xref: /illumos-gate/usr/src/uts/intel/os/sendsig.c (revision 338d6fc1)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*	Copyright (c) 1990, 1991 UNIX System Laboratories, Inc. */
28 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989, 1990 AT&T   */
29 /*	All Rights Reserved   */
30 
31 #include <sys/types.h>
32 #include <sys/param.h>
33 #include <sys/sysmacros.h>
34 #include <sys/signal.h>
35 #include <sys/systm.h>
36 #include <sys/user.h>
37 #include <sys/mman.h>
38 #include <sys/class.h>
39 #include <sys/proc.h>
40 #include <sys/procfs.h>
41 #include <sys/buf.h>
42 #include <sys/kmem.h>
43 #include <sys/cred.h>
44 #include <sys/archsystm.h>
45 #include <sys/vmparam.h>
46 #include <sys/prsystm.h>
47 #include <sys/reboot.h>
48 #include <sys/uadmin.h>
49 #include <sys/vfs.h>
50 #include <sys/vnode.h>
51 #include <sys/file.h>
52 #include <sys/session.h>
53 #include <sys/ucontext.h>
54 #include <sys/dnlc.h>
55 #include <sys/var.h>
56 #include <sys/cmn_err.h>
57 #include <sys/debugreg.h>
58 #include <sys/thread.h>
59 #include <sys/vtrace.h>
60 #include <sys/consdev.h>
61 #include <sys/psw.h>
62 #include <sys/regset.h>
63 
64 #include <sys/privregs.h>
65 
66 #include <sys/stack.h>
67 #include <sys/swap.h>
68 #include <vm/hat.h>
69 #include <vm/anon.h>
70 #include <vm/as.h>
71 #include <vm/page.h>
72 #include <vm/seg.h>
73 #include <vm/seg_kmem.h>
74 #include <vm/seg_map.h>
75 #include <vm/seg_vn.h>
76 #include <sys/exec.h>
77 #include <sys/acct.h>
78 #include <sys/core.h>
79 #include <sys/corectl.h>
80 #include <sys/modctl.h>
81 #include <sys/tuneable.h>
82 #include <c2/audit.h>
83 #include <sys/bootconf.h>
84 #include <sys/dumphdr.h>
85 #include <sys/promif.h>
86 #include <sys/systeminfo.h>
87 #include <sys/kdi.h>
88 #include <sys/contract_impl.h>
89 #include <sys/x86_archext.h>
90 
91 /*
92  * Construct the execution environment for the user's signal
93  * handler and arrange for control to be given to it on return
94  * to userland.  The library code now calls setcontext() to
95  * clean up after the signal handler, so sigret() is no longer
96  * needed.
97  *
98  * (The various 'volatile' declarations are need to ensure that values
99  * are correct on the error return from on_fault().)
100  */
101 
102 
103 /*
104  * An amd64 signal frame looks like this on the stack:
105  *
106  * old %rsp:
107  *		<128 bytes of untouched stack space>
108  *		<a siginfo_t [optional]>
109  *		<a ucontext_t>
110  *		<siginfo_t *>
111  *		<signal number>
112  * new %rsp:	<return address (deliberately invalid)>
113  *
114  * The signal number and siginfo_t pointer are only pushed onto the stack in
115  * order to allow stack backtraces.  The actual signal handling code expects the
116  * arguments in registers.
117  */
118 
119 struct sigframe {
120 	caddr_t retaddr;
121 	long	signo;
122 	siginfo_t *sip;
123 };
124 
125 int
126 sendsig(int sig, k_siginfo_t *sip, void (*hdlr)())
127 {
128 	volatile int minstacksz;
129 	int newstack;
130 	label_t ljb;
131 	volatile caddr_t sp;
132 	caddr_t fp;
133 	volatile struct regs *rp;
134 	volatile greg_t upc;
135 	volatile proc_t *p = ttoproc(curthread);
136 	struct as *as = p->p_as;
137 	klwp_t *lwp = ttolwp(curthread);
138 	ucontext_t *volatile tuc = NULL;
139 	ucontext_t *uc;
140 	siginfo_t *sip_addr;
141 	volatile int watched;
142 
143 	/*
144 	 * This routine is utterly dependent upon STACK_ALIGN being
145 	 * 16 and STACK_ENTRY_ALIGN being 8. Let's just acknowledge
146 	 * that and require it.
147 	 */
148 
149 #if STACK_ALIGN != 16 || STACK_ENTRY_ALIGN != 8
150 #error "sendsig() amd64 did not find the expected stack alignments"
151 #endif
152 
153 	rp = lwptoregs(lwp);
154 	upc = rp->r_pc;
155 
156 	/*
157 	 * Since we're setting up to run the signal handler we have to
158 	 * arrange that the stack at entry to the handler is (only)
159 	 * STACK_ENTRY_ALIGN (i.e. 8) byte aligned so that when the handler
160 	 * executes its push of %rbp, the stack realigns to STACK_ALIGN
161 	 * (i.e. 16) correctly.
162 	 *
163 	 * The new sp will point to the sigframe and the ucontext_t. The
164 	 * above means that sp (and thus sigframe) will be 8-byte aligned,
165 	 * but not 16-byte aligned. ucontext_t, however, contains %xmm regs
166 	 * which must be 16-byte aligned. Because of this, for correct
167 	 * alignment, sigframe must be a multiple of 8-bytes in length, but
168 	 * not 16-bytes. This will place ucontext_t at a nice 16-byte boundary.
169 	 */
170 
171 	/* LINTED: logical expression always true: op "||" */
172 	ASSERT((sizeof (struct sigframe) % 16) == 8);
173 
174 	minstacksz = sizeof (struct sigframe) + SA(sizeof (*uc));
175 	if (sip != NULL)
176 		minstacksz += SA(sizeof (siginfo_t));
177 	ASSERT((minstacksz & (STACK_ENTRY_ALIGN - 1ul)) == 0);
178 
179 	/*
180 	 * Figure out whether we will be handling this signal on
181 	 * an alternate stack specified by the user.  Then allocate
182 	 * and validate the stack requirements for the signal handler
183 	 * context.  on_fault will catch any faults.
184 	 */
185 	newstack = sigismember(&PTOU(curproc)->u_sigonstack, sig) &&
186 	    !(lwp->lwp_sigaltstack.ss_flags & (SS_ONSTACK|SS_DISABLE));
187 
188 	if (newstack) {
189 		fp = (caddr_t)(SA((uintptr_t)lwp->lwp_sigaltstack.ss_sp) +
190 		    SA(lwp->lwp_sigaltstack.ss_size) - STACK_ALIGN);
191 	} else {
192 		/*
193 		 * Drop below the 128-byte reserved region of the stack frame
194 		 * we're interrupting.
195 		 */
196 		fp = (caddr_t)rp->r_sp - STACK_RESERVE;
197 	}
198 
199 	/*
200 	 * Force proper stack pointer alignment, even in the face of a
201 	 * misaligned stack pointer from user-level before the signal.
202 	 */
203 	fp = (caddr_t)((uintptr_t)fp & ~(STACK_ENTRY_ALIGN - 1ul));
204 
205 	/*
206 	 * Most of the time during normal execution, the stack pointer
207 	 * is aligned on a STACK_ALIGN (i.e. 16 byte) boundary.  However,
208 	 * (for example) just after a call instruction (which pushes
209 	 * the return address), the callers stack misaligns until the
210 	 * 'push %rbp' happens in the callee prolog.  So while we should
211 	 * expect the stack pointer to be always at least STACK_ENTRY_ALIGN
212 	 * aligned, we should -not- expect it to always be STACK_ALIGN aligned.
213 	 * We now adjust to ensure that the new sp is aligned to
214 	 * STACK_ENTRY_ALIGN but not to STACK_ALIGN.
215 	 */
216 	sp = fp - minstacksz;
217 	if (((uintptr_t)sp & (STACK_ALIGN - 1ul)) == 0) {
218 		sp -= STACK_ENTRY_ALIGN;
219 		minstacksz = fp - sp;
220 	}
221 
222 	/*
223 	 * Now, make sure the resulting signal frame address is sane
224 	 */
225 	if (sp >= as->a_userlimit || fp >= as->a_userlimit) {
226 #ifdef DEBUG
227 		printf("sendsig: bad signal stack cmd=%s, pid=%d, sig=%d\n",
228 		    PTOU(p)->u_comm, p->p_pid, sig);
229 		printf("sigsp = 0x%p, action = 0x%p, upc = 0x%lx\n",
230 		    (void *)sp, (void *)hdlr, (uintptr_t)upc);
231 		printf("sp above USERLIMIT\n");
232 #endif
233 		return (0);
234 	}
235 
236 	watched = watch_disable_addr((caddr_t)sp, minstacksz, S_WRITE);
237 
238 	if (on_fault(&ljb))
239 		goto badstack;
240 
241 	if (sip != NULL) {
242 		zoneid_t zoneid;
243 
244 		fp -= SA(sizeof (siginfo_t));
245 		uzero(fp, sizeof (siginfo_t));
246 		if (SI_FROMUSER(sip) &&
247 		    (zoneid = p->p_zone->zone_id) != GLOBAL_ZONEID &&
248 		    zoneid != sip->si_zoneid) {
249 			k_siginfo_t sani_sip = *sip;
250 
251 			sani_sip.si_pid = p->p_zone->zone_zsched->p_pid;
252 			sani_sip.si_uid = 0;
253 			sani_sip.si_ctid = -1;
254 			sani_sip.si_zoneid = zoneid;
255 			copyout_noerr(&sani_sip, fp, sizeof (sani_sip));
256 		} else
257 			copyout_noerr(sip, fp, sizeof (*sip));
258 		sip_addr = (siginfo_t *)fp;
259 
260 		if (sig == SIGPROF &&
261 		    curthread->t_rprof != NULL &&
262 		    curthread->t_rprof->rp_anystate) {
263 			/*
264 			 * We stand on our head to deal with
265 			 * the real time profiling signal.
266 			 * Fill in the stuff that doesn't fit
267 			 * in a normal k_siginfo structure.
268 			 */
269 			int i = sip->si_nsysarg;
270 
271 			while (--i >= 0)
272 				sulword_noerr(
273 				    (ulong_t *)&(sip_addr->si_sysarg[i]),
274 				    (ulong_t)lwp->lwp_arg[i]);
275 			copyout_noerr(curthread->t_rprof->rp_state,
276 			    sip_addr->si_mstate,
277 			    sizeof (curthread->t_rprof->rp_state));
278 		}
279 	} else
280 		sip_addr = NULL;
281 
282 	/*
283 	 * save the current context on the user stack directly after the
284 	 * sigframe. Since sigframe is 8-byte-but-not-16-byte aligned,
285 	 * and since sizeof (struct sigframe) is 24, this guarantees
286 	 * 16-byte alignment for ucontext_t and its %xmm registers.
287 	 */
288 	uc = (ucontext_t *)(sp + sizeof (struct sigframe));
289 	tuc = kmem_alloc(sizeof (*tuc), KM_SLEEP);
290 	no_fault();
291 	savecontext(tuc, &lwp->lwp_sigoldmask);
292 	if (on_fault(&ljb))
293 		goto badstack;
294 	copyout_noerr(tuc, uc, sizeof (*tuc));
295 	kmem_free(tuc, sizeof (*tuc));
296 	tuc = NULL;
297 
298 	lwp->lwp_oldcontext = (uintptr_t)uc;
299 
300 	if (newstack) {
301 		lwp->lwp_sigaltstack.ss_flags |= SS_ONSTACK;
302 		if (lwp->lwp_ustack)
303 			copyout_noerr(&lwp->lwp_sigaltstack,
304 			    (stack_t *)lwp->lwp_ustack, sizeof (stack_t));
305 	}
306 
307 	/*
308 	 * Set up signal handler return and stack linkage
309 	 */
310 	{
311 		struct sigframe frame;
312 
313 		/*
314 		 * ensure we never return "normally"
315 		 */
316 		frame.retaddr = (caddr_t)(uintptr_t)-1L;
317 		frame.signo = sig;
318 		frame.sip = sip_addr;
319 		copyout_noerr(&frame, sp, sizeof (frame));
320 	}
321 
322 	no_fault();
323 	if (watched)
324 		watch_enable_addr((caddr_t)sp, minstacksz, S_WRITE);
325 
326 	/*
327 	 * Set up user registers for execution of signal handler.
328 	 */
329 	rp->r_sp = (greg_t)sp;
330 	rp->r_pc = (greg_t)hdlr;
331 	rp->r_ps = PSL_USER | (rp->r_ps & PS_IOPL);
332 
333 	rp->r_rdi = sig;
334 	rp->r_rsi = (uintptr_t)sip_addr;
335 	rp->r_rdx = (uintptr_t)uc;
336 
337 	if ((rp->r_cs & 0xffff) != UCS_SEL ||
338 	    (rp->r_ss & 0xffff) != UDS_SEL) {
339 		/*
340 		 * Try our best to deliver the signal.
341 		 */
342 		rp->r_cs = UCS_SEL;
343 		rp->r_ss = UDS_SEL;
344 	}
345 
346 	/*
347 	 * Don't set lwp_eosys here.  sendsig() is called via psig() after
348 	 * lwp_eosys is handled, so setting it here would affect the next
349 	 * system call.
350 	 */
351 	return (1);
352 
353 badstack:
354 	no_fault();
355 	if (watched)
356 		watch_enable_addr((caddr_t)sp, minstacksz, S_WRITE);
357 	if (tuc)
358 		kmem_free(tuc, sizeof (*tuc));
359 #ifdef DEBUG
360 	printf("sendsig: bad signal stack cmd=%s, pid=%d, sig=%d\n",
361 	    PTOU(p)->u_comm, p->p_pid, sig);
362 	printf("on fault, sigsp = 0x%p, action = 0x%p, upc = 0x%lx\n",
363 	    (void *)sp, (void *)hdlr, (uintptr_t)upc);
364 #endif
365 	return (0);
366 }
367 
368 #ifdef _SYSCALL32_IMPL
369 
370 /*
371  * An i386 SVR4/ABI signal frame looks like this on the stack:
372  *
373  * old %esp:
374  *		<a siginfo32_t [optional]>
375  *		<a ucontext32_t>
376  *		<pointer to that ucontext32_t>
377  *		<pointer to that siginfo32_t>
378  *		<signo>
379  * new %esp:	<return address (deliberately invalid)>
380  */
381 struct sigframe32 {
382 	caddr32_t	retaddr;
383 	uint32_t	signo;
384 	caddr32_t	sip;
385 	caddr32_t	ucp;
386 };
387 
388 int
389 sendsig32(int sig, k_siginfo_t *sip, void (*hdlr)())
390 {
391 	volatile int minstacksz;
392 	int newstack;
393 	label_t ljb;
394 	volatile caddr_t sp;
395 	caddr_t fp;
396 	volatile struct regs *rp;
397 	volatile greg_t upc;
398 	volatile proc_t *p = ttoproc(curthread);
399 	klwp_t *lwp = ttolwp(curthread);
400 	ucontext32_t *volatile tuc = NULL;
401 	ucontext32_t *uc;
402 	siginfo32_t *sip_addr;
403 	volatile int watched;
404 
405 	rp = lwptoregs(lwp);
406 	upc = rp->r_pc;
407 
408 	minstacksz = SA32(sizeof (struct sigframe32)) + SA32(sizeof (*uc));
409 	if (sip != NULL)
410 		minstacksz += SA32(sizeof (siginfo32_t));
411 	ASSERT((minstacksz & (STACK_ALIGN32 - 1)) == 0);
412 
413 	/*
414 	 * Figure out whether we will be handling this signal on
415 	 * an alternate stack specified by the user.  Then allocate
416 	 * and validate the stack requirements for the signal handler
417 	 * context.  on_fault will catch any faults.
418 	 */
419 	newstack = sigismember(&PTOU(curproc)->u_sigonstack, sig) &&
420 	    !(lwp->lwp_sigaltstack.ss_flags & (SS_ONSTACK|SS_DISABLE));
421 
422 	if (newstack) {
423 		fp = (caddr_t)(SA32((uintptr_t)lwp->lwp_sigaltstack.ss_sp) +
424 		    SA32(lwp->lwp_sigaltstack.ss_size) - STACK_ALIGN32);
425 	} else if ((rp->r_ss & 0xffff) != UDS_SEL) {
426 		user_desc_t *ldt;
427 		/*
428 		 * If the stack segment selector is -not- pointing at
429 		 * the UDS_SEL descriptor and we have an LDT entry for
430 		 * it instead, add the base address to find the effective va.
431 		 */
432 		if ((ldt = p->p_ldt) != NULL)
433 			fp = (caddr_t)rp->r_sp +
434 			    USEGD_GETBASE(&ldt[SELTOIDX(rp->r_ss)]);
435 		else
436 			fp = (caddr_t)rp->r_sp;
437 	} else
438 		fp = (caddr_t)rp->r_sp;
439 
440 	/*
441 	 * Force proper stack pointer alignment, even in the face of a
442 	 * misaligned stack pointer from user-level before the signal.
443 	 * Don't use the SA32() macro because that rounds up, not down.
444 	 */
445 	fp = (caddr_t)((uintptr_t)fp & ~(STACK_ALIGN32 - 1));
446 	sp = fp - minstacksz;
447 
448 	/*
449 	 * Make sure lwp hasn't trashed its stack
450 	 */
451 	if (sp >= (caddr_t)(uintptr_t)USERLIMIT32 ||
452 	    fp >= (caddr_t)(uintptr_t)USERLIMIT32) {
453 #ifdef DEBUG
454 		printf("sendsig32: bad signal stack cmd=%s, pid=%d, sig=%d\n",
455 		    PTOU(p)->u_comm, p->p_pid, sig);
456 		printf("sigsp = 0x%p, action = 0x%p, upc = 0x%lx\n",
457 		    (void *)sp, (void *)hdlr, (uintptr_t)upc);
458 		printf("sp above USERLIMIT\n");
459 #endif
460 		return (0);
461 	}
462 
463 	watched = watch_disable_addr((caddr_t)sp, minstacksz, S_WRITE);
464 
465 	if (on_fault(&ljb))
466 		goto badstack;
467 
468 	if (sip != NULL) {
469 		siginfo32_t si32;
470 		zoneid_t zoneid;
471 
472 		siginfo_kto32(sip, &si32);
473 		if (SI_FROMUSER(sip) &&
474 		    (zoneid = p->p_zone->zone_id) != GLOBAL_ZONEID &&
475 		    zoneid != sip->si_zoneid) {
476 			si32.si_pid = p->p_zone->zone_zsched->p_pid;
477 			si32.si_uid = 0;
478 			si32.si_ctid = -1;
479 			si32.si_zoneid = zoneid;
480 		}
481 		fp -= SA32(sizeof (si32));
482 		uzero(fp, sizeof (si32));
483 		copyout_noerr(&si32, fp, sizeof (si32));
484 		sip_addr = (siginfo32_t *)fp;
485 
486 		if (sig == SIGPROF &&
487 		    curthread->t_rprof != NULL &&
488 		    curthread->t_rprof->rp_anystate) {
489 			/*
490 			 * We stand on our head to deal with
491 			 * the real-time profiling signal.
492 			 * Fill in the stuff that doesn't fit
493 			 * in a normal k_siginfo structure.
494 			 */
495 			int i = sip->si_nsysarg;
496 
497 			while (--i >= 0)
498 				suword32_noerr(&(sip_addr->si_sysarg[i]),
499 				    (uint32_t)lwp->lwp_arg[i]);
500 			copyout_noerr(curthread->t_rprof->rp_state,
501 			    sip_addr->si_mstate,
502 			    sizeof (curthread->t_rprof->rp_state));
503 		}
504 	} else
505 		sip_addr = NULL;
506 
507 	/* save the current context on the user stack */
508 	fp -= SA32(sizeof (*tuc));
509 	uc = (ucontext32_t *)fp;
510 	tuc = kmem_alloc(sizeof (*tuc), KM_SLEEP);
511 	no_fault();
512 	savecontext32(tuc, &lwp->lwp_sigoldmask);
513 	if (on_fault(&ljb))
514 		goto badstack;
515 	copyout_noerr(tuc, uc, sizeof (*tuc));
516 	kmem_free(tuc, sizeof (*tuc));
517 	tuc = NULL;
518 
519 	lwp->lwp_oldcontext = (uintptr_t)uc;
520 
521 	if (newstack) {
522 		lwp->lwp_sigaltstack.ss_flags |= SS_ONSTACK;
523 		if (lwp->lwp_ustack) {
524 			stack32_t stk32;
525 
526 			stk32.ss_sp = (caddr32_t)(uintptr_t)
527 			    lwp->lwp_sigaltstack.ss_sp;
528 			stk32.ss_size = (size32_t)
529 			    lwp->lwp_sigaltstack.ss_size;
530 			stk32.ss_flags = (int32_t)
531 			    lwp->lwp_sigaltstack.ss_flags;
532 			copyout_noerr(&stk32,
533 			    (stack32_t *)lwp->lwp_ustack, sizeof (stk32));
534 		}
535 	}
536 
537 	/*
538 	 * Set up signal handler arguments
539 	 */
540 	{
541 		struct sigframe32 frame32;
542 
543 		frame32.sip = (caddr32_t)(uintptr_t)sip_addr;
544 		frame32.ucp = (caddr32_t)(uintptr_t)uc;
545 		frame32.signo = sig;
546 		frame32.retaddr = 0xffffffff;	/* never return! */
547 		copyout_noerr(&frame32, sp, sizeof (frame32));
548 	}
549 
550 	no_fault();
551 	if (watched)
552 		watch_enable_addr((caddr_t)sp, minstacksz, S_WRITE);
553 
554 	rp->r_sp = (greg_t)(uintptr_t)sp;
555 	rp->r_pc = (greg_t)(uintptr_t)hdlr;
556 	rp->r_ps = PSL_USER | (rp->r_ps & PS_IOPL);
557 
558 	if ((rp->r_cs & 0xffff) != U32CS_SEL ||
559 	    (rp->r_ss & 0xffff) != UDS_SEL) {
560 		/*
561 		 * Try our best to deliver the signal.
562 		 */
563 		rp->r_cs = U32CS_SEL;
564 		rp->r_ss = UDS_SEL;
565 	}
566 
567 	/*
568 	 * Don't set lwp_eosys here.  sendsig() is called via psig() after
569 	 * lwp_eosys is handled, so setting it here would affect the next
570 	 * system call.
571 	 */
572 	return (1);
573 
574 badstack:
575 	no_fault();
576 	if (watched)
577 		watch_enable_addr((caddr_t)sp, minstacksz, S_WRITE);
578 	if (tuc)
579 		kmem_free(tuc, sizeof (*tuc));
580 #ifdef DEBUG
581 	printf("sendsig32: bad signal stack cmd=%s pid=%d, sig=%d\n",
582 	    PTOU(p)->u_comm, p->p_pid, sig);
583 	printf("on fault, sigsp = 0x%p, action = 0x%p, upc = 0x%lx\n",
584 	    (void *)sp, (void *)hdlr, (uintptr_t)upc);
585 #endif
586 	return (0);
587 }
588 
589 #endif	/* _SYSCALL32_IMPL */
590