1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved. 23 */ 24 25 #include <sys/types.h> 26 #include <sys/clock.h> 27 #include <sys/psm.h> 28 #include <sys/archsystm.h> 29 #include <sys/machsystm.h> 30 #include <sys/compress.h> 31 #include <sys/modctl.h> 32 #include <sys/trap.h> 33 #include <sys/panic.h> 34 #include <sys/regset.h> 35 #include <sys/frame.h> 36 #include <sys/kobj.h> 37 #include <sys/apic.h> 38 #include <sys/apic_timer.h> 39 #include <sys/dumphdr.h> 40 #include <sys/mem.h> 41 #include <sys/x86_archext.h> 42 #include <sys/xpv_panic.h> 43 #include <sys/boot_console.h> 44 #include <sys/bootsvcs.h> 45 #include <sys/consdev.h> 46 #include <vm/hat_pte.h> 47 #include <vm/hat_i86.h> 48 49 /* XXX: need to add a PAE version too, if we ever support both PAE and non */ 50 #if defined(__i386) 51 #define XPV_FILENAME "/boot/xen-syms" 52 #else 53 #define XPV_FILENAME "/boot/amd64/xen-syms" 54 #endif 55 #define XPV_MODNAME "xpv" 56 57 int xpv_panicking = 0; 58 59 struct module *xpv_module; 60 struct modctl *xpv_modctl; 61 62 #define ALIGN(x, a) ((a) == 0 ? (uintptr_t)(x) : \ 63 (((uintptr_t)(x) + (uintptr_t)(a) - 1l) & ~((uintptr_t)(a) - 1l))) 64 65 /* Pointer to the xpv_panic_info structure handed to us by Xen. */ 66 static struct panic_info *xpv_panic_info = NULL; 67 68 /* Timer support */ 69 #define NSEC_SHIFT 5 70 #define T_XPV_TIMER 0xd1 71 #define XPV_TIMER_INTERVAL 1000 /* 1000 microseconds */ 72 static uint32_t *xpv_apicadr = NULL; 73 static uint_t nsec_scale; 74 75 /* IDT support */ 76 #pragma align 16(xpv_panic_idt) 77 static gate_desc_t xpv_panic_idt[NIDT]; /* interrupt descriptor table */ 78 79 /* Xen pagetables mapped into our HAT's ptable windows */ 80 static pfn_t ptable_pfn[MAX_NUM_LEVEL]; 81 82 /* Number of MMU_PAGESIZE pages we're adding to the Solaris dump */ 83 static int xpv_dump_pages; 84 85 /* 86 * There are up to two large swathes of RAM that we don't want to include 87 * in the dump: those that comprise the Xen version of segkpm. On 32-bit 88 * systems there is no such region of memory. On 64-bit systems, there 89 * should be just a single contiguous region that corresponds to all of 90 * physical memory. The tricky bit is that Xen's heap sometimes lives in 91 * the middle of their segkpm, and is mapped using only kpm-like addresses. 92 * In that case, we need to skip the swathes before and after Xen's heap. 93 */ 94 uintptr_t kpm1_low = 0; 95 uintptr_t kpm1_high = 0; 96 uintptr_t kpm2_low = 0; 97 uintptr_t kpm2_high = 0; 98 99 /* 100 * Some commonly used values that we don't want to recompute over and over. 101 */ 102 static int xpv_panic_nptes[MAX_NUM_LEVEL]; 103 static ulong_t xpv_panic_cr3; 104 static uintptr_t xpv_end; 105 106 static void xpv_panic_console_print(const char *fmt, ...); 107 static void (*xpv_panic_printf)(const char *, ...) = xpv_panic_console_print; 108 109 #define CONSOLE_BUF_SIZE 256 110 static char console_buffer[CONSOLE_BUF_SIZE]; 111 static boolean_t use_polledio; 112 113 /* 114 * Pointers to machine check panic info (if any). 115 */ 116 xpv_mca_panic_data_t *xpv_mca_panic_data = NULL; 117 118 static void 119 xpv_panic_putc(int m) 120 { 121 struct cons_polledio *c = cons_polledio; 122 123 /* This really shouldn't happen */ 124 if (console == CONS_HYPERVISOR) 125 return; 126 127 if (use_polledio == B_TRUE) 128 c->cons_polledio_putchar(c->cons_polledio_argument, m); 129 else 130 bcons_putchar(m); 131 } 132 133 static void 134 xpv_panic_puts(char *msg) 135 { 136 char *m; 137 138 dump_timeleft = dump_timeout; 139 for (m = msg; *m; m++) 140 xpv_panic_putc((int)*m); 141 } 142 143 static void 144 xpv_panic_console_print(const char *fmt, ...) 145 { 146 va_list ap; 147 148 va_start(ap, fmt); 149 (void) vsnprintf(console_buffer, sizeof (console_buffer), fmt, ap); 150 va_end(ap); 151 152 xpv_panic_puts(console_buffer); 153 } 154 155 static void 156 xpv_panic_map(int level, pfn_t pfn) 157 { 158 x86pte_t pte, *pteptr; 159 160 /* 161 * The provided pfn represents a level 'level' page table. Map it 162 * into the 'level' slot in the list of page table windows. 163 */ 164 pteptr = (x86pte_t *)PWIN_PTE_VA(level); 165 pte = pfn_to_pa(pfn) | PT_VALID; 166 167 XPV_ALLOW_PAGETABLE_UPDATES(); 168 if (mmu.pae_hat) 169 *pteptr = pte; 170 else 171 *(x86pte32_t *)pteptr = pte; 172 XPV_DISALLOW_PAGETABLE_UPDATES(); 173 174 mmu_tlbflush_entry(PWIN_VA(level)); 175 } 176 177 /* 178 * Walk the page tables to find the pfn mapped by the given va. 179 */ 180 static pfn_t 181 xpv_va_walk(uintptr_t *vaddr) 182 { 183 int l, idx; 184 pfn_t pfn; 185 x86pte_t pte; 186 x86pte_t *ptep; 187 uintptr_t va = *vaddr; 188 uintptr_t scan_va; 189 caddr_t ptable_window; 190 static pfn_t toplevel_pfn; 191 static uintptr_t lastva; 192 193 /* 194 * If we do anything other than a simple scan through memory, don't 195 * trust the mapped page tables. 196 */ 197 if (va != lastva + MMU_PAGESIZE) 198 for (l = mmu.max_level; l >= 0; l--) 199 ptable_pfn[l] = PFN_INVALID; 200 201 toplevel_pfn = mmu_btop(xpv_panic_cr3); 202 203 while (va < xpv_end && va >= *vaddr) { 204 /* Find the lowest table with any entry for va */ 205 pfn = toplevel_pfn; 206 for (l = mmu.max_level; l >= 0; l--) { 207 if (ptable_pfn[l] != pfn) { 208 xpv_panic_map(l, pfn); 209 ptable_pfn[l] = pfn; 210 } 211 212 /* 213 * Search this pagetable for any mapping to an 214 * address >= va. 215 */ 216 ptable_window = PWIN_VA(l); 217 if (l == mmu.max_level && mmu.pae_hat) 218 ptable_window += 219 (xpv_panic_cr3 & MMU_PAGEOFFSET); 220 221 idx = (va >> LEVEL_SHIFT(l)) & (xpv_panic_nptes[l] - 1); 222 scan_va = va; 223 while (idx < xpv_panic_nptes[l] && scan_va < xpv_end && 224 scan_va >= *vaddr) { 225 ptep = (x86pte_t *)(ptable_window + 226 (idx << mmu.pte_size_shift)); 227 pte = GET_PTE(ptep); 228 if (pte & PTE_VALID) 229 break; 230 idx++; 231 scan_va += mmu.level_size[l]; 232 } 233 234 /* 235 * If there are no valid mappings in this table, we 236 * can skip to the end of the VA range it covers. 237 */ 238 if (idx == xpv_panic_nptes[l]) { 239 va = NEXT_ENTRY_VA(va, l + 1); 240 break; 241 } 242 243 va = scan_va; 244 /* 245 * See if we've hit the end of the range. 246 */ 247 if (va >= xpv_end || va < *vaddr) 248 break; 249 250 /* 251 * If this mapping is for a pagetable, we drop down 252 * to the next level in the hierarchy and look for 253 * a mapping in it. 254 */ 255 pfn = PTE2MFN(pte, l); 256 if (!PTE_ISPAGE(pte, l)) 257 continue; 258 259 /* 260 * The APIC page is magic. Nothing to see here; 261 * move along. 262 */ 263 if (((uintptr_t)xpv_apicadr & MMU_PAGEMASK) == 264 (va & MMU_PAGEMASK)) { 265 va += MMU_PAGESIZE; 266 break; 267 } 268 269 /* 270 * See if the address is within one of the two 271 * kpm-like regions we want to skip. 272 */ 273 if (va >= kpm1_low && va < kpm1_high) { 274 va = kpm1_high; 275 break; 276 } 277 if (va >= kpm2_low && va < kpm2_high) { 278 va = kpm2_high; 279 break; 280 } 281 282 /* 283 * The Xen panic code only handles small pages. If 284 * this mapping is for a large page, we need to 285 * identify the consituent page that covers the 286 * specific VA we were looking for. 287 */ 288 if (l > 0) { 289 if (l > 1) 290 panic("Xen panic can't cope with " 291 "giant pages."); 292 idx = (va >> LEVEL_SHIFT(0)) & 293 (xpv_panic_nptes[0] - 1); 294 pfn += idx; 295 } 296 297 *vaddr = va; 298 lastva = va; 299 return (pfn | PFN_IS_FOREIGN_MFN); 300 } 301 } 302 return (PFN_INVALID); 303 } 304 305 /* 306 * Walk through the Xen VA space, finding pages that are mapped in. 307 * 308 * These pages all have MFNs rather than PFNs, meaning they may be outside 309 * the physical address space the kernel knows about, or they may collide 310 * with PFNs the kernel is using. 311 * 312 * The obvious trick of just adding the PFN_IS_FOREIGN_MFN bit to the MFNs 313 * to avoid collisions doesn't work. The pages need to be written to disk 314 * in PFN-order or savecore gets confused. We can't allocate memory to 315 * contruct a sorted pfn->VA reverse mapping, so we have to write the pages 316 * to disk in VA order. 317 * 318 * To square this circle, we simply make up PFNs for each of Xen's pages. 319 * We assign each mapped page a fake PFN in ascending order. These fake 320 * PFNs each have the FOREIGN bit set, ensuring that they fall outside the 321 * range of Solaris PFNs written by the kernel. 322 */ 323 int 324 dump_xpv_addr() 325 { 326 uintptr_t va; 327 mem_vtop_t mem_vtop; 328 329 xpv_dump_pages = 0; 330 va = xen_virt_start; 331 332 while (xpv_va_walk(&va) != PFN_INVALID) { 333 mem_vtop.m_as = &kas; 334 mem_vtop.m_va = (void *)va; 335 mem_vtop.m_pfn = (pfn_t)xpv_dump_pages | PFN_IS_FOREIGN_MFN; 336 337 dumpvp_write(&mem_vtop, sizeof (mem_vtop_t)); 338 xpv_dump_pages++; 339 340 va += MMU_PAGESIZE; 341 } 342 343 /* 344 * Add the shared_info page. This page actually ends up in the 345 * dump twice: once for the Xen va and once for the Solaris va. 346 * This isn't ideal, but we don't know the address Xen is using for 347 * the page, so we can't share it. 348 */ 349 mem_vtop.m_as = &kas; 350 mem_vtop.m_va = HYPERVISOR_shared_info; 351 mem_vtop.m_pfn = (pfn_t)xpv_dump_pages | PFN_IS_FOREIGN_MFN; 352 dumpvp_write(&mem_vtop, sizeof (mem_vtop_t)); 353 xpv_dump_pages++; 354 355 return (xpv_dump_pages); 356 } 357 358 void 359 dump_xpv_pfn() 360 { 361 pfn_t pfn; 362 int cnt; 363 364 for (cnt = 0; cnt < xpv_dump_pages; cnt++) { 365 pfn = (pfn_t)cnt | PFN_IS_FOREIGN_MFN; 366 dumpvp_write(&pfn, sizeof (pfn)); 367 } 368 } 369 370 int 371 dump_xpv_data(void *dump_cbuf) 372 { 373 uintptr_t va; 374 uint32_t csize; 375 int cnt = 0; 376 377 /* 378 * XXX: we should probably run this data through a UE check. The 379 * catch is that the UE code relies on on_trap() and getpfnum() 380 * working. 381 */ 382 va = xen_virt_start; 383 384 while (xpv_va_walk(&va) != PFN_INVALID) { 385 csize = (uint32_t)compress((void *)va, dump_cbuf, PAGESIZE); 386 dumpvp_write(&csize, sizeof (uint32_t)); 387 dumpvp_write(dump_cbuf, csize); 388 if (dump_ioerr) { 389 dumphdr->dump_flags &= ~DF_COMPLETE; 390 return (cnt); 391 } 392 cnt++; 393 va += MMU_PAGESIZE; 394 } 395 396 /* 397 * Finally, dump the shared_info page 398 */ 399 csize = (uint32_t)compress((void *)HYPERVISOR_shared_info, dump_cbuf, 400 PAGESIZE); 401 dumpvp_write(&csize, sizeof (uint32_t)); 402 dumpvp_write(dump_cbuf, csize); 403 if (dump_ioerr) 404 dumphdr->dump_flags &= ~DF_COMPLETE; 405 cnt++; 406 407 return (cnt); 408 } 409 410 static void * 411 showstack(void *fpreg, int xpv_only) 412 { 413 struct frame *fpp; 414 ulong_t off; 415 char *sym; 416 uintptr_t pc, fp, lastfp; 417 uintptr_t minaddr = min(KERNELBASE, xen_virt_start); 418 419 fp = (uintptr_t)fpreg; 420 if (fp < minaddr) { 421 xpv_panic_printf("Bad frame ptr: 0x%p\n", fpreg); 422 return (fpreg); 423 } 424 425 do { 426 fpp = (struct frame *)fp; 427 pc = fpp->fr_savpc; 428 429 if ((xpv_only != 0) && 430 (fp > xpv_end || fp < xen_virt_start)) 431 break; 432 if ((sym = kobj_getsymname(pc, &off)) != NULL) 433 xpv_panic_printf("%08lx %s:%s+%lx\n", fp, 434 mod_containing_pc((caddr_t)pc), sym, off); 435 else if ((pc >= xen_virt_start) && (pc <= xpv_end)) 436 xpv_panic_printf("%08lx 0x%lx (in Xen)\n", fp, pc); 437 else 438 xpv_panic_printf("%08lx %lx\n", fp, pc); 439 440 lastfp = fp; 441 fp = fpp->fr_savfp; 442 443 /* 444 * Xen marks an exception frame by inverting the frame 445 * pointer. 446 */ 447 if (fp < lastfp) { 448 if ((~fp > minaddr) && ((~fp) ^ lastfp) < 0xfff) 449 fp = ~fp; 450 } 451 } while (fp > lastfp); 452 return ((void *)fp); 453 } 454 455 void * 456 xpv_traceback(void *fpreg) 457 { 458 return (showstack(fpreg, 1)); 459 } 460 461 #if defined(__amd64) 462 static void 463 xpv_panic_hypercall(ulong_t call) 464 { 465 panic("Illegally issued hypercall %d during panic!\n", (int)call); 466 } 467 #endif 468 469 void 470 xpv_die(struct regs *rp) 471 { 472 struct panic_trap_info ti; 473 struct cregs creg; 474 475 ti.trap_regs = rp; 476 ti.trap_type = rp->r_trapno; 477 478 curthread->t_panic_trap = &ti; 479 if (ti.trap_type == T_PGFLT) { 480 getcregs(&creg); 481 ti.trap_addr = (caddr_t)creg.cr_cr2; 482 panic("Fatal pagefault at 0x%lx. fault addr=0x%p rp=0x%p", 483 rp->r_pc, (void *)ti.trap_addr, (void *)rp); 484 } else { 485 ti.trap_addr = (caddr_t)rp->r_pc; 486 panic("Fatal trap %ld at 0x%lx. rp=0x%p", rp->r_trapno, 487 rp->r_pc, (void *)rp); 488 } 489 } 490 491 /* 492 * Build IDT to handle a Xen panic 493 */ 494 static void 495 switch_to_xpv_panic_idt() 496 { 497 int i; 498 desctbr_t idtr; 499 gate_desc_t *idt = xpv_panic_idt; 500 selector_t cs = get_cs_register(); 501 502 for (i = 0; i < 32; i++) 503 set_gatesegd(&idt[i], &xpv_invaltrap, cs, SDT_SYSIGT, TRP_XPL, 504 0); 505 506 set_gatesegd(&idt[T_ZERODIV], &xpv_div0trap, cs, SDT_SYSIGT, TRP_XPL, 507 0); 508 set_gatesegd(&idt[T_SGLSTP], &xpv_dbgtrap, cs, SDT_SYSIGT, TRP_XPL, 0); 509 set_gatesegd(&idt[T_NMIFLT], &xpv_nmiint, cs, SDT_SYSIGT, TRP_XPL, 0); 510 set_gatesegd(&idt[T_BOUNDFLT], &xpv_boundstrap, cs, SDT_SYSIGT, 511 TRP_XPL, 0); 512 set_gatesegd(&idt[T_ILLINST], &xpv_invoptrap, cs, SDT_SYSIGT, TRP_XPL, 513 0); 514 set_gatesegd(&idt[T_NOEXTFLT], &xpv_ndptrap, cs, SDT_SYSIGT, TRP_XPL, 515 0); 516 set_gatesegd(&idt[T_TSSFLT], &xpv_invtsstrap, cs, SDT_SYSIGT, TRP_XPL, 517 0); 518 set_gatesegd(&idt[T_SEGFLT], &xpv_segnptrap, cs, SDT_SYSIGT, TRP_XPL, 519 0); 520 set_gatesegd(&idt[T_STKFLT], &xpv_stktrap, cs, SDT_SYSIGT, TRP_XPL, 0); 521 set_gatesegd(&idt[T_GPFLT], &xpv_gptrap, cs, SDT_SYSIGT, TRP_XPL, 0); 522 set_gatesegd(&idt[T_PGFLT], &xpv_pftrap, cs, SDT_SYSIGT, TRP_XPL, 0); 523 set_gatesegd(&idt[T_EXTERRFLT], &xpv_ndperr, cs, SDT_SYSIGT, TRP_XPL, 524 0); 525 set_gatesegd(&idt[T_ALIGNMENT], &xpv_achktrap, cs, SDT_SYSIGT, TRP_XPL, 526 0); 527 set_gatesegd(&idt[T_MCE], &xpv_mcetrap, cs, SDT_SYSIGT, TRP_XPL, 0); 528 set_gatesegd(&idt[T_SIMDFPE], &xpv_xmtrap, cs, SDT_SYSIGT, TRP_XPL, 0); 529 530 /* 531 * We have no double fault handler. Any single fault represents a 532 * catastrophic failure for us, so there is no attempt to handle 533 * them cleanly: we just print a message and reboot. If we 534 * encounter a second fault while doing that, there is nothing 535 * else we can do. 536 */ 537 538 /* 539 * Be prepared to absorb any stray device interrupts received 540 * while writing the core to disk. 541 */ 542 for (i = 33; i < NIDT; i++) 543 set_gatesegd(&idt[i], &xpv_surprise_intr, cs, SDT_SYSIGT, 544 TRP_XPL, 0); 545 546 /* The one interrupt we expect to get is from the APIC timer. */ 547 set_gatesegd(&idt[T_XPV_TIMER], &xpv_timer_trap, cs, SDT_SYSIGT, 548 TRP_XPL, 0); 549 550 idtr.dtr_base = (uintptr_t)xpv_panic_idt; 551 idtr.dtr_limit = sizeof (xpv_panic_idt) - 1; 552 wr_idtr(&idtr); 553 554 #if defined(__amd64) 555 /* Catch any hypercalls. */ 556 wrmsr(MSR_AMD_LSTAR, (uintptr_t)xpv_panic_hypercall); 557 wrmsr(MSR_AMD_CSTAR, (uintptr_t)xpv_panic_hypercall); 558 #endif 559 } 560 561 static void 562 xpv_apic_clkinit() 563 { 564 uint_t apic_ticks = 0; 565 566 /* 567 * Measure how many APIC ticks there are within a fixed time 568 * period. We're going to be fairly coarse here. This timer is 569 * just being used to detect a stalled panic, so as long as we have 570 * the right order of magnitude, everything should be fine. 571 */ 572 xpv_apicadr[APIC_SPUR_INT_REG] = AV_UNIT_ENABLE | APIC_SPUR_INTR; 573 xpv_apicadr[APIC_LOCAL_TIMER] = AV_MASK; 574 xpv_apicadr[APIC_INT_VECT0] = AV_MASK; /* local intr reg 0 */ 575 576 xpv_apicadr[APIC_DIVIDE_REG] = 0; 577 xpv_apicadr[APIC_INIT_COUNT] = APIC_MAXVAL; 578 drv_usecwait(XPV_TIMER_INTERVAL); 579 apic_ticks = APIC_MAXVAL - xpv_apicadr[APIC_CURR_COUNT]; 580 581 /* 582 * apic_ticks now represents roughly how many apic ticks comprise 583 * one timeout interval. Program the timer to send us an interrupt 584 * every time that interval expires. 585 */ 586 xpv_apicadr[APIC_LOCAL_TIMER] = T_XPV_TIMER | AV_PERIODIC; 587 xpv_apicadr[APIC_INIT_COUNT] = apic_ticks; 588 xpv_apicadr[APIC_EOI_REG] = 0; 589 } 590 591 void 592 xpv_timer_tick(void) 593 { 594 static int ticks = 0; 595 596 if (ticks++ >= MICROSEC / XPV_TIMER_INTERVAL) { 597 ticks = 0; 598 if (dump_timeleft && (--dump_timeleft == 0)) 599 panic("Xen panic timeout\n"); 600 } 601 xpv_apicadr[APIC_EOI_REG] = 0; 602 } 603 604 void 605 xpv_interrupt(void) 606 { 607 #ifdef DEBUG 608 static int cnt = 0; 609 610 if (cnt++ < 10) 611 xpv_panic_printf("Unexpected interrupt received.\n"); 612 if ((cnt < 1000) && ((cnt % 100) == 0)) 613 xpv_panic_printf("%d unexpected interrupts received.\n", cnt); 614 #endif 615 616 xpv_apicadr[APIC_EOI_REG] = 0; 617 } 618 619 /* 620 * Managing time in panic context is trivial. We only have a single CPU, 621 * we never get rescheduled, we never get suspended. We just need to 622 * convert clock ticks into nanoseconds. 623 */ 624 static hrtime_t 625 xpv_panic_gethrtime(void) 626 { 627 hrtime_t tsc, hrt; 628 unsigned int *l = (unsigned int *)&(tsc); 629 630 tsc = __rdtsc_insn(); 631 hrt = (mul32(l[1], nsec_scale) << NSEC_SHIFT) + 632 (mul32(l[0], nsec_scale) >> (32 - NSEC_SHIFT)); 633 634 return (hrt); 635 } 636 637 static void 638 xpv_panic_time_init() 639 { 640 nsec_scale = 641 CPU->cpu_m.mcpu_vcpu_info->time.tsc_to_system_mul >> NSEC_SHIFT; 642 643 gethrtimef = xpv_panic_gethrtime; 644 } 645 646 static void 647 xpv_panicsys(struct regs *rp, char *fmt, ...) 648 { 649 extern void panicsys(const char *, va_list, struct regs *, int); 650 va_list alist; 651 652 va_start(alist, fmt); 653 panicsys(fmt, alist, rp, 1); 654 va_end(alist); 655 } 656 657 void 658 xpv_do_panic(void *arg) 659 { 660 struct panic_info *pip = (struct panic_info *)arg; 661 int l; 662 struct cregs creg; 663 #if defined(__amd64) 664 extern uintptr_t postbootkernelbase; 665 #endif 666 667 if (xpv_panicking++ > 0) 668 panic("multiple calls to xpv_do_panic()"); 669 670 /* 671 * Indicate to the underlying panic framework that a panic has been 672 * initiated. This is ordinarily done as part of vpanic(). Since 673 * we already have all the register state saved by the hypervisor, 674 * we skip that and jump straight into the panic processing code. 675 * 676 * XXX If another thread grabs and wins the panic_quiesce trigger 677 * then we'll have two threads in panicsys believing they are in 678 * charge of the panic attempt! 679 */ 680 (void) panic_trigger(&panic_quiesce); 681 682 #if defined(__amd64) 683 /* 684 * bzero() and bcopy() get unhappy when asked to operate on 685 * addresses outside of the kernel. At this point Xen is really a 686 * part of the kernel, so we update the routines' notion of where 687 * the kernel starts. 688 */ 689 postbootkernelbase = xen_virt_start; 690 #endif 691 692 #if defined(HYPERVISOR_VIRT_END) 693 xpv_end = HYPERVISOR_VIRT_END; 694 #else 695 xpv_end = (uintptr_t)UINTPTR_MAX - sizeof (uintptr_t); 696 #endif 697 698 /* 699 * If we were redirecting console output to the hypervisor, we have 700 * to stop. 701 */ 702 use_polledio = B_FALSE; 703 if (console == CONS_HYPERVISOR) { 704 bcons_device_change(CONS_HYPERVISOR); 705 } else if (cons_polledio != NULL && 706 cons_polledio->cons_polledio_putchar != NULL) { 707 if (cons_polledio->cons_polledio_enter != NULL) 708 cons_polledio->cons_polledio_enter( 709 cons_polledio->cons_polledio_argument); 710 use_polledio = 1; 711 } 712 713 /* Make sure we handle all console output from here on. */ 714 sysp->bsvc_putchar = xpv_panic_putc; 715 716 /* 717 * If we find an unsupported panic_info structure, there's not much 718 * we can do other than complain, plow on, and hope for the best. 719 */ 720 if (pip->pi_version != PANIC_INFO_VERSION) 721 xpv_panic_printf("Warning: Xen is using an unsupported " 722 "version of the panic_info structure.\n"); 723 724 xpv_panic_info = pip; 725 726 #if defined(__amd64) 727 kpm1_low = (uintptr_t)xpv_panic_info->pi_ram_start; 728 if (xpv_panic_info->pi_xen_start == NULL) { 729 kpm1_high = (uintptr_t)xpv_panic_info->pi_ram_end; 730 } else { 731 kpm1_high = (uintptr_t)xpv_panic_info->pi_xen_start; 732 kpm2_low = (uintptr_t)xpv_panic_info->pi_xen_end; 733 kpm2_high = (uintptr_t)xpv_panic_info->pi_ram_end; 734 } 735 #endif 736 737 /* 738 * Make sure we are running on the Solaris %gs. The Xen panic code 739 * should already have set up the GDT properly. 740 */ 741 xpv_panic_resetgs(); 742 #if defined(__amd64) 743 wrmsr(MSR_AMD_GSBASE, (uint64_t)&cpus[0]); 744 #endif 745 746 xpv_panic_time_init(); 747 748 /* 749 * Switch to our own IDT, avoiding any accidental returns to Xen 750 * world. 751 */ 752 switch_to_xpv_panic_idt(); 753 754 /* 755 * Initialize the APIC timer, which is used to detect a hung dump 756 * attempt. 757 */ 758 xpv_apicadr = pip->pi_apic; 759 xpv_apic_clkinit(); 760 761 /* 762 * Set up a few values that we'll need repeatedly. 763 */ 764 getcregs(&creg); 765 xpv_panic_cr3 = creg.cr_cr3; 766 for (l = mmu.max_level; l >= 0; l--) 767 xpv_panic_nptes[l] = mmu.ptes_per_table; 768 #ifdef __i386 769 if (mmu.pae_hat) 770 xpv_panic_nptes[mmu.max_level] = 4; 771 #endif 772 773 /* Add the fake Xen module to the module list */ 774 if (xpv_module != NULL) { 775 extern int last_module_id; 776 777 xpv_modctl->mod_id = last_module_id++; 778 xpv_modctl->mod_next = &modules; 779 xpv_modctl->mod_prev = modules.mod_prev; 780 modules.mod_prev->mod_next = xpv_modctl; 781 modules.mod_prev = xpv_modctl; 782 } 783 784 if (pip->pi_mca.mpd_magic == MCA_PANICDATA_MAGIC) 785 xpv_mca_panic_data = &pip->pi_mca; 786 787 xpv_panic_printf = printf; 788 xpv_panicsys((struct regs *)pip->pi_regs, pip->pi_panicstr); 789 xpv_panic_printf("Failed to reboot following panic.\n"); 790 for (;;) 791 ; 792 } 793 794 /* 795 * Set up the necessary data structures to pretend that the Xen hypervisor 796 * is a loadable module, allowing mdb to find the Xen symbols in a crash 797 * dump. Since these symbols all map to VA space Solaris doesn't normally 798 * have access to, we don't link these structures into the kernel's lists 799 * until/unless we hit a Xen panic. 800 * 801 * The observant reader will note a striking amount of overlap between this 802 * code and that found in krtld. While it would be handy if we could just 803 * ask krtld to do this work for us, it's not that simple. Among the 804 * complications: we're not actually loading the text here (grub did it at 805 * boot), the .text section is writable, there are no relocations to do, 806 * none of the module text/data is in readable memory, etc. Training krtld 807 * to deal with this weird module is as complicated, and more risky, than 808 * reimplementing the necessary subset of it here. 809 */ 810 static void 811 init_xen_module() 812 { 813 struct _buf *file = NULL; 814 struct module *mp; 815 struct modctl *mcp; 816 int i, shn; 817 Shdr *shp, *ctf_shp; 818 char *names = NULL; 819 size_t n, namesize, text_align, data_align; 820 #if defined(__amd64) 821 const char machine = EM_AMD64; 822 #else 823 const char machine = EM_386; 824 #endif 825 826 /* Allocate and init the module structure */ 827 mp = kmem_zalloc(sizeof (*mp), KM_SLEEP); 828 mp->filename = kobj_zalloc(strlen(XPV_FILENAME) + 1, KM_SLEEP); 829 (void) strcpy(mp->filename, XPV_FILENAME); 830 831 /* Allocate and init the modctl structure */ 832 mcp = kmem_zalloc(sizeof (*mcp), KM_SLEEP); 833 mcp->mod_modname = kobj_zalloc(strlen(XPV_MODNAME) + 1, KM_SLEEP); 834 (void) strcpy(mcp->mod_modname, XPV_MODNAME); 835 mcp->mod_filename = kobj_zalloc(strlen(XPV_FILENAME) + 1, KM_SLEEP); 836 (void) strcpy(mcp->mod_filename, XPV_FILENAME); 837 mcp->mod_inprogress_thread = (kthread_id_t)-1; 838 mcp->mod_ref = 1; 839 mcp->mod_loaded = 1; 840 mcp->mod_loadcnt = 1; 841 mcp->mod_mp = mp; 842 843 /* 844 * Try to open a Xen image that hasn't had its symbol and CTF 845 * information stripped off. 846 */ 847 file = kobj_open_file(XPV_FILENAME); 848 if (file == (struct _buf *)-1) { 849 file = NULL; 850 goto err; 851 } 852 853 /* 854 * Read the header and ensure that this is an ELF file for the 855 * proper ISA. If it's not, somebody has done something very 856 * stupid. Why bother? See Mencken. 857 */ 858 if (kobj_read_file(file, (char *)&mp->hdr, sizeof (mp->hdr), 0) < 0) 859 goto err; 860 for (i = 0; i < SELFMAG; i++) 861 if (mp->hdr.e_ident[i] != ELFMAG[i]) 862 goto err; 863 if ((mp->hdr.e_ident[EI_DATA] != ELFDATA2LSB) || 864 (mp->hdr.e_machine != machine)) 865 goto err; 866 867 /* Read in the section headers */ 868 n = mp->hdr.e_shentsize * mp->hdr.e_shnum; 869 mp->shdrs = kmem_zalloc(n, KM_SLEEP); 870 if (kobj_read_file(file, mp->shdrs, n, mp->hdr.e_shoff) < 0) 871 goto err; 872 873 /* Read the section names */ 874 shp = (Shdr *)(mp->shdrs + mp->hdr.e_shstrndx * mp->hdr.e_shentsize); 875 namesize = shp->sh_size; 876 names = kmem_zalloc(shp->sh_size, KM_SLEEP); 877 if (kobj_read_file(file, names, shp->sh_size, shp->sh_offset) < 0) 878 goto err; 879 880 /* 881 * Fill in the text and data size fields. 882 */ 883 ctf_shp = NULL; 884 text_align = data_align = 0; 885 for (shn = 1; shn < mp->hdr.e_shnum; shn++) { 886 shp = (Shdr *)(mp->shdrs + shn * mp->hdr.e_shentsize); 887 888 /* Sanity check the offset of the section name */ 889 if (shp->sh_name >= namesize) 890 continue; 891 892 /* If we find the symtab section, remember it for later. */ 893 if (shp->sh_type == SHT_SYMTAB) { 894 mp->symtbl_section = shn; 895 mp->symhdr = shp; 896 continue; 897 } 898 899 /* If we find the CTF section, remember it for later. */ 900 if ((shp->sh_size != 0) && 901 (strcmp(names + shp->sh_name, ".SUNW_ctf") == 0)) { 902 ctf_shp = shp; 903 continue; 904 } 905 906 if (!(shp->sh_flags & SHF_ALLOC)) 907 continue; 908 909 /* 910 * Xen marks its text section as writable, so we need to 911 * look for the name - not just the flag. 912 */ 913 if ((strcmp(&names[shp->sh_name], ".text") != NULL) && 914 (shp->sh_flags & SHF_WRITE) != 0) { 915 if (shp->sh_addralign > data_align) 916 data_align = shp->sh_addralign; 917 mp->data_size = ALIGN(mp->data_size, data_align); 918 mp->data_size += ALIGN(shp->sh_size, 8); 919 if (mp->data == NULL || mp->data > (char *)shp->sh_addr) 920 mp->data = (char *)shp->sh_addr; 921 } else { 922 if (shp->sh_addralign > text_align) 923 text_align = shp->sh_addralign; 924 mp->text_size = ALIGN(mp->text_size, text_align); 925 mp->text_size += ALIGN(shp->sh_size, 8); 926 if (mp->text == NULL || mp->text > (char *)shp->sh_addr) 927 mp->text = (char *)shp->sh_addr; 928 } 929 } 930 kmem_free(names, namesize); 931 names = NULL; 932 shp = NULL; 933 mcp->mod_text = mp->text; 934 mcp->mod_text_size = mp->text_size; 935 936 /* 937 * If we have symbol table and string table sections, read them in 938 * now. If we don't, we just plow on. We'll still get a valid 939 * core dump, but finding anything useful will be just a bit 940 * harder. 941 * 942 * Note: we don't bother with a hash table. We'll never do a 943 * symbol lookup unless we crash, and then mdb creates its own. We 944 * also don't try to perform any relocations. Xen should be loaded 945 * exactly where the ELF file indicates, and the symbol information 946 * in the file should be complete and correct already. Static 947 * linking ain't all bad. 948 */ 949 if ((mp->symhdr != NULL) && (mp->symhdr->sh_link < mp->hdr.e_shnum)) { 950 mp->strhdr = (Shdr *) 951 (mp->shdrs + mp->symhdr->sh_link * mp->hdr.e_shentsize); 952 mp->nsyms = mp->symhdr->sh_size / mp->symhdr->sh_entsize; 953 954 /* Allocate space for the symbol table and strings. */ 955 mp->symsize = mp->symhdr->sh_size + 956 mp->nsyms * sizeof (symid_t) + mp->strhdr->sh_size; 957 mp->symspace = kmem_zalloc(mp->symsize, KM_SLEEP); 958 mp->symtbl = mp->symspace; 959 mp->strings = (char *)(mp->symtbl + mp->symhdr->sh_size); 960 961 if ((kobj_read_file(file, mp->symtbl, 962 mp->symhdr->sh_size, mp->symhdr->sh_offset) < 0) || 963 (kobj_read_file(file, mp->strings, 964 mp->strhdr->sh_size, mp->strhdr->sh_offset) < 0)) 965 goto err; 966 } 967 968 /* 969 * Read in the CTF section 970 */ 971 if ((ctf_shp != NULL) && ((moddebug & MODDEBUG_NOCTF) == 0)) { 972 mp->ctfdata = kmem_zalloc(ctf_shp->sh_size, KM_SLEEP); 973 mp->ctfsize = ctf_shp->sh_size; 974 if (kobj_read_file(file, mp->ctfdata, mp->ctfsize, 975 ctf_shp->sh_offset) < 0) 976 goto err; 977 } 978 979 kobj_close_file(file); 980 981 xpv_module = mp; 982 xpv_modctl = mcp; 983 return; 984 985 err: 986 cmn_err(CE_WARN, "Failed to initialize xpv module."); 987 if (file != NULL) 988 kobj_close_file(file); 989 990 kmem_free(mp->filename, strlen(XPV_FILENAME) + 1); 991 if (mp->shdrs != NULL) 992 kmem_free(mp->shdrs, mp->hdr.e_shentsize * mp->hdr.e_shnum); 993 if (mp->symspace != NULL) 994 kmem_free(mp->symspace, mp->symsize); 995 if (mp->ctfdata != NULL) 996 kmem_free(mp->ctfdata, mp->ctfsize); 997 kmem_free(mp, sizeof (*mp)); 998 kmem_free(mcp->mod_filename, strlen(XPV_FILENAME) + 1); 999 kmem_free(mcp->mod_modname, strlen(XPV_MODNAME) + 1); 1000 kmem_free(mcp, sizeof (*mcp)); 1001 if (names != NULL) 1002 kmem_free(names, namesize); 1003 } 1004 1005 void 1006 xpv_panic_init() 1007 { 1008 xen_platform_op_t op; 1009 int i; 1010 1011 ASSERT(DOMAIN_IS_INITDOMAIN(xen_info)); 1012 1013 for (i = 0; i < mmu.num_level; i++) 1014 ptable_pfn[i] = PFN_INVALID; 1015 1016 /* Let Xen know where to jump if/when it panics. */ 1017 op.cmd = XENPF_panic_init; 1018 op.interface_version = XENPF_INTERFACE_VERSION; 1019 op.u.panic_init.panic_addr = (unsigned long)xpv_panic_hdlr; 1020 1021 (void) HYPERVISOR_platform_op(&op); 1022 1023 init_xen_module(); 1024 } 1025