xref: /illumos-gate/usr/src/uts/sun4u/opl/io/mc-opl.c (revision 79033acb)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 /*
26  * All Rights Reserved, Copyright (c) FUJITSU LIMITED 2006
27  */
28 
29 #pragma ident	"%Z%%M%	%I%	%E% SMI"
30 
31 #include <sys/types.h>
32 #include <sys/sysmacros.h>
33 #include <sys/conf.h>
34 #include <sys/modctl.h>
35 #include <sys/stat.h>
36 #include <sys/async.h>
37 #include <sys/machcpuvar.h>
38 #include <sys/machsystm.h>
39 #include <sys/promif.h>
40 #include <sys/ksynch.h>
41 #include <sys/ddi.h>
42 #include <sys/sunddi.h>
43 #include <sys/ddifm.h>
44 #include <sys/fm/protocol.h>
45 #include <sys/fm/util.h>
46 #include <sys/kmem.h>
47 #include <sys/fm/io/opl_mc_fm.h>
48 #include <sys/memlist.h>
49 #include <sys/param.h>
50 #include <sys/disp.h>
51 #include <sys/ontrap.h>
52 #include <vm/page.h>
53 #include <sys/mc-opl.h>
54 #include <sys/opl.h>
55 #include <sys/opl_dimm.h>
56 #include <sys/scfd/scfostoescf.h>
57 
58 /*
59  * Function prototypes
60  */
61 static int mc_open(dev_t *, int, int, cred_t *);
62 static int mc_close(dev_t, int, int, cred_t *);
63 static int mc_ioctl(dev_t, int, intptr_t, int, cred_t *, int *);
64 static int mc_attach(dev_info_t *, ddi_attach_cmd_t);
65 static int mc_detach(dev_info_t *, ddi_detach_cmd_t);
66 
67 static int mc_poll_init(void);
68 static void mc_poll_fini(void);
69 static int mc_board_add(mc_opl_t *mcp);
70 static int mc_board_del(mc_opl_t *mcp);
71 static int mc_suspend(mc_opl_t *mcp, uint32_t flag);
72 static int mc_resume(mc_opl_t *mcp, uint32_t flag);
73 int opl_mc_suspend(void);
74 int opl_mc_resume(void);
75 
76 static void insert_mcp(mc_opl_t *mcp);
77 static void delete_mcp(mc_opl_t *mcp);
78 
79 static int pa_to_maddr(mc_opl_t *mcp, uint64_t pa, mc_addr_t *maddr);
80 
81 static int mc_valid_pa(mc_opl_t *mcp, uint64_t pa);
82 
83 int mc_get_mem_unum(int, uint64_t, char *, int, int *);
84 int mc_get_mem_addr(char *unum, char *sid, uint64_t offset, uint64_t *paddr);
85 int mc_get_mem_offset(uint64_t paddr, uint64_t *offp);
86 int mc_get_mem_sid(char *unum, char *buf, int buflen, int *lenp);
87 int mc_get_mem_sid_dimm(mc_opl_t *mcp, char *dname, char *buf,
88     int buflen, int *lenp);
89 mc_dimm_info_t *mc_get_dimm_list(mc_opl_t *mcp);
90 mc_dimm_info_t *mc_prepare_dimmlist(board_dimm_info_t *bd_dimmp);
91 int mc_set_mem_sid(mc_opl_t *mcp, char *buf, int buflen, int lsb, int bank,
92     uint32_t mf_type, uint32_t d_slot);
93 static void mc_free_dimm_list(mc_dimm_info_t *d);
94 static void mc_get_mlist(mc_opl_t *);
95 static void mc_polling(void);
96 static int mc_opl_get_physical_board(int);
97 
98 #ifdef	DEBUG
99 static int mc_ioctl_debug(dev_t, int, intptr_t, int, cred_t *, int *);
100 void mc_dump_dimm(char *buf, int dnamesz, int serialsz, int partnumsz);
101 void mc_dump_dimm_info(board_dimm_info_t *bd_dimmp);
102 #endif
103 
104 #pragma weak opl_get_physical_board
105 extern int opl_get_physical_board(int);
106 extern int plat_max_boards(void);
107 
108 /*
109  * Configuration data structures
110  */
111 static struct cb_ops mc_cb_ops = {
112 	mc_open,			/* open */
113 	mc_close,			/* close */
114 	nulldev,			/* strategy */
115 	nulldev,			/* print */
116 	nodev,				/* dump */
117 	nulldev,			/* read */
118 	nulldev,			/* write */
119 	mc_ioctl,			/* ioctl */
120 	nodev,				/* devmap */
121 	nodev,				/* mmap */
122 	nodev,				/* segmap */
123 	nochpoll,			/* poll */
124 	ddi_prop_op,			/* cb_prop_op */
125 	0,				/* streamtab */
126 	D_MP | D_NEW | D_HOTPLUG,	/* Driver compatibility flag */
127 	CB_REV,				/* rev */
128 	nodev,				/* cb_aread */
129 	nodev				/* cb_awrite */
130 };
131 
132 static struct dev_ops mc_ops = {
133 	DEVO_REV,			/* rev */
134 	0,				/* refcnt  */
135 	ddi_getinfo_1to1,		/* getinfo */
136 	nulldev,			/* identify */
137 	nulldev,			/* probe */
138 	mc_attach,			/* attach */
139 	mc_detach,			/* detach */
140 	nulldev,			/* reset */
141 	&mc_cb_ops,			/* cb_ops */
142 	(struct bus_ops *)0,		/* bus_ops */
143 	nulldev				/* power */
144 };
145 
146 /*
147  * Driver globals
148  */
149 
150 static enum {
151 	MODEL_FF1 = 0,
152 	MODEL_FF2 = 1,
153 	MODEL_DC = 2
154 } plat_model = MODEL_DC;	/* The default behaviour is DC */
155 
156 static struct plat_model_names {
157 	const char *unit_name;
158 	const char *mem_name;
159 } model_names[] = {
160 	{ "MBU_A", "MEMB" },
161 	{ "MBU_B", "MEMB" },
162 	{ "CMU", "" }
163 };
164 
165 /*
166  * The DIMM Names for DC platform.
167  * The index into this table is made up of (bank, dslot),
168  * Where dslot occupies bits 0-1 and bank occupies 2-4.
169  */
170 static char *mc_dc_dimm_unum_table[OPL_MAX_DIMMS] = {
171 	/* --------CMUnn----------- */
172 	/* --CS0-----|--CS1------ */
173 	/* -H-|--L-- | -H- | -L-- */
174 	"03A", "02A", "03B", "02B", /* MAC 0 bank 0 */
175 	"13A", "12A", "13B", "12B", /* MAC 0 bank 1 */
176 	"23A", "22A", "23B", "22B", /* MAC 1 bank 2 */
177 	"33A", "32A", "33B", "32B", /* MAC 1 bank 3 */
178 	"01A", "00A", "01B", "00B", /* MAC 2 bank 4 */
179 	"11A", "10A", "11B", "10B", /* MAC 2 bank 5 */
180 	"21A", "20A", "21B", "20B", /* MAC 3 bank 6 */
181 	"31A", "30A", "31B", "30B"  /* MAC 3 bank 7 */
182 };
183 
184 /*
185  * The DIMM Names for FF1/FF2 platforms.
186  * The index into this table is made up of (board, bank, dslot),
187  * Where dslot occupies bits 0-1, bank occupies 2-4 and
188  * board occupies the bit 5.
189  */
190 static char *mc_ff_dimm_unum_table[2 * OPL_MAX_DIMMS] = {
191 	/* --------CMU0---------- */
192 	/* --CS0-----|--CS1------ */
193 	/* -H-|--L-- | -H- | -L-- */
194 	"03A", "02A", "03B", "02B", /* MAC 0 bank 0 */
195 	"01A", "00A", "01B", "00B", /* MAC 0 bank 1 */
196 	"13A", "12A", "13B", "12B", /* MAC 1 bank 2 */
197 	"11A", "10A", "11B", "10B", /* MAC 1 bank 3 */
198 	"23A", "20A", "23B", "20B", /* MAC 2 bank 4 */
199 	"21A", "20A", "21B", "20B", /* MAC 2 bank 5 */
200 	"33A", "32A", "33B", "32B", /* MAC 3 bank 6 */
201 	"31A", "30A", "31B", "30B", /* MAC 3 bank 7 */
202 	/* --------CMU1---------- */
203 	/* --CS0-----|--CS1------ */
204 	/* -H-|--L-- | -H- | -L-- */
205 	"43A", "42A", "43B", "42B", /* MAC 0 bank 0 */
206 	"41A", "40A", "41B", "40B", /* MAC 0 bank 1 */
207 	"53A", "52A", "53B", "50B", /* MAC 1 bank 2 */
208 	"51A", "50A", "51B", "50B", /* MAC 1 bank 3 */
209 	"63A", "62A", "63B", "62B", /* MAC 2 bank 4 */
210 	"61A", "60A", "61B", "60B", /* MAC 2 bank 5 */
211 	"73A", "72A", "73B", "72B", /* MAC 3 bank 6 */
212 	"71A", "70A", "71B", "70B"  /* MAC 3 bank 7 */
213 };
214 
215 #define	BD_BK_SLOT_TO_INDEX(bd, bk, s)			\
216 	(((bd & 0x01) << 5) | ((bk & 0x07) << 2) | (s & 0x03))
217 
218 #define	INDEX_TO_BANK(i)			(((i) & 0x1C) >> 2)
219 #define	INDEX_TO_SLOT(i)			((i) & 0x03)
220 
221 /* Isolation unit size is 64 MB */
222 #define	MC_ISOLATION_BSIZE	(64 * 1024 * 1024)
223 
224 #define	MC_MAX_SPEEDS 7
225 
226 /* make this a structure */
227 
228 typedef struct {
229 	uint32_t mc_speeds;
230 	uint32_t mc_period;
231 } mc_scan_speed_t;
232 
233 #define	MC_CNTL_SPEED_SHIFT 26
234 
235 static mc_scan_speed_t	mc_scan_speeds[MC_MAX_SPEEDS] = {
236 	{0x6 << MC_CNTL_SPEED_SHIFT, 0},
237 	{0x5 << MC_CNTL_SPEED_SHIFT, 32},
238 	{0x4 << MC_CNTL_SPEED_SHIFT, 64},
239 	{0x3 << MC_CNTL_SPEED_SHIFT, 128},
240 	{0x2 << MC_CNTL_SPEED_SHIFT, 256},
241 	{0x1 << MC_CNTL_SPEED_SHIFT, 512},
242 	{0x0 << MC_CNTL_SPEED_SHIFT, 1024}
243 };
244 
245 static uint32_t	mc_max_speed = (0x6 << 26);
246 
247 /* we have to measure these delays */
248 
249 int mc_isolation_bsize = MC_ISOLATION_BSIZE;
250 int mc_patrol_interval_sec = MC_PATROL_INTERVAL_SEC;
251 int mc_max_scf_retry = 16;
252 int mc_max_scf_logs = 64;
253 int mc_max_errlog_processed = BANKNUM_PER_SB*2;
254 int mc_scan_period = 12 * 60 * 60;	/* 12 hours period */
255 int mc_max_rewrite_loop = 100;
256 int mc_rewrite_delay = 10;
257 /*
258  * it takes SCF about 300 m.s. to process a requst.  We can bail out
259  * if it is busy.  It does not pay to wait for it too long.
260  */
261 int mc_max_scf_loop = 2;
262 int mc_scf_delay = 100;
263 int mc_pce_dropped = 0;
264 int mc_poll_priority = MINCLSYSPRI;
265 
266 
267 /*
268  * Mutex heierachy in mc-opl
269  * If both mcmutex and mc_lock must be held,
270  * mcmutex must be acquired first, and then mc_lock.
271  */
272 
273 static kmutex_t mcmutex;
274 mc_opl_t *mc_instances[OPL_MAX_BOARDS];
275 
276 static kmutex_t mc_polling_lock;
277 static kcondvar_t mc_polling_cv;
278 static kcondvar_t mc_poll_exit_cv;
279 static int mc_poll_cmd = 0;
280 static int mc_pollthr_running = 0;
281 int mc_timeout_period = 0; /* this is in m.s. */
282 void *mc_statep;
283 
284 #ifdef	DEBUG
285 int oplmc_debug = 0;
286 #endif
287 
288 static int mc_debug_show_all = 0;
289 
290 extern struct mod_ops mod_driverops;
291 
292 static struct modldrv modldrv = {
293 	&mod_driverops,			/* module type, this one is a driver */
294 	"OPL Memory-controller %I%",	/* module name */
295 	&mc_ops,			/* driver ops */
296 };
297 
298 static struct modlinkage modlinkage = {
299 	MODREV_1,		/* rev */
300 	(void *)&modldrv,
301 	NULL
302 };
303 
304 #pragma weak opl_get_mem_unum
305 #pragma weak opl_get_mem_sid
306 #pragma weak opl_get_mem_offset
307 #pragma weak opl_get_mem_addr
308 
309 extern int (*opl_get_mem_unum)(int, uint64_t, char *, int, int *);
310 extern int (*opl_get_mem_sid)(char *unum, char *buf, int buflen, int *lenp);
311 extern int (*opl_get_mem_offset)(uint64_t paddr, uint64_t *offp);
312 extern int (*opl_get_mem_addr)(char *unum, char *sid, uint64_t offset,
313     uint64_t *paddr);
314 
315 
316 /*
317  * pseudo-mc node portid format
318  *
319  *		[10]   = 0
320  *		[9]    = 1
321  *		[8]    = LSB_ID[4] = 0
322  *		[7:4]  = LSB_ID[3:0]
323  *		[3:0]  = 0
324  *
325  */
326 
327 /*
328  * These are the module initialization routines.
329  */
330 int
331 _init(void)
332 {
333 	int	error;
334 	int	plen;
335 	char	model[20];
336 	pnode_t	node;
337 
338 
339 	if ((error = ddi_soft_state_init(&mc_statep,
340 	    sizeof (mc_opl_t), 1)) != 0)
341 		return (error);
342 
343 	if ((error = mc_poll_init()) != 0) {
344 		ddi_soft_state_fini(&mc_statep);
345 		return (error);
346 	}
347 
348 	mutex_init(&mcmutex, NULL, MUTEX_DRIVER, NULL);
349 	if (&opl_get_mem_unum)
350 		opl_get_mem_unum = mc_get_mem_unum;
351 	if (&opl_get_mem_sid)
352 		opl_get_mem_sid = mc_get_mem_sid;
353 	if (&opl_get_mem_offset)
354 		opl_get_mem_offset = mc_get_mem_offset;
355 	if (&opl_get_mem_addr)
356 		opl_get_mem_addr = mc_get_mem_addr;
357 
358 	node = prom_rootnode();
359 	plen = prom_getproplen(node, "model");
360 
361 	if (plen > 0 && plen < sizeof (model)) {
362 		(void) prom_getprop(node, "model", model);
363 		model[plen] = '\0';
364 		if (strcmp(model, "FF1") == 0)
365 			plat_model = MODEL_FF1;
366 		else if (strcmp(model, "FF2") == 0)
367 			plat_model = MODEL_FF2;
368 		else if (strncmp(model, "DC", 2) == 0)
369 			plat_model = MODEL_DC;
370 	}
371 
372 	error =  mod_install(&modlinkage);
373 	if (error != 0) {
374 		if (&opl_get_mem_unum)
375 			opl_get_mem_unum = NULL;
376 		if (&opl_get_mem_sid)
377 			opl_get_mem_sid = NULL;
378 		if (&opl_get_mem_offset)
379 			opl_get_mem_offset = NULL;
380 		if (&opl_get_mem_addr)
381 			opl_get_mem_addr = NULL;
382 		mutex_destroy(&mcmutex);
383 		mc_poll_fini();
384 		ddi_soft_state_fini(&mc_statep);
385 	}
386 	return (error);
387 }
388 
389 int
390 _fini(void)
391 {
392 	int error;
393 
394 	if ((error = mod_remove(&modlinkage)) != 0)
395 		return (error);
396 
397 	if (&opl_get_mem_unum)
398 		opl_get_mem_unum = NULL;
399 	if (&opl_get_mem_sid)
400 		opl_get_mem_sid = NULL;
401 	if (&opl_get_mem_offset)
402 		opl_get_mem_offset = NULL;
403 	if (&opl_get_mem_addr)
404 		opl_get_mem_addr = NULL;
405 
406 	mutex_destroy(&mcmutex);
407 	mc_poll_fini();
408 	ddi_soft_state_fini(&mc_statep);
409 
410 	return (0);
411 }
412 
413 int
414 _info(struct modinfo *modinfop)
415 {
416 	return (mod_info(&modlinkage, modinfop));
417 }
418 
419 static void
420 mc_polling_thread()
421 {
422 	mutex_enter(&mc_polling_lock);
423 	mc_pollthr_running = 1;
424 	while (!(mc_poll_cmd & MC_POLL_EXIT)) {
425 		mc_polling();
426 		cv_timedwait(&mc_polling_cv, &mc_polling_lock,
427 		    ddi_get_lbolt() + mc_timeout_period);
428 	}
429 	mc_pollthr_running = 0;
430 
431 	/*
432 	 * signal if any one is waiting for this thread to exit.
433 	 */
434 	cv_signal(&mc_poll_exit_cv);
435 	mutex_exit(&mc_polling_lock);
436 	thread_exit();
437 	/* NOTREACHED */
438 }
439 
440 static int
441 mc_poll_init()
442 {
443 	mutex_init(&mc_polling_lock, NULL, MUTEX_DRIVER, NULL);
444 	cv_init(&mc_polling_cv, NULL, CV_DRIVER, NULL);
445 	cv_init(&mc_poll_exit_cv, NULL, CV_DRIVER, NULL);
446 	return (0);
447 }
448 
449 static void
450 mc_poll_fini()
451 {
452 	mutex_enter(&mc_polling_lock);
453 	if (mc_pollthr_running) {
454 		mc_poll_cmd = MC_POLL_EXIT;
455 		cv_signal(&mc_polling_cv);
456 		while (mc_pollthr_running) {
457 			cv_wait(&mc_poll_exit_cv, &mc_polling_lock);
458 		}
459 	}
460 	mutex_exit(&mc_polling_lock);
461 	mutex_destroy(&mc_polling_lock);
462 	cv_destroy(&mc_polling_cv);
463 	cv_destroy(&mc_poll_exit_cv);
464 }
465 
466 static int
467 mc_attach(dev_info_t *devi, ddi_attach_cmd_t cmd)
468 {
469 	mc_opl_t *mcp;
470 	int instance;
471 	int rv;
472 
473 	/* get the instance of this devi */
474 	instance = ddi_get_instance(devi);
475 
476 	switch (cmd) {
477 	case DDI_ATTACH:
478 		break;
479 	case DDI_RESUME:
480 		mcp = ddi_get_soft_state(mc_statep, instance);
481 		rv = mc_resume(mcp, MC_DRIVER_SUSPENDED);
482 		return (rv);
483 	default:
484 		return (DDI_FAILURE);
485 	}
486 
487 	if (ddi_soft_state_zalloc(mc_statep, instance) != DDI_SUCCESS)
488 		return (DDI_FAILURE);
489 
490 	if ((mcp = ddi_get_soft_state(mc_statep, instance)) == NULL) {
491 		goto bad;
492 	}
493 
494 	if (mc_timeout_period == 0) {
495 		mc_patrol_interval_sec = (int)ddi_getprop(DDI_DEV_T_ANY, devi,
496 			DDI_PROP_DONTPASS, "mc-timeout-interval-sec",
497 			mc_patrol_interval_sec);
498 		mc_timeout_period = drv_usectohz(
499 			1000000 * mc_patrol_interval_sec / OPL_MAX_BOARDS);
500 	}
501 
502 	/* set informations in mc state */
503 	mcp->mc_dip = devi;
504 
505 	if (mc_board_add(mcp))
506 		goto bad;
507 
508 	insert_mcp(mcp);
509 
510 	/*
511 	 * Start the polling thread if it is not running already.
512 	 */
513 	mutex_enter(&mc_polling_lock);
514 	if (!mc_pollthr_running) {
515 		(void) thread_create(NULL, 0, (void (*)())mc_polling_thread,
516 			NULL, 0, &p0, TS_RUN, mc_poll_priority);
517 	}
518 	mutex_exit(&mc_polling_lock);
519 	ddi_report_dev(devi);
520 
521 	return (DDI_SUCCESS);
522 
523 bad:
524 	ddi_soft_state_free(mc_statep, instance);
525 	return (DDI_FAILURE);
526 }
527 
528 /* ARGSUSED */
529 static int
530 mc_detach(dev_info_t *devi, ddi_detach_cmd_t cmd)
531 {
532 	int rv;
533 	int instance;
534 	mc_opl_t *mcp;
535 
536 	/* get the instance of this devi */
537 	instance = ddi_get_instance(devi);
538 	if ((mcp = ddi_get_soft_state(mc_statep, instance)) == NULL) {
539 		return (DDI_FAILURE);
540 	}
541 
542 	switch (cmd) {
543 	case DDI_SUSPEND:
544 		rv = mc_suspend(mcp, MC_DRIVER_SUSPENDED);
545 		return (rv);
546 	case DDI_DETACH:
547 		break;
548 	default:
549 		return (DDI_FAILURE);
550 	}
551 
552 	delete_mcp(mcp);
553 	if (mc_board_del(mcp) != DDI_SUCCESS) {
554 		return (DDI_FAILURE);
555 	}
556 
557 	/* free up the soft state */
558 	ddi_soft_state_free(mc_statep, instance);
559 
560 	return (DDI_SUCCESS);
561 }
562 
563 /* ARGSUSED */
564 static int
565 mc_open(dev_t *devp, int flag, int otyp, cred_t *credp)
566 {
567 	return (0);
568 }
569 
570 /* ARGSUSED */
571 static int
572 mc_close(dev_t devp, int flag, int otyp, cred_t *credp)
573 {
574 	return (0);
575 }
576 
577 /* ARGSUSED */
578 static int
579 mc_ioctl(dev_t dev, int cmd, intptr_t arg, int mode, cred_t *credp,
580 	int *rvalp)
581 {
582 #ifdef DEBUG
583 	return (mc_ioctl_debug(dev, cmd, arg, mode, credp, rvalp));
584 #else
585 	return (ENXIO);
586 #endif
587 }
588 
589 /*
590  * PA validity check:
591  * This function return 1 if the PA is valid, otherwise
592  * return 0.
593  */
594 
595 /* ARGSUSED */
596 static int
597 pa_is_valid(mc_opl_t *mcp, uint64_t addr)
598 {
599 	/*
600 	 * Check if the addr is on the board.
601 	 */
602 	if ((addr < mcp->mc_start_address) ||
603 	    (mcp->mc_start_address + mcp->mc_size <= addr))
604 		return (0);
605 
606 	if (mcp->mlist == NULL)
607 		mc_get_mlist(mcp);
608 
609 	if (mcp->mlist && address_in_memlist(mcp->mlist, addr, 0)) {
610 		return (1);
611 	}
612 	return (0);
613 }
614 
615 /*
616  * mac-pa translation routines.
617  *
618  *    Input: mc driver state, (LSB#, Bank#, DIMM address)
619  *    Output: physical address
620  *
621  *    Valid   - return value:  0
622  *    Invalid - return value: -1
623  */
624 static int
625 mcaddr_to_pa(mc_opl_t *mcp, mc_addr_t *maddr, uint64_t *pa)
626 {
627 	int i;
628 	uint64_t pa_offset = 0;
629 	int cs = (maddr->ma_dimm_addr >> CS_SHIFT) & 1;
630 	int bank = maddr->ma_bank;
631 	mc_addr_t maddr1;
632 	int bank0, bank1;
633 
634 	MC_LOG("mcaddr /LSB%d/B%d/%x\n", maddr->ma_bd, bank,
635 		maddr->ma_dimm_addr);
636 
637 	/* loc validity check */
638 	ASSERT(maddr->ma_bd >= 0 && OPL_BOARD_MAX > maddr->ma_bd);
639 	ASSERT(bank >= 0 && OPL_BANK_MAX > bank);
640 
641 	/* Do translation */
642 	for (i = 0; i < PA_BITS_FOR_MAC; i++) {
643 		int pa_bit = 0;
644 		int mc_bit = mcp->mc_trans_table[cs][i];
645 		if (mc_bit < MC_ADDRESS_BITS) {
646 			pa_bit = (maddr->ma_dimm_addr >> mc_bit) & 1;
647 		} else if (mc_bit == MP_NONE) {
648 			pa_bit = 0;
649 		} else if (mc_bit == MP_BANK_0) {
650 			pa_bit = bank & 1;
651 		} else if (mc_bit == MP_BANK_1) {
652 			pa_bit = (bank >> 1) & 1;
653 		} else if (mc_bit == MP_BANK_2) {
654 			pa_bit = (bank >> 2) & 1;
655 		}
656 		pa_offset |= ((uint64_t)pa_bit) << i;
657 	}
658 	*pa = mcp->mc_start_address + pa_offset;
659 	MC_LOG("pa = %lx\n", *pa);
660 
661 	if (pa_to_maddr(mcp, *pa, &maddr1) == -1) {
662 		cmn_err(CE_WARN, "mcaddr_to_pa: /LSB%d/B%d/%x failed to "
663 		    "convert PA %lx\n", maddr->ma_bd, bank,
664 		    maddr->ma_dimm_addr, *pa);
665 		return (-1);
666 	}
667 
668 	/*
669 	 * In mirror mode, PA is always translated to the even bank.
670 	 */
671 	if (IS_MIRROR(mcp, maddr->ma_bank)) {
672 		bank0 = maddr->ma_bank & ~(1);
673 		bank1 = maddr1.ma_bank & ~(1);
674 	} else {
675 		bank0 = maddr->ma_bank;
676 		bank1 = maddr1.ma_bank;
677 	}
678 	/*
679 	 * there is no need to check ma_bd because it is generated from
680 	 * mcp.  They are the same.
681 	 */
682 	if ((bank0 == bank1) &&
683 		(maddr->ma_dimm_addr == maddr1.ma_dimm_addr)) {
684 		return (0);
685 	} else {
686 		cmn_err(CE_WARN, "Translation error source /LSB%d/B%d/%x, "
687 			"PA %lx, target /LSB%d/B%d/%x\n",
688 			maddr->ma_bd, bank, maddr->ma_dimm_addr,
689 			*pa, maddr1.ma_bd, maddr1.ma_bank,
690 			maddr1.ma_dimm_addr);
691 		return (-1);
692 	}
693 }
694 
695 /*
696  * PA to CS (used by pa_to_maddr).
697  */
698 static int
699 pa_to_cs(mc_opl_t *mcp, uint64_t pa_offset)
700 {
701 	int i;
702 	int cs = 0;
703 
704 	for (i = 0; i < PA_BITS_FOR_MAC; i++) {
705 		/* MAC address bit<29> is arranged on the same PA bit */
706 		/* on both table. So we may use any table. */
707 		if (mcp->mc_trans_table[0][i] == CS_SHIFT) {
708 			cs = (pa_offset >> i) & 1;
709 			break;
710 		}
711 	}
712 	return (cs);
713 }
714 
715 /*
716  * PA to DIMM (used by pa_to_maddr).
717  */
718 /* ARGSUSED */
719 static uint32_t
720 pa_to_dimm(mc_opl_t *mcp, uint64_t pa_offset)
721 {
722 	int i;
723 	int cs = pa_to_cs(mcp, pa_offset);
724 	uint32_t dimm_addr = 0;
725 
726 	for (i = 0; i < PA_BITS_FOR_MAC; i++) {
727 		int pa_bit_value = (pa_offset >> i) & 1;
728 		int mc_bit = mcp->mc_trans_table[cs][i];
729 		if (mc_bit < MC_ADDRESS_BITS) {
730 			dimm_addr |= pa_bit_value << mc_bit;
731 		}
732 	}
733 	return (dimm_addr);
734 }
735 
736 /*
737  * PA to Bank (used by pa_to_maddr).
738  */
739 static int
740 pa_to_bank(mc_opl_t *mcp, uint64_t pa_offset)
741 {
742 	int i;
743 	int cs = pa_to_cs(mcp, pa_offset);
744 	int bankno = mcp->mc_trans_table[cs][INDEX_OF_BANK_SUPPLEMENT_BIT];
745 
746 
747 	for (i = 0; i < PA_BITS_FOR_MAC; i++) {
748 		int pa_bit_value = (pa_offset >> i) & 1;
749 		int mc_bit = mcp->mc_trans_table[cs][i];
750 		switch (mc_bit) {
751 		case MP_BANK_0:
752 			bankno |= pa_bit_value;
753 			break;
754 		case MP_BANK_1:
755 			bankno |= pa_bit_value << 1;
756 			break;
757 		case MP_BANK_2:
758 			bankno |= pa_bit_value << 2;
759 			break;
760 		}
761 	}
762 
763 	return (bankno);
764 }
765 
766 /*
767  * PA to MAC address translation
768  *
769  *   Input: MAC driver state, physicall adress
770  *   Output: LSB#, Bank id, mac address
771  *
772  *    Valid   - return value:  0
773  *    Invalid - return value: -1
774  */
775 
776 int
777 pa_to_maddr(mc_opl_t *mcp, uint64_t pa, mc_addr_t *maddr)
778 {
779 	uint64_t pa_offset;
780 
781 	/* PA validity check */
782 	if (!pa_is_valid(mcp, pa))
783 		return (-1);
784 
785 
786 	/* Do translation */
787 	pa_offset = pa - mcp->mc_start_address;
788 
789 	maddr->ma_bd = mcp->mc_board_num;
790 	maddr->ma_bank = pa_to_bank(mcp, pa_offset);
791 	maddr->ma_dimm_addr = pa_to_dimm(mcp, pa_offset);
792 	MC_LOG("pa %lx -> mcaddr /LSB%d/B%d/%x\n",
793 		pa_offset, maddr->ma_bd, maddr->ma_bank, maddr->ma_dimm_addr);
794 	return (0);
795 }
796 
797 /*
798  * UNUM format for DC is "/CMUnn/MEMxyZ", where
799  *	nn = 00..03 for DC1 and 00..07 for DC2 and 00..15 for DC3.
800  *	x = MAC 0..3
801  *	y = 0..3 (slot info).
802  *	Z = 'A' or 'B'
803  *
804  * UNUM format for FF1 is "/MBU_A/MEMBx/MEMyZ", where
805  *	x = 0..3 (MEMB number)
806  *	y = 0..3 (slot info).
807  *	Z = 'A' or 'B'
808  *
809  * UNUM format for FF2 is "/MBU_B/MEMBx/MEMyZ"
810  *	x = 0..7 (MEMB number)
811  *	y = 0..3 (slot info).
812  *	Z = 'A' or 'B'
813  */
814 int
815 mc_set_mem_unum(char *buf, int buflen, int lsb, int bank,
816     uint32_t mf_type, uint32_t d_slot)
817 {
818 	char *dimmnm;
819 	char memb_num;
820 	int sb;
821 	int i;
822 
823 	if ((sb = mc_opl_get_physical_board(lsb)) < 0)
824 		return (ENODEV);
825 
826 	if (plat_model == MODEL_DC) {
827 		if (mf_type == FLT_TYPE_PERMANENT_CE) {
828 			i = BD_BK_SLOT_TO_INDEX(0, bank, d_slot);
829 			dimmnm = mc_dc_dimm_unum_table[i];
830 			snprintf(buf, buflen, "/%s%02d/MEM%s",
831 			    model_names[plat_model].unit_name, sb, dimmnm);
832 		} else {
833 			i = BD_BK_SLOT_TO_INDEX(0, bank, 0);
834 			snprintf(buf, buflen, "/%s%02d/MEM%s MEM%s MEM%s MEM%s",
835 			    model_names[plat_model].unit_name, sb,
836 			    mc_dc_dimm_unum_table[i],
837 			    mc_dc_dimm_unum_table[i + 1],
838 			    mc_dc_dimm_unum_table[i + 2],
839 			    mc_dc_dimm_unum_table[i + 3]);
840 		}
841 	} else {
842 		i = BD_BK_SLOT_TO_INDEX(sb, bank, d_slot);
843 		if (mf_type == FLT_TYPE_PERMANENT_CE) {
844 			dimmnm = mc_ff_dimm_unum_table[i];
845 			memb_num = dimmnm[0];
846 			snprintf(buf, buflen, "/%s/%s%c/MEM%s",
847 			    model_names[plat_model].unit_name,
848 			    model_names[plat_model].mem_name,
849 			    memb_num, &dimmnm[1]);
850 		} else {
851 			i = BD_BK_SLOT_TO_INDEX(sb, bank, 0);
852 			memb_num = mc_ff_dimm_unum_table[i][0],
853 			snprintf(buf, buflen,
854 			    "/%s/%s%c/MEM%s MEM%s MEM%s MEM%s",
855 			    model_names[plat_model].unit_name,
856 			    model_names[plat_model].mem_name, memb_num,
857 			    &mc_ff_dimm_unum_table[i][1],
858 			    &mc_ff_dimm_unum_table[i + 1][1],
859 			    &mc_ff_dimm_unum_table[i + 2][1],
860 			    &mc_ff_dimm_unum_table[i + 3][1]);
861 		}
862 	}
863 	return (0);
864 }
865 
866 static void
867 mc_ereport_post(mc_aflt_t *mc_aflt)
868 {
869 	char buf[FM_MAX_CLASS];
870 	char device_path[MAXPATHLEN];
871 	char sid[MAXPATHLEN];
872 	nv_alloc_t *nva = NULL;
873 	nvlist_t *ereport, *detector, *resource;
874 	errorq_elem_t *eqep;
875 	int nflts;
876 	mc_flt_stat_t *flt_stat;
877 	int i, n;
878 	int blen = MAXPATHLEN;
879 	char *p, *s = NULL;
880 	uint32_t values[2], synd[2], dslot[2];
881 	uint64_t offset = (uint64_t)-1;
882 	int ret = -1;
883 
884 	if (panicstr) {
885 		eqep = errorq_reserve(ereport_errorq);
886 		if (eqep == NULL)
887 			return;
888 		ereport = errorq_elem_nvl(ereport_errorq, eqep);
889 		nva = errorq_elem_nva(ereport_errorq, eqep);
890 	} else {
891 		ereport = fm_nvlist_create(nva);
892 	}
893 
894 	/*
895 	 * Create the scheme "dev" FMRI.
896 	 */
897 	detector = fm_nvlist_create(nva);
898 	resource = fm_nvlist_create(nva);
899 
900 	nflts = mc_aflt->mflt_nflts;
901 
902 	ASSERT(nflts >= 1 && nflts <= 2);
903 
904 	flt_stat = mc_aflt->mflt_stat[0];
905 	(void) ddi_pathname(mc_aflt->mflt_mcp->mc_dip, device_path);
906 	(void) fm_fmri_dev_set(detector, FM_DEV_SCHEME_VERSION, NULL,
907 	    device_path, NULL);
908 
909 	/*
910 	 * Encode all the common data into the ereport.
911 	 */
912 	(void) snprintf(buf, FM_MAX_CLASS, "%s.%s-%s",
913 		MC_OPL_ERROR_CLASS,
914 		mc_aflt->mflt_is_ptrl ? MC_OPL_PTRL_SUBCLASS :
915 		MC_OPL_MI_SUBCLASS,
916 		mc_aflt->mflt_erpt_class);
917 
918 	MC_LOG("mc_ereport_post: ereport %s\n", buf);
919 
920 
921 	fm_ereport_set(ereport, FM_EREPORT_VERSION, buf,
922 		fm_ena_generate(mc_aflt->mflt_id, FM_ENA_FMT1),
923 		detector, NULL);
924 
925 	/*
926 	 * Set payload.
927 	 */
928 	fm_payload_set(ereport, MC_OPL_BOARD, DATA_TYPE_UINT32,
929 		flt_stat->mf_flt_maddr.ma_bd, NULL);
930 
931 	fm_payload_set(ereport, MC_OPL_PA, DATA_TYPE_UINT64,
932 		flt_stat->mf_flt_paddr, NULL);
933 
934 	if (flt_stat->mf_type == FLT_TYPE_PERMANENT_CE) {
935 		fm_payload_set(ereport, MC_OPL_FLT_TYPE,
936 			DATA_TYPE_UINT8, ECC_STICKY, NULL);
937 	}
938 
939 	for (i = 0; i < nflts; i++)
940 		values[i] = mc_aflt->mflt_stat[i]->mf_flt_maddr.ma_bank;
941 
942 	fm_payload_set(ereport, MC_OPL_BANK, DATA_TYPE_UINT32_ARRAY,
943 		nflts, values, NULL);
944 
945 	for (i = 0; i < nflts; i++)
946 		values[i] = mc_aflt->mflt_stat[i]->mf_cntl;
947 
948 	fm_payload_set(ereport, MC_OPL_STATUS, DATA_TYPE_UINT32_ARRAY,
949 		nflts, values, NULL);
950 
951 	for (i = 0; i < nflts; i++)
952 		values[i] = mc_aflt->mflt_stat[i]->mf_err_add;
953 
954 	/* offset is set only for PCE */
955 	if (mc_aflt->mflt_stat[0]->mf_type == FLT_TYPE_PERMANENT_CE) {
956 		offset = values[0];
957 
958 	}
959 	fm_payload_set(ereport, MC_OPL_ERR_ADD, DATA_TYPE_UINT32_ARRAY,
960 		nflts, values, NULL);
961 
962 	for (i = 0; i < nflts; i++)
963 		values[i] = mc_aflt->mflt_stat[i]->mf_err_log;
964 
965 	fm_payload_set(ereport, MC_OPL_ERR_LOG, DATA_TYPE_UINT32_ARRAY,
966 		nflts, values, NULL);
967 
968 	for (i = 0; i < nflts; i++) {
969 		flt_stat = mc_aflt->mflt_stat[i];
970 		if (flt_stat->mf_errlog_valid) {
971 			synd[i] = flt_stat->mf_synd;
972 			dslot[i] = flt_stat->mf_dimm_slot;
973 			values[i] = flt_stat->mf_dram_place;
974 		} else {
975 			synd[i] = 0;
976 			dslot[i] = 0;
977 			values[i] = 0;
978 		}
979 	}
980 
981 	fm_payload_set(ereport, MC_OPL_ERR_SYND,
982 		DATA_TYPE_UINT32_ARRAY, nflts, synd, NULL);
983 
984 	fm_payload_set(ereport, MC_OPL_ERR_DIMMSLOT,
985 		DATA_TYPE_UINT32_ARRAY, nflts, dslot, NULL);
986 
987 	fm_payload_set(ereport, MC_OPL_ERR_DRAM,
988 		DATA_TYPE_UINT32_ARRAY, nflts, values, NULL);
989 
990 	device_path[0] = 0;
991 	p = &device_path[0];
992 	sid[0] = 0;
993 	s = &sid[0];
994 	ret = 0;
995 
996 	for (i = 0; i < nflts; i++) {
997 		int bank;
998 
999 		flt_stat = mc_aflt->mflt_stat[i];
1000 		bank = flt_stat->mf_flt_maddr.ma_bank;
1001 		ret =  mc_set_mem_unum(p + strlen(p), blen,
1002 			flt_stat->mf_flt_maddr.ma_bd, bank, flt_stat->mf_type,
1003 			flt_stat->mf_dimm_slot);
1004 
1005 		if (ret != 0) {
1006 			cmn_err(CE_WARN,
1007 			    "mc_ereport_post: Failed to determine the unum "
1008 			    "for board=%d bank=%d type=0x%x slot=0x%x",
1009 			    flt_stat->mf_flt_maddr.ma_bd, bank,
1010 			    flt_stat->mf_type, flt_stat->mf_dimm_slot);
1011 			continue;
1012 		}
1013 		n = strlen(device_path);
1014 		blen = MAXPATHLEN - n;
1015 		p = &device_path[n];
1016 		if (i < (nflts - 1)) {
1017 			snprintf(p, blen, " ");
1018 			blen--;
1019 			p++;
1020 		}
1021 
1022 		if (ret == 0) {
1023 			ret = mc_set_mem_sid(mc_aflt->mflt_mcp, s + strlen(s),
1024 			    blen, flt_stat->mf_flt_maddr.ma_bd, bank,
1025 			    flt_stat->mf_type, flt_stat->mf_dimm_slot);
1026 
1027 		}
1028 	}
1029 
1030 	(void) fm_fmri_mem_set(resource, FM_MEM_SCHEME_VERSION,
1031 		NULL, device_path, (ret == 0) ? sid : NULL,
1032 		(ret == 0) ? offset : (uint64_t)-1);
1033 
1034 	fm_payload_set(ereport, MC_OPL_RESOURCE, DATA_TYPE_NVLIST,
1035 		resource, NULL);
1036 
1037 	if (panicstr) {
1038 		errorq_commit(ereport_errorq, eqep, ERRORQ_SYNC);
1039 	} else {
1040 		(void) fm_ereport_post(ereport, EVCH_TRYHARD);
1041 		fm_nvlist_destroy(ereport, FM_NVA_FREE);
1042 		fm_nvlist_destroy(detector, FM_NVA_FREE);
1043 		fm_nvlist_destroy(resource, FM_NVA_FREE);
1044 	}
1045 }
1046 
1047 
1048 static void
1049 mc_err_drain(mc_aflt_t *mc_aflt)
1050 {
1051 	int rv;
1052 	page_t *pp;
1053 	uint64_t errors;
1054 	uint64_t pa = (uint64_t)(-1);
1055 	int i;
1056 
1057 	MC_LOG("mc_err_drain: %s\n",
1058 		mc_aflt->mflt_erpt_class);
1059 	/*
1060 	 * we come here only when we have:
1061 	 * In mirror mode: CMPE, MUE, SUE
1062 	 * In normal mode: UE, Permanent CE
1063 	 */
1064 	for (i = 0; i < mc_aflt->mflt_nflts; i++) {
1065 		rv = mcaddr_to_pa(mc_aflt->mflt_mcp,
1066 			&(mc_aflt->mflt_stat[i]->mf_flt_maddr), &pa);
1067 		if (rv == 0)
1068 			mc_aflt->mflt_stat[i]->mf_flt_paddr = pa;
1069 		else
1070 			mc_aflt->mflt_stat[i]->mf_flt_paddr = (uint64_t)-1;
1071 	}
1072 
1073 	if (mc_aflt->mflt_stat[0]->mf_type != FLT_TYPE_PERMANENT_CE) {
1074 		MC_LOG("mc_err_drain:pa = %lx\n", pa);
1075 		pp = page_numtopp_nolock(pa >> PAGESHIFT);
1076 
1077 		if (pp) {
1078 			/*
1079 			 * Don't keep retiring and make ereports
1080 			 * on bad pages in PTRL case
1081 			 */
1082 			MC_LOG("mc_err_drain:pp = %p\n", pp);
1083 			if (mc_aflt->mflt_is_ptrl) {
1084 				errors = 0;
1085 				if (page_retire_check(pa, &errors) == 0) {
1086 					MC_LOG("Page retired\n");
1087 					return;
1088 				}
1089 				if (errors & mc_aflt->mflt_pr) {
1090 					MC_LOG("errors %lx, mflt_pr %x\n",
1091 						errors, mc_aflt->mflt_pr);
1092 					return;
1093 				}
1094 			}
1095 			MC_LOG("offline page %p error %x\n", pp,
1096 				mc_aflt->mflt_pr);
1097 			(void) page_retire(pa, mc_aflt->mflt_pr);
1098 		}
1099 	}
1100 
1101 	for (i = 0; i < mc_aflt->mflt_nflts; i++) {
1102 		mc_aflt_t mc_aflt0;
1103 		if (mc_aflt->mflt_stat[i]->mf_flt_paddr != (uint64_t)-1) {
1104 			mc_aflt0 = *mc_aflt;
1105 			mc_aflt0.mflt_nflts = 1;
1106 			mc_aflt0.mflt_stat[0] = mc_aflt->mflt_stat[i];
1107 			mc_ereport_post(&mc_aflt0);
1108 		}
1109 	}
1110 }
1111 
1112 /*
1113  * The restart address is actually defined in unit of PA[37:6]
1114  * the mac patrol will convert that to dimm offset.  If the
1115  * address is not in the bank, it will continue to search for
1116  * the next PA that is within the bank.
1117  *
1118  * Also the mac patrol scans the dimms based on PA, not
1119  * dimm offset.
1120  */
1121 static int
1122 restart_patrol(mc_opl_t *mcp, int bank, mc_addr_info_t *maddr_info)
1123 {
1124 	page_t *pp;
1125 	uint64_t pa;
1126 	int rv;
1127 	int loop_count = 0;
1128 
1129 	if (maddr_info == NULL || (maddr_info->mi_valid == 0)) {
1130 		MAC_PTRL_START(mcp, bank);
1131 		return (0);
1132 	}
1133 
1134 	rv = mcaddr_to_pa(mcp, &maddr_info->mi_maddr, &pa);
1135 	if (rv != 0) {
1136 		MC_LOG("cannot convert mcaddr to pa. use auto restart\n");
1137 		MAC_PTRL_START(mcp, bank);
1138 		return (0);
1139 	}
1140 
1141 	/*
1142 	 * pa is the last address scanned by the mac patrol
1143 	 * we  calculate the next restart address as follows:
1144 	 * first we always advance it by 64 byte. Then begin the loop.
1145 	 * loop {
1146 	 * if it is not in phys_install, we advance to next 64 MB boundary
1147 	 * if it is not backed by a page structure, done
1148 	 * if the page is bad, advance to the next page boundary.
1149 	 * else done
1150 	 * if the new address exceeds the board, wrap around.
1151 	 * } <stop if we come back to the same page>
1152 	 */
1153 
1154 	if (pa < mcp->mc_start_address || pa >= (mcp->mc_start_address
1155 		+ mcp->mc_size)) {
1156 		/* pa is not on this board, just retry */
1157 		cmn_err(CE_WARN, "restart_patrol: invalid address %lx "
1158 			"on board %d\n", pa, mcp->mc_board_num);
1159 		MAC_PTRL_START(mcp, bank);
1160 		return (0);
1161 	}
1162 
1163 	MC_LOG("restart_patrol: pa = %lx\n", pa);
1164 	if (maddr_info->mi_advance) {
1165 		uint64_t new_pa;
1166 
1167 		if (IS_MIRROR(mcp, bank))
1168 			new_pa = pa + 64 * 2;
1169 		else
1170 			new_pa = pa + 64;
1171 
1172 		if (!mc_valid_pa(mcp, new_pa)) {
1173 			MC_LOG("Invalid PA\n");
1174 			pa = roundup(new_pa + 1, mc_isolation_bsize);
1175 		} else {
1176 			pp = page_numtopp_nolock(new_pa >> PAGESHIFT);
1177 			if (pp != NULL) {
1178 				uint64_t errors = 0;
1179 				if (page_retire_check(new_pa, &errors) &&
1180 					(errors == 0)) {
1181 					MC_LOG("Page has no error\n");
1182 					pa = new_pa;
1183 					goto done;
1184 				}
1185 				/*
1186 				 * skip bad pages
1187 				 * and let the following loop to take care
1188 				 */
1189 				pa = roundup(new_pa + 1, PAGESIZE);
1190 				MC_LOG("Skipping bad page to %lx\n", pa);
1191 			} else {
1192 				MC_LOG("Page has no page structure\n");
1193 				pa = new_pa;
1194 				goto done;
1195 			}
1196 		}
1197 	}
1198 
1199 	/*
1200 	 * if we wrap around twice, we just give up and let
1201 	 * mac patrol decide.
1202 	 */
1203 	MC_LOG("pa is now %lx\n", pa);
1204 	while (loop_count <= 1) {
1205 		if (!mc_valid_pa(mcp, pa)) {
1206 			MC_LOG("pa is not valid. round up to 64 MB\n");
1207 			pa = roundup(pa + 1, 64 * 1024 * 1024);
1208 		} else {
1209 			pp = page_numtopp_nolock(pa >> PAGESHIFT);
1210 			if (pp != NULL) {
1211 				uint64_t errors = 0;
1212 				if (page_retire_check(pa, &errors) &&
1213 					(errors == 0)) {
1214 					MC_LOG("Page has no error\n");
1215 					break;
1216 				}
1217 				/* skip bad pages */
1218 				pa = roundup(pa + 1, PAGESIZE);
1219 				MC_LOG("Skipping bad page to %lx\n", pa);
1220 			} else {
1221 				MC_LOG("Page has no page structure\n");
1222 				break;
1223 			}
1224 		}
1225 		if (pa >= (mcp->mc_start_address + mcp->mc_size)) {
1226 			MC_LOG("Wrap around\n");
1227 			pa = mcp->mc_start_address;
1228 			loop_count++;
1229 		}
1230 	}
1231 
1232 done:
1233 	/* retstart MAC patrol: PA[37:6] */
1234 	MC_LOG("restart at pa = %lx\n", pa);
1235 	ST_MAC_REG(MAC_RESTART_ADD(mcp, bank), MAC_RESTART_PA(pa));
1236 	MAC_PTRL_START_ADD(mcp, bank);
1237 
1238 	return (0);
1239 }
1240 
1241 /*
1242  * Rewriting is used for two purposes.
1243  *  - to correct the error in memory.
1244  *  - to determine whether the error is permanent or intermittent.
1245  * It's done by writing the address in MAC_BANKm_REWRITE_ADD
1246  * and issuing REW_REQ command in MAC_BANKm_PTRL_CNRL. After that,
1247  * REW_END (and REW_CE/REW_UE if some error detected) is set when
1248  * rewrite operation is done. See 4.7.3 and 4.7.11 in Columbus2 PRM.
1249  *
1250  * Note that rewrite operation doesn't change RAW_UE to Marked UE.
1251  * Therefore, we use it only CE case.
1252  */
1253 static uint32_t
1254 do_rewrite(mc_opl_t *mcp, int bank, uint32_t dimm_addr)
1255 {
1256 	uint32_t cntl;
1257 	int count = 0;
1258 
1259 	/* first wait to make sure PTRL_STATUS is 0 */
1260 	while (count++ < mc_max_rewrite_loop) {
1261 		cntl = LD_MAC_REG(MAC_PTRL_CNTL(mcp, bank));
1262 		if (!(cntl & MAC_CNTL_PTRL_STATUS))
1263 			break;
1264 		drv_usecwait(mc_rewrite_delay);
1265 	}
1266 	if (count >= mc_max_rewrite_loop)
1267 		goto bad;
1268 
1269 	count = 0;
1270 
1271 	ST_MAC_REG(MAC_REWRITE_ADD(mcp, bank), dimm_addr);
1272 	MAC_REW_REQ(mcp, bank);
1273 
1274 	do {
1275 		cntl = LD_MAC_REG(MAC_PTRL_CNTL(mcp, bank));
1276 		if (count++ >= mc_max_rewrite_loop) {
1277 			goto bad;
1278 		} else {
1279 			drv_usecwait(mc_rewrite_delay);
1280 		}
1281 	/*
1282 	 * If there are other MEMORY or PCI activities, this
1283 	 * will be BUSY, else it should be set immediately
1284 	 */
1285 	} while (!(cntl & MAC_CNTL_REW_END));
1286 
1287 	MAC_CLEAR_ERRS(mcp, bank, MAC_CNTL_REW_ERRS);
1288 	return (cntl);
1289 bad:
1290 	/* This is bad.  Just reset the circuit */
1291 	cmn_err(CE_WARN, "mc-opl rewrite timeout on /LSB%d/B%d\n",
1292 		mcp->mc_board_num, bank);
1293 	cntl = MAC_CNTL_REW_END;
1294 	MAC_CMD(mcp, bank, MAC_CNTL_PTRL_RESET);
1295 	MAC_CLEAR_ERRS(mcp, bank, MAC_CNTL_REW_ERRS);
1296 	return (cntl);
1297 }
1298 void
1299 mc_process_scf_log(mc_opl_t *mcp)
1300 {
1301 	int count;
1302 	int n = 0;
1303 	scf_log_t *p;
1304 	int bank;
1305 
1306 	for (bank = 0; bank < BANKNUM_PER_SB; bank++) {
1307 	    while ((p = mcp->mc_scf_log[bank]) != NULL &&
1308 		(n < mc_max_errlog_processed)) {
1309 		ASSERT(bank == p->sl_bank);
1310 		count = 0;
1311 		while ((LD_MAC_REG(MAC_STATIC_ERR_ADD(mcp, p->sl_bank))
1312 			& MAC_STATIC_ERR_VLD)) {
1313 			if (count++ >= (mc_max_scf_loop)) {
1314 				break;
1315 			}
1316 			drv_usecwait(mc_scf_delay);
1317 		}
1318 
1319 		if (count < mc_max_scf_loop) {
1320 			ST_MAC_REG(MAC_STATIC_ERR_LOG(mcp, p->sl_bank),
1321 				p->sl_err_log);
1322 
1323 			ST_MAC_REG(MAC_STATIC_ERR_ADD(mcp, p->sl_bank),
1324 				p->sl_err_add|MAC_STATIC_ERR_VLD);
1325 			mcp->mc_scf_retry[bank] = 0;
1326 		} else {
1327 			/* if we try too many times, just drop the req */
1328 			if (mcp->mc_scf_retry[bank]++ <= mc_max_scf_retry) {
1329 				return;
1330 			} else {
1331 			    if ((++mc_pce_dropped & 0xff) == 0) {
1332 				cmn_err(CE_WARN,
1333 				    "Cannot report Permanent CE to SCF\n");
1334 			    }
1335 			}
1336 		}
1337 		n++;
1338 		mcp->mc_scf_log[bank] = p->sl_next;
1339 		mcp->mc_scf_total[bank]--;
1340 		ASSERT(mcp->mc_scf_total[bank] >= 0);
1341 		kmem_free(p, sizeof (scf_log_t));
1342 	    }
1343 	}
1344 }
1345 void
1346 mc_queue_scf_log(mc_opl_t *mcp, mc_flt_stat_t *flt_stat, int bank)
1347 {
1348 	scf_log_t *p;
1349 
1350 	if (mcp->mc_scf_total[bank] >= mc_max_scf_logs) {
1351 		if ((++mc_pce_dropped & 0xff) == 0) {
1352 		    cmn_err(CE_WARN, "Too many Permanent CE requests.\n");
1353 		}
1354 		return;
1355 	}
1356 	p = kmem_zalloc(sizeof (scf_log_t), KM_SLEEP);
1357 	p->sl_next = 0;
1358 	p->sl_err_add = flt_stat->mf_err_add;
1359 	p->sl_err_log = flt_stat->mf_err_log;
1360 	p->sl_bank = bank;
1361 
1362 	if (mcp->mc_scf_log[bank] == NULL) {
1363 		/*
1364 		 * we rely on mc_scf_log to detect NULL queue.
1365 		 * mc_scf_log_tail is irrelevant is such case.
1366 		 */
1367 		mcp->mc_scf_log_tail[bank] = mcp->mc_scf_log[bank] = p;
1368 	} else {
1369 		mcp->mc_scf_log_tail[bank]->sl_next = p;
1370 		mcp->mc_scf_log_tail[bank] = p;
1371 	}
1372 	mcp->mc_scf_total[bank]++;
1373 }
1374 /*
1375  * This routine determines what kind of CE happens, intermittent
1376  * or permanent as follows. (See 4.7.3 in Columbus2 PRM.)
1377  * - Do rewrite by issuing REW_REQ command to MAC_PTRL_CNTL register.
1378  * - If CE is still detected on the same address even after doing
1379  *   rewrite operation twice, it is determined as permanent error.
1380  * - If error is not detected anymore, it is determined as intermittent
1381  *   error.
1382  * - If UE is detected due to rewrite operation, it should be treated
1383  *   as UE.
1384  */
1385 
1386 /* ARGSUSED */
1387 static void
1388 mc_scrub_ce(mc_opl_t *mcp, int bank, mc_flt_stat_t *flt_stat, int ptrl_error)
1389 {
1390 	uint32_t cntl;
1391 	int i;
1392 
1393 	flt_stat->mf_type = FLT_TYPE_PERMANENT_CE;
1394 	/*
1395 	 * rewrite request 1st time reads and correct error data
1396 	 * and write to DIMM.  2nd rewrite request must be issued
1397 	 * after REW_CE/UE/END is 0.  When the 2nd request is completed,
1398 	 * if REW_CE = 1, then it is permanent CE.
1399 	 */
1400 	for (i = 0; i < 2; i++) {
1401 		cntl = do_rewrite(mcp, bank, flt_stat->mf_err_add);
1402 		/*
1403 		 * If the error becomes UE or CMPE
1404 		 * we return to the caller immediately.
1405 		 */
1406 		if (cntl & MAC_CNTL_REW_UE) {
1407 			if (ptrl_error)
1408 				flt_stat->mf_cntl |= MAC_CNTL_PTRL_UE;
1409 			else
1410 				flt_stat->mf_cntl |= MAC_CNTL_MI_UE;
1411 			flt_stat->mf_type = FLT_TYPE_UE;
1412 			return;
1413 		}
1414 		if (cntl & MAC_CNTL_REW_CMPE) {
1415 			if (ptrl_error)
1416 				flt_stat->mf_cntl |= MAC_CNTL_PTRL_CMPE;
1417 			else
1418 				flt_stat->mf_cntl |= MAC_CNTL_MI_CMPE;
1419 			flt_stat->mf_type = FLT_TYPE_CMPE;
1420 			return;
1421 		}
1422 	}
1423 	if (!(cntl & MAC_CNTL_REW_CE)) {
1424 		flt_stat->mf_type = FLT_TYPE_INTERMITTENT_CE;
1425 	}
1426 
1427 	if (flt_stat->mf_type == FLT_TYPE_PERMANENT_CE) {
1428 		/* report PERMANENT_CE to SP via SCF */
1429 		if (!(flt_stat->mf_err_log & MAC_ERR_LOG_INVALID)) {
1430 			mc_queue_scf_log(mcp, flt_stat, bank);
1431 		}
1432 	}
1433 }
1434 
1435 #define	IS_CMPE(cntl, f)	((cntl) & ((f) ? MAC_CNTL_PTRL_CMPE :\
1436 				MAC_CNTL_MI_CMPE))
1437 #define	IS_UE(cntl, f)	((cntl) & ((f) ? MAC_CNTL_PTRL_UE : MAC_CNTL_MI_UE))
1438 #define	IS_CE(cntl, f)	((cntl) & ((f) ? MAC_CNTL_PTRL_CE : MAC_CNTL_MI_CE))
1439 #define	IS_OK(cntl, f)	(!((cntl) & ((f) ? MAC_CNTL_PTRL_ERRS : \
1440 			MAC_CNTL_MI_ERRS)))
1441 
1442 
1443 static int
1444 IS_CE_ONLY(uint32_t cntl, int ptrl_error)
1445 {
1446 	if (ptrl_error) {
1447 		return ((cntl & MAC_CNTL_PTRL_ERRS) == MAC_CNTL_PTRL_CE);
1448 	} else {
1449 		return ((cntl & MAC_CNTL_MI_ERRS) == MAC_CNTL_MI_CE);
1450 	}
1451 }
1452 
1453 void
1454 mc_write_cntl(mc_opl_t *mcp, int bank, uint32_t value)
1455 {
1456 	if (mcp->mc_speedup_period[bank] > 0)
1457 		value |= mc_max_speed;
1458 	else
1459 		value |= mcp->mc_speed;
1460 	ST_MAC_REG(MAC_PTRL_CNTL(mcp, bank), value);
1461 }
1462 
1463 static void
1464 mc_read_ptrl_reg(mc_opl_t *mcp, int bank, mc_flt_stat_t *flt_stat)
1465 {
1466 	flt_stat->mf_cntl = LD_MAC_REG(MAC_PTRL_CNTL(mcp, bank)) &
1467 		MAC_CNTL_PTRL_ERRS;
1468 	flt_stat->mf_err_add = LD_MAC_REG(MAC_PTRL_ERR_ADD(mcp, bank));
1469 	flt_stat->mf_err_log = LD_MAC_REG(MAC_PTRL_ERR_LOG(mcp, bank));
1470 	flt_stat->mf_flt_maddr.ma_bd = mcp->mc_board_num;
1471 	flt_stat->mf_flt_maddr.ma_bank = bank;
1472 	flt_stat->mf_flt_maddr.ma_dimm_addr = flt_stat->mf_err_add;
1473 }
1474 
1475 static void
1476 mc_read_mi_reg(mc_opl_t *mcp, int bank, mc_flt_stat_t *flt_stat)
1477 {
1478 	uint32_t status, old_status;
1479 
1480 	status = LD_MAC_REG(MAC_PTRL_CNTL(mcp, bank)) &
1481 		MAC_CNTL_MI_ERRS;
1482 	old_status = 0;
1483 
1484 	/* we keep reading until the status is stable */
1485 	while (old_status != status) {
1486 		old_status = status;
1487 		flt_stat->mf_err_add =
1488 			LD_MAC_REG(MAC_MI_ERR_ADD(mcp, bank));
1489 		flt_stat->mf_err_log =
1490 			LD_MAC_REG(MAC_MI_ERR_LOG(mcp, bank));
1491 		status = LD_MAC_REG(MAC_PTRL_CNTL(mcp, bank)) &
1492 			MAC_CNTL_MI_ERRS;
1493 		if (status == old_status) {
1494 			break;
1495 		}
1496 	}
1497 
1498 	flt_stat->mf_cntl = status;
1499 	flt_stat->mf_flt_maddr.ma_bd = mcp->mc_board_num;
1500 	flt_stat->mf_flt_maddr.ma_bank = bank;
1501 	flt_stat->mf_flt_maddr.ma_dimm_addr = flt_stat->mf_err_add;
1502 }
1503 
1504 
1505 /*
1506  * Error philosophy for mirror mode:
1507  *
1508  * PTRL (The error address for both banks are same, since ptrl stops if it
1509  * detects error.)
1510  * - Compaire error  Report CMPE.
1511  *
1512  * - UE-UE           Report MUE.  No rewrite.
1513  *
1514  * - UE-*	     UE-(CE/OK). Rewrite to scrub UE.  Report SUE.
1515  *
1516  * - CE-*            CE-(CE/OK). Scrub to determine if CE is permanent.
1517  *                   If CE is permanent, inform SCF.  Once for each
1518  *		     Dimm.  If CE becomes UE or CMPE, go back to above.
1519  *
1520  *
1521  * MI (The error addresses for each bank are the same or different.)
1522  * - Compair  error  If addresses are the same.  Just CMPE.
1523  *		     If addresses are different (this could happen
1524  *		     as a result of scrubbing.  Report each seperately.
1525  *		     Only report error info on each side.
1526  *
1527  * - UE-UE           Addresses are the same.  Report MUE.
1528  *		     Addresses are different.  Report SUE on each bank.
1529  *		     Rewrite to clear UE.
1530  *
1531  * - UE-*	     UE-(CE/OK)
1532  *		     Rewrite to clear UE.  Report SUE for the bank.
1533  *
1534  * - CE-*            CE-(CE/OK).  Scrub to determine if CE is permanent.
1535  *                   If CE becomes UE or CMPE, go back to above.
1536  *
1537  */
1538 
1539 static int
1540 mc_process_error_mir(mc_opl_t *mcp, mc_aflt_t *mc_aflt, mc_flt_stat_t *flt_stat)
1541 {
1542 	int ptrl_error = mc_aflt->mflt_is_ptrl;
1543 	int i;
1544 	int rv = 0;
1545 
1546 	MC_LOG("process mirror errors cntl[0] = %x, cntl[1] = %x\n",
1547 		flt_stat[0].mf_cntl, flt_stat[1].mf_cntl);
1548 
1549 	if (ptrl_error) {
1550 		if (((flt_stat[0].mf_cntl | flt_stat[1].mf_cntl)
1551 			& MAC_CNTL_PTRL_ERRS) == 0)
1552 			return (0);
1553 	} else {
1554 		if (((flt_stat[0].mf_cntl | flt_stat[1].mf_cntl)
1555 			& MAC_CNTL_MI_ERRS) == 0)
1556 			return (0);
1557 	}
1558 
1559 	/*
1560 	 * First we take care of the case of CE
1561 	 * because they can become UE or CMPE
1562 	 */
1563 	for (i = 0; i < 2; i++) {
1564 		if (IS_CE_ONLY(flt_stat[i].mf_cntl, ptrl_error)) {
1565 			MC_LOG("CE detected on bank %d\n",
1566 				flt_stat[i].mf_flt_maddr.ma_bank);
1567 			mc_scrub_ce(mcp, flt_stat[i].mf_flt_maddr.ma_bank,
1568 				&flt_stat[i], ptrl_error);
1569 			rv = 1;
1570 		}
1571 	}
1572 
1573 	/* The above scrubbing can turn CE into UE or CMPE */
1574 
1575 	/*
1576 	 * Now we distinguish two cases: same address or not
1577 	 * the same address.  It might seem more intuitive to
1578 	 * distinguish PTRL v.s. MI error but it is more
1579 	 * complicated that way.
1580 	 */
1581 
1582 	if (flt_stat[0].mf_err_add == flt_stat[1].mf_err_add) {
1583 
1584 		if (IS_CMPE(flt_stat[0].mf_cntl, ptrl_error) ||
1585 		    IS_CMPE(flt_stat[1].mf_cntl, ptrl_error)) {
1586 			flt_stat[0].mf_type = FLT_TYPE_CMPE;
1587 			flt_stat[1].mf_type = FLT_TYPE_CMPE;
1588 			mc_aflt->mflt_erpt_class = MC_OPL_CMPE;
1589 			MC_LOG("cmpe error detected\n");
1590 			mc_aflt->mflt_nflts = 2;
1591 			mc_aflt->mflt_stat[0] = &flt_stat[0];
1592 			mc_aflt->mflt_stat[1] = &flt_stat[1];
1593 			mc_aflt->mflt_pr = PR_UE;
1594 			mc_err_drain(mc_aflt);
1595 			return (1);
1596 		}
1597 
1598 		if (IS_UE(flt_stat[0].mf_cntl, ptrl_error) &&
1599 			IS_UE(flt_stat[1].mf_cntl, ptrl_error)) {
1600 			/* Both side are UE's */
1601 
1602 			MAC_SET_ERRLOG_INFO(&flt_stat[0]);
1603 			MAC_SET_ERRLOG_INFO(&flt_stat[1]);
1604 			MC_LOG("MUE detected\n");
1605 			flt_stat[0].mf_type = FLT_TYPE_MUE;
1606 			flt_stat[1].mf_type = FLT_TYPE_MUE;
1607 			mc_aflt->mflt_erpt_class = MC_OPL_MUE;
1608 			mc_aflt->mflt_nflts = 2;
1609 			mc_aflt->mflt_stat[0] = &flt_stat[0];
1610 			mc_aflt->mflt_stat[1] = &flt_stat[1];
1611 			mc_aflt->mflt_pr = PR_UE;
1612 			mc_err_drain(mc_aflt);
1613 			return (1);
1614 		}
1615 
1616 		/* Now the only case is UE/CE, UE/OK, or don't care */
1617 		for (i = 0; i < 2; i++) {
1618 		    if (IS_UE(flt_stat[i].mf_cntl, ptrl_error)) {
1619 
1620 			/* rewrite can clear the one side UE error */
1621 
1622 			if (IS_OK(flt_stat[i^1].mf_cntl, ptrl_error)) {
1623 				(void) do_rewrite(mcp,
1624 				    flt_stat[i].mf_flt_maddr.ma_bank,
1625 				    flt_stat[i].mf_flt_maddr.ma_dimm_addr);
1626 			}
1627 			flt_stat[i].mf_type = FLT_TYPE_UE;
1628 			MAC_SET_ERRLOG_INFO(&flt_stat[i]);
1629 			mc_aflt->mflt_erpt_class = MC_OPL_SUE;
1630 			mc_aflt->mflt_stat[0] = &flt_stat[i];
1631 			mc_aflt->mflt_nflts = 1;
1632 			mc_aflt->mflt_pr = PR_MCE;
1633 			mc_err_drain(mc_aflt);
1634 			/* Once we hit a UE/CE or UE/OK case, done */
1635 			return (1);
1636 		    }
1637 		}
1638 
1639 	} else {
1640 		/*
1641 		 * addresses are different. That means errors
1642 		 * on the 2 banks are not related at all.
1643 		 */
1644 		for (i = 0; i < 2; i++) {
1645 		    if (IS_CMPE(flt_stat[i].mf_cntl, ptrl_error)) {
1646 			flt_stat[i].mf_type = FLT_TYPE_CMPE;
1647 			mc_aflt->mflt_erpt_class = MC_OPL_CMPE;
1648 			MC_LOG("cmpe error detected\n");
1649 			mc_aflt->mflt_nflts = 1;
1650 			mc_aflt->mflt_stat[0] = &flt_stat[i];
1651 			mc_aflt->mflt_pr = PR_UE;
1652 			mc_err_drain(mc_aflt);
1653 			/* no more report on this bank */
1654 			flt_stat[i].mf_cntl = 0;
1655 			rv = 1;
1656 		    }
1657 		}
1658 
1659 		/* rewrite can clear the one side UE error */
1660 
1661 		for (i = 0; i < 2; i++) {
1662 		    if (IS_UE(flt_stat[i].mf_cntl, ptrl_error)) {
1663 			(void) do_rewrite(mcp,
1664 				flt_stat[i].mf_flt_maddr.ma_bank,
1665 				flt_stat[i].mf_flt_maddr.ma_dimm_addr);
1666 			flt_stat[i].mf_type = FLT_TYPE_UE;
1667 			MAC_SET_ERRLOG_INFO(&flt_stat[i]);
1668 			mc_aflt->mflt_erpt_class = MC_OPL_SUE;
1669 			mc_aflt->mflt_stat[0] = &flt_stat[i];
1670 			mc_aflt->mflt_nflts = 1;
1671 			mc_aflt->mflt_pr = PR_MCE;
1672 			mc_err_drain(mc_aflt);
1673 			rv = 1;
1674 		    }
1675 		}
1676 	}
1677 	return (rv);
1678 }
1679 static void
1680 mc_error_handler_mir(mc_opl_t *mcp, int bank, mc_addr_info_t *maddr)
1681 {
1682 	mc_aflt_t mc_aflt;
1683 	mc_flt_stat_t flt_stat[2], mi_flt_stat[2];
1684 	int i;
1685 	int mi_valid;
1686 
1687 	bzero(&mc_aflt, sizeof (mc_aflt_t));
1688 	bzero(&flt_stat, 2 * sizeof (mc_flt_stat_t));
1689 	bzero(&mi_flt_stat, 2 * sizeof (mc_flt_stat_t));
1690 
1691 	mc_aflt.mflt_mcp = mcp;
1692 	mc_aflt.mflt_id = gethrtime();
1693 
1694 	/* Now read all the registers into flt_stat */
1695 
1696 	for (i = 0; i < 2; i++) {
1697 		MC_LOG("Reading registers of bank %d\n", bank);
1698 		/* patrol registers */
1699 		mc_read_ptrl_reg(mcp, bank, &flt_stat[i]);
1700 
1701 		ASSERT(maddr);
1702 		maddr->mi_maddr = flt_stat[i].mf_flt_maddr;
1703 
1704 		MC_LOG("ptrl registers cntl %x add %x log %x\n",
1705 			flt_stat[i].mf_cntl,
1706 			flt_stat[i].mf_err_add,
1707 			flt_stat[i].mf_err_log);
1708 
1709 		/* MI registers */
1710 		mc_read_mi_reg(mcp, bank, &mi_flt_stat[i]);
1711 
1712 		MC_LOG("MI registers cntl %x add %x log %x\n",
1713 			mi_flt_stat[i].mf_cntl,
1714 			mi_flt_stat[i].mf_err_add,
1715 			mi_flt_stat[i].mf_err_log);
1716 
1717 		bank = bank^1;
1718 	}
1719 
1720 	/* clear errors once we read all the registers */
1721 	MAC_CLEAR_ERRS(mcp, bank,
1722 		(MAC_CNTL_PTRL_ERRS|MAC_CNTL_MI_ERRS));
1723 
1724 	MAC_CLEAR_ERRS(mcp, bank ^ 1, (MAC_CNTL_PTRL_ERRS|MAC_CNTL_MI_ERRS));
1725 
1726 	/* Process MI errors first */
1727 
1728 	/* if not error mode, cntl1 is 0 */
1729 	if ((mi_flt_stat[0].mf_err_add & MAC_ERR_ADD_INVALID) ||
1730 		(mi_flt_stat[0].mf_err_log & MAC_ERR_LOG_INVALID))
1731 		mi_flt_stat[0].mf_cntl = 0;
1732 
1733 	if ((mi_flt_stat[1].mf_err_add & MAC_ERR_ADD_INVALID) ||
1734 		(mi_flt_stat[1].mf_err_log & MAC_ERR_LOG_INVALID))
1735 		mi_flt_stat[1].mf_cntl = 0;
1736 
1737 	mc_aflt.mflt_is_ptrl = 0;
1738 	mi_valid = mc_process_error_mir(mcp, &mc_aflt, &mi_flt_stat[0]);
1739 
1740 	if ((((flt_stat[0].mf_cntl & MAC_CNTL_PTRL_ERRS) >>
1741 		MAC_CNTL_PTRL_ERR_SHIFT) ==
1742 		((mi_flt_stat[0].mf_cntl & MAC_CNTL_MI_ERRS) >>
1743 		MAC_CNTL_MI_ERR_SHIFT)) &&
1744 		(flt_stat[0].mf_err_add == mi_flt_stat[0].mf_err_add) &&
1745 		(((flt_stat[1].mf_cntl & MAC_CNTL_PTRL_ERRS) >>
1746 		MAC_CNTL_PTRL_ERR_SHIFT) ==
1747 		((mi_flt_stat[1].mf_cntl & MAC_CNTL_MI_ERRS) >>
1748 		MAC_CNTL_MI_ERR_SHIFT)) &&
1749 		(flt_stat[1].mf_err_add == mi_flt_stat[1].mf_err_add)) {
1750 #ifdef DEBUG
1751 		MC_LOG("discarding PTRL error because "
1752 		    "it is the same as MI\n");
1753 #endif
1754 		maddr->mi_valid = mi_valid;
1755 		return;
1756 	}
1757 	/* if not error mode, cntl1 is 0 */
1758 	if ((flt_stat[0].mf_err_add & MAC_ERR_ADD_INVALID) ||
1759 		(flt_stat[0].mf_err_log & MAC_ERR_LOG_INVALID))
1760 		flt_stat[0].mf_cntl = 0;
1761 
1762 	if ((flt_stat[1].mf_err_add & MAC_ERR_ADD_INVALID) ||
1763 		(flt_stat[1].mf_err_log & MAC_ERR_LOG_INVALID))
1764 		flt_stat[1].mf_cntl = 0;
1765 
1766 	mc_aflt.mflt_is_ptrl = 1;
1767 	maddr->mi_valid = mc_process_error_mir(mcp, &mc_aflt, &flt_stat[0]);
1768 }
1769 static int
1770 mc_process_error(mc_opl_t *mcp, int bank, mc_aflt_t *mc_aflt,
1771 	mc_flt_stat_t *flt_stat)
1772 {
1773 	int ptrl_error = mc_aflt->mflt_is_ptrl;
1774 	int rv = 0;
1775 
1776 	mc_aflt->mflt_erpt_class = NULL;
1777 	if (IS_UE(flt_stat->mf_cntl, ptrl_error)) {
1778 		MC_LOG("UE deteceted\n");
1779 		flt_stat->mf_type = FLT_TYPE_UE;
1780 		mc_aflt->mflt_erpt_class = MC_OPL_UE;
1781 		mc_aflt->mflt_pr = PR_UE;
1782 		MAC_SET_ERRLOG_INFO(flt_stat);
1783 		rv = 1;
1784 	} else if (IS_CE(flt_stat->mf_cntl, ptrl_error)) {
1785 		MC_LOG("CE deteceted\n");
1786 		MAC_SET_ERRLOG_INFO(flt_stat);
1787 
1788 		/* Error type can change after scrubing */
1789 		mc_scrub_ce(mcp, bank, flt_stat, ptrl_error);
1790 
1791 		if (flt_stat->mf_type == FLT_TYPE_PERMANENT_CE) {
1792 			mc_aflt->mflt_erpt_class = MC_OPL_CE;
1793 			mc_aflt->mflt_pr = PR_MCE;
1794 		} else if (flt_stat->mf_type == FLT_TYPE_UE) {
1795 			mc_aflt->mflt_erpt_class = MC_OPL_UE;
1796 			mc_aflt->mflt_pr = PR_UE;
1797 		}
1798 		rv = 1;
1799 	}
1800 	MC_LOG("mc_process_error: fault type %x erpt %s\n",
1801 		flt_stat->mf_type,
1802 		mc_aflt->mflt_erpt_class);
1803 	if (mc_aflt->mflt_erpt_class) {
1804 		mc_aflt->mflt_stat[0] = flt_stat;
1805 		mc_aflt->mflt_nflts = 1;
1806 		mc_err_drain(mc_aflt);
1807 	}
1808 	return (rv);
1809 }
1810 
1811 static void
1812 mc_error_handler(mc_opl_t *mcp, int bank, mc_addr_info_t *maddr)
1813 {
1814 	mc_aflt_t mc_aflt;
1815 	mc_flt_stat_t flt_stat, mi_flt_stat;
1816 	int mi_valid;
1817 
1818 	bzero(&mc_aflt, sizeof (mc_aflt_t));
1819 	bzero(&flt_stat, sizeof (mc_flt_stat_t));
1820 	bzero(&mi_flt_stat, sizeof (mc_flt_stat_t));
1821 
1822 	mc_aflt.mflt_mcp = mcp;
1823 	mc_aflt.mflt_id = gethrtime();
1824 
1825 	/* patrol registers */
1826 	mc_read_ptrl_reg(mcp, bank, &flt_stat);
1827 
1828 	ASSERT(maddr);
1829 	maddr->mi_maddr = flt_stat.mf_flt_maddr;
1830 
1831 	MC_LOG("ptrl registers cntl %x add %x log %x\n",
1832 		flt_stat.mf_cntl,
1833 		flt_stat.mf_err_add,
1834 		flt_stat.mf_err_log);
1835 
1836 	/* MI registers */
1837 	mc_read_mi_reg(mcp, bank, &mi_flt_stat);
1838 
1839 
1840 	MC_LOG("MI registers cntl %x add %x log %x\n",
1841 		mi_flt_stat.mf_cntl,
1842 		mi_flt_stat.mf_err_add,
1843 		mi_flt_stat.mf_err_log);
1844 
1845 	/* clear errors once we read all the registers */
1846 	MAC_CLEAR_ERRS(mcp, bank, (MAC_CNTL_PTRL_ERRS|MAC_CNTL_MI_ERRS));
1847 
1848 	mc_aflt.mflt_is_ptrl = 0;
1849 	if ((mi_flt_stat.mf_cntl & MAC_CNTL_MI_ERRS) &&
1850 		((mi_flt_stat.mf_err_add & MAC_ERR_ADD_INVALID) == 0) &&
1851 		((mi_flt_stat.mf_err_log & MAC_ERR_LOG_INVALID) == 0)) {
1852 		mi_valid = mc_process_error(mcp, bank, &mc_aflt, &mi_flt_stat);
1853 	}
1854 
1855 	if ((((flt_stat.mf_cntl & MAC_CNTL_PTRL_ERRS) >>
1856 		MAC_CNTL_PTRL_ERR_SHIFT) ==
1857 		((mi_flt_stat.mf_cntl & MAC_CNTL_MI_ERRS) >>
1858 		MAC_CNTL_MI_ERR_SHIFT)) &&
1859 		(flt_stat.mf_err_add == mi_flt_stat.mf_err_add)) {
1860 #ifdef DEBUG
1861 		MC_LOG("discarding PTRL error because "
1862 		    "it is the same as MI\n");
1863 #endif
1864 		maddr->mi_valid = mi_valid;
1865 		return;
1866 	}
1867 
1868 	mc_aflt.mflt_is_ptrl = 1;
1869 	if ((flt_stat.mf_cntl & MAC_CNTL_PTRL_ERRS) &&
1870 		((flt_stat.mf_err_add & MAC_ERR_ADD_INVALID) == 0) &&
1871 		((flt_stat.mf_err_log & MAC_ERR_LOG_INVALID) == 0)) {
1872 		maddr->mi_valid = mc_process_error(mcp, bank,
1873 			&mc_aflt, &flt_stat);
1874 	}
1875 }
1876 /*
1877  *	memory patrol error handling algorithm:
1878  *	timeout() is used to do periodic polling
1879  *	This is the flow chart.
1880  *	timeout ->
1881  *	mc_check_errors()
1882  *	    if memory bank is installed, read the status register
1883  *	    if any error bit is set,
1884  *	    -> mc_error_handler()
1885  *		-> read all error regsiters
1886  *	        -> mc_process_error()
1887  *	            determine error type
1888  *	            rewrite to clear error or scrub to determine CE type
1889  *	            inform SCF on permanent CE
1890  *	        -> mc_err_drain
1891  *	            page offline processing
1892  *	            -> mc_ereport_post()
1893  */
1894 
1895 static void
1896 mc_check_errors_func(mc_opl_t *mcp)
1897 {
1898 	mc_addr_info_t maddr_info;
1899 	int i, error_count = 0;
1900 	uint32_t stat, cntl;
1901 	int running;
1902 
1903 	/*
1904 	 * scan errors.
1905 	 */
1906 	if (mcp->mc_status & MC_MEMORYLESS)
1907 		return;
1908 
1909 	for (i = 0; i < BANKNUM_PER_SB; i++) {
1910 		if (mcp->mc_bank[i].mcb_status & BANK_INSTALLED) {
1911 			stat = ldphysio(MAC_PTRL_STAT(mcp, i));
1912 			cntl = ldphysio(MAC_PTRL_CNTL(mcp, i));
1913 			running = cntl & MAC_CNTL_PTRL_START;
1914 
1915 			if (cntl & MAC_CNTL_PTRL_ADD_MAX) {
1916 				mcp->mc_period[i]++;
1917 				MC_LOG("mc period %ld on "
1918 				    "/LSB%d/B%d\n", mcp->mc_period[i],
1919 				    mcp->mc_board_num, i);
1920 				MAC_CLEAR_MAX(mcp, i);
1921 				if (mcp->mc_speedup_period[i] > 0) {
1922 				/* If patrol is stoppped, we fall through */
1923 					if (--mcp->mc_speedup_period[i] == 0 &&
1924 						running) {
1925 					    MAC_CMD(mcp, i, 0);
1926 					}
1927 				}
1928 			}
1929 			if (mc_debug_show_all) {
1930 				MC_LOG("/LSB%d/B%d stat %x cntl %x\n",
1931 					mcp->mc_board_num, i,
1932 					stat, cntl);
1933 			}
1934 			if (stat & (MAC_STAT_PTRL_ERRS|MAC_STAT_MI_ERRS)) {
1935 				if (running) {
1936 				    MC_LOG("patrol running /LSB%d/B%d\n",
1937 						mcp->mc_board_num, i);
1938 				}
1939 				if (running) {
1940 					/* speed up the scanning */
1941 					mcp->mc_speedup_period[i] = 2;
1942 					MAC_CMD(mcp, i, 0);
1943 				} else {
1944 				    mcp->mc_speedup_period[i] = 0;
1945 				    maddr_info.mi_valid = 0;
1946 				    maddr_info.mi_advance = 1;
1947 				    if (IS_MIRROR(mcp, i))
1948 					mc_error_handler_mir(mcp, i,
1949 						&maddr_info);
1950 				    else
1951 					mc_error_handler(mcp, i, &maddr_info);
1952 
1953 				    error_count++;
1954 				    restart_patrol(mcp, i, &maddr_info);
1955 				}
1956 			} else {
1957 				restart_patrol(mcp, i, NULL);
1958 			}
1959 		}
1960 	}
1961 	if (error_count > 0)
1962 		mcp->mc_last_error += error_count;
1963 	else
1964 		mcp->mc_last_error = 0;
1965 }
1966 
1967 /*
1968  * mc_polling -- Check errors for only one instance,
1969  * but process errors for all instances to make sure we drain the errors
1970  * faster than they can be accumulated.
1971  *
1972  * Polling on each board should be done only once per each
1973  * mc_patrol_interval_sec.  This is equivalent to setting mc_tick_left
1974  * to OPL_MAX_BOARDS and decrement by 1 on each timeout.
1975  * Once mc_tick_left becomes negative, the board becomes a candidate
1976  * for polling because it has waited for at least
1977  * mc_patrol_interval_sec's long.    If mc_timeout_period is calculated
1978  * differently, this has to beupdated accordingly.
1979  */
1980 
1981 static void
1982 mc_polling(void)
1983 {
1984 	int i, scan_error;
1985 	mc_opl_t *mcp;
1986 
1987 
1988 	scan_error = 1;
1989 	for (i = 0; i < OPL_MAX_BOARDS; i++) {
1990 		mutex_enter(&mcmutex);
1991 		if ((mcp = mc_instances[i]) == NULL) {
1992 			mutex_exit(&mcmutex);
1993 			continue;
1994 		}
1995 		mutex_enter(&mcp->mc_lock);
1996 		mutex_exit(&mcmutex);
1997 		if (scan_error && mcp->mc_tick_left <= 0) {
1998 			mc_check_errors_func((void *)mcp);
1999 			mcp->mc_tick_left = OPL_MAX_BOARDS;
2000 			scan_error = 0;
2001 		} else {
2002 			mcp->mc_tick_left--;
2003 		}
2004 		mc_process_scf_log(mcp);
2005 		mutex_exit(&mcp->mc_lock);
2006 	}
2007 }
2008 
2009 static void
2010 get_ptrl_start_address(mc_opl_t *mcp, int bank, mc_addr_t *maddr)
2011 {
2012 	maddr->ma_bd = mcp->mc_board_num;
2013 	maddr->ma_bank = bank;
2014 	maddr->ma_dimm_addr = 0;
2015 }
2016 
2017 typedef struct mc_mem_range {
2018 	uint64_t	addr;
2019 	uint64_t	size;
2020 } mc_mem_range_t;
2021 
2022 static int
2023 get_base_address(mc_opl_t *mcp)
2024 {
2025 	mc_mem_range_t *mem_range;
2026 	int len;
2027 
2028 	if (ddi_getlongprop(DDI_DEV_T_ANY, mcp->mc_dip, DDI_PROP_DONTPASS,
2029 		"sb-mem-ranges", (caddr_t)&mem_range, &len) != DDI_SUCCESS) {
2030 		return (DDI_FAILURE);
2031 	}
2032 
2033 	mcp->mc_start_address = mem_range->addr;
2034 	mcp->mc_size = mem_range->size;
2035 
2036 	kmem_free(mem_range, len);
2037 	return (DDI_SUCCESS);
2038 }
2039 
2040 struct mc_addr_spec {
2041 	uint32_t bank;
2042 	uint32_t phys_hi;
2043 	uint32_t phys_lo;
2044 };
2045 
2046 #define	REGS_PA(m, i) ((((uint64_t)m[i].phys_hi)<<32) | m[i].phys_lo)
2047 
2048 static char *mc_tbl_name[] = {
2049 	"cs0-mc-pa-trans-table",
2050 	"cs1-mc-pa-trans-table"
2051 };
2052 
2053 static int
2054 mc_valid_pa(mc_opl_t *mcp, uint64_t pa)
2055 {
2056 	struct memlist *ml;
2057 
2058 	if (mcp->mlist == NULL)
2059 		mc_get_mlist(mcp);
2060 
2061 	for (ml = mcp->mlist; ml; ml = ml->next) {
2062 		if (ml->address <= pa && pa < (ml->address + ml->size))
2063 			return (1);
2064 	}
2065 	return (0);
2066 }
2067 
2068 static void
2069 mc_memlist_delete(struct memlist *mlist)
2070 {
2071 	struct memlist *ml;
2072 
2073 	for (ml = mlist; ml; ml = mlist) {
2074 		mlist = ml->next;
2075 		kmem_free(ml, sizeof (struct memlist));
2076 	}
2077 }
2078 
2079 static struct memlist *
2080 mc_memlist_dup(struct memlist *mlist)
2081 {
2082 	struct memlist *hl = NULL, *tl, **mlp;
2083 
2084 	if (mlist == NULL)
2085 		return (NULL);
2086 
2087 	mlp = &hl;
2088 	tl = *mlp;
2089 	for (; mlist; mlist = mlist->next) {
2090 		*mlp = kmem_alloc(sizeof (struct memlist), KM_SLEEP);
2091 		(*mlp)->address = mlist->address;
2092 		(*mlp)->size = mlist->size;
2093 		(*mlp)->prev = tl;
2094 		tl = *mlp;
2095 		mlp = &((*mlp)->next);
2096 	}
2097 	*mlp = NULL;
2098 
2099 	return (hl);
2100 }
2101 
2102 
2103 static struct memlist *
2104 mc_memlist_del_span(struct memlist *mlist, uint64_t base, uint64_t len)
2105 {
2106 	uint64_t	end;
2107 	struct memlist	*ml, *tl, *nlp;
2108 
2109 	if (mlist == NULL)
2110 		return (NULL);
2111 
2112 	end = base + len;
2113 	if ((end <= mlist->address) || (base == end))
2114 		return (mlist);
2115 
2116 	for (tl = ml = mlist; ml; tl = ml, ml = nlp) {
2117 		uint64_t	mend;
2118 
2119 		nlp = ml->next;
2120 
2121 		if (end <= ml->address)
2122 			break;
2123 
2124 		mend = ml->address + ml->size;
2125 		if (base < mend) {
2126 			if (base <= ml->address) {
2127 				ml->address = end;
2128 				if (end >= mend)
2129 					ml->size = 0ull;
2130 				else
2131 					ml->size = mend - ml->address;
2132 			} else {
2133 				ml->size = base - ml->address;
2134 				if (end < mend) {
2135 					struct memlist	*nl;
2136 					/*
2137 					 * splitting an memlist entry.
2138 					 */
2139 					nl = kmem_alloc(sizeof (struct memlist),
2140 						KM_SLEEP);
2141 					nl->address = end;
2142 					nl->size = mend - nl->address;
2143 					if ((nl->next = nlp) != NULL)
2144 						nlp->prev = nl;
2145 					nl->prev = ml;
2146 					ml->next = nl;
2147 					nlp = nl;
2148 				}
2149 			}
2150 			if (ml->size == 0ull) {
2151 				if (ml == mlist) {
2152 					if ((mlist = nlp) != NULL)
2153 						nlp->prev = NULL;
2154 					kmem_free(ml, sizeof (struct memlist));
2155 					if (mlist == NULL)
2156 						break;
2157 					ml = nlp;
2158 				} else {
2159 					if ((tl->next = nlp) != NULL)
2160 						nlp->prev = tl;
2161 					kmem_free(ml, sizeof (struct memlist));
2162 					ml = tl;
2163 				}
2164 			}
2165 		}
2166 	}
2167 
2168 	return (mlist);
2169 }
2170 
2171 static void
2172 mc_get_mlist(mc_opl_t *mcp)
2173 {
2174 	struct memlist *mlist;
2175 
2176 	memlist_read_lock();
2177 	mlist = mc_memlist_dup(phys_install);
2178 	memlist_read_unlock();
2179 
2180 	if (mlist) {
2181 		mlist = mc_memlist_del_span(mlist, 0ull, mcp->mc_start_address);
2182 	}
2183 
2184 	if (mlist) {
2185 		uint64_t startpa, endpa;
2186 
2187 		startpa = mcp->mc_start_address + mcp->mc_size;
2188 		endpa = ptob(physmax + 1);
2189 		if (endpa > startpa) {
2190 			mlist = mc_memlist_del_span(mlist,
2191 				startpa, endpa - startpa);
2192 		}
2193 	}
2194 
2195 	if (mlist) {
2196 		mcp->mlist = mlist;
2197 	}
2198 }
2199 
2200 int
2201 mc_board_add(mc_opl_t *mcp)
2202 {
2203 	struct mc_addr_spec *macaddr;
2204 	cs_status_t *cs_status;
2205 	int len, len1, i, bk, cc;
2206 	mc_addr_info_t maddr;
2207 	uint32_t mirr;
2208 	int nbanks = 0;
2209 	uint64_t nbytes = 0;
2210 
2211 	/*
2212 	 * Get configurations from "pseudo-mc" node which includes:
2213 	 * board# : LSB number
2214 	 * mac-addr : physical base address of MAC registers
2215 	 * csX-mac-pa-trans-table: translation table from DIMM address
2216 	 *			to physical address or vice versa.
2217 	 */
2218 	mcp->mc_board_num = (int)ddi_getprop(DDI_DEV_T_ANY, mcp->mc_dip,
2219 		DDI_PROP_DONTPASS, "board#", -1);
2220 
2221 	if (mcp->mc_board_num == -1) {
2222 		return (DDI_FAILURE);
2223 	}
2224 
2225 	/*
2226 	 * Get start address in this CAB. It can be gotten from
2227 	 * "sb-mem-ranges" property.
2228 	 */
2229 
2230 	if (get_base_address(mcp) == DDI_FAILURE) {
2231 		return (DDI_FAILURE);
2232 	}
2233 	/* get mac-pa trans tables */
2234 	for (i = 0; i < MC_TT_CS; i++) {
2235 		len = MC_TT_ENTRIES;
2236 		cc = ddi_getlongprop_buf(DDI_DEV_T_ANY, mcp->mc_dip,
2237 			DDI_PROP_DONTPASS, mc_tbl_name[i],
2238 			(caddr_t)mcp->mc_trans_table[i], &len);
2239 
2240 		if (cc != DDI_SUCCESS) {
2241 			bzero(mcp->mc_trans_table[i], MC_TT_ENTRIES);
2242 		}
2243 	}
2244 	mcp->mlist = NULL;
2245 
2246 	mc_get_mlist(mcp);
2247 
2248 	/* initialize bank informations */
2249 	cc = ddi_getlongprop(DDI_DEV_T_ANY, mcp->mc_dip, DDI_PROP_DONTPASS,
2250 		"mc-addr", (caddr_t)&macaddr, &len);
2251 	if (cc != DDI_SUCCESS) {
2252 		cmn_err(CE_WARN, "Cannot get mc-addr. err=%d\n", cc);
2253 		return (DDI_FAILURE);
2254 	}
2255 
2256 	cc = ddi_getlongprop(DDI_DEV_T_ANY, mcp->mc_dip, DDI_PROP_DONTPASS,
2257 		"cs-status", (caddr_t)&cs_status, &len1);
2258 
2259 	if (cc != DDI_SUCCESS) {
2260 		if (len > 0)
2261 			kmem_free(macaddr, len);
2262 		cmn_err(CE_WARN, "Cannot get cs-status. err=%d\n", cc);
2263 		return (DDI_FAILURE);
2264 	}
2265 
2266 	mutex_init(&mcp->mc_lock, NULL, MUTEX_DRIVER, NULL);
2267 
2268 	for (i = 0; i < len1 / sizeof (cs_status_t); i++) {
2269 		nbytes += ((uint64_t)cs_status[i].cs_avail_hi << 32) |
2270 			((uint64_t)cs_status[i].cs_avail_low);
2271 	}
2272 	if (len1 > 0)
2273 		kmem_free(cs_status, len1);
2274 	nbanks = len / sizeof (struct mc_addr_spec);
2275 
2276 	if (nbanks > 0)
2277 		nbytes /= nbanks;
2278 	else {
2279 		/* No need to free macaddr because len must be 0 */
2280 		mcp->mc_status |= MC_MEMORYLESS;
2281 		return (DDI_SUCCESS);
2282 	}
2283 
2284 	for (i = 0; i < BANKNUM_PER_SB; i++) {
2285 		mcp->mc_scf_retry[i] = 0;
2286 		mcp->mc_period[i] = 0;
2287 		mcp->mc_speedup_period[i] = 0;
2288 	}
2289 
2290 	/*
2291 	 * Get the memory size here. Let it be B (bytes).
2292 	 * Let T be the time in u.s. to scan 64 bytes.
2293 	 * If we want to complete 1 round of scanning in P seconds.
2294 	 *
2295 	 *	B * T * 10^(-6)	= P
2296 	 *	---------------
2297 	 *		64
2298 	 *
2299 	 *	T = P * 64 * 10^6
2300 	 *	    -------------
2301 	 *		B
2302 	 *
2303 	 *	  = P * 64 * 10^6
2304 	 *	    -------------
2305 	 *		B
2306 	 *
2307 	 *	The timing bits are set in PTRL_CNTL[28:26] where
2308 	 *
2309 	 *	0	- 1 m.s
2310 	 *	1	- 512 u.s.
2311 	 *	10	- 256 u.s.
2312 	 *	11	- 128 u.s.
2313 	 *	100	- 64 u.s.
2314 	 *	101	- 32 u.s.
2315 	 *	110	- 0 u.s.
2316 	 *	111	- reserved.
2317 	 *
2318 	 *
2319 	 *	a[0] = 110, a[1] = 101, ... a[6] = 0
2320 	 *
2321 	 *	cs-status property is int x 7
2322 	 *	0 - cs#
2323 	 *	1 - cs-status
2324 	 *	2 - cs-avail.hi
2325 	 *	3 - cs-avail.lo
2326 	 *	4 - dimm-capa.hi
2327 	 *	5 - dimm-capa.lo
2328 	 *	6 - #of dimms
2329 	 */
2330 
2331 	if (nbytes > 0) {
2332 		int i;
2333 		uint64_t ms;
2334 		ms = ((uint64_t)mc_scan_period * 64 * 1000000)/nbytes;
2335 		mcp->mc_speed = mc_scan_speeds[MC_MAX_SPEEDS - 1].mc_speeds;
2336 		for (i = 0; i < MC_MAX_SPEEDS - 1; i++) {
2337 			if (ms < mc_scan_speeds[i + 1].mc_period) {
2338 				mcp->mc_speed = mc_scan_speeds[i].mc_speeds;
2339 				break;
2340 			}
2341 		}
2342 	} else
2343 		mcp->mc_speed = 0;
2344 
2345 
2346 	for (i = 0; i < len / sizeof (struct mc_addr_spec); i++) {
2347 		struct mc_bank *bankp;
2348 		uint32_t reg;
2349 
2350 		/*
2351 		 * setup bank
2352 		 */
2353 		bk = macaddr[i].bank;
2354 		bankp = &(mcp->mc_bank[bk]);
2355 		bankp->mcb_status = BANK_INSTALLED;
2356 		bankp->mcb_reg_base = REGS_PA(macaddr, i);
2357 
2358 		reg = LD_MAC_REG(MAC_PTRL_CNTL(mcp, bk));
2359 		bankp->mcb_ptrl_cntl = (reg & MAC_CNTL_PTRL_PRESERVE_BITS);
2360 
2361 		/*
2362 		 * check if mirror mode
2363 		 */
2364 		mirr = LD_MAC_REG(MAC_MIRR(mcp, bk));
2365 
2366 		if (mirr & MAC_MIRR_MIRROR_MODE) {
2367 			MC_LOG("Mirror -> /LSB%d/B%d\n",
2368 				mcp->mc_board_num, bk);
2369 			bankp->mcb_status |= BANK_MIRROR_MODE;
2370 			/*
2371 			 * The following bit is only used for
2372 			 * error injection.  We should clear it
2373 			 */
2374 			if (mirr & MAC_MIRR_BANK_EXCLUSIVE)
2375 				ST_MAC_REG(MAC_MIRR(mcp, bk),
2376 					0);
2377 		}
2378 
2379 		/*
2380 		 * restart if not mirror mode or the other bank
2381 		 * of the mirror is not running
2382 		 */
2383 		if (!(mirr & MAC_MIRR_MIRROR_MODE) ||
2384 			!(mcp->mc_bank[bk^1].mcb_status &
2385 			BANK_PTRL_RUNNING)) {
2386 			MC_LOG("Starting up /LSB%d/B%d\n",
2387 				mcp->mc_board_num, bk);
2388 			get_ptrl_start_address(mcp, bk, &maddr.mi_maddr);
2389 			maddr.mi_maddr.ma_bd = mcp->mc_board_num;
2390 			maddr.mi_maddr.ma_bank = bk;
2391 			maddr.mi_maddr.ma_dimm_addr = 0;
2392 			maddr.mi_valid = 0;
2393 			maddr.mi_advance = 0;
2394 			restart_patrol(mcp, bk, &maddr);
2395 		} else {
2396 			MC_LOG("Not starting up /LSB%d/B%d\n",
2397 				mcp->mc_board_num, bk);
2398 		}
2399 		bankp->mcb_status |= BANK_PTRL_RUNNING;
2400 	}
2401 	if (len > 0)
2402 		kmem_free(macaddr, len);
2403 
2404 	mcp->mc_dimm_list = mc_get_dimm_list(mcp);
2405 
2406 	/*
2407 	 * set interval in HZ.
2408 	 */
2409 	mcp->mc_last_error = 0;
2410 
2411 	/* restart memory patrol checking */
2412 	mcp->mc_status |= MC_POLL_RUNNING;
2413 
2414 	return (DDI_SUCCESS);
2415 }
2416 
2417 int
2418 mc_board_del(mc_opl_t *mcp)
2419 {
2420 	int i;
2421 	scf_log_t *p;
2422 
2423 	/*
2424 	 * cleanup mac state
2425 	 */
2426 	mutex_enter(&mcp->mc_lock);
2427 	if (mcp->mc_status & MC_MEMORYLESS) {
2428 		mutex_exit(&mcp->mc_lock);
2429 		mutex_destroy(&mcp->mc_lock);
2430 		return (DDI_SUCCESS);
2431 	}
2432 	for (i = 0; i < BANKNUM_PER_SB; i++) {
2433 		if (mcp->mc_bank[i].mcb_status & BANK_INSTALLED) {
2434 			mcp->mc_bank[i].mcb_status &= ~BANK_INSTALLED;
2435 		}
2436 	}
2437 
2438 	/* stop memory patrol checking */
2439 	if (mcp->mc_status & MC_POLL_RUNNING) {
2440 		mcp->mc_status &= ~MC_POLL_RUNNING;
2441 	}
2442 
2443 	/* just throw away all the scf logs */
2444 	for (i = 0; i < BANKNUM_PER_SB; i++) {
2445 	    while ((p = mcp->mc_scf_log[i]) != NULL) {
2446 		mcp->mc_scf_log[i] = p->sl_next;
2447 		mcp->mc_scf_total[i]--;
2448 		kmem_free(p, sizeof (scf_log_t));
2449 	    }
2450 	}
2451 
2452 	if (mcp->mlist)
2453 		mc_memlist_delete(mcp->mlist);
2454 
2455 	if (mcp->mc_dimm_list)
2456 		mc_free_dimm_list(mcp->mc_dimm_list);
2457 
2458 	mutex_exit(&mcp->mc_lock);
2459 
2460 	mutex_destroy(&mcp->mc_lock);
2461 	return (DDI_SUCCESS);
2462 }
2463 
2464 int
2465 mc_suspend(mc_opl_t *mcp, uint32_t flag)
2466 {
2467 	/* stop memory patrol checking */
2468 	mutex_enter(&mcp->mc_lock);
2469 	if (mcp->mc_status & MC_MEMORYLESS) {
2470 		mutex_exit(&mcp->mc_lock);
2471 		return (DDI_SUCCESS);
2472 	}
2473 
2474 	if (mcp->mc_status & MC_POLL_RUNNING) {
2475 		mcp->mc_status &= ~MC_POLL_RUNNING;
2476 	}
2477 	mcp->mc_status |= flag;
2478 	mutex_exit(&mcp->mc_lock);
2479 
2480 	return (DDI_SUCCESS);
2481 }
2482 
2483 /* caller must clear the SUSPEND bits or this will do nothing */
2484 
2485 int
2486 mc_resume(mc_opl_t *mcp, uint32_t flag)
2487 {
2488 	int i;
2489 	uint64_t basepa;
2490 
2491 	mutex_enter(&mcp->mc_lock);
2492 	if (mcp->mc_status & MC_MEMORYLESS) {
2493 		mutex_exit(&mcp->mc_lock);
2494 		return (DDI_SUCCESS);
2495 	}
2496 	basepa = mcp->mc_start_address;
2497 	if (get_base_address(mcp) == DDI_FAILURE) {
2498 		mutex_exit(&mcp->mc_lock);
2499 		return (DDI_FAILURE);
2500 	}
2501 
2502 	if (basepa != mcp->mc_start_address) {
2503 		if (mcp->mlist)
2504 			mc_memlist_delete(mcp->mlist);
2505 		mcp->mlist = NULL;
2506 		mc_get_mlist(mcp);
2507 	}
2508 
2509 	mcp->mc_status &= ~flag;
2510 
2511 	if (mcp->mc_status & (MC_SOFT_SUSPENDED | MC_DRIVER_SUSPENDED)) {
2512 		mutex_exit(&mcp->mc_lock);
2513 		return (DDI_SUCCESS);
2514 	}
2515 
2516 	if (!(mcp->mc_status & MC_POLL_RUNNING)) {
2517 		/* restart memory patrol checking */
2518 		mcp->mc_status |= MC_POLL_RUNNING;
2519 		for (i = 0; i < BANKNUM_PER_SB; i++) {
2520 			if (mcp->mc_bank[i].mcb_status & BANK_INSTALLED) {
2521 				restart_patrol(mcp, i, NULL);
2522 			}
2523 		}
2524 	}
2525 	mutex_exit(&mcp->mc_lock);
2526 
2527 	return (DDI_SUCCESS);
2528 }
2529 
2530 static mc_opl_t *
2531 mc_pa_to_mcp(uint64_t pa)
2532 {
2533 	mc_opl_t *mcp;
2534 	int i;
2535 
2536 	ASSERT(MUTEX_HELD(&mcmutex));
2537 	for (i = 0; i < OPL_MAX_BOARDS; i++) {
2538 		if ((mcp = mc_instances[i]) == NULL)
2539 			continue;
2540 		/* if mac patrol is suspended, we cannot rely on it */
2541 		if (!(mcp->mc_status & MC_POLL_RUNNING) ||
2542 			(mcp->mc_status & MC_SOFT_SUSPENDED))
2543 			continue;
2544 		if ((mcp->mc_start_address <= pa) &&
2545 			(pa < (mcp->mc_start_address + mcp->mc_size))) {
2546 			return (mcp);
2547 		}
2548 	}
2549 	return (NULL);
2550 }
2551 
2552 /*
2553  * Get Physical Board number from Logical one.
2554  */
2555 static int
2556 mc_opl_get_physical_board(int sb)
2557 {
2558 	if (&opl_get_physical_board) {
2559 		return (opl_get_physical_board(sb));
2560 	}
2561 
2562 	cmn_err(CE_NOTE, "!opl_get_physical_board() not loaded\n");
2563 	return (-1);
2564 }
2565 
2566 /* ARGSUSED */
2567 int
2568 mc_get_mem_unum(int synd_code, uint64_t flt_addr, char *buf, int buflen,
2569 	int *lenp)
2570 {
2571 	int i;
2572 	int sb;
2573 	int bank;
2574 	mc_opl_t *mcp;
2575 	char memb_num;
2576 
2577 	mutex_enter(&mcmutex);
2578 
2579 	if (((mcp = mc_pa_to_mcp(flt_addr)) == NULL) ||
2580 		(!pa_is_valid(mcp, flt_addr))) {
2581 		mutex_exit(&mcmutex);
2582 		if (snprintf(buf, buflen, "UNKNOWN") >= buflen) {
2583 			return (ENOSPC);
2584 		} else {
2585 			if (lenp)
2586 				*lenp = strlen(buf);
2587 		}
2588 		return (0);
2589 	}
2590 
2591 	bank = pa_to_bank(mcp, flt_addr - mcp->mc_start_address);
2592 	sb = mc_opl_get_physical_board(mcp->mc_board_num);
2593 
2594 	if (sb == -1) {
2595 		mutex_exit(&mcmutex);
2596 		return (ENXIO);
2597 	}
2598 
2599 	if (plat_model == MODEL_DC) {
2600 		i = BD_BK_SLOT_TO_INDEX(0, bank, 0);
2601 		snprintf(buf, buflen, "/%s%02d/MEM%s MEM%s MEM%s MEM%s",
2602 		    model_names[plat_model].unit_name, sb,
2603 		    mc_dc_dimm_unum_table[i], mc_dc_dimm_unum_table[i + 1],
2604 		    mc_dc_dimm_unum_table[i + 2], mc_dc_dimm_unum_table[i + 3]);
2605 	} else {
2606 		i = BD_BK_SLOT_TO_INDEX(sb, bank, 0);
2607 		memb_num = mc_ff_dimm_unum_table[i][0];
2608 		snprintf(buf, buflen, "/%s/%s%c/MEM%s MEM%s MEM%s MEM%s",
2609 		    model_names[plat_model].unit_name,
2610 		    model_names[plat_model].mem_name, memb_num,
2611 		    &mc_ff_dimm_unum_table[i][1],
2612 
2613 		    &mc_ff_dimm_unum_table[i + 1][1],
2614 		    &mc_ff_dimm_unum_table[i + 2][1],
2615 		    &mc_ff_dimm_unum_table[i + 3][1]);
2616 	}
2617 	if (lenp) {
2618 		*lenp = strlen(buf);
2619 	}
2620 	mutex_exit(&mcmutex);
2621 	return (0);
2622 }
2623 
2624 int
2625 opl_mc_suspend(void)
2626 {
2627 	mc_opl_t *mcp;
2628 	int i;
2629 
2630 	mutex_enter(&mcmutex);
2631 	for (i = 0; i < OPL_MAX_BOARDS; i++) {
2632 		if ((mcp = mc_instances[i]) == NULL)
2633 			continue;
2634 		mc_suspend(mcp, MC_SOFT_SUSPENDED);
2635 	}
2636 	mutex_exit(&mcmutex);
2637 
2638 	return (0);
2639 }
2640 
2641 int
2642 opl_mc_resume(void)
2643 {
2644 	mc_opl_t *mcp;
2645 	int i;
2646 
2647 	mutex_enter(&mcmutex);
2648 	for (i = 0; i < OPL_MAX_BOARDS; i++) {
2649 		if ((mcp = mc_instances[i]) == NULL)
2650 			continue;
2651 		mc_resume(mcp, MC_SOFT_SUSPENDED);
2652 	}
2653 	mutex_exit(&mcmutex);
2654 
2655 	return (0);
2656 }
2657 static void
2658 insert_mcp(mc_opl_t *mcp)
2659 {
2660 	mutex_enter(&mcmutex);
2661 	if (mc_instances[mcp->mc_board_num] != NULL) {
2662 		MC_LOG("mc-opl instance for board# %d already exists\n",
2663 			mcp->mc_board_num);
2664 	}
2665 	mc_instances[mcp->mc_board_num] = mcp;
2666 	mutex_exit(&mcmutex);
2667 }
2668 
2669 static void
2670 delete_mcp(mc_opl_t *mcp)
2671 {
2672 	mutex_enter(&mcmutex);
2673 	mc_instances[mcp->mc_board_num] = 0;
2674 	mutex_exit(&mcmutex);
2675 }
2676 
2677 /* Error injection interface */
2678 
2679 /* ARGSUSED */
2680 int
2681 mc_inject_error(int error_type, uint64_t pa, uint32_t flags)
2682 {
2683 	mc_opl_t *mcp;
2684 	int bank;
2685 	uint32_t dimm_addr;
2686 	uint32_t cntl;
2687 	mc_addr_info_t maddr;
2688 	uint32_t data, stat;
2689 	int both_sides = 0;
2690 	uint64_t pa0;
2691 	on_trap_data_t otd;
2692 	extern void cpu_flush_ecache(void);
2693 
2694 	MC_LOG("HW mc_inject_error(%x, %lx, %x)\n", error_type, pa, flags);
2695 
2696 	mutex_enter(&mcmutex);
2697 	if ((mcp = mc_pa_to_mcp(pa)) == NULL) {
2698 		mutex_exit(&mcmutex);
2699 		MC_LOG("mc_inject_error: invalid pa\n");
2700 		return (ENOTSUP);
2701 	}
2702 
2703 	mutex_enter(&mcp->mc_lock);
2704 	mutex_exit(&mcmutex);
2705 
2706 	if (mcp->mc_status & (MC_SOFT_SUSPENDED | MC_DRIVER_SUSPENDED)) {
2707 		mutex_exit(&mcp->mc_lock);
2708 		MC_LOG("mc-opl has been suspended.  No error injection.\n");
2709 		return (EBUSY);
2710 	}
2711 
2712 	/* convert pa to offset within the board */
2713 	MC_LOG("pa %lx, offset %lx\n", pa, pa - mcp->mc_start_address);
2714 
2715 	if (!pa_is_valid(mcp, pa)) {
2716 		mutex_exit(&mcp->mc_lock);
2717 		return (EINVAL);
2718 	}
2719 
2720 	pa0 = pa - mcp->mc_start_address;
2721 
2722 	bank = pa_to_bank(mcp, pa0);
2723 
2724 	if (flags & MC_INJECT_FLAG_OTHER)
2725 		bank = bank ^ 1;
2726 
2727 	if (MC_INJECT_MIRROR(error_type) && !IS_MIRROR(mcp, bank)) {
2728 		mutex_exit(&mcp->mc_lock);
2729 		MC_LOG("Not mirror mode\n");
2730 		return (EINVAL);
2731 	}
2732 
2733 	dimm_addr = pa_to_dimm(mcp, pa0);
2734 
2735 	MC_LOG("injecting error to /LSB%d/B%d/D%x\n",
2736 		mcp->mc_board_num, bank, dimm_addr);
2737 
2738 
2739 	switch (error_type) {
2740 	case MC_INJECT_INTERMITTENT_MCE:
2741 	case MC_INJECT_PERMANENT_MCE:
2742 	case MC_INJECT_MUE:
2743 		both_sides = 1;
2744 	}
2745 
2746 	if (flags & MC_INJECT_FLAG_RESET)
2747 		ST_MAC_REG(MAC_EG_CNTL(mcp, bank), 0);
2748 
2749 	ST_MAC_REG(MAC_EG_ADD(mcp, bank), dimm_addr & MAC_EG_ADD_MASK);
2750 
2751 	if (both_sides) {
2752 		ST_MAC_REG(MAC_EG_CNTL(mcp, bank^1), 0);
2753 		ST_MAC_REG(MAC_EG_ADD(mcp, bank^1),
2754 			dimm_addr & MAC_EG_ADD_MASK);
2755 	}
2756 
2757 	switch (error_type) {
2758 	case MC_INJECT_UE:
2759 	case MC_INJECT_SUE:
2760 	case MC_INJECT_MUE:
2761 		if (flags & MC_INJECT_FLAG_PATH) {
2762 			cntl = MAC_EG_ADD_FIX
2763 				|MAC_EG_FORCE_READ00|MAC_EG_FORCE_READ16
2764 				|MAC_EG_RDERR_ONCE;
2765 		} else {
2766 			cntl = MAC_EG_ADD_FIX|MAC_EG_FORCE_DERR00
2767 				|MAC_EG_FORCE_DERR16|MAC_EG_DERR_ONCE;
2768 		}
2769 		flags |= MC_INJECT_FLAG_ST;
2770 		break;
2771 	case MC_INJECT_INTERMITTENT_CE:
2772 	case MC_INJECT_INTERMITTENT_MCE:
2773 		if (flags & MC_INJECT_FLAG_PATH) {
2774 			cntl = MAC_EG_ADD_FIX
2775 				|MAC_EG_FORCE_READ00
2776 				|MAC_EG_RDERR_ONCE;
2777 		} else {
2778 			cntl = MAC_EG_ADD_FIX
2779 				|MAC_EG_FORCE_DERR16
2780 				|MAC_EG_DERR_ONCE;
2781 		}
2782 		flags |= MC_INJECT_FLAG_ST;
2783 		break;
2784 	case MC_INJECT_PERMANENT_CE:
2785 	case MC_INJECT_PERMANENT_MCE:
2786 		if (flags & MC_INJECT_FLAG_PATH) {
2787 			cntl = MAC_EG_ADD_FIX
2788 				|MAC_EG_FORCE_READ00
2789 				|MAC_EG_RDERR_ALWAYS;
2790 		} else {
2791 			cntl = MAC_EG_ADD_FIX
2792 				|MAC_EG_FORCE_DERR16
2793 				|MAC_EG_DERR_ALWAYS;
2794 		}
2795 		flags |= MC_INJECT_FLAG_ST;
2796 		break;
2797 	case MC_INJECT_CMPE:
2798 		data = 0xabcdefab;
2799 		stphys(pa, data);
2800 		cpu_flush_ecache();
2801 		MC_LOG("CMPE: writing data %x to %lx\n", data, pa);
2802 		ST_MAC_REG(MAC_MIRR(mcp, bank), MAC_MIRR_BANK_EXCLUSIVE);
2803 		stphys(pa, data ^ 0xffffffff);
2804 		cpu_flush_ecache();
2805 		ST_MAC_REG(MAC_MIRR(mcp, bank), 0);
2806 		MC_LOG("CMPE: write new data %xto %lx\n", data, pa);
2807 		cntl = 0;
2808 		break;
2809 	case MC_INJECT_NOP:
2810 		cntl = 0;
2811 		break;
2812 	default:
2813 		MC_LOG("mc_inject_error: invalid option\n");
2814 		cntl = 0;
2815 	}
2816 
2817 	if (cntl) {
2818 		ST_MAC_REG(MAC_EG_CNTL(mcp, bank), cntl & MAC_EG_SETUP_MASK);
2819 		ST_MAC_REG(MAC_EG_CNTL(mcp, bank), cntl);
2820 
2821 		if (both_sides) {
2822 			ST_MAC_REG(MAC_EG_CNTL(mcp, bank^1), cntl &
2823 				MAC_EG_SETUP_MASK);
2824 			ST_MAC_REG(MAC_EG_CNTL(mcp, bank^1), cntl);
2825 		}
2826 	}
2827 
2828 	/*
2829 	 * For all injection cases except compare error, we
2830 	 * must write to the PA to trigger the error.
2831 	 */
2832 
2833 	if (flags & MC_INJECT_FLAG_ST) {
2834 		data = 0xf0e0d0c0;
2835 		MC_LOG("Writing %x to %lx\n", data, pa);
2836 		stphys(pa, data);
2837 		cpu_flush_ecache();
2838 	}
2839 
2840 
2841 	if (flags & MC_INJECT_FLAG_LD) {
2842 		if (flags & MC_INJECT_FLAG_NO_TRAP) {
2843 			if (on_trap(&otd, OT_DATA_EC)) {
2844 				no_trap();
2845 				MC_LOG("Trap occurred\n");
2846 			} else {
2847 				MC_LOG("On-trap Reading from %lx\n", pa);
2848 				data = ldphys(pa);
2849 				no_trap();
2850 				MC_LOG("data = %x\n", data);
2851 			}
2852 		} else {
2853 			MC_LOG("Reading from %lx\n", pa);
2854 			data = ldphys(pa);
2855 			MC_LOG("data = %x\n", data);
2856 		}
2857 	}
2858 
2859 	if (flags & MC_INJECT_FLAG_RESTART) {
2860 		MC_LOG("Restart patrol\n");
2861 		maddr.mi_maddr.ma_bd = mcp->mc_board_num;
2862 		maddr.mi_maddr.ma_bank = bank;
2863 		maddr.mi_maddr.ma_dimm_addr = dimm_addr;
2864 		maddr.mi_valid = 1;
2865 		maddr.mi_advance = 0;
2866 		restart_patrol(mcp, bank, &maddr);
2867 	}
2868 
2869 	if (flags & MC_INJECT_FLAG_POLL) {
2870 		int running;
2871 
2872 		MC_LOG("Poll patrol error\n");
2873 		stat = LD_MAC_REG(MAC_PTRL_STAT(mcp, bank));
2874 		cntl = LD_MAC_REG(MAC_PTRL_CNTL(mcp, bank));
2875 		running = cntl & MAC_CNTL_PTRL_START;
2876 		if (stat & (MAC_STAT_PTRL_ERRS|MAC_STAT_MI_ERRS)) {
2877 			if (running) {
2878 				/* speed up the scanning */
2879 				mcp->mc_speedup_period[bank] = 2;
2880 				MAC_CMD(mcp, bank, 0);
2881 			} else {
2882 				mcp->mc_speedup_period[bank] = 0;
2883 				maddr.mi_valid = 0;
2884 				maddr.mi_advance = 1;
2885 				if (IS_MIRROR(mcp, bank))
2886 					mc_error_handler_mir(mcp, bank,
2887 						&maddr);
2888 				else
2889 					mc_error_handler(mcp, bank, &maddr);
2890 
2891 				restart_patrol(mcp, bank, &maddr);
2892 			}
2893 		} else
2894 			restart_patrol(mcp, bank, NULL);
2895 	}
2896 
2897 	mutex_exit(&mcp->mc_lock);
2898 	return (0);
2899 }
2900 void
2901 mc_stphysio(uint64_t pa, uint32_t data)
2902 {
2903 #ifndef lint
2904 	uint32_t dummy;
2905 #endif
2906 
2907 	MC_LOG("0x%x -> pa(%lx)\n", data, pa);
2908 	stphysio(pa, data);
2909 
2910 	/* force the above write to be processed by mac patrol */
2911 #ifndef lint
2912 	dummy = ldphysio(pa);
2913 #endif
2914 }
2915 
2916 uint32_t
2917 mc_ldphysio(uint64_t pa)
2918 {
2919 	uint32_t rv;
2920 
2921 	rv = ldphysio(pa);
2922 	MC_LOG("pa(%lx) = 0x%x\n", pa, rv);
2923 	return (rv);
2924 }
2925 
2926 #define	isdigit(ch)	((ch) >= '0' && (ch) <= '9')
2927 
2928 /*
2929  * parse_unum_memory -- extract the board number and the DIMM name from
2930  * the unum.
2931  *
2932  * Return 0 for success and non-zero for a failure.
2933  */
2934 int
2935 parse_unum_memory(char *unum, int *board, char *dname)
2936 {
2937 	char *c;
2938 	char x, y, z;
2939 
2940 	if ((c = strstr(unum, "CMU")) != NULL) {
2941 		/* DC Model */
2942 		c += 3;
2943 		*board = (uint8_t)stoi(&c);
2944 		if ((c = strstr(c, "MEM")) == NULL) {
2945 			return (1);
2946 		}
2947 		c += 3;
2948 		if (strlen(c) < 3) {
2949 			return (2);
2950 		}
2951 		if ((!isdigit(c[0])) || (!(isdigit(c[1]))) ||
2952 		    ((c[2] != 'A') && (c[2] != 'B'))) {
2953 			return (3);
2954 		}
2955 		x = c[0];
2956 		y = c[1];
2957 		z = c[2];
2958 	} else if ((c = strstr(unum, "MBU_")) != NULL) {
2959 		/*  FF1/FF2 Model */
2960 		c += 4;
2961 		if ((c[0] != 'A') && (c[0] != 'B')) {
2962 			return (4);
2963 		}
2964 		if ((c = strstr(c, "MEMB")) == NULL) {
2965 			return (5);
2966 		}
2967 		c += 4;
2968 
2969 		x = c[0];
2970 		*board =  ((uint8_t)stoi(&c)) / 4;
2971 		if ((c = strstr(c, "MEM")) == NULL) {
2972 			return (6);
2973 		}
2974 		c += 3;
2975 		if (strlen(c) < 2) {
2976 			return (7);
2977 		}
2978 		if ((!isdigit(c[0])) || ((c[1] != 'A') && (c[1] != 'B'))) {
2979 			return (8);
2980 		}
2981 		y = c[0];
2982 		z = c[1];
2983 	} else {
2984 		return (9);
2985 	}
2986 	if (*board < 0) {
2987 		return (10);
2988 	}
2989 	dname[0] = x;
2990 	dname[1] = y;
2991 	dname[2] = z;
2992 	dname[3] = '\0';
2993 	return (0);
2994 }
2995 
2996 /*
2997  * mc_get_mem_sid_dimm -- Get the serial-ID for a given board and
2998  * the DIMM name.
2999  */
3000 int
3001 mc_get_mem_sid_dimm(mc_opl_t *mcp, char *dname, char *buf,
3002     int buflen, int *lenp)
3003 {
3004 	int		ret = ENODEV;
3005 	mc_dimm_info_t	*d = NULL;
3006 
3007 	if ((d = mcp->mc_dimm_list) == NULL)
3008 		return (ENOTSUP);
3009 
3010 	for (; d != NULL; d = d->md_next) {
3011 		if (strcmp(d->md_dimmname, dname) == 0) {
3012 			break;
3013 		}
3014 	}
3015 	if (d != NULL) {
3016 		*lenp = strlen(d->md_serial) + strlen(d->md_partnum);
3017 		if (buflen <=  *lenp) {
3018 			cmn_err(CE_WARN, "mc_get_mem_sid_dimm: "
3019 			    "buflen is smaller than %d\n", *lenp);
3020 			ret = ENOSPC;
3021 		} else {
3022 			snprintf(buf, buflen, "%s:%s",
3023 			    d->md_serial, d->md_partnum);
3024 			ret = 0;
3025 		}
3026 	}
3027 	MC_LOG("mc_get_mem_sid_dimm: Ret=%d Name=%s Serial-ID=%s\n",
3028 	    ret, dname, (ret == 0) ? buf : "");
3029 	return (ret);
3030 }
3031 
3032 int
3033 mc_set_mem_sid(mc_opl_t *mcp, char *buf, int buflen, int lsb,
3034     int bank, uint32_t mf_type, uint32_t d_slot)
3035 {
3036 	int	sb;
3037 	int	lenp = buflen;
3038 	int	id;
3039 	int	ret;
3040 	char	*dimmnm;
3041 
3042 	if ((sb = mc_opl_get_physical_board(lsb)) < 0) {
3043 		return (ENODEV);
3044 	}
3045 
3046 	if (mf_type == FLT_TYPE_PERMANENT_CE) {
3047 		if (plat_model == MODEL_DC) {
3048 			id = BD_BK_SLOT_TO_INDEX(0, bank, d_slot);
3049 		} else {
3050 			id = BD_BK_SLOT_TO_INDEX(sb, bank, d_slot);
3051 		}
3052 		dimmnm = mc_dc_dimm_unum_table[id];
3053 		if ((ret = mc_get_mem_sid_dimm(mcp, dimmnm, buf, buflen,
3054 		    &lenp)) != 0) {
3055 			return (ret);
3056 		}
3057 	} else {
3058 		return (1);
3059 	}
3060 
3061 	return (0);
3062 }
3063 
3064 /*
3065  * mc_get_mem_sid -- get the DIMM serial-ID corresponding to the unum.
3066  */
3067 int
3068 mc_get_mem_sid(char *unum, char *buf, int buflen, int *lenp)
3069 {
3070 	int	i;
3071 	int	ret = ENODEV;
3072 	int	board;
3073 	char	dname[MCOPL_MAX_DIMMNAME + 1];
3074 	mc_opl_t *mcp;
3075 
3076 	MC_LOG("mc_get_mem_sid: unum=%s buflen=%d\n", unum, buflen);
3077 	if ((ret = parse_unum_memory(unum, &board, dname)) != 0) {
3078 		MC_LOG("mc_get_mem_sid: unum(%s) parsing failed ret=%d\n",
3079 		    unum, ret);
3080 		return (EINVAL);
3081 	}
3082 
3083 	if (board < 0) {
3084 		MC_LOG("mc_get_mem_sid: Invalid board=%d dimm=%s\n",
3085 		    board, dname);
3086 		return (EINVAL);
3087 	}
3088 
3089 	mutex_enter(&mcmutex);
3090 	for (i = 0; i < OPL_MAX_BOARDS; i++) {
3091 		if ((mcp = mc_instances[i]) == NULL)
3092 			continue;
3093 		mutex_enter(&mcp->mc_lock);
3094 		if (mcp->mc_board_num == board) {
3095 			ret = mc_get_mem_sid_dimm(mcp, dname, buf,
3096 			    buflen, lenp);
3097 			mutex_exit(&mcp->mc_lock);
3098 			break;
3099 		}
3100 		mutex_exit(&mcp->mc_lock);
3101 	}
3102 	mutex_exit(&mcmutex);
3103 	return (ret);
3104 }
3105 
3106 /*
3107  * mc_get_mem_offset -- get the offset in a DIMM for a given physical address.
3108  */
3109 int
3110 mc_get_mem_offset(uint64_t paddr, uint64_t *offp)
3111 {
3112 	int		i;
3113 	int		ret = ENODEV;
3114 	mc_addr_t	maddr;
3115 	mc_opl_t	*mcp;
3116 
3117 	mutex_enter(&mcmutex);
3118 	for (i = 0; i < OPL_MAX_BOARDS; i++) {
3119 		if ((mcp = mc_instances[i]) == NULL)
3120 			continue;
3121 		mutex_enter(&mcp->mc_lock);
3122 		if (!pa_is_valid(mcp, paddr)) {
3123 			mutex_exit(&mcp->mc_lock);
3124 			continue;
3125 		}
3126 		if (pa_to_maddr(mcp, paddr, &maddr) == 0) {
3127 			*offp = maddr.ma_dimm_addr;
3128 			ret = 0;
3129 		}
3130 		mutex_exit(&mcp->mc_lock);
3131 	}
3132 	mutex_exit(&mcmutex);
3133 	MC_LOG("mc_get_mem_offset: Ret=%d paddr=0x%lx offset=0x%lx\n",
3134 	    ret, paddr, *offp);
3135 	return (ret);
3136 }
3137 
3138 /*
3139  * dname_to_bankslot - Get the bank and slot number from the DIMM name.
3140  */
3141 int
3142 dname_to_bankslot(char *dname, int *bank, int *slot)
3143 {
3144 	int i;
3145 	int tsz;
3146 	char **tbl;
3147 
3148 	if (plat_model == MODEL_DC) { /* DC */
3149 		tbl = mc_dc_dimm_unum_table;
3150 		tsz = OPL_MAX_DIMMS;
3151 	} else {
3152 		tbl = mc_ff_dimm_unum_table;
3153 		tsz = 2 * OPL_MAX_DIMMS;
3154 	}
3155 
3156 	for (i = 0; i < tsz; i++) {
3157 		if (strcmp(dname,  tbl[i]) == 0) {
3158 			break;
3159 		}
3160 	}
3161 	if (i == tsz) {
3162 		return (1);
3163 	}
3164 	*bank = INDEX_TO_BANK(i);
3165 	*slot = INDEX_TO_SLOT(i);
3166 	return (0);
3167 }
3168 
3169 /*
3170  * mc_get_mem_addr -- get the physical address of a DIMM corresponding
3171  * to the unum and sid.
3172  */
3173 int
3174 mc_get_mem_addr(char *unum, char *sid, uint64_t offset, uint64_t *paddr)
3175 {
3176 	int	board;
3177 	int	bank;
3178 	int	slot;
3179 	int	i;
3180 	int	ret = ENODEV;
3181 	char	dname[MCOPL_MAX_DIMMNAME + 1];
3182 	mc_addr_t maddr;
3183 	mc_opl_t *mcp;
3184 
3185 	MC_LOG("mc_get_mem_addr: unum=%s sid=%s offset=0x%lx\n",
3186 	    unum, sid, offset);
3187 	if (parse_unum_memory(unum, &board, dname) != 0) {
3188 		MC_LOG("mc_get_mem_sid: unum(%s) parsing failed ret=%d\n",
3189 		    unum, ret);
3190 		return (EINVAL);
3191 	}
3192 
3193 	if (board < 0) {
3194 		MC_LOG("mc_get_mem_addr: Invalid board=%d dimm=%s\n",
3195 		    board, dname);
3196 		return (EINVAL);
3197 	}
3198 
3199 	mutex_enter(&mcmutex);
3200 	for (i = 0; i < OPL_MAX_BOARDS; i++) {
3201 		if ((mcp = mc_instances[i]) == NULL)
3202 			continue;
3203 		mutex_enter(&mcp->mc_lock);
3204 		if (mcp->mc_board_num != board) {
3205 			mutex_exit(&mcp->mc_lock);
3206 			continue;
3207 		}
3208 
3209 		ret = dname_to_bankslot(dname, &bank, &slot);
3210 		MC_LOG("mc_get_mem_addr: bank=%d slot=%d\n", bank, slot);
3211 		if (ret != 0) {
3212 			MC_LOG("mc_get_mem_addr: dname_to_bankslot failed\n");
3213 			ret = ENODEV;
3214 		} else {
3215 			maddr.ma_bd = board;
3216 			maddr.ma_bank =  bank;
3217 			maddr.ma_dimm_addr = offset;
3218 			ret = mcaddr_to_pa(mcp, &maddr, paddr);
3219 			if (ret != 0) {
3220 				MC_LOG("mc_get_mem_addr: "
3221 				    "mcaddr_to_pa failed\n");
3222 				ret = ENODEV;
3223 			}
3224 		}
3225 		mutex_exit(&mcp->mc_lock);
3226 	}
3227 	mutex_exit(&mcmutex);
3228 	MC_LOG("mc_get_mem_addr: Ret=%d, Paddr=0x%lx\n", ret, *paddr);
3229 	return (ret);
3230 }
3231 
3232 static void
3233 mc_free_dimm_list(mc_dimm_info_t *d)
3234 {
3235 	mc_dimm_info_t *next;
3236 
3237 	while (d != NULL) {
3238 		next = d->md_next;
3239 		kmem_free(d, sizeof (mc_dimm_info_t));
3240 		d = next;
3241 	}
3242 }
3243 
3244 /*
3245  * mc_get_dimm_list -- get the list of dimms with serial-id info
3246  * from the SP.
3247  */
3248 mc_dimm_info_t *
3249 mc_get_dimm_list(mc_opl_t *mcp)
3250 {
3251 	uint32_t	bufsz;
3252 	uint32_t	maxbufsz;
3253 	int		ret;
3254 	int		sexp;
3255 	board_dimm_info_t *bd_dimmp;
3256 	mc_dimm_info_t	*dimm_list = NULL;
3257 
3258 	maxbufsz = bufsz = sizeof (board_dimm_info_t) +
3259 	    ((MCOPL_MAX_DIMMNAME +  MCOPL_MAX_SERIAL +
3260 	    MCOPL_MAX_PARTNUM) * OPL_MAX_DIMMS);
3261 
3262 	bd_dimmp = (board_dimm_info_t *)kmem_alloc(bufsz, KM_SLEEP);
3263 	ret = scf_get_dimminfo(mcp->mc_board_num, (void *)bd_dimmp, &bufsz);
3264 
3265 	MC_LOG("mc_get_dimm_list:  scf_service_getinfo returned=%d\n", ret);
3266 	if (ret == 0) {
3267 		sexp = sizeof (board_dimm_info_t) +
3268 		    ((bd_dimmp->bd_dnamesz +  bd_dimmp->bd_serialsz +
3269 		    bd_dimmp->bd_partnumsz) * bd_dimmp->bd_numdimms);
3270 
3271 		if ((bd_dimmp->bd_version == OPL_DIMM_INFO_VERSION) &&
3272 		    (bd_dimmp->bd_dnamesz <= MCOPL_MAX_DIMMNAME) &&
3273 		    (bd_dimmp->bd_serialsz <= MCOPL_MAX_SERIAL) &&
3274 		    (bd_dimmp->bd_partnumsz <= MCOPL_MAX_PARTNUM) &&
3275 		    (sexp <= bufsz)) {
3276 
3277 #ifdef DEBUG
3278 			if (oplmc_debug)
3279 				mc_dump_dimm_info(bd_dimmp);
3280 #endif
3281 			dimm_list = mc_prepare_dimmlist(bd_dimmp);
3282 
3283 		} else {
3284 			cmn_err(CE_WARN, "DIMM info version mismatch\n");
3285 		}
3286 	}
3287 	kmem_free(bd_dimmp, maxbufsz);
3288 	MC_LOG("mc_get_dimm_list: dimmlist=0x%p\n", dimm_list);
3289 	return (dimm_list);
3290 }
3291 
3292 /*
3293  * mc_prepare_dimmlist - Prepare the dimm list from the infomation
3294  * recieved from the SP.
3295  */
3296 mc_dimm_info_t *
3297 mc_prepare_dimmlist(board_dimm_info_t *bd_dimmp)
3298 {
3299 	char	*dimm_name;
3300 	char	*serial;
3301 	char	*part;
3302 	int	dimm;
3303 	int	dnamesz = bd_dimmp->bd_dnamesz;
3304 	int	sersz = bd_dimmp->bd_serialsz;
3305 	int	partsz = bd_dimmp->bd_partnumsz;
3306 	mc_dimm_info_t	*dimm_list = NULL;
3307 	mc_dimm_info_t	*d;
3308 
3309 	dimm_name = (char *)(bd_dimmp + 1);
3310 	for (dimm = 0; dimm < bd_dimmp->bd_numdimms; dimm++) {
3311 
3312 		d = (mc_dimm_info_t *)kmem_alloc(sizeof (mc_dimm_info_t),
3313 		    KM_SLEEP);
3314 		snprintf(d->md_dimmname, dnamesz + 1, "%s", dimm_name);
3315 		serial = dimm_name + dnamesz;
3316 		snprintf(d->md_serial, sersz + 1, "%s", serial);
3317 		part = serial + sersz;
3318 		snprintf(d->md_partnum, partsz + 1, "%s", part);
3319 
3320 		d->md_next = dimm_list;
3321 		dimm_list = d;
3322 		dimm_name = part + partsz;
3323 	}
3324 	return (dimm_list);
3325 }
3326 
3327 #ifdef DEBUG
3328 void
3329 mc_dump_dimm(char *buf, int dnamesz, int serialsz, int partnumsz)
3330 {
3331 	char dname[MCOPL_MAX_DIMMNAME + 1];
3332 	char serial[MCOPL_MAX_SERIAL + 1];
3333 	char part[ MCOPL_MAX_PARTNUM + 1];
3334 	char *b;
3335 
3336 	b = buf;
3337 	snprintf(dname, dnamesz + 1, "%s", b);
3338 	b += dnamesz;
3339 	snprintf(serial, serialsz + 1, "%s", b);
3340 	b += serialsz;
3341 	snprintf(part, partnumsz + 1, "%s", b);
3342 	printf("DIMM=%s  Serial=%s PartNum=%s\n", dname, serial, part);
3343 }
3344 
3345 void
3346 mc_dump_dimm_info(board_dimm_info_t *bd_dimmp)
3347 {
3348 	int	dimm;
3349 	int	dnamesz = bd_dimmp->bd_dnamesz;
3350 	int	sersz = bd_dimmp->bd_serialsz;
3351 	int	partsz = bd_dimmp->bd_partnumsz;
3352 	char	*buf;
3353 
3354 	printf("Version=%d Board=%02d DIMMs=%d NameSize=%d "
3355 	    "SerialSize=%d PartnumSize=%d\n", bd_dimmp->bd_version,
3356 	    bd_dimmp->bd_boardnum, bd_dimmp->bd_numdimms, bd_dimmp->bd_dnamesz,
3357 	    bd_dimmp->bd_serialsz, bd_dimmp->bd_partnumsz);
3358 	printf("======================================================\n");
3359 
3360 	buf = (char *)(bd_dimmp + 1);
3361 	for (dimm = 0; dimm < bd_dimmp->bd_numdimms; dimm++) {
3362 		mc_dump_dimm(buf, dnamesz, sersz, partsz);
3363 		buf += dnamesz + sersz + partsz;
3364 	}
3365 	printf("======================================================\n");
3366 }
3367 
3368 
3369 /* ARGSUSED */
3370 static int
3371 mc_ioctl_debug(dev_t dev, int cmd, intptr_t arg, int mode, cred_t *credp,
3372 	int *rvalp)
3373 {
3374 	caddr_t	buf;
3375 	uint64_t pa;
3376 	int rv = 0;
3377 	int i;
3378 	uint32_t flags;
3379 	static uint32_t offset = 0;
3380 
3381 
3382 	flags = (cmd >> 4) & 0xfffffff;
3383 
3384 	cmd &= 0xf;
3385 
3386 	MC_LOG("mc_ioctl(cmd = %x, flags = %x)\n", cmd, flags);
3387 
3388 	if (arg != NULL) {
3389 		if (ddi_copyin((const void *)arg, (void *)&pa,
3390 			sizeof (uint64_t), 0) < 0) {
3391 			rv = EFAULT;
3392 			return (rv);
3393 		}
3394 		buf = NULL;
3395 	} else {
3396 		buf = (caddr_t)kmem_alloc(PAGESIZE, KM_SLEEP);
3397 
3398 		pa = va_to_pa(buf);
3399 		pa += offset;
3400 
3401 		offset += 64;
3402 		if (offset >= PAGESIZE)
3403 			offset = 0;
3404 	}
3405 
3406 	switch (cmd) {
3407 	case MCI_CE:
3408 		mc_inject_error(MC_INJECT_INTERMITTENT_CE, pa,
3409 			flags);
3410 		break;
3411 	case MCI_PERM_CE:
3412 		mc_inject_error(MC_INJECT_PERMANENT_CE, pa,
3413 			flags);
3414 		break;
3415 	case MCI_UE:
3416 		mc_inject_error(MC_INJECT_UE, pa,
3417 			flags);
3418 		break;
3419 	case MCI_M_CE:
3420 		mc_inject_error(MC_INJECT_INTERMITTENT_MCE, pa,
3421 			flags);
3422 		break;
3423 	case MCI_M_PCE:
3424 		mc_inject_error(MC_INJECT_PERMANENT_MCE, pa,
3425 			flags);
3426 		break;
3427 	case MCI_M_UE:
3428 		mc_inject_error(MC_INJECT_MUE, pa,
3429 			flags);
3430 		break;
3431 	case MCI_CMP:
3432 		mc_inject_error(MC_INJECT_CMPE, pa,
3433 			flags);
3434 		break;
3435 	case MCI_NOP:
3436 		mc_inject_error(MC_INJECT_NOP, pa, flags);
3437 		break;
3438 	case MCI_SHOW_ALL:
3439 		mc_debug_show_all = 1;
3440 		break;
3441 	case MCI_SHOW_NONE:
3442 		mc_debug_show_all = 0;
3443 		break;
3444 	case MCI_ALLOC:
3445 		/*
3446 		 * just allocate some kernel memory and never free it
3447 		 * 512 MB seems to be the maximum size supported.
3448 		 */
3449 		cmn_err(CE_NOTE, "Allocating kmem %d MB\n", flags * 512);
3450 		for (i = 0; i < flags; i++) {
3451 			buf = kmem_alloc(512 * 1024 * 1024, KM_SLEEP);
3452 			cmn_err(CE_NOTE, "kmem buf %llx PA %llx\n",
3453 				(u_longlong_t)buf, (u_longlong_t)va_to_pa(buf));
3454 		}
3455 		break;
3456 	case MCI_SUSPEND:
3457 		(void) opl_mc_suspend();
3458 		break;
3459 	case MCI_RESUME:
3460 		(void) opl_mc_resume();
3461 		break;
3462 	default:
3463 		rv = ENXIO;
3464 	}
3465 	return (rv);
3466 }
3467 
3468 #endif /* DEBUG */
3469