1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 #include <sys/types.h>
29 #include <sys/systm.h>
30 #include <sys/archsystm.h>
31 #include <sys/t_lock.h>
32 #include <sys/uadmin.h>
33 #include <sys/panic.h>
34 #include <sys/reboot.h>
35 #include <sys/autoconf.h>
36 #include <sys/machsystm.h>
37 #include <sys/promif.h>
38 #include <sys/membar.h>
39 #include <vm/hat_sfmmu.h>
40 #include <sys/cpu_module.h>
41 #include <sys/cpu_sgnblk_defs.h>
42 #include <sys/intreg.h>
43 #include <sys/consdev.h>
44 #include <sys/kdi_impl.h>
45 #include <sys/traptrace.h>
46 #include <sys/hypervisor_api.h>
47 #include <sys/vmsystm.h>
48 #include <sys/dtrace.h>
49 #include <sys/xc_impl.h>
50 #include <sys/callb.h>
51 #include <sys/mdesc.h>
52 #include <sys/mach_descrip.h>
53 #include <sys/wdt.h>
54 #include <sys/soft_state.h>
55 #include <sys/promimpl.h>
56 #include <sys/hsvc.h>
57 #include <sys/ldoms.h>
58 
59 /*
60  * hvdump_buf_va is a pointer to the currently-configured hvdump_buf.
61  * A value of NULL indicates that this area is not configured.
62  * hvdump_buf_sz is tunable but will be clamped to HVDUMP_SIZE_MAX.
63  */
64 
65 caddr_t hvdump_buf_va;
66 uint64_t hvdump_buf_sz = HVDUMP_SIZE_DEFAULT;
67 static uint64_t hvdump_buf_pa;
68 
69 u_longlong_t panic_tick;
70 
71 extern u_longlong_t gettick();
72 static void reboot_machine(char *);
73 static void update_hvdump_buffer(void);
74 
75 /*
76  * For xt_sync synchronization.
77  */
78 extern uint64_t xc_tick_limit;
79 extern uint64_t xc_tick_jump_limit;
80 extern uint64_t xc_sync_tick_limit;
81 
82 /*
83  * We keep our own copies, used for cache flushing, because we can be called
84  * before cpu_fiximpl().
85  */
86 static int kdi_dcache_size;
87 static int kdi_dcache_linesize;
88 static int kdi_icache_size;
89 static int kdi_icache_linesize;
90 
91 /*
92  * Assembly support for generic modules in sun4v/ml/mach_xc.s
93  */
94 extern void init_mondo_nocheck(xcfunc_t *func, uint64_t arg1, uint64_t arg2);
95 extern void kdi_flush_idcache(int, int, int, int);
96 extern uint64_t get_cpuaddr(uint64_t, uint64_t);
97 
98 
99 #define	BOOT_CMD_MAX_LEN	256
100 #define	BOOT_CMD_BASE		"boot "
101 
102 /*
103  * In an LDoms system we do not save the user's boot args in NVRAM
104  * as is done on legacy systems.  Instead, we format and send a
105  * 'reboot-command' variable to the variable service.  The contents
106  * of the variable are retrieved by OBP and used verbatim for
107  * the next boot.
108  */
109 static void
110 store_boot_cmd(char *args, boolean_t add_boot_str)
111 {
112 	static char	cmd_buf[BOOT_CMD_MAX_LEN];
113 	size_t		len = 1;
114 	pnode_t		node;
115 	size_t		base_len = 0;
116 	size_t		args_len;
117 	size_t		args_max;
118 
119 	if (add_boot_str) {
120 		(void) strcpy(cmd_buf, BOOT_CMD_BASE);
121 
122 		base_len = strlen(BOOT_CMD_BASE);
123 		len = base_len + 1;
124 	}
125 
126 	if (args != NULL) {
127 		args_len = strlen(args);
128 		args_max = BOOT_CMD_MAX_LEN - len;
129 
130 		if (args_len > args_max) {
131 			cmn_err(CE_WARN, "Reboot command too long (%ld), "
132 			    "truncating command arguments", len + args_len);
133 
134 			args_len = args_max;
135 		}
136 
137 		len += args_len;
138 		(void) strncpy(&cmd_buf[base_len], args, args_len);
139 	}
140 
141 	node = prom_optionsnode();
142 	if ((node == OBP_NONODE) || (node == OBP_BADNODE) ||
143 	    prom_setprop(node, "reboot-command", cmd_buf, len) == -1)
144 		cmn_err(CE_WARN, "Unable to store boot command for "
145 		    "use on reboot");
146 }
147 
148 
149 /*
150  * Machine dependent code to reboot.
151  *
152  * "bootstr", when non-null, points to a string to be used as the
153  * argument string when rebooting.
154  *
155  * "invoke_cb" is a boolean. It is set to true when mdboot() can safely
156  * invoke CB_CL_MDBOOT callbacks before shutting the system down, i.e. when
157  * we are in a normal shutdown sequence (interrupts are not blocked, the
158  * system is not panic'ing or being suspended).
159  */
160 /*ARGSUSED*/
161 void
162 mdboot(int cmd, int fcn, char *bootstr, boolean_t invoke_cb)
163 {
164 	extern void pm_cfb_check_and_powerup(void);
165 
166 	/*
167 	 * XXX - rconsvp is set to NULL to ensure that output messages
168 	 * are sent to the underlying "hardware" device using the
169 	 * monitor's printf routine since we are in the process of
170 	 * either rebooting or halting the machine.
171 	 */
172 	rconsvp = NULL;
173 
174 	switch (fcn) {
175 	case AD_HALT:
176 		/*
177 		 * LDoms: By storing a no-op command
178 		 * in the 'reboot-command' variable we cause OBP
179 		 * to ignore the setting of 'auto-boot?' after
180 		 * it completes the reset.  This causes the system
181 		 * to stop at the ok prompt.
182 		 */
183 		if (domaining_enabled() && invoke_cb)
184 			store_boot_cmd("noop", B_FALSE);
185 		break;
186 
187 	case AD_POWEROFF:
188 		break;
189 
190 	default:
191 		if (bootstr == NULL) {
192 			switch (fcn) {
193 
194 			case AD_BOOT:
195 				bootstr = "";
196 				break;
197 
198 			case AD_IBOOT:
199 				bootstr = "-a";
200 				break;
201 
202 			case AD_SBOOT:
203 				bootstr = "-s";
204 				break;
205 
206 			case AD_SIBOOT:
207 				bootstr = "-sa";
208 				break;
209 			default:
210 				cmn_err(CE_WARN,
211 				    "mdboot: invalid function %d", fcn);
212 				bootstr = "";
213 				break;
214 			}
215 		}
216 
217 		/*
218 		 * If LDoms is running, we must save the boot string
219 		 * before we enter restricted mode.  This is possible
220 		 * only if we are not being called from panic.
221 		 */
222 		if (domaining_enabled() && invoke_cb)
223 			store_boot_cmd(bootstr, B_TRUE);
224 	}
225 
226 	/*
227 	 * At a high interrupt level we can't:
228 	 *	1) bring up the console
229 	 * or
230 	 *	2) wait for pending interrupts prior to redistribution
231 	 *	   to the current CPU
232 	 *
233 	 * so we do them now.
234 	 */
235 	pm_cfb_check_and_powerup();
236 
237 	/* make sure there are no more changes to the device tree */
238 	devtree_freeze();
239 
240 	if (invoke_cb)
241 		(void) callb_execute_class(CB_CL_MDBOOT, NULL);
242 
243 	/*
244 	 * Clear any unresolved UEs from memory.
245 	 */
246 	page_retire_mdboot();
247 
248 	/*
249 	 * stop other cpus which also raise our priority. since there is only
250 	 * one active cpu after this, and our priority will be too high
251 	 * for us to be preempted, we're essentially single threaded
252 	 * from here on out.
253 	 */
254 	stop_other_cpus();
255 
256 	/*
257 	 * try and reset leaf devices.  reset_leaves() should only
258 	 * be called when there are no other threads that could be
259 	 * accessing devices
260 	 */
261 	reset_leaves();
262 
263 	watchdog_clear();
264 
265 	if (fcn == AD_HALT) {
266 		mach_set_soft_state(SIS_TRANSITION,
267 		    &SOLARIS_SOFT_STATE_HALT_MSG);
268 		halt((char *)NULL);
269 	} else if (fcn == AD_POWEROFF) {
270 		mach_set_soft_state(SIS_TRANSITION,
271 		    &SOLARIS_SOFT_STATE_POWER_MSG);
272 		power_down(NULL);
273 	} else {
274 		mach_set_soft_state(SIS_TRANSITION,
275 		    &SOLARIS_SOFT_STATE_REBOOT_MSG);
276 		reboot_machine(bootstr);
277 	}
278 	/* MAYBE REACHED */
279 }
280 
281 /* mdpreboot - may be called prior to mdboot while root fs still mounted */
282 /*ARGSUSED*/
283 void
284 mdpreboot(int cmd, int fcn, char *bootstr)
285 {
286 }
287 
288 /*
289  * Halt the machine and then reboot with the device
290  * and arguments specified in bootstr.
291  */
292 static void
293 reboot_machine(char *bootstr)
294 {
295 	flush_windows();
296 	stop_other_cpus();		/* send stop signal to other CPUs */
297 	prom_printf("rebooting...\n");
298 	/*
299 	 * For platforms that use CPU signatures, we
300 	 * need to set the signature block to OS and
301 	 * the state to exiting for all the processors.
302 	 */
303 	CPU_SIGNATURE(OS_SIG, SIGST_EXIT, SIGSUBST_REBOOT, -1);
304 	prom_reboot(bootstr);
305 	/*NOTREACHED*/
306 }
307 
308 /*
309  * We use the x-trap mechanism and idle_stop_xcall() to stop the other CPUs.
310  * Once in panic_idle() they raise spl, record their location, and spin.
311  */
312 static void
313 panic_idle(void)
314 {
315 	(void) spl7();
316 
317 	debug_flush_windows();
318 	(void) setjmp(&curthread->t_pcb);
319 
320 	CPU->cpu_m.in_prom = 1;
321 	membar_stld();
322 
323 	for (;;)
324 		;
325 }
326 
327 /*
328  * Force the other CPUs to trap into panic_idle(), and then remove them
329  * from the cpu_ready_set so they will no longer receive cross-calls.
330  */
331 /*ARGSUSED*/
332 void
333 panic_stopcpus(cpu_t *cp, kthread_t *t, int spl)
334 {
335 	cpuset_t cps;
336 	int i;
337 
338 	(void) splzs();
339 	CPUSET_ALL_BUT(cps, cp->cpu_id);
340 	xt_some(cps, (xcfunc_t *)idle_stop_xcall, (uint64_t)&panic_idle, NULL);
341 
342 	for (i = 0; i < NCPU; i++) {
343 		if (i != cp->cpu_id && CPU_XCALL_READY(i)) {
344 			int ntries = 0x10000;
345 
346 			while (!cpu[i]->cpu_m.in_prom && ntries) {
347 				DELAY(50);
348 				ntries--;
349 			}
350 
351 			if (!cpu[i]->cpu_m.in_prom)
352 				printf("panic: failed to stop cpu%d\n", i);
353 
354 			cpu[i]->cpu_flags &= ~CPU_READY;
355 			cpu[i]->cpu_flags |= CPU_QUIESCED;
356 			CPUSET_DEL(cpu_ready_set, cpu[i]->cpu_id);
357 		}
358 	}
359 }
360 
361 /*
362  * Platform callback following each entry to panicsys().  If we've panicked at
363  * level 14, we examine t_panic_trap to see if a fatal trap occurred.  If so,
364  * we disable further %tick_cmpr interrupts.  If not, an explicit call to panic
365  * was made and so we re-enqueue an interrupt request structure to allow
366  * further level 14 interrupts to be processed once we lower PIL.  This allows
367  * us to handle panics from the deadman() CY_HIGH_LEVEL cyclic.
368  */
369 void
370 panic_enter_hw(int spl)
371 {
372 	if (!panic_tick) {
373 		panic_tick = gettick();
374 		if (mach_htraptrace_enable) {
375 			uint64_t prev_freeze;
376 
377 			/*  there are no possible error codes for this hcall */
378 			(void) hv_ttrace_freeze((uint64_t)TRAP_TFREEZE_ALL,
379 			    &prev_freeze);
380 		}
381 #ifdef TRAPTRACE
382 		TRAPTRACE_FREEZE;
383 #endif
384 	}
385 
386 	mach_set_soft_state(SIS_TRANSITION, &SOLARIS_SOFT_STATE_PANIC_MSG);
387 
388 	if (spl == ipltospl(PIL_14)) {
389 		uint_t opstate = disable_vec_intr();
390 
391 		if (curthread->t_panic_trap != NULL) {
392 			tickcmpr_disable();
393 			intr_dequeue_req(PIL_14, cbe_level14_inum);
394 		} else {
395 			if (!tickcmpr_disabled())
396 				intr_enqueue_req(PIL_14, cbe_level14_inum);
397 			/*
398 			 * Clear SOFTINT<14>, SOFTINT<0> (TICK_INT)
399 			 * and SOFTINT<16> (STICK_INT) to indicate
400 			 * that the current level 14 has been serviced.
401 			 */
402 			wr_clr_softint((1 << PIL_14) |
403 			    TICK_INT_MASK | STICK_INT_MASK);
404 		}
405 
406 		enable_vec_intr(opstate);
407 	}
408 }
409 
410 /*
411  * Miscellaneous hardware-specific code to execute after panicstr is set
412  * by the panic code: we also print and record PTL1 panic information here.
413  */
414 /*ARGSUSED*/
415 void
416 panic_quiesce_hw(panic_data_t *pdp)
417 {
418 	extern uint_t getpstate(void);
419 	extern void setpstate(uint_t);
420 
421 	/*
422 	 * Turn off TRAPTRACE and save the current %tick value in panic_tick.
423 	 */
424 	if (!panic_tick) {
425 		panic_tick = gettick();
426 		if (mach_htraptrace_enable) {
427 			uint64_t prev_freeze;
428 
429 			/*  there are no possible error codes for this hcall */
430 			(void) hv_ttrace_freeze((uint64_t)TRAP_TFREEZE_ALL,
431 			    &prev_freeze);
432 		}
433 #ifdef TRAPTRACE
434 		TRAPTRACE_FREEZE;
435 #endif
436 	}
437 	/*
438 	 * For Platforms that use CPU signatures, we
439 	 * need to set the signature block to OS, the state to
440 	 * exiting, and the substate to panic for all the processors.
441 	 */
442 	CPU_SIGNATURE(OS_SIG, SIGST_EXIT, SIGSUBST_PANIC, -1);
443 
444 	update_hvdump_buffer();
445 
446 	/*
447 	 * Disable further ECC errors from the bus nexus.
448 	 */
449 	(void) bus_func_invoke(BF_TYPE_ERRDIS);
450 
451 	/*
452 	 * Redirect all interrupts to the current CPU.
453 	 */
454 	intr_redist_all_cpus_shutdown();
455 
456 	/*
457 	 * This call exists solely to support dumps to network
458 	 * devices after sync from OBP.
459 	 *
460 	 * If we came here via the sync callback, then on some
461 	 * platforms, interrupts may have arrived while we were
462 	 * stopped in OBP.  OBP will arrange for those interrupts to
463 	 * be redelivered if you say "go", but not if you invoke a
464 	 * client callback like 'sync'.	 For some dump devices
465 	 * (network swap devices), we need interrupts to be
466 	 * delivered in order to dump, so we have to call the bus
467 	 * nexus driver to reset the interrupt state machines.
468 	 */
469 	(void) bus_func_invoke(BF_TYPE_RESINTR);
470 
471 	setpstate(getpstate() | PSTATE_IE);
472 }
473 
474 /*
475  * Platforms that use CPU signatures need to set the signature block to OS and
476  * the state to exiting for all CPUs. PANIC_CONT indicates that we're about to
477  * write the crash dump, which tells the SSP/SMS to begin a timeout routine to
478  * reboot the machine if the dump never completes.
479  */
480 /*ARGSUSED*/
481 void
482 panic_dump_hw(int spl)
483 {
484 	CPU_SIGNATURE(OS_SIG, SIGST_EXIT, SIGSUBST_DUMP, -1);
485 }
486 
487 /*
488  * for ptl1_panic
489  */
490 void
491 ptl1_init_cpu(struct cpu *cpu)
492 {
493 	ptl1_state_t *pstate = &cpu->cpu_m.ptl1_state;
494 
495 	/*CONSTCOND*/
496 	if (sizeof (struct cpu) + PTL1_SSIZE > CPU_ALLOC_SIZE) {
497 		panic("ptl1_init_cpu: not enough space left for ptl1_panic "
498 		    "stack, sizeof (struct cpu) = %lu",
499 		    (unsigned long)sizeof (struct cpu));
500 	}
501 
502 	pstate->ptl1_stktop = (uintptr_t)cpu + CPU_ALLOC_SIZE;
503 	cpu_pa[cpu->cpu_id] = va_to_pa(cpu);
504 }
505 
506 void
507 ptl1_panic_handler(ptl1_state_t *pstate)
508 {
509 	static const char *ptl1_reasons[] = {
510 #ifdef	PTL1_PANIC_DEBUG
511 		"trap for debug purpose",	/* PTL1_BAD_DEBUG */
512 #else
513 		"unknown trap",			/* PTL1_BAD_DEBUG */
514 #endif
515 		"register window trap",		/* PTL1_BAD_WTRAP */
516 		"kernel MMU miss",		/* PTL1_BAD_KMISS */
517 		"kernel protection fault",	/* PTL1_BAD_KPROT_FAULT */
518 		"ISM MMU miss",			/* PTL1_BAD_ISM */
519 		"kernel MMU trap",		/* PTL1_BAD_MMUTRAP */
520 		"kernel trap handler state",	/* PTL1_BAD_TRAP */
521 		"floating point trap",		/* PTL1_BAD_FPTRAP */
522 #ifdef	DEBUG
523 		"pointer to intr_vec",		/* PTL1_BAD_INTR_VEC */
524 #else
525 		"unknown trap",			/* PTL1_BAD_INTR_VEC */
526 #endif
527 #ifdef	TRAPTRACE
528 		"TRACE_PTR state",		/* PTL1_BAD_TRACE_PTR */
529 #else
530 		"unknown trap",			/* PTL1_BAD_TRACE_PTR */
531 #endif
532 		"stack overflow",		/* PTL1_BAD_STACK */
533 		"DTrace flags",			/* PTL1_BAD_DTRACE_FLAGS */
534 		"attempt to steal locked ctx",  /* PTL1_BAD_CTX_STEAL */
535 		"CPU ECC error loop",		/* PTL1_BAD_ECC */
536 		"unexpected error from hypervisor call", /* PTL1_BAD_HCALL */
537 		"unexpected global level(%gl)", /* PTL1_BAD_GL */
538 		"Watchdog Reset", 		/* PTL1_BAD_WATCHDOG */
539 		"unexpected RED mode trap", 	/* PTL1_BAD_RED */
540 		"return value EINVAL from hcall: "\
541 		    "UNMAP_PERM_ADDR",	/* PTL1_BAD_HCALL_UNMAP_PERM_EINVAL */
542 		"return value ENOMAP from hcall: "\
543 		    "UNMAP_PERM_ADDR", /* PTL1_BAD_HCALL_UNMAP_PERM_ENOMAP */
544 		"error raising a TSB exception", /* PTL1_BAD_RAISE_TSBEXCP */
545 		"missing shared TSB"	/* PTL1_NO_SCDTSB8K */
546 	};
547 
548 	uint_t reason = pstate->ptl1_regs.ptl1_gregs[0].ptl1_g1;
549 	uint_t tl = pstate->ptl1_regs.ptl1_trap_regs[0].ptl1_tl;
550 	struct panic_trap_info ti = { 0 };
551 
552 	/*
553 	 * Use trap_info for a place holder to call panic_savetrap() and
554 	 * panic_showtrap() to save and print out ptl1_panic information.
555 	 */
556 	if (curthread->t_panic_trap == NULL)
557 		curthread->t_panic_trap = &ti;
558 
559 	if (reason < sizeof (ptl1_reasons) / sizeof (ptl1_reasons[0]))
560 		panic("bad %s at TL %u", ptl1_reasons[reason], tl);
561 	else
562 		panic("ptl1_panic reason 0x%x at TL %u", reason, tl);
563 }
564 
565 void
566 clear_watchdog_on_exit(void)
567 {
568 	if (watchdog_enabled && watchdog_activated) {
569 		prom_printf("Debugging requested; hardware watchdog "
570 		    "suspended.\n");
571 		(void) watchdog_suspend();
572 	}
573 }
574 
575 /*
576  * Restore the watchdog timer when returning from a debugger
577  * after a panic or L1-A and resume watchdog pat.
578  */
579 void
580 restore_watchdog_on_entry()
581 {
582 	watchdog_resume();
583 }
584 
585 int
586 kdi_watchdog_disable(void)
587 {
588 	watchdog_suspend();
589 
590 	return (0);
591 }
592 
593 void
594 kdi_watchdog_restore(void)
595 {
596 	watchdog_resume();
597 }
598 
599 void
600 mach_dump_buffer_init(void)
601 {
602 	uint64_t  ret, minsize = 0;
603 
604 	if (hvdump_buf_sz > HVDUMP_SIZE_MAX)
605 		hvdump_buf_sz = HVDUMP_SIZE_MAX;
606 
607 	hvdump_buf_va = contig_mem_alloc_align(hvdump_buf_sz, PAGESIZE);
608 	if (hvdump_buf_va == NULL)
609 		return;
610 
611 	hvdump_buf_pa = va_to_pa(hvdump_buf_va);
612 
613 	ret = hv_dump_buf_update(hvdump_buf_pa, hvdump_buf_sz,
614 	    &minsize);
615 
616 	if (ret != H_EOK) {
617 		contig_mem_free(hvdump_buf_va, hvdump_buf_sz);
618 		hvdump_buf_va = NULL;
619 		cmn_err(CE_NOTE, "!Error in setting up hvstate"
620 		    "dump buffer. Error = 0x%lx, size = 0x%lx,"
621 		    "buf_pa = 0x%lx", ret, hvdump_buf_sz,
622 		    hvdump_buf_pa);
623 
624 		if (ret == H_EINVAL) {
625 			cmn_err(CE_NOTE, "!Buffer size too small."
626 			    "Available buffer size = 0x%lx,"
627 			    "Minimum buffer size required = 0x%lx",
628 			    hvdump_buf_sz, minsize);
629 		}
630 	}
631 }
632 
633 
634 static void
635 update_hvdump_buffer(void)
636 {
637 	uint64_t ret, dummy_val;
638 
639 	if (hvdump_buf_va == NULL)
640 		return;
641 
642 	ret = hv_dump_buf_update(hvdump_buf_pa, hvdump_buf_sz,
643 	    &dummy_val);
644 	if (ret != H_EOK) {
645 		cmn_err(CE_NOTE, "!Cannot update hvstate dump"
646 		    "buffer. Error = 0x%lx", ret);
647 	}
648 }
649 
650 
651 static int
652 getintprop(pnode_t node, char *name, int deflt)
653 {
654 	int	value;
655 
656 	switch (prom_getproplen(node, name)) {
657 	case 0:
658 		value = 1;	/* boolean properties */
659 		break;
660 
661 	case sizeof (int):
662 		(void) prom_getprop(node, name, (caddr_t)&value);
663 		break;
664 
665 	default:
666 		value = deflt;
667 		break;
668 	}
669 
670 	return (value);
671 }
672 
673 /*
674  * Called by setcpudelay
675  */
676 void
677 cpu_init_tick_freq(void)
678 {
679 	md_t *mdp;
680 	mde_cookie_t rootnode;
681 	int		listsz;
682 	mde_cookie_t	*listp = NULL;
683 	int	num_nodes;
684 	uint64_t stick_prop;
685 
686 	if (broken_md_flag) {
687 		sys_tick_freq = cpunodes[CPU->cpu_id].clock_freq;
688 		return;
689 	}
690 
691 	if ((mdp = md_get_handle()) == NULL)
692 		panic("stick_frequency property not found in MD");
693 
694 	rootnode = md_root_node(mdp);
695 	ASSERT(rootnode != MDE_INVAL_ELEM_COOKIE);
696 
697 	num_nodes = md_node_count(mdp);
698 
699 	ASSERT(num_nodes > 0);
700 	listsz = num_nodes * sizeof (mde_cookie_t);
701 	listp = (mde_cookie_t *)prom_alloc((caddr_t)0, listsz, 0);
702 
703 	if (listp == NULL)
704 		panic("cannot allocate list for MD properties");
705 
706 	num_nodes = md_scan_dag(mdp, rootnode, md_find_name(mdp, "platform"),
707 	    md_find_name(mdp, "fwd"), listp);
708 
709 	ASSERT(num_nodes == 1);
710 
711 	if (md_get_prop_val(mdp, *listp, "stick-frequency", &stick_prop) != 0)
712 		panic("stick_frequency property not found in MD");
713 
714 	sys_tick_freq = stick_prop;
715 
716 	prom_free((caddr_t)listp, listsz);
717 	(void) md_fini_handle(mdp);
718 }
719 
720 int shipit(int n, uint64_t cpu_list_ra);
721 
722 #ifdef DEBUG
723 #define	SEND_MONDO_STATS	1
724 #endif
725 
726 #ifdef SEND_MONDO_STATS
727 uint32_t x_one_stimes[64];
728 uint32_t x_one_ltimes[16];
729 uint32_t x_set_stimes[64];
730 uint32_t x_set_ltimes[16];
731 uint32_t x_set_cpus[NCPU];
732 #endif
733 
734 void
735 send_one_mondo(int cpuid)
736 {
737 	int retries, stat;
738 	uint64_t starttick, endtick, tick, lasttick;
739 	struct machcpu	*mcpup = &(CPU->cpu_m);
740 
741 	CPU_STATS_ADDQ(CPU, sys, xcalls, 1);
742 	starttick = lasttick = gettick();
743 	mcpup->cpu_list[0] = (uint16_t)cpuid;
744 	stat = shipit(1, mcpup->cpu_list_ra);
745 	endtick = starttick + xc_tick_limit;
746 	retries = 0;
747 	while (stat != H_EOK) {
748 		if (stat != H_EWOULDBLOCK) {
749 			if (panic_quiesce)
750 				return;
751 			if (stat == H_ECPUERROR)
752 				cmn_err(CE_PANIC, "send_one_mondo: "
753 				    "cpuid: 0x%x has been marked in "
754 				    "error", cpuid);
755 			else
756 				cmn_err(CE_PANIC, "send_one_mondo: "
757 				    "unexpected hypervisor error 0x%x "
758 				    "while sending a mondo to cpuid: "
759 				    "0x%x", stat, cpuid);
760 		}
761 		tick = gettick();
762 		/*
763 		 * If there is a big jump between the current tick
764 		 * count and lasttick, we have probably hit a break
765 		 * point.  Adjust endtick accordingly to avoid panic.
766 		 */
767 		if (tick > (lasttick + xc_tick_jump_limit))
768 			endtick += (tick - lasttick);
769 		lasttick = tick;
770 		if (tick > endtick) {
771 			if (panic_quiesce)
772 				return;
773 			cmn_err(CE_PANIC, "send mondo timeout "
774 			    "(target 0x%x) [retries: 0x%x hvstat: 0x%x]",
775 			    cpuid, retries, stat);
776 		}
777 		drv_usecwait(1);
778 		stat = shipit(1, mcpup->cpu_list_ra);
779 		retries++;
780 	}
781 #ifdef SEND_MONDO_STATS
782 	{
783 		uint64_t n = gettick() - starttick;
784 		if (n < 8192)
785 			x_one_stimes[n >> 7]++;
786 		else if (n < 15*8192)
787 			x_one_ltimes[n >> 13]++;
788 		else
789 			x_one_ltimes[0xf]++;
790 	}
791 #endif
792 }
793 
794 void
795 send_mondo_set(cpuset_t set)
796 {
797 	uint64_t starttick, endtick, tick, lasttick;
798 	uint_t largestid, smallestid;
799 	int i, j;
800 	int ncpuids = 0;
801 	int shipped = 0;
802 	int retries = 0;
803 	struct machcpu	*mcpup = &(CPU->cpu_m);
804 
805 	ASSERT(!CPUSET_ISNULL(set));
806 	CPUSET_BOUNDS(set, smallestid, largestid);
807 	if (smallestid == CPUSET_NOTINSET) {
808 		return;
809 	}
810 
811 	starttick = lasttick = gettick();
812 	endtick = starttick + xc_tick_limit;
813 
814 	/*
815 	 * Assemble CPU list for HV argument. We already know
816 	 * smallestid and largestid are members of set.
817 	 */
818 	mcpup->cpu_list[ncpuids++] = (uint16_t)smallestid;
819 	if (largestid != smallestid) {
820 		for (i = smallestid+1; i <= largestid-1; i++) {
821 			if (CPU_IN_SET(set, i)) {
822 				mcpup->cpu_list[ncpuids++] = (uint16_t)i;
823 			}
824 		}
825 		mcpup->cpu_list[ncpuids++] = (uint16_t)largestid;
826 	}
827 
828 	do {
829 		int stat;
830 
831 		stat = shipit(ncpuids, mcpup->cpu_list_ra);
832 		if (stat == H_EOK) {
833 			shipped += ncpuids;
834 			break;
835 		}
836 
837 		/*
838 		 * Either not all CPU mondos were sent, or an
839 		 * error occurred. CPUs that were sent mondos
840 		 * have their CPU IDs overwritten in cpu_list.
841 		 * Reset cpu_list so that it only holds those
842 		 * CPU IDs that still need to be sent.
843 		 */
844 		for (i = 0, j = 0; i < ncpuids; i++) {
845 			if (mcpup->cpu_list[i] == HV_SEND_MONDO_ENTRYDONE) {
846 				shipped++;
847 			} else {
848 				mcpup->cpu_list[j++] = mcpup->cpu_list[i];
849 			}
850 		}
851 		ncpuids = j;
852 
853 		/*
854 		 * Now handle possible errors returned
855 		 * from hypervisor.
856 		 */
857 		if (stat == H_ECPUERROR) {
858 			int errorcpus;
859 
860 			if (!panic_quiesce)
861 				cmn_err(CE_CONT, "send_mondo_set: cpuid(s) ");
862 
863 			/*
864 			 * Remove any CPUs in the error state from
865 			 * cpu_list. At this point cpu_list only
866 			 * contains the CPU IDs for mondos not
867 			 * succesfully sent.
868 			 */
869 			for (i = 0, errorcpus = 0; i < ncpuids; i++) {
870 				uint64_t state = CPU_STATE_INVALID;
871 				uint16_t id = mcpup->cpu_list[i];
872 
873 				(void) hv_cpu_state(id, &state);
874 				if (state == CPU_STATE_ERROR) {
875 					if (!panic_quiesce)
876 						cmn_err(CE_CONT, "0x%x ", id);
877 					errorcpus++;
878 				} else if (errorcpus > 0) {
879 					mcpup->cpu_list[i - errorcpus] =
880 					    mcpup->cpu_list[i];
881 				}
882 			}
883 			ncpuids -= errorcpus;
884 
885 			if (!panic_quiesce) {
886 				if (errorcpus == 0) {
887 					cmn_err(CE_CONT, "<none> have been "
888 					    "marked in error\n");
889 					cmn_err(CE_PANIC, "send_mondo_set: "
890 					    "hypervisor returned "
891 					    "H_ECPUERROR but no CPU in "
892 					    "cpu_list in error state");
893 				} else {
894 					cmn_err(CE_CONT, "have been marked in "
895 					    "error\n");
896 					cmn_err(CE_PANIC, "send_mondo_set: "
897 					    "CPU(s) in error state");
898 				}
899 			}
900 		} else if (stat != H_EWOULDBLOCK) {
901 			if (panic_quiesce)
902 				return;
903 			/*
904 			 * For all other errors, panic.
905 			 */
906 			cmn_err(CE_CONT, "send_mondo_set: unexpected "
907 			    "hypervisor error 0x%x while sending a "
908 			    "mondo to cpuid(s):", stat);
909 			for (i = 0; i < ncpuids; i++) {
910 				cmn_err(CE_CONT, " 0x%x", mcpup->cpu_list[i]);
911 			}
912 			cmn_err(CE_CONT, "\n");
913 			cmn_err(CE_PANIC, "send_mondo_set: unexpected "
914 			    "hypervisor error");
915 		}
916 
917 		tick = gettick();
918 		/*
919 		 * If there is a big jump between the current tick
920 		 * count and lasttick, we have probably hit a break
921 		 * point.  Adjust endtick accordingly to avoid panic.
922 		 */
923 		if (tick > (lasttick + xc_tick_jump_limit))
924 			endtick += (tick - lasttick);
925 		lasttick = tick;
926 		if (tick > endtick) {
927 			if (panic_quiesce)
928 				return;
929 			cmn_err(CE_CONT, "send mondo timeout "
930 			    "[retries: 0x%x]  cpuids: ", retries);
931 			for (i = 0; i < ncpuids; i++)
932 				cmn_err(CE_CONT, " 0x%x", mcpup->cpu_list[i]);
933 			cmn_err(CE_CONT, "\n");
934 			cmn_err(CE_PANIC, "send_mondo_set: timeout");
935 		}
936 
937 		while (gettick() < (tick + sys_clock_mhz))
938 			;
939 		retries++;
940 	} while (ncpuids > 0);
941 
942 	CPU_STATS_ADDQ(CPU, sys, xcalls, shipped);
943 
944 #ifdef SEND_MONDO_STATS
945 	{
946 		uint64_t n = gettick() - starttick;
947 		if (n < 8192)
948 			x_set_stimes[n >> 7]++;
949 		else if (n < 15*8192)
950 			x_set_ltimes[n >> 13]++;
951 		else
952 			x_set_ltimes[0xf]++;
953 	}
954 	x_set_cpus[shipped]++;
955 #endif
956 }
957 
958 void
959 syncfpu(void)
960 {
961 }
962 
963 void
964 sticksync_slave(void)
965 {}
966 
967 void
968 sticksync_master(void)
969 {}
970 
971 void
972 cpu_init_cache_scrub(void)
973 {
974 	mach_set_soft_state(SIS_NORMAL, &SOLARIS_SOFT_STATE_RUN_MSG);
975 }
976 
977 int
978 dtrace_blksuword32_err(uintptr_t addr, uint32_t *data)
979 {
980 	int ret, watched;
981 
982 	watched = watch_disable_addr((void *)addr, 4, S_WRITE);
983 	ret = dtrace_blksuword32(addr, data, 0);
984 	if (watched)
985 		watch_enable_addr((void *)addr, 4, S_WRITE);
986 
987 	return (ret);
988 }
989 
990 int
991 dtrace_blksuword32(uintptr_t addr, uint32_t *data, int tryagain)
992 {
993 	if (suword32((void *)addr, *data) == -1)
994 		return (tryagain ? dtrace_blksuword32_err(addr, data) : -1);
995 	dtrace_flush_sec(addr);
996 
997 	return (0);
998 }
999 
1000 /*ARGSUSED*/
1001 void
1002 cpu_faulted_enter(struct cpu *cp)
1003 {
1004 }
1005 
1006 /*ARGSUSED*/
1007 void
1008 cpu_faulted_exit(struct cpu *cp)
1009 {
1010 }
1011 
1012 static int
1013 kdi_cpu_ready_iter(int (*cb)(int, void *), void *arg)
1014 {
1015 	int rc, i;
1016 
1017 	for (rc = 0, i = 0; i < NCPU; i++) {
1018 		if (CPU_IN_SET(cpu_ready_set, i))
1019 			rc += cb(i, arg);
1020 	}
1021 
1022 	return (rc);
1023 }
1024 
1025 /*
1026  * Sends a cross-call to a specified processor.  The caller assumes
1027  * responsibility for repetition of cross-calls, as appropriate (MARSA for
1028  * debugging).
1029  */
1030 static int
1031 kdi_xc_one(int cpuid, void (*func)(uintptr_t, uintptr_t), uintptr_t arg1,
1032     uintptr_t arg2)
1033 {
1034 	int stat;
1035 	struct machcpu	*mcpup;
1036 	uint64_t cpuaddr_reg = 0, cpuaddr_scr = 0;
1037 
1038 	mcpup = &(((cpu_t *)get_cpuaddr(cpuaddr_reg, cpuaddr_scr))->cpu_m);
1039 
1040 	/*
1041 	 * if (idsr_busy())
1042 	 *	return (KDI_XC_RES_ERR);
1043 	 */
1044 
1045 	init_mondo_nocheck((xcfunc_t *)func, arg1, arg2);
1046 
1047 	mcpup->cpu_list[0] = (uint16_t)cpuid;
1048 	stat = shipit(1, mcpup->cpu_list_ra);
1049 
1050 	if (stat == 0)
1051 		return (KDI_XC_RES_OK);
1052 	else
1053 		return (KDI_XC_RES_NACK);
1054 }
1055 
1056 static void
1057 kdi_tickwait(clock_t nticks)
1058 {
1059 	clock_t endtick = gettick() + nticks;
1060 
1061 	while (gettick() < endtick)
1062 		;
1063 }
1064 
1065 static void
1066 kdi_cpu_init(int dcache_size, int dcache_linesize, int icache_size,
1067     int icache_linesize)
1068 {
1069 	kdi_dcache_size = dcache_size;
1070 	kdi_dcache_linesize = dcache_linesize;
1071 	kdi_icache_size = icache_size;
1072 	kdi_icache_linesize = icache_linesize;
1073 }
1074 
1075 /* used directly by kdi_read/write_phys */
1076 void
1077 kdi_flush_caches(void)
1078 {
1079 	/* Not required on sun4v architecture. */
1080 }
1081 
1082 /*ARGSUSED*/
1083 int
1084 kdi_get_stick(uint64_t *stickp)
1085 {
1086 	return (-1);
1087 }
1088 
1089 void
1090 cpu_kdi_init(kdi_t *kdi)
1091 {
1092 	kdi->kdi_flush_caches = kdi_flush_caches;
1093 	kdi->mkdi_cpu_init = kdi_cpu_init;
1094 	kdi->mkdi_cpu_ready_iter = kdi_cpu_ready_iter;
1095 	kdi->mkdi_xc_one = kdi_xc_one;
1096 	kdi->mkdi_tickwait = kdi_tickwait;
1097 	kdi->mkdi_get_stick = kdi_get_stick;
1098 }
1099 
1100 uint64_t	soft_state_message_ra[SOLARIS_SOFT_STATE_MSG_CNT];
1101 static uint64_t	soft_state_saved_state = (uint64_t)-1;
1102 static int	soft_state_initialized = 0;
1103 static uint64_t soft_state_sup_minor;		/* Supported minor number */
1104 static hsvc_info_t soft_state_hsvc = {
1105 			HSVC_REV_1, NULL, HSVC_GROUP_SOFT_STATE, 1, 0, NULL };
1106 
1107 
1108 static void
1109 sun4v_system_claim(void)
1110 {
1111 	watchdog_suspend();
1112 	/*
1113 	 * For "mdb -K", set soft state to debugging
1114 	 */
1115 	if (soft_state_saved_state == -1) {
1116 		mach_get_soft_state(&soft_state_saved_state,
1117 		    &SOLARIS_SOFT_STATE_SAVED_MSG);
1118 	}
1119 	/*
1120 	 * check again as the read above may or may not have worked and if
1121 	 * it didn't then soft state will still be -1
1122 	 */
1123 	if (soft_state_saved_state != -1) {
1124 		mach_set_soft_state(SIS_TRANSITION,
1125 		    &SOLARIS_SOFT_STATE_DEBUG_MSG);
1126 	}
1127 }
1128 
1129 static void
1130 sun4v_system_release(void)
1131 {
1132 	watchdog_resume();
1133 	/*
1134 	 * For "mdb -K", set soft_state state back to original state on exit
1135 	 */
1136 	if (soft_state_saved_state != -1) {
1137 		mach_set_soft_state(soft_state_saved_state,
1138 		    &SOLARIS_SOFT_STATE_SAVED_MSG);
1139 		soft_state_saved_state = -1;
1140 	}
1141 }
1142 
1143 void
1144 plat_kdi_init(kdi_t *kdi)
1145 {
1146 	kdi->pkdi_system_claim = sun4v_system_claim;
1147 	kdi->pkdi_system_release = sun4v_system_release;
1148 }
1149 
1150 /*
1151  * Routine to return memory information associated
1152  * with a physical address and syndrome.
1153  */
1154 /* ARGSUSED */
1155 int
1156 cpu_get_mem_info(uint64_t synd, uint64_t afar,
1157     uint64_t *mem_sizep, uint64_t *seg_sizep, uint64_t *bank_sizep,
1158     int *segsp, int *banksp, int *mcidp)
1159 {
1160 	return (ENOTSUP);
1161 }
1162 
1163 /*
1164  * This routine returns the size of the kernel's FRU name buffer.
1165  */
1166 size_t
1167 cpu_get_name_bufsize()
1168 {
1169 	return (UNUM_NAMLEN);
1170 }
1171 
1172 /*
1173  * This routine is a more generic interface to cpu_get_mem_unum(),
1174  * that may be used by other modules (e.g. mm).
1175  */
1176 /* ARGSUSED */
1177 int
1178 cpu_get_mem_name(uint64_t synd, uint64_t *afsr, uint64_t afar,
1179     char *buf, int buflen, int *lenp)
1180 {
1181 	return (ENOTSUP);
1182 }
1183 
1184 /* ARGSUSED */
1185 int
1186 cpu_get_mem_sid(char *unum, char *buf, int buflen, int *lenp)
1187 {
1188 	return (ENOTSUP);
1189 }
1190 
1191 /* ARGSUSED */
1192 int
1193 cpu_get_mem_addr(char *unum, char *sid, uint64_t offset, uint64_t *addrp)
1194 {
1195 	return (ENOTSUP);
1196 }
1197 
1198 /*
1199  * xt_sync - wait for previous x-traps to finish
1200  */
1201 void
1202 xt_sync(cpuset_t cpuset)
1203 {
1204 	union {
1205 		uint8_t volatile byte[NCPU];
1206 		uint64_t volatile xword[NCPU / 8];
1207 	} cpu_sync;
1208 	uint64_t starttick, endtick, tick, lasttick, traptrace_id;
1209 	uint_t largestid, smallestid;
1210 	int i, j;
1211 
1212 	kpreempt_disable();
1213 	CPUSET_DEL(cpuset, CPU->cpu_id);
1214 	CPUSET_AND(cpuset, cpu_ready_set);
1215 
1216 	CPUSET_BOUNDS(cpuset, smallestid, largestid);
1217 	if (smallestid == CPUSET_NOTINSET)
1218 		goto out;
1219 
1220 	/*
1221 	 * Sun4v uses a queue for receiving mondos. Successful
1222 	 * transmission of a mondo only indicates that the mondo
1223 	 * has been written into the queue.
1224 	 *
1225 	 * We use an array of bytes to let each cpu to signal back
1226 	 * to the cross trap sender that the cross trap has been
1227 	 * executed. Set the byte to 1 before sending the cross trap
1228 	 * and wait until other cpus reset it to 0.
1229 	 */
1230 	bzero((void *)&cpu_sync, NCPU);
1231 	cpu_sync.byte[smallestid] = 1;
1232 	if (largestid != smallestid) {
1233 		for (i = (smallestid + 1); i <= (largestid - 1); i++)
1234 			if (CPU_IN_SET(cpuset, i))
1235 				cpu_sync.byte[i] = 1;
1236 		cpu_sync.byte[largestid] = 1;
1237 	}
1238 
1239 	/*
1240 	 * To help debug xt_sync panic, each mondo is uniquely identified
1241 	 * by passing the tick value, traptrace_id as the second mondo
1242 	 * argument to xt_some which is logged in CPU's mondo queue,
1243 	 * traptrace buffer and the panic message.
1244 	 */
1245 	traptrace_id = gettick();
1246 	xt_some(cpuset, (xcfunc_t *)xt_sync_tl1,
1247 	    (uint64_t)cpu_sync.byte, traptrace_id);
1248 
1249 	starttick = lasttick = gettick();
1250 	endtick = starttick + xc_sync_tick_limit;
1251 
1252 	for (i = (smallestid / 8); i <= (largestid / 8); i++) {
1253 		while (cpu_sync.xword[i] != 0) {
1254 			tick = gettick();
1255 			/*
1256 			 * If there is a big jump between the current tick
1257 			 * count and lasttick, we have probably hit a break
1258 			 * point. Adjust endtick accordingly to avoid panic.
1259 			 */
1260 			if (tick > (lasttick + xc_tick_jump_limit)) {
1261 				endtick += (tick - lasttick);
1262 			}
1263 			lasttick = tick;
1264 			if (tick > endtick) {
1265 				if (panic_quiesce)
1266 					goto out;
1267 				cmn_err(CE_CONT, "Cross trap sync timeout:  "
1268 				    "at cpu_sync.xword[%d]: 0x%lx "
1269 				    "cpu_sync.byte: 0x%lx "
1270 				    "starttick: 0x%lx endtick: 0x%lx "
1271 				    "traptrace_id = 0x%lx\n",
1272 				    i, cpu_sync.xword[i],
1273 				    (uint64_t)cpu_sync.byte,
1274 				    starttick, endtick, traptrace_id);
1275 				cmn_err(CE_CONT, "CPUIDs:");
1276 				for (j = (i * 8); j <= largestid; j++) {
1277 					if (cpu_sync.byte[j] != 0)
1278 						cmn_err(CE_CONT, " 0x%x", j);
1279 				}
1280 				cmn_err(CE_PANIC, "xt_sync: timeout");
1281 			}
1282 		}
1283 	}
1284 
1285 out:
1286 	kpreempt_enable();
1287 }
1288 
1289 #define	QFACTOR		200
1290 /*
1291  * Recalculate the values of the cross-call timeout variables based
1292  * on the value of the 'inter-cpu-latency' property of the platform node.
1293  * The property sets the number of nanosec to wait for a cross-call
1294  * to be acknowledged.  Other timeout variables are derived from it.
1295  *
1296  * N.B. This implementation is aware of the internals of xc_init()
1297  * and updates many of the same variables.
1298  */
1299 void
1300 recalc_xc_timeouts(void)
1301 {
1302 	typedef union {
1303 		uint64_t whole;
1304 		struct {
1305 			uint_t high;
1306 			uint_t low;
1307 		} half;
1308 	} u_number;
1309 
1310 	/* See x_call.c for descriptions of these extern variables. */
1311 	extern uint64_t xc_tick_limit_scale;
1312 	extern uint64_t xc_mondo_time_limit;
1313 	extern uint64_t xc_func_time_limit;
1314 	extern uint64_t xc_scale;
1315 	extern uint64_t xc_mondo_multiplier;
1316 	extern uint_t   nsec_shift;
1317 
1318 	/* Temp versions of the target variables */
1319 	uint64_t tick_limit;
1320 	uint64_t tick_jump_limit;
1321 	uint64_t mondo_time_limit;
1322 	uint64_t func_time_limit;
1323 	uint64_t scale;
1324 
1325 	uint64_t latency;	/* nanoseconds */
1326 	uint64_t maxfreq;
1327 	uint64_t tick_limit_save = xc_tick_limit;
1328 	uint64_t sync_tick_limit_save = xc_sync_tick_limit;
1329 	uint_t   tick_scale;
1330 	uint64_t top;
1331 	uint64_t bottom;
1332 	u_number tk;
1333 
1334 	md_t *mdp;
1335 	int nrnode;
1336 	mde_cookie_t *platlist;
1337 
1338 	/*
1339 	 * Look up the 'inter-cpu-latency' (optional) property in the
1340 	 * platform node of the MD.  The units are nanoseconds.
1341 	 */
1342 	if ((mdp = md_get_handle()) == NULL) {
1343 		cmn_err(CE_WARN, "recalc_xc_timeouts: "
1344 		    "Unable to initialize machine description");
1345 		return;
1346 	}
1347 
1348 	nrnode = md_alloc_scan_dag(mdp,
1349 	    md_root_node(mdp), "platform", "fwd", &platlist);
1350 
1351 	ASSERT(nrnode == 1);
1352 	if (nrnode < 1) {
1353 		cmn_err(CE_WARN, "recalc_xc_timeouts: platform node missing");
1354 		goto done;
1355 	}
1356 	if (md_get_prop_val(mdp, platlist[0],
1357 	    "inter-cpu-latency", &latency) == -1)
1358 		goto done;
1359 
1360 	/*
1361 	 * clock.h defines an assembly-language macro
1362 	 * (NATIVE_TIME_TO_NSEC_SCALE) to convert from %stick
1363 	 * units to nanoseconds.  Since the inter-cpu-latency
1364 	 * units are nanoseconds and the xc_* variables require
1365 	 * %stick units, we need the inverse of that function.
1366 	 * The trick is to perform the calculation without
1367 	 * floating point, but also without integer truncation
1368 	 * or overflow.  To understand the calculation below,
1369 	 * please read the discussion of the macro in clock.h.
1370 	 * Since this new code will be invoked infrequently,
1371 	 * we can afford to implement it in C.
1372 	 *
1373 	 * tick_scale is the reciprocal of nsec_scale which is
1374 	 * calculated at startup in setcpudelay().  The calc
1375 	 * of tick_limit parallels that of NATIVE_TIME_TO_NSEC_SCALE
1376 	 * except we use tick_scale instead of nsec_scale and
1377 	 * C instead of assembler.
1378 	 */
1379 	tick_scale = (uint_t)(((u_longlong_t)sys_tick_freq
1380 	    << (32 - nsec_shift)) / NANOSEC);
1381 
1382 	tk.whole = latency;
1383 	top = ((uint64_t)tk.half.high << 4) * tick_scale;
1384 	bottom = (((uint64_t)tk.half.low << 4) * (uint64_t)tick_scale) >> 32;
1385 	tick_limit = top + bottom;
1386 
1387 	/*
1388 	 * xc_init() calculated 'maxfreq' by looking at all the cpus,
1389 	 * and used it to derive some of the timeout variables that we
1390 	 * recalculate below.  We can back into the original value by
1391 	 * using the inverse of one of those calculations.
1392 	 */
1393 	maxfreq = xc_mondo_time_limit / xc_scale;
1394 
1395 	/*
1396 	 * Don't allow the new timeout (xc_tick_limit) to fall below
1397 	 * the system tick frequency (stick).  Allowing the timeout
1398 	 * to be set more tightly than this empirically determined
1399 	 * value may cause panics.
1400 	 */
1401 	tick_limit = tick_limit < sys_tick_freq ? sys_tick_freq : tick_limit;
1402 
1403 	tick_jump_limit = tick_limit / 32;
1404 	tick_limit *= xc_tick_limit_scale;
1405 
1406 	/*
1407 	 * Recalculate xc_scale since it is used in a callback function
1408 	 * (xc_func_timeout_adj) to adjust two of the timeouts dynamically.
1409 	 * Make the change in xc_scale proportional to the change in
1410 	 * xc_tick_limit.
1411 	 */
1412 	scale = (xc_scale * tick_limit + sys_tick_freq / 2) / tick_limit_save;
1413 	if (scale == 0)
1414 		scale = 1;
1415 
1416 	mondo_time_limit = maxfreq * scale;
1417 	func_time_limit = mondo_time_limit * xc_mondo_multiplier;
1418 
1419 	/*
1420 	 * Don't modify the timeouts if nothing has changed.  Else,
1421 	 * stuff the variables with the freshly calculated (temp)
1422 	 * variables.  This minimizes the window where the set of
1423 	 * values could be inconsistent.
1424 	 */
1425 	if (tick_limit != xc_tick_limit) {
1426 		xc_tick_limit = tick_limit;
1427 		xc_tick_jump_limit = tick_jump_limit;
1428 		xc_scale = scale;
1429 		xc_mondo_time_limit = mondo_time_limit;
1430 		xc_func_time_limit = func_time_limit;
1431 	}
1432 
1433 done:
1434 	/*
1435 	 * Increase the timeout limit for xt_sync() cross calls.
1436 	 */
1437 	xc_sync_tick_limit = xc_tick_limit * (cpu_q_entries / QFACTOR);
1438 	xc_sync_tick_limit = xc_sync_tick_limit < xc_tick_limit ?
1439 	    xc_tick_limit : xc_sync_tick_limit;
1440 
1441 	/*
1442 	 * Force the new values to be used for future cross calls.
1443 	 * This is necessary only when we increase the timeouts.
1444 	 */
1445 	if ((xc_tick_limit > tick_limit_save) || (xc_sync_tick_limit >
1446 	    sync_tick_limit_save)) {
1447 		cpuset_t cpuset = cpu_ready_set;
1448 		xt_sync(cpuset);
1449 	}
1450 
1451 	if (nrnode > 0)
1452 		md_free_scan_dag(mdp, &platlist);
1453 	(void) md_fini_handle(mdp);
1454 }
1455 
1456 void
1457 mach_soft_state_init(void)
1458 {
1459 	int		i;
1460 	uint64_t	ra;
1461 
1462 	/*
1463 	 * Try to register soft_state api. If it fails, soft_state api has not
1464 	 * been implemented in the firmware, so do not bother to setup
1465 	 * soft_state in the kernel.
1466 	 */
1467 	if ((i = hsvc_register(&soft_state_hsvc, &soft_state_sup_minor)) != 0) {
1468 		return;
1469 	}
1470 	for (i = 0; i < SOLARIS_SOFT_STATE_MSG_CNT; i++) {
1471 		ASSERT(strlen((const char *)(void *)
1472 		    soft_state_message_strings + i) < SSM_SIZE);
1473 		if ((ra = va_to_pa(
1474 		    (void *)(soft_state_message_strings + i))) == -1ll) {
1475 			return;
1476 		}
1477 		soft_state_message_ra[i] = ra;
1478 	}
1479 	/*
1480 	 * Tell OBP that we are supporting Guest State
1481 	 */
1482 	prom_sun4v_soft_state_supported();
1483 	soft_state_initialized = 1;
1484 }
1485 
1486 void
1487 mach_set_soft_state(uint64_t state, uint64_t *string_ra)
1488 {
1489 	uint64_t	rc;
1490 
1491 	if (soft_state_initialized && *string_ra) {
1492 		rc = hv_soft_state_set(state, *string_ra);
1493 		if (rc != H_EOK) {
1494 			cmn_err(CE_WARN,
1495 			    "hv_soft_state_set returned %ld\n", rc);
1496 		}
1497 	}
1498 }
1499 
1500 void
1501 mach_get_soft_state(uint64_t *state, uint64_t *string_ra)
1502 {
1503 	uint64_t	rc;
1504 
1505 	if (soft_state_initialized && *string_ra) {
1506 		rc = hv_soft_state_get(*string_ra, state);
1507 		if (rc != H_EOK) {
1508 			cmn_err(CE_WARN,
1509 			    "hv_soft_state_get returned %ld\n", rc);
1510 			*state = -1;
1511 		}
1512 	}
1513 }
1514