xref: /illumos-gate/usr/src/uts/intel/io/dktp/disk/cmdk.c (revision b9ccdc5a)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 #include <sys/scsi/scsi.h>
29 #include <sys/dktp/cm.h>
30 #include <sys/dktp/quetypes.h>
31 #include <sys/dktp/queue.h>
32 #include <sys/dktp/fctypes.h>
33 #include <sys/dktp/flowctrl.h>
34 #include <sys/dktp/cmdev.h>
35 #include <sys/dkio.h>
36 #include <sys/dktp/tgdk.h>
37 #include <sys/dktp/dadk.h>
38 #include <sys/dktp/bbh.h>
39 #include <sys/dktp/altsctr.h>
40 #include <sys/dktp/cmdk.h>
41 
42 #include <sys/stat.h>
43 #include <sys/vtoc.h>
44 #include <sys/file.h>
45 #include <sys/dktp/dadkio.h>
46 #include <sys/aio_req.h>
47 
48 #include <sys/cmlb.h>
49 
50 /*
51  * Local Static Data
52  */
53 #ifdef CMDK_DEBUG
54 #define	DENT	0x0001
55 #define	DIO	0x0002
56 
57 static	int	cmdk_debug = DIO;
58 #endif
59 
60 #ifndef	TRUE
61 #define	TRUE	1
62 #endif
63 
64 #ifndef	FALSE
65 #define	FALSE	0
66 #endif
67 
68 /*
69  * NDKMAP is the base number for accessing the fdisk partitions.
70  * c?d?p0 --> cmdk@?,?:q
71  */
72 #define	PARTITION0_INDEX	(NDKMAP + 0)
73 
74 #define	DKTP_DATA		(dkp->dk_tgobjp)->tg_data
75 #define	DKTP_EXT		(dkp->dk_tgobjp)->tg_ext
76 
77 static void *cmdk_state;
78 
79 /*
80  * the cmdk_attach_mutex protects cmdk_max_instance in multi-threaded
81  * attach situations
82  */
83 static kmutex_t cmdk_attach_mutex;
84 static int cmdk_max_instance = 0;
85 
86 /*
87  * Panic dumpsys state
88  * There is only a single flag that is not mutex locked since
89  * the system is prevented from thread switching and cmdk_dump
90  * will only be called in a single threaded operation.
91  */
92 static int	cmdk_indump;
93 
94 /*
95  * Local Function Prototypes
96  */
97 static int cmdk_create_obj(dev_info_t *dip, struct cmdk *dkp);
98 static void cmdk_destroy_obj(dev_info_t *dip, struct cmdk *dkp);
99 static void cmdkmin(struct buf *bp);
100 static int cmdkrw(dev_t dev, struct uio *uio, int flag);
101 static int cmdkarw(dev_t dev, struct aio_req *aio, int flag);
102 
103 /*
104  * Bad Block Handling Functions Prototypes
105  */
106 static void cmdk_bbh_reopen(struct cmdk *dkp);
107 static opaque_t cmdk_bbh_gethandle(opaque_t bbh_data, struct buf *bp);
108 static bbh_cookie_t cmdk_bbh_htoc(opaque_t bbh_data, opaque_t handle);
109 static void cmdk_bbh_freehandle(opaque_t bbh_data, opaque_t handle);
110 static void cmdk_bbh_close(struct cmdk *dkp);
111 static void cmdk_bbh_setalts_idx(struct cmdk *dkp);
112 static int cmdk_bbh_bsearch(struct alts_ent *buf, int cnt, daddr32_t key);
113 
114 static struct bbh_objops cmdk_bbh_ops = {
115 	nulldev,
116 	nulldev,
117 	cmdk_bbh_gethandle,
118 	cmdk_bbh_htoc,
119 	cmdk_bbh_freehandle,
120 	0, 0
121 };
122 
123 static int cmdkopen(dev_t *dev_p, int flag, int otyp, cred_t *credp);
124 static int cmdkclose(dev_t dev, int flag, int otyp, cred_t *credp);
125 static int cmdkstrategy(struct buf *bp);
126 static int cmdkdump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk);
127 static int cmdkioctl(dev_t, int, intptr_t, int, cred_t *, int *);
128 static int cmdkread(dev_t dev, struct uio *uio, cred_t *credp);
129 static int cmdkwrite(dev_t dev, struct uio *uio, cred_t *credp);
130 static int cmdk_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op,
131     int mod_flags, char *name, caddr_t valuep, int *lengthp);
132 static int cmdkaread(dev_t dev, struct aio_req *aio, cred_t *credp);
133 static int cmdkawrite(dev_t dev, struct aio_req *aio, cred_t *credp);
134 
135 /*
136  * Device driver ops vector
137  */
138 
139 static struct cb_ops cmdk_cb_ops = {
140 	cmdkopen, 		/* open */
141 	cmdkclose, 		/* close */
142 	cmdkstrategy, 		/* strategy */
143 	nodev, 			/* print */
144 	cmdkdump, 		/* dump */
145 	cmdkread, 		/* read */
146 	cmdkwrite, 		/* write */
147 	cmdkioctl, 		/* ioctl */
148 	nodev, 			/* devmap */
149 	nodev, 			/* mmap */
150 	nodev, 			/* segmap */
151 	nochpoll, 		/* poll */
152 	cmdk_prop_op, 		/* cb_prop_op */
153 	0, 			/* streamtab  */
154 	D_64BIT | D_MP | D_NEW,	/* Driver comaptibility flag */
155 	CB_REV,			/* cb_rev */
156 	cmdkaread,		/* async read */
157 	cmdkawrite		/* async write */
158 };
159 
160 static int cmdkinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg,
161     void **result);
162 static int cmdkprobe(dev_info_t *dip);
163 static int cmdkattach(dev_info_t *dip, ddi_attach_cmd_t cmd);
164 static int cmdkdetach(dev_info_t *dip, ddi_detach_cmd_t cmd);
165 
166 static void cmdk_setup_pm(dev_info_t *dip, struct cmdk *dkp);
167 static int cmdkresume(dev_info_t *dip);
168 static int cmdksuspend(dev_info_t *dip);
169 static int cmdkpower(dev_info_t *dip, int component, int level);
170 
171 struct dev_ops cmdk_ops = {
172 	DEVO_REV, 		/* devo_rev, */
173 	0, 			/* refcnt  */
174 	cmdkinfo,		/* info */
175 	nulldev, 		/* identify */
176 	cmdkprobe, 		/* probe */
177 	cmdkattach, 		/* attach */
178 	cmdkdetach,		/* detach */
179 	nodev, 			/* reset */
180 	&cmdk_cb_ops, 		/* driver operations */
181 	(struct bus_ops *)0,	/* bus operations */
182 	cmdkpower		/* power */
183 };
184 
185 /*
186  * This is the loadable module wrapper.
187  */
188 #include <sys/modctl.h>
189 
190 extern struct mod_ops mod_driverops;
191 
192 static struct modldrv modldrv = {
193 	&mod_driverops, 	/* Type of module. This one is a driver */
194 	"Common Direct Access Disk %I%",
195 	&cmdk_ops, 				/* driver ops 		*/
196 };
197 
198 static struct modlinkage modlinkage = {
199 	MODREV_1, (void *)&modldrv, NULL
200 };
201 
202 /* Function prototypes for cmlb callbacks */
203 
204 static int cmdk_lb_rdwr(dev_info_t *dip, uchar_t cmd, void *bufaddr,
205     diskaddr_t start, size_t length, void *tg_cookie);
206 
207 static int cmdk_lb_getinfo(dev_info_t *dip, int cmd,  void *arg,
208     void *tg_cookie);
209 
210 static void cmdk_devid_setup(struct cmdk *dkp);
211 static int cmdk_devid_modser(struct cmdk *dkp);
212 static int cmdk_get_modser(struct cmdk *dkp, int ioccmd, char *buf, int len);
213 static int cmdk_devid_fabricate(struct cmdk *dkp);
214 static int cmdk_devid_read(struct cmdk *dkp);
215 
216 static cmlb_tg_ops_t cmdk_lb_ops = {
217 	TG_DK_OPS_VERSION_1,
218 	cmdk_lb_rdwr,
219 	cmdk_lb_getinfo
220 };
221 
222 static boolean_t
223 cmdk_isopen(struct cmdk *dkp, dev_t dev)
224 {
225 	int		part, otyp;
226 	ulong_t		partbit;
227 
228 	ASSERT(MUTEX_HELD((&dkp->dk_mutex)));
229 
230 	part = CMDKPART(dev);
231 	partbit = 1 << part;
232 
233 	/* account for close */
234 	if (dkp->dk_open_lyr[part] != 0)
235 		return (B_TRUE);
236 	for (otyp = 0; otyp < OTYPCNT; otyp++)
237 		if (dkp->dk_open_reg[otyp] & partbit)
238 			return (B_TRUE);
239 	return (B_FALSE);
240 }
241 
242 int
243 _init(void)
244 {
245 	int 	rval;
246 
247 	if (rval = ddi_soft_state_init(&cmdk_state, sizeof (struct cmdk), 7))
248 		return (rval);
249 
250 	mutex_init(&cmdk_attach_mutex, NULL, MUTEX_DRIVER, NULL);
251 	if ((rval = mod_install(&modlinkage)) != 0) {
252 		mutex_destroy(&cmdk_attach_mutex);
253 		ddi_soft_state_fini(&cmdk_state);
254 	}
255 	return (rval);
256 }
257 
258 int
259 _fini(void)
260 {
261 	return (EBUSY);
262 
263 	/*
264 	 * This has been commented out until cmdk is a true
265 	 * unloadable module. Right now x86's are panicking on
266 	 * a diskless reconfig boot.
267 	 */
268 
269 #if 0 	/* bugid 1186679 */
270 	int	rval;
271 
272 	rval = mod_remove(&modlinkage);
273 	if (rval != 0)
274 		return (rval);
275 
276 	mutex_destroy(&cmdk_attach_mutex);
277 	ddi_soft_state_fini(&cmdk_state);
278 
279 	return (0);
280 #endif
281 }
282 
283 int
284 _info(struct modinfo *modinfop)
285 {
286 	return (mod_info(&modlinkage, modinfop));
287 }
288 
289 /*
290  * Autoconfiguration Routines
291  */
292 static int
293 cmdkprobe(dev_info_t *dip)
294 {
295 	int 	instance;
296 	int	status;
297 	struct	cmdk	*dkp;
298 
299 	instance = ddi_get_instance(dip);
300 
301 	if (ddi_get_soft_state(cmdk_state, instance))
302 		return (DDI_PROBE_PARTIAL);
303 
304 	if ((ddi_soft_state_zalloc(cmdk_state, instance) != DDI_SUCCESS) ||
305 	    ((dkp = ddi_get_soft_state(cmdk_state, instance)) == NULL))
306 		return (DDI_PROBE_PARTIAL);
307 
308 	mutex_init(&dkp->dk_mutex, NULL, MUTEX_DRIVER, NULL);
309 	rw_init(&dkp->dk_bbh_mutex, NULL, RW_DRIVER, NULL);
310 	dkp->dk_dip = dip;
311 	mutex_enter(&dkp->dk_mutex);
312 
313 	dkp->dk_dev = makedevice(ddi_driver_major(dip),
314 	    ddi_get_instance(dip) << CMDK_UNITSHF);
315 
316 	/* linkage to dadk and strategy */
317 	if (cmdk_create_obj(dip, dkp) != DDI_SUCCESS) {
318 		mutex_exit(&dkp->dk_mutex);
319 		mutex_destroy(&dkp->dk_mutex);
320 		rw_destroy(&dkp->dk_bbh_mutex);
321 		ddi_soft_state_free(cmdk_state, instance);
322 		return (DDI_PROBE_PARTIAL);
323 	}
324 
325 	status = dadk_probe(DKTP_DATA, KM_NOSLEEP);
326 	if (status != DDI_PROBE_SUCCESS) {
327 		cmdk_destroy_obj(dip, dkp);	/* dadk/strategy linkage  */
328 		mutex_exit(&dkp->dk_mutex);
329 		mutex_destroy(&dkp->dk_mutex);
330 		rw_destroy(&dkp->dk_bbh_mutex);
331 		ddi_soft_state_free(cmdk_state, instance);
332 		return (status);
333 	}
334 
335 	mutex_exit(&dkp->dk_mutex);
336 #ifdef CMDK_DEBUG
337 	if (cmdk_debug & DENT)
338 		PRF("cmdkprobe: instance= %d name= `%s`\n",
339 		    instance, ddi_get_name_addr(dip));
340 #endif
341 	return (status);
342 }
343 
344 static int
345 cmdkattach(dev_info_t *dip, ddi_attach_cmd_t cmd)
346 {
347 	int 		instance;
348 	struct		cmdk *dkp;
349 	char 		*node_type;
350 
351 	switch (cmd) {
352 	case DDI_ATTACH:
353 		break;
354 	case DDI_RESUME:
355 		return (cmdkresume(dip));
356 	default:
357 		return (DDI_FAILURE);
358 	}
359 
360 	instance = ddi_get_instance(dip);
361 	if (!(dkp = ddi_get_soft_state(cmdk_state, instance)))
362 		return (DDI_FAILURE);
363 
364 	dkp->dk_pm_level = CMDK_SPINDLE_UNINIT;
365 	mutex_init(&dkp->dk_mutex, NULL, MUTEX_DRIVER, NULL);
366 
367 	mutex_enter(&dkp->dk_mutex);
368 
369 	/* dadk_attach is an empty function that only returns SUCCESS */
370 	(void) dadk_attach(DKTP_DATA);
371 
372 	node_type = (DKTP_EXT->tg_nodetype);
373 
374 	/*
375 	 * this open allows cmlb to read the device
376 	 * and determine the label types
377 	 * so that cmlb can create minor nodes for device
378 	 */
379 
380 	/* open the target disk	 */
381 	if (dadk_open(DKTP_DATA, 0) != DDI_SUCCESS)
382 		goto fail2;
383 
384 	/* mark as having opened target */
385 	dkp->dk_flag |= CMDK_TGDK_OPEN;
386 
387 	cmlb_alloc_handle((cmlb_handle_t *)&dkp->dk_cmlbhandle);
388 
389 	if (cmlb_attach(dip,
390 	    &cmdk_lb_ops,
391 	    DTYPE_DIRECT,		/* device_type */
392 	    0,				/* removable */
393 	    0,				/* hot pluggable XXX */
394 	    node_type,
395 	    CMLB_CREATE_ALTSLICE_VTOC_16_DTYPE_DIRECT,	/* alter_behaviour */
396 	    dkp->dk_cmlbhandle,
397 	    0) != 0)
398 		goto fail1;
399 
400 	/* Calling validate will create minor nodes according to disk label */
401 	(void) cmlb_validate(dkp->dk_cmlbhandle, 0, 0);
402 
403 	/* set bbh (Bad Block Handling) */
404 	cmdk_bbh_reopen(dkp);
405 
406 	/* setup devid string */
407 	cmdk_devid_setup(dkp);
408 
409 	mutex_enter(&cmdk_attach_mutex);
410 	if (instance > cmdk_max_instance)
411 		cmdk_max_instance = instance;
412 	mutex_exit(&cmdk_attach_mutex);
413 
414 	mutex_exit(&dkp->dk_mutex);
415 
416 	/*
417 	 * Add a zero-length attribute to tell the world we support
418 	 * kernel ioctls (for layered drivers)
419 	 */
420 	(void) ddi_prop_create(DDI_DEV_T_NONE, dip, DDI_PROP_CANSLEEP,
421 	    DDI_KERNEL_IOCTL, NULL, 0);
422 	ddi_report_dev(dip);
423 
424 	/*
425 	 * Initialize power management
426 	 */
427 	mutex_init(&dkp->dk_pm_mutex, NULL, MUTEX_DRIVER, NULL);
428 	cv_init(&dkp->dk_suspend_cv,   NULL, CV_DRIVER, NULL);
429 	cmdk_setup_pm(dip, dkp);
430 
431 	return (DDI_SUCCESS);
432 
433 fail1:
434 	cmlb_free_handle(&dkp->dk_cmlbhandle);
435 	(void) dadk_close(DKTP_DATA);
436 fail2:
437 	cmdk_destroy_obj(dip, dkp);
438 	rw_destroy(&dkp->dk_bbh_mutex);
439 	mutex_exit(&dkp->dk_mutex);
440 	mutex_destroy(&dkp->dk_mutex);
441 	ddi_soft_state_free(cmdk_state, instance);
442 	return (DDI_FAILURE);
443 }
444 
445 
446 static int
447 cmdkdetach(dev_info_t *dip, ddi_detach_cmd_t cmd)
448 {
449 	struct cmdk	*dkp;
450 	int 		instance;
451 	int		max_instance;
452 
453 	switch (cmd) {
454 	case DDI_DETACH:
455 		/* return (DDI_FAILURE); */
456 		break;
457 	case DDI_SUSPEND:
458 		return (cmdksuspend(dip));
459 	default:
460 #ifdef CMDK_DEBUG
461 		if (cmdk_debug & DIO) {
462 			PRF("cmdkdetach: cmd = %d unknown\n", cmd);
463 		}
464 #endif
465 		return (DDI_FAILURE);
466 	}
467 
468 	mutex_enter(&cmdk_attach_mutex);
469 	max_instance = cmdk_max_instance;
470 	mutex_exit(&cmdk_attach_mutex);
471 
472 	/* check if any instance of driver is open */
473 	for (instance = 0; instance < max_instance; instance++) {
474 		dkp = ddi_get_soft_state(cmdk_state, instance);
475 		if (!dkp)
476 			continue;
477 		if (dkp->dk_flag & CMDK_OPEN)
478 			return (DDI_FAILURE);
479 	}
480 
481 	instance = ddi_get_instance(dip);
482 	if (!(dkp = ddi_get_soft_state(cmdk_state, instance)))
483 		return (DDI_SUCCESS);
484 
485 	mutex_enter(&dkp->dk_mutex);
486 
487 	/*
488 	 * The cmdk_part_info call at the end of cmdkattach may have
489 	 * caused cmdk_reopen to do a TGDK_OPEN, make sure we close on
490 	 * detach for case when cmdkopen/cmdkclose never occurs.
491 	 */
492 	if (dkp->dk_flag & CMDK_TGDK_OPEN) {
493 		dkp->dk_flag &= ~CMDK_TGDK_OPEN;
494 		(void) dadk_close(DKTP_DATA);
495 	}
496 
497 	cmlb_detach(dkp->dk_cmlbhandle, 0);
498 	cmlb_free_handle(&dkp->dk_cmlbhandle);
499 	ddi_prop_remove_all(dip);
500 
501 	cmdk_destroy_obj(dip, dkp);	/* dadk/strategy linkage  */
502 	mutex_exit(&dkp->dk_mutex);
503 	mutex_destroy(&dkp->dk_mutex);
504 	rw_destroy(&dkp->dk_bbh_mutex);
505 	mutex_destroy(&dkp->dk_pm_mutex);
506 	cv_destroy(&dkp->dk_suspend_cv);
507 	ddi_soft_state_free(cmdk_state, instance);
508 
509 	return (DDI_SUCCESS);
510 }
511 
512 static int
513 cmdkinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
514 {
515 	dev_t		dev = (dev_t)arg;
516 	int 		instance;
517 	struct	cmdk	*dkp;
518 
519 #ifdef lint
520 	dip = dip;	/* no one ever uses this */
521 #endif
522 #ifdef CMDK_DEBUG
523 	if (cmdk_debug & DENT)
524 		PRF("cmdkinfo: call\n");
525 #endif
526 	instance = CMDKUNIT(dev);
527 
528 	switch (infocmd) {
529 		case DDI_INFO_DEVT2DEVINFO:
530 			if (!(dkp = ddi_get_soft_state(cmdk_state, instance)))
531 				return (DDI_FAILURE);
532 			*result = (void *) dkp->dk_dip;
533 			break;
534 		case DDI_INFO_DEVT2INSTANCE:
535 			*result = (void *)(intptr_t)instance;
536 			break;
537 		default:
538 			return (DDI_FAILURE);
539 	}
540 	return (DDI_SUCCESS);
541 }
542 
543 /*
544  * Initialize the power management components
545  */
546 static void
547 cmdk_setup_pm(dev_info_t *dip, struct cmdk *dkp)
548 {
549 	char *pm_comp[] = { "NAME=cmdk", "0=off", "1=on", NULL };
550 
551 	/*
552 	 * Since the cmdk device does not the 'reg' property,
553 	 * cpr will not call its DDI_SUSPEND/DDI_RESUME entries.
554 	 * The following code is to tell cpr that this device
555 	 * DOES need to be suspended and resumed.
556 	 */
557 	(void) ddi_prop_update_string(DDI_DEV_T_NONE, dip,
558 	    "pm-hardware-state", "needs-suspend-resume");
559 
560 	if (ddi_prop_update_string_array(DDI_DEV_T_NONE, dip,
561 	    "pm-components", pm_comp, 3) == DDI_PROP_SUCCESS) {
562 		if (pm_raise_power(dip, 0, CMDK_SPINDLE_ON) == DDI_SUCCESS) {
563 			mutex_enter(&dkp->dk_pm_mutex);
564 			dkp->dk_pm_level = CMDK_SPINDLE_ON;
565 			dkp->dk_pm_is_enabled = 1;
566 			mutex_exit(&dkp->dk_pm_mutex);
567 		} else {
568 			mutex_enter(&dkp->dk_pm_mutex);
569 			dkp->dk_pm_level = CMDK_SPINDLE_OFF;
570 			dkp->dk_pm_is_enabled = 0;
571 			mutex_exit(&dkp->dk_pm_mutex);
572 		}
573 	} else {
574 		mutex_enter(&dkp->dk_pm_mutex);
575 		dkp->dk_pm_level = CMDK_SPINDLE_UNINIT;
576 		dkp->dk_pm_is_enabled = 0;
577 		mutex_exit(&dkp->dk_pm_mutex);
578 	}
579 }
580 
581 /*
582  * suspend routine, it will be run when get the command
583  * DDI_SUSPEND at detach(9E) from system power management
584  */
585 static int
586 cmdksuspend(dev_info_t *dip)
587 {
588 	struct cmdk	*dkp;
589 	int		instance;
590 	clock_t		count = 0;
591 
592 	instance = ddi_get_instance(dip);
593 	if (!(dkp = ddi_get_soft_state(cmdk_state, instance)))
594 		return (DDI_FAILURE);
595 	mutex_enter(&dkp->dk_mutex);
596 	if (dkp->dk_flag & CMDK_SUSPEND) {
597 		mutex_exit(&dkp->dk_mutex);
598 		return (DDI_SUCCESS);
599 	}
600 	dkp->dk_flag |= CMDK_SUSPEND;
601 
602 	/* need to wait a while */
603 	while (dadk_getcmds(DKTP_DATA) != 0) {
604 		delay(drv_usectohz(1000000));
605 		if (count > 60) {
606 			dkp->dk_flag &= ~CMDK_SUSPEND;
607 			cv_broadcast(&dkp->dk_suspend_cv);
608 			mutex_exit(&dkp->dk_mutex);
609 			return (DDI_FAILURE);
610 		}
611 		count++;
612 	}
613 	mutex_exit(&dkp->dk_mutex);
614 	return (DDI_SUCCESS);
615 }
616 
617 /*
618  * resume routine, it will be run when get the command
619  * DDI_RESUME at attach(9E) from system power management
620  */
621 static int
622 cmdkresume(dev_info_t *dip)
623 {
624 	struct cmdk	*dkp;
625 	int		instance;
626 
627 	instance = ddi_get_instance(dip);
628 	if (!(dkp = ddi_get_soft_state(cmdk_state, instance)))
629 		return (DDI_FAILURE);
630 	mutex_enter(&dkp->dk_mutex);
631 	if (!(dkp->dk_flag & CMDK_SUSPEND)) {
632 		mutex_exit(&dkp->dk_mutex);
633 		return (DDI_FAILURE);
634 	}
635 	dkp->dk_pm_level = CMDK_SPINDLE_ON;
636 	dkp->dk_flag &= ~CMDK_SUSPEND;
637 	cv_broadcast(&dkp->dk_suspend_cv);
638 	mutex_exit(&dkp->dk_mutex);
639 	return (DDI_SUCCESS);
640 
641 }
642 
643 /*
644  * power management entry point, it was used to
645  * change power management component.
646  * Actually, the real hard drive suspend/resume
647  * was handled in ata, so this function is not
648  * doing any real work other than verifying that
649  * the disk is idle.
650  */
651 static int
652 cmdkpower(dev_info_t *dip, int component, int level)
653 {
654 	struct cmdk	*dkp;
655 	int		instance;
656 
657 	instance = ddi_get_instance(dip);
658 	if (!(dkp = ddi_get_soft_state(cmdk_state, instance)) ||
659 	    component != 0 || level > CMDK_SPINDLE_ON ||
660 	    level < CMDK_SPINDLE_OFF) {
661 		return (DDI_FAILURE);
662 	}
663 
664 	mutex_enter(&dkp->dk_pm_mutex);
665 	if (dkp->dk_pm_is_enabled && dkp->dk_pm_level == level) {
666 		mutex_exit(&dkp->dk_pm_mutex);
667 		return (DDI_SUCCESS);
668 	}
669 	mutex_exit(&dkp->dk_pm_mutex);
670 
671 	if ((level == CMDK_SPINDLE_OFF) &&
672 	    (dadk_getcmds(DKTP_DATA) != 0)) {
673 		return (DDI_FAILURE);
674 	}
675 
676 	mutex_enter(&dkp->dk_pm_mutex);
677 	dkp->dk_pm_level = level;
678 	mutex_exit(&dkp->dk_pm_mutex);
679 	return (DDI_SUCCESS);
680 }
681 
682 static int
683 cmdk_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, int mod_flags,
684     char *name, caddr_t valuep, int *lengthp)
685 {
686 	struct	cmdk	*dkp;
687 
688 #ifdef CMDK_DEBUG
689 	if (cmdk_debug & DENT)
690 		PRF("cmdk_prop_op: call\n");
691 #endif
692 
693 	dkp = ddi_get_soft_state(cmdk_state, ddi_get_instance(dip));
694 	if (dkp == NULL)
695 		return (ddi_prop_op(dev, dip, prop_op, mod_flags,
696 		    name, valuep, lengthp));
697 
698 	return (cmlb_prop_op(dkp->dk_cmlbhandle,
699 	    dev, dip, prop_op, mod_flags, name, valuep, lengthp,
700 	    CMDKPART(dev), NULL));
701 }
702 
703 /*
704  * dump routine
705  */
706 static int
707 cmdkdump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk)
708 {
709 	int 		instance;
710 	struct	cmdk	*dkp;
711 	diskaddr_t	p_lblksrt;
712 	diskaddr_t	p_lblkcnt;
713 	struct	buf	local;
714 	struct	buf	*bp;
715 
716 #ifdef CMDK_DEBUG
717 	if (cmdk_debug & DENT)
718 		PRF("cmdkdump: call\n");
719 #endif
720 	instance = CMDKUNIT(dev);
721 	if (!(dkp = ddi_get_soft_state(cmdk_state, instance)) || (blkno < 0))
722 		return (ENXIO);
723 
724 	if (cmlb_partinfo(
725 	    dkp->dk_cmlbhandle,
726 	    CMDKPART(dev),
727 	    &p_lblkcnt,
728 	    &p_lblksrt,
729 	    NULL,
730 	    NULL,
731 	    0)) {
732 		return (ENXIO);
733 	}
734 
735 	if ((blkno+nblk) > p_lblkcnt)
736 		return (EINVAL);
737 
738 	cmdk_indump = 1;	/* Tell disk targets we are panic dumpping */
739 
740 	bp = &local;
741 	bzero(bp, sizeof (*bp));
742 	bp->b_flags = B_BUSY;
743 	bp->b_un.b_addr = addr;
744 	bp->b_bcount = nblk << SCTRSHFT;
745 	SET_BP_SEC(bp, ((ulong_t)(p_lblksrt + blkno)));
746 
747 	(void) dadk_dump(DKTP_DATA, bp);
748 	return (bp->b_error);
749 }
750 
751 /*
752  * Copy in the dadkio_rwcmd according to the user's data model.  If needed,
753  * convert it for our internal use.
754  */
755 static int
756 rwcmd_copyin(struct dadkio_rwcmd *rwcmdp, caddr_t inaddr, int flag)
757 {
758 	switch (ddi_model_convert_from(flag)) {
759 		case DDI_MODEL_ILP32: {
760 			struct dadkio_rwcmd32 cmd32;
761 
762 			if (ddi_copyin(inaddr, &cmd32,
763 			    sizeof (struct dadkio_rwcmd32), flag)) {
764 				return (EFAULT);
765 			}
766 
767 			rwcmdp->cmd = cmd32.cmd;
768 			rwcmdp->flags = cmd32.flags;
769 			rwcmdp->blkaddr = (daddr_t)cmd32.blkaddr;
770 			rwcmdp->buflen = cmd32.buflen;
771 			rwcmdp->bufaddr = (caddr_t)(intptr_t)cmd32.bufaddr;
772 			/*
773 			 * Note: we do not convert the 'status' field,
774 			 * as it should not contain valid data at this
775 			 * point.
776 			 */
777 			bzero(&rwcmdp->status, sizeof (rwcmdp->status));
778 			break;
779 		}
780 		case DDI_MODEL_NONE: {
781 			if (ddi_copyin(inaddr, rwcmdp,
782 			    sizeof (struct dadkio_rwcmd), flag)) {
783 				return (EFAULT);
784 			}
785 		}
786 	}
787 	return (0);
788 }
789 
790 /*
791  * If necessary, convert the internal rwcmdp and status to the appropriate
792  * data model and copy it out to the user.
793  */
794 static int
795 rwcmd_copyout(struct dadkio_rwcmd *rwcmdp, caddr_t outaddr, int flag)
796 {
797 	switch (ddi_model_convert_from(flag)) {
798 		case DDI_MODEL_ILP32: {
799 			struct dadkio_rwcmd32 cmd32;
800 
801 			cmd32.cmd = rwcmdp->cmd;
802 			cmd32.flags = rwcmdp->flags;
803 			cmd32.blkaddr = rwcmdp->blkaddr;
804 			cmd32.buflen = rwcmdp->buflen;
805 			ASSERT64(((uintptr_t)rwcmdp->bufaddr >> 32) == 0);
806 			cmd32.bufaddr = (caddr32_t)(uintptr_t)rwcmdp->bufaddr;
807 
808 			cmd32.status.status = rwcmdp->status.status;
809 			cmd32.status.resid = rwcmdp->status.resid;
810 			cmd32.status.failed_blk_is_valid =
811 			    rwcmdp->status.failed_blk_is_valid;
812 			cmd32.status.failed_blk = rwcmdp->status.failed_blk;
813 			cmd32.status.fru_code_is_valid =
814 			    rwcmdp->status.fru_code_is_valid;
815 			cmd32.status.fru_code = rwcmdp->status.fru_code;
816 
817 			bcopy(rwcmdp->status.add_error_info,
818 			    cmd32.status.add_error_info, DADKIO_ERROR_INFO_LEN);
819 
820 			if (ddi_copyout(&cmd32, outaddr,
821 			    sizeof (struct dadkio_rwcmd32), flag))
822 				return (EFAULT);
823 			break;
824 		}
825 		case DDI_MODEL_NONE: {
826 			if (ddi_copyout(rwcmdp, outaddr,
827 			    sizeof (struct dadkio_rwcmd), flag))
828 			return (EFAULT);
829 		}
830 	}
831 	return (0);
832 }
833 
834 /*
835  * ioctl routine
836  */
837 static int
838 cmdkioctl(dev_t dev, int cmd, intptr_t arg, int flag, cred_t *credp, int *rvalp)
839 {
840 	int 		instance;
841 	struct scsi_device *devp;
842 	struct cmdk	*dkp;
843 	char 		data[NBPSCTR];
844 
845 	instance = CMDKUNIT(dev);
846 	if (!(dkp = ddi_get_soft_state(cmdk_state, instance)))
847 		return (ENXIO);
848 
849 	mutex_enter(&dkp->dk_mutex);
850 	while (dkp->dk_flag & CMDK_SUSPEND) {
851 		cv_wait(&dkp->dk_suspend_cv, &dkp->dk_mutex);
852 	}
853 	mutex_exit(&dkp->dk_mutex);
854 
855 	bzero(data, sizeof (data));
856 
857 	switch (cmd) {
858 
859 	case DKIOCGMEDIAINFO: {
860 		struct dk_minfo	media_info;
861 		struct  tgdk_geom phyg;
862 
863 		/* dadk_getphygeom always returns success */
864 		(void) dadk_getphygeom(DKTP_DATA, &phyg);
865 
866 		media_info.dki_lbsize = phyg.g_secsiz;
867 		media_info.dki_capacity = phyg.g_cap;
868 		media_info.dki_media_type = DK_FIXED_DISK;
869 
870 		if (ddi_copyout(&media_info, (void *)arg,
871 		    sizeof (struct dk_minfo), flag)) {
872 			return (EFAULT);
873 		} else {
874 			return (0);
875 		}
876 	}
877 
878 	case DKIOCINFO: {
879 		struct dk_cinfo *info = (struct dk_cinfo *)data;
880 
881 		/* controller information */
882 		info->dki_ctype = (DKTP_EXT->tg_ctype);
883 		info->dki_cnum = ddi_get_instance(ddi_get_parent(dkp->dk_dip));
884 		(void) strcpy(info->dki_cname,
885 		    ddi_get_name(ddi_get_parent(dkp->dk_dip)));
886 
887 		/* Unit Information */
888 		info->dki_unit = ddi_get_instance(dkp->dk_dip);
889 		devp = ddi_get_driver_private(dkp->dk_dip);
890 		info->dki_slave = (CMDEV_TARG(devp)<<3) | CMDEV_LUN(devp);
891 		(void) strcpy(info->dki_dname, ddi_driver_name(dkp->dk_dip));
892 		info->dki_flags = DKI_FMTVOL;
893 		info->dki_partition = CMDKPART(dev);
894 
895 		info->dki_maxtransfer = maxphys / DEV_BSIZE;
896 		info->dki_addr = 1;
897 		info->dki_space = 0;
898 		info->dki_prio = 0;
899 		info->dki_vec = 0;
900 
901 		if (ddi_copyout(data, (void *)arg, sizeof (*info), flag))
902 			return (EFAULT);
903 		else
904 			return (0);
905 	}
906 
907 	case DKIOCSTATE: {
908 		int	state;
909 		int	rval;
910 		diskaddr_t	p_lblksrt;
911 		diskaddr_t	p_lblkcnt;
912 
913 		if (ddi_copyin((void *)arg, &state, sizeof (int), flag))
914 			return (EFAULT);
915 
916 		/* dadk_check_media blocks until state changes */
917 		if (rval = dadk_check_media(DKTP_DATA, &state))
918 			return (rval);
919 
920 		if (state == DKIO_INSERTED) {
921 
922 			if (cmlb_validate(dkp->dk_cmlbhandle, 0, 0) != 0)
923 				return (ENXIO);
924 
925 			if (cmlb_partinfo(dkp->dk_cmlbhandle, CMDKPART(dev),
926 			    &p_lblkcnt, &p_lblksrt, NULL, NULL, 0))
927 				return (ENXIO);
928 
929 			if (p_lblkcnt <= 0)
930 				return (ENXIO);
931 		}
932 
933 		if (ddi_copyout(&state, (caddr_t)arg, sizeof (int), flag))
934 			return (EFAULT);
935 
936 		return (0);
937 	}
938 
939 	/*
940 	 * is media removable?
941 	 */
942 	case DKIOCREMOVABLE: {
943 		int i;
944 
945 		i = (DKTP_EXT->tg_rmb) ? 1 : 0;
946 
947 		if (ddi_copyout(&i, (caddr_t)arg, sizeof (int), flag))
948 			return (EFAULT);
949 
950 		return (0);
951 	}
952 
953 	case DKIOCADDBAD:
954 		/*
955 		 * This is not an update mechanism to add bad blocks
956 		 * to the bad block structures stored on disk.
957 		 *
958 		 * addbadsec(1M) will update the bad block data on disk
959 		 * and use this ioctl to force the driver to re-initialize
960 		 * the list of bad blocks in the driver.
961 		 */
962 
963 		/* start BBH */
964 		cmdk_bbh_reopen(dkp);
965 		return (0);
966 
967 	case DKIOCG_PHYGEOM:
968 	case DKIOCG_VIRTGEOM:
969 	case DKIOCGGEOM:
970 	case DKIOCSGEOM:
971 	case DKIOCGAPART:
972 	case DKIOCSAPART:
973 	case DKIOCGVTOC:
974 	case DKIOCSVTOC:
975 	case DKIOCPARTINFO:
976 	case DKIOCGMBOOT:
977 	case DKIOCSMBOOT:
978 	case DKIOCGETEFI:
979 	case DKIOCSETEFI:
980 	case DKIOCPARTITION:
981 	{
982 		int rc;
983 
984 		rc = cmlb_ioctl(dkp->dk_cmlbhandle, dev, cmd, arg, flag,
985 		    credp, rvalp, 0);
986 		if (cmd == DKIOCSVTOC)
987 			cmdk_devid_setup(dkp);
988 		return (rc);
989 	}
990 
991 	case DIOCTL_RWCMD: {
992 		struct	dadkio_rwcmd *rwcmdp;
993 		int	status;
994 
995 		rwcmdp = kmem_alloc(sizeof (struct dadkio_rwcmd), KM_SLEEP);
996 
997 		status = rwcmd_copyin(rwcmdp, (caddr_t)arg, flag);
998 
999 		if (status == 0) {
1000 			bzero(&(rwcmdp->status), sizeof (struct dadkio_status));
1001 			status = dadk_ioctl(DKTP_DATA,
1002 			    dev,
1003 			    cmd,
1004 			    (uintptr_t)rwcmdp,
1005 			    flag,
1006 			    credp,
1007 			    rvalp);
1008 		}
1009 		if (status == 0)
1010 			status = rwcmd_copyout(rwcmdp, (caddr_t)arg, flag);
1011 
1012 		kmem_free(rwcmdp, sizeof (struct dadkio_rwcmd));
1013 		return (status);
1014 	}
1015 
1016 	default:
1017 		return (dadk_ioctl(DKTP_DATA,
1018 		    dev,
1019 		    cmd,
1020 		    arg,
1021 		    flag,
1022 		    credp,
1023 		    rvalp));
1024 	}
1025 }
1026 
1027 /*ARGSUSED1*/
1028 static int
1029 cmdkclose(dev_t dev, int flag, int otyp, cred_t *credp)
1030 {
1031 	int		part;
1032 	ulong_t		partbit;
1033 	int 		instance;
1034 	struct cmdk	*dkp;
1035 	int		lastclose = 1;
1036 	int		i;
1037 
1038 	instance = CMDKUNIT(dev);
1039 	if (!(dkp = ddi_get_soft_state(cmdk_state, instance)) ||
1040 	    (otyp >= OTYPCNT))
1041 		return (ENXIO);
1042 
1043 	mutex_enter(&dkp->dk_mutex);
1044 
1045 	/* check if device has been opened */
1046 	ASSERT(cmdk_isopen(dkp, dev));
1047 	if (!(dkp->dk_flag & CMDK_OPEN)) {
1048 		mutex_exit(&dkp->dk_mutex);
1049 		return (ENXIO);
1050 	}
1051 
1052 	while (dkp->dk_flag & CMDK_SUSPEND) {
1053 		cv_wait(&dkp->dk_suspend_cv, &dkp->dk_mutex);
1054 	}
1055 
1056 	part = CMDKPART(dev);
1057 	partbit = 1 << part;
1058 
1059 	/* account for close */
1060 	if (otyp == OTYP_LYR) {
1061 		ASSERT(dkp->dk_open_lyr[part] > 0);
1062 		if (dkp->dk_open_lyr[part])
1063 			dkp->dk_open_lyr[part]--;
1064 	} else {
1065 		ASSERT((dkp->dk_open_reg[otyp] & partbit) != 0);
1066 		dkp->dk_open_reg[otyp] &= ~partbit;
1067 	}
1068 	dkp->dk_open_exl &= ~partbit;
1069 
1070 	for (i = 0; i < CMDK_MAXPART; i++)
1071 		if (dkp->dk_open_lyr[i] != 0) {
1072 			lastclose = 0;
1073 			break;
1074 		}
1075 
1076 	if (lastclose)
1077 		for (i = 0; i < OTYPCNT; i++)
1078 			if (dkp->dk_open_reg[i] != 0) {
1079 				lastclose = 0;
1080 				break;
1081 			}
1082 
1083 	mutex_exit(&dkp->dk_mutex);
1084 
1085 	if (lastclose)
1086 		cmlb_invalidate(dkp->dk_cmlbhandle, 0);
1087 
1088 	return (DDI_SUCCESS);
1089 }
1090 
1091 /*ARGSUSED3*/
1092 static int
1093 cmdkopen(dev_t *dev_p, int flag, int otyp, cred_t *credp)
1094 {
1095 	dev_t		dev = *dev_p;
1096 	int 		part;
1097 	ulong_t		partbit;
1098 	int 		instance;
1099 	struct	cmdk	*dkp;
1100 	diskaddr_t	p_lblksrt;
1101 	diskaddr_t	p_lblkcnt;
1102 	int		i;
1103 	int		nodelay;
1104 
1105 	instance = CMDKUNIT(dev);
1106 	if (!(dkp = ddi_get_soft_state(cmdk_state, instance)))
1107 		return (ENXIO);
1108 
1109 	if (otyp >= OTYPCNT)
1110 		return (EINVAL);
1111 
1112 	mutex_enter(&dkp->dk_mutex);
1113 	while (dkp->dk_flag & CMDK_SUSPEND) {
1114 		cv_wait(&dkp->dk_suspend_cv, &dkp->dk_mutex);
1115 	}
1116 	mutex_exit(&dkp->dk_mutex);
1117 
1118 	part = CMDKPART(dev);
1119 	partbit = 1 << part;
1120 	nodelay = (flag & (FNDELAY | FNONBLOCK));
1121 
1122 	mutex_enter(&dkp->dk_mutex);
1123 
1124 	if (cmlb_validate(dkp->dk_cmlbhandle, 0, 0) != 0) {
1125 
1126 		/* fail if not doing non block open */
1127 		if (!nodelay) {
1128 			mutex_exit(&dkp->dk_mutex);
1129 			return (ENXIO);
1130 		}
1131 	} else if (cmlb_partinfo(dkp->dk_cmlbhandle, part, &p_lblkcnt,
1132 	    &p_lblksrt, NULL, NULL, 0) == 0) {
1133 
1134 		if (p_lblkcnt <= 0 && (!nodelay || otyp != OTYP_CHR)) {
1135 			mutex_exit(&dkp->dk_mutex);
1136 			return (ENXIO);
1137 		}
1138 	} else {
1139 		/* fail if not doing non block open */
1140 		if (!nodelay) {
1141 			mutex_exit(&dkp->dk_mutex);
1142 			return (ENXIO);
1143 		}
1144 	}
1145 
1146 	if ((DKTP_EXT->tg_rdonly) && (flag & FWRITE)) {
1147 		mutex_exit(&dkp->dk_mutex);
1148 		return (EROFS);
1149 	}
1150 
1151 	/* check for part already opend exclusively */
1152 	if (dkp->dk_open_exl & partbit)
1153 		goto excl_open_fail;
1154 
1155 	/* check if we can establish exclusive open */
1156 	if (flag & FEXCL) {
1157 		if (dkp->dk_open_lyr[part])
1158 			goto excl_open_fail;
1159 		for (i = 0; i < OTYPCNT; i++) {
1160 			if (dkp->dk_open_reg[i] & partbit)
1161 				goto excl_open_fail;
1162 		}
1163 	}
1164 
1165 	/* open will succeed, account for open */
1166 	dkp->dk_flag |= CMDK_OPEN;
1167 	if (otyp == OTYP_LYR)
1168 		dkp->dk_open_lyr[part]++;
1169 	else
1170 		dkp->dk_open_reg[otyp] |= partbit;
1171 	if (flag & FEXCL)
1172 		dkp->dk_open_exl |= partbit;
1173 
1174 	mutex_exit(&dkp->dk_mutex);
1175 	return (DDI_SUCCESS);
1176 
1177 excl_open_fail:
1178 	mutex_exit(&dkp->dk_mutex);
1179 	return (EBUSY);
1180 }
1181 
1182 /*
1183  * read routine
1184  */
1185 /*ARGSUSED2*/
1186 static int
1187 cmdkread(dev_t dev, struct uio *uio, cred_t *credp)
1188 {
1189 	return (cmdkrw(dev, uio, B_READ));
1190 }
1191 
1192 /*
1193  * async read routine
1194  */
1195 /*ARGSUSED2*/
1196 static int
1197 cmdkaread(dev_t dev, struct aio_req *aio, cred_t *credp)
1198 {
1199 	return (cmdkarw(dev, aio, B_READ));
1200 }
1201 
1202 /*
1203  * write routine
1204  */
1205 /*ARGSUSED2*/
1206 static int
1207 cmdkwrite(dev_t dev, struct uio *uio, cred_t *credp)
1208 {
1209 	return (cmdkrw(dev, uio, B_WRITE));
1210 }
1211 
1212 /*
1213  * async write routine
1214  */
1215 /*ARGSUSED2*/
1216 static int
1217 cmdkawrite(dev_t dev, struct aio_req *aio, cred_t *credp)
1218 {
1219 	return (cmdkarw(dev, aio, B_WRITE));
1220 }
1221 
1222 static void
1223 cmdkmin(struct buf *bp)
1224 {
1225 	if (bp->b_bcount > DK_MAXRECSIZE)
1226 		bp->b_bcount = DK_MAXRECSIZE;
1227 }
1228 
1229 static int
1230 cmdkrw(dev_t dev, struct uio *uio, int flag)
1231 {
1232 	int 		instance;
1233 	struct	cmdk	*dkp;
1234 
1235 	instance = CMDKUNIT(dev);
1236 	if (!(dkp = ddi_get_soft_state(cmdk_state, instance)))
1237 		return (ENXIO);
1238 
1239 	mutex_enter(&dkp->dk_mutex);
1240 	while (dkp->dk_flag & CMDK_SUSPEND) {
1241 		cv_wait(&dkp->dk_suspend_cv, &dkp->dk_mutex);
1242 	}
1243 	mutex_exit(&dkp->dk_mutex);
1244 
1245 	return (physio(cmdkstrategy, (struct buf *)0, dev, flag, cmdkmin, uio));
1246 }
1247 
1248 static int
1249 cmdkarw(dev_t dev, struct aio_req *aio, int flag)
1250 {
1251 	int 		instance;
1252 	struct	cmdk	*dkp;
1253 
1254 	instance = CMDKUNIT(dev);
1255 	if (!(dkp = ddi_get_soft_state(cmdk_state, instance)))
1256 		return (ENXIO);
1257 
1258 	mutex_enter(&dkp->dk_mutex);
1259 	while (dkp->dk_flag & CMDK_SUSPEND) {
1260 		cv_wait(&dkp->dk_suspend_cv, &dkp->dk_mutex);
1261 	}
1262 	mutex_exit(&dkp->dk_mutex);
1263 
1264 	return (aphysio(cmdkstrategy, anocancel, dev, flag, cmdkmin, aio));
1265 }
1266 
1267 /*
1268  * strategy routine
1269  */
1270 static int
1271 cmdkstrategy(struct buf *bp)
1272 {
1273 	int 		instance;
1274 	struct	cmdk 	*dkp;
1275 	long		d_cnt;
1276 	diskaddr_t	p_lblksrt;
1277 	diskaddr_t	p_lblkcnt;
1278 
1279 	instance = CMDKUNIT(bp->b_edev);
1280 	if (cmdk_indump || !(dkp = ddi_get_soft_state(cmdk_state, instance)) ||
1281 	    (dkblock(bp) < 0)) {
1282 		bp->b_resid = bp->b_bcount;
1283 		SETBPERR(bp, ENXIO);
1284 		biodone(bp);
1285 		return (0);
1286 	}
1287 
1288 	mutex_enter(&dkp->dk_mutex);
1289 	ASSERT(cmdk_isopen(dkp, bp->b_edev));
1290 	while (dkp->dk_flag & CMDK_SUSPEND) {
1291 		cv_wait(&dkp->dk_suspend_cv, &dkp->dk_mutex);
1292 	}
1293 	mutex_exit(&dkp->dk_mutex);
1294 
1295 	bp->b_flags &= ~(B_DONE|B_ERROR);
1296 	bp->b_resid = 0;
1297 	bp->av_back = NULL;
1298 
1299 	/*
1300 	 * only re-read the vtoc if necessary (force == FALSE)
1301 	 */
1302 	if (cmlb_partinfo(dkp->dk_cmlbhandle, CMDKPART(bp->b_edev),
1303 	    &p_lblkcnt, &p_lblksrt, NULL, NULL, 0)) {
1304 		SETBPERR(bp, ENXIO);
1305 	}
1306 
1307 	if ((bp->b_bcount & (NBPSCTR-1)) || (dkblock(bp) > p_lblkcnt))
1308 		SETBPERR(bp, ENXIO);
1309 
1310 	if ((bp->b_flags & B_ERROR) || (dkblock(bp) == p_lblkcnt)) {
1311 		bp->b_resid = bp->b_bcount;
1312 		biodone(bp);
1313 		return (0);
1314 	}
1315 
1316 	d_cnt = bp->b_bcount >> SCTRSHFT;
1317 	if ((dkblock(bp) + d_cnt) > p_lblkcnt) {
1318 		bp->b_resid = ((dkblock(bp) + d_cnt) - p_lblkcnt) << SCTRSHFT;
1319 		bp->b_bcount -= bp->b_resid;
1320 	}
1321 
1322 	SET_BP_SEC(bp, ((ulong_t)(p_lblksrt + dkblock(bp))));
1323 	if (dadk_strategy(DKTP_DATA, bp) != DDI_SUCCESS) {
1324 		bp->b_resid += bp->b_bcount;
1325 		biodone(bp);
1326 	}
1327 	return (0);
1328 }
1329 
1330 static int
1331 cmdk_create_obj(dev_info_t *dip, struct cmdk *dkp)
1332 {
1333 	struct scsi_device *devp;
1334 	opaque_t	queobjp = NULL;
1335 	opaque_t	flcobjp = NULL;
1336 	char		que_keyvalp[64];
1337 	int		que_keylen;
1338 	char		flc_keyvalp[64];
1339 	int		flc_keylen;
1340 
1341 	ASSERT(mutex_owned(&dkp->dk_mutex));
1342 
1343 	/* Create linkage to queueing routines based on property */
1344 	que_keylen = sizeof (que_keyvalp);
1345 	if (ddi_prop_op(DDI_DEV_T_NONE, dip, PROP_LEN_AND_VAL_BUF,
1346 	    DDI_PROP_CANSLEEP, "queue", que_keyvalp, &que_keylen) !=
1347 	    DDI_PROP_SUCCESS) {
1348 		cmn_err(CE_WARN, "cmdk_create_obj: queue property undefined");
1349 		return (DDI_FAILURE);
1350 	}
1351 	que_keyvalp[que_keylen] = (char)0;
1352 
1353 	if (strcmp(que_keyvalp, "qfifo") == 0) {
1354 		queobjp = (opaque_t)qfifo_create();
1355 	} else if (strcmp(que_keyvalp, "qsort") == 0) {
1356 		queobjp = (opaque_t)qsort_create();
1357 	} else {
1358 		return (DDI_FAILURE);
1359 	}
1360 
1361 	/* Create linkage to dequeueing routines based on property */
1362 	flc_keylen = sizeof (flc_keyvalp);
1363 	if (ddi_prop_op(DDI_DEV_T_NONE, dip, PROP_LEN_AND_VAL_BUF,
1364 	    DDI_PROP_CANSLEEP, "flow_control", flc_keyvalp, &flc_keylen) !=
1365 	    DDI_PROP_SUCCESS) {
1366 		cmn_err(CE_WARN,
1367 		    "cmdk_create_obj: flow-control property undefined");
1368 		return (DDI_FAILURE);
1369 	}
1370 
1371 	flc_keyvalp[flc_keylen] = (char)0;
1372 
1373 	if (strcmp(flc_keyvalp, "dsngl") == 0) {
1374 		flcobjp = (opaque_t)dsngl_create();
1375 	} else if (strcmp(flc_keyvalp, "dmult") == 0) {
1376 		flcobjp = (opaque_t)dmult_create();
1377 	} else {
1378 		return (DDI_FAILURE);
1379 	}
1380 
1381 	/* populate bbh_obj object stored in dkp */
1382 	dkp->dk_bbh_obj.bbh_data = dkp;
1383 	dkp->dk_bbh_obj.bbh_ops = &cmdk_bbh_ops;
1384 
1385 	/* create linkage to dadk */
1386 	dkp->dk_tgobjp = (opaque_t)dadk_create();
1387 
1388 	devp = ddi_get_driver_private(dip);
1389 	(void) dadk_init(DKTP_DATA, devp, flcobjp, queobjp, &dkp->dk_bbh_obj,
1390 	    NULL);
1391 
1392 	return (DDI_SUCCESS);
1393 }
1394 
1395 static void
1396 cmdk_destroy_obj(dev_info_t *dip, struct cmdk *dkp)
1397 {
1398 	char		que_keyvalp[64];
1399 	int		que_keylen;
1400 	char		flc_keyvalp[64];
1401 	int		flc_keylen;
1402 
1403 	ASSERT(mutex_owned(&dkp->dk_mutex));
1404 
1405 	(void) dadk_free((dkp->dk_tgobjp));
1406 	dkp->dk_tgobjp = NULL;
1407 
1408 	que_keylen = sizeof (que_keyvalp);
1409 	if (ddi_prop_op(DDI_DEV_T_NONE, dip, PROP_LEN_AND_VAL_BUF,
1410 	    DDI_PROP_CANSLEEP, "queue", que_keyvalp, &que_keylen) !=
1411 	    DDI_PROP_SUCCESS) {
1412 		cmn_err(CE_WARN, "cmdk_destroy_obj: queue property undefined");
1413 		return;
1414 	}
1415 	que_keyvalp[que_keylen] = (char)0;
1416 
1417 	flc_keylen = sizeof (flc_keyvalp);
1418 	if (ddi_prop_op(DDI_DEV_T_NONE, dip, PROP_LEN_AND_VAL_BUF,
1419 	    DDI_PROP_CANSLEEP, "flow_control", flc_keyvalp, &flc_keylen) !=
1420 	    DDI_PROP_SUCCESS) {
1421 		cmn_err(CE_WARN,
1422 		    "cmdk_destroy_obj: flow-control property undefined");
1423 		return;
1424 	}
1425 	flc_keyvalp[flc_keylen] = (char)0;
1426 }
1427 /*ARGSUSED5*/
1428 static int
1429 cmdk_lb_rdwr(dev_info_t *dip, uchar_t cmd, void *bufaddr,
1430     diskaddr_t start, size_t count, void *tg_cookie)
1431 {
1432 	struct cmdk	*dkp;
1433 	opaque_t	handle;
1434 	int		rc = 0;
1435 	char		*bufa;
1436 
1437 	dkp = ddi_get_soft_state(cmdk_state, ddi_get_instance(dip));
1438 	if (dkp == NULL)
1439 		return (ENXIO);
1440 
1441 	if (cmd != TG_READ && cmd != TG_WRITE)
1442 		return (EINVAL);
1443 
1444 	/* count must be multiple of 512 */
1445 	count = (count + NBPSCTR - 1) & -NBPSCTR;
1446 	handle = dadk_iob_alloc(DKTP_DATA, start, count, KM_SLEEP);
1447 	if (!handle)
1448 		return (ENOMEM);
1449 
1450 	if (cmd == TG_READ) {
1451 		bufa = dadk_iob_xfer(DKTP_DATA, handle, B_READ);
1452 		if (!bufa)
1453 			rc = EIO;
1454 		else
1455 			bcopy(bufa, bufaddr, count);
1456 	} else {
1457 		bufa = dadk_iob_htoc(DKTP_DATA, handle);
1458 		bcopy(bufaddr, bufa, count);
1459 		bufa = dadk_iob_xfer(DKTP_DATA, handle, B_WRITE);
1460 		if (!bufa)
1461 			rc = EIO;
1462 	}
1463 	(void) dadk_iob_free(DKTP_DATA, handle);
1464 
1465 	return (rc);
1466 }
1467 
1468 /*ARGSUSED3*/
1469 static int
1470 cmdk_lb_getinfo(dev_info_t *dip, int cmd, void *arg, void *tg_cookie)
1471 {
1472 
1473 	struct cmdk		*dkp;
1474 	struct tgdk_geom	phyg;
1475 
1476 
1477 	dkp = ddi_get_soft_state(cmdk_state, ddi_get_instance(dip));
1478 	if (dkp == NULL)
1479 		return (ENXIO);
1480 
1481 	switch (cmd) {
1482 	case TG_GETPHYGEOM: {
1483 		cmlb_geom_t *phygeomp = (cmlb_geom_t *)arg;
1484 
1485 		/* dadk_getphygeom always returns success */
1486 		(void) dadk_getphygeom(DKTP_DATA, &phyg);
1487 
1488 		phygeomp->g_capacity	= phyg.g_cap;
1489 		phygeomp->g_nsect	= phyg.g_sec;
1490 		phygeomp->g_nhead	= phyg.g_head;
1491 		phygeomp->g_acyl	= phyg.g_acyl;
1492 		phygeomp->g_ncyl	= phyg.g_cyl;
1493 		phygeomp->g_secsize	= phyg.g_secsiz;
1494 		phygeomp->g_intrlv	= 1;
1495 		phygeomp->g_rpm		= 3600;
1496 
1497 		return (0);
1498 	}
1499 
1500 	case TG_GETVIRTGEOM: {
1501 		cmlb_geom_t *virtgeomp = (cmlb_geom_t *)arg;
1502 		diskaddr_t		capacity;
1503 
1504 		(void) dadk_getgeom(DKTP_DATA, &phyg);
1505 		capacity = phyg.g_cap;
1506 
1507 		/*
1508 		 * If the controller returned us something that doesn't
1509 		 * really fit into an Int 13/function 8 geometry
1510 		 * result, just fail the ioctl.  See PSARC 1998/313.
1511 		 */
1512 		if (capacity < 0 || capacity >= 63 * 254 * 1024)
1513 			return (EINVAL);
1514 
1515 		virtgeomp->g_capacity	= capacity;
1516 		virtgeomp->g_nsect	= 63;
1517 		virtgeomp->g_nhead	= 254;
1518 		virtgeomp->g_ncyl	= capacity / (63 * 254);
1519 		virtgeomp->g_acyl	= 0;
1520 		virtgeomp->g_secsize	= 512;
1521 		virtgeomp->g_intrlv	= 1;
1522 		virtgeomp->g_rpm	= 3600;
1523 
1524 		return (0);
1525 	}
1526 
1527 	case TG_GETCAPACITY:
1528 	case TG_GETBLOCKSIZE:
1529 	{
1530 
1531 		/* dadk_getphygeom always returns success */
1532 		(void) dadk_getphygeom(DKTP_DATA, &phyg);
1533 		if (cmd == TG_GETCAPACITY)
1534 			*(diskaddr_t *)arg = phyg.g_cap;
1535 		else
1536 			*(uint32_t *)arg = (uint32_t)phyg.g_secsiz;
1537 
1538 		return (0);
1539 	}
1540 
1541 	case TG_GETATTR: {
1542 		tg_attribute_t *tgattribute = (tg_attribute_t *)arg;
1543 		if ((DKTP_EXT->tg_rdonly))
1544 			tgattribute->media_is_writable = FALSE;
1545 		else
1546 			tgattribute->media_is_writable = TRUE;
1547 
1548 		return (0);
1549 	}
1550 
1551 	default:
1552 		return (ENOTTY);
1553 	}
1554 }
1555 
1556 
1557 
1558 
1559 
1560 /*
1561  * Create and register the devid.
1562  * There are 4 different ways we can get a device id:
1563  *    1. Already have one - nothing to do
1564  *    2. Build one from the drive's model and serial numbers
1565  *    3. Read one from the disk (first sector of last track)
1566  *    4. Fabricate one and write it on the disk.
1567  * If any of these succeeds, register the deviceid
1568  */
1569 static void
1570 cmdk_devid_setup(struct cmdk *dkp)
1571 {
1572 	int	rc;
1573 
1574 	/* Try options until one succeeds, or all have failed */
1575 
1576 	/* 1. All done if already registered */
1577 	if (dkp->dk_devid != NULL)
1578 		return;
1579 
1580 	/* 2. Build a devid from the model and serial number */
1581 	rc = cmdk_devid_modser(dkp);
1582 	if (rc != DDI_SUCCESS) {
1583 		/* 3. Read devid from the disk, if present */
1584 		rc = cmdk_devid_read(dkp);
1585 
1586 		/* 4. otherwise make one up and write it on the disk */
1587 		if (rc != DDI_SUCCESS)
1588 			rc = cmdk_devid_fabricate(dkp);
1589 	}
1590 
1591 	/* If we managed to get a devid any of the above ways, register it */
1592 	if (rc == DDI_SUCCESS)
1593 		(void) ddi_devid_register(dkp->dk_dip, dkp->dk_devid);
1594 
1595 }
1596 
1597 /*
1598  * Build a devid from the model and serial number
1599  * Return DDI_SUCCESS or DDI_FAILURE.
1600  */
1601 static int
1602 cmdk_devid_modser(struct cmdk *dkp)
1603 {
1604 	int	rc = DDI_FAILURE;
1605 	char	*hwid;
1606 	int	modlen;
1607 	int	serlen;
1608 
1609 	/*
1610 	 * device ID is a concatenation of model number, '=', serial number.
1611 	 */
1612 	hwid = kmem_alloc(CMDK_HWIDLEN, KM_SLEEP);
1613 	modlen = cmdk_get_modser(dkp, DIOCTL_GETMODEL, hwid, CMDK_HWIDLEN);
1614 	if (modlen == 0) {
1615 		rc = DDI_FAILURE;
1616 		goto err;
1617 	}
1618 	hwid[modlen++] = '=';
1619 	serlen = cmdk_get_modser(dkp, DIOCTL_GETSERIAL,
1620 	    hwid + modlen, CMDK_HWIDLEN - modlen);
1621 	if (serlen == 0) {
1622 		rc = DDI_FAILURE;
1623 		goto err;
1624 	}
1625 	hwid[modlen + serlen] = 0;
1626 
1627 	/* Initialize the device ID, trailing NULL not included */
1628 	rc = ddi_devid_init(dkp->dk_dip, DEVID_ATA_SERIAL, modlen + serlen,
1629 	    hwid, (ddi_devid_t *)&dkp->dk_devid);
1630 	if (rc != DDI_SUCCESS) {
1631 		rc = DDI_FAILURE;
1632 		goto err;
1633 	}
1634 
1635 	rc = DDI_SUCCESS;
1636 
1637 err:
1638 	kmem_free(hwid, CMDK_HWIDLEN);
1639 	return (rc);
1640 }
1641 
1642 static int
1643 cmdk_get_modser(struct cmdk *dkp, int ioccmd, char *buf, int len)
1644 {
1645 	dadk_ioc_string_t strarg;
1646 	int		rval;
1647 	char		*s;
1648 	char		ch;
1649 	boolean_t	ret;
1650 	int		i;
1651 	int		tb;
1652 
1653 	strarg.is_buf = buf;
1654 	strarg.is_size = len;
1655 	if (dadk_ioctl(DKTP_DATA,
1656 	    dkp->dk_dev,
1657 	    ioccmd,
1658 	    (uintptr_t)&strarg,
1659 	    FNATIVE | FKIOCTL,
1660 	    NULL,
1661 	    &rval) != 0)
1662 		return (0);
1663 
1664 	/*
1665 	 * valid model/serial string must contain a non-zero non-space
1666 	 * trim trailing spaces/NULL
1667 	 */
1668 	ret = B_FALSE;
1669 	s = buf;
1670 	for (i = 0; i < strarg.is_size; i++) {
1671 		ch = *s++;
1672 		if (ch != ' ' && ch != '\0')
1673 			tb = i + 1;
1674 		if (ch != ' ' && ch != '\0' && ch != '0')
1675 			ret = B_TRUE;
1676 	}
1677 
1678 	if (ret == B_FALSE)
1679 		return (0);
1680 
1681 	return (tb);
1682 }
1683 
1684 /*
1685  * Read a devid from on the first block of the last track of
1686  * the last cylinder.  Make sure what we read is a valid devid.
1687  * Return DDI_SUCCESS or DDI_FAILURE.
1688  */
1689 static int
1690 cmdk_devid_read(struct cmdk *dkp)
1691 {
1692 	diskaddr_t	blk;
1693 	struct dk_devid *dkdevidp;
1694 	uint_t		*ip;
1695 	int		chksum;
1696 	int		i, sz;
1697 	tgdk_iob_handle	handle;
1698 	int		rc = DDI_FAILURE;
1699 
1700 	if (cmlb_get_devid_block(dkp->dk_cmlbhandle, &blk, 0))
1701 		goto err;
1702 
1703 	/* read the devid */
1704 	handle = dadk_iob_alloc(DKTP_DATA, blk, NBPSCTR, KM_SLEEP);
1705 	if (handle == NULL)
1706 		goto err;
1707 
1708 	dkdevidp = (struct dk_devid *)dadk_iob_xfer(DKTP_DATA, handle, B_READ);
1709 	if (dkdevidp == NULL)
1710 		goto err;
1711 
1712 	/* Validate the revision */
1713 	if ((dkdevidp->dkd_rev_hi != DK_DEVID_REV_MSB) ||
1714 	    (dkdevidp->dkd_rev_lo != DK_DEVID_REV_LSB))
1715 		goto err;
1716 
1717 	/* Calculate the checksum */
1718 	chksum = 0;
1719 	ip = (uint_t *)dkdevidp;
1720 	for (i = 0; i < ((NBPSCTR - sizeof (int))/sizeof (int)); i++)
1721 		chksum ^= ip[i];
1722 	if (DKD_GETCHKSUM(dkdevidp) != chksum)
1723 		goto err;
1724 
1725 	/* Validate the device id */
1726 	if (ddi_devid_valid((ddi_devid_t)dkdevidp->dkd_devid) != DDI_SUCCESS)
1727 		goto err;
1728 
1729 	/* keep a copy of the device id */
1730 	sz = ddi_devid_sizeof((ddi_devid_t)dkdevidp->dkd_devid);
1731 	dkp->dk_devid = kmem_alloc(sz, KM_SLEEP);
1732 	bcopy(dkdevidp->dkd_devid, dkp->dk_devid, sz);
1733 
1734 	rc = DDI_SUCCESS;
1735 
1736 err:
1737 	if (handle != NULL)
1738 		(void) dadk_iob_free(DKTP_DATA, handle);
1739 	return (rc);
1740 }
1741 
1742 /*
1743  * Create a devid and write it on the first block of the last track of
1744  * the last cylinder.
1745  * Return DDI_SUCCESS or DDI_FAILURE.
1746  */
1747 static int
1748 cmdk_devid_fabricate(struct cmdk *dkp)
1749 {
1750 	ddi_devid_t	devid = NULL;	/* devid made by ddi_devid_init  */
1751 	struct dk_devid	*dkdevidp;	/* devid struct stored on disk */
1752 	diskaddr_t	blk;
1753 	tgdk_iob_handle	handle = NULL;
1754 	uint_t		*ip, chksum;
1755 	int		i;
1756 	int		rc;
1757 
1758 	rc = ddi_devid_init(dkp->dk_dip, DEVID_FAB, 0, NULL, &devid);
1759 	if (rc != DDI_SUCCESS)
1760 		goto err;
1761 
1762 	if (cmlb_get_devid_block(dkp->dk_cmlbhandle, &blk, 0)) {
1763 		/* no device id block address */
1764 		return (DDI_FAILURE);
1765 	}
1766 
1767 	handle = dadk_iob_alloc(DKTP_DATA, blk, NBPSCTR, KM_SLEEP);
1768 	if (!handle)
1769 		goto err;
1770 
1771 	/* Locate the buffer */
1772 	dkdevidp = (struct dk_devid *)dadk_iob_htoc(DKTP_DATA, handle);
1773 
1774 	/* Fill in the revision */
1775 	bzero(dkdevidp, NBPSCTR);
1776 	dkdevidp->dkd_rev_hi = DK_DEVID_REV_MSB;
1777 	dkdevidp->dkd_rev_lo = DK_DEVID_REV_LSB;
1778 
1779 	/* Copy in the device id */
1780 	i = ddi_devid_sizeof(devid);
1781 	if (i > DK_DEVID_SIZE)
1782 		goto err;
1783 	bcopy(devid, dkdevidp->dkd_devid, i);
1784 
1785 	/* Calculate the chksum */
1786 	chksum = 0;
1787 	ip = (uint_t *)dkdevidp;
1788 	for (i = 0; i < ((NBPSCTR - sizeof (int))/sizeof (int)); i++)
1789 		chksum ^= ip[i];
1790 
1791 	/* Fill in the checksum */
1792 	DKD_FORMCHKSUM(chksum, dkdevidp);
1793 
1794 	/* write the devid */
1795 	(void) dadk_iob_xfer(DKTP_DATA, handle, B_WRITE);
1796 
1797 	dkp->dk_devid = devid;
1798 
1799 	rc = DDI_SUCCESS;
1800 
1801 err:
1802 	if (handle != NULL)
1803 		(void) dadk_iob_free(DKTP_DATA, handle);
1804 
1805 	if (rc != DDI_SUCCESS && devid != NULL)
1806 		ddi_devid_free(devid);
1807 
1808 	return (rc);
1809 }
1810 
1811 static void
1812 cmdk_bbh_free_alts(struct cmdk *dkp)
1813 {
1814 	if (dkp->dk_alts_hdl) {
1815 		(void) dadk_iob_free(DKTP_DATA, dkp->dk_alts_hdl);
1816 		kmem_free(dkp->dk_slc_cnt,
1817 		    NDKMAP * (sizeof (uint32_t) + sizeof (struct alts_ent *)));
1818 		dkp->dk_alts_hdl = NULL;
1819 	}
1820 }
1821 
1822 static void
1823 cmdk_bbh_reopen(struct cmdk *dkp)
1824 {
1825 	tgdk_iob_handle 	handle = NULL;
1826 	diskaddr_t		slcb, slcn, slce;
1827 	struct	alts_parttbl	*ap;
1828 	struct	alts_ent	*enttblp;
1829 	uint32_t		altused;
1830 	uint32_t		altbase;
1831 	uint32_t		altlast;
1832 	int			alts;
1833 	uint16_t		vtoctag;
1834 	int			i, j;
1835 
1836 	/* find slice with V_ALTSCTR tag */
1837 	for (alts = 0; alts < NDKMAP; alts++) {
1838 		if (cmlb_partinfo(
1839 		    dkp->dk_cmlbhandle,
1840 		    alts,
1841 		    &slcn,
1842 		    &slcb,
1843 		    NULL,
1844 		    &vtoctag,
1845 		    0)) {
1846 			goto empty;	/* no partition table exists */
1847 		}
1848 
1849 		if (vtoctag == V_ALTSCTR && slcn > 1)
1850 			break;
1851 	}
1852 	if (alts >= NDKMAP) {
1853 		goto empty;	/* no V_ALTSCTR slice defined */
1854 	}
1855 
1856 	/* read in ALTS label block */
1857 	handle = dadk_iob_alloc(DKTP_DATA, slcb, NBPSCTR, KM_SLEEP);
1858 	if (!handle) {
1859 		goto empty;
1860 	}
1861 
1862 	ap = (struct alts_parttbl *)dadk_iob_xfer(DKTP_DATA, handle, B_READ);
1863 	if (!ap || (ap->alts_sanity != ALTS_SANITY)) {
1864 		goto empty;
1865 	}
1866 
1867 	altused = ap->alts_ent_used;	/* number of BB entries */
1868 	altbase = ap->alts_ent_base;	/* blk offset from begin slice */
1869 	altlast = ap->alts_ent_end;	/* blk offset to last block */
1870 	/* ((altused * sizeof (struct alts_ent) + NBPSCTR - 1) & ~NBPSCTR) */
1871 
1872 	if (altused == 0 ||
1873 	    altbase < 1 ||
1874 	    altbase > altlast ||
1875 	    altlast >= slcn) {
1876 		goto empty;
1877 	}
1878 	(void) dadk_iob_free(DKTP_DATA, handle);
1879 
1880 	/* read in ALTS remapping table */
1881 	handle = dadk_iob_alloc(DKTP_DATA,
1882 	    slcb + altbase,
1883 	    (altlast - altbase + 1) << SCTRSHFT, KM_SLEEP);
1884 	if (!handle) {
1885 		goto empty;
1886 	}
1887 
1888 	enttblp = (struct alts_ent *)dadk_iob_xfer(DKTP_DATA, handle, B_READ);
1889 	if (!enttblp) {
1890 		goto empty;
1891 	}
1892 
1893 	rw_enter(&dkp->dk_bbh_mutex, RW_WRITER);
1894 
1895 	/* allocate space for dk_slc_cnt and dk_slc_ent tables */
1896 	if (dkp->dk_slc_cnt == NULL) {
1897 		dkp->dk_slc_cnt = kmem_alloc(NDKMAP *
1898 		    (sizeof (long) + sizeof (struct alts_ent *)), KM_SLEEP);
1899 	}
1900 	dkp->dk_slc_ent = (struct alts_ent **)(dkp->dk_slc_cnt + NDKMAP);
1901 
1902 	/* free previous BB table (if any) */
1903 	if (dkp->dk_alts_hdl) {
1904 		(void) dadk_iob_free(DKTP_DATA, dkp->dk_alts_hdl);
1905 		dkp->dk_alts_hdl = NULL;
1906 		dkp->dk_altused = 0;
1907 	}
1908 
1909 	/* save linkage to new BB table */
1910 	dkp->dk_alts_hdl = handle;
1911 	dkp->dk_altused = altused;
1912 
1913 	/*
1914 	 * build indexes to BB table by slice
1915 	 * effectively we have
1916 	 *	struct alts_ent *enttblp[altused];
1917 	 *
1918 	 *	uint32_t	dk_slc_cnt[NDKMAP];
1919 	 *	struct alts_ent *dk_slc_ent[NDKMAP];
1920 	 */
1921 	for (i = 0; i < NDKMAP; i++) {
1922 		if (cmlb_partinfo(
1923 		    dkp->dk_cmlbhandle,
1924 		    i,
1925 		    &slcn,
1926 		    &slcb,
1927 		    NULL,
1928 		    NULL,
1929 		    0)) {
1930 			goto empty1;
1931 		}
1932 
1933 		dkp->dk_slc_cnt[i] = 0;
1934 		if (slcn == 0)
1935 			continue;	/* slice is not allocated */
1936 
1937 		/* last block in slice */
1938 		slce = slcb + slcn - 1;
1939 
1940 		/* find first remap entry in after beginnning of slice */
1941 		for (j = 0; j < altused; j++) {
1942 			if (enttblp[j].bad_start + enttblp[j].bad_end >= slcb)
1943 				break;
1944 		}
1945 		dkp->dk_slc_ent[i] = enttblp + j;
1946 
1947 		/* count remap entrys until end of slice */
1948 		for (; j < altused && enttblp[j].bad_start <= slce; j++) {
1949 			dkp->dk_slc_cnt[i] += 1;
1950 		}
1951 	}
1952 
1953 	rw_exit(&dkp->dk_bbh_mutex);
1954 	return;
1955 
1956 empty:
1957 	rw_enter(&dkp->dk_bbh_mutex, RW_WRITER);
1958 empty1:
1959 	if (handle && handle != dkp->dk_alts_hdl)
1960 		(void) dadk_iob_free(DKTP_DATA, handle);
1961 
1962 	if (dkp->dk_alts_hdl) {
1963 		(void) dadk_iob_free(DKTP_DATA, dkp->dk_alts_hdl);
1964 		dkp->dk_alts_hdl = NULL;
1965 	}
1966 
1967 	rw_exit(&dkp->dk_bbh_mutex);
1968 }
1969 
1970 /*ARGSUSED*/
1971 static bbh_cookie_t
1972 cmdk_bbh_htoc(opaque_t bbh_data, opaque_t handle)
1973 {
1974 	struct	bbh_handle *hp;
1975 	bbh_cookie_t ckp;
1976 
1977 	hp = (struct  bbh_handle *)handle;
1978 	ckp = hp->h_cktab + hp->h_idx;
1979 	hp->h_idx++;
1980 	return (ckp);
1981 }
1982 
1983 /*ARGSUSED*/
1984 static void
1985 cmdk_bbh_freehandle(opaque_t bbh_data, opaque_t handle)
1986 {
1987 	struct	bbh_handle *hp;
1988 
1989 	hp = (struct  bbh_handle *)handle;
1990 	kmem_free(handle, (sizeof (struct bbh_handle) +
1991 	    (hp->h_totck * (sizeof (struct bbh_cookie)))));
1992 }
1993 
1994 
1995 /*
1996  *	cmdk_bbh_gethandle remaps the bad sectors to alternates.
1997  *	There are 7 different cases when the comparison is made
1998  *	between the bad sector cluster and the disk section.
1999  *
2000  *	bad sector cluster	gggggggggggbbbbbbbggggggggggg
2001  *	case 1:			   ddddd
2002  *	case 2:				   -d-----
2003  *	case 3:					     ddddd
2004  *	case 4:			         dddddddddddd
2005  *	case 5:			      ddddddd-----
2006  *	case 6:			           ---ddddddd
2007  *	case 7:			           ddddddd
2008  *
2009  *	where:  g = good sector,	b = bad sector
2010  *		d = sector in disk section
2011  *		- = disk section may be extended to cover those disk area
2012  */
2013 
2014 static opaque_t
2015 cmdk_bbh_gethandle(opaque_t bbh_data, struct buf *bp)
2016 {
2017 	struct cmdk		*dkp = (struct cmdk *)bbh_data;
2018 	struct bbh_handle	*hp;
2019 	struct bbh_cookie	*ckp;
2020 	struct alts_ent		*altp;
2021 	uint32_t		alts_used;
2022 	uint32_t		part = CMDKPART(bp->b_edev);
2023 	daddr32_t		lastsec;
2024 	long			d_count;
2025 	int			i;
2026 	int			idx;
2027 	int			cnt;
2028 
2029 	if (part >= V_NUMPAR)
2030 		return (NULL);
2031 
2032 	/*
2033 	 * This if statement is atomic and it will succeed
2034 	 * if there are no bad blocks (almost always)
2035 	 *
2036 	 * so this if is performed outside of the rw_enter for speed
2037 	 * and then repeated inside the rw_enter for safety
2038 	 */
2039 	if (!dkp->dk_alts_hdl) {
2040 		return (NULL);
2041 	}
2042 
2043 	rw_enter(&dkp->dk_bbh_mutex, RW_READER);
2044 
2045 	if (dkp->dk_alts_hdl == NULL) {
2046 		rw_exit(&dkp->dk_bbh_mutex);
2047 		return (NULL);
2048 	}
2049 
2050 	alts_used = dkp->dk_slc_cnt[part];
2051 	if (alts_used == 0) {
2052 		rw_exit(&dkp->dk_bbh_mutex);
2053 		return (NULL);
2054 	}
2055 	altp = dkp->dk_slc_ent[part];
2056 
2057 	/*
2058 	 * binary search for the largest bad sector index in the alternate
2059 	 * entry table which overlaps or larger than the starting d_sec
2060 	 */
2061 	i = cmdk_bbh_bsearch(altp, alts_used, GET_BP_SEC(bp));
2062 	/* if starting sector is > the largest bad sector, return */
2063 	if (i == -1) {
2064 		rw_exit(&dkp->dk_bbh_mutex);
2065 		return (NULL);
2066 	}
2067 	/* i is the starting index.  Set altp to the starting entry addr */
2068 	altp += i;
2069 
2070 	d_count = bp->b_bcount >> SCTRSHFT;
2071 	lastsec = GET_BP_SEC(bp) + d_count - 1;
2072 
2073 	/* calculate the number of bad sectors */
2074 	for (idx = i, cnt = 0; idx < alts_used; idx++, altp++, cnt++) {
2075 		if (lastsec < altp->bad_start)
2076 			break;
2077 	}
2078 
2079 	if (!cnt) {
2080 		rw_exit(&dkp->dk_bbh_mutex);
2081 		return (NULL);
2082 	}
2083 
2084 	/* calculate the maximum number of reserved cookies */
2085 	cnt <<= 1;
2086 	cnt++;
2087 
2088 	/* allocate the handle */
2089 	hp = (struct bbh_handle *)kmem_zalloc((sizeof (*hp) +
2090 	    (cnt * sizeof (*ckp))), KM_SLEEP);
2091 
2092 	hp->h_idx = 0;
2093 	hp->h_totck = cnt;
2094 	ckp = hp->h_cktab = (struct bbh_cookie *)(hp + 1);
2095 	ckp[0].ck_sector = GET_BP_SEC(bp);
2096 	ckp[0].ck_seclen = d_count;
2097 
2098 	altp = dkp->dk_slc_ent[part];
2099 	altp += i;
2100 	for (idx = 0; i < alts_used; i++, altp++) {
2101 		/* CASE 1: */
2102 		if (lastsec < altp->bad_start)
2103 			break;
2104 
2105 		/* CASE 3: */
2106 		if (ckp[idx].ck_sector > altp->bad_end)
2107 			continue;
2108 
2109 		/* CASE 2 and 7: */
2110 		if ((ckp[idx].ck_sector >= altp->bad_start) &&
2111 		    (lastsec <= altp->bad_end)) {
2112 			ckp[idx].ck_sector = altp->good_start +
2113 			    ckp[idx].ck_sector - altp->bad_start;
2114 			break;
2115 		}
2116 
2117 		/* at least one bad sector in our section.  break it. */
2118 		/* CASE 5: */
2119 		if ((lastsec >= altp->bad_start) &&
2120 		    (lastsec <= altp->bad_end)) {
2121 			ckp[idx+1].ck_seclen = lastsec - altp->bad_start + 1;
2122 			ckp[idx].ck_seclen -= ckp[idx+1].ck_seclen;
2123 			ckp[idx+1].ck_sector = altp->good_start;
2124 			break;
2125 		}
2126 		/* CASE 6: */
2127 		if ((ckp[idx].ck_sector <= altp->bad_end) &&
2128 		    (ckp[idx].ck_sector >= altp->bad_start)) {
2129 			ckp[idx+1].ck_seclen = ckp[idx].ck_seclen;
2130 			ckp[idx].ck_seclen = altp->bad_end -
2131 			    ckp[idx].ck_sector + 1;
2132 			ckp[idx+1].ck_seclen -= ckp[idx].ck_seclen;
2133 			ckp[idx].ck_sector = altp->good_start +
2134 			    ckp[idx].ck_sector - altp->bad_start;
2135 			idx++;
2136 			ckp[idx].ck_sector = altp->bad_end + 1;
2137 			continue;	/* check rest of section */
2138 		}
2139 
2140 		/* CASE 4: */
2141 		ckp[idx].ck_seclen = altp->bad_start - ckp[idx].ck_sector;
2142 		ckp[idx+1].ck_sector = altp->good_start;
2143 		ckp[idx+1].ck_seclen = altp->bad_end - altp->bad_start + 1;
2144 		idx += 2;
2145 		ckp[idx].ck_sector = altp->bad_end + 1;
2146 		ckp[idx].ck_seclen = lastsec - altp->bad_end;
2147 	}
2148 
2149 	rw_exit(&dkp->dk_bbh_mutex);
2150 	return ((opaque_t)hp);
2151 }
2152 
2153 static int
2154 cmdk_bbh_bsearch(struct alts_ent *buf, int cnt, daddr32_t key)
2155 {
2156 	int	i;
2157 	int	ind;
2158 	int	interval;
2159 	int	mystatus = -1;
2160 
2161 	if (!cnt)
2162 		return (mystatus);
2163 
2164 	ind = 1; /* compiler complains about possible uninitialized var	*/
2165 	for (i = 1; i <= cnt; i <<= 1)
2166 		ind = i;
2167 
2168 	for (interval = ind; interval; ) {
2169 		if ((key >= buf[ind-1].bad_start) &&
2170 		    (key <= buf[ind-1].bad_end)) {
2171 			return (ind-1);
2172 		} else {
2173 			interval >>= 1;
2174 			if (key < buf[ind-1].bad_start) {
2175 				/* record the largest bad sector index */
2176 				mystatus = ind-1;
2177 				if (!interval)
2178 					break;
2179 				ind = ind - interval;
2180 			} else {
2181 				/*
2182 				 * if key is larger than the last element
2183 				 * then break
2184 				 */
2185 				if ((ind == cnt) || !interval)
2186 					break;
2187 				if ((ind+interval) <= cnt)
2188 					ind += interval;
2189 			}
2190 		}
2191 	}
2192 	return (mystatus);
2193 }
2194