xref: /illumos-gate/usr/src/uts/i86pc/vm/hment.c (revision 24da5b34)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 #include <sys/types.h>
29 #include <sys/sysmacros.h>
30 #include <sys/kmem.h>
31 #include <sys/atomic.h>
32 #include <sys/bitmap.h>
33 #include <sys/systm.h>
34 #include <vm/seg_kmem.h>
35 #include <vm/hat.h>
36 #include <vm/vm_dep.h>
37 #include <vm/hat_i86.h>
38 #include <sys/cmn_err.h>
39 
40 
41 /*
42  * When pages are shared by more than one mapping, a list of these
43  * structs hangs off of the page_t connected by the hm_next and hm_prev
44  * fields.  Every hment is also indexed by a system-wide hash table, using
45  * hm_hashnext to connect it to the chain of hments in a single hash
46  * bucket.
47  */
48 struct hment {
49 	struct hment	*hm_hashnext;	/* next mapping on hash chain */
50 	struct hment	*hm_next;	/* next mapping of same page */
51 	struct hment	*hm_prev;	/* previous mapping of same page */
52 	htable_t	*hm_htable;	/* corresponding htable_t */
53 	pfn_t		hm_pfn;		/* mapping page frame number */
54 	uint16_t	hm_entry;	/* index of pte in htable */
55 	uint16_t	hm_pad;		/* explicitly expose compiler padding */
56 #ifdef __amd64
57 	uint32_t	hm_pad2;	/* explicitly expose compiler padding */
58 #endif
59 };
60 
61 /*
62  * Value returned by hment_walk() when dealing with a single mapping
63  * embedded in the page_t.
64  */
65 #define	HMENT_EMBEDDED ((hment_t *)(uintptr_t)1)
66 
67 kmem_cache_t *hment_cache;
68 
69 /*
70  * The hment reserve is similar to the htable reserve, with the following
71  * exception. Hment's are never needed for HAT kmem allocs.
72  *
73  * The hment_reserve_amount variable is used, so that you can change it's
74  * value to zero via a kernel debugger to force stealing to get tested.
75  */
76 #define	HMENT_RESERVE_AMOUNT	(200)	/* currently a guess at right value. */
77 uint_t hment_reserve_amount = HMENT_RESERVE_AMOUNT;
78 kmutex_t hment_reserve_mutex;
79 uint_t	hment_reserve_count;
80 hment_t	*hment_reserve_pool;
81 
82 /*
83  * Possible performance RFE: we might need to make this dynamic, perhaps
84  * based on the number of pages in the system.
85  */
86 #define	HMENT_HASH_SIZE (64 * 1024)
87 static uint_t hment_hash_entries = HMENT_HASH_SIZE;
88 static hment_t **hment_hash;
89 
90 /*
91  * Lots of highly shared pages will have the same value for "entry" (consider
92  * the starting address of "xterm" or "sh"). So we'll distinguish them by
93  * adding the pfn of the page table into both the high bits.
94  * The shift by 9 corresponds to the range of values for entry (0..511).
95  */
96 #define	HMENT_HASH(pfn, entry) (uint32_t) 	\
97 	((((pfn) << 9) + entry + pfn) & (hment_hash_entries - 1))
98 
99 /*
100  * "mlist_lock" is a hashed mutex lock for protecting per-page mapping
101  * lists and "hash_lock" is a similar lock protecting the hment hash
102  * table.  The hashed approach is taken to avoid the spatial overhead of
103  * maintaining a separate lock for each page, while still achieving better
104  * scalability than a single lock would allow.
105  */
106 #define	MLIST_NUM_LOCK	256		/* must be power of two */
107 static kmutex_t mlist_lock[MLIST_NUM_LOCK];
108 
109 /*
110  * the shift by 9 is so that all large pages don't use the same hash bucket
111  */
112 #define	MLIST_MUTEX(pp) \
113 	&mlist_lock[((pp)->p_pagenum + ((pp)->p_pagenum >> 9)) & \
114 	(MLIST_NUM_LOCK - 1)]
115 
116 #define	HASH_NUM_LOCK	256		/* must be power of two */
117 static kmutex_t hash_lock[HASH_NUM_LOCK];
118 
119 #define	HASH_MUTEX(idx) &hash_lock[(idx) & (HASH_NUM_LOCK-1)]
120 
121 static hment_t *hment_steal(void);
122 
123 /*
124  * put one hment onto the reserves list
125  */
126 static void
127 hment_put_reserve(hment_t *hm)
128 {
129 	HATSTAT_INC(hs_hm_put_reserve);
130 	mutex_enter(&hment_reserve_mutex);
131 	hm->hm_next = hment_reserve_pool;
132 	hment_reserve_pool = hm;
133 	++hment_reserve_count;
134 	mutex_exit(&hment_reserve_mutex);
135 }
136 
137 /*
138  * Take one hment from the reserve.
139  */
140 static hment_t *
141 hment_get_reserve(void)
142 {
143 	hment_t *hm = NULL;
144 
145 	/*
146 	 * We rely on a "donation system" to refill the hment reserve
147 	 * list, which only takes place when we are allocating hments for
148 	 * user mappings.  It is theoretically possible that an incredibly
149 	 * long string of kernel hment_alloc()s with no intervening user
150 	 * hment_alloc()s could exhaust that pool.
151 	 */
152 	HATSTAT_INC(hs_hm_get_reserve);
153 	mutex_enter(&hment_reserve_mutex);
154 	if (hment_reserve_count != 0) {
155 		hm = hment_reserve_pool;
156 		hment_reserve_pool = hm->hm_next;
157 		--hment_reserve_count;
158 	}
159 	mutex_exit(&hment_reserve_mutex);
160 	return (hm);
161 }
162 
163 /*
164  * Allocate an hment
165  */
166 static hment_t *
167 hment_alloc()
168 {
169 	int km_flag = can_steal_post_boot ? KM_NOSLEEP : KM_SLEEP;
170 	hment_t	*hm = NULL;
171 
172 	/*
173 	 * If we aren't using the reserves, try using kmem to get an hment.
174 	 * Donate any successful allocations to reserves if low.
175 	 *
176 	 * If we're in panic, resort to using the reserves.
177 	 */
178 	HATSTAT_INC(hs_hm_alloc);
179 	if (!USE_HAT_RESERVES()) {
180 		for (;;) {
181 			hm = kmem_cache_alloc(hment_cache, km_flag);
182 			if (hm == NULL ||
183 			    USE_HAT_RESERVES() ||
184 			    hment_reserve_count >= hment_reserve_amount)
185 				break;
186 			hment_put_reserve(hm);
187 		}
188 	}
189 
190 	/*
191 	 * If allocation failed, we need to tap the reserves or steal
192 	 */
193 	if (hm == NULL) {
194 		if (USE_HAT_RESERVES())
195 			hm = hment_get_reserve();
196 
197 		/*
198 		 * If we still haven't gotten an hment, attempt to steal one by
199 		 * victimizing a mapping in a user htable.
200 		 */
201 		if (hm == NULL && can_steal_post_boot)
202 			hm = hment_steal();
203 
204 		/*
205 		 * we're in dire straights, try the reserve
206 		 */
207 		if (hm == NULL)
208 			hm = hment_get_reserve();
209 
210 		/*
211 		 * still no hment is a serious problem.
212 		 */
213 		if (hm == NULL)
214 			panic("hment_alloc(): no reserve, couldn't steal");
215 	}
216 
217 
218 	hm->hm_entry = 0;
219 	hm->hm_htable = NULL;
220 	hm->hm_hashnext = NULL;
221 	hm->hm_next = NULL;
222 	hm->hm_prev = NULL;
223 	hm->hm_pfn = PFN_INVALID;
224 	return (hm);
225 }
226 
227 /*
228  * Free an hment, possibly to the reserves list when called from the
229  * thread using the reserves. For example, when freeing an hment during an
230  * htable_steal(), we can't recurse into the kmem allocator, so we just
231  * push the hment onto the reserve list.
232  */
233 void
234 hment_free(hment_t *hm)
235 {
236 #ifdef DEBUG
237 	/*
238 	 * zero out all fields to try and force any race conditions to segfault
239 	 */
240 	bzero(hm, sizeof (*hm));
241 #endif
242 	HATSTAT_INC(hs_hm_free);
243 	if (USE_HAT_RESERVES() ||
244 	    hment_reserve_count < hment_reserve_amount) {
245 		hment_put_reserve(hm);
246 	} else {
247 		kmem_cache_free(hment_cache, hm);
248 		hment_adjust_reserve();
249 	}
250 }
251 
252 int
253 x86_hm_held(page_t *pp)
254 {
255 	ASSERT(pp != NULL);
256 	return (MUTEX_HELD(MLIST_MUTEX(pp)));
257 }
258 
259 void
260 x86_hm_enter(page_t *pp)
261 {
262 	ASSERT(pp != NULL);
263 	mutex_enter(MLIST_MUTEX(pp));
264 }
265 
266 void
267 x86_hm_exit(page_t *pp)
268 {
269 	ASSERT(pp != NULL);
270 	mutex_exit(MLIST_MUTEX(pp));
271 }
272 
273 /*
274  * Internal routine to add a full hment to a page_t mapping list
275  */
276 static void
277 hment_insert(hment_t *hm, page_t *pp)
278 {
279 	uint_t		idx;
280 
281 	ASSERT(x86_hm_held(pp));
282 	ASSERT(!pp->p_embed);
283 
284 	/*
285 	 * Add the hment to the page's mapping list.
286 	 */
287 	++pp->p_share;
288 	hm->hm_next = pp->p_mapping;
289 	if (pp->p_mapping != NULL)
290 		((hment_t *)pp->p_mapping)->hm_prev = hm;
291 	pp->p_mapping = hm;
292 
293 	/*
294 	 * Add the hment to the system-wide hash table.
295 	 */
296 	idx = HMENT_HASH(hm->hm_htable->ht_pfn, hm->hm_entry);
297 
298 	mutex_enter(HASH_MUTEX(idx));
299 	hm->hm_hashnext = hment_hash[idx];
300 	hment_hash[idx] = hm;
301 	mutex_exit(HASH_MUTEX(idx));
302 }
303 
304 /*
305  * Prepare a mapping list entry to the given page.
306  *
307  * There are 4 different situations to deal with:
308  *
309  * - Adding the first mapping to a page_t as an embedded hment
310  * - Refaulting on an existing embedded mapping
311  * - Upgrading an embedded mapping when adding a 2nd mapping
312  * - Adding another mapping to a page_t that already has multiple mappings
313  *	 note we don't optimized for the refaulting case here.
314  *
315  * Due to competition with other threads that may be mapping/unmapping the
316  * same page and the need to drop all locks while allocating hments, any or
317  * all of the 3 situations can occur (and in almost any order) in any given
318  * call. Isn't this fun!
319  */
320 hment_t *
321 hment_prepare(htable_t *htable, uint_t entry, page_t *pp)
322 {
323 	hment_t		*hm = NULL;
324 
325 	ASSERT(x86_hm_held(pp));
326 
327 	for (;;) {
328 
329 		/*
330 		 * The most common case is establishing the first mapping to a
331 		 * page, so check that first. This doesn't need any allocated
332 		 * hment.
333 		 */
334 		if (pp->p_mapping == NULL) {
335 			ASSERT(!pp->p_embed);
336 			ASSERT(pp->p_share == 0);
337 			if (hm == NULL)
338 				break;
339 
340 			/*
341 			 * we had an hment already, so free it and retry
342 			 */
343 			goto free_and_continue;
344 		}
345 
346 		/*
347 		 * If there is an embedded mapping, we may need to
348 		 * convert it to an hment.
349 		 */
350 		if (pp->p_embed) {
351 
352 			/* should point to htable */
353 			ASSERT(pp->p_mapping != NULL);
354 
355 			/*
356 			 * If we are faulting on a pre-existing mapping
357 			 * there is no need to promote/allocate a new hment.
358 			 * This happens a lot due to segmap.
359 			 */
360 			if (pp->p_mapping == htable && pp->p_mlentry == entry) {
361 				if (hm == NULL)
362 					break;
363 				goto free_and_continue;
364 			}
365 
366 			/*
367 			 * If we have an hment allocated, use it to promote the
368 			 * existing embedded mapping.
369 			 */
370 			if (hm != NULL) {
371 				hm->hm_htable = pp->p_mapping;
372 				hm->hm_entry = pp->p_mlentry;
373 				hm->hm_pfn = pp->p_pagenum;
374 				pp->p_mapping = NULL;
375 				pp->p_share = 0;
376 				pp->p_embed = 0;
377 				hment_insert(hm, pp);
378 			}
379 
380 			/*
381 			 * We either didn't have an hment allocated or we just
382 			 * used it for the embedded mapping. In either case,
383 			 * allocate another hment and restart.
384 			 */
385 			goto allocate_and_continue;
386 		}
387 
388 		/*
389 		 * Last possibility is that we're adding an hment to a list
390 		 * of hments.
391 		 */
392 		if (hm != NULL)
393 			break;
394 allocate_and_continue:
395 		x86_hm_exit(pp);
396 		hm = hment_alloc();
397 		x86_hm_enter(pp);
398 		continue;
399 
400 free_and_continue:
401 		/*
402 		 * we allocated an hment already, free it and retry
403 		 */
404 		x86_hm_exit(pp);
405 		hment_free(hm);
406 		hm = NULL;
407 		x86_hm_enter(pp);
408 	}
409 	ASSERT(x86_hm_held(pp));
410 	return (hm);
411 }
412 
413 /*
414  * Record a mapping list entry for the htable/entry to the given page.
415  *
416  * hment_prepare() should have properly set up the situation.
417  */
418 void
419 hment_assign(htable_t *htable, uint_t entry, page_t *pp, hment_t *hm)
420 {
421 	ASSERT(x86_hm_held(pp));
422 
423 	/*
424 	 * The most common case is establishing the first mapping to a
425 	 * page, so check that first. This doesn't need any allocated
426 	 * hment.
427 	 */
428 	if (pp->p_mapping == NULL) {
429 		ASSERT(hm == NULL);
430 		ASSERT(!pp->p_embed);
431 		ASSERT(pp->p_share == 0);
432 		pp->p_embed = 1;
433 		pp->p_mapping = htable;
434 		pp->p_mlentry = entry;
435 		return;
436 	}
437 
438 	/*
439 	 * We should never get here with a pre-existing embedded maping
440 	 */
441 	ASSERT(!pp->p_embed);
442 
443 	/*
444 	 * add the new hment to the mapping list
445 	 */
446 	ASSERT(hm != NULL);
447 	hm->hm_htable = htable;
448 	hm->hm_entry = entry;
449 	hm->hm_pfn = pp->p_pagenum;
450 	hment_insert(hm, pp);
451 }
452 
453 /*
454  * Walk through the mappings for a page.
455  *
456  * must already have done an x86_hm_enter()
457  */
458 hment_t *
459 hment_walk(page_t *pp, htable_t **ht, uint_t *entry, hment_t *prev)
460 {
461 	hment_t		*hm;
462 
463 	ASSERT(x86_hm_held(pp));
464 
465 	if (pp->p_embed) {
466 		if (prev == NULL) {
467 			*ht = (htable_t *)pp->p_mapping;
468 			*entry = pp->p_mlentry;
469 			hm = HMENT_EMBEDDED;
470 		} else {
471 			ASSERT(prev == HMENT_EMBEDDED);
472 			hm = NULL;
473 		}
474 	} else {
475 		if (prev == NULL) {
476 			ASSERT(prev != HMENT_EMBEDDED);
477 			hm = (hment_t *)pp->p_mapping;
478 		} else {
479 			hm = prev->hm_next;
480 		}
481 
482 		if (hm != NULL) {
483 			*ht = hm->hm_htable;
484 			*entry = hm->hm_entry;
485 		}
486 	}
487 	return (hm);
488 }
489 
490 /*
491  * Remove a mapping to a page from its mapping list. Must have
492  * the corresponding mapping list locked.
493  * Finds the mapping list entry with the given pte_t and
494  * unlinks it from the mapping list.
495  */
496 hment_t *
497 hment_remove(page_t *pp, htable_t *ht, uint_t entry)
498 {
499 	hment_t		*prev = NULL;
500 	hment_t		*hm;
501 	uint_t		idx;
502 	pfn_t		pfn;
503 
504 	ASSERT(x86_hm_held(pp));
505 
506 	/*
507 	 * Check if we have only one mapping embedded in the page_t.
508 	 */
509 	if (pp->p_embed) {
510 		ASSERT(ht == (htable_t *)pp->p_mapping);
511 		ASSERT(entry == pp->p_mlentry);
512 		ASSERT(pp->p_share == 0);
513 		pp->p_mapping = NULL;
514 		pp->p_mlentry = 0;
515 		pp->p_embed = 0;
516 		return (NULL);
517 	}
518 
519 	/*
520 	 * Otherwise it must be in the list of hments.
521 	 * Find the hment in the system-wide hash table and remove it.
522 	 */
523 	ASSERT(pp->p_share != 0);
524 	pfn = pp->p_pagenum;
525 	idx = HMENT_HASH(ht->ht_pfn, entry);
526 	mutex_enter(HASH_MUTEX(idx));
527 	hm = hment_hash[idx];
528 	while (hm && (hm->hm_htable != ht || hm->hm_entry != entry ||
529 	    hm->hm_pfn != pfn)) {
530 		prev = hm;
531 		hm = hm->hm_hashnext;
532 	}
533 	if (hm == NULL) {
534 		panic("hment_remove() missing in hash table pp=%lx, ht=%lx,"
535 		    "entry=0x%x hash index=0x%x", (uintptr_t)pp, (uintptr_t)ht,
536 		    entry, idx);
537 	}
538 
539 	if (prev)
540 		prev->hm_hashnext = hm->hm_hashnext;
541 	else
542 		hment_hash[idx] = hm->hm_hashnext;
543 	mutex_exit(HASH_MUTEX(idx));
544 
545 	/*
546 	 * Remove the hment from the page's mapping list
547 	 */
548 	if (hm->hm_next)
549 		hm->hm_next->hm_prev = hm->hm_prev;
550 	if (hm->hm_prev)
551 		hm->hm_prev->hm_next = hm->hm_next;
552 	else
553 		pp->p_mapping = hm->hm_next;
554 
555 	--pp->p_share;
556 	hm->hm_hashnext = NULL;
557 	hm->hm_next = NULL;
558 	hm->hm_prev = NULL;
559 
560 	return (hm);
561 }
562 
563 /*
564  * Put initial hment's in the reserve pool.
565  */
566 void
567 hment_reserve(uint_t count)
568 {
569 	hment_t	*hm;
570 
571 	count += hment_reserve_amount;
572 
573 	while (hment_reserve_count < count) {
574 		hm = kmem_cache_alloc(hment_cache, KM_NOSLEEP);
575 		if (hm == NULL)
576 			return;
577 		hment_put_reserve(hm);
578 	}
579 }
580 
581 /*
582  * Readjust the hment reserves after they may have been used.
583  */
584 void
585 hment_adjust_reserve()
586 {
587 	hment_t	*hm;
588 
589 	/*
590 	 * Free up any excess reserves
591 	 */
592 	while (hment_reserve_count > hment_reserve_amount &&
593 	    !USE_HAT_RESERVES()) {
594 		hm = hment_get_reserve();
595 		if (hm == NULL)
596 			return;
597 		kmem_cache_free(hment_cache, hm);
598 	}
599 }
600 
601 /*
602  * initialize hment data structures
603  */
604 void
605 hment_init(void)
606 {
607 	int i;
608 	int flags = KMC_NOHASH | KMC_NODEBUG;
609 
610 	/*
611 	 * Initialize kmem caches. On 32 bit kernel's we shut off
612 	 * debug information to save on precious kernel VA usage.
613 	 */
614 	hment_cache = kmem_cache_create("hment_t",
615 	    sizeof (hment_t), 0, NULL, NULL, NULL,
616 	    NULL, hat_memload_arena, flags);
617 
618 	hment_hash = kmem_zalloc(hment_hash_entries * sizeof (hment_t *),
619 	    KM_SLEEP);
620 
621 	for (i = 0; i < MLIST_NUM_LOCK; i++)
622 		mutex_init(&mlist_lock[i], NULL, MUTEX_DEFAULT, NULL);
623 
624 	for (i = 0; i < HASH_NUM_LOCK; i++)
625 		mutex_init(&hash_lock[i], NULL, MUTEX_DEFAULT, NULL);
626 
627 
628 }
629 
630 /*
631  * return the number of mappings to a page
632  *
633  * Note there is no ASSERT() that the MUTEX is held for this.
634  * Hence the return value might be inaccurate if this is called without
635  * doing an x86_hm_enter().
636  */
637 uint_t
638 hment_mapcnt(page_t *pp)
639 {
640 	uint_t cnt;
641 	uint_t szc;
642 	page_t *larger;
643 	hment_t	*hm;
644 
645 	x86_hm_enter(pp);
646 	if (pp->p_mapping == NULL)
647 		cnt = 0;
648 	else if (pp->p_embed)
649 		cnt = 1;
650 	else
651 		cnt = pp->p_share;
652 	x86_hm_exit(pp);
653 
654 	/*
655 	 * walk through all larger mapping sizes counting mappings
656 	 */
657 	for (szc = 1; szc <= pp->p_szc; ++szc) {
658 		larger = PP_GROUPLEADER(pp, szc);
659 		if (larger == pp)	/* don't double count large mappings */
660 			continue;
661 
662 		x86_hm_enter(larger);
663 		if (larger->p_mapping != NULL) {
664 			if (larger->p_embed &&
665 			    ((htable_t *)larger->p_mapping)->ht_level == szc) {
666 				++cnt;
667 			} else if (!larger->p_embed) {
668 				for (hm = larger->p_mapping; hm;
669 				    hm = hm->hm_next) {
670 					if (hm->hm_htable->ht_level == szc)
671 						++cnt;
672 				}
673 			}
674 		}
675 		x86_hm_exit(larger);
676 	}
677 	return (cnt);
678 }
679 
680 /*
681  * We need to steal an hment. Walk through all the page_t's until we
682  * find one that has multiple mappings. Unload one of the mappings
683  * and reclaim that hment. Note that we'll save/restart the starting
684  * page to try and spread the pain.
685  */
686 static page_t *last_page = NULL;
687 
688 static hment_t *
689 hment_steal(void)
690 {
691 	page_t *last = last_page;
692 	page_t *pp = last;
693 	hment_t *hm = NULL;
694 	hment_t *hm2;
695 	htable_t *ht;
696 	uint_t found_one = 0;
697 
698 	HATSTAT_INC(hs_hm_steals);
699 	if (pp == NULL)
700 		last = pp = page_first();
701 
702 	while (!found_one) {
703 		HATSTAT_INC(hs_hm_steal_exam);
704 		pp = page_next(pp);
705 		if (pp == NULL)
706 			pp = page_first();
707 
708 		/*
709 		 * The loop and function exit here if nothing found to steal.
710 		 */
711 		if (pp == last)
712 			return (NULL);
713 
714 		/*
715 		 * Only lock the page_t if it has hments.
716 		 */
717 		if (pp->p_mapping == NULL || pp->p_embed)
718 			continue;
719 
720 		/*
721 		 * Search the mapping list for a usable mapping.
722 		 */
723 		x86_hm_enter(pp);
724 		if (!pp->p_embed) {
725 			for (hm = pp->p_mapping; hm; hm = hm->hm_next) {
726 				ht = hm->hm_htable;
727 				if (ht->ht_hat != kas.a_hat &&
728 				    ht->ht_busy == 0 &&
729 				    ht->ht_lock_cnt == 0) {
730 					found_one = 1;
731 					break;
732 				}
733 			}
734 		}
735 		if (!found_one)
736 			x86_hm_exit(pp);
737 	}
738 
739 	/*
740 	 * Steal the mapping we found.  Note that hati_page_unmap() will
741 	 * do the x86_hm_exit().
742 	 */
743 	hm2 = hati_page_unmap(pp, ht, hm->hm_entry);
744 	ASSERT(hm2 == hm);
745 	last_page = pp;
746 	return (hm);
747 }
748