run queue somewhere while
455 	 * this CPU remains halted.
456 	 *
457 	 * Either the producing CPU will see we're halted and will awaken us,
458 	 * or this CPU will see the work available in disp_anywork().
459 	 *
460 	 * Note that memory barriers after updating the HALTED flag
461 	 * are not necessary since an atomic operation (updating the bitset)
462 	 * immediately follows. On x86 the atomic operation acts as a
463 	 * memory barrier for the update of cpu_disp_flags.
464 	 */
465 	if (hset_update) {
466 		cpup->cpu_disp_flags |= CPU_DISP_HALTED;
467 		bitset_atomic_add(&cp->cp_haltset, cpu_sid);
468 	}
469 
470 	/*
471 	 * Check to make sure there's really nothing to do.
472 	 * Work destined for this CPU may become available after
473 	 * this check. We'll be notified through the clearing of our
474 	 * bit in the halted CPU bitmap, and a poke.
475 	 */
476 	if (disp_anywork()) {
477 		if (hset_update) {
478 			cpup->cpu_disp_flags &= ~CPU_DISP_HALTED;
479 			bitset_atomic_del(&cp->cp_haltset, cpu_sid);
480 		}
481 		return;
482 	}
483 
484 	/*
485 	 * We're on our way to being halted.
486 	 *
487 	 * Disable interrupts now, so that we'll awaken immediately
488 	 * after halting if someone tries to poke us between now and
489 	 * the time we actually halt.
490 	 *
491 	 * We check for the presence of our bit after disabling interrupts.
492 	 * If it's cleared, we'll return. If the bit is cleared after
493 	 * we check then the poke will pop us out of the halted state.
494 	 *
495 	 * This means that the ordering of the poke and the clearing
496 	 * of the bit by cpu_wakeup is important.
497 	 * cpu_wakeup() must clear, then poke.
498 	 * cpu_idle() must disable interrupts, then check for the bit.
499 	 */
500 	cli();
501 
502 	if (hset_update && bitset_in_set(&cp->cp_haltset, cpu_sid) == 0) {
503 		cpup->cpu_disp_flags &= ~CPU_DISP_HALTED;
504 		sti();
505 		return;
506 	}
507 
508 	/*
509 	 * The check for anything locally runnable is here for performance
510 	 * and isn't needed for correctness. disp_nrunnable ought to be
511 	 * in our cache still, so it's inexpensive to check, and if there
512 	 * is anything runnable we won't have to wait for the poke.
513 	 */
514 	if (cpup->cpu_disp->disp_nrunnable != 0) {
515 		if (hset_update) {
516 			cpup->cpu_disp_flags &= ~CPU_DISP_HALTED;
517 			bitset_atomic_del(&cp->cp_haltset, cpu_sid);
518 		}
519 		sti();
520 		return;
521 	}
522 
523 	if (cpu_idle_enter(IDLE_STATE_C1, 0,
524 	    cpu_idle_check_wakeup, NULL) == 0) {
525 		mach_cpu_idle();
526 		cpu_idle_exit(CPU_IDLE_CB_FLAG_IDLE);
527 	}
528 
529 	/*
530 	 * We're no longer halted
531 	 */
532 	if (hset_update) {
533 		cpup->cpu_disp_flags &= ~CPU_DISP_HALTED;
534 		bitset_atomic_del(&cp->cp_haltset, cpu_sid);
535 	}
536 }
537 
538 
539 /*
540  * If "cpu" is halted, then wake it up clearing its halted bit in advance.
541  * Otherwise, see if other CPUs in the cpu partition are halted and need to
542  * be woken up so that they can steal the thread we placed on this CPU.
543  * This function is only used on MP systems.
544  */
545 static void
546 cpu_wakeup(cpu_t *cpu, int bound)
547 {
548 	uint_t		cpu_found;
549 	processorid_t	cpu_sid;
550 	cpupart_t	*cp;
551 
552 	cp = cpu->cpu_part;
553 	cpu_sid = cpu->cpu_seqid;
554 	if (bitset_in_set(&cp->cp_haltset, cpu_sid)) {
555 		/*
556 		 * Clear the halted bit for that CPU since it will be
557 		 * poked in a moment.
558 		 */
559 		bitset_atomic_del(&cp->cp_haltset, cpu_sid);
560 		/*
561 		 * We may find the current CPU present in the halted cpuset
562 		 * if we're in the context of an interrupt that occurred
563 		 * before we had a chance to clear our bit in cpu_idle().
564 		 * Poking ourself is obviously unnecessary, since if
565 		 * we're here, we're not halted.
566 		 */
567 		if (cpu != CPU)
568 			poke_cpu(cpu->cpu_id);
569 		return;
570 	} else {
571 		/*
572 		 * This cpu isn't halted, but it's idle or undergoing a
573 		 * context switch. No need to awaken anyone else.
574 		 */
575 		if (cpu->cpu_thread == cpu->cpu_idle_thread ||
576 		    cpu->cpu_disp_flags & CPU_DISP_DONTSTEAL)
577 			return;
578 	}
579 
580 	/*
581 	 * No need to wake up other CPUs if this is for a bound thread.
582 	 */
583 	if (bound)
584 		return;
585 
586 	/*
587 	 * The CPU specified for wakeup isn't currently halted, so check
588 	 * to see if there are any other halted CPUs in the partition,
589 	 * and if there are then awaken one.
590 	 */
591 	do {
592 		cpu_found = bitset_find(&cp->cp_haltset);
593 		if (cpu_found == (uint_t)-1)
594 			return;
595 	} while (bitset_atomic_test_and_del(&cp->cp_haltset, cpu_found) < 0);
596 
597 	if (cpu_found != CPU->cpu_seqid) {
598 		poke_cpu(cpu_seq[cpu_found]->cpu_id);
599 	}
600 }
601 
602 #ifndef __xpv
603 /*
604  * Function called by CPU idle notification framework to check whether CPU
605  * has been awakened. It will be called with interrupt disabled.
606  * If CPU has been awakened, call cpu_idle_exit() to notify CPU idle
607  * notification framework.
608  */
609 static void
610 cpu_idle_mwait_check_wakeup(void *arg)
611 {
612 	volatile uint32_t *mcpu_mwait = (volatile uint32_t *)arg;
613 
614 	ASSERT(arg != NULL);
615 	if (*mcpu_mwait != MWAIT_HALTED) {
616 		/*
617 		 * CPU has been awakened, notify CPU idle notification system.
618 		 */
619 		cpu_idle_exit(CPU_IDLE_CB_FLAG_IDLE);
620 	} else {
621 		/*
622 		 * Toggle interrupt flag to detect pending interrupts.
623 		 * If interrupt happened, do_interrupt() will notify CPU idle
624 		 * notification framework so no need to call cpu_idle_exit()
625 		 * here.
626 		 */
627 		sti();
628 		SMT_PAUSE();
629 		cli();
630 	}
631 }
632 
633 /*
634  * Idle the present CPU until awakened via touching its monitored line
635  */
636 void
637 cpu_idle_mwait(void)
638 {
639 	volatile uint32_t	*mcpu_mwait = CPU->cpu_m.mcpu_mwait;
640 	cpu_t			*cpup = CPU;
641 	processorid_t		cpu_sid = cpup->cpu_seqid;
642 	cpupart_t		*cp = cpup->cpu_part;
643 	int			hset_update = 1;
644 
645 	/*
646 	 * Set our mcpu_mwait here, so we can tell if anyone tries to
647 	 * wake us between now and when we call mwait.  No other cpu will
648 	 * attempt to set our mcpu_mwait until we add ourself to the halted
649 	 * CPU bitmap.
650 	 */
651 	*mcpu_mwait = MWAIT_HALTED;
652 
653 	/*
654 	 * If this CPU is online, and there's multiple CPUs
655 	 * in the system, then we should note our halting
656 	 * by adding ourselves to the partition's halted CPU
657 	 * bitmap. This allows other CPUs to find/awaken us when
658 	 * work becomes available.
659 	 */
660 	if (cpup->cpu_flags & CPU_OFFLINE || ncpus == 1)
661 		hset_update = 0;
662 
663 	/*
664 	 * Add ourselves to the partition's halted CPUs bitmap
665 	 * and set our HALTED flag, if necessary.
666 	 *
667 	 * When a thread becomes runnable, it is placed on the queue
668 	 * and then the halted CPU bitmap is checked to determine who
669 	 * (if anyone) should be awakened. We therefore need to first
670 	 * add ourselves to the bitmap, and and then check if there
671 	 * is any work available.
672 	 *
673 	 * Note that memory barriers after updating the HALTED flag
674 	 * are not necessary since an atomic operation (updating the bitmap)
675 	 * immediately follows. On x86 the atomic operation acts as a
676 	 * memory barrier for the update of cpu_disp_flags.
677 	 */
678 	if (hset_update) {
679 		cpup->cpu_disp_flags |= CPU_DISP_HALTED;
680 		bitset_atomic_add(&cp->cp_haltset, cpu_sid);
681 	}
682 
683 	/*
684 	 * Check to make sure there's really nothing to do.
685 	 * Work destined for this CPU may become available after
686 	 * this check. We'll be notified through the clearing of our
687 	 * bit in the halted CPU bitmap, and a write to our mcpu_mwait.
688 	 *
689 	 * disp_anywork() checks disp_nrunnable, so we do not have to later.
690 	 */
691 	if (disp_anywork()) {
692 		if (hset_update) {
693 			cpup->cpu_disp_flags &= ~CPU_DISP_HALTED;
694 			bitset_atomic_del(&cp->cp_haltset, cpu_sid);
695 		}
696 		return;
697 	}
698 
699 	/*
700 	 * We're on our way to being halted.
701 	 * To avoid a lost wakeup, arm the monitor before checking if another
702 	 * cpu wrote to mcpu_mwait to wake us up.
703 	 */
704 	i86_monitor(mcpu_mwait, 0, 0);
705 	if (*mcpu_mwait == MWAIT_HALTED) {
706 		if (cpu_idle_enter(IDLE_STATE_C1, 0,
707 		    cpu_idle_mwait_check_wakeup, (void *)mcpu_mwait) == 0) {
708 			if (*mcpu_mwait == MWAIT_HALTED) {
709 				i86_mwait(0, 0);
710 			}
711 			cpu_idle_exit(CPU_IDLE_CB_FLAG_IDLE);
712 		}
713 	}
714 
715 	/*
716 	 * We're no longer halted
717 	 */
718 	if (hset_update) {
719 		cpup->cpu_disp_flags &= ~CPU_DISP_HALTED;
720 		bitset_atomic_del(&cp->cp_haltset, cpu_sid);
721 	}
722 }
723 
724 /*
725  * If "cpu" is halted in mwait, then wake it up clearing its halted bit in
726  * advance.  Otherwise, see if other CPUs in the cpu partition are halted and
727  * need to be woken up so that they can steal the thread we placed on this CPU.
728  * This function is only used on MP systems.
729  */
730 static void
731 cpu_wakeup_mwait(cpu_t *cp, int bound)
732 {
733 	cpupart_t	*cpu_part;
734 	uint_t		cpu_found;
735 	processorid_t	cpu_sid;
736 
737 	cpu_part = cp->cpu_part;
738 	cpu_sid = cp->cpu_seqid;
739 
740 	/*
741 	 * Clear the halted bit for that CPU since it will be woken up
742 	 * in a moment.
743 	 */
744 	if (bitset_in_set(&cpu_part->cp_haltset, cpu_sid)) {
745 		/*
746 		 * Clear the halted bit for that CPU since it will be
747 		 * poked in a moment.
748 		 */
749 		bitset_atomic_del(&cpu_part->cp_haltset, cpu_sid);
750 		/*
751 		 * We may find the current CPU present in the halted cpuset
752 		 * if we're in the context of an interrupt that occurred
753 		 * before we had a chance to clear our bit in cpu_idle().
754 		 * Waking ourself is obviously unnecessary, since if
755 		 * we're here, we're not halted.
756 		 *
757 		 * monitor/mwait wakeup via writing to our cache line is
758 		 * harmless and less expensive than always checking if we
759 		 * are waking ourself which is an uncommon case.
760 		 */
761 		MWAIT_WAKEUP(cp);	/* write to monitored line */
762 		return;
763 	} else {
764 		/*
765 		 * This cpu isn't halted, but it's idle or undergoing a
766 		 * context switch. No need to awaken anyone else.
767 		 */
768 		if (cp->cpu_thread == cp->cpu_idle_thread ||
769 		    cp->cpu_disp_flags & CPU_DISP_DONTSTEAL)
770 			return;
771 	}
772 
773 	/*
774 	 * No need to wake up other CPUs if the thread we just enqueued
775 	 * is bound.
776 	 */
777 	if (bound || ncpus == 1)
778 		return;
779 
780 	/*
781 	 * See if there's any other halted CPUs. If there are, then
782 	 * select one, and awaken it.
783 	 * It's possible that after we find a CPU, somebody else
784 	 * will awaken it before we get the chance.
785 	 * In that case, look again.
786 	 */
787 	do {
788 		cpu_found = bitset_find(&cpu_part->cp_haltset);
789 		if (cpu_found == (uint_t)-1)
790 			return;
791 	} while (bitset_atomic_test_and_del(&cpu_part->cp_haltset,
792 	    cpu_found) < 0);
793 
794 	/*
795 	 * Do not check if cpu_found is ourself as monitor/mwait
796 	 * wakeup is cheap.
797 	 */
798 	MWAIT_WAKEUP(cpu_seq[cpu_found]); /* write to monitored line */
799 }
800 
801 #endif
802 
803 void (*cpu_pause_handler)(volatile char *) = NULL;
804 
805 static int
806 mp_disable_intr(int cpun)
807 {
808 	/*
809 	 * switch to the offline cpu
810 	 */
811 	affinity_set(cpun);
812 	/*
813 	 * raise ipl to just below cross call
814 	 */
815 	splx(XC_SYS_PIL - 1);
816 	/*
817 	 *	set base spl to prevent the next swtch to idle from
818 	 *	lowering back to ipl 0
819 	 */
820 	CPU->cpu_intr_actv |= (1 << (XC_SYS_PIL - 1));
821 	set_base_spl();
822 	affinity_clear();
823 	return (DDI_SUCCESS);
824 }
825 
826 static void
827 mp_enable_intr(int cpun)
828 {
829 	/*
830 	 * switch to the online cpu
831 	 */
832 	affinity_set(cpun);
833 	/*
834 	 * clear the interrupt active mask
835 	 */
836 	CPU->cpu_intr_actv &= ~(1 << (XC_SYS_PIL - 1));
837 	set_base_spl();
838 	(void) spl0();
839 	affinity_clear();
840 }
841 
842 static void
843 mach_get_platform(int owner)
844 {
845 	void		**srv_opsp;
846 	void		**clt_opsp;
847 	int		i;
848 	int		total_ops;
849 
850 	/* fix up psm ops */
851 	srv_opsp = (void **)mach_set[0];
852 	clt_opsp = (void **)mach_set[owner];
853 	if (mach_ver[owner] == (ushort_t)PSM_INFO_VER01)
854 		total_ops = sizeof (struct psm_ops_ver01) /
855 		    sizeof (void (*)(void));
856 	else if (mach_ver[owner] == (ushort_t)PSM_INFO_VER01_1)
857 		/* no psm_notify_func */
858 		total_ops = OFFSETOF(struct psm_ops, psm_notify_func) /
859 		    sizeof (void (*)(void));
860 	else if (mach_ver[owner] == (ushort_t)PSM_INFO_VER01_2)
861 		/* no psm_timer funcs */
862 		total_ops = OFFSETOF(struct psm_ops, psm_timer_reprogram) /
863 		    sizeof (void (*)(void));
864 	else if (mach_ver[owner] == (ushort_t)PSM_INFO_VER01_3)
865 		/* no psm_preshutdown function */
866 		total_ops = OFFSETOF(struct psm_ops, psm_preshutdown) /
867 		    sizeof (void (*)(void));
868 	else if (mach_ver[owner] == (ushort_t)PSM_INFO_VER01_4)
869 		/* no psm_intr_ops function */
870 		total_ops = OFFSETOF(struct psm_ops, psm_intr_ops) /
871 		    sizeof (void (*)(void));
872 	else if (mach_ver[owner] == (ushort_t)PSM_INFO_VER01_5)
873 		/* no psm_state function */
874 		total_ops = OFFSETOF(struct psm_ops, psm_state) /
875 		    sizeof (void (*)(void));
876 	else if (mach_ver[owner] == (ushort_t)PSM_INFO_VER01_6)
877 		/* no psm_cpu_ops function */
878 		total_ops = OFFSETOF(struct psm_ops, psm_cpu_ops) /
879 		    sizeof (void (*)(void));
880 	else
881 		total_ops = sizeof (struct psm_ops) / sizeof (void (*)(void));
882 
883 	/*
884 	 * Save the version of the PSM module, in case we need to
885 	 * behave differently based on version.
886 	 */
887 	mach_ver[0] = mach_ver[owner];
888 
889 	for (i = 0; i < total_ops; i++)
890 		if (clt_opsp[i] != NULL)
891 			srv_opsp[i] = clt_opsp[i];
892 }
893 
894 static void
895 mach_construct_info()
896 {
897 	struct psm_sw *swp;
898 	int	mach_cnt[PSM_OWN_OVERRIDE+1] = {0};
899 	int	conflict_owner = 0;
900 
901 	if (psmsw->psw_forw == psmsw)
902 		panic("No valid PSM modules found");
903 	mutex_enter(&psmsw_lock);
904 	for (swp = psmsw->psw_forw; swp != psmsw; swp = swp->psw_forw) {
905 		if (!(swp->psw_flag & PSM_MOD_IDENTIFY))
906 			continue;
907 		mach_set[swp->psw_infop->p_owner] = swp->psw_infop->p_ops;
908 		mach_ver[swp->psw_infop->p_owner] = swp->psw_infop->p_version;
909 		mach_cnt[swp->psw_infop->p_owner]++;
910 	}
911 	mutex_exit(&psmsw_lock);
912 
913 	mach_get_platform(PSM_OWN_SYS_DEFAULT);
914 
915 	/* check to see are there any conflicts */
916 	if (mach_cnt[PSM_OWN_EXCLUSIVE] > 1)
917 		conflict_owner = PSM_OWN_EXCLUSIVE;
918 	if (mach_cnt[PSM_OWN_OVERRIDE] > 1)
919 		conflict_owner = PSM_OWN_OVERRIDE;
920 	if (conflict_owner) {
921 		/* remove all psm modules except uppc */
922 		cmn_err(CE_WARN,
923 		    "Conflicts detected on the following PSM modules:");
924 		mutex_enter(&psmsw_lock);
925 		for (swp = psmsw->psw_forw; swp != psmsw; swp = swp->psw_forw) {
926 			if (swp->psw_infop->p_owner == conflict_owner)
927 				cmn_err(CE_WARN, "%s ",
928 				    swp->psw_infop->p_mach_idstring);
929 		}
930 		mutex_exit(&psmsw_lock);
931 		cmn_err(CE_WARN,
932 		    "Setting the system back to SINGLE processor mode!");
933 		cmn_err(CE_WARN,
934 		    "Please edit /etc/mach to remove the invalid PSM module.");
935 		return;
936 	}
937 
938 	if (mach_set[PSM_OWN_EXCLUSIVE])
939 		mach_get_platform(PSM_OWN_EXCLUSIVE);
940 
941 	if (mach_set[PSM_OWN_OVERRIDE])
942 		mach_get_platform(PSM_OWN_OVERRIDE);
943 }
944 
945 static void
946 mach_init()
947 {
948 	struct psm_ops  *pops;
949 
950 	mach_construct_info();
951 
952 	pops = mach_set[0];
953 
954 	/* register the interrupt and clock initialization rotuines */
955 	picinitf = mach_picinit;
956 	clkinitf = mach_clkinit;
957 	psm_get_clockirq = pops->psm_get_clockirq;
958 
959 	/* register the interrupt setup code */
960 	slvltovect = mach_softlvl_to_vect;
961 	addspl	= pops->psm_addspl;
962 	delspl	= pops->psm_delspl;
963 
964 	if (pops->psm_translate_irq)
965 		psm_translate_irq = pops->psm_translate_irq;
966 	if (pops->psm_intr_ops)
967 		psm_intr_ops = pops->psm_intr_ops;
968 
969 #if defined(PSMI_1_2) || defined(PSMI_1_3) || defined(PSMI_1_4)
970 	/*
971 	 * Time-of-day functionality now handled in TOD modules.
972 	 * (Warn about PSM modules that think that we're going to use
973 	 * their ops vectors.)
974 	 */
975 	if (pops->psm_tod_get)
976 		cmn_err(CE_WARN, "obsolete psm_tod_get op %p",
977 		    (void *)pops->psm_tod_get);
978 
979 	if (pops->psm_tod_set)
980 		cmn_err(CE_WARN, "obsolete psm_tod_set op %p",
981 		    (void *)pops->psm_tod_set);
982 #endif
983 
984 	if (pops->psm_notify_error) {
985 		psm_notify_error = mach_notify_error;
986 		notify_error = pops->psm_notify_error;
987 	}
988 
989 	(*pops->psm_softinit)();
990 
991 	/*
992 	 * Initialize the dispatcher's function hooks to enable CPU halting
993 	 * when idle.  Set both the deep-idle and non-deep-idle hooks.
994 	 *
995 	 * Assume we can use power saving deep-idle loop cpu_idle_adaptive.
996 	 * Platform deep-idle driver will reset our idle loop to
997 	 * non_deep_idle_cpu if power saving deep-idle feature is not available.
998 	 *
999 	 * Do not use monitor/mwait if idle_cpu_use_hlt is not set(spin idle)
1000 	 * or idle_cpu_prefer_mwait is not set.
1001 	 * Allocate monitor/mwait buffer for cpu0.
1002 	 */
1003 #ifndef __xpv
1004 	non_deep_idle_disp_enq_thread = disp_enq_thread;
1005 #endif
1006 	if (idle_cpu_use_hlt) {
1007 		idle_cpu = cpu_idle_adaptive;
1008 		CPU->cpu_m.mcpu_idle_cpu = cpu_idle;
1009 #ifndef __xpv
1010 		if ((x86_feature & X86_MWAIT) && idle_cpu_prefer_mwait) {
1011 			CPU->cpu_m.mcpu_mwait = cpuid_mwait_alloc(CPU);
1012 			/*
1013 			 * Protect ourself from insane mwait size.
1014 			 */
1015 			if (CPU->cpu_m.mcpu_mwait == NULL) {
1016 #ifdef DEBUG
1017 				cmn_err(CE_NOTE, "Using hlt idle.  Cannot "
1018 				    "handle cpu 0 mwait size.");
1019 #endif
1020 				idle_cpu_prefer_mwait = 0;
1021 				CPU->cpu_m.mcpu_idle_cpu = cpu_idle;
1022 			} else {
1023 				CPU->cpu_m.mcpu_idle_cpu = cpu_idle_mwait;
1024 			}
1025 		} else {
1026 			CPU->cpu_m.mcpu_idle_cpu = cpu_idle;
1027 		}
1028 		non_deep_idle_cpu = CPU->cpu_m.mcpu_idle_cpu;
1029 
1030 		/*
1031 		 * Disable power saving deep idle loop?
1032 		 */
1033 		if (idle_cpu_no_deep_c) {
1034 			idle_cpu = non_deep_idle_cpu;
1035 		}
1036 #endif
1037 	}
1038 
1039 	mach_smpinit();
1040 }
1041 
1042 static void
1043 mach_smpinit(void)
1044 {
1045 	struct psm_ops  *pops;
1046 	processorid_t cpu_id;
1047 	int cnt;
1048 	cpuset_t cpumask;
1049 
1050 	pops = mach_set[0];
1051 	CPUSET_ZERO(cpumask);
1052 
1053 	cpu_id = -1;
1054 	cpu_id = (*pops->psm_get_next_processorid)(cpu_id);
1055 	/*
1056 	 * Only add boot_ncpus CPUs to mp_cpus. Other CPUs will be handled
1057 	 * by CPU DR driver at runtime.
1058 	 */
1059 	for (cnt = 0; cpu_id != -1 && cnt < boot_ncpus; cnt++) {
1060 		CPUSET_ADD(cpumask, cpu_id);
1061 		cpu_id = (*pops->psm_get_next_processorid)(cpu_id);
1062 	}
1063 
1064 	mp_cpus = cpumask;
1065 
1066 	/* MP related routines */
1067 	ap_mlsetup = pops->psm_post_cpu_start;
1068 	send_dirintf = pops->psm_send_ipi;
1069 
1070 	/* optional MP related routines */
1071 	if (pops->psm_shutdown)
1072 		psm_shutdownf = pops->psm_shutdown;
1073 	if (pops->psm_preshutdown)
1074 		psm_preshutdownf = pops->psm_preshutdown;
1075 	if (pops->psm_notify_func)
1076 		psm_notifyf = pops->psm_notify_func;
1077 	if (pops->psm_set_idlecpu)
1078 		psm_set_idle_cpuf = pops->psm_set_idlecpu;
1079 	if (pops->psm_unset_idlecpu)
1080 		psm_unset_idle_cpuf = pops->psm_unset_idlecpu;
1081 
1082 	psm_clkinit = pops->psm_clkinit;
1083 
1084 	if (pops->psm_timer_reprogram)
1085 		psm_timer_reprogram = pops->psm_timer_reprogram;
1086 
1087 	if (pops->psm_timer_enable)
1088 		psm_timer_enable = pops->psm_timer_enable;
1089 
1090 	if (pops->psm_timer_disable)
1091 		psm_timer_disable = pops->psm_timer_disable;
1092 
1093 	if (pops->psm_post_cyclic_setup)
1094 		psm_post_cyclic_setup = pops->psm_post_cyclic_setup;
1095 
1096 	if (pops->psm_state)
1097 		psm_state = pops->psm_state;
1098 
1099 	/*
1100 	 * Set these vectors here so they can be used by Suspend/Resume
1101 	 * on UP machines.
1102 	 */
1103 	if (pops->psm_disable_intr)
1104 		psm_disable_intr = pops->psm_disable_intr;
1105 	if (pops->psm_enable_intr)
1106 		psm_enable_intr  = pops->psm_enable_intr;
1107 
1108 	/* check for multiple CPUs */
1109 	if (cnt < 2 && plat_dr_support_cpu() == B_FALSE)
1110 		return;
1111 
1112 	/* check for MP platforms */
1113 	if (pops->psm_cpu_start == NULL)
1114 		return;
1115 
1116 	/*
1117 	 * Set the dispatcher hook to enable cpu "wake up"
1118 	 * when a thread becomes runnable.
1119 	 */
1120 	if (idle_cpu_use_hlt) {
1121 		disp_enq_thread = cpu_wakeup;
1122 #ifndef __xpv
1123 		if ((x86_feature & X86_MWAIT) && idle_cpu_prefer_mwait)
1124 			disp_enq_thread = cpu_wakeup_mwait;
1125 		non_deep_idle_disp_enq_thread = disp_enq_thread;
1126 #endif
1127 	}
1128 
1129 	psm_get_ipivect = pops->psm_get_ipivect;
1130 
1131 	(void) add_avintr((void *)NULL, XC_HI_PIL, xc_serv, "xc_intr",
1132 	    (*pops->psm_get_ipivect)(XC_HI_PIL, PSM_INTR_IPI_HI),
1133 	    NULL, NULL, NULL, NULL);
1134 
1135 	(void) (*pops->psm_get_ipivect)(XC_CPUPOKE_PIL, PSM_INTR_POKE);
1136 }
1137 
1138 static void
1139 mach_picinit()
1140 {
1141 	struct psm_ops  *pops;
1142 
1143 	pops = mach_set[0];
1144 
1145 	/* register the interrupt handlers */
1146 	setlvl = pops->psm_intr_enter;
1147 	setlvlx = pops->psm_intr_exit;
1148 
1149 	/* initialize the interrupt hardware */
1150 	(*pops->psm_picinit)();
1151 
1152 	/* set interrupt mask for current ipl */
1153 	setspl = pops->psm_setspl;
1154 	cli();
1155 	setspl(CPU->cpu_pri);
1156 }
1157 
1158 uint_t	cpu_freq;	/* MHz */
1159 uint64_t cpu_freq_hz;	/* measured (in hertz) */
1160 
1161 #define	MEGA_HZ		1000000
1162 
1163 #ifdef __xpv
1164 
1165 int xpv_cpufreq_workaround = 1;
1166 int xpv_cpufreq_verbose = 0;
1167 
1168 #else	/* __xpv */
1169 
1170 static uint64_t
1171 mach_calchz(uint32_t pit_counter, uint64_t *processor_clks)
1172 {
1173 	uint64_t cpu_hz;
1174 
1175 	if ((pit_counter == 0) || (*processor_clks == 0) ||
1176 	    (*processor_clks > (((uint64_t)-1) / PIT_HZ)))
1177 		return (0);
1178 
1179 	cpu_hz = ((uint64_t)PIT_HZ * *processor_clks) / pit_counter;
1180 
1181 	return (cpu_hz);
1182 }
1183 
1184 #endif	/* __xpv */
1185 
1186 static uint64_t
1187 mach_getcpufreq(void)
1188 {
1189 #if defined(__xpv)
1190 	vcpu_time_info_t *vti = &CPU->cpu_m.mcpu_vcpu_info->time;
1191 	uint64_t cpu_hz;
1192 
1193 	/*
1194 	 * During dom0 bringup, it was noted that on at least one older
1195 	 * Intel HT machine, the hypervisor initially gives a tsc_to_system_mul
1196 	 * value that is quite wrong (the 3.06GHz clock was reported
1197 	 * as 4.77GHz)
1198 	 *
1199 	 * The curious thing is, that if you stop the kernel at entry,
1200 	 * breakpoint here and inspect the value with kmdb, the value
1201 	 * is correct - but if you don't stop and simply enable the
1202 	 * printf statement (below), you can see the bad value printed
1203 	 * here.  Almost as if something kmdb did caused the hypervisor to
1204 	 * figure it out correctly.  And, note that the hypervisor
1205 	 * eventually -does- figure it out correctly ... if you look at
1206 	 * the field later in the life of dom0, it is correct.
1207 	 *
1208 	 * For now, on dom0, we employ a slightly cheesy workaround of
1209 	 * using the DOM0_PHYSINFO hypercall.
1210 	 */
1211 	if (DOMAIN_IS_INITDOMAIN(xen_info) && xpv_cpufreq_workaround) {
1212 		cpu_hz = 1000 * xpv_cpu_khz();
1213 	} else {
1214 		cpu_hz = (UINT64_C(1000000000) << 32) / vti->tsc_to_system_mul;
1215 
1216 		if (vti->tsc_shift < 0)
1217 			cpu_hz <<= -vti->tsc_shift;
1218 		else
1219 			cpu_hz >>= vti->tsc_shift;
1220 	}
1221 
1222 	if (xpv_cpufreq_verbose)
1223 		printf("mach_getcpufreq: system_mul 0x%x, shift %d, "
1224 		    "cpu_hz %" PRId64 "Hz\n",
1225 		    vti->tsc_to_system_mul, vti->tsc_shift, cpu_hz);
1226 
1227 	return (cpu_hz);
1228 #else	/* __xpv */
1229 	uint32_t pit_counter;
1230 	uint64_t processor_clks;
1231 
1232 	if (x86_feature & X86_TSC) {
1233 		/*
1234 		 * We have a TSC. freq_tsc() knows how to measure the number
1235 		 * of clock cycles sampled against the PIT.
1236 		 */
1237 		ulong_t flags = clear_int_flag();
1238 		processor_clks = freq_tsc(&pit_counter);
1239 		restore_int_flag(flags);
1240 		return (mach_calchz(pit_counter, &processor_clks));
1241 	} else if (x86_vendor == X86_VENDOR_Cyrix || x86_type == X86_TYPE_P5) {
1242 #if defined(__amd64)
1243 		panic("mach_getcpufreq: no TSC!");
1244 #elif defined(__i386)
1245 		/*
1246 		 * We are a Cyrix based on a 6x86 core or an Intel Pentium
1247 		 * for which freq_notsc() knows how to measure the number of
1248 		 * elapsed clock cycles sampled against the PIT
1249 		 */
1250 		ulong_t flags = clear_int_flag();
1251 		processor_clks = freq_notsc(&pit_counter);
1252 		restore_int_flag(flags);
1253 		return (mach_calchz(pit_counter, &processor_clks));
1254 #endif	/* __i386 */
1255 	}
1256 
1257 	/* We do not know how to calculate cpu frequency for this cpu. */
1258 	return (0);
1259 #endif	/* __xpv */
1260 }
1261 
1262 /*
1263  * If the clock speed of a cpu is found to be reported incorrectly, do not add
1264  * to this array, instead improve the accuracy of the algorithm that determines
1265  * the clock speed of the processor or extend the implementation to support the
1266  * vendor as appropriate. This is here only to support adjusting the speed on
1267  * older slower processors that mach_fixcpufreq() would not be able to account
1268  * for otherwise.
1269  */
1270 static int x86_cpu_freq[] = { 60, 75, 80, 90, 120, 160, 166, 175, 180, 233 };
1271 
1272 /*
1273  * On fast processors the clock frequency that is measured may be off by
1274  * a few MHz from the value printed on the part. This is a combination of
1275  * the factors that for such fast parts being off by this much is within
1276  * the tolerances for manufacture and because of the difficulties in the
1277  * measurement that can lead to small error. This function uses some
1278  * heuristics in order to tweak the value that was measured to match what
1279  * is most likely printed on the part.
1280  *
1281  * Some examples:
1282  * 	AMD Athlon 1000 mhz measured as 998 mhz
1283  * 	Intel Pentium III Xeon 733 mhz measured as 731 mhz
1284  * 	Intel Pentium IV 1500 mhz measured as 1495mhz
1285  *
1286  * If in the future this function is no longer sufficient to correct
1287  * for the error in the measurement, then the algorithm used to perform
1288  * the measurement will have to be improved in order to increase accuracy
1289  * rather than adding horrible and questionable kludges here.
1290  *
1291  * This is called after the cyclics subsystem because of the potential
1292  * that the heuristics within may give a worse estimate of the clock
1293  * frequency than the value that was measured.
1294  */
1295 static void
1296 mach_fixcpufreq(void)
1297 {
1298 	uint32_t freq, mul, near66, delta66, near50, delta50, fixed, delta, i;
1299 
1300 	freq = (uint32_t)cpu_freq;
1301 
1302 	/*
1303 	 * Find the nearest integer multiple of 200/3 (about 66) MHz to the
1304 	 * measured speed taking into account that the 667 MHz parts were
1305 	 * the first to round-up.
1306 	 */
1307 	mul = (uint32_t)((3 * (uint64_t)freq + 100) / 200);
1308 	near66 = (uint32_t)((200 * (uint64_t)mul + ((mul >= 10) ? 1 : 0)) / 3);
1309 	delta66 = (near66 > freq) ? (near66 - freq) : (freq - near66);
1310 
1311 	/* Find the nearest integer multiple of 50 MHz to the measured speed */
1312 	mul = (freq + 25) / 50;
1313 	near50 = mul * 50;
1314 	delta50 = (near50 > freq) ? (near50 - freq) : (freq - near50);
1315 
1316 	/* Find the closer of the two */
1317 	if (delta66 < delta50) {
1318 		fixed = near66;
1319 		delta = delta66;
1320 	} else {
1321 		fixed = near50;
1322 		delta = delta50;
1323 	}
1324 
1325 	if (fixed > INT_MAX)
1326 		return;
1327 
1328 	/*
1329 	 * Some older parts have a core clock frequency that is not an
1330 	 * integral multiple of 50 or 66 MHz. Check if one of the old
1331 	 * clock frequencies is closer to the measured value than any
1332 	 * of the integral multiples of 50 an 66, and if so set fixed
1333 	 * and delta appropriately to represent the closest value.
1334 	 */
1335 	i = sizeof (x86_cpu_freq) / sizeof (int);
1336 	while (i > 0) {
1337 		i--;
1338 
1339 		if (x86_cpu_freq[i] <= freq) {
1340 			mul = freq - x86_cpu_freq[i];
1341 
1342 			if (mul < delta) {
1343 				fixed = x86_cpu_freq[i];
1344 				delta = mul;
1345 			}
1346 
1347 			break;
1348 		}
1349 
1350 		mul = x86_cpu_freq[i] - freq;
1351 
1352 		if (mul < delta) {
1353 			fixed = x86_cpu_freq[i];
1354 			delta = mul;
1355 		}
1356 	}
1357 
1358 	/*
1359 	 * Set a reasonable maximum for how much to correct the measured
1360 	 * result by. This check is here to prevent the adjustment made
1361 	 * by this function from being more harm than good. It is entirely
1362 	 * possible that in the future parts will be made that are not
1363 	 * integral multiples of 66 or 50 in clock frequency or that
1364 	 * someone may overclock a part to some odd frequency. If the
1365 	 * measured value is farther from the corrected value than
1366 	 * allowed, then assume the corrected value is in error and use
1367 	 * the measured value.
1368 	 */
1369 	if (6 < delta)
1370 		return;
1371 
1372 	cpu_freq = (int)fixed;
1373 }
1374 
1375 
1376 static int
1377 machhztomhz(uint64_t cpu_freq_hz)
1378 {
1379 	uint64_t cpu_mhz;
1380 
1381 	/* Round to nearest MHZ */
1382 	cpu_mhz = (cpu_freq_hz + (MEGA_HZ / 2)) / MEGA_HZ;
1383 
1384 	if (cpu_mhz > INT_MAX)
1385 		return (0);
1386 
1387 	return ((int)cpu_mhz);
1388 
1389 }
1390 
1391 
1392 static int
1393 mach_clkinit(int preferred_mode, int *set_mode)
1394 {
1395 	struct psm_ops  *pops;
1396 	int resolution;
1397 
1398 	pops = mach_set[0];
1399 
1400 	cpu_freq_hz = mach_getcpufreq();
1401 
1402 	cpu_freq = machhztomhz(cpu_freq_hz);
1403 
1404 	if (!(x86_feature & X86_TSC) || (cpu_freq == 0))
1405 		tsc_gethrtime_enable = 0;
1406 
1407 #ifndef __xpv
1408 	if (tsc_gethrtime_enable) {
1409 		tsc_hrtimeinit(cpu_freq_hz);
1410 	} else
1411 #endif
1412 	{
1413 		if (pops->psm_hrtimeinit)
1414 			(*pops->psm_hrtimeinit)();
1415 		gethrtimef = pops->psm_gethrtime;
1416 		gethrtimeunscaledf = gethrtimef;
1417 		/* scalehrtimef will remain dummy */
1418 	}
1419 
1420 	mach_fixcpufreq();
1421 
1422 	if (mach_ver[0] >= PSM_INFO_VER01_3) {
1423 		if (preferred_mode == TIMER_ONESHOT) {
1424 
1425 			resolution = (*pops->psm_clkinit)(0);
1426 			if (resolution != 0)  {
1427 				*set_mode = TIMER_ONESHOT;
1428 				return (resolution);
1429 			}
1430 		}
1431 
1432 		/*
1433 		 * either periodic mode was requested or could not set to
1434 		 * one-shot mode
1435 		 */
1436 		resolution = (*pops->psm_clkinit)(hz);
1437 		/*
1438 		 * psm should be able to do periodic, so we do not check
1439 		 * for return value of psm_clkinit here.
1440 		 */
1441 		*set_mode = TIMER_PERIODIC;
1442 		return (resolution);
1443 	} else {
1444 		/*
1445 		 * PSMI interface prior to PSMI_3 does not define a return
1446 		 * value for psm_clkinit, so the return value is ignored.
1447 		 */
1448 		(void) (*pops->psm_clkinit)(hz);
1449 		*set_mode = TIMER_PERIODIC;
1450 		return (nsec_per_tick);
1451 	}
1452 }
1453 
1454 
1455 /*ARGSUSED*/
1456 static int
1457 mach_softlvl_to_vect(int ipl)
1458 {
1459 	setsoftint = av_set_softint_pending;
1460 	kdisetsoftint = kdi_av_set_softint_pending;
1461 
1462 	return (PSM_SV_SOFTWARE);
1463 }
1464 
1465 #ifdef DEBUG
1466 /*
1467  * This is here to allow us to simulate cpus that refuse to start.
1468  */
1469 cpuset_t cpufailset;
1470 #endif
1471 
1472 int
1473 mach_cpu_start(struct cpu *cp, void *ctx)
1474 {
1475 	struct psm_ops *pops = mach_set[0];
1476 	processorid_t id = cp->cpu_id;
1477 
1478 #ifdef DEBUG
1479 	if (CPU_IN_SET(cpufailset, id))
1480 		return (0);
1481 #endif
1482 	return ((*pops->psm_cpu_start)(id, ctx));
1483 }
1484 
1485 int
1486 mach_cpuid_start(processorid_t id, void *ctx)
1487 {
1488 	struct psm_ops *pops = mach_set[0];
1489 
1490 #ifdef DEBUG
1491 	if (CPU_IN_SET(cpufailset, id))
1492 		return (0);
1493 #endif
1494 	return ((*pops->psm_cpu_start)(id, ctx));
1495 }
1496 
1497 int
1498 mach_cpu_stop(cpu_t *cp, void *ctx)
1499 {
1500 	struct psm_ops *pops = mach_set[0];
1501 	psm_cpu_request_t request;
1502 
1503 	if (pops->psm_cpu_ops == NULL) {
1504 		return (ENOTSUP);
1505 	}
1506 
1507 	ASSERT(cp->cpu_id != -1);
1508 	request.pcr_cmd = PSM_CPU_STOP;
1509 	request.req.cpu_stop.cpuid = cp->cpu_id;
1510 	request.req.cpu_stop.ctx = ctx;
1511 
1512 	return ((*pops->psm_cpu_ops)(&request));
1513 }
1514 
1515 int
1516 mach_cpu_add(mach_cpu_add_arg_t *argp, processorid_t *cpuidp)
1517 {
1518 	int rc;
1519 	struct psm_ops *pops = mach_set[0];
1520 	psm_cpu_request_t request;
1521 
1522 	if (pops->psm_cpu_ops == NULL) {
1523 		return (ENOTSUP);
1524 	}
1525 
1526 	request.pcr_cmd = PSM_CPU_ADD;
1527 	request.req.cpu_add.argp = argp;
1528 	request.req.cpu_add.cpuid = -1;
1529 	rc = (*pops->psm_cpu_ops)(&request);
1530 	if (rc == 0) {
1531 		ASSERT(request.req.cpu_add.cpuid != -1);
1532 		*cpuidp = request.req.cpu_add.cpuid;
1533 	}
1534 
1535 	return (rc);
1536 }
1537 
1538 int
1539 mach_cpu_remove(processorid_t cpuid)
1540 {
1541 	struct psm_ops *pops = mach_set[0];
1542 	psm_cpu_request_t request;
1543 
1544 	if (pops->psm_cpu_ops == NULL) {
1545 		return (ENOTSUP);
1546 	}
1547 
1548 	request.pcr_cmd = PSM_CPU_REMOVE;
1549 	request.req.cpu_remove.cpuid = cpuid;
1550 
1551 	return ((*pops->psm_cpu_ops)(&request));
1552 }
1553 
1554 /*
1555  * Default handler to create device node for CPU.
1556  * One reference count will be held on created device node.
1557  */
1558 static int
1559 mach_cpu_create_devinfo(cpu_t *cp, dev_info_t **dipp)
1560 {
1561 	int rv, circ;
1562 	dev_info_t *dip;
1563 	static kmutex_t cpu_node_lock;
1564 	static dev_info_t *cpu_nex_devi = NULL;
1565 
1566 	ASSERT(cp != NULL);
1567 	ASSERT(dipp != NULL);
1568 	*dipp = NULL;
1569 
1570 	if (cpu_nex_devi == NULL) {
1571 		mutex_enter(&cpu_node_lock);
1572 		/* First check whether cpus exists. */
1573 		cpu_nex_devi = ddi_find_devinfo("cpus", -1, 0);
1574 		/* Create cpus if it doesn't exist. */
1575 		if (cpu_nex_devi == NULL) {
1576 			ndi_devi_enter(ddi_root_node(), &circ);
1577 			rv = ndi_devi_alloc(ddi_root_node(), "cpus",
1578 			    (pnode_t)DEVI_SID_NODEID, &dip);
1579 			if (rv != NDI_SUCCESS) {
1580 				mutex_exit(&cpu_node_lock);
1581 				cmn_err(CE_CONT,
1582 				    "?failed to create cpu nexus device.\n");
1583 				return (PSM_FAILURE);
1584 			}
1585 			ASSERT(dip != NULL);
1586 			(void) ndi_devi_online(dip, 0);
1587 			ndi_devi_exit(ddi_root_node(), circ);
1588 			cpu_nex_devi = dip;
1589 		}
1590 		mutex_exit(&cpu_node_lock);
1591 	}
1592 
1593 	/*
1594 	 * create a child node for cpu identified as 'cpu_id'
1595 	 */
1596 	ndi_devi_enter(cpu_nex_devi, &circ);
1597 	dip = ddi_add_child(cpu_nex_devi, "cpu", DEVI_SID_NODEID, -1);
1598 	if (dip == NULL) {
1599 		cmn_err(CE_CONT,
1600 		    "?failed to create device node for cpu%d.\n", cp->cpu_id);
1601 		rv = PSM_FAILURE;
1602 	} else {
1603 		*dipp = dip;
1604 		(void) ndi_hold_devi(dip);
1605 		rv = PSM_SUCCESS;
1606 	}
1607 	ndi_devi_exit(cpu_nex_devi, circ);
1608 
1609 	return (rv);
1610 }
1611 
1612 /*
1613  * Create cpu device node in device tree and online it.
1614  * Return created dip with reference count held if requested.
1615  */
1616 int
1617 mach_cpu_create_device_node(struct cpu *cp, dev_info_t **dipp)
1618 {
1619 	int rv;
1620 	dev_info_t *dip = NULL;
1621 
1622 	ASSERT(psm_cpu_create_devinfo != NULL);
1623 	rv = psm_cpu_create_devinfo(cp, &dip);
1624 	if (rv == PSM_SUCCESS) {
1625 		cpuid_set_cpu_properties(dip, cp->cpu_id, cp->cpu_m.mcpu_cpi);
1626 		/* Recursively attach driver for parent nexus device. */
1627 		if (i_ddi_attach_node_hierarchy(ddi_get_parent(dip)) ==
1628 		    DDI_SUCCESS) {
1629 			/* Configure cpu itself and descendants. */
1630 			(void) ndi_devi_online(dip,
1631 			    NDI_ONLINE_ATTACH | NDI_CONFIG);
1632 		}
1633 		if (dipp != NULL) {
1634 			*dipp = dip;
1635 		} else {
1636 			(void) ndi_rele_devi(dip);
1637 		}
1638 	}
1639 
1640 	return (rv);
1641 }
1642 
1643 /*
1644  * The dipp contains one of following values on return:
1645  * - NULL if no device node found
1646  * - pointer to device node if found
1647  */
1648 int
1649 mach_cpu_get_device_node(struct cpu *cp, dev_info_t **dipp)
1650 {
1651 	*dipp = NULL;
1652 	if (psm_cpu_get_devinfo != NULL) {
1653 		if (psm_cpu_get_devinfo(cp, dipp) == PSM_SUCCESS) {
1654 			return (PSM_SUCCESS);
1655 		}
1656 	}
1657 
1658 	return (PSM_FAILURE);
1659 }
1660 
1661 /*ARGSUSED*/
1662 static int
1663 mach_translate_irq(dev_info_t *dip, int irqno)
1664 {
1665 	return (irqno);	/* default to NO translation */
1666 }
1667 
1668 static void
1669 mach_notify_error(int level, char *errmsg)
1670 {
1671 	/*
1672 	 * SL_FATAL is pass in once panicstr is set, deliver it
1673 	 * as CE_PANIC.  Also, translate SL_ codes back to CE_
1674 	 * codes for the psmi handler
1675 	 */
1676 	if (level & SL_FATAL)
1677 		(*notify_error)(CE_PANIC, errmsg);
1678 	else if (level & SL_WARN)
1679 		(*notify_error)(CE_WARN, errmsg);
1680 	else if (level & SL_NOTE)
1681 		(*notify_error)(CE_NOTE, errmsg);
1682 	else if (level & SL_CONSOLE)
1683 		(*notify_error)(CE_CONT, errmsg);
1684 }
1685 
1686 /*
1687  * It provides the default basic intr_ops interface for the new DDI
1688  * interrupt framework if the PSM doesn't have one.
1689  *
1690  * Input:
1691  * dip     - pointer to the dev_info structure of the requested device
1692  * hdlp    - pointer to the internal interrupt handle structure for the
1693  *	     requested interrupt
1694  * intr_op - opcode for this call
1695  * result  - pointer to the integer that will hold the result to be
1696  *	     passed back if return value is PSM_SUCCESS
1697  *
1698  * Output:
1699  * return value is either PSM_SUCCESS or PSM_FAILURE
1700  */
1701 static int
1702 mach_intr_ops(dev_info_t *dip, ddi_intr_handle_impl_t *hdlp,
1703     psm_intr_op_t intr_op, int *result)
1704 {
1705 	struct intrspec *ispec;
1706 
1707 	switch (intr_op) {
1708 	case PSM_INTR_OP_CHECK_MSI:
1709 		*result = hdlp->ih_type & ~(DDI_INTR_TYPE_MSI |
1710 		    DDI_INTR_TYPE_MSIX);
1711 		break;
1712 	case PSM_INTR_OP_ALLOC_VECTORS:
1713 		if (hdlp->ih_type == DDI_INTR_TYPE_FIXED)
1714 			*result = 1;
1715 		else
1716 			*result = 0;
1717 		break;
1718 	case PSM_INTR_OP_FREE_VECTORS:
1719 		break;
1720 	case PSM_INTR_OP_NAVAIL_VECTORS:
1721 		if (hdlp->ih_type == DDI_INTR_TYPE_FIXED)
1722 			*result = 1;
1723 		else
1724 			*result = 0;
1725 		break;
1726 	case PSM_INTR_OP_XLATE_VECTOR:
1727 		ispec = ((ihdl_plat_t *)hdlp->ih_private)->ip_ispecp;
1728 		*result = psm_translate_irq(dip, ispec->intrspec_vec);
1729 		break;
1730 	case PSM_INTR_OP_GET_CAP:
1731 		*result = 0;
1732 		break;
1733 	case PSM_INTR_OP_GET_PENDING:
1734 	case PSM_INTR_OP_CLEAR_MASK:
1735 	case PSM_INTR_OP_SET_MASK:
1736 	case PSM_INTR_OP_GET_SHARED:
1737 	case PSM_INTR_OP_SET_PRI:
1738 	case PSM_INTR_OP_SET_CAP:
1739 	case PSM_INTR_OP_SET_CPU:
1740 	case PSM_INTR_OP_GET_INTR:
1741 	default:
1742 		return (PSM_FAILURE);
1743 	}
1744 	return (PSM_SUCCESS);
1745 }
1746 /*
1747  * Return 1 if CMT load balancing policies should be
1748  * implemented across instances of the specified hardware
1749  * sharing relationship.
1750  */
1751 int
1752 pg_cmt_load_bal_hw(pghw_type_t hw)
1753 {
1754 	if (hw == PGHW_IPIPE ||
1755 	    hw == PGHW_FPU ||
1756 	    hw == PGHW_PROCNODE ||
1757 	    hw == PGHW_CHIP)
1758 		return (1);
1759 	else
1760 		return (0);
1761 }
1762 /*
1763  * Return 1 if thread affinity polices should be implemented
1764  * for instances of the specifed hardware sharing relationship.
1765  */
1766 int
1767 pg_cmt_affinity_hw(pghw_type_t hw)
1768 {
1769 	if (hw == PGHW_CACHE)
1770 		return (1);
1771 	else
1772 		return (0);
1773 }
1774 
1775 /*
1776  * Return number of counter events requested to measure hardware capacity and
1777  * utilization and setup CPC requests for specified CPU as needed
1778  *
1779  * May return 0 when platform or processor specific code knows that no CPC
1780  * events should be programmed on this CPU or -1 when platform or processor
1781  * specific code doesn't know which counter events are best to use and common
1782  * code should decide for itself
1783  */
1784 int
1785 /* LINTED E_FUNC_ARG_UNUSED */
1786 cu_plat_cpc_init(cpu_t *cp, kcpc_request_list_t *reqs, int nreqs)
1787 {
1788 	const char	*impl_name;
1789 
1790 	/*
1791 	 * Return error if pcbe_ops not set
1792 	 */
1793 	if (pcbe_ops == NULL)
1794 		return (-1);
1795 
1796 	/*
1797 	 * Return that no CPC events should be programmed on hyperthreaded
1798 	 * Pentium 4 and return error for all other x86 processors to tell
1799 	 * common code to decide what counter events to program on those CPUs
1800 	 * for measuring hardware capacity and utilization
1801 	 */
1802 	impl_name = pcbe_ops->pcbe_impl_name();
1803 	if (impl_name != NULL && strcmp(impl_name, PCBE_IMPL_NAME_P4HT) == 0)
1804 		return (0);
1805 	else
1806 		return (-1);
1807 }
1808